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August: Endings and Beginnings 

The universe is built on a plan the profound symmetry of which 
is somehow present in the inner structure of our intellect. 

paul valé ry 

Midday, 26 August, the Sinai Desert 

It’s my 40th birthday. It’s 40 degrees. I’m covered in factor 40 sun 
cream, hiding in the shade of a reed shack on one side of the Red Sea. 
Saudi Arabia shimmers across the blue water. Out to sea, waves break 
where the coral cliff descends to the sea floor. The mountains of Sinai 
tower behind me. 

I’m not usually terribly bothered by birthdays, but for a mathe-
matician 40 is significant – not because of arcane and fantastical 
numerology, but because there is a generally held belief that by 40 you 
have done your best work. Mathematics, it is said, is a young man’s 
game. Now that I have spent 40 years roaming the mathematical 
gardens, is Sinai an ominous place to find myself, in a barren desert 
where an exiled nation wandered for 40 years? The Fields Medal, which 
is mathematics’ highest accolade, is awarded only to mathematicians 
under the age of 40. They are distributed every four years. This time 
next year, the latest batch will be announced in Madrid, but I am now 
too old to aspire to be on the list. 

As a child, I hadn’t wanted to be a mathematician at all. I’d decided 
at an early age that I was going to study languages at university. This, 
I realized, was the secret to fulfilling my ultimate dream: to become a 
spy. My mum had been in the Foreign Office before she got married. 
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The Diplomatic Corps in the 1960s didn’t believe that motherhood 
was compatible with being a diplomat, so she left the Service. But 
according to her, they’d let her keep the little black gun that every 
member of the Foreign Office was required to carry. ‘You never know 
when you might be recalled for some secret assignment overseas,’ she 
said, enigmatically. The gun, she claimed, was hidden somewhere in 
our house. 

I searched high and low for the weapon, but they’d obviously been 
very thorough when they taught my mum the art of concealment. The 
only way to get my own gun was to join the Foreign Office myself and 
become a spy. And if I was going to look useful, I’d better be able to 
speak Russian. 

At school I signed up for every language possible: French, German 
and Latin. The BBC started running a Russian course on television. 
My French teacher, Mr Brown, tried to help me with it. But I could 
never get my mouth around saying ‘hello’ – zdravstvuyte – and even 
after eight weeks of following the course I still couldn’t pronounce it. 
I began to despair. I was also becoming increasingly frustrated by the 
fact that there was no logic behind why certain foreign verbs behaved 
the way they did, and why certain nouns were masculine or feminine. 
Latin did hold out some hope, its strict grammar appealing to my 
emerging desire for things which were part of some consistent, logical 
scheme and not just apparently random associations. Or perhaps it 
was because the teacher always used my name for second-declension 
nouns: Marcus, Marce, Marcum, . . .  

One day, when I was 12, my mathematics teacher pointed at me 
during a class and said, ‘du Sautoy, see me at the end of the lesson.’ I 
thought I must be in trouble. I followed him outside, and when we 
reached the back of the maths block he took a cigar from his pocket. 
He explained that this is where he came to smoke at break-time. The 
other teachers didn’t like the smoke in the common room. He lit the 
cigar slowly and said to me, ‘I think you should find out what mathe-
matics is really about.’ 

I don’t quite know even now why he singled me out from all the 
others in the class for this revelation. I was far from being a maths 
prodigy, and lots of my friends seemed just as good at the subject. But 
something obviously made Mr Bailson think that I might have an 
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appetite for finding out what lay beyond the arithmetic of the 
classroom. 

He told me that I should read Martin Gardener’s column in Scientific 
American. He gave me the names of a couple of books which he 
thought I might enjoy, including one called The Language of Mathe-
matics, by Frank Land. The simple fact of a teacher taking a personal 
interest in me was enough to spur me on to investigate what it was 
that he found so intriguing about the subject. 

That weekend my dad and I took a trip up to Oxford, the nearest 
academic city to our home. A little shopfront on The Broad bore the 
name Blackwell’s. It didn’t look terribly promising, but someone had 
told my dad that this was the Mecca of academic bookshops. Entering 
the shop you realized why. Like Doctor Who’s Tardis, the shop was 
huge once you had entered the tiny front door. Mathematics books, 
we were told, were down in the Norrington Room, as the basement 
was known. 

As we went downstairs a vast cavernous room opened up before us, 
stuffed full of what looked to me like every possible science book that 
could ever have been published. It was an Aladdin’s cave of science 
books. We found the shelves dedicated to mathematics. While my dad 
searched for the books my teacher had recommended, I started pulling 
books off the shelves and peering inside. For some reason there seemed 
to be a high concentration of yellow books. But it was what I found 
within the yellow covers that grabbed my attention. The contents 
looked extraordinary. I recognized strings of Greek letters from my 
brief foray into learning Greek. There were storms of tiny little 
numbers and letters adorning x’s and y’s. On every page there were 
words in bold like Lemma and Proof. 

It was completely meaningless to me. There were a few students 
leaning against the bookshelves who seemed to be reading the books 
as though they were novels. Clearly, they understood this language. It 
was simply code for something. From that moment I decided that I 
was going to learn how to decode these mathematical hieroglyphics. 
As we were paying at the till, I saw a table full of yellow paperbacks. 
‘They’re mathematical journals,’ explained the shop assistant. ‘The 
publishers are offering free copies to entice academics to take out a 
subscription.’ 
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I picked up a copy of something called Inventiones Mathematica and 
put it in the bag with the books we’d just bought. Here was my 
challenge. Could I decode the mathematical inventions in this yellow 
book? Some of the articles were in German, one was in French and 
the rest were in English. But it was the mathematical language that I was 
now determined to crack. What did ‘Hilbert space’ and ‘isomorphism 
problem’ mean? What message was hidden in these lines of sigmas 
and deltas and symbols that I couldn’t even name? 

When I got home I started looking at the books we’d bought. 
The Language of Mathematics particularly intrigued me. Before our 
expedition to Oxford, I’d never thought of mathematics as a language. 
At school it seemed to be just numbers that you could multiply or 
divide, add or subtract, with varying degrees of difficulty. But as I 
looked through this book I could see why my teacher had told me to 
‘find out what maths is really about’. 

In this book there was no long division to lots of decimal places or 
anything like that. Instead there were, for example, important number 
sequences like the Fibonacci numbers. Apparently, the book said, these 
numbers explain how flowers and shells grow. You get any number in 
the sequence by adding the two previous numbers together. The 
sequence starts 1, 1, 2, 3, 5, 8, 13, 21, . . . The book explained how 
these numbers are like a code that tells a shell what to do next as it 
grows. A tiny snail starts off with a little 1 × 1 square house. Then, 
each time it outgrows its shell, it adds another room to the house. But 
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8 
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Fig. 1 How the snail uses the Fibonacci numbers to grow its shell. 
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since it doesn’t have much to go on, it simply adds a room whose 
dimensions are the sum of the dimensions of the two previous rooms. 
The result of this growth is a spiral (Figure 1). It was beautiful and 
simple. These numbers are fundamental, said the book, to the way 
nature grows things. 

Other pages depicted interesting three-dimensional objects that I’d 
never seen before, built from pentagons and triangles. One was called 
an icosahedron and had 20 triangular faces (Figure 2). Apparently, if 
you took one of these objects (what the book called polyhedra) and 
counted the number of faces and points (what the book called vertices), 
and then subtracted the number of edges, you always got 2. For 
example, a cube has 6 faces, 8 vertices and 12 edges: 6 + 8 − 12 = 2.  The  
book claimed that this trick would work for any polyhedron. That 
seemed like a bit of magic. I tried it on the one made out of 20 
triangles. 

Fig. 2 The icosahedron with its 20 triangular faces. 

The trouble was that it was quite hard to envisage the whole object 
clearly enough to count everything. Even if I built one from card, 
keeping track of all those edges seemed a bit daunting. But then my 
dad showed me a short cut. ‘How many triangles are there?’ Well, the 
book said that there were 20. ‘So that’s 60 edges on 20 triangles, but each 
edge is shared by two triangles. That makes 30 edges.’ Now, that really 
was magic. Without looking at the icosahedron, you could work out 
how many edges it had. The same trick worked for the vertices. Again, 
20 triangles have 60 vertices. But this time I could see from the picture 
that every vertex was shared by five triangles. So the icosahedron had 
20 faces, 12 vertices and 30 edges. And sure enough, 20 + 12 − 30 = 2. But 
why did the formula work whatever polyhedron you took? 
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In another book there was a whole section on the symmetry of 
objects like these polyhedra made out of triangles. I had a vague idea 
of what ‘symmetry’ meant. I knew that I was symmetrical, at least on 
the outside. Whatever I had on the left side of my body, there was a 
mirror image of it on the right side. But a triangle, it seemed, had 
much more symmetry than just the simple mirror symmetry. You 
could spin it round as well, and the triangle still looked the same. 
I began to realize that I wasn’t actually sure what it meant to say that 
something was symmetrical. 

The book stated that the equilateral triangle had six symmetries. As 
I read on, I began to see that the triangle’s symmetry was captured by 
the things I could do to it that would leave it looking the same. I 
traced an outline around a triangular piece of card and then counted 
the number of ways I could pick the triangle up and put it down so 
that it fitted back exactly inside its outline on the paper. Each of these 
moves, the book said, was ‘a symmetry’ of the triangle. So a symmetry 
was something active, not passive. The book was pushing me to think 
of a symmetry as an action that I could perform on the triangle to 
replace it inside its outline, rather than some innate property of the 
triangle itself. I started to count the symmetries of the triangle, thinking 
of them as the various different things I could do to it. I could flip the 
triangle over in three ways. Each time two corners swapped places. I 
could also spin the triangle by a third of a full rotation, either clockwise 
or anticlockwise. That made five symmetries. What was the sixth? 

I searched desperately for what I’d missed. I tried combining actions 
to see whether I could get a new one. After all, performing two of 
these moves one after the other was effectively the same as making a 
single move. If a symmetry was a move that put the triangle back 
inside its outline, then perhaps I would get a new move or a new 
symmetry. What if I flipped the triangle then turned it? No, that was 
just like one of the other flips. What about flipping, rotating and then 
flipping back again? No, that just created the spin in the other direc-
tion, which I’d counted already. I’d got five things, but whatever 
combination I took of these moves I couldn’t get anything new. So 
I went back to the book. 

What I found was that they’d included as a symmetry just leaving 
the triangle where it was. Curious . . . But I soon saw that if symmetry 
meant anything you could do to the triangle that kept it inside its 
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outline, then not touching it at all – or, equivalently, picking it up and 
putting it back in exactly the same place – was also an action that had 
to be included. 

I liked this idea of symmetry. The symmetries of an object seemed 
to be a bit like all the magic trick moves. The mathematician shows 
you the triangle, then tells you to turn away. While you are not looking, 
the mathematician does something to the triangle. But when you turn 
back it looks exactly as it did before. You could think of the total 
symmetry of an object as all the moves that the mathematician could 
make to trick you into thinking that he hadn’t touched it at all. 

I tried out this new magic on some other shapes. Here was an 
interesting one, looking like a six-pointed starfish (Figure 3). I couldn’t 
flip it over without making it look different: it seemed to be spinning 
in one direction, which destroyed its reflectional mirror symmetry. 
But I could still spin it. With its six tentacles, there were five spins I 
could do, together with just leaving it where it was. Six symmetries. 
The same number as the triangle. 

Fig. 3 A six-pointed starfish with no reflectional symmetry. 

Each object had the same number of symmetries. But the book 
talked about a language that could articulate and give meaning to the 
statement ‘These two objects have different symmetries.’ It would 
reveal why these objects represented two different species in the world 
of symmetry. This language could also expose, the book promised, 
when two objects that looked physically different actually had the same 
symmetries. This was the journey I was about to embark on: to discover 
what symmetry really is. 

As I read on, the shapes and pictures gave way to symbols. Here 
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was the language that the title of the other book was referring to. There 
seemed to be a way to translate the pictures into a language. I came 
across some of the symbols that I’d seen in the yellow journal I’d 
picked up. Everything was starting to get rather abstract, but it seemed 
that this language was trying to capture the discovery I’d made when 
playing with the six symmetries of the triangle. If you took two sym-
metries, or magic trick moves, and did them one after the other, for 
example a reflection followed by a rotation, it gave you a third sym-
metry. The language describing these interactions had a name: group 
theory. 

This language provided an insight into why the six symmetries of 
the six-pointed starfish were different to the six symmetries of the 
triangle. A symmetry was one of these magic trick moves, so I could 
perform two symmetries of an object one after the other to get a third 
symmetry. The group of symmetries of the starfish interact with one 
another very differently to the interaction between the group of sym-
metries of the triangle. It was the interactions among the group of 
symmetries of an object that distinguished the group of symmetries of 
the triangle from the group of symmetries of the six-pointed starfish. 

In the starfish, for example, one rotation followed by another gave 
me a third rotation. But it didn’t matter in what order I made the 
two rotations. For example, spinning the starfish 180° clockwise then 
anticlockwise 60° left the starfish in the same position as first doing 
the 60° anticlockwise spin and then the 180° clockwise spin. In contrast, 
if I took two symmetries of the triangle and combined the two magic 
trick moves corresponding to these symmetries, it made a big differ-
ence what order I did them in. A mirror symmetry move followed by 
a rotation was not the same as the rotation followed by the mirror 
symmetry move. The language of my book had translated the pictures 
into the sentence M·R � R·M, where M was the mirror symmetry move 
and R the rotation (Figure 4). The physical world of symmetry could 
be translated into an abstract algebraic language. 

As my school years progressed, I came to see what my maths teacher 
had done. The arithmetic of the classroom is a bit like scales and 
arpeggios for a musician. My teacher had played me some of the 
exciting music that was waiting for me out there if I could master the 
technical part of the subject. I certainly didn’t understand everything 
I read, but I did now want to know more. 
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Fig. 4 A mirror symmetry followed by a rotation is different from a rotation followed 
by a mirror symmetry. 

Most budding musicians would abandon their instruments if all 
they were allowed to play and listen to were scales and arpeggios. A 
child starting out on an instrument will have no idea how Bach 
composed the Goldberg Variations or how to improvise a blues lick, 
yet they can still get a kick out of hearing someone else do it. Books 
such as The Language of Mathematics made me realize that you could 
do the same with maths. I didn’t have a clue what ‘a group’ really was, 
but I grasped that it was part of a secret language that could be used 
to unlock the science of symmetry. 

This was the language I would try to learn. It might not get me into 
the Foreign Office, and I might have to give up the dream of being a 
spy, but here was a secret code that looked as intriguing as anything 
the world of espionage might throw up. And unlike Russian or Ger-
man, this language of mathematics seemed to be a perfect idealized 
language in which everything made sense and there were no irregular 
verbs or nonsensical exceptions. 

Of all the things I had seen in those books, it was group theory – 
the language of symmetry – that intrigued me most. It seemed to take 
a world that was full of pictures and turn it into words. The dangerous 
ambiguities that plague the visual world, with its plethora of optical 
illusions and mirages, were made transparent by the power of this new 
grammar. 

I’ve been sitting on the beach in the shade of our shack reading one 
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of those yellow books I’d seen in Blackwell’s. For me, the stories in 
those books are as exciting as the best holiday novel. This one is written 
in the language of symmetry and tells the tales of some of the strange 
symmetrical objects that this language helped unleash. But it also is a 
book full of unfinished stories. My 40th birthday is just a staging post 
on my journey to answering the questions that have obsessed me as I 
journeyed further into this world of symmetry. 

From the vantage point of my birthday, sitting here on the beach in 
Sinai, I have travelled a long way since I first started to learn the 
language of symmetry. My steps along this path are a tiny part of a 
grander quest which has engaged mathematicians ever since they real-
ized that symmetry held the key to understanding many of nature’s 
intimate secrets. 

Nature’s language 

The sun is setting behind the mountains of Sinai, and the tide is 
receding across the coral shelf that runs parallel to the coastline. It is 
time for white men and crustaceans to emerge from the shade. A bit 
of exercise might help sort out the mess in my head. There are two 
Israeli guys up ahead who are staying in the Bedouin camp. For them, 
Sinai is a welcome escape from guard duty in Gaza. Their backs are 
scorched from snorkelling too long in the Sinai sun. They’re pointing 
excitedly into the water, intrigued by something they’ve found on the 
surface of the coral. When I look down, I suddenly notice the coral 
surface is covered with one of nature’s most remarkable symmetrical 
animals. 

There in the water is a real starfish like the picture I’d played with 
as a child. I’m not sure if I’ve ever seen a live starfish before. This one 
has the classic five tentacles that most people associate with starfish, 
but it is not as rigid as the cartoon-style crustaceans I’m used to seeing. 
Apparently some starfish, not content with the simple five-pointed 
pentacle, have gone for even showier displays of symmetry. The sun-
flower starfish starts out life with five legs, but during its eight-year 
life span it can grow as many as 24 legs. Being able to generate a shape 
which looks exactly the same in 24 different directions is some feat of 
biological engineering. 
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Why, though, is symmetry so pervasive in nature? It is not just a 
matter of aesthetics. Just as it is for me and mathematics, symmetry 
in nature is about language. It provides a way for animals and plants to 
convey a multitude of messages, from genetic superiority to nutritional 
information. Symmetry is often a sign of meaning, and can therefore 
be interpreted as a very basic, almost primeval form of communication. 
For an insect such as the bee, symmetry is fundamental to survival. 

The eyesight of the bee is extremely limited. As it flies round negoti-
ating the world, its brain receives images that are as distorted as if we 
were looking at the world through a thick sheet of glass. The bee can’t 
judge distances, so it continually crashes into things. The bee suffers a 
form of colour-blindness. The background green of the garden appears 
grey; red stands out more clearly as a blackness against the grey. But 
even through this thick-rimmed pair of glasses, there is one thing that 
burns strongly in the eyes of the bee: symmetry. 

The honeybee likes the pentagonal symmetry of honeysuckle, the 
hexagonal shape of the clematis, and the highly radial symmetry of the 
daisy or sunflower. The bumblebee prefers mirror symmetry, such as 
the symmetry of the orchid, pea or foxglove. The eyesight of bees has 
evolved sufficiently for them to pick out these significant shapes. For 
in symmetry there is sustenance. The bees that are drawn to shapes 
with pattern are the insects that will not go hungry. For the bee, 
survival of the fittest means becoming an expert at symmetry. The bee 
that could not read the signs and signals of sustenance was left buzzing 
randomly round the garden, unable to keep up with its superior com-
petitors who could spot the patterns. 

Because the plant is equally dependent on attracting the bee to its 
flower for pollination and prolonging its genetic heritage, it too has 
played its part in this natural dialogue. The flower that can achieve 
perfect symmetry attracts more bees and survives longer in the evolu-
tionary battle. Symmetry is the language used by the flower and bee 
to communicate with each other. For the flower, the hexagon or the 
pentagon is like a billboard shouting out ‘Visit me!’ For the bee, 
encoded in the symmetrical shape is the message that ‘Here is food!’ 
Symmetry denotes something special, something with meaning. 
Against the static white noise that makes up most of the bee’s visual 
world, the six perfect petals of the clematis stand out like a musical 
phrase full of harmony. 
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As nature’s garden evolved, so too did the variety of shapes and 
colours exploited by the plant world. After millions of years of spring 
following winter to produce another year of geometric evolution, the 
garden is now a plethora of patterns trumpeting their greetings and 
promises of sweet sustenance. 

But symmetry is not an easy thing to achieve. A plant has to work 
hard and be able to divert important natural resources to achieve the 
balance and beauty of the orchid or the sunflower. Beauty of form is 
an extravagance. That is why only the fittest and healthiest indi-
vidual plants have enough energy to spare to create a shape with 
balance. The superiority of the symmetrical flower is reflected in a 
greater production of nectar, and that nectar has a higher sugar con-
tent. Symmetry tastes sweet. 

The flower or animal with symmetry is sending out a very clear 
signal of its genetic superiority over its neighbours. That is why the 
animal world is populated by shapes that strive for perfect balance. 
Humans and animals are genetically programmed to look upon these 
shapes as beautiful – we are attracted to those animals whose genetic 
make-up is so superior that they can use energy to make symmetry. 

Humans and animals alike will choose a face that has perfect left– 
right mirror symmetry over an unsymmetrical face. Most of the ani-
mals in the natural world favour such bilateral mirror symmetry. A 
line down the middle separates the shape into two different halves. 
But although they are different, there is a perfect correspondence which 
matches one half to the other. At least externally. The asymmetry of 
our internal organs is still something of a mystery and only goes to 
reinforce the wonder at how symmetrical the exterior is. 

Studies indicate that the more symmetrical among us are more likely 
to start having sex at an earlier age. Even the smell men emit seems to 
be more appealing to women when the male has more symmetry. In 
one study, sweaty T-shirts that had been worn by men were offered to 
a selection of women, and those who were ovulating were drawn to 
the tee-shirts worn by the men with the most symmetrical bodies. It 
seems, though, that men are not programmed to pick up the scent of 
a symmetrical woman. 

Animal rights activists have used symmetry as evidence of cruelty 
to animals. Battery farm eggs are likely to be far less symmetrical than 
free-range eggs: battery hens are suffering trauma and wasting energy 
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that could have been used to realize perfection. Unlike the tortured 
artist thriving in adversity to create great art, the hen needs comfort 
and luxury to produce perfect symmetry. 

Animals have also been drawn to mirror symmetry because of the 
superior motor skills it offers. Symmetry is often associated with the 
idea of a shape being in perfect balance – one half with another. Nearly 
all motor abilities are reliant on symmetry to propel them in the most 
efficient manner. It is the most symmetrical two- and four-legged 
members of a species who can move the fastest. The food goes to the 
animal with the most symmetry because it’s going to get to the dinner 
table first. Similarly, the prey who can run fastest stands the best 
chance of avoiding becoming dinner. So natural selection favours the 
form that creates the fastest animal – and balance in motion is inti-
mately tied up with symmetry of form. The animal with one leg much 
longer than the others is going to run round in circles and won’t 
survive the fierce pace of natural selection. 

But symmetry isn’t just a genetic language for declaring to potential 
mates how good one’s DNA is. Back in the hive, away from the search 
for symmetrical flowers and nectar, symmetry also pervades the bee’s 
home life. As the young bees gorge themselves on the honey that has 
been collected, they secrete small slivers of wax. The temperature of 
the hive is maintained at 35°C by the concentration of bees, which 
makes the wax malleable enough to be shaped by the worker bees, 
who collect the wax secretions and mould the cells in which the honey 
will be stored. The hexagonal lattice that the bees use to store their 
honey exploits another facet of symmetry. Not only is it a harbinger 
of meaning and language, but also symmetry is nature’s way of being 
efficient and economical. For the bee, the lattice of hexagons allows 
the colony to pack the most honey into the greatest space without 
wasting too much wax on building its walls. 

Although bees have known for ages that hexagons are the most 
efficient shape for building a honey store, it is only very recently that 
mathematicians have fully explained the Honeycomb Conjecture: from 
the infinite choice of different structures that the bees could have built, 
it is hexagons that use the least wax to create the most cells. 

Although symmetry is genetically hard to achieve, many natural 
phenomena will gravitate towards symmetry as the most stable and 
efficient state. The inanimate world is full of examples of the drive for 
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symmetry of form. When a soap bubble forms it tries to assume the 
shape of a perfect sphere, the three-dimensional shape with the most 
symmetry. However much you rotate or reflect a sphere, its shape still 
looks the same. But for the soap film it is the efficiency of the shape 
of the sphere that appeals. The energy in the soap film is directly 
proportional to the surface area of the bubble. The sphere is the shape 
with the smallest surface area that can contain a given volume of air, 
and hence it is the shape that uses the least energy. Like a stone rolling 
down a mountain to the point of lowest energy in the valley below, 
the symmetrical sphere represents the optimal shape for the soap 
film. 

The raindrop as it falls through the sky is not in fact the tear shape 
that artists often paint – that’s just an artistic convention to give a 
sense of rain in motion. The true picture of a drop of water falling from 
the sky is a perfect sphere. Lead shot manufacturers have exploited this 
fact since the eighteenth century: molten lead is dropped from a great 
height into buckets of cold water to make perfectly spherical balls. 

Scientists have discovered mysterious symmetries hiding at the heart 
of many parts of the natural world – fundamental physics, biology and 
chemistry all depend on a complex variety of symmetrical objects. The 
snowflake and the deadly HIV virus both exploit symmetry. In the 
chemical world, a diamond gets its strength from its highly symmetrical 
arrangement of carbon atoms. In physics, scientists established the 
connection between electricity and magnetism by discovering how 
these parts are simply two different sides of a common symmetrical 
phenomenon. New fundamental particles have been predicted thanks 
to spinning through the symmetries of strange shapes. The different 
symmetries hint at the existence of new particles which are mirroring 
particles we already understand. 

For as long as humans have been communicating with each other, 
symmetry has remained a central idea in the lexicon. Repeating pat-
terns is key to how a baby first learns language. Symmetry continues 
to inform the way we craft words in songs and poetry. From the first 
cave paintings to modern art, from primitive drumbeats to contempor-
ary music, artists have continually pushed symmetry to the extremes. 
As with the humble bee, symmetry has provided manufacturers with 
efficient ways to create and build, from the Arab carpet weavers to the 
engineers who have managed to encode more and more data onto 
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smaller and smaller electronic devices. Symmetry is behind every step 
in our evolutionary development. 

The word ‘symmetry’ conjures to mind objects which are well bal-
anced, with perfect proportions. Such objects capture a sense of beauty 
and form. The human mind is constantly drawn to anything that 
embodies some aspect of symmetry. Our brain seems programmed to 
notice and search for order and structure. Artwork, architecture and 
music from ancient times to the present day play on the idea of 
things which mirror each other in interesting ways. Symmetry is about 
connections between different parts of the same object. It sets up a 
natural internal dialogue in the shape. 

I can’t step over the starfish in the sea without spinning the pentacle 
in my head. I can’t ignore the strange pattern that adorns my swim-
ming trunks. Even footsteps in the sand get me thinking about a 
problem that I can’t stop exploring once it’s occurred to me. How 
many different ways can I mark out shapes in the sand as I make my 
way along the beach? My simple footsteps are something called a glide 
reflection – each step is got by reflecting the previous footstep then 
gliding it across the sand. Now I hop along the beach kangaroo-fashion, 
and my two feet create a pattern with simple reflection. When I spin 
in the air and land facing the other way, I get a pattern with two lines 
of reflectional symmetry. In all, I manage to make seven different 
symmetries in the sand. The Bedouin fishermen who are catching our 
dinner are laughing at me as I jump and hop around in my exploration 
of symmetry in the sand. 

The symmetry seekers 

Mathematics is sometimes called the quest for patterns. Jumping about 
in the sand, I found I could make seven different types of pattern with 
my footprints. But is it possible to classify all the possible patterns that 
could be found in nature? Is there a limit to what patterns we might 
find? Could we even make a list of all these possible symmetries? For 
the mathematician, the pattern searcher, understanding symmetry is 
one of the principal themes in the quest to chart the mathematical 
world. 

For several millennia, mathematicians have been gradually 
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accumulating symmetrical shapes as they explored further and further 
afield. But symmetry is a slippery concept. What exactly is it? When 
do two objects have the same symmetries and when are they different? 
It took a stunning breakthrough during the revolutionary fervour of 
nineteenth-century Paris for a new language to emerge that could 
capture the true meaning of the word. As I’d learnt from the book my 
teacher had recommended, it was called group theory. This new lan-
guage became the seed for a mathematical revolution which would 
match in its implications the political upheaval then taking place on 
the streets of Paris. Suddenly, mathematics had the tools to build ships 
to set sail for the very limits of the world of symmetry. 

One of the most important discoveries revealed by this new 
nineteenth-century language of group theory was that behind sym-
metry lay a concept of prime building blocks. The Ancient Greeks 
knew that every number can be divided into prime numbers – indivis-
ible numbers – and that these numbers were the building blocks of all 
other numbers. The nineteenth-century language for symmetry threw 
up the far subtler fact that, just like the division of numbers, every 
symmetrical object could also be divided into certain smaller objects 
whose collection of symmetries were indivisible. For example, the 
rotations of a 15-sided figure could be built from the rotations of a 
pentagon and the rotations of a triangle. But the group of rotations of 
these ‘prime-sided’ figures could not be divided up into smaller groups 
of symmetries. The group of symmetries of the pentagon was an 
indivisible group of symmetries. The crucial thing about these indivis-
ible groups of symmetries was the fact that they were the building 
blocks from which all symmetrical objects could be built. Just as the 
prime number 5 is a building block of larger numbers, the pentagon 
was one of the building blocks in the world of symmetry. 

It took mathematicians a long time to fully grasp the idea of what 
made a symmetrical object indivisible. But when they did, they saw 
the prospect of producing a ‘periodic table’ of symmetry consisting of 
all the different possible indivisible symmetrical objects, in the same 
way that chemistry’s periodic table collects together the chemically 
indivisible elements from which all other substances are made. Such a 
table would list all the building blocks out of which all possible sym-
metrical objects can be constructed. Prime numbers are the key to the 
first objects to be included in the periodic table of symmetry: the 
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rotational symmetries of a prime-sided polygon or coin. But in the 
world of symmetry there turned out to be other, stranger objects whose 
symmetries were indivisible. One of the first of these more exotic 
building blocks of symmetry was the rotational symmetries of the 
icosahedron with its 20 triangular faces. The mathematicians of the 
nineteenth century discovered that the icosahedron was an object 
whose symmetries could not be reduced to smaller objects. 

Ever since the Ancient Greeks discovered the icosahedron thousands 
of years ago, mathematicians have been marvelling at and exploring 
the world of symmetry. But this new window opened up by group 
theory offered the prospect of mastering and classifying this world. If 
you knew the building blocks of symmetry, you could become sym-
metry’s architect. The mathematicians of the nineteenth and twentieth 
centuries unearthed and added more and more indivisible symmetrical 
objects to this mathematical periodic table. But the list just kept on 
growing, and they began to wonder whether a list of all possible 
indivisible symmetrical objects could ever be completed. 

Then, in the 1970s, along came a band of mathematical explorers 
whose skills, determination and sheer persistence were equal to the 
task of navigating the limits of this complex world. The explorers 
divided into two distinct teams. One specialized in finding more and 
more exotic mathematical objects whose symmetries were indivisible. 
Like pirates hunting for treasure, this was the fun team to be in, 
looking out for new building blocks of symmetry. But the stakes were 
high. While a few of them carved their names into the annals of 
symmetry with their discoveries, many searched in vain and returned 
empty-handed. Luck as much as judgement was an important factor 
in whether there was treasure at the end of any particular rainbow. 

In contrast to the swashbuckling of this first team, the second one 
consisted of a more disciplined fighting force. This well organized 
troop worked from the other end, exploiting the limitations of sym-
metry. They soberly assessed each twist and turn, explaining why there 
were no new indivisible symmetries that could possibly exist if you set 
off in certain directions. 

The first team consisted of a ramshackle collection of mathematical 
mavericks. One of the most colourful was John Horton Conway, 
currently professor at the University of Princeton. His mathematical 
and personal charisma have given him almost cult status. Conway’s 
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performances when he presents the spoils of his mathematical raids 
are almost magical in quality. He weaves together what at first sight 
look like mathematical curios or tricks, but by the end of the lecture 
has arrived at answers to very fundamental questions of mathematics. 
Each revelation of a fundamental insight is preceded by his character-
istic laugh, as if he too is surprised at where he has arrived. At the 
same time he has reduced a room of serious academics to playful 
children. They rush up at the end of the lecture to play with the 
mathematical toys he produces from a suitcase of tricks that he often 
carries with him. 

At the helm of the second team was Daniel Gorenstein. During the 
1960s, hundreds of mathematicians around the world turned their 
attention to understanding the limits of the world of symmetry. Their 
efforts were focused more on showing what was not possible. In 1972 
Gorenstein decided that a coordinated attack combining everyone’s 
individual skills was needed. Without his stewardship, mathematicians 
might still have been wandering the globe unaware of each other’s 
progress. Advances were sometimes painstaking and treacherous as 
they battled their way through complex and lengthy proofs, some 
extending to thousands of pages of logical argument. Gorenstein often 
referred to those decades of exploration as the Thirty Years War. 

While the first team of explorers plundered new territories, the 
second team systematically surveyed what was and was not possible. 
Would the second team ever be able to show the first team that there 
was no longer anywhere new to explore? Or would the world of 
symmetry turn out not to be a closed globe but an infinite expanse 
that would see these two teams journeying for ever, destined never to 
close the loop? Might there always be uncharted waters? Many in the 
first team hoped that the journey would go on for ever, revealing ever 
more exotic symmetries. But the second team hankered after closure 
and complete knowledge. 

Towards the end of the 1970s, mathematicians realized that the two 
teams were finally closing in on each other. A complete taxonomy of 
symmetry was in sight – a periodic table containing all the building 
blocks of symmetry was emerging. Most mathematicians were thrilled 
at the prospect of a proof that the symmetry seekers had found all the 
building blocks. But not all were happy. The pirate captain, John 
Conway, was asked whether he was optimistic or pessimistic about 
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such a prospect. Rather enigmatically he replied, ‘A pessimist, but still 
hopeful . . . I was delighted to find that the answer was misinterpreted 
in exactly the way I had maliciously desired!’ For a treasure seeker like 
Conway, these symmetrical objects were ‘beautiful things, and I’d like 
to see more of them, but I am reluctantly coming round to the view 
that there are likely to be no more to be seen’. 

In contrast, Gorenstein and his military cohort found optimism in 
finally seeing an end to the exploration with the cessation of the 
Thirty Years War. By the beginning of the 1980s two more indivisible 
symmetrical building blocks were added to the list, but at that point 
they could see the other team on the horizon. As the teams approached 
each other, people began to realize: that’s it. No more surprises out 
there. The world of symmetry had been circumnavigated. Word started 
to spread in 1980 that the search was over, the classification complete. 
But it was a strange ending to such an epic journey. There was no 
climactic moment when a mathematician put down the chalk and the 
audience rose to their feet to applaud the great achievement. There 
were no press conferences to announce that finally the proof had been 
finished. No one is even too clear who had actually finished it. Some 
still question whether it truly has been completed. 

It was not something that made the news outside the mathematical 
community. At the time I was in the sixth form. My bedroom wall at 
home was covered not with posters of bands or football stars, but 
newspaper cuttings about mathematics. I would trawl through the 
papers for exciting breakthroughs to stick up on my wall. I had recently 
been looking through the numerous articles I’d cut out, but not one 
made any mention of this phenomenal achievement. Intriguingly, I 
did discover that one of the cuttings I’d had next to my bed was a 
letter to the Guardian about a false proof of Fermat’s Last Theorem 
that the newspaper had published a week earlier. The letter came from 
the mathematician who would later become my doctoral supervisor. 

For the mathematical community, however, it was big news. It was 
a mammoth feat. For centuries no one had believed it possible: to 
write down a set of basic symmetrical objects that could be used to 
build all possible symmetrical objects. As mathematicians had gradu-
ally got to grips with what symmetry actually meant, they seemed to 
be gazing upon an endless world filled with a chaotic and infinitely 
varied range of symmetrical objects. That’s why there was such a 
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momentous sense of achievement in the mathematical community at 
what these mathematicians had done. 

It was a mathematical proof like no other. Mathematicians are used 
to seeing the names of specific individuals attached to proofs of 
theorems: Andrew Wiles’s proof of Fermat’s Last Theorem, for 
example, or Grigori Perelman’s proof of the Poincaré Conjecture. 
Mathematicians will hide away for years, working in isolation, deter-
mined to get their name on the theorem. But for the first time in 
mathematics, here was a proof which involved such a collective effort 
that it was impossible and meaningless to put a single name to it. 

That said, the mathematicians who had discovered new islands of 
symmetry on the way had not been shy about planting a flag and 
getting their name on the map: the first, second, third and fourth 
Janko groups, the Harada–Norton group, Conway One, Two and 
Three. There were some bitter arguments about who had dis-
covered certain groups of symmetries first and whose name the group 
should go by. But any attempt to name the proof of the classification 
would probably require at least a hundred different names to be 
attached to it. 

Unlike any other proof, this one was so immense that it was unclear 
whether any one person could claim to have read all the ten thousand 
pages spread over five hundred different journals that completed its 
account. For many, such a proof went against the ethos of simplicity 
in mathematics, expressed in 1940 by the Cambridge mathematician 
G. H. Hardy: ‘A mathematical proof should resemble a simple and 
clear-cut constellation, not a scattered cluster in the Milky Way.’ 

Although this wasn’t an elegant one-line proof, it was as rich and 
varied as the wonders to be found in the Milky Way. Each new dis-
covery by the symmetry seekers was greeted by mathematicians with 
as much excitement as the discovery of new moons and planets. Just 
as the Milky Way is an exotic treasure trove full of beautiful stars and 
nebulae, the proof, although vast and complex, is full of jewels that 
would have appealed to Hardy’s sense of aesthetics. But the story of 
symmetry is different to the discoveries of astronomy. With crystal-
clear logic, the new mathematical proof explained why all these sym-
metries should be out there and why we weren’t going to find any 
more. There was no randomness in this arrangement. No other con-
figuration would work. 
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Conway, the Long John Silver of mathematics, decided that an 
account should be published of the lands they had discovered on their 
voyage. Based in Cambridge, he was aided by Rob Curtis, Simon 
Norton, Richard Parker and Rob Wilson. Together they produced 
what is now known as ‘the Atlas’: mathematical charts documenting 
the topography of each new group of symmetries encountered. 

Because so much of science depends on symmetry, this endeavour 
was not idle butterfly collecting. Huge swathes of mathematics, physics 
and chemistry can be explained in terms of the underlying symmetry 
of the structures under investigation. The Atlas of symmetry therefore 
became a Rosetta Stone for many scientists. Anyone faced with a 
question that reduced to understanding symmetry could now refer to 
this catalogue. Many mathematicians found that they could now 
prove their theorems simply by checking that the result is true for all 
the indivisible symmetrical building blocks in Conway & Co.’s Atlas. 
A famous number theorist at Harvard declared that if the library 
burnt down and he could rescue one book, it would be the Atlas of 
symmetry. 

The charts in the Atlas are as fundamental to mathematics as the 
periodic table has been for chemists. For thousands of years, scientists 
had been striving to understand the basic constituents of matter itself. 
The Ancient Greeks had believed the building blocks to be earth, wind, 
fire and water. But twentieth-century chemistry settled on the periodic 
table originated by the Russian scientist Dmitri Mendeleev, which in 
its present-day form lists over a hundred chemical elements starting 
with hydrogen, helium and lithium. From the atoms of the elements 
in the table, one can build all the molecules in the known universe. 

Now, two millennia after the Ancient Greeks had started to explore 
shapes with symmetry, mathematics had got its own periodic table. It 
lists the elements of the science of symmetry, the atoms from which 
all possible symmetries are built. But ‘atlas’ is a better word than ‘table’ 
for this huge red book which sits on many a mathematician’s bookshelf. 
Inside are the contours, the towns and cities that make up every basic 
symmetrical territory. 

Conway actually began compiling the Atlas years before anyone 
knew whether it would have a final page or whether it was destined to 
be an infinite volume. Once they knew that the journey was over, the 
Cambridge Five took their Atlas to their publisher to share the map 
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with the scientific community. In 1985 this extraordinary document 
started running off the presses. The same year, I visited Cambridge as 
a spotty, twenty-year-old Oxford undergraduate hoping to begin my 
own personal journey into the world of symmetry. 

Setting sail 

After years of training at school and then university, practising my 
arithmetic scales and mathematical counterpoint, I was ready to start 
my own work. But I needed a mentor to help steer me in the right 
direction. My tutor at Oxford went through the list of group theorists 
at Cambridge and picked one out. ‘Write to Simon Norton,’ he said. 
We arranged to meet in the common room of the maths department 
at Cambridge. 

I wasn’t sure what Norton looked like, so faced with a common 
room full of mathematicians I felt a bit daunted. Like most mathema-
ticians I am naturally quite shy. I’m not someone who likes to hold 
out my hand and introduce myself to people. I hate parties, and I’m 
terrified of the telephone. Mathematics had provided a safe haven full 
of things that didn’t behave unexpectedly (or at least if they did, you 
knew that there was some perfectly logical explanation for their strange 
behaviour). What I loved about mathematics was that a proof spoke 
for itself: it didn’t need you to present its credentials and persuade 
others of its validity. It was all there on the table. 

No one seemed to be expecting me. Everyone seemed to have their 
head deep in something. Some were scribbling away animatedly on 
pads of paper, but most were engrossed in games of backgammon and 
go. I interrupted one of the groups to ask whether they could direct 
me towards Dr Norton. 

A student pointed to the back of the common room: ‘He’s sitting 
over there.’ I could see what looked like a tramp, with wild black hair 
sprouting out all over his head, trousers frayed at the turn-ups, wearing 
a shirt full of holes. He was surrounded by plastic bags which seemed 
to contain his worldly possessions. He looked like a scarecrow. ‘Yeah, 
that’s Simon.’ 

I went over and introduced myself. In a strange nasally voice with 
a hint of a nervous laugh, he said hello, but avoided any attempt of 
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mine to shake his hand, recoiling as if I was about to assault him. 
Conversation was difficult. I’d met some pretty strange characters 
through my undergraduate studies, but no one like this. What seemed 
to excite him most was the route I’d taken from Oxford to Cambridge. 
He started producing bus and train timetables from his bags. Appar-
ently there was an intriguing route I could have taken via Bletchley. 
Not that he needed the timetables: he seemed to know them all off by 
heart. He’d already planned my trip back. 

While I sat there desperately trying to get some idea of where the 
future of group theory lay and getting instead a description of the 
nation’s bus service, a large man bounded towards us and sat himself 
down next to Simon Norton. I wasn’t quite sure who he was, but he 
seemed to think I should. He too had hair sprouting all over the place, 
this time ginger brown, and he grinned at me with a frighteningly wild 
glint in his eyes. It was deepest winter, but this man was happily sitting 
in sandals and a T-shirt with the decimal expansion of pi running 
across the whole stretch of his corpulent body. He looked like a slightly 
mad clown. As I was about to find out, this was John Conway, captain 
of the Cambridge ship. 

I told him that I was interested in coming to Cambridge to do my 
PhD in group theory. ‘What’s your name . . . with your initials?’ ‘Er 
. . . Marcus du Sautoy, Marcus P. F. du Sautoy.’ ‘Drop the F. and the 
du, change the S of Sautoy to a Z and you can join us.’ I hadn’t a clue 
what he was talking about, and it obviously showed on my face. Had 
I failed some strange initiation rite? Or was this a strange puzzle I had 
to solve? Mathematicians can be quite cruel once they know how to 
do something and they enjoy seeing you squirm as you struggle to 
catch on. But I couldn’t get this one. 

He threw a big red book down in front of me. It landed with an 
impressive thwack on the square white table between us. On the front 
cover, Atlas of Finite Groups, and below the title five names: 

J .  H.  C  o  n  w  a  y  
R.  T  .  C  u  r  t  i  s  
S .  P  .  N  o  r  t  o  n  
R.  A  .  P  a  r  k  e  r  
R.  A  .  W  i  l  s  o  n  
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‘It’s an atlas of symmetry. That’s me at the top. Then, in order, those 
who joined the group.’ Of course, now I got it. Each with two initials, 
each with a six-letter surname starting with a letter in the alphabet to 
denote the order they arrived in the group. I was only going to be let 
on board if my name was M. P. Zautoy. When you look inside, 
there is a sixth mathematician who is thanked for his computational 
assistance in preparing the book. But with a name like J. G. Thackray, 
he was never going to make it onto the front cover. 

‘When we first got it back from the printers, the typesetters had 
messed up the symmetry in our names. It was all misaligned. I insisted 
it go back to the printers and they do it all again.’ The Atlas of 
symmetry would never have appeared were it not for people such as 
Conway who were so obsessed with symmetry as to insist on such 
details. 

‘I like symmetrical things. I’ve always loved gems and crystals and 
polyhedral shapes.’ I could see this from the office he’d emerged from. 
It was crammed with symmetrical models of all shapes, sizes and 
colours, many hanging from the ceiling. They looked like an array of 
stellated candle holders from a Byzantine church. Conway’s office was 
a shrine to symmetry. 

‘I’ve got a book with Escher’s prints sitting on my piano,’ he said. 
‘I try to ration myself to an Escher picture a day. Often I can’t resist 
cheating and turning the page early, but I always insist on at least 
going out of the room first before I can turn the next page. One of my 
favourites is a picture of a tin box that Escher designed for a Dutch 
chocolate manufacturer [Figure 5]. It’s an icosahedron made up of 
twenty triangles covered in starfish and shells. Escher was very clever. 
The starfish have all got a little twist on them so the five arms seem to 
spin anticlockwise. That means the shape doesn’t have any reflective 
symmetry. Its only symmetries are the different rotations of the shape. 
Its symmetries are the first building block in the book.’ 

He flipped the book open to the first ‘map’ in the Atlas. At the top 
was its name, A5, followed by a small table of numbers which provided 
the mathematical details of how to navigate the symmetries of this 
‘island’. 

‘When I’m interested in something I like to name it, list it, and then 
write a book about it. But if you want to make your name, then it’s 
the penultimate entry in the Atlas you’ll really want to understand.’ 
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Fig. 5 Escher’s icosahedral chocolate box. 

Conway turned towards the back, to a page where the heading reads 
simply ‘M’. It sounded like the name of a spy, but he explained that 
M stands for Monster, a name he coined after the object was dis-
covered. I’d heard some mention of this huge symmetrical object 
during my last undergraduate year. It certainly wasn’t on the syllabus 
– it had been constructed for the first time in 1980. But I’d started 
going to some research seminars that year just to get a feel for what 
was out there beyond the weekly exercises dished out by our lecturers. 
I was quite shocked that despite having spent three years at university 
learning the language of mathematics, the seminars washed over me 
like a sea of meaningless words and symbols. It was obvious that I still 
had a long way to go. The Monster had figured in a number of 
seminars, but beyond an exotic sounding name I really had no idea 
what this object really was. 

‘It’s got 808,017,424,794,512,875,886,459,904,961,710,757,005,754, 
368,000,000,000 symmetries. That’s why it’s called the Monster.’ I 
stared at him in amazement, not because the object had more sym-
metries than there are atoms in the sun, but because, without batting 
an eyelid, he could reel off the size of it. He could see that I was 
impressed. ‘That’s nothing. I could tell you all the digits on the back 
of my T-shirt too.’ I looked at the shirt, which said ‘p = ’ followed by 
a huge string of digits. I could tell him the first six digits, 3.141 59, but 
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that’s as far as I can go. But Conway claimed he could recall the 
decimal expansion of p to thousands of decimal places. There weren’t 
any obvious patterns in these numbers to help him generate them – 
not like the Fibonacci numbers, with their rule of adding two successive 
numbers to get the next in the sequence. But Conway has the sort of 
mind that can sniff out the least bit of structure to help him recall 
something so massively complex. And it’s not an autistic mind, one 
that simply absorbs random information. Conway had taught himself 
these skills; his is an analytic mind that finds ways to perform such 
feats. 

‘Forget pi. It’s these numbers that are really interesting,’ he said, 
pointing to the beginning of the huge tables that represented the 
charting of this huge inhospitable land called the Monster. ‘196,883. 
That’s the smallest-dimensional space in which you can represent this 
object. The Monster is like some huge great symmetrical snowflake 
that you can see only when you get to 196,883-dimensional space.’ 

Escher’s chocolate box was a symmetrical object that existed in our 
three-dimensional world. You could see this object, touch it, play with 
it. Sitting at the front of the Atlas, it had only 60 different symmetries. 
Spanning pages and pages at the end of the Atlas was this vast creature 
that required you to enter 196,883-dimensional space before you ‘saw’ 
it. Of course, you could never see this object in a visual sense. 

One of my most exciting revelations in the previous years had been 
how the language of mathematics provides alternative ways of ‘seeing’ 
the world. Escher’s visual paradoxes reveal how bad we can be at 
perceiving reality. By changing physical space into the language of 
mathematics, these paradoxes are easily exposed. Equations allow you 
to see into the future by making predictions about the flight of a planet 
or the evolution of the economy. This was a language with far more 
power for me than the French and Russian I’d battled with at school. 
But it was the ability of this language to conjure up in the mind’s eye 
things that our physical eyes could never perceive that was for me one 
of the greatest thrills. Mathematical language opens up a virtual 
window onto spaces beyond our physical three-dimensional world. 

We are actually all used to the idea of turning space into numbers. 
When we look up the location of a city in an atlas, we find it identified 
by a grid location. For example, the maths department I visited in 
Cambridge can be found at latitude 52.2°N and longitude 0.1°E. The 
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same principle is used in mathematics to change geometry into 
numbers. For example, the four corners of a square can be described 
by their coordinates: (0, 0), (1, 0), (0, 1) and (1, 1). And similarly in 
three dimensions: one just adds another coordinate. For example, the 
eight corners of a cube can be described by eight triples: (0, 0, 0), 
(1, 0, 0), (0, 1, 0), and so on, up to (1, 1, 1) (Figure 6). The coordinate 
(1, 0, 1) locates or encodes a point on the three-dimensional cube 
reached by travelling one step east and one step vertically upwards. 

(0,1) (1,1) (0,0,1) 

(1,1,1) 

(1,1,0)(0,1,0) 

(0,1,1) 

(1,0,1) 

? 

(0,0) (1,0) (0,0,0) (1,0,0) 

2D 3D 4D 

Fig. 6 Changing geometry into numbers: a shape can be described by coordinates. 

The beauty of mathematics is that, now that I have this translation 
of pictures into a new language of numbers, I can portray the geometry 
of a cube in four dimensions without having to concern myself at all 
with trying to visualize it. This four-dimensional figure, known as a 
hypercube or tesseract, has 16 vertices each described by four 
coordinates, starting at (0, 0, 0, 0), then (1, 0, 0, 0) and (0, 1, 0, 0), and 
stretching out to the farthest point at (1, 1, 1, 1). The numbers become 
a code to describe the shape. Although I can’t ‘see’ the hypercube, the 
mathematical language allows me to manipulate it and explore its 
symmetries. The numbers give me, if you like, a sixth sense – the 
feeling that I really can see in four dimensions. 

Despite my newly acquired ability to ‘see’ higher-dimensional 
shapes, Conway and Norton’s ability to conjure up a symmetrical 
snowflake in 196,883-dimensional space was a pretty mind-boggling 
thought experiment. This was not an object you would see dropping 
from the sky. To construct such an object you were forced to rely 
on mathematical language. It existed in a mathematical world where 
physical objects are replaced by numbers encoding these objects. Just 
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as the hypercube can be described by strings of quadruples made of 
0’s and 1’s, Conway and Norton could pin down the Monster using 
strings of 196,883 numbers. And, according to Conway, 196,883 wasn’t 
random. 

‘The amazing thing,’ he said to me, ‘is that 1 + 196,883 = 196,884.’ 
I looked a bit blank. That didn’t strike me as something that would 

get anyone too excited as a great mathematical discovery. ‘Ahhh, but 
196,884 is the first coefficient in the Fourier expansion of the modular 
function.’ Now, I vaguely knew what this meant. It was something 
important in number theory. But it was not something which seemed 
to have anything to do with the symmetry of a huge snowflake. ‘That’s 
the point,’ Conway countered. ‘When someone told me about it it 
sounded like pure numerology. But then I went down to the library 
here in the department to find a book about these modular forms. OK 
– what’s the next number on the list?’ 

I looked at the table. It was 21,296,876, the size of the next important 
dimension in which you could see this snowflake. ‘Well, when I went 
and looked up the second coefficient of the modular function in this 
book in the library, it was 21,493,760.’ I looked blank again. ‘The point 
is that 21,493,760 = 1 +  196,883 + 21,296,876. Simon and I found a way 
to use all the numbers coming from the table for the Monster, to get 
all the terms in the Fourier expansion of the modular function.’ 

The point was that this strange thing called the modular function 
can essentially be described by a sequence of numbers starting 196,884, 
21,493,760, 864,299,970, . . . Similarly the contours of this monstrous 
snowflake were defined by another sequence of numbers: 196,883, 
21,296,876, 842,609,326, . . . Conway and Norton had found a bit of 
mathematical magic which seemed to miraculously turn one set of 
numbers into the other. 

To the non-mathematically sensitive, this might not sound like 
much, but I knew enough by now to appreciate that this was weird. It 
was as if an archaeologist excavating a Mayan pyramid in the jungles 
of Guatemala had revealed strange patterns only ever seen before in 
the tombs of Egypt: you would have to infer some connection between 
the two cultures. Conway’s excavations had revealed a similar link 
between two mathematical carvings: the modular function from 
number theory and this Monstrous symmetry. The two things didn’t 
appear to have anything to do with each other. Yet the secret of 
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which dimensional space this Monstrous creature lived in seemed to 
be programmed into the modular function. 

‘That experience was the most exciting of my mathematical life,’ 
said Conway. But what does it mean? ‘That’s the point: we don’t 
understand it. Why is there a connection?’ ‘Monstrous moonshine,’ 
Simon Norton chipped in. ‘That’s what we called it, this strange 
numerology,’ Conway explained, ‘Monstrous moonshine’. 

It was an intriguing name which immediately caught one’s attention. 
But what sense of the word ‘moonshine’ were they referring to? The 
name given to the illegal production of whiskey? Was this connection 
so strange it was hard to swallow? ‘Well, the whole subject is vaguely 
illicit!’ Conway admitted. Or perhaps moonshine was being used to 
indicate that they were speaking complete nonsense. But this seemed 
to be more than mad numerology. You might have legitimately dis-
missed as some strange coincidence the observation that 196,883, the 
first dimension in which you can see the Monster, and 196,884, 
the first number in the modular function, were so close. But it had to 
be more than numerological nonsense that all the numbers that 
Conway and his crew had documented in the Atlas to help navigate 
the symmetries of the Monster were so directly connected to the 
numbers coming out of this object in number theory. ‘The connections 
are just too astonishing to be accidental.’ 

Indeed, what they seemed to be getting at with their use of ‘moon-
shine’ was that there appeared to be a kind of mathematical sun whose 
rays were illuminating the numbers in the Monster and the modular 
function from number theory. Although we could see the reflected 
moonlight, no one could see the sun which was the source of the 
connection between these numbers. The source of this moonshine, 
Conway said, was one of the greatest mysteries in the subject. I could 
see the appeal of the problem. The strange interconnected nature of 
mathematics was one of the aspects of it that I’d begun to find most 
intriguing. Finding the tunnel between these two subjects, the Monster 
and the modular function, looked a fascinating project. Like Bottom 
in A Midsummer Night’s Dream, who could resist the mathematical 
weaver’s call to ‘Find out Moonshine’? 

And then, as if I wasn’t there, the two of them started bandying 
round bigger and bigger numbers, coordinates that they’d docu-
mented in their Atlas, as they explored more and more of the strange 



30 Symmetry 

implications of this moonshine. This object was so familiar to them 
that they had no need to look at the chart open in front of me. They 
lived the Monster. It was a friend, someone they knew intimately. But 
this creature was keeping some of its secrets close to its chest, despite 
the probing questions Conway and Norton were firing at it. I sat there 
in awe at their ability and command of something so complex that it 
seemed to lie beyond the capacity of a normal mind. But just as 
Conway had found clues in the decimal expansion of p to help him 
remember so many digits, the Monster, despite its size and complexity, 
had given up enough of the secrets of what made it tick for Conway 
and Norton to find a way in. 

After a while sitting listening to the two of them firing numbers at 
each other in a mathematical duel, I quietly took my leave. I followed 
the instructions that Norton had plucked from his plastic bags for the 
best route back from Cambridge to Oxford. 

Midnight, 26 August, the Sinai Desert 

At last the temperature has dipped to something bearable. I’m lying 
out on the sand with the night sky burning above me. I still get a real 
thrill just looking up into space and wondering what’s out there. What 
shape is it? What does it mean to say that the universe is ‘unbounded 
yet finite’? 

I must admit that I am actually a little stoned, thanks to a birthday 
present from our Bedouin host. The grass grown on the other side of 
the mountain by the Bedouin is some of the best in the Middle East. 
Perhaps it’s a bit sad of me to be pretending to be as hip as the two 
other kids we are sharing the beach with. Perhaps it’s just me trying 
to deal with the crisis of hitting 40. At university I’d prudishly passed 
on joints, convinced that however good they might be for inspiring 
poetry, they were bad for the mathematical mind – although I’ve 
subsequently discovered several mathematicians who’ve produced their 
best work under the influence. 

The moon has just risen over the mountains of Saudi Arabia. Why 
does it look so much bigger here than it ever does in London? Is 
there some strange lensing effect that the atmosphere has here which 
magnifies the moon? The moon is ageing, in its last quarter. For the 
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Bedouin, the phases of the moon control the cycles of their year, the 
crescent new moon marking a new month. According to my hosts, my 
birthday falls this year in the month of Rajab. Next year my birthday 
will have crept into another month of the Islamic year. It’s the power 
of mathematics which gets you from one date to the other, although 
ultimately the authorities across the water in Saudi Arabia have the 
final say on the Islamic calendar. 

The waves are gently lapping over the coral reef. The moonlight is 
glistening off the surface of the sea. Those photons of light have been 
on an extraordinary journey. Launched from the sun that set behind 
me, they’ve bounced off the moon and hit the surface of the sea before 
finally landing in my eye. But what actually happens to that photon 
once it’s entered my eye? What’s the strange mix of physics and biology 
that gives me the sensation of seeing the shimmer on the waves? 

The moon has been pushing and pulling the sea all day. The tide 
has turned again, and has now covered the coral shelf where I saw the 
symmetrical starfish this afternoon. Why are there two high tides a 
day rather than just one? It’s a question that has quite a subtle answer, 
I realize as I try to work it out, drawing pictures in the sand of moons 
orbiting the Earth. Science progresses because of the questions we can’t 
answer. Without unsolved problems to work on, mathematics would 
die. Eventually, I give up on my sketches in the sand. The mysterious 
moonshine lights my way back to my shack, glowing beneath the stars. 
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6 
September: The Next Roll 

of the Dice 

Keep a gamester from the dice, and a good student from his book, 
and it is wonderful. 

william shakespeare, The Merry Wives of Windsor 

1 September, Stoke Newington, London 

September for me has always been a month of beginnings. Ahead lies 
the cycle of the academic year with all its promise of new things to 
learn and discover. I’ve just walked my nine-year-old son, Tomer, to 
school. It’s the first day back after the summer holiday. I use the time 
to drum in the dreaded multiplication tables. Tomer tries to find tricks 
to work each one out, using a few simple calculations to create a larger 
body of knowledge he can refer to for the answer. 

At school, he is expected to learn his tables by heart, to perfect 
automatic responses so that he can move on to other things. As we 
walk down the road together, I try to ignite the mathematical flame in 
him. I ask him multiplication questions but I don’t just run through 
each table. I ask for 4 × 4, then 3 × 5; 5 × 5 then 4 × 6; 6 × 6 followed by 
5 × 7. After a while he spots the pattern: the second answer is always 
one less than the first. I hope he might get excited as I explain that 
this will be true whatever numbers I choose. ‘OK, we’re here. Can you 
shut up now?’ he says, mortified that he might be caught talking maths 
with his dad. 

Walking back home, my brain is already starting to chew over the 
problem I’m currently working on. I like to work from home. I find 
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an office an oppressive space, constantly reminding me that I’m not 
having any great ideas. I hate the accusatory way in which the 
whiteboard stares at me, asking why I haven’t covered it in meaningful 
equations. My preferred canvas is yellow legal pads. Somehow yellow 
is the right background for mathematics – perhaps it was seeing all 
those yellow books in Blackwell’s as a kid that has made me associate 
the colour yellow with doing maths. The binding of the legal pad 
ensures that some semblance of order is maintained against the back-
drop of my chaotic thought processes. 

I discovered these pads when I was visiting Israel. I now have boxes 
and boxes of them sitting in the cellar. Since Hebrew is written from 
right to left the margins are on the right-hand side, but interestingly, 
irrespective of whether the language is written from right to left, left 
to right or top to bottom, mathematical equations always begin at the 
left and flow to the right. At the moment, I’ve only got the left-hand 
side of my equation. The right is yet to be filled in. 

Most of the time I just sit there doing nothing, getting nowhere. My 
room at home is a space where I can easily drift in and out of ideas 
without feeling guilty. It is an extremely messy place. Half the time 
this gets me down. But it actually is a good reflection of my thought 
process. I’ll start looking for a book buried somewhere deep in the 
pyramids of paper that sit atop my desk. But during the search I’ll 
often come across something I hadn’t been looking for which can take 
my thought process off in an unexpected direction. By maintaining 
an untidy room I’m raising the likelihood of making these random 
connections. Whenever I tidy everything up, the potential for getting 
random ideas gets filed away too. 

I listen to a lot of music when I do mathematics. It helps to make 
me feel less anxious when I’m not getting anywhere because my mind 
gets drawn to the music. Sometimes I’ll take a complete break and go 
and tinkle on the piano. I’m an extremely bad pianist. I’m playing 
through Bach’s Goldberg Variations at the moment, but at about a 
tenth the speed they should be played – that’s how long it takes me to 
get my fingers round the next notes. I have this fantasy that music is 
actually stimulating the same part of the brain that I need for mathe-
matics. So perhaps my efforts are acting as a mental workout to keep 
the neurons fit for my next mathematical assault. 

The other stimulant in addition to music that I use (or abuse) at 
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home comes from my espresso machine. The ritual of coffee making 
forms an important skeleton around which to frame my working day. 
Paul Erdo�s, one of the great characters in my subject, once said that a 
mathematician is a machine for turning coffee into theorems. A few 
years ago I gave up coffee as one of my new year’s resolutions – and I 
proved nothing of significance during that whole year. So maybe there 
is some truth to Erdo�s’s quip. Sherlock Holmes used to measure the 
difficulty of a problem by the number of pipes he needed to smoke to 
solve it. My measure comes in espresso shots. However, the theorem 
I’m trying to prove seems likely to require the annual bean output of 
a minor South American state before it will reveal its secrets. 

Conway’s Atlas might list all the building blocks of symmetry, but 
there is still very little understanding of what can be built from these 
atoms. Part of the research I do is to see what symmetrical objects can 
be concocted from these indivisible symmetries. It’s as though chemists 
were to take atoms of sodium and chlorine, say, and ask what sort of 
compounds they could synthesize from these elements. 

I’ve taken one of the simplest of the building blocks: the rotational 
symmetries of regular two-dimensional shapes such as a triangle or a 
pentagon. I am ignoring the reflectional symmetry. If necessary, I could 
play the same trick that Escher did when he destroyed the mirror or 
reflectional symmetry of the chocolate box that Conway so liked: paint 
a starfish on the shape with a little anticlockwise twist to its tentacles. 

A pentagon has five rotational symmetries. You can turn the shape 
through 1/5 of a whole rotation, or 2/5, 3/5 or 4/5, or leave the pentagon 
where it is. Similarly, the equilateral triangle has three rotational sym-
metries. In fact, for any regular two-dimensional polygon, the number 
of rotational symmetries is the same as the number of sides. 

So, a 15-sided regular polygon has 15 rotational symmetries. But 
now something interesting happens. The symmetries of the 15-sided 
figure are actually built from symmetries of two smaller shapes: the 
pentagon and the triangle. If I draw a pentagon and a triangle inside 
the 15-sided figure, I can achieve every rotation of the larger shape by 
combining rotations of the smaller shapes. 

For example, in Figure 7, how can I rotate the 15-sided figure by 
1/15 of a turn, so that A moves to B, by combining rotations of the 
triangle and the pentagon? If I rotate the pentagon by 1/5 of a turn, A 
goes to C. If I repeat this and rotate the pentagon again by 1/5 of a 
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turn, C goes to D. The last step is to rotate the triangle sitting inside 
the 15-sided figure anticlockwise by 1/3 of a turn, to send D to B. The 
combination of rotating the pentagon twice and then pulling back the 
other way with a single rotation of the triangle has achieved a turn by 
1/15 of the big shape. It works because 1/15 = 2/5 − 1/3. 

A A 

D 

BB 

C C 

D 

Fig. 7 How to rotate by 1/15 of a turn, using the symmetries of a triangle and pentagon. 

You cannot break the pentagon or the triangle into rotations of 
smaller shapes, as you can with the 15-sided shape. The reason is that 
5 and 3 are both prime numbers. Prime numbers are numbers that 
cannot be written as two smaller numbers multiplied together (with 
the exception of 1, which is not regarded as a prime). So here are the 
first and simplest building blocks in the periodic table of symmetry. If 
you take a regular two-dimensional polygon with a prime number of 
sides, then the rotational symmetries of this prime-sided shape cannot 
be built from those of smaller symmetrical objects. 

Not only that, but these prime-sided figures are the building blocks 
for the symmetries of all the other regular two-dimensional polygons. 
For example, the symmetries of a 105-sided figure come from sym-
metries of a triangle, a pentagon and a heptagon sitting inside it. This 
is a geometric way of saying that every number is built by multiplying 
primes together. This is why the primes are so important, because they 
are the building blocks of all numbers. When we turn to the mathe-
matics of symmetry, we find that prime numbers are also the building 
blocks of some of the simplest of the symmetrical shapes. 

But although they are the simplest of the building blocks, the assort-
ment of symmetrical objects that can be built from the rotational 
symmetries of these prime-sided polygons is still an utter mystery. 
I have become rather obsessed with trying to discover what happens 
if you take, for example, lots of equilateral triangles. What different 
mathematical objects are there that have 3 × 3 × 3 × 3 × 3  symmetries? 
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Such an object has symmetries built from piecing together the 
symmetries of five triangles. What if I change from triangles to penta-
gons? And heptagons? There are infinitely many prime numbers and 
hence infinitely many prime-sided building blocks. What is the nature 
of all the different shapes I can construct whose symmetries are built 
from copies of one prime-sided shape? In particular, if p represents 
any prime number, how many different objects are there with 
p × p × p × p × p symmetries? How do the symmetrical objects change 
as I vary the particular prime I am using? Do they vary wildly as I 
move from one prime to another? Or are there connections between 
the objects with 41 × 41 × 41 × 41 × 41 symmetries and the objects with 
73 × 73 × 73 × 73 × 73 symmetries? And what happens when I increase 
the number of prime-sided shapes? 

Perhaps it’s worth flagging up a little warning here. The ‘objects’ 
I’m interested in aren’t necessarily physically built out of triangles. 
Although I’ve started with a simple two-dimensional shape, most of 
the objects I’m constructing can’t be realized in two- or even three-
dimensional space. They are four- or five- or higher-dimensional 
objects, and I need the language of mathematics to construct and 
manipulate them. What is important is that the total number of sym-
metries in the object is a power of 3. The symmetries in the object will 
thus have been built from rotations of triangles. 

Another warning. Even if something really is physically constructed 
from triangles, that doesn’t mean that its symmetries come only from 
rotations of the triangles. For example, as I learnt in the book my 
teacher gave me, there is an object built out of 20 triangles called an 
icosahedron (Figure 8). This is the shape that Escher used to build 

Fig. 8 The icosahedron is built from triangles, but its group of symmetries includes 
the rotations of a pentagon. 
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the chocolate box that Conway described. Since you can make an
icosahedron by gluing together triangles, you might legitimately expect
that its symmetries are also built from triangles. But there are sym-
metries in this object that come from a pentagon. For example, each
point or vertex has five triangles meeting at it. Rotate the icosahedron
by 1/5 of a turn around a point, and it will look exactly the same.

My research can be compared to a chemist taking atoms of a single
element in the periodic table, such as carbon, and asking what mol-
ecules you can make from it. The chemists call these different chemicals
allotropes of carbon (Figure 9). In fact, symmetry is essential to
explaining the different ways that carbon can be pieced together. For
example, you can take a carbon atom and arrange four other carbon
atoms around it in what is called a tetrahedral arrangement. This
makes diamond. The symmetry of the arrangement makes it one of
the strongest molecules in nature. Alternatively, you can arrange the
atoms in a lattice of hexagons, which makes them look like honeycomb.
This makes graphite one of the weakest molecules. Although the two-
dimensional hexagonal slabs are quite stable, the honeycomb layers
just slip over each other.

diamond graphite Buckyball

Fig. 9 (a) Diamond, (b) graphite and (c) buckminsterfullerene: different ways in which
carbon atoms can be assembled.

One of the most exciting stories in chemistry was the discovery in
1985 that 60 carbon atoms could be put together to make a single
molecule. The secret to building this molecule, called C60, is to look at
the symmetries of a football. A modern football is made up of a
patchwork of pentagons and hexagons. The shape has 60 vertices.
Harry Kroto, then at Sussex University, and Richard Smalley and
Robert Curl at Rice University in Texas realized that it was possible
to arrange 60 carbon atoms, one at each vertex, and assemble them
to make a new, spherical carbon molecule. They even discovered
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examples of these molecules in experiments designed to recreate the 
atmospheres of stars whose outer layers are rich in carbon. 

The shape reminded the team who discovered it of geodesic domes 
built by the architect Buckminster Fuller, so they christened the mol-
ecule buckminsterfullerene in his honour. Because of the molecule’s 
resemblance to a football, it is often nicknamed the ‘buckyball’. The 
discovery opened up a whole variety of new ways in which carbon 
atoms can be put together to create bigger molecules. Again, symmetry 
was crucial to the understanding of the possible existence of such 
strange molecules. Once the mathematicians had revealed what was 
possible, it was only a matter of time before the chemists discovered 
carbon compounds in nature that exploited these different symmetrical 
shapes. 

My research tries to answer the same sort of question in the world 
of mathematical symmetry. Instead of carbon, my building blocks are 
the symmetries of a simple symmetrical prime-sided shape such as the 
equilateral triangle and the pentagon. What shapes can I create whose 
symmetries are built from a number of copies of one single prime-sided 
shape? Again, that warning: bear in mind that what I’m studying are 
not just three-dimensional forms – they are objects that live only in 
four, five or more dimensions, but whose symmetries nevertheless 
reduce to the symmetries of triangles. 

Because people can’t build or visualize such shapes, the thought of 
objects in four-dimensional space can be mind-boggling. The art is to 
find the right language to explore these shapes, even though you can’t 
physically see them. Think of describing a cube to a blind person: by 
using language, we can convey a sense of the cube by describing how 
many faces it has, how many edges and vertices. 

As I’d discovered during my training at university, turning space 
into numbers is the most powerful language for describing higher-
dimensional objects. Let’s take a four-dimensional cube – the hyper-
cube. It has 16 vertices. One of those points is located at a place we 
can identify in a coordinate system as (0, 0, 0, 0). Four edges emanate 
from this point. The edges join this corner to four other points which 
we can identify by the strings of numbers (1, 0, 0, 0), (0, 1, 0, 0), 
(0, 0, 1, 0) and (0, 0, 0, 1). I can even spin this hypercube through an 
axis joining the two extreme points (0, 0, 0, 0) and (1, 1, 1, 1). The 
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symmetry has the effect of cycling round the four edges coming out
of (0, 0, 0, 0). You’d probably have no problem with following this if
the coordinates were those of a three-dimensional cube. To help me
‘see’ what’s happening, I’ll often draw a ‘shadow’ in two dimensions
to give some idea of what’s happening out there in four dimensions
(Figure 10).

(0,0,0,1) (1,0,0,0)

(0,1,0,0)(0,0,1,0)

(0,0,0,0)

Fig. 10 Projecting the corner of a four-dimensional cube into two dimensions.

The language of numbers gives me a way to play with the geometry
of an object I’ll never be able to build in reality. It might be a little
harder because I have no conventional, three-dimensional image of it,
but that doesn’t make the task impossible. For example, I can ‘see’
that if I repeat the spinning of the hypercube I described above, after
four rotations the hypercube will have returned to its original position.
This rotation actually looks like the rotation of a square. So I know that
the symmetries of this hypercube are not built from the symmetries of
triangles – it’s not one of the objects I’m after in today’s investigations.

When I explore these shapes, I often feel as though my office is the
portal to a magical land. My desk is like C. S. Lewis’s wardrobe whose
doors lead into another world beyond the coats hanging inside. Some-
times I can spend the whole day trying to get through the wardrobe,
but I just can’t find a way past the wooden panel at the back. But when
the magic works and I find a way in, instead of a Narnia populated by
fauns with umbrellas and talking lions, I enter a world containing
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spinning hypercubes and Monsters lit by moonshine. Just as the chil-
dren in Lewis’s tale found it difficult to get back from Narnia into 
wartime London, I sometimes get stuck in this mathematical world, 
dislocated from what is going on around me. 

It’s 3.45 before I know it. Time to find a way back through the 
wardrobe and pick up Tomer from school. My head is fizzing from 
the day spent in this strange act of mathematical meditation, so I’m 
quite happy to head for the park with a ball made from pentagons and 
hexagons and wind down with a kick-about with Tomer. 

10 September, the British Museum 

It’s the weekend. I’ve done a deal with Tomer: a morning in the 
British Museum looking for symmetry, followed by an afternoon at 
the skateboard park. My grandparents used to live round the corner 
from the museum. I always enjoyed staying the night in their flat and 
waking up in the morning to the rumble of the London streets: police 
cars, buses and taxis all sounded so exotic to a boy used to the sedate 
traffic of a town in the Thames Valley. I spent many Saturday mornings 
as a child wandering round the museum’s Greek and Roman galleries, 
hiring an audio guide and doing the tour of the Elgin Marbles. 

I’ve been spending the last few days looking for ‘objects’ whose 
symmetries are built from the symmetries of triangles or pentagons. It 
mirrors a search which began almost as soon as humans started 
fashioning their environment for their own purposes. Tools for hunt-
ing and pots for cooking exploited the variety of different geometric 
shapes that could be built out of clay, stone or bone. Some of the 
first investigations into the symmetry of three-dimensional space were 
driven by our obsession with games. Tomer and I are off to see if we 
can find any ancient games that might help me to trace the history of 
the discovery of different shapes. 

In Britain, early humans had fashioned a range of quite sophisticated 
symmetrical shapes. Five thousand years ago, Neolithic people were 
setting Stonehenge and other great stone monuments into the land-
scape of Britain. The placement of the stones shows a fascination 
with symmetry. The stone circles create shapes on the ground with 
sometimes as many as a hundred sides. Some of the stones in these 
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circles are very widely spaced – at Avebury in Wiltshire, for example, 
the outer circle of stones runs for over a kilometre. To build such 
circles would have required sophisticated mathematical skills, or at 
least a heightened sensitivity to the creation of something with 
symmetry. 

Early primitive art on pots and walls also reveals this increasing 
sensitivity to symmetry. On the walls of tombs in Ireland dating from 
the same period as Stonehenge, spirals are often carved into the stone. 
Two groups of three spirals greet you as you enter one of the most 
famous tombs found in Europe, the Newgrange tumulus in County 
Meath. The three spirals are arranged in a triangle (Figure 11). The 
spirals in each group wind a different way – one group is a mirror 
image of the other. On the walls of such tombs, symmetrical symbols 
abound: concentric circles or squares, a row of diamonds, stars with 
symmetrically arranged points. Pictures of circles with radial lines are 
clearly images of the sun. One of the most impressive carvings is the 
so called Stone of Seven Suns, at Dowth in Ireland. Looking like a set 
of wheels with an outer and inner circle joined by radial lines, these 
seven suns are perhaps an illustration of the sophisticated grasp of 
astronomy that Neolithic man already had 5,000 years ago. 

Fig. 11 One of the groups of spirals at Newgrange tumulus in County Meath. 

Just as notations for numbers developed to record calendar dates, 
the huge array of symmetrical symbols used in these tombs seem to 
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be different ways of keeping track of time. It is perhaps significant that 
these people chose symbols of symmetry to represent the natural cycles 
of the seasons, and the movements of the sun, the moon and the stars. 
The visual language they were creating mirrors the temporal patterns 
they had recognized. The kite divided into four quarters (Figure 12), 
for example, has been suggested by archaeologists to have symbolized 
the passing seasons. 

Fig. 12 The kite shape was used as a symbol to represent the year divided into four seasons. 

Around this period, along with these stone circles set into the land-
scape and symmetrical shapes etched on the walls, Neolithic people 
started to carve a range of interesting three-dimensional shapes packed 
with symmetry (see Figure 13). Hundreds of balls carved from basalt 
or sandstone have been discovered in north-east Scotland which date 
back to 2500 bc. Etched into the sides of the balls are geometric 
patterns. The sculptors have played around with different sym-
metrical arrangements of protruding knobs, in a similar way to the 
patches on a modern football. Over half of these balls have six round 
patches carefully carved into the stone. Although the ball is round, the 
sculptor has exploited the symmetries of the cube in arranging the six 
patches. 

The sculptors also found that they could carve four circles into a 
ball to create a pleasingly symmetrical arrangement, the same layout 
that nature uses to make diamond out of four carbon atoms. One 
particularly fine example, found at Towie, is housed in the Museum 
of Scotland in Edinburgh. A few years ago, during a conference I was 
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Fig. 13 Neolithic stone balls demonstrate a very early fascination with symmetry. 

attending in Edinburgh, I skived off lectures one afternoon to search 
out this ball in the museum. The ball was larger than I expected, about 
the size of a fist. The four circles are themselves intricately decorated 
with a complex pattern of spirals and concentric circles (Figure 14). 
While my fellow mathematicians presented their twenty-first-century 
explorations of symmetry, I marvelled at this beautiful stone whose 
symmetry began the journey. The sculptors also carved a variety of 
other arrangements, including as many as 12 or 14 knobs, and even 
one with 160. They could not have failed to notice that 12 knobs were 
easier to arrange than 10 or 14 (but explaining why this was so would 
take another three millennia). The artists may also have decorated the 
patches with different colours, which would have highlighted some of 
the different symmetries of each carving. 

It is not clear what role these stones played in the culture of Neolithic 

Fig. 14 A carved symmetrical ball found at Towie in Scotland. 
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Scotland. Some have suggested that they were used as symbols of 
authority by clan leaders. They have never been found in tombs, so 
they may have been more significant to the tribe than to any particular 
member of the group. Some of these geometric patterns on the carved 
balls have also been found engraved on objects such as mace heads. 
Perhaps symmetry was being appropriated by the ruling class as a 
symbol of authority. 

The advent of gambling and dice games in many cultures across the 
world in the first millennium bc pushed different civilizations to 
explore what shapes make the best dice. Symmetry is essential if you 
are going to make an object which is as likely to land equally on any 
of its faces when thrown to the ground. The first dice were not six-sided 
but four-sided, and made from the bones of animals. The ankle bones 
of a sheep, known as knucklebones, are shaped in such a way that they 
naturally fall in one of four ways. These early examples of dice have 
been found at many prehistoric sites. But it became clear that these 
bones when used as dice are likely to be biased towards one side, and 
ancient cultures were soon looking for ways to sculpt bones to make 
for a fairer game. 

Tomer and I couldn’t find any of these Neolithic dice or knuckle-
bones in the British Museum. But we did have more luck in our 
search for symmetry in the museum’s Mesopotamian gallery, where 
we discovered an intriguing board game with a set of pyramid-shaped 
dice. The board itself is inlaid with symmetrical patterns made from 
shells, lapis lazuli and limestone. There are two regions, one with 
twelve squares and the other with six, joined by a bridge of two squares. 
Each square bears its own symmetrical symbol which denotes the 
significance of its location. There are eight-leafed rosettes of red and 
blue, diamonds and squares. 

The game dates from 2500 bc and was found during an excavation of 
the ancient city of Ur, in southern Iraq. A Babylonian cuneiform tablet 
dating from 177 bc gives a partial description of the rules of the game. It 
seems that the squares with the most symmetrical image of the rosette 
were regarded as the lucky spaces that the players would aim for. 

It was the four dice, however, that most intrigued us (Figure 15). 
Each die was a tetrahedral pyramid with four faces of equilateral 
triangles. But unlike the dice Tomer and I use when we play Monopoly 
at home, on which each face has a value, these dice worked slightly 
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A SCORE OF 2 

A SCORE OF 3 

Fig. 15 The score with the tetrahedral dice in the game from Ur corresponds to the number of 
dots that point upwards after a throw. 

differently. I wasn’t sure, peering through the cabinet, but it looked as 
though one vertex or point on each die was marked with a dot. When 
you threw the stones, the score of the dice would correspond to the 
number of dots that appeared on the top of each die. So you could 
get any score between 0 and 4. 

3

What were the chances of getting each of the possible scores? It’s 
the sort of question I can’t help asking as soon as I see such a puzzle. 
Tomer could see what was coming too. ‘What is the most likely throw?’ 
Tomer’s eyes rose heavenward. Each die has a 1 in 4  chance of landing 
on the face that leaves the dot pointing up. So there’s only going to 
be a 1 in 44 = 256 chance of rolling a 4. On the other hand there is a 

4 = 81 in 256 chance of scoring zero and missing your turn. 
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But things really start to get interesting when you look at how many 
different ways you can score 1, 2 or 3, because that is inextricably 
linked with the number of symmetries of these shapes. To assess the 
chances of rolling a 1, I need to count how many different ways there 
are to pick up the dice and place them down so that only one dot is 
pointing upwards. Because I am only interested in the vertex pointing 
upwards, I can ignore the symmetrical rotations of the triangular face. 
So the symmetries of these dice that determine the probabilities of the 
throws can be reduced to the symmetries of four squares sitting on a 
rod like a combination lock. One side of each square has a dot on it 
(Figure 16). 

Fig. 16 The symmetries of a combination lock with four squares can be used to analyse the 
dice in the game from Ur. 

The symmetries of the combination lock are a subset of the sym-
metries of the four tetrahedra. Since the number of different combi-
nations is 256 = 28, a power of the prime 2, the group of symmetries 
of this combination lock is actually one of the objects that I have been 
trying to understand sitting at home in my office in Stoke Newington. 
To calculate the chances of getting a 1 from these four dice, I need to 
calculate how many symmetries of the combination lock leave one dot 
facing outwards. 

I start by choosing the dot showing on the first wheel. That’s like 
saying the first die landed spot-up. How many different ways are there 
for the other three dice to land with no spot showing? Each of the 
other wheels can be turned in three different positions to show a blank 
side. So that is a total of 3 × 3 × 3  configurations. But I could also have 
chosen the dot to be showing on the second or third or fourth wheel. 



47 September: The Next Roll of the Dice 

Again, the remaining wheels can be arranged in 3 × 3 × 3  ways to 
show blanks. So that makes a total of 4 × (3 × 3 × 3) = 108  out  of  256  
symmetries that give me 1. If you calculate the other possibilities you 
get a 54 in 256 chance of getting 2 and a 12 in 256 chance of getting 
3. So the most likely throw with these four dice is 1. 

Tomer is looking somewhat glazed. But I rather like this conceptual 
leap, where the problem suddenly becomes tractable by visualizing it 
in a completely different way. Instead of throwing tetrahedra, I’ve 
changed the problem into spinning combination locks. ‘It sounds like 
that problem we did in Guatemala when you turned getting to the 
supermarket into a problem about necklaces,’ says Tomer. Two years 
ago we spent seven months living in Guatemala. We were living in 
Antigua, one of the first towns to be built as a grid of avenidas and 
calles: seven parallel streets crisscrossed by seven parallel avenues 
(Figure 17). Our house was in the top right-hand corner of the grid. 
The supermarket was at the bottom left. We spent some time trying 
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Fig. 17 How many ways are there to get from our house to the supermarket? 
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to work out how many different ways there were to get from home to 
the supermarket. 

Tomer found that when the problem involved just three avenues 
and three streets, there were six different routes. But drawing paths 
through the city was not going to solve the bigger problem. By changing 
the problem into counting how many necklaces you can make out of 
six red beads and six yellow beads, I managed to crack it. Each necklace 
represented a path through the town – a red bead meant go west; a 
yellow bead, head south. But counting necklaces turned out to be 
much easier. In the end, by using the formula I came up with we 
calculated that there were 924 different routes through the town – 
enough to keep us going for a couple of years before we had to repeat 
a route. 

As we’re about to leave the cabinet containing the Game from Ur, 
Tomer suddenly points at the dice. ‘Dad, look! There are two dots on 
the dice, not one.’ Sure enough, when I look closer, two of the four 
corners are marked with dots. So in fact throwing the real dice is like 
flipping four coins and counting the number of heads rather than 
the workings of my combination lock. I can’t help thinking that my 
hypothetical dice were more interesting, but sometimes reality doesn’t 
quite live up to one’s mathematical expectations. 

Tomer is quick to remind me that we’ve got an hour left in the 
museum before today’s deal kicks in and we head to the skateboard 
park. So I move us swiftly on to the Greek and Roman galleries in the 
search of more symmetrical dice. 

Pythagoras and the sphere of 12 pentagons 

Sophocles claimed that dice were invented by Palamedes to entertain 
the Greek troops during their siege of Troy. The cube was by now the 
most popular shape for dice, and examples found in Rome date back 
to 900 bc. These Etruscan dice are very similar to the one we play 
with today, marked with dots to denote the numbers from 1 to 6 and 
arranged such that opposite sides add up to 7. ‘Why did they arrange 
the dots like this?’ Tomer asks innocently. I’m not sure. ‘Perhaps it 
evens out any bias that might be present in the dice due to imperfec-
tions in making a perfect cube,’ I suggest tentatively. 
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Roman soldiers were so obsessed with dice games that they would 
carry heavy dice boards with them on their backs along with all their 
military equipment. In around 500 bc a new shape appeared on the 
scene. This new die had 12 faces as opposed to the six of the cube. 
The faces were in the shape of a pentagon rather than the squares of 
the cube or the triangles of the pyramid dice in the game from Ur. 
The Romans found that these 12 pentagons could be carved out of a 
ball of stone in such a way that no face was favoured over any other. 
The symmetry made it an ideal candidate for a new die. Examples of 
these dice have been unearthed near Bologna with Etruscan-Roman 
numbers carved onto the 12 faces of the shape. 

This new die made up of 12 pentagonal faces is quite a sophisticated 
shape. It is not at all obvious without seeing the shape assembled that 
12 pentagons can be pieced together so symmetrically. The Romans 
may have discovered these 12-sided symmetrical shapes because they 
were familiar with fool’s gold – a compound otherwise known as pyrite 
which often arranged itself into eye-catching crystals. It is often found 
alongside copper, and miners would have been used to seeing it in 
both its cubic form and in large lumps made up of crystals with 
pentagonal faces. The crystals are not completely symmetrical and 
wouldn’t be suitable as dice. But they might have provided the inspi-
ration for the Roman sculptors who discovered that you could actually 
level off the sides of a pyrite crystal to make each side a perfect 
pentagon. 

In 500 bc, mathematics had yet to crystallize into an independent 
discipline. Both the Neolithic stones carved in the third millennium bc 
and the Roman dice were experiments in symmetry rather than the 
products of any well constructed theory. These cultures were simply 
picking up and playing with the range of interesting shapes they saw 
around them. It was the arrival of a Greek mathematician in southern 
Italy at this time that marked the beginnings of a more analytical 
approach to the world around us. 

Pythagoras was born on the island of Samos around 570 bc. As a  
young man he was encouraged by his elders to spend time studying in 
Egypt. While he was there the country was invaded by the Persians, 
and Pythagoras was taken prisoner and shipped off to Babylon. His 
travels were very influential in shaping his mathematical view of the 
world. The Egyptians instilled in him a strong sense of geometry, while 
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in Babylon he picked up their sophisticated arithmetic skills. From 
both cultures he acquired a deep sense of mysticism which infected 
much of his later work. 

Eventually Pythagoras returned to Samos and tried to found a school 
around him which would draw on the symbolic and geometric 
approach to the world that he had come across on his travels. He 
believed that the reality surrounding him was bound together by math-
ematical ideas. He also believed in the important spiritual significance 
of certain symbols such as the pentagon and the triangle. His ideas 
were not received well by his fellow Samians, so he moved instead to 
Croton, on the southern tip of Italy. 

It is here that he came into contact with the symmetrical shapes 
being utilized by the dice-crazed Romans. He developed a fascination 
with the die with 12 pentagonal faces. Already obsessed with the mysti-
cal significance bound up in the pentagram, he must have felt a thrill 
on discovering that 12 pentagons can be perfectly arranged to make 
an object full of symmetry. None of the 12 pentagons is favoured over 
any of the others. 

The motion of the moon across the sky naturally divided the year 
into 12 months. So the discovery of this object with 12 faces must have 
appealed to Pythagoras’s sense of mathematical mysticism. Indeed, on 
some artefacts of this shape recovered by archaeologists are carved the 
12 signs of the zodiac. The ‘sphere of 12 pentagons’, as this shape first 
became known, assumed a spiritual significance for the Pythagorean 
sect that grew around this Greek mystic. Medieval and Renaissance 
texts mention the use of 12-sided dice for divination in ancient 
times. 

Along with the sphere of 12 pentagons, the Pythagoreans recognized 
two other objects as important cousins. The cube, composed of six 
squares, was clearly an object with symmetry that deserved a place 
alongside the sphere of 12 pentagons. So too did the four-faced tri-
angular pyramid, the shape of the dice in the game from Ur. The 
Pythagoreans called this pyramid shape a tetrahedron, tetra meaning 
‘four’. Although Pythagoras cannot be credited with discovering any 
new symmetrical objects, it was his sensitivity to the symmetry of these 
three polyhedra that led him to group them together as examples of a 
common species. In his eyes they were manifestations of a deeper 
mathematical idea. This first inkling of a move to abstraction would 
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set mathematics apart as a new discipline distinct from philosophy, 
religion or science. 

Pythagoras could see that the abstract bond between these three 
shapes did not extend to another shape he was familiar with from his 
time in Egypt. The pyramids of Giza were built during the same period 
that the Neolithic people of Britain were erecting their great stone 
circles. Sitting in the desert, the pyramids might have looked as sym-
metrical as the Pythagorean tetrahedron (Figure 18). But as soon as 
one begins to analyse the shape, it becomes clear that it lacks the same 
level of symmetry as the other shapes. The Egyptian pyramids are built 
from four triangles and a square. The resulting mathematical pyramid 
is a shape whose symmetry is restricted to that of the square at its 
base. 

Fig. 18 A square-based pyramid has less symmetry than a triangular-based pyramid. 

If you play with the two pyramids, the square-based Egyptian pyra-
mid and the triangular-based tetrahedral pyramid, then you soon get 
to see why the tetrahedron has more symmetry. I can roll it onto any 
of its other three faces and put it back down in the desert and it won’t 
look any different. The square-based pyramid has to be replaced on 
its square if it is to look the same. There are four different ways to set 
it back down, but beyond that the rotational symmetry of the shape is 
rather limited. The rotational symmetry in the tetrahedron, on the 
other hand, gives me 12 different ways I can replace it on its triangular 
plot. Similarly, the tetrahedron has more reflectional symmetry than 
the square-based pyramid. 

While the Pythagoreans recognized a common theoretical bond 
between the cube, the tetrahedron and the sphere of 12 pentagons, it 
is intriguing that they failed to identify another important symmetrical 
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polyhedron that deserves its place alongside the three Pythagorean 
shapes. The missing object can actually be built from the square-based 
pyramids of Egypt. 

Although a single Egyptian pyramid is not so exciting symmetrically, 
the shape comes into its own when you take two of them and glue 
them together along the square bases. If the triangular faces of the 
pyramids are all equilateral triangles, the object you get is rather 
remarkable (Figure 19). It can be viewed from many different angles 
and still appears the same. As you turn it, it becomes impossible to 
tell along which plane the two original pyramids were fused together. 
It is built from eight triangles. At each of its points four triangles meet, 
whereas in the tetrahedron three triangles meet at each point. Here 
was a new shape, built from the same triangles as the tetrahedron but 
put together to create an eight-sided figure called an octahedron. 

Fig. 19 The octahedron, built from eight equilateral triangles. 

If you don’t use equilateral triangles to construct an octahedron, it 
will have less symmetry as it will be slightly squatter or elongated in 
one direction, according to the choice of triangle. For example, the 
square-based pyramids that Tomer and I visited when we were in 
Guatemala were built for height. The builders were, after all, aiming 
to reach above the canopy of the jungle. So two Guatemalan pyramids 
fused together would clearly lose the symmetry. 

This is one of the features of the pyramids in Egypt that make them 
so remarkable. They are nearly always designed with sides that are 
perfect equilateral triangles and thus give the impression of a regular 
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octahedron with one half buried in the ground. So although outwardly 
the pyramids at Giza don’t look as symmetrical as a tetrahedron, their 
majesty owes much to the symmetry suggested by the shape. Indeed, 
in the searing heat of the desert, a mirage might well have created the 
illusion of an octahedron floating in the air. The Egyptian geometers 
must have been aware of the mathematical beauty and significance of 
their design. 

It is intriguing that the Pythagoreans failed to elevate the regular 
octahedron to the status that they accorded the triangular-based pyra-
mid, the cube and the sphere of 12 pentagons. They must have known 
about this polyhedron. Many crystals have this shape: for example 
diamond when it is mined from the ground is octahedral, as is a red 
crystal called spinel, often mistaken for ruby. Although the Pythagore-
ans had made the first move towards abstraction by recognizing their 
three shapes as examples of a common species, they probably hadn’t 
yet made the conceptual jump to understanding the common feature 
that underpinned them. 

The Pythagoreans believed that their insights into the mystical world 
of mathematics were so precious that members of the sect were 
sworn to secrecy. Indeed, the Syrian philosopher Iamblichus, writing 
in ad 300, claimed that the Pythagorean Hippasus of Metapontum 
was drowned at sea for revealing secrets about the sphere of 12 penta-
gons. Other commentators, however, put Hippasus’s death down to 
the fact that he leaked the discovery that the square root of 2 cannot 
be written as a fraction. This mysticism and secrecy could explain why 
another century passed before it was realized that two more shapes 
full of symmetry, the octahedron and the 20-faced icosahedron, 
deserved their place alongside the cube, tetrahedron and sphere of 
12 pentagons. 

There was also another reason for the Pythagoreans’ failure to capi-
talize on their early mathematical successes. When the sect began to 
mix politics with mathematics and mysticism, they ran into trouble. 
In 460 bc the Pythagorean brotherhood was violently suppressed: its 
meeting houses were sacked and burned, and many of its members 
were slain. 
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Plato – from reality to abstraction 

It was the Greek philosopher Plato who picked up the mantle of the 
Pythagoreans. A century after Pythagoras’s death, Plato states in his 
great work the Republic that the study of the Pythagorean shapes had 
become sorely neglected. The Republic takes the form of dialogues 
between Socrates, Plato and other characters. One part sets out the 
subjects that are essential knowledge for those who are to lead the 
state. Arithmetic and plane geometry are considered to be vital skills, 
not only for their usefulness in war but also because the eternal nature 
of the concepts ‘will draw the mind to the truth and direct the philos-
opher’s thought upwards’. 

Astronomy is about to be put next in line, when Socrates interjects: 
‘More haste, less speed. In my hurry I overlooked solid geometry 
because it is so absurdly undeveloped. The neglect of solid geometry 
would be made good under state encouragement.’ The word ‘geom-
etry’, which literally means ‘measuring the earth’, had been reserved 
for the mathematics of navigation and mapping, but Socrates saw 
geometry as going beyond simple measurement. During these dis-
cussions there is an interesting tension which emerges between the 
practical reasons for studying geometry and arithmetic and the pure 
pursuit of truth – a tension which still runs through mathematics 
today. 

Plato took up the gauntlet thrown down by Socrates to begin some 
systematic study of solid three-dimensional shapes whose symmetries 
mark them out as eternal objects that draw the mind to deeper truths, 
as Socrates had hoped. But the messiness of human affairs forms the 
backdrop to these eternal discoveries, and Plato’s disillusionment with 
politics, especially after the execution of his mentor Socrates, impelled 
him to leave Greece for a period. 

As happened to Pythagoras before him, Plato went to Egypt and the 
influence of the ideas he found there helped to shape his strongly 
geometric view of the world. In 387 bc he returned to Athens to set 
up an institution devoted to research and the teaching of science and 
philosophy. He hoped to put into practice his dialogues with Socrates 
on what constituted suitable training for the next generation of political 
leaders in Greece. 
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Plato’s institution was founded on a piece of land that had once 
belonged to a mythical hero called Akedemos, and in his honour it 
became known as the Academy. It was during discussions at the 
Academy that Plato’s friend Theaetetus began to understand the prin-
ciple that underpins the solids that the Pythagoreans had held dear: 
the cube, the pyramid and the sphere of 12 pentagons. Plato described 
his friend as having a snub nose and protruding eyes but a mind of 
beauty. And it was for capturing the abstract mathematics of symmetry 
that he would ultimately be remembered. 

Theaetetus could see that if you wanted a three-dimensional shape 
with lots of symmetry, then it was important to build it from two-
dimensional polygons that were symmetrical. And if all the faces were 
the same shape, that would potentially increase the symmetry of the 
resulting solid. But he recognized too that there were limits to the 
types of polygon that can be used. As the bee discovered, hexagons 
can be put together to make only a flat surface. A die with hexagonal 
faces is impossible. Shapes with more sides than the hexagon don’t fit 

? 

Fig. 20 It is impossible to piece together polygons with more than six sides to 
completely cover a surface. 
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together at all. Put two together, and there just isn’t room to squeeze 
in a third face of the same shape (Figure 20). So the faces would have 
to be built from shapes with fewer than six sides. 

So what shapes can you build out of triangles, or squares or penta-
gons? To achieve as much symmetry as possible, Theaetetus reasoned, 
the flat faces should always meet each other in the same configuration. 
No point or edge should look any different from any other, or it would 
break the perfection of the construction. 

The cube certainly met this criterion: six square faces with three 
squares meeting at each point. The sphere of 12 pentagons was made 
of 12 regular pentagons, again each meeting three at a time at the 
points on the shape. As for equilateral triangles, the Pythagorean tri-
angular-based pyramid was built from four triangles meeting three at 
a time at each point. But with his abstract criterion for selecting 
shapes, Theaetetus now recognized that equilateral triangles could be 
configured in an alternative way to create another symmetrical object 
that was on a par with the Pythagorean polyhedra: two square-based 
pyramids fused along the bases made a figure composed of eight 
triangles. This time, each point is the meeting place of four triangles. 
Using his theoretical analysis, Theaetetus had constructed the octa-
hedron that the Pythagoreans had missed. 

Were there any other shapes that could be built out of triangles? 
One might propose taking two pyramids with a pentagonal base with 
five triangles. But fusing these together will violate Theaetetus’s con-
dition that the same number of triangles should meet at each point. 
Five triangles meet at the top and bottom points, while at the points 
around the middle only four meet, and this reduces the symmetry of 
the object. 

It is around this time in the history of mathematics that the discovery 
of another amazing symmetrical shape is recorded. Starting with five 
equilateral triangles arranged in a pyramid configuration, instead of 
gluing another copy of the pyramid on the bottom, Theaetetus found 
that you could keep on building in such a way that five triangles met 
at each new point of the shape as it evolved. 

It must have been a wonderful moment for Theaetetus as he started 
to piece together triangles five at a time round a point, gradually 
building and seeing the shape evolve into a perfect regular polyhedron 
with 20 triangular sides (Figure 21). It’s not obvious at first sight that 
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this object should exist – it’s not a shape that anyone had seen in the 
natural world. You can’t piece together 19 or 18 triangles to create a 
shape where all the triangles meet in such a symmetrical manner. An 
act of mathematical creation had brought this 20-sided figure into 
existence. Eventually it would be realized that this shape does occur in 
nature, but only once microscopes allowed us a closer view of the 
world. 

Fig. 21 Twenty equilateral triangles can be pieced together to make an icosahedron. 

The Ancient Greeks called the shape an icosahedron, meaning ‘20 
faces’. Another way in which the Greeks might have discovered this 
new shape is via a close bond the icosahedron has with the sphere of 
12 pentagons. This 12-sided polyhedron has 20 vertices. If an equi-
lateral triangle is positioned at each of these vertices and all 20 triangles 
are suitably oriented, they match up perfectly to produce the icosa-
hedron. If you count the vertices of this new shape built from triangles, 
you find there are 12. Put a pentagon on each of these vertices and 
you get the sphere of 12 pentagons back (Figure 22). This close bond 
between the two shapes mathematicians call duality. You can play the 
same trick with the square and the octahedron. But if you try it with 
the tetrahedron, all you get is another tetrahedron. 

This duality is important because it actually explains why the dual 
shapes, although physically very different, have the same symmetries. 
The symmetries of the sphere of 12 pentagons are the magic trick 
moves, the things that can be done to the shape which leave it looking 
like it did before the move. By constructing an icosahedron around 
the sphere of 12 pentagons, with a triangle at every vertex, one finds 
that the moves that preserve the sphere of 12 pentagons also spin the 
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Fig. 22 The icosahedron and the sphere of 12 pentagons. Duality provides a passage from 
one symmetrical shape to another. 

icosahedral case, leaving it looking as it did before the move. The 
identification of the cube and the octahedron also reveals that the 
symmetries of each object are the same. It would take another two 
millennia for mathematicians to understand this subtle idea of under-
lying symmetries. The Greeks were only just starting out on the abstract 
journey to explain the common symmetrical bond connecting all these 
shapes. 

If Theaetetus hadn’t constructed the icosahedron, it wouldn’t have 
been too long before someone else made the discovery. Perhaps he 
wasn’t even the first to build it. There is something universal and 
timeless about this shape. It’s easy to forget that someone first built 
it, so in an almost Oedipal act, the creator’s name has been forgotten 
and the shape goes by its Greek name: the icosahedron, the 20-sided 
shape. Quite often such discoveries are made simultaneously by several 
mathematicians independently. Ancient Chinese incense burners built 
in the first millennium ad have these perfect shapes. The craftsmen 
found the shapes independently and without any contact with the 
Greeks. 

Mathematical proof 

Theaetetus now had five dice in his collection, but were there any more 
interesting dice out there for the mathematical mind to construct? In 
one of the first examples of mathematical proof, Theaetetus explained 
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why we will never find a sixth way to put together regular faces to 
build a new sort of die. The limitations of geometry and symmetry 
can be exploited to show that in three dimensions these five shapes 
are the only possible dice that can be built. It is this new power to 
prove facts about the world around us with 100 per cent certainty that 
during this period in history marks out mathematics as something 
genuinely different from the other sciences. This is no longer simple 
observation and butterfly collecting. The mathematician can look into 
the future and say categorically that these five shapes are all we will 
ever be able to build from copies of a single regular symmetrical face. 

The first recorded account of the five shapes is Plato’s description 
in his text Timeus in which he outlines his creation myth. For him, 
the five symmetrical shapes were so fundamental that they form the 
very building blocks of matter itself. The triangular-based pyramid or 
tetrahedron, the spikiest and simplest of all the shapes, Plato believed 
represented the element fire. The icosahedron is the roundest of all 
the shapes made up out of its 20 triangles. It represented the element 
water in Plato’s classification, being the smoothest of all the figures. 
The other figure made from triangles is the eight-sided octahedron. As 
a shape intermediary between the first two, Plato believed it rep-
resented air. The cube with its six square faces represented the element 
earth, being one of the more stable of the shapes. 

This left the sphere of 12 pentagons unaccounted for. Plato renamed 
it the dodecahedron to indicate that it had twelve (dodeca in Greek) 
faces. Plato believed that this figure ‘God used for arranging the con-
stellation of the whole universe’. Plato’s God is definitely a mathema-
tician at heart, and this vision has been instrumental in establishing in 
Western thought the connection between mathematics and theories of 
the cosmos. Plato’s account of the five regular polyhedra gives us the 
collective name they go by today: the Platonic solids. 

It is the Greek language that assigned a name to the common trait 
that bound Plato’s five objects together: symmetros. In the first century 
ad the Roman author Pliny the Elder bemoaned Latin’s lack of a word 
for symmetry. Symmetros combines the Greek words syn, meaning 
‘same’, and metros, meaning ‘measure’. Together they describe some-
thing ‘with equal measure’. Symmetry for the Greeks was reserved for 
describing an object in which some of the internal physical dimensions 
were the same across the shape. In symmetrical solids the edges were 
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all the same length, the faces all had the same area, and the angles 
between adjacent faces were all equal. Symmetry is about measurement 
and geometry. It would take some time for symmetry to become 
recognized as a mathematical property that goes beyond simple 
measurement, although the Greek philosophers were beginning to 
explore the idea of symmetry as a powerful image beyond physical 
shapes. 

In his Symposium, Plato tells us that symmetry not only holds the 
secret to the structure of matter, but also explains the origin of love. 
He presents a debate between some of the great thinkers of Ancient 
Greece on the nature of love. Having planned a night of drinking but 
overindulged themselves the previous evening, they decide to delay 
their party and instead hold a competition to see who can come up 
with the best explanation of the origin of love. The fourth to speak is 
Aristophanes, who offers the theory that love comes from our craving 
for symmetry. 

According to Aristophanes, humans were once four-legged, spherical 
beasts with two faces, one on each side of their head. But Zeus, angered 
at the arrogance of the human animal, came up with a plan to humble 
their pride: ‘Men shall continue to exist, but I will cut them in two 
and then they will be diminished in strength and increased in numbers; 
this will have the advantage of making them more profitable to us.’ 
And he slices all humans in half. And that, according to Aristophanes, 
is the origin of love – our craving to be united once again as a complete 
being, a perfectly symmetrical sphere. 

Intriguingly, Darwin’s theory of evolution supports Aristophanes’ 
view that symmetry is the dominant force in our selection of sexual 
partners. Even Plato’s view of the cosmos, based on the symmetrical 
solids, shares some ideas with modern scientific models. Although 
Plato’s chemistry, with its elements of earth, water, air and fire, is 
wrong, the four shapes that Plato associated with them do permeate 
the microscopic world. But that world would not be revealed until 
humans had developed tools to see things beyond the shapes of the 
various artefacts on show in the cabinets of the British Museum. Even 
Plato’s association of the dodecahedron with the configuration of the 
universe now finds an echo in one of the current theories on the 
overall shape of the universe. 

Tomer and I have come to the end of our Saturday morning visit. 
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As we pass through the main atrium of the British Museum on our 
way out, we are still assaulted by symmetry. The new roof there is a 
lattice of triangles put together like a huge, many-sided die. 

I’m eager to return to the mathematical tools I’ve been developing 
to see what symmetrical shapes I can cook up beyond the three-
dimensional world that the Romans and Greeks were exploring. But 
Tomer reminds me of our deal. So first it’s a trip to the skateboard 
park, to watch him grind and ollie. 
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October: The Palace of Symmetry 

And I would have the Composition of the Line of the Pavement 
full of Musical and geometrical Proportions; to the Intent that 
which-soever Way we turn our Eyes, we may be sure to find 
Employment for our Minds. 

leon battista alberti, The Ten Books of Architecture, 1755 

17 October, en route to Granada 

At a conference in Edinburgh a few years ago, John Conway told me 
that he sometimes spent hours staring at brick walls. Was this a form 
of meditation to free the mind from the pressures of daily life to escape 
into the abstract mathematical realm, I asked? Not at all, Conway 
replied. As we strode around the university campus he pointed from 
one arrangement of bricks to the next, explaining how each illustrated 
a different sort of symmetry. You have to look at quite a few walls to 
find enough different patterns, but then some of the secrets of sym-
metry will start to reveal themselves. 

If you want to delve further into the variety but also the limits of 
symmetry, the walls, floors and ceilings of the medieval palaces of the 
Moors are where you should look. The Greeks and Romans had started 
to explore the symmetry of shapes that make good dice, and discovered 
that there were only five perfectly symmetrical polyhedra you could 
build. But the Arabic artists who were decorating the palaces for the 
caliphs and sultans of the Muslim world started to push the concept 
of symmetry beyond the Greek idea of equal measurements. On the 
walls of the medieval citadels they began to play a new sort of sym-
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metrical game, competing to come up with ever more sophisticated 
patterns that would repeat themselves in interesting ways. Starting with 
simple square tiles and the hexagonal lattice of the beehive, they found 
a plethora of curious designs. 

We can look at the array of different shapes that the artists dreamt 
up and wonder whether they thought there was no end to the catalogue 
of symmetries. But just as the Ancient Greeks discovered, there are in 
fact limits to the symmetrical games played by the Moors. In contrast 
to the five tales of the Greek Platonic solids, the story of symmetry 
hidden in these palaces is a saga written in 17 chapters. Each exotic 
tiling is in fact an example of one of 17 different underlying sym-
metries. While the Greeks had developed the analytical tools to prove 
that there wasn’t a sixth regular polyhedron missing from their list, 
the abstract analysis to explain this new story was well beyond the 
Moors. It would take the sophisticated mathematics of the nineteenth 
century to come up with a complete understanding of the symmetries 
of these 17 different designs. 

Just as three oranges and three apples are both different mani-
festations of the abstract idea of the number 3, mathematicians 
would eventually reveal how two apparently different walls could be 
expressions of the same underlying group of symmetries. Although the 
Moors could not prove the impossibility of an 18th symmetry, they 
did at least manage to produce examples of all 17 possible symmetries. 

One palace in particular, built around 1300, has always been a Mecca 
for those addicted to this part of the mathematical story of symmetry: 
the Alhambra in Granada. Perched in the foothills of the Sierra Nevada 
mountains in southern Spain, the town of Granada seems almost to 
grow out of the fertile plains of Andalusia. Surrounded by luxuriant 
woods, the Moorish palace sits on top of a hill overlooking the town, 
like ‘a pearl set in a bed of emeralds’, as one poet described it. 

It has become something of a pilgrimage for mathematicians to 
come to the Alhambra and, as if taking part in a treasure hunt, to try 
to find examples of all 17 symmetries on the palace’s walls, floors and 
ceilings. It’s the half-term school holiday, so I’ve decided to make my 
own pilgrimage to the south of Spain. The family, accustomed to 
humouring the obsessions of the mathematician in their ranks, sets off 
for Andalusia. 
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Hunting for treasure 

The famous graphic designer M. C. Escher also first visited the 
Alhambra in the month of October. During that first encounter, in 
1922, he became entranced by the sheer variety of designs on the 
palace walls. From an early age Escher had been obsessed with tiling – 
covering the whole of a plane surface with non-overlapping shapes. 
The first medium he experimented with was not walls or floors but 
food. The Dutch often had two cold meals a day in which they ate 
boterhammen, single slices of bread covered in sliced cheese or cold 
meat. As a young boy Escher would try to use pieces of cheese to 
completely cover his bread, leaving no gaps. In later life, cheese gave 
way to angels and demons, lizards and fish. 

Ever since civilizations have been building houses or constructing 
roads, they have been looking, like Escher, for ways to piece together 
bricks, stones or slate to cover two-dimensional surfaces and three-
dimensional spaces. The drystone walls of ancient Britain were jigsaws 
of irregularly shaped stones. The brickwork looked completely random, 
but the walls were sturdy enough to keep livestock in and marauders 
out. Using irregular pieces certainly spared the builder the effort of 
carving out regular squared-off stones. However, the lack of any pat-
tern leads to a corresponding lack of efficiency in constructing the wall 
because each new piece requires work by the builder to see how to fit 
it into the construction. 

Our natural passion for patterns and recognizable images soon drew 
builders to create something beautiful with the space they were filling. 
The Romans used small pieces of coloured tile to cover their floors 
with mosaics of dolphins and senators. But the Muslims, denied the 
luxury of depicting images of living things, were forced in another 
direction. ‘The strange thing about this Moorish decoration is the total 
absence of any human or animal form. This is perhaps both a strength 
and a weakness at the same time,’ wrote Escher in his travel diary 
during that first visit to the Alhambra. 

Although the Koran itself does not explicitly prohibit pictures of the 
human or animal form, many other sacred Muslim texts outlaw any 
depiction of beings with a soul. One of them states that ‘he who makes 
images will suffer the most severe punishment on the Last Day . . . the 
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angels of mercy do not enter dwellings where there are such images.’ 
Deprived of the sensuous images that other cultures used during the 
early second millennium, the Muslims were obliged to find more 
geometric ways to give expression to their artistic urges. For them, 
geometry and symmetry were attributes of a perfect God and suitable 
ways to represent his perfection in art. They identified strongly with 
Plato’s sentiment that ‘God ever geometrizes’. Indeed, the books of 
geometry by Euclid were some of the first Ancient Greek texts to 
be translated into Arabic. Armed with a sophisticated mathematical 
intuition, the Moorish artists began to cover their palaces in tiles of 
different geometric shapes and colours. 

The natural world has discovered over years of evolution that only 
those with superior DNA achieve perfect symmetry. For the artisan 
too, symmetry was the ultimate test. In an age that predated the 
industrial mass production of perfect copies, the skill involved in 
repeating a design for a tile over and over again, with no flaws, was a 
mark of true craftsmanship. But it is in finding ever more inventive 
ways of combining these tiles that the artisan’s mathematical prowess 
becomes apparent. The sultan would reward handsomely the artist 
who discovered a new pattern with which to decorate the walls and 
delight the residents. 

As we make our way to the bus for the Alhambra, we walk upon a 
range of different pavements. The way the slabs have been arranged 
provides the town planner with the chance to play the same games of 
symmetry that the Moorish artists indulged in centuries before. I start 
trying to analyse which pavings have the same symmetries and which 
are different. Some of the patterns consist of simple squares repeated 
left to right, backwards and forwards, as on a chessboard. Sometimes 
the squares are staggered as one meets each new layer. Sometimes they 
are staggered in a symmetrical way, but often there is bias towards one 
side (Figure 23). Then you get the same thing with rectangles. One of 
the more intriguing pavements has rectangles zigzagging along the side 
of the road. I point this one out to Tomer, but my excitement is met 
by a long hard stare before he turns and climbs onto the bus for the 
Alhambra. 

By the time I catch up with Tomer he’s already got his Nintendo 
DSX out and is lost in Super Mario until we reach the Alhambra stop. 
I’m left to ponder the different bits of notation that I’ve got for the 
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Fig. 23 Symmetry in pavements. 

different symmetry groups. Included in this notation is a label for each 
of the different groups of symmetry: p4, cm, p4gm, and so on. The 
labels have been chosen in an attempt to reflect each group’s specific 
traits. I’ve copied out the conventional labels for the 17 symmetries in 
a notebook I always carry with me. My notebook is where any flash of 
inspiration or idea for a problem will be jotted down – ideas can come 
to me in the strangest places. I’ve made some sketches of all the 
pavements we saw on the way, and I’m trying to categorize their 
symmetries using the notation. Either I’m being really stupid or it’s 
incredibly bad notation, because I can’t seem to sort out which name 
goes with which pavement. This should be trivial for me, but the whole 
thing is quite subtle. 

Language, notation and naming are all extremely important in cap-
turing the essence of a mathematical structure. The notation I’ve jotted 
down was created at the beginning of the twentieth century by crystal-
lographers rather than mathematicians. The symmetries found in the 
floors and walls are also important for the chemist as they are related 
to understanding crystal structures. But the language they’ve devised 
to label these symmetries is somewhat opaque. I’ve also come armed 
with a second new notation composed recently by John Conway. It 
makes more mathematical sense, and as soon as I start using these 
labels the symmetries in the pavements become quite transparent. 

As we walk into the Alhambra I’m immediately struck by the reflec-
tive power of water. It seems as though the palace is built on water. 
Tiny little streams run from one fountain to another. The architecture 
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of the palace already demonstrates a vertical symmetry: the left side of 
the facade is perfectly reflected in the right side. Standing at one end 
of the pool in the Courtyard of the Myrtles, one sees another perfect 
copy of the building reflected horizontally in the surface of the water. 
This vast expanse of water stretches to the very feet of the columns of 
the facade, and the palace and its reflection combine to give the impres-
sion of a crystal suspended in the sky. 

Some girls thrust their hands into the water, trying to touch the fish 
swimming there, and the symmetry is destroyed. It doesn’t take much 
to disturb the water’s calm surface and fragment the palace’s mirror 
image. That is the message in the water: perfect symmetry is hard to 
obtain. The natural world knows that. The Moorish architects loved 
the symbolism of the fragility of the symmetry in the water. The 
tension between the eternal nature of God and the transience of our 
fragile earth was captured by the dialogue between the solid symmetry 
of the palace and its elusive reflection in the pool. 

The palace is decorated with many images full of rotational sym-
metry. The Moors, like the flower and the starfish before them, dis-
covered the power of the symmetry contained in the many-pointed 
star, and covered the ceilings, walls, floors and gardens of the Alhambra 
in stars of ever more intricate artistry. They used a trick in carving 
these stars which is also played by flowers. The five-petalled flower of 
the magnolia does not have mirror symmetry. Instead the petals are 
arranged such that they fall under and over each other, destroying 
the reflectional symmetry. It gives a spiral effect, either clockwise or 
anticlockwise. 

The same trick was used by Escher when he put a twist on the 
starfish that adorns the chocolate box he designed and Conway so 
loves. The spiral effect is also used in many of the stars in the Alhambra. 
These stars are often built by interweaving several squares to realize 
the 8, 12 or 16 points of a star, an illustration of how the symmetries 
of these many-sided shapes can be broken down into symmetries of 
smaller shapes (Figure 24). Even Tomer can see that, despite the many 
different colourful and complex decorations that have been used, the 
symmetries of the beautiful eight-pointed star are the same as the eight 
rotational symmetries of a simple octagon. Both are just different 
manifestations of the same type of symmetry. 

The walls of the palace are covered with tiles of different colours 
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Fig. 24 An eight-pointed star made of two interlocking squares. 

arranged to make repeating patterns. Although the tiles stop where a 
wall ends, the symmetry creates the impression that beyond the wall 
the pattern continues to repeat itself. There is a rhythm created by the 
symmetry which almost makes the walls pulsate, giving the effect of a 
moving image, hinting at the infinite expanse of space. This is another 
reason why the Muslim artists were drawn to symmetry: as an artistic 
expression of God’s infinite wisdom and majesty. Each fresh wall offers 
the artist the chance to create a different, original tiling. But can one 
make a science out of this art? Is there a mathematics which will reveal 
ever more intricate patterns or show the limitation of what is possible? 

The essence of a tiling is that it repeats itself in two directions. 
Figure 25 shows the tiles on the first wall that greets visitors as they 
enter the Alhambra. Eager tourists rush past me on either side, failing 
to notice the images carved on the walls lining the entrance, which 
almost seem to be saying ‘Welcome to the palace of symmetry.’ I am 
struck by the extraordinarily shaped tile that the artist has discovered 
which seems to fit so perfectly round the eight-pointed star to leave 
no gaps. 

What makes the images at the entrance to the Alhambra a regular 
tiling and not a Roman mosaic or Escher cheese sandwich is that each 
piece can be lifted and shifted (either up or down, left or right) and 
eventually it will sit perfectly on a copy of itself. But there is more 
regularity here than in just the individual movement of each piece. 
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Fig. 25 The wall of the entrance to the Alhambra. 

I can take a copy of the whole picture, shift it horizontally or vertically, 
and lay it down again so that it exactly matches the original picture. 
This is what imbues it with a sense of the infinite. The symmetry in 
the wall contains a message – a programme, if you like – which 
stipulates exactly how the tiles will be laid out as the wall is expanded, 
even to the infinite reaches of the universe. 

But there is more to the symmetry of this wall than simple repetition. 
How can we articulate what that symmetry is, though? How can we 
express the fact that one wall has more symmetry than another? Is it 
possible even to pin down precisely what we mean when we say that 
two walls have the same symmetry? 

The reason there is more symmetry in this wall than simple rep-
etition is that there are other ways I can pick the picture up and place 
it down on a shadow of itself. Instead of simply shifting it left or right, 
up or down, I can turn it before I lay it down. For example, if I keep 
the centre of one of the eight-pointed stars fixed and rotate a copy of 
the picture by 90° around this point, the shapes line up perfectly on 
top of the original picture. 

I am intrigued to see what Tomer makes of the design. His initial 
reaction is that it hasn’t got any symmetry. He is looking for lines that 
he can fold the image along so that the two sides of the picture match 
up, as one of the psychologist Rorschach’s inkblot images. Immediately 
he can see that this isn’t possible here. Intriguingly, the design that 
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adorns the entrance to the palace is missing the version of symmetry 
that most people are familiar with: reflectional symmetry. 

Although the eight-pointed star has mirror symmetry, the elongated 
T-shape that surrounds the star has a clockwise twist to it that would 
be reversed in a mirror. As with one’s left hand, a reflection of the T 
gives us an entirely new shape. If I lift the piece out from the wall and 
turn it over, I get the reflected image. But it is impossible to place it 
back in the gap that has been left behind. Of course I could take out 
all the pieces, turn them over and place them back down around the 
eight-pointed star. This will produce a different (but obviously related) 
picture, which seems to spin in an anticlockwise pattern. 

The secret of articulating the symmetry in this wall is to imagine all 
the ways you can lift the image and place it back down in an outline 
of the wall. It helps to imagine a ghostly form of the object being left 
behind as the object itself is moved and then replaced. Following in a 
long line of artists who have come to the Alhambra, including Escher, 
Tomer and I have brought sketchbooks in which to draw the walls. I 
actually find it remarkably difficult to sketch the complicated template 
used by the Moorish artist, and begin to feel a certain wonder at the 
way it perfectly covers the wall. 

I look up to see it hasn’t taken long for Tomer to have dropped his 
sketchbook and whip out his Nintendo DS. But when I berate him for 
escaping into Super Mario Karts and not appreciating the beauty 
around him, he shows me the screen. What he’s been doing is drawing 
the designs onto the screen. Not only that, there is a function that 
allows him to spin what is on the screen. He shows me that if you fix 
a point at which the strange elongated T-shapes meet in a sort of 
swastika, then you can spin the picture round this point by 90°. Sure 
enough, there on the screen he animates for me the tiling spinning 
around this point and lining up again so that it looks exactly the 
same. 

The Nintendo actually captures something my simple sketches can’t 
– the fact that the symmetry of the tiling is about movement. It is 
about the variety of things I can do to the picture. Although the picture 
ends up looking like it did before it was moved, the essence of each 
new symmetry is the intermediate motion that gets back to the original 
picture – something the animation on Tomer’s Nintendo has captured 
but my simple static sketch only hints at. 
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Tomer’s drawing on the Nintendo has captured another symmetry 
which is distinct from the symmetry that spins the picture around the 
centre of the eight-pointed star. Although both are rotations of 90°, 
there is a genuine difference between the two because of their different 
effect on the picture. Tomer wanders off smugly into the palace. 

Following sheepishly, I find myself in a room covered with tiles of 
different shapes to those at the entrance. A guide is pontificating about 
the wonders of the Arab mathematicians: ‘To create a square is easy, 
but without the aid of the computer the Arab mathematicians created 
here not just eight-pointed stars but as many as 16 points on a star.’ 
They certainly excelled in their mathematics, but it is slightly fanciful 
to imply that one needs a computer to generate such stars. When the 
guide then claims the Arabs also invented zero, I have to hold myself 
back from launching in with an explanation that the Indians discovered 
zero. The Arabs were just good messengers bringing the idea from the 
East to the West along the silk routes. 

On the ceiling is another style that the artists in the Alhambra 
particularly enjoyed using (Figure 26). They often carved the wood or 
laid the tiles to create lines that look as though they run under and 
over each other like a tangled knot. The walls and ceilings look like a 
basket rendered in wood or stucco. It cleverly tricks the eye into 
providing an extra dimension to the experience of looking at the 
two-dimensional wall and again destroys any possibility of simple 

Fig. 26 The ceiling in the first room of the Alhambra. 



72 Symmetry 

reflectional symmetry. In any mirror image of the picture, the order 
in which the lines run under and over each other will be reversed. I 
am intrigued to see whether Tomer sees this as a different sort of 
symmetrical pattern to the wall that greeted us at the entrance. Or are 
their symmetries the same? 

‘But they’re completely different pictures,’ Tomer declares. My part-
ner Shani comes over. She’s an artist. What does her increased sensi-
tivity to the artistic side of symmetry make of the two pictures? She 
concurs with Tomer: ‘Not the same.’ A closer look shows that, as with 
the design at the entrance to the Alhambra, you can fix a point at the 
centre of the octagon and spin it through 90°, and the ceiling pattern 
will look just like it did before the spin. 

‘Look – there’s another place you can spin it.’ I point to the centre 
of the tiny square at the heart of each group of four octagons. The 
square is formed by the two white strands weaving in and out of each 
other. The pattern made by the strands actually means that you have 
to spin the picture by 180° before it sits back perfectly within its 
outline. ‘That’s starting to make my brain go all fuzzy.’ Tomer pretends 
to faint to the floor. At first sight this ceiling pattern looks quite 
different to the tiles at the entrance to the Alhambra. Even with my 
more sophisticated perspective, I’m not actually sure whether these are 
the same symmetries or not. 

But when I go back outside and check, I see that there is also a point 
around which the wall tiles can be spun by half a turn. The point 
around which you have to spin the picture is the halfway point between 
one eight-pointed star and its closest neighbour. Just as with the pattern 
on the ceiling, you have to spin the wall tiling a full 180° before the 
images line up again. This is quite embarrassing – symmetry is my 
speciality, yet I’d missed this symmetry on first viewing. 

An even bigger challenge is to work out whether these two different 
designs have the same symmetry type or not. It is one thing to count 
the number of symmetries in each pattern. But how does one talk 
about the totality of symmetries? Does it make sense as a concept 
in its own right? In the nineteenth century, mathematicians would 
eventually devise a language to articulate the fact that these two pat-
terns, one at the entrance to the Alhambra and one on the ceiling, do 
in fact have the same group of symmetries, meaning that the rotations 
have the same effect on the objects they are spinning. Even without 
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this language, we can illustrate that the symmetries of the patterns are 
related by superimposing one on the other. If we twist the ceiling 
pattern through 45° and place it over the entrance wall tiling in such 
a way that half the octagons sit on the eight-pointed stars and the 
other half have their centres where the swastikas are, we can see how 
they fit (Figure 27). 

Fig. 27 Lining up two patterns reveals their symmetries to be the same. 

Once the pictures have been so aligned, any symmetry of one picture 
directly translates into a symmetry of the other. It’s rather like the way 
you can place a dodecahedron inside an icosahedron (or vice versa; 
see Figure 22, page 58) and see their symmetries match up. But once 
they were equipped with a language for symmetry, mathematicians 
found that they could describe such alignments without having to look 
for any physical resemblance. 

The most powerful result of speaking this new language was that it 
would eventually allow mathematicians to prove that there are no 
more than 17 different types of tiling symmetry. Any pattern that is 
repeated both vertically and horizontally must fit into one of these 17 
classes. On the walls of the Alhambra Tomer and I have so far identified 
just one of these 17, called 442 in Conway’s notation (nothing to do 
with football, I should add). The two 4’s indicate that in this symmetry 
there are two different sorts of 90° rotation – something which is not 
so clear from the picture in the ceiling. The 2 refers to the half-turn 
we missed on the tiles at the entrance. 

Tomer is getting restless. ‘Come on, dad. We’ll never get out of the 
palace at this rate.’ Our task now is to sniff out as many of the other 



74 Symmetry 

16 symmetries as we can. My illustration skills can’t keep pace with 
the onslaught of images that greet us at every turn, so I resort to the 
digital camera. 

Triangles and hexagons, gyrations and miracles 

The group of symmetries that we’ve found at the entrance to the 
Alhambra is in fact a subgroup of the very simple symmetries created 
by the plain undecorated square tiles that cover most people’s bath-
room walls. By putting more elaborate designs into the picture, the 
artist has killed the reflectional symmetries of the simple square tiling. 
As well as the simple square tiling, there are two other very simple 
patterns on the wall that are full of symmetry, variants of which start 
to make an appearance as one enters the heart of the Alhambra: the 
hexagonal lattice of the beehive, and a wall covered with triangles. 

Tomer spots an interesting network of interlocking three-headed 
arrows (Figure 28). There is a reflectional symmetry here as well as an 
obvious rotational symmetry around the point labelled A at the centre 
of the arrow. But hidden inside the way these arrows are put together 
is a less obvious rotational symmetry. The point B, where three of the 
arrowheads meet, is another point about which the picture can be 
spun through a third of a turn. The rotation about B has a different 
quality to the rotation about A because the point B does not lie on 

Fig. 28 Interlocking three-headed arrows. A and B are two points around which one can 
rotate the picture by a third of a turn. Point B does not lie on a line of reflection. 

The rotation around such a point is called a gyration. 
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any line of reflection. Conway’s name for this sort of symmetry is a 
gyration. The complete group of symmetries Conway denotes by 3*3. 
Conway uses a star to indicate some reflectional symmetry. Any gyra-
tions in the symmetry are indicated by numbers before the star, one 
number for each different gyration. 

By now I’ve found nine of the 17 different sorts of symmetries. On 
a column I spot a pattern of leaf-shaped tiles which starts to push 
one’s idea of symmetry beyond conventional reflections and rotations 
(Figure 29). There are some simple reflections and translational sym-
metries that one can perform on this tiling. For example, ignoring the 
two shades of tile, I can pick the pattern up and shift it diagonally so 
that point A ends up at C and B ends up at D. The white leaf ends up 
sitting on top of its black neighbour. But there is another symmetrical 
move that I can make: pick the picture up, reflect it, and then shift 
the image up and along. Then, for example, A ends up at D and B 
ends up at C. This sort of symmetry is often much harder to spot. You 
can’t do this move simply by reflecting in a line through the picture. 
It is what some call a glide symmetry, but Conway prefers to call 
‘a miracle’ or ‘miraculous crossing’. For him, this strange symmetry 
produces a mirror image of the motif without the presence of a mirror. 
The name ‘miracle’ is as much about missing mirrors as it is about 
expressing a sense of wonder at the discovery of such a strange 
symmetry. 

I show this to Tomer, but he takes some convincing that this really 

Fig. 29 This tiling illustrates a new sort of symmetry, called a glide or miracle. 
In this symmetry the tiles are reflected then shifted, so that 

A moves to D and B moves to C. 
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is a different symmetry from simply shifting the picture up and to the 
left. The point is that all these symmetries leave the picture looking 
essentially the same, so it is sometimes hard to recognize what is a 
genuinely different symmetry. Putting labels on the picture actually 
helps us to see this. With the miracle symmetry, points A and B get 
transformed to points D and C, whereas the shift symmetry simply 
moves A and B to C and D without any reversal. This labelling is 
actually at the beginnings of a language that will help capture the 
underlying symmetry of the pictures we are looking at. Pictures are 
starting to give way to letters and language. 

If I ignore trying to match up the colours of the leaf tiles on this 
column, then I’ve managed to add a tenth symmetry to my list. It’s 
called * × , the star referring to the simple reflection down the centre 
of any tile. The × represents the miracle or glide symmetry where 
I reflect then shift. However, if I do take the colours into consideration 
and insist that white tiles go to white tiles, and black to black, then I 
get a different group of symmetries. My miracle or glide symmetry 
doesn’t work any more because it changes white tiles to black tiles. 
The only symmetries are reflections in a line through the white tiles 
or a line through the black tiles. This symmetry type is called ** to 
indicate two different sorts of reflection. 

So I pick up two groups of symmetries for the price of one. That 

Fig. 30 A floor in the Alhambra illustrating another example of symmetry group 442. 
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gets me to 11 out of 17. Again and again I think I’ve come across a 
design with a new symmetry group only to find that once again it’s 
442, the symmetry group that opened our treasure hunt. Even the 
floor has it (Figure 30). It looks simpler than the two I found earlier 
at the entrance to the palace, but again, I can align the images one on 
top of the other to unmask them as examples of the same group of 
symmetries. Ultimately, mathematicians would find a more abstract 
language in which to talk about why two groups of symmetries are the 
same and which would extend this trick of aligning pictures. I still 
have my task of teasing the last six groups of symmetries out of the 
walls, floors and ceilings of the Alhambra. 

I first came to the Alhambra 20 years ago, when I was an under-
graduate. I spent the summer with a friend inter-railing round Europe, 
surviving on tins of tuna and sleeping in railway stations. Perhaps it 
was because of sheer exhaustion, but when I eventually reached the 
Alhambra I never played the symmetry hunting game. Perhaps I was 
trying not to look the geeky mathematician in front of my travelling 
companion. 

A few of my colleagues obsessively collect examples of the 17 differ-
ent symmetries wherever they travel: a friend’s shirt will suddenly elicit 
a rush of excitement: ‘Ooh, your shirt’s got two miracles on it. Wait 
there while I get my camera!’ Or, in the Alhambra, ‘There’s a gyration. 
Wow, that’s a great *632!’ In fact, the Alhambra has always been 
something of a challenge to symmetry nuts: there has been a lot of 
debate about whether you really can find all 17 symmetries inside the 
palace walls. 

It took Escher a second visit to the Alhambra for the Moorish 
designs to make the deep impression on his work that now is the 
trademark of his style. He first visited Granada in 1922, but much of 
his artistic output at this time consisted of very three-dimensional 
graphical representations of Italy, where he met and settled with his 
wife. A favourite subject was the Amalfi coastline, with its harbours 
and its villages hanging from the cliff-faces. These images are in stark 
contrast to the art he produced after his next visit to Granada. He 
made this second trip in May 1936, during the shifting political climate 
of pre-war Europe. The Escher family had left Rome in the summer 
of 1935, frightened by the increasingly ominous atmosphere that was 
sweeping the country. A winter in Switzerland made the family hanker 
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for the sun. So Escher put together a proposal to an Italian shipping 
company, Adria, based in Fiume: 

I suggested they take me along as a free passenger. In exchange I would 
give them four copies of each of twelve graphic prints; these then could 
be used for advertising purposes in the tourist trade. To my great 
surprise, they agreed. 

The ship Rossini took Escher and his wife to the south of Spain, 
from where they travelled to the scene of his visit in 1922. No words 
can convey the impression that the Alhambra made on Escher better 
than one of his most famous woodcuts, Metamorphosis, made a year 
after that second visit (Figure 31). On the left, the coastal town of 
Atrani is depicted. But as the image evolves across the print, the 
three-dimensional buildings of the town morph first into cubes and 
then into a hexagonal tiling of two-dimensional Chinese boys. 

Fig. 31 Metamorphosis by M. C. Escher. 

This two-dimensional space began to take over Escher’s world. He 
filled his notebooks with all the two-dimensional designs he saw 
around the palace, and when he returned to his native Holland his 
artistic output began to undergo a similar metamorphosis: 

In Switzerland, Belgium and Holland I found the outward appearance 
of the landscape and architecture less striking than that which is to be 
seen particularly in the southern part of Italy. Thus I felt compelled to 
withdraw from the more or less direct and true-to-nature depiction of 
my surroundings. No doubt this circumstance was in a high degree 
responsible for bringing my inner visions into being. 

But it was not only that he was surrounded by the flat two-
dimensional landscape of the lowlands. The sweeping tide of fascism 
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was deeply disturbing for Escher, and this new inner world was escap-
ism for him: ‘The fact that from 1938 I concentrated on the interpret-
ation of personal ideas was primarily the result of my departure from 
Italy.’ Escher commented in the travel diary that he kept on his trip 
to Granada ‘There are hardly any foreigners. We’re being gaped at like 
creatures from another planet.’ Nowadays, things couldn’t be more 
different. The palace now restricts the numbers entering each day. 
Today I have been overtaken by countless tour groups being rushed 
through the palace with barely a chance to snap a simple reflection of 
the Comares tower in the pools of the Courtyard of the Myrtles. 

Actually I seem to have lost Tomer. He’s been caught up by the tide 
of tourists and whisked through to the Courtyard of the Lions. I 
eventually find him in the Hall of the Abencerrajes, just off the court-
yard. Although it is not one of the missing symmetries I am looking 
for, the room has a breathtaking ceiling full of interesting geometry. 
A magnificent eight-pointed star spans the roof of the hall, and carved 
into the ceiling are thousands of little alcoves. The effect is of a ceiling 
covered in stalactites. It features in a lot of Muslim architecture, and 
recalls Muhammad’s visitation by the Archangel Gabriel in the famous 
cave of Hira. The mathematical skill that helped create the perfect 
arrangement of 5,416 pieces in the eight-pointed-star ceiling is quite 
staggering. 

One of the guides is telling the gory story of how this room is 
named after 36 members of the Abencerrajes family who were 
hacked down in this room on the command of the sultan. The guide 
is pointing to a red streak running through the marble floor. ‘The 
blood of the Abencerrajes family still stains these floors.’ I can’t 
bring myself to break the illusion and tell Tomer that it’s more 
likely to be the oxidation from the pipes bringing the water to the 
fountain at the heart of the room. Sometimes myth is more fun than 
science. 

But I can’t resist telling him about another of the Moors’ fantastic 
scientific achievements, built into the Courtyard of the Lions. The 
windows and pillars throughout the palace have been deliberately con-
structed so as to make the Alhambra a huge sundial. As the sunlight 
streams in through the windows, the alignment of the courtyard 
ensures that the shadows cast by the pillars turn throughout the day 
like the hands on a clock. The positions of the windows even ensure 



80 Symmetry 

that more sunlight streams into the courtyard when the sun is low in 
the winter, as it is today, warming the chill Andalusian air. In the 
summer, although the sun is higher in the sky, the arrangement of the 
windows lets less light into the courtyard, keeping it as cool as possible 
for the sultan and his harem. 

I manage to pick up one more symmetry from a rather beautiful 
pattern running round the top of one of these columns in the Court-
yard of the Lions, taking me up to 14 out of 17. But by this time 
Tomer is almost literally climbing the walls. ‘Can we go now? I think 
I got the idea.’ But I am slightly obsessive about my quest and won’t 
be content until my tally is complete. I’ve trailed all through the palace, 
yet it seems that I’m missing three symmetry groups. ‘Come on, dad! 
Can we go to the shop now?’ ‘All right, all right.’ But I’m already 
planning to return tomorrow. 

On the way back to the hotel we walk on the pavements we saw in 
the morning. My eyes and brain are now hypersensitive to all the 
symmetry. I feel like a bee flying round the garden, able to pick up 
only the outlines of hexagons and five-pointed flowers. I suddenly 
realize that one of the missing symmetries is staring me in the face on 
the urban floor of modern Granada (Figure 32). It doesn’t have any 
reflectional symmetry or rotational symmetry. But hidden in the 
pattern are two strange glide symmetries – a double miracle. 

Fig. 32 A pavement in Granada containing a double miracle. 

Back at the hotel, I pore over the images I’ve collected on the digital 
camera to see whether I really did get 14 different symmetry groups. 
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Despite having the mathematical techniques at my fingertips, it is 
remarkably challenging to determine whether one of the missing 
symmetries is among the photos I’ve collected. Eventually the bat-
teries in the camera die on me and I’m forced to retire to bed. We’re 
meant to be heading off to less mathematical climes tomorrow, 
but before we leave I’m determined to see whether I can track down 
the last three symmetries in the Alhambra. I’ve spotted this double 
miracle symmetry on the pavement, so surely I can find it in the 
palace. 

One of the television programmes that made a big impact on me 
during my adolescent search for all things mathematical was Jacob 
Bronowski’s The Ascent of Man. As I drift off to sleep in my hotel 
room I have a strong recollection of a scene in the programme where 
Bronowski is sitting in the Alhambra talking about symmetry. I 
remember him being in the Harem, talking about how the walls are 
covered in sexy symmetry rather than pictures of sexy women. It was 
a real treasure trove of different symmetries, filling every available 
space with patterns. And I have this strong image of one of the most 
beautiful symmetries, made simply out of triangles, but triangles with 
a subtle spin on them which destroys the reflectional symmetry. This 
would give me one of my missing three symmetries. But I don’t 
remember seeing anything like that in the palace today. Did I miss a 
room because Tomer had dragged me off to the shop? My night is 
awfully disturbed. Every dream seems to fragment into a hexagonal 
lattice or zigzags of rectangles. Getting up early, leaving the others to 
sleep on, I head back up to the palace. 

Hidden symmetries 

Every time I prove a new theorem, it is rather like constructing a new 
part in the palace of mathematics. But after I’ve finished the proof, I 
anxiously survey what I have achieved, revisiting the mathematical 
structure I’ve built to make sure that it won’t collapse. Yesterday I 
went round the Alhambra in a positive, butterfly collecting mode, 
swishing my net this way and that, gathering whatever symmetries lay 
in the path of the net. Today I’m using a more critical eye, questioning 
everything to see if it will yield my three missing symmetries. 
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Scouring the walls, I notice lots of things that didn’t register yester-
day. It is extraordinary how the brain can take in so much data and 
no more. But I still can’t quite root out the patterns I need to complete 
my set of 17 wall symmetries. I come all the way round to the Court-
yard of the Lions again, with its dozen lions holding up the fountain. 
And there on the floor is one of the patterns I need (Figure 33). It’s 
the same symmetry as the one I found on the pavement yesterday: a 
double miracle. But unlike yesterday’s, where some rotational sym-
metry was destroyed in the tiles by their strange shape, the colours 
work in my favour here. It’s a zigzag of rectangles alternating in colour 
between white and green. Without the colours you get a rotation which 
maps one row of diagonal tiles onto the lower row. But now the 
colours mess that up, leaving a double miracle. 

Fig. 33 A double miracle on the floor of the Alhambra. 

Now I’ve just got two symmetries to go. At the other end of the 
Courtyard of the Lions I strike lucky again (well, almost). Today I’m 
more sensitive to the effect of colour. On the wall on the other side of 
the courtyard I pick up something I missed yesterday. It’s essentially six 
triangles arranged in a hexagon, the colours of the triangles alternating 
round the hexagon between red and yellow (Figure 34). By introducing 
the colours, the craftsman has changed the rotation of a sixth of a turn 
to one of a third of a turn, because to move the pattern round to the 
same configuration I have to position a yellow triangle on a yellow 
triangle. The only trouble is that, although the designer has cleverly 
varied the colours of the triangles, he’s also introduced some annoying 
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blue tiles that ought to be black. By pretending that the blue tiles are 
black, I’m able to add *333 to my collection, although it’s a fudge. 
The artist had the right idea but just missed perfection – from my 
mathematical point of view. 

Fig. 34 A wall in the Alhambra whose symmetry group is almost *333. 
Y, R and B denote yellow, red and blue tiles. 

Escher too was particularly sensitive to the use of colours in the 
Moorish designs. As he got more and more drawn to studying the 
mathematics behind the patterns, his increased artistic sensitivity to 
the importance of colour led him to introduce a new structure in the 
mathematics of symmetry that scientists had missed. In addition to 
the 17 symmetry groups, there is an extra range of symmetries based 
on being allowed to move pieces and swap colours around. It has been 
proved that, if you include permutations of two colours, there are an 
additional 46 symmetry groups. It is Escher we can thank for this new 
mathematical perspective on the walls of the Alhambra. 

I’ve still got one more symmetry left to find. I’m after the twisted 
three-pointed stars that I’m sure are somewhere in the palace and 
would give me 632 which is the symmetry group that I’m missing. But 
I’ve almost reached the exit. I don’t quite get it. Had Bronowski been 
filmed somewhere else? There are also great patterns in the alcázar in 
Seville, but I’m convinced that the footage was shot in the Alhambra. 



84 Symmetry 

Then I spot it. A barrier stops visitors from climbing through a 
small entrance. Beyond the barrier I can see a gallery overlooking 
something down in the lower levels of the palace. I take a quick look 
round. There’s no one to see me, so I vault the barrier. It’s not exactly 
Indiana Jones, but I get a slight buzz from crossing into forbidden 
territory. I’m someone who follows the rules – for most of the time. 
It’s my mathematical upbringing. Mathematics very quickly begins to 
collapse if one strays outside the logical boundaries permitted by the 
subject. 

The only computer game I ever got hooked on was Prince of Persia. 
I played it after hours with the secretary of the department when I was 
visiting Israel as a post-doc. She was fantastic at fighting (she’d been 
in the Israeli army after all) and I did the logic bits. Creeping around 
the darkened inner sanctum of the harem of the Alhambra feels like 
the moment we’d find our way to the next level in the game. 

I look over the balcony, and there it is: the backdrop to Bronowski’s 
piece in The Ascent of Man, full of symmetry. And there too is the 
pattern I had in my mind the night before (Figure 35). It was one of 
the patterns that had inspired Escher. The triangles seem to shimmer 
in the Andalusian sun. Their curves create a sensuous background to 

Fig. 35 A wall in the Harem with group of symmetries 632. Each point marks a place around 
which you can rotate the picture. The numbers indicate how many repetitions of 

each rotation it takes to return the tiles to their original positions. 
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a room that was the emotional and sexual heart of the palace. It was 
from the balcony where I am now standing that the sultan would look 
down on the women in the Harem reclining naked after their bath 
and select his companion for the night, sending her down an apple as 
a signal that she’d been chosen. The sensuous triangles on the walls of 
the Harem contrast with the stark squares of the formal entrance, 
where the interlocking pieces look almost like barbed wire protecting 
the building from unwanted visitors. Looking down from the balcony 
is like staring into not a well filled with water, but a vast pool of 
symmetry. Here the artists covered every available space with as many 
symmetrical games as they could conjure up. 

What’s quite special about this configuration is that by putting a 
spin on the three-pointed triangles, the artist has lost all reflectional 
symmetry. This is what inspired Escher when he twisted the starfish on 
his chocolate box. Yet the picture is full of different sorts of rotational 
symmetry. Ignoring the colours, one can spin the picture through a 
third of a turn about the centre of each tile (the point marked 3 in 
Figure 35). There is also a spin of a sixth of a turn (about the point 
marked 6) where the ends of the tile meet each other – remember that 
we are ignoring colours. And finally, a slightly more subtle rotation of 
half a turn is hiding inside the picture. If you fix a point (marked 2) 
halfway along an edge, you can actually make a half-spin which takes 
the tiles and lays them back down perfectly on top of the outline. 

Still buzzing with the thrill of finding my missing symmetry, I quietly 
slip back along the corridor leading to the barrier I’d leapt over. As I 
emerge, a startled group of Dutch tourists look rather outraged at my 
rule breaking. Striding past them, I head back for a last look around 
the Courtyard of the Lions. But then my eye is caught by something 
else I’ve missed – twice, now – on my journey through the palace. 
Half-hidden behind a wooden screen is another pattern I haven’t seen 
before (Figure 36). In this pattern there are no lines of reflection. But 
look at it carefully, and you should see points about which you can 
spin through a sixth, a third and a half-turn. Amazingly, it’s got exactly 
the same symmetry as the three-pointed stars I’ve just uncovered in 
the Harem. Have the authorities decided that this symmetry type is 
just too racy for untutored eyes, and tried to keep it out of public 
view? 
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Fig. 36 Another wall in the Alhambra with the group of symmetries 632. 

With a little bit of creative repainting, my treasure hunt has yielded 
all 17 different wallpaper groups. But how can I be sure that there isn’t 
an 18th one waiting out there to be discovered? Certainly one can play 
lots of games with the actual shapes that are used as tiles. Escher’s bats, 
angels, lizards, fish, birds, butterflies, beetles, crabs, bees, frogs, griffins 
and seahorses illustrate the infinite variety of forms that can be used. 
But hiding behind each tiling pattern is one of only 17 different vari-
eties of symmetry that is possible on a two-dimensional surface. 

It would be another five hundred years before mathematicians 
proved for certain that the medieval Moorish artists would never have 
been able to squeeze an 18th type of symmetry out of the tiles on the 
walls. As we shall see later in our story, it is a proof that depends on 
mastering group theory, the nineteenth-century language for capturing 
the subtleties of symmetry. It is thanks to the unique power of mathe-
matics that we can say categorically that there can never be an 18th 
pattern, despite highly creative attempts to show otherwise. 

Escher explained that it was only when his brother, a geologist, 
referred him to a series of academic papers on the mathematics of 
symmetry that he gained a complete understanding of what he saw 
around him. He described his first impression of trying to come to 
terms with the onslaught of ideas: 

I saw a high wall and as I had a premonition of an enigma, something 
that might be hidden behind the wall, I climbed over with some diffi-
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culty. However, on the other side I landed in a wilderness and I had to 
cut my way through with a great effort until I came to the open gate, 
the open gate of mathematics. 

This experience is shared by every mathematician who has entered this 
magical world. Escher continued: 

From there, well-trodden paths lead in every direction, and since then 
I have often spent time there. Sometimes I think I have covered the 
whole area, I think I have trodden all the paths and admired all the 
views, and then I suddenly discover a new path and experience fresh 
delights. 

Escher had not been very interested in mathematics at school. ‘I was 
extremely poor at arithmetic and algebra,’ he said, ‘because I had great 
difficulty with the abstractions of numbers and letters. But our path 
through life can take strange turns.’ But ultimately, to find a way to 
capture the pictures that adorn the Alhambra, mathematicians realized 
that they would have to translate them into the language of algebra 
and letters and enter the abstract world of the mind. 

The language that mathematicians created to navigate the world of 
symmetry had its genesis in a completely different problem. While the 
Moors in Spain were painting symmetry on the walls of the Alhambra, 
Arab mathematicians in Baghdad had been making progress on the 
seemingly unrelated problem of how to solve equations. Neither could 
have predicted that, over several centuries of mathematical develop-
ment, these two major themes in the mathematical opus should gradu-
ally interweave until they became inextricably linked. The new language 
would allow mathematicians to go beyond the walls of the Alhambra 
and understand the limitations of symmetry throughout the whole 
mathematical palace, in three-, four- or even higher-dimensional space. 

It was said that as the last Muslim sultan fled Granada in 1492 when 
the Christians took the city, he turned to take one last look at the 
Alhambra and wept. His mother chastised him with these harsh words: 
‘Do not weep like a woman for what you could not defend like a man.’ 
I can understand the sultan’s distress at leaving behind something so 
beautiful. 
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November: Tribal Gathering 

Beware of mathematicians, and all those who make empty proph-

ecies. The danger already exists that the mathematicians have 
made a covenant with the devil to darken the spirit and to confine 
man in the bonds of Hell. 

st augustine, De Genesi ad Litteram 

1 November, Okinawa 

Science is about discovery, but it is also about communication. An 
idea can hardly be said to exist if you do not awaken that same idea 
in someone else. That is why conferences are an important part of 
giving life to an idea. It is one of the most exciting parts of the job, 
because you get to perform the mathematics to an interested audience. 
A proof is like a piece of theatre or music, with moments of high 
drama where some major shift takes the audience into a new realm. 
I’m on my way to a meeting in Japan to share my perspective on the 
world of symmetry. 

I like journeys. There is something about movement which helps 
my thought process. Trains are my favourite form of transport for 
inspiration. Staring out of a train window, letting images flood my 
vision at 125 miles an hour, I find the perfect stimulant for mathemat-
ical creation. My DPhil thesis was the result of a flash of inspiration 
one afternoon on the train from Reading to Oxford (granted, not a 
train that hits 125 miles an hour). 

As I take my seat on the plane, the man next to me starts grinning 
inanely. Not a good sign. It’s a 13-hour flight, and I normally try to 
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ward off any conversation until the last five minutes as we’re coming 
in to land. So I hide behind my yellow pad and start scribbling. 

‘What do you do, then?’ he asks. I hope the discovery that I’m a 
mathematician will frighten him off. Most people’s faces freeze when 
they find this out. Then they mutter about how bad they were at maths 
at school and always feel the need to tell me what grade they got in 
their maths O level or GCSE. ‘I quite like math.’ He’s dropped the ‘s’, 
so he’s American and he clearly isn’t going to spend the rest of the 
flight in silence. He presses me further: ‘So what sort of thing do 
you do?’ 

The great German mathematician David Hilbert declared in his 
famous lecture in 1900 to the International Congress of Mathema-
ticians that ‘A mathematical theory is not to be considered complete 
until you have made it so clear that you can explain it to the first man 
whom you meet on the street.’ So I can’t resist trying Hilbert’s maxim 
out on my fellow passenger. ‘Do you want the one-minute, five-minute 
or 13-hour version?’ 

Frenzied and innumerable 

For me, communication goes beyond just telling stories to those who 
also speak this secret language of mathematics. When I was a student 
in Oxford I used to spend a lot of my time trying to explain to 
people who were studying other subjects why I was so passionate about 
mathematics. I fell in with a set of people doing an eclectic mix of 
studies: Persian and Arabic, Philosophy, Politics and Economics, 
Literary Theory. Increasingly I found myself trying to explain at parties 
or late-night sessions in someone’s room why I thought doing maths 
was as exciting as deconstructing Henry James. 

People vaguely get the idea of what’s involved in being an ecologist 
studying the Amazon, a physiologist investigating medicine in space, 
or a marine biologist scouring the seabed in his submarine. But what 
on earth (or rather not on earth) a mathematician gets up to is still a 
complete mystery to most people. I would try to give people a small 
glimpse into my world and show them why I find it as magical as the 
Amazon, outer space or the bottom of the ocean. 

I realized that I’d made some progress one day in the library. Nicki, 
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who did English, came up to me and laid a book down on top of my 
maths. ‘This sounds a bit like what you keep on saying mathematics 
is all about,’ she said. She was pointing to a quote from Jorge Luis 
Borges. In one of his many short stories, Borges had invented a Chinese 
Encyclopedia according to which animals were classified as follows: 

(a) belonging to the Emperor; 
(b) embalmed; 
(c) tame; 
(d) sucking pigs; 
(e) sirens; 
(f) fabulous; 
(g) stray dogs; 
(h) included in the present classification; 
(i) frenzied; 
(j) innumerable; 

(k) drawn with a very fine camel hair brush; 
(l) et cetera; 

(m) having just broken the water pitcher; 
(n) that from a long way off look like flies. 

The quote perfectly encapsulates the centuries-old pursuit of sym-
metry. Each new step in the mathematician’s journey would add crazier 
categories of symmetrical beasts to the list. The Greeks discovered the 
five Platonic solids, whose symmetries make them perfect objects for 
dice. The artists who decorated the Alhambra tiled the walls of the 
palace with 17 different types of symmetry. In the twentieth century, 
Conway’s Atlas documents an ever wilder and eclectic selection of 
symmetrical objects, culminating with the Monster, whose description 
sounds as bizarre as Borges’ animals ‘that from a long way off look 
like flies’. As I continued my own journey, trying to classify what 
symmetrical beasts can be built from the animals in Conway’s Atlas, I 
found the quote more and more apposite, so much so that I decided 
to open my doctoral thesis with it. 

I also fell in love with Borges. He is a mathematician’s writer. His 
short stories are like mathematical proofs, delicately constructed and 
with ideas laced together effortlessly. Each step is taken with precision 
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and watertight logic, yet the narrative is full of surprising twists and 
turns. 

Part of Borges’ Encyclopedia is particularly relevant to the project 
I’m trying to tackle at the moment. I’ve taken the simplest animal in 
the Atlas of symmetry, the rotations of a prime-sided shape, and I’m 
trying to classify the symmetrical shapes that can be built from this 
basic building block. Establishing the range of possibilities though 
is extremely complex, and most mathematicians had relegated these 
symmetrical objects to categories (i) frenzied and ( j) innumerable of 
Borges’ classification. My mathematical ancestor Philip Hall – my 
supervisor’s supervisor’s supervisor – declared that ‘the astonishing 
multiplicity and variety of these groups is one of the main difficulties 
which beset the advance of finite group theory’. 

The project I am battling with at the moment is how to rescue these 
objects from category ( j) of Borges’ classification: to enumerate the 
groups of symmetry that can be built from the rotations of a triangle. 
The Greeks had identified five Platonic solids. The Moors had painted 
17 different symmetries on the walls of their palaces. Can I find a way 
to count how many different objects there are with 32 = 9 symmetries, 
with 33 = 27 symmetries . . . with 310 different symmetries? I may not 
know exactly what they all look like, but my hope is that there is some 
way to count how many there are. Perhaps I can spot some pattern to 
the way the number of objects grows as I add another triangle each 
time. 

Although most of the things I’m looking for are rather abstract 
and live in higher dimensions, the symmetrical objects built from the 
symmetries of two equilateral triangles can still be seen in two and 
three dimensions. The shapes will have 3 × 3 = 9  symmetries. It turns 
out that there are two genuinely different symmetrical objects with nine 
symmetries. The shapes may have the same number of symmetries, but 
these nine symmetries behave very differently in each object. 

The first of these objects is the group of rotations of a nine-sided 
regular polygon, a nonagon (Figure 37). There are nine different 
rotations of a nine-sided coin which leave the coin inside an outline 
drawn around it, including leaving the coin where it is. 

The second object with nine symmetries can be built by taking a 
black triangle and a white one and pinning them together, one on top 
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Fig. 37 The nonagon has nine rotational symmetries. 

of the other, so they look a little like a combination lock with two 
triangular wheels (Figure 38). I used a similar object to analyse the 
throw of the dice in the Game of Ur from the British Museum. The 
symmetries of this shape are got by spinning the two triangles indepen-
dently. Each individual symmetry is one of the magic trick moves that 
leaves the two-wheeled combination lock looking unchanged. To keep 
track of how many different moves there are, it helps to put numbers 
on the sides of the triangles, as on a real combination lock. 

1 1 

Fig. 38 A combination lock with nine symmetries. 

Anyone who has forgotten the combination for such a lock has 
probably contemplated going systematically through all the numbers 
to rediscover it. I can use the same trick to analyse the symmetries of 
this object. For example, I can leave the white triangle stationary and 
spin the black one round by a third of a turn. That leaves the numbers 
1 and 2 showing, which I denote by the notation (1, 2). I can also spin 
the black triangle through two-thirds of a turn, to leave (1, 3). With 
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this notation I can easily keep track of all the different symmetries. 
There are nine different moves I can make: 

(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (1, 1) 

The last of these is the magic trick move where I just leave the triangles 
as they are. 

The nine different permutations of the combination lock correspond 
to the nine symmetries of the object. The locks that are used on a 
briefcase, for example, generally have three wheels with ten numbers 
on each wheel. So there are 10 × 10 × 10 = 1,000 symmetries you have 
to try before you’ve checked every combination, which is why this lock 
is reasonably secure from an opportunistic attack. 

Starting to emerge in the analysis here is a language in which sym-
metries can be expressed as numbers. The numbers make it much 
easier to keep track of how many different symmetries there are. 
Each pair of numbers actually identifies exactly what the symmetry 
move is. Translating geometric moves into numbers would even-
tually allow mathematicians to begin to decode the complete book of 
symmetry. 

One of the key issues is determining whether one has built a truly 
new group of symmetries or has merely found a previously known 
group in a new guise. In the Alhambra I kept taking photos of wildly 
different looking designs, convinced that I’d found a new symmetry 
to add to my list, only to discover that the wall had the same symmetry 
as something I’d recorded earlier. So how can I be sure that the 
combination lock is a genuinely different symmetrical object to the 
nine-sided polygon? Could they actually be different manifestations of 
the same group of symmetries? After all, they both have exactly nine 
different symmetries. This is one of the difficulties facing anyone who 
tackles this subject: two objects can look very different yet have the 
same underlying symmetries. 

If I repeat any of the symmetrical moves of the combination lock, 
after three moves the lock will be back to how the triangles were set 
when I started. Take the symmetry that moves the white triangle 
forward a third of a turn and the black triangle back a third (Figure 
39). So after this move, the lock has gone from (1, 1) to (2, 3). Now 
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2 31 1 

3 2 1 1 

Fig. 39 The effect of repeating symmetry (2, 3). 

repeat this same move. The lock moves on to (3, 2). Repeat the move 
once more and (1, 1) appears again. Whatever symmetry move you 
choose to implement, repeat it three times and the combination lock 
will have returned to its original position. 

Now let’s look at the nine-sided polygon. Here there are rotations 
which require nine repetitions before the figure comes back to its 
original position. For example, turning the polygon through one-ninth 
of a whole rotation clearly requires doing nine times to get the polygon 
back to its starting position (Figure 40). So the two groups of sym-
metries are not the same. This explanation illustrates an important 
lesson in the theory of symmetry, which came to be fully understood 
early in the nineteenth century: that the nature of the underlying 
symmetry of an object starts to reveal itself only when you begin to 
explore what happens when you combine symmetrical moves. 

The rotational symmetries of the nine-sided polygon and the 
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A A 

Fig. 40 Repeating this rotation nine times brings A back to its starting point. 

combination lock with two triangular wheels are the only two sym-
metry groups with nine symmetries. But as you add more triangles 
and ask, for example, how many objects are there with 3 × 3 × 3 = 33 = 
27 symmetries, then more exciting things happen. Two of the objects 
with 27 symmetries are built in a very similar fashion to the previous 
two examples. A regular polygon with 33 = 27 sides has 27 rotational 
symmetries. Or you could build a combination lock with three different 
triangular wheels whose symmetries correspond to the 33 = 27 different 
ways in which you can spin these triangles. But in addition to these two, 
mathematicians discovered that there are another three symmetrical 
objects that each have 33 = 27 different symmetries, making five objects 
in total. 

As I add more and more triangles, the number of possible symmetri-
cal objects goes up. There are 15 objects made from the symmetries of 
four triangles, and 67 made from the symmetries of five triangles. But 
it is a complete mystery how many symmetrical objects you can make 
from the symmetries of ten triangles. I am trying to find a way to 
predict how the numbers of objects grow as I add more triangles. 

The pattern hunter 

The challenge of trying to find patterns in the way these numbers 
evolve as I add more triangles goes to the heart of what it means to 
me to be a mathematician. Many of my friends have the impression 
that I’m sitting in my office doing long division to a lot of decimal 



96 Symmetry 

places, and wonder why a computer hasn’t put me out of a job by now. 
But as my teacher revealed to me all those years ago, a mathematician is 
a pattern searcher. I try to find the logic or the pattern that helps to 
generate the world I see around me. 

Our in-flight meal has arrived, so my neighbour’s attention has 
drifted a little to engage in whether he should go Japanese and take 
the bento box or cling to the West for another few hours and choose 
the chicken or beef. But he’s intrigued to know more about patterns. 
I’m beginning to get a bit tired of his wide-eyed excitement, although 
I should cherish having such a captive audience. 

To give myself a breather, I set him a little challenge that I hope will 
keep him going for the next few hours. What’s the next number in 
this sequence: 

13, 1113, 3113, 132113, 1113122113, . . .  

There is a rule behind the way this sequence is generated. The challenge 
is to keep asking new questions of the sequence, trying to look at it in 
different ways until eventually you hit on a perspective from which 
you can see what makes it tick. I’m going to let him sweat a little 
before I tell him the secret – because if he does get it, his brain will 
get that rush of adrenaline that I crave as I sit scribbling in my yellow 
pad all day. 

I give him another sequence as well, just in case he gets the first one 
too quickly: 

2,  3,  5,  8,  13,  30,  39, . . .  

My own work is dedicated to trying to understand the following list 
of numbers: 

1, 2, 5, 15, 67, 504, 9,310, . . .  

I do know what this sequence of numbers is describing. It is the 
number of symmetrical objects made from the symmetries of one 
triangle, two triangles, three triangles, four triangles, five triangles, six 
triangles then seven triangles. So the nth number in the sequence is 
the number of objects with precisely 3n different symmetries. The point 
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is that I have no idea how this sequence continues past the seventh 
number. It pushed the limits of a computer and two colleagues of 
mine to calculate that there are 9,310 shapes with 37 symmetries. I am 
trying to find some underlying pattern to the way these numbers are 
growing which might in turn unlock the secret of what these different 
shapes look like. Is there, for example, a formula that will generate 
these numbers as one adds more and more triangles? 

I decide that the second sequence is a little unfair on my neighbour. 
Before he spends too much time trying to find a pattern, I put him 
out of his misery. If he’d managed to find a formula that turned up 
49 as the next number in the sequence, I would have recommended 
that he buy a lottery ticket next weekend. Although they started off 
looking remarkably like the Fibonacci sequence, these were in fact last 
Saturday’s winning National Lottery numbers. I’m planning to use 
them in a few weeks’ time for a presentation I’m doing at a local 
school in Hackney about pattern searching. My neighbour laughs, 
although I can see he’s a bit annoyed. 

But my trick contains a warning. The human mind is desperate to 
find patterns. It is why we are so obsessed with symmetry. Pattern 
implies meaning. But sometimes things can be random and without 
patterns. 

If my neighbour had actually managed to identify some structure 
behind the lottery sequence, something like the Fibonacci pattern, that 
would be another warning. There are always several different ways to 
make sense of any finite sequence of numbers which can then be used 
to generate the next numbers in the sequence (though the ‘rules’ may 
be extremely convoluted). I recently read a beautiful murder mystery 
set in my department – The Oxford Murders, by Guillermo Martı́nez. 
Maths and murder seem to go well together; perhaps mystery writers 
feel that the cold logic of the mathematician’s mind is perfectly suited 
to cooking up the perfect undetectable murder. In this particular novel 
each murder is accompanied by the appearance of a mathematical 
symbol. The greatest logician in the department takes up the challenge 
of trying to crack the next symbol in the sequence before the next 
murder is committed. 

But he has this sneaking worry that there might be several different 
solutions. Which one will provide the next twist to the mystery? For 
example, look at the sequence 2, 4, 8, 16, . . . You will no doubt be 
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Fig. 41 Dividing circles. 

convinced that the next number in the sequence is 32. But there is an 
equally compelling reason why 31 should come next. Take a circle, 
place two points anywhere on the circle, and join the points, dividing 
the circle into two (Figure 41). Now add another point, and draw lines 
joining it to the two points already there; the circle is now divided into 
four regions. Add another point, and connecting lines, and you find 
there are now eight regions. A fifth point and more lines take the 
number of regions to 16. But then, very unexpectedly, if you add a 
sixth point and a further set of lines, you can only get a maximum of 
31 regions. 

The formula for getting the number of regions with n dots looks at 
first sight like it should be simply 2n − 1, but mathematical analysis 
reveals that the right formula is in fact 

(n4 − 6n3 + 23n2 − 18n + 24) 
24 

This example is a great warning to me. I have to find the right way to 
extend my sequence so that it really does describe the number of 
symmetrical objects as the number of triangles is increased. 

I wish I could say that I made inroads into this problem by the 
power of logical reasoning. But the truth is that I stumbled on how to 
attack it purely by chance (an important factor in many break-
throughs). I was giving a talk in Cambridge in the same department 
where Conway and Norton had shown me their Atlas containing all 
the building blocks of symmetry. After the talk someone asked me, 
‘Does that tell you anything about Higman’s PORC Conjecture?’ 

I hadn’t got a clue what this conjecture was. I nodded, trying to 
look knowing, and said it possibly could but I’d have to think about 
it. Afterwards I dived down to the library. In the 1950s, before all 
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these wonderful objects like the Monster were discovered, the Oxford 
mathematician Graham Higman started to try to count the symmetri-
cal objects that can be built from the symmetries of triangles or penta-
gons or other prime-sided polygons. In the periodic table of symmetry, 
the group of rotations of a prime-sided polygon is one of the simplest 
of the elements. The question Higman started to investigate was how 
many molecules could you build from copies of one of these atoms of 
symmetry? Higman knew that if he wanted to know how many objects 
there were with p × p × p × p × p = p5 symmetries, where p is a prime 
number, then a simple set of formulae would tell him. He simply had 
to plug the prime number into one of the formulae and out would 
pop the number of objects you can build with p5 symmetries. The 
choice of formula depends on what the remainder is when you divide 
the prime by 12. For example, for all the primes which leave remainder 
5 on division by 12, i.e. 5, 17, 29, 41, 53, . . . ,  the  formula is 2p + 67. 
So if you want to know how many objects there are with 535 sym-
metries, you feed p = 53 into the formula, which gives the answer 
as 173. 

The question then is whether, as we increase the number of copies 
of the prime building block we are using, there will always be a nice 
equation that will tell us the number of symmetrical objects that can 
be built from this atomic symmetry. Higman’s PORC Conjecture 
claims that there will always be a polynomial expression that will tell 
you the answer. A polynomial expression in the prime p is something 
like 4p3 + 17p2 + 7p + 5, where you take a combination of powers of p. 
For example, the number of objects with p6 symmetries is given by a 
set of quadratic polynomials, equations involving taking squares of p. 
For the prime p = 53, the formula for the number of possible symmetri-
cal objects with 536 symmetries is got by feeding p = 53 into the formula 
3p2 + 39p + 414. Mike Vaughan-Lee in Oxford and Eamonn O’Brien in 
Auckland have discovered a more complicated quintic polynomial, 
one involving fifth powers of p, for counting the objects with p7 

symmetries. But are there such formulae to count the number of 
9objects with p8 symmetries, p symmetries, p100 symmetries? We just 

don’t know. 
What I discovered the day I gave that seminar in Cambridge is that 

I’d been developing tools which might be the right ones to answer this 
question. As a way into the world of symmetry, I’d been exploring 
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things called zeta functions. The German mathematician Bernhard 
Riemann first introduced this object into mathematics in 1859 as a 
powerful way to try to find order in the chaos of prime numbers. 
When you look at the sequence of prime numbers there doesn’t seem 
to be any simple rule or pattern to help you to predict where the next 
prime will be: 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . Riemann’s zeta function 
revealed a subtle structure underlying the primes which explains some-
thing of how the primes are laid out through the universe of numbers. 
I’ve been trying to see whether my zeta functions can also be used to 
understand any patterns in the wild world of symmetry. 

For both primes and symmetries, zeta functions act as black boxes. 
They are built from a formula which binds together the numbers you 
are trying to understand. The hope is that the zeta function will reveal 
new insights into the numbers of symmetries. It provides a way of 
getting from part of the mathematical world where chaos seems to 
reign to a completely different region where one can start to pick out 
patterns. The meeting I’m heading to in Japan is bringing together a 
small band of mathematicians who share the same obsession with zeta 
functions. 

I’m amazed that after all this, the passenger sitting next to me is still 
looking quite interested. I look down to check the reading material 
he’s brought with him, in case it’s yellow and he turns out to be 
another of the mathematicians going to the conference. It turns out 
he’s clinging to a copy of the Bible. I feel I can’t very well not ask him 
what he’s up to after he’s sat through the details of my research. With 
some trepidation, I put the question. ‘I’m off to a missionary in Japan. 
Do you know what Intelligent Design is?’ My heart sinks as he tries to 
convince me that the ‘logic of math is just proof of the existence of 
God’. The man sitting on the other side of me looks desperate to avoid 
small talk with either of the other passengers in his row: the religious 
nutter and the mad mathematical missionary. Our arrival at Narita 
International Airport can’t come soon enough. 

As we come in to land, my neighbour eventually admits defeat with 
my sequence of numbers and asks to be put out of his misery: ‘13, 1 
113, 3 113, 132 113, 1 113 122 113, . . . so what comes next?’ Conway, 
the ultimate pattern searcher, was once set the same challenge and it 
kept him baffled for months, but he wouldn’t let anyone tell him the 
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secret. This is the sort of sequence that young kids actually find easy 
to ‘get’ because their view of the world is uncluttered by the complex 
patterns that adults are looking for. 

So here’s the answer: each number describes the previous number 
in the sequence. The first number consists of one 1 and one 3, which 
is written as 1113. This number can be described as three 1’s and one 
3, which becomes 3113. So the next number is 311311222113. Tomer 
saw it quite quickly when I first asked him. ‘It’s like a poem we did in 
school,’ he said, and challenged me back to read the following out 
aloud: 

11 was a racehorse 
12 was 12 
1111 race 
12112 

As we collect our luggage I can’t resist teasing my missionary neigh-
bour with another puzzle: ‘If you like a challenge, prove that you’ll 
never see a 4 appear in that sequence.’ 

Green trousers and green tea 

My Japanese host is the mathematician Nobushige Kurokawa. I’ve read 
many of his papers and feel I know him already, but we have never 
met before. I haven’t got a clue what he looks like, so when I emerge 
from customs at Tokyo I’m looking out for a board with my name 
on it. 

I can’t see my name anywhere. After a while I start to get a little 
concerned. I’ve come with no phone numbers, no contact details, just 
Kurokawa’s email address. This is not a good start. But then I spot it 
– there’s a man wearing a bucket hat walking around holding a board 
with a f painted on it. It’s the Greek letter zeta. He’s looking equally 
concerned, trying to pick out an unknown mathematician from all the 
Westerners coming through arrivals. 

‘Ahhhh yes, Professor du Sautoy. I should have spotted you. I carry 
a zeta and you are dressed in green.’ I look a bit puzzled. I am wearing 
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green trousers and a green hoody top. ‘Green is the colour of zeta. It 
is the photosynthesis of mathematics, taking in light and giving out 
life.’ 

We hit it off immediately. His English is shaky and my Japanese 
non-existent. But our shared mathematical bond gives us the feeling of 
an ancient connection. Professor Kurokawa has a wonderfully eclectic 
perspective on mathematics and its relation with the outside world. In 
addition to being a great mathematician, he also seems to be something 
of a mathematical mystic – a Japanese Pythagoras. 

‘du Sautoy-san. You come in an auspicious year for zeta. It is 146 
years since Riemann discovered his Hypothesis about zeta.’ 146 sounds 
a bit arbitrary, I say. ‘Not at all. 146 is twice 73. 73 in Japanese character 
is nami, which means ‘‘wave’’.’ Like tsunami, meaning big wave. ‘Zeta 
gives us waves to explain the primes. So 73 is zeta’s number. 73 years 
ago Siegel made his great discovery of the formula for calculating the 
zeta function. So maybe we hit another peak this year for the story of 
zeta.’ 

Pure numerological nonsense, but wonderful. It is this playfulness 
that makes for a great mathematician. I recognized it in the way 
Conway does his mathematics when I first saw him in action on my 
visit to Cambridge. It is a rare trait, though: mathematicians often take 
refuge in the formal character of the subject and won’t risk any levity. 

The conference venue is on Okinawa, an island at the southern tip 
of Japan. Before we fly south we stop for something to eat. ‘Mathema-
ticians divide into two camps: those who love sweets and those who 
hate sweets. du Sautoy-san, which camp are you?’ I can see by his 
chubby physique that we are in the same camp, so at 10 in the morning 
we go and feast on a strange assortment of green tea sweets, the perfect 
antidote to jet-lag. 

The flight to Okinawa is exciting for three reasons. First, I get to sit 
next to Kurokawa and talk about zeta functions for three hours. 
Second, we have a fantastic view of Mount Fuji out the window. And 
third, we are on the Pokemon Plane. The inside and outside of the 
plane is festooned with an assortment of Pokemon characters that 
would send my son crazy. I am a little disappointed that the air hostess 
isn’t dressed as Pikachu. 

I’m particularly keen to talk with Kurokawa about a problem I’ve 
been battling with, related to my zeta functions. For some years I’ve 
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been working on a conjecture about certain types of zeta function. I’ve 
broken it down into pieces. There are six different types of zeta func-
tion. For five of them I can prove my conjecture, but despite concerted 
efforts I can’t find a way into the sixth. It has been bugging me for 
some time. It’s like navigating an island. If I head north, I can see a 
river I can sail along to get to the coast. To the east the terrain is easy 
going. I can see a huge mountain to the west, something called the 
Riemann Hypothesis, one of our greatest unsolved problems. If I 
assume that the Riemann Hypothesis is true, I can make it past this 
mountain and I know that the terrain beyond is navigable. The trouble 
is that when I turn to the south, I hit impregnable jungle. All the tricks 
that helped me to navigate my way in the other directions are no use 
in this jungle. 

I’ve been writing a paper on the problem, but it’s stalled. Maybe I 
should send it off as it is: it would still be a good contribution to the 
literature on the conjecture. But it would be incomplete. One of the 
traits of a mathematician is an addiction to perfect, complete solutions. 
Riemann left many things unpublished because he felt that they were 
unfinished, and many of them went up in smoke when his housekeeper 
cleared out his office after he died suddenly at the age of 39. The 
formula Siegel discovered 73 years ago, mentioned by my host, was 
rescued and pieced together from Riemann’s unpublished notes. 

Kurokawa has read the preprint that I’ve prepared giving the results 
to date. He begins to explain how the zeta functions I am looking at 
fit into a framework that he considered some years ago. I read these 
papers but hadn’t thought they were relevant. But during the three-
hour flight he shows me why his language can be used to capture my 
zeta functions. I begin to go into a slight panic. Does this mean that 
Kurokawa’s papers already prove what I’ve been working on for the 
last five years? I try to grasp the implications of what he is scribbling 
on the pages of my notebook. I looked through his papers for inspi-
ration on how to tackle that sixth case. What did I miss? 

By the time we touch down on Okinawa I realize that there is some 
overlap in the work I’ve done, but it isn’t completely subsumed by 
Kurokawa’s papers. Indeed, he can see that the case I’m left with is 
genuinely challenging. On the downside, he hasn’t a clue as to how to 
tackle it. 

Okinawa is a holiday island where young Japanese come to the 
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beach to sunbathe and scuba dive. But like a team of miners descending 
into the darkness, we shall be in a lecture theatre from dawn till dusk, 
cut off from such blissful surroundings. 

The gathering is small. There is a Russian, an Israeli, a German, an 
American, fifteen Japanese, and me. It feels like a gathering of some 
far-flung tribe to share stories of lonely wanderings across the math-
ematical globe in search of new lands. The dress is informal, veering 
on the dishevelled. Although we all speak different languages culturally, 
mathematically we are all on the same wavelength. Everyone has come 
to present their use of the language of zeta functions to reveal patterns 
and structure in different areas of mathematics. The talks are all in 
English. Despite the universal nature of the mathematical language, 
the words that frame the mathematics are important in bringing it 
alive. 

Increasingly, the medium of choice for presenting the maths is the 
overhead projector although it is often abused in attempts to impress 
the audience with lots of results which just flash before your eyes in 
an array of different coloured inks. I’m as guilty of this as the rest. 
There is something about the pace of chalking up theorems and equa-
tions on a blackboard that is more in tune with the speed at which I 
can assimilate the ideas. On the downside, the lecturer does spend 
most of the talk with his or her back to the audience, so on balance I 
prefer the overhead projector. On the second morning of the confer-
ence, it’s my turn to explain how I’ve been using zeta functions to 
count symmetrical objects. 

Black box 

The first zeta function was investigated in the middle of the nineteenth 
century by Riemann, who was interested in mixing the zeta function 
with new numbers called imaginary numbers. Like some alchemist, 
his belief was that the strong cocktail of ingredients would create some 
powerful mathematics. What emerged from his mathematical cauldron 
was a new way to understand prime numbers. 

Riemann had read about these numbers as a child in the school 
library where he used to hide away from his classmates, terrified of 
most forms of social interaction. The security of mathematics was like 
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the cupboard under the stairs where he could hide, protected from the 
pressures of the outside world. He had understood from a very early 
age that the primes represented one of the deepest challenges to the 
pattern searcher. The list of primes doesn’t seem to possess any logic 
or order that might help you chart a course through them. As they 
continue on their way to infinity, they look no more ordered than the 
sequence of lottery ticket numbers with which I teased my fellow 
passenger. Guessing where along the number line the next prime will 
fall has baffled generations of mathematicians since the Ancient Greeks 
first studied them. 

Riemann discovered in his thirties that the zeta function gave him 
a powerful new way of looking at the primes. It acted like a bilingual 
dictionary, enabling properties of numbers to be translated into geom-
etry. Ever since Riemann’s discovery, variations on the zeta function 
have been exploited as a way of revealing patterns and structure in 
mathematical settings where at first there just seemed to be mess and 
disorder. 

The zeta function is something like a black box. Even when math-
ematicians know all the details of how to construct this black box, they 
are still left with a sense of wonder that it can reveal so much. Its 
construction depends on binding the infinite number of prime 
numbers together so that one is looking instead at a single object. It’s 
like finding a way to analyse the overall structure of a musical sym-
phony rather than studying it note by note. Riemann’s extraordinary 
revelation is that the formula for the zeta function binds these mysteri-
ous numbers together in such a way that it is possible through analysing 
the formula to glean something of the secrets of these numbers. 

Until a few years ago, no one had considered the power of the zeta 
function to reveal anything interesting about the world of symmetry. 
I was lucky that my apprenticeship as a PhD student coincided with 
the discovery that staring at symmetry through the eyes of the zeta 
function helped you to see things that no one had seen before. This 
new perspective was made possible by Dan Segal in Oxford, who 
would become the supervisor for my doctorate, and Fritz Grunewald 
in Germany. 

What I’ve discovered is that zeta functions can be used to reveal 
certain patterns in the numbers I’m trying to understand. For example, 
what is the secret behind the sequence of numbers that starts 1, 2, 5, 
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15, 67, 504, 9,310, . . . ?  These numbers count the number of different 
symmetrical objects that have 3, 32, 33, 34, 35, 36, 37, . . . symmetries. 
My zeta functions reveal something about how this number sequence 
continues. I’ve discovered that the numbers in the sequence obey a 
rule rather similar to the rule for creating the Fibonacci numbers. 

The rule that generates the Fibonacci numbers is very simple: any 
number in the sequence is the sum of the previous two numbers. So 
once you know the first two numbers, you’re away. Using the zeta 
functions of symmetry, I have proved that the same thing applies to 
the numbers I’m interested in. My proof tells me that there is a simple 
rule that generates the next number in the sequence 1, 2, 5, 15, 67, 
504, 9,310, . . . Mathematicians call sequences generated by such a rule 
recursive sequences. They have a sort of computer program which 
generates them. 

The only trouble is that my analysis doesn’t tell me what the formula 
is. For the Fibonacci sequence, knowing any pair of adjacent numbers 
is enough to generate the next number. Although I have proved, using 
these zeta functions, that my numbers obey a similar rule, the proof 
doesn’t say what the rule is, or whether it is 10, 100 or 1,000 numbers 
I need to know to generate the next number in the sequence. My 
discovery might look rather useless – and in a sense it is, because I 
can’t use it to discover the next number. But it means that at least 
there is a pattern there to discover, that the numbers are not completely 
random but depend on each other in a way that is similar to the way 
that the Fibonacci numbers are all interrelated. It’s quite striking that 
you can get enough insight to know that such a formula must exist 
without actually constructing it. This is a characteristic of many bits 
of modern mathematics: one can analyse a setting to prove the exist-
ence of certain structures without actually being able to construct them 
explicitly. It’s a bit like discovering DNA but not yet having the tools 
to sequence the DNA explicitly. 

My proof has at least shown that the infinite sequence of numbers 
is captured by something finite. It is like the difference between p, 
which as a decimal number looks completely random, and 1/7, whose 
decimal has a clear pattern, namely 0.142 871 428 7 . . . ,  where the 
same six numbers are repeated over and over. My discovery reveals 
that there are similar patterns at work, and my numbers aren’t com-
pletely wild, like p. 
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Before I know it, it is 11 a.m. and I have to finish my talk. Unusually, 
there are lots of questions. This is the advantage of a small conference. 
Generating discussion at a big meeting can be hard. Although many 
of the talks here are quite far from my own research interest, for me 
the most valuable thing is the prospect of picking up ideas which might 
just be transferable to my project. I have used my zeta functions to 
help me count how many symmetrical objects can be built from the 
symmetries of more and more prime-sided shapes. But there are lots 
of things I don’t yet understand about what these zeta functions are 
telling me. So I’m hoping that seeing how others have used their zeta 
functions to see new structures might help in my own quest. 

There are a lot of young Japanese graduates who are presenting their 
work for the first time. It is a terrifying moment when you have to 
pull your head out of the journals you’ve been studying for the last 
three years and stand up in front of your peers and superiors to present 
your contribution. Some of the young students’ work is well received, 
but a couple suffer utter humiliation. ‘Any questions?’ ‘Just a comment 
. . . I think if you look up my Acta paper of 1994 you’ll find that I’ve 
already solved this problem.’ Three years’ work down the drain – 
proving a theorem that’s already been proved, every mathematician’s 
worst nightmare. 

Although the days are spent at the blackboard or sweating over a 
hot projector, the evenings provide a chance to wind down over some 
sake and exotic food. The locals take us to a small bar on the corner 
near our hotel. Fortunately, I have read in the guidebook the advice 
to bring socks with no holes. A visit to Sock Shop at Heathrow has 
spared me the embarrassment of revealing my big toes as we sit cross-
legged at the table for dinner, our shoes left at the entrance to the 
restaurant. The evening ends with Kurokawa expounding more of his 
wonderful mystical theories. 

Mathematical expeditions 

The organizers of every maths conference like to include a short excur-
sion to give the participants a break from the onslaught of equations. 
At larger conferences the logistics of such trips are quite awe-inspiring. 
At the last International Congress of Mathematicians that I attended, 
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the whole of Beijing was brought to a standstill by the government 
while four thousand mathematicians were transferred from the confer-
ence centre on the outskirts of the city to a feast held at the People’s 
Palace in Tiananmen Square. At a conference that I co-organized in 
Durham, we decided to bus all the mathematicians to one end of 
Hadrian’s Wall and pick them up in the late afternoon after an eight-
mile walk along it. We got some strange looks from other visitors in 
the car park as a hundred and fifty badly dressed individuals emerged 
from coaches, babbling strange sentences full of pro-p groups and Lie 
algebras. All the conference participants had to do was to follow the 
wall until they met up with the buses, but we still managed to lose a 
few of them along the way. 

I spent the whole 24 hours of my birthday one year travelling 
between conferences in Russia on the Trans-Siberian Railway accom-
panied by a hundred Russian mathematicians. As we entered the car-
riage, one of them was determined to sit next to me. He produced a 
book. ‘I never meet before native English speaker and your assistance 
is much needed with six problems.’ I assumed it was a maths book he 
was putting in my lap, but the title of the old and tattered tome was 
1000 Jokes. ‘I’ve understood 994 of them but my English is not good 
enough to comprehend the last six.’ There were six tiny bits of paper 
marking the pages in question. No wonder he was having trouble 
– the book was ancient and the jokes highly obscure. To his great 
disappointment, I managed to sort out just one of the six, and that 
required reading the joke out loud in an extremely posh English accent 
so that you could hear an obscure pun on words. Mathematics, it 
seemed, was better than archaic English humour at crossing cultural 
divides. 

Recently I attended a conference in Assam. The mathematics was 
punctuated with a weekend trip to a rhino reserve. The rhinos in the 
early morning mist were a stunning sight, but not for me the most 
lasting memory of that trip. The limited accommodation in the 
lodge next to the reserve obliged us to share double beds. The slight 
anxiety of being paired up to sleep under the mosquito nets with 
Dan, my ex-supervisor, got translated in my dreams into a huge black 
dog clambering into the bed. I awoke to find myself in some Oedipal 
act physically assaulting Dan as he desperately tried to calm me 
down. 
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This afternoon, the Japanese mathematicians have laid on a trip to 
visit a distillery where they make Awamori, Okinawa’s version of sake. 
Kurokawa is apparently terrified of the water, so the alternative outing, 
a mathematical scuba-diving expedition, was vetoed. At the end of the 
visit the owner of the distillery proudly presented us with miniatures 
of the beverage as a memento of our visit. When I pointed out that it 
was a shame it was only 30 per cent proof, and not a prime number, 
the owner suddenly whisked all the bottles away. I was a little nervous 
I’d offended our host, and I was getting some rather angry looks from 
the local visitors, when he suddenly reappeared with a whole new stash 
of bottles. ‘43 per cent,’ he proudly announced, ‘a prime number, I 
think!’ Suddenly my fortunes were transformed, and I was heralded as 
‘prime-number-san’ for the rest of the day. 

This evening we have our conference dinner, another of the rituals 
of all such gatherings, when the tribe eats together. An Italian res-
taurant is an exotic end to the meeting for the Japanese participants, 
but after a week of eating sea-urchin salad, pig’s ears in vinegar, bento 
boxes and sashimi, it seems odd to be eating pasta and drinking red 
wine. 

During the dinner, one of the Japanese participants brings over one 
of the corks from the red wine we are drinking: ‘bin 901’ is printed 
along its side. Laying the cork before me, he says, ‘Not a prime 
number!’ I’m not sure whether he is expecting me to perform the same 
trick as at the Awamori distillery. 30 was obviously not prime, but this 
number is more difficult. I try a few small numbers, but given the 
confident air of the bearer of the cork, 901 is clearly going to be 
divisible by some larger primes. Soon someone at our table has got it 
– it’s divisible by 17. Even that I find difficult to do in my head. 

I think two different types of mathematical mind are illustrated by 
the incident with the cork. There are those who look at a number and 
immediately start trying to work out whether it is prime. Despite my 
love of prime numbers, I have never felt the need to do this. The other 
type of mind will look more for underlying structures and connections. 
Both are useful skills. The ability to crack a great unsolved conjecture 
quite often goes with the first. But the ability to come up with the 
conjecture in the first place, to have a new vision about how things 
might look, goes with the second. 

I’m curious to know whether my hosts believe that there is a 
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difference between the mathematics produced here in Japan and 
research in the West. Do the pictorial scripts of China and Japan create 
a different dialogue between mathematics and language? If your native 
script focuses more on pictures, does it affect the way you express 
mathematics? The numerological games that Kurokawa plays with 
language reflect a different way of looking at the world. My experience 
of working in Israel has been that the fantastic mathematical heritage 
of the Jews owes something to the Talmudic art of making strange 
connections between different sections of the Torah. 

Some suggest that the extraordinary work ethic of the Japanese, 
which we witnessed during the conference, actually stifles the discovery 
of underlying structure. The lazy mathematician who is forced to find 
a short cut can often unearth an internal logic that is missed by 
someone with the perseverance to batter their way through endless 
calculations. But this seems rather stereotypical of Japanese culture, 
although it was the Japanese themselves who offered it up. 

Despite our huge cultural differences, I think that Kurokawa and I 
have a very similar outlook on the mathematical world that is indepen-
dent of our national heritage. And it is one of the things that draws 
me towards mathematics. As the famous mathematician David Hilbert 
once said, ‘Mathematics knows no races . . . for mathematics, the whole 
cultural world is a single country.’ 

Mathematics and kabuki: theatres of the elite 

Back in Tokyo, Professor Kurokawa takes me to a kabuki theatre. It is 
an extraordinary experience. The stylized, formal nature of the per-
formance gives it a magic that a naturalistic drama can never have. It 
has its own inner logic and rules which the actors and even the audi-
ence adhere to. As each actor appears on stage, the knowledgeable 
members of the audience cry out the actor’s stage name or even their 
kabuki number, the number they are assigned when they enter the 
profession, like a player in a football team. Shout out in the wrong 
place, and the ritual is destroyed. 

There are intriguing resonances here with the world of mathematics. 
The kabuki actors have accepted the formal boundaries of their world 
yet are still able to be highly creative. As a creative process, doing 
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mathematics can often feel like a theatre improvisation. You set up a 
tableau with conditions for collisions of ideas and then let the thing 
run. Very often it goes nowhere, but sometimes there is a dynamic 
created that clicks. Like the rules of a theatre game, the conditions 
push you in extraordinary, unexpected directions that too much free-
dom would stifle. 

When the producer and director Peter Brook talks about his work 
in the theatre, he could easily be discussing the life of the mathema-
tician: ‘Small means, intense work, rigorous discipline, absolute pre-
cision. Also, almost as a condition, they are theatres of the elite.’ 
Brook’s last sentence highlights one of the other similarities between 
experimental theatre and mathematics: they both play to small 
audiences. 

Tonight is rather special for the kabuki theatre, for they are introduc-
ing the audience to a new member of the troupe, the six-year-old son 
of one of the actors. The pride in their new member is evident. From 
now on he will be called White Hawk. I realize that our conference in 
a way has also been a celebration of the younger PhDs, who are the 
new blood we depend upon. They are our children, the people who 
will keep our ancient art alive and take it to new realms. 

My trip to Japan ends with a journey to Nikko. The town boasts a 
stunning collection of Shinto shrines and Buddhist temples. The carv-
ings and colour are stunning. But as I pass through one of the gateways 
into the courtyard of one of the shrines, I notice something rather 
odd. The gate is supported by eight columns decorated with a beautiful 
lattice of symmetrical patterns. All the columns are identical except 
for one, on which the pattern is upside down. It completely shatters 
the beautiful symmetry of the gate. 

I ask Kurokawa about this. It is a deliberate decision, he says. It is 
a common feature of much of Japanese architecture, for the same 
reason that Arabic carpet makers deliberately weave a fault into their 
designs, for to achieve perfect symmetry is liable to anger God. The 
fourteenth-century Japanese Essays in Idleness articulate the ethos at the 
heart of the gate in Nikko: ‘In everything . . . uniformity is undesirable. 
Leaving something incomplete makes it interesting, and gives one the 
feeling that there is room for growth . . . Even when building the 
Imperial Palace, they always leave one place unfinished.’ 

Perhaps this is how I should see my theorem on the zeta functions 
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of symmetry. I have completed five cases, but the sixth remains in-
complete. I had hoped that this trip to Japan would help me to com-
plete the last piece in the jigsaw. But I shall take that column at the 
temple in Nikko as I sign that I should send my paper off as it is, and 
move on. 
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December: Connections 

Luck favours the prepared mind. 
louis pasteur 

5 December, Max Planck Institute, Bonn 

The Max Planck Institute in Bonn is one of my favourite places. It’s 
where I’ve made some of my most exciting mathematical break-
throughs, the sort that give me the buzz and rush that I do mathematics 
for. One of these breakthroughs dramatically changed my view on how 
to count the number of groups it’s possible to build out of prime-sided 
shapes. 

I come to the Max Planck Institute several times a year for a week 
of white-heat brainstorming with my collaborator Fritz Grunewald, 
one of the creators of the zeta function as a tool for studying symmetry. 
Bonn is perhaps the most boring city in the world, which makes it a 
great place to work as there is nothing else to do – a blank sheet of a 
city. The Institute has recently moved to beautiful new accommodation 
on the upper floors of the old post office at the centre of the city. One 
of the advantages of all the bureaucrats shipping out from Bonn back 
to Berlin is that lots of nice buildings became vacant. 

Several years ago I had one of those flashes sitting in the same office 
where I am now. I was trying to phone Shani in London but I couldn’t 
get through. The phone was permanently engaged. It must have been 
about eight in the evening. 

While I was waiting for Shani to finish chatting, I suddenly had an 
idea how to construct a new object whose group of symmetries could 
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possibly illustrate completely new behaviour that we’d not seen before. 
I didn’t physically build this object – that would be impossible, as it 
lives in nine-dimensional space. But I started to see how, using the 
language of group theory, I could write down rules for how all the 
different symmetries of this object interact with each other. I started 
scribbling equations on my yellow pad. First I needed to solve a little 
puzzle: essentially, finding a particular way of putting x’s, y’s and z’s 
into a 3 × 3 grid – a mini sudoku with letters rather than numbers. 
Once I’d solved that puzzle, the thing looked rather beautiful and 
seemed to have just the right feel about it. 

It was going to take some checking to make sure that the grid did 
what I needed it to. If I was right, this object would connect the world 
of symmetry with a completely unrelated area called elliptic curves. 
‘Flash of inspiration’ well describes the feeling of revelation I had, 
because it really did feel like a rush of electrical activity coursing 
through my head. These flashes don’t come often, but they are what 
most mathematicians live for. I can probably identify three such 
moments in my professional life to date. They are the equivalent of a 
footballer scoring the goal of the season. For the rest of the time, the 
process of discovery is more like running a marathon, where your 
continuous effort gradually accrues until the moment you pass the 
finishing line. Of course, even great goals depend on a solid build-up. 
This particular moment of discovery didn’t come from nowhere, but 
emerged from months of groundwork laid here in Bonn. 

I remember sitting in the office, feeling a little breathless. I wanted 
to tell someone what I’d done but there was no one around. I told 
Shani when I eventually got through to her, but she’s not a mathema-
tician and couldn’t really grasp the enormity of what my result would 
mean to my research. She could tell from my voice that this was 
something exciting, but I needed someone who could share and 
appreciate the feeling I was having. I also needed to talk to someone 
who was capable of telling me whether I might be wrong. 

I rang Fritz, one of the handful of people in the world who would 
understand and feel the excitement I was experiencing. We arranged 
to meet for a beer later that evening so that I could explain to him on 
paper the garbled words I was speaking down the telephone. 

Fritz has a rather bashful air about him. His white shaggy hair makes 
him look like a rather affectionate pet. He has a gentle, low voice 
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which often flips to hysterical laughter when we realize that we’ve 
made a crazy mistake in our calculations. But behind the wheel of his 
Mercedes he’s a wild beast. I have to cling to the passenger seat in my 
attempt to concentrate on the maths we’re discussing as Fritz screams 
up the fast lane of the highway. 

We met for first time at a maths conference in the depths of the Black 
Forest, held at a mathematical retreat called Oberwalfach. Meeting Fritz 
was like finding a lost family member of the mathematical nomadic 
tribe. We discovered that we were passionate about the same things. 
Ever since that conference I’ve been coming to Bonn for a week at a 
time, and like two musicians Fritz and I jam together in the offices of 
the Max Planck Institute. By the end of the week we have quite often 
created something new. The months after are spent writing up the 
creations we cooked in our crucible in Bonn. 

Although we speak the same language, we bring very different things 
to the collaboration. Sometimes it’s as though we each have half of the 
same ladder, each with some of the rungs. We can’t do any climbing 
by ourselves, but once Fritz and I put our two half-ladders together 
we can both get to the top. Often ideas feel almost preconscious and, 
left unarticulated, never quite crystallize. Trying to tell Fritz about a 
hunch I’ve got can sometimes be the important push that gives life to 
the idea. There is a lot of unspoken dialogue between us: grunts, hands 
waving in a desperate attempt to show Fritz the structure I’m seeing. 
Often I’ll find that Fritz already has the language to articulate the 
structure I’m struggling to put into words. 

It is a very fragile process. People often assume that we must all be 
doing mathematics by email and there is no need to meet. But our 
brand of collaboration could never be done electronically. For a start 
we often sit for hours, quietly thinking to ourselves, saying nothing, 
every now and again scribbling something down. But then a single 
word spoken can spark something in the mind of the other. Looking 
Fritz right in the eye, waving my hands and grunting is not something 
that can be replicated by email. 

The whiteboard is the best canvas for collaborating, despite my 
aversion to it for private exploration. The yellow pad is a private 
space. On the whiteboard I can scribble things in red, blue or green, 
rub out silly things, try something new, draw a picture to express the 
thoughts beginning to take shape in my head. I sometimes regret the 
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impermanence of the scribbles. When I get back home I can’t always 
quite remember what we did. John Conway told me that one of his 
collaborators takes a digital photograph of the whiteboard before any-
one rubs anything off. 

There is a huge amount of trust involved in such a collaboration. 
It’s delicate, really delicate. There are some people I have tried to 
collaborate with but found that they have too much of a competitive 
streak. You’ll have been talking together, and then they come back 
after working all night saying, ‘Look, look! I’ve cracked it!’ It’s under-
standable that people want to be first to solve a problem, to be top of 
the class, to get their name on a theorem. It’s an important driving 
force in making progress, but it can be a great handicap in collabor-
ation. A colleague told me that he shared an idea with others only 
when he was sure that it wasn’t going to work. So I have to find 
somebody with whom I can have a really honest and open relationship 
if I’m to form a collaboration. It’s a bit like a mathematical marriage. 
With Fritz I feel that we are on the same side. I can take risks with 
him and he doesn’t judge me for the stupid things I often say. As in 
any meaningful and lasting relationship, trust is essential. 

My ultimate goal is to count how many objects there are whose 
groups of symmetries are built from piecing together copies of the 
indivisible symmetry group consisting of the rotations of a prime-sided 
polygon. These are the objects with a prime power number of sym-
metries. As I learnt after the talk I gave some years ago in Cambridge, 
the PORC Conjecture put forward in the 1960s says there should be 
simple equations that give you the answer. This is certainly true if I 
count objects with p5 symmetries. If I want to know how many objects 
there are with 175 symmetries, I simply plug the prime p = 17 into the 
formula 2p + 67. But what if I count objects with 1710 symmetries? Will 
there still be a simple formula which, when you feed in p = 17, will tell 
me how many symmetrical objects there are with 1710 symmetries? 
After the discovery I’ve made here in Bonn, I’m not so sure. 

The group of symmetries I cooked up when I was listening to the 
engaged tone while trying to contact Shani was a warning shot across 
the bows of my progress. If the objects with a prime power number 
of symmetries are put together in such a way that they satisfy an extra 
condition, which I’ll call the elliptic condition, then the number of 
ways that you can build these special objects is not given by a simple 
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formula, but depends on a completely different sort of problem from 
a branch of maths known as number theory rather than the mathe-
matics of symmetry. 

If you want to know how many objects there are with a prime power 
number of symmetries that also satisfy my elliptic condition, then you 
have first to solve the following problem: count how many pairs of 
numbers (x, y), where x and y are between 1 and p such that the 
polynomial y2 − x3 − x is divisible by p. Finding solutions to these sorts 
of polynomials, called elliptic curves, is one of the most subtle ques-
tions of mathematics. The mysteries of these curves are at the heart of 
Andrew Wiles’s solution to Fermat’s Last Theorem. They are also at 
the heart of one of the seven so-called Millennium Problems, for each 
of which the Clay Mathematics Institute is offering a million dollars 
for a solution. 

Solving this particular equation was one of the great achievements 
of the nineteenth-century German mathematician Carl Friedrich 
Gauss. In a diary entry, the young Gauss explains how to count the 
number of pairs of numbers (x, y) such that the polynomial y2 − x3 − x 
is divisible by p. If  p has remainder 3 when divided by 4 (the primes 
3,  7,  11, . . . )  then there are always just p pairs. That looks nice and 
neat. But things are far wilder for those prime numbers p which have 
remainder 1 when divided by 4 (the primes 5, 13, 17, . . . ).  For  them 
there is no simple formula for the number of pairs. 

Because of the connection to these strange objects in number theory 
called elliptic curves, I often call my group of symmetries ‘my elliptic 
curve example’. This new group of symmetries led me off in a com-
pletely new direction. Suddenly, counting groups of symmetries 
became inextricably linked with counting solutions to complicated 
equations in number theory. It went against what everyone expected 
– which is why I like it so much. That’s why I was so desperate to 
show Fritz my discovery. 

When I showed Fritz my example that night, he also thought it 
smelt right. After our beer I went straight to bed. When I have a good 
idea in the evening I much prefer to go to sleep thinking I’ve made a 
breakthrough rather than staying up late into the night searching for 
any mistake. If there is one, it will still be there in the morning, and I 
can at least fantasize for a little longer about my ‘breakthrough’. 

Fritz, however, had stayed up late after our drink and convinced 
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himself that what I had discovered really would do what I thought it 
would. Next morning he showed me a nice language I could use to 
analyse the symmetries. When I got back to London it took me months 
of careful checking and hard grafting to convince myself – and to be 
confident that everyone who would read the paper I was going to 
publish would be equally convinced – that the elliptic curve isn’t just 
a mirage that disappears under closer scrutiny. There are lots of ways 
the elliptic curve could cancel itself out. But I was pretty sure it 
wouldn’t. 

But it is the memory of the birth in Bonn, rather than the hard 
work and nurture after the delivery, that still gives me that thrill. 
Before that night in Bonn, the group didn’t exist. The next morning 
it was already one day old. I really do feel that it was an act of 
creation that brought it to life. There are an infinite number of other 
symmetrical objects I could have written down, but none would have 
been interesting. None would have had any special resonance. The role 
of the mathematician is to create something special from the huge 
palette of colours that mathematics offers. That is what makes mathe-
matics an art. 

And yet . . . I can’t help feeling that this group was sitting there 
waiting to be discovered in a way that a piece of music isn’t. No one 
else could have created Bach’s Goldberg Variations. Bach couldn’t have 
been beaten to the composition by someone else. But the group I’ve 
discovered now looks a little like a new species of butterfly – it existed 
before it was discovered. 

There is a huge amount of serendipity in the way we make math-
ematical breakthroughs. The mathematical world is hugely inter-
connected, so that answering one problem can give you an insight into 
another seemingly unrelated problem. Just as one can turn a cube and 
see a different face of the same object, a problem can be twisted and 
turned to reveal a new side to the question. 

My night in Bonn had revealed a new facet of my subject. Turn the 
problem of counting the number of groups of symmetries, and from 
a new angle you are faced with the problem of trying to count solutions 
to strange equations called elliptic curves. The question Fritz and I are 
working on during this visit is to see what happens if we throw away 
this elliptic condition. Can I still get strange equations that I must 
solve to count how many groups of symmetries there will be in general? 
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This is not the first time in the history of mathematics that this 
connection has arisen. The notion of solving equations was the turning 
point in our understanding of symmetry. It would provide the language 
that mathematicians needed to be able to talk about what symmetry 
really is. However it would take slightly longer than one night for the 
connection to be understood. 

Mathematical poetry: cracking the secrets of equations 

Solving equations has an ancient heritage. Four thousand years ago, 
Babylonian mathematicians had started trying to solve quadratic equa-
tions that had arisen naturally during their attempts to calculate areas 
of land. One clay tablet from this era records a calculation of the 
perimeter of a field whose area is 60 square units and the length of the 
long side exceeds the short side by 7 units (Figure 42). This is the same 
as trying to find a number x which solves the equation x2 + 7x = 60. 
Ancient Babylonian mathematicians found a way to reveal that x = 5  
was the answer. Although they were without a mathematical language 
to formulate the question clearly, let alone articulate their method for 
finding the solution, the idea was there. It was the mathematicians of 
the medieval world who developed the Babylonian idea into a method 
which could be applied to all quadratic equations and is now taught 
to every schoolchild. 

x + 7 

x area = 60 

Fig. 42 Quadratic equations arise from calculating areas of land. 
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Following their conquest of the Persians in the seventh century ad, 
the new Muslim dynasty founded an empire that would become the 
hub of the world’s cultural and educational development for the next 
half-millennium. While Europe stagnated, the cities of Kufah, Basrah 
and Baghdad were blossoming with libraries, museums, academies and 
mosques. 

One academy in particular was to become the Mecca of intellectual 
life in the region, responsible for great advances in medicine, astron-
omy, philosophy and science. The House of Wisdom, the Max Planck 
Institute of its day, was founded by the caliph of Baghdad, al-Ma’mun. 
He wanted his city to become the new Alexandria and set about 
building a library and observatory. The first task for the scholars 
gathered at the new institute was to translate the huge number of 
ancient Greek, Latin and Hebrew texts that the Empire was amassing. 
Expeditions were being dispatched to gather up as many manuscripts 
as they could unearth that might have survived the destruction of the 
great library at Alexandria. The caliphs in Baghdad were even prepared 
to accept scholarly texts as part of peace treaties. 

Although many of these texts suffered horribly in translation, the 
universal nature of the mathematical ideas meant that any errors 
that crept into translations of mathematical works were quickly 
picked up and corrected. The internal logic of the argument pro-
vided a self-correcting mechanism independent of the language the 
treatise was written in. As the knowledge of the ancient world was 
assimilated into the House of Wisdom, the scholars began to embark 
on writing their own chapters in the history of science, medicine and 
astronomy. 

The champion of mathematics at the House of Wisdom was a 
scholar by the name of Muhammad ibn-Mūsā al-Khwārizmı̄. He  
believed in mathematics as a powerful tool ‘such as men constantly 
require in all dealings with one another’. He also started to establish a 
more abstract and algorithmic approach to solving problems that could 
be applied in a multitude of settings. He recorded his discoveries in a 
book now generally regarded as marking the beginning of modern 
algebra. 

The book contains no symbols or equations, the usual ingredients 
of modern algebra books, but instead describes in words general 
methods for solving equations. Although the methods are abstract, 
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al-Khwārizmı̄ does not lose sight of their power as a practical aid for 
his fellow citizens. Using a string of problems from legal disputes to 
the digging of canals, he justifies his belief that the ability to solve 
equations should be a fundamental skill for the ordinary man. Power, 
he advocated, lies with those equipped to speak the language of mathe-
matics. 

The mathematical name ‘algebra’ has its origins in the title of al-
Khwārizmı̄’s book Hisāb al-jabr w’al-muqābala. The Arabic word 
al-jabr was actually a medical term for the mending of fractured bones. 
As applied to mathematics, al-Khwārizmı̄ wanted to convey the idea 
that an equation was masking numbers, and the algebra could restore 
or resurrect the hidden numbers, like a doctor mending a bone. For 
example, the unknown number might be called x (though in his book 
al-Khwārizmı̄ describes all this in words – there are no symbols 
involved). An equation, however, gives you some information about 
that unknown x: for example, you might know that x2 + 2x = 3. Al-
Khwārizmı̄ wanted to develop a method for manipulating equations 
so as to recover the hidden x. 

So how is it possible to find any x’s that will solve an equation such 
as x2 + 2x = 3? Without the 2x term in there, we could solve x2 = 3  
immediately by taking the square root of each side. At first sight that 
extra term 2x makes things much more complicated. Al-Khwārizmı̄’s 
strategy for solving these equations is first to make the equation look 
like the simpler one in which x only appears squared. So, by adding 1 
to both sides and noticing that 

x2 + 2x + 1 = (x + 1)2 

he shows how this equation can be written as the simpler equation 

(x + 1)2 = 4  

It’s the same unknown quantity x, but now in a new equation. And 
al-Khwārizmı̄ can solve this new equation because all he needs to 
do is take the square root of 4, namely 2, and subtract 1 from it. So 
x = 1 is the solution to this equation and to the original equation, 

2x + 2x = 3.  
But there is another number that will solve this equation, and it is 



122 Symmetry 

this second number that provides the first hint that there is some 
connection here with the mysteries of symmetry. This second answer 
was hidden from the scholars of the House of Wisdom because they 
hadn’t yet discovered the power of a new sort of number: negative 
numbers. 

It was mathematicians in India who put negative numbers on the 
mathematical map. Along with the concept of zero, they saw the 
potential of introducing new numbers to solve equations such as 
x + 3 = 1.  They called these numbers ‘debts’ because they represented a 
useful way of denoting money that one person owed another. One of 
the first to write a treatise on the mathematics of these numbers was 
a seventh-century Indian mathematician by the name of Brahmagupta. 
As far as we know, he was the first to record that if you multiply a 
negative number by itself you get a number which is positive. Now-
adays this is handed down to most schoolchildren as a piece of math-
ematical dogma, but Brahmagupta proved it by exploiting ideas similar 
to the algebra al-Khwārizmı̄ would develop. Brahmagupta recognized 
that this discovery had implications for solving quadratic equations. It 
meant that every positive number has two square roots, one positive 
and the other negative. So x = 2 is a solution of x2 = 4, but equally so 
is x = −2. 

This is the sign that there is symmetry at work in these equations. 
The negative solution is a mirror of the positive one. Brahmagupta 
realized that more complicated quadratic equations will also have 
mirror solutions. For example, with the slightly more complicated 
equation x2 + 2x = 3 considered above we find that the other mirror 
solution is −2 − 1 = −3.  Brahmagupta was nonetheless still rather 
unsure of what this negative solution actually meant, given that these 
quadratic equations were helping to find the lengths of fences enclosing 
areas of land. 

There is evidence that Brahmagupta was beginning to develop an 
abstract notation to articulate these equations. While the later algebra 
of al-Khwārizmı̄ was still a book of words, Brahmagupta had started to 
experiment with using the initial letter of various colours to represent 
unknowns in equations. But this fledgling mathematical language did 
not blossom until it was reinvented in Europe around a thousand years 
after Brahmagupta’s death. Even the concept of negative numbers was 
one that would not take hold in Europe for centuries, and without 
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these numbers the mirror solutions would remain in the shadows. 
Negative numbers and zero are now so much part of our daily lives 
that it seems hard to believe that European culture took so long to 
accept these new numbers imported from the East. Negative numbers 
were associated with money lending, helping to represent debt. In 
medieval Europe, where usury was a sin, negative numbers were the 
embodiment of evil. 

Although the Arabs may have been unaware of these mirror sol-
utions, the newly acquired skills in manipulating quadratic equations 
had given the mathematicians of the House of Wisdom the confidence 
to see how far their new language might extend. Instead of falling back 
on the geometry and pictures of the Ancient Greeks, this algebraic 
language provided new means of gaining access to hidden solutions. 
They were developing a genuinely new type of mathematics that had 
the potential to yield much more than just solutions to quadratic 
equations. 

If calculating the dimensions of fields used for farming gave rise to 
quadratic equations, then determining volumes of stone used for 
building gave rise to equations where the unknown quantities were 
cubed instead of squared. Was there some way to manipulate equations 
such as x3 + 2x2 + 10x = 20 to reveal the unknown x? 

The eleventh-century Persian poet Umar al-Khayyāmı̄, better known 
in the West as Omar Khayyam, took up the challenge of cracking the 
cubic equation. But he was not working under ideal conditions. His 
home in the Persian town of Nishapur was under the control of the 
Seljuq Turks, who had invaded the region some decades earlier. While 
intellectual activity had been highly valued during the early years of 
the House of Wisdom, Khayyam found that he constantly had to 
compete against charlatans and astrologers for the attention of increas-
ingly superstitious rulers. ‘Most of our contemporaries are pseudo-
scientists who mingle truth with falsehood,’ he complained. 

Khayyam was a real polymath. He wrote a treatise on music. He 
established one of the major observatories of the region, in Isfahan, 
from where he measured the length of the year to extraordinary accu-
racy, and his measurements led to a correction to the calendar in use 
at the time. He also wrote one of the classics of Persian literature, an 
epic poem of six hundred verses called the Rubaiyat. The title comes 
from the name of the poetic form that Khayyam uses. Each verse 
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consists of four lines with the rhyming scheme AABA. Poets in this 
era revelled in the patterns and structure that could be woven through 
their poetry. Sometimes the third line of the verse is picked up to 
create the rhyming scheme for the next verse, BBCB. A cyclic symmetry 
starts to appear in the way the verses interconnect. 

The rigid logic of its rhyming structure and its rhythmic patterns 
make classical poetry one of the literary forms that most resonates 
with the construction of mathematical proofs. So it is perhaps not 
surprising that Khayyam enjoyed the pleasures of mathematics as well 
as poetry. Although he made some progress with solving the cubic 
equation, a complete solution eluded him. ‘Perhaps someone else who 
comes after us may find it out,’ he wrote. 

Equations involving cubes were as far as Khayyam was prepared to 
contemplate. The fact that they relate to the geometry of three-
dimensional shapes gave him reassurance that there was some sense 
to his mathematics. For Khayyam, it was essential that there was 
geometry behind these equations: ‘Whoever thinks that algebra is a 
trick in obtaining unknowns has thought it in vain. Algebras are geo-
metric fact.’ Contemplating equations with fourth powers, he dis-
missed them as meaningless because they would be describing 
geometric objects with more than three dimensions, and that was 
surely impossible. It would take a few more generations of mathema-
ticians to sever the link between algebra and geometry and to see where 
that took mathematics. 

Khayyam recognized that there were essentially 14 different sorts of 
cubic equation. He believed that a method that would work for an 
equation such as x3 + 2x = 5 would also work if you took another cubic 
equation of the same overall pattern, where you just varied the 
numbers in the equation, for example x3 + 8x = 13. Any equation of 
the form x3 + ax = b represented his first sort of cubic. An equation 
such as x3 + x2 + 2x = 5 was, in Khayyam’s analysis, a different sort of 
cubic equation that might require different techniques. Because he did 
not know about negative numbers, he considered x3 + 2x + 5 = 0  to  be  
essentially different to x3 + 2x = 5 because the 5 was on the other side 
of the equation. Once negative numbers were accepted as members 
of the mathematical menagerie, x3 + 2x + 5 = 0  was  recognized to be 
the same as x3 + 2x = − 5. Khayyam’s ignorance of negative numbers 
meant that he ended up with 14 varieties of cubic equation. Eventually, 
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once negative numbers and the number zero were added to the 
mathematical lexicon, these 14 cubics would be whittled down to a 
single generic type of cubic. 

Although Khayyam made some progress, the complete solution to 
the cubic would not be found in the East. A century after his explo-
ration of these equations, the great dynasty founded on the House of 
Wisdom came crashing down. A few decades after the fall of Granada, 
when the Moors abandoned the great palace of symmetry, the Abbasid 
dynasty was brought to an end by the Mongols. It is thought that 
several million Muslims died in Baghdad while the major scientific 
institutions and libraries were destroyed. It was left to travelling Euro-
pean scholars and translators to pass the baton from the East to the 
fledgling academies of Europe. 

Mathematical cock fighting 

It was a colourful collection of Italian mathematicians in the sixteenth 
century who finally saw how to use the language of algebra to solve 
cubic equations. The discovery came at a time when European intellec-
tual culture was swimming in the ancient achievements of the Greeks, 
now becoming known once again. These rediscovered works seemed 
to show that, after nearly two millennia, little mathematical progress 
had been made since the geometry of Euclid and Archimedes. Not only 
that, but excavations in Italy were revealing the ancient monuments of 
Rome. Renaissance Europe seemed unable to escape its ancient roots. 
When Italian scholars uncovered new mathematics that the Greeks 
and even the Arabs had never dreamt of, it came as a great fillip for 
modern European science. 

The architect of this new mathematics, Niccolò Fontana, did not 
have a great start to life. He was almost killed at the age of 12 when 
the French invaded his home town of Brescia in 1512. During the 
slaughter of residents by Louis XII’s troops, Niccolò was slashed across 
the face with a sabre and left for dead. He was rescued by his mother 
who tended to the horrific wounds her youngest had received. His 
jawbone was cut and his palate severed. The boy’s wounds eventually 
healed, but he was left with a terrible speech impediment and from 
then on was always known by the nickname Tartaglia, ‘the stammerer’. 
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In later life he grew a beard to try to mask the ugly scars left by the 
French invaders. 

He may have been felled by the sword, but he would later be 
victorious in a battle of the minds. Shunned by schoolmates for his 
horrific appearance, Tartaglia turned to mathematics in order to escape 
the social pressures around him. Despite being self-taught, he found 
that he had a facility for the subject. He published a book explaining 
how mathematics could be used to predict the trajectories of artillery 
shells, and his work included the first tables for firing angles. But his 
great passion was for solving equations. 

At the beginning of the sixteenth century it was generally believed 
that cubic equations were impossible to solve. This was the view of 
Luca Pacioli, who in 1494 had written what many regarded at the time 
as the definitive text on the state of knowledge of solving equations. 
Any breakthrough would have to come from outside the walls of 
academia, since Pacioli’s view that the cubic was unsolvable was the 
received wisdom among most scholars. In 1534, battling away with 
these equations in the seclusion of his room, Tartaglia found the first 
chink in the cubic’s armour. His secret was to exploit the idea of using 
cube roots as well as square roots. By using a combination of these 
different roots, he found that he could construct a formula to solve 
certain special types of cubic equation. 

But Tartaglia discovered that he wasn’t the only one who was claim-
ing to have cracked the cubic. A young Italian, Antonio Fior, was 
boasting that he too possessed the formula for solving cubic equations. 
News spread about the breakthroughs made by the two mathema-
ticians, and a competition was arranged to pit the two against each 
other. Bear baiting and cock fighting may have been the spectacles of 
choice for the peasant classes, but watching two mathematicians battle 
it out in mental combat was an entertainment more to the liking of 
the intellectual circles in northern Italy. Fior was extremely confident 
that he should be able to trounce the uneducated Tartaglia, convinced 
as he was that Tartaglia was just bluffing. 

The trouble was that because European mathematics had yet to 
embrace the idea of negative numbers, there were many different types 
of cubic equation that needed to be analysed. As Omar Khayyam had 
already understood, there were 14 different sorts of cubic if one didn’t 
use negative numbers. A method that worked for solving x3 = 5x + 1  
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x
would have to be replaced with a new strategy when faced with 

3 + 4x = 1. Modern mathematicians armed with negative numbers 
would just rewrite x3 + 4x = 1  as  x3 = −  4x + 1 and solve it as they would 

3 = 5x + 1, with 5 replaced by −4. Without negative numbers, Euro-
pean mathematicians had to find an alternative way to crack these 
different sorts of cubic. 

But the young Fior’s method was not his own. The story goes that 
his teacher, Scipione del Ferro, had passed it on to him from his 
deathbed, in 1526. Del Ferro didn’t want to take his secret with him 
to the grave, so he entrusted it to his student. But del Ferro had told 
his student how to solve only one of the 14 types of cubic equation. 

On 20 February 1535 the mathematicians gathered at the great 
University of Bologna, then one of the largest and most famous centres 
of learning in Europe. Its reputation drew scholars from all over the 
region, just as the House of Wisdom had done centuries before in 
Baghdad. Public academic battles always drew great crowds, and the 
university was buzzing that day as Fior and Tartaglia arrived to lock 
mathematical horns. 

x

Each contestant had been asked to provide 30 equations for his 
opponent to solve. The expectation was that 40 days would be needed 
for each to use his method to crack the 30 equations. A prize of dinner, 
paid for by the opponent, was offered for a solution to each equation 
solved. Although the problems that Fior had prepared for Tartaglia 
were cast in a variety of settings, from calculating the profit on the 
sale of sapphires to determining the height of a tree broken into pieces, 
all 30 of his equations actually reduced to the same type: the form 

3 + bx = c, where b and c took different numerical values in each 
problem. Fior, who had put all his eggs into one basket, was convinced 
that Tartaglia stood no chance. 

Fior was almost successful in his unwitting strategy of basing all 30 
questions on one sort of cubic equation. Although Tartaglia had made 
inroads into solving these equations, he had managed to find a way to 
crack only one of the 14 varieties of cubic, an equation that looked 
like x3 + bx2 = c, rather than those that Fior was planning to challenge 
him with. But spurred on by the forthcoming competition, in the early 
hours of 13 February 1535, just eight days before his duel with Fior 
was due to begin, Tartaglia managed to synthesize his ideas into a 
general method that would solve all cubic equations. By manipulating 
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the equations by making cunning substitutions, Tartaglia proved that 
it was possible to change an equation of one variety into another. By 
the end of his analysis he had discovered that there were really only 
two different species of cubic that he needed to consider – and he 
knew how to solve both. 

Tartaglia managed to solve all 30 of Fior’s challenges in a mere two 
hours. In contrast to Fior’s strategy of basing all his questions on one 
sort of cubic, Tartaglia’s problems for Fior ran through a whole variety 
of different cubic equations. Fior was unable to extend his master’s 
method beyond the one sort of cubic that he had been shown how to 
solve. Unable to see that the 14 varieties of cubic were actually examples 
of two cubics in different guises, Fior was revealed for the mediocre 
mathematician that he was. Despite his triumphant success, Tartaglia 
declined the 30 meals he had won at Fior’s expense. 

News of Tartaglia’s staggering victory spread quickly through the 
corridors of the University of Bologna and beyond. One mathematician 
was particularly keen to discover the secret to Tartaglia’s success, and 
began to press him to yield his magic formula. 

The controversy of the cubic 

Girolamo Cardano had a talent for getting into trouble. Tact was not 
his strong point, and he was forever aggravating those in a position of 
power. He had trained in medicine rather than mathematics, at the 
University of Pavia. His desire for power led to his election as rector 
of the university, a contest he won by a single vote. He was quite aware 
of how unpleasant most people found his aggressive political style, but 
he remained unapologetic: 

This I recognize as unique and outstanding amongst my faults – the 
habit, which I persist in, of preferring to say above all things what I 
know to be displeasing to the ears of my hearers. I am aware of this, 
yet I keep it up wilfully, in no way ignorant of how many enemies it 
makes for me. 

Although a lawyer by profession, Cardano’s father was a talented 
mathematician, even advising Leonardo da Vinci on matters of 



129 December: Connections 

geometry. He died during Cardano’s campaign for rector, but not 
before passing on his aptitude for mathematics to his son. He had 
taught Cardano the rigorous logic of mathematics in the hope that it 
would provide a great platform for a legal career. But the rebellious 
Cardano had other ideas. His mathematics had given him an under-
standing of the theory of probabilities, which he took with him to the 
gambling halls of Italy. 

Cardano was one of the first to realize that there might actually be 
a way to predict the likelihood of certain numbers coming up when a 
pair of dice are thrown. He attempted to put into practice his analysis 
of the chances of rolling a double six, but an addiction to gambling 
soon took the place of rational analysis of the mathematics behind the 
dice, and Cardano ended up squandering the money his father had 
left him. One particularly desperate night he accused a fellow gambler 
of cheating him at cards. The maths might have meant that he stood 
a good chance of winning, but he couldn’t admit defeat and instead 
drew a knife and slashed his opponent about the face. 

None of this helped to secure the respect he needed to build up 
his medical practice. When the authorities discovered that he was 
illegitimate, it gave them the excuse to exclude him from the College 
of Physicians. Having pawned both his wife’s jewellery and their furni-
ture to fund his continuing gambling, Cardano was eventually forced 
into the poorhouse in 1535. Mathematics eventually came to his rescue. 
His talents had not gone unnoticed, and he was bought out of poverty 
and offered a position as lecturer in Milan. He continued to practise 
medicine, with some notable successes, but it was his writing on 
mathematics that began to secure his reputation. 

Cardano was particularly interested in how to solve equations. 
Mathematicians believed that, unlike quadratic equations, equations 
involving cubes could not be solved using a magic formula. This 
was what Cardano had read in Summa, Pacioli’s definitive book on 
arithmetic written in 1494. But then he heard the news that an 
unknown mathematician called Tartaglia had solved 30 cubic equa-
tions with amazing speed. Cardano knew that Tartaglia could only 
have done this with the aid of a formula. 

Once you become aware that a solution is possible, that another 
mind has managed to conceive of a way through what had previously 
been thought impenetrable, the challenge is there to see if you too can 
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crack it. Most mathematicians feel that if one person can work some-
thing out, then they should also be able to. After all, mathematical 
argument is such that it feels independent of the mind that created it. 
Once something has been proved, it starts to take on a concrete reality. 
But before that first breakthrough, there is always the nagging sense 
that there is no way through, that there is something essentially 
impossible about the task. 

Mathematicians can’t bear to admit defeat. The last thing they want 
is to have to be told the answer. So Cardano battled with the problem 
for several years, convinced that if there was a formula he should be 
able to discover it himself. By 1539 he could bear it no longer – he 
gave in. He sent this mysterious Tartaglia a request asking whether he 
could include the formula in a book he was writing about arithmetic. 
But Tartaglia was certainly not going to let anyone else publish his 
discovery, and he told Cardano that he was intending to publish his 
formula himself. 

By now, Cardano was desperate to know the answer. He contacted 
Tartaglia again, promising not to communicate the formula to anyone 
if only Tartaglia would tell him. Again, Tartaglia refused. Cardano was 
incensed. What was the point of keeping the formula secret? Wasn’t it 
Tartaglia’s duty to share his discovery with his fellow mathematicians? 
He challenged Tartaglia to an open debate. But there seemed little 
point in this: after all, there was no dispute about whether Tartaglia 
had really made the breakthrough. Unlike some mathematical claims, 
the fact that he could solve the cubic equations he had been challenged 
with was proof that he had a formula. There was no onus on Tartaglia 
to prove himself further. He refused yet again. 

Finally, Cardano saw that the way to tempt Tartaglia to reveal his 
secret was to offer him money. He wrote to Tartaglia, gently suggesting 
that a wealthy patron, the governor of Milan, was interested in spon-
soring the great mathematician who had cracked the cubic. If Tartaglia 
was to come to Milan, Cardano said, he might be able to effect an 
introduction. Cardano’s plan worked. Tartaglia was in desperate need 
of financial support. His meagre teaching position in Venice was barely 
keeping him in food and lodging, so he wrote to Cardano accepting 
his offer, and in March 1539 travelled from Venice to Milan. 

According to Tartaglia’s subsequent account of the meeting, 
Cardano was most hospitable, but kept pressing him to explain the 



131 December: Connections 

secret of the cubic. Tartaglia, on the other hand, wanted to know when 
he could go and meet his rich new sponsor. Ever the schemer and 
manipulator, Cardano had planned Tartaglia’s visit to coincide with 
the departure of the governor to the neighbouring city of Vigevano, 
some 50 kilometres outside Milan. ‘We will have plenty of opportunity 
to talk and discuss our affairs until he returns.’ Cardano began to press 
Tartaglia on why he had been so secretive about divulging his discovery 
of the formula for the cubic. 

When you’ve made a mathematical breakthrough, there is always 
the possibility that this new idea might yield much more. Tartaglia 
could see that if the method he had devised could crack the cubic, 
perhaps it could also be extended to more complicated equations such 
as quartics and quintics – those containing terms in x4 and x5. He  
explained to Cardano that he didn’t want to go public before he had 
at least followed up his belief, in case he was sitting on a mathematical 
gold mine. But for the foreseeable future he was fully occupied with 
teaching and with preparing a new translation of Euclid. 

Cardano promised not to divulge Tartaglia’s secret to anyone – he 
simply had to know for himself what the magic formula was. Tartaglia 
didn’t believe him. Cardano was now going crazy: he was desperate to 
know the answer, having sweated for several years in unsuccessfully 
searching for the cubic’s secret: 

I swear to you, by God’s holy Gospels, and as a true man of honour, 
not only never to publish your discoveries, if you teach me them, but I 
also promise you . . . to note them down in code, so that after my death 
no one will be able to understand them. 

That is Tartaglia’s account of Cardano’s promise, made three days 
after Tartaglia’s arrival in Milan. 

Tartaglia’s patience was now at an end. He would ride to Vigevano 
himself to talk to the governor. But Cardano had named his price for 
the letter of introduction that Tartaglia would need. So under oath 
not to divulge the formula to anyone else and never to write it down 
for others to discover after his death, Tartaglia finally relented. ‘To 
enable me to remember the method in any unforeseen circumstance, 
I have arranged it as a verse in rhyme,’ he explained. The rhyme was 
rather long-winded and cryptic, but it held, he said, the key to his 
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success in all the contests he had won. And so he began to pen the 
rhyme for the eager Cardano: 

When the cube and the thing together 
Are equal to some discrete number, 
Find two other numbers differing in this one . . .  

And so it continued in similar vein for 21 lines, explaining how to 
manipulate the equation until it gave up the secrets of its solutions. 
The poem concluded: 

These things I found, and not with sluggish steps, 
In the year one thousand five hundred, four and thirty. 
With foundations strong and sturdy 
In the city girded by the sea. 

Cardano’s relief was palpable: ‘How well I will understand it, and I 
have almost understood it at the present.’ But Cardano’s relief as he 
pored over the poem Tartaglia had left him was matched by Tartaglia’s 
own feeling of unease. Why had he just divulged his one great dis-
covery, the formula that might open a way to formulae for all equa-
tions? He still didn’t trust Cardano. 

Instead of riding out to Vigevano, Tartaglia turned his horse towards 
Venice and headed home. But as he rode on, he became increasingly 
angry. He began to see how, with the lure of a rich patron, Cardano 
had duped him into revealing his treasured formula. By the time he 
got back to Venice he was utterly convinced that it was only a matter 
of time before Cardano broke his promise and published his discovery. 
When two new books by Cardano were published a year later, Tartaglia 
was certain that his darkest fears were about to be realized. But when 
he read the books he could find nothing about his solution to the 
cubic. 

Cardano, despite his rather obnoxious character, had been true to 
his word and kept Tartaglia’s formula secret. Well, almost. He couldn’t 
resist discussing it with his best student, Lodovico Ferrari. Ferrari had 
originally been Cardano’s servant, but when Cardano discovered that 
the 14-year-old boy could read, he promoted him to be his personal 
secretary. As time went by, Ferrari soaked up the ideas that Cardano 
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shared with him. Now that the pair spent so much time together, it 
was only natural that Cardano would discuss Tartaglia’s poem with 
Ferrari. 

As he worked his way through the cryptic poem, Cardano began to 
grasp the method. The trouble was that when he then tried to apply it 
to certain equations there was a rather worrying glitch. In the middle 
of Tartaglia’s poem was an instruction that sometimes resulted in you 
having to calculate the square root of a negative number. Cardano 
didn’t know any numbers whose square was negative. What did this 
mean? The ancient formula for quadratic equations sometimes yielded 
square roots of negative numbers, but when this happened you just 
resorted to saying the equation was not solvable. But there was some-
thing rather strange about Tartaglia’s method for solving the cubic. If 
you just ignored the fact that you didn’t know what the square root 
of a negative number was, eventually, by the end of the poem, these 
mysterious square roots had disappeared, having somehow cancelled 
each other out, to leave a perfectly ordinary number which would 
solve the equation. Was there magic at work here? Had Cardano 
understood it properly? 

On 4 August 1539, Cardano wrote to Tartaglia about the strange 
problem he was having. It’s not clear whether Tartaglia was any clearer 
about the mechanics of what was going on, but he saw this as an 
opportunity to throw Cardano off the scent: ‘I say in reply that you 
have not mastered the true way of solving problems of this kind, and 
indeed I would say that your methods are totally false.’ 

However, Tartaglia’s worst fears about divulging his formula were 
about to be realized. The young Ferrari, barely 18, had discovered how 
to use the solution for the cubic to obtain a formula for solving 
equations that contained terms in x4: quartic equations. Cardano was 
so impressed with the young man’s discovery that he resigned his own 
position at the Piatti Foundation in Milan to make way for the young 
prodigy. But now he faced a dilemma. Because the method of solving 
quartic equations was based on Tartaglia’s solution of the cubic, there 
was no way they could go public with Ferrari’s discovery. Although 
Cardano had already broken part of his promise by discussing 
Tartaglia’s proof with Ferrari, he still felt honour-bound not to publish 
anything. But that would mean denying his student the rightful praise 
he so deserved. 
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Cardano suggested travelling to Bologna to ask his colleague 
Annibale della Nave for advice about their dilemma. Della Nave proved 
a rather fortuitous choice. In his possession was a battered old note-
book which had belonged to his father-in-law, Scipione del Ferro, the 
mathematician who had first cracked the cubic and had, on his death-
bed, told his student Fior of his discovery. As Cardano and Ferrari 
leafed through the notebook they recognized the formula that Tartaglia 
had discovered, independently, some years later. Here was their way 
out: Cardano could now legitimately publish del Ferro’s formula with-
out any feeling that he was breaking his promise to Tartaglia. In the 
great opus in which he finally broadcast the solution for the cubic and 
quartic to the world, known as the Ars Magna, Cardano gives due 
credit to Tartaglia for his independent discovery. But it is del Ferro’s 
contribution that gets the greatest praise: ‘this art surpasses all human 
subtlety and the perspicuity of mortal talent and is a truly celestial 
gift’. 

Unsurprisingly, the credit that Cardano gave him was not sufficient 
recompense for Tartaglia. His world was now crumbling around him. 
He’d missed out on writing about his own discovery of the formula, 
and now he’d been beaten to the solution of the quartic by an 18-year-
old upstart. It was all too much. 

In a vain attempt to rescue his reputation, Tartaglia wrote an account 
of his side of the story which included a string of venomous attacks 
on Cardano. Having stepped on many toes on his way to the top, 
Cardano was quite used to insults being thrown his way, but his young 
student Ferrari felt compelled to defend his teacher’s honour. He wrote 
to Tartaglia, taunting him about his mathematical inadequacies and 
challenging him to an open debate. Such a contest with a relatively 
unknown mathematician would do nothing for Tartaglia’s reputation. 
Beating Cardano in open mathematical combat would be a prize worth 
competing for. So Tartaglia wrote back to Ferrari trying to draw 
Cardano into the fray. 

Letters flew back and forth between Venice and Milan. They were 
made public as the two men each attempted to win over the wider 
mathematical community. Insults were mixed with mathematical 
problems as Ferrari and Tartaglia tried to outdo each other. The range 
and variety of Ferrari’s challenges to Tartaglia reveal that his solution 
to the quartic was no flash in the pan, but that he was maturing into 
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a deep and philosophical thinker. In addition to the cubic equations, 
he challenged Tartaglia to solve problems in geometry ‘proving every-
thing’, to illuminate passages of Plato, even to debate the philosophical 
problem of whether ‘unity is a number’. 

Despite his disdain for Ferrari, Tartaglia couldn’t resist engaging 
with the 30 or so problems that he sent him, and he was gradually 
drawn into an extended correspondence. Philosophical debates about 
Plato and the concept of number were dismissed by Tartaglia as ques-
tions unworthy of a mathematician – not an uncommon belief among 
many modern mathematicians who are scornful of those who dedicate 
their time to the philosophy of the subject. In response to Ferrari’s 
mathematical challenges, Tartaglia often claimed that his rival was 
angling for answers to questions he didn’t know how to solve in the 
hope of stealing yet more of Tartaglia’s ideas: ‘It is a very shameful 
thing, to put forward such a question in public and not to know how 
to solve it.’ 

Ferrari responded by pointing to Tartaglia’s lack of proof in pre-
senting his solutions: ‘Just like a forger you omit the part that matters, 
namely these two words ‘‘proving everything’’.’ And Tartaglia’s reluc-
tance to debate deeper issues of mathematical interest, he said, reflects 
someone 

who spends the whole time on roots, fifth powers, cubes and other 
trifles. If it were up to me to reward you, taking example from the 
custom of Alexander, I would load you up so much with roots and 
radishes, that you would never eat anything else in your life. 

Things came to a head when Tartaglia was offered a prestigious 
position at the university of Brescia, his hometown. The offer was 
conditional, however, on his success in open debate with another 
mathematician chosen by the faculty. His heart must have sunk when 
he got a letter informing him that he was to travel to Milan to compete 
against Ferrari. If he wanted to get the lucrative job he had spent years 
trying to secure, he would have to swallow his pride and compete 
against Cardano’s pupil. In any case, he believed that Ferrari was not 
truly equipped with the mathematical skills to put up much resistance. 

On the morning of 10 August 1548, the two mathematicians came 
together in the beautiful gardens of one of the Franciscan monasteries 
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in Milan. The open letters that had been exchanged over the previous 
two years had attracted much interest in the contest, and the garden 
was packed with onlookers, including a host of Milanese celebrities 
keen to witness mathematical blood being spilt. For Tartaglia these 
contests were his bread and butter, and he was confident that he 
would see off Ferrari’s challenge. Tartaglia had only his brother there 
supporting him, but Ferrari was cheered on by a crowd of friends he’d 
invited. 

As they locked horns, Tartaglia began to see that Ferrari had not 
been bragging when he said he knew the answers to all the questions 
he had sent Tartaglia. His young adversary, it turned out, had a far 
greater control of the formulae that would solve cubic and quartic 
equations. Tartaglia resorted to the poem he had concocted to help 
him to remember his method, but Ferrari was just too quick for him. 
Tartaglia resorted to firing petty shots across Ferarri’s bow, criticizing 
his methods, in an attempt to knock Ferrari off his stride. As the day 
drew on, Tartaglia could see that it was a lost cause. Ferrari landed a 
succession of ever more telling blows, revealing how shallow Tartaglia’s 
grasp of solving equations was compared with the young student’s 
ability to twist and turn the formulae to his advantage. 

When the crowd reconvened for the second day of combat, they 
learned that Tartaglia had fled back to Venice, preferring not to suffer 
the complete humiliation of a mathematical knockout. Ferrari was 
crowned victor and showered with offers of employment, including a 
request from the Emperor Charles V (whose grandfather had kicked 
out the Moors from the Alhambra) to tutor his son. Ferrari had his 
eye on making his fortune, preferring instead to become tax assessor 
to the governor of Milan. How many mathematicians have been lured 
away since then by the temptations of the city! Ferrari achieved fame 
with his formula for solving the quartic, made his fortune as a young 
man, but died aged only 43. He was allegedly poisoned by white arsenic 
at the hand of his own sister, who was after the huge inheritance she 
would receive on his death. She married two weeks after Ferrari’s 
funeral only for her new husband to abscond with the money, leaving 
her destitute. 

Tartaglia spent another year lecturing in Brescia, but after his igno-
minious defeat the university decided first not to pay him, and later 
to terminate his position. He was incensed, but despite numerous 
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lawsuits could get nothing out of the university for the work he had 
done for them. Crushed and penniless, Tartaglia finished his days in 
Venice. 

Cardano was distracted from doing any more serious work by a 
series of disasters that beset his two sons. The eldest, Giambatista, had 
secretly married ‘a worthless, shameless woman’ who was interested 
only in extorting as much money as she could out of her now rich and 
famous father-in-law. Their relationship began to deteriorate, and the 
woman began openly mocking Cardano’s son with claims that their 
three children were not his at all. Eventually Giambatista couldn’t take 
the abuse any longer and poisoned his wife. 

At his subsequent trial, the judge said that he would spare Giam-
batista from the gallows if his father would seek reconciliation with 
the murdered woman’s family. Ever the money grabbers, the family 
insisted that forgiveness would come at a price that was well beyond 
anything Cardano could pay. Cardano never recovered from his failure 
to save his son from being first tortured in prison and then executed, 
on 13 April 1560. 

To add insult to injury, Cardano’s youngest son, who had inherited 
his father’s passion for gambling, lost everything and resorted to steal-
ing money and jewellery from his own father. Cardano reported his 
son to the authorities and had him banished from Bologna. In his 
autobiography, De Vita Propria, Cardano wrote that his four great 
tragedies were his marriage, the bitter death of his eldest son, the base 
character of his youngest son, and imprisonment. The last of these 
refers to the time he spent in jail at the end of his life at the hands of 
the Inquisition, accused of heresy. He had deliberately offended the 
Church, it seems, in an attempt to gain a place in history by writing a 
book praising Nero for tormenting the martyrs and for casting the 
horoscope of Jesus. It was not blasphemy, however, but his role in the 
story of solving equations that secured his fame after his death. 
Cardano committed suicide on 21 September 1576 – not through 
despair at the horrors he suffered in later life, but apparently to fulfil 
a prophecy he made some years earlier about the date on which he 
would die. 
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12 December, Max Planck Institute 

Fritz and I have spent the week trying to understand how to find how 
many symmetrical objects can be built with a prime power number of 
symmetries. The lesson I have learnt from the breakthrough I made 
here in Bonn on a previous visit is that the number of symmetrical 
objects could depend on solving a completely different sort of problem 
than we first envisaged. The number could actually be the same as the 
number of ways of solving a set of equations. The question for us is 
this: what is the nature of the equations we will have to solve? Will 
they be as exotic as the wild elliptic curve that is at the heart of my 
breakthrough in Bonn? Or might they be simpler ones, like the equa-
tions Cardano and Tartaglia were solving? 

Fritz and I have spent the week trying to analyse the sort of equations 
that might come out of counting all these groups of symmetries. The 
trouble is that the thing has started to explode into a vast problem 
that we can barely hope to master. I feel as though I have picked up a 
stone which has suddenly become the size of a mountain. Is it possible 
that we can hit upon some amazing idea that will embrace the huge 
complexity of the problem? 

My head is hurting under the strain. I am exhausted at the end of 
each day. But instead of trying to master the mountain, we have now 
decided to go for something more manageable – one of its foothills. 
We’ve found a way to look at a small chunk of the problem, and we 
can even use a computer to do some experiments. I love it when this 
happens. I rarely get to use the computer in my work, but when I do 
it always feels to me like real science. There is work involved in setting 
up the experiment, but then the computer will mindlessly compute. 
And we shall get some answers! Rather than bashing our head against 
the whiteboard trying to come up with an abstract way through this 
world, we can set off on little exploratory forays to assess the lay of 
the land. The grand theory we are ultimately after will be like an 
understanding of the whole geography of a land, gained without 
visiting all of it. This first exercise on the computer, though, is like 
surveying what we can see around us. It will be important that the 
outcome is not a huge amount of random data with no discernible 
pattern. 
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It is a relief to take some time out to wait for the computer to 
produce some answers that might guide us. We head to the square 
outside to get a coffee while the computer sits calculating away. It is 
coming up to Christmas, and there is a strong smell of gluwein in the 
air coming from the Christmas markets across the city. My favourite 
time to come to Bonn is for Karneval in a few months’ time, when the 
usually sober Germans don crazy costumes in a week of madness. I 
was here last year during Karneval week and saw Germans dressed as 
bananas and bumble bees walking round the streets of Bonn. No one 
looked as if they were particularly enjoying themselves, but everyone 
appeared seriously intent on getting very drunk. Fifty-year-old men 
stand at stalls eating sausages while dressed as a dog or a ladybird. 
Fritz claims that he doesn’t get dressed up. That’s a shame – I would 
love to have seen him in a banana suit. 

When we go back upstairs to see how the computer has got on, we 
find that we’ve been asking it to do too much. It has run out of 
memory. Once again, we are on our own in the mathematical jungle. 
Whenever the going gets tough, I often try to recall those moments 
when complete befuddlement were suddenly transformed by the clarity 
of an idea. That particular night in Bonn is my touchstone. It helps 
me through the dark days. 

From Bonn I decide to pay a visit to another of my favourite German 
cities, Göttingen. This Hansel and Gretel village was once the Mecca of 
nineteenth-century mathematics and home to two of my mathematical 
heroes, Gauss and Riemann. I spend the afternoon with a friend in the 
local cemetery. It sounded rather a macabre way to pass the time when 
he first suggested it, but it turns into a fascinating scientific pilgrimage. 

Many of Göttingen’s greatest scientists are buried in here. In 
addition to names and dates, the gravestones often bear the equation 
that made the name on the stone famous. It is on this trip that I decide 
what I want as my gravestone epitaph. I’m not saying that the discovery 
I made that night in Bonn is going to shake the world, but if I’m going 
to have anything on my gravestone, then it has to be the equation that 
defines the group of symmetries I concocted: 

�
[x1,x4] =  y3,[x1,x5] =  y1,[x1,x6] =  y2 

G = x1,x2,x3,x4,x5,x6,y1,y2,y3 : [x2,x4] =  y1,[x2,x5] =  y3, 
[x3,x4] =  y2, [x3,x6] =  y1 
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January: Impossibilities 

Eliminate all other factors, and the one which remains must be 
the truth. 

sherlock holmes, ‘The Sign of Four’ 

23 January, Oxford 

I owe my marriage to Shani to knowing about palindromes. When I 
was a young post-doc I was looking for a flat in Jerusalem, but getting 
nowhere because I wasn’t Jewish. For weeks I searched for somewhere 
to stay. I finally struck lucky when a woman poked her head round 
the door I’d just knocked on, looked me up and down and barked, 
‘So do you know what a palindrome is?’ If you’re not Jewish, then 
being an intellectual seemed to be the next best thing. I passed the 
initiation rite and got the spare room. My third flatmate became my 
wife. 

Our first date together was something of a baptism of fire for both 
of us. Her friend had just had a baby boy. So Shani decided to take 
me to his brit millah, or circumcision. We sat around eating chicken 
drumsticks while the father and grandfather pinned the baby to the 
table and the mohel carved off his foreskin. To try to banish the 
frightening images from my mind I spent the remainder of our date 
explaining to Shani the rituals of my religion. Square ashtrays and 
round glasses were spun on the table top as I tried to initiate her into 
the secrets of symmetry. 

Shani has gone back to Israel this week for another circumcision. 
I’ve decided to give this one a miss and escape to Oxford to bury 
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myself in mathematics. Given my lack of progress in Bonn last month, 
I’ve decided to take a look at a completely different problem. I often 
have several problems on the boil at the same time. Sometimes a 
change of perspective helps when I return to a question after spending 
time on something else. On my first visit to Israel, 15 years ago, 
palindromes not only got me a flat but also started to make a rather 
intriguing appearance in the zeta functions I was studying. 

Each group of symmetries has a zeta function attached to it. This 
zeta function can be described by a formula built from polynomial 
expressions. If the group of symmetries is not too complicated I can 
calculate the formula for the zeta function of that particular group. 
The curious thing that I noticed back in Israel is that every time I did 
one of these calculations, I always seemed to get polynomial ex-
pressions with a rather beautiful palindromic symmetry, for example 

2x6 + 4x5 + 7x4 + 3x3 + 7x2 + 4x + 2  

The numbers in this expression form a symmetric pattern: 

(2, 4, 7, 3, 7, 4, 2) 

Just like words, formulae can form palindromes as well. 
This sort of symmetrical pattern is highly unexpected. If you got a 

computer to generate random formulae, most of them wouldn’t have 
this palindromic symmetry. Yet whenever someone took a new group 
of symmetries and managed to calculate its zeta function, the resulting 
formula had this palindromic symmetry, what mathematicians call a 
functional equation. But would this always be true? As time went on 
and more examples were added to the database, the evidence that it 
would got stronger and stronger. I couldn’t see any reason why starting 
with an object full of symmetry should force the resulting zeta function 
to have this palindromic symmetry. It seemed right, but I was after a 
proof. How could I be sure that when I calculated the next example, 
this symmetry wouldn’t disappear? Perhaps I was just looking at 
examples that had a very special structure. The trouble with mathe-
matics is that evidence can often be very misleading. What looks like 
a very strong pattern can suddenly vanish before your eyes. That is 
why mathematicians are so obsessed with proof. For the other sciences, 
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evidence is paramount, but mathematicians will put their trust only 
in proof. 

Since my first visit to Jerusalem I have made many attempts to prove 
that this palindromic symmetry will always be there. The palindrome 
itself is not that important. For me this beautiful pattern is more of a 
beacon, hinting at a deep underlying structure which is itself respon-
sible for the palindromic symmetry. My hope was that this beacon 
might guide me to a huge vista of structure that was manifesting itself 
through this palindrome. In recent years, though, I’ve come round to 
thinking that I might be seeing palindromic symmetry only because I 
chose the right examples to look at. 

Suddenly, with the discovery of my new group of symmetries in 
Bonn, there was a chance that the palindromic symmetry would dis-
appear. After all, it had completely changed my perspective on the 
PORC Conjecture. Perhaps it was malicious enough to destroy my 
Palindrome Conjecture. But I was in for a surprise. 

A year after my discovery of this new group of symmetries, Chris-
topher, one of my graduate students, sent me an excited email asking 
whether he could come up to London to show me something. My 
PhD students know that the best place to get my undivided attention 
is at my home. However, what Christopher had to show me that day 
would have captivated me in the most distracting of environments. 
He’d made a complete calculation of the zeta function of my elliptic 
curve symmetry group. My analysis of the group of symmetries had 
done enough to dig a tunnel connecting it with the world of elliptic 
curves. Now Christopher had built a permanent bridge. 

But would this new zeta function have palindromic symmetry? As 
we looked at Christopher’s calculation there seemed to be something 
wrong. The numbers didn’t quite match up – almost but not quite. 
But then we spotted that something in Christopher’s calculation that 
related to the elliptic curve might also contribute to the symmetry. 
We’d missed this bit. I rushed upstairs to get a book about these special 
curves, and soon found what I was after. These elliptic curves also 
have zeta functions with a palindromic symmetry. When we put the 
two together, suddenly, as if by magic, Christopher’s calculations 
matched up perfectly. The palindrome was still there! 

It was a really exciting moment. I felt a fatherly pride in Christopher 
for his achievement. He was experiencing the elation of that first taste 
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of discovery, that flash of illumination that all mathematicians crave. 
If my crazy elliptic curve example still had this palindromic symmetry, 
there was renewed hope that my Palindrome Conjecture might still 
be true. I’d really expected Christopher’s calculation to destroy the 
conjecture – after all, it had dramatically changed my perspective on 
the PORC Conjecture. But it had ended up doing the opposite. This 
new discovery spurred me on to understand why this symmetry was 
there, to prove my conjecture. 

That day was memorable for another reason. Shani phoned me a 
few minutes after we’d found the new palindrome and said I should 
switch on the TV. Two planes had just smashed into the World Trade 
Center in New York. The date was September the 11th, 2001. Chris-
topher and I watched for the next hour as the twin towers crumbled 
to the ground. 

I went back to a theoretical description of the formula for the zeta 
function that Fritz and I had discovered a few years earlier. I was 
convinced that the secret of the palindromic symmetry was hidden 
somewhere inside it. But it still wasn’t clear why this formula should 
always produce symmetry in the zeta function. I filled pages and pages 
of yellow legal pads, twisting and turning this formula, rewriting it in 
different ways, trying to find some way to rearrange it to see the 
symmetry. It was as if the formula was a Rubik’s cube – I kept manipu-
lating it, rotating its sides, in the hope that suddenly all the colours 
would match up to reveal the pattern I was convinced must be there. 
But nothing gave. 

A few weeks after Christopher’s breakthrough I phoned Fritz in 
Bonn. I’d sent Christopher off to the Max Planck Institute to show his 
work to Fritz. ‘I think Christopher and I should be able to prove the 
functional equation by next week,’ said Fritz. I remember going into 
a panic. I should have been happy, but I was devastated. This was what 
I wanted to prove. I knew that I might have been making a mistake in 
sharing my ideas, but I was being altruistic and thinking of the greater 
good of the subject. Now, I couldn’t bear the thought that it might be 
proved by someone else. Had I been cast aside so early? I wanted to 
leap on a plane immediately. I felt like Tartaglia, letting his secret for 
solving cubics out of the bag only to see the young upstart Ferrari rush 
off and solve the quartic. 

When Christopher got back from Bonn it turned out that their 
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initial optimism had been misplaced. I hate to admit it, but I breathed 
a sigh of relief. I was back in the game. When I told some of my 
colleagues about this, they laughed nervously in recognition. There is 
a strange tension between the pride in one’s students and the fear that 
they might kill you off. 

A few years later things took another unexpected turn. I had 
arranged to meet my graduate student Luke in my office in Oxford. 
Luke is a wizard at programming. Previous calculations had been done 
in an ad hoc manner, requiring paper and pencil analysis of the twists 
and turns of each individual group of symmetries. Luke has found a 
way to get the computer to explore a group of symmetries in a much 
more systematic fashion, and if the group is straightforward enough, 
the computer identifies the ingredients that you need to calculate 
explicitly the formula for the zeta function. The calculations that Luke 
has started to produce have pushed our examples well beyond anything 
that we could do by hand. But it isn’t simply a matter of cranking a 
handle – the computer is only as good as the person programming it. 
He still needs to guide the computer through the calculation. 

Luke started to show me some of his latest calculations. He had a 
pile of papers with massive equations on them, some taking up several 
pages. Despite their size, again and again they displayed this beautiful 
palindromic symmetry: halfway through a formula, the coefficients 
start to repeat themselves in reverse order. We’d almost got to the end 
when Luke pulled out a sheet of paper at the bottom of the pile. ‘Oh, 
and I found this example.’ I stared at the formula. Halfway through, 
instead of neatly reversing itself it started doing something completely 
different. 

Bang! I’d been trying to prove this palindromic symmetry for years, 
and now this example blew my conjecture out of the water. This 
formula was not a palindrome. This is where a computer comes into 
its own: it may not be very good at proving theorems, but it can be 
very effective at smashing conjectures. And now I understood why 
Luke had seemed so nervous when he first sat down. Partly it was 
excitement at having made such an important discovery, but he must 
have been wondering how I would react to being told that I’d spent 
ten years chasing a shadow. This was a far deadlier blow than having 
someone else prove my conjecture in front of my eyes. I really did 
have Oedipus sitting here in my office. 
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But I just had to swallow it. This is the set of cards that my subject 
has dealt me. What can I do? I can’t rewrite the facts to suit my view 
of the world. There is something quite unforgiving about mathematical 
logic. This symmetry was so beautiful that I felt it had to be true, but 
logic was telling me otherwise. Mathematicians are driven in their 
work by a strong sense of aesthetics, and the correct path to follow is 
quite often the most beautiful one. And just as symmetry in nature 
signifies meaning, I had felt strongly that this palindromic symmetry 
contained a message about some internal structure that was making 
my zeta functions tick. There is no denying that many symmetry 
groups have zeta functions with this palindromic symmetry. So the big 
question now is this: why do some groups of symmetry give rise to 
palindromes, while others, like Luke’s example, do not? 

Luke’s example also illustrates the power of the computer in math-
ematical research. Last week the newspapers reported the discovery of 
a prime number with over nine million digits; only the computer can 
give us access to such huge primes – and generate more data than we 
could previously have hoped for. If I had a huge amount of time to 
spare, perhaps I could have gone through the details of calculating 
Luke’s example by hand. But undoubtedly I would have made a mis-
take. I certainly would have guessed that I’d made a mistake once I’d 
found that the answer didn’t have the palindromic symmetry I was 
expecting. I’d often used this as a way of checking for errors in the 
past. It was very effective: once I got the symmetry, I knew the calcu-
lation was probably right because symmetry is hard to find by accident. 

But as I’d discovered last month in Bonn, there are limits also to 
the computer’s capabilities. Luke says that he is reaching the limits of 
the examples the computer can handle. Beyond these examples lies an 
infinite expanse of uncharted territory, navigable only by the human 
mind. 

Luke’s example will always be a warning to me to go into every 
problem with an open mind. His group of symmetries revealed that 
day a new subtlety in the theory of symmetry: things aren’t mono-
chromatic – there is a texture we were unaware of. We still haven’t 
christened this phenomenon, but it deserves a name. Perhaps we 
should call groups of symmetries whose zeta functions have this sym-
metry ‘palindromic groups’. 

In my office that day I witnessed a new beginning. The subject had 
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changed, and an addition to the language was required to describe this 
new vision. Luke is coming round again this morning, and we’ll see 
whether his computer explorations have thrown up any other surprises. 

It is one of the excitements of doing mathematics that a student 
might walk into your office, or a letter might arrive from some far-flung 
corner of the globe, with a breakthrough that changes the whole com-
plexion of the subject. Surprises were in store for the mathematicians 
who picked up from where Tartaglia, Cardano and Ferrari left off, and 
were trying to cook up a formula to solve quintic equations. But they 
came from a rather unexpected source. 

A glimpse through the Strait of Magellan 

At the beginning of the nineteenth century, Norway was cut off more 
than it usually is. In winter the fjords often froze over, preventing 
access from outside the country, but in 1807 Norway, then still under 
Danish control, was also suffering from political isolation. That year 
Britain attacked the Danish fleet in a pre-emptive strike, fearing that 
it would be used by Napoleon to mount an invasion of British shores. 
Continental powers blockaded Britain in retaliation for this act of 
aggression. Britain saw a blockade of Norway as a way to punish the 
Danes. The blockade was devastating for Norway, because the country’s 
principal export was timber to Britain. And the blockade starved the 
economy of vital funds; worse, the population was starved of food 
because the blockade cut off the grain supply from Denmark that 
Norway replied upon. By 1813, famine was rife in Norway. 

In the midst of all the political isolation and turmoil this country 
was suffering, a young Norwegian was taking his first steps along the 
road to a mathematical career that would mark him out as one of the 
country’s foremost mathematicians. With little contact beyond the few 
books that made it to Norway, Niels Abel would go on to solve a 
problem that centuries of work by eminent mathematicians in France, 
Italy and Germany had failed to crack. Renaissance mathematicians 
had unlocked the secrets of solving cubic and quartic equations. But 
for 250 years European mathematicians could not seem to find a way 
through the intellectual blockade that seemed to surround the question 
of solving the quintic until Abel finally found a way through. 
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Abel’s interest in science had been sparked by his father, who would 
drag him out of bed in the middle of the night to witness a lunar eclipse 
or a passing comet. The stars thrilled the young Abel. Mathematics, 
on the other hand, didn’t inspire him. Perhaps this was because his 
schoolteacher often resorted to violence to get his children to learn 
their multiplication tables. On one occasion the teacher got so carried 
away that he beat one of his students to death, for which he was 
expelled from the school. His place was taken by a young mathema-
tician, Bernt Holmboe. 

Holmboe was familiar with the exciting new mathematical develop-
ments taking place across Europe. His stories of great breakthroughs 
and outstanding challenges transformed the subject for Abel, who 
started to read some of the great works by Leonhard Euler and Isaac 
Newton. Within a year of Holmboe’s arrival at the school, Abel was 
streaking ahead in his own mathematical development. 

Abel’s graduation from school was marred by the tragic death of his 
father, who died after years of excessive drinking. His father’s alcohol-
ism had been exacerbated by his humiliating dismissal from a high-
ranking political position after he made false accusations against a 
political adversary. The 18-year-old Abel was left having to care for 
five children and an alcoholic mother who became a social outcast 
after being caught in bed with a lover on the afternoon of her husband’s 
funeral. 

As Abel’s mentor, Holmboe was determined that the young man’s 
fantastic mathematical talent should not be squandered, and from his 
own meagre income he paid for Abel to attend the newly opened 
university in Norway’s capital. Abel was only too happy to escape the 
pressures of his family life by burying himself in the emotionally 
neutral world of mathematics. One of the great unsolved problems 
that particularly appealed to Abel was trying to find a formula that 
would give solutions to quintic equations, ones with terms in x5. He’d 
read about the formulae discovered by Tartaglia, Cardano and Ferrari. 
These formulae seemed almost magical in their ability to produce the 
solutions to any cubic or quartic equation. He was determined to add 
his name to the list of eminent mathematicians who had cracked the 
secrets of equations by finding a formula to solve the quintic. 

It was the sort of problem that even a naive mathematician can start 
to play with and try to construct a formula to do the job. A German 
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mathematician, Walther von Tschirnhaus, thought he’d cracked the 
quintic in 1683, but his compatriot Gottfried Leibniz, Newton’s math-
ematical rival, found mistakes in Tschirnhaus’s analysis. As one seven-

´ teenth-century commentator, Jean-Etienne Montucla, wrote, ‘the 
ramparts are raised all around but, enclosed in its last redoubt, the 
problem defends itself desperately. Who will be the fortunate genius 
who will lead the assault upon it or force it to capitulate?’ 

In its day, solving the quintic had the same status as trying to prove 
Fermat’s Last Theorem (a problem Abel also had a go at) or cracking 
the enigma of the primes – two problems that have probably elicited 
the most ‘solutions’ from amateur mathematicians. Just as today I get 
several letters a week describing some theory about the origin of prime 
numbers, so too the professional mathematicians at the leading aca-
demies across Europe would hear from people claiming to have cracked 
the secret of the quintic. After a few months of tackling the quintic, 
Abel came to Holmboe with a formula that he believed would unravel 
this great unsolved problem of the age. Holmboe was amazed, but 
unable to check whether Abel’s formula really did what he claimed. 
They sent it instead to the Danish mathematician Ferdinand Degen, 
for publication by the Royal Society of Copenhagen. 

Degen wrote back asking to see the formula applied to an example. 
After all, this was the ultimate test for Abel’s theory. It had to be able 
to solve any equation involving x5. But when Abel sat down to show 
how his formula could be used to find the solutions of a particular 
quintic, he suddenly realized that there was a flaw in his workings. 
Maybe Degen had seen the same flaw but had very generously given 
Abel the chance to find it for himself. Degen obviously recognized the 
talent in Abel’s letter. He even sent the young mathematician some 
interesting problems to try out, suggesting that perhaps he had the 
talents to ‘discover a Strait of Magellan leading into wide expanses of 
a tremendous analytic ocean’. 

Coming to understand the limitations of his formula had a striking 
effect on Abel. By going through the anguish of seeing his great dis-
covery crumble before his eyes, he gained a deeper insight into the 
subtleties of the quintic equation. It completely changed his perspective 
on the problem. He began to see how he could prove why there might 
not actually be a formula to solve these equations. Almost like an 
initiation rite, Abel’s baptism by equations marked his transition from 
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an amateur calculator to a mathematician who would eventually be 
recognized as one of the greatest of his age. But that recognition still 
had to be earned, and that would result in Abel paying the ultimate 
price. 

Thanks to a small grant from the university, Abel got the chance to 
visit Degen in Copenhagen to discuss his mathematics. He could sense 
that Norway was too isolated and lacked the stimulating environment 
that he needed if his ideas were to be brought to fruition. In fact 
Copenhagen lacked the kind of mathematical stimulation he craved, 
but his visit did result in him meeting and falling in love with a 
young woman, Christine Kemp. Abel described her to a friend as ‘not 
beautiful; she has red hair and freckles, but she is an admirable woman’. 
Abel realized that he was not yet sufficiently well established to marry, 
but he promised her that once he had got the professorship in Norway 
that he coveted and was secure in his position, he would marry her. 
She agreed to wait for him to make his name. 

Spurred on now by the promise of what the future might hold, 
Abel dedicated his efforts to trying to understand why these quintic 
equations seemed so uncrackable. 

Dismissing mental tortures 

By this time, mathematicians had begun to understand the numbers 
that Cardano had dismissed as ‘mental tortures’. The square roots of 
negative numbers that had appeared in Cardano’s calculations were 
not ‘so subtle that they are useless’, as Cardano had thought. By the 
beginning of the nineteenth century these ‘imaginary numbers’, as 
René Descartes had first called them, were finally being accepted as an 
integral part of the world of mathematics. Mathematicians accepted 
that these numbers had been there all along, and it was up to them to 
uncover their secrets. And in doing so they started to discover why the 
world of symmetry might be intimately linked to solving equations. 

The history of mathematics shows how different cultures wrestled 
with the discovery of new types of number. The concept of a whole 
number is part of our evolutionary make-up. Our brains appear to be 
hard-wired to identify 1, 2, 3, . . . Indeed, mathematicians call them 
the natural numbers in recognition of their fundamental place in the 
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natural world. The ability to recognize the ‘two-ness’ of something as 
different from ‘three-ness’ is what led peoples the world over to intro-
duce words and symbols to articulate this difference. 

The fact that our brains have evolved to recognize the concept of 
whole numbers can probably be attributed to the Darwinian principle 
of survival of the fittest. The ability to assess how many animals there 
are in the opposing pack will inform the decision to fight or fly. 
Research has shown that animals are not only able to compare but can 
also count. Monkeys and cats count their young to check they are all 
there; coots know when the number of eggs in their nest has increased, 
indicating that another bird has sneaked in a parasite egg; human 
babies as young as five months can tell when one of their dolls is taken 
away from a pile; even dogs seem to twig that something fishy is going 
on when experimenters try to trick them into thinking that 1 + 1 = 3.  

But humans have taken these numerical foundations and built new 
types of number from the basic 1, 2, 3, . . . Each new type, such as 
negative numbers or imaginary numbers, seemed totally unnatural at 
first, and it often took generations for scientists to accept them and 
take them on board. But gradually, as people produced graphical 
representations of these numbers, or rules and equations for how to 
manipulate them, a language emerged which allowed the next genera-
tion to talk with confidence about these discoveries. Those who pion-
eered solving quadratic equations found the going harder because 
negative numbers were not part of the lexicon of the day. 

The problem of solving equations led to the discovery of a host of 
new types of number. Negative numbers arose as solutions to questions 
such as ‘find x such that x + 3 = 1’. Fractions help us to divide numbers 
that don’t naturally divide: for example, the question of how to divide 
seven loaves of bread between three people, captured in the equation 
3x = 7, needs the language of fractions to enable us to talk about 
something less than a whole loaf. 

Pythagoras and his followers had believed that all mathematical 
problems could be solved using whole numbers and fractions created 
from whole numbers. It therefore came as a shock to discover that the 
length of the long side of a right-angled triangle whose two short sides 
are one unit long could not be expressed as a fraction. Pythagoras’s 
Theorem implied that the length was a number whose square is 2 
(Figure 43). What was this number? If you take the fraction 7/5 then 
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Fig. 43 A triangle whose longest side is the square root of 2 in length. 

its square is quite close to 2; 707/500 squared gets you closer. Pairs of 
larger and larger numbers could be found whose ratio was closer and 
closer to the length of the side of the triangle, but, the Pythagoreans 
proved, no fraction captured the length exactly. 

The square root of 2 and other numbers that cannot be expressed 
as fractions are called irrational numbers, meaning numbers that can-
not be expressed as ratios between whole numbers. More irrational 
numbers arose out of Tartaglia’s equations. He needed to take cube 
roots of numbers to solve equations such as x3 = 2. The cube root of 2 
is the length on the side of a cube enclosing a volume of size 2. But it 
was with some unease that mathematicians started to accept numbers 
such as the fifth root of 2. It was less clear what geometric meaning 
such a number might have – it seemed to require conceptualizing 
boxes in five dimensions. Omar Khayyam had dismissed such numbers 
as meaningless. Nevertheless, as mathematicians moved away from the 
geometric ties that characterized the mathematics of the ancient world 
and towards a more abstract view, they began to explore the arithmetic 
of numbers for their own sake. Although the fifth root of 2 didn’t have 
any obvious geometric interpretation, they realized that there were 
numbers such as 11,487/10,000 which, when raised to the fifth power, 
could get you very close to 2. 

Lengths of geometric objects continued to produce other new 
numbers. Take a length of string, and fix one end to the floor and 
attach a pen to the other end. Mark out a circle in the ground. If the 
distance across the circle is one unit, how far does the pen travel? This 
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is such an important number that mathematicians gave it a special 
symbol: p. From the time of the Ancient Egyptians, mathematicians 
tried to write this quantity as a number. In 1761 it was proved that p 
cannot be represented as a fraction. 

In 1882 it was shown that p is even more mysterious. It was a 
number that couldn’t even be captured as the solution to one of the 
equations that Cardano and the others had shown how to solve. These 
numbers that cannot be expressed as solutions to equations had been 
named transcendental by Leibniz in recognition of their elusive 
character. 

Despite the slippery nature of irrational and transcendental 
numbers, mathematicians began to build up a picture of where all 
these numbers ‘were’: fractions, irrational numbers such as the fifth 
root of 2 and important constants such as p could all be thought of 
as points sitting along a ruler or line, something we now call the 
number line. In principle, all these different numbers could be 
measured by a ruler. The physical reality of all whole numbers, frac-
tions, and irrational and transcendental numbers led mathematicians 
to refer to them collectively as the real numbers. 

The problem came when mathematicians tried to make sense of 
solving x2 = −1. The Indian mathematicians had proved that a negative 
number squared gives a positive number. So there didn’t seem to be 
any numbers on the number line that would solve this equation. There 
were two ways forward: either declare that these equations could not 
be solved, or – the more daring option – invent new numbers to solve 
these equations. 

Ever since Cardano encountered the need for square roots of nega-
tive numbers, mathematicians had been moving closer and closer to 
taking the bold step of admitting these new numbers into the math-
ematical canon. But would this unleash too many new types of 
number? For example, what if we want to find a number whose fourth 
power is −1? Would that require the invention of yet another new 
number? 

The amazing conjecture that mathematicians put forward in the 
seventeenth century was that just one new number, the one needed to 
solve x2 = −1, could be combined with whatever was necessary from 
the realm of real numbers to produce a solution to any other equation. 
Not everyone was so confident that this would work. Leibniz was 
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certainly of the belief that you’d need to invent more and more 
numbers. He couldn’t see how introducing just the square root of −1 
could help you answer the more complicated question of finding the 
fourth root of −1. 

The new number whose square was −1 was called an imaginary 
number and given the symbol i. It took two hundred years to prove that 
this imaginary number was as powerful as people believed. Eventually it 
was Gauss who proved in his doctoral thesis that any equation of the 

4form x6 + x5 + 3 = 0  or  x = −1 could be solved by setting x equal to a 
number a + bi built out of this imaginary number i and two real 
numbers a and b. This combination a + bi of imaginary and real 
numbers is called a complex number. 

For example, setting a and b equal to 1/�2 will give a number of the 
form a + bi, whose fourth power is −1. If you are brave enough to do 
some algebra here is why: 

� 1 1 2 

+ i� = 
2 
+ (2 ×  11

2 
× i) +  1 i2 = i

2�2 �2 

and the i, when squared again, gives us −1. 
So important was this discovery that it became known as the Funda-

mental Theorem of Algebra. In proving this result, Gauss answered 
another problem that had been bugging mathematicians: just where 
were these imaginary numbers, if they were not on the number line? 
He produced a picture of these new numbers which gave them some 
semblance of reality and started to hint at the connections that solving 
equations might have with symmetry. 

Gauss had actually used a picture of the imaginary numbers as a 
mathematical tool in his proof, but he kept it hidden for many years, 
fearing he would be laughed at by a mathematical establishment still 
wedded to the language of equations and formulae. But because the 
image was so powerful and gave imaginary numbers a physical reality, 
it was only a matter of time before others hit upon the idea. Two 
amateur mathematicians, the Dane Caspar Wessel and the Swiss Jean 
Argand, independently proposed similar pictures in pamphlets they 
published. Argand, who was the last of the three to have the idea, is 
the person whose name became attached to the picture we now call 
the Argand diagram. Credit is rarely just. 

The idea was that if there were no numbers on the number line 
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whose square is −1, why not create a new direction to represent these 
new numbers whose squares were negative? A two-dimensional picture 
emerged in which the regular number line became the horizontal axis, 
representing the real numbers, and the vertical axis could be used 
to record the imaginary numbers (Figure 44). So on the Argand dia-
gram the complex number 3 + 4i, for example, is represented as the 
point (3, 4). 

Fig. 44 The Argand diagram of complex numbers. 

Once the picture of these complex numbers became known, math-
ematicians realized how powerful this representation could be. Adding 
complex numbers was just like following two sets of directions, one 
after the other. Mathematicians also discovered the beautiful fact that 
multiplying numbers translated into rotating numbers around the 
point representing the number 0 which on the Argand diagram is 
called the origin. To find the direction of the product of two complex 
numbers, you join the point representing each number to the origin, 
then add the angles these two lines make with the horizontal axis. 
Whereas, centuries before, algebra had thrown off its ties with geom-
etry in order to develop, now progress was being made by moving in 
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the opposite direction. It was like having a dictionary which translated 
the algebra of these numbers into geometry – two different languages 
for the same thing. The power of this dictionary was that certain ideas 
were much more self-evident in one language than in the other. 

For example, mathematicians discovered that the solution of the 
equation x4 = −1 was a number which you got to on the Argand 
diagram by travelling a distance 1/�2 horizontally, in the real direction, 
and the same distance vertically, in the imaginary direction (Figure 
45). This number, x = 1/�2 + 1/�2i, is actually sitting on a circle of 
radius 1. You can get to it by starting at the number 1 – the point 
(1, 0) – and then making an eighth of a turn anticlockwise round the 
circle. 

Imaginary 

Real 
x4 = –1 

– i 

x2 = i 

x3  1 + 1 
2 2

x = i 

1 
2 

1 
2 i 

1 

Fig. 45 The point x marks the location of the fourth root of −1 in the Argand diagram. Raising 
the number x to the power of 4 moves the point round the circle to −1. 

There is a rather beautiful geometric way to raise this number to 
the power 4. Each time the number is multiplied by itself, the location 
of the result moves round the circle by an eighth of a turn. After four 
spins we get to the number −1, the point (−1, 0) on the Argand 
diagram. The geometric language turns out to be much simpler to play 
with than the algebra. Not only that, it also reveals that there 
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are actually three other numbers which are solutions of the equation 
4x = −1. If you take any of the four points x, y, z or w on the circle and 

spin them in a similar way, they all land on the number −1 (Figure 
46). For example, the number y represents a spin of 3/8 of a turn from 
the number 1 on the real axis. To locate y4, repeat this turn four times 
and you get to the number −1. So there are actually four complex 
numbers that will solve this equation. 

Fig. 46 The points x, y, z and w mark the location of four complex numbers whose fourth 
power is −1. 

The graphical depictions of these solutions and of the spins that get 
you from one solution to another start to reveal the geometric sym-
metry that underlies an equation such as x4 = −1. Articulating this 
connection more explicitly would ultimately unlock both the secrets 
of equations and a new language to describe symmetry. 

The discovery that there were four different complex numbers that 
could solve the equation x4 = −1 was an important breakthrough. Omar 
Khayyam’s analysis of equations had allowed him to see that there 
might be more than one answer to these equations. By 1629, the 
Flemish mathematician Albert Girard proposed that the number of 
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solutions will depend on the highest power in the equation. So if the 
equation is a quartic, such as x4 = −1, you will expect four solutions. 
The equation x7 = −1 has seven solutions. The obvious one is got by 
setting x = −1, but there are another six which, together with x = −1, 
are evenly arranged round the unit circle on the points of a heptagon. 
We have actually met a simple example of this already, in that x2 = 4  
has two solutions: x = 2 and its mirror solution, x = −2. What mathema-
ticians were now proposing was a much wider generalization: there 
are five fifth roots, seven seventh roots, and so on. 

These extra solutions begin to show us how symmetry might be 
related to solving equations. Mathematicians would eventually discover 
that every equation has some symmetrical object attached to it. For 
the equation x4 = −1 it is some (but not all) of the symmetries of the 
square connecting the solutions x, y, z and w. 

Niels Abel was already beginning to see that symmetries in the 
solutions of these equations were the key to understanding whether 
the solutions to the quintic could be found by equations involving 
fifth roots, just as the cubic had been solved using an equation involv-
ing cube roots. Clearly an equation such as x5 = 3 can be solved using 
fifth roots. But what about x5 + 6x + 3 = 0?  Tartaglia had found ways to 
twist the cubic until it looked like an equation that involved taking 
cube roots and square roots. Was the same trick possible for the 
quintic? By 1824 Abel had cracked it. There was something about the 
symmetries associated with the five solutions of the quintic which 
meant that there was no formula for the solution of any quintic 
equation. Finally, Abel understood why the formula he had sent to 
Degen three years before was ultimately doomed to fail. 

Showing that no formula exists for the quintic was a problem of a 
very different order of complexity to the one tackled by Tartaglia, 
Ferrari and Cardano. How on earth could you really convince people 
that despite all leaps of the imagination you could never find a formula 
to solve the quintic? The formula produced by Tartaglia was a tangible 
thing that you could check. Now the quintic was forcing mathema-
ticians into having to think much more conceptually. With this move 
to abstraction came the seed for a language of symmetry. 
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Shuffling solutions 

Abel’s genius was to break with the shackles of the past with all its 
explicit equations and formulae and apply a more abstract theoretical 
analysis to these algebraic expressions. In school we are taught al-
Khwārizmı̄’s formula for solving quadratic equations. If you want to 
find the solutions to the quadratic equation ax2 + bx + c = 0, then feed 
the numbers a, b and c into the formula 

− b � �(b2 − 4ac)
x = 

2a 

Abel proved that when it came to quintic equations, however compli-
cated a concoction of square roots, cube roots or higher roots you 
cooked up for your formula, there would be a quintic equation for 
which your formula would fail to find the solutions. To prove his 
claim he made one of the classic moves in the mathematician’s game-
play: assume that there is such a formula, and then show why that 
must lead to a contradiction. 

Reductio ad absurdum is the name of this move – keep making 
deductions from a hypothesis until you get something absurd. Then 
you can conclude that the hypothesis must have been false. It was a 
trick the Pythagoreans were adept at; it was how they proved that you 
couldn’t represent the square root of 2 as a fraction. If you suppose 
that you could, you end up proving that an even number is equal to 
an odd number. The famous Cambridge mathematician G. H. Hardy 
wrote in his book A Mathematician’s Apology that reductio ad absurdum 
was one of mathematics’ finest weapons: ‘It is a far finer gambit than 
any chess gambit: a chess player may offer the sacrifice of a pawn or 
even a piece, but a mathematician offers the game.’ 

Having assumed that the quintic could be solved with a formula 
that would tell you what the five solutions were, Abel began to play 
around with what that might imply, hunting for some ultimate absurd-
ity that would kill his hypothesis. He knew that a quintic equation of 
the form x5 − 6x + 3 = 0  has  five  different solutions, which we shall call 
A, B, C, D and E. These letters are names for the five numbers that 
solve the equation. Abel could also think of these letters as labelling 
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five points on the map of complex numbers. He then began to consider 
all the new formulae that you could build from the five solutions, 
formulae such as B − A × C − D × E or A × B × C × D × E. 

His inspirational step was to consider what happens when you take 
a formula and swap the five solutions around. For example, what 
happens to the answer to the formula A × B × C × D × E if you change 
the order of the individual solutions? In this case, nothing. The formula 
A × B × C × D × E multiplies all the solutions together and doesn’t yield 
a different answer if I swap some of the solutions around and calculate 
B × A × C × D × E instead. But a formula such as A − B × C − D × E in 
general will give a different answer when I swap A and B and calculate 
B − A × C − D × E instead. 

What is the maximum number of different answers one formula 
could give by swapping round the numbers A, B, C, D and E? I need 
to calculate how many different ways I could arrange the five letters 
in this formula. Here is one possible rearrangement: 

A B C D E 
� � � � � 
D A E B C 

Counting all the possibilities is a little like working out how many 
different combinations there are on a lock with five wheels where each 
wheel has the letters A to E engraved on it, except that now the 
combination lock is not allowed to show the same letter twice. Another 
way to think of this is to count how many five-letter ‘words’ you can 
make using the letters A to E once and once only. There are five choices 
for the first letter. In the above rearrangement, we chose the letter D. 
Having chosen the first letter we are now only left with four choices 
for the second letter, then three for the third, two for the penultimate 
letter and no choice at all for the last one. So there are 5 × 4 × 3 × 2 × 1 =  
120 different words we could build. Each word represents a different 
arrangement of the letters in the formula we are looking at. And with 
120 different ways to order the five solutions A, B, C, D and E, there 
are potentially a maximum of 120 different answers. 

But it depends on the formula. Some formulae give just one answer 
regardless of the order of the numbers. For example, A × B × C × D × E 
doesn’t change its value if you swap any of the letters around. Some 
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formulae take two values. For example, swap the letters around in the 
formula 

(A − B)(A − C)(A − D)(A − E)(B − C)(B − D)(B − E)(C − D)(C − E)(D − E) 

and you get either the number you started with or its negative: two 
possible answers. Abel’s crucial breakthrough was to prove that you 
could never build a formula out of these five solutions, A, B, C, D 
and E, which generates only three different answers for all possible 
permutations of the numbers. It was also impossible to get just four 
answers out of a formula. But there was a formula that generated at 
least five different answers. A gap had opened: you jumped from 
formulae giving two answers to formulae giving five answers. 

Formulae built from solutions to quadratic or cubic or quartic 
equations didn’t have this gap. It only started to appear when the five 
numbers A, B, C, D and E were solutions to a quintic. But how could 
Abel exploit this realization? 

He began by assuming that there was some magic formula for these 
solutions A, B, C, D and E like the one the Arabs derived for quadratic 
equations or Tartaglia’s formula for cubics. Having made this assump-
tion, he began to look for a contradiction. Abel first deduced a general 
expression for what this formula would look like if it existed. He then 
took this hypothetical magic formula for the solutions A, B, C, D and 
E and plugged it into the formulae such as A − B × C − D × E that he 
had been exploring, to see if it led to any absurdity or contradiction. 
After pages of twisting and turning, Abel finally teased out why a magic 
formula would contradict the fact he’d proved earlier: that a formula 
in the solutions A, B, C, D and E can’t take three or four answers. This 
contradiction was enough to show that the magic formula therefore 
could not possibly exist. 

What Abel didn’t appreciate was that by thinking of A, B, C, D and 
E as points on the map of complex numbers, the permutation of the 
five numbers would look more like geometric moves which permute 
these points around. For example, if the solutions were arranged evenly 
round a circle then the permutation that sends A to B, B to C, C to D, 
D to E and E to A is the same as a rotation of the circle through a fifth 
of a turn. The language Abel was beginning to formulate to express 
his ideas about equations would ultimately help to articulate symmetry. 
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The 120 words built from the letters A, B, C, D and E are the beginning 
of a language to describe the geometric moves that permute points on 
the map. But Abel was more interested in the fact that he’d just cracked 
one of the greatest problems of his age: there was no magic formula 
to solve quintic equations. 

The cantankerous Cauchy 

Abel knew that he had in his hands the passport to the academies of 
France, Italy and Germany. Here was his chance to make his name, 
get that professorship in his native Norway and finally marry the 
woman he had fallen in love with in Copenhagen. Despite extreme 
poverty, he got together enough funds to publish his solution himself. 
He could afford only enough paper for six printed pages. It had taken 
him pages and pages of handwritten notes to arrive at his contradiction. 
But faced with the costs the printer was demanding, he managed to 
distil the key points of his argument to fit the limited space he had 
available. The ideas were tough enough without being stripped to the 
bare bones, but Abel had no choice. The paper opened with these 
words: 

Mathematicians have occupied themselves a great deal with the general 
solution of algebraic equations and several among them have sought to 
prove the impossibility. But, if I am not mistaken, they have not suc-

ceeded up to the present. Therefore I hope that mathematicians will 
receive kindly this memoir, which aims to fill this gap . . .  

It then leapt straight into the logical onslaught of Abel’s ideas. 
Abel sent his paper to the leading mathematicians of the day, but it 

was ultimately the French Academy he hoped to impress with his 
proof. Founded in 1666, the Academy had grown from a few scientists 
meeting in the Royal Library to an institution driving the scientific 
agenda in Europe. The prizes it instigated in 1721, awarded for sol-
utions to particular problems, had become so influential that they 
defined the future of science in the ensuing decades. The first prizes 
were awarded for problems about masts of ships, charting the stars at 
sea and memoirs on the compass – problems clearly driven by practical 
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considerations. But as the century progressed, the problems began to 
reflect an interest in more abstract mathematical concerns. 

The French Academy met regularly to present and discuss the out-
standing achievements of the day. The academicians’ seal of approval 
was essential for any budding mathematician, which is why Abel pre-
pared his paper on the quintic equation in French. The mathematician 
whom Abel really hoped to impress was the academician Augustin-
Louis Cauchy. If he could only get Cauchy to present his paper to the 
Academy, he knew that he would no longer be standing out in the 
cold, peering in through the windows of the mathematical drawing 
rooms of Europe. He would be welcomed inside as the new champion 
of the age. Cauchy had a reputation in the Academy as one of the 
toughest nuts to crack. Whether Abel knew it or not, Cauchy had been 
working on questions of symmetry and solving equations but had not 
drawn any connection between the two. 

Cauchy was born in Paris on 21 August 1789, just over a month 
after the storming of the Bastille, and had suffered a particularly harsh 
childhood. His father had been an aspiring part of the regime which 
the revolutionaries were determined to overthrow. As the Reign of 
Terror in Paris mounted, Cauchy’s father became more and more 
worried as he saw friends and compatriots tried and executed. The 
family decided to flee to the refuge of the country. Life was still not 
easy. Cauchy’s father wrote of their hardship that ‘We never have more 
than a half pound of bread – and sometimes not even that. This we 
supplement with the little supply of hard crackers and rice that we are 
allotted.’ 

Cauchy contracted smallpox, which severely weakened him. The 
constant threat hanging over the family of the arrest of his father 
and the exhaustion caused by starvation probably contributed to the 
development of Cauchy’s introspective character. He was rarely seen 
playing with other children of his age; instead, he sought solace from 
the turmoil in his family’s life by escaping into his books. Although 
he loved languages and literature, it was becoming clear that mathe-
matics held a particular fascination for him. His teacher noted that ‘it 
was not an infrequent thing to find a paper on a literature assignment 
suddenly interrupted. A mathematical idea would have crossed the 
youngster’s mind and so absorbed him that he would be forced to 
translate the compelling notion into numbers and figures.’ 
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When the Terror came to an end the family moved back to Paris, 
and Cauchy’s father resumed his upwardly mobile political life. 
Eventually his hard work was rewarded when he was elected to the 
Senate. There he became friends with two fellow senators who were 
also leading mathematicians: Pierre-Simon Laplace and Joseph-Louis 
Lagrange. Lagrange had become famous before the Revolution for 
solving some of the Academy’s prize problems, including work on the 
moons of Jupiter and Saturn, the influence of the planets on passing 
comets and why the Earth’s moon oscillates slightly, showing different 
features of the lunar surface. He credited his father’s bankruptcy for 
inspiring his choice to become a mathematician in the first place: ‘if I 
had been rich I probably wouldn’t have devoted myself to mathe-
matics’. 

But like Cauchy’s father, Lagrange was extremely fearful when the 
Revolution swept through France. He survived – but only just. Because 
he was born in Italy he faced arrest under the new laws of September 
1793. However, the eminent chemist Antoine Lavoisier argued 
Lagrange’s case, and the mathematician’s name was specifically 
excluded from the edict. A year later, Lavoisier was sent to the guillo-
tine; as a former collector of taxes for the deposed monarch, he stood 
no chance of being pardoned by the revolutionaries. ‘It took only a 
moment to cause this head to fall, and a hundred years will not suffice 
to produce its like,’ wrote Lagrange of the friend who had saved him 
from arrest. Some credit Lagrange’s survival during this period to his 
public views that ‘one of the first principles of every wise man is to 
conform strictly to the laws of the country in which he is living, even 
when they are unreasonable’. Perhaps this was a lesson he learnt from 
the unforgiving world of mathematics. 

One day, Cauchy’s father let his son accompany him to work at 
the Palais du Luxembourg, and he showed the great academicians 
some of the mathematics that his son had been working on. Lagrange 
was impressed and, turning to his colleague Laplace, declared: ‘You 
see that little young man? Well! He will supplant all of us in so far as 
we are mathematicians.’ Lagrange’s advice to Cauchy’s father concern-
ing the boy’s education was unusual: ‘Don’t let him touch a mathemat-
ical book nor write a single number before he has completed his 
studies in literature.’ His linguistic skills should be developed first, said 
Lagrange. 
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Lagrange could already sense important changes afoot in mathe-
matics. There was a need for a more abstract language, sophisticated 
enough to express the subtleties of this new mathematical age. Perhaps 
if the young Cauchy were well grounded in the grammar and rules of 
Greek and Latin, he would have the foundations for creating this new 
abstract language of mathematics. ‘If you don’t hasten to give Augustin 
a solid literary education,’ warned Lagrange, ‘his tastes will carry him 
away; he will be a great mathematician but he won’t know how to 
write his own language.’ 

Cauchy entered university at the precocious age of 16, but despite 
the academic environment he still felt an outsider. His fellow students 
were all fired up with the revolutionary politics of the day. Cauchy, on 
the other hand, had inherited his father’s staunch Royalist views and 
his mother’s pious Catholicism. His fellow students taunted him merci-
lessly for his overt political and religious opinions. Cauchy stuck to 
his strongly held beliefs, and even joined a secret Catholic society that 
sought to install those with allegiances to the Pope in positions of 
influence. 

Despite Cauchy’s opposition to the Republican cause, Napoleon 
enlisted his services to join the engineers in Cherbourg who were 
building a fleet to invade England. Following his graduation, Cauchy 
laboured away for three years: ‘I get up at four and am busy from 
morning to night. Work doesn’t tire me; on the contrary it strengthens 
me and I am in perfect health.’ 

Lagrange remained interested in the mathematical prodigy and sug-
gested that he might like to look at a problem that was perplexing 
mathematicians at the time. It concerned certain new symmetrical 
shapes that had been discovered. Plato’s colleague Theaetetus had 
proved two thousand years before that there were five Platonic solids 
– three-dimensional objects whose faces were all copies of the same 
regular polygon. For example, 12 pentagons could be put together to 
make the ‘sphere of pentagons’ or dodecahedron. 

To everyone’s surprise, in 1809 a new shape had been built out of 
these 12 pentagons. Theaetetus had insisted that the faces of his shapes 
should not cut into each other. But what if you relaxed this con-
dition? A mathematics teacher in Paris had found a new way to piece 
12 pentagons together to make a new symmetrical shape that was 
christened the great dodecahedron (Figure 47). Although it looks like a 
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shape built from lots of irregular triangles, it consists of 12 intersecting 
pentagons. The shape satisfies all the conditions for a Platonic solid 
except for the fact that the faces cut into each other. How many other 
strange and beautiful shapes like this might be out there? Three others 
were soon discovered, and mathematicians began to wonder where the 
new list might end. 

Fig. 47 The great dodecahedron. 

The French Academy decided that the issue needed to be settled, 
and dedicated its prize for 1811 to the question of proving beyond 
doubt that the five Platonic solids plus the four new solids were all the 
three-dimensional shapes that you could build from identical regular 
polygons. While he was hard at work as an engineer in Cherbourg, 
preparing Napoleon’s fleet for the invasion of England, Cauchy set his 
mind to seeing whether these four shapes were the only additions to 
the symmetrical shapes of the Greeks. If he were to claim the prize on 
offer, he would require a watertight argument to prove why there 
couldn’t be any more. Constructing new shapes was fine. Their exist-
ence, once built, spoke for itself, rather like the formulae that solved 
the quadratic, cubic and quartic equations. But it required very sound 
logical argument to convince the scientific establishment that there 
was no other sneaky way to piece together shapes to make a new 
object. 

Cauchy was starting to experience the challenge of finding a language 
to articulate the visual world of geometry and space. As Descartes had 
declared, ‘Sense perceptions are sense deceptions.’ The way he tackled 
the problem marks a turning point in the way mathematics was being 
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done. He recognized the weakness of appealing to one’s geometric 
intuition and sought instead a more rigorous way to express intuitive 
ideas which might avoid the pitfalls of visual deceptions. This con-
trasted with the attitude of Renaissance scientists such as Johannes 
Kepler, who several centuries earlier had heaped scorn on the idea of 
turning pictures into language: ‘nothing is proved by symbols, nothing 
hidden is discovered in natural philosophy through geometric 
symbols’. 

Armed with his burgeoning critical approach to the mathematics of 
space and symmetry, Cauchy successfully answered the Academy’s 
question for 1811. These four new shapes, plus the five classical Pla-
tonic shapes, were the only symmetrical shapes possible. The Academy 
awarded him its prize. But the effort he had expended in trying to get 
his head around shapes as well as the rigours of the engineering project 
at Cherbourg took their toll. Cauchy collapsed in September 1812 
from severe depression and mental exhaustion. He returned to Paris, 
realizing that his isolation from the intellectual centre had not been 
good for him. Paris was where the action was and where he should be 
doing his mathematical work. Having won the Academy’s prize, he 
soon assumed his place alongside the academic elite. 

Ruffini’s tiny mistake 

Despite the appearance of these new symmetrical shapes, mathematics 
was still lacking any coherent theory of what symmetry really was. 
How could you say that two objects had the same or different sym-
metry? There was still too much emphasis on the physical reality of 
these objects as opposed to a theoretical understanding of the essence 
of what made them symmetrical or not. 

The text that Abel had sent to Cauchy contained the beginnings of 
a language for symmetry. But it wasn’t the only text that Cauchy 
had received about the quintic. In contrast to Abel’s modest six-page 
pamphlet was a 500-page treatise by the Italian doctor and mathema-
tician Paolo Ruffini that Cauchy had waded through several years 
earlier. Ruffini was also claiming to have proved that there was no 
formula to solve the quintic, but unlike the poverty-stricken Abel, he 
could afford paper – lots of it. 
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It was Lagrange who had introduced Cauchy to this huge opus. 
Lagrange didn’t think it was worth much, but Cauchy with his youth-
ful enthusiasm set out to work his way through it. Ruffini’s work 
was inspired by a paper Lagrange had written 30 years before. 
Mathematicians were still exceedingly reluctant to admit that there 
was no formula to crack the quintic, which is why Ruffini, the first 
person to grab the nettle, has received scant recognition for his brave 
step. 

Ruffini was convinced that his breakthrough would make him 
famous. He had cracked, in Lagrange’s words, ‘the most celebrated 
and important problem of algebra’. He decided to send his paper to 
the ‘immortal’ Lagrange, who had inspired his proof. Being a fellow 
Italian, Ruffini felt sure it would be well received. But far from the 
accolades Ruffini was expecting, his paper seemed to make no waves 
at all. He got no reply from Lagrange. He decided to write a second 
version, which he sent to Lagrange in 1801 with a desperate letter 
begging for some recognition even if it were negative: 

Because of the uncertainty that you may have received my book, I send 
you another copy. If I have erred in any proof, or if I have said some-

thing which I believed new, and which is in reality not new, finally if I 
have written a useless book, I pray you point it out to me sincerely. 

Still no response. In 1802 Ruffini sent another version: ‘No one has 
more right . . . to receive the book which I take the liberty of sending 
you.’ 

Fellow compatriots were supportive, but their backing was based 
more on partisan motives than hard, cold analysis. ‘I rejoice exceed-
ingly with you and with our Italy, which has seen a theory born and 
perfected and to which other nations have contributed little,’ wrote a 
professor in Pisa to Ruffini on receiving his manuscript. 

But there was a crucial problem with Ruffini’s text. He had made a 
mistake. If only someone had pointed it out to him, he might have 
been able to correct it and claim the credit he was due. He had fatally 
assumed something rather special about the magic formula that he 
wanted to show did not exist. But he offered no argument for why 
one could assume that the formula, if it existed, had this special 
property. It was a missing piece in the jigsaw of the proof. Without it, 
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it was as useless as Ruffini claiming to be descended from Julius Caesar 
with the exception of one gap in the family tree. 

With the failure of the mathematical establishment to recognize his 
work, Ruffini returned instead to his medical practice. While treating 
patients in a typhus epidemic that swept Italy in 1817, he caught the 
disease himself. He never fully recovered, but did manage to publish 
a memoir about his experiences of the disease. A few months before 
he died, in 1822, he received a letter from Cauchy. His work on the 
quintic hadn’t gone completely unrecognized: 

Your memoir on the general resolution of equations is a work which 
has always seemed to me worthy of the attention of mathematicians 
and which, in my judgement, proves completely the impossibility of 
solving algebraically equations of higher than the fourth degree. 

He had not yet picked up the subtle error Ruffini had made. 
Cauchy’s praise for Ruffini was somewhat out of character. The 

general perception of Cauchy is that of a self-obsessed mathematician 
interested only in his own discoveries, never keen to give credit where 
credit is due. This side of his character emerged when he came to 
describe Ruffini’s ideas to the Academy. Rather than presenting 
Ruffini’s work at the Academy’s weekly meeting, he presented instead 
his own generalization of Ruffini’s result. Ruffini’s original result, 
which had inspired Cauchy, didn’t get a mention. 

It would not be the last time that Cauchy put self-promotion 
ahead of recognizing those who had laid the groundwork. His successes 
were beginning to breed in him a rather arrogant streak that would 
become increasingly off-putting to his contemporaries. Jean-Victor 
Poncelet, a colleague of Cauchy’s in Paris, describes Cauchy brushing 
him aside when they met in the streets in Paris. He had just received 
a letter from Cauchy rejecting his work for presentation to the 
Academy: 

I managed to approach my too rigid judge at his residence . . . just as 
he was leaving . . . During this very short and very rapid walk, I quickly 
perceived that I had in no way earned his regards or his respect as a 
scientist . . . without allowing me to say anything else, he abruptly 
walked off, referring me to the forthcoming publication of his Leçons 
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´ l’Ecole Polytechnique where, according to him, ‘the question would be 
very properly explored’. 

His colleagues had by now formed a very negative view of Cauchy. 
Even his mathematics they claimed was more negative than positive: 
he had won his prize at the Academy, not for constructing a new 
symmetrical object but for showing there were no new shapes to add 
to the list: 

He has introduced into science only negative doctrines . . . it is in fact 
almost always the negative aspect of the truth which he came to discover, 
that he takes care to make evident: if he had found gold in whiting, he 
would have announced to the world that chalk is not exclusively formed 
of carbonate of lime. 

‘Yours destroyed’ 

Given the political and geographical isolation of Norway at the begin-
ning of the nineteenth century, and the poor reception of Ruffini’s 
work in Paris, it is likely Abel would have been unaware of the Italian’s 
progress. While Ruffini’s work covered hundreds of pages and con-
tained a mistake, Abel had condensed his proof onto six sides. More 
importantly, Abel had not made the mistake in his argument that so 
fatally damaged Ruffini’s claim to have cracked the enigma of the 
quintic. 

In the autumn of 1825, Abel set off with four friends for his grand 
tour of Europe, hoping that the paper he had sent on before him 
would assure him a welcome reception. The trip was quite daunting: 
Abel was only 23 years old, and it was his first venture so far afield. 
The grant he had received to fund his trip had stipulated that he spend 
as much time as possible in Paris, given that the city was the Mecca of 
the mathematical world. His friends planned to visit Germany first. 
Abel was reluctant to travel to France on his own. He wrote back 
home: ‘Now I am so constituted that I cannot endure solitude. Alone, 
I am depressed, I get cantankerous, and I have little inclination to 
work.’ He decided to join his friends on their visit to Berlin. 

In Berlin he made friends with a dynamic civil servant working at 
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the Prussian Ministry for the Interior. August Crelle was passionate 
about mathematics. He organized soirées for young mathematicians 
to discuss their ideas, and set up a new mathematical journal in which 
he planned to publish the work of promising young mathematicians. 

Crelle had a reputation for sniffing out great talent, and it didn’t 
take him long to see that the young Norwegian who had been attending 
meetings at his house was exceptional. The first volume of Crelle’s 
journal featured no fewer than seven papers by Abel, including his 
work on the quintic. Abel wrote back to his old teacher Holmboe: 

You cannot imagine what an excellent man [Crelle] is, exactly as one 
should be, thoughtful and yet not horribly polite like so many people, 
quite honest, for that matter. I am with him on as good terms as I am 
with you or other very good friends. 

Abel felt sure the publication of his work would stand him in good 
stead in his application for the mathematics chair at the only university 
in Norway. The position would finally allow him to marry his fiancée. 
He was crushed to receive in Berlin a letter telling him that the pro-
fessorship had been offered to, of all people, his old tutor Holmboe. 
Despite his love for his teacher, Abel knew that Holmboe’s mathe-
matics did not compare with his own work. And Holmboe was young 
enough that there was little chance of the chair becoming vacant again 
in the foreseeable future. 

Nevertheless, Crelle’s support gave Abel the psychological boost to 
make his way to Paris to find out what people had made of his work. 
He still procrastinated, making detours via Italy and Switzerland. ‘My 
God! I, even I, have some taste for the beauties of nature, like everyone 
else. I shall make this one voyage in my life.’ Finally he arrived in Paris 
excited by the prospect of meeting the great mathematical names of 
the age. 

Much to his disappointment, no one seemed interested. Cauchy had 
failed to present any of Abel’s papers to the Academy and seemed 
completely absorbed in his own work. Abel wrote to Holmboe: 

The French are much more reserved with strangers than the Germans. 
It is extremely difficult to gain their intimacy, and I do not dare to urge 
my pretensions as far as that; finally, every beginner had a great deal of 
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difficulty getting noticed here. I have just finished an extensive treatise 
on a certain class of transcendental functions to present to the Institute 
which will be done next Monday. I showed it to Mr Cauchy, but he 
scarcely deigned to glance at it. 

Abel’s funds by this time were running perilously low. He rationed 
himself to one meal a day. His evenings were spent playing billiards 
or sneaking into the theatre, which he loved, but the complete lack of 
interest in his work was beginning to grind him down: ‘they are 
monstrous egoists . . . everyone works by himself here, without bother-
ing others. Everyone wants to teach and no one wants to learn.’ 

He eventually gave up on Cauchy: ‘Cauchy is mad and there is 
nothing that can be done about him, although, right now, he is the 
only one who knows how mathematics should be done.’ He decided 
to cut his losses and head back to Norway, reaching the capital in May 
1827. His great breakthrough had been completely ignored. He still 
had no position and was now heavily in debt. The prospect of his 
marrying his fiancée was looking even bleaker than when he had set 
off on his grand tour. 

But Abel was still thinking about mathematics. He was beginning 
to grasp that there was much more to his solution of the problem of 
the quintic than revealing that there was no formula to solve these 
equations. How the roots of each equation behaved as you permuted 
them seemed to suggest that each equation had a certain symmetrical 
object associated with it. And it was the individual properties of these 
symmetrical objects that held the key to how to solve each individual 
equation. Abel was beginning to see the Strait of Magellan opening up 
before him, just as Degen in Copenhagen had predicted. He wrote to 
Crelle with details of his ideas, together with a request for a loan 
declaring that he was ‘poor as a church mouse’ and ended with the 
salutation ‘Yours destroyed’. 

Desperate to spend some time with his fiancée, Abel decided to take 
a break from the pressures of mathematics, penury and uncertainty 
over his future. In December 1828 he travelled out to the island of 
Froland to spend Christmas with his fiancée, where she was a governess 
to a family. But he could not afford the warm clothes that the harsh 
winters on Froland demanded. After a romantic sleigh ride through 
the frozen landscape with only socks for gloves, Abel fell dreadfully ill. 
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Despite Cauchy’s lack of interest in Abel’s work, others in Paris had 
begun to wake up to his fantastic achievements. After learning that he 
was living in poverty in Norway, they wrote to the King of Sweden in 
a desperate attempt to secure a position for this young mathematician 
with ‘so rare and early-developed talent’. Crelle too was fighting hard 
to secure Abel a position in Berlin. Finally, on 8 April, he wrote to 
Abel to tell him the good news that the university there would offer 
him a professorship in recognition of his pioneering work. ‘You can 
be completely at peace with regard to your future. You are coming to 
a good country, a better climate, closer to science and to genuine 
friends who regard you highly and are very fond of you.’ 

The letter arrived too late. On the very day that Crelle sat down to 
inform Abel of the good news, Abel died at the age of 26. The secrets 
of symmetry lay just over the horizon, just out of view. He never 
realized his dream of marrying his fiancée. On his deathbed he wrote 
to his friend Baltazaar Keilhau, pleading for him to marry Christine 
Kemp in his place. Despite never having met her, his friend agreed. 

As time passed, mathematicians began to take stock of the beauty 
and depth of Abel’s work. As the French mathematician Charles 
Hermite commented, ‘He has left mathematics something to keep 
them busy for five hundred years.’ Abel was awarded posthumously 
the Grand Prix by the Paris Academy in 1830. Today, the greatest 
accolade for a mathematician is to be awarded the Abel Prize by the 
Norwegian Academy. Set up in 2003, the prize is worth half a million 
pounds to the winner and is meant to be as prestigious as the Nobel 
prizes are in the other sciences. 

But for most mathematicians the prize is not getting the Grand Prix 
from the Paris Academy or a telephone call from the Norwegian 
Academy, but the rush of adrenaline that you get on making that 
elusive breakthrough. My student Christopher’s prize came on Sep-
tember the 11th, 2001 when the palindromic symmetry appeared 
through the mist of his calculation. For Luke the trophy came with 
the beep of the computer heralding the first calculation of a zeta 
function without this symmetry. Abel may have died before being 
recognized with prizes and jobs, but he had the satisfaction of knowing 
that he’d cracked one of the great problems of mathematics. 
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February: Revolution 

It was the best of times, it was the worst of times, it was the age 
of wisdom, it was the age of foolishness . . .  

charles dickens, A Tale of Two Cities 

13 February, La Villette, Paris 

As unlikely as it may sound, there are distinct mathematical styles. 
Despite the universal nature of the language of mathematics, different 
mathematicians use this language in different ways, and this reflects 
cultural traits. The Anglo-Saxon temperament tends towards the nitty-
gritty, revelling in strange examples and anomalies. The French, in 
contrast, love grand abstract theories and are masters at inventing 
language to articulate new and difficult structures. 

It was with the help of my French collaborator François Loeser that 
I was able to set the elliptic curve example, my gravestone epitaph 
constructed in Bonn, into a grand theory called motivic integration. 
With my discovery at the Max Planck Institute I dug the first tunnel 
connecting two lands, but the language I learnt in Paris from François 
has helped me to widen this tiny tunnel into a beautiful thoroughfare. 
So now the route between groups and geometry is as well served as 
the Channel Tunnel I’ve just travelled through to get to Paris. 

Mathematics requires an obsessional personality. In addition to his 
amazing ability to trek over mathematical terrain, François does long-
distance running – and I don’t just mean marathons. He runs 48-hour 
races which require crossing from one side of an island to the other 
and climbing a 3,000-metre mountain in between. On one of my visits, 
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he had just completed a 70 km run through knee-high snow. I went 
on a ‘gentle run’ with him once before breakfast and ended up throw-
ing up in his garden on the last leg home. The determination he shows 
in his running is reflected in his mathematical stamina. He is able to 
sustain an argument through some of the most abstract terrain I’ve 
ever encountered. 

François’s other obsessions are things that I am happier to join in 
with – food, wine and Tintin – and even then I can’t quite keep up 
with his depth of knowledge. ‘Can you tell me who Belle is in Tintin?’ 
he once challenged me. I tried to think of any woman in Tintin 
apart from Signora Castafiore, the opera singer, and could not think 
of any. Hergé, Tintin’s creator, was something of a misogynist. ‘It is 
the name of the horse that Tintin is riding on your T-shirt,’ he said. 
I looked down at my T-shirt, which depicted a scene from Tintin 
in America with the young reporter dressed as a cowboy riding a 
horse. 

On another occasion we went for lunch after a seminar I had given 
´ at the Ecole Polytechnique. There was a beautiful round cheese on the 

table which I hacked into with great pleasure. An unnerving silence 
descended. François explained that you were only meant to cut this 
cheese in a horizontal plane, something which was almost impossible 
to do, which is probably why the cheese had remained untouched. 
And I thought Oxford food rituals were severe! 

Some French mathematicians believe that the quality of their mathe-
matics is a product of the French language in which it was written. 
One of François’s colleagues, Bruno Poizat, is particularly proud of 
the French language and never bows to pressures from journals to 
write in English, the universally accepted language of science. One of 
his most important contributions is a seminal book on mathematical 
logic and its interactions with the theory of groups. His insistence on 
publishing it in French meant that no publisher would touch it. So he 
went ahead and financed the publication of the book himself under 
his own publishing name: Nur al-Mantiq wal-Ma’rifah, Arabic for 
‘Light of Logic and Knowledge’. Because he had complete editorial 
control the book is rather idiosyncratic. Every chapter starts with a 
pornographic picture. Poizat explains in the introduction that these 
pictures are there to soothe the brain before the difficult mathematics 
that follows. 
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You can imagine the outrage this caused. Mathematical logic has a 
large female contingent, and they were not happy, not least because 
when you look up some of the names of the women in the subject in 
the index, you get directed to the pages of pornography. The last 
chapter has a picture of the author in a dressing gown, leering out of 
an armchair at the reader. But the mathematics is so good that the 
book could not be ignored. In Poizat’s view, the material is particularly 
suited to the language in which it is written: 

Scientific French, what a beautiful language! . . . I have no French 
nationalist feelings, nor a nostalgia for the time when French had a 
more dominant position . . . I believe that the plurality of languages in 
use for communication of science has a value per se. 

At a conference I attended in Russia, Poizat insisted on speaking in 
French with simultaneous translation into Russian, and was obviously 
delighted to leave the English-only members of the audience in the 
dark: 

Well intentioned people have told me that it is quite rude to address a 
person he or she cannot understand. If this were true, the community 
of mathematicians would rate highly in the scale of rudeness considering 
the number of times some of its members have spoken to me in English. 

´ This afternoon I’m hoping to drop in on François at the Ecole 
Normale Supérieure to see whether his French perspective might help 
me make sense of when my zeta functions have palindromic symmetry 
and when they don’t. We also have been collaborating on a paper that 
we have done the thinking for but neither of us has had the time to 
write up. But my primary reason for a day trip to Paris is not to 
explore mathematical structures. The French capital is blessed with 
some fantastic examples of symmetry in architecture, and I’ve taken 
some time out of my research to do a little pilgrimage across the 
Channel with Tomer in tow, my faithful Passepartout. Our first desti-
nation is a pyramid. 

The extraordinary new entrance to the Louvre in Paris is a glass 
pyramid provocatively set against the ornate seventeenth-century 
facade of the original building – an inspirational juxtaposition (Figure 
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48). It is as if the visitor is being invited to emulate the great archaeolo-
gists, to be an Indiana Jones and plunder the great riches that the 
Louvre has hidden in its depths. The structure of the Ancient Egyptian 
pyramids is quite straightforward. Each layer provides a solid founda-
tion for the next layer. But the pyramid at the Louvre is hollow inside. 
Engineers have exploited the strength of the triangle to construct their 
pyramid. Each triangular face is a lattice of smaller triangles and dia-
monds. There are over 600 panes of glass used in the Louvre’s pyramid. 
The pyramid is surrounded by water so that with the reflection one 
sees not just a square-based pyramid but the octahedron, one of Plato’s 
symmetrical shapes. 

After visiting the pyramid in the centre of Paris, we head up to the 

Fig. 48 The pyramid at the Louvre, Paris. 
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Parc de la Villette, which is home to another extraordinary piece of 
architectural design. Surrounded by all the square boxes that make up 
most of suburban Paris, La Géode is a huge silver globe (Figure 49). 
Tomer is impressed: ‘It looks like an alien spaceship.’ Like the 
Alhambra and the Louvre, the use of water enhances the symmetry. 
La Géode floats like a huge bubble on top of an expanse of water that 
surrounds it. Inside, the sphere houses a huge Imax cinema which you 
enter from below ground level. 

Fig. 49 La Gé ode at La Villette, Paris. 

Nature is fond of the sphere as it is a shape with low energy – this 
is why bubbles and raindrops are spherical. But for humans, creating 
a sphere is not so easy. When Pope Benedict asked Giotto for a drawing 
to prove his worth as an artist, Giotto drew a perfect circle – freehand. 
For an architect, building a sphere is perhaps the ultimate challenge. 
Anyone who has tried to gift-wrap a football will have experienced 
some of the difficulties that face the architect. 

From a distance, La Géode looks like a perfect sphere, but as you 
draw closer you see how the architect has achieved this impression. 
Its surface is built from triangular pieces. There are a total of 6,433 
triangles. Different sorts of triangle have had to be used to cover the 
curved surface – 136 varieties in all. Some meet in hexagons while 
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others create pentagonal shapes. The polyhedral framework on which 
La Géode is based is the icosahedron, the Platonic solid that is made 
from 20 equilateral triangles. By subdividing these triangles into ever-
smaller triangles and making the pieces bow outwards, the architect 
has got closer to a sphere. 

Tomer enjoys seeing himself elongated then flattened in the bulging 
glass. The whole thing is like a house of mirrors. An eerie, bell-like 
music circles round La Géode, adding to the surreal effect. Apparently 
it comes from a musical clock, and you can tell the time according to 
the location of the sound of the bells in relation to the building. 

When you are using triangles to create a complete sphere, it is 
essential that there are no faults in the specifications of each three-sided 
face. It was an extremely tense moment as the creator of La Géode, 
dressed in a futuristic spacesuit, manoeuvred the last triangle into place 
on 16 April 1984. One small error, and the spherical jigsaw would not 
have fitted together. Mathematics and engineering combined to ensure 
that La Géode had no embarrassing hole in its surface. 

Liberté, égalité, fraternité 

This French passion for building a sphere, the most symmetrical of 
shapes, in the heart of Paris is not a recent phenomenon. La Géode 
realizes a dream that goes back two hundred years. Paris in the first 
few decades of the nineteenth century was a city at the centre of 
dynamic changes sweeping through Europe. The revolution of 1789 
had made the impossible suddenly possible. The ancien régime and 
all its outmoded ideas had been swept away by the radical ideas of 

´ revolutionary young minds. Egalité – equality – was the word everyone 
was shouting from the barricades. All parts of society should be treated 
equally. Symmetry at the very heart of society. 

Architecture was regarded as an ideal vehicle for this new ethos. In 
´ 1784 Etienne-Louis Boullée had drawn up plans for the construction 

of a huge sphere in Paris dedicated to Isaac Newton. The French 
revolutionaries were particularly attracted by the egalitarian nature of 
the sphere as a perfect symbol to embody their ideals and adopted his 
plans. For them, the sphere was the ultimate socialist shape, for no 
direction is favoured over any other. 
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Boullée’s proposal was for a hollow sphere 150 metres across, the 
surface peppered with small holes to allow in light during the day 
(Figure 50). The aim was to create a picture of the night sky inside the 
sphere – the first planetarium. At night the inside would be lit by a 
huge lamp suspended in the middle of the sphere, like the sun that 
sat at the centre of the eighteenth-century universe. But the French 
revolutionaries discovered that, like politics, realizing the ideals of 
mathematics is not always so easy, and for two centuries creating the 
sphere remained a Parisian dream. 

Fig. 50 A sketch of É tienne-Louis Boullé e’s sphere. 

The fervour of that initial turbulent period eventually ran out of 
steam. Nevertheless, the revolutionary spirit was the inspiration behind 
many institutions founded at the time, many of which survive to this 
day. New centres of learning were set up to cultivate the new thinkers 
of this revolutionary age. The year 1794 saw the creation of the great 
´ Ecole Polytechnique, a college that would transform the scientific edu-
cation of the country and put Paris at the centre of the intellectual 
map of Europe. 

´ Students at the new Ecole would be chosen on grounds of intelli-
gence and knowledge alone. No one would be denied a place for lack 
of funds. Every new student received a salary of 900 francs a year 
(about £1,000 today) together with travelling expenses equal to those 
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received by a first-class gunner in the army. The intellectual army was 
´ as important to the new republic as its military force. The Ecole even 

had its own military uniform. Of all the disciplines, mathematics and 
´ science were the most valued. Indeed, the motto of the Ecole became 

Pour la Patrie, les Sciences et la Gloire – ‘For Homeland, the Sciences 
and Glory’. 

In 1804 Napoleon was crowned Emperor. The Revolution seemed 
to achieve some stability by tying its colours to the cult of Bonaparte. 
But Napoleon turned revolutionary politics into a mission to conquer 
the world. France expanded, and just as quickly contracted. Napoleon’s 
humiliating defeat in 1814 put France back under the white Bourbon 
flag and the rule of Louis XVIII, brother of the guillotined Louis XVI. 
Singing the Marseillaise was forbidden, and the tricolour no longer 
flew over the rooftops of Paris. 

The energy and power that the Revolution had unleashed across 
Europe could not be so easily reined in by those who supported the 

´ Restoration. The Ecole Polytechnique continued to be a thorn in the 
side of the establishment and remained a centre of Jacobinism and 
Liberalism. Despite being stripped of its military status and the head 
of the school being sacked, the Royalists still recognized the school’s 
importance in training the best scientists the country could get. 

´ Although the Ecole Polytechnique was turning out scientists for the 
modern age, the ancien régime’s Academy of Sciences, founded in 1666, 
still represented the pinnacle of academic achievement. The Academy 
was closed during the early zeal of the Revolution since it was regarded 
as an organ of the Royalist cause but it was soon restored to its place 
at the centre of France’s intellectual life. 

In the spring of 1829, a 17-year-old schoolboy by the name of 
´ Evariste Galois made his way through the grand courtyard of the 
Academy, overlooking the Seine. He had a package to deliver to Pro-
fessor Cauchy, containing a manuscript that the young student knew 
would interest not only Cauchy but the rest of the mathematical 
community. It took some audacity on Galois’s part to choose to present 
his ideas to Cauchy rather than any other academician. The professor 
was known to present only his own work during the weekly sessions 
of the Academy, and was not usually sympathetic to the ideas of others. 
He had completely ignored Abel’s work and subsumed Ruffini’s work 
into his own discoveries. But Galois was convinced that the mathe-
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matical breakthrough he had made over the previous few months 
would spark a mathematical revolution to rival the one Robespierre 
had ignited in Paris. 

Cauchy was used to receiving manuscripts from across Europe from 
unknown authors who hoped to have their work discussed at the 
regular sessions of the Academy. He’d waded through the 512-page 
proof sent by the medical doctor Ruffini in Italy; he’d battled with the 
condensed six-page account by the Norwegian Abel. But he must have 
been rather intrigued by the address from which this particular package 
arrived: the Lycée Louis-le-Grand. Both Robespierre and Victor Hugo 
had attended this school, which was housed in an imposing but rather 
dilapidated building on the left bank of the Seine, not too far from the 
Academy. The bars on the windows made it look more like a prison, 
and the regime within the school did little to deter such an impression. 
Discipline was strict, punishment frequent. There were a dozen bare 
cells, continually occupied by pupils caught talking or fidgeting in class 
or even simply turning over too much in bed. 

Galois had grown up in the small village of Bourg-la-Reine on the 
outskirts of Paris. Up until the time he was sent as a boarder to the 
Lycée at the tender age of 12, he was mollycoddled at home by his 
mother. It must have been a painful transition. He was extremely close 
to his father and missed him terribly. Suddenly he found himself in a 
world where he was punished regularly, subjected to a prison diet of 
dry bread and water, and bitten at night by the rats that infested the 
school. Galois worked hard to meet his father’s high expectations. 
Learning languages particularly appealed to him, and for the first three 
years he impressed his teachers with his grasp of Latin and Greek. 

When he was 15, Galois came across a book written by the French 
mathematician Adrien-Marie Legendre which revealed a new language, 
one that seemed to speak directly to him. An exciting new world full 
of mystery opened up and offered a refuge from the horrors of the 
Lycée. The mathematics book was meant for a two-year course, but 
Galois devoured it in two days. His teachers certainly recognized a 
change in him: ‘He is under the spell of the excitement of mathematics.’ 
His humanities teachers reported of his other work that: 

There is nothing in his work except strange fantasies and negligence; he 
always does what he should not do. He gets worse every day. He has 
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gone from one punishment to another. His ambition, his frequently 
ostentatious originality, his bizarre character keep him isolated from his 
school fellows. 

Galois was certainly ambitious. His father, the mayor of Bourg-la 
Reine, had been a great supporter of the Revolution and had instilled 
in his son the ideals he himself held dear. At a time when the Bourbons 
were in the ascendancy he was one of the few Liberal mayors elected 
in France, helped partly by the indiscretions of the Royalist candidate, 
who had been forced to flee the town. 

´ Galois believed that the great Ecole Polytechnique was his destiny: 
a centre full of young revolutionaries and the powerhouse of academic 
achievement in Europe. He wanted to escape the tedious routine of the 
Lycée. So against his teachers’ advice and without telling his parents, he 

´ took the strict entrance exam for the Ecole Polytechnique in June 1828, 
aged 16. Unfortunately, ambition and arrogance were not enough. He 
failed the exam. 

There is a certainty about mathematics which rubs off on those who 
can master its language. Galois had no doubts about his abilities, for 
he could solve all the problems his teacher set him. There was no 
ambiguity or room for discussion in the world of mathematics. His 
proofs were right and he knew it. But mathematics is also about 
communication. Everything might have been clear and transparent in 
Galois’s mind, but he also needed to convey his ideas to those around 
him. 

´ The rejection by the Ecole Polytechnique spurred Galois on to prove 
himself the following year. Candidates were allowed only two attempts 
at the entrance examination, but next time he would show them that 
he deserved his place at the most prestigious academic institution in 
Europe. It was during this year that Galois encountered a paper that 
would sow the seed for the breakthroughs contained in the package 
he later delivered to Cauchy. It was the paper that had inspired Ruffini’s 
work on solving quintic equations, in which Lagrange started to 
explore what happened if you permuted the five solutions around, like 
shuffling a pack of cards. 

Inspired by Lagrange’s paper, Galois made the conceptual break-
through that would take him and mathematics through the Strait of 
Magellan and into a new world where symmetry would yield up its 
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secrets. Contained in the package he delivered to Cauchy at the Acad-
emy were his first attempts to articulate his ideas. This, Galois believed, 

´ would prove that he deserved a place at the Ecole Polytechnique. 

What shape is your equation? 

Galois realized that there was a subtler question underlying the attempt 
to solve the quintic. Tartaglia had found ways to twist the cubic until 
it looked just like an equation that involved taking cube roots and 
square roots. Although Abel had proved that in general this was 
impossible to do for all quintics, there were still some equations such 
as x5 = 3 that could be solved using fifth roots. But what about some-
thing like x5 + 6x + 3 = 0?  There should, Galois thought, be some way 
to distinguish between, on the one hand, quintic equations that could 
be manipulated until they could be solved by taking roots, and on the 
other, quintic equations that it was impossible to solve. 

Abel had shown only that there was no grand formula that would 
solve all quintic equations in one go. He too had begun to think about 
Galois’s more subtle formulation of the problem, but his untimely 
death had deprived him of the chance to explore this further. Galois 
realized that it was the symmetries of the solutions of the equation 
that held the key to answering this problem. 

The equation x2 = 2 has two solutions: the square root of 2, equal to 
1.414 . . . ,  and  the  negative of this number. In the same way, with the 
introduction of imaginary numbers, a cubic equation, one with x3 in 
it, has three solutions and a quintic – one with x5 – has five solutions. 
The higher the largest exponent of x, the more solutions you get. Galois 
considered the four solutions of a quartic equation. For example, two 
of the solutions of x4 = 2 are real numbers, namely 1.189 21 . . . and 
its negative, −1.189 21 . . . The two other solutions are imaginary 
numbers, (1.189 21 . . . )i  and  −(1.189 21 . . . )i.  We  can  draw a picture 
depicting these solutions on the map of the complex numbers that 
Gauss created (Figure 51). Here A and C are the two real solutions, 
and B and D are the two imaginary solutions. 

The numbers are transformed in this picture into the corners of a 
square, and it is the symmetries of the square that hold the secret of 
why this equation can be solved so easily. Galois realized that there 
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(1.189 21...)i 

Fig. 51 The symmetries of the four solutions of the quartic x4 = 2 correspond to the 
symmetries of a square. 

were certain relationships between these four numbers that bound 
them together. For example, adding A and C gives zero, and so does 
adding B and D. So  A + C = 0 and B + D = 0 can be regarded as ‘laws’ 
that relate the solutions of this particular equation. Each law produces 
a sort of rigidity in the picture. 

Galois decided to look at the ways you can permute the solutions 
so that the new equation is still a law. For example, swapping A and 
C gives C + A = 0: that’s still true. But look what happens if B and C 
are swapped. That turns the equation A + C = 0 into A + B = 0, but this 
new equation is false. This permutation isn’t a law satisfied by the 
numbers A and B. There are potentially 24 different ways to permute 
A, B, C and D, but only eight of these permutations always change one 
law into another. For example, cycling the numbers is fine: if A goes 
to B, B goes to C, C goes to D and D goes to A, the laws A + C = 0 and 
B + D = 0 get changed into B + D = 0 and C + A = 0, and these are again 
laws which are satisfied by the numbers. 

But these eight permutations of the letters aren’t any old subset 
of the 24 possible permutations. They are in fact all the different 
permutations that describe symmetries of the square you get by joining 
the numbers A, B, C and D (Figure 51). The symmetries of the square 
are precisely the ways in which you can swap the numbers A, B, C and 
D and preserve the laws. The laws that the solutions obey are a little 
like the rigidity in the square – however the square is rotated or flipped, 
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the corners A and C must end up opposite each other, as must corners 
B and D. 

Galois did not have a clear vision of the possible shapes lurking 
behind an equation, or of why the language he was developing would 
help reveal the symmetry of those shapes. Perhaps it was just as well, 
because the power of the language lay in its ability to create an abstrac-
tion – a mathematical description that was independent of any under-
lying geometry. What Galois could see was that every equation would 
have its own collection of permutations of the solutions which would 
preserve the laws relating these solutions, and that analysing the collec-
tion of permutations together revealed the secrets of each equation. 
He called this collection ‘the group’ of permutations associated with 
the equation. Galois discovered that it was the particular way in which 
these permutations interacted with each other that indicated whether 
an equation could be solved or not. 

3When Galois took other quartic equations, such as x4 − 5x
− 2x2 − 3x − 1 = 0,  he  found that there were fewer laws connecting the 
solutions. Again, there are four numbers, A, B, C and D, which solve 
this equation. But this time there was less rigidity and it was possible 
to swap all the solutions around in any order and still preserve the 
laws. The ‘group’ of operations that Galois associated with this equa-
tion consisted of all 24 different arrangements of the four solutions. 
Again, there is a geometric object hiding behind this equation; this 
time it is the tetrahedron. The tetrahedron is the simplest of all the 

A 

B 

C 

D 

Fig. 52 The symmetries of the four solutions of the quartic x4 − 5x3 − 2x2 − 3x − 1 = 0  
correspond to the symmetries of the tetrahedron. 
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Platonic solids and has lots of symmetry. It is possible to put the four 
roots of the quartic at the four points of the tetrahedron (Figure 
52). All the different symmetries of the tetrahedron correspond to 
permuting these four corners around. The symmetries of the tetra-
hedron and the permutations of the roots of the equations are actually 
two different manifestations of something abstract that captures the 
symmetry hiding behind both. And this is what Galois was beginning 
to articulate. 

Galois’s breakthrough was the discovery that the group of permu-
tations associated with certain quintic equations had a particular 
character that made them rather different from quadratic, cubic and 
quartic equations. The shape hiding behind these quintic equations 
had symmetries that were much more complex than the symmetries 
of the tetrahedron or the square, objects that Galois found hiding 
behind certain quartic equations. For example, the symmetries of the 
five solutions of x5 + 6x + 3 = 0  were closely related to the symmetries 
of one of the more complicated Platonic solids, the icosahedron. Galois 
had found that its symmetries were of a different order of complexity 
to those of the square and tetrahedron. The parcel he delivered to the 
Academy, addressed to Cauchy, contained his exposition of why things 
started to go dramatically wrong with equations involving fifth powers. 

Missing manuscripts 

When Cauchy opened Galois’s package, his heart must have sunk at 
the sight of yet another bunch of papers claiming to prove that the 
quintic could not be solved. But as he perused the manuscript, he was 
rather taken by the ideas it contained, especially Galois’s work on 
permutations. During the year 1812, while he was recuperating at his 
family’s home in Paris following his collapse in Cherbourg, Cauchy 
had written two papers setting out a language and notation for the 
mathematics of permutations. 

For example, Cauchy used the notation (ABCD) to represent the 
cycling round of A to B, B to C, C to D and D to A. Similarly, (AC) 
would mean ‘just swap A and C but keep B and D fixed where they 
are’. What Cauchy began to see was that there was a new arithmetic 
underlying these ideas. After all, doing (ABCD) followed by (AC) 
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produced a third permutation: A goes to B, B goes to A, C goes to D 
and D goes to C – or in Cauchy’s language, (AB)(CD). He saw this as 
a sort of new multiplication which could be written as 

(ABCD) * (CD) = (AB)(CD) 

Cauchy had begun to explore the theory of this new language in a 
paper published in 1815. But the rather abstract nature of the paper 

´ had fallen on deaf ears. Cauchy was getting a reputation at the Ecole 
Polytechnique for pushing students into abstract territory. The director 
had criticized his obsession with pure mathematics at the expense of 
teaching mathematics that would contribute to building Revolutionary 
France: ‘It is the opinion of many people that instruction in pure 

´ mathematics is being carried too far at the Ecole and that such an 
uncalled for extravagance is prejudicial to the other branches.’ 

As Cauchy read through Galois’s paper, his initial scepticism gave 
way to real excitement at the mathematics it contained. Members of 
the Academy were certainly surprised when Cauchy stood up at the 
meeting on 25 May to register his intent at a future meeting to give a 
full account of Galois’s ideas. The fact that Cauchy was willing to 
present anything but his own work is a testament to how important 
he must have thought it was, especially given that this was the work 
of a 17-year-old boy still at school. The academicians agreed that since 
Cauchy was best placed to analyse the work, he should take the only 
copy that existed home with him so that he could prepare his report. 

A few weeks after the delivery of his manuscript, Galois would have 
´ his second chance to take the entrance exam of the Ecole Polytech-

nique. Then he could realize his dream of joining the band of revolu-
tionary students that he believed were the future of France. He could 
see the political camps in France squaring up to each other. The 
Royalists or ‘Ultras’ were gaining more and more political power, and 

´ Galois knew that the young students of the Ecole Polytechnique would 
be on the front line, come the battle to stop the restoration of the 
ancien régime. 

As Galois prepared for his examination, it was in fact his own family 
in Bourg-la-Reine that found itself on the front line. At the beginning 
of 1829, a young Catholic priest had arrived in the town where Galois’s 
father, Nicolas, was mayor. Emboldened by the political mood in Paris, 
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the young priest had banded together with the local Ultras to hatch a 
plot to bring down the Liberal Jesuit mayor. Nicolas Galois had a 
reputation for penning lines of verse to entertain his friends. So the 
priest started circulating forged vulgar verses attributed to the mayor. 
Despite proclaiming his innocence, Nicolas could not throw off the 
scandal and was eventually forced to flee the town. He rented a room 
just a few streets away from his son’s school. On 2 July he committed 
suicide by hanging himself. A bomb had exploded in the boy’s life, 
shattering the secure foundations he thought he was standing on. 

Even in death, Nicolas Galois still commanded a lot of support in 
the town. Many of the townspeople went out to meet the coffin as it 
returned from Paris to Bourg-la-Reine and bore it to the church. 
Although he had committed suicide, the priest had agreed to conduct 
a service for the mayor and bury him in consecrated soil. Perhaps it 
was to assuage the guilt he felt for driving him to suicide. But others 
could not bear the hypocrisy of the priest who had orchestrated the 
mayor’s death now ministering over the funeral. Galois witnessed the 
burial of his father descend into a political clash between the Royalists 
and Liberals, Catholics and Jesuits. Stones were thrown at the priest 
and insults were hurled as the coffin was laid to rest. Galois returned 
to Paris with the political fire bursting in his belly. But he had to try 
to focus on his impending entrance exam. 

´ By all accounts, the examination before two professors of the Ecole 
Polytechnique was a disaster. Galois showed no respect for what he 
regarded as two very mediocre mathematicians. Questions were met 
with a disdainful reply of ‘that’s obvious’. These things were probably 
obvious to Galois’s sharp mathematical mind. What was not obvious 
to his political brain was that if he was going to be successful, he 
needed to play their game. 

His head must have been in turmoil, having just buried his father 
in such traumatic circumstances. Perhaps the two examiners embodied 
for Galois the ancien régime he blamed for killing his father. One report 
of the examination even has Galois launching a board rubber across 
the room. Unsurprisingly, he failed to gain entrance to the Polytech-
nique for the second and final time. In the space of a month, the 
elation of his breakthroughs in the mathematical realm had been 
replaced by the breakdown of his hopes and dreams in the real world. 

´ Instead of enrolling in the Ecole Polytechnique to be trained for the 



189 February: Revolution 

political and academic elite, Galois had to make do with going to the 
´ Ecole Préparatoire, a training college for schoolteachers. This was a 
reactionary and religious institution where failure to attend confession 
regularly resulted in expulsion. Now relegated to what Galois regarded 
as an academic backwater, his only hope was to wait for Cauchy’s 
opinion of the manuscript he had deposited with the Academy. 

Cauchy had arranged to deliver his report on the young mathema-
tician’s manuscript to the Academy on 18 January 1830. But the huge 
workload that Cauchy subjected himself to was beginning to affect his 
health. He missed the meeting and sent a letter apologizing for his 
absence: 

I was supposed to present today to the Academy first a report on the 
work of the young Galoi [sic], and second a memoir on the analytic 
determination of primitive roots in which I show how one can reduce 
this determination to the solution of numerical equations of which all 
roots are positive integers. Am indisposed at home. I regret not being 
able to attend today’s session, and I would like you to schedule me for 
the following session for the two indicated subjects. Please accept my 
homage . . . A.-L. Cauchy 

This is the last that was ever heard of Galois’s first manuscript. The 
following week Cauchy only presented his own work. Galois never got 
his manuscript back, and it was never found among Cauchy’s belong-
ings. Niels Abel’s treatise submitted to the Academy had also gone 
missing in Cauchy’s possession, but eventually resurfaced after Abel’s 
death. 

When it comes to Cauchy’s treatment of Galois, historians divide 
into two camps. One paints him as a self-centred and negligent man, 
interested only in his own work. The other suggests that Cauchy might 
have been the person who encouraged Galois to submit a revised 
manuscript for a new prize problem just announced by the Academy. 
The Grand Prix of the Academy was the highest accolade European 
science could bestow. The prize would be awarded to the most notable 
application of mathematics to general physics or astronomy or to an 
important analytical discovery. The closing date for submissions was 
the first of March. The board of judges included Siméon-Denis Poisson 
and Louis Poinsot, the man who had discovered the new symmetrical 
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solid made from intersecting pentagons. We may never know whether 
it was Cauchy who encouraged Galois or whether Galois decided that, 
having waited months for Cauchy to reply, the only way to get a 
response out of the Academy was to submit a new manuscript for the 
prize. 

Another member of the Academy, Jean-Baptiste Fourier, was 
appointed the new referee for Galois’s second manuscript. However, 
Galois fared no better with his second judge. On 16 May 1830, a few 
weeks after taking custody of Galois’s work, Fourier died. For the 
second time a manuscript of Galois’s went missing, never to reappear. 
Without a manuscript or report Galois was never considered for the 
prize. He was never informed of the fate of his entry. In the end, this 
was the prize that Abel was posthumously awarded. 

Revolution 

Emboldened by the growing power of the Ultras, King Charles X 
decided on 26 July 1830 to dissolve parliament, rewrite the electoral 
laws to restrict voting to those with sufficient wealth, and suspend the 
freedom of the press. The ordinances were a red rag to revolutionary 
bulls who were already getting increasingly restless. The next day, four 
newspapers defiantly published articles denouncing the actions of the 
King and inciting rebellion. By the early afternoon the Parisian streets 
were full of crowds chanting abuse at the gendarmes sent to disperse 
them. Rocks starting raining down on the police, shots were fired and 
panic ensued. In the cross-fire a girl was shot dead. A worker picked 
up her limp body, placed it at the foot of a statute of Louis XIV and 
shouted for revenge. The city was soon gripped by a riot the like of 
which had not been seen in France since 1789. Barricades built from 
overturned carriages and furniture hauled from government offices 
once again blocked the streets of Paris. 

´ As night descended on Paris, Galois, now a student of the Ecole 
Préparatoire, could smell the fires burning on the barricades and hear 
snatches of the Marseillaise as revolution gripped the streets. The army 
was mobilized to contain the increasing number of citizens taking up 
arms and mounting the barricades. The rioters were joined the next 

´ morning by the revolutionary students of the Ecole Polytechnique. 
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Although regiments of the army were guarding the entrances to the 
´ Ecole, the students escaped by scaling the walls and took to the barri-
cades, from where they led numerous bloody offences against the 
troops. The streets resounded to the songs of the young students: 
‘Fellow Frenchmen, let us sing of the heroic courage of the youth of 

´ the Ecole Polytechnique.’ By the afternoon the students had control of 
the Latin Quarter. 

Here at last was the revolution that Galois had longed to be part of 
ever since the death of his father. But instead of joining his soulmates 
on the barricades, Galois was forced to sit and listen to the revolution 

´ from behind the closed doors of the Ecole Préparatoire on the Rue 
Saint-Jacques, just streets away from the action. Although the lecturers 

´ at the Ecole Polytechnique were only too happy to support the action 
´ of their students, the director of the Ecole Préparatoire forbade any of 

his students to get involved. Galois and his classmates were locked in, 
imprisoned in their school and reminded of the promise they had 
made when they enrolled – a pledge of allegiance to the state. The 
director threatened to call in troops if necessary to keep his students 
from joining the insurrection. 

Galois was incensed. By the evening of the second day of the revol-
ution he could bear it no longer. It was too much to be listening to 

´ the students of the Ecole Polytechnique making history while he was 
cooped up in the Préparatoire with a bunch of second-rate trainee 
schoolteachers, none of whom was willing to challenge the director’s 
orders. That night, alone, Galois made an attempt to scale the walls 
but they proved too high. By the third day of what became known as 
the Three Glorious Days, the King’s army had either deserted to join 
their fellow citizens at the barricades or fled alongside Charles X into 
exile. The white Bourbon flag was no longer flying over Paris. Instead, 
the Republicans were again in control. The morning air was filled with 
a cacophony of church bells signalling victory for the revolution. 

But there was a problem. The uprising had been so successful that 
Paris had the chance once again to resurrect the Republic of the 1789 
Revolution. But for most moderate Republicans this was a risk they 
were not prepared to take. France had been isolated and brought 
to its knees by the rest of Europe for its previous excursion into 
Republicanism. Now was not the right time for another full-blown 
Republic: that would have to wait for the revolutionary tide that swept 
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across the whole of mainland Europe in 1848. Instead, the leaders of 
the Three Glorious Days invited the Duc d’Orléans to become the new 
King, a King they believed would uphold the institution of government 
without attempting, like his predecessor, to assume too much power. 
Crowned Louis-Philippe I on 9 August, the King and the tricolour flag 
were presented together in a Liberal fudge. 

For the hardcore revolutionaries, the restoration of the monarchy 
betrayed the sacrifice of nearly two thousand citizens who had died to 
bring down the Bourbon flag flying over Paris. Galois’s experience of 
being trapped inside his college during the revolution pushed him 
further into the extremist camp. During the summer vacation at his 
family home in Bourg-la-Reine, Galois harangued his mother and 
siblings with fiery revolutionary speeches. The July revolution had 
failed, he declared. It was necessary to have another uprising, one in 
which he was determined this time to play a central role: ‘If I were 
only sure that a body would be enough to incite the people to revolt, 
I would offer mine.’ 

Galois’s increasingly revolutionary zeal came to a head on his return 
to Paris in the autumn of 1830 for the new academic year. In a letter 

´ to the newspapers he accused the director of the Ecole Préparatoire of 
being a traitor to the Republic for his decision not to allow his students 
to mount the barricades. The director was swift to respond, writing to 

´ the Minister of Education: ‘I have expelled Evariste Galois. In my 
concern for his undoubted talent for mathematics I tolerated his 
unconventional behaviour, his laziness and his very difficult character.’ 
But he would tolerate it no longer. Galois was a free agent. 

´ During his time at the Ecole Préparatoire, Galois had made only 
one real friend: Auguste Chevalier. Auguste was in the year above 

´ Galois, and his brother was a student at the Ecole Polytechnique. 
The three would discuss politics at great length. The Chevaliers were 
followers of a utopian political movement called Saint-Simonianism. 
But its reluctance to resort to violence to further its political aims did 
not appeal to Galois and his increasingly aggressive Republican stance. 
Instead, Galois sought out the more militant Republican group known 
as the Société des Amis du Peuple. Thanks to the government-
controlled press painting the Société as a dangerous band of militants, 
shopkeepers would pull down the shutters at the mere sight of a 
member of the society walking down the street. 
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Galois also enlisted with the anarchic National Guard. Established 
during the height of the 1789 Revolution, the Guard was a militia 
outside the French army. With its own banners, music and uniform, 
the Guard was more like the military wing of the Republican move-
ment. At last, Galois was able to don a military uniform like his 

´ brothers-in-arms at the Ecole Polytechnique. But several months after 
his coronation, Louis-Philippe outlawed both the National Guard and 
the Société des Amis du Peuple. The King recognized the threat that 
both represented, dissatisfied as they were with the failure of the Three 
Glorious Days to restore a true Republican government. Meetings of 
the Société now had to be held behind closed doors. 

´ For Galois, expulsion from the Ecole Préparatoire was a liberating 
experience – although it did have the downside that he no longer 
received the government grant he was entitled to as a student. Instead, 
he decided to present a series of weekly public lectures that would 
raise funds. Held in the back room of a friendly bookseller, the lectures 
would give him the chance to publicize the mathematical break-
throughs he had made and which had fallen on deaf ears at the 
Academy. 

Galois placed a newspaper advert announcing the first meeting, to 
be held at 13.15 on Thursday 13 January 1831 in the Caillot bookshop 
off Rue de la Sorbonne. It drew an impressive audience of nearly forty 
people. The Chevalier brothers were keen to support their friend, and 
they were joined by several members of the Société des Amis du Peuple, 
who were perhaps expecting Galois to use the lectures to promote 
their revolutionary cause. If they were hoping for political revolution, 
they were disappointed. After several weeks the audience disappeared. 
Galois had tried to explain his new ideas for a revolutionary language 
to transform the study of equations, and ultimately the theory of 
symmetry. But his lectures were as impenetrable as the manuscripts 
he had sent to the Academy. 

It is possible, though, that one member of the audience was the 
academician Poisson, one of the judges for the Grand Prix that Galois 
had competed for a year before. Shortly after the first lecture, Galois 
was approached by the great mathematician and invited to submit a 
third manuscript explaining his new mathematical vision. Galois wrote 
a new introduction, and once again made his way across the courtyard 
of the Academy to deposit his paper with the secretary. Poisson and 
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Sylvestre Lacroix were appointed during the following day’s sessions 
of the Academy to report back on Galois’s third attempt to convince 
the mathematical elite of his breakthrough. 

On trial 

This time, Cauchy was no longer around to act as assessor. Whereas 
Galois was disappointed with the current government’s lack of revolu-
tionary zeal, for Cauchy the new regime was far too extreme for his 
tastes. Shortly after taking office, the government had insisted that 

´ public servants, including professors at the Ecole Polytechnique, swear 
an oath of allegiance to the new regime. 

Cauchy would not betray his deeply held religious and political 
beliefs and refused to bow to the new government’s demands. Fuelled 
by his childhood memories of the traumas of the Revolution of 1789, 
Cauchy fled Paris on 30 August 1830. From his exile, first in Switzer-
land and later in Italy, he saw himself stripped of all the positions he 

´ had held in the Academy and the Ecole Polytechnique. Cauchy was 
simply too afraid to return to Paris in the present climate, despite the 
fact that he had left his wife and children behind. He remained in exile 
for eight years. 

With his manuscript now in new hands, Galois was once again 
hopeful that he might at last get recognition for his work. He even 
began attending the weekly meetings of the Academy in the hope of 
hearing a report on his work. His arrogant self-belief in his mathemat-
ical abilities emboldened him to speak up and comment on the work 
of other mathematicians, despite being only 19. He was getting quite 
a reputation for his aggressively critical interjections. After one particu-
larly fiery exchange between Galois and a lecturer at the Academy, 
Sophie Germain, one of the few women to attend meetings at the 
Academy, wrote to console the lecturer: ‘he has kept up his capacity 
for being rude, a taste of which he gave you, after your best lecture at 
the Academy’. 

Several months went by, and Galois still had not heard his manu-
script discussed. Unable to contain his impatience any longer, he 
blasted off a letter to the Academy’s president which barely hid the 
anger that was obviously seething below the surface: 
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The research making up this memoir is part of a work I had submitted 
for the Grand Prix de Mathématiques last year . . . the prize committee 
decided that I could not have solved it, firstly because my name is 
Galois and also because I am a student. I was informed that my memoir 
had been lost. This should have been a lesson for me. Nevertheless I 
partially rewrote it, and submitted it to you on the advice of a fellow 
of the Academy. 

He went on to demand that Lacroix and Poisson either own up to 
having lost the latest manuscript or at least indicate whether they 
intended to report on it to the Academy. 

His despair at the failings of the establishment eventually bubbled 
over with spectacular consequences. On 9 May, members of the Société 
des Amis du Peuple invited two hundred fellow Republicans to a 
banquet to celebrate the recent release from custody of several 
members of their organization. A charge had been brought against 19 
members for sporting the uniform of the National Guard after the 
decree by the King that the Guard should disband. The not-guilty 
verdict at their trial had elevated the 19 to the status of national heroes. 

The party resounded to the popping of champagne corks and an 
increasingly daring series of speeches and toasts to the Republican 
movement. Galois, fired by an excessive amount of alcohol and the 
charged political atmosphere, jumped to his feet, spurred on by his 
young contemporaries. He raised his glass and shouted, ‘To Louis-
Philippe!’ Several guests began to jeer him for toasting the King they 
wanted to depose. But then several others noticed a glint from Galois’s 
other hand. It was a small dagger. Galois’s toast was an outright threat 
on the King’s life. The jeers turned to cheers, and the banqueting hall 
erupted. Several of the less extreme Republicans realized that the party 
was turning dangerous, and leapt from the restaurant’s windows to 
escape before the troops arrived. 

The next day, Galois was arrested for incitement and threatening 
the life of the King. He was brought to trial on 15 June but managed 
to escape a prison sentence thanks to the quick thinking of his defence 
lawyer. Despite Galois’s wish to be sacrificed for the Republican cause 
and be sent down as a martyr, his lawyer protested that Galois had in 
fact qualified his threat. In the disturbance that followed his initial cry 
of ‘to Louis-Philippe’, the guests had missed him add ‘if he turns 
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traitor’. His lawyer argued that Galois was just considering a hypotheti-
cal situation and hadn’t intended to make any threat against the King’s 
life. But this had been lost in the commotion that had erupted follow-
ing Galois’s first words. 

The incident did end up having mathematical repercussions. To 
support their friend at his trial, the Chevalier brothers published an 
article in Le Globe, a newspaper sympathetic to the Saint-Simonian 
movement. In it they deplored any recourse to violence, and threats 
to the King’s life, but offered various mitigating circumstances: Galois 
was a mathematical genius whose work had been ignored or lost by 
the establishment. ‘He felt the germs of a brilliant future but with 
neither protectors nor friends, he nurtured violent hatred of the 
regime,’ they wrote. The article documented the many times Galois 
had submitted his ideas for comment at the Academy but had received 
no response. Even now, the manuscript was with ‘M. Poisson who is 
to examine it but the wretched author has been waiting for a kind 
word from the Academy for more than five months’. 

Seeing his name in the newspaper must have goaded Poisson into 
action, but the tone of the article didn’t lead him to look upon Galois’s 
manuscript favourably. Instead, the report he delivered to the Academy 
declared the ‘thesis neither clear enough, nor sufficiently developed to 
enable us to judge its rigour. Neither are we able to provide a clear 
idea of this work.’ For the first time, however, Galois actually had his 
manuscript returned to him. 

A week later, on the eve of Bastille Day, Galois was arrested again, 
this time for wearing the banned uniform of the National Guard and 
carrying weapons, and was locked up for the night. His cell-mate made 
matters worse for Galois by graffitiing the walls with political cartoons 
and slogans against the King. This time the courts were not so lenient. 
After three months awaiting trial, Galois was found guilty and sen-
tenced to nine months in the Sainte-Pélagie prison on the southern 
edge of Paris. 
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Mathematical escapism 

Literary escapism has long been a way for inmates to cope with being 
deprived of their physical liberty. The seventeenth-century allegorical 
novel The Pilgrim’s Progress was penned in Bedford prison, where John 
Bunyan was incarcerated for 12 years. The Marquis de Sade, Oscar 
Wilde and Adolf Hitler all penned significant works while inside. But 
history also bears witness to a slightly more unexpected way to break 
the tedium of hours locked up with only one’s brain for company: 
mathematical escapism. Several of the hostages incarcerated for years 
in the Lebanon in the 1980s described how exploring numbers in their 
heads helped relieve days of isolation. 

In 1940, the pacifist and mathematician André Weil, brother of the 
French philosopher Simone Weil, found himself in prison awaiting 
trial for desertion. During those months in Rouen prison, Weil pro-
duced one of the greatest discoveries of the twentieth century, on 
solving elliptic curves. He wrote to his wife: ‘My mathematics work is 
proceeding beyond my wildest hopes, and I am even a bit worried – 
if it is only in prison that I work so well, will I have to arrange to 
spend two or three months locked up every year?’ On hearing of his 
breakthrough, fellow mathematician Henri Cartan wrote back to Weil: 
‘We’re not all lucky enough to sit and work undisturbed like you . . .’  

Finding himself locked up, Galois too sought escapism in his mathe-
matics. During his incarceration he received the report by Poisson on 
his manuscript. Although quite negative, it did at least end with an 
encouraging final paragraph: 

The author claims that the proposition which is the subject of his 
memoir is part of a general theory rich in application. Often, different 
parts of a theory are mutually clarifying, and it is easier to understand 
them together than in isolation. One should rather wait for the author 
to publish his work in its entirety before forming a definite opinion. 

Galois decided to rewrite the manuscript he’d got back, adding a new 
extended introduction. As he worked away on his mathematics he 
soon got a reputation amongst his fellow inmates for being the young 
scholar in their ranks. 
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But he couldn’t keep to himself his frustrations at his shoddy treat-
ment by the Academy of Sciences and ultimately by the Institut de 
France, which oversaw all the academies in France. His new text began 
to fill with words full of vitriol and anger: 

It is the men of science who are responsible for my manuscripts being 
lost in the files of the Institut de France. I fail to understand such 
negligence by men who have Abel’s death on their conscience; not that 
I wish to be compared with that eminent mathematician. 

But Galois didn’t spend all his time railing against the mathematical 
establishment. He also wrote about the power of a new conceptual 
approach to mathematics, of a move away from the complicated calcu-
lations of Euler towards the ‘elegance of modern mathematicians 
whose minds quickly grasp all at once a large number of operations’. 
His great breakthrough was to identify a new abstract entity, what 
Galois called a group. The true essence of an object’s symmetries would 
be found not by focusing on them individually, but by studying them 
together as a group. 

Galois battled with the problem that every mathematician has to 
face when writing up a new discovery. Put in too little detail, and 
readers will have not enough directions to help them through the new 
mathematical maze. Yet put in too much detail and you swamp the 
readers, who will then have no clear vision of where you are trying to 
take them. Abel’s six pages were at one end of this spectrum, while 
Ruffini’s 512-page epic lay at the other. 

Galois realized that his account was rather short on explanation: 
‘the printer when he saw the manuscripts thought they were an intro-
duction’. Yet he admits that it would have been 

all too easy to substitute all the letters of the alphabet in each equation 
which would have multiplied the number of equations indefinitely. 
After the Latin alphabet I could have used the Greek one and when this 
had been used up, we still have the German Gothic letters and nothing 
would stop us using Syraic or even Chinese lettering! 

He was trying instead to communicate his understanding of the con-
cepts: ‘there is as much French as algebra’, something that is true of 
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many mathematical papers, and comes as a surprise to those expecting 
just a stream of equations. Galois, though, was still trying to find the 
mathematical voice that would bring his ideas alive in the minds of 
others. 

While he was inside, Galois made friends with another member of 
the Société des Amis du Peuple, who also spent his hours in prison 
studying and writing. Seventeen years older than Galois, François-
Vincent Raspail had already made a name for himself as one of France’s 
leading natural scientists with an important classification of grasses 
and a new theory of the biological cell. In discussions with the young 
mathematician, Raspail became aware of the young man’s talents: ‘In 

´ two years time he will be Evariste Galois, the scientist! But the police 
do not want scientists of this calibre and temperament to exist.’ 

The other prisoners were not so respectful, and enjoyed teasing 
the inexperienced young revolutionary. Several times they challenged 
Galois to drinking contests. As Raspail described in letters from the 
prison: 

To refuse the challenge would be an act of cowardice. And our poor 
Bacchus had so much courage in his frail body that he would give his 
life for the hundredth part of the smallest good deed. He grasps the 
little glass like Socrates courageously taking the hemlock; he swallows 
it at one gulp, not without blinking and making a wry face. A second 
glass is not harder to empty than the first, and then the third. The 
beginner loses his equilibrium. Triumph! Homage to the Bacchus of 
the jail! You have intoxicated an ingenious soul, who holds wine in 
horror. 

In another letter sent from the jail, Raspail describes Galois drunk-
enly opening his heart: 

How I like you, at this moment more than ever. You do not get drunk, 
you are serious and a friend of the poor. But what is happening to my 
body? I have two men inside me, and unfortunately, I can guess which 
is going to overcome the other. I am too impatient to get to the goal. 
The passions of my age are all imbued with impatience . . . See here! I 
do not like liquor. At a word I drink it, holding my nose, and get drunk. 
I do not like women and it seems to me that I could only love a Tarpeia 
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or a Graccha. And I tell you, I will die in a duel on the occasion of 
some coquette of low standing. Why? Because she will invite me to 
avenge her honour which another has compromised. Do you know 
what I lack, my friend? I confide it only to you: it is someone whom I 
can love and love only in spirit. I have lost my father and no one has 
ever replaced him, do you hear me . . . ?  

The speech is so prophetic that one can only guess that Raspail’s 
letter was edited in the years after Galois’s death. But Galois almost 
didn’t make it out of jail to meet his destiny. One evening when he 
was going to bed, a gunshot flashed across the prison yard and a man 
in his cell fell to the ground. It appeared that someone in the garret 
opposite, where the guards were stationed, was picking off prisoners. 
When the guards on duty eventually arrived, the prisoners were in 
uproar. Galois in particular was incensed, convinced that the shot was 
meant for him. He accused the warden of deliberately organizing the 
assassination of difficult prisoners. The warden, seeing that the prison 
was about to erupt into a riot, promptly had Galois thrown into a 
solitary cell in the very depths of the prison. 

The other prisoners protested vociferously at Galois’s treatment: 
‘You throw into the dungeon both the victim of this shameful trap 
and the witness of it? This young Galois doesn’t raise his voice, as you 
well know; he remains as cold as his mathematics when he talks to 
you.’ ‘Galois in the dungeon!’ cried another. ‘Oh, the bastards! They 
have a grudge against our little scholar.’ The evening ended in a 
full-scale riot. 

Love in the time of cholera 

The unworldly nature of mathematics very often rubs off on those 
who spend a long time in its realm. Galois’s fear of women, as expressed 
to his friend Raspail, was probably a result of his complete inability to 
grasp the rules and logic of the complicated game of love. His one 
experiment in this field had disastrous consequences. 

It was not the assassination or imprisonment of political activists 
that finally put paid to a full-scale revolution in Paris, but the dreadful 
effects of a cholera epidemic that broke out in the spring of 1832. 
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Anyone with money fled the city; those in the slums suffered terrible 
losses. The authorities decided to move the young and sick prisoners 
out of the Sainte-Pélagie prison to avoid the inmates being wiped out 
by an outbreak of the infection. Galois was among a group of prisoners 
who were moved on 16 March to a clinic in the Latin Quarter. A 
month later, Galois completed his prison sentence. Although a free 
man, he decided to continue living at the clinic. 

Having been locked up for months in the company of men, Galois 
now came into contact with a young woman at the hospital. Stéphanie, 
the daughter of the doctor at the clinic, used to help her father on his 
rounds. She was particularly taken by Galois, but it seems that he was 
unable to navigate the relationship that built up between the two of 
them. The elation of falling in love was quickly replaced by the despair 
at having his advances rebuffed by the young woman. 

In mid May, Stéphanie wrote Galois two letters trying to cool his 
advances. Galois tore them up in a fit of rage and threw them into the 
fire. Then, regretting his actions, he tried to reconstruct what Stéphanie 
had written. On the back of some of the mathematical papers found 
after Galois’s death are snatches of the correspondence from Stéphanie 
written in his hand: ‘Please, let us put an end to this. I do not have 
the spirit to keep up such a correspondence but I shall try to find 
enough to converse with you as I did before anything happened.’ 
Galois was left desperate by the end of the affair and wrote on 25 May 
to his friend Chevalier: 

How can I remove the trace of such violent emotions as I have felt? 
How can I console myself when in one month I have exhausted the 
greatest source of happiness a man can have, when I have exhausted it 
without happiness, without hope, when I am certain it is drained for 
life? 

What happened over the next few days remains something of a 
mystery. Galois, a free man, was again attending meetings of the out-
lawed Société des Amis du Peuple. At a meeting on 5 May at which 
Galois was present, the society had decided that an armed uprising was 
the only way they could overthrow the new regime. That we know of 
such a decision is thanks to Lucien de la Hodde, a police informant who 
had infiltrated the society and reported on the plans being hatched. 
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What is slightly ambiguous from de la Hodde’s report is whether 
Galois actually planned what happened next. On 30 May, in the early 
morning mist, a peasant walking by a pond on his way to market 
discovered a young man on the ground, writhing in agony. He had 
been shot, and had a single bullet wound to the stomach. It was, most 
likely, a duelling wound. In nineteenth-century Europe, duels were a 
common way of resolving disputes over women, politics, insults – even 
geese. Local newspapers would often carry notices of forthcoming 
duels, and their terms. 

Galois was taken to the Cochin hospital where he died a day later, 
refusing to take the last rites offered him by the hospital’s priest. ‘Don’t 
cry,’ he said to his brother who was with him during the last hours. ‘I 
need all my courage to die at twenty.’ In letters sent to Republican 
friends the night before he ventured out to meet his death, he wrote: 

I beg my patriotic friends not to reproach me for dying in any other 
way than for my country. I die the victim of a cruel coquette and her 
two dupes. It is over a miserable piece of slander that I end my life. Oh! 
Why die for something so little, so contemptible? . . . I would like to 
have given my life for the public good. 

It seems likely that the ‘coquette’ was none other than Stéphanie. What 
led to the duel is unclear. Had Galois discovered that Stéphanie had 
had a lover all along while she was, in his eyes, toying with him? The 
duel itself took place just a few streets away from the clinic where 
Galois had met her. 

Although the duel was over a woman, there has been some specu-
lation that Galois may have engineered his death to create the spark 
to ignite a new revolution. When the leaders of the Société des Amis 
du Peuple heard of his death, a meeting was summoned. According to 
the police agent among their ranks, it was decided that Galois’s funeral 
would be the perfect excuse for the violent revolt they had been 
planning. 

The next morning, three thousand people attended the funeral in 
Montparnasse. But during the funeral orations, word spread of an 
even greater cause for revolt. General Lamarque, one of Napoleon’s 
right-hand men, had died that morning. His funeral was likely to whip 
up an even greater revolutionary fervour than this relatively unknown 



203 February: Revolution 

malcontent. A decision was quickly made. The revolt was put on hold, 
and Galois’s funeral hastily drawn to an end. His death has to be one 
of the most pointless and tragic events in the history of mathematics. 

Although several of the letters he wrote the night before the duel set 
out the reasons for the dispute, he spent most of the night trying to 
flesh out the mathematical theory he had failed to interest anyone in. 
He chose his friend Chevalier as the person he thought best placed to 
communicate his ideas. Galois seemed so certain about his impending 
death that it was with increasing panic that he spent the night trying 
to make his discoveries clear. He tried to address a number of the 
points raised by Poisson in his report. But as dawn approached he had 
to cut his explanations short. At one point he frantically wrote, ‘There 
are a few things left to be completed in this proof. I have not the 
time.’ 

His letter to Chevalier ended with this desperate plea: 

In my life I have often dared to advance propositions about which I 
was not sure. But all I have written down here has been clear in my 
head for over a year, and it would not be in my interest to leave myself 
open to the suspicion that I announce theorems of which I do not have 
complete proof. Make a public request of Jacobi or Gauss to give their 
opinions not as to the truth but as to the importance of these theorems. 
After that, I hope some men will find it profitable to sort out this mess. 
I embrace you with effusion. E. Galois. 

A few hours later he was fatally shot. Sophie Germain summed up in 
a letter to a friend the ill wind that seemed to be blowing through the 
mathematical community in Paris: 

There is decidedly a kind of fate or spell hovering over everything that 
has to do with mathematics. Your own difficulties, Cauchy’s problems, 
M Fourier’s death, as well as that of the student Galois, who, for all his 
impertinence, suggested certain exciting developments and tendencies. 

Later generations would confirm Germain’s hunch about Galois’s 
ideas. Contained in the papers he left for Chevalier are the seeds of a 
totally new perspective on symmetry, one of the most fundamental 
concepts of nature. Looking through his notes now, I am amazed that 
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such a young man could have had such a vision. Time and again, the 
big breakthroughs made by mathematicians in the last two hundred 
years in the theory of symmetry can be traced back to the profound 
ideas hiding in Galois’s scribbled notes. This young revolutionary was 
the first to articulate a language that I now speak every day of my 
working life. 

13 February, p.m., La Défense, Paris 

´ Tomer and I drop by the Ecole Normale, where François has his office. 
´ The Ecole is at the heart of the Latin Quarter, Galois’s home for the 

few years of his adult life. On the way to François’s office you pass 
rooms with names above the doors of previous occupants: Samuel 
Beckett and Paul Celan. Tomer asks me who they were. I can do 
Beckett, but I’m rather stumped by Celan’s claim to fame. François 
isn’t in. I’ll email him my questions instead. But seeing him isn’t the 
main reason for our trip and it leaves us time to head up to the third 
stop on our Platonic Pilgrimage of Paris architecture. 

We’re off to see a cube. But this is no ordinary cube. This is a 
four-dimensional cube on the outskirts of Paris (Figure 53). The 

Fig. 53 Arche de la Dé fense, Paris. 
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former President François Mitterrand was responsible for com-
missioning some of the great examples of modern architecture in Paris. 
For me, the Arche at La Défense is the most impressive and daring. La 
Défense was chosen as it lines up with some of the other great Parisian 
buildings along what is now called the ‘Mitterrand perspective’. It 
starts with the pyramid at the Louvre, which we visited this morning, 
and proceeds via the Arc de Triomphe and the Egyptian needle to the 
huge Arche at La Défense. 

As you climb the stairs at the métro exit, you see the Arche tower-
ing above the concourse at La Défense. It is so immense that the 
towers of Notre Dame could fit beneath it. Covering the side of 
a high-rise that borders the concourse is a huge advert depicting 
Thierry Henry smashing a football in mid air. It looks as though the 
Arche is the goal he’s shooting at. But for me the significance of the 
Arche is not its size, but that it attempts to show what a cube looks 
like in four dimensions. Since we live in a three-dimensional world, it 
is impossible for us to construct a four-dimensional cube. But math-
ematicians have found other intriguing ways to capture these elusive 
shapes. 

As we walk towards the Arche, the sun casts our shadows onto the 
pavement. A shadow is a two-dimensional picture of our three-
dimensional shape. As we move and turn, the shadows change. Some 
shadows, like our profiles, give quite a good indication of what our 
bodies look like in three dimensions. The Arche exploits the idea 
that the Renaissance painters used to create the illusion of seeing 

Fig. 54 A two-dimensional shadow of a three-dimensional cube. 
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three-dimensional shapes on a flat, two-dimensional canvas. If you 
want to depict a cube on a two-dimensional page, then a square drawn 
inside a larger square captures something of its three-dimensional 
shape (Figure 54). 

The Arche takes this illusion one dimension up. A projection of the 
four-dimensional hypercube into three dimensions consists of a cube 
inside a larger cube. There is a strange effect as one walks towards 
these nested cubes. Although the weather is quite calm, there is a 
howling wind blowing across the square towards the Arche. Perhaps 
creating a shadow of a four-dimensional shape is rather dangerous. It 
feels as though the architect has opened up a tiny wormhole which is 
pulling us towards the centre of the Arche. Perhaps, instead of guiding 
our eyes towards the suburbs of Paris visible through the central cube, 
the Arche is in fact a portal to another world. 

But there are other ways of describing this hypercube. As I’d dis-
covered as a student, one way is by translating geometry into 
numbers. The coordinates of the four points of a square in two dimen-
sions can be written as (0, 0), (0, 1), (1, 0) and (1, 1). The eight corners 
of a three-dimensional cube get translated via this language of 
coordinates into eight coordinates, (0, 0, 0), (0, 0, 1), . . . ,  (1,  1,  1).  What 
this process of turning geometry into numbers can do is give a reality 
to something which in the visual language seems rather mysterious: 
the four-dimensional hypercube, a shape with 16 ‘corners’, is given 
precise expression by the coordinates (0, 0, 0, 0), (0, 0, 0, 1), . . . ,  
(1, 1, 1, 1). 

Although we can’t see the geometry, the numbers allow us to ex-
plore the shape through a different set of mathematical lenses. An 
edge, for example, is specified by choosing two vertices that differ 
in one coordinate, such as (0, 1, 1, 0) and (0, 1, 0, 0). To find out 
how many edges the four-dimensional cube has, I simply count how 
many pairs of vertices there are which differ in one coordinate. So 
thanks to the algebra, I can calculate that in addition to these 16 
vertices, the hypercube has 32 edges and 24 square faces, and is made 
up of eight cubes. But what about its symmetry? That was Galois’s 
legacy. His new language would enable us to analyse the symmetries 
of these higher-dimensional shapes without ever holding them in our 
hands. It is this language that I shall need to exploit if I am ever going 
to see what symmetries in higher dimensions can be built from my 
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simple prime-sided shapes. When Tomer falls asleep on the Eurostar 
back to London, I pull out my yellow pad, ready to make another 
onslaught on my problem. 



8 

6 
March: Indivisible Shapes 

Mathematicians are like a sort of Frenchmen; if you talk to them, 
they translate it into their own language, and then it is immedi-

ately something quite different. 
johann wolfgang von goethe 

17 March, Stoke Newington 

There are three stages to understanding something. The first is when 
you suddenly get it. The second is standing in front of a seminar 
audience and trying to convey to others the vision you’ve had. The 
equations on the blackboard combine with the physical presence of 
the speaker to conjure up ideas in the listener. But the third and 
hardest stage of understanding something is translating it to the printed 
page. There, the maths is going to be read without you present as a 
guide. Everything must be well signposted so that the reader doesn’t 
get lost. 

I’m currently in the thick of the third stage of understanding the 
work I’ve been doing with Fritz. I’m trying to finish writing up some 
of the insights we’ve had during our explorations in Bonn. It’s only a 
small step towards proving the grander conjecture I want to crack, but 
it’s a start. Just as Galois described, I must judge the amount of detail 
so that the reader doesn’t get so bogged down that they lose the 
overarching narrative. This is the art of writing up your ideas, and it 
often involves creating new language to describe them. 

I was having great difficulty explaining to Dan, my DPhil supervisor, 
a breakthrough I’d made in my early research. ‘Why don’t you give the 
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object a name?’ he offered. It was a simple suggestion, but incredibly 
empowering. The act of naming the structure I was focusing on enabled 
me to express my ideas where before I’d been struggling. Thoughts 
suddenly seemed to crystallize. I could give a very precise definition of 
what this name meant which pinned it down without any ambiguity. 
The power of the mathematical language is that it allows me to capture 
a structure which was getting lost in the multiple strands of the logical 
argument. 

The symbols that filled the books I looked at as a child are shorthand 
for ideas that can be articulated in longhand. But although this short-
hand is very powerful, it is also what makes so much of mathematics 
impenetrable. It is like a Tower of Babel where each new storey intro-
duces a new language. And if you skip one of the storeys in your ascent 
of the mathematical tower, you get more and more lost because you 
don’t have a clue what people are talking about when they are using 
the words or notation introduced in the storey you missed. 

Writing down the details of a proof calls for intense concentration. 
The proof should be like a piece of computer software. The brain is 
the hardware. The hardware can vary from person to person, but the 
program has to run on every machine. Something is wrong with a 
proof that keeps crashing when others begin to process it, so I’ve spent 
the morning building up the details of my logical argument. It’s taken 
me weeks of hard slog to get this far, but I am nearing the end. It will 
soon be ready to be sent to a journal. 

Galois was also aware that his ideas would be difficult for readers, 
and he wrote: 

This subject made necessary the use of new denominations, of new 
characters. We do not doubt that this snag will irritate the reader, from 
the very first passages. He will hardly forgive the author benefiting from 
all his trust for speaking a new language to him. 

He was struggling to articulate what was in his mind in such a way 
that others could follow his reasoning. The one piece of writing that 
probably saved his ideas from disappearing into the mists was the 
passionate letter he wrote to Chevalier on the eve of his duel. Chevalier 
always had faith in his friend’s mathematics and he could not ignore 
the plea from beyond the grave to seek the recognition he deserved. 
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Mathematical packages 

Chevalier did not have the mathematical skills to sort out the mess 
that Galois had bequeathed him, but he knew he had to try, both for 
Galois’s sake and probably for the good of the subject itself. Along 
with the letter, there was a bunch of unfinished manuscripts that Galois 
had left his friend. 

Chevalier vowed not to let these discoveries fall into obscurity. With 
the help of Galois’s brother Alfred, who had been there at Galois’s 
death, they began to make copies of the most important passages in 
order to send them to mathematicians across Europe. Galois had 
asked Chevalier to seek the opinion of the two prominent German 
mathematicians, Jacobi and Gauss. But Chevalier received no response 
from Germany. Neither mathematician was prepared to spend time 
trying to penetrate a dense unsolicited manuscript when they could 
more usefully dedicate the time to developing their own ideas. But 
Chevalier did not give up. 

It took over ten years of trying before finally a French mathema-
tician, Joseph Liouville, responded positively. Liouville was a professor 

´ at the Ecole Polytechnique, the institution that Galois had so desper-
ately wanted to attend. An English mathematician who met Liouville 
described him as ‘a pleasant, chatty little man with whom I soon felt 
at perfect ease. The only blemish I observed in him was an occasional 
unmeaning giggle.’ He was a prolific mathematician, publishing over 
four hundred papers in subjects ranging from celestial mechanics to 
number theory. He even has a number named after him: 

0.110 001 000 000 000 000 000 001 000 0 . . .  

where a 1 occurs at each decimal place which is one of the factorial 
numbers n!. Liouville used this number to show that there are some 
numbers which aren’t solutions to equations: so-called transcendental 
numbers. But as well as his own work, Liouville had established a 
reputation for promoting the work of other, younger mathematicians. 

Liouville had become rather disillusioned by the infighting that had 
broken out within the French academies. He described how 
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a peculiar spirit of emigration has seized some critics and we have seen 
them heap abuse on one after the other of the men who in various 
fields of science have honoured France with great dignity . . .  This sharp 
and peremptory style . . . will never be mine, for it dishonours both the 
character and talent of those who adopt it. 

He decided to take things into his own hands, and founded his 
own journal in Paris to counter the wrangling that had infected the 
other French publications. Liouville had published many of his own 
papers in August Crelle’s new journal in Berlin; this was the journal 
that had championed the work of the young Abel. Liouville hoped to 
do the same thing with his new Journal de Mathématiques Pures et 
Appliquées. 

In 1842 Liouville got his chance to match Crelle’s discovery of the 
work of the young Abel. Chevalier had sent him Galois’s manuscripts, 
impressing on him how important he believed the contents to be. After 
looking through them, Liouville had a hunch that they contained 
something worth exploring and he decided to dedicate some time to 
untangling the mess of equations and arguments. His efforts were 
rewarded: ‘Then in one moment I experienced the intense pleasure 
when, after having filled in all the careless gaps, I recognized the 
complete accuracy of the method proposed by this Galois and in 
particular the beauty of his theorem . . .’  Suddenly, Galois’s buggy 
proof had worked on someone else’s mental machinery. 

By 4 September 1843, Liouville was ready to present Galois’s work 
to the Academy, just as Cauchy had promised to do over a decade 
earlier: ‘I hope to interest the Academy in announcing that among the 

´ papers of Evariste Galois I have found a solution precise as it is pro-
found of this beautiful problem: whether or not an equation can be 
solved by radicals.’ Three years later, Liouville used his journal to 
publish Galois’s ideas. With an interpreter at last to communicate this 
new language to the old guard, Galois’s vision revealed a new world. 
Finally, mathematicians had found their way through the Strait of 
Magellan. 

Even Carl Jacobi, one of the German mathematicians Galois had 
told Chevalier to contact, finally wrote to Galois’s brother enquiring 
about the other work still unpublished, after he’d seen the papers in 
print in a mainstream journal. Alfred replied, thanking Jacobi profusely 
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for his interest. He hoped that this would mean that a bit of his brother 
would live on beyond the grave through the recognition of his work. 
As G. H. Hardy once wrote, ‘Archimedes will be remembered when 
Aeschylus is forgotten, because languages die and mathematical ideas 
do not. ‘‘Immortality’’ may be a silly word, but probably a mathema-
tician has the best chance of whatever it may mean.’ The fact that 
every mathematician now learns the fundamental concepts at the heart 
of Galois’s work is testament to Hardy’s belief. 

Prime symmetry 

What comes out of the subsequent development of Galois’s work is a 
new way to think about symmetry. For most people, symmetry is a 
static property of an object. Galois’s work inspired a different perspec-
tive. Symmetry should be thought of as something active rather than 
passive. A symmetry of an object is what you can do to an object to 
leave it essentially looking like it did before you touched it. This is 
something I started to understand as a kid. Take a seven-sided coin 
(such as the British 50p piece), place it on a piece of paper and draw 
an outline round it. A symmetry of the coin is any way of moving it 
so that it ends up back inside its outline. The magic trick moves. 

At the heart of Galois’s vision is the recognition that one shouldn’t 
just look at individual symmetries of an object or a system. Rather, 
one must understand the symmetries in totality as a collection, or what 
he called a group. One symmetry should be thought of as something 
you ‘do’ to a structure, one of the magic trick moves. But Galois was 
interested in the collection of all symmetries and seeing what happens 
if you ‘do’ one symmetry after another. He discovered that it is the 
interactions between the symmetries in a group that encapsulate the 
essential qualities of the symmetry of an object. 

These interactions led to a multiplication that binds all the sym-
metries together within the group. Galois saw that, just as two numbers 
can be multiplied together to give a third number, there was a way to 
combine two symmetries to produce a third symmetry. If I perform 
one symmetrical move followed by a second, the combined effect of the 
two moves is to create a third symmetry that I could have performed in 
a single move. For example, a clockwise rotation of a square through 
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90° followed by a horizontal reflection gives the same result as a 
reflection in a diagonal line (Figure 55). If we give these symmetries 
names, for example X for the rotation, Y for the horizontal reflection 
and Z for the diagonal reflection, we can express the relation-
ship between these symmetries as a multiplication: X * Y = Z. In this 
way Galois discovered an extra layer of texture to the symmetries of 
each object reflected in how the different members interact with each 
other. 

A B BD A C B A 

D C C B D A D C 

Fig. 55 A rotation followed by a horizontal reflection is the same as a reflection in a diagonal. 

Galois wasn’t interested in physical shapes. The corners of the square 
were replaced by solutions to equations. The letters A, B, C and D are 
then, for example, the four complex numbers that are the solutions 
to the equation x4 = 2 (Figure 51, page 184). But the same principle 
applied. Instead of the rigidity of the shape, Galois was exploring the 
laws satisfied by the solutions, such as A + C = 0 and B + D = 0.  He  
considered the group of permutations of the letters that preserved the 
laws A + C = 0 and B + D = 0 satisfied by these numbers. It was not the 
individual permutations that were important but rather their inter-
actions. Take two permutations of the letters A, B, C and D which 
preserve the laws. For example the first permutation might send A to 
B, B to C, C to D and D to A; this permutation changes one law into 
another satisfied by the numbers represented by A, B, C and D. The 
second permutation might swap A with D and B with C, and that also 
preserves the laws. Then the combined effect of these permutations 
gives Galois a third permutation which fixes B and D but swaps A with 
C. The point is that this third permutation will also be in Galois’s 
special group of permutations that preserve the laws. 

Galois’s amazing discovery, which he made when he was analysing 
the interactions of the symmetries within entire groups, was that some 
groups of symmetries could be broken down into smaller groups of 
symmetries. Other groups, however, seemed to be immune to such 
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subdivision. For example, the rotations of a 15-sided coin can be built 
out of combinations of the rotations of a pentagon and a triangle, but 
the rotations of a 17-sided coin could not be broken down in any 
similar fashion. So the rotations of prime-sided shapes give prime 
indivisible symmetries. But Galois discovered other interesting indivis-
ible symmetry groups beyond the simple prime-sided shapes. For 
example, the 60 rotations of a dodecahedron cannot be divided into 
smaller groups of symmetries. In particular, a group of symmetries 
might be indivisible despite the fact that the number of symmetries of 
the object was not a prime number. 

Galois was interested in this discovery because he realized that the 
indivisibility of the group of symmetries of an equation held the key 
to whether the underlying equation could be solved or not. If a group 
of symmetries could be broken down into rotational symmetries of 
prime-sided shapes, the equation could be solved. Otherwise, it 
couldn’t be solved. 

For example, there are three complex numbers A, B and C which 
solve the cubic equation x3 + 2x + 1 = 0.  There are various laws satisfied 
by these three numbers: A × B × C = −1 is one of them. There are six 
different ways to permute these three numbers. The group of sym-
metries of the equation x3 + 2x + 1 = 0  are  those permutations that 
preserve the laws satisfied by the three solutions A, B and C. This 
particular equation, x3 + 2x + 1 = 0,  has  the  property that all six permu-
tations preserve the laws connecting the solutions. The symmetry 
group of these three solutions is actually the same as the symmetry 
group of a triangle. Think of A, B and C as the three points of the 

B 

A C 

Fig. 56 The symmetries of the triangle give all six permutations of A, B and C. 
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triangle (Figure 56); every permutation of A, B and C can be obtained 
as a rotation or reflection of the triangle. 

In Galois’s language, the reason that Tartaglia was able to find a 
formula to solve the cubic is precisely because the six symmetries of 
the triangle can be ‘divided’ by the rotations of the triangle (which has 
three elements) to leave the reflections in a line. So the six symmetries 
of the triangle are built from two prime groups of symmetries, one 
with three symmetries and the other with two. 

If we look at the more complicated case of the quartic equation 
solved by Cardano’s student Ferrari, then the permutations of the four 
solutions A, B, C and D can be interpreted as the symmetries of a 
tetrahedron, where the solutions sit at the four vertices. Every permu-
tation of the solutions A, B, C and D can be effected by a rotational 
or reflectional symmetry of the tetrahedron. There are 24 different 
symmetries in this group. Figure 57 shows the symmetry in which the 
tetrahedron is spun through 180° around an axis passing through the 
centre of two opposite edges. The effect of this symmetry is to swap A 
and B around and to swap C and D. 

A 

B 

C 

D 

Fig. 57 The rotational symmetry of the tetrahedron that swaps A with B and C with D. 

There are two other axes joining opposite edges whose symmetries 
swap the other ways of pairing these letters: one swaps A with C, and 
B with D; the other swaps A with D, and B with C. The intriguing 
thing is that this subgroup of symmetries is actually identical to the 
symmetries of a rectangle. A rectangle has four symmetries (Figure 
58). They include, for example, a reflection in the horizontal line. This 
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swaps A with D, and C with B. There are two other symmetries which 
swap the other ways of pairing these letters: a reflection in the vertical 
swaps A with B, and C with D; and a rotation of 180° swaps A with C, 
and B with D. The fourth symmetry is of course the symmetry that 
leaves the rectangle untouched. 

CD 

0 

A B 

Fig. 58 The symmetry group of the tetrahedron can be divided by the 
symmetry group of the rectangle. 

One would not have expected to find the symmetries of a rectangle 
hiding in a tetrahedron. After all, a tetrahedron is made up of four 
triangles. Nevertheless, the three rotations of a tetrahedron described 
above have exactly the same effect on the vertices A, B, C and D as if 
they were points on a rectangle. What is even more interesting is 
Galois’s realization that there is a way to divide the group of 24 
symmetries of the tetrahedron by the group of four symmetries of a 
rectangle, and get the group of six symmetries of the triangle that was 
hiding behind the cubic equation. Both the four symmetries of the 
rectangle and the six symmetries of the triangle are in turn built 
from symmetries of prime-sided shapes. This ability to reduce the 
symmetries to those of prime-sided shapes is the reason that the quartic 
equations can be solved by the formula that Ferrari discovered. 

Dividing the tetrahedron by the rectangle to get a triangle is rather 
like the fact that 4 divides into 24 exactly, giving the answer 6 with no 
remainder. But dividing by groups of symmetries turns out to be much 
more subtle than dividing numbers. You have to be quite careful about 
how you break groups of symmetries down. For example, it seems 
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clear that the symmetries of a triangle are hiding as a subset of the 
symmetries of the tetrahedron. But when you try to divide by the 
triangle, the operations you’re left with don’t make any sense as a 
collection of symmetries of an object. In contrast, there are lots of 
numbers that divide exactly into 24 to give another number, for 
example 3, 4 and 8. With symmetries, things are subtler. Only 
some subgroups of symmetries will divide to give another shape. So 
although there is a subgroup with three symmetries and one with four 
symmetries, and one with eight symmetries, only the one with four 
symmetries actually divides the group of symmetries of the tetrahedron 
exactly to leave another group of symmetries. 

Galois’s great breakthrough was his discovery that the shape hiding 
behind the quintic equation is the first example of something that 
cannot be divided into symmetries of prime-sided shapes, what-
ever choice of sub-objects you try to divide it by. For example, the 
equation x5 + 6x + 3 = 0  has  five  solutions. There are not many laws 
connecting these solutions, and it turns out that the laws will be 
preserved no matter what way the solutions are reordered. There are 
in total 120 = 5 × 4 × 3 × 2 × 1  different permutations of these five 
numbers, so the group of symmetries consists of 120 different oper-
ations. 

It is possible to divide this group into two smaller groups, one with 
60 symmetries and one with two symmetries. Just as numbers are 
either odd or even, permutations can be odd or even. It is possible to 
achieve any permutation by doing a sequence of swaps where two 
objects are interchanged at a time. For example, if I have a pack of 
five cards with the letters A, B, C, D and E on, and I want to cycle 
them to get them in the order B, C, D, E, A, I can do it by first 
swapping B with A, then C with where A is now, then D with A’s new 
position, and E with A. With four swaps I’ve ended up with the same 
result as if I’d cycled the cards around: 

(ABCDE) �(BACDE) �(BCADE) �(BCDAE) �(BCDEA) 

Because it took four swaps, an even number, we call the permutation 
that cycles the five cards an even permutation. To cycle only four cards 
around, it takes three swaps, an odd number, so that permutation is 
called odd. Of the 120 permutations of the five cards, 60 are even and 
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60 are odd. Notice in particular that doing one even permutation 
followed by another gives me a third even permutation. This is not 
true for odd permutations: the combination of two odd permutations 
gives an even permutation. So it is only the set of even permutations 
that makes up a group of symmetries. It is in fact the same as the 
60 rotational symmetries of the dodecahedron. One can match each 
of the rotations with an even permutation in such a way that the 
interactions between the different rotations are exactly mirrored by 
the interactions of the permutations. The symmetry of the shape can 
be used to do all the even shuffles of the pack of five cards. 

What Galois discovered is the amazing fact that this symmetry group 
with 60 symmetries is indivisible. So although the number 60 can be 
divided by 5 to give 12, there is no subset of symmetries that divides 
into it to give a sensible set of operations that are the symmetries of 
another object. You might think that the rotations of one of the 
pentagonal faces should divide it. They certainly do form a subgroup 
of symmetries. But when you try to divide by this subgroup, the 
resulting division does not correspond to a group of symmetries. The 
60 symmetries of the dodecahedron are so intricately related that it 
somehow creates this indivisibility. The symmetries are bound up in 
such a manner that the way two combine to give a third symmetry 
does not allow a strategy for breaking the group of symmetries down 
into sub-pieces. 

So despite 60, the number of symmetries, being a very divisible 
number, the actual group of symmetries is as indivisible as if it were a 
prime number. And Galois recognized that this indivisibility meant 
that the underlying quintic equation couldn’t be solved with a simple 
formula. 

This was the great advance made by Galois, and what Abel had 
missed. The group of symmetries of an individual equation provided 
a way to tell whether that equation could be solved or not. If the 
building blocks that made up the group of permutations of the roots 
consisted of prime-sided shapes, then the equation could be solved 
by taking square roots, cube roots or higher roots of numbers. But 
if the building blocks involved some of these new indivisible shapes, 
such as the rotations of a dodecahedron, then there was no way to 
solve the equation with simple roots. This is why modern mathema-
ticians give the name soluble groups to groups built from prime-sided 
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shapes, to indicate that they are connected with equations that have 
solutions. 

The group of even permutations of five letters became known as the 
alternating group of degree 5. It is the first building block in the 
periodic table of symmetry, after the prime-sided shapes. And it began 
a whole new way of looking at the world of symmetry. 

Card tricks 

Although Liouville was the first to spot the importance of what Galois 
had done, it was another French mathematician, Camille Jordan, who 
truly recognized the brilliance of his idea and started to build on 
Galois’s foundations. Galois had discovered that every group of sym-
metries was either indivisible or could be broken down into smaller 
indivisible groups of symmetries. Mathematicians could now try to 
make a list of all the building blocks, like a periodic table of symmetry, 
and begin to address the question of how to use these building blocks 
to build new groups of symmetries. What was slightly unsettling was 
the realization that there were actually a whole variety of ways to put 
these building blocks together. This was completely in contrast to 
the way numbers worked. The building blocks of multiplication 
are the prime numbers, but with the primes 2, 3, 5 and 7, for example, 
the only number I can build is 210. But take prime-sided shapes with 
2, 3, 5 and 7 sides, and there are in fact 12 different ways to put them 
together. 

In 1870 Jordan published a book which crystallized the ideas Galois 
was alluding to. He also used the book to castigate the German 
mathematical establishment for failing to recognize the riches hidden 
in the texts they were sent by Chevalier. There may have been more 
than just mathematical rivalry at stake here. These criticisms were 
made just as the two countries were squaring up for the Franco-
Prussian War, which broke out in the summer of 1870. 

Jordan tried to see what groups of symmetries could be built from 
prime-sided building blocks. He soon discovered that, even though 
these blocks were simple, the variety of things you could build with 
them was so complex that it is still part of the mystery that my own 
research today is dedicated to unlocking. But he also established that 
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Galois hadn’t just found one new indivisible group of symmetries. 
The indivisible group of rotations of a dodecahedron that Galois had 
unearthed at the heart of the quintic equation was just the beginning 
of a whole infinite family of such groups. 

The obstacle to solving the quintic equation was the group of even 
permutations that shuffle the five solutions around. This, Galois dis-
covered, was an indivisible group – or what Jordan called a simple 
group. The word ‘simple’ here was used by Jordan not to indicate that 
the objects were straightforward, but to indicate that the group is a 
basic building block, not a compound group of symmetries made up 
of smaller symmetries. 

Think of the permutations of the five solutions as like shuffling a 
pack of five cards. Put each solution on a card. A permutation which 
changes the order of the solutions is like shuffling the cards. But there 
is nothing special about taking five cards as opposed to some other 
number. Take a pack with 52 cards, and consider all the different 
shuffles. Any shuffle of the pack rearranges the cards into a new order. 
The connection with symmetry is to think of the pack as analogous to 
an object with 52 faces. Every spin of the object brings the faces into 
a new orientation. Galois’s argument for why the group consisting of 
all the even shuffles of five cards was indivisible applies equally well to 
any pack of cards. 

Alongside the indivisible prime-sided shapes, Galois had added a 
new infinite family of building blocks of symmetry. Take a pack of 5, 
6, 7 or more cards. The group of all the even shuffles is a group of 
symmetries which cannot be divided into smaller symmetries. The 
even shuffles of a pack of n cards is called the alternating group of 
degree n. But this wasn’t the only new family of indivisible symmetry 
groups that Galois had discovered. In one of the memoirs he left for 
his friend Chevalier, Galois described another sort of building block 
of symmetry or simple group. 

Galois’s new building block had a more geometric flavour than the 
shuffle symmetries. But there is a twist, because the geometry is based 
on a new sort of arithmetic that Galois had just discovered. Usually 
we think of geometry as consisting of lines and points. As Descartes 
had revealed, the geometry that we can draw on a piece of paper can 
be translated into pairs of numbers. A point on the page can be 
changed into two numbers using the same principle that defines a 
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location on a map. The two numbers tell you how far you should 
travel in the east–west direction and then in the north–south direction. 

In conventional geometry the two coordinates can range through 
the infinite set of real numbers represented by the number line. But 
in this new geometry the coordinates are highly restricted. For each 
prime number p, the set of points in the geometry are given by 
coordinates (x, y), where x and y have to be whole numbers between 
0 and p − 1. So there are only finitely many points in this new geometry. 
So, for example, the set of points for the prime 7 consists of the 
coordinates (x, y), where x and y are each any of the numbers from 
0 to 6 inclusive. To compute with this geometry you have to use a new 
sort of arithmetic called clock arithmetic or modular arithmetic on the 
coordinates, which is different from ordinary arithmetic. 

Think of a heptagon with the numbers 0 to 6 arranged on the seven 
points, as in Figure 59. To add 4 to 5, we move 4 steps round the 
heptagon from 5, which gets to 2. We write this as 4 + 5 = 2  (modulo 
7) to indicate that the heptagon was used to do the calculation. Sub-
traction follows a similar process. Multiplying 4 by 5 is the same 
as adding 4 to itself 5 times, so we move round the heptagon from 
4 to 1 to 5 to 2 and get to the final answer of 6. But perhaps the most 
interesting thing about modular arithmetic is the possibility of doing 
division. In normal arithmetic, division necessitates producing a whole 
new set of numbers – the fractions. But because there is a prime 
number of elements in this set of numbers, you can always do division 

1 

2 

34 

5 

6 

0 

Fig. 59 Modular arithmetic. 4 + 5 = 2  (modulo 7), 4 × 5 = 6  (modulo 7) and 
3 ÷ 4 = 6  (modulo 7). 
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with them. For example, 3 divided by 4 is 6, because 4 × 6 gets you to 
3 on the heptagon (Figure 59). 

What does a geometry based on these numbers look like? We can 
construct a 7 × 7 grid consisting of 49 points, which we can label by 
coordinates such as (1, 2) and (4, 4). Galois was interested in the lines 
that pass through the point (0, 0). There are in fact only eight lines 
that can be defined in this geometry. To generate these lines, pick any 
point in the geometry and join it to the point (0, 0). The other points 
on this line are found by continuing the line you’ve drawn. Because 
this is a finite geometry, you have to think of a line leaving the top of 
the grid and entering again at the bottom. Figure 60 shows one of the 
eight lines in the finite geometry got by joining (0, 0) to the point 
(1, 2). A line in this geometry consists of a subset of all the points in 
the geometry which can be connected in this way. Notice that if I took 
any other point on the line in Figure 60 as a starting point, despite the 
picture looking very different I would pick out the same seven points 
and therefore the same line in this geometry. There are therefore only 
eight lines in this geometry that pass through (0, 0). Each line has six 
points on it in addition to (0, 0). Since the geometry consists of 48 

(0,0) 

) 

(4,4) 

(1, 2

Fig. 60 A line consisting of seven points in Galois’s finite geometry. 
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points in addition to (0, 0), and 48 divided by 6 is 8, that gives eight 
lines. 

Galois began to investigate how the arithmetic of these numbers can 
be used to permute the eight lines in interesting ways. He had already 
discovered that you could generate interesting groups of symmetries 
from the shuffles of a finite collection of playing cards. So one option 
was to think of these eight lines as a set of eight cards and look at all 
their permutations. But that gives nothing new. The point was that 
using modular arithmetic with these numbers produced an interesting 
subset of all the permutations of the lines. Galois discovered that the 
group of symmetries of these lines produced by applying this new 
arithmetic was a new indivisible group. 

Each symmetry is described by four numbers, which we can denote 
by a, b, c and d, arranged in a 2 × 2 grid called a matrix: 

a b  
c d  

The way this symmetry swaps all the points in the geometry round is 
to take a point, say (X, Y), and send it to the point (aX + bY, cX + dY). 
For example, the matrix 

2 1  
0 2  

would send the point (1, 2) to the point (4, 4). If you choose the 
(a, b, c, d) in such a way that ad − bc is not zero, then this interchanges 
all 49 points in the 7 × 7 grid. But the scrambling retains aspects of the 
geometry, because the seven points sitting on the line passing through 
(1, 2) get sent to the seven points sitting on the line through (4, 4). 
The matrix simply shuffles the eight lines through the point (0, 0). 
Galois discovered that these symmetries could be used to construct a 
new building block of symmetry, or what Jordan called a new simple 
group. It had 168 symmetries but was indivisible, as though it were 
prime. 

When Galois came across these indivisible groups of symmetries it 
was in the context of solving equations. Equations of degree 8 (i.e. 
starting with x8) have eight solutions. To understand whether the 
equation could be solved, Galois needed to study the permutations 
preserving the laws satisfied by these eight solutions. While he was 
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exploring a special sort of equation of degree 8, he discovered that its 
permutations were swapping the solutions around in just the same 
manner as the eight lines were being permuted in his finite geometry. 
The fact that Galois could prove that this special group of permutations 
was indivisible meant that these special equations couldn’t be solved. 
That a 20-year-old could be so insightful and recognize that this would 
produce such interesting mathematics is phenomenal. He saw that 
whenever you took a prime number p, created a geometry with p × p 
points, looked at the p + 1 lines running through the geometry and then 
took their symmetries, you got a new indivisible group of symmetries – 
a simple group. 

Interestingly, if you use the prime p = 5, you get a new view on 
an old group. Although the group is permuting six lines, not every 
permutation is possible. The group of symmetries you do get is simply 
another way of constructing the group of symmetries of the even 
shuffles of five cards or the rotations of a dodecahedron. Here is the 
real strength of Galois’s new language: three very different looking 
symmetries can actually be recognized as three different manifestations 
of the same underlying group of symmetries. It is a more abstract 
example of how different designs in the Alhambra can still have the 
same underlying symmetry. Although geometry based on the prime 5 
gave Galois nothing new, as soon as he looked at 7 and higher primes 
he found a whole new family of simple groups. 

This new family of building blocks is known in the trade as PSL(2, p). 
In his book dedicated to Galois’s work, Jordan documented these new 
groups and actually began to mine this new seam for more simple 
groups. He saw new ways to twist these geometries so that they revealed 
several other new families of simple groups. Although Liouville was 
the first to highlight the brilliance of Galois’s work, Jordan’s treatise 
was perhaps the most influential in establishing Galois’s new vision. 
This was an exciting time to be entering the world of symmetry. Two 
young mathematicians who visited Jordan in Paris were particularly 
taken by Galois’s mix of geometry and symmetry. 
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The hardy and the handsome 

Sophus Lie met Felix Klein when he came to Berlin on an academic 
visit from his home in Norway in 1869, 40 years after Abel’s death. Like 
Abel before him, Lie had been given money to expand his mathematical 
horizons by undertaking a grand tour of the great academies of Europe. 
Lie had spent some time trying to sort out what to do with his life. At 
first he’d wanted a military career, but bad eyesight denied him a 
commission, so he enrolled at the university that Abel had attended. 
He found that he was very good at a whole range of subjects, but 
couldn’t make up his mind what to concentrate on. 

Mathematics was not a subject which ever came easily to Lie. But it 
was the rush of adrenaline that he experienced on his first mathematical 
discovery that sealed his mathematical future. Inspiration struck in the 
middle of the night as he was toiling away on a problem of geometry. 
He was so excited by the breakthrough that he rushed over to a friend’s 
house and woke him up, shouting breathlessly ‘I have found it!’ He 
wrote later of that moment of revelation that ‘As a young man, I had 
no idea that I was blessed with originality. Then, as a 26-year-old, I 
suddenly realized that I could create.’ 

Thinking that someone might steal his idea if he waited for a journal 
to publish his proof, Lie decided to print the result at his own expense. 
But the friend he’d woken in the night persuaded him that if he was 
going to impress the mathematical establishment, he had to get his 
idea into the mainstream journals. Lie’s first paper was accepted by 
Crelle’s journal in Berlin, the journal that had first published Abel’s 
work. Its publication propelled Lie into the limelight, and secured for 
him the grant that made possible his European tour. 

In Berlin he quickly became friends with Felix Klein, a mathema-
tician who shared his particular slant on geometry. For both Lie and 
Klein, the fundamental objects in geometry were not the points but 
the lines. This is why Galois’s ideas of permuting lines in his finite 
geometries resonated so strongly with them. 

In contrast to Lie’s hesitant inroads into mathematics, Klein believed 
that he was born to be a mathematician: the fact that the date of his 
birth (25/4/1849) consisted of squares of primes (52/22/432) was for 
Klein an auspicious beginning. He stormed down the mathematical 
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racecourse and, unlike Lie, already had his doctorate by the age of 19. 
Klein was a tall and handsome young man; Lie was a hardy outdoor 

type. But despite their physical differences they shared similar math-
ematical tastes. The mathematical community in Germany was not 
particularly keen on Klein’s rather discursive style, believing it lacked 
the steely exactness that is so valued in mathematics. Klein disagreed. 
He believed that 

The presentation of mathematics in school should be psychological and 
not systematic. The teacher, so to speak, should be a diplomat. He must 
take account of the psychic processes in the boy in order to grip his 
interest, and he will succeed only if he presents things in a form intui-

tively comprehensible. 

He took much the same approach to mathematics in the academic 
arena. Lie appreciated the visionary aspect of Klein’s work, and on 
their trip to France they came across the mathematics that enabled 
them to articulate their emerging view of geometry. 

Lie went to Paris as part of his grand tour, following very much in 
Abel’s footsteps. He spent some time trying to improve his French. He 
found the theatre a good place to train his ear because he could buy 
the text for the play beforehand. He enjoyed wandering the streets of 
Paris, listening and looking at everything. He also attended lectures, 
which he found much easier to understand than the locals on the 
street: ‘Mathematical lectures are not difficult to follow in a foreign 
language.’ 

When Klein arrived in Paris a short time later, the two men 
immersed themselves in the local mathematical scene. Both Lie and 
Klein commented in a report back to Germany on the feeling of 
self-satisfaction that seemed to have settled on Paris. It seemed to be 
resting on the laurels of its previous generation of groundbreaking 
mathematicians, and lacking the desire to take things further. It was 
during this period that the mathematical mantle passed from Paris to 
Germany. But Klein and Lie did appreciate the clarity with which the 
French wrote their papers. It was a clarity they felt was missing from the 
rather unreadable, telescopic accounts that German mathematicians 
produced. ‘The intention of a mathematical work is reasonably to be 
understood, and not simply to engender admiration for the writer,’ 
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was their view. My impression of the majority of seminars that I attend 
is that unfortunately the German style has in general won through. 

It was Jordan’s style that the two visitors were most excited by. He 
was just finishing the book in which he set out the many ideas buried 
in Galois’s manuscripts, writing with the kind of clarity that Klein and 
Lie admired. In the idea of a group of symmetries, Klein found the 
perfect language in which to express his ideas on geometry. Galois had 
been interested in the permutations of the lines of his finite geometries 
in connection with his work on solving equations. Klein, however, was 
interested in the geometry of the lines as fundamental objects. He saw 
that once the group behind this geometry was identified, it would 
provide a powerful way to talk about what ‘geometry’ really was. This 
perspective would ultimately illuminate the story of the walls in the 
Alhambra. The patterns of tiles created by the Moors are of secondary 
interest: it is the underlying group of symmetries which preserve 
aspects of the patterns that defines the geometry of the murals. 

Lie also recognized that here was a kind of dictionary which trans-
lated geometry into Galois’s algebraic language. Klein and Lie spent 
the summer of 1870 formulating their new vision of geometry until 
they were interrupted by the outbreak of war. France and Prussia had 
been rattling sabres for some months. Napoleon III saw a war as a way 
to bolster his flagging popularity in France. For the Prussian chancellor, 
Bismarck, such a clash would be a great excuse to bring the southern 
German states into a unified nation. A provocative letter from Bis-
marck ignited the tinderbox, and the French government declared war 
on their neighbours on 19 July. 

Klein, a Prussian citizen, decided that Paris was probably not the 
best place to be and made a hasty exit. Lie was reluctant to leave the 
city since he was having such a productive time there, but when he 
saw how ineffective the French army was in the face of the German 
advances, he too departed, for neutral Italy. Lie was used to hiking 
across the Norwegian countryside. He had once walked the 60 km from 
the capital to his parents’ house – only to find that they weren’t in. 
He promptly turned around and hiked the 60 km back home. So a 
trek from Paris across the Swiss Alps towards Milan was something 
Lie looked forward to with relish. 

Lie was such a hardy walker that when it rained he simply removed 
his clothes, put them in his backpack to keep them dry and carried 
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on, baring all to the elements. Perhaps it was not surprising that an 
army unit spying a naked hiker should find him a little suspicious, and 
Lie was picked up by the authorities 50 km outside Paris. 

When the police discovered that this strange man had a foreign 
accent and that his bag was full of letters written in German with pages 
of coded messages full of cryptic signs, it didn’t take them long to 
conclude that he must be a German spy. Lie tried to explain that the 
cryptic signs were simply mathematical formulae, but the police were 
still suspicious. They challenged Lie to explain the theories in the 
papers. ‘You will never, in all Eternity, be able to understand it!’ he 
protested. But these were desperate times, when spies could be shot 
without too many questions being asked. He decided he had to make 
an effort. ‘Now then, gentlemen, I want you to think of three axes 
perpendicular to each other, the x-axis, the y-axis and the z-axis . . .’  
and he launched into a description of the geometry Klein and he had 
been developing. 

Convinced now that Lie was a lunatic as well as a spy, the police 
threw him into prison in Fontainebleau. For four weeks he sat in the 
dark, depressing confines of his cell, with only a copy of a Walter Scott 
novel in French and his mathematics for company. Like Galois before 
him, Lie found the solitude quite conducive to developing his abstract 
world of geometry: ‘I think a mathematician is comparatively well 
suited to be in Prison.’ 

News finally got out about Lie’s whereabouts. Headlines in the 
Norwegian press declared: norwegian man of science jailed as 
german spy. Eventually, French mathematicians came to the rescue 
and visited the prison. They persuaded the guards that the scribbles 
were indeed abstract mathematics and nothing more suspicious. ‘The 
sun has never seemed to have shone so clearly; the trees so green,’ 
wrote Lie on his release. 

Klein’s return to Germany had gone more smoothly than Lie’s 
attempt to flee Paris. His work was rewarded with the offer of a 
professorship at the university of Erlangen in Bavaria in 1872. In his 
inaugural lecture he took the opportunity to outline the new vision he 
had formulated with Lie of what geometry was really all about. The 
essence of geometry was captured not by the picture of the points and 
lines, but by the group of symmetries that permuted these points and 
lines. By using Galois’s language it was possible to articulate much 
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more clearly the essential components of the geometry, and to say, for 
example, when two geometries were the same or not. In many ways 
the speech was a manifesto for a new sort of mathematics, and it 
became known as the Erlangen Programme. 

As well as formulating his overarching theories, Klein discovered 
another beautiful manifestation of Galois’s group PSL(2, 7) as the 
group of symmetries of an object resembling a three-holed bagel con-
structed from 21 triangular faces (Figure 61). He also discovered that 
although the indivisible symmetries of the dodecahedron stopped a 
quintic equation from being solved by taking simple fifth roots, its 
geometry could be used to define more elaborate operations that would 
solve these equations. His discovery is the genesis of a completely new 
class of mathematical objects that are central to modern number 
theory. Called modular forms, they would play a crucial role in the 
story of the Monster symmetry group discovered a hundred years later. 

Fig. 61 Klein’s three-holed bagel built from 21 triangular pieces. 

Lie realized that implicit in Klein’s Erlangen Programme was the 
problem of a complete classification of what sort of groups of sym-
metries could possibly arise from these geometric settings. He believed 
at first that the problem was ‘absurd or impossible’, but a year later 
he changed his mind. He had found a way in. 

Back in Norway, Lie began to formulate a whole new approach to 
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the geometric groups that Galois and Jordan had described. He called 
them transformation groups, but today they go by the name of their 
inventor: Lie groups. It took some time for Lie’s new mathematics to 
be recognized, partly because of the difficulty he had writing up his 
work: ‘publication in this area went woefully slow. I could not structure 
it properly, and I was always afraid of making mistakes. Not the small 
inessential mistakes . . . No, it was the deep-rooted errors I feared.’ 
But Lie was confident in its worth: ‘my life’s work will stand through 
all times and in the years to come, be more and more appreciated – 
no doubt about it’. Lie was certainly proved correct. His groups would 
become essential tools in theoretical physics, but they also gave rise to 
a whole range of new families of building blocks in the periodic table of 
symmetry. One of the families describes the symmetry of the hypercube 
Tomer and I saw in Paris last month. 

A group of American mathematicians were instrumental in explor-
ing these groups during the first few decades of the twentieth century, 
but it was once again a French mathematician, Claude Chevalley, who 
in 1954 created a framework in which all these families of building 
blocks, now called the simple groups of Lie type, could be described 
systematically. In addition to the groups Galois discovered, he 
accounted for another 12 different families. 

In recognition of his work, Lie was offered the professorship at 
Leipzig that Klein had just vacated on his way to a post in Göttingen. 
The move, in 1886, was not a happy one. Lie had felt isolated math-
ematically in Norway, but the depressing dull wet weather in Germany 
started to get to him. He grew very homesick and wrote of how he 
missed the forests and mountains of Norway: ‘I cannot find words to 
express how much I am longing to be back in Norway. My nervous 
system had suffered a lot here in Leipzig, where I have missed the 
opportunity for exercise and the spiritual influence of nature.’ The 
hard work that Lie put into realizing his vision also began to take its 
toll. He suffered from insomnia, depression and stress, and in 1889 he 
was diagnosed with neurasthenia and admitted to a clinic in Hanover. 

For seven months Lie remained in the clinic. He was an impossible 
patient, refusing to take the opium treatments he was prescribed. 
Instead he found his own way through the mist, weaning himself off 
the addictive drugs the doctors had been administering. By 1890 he 
had recovered enough to leave the clinic – ‘with sleep, the pleasure of 
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life and work has returned’ – but the breakdown in his mental health 
had scarred his state of mind. 

Lie became paranoid, convinced that people were stealing his ideas. 
When Klein relaunched the Erlangen Programme, Lie objected that 
his contribution had been edited out. Lie was further outraged when 
he discovered that Klein had destroyed all the letters Lie had sent him 
during their decade of collaboration. Lie believed that they had made 
an agreement to preserve the correspondence, but now the evidence 
of involvement had vanished. In a letter to Klein he declared that the 
burning of his letters was an act of vandalism. He publicly attacked 
his old friend in the introduction to the third volume of his book on 
transformation groups, published in 1893: ‘I am no pupil of Klein, nor 
is the opposite the case, although this might be closer to the truth.’ 
Lie cast himself as an Abel pitched against the German establishment, 
believing that the mathematical community were treating him as badly 
as they had his mathematical compatriot. As the great German math-
ematician David Hilbert put it, ‘with the third volume, his megalo-
mania burst into the open’. 

Despite the fights over priority, Lie and Klein’s mathematics estab-
lished the importance of Galois’s concepts to the understanding of 
geometry. But another perspective was being developed on Galois’s 
work which would reveal a beautiful way to articulate why so many 
different looking geometries and pictures were all just the same group 
of symmetries dressed up in different outfits. 

Applying the letter of the law 

Mathematicians were beginning to understand that there were many 
different ways of representing the same group of symmetries. For 
Galois, groups of symmetries were the ways you could permute sol-
utions to equations. But we’ve already seen, for example, how the 
permutations of the four solutions of a quartic equation can also be 
viewed geometrically, as the symmetries of a tetrahedron. For a gam-
bler, shuffling a pack of cards could be described by its group of 
symmetries. The permutations then just correspond to shuffling the 
pack of cards into a new order. For Lie and Klein, the symmetries were 
swapping lines that ran through their geometries. 
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But hiding behind all these different representations is a common 
abstraction that captures the underlying symmetry of each setting. In 
the same way that the generalized abstract concept of the number 8 
underlies the specific physical groupings of eight stones or eight cows, 
Galois’s group of symmetries can have many different concrete rep-
resentations. Whether it is shuffling four cards, spinning a tetrahedron 
or permuting four lines in finite geometries, there is a common abstract 
entity, called the alternating group of degree 4, which captures the 
essential symmetry behind each example. The vision to see a common 
abstract mathematical concept at work in different settings took a 
major leap in creative thinking. This leap of abstraction was made not 

´ in the hallowed halls of the Ecole Polytechnique or the Berlin Academy, 
but in rather more surprising surroundings: the Inns of Court in the 
heart of legal London. 

By the middle of the nineteenth century, Britain had become a 
mathematical backwater. Newton’s dispute with Leibniz over the 
invention of calculus had seen Britain isolated from the rest of the 
European mathematical community. Without contact with the major 
academic centres in France and Germany, Britain’s mathematics began 
to stagnate. Newton may have been the first to come up with the 
mathematics behind the calculus, but Leibniz devised a far superior 
language in which to express the ideas. Newton was more interested 
in creating mathematics for himself, and less focused on communicat-
ing his ideas. His notation would vary from day to day. He had a very 
geometric view of the world, and this was one of his strengths, but 
pictures are sometimes hard to translate into a useful language. Leibniz, 
on the other hand, viewed calculus from an arithmetic perspective, 
analysing the effect of adding up smaller and smaller quantities. His 
work in linguistics and symbolic logic put him in a perfect position to 
develop such a new mathematical language. He was also a master of 
notation. The superior hold that this notation gave on the emerging 
mathematics of the calculus proved a much better springboard for the 
mathematical advances of the next few centuries. Indeed, the symbols 
and language we use today for differentiating and integrating are 
precisely the ones developed by Leibniz to communicate his vision. 

Newton’s influence on the British scientific community during the 
eighteenth and the early nineteenth century meant that for years 
mathematics in Britain was saddled with the inferior notation Newton 
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had used. As president of the Royal Society, Newton even managed to 
rig an ‘independent’ inquiry held in 1713 into who had invented the 
calculus by making sure the committee consisted of sympathetic 
friends and then writing the final report himself. The report concluded 
that Leibniz had plagiarized Newton’s concept of the calculus. But it 
was the development of a language for symmetry invented by an 
Englishman in the middle of the nineteenth century that started to 
bring England back into the mathematical fold. 

The papers published in the Royal Society’s journals setting out this 
new language were submitted not by a professional mathematician but 
by a successful London barrister practising in Lincoln’s Inn Fields. 
Arthur Cayley lived in St Petersburg for the first eight years of his life. 
From an early age he showed a precocious talent for arithmetic and 
used to perform huge calculations to amuse his family, but it was the 
beauty of more abstract mathematics that began to intrigue him. Like 
many mathematicians, this talent for mental arithmetic was eventually 
replaced by the pleasure in pattern searching, and it is said that in later 
years Cayley ‘was unable to count the change for a shilling’. 

His love of mathematics was complemented by a great facility for 
languages. At Cambridge, where he studied mathematics in 1839, he 
also spent time learning Greek, Italian, German and French. This 
combination would have a significant impact on his mathematical 
contributions. Although he became a fellow at Newton’s old college, 
Trinity, he did not take holy orders and so received a lower salary, 
insufficient to support him as a professional mathematician. So he 
decided instead to apply his analytic skills to practising law. He was 
called to the bar in 1849 and became an extremely successful barrister. 

There are many character traits shared by the mathematician and 
the barrister. A grounding in mathematics has been the platform for 
some of the most successful legal careers. A successful barrister needs 
the ability to present a complex legal case in court, taking care to 
ensure that all possibilities have been covered and leaving no opening 
for the opposing counsel to attack. The argument is just like the 
process of constructing a watertight mathematical proof. Certain legal 
precedents become the axiomatic system within which you can twist 
and turn; the general theory is applied to a particular legal case. For 
Cayley the Inns of Court were a happy home, but his legal success was 
just a means to support his true passion: mathematics. During his legal 
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career he published more mathematical papers than most mathema-
ticians do in a lifetime of professional work. 

The range of Cayley’s mathematical contributions is also phenom-
enal. He contributed to ideas of geometry, in particular the newly 
emerging non-Euclidean geometries that were challenging the 
Euclidean axioms that parallel lines don’t meet. Perhaps it was his 
ability as a barrister to play both prosecutor and defendant that made 
him quite at home moving between different geometries satisfying 
different axioms. But it was his contributions to symmetry and his 
recognition of the abstract idea hiding behind Galois’s work that 
cemented his name in mathematical history. 

Cayley’s aptitude for languages allowed him to read Galois’s papers, 
eventually published in 1846 in the French journal established by 
Liouville. But it also influenced his mathematical voice, which has a 
particularly linguistic quality to it. He was able to articulate the 
grammar of the language of group theory that underlies the examples 
Galois was using. At the time, many mathematicians found Cayley’s 
synthetic abstract approach to mathematics difficult to penetrate, but 
once accepted it made Galois’s groups of symmetries much easier to 
analyse. 

A contemporary of Cayley’s commented that the usual approach 
adopted by a mathematician in conveying his ideas was 

to take his readers by exactly the same road he had travelled himself 
beginning with the simple problem which first attracted attention and 
leading step by step to the highest results arrived at. Cayley on the 
contrary, usually begins by trying to establish at once the highest gen-

eralizations he has reached. 

This approach of Cayley’s is a very good description of the style that 
would come to be favoured in France during the twentieth century. 
His great strength was this ability to generalize. Galois had realized 
that you had to analyse the interactions between the permutations of 
solutions to equations to see whether the equation was soluble. Two 
permutations could be combined one after the other to give you a 
third permutation. The interactions between permutations of the five 
solutions of the quintic were sufficiently intertwined for Galois to see 
that the group of permutations was indivisible. Cayley’s breakthrough 
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was to say, ‘Forget the equation and its solutions, just look at the 
interactions of the permutations.’ 

For example, there are six permutations of the three solutions of a 
cubic equation. We can write down names for these six operations: 
for example, let’s denote by I the symmetry that leaves everything 
where it is, and call the other five X, Y, R, S and T. So, for example, 
X and Y cycle the three solutions round, while R, S and T swap 
two, leaving the other where it is. The interactions between these 
permutations can then be described by a grammar which connects 
these names: R followed by S is actually the same as just doing X. Cayley 
saw that you could tabulate these interactions in a table, capturing the 
essence of the symmetry. 

Table 1 gives the permutations of the three solutions. The entry in 
the ith row and jth column is the result of performing the ith operation 
followed by the jth operation. Here, suddenly, is the abstraction of the 
underlying symmetry. If instead I take the symmetries of a triangle 
and give them the same names (taking care to match them up in the 
right way), I find that the combinations of the symmetries of the 
triangle obey the same rules as those described in the table (Figure 62). 
For example, X matches the symmetry that rotates the triangle anti-
clockwise by a third of a turn, and Y with the rotation in the opposite 
direction. R, S and T match the reflections in the lines of symmetry 
running through A, B and C, respectively. The symmetries of the 
triangle interact in exactly the same way as the shuffles of the three 
solutions to the cubic. For example, doing R followed by S is again the 
same as just doing X. 

Cayley’s language provides a way to express the fact that the group 

I X Y R S T 

I I X Y R S T 
X X Y I T R S 
Y Y I X S T R 
R R S T I X Y 
S S T R Y I X 
T T R S X Y I 

Table 1 
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A C 

Fig. 62 The triangle has six symmetries. 

of symmetries of a triangle is the same as the group of symmetries of 
permuting three solutions of a cubic equation. Even more powerfully, 
it finally pins down why the group of six symmetries of a triangle is 
different from the group of six rotational symmetries of the six-pointed 
starfish we encountered in Chapter 1 (Figure 63). Although the 
rotational symmetries of the starfish can be described by six letters, 
the interactions give a completely different table. In Table 2, the letters 
I, X, Y, R, S and T stand for the rotations of the starfish by zero, one, 
two, three, four and five sixths of a turn, respectively. 

I X Y R S T 

I I X Y R S T 
X X Y R S T I 
Y Y R S T I X 
R R S T I X Y 
S S T I X Y R 
T T I X Y R S 

Table 2 

Thanks to Cayley, you could now say that the group of symmetries 
of a tetrahedron or the shuffles of four playing cards or the permu-
tations of the four solutions of a quartic equation were all manifes-
tations of the same group of symmetries. Similarly, the even shuffles 
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Fig. 63 The six-pointed starfish has six rotational symmetries. 

of five cards is the same group of symmetries as the rotations of a 
dodecahedron, which is the same as the permutations of six lines in 
Galois’s geometry based on the prime 5. 

In fact a group of symmetries – or simply just a ‘group’ – was really 
just a set of names, A, B, C, . . . ,  and  a  table indicating how they 
interacted. The table defines a kind of multiplication between the 
symmetries. Cayley realized that there were certain rules that a table 
of interactions would have to satisfy before it could define the multi-
plication law of a group of symmetries. There were limits on how the 
A, B, C, . . . could be arranged in the table: for example, rather like a 
sudoku, each letter had to appear once and once only in each row and 
in each column. These rules, or axioms, that Cayley said were necessary 
for a table to define a group were remarkably simple. Yet they captured 
in a new language the essence of symmetry. For example, the Tables 1 
and 2 are the only tables that satisfy these axioms when there are six 
symmetries. So there are just two groups with six symmetries. 

Here was a way to explain, for example, why two completely differ-
ent sets of tiles on the walls of the Alhambra were actually two different 
expressions of the same symmetry group. If you write down names for 
each of the symmetries on each wall and tabulate their interactions, 
you get the same table for both walls. Just as Cayley’s axioms tell us 
that there can be only two different tables with six symmetries, the 
language of group theory gives us the means to prove that 17 – and 
no more – different symmetry groups are possible on a two-
dimensional wall. Cayley’s vision was actually so ahead of its time 
that it would take until the end of the nineteenth century before 
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mathematicians were sufficiently fluent in this new language to prove 
this result. 

Almost simultaneously, yet independently, three mathematicians – 
the German Arthur Schoenflies, the Russian Eugraf Fedorov and the 
Englishman William Barlow – confirmed that the Moors of southern 
Spain had not missed an 18th way to tile their great palace. They went 
on to show that if one moves from two to three dimensions, then 
there are 320 ways to fill space with bricks rather than tiles, where 
the bricks form repeating three-dimensional units. This is of extreme 
importance in crystallography, because it means that any crystal must 
have a structure that corresponds to one of these 320 different sym-
metries. 

Cayley’s papers appeared in print in 1854, while he was still at the 
peak of his legal career. In 1863 he was offered the Sadleirian Professor-
ship in Cambridge. He had by this time earned enough money that 
the cut in salary he suffered by accepting the position was not too 
painful; the opportunity to devote all his time to his first passion, 
mathematics, was payment enough. By the end of his career he had 
published over 900 papers. He was held in great regard by his followers 
in Cambridge ‘with reverence almost akin to worship’, as one obituary 
put it. A contemporary, George Salmon, summed up the contribution 
Cayley made to mathematics: 

The knowledge which mathematicians now possess of the structure of 
algebraic forms is as different from what it was before Cayley’s time as 
the knowledge of the human body possessed by one who has dissected 
it and knows its internal structure is different from that of one who 
had only seen it from the outside. 

Cayley had woken the dormant mathematical forces in Britain. One 
of his students, William Burnside, took up his mantle. Galois had 
discovered that in addition to the prime-sided shapes there were new 
indivisible groups, such as the alternating groups and the Lie groups. 
Despite the introduction of these new indivisible groups, Burnside’s 
work revealed that, remarkably often, a group of symmetries is built 
from just the prime-sided building blocks. 

Burnside had gone up to St John’s College, Cambridge, to read 
mathematics. His other passion was rowing, and he was really keen to 
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row in the college’s first eight. But St John’s had an excellent collection 
of oarsmen, and Burnside knew that his lack of weight would make it 
hard for him to compete for a place. So he decided to move colleges, 
and enrolled at Pembroke. Here he was more successful, and rowing 
at number seven he captained Pembroke’s first eight. 

At Pembroke, Burnside came into contact with a group of applied 
mathematicians who were studying problems in hydrodynamics, and 
this influenced his early mathematical tastes when he started doing his 
own research. It was not until he reached his early forties, when he 
accepted a professorship at the Royal Naval College in Greenwich, 
that he started his exploration of symmetry groups. One of his first 
achievements in 1893 was to show that the alternating group of degree 
5 with 60 symmetries was the only possible building block, or simple 
group, with 60 symmetries. If you tried to write down a multiplication 
table for another group with 60 symmetries, distinct from the rotations 
of a dodecahedron, you would always find that it could be broken 
down into smaller symmetries. There are in fact precisely 12 other 
groups of symmetries with 60 symmetries in addition to the alternating 
group. 

Burnside found that he was quite skilled at proving what was poss-
ible just from knowing how many symmetries there were in a group. 
His primary focus was groups of finite order, that is groups with only 
a finite number of symmetries. His greatest breakthrough, in 1904, 
was to show that whenever the number of symmetries was divisible by 
at most two primes, then the group had to be built from the simple 
prime-sided shapes. For example, a group with 1,000 symmetries can-
not be indivisible, because 1,000 = 23 × 53 and it is therefore built from 
the rotations of three pentagons and three flips. Even a group with 
a googol number of symmetries (a googol is a number written as 
1 followed by 100 zeros) can be broken down into the rotations of 100 
pentagons and 100 flips. 

Burnside could see there was still some work to do to catch up with 
the advances being made in Europe and the United States. In his 
presidential address to the London Mathematical Society, he declared: 

It is undoubtedly the fact that the theory of groups of finite order has 
failed, so far, to arouse the interest of any but a very small number of 
English mathematicians; and this want of interest in England, as 
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compared with the amount of attention devoted to the subject both on 
the Continent and in America, appears to me very remarkable. 

To spur his contemporaries on, Burnside wrote a book on the theory 
of groups which inspired many mathematicians, and not just in Eng-
land, to dive into this new mathematics. Many agreed that he had 
succeeded in the task he set himself in the introduction: ‘It will afford 
me much satisfaction if, by means of this book, I shall succeed in 
arousing interest among English mathematicians in a branch of pure 
mathematics which becomes the more fascinating the more it is 
studied.’ 

aBurnside’s theorem on the divisibility of groups whose order is p qb 

proved to be just what was needed to identify the simple groups 
with a small number of symmetries. For example, apart from the 
prime-sided shapes, the only simple groups with at most 200 sym-
metries are the rotations of a dodecahedron (with 60 symmetries) and 
Galois’s permutations of the lines called PSL(2, 7) (with 168 sym-
metries). 

In the second edition of his book, published in 1911, Burnside used 
this theorem to identify all the simple groups with fewer than 1,092 
symmetries. But he had a hunch that his theorem encompassed much 
more than just groups whose number of elements were divisible by 
two primes. He believed that if the number of symmetries was odd, 
then the symmetries could always be broken down into the simple 
prime-sided shapes. If this were true, it would be a major advance 
along the road to a complete classification of the building blocks of 
symmetry, for it would immediately wipe out half the groups that one 
would need to consider. And knowing that a building block has to have 
a number of symmetries divisible by 2 means that one of the symmetries 
must look something like a reflection, and this might provide a real foot-
hold into a complete analysis of these building blocks. 

In the decades that followed, mathematicians became more optimis-
tic that if Burnside’s theorem could be proved, it would help to wrap 
up the project of classifying the simple groups. The building blocks of 
symmetry would then consist of the prime-sided shapes, Galois’s even 
shuffles (the alternating groups) and all these wonderful geometric 
families, 13 in total, that Lie’s work revealed but whose genesis still 
can be found in those memoirs of Galois. 
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March: Indivisible Shapes 

There was just one minor blot on the aesthetics of such a beautiful 
´ classification. In 1860 the French mathematician Emile Mathieu had 

discovered five rather strange shuffles which produced indivisible sym-
metries. These five simple groups didn’t seem to fit into any of the 
known families, nor did they seem to create an infinite family of 
their own. They were just five rather strange groups of symmetries, 
indivisible but not fitting into any obvious pattern of groups. These 
groups would turn out to be just the thin end of the wedge. But the 
discovery of the rest of the wedge would take nearly another century 
and a detour through the application of symmetry to the telecommuni-
cations industry. 

28 March, Stoke Newington 

It’s not ideal, but I think it will have to do. Burnside was showing how 
to break groups down into prime-sided shapes; I’ve spent the month 
writing a paper on how to put these bits back together. The paper is a 
first step towards trying to see how the number of groups you can 
build from prime-sided shapes varies as you change the prime number. 
For example, there are only ever two symmetrical objects you can 
build with p2 symmetries, where p is any prime number. The number 
of symmetrical objects doesn’t depend on the prime p. 

When you consider the number of groups with p3 symmetries, then 
there are always five symmetrical objects you can build. For groups 
with p4 symmetries, if the prime is odd you get 15, and if it is even, 
i.e. p = 2, then you get only 14. But when you move to p5 symmetries, 
things start to get interesting. The number of symmetrical objects with 
p symmetries now depends on the prime: as the prime gets bigger, so 
does the number of symmetrical objects you can build. The number 
of objects is essentially got by doubling the prime. Add another prime, 
and the number of symmetrical objects with p6 symmetries is given by 
a quadratic polynomial in the prime p. 

The big question that I would love to answer, the PORC Conjecture, 
is whether, as you increase the number of shapes you are using, there 
is always a simple equation that gives you the number of symmetrical 
objects. It is not clear that this will always be the case. Perhaps the 
number of groups with p10 symmetries will be controlled by some 
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different sort of mathematical function. My elliptic curve example 
discovered in Bonn suggests that it’s possible that at some point the 
answer might depend on having to know the number of pairs of 

3numbers (x, y) that make y2 − x + x divisible by p. This number isn’t 
given by a simple formula. 

I must admit that at this point my mind is completely open about 
which way this problem might go. It’s quite exhilarating not to know. 
The paper I’ve been writing is working towards showing that if you 
add certain extra conditions about how the prime-sided shapes fit 
together, then the number of symmetrical shapes you can build in this 
particular way is given by a simple equation. The ultimate aim will be 
to see what happens if you don’t force the shapes to have to be put 
together in this special way. 

Big theorems are like jigsaw puzzles. You can’t hope to do the puzzle 
in one big go – it’s a gradual cumulative effort, sometimes involving 
several people. Nevertheless, who wouldn’t enjoy being the person to 
put in the last piece? That’s why I’m slightly reluctant to send the 
paper off in its current state. But in the academic world there is a lot 
of pressure to keep pumping out publications – ‘publish or perish’ – 
and I will have to submit the paper to a journal before knowing 
whether I can finish the puzzle. 

An email has just arrived which offers me a welcome break from 
the hard work. Dorothy Ker, a friend of mine who is a composer, 
suggests that we meet up next week. Over the last few years we have 
been meeting to discuss connections between mathematics and music. 
As mathematicians were beginning to grapple with the abstract ideas 
of symmetry, musicians of the early twentieth century were looking to 
formal structures and mathematics to replace the tonal heritage they 
had cast aside. Even early classical music plays lots of mathematical 
games to generate interesting variations on themes. In fact, the amount 
of symmetry that I’ve discovered hidden away in musical compositions 
makes me wonder whether this is why I find music such an ideal 
accompaniment to creating mathematics. I put on some Bach to see if 
it will help to inspire me. 



9 

7 8 

5
1
0
 

April: Sounding Symmetry 

Cascades in music, gentlest of all time’s shapes. 
jorge luis borges, ‘Matthew XXV:30’ 

5 April, London Bridge 

Once nineteenth-century mathematicians had released symmetry from 
physical objects, people started to find it in the most unexpected places. 
For me, one of the most interesting abstract expressions of symmetry 
is in music. There have always been close bonds between the two 
disciplines. Leibniz once declared that ‘Music is nothing but uncon-
scious arithmetic.’ But the connection extends beyond simple counting 
and rhythm. 

The structures that musicians enjoy threading through their music 
have a distinctly mathematical flavour. Certainly many musicians are 
conscious of the connection. The French Baroque composer Jean-
Philippe Rameau was one such: he wrote in 1722 that, ‘Not withstand-
ing all the experience I may have acquired in music from being 
associated with it for so long, I must confess that only with the aid of 
mathematics did my ideas become clear.’ It would turn out that 
composers had for centuries been toying with the concept of symmetry, 
but a complete understanding of what they were doing became possible 
only with the new mathematical language developed by Galois. 

I have fantasies about what I might have done with my life had I 
not become a mathematician: running away to train at the Le Coq 
theatre school in Paris, setting up my own restaurant. Becoming a 
composer is also up there with my theatrical and gastronomic 
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aspirations, which is why I get some vicarious pleasure from my 
occasional meetings with Dorothy. She uses a lot of natural and math-
ematical structures as a framework or launch pad for composition. I’m 
intrigued as to how this mix of mathematics and music works. For her 
part, Dorothy is keen to explore other less obvious structures and to 
get a sense of my mathematical way of looking at the world. 

We’ve arranged to meet up at London Bridge this afternoon. It’s a 
bright day and the Thames is at low tide, so we head for a small patch 
of sand on the riverbank, where the mudlarks used to go hunting for 
treasure. It’s interesting that our conversations are never very fluid 
affairs. Both of us are used to expressing ourselves in non-verbal media. 
When I’m nervous I have the annoying habit of filling silence with any 
ideas that come into my head. When I’m with Dorothy I try to shut 
up and not burble. 

We find a lot of similarities in our working practices. I’ve spent the 
last few weeks painstakingly trying to write the proof of the theorem 
I proved with Fritz some months ago. Dorothy’s spent the morning 
doing something very similar. For a musician, the hard labour is 
writing out the detailed score of a piece. The musical ideas might have 
come during a stroll in the hills or a train journey, but the majority of 
Dorothy’s work is translating those ideas into notes on the page for all 
the various different musical instruments. Intriguingly, we both find 
being in motion an important ingredient in stimulating those flashes 
of inspiration. 

We start by looking at a piece Dorothy has written for solo cello 
that uses the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, . . . ,  as  a  
skeleton. This sequence is a favourite with artists because of its strong 
connection with growth. The way it starts from something tiny and 
evolves with increasing complexity resonates with the development of 
a musical work. Dorothy has brought along a recording of the cello 
piece and a copy of its score. We listen to it on her portable CD 
player. Without insider knowledge, I don’t think I’d have spotted the 
Fibonacci sequence. But knowing it’s there does increase my enjoyment 
of the piece. 

I can see that Dorothy’s notepad is filled with lots of numbers 
arranged in what looks a matrix. This is the mathematical object that 
Galois used to swap his lines around in his finite geometries. In the 
mathematician’s lexicon, a matrix represents a symmetry. Dorothy also 
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calls it a matrix, but when I ask her whether it moves anything round 
she looks a little confused. It turns out that the musical matrix is really 
just a table with 48 rows for keeping track of musical themes. 

The grid looks like a huge sudoku puzzle. In each row, the numbers 
from 1 to 12 appear once and once only. Each number represents one 
of the 12 notes in the chromatic scale. The first row indicates a choice 
of theme. There are a total of 

12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 =  479,001,600 

different themes to choose from. Each subsequent row is a variation 
on that first theme. The first row is the seed from which Dorothy then 
grows a garden of sound. 

Particularly intriguing is the fact that the rules for this growth are 
various tricks of symmetry that you can play on the original theme. 
The first is simply to reverse the order of the notes – what musicians 
refer to as the retrograde. We can view this variation geometrically by 
looking at the pattern of notes on the musical score: the notes on the 
stave are reflected in a vertical line running through the middle of the 
music. The second symmetry is essentially a reflection in the horizontal 
line. If the original theme climbs up three notes, for example, the 
variation descends three notes. The third symmetry combines the first 
two. Dorothy takes these first four rows – the theme and its three 
variations – and translates the pitch systematically through the 12 
different shifts of the chromatic scale. 

There is a definite symmetrical object I can identify that would 
capture the 48 different possible musical threads that Dorothy has 
generated. The reversing and inverting are actually the same as the 
symmetries of a rectangle, while the 12 shifts of the notes are the same 
as the rotational symmetries of a 12-sided coin. The label I’d put on 
this group of symmetries is C2 × D12, or to spell it out, ‘the direct 
product of the cyclic group of order 2 with the 12th dihedral group’. 
Dorothy tells me that musicians are particularly drawn to those 
elements of the original theme that remain unaffected by the twists 
and turns, rather like those symmetries in the walls of the Alhambra 
that also match up colours. The symmetrical object behind the trans-
formations has provided a palette of sound from which Dorothy then 
starts her composition, the artist taking over from the mathematician. 
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The system Dorothy is using was introduced by Arnold Schoenberg, 
the father of the modern obsession with symmetry in music. The 
interest in mathematics, and in symmetry in particular, as a framework 
for musical composition became quite strong at the beginning of the 
twentieth century, when composers rejected their tonal heritage and 
looked for other ways to give structure to their compositions. Schoen-
berg more than anyone pushed to the limit this application of math-
ematical transformations to musical themes. Many people listening to 
the music of Schoenberg for the first time hear only the sound of 
chaos, but there is actually a lot of structure at its heart. 

Schoenberg’s methods influenced many of his students. In Alban 
Berg’s Lyric Suite, the 46 bars that open the third movement are, after 
another 23 bars, mirrored in the concluding 46 bars. The numbers 23 
and  46 = 2 × 23  are  no  accidents, either. Berg regarded 23 as his signa-
ture number. Rather like a footballer being identified by his shirt 
number; if you hear 23 in music, you know it’s Alban Berg. Anton 
Webern, Olivier Messaien and Pierre Boulez were other composers 
who used Schoenberg’s symmetrical methods. 

Dorothy once told me of the risks that a composer runs in relying 
too heavily on such generative structures: 

Perfect symmetry realized without human intervention can be bland 
and lacking in tension. A process that is too obvious trails far behind 
the listener’s ability to predict its outcomes. Such music – to borrow 
the words of Harrison Birtwistle – ‘finishes before it stops’. The music 
we value most seems to be that which succeeds in achieving a ‘perfect’ 
integration between image and form. 

I make very similar aesthetic judgements in singling out the mathe-
matics that I appreciate. The mathematics that is hard to predict is 
what interests me the most. The best mathematics, in my view, is what, 
despite the rigid constraints of the formal logic, still produces moments 
full of surprises. 
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Symmetry in 32 movements 

The modern use of symmetry in music has old roots. One of the first 
to exploit these ideas was the master of using mathematics in music, 
J. S. Bach. His Goldberg Variations, published in 1741, is perhaps one 
of the best examples of the sound of symmetry. I’ve been plodding 
my way through its 32 movements in my breaks from mathematics, 
exploring the mathematical tricks Bach has exploited to create his 
variations. 

Each movement consists of 32 bars repeated twice. The piece begins 
and ends with a simple yet elegant aria which establishes the motif that 
Bach proceeds to twist and turn over the 30 variations. By repeating the 
aria at the end, he evokes the shape of one of the most symmetrical of 
objects: the circle. The repetition of the aria connects the two ends of 
this musical braid. With the 32 movements in a circle, the 16th vari-
ation sits diametrically opposite the first rendition of the aria. Interest-
ingly, Bach refers to the 16th variation as the overture, a term usually 
reserved for the opening of a piece of music. It makes one begin to 
question exactly where the circle begins and ends. 

The 30 variations are arranged as ten groups of three, and the third 
movement in each group is a canon. It is in the bass line, which 
consists of four phrases of eight notes, that Bach plays most of his 
symmetrical games – you can see and hear the music being stretched, 
squeezed, reflected and sent spiralling through the 30 variations. 

It is within the cycle of canons that Bach really exploits the potential 
of symmetry as a source of variations. A canon by definition is an 
example of translational symmetry. This is the kind of symmetry pro-
duced by sliding a copy of a shape with respect to the original, like a 
decorative motif being repeated in a ‘frieze’ pattern around the top of 
a pot. But the musical version is a temporal translation rather than a 
spatial one – a shift in time. One voice starts singing a phrase, and 
then after a few notes a second voice comes in and sings the same 
phrase over the top of the first voice. Examples of these songs, also 
known as rounds, are ‘Frère Jacques’ and ‘London’s Burning’. Dorothy 
once pointed out a modern example: anyone who has listened to a 
radio broadcast simultaneously online and on an analogue radio will 
have effectively created a canon. The time taken by the computer to 
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process the digital signal results in the music being played a few seconds 
behind the broadcast via the analogue radio. When you look at the 
score of the Goldberg Variations, you see the temporal translational 
symmetry rendered as a spatial one: the same sequence of notes is 
repeated several beats on from its first occurrence, just like a pattern 
round the top of a pot. 

Bach, though, is not satisfied with simple translation in the temporal 
dimension, and starts to play the same trick in the pitch dimension. 
In the second canon (variation number six) the second voice starts 
one note higher than the lead voice. The effect is now like a diagonal 
motif spiralling up the side of a pot. Each subsequent canon moves 
the second voice up one more note. There is a larger difference in 
pitch between the two parts each time we hear a new variation. But 
then something quite striking happens. 

By the time we reach the eighth canon we suddenly feel the two 
voices have come together again. There is an octave difference between 
the voices. The beautiful thing about the octave is that our brain senses 
an identity between these two notes, something Pythagoras discovered 
two millennia before Bach’s use of the octave to complete the circle. 
It feels like one of Escher’s paradoxical pictures where the monks climb 
a quadrangle of steps only to find themselves at their starting point 
again. 

Interestingly, Bach starts to climb again with a ninth canon which 
stretches the ear further as the second voice now starts an octave and 
a note higher. Like a corkscrew, the canons seem to want to spiral up 
endlessly, every eighth canon aligning with the first canon as we hear 
another octave. The idea of themes spiralling up in pitch throughout 
a piece has been used by many composers. In his opera The Turn of 
the Screw, Benjamin Britten uses the spiralling shift in pitch throughout 
the piece to express the tightening of the screw as the ghost gains more 
of a hold on the young Miles, until the piece climaxes with the boy’s 
death. 

The Goldberg Variations is like a musical version of a torus. The 
torus is a mathematical object generated by a circle sweeping out 
another circle (Figure 64). So you’ve got circles running horizontally 
but also circles running vertically. The shape is like a circle of circles. 
In the Goldberg Variations we hear circles in time and circles in pitch. 

What should be the tenth canon actually breaks the structure. It is 
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Fig. 64 The torus – a circle of circles. 

called a quodlibet – a kind of musical joke – and is a contrapuntal 
piece based on two common folk tunes of the day. Perfect symmetry 
for many artists is something unsettling. It is by its very nature pre-
scriptive: once you understand part of the symmetrical structure, you 
know what is going to come next. Bach seems to have felt a need to 
break the symmetry and weave a different variation as his climax. But 
breaking the symmetry also highlights just how much pattern has gone 
before. 

Breaking symmetry in art has a long heritage. The carpet weavers of 
Persia and Arabia would deliberately weave a fault into a small portion 
of their otherwise beautifully symmetric carpets to destroy the perfect 
balance. They believed that their souls were woven into the carpet, and 
that by including some imperfection they were leaving a route for their 
souls to escape. Perfect symmetry for some Muslims also meant trying 
to imitate God – an act of great blasphemy. By including a fault in the 
pattern they wouldn’t challenge God’s position as the master weaver. 

Even today, in West Africa, the symmetry of weaving is considered 
the key to binding supernatural power into the piece. Repeating dia-
monds that get smaller and smaller towards the centre are used as 
motifs in the designs for wedding blankets made by the Fulani people 
of Mali. They believe that, with each repetition of the pattern, more 
and more spiritual energy is being sealed into the blanket. Indeed, the 
energy bound up in the blanket is regarded as potentially so dangerous 
that the engaged couple are supposed to make sure that the weaver 
stays awake all night lest he fall asleep and release the force bound in 
the threads. 
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It’s not just the symmetry of the circle that Bach uses in his vari-
ations. The symmetry of the triangle plays a role in his choice for the 
rhythmic structure in the nine canons. In each canon Bach makes one 
of three choices for the number of beats in the bar: two, three or four. 
The other rhythmic decision he makes is how the beat is divided 
throughout the canon. It can be divided into quavers (two notes per 
beat), triplets (three notes per beat) or semiquavers (four notes per 
beat). For example, in the eighth canon, variation 24, there are three 
beats in the bar and the beat is divided into triplets. 

As soon as I understand this, I see the symmetries of two spinning 
triangles at work in determining the rhythmic structure throughout 
the piece. The structure in each canon can be interpreted as a symmetry 
of the combination lock with two spinning triangles (Figure 65). In 
the lock, each symmetry is a way of spinning the two triangles so that 
a different combination of numbers appears on the side. But instead 
of numbers on the sides of the triangles, I can put rhythmic ideas. The 
first triangle controls the number of beats in the bar, so the outfacing 
edge of the triangle will indicate two beats, three beats or four beats. 
The second triangle keeps track of the division of the beat, and so will 
indicate quavers, triplets or semiquavers. 

Fig. 65 The rhythmic choices for each canon correspond to the 
symmetries of spinning two triangles. 

The wheels are then spun through the different combinations, and 
whatever rhythmic idea appears on the outfacing edge of each triangle 
is used in the next canon. The musical triangles spin around as if Bach 
is cracking a combination lock with two wheels. In total there are nine 
symmetries of the combination lock. Bach’s mastery is to systematically 
go through each of the nine symmetries or combinations and assign 
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one to each of the nine canons. As he spins the triangles throughout 
the composition, no possible combination is missed. 

Not content with playing symmetrical games with rhythm, pitch 
and time, Bach has even more symmetrical tricks up his sleeve. In the 
fourth canon the second voice is not a simple replica of the first but 
is inverted – so when one voice climbs up, the second voice descends 
by the same pitch. On the score, the notes are simply flipped or 
reflected in the horizontal line running through the music. The same 
reflection is used in the fifth canon. 

It is striking that the standard Western musical notation turns music 
into something geometric where you can actually see all these abstract 
symmetries. The symmetry in the sound gets translated into a visual 
symmetry. Symmetrical games in the vertical direction translate into 
transformations in the pitch of the music. Using symmetry in the 
horizontal direction affects the music’s temporal structure. There are 
other variables which the composer can play with, such as the loudness 
of the music. The symmetry of a crescendo followed by a diminuendo 
in a piece translates into seeing the symbols � and �. So a piece of 
music can capture symmetry happening in many dimensions – time, 
pitch, rhythm, volume. 

One of the obvious geometric symmetries that was not exploited 
until the twentieth century is the idea of rotating themes. Paul Hinde-
mith tries this trick in his piano piece Ludus Tonalis, or ‘Game of 
Tones’. Take the notes written at the beginning of the piece. Turn the 
score upside down so that the notes on the page are rotated by half a 
turn, and you will get the notes that conclude the last movement. 
Admittedly there is an hour of music in between, so Hindemith is 
hardly expecting you to hear the symmetry. Yet it’s no coincidence 
that it’s there. It acts like a literary device called chiasmus, which uses 
symmetry to denote the beginning and end of a text like a pair of 
bookends. 

A few years ago the BBC ran a competition where you had to listen 
to three recordings and decide which was a pastiche written by a 
modern composer, which was genuine Bach and which was computer 
generated. The fact that such a competition is possible says much 
about the high degree of structure in Bach’s compositions. The Gold-
berg Variations is a musical journey through the world of symmetry. 
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Listening to it is like walking through a hall of mirrors, as each new 
variation twists and stretches the original theme. Bach’s student Lorenz 
Mizler referred to music as the process of ‘sounding mathematics’. 
The Goldberg Variations is a good example of how symmetry is not 
just a physical property but pervades many abstract structures. 

Given all the symmetry in the Goldberg Variations, one might expect 
Bach to be my favourite composer. But perhaps the pervasive symmetry 
in the Goldberg Variations explains why the piece has never excited me 
in the way I know it is meant to. It is probably sacrilege to admit to 
it, but even Glenn Gould playing the variations doesn’t get my blood 
racing like listening to a piece by Richard Strauss can. Maybe the 
predictability that symmetry provides is killing the sense of surprise 
that I’m after. When I confess this to Dorothy, she reminds me that 
the Goldberg Variations was written to help Count Hermann Karl 
von Keyserling fall asleep. Dan, the mathematician in Oxford who 
supervised my mathematical research, says that I’m just still too young 
to appreciate the Goldberg Variations. Perhaps I’m not yet old enough 
to see the ultimate symmetry embedded in the piece – the reflection 
of the human condition. For my 40th birthday he gave me a recording 
of Bach’s Well-Tempered Clavier, saying, ‘Maybe you are now old 
enough at 40 to appreciate these.’ I’m still working on it. 

Pattern searching 

Bach often used symmetry as a short cut to save writing out a score in 
full. For example, in the fourth and fifth canons of the Goldberg 
Variations, the second voice is a horizontal reflection of the opening 
phrase. To indicate that the second voice needs to be played upside 
down, Bach included a second clef at the beginning of the piece, but 
he inverted it (Figure 66). 

This practice of notating the theme with additional instructions to 
create variations had been used in much of the polyphonic music 
written by Bach’s predecessors, such as Josquin des Prez. Each per-
former would be given the same single line of music, but with their 
own set of instructions on how high to translate the pitch, how long 
to wait before entering and how the speed was being dilated or contrac-
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Fig. 66 The inverted treble clef indicates that the theme is inverted 
when it is heard the second time. 

ted. To generate their part of the composition, each performer would 
carry out these instructions on the basic musical line like someone 
performing symmetrical moves on a physical object. 

One of Bach’s most overt ways of incorporating symmetry was to 
use a form known as a crab or retrograde canon, which he did in 
another collection of pieces known as the Musical Offerings. In a crab 
canon, one voice plays the part in the usual way, from start to finish, 
while at the same time the second voice starts at the last note of the 
piece and plays it backwards. The art of the composer is of course in 
writing a single line that can be played in this crab-like fashion. The 
crab is like a musical palindrome. Some musicians have composed 
truly palindromic pieces, where halfway through the piece you play 
the music you have just played but in reverse. The minuet from 
Haydn’s Piano Sonata No. 41 is a perfect palindrome. In the interludes 
of his opera Lulu, Berg used palindromic musical structures, as did 
Béla Bartók in his Fifth String Quartet. Wolfgang Amadeus Mozart 
also enjoyed exploring palindromic music. 

The highly structural nature of early music is behind a well-known 
story about Mozart’s precocious musical abilities. During Holy Week, 
the matins service in the Sistine Chapel would conclude with a per-
formance of Gregorio Allegri’s setting of the Miserere. Written origin-
ally for Pope Urban VIII, the piece would be sung as 27 candles were 
gradually extinguished to leave one candle burning. As the castrati 
singers soared off into the heights, the Pope himself would fall to his 
knees in front of the altar, dramatically ending the service. The Pope 
loved the piece so much that he decided to keep it for the sole use of 
the Vatican. A Papal decree forbade the performance of the Miserere 
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other than during Holy Week in the Sistine Chapel. No manuscripts 
were allowed to leave the Vatican, and excommunication awaited any-
one who tried to make a transcript. 

In December 1769 the 14-year-old Mozart set off on a tour of 
Europe with his father. One of the highlights was attending the famous 
Holy Week matins service at the Vatican to hear the Miserere, the one 
chance in the year to listen to the beautiful piece. The boy was so 
taken by the performance that when he got back to his lodgings that 
evening he sat down and wrote out the complete transcript of the 
12-minute piece from memory. Although risking being excommuni-
cated, he furtively returned for the Good Friday performance to check 
how accurate his manuscript was. Needless to say, it required only a 
few minor corrections. 

The act of recreating the piece wasn’t so much a feat of memory as 
a reflection of Mozart’s extraordinary ability to understand the inner 
logic of the composition. Because of the patterns and symmetry 
running through the work, it provided Mozart, perhaps subcon-
sciously, with an algorithm to rebuild the nine-part choral piece. It is 
an almost impossible task to remember a random string of numbers 
such as 99375105820974944592, but not so for a string such as 
12345543211234554321. This second string has a symmetry, which 
enables your brain to store the 20 numbers by using a program, and 
this is less demanding of brainpower than having to commit to 
memory a random string of 20 numbers. The same principle is at the 
heart of Mozart’s impressive musical memory. He was highly sensitive 
not to numerical sequences, but to musical patterns. 

The young Mozart’s exceptional musical gift gave him the insight 
to deconstruct Allegri’s piece according to its inner symmetry. In a 
similar way, someone with great mathematical insight might spot that 
the 20 random numbers in the previous paragraph are the 44th to 
63rd numbers in the decimal expansion of p. Like John Conway’s 
ability to recall p to thousands of decimal places, Mozart’s reconstruc-
tion of the Miserere is the sign not of an amazing memory but rather 
of a mind sensitive to the symmetry and patterns threaded through 
the piece. Memory, both in the human brain and in computers, is 
connected very often with an ability to spot structure or connections 
which allow the hardware to store information in compressed form. 
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What Mozart did with Allegri’s Miserere is connected with what I’m 
ultimately trying to do with my sequence of numbers describing the 
number of symmetrical objects you can build from the symmetries of 
the triangle. By understanding the logic and pattern at the heart of the 
Miserere, Mozart could reconstruct the whole piece just from fragments 
in his memory. In my mathematical composition, I’ve got the first 
phrase as 1, 2, 5, 15, 67, 504, 9,310, . . . ,  but  I  don’t know how it will 
continue. I’ve not yet found the secret behind the melody. 

While Mozart was performing his music for the courts of Europe, 
a German physicist was impressing them with a different way of seeing 
symmetry in music. Born in the same year as Mozart, Ernst Chladni 
discovered how one can see the sound of a drum. By placing sand on 
the surface of the drum and vibrating the skin, he was able to produce 
an extraordinary range of patterns in the sand, full of symmetry. 

These shapes are similar to the waveforms of the various harmonics 
of a violin string. When a violin string vibrates it is actually combining 
all the different sine waves that fit into the length of the string. By 
placing a finger lightly at different points on the violin string, it is 
possible to pick out the harmonics that make up the sound of the 
violin. For example, placing a finger halfway along the string picks out 
the first harmonic, a note an octave higher than the fundamental note 
of the violin string. The second harmonic, which sounds a perfect fifth 
higher, is got by placing the finger one-third of the way along the 
string. What Chladni discovered is that a drum also has versions of 
these harmonics, but instead of waves on a one-dimensional string one 
finds amazing two-dimensional shapes appearing across the surface of 
the drum (Figure 67). Each different shape is got by a similar process 
to placing your finger at different points on the violin string. It is the 
combination of all these different patterns and their corresponding 
frequencies that makes up the characteristic sound of each drum. 

His demonstrations were so successful that Chladni toured the 
courts of Europe exhibiting the symmetry hidden in the sounds of 
different musical instruments. Napoleon was particularly keen on 
Chladni’s travelling show and rewarded him with a handsome gift of 
6,000 francs. We now understand that these symmetries are at the root 
of the different tonal qualities of a cheap violin and a Stradivarius. 
The German violin makers were specialists in crafting instruments to 
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Fig. 67 Ernst Chladni discovered that the vibrations of a drum are full of symmetrical patterns. 

produce as much symmetry as possible in the sound waves that vibrate 
inside the box. 

The musicians of the baroque and classical periods were actually 
coming to grips with the abstract nature of symmetry well before 
mathematicians really understood the concept. For these musicians, 
symmetry was already more than geometric reflections and rotations. 
One group of musicians even unwittingly proved some of the first 
mathematical theorems about symmetry. 
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Ringing the changes 

A few centuries before Galois’s and Cauchy’s mathematics of permu-
tations, the bell-ringers of seventeenth-century England had, without 
knowing it, already started to prove quite complex mathematical 
theorems about the theory of permutations. They had discovered that 
by repeating a sequence of simple permutations they could generate 
every permutation possible. But lacking the sophisticated nineteenth-
century language of groups of permutations, they were not aware of 
the interesting mathematical theorems that they were putting into 
practice every Sunday. 

Living in Oxford as a student, I got quite used to the beautiful sound 
of pealing bells. It is one of the characteristic sounds of English life 
and has been familiar to students walking the streets in Oxford for 
nearly four centuries. There are over 5,200 sets of bells hung in church 
towers across England, most containing five or six different bells but 
some with as many as a dozen. 

As I made my way to lectures on permutations, I passed the ten 
bells ringing in the church of Mary Magdalene, but had no idea that 
the bell-ringers were putting into practice the theory I was about to 
learn. Inside the bell tower, ten bell-ringers clung to ten ropes dangling 
from the belfry. It is a feat of coordination to get the ten bells to ring 
in sequence one after the other, from the highest-pitched bell to the 
lowest. But things can get pretty boring once you’ve got that sussed. 
So just as centuries of bell-ringers before them had done, they began 
to ring the changes. 

Seventeenth-century bell-ringers started to play around, varying the 
order of the bells. For example, suppose there were just four bells, 
called A, B, C and D. The bell-ringers start ringing them in the sequence 
ABCD. When the conductor shouts ‘Change!’, the order in which the 
first and second bells are rung is swapped, and the third and fourth 
are swapped too. So after one change, the order in which the bells are 
rung is now BADC. 

If at the next change the same pairs swap, B with A and D with C, the 
sequence BADC returns to ABCD, the original order. So bell-ringers in 
the seventeenth century started experimenting with trying a different 
way of swapping the bells when the conductor shouted ‘Change!’ for 
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the second time. Changes in bell-ringing are possible only if two people 
ringing bells one after the other swap in the following sequence. So 
the second change might swap the second and third bells being rung. 
At the call of the second change the ringers of bells A and D, the 
second and third in the sequence, swap round, and BADC becomes 
BDAC. 

When the conductor calls for the next change, the bell-ringers make 
the first change again: the first and second change their order, as do 
the third and fourth. So now BDAC becomes DBCA. We already have 
four different sequences of bells. If we continue we get eight different 
sequences before we get back to the beginning. With four bells it is 
possible to get 24 different sequences: there are four choices for the 
first bell, for each of which there are three choices of what to play 
second, then a choice of two bells for the third to be sounded, and the 
bell that’s left goes last. So that’s 4 × 3 × 2 × 1 = 24  different sequences. 

We’ve managed to generate eight of these 24 possible sequences by 
using the two changes described above, one swapping the first and 
second bells and the third and fourth bells, the other swapping the 
second and third bells. The sequence of bells created by these two 
changes is the start of a sequence called Plain Bob Minimus. Bell-
ringers took up the challenge of how to get all 24 sequences. This is 
possible if after eight sequences the conductor adds a third change 
where just the third and fourth ringers swap. 

To see where the symmetry is hiding in this bell-ringing, imagine 
the bell-ringers on the corners of a square. Place the square in an 
outline and number the corners 1, 2, 3 and 4, as in Figure 68. Each time 
the conductor calls a change, the bell-ringers respond by exploiting a 
symmetry of the square. After the letters flip around, the bell at corner 
1 rings first, the bell at corner 2 next, and so on. The first change 
corresponds to a reflection in the horizontal axis and the second 
change is a reflection along the diagonal through corners 1 and 4. The 
combination of these reflections is enough to produce all the eight 
different symmetries of the square. Galois’s language allows us to say 
that although four bell-ringers performing the opening eight rounds 
of Plain Bob Minimus and the geometry of a square appear very 
different, the symmetry underlying both is identical. 

The first systematic analysis of how to generate all possible sequences 
of bells using these simple changes was published in 1668. Richard 
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A B 

C D 

3 4 

Fig. 68 Using the symmetries of the square to perform Plain Bob Minimus. 

Duckworth and Fabian Stedman’s Tintinnalogia: or the art of ringing 
explains the principle of how to use basic changes to generate all 120 
different permutations of five bells. It could be regarded as one of the 
first books on groups of symmetries. 

Although bell-ringers were exploring symmetry, there were campa-
nology challenges that remained unsolved until the full mathematical 
language of symmetry was developed. For example, can you get all 
5,040 = 7 × 6 × 5 × 4 × 3 × 2 × 1  permutations of seven bells by combin-
ing so-called triple changes? A triple change is one where three pairs 
exchange. It took till 1886 for William Henry Thompson, a scholar of 
Gonville and Caius College, Cambridge, to show that the mathematics 
of permutations and symmetry implied that this was impossible. 

5 April, mudbank on the Thames 

The bells of Southwark Cathedral ring out to remind us that time is 
pressing on. There is another cello piece that Dorothy has brought 
along which she is particularly keen that I see and hear. It’s by a 
composer who perhaps more than any other has captured the power 
of mathematics as a canvas for composition. 

Iannis Xenakis was a modern Greek composer whose geometric 
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skills would have commanded the respect of any of the Ancient Greek 
mathematicians who influenced his ideas. He combined music with a 
career in engineering, and even collaborated with Le Corbusier on the 
Philips Pavilion at the 1958 Brussels World Fair. ‘I discovered on 
coming into contact with Le Corbusier,’ he said, ‘that the problems of 
architecture, as he formulated them, were the same as I encountered in 
music.’ The design for the pavilion looks like an exercise in Riemannian 
geometry. Xenakis believed that music was a kind of architecture in 
sound, and if you look at the score of some of his music, such as that 
for Metastasis, the clustering of notes makes it look remarkably like 
the diagrams Xenakis drew for the pavilion (Figure 69). 

Fig. 69 Part of the score of Metastasis by Xenakis. 

It was his piece Nomos Alpha for solo cello that Dorothy thought 
would most appeal to my symmetry sensibilities. Xenakis has taken 
the geometry of the cube and used the symmetries of this object as a 
framework for his composition. It is a natural extension of what Bach 
was doing in the Goldberg Variations, but Xenakis instead uses the 
symmetries of the cube. The eight vertices of the cube are used as 
markers for different sound elements. For example, some corners cor-
respond to dynamics, others to sound textures such as pizzicato and 
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glissando. These sound elements are then played in a particular order 
according to how the cube is placed on the table. By performing 
symmetries on the cube, Xenakis alters the order in which these sound 
elements are applied to the music. The cube is being used in a similar 
fashion to the way the symmetries of the square helped order the 
sequence of four bells being rung by the seventeenth-century campano-
logists. 

The cube restricts the possible permutations: because of its rigidity, 
the eight vertices cannot be arranged in any order. And this is why the 
structure of the piece will reflect in some mysterious way the rigidity 
of the cube. If any combination of these eight points were allowed, 
such as placing the eight sound elements on a pack of cards, there 
would be 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 =  40,320 different variations. But 
by forcing the cards to sit on the vertices of the cube, the symmetries 
of the cube restrict the possibilities to just 48 shuffles. 

Interestingly, the cube has the same number of symmetries as the 
group of symmetries used by Schoenberg and by Dorothy to create 
their matrix of notes. But the underlying symmetry groups are com-
pletely different in structure. The group of symmetries Xenakis is 
exploiting is called C2 × S4, or the direct product of the cyclic group of 
order 2 with the symmetric group of degree 4. Xenakis extends his 
idea of symmetries in music in his composition for 98 instruments, 
Nomos Gamma, in which the pyramid and other shapes join the cube 
in determining the structure of the piece. 

Is it important for the artist that people should hear the cube 
hiding behind the music? One of the interesting things which emerges 
from my discussion with Dorothy is how a musician or an artist will 
often deliberately hide the inspiration for a piece. Music is not meant 
to be proscriptive in its meaning: the artist creates a piece as a catalyst 
for a multitude of responses to the work. It is a bland piece of art that 
elicits a uniform reaction. For Dorothy, ambiguity is an important 
part of art. 

What is intriguing is that I have spent the morning trying to take 
the ambiguity out of my creation. When people read my paper I don’t 
want them to arrive at a completely different conclusion from mine. 
Ambiguity is anathema to the mathematician. My discovery is like a 
distant mountain and the proof is the pathway to that summit. I don’t 
want to find readers have arrived at a different summit. Well, actually, 
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I don’t mind if they arrive somewhere else as well, just as long as 
they’ve visited my mountain too. 

Although ambiguity might be something that mathematicians will 
do their utmost to avoid when writing up their work, they are often 
as coy as artists when it comes to revealing their inspirations. I appreci-
ate that this is important in the arts, but I believe that it can be quite 
dishonest in mathematics. I’ve often read proofs in which suddenly 
the argument starts to twist and turn in a most surprising manner. 
Although it all makes logical sense, why the author is tracing this 
particular path is a mystery. Often the mathematician is keeping some 
reasoning or helpful picture from view – some sort of secret map 
which is guiding the direction of the proof. 

Gauss was one of the greatest magicians when it came to presenting 
proofs. Many of his proofs hide a beautiful geometric idea that he had 
in mind when he made his discovery, but he would keep this picture 
from view once he came to write it up. If challenged, he would respond 
that ‘an architect does not leave up the scaffolding once he has finished 
the building’. 

The fact that mathematical structures offer such fertile ground for 
those creating music is one explanation for why the two disciplines 
have always been considered close cousins. Some people have ques-
tioned whether one can really hear the symmetries used by composers, 
given that a piece of music is linear in time. Unlike the symmetry of a 
building, where the eye can take in at one glance the balance in the 
architecture, the fact that music takes you on a linear journey through 
the composition denies you the chance to hear the symmetry. The 
musicologist Jean-Claude Risset of the Laboratory of Mechanics and 
Acoustics in Marseilles wrote that, ‘Whereas symmetry is a property 
of space, time is irreversible. Time’s arrow distorts symmetry.’ 

There is certainly some truth in what Risset says. Time’s arrow does 
insist that a piece be played in a certain direction, and we never hear 
a piece played backwards. A mathematical proof too is a very linear 
work, with its own logical arrow of time. Yet the beauty in a piece of 
music often reveals itself only when you listen to it again. I often need 
to hear a piece of music many times before it makes any sense to me. 
I begin to appreciate how themes later on in the piece are echoing or 
mirroring ideas I heard earlier. 

I read mathematical proofs in exactly the same way. My first reading 
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rarely gives me a true understanding of the proof, even though I might 
follow each of the logical steps along the way. The real understanding 
comes as I read through the proof again and again. Then I start to see 
how the author has cleverly manipulated the opening theme – perhaps 
an equation that I am happy with and understand – and by twisting 
and turning it, introducing new themes, and interlacing these themes, 
has transformed the proof into something surprising, leaving me with 
a sense of having journeyed into unfamiliar territory. 

The physical response that music can stimulate in a listener’s body 
is perhaps harder to achieve in mathematics. The hairs on the back of 
my neck always stand on end at the same moment in the recording I 
have of Richard Strauss’s Four Last Songs when, in Frühling, Lucia 
Popp’s voice swoops down and then up again. Mathematics does give 
me an emotional response, but perhaps not quite to the same degree 
as music. That rush of emotion is an essential part of recognizing when 
I’ve made a mathematical breakthrough. As the brain recognizes a new 
pattern, the body releases a shot of dopamine to make sure I don’t 
miss it. 

The Thames tide is coming in by the time we’ve finished exploring 
Xenakis and the symmetries of the cube. We’ll be washed away if we 
don’t move. Dorothy is going to read a book I’ve recommended which 
explains the mathematical language of symmetry: a Group Theory 
Primer. I’ve got the easy job of listening to music. 
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May: Exploitation 

Of what use is symmetry? 
mao tse-tung 

4 May, Oxford 

One of my graduate students has just left my office. He’s done some 
great work over the past three years and is starting to write up his 
doctorate, but he’s just confessed that he’s not sure that he wants to be 
a mathematician. I’m feeling quite sobered by this news. My graduate 
students are like my children. They are the future of the subject. Who’s 
going to read all the details of my papers if not my mathematical 
offspring? The subject feels so tribal that anyone who says they want 
out is almost a threat to everything the tribe stands for. 

Anton has been working on a project very close to my current 
problem. There’s no denying that one can feel quite disillusioned by 
not finding a way into a problem. Last year one of my post-docs left 
for the City after attempting to scale this mountain with me. I’d already 
rescued him from being dragged off to the City once before. But 
after battling with our problem and seeing it become more and more 
complex, he felt that he wasn’t really cut out for it. 

What is unsettling for me is that they both questioned the impor-
tance of what we are doing. They’ve asked that ‘What’s it all for?’ 
question, and think they’ve seen the Emperor without any clothes. 
Anton has questioned whether the problems we are working on are 
really important. I’ve explained why I think these are fundamental 
questions about basic objects in nature, but I can see that he isn’t 
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convinced. I feel I am having to defend my whole existence. I’ve 
arranged for him to join me at a conference in Israel later this month, 
and I hope that seeing the rest of the tribe enthused and excited about 
these problems will re-inspire him. It will also show him that people 
are interested in what he is dedicating his time to. 

Sometimes the very abstract and unworldly nature of the subject 
can get you down. You dedicate years of your life to cracking a conjec-
ture, and when it’s done there are only a few people in the world who 
will be able to appreciate it. Your family and friends haven’t really got 
a clue what it is you’ve been up to. You can try to give them a feel for 
the thrill of the breakthrough, but sometimes you just wonder what 
the point of it was when the audience is so small. I often envy scientists 
in other fields for the immediate respect they command from 
onlookers. 

I visited a laboratory a few years ago. The lab assistant put a Petri 
dish under the microscope and let me look at the contents. It was a 
fertilized human egg that had multiplied into four cells on its way to 
becoming a human being. It was staggering. Understanding what was 
happening in that dish seemed like real science. It mattered, it felt 
important. Whether my conjectures about symmetry were true or not 
seemed to pale into insignificance as I peered into the microscope. But 
it was also the future of our family that I was looking at, which certainly 
accentuated the relevance of this particular piece of science. 

Unfortunately, the science didn’t work in our case. The four cells 
didn’t make it up to the 26 billion cells that constitute a new-born 
baby. I chose maths over the other sciences because, if a proof works 
once, it always works, every time it is repeated. Physical experiments, 
on the other hand, often go wrong. I can’t really cope with the uncer-
tainty and lack of control in the physical world, which is why I’m 
drawn to the clean, unforgiving logic of the mathematician’s lab. 

When I was younger I used to revel in the unworldly nature of my 
subject. I was under the spell of G. H. Hardy’s A Mathematician’s 
Apology, in which he lays out a manifesto for why mathematics should 
be celebrated for its own sake and why we shouldn’t be driven by the 
desire to see our work applied. But as I’ve grown older I’ve changed 
my tune a bit. I still study very abstract problems, but I would love it 
if something I discovered suddenly found a practical application. And 
it is not unreasonable that this might happen. 
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A huge amount of mathematics goes into understanding the science 
that I was looking at through the microscope in that laboratory. As 
the cells double up each time, symmetry is playing a crucial role in 
determining the possible configurations for the new cells and ulti-
mately for the shape of our bodies. Although I might not directly be 
trying to apply the mathematics I discover in the mathematical labora-
tory of my room in Stoke Newington, nevertheless, these break-
throughs form part of a chain of unexpected connections which leads 
ultimately to the extraordinary uses of mathematics in our everyday 
lives. And because of this chain, something which at first sight looks 
terribly abstract can be precisely the piece that is missing from a jigsaw, 
something that can explain the mystery of life. Indeed, it was the power 
of the microscope that during the twentieth century revealed that 
symmetry underlies many of science’s greatest mysteries. 

Tasty tetrahedrons and poisonous pyramids 

With the development of more sophisticated microscopes towards the 
end of the nineteenth century, scientists suddenly had access to the 
small-scale structure of matter and they discovered a whole new arena 
of symmetry at work in the natural world. The building blocks of 
crystals and gemstones, tissues and bone, and cells and viruses all 
exploit a variety of the symmetries that are possible in three-
dimensional space. 

One of the shapes that chemists found pervading the molecular 
world is the tetrahedron – the triangular-based pyramid built from 
four perfectly symmetrical equilateral triangles. The fact that carbon, 
the chemical of life, often connects to four other atoms means that 
carbon-based molecules are often tetrahedral in shape. The carbon 
atom sits at the centre of the shape and the four other atoms are 
located at the points of the pyramid. 

The most common example of such molecules is methane, which 
consists of one carbon atom and four hydrogen atoms arranged around 
the central carbon atom (Figure 70). Each hydrogen atom positions 
itself so that it is as far away as possible from the other three hydrogen 
atoms. Like a stone falling to the bottom of a hill to a position where 
its energy is minimized, the four hydrogen atoms seek the vertices of 
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Fig. 70 The tetrahedral configuration of the four hydrogen atoms in a
molecule of methane.

the tetrahedron as the arrangement of lowest energy. The tetrahedron
is to methane what the sphere is for a bubble. Symmetry provides
nature with an arrangement which minimizes energy.

Chemists enjoy representing molecules as models made from differ-
ent coloured ping-pong balls and sticks. In the methane molecule, the
hydrogen atoms are represented by four balls of the same colour placed
around a larger ball, the carbon atom. Although other carbon-based
molecules can be very much more complicated in structure, they can
often be regarded as essentially tetrahedral in shape. Chemists still like
to represent these by models where four different coloured balls, each
signifying a complicated molecular structure, are arranged in a tetra-
hedron around the central carbon base. In the 1950s the pharma-
ceutical company Grünenthal found that one such tetrahedral
molecule produced a drug that stopped morning sickness in pregnant
women. They marketed the drug under the name thalidomide. It was
a popular product – until the frightening discovery that mothers who
had taken it were giving birth to children with deformities such as very
stunted limbs.

It turned out that although the tetrahedral molecule built by
Grünenthal was perfectly safe and did suppress morning sickness, it
had a symmetrical cousin that was very dangerous. There are in fact
two different ways to arrange the four coloured balls around the carbon
atom. There’s red on top, and then, below the red going clockwise,
blue, yellow and green, and there’s also blue followed by green then
yellow. These two arrangements are distinct molecules. There is no
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way to rotate one so that it looks like the other. The only way to turn 
one into the other is to look at the molecule in a mirror. The two 
molecules are mirrors of each other. 

It is the asymmetry in the arrangement of the points of the tetra-
hedron that produces two different thalidomide molecules. Other pairs 
of otherwise identical molecules also have this relationship. A molecule 
is said to have chirality if its mirror image is genuinely different to the 
molecule on the other side of the mirror. Our hands have chirality: 
there is no way to superimpose the left hand on the right – they 
match only in reflection. The morning sickness drug turned out to be 
unstable, so that even when Grünenthal had synthesized one arrange-
ment of the molecules, half of them would degrade into their mirror 
image, producing the other dangerous arrangement. So depending on 
how you build your tetrahedron, you can end up producing a poison-
ous pyramid rather than a therapeutic tetrahedron. 

Our body is extremely well tuned to noticing the difference between 
mirror versions of these tiny pyramids. The smell of one arrangement 
can be totally different to that of its mirror image. For example, one 
version of the chemical carvone smells of caraway, while its mirror 
cousin smells of spearmint – and is smeared on Wrigley’s gum to give 
it its characteristic taste. It is quite extraordinary that our senses can 
sniff and taste symmetry. In Through the Looking Glass, published in 
1899, Alice suggests that milk through the looking glass may not be so 
good for her kitten to taste as ordinary milk. Lewis Carroll was well 
ahead of his time. 

The reason that our bodies react differently to symmetrical cousins 
of the same molecules is that the amino acids found in proteins in the 
body always seem to be pyramids that are arranged with one particular 
chirality – you never see its mirror image. Scientists have called these 
left-handed pyramids. A right-handed version of a drug might react 
therapeutically with the proteins in our body while its mirror cousin 
combines destructively with the same protein, a more dramatic version 
of the way shaking someone’s left hand feels awkward. 

It seems that living organisms are always made of left-handed pyra-
mids. Why this should be so is still something of a mystery. Is this 
propensity for left-handed pyramids true of all organic matter across 
the universe? Or is it just our corner of our galaxy that favours one 
version of the tetrahedron over the other? Scientists talk about the 
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left-handed universe, but no one really knows which wind is blowing 
to cause our amino acids to spin that way. 

The connections between symmetry and molecular structure led 
during the course of the twentieth century to a new dialogue between 
chemists, biologists and mathematicians. The other sciences began to 
tap into the power of mathematics to reveal the different shapes that 
were possible for these molecular configurations. Indeed, microbiolo-
gists discovered that some of the other Platonic symmetrical shapes 
were at the heart of one of the most dangerous forces of nature: the 
virus. 

Viruses: why symmetry makes you sneeze 

At the end of the nineteenth century, tobacco plants in the Crimea 
were being destroyed by an unknown cause. A young Russian biologist 
from the University of St Petersburg, Dmitri Ivanovski, was dispatched 
to try to identify what was causing the ‘wildfire’ that seemed to be 
afflicting the plants. It was assumed that a bacterial agent was respon-
sible, but when the biologist analysed the agent that seemed to be 
causing the disease, it seemed to be very different to bacteria. Bacteria 
cannot permeate a porcelain filter, but the minuscule entities that 
seemed to be destroying the plants passed clean through. It was a Dutch 
microbiologist, Martinus Beijerinck, who named these new infectious 
particles ‘viruses’ and guessed that they were in some sense living 
organisms that used the cells of plants or animals for reproduction. 

It was Spanish Flu that really concentrated the mind on the science 
of viruses. In 1918 the Spanish Flu pandemic killed in the order of 50 
million people – more than the casualties of the First World War. 
Suddenly, scientists were very keen to understand the mechanism of 
this dangerous disease. The structure of bacteria could be seen under 
a conventional microscope, but an influenza virus was too small. It 
would need the more subtle techniques of X-ray crystallography and 
the invention of the electron microscope before the make-up of the 
tiny organism could be penetrated. Francis Crick and James Watson, 
after they cracked the structure of DNA, were two of the scientists who 
turned their attention to the nature of viruses. 

Rather than a tangled mess, scientists found instead an object filled 
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with symmetry – albeit a deadly one. As it happened, many artists at 
the beginning of the twentieth century had begun to associate sym-
metry with death. In The Magic Mountain, Thomas Mann’s protagonist 
contemplated the symmetry in a snowflake and ‘shuddered at its 
perfect precision, found it deathly, the very marrow of death’. Now 
symmetry was a symbol of death not only for the artist but also in 
biology. 

Since the 1930s it had been known that these viruses consisted of a 
piece of genetic material called RNA surrounded by a shell of protein. 
From the images of the virus that X-ray crystallography was providing, 
it was apparent to Watson that the shell of the virus that attacked and 
destroyed tobacco plants looked like a spiral, whereas the images of 
other viruses, such as the Tomato Bushy Stunt Virus, suggested a more 
spherical shape. Watson discussed his ideas with a young research 
student, Donald Caspar, during a meeting at Cold Spring Harbor in 
summer 1954. Caspar came to England where he teamed up with a 
young post-doc, Aaron Klug. Caspar worked on the Tomato Bushy 
Stunt Virus, and Klug on Turnip Yellow Mosaic Virus. To study the 
shapes of such small viruses, they passed X-rays through a crystallized 
version of the virus and then analysed the resulting diffraction pattern. 
From these images it appeared that both viruses were demonstrating 
a more spherical shape, but Caspar and Klug were keen to pin down 
the precise design of these infectious agents. 

The process of reconstructing the shape of a crystal from the images 
produced by X-ray crystallography is rather like doing a complex 
geometric puzzle in three dimensions. Imagine that someone has 
arranged a lot of balls in some configuration. Your challenge is to 
discover just how these balls are arranged. However, the only infor-
mation you are given is a handful of two-dimensional shadows of the 
configuration. Essentially, the shadow-patterns look as though some-
one has stamped on the three-dimensional structure and squashed it 
onto the two-dimensional page. You have to give life to the dots in 
the picture and describe the three-dimensional arrangement that was 
there before. 

The diffraction patterns that Caspar and Klug obtained seemed to 
indicate that there were four axes about which the crystal had rotational 
symmetry of order 3, like a triangle. When they looked for mathemat-
ical shapes that have these symmetries, they found that all the Platonic 
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solids have four such axes. The axes of a tetrahedron, for example, are 
easily identified: poke a stick through one vertex and pull it out through 
the centre of the opposite triangular face. You can spin the tetrahedron 
through a third of a turn round this axis, and the shape looks 
unchanged from this new angle. 

Intriguingly, the cube also has a rotational symmetry of order 3, like 
a triangle. Why should this be? The thing is made up of squares, so 
where are the triangles? If you take a stick and push it through one of 
the cube’s vertices and then pull it out through the vertex farthest 
from it, you can spin the cube around the stick as an axis. Rotate it 
through one-third of a turn, and the cube will look the same. You can 
see the triangle if you look at the edges emanating from the vertex: 
three edges meet at each vertex, and they realign after each third of a 
rotation. Another way of seeing a triangle in a cube is to cut off one 
corner – a triangular face will then be staring at you. 

The existence of these four rotational symmetries of order 3 seemed 
to be pointing Caspar and Klug towards one of the five Platonic solids 
as a potential shape for these viruses. But which one? The more views 
and different perspectives you get of the arrangement via this technique 
of X-ray crystallography, the better your chance of working out what 
the shape looks like. Caspar struck lucky and obtained an image of the 
Tomato Bushy Stunt Virus which showed five dots in a pentagonal 
configuration. This two-dimensional picture indicated that the pro-
teins in the shell of the virus were arranged in such a way that there 
was an axis with a fivefold rotation like that of a pentagon. This 
narrowed down the Platonic solid on which the virus might be model-
ling itself. Of the five Platonic solids, only the 20-sided icosahedron 
and the 12-sided dodecahedron have rotations like that of a pentagon. 
Caspar showed the pictures to Crick, who was working in the same 
laboratory in Cambridge. 

Crick and Watson started to formulate a theory of the mechanics 
of how the proteins are arranged in the virus’s shell. The way the virus 
reproduces itself is to inject the RNA at its heart into a host cell and 
then sneakily use the cell’s machinery to replicate itself. Encoded in 
the RNA is the information to build and assemble the proteins that 
will surround the replicated viruses created by the host cell. Once 
assembled and packaged in the newly built protein shell, the cell then 
releases these new virus particles to wreak havoc on more host cells. 
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What makes a virus so harmful is the effect it has on the host cell it
leaves behind in the process of replicating itself.

The experimental evidence indicated that the string of RNA released
by these viruses was very short and would therefore be limited in the
amount of information it could encode. Some of the viral genomes
are so small they contain fewer than five genes. Basically one can think
of the released RNA string as a little computer program which is used to
build a protein element and then assemble the elements in a particular
configuration. Contained in human DNA, for example, are extremely
complicated programs which are used to build the heart and other
organs in a human foetus. The same mechanism was responsible for
the cell division I’d marvelled at under the microscope that day in the
IVF lab. What Crick recognized was that the small length of the pro-
gram contained inside a virus meant that a new structure would neces-
sarily have to be built in a very simple manner. And this is the power
of symmetry.

The symmetry of an object essentially provides a very simple pro-
gram for constructing the whole of the object from a simple building
block. The helical shape of the Tobacco Mosaic Virus, for example, is
very simply put together: the helix looks like a spiral staircase in which
each step is an identical piece of protein (Figure 71). Each full turn of
the staircase has 161/2 steps. The same rule is applied at each step:

RNA nucleotides

proteins

Fig. 71 The helical shape of the Tobacco Mosaic Virus.

Symmetry
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simply make the appropriate twist of the staircase and add the next 
identical piece of protein. What about the viruses with the four 
rotational axes through them – what rule could apply for them? The 
beauty of the Platonic solids is that any two faces meet each other in 
exactly the same way. There is no part of the shape which requires an 
extra rule to construct it. So again, the rule for putting these shapes 
together is as simple as for the staircase. 

Crick believed that the underlying shape of some of the more spheri-
cal viruses was a 20-faced icosahedron in which each triangular face 
was made up of three protein elements, making 60 protein elements 
in total in the shell (Figure 72). The underlying symmetry immediately 
helps to reduce the size of the program required to reproduce the 
structure. This is one reason that nature is attracted to symmetry, as a 
labour- and information-saving device. It’s also how Mozart was able 
to remember Allegri’s Miserere. 

Fig. 72 Some viruses are icosahedral in shape and consist of 60 identical protein pieces. 

The idea of assessing the complexity of a structure by using the 
length of a program to generate it has been used recently in number 
theory. The program required to reproduce, say, the infinite decimal 
expansion of 1/3 is very short: just keep repeating 3. The program for 
generating the decimal expansion of p, on the other hand, is much 
more complicated. This is why you get in the record books for remem-
bering the expansion of p but not for remembering the expansion of 
1/3. There is a whole branch of mathematics dedicated to establishing 
the length of the programs required to reproduce certain numbers. 
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The more symmetry a number or an object has, the shorter the pro-
gram needed to reproduce it. Conversely, Crick believed that the con-
cise program encoded into the short string of RNA at the heart of a 
virus would necessarily result in a structure with symmetry. 

Crick presented his ideas on the shape of spherical viruses at a 
meeting of virologists, but he was met with some scepticism. However, 
Caspar had come armed with models made from sticks and ping-pong 
balls to show the possible configurations. As the structure took shape 
in front of them the virologists became more convinced by Crick’s 
vision. But they couldn’t see how the model would explain more 
complex viruses that were coming to light. The problem was that if a 
virus was so symmetrical, then the geometry allowed for a maximum 
of 60 protein pieces. It appeared, though, that viruses sometimes con-
tained a lot more than 60 pieces in the shells that encased the RNA. 
Klug and colleagues had started studying animal viruses in addition to 
plant viruses, and they too seemed to have the same rotational sym-
metry found in the icosahedron. But the shell of the polio virus, for 
example, seemed to be made of 180 protein pieces. 

At this point, an intriguing meeting of art and science pointed the 
way forward. Robert Marks, a protégé of Buckminster Fuller, came 
across the work on the structure of the polio virus which seemed to 
be constructed from 180 pieces. Buckminster Fuller had been building 
domes from triangles that contained many more than the 60 that the 
mathematicians seemed to be limited to. But in these domes not all 
the triangles were identical – they nearly were, but not quite. For 
example, take a football made up of 20 hexagons and 12 pentagons. 
Now subdivide each hexagon and pentagon into triangles. The triangles 
in the hexagon are all equilateral and perfectly symmetrical. But the 
triangles in the pentagons are not quite equilateral. Now I have a 
structure with 180 faces built out of two distinct building blocks 
(Figure 73). So perhaps the more complex structures such as the polio 
viruses looked like a triangulated football, or one of the domes of 
Buckminster Fuller. 

Klug met with Buckminster Fuller in the summer of 1959, but it 
was reading Marks’s book published in 1960 on the life and work of 
the architect that led Caspar and Klug to reformulate the structure of 
the virus. Although their new structure was still full of symmetry, they 
introduced the idea of quasi-equivalence – a slight relaxation of the 



275 May: Exploitation 

Fig. 73 A polyhedron made up of 120 equilateral triangles and 60 isosceles triangles. 

constraints on the relationship between the pieces in the shells. So 
just as the geodesic dome is made from piecing together two slightly 
differently shaped triangles, it could be that two slightly differently 
shaped protein pieces combined to form the polio virus. There were 
still constraints on the number of pieces, and Caspar and Klug came 
up with a formula to calculate the possibilities, and even borrowed 
some of Buckminster Fuller’s architectural terminology. La Géode, 
which Tomer and I visited in Paris, is an example of how all these 
different triangles can be pieced together to approximate the sphere, 
the shape with ultimate symmetry. 

Klug and Caspar also came up with a different model for the forma-
tion of the shell of the polio virus. Again, symmetry came to the rescue 
as a way to collect the 180 protein pieces together. Just as the perfectly 
symmetrical sphere is the surface of minimum energy which a soap 
bubble aims for, the same trick works for the shell of the virus. The 
most symmetrical way to assemble the 180 pieces represents the mini-
mum energy and therefore the state of rest for the virus shell. Symmetry 
helps the process of virus construction. 

Recent studies have revealed that some of the most deadly and 
virulent viruses have the icosahedron as their shape of choice: herpes, 
rubella, even the HIV virus which causes AIDS – all hide their deadly 
secrets within a highly symmetrical skin. But modern science has 
revealed that symmetry is key not only to the very tiny organisms of 
nature, but to one of the greatest mysteries of biology – the functioning 
of the mind itself. 
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Mirrors in the mind 

Evolution has programmed us to be oversensitive to symmetry. Those 
that can spot a pattern with reflectional symmetry in the chaotic tangle 
of the jungle are more likely to survive. Symmetry in the undergrowth 
is either someone about to eat you or something you could eat. Our 
brains seem to be hard-wired to find meaning in symmetry. This is 
why, in the early twentieth century, Hermann Rorschach developed 
his symmetrical inkblots as a means of unlocking a patient’s uncon-
scious mind. He believed that humans are so compelled to find a 
meaning or a message when shown something symmetrical that the 
patient’s response can reveal clues to their psychological state of mind. 
Carl Jung also thought that symmetry was important in understand-
ing the unconscious. But rather than the butterfly-like inkblots of 
Rorschach, Jung was drawn to the symbolism contained in the man-
dalas of Hinduism and Buddhism. 

In Buddhist worship the mandala is a sacred diagram made from 
dyed sawdust or sand. Mandala is Sanskrit for circle, and the diagram 
is an intricate network of intertwining circles representing a many-
layered universe. The complexities of the design are meant to reflect 
the turmoil of the human condition on the way to achieving the 
nirvana at the centre of the mandala. Each symbol in the mandala’s 
design has some specific meaning. A diamond represents the mind, 
the eight-pointed wheel denotes the eightfold path to Nirvana and the 
16-leafed lotus is Buddha or Nirvana itself. The network of shapes acts 
as a story, guiding the worshipper in a lesson on meditation. 

The mandalas of Tibet are laboured over by priests for days in an 
act of deep and concentrated worship. The symmetry of the shape is 
meant to assist the worshipper in achieving a meditative state, yet once 
finished they are immediately destroyed – an important part of the 
mandala ritual. The hands that have painstakingly worked for perfect 
symmetry pass over the sand, and the symmetry is lost. It is a lesson 
on the impermanence of the world and the fragile nature of human 
existence. Symmetry is hard to achieve, as those in the animal world 
with bad genes discover to their cost. The destruction of the mandala 
also reinforces the Buddhist belief in the importance of non-
attachment. Nirvana comes only to those who are prepared to let go 
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of the things they are most attached to. A Buddhist monk who has 
spent days building a beautiful picture will tell you that the destruction 
of his creation, full of delicate symmetry, is much harder than the 
hours spent making it. Once destroyed, the coloured sand is thrown 
into moving water. 

For Jung the mandala was an expression of the self: 

I sketched every morning in the notebook a small circular drawing, a 
Mandala, which seemed to correspond to my inner situation at the 
time. With the help of these drawings I could observe my psychic 
transformations from day to day. 

Jung also used his patients’ drawings of mandalas as a doorway into 
their subconscious world. He believed that the act of creating these 
symmetrical images was also therapeutic in its own right and helped 
patients to express the different facets of their personalities: 

Most mandalas have an intuitive, irrational character and, through their 
symbolical content, exert a retroactive influence on the unconscious. 
They therefore possess a ‘magical’ significance, like icons, whose possible 
efficacy was never consciously felt by the patient. 

Jung was very struck that when asked to express the inner turmoil 
of the mind through drawing, different patients would often sketch 
the same basic shapes. The fact that the same imagery was thrown up 
by so many different patients and across so many diverse cultures 
supported Jung’s belief in the idea of a collective subconscious: 

There must be a transconscious disposition in every individual which 
is able to produce the same or very similar symbols at all times and in 
all places. Since this disposition is usually not a conscious possession of 
the individual I have called it the collective unconscious, and, as the 
basis of its symbolical products, I postulate the existence of primordial 
images, the archetypes. 

For Jung, the triangle, the circle and the hexagon were all universal 
symbols that resonate with the human condition regardless of cultural 
background. 
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Psychologists have developed another test which highlights our sub-
conscious attraction to symmetry. Try this exercise. You are shown 
the four cards in Figure 74 and told that every card with a vowel on 
one side has an even number on the opposite side. Which card or 
cards must you turn over to check whether this statement is true? 

Card A Card B Card C Card D 

E G 6 9 

Fig. 74 Which card or cards must you turn over to check whether every card with a vowel 
on one side has an even number on the opposite side? 

Psychologists talk about two modes of reasoning and memory: the 
old mode and the new mode. The old mode corresponds to our most 
basic primordial animal brain, and it seems that this is the one that 
wants to find symmetry everywhere. We tend to use this mode in our 
intuitive response to problems. In experiments, only 4 per cent of 
subjects were found to have the ability to override their old brain 
pathways and apply a more analytic response to get this puzzle right. 
Most people think that they must check card A and card C. But actually 
you need to check card A and card D. Why is this? You have to check 
whether every card with a vowel on one side has an even number on 
the other. Our brains are so desperate for symmetry that they also 
check whether every card with an even number on one side has a 
vowel on the other. So the brain directs you to pick up card C. But if 
that card has a consonant on the other side, so what? It’s card D that 
might destroy the theory. If card D has a vowel on the other side, then 
the theory is false. 

It seems that our subconscious works according to a sort of sym-
metrical logic. It thinks that if the statement ‘if A then B’ is true, then 
so is its converse, the mirror image ‘if B then A’. In general, this is far 
from true. Logical deduction is usually very unsymmetrical. There is a 
whole school of psychology that tries to explain the mechanism of the 
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subconscious in terms of this desire for a symmetrical logic. The father 
of this movement is a Chilean psychologist, Ignacio Matte Blanco. His 
model of the subconscious looks something like the edifice Borges 
describes in his short story ‘The Library of Babel’. According to the 
narrator, every possible book is meant to exist somewhere in the 
library. So there are geography books in which Paris is the capital of 
France, but also a book in which France is the capital of Paris. Borges’ 
physical description of the library as a lattice of interconnected hexag-
onal cells sounds like the description of a huge brain. Matte Blanco 
believes that the human mind, like the library, makes these strange 
identifications which arise from a desire to balance things. 

The propensity of the brain to home in on symmetry can have 
devastating effects on a psychotic patient. Matte Blanco described a 
schizophrenic patient who became terrified after an incident when a 
sample of blood was taken from her arm. At times she would say that 
blood had been taken from the arm, but at other times she would 
completely reverse the statement and declare that her arm had been 
taken and the blood left behind. 

Matte Blanco believed that, like the books in Borges’ library, the 
patient’s brain has used symmetry to allow for all permutations of a 
statement. He extended the ideas of Sigmund Freud, whose theories 
also suggested that our brain attempts to ascribe symmetry where there 
isn’t any. ‘My father is a man,’ says our conscious brain, which in our 
subconscious becomes ‘All men are my father.’ These symmetrical 
games are particularly powerful in our dream world, where the sub-
conscious takes over. The twisted world that this inner symmetrical 
logic produces explains the bizarre turns that our dreams can some-
times take. Perhaps subconsciously I think that a friend of mine is 
actually rather dangerous. My conscious agreement with the statement 
‘Monsters are dangerous’ can suddenly, via this symmetrical logic that 
operates in the dream world, turn my friend into a monster. 

It is beginning to emerge that symmetry plays a fundamental role 
in how the brain works. The discovery of special neurons called mirror 
neurons is regarded as one of the great breakthroughs in neuro-
physiology. Like many great scientific breakthroughs, it came about by 
chance. Three scientists working at the University of Parma, Giacomo 
Rizzolatti, Leonardo Fogassi and Vittorio Gallese, were exploring which 
neurons in the brain fire when monkeys move their hands in certain 
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ways. These neurons are called motor neurons because they deal with 
motor skills. The scientists attached electrodes to the frontal cortex of 
the monkeys. They were able to identify specific neurons which would 
fire for each particular motion. When the electrodes were wired to one 
particular place in the brain, each time the monkey reached for a 
peanut the machine would emit a ‘ssshhhh’ sound to indicate that the 
neurons were firing. 

Leonardo Fogassi had spent the day watching the actions of the 
monkeys and recording the corresponding ‘ssshhhh’ sounds that the 
machine emitted. Happy with the day’s findings, he began to tidy up 
the lab. But as he reached out to collect up peanuts that were lying 
around, the machine suddenly went ‘ssshhhh’. ‘That’s weird,’ he 
thought. As he reached for another peanut, he saw the monkey follow-
ing his hand movement with its eyes – and there was another ‘ssshhhh’. 
But the monkey hadn’t moved its hand at all. Perhaps the equipment 
was faulty. Would the whole day’s research have to be scrapped? 
Fogassi checked the equipment, but there appeared to be nothing 
wrong. 

Although the monkey was not actually taking a peanut, it seemed 
that neurons in its brain were firing as if to create a virtual reality 
version of the action. These weren’t motor neurons firing, but some-
thing that the researchers christened mirror neurons or ‘monkey do, 
monkey see neurons’. The idea that neurons fired to imitate or mirror 
the act of another animal could provide vital clues to the development 
of the human mind. Indeed, the neuroscientist Vilayanur Ramachan-
dran has predicted that mirror neurons will do for psychology what 
DNA did for biology. 

Seeing someone else do something looks very different from the 
image you have of yourself performing the action, yet the brain activity 
is almost identical. Something in the brain seems to suppress it from 
sending a signal to actually perform the action. But sometimes this 
doesn’t work, and a neuron fires and your body copies the action 
you’ve seen. How many times have you caught yourself mirroring the 
movements of someone you’re talking to? It cracks me up whenever 
I notice that I’ve just put my hands behind my head in exactly the 
same way as the person opposite me. Mirror neurons are firing and 
producing this desire in my body to mirror in perfect symmetry the 
action of the person in front of me. If somebody yawns loudly in front 
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of you, it’s not long before you are yawning too, even if you aren’t the 
least bit tired. 

The mirror neurons help to explain the striking ability of babies to 
simulate so perfectly the facial movements of their parents, even 
though they haven’t a clue what their own faces look like. When its 
parents stick out their tongue, a baby is able to repeat the action. The 
baby doesn’t need hours of practice in front of a mirror to copy the 
facial expression; instead the mirror neurons fire, making a copy of 
the action in the baby’s brain. These mirror neurons may have helped 
humans to develop their sophisticated language skills. The acquisition 
of language depends on mirroring the sounds of others. Like a frieze 
pattern round the top of a pot, the child hears a sound made by the 
parent and tries to produce a perfect copy of it. Researchers have 
indeed found that the part of the brain where the mirror neurons are 
located is similar in position, structure and evolutionary origin to the 
Broca’s area of the brain which deals with language. 

Some scientists have suggested that something triggered an 
explosion of mirror neurons in the human brain around 40,000 years 
ago. That was when there was a Big Bang in human cultural develop-
ment. Suddenly, tools are becoming more refined. Lumps of rock 
are being carved into symmetrical arrowheads. Tools are covered in 
interesting patterns, not for any utilitarian purpose but because the 
brain is becoming increasingly attracted to symmetrical forms during 
this period. 

The ability of these mirror neurons to help us to get inside other 
people’s heads is regarded as the key to binding humans together in 
groups with clear cultural identities. Humans have been referred to as 
‘the Machiavellian primate’ because of this ability we have to compre-
hend the actions of others. Indeed, mirror neurons might hold the key 
to understanding autism. A failure to empathize might be due to the 
failure of these mirror neurons to fire when someone is observing 
other people. Empathizing requires this virtual reality machine inside 
our heads to simulate what it feels like to be doing what we see others 
doing. 

Mirror neurons could well be behind our very sophisticated means 
of communication by language and speech. And in the twentieth cen-
tury, symmetry was exploited to facilitate an explosion of electronic 
communication that has swept the globe. 
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You’re cracking up . . .  

Symmetry has become the key to the survival of data as it flies through 
the busy airwaves. The integrity of a message depends on mathematical 
codes that exploit the mathematics of symmetry. The word ‘code’ 
usually conjures up images of spies and secret messages. But the techni-
cal term for a system that scrambles a message, like the German Enigma 
machines of the Second World War, is a cipher. The origin of the 
word comes from the Arabic for zero: sifr. In medieval Europe, the 
new numerals from the East – including zero – gave ordinary people 
increased access to the power of computation. In order to maintain 
their superior position, the upper classes banned the use of these 
numerals, forcing people to use them in secret. This is how the word 
for zero came to mean a system for keeping messages secret. 

The technical meaning of ‘code’ is actually a system that preserves 
a message and aids its communication – almost the opposite of a 
cipher. Life itself is transmitted and reconstructed through code. DNA 
is just a long sequence of four molecular compounds: adenine, guanine, 
cytosine and thymine. These are generally represented by the letters A, 
G, C and T. The DNA molecule can be represented as a long code 
word consisting of these four letters. The string of symbols encodes 
information about the parents’ genes and information to reproduce 
another human being. In a virus, the RNA encodes how to rebuild 
another copy of the virus out of host material. 

A lot of research has gone into how good this code is in correcting 
errors, which would produce a mutation – a change in the genetic 
make-up of an organism. The individuality of each human being 
depends on some of these mutations occurring: none of us is an exact 
clone of a parent. However, there needs to be a mechanism in place 
to correct major errors in the transmission of the DNA from parent 
to child, to prevent the program for reconstructing life from crashing. 

One code which is particularly effective at retaining meaning, even 
in the face of multiple errors, is the written word. A tetx wiht srcaabedl 
ro chnyade ellters osmheow rewains emghuo infwrtmation to neabke 
the oirginl sendnence ti be reoncsrcted. The written word is so good 
at correcting itself because it has a lot of redundancy in it. Every word 
in a dictionary is like an admissible code word. For example, at the 
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time of writing there are 48,504 seven-letter words in the Oxford 
English Dictionary Online, but over four billion possible combinations 
of seven letters. The extreme unlikelihood of a random string of seven 
letters being a word in the dictionary makes the written language good 
at correcting itself. For just a slightly garbled seven-letter word there 
aren’t going to be many alternative choices. 

In contrast to written text, the spoken word in general isn’t so 
effective, which is why the game of Chinese whispers is fun. A story 
tells how the message ‘Send reinforcements. We’re going to advance,’ 
sent from the front line during the First World War, mutated via word 
of mouth into ‘Send three and fourpence. We’re going to a dance’ by 
the time it reached headquarters. 

In some sense sudoku, the number puzzle that has swept the world, 
is a sophisticated error-correcting puzzle. A standard sudoku puzzle 
consists of a 9 × 9 grid in which only a few squares have a number in 
them. You are told that the numbers from 1 to 9 occur once in each 
row, once in each column and once in each 3 × 3 block. Because of 
this internal structure in the table, it is possible to work out all the 
missing numbers from the ones already there. So a sudoku is like a 
message in which lots of the information has been lost in transit but, 
thanks to the structure of the message, it is possible to reconstruct the 
whole message from the partial signal received. 

The explosion in communication in the twentieth century created a 
never-ending need for cleverer, faster and more efficient ways to pre-
serve messages. The airwaves are filled with mobile phone conver-
sations, digital radio signals and satellite transmissions. CDs, DVDs 
and MP3 files all store information in digital format that can be 
reconstructed into the music or video we want to watch. Modems and 
fibre optic cables are transmitting emails and webpages from one 
computer to another. We depend on orbiting satellites to collect and 
send data about the weather, and spacecraft sent to the far reaches of 
the solar system beam back images of distant worlds. 

With so much electronic fluctuation and strong magnetic fields 
interfering with the digital data, whether travelling through the atmos-
phere, along cables or through the vacuum of space, scientists have 
been forced to come up with ways to tell whether data has been 
corrupted. Is there a way to send data so that even if the message has 
been damaged in transit we can find a way to piece together the 
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uncorrupted message? A typical CD has over half a million errors in 
the digital data encoded onto it when it comes off the production line. 
Once the CD has been used and abused, picking up scratches and 
fingerprints, those errors can go up to a million or more. This is a 
small percentage of the overall data on the CD but still potentially 
disruptive to the reconstruction of the music. The power of mathe-
matics has ensured that the way the music is encoded enables the 
majority of errors not only to be detected but also corrected. The 
mathematical journey to such powerful codes starts with finding a way 
to translate a picture, a voice or a piece of text into a simple string of 
numbers. 

Because computers are essentially systems of switches that are either 
on or off, the numbers they like best are 0’s and 1’s: a 0 sets a switch 
in the ‘off ’ position, and a 1 turns it to the ‘on’ position. One of the 
first translations from letters into numbers was made by a French 

´ engineer, Emile Baudot, in 1874, for transmitting messages by telegra-
phy. Each letter of the alphabet became a string of five 0’s and 1’s. This 
allowed Baudot to represent a total of 2 × 2 × 2 × 2 × 2 = 32  different 
characters. The letter X, for example, was represented by the string 
10111, while the letter Y was 10101. 

Quite often a text might require more than 32 symbols, for example 
symbols for punctuation and numerals, so Baudot came up with a 
cunning way to expand the range. Just as a keyboard uses a shift key 
to get access to a whole range of other symbols using the same keys, 
Baudot used one of the string of five 0’s and 1’s to denote pressing the 
shift key. So if you see the string 11011, you know that the string 
immediately following is from the alternative set of characters. 

Although it has been superseded by superior codes, such as ASCII, 
Baudot’s code got a recent outing on an album cover. A newspaper 
phoned me up last year to ask if I could write an article about a 
mysterious puzzle that Coldplay had embedded in their recent album. 
The phone call came through at midday. They needed the article by 
three o’clock for the next day’s paper. I went into a bit of a panic on 
the phone – it was like my final examinations at university all over 
again. ‘What if I can’t crack it by three?’ I asked. ‘Oh, that will also be 
interesting,’ replied the reporter, ‘Oxford professor fails to crack Cold-
play cover.’ The thought of that headline soon concentrated the 
mind. 
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The album cover shows coloured blocks arranged in a grid. I soon 
guessed that the colours are irrelevant, and that you have to read a 
block of colour as a 1 and a gap between colours as a 0. So in fact I 
just needed to take a black and white image of the cover, where black 
denotes the presence of a colour in the grid (Figure 75). Reading down 
the first column of the grid, you get black, white, black, black, black, 
which translates into 10111 – the Baudot code for X. The last column 
translates into the Baudot code for Y. What about the two columns in 
between? The second of them gives 11011, the Baudot shift key. So to 
interpret the third column, 00011, I needed to consult the alternative 
character set that Baudot encoded. Now I knew that what I was after 
was the symbol for &. It was no secret that Coldplay’s new album was 
called X&Y. But when I looked up the code it seemed that 00011 was 
the symbol for 9, not &. The cover should have depicted 01011 in the 
third column. According to its cover, Coldplay’s album is called X9Y, 
not X&Y. 

Fig. 75 A black and white version of the code on Coldplay’s album cover. 

The cover demonstrates one of the problems with Baudot’s code. 
Any interference and you get another perfectly acceptable message. 
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Obviously there was some noise on the line when the band was 
speaking to the graphic designer, who changed 01011 to 00011. Because 
of the nature of the code it was impossible to detect the error unless 
you knew what the title of the album was. The cover still looks 
striking, even with the mistake. But it’s not only the title of the album 
that has been converted into a string of 0’s and 1’s. The CD inside has 
stored the music in digital format too. Here the ability to correct 
mistakes, such as errors in printing or scratches, is far more im-
portant. 

Mathematicians discovered that there were ways to use symmetry 
to detect errors that had crept into a message during transmission. 
Symmetry provides the means to detect corruption. The weaver of a 
carpet whose pattern is full of symmetry can detect and correct minor 
errors. If the four corners of the carpet are copies of each other yet 
one of the four is turning out slightly different, the weaver can check 
and put it right from the information contained in the pattern in the 
other three corners. The internal connections which symmetry sets up 
within an object make it ideal for correcting errors. 

There is actually a very simple way to transmit data to allow for 
detection and correction of errors: send the message three times. If, 
for example, you want to send a black and white picture from outer 
space, you can represent a black pixel by 0 and a white pixel by 1. In 
order to avoid errors, instead of a single digit you can use three: 111 
for white and 000 for black. That way, it is much clearer if an error 
occurs and a single digit has been switched by accident. For example, 
010 in a message is most likely meant to be 000. There is no guarantee, 
of course, since there may have been more than one error in the 
three-digit string, but this is the most likely interpretation. 

To start to see where geometry and symmetry might play a part in 
building good codes, we can picture the code words 000 and 111 as 
the coordinates of two opposite vertices of a cube (Figure 76). Any 
error shifts the code word to another vertex of the cube. To correct 
an error, we just move the point back to the nearest admissible code 
word, at the nearest vertex. For example, if we receive 110, the nearest 
vertex of the cube whose coordinates are an acceptable code word 
is 111. 

But this is a rather inefficient code. First, the code requires us to 
send three times the amount of data that we are trying to communicate. 
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Fig. 76 Code words can be interpreted as the coordinates of the vertices of the cube. 

This takes time and energy. When spacecraft were first being launched 
into space, the machines on board were bulky and batteries weren’t 
powerful, so finding efficient ways to store and transmit data translated 
into huge financial savings. The first spacecraft to capture pictures of 
the surface of Mars was Mariner 4, which sent grainy black and white 
images back to Earth in 1965. Each picture consisted of 4,000 pixels, 
each of which could take one of 64 different shades of grey. The 
onboard energy supply allowed only eight pieces of data a second to 
be transmitted, so it took nearly an hour to send back a single picture. 
An error correcting code which requires three times the transmission 
rate is not ideal. 

But there is a slightly more efficient code hiding inside the cube. If 
we embed a tetrahedron in the cube, the corners of the tetrahedron 
pick out four code words: 000, 011, 110 and 101 (Figure 77). These 
code words are all the triplets of the cube that have an odd number of 
0’s. Now, if an error occurs in one of the digits we can detect it because 
the transmitted triplet will have an even number of 0’s. One error 
causes the code word to slip off the tetrahedron. We don’t need the 
picture of the tetrahedron to understand the mechanism of the code, 
but it helps to illustrate why efficient codes might be associated with 
symmetrical shapes. This code associated with the tetrahedron is much 
more efficient because half the possible messages are code words, yet 
we can still detect an error. The only downside is that the code can’t 
correct the mistake. The message 010 has an error because it does not 
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000 

101 

Fig. 77 The code words corresponding to the vertices of the tetrahedron can detect errors. 

sit on the tetrahedron, but there are three vertices it could have come 
from. 

The designers of spacecraft communication systems don’t want to 
waste valuable time and energy resending an image of a distant planet 
because of interference during transmission. Mathematicians realized 
there were more sophisticated structures that they could exploit to give 
them a way to actually identify and correct a mistake in the code 
without having to resend a message. 

From error detecting to error correcting 

The first clever uses of mathematics to correct codes grew out of the 
frustrations of an employee at the Bell Telephone Laboratories in 
America in 1947. Richard Hamming had become increasingly annoyed 
with the computers at the lab. Several weekends in a row he’d left a 
program running on the computer only to find on Monday that the 
computer had dumped his work after detecting bugs in the program. 
‘So I said damn it, if the machine can detect an error, why can’t it 
locate the position of the error and correct it?’ 

To see how he went about it, look at this little table: 
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0 1 1 

1 1 0 

1 0 

The message consists of four 0’s or 1’s. These are the numbers in bold. 
Another four digits at the ends of the rows and columns help to 
identify any errors – these are called check digits. The power of this 
code is that it not only checks for errors but also identifies where they 
are. The digits at the end of a row signify parity – whether there are 
an odd number or an even number of 1’s in that row: 1 for odd, 0 for 
even, and the same for the columns. If an error occurs in the main 
body of the message, then the number of 1’s changes parity in one 
row and one column. By looking at the check digits, you can identify 
where the inconsistency is and the error can be corrected. If an error 
occurs in one of the check digits rather than the main body of the 
message, this can also be identified. Two check digits will be wrong if 
an error occurs in the main text. So if only one of the check digits 
shows an inconsistency it’s that check digit that needs to be corrected. 

For example, where is the one error in the following message? 

1 0 1 

1 0 0 

1 0 

The check digits indicate that there should be an even number of 1’s 
in the second row of the main message, but we can see that there are 
an odd number. So the error is in the second row. To find out which 
entry is wrong, now look at the columns. The check digits say there 
should be an odd number of 1’s in the first column of the main 
message, but there are an even number. So the error is the 1 in the 
second row, first column. The code can now correct this to a 0. 

To send a message such as 0111, the four numbers would be 
arranged in a 2 × 2 grid, the check digits would be added and then the 
extended grid would be retranslated back into a string of eight digits, 
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in this case 01111010. By adding four extra digits to a message of 
length 4 and exploiting the mathematics of parity, we can then correct 
one error that might occur during transmission. Larger messages could 
be broken down into sequences of four digits, and check digits added 
to each batch. In this way the code would effectively double the length 
of the message in exchange for correcting one error per batch of four 
message digits. But extra digits cost time and money, so the search was 
on for even cleverer mathematical codes to increase efficiency. 

It was the link between codes and geometry that provided Hamming 
with the key to the discovery of his more efficient codes. A string of 
three 0’s and 1’s can be interpreted as a vertex of a three-dimensional 
cube. A code then consists of a choice of vertices that will be admissible 
code words. Different codes pick out different shapes inside this cube. 
For example, the code based on the tetrahedron sitting inside the cube 
was able to detect but not correct errors. The new error-correcting 
codes with their check digits are identifying shapes hidden inside 
higher-dimensional cubes. For example, the error-correcting code 
described above, with eight 0’s and 1’s in a 3 × 3 grid, defines a shape 
inside an eight-dimensional cube. 

Using this geometric insight, Hamming discovered an even smarter 
way to reduce the number of check digits. For example, one of Ham-
ming’s new codes cut the check digits in the previous example from 
four to three, so that in a string of seven 0’s and 1’s, four digits contain 
the message and the other three can be used to correct any error that 
might occur during transmission. He also extended this principle to 
apply to longer messages. 

At their heart, these codes exploit the geometries that Galois dis-
covered in his investigation of symmetry. Galois had exploited these 
geometries to produce one of the new families of simple groups of 
symmetries. Hamming, in contrast, used Galois’s geometries to pick 
out configurations of special vertices in higher-dimensional cubes, and 
used them as the admissible code words in his new code. Hamming 
found that this gave rise to lots of code words, but even if a mistake 
occurred and a code word slipped off one of the special vertices, it was 
still possible to identify where it came from. 

Hamming was keen to get the new codes into print. However, 
because he was working for a commercial company and the codes 
clearly had very significant commercial implications, Bell Labs were 



291 May: Exploitation 

not so eager to go public. They wouldn’t let Hamming release the 
details until they had got the codes patented. But Hamming was rather 
sceptical about whether it was possible to patent pure maths: ‘I didn’t 
believe that you could patent a bunch of mathematical formulas. I said 
they couldn’t. They said, ‘‘Watch us.’’ They were right. Things that 
you shouldn’t be able to patent – it’s outrageous – you can patent.’ 

As soon as he could, Hamming then gathered together all the scraps 
of paper he’d scribbled his ideas on, and sent them off to the patent 
office. But in order to register the patent, the office needed diagrams 
of the switching circuitry to show how error correction would work 
in practice. Hamming was very much a pure mathematician at heart, 
and this was well outside his area of expertise. During his time at the 
lab he had made friends with an engineer called Bernard Holbrook. 
He used to go down to Holbrook’s office and sit and complain about 
how he didn’t fit into a commercial environment. Now, Holbrook 
immediately saw the power of Hamming’s codes and drew diagrams 
of the circuits that would be needed, signing each page ‘witnessed and 
understood’. Holbrook didn’t stop there. Ever the practical engineer, 
he wanted to see the codes actually working in a real model. 

‘Since I had the circuit,’ recalls Holbrook, ‘I turned it over to a 
technical assistant and said, ‘‘Let’s build something so we can demon-
strate this.’’’ The first reason was to make the patent application even 
more convincing. ‘The second was that I wanted to see how the damn 
thing would work.’ The patent application was successful and was 
registered on 15 May 1951. It was actually made freely available five 
years later as part of the settlement in an antitrust case against Bell. 

The patent, however, led to a delay in broadcasting the discovery 
that Hamming had made back in 1948. Because of commercial con-
siderations, he had been unable to tell people outside the company, 
but he had discussed the new codes with one of his colleagues, Claude 
Shannon. Shannon was one of the first scientists to suggest a systematic 
use of 0’s and 1’s to encode data, and can be called the father of the 
digital age. Before Shannon, in the so-called analogue age, engineers 
were wedded to the idea of electromagnetic waves as the way to com-
municate data. Shannon saw the potential of replacing waves by 
numbers. 

By all accounts, Shannon was a quirky character. While other 
mathematicians would break for lunch and play mathematical games 
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on the blackboards, he would stay hidden in his office. He only 
emerged at night, when he could be seen riding up and down the 
corridors of the lab on his unicycle. Shannon loved inventing things, 
including a motorized pogo stick, and a unicycle with an off-centre 
hub which made him bob up and down like a duck when he rode it. 
He even built a two-seater unicycle, but could get no volunteers to try 
the thing out. It was Shannon’s seminal paper on the power of 0’s and 
1’s that ushered in the modern information age. Deep in the heart of 
this paper, Shannon let slip a description of the simplest of Hamming’s 
codes, the one that used three check digits to correct errors in messages 
of length 4. 

The delay caused by the patent application and the leak in Shannon’s 
paper allowed another mathematician to slip in and publish his dis-
covery of these codes before Hamming could get there himself. Born 
in 1902, Marcel Golay was educated in Switzerland before moving to 
the United States in 1924. His mathematical interests had been stimu-
lated by a club in his hometown that he joined at the age of 15. ‘Most 
of the others were bigger boys and some of them were mathematicians. 
I remember one in particular of whom it was fun to ask questions. 
They took pleasure in tutoring a little bit.’ But he never had a formal 
training in pure mathematics. 

His other passion was fast cars. He owned several Mercedes, but 
was deeply frustrated by the sedate driving expected in most American 
towns. One colleague used to share a ride to work with Golay and 
described him pulling out of a long queue of cars, driving straight into 
the oncoming lane, roaring the 100 yards to the lights and downshifting 
dramatically before taking the turn to the office. After too many close 
shaves with oncoming cars, his colleague decided to walk to work 
instead. 

It was while Golay was working in the Signal Corps Engineering 
Laboratories at Fort Monmouth, New Jersey, that he read the account 
of the simplest of Hamming’s codes in Shannon’s paper. He quickly 
saw that this single code could be generalized to a whole family of 
codes: ‘I had been thinking about information theory for quite a while 
when I was involved with radar. But when I read the paper by Shannon, 
it was the key because I was ripe for these progresses.’ Golay published 
his discoveries in a paper in 1949 which described these new error 
correcting codes. 
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There ensued a bitter dispute about who had discovered these codes 
first. Although Hamming was the first to have identified them via the 
geometries discovered by Galois, Golay’s paper did include several 
codes that Hamming hadn’t found. One in particular was to prove the 
catalyst for the discovery of some of the strangest objects to be 
uncovered on the mathematicians’ trek through the jungle of sym-
metry. It was a set of code words that could be described by strings of 
24 0’s and 1’s. It was an extremely powerful code with many admissible 
code words. Usually such an increase in admissible code words severely 
limits the possibility of any error correction. But despite the high 
number of code words it was possible to correct up to three errors 
that might occur during transmission and even to detect (but not 
correct) another four errors on top of these. By interpreting the code 
words as vertices of a cube in 24-dimensional space, Golay had dis-
covered an extraordinary arrangement of vertices with extremely 
efficient error correcting abilities. The strange thing was that the code 
seemed to exist only when you moved into the 24th dimension. 

The code proved so efficient that it was used to transmit the beautiful 
pictures of Jupiter and Saturn taken from the two Voyager spacecrafts 
in 1979 and 1980. But this code did not only allow scientists to pene-
trate deep into our solar system. By analysing the symmetries of the 
code words, mathematicians discovered some of the strangest objects 
hidden deep in the outer reaches of the world of symmetry. The code 
words pick out special vertices on a 24-dimensional cube. The group 
of rotations of the 24-dimensional cube which sends code words to 
other code words would turn out to be as stunning as any of the 
pictures from outer space that this code helped transmit. 

16 May, Jerusalem 

It was a good idea to bring Anton along to the conference. He’s been 
asking lots of questions during the talks. I’ve seen him in the lobby of 
the hotel deep in conversation with another conference participant 
and scribbling in the yellow pads that I got addicted to when I first 
came to Israel. Listening to the talks, he has been able to place his own 
work in the context of all the things we mathematicians are so passion-
ate about, which has reassured him of the worth of dedicating himself 



294 Symmetry 

to the cause. At least for the moment. It has been a really wonderful 
meeting, a gathering together of my mathematical friends and family. 
Several of my other former PhD students are here too. Mark has come 
all the way from South Africa. Pirita, my Finnish student, is continuing 
her research here in Jerusalem after finishing with me last year. 

Also present are all the friends I made here on my first visit in the 
early nineties, as a 26-year-old post-doc. At that time I too was feeling 
rather disillusioned with mathematics. I was very worried that I 
couldn’t live up to all the expectations that I felt were being heaped 
on me after the publication of my PhD. Everyone, I thought, was 
looking to see what I was going to do next. After the anonymity of 
being a PhD student, with nobody knowing who you were, suddenly 
all eyes seemed to be focused on me. But I couldn’t prove anything 
that seemed to match my first epic achievement. Had I burned out 
already? Was I a one-idea wonder? 

It was in Israel that a mathematical colleague explained to me that 
creativity and discovery run in cycles. Sometimes everything is going 
well and ideas are flowing. The art of being a successful mathematician 
is also learning to cope when ideas are not yielding results, when 
everything leads to a dead end. Once you see that it is a cycle, and 
things go up again after going down, you can cope with the next down. 
It was great advice. My time in Israel eventually produced my next up. 
It was also during that year in Jerusalem that I met Shani. I came back 
from that visit with a theorem and a wife. Some people make jokes 
about which will last longer. 

Security at the airport as I leave Israel this time is, as ever, high. The 
two security guards want to know why I’ve been in Israel. They never 
seem to believe me when I say ‘for mathematics’. ‘But you don’t look 
like a mathematician?’ I think that means that I haven’t got a beard 
and glasses and look like I’ve stepped out of the nineteenth century. 
‘Prove something for us. What’s your theorem?’ 

Many people who go through El Al security hate the invasion of 
their privacy and resent all the questions. But I love it. To have two 
people who want to hear about one of my theorems is a rare thing, 
and I dive into an explanation of how I think you could use Galois’s 
groups PSL(2, p) built from permuting lines, mixed with zeta functions 
to try to prove that there are infinitely many Mersenne primes, one of 
the big open problems in number theory. I feel a bit like Sophus Lie 
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when he got picked up by French police on his abortive trek from 
Paris to Italy. Lie ended up in prison, but I fare rather better with my 
mathematics and am eventually allowed to board the plane. 

I’ve got quite used to people delving into our lives. When our 
attempts at IVF failed, we decided instead to expand our family by 
adoption. That was a more guaranteed route to our goal than the 
lottery of biology. But being at the mercy of lab assistants with Petri 
dishes was now replaced by social workers probing into every nook 
and cranny of our lives. Little did they realize what they were letting 
themselves in for when they entered our house. For me, it was another 
chance to explain what it is I spend my life doing to an attentive 
audience. 

We were finally approved as fit to adopt three years ago this May. 
At the last meeting with our social worker, she asked us whether we 
would be prepared to adopt siblings. If it meant avoiding going through 
the long haul all over again, it sounded like a good idea. The waiting 
game for a child then started. 
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June: Sporadic 

You boil it in sawdust, you salt it in glue 
You condense it with locusts and tape 
Still keeping one principal object in view – 
To preserve its symmetrical shape. 

lewis carroll, The Hunting of the Snark 

At the beginning of 1900, the classification of the simple groups, the 
building blocks of symmetry, was shaping up rather nicely. The list of 
known simple groups went like this: the group of rotations of a prime-
sided polygon for different primes p; the alternating groups of degree 
n, defined by even shuffles of a pack of n cards; and the simple groups 
of Lie type – groups with a more geometric flavour that Sophus Lie 
and others had developed. By the 1950s, these groups of Lie type had 
accounted for 13 different families, all fitting into a nice pattern of 
groups. 

The only slight fly in the ointment of the emerging periodic table 
of simple groups were five groups of symmetries that had been dis-

´ covered by the nineteenth-century French mathematician Emile 
Mathieu. Even set beside all the star names that had passed through 

´ the Ecole Polytechnique, Mathieu was regarded as an outstanding 
student. His tutors were amazed at the speed of his learning. Within 

´ eighteen months of arriving at the Ecole Polytechnique, he had already 
finished the mathematics course and embarked on his doctorate. 

It was in 1860, while he was investigating the symmetries in a rather 
special geometry for his thesis, that Mathieu discovered five new groups 
of symmetries that were indivisible. He had not been looking for new 
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groups of symmetries, but the mathematics he was studying put him 
in just the right place and the right time to unearth these gems. Given 
that the other simple groups discovered by Galois had proved to be 
the tip of an infinite family of such groups, Mathieu must have thought 
that this was the beginning of another infinite family. But the more he 
explored these five little islands, the more it looked as though nothing 
lay beyond them. No one at the time could make much sense of 
them. They appeared to be isolated examples in certain geometries 
that produced indivisible groups. They didn’t seem to fit into any 
pattern of groups, such as those that were emerging from Lie’s develop-
ment of Galois’s geometries. 

It is curious that Mathieu’s unbelievable talents as a young math-
ematician did not blossom into a spectacular mathematical career. He 
didn’t realize quite how special the groups he had discovered would 
turn out to be. He drifted into mathematical physics, never to return 
to the five strange islands he had discovered. Maybe the fact that this 
little archipelago was not the tip of a whole new continent of groups 
was disconcerting for someone who loved looking for patterns. 
Mathieu was regarded by colleagues as rather a shy, retiring figure, 
and some think that this contributed to his lack of academic success. 
It might also be that he came upon these groups almost a century 
before mathematicians were able to give them a context that would 
unmask their special character. 

As the twentieth century unfolded, the feeling grew that mathema-
ticians might have unearthed the whole range of building blocks of 
symmetry. Leonard Dickson, an American mathematician who had 
written one of the seminal texts on the 13 families of Lie groups, 
declared in the 1920s that Galois’s group theory was dead. There was 
a belief that we’d seen everything that was going to be interesting, and 
the outstanding problems were simply beyond our reach. Apart from 
Mathieu’s five isolated islands, the 13 geometric families, the even 
shuffles and the prime-sided figures might well be all there was. 

This view was further fuelled by William Burnside’s belief that if a 
group has an odd number of symmetries, it can be divided into simple 
prime-sided building blocks and so cannot produce any new simple 
groups. If true, this would represent a huge step in determining 
whether there were any building blocks missing from the list. All the 
simple groups in the list, discovered by Galois, Mathieu, Lie and others, 
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had an even number of symmetries. If Burnside was right, it meant 
that any other simple groups would also have to have an even number. 
But proving Burnside’s idea seemed a distant dream. Mathematical 
problems that are simple to state can sometimes be impossibly difficult 
to solve. 

Burnside’s Odd Order Conjecture, as it became known, shifted the 
focus towards looking for new groups with an even number of sym-
metries. Burnside believed that Mathieu’s groups held the key to 
whether there were any other indivisible groups out there waiting to 
be found. After all, there were five anomalous groups, so why not 
more? Burnside coined the term ‘sporadic groups’ to describe the 
rather strange nature of these groups. Despite his suggestions, things 
went very quiet for a few decades. But in 1954, at the International 
Congress of Mathematicians in Amsterdam, a clarion call went out to 
sort out once and for all whether any other simple groups of sym-
metries were out there. 

Lighting the fuse 

Richard Brauer had been a professor of mathematics at the University 
of Königsberg, but because of his Jewish roots his position was termin-
ated under anti-Semitic legislation introduced by Hitler in 1933. Vari-
ous countries tried to find positions for Jewish academics who were 
displaced by the new policy, and in 1934 Brauer found himself working 
in America at the University of Kentucky. It wasn’t until he was in his 
fifties that he made the breakthroughs on symmetry groups that many 
regard as having launched the final assault on understanding the build-
ing blocks of symmetry. 

At the International Congress of Mathematicians in 1954, Brauer 
declared that: 

The theory of groups of finite order has been rather in a state of 
stagnation in recent years. This has certainly not been due to a lack of 
unsolved problems. As in the theory of numbers, it is easier to ask 
questions in the theory of groups than to answer them. If I present here 
some investigations on groups of finite order, it is with the hope of 
raising new interest in the field. 
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He went on to sketch his ideas for how one could limit the possibilities 
that were available for building a simple group with an even number 
of symmetries. Combined with Burnside’s conjecture that there were 
no new simple groups of odd order, the outlines of an attack on 
completing the classification now began to take shape. But many were 
still sceptical, for the problems looked too difficult for anyone to get 
to grips with. No one believed that you would be able to confirm 
Burnside’s hunch that the only indivisible groups with an odd number 
of symmetries were the simple prime-sided shapes. 

Brauer, however, had a secret weapon up his sleeve. He had been 
nurturing the talents of a young graduate student who would turn out 
to have the determination and the techniques to attack Burnside’s Odd 
Order Conjecture. Born in Austria, Walter Feit had been forced to flee 
Europe a few years after Brauer. In 1939 his parents managed to get 
him on the last Kindertransport, a train carrying Jewish children out 
of Austria, just before the Nazis’ final round-up of Jews. His parents 
perished in the Holocaust. 

Feit had an aunt who had escaped a few years earlier and found 
work as a maid in London. Auntie Frieda agreed to look after him, 
but the severe bombing during the height of the war forced the evacu-
ation of children out of the city. After moving around from one family 
to another, Feit eventually found himself in a refugee home for boys 
in Oxford. It was during his time in the university city that the teenage 
boy became passionately interested in mathematics. When the war 
ended, his aunt packed him off on a boat across the Atlantic to another 
branch of the family, based in New York. 

In a letter to his aunt, Feit recalled the excitement of the boat 
trip – not least because there was no rationing on board. ‘I had 
chicken several times,’ he reported with glee. There was plenty of 
food for the hungry teenager, partly because most of the other passen-
gers on the stormy crossing spent their time throwing up instead of 
eating. When the boat docked in New York on a very foggy winter 
morning, Feit could hardly see the Statue of Liberty. He was re-
lieved, however, to see his Aunt Regina waiting at the bottom of the 
gangway. 

His new family in America soon took their refugee cousin under 
their wing and kitted him out for his new life in the States: 
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I now possess five new pairs of trousers, two new jackets plus new shoes 
and lots of new underwear. I have also a watch in my possession . . . I 
have been making inquiries about the educational system here and have 
been told that my maths is already past college entrance standard. 

Feit entered the University of Chicago to study mathematics in 1947. 
It was here that he discovered Burnside’s great book on group theory 
and fell in love with the ideas it contained. He described it as a 
‘cornucopia’ of interesting results. But it was the elegance of both the 
statement and proof of Burnside’s Two Primes Theorem that Feit 
found most attractive: just from knowing that the number of sym-
metries is divisible by only two primes, Burnside could deduce that 
the group of symmetries could be broken down into simple prime-
sided shapes. Burnside became Feit’s hero. On the wall of his office he 
hung a portrait of the great English mathematician, who thus watched 
over his progress. Following Brauer’s clarion call, Feit set his sights on 
cracking Burnside’s Odd Order Conjecture, which would massively 
extend the Two Primes Theorem. 

Meeting with a like-minded mathematician called John Thompson 
was for Feit the beginning of a long, treacherous journey to prove 
Burnside’s Odd Order Conjecture. Thompson had fallen in love with 
group theory after a trip he made to Paris during his studies. The 
romantic story of Galois and the ideas he had discovered worked their 
magic on the young student as he walked the streets of the city, 
retracing the young Frenchman’s footsteps. On his return to the 
United States, he decided to dedicate himself to the cause of group 
theory. 

In 1959, while he was working on his doctorate at the University of 
Chicago, Thompson spectacularly solved a 60-year-old problem in 
group theory. It was immediately clear what an extraordinary talent 
had entered the arena. The following year, the university decided to 
host a year-long workshop on group theory, to which Feit was invited. 
Bringing Thompson and Feit together was like adding potassium to 
water: the explosion of ideas that erupted from the two stimulated a 
whole new perspective on the theory of symmetry. 

The two young students soon discovered that Burnside was a 
common hero. Together, they gradually began to work their way 
towards proving Burnside’s Odd Order Conjecture. They estimated 
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that it might take about 25 journal pages to set out the ideas they were 
hatching for a proof. But as they got sucked further and further into the 
problem, they saw that their initial estimate had been rather optimistic. 
Thompson describes how, even now, the problem looks as tough as 
granite. And yet they somehow had the confidence to keep going even 
though the proof they were constructing was growing ever longer and 
more complex. ‘It was a tough problem and probably imprudent to 
even try it, but how else should one behave in one’s youth?’ Thompson 
describes how their thought processes became inextricably intertwined 
during that year. 

The other group theorists who were part of the 1959 workshop in 
Chicago would enjoy congregating at tea to see how much progress 
had been made. Many believed that it was just too difficult. Even 
Brauer, who initiated the attack, was not really convinced that just 
knowing there were an odd number of symmetries could possibly be 
enough to pull the group of symmetries apart: ‘Nobody had any idea 
how to get started. It was not even clear that the whole problem made 
sense.’ What did being divisible by 2 or not have to do with the internal 
structure of the symmetries? 

Gradually, Feit and Thompson ground the problem down, solving 
various stages on the way to their main goal. The smaller successes 
gradually built up their mathematical muscles, making them feel strong 
enough to mount the final assault. Finally, they believed that they had 
all the details in place. They were ready to announce their epic proof 
of Burnside’s Odd Order Conjecture: 

It was technical – there was no way to avoid it. But it was a wonderful 
thing. We’d finally busted it. But then, just before we were about to 
submit the paper, Walter noticed a mistake. If Walter had not found 
the gap, I almost certainly would not have found it; we would have 
submitted a flawed manuscript and eventually someone would have 
blown the whistle. If that had happened, it is doubtful that we could 
have generated a new head of steam to bust the difficulty, which in fact 
took us several additional months of thought and nail biting. 

Eventually, they fixed the problem. When they finished writing up 
the complete proof, they had a paper which ran to over 250 pages. 
Mathematics had never before seen a proof of such complexity and 
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length. The first few journals they sent it to didn’t know what to do 
with it. Papers were usually 30 pages long. It was rejected several times 
before the Pacific Journal of Mathematics had the courage to dedicate 
a whole issue to publishing the proof. 

The publication, in 1963, changed the face of the subject. Some have 
described the occasion as comparable to the moment in evolution 
when fish emerged from the water onto dry land. It inspired a whole 
generation of young mathematicians who were eager to follow Thomp-
son and Feit out of the swamp and into the exciting new world their 
proof had opened up. The gauntlet was thrown down to see whether 
we could finally understand the full range of the indivisible groups of 
symmetries that Galois’s work had begun. But students would find 
that it took them a whole year of their research just to work their way 
through the 255-page proof in the Pacific Journal. Thompson is still 
sceptical whether, even four decades later, many have really appreciated 
the precision and subtlety that went into weaving together a proof of 
such intricacy. 

Many of the young researchers who set out to battle their way 
through the paper believed that it contained ideas that could be used 
to complete the periodic table of symmetry. Many believed that it was 
now just a matter of showing that the prime-sided shapes, the alternat-
ing shuffle groups, the 13 families of Lie and the five strange sporadics 
of Mathieu were all you needed to build it. But around the same time 
as Feit and Thompson cracked Burnside’s Odd Order Conjecture there 
came a warning shot across the bows: maybe there was more to the 
periodic table than had been thought. 

A Japanese mathematician, Michio Suzuki, discovered a completely 
new infinite family of indivisible groups. Then a Korean mathema-
tician, Rimhak Ree, followed up with two other infinite families. The 
revelation of these new families was initially deeply shocking for math-
ematicians who thought they knew the lay of the land. But it soon 
became clear that these three new families were special versions of Lie 
groups and could therefore be safely taken under the familiar umbrella. 
All that had happened was that the Lie groups had expanded from 13 
families to 16. Nevertheless, psychologically, it rocked mathematicians’ 
faith in their roadmap of how things were going to pan out. 

A few years later, it transpired that they had had every reason to 
doubt themselves. Thompson received an unsettling letter from 



303 June: Sporadic 

a Croatian mathematician working in Australia. The revelation 
contained in this letter could not so easily be assimilated into the 
status quo. 

Janko’s first bookend 

Zvonimir Janko had used his mathematics to escape the increasingly 
repressive regime of his native Yugoslavia, and had landed up in Can-
berra after a detour via Germany. Like many others of his generation, 
he had been enlisted to the cause of group theory by the epic opus of 
Feit and Thompson. Thanks to their proof of the Odd Order Theorem, 
any new indivisible simple groups out there had to consist of an even 
number of symmetries. Janko began to explore the implications of 
what this would mean for the structure of the group of symmetries. 
The expectation was that you would always be able to show that the 
group had to be either a group of shuffles or the symmetries of one of 
Lie’s geometries. But Janko had come up with a strange case that didn’t 
fit into Lie’s framework, and he couldn’t see how to explain this 
example away. 

Thompson had developed a formula which suggested possible sizes 
for indivisible groups with an even number of symmetries. Using it, 
Janko had discovered that there might be an indivisible group with 
175,560 different symmetries. What worried him was that none of the 
existing indivisible groups that had been discovered had this particular 
number of symmetries. At this point, Janko’s usual strategy was to 
find an argument to show why this number of symmetries was imposs-
ible. But all the tricks that had knocked out other possibilities weren’t 
working. Increasingly, he began to suspect there really was a simple 
group with this number of symmetries. And if it existed, it was going 
to be a completely new object. 

Janko knew that Thompson would appreciate what he thought he’d 
discovered. Thompson’s first impression on receiving the letter from 
this unknown mathematician was that there must be a simple way to 
show the simple group didn’t exist. After firing off a letter to Australia 
in which he said why he thought it couldn’t exist, Thompson realized 
he’d made a mistake. When he came into the department in Chicago 
the next morning he was wearing a rather serious look. He couldn’t 
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make this group go away – but did it really exist? If it did, Janko knew 
how many symmetries it would have, but it was another matter entirely 
to construct a geometric object with an indivisible group of 175,560 
different symmetries. 

Janko and Thompson started corresponding. Thompson still 
thought that the group didn’t exist, but, he remembers, ‘Janko just 
stuck to his guns.’ Janko came over to the States and started giving talks 
about the possible existence of this new group. Many were sceptical. In 
talks they would question whether he had used all the usual techniques 
which generally proved why such a group couldn’t exist. Janko was 
utterly confident that there was something new out there. He would 
describe how beautiful his hypothetical group of symmetries would 
be, if only he could construct a geometric setting in which to realize 
it. If his mathematical powers of persuasion failed, he would silence 
his doubters with the simple statement ‘My group is safe . . . because 
Walter Feit has stopped trying to find contradictions.’ 

Janko finally made the breakthrough that silenced his doubters for 
ever and ushered in a new era in the theory of symmetry. The mathe-
matics had acted like a radar, telling him where this new island should 
be. In 1965 he finally discovered the geometric setting he was looking 
for: one whose group of symmetries was precisely what he had pre-
dicted. Galois had discovered the first simple Lie group by constructing 
a geometry of two-dimensional lines based on the finite number system 
0,  1, . . . ,  6.  Using a shape in seven-dimensional space built from a 
number system with 11 elements, 0, 1, 2, . . . ,  10,  Janko finally had a 
new simple group with 175,560 symmetries that couldn’t be divided 
into smaller symmetries. ‘I am now the world’s expert on seven-
dimensional space over the field with 11 elements,’ he told Thompson. 
Janko was deservedly proud of his discovery and had no qualms about 
calling the group J. 

He published his discovery in 1966. In contrast to the 255 pages 
Thompson and Feit had needed for their proof, Janko’s paper took up 
a single page, but the implications were potentially as far-reaching. A 
hundred years earlier, Mathieu had constructed his five anomalous 
groups, groups that Burnside had christened sporadic. Mathematicians 
had quietly stuck their heads in the sand, hoping that these groups 
wouldn’t spoil the beautiful classification of the building blocks that 
Galois and Lie had laid out for them. But suddenly, here was a sixth 
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strange building block which popped out of nowhere. The implications 
were clear: if there could be a sixth, why not a seventh, an eighth . . . 
where would it end? 

Indeed, Janko had got a taste for discovering these new symmetries, 
and used his strategy to predict two more indivisible groups. The first 
group, J, became J1. Now he had J2, with 604,800 symmetries, and J3, 
with 50,232,960 symmetries. Again, the numbers were there before the 
construction of the actual groups. But this time it wasn’t Janko who 
constructed them. The second was constructed explicitly by Marshall 
Hall, Jr, who found a group of special shuffles of 100 cards that was 
indivisible and had exactly 604,800 shuffles in it. The third Janko group 
was constructed by Graham Higman and John McKay in Oxford. 

There began a rather tense stand-off that got the whole group theory 
community talking. Who should get the credit for the group – the 
person who predicted the existence of a group with this many sym-
metries, or the person who went out and found it? With his first 
discovery, Janko had done both these things and so there was no 
quibble about the group being called J. But with these two new groups 
Janko was predicting, things were a little messier. Hall would get rather 
upset if the group he’d constructed was called simply the second Janko 
group. What about credit for the work he’d done in actually making 
this group a reality? 

Janko soon found that he wasn’t the only one in the game of 
predicting these new sporadic groups. More and more young guns saw 
the potential for making their name and getting a group named after 
them. Discoveries came fast and furious. Donald Higman and Charles 
Sims constructed their group over dinner – inspiration struck between 
the main course and dessert. They were visiting Oxford as part of a 
conference on group theory, and the conference dinner was being held 
in one of the colleges. The staff were clearing the decks for the next 
part of the meal while guests took a stroll around the quad. By the 
time they completed the fourth edge of the square, Higman and Sims 
knew that they had the tricks to construct another new indivisible 
simple group with 44,352,000 symmetries. It was a different group of 
shuffles of 100 cards which, like Janko’s second group, turned out to 
be indivisible. 

Jack McLaughlin found another indivisible group with 898,128,000 
symmetries. Dieter Held, a colleague of Janko’s in Australia, identified 
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a possible simple group with over four billion symmetries which was 
then constructed on the other side of the planet by Graham Higman 
and John McKay in Oxford. By 1968, Michio Suzuki, who’d shocked 
the world with his new infinite family of Lie groups, had constructed 
an 11th sporadic group with nearly 500 billion symmetries. 

An important tool in the actual realization of these groups was the 
computer. Many of the calculations that had to be performed to con-
firm the existence of these groups were becoming too protracted to be 
solved by other means. Like a telescope, the computer was allowing 
mathematicians to stare farther and farther into the deep space of 
symmetry, and every now and again another isolated planet was picked 
up in its gaze. But it still required the mathematician’s strong intuition 
about the coordinates at which to point the telescope. 

With so many new sporadic groups appearing, the whole thing was 
starting to look like a nightmare ragbag of exceptions. The question 
of where and whether it would ever end started to creep into many 
people’s minds. A song written at the time captured the growing sense 
of panic that was beginning to grip group theorists: 

The floodgates were opened! New groups were the rage! 
(And twelve or more sprouted, to greet the new age.) 
By Janko and Conway and Fischer and Held 
McLaughlin, Suzuki, and Higman, and Sims. 

No doubt you noted the last lines don’t rhyme. 
Well, that is, quite simply, a sign of the time. 
There’s chaos, not order, among simple groups; 
And maybe we’d better go back to the loops. 

It was then that a new group entered the game which gave a sense 
of unity to many of the groups that had sprouted up since Janko’s first 
group in 1965. The discovery of this group brought one of the most 
colourful players into the story of symmetry. 
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‘When I grow up . . . I want to be a mathematician’ 

It has often been asked whether great mathematicians are born or 
whether they are nurtured. On the whole, nurture counts for more 
than nature, but every now and again someone comes along whose 
innate mathematical ability seems to have been there from birth. It’s 
as though John Conway’s brain is hard-wired for mathematics. 

Conway was born on Boxing Day 1937, and it wasn’t long before 
his mathematical skills started to become evident. His mother dis-
covered him at the age of four reciting increasingly higher powers of 
2 to himself. He excelled at everything at primary school. When he 
was asked at the age of 11 what he wanted to be when he grew up, he 
already had his destiny clearly fixed in his mind: ‘I want to be a 
mathematician in Cambridge.’ 

Conway attended the local grammar school in Liverpool, where his 
father, Cyril, was a chemistry laboratory assistant. During the war, 
when other teachers were called up, Cyril Conway got the chance to 
teach chemistry full time. (Later, he would teach two members of the 
Beatles their chemistry.) He was keen to communicate his enthusiasm 
for science to his son. On one occasion, in order to impress his son 
with the magic of radio waves Cyril rigged up a radio so that it had 
strands of silk coming out of the back. Then, as the radio played away, 
he ceremoniously cut the silk to show the boy that it didn’t need them. 
John was amazed that he could still hear the music. He was also 
fascinated by a telephone network that his father set up between the 
air-raid shelters during the war, and constructed his own telephone 
network that he used to communicate with his friends. 

Conway decided he would master the secrets of numbers in the six 
months before he was due to head off to start his degree at Cambridge. 
He set himself the task of being able to factorize into their prime 
building blocks any number below 1,000. Arriving in Cambridge was 
something of a shock for him. ‘I found it very hard because most of 
the students were from rather posh homes and I was a poor boy.’ 
Eventually he found a set of friends who, regardless of their social 
background, appreciated the speed with which he could factorize 999 
into 3 × 3 × 3 × 37.  

During one summer vacation, when he was working to earn money 
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in a biscuit factory, Conway added another feat of memory to his 
repertoire. His job consisted of cleaning the soot off the ceiling of the 
huge oven in which the biscuits were baked. He would scrub for hours, 
but the ceiling remained black. Despite the futile nature of the job, 
Conway needed the money, so to relieve the boredom he decided to 
learn the decimal expansion of p. In the late 1950s, p was known to 
808 decimal places. By the end of his holiday, Conway could recite 
all 808 places. As more decimal places have been calculated, Conway 
has extended his range. Of course, he was fully aware that learning the 
decimal expansion of p was mathematically as futile as trying to clean 
the soot off the biscuit factory oven. He soon turned to more funda-
mental questions about numbers. 

By the early 1960s Conway was on his way to completing his doctor-
ate and realizing his dream of becoming a mathematician at Cam-
bridge. He was supervised by a number theorist, Harold Davenport, 
who had set him an extremely tough problem: to prove that every 
integer can be written as 37 numbers, all of which are fifth powers. 
This conjecture had been made nearly two hundred years earlier by 
another Cambridge mathematician, Edward Waring. Conway and 
Davenport held a regular meeting every Wednesday at 11 a.m., but 
Conway was rather disorganized and always arrived late. Davenport, 
the model of a Cambridge gentleman, would always say, ‘No problem, 
I only arrived myself just a few minutes ago.’ When Conway missed 
an appointment completely, he sent his supervisor an apologetic note 
only to receive a reply by return: ‘No problem. It was such a nice day 
I took my wife and children to the seaside and forgot myself.’ 

One Wednesday, Conway turned up declaring that he’d cracked 
Waring’s problem. Davenport was incredulous, but after checking the 
solution he couldn’t find any mistakes. ‘Mr Conway, what we have 
here is a poor PhD thesis.’ Conway was crestfallen. But then he realized 
Davenport was actually giving him the green light to pursue the prob-
lems that really interested him, and he started to move towards logic 
and set theory. 

While the early 1960s was a time when Cambridge students still 
looked quite smart and civilized, Conway looked like he’d arrived five 
years too early for the hippie movement that would engulf Cambridge 
in 1968. He’d been sporting long hair and sandals since the age of 14, 
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and had added a full ginger beard to the ensemble. He was more 
interested in doing mathematics than his own appearance. 

Some years later, on the way to a conference in America at the 
height of the hippie movement, Conway was stopped at customs by 
officials who were convinced that the length of his hair made him a 
prime suspect for smuggling drugs. They pulled him aside and rifled 
through his bags until they triumphantly found what they were looking 
for: a tin with the lid taped down and a label declaring the contents 
to be something called ‘Marvel’. They were convinced this was where 
the long-haired hippie had hidden his drugs. He was asked to open 
the tin. Conway obliged and tipped the contents onto the desk – five 
beautifully made Platonic solids tumbled out. He had crafted them 
from cardboard and sealed his symmetrical creations into the tin to 
protect them during transit. Eventually Conway was allowed to enter 
the country after he’d convinced the officials that the dodecahedron 
and icosahedron were not secret containers for a stash of drugs. 

As a graduate student, even his love life revolved around mathe-
matics. Conway met his first wife, another mathematician, while he 
was researching his doctorate. Mathematics was never too far from 
their courtship. Rather than whispering sweet nothings to each other, 
they would go for walks along the river in Cambridge and recite the 
expansion of p, taking it in turns to do 20 decimal places each. 

After three years of research, Conway completed his thesis and the 
time came for his viva. Usually this oral examination is a very formal 
affair conducted in a lecture room lined with blackboards. But 
Conway’s thesis was of such exceptional quality that the examiners 
did not feel the need to cross-examine their witness in such harsh 
surroundings. Instead, Conway’s viva took place in the Fellows’ Private 
Garden. Since none of the examiners had a key to the locked gate, 
Conway obliged by picking the lock with a paper clip. 

Having successfully got his degree and doctorate at Gonville and 
Caius College, Conway was elected to a fellowship at Sydney Sussex 
College. Despite realizing his childhood dream, Conway was becoming 
rather dejected. He felt restless, concerned that he hadn’t really done 
anything of great importance. ‘I became very depressed. I felt that I 
wasn’t doing real mathematics; I hadn’t published, and I was feeling 
very guilty because of that.’ 
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He spent a lot of time in the department playing backgammon. But 
that didn’t really help his mood. ‘I used to feel guilty in Cambridge 
that I spent all day playing games, while I was supposed to be doing 
mathematics.’ Suddenly the economy took a downturn, and other 
more worthy mathematicians were finding it difficult to get jobs. That 
only made Conway feel even more guilty. He had a cushy job at a 
Cambridge college while unemployed mathematicians were producing 
work that he regarded as far superior to his own. But he knew that he 
deserved his position, and that he was capable of producing world-class 
mathematics. He would need to justify himself and prove something 
really important. 

Conway got his lucky break in Moscow in 1966. It was the summer 
of the International Congress of Mathematicians, the four-yearly math-
ematical jamboree at which the subject’s big prizes, the Fields Medals, 
are handed out. That year one prize would go to an enigmatic math-
ematician called Alexandre Grothendieck, who refused to come and 
collect his prize as protest at the increasing military escalation in 
Russia. Conway, however, was simply enjoying his first taste of a big 
congress. It was while he was spending the day at the Moscow centre 
for symmetry, appropriately enough, that he met John McKay. Conway 
was manning a stall handing out bread rolls stuffed with meat when 
McKay strolled up to him. In return for the roll, McKay handed 
Conway the gift that would change his life. 

‘There’s a rather interesting symmetrical object I think you might 
be interested in,’ said McKay, and, with a mouth full of bread roll, he 
launched into a description of something called the Leech lattice that 
he thought might have an interesting symmetry group. Just two years 
before the Moscow congress, an English mathematician called John 
Leech had discovered a rather spectacular geometric arrangement of 
24-dimensional spheres. 

24-dimensional grocers 

If a grocer stacks tins of soup on a shelf, they are usually lined up in 
rows and columns so that, from above, the tins are arranged in what 
is called a square lattice. But if the grocer wants to get as many tins 
on the shelf as possible, then this is not the most efficient way to do 
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it. If you take a collection of marbles and let them settle in the bottom 
of a wok, then they will arrange themselves into a perfect hexagonal 
pattern, the most efficient packing arrangement. 

The mathematics that explains why the hexagonal lattice is the 
most efficient way to arrange circles was discovered by Joseph-Louis 
Lagrange, who had inspired Ruffini, Abel and Galois. His mathematics 
proved that if you want the pattern to be regular (repeating itself left 
and right, up and down), then you can’t beat a hexagon. The circles 
will cover a total of just over 90 per cent of the shelf if you use this 
lattice. The exact fraction of space occupied is p divided by the square 
root of 12. In contrast, the square lattice covers only about 78 per cent 
(1/4p) of the surface. 

Lagrange actually had no idea that this is what he had proved. The 
result followed as a consequence of work contained in a treatise he’d 
written about arithmetic and equations, and it was Gauss, with his 
geometric intuition, who understood that Lagrange’s mathematics had 
this physical interpretation. In a review of Lagrange’s opus, Gauss 
explained why Lagrange’s calculation implied that the hexagonal lattice 
was the most efficient way to cover a two-dimensional surface with 
circles if the pattern was regular. 

But was there a way to better the hexagonal lattice if the pattern was 
allowed to be irregular? For another hundred years mathematicians 
tried to see if there might be a way to arrange circles more compactly 
if they were allowed to be put together in a chaotic fashion. After a 
number of false starts, it was the Hungarian mathematician László 
Fejes-Tó th who proved in 1940 that symmetry is best: no irregular 
arrangement of circles can beat 90 per cent. 

Once the grocer has stacked the cans of soup and moves on to 
stacking oranges, the problem cranks up a dimension. Instead of two-
dimensional circles, the question now is about finding the most 
efficient way to pack three-dimensional spheres. Here the grocer gener-
ally goes for what is now known to be the most efficient way to arrange 
the oranges. You start with a layer of oranges laid out in a hexagonal 
configuration. Then on top of these you place another hexagonal layer, 
so that each orange in the second layer nestles between three of the 
oranges in the first layer. Keep on repeating this as the tower of oranges 
grows. Each orange touches another 12 oranges: six in its own layer, 
and three in each of the adjacent layers. 
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The amount of space occupied by the oranges comes out at about 
74 per cent (p divided by the square root of 18). In 1661, Kepler 
conjectured that this was the best the grocer could do. Gauss proved 
in 1831 that no regular arrangement of oranges could beat this fraction 
(something called a lattice packing). Incredibly, it took till 1998 before 
a mathematician and a computer could prove that no irregular 
arrangement could somehow beat the 74 per cent conjectured by 
Kepler. 

Thomas Hales of the University of Pittsburgh showed how one 
could reduce the problem to a finite but large number of calculations 
that would confirm that the grocer’s symmetrical stack of oranges was 
the most efficient. The calculations that Hales needed to do were 
implemented and checked on a computer. The fact that a computer 
was used to prove Kepler’s Conjecture unsettled some people in the 
mathematical community. But most recognize that the brilliance of 
Hales’s proof is in showing that there are a finite number of configur-
ations that need to be checked in order to confirm Kepler’s hunch – 
after all, intuitively one might think that allowing for any irregular 
arrangement leads to an infinite number of options. But Hales’s proof 
shows why symmetry wins again. 

For our grocer on the corner, this is where the problem ends. 
Mathematics has helped him to stack tins by calculating with two-
dimensional circles and to stack oranges by calculating with three-
dimensional spheres. But a mathematical grocer can’t resist asking, 
‘What about four-dimensional oranges?’ 

To investigate a four-dimensional orange we can no longer rely on 
a geometric picture: instead, we must describe it using numbers. Draw 
a circle of radius one unit on a piece of paper (Figure 78). Each point 
on the circle can be identified by two numbers, the coordinates of that 
point on the map. We can write down an equation which describes all 
the points (x, y) on the circle: the coordinates of the points must satisfy 

2the equation x2 + y = 1. This equation is therefore another language 
for describing the geometry of the circle. 

Points on the surface of a three-dimensional sphere need three 
coordinates to identify them. Again, we can translate geometry into an 
equation. A point (x, y, z) will lie on a sphere of radius 1 if its 

2coordinates satisfy the equation x2 + y + z2 = 1. Although the pictures 
run out when we move up to a four-dimensional hypersphere, the 
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x2+y2=1 

1 

–1 

1–1 

Fig. 78 The circle consists of all those points with coordinates (x, y) satisfying 
the equation x2 + y2 = 1.  

language of equations is quite capable of keeping up. So although a 
four-dimensional hypersphere can’t be drawn or built or grown in 
our three-dimensional world, it can be described. Each point on the 
four-dimensional hypersphere is described by a set of four numbers 

2 2(x, y, z, w) which satisfy the equation x2 + y + z2 + w = 1. So the equa-
tions and numbers help us to ‘see’ a four-dimensional ball, even though 
we will never be able to physically construct it. 

Although we can’t see these balls, thanks to the language of equations 
and numbers we can still arrange them in symmetrical ways and 
measure how much space they take up. The mathematical grocer has 
discovered that the most efficient way to stack four-dimensional 
oranges is to generalize the hexagonal packing in three dimensions. 
One description of the hexagonal packing in three dimensions is that 
the oranges are positioned such that their centres all have coordinates 
(x, y, z) with x + y + z an even number. So the four-dimensional grocer 
just generalizes the pattern and arranges the four-dimensional oranges 
such that the centres of the oranges are located at points (x, y, z, w) 
where x + y + z + w is an even number. It turns out that in four dimen-
sions you can’t beat this configuration either. 

The exciting revelation that the British mathematician John Leech 
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made in the 1960s is that there is a very special geometry that pro-
vides the 24-dimensional grocer with a far more efficient way to pack 
24-dimensional oranges than using simple hexagons. This geometry is 
very special to 24 dimensions. In 23 dimensions or 25 dimen-
sions, oranges just don’t seem to fit together so nicely. The existence 
of this amazing packing available only to the 24-dimensional grocer is 
related to the discovery by Golay of his very efficient error correcting 
code. 

2

Golay had proved that there is a very efficient way to encode data 
using strings of 24 0’s and 1’s. By carefully choosing which of the 

24 strings are code words, Golay cooked up a code that could detect 
seven errors in transmission and correct three of them. But these 
strings of 24 0’s and 1’s could also be given a geometric interpretation. 
Each code word identifies a point in 24-dimensional space. In fact, 
each code word identifies a vertex of the 24-dimensional hypercube. 
Leech discovered that these code words are the secret to how you 
should arrange the 24-dimensional oranges in the most efficient 
manner. 

We can see the principle at work in three dimensions. Consider the 
code with four admissible code words: (0, 0, 0), (1, 1, 0), (1, 0, 1) and 
(0, 1, 1). These are the strings of three 0’s and 1’s with the property 
that there are always an even number of 1’s in the word. If we get a 
message containing a triplet with an odd number of 1’s, we know that 
an error has crept in. So this code can detect but can’t correct an error. 
But as we saw earlier, these code words identify points on a cube. If 
we put oranges with centres at these points and repeat the pattern, we 
actually get the hexagonal packing that the grocer uses to stack oranges. 
So code words tell you the best place to put your oranges. 

This is why the discovery of the Golay code was key to building 
Leech’s efficient packing of 24-dimensional oranges. The secret of the 
efficiency of the hexagonal packing in three dimensions is its symmetry. 
Leech realized that the symmetry of his extraordinary arrangement in 
24 dimensions should also warrant more attention. Because he was 
not sufficiently well versed in the language of group theory to be able 
to explore the symmetries, he set out to find someone who might be 
able to analyse them. He dangled the 24-dimensional oranges in front 
of various group theorists in Oxford, but no one took the bait. John 
McKay, like Leech, could sense that the symmetries of the packing had 
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the potential to reveal something interesting. So he joined in the 
pestering of the group theorists to try to get them to look at this 
problem. 

It was a daunting prospect. Understanding the group of symmetries 
meant understanding the different ways in which you could move the 
arrangement of 24-dimensional oranges around so that they would 
magically all realign. For the hexagonal packing in three dimensions 
one could easily pick out symmetries – for example, rotating by a sixth 
of a turn around one of the oranges. This would rotate the stack such 
that the oranges all magically realigned. But spinning 24-dimensional 
oranges was going to require an extraordinary feat of mental gymnas-
tics. When McKay saw Conway in Moscow, he wondered whether he 
might be the mathematical magician who could juggle this symmetrical 
stack of balls and see what was going on. 

The treasure chest symmetry group 

Conway was certainly intrigued. When he got back to Cambridge, he 
started exploring Leech’s packing and began to see what all the fuss 
was about: the geometry was full of symmetry. It was like looking at 
some extraordinary Moorish design in a 24-dimensional Alhambra 
and wondering whether this was a genuinely new symmetry or an old 
symmetry in a new guise. Even so, the task of understanding the 
symmetries looked monumental. 

Cambridge had just succeeded in tempting one of the great group 
theorists of the day to take up the offer of a professorship. This was 
John Thompson, who had worked with Walter Feit on that epic paper 
which, as far as group theory was concerned, changed everything. 
Conway naturally thought that Thompson would be the ideal person 
to sort out what the symmetries of the Leech lattice looked like. He 
kept badgering Thompson to have a look at it, but it became obvious 
that the new professor wasn’t going to take up the challenge. The 
trouble was that having secured his reputation as the world’s greatest 
group theorist, he was now being approached by anyone who had a 
crazy idea for a new group of symmetries, expecting him to sort out 
their problems. Conway admits that ‘most of the ideas were just junk. 
It wasn’t worth his while to devote a lot of time sorting these ideas 
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out and find they probably wouldn’t work anyway.’ But Conway was 
confident that the Leech lattice was more than just junk. 

He kept nagging away at Thompson: ‘Every now and again I’d ask 
him whether he’d thought about it, and he’d never have thought about 
it. But he gave you the impression it was just because he hadn’t got 
round to it.’ Eventually, after bearding Thompson yet again in the 
common room, Conway asked him outright, ‘You’re not going to 
think about it are you?’ ‘No’ was Thompson’s reply. Seeing Conway’s 
disappointment, he added, ‘Look, you find the size of this group, then 
I’ll be interested. Until then I’m not.’ And he walked off. 

In contrast to what had happened with the sporadic groups dis-
covered recently, Conway already had the geometric set-up before 
he knew how many symmetries there were or whether the group of 
symmetries would even be indivisible. Thompson was used to seeing 
things in the other order: first someone would use his formula to make 
a proposal for the number of symmetries in some new candidate 
sporadic group before anyone went off trying to find a geometry with 
that number of symmetries. 

When Conway returned home that evening, he was on a mission. 
Life was tough. He had a wife and three children under the age of four 
to support and was having to do extra teaching to make ends meet: 

I had to work like stink to earn enough money ’cos I didn’t have a proper 
job yet. So I was working like all hell. But I decided the symmetries of 
this thing were important and I’d better make some time for doing it. 

So he formulated a plan of action: he would spend 12 hours every 
Saturday from 12 noon to 12 midnight working on it; then on Wednes-
day evenings he’d put in another 6 hours from 6 p.m. to midnight. 
His wife wasn’t too pleased with the idea as it was going to take him 
away from the children at the weekend. ‘I told my wife if I could do 
it that it would make my name. It was a really big deal.’ She could see 
this was important so reluctantly agreed. 

The first Saturday came. At 12 midday on the dot, Conway cer-
emoniously kissed his wife and kids goodbye as if embarking on an 
Antarctic expedition, and locked himself in the front room of their 
house. The house had been a derelict wreck before a developer had 
bought it and done it up and sold it to the Conways. There was still 
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lots of junk lying around the place from the renovation. In a corner 
of the front room Conway found a roll of wallpaper, and decided that 
this was the perfect canvas on which to log his exploration of this 
strange new symmetrical object. He laid the roll on his lap and started 
to write down everything he knew about this 24-dimensional geometry. 

After about three hours he could see that he’d been making far too 
many guesses about the structure. One of them had to be wrong, 
because they were starting to contradict each other. So he decided to 
start all over again. He allowed himself one guess only: that there was 
some hidden symmetry which was not obviously identifiable. From 
this one guess he started to logically piece together how many other 
symmetries there must be in this geometry. Everything had to be 
watertight. By 6 p.m. he’d worked out how many symmetries this 
configuration must have based on the one guess he’d made. 

Conway remembered Thompson’s promise that he’d start listening 
once he knew how many symmetries there were. It was a staggering 
number: 4,157,771,806,543,630,000 symmetries. 

Or double that, I still wasn’t completely sure. But I thought it was close 
enough to pick up the phone to Thompson. I just told him the size, 
and my God he was interested. About 20 minutes later he phoned me 
back. 

Thompson told him that if Conway was right about the size of the 
group it would indeed be a new sporadic simple group to add to the 
list. The symmetries of this configuration would have to be so inextri-
cably linked that, as with the symmetries of the icosahedron, there was 
no way to build it by putting together smaller symmetries. It was as 
indivisible as if it were a prime number. But that wasn’t all. 

In that 20 minutes, Thompson had worked out that this group 
would have to contain as sub-symmetries nearly all the other sporadic 
simple groups that had been found. A group can be indivisible but 
still contain subgroups of symmetries. It’s just that when you try to 
divide the indivisible group by the subgroup the result is not the 
symmetries of another symmetrical object. For example, although 
the 60 rotational symmetries of the icosahedron are indivisible, the 
rotational symmetries of a triangular face sit as a subgroup of sym-
metries inside this indivisible symmetry. 
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In a similar way, the huge indivisible group of symmetries of the 
Leech lattice contained an array of sub-symmetries. Thompson had 
worked out that it would have to contain the five groups of Mathieu, 
the second Janko group, the Higman–Sims group, the McLaughlin 
group, the Suzuki group and another two previously unidentified 
groups. Discovering the symmetries of the Leech lattice was like open-
ing a huge box and finding it full of treasure. Conway was on the verge 
of unearthing three new indivisible sporadic groups. Not only that: 
since the symmetries of the Leech lattice contained all these other 
sporadic groups, it seemed to provide some overarching logic to 
explain what had previously looked like a hotchpotch of unrelated 
groups. However, he wasn’t home yet. The size of the group had been 
calculated by postulating the existence of some hidden symmetry. 
Conway was convinced that it must be there somewhere, and to claim 
his groups he would first have to find it. 

Conway still had five hours left of his first Saturday trek. After three 
more strenuous hours he came up with a symmetry that might provide 
the missing link. He called Thompson again. He still had to check that 
the effect of the symmetry he was proposing would align all the balls 
in the geometry as perfectly as he hoped. But, he told Thompson, he 
was exhausted and he was now going to bed. He’d do the checking on 
Sunday morning. He felt he was close, and that he could probably steal 
some more time away from the family. 

But once he’d put the phone down, Conway just couldn’t resist 
pushing the thing a bit further. By now the roll of wallpaper was full 
of his calculations. After a while, he identified 40 additional calcu-
lations that he would have to do to confirm the hidden symmetry. He 
phoned Thompson again, just before 11 o’clock, and said that he 
hadn’t gone to bed after all. He’d narrowed down what he needed to 
do to the 40 calculations that would test his hunch – but this time, he 
said, he really was going to bed. He was shattered. 

Mathematics takes a very powerful hold of you once you’ve caught 
the bug. Conway decided to see how long one of the 40 calculations 
would take, so he timed himself. When he put his pen down, two 
minutes had passed. Not bad – it would take only an hour and 20 
minutes to check the whole thing. At 12.20 Thompson’s phone rang 
for the fourth time that night. It was not hard to guess who would be 
phoning him so late. An excited Conway said, ‘I’ve done all 40 calcu-
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lations. It checks out. I’ve found my missing symmetry. This time I 
really am going to bed.’ They arranged to meet the next morning to 
go through Conway’s epic journey. 

Conway had gone 20 minutes over the time he’d allotted himself 
for his first Saturday journey. But he wouldn’t need the six hours on 
Wednesday, nor any of the months of other Saturdays and Wednesdays 
he’d set aside for the project. He’d found his group! He went up to 
bed, but the excitement of the last 12 hours made it impossible for 
him to sleep, and he slipped back down to the front room to look 
once more at the roll of paper. 

The discovery of this new group had a powerful effect on Conway’s 
psyche: 

I knew I was a good mathematician but I hadn’t done the work to 
prove it. I’d been feeling really black for several years. I felt really 
guilty about the amount of time I spent playing backgammon in the 
department. Serious people would walk past me giving me disapproving 
looks. The discovery of this group wiped out that guilt. It removed the 
black feeling. 

It also propelled Conway into the mathematical jet set. He was invited 
all over the world to explain the discovery of his treasure box group 
that contained so many wonders. ‘I even flew over to New York, gave 
a 20-minute talk then flew back that afternoon.’ He had three new 
groups to his name: Conway 1, 2 and 3, as they became known. In 
fact, if he’d got straight down to the job after coming back from 
Moscow, he could have made it seven. 

What McKay had done was hand Conway a twentieth-century 
dodecahedron. When the Romans had shown Pythagoras the crystals 
of pyrite that inspired his discovery of the sphere of 12 pentagons, 
the Greek mathematician must have realized that he was holding a 
mathematical gem, although it took until the nineteenth century and 
the genius of Galois to reveal the importance of its symmetries. For 
Conway, McKay’s gift would be just as rewarding. Its contours would 
cement his name in the roll call of symmetry. 

Conway spoke about his discovery for the first time in Oxford, at a 
seminar organized by the department’s guru of group theory, Graham 
Higman. McKay, who was working at the Atlas Computing Laboratory 
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at Chilton, just outside Oxford, regularly attended Higman’s seminars. 
The two of them had successfully constructed some of the growing 
number of sporadic groups by exploiting McKay’s computing abilities. 
McKay was especially excited to hear whether the seed he had sown in 
Conway’s mind in Moscow had come to fruition. The result was more 
than he could have hoped for. To see the symmetries of this large 
lattice of 24-dimensional oranges binding together 12 of the strange 
sporadic groups of symmetries was mind-blowing. 

Conway stayed the night at McKay’s house. In the middle of the 
night, McKay burst into Conway’s room in a state of agitated excite-
ment. ‘What you’ve discovered is one of the deepest secrets of the 
universe!’ He launched into a frantic description of how important 
Conway’s discovery was. McKay’s wife came in and tried to calm him 
down, but nothing would bring him down from the high he was 
on. Eventually, Conway noticed, his wife slipped him a sedative. She 
explained that mathematics quite often had this effect on her partner. 

Fischer’s phoenixes 

The Leech lattice that McKay had shown Conway that afternoon in 
Moscow was an extremely efficient packing of balls that worked only 
in 24 dimensions. Conway’s analysis of the group of symmetries of 
this arrangement was therefore something rather special. Since the 
packing was unique to 24-dimensional space, this group was not going 
to fit into a nice new infinite family of groups like the Lie groups and 
the shuffles of a pack of cards. It was what Burnside had dubbed a 
sporadic group. And it was huge, with over four billion billion different 
symmetries. But these gigantic sporadic groups didn’t stop there. 

A year after his discovery, Conway learnt that a German mathema-
tician had beaten him by finding three more strange sporadic groups 
that were larger than Conway’s – by a factor of 30,000. Bernd Fischer 
remembers meeting Conway for the first time at a meeting at Ober-
walfach, the research centre in the middle of the Black Forest where 
I’d first met Fritz. Fischer was sitting in the centre discussing mathe-
matics on the afternoon of the first day when he saw a wild-looking 
man emerge from the woods clutching a huge role of wallpaper. One 
of the other mathematicians recognized Conway and reassured Fischer: 
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‘Don’t worry – he’s a scholar.’ When Conway was introduced, instead 
of shaking hands he shook his fist at Fischer: ‘You beat my group!’ 

Fischer almost missed his groups completely. They had their genesis 
in the library in Frankfurt where he was a student. His supervisor 
didn’t trust librarians – ‘They always mess up all the books’ – so he’d 
arranged instead for the students to run the library, taking turns to 
do one-hour shifts. It was during one of his shifts in the library that 
Fischer decided he might as well use the time to do something pro-
ductive, so he started browsing through maths journals. He found an 
interesting geometric setting whose symmetries produced well known 
sets of groups. But then he made one of the classic moves in the 
researcher’s arsenal: ‘I wonder what would happen if I change one of 
the conditions in the geometry and look at the symmetries of this new 
system?’ 

Fischer was quite pleased to find that making such a change gave 
him a new geometric way of looking at the shuffle symmetries. But 
during a talk at the University of Warwick where he was explaining 
his proof that the symmetries of these new geometries had to be one 
of the shuffle groups, someone raised a hand and pointed out that the 
proof couldn’t be right. Some of Lie’s groups could also arise as 
symmetries of such geometries. It is a deadly moment when your 
theorem blows up in mid seminar, but Fischer could see that this 
person was right – he must have missed something in his proof. It was 
back to the drawing board. 

Out of the ashes of his faulty theorem, a phoenix arose – actually, 
three of them. Fischer settled himself in front of the mass of coffee 
cups and cigarette ends that accumulated on his desk and began to 
look again at what sort of symmetries came out of his new geometries. 
There were the shuffle symmetries that Fischer had first discovered. 
And – as the audience member in Warwick had so devastatingly 
pointed out – there were also geometries that gave rise to some of 
Lie’s examples. But in addition to these, Fischer discovered three new 
examples which didn’t seem to belong with the others. Nor did they 
seem to be any of the other sporadic groups that others had con-
structed. But they did have something to do with Mathieu’s groups – 
the first of the sporadic groups discovered, a hundred years earlier. 
Fischer’s new groups contained the three biggest Mathieu groups, 
denoted by M22, M23 and M24. So Fischer’s groups quickly became 
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known as Fischer 22, 23 and 24. And the biggest of them, Fi24, was 
huge: it consisted of 1,255,205,709,190,661,721,292,800 symmetries. 

Fischer didn’t stop there. Some years after his first discovery, he 
tweaked his geometries a bit more and glimpsed something that made 
him think that there might be three even bigger examples sitting out 
there that were likely to dwarf both Conway’s and Fischer’s groups. If 
they did exist, they would be much harder to identify and pin down. 

After his first meeting with Conway in Oberwalfach, Fischer made 
frequent trips to Cambridge to discuss his ideas with Conway. At one 
of these sessions at Cambridge, Conway decided that Fischer’s three 
hypothetical symmetry groups needed names, because they were con-
stantly confusing which one they were talking about. ‘Let’s call the 
smallest of the three Baby Monster, the second Middle Monster and 
the biggest Super Monster.’ Fischer liked the idea of a Baby Monster. 
In Germany there was a cartoon character with this name. Given 
the estimated size of the symmetrical objects, ‘Monsters’ seemed very 
appropriate. Some mathematical trickery later revealed that the 
Super Monster was going to be impossible to build: there were certain 
features that contradicted each other. It was just a mirage, which 
vanished on closer scrutiny. But the other two were still looking robust. 
The Middle Monster was rechristened simply the Monster. 

The first task was to pin down exactly how many symmetries these 
hypothetical objects might have. Just before the annual meeting at the 
retreat in the Black Forest, Fischer established the size of the Baby 
Monster (if it existed). The number of symmetries would be a stag-
gering 

4,154,781,481,226,426,191,177,580,544,000,000 

The news caused a huge buzz among the conference participants. 
One senior member of the community who would have been really 
interested in the discovery was absent that year, in Australia. Graham 
Higman was the mathematician at whose seminar Conway had intro-
duced the world to Conway 1, 2 and 3. ‘Let’s send him a letter telling 
him about Fischer’s calculation,’ someone suggested. Then one of the 
Oxford mathematicians, who knew Higman well, said, ‘If you want 
him to read it, then just send him a postcard with the size of the group 
and nothing else.’ So a postcard was dispatched from the Black Forest 
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to Australia with a single number on its back: the number of sym-
metries in the Baby Monster. 

Shortly after the meeting, Fischer visited Conway again in Cam-
bridge. After various discussions, they now felt in a position to attempt 
to calculate how many symmetries there might be in the huge group, 
the Monster, that seemed to be hovering out there in the mathematical 
mists. They realized that its size meant they were going to need a 
calculator of some sort to do the computation. This was the early days 
of computing machines, but Conway said that he had a machine back 
at his house that should do the job. 

The trouble was that Conway’s daughters – four of them by now – 
had taken the machine to pieces, and there were parts scattered all 
over the house. Conway and Fischer spent the evening gathering all 
the parts together so they could rebuild the machine and make their 
calculations. But their stomachs overtook their appetite for large 
numbers, and they went out to dinner instead. Fischer received a letter 
a few days after his return to his new university, at Bielefeld. Conway 
had reassembled the calculating machine and had got his girls to 
calculate the size of the Monster. If it existed, it was going to have a 
colossal 

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000, 
000,000 

symmetries. But it still wasn’t clear whether it did exist. 
Conway and Fischer were halfway there. Their radar had picked up 

the Monster and they had identified how many symmetries it had. The 
quest was now on to see whether there really was something there or 
whether it would disappear, wraith-like, as the Super Monster had. It 
was not going to be an easy task because the calculations to establish 
the Monster’s existence were well beyond the reach of the computers 
that were available in the early 1970s. 

Fischer, though, was finding it increasingly difficult to concentrate 
on mathematics. The new university of Bielefeld that he had joined 
was being engulfed by radical student politics shipped in from Berlin. 
The Maoist movement decided that group theory was a reactionary 
subject of the old regime, and started protesting at the increasing 
number of professors in the subject being appointed. Demonstrations 
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erupted outside the maths department with protesters holding placards 
demanding ‘No more group theory’. One new appointee in group 
theory was frightened off and took a job elsewhere. During one demon-
stration, the students scaled the outside of the building and scrawled 
‘Group Theory Department’ on the wall. One member of the Maoist 
group was Fritz, my collaborator in Bonn. He was eventually expelled 
from the movement after being accused of collaborating with group 
theorists in the department. Despite his political ideals, Fritz couldn’t 
resist discussing mathematics with his professors. 

With the noise of demonstrators outside his window, it was hard 
for Fischer to think about constructing a symmetrical object with more 
symmetries than there were atoms in the sun. But even in the peace 
and quiet of Cambridge, Conway wasn’t making much headway either. 
They both believed that somewhere out there in the far reaches of the 
murky mathematical universe, a Monster was waiting for anyone brave 
enough to go looking for it. 

14 June, Stoke Newington 

I sometimes wonder whether it is the gradual increase in academic 
politics and administrative and family distractions that stifles a math-
ematician’s creativity past the age of 40. It’s like a gradual crescendo 
of noise outside the window which makes it harder and harder to 
achieve the meditative state necessary for mathematical inspiration. I 
often tell my graduate students to make the most of the lull they are 
in before the storm of life strikes them on the other side of their 
doctorates. This month, I seem to have spent my time doing anything 
but mathematics. 

It’s been one long round of meetings: meetings to discuss the con-
struction of a wonderful new department of mathematics in Oxford; 
meetings to find ways to encourage more young people to join us on 
our mathematical crusades; meetings with politicians to explain why 
mathematics is fundamental to the technological and economic well-
being of the country; meetings about the running of my college in 
Oxford; a meeting in Germany to deliver a seminar on my work. 

There are reports to write: referee’s reports for journals on the 
quality and correctness of my peers’ research, a process that can take 
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a very long time; reports on grant applications to fund conferences 
and young post-docs; letters of reference for my students to support 
them in their next steps. 

And there is also a clutch of strange requests I can’t resist helping 
out with: doing some mathematical theatre workshops for my favourite 
theatre company, Complicite, who are preparing a theatre piece about 
mathematics and Ramanujan; recording the voice-over for a radio 
programme about the French mathematician Marin Mersenne; provid-
ing Talk Sport Radio with equations to explain why Wayne Rooney is 
such a good footballer. 

Or perhaps these are really all excuses for my lack of productivity 
this month, and I should just face up to the fact that my self-discipline 
was not up to resisting those afternoon clashes between the likes of 
Togo and Korea during this year’s World Cup. 

But in June there is also the anniversary of a phone call which 
caused a major and very welcome distraction. Two siblings had just 
arrived at an orphanage in Guatemala. We were the only family on 
their books approved to adopt more than one child. But we needed to 
make a decision there and then. Did we want to adopt these two 
children? 
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July: Reflections 

Symmetry is a characteristic of the human mind. 
alexander pushkin, letter to Prince Vyazemsky, 

25 June 1825 

As more and more sporadic groups of symmetries kept sprouting up 
in the early 1970s, mathematicians began to wonder where it might all 
end . . . or whether it would ever end. Conway and Thompson were 
divided on the issue. One thought that there were infinitely many of 
these exceptional groups of symmetries; the other thought there were a 
finite but very large number of them. Like Ancient Greek philosophers 
arguing over whether matter was infinitely divisible or atomic, they 
debated whether these groups would go on for ever or eventually run 
dry. Six months later, they were still arguing but had reversed their 
opinions. It would turn out that both of them were wrong. 

As the number of interesting and varied sporadic groups increased, 
Conway decided to embark on a mission to chart the contours of these 
strange symmetries. He had alongside him a research student, Rob 
Curtis, who had proved his mettle exploring the contours of Conway’s 
groups. Together they applied for a grant to put together an Atlas, as 
they dubbed it, which would contain everything they knew about these 
strange sporadic groups, together with the shuffle groups and the Lie 
groups. 

The building blocks of symmetry that had been discovered since 
Galois’s breakthroughs were like the hydrogen and oxygen of the world 
of symmetry. Groups such as the Monster, if it existed, were like heavy 
atoms of uranium or plutonium. But Conway and Curtis’s plan was 
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for something more than just a periodic table of symmetry. Their 
document was going to record all the nooks and crannies, the inlets 
and mountains of these symmetrical objects. This was going to be an 
Atlas whose pages would chart precise contours, allowing others to 
navigate their way through the world of symmetry. 

For Conway and Curtis, the 16 types of Lie group and the shuffle 
symmetries of a pack of cards were like continents in this world. 
Each continent contained an infinite number of possible groups of 
symmetries. For example, the shuffles of a pack of cards required you 
to say how many cards were in the pack. Specifying the number would 
be like focusing on a particular country in the continent. The smallest 
country was the group of even shuffles of five cards. This symmetry 
group, discovered by Galois, would become the first entry in their 
Atlas. But for Conway and Curtis, it was the strange isolated islands – 
the sporadic symmetry groups – that were the most interesting. They 
wondered just how many of these islands, sitting on their own in the 
ocean, not part of any of the huge continents, lay waiting to be dis-
covered by the symmetry searchers. Conway had found three. Curtis, 
a young research mathematician, was desperate to get his name 
attached to something. In the meantime, he would help Conway pre-
pare the Atlas of the known world of symmetry. 

Conway and Curtis got their grant and went down to Heffers, the 
local bookshop in Cambridge, where they purchased a huge ledger 
costing £80 – a considerable sum in the mid 1970s. The ledger was 
designed to expand as new pages were added. At this stage no one 
knew quite how big the book would have to be. If there were infinitely 
many of these sporadic islands, it would have to be an infinite book, 
something that would probably have appealed to Borges. 

The grant also paid for an office in the department which became 
the Atlas headquarters. Conway and Curtis would work their way 
through journals, gathering as much information about these groups 
as they could find. When all their notes were ready for a particular 
group they would ‘Atlantize’ the group of symmetries. This would 
involve transferring the information onto large sheets of Atlantic blue 
paper. It was as if they were mapping this island of symmetry in the 
middle of the ocean of the page. 

The mess inside the Atlas office increased as the Atlas was built, and 
Conway started referring to it as Atlantis: ‘everything was starting to 
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sink without trace under the mess’. Along with the mess they were 
also having to cope with uninvited visits by one of the department’s 
research students. This was Simon Norton, the strange mathematician 
I had gone to visit on my first trip to Cambridge at the beginning of 
my own research career. 

Norton had excelled in mathematics from a very early age. His 
precocious talents had earned him a scholarship to Eton. He had 
performed so well in mathematics that his teachers enrolled him for a 
mathematics degree at London University during his school years. 
When he arrived at Cambridge he went straight into the final year of 
the undergraduate course, which he came top in. But his superior 
mathematical talents were matched by distinctly inferior social skills. 
Apparently, the Norton I had met on my visit was a distinctly more 
socially adept version than the one that arrived in Cambridge as a 
student. 

At Eton, the other children had soon found out what his weakness 
was and exploited it mercilessly. He hated being touched. His class-
mates would revel in laying a hand on him, then running off as Norton 
gave chase in an attempt to tag his assailant and somehow purge 
himself of the physical contact that had been made. At Cambridge the 
students were slightly more tolerant; mathematics departments are safe 
havens for many weird and wonderful characters. But he was still 
rather spitefully referred to as ‘the child’ by other graduates. Indeed, 
some of the students were rather disappointed to discover that Norton 
had been born on 28 February in a leap year. A day later, and in true 
Gilbert and Sullivan fashion he would have remained a child for ever. 
He had a strange habit of pacing the department mumbling ‘ooze’ 
under his breath until he had cracked a particular problem. 

Conway was beginning to feel rather irritated by this young man 
who sloped into the office and sat there while they were working, every 
now and again making comments on their progress. Invariably there 
would be a fleck of spittle at the corner of his mouth, and he never 
seemed to change his clothes, which were accumulating an increasing 
number of holes. It wasn’t that he was poor – his parents ran a 
jeweller’s in London’s New Bond Street – he just didn’t care about his 
appearance. Whenever he talked he would shake uncontrollably. After 
a few of Norton’s visits, Conway took Curtis aside: ‘I can’t bear it any 
longer. If that chap keeps coming into the office I’m just going to give 
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up the whole project.’ But within a few weeks Conway had changed 
his mind. He saw how invaluable Norton was becoming to their 
attempts to survey the landscape of symmetry. He had an exceptional 
talent for detail and very soon was talking about the intricate workings 
of these sporadic groups as if they were old friends. The sheer immen-
sity of the calculations that were involved in charting each symmetry 
group’s characteristics did not faze him at all. Norton was welcomed 
on board. 

The team was quite a contrast of personalities. Conway was like a 
wonderful magician, inventing games and tricks to entertain the stu-
dents in the department’s common room. Philosopher’s Football, or 
Phutball as it became known, was a game played with go pieces that 
was invented in the common room. But every game had a serious 
mathematical angle to it. Conway’s analysis of the real game of go led 
to a whole new class of numbers, called surreal numbers. Curtis, by 
contrast, was rather dapper, tall and handsome, like an army officer 
who had just stepped out of a Jane Austen novel. He had, according 
to some, a reputation in Cambridge circles as a womanizer. Norton 
did not strike much of a chord with the ladies. His parents tried 
desperately to get him married off, and arranged a partner for him for 
the Trinity May Ball. It must have been a disastrous blind date, given 
that Norton’s favourite topic of conversation was bus timetables. 

Despite their different characters, they made a brilliant team. The 
Atlas kept expanding. Conway would carry it round the department 
on his shoulder, like a hod full of bricks. Eventually it became so large 
that it exploded on them when they tried to add another page of 
Atlantic blue: ‘We tried to close the thing, and . . . bang! . . . it burst. 
We’d finally added the straw that broke the camel’s back.’ Conway 
always relished a challenge, and the solution proved to be right outside 
their door. The common room was full of decrepit old chairs whose 
fake leather covering had also burst open, revealing the stuffing inside. 
Conway simply cut off a length of this fake leather and, with the help 
of a huge shoemaker’s needle, bound the Atlas together again. 

As well as charting the contours of existing groups, the team were 
also finding new ones. Conway remembers 1974 as one of the most 
exciting periods in his mathematical life. The Cambridge team were 
joined for a year by a Japanese mathematician, Koichiro Harada. 
Fischer would often drop in. Conway remembers a table in the 



330 Symmetry 

common room being manned by mathematicians 24 hours a day for 
several weeks. Harada, in true Japanese style, would remove his shoes 
and sit cross-legged by the low table in the common room where these 
groups were being forged. The others would sprawl in the ancient 
chairs, working furiously. The great Thompson would pass by the table 
in the morning to see how they were getting along. 

Around about this time, mathematicians began to realize that the 
end might, amazingly, be in sight. This was prompted by activity on 
the other side of the Atlantic. Daniel Gorenstein had begun to mobilize 
forces to establish the limits of this world of symmetry. In 1972, in an 
operation of almost military precision, he had drawn up a 16-point 
plan to explain how to construct a complete list of all the building 
blocks of symmetry. At first, Gorenstein found it difficult to enlist 
people to his cause: ‘The programme was met with considerable scepti-
cism. I doubt that I made any converts at the time. The pessimists 
were still strongly in the ascendancy.’ 

However, within a few years people were beginning to feel far more 
positive about Gorenstein’s programme, and began signing up to help 
out in what he christened the Thirty Years War. His office became like 
an army headquarters, with the telephone ringing and orders being 
given out. People were assigned different parts of the operation and 
were dispatched on their own missions. One of the key captains in 
Gorenstein’s offensive was Michael Aschbacher, whose determination 
and mathematical abilities drove the assault at a much faster pace than 
might have been expected. The Americans were soon closing in on the 
team at Cambridge, who were scouring the world of symmetry for 
new groups before it ran dry. 

By the mid 1970s, a total of 25 different sporadic groups had been 
discovered or conjectured to exist. Mathematicians could really feel 
the tide beginning to turn – the feeling was that 25 might be the limit 
of what was possible. Then the man who had started the whole thing 
off in 1965, with the first sporadic group since the five of Mathieu, 
announced the possible existence of a 26th group. It was the fourth 
that Zvonimir Janko had discovered. Like two bookends, Janko 1 and 
Janko 4 seemed to represent the beginning and the end of the 
exploration of this strange archipelago. 
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Moonshine 

By 1978, 24 out of these 26 symmetry groups had been built. There 
were just two that remained out there in the mists: the Monster and 
Janko’s fourth group. The evidence for the existence of this pair was 
very convincing, but mathematicians still had the task of constructing 
something whose symmetries matched up with the numbers that were 
being predicted. 

Conway’s Atlas now contained extensive information about the 
Monster, even though the Cambridge team still weren’t sure that it 
really existed. One useful piece of information was the discovery that 
the smallest number of dimensions in which anyone could construct 
an object whose symmetries were those of the Monster would be 
196,883. This was why the object deserved to be called the Monster. 
There are Lie groups which have more symmetries than the Monster 
was predicted to have, but they were symmetries of a geometry that 
could be constructed in eight dimensions. But you had to travel into 
196,883-dimensional space before this Monster would show its colours. 
The reason people felt that the Monster was so out of reach was that 
manipulating an object in 196,883-dimensional space was well beyond 
the capabilities of even the most powerful computers available in the 
late 1970s. 

As Conway was about to learn, the number 196,883 would reveal 
the Monster to be not just some bizarre entity at the very fringes of 
mathematics, but an object connected to some of the most central and 
striking parts of mathematics. And again, the messenger was his old 
friend John McKay. The message was sent in a letter addressed to 
Thompson. It announced the discovery of this equation: 

1 + 196,883 = 196,884 

You might think that McKay had lost his mind. Surely anyone could 
write down any number of such apparently trivial identities. But for 
McKay, the numbers in this equation weren’t just random. 

Sitting in his office in Concordia University in Montreal, McKay 
had been idly browsing through a paper on a subject completely un-
related to group theory. The paper was about one of the central and 
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most mysterious objects in number theory, called the modular func-
tion. In the 1990s, variants of the modular function would turn out to 
be the key to solving Fermat’s Last Theorem. By this time, 1978, the 
modular function already had a rich heritage going back to the nine-
teenth century. Felix Klein, who had been Lie’s partner when they 
explored the connections between geometry and symmetry, had inves-
tigated the object and had even used it in showing how to solve the 
quintic equation, using more complicated tools than simply taking 
roots of numbers. 

The construction of this object depends on a sequence of numbers 
which starts 1, 744, 196,884, 21,493,760, 864,229,970, . . . Essentially it 
is an infinite polynomial: 

3x -1 + 744 + 196,884x + 21,493,760x2 + 864,229,970x +  . . .  

3and the sequence of numbers tells you the multiples of x, x2, x ,  . . .  as  
the polynomial spirals off to infinity. McKay looked at this sequence 
of numbers and thought that one of them looked awfully familiar. He 
pulled out some papers about the shape of the Monster that everyone 
thought must exist – and there it was. Well, almost. 196,883, the 
smallest dimension in which you would be able to see the Monster 
was just 1 less than the third number in the sequence for the modular 
function. McKay could have dismissed as pure coincidence the fact 
that the numbers were so close, but he happened to believe that 
mathematics was full of such special connections. So he decided to 
record his ‘discovery’ in a letter to Thompson. 

The simple equation in the letter raised an interesting question: was 
it just a coincidence that the numbers were so close, or was there some 
deep hidden connection between the Monster and number theory? 
Initially, Thompson dismissed the connection, comparing it to reading 
tea leaves. After all, one has to be very careful with numerology. For 
example, in the sixteenth century Kepler used some startlingly strange 
coincidences in number patterns to explain why the six known planets 
were inextricably linked with the five Platonic solids. The discovery of 
a seventh planet blew Kepler’s numerological coincidence out of the 
water, although Kepler had already abandoned his theory for other 
reasons. But when Thompson started to play with some of the other 
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numbers in the modular sequence, he found that the Monster was 
even more interwoven with this object from number theory. 

Thompson looked up the next dimension in which people were 
expecting to see the Monster appear. It was quite a shift up to 
21,296,876. At first sight, things didn’t seem to match up. Then 
Thompson spotted how to fit this number into a pattern connected to 
the numbers for the modular function: 

21,493,760 = 1 +  196,883 + 21,296,876 

This was beginning to get spooky. He tried the next number up. 
The next-highest dimension in which you can see the Monster is 
842,609,326. Again, the pattern seemed to break down: Thompson 
couldn’t get the next number in the modular sequence, 864,229,970, 
simply by adding up the dimensions of the Monster. But then he 
spotted a trick that would make all the numbers match up. It looked 
slightly contrived, but the fact that it worked surely meant that there 
was more to all this than mere coincidence. He could get 864,229,970 
by adding up the following numbers, all numbers related to the 
Monster: 

1 + 196,883 + 1 +  196,883 + 21,296,876 + 842,609,326 

McKay had also gone on to find these extra equations, but it was 
Thompson who first published them. McKay admits that ‘I was a bit 
peeved really. I don’t think Thompson quite knew how much I knew.’ 
Thompson was not convinced that the equations had any deeper mean-
ing, and still referred to them as numerology, a word generally associ-
ated in mathematics with quacks. Thompson had received McKay’s 
letter while he was visiting Princeton. As soon as he got back to 
Cambridge he showed McKay’s equation to Conway. 

Conway, though, was in possession of secret information about the 
Monster unavailable at that time to anyone outside the Atlas office. 
Indeed, Conway believed that the Atlas they were compiling was 
becoming a book with all the answers in it. He wasn’t even sure 
whether publishing it would be such a good idea, for that would give 
away the advantage that his team in Cambridge now possessed. The 
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Atlantic blue pages of the Atlas now contained complete details of 
what the contours of the Monster would look like (if it was ever 
located). 

As soon as Thompson showed him McKay’s ‘numerology’, Conway 
sped down to the library to check in a book on number theory which 
had a complete description of the modular sequence. Before long he’d 
started to build equations which laced the numbers of the Monster 
together with the sequence of numbers for the modular function. His 
mathematical partner in crime, Norton, was away on a two-week 
journey around the rail networks of England. By the time he got back 
to Cambridge, Conway had made good headway. Once Norton had 
got these numbers between his teeth, he soon had a complete set of 
equations that showed how to go from the set of numbers in the 
Monster to the sequence of numbers in the modular function. ‘Thank 
God I had that two-week head start on Simon,’ mused Conway, ‘else 
I wouldn’t have got a look-in!’ 

Conway christened the extraordinary numerology they had con-
cocted out of McKay’s simple equations ‘moonshine’. Although they 
had inextricably laced these two things together, no one knew what it 
all meant. And there was still the problem that no one had actually 
built the Monster. But then came another startling piece of news 
from across the water. The Monster was no figment of mathematical 
imaginations – someone had finally given flesh to the bare-bones 
description in Conway’s Atlas. 

The mathematical Doctor Frankenstein 

Bob Griess had been on the trail of the Monster since the early 1970s. 
In 1973 he had made the same calculations as Fischer that led to the 
prediction of this huge symmetrical object, but frustratingly, he’d seen 
Fischer get most of the credit. A year earlier Griess had been chasing 
the construction of another group, predicted by Arunas Rudvalis, but 
was pipped to the post by Conway and a colleague, David Wales. 
Conway was so aware of the race to build this group that he had 
recorded the time and date of the group’s delivery: 4 p.m. on 3 June. 
Just before the hour struck, the phone went in Conway’s flat in Caltech, 
where he was visiting. He knew it would be the computing lab with 
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the results of their construction. He waited for the clock to count 
down to 4 o’clock exactly . . . 4 seconds, 3 seconds, 2 seconds, 1 second 
. . . then picked up the receiver. ‘You are the proud father of a new 
group of size 145,926,144,000,’ announced the caller from the lab. The 
group had been predicted by Rudvalis a month before, at 3 p.m. on 
4 May. 

Understandably, Griess was keen to get his name on at least one 
new sporadic group. The problem was that they were clearly beginning 
to run dry. Gorenstein’s classification programme was starting to close 
in, and it seemed that only two of the 26 islands were still unclaimed. 
But going out and finding the Monster was easier said than done. No 
one seemed to have the tools to accomplish the massive task. As Griess 
points out now, ‘How can you try to demolish Everest if all you’ve got 
is a toothpick?’ However, news of the evidence connecting the Monster 
with the modular function from number theory spurred him on. It 
showed that the Monster wasn’t a strange quirk of nature. If it existed, 
it was going to be connected to some of the most important bits of 
mathematics. 

By 1979, Griess felt brave enough to try to tackle this object which 
existed in 196,883-dimensional space. He had a year’s sabbatical at the 
Institute for Advanced Study at Princeton – a perfect setting for 
mounting his assault. He started to work around the clock on his 
construction. There were now lots of clues about where to look for 
this missing symmetry group. ‘The whole thing felt like a detective 
story. The trouble was that you didn’t know if you were going to find 
treasure or find that you’d wasted your time up a blind alley.’ 

Griess found night-time the most productive. He got to know the 
cycle of the security guard who would do his rounds, passing by his 
office every two hours. He came across strange individuals who would 
camp out in their offices at night rather than pay for accommodation. 
And gradually he started to see the Monster emerging from the 
mists. 

As December 1979 arrived, Griess was working harder and 
harder. ‘I was determined to beat the change of decade.’ He failed, but 
only by 14 days. Having taken just one day off, for Christmas, by 
14 January 1980 he’d discovered an object whose symmetries matched 
up with the predictions that everyone was making for the Monster. It 
was an extraordinary tour de force. Bare-handed, without recourse to 
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a computer, Griess had constructed this enormous object which pos-
sessed more symmetries than there are atoms in the sun. 

Griess now faced the daunting task of writing up his discovery, but 
having been burnt several times before he sent out an announcement 
to make sure that this time he got his name on it. He was also rather 
upset that the group had already been christened the Monster, whereas 
all the other groups, apart from the Baby Monster, were named after 
the people who had discovered or constructed them: ‘The fact that it 
was called the Monster hurt me. I was rather unhappy about it.’ So in 
his announcement he also tried to get it renamed. He knew that he 
wouldn’t be able to convince the mathematical community to abandon 
the colourful name in favour of the Fischer–Griess group. So he went 
instead for calling it the Friendly Giant. To see the F and the G there 
to recognize his and Fischer’s involvement would suffice: 

For me, a Monster smacks of evil dictators and my work was a taming 
of this object. So I felt my name was also a serious statement, that this 
was a friendly accessible object. Monster is a name that will scare all 
but the bravest to dare look at it. I think things should be more open. Let 
us tame nature and make it more understandable. That’s my attitude. 

The name never caught on. 
After the initial excitement when Griess announced his construction 

of the Monster in early 1980, mathematicians grew exasperated at the 
complete lack of details of the construction. The Cambridge team 
were especially frustrated, and John Thompson, who had been Griess’s 
supervisor in the early 1970s, made a special trip across the Atlantic 
to find out exactly what Griess had done. 

A week later, Thompson arrived back in Cambridge. Conway eagerly 
buttonholed him in the common room. ‘So, what’s the construction 
all about?’ Thompson looked a bit sheepish. ‘Gee, well I guess he didn’t 
mention it.’ This was extraordinary. The world’s greatest group theorist 
had flown across the Atlantic to learn about one of the greatest achieve-
ments of group theory in the twentieth century – and his student 
hadn’t even mentioned it? Conway looked incredulously at Thompson: 
‘Didn’t you ask?’ ‘Well, gee, I guess I didn’t think it was my place.’ 
Griess seemed determined to keep things close to his chest until he 
had written down all the details for publication. 
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A month after Griess’s announcement, Conway and his team man-
aged to build the 26th sporadic group, the last one that mathematicians 
believed existed. In contrast to Griess’s bare-hands construction of the 
Monster, the fourth Janko group relied on hours of computing time 
for its entrance onto the mathematical stage. Conway had by this time 
enlisted a fourth member to the Atlas team who was a whiz with the 
computer. 

As far as the academic establishment was concerned, Richard Parker 
was something of an outsider, but he loved doing maths. After getting 
a first in mathematics at Cambridge, he left to earn his money writing 
software for cash registers. In 1978 he met up with Conway in Cam-
bridge. Conway was desperate for some automation of the tables they 
were producing for the Atlas. Parker was keen to complement the 
lucrative job of programming tills with something a bit more meaning-
ful. The match was perfect. 

Not to be outdone by the strange characters who inhabited the Atlas 
office, Parker had his own peculiarities. Being a fantastic programmer 
had made him extremely logical in his analysis of his work. But this 
often spilled over into other aspects of his life. ‘What is the purpose 
of an organism?’ he asked himself. ‘To propagate its genes’ seemed an 
answer that made a lot of sense. So, in his logical manner, Parker took 
out adverts in lesbian magazines offering his seed for couples who 
wanted to have children. His Atlas colleagues estimate that he may 
have passed his genes to over a dozen children. 

The Atlas team were always cooking up crazy schemes. Once they 
took out an advertisement in The Times: ‘Gentleman, thinking of 
starting new religion, seeks converts.’ Any respondents wouldn’t have 
known, of course, that the religion required dedicating oneself to a 
Monster and chanting endless numbers in the moonshine. 

The Atlas work soon sucked Parker in, and he decided to go freelance 
to make more time to dedicate to Conway’s project. The greatest 
challenge was getting the computer to build Janko’s fourth group. It 
required working in 112 dimensions, a lot smaller than the Monster 
but still something that stretched the limits of Parker’s computers. By 
February 1980 they’d found a way to check whether the symmetries 
of this geometry in 112 dimensions really did give this final sporadic 
group. As the computer churned away, returning the answer ‘yes’ to 
the millions of questions it was being asked, a sense of anticlimax 
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descended over the team. They knew that this was probably going to 
be the last of the sporadic groups. They could predict the time of the 
final ‘yes’, and when it came Conway recorded the time to the second 
and wrote it down on a big piece of card with the words ‘J4 con-
structed’. He pinned it wistfully to the Atlas office door. That was 
probably it. 

By the summer, Griess at last felt ready to go public with the 
details of his construction of the Monster. He started giving talks. The 
seminars drew large audiences of mathematicians eager at last to find 
out how he’d done it. The crew in Cambridge finally got hold of a 
copy of the 100-page paper that Griess had been preparing and pored 
over the details they had been unable to construct for themselves or 
that Thompson failed to elicit from his former student. News started 
to circulate that Gorenstein’s team were also in sight of their goal of 
proving that the 26 groups, the prime-sided polygons, the shuffle 
groups and the Lie groups were all that would be in the Atlas. 

No one can quite date the end of the journey. In 1980 The 
Mathematical Intelligencer was going to publish its fourth issue of 
volume 2 with a cover carrying the words ‘the 26 known sporadic 
groups’. But in proof the ‘known’ was struck out and a note added 
announcing that ‘the classification of finite simple groups is complete. 
There are no more sporadic groups.’ Gorenstein too was declaring that 
it was ‘all over’ in 1980, but later amended his dating of the end to 
February 1981, when a paper of Norton’s proved that there couldn’t 
be two different groups that looked like the Monster. Without Norton’s 
contribution there was a theoretical possibility that there might be 
several sporadic groups with the same number of symmetries as the 
Monster. Others opted for 1983, when certain important pieces in the 
jigsaw finally fell into place. 

By 1985 Conway, Curtis, Norton and Parker, together with a fifth 
author, Rob Wilson, who joined their endeavour, were ready to submit 
the Atlas of Finite Groups to the publishers. The journey was over. The 
proof was complete. By the time I arrived in Cambridge, the Atlas – a 
record of a two-thousand-year journey through symmetry – was run-
ning off the presses. 
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5 July, Edinburgh 

Two years ago to the day, I attended a conference in Edinburgh to 
celebrate the 25th anniversary of the discovery of moonshine in the 
Monster. It was a reunion of many of those who had been involved in 
the journey. Even for mathematicians, this was a fairly weird bunch of 
characters: Simon Norton, with bulging plastic bags full of timetables 
and a shirt full of holes; John McKay, looking the spitting image of 
Kentucky Fried Chicken’s Colonel Sanders with his red cheeks and 
white moustache; John Conway, now less hairy than in his Cambridge 
days, though still with a wild glint in his eye and a toothy grin. The 
secretary handing out the conference material at the registration desk 
was looking quite shell-shocked. ‘They certainly are a strange bunch,’ 
she commented. 

On the first day of the conference, John McKay, the first person to 
see the moonshine glinting on the Monster, stood up to introduce 
Conway: ‘John will be explaining my construction of the Monster.’ 
‘No, I’ll be explaining my construction of the Monster,’ Conway coun-
tered rather tetchily. Since Griess’s first paper, others have tried to find 
more efficient ways to build the Monster. The hope was that each new 
construction might explain the moonshine and the Monster’s links to 
number theory. 

‘You’d better all applaud now, before I give the talk, because it’s 
going to be a failure.’ Conway started clapping, and the audience, 
looking rather bemused, joined in. ‘I’ve given this talk in Princeton 
recently and it was a failure there. It was a failure again in Rutgers. 
But I believe in try, try, try again.’ He launched into his construction 
of the Monster, a creation he has honed ever since he received Griess’s 
long paper. To Conway, the Monster is ‘astonishingly simple’ and he 
is desperate to communicate his vision. 

Just as Conway had predicted, though, within about ten minutes 
most of the audience looked quite glazed. Several people, including 
McKay and the man next to me, had fallen asleep. McKay’s snoring 
began to get rather distracting, so someone dug him in the ribs to get 
him to stop. Halfway through, Conway could feel that he’d lost his 
audience. ‘I told you it would be a failure. But you’ve clapped already.’ 
You could tell that he was deeply frustrated. ‘The group’s big but it 
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really is rather trivial.’ When you’ve lived with the group for nearly 
thirty years it does become a friend rather than a Monster. 

After the lecture, Conway was downcast. We sat around trying to 
dissect what had gone wrong. ‘There’s this wonderful quote from 
Shakespeare’s Henry IV Part One that I try to live up to,’ he said. 
‘Owen Glendower declares: ‘‘I can call spirits from the vasty deep.’’ 
But then Hotspur counters, ‘‘Why, so can I, or so can any man; But 
will they come when you do call for them?’’ I want to be like Hotspur.’ 
That morning, though, the spirits didn’t come. The Monster stayed in 
the vasty deep. 

Conway has this insatiable need to be able to summon knowledge 
from the depths of his mind. That’s why he learnt p to so many 
decimal places when he was younger. He also taught himself how to 
work out the day of the week for any date you care to give him. Usually 
this is a skill that is associated with autistic savants, but Conway 
has taught himself the mathematics behind it. To keep his mind 
active, he has set up his computer so that instead of entering a pass-
word to gain access to it, he has to identify the day of the week for 
ten different dates within 12 seconds. He believes that by now he is 
the fastest in the world at doing this, and that no one else can hack 
into his computer. He also believes that he can teach the trick to 
anyone – although perhaps not at the lightning speed that he has 
achieved. 

At the conference dinner that evening, Conway explained the tech-
nique to one of the young female graduates. As we all walked back to 
the university from the centre of town, we passed through an old 
graveyard. Here was the perfect opportunity to put the graduate 
through her paces. Conway stopped at a gravestone and started to read 
the inscription. ‘OK, Alexander Maclean, Perfumer to Edinburgh. Died 
5th October 1834. What’s the Doomsday for that year?’ After only a 
short pause, back came the answer that Maclean died on a Sunday. 

Conway was quickly onto his next chat-up line. The sky was full of 
stars, with a few clouds scudding across the firmament. ‘I can name 
every star in the sky,’ he boasted. ‘You see that cloud there? I can even 
tell you the names of the stars behind that cloud.’ And he started 
reeling them off: ‘Betelgeuse, Bellatrix, Alnitak, . . .’  A  young graduate 
joined in and showed off his knowledge too. It was very curious. To 
me, this sort of knowledge seems quite pointless. It is just butterfly 



341 July: Reflections 

collecting, with no sense to it. It was just the sort of thing I moved 
into mathematics to avoid. 

In 1982, Thompson similarly described the classification of the 
building blocks of symmetry as ‘an exercise in taxonomy. To be sure, 
the exercise is of colossal length, but length is a concomitant of taxon-
omy.’ Ever since the classification was finished, mathematicians have 
wondered whether there is a more conceptual explanation of why the 
Atlas contains the building blocks it does. For those addicted to the 
pursuit of patterns, these 26 sporadic groups just don’t make sense. 
They are just sitting there like a random constellation in the night sky. 
Thompson went on to write: 

Not surprisingly, I wonder if a future Darwin will conceptualize and 
unify our hard won theorems. The great sticking point, though there are 
several, concerns the sporadic groups. I find it aesthetically repugnant to 
accept that these groups are mere anomalies . . . Possibly . . . The Origin 
of Groups remains to be written. 

The sheer length of the proof of the classification, which covers 
some ten thousand pages in the mathematical journals, has been a 
concern. Can we really be sure that we’ve covered every base? A proof 
of this huge extent is 100 per cent guaranteed to contain errors – but 
are any of them fatal errors? Some mathematicians take care to state 
very clearly when proving a theorem if they are using the classification 
of these building blocks at some point in the argument. It’s almost 
quoted as a working hypothesis rather than a proven theorem just in 
case it turns out that there is a 27th sporadic group that was missed 
from the list and the proof needs to be re-evaluated. 

Indeed, in the late 1980s, news spread that one piece of the jigsaw 
was actually still missing. Geoffrey Mason had been responsible for 
writing a paper to cover one of the difficult steps in Gorenstein’s 
16-point plan to complete the classification. Gorenstein had originally 
assigned this project to Janko, but the Croatian had walked away from 
it in 1975, after five years of investigation, declaring it too difficult. 
One member of Gorenstein’s regiment wrote that Janko’s resignation 
was the only time he saw Gorenstein’s resolve falter. Mason had taken 
up the challenge abandoned by Janko and had produced an 800-page 
preprint with a proof of the missing step, but it had never been 
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published. When those involved in writing up a complete account of 
the whole proof of the classification started to look at Mason’s paper 
in 1989, they understood why. It was full of holes. 

The party to celebrate the completion of the classification had been 
somewhat premature. As one mathematician close to the proof 
admitted, 

Viewed retrospectively and soberly, it was perhaps a bit hasty to claim 
that everything was finished before the manuscripts had been checked 
carefully, but it was quite understandable. Mathematics is done by 
human beings who have an emotional aspect to their personalities in 
addition to a rational one. 

Criticism began to mount. How could you call this a theorem if 
there was an 800-page hole in the middle of it? One of the great 
mathematicians of the twentieth century, Jean-Pierre Serre, was par-
ticularly critical: 

For years I have been arguing with group theorists who claimed that 
the ‘Classification Theorem’ was a ‘theorem’, i.e. had been proved. It 
had indeed been announced as such in 1980 by Gorenstein, but it was 
found later that there was a gap. Whenever I asked the specialists, they 
replied something like: ‘Oh no, it is not a gap; it is just something which 
has not been written, but there is an incomplete unpublished 800-page 
manuscript on it.’ For me, it was just the same as a ‘gap’, and I could 
not understand why it was not acknowledged as such. 

Gorenstein died in 1992 with the controversy still raging. Three 
years later Gorenstein’s captain, Aschbacher, in collaboration with 
Stephen Smith, set about filling the gap. In 2004, the same year as the 
Moonshine conference in Edinburgh, a plug for the gap in the proof 
was published. Mathematicians had thought that the 255 pages that 
made up Thompson and Feit’s paper in the early 1960s was big. 
Aschbacher and Smith’s paper dwarfed it: it ran to 1,221 pages. There 
is a general consensus that even if there are more errors or gaps still 
remaining, they will not be fatal. Smith believes that ‘the basis for the 
reliability of the proof is that very many parts of it are extremely 
parallel. It’s very unlikely there’s a hole you could drive a truck 
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through.’ In other words, there are so many threads woven into this 
proof that pulling one won’t make the whole thing fall apart. 

With Gorenstein’s death came the realization that the mathema-
ticians who truly understood all the intricacies of the proof of the 
classification were getting old. Now that the proof was complete, few 
young and aspiring mathematicians were attracted to the field. The 
classification involved very specific techniques that people are now 
beginning to think could die out with the passing of this generation 
of practitioners, almost like the craft and skills of the medieval stone-
masons, which have never been replicated. All the more reason for 
those engaged in rationalizing the proof to make sure that they haven’t 
missed a 27th group. 

Conway et al. freely admit to the possibility of errors in their Atlas. 
In the introduction they write that 

with regard to errors in general, whether falling under the denomination 
of mental, typographical, or accidental, we are conscious of being able 
to point to a greater number than any critic whatever. Men who are 
acquainted with the innumerable difficulties attending the execution of 
a work of such an extensive nature will make proper allowances. To 
these we appeal, and shall rest satisfied with the judgement they pro-

nounce. 

These are not actually Conway’s words, but are taken from the preface 
to the first edition of the Encyclopaedia Britannica, published in 1771. 

In fact the first error in the Atlas is a glaring typo at the beginning 
of the introduction, where the first heading is ‘Prelimaries’. Such errors 
are of course harmless. But is it possible that the Atlas has missed a 
27th sporadic group sitting out there somewhere in the ocean of 
symmetry? Perhaps someone looked out in one direction and thought 
that the maths told them there was nothing to find there. It very nearly 
happened with a number of the groups that we did discover. 

Conway recalls that the Rudvalis group that he constructed at 4 p.m. 
on 3 June had at one point thrown up a contradiction the previous 
month that should have made them turn back: 

The contradiction refused to go away even after we had condensed it 
onto one side of a sheet of paper and scrutinized it for several days. 
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Fortunately we were so convinced that the group existed that eventually 
we just put that piece of paper aside and constructed the group by 
another method that carefully went nowhere near the contradiction! 
What worries me is the nagging thought that another group like the 
Rudvalis group might have been disproved somewhere in the classifi-

cation programme by someone who had no overwhelming conviction 
that it existed. 

Conway almost found something that everyone had missed: ‘I 
remember great excitement one night when we thought we’d found a 
27th group.’ You could see the thrill in Conway’s eyes as he contem-
plated the possibility. But it eventually turned out to be one of the Lie 
groups in disguise. Indeed, the likes of Conway and Fischer would 
dearly love there to be a 27th group that we’ve all missed. For these 
mathematicians, the groups are like jewels: the more of them, the 
better. 

With the end of the journey and the publication of the Atlas in 
1985, a sense of anticlimax descended on group theory. It had been 
such an exhilarating few decades that nothing could quite match that 
feeling of building a completely new group. Conway was offered a 
prestigious job at Princeton. He loved Cambridge. He loved to walk 
through the college gardens, weaving in and out of different colleges, 
thinking about mathematics. But the party was over. More serious 
forces were mobilizing in the department, and Conway could sense 
the beginning of a group theory cull. ‘We were regarded as lay-
abouts who sat around the department all day playing backgammon 
and go.’ 

The chairman of Princeton invited Conway and his family to come 
over for a year to try Princeton out, but Conway knew that it was just 
a way of delaying the decision. Eventually he suggested that they should 
have a coin-tossing ceremony to decide. Heads, stay in Cambridge; 
tails, go to Princeton. Many of Conway’s decisions are made in this 
way. But his second wife said that was too disrespectful. Eventually, 
Conway went to Princeton for the challenge of something new. ‘Every-
one is so serious in Princeton. Everyone works so hard. In Cambridge 
people would just come in with crazy ideas and see where they would 
go. To do good work you have to be somewhat irresponsible.’ 

The move was not without its pressures. Shortly after arriving in 
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Princeton, Conway split with his wife. The separation plunged him 
into a deep, black depression which pushed him to attempt suicide. He 
awoke in hospital, quite relieved to find that he’d failed, but daunted at 
the prospect of stepping back into normal life with people talking 
behind his back. ‘I thought, ‘‘What would Conway do here?’’ Conway 
would make it perfectly obvious he knew.’ So he borrowed a T-shirt 
from a friend with SUICIDE in big letters emblazoned across the front. 
Suicide is the name of the second hardest rock-climb in the United 
States, and his friend had conquered it a few years earlier. 

Conway hates getting old. For a mathematician it can often be 
harder than for most people. Despite our desperate desire to believe 
otherwise, for the great majority of us the peak of our creativity is in 
our youth. The mathematical menopause is a harsh reality. Another 
famous Cambridge alumnus, G. H. Hardy, also attempted suicide at 
the onset of old age. Conway stares into the future and doesn’t much 
like what he sees: ‘What’s there at the end? Death, and I don’t like that 
very much. I don’t want to grow old. I don’t feel old in my mind.’ 
This is why he has started training his mind to do lightning calculations 
again. 

Old age has also brought out a vain streak in Conway. His hair is 
no longer the wild mane it was in his Cambridge youth. ‘After I got 
my hair cut I went into a local ice cream shop next door, and the girl 
said, ‘‘Oh, you look a lot younger.’’ I always thought I didn’t care 
about appearance, and I didn’t care until recently.’ He’s now married 
to his third wife. She will be his last. ‘Well, I had four children with 
my first, two with my second, one with my third . . . I’d have to have 
half a child with a fourth wife,’ says the man obsessed with patterns. 
Also, the maintenance is getting quite expensive. 

After Conway’s move to Princeton, many others went their own 
separate ways. ‘Once Conway had left there didn’t seem any point in 
hanging around Cambridge,’ admitted Wilson, the fifth author of the 
Atlas. The fourth author, Parker, continued to combine maths with 
shopping tills: ‘I had a research grant in Cambridge from the autumn 
onwards, so I had more time for mathematics. This didn’t really make 
up for the loss of John Conway.’ Norton however, without the political 
and social skills to survive the cut and thrust of the academic world, 
was rather abandoned by everyone. He still went on exploring the 
Monster, and many mathematicians say that those plastic bags he 
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carries around with him contain not just bus timetables but more 
secrets about the Monster than anyone can imagine. But they will be 
hard to coax out of him. 

Finding moonshine 

There was still one big mystery: What was it that was casting its light 
on both the Monster and the modular function? Conway had left 
behind the mystery of moonshine, but one of his PhD students who’d 
remained in Cambridge had caught the moonshine bug. Richard Bor-
cherds’ application to do a PhD in the department was almost rejected 
when friends doctored his application form and under ‘sex’ wrote ‘yes 
please’. The head of department was not impressed, but Conway spot-
ted that Borcherds was a bright student and persuaded the head of 
department to turn a blind eye to the cheeky comment. 

Conway had been trying to prove something about the Leech lattice 
for about six weeks and had got completely stuck. He mentioned the 
problem to Borcherds. A couple of weeks later, Conway was still stuck. 
Borcherds looked surprised: ‘Oh, you still haven’t proved it? I did it 
last week.’ Conway admits that he didn’t really teach Borcherds at all 
– he didn’t need to. Borcherds just went off and did his own thing. 
Borcherds has a rather Neanderthal look about him, with hair every-
where and arms that droop to the floor and seem to drag along behind 
him as he runs from one place to another. Communicating his ideas 
was not one of Borcherds’ strong points. ‘His first seminar was a 
disaster,’ Conway remembers. ‘After about 20 minutes he could see 
that he just wasn’t going to present the material in time. So he just 
gave up and ran out.’ 

When Cambridge emptied out of group theorists, Borcherds was 
not particularly concerned. He had always been something of a loner. 
He liked cycling long distances by himself. His other passion was 
caving and potholing: being stuck underground in total darkness with 
hardly anywhere to move, not sure whether there was a way forward 
or whether you were going to able to wriggle backwards, was his idea 
of a fun weekend break from mathematics. 

Mathematically too, Borcherds found himself squeezing further and 
further down a tunnel – and this one seemed to have a light gleaming 
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at the end of it. He was beginning to believe that this was the light of 
the moonshine glinting off the Monster. He had become fascinated by 
a new and esoteric algebraic structure called a vertex operator algebra. 
Just as Galois’s abstract idea of a group had taken decades to catch on, 
this structure was not yet mainstream mathematics: 

I got a bit disillusioned, because it was obvious that nobody else was 
really interested in it. There is no point in having an idea that is so 
complicated that nobody can understand it. I remember I used to give 
talks on vertex algebras, and usually nobody turned up. Then there was 
this one time when I got a really big audience. But there had been a 
misprint, and the title read ‘Vortex algebras’, not ‘Vertex algebras’. The 
audience was made up of fluid physicists, and when they realized it was 
a misprint, they weren’t interested either in what I had to say. 

If the physicists weren’t interested then, they have certainly have 
started listening to Borcherds now. It turns out that these algebraic 
structures help to underpin some of the deepest ideas of string theory, 
the current theory that hopes to unite relativity and quantum physics. 
As physicists have discovered, there is a lot of strange number theory 
wrapped up in string theory, including the modular function that sits 
on one side of the moonshine mirror. Borcherds found that these 
algebraic structures were also inextricably linked to the Monster’s 
symmetries. The insight came not while he was stuck down a pothole, 
but on a bus journey: 

I was in Kashmir. I had been travelling around northern India, and 
there was one really long, tiresome bus journey which lasted about 24 
hours. Then the bus had to stop because there was a landslide and we 
couldn’t go any further. It was all pretty darn unpleasant. Anyway, I 
was just toying with some calculations on this bus journey and finally 
I found an idea which made everything work. 

His calculations revealed why the numbers in the Atlas for the Monster 
and the modular numbers from number theory were both being illumi-
nated by the vertex operator algebras. This connection with the algebra 
of string theory and the physical theory of the universe made the 
moonshine even more exotic than anyone had imagined. Once word 
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got out, people started talking mystically about the Monster being 
‘the symmetry group of the universe’. At the very least, this strange 
symmetrical snowflake in 196,883-dimensional space was revealing 
patterns that resonated with ideas in theoretical physics. 

For Borcherds, the revelation was one of most of the exciting 
moments of his life: ‘I sometimes wonder if this is the feeling you get 
when you take certain drugs. I don’t actually know, as I have not 
tested this theory of mine.’ The discovery catapulted his ideas into the 
limelight. The audiences for his talks were now packed with mathema-
ticians and physicists, and this time not because of a typo in the title. 
By 1998 Borcherds’ work on moonshine was being recognized as one 
of the greatest achievements in mathematics. He was awarded a Fields 
Medal at the International Congress of Mathematicians in Berlin that 
year. He explains that the award did not excite him as much as the 
discovery on the bus in Kashmir: ‘Before the award, I used to think it 
was terribly important, but now I realize that it’s meaningless.’ 

The conference held in Edinburgh to celebrate 25 years since the 
discovery of moonshine was also dedicated to understanding the 
insights provided by Borcherds’ work. It is curious that although his 
work proves the connection between number theory and this huge 
symmetry, there is still a sense that we haven’t got to the bottom of 
the connection. At a recent meeting where everyone was congratulating 
Borcherds on his achievement, Borcherds’ own supervisor, John 
Conway, stood up and declared: ‘I come not to praise, but to bury . . .’  
and launched into a critique of Borcherds’ work. Conway still felt that 
Borcherds had not truly illuminated what it was that was connecting 
the symmetry of the Monster with the modular function from number 
theory. 

The mathematician Andrew Ogg had noticed some early evidence 
for moonshine in the 1970s and had offered a bottle of Jack Daniel’s 
for an explanation. He recently asked Conway if he should present the 
bottle to Borcherds. ‘No,’ said Conway, ‘he’s proved the connection 
but not explained it . . .’  Conway believes that a deeper explanation is 
waiting to be uncovered and doesn’t think we should let the beast lie: 

I think in two hundred years’ time that someone will be looking at 
some natural geometric set-up and they’ll see it has lots of symmetries 
and as they study it they’ll gradually see it has the symmetries of the 
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Monster. Then they’ll dig out all our old papers from several centuries 
earlier about the Monster. 

During the conference in Edinburgh, a report was circulating about 
a piece of research which had found that mathematics departments 
have a higher proportion of people with Asperger’s syndrome than 
any other university departments. A general denial rippled through 
the conference, but when Borcherds was interviewed for a newspaper 
following his award of a Fields Medal, he admitted that he thought he 
suffered from it: ‘I’ve got a hell of a lot of the symptoms. I once read 
something in a newspaper and it said there are six signs of Asperger’s 
syndrome, and I said to myself, ‘‘Hey, I’ve got five of those!’’’ 

Hans Asperger, a Viennese paediatrician, identified the syndrome in 
his 1944 doctoral thesis as a high-functioning variant of autism. Some 
of the criteria for the syndrome that Borcherds had read about include 
severely impaired social interaction; all-absorbing narrow interests; 
imposition of routines and non-verbal communication; and in some 
cases clumsiness. It is also associated with a strong drive to systematize. 
The mathematical world seems well suited to those with such traits, 
and Asperger showed that many with the syndrome gravitated towards 
professions that exploited their mathematical skills. 

Borcherds is well known among his friends for slinking off during 
a dinner party, to be found hours later deep in a mathematical text. 
He just doesn’t see the point of small talk. He is not a conversationalist, 
can’t see the point of a telephone conversation except for transferring 
information, and will avoid eye contact with you at all costs on the 
painful occasions when he does have to engage in conversation. But 
his traits are so typical of those in a mathematics department that his 
peculiarities are easily tolerated. 

Simon Baron-Cohen, one of the leading researchers into Asperger’s 
and autism based in Cambridge, read about Borcherds’ self-diagnosis 
and was curious to interview the mathematician himself. After all, it 
has become quite fashionable for people to lay claim to a pinch of 
autism or Asperger’s in recent decades. As Asperger himself wrote, ‘It 
seems that for success in science or art a dash of autism is essential.’ 

Asperger’s is strongly inheritable, and Baron-Cohen was not sur-
prised to find that Borcherds’ grandfather, who lived in South Africa, 
was the kind of man who preferred spending weeks out hunting in the 
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bush, with no thought for his family and without missing the company 
of human beings. Borcherds escaped instead into mathematics, stalking 
alone the mysteries of the Monster. Baron-Cohen’s analysis confirmed 
Borcherds’ self-diagnosis. He presented evidence of ‘extremely low 
empathizing, extremely high systematizing and a lot of autistic traits. 
His talents in mathematics have resulted in his finding a niche where he 
can excel (to put it mildly), and where his social oddness is tolerated.’ 

Queens we’re in 

As we were sitting around after the day’s talks discussing the research 
on the connection between mathematics and Asperger’s, Norton 
bustled over to join us, his bags bashing against anyone who was in 
his way. No one could deny that Norton displays many of the traits 
that Borcherds saw in himself. He’d changed his shirt once since the 
beginning of the conference, but the second shirt is as full of holes as 
the previous one. It’s true that he is obsessed with numbers and train 
timetables. But when you dig a little deeper you discover that he is 
very politically active, working for the Labour Party and a key voice 
of Transport 2000, a political movement campaigning for public trans-
port. While we were in Edinburgh he was interviewed on BBC Radio 
Cambridge about a campaign to stop the closure of a local branch line. 
He told me at the conference that he has travelled every stretch of the 
British rail network. ‘Except for one,’ he said, frothing slightly at the 
mouth at the thought of this virgin track. There is a branch line from 
Newquay that he is saving up for a special occasion. 

Norton brandished a detailed map of the area around the campus. 
‘Can we go for a curry in Currie?’ The discovery of the name of this 
little local village is too much for Norton’s sense of symmetry. Conway 
was in two minds. ‘We’ll let the coin decide,’ he said, taking out a 50 
pence piece. ‘Queens we’re in; tails we’re out.’ It lands with the queen’s 
head up. So dinner is in the campus cafeteria. 

Conway was in an upbeat mood. His failure to summon the Monster 
at the beginning of the week had sat heavily on his shoulders. He’d 
spent the days since trying to find a better way to explain something 
he thought was so natural and obvious. The breakthrough was a set of 
pictures he’d concocted that he thought showed much more clearly 
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something that was getting lost in the notation and equations he’d 
been writing on the blackboard on the first day. So he’d asked the 
organizers if he could give his talk again. This morning there were far 
fewer glazed looks, and Conway felt that he’d lived up to his desire to 
emulate Hotspur and raise the spirits from the deep. 

We listened and watched as Conway entertained us. He had a 
wonderful set of card tricks that he enjoyed showing off to us. Origami 
frogs jumped from his hands. He even demonstrated how to make 
20 coins land heads. And then all land tails. We began to wonder 
whether our decision to stay in that night really was down to chance. 
We were all sworn to secrecy not to divulge the trick behind the coins 
(but let me just hint that there is some strange asymmetry in many 
coins that Conway has found a way to exploit). 

We then got a demonstration of his tongue gymnastics. He’d read 
as a student how 1 in 4 can roll their tongues. Out came his tongue, 
with a valley in the middle. 1 in 40 can make a clover. Out popped his 
tongue, now with three valleys. 1 in 400 can invert their tongues. Sure 
enough, we got to see Conway’s tongue upside down. 1 in 4,000 can 
make their tongues go fat and thin. Out came the tongue again, now 
all puffed up, then deflated to a thin sliver. He explained how he’d been 
photographed by Reader’s Digest after he’d responded to an appeal for 
volunteers who could do all four. He’d only met one other person 
who could match his lingual callisthenics, a woman at a party. After 
comparing tongues, Conway suggested that they were meant to be 
together, but she didn’t think so and backed off quickly. ‘Anyway, I 
don’t think she could do this . . .’  and  Conway had set up a sine wave 
oscillating along the length of his tongue. 

Before eating dinner, he pulled out a massive bag full of pills. ‘I had 
a heart attack a few years ago. Now I have to eat all these with my 
dinner.’ Always the mathematician, he has found a pattern in the 
colours and shapes of the pills which allows him to remember which 
and how many to take in the morning and in the evening. 

Conway is such a good communicator, a wonderful performer, a 
master at finding the perfect language and notation to conjure up 
mathematical ideas in others, that it’s hard to think of him as aspergic. 
Yet, with him it’s one-way traffic – Conway the performer. He doesn’t 
seem remotely interested in what anyone else has to say unless it’s 
about hardcore mathematics. It’s almost as though he is compelled to 
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keep up a constant flow of stories and anecdotes and ideas to forestall 
any possibility of normal two-way human interaction. He admitted 
once in an interview: 

I have a very odd sort of memory. I can remember the most useless, 
obscure details but when it comes to things that other people think 
important, I can’t recall them for the life of me. When I was at Cam-

bridge, I never learnt the name of some of my colleagues – and I worked 
with them for twenty years! 

McKay wandered over to see what everyone was up to. ‘Do you know 
how moonshine is translated into Chinese?’ The word moonshine is 
quite difficult to translate into other languages because it can lose the 
nuances it has in English. ‘Apparently they use the name for a man 
who sells the plot of land where he grows his rice, the very thing his 
family relies on.’ He spotted the Japanese mathematician Harada on 
the other side of the room. ‘Harada, Harada . . . how do you translate 
moonshine?’ It turned out that Japanese mathematicians simply use 
the word for the light that shines off the moon. McKay was a bit 
disappointed that his story had fallen flat. ‘I think moonshine is a bad 
name anyway. It put off the heavyweights who might have gone into 
the subject.’ 

Norton proudly spilled the content of his wallet onto the table to 
show us the bus and train tickets he had collected over the past few 
months. He pulled out one card he was particularly proud of: his 
membership of the Harwich, Felixstowe & Shotley Foot Ferry Society. 
He was also keen to give us details of his journey to the conference. 
While the rest of us had found the most direct route from our home 
to Edinburgh, Norton’s extraordinary itinerary included several con-
nections at small, provincial stations which showed off his grasp of the 
nation’s train network. ‘Are you going back the same way?’ someone 
asked innocently. ‘I don’t think so!’ Norton replied incredulously. He’d 
planned his trip back to take advantage of a boat crossing that only 
operates on a Wednesday. 

Although the conference had another week to run, this was my last 
night. I had stolen a week away from my real family to celebrate 25 
years of moonshine. But I didn’t want to be away for too long. We’d 
spent the previous seven months living in Guatemala. Our plan to 
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adopt children had led us to an orphanage in Antigua, where we met 
the identical twin girls who were to become part of our family. Shani 
and I decided to adopt them earlier that year, although the decision 
had nothing to do with symmetry. We’d just arrived home, a bigger 
family, when I went up to Scotland for the conference. 

July two years on and the twins, Magaly and Ina, are three years old 
and starting to count. Although genetically identical they are very 
different; life isn’t always as clear cut as mathematics. Next month the 
four-year cycle of the ICM brings another international gathering of 
mathematicians. Another round of Fields Medals will be awarded to 
the Borcherds of the day, but I am four months too old and will 
have to content myself with looking on from the sidelines. I’ve got a 
runner’s-up prize. It is considered an honour to receive an invitation 
to present your work at the Congress, and I am preparing my lecture 
for next month. Last year my birthday was spent sitting on a beach in 
Sinai. This year on my birthday I’ve got to give a lecture at four in the 
afternoon. 

Looking back over the year, the problem I have been working on 
has probably ended up getting more complicated than it was 12 months 
ago. It will make the final resolution, if it comes, that more gratifying. 
What’s the satisfaction in solving easy problems? I’m still not sure even 
what the final answer will be. 

Borcherds is right. In mathematics the real prize is not a medal or 
an invitation to the ICM, but making the breakthrough on the problem 
you’ve dedicated your life to. The prize might be claimed at any time 
and any place: on a broken-down bus in Kashmir, on a Saturday in 
Cambridge at twenty past midnight, or while listening to the engaged 
signal on the end of a telephone line in Bonn. 
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Descartes, René 149, 165, 220 
diamond 14, 37, 37, 42, 53 
dice 55; cuboid 48–9; five possible 

shapes 58–9, 90; knucklebones 44; 
tetrahedral 44–8, 45; twelve-faced 49, 
50 

Dickson, Leonard 297 
digital data: error detection/correction 

282–93 
DNA 13, 65, 106, 272, 282 
dodecahedron 59, 60, 73, 240, 271; great 

dodecahedron 164–5, 165; indivisible 
symmetry group 214, 218, 220, 229 

drugs 267–8 
drums 255–6, 256 

duality 57, 58 
Duckworth, Richard, and Stedman, 

Fabian: Tintinnalogia 259 

´ 

182–3, 187, 188, 190–91, 194, 210, 296 
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Wessel, Caspar 153 
West Africa 249 
whole numbers 149–50 
Wiles, Andrew 20, 117 
Wilson, Rob 21, 23, 338, 345 
writing 282–3 

X-ray crystallography 270, 271 
Xenakis, Iannis 259–61, 260 

zero 71, 122, 123, 125, 282 
zeta 101–2 
zeta functions 100, 102–7, 111, 113; of 

elliptic curves 142; formulae 141–5, 
172; palindromic symmetry 141–5, 
172, 175 



About the Author 

D8I:LJ�  ;L�  J8LKFP  is a professor of 

mathematics at the University of Oxford. The author of 

The Music of the Primes, he is a frequent contributor on 

mathematics to newspapers and radio, and has hosted 

several programs for BBC television. He lives in London. 

Visit www.AuthorTracker.com for exclusive information on 

your favorite HarperCollins author. 



also by marcus du sautoy 

The Music of the Primes:  

Searching to Solve the Greatest Mystery in Mathematics 



Credits 

Jacket design by Jarrod Taylor 



Copyright 

SYMMETRY. Copyright © 2008 by Marcus du Sautoy. All rights 

reserved under International and Pan-American Copyright 

Conventions. By payment of the required fees, you have been granted 

the non-exclusive, nontransferable right to access and read the text of 

this e-book on-screen. No part of this text may be reproduced, 

transmitted, down-loaded, decompiled, reverse engineered, or stored in 

or introduced into any information storage and retrieval system, in any 

form or by any means, whether electronic or mechanical, now known 

or hereinafter invented, without the express written permission of 

HarperCollins e-books. 

Adobe Acrobat eBook Reader February 2008 

ISBN 978-0-06-162588-6 

10 9 8 7 6 5 4 3 2 1 



Australia 

Pymble, NSW 2073, Australia 

Canada 
HarperCollins Publishers Ltd. 

New Zealand 
HarperCollinsPublishers (New Zealand) Limited 

Auckland, New Zealand 

United Kingdom 
HarperCollins Publishers Ltd. 
77-85 Fulham Palace Road 
London, W6 8JB, UK 

United States 
HarperCollins Publishers Inc. 
10 East 53rd Street 

About the Publisher 

HarperCollins Publishers (Australia) Pty. Ltd. 
25 Ryde Road (PO Box 321) 

http://www.harpercollinsebooks.com.au 

55 Avenue Road, Suite 2900 
Toronto, ON, M5R, 3L2, Canada 
http://www.harpercollinsebooks.ca 

P.O. Box 1 

http://www.harpercollinsebooks.co.nz 

http://www.uk.harpercollinsebooks.com 

New York, NY 10022 
http://www.harpercollinsebooks.com 


	Cover
	Summetry: A Journey into the Patterns of Nature
	Contents
	1. August: Endings and Beginnings
	Midday, 26 August, the Sinai Desert
	Nature’s language
	The symmetry seekers
	Setting sail
	Midnight, 26 August, the Sinai Desert

	2. September: The Next Roll of the Dice
	1 September, Stoke Newington, London
	10 September, the British Museum
	Pythagoras and the sphere of 12 pentagons
	Plato – from reality to abstraction
	Mathematical proof

	3. October: The Palace of Symmetry
	17 October, en route to Granada
	Hunting for treasure
	Triangles and hexagons, gyrations and miracles
	Hidden symmetries

	4. November: Tribal Gathering
	1 November, Okinawa
	Frenzied and innumerable
	The pattern hunter
	Green trousers and green tea
	Black box
	Mathematical expeditions
	Mathematics and kabuki: theatres of the elite

	5. December: Connections
	5 December, Max Planck Institute, Bonn
	Mathematical poetry: cracking the secrets of equations
	Mathematical cock fighting
	The controversy of the cubic
	12 December, Max Planck Institute

	6. January: Impossibilities
	23 January, Oxford
	A glimpse through the Strait of Magellan
	Dismissing mental tortures
	Shuffling solutions
	The cantankerous Cauchy
	Ruffini’s tiny mistake
	‘Yours destroyed’

	7. February: Revolution
	13 February, La Villette, Paris
	What shape is your equation?
	Missing manuscripts
	Revolution
	On trial
	Mathematical escapism
	Love in the time of cholera
	13 February, p.m., La De´fense, Paris

	8. March: Indivisible Shapes
	17 March, Stoke Newington
	Mathematical packages
	Prime symmetry
	Card tricks
	The hardy and the handsome
	Applying the letter of the law
	28 March, Stoke Newington

	9. April: Sounding Symmetry
	5 April, London Bridge
	Symmetry in 32 movements
	Pattern searching
	Ringing the changes
	5 April, mudbank on the Thames

	10. May: Exploitation
	4 May, Oxford
	Tasty tetrahedrons and poisonous pyramids
	Viruses: why symmetry makes you sneeze
	Mirrors in the mind
	You’re cracking up...
	From error detecting to error correcting
	16 May, Jerusalem

	11. June: Sporadic
	Lighting the fuse
	Janko’s first bookend
	‘When I grow up . . . I want to be a mathematician’
	24-dimensional grocers
	The treasure chest symmetry group
	Fischer’s phoenixes
	14 June, Stoke Newington

	12. July: Reflections
	Moonshine
	The mathematical Doctor Frankenstein
	5 July, Edinburgh
	Finding moonshine
	Queens we’re in

	Further Reading
	Acknowledgements
	Picture credits
	Index
	About the Author
	Also by Marcus du Sautoy
	Credits
	Copyright
	About the Publisher



