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Preface to Second Edition

In the second edition, while keeping much of the material from the first edition, there

are some significant changes and additions. Due to the popularity of R and its free

availability, we have incorporated R-codes throughout the book. This will make it

easier for students to do the data analysis. We have also added a chapter on goodness

of fit tests and illustrated their applicability with several examples. In addition we

have introduced more probability distribution functions with real world data driven

applications in global warming, brain and prostate cancer, national unemployment,

and total rain fall. In this edition, we have shortened the point estimation chapter and

merged it with interval estimation. In addition, many corrections and additions are

made to reflect the continuous feedback we have obtained.

We have created a student companion website, http://booksite.elsevier.com/

9780124171138, with solutions to selected problems and data on Global warming,

brain and prostate cancer, national unemployment, and total rain fall. We have also

posted solutions to most of the problems in the instructor site, http://textbooks.

elsevier.com/web/Manuals.aspx?isbn¼9780124171138.

PREFACE TO FIRST EDITION
This textbook is of an interdisciplinary nature and is designed for a one- or two-

semester course in probability and statistics, with basic calculus as a prerequisite.

The book is primarily written to give a sound theoretical introduction to statistics

while emphasizing applications. If teaching statistics is the main purpose of a two-

semester course in probability and statistics, this textbook covers all the probability

concepts necessary for the theoretical development of statistics in two chapters, and

goes on to cover all major aspects of statistical theory in two semesters, instead of

only a portion of statistical concepts. What is more, using the optional section on

computer examples at the end of each chapter, the student can also simultaneously

learn to utilize statistical software packages for data analysis. It is our aim, without

sacrificing any rigor, to encourage students to apply the theoretical concepts they

have learned. There are many examples and exercises concerning diverse

application areas that will show the pertinence of statistical methodology to solving

real-world problems. The examples with statistical software and projects at the end of

the chapters will provide good perspective on the usefulness of statistical methods. To

introduce the students to modern and increasingly popular statistical methods, we

have introduced separate chapters on Bayesian analysis and empirical methods.

One of the main aims of this book is to prepare advanced undergraduates and

beginning graduate students in the theory of statistics with emphasis on interdisci-

plinary applications. The audience for this course is regular full-time students from

mathematics, statistics, engineering, physical sciences, business, social sciences,

materials science, and so forth. Also, this textbook is suitable for people who work

xix
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in industry and in education as a reference book on introductory statistics for a good

theoretical foundation with clear indication of how to use statistical methods. Tra-

ditionally, one of the main prerequisites for this course is a semester of the introduc-

tion to probability theory. A working knowledge of elementary (descriptive)

statistics is also a must. In schools where there is no statistics major, imposing such

a background, in addition to calculus sequence, is very difficult. Most of the present

books available on this subject contains full one-semester material for probability

and then, based on those results, continue on to the topics in statistics. Also, some

of these books include in their subject matter only the theory of statistics, whereas

others take the cookbook approach of covering the mechanics. Thus, even with two

full semesters of work, many basic and important concepts in statistics are never cov-

ered. This book has been written to remedy this problem. We fuse together both con-

cepts in order for the student to gain knowledge of the theory and at the same time

develop the expertise to use their knowledge in real-world situations.

Although statistics is a very applied subject, there is no denying that it is also a

very abstract subject. The purpose of this book is to present the subject matter in such

a way that anyone with exposure to basic calculus can study statistics without spend-

ing two semesters of background preparation. To prepare students, we present an

optional review of the elementary (descriptive) statistics in Chapter 1. All the prob-

ability material required to learn statistics is covered in two chapters. Students with a

probability background can either review or skip the first three chapters. It is also our

belief that any statistics course is not complete without exposure to computational

techniques. At the end of each chapter, we give some examples of how to use Mini-

tab, SPSS, and SAS to statistically analyze data. Also, at the end of each chapter,

there are projects that will enhance the knowledge and understanding of the materials

covered in that chapter. In the chapter on the empirical methods, we present some of

the modern computational and simulation techniques, such as bootstrap, jackknife,

and Markov chain Monte Carlo methods. The last chapter summarizes some of the

steps necessary to apply the material covered in the book to real-world problems. The

first eight chapters have been class tested as a one-semester course for more than

3 years with five different professors teaching. The audience was junior- and

senior-level undergraduate students from many disciplines who had two semesters

of calculus, most of them with no probability or statistics background. The feedback

from the students and instructors was very positive. Recommendations from the

instructors and students were very useful in improving the style and content of

the book.

AIM AND OBJECTIVE OF THE TEXTBOOK
This textbook provides a calculus-based coverage of statistics and introduces stu-

dents to methods of theoretical statistics and their applications. It assumes no prior

knowledge of statistics or probability theory, but does require calculus. Most books

at this level are written with elaborate coverage of probability. This requires teaching
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one semester of probability and then continuing with one or two semesters of statis-

tics. This creates a particular problem for nonstatistics majors from various disci-

plines who want to obtain a sound background in mathematical statistics and

applications. It is our aim to introduce basic concepts of statistics with sound theo-

retical explanations. Because statistics is basically an interdisciplinary applied sub-

ject, we offer many applied examples and relevant exercises from different areas.

Knowledge of using computers for data analysis is desirable. We present examples

of solving statistical problems using Minitab, SPSS, and SAS.

FEATURES
• During years of teaching, we observed that many students who do well in

mathematics courses find it difficult to understand the concept of statistics.

To remedy this, we present most of the material covered in the textbook with

well-defined step-by-step procedures to solve real problems. This clearly

helps the students to approach problem solving in statistics more logically.

• The usefulness of each statistical method introduced is illustrated by several

relevant examples.

• At the end of each section, we provide ample exercises that are a good mix of

theory and applications.

• In each chapter, we give various projects for students to work on. These projects

are designed in such a way that students will start thinking about how to apply the

results they learned in the chapter as well as other issues they will need to know

for practical situations.

• At the end of the chapters, we include an optional section on computer methods

with Minitab, SPSS, and SAS examples with clear and simple commands

that the student can use to analyze data. This will help the student to learn

how to utilize the standard methods they have learned in the chapter to study

real data.

• We introduce many of the modern statistical computational and simulation

concepts, such as the jackknife and bootstrap methods, the EM algorithms, and

the Markov chain Monte Carlo methods such as the Metropolis algorithm, the

Metropolis-Hastings algorithm, and the Gibbs sampler. The Metropolis

algorithm was mentioned in Computing in Science and Engineering as being

among the top 10 algorithms having the “greatest influence on the development

and practice of science and engineering in the 20th century.”

• We have introduced the increasingly popular concept of Bayesian statistics and

decision theory with applications.

• A separate chapter on design of experiments, including a discussion on the

Taguchi approach, is included.

• The coverage of the book spans most of the important concepts in statistics.

Learning thematerial along with computational examples will prepare students to

understand and utilize software procedures to perform statistical analysis.
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• Every chapter contains discussion on how to apply the concepts and what are the

issues related to applying the theory.

• A student’s solution manual, instructor’s manual, and data disk are provided.

• In the last chapter, we discuss some issues in applications to clearly demonstrate

in a unified way how to check for many assumptions in data analysis and what

steps one needs to follow to avoid possible pitfalls in applying the methods

explained in the rest of this textbook.
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Flow Chart

In this flow chart, we suggest some options on how to use the book in a one-semester

or two-semester course. For a two-semester course, we recommend coverage of the

complete textbook. However, Chapters 1, 9, and 14 are optional for both one- and

two-semester courses and can be given as reading exercises. For a one-semester

course, we suggest the following options: A, B, C, D.

Ch. 2

Ch. 5 

Ch. 3

With 
probability 
background 
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OBJECTIVE

Review the basic concepts of elementary statistics.

Sir Ronald Aylmer Fisher

(Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Fisher.html)

Sir Ronald Fisher F.R.S. (1890-1962) was one of the leading scientists of the 20th
century who laid the foundations for modern statistics. As a statistician working at

the Rothamsted Agricultural Experiment Station, the oldest agricultural research

institute in the United Kingdom, he also made major contributions to Evolutionary

Mathematical Statistics with Applications in R
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Biology and Genetics. The concept of randomization and the analysis of variance

procedures that he introduced are now used throughout the world. In 1922 he gave

a new definition of statistics. Fisher identified three fundamental problems in statis-

tics: (1) specification of the type of population that the data came from; (2) estima-

tion; and (3) distribution. His book Statistical Methods for Research Workers (1925)
was used as a handbook for the methods for the design and analysis of experiments.

Fisher also published the books titled The Design of Experiments (1935) and Statis-
tical Tables (1947). While at the Agricultural Experiment Station he had conducted

breeding experiments with mice, snails, and poultry, and the results he obtained led

to theories about gene dominance and fitness that he published in The Genetical
Theory of Natural Selection (1930).

1.1 INTRODUCTION
In today’s society, decisions are made on the basis of data. Most scientific or indus-

trial studies and experiments produce data, and the analysis of these data and drawing

useful conclusions from them become one of the central issues. Statistics is an inte-

gral part of the quantitative approach to knowledge. The field of statistics is con-

cerned with the scientific study of collecting, organizing, analyzing, and drawing

conclusions from data. Statistics benefits all of us because of its ability to predict

the future based on data we have previously gathered. Statistical methods help us

to transform data to information and knowledge. Statistical concepts enable us to

solve problems in a diversity of contexts, add substance to decisions, and reduce

guesswork. The discipline of statistics stemmed from the need to place knowledge

management on a systematic evidence base. Earlier works on statistics dealt only

with the collection, organization, and presentation of data in the form of tables

and charts. In order to place statistical knowledge on a systematic evidence base,

we require a study of the laws of probability. In mathematical statistics we create

a probabilistic model and view the data as a set of random outcomes from that model.

Advances in probability theory enable us to draw valid conclusions and to make rea-

sonable decisions on the basis of data.

Statistical methods are used in almost every discipline, including agriculture,

astronomy, biology, business, communications, economics, education, electronics,

geology, health sciences, and many other fields of science and engineering, and

can aid us in several ways. Modern applications of statistical techniques include sta-

tistical communication theory and signal processing, information theory, network

security and denial of service problems, clinical trials, artificial and biological intel-

ligence, quality control of manufactured items, software reliability, and survival

analysis. The first of these is to assist us in designing experiments and surveys.

We desire our experiment to yield adequate answers to the questions that prompted

the experiment or survey. We would like the answers to have good precision without

involving a lot of expenditure. Statistically designed experiments facilitate develop-

ment of robust products that are insensitive to changes in the environment and
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internal component variation. Another way that statistics assists us is in organizing,

describing, summarizing, and displaying experimental data. This is termed descrip-
tive statistics. A third use of statistics is in drawing inferences and making decisions

based on data. For example, scientists may collect experimental data to prove or dis-

prove an intuitive conjecture or hypothesis. Through the proper use of statistics we

can conclude whether the hypothesis is valid or not. In the process of solving a real-

life problem using statistics, the following three basic steps may be identified. First,

consistent with the objective of the problem, we identify the model—the appropriate

statistical method. Then, we justify the applicability of the selected model to fulfill

the aim of our problem. Last, we properly apply the related model to analyze the data

and make the necessary decisions, which results in answering the question of our

problem with minimum risk. Starting with Chapter 2, we will study the necessary

background material to proceed with the development of statistical methods for solv-

ing real-world problems.

In the present chapter we briefly review some of the basic concepts of descriptive

statistics. Such concepts will give us a visual and descriptive presentation of the

problem under investigation. Now, we proceed with some basic definitions.

1.1.1 DATA COLLECTION
One of the first problems that a statistician faces is obtaining data. The inferences that

we make depend critically on the data that we collect and use. Data collection

involves the following important steps.

GENERAL PROCEDURE FOR DATA COLLECTION
1. Define the objectives of the problem and proceed to develop the experiment or survey.

2. Define the variables or parameters of interest.

3. Define the procedures of data collection and measuring techniques. This includes sampling pro-

cedures, sample size, and data-measuring devices (questionnaires, telephone interviews, etc.).

EXAMPLE 1.1.1
We may be interested in estimating the average household income in a certain community. In this

case, the parameter of interest is the average income of a typical household in the community. To

acquire the data, we may send out a questionnaire or conduct a telephone interview. Once we have

the data, we may first want to represent the data in graphical or tabular form to better understand its

distributional behavior. Thenwewill use appropriate analytical techniques to estimate the parameter(s)

of interest, in this case the average household income.

Very often a statistician is confined to data that have already been collected, pos-

sibly even collected for other purposes. This makes it very difficult to determine the

quality of data. Planned collection of data, using proper techniques, is much preferred.
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1.2 BASIC CONCEPTS
Statistics is the science of data. This involves collecting, classifying, summarizing,

organizing, analyzing, and interpreting data. It also involves model building. Suppose

we wish to study household incomes in a certain neighborhood.Wemay decide to ran-

domly select, say, 50 families and examine their household incomes. As another exam-

ple, suppose wewish to determine the diameter of a rod, and we take 10measurements

of the diameter.Whenwe consider these two examples, we note that in the first case the

population (the household incomes of all families in the neighborhood) really exists,

whereas in the second, the population (set of all possiblemeasurements of the diameter)

is only conceptual. In either case we can visualize the totality of the population values,

ofwhich our sample data are only a small part. Thus,we define a population to be the set

of all measurements or objects that are of interest and a sample to be a subset of that

population. The population acts as the sampling frame fromwhich a sample is selected.

Now we introduce some basic notions commonly used in statistics.

Definition 1.2.1 A population is the collection or set of all objects or measure-
ments that are of interest to the collector.

EXAMPLE 1.2.1
Suppose we wish to study the heights of all female students at a certain university. The population

will be the set of the measured heights of all female students in the university. The population is not

the set of all female students in the university.

In real-world problems it is usually not possible to obtain information on the

entire population. The primary objective of statistics is to collect and study a subset

of the population, called a sample, to acquire information on some specific charac-

teristics of the population that are of interest.

Definition 1.2.2 The sample is a subset of data selected from a population. The
size of a sample is the number of elements in it.

EXAMPLE 1.2.2
We wish to estimate the percentage of defective parts produced in a factory during a given week

(5 days) by examining 20 parts produced per day. The parts will be examined each day at randomly

chosen times. In this case “all parts produced during the week” is the population and the (100)

selected parts for 5 days constitutes a sample.

Other common examples of sample and population are:

Political polls: The population will be all voters, whereas the sample will be the

subset of voters we poll.

Laboratory experiment: The population will be all the data we could have

collected if we were to repeat the experiment a large number of times (infinite

number of times) under the same conditions, whereas the sample will be the data

actually collected by the one experiment.
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Quality control: The population will be the entire batch of items produced, say,

by a machine or by a plant, whereas the sample will be the subset of items

we tested.

Clinical studies: The population will be all the patients with the same disease,

whereas the sample will be the subset of patients used in the study.

Finance: All common stock listed in stock exchanges such as the New York

Stock Exchange, the American Stock Exchanges, and over-the-counter is the

population. A collection of 20 randomly picked individual stocks from these

exchanges will be a sample.

The methods consisting mainly of organizing, summarizing, and presenting data

in the form of tables, graphs, and charts are called descriptive statistics. The methods

of drawing inferences and making decisions about the population using the sample

are called inferential statistics. Inferential statistics uses probability theory.

Definition 1.2.3 A statistical inference is an estimate, a prediction, a decision, or
a generalization about the population based on information contained in a sample.

For example, we may be interested in the average indoor radiation level in homes

built on reclaimed phosphate mine lands (many of the homes in west-central Florida

are built on such lands). In this case, we can collect indoor radiation levels for a ran-

dom sample of homes selected from this area, and use the data to infer the average

indoor radiation level for the entire region. In the Florida Keys, one of the concerns is

that the coral reefs are declining because of the prevailing ecosystems. In order to test

this, one can randomly select certain reef sites for study and, based on these data,

infer whether there is a net increase or decrease in coral reefs in the region. Here

the inferential problem could be finding an estimate, such as in the radiation problem,

or making a decision, such as in the coral reef problem. We will see many other

examples as we progress through the book.

1.2.1 TYPES OF DATA
Data can be classified in several ways. We will give two different classifications, one

based on whether the data are measured on a numerical scale or not, and the other on

whether the data are collected in the same time period or collected at different time

periods.

Definition 1.2.4 Quantitative data are observations measured on a numerical
scale. Non numerical data that can only be classified into one of the groups of cat-
egories are said to be qualitative or categorical data.

EXAMPLE 1.2.3
Data on response to a particular therapy could be classified as no improvement, partial improvement,

or complete improvement. These are qualitative data. The number of minority-owned businesses in

Florida is quantitative data. The marital status of each person in a statistics class as married or not

married is qualitative or categorical data. The number of car accidents in different US cities is quan-

titative data. The blood group of each person in a community as O, A, B, AB is qualitative data.
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Categorical data could be further classified as nominal data and ordinal data.
Data characterized as nominal have data groups that do not have a specific order.

An example of this could be state names, or names of the individuals, or courses

by name. These do not need to be placed in any order. Data characterized as ordinal

have groups that should be listed in a specific order. The order may be either increas-

ing or decreasing. One example would be income levels. The data could have

numeric values such as 1, 2, 3, or values such as high, medium, or low.

Definition 1.2.5 Cross-sectional data are data collected on different elements or
variables at the same point in time or for the same period of time.

EXAMPLE 1.2.4
The data in Table 1.1 represent US federal support for the mathematical sciences in 1996, in millions

of dollars (source: AMS Notices). This is an example of cross-sectional data, as the data are collected

in one time period, namely in 1996.

Definition 1.2.6 Time series data are data collected on the same element or the
same variable at different points in time or for different periods of time.

EXAMPLE 1.2.5
The data in Table 1.2 represent US federal support for the mathematical sciences during the years

1995-1997, in millions of dollars (source: AMS Notices). This is an example of time series data,

because they have been collected at different time periods, 1995 through 1997.

Table 1.1 Federal Support for theMathematical Sciences, 1996

Federal Agency Amount

National Science Foundation 91.70

DMS 85.29

Other MPS 4.00

Department of Defense 77.30

AFOSR 16.70

ARO 15.00

DARPA 22.90

NSA 2.50

ONR 20.20

Department of Energy 16.00

University Support 5.50

National Laboratories 10.50

Total, All Agencies 185.00
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For an extensive collection of statistical terms and definitions, we can refer to

many sources such as http://www.stats.gla.ac.uk/steps/glossary/index.html. We will

give some other helpful Internet sources that may be useful for various aspects of

statistics: http://www.amstat.org/ (American Statistical Association), http://www.

stat.ufl.edu (University of Florida statistics department), http://www.statsoft.com/

textbook/ (covers a wide range of topics, the emphasis is on techniques rather than

concepts or mathematics), http://www.york.ac.uk/depts/maths/histstat/welcome.htm

(some information about the history of statistics), http://www.isid.ac.in/ (Indian Sta-

tistical Institute), http://www.isi-web.org/30-statsoc/statsoc/282-nsslist (The Inter-

national Statistical Institute), http://www.rss.org.uk/ (The Royal Statistical

Society), http://lib.stat.cmu.edu/ (an index of statistical software and routines).

For energy-related statistics, refer to http://www.eia.doe.gov/. The Earth Observing

System Data and Information System (https://earthdata.nasa.gov/about-eosdis) is

one of the largest data source for geological data. Environmental Protection Agency

(http://www.epa.gov/datafinder/) is another great source of data on environmental

related area. If you want market data, YAHOO! Finance (http://finance.yahoo.

com/) is a good source. There are various other useful sites that you could explore

based on your particular need.

EXERCISES 1.2
1.2.1. Give your own examples for qualitative and quantitative data. Also, give

examples for cross-sectional and time series data.

1.2.2. Discuss how you will collect different types of data. What inferences do

you want to derive from each of these types of data?

Table 1.2 United States Federal Support for the Mathematical Sciences
in Different Years

Agency 1995 1996 1997

National Science Foundation 87.69 91.70 98.22

DMS 85.29 87.70 93.22

Other MPS 2.40 4.00 5.00

Department of Defense 77.40 77.30 67.80

AFOSR 17.40 16.70 17.10

ARO 15.00 15.00 13.00

DARPA 21.00 22.90 19.50

NSA 2.50 2.50 2.10

ONR 21.40 20.20 16.10

Department of Energy 15.70 16.00 16.00

University Support 6.20 5.50 5.00

National Laboratories 9.50 10.50 11.00

Total, All Agencies 180.79 185.00 182.02
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1.2.3. Refer to the data in Example 1.2.4. State a few questions that you

can ask about the data. What inferences can you make by looking at

these data?

1.2.4. Refer to the data in Example 1.2.5. Can you state a few questions

that the data suggest? What inferences can you make by looking at

these data?

1.3 SAMPLING SCHEMES
In any statistical analysis, it is important that we clearly define the target population.

The population should be defined in keeping with the objectives of the study. When

the entire population is included in the study, it is called a census study because data
are gathered on every member of the population. In general, it is usually not possible

to obtain information on the entire population because the population is too large to

attempt a survey of all of its members, or it may not be cost-effective. A small but

carefully chosen sample can be used to represent the population. A sample is

obtained by collecting information from only some members of the population. A

good sample must reflect all the characteristics (of importance) of the population.

Samples can reflect the important characteristics of the populations from which

they are drawn with differing degrees of precision. A sample that accurately reflects

its population characteristics is called a representative sample. A sample that is not

representative of the population characteristics is called a biased sample. The reli-

ability or accuracy of conclusions drawn concerning a population depends on

whether or not the sample is properly chosen so as to represent the population

sufficiently well.

There are many sampling methods available. We mention a few commonly used

simple sampling schemes. The choice between these sampling methods depends on

(1) the nature of the problem or investigation, (2) the availability of good sampling

frames (a list of all of the population members), (3) the budget or available financial

resources, (4) the desired level of accuracy, and (5) the method by which data will be

collected, such as questionnaires or interviews.

Definition 1.3.1 A sample selected in such a way that every element of the pop-
ulation has an equal chance of being chosen is called a simple random sample.

Equivalently each possible sample of size n has same chance of being selected as
any other subset of sample of size n.

EXAMPLE 1.3.1
For a state lottery, 52 identical Ping-Pong balls with a number from 1 to 52 painted on each ball are

put in a clear plastic bin. A machine thoroughly mixes the balls and then six are selected. The six

numbers on the chosen balls are the six lottery numbers that have been selected by a simple random

sampling procedure.
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SOME ADVANTAGES OF SIMPLE RANDOM SAMPLING
1. Selection of sampling observations at random ensures against possible investigator biases.

2. Analytic computations are relatively simple, and probabilistic bounds on errors can be computed

in many cases.

3. It is frequently possible to estimate the sample size for a prescribed error level when designing

the sampling procedure.

Simple randomsamplingmay not be effective in all situations. For example, in aUS

presidential election, it may be more appropriate to conduct sampling polls by state,

rather than a nationwide randompoll. It is quite possible for a candidate to get amajority

of the popular vote nationwide and yet lose the election. We now describe a few other

sampling methods that may be more appropriate in a given situation.

Definition 1.3.2 A systematic sample is a sample in which every Kth element in
the sampling frame is selected after a suitable random start for the first element. We
list the population elements in some order (say alphabetical) and choose the desired
sampling fraction.

STEPS FOR SELECTING A SYSTEMATIC SAMPLE
1. Number the elements of the population from 1 to N.

2. Decide on the sample size, say n, that we need.
3. Choose K¼N/n.

4. Randomly select an integer between 1 and K.

5. Then take every Kth element.

EXAMPLE 1.3.2
If the population has 1000 elements arranged in some order and we decide to sample 10% (i.e.

N¼1000 and n¼100), then K¼1000/100¼10. Pick a number at random between 1 and K¼10

inclusive, say 3. Then select elements numbered 3, 13, 23, . . ., 993.

Systematic sampling is widely used because it is easy to implement. If the list of

population elements is in random order to begin with, then the method is similar to

simple random sampling. If, however, there is a correlation or association between

successive elements, or if there is some periodic structure, then this sampling method

may introduce biases. Systematic sampling is often used to select a specified number

of records from a computer file.

Definition 1.3.3 A sample obtained by stratifying (dividing into nonoverlapping
groups) the sampling frame based on some factor or factors and then selecting some
elements from each of the strata is called a stratified sample. Here, a population with
N elements is divided into s subpopulations. A sample is drawn from each subpop-
ulation independently. The size of each subpopulation and sample sizes in each sub-
population may vary.

91.3 Sampling Schemes



A stratified sample is a modification of simple random sampling and systematic

sampling and is designed to obtain a more representative sample, but at the cost of a

more complicated procedure. Compared to random sampling, stratified sampling

reduces sampling error.

STEPS FOR SELECTING A STRATIFIED SAMPLE
1. Decide on the relevant stratification factors (sex, age, income, etc.).

2. Divide the entire population into strata (subpopulations) based on the stratification criteria. Sizes

of strata may vary.

3. Select the requisite number of units using simple random sampling or systematic sampling from

each subpopulation. The requisite number may depend on the subpopulation sizes.

Examples of strata might be males and females, undergraduate students and grad-

uate students, managers and nonmanagers, or populations of clients in different racial

groups such as African Americans, Asians, Whites, and Hispanics. Stratified sam-

pling is often used when one or more of the strata in the population have a low inci-

dence relative to the other strata.

EXAMPLE 1.3.3
In a population of 1000 children from an area school, there are 600 boys and 400 girls. We divide

them into strata based on their parents’ income as shown in Table 1.3.

This is stratified data.

EXAMPLE 1.3.4
Refer to Example 1.3.3. Suppose we decide to sample 100 children from the population of 1000

(i.e. 10% of the population). We also choose to sample 10% from each of the categories. For

example, we would choose 12 (10% of 120) poor boys; 6 (10% of 60 rich girls), and so forth.

This yields Table 1.4. This particular sampling method is called a proportional stratified

sampling.

Table 1.3 Classification of School Children

Boys Girls

Poor 120 240

Middle Class 150 100

Rich 330 60
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SOME USES OF STRATIFIED SAMPLING
1. In addition to providing information about the whole population, this sampling scheme provides

information about the subpopulations, the study of which may be of interest. For example, in a

US presidential election, opinion polls by state may be more important in deciding on the Elec-

toral College advantage than a national opinion poll.

2. Stratified sampling can be considerably more precise than a simple random sample, because the

population is fairly homogeneous within each stratum but there is a sizable variation between the

strata.

Definition 1.3.4 In cluster sampling, the sampling unit contains groups of ele-
ments called clusters instead of individual elements of the population. A cluster is an
intact group naturally available in the field. Unlike the stratified sample where the
strata are created by the researcher based on stratification variables, the clusters
naturally exist and are not formed by the researcher for data collection. Cluster sam-
pling is also called area sampling.

To obtain a cluster sample, first take a simple random sample of groups and then

sample all elements within the selected clusters (groups). Cluster sampling is con-

venient to implement. However, because it is likely that units in a cluster will be rel-

atively homogeneous, this method may be less precise than simple random sampling.

EXAMPLE 1.3.5
Suppose we wish to select a sample of about 10% from all fifth-grade children of a county. We ran-

domly select 10% of the elementary schools assumed to have approximately the same number of

fifth-grade students and select all fifth-grade children from these schools. This is an example of clus-

ter sampling, each cluster being an elementary school that was selected.

Definition 1.3.5 Multiphase sampling involves collection of some information

from the whole sample and additional information either at the same time or later

from subsamples of the whole sample. The multiphase or multistage sampling is

basically a combination of the techniques presented earlier.

Table 1.4 Proportional Stratification of School Children

Boys Girls

Poor 12 24

Middle Class 15 10

Rich 33 6
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EXAMPLE 1.3.6
An investigator in a population census may ask basic questions such as sex, age, or marital status for

the whole population, but only 10% of the population may be asked about their level of education or

about how many years of mathematics and science education they had.

1.3.1 ERRORS IN SAMPLE DATA
Irrespective of which sampling scheme is used, the sample observations are prone to

various sources of error that may seriously affect the inferences about the population.

Some sources of error can be controlled. However, others may be unavoidable because

they are inherent in the nature of the sampling process. Consequently, it is necessary to

understand the different types of errors for a proper interpretation and analysis of the

sample data. The errors can be classified as sampling errors and nonsampling errors.
Nonsampling errors occur in the collection, recording, and processing of sample data.

For example, such errors could occur as a result of bias in selection of elements of the

sample, poorly designed survey questions, measurement and recording errors,

incorrect responses, or no responses from individuals selected from the population.

Sampling errors occur because the sample is not an exact representative of the popu-

lation. Sampling error is due to the differences between the characteristics of the

population and those of a sample from the population. For example, we are interested

in the average test score in a large statistics class of size, say, 80. A sample of size 10

grades from this resulted in an average test score of 75. If the average test for the entire

80 students (the population) is 72, then the sampling error is 75�72¼3.

1.3.2 SAMPLE SIZE
In almost any sampling scheme designed by statisticians, one of the major issues is

the determination of the sample size. In principle, this should depend on the variation

in the population as well as on the population size, and on the required reliability of

the results, that is, the amount of error that can be tolerated. For example, if we are

taking a sample of school children from a neighborhood with a relatively homoge-

neous income level to study the effect of parents’ affluence on the academic perfor-

mance of the children, it is not necessary to have a large sample size. However, if the

income level varies a great deal in the feeding area of the school, then we will need a

larger sample size to achieve the same level of reliability. In practice, another

influencing factor is the available resources such as money and time. In later chap-

ters, we present some methods of determining sample size in statistical estimation

problems.

The literature on sample surveymethods is constantly changing with new insights

that demand dramatic revisions in the conventional thinking. We know that repre-

sentative sampling methods are essential to permit confident generalizations of

results to populations. However, there are many practical issues that can arise in

real-life sampling methods. For example, in sampling related to social issues,
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whatever the sampling method we employ, a high response rate must be obtained. It

has been observed that most telephone surveys have difficulty in achieving response

rates higher than 60%, and most face-to-face surveys have difficulty in achieving

response rates higher than 70%. Even a well-designed survey may stop short of

the goal of a perfect response rate. This might induce bias in the conclusions based

on the sample we obtained. A low response rate can be devastating to the reliability

of a study. We can obtain series of publications on surveys, including guidelines on

avoiding pitfalls from the American Statistical Association (www.amstat.org). In

this book, we deal mainly with samples obtained using simple random sampling.

EXERCISE 1.3
1.3.1. Give your own examples for each of the sampling methods described in this

section. Discuss the merits and limitations of each of these methods.

1.3.2. Using the information obtained from the publications of the American

Statistical Association (www.amstat.org) or any other reference, write a short

report on how to collect survey data, andwhat the potential sources of error are.

1.4 GRAPHICAL REPRESENTATION OF DATA
The source of our statistical knowledge lies in the data. Once we obtain the sample

data values, one way to become acquainted with them is to display them in tables or

graphically. Charts and graphs are very important tools in statistics because they

communicate information visually. These visual displays may reveal the patterns

of behavior of the variables being studied. In this chapter, we will consider one-

variable data. The most common graphical displays are the frequency table, pie
chart, bar graph, Pareto chart, and histogram. For example, in the business world,

graphical representations of data are used as statistical tools for everyday process

management and improvements by decision makers (such as managers, and frontline

staff) to understand processes, problems, and solutions. The purpose of this section is

to introduce several tabular and graphical procedures commonly used to summarize

both qualitative and quantitative data. Tabular and graphical summaries of data can

be found in reports, newspaper articles, Web sites, and research studies, among

others.

Nowwe shall introduce someways of graphically representing both qualitative and

quantitative data. Bar graphs and Pareto charts are useful displays for qualitative data.

Definition 1.4.1A graph of bars whose heights represent the frequencies (or rel-
ative frequencies) of respective categories is called a bar graph.

EXAMPLE 1.4.1
The data in Table 1.5 represent the percentages of price increases of some consumer goods and ser-

vices for the period December 1990 to December 2000 in a certain city. Construct a bar chart for

these data.

Continued
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Solution
In the bar graph of Figure 1.1, we use the notations MC for medical care, El for electricity, RR for

residential rent, Fd for food, CPI for consumer price index, and A & U for apparel and upkeep.

Looking at Figure 1.1, we can identify where the maximum and minimum

responses are located, so that we can descriptively discuss the phenomenon whose

behavior we want to understand.

For a graphical representation of the relative importance of different factors

under study, one can use the Pareto chart. It is a bar graph with the height of the

bars proportional to the contribution of each factor. The bars are displayed from

the most numerous category to the least numerous category, as illustrated by the fol-

lowing example. A Pareto chart helps in separating significantly few factors that

have larger influence from the trivial many.

EXAMPLE 1.4.2
For the data of Example 1.4.1, construct a Pareto chart.

Solution
First, rewrite the data in decreasing order. Then create a Pareto chart by displaying the bars from
the most numerous category to the least numerous category.
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FIGURE 1.1

Percentage price increase of consumer goods.

Table 1.5 Percentages of Price Increases of Some
Consumer Goods and Services

Medical Care 83.3%

Electricity 22.1%

Residential Rent 43.5%

Food 41.1%

Consumer Price Index 35.8%

Apparel & Upkeep 21.2%
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Looking at Figure 1.2, we can identify the relative importance of each category

such as the maximum, the minimum, and the general behavior of the subject data.

Vilfredo Pareto (1848-1923), an Italian economist and sociologist, studied the dis-

tributions of wealth in different countries. He concluded that about 20% of

people controlled about 80% of a society’s wealth. This same distribution has been

observed in other areas such as quality improvement: 80% of problems usually stem

from 20% of the causes. This phenomenon has been termed the Pareto effect or

80/20 rule. Pareto charts are used to display the Pareto principle, arranging data so that

the few vital factors that are causing most of the problems reveal themselves. Focusing

improvement efforts on these few causes will have a larger impact and be more cost-

effective than undirected efforts. Pareto charts are used in business decision making as

a problem-solving and statistical tool that ranks problem areas, or sources of variation,

according to their contribution to cost or to total variation.

Definition 1.4.2 A circle divided into sectors that represent the percentages of a
population or a sample that belongs to different categories is called a pie chart.

Pie charts are especially useful for presenting categorical data. The pie “slices” are

drawn such that they have an area proportional to the frequency. The entire pie rep-

resents all the data, whereas each slice represents a different class or group within

the whole. Thus, we can look at a pie chart and identify the various percentages of

interest and how they compare among themselves. Most statistical software can create

3D charts. Such charts are attractive; however, they can make pieces at the front look

larger than they really are. In general, a two-dimensional view of the pie is preferable.

EXAMPLE 1.4.3
The combined percentages of carbon monoxide (CO) and ozone (O3) emissions from different

sources are listed in Table 1.6.

Construct a pie chart.

Solution
The pie chart is given in Figure 1.3.

Continued
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FIGURE 1.2

Pareto chart.
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Definition 1.4.3 A stem-and-leaf plot is a simple way of summarizing quantita-
tive data and is well suited to computer applications. When data sets are relatively
small, stem-and-leaf plots are particularly useful. In a stem-and-leaf plot, each data
value is split into a “stem” and a “leaf.” The “leaf” is usually the last digit of the
number and the other digits to the left of the “leaf” form the “stem.” Usually there is
no need to sort the leaves, although computer packages typically do. For more
details, we refer the student to elementary statistics books. We illustrate this tech-
nique by an example.

EXAMPLE 1.4.4
Construct a stem-and-leaf plot for the 20 test scores given below.

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Table 1.6 Combined Percentages of CO and O3 Emissions

Transportation
(T)

Industrial
process (I)

Fuel
combustion
(F)

Solid
waste
(S)

Miscellaneous
(M)

63% 10% 14% 5% 8%

F (14.0%)I (10.0%)

T (63.0%)

S (5.0%)

M (8.0%)

FIGURE 1.3

Pie chart for CO and O3.
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Solution
At a glance, we see that the scores are distributed from the 50s through the 90s. We use the first digit
of the score as the stem and the second digit as the leaf. The plot in Table 1.7 is constructed with

stems in the vertical position.

The stem-and-leaf plot condenses the data values into a useful display fromwhich

we can identify the shape and distribution of data such as the symmetry, where the

maximum and minimum are located with respect to the frequencies, and whether

they are bellshaped. This fact that the frequencies are bellshaped will be of para-

mount importance as we proceed to study inferential statistics. Also, note that the

stem-and-leaf plot retains the entire data set and can be used only with quantitative

data. Examples 1.8.1 and 1.8.6 explain how to obtain a stem-and-leaf plot using

Minitab and SPSS, respectively. Refer to Section 1.8.4 for SAS commands to gen-

erate graphical representations of the data.

A frequency table is a table that divides a data set into a suitable number of cat-

egories (classes). Rather than retaining the entire set of data in a display, a frequency

table essentially provides only a count of those observations that are associated

with each class. Once the data are summarized in the form of a frequency table, a

graphical representation can be given through bar graphs, pie charts, and histograms.

Data presented in the form of a frequency table are called grouped data. A frequency

table is created by choosing a specific number of classes in which the data will be

placed. Generally the classes will be intervals of equal length. The center of each

class is called a class mark. The end points of each class interval are called class

boundaries. Usually, there are two ways of choosing class boundaries. One way is

to choose nonoverlapping class boundaries so that none of the data points will simul-

taneously fall in two classes. Another way is that for each class, except the last,

the upper boundary is equal to the lower boundary of the subsequent class. When

forming a frequency table this way, one or more data values may fall on a class

boundary. One way to handle such a problem is to arbitrarily assign it one of the

classes or to flip a coin to determine the class into which to place the observation

at hand.

Definition 1.4.4 Let fi denote the frequency of the class i and let n be sum of all
frequencies. Then the relative frequency for the class i is defined as the ratio fi/n.
The cumulative relative frequency for the class i is defined by

P
k¼1
i fk/n.

Table 1.7 Stem-and-Leaf Display of 20 Exam Scores

Stem Leaves

5 5

6 6 4

7 8 4 1 4 5 8 9 1

8 2 8 0 2 4 3

9 4 1 6
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The following example illustrates the foregoing discussion.

EXAMPLE 1.4.5
The following data give the lifetime of 30 incandescent light bulbs (rounded to the nearest hour) of a

particular type.

872 931 1146 1079 915 879 863 1112 979 1120

1150 987 958 1149 1057 1082 1053 1048 1118 1088

868 996 1102 1130 1002 990 1052 1116 1119 1028

Construct a frequency, relative frequency, and cumulative relative frequency table.

Solution
Note that there are n¼30 observations and that the largest observation is 1150 and the smallest one

is 865 with a range of 285. We will choose six classes each with a length of 50.

When data are quantitative in nature and the number of observations is relatively

large, and there are no natural separate categories or classes, we can use a histogram

to simplify and organize the data.

Definition 1.4.5 A histogram is a graph in which classes are marked on the hor-
izontal axis and either the frequencies, relative frequencies, or percentages are
represented by the heights on the vertical axis. In a histogram, the bars are drawn
adjacent to each other without any gaps.

Histograms can be used only for quantitative data. A histogram compresses a data

set into a compact picture that shows the locationof themeanandmodes of thedata and

the variation in the data, especially the range. It identifies patterns in the data. This is a

good aggregate graph of one variable. In order to obtain the variability in the data, it is

always a good practice to start with a histogram of the data. The following steps can be

used as a general guideline to construct a frequency table and produce a histogram.

GUIDELINE FOR THE CONSTRUCTION OF A FREQUENCY
TABLE AND HISTOGRAM
1. Determine the maximum and minimum values of the observations. The range, R¼maximum

value�minimum value.

Class
Frequency
fi

Relative
frequency fi/�fi

Cumulative relative
frequency �k¼1

i fk/n

50-900 4 4/30 4/30

900-950 2 2/30 6/30

950-1000 5 5/30 11/30

1000-1050 3 3/30 14/30

1050-1100 6 6/30 20/30

1100-1150 10 10/30 30/30
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2. Select from five to 20 classes that in general are nonoverlapping intervals of equal length, so as to

cover the entire range of data. The goal is to use enough classes to show the variation in the data,

but not so many that there are only a few data points in many of the classes. The class width

should be slightly larger than the ratio Largest value�Smallest value
Number of classes

:

3. The first interval should begin a little below the minimum value, and the last interval should end

a little above the maximum value. The intervals are called class intervals and the boundaries are

called class boundaries. The class limits are the smallest and the largest data values in the class.

The class mark is the midpoint of a class.

4. None of the data values should fall on the boundaries of the classes.

5. Construct a table (frequency table) that lists the class intervals, a tabulation of the number of

measurements in each class (tally), the frequency fi of each class, and, if needed, a column with

relative frequency, fi/n, where n is the total number of observations.

6. Draw bars over each interval with heights being the frequencies (or relative frequencies).

Let us illustrate implementing these steps in the development of a histogram for

the data given in the following example.

EXAMPLE 1.4.6
The following data refer to a certain type of chemical impurity measured in parts per million in 25

drinking-water samples randomly collected from different areas of a county.

11 19 24 30 12 20 25 29 15 21

24 31 16 23 25 26 32 17 22 26

35 18 24 18 27

(a) Make a frequency table displaying class intervals, frequencies, relative frequencies, and

percentages.

(b) Construct a frequency histogram.

Solution
(a) Wewill use five classes. The maximum and minimum values in the data set are 35 and 11. Hence

the class width is (35�11)/5¼4.8 ffi5. Hence, we shall take the class width to be 5. The lower

boundary of the first class interval will be chosen to be 10.5. With five classes, each of width 5,

the upper boundary of the fifth class becomes 35.5.We can now construct the frequency table for
the data.

Continued

Class Class Interval fi¼ frequency Relative Frequency Percentage

1 10.5-15.5 3 3/25¼0.12 12

2 15.5-20.5 6 6/25¼0.24 24

3 20.5-25.5 8 8/25¼0.32 32

4 25.5-30.5 5 5/25¼0.20 20

5 30.5-35.5 3 3/25¼0.12 12
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(b) We can generate a histogram as in Figure 1.4.

From the histogramwe should be able to identify the center (i.e. the location) of the data, spread

of the data, skewness of the data, presence of outliers, presence of multiple modes in the data, and

whether the data can be capped with a bell-shaped curve. These properties provide indications of the

proper distributional model for the data. Examples 1.8.2 and 1.8.7 explain how to obtain histograms

using Minitab and SPSS, respectively.

EXERCISES 1.4
1.4.1. According to the recent US Federal Highway Administration Highway

Statistics, the percentages of freeways and expressways in various road

mileage-related highway pavement conditions are as follows:

Poor 10%, Mediocre 32%, Fair 22%, Good 21%, and Very good 15%.

(a) Construct a bar graph.

(b) Construct a pie chart.

1.4.2. More than 75% of all species that have been described by biologists are

insects. Of the approximately 2 million known species, only about 30,000

are aquatic in any life stage. The data in Table 1.4.1 give proportion of total

species by insect order that can survive exposure to salt (source: http://

entomology.unl.edu/).

(a) Construct a bar graph.

(b) Construct a Pareto chart.

(c) Construct a pie chart.

1.4.3. The data in Table 1.4.2 are presented to illustrate the role of renewable

energy consumption in the US energy supply in 2007 (source: http://www.

eia.doe.gov/fuelrenewable.html). Renewable energy consists of biomass,

geothermal energy, hydroelectric energy, solar energy, and wind energy.
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FIGURE 1.4

Frequency histogram of impurity data.
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(a) Construct a bar graph.

(b) Construct a Pareto chart.

(c) Construct a pie chart.

1.4.4. A litter is a group of babies born from the same mother at the same time.

Table 1.4.3 gives some examples of different mammals and their average

litter size (source: http://www.saburchill.com/chapters/chap0032.html).

(a) Construct a bar graph.

(b) Construct a Pareto chart.

1.4.5. The following data give the letter grades of 20 students enrolled in a

statistics course.

Table 1.4.2 Renewable Energy Consumption

Source Percentage

Coal 22%

Natural Gas 23%

Nuclear Electric Power 8%

Petroleum 40%

Renewable Energy 7%

Table 1.4.1 Percentage of Species by Insect Order

Species Percentage Species Percentage

Coleoptera 26% Odonata 3%

Diptera 35% Thysanoptera 3%

Hemiptera 15% Lepidoptera 1%

Orthoptera 6% Other 6%

Collembola 5%

Table 1.4.3 Litter Size of Mammals

Species Litter size

Bat 1

Dolphin 1

Chimpanzee 1

Lion 3

Hedgehog 5

Red Fox 6

Rabbit 6

Black Rat 11
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(a) Construct a bar graph.

(b) Construct a pie chart.

1.4.6. According to the US Bureau of Labor Statistics (BLS), the median weekly

earnings of fulltime wage and salary workers by age for the third quarter of

1998 is given in Table 1.4.4.

Construct a pie chart and bar graph for these data and interpret. Also,

construct a Pareto chart.

1.4.7. The data in Table 1.4.5 are a breakdown of 18,930 workers in a town

according to the type of work. Construct a pie chart and bar graph for these

data and interpret.

1.4.8. The data in Table 1.4.6 represent the number (in millions) of adults and

children living with HIV/AIDS by the end of 2000 according to the region

of the world (source: http://w3.whosea.org/hivaids/factsheet.htm).

Construct a bar graph for these data. Also, construct a Pareto chart and

interpret.

1.4.9. The data in Table 1.4.7 give the life expectancy at birth, in years, from 1900

through 2000 (source: National Center for Health Statistics). Construct a

bar graph for these data.

Table 1.4.4 Weekly Wage & Salary Distribution by Age

16 to 19 years $260

20 to 24 years $334

25 to 34 years $498

35 to 44 years $600

45 to 54 years $628

55 to 64 years $605

65 years and over $393

Table 1.4.5 Distribution of Workers by Type of Work

Mining 58

Construction 1161

Manufacturing 2188

Transportation and Public Utilities 821

Wholesale Trade 657

Retail Trade 7377

Finance, Insurance, and Real Estate 890

Services 5778

Total 18,930
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1.4.10. Dolphins are usually identified by the shape and pattern of notches and nicks

on their dorsal fin. Individual dolphins are cataloged by classifying the fin

based on location of distinguishing marks. When a dolphin is sighted its

picture can then be compared to the catalog of dolphins in the area, and if a

match is found, the dolphin can be recorded as resighted. These methods of

mark-resight are for developing databases regarding the life history of

individual dolphins. From these databases we can calculate the levels of

association between dolphins, population estimates, and general life history

parameters such as birth and survival rates. The data in Table 1.4.8 represent

frequently resighted individuals (as of January 2000) at a particular location

(source: http://www.eckerd.edu/dolphinproject/biologypr.html).

Construct a bar graph for these data.

Table 1.4.6 Number of People Living with HIV/AIDS

Country
Adults and Children Living with
HIV/AIDS (in millions)

Sub-Saharan Africa 25.30

North Africa and Middle East 0.40

South and Southeast Asia 5.80

East Asia and Pacific 0.64

Latin America 1.40

Caribbean 0.39

Eastern Europe and Central Asia 0.70

Western Europe 0.54

North America 0.92

Australia and New Zealand 0.15

Table 1.4.7 Life Expectancy at Birth

Year Life expectancy

1900 47.3

1960 69.7

1980 73.7

1990 75.4

2000 77.0

Table 1.4.8 Number of Dolphin Resight by Type

Hammer (adult female) 59

Mid Button Flag (adult female) 41

Luseal (adult female) 31

84 Lookalike (adult female) 20
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1.4.11. The data in Table 1.4.9 give death rates (per 100,000 population) for 10

leading causes in 1998 (source: National Center for Health Statistics, US

Department of Health and Human Services).

(a) Construct a bar graph.

(b) Construct a Pareto chart.

1.4.12. In a fiscal year, a city collected $32.3 million in revenues. City spending

for that year is expected to be nearly the same, with no tax increase

projected.

Expenditure: Reserves 0.7%, capital outlay 29.7%, operating expenses

28.9%, debt service 3.2%, transfers 5.1%, and personal services 32.4%.

Revenues: Property taxes 10.2%, utility and franchise taxes 11.3%,

licenses and permits 1%, inter-governmental revenue 10.1%, charges for

services 28.2%, fines and forfeits 0.5%, interest and miscellaneous 2.7%,

transfers and cash carryovers 36%.

(a) Construct bar graphs for expenditure and revenues and interpret.

(b) Construct pie charts for expenditure and revenues and interpret.

1.4.13. Construct a histogram for the 24 examination scores given next.

78 74 82 66 94 71 64 88 55 80 73 86

91 74 82 75 96 78 84 79 71 83 78 79

1.4.14. The following table gives radon concentration in pCi/liter (pico Curies per

liter) obtained from 40 houses in a certain area.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2

7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7

6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

Table 1.4.9 Death Rate by Cause

Cause Death rate

Accidents and Adverse Effects 34.5

Chronic Liver Disease and Cirrhosis 9.7

Chronic Obstructive Lung Diseases and Allied Conditions 42.3

Cancer 199.4

Diabetes Mellitus 23.9

Heart Disease 268.0

Kidney Disease 9.7

Pneumonia and Influenza 35.1

Stroke 58.5

Suicide 10.8
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(a) Construct a stem-and-leaf display.

(b) Construct a frequency histogram and interpret.

(c) Construct a pie chart and interpret.

1.4.15. The following data give the mean of SAT Mathematics scores by state for

1999 for a randomly selected 20 states (source: The World Almanac and
Book of Facts 2000).

558 503 565 572 546 517 542 605 493 499

568 553 510 525 595 502 526 475 506 568

(a) Construct a stem-and-leaf display and interpret.

(b) Construct a frequency histogram and interpret.

(c) Construct a pie chart and interpret.

1.4.16. A sample of 25 measurements is given here:

9 28 14 29 21 27 15 23 23 10

31 23 16 26 22 17 19 24 21 20

26 20 16 14 21

(a) Make a frequency table displaying class intervals, frequencies, relative

frequencies, and percentages.

(b) Construct a frequency histogram and interpret.

1.4.17. We may be interested in changing demographics of the US population.

Following table gives the demographics in 2010 (Overview of Race and

Hispanic Origin: 2010, http://www.census.gov/prod/cen2010/briefs/

c2010br-02.pdf). A table gives a pretty good summary understanding.

Table 1.4.10 US Population Demographics

Race/Ethnicity Number
Percentage of
US Population

White or European American 223,553,265 72.4%

Black or African American 38,929,319 12.6%

Asian American 14,674,252 4.8%

American Indian or Alaska Native 2,932,248 0.9%

Native Hawaiian or other Pacific Islander 540,013 0.2%

Some other race 19,107,368 6.2%

Two or more races 9,009,073 2.9%

Not Hispanic nor Latino 258,267,944 83.6%

Non-Hispanic White or European American 196,817,552 63.7%

Non-Hispanic Black or African American 37,685,848 12.2%

Non-Hispanic Asian 14,465,124 4.7%

Non-Hispanic American Indian or Alaska
Native

2,247,098 0.7%

Continued
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Draw a pie chart.

1.5 NUMERICAL DESCRIPTION OF DATA
In the previous section we looked at some graphical and tabular techniques for

describing a data set. We shall now consider some numerical characteristics of a

set of measurements. Suppose that we have a sample with values x1, x2, . . ., xn.
There are many characteristics associated with this data set, for example, the

central tendency and variability. A measure of the central tendency is given by

the sample mean, median, or mode, and the measure of dispersion or variability

is usually given by the sample variance or sample standard deviation or interquar-

tile range.

Definition 1.5.1 Let x1, x2, . . ., xn be a set of sample values. Then the sample

mean (or empirical mean) x is defined by

x¼ 1

n

Xn
i¼1

xi:

The sample variance is defined by

s2 ¼ 1

n�1ð Þ
Xn
i¼1

xi� xð Þ2:

The sample standard deviation is

s¼
ffiffiffiffi
s2

p

The sample variance s2 and the sample standard deviation s both are measures of

the variability or “scatteredness” of data values around the sample mean x.

Table 1.4.10 US Population Demographics—cont’d

Race/Ethnicity Number
Percentage of
US Population

Non-Hispanic Native Hawaiian or other Pacific
Islander

481,576 0.2%

Non-Hispanic Some Other Race 604,265 0.2%

Non-Hispanic Two or more races 5,966,481 1.9%

Hispanic or Latino 50,477,594 16.4%

White or European American Hispanic 26,735,713 8.7%

Black or African American Hispanic 1,243,471 0.4%

American Indian or Alaska Native Hispanic 685,150 0.2%

Asian Hispanic 209,128 0.1%

Native Hawaiian or other Pacific Islander Hispanic 58,437 0.0%

Some Other Race Hispanic 18,503,103 6.0%

Two or more races Hispanic 3,042,592 1.0%

Total 308,745,538 100.0%
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Larger the variance, more is the spread. We note that s2 and s are both nonneg-

ative. One question we may ask is “why not just take the sum of the differences

xi� xð Þ as a measure of variation?” The answer lies in the following result which

shows that if we add up all deviations about the sample mean, we always get a

zero value.

Theorem 1.5.1 For a given set of measurements x1, x2, . . ., xn, let x be the sample
mean. Then

Xn
i¼1

xi� xð Þ¼ 0:

Proof. Since x¼ 1=nð Þ
Xn

i¼1
xi, we have

Xn

i¼1
xi ¼ nx: Now

Xn
i¼1

xi� xð Þ¼
Xn
i¼1

xi�
Xn
i¼1

x

¼ nx�nx¼ 0:

Thus although there may be a large variation in the data values,
Xn

i¼1
xi� xð Þ as a

measure of spread would always be zero, implying no variability. So it is not useful

as a measure of variability. ▄
Sometimes we can simplify the calculation of the sample variance s2 by using the

following computational formula:

s2 ¼

Xn

i¼1
x2i � 1

n

Xn

i¼1
xi

� �2
� �

n�1ð Þ :

If the data set has a large variation with some extreme values (called outliers), the

mean may not be a very good measure of the center. For example, average salary

may not be a good indicator of the financial well-being of the employees of a com-

pany if there is a huge difference in pay between support personnel and management

personnel. In that case, one could use the median as a measure of the center, roughly

50% of data fall below and 50% above. The median is less sensitive to extreme data

values.

Definition 1.5.2 For a data set, the median is the middle number of the ordered
data set. If the data set has an even number of elements, then the median is the aver-
age of the middle two numbers. The lower quartile is the middle number of the half of
the data below the median, and the upper quartile is the middle number of the half of
the data above the median. We will denote

Q1 ¼ lower quartile

Q2 ¼M¼middle quartile medianð Þ
Q3 ¼ upper quartile

The difference between the quartiles is called interquartile range (IQR).

IQR ¼ Q3�Q1:
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A possible outlier (mild outlier) will be any data point that lies below

Q1�1:5 IQRð Þ or above Q3 + 1:5 IQRð Þ:

Thus, about 25% of the data lie below Q1, and about 75% of the data lie below Q3.

Note that the IQR is unaffected by the positions of those observations in the smallest

25% or the largest 25% of the data.

Mode is another commonly used measure of central tendency. A mode indicates

where the data tend to concentrate most.

Definition 1.5.3Mode is the most frequently occurring member of the data set. If
all the data values are different, then by definition, the data set has no mode.

EXAMPLE 1.5.1
The following data give the time in months from hire to promotion to manager for a random

sample of 25 software engineers from all software engineers employed by a large telecommuni-

cations firm.

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Calculate the mean, median, mode, variance, and standard deviation for this sample.

Solution
The sample mean is

x¼ 1

n

Xn
i¼1

xi ¼ 83:28months:

To obtain the median, first arrange the data in ascending order:

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Now the median is the thirteenth number which is 34 months.

Since 14 occurs most often (thrice), the mode is 14 months.
The sample variance is

s2 ¼ 1

n�1

Xn
i¼1

xi�xð Þ2

¼ 1

24
5�83:28ð Þ2 + � � � + 125�83:28ð Þ2

h i

¼ 16,478:

and the sample standard deviation is, s¼
ffiffiffiffi
s2

p
¼ 128:36months. Thus, we have sample mean

x¼ 83:28 months, median¼34 months, and mode¼14 months. Note that the mean is very much

different from the other two measures of center because of a few large data values. Also, the sample

variance s2¼16,478 months, and the sample standard deviation s¼128.36 months.
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EXAMPLE 1.5.2
For the data of Example 1.5.1, find lower and upper quartiles, median, and interquartile range (IQR).

Check for any outliers.

Solution
Arrange the data in an ascending order.

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69
125 192 229 453 483

Then themedianM is themiddle (13th) data value,M¼Q2¼34.The lower quartile is themiddle
number below the median, Q1¼ [(14+18)/2]¼16. The upper quartile, Q3¼ [(67+69)/2]¼68.

The interquartile range, (IQR)¼Q3�Q1¼68�16¼52.

To test for outliers, compute

Q1�1:5 IQRð Þ¼ 16�1:5 52ð Þ¼�62

and

Q3 + 1:5 IQRð Þ¼ 68+ 1:5 52ð Þ¼ 146:

Then all the data that fall above 146 are possible outliers. None is below �62. Therefore the

outliers are 192, 229, 453, and 483.

We have remarked earlier that the mean as a measure of central location is greatly

affected by the extreme values or outliers. A robust measure of central location

(a measure that is relatively unaffected by outliers) is the trimmed mean. For
0�a�1, a 100a% trimmed mean is found as follows: order the data, and then dis-

card the lowest 100a% and the highest 100a% of the data values. Find the mean of

the rest of the data values. We denote the 100a% trimmed mean by xa. We illustrate

the trimmed mean concept in the following example.

EXAMPLE 1.5.3
For the data set representing the number of children in a random sample of 10 families in a neigh-

borhood, find the 10% trimmed mean (a¼0.1).

1 2 2 3 2 3 9 1 6 2

Solution
Arrange the data in ascending order.

1 1 2 2 2 2 3 3 6 9

The data set has 10 elements. Discarding the lowest 10% (10% of 10 is 1) and discarding the

highest 10% of the data values, we obtain the trimmed data set as

1 2 2 2 2 3 3 6

The 10% trimmed mean is

x0:1 ¼ 1 + 2 + 2+ 2+ 2 + 3 + 3+ 6

8
¼ 2:6:

Note that the mean for the data in the previous example without removing any observations is

3.1, which is different from the trimmed mean.
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Although standard deviation is a more popular method, there are other measures of dis-

persion such as average deviation or interquartile range. We have already seen the def-

inition of interquartile range. The average deviation for a sample x1, . . ., xn is defined by

Average deviation ¼
Xn

i¼1
xi� xj j
n

:

Calculation of average deviation is simple and straightforward.

1.5.1 NUMERICAL MEASURES FOR GROUPED DATA
When we encounter situations where the data are grouped in the form of a frequency

table (see Section 1.4), we no longer have individual data values. Hence, we cannot

use the formulas in Definition 1.5.1. The following formulas will give approximate

values for x and s2. Let the grouped data have l classes, with mi being the midpoint

and fi being the frequency of class i, i¼1, 2, . . ., l. Let n¼P
i¼1
l fi.

Definition 1.5.4 The mean for a sample of size n,

x¼ 1

n

Xl

i¼1

f imi,

where mi is the midpoint of the class i and fi is the frequency of the class i.
Similarly the sample variance,

s2 ¼ 1

n�1

Xn
i¼1

f i mi� xð Þ2 ¼
X

m2
i f i�

X
i
f imi

� �2

n

n�1
:

The following example illustrates how we calculate the sample mean for a

grouped data.

EXAMPLE 1.5.4
The grouped data in Table 1.8 represent the number of children from birth through the end of the

teenage years in a large apartment complex. Find the mean, variance, and standard deviation for

these data:

Here we use the usual convention of until the child attains next age, age will be the previous

year, for instance until child is 4-year old, we will say child is 3-year old.

Solution
For simplicity of calculation we create Table 1.9.

The sample mean is

x¼ 1

n

X
i

f imi ¼ 515

50
¼ 10:30:

The sample variance is

s2 ¼
X

m2
i f i�

X
i
f imi

� �2

n

n�1
¼
6488:5� 515ð Þ2

50
49

¼ 24:16:
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The sample standard deviation is s¼
ffiffiffiffi
s2

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

24:16
p ¼ 4:92:

Using the following calculations, we can also find the median for grouped data. We

only know that the median occurs in a particular class interval, but we do not know

the exact location of the median. We will assume that the measures are spread evenly

throughout this interval. Let

L¼ lower class limit of the interval that contains the median

n¼ total frequency

Fb¼cumulative frequencies for all classes before the median class

fm¼ frequency of the class interval containing the median

w¼ interval width of the interval that contains the median

Then the median for the grouped data is given by

M¼ L +
w

fm
0:5n�Fbð Þ:

We proceed to illustrate with an example.

EXAMPLE 1.5.5
For the data of Example 1.5.4, find the median.

Solution
First develop Table 1.10.

Table 1.9 Summary Statistics for Number of Children

Class fi mi mifi mi
2fi

0-3 7 1.5 10.5 15.75

4-7 4 5.5 22 121

8-11 19 9.5 180.5 1714.75

12-15 12 13.5 162 2187

16-19 8 17.5 140 2450

n¼50
P

mifi¼515
P

mi
2fi¼6488.5

Table 1.10 Frequency Distribution for Number of Children

Class fi Cumulative fi Cumulative fi/n

0-3 7 7 0.14

4-7 4 11 0.22

8-11 19 30 0.6

12-15 12 42 0.84

16-19 8 50 1.00

Table 1.8 Number of Children and Their Age Group

Class 0-3 4-7 8-11 12-15 16-19

Frequency 7 4 19 12 8
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The first interval for which the cumulative relative frequency exceeds 0.5 is the

interval that contains the median. Hence the interval 8 to 11 contains the median.

Therefore, L¼8, fm¼19, n¼50, w¼3, and Fb¼11. Then, the median is

M¼ L+
w

fm
0:5n�Fbð Þ¼ 8 +

3

19
0:5ð Þ 50ð Þ�11ð Þ¼ 10:211:

It is important to note that all the numerical measures we calculate for grouped data

are only approximations to the actual values of the ungrouped data if they are

available.

One of the uses of the sample standard deviation will be clear from the following

result, which is based on data following a bell-shaped curve. Such an indication can

be obtained from the histogram or stem-and-leaf display.

EMPIRICAL RULE
When the histogram of a data set is “bell-shaped” or “mound shaped,” and symmetric, the empirical
rule states:

1. Approximately 68% of the data are in the interval x� s, x+ sð Þ:
2. Approximately 95% of the data are in the interval x�2s, x + 2sð Þ:
3. Approximately 99.7% of the data are in the interval x�3s, x + 3sð Þ:

The bell-shaped curve is called a normal curve and is discussed later in Chapter 3.

A typical symmetric bell-shaped curve is given in Figure 1.5.

Normal distribution

0.4

0.3

0.2

0.1

0.0

−3 −2 −1 0
x

1 2 3

3 sd

2 sd

1 sd

FIGURE 1.5

Bell-shaped curve.
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1.5.2 BOX PLOTS
The sample mean or the sample standard deviation focuses on a single aspect of the

data set, whereas histograms and stem-and-leaf displays express rather general ideas

about data. A pictorial summary called a box plot (also called box-and-whisker plots)
can be used to describe several prominent features of a data set such as the center, the

spread, the extent and nature of any departure from symmetry, and identification of

outliers. Box plots are a simple diagrammatic representation of the five number sum-

mary: minimum, lower quartile, median, upper quartile, maximum. Example 1.8.4

illustrates the method of obtaining box plots using Minitab.

PROCEDURE TO CONSTRUCT A BOX PLOT
1. Draw a vertical measurement axis and mark Q1, Q2 (median), and Q3 on this axis as shown in

Figure 1.6.

2. Construct a rectangular box whose bottom edge lies at the lower quartile, Q1 and whose upper

edge lies at the upper quartile, Q3.

Continued

Extreme outliers

Mild outliers

Mild outliers

Extreme outliers

∗
∗

Whisker

Whisker

(1.5)IQR

(3)IQR

Q3

Q2

Q1

(3)IQR

(1.5)IQR
∗
∗

FIGURE 1.6

A typical box-and-whiskers plot.
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3. Draw a horizontal line segment inside the box through the median.

4. Extend the lines from each end of the box out to the farthest observation that is still within 1.5

(IQR) of the corresponding edge. These lines are called whiskers.

5. Draw an open circle (or asterisks *) to identify each observation that falls between 1.5(IQR) and

3(IQR) from the edge to which it is closest; these are called mild outliers.

6. Draw a solid circle to identify each observation that falls more than 3(IQR) from the closest edge;

these are called extreme outliers.

We illustrate the procedure with the following example.

EXAMPLE 1.5.6
The following data identify the time inmonths fromhire to promotion to chief pharmacist for a random

sample of 25 employees from a certain group of employees in a large corporation of drugstores.

5 7 12 14 14 14 18 21 22 23
24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Construct a box plot. Do the data appear to be symmetrically distributed along the

measurement axis?

Solution
Referring to Example 1.5.2, we find that the median, Q2¼34.

The lower quartile is Q1 ¼ 14 + 18
2

¼ 16:

The upper quartile is Q3 ¼ 67+ 69
2

¼ 68:

The interquartile range is IQR¼68�16¼52.

To find the outliers, compute

Q1�1:5 IQRð Þ¼ 16�1:5 52ð Þ¼�62

and

Q3 + 1:5 IQRð Þ¼ 68 + 1:5 52ð Þ¼ 146:

Using these numbers, we follow the procedure outlined earlier to construct the box plot in

Figure 1.7. The * in the box plot represents an outlier. The first horizontal line is the first quartile,

the second is the median, and the third is the third quartile.
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FIGURE 1.7

Box plot for months to promotion.
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By examining the relative position of the median line (the middle line in Figure 1.7),

we can test the symmetry of the data. For example, in Figure 1.7, the median line is

closer to the lower quartile than the upper line, which suggests that the distribution is

slightly nonsymmetric. Also, a look at this box plot shows the presence of two mild

outliers and two extreme outliers.

EXERCISES 1.5
1.5.1. The prices of 12 randomly chosen homes in dollars (approximated to

nearest thousand) in a growing region of Tampa in the summer of 2002 are

given below.

176 105 133 140 305 215 207 210 173 150 78 96

Find the mean and standard deviation of the sampled home prices from

this area.

1.5.2. The following is a sample of nine mortgage companies’ interest rates for

30-year home mortgages, assuming 5% down.

7:625 7:500 6:625 7:625 6:625 6:875 7:375 5:375 7:500

(a) Find the mean and standard deviation and interpret.

(b) Find lower and upper quartiles, median, and interquartile range. Check

for any outliers and interpret.

1.5.3. For four observations, it is given that mean is 6, median is 4, and mode is 3.

Find the standard deviation of this sample.

1.5.4. The data given below pertain to a random sample of disbursements of state

highway funds (in millions of dollars), to different states.

1188 1050 2882 2802 780 1171 685

537 519 2523 316 1117 1578 261

(a) Find the mean, variance, and range for these data and interpret.

(b) Find lower and upper quartiles, median and interquartile range. Check

for any outliers and interpret.

(c) Construct a box plot and interpret.

1.5.5. Maximal static inspiratory pressure (PImax) is an index of respiratory

muscle strength. The following data show the measure of PImax (cm H2O)

for 15 cystic fibrosis patients.

105 80 115 95 100 85 90 70

135 105 45 115 40 115 95

(a) Find the lower and upper quartiles, median, and interquartile range.

Check for any outliers and interpret.
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(b) Construct a box plot and interpret.

(c) Are there any outliers?

1.5.6. Compute the mean, variance, and standard deviation for the data in

Table 1.5.1 (assume that the data belong to a sample).

1.5.7. (a) For any grouped data with l classes with group frequencies fi, and class
midpoints mi, show that

Xl

i¼1

f i mi� xð Þ¼ 0:

(b) Verify this result for the data given in Exercise 1.5.6.

1.5.8. (a) Given the sample values x1, x2, . . ., xn, show that

Xn
i¼1

xi� xð Þ2 ¼
Xn
i¼1

x2i �
Xn

i¼1
xi

� �2

n
:

(b) Verify the result of part (a) for the data of Exercise 1.5.5.

1.5.9. The following are the closing prices of some securities that a mutual fund

holds on a certain day:

10.25 5.31 11.25 13.13 18.00 32.56 37.06 39.00

43.25 45.00 40.06 28.56 22.75 51.50 47.00 53.50

32.00 25.44 22.50 30.00 24.75 53.37 51.38 26.00

53.50 29.87 32.00 28.87 42.19 37.50 30.44 41.37

(a) Find the mean, variance, and range for these data and interpret.

(b) Find lower and upper quartiles, median, and interquartile range. Check

for any outliers.

(c) Construct a box plot and interpret.

(d) Construct a histogram.

(e) Locate on your histogram x, x� s, x�2s, and x�3s Count the data

points in each of the intervals x� s, x�2s, and x�3s and compare this

with the empirical rule.

1.5.10. The radon concentration (in pCi/liter) data obtained from 40 houses in a

certain area are given below.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2

7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7

6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

Table 1.5.1 Class and Frequency

Class 0-4 5-9 10-14 15-19 20-24

Frequency 5 14 15 10 6
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(a) Find the mean, variance, and range for these data.

(b) Find lower and upper quartiles, median, and interquartile range. Check

for any outliers.

(c) Construct a box plot.

(d) Construct a histogram and interpret.

(e) Locate on your histogram x� s, x�2s, and x�3s: Count the data

points in each of the intervals x, x� s, x�2s, and x�3s: How do

these counts compare with the empirical rule?

1.5.11. A random sample of 100 households’ weekly food expenditure represented

by x from a particular city gave the following statistics:X
xi ¼ 11,000, and

X
xi

2 ¼ 1,900,000:

(a) Find the mean and standard deviation for these data.

(b) Assuming that the food expenditure of the households of an entire city

of 400,000 will have a bell-shaped distribution, how many households

of this city would you expect to fall in each of the intervals,

x� s, x�2s, and x�3s?
1.5.12. The following numbers are the hours put in by 10 employees of company in

a randomly selected week:

40 46 40 54 18 45 34 60 39 42

(a) Calculate the values of the three quartiles and the interquartile range.

Also, calculate the mean and standard deviation and interpret.

(b) Verify for this data set that
X10

i¼1
xi� xð Þ¼ 0:

(c) Construct a box plot.

(d) Does this data set contain any outliers?

1.5.13. For the following data:

6.3 2.9 4.5 1.1 1.8 4.0 1.2 3.1 2.0 4.0

7.0 2.8 4.3 5.3 2.9 8.3 4.4 2.8 3.1 5.6

4.5 4.5 5.7 0.5 6.2 3.7 0.9 2.4 3.0 3.5

(a) Find the mean, variance, and standard deviation.

(b) Construct a frequency table with five classes.

(c) Using the grouped data formula, find the mean, variance, and standard

deviation for the frequency table constructed in part (b) and compare it

to the results in part (a).

1.5.14. In order to assess the protective immunizing activity of various whooping

cough vaccines, suppose that 30 batches of different vaccines are tested on

groups of children. Suppose that the following data give immunity

percentage in home exposure values (IPHE values).

85 51 41 90 91 40 39 69 45 47

42 12 70 38 97 34 94 77 88 91

79 90 43 40 89 85 71 30 25 21

371.5 Numerical Description of Data



(a) Find the mean, variance, and standard deviation and interpret.

(b) Construct a frequency table with five classes.

(c) Using the grouped data formula, find the mean, variance, and

standard deviation for the table in part (b) and compare it to the results

in part (a).

1.5.15. The grouped data in Table 1.5.2 give the number of births by age group of

mothers between ages 10 and 39 in a certain state in 2000.

Find the median for this grouped data and interpret.

1.5.16. Table 1.5.3 gives the distribution of the masses (in grams) of 50 salmon

from a single young cohort.

(a) Using the grouped data formula, find the mean, variance, and standard

deviation

(b) Find the median for this grouped data.

1.5.17. After a pollution accident, 180 dead fish were recovered from a stream.

Table 1.5.4 gives their lengths measured to the nearest millimeter.

(a) Using the grouped data formula, find the mean, variance, and standard

deviation.

(b) Find the median for this grouped data and interpret.

Table 1.5.2 Number of Births by Mother’s Age Group

Age of Mother Number of Births

10-14 895

15-19 55,373

20-24 122,591

25-29 139,615

30-34 127,502

35-39 68,685

Table 1.5.3 Distribution of Salmon Mass

Weight 155-164 165-174 175-184 185-194 195-204

Frequency 8 11 18 9 4

Table 1.5.4 Length of Dead Fishes

Length of Fish (mm) 1-19 20-39 40-59 60-79 80-99

Frequency 38 31 59 45 7
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1.6 COMPUTERS AND STATISTICS
With present-day technology, we can automate most statistical calculations. For

small sets of data, many basic calculations such as finding means and standard devi-

ations and creating simple charts, graphing calculators are sufficient. Students should

learn how to perform statistical analysis using their handheld calculators. For deeper

analysis and for large data sets, statistical software is necessary. Software also provides

easier data entry and editing and much better graphics in comparison to calculators.

There are many statistical packages available. Many such analyses can be performed

with spreadsheet application programs such as Microsoft Excel, but a more thorough

data analysis requires the use of more sophisticated software such as Minitab and

SPSS. For students with programming abilities, packages such as R and MATLAB

may be more appealing. For very large datasets and for complicated data analysis,

one could use SAS. SAS is one of the most frequently used statistical packages. Many

other statistical packages (such as Splus, and StatXact) are available; the utilities and

advantages of each are based on the specific application and personal taste. The soft-

ware R is free software that is being increasingly used by statisticians and can be down-

loaded from http://www.r-project.org/, and many statistical tutorial for R is freely

available in the worldwideweb. For a good introduction to doing statistics with R, refer

to the book by Peter Dalgaard, Introductory Statistics, with R, Springer, 2002.

In this book, we will give some representative R, Minitab, SPSS, and SAS com-

mands at the end of each chapter just to get students started on the technology. These

examples are by no means a tutorial for the respective software. For a more thorough

understanding and use of technology, students should look at the users’ manual that

comes with the software or at references given at the end of the book. The computer

commands are designed to be illustrative, rather than completely efficient. In dealing

with data analysis for real-world problems, we need to know which statistical pro-

cedure to use, how to prepare the data sets suitable for use in the particular statistical

package, and finally how to interpret the results obtained. A good knowledge of the-

ory supplemented with a good working knowledge of statistical software will enable

students to perform sophisticated statistical analysis, while understanding the under-

lying assumptions and the limitations of results obtained. This will prevent us from

misleading conclusions when using computer-generated statistical outputs.

1.7 CHAPTER SUMMARY
In this chapter, we dealt with some basic aspects of descriptive statistics. First we

gave basic definitions of terms such as population and sample. Some sampling tech-

niques were discussed. We learned about some graphical presentations in

Section 1.4. In Section 1.5 we dealt with descriptive statistics, in which we learned

how to find mean, median, and variance and how to identify outliers. A brief discus-

sion of the technology and statistics was given in Section 1.6. All the examples given

in this chapter are for a univariate population, in which each measurement consists of
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a single value. Many populations are multivariate, where measurements consist of

more than one value. For example, we may be interested in finding a relationship

between blood sugar level and age, or between body height and weight. These types

of problems will be discussed in Chapter 8.

In practice, it is always better to run descriptive statistics as a check on one’s data.

The graphical and numerical descriptive measures can be used to verify that the mea-

surements are sound and that there are no obvious errors due to collection or coding.

We now list some of the key definitions introduced in this chapter.

• Population.

• Sample.

• Statistical inference.

• Quantitative data.

• Qualitative or categorical data.

• Cross-sectional data.

• Time series data.

• Simple random sample.

• Systematic sample.

• Stratified sample.

• Proportional stratified sampling.

• Cluster sampling.

• Multiphase sampling.

• Relative frequency.

• Cumulative relative frequency.

• Bar graph.

• Pie chart.

• Histogram.

• Sample mean.

• Sample variance.

• Sample standard deviation.

• Median.

• Interquartile range.

• Mode.

• Mean.

• Empirical rule.

• Box plots.

In this chapter, we have also introduced the following important concepts and

procedures:

• General procedure for data collection.

• Some advantages of simple random sampling.

• Steps for selecting a stratified sample.

• Procedures to construct frequency and relative frequency tables and graphical

representations such as stem-and-leaf displays, bar graphs, pie charts, histograms,

and box plots.
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• Procedures to calculate measures of central tendency, such as mean and median,

as well as measures of dispersion such as the variance and standard deviation for

both ungrouped and grouped data.

• Guidelines for the construction of frequency tables and histograms.

• Procedures to construct a box plot.

1.8 COMPUTER EXAMPLES
In this section, we give some examples of how to use Minitab, SPSS, and SAS

for creating graphical representations of the data as well as methods for the com-

putation of basic statistics. Sometimes, the outputs obtained using a particular

software package may not be exactly as explained in the book; they vary from one

package to another, and also depend on the particular software version. In

fact, most of the outputs will not be shown in this book. It is important to obtain

the explanation of outputs from the help menu of the particular software package

for complete understanding. The “Computer Examples” sections of this book are

not designed as manuals for the software, nor are they written in the most efficient

way. The idea is only to introduce some basic procedures, so that the students

can get started with applying the theoretical material they have seen in each of the

chapters.

1.8.1 R INTRODUCTION AND EXAMPLES
R is a free software for statistical computing and graphics that you can download

from http://www.r-project.org/. Detailed help manuals are available from this site.

In addition, you can get R help from numerous sources. In this book, we are only

introducing the reader to basic R-programming as a starting point.

R you ready to start programming?

Introduction to R, imputing and importing data from the examples:

How to input data?

Using the following data:

66 74 79 80 69 77 78 65 79 81

we will make a single variable data set or vector named x. First manually, and

second using the scan() function for convenience.

R Code:

x¼c(66,74,79,80,69,77,78,65,79,81);
Typing the comma can be time consuming

OR

x¼ scan();

1: 66

2: 74

3: 79

4: 80

This method allows you to type each number

pressing enter between each entry designed

with the number pad in mind. Notice the last

entry is blank which ends the scan function.

5: 69

6: 77
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7: 78

8: 65

9: 79

10: 81

11:

Results: Both methods obtain the same output which can be seen simply by typ-

ing x or cat(x) or print(x) however the scan method allows you type rapidly type your

numbers into the variable using a numpad and enter key.

Importing a CSV file

It is common to import CSV (comma separated value) files into R this imports

Example 7.7.1 data into variable x.
This example assumes your file is located on a D:\ drive you may need to modify

the path preceding the file name for the csv you wish to import.

R Code:

x¼read.csv(“D:\ch7_1.csv”);

Results:

You should have obtained a variable containing the data from the csv file, these

files can be opened with notepad to see their contents.

Exporting a CSV

It is common to export a CSV (comma separated value) file of data you wish to

save, backup, or share.

Using R we will export the following data:

Sample 1 (x) : 1 2 3 4 5 6 7 8 9 10

This example is writing to the path C:\Users\Admin\Documents please modify

the path to work on your computer.

R Code:

x¼c(1:10);

write.csv(x,“C:\Users\Admin\Documents\myfile.csv”);

Results: This should have created the specified file in the specified location, you

can open this file with notepad and should see the exported data.

Example 1.8.1 (Stem-and-leaf plot) Using the following data construct a stem-

and-leaf plot.

Sample X : 78 74 82 66 94 71 64 88 55 80 91 74 82 75 96 78 84 79 71 83

This assumes you have stored the data under variable x, please modify your code

appropriately.

R Code:

stem(x);

Output:

The decimal point is 1 digit(s) to the right of the j
5 j 5
6 j 46
7 j 11,445,889
8 j 022,348
9 j 146
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Example 1.8.2 (Histogram) Using the following data construct a histogram.

Sample X : 25 37 20 31 31 21 12 25 36 27 38 16 40 32 33 24 39 26 27 19

This assumes you have stored the data into variable x, please modify your code

appropriately.

R Code:

hist(x);

Output:

0.00

10 15 20 25
x

30 35 40

0.01

0.02

0.03

D
en

si
ty

0.04

0.05

Histogram of x

Example 1.8.3 (Descriptive Statistics) Using the following data generate

descriptive statistics.

Sample X : 5 7 229 453 12 14 18 14 18 14 14 483 22 21 25 23 24 34 37 34 49 64 47

67 69 192 125

This assumes you have stored the data into variable x, please modify your code

appropriately.

R Code:

Standard Deviation

sd(x); Standard deviation

length(x); Length of variable

Output:

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.00 18.00 34.00 83.28 67.00 483.00

128.3649 Standard deviation

25 Length of variable

Example 1.8.4 (Box Plot) Using the following data create a box plot.
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Sample X : 870 922 1146 1120 1079 905 888 865 1112 966 1150 977 958 1088

1139 1055 1082

1053 1048 1118 866 996 1102 1028 1130 1002 990 1052 1116 1109

This assumes you have stored the data into variable x, please adjust your code

appropriately.

R Code:

boxplot(x);

Output:

1100

1000

950

900

Example 1.8.5 (Test of Randomness) Using the following data test weather or

not the sample is random (details of this test are left undisclosed):

Sample X : 24 31 28 43 28 56 48 39 52 32 38 49 51 49 62 33 41 58 63 56

This test is known as “Runs test” and assumes you have stored the data into var-

iable x, please modify your code appropriately. Additionally you will need to install

the “lawstat” package to use this test.

R Code:

install.packages(‘lawstat’); Installs and loads the required package

library(‘lawstat’);

runs.test(x);

Output:

Runs Test - Two sided

data: x

Standardized Runs Statistic¼�1.3784, p-value¼0.1681

1.8.2 MINITAB EXAMPLES
A good place to get help on Minitab is http://www.minitab.com/resources/.

There are many nice sites available on Minitab procedures; for example, Minitab

student tutorials can be obtained from http://www.minitab.com/resources/tuto

rials/. Here we illustrate only some of the basic uses of Minitab. In Minitab,
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we can enter the data in the spreadsheet and use the Windows pull-down menus,

or we can directly enter the data and commands. We will mostly give procedures

for the pull-down menus only. It is up to the user’s taste to choose among these

procedures. It should be noted that with different versions of Minitab, there will

be some differences in the pull-down menu options. It is better to consult the

Help menu for the actual procedure. Most of the time, we will not give the

output.

EXAMPLE 1.8.1 (STEM-AND-LEAF):
For the following data, construct a stem-and-leaf display using Minitab:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
For the pull-down menu, first enter the data in column 1. Then follow the following sequence. The
boldface represents the actions.

Graph>Character Graphs>Stem-and-Leaf

In Variables: type C1 and click OK

EXAMPLE 1.8.2 (HISTOGRAM):
For the following data, construct a histogram:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
Enter the data in C1, then use the following sequence

Graph>Histogram. . . > in Graph variables: type C1>OK

If we want to change the number of intervals, after entering Graph variables, click Options. . .

and click Number of intervals and enter the desired number, then OK.

EXAMPLE 1.8.3 (DESCRIPTIVE STATISTICS):
In this example, we will describe how to obtain basic statistics such as mean, median, and standard

deviation for the following data:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
Enter the data in C1. Then use

Stat>Basic Statistics>Display Descriptive Statistics. . . > in Variables: type C1>click OK
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EXAMPLE 1.8.4 (SORTING AND BOX PLOT):
For the following data, first sort in the increasing order and then construct a box plot to check for

outliers.

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
After entering the data in C1, we can sort the data in increasing order as follows:

Manip>Sort. . . > in Sort column(s): type C1> in Store sorted column(s) in: type C2> in Sorted

by column: type C1>OK

If we want to draw a box plot for the data, do the following:

Graph>Box plot. . . > in Graph variables: under Y, type C1>OK

EXAMPLE 1.8.5 (TEST OF RANDOMNESS):
Almost all of the analyses in this book assume that the sample is random.How canwe verify whether

the sample is really random? Project 12B explains a procedure called run test. Without going into

details, this test is simple with Minitab. All we have to do is enter the data in C1. Then click

Stat>Nonparametric>Runs Test. . . > in variables: enter C1>OK

For instance, if we have the following data:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

we will get following output:

Run Test

C1

K¼44.0500

The observed number of runs¼14

The expected number of runs¼11.0000

10 Observations above K 10 below

* N Small – The following approximation may be invalid

The test is significant at 0.1681

Cannot reject at alpha¼0.05

“Cannot reject” in the output means that it is reasonable to assume that the sample is random.

For any data, it is always desirable to do a run test to determine the randomness.

1.8.3 SPSS EXAMPLES
For SPSS, we will give only Windows commands. For all the pull-down menus, the

sequence will be separated by the> symbol.
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EXAMPLE 1.8.6
Redo Example 1.8.1 with SPSS.

Solution
After entering the data in C1,

Analyze>Descriptive Statistics>Explore. . . >

At the Explore window select the variable and move to Dependent List; then click Plots. . ., select

Stem-and-Leaf, click Continue, and click OK at the Explore Window

We will get the output with a few other things, including box plots along with the stem-and-leaf dis-
play, which we will not show here.

EXAMPLE 1.8.7
Redo Example 1.8.2 with SPSS.

Solution
After entering the data:

Graphs>Histogram. . . >

At the Histogram window select the variable and move to Variable, and click OK

We will get the histogram, which we will not display here.

EXAMPLE 1.8.8
Redo Example 1.8.3 with SPSS.

Solution
Enter the data. Then:

Analyze>Descriptive Statistics>Frequencies. . . >

At the Frequencies window select the variable(s); then open the Statistics window and check

whichever boxes you desire under Percentile, Dispersion, Central Tendency, and

Distribution>continue>OK

For example, if you selectMean, Median, Mode, Standard Deviation, and Variance, we will get the

following output and more:

Statistics

VAR00001
N Valid 25

Missing 0

Mean 83.2800
Median 34.0000

Mode 14.00

Std. Deviation 128.36488

Variance 16,477.54333
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1.8.4 SAS EXAMPLES
We will now give some SAS procedures describing the numerical measures of a sin-

gle variable. PROC UNIVARIATE will give mean, median, mode, standard devi-

ation, skewness, kurtosis, etc. If we do not need median, mode, and so on, we could

just as well use PROC MEANS in lieu of PROC UNIVARIATE. We can use the

following general format in writing SAS programs with appropriate problem-

specific modifications. There are many good online references as well as books

available for SAS procedures. To get support on SAS, including many example

codes, refer to the SAS support Web site: http://support.sas.com/. Another helpful

site can be found at http://www.ats.ucla.edu/stat/sas/. There are many other sites that

may suit your particular application.

GENERAL FORMAT OF AN SAS PROGRAM
DATA give a name to the data set;

INPUT here we put variable names and column locations, if there are more than one variable;

CARDS; (also we can use DATALINES;)

Enter the data here;

TITLE ‘here we include the title of our analysis’;

PROC PRINT;

PROC name of procedure (such as PROC UNIVARIATE) goes here;

Options that we may want to include (such as the variables

to be used) go here;

RUN;

After writing an SAS program, to execute it we can go to the menu bar and select

run> submit, or click the “running man” icon. On execution, SAS will output the

results to the Output window. All the steps used including time of execution and any

error messages will be given in the Log window.

In order to make the SAS outputs more manageable, we can use the following

SAS command at the beginning of an SAS program:

options ls¼80 ps¼50;

ls stands for line size, and this sets each line to be 80 characters wide. ps stands for

page size and allows 50 lines on each page. This reduces the number of unnecessary

page breaks. In order to avoid date and number, we can use the option commands:

Options nodate nonumber;

EXAMPLE 1.8.9
For the data of Example 1.8.3, use PROC UNIVARIATE to summarize the data.

Solution
In the program editor window, type the following if you are entering the data directly. If you are

using the data stored in a file, the comment line (with *) should be used instead of the input and
data lines.
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Options nodate nonumber;

DATA e�9;

INPUT e�9 @@;

DATALINES;

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125;

PROC UNIVARIATE;

TITLE;

RUN;

In this case we will get the following output:

The UNIVARIATE Procedure

Variable: ex9

Moments

N 25 Sum Weights 25

Mean 83.28 SumObservations 2082

Std Deviation 128.364884 Variance 16,477.5433

Skewness 2.45719194 Kurtosis 5.47138396

Uncorrected SS 568,850 Corrected SS 395,461.04

Coeff Variation 154.136508 Std Error Mean 25.6729767

Basic Statistical Measures

Location Variability

Mean 83.28000 Std Deviation 128.36488

Median 34.00000 Variance 16,478

Mode 14.00000 Range 478.00000

Interquartile Range 49.00000

Tests for Location: Mu0¼0

Test -Statistic- -p Value-

Student’s t t 3.243878 Pr> jtj 0.0035

Sign M 12.5 Pr>¼ jMj <0.0001

Signed Rank S 162.5 Pr>¼ jSj <0.0001

Quartiles (Definition 5)

Quartile Estimate

100% Max 483

99% 483

95% 453

90% 229

75% Q3 67

50% Median 34

25% Q1 18

10% 12

5% 7

1% 5

0% Min 5

The UNIVARIATE Procedure

Variable: ex9

Extreme Observations

-Lowest- -Highest-

Value Obs Value Obs

5 1 125 25

7 2 192 24

12 5 229 3

Continued

491.8 Computer Examples



14 9 453 4

14 8 483 10

We can observe from the previous output that PROC UNIVARIATE gives much information
about the data, such as mean, standard deviation, and quartiles. If we do not want all these details,

we could use the PROC MEANS command. In the previous code, if we replace PROC UNIVAR-

IATE by the PROC MEANS statement, we will get the following:

The MEANS Procedure

Analysis Variable : ex9

N Mean Std Dev Minimum Maximum

—————————————————

25 83.2800000 128.3648836 5.0000000 483.0000000

—————————————————

The output is greatly simplified.

If we use PROC UNIVARIATE PLOT NORMAL; this option will produce three plots: stem-
and-leaf, box plot, and normal probability plot (this will be discussed later in the text). In order to

obtain bar graphs at the midpoints of the class intervals, use the following commands:

PROC CHART DATA¼e�9;

VBAR e�9;

If we want to create a frequency table, use the following:

PROC FREQ;

table ex9;

title ‘Frequency tabulation’;

Every PROC or procedure has its own name and options. We will use different

PROCs as we need them. Always remember to enclose titles in single quotes. There

are various other actions that we can perform for the data analysis using SAS. It is

beyond the scope of this book to explain general and efficient SAS codes. For details,

we refer to books dedicated to SAS, such as the book by Ronald P. Cody and Jeffrey

K. Smith, Applied Statistics and the SAS Programming Language, 5th Edition, Pren-
tice Hall, 2006. There are many Web sites that give SAS codes. One example with

references for many aspects of SAS, including many codes, can be found at http://

www.sas.com/service/library/onlinedoc/code.samples.html.

EXERCISES 1.8
1.8.1. The following data represent the lengths (to the nearest whole millimeter) of

80 shoots from seeds of a certain type planted at the same time.

75 72 76 76 72 74 71 75 77 72

74 71 76 76 76 72 71 73 73 71

72 72 75 70 74 74 78 74 76 79

75 76 73 73 71 72 79 74 77 72

76 70 72 75 78 72 69 75 72 71

77 79 76 73 75 73 72 75 74 78

73 77 73 77 70 74 66 74 73 77

75 79 75 70 72 73 80 73 78 75
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Using one of the software packages (R, Minitab, SPSS, or SAS):

(a) Represent the data in a histogram.

(b) Find the summary statistics such as mean, median, variance, and

standard deviation.

(c) Draw box plots and identify any outliers.

1.8.2. On a particular day, asked, “How many minutes did you exercise today?” the

following were the responses of 30 randomly selected people:

15 30 25 10 30 15 10 45 20 22

18 0 45 12 15 10 17 30 30 15

10 30 20 8 18 30 27 33 15 0

Using one of the software packages (R, Minitab, SPSS, or SAS):

(a) Represent the data in a histogram.

(b) Find the summary statistics such as mean, median, variance, and

standard deviation.

(c) Draw box plots and identify any outliers.

PROJECTS FOR CHAPTER 1
1A. WORLD WIDE WEB AND DATA COLLECTION
Statistical Abstracts of the United States is a rich source of statistical data (http://

www.census.gov/prod/www/statistical-abstract-us.html). Pick any category of

interest to you and obtain data (say, Income, Expenditures, and Wealth). Represent

a section of the data graphically. Find mean, median, and standard deviation. Iden-

tify any outliers. There are many other sites, such as http://lib.stat.cmu.edu/datasets/

and http://it.stlawu.edu/�rlock/datasurf.html, that we can use for obtaining real

data sets.

1B. PREPARING A LIST OF USEFUL INTERNET SITES
Prepare a list of Internet references for various aspects of statistical study.

1C. DOT PLOTS AND DESCRIPTIVE STATISTICS
From the local advertisements of apartments for rent, randomly pick 50 monthly

rents for two-bedroom apartments. For these data, first draw a dot plot and then

obtain descriptive statistics (use R, Minitab, SPSS, or SAS, or any other statistical

software).
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1D. IMPORTANCE OF STATISTICS IN OUR SOCIETY
Write a short report on the importance of statistics in our modern day society. Give

different examples to illustrate your points.

1E. USES AND MISUSES OF STATISTICS
“There are three types of lies—lies, damn lies, and statistics” Benjamin Disraeli-

Write a short report on uses and misuses of statistics.
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OBJECTIVE

In this chapter we will review some results from probability theory that are essential

for the development of the statistical results of this book.

Andrei Nikolaevich Kolmogorov
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Andrei Kolmogorov (1903-1987) laid the mathematical foundations of probabil-

ity theory and the theory of randomness. His monograph Grundbegriffe der
Wahrscheinlichkeitsrechnung, published in 1933, introduced probability theory in

a rigorous way from fundamental axioms. He later used probability theory to study

the motion of the planets and the turbulent flow of air from a jet engine. He also made

important contributions to stochastic processes, information theory, statistical

mechanics, and nonlinear dynamics. Kolmogorov had numerous interests outside

mathematics. In particular, he was interested in the form and structure of the poetry

of the Russian author Pushkin.

2.1 INTRODUCTION
Probability theory provides a mathematical model for the study of randomness and

uncertainty. The concept of probability occupies an important role in the decision-

making process, whether the problem is one faced in business, in engineering, in gov-

ernment, in sciences, or just in one’s own everyday life. Most decisions are made in

the face of uncertainty. The mathematical models of probability theory enable us to

make predictions about certain mass phenomena from the necessarily incomplete

information derived from sampling techniques. It is the probability theory that

enables one to proceed from descriptive statistics to inferential statistics. In fact,

probability theory is the most important tool in statistical inference.

The origin of probability theory can be traced to modeling of games of chances

such as dealing from a deck of cards, or spinning a roulette wheel. The earliest results

on probability arose from the collaboration of the eminent mathematicians Blaise

Pascal and Pierre Fermant and a gambler, Chevalier de Méré. They were interested

in what seemed to be contradictions between mathematical calculations and actual

games of chance, such as throwing dice, tossing coin, or spinning a roulette wheel.

For example, in repeated throws of a die, it was observed that each number,

1-6, appeared with a frequency of approximately 1/6. However, if two dice are rolled,

the sum of numbers showing on two dice, that is, 2-12, did not appear equally often.

It was then recognized that, as the number of throws increased, the frequency of these

possible results could be predicted by following some simple rules. Similar basic

experiments were conducted using other games of chance, which resulted in the

establishment of various basic rules of probability. Probability theory was developed

solely to be applied to games of chance until the eighteenth century, when Pierre

Laplace and Karl F. Gauss applied the basic probabilistic rules to other physical

problems. Modern probability theory owes much to the 1933 publication Founda-
tions of Theory of Probability by the Russian mathematician Andrei N. Kolmogorov.

He developed the probability theory from an axiomatic point of view.

Our objective in this chapter is to provide only a brief review of various defini-

tions and facts from probability that are needed elsewhere in the text. Proofs are

omitted in most cases. Many books are devoted solely to the study of probability

theory and we refer to them for further details and deeper understanding.
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2.2 RANDOM EVENTS AND PROBABILITY
Any process whose outcome is not known in advance but is random is termed an exper-
iment. The term experiment is used here in a wider sense than the usual notion of a con-
trolled laboratory testing situation. Thus an experimentmay include observingwhether

a fuse is defective or not, or the duration of time from start to end of rain in a particular

place. Assume that the experiment can be repeated any number of times under identical

conditions. Each repetition is called a trial. A (random) experiment satisfies the follow-

ing three conditions: (1) the set of all possible outcomes are known in advance in each

trial; (2) in any particular trial, it is not known which particular outcome will happen;

and (3) the experiment can be repeated under identical conditions. We will now sum-

marize some notations and concepts for our study of probability.

BASIC DEFINITIONS

1. The sample space associated with an experiment is the set consisting of all possible outcomes

and is called the sure event in the experiment. A sample space is also referred to as a probability

space. A sample space will be denoted by S.
2. An outcome in S is also called a sample point. An event A is a subset of outcomes in S, that is,

A�S. We say that an event A occurs if the outcome of the experiment is in A.

3. The null subset Ø of S is called an impossible event.

4. The event A[B consists of all outcomes that are in A or in B or in both.

5. The event A\B consists of all outcomes that are both in A and B.

6. The event Ac (the complement of A in S) consists of all outcomes not in A, but in S.

Using these concepts, we can define the following. All events are considered to be

subsets of S. For some more concepts from set theory, we refer to Appendix A.

Definition 2.2.1 Two events A and B are said to be mutually exclusive or
disjoint if A\B¼∅. Mutually exclusive events cannot happen together.

The mathematical definition of probability has changed from its earliest formu-

lation as a measure of belief to the modern approach of defining through the axioms.

We shall discuss four definitions of probability. We now give an informal definition

of probability.

INFORMAL DEFINITION OF PROBABILITY
Definition 2.2.2 The probability of an event is a measure (number) of the chance with

which we can expect the event to occur. We assign a number between 0 and 1 inclusive to the prob-

ability of an event. A probability of 1 means that we are 100% sure of the occurrence of an event, and

a probability of 0 means that we are 100% sure of the nonoccurrence of the event. The probability of
any event A in the sample space S is denoted by P(A).

From this definition, we can see that P(S)¼1. The earliest approach to measuring

uncertainty (in chance events) is the classical probability concept, which applies
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when all possible outcomes are equally likely or when the probabilities of outcomes

are known.

CLASSICAL DEFINITION OF PROBABILITY
Definition 2.2.3 If there are n equally likely possibilities, of which one must occur, and m of

these are regarded as favorable to an event, or as “success,” then the probability of the event or a

“success” is given by m/n.

Now we give steps that can be used to compute the probabilities of events using

this classical approach.

METHOD OF COMPUTING PROBABILITY BY THE CLASSICAL APPROACH

A. When all outcomes are equally likely

1. Count the number of outcomes in the sample space; say this is n.

2. Count the number of outcomes in the event of interest, A, and say this is m.
3. P(A)¼m/n.

B. When all outcomes are not equally likely

1. LetO1,O2, . . .,On be the outcomes of the sample space S. LetP(Oi)¼pi, i¼1, 2, . . ., n. In this

case, the probability of each outcome, pi, is assumed to be known.

2. List all the outcomes in A, say, Oi, Oj, . . ., Om.

3. P(A)¼P(Oi)+P(Oj)+���+P(Om)¼pi+pj+���+pm, the sum of the probabilities of the

outcomes in A.

EXAMPLE 2.2.1
A balanced die (with all outcomes equally likely) is rolled. Let A be the event that an even number

occurs. Then there are three favorable outcomes (2, 4, 6) in A, and the sample space has six elements,

{1, 2, 3, 4, 5, 6}. Hence P(A)¼3/6¼1/2.

EXAMPLE 2.2.2
Suppose we toss two coins. Assume that all the outcomes are equally likely (fair coins).

(a) What is the sample space?

(b) Let A be the event that at least one of the coins shows up heads. Find P(A).

(c) What will be the sample space if we know that at least one of the coins showed up heads?

Solution
(a) The sample space consists of four outcomes, namely S¼{(H, H), (H, T), (T, H), (T, T)}.

(b) The event A has three outcomes, (H, H), (H, T), and (T, H). Therefore P(A)¼3/4.

(c) Since we know that at least one of the coins showed up heads, the possible outcomes

are (H, H), (H, T), and (T, H). The sample space now has only three outcomes {(H, H),

(H, T), (T, H)}.
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The classical probability concept is not applicable in situations where the var-

ious possibilities cannot be regarded as equally likely. Suppose we are interested

in whether or not it will rain on a given day with known meteorological condi-

tions. Clearly we cannot assume that the events of rain or no rain are equally

likely. In such cases, one could use the so-called frequency interpretation of prob-

ability. The frequentistic view is a natural extension of the classical view of

probability. This definition was developed as the result of work by R. von Mises

in 1936.

FREQUENCY DEFINITION OF PROBABILITY
Definition 2.2.4 The probability of an outcome (event) is the proportion of times the out-

come (event) would occur in a long run of repeated experiments.

For example, to find the probability of heads, H, using a biased coin, we would

imagine the coin is repeatedly tossed. Let n(H) be the number of timesH appears in n
trials. Then the probability of heads is defined as P(H)¼ limn!1(n(H)/n).

The frequency interpretation of probability is often useful. However, it is not

complete. Because of the condition of repetition under identical circumstances,

the frequency definition of probability is not applicable to every event. For a more

complete picture, it makes sense to develop the probability theory through axioms.

Nowwe will define probabilities axiomatically. This definition results from the 1933

studies of A.N. Kolmogorov.

AXIOMATIC DEFINITION OF PROBABILITY
Definition 2.2.5 Let S be a sample space of an experiment. Probability P(.) is a real-valued

function that assigns to each event A in the sample space S a number P(A), called the probability of

A, with the following conditions satisfied:

1. It is nonnegative, P(A)�0.

2. It is unity for a certain event. That is, P(S)¼1.

3. It is additive over the union of an infinite number of pairwise disjoint events, that is, if A1, A2,. . .
form a sequence of pairwise mutually exclusive events (i.e. Ai\Aj¼∅, for i 6¼¼ j) in S, then

P([i¼1
1 Ai)¼

P
i¼1
1 P(Ai).

From the previous three axioms, it can be shown that P(∅)¼0, and if A1, A2,. . .
form a sequence of pairwise mutually exclusive events in S, then

P([i¼1
n Ai)¼

P
i¼1
n P(Ai) for a finite n. Also we could verify that 0�P(A)�1, for

any event A. It is important to observe that the axioms do not tell us how to assign

probabilities to events.
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EXAMPLE 2.2.3
A die is loaded (not all outcomes are equally likely) such that the probability that the number i shows

up is Ki, i¼1,2, . . ., 6, where K is a constant. Find

(a) The value of K.

(b) The probability that a number greater than 3 shows up.

Solution
(a) Here the sample space S has six outcomes {1, 2, . . ., 6}.Hence, using axioms (2) and (3) we have

P 1ð Þ +P 2ð Þ + � � � +P 6ð Þ¼ 1:

Since P(i)¼Ki, we have

Kð Þ 1ð Þ + Kð Þ 2ð Þ + � � � + Kð Þ 6ð Þ¼ 1 or

Kð Þ 1 + 2+ � � �+ 6ð Þ¼ Kð Þ 21ð Þ¼ 1:

Hence K¼1/21.

The probability of, say, the number 5 showing up is 5/21.
(b) Let A be the event that a number greater than 3 shows up. Then the outcomes in A are {4, 5, 6}

and they are mutually exclusive. Therefore,

P Að Þ ¼P 4ð Þ+P 5ð Þ+P 6ð Þ
¼ 4

21
+

5

21
+

6

21
¼ 15

21
:

The following properties help us in going beyond the axioms to actually compute

various probabilities.

SOME BASIC PROPERTIES OF PROBABILITY
For two events A and B in S, we have the following:

1. P(Ac)¼1�P(A), where Ac is the complement of the set A in S.
2. If A�B, then P(A)�P(B).

3. P(A[B)¼P(A)+P(B)�P(A\B).

In particular, if A\B¼∅, then P(A[B)¼P(A)+P(B).

EXAMPLE 2.2.4
In a large university, the freshman profile for one year’s fall admission says that 40% of the students

were in the top 10% of their high school class, and that 65% are white, of whom 25%were in the top

10% of their high school class. What is the probability that a freshman student selected randomly

from this class either was in the top 10% of his or her high school class or is white?

Solution
Let E1 be the event that a person chosen at randomwas in the top 10% of his or her high school class,

and let E2 be the event that the student is white. We are given P(E1)¼0.40, P(E2)¼0.65, and P-

(E1\E2)¼0.25. Then the event that the student chosen is white or was in the top 10% of his or
her high school class is represented by E1[E2. Thus

P E1[E2ð Þ ¼ P E1ð Þ+P E2ð Þ�P E1\E2ð Þ
¼ 0:40+ 0:65�0:25¼ 0:80:
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EXAMPLE 2.2.5
A subway station in a large city has 12 gates, six inbound (entering into the subway station)

and six outbound (exiting the subway station). The number of gates open in each direction is

observed at a particular time of day. Assume that each outcome of the sample space is equally likely.

(a) Define a suitable sample space.

(b) What is the probability that at most one gate is open in each direction?

(c) What is the probability that at least one gate is open in each direction?

(d) What is the probability that the number of gates open is the same in both directions?

(e) What is the probability of the event that the total number of gates open is six?

Solution
(a) We define the sample space to be the set of ordered pairs (x, y), where x is the number of inbound

gates open and y is the number of outbound gates open. For example, (4, 5)means four gates for
inbound and five gates for outbound are open. (1, 0) means one gate is open in the inbound

direction and no gate is open in the outbound direction. Figure 2.1 represents the situation

S¼

0, 0ð Þ 0,1ð Þ 0,2ð Þ 0,3ð Þ 0,4ð Þ 0,5ð Þ 0,6ð Þ
1, 0ð Þ 1,1ð Þ 1,2ð Þ 1,3ð Þ 1,4ð Þ 1,5ð Þ 1,6ð Þ
2, 0ð Þ 2,1ð Þ 2,2ð Þ 2,3ð Þ 2,4ð Þ 2,5ð Þ 2,6ð Þ
3, 0ð Þ 3,1ð Þ 3,2ð Þ 3,3ð Þ 3,4ð Þ 3,5ð Þ 3,6ð Þ
4, 0ð Þ 4,1ð Þ 4,2ð Þ 4,3ð Þ 4,4ð Þ 4,5ð Þ 4,6ð Þ
5, 0ð Þ 5,1ð Þ 5,2ð Þ 5,3ð Þ 5,4ð Þ 5,5ð Þ 5,6ð Þ
6, 0ð Þ 6,1ð Þ 6,2ð Þ 6,3ð Þ 6,4ð Þ 6,5ð Þ 6,6ð Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

We see that the sample space has 49 possible outcomes. We assume that these outcomes are

equally likely.
(b) Suppose that A is the event that at most one gate is open in each direction. Then

A¼ 0, 0ð Þ, 0, 1ð Þ, 1, 0ð Þ, 1, 1ð Þf g:
Hence,

P Að Þ¼ 4

49
¼ 0:082

(c) Let B be the event that at least one gate is open in each direction. Then B contains 36 elements.

Hence,

P Bð Þ¼ 36

49
¼ 0:7347:

Continued

1
2
3
4
5
6

1
2
3
4
5
6

FIGURE 2.1

Inbound and outbound traffic.
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(d) Let

C¼ event that number of opengates is the samebothways

¼ 0, 0ð Þ, 1, 1ð Þ, 2, 2ð Þ, 3, 3ð Þ, 4, 4ð Þ, 5, 5ð Þ, 6, 6ð Þf g:

Then P Cð Þ¼ 7
49
¼ 0:1428:

(e) Let

D¼ the event that the total number of gates open is six

¼ 3, 3ð Þ, 2, 4ð Þ, 4, 2ð Þ, 5, 1ð Þ, 1, 5ð Þ, 6, 0ð Þ, 0, 6ð Þf g:

Hence, P(D)¼7/49.

EXERCISES 2.2
2.2.1. Consider an experiment in which each of three cars exiting from a

university main entrance turns right (R) or left (L). Assume that a car will

turn right or left with equal probability of 1/2.

(a) What is the sample space S?
(b) What is the probability that at least one car will turn left?

(c) What is the probability that at most one car will turn left?

(d) What is the probability that exactly two cars will turn left?

(e) What is the probability that all three cars will turn in the same

direction?

2.2.2. A coin is tossed three times. Define an appropriate sample space for the

following cases:

(a) The outcome of each individual toss is of interest.

(b) Only the number of trials is of interest.

2.2.3. Pair of six-sided balanced dice are rolled. What are the probabilities of

getting the sum of the face values as follows?

(a) 8

(b) 6 or 9

(c) 3, 8, or 12

(d) Not an even number

2.2.4. An experiment has four possible outcomes A, B, C, and D. Check whether

the following assignments of probability are possible:

(a) P(A)¼0.20, P(B)¼0.40, P(C)¼0.09, P(D)¼0.31.

(b) P(A)¼0.41, P(B)¼0.17, P(C)¼0.12, P(D)¼0.36.

(c) P(A)¼1/8, P(B)¼1/2, P(C)¼1/4, P(D)¼1/8.

2.2.5. Suppose we toss two coins and suppose that each of the four points in the

sample space S¼{(H, H), (H, T), (T, H), (T, T)} is equally likely. Let the

events be A¼{(H, H), (H, T)} and B¼{(H, H), (T, H)}. Find P(A[B).
2.2.6. An urn contains 12 white, 5 yellow, and 13 black marbles. A marble is

chosen at random from the urn, and it is noted that it is not one of the black

marbles. What is the sample space in view of this knowledge? What is the

probability that it is yellow?
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2.2.7. Two fair dice are rolled and face values are noted.

(a) What is the probability space?

(b) What is the probability that the sum of the numbers showing is 7?

(c) What is the probability that both dice show number 2?

2.2.8. In a city, 65% of people drink coffee, 50% drink tea, and 25% both. What is

the probability that a person chosen at random will drink at least one of

coffee or tea? Will drink neither?

2.2.9. In a fruit basket, there are five mangos, of which two are spoiled. If we were

to randomly pick two mangos:

(a) What would be our sample space?

(b) What is the probability that both mangos are good?

(c) What is the probability that no more than one mango is spoiled?

2.2.10. In a box there are three slips of paper, with one of the letters A, C, T written

on each slip. If the slips are drawn out of the box one at a time, what is the

probability of obtaining the word CAT?
2.2.11. Suppose that the genetic makeup of the population of a city is as in

Table 2.2.1.

An individual is considered to have the dominant characteristic if the

person has the AA or Aa genetic trait. If we were to choose an individual

from this city at random, what is the probability that this person has the

dominant characteristic?

2.2.12. Using the axioms of probability, show that P(∅)¼0, and if A1, . . ., An are

pairwise mutually exclusive, then P([i¼1
n Ai)¼

P
i¼1
n P(Ai)

2.2.13. Using the axioms of probability, prove the following:

(a) If A�B, then P(A)�P(B).
(b) P(A[B)¼P(A)+P(B)�P(A\B). In particular, if A\B¼∅, then

P(A[B)¼P(A)+P(B).
2.2.14. Using the axioms of probability, show that

P A[B[Cð Þ¼P Að Þ +P Bð Þ +P Cð Þ�P A\Bð Þ�P A\Cð Þ
�P B\Cð Þ +P A\B\Cð Þ:

2.2.15. Prove that

(a) P(A\B)�P(A)+P(B)�1

(b) P([i¼1
2 Ai)�

P
i¼1
2 P(Ai)

2.2.16. If A and B are mutually exclusive events, P(A)¼0.17 and P(B)¼0.46, find

(a) P(A[B)
(b) P(Ac)

(c) P(Ac[Bc)

Table 2.2.1 Genetic Makeup of a Population

Genetic Makeup AA Aa aa

Probability p 2q r
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(d) P((A\B)c)
(e) P(Ac\Bc)

2.2.17. If P(A)¼0.24, P(B)¼0.67, and P(A\B)¼0.09, find

(a) P(A[B)
(b) P((A[B)c)
(c) P(Ac[Bc)

(d) P((A\B)c)
(e) P(Ac\Bc)

2.2.18. In a series of seven games, the first team to win four games wins the series.

If the teams are evenly matched, what is the probability that the team that

wins the first game will win the series?

2.2.19. In a survey, 1000 adults were asked if they would approve an increase in tax

if the revenues went to build a football stadium. It was also noted whether

the person lived in a city (C), suburb (S), or rural area (R), of the county. The

results are summarized in Table 2.2.2.

Define the following events:

A: person chosen is from the city

B: person disapproves tax increase

Find the following probabilities;

(i) P(B),
(ii) P(Ac\B),
(iii) P(A[Bc)

2.2.20. A couple has two children. Suppose we know the elder child is a boy.

(a) Determine an appropriate sample space.

(b) Find the probability that both are boys.

2.2.21. A box contains three red and two blue flies. Two flies are removed with

replacement. Let A be the event that both the flies are of the same color and

B be the event that at least one of the flies is red. Find (i) P(A), (ii) P(B), (iii)
P(A[B), and (iv) P(A\B).

2.2.22. Prove that for any n,

P [n
i¼1

Ai

� �
¼
Xn
i¼1

P Aið Þ�
X
i1<i2

P Ai1\Ai2ð Þ+ � � �

+ �1ð Þm+ 1
X

i1<i2<...<im

P Ai1\Ai2\ . . .\Aimð Þ

+ � � �+ �1ð Þn+ 1P A1\A2\ . . .Anð Þ:

Table 2.2.2 Survey Results for a Tax Increase

Yes (for Tax Increase) No (Against Tax Increase)

C 150 250

S 250 150

R 50 150
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The summation
X

i1<i2<���<im
P Ai1 \Ai2 \ . . .\Aimð Þ is taken over all of

the (m
n ) subsets of size m from the set {1, 2, . . ., n}.

2.2.23. A sequence of events {An, n�1} is said to be an increasing sequence if

A1�A2�� � ��An�� � � whereas it is said to be decreasing if

A1�A2�� � ��An�� � �. If {An, n�1} is increasing sequence of events, then

limn!1An ¼[1
i¼1An Similarly, if {An, n�1} is decreasing sequence of events,

then limn!1 An¼\ i¼1
1 An Show that if {An, n�1} is either an increasing or a

decreasing sequence of events, then limn!1 P(An)¼P(limn!1 An).

2.3 COUNTING TECHNIQUES AND CALCULATION OF
PROBABILITIES
In a sample space with a large number of outcomes, determining the number of out-

comes associated with the events through direct enumeration could be tedious. In this

sectionwe develop some counting techniques and use them in probability computations.

MULTIPLICATION PRINCIPLE
Theorem 2.3.1 If the experiments A1, A2, . . ., Am contain, respectively, n1, n2, . . ., nm

outcomes, such that for each possible outcomes of A1 there are n2 possible outcomes for A2,

and so on, then there are a total of n1, n2, . . ., nm possible outcomes for the composite experiment

A1, A2, . . ., Am.

For m¼2 and n1¼2, n2¼3, the tree diagram in Figure 2.2 illustrates the

multiplication principle. If we count the total number of branches at the top of

the tree, we get the total number of possible outcomes for the composite experi-

ment. In Figure 2.2, we can see that there are total of six branches that represent

all the possible outcomes of this experiment. The tree diagrams can be utilized for

counting for any finite number of composite experiments.

A

B

B1

B2

B3

A1

A2

A3

FIGURE 2.2

Tree diagram.
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EXAMPLE 2.3.1
In how many different ways can a student club at a large university with 500 members choose its

president and vice president?

Solution
The president can be chosen 500 ways, and the vice president can be chosen from the remaining 499

ways. Hence, by the multiplication principle, there are (500)(499)¼249,500ways in which the com-

plete choice can be made.

When a random sample of size k is taken with replacement from a total of n
objects, the total number of ways in which the random sample of size k can be

selected depends on the particular sampling method we employ. Here we will

consider four sampling methods: (i) sampling with replacement and the objects

are ordered, (ii) sampling without replacement and the objects are ordered,

(iii) sampling without replacement and the objects are not ordered, and (iv) sampling

with replacement and the objects are not ordered.

(I) Sampling with Replacement and the Objects Are Ordered

When a random sample of size k is taken with replacement from a total of n
objects and the objects being ordered, then there are nk possible ways of

selecting k-tuples.
For example, (1) if a die is rolled four times, then the sample space will

consist of 64 4-tuples. (2) If an urn contains nine balls numbered 1-9, and a

random sample with replacement of size k¼6 is taken, then the sample space S
will consist of 96 6-tuples.

(II) Sampling Without Replacement and the Objects Are Ordered

The symbol n! (read n factorial) is defined as n!¼n(n�1) . . . (2)(1). Clearly
1!¼1. By definition, we take 0!¼1.

If r objects are chosen from a set of n distinct objects without replacement,

any particular (ordered) arrangement of these objects is called a permutation.

For example, CDAB is a permutation of the letters ABCD. The number of

permutations of these four letters is 4!¼24, because the first position can be

filled by any of the four letters, leaving only three possibilities for the second

position, two for the third position, and only one for the fourth position, yielding

the number of permutations to be 4.3.2.1¼24.

PERMUTATION OF n OBJECTS TAKEN m AT A TIME
Theorem 2.3.2 The number of permutations of m objects selected from a collection of n

distinct objects is

nPm ¼ n!

n�mð Þ!
¼ n n�1ð Þ n�2ð Þ . . . n�m+ 1ð Þ:
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When a random sample of size k is taken without replacement from a total

of n objects and the objects being ordered, we will apply the permutation

formula.

EXAMPLE 2.3.2
Howmany distinct three-digit numbers can be formed using the digits 2, 4, 6, and 8 if no digit can be

repeated?

Solution
The number of distinct three-digit numbers will be the number of permutations of three numbers

from the set of four numbers {2, 4, 6, 8}. Hence the number of distinct three-digit numbers will

be 4P3¼4!/1!¼24

(III) Sampling Without Replacement and the Objects Are Not Ordered

Note that in a permutation, the order inwhich each object is selected becomes

important. When the order of arrangement is not important—for example, if we

donot distinguish betweenAB andBA—the arrangement is called a combination.

We give the following result for number of combinations.

NUMBER OF COMBINATIONS OF n OBJECTS TAKEN m AT A TIME
Theorem 2.3.3 The number of ways in which m objects can be selected (without replace-

ment) from a collection of n distinct objects is

n

m

� �
¼ n!

m! n�mð Þ!
¼ n n�1ð Þ n�2ð Þ . . . n�m+ 1ð Þ

m!
, m¼ 0,1,2, . . . ,n:

The symbol (m
n ) is to be read as “n choosem.” When a random sample of size

k is taken without replacement from a total of n objects and the objects are not

ordered, we will apply combinations formula.

EXAMPLE 2.3.3
How many different ways can the admissions committee of a statistics department choose four

foreign graduate students from 20 foreign applicants and three US students from 10 US applicants?

Solution
The four foreign students can be chosen in 20

4

� �
ways, and the three US students can be chosen in 10

3

� �
ways. Now, by the multiplication principle, the whole selection can be made in 20

4

� �
10
3

� �¼581,400

ways.
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(IV) Sampling with Replacement and the Objects Are Not Ordered

In obtaining an unordered sample of size k, with replacement, from a

total of n objects, k�1 replacements will be made before sampling ceases.

Thus n is increased by k�1 so that sampling in this manner may be

thought of as drawing an unordered sample of size k from a population of

size n+k�1. Hence, the number of possible samples can be obtained by

using the formula

n+ k�1

k

� �
¼ n + k�1ð Þ!

k! n�1ð Þ! , k¼ 0,1,2, . . . :

EXAMPLE 2.3.4
An urn contains 15 balls numbered 1-15. If four balls are drawn at random, with replacement and

without regard for order, how many samples are possible?

Solution
Using the previous formula, the number of possible samples is

15+ 4�1

4

� �
¼ 18!

4!14!
¼ 3060:

If we need to divide n objects into more than two groups, we can use the following result.

NUMBER OF COMBINATIONS OF n OBJECTS INTO m CLASSES
Theorem 2.3.4 The number of ways that n objects can be grouped into m classes with ni in

the ith class, i¼1, 2, . . ., m and

Xm
i¼1

ni ¼ n

is given by

n
n1n2 . . .nm

� �
¼ n!

n1!n2! . . .nm!

In the foregoing theorem, the numbers
n

n1n2 . . .nm

� �
are calledmultinomial

coefficients.
We can use the previous computational technique to compute the

probabilities of events of interest by using frequency interpretation of

probability. Suppose that there are a total of N possible outcomes for the

experiment and let nA be the number of outcomes favoring an event A. Then the
probability of this event is P(A)¼nA/N. The following is a well-known

problem that is called the birthday problem.
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EXAMPLE 2.3.5
In a room there are n people.What is the probability that at least two of themhave a common birthday?

Solution
Disregarding the leap years, assume that every day of the year is equally likely to be a birthday. Let

A be the event that there are at least two people with a common birthday. There are 365n possible

outcomes of which Ac can happen in 365�364� (365�n+1) ways. Because the event A can hap-

pen in many more ways, it is easier to calculate P(Ac), that is, the probability that no two persons
have the same birthday or equivalently that they all have different birthdays. To count the number of

n-tuples in Ac, because there are no common birthdays, we can use the method of choosing distinct

objects without replacement for an ordered arrangement. Thus there are 365 possibilities to choose
the first person, 364 for the second person, . . ., (365�(n�1)) possibilities for the nth person. The

product of these numbers gives the total number of elements in Ac. Thus

P Acð Þ¼ 365�364� . . .� 365�n+ 1ð Þ
365n

and hence

P Að Þ¼ 1�365�364� . . .� 365�n + 1ð Þ
365n

:

For example, if n¼3, P Að Þ¼ 1� 365�364�363

3653
¼ 0:0082, and if n¼40,

P Að Þ¼ 1�365�364� . . .� 365�40 + 1ð Þ
365ð Þ40 ¼ 1�0:1087¼ 0:89123:

That is, there is only a 0.82% chance of having a common birthday among three persons,

whereas if n¼40, then P(A)¼0.89123—that is, the chance of having a common birthday among

40 persons increases to 89.12%. Thus, as the number of people increases, the chance of finding

people with common birthdays also increases.

EXAMPLE 2.3.6
In a tank containing 10 fishes, there are three yellow and seven black fishes.We select three fishes at

random.

(a) What is the probability that exactly one yellow fish gets selected?

(b) What is the probability that at most one yellow fish gets selected?

(c) What is the probability that at least one yellow fish gets selected?

Solution
Let A be the event that exactly one yellow fish gets selected, and B be the event that at most one

yellow fish gets selected. There are 10
3

� �¼120 ways to select three fishes from 10.

(a) There are 3
1

� �¼3 ways to select a yellow fish and 7
2

� �¼21 ways to select two black fishes. By

multiplication rule, the probability of selecting exactly one yellow fish is

3
1

� �
7
2

� �
10
3

� � ¼ 3 21ð Þ
120

¼ 0:525:

(b) The probability that at most one yellow fish gets selected is the same as the probability of select-

ing none or one, which is

3
1

� �
7
2

� �
10
3

� � +
3
0

� �
7
3

� �
10
3

� � ¼ 0:525 + 0:292¼ 0:817:

(c) The probability that at least one yellow fish gets selected is the same as 1�P(none), which is
1�0.292¼0.708.
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EXAMPLE 2.3.7
Refer to Example 2.3.3. Suppose that the admission committee decides to randomly choose

seven graduate students from a pool of 30 applicants, of whom 20 are foreign and 10 are US applicants.

What is the probability that a chosen seven will have four foreign students and three US students?

Solution
As in Example 2.3.3, the number of ways of selecting four foreign and three US students is

20

4

� �
10

3

� �
¼ 581,400:

The number of ways of selecting seven applicants out of 30 is

30

7

� �
¼ 2,035,800:

Hence the probability that a randomly selected group of seven will consist of four foreign and

three US students is

20
4

� �
10
3

� �
30
7

� � ¼ 581,400

2,035,800
¼ 0:2856:

EXERCISES 2.3
2.3.1. Determine the following:

(i) 10
2

� �
,

(ii) 10
0

� �
,

(iii) 10
9

� �
,

(iv) 10
2

� �
10
3

� �
,

(v)
10

2 3 5

� �
.

2.3.2. A game in a state lottery selects four numbers from a set of numbers,

{0,1,2,3,4,5,6,7,8,9}, with no number being repeated. How many possible

groups of four numbers are possible?

2.3.3. A 10-bit binary word is a sequence of 10 digits, of which each may be either a

1 or a 0. How many 10-bit words are there?

2.3.4. Insulin, a peptide hormone built from 51 amino acid residues, is one of

the smallest proteins known (note that proteins are made up of chains of

amino acids) with a molecular weight of 5808 Da. Twenty amino acids are

encoded by the standard genetic code, that is, proteins are built from a

basic set of 20 amino acids. How many possible proteins of length 51 can be

made with 20 amino acids for each position in the protein?

2.3.5. An examination is designed where the students are required to answer any 20

questions from a group of 25 questions. How many ways can a student

choose the 20 questions?

2.3.6. How many different six-place license plates are possible if the first three

places and the last place are to be occupied by letters and the fourth and fifth

places are to be occupied by numbers?
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2.3.7. In how many different ways can 15 tickets to a football game be distributed

among a class of 30 students if each student gets at most one ticket?

2.3.8. How many different four-letter English words (with or without meaning)

can be written using distinct letters from the alphabet?

2.3.9. DNA (deoxyribonucleic acid) is made from a sequence of four

nucleotides (A, T, G, or C). Suppose a region of DNA is 40 nucleotides

long. How many possible nucleotide sequences are there in this region

of DNA?

2.3.10. Show that

(a)
�
n
0

�
¼
�
n
n

�
¼ 1.

(b)
�
n
m

�
¼ n�1

m�1

�
+

n�1

m

� �
, 1�m� n:

�

(c)
�
n
m

�
¼ n

n�m

� �
:

2.3.11. A lot of 50 electrical components numbered 1-50 is drawn at random, one

by one, and is divided among five customers.

(a) Suppose that it is known that components 3, 18, 12, 26, and 46 are

defective. What is the probability that each customer will receive one

defective component?

(b) What is the probability that one customer will have drawn five

defective components?

(c) What is the probability that two customers will receive two defective

components each, two none and the other one?

2.3.12. A package of 15 apples contains two defective apples. Four apples are

selected at random.

(a) Find the probability that none of the selected apples is defective.

(b) Find the probability that at least one of the selected apples is

defective.

2.3.13. A homeowner wants to repaint her home and install new carpets (no store

where she live sells both paint and carpet). She plans to get the services

from the stores where she buys the paint and carpet. Suppose there are 12

paint stores with painting service available and 15 carpet stores with

installation services available in that city. In howmanyways can she choose

these two stores?

2.3.14. From an urn containing 15 white, 7 black, and 8 yellow balls a sample of 3

balls is drawn at random. Find the probability that

(a) All three balls are yellow.

(b) All three balls are of the same color.

(c) All three balls are of different colors.

2.3.15. Refer to Example 2.3.5. Compute (A) for (a) n¼20. (b) n¼30. Estimate n if
you wish to have an approximately 50% chance of finding someone who

shares your birthday.
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2.3.16. A box of manufactured items contains 12 items, of which four are defective.

If three items are drawn at random without replacement, what is the

probability that

(a) The first one is defective and the rest are good?

(b) Exactly one of the three is defective?

2.3.17. Five white and four black balls are arranged in a row. What is the

probability that the end balls are of different colors?

2.3.18. Three numbers are chosen at random from the numbers {1, 2, . . ., 9}. What

is the probability that the middle number is 5?

2.3.19. In each of the following, find the number of elements in the resulting

sample space.

(a) If a die is rolled five times, how many elements are there in the

sample space?

(b) If 13 cards are selected from a deck of 52 playing cards without

replacement, and the order in which the cards are drawn is important,

how many elements are there in the sample space?

(c) Four players in a game of bridge are dealt 13 cards each from an

ordinary deck of 52 cards.What is the total number of ways in which we

can deal the 13 cards to the four players?

(d) If a football squad consists of 72 players, how many selections of

11-man teams are possible?

2.3.20. In Florida Lotto, an urn contains balls numbered 1 to 53. From this urn, a

machine chooses six balls at random and without replacement. The order in

which the balls are selected does not matter. For a $1 bet, a player chooses

six numbers. If all six numbers match with the six numbers chosen by the

urn, the player wins the jackpot. What is the probability of winning the

Florida Lotto jackpot?

2.3.21. The cells in our bodies receive half of their chromosomes from the father

and the other half from the mother. So for each pair of homologous

chromosomes one will be a paternal chromosome and one will be a

maternal chromosome. We have 23 pairs of homologous chromosomes.

(a) How many possible combinations of paternal and maternal

chromosomes are there?

(b) What is the probability of getting a gamete (an organism’s reproductive

cell) with nine paternal and 14 maternal chromosomes? Assume that

any ordered combination is equally likely.

2.4 THE CONDITIONAL PROBABILITY, INDEPENDENCE,
AND BAYES’ RULE
If we know that an event has already occurred or we have some partial information

about the event, then this knowledge may affect the probability of the event of inter-

est. For example, if we were to guess on the probability of rain today, the answers will
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be different depending on whether we are sitting inside a windowless office or we are

outside and can see the formation of heavy clouds. This leads to the idea of condi-

tional probability.

Definition 2.4.1 The conditional probability of an event A, given that an event B
has occurred, denoted by P(AjB), is equal to

P AjBð Þ¼P A\Bð Þ
P Bð Þ

provided P(B)>0.

EXAMPLE 2.4.1
We toss two balanced dice, and let A be the event that the sum of the face values of two dice is 8, and

B be the event that the face value of the first one is 3. Calculate P(AjB).
Solution
The elements of the events A and B are

A¼ 2, 6ð Þ, 6, 2ð Þ, 3, 5ð Þ, 5, 3ð Þ, 4, 4ð Þf g:
and

B¼ 3, 1ð Þ, 3, 2ð Þ, 3, 3ð Þ, 3, 4ð Þ, 3, 5ð Þ, 3, 6ð Þf g:
Now A\B¼{(3, 5)}

P Að Þ¼ 5

36
, P Bð Þ¼ 6

36
, and P A\Bð Þ¼ 1

36
:

Therefore,

P AjBð Þ¼P A\Bð Þ
P Bð Þ ¼

1

36
6

36

¼ 1

6
:

It is important to note that the conditional probability P(.jB), is a probability on B.
It satisfies all the axioms of a probability.

SOME PROPERTIES OF CONDITIONAL PROBABILITY

1. If E2�E1, then P(E2jA)�P(E1jA).
2. P(EjA)¼1�P(Ec jA).
3. P(E1[E2jA)¼P(E1jA)+P(E2jA)�P(E1\E2jA).
4. Multiplication law: P(A\B)¼P(B)P(AjB)¼P(A)P(BjA).
In general,

P A1 \A2 \ . . .\Anð Þ¼P A1ð ÞP A2jA1ð ÞP A3jA1\A2ð Þ . . .
P AnjA1\A2 \ . . .\An�1ð Þ:

712.4 The Conditional Probability, Independence, and Bayes’ Rule



EXAMPLE 2.4.2
A fruit basket contains 25 apples and oranges, of which 20 are apples. If two fruits are randomly

picked in sequence, what is the probability that both the fruits are apples?

Solution
Let

A ¼ event that the first fruit is an applef g,
B ¼ event that the second fruit is an applef g:

We need to find P(A\B). We have

P Að Þ¼ 20

25
, P BjAð Þ¼ 19

24
:

Now using the multiplication principle for conditional probabilities,

P A\Bð Þ¼P Að ÞP BjAð Þ¼ 20

25

� �
19

24

� �
¼ 0:633:

Hence the probability that both the fruits are apples is 0.633.

Probability and statistics are proving to be very useful in the field of genetics.

Genetics is the study of heredity—traits transmitted from parent to offspring.

The starting point of the subject of genetics as presently known can be attributed

to Gregor Mendel (1822-1884), an Austrian monk. During the 1850s Mendel was

interested in plant breeding. He performed careful experiments with the garden pea,

Pisum sativum, and uncovered the basic principles of genetic inheritance. Mendel

discovered that traits are inherited in discrete units (known as genes). Mendel’s law

of independent segregation states that the parent transmits randomly one of its traits

to the offspring. Geneticists use letters to represent alleles. An allele is an alterna-

tive form of a gene that is located at a specific position on a specific chromosome.

Organisms have two alleles for each trait. A capital letter is used to represent a

dominant trait, and a lowercase letter is used to represent a recessive trait. The com-

bination pair of these traits that one inherits from parents is the genetic makeup. A

dominant allele can be observed in the organism’s appearance or physiology,

whereas a recessive allele cannot be observed unless the individual has two copies

of the recessive allele.

EXAMPLE 2.4.3
Suppose we are given a population with the following genetic distribution:

Genetic makeup AA Aa aa

Probability p 2q r

Alleles are randomly donated from parents to offspring. Assuming random mating, what is the

probability that the mating is Aa�Aa and the offspring is aa (recessive trait)?
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Solution
Let B denote the event that the mating is Aa�Aa, and C denote the event that the offspring is aa.

Then we have P(B)¼4q2. Because the alleles are randomly donated from parents to offspring,

P(CjB)¼1/4. Now, using the multiplication principle for conditional probabilities,

P B\Cð Þ¼P Bð ÞP CjBð Þ¼ 4q2
� � 1

4

� �
¼ q2:

Hence the probability that the mating is Aa�Aa and the offspring is of the recessive trait is q2.

In order to compute probabilities similar to that in Example 2.4.3, we could use

Table 2.1. The distributions of the progeny (zygotes) are the predicted values from

Mendel’s law.

If the occurrence of one event has no effect on the occurrence of another event,

then those two events are said to be independent of each other. Thus, we have the

following definition.

Definition 2.4.2 Two events A and B with P(A) 6¼0 and P(B) 6¼0 are said to be
independent if P(AjB)¼P(A), or P(BjA)¼P(B).Otherwise, A and B are dependent.

As a consequence of the foregoing definition two events A and B are independent

if and only if P(A\B)¼P(A)P(B) and at least one of P(A) or P(B) is not zero. An
alternative definition of independence of two events A and B can be based on this

equality. That is, two events A and B are said to be independent if

P A\Bð Þ¼P Að ÞP Bð Þ:

In this case it is not necessary to assume that at least one of P(A) or P(B) is

not zero.

EXAMPLE 2.4.4
Suppose that we toss two fair dice. Let E1 denote the event that the sum of the dice is 6 and E2 denote

the event that the first die equals 4. Then, P(E1\E2)¼P({4, 2})¼1/36 6¼P(E1)P(E2)¼5/216.

Hence E1 and E2 are dependent events.

Table 2.1 The Distribution of Zygotes.

Mating Probability of Mating

Probability of Zygotes (Offspring)

AA Aa aa

AA�AA p2 1 0 0

AA�Aa 2pq 1
2

1
2 0

AA�aa pr 0 1 0

Aa�Aa 4q2 1
4

1
2

1
4

Aa�aa 2qr 0 1
2

1
2

aa�aa r2 0 0 1

732.4 The Conditional Probability, Independence, and Bayes’ Rule



Definition 2.4.3 The k events A1, A2, . . ., Ak are mutually independent if for
every j¼2, 3, . . ., k and every subset of distinct indices i1, i2, . . ., ij

P Ai1 \Ai2 \ . . .\Aij

� �¼P Ai1ð ÞP Ai2ð Þ . . .P Aij

� �
:

Mutually independent events will often be called independent. In particular, if
P Aij \Aik

� �¼P Aij

� �
P Aikð Þ for each j 6¼k, then the events are called pairwise

independent.

Now we will discuss computation of the probability P(AjjB) (called posterior

probability) from the given prior probabilities P(Ai) and conditional probabilities

P(BjAi). First we will state the total probability rule.

LAW OF TOTAL PROBABILITY
Theorem 2.4.1 Assume S¼A1[A2[ . . . [An, where P(Ai)>0, i¼1, 2, . . ., n, and

Ai\Aj¼∅ (null set) for i 6¼ j. Then for any event B,

P Bð Þ¼
Xn
i¼1

P Aið ÞP BjAið Þ:

The set A1, A2, . . ., An given in Theorem 2.4.1 is called the partition of S.

EXAMPLE 2.4.5
Assume that a noisy channel independently transmits symbols, say 0 s 60% of the time and 1 s 40%

of the time. At the receiver, there is a 1% chance of obtaining any particular symbol distorted. What

is the probability of receiving a 1, irrespective of which symbol is transmitted?

Solution
Given

P 0ð Þ¼P 000 istransmittedð Þ¼ 0:6

and

P 1ð Þ¼P 010 istransmittedð Þ¼ 0:4:

Also, given that the probability that a particular symbol is distorted is 0.01; that is,

P 1j0ð Þ¼P 1isreceivedj0istransmittedð Þ
¼ 0:01¼P 0j1ð Þ¼P 0 is recievedj1istransmittedð Þ:

Hence, from the total probability rule, the probability of receiving a zero is

P 1ð Þ¼P receiveda1ð Þ¼P 1j0ð ÞP 0ð Þ +P 1j1ð ÞP 1ð Þ
¼ 0:01ð Þ 0:6ð Þ + 0:99ð Þ 0:4ð Þ¼ 0:402:

Hence, irrespective of whether a 0 or 1 is transmitted, the probability of receiving a 1 is 0.402.
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EXAMPLE 2.4.6
During an epidemic in a town, 40% of its inhabitants became sick. Of any 100 sick persons, 10 will

need to be admitted to an emergency ward. What is the probability that a randomly chosen person

from this town will be admitted to an emergency ward?

Solution
Let

A ¼ the person is healthyf g
and

B ¼ the person is admitted to an emergency wardf g:
It is given

P Acð Þ¼ 0:4:

Hence,

P Að Þ¼ 0:6:

We want to find P(B). Now P(BjA)¼0, because a healthy person will not be admitted to an

emergency ward. Also,

P BjAcð Þ¼ 10

100
¼ 0:1:

Hence, by the total probability rule,

P Bð Þ¼P Að ÞP BjAð Þ +P Acð ÞP BjAcð Þ
¼ 0:6ð Þ 0ð Þ+ 0:1ð Þ 0:4ð Þ¼ 0:04:

Sometimes it is not possible to directly calculate the conditional probability that is

needed but other probabilities related to the probability in question are available.

Bayes’ rule shows how probabilities change in the light of information and how

to calculate them. It is also an essential tool in the Bayesian inference. Bayes’ the-

orem is named after an English clergyman, Reverend Thomas Bayes, who outlined

the result in a paper published (posthumously) in 1763. This is one of those results

that we can prove relatively easily. However, the implications of this result are

profound in statistics and many other applied fields; see Chapter 11.

BAYES’ RULE
Theorem 2.4.2 Assume S¼A1[A2[ . . . [An, where P(Ai)>0, i¼1, 2, . . ., n and

Ai\Aj¼∅ for i 6¼ j. Then for any event B, with P(B)>0

P AjjB
� �¼ P Aj

� �
P BjAj

� �Xn

i¼1
P Aið ÞP BjAið Þ

:

Continued
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Proof. We have

P Aj Bj
� �¼P Aj\B

� �
P Bð Þ

¼ P Aj\B
� �Xn

i¼1
P Aið ÞP B Aj

��� � , by total probability rule for P Bð Þ

¼ P Aj

� �
P BjAj

� �Xn

i¼1
P Aið ÞP BjAið Þ

:
n

In Bayes’ theorem, the probabilities P(Ai) are called the prior or a priori
probabilities of the events Ai and the conditional probability P(AjjB) is called the

posterior probability of the event Aj. The events A1, . . ., An are sometimes called

the states of nature.

EXAMPLE 2.4.7
Suppose a statistics class contains 70%male and 30% female students. It is known that in a test, 5%

of males and 10% of females got an “A” grade. If one student from this class is randomly selected

and observed to have an “A” grade, what is the probability that this is a male student?

Solution
Let A1 denote that the selected student is a male, and A2 denote that the selected student is a female.

Here the sample space S¼A1[A2. Let D denote that the selected student has an “A” grade. We are
given P(A1)¼0.7, P(A2)¼0.3, P(DjA1)¼0.05, and P(DjA2)¼0.10. Then by the total probability

rule,

P Dð Þ ¼P A1ð ÞP DjA1ð Þ +P A2ð ÞP DjA2ð Þ
¼ 0:035 + 0:030¼ 0:065:

Now by Bayes’ rule,

P A1 Djð Þ ¼ P A1ð ÞP DjA1ð Þ
P A1ð ÞP DjA1ð Þ +P A2ð ÞP DjA2ð Þ

¼ 0:7ð Þ 0:05ð Þ
0:065ð Þ ¼ 7

13
¼ 0:538:

This shows that even though the probability of a male student getting an “A” grade is smaller than

that for a female student, because of the larger number ofmale students in the class, amale studentwith
an “A” grade has a greater probability of being selected than a female student with an “A” grade.

STEPS TO APPLY BAYES’ RULE
To find P(A1jD):
1. List all the probabilities including conditional probabilities given in the problem. That is

P(A1), . . ., P(An) and P(DjA1), . . ., P(DjAn).

2. Write the numerator as the product, P(A1)P(DjA1).

3. Using total probability rule, find the denominator probability by calculating P(D)¼P
i¼1
n P(Ai)

P(DjAi), in the Bayes’ rule.

4. The desired probability is Numerator
Denominator

:
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EXAMPLE 2.4.8
Suppose that three types of antimissile defense systems are being tested. From the design point of

view, each of these systems has an equally likely chance of detecting and destroying an incoming

missile within a range of 250 miles with a speed ranging up to nine times the speed of sound. How-

ever, in actual practice it has been observed that the precisions of these antimissile systems are not

the same; that is, the first system will usually detect and destroy the target 10 of 12 times, the second

will detect and destroy it 9 of 12 times, and the third will detect and destroy it 8 of 12 times.We have

observed that a target has been detected and destroyed. What is the probability that the antimissile

defense system was of the third type?

Solution
Let S1, S2, and S3 be the events that the first, second, and third antimissile defense systems, respec-

tively, are used. Also let D be the event that the target has been detected and destroyed. We wish

to find P(S3jD). Given that P(S1)¼P(S2)¼P(S3)¼1/3, P(DjS1)¼10/12, P(DjS2)¼9/12, and

P(DjS3)¼8/12. By total probability rule,

P Dð Þ ¼P S1ð ÞP DjS1ð Þ+P S2ð ÞP DjS2ð Þ +P S3ð ÞP DjS3ð Þ

¼ 1

3

� �
10

12

� �
+

1

3

� �
9

12

� �
+

1

3

� �
8

12

� �
¼ 0:75:

Now using the Bayes formula, we have

P S3jDð Þ¼P S3ð ÞP DjS3ð Þ
P Dð Þ ¼

1
3

� �
8
12
ð Þ

0:75
¼ 8

27
¼ 0:2963:

If the target is destroyed, then the probability that the antimissile defense system was of the third
type is 0.2963.

EXERCISES 2.4
2.4.1. Consider the portion of an electric circuit with three relays shown in

Figure 2.3. Current will flow from point a to point b if at least one of the

relays closes properly when activated. The relays may malfunction and not

close properly when activated. Suppose that the relays act independently of

one another and close properly when activated with probability 0.9.

(a) What is the probability that current will flow when the relays are

activated?

1

2

3

ba

FIGURE 2.3

Electric circuit with three relays.
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(b) Given that current flowed when the relays were activated, what is the

probability that relay 1 functioned?

2.4.2. If P(A)>0, P(B)>0 and P(A)<P(AjB), show that P(B)<P(BjA).
2.4.3. If P(B)>0,

(a) Show that P(AjB)+P(AcjB)¼1.

(b) Show that in general the following two statements are false: (i) P(AjB)
+P(AjBc)¼1, (ii) P(AjB)+P(AcjBc)¼1.

2.4.4. If P(B)¼p, P(AcjB)¼q, and P(Ac\Bc)¼ r, find (a) P(A\Bc), (b) P(A), and
(c) P(BjA).

2.4.5. If A and B are independent, show that so are (i) Ac and B, (ii) A and Bc, and

(iii) Ac and Bc.

2.4.6. Show that two events A and B are independent if and only if P(A\B)¼P(A)
P(B) when at least one of P(A) or P(B) is not zero.

2.4.7. A card is elected at random from an ordinary deck of 52 playing cards. If E
is the event that the selected card is an ace and F is the event that it is a

spade, show that E and F are independent events.

2.4.8. A fruit basket contains 30 apples, of which five are bad. If you pick two

apples at random, what is the probability that both are good apples?

2.4.9. Two students are to be selected at random from a class with 10 girls and 12

boys. What is the probability that both will be girls?

2.4.10. Assume a population with the genetic distribution given in Example 2.4.3.

Assume random mating. What is the probability that an offspring is aa?
2.4.11. One of the most common forms of colorblindness is a sex-linked hereditary

condition caused by a defect on the X chromosome (one of the two

chromosomes that determine gender). It is known that colorblindness is

much more prevalent in males than in females. Suppose that 6% of males

are colorblind but only 0.75% of females are colorblind. In a certain

population, 45% are male and 55% are female. A person is randomly

selected from this population.

(a) Find the probability that the person is colorblind.

(b) Find the probability that the person is colorblind given that the person is

a male.

2.4.12. A survey asked a group of 400 people whether or not they were doing daily

exercise. The responses by sex and physical activity are as in Table 2.4.1.

A person is randomly selected.

(a) What is the probability that this person is doing daily exercise?

(b) What is the probability that this person is doing daily exercise if we

know that this person is a male?

Table 2.4.1 Physical Activity Survey Results by Gender

Male Female

Daily exercise 50 61

No daily exercise 177 112
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2.4.13. A laboratory blood test is 98% effective in detecting a certain disease if the

person has the disease (sensitivity). However, the test also yields a “false

positive” result for 0.5% of the healthy persons tested. (That is, if a healthy

person is tested, then, with probability 0.005, the test result will show

positive.) Assume that 2% of the population actually has this disease

(prevalence). What is the probability a person has the disease given that the

test result is positive?

2.4.14. In order to evaluate the rate of error experienced in reading chest X-rays, the

following experiment is done. Several people with known tuberculosis (TB)

status (through other reliable tests) are subjected to chest X-rays. A technician

who is unaware of this status reads the X-ray, and Table 2.4.2 gives the

result. Here+X-ray means the technician concluded that the person has TB.

Find (a) P(TBj+X-ray), (b) P(+X-rayjNo TB), and (c) P(No TBj�X-ray).

2.4.15. Each of the 12 ordered boxes contains 12 coins, consisting of pennies and

dimes. The number of dimes in each box is equal to its order among the

boxes, that is, box number 1 contains one dime and 11 pennies, box

number 2 contains two dimes and 10 pennies, etc. A pair of fair dice is

tossed, and the total showing indicates which box is chosen to have a coin

selected at random from it.

(a) Find the probability that a coin selected is a dime.

(b) It is observed that the selected coin is a penny. Find the probability that

it came from box number 4.

2.4.16. Of 600 car parts produced, it is known that 350 are produced in one

plant, 150 parts in a second plant, and 100 parts in a third plant. Also it is

known that the probabilities are 0.15, 0.2, and 0.25 that the parts will be

defective if they are produced in the first, second, or third plants,

respectively. What is the probability that a randomly picked part from this

batch is not defective?

2.4.17. One class contains 5 girls and 10 boys and a second class contains 13 boys

and 12 girls. A student is randomly picked from the second class and

transferred to the first one. After that, a student is randomly chosen from the

first class. What is the probability that this student is a boy?

2.4.18. Consider that we have in an industrial complex two large boxes, each of

which contains 30 electrical components. It is known that the first box

contains 26 operable and 4 nonoperable components and that the second box

contains 28 operable and 2 nonoperable components. Assume that the

probability of making a selection from each of the boxes is the same.

Table 2.4.2 Chest X-ray for TB Result

Person Without TB Person with TB Total

+X-ray 70 27 97

�X-ray 1883 20 1903

Total 1945 55 2000
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(a) Find the probability that a component selected at random will be

operable.

(b) Suppose the component chosen at random is operable. Find the

probability that the component was chosen from box 1.

2.4.19. Urn 1 contains five white balls and three red balls. Urn 2 contains four white

and six red balls. An urn is selected at random, and a ball is drawn at random

from that urn. Find the probability that, if the ball selected is white, it came

from urn 1.

2.4.20. An urn contains two white balls and two black balls. A number is randomly

chosen from the set {1, 2, 3, 4}, and many balls are removed from the urn.

Find the probability that the number i,i¼1, 2, 3, 4, was chosen if at least one

white ball was removed from the urn.

2.4.21. A certain state groups its licensed drivers according to age into the following

categories: (1) 16 to 25; (2) 26 to 45; (3) 46 to 65; and (4) over 65. Table 2.4.3

lists, for each group, the proportion of licensed drivers who belong to the

group and the proportion of drivers in the group who had accidents.

(a) What proportion of licensed drivers had an accident?

(b) What proportion of those licensed drivers who had an accident were

over 65?

2.4.22. It is known that a rare disease, K, is present only in 0.2% of the population.

Performance of the test by a physician’s diagnostic test for the presence or

absence of the disease K is given in Table 2.4.4, where R+ denotes the

positive test result, and R� denotes the negative result. Also, Kc denotes

absence of the disease.

(a) What is the probability that a patient has the disease, if the test result is

positive?

Table 2.4.3 Accident Rate and Size by Age

Group Size Accident Rate

1 0.250 0.086

2 0.257 0.044

3 0.347 0.056

4 0.146 0.098

Table 2.4.4 Diagnostic Test Results for Disease K

R+ R–

K 0.98 0.02

Kc 0.01 0.99
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(b) What is the probability that a patient has the disease, if the test result is

negative?

2.4.23. A store has light bulbs from two suppliers, 1 and 2. The chance of supplier 1

delivering defective bulbs is 10%, whereas supplier 2 has a defective rate

of 3%. Suppose 60% of the current supply of light bulbs came from

supplier 1. If one of these bulbs is taken from the current supply and

observed to be defective, find the probability that it came from supplier 2.

2.4.24. The quality control chart of a certain manufacturing company shows that

45% of the defective parts produced in the company are due to mechanical

errors and 55% were caused by human error. The defective parts caused by

mechanical errors can be detected, with 95% accuracy rate, at an inspection

station. The detection rate is only 80% if the defective parts are due to

human error.

(a) Suppose a defective part was detected at the inspection station. What is

the probability that this defective part is due to human error?

(b) Suppose that a customer returned a defective part that went undetected

at the inspection station. What is the probability that the defective part

is due to human error?

2.4.25. A circuit has three major components: A, B, and C. Component A operates

independently of B and C. The components B and C are interdependent.

It is known that the component A works properly 85% of the time;

component B, 90% of the time; and component C, 95% of the time.

However, if component C fails, there is a 75% chance that B will also fail.

Assume that at least two parts must operate for the circuit to function. What

is the probability that the circuit will function properly?

2.4.26. Suppose that the data in Table 2.4.5 represent approximate distribution of

blood type frequency in percentage of total population.

Assume that the blood types are distributed the same in both male and

female populations. Also, assume that the blood types are independent of

marriage.

(a) What is the probability that in a randomly chosen couple the wife has

type B blood and the husband has type O blood?

(b) It is known that a person with type B blood can safely receive

transfusions only from persons with type B or type O blood.What is the

probability a husband has type B or type O blood? It is given that a

woman has type B blood, what is the probability that her husband is an

acceptable donor for her?

Table 2.4.5 Blood Type Frequency

Blood Type O A B AB

Frequency (%) 45 40 10 5

812.4 The Conditional Probability, Independence, and Bayes’ Rule



2.4.27. Suppose that there are 40 students in a statistics class and their blood type

follows the percentage distribution given in Exercise 2.4.26.

(a) If we randomly select two students from this class, what is the

probability that both will have the same blood type?

(b) If we randomly select two students from this class and it is observed

that the first student’s blood type is B+, what is the probability that the

second student’s blood type is O+?

2.4.28. A rare nonlethal disease (ND) that develops during adolescence is

believed to be associated with a certain recessive genotype (aa) at a certain

locus. It is known that in a population 5% of adults have the disease.

Suppose that among the adults with the disease ND, 85% have the aa

genotype. Also suppose that among the adults without the disease, 2% of

them have the aa genotype. We have randomly selected an adult from

this population,

(a) What is the probability that this person has the disease but not the

aa genome type?

(b) What is the probability that this person has the aa genome type the but

not the disease ND?

(c) Given that this person has the aa genotype, what is the probability

that this person has the disease ND?

2.4.29. (The gambler’s ruin problem) Two gamblers, A and B, bet on the outcomes

of successive flips of a coin. On each flip, if the coin comes up heads, A

collects from B one unit, whereas if it comes up tails, A pays to B one unit.

They continue to do this until one of them runs out of money. If it is

assumed that the successive flips of the coin are independent and each

flip results in a head with probability p, what is the probability that

A winds up with all the money if A starts with i units and B starts with

N� i units?

2.5 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
An experiment may contain numerous characteristics that can be measured. How-

ever, in most cases, an experimenter will focus on some specific characteristics of

the experiment. For example, a traffic engineer may focus on the number of vehi-

cles traveling on a certain road or in a certain direction rather than the brand of

vehicles or number of passengers in each vehicle. In general, each outcome of an

experiment can be associated with a number by specifying a rule of association.

The concept of a random variable allows us to pass from the experimental out-

comes to a numerical function of the outcomes, often simplifying the sample

space.

Definition 2.5.1 A random variable (r.v.) X is a function defined on a sample
space, S, that associates a real number, X(o)¼x, with each outcome o in S
(Figure 2.4).

82 CHAPTER 2 Basic Concepts from Probability Theory



EXAMPLE 2.5.1
Two balanced coins are tossed and face values are noted. Then the sample space S¼{HH, HT, TH,
TT}. Define the random variable X(o)¼n, where n is the number of heads ando represents a simple

event such as HH. Then

X oð Þ¼
0, ifo¼ TTð Þ
0, ifo2 HT, THf g
2, ifo¼ HHð Þ

8<
: :

It can be noted that X(o)¼0 or 2 with probability 1/4 (w.p. 1/4) and X(o)¼1 w.p. 1/2

It is important to note that in the definition of a random variable, probability plays no

role. However, as evidenced by the previous example, for each value or a set of values

of the random variable, there are underlying collections of events, and through these

events one connects the values of random variables with probability measures.

The random variable is represented by a capital letter (X, Y, Z,. . .), and any par-

ticular real value of the random variable is denoted by the corresponding lowercase

letter (x, y, z,. . .). We define two types of random variables, discrete and continuous.

In this book, we will not deal with mixed random variables.

Definition 2.5.2 A random variable X is said to be discrete if it can assume only a
finite or countably infinite number of distinct values.

Suppose an Internet business firm had 1000 hits on a particular day. Let the ran-

dom variable X be defined as the number of sales resulted on that day. Then, X can

take values 0, 1, . . ., 1000. If we are to define a random variable as the number of

telephone calls made from a large city on any given day, for all practical purposes,

this can be assumed to take values 0, 1, . . ., 1.

EXAMPLE 2.5.2
In the tossingof three fair coins, let the randomvariableXbedefinedasX¼numberof tails.ThenXcan
assume values 0, 1, 2, and 3. We can associate these values with probabilities in the following way:

P X¼ 0ð Þ¼P H,H,Hf gð Þ¼ 1

8
,

P X¼ 1ð Þ¼P H,H,Tf g[ H,T,Hf g[ T,H,Hf gð Þ¼ 3

8
,

P X¼ 2ð Þ¼P T,T,Hf g[ T,H,Tf g[ H,T,Tf gð Þ¼ 3

8
,

P X¼ 3ð Þ¼P T,T,Tf gð Þ¼ 1

8
:

Continued

R, the real line

Sample space S

X(w)

w

FIGURE 2.4

Random variable as a function.
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We can write this in the tabular form

x 0 1 2 3

p(x) 1/8 3/8 3/8 1/8

Let X be a discrete random variable assuming values x1, x2, x3,. . .. We have the following.

Definition 2.5.3 The discrete probability mass function (pmf) of a discrete random var-

iable X is the function

p xið Þ¼P X¼ xið Þ, i¼ 1,2,3, . . . :

A probability mass function (pmf) is more simply called a probability function (pf).
The cumulative distribution function (cdf) F of the random variable X is defined by

F xð Þ ¼ P X� xð Þ
¼

X
all y�x

p yð Þ, for�1< x<1 :

A cumulative distribution function is also called a probability distribution function or simply

the distribution function.

The probability function p(x) is nonnegative. In addition, because Xmust take on one of the values in

{x1, x2, x3,. . .}, we have
P

i¼1
1 p(xi)¼1. Although the pmf p(x) is defined only for a set of discrete values x1,

x2, x3,. . ., the cdf F(x) is defined for all real numbers.

EXAMPLE 2.5.3
Suppose that a fair coin is tossed twice so that the sample space is S¼{HH, HT, TH, TT}. Let X be

number of heads.

(a) Find the probability function for X.

(b) Find the cumulative distribution function of X

Solution
(a) We have

1

4
¼P HHf gð Þ¼P HTf gð Þ¼P THf gð Þ¼P TTf gð Þ:

Hence, the pmf is given by

p 0ð Þ¼P X¼ 0ð Þ¼ 1

4
, p 1ð Þ¼ 1

2
, p 2ð Þ¼ 1

4
:

(b) For example,

F 1:5ð Þ ¼ P X� 1:5ð Þ¼P X¼ 0or1ð Þ
¼ P X¼ 0ð Þ+P X¼ 1ð Þ
¼ 1

4
+
1

2
¼ 3

4

:

Proceeding similarly, we obtain (as shown in Figure 2.5)
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F xð Þ¼

0,
1

4
,

3

4
,

�1< x< 0

0� x< 1

1� x< 2

1, 2� x<1:

8>>><
>>>:

We have seen that a discrete random variable assumes a finite or a countably infi-

nite value. In contrast, we define a continuous random variable as one that assumes

uncountably many values, such as the points on a real line. We now give the defi-

nition of a continuous random variable.

Definition 2.5.4 Let X be a random variable. Suppose that there exists a nonneg-
ative real-valued function:
f : R! [0, 1) such that for any interval [a, b],

P Xð Þ 2 a, b½ 	Þ ¼
ðb
a

f tð Þdt:

Then X is called a continuous random variable. The function f is called the prob-
ability density function (pdf) of X.

The cumulative distribution function (cdf) is given by

F xð Þ¼P X� xð Þ¼
ðx
�1

f tð Þdt:

For a given function f to be a pdf, it needs to satisfy the following two conditions:

f(x)�0 for all values of x, and

ð1
�1

f xð Þdx¼ 1.

Also, if f is continuous, then
dF xð Þ
dx

¼ f xð Þ, where F(x) is the cdf. This follows

from the fundamental theorem of calculus. If f is the pdf of a random variable

X, then

P a�X� bð Þ¼
ðb
a

f tð Þdx:

FIGURE 2.5

Graph of F(x).
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Figure 2.6 represents P(a�X�b).
As a result, for any real number a, P(X¼a)¼0. Also,

P a�X� bð Þ¼P a<X� bð Þ¼P a�X< bð Þ¼P a<X< bð Þ:

If we have cdf F(x), then we have

P a�X� bð Þ¼F bð Þ�F að Þ:

SOME PROPERTIES OF DISTRIBUTION FUNCTION

1. 0�F(x)�1.

2. lim
x!�1

F xð Þ¼ 0, and lim
x! +1

F xð Þ¼ 1:

3. F is a nondecreasing function, and right continuous.

EXAMPLE 2.5.4
Let the function

f xð Þ¼ lxe�x, x> 0

0, otherwise:

	

(a) For what value of l is f a pdf?
(b) Find F(x).

Solution
(a) First note that f(x)�0. Now, for f(x) to be a pdf, we need

ð1
�1

f xð Þdx¼ 1. Because f(x)¼0

for x�0,

FIGURE 2.6

Probability as an area under a curve.
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Therefore l¼1. See Figure 2.7.

1¼
ð1
�1

f xð Þdx¼
ð1
0

lxe�xdx

¼ l
ð1
�1

xe�xdx¼ l �xe�xj10 +

ð1
0

e�xdx


 �
, using integration by parts:

¼ l 0�e�xj10
� ¼ l

(b) The cumulative distribution function is

F xð Þ¼
ðx
�1

f tð Þdt¼
0, x< 0ðx

0

te�tdt¼ 1� x + 1ð Þe�x, x� 0

8<
: :

Figure 2.8 represents the cumulative distribution.

FIGURE 2.7

Graph of f(x)¼xe�x.

FIGURE 2.8

Graph of F(x), x�0.
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EXAMPLE 2.5.5
Suppose that a large grocery store has shelf space for 150 cartons of fruit drink that are delivered on a

particular day of each week. The weekly sale for fruit drink shows that the demand increases steadily

up to 100 cartons and then levels off between 100 and 150 cartons. Let Y denote the weekly demand

in hundreds of cartons. It is known that the pdf of Y can be approximated by

f yð Þ¼
y, 0� y� 1

1, 1< y� 1:5

0, elsewhere:

8><
>:

(a) Find F(y),

(b) Find P(0�Y�0.5),

(c) Find P(0.5�Y�1.2).

Solution
(a) The graph of the density function f(y) is shown in Figure 2.9

From the definition of cdf, we have (Figure 2.10)

FIGURE 2.9

Graph of f (y).

1

0.5

1 1.

y

FIGURE 2.10

Graph of CDF.
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F yð Þ¼
ðy
�1

f tð Þdt¼

0, y< 0ðy
0

tdt, 0� y< 1ð1
0

tdt+

ðy
1

dt, 1� y< 1:5

ð1
0

tdt+

ð1:5
1

dt, y� 1:5

8>>>>>>>>>><
>>>>>>>>>>:

¼

0, y< 0

y2

2
, 0� y< 1

y� 1
2
, 1� y< 1:5

1 y� 1:5:

8>>>>><
>>>>>:

(b) The probability

P 0�Y� 0:5ð Þ¼ F 0:5ð Þ�F 0ð Þ
¼ 0:5ð Þ2

2
¼ 1

8
¼ 0:125:

(c) P 0:5� Y� 1:2ð Þ¼ F 1:2ð Þ�F 0:5ð Þ
¼ 1:2� 1

2
ð Þ�0:125¼ 0:575:

EXERCISES 2.5
2.5.1. The probability function of a random variable Y is given by

p ið Þ¼ cli

i! , i¼ 0,1,2, . . . , where l is a known positive value and c is a constant.
(a) Find c.
(b) Find P(Y¼0).

(c) Find P(Y>2).

2.5.2. Find k so that the function given by

p xð Þ¼ k

x+ 1
, x¼ 1,2,3,4

is a probability mass function. Graph the probability mass function and

cumulative distribution function.

2.5.3. A random variable X has the following probability mass function:

x �5 0 3 6

p(x) 0.2 0.1 0.4 0.3

Find the cumulative distribution function F(x) and graph it.

2.5.4. The probability mass function of a discrete random variable X is given in

the following table:

x �1 0 2 5 6

p(x) 0.1 0.15 0.4 0.8 1
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(a) Find P(X¼2).

(b) Find P(X>0).

2.5.5. The cumulative distribution function F(x) of a random variable X is given by

F xð Þ¼

0, �1< x<�1

0:2, �1� x< 3

0:8, 3� x< 9

1, x� 9:

8>>><
>>>:

Write down the values of the random variable X and the corresponding

probabilities, p(x).
2.5.6. The probability density function of a random variable X is given by

f xð Þ¼ cx, 0< x< 4

0, otherwise:

(

(a) Find c.
(b) Find the distribution function F(x).
(c) Compute P(1<X<3).

2.5.7. Let the function

f xð Þ¼ cx2, 0< x< 3

0, otherwise:

	

(a) Find the value of c so that f(x) is a density function.

(b) Compute P(2<X<3).

(c) Find the distribution function F(x).
2.5.8. Suppose that Y is a continuous random variable whose pdf is given by

f yð Þ¼ K 4y�2y2ð Þ, 0< y< 2

0, elsewhere:

(

(a) What is the value of K?
(b) Find P(Y>1).

(c) Find F(y).
2.5.9. The random variable X has a cumulative distribution function

F xð Þ¼
0, for x� 0

x2

1 + x2
, for x> 0:

8<
:

Find the probability density function of X.
2.5.10. A random variable X has a cumulative distribution function

F xð Þ¼
0, if x� 0

ax+ b, if 0� x< 3

1, if x� 3:

8<
:
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(a) Find the constants a and b.
(b) Find the pdf f(x).
(c) Find P(1<X<5).

2.5.11. The amount of time, in hours, that a machine functions before breakdown is

a continuous random variable with pdf

f tð Þ¼
1

120
e�t=120, t� 0

0, t< 0:

(

What is the probability that this machine will function between 98 and

145 h before breaking down? What is the probability that it will function

less than 160 h?

2.5.12. The length of time that an individual talks on a long-distance telephone call

has been found to be of a random nature. Let X be the length of the talk;

assume it to be a continuous random variable with probability density

function given by

f xð Þ¼ ae�1
5
x, x> 0

0, elsewhere:

	

Find

(a) The value of a that makes f(x) a probability density function.

(b) The probability that this individual will talk (i) between 8 and 12 min,

(ii) less than 8 min, (iii) more than 12 min.

(c) Find the cumulative distribution function, F(x).
2.5.13. Let T be the life length of a mechanical system. Suppose that the cumulative

distribution of such a system is given by

F tð Þ¼ 0, t< 0

1�exp � t�yð Þb
a

� �
, t� 0,a> 0,b,g� 0:

	

Find the probability density function that describes the failure behavior

of such a system.

2.6 MOMENTS AND MOMENT-GENERATING FUNCTIONS
One of the most useful concepts in probability theory is that of expectation of a ran-

dom variable. The expected value may be viewed as the balance point of distribution

of probability on the real line, or in common language, the average.

Definition 2.6.1 Let X be a discrete random variable with pmf p(x). Then the
expected value of X, denoted by E(X), is defined by

m¼E Xð Þ¼
X
all x

xp xð Þ, provided
X
all x

jxjp xð Þ<1:

Now we will define the expected value for a continuous random variable.
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Definition 2.6.2 The expected value of a continuous random variable X with pdf
f(x) is defined by

m¼E Xð Þ¼
ð1
�1

xf xð Þdx, provided

ð1
�1

jxjf xð Þdx<1:

The expected value of X is also called the expectation or mathematical expectation of

X. We denote the expected value of X by m.

EXAMPLE 2.6.1
Let

X¼ 1, with a probability 1
2

0, with a probability 1
2

	
:

Then E(X)¼1(1/2)+0(1/2)¼1/2.

EXAMPLE 2.6.2
Let X be a discrete random variable whose probability mass function is given in the following table:

x �1 0 1 2 3 4 5

p(x) 1
7

1
7

1
14

2
7

1
14

1
7

1
7

Find E(X).

Solution
By definition,

E xð Þ¼
X

xp xð Þ

¼�1
1

7

� �
+ 0

1

7

� �
+ 1

1

14

� �
+ 2

2

7

� �
+ 3

1

14

� �
+ 4

1

7

� �
+ 5

1

7

� �
¼ 2:

EXAMPLE 2.6.3
Let X�0 be an integer-valued random variable such that P(X¼n)¼pn. Show that

EX¼P
n¼1
1 P(X�n).

Solution
Using the definition of expectation, and the fact that (0)p0¼0, we have

EX¼
X1
n¼1

npn ¼ 1p1 + 2p2 + 3p3 + � � �

¼ p1 + p2 + p3 + � � �
+ p2 + p3 + p4 + � � �
+ p3 + p4 + � � �
¼P X� 1ð Þ+P X� 2ð Þ+ � � �

¼
X1
n¼1

P X� nð Þ:
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EXAMPLE 2.6.4
Suppose you are selling a car. Let X0, X1, X2,. . . be the successive offers occurring at times 0, 1, 2,

. . ., n, that you receive (assume that the offers are random, independent, and have the same distri-

bution); see Figure 2.11. Show that E(N)¼1, where N¼min{n: Xn>X0}, that is the first time an

offer exceeds the initial offer X0 at time ‘0’.

Solution
By definition,

P N� nð Þ ¼ P X0 is largest of X0,X1, . . . ,Xn�1ð Þ
¼ 1

n
, by symmetry,

as any of the Xi’s could be more than the rest. Hence, using Example 2.6.3,

E Nð Þ¼
X1
n¼1

P N� nð Þ¼
X1
n¼1

1

n
¼1:

You would expect to wait a long time to receive an offer better than the first one. So, take the

first offer.

Definition 2.6.3 The variance of a random variable X is defined by

s2 ¼Var Xð Þ¼E X�mð Þ2
h i

The square root of variance, denoted by s, is called the standard deviation.

The variance is a measure of spread or variability of values of a random variable

around the mean.

The next result shows how to obtain the expectation of a function of a random

variable.

EXPECTATION OF FUNCTION OF A RANDOM VARIABLE
Theorem 2.6.1 Let g(X) be a function of X, then the expected value of g(X) is

E g Xð Þ½ 	 ¼

X
x

g xð Þp xð Þ, if X is discrete

ð1
�1

g xð Þf xð Þdx, if X is continuous,

8>><
>>:

provided the sum or the integral exists.

0 1 2 3 4 n -1

X0

X1

Xn

n

FIGURE 2.11

Size of successive offerings.
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We now give some properties of the expectation of a random variable.

SOME PROPERTIES OF EXPECTED VALUE AND VARIANCE
Theorem 2.6.2 Let c be a constant and let g(X), g1(X), . . ., gn(X) be functions of a random

variable X such that E(g(X)) and E(gi(X)) for i¼1, 2, . . ., n exist. Then the following results hold:

(a) E(c)¼c.

(b) E[cg(X)]¼cE [g(X)].
(c) E[

P
igi(X)]¼

P
iE[gi(X)].

(d) Var(aX+b)¼a2Var(X). In particular, Var(aX)¼a2Var(X).

(e) Var(X)¼E(X2)�m2.

Proof. Proof of (a) through (d) will be given as an exercise. We will prove (e).

Var Xð Þ¼E X�mð Þ2½ 	
¼E X2�2Xm+m2

� �
¼E X2

� ��2mE Xð Þ +m2
¼E X2

� ��2m2 +m2

¼E X2
� ��m2: n

EXAMPLE 2.6.5
A discrete random variable X is said to be uniformly distributed over the numbers 1, 2, 3, . . ., n, if

P X¼ ið Þ¼ 1

n
, i¼ 1,2, . . . ,n:

Find EX and Var(X).

Solution
By definition

EX¼
Xn
i¼1

xipi

¼ 1
1

n

� �
+ 2

1

n

� �
+ � � �+ n 1

n

� �

¼ 1

n

n n + 1ð Þ
2


 �
¼ n + 1

2
:

Similarly, using the summation formula 12 + 22 + � � �+ n2 ¼ n n + 1ð Þ 2n+ 1ð Þ
6

, we get

EX2 ¼ 12
1

n

� �
+ 22

1

n

� �
+ � � �+ n2 1

n

� �

¼ 1

n

n n+ 1ð Þ 2n+ 1ð Þ
6


 �

¼ n + 1ð Þ 2n + 1ð Þ
6

:
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Hence,

Var Xð Þ¼EX2� EXð Þ2

¼ n + 1ð Þ 2n + 1ð Þ
6

� n + 1

2

� �2

¼ n2�1

12
:

EXAMPLE 2.6.6
To find out the prevalence of smallpox vaccine use, a researcher inquired into the number of times a

randomly selected 200 people aged 16 and over in an African village had been vaccinated. He

obtained the following figures: never, 17 people; once, 30; twice, 58; three times, 51; four times,

38; five times, 7. Assuming these proportions continue to hold exhaustively for the population of

that village, what is the expected number of times those people in the village had been vaccinated,

and what is the standard deviation?

Solution
Let X denote the random variable representing the number of times a person aged 16 or older in this
village has been vaccinated. Then, we can obtain the following distribution:

x 0 1 2 3 4 5

p(x) 17/200 30/200 58/200 51/200 38/200 7/200

Then,

E Xð Þ¼
X

xp xð Þ¼ 1

200
0 17ð Þ + 1 30ð Þ + 2 58ð Þ + 3 51ð Þ + 4 38ð Þ + 5 7ð Þð Þ¼ 2:43:

Also,

Var Xð Þ¼E X2
� �� E Xð Þð Þ2

¼
X

x2p xð Þ� 2:43ð Þ2 ¼ 7:52� 2:43ð Þ2
¼ 1:6151

:

Thus, the standard deviation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6151

p ¼ 1:2709:

EXAMPLE 2.6.7
Let Y be a random variable with pdf

f yð Þ¼
3

64
y2 4�yð Þ, 0� y� 4

0, elsewhere:

(

(a) Find the expected value and variance of Y.

(b) Let X¼300Y+50. Find E(X) and Var(X), and

(c) Find P(X>750).

Continued
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Solution
(a)

E Yð Þ¼
ð1
�1

yf yð Þdy

¼ 3

64

ð4
0

yy2 4�yð Þdy
¼ 2:4:

and

Var Yð Þ¼
ð4
0

y�2:4ð Þ2 3

64
y2 4�yð Þdy

¼ 0:64:

(b) Using the fact that Var(aY+b)¼a2Var(Y), we have

Var Xð Þ¼ 300ð Þ2Var Yð Þ
¼ 90,000 0:64ð Þ¼ 57,600:

(c)

P X> 750ð Þ¼P 300Y + 50> 750ð Þ
¼ P Y>

7

3

� �

¼ 3

64

ð4
7=3

y2 4�yð Þdy¼ 0:55339:

2.6.1 SKEWNESS AND KURTOSIS
Even though the mean m and the standard deviation s are significant descriptive mea-

sures that locate the center and describe the spread or dispersion of probability den-

sity function f(x), they do not provide a unique characterization of the distribution.

Two distributions may have the same mean and variance and yet could be very dif-

ferent, as in Figure 2.12.

FIGURE 2.12

Same mean and variance.
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To better approximate the probability distribution of a random variable, we may

need higher moments.

Definition 2.6.4 The kth moment about the origin of a random variable X is
defined as EXk and denoted by m0

k0 whenever it exists. The kth moment about its

mean (also called central kth moment) of a random variable X is defined as E[-
(X�m)k] and denoted by mk, k¼2, 3, 4,. . ., whenever it exists.

In particular, we have E(X)¼m10 ¼m, and s2¼m2. We have seen earlier that the

second moment about mean (variance, s2) is used as a measure of dispersion about

the mean.

Definition 2.6.5 The standardized third moment about mean

a3 ¼E X�mð Þ3
s3

¼ m3
m3=22

is called the skewness of the distribution of X. The standardized fourth moment about
mean

a4 ¼E X�mð Þ4
s4

is called the kurtosis of the distribution.
Skewness is used as a measure of the asymmetry (lack of symmetry) of a density

function about its mean. Recall that a distribution, or data set, is symmetric if it looks

the same to the left and right of the center point. If a3¼0, then the distribution is

symmetric about the mean, if a3>0, the distribution has a longer right tail, and if

a3<0, the distribution has a longer left tail. Thus, the skewness of a normal distri-

bution is zero. Kurtosis is a measure of whether the distribution is peaked or flat rel-

ative to a normal distribution. Kurtosis is based on the size of a distribution’s tails.

Positive kurtosis indicates too few observations in the tails, whereas negative kurto-

sis indicates too many observations in the tail of the distribution. Distributions with

relatively large tails are called leptokurtic, and those with small tails are called pla-
tokurtic. A distribution which has the same kurtosis as a normal distribution is known

as mesokurtic. It is known that the kurtosis for a standard normal distribution a4¼3.

A sample of n values, x1, . . .,xn the skewness (g1) and kurtosis (k1) can be calcu-

lated using the following formulas.

g1 ¼
n

n�1ð Þ n�2ð Þ
Xn
i¼1

xi� x

s

� �3

and

k1 ¼ n n + 1ð Þ
n�1ð Þ n�2ð Þ n�3ð Þ

Xn
i¼1

xi� x

s

� �4
" #

� 3 n�1ð Þ2
n�2ð Þ n�3ð Þ :

An important expectation is the moment-generating function for a random variable,

in a sense, this packages all the moments for a random variable in one expression.

Definition 2.6.6 For a random variable X, suppose that there is a positive number
h such that for �h< t<h the mathematical expectation E(etX) exists. The moment-

generating function (mgf) of the random variable X is defined by
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MX tð Þ¼E etX
� �¼

X
etxp xð Þ, ifdiscreteÐ

etxf xð Þdx, if continuous:

(

An advantage of the moment generating function is its ability to give the moments.

Recall that the Maclaurin series of the function etx is

etx ¼ 1 + tx+
txð Þ2
2!

+
txð Þ3
3!

+ � � �+ txð Þn
n!

+ � � ��

By using the fact that the expected value of the sum equals the sum of the expected

values, the moment-generating function can be written as

MX tð Þ¼E etX
� ¼E 1 + tX +

tXð Þ2
2!

+
tXð Þ3
3!

+ � � � + tXð Þn
n!

+ � � �
" #

¼ 1 + tE X½ 	 + t2

2!
E X2
� 

+
t3

3!
E X3
� 

+ � � �+ tn

n!
E Xn½ 	+ � � �:

Note that MX(0)¼1 for all the distributions. Taking the derivative of MX(t) with
respect to t, we obtain

dMX tð Þ
dt

¼M0
X tð Þ¼ E X½ 	 + tE X½ 	+ t2

2!
E X2
� 

+
t3

3!
E X3
� 

+ � � �+ t n�1ð Þ

n�1ð Þ!E Xn½ 	+ � � �:

Evaluating this derivative at t¼0, all terms except E[X] become zero. We have

M0
X 0ð Þ¼E X½ 	:

Similarly, taking the second derivative of MX(t), we obtain

M0 0
X 0ð Þ¼E X2

� 
:

Continuing in this manner, from the nth derivativeMX
(n)(t) with respect to t, we obtain

all the moments to be

M
nð Þ
X 0ð Þ¼E Xn½ 	, n¼ 1,2,3, . . . :

We summarize these calculations in the following theorem.

Theorem 2.6.3 If MX(t) exists, then for any positive integer k,

dkMX tð Þ
dtk t¼ 0

���� ¼M
kð Þ
X 0ð Þ¼m0k:

The usefulness of the foregoing theorem lies in the fact that, if the mgf can be found,

the often difficult process of integration or summation involved in calculating dif-

ferent moments can be replaced by the much easier process of differentiation.

The following examples illustrate this fact.
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EXAMPLE 2.6.8
Let X be a random variable with pf

p xð Þ¼ n
x

� �
px 1�pð Þn�x

, x¼ 0,1,2, . . . ,n:

(This random variable is called a binomial random variable, and the pmf is called a binomial

distribution.) Show that MX(t)¼ [(1�p)+pet]n, for all real values of t. Also obtain mean and var-

iance of the random variable X.

Solution
The moment-generating function of X is

MX tð Þ¼E etXð Þ¼
Xn
x¼0

etx
n

x

� �
px 1�pð Þn�x

¼
Xn
x¼0

n

x

� �
petð Þx 1�pð Þn�x:

Using the binomial formula, we have

MX tð Þ¼ pet + 1�pð Þ½ 	n, �1< t<1:

The first two derivatives of MX(t) are

M0
X tð Þ¼ n 1�pð Þ+ pet½ 	 n�1ð Þ

petð Þ
and

M00
X tð Þ¼ n n�1ð Þ 1�pð Þ+ pet½ 	 n�2ð Þ

petð Þ2 + n 1�pð Þ + pet½ 	 n�1ð Þ
petð Þ:

Thus,

m¼E Xð Þ¼M0
X 0ð Þ¼ np

and

s2 ¼E X2
� ��m2 ¼M00 0ð Þ� npð Þ2

¼ n n�1ð Þp2 + np� npð Þ2 ¼ np 1�pð Þ:

EXAMPLE 2.6.9
LetXbe a randomvariablewithpmf f(x)¼e�llx/(x!), x¼0, 1, 2,. . .. (Such a randomvariable is called a

Poisson r.v. and the distribution is called a Poisson distribution with parameter l.) Find the mgf of X.

Solution
By definition

MX tð Þ¼EetX ¼
X1
x¼0

etxf xð Þ

¼
X1
x¼0

etx
e�llx

x!
¼
X1
x¼0

e�l etlð Þx
x!

¼ e�l
X1
x¼0

ele
t e� letð Þ letð Þx

x!

" #

¼ el et�1ð ÞX1
x¼0

e� letð Þ letð Þx
x!

" #
:

We observe that e� letð Þ letð Þx=x! is a Poisson pf with parameter let.Hence
X1

x¼0

e� letð Þ letð Þx
x!

¼ 1

Thus from (1),

MX tð Þ¼ el et�1ð Þ:
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EXAMPLE 2.6.10
Let X be a random variable with pdf given by

f xð Þ¼
1

b
e�x=b, x> 0

0, otherwise:

(

Find mgf MX(t).

Solution
By definition of mgf,

Mx tð Þ¼
ð�1

1
etxf xð Þdx

¼
ð1
0

etx
1

b
e�x=bdx

¼ 1

b

ð1
0

e�
1
b�tð Þxdx, t<

1

b

¼ 1

b
� 1

1=bð Þ� tð Þe
� 1

b�tð Þx 1

x¼0

�����
" #

¼ 1

b
b

1�bt
¼ 1

1�bt
, t<

1

b
:

EXAMPLE 2.6.11
Let X be a random variable with pdf f xð Þ¼ 1=

ffiffiffiffiffiffi
2p

p� �
e�x2=2, �1<x<1. (We call such random

variable a standard normal random variable.) Find the mgf of X.

Solution
By the definition of mgf, we have

E etxð Þ¼ 1ffiffiffiffiffiffi
2p

p
ð +1

�1
etxe

�x
2

2 dx

¼ 1ffiffiffiffiffiffi
2p

p
ð +1

�1
e
�1
2
x2�2tx
� �

dx

¼ 1ffiffiffiffiffiffi
2p

p
ð +1

�1
e
�1
2

x2�2tx+ t2
� �

+
t2

2 dx

¼ 1ffiffiffiffiffiffi
2p

p
ð +1

�1
e
�1
2

x� tð Þ2 + t2

2 dx

¼ e
t2

2
1ffiffiffiffiffiffi
2p

p
ð +1

�1
e
�1
2
x� tð Þ2

dx¼ e

t2

2 :

as 1=
ffiffiffiffiffiffi
2p

p� �
e�

1
2
x� tð Þ2 is a normal pdf with mean t and variance 1 and hence

1ffiffiffiffi
2p

p
ð1
�1

e
�1
2
x� tð Þ2dt¼ 1:

A random variable X with pdf

f xð Þ¼ 1ffiffiffiffiffiffi
2p

p
� �

e
� 1

2s2
x�mð Þ2

, �1< x<1

is called a normal random variable with mean m and variance s2.We will denote such random vari-

ables by X
N(m, s2).
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PROPERTIES OF THE MOMENT-GENERATING FUNCTION
1. The moment-generating function of X is unique in the sense that, if two random variables X and Y

have the same mgf (MX (t)¼MY (t), for t in an interval containing 0), then X and Y have the same

distribution.

2. If X and Y are independent, then

MX +Y tð Þ¼MX tð ÞMY tð Þ:
That is, themgf of the sum of two independent random variables is the product of the mgfs of the

individual random variables. The result can be extended to “n” random variables.

3. Let Y¼aX+b. Then

MY tð Þ¼ ebtMX atð Þ:

EXAMPLE 2.6.12
Find the mgf of X
N(m, s2).

Solution
Let Y
N(0, 1) and let X¼sY+m. Then by the foregoing property (3), and the Example 2.6.11, the
mgf of X is

MX tð Þ¼ emtMY stð Þ
¼ emte

1
2
s2 t2 ¼ emt+

1
2
s2 t2 :

EXAMPLE 2.6.13
Let X1
N(m1,s1

2), and X2
N(m2,s2
2). Let X1 and X2 be independent. Find the mgf of Y¼X1+X2 and

obtain the distribution of Y.

Solution
By property (2)

MX tð Þ¼MX1
tð ÞMX 2

tð Þ
¼ em1 t+

1
2
s2
1
t2

� �
em2 t+

1
2
s2
2
t2

� �
¼ e m1 +m2ð Þ t+ 1

2
s2
1
+ s2

2ð Þt2 :
This implies Y
N(m1+m2,s1

2+s2
2).

This result can be generalized. If X1, . . ., Xn are independent random variables such

that Xi
N(mi,s1
2), i¼1, . . .,n, then we can show that

P
i¼1
n aiXi


N
Pn

i¼1aimi,
Pn

i¼1a
2
i s

2
i

� �
:
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EXERCISES 2.6
2.6.1. Find E(X) where X is the outcome when one rolls a six-sided balanced die.

Find the mgf of X. Also, using the mgf of X, compute the variance of X.
2.6.2. The grades from a statistics class for the first test are given by

xi 96 87 65 49 77 74 99 68 56 84

p(xi)
3

15

2

15

1

15

1

15

2

15

1

15

1

15

1

15

1

15

2

15

(a) Find mean m and variance s2.
(b) Find the mgf.

2.6.3. The cdf of a discrete random variable Y is given in the following table:

y �1 0 2 5 6

F(y) 0.1 0.15 0.4 0.8 1

(a) Find EY, EY2, EY3, and Var(Y).
(b) Find the mgf of Y.

2.6.4. A discrete random variable X is such that

P X¼ nð Þ¼ 2n�1

3n
, n¼ 1,2, . . .

Show that EX¼3.

2.6.5. A discrete random variable X is such that

P X¼ 2nð Þ¼ 1

2n
, n¼ 1,2, . . . :

Show that EX¼1. That is, X has no mathematical expectation.

2.6.6. Let X be a random variable with pdf f(x)¼kx2 where 0�x�1.

(a) Find k.
(b) Find E(X) and Var(X).
(c) Find MX(t). Using the mgf, find E(X).

2.6.7. Let X be a random variable with pdf f(x)¼ax2+b, 0�x�1. Find a and b
such that E Xð Þ¼ 5

8
.

2.6.8. Given that X1, X2, X3, and X4 are independent random variables with mean

2, find E(Y) and E(Z) for

Y¼3X4�X1 +
1

5
X3,

Z¼X2 + 7X3�9X1:

2.6.9. For a random variable X, prove (a)-(d) of Theorem 2.6.2.
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2.6.10. Let e (for “error”) be a random variable with E(e)¼0, and Var(e)¼s2.
Define the random variable, X¼m+ e, where m is a constant. Find E(X),
Var(X), and E(e2).

2.6.11. A degenerate random variable is a random variable taking a constant value.

Let X¼c. Show that E(X)¼c, and Var(X)¼0. Also find the cumulative

distribution function of the degenerate distribution of X.
2.6.12. Let Y
N(m, s2). Use the mgf to find E(X2) and E(X4).

2.6.13. Using Theorem 2.6.3, show that the mean and variance of the Poisson

distribution, with parameter l, is equal to l.
2.6.14. Let X be a discrete random variable with a mass function

p xð Þ¼
1

x x+ 1ð Þ , x¼ 1,2, . . .

0, otherwise:

8<
:

Show that the moment-generating function does not exist for this

random variable.

2.6.15. Let X be a random variable with geometric pdf

f xð Þ¼ p 1�pð Þx�1
, x¼ 1,2,3, ....

(a) Find E(X) and Var(X).
(b) Show that MX tð Þ¼ pet

1� 1�pð Þet, t<� ln (1�p).

2.6.16. Find E(X) and Var(X) for a random variable X with pdf

f xð Þ¼ 1

2
e� xj j, �1< x<1. Also find the mgf of X.

2.6.17. The probability density function of the random variable X is given by

f xð Þ¼

x2

2
, 0< x� 1

6x�2x2�3

2
, 1< x� 2

x�3ð Þ2
2

, 2< x� 3

0, otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

Find the expected value of the random variable X.
2.6.18. Let the random variable X be normally distributed with mean 0 and variance

s2. Show that E(X(2k+1))¼0, where k¼0, 1, 2,. . ..
2.6.19. If the kth moment of a random variable exists, show that all moments of

order less than k exist.

2.6.20. Suppose that the random variable X has an mgf

MX tð Þ¼ a
a� t

, t<
1

a
:

Let the random variable Y have the following function for its probability

density:
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g yð Þ¼ ae�ay, y> 0, a> 0

0, otherwise:

	

Can we obtain the probability density of the variable X with the

foregoing information?

2.7 CHAPTER SUMMARY
In this chapter, we have introduced the concepts of random events and probability,

how to compute the probabilities of events using counting techniques. We have stud-

ied the concept of conditional probability, independence, and Bayes’ rule. Random

variables and distribution functions, moments, and moment-generating functions of

random variables have also been introduced.

The following lists some of the key definitions introduced in this chapter.

• Sample space

• Mutually exclusive events

• Informal definition of probability

• Classical definition of probability

• Frequency interpretation of probability

• Axiomatic definition of probability

• Multinomial coefficients

• Conditional probability

• Mutually independent events

• Pairwise independent events

• Random variable (r.v.)

• Discrete random variable

• Discrete probability mass function

• Cumulative distribution function

• Continuous random variable

• Expected value

• kth moment about the origin

• kth moment about its mean

• Skewness and kurtosis

• Moment-generating function

The following important concepts and procedures have been discussed in this

chapter:

• Method of computing probability by the classical approach.

• Some basic properties of probability.

• Computation of probability using counting techniques.

• Four sampling methods:

• Sampling with replacement and the objects are ordered.

• Sampling without replacement and the objects are ordered.

• Sampling without replacement and the objects are not ordered.

• Sampling with replacement and the objects are not ordered.
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• Permutation of n objects taken m at a time.

• Combinations of n objects taken m at a time.

• Number of combinations of n objects into m classes.

• Some properties of conditional probability.

• Law of total probability.

• Steps to apply Bayes’ rule.

• Some properties of distribution function.

• Some properties of expected value.

• Expectation of function of a random variable.

• Properties of moment-generating functions.

2.8 COMPUTER EXAMPLES (OPTIONAL)
The three softwares packages, Minitab, SPSS, and SAS, that we are using in this

book are not specifically designed for probability computations. However, the fol-

lowing examples are given to demonstrate that we will be able to use the software

for some basic probability computations. We do not recommend using any of these

three software packages for probability calculations; they are basically designed for

statistical computations. There are many other software packages such as Maple or

MATLAB, that can be used efficiently for probability computations.

2.8.1 EXAMPLES USING R
Example 2.8.1 Calculating Cumulative Probabilities

Random variable X has the following distribution:

X 1 4 5 8 11

p(x) 0.2 0.2 0.1 0.15 0.35

Find P(X�4), in this example we will use the which() statement to calculate the

cumulative probability in R however there maybe other methods available. Try using

the which() statement by itself.

R Code:

x¼c(1,4,5,8,11);
Notice p sums to 1

p¼c(0.2,0.2,0.1,0.15,0.35);

sum(p[which(x<¼4)]);

Notice we're summing p values based
on x values which meet the criterion.

Output:

0.4 i.e, P(X�4)¼0.4

Example 2.8.2 Expected Value

Using the data in the previous example (2.8.1) calculate E(X) and Var(X).
Since we’re given the distribution we can calculate it using the sum of the values

multiplied by their probabilities
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R Code:

x¼c(1,4,5,8,11);

p¼c(0.2,0.2,0.1,0.15,0.35); Notice p sums to 1

sum(x*p); E(X)

sum(x*x*p)-sum(x*p) (̂2); Var(X)

Output:

6.55 E(X )

14.9475 Var(X )

2.8.2 MINITAB COMPUTATIONS
In order to find the cdf of a random variable, we can use the following commands in

Example 2.8.1. We can use the mathematical expressions to find the expected value

of a discrete random variable.

EXAMPLE 2.8.1
A random variable X has the following distribution:

x 1 4 5 8 11

p(x) 0.2 0.2 0.1 0.15 0.35

Find P(X�4).

Solution
Enter x values in C1 and p(x) values in C2.

Calc>Probability Distributions>Discrete. . . > click Cumulative probability, and in Values

in: enter C1, Probabilities in: enter C2, click input column: enter C1, in Optional storage: enter

C3>OK

We will get the following output in column C3.

0:20 0:40 0:50 0:65 1:00

EXAMPLE 2.8.2
For the random variable X in Example 2.8.1, find E(X).

Solution
Enter X values in column C1 (i.e., 1 4 5 8 11), and enter p(x) values in column C2. Use the following

procedure.

Calc>Calculator. . . > Store results in variable: type C3> in Expression: type (C1)*(C2)>click

OK Then to find the sum of values in column C3>Calc>Column Statistics. . .> click Sum and in

Input variable: type C3>click OK
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We will get the output as

Column Sum

Sum of C3 ¼ 6.5500

Note that this Sum gives the E(X). In the previous procedure, if we store the expres-
sion (C1)*(C1)*(C2) in column C4 and find the sum of terms in C4, we will get

E(X2). Using this, we will be able to compute Var(X). Using a similar procedure,

we can obtain E(Xn) for any n�1.

2.8.2 SPSS EXAMPLES

EXAMPLE 2.8.3
For the random variable X in Example 2.8.1, find E(X).

Solution
In column 1, enter the x values and column 2 enter the p(x) values. Then

Transform>compute. . . > in target variable: type a name, say, product. Move var00001 and

var00002 to Numeric Expression: field and put “*” in between them as (var00001)*(var00002).

Then use the SUM(., .) command to find the value of E(X)

2.8.3 SAS EXAMPLES

EXAMPLE 2.8.4
A random variable X has the following distribution:

x 2 5 6 8 9

P(X) 0.1 0.2 0.3 0.1 0.3

Using SAS, find E(X).

Solution
For discrete distributions where the random variable takes finite values, we can adapt the following
procedure:

data evalue;

input x y n;

z¼x*y*n;

cards;

2 .1 5

5 .2 5

6 .3 5

8 .1 5

9 .3 5

;

run;

proc means;

run;
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We know that if proc means is used just for x*y, that will give us 1
n

P
xr xð Þ; hence,

multiplying by n, the number of values X takes will give us E(X)¼P
xp(x). We will

get the following output:

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
X 5 6.0000000 2.7386128 2.0000000 9.0000000

Y 5 0.2000000 0.1000000 0.1000000 0.3000000

N 5 5.0000000 0 5.0000000 5.0000000

Z 5 6.5000000 4.8476799 1.0000000 13.5000000

From this, we can see that E(X)¼6.5. A direct way to find the expected value is

by using “PROC IML.”

options nodate nonumber;

/* Finding expected value of a random variable */

proc iml;

/* defining all the variables */

x¼{2 5 6 8 9};/* a row vector */

y¼{.1 .2 .3 .1 .3};/* probabilities */

/* calculations */

z¼x*y’;

/* print statements */

print “Display the vector x and probability y and the expected value”;

print x y, z;

quit;

We will get the following output:

X

2 5 6 8 9

Y

0.1 0.2 0.3 0.1 0.3

Z

6.5

PROJECTS FOR CHAPTER 2
2A. THE BIRTHDAY PROBLEM
The famous birthday problem is to find the smallest number of people one must ask

to get an even chance that at least two people have the same birthday. To solve this

you can use the following steps.

Find the probability that in a group of k people no two have the sameprobability. Let

q be this probability. Then p¼1�q is the probability that at least two people have the
same birthday. Ignoring leap years, take the sample space S as all sequences of length k
with each element one of the 365 days in the year. Thus there are 365k elements in S.
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(a) Find the total number of sequences with no common birthdays.

(b) Assuming that each sequence is equally likely, show that

q¼ 365ð Þ 364ð Þ . . . 365�k + 1ð Þ
365k

:

(c) Write a computer program for calculating q for k¼2 to 50, and find the first k for
which p>0.5. This will give the least number of people we should ask to make it

an even chance that at least two people will have the same birthday.

2B. THE HARDY-WEINBERG LAW
Hereditary traits in offspring depend on a pair of genes, one each contributed by the

father and the mother. A gene is either a dominant allele, denoted by A, or a recessive

allele, denoted by a. If the genotype is AA, Aa, or aA, then the hereditary trait is A,

and if the genotype is aa, then the hereditary trait is a. Suppose that the probabilities

of the mother carrying the genotypes aa, aA (same as Aa), and AA are p, q, and r,
respectively. Here p+q+ r¼1. The same probabilities are true for the father.

(a) Assuming that the genetic contributions of the mother and father are independent

and the matings are random, show that the respective probabilities for the first-

generation offspring are

p1 ¼ p+ q=2ð Þ2, q1 ¼ 2 r + q=2ð Þ p+ q=2ð Þ, r1 ¼ r + q=2ð Þ2:
Also find P(A) and P(a)

(b) The Englishman G.H. Hardy and the German W. Weinberg could show that the

foregoing probabilities in a population stay constant for generations if certain

conditions are fulfilled. This is known as the Hardy-Weinberg law. Under the

conditions of part (a), using the induction argument, show that the Hardy-

Weinberg law is satisfied, i.e. pn¼p1, qn¼q1, and rn¼ r1 for all n�1. The

consequences of the Hardy-Weinberg law are that (i) no evolutionary change

occurs through the process of sexual reproduction itself, and (ii) changes in allele

and genotype frequencies can result only from additional forces on the gene pool

of a species.
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OBJECTIVE

In this chapter we present some special distributions, joint distributions of several

random variables, functions of random variables, and some important limit theorems.

Johann Carl Friedrich Gauss
(Source: http://tobiasamuel.files.wordpress.com/2008/06/carl_friedrich_gauss.jpg)

German mathematician and physicist Carl Friedrich Gauss (1777-1855) is some-

times called the “prince of mathematics.” He was a child prodigy. At the age of 7,
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Gauss started elementary school, and his potential was noticed almost immediately.

His teachers were amazed when Gauss summed the integers from 1 to 100 instantly.

At age 24, Gauss published one of the most brilliant achievements in mathematics,

Disquisitiones Arithmeticae (1801). In it, Gauss systematized the study of number

theory. Gauss applied many of his mathematical insights in the field of astronomy,

and by using the method of least squares he successfully predicted the location of the

asteroid Ceres in 1801. In 1820 Gauss made important inventions and discoveries in

geodesy, the study of the shape and size of the earth. In statistics, he developed the

idea of the normal distribution. In the 1830s he developed theories of non-Euclidean

geometry and mathematical techniques for studying the physics of fluids. Although

Gauss made many contributions to applied science, especially electricity and mag-

netism, pure mathematics was his first love. It was Gauss who first called mathemat-

ics “the queen of the sciences.”

3.1 INTRODUCTION
In the previous chapter, we looked at the basic concepts of probability calculations,

random variables, and their distributions. There are many special distributions that

have useful applications in statistics. It is worth knowing the type of distribution that

we can expect under different circumstances, because a better knowledge of the

population will result in better inferential results. In the next section, we discuss

some of these distributions with some additional distributions presented in Appen-

dix C. We also briefly deal with joint distributions of random variables and func-

tions of random variables. Limit theorems play an important role in statistics. We

will present two limit theorems: the law of large numbers and the Central Limit

Theorem.

3.2 SPECIAL DISTRIBUTION FUNCTIONS
Random variables are often classified according to their probability distribution

functions. In any analysis of quantitative data, it is a major step to know the form

of the underlying probability distributions. There are certain basic probability distri-

butions that are applicable in many diverse contexts and thus repeatedly arise in prac-

tice. A great variety of special distributions have been studied over the years. Also,

new ones are frequently being added to the literature. It is impossible to give a com-

prehensive list of distribution functions in this book. There are many books and Web

sites that deal with a range of distribution functions. A good list of distributions can

be obtained from http://www.causascientia.org/math_stat/Dists/Compendium.pdf.

In this section, we will describe some of the commonly used probability distribu-

tions. In Appendix C, we list some more distributions with their mean, variance,

and moment-generating functions. First we discuss some discrete probability

distributions.
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3.2.1 THE BINOMIAL PROBABILITY DISTRIBUTION
The simplest distribution is the one with only two possible outcomes. For example,

when a coin (not necessarily fair) is tossed, the outcomes are heads or tails, with each

outcome occurring with some positive probability. These two possible outcomes

may be referred to as “success” if heads occurs and “failure” if tails occurs. Assume

that the probability of heads appearing in a single toss is p; then the probability of

tails is 1�p¼q. We define a random variable X associated with this experiment

as taking value 1 with probability p if heads occurs and value 0 if tails occurs with

probability q. Such a random variable X is said to have a Bernoulli probability dis-
tribution. That is, X is a Bernoulli random variable if for some p, 0�p�1, the prob-

ability P(X¼1)¼p and P(X¼0)¼1�p. The probability function of a Bernoulli

random variable X can be expressed as

p xð Þ¼P X¼ xð Þ¼ px 1�pð Þ1�x
, x¼ 0,1

0, otherwise:

(

Note that this distribution is characterized by the single parameter p. It can be easily
verified that the mean and variance of X are E[X]¼p, Var(X)¼pq, respectively, and
the moment-generating function is MX(t)¼pet+(1�p).

Even when the experimental values are not dichotomous, reclassifying the var-

iable as a Bernoulli variable can be helpful. For example, consider blood pressure

measurements. Instead of representing the numerical values of blood pressure, if

we reclassify the blood pressure as “high blood pressure” and “low blood pressure,”

we may be able to avoid dealing with a possible misclassification due to diurnal var-

iation, stress, and so forth, and concentrate on the main issue, which would be: Is the

average blood pressure unusually high?

In a succession of Bernoulli trials, one is more interested in the total number of

successes (whenever a 1 occurs in a Bernoulli trial, we term it a “success”). The prob-

ability of observing exactly k successes in n independent Bernoulli trials yields the

binomial probability distribution. In practice, the binomial probability distribution is

used when we are concerned with the occurrence of an event, not its magnitude. For

example, in a clinical trial, we may be more interested in the number of survivors

after a treatment.

Definition 3.2.1 A binomial experiment is one that has the following properties:
(1) The experiment consists of n identical trials. (2) Each trial results in one of the
two outcomes, called a success S and failure F. (3) The probability of success on a
single trial is equal to p and remains the same from trial to trial. The probability of
failure is 1�p¼q. (4) The outcomes of the trials are independent. (5) The random
variable X is the number of successes in n trials.

Earlier we have seen that the number of ways of obtaining x successes in n trials is
given by

n
x

� �
¼ n!

x! n�xð Þ! :

1133.2 Special Distribution Functions



Definition 3.2.2 A random variable X is said to have binomial probability dis-

tribution with parameters (n, p) if and only if

P X¼ xð Þ¼ p xð Þ¼ n
x

� �
pxqn�x

¼
n!

x! n�xð Þ!p
xqn�x, x¼ 0, 1, 2, . . . , n, 0� p� 1, and q¼ 1�p

0, otherwise:

8<
:

To show the dependence on n and p, denote p(x) by b(x, n, p) and the cumulative
probabilities by

B x, n, pð Þ¼
Xx
i¼0

b i, n, pð Þ:

Binomial probabilities are tabulated in the binomial table.
By the binomial theorem, we have

p + qð Þn ¼
Xn
x¼0

n
x

� �
pxqn�x:

Because (p+q)¼1, we conclude that
P

i¼0
x b(i,n,p)¼P x¼0

n
�
n

x

�
pxqn�x¼1n¼1, for

all n�1 and 0�p�1. Hence, p(x) is indeed a probability function. The binomial

probability distribution is characterized by two parameters, the number of indepen-

dent trials n and the probability of success p.

EXAMPLE 3.2.1
It is known that screws produced by a certain machine will be defective with probability 0.01 inde-

pendently of each other. If we randomly pick 10 screws produced by this machine, what is the prob-

ability that at least two screws will be defective?

Solution
Let X be the number of defective screws out of 10. Then X can be considered as a binomial r.v. with

parameters (10, 0.01). Hence, using the binomial pf p(x), given in Definition 3.2.2, we obtain

P X� 2ð Þ¼
X10
x¼2

10

x

� �
0:01ð Þx 0:99ð Þ10�x

¼ 1� P X¼ 0ð Þ+P X¼ 1ð Þ½ � ¼ 0:004:

In Chapter 2, we saw Mendel’s law. In biology, the result “gene frequencies and

genotype ratios in a randomly breeding population remain constant from generation

to generation” is known as the Hardy-Weinberg law.

EXAMPLE 3.2.2
Suppose we know that the frequency of a dominant gene, A, in a population is equal to 0.2. If we

randomly select eight members of this population, what is the probability that at least six of them will

display the dominant phenotype? Assume that the population is sufficiently large that removing eight

individuals will not affect the frequency and that the population is in Hardy-Weinberg equilibrium.
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Solution
First of all, note that an individual can have the dominant gene, A, if the person has traits AA, aA, or

Aa. Hence, if the gene frequency is 0.2, the probability that an individual is of genotype A is

P Að Þ¼P AA[Aa[aAð Þ¼P AAð Þ + 2P Aað Þ¼ 0:2ð Þ2 + 2 0:2ð Þ 0:8ð Þ¼ 0:36:

Let X denote the number of individuals out of eight that display the dominant phe-

notype. Then X is binomial with n¼8, and p¼0.36. Thus, the probability that at least

six of them will display the dominant phenotype is

P X� 6ð Þ¼P X¼ 6ð Þ+P X¼ 7ð Þ+P X¼ 8ð Þ
¼
X8
i¼6

10

i

� �
0:36ð Þi 0:64ð Þ10�i ¼ 0:029259:

For large n, calculation of binomial probabilities is tedious. Many statistical software

packages have binomial probability distribution commands. For the purpose of this

book, we will use the binomial table that gives the cumulative probabilities B(x, n, p)
for n¼2 through n¼20 and p¼0.05, 0.10, 0.15, . . ., 0.90, 0.95. If we need the prob-
ability of a single term, we can use the relation

P X¼ xð Þ¼ b x, n, pð Þ¼B x, n, pð Þ�B x�1,n,pð Þ:

EXAMPLE 3.2.3
Amanufacturer of inkjet printers claims that only 5% of their printers require repairs within the first

year. If of a random sample of 18 of the printers, four required repairs within the first year, does this

tend to refute or support the manufacturer’s claim?

Solution
Let us assume that the manufacturer’s claim is correct; that is, the probability that a printer will
require repairs within the first year is 0.05. Suppose 18 printers are chosen at random. Let p be

the probability that any one of the printers will require repairs within the first year. We now find

the probability that at least four of these out of the 18 will require repairs during the first year. Let X

represent the number of printers that require repair within the first year. Then X follows the binomial
pmf with p¼0.05, n¼18. The probability that four or more of the 18 will require repair within the

first year is given by

P X� 4ð Þ¼
X18
x¼4

18

x

� �
0:05ð Þx 0:95ð Þ18�x

or, using the binomial table,

X18
x¼4

b x, 18, 0:05ð Þ¼ 1�B 3, 18, 0:05ð Þ
¼ 1�0:9891

¼ 0:0109:

This value (approximately 1.1%) is very small. We have shown that if the manufacturer’s claim is
correct, then the chances of observing four or more bad printers out of 18 are very small. But we did

observe exactly four bad ones. Therefore, we must conclude that the manufacturer’s claim cannot be

substantiated.
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MEAN, VARIANCE, AND MGF OF A BINOMIAL RANDOM VARIABLE

Theorem 3.2.1 If X is a binomial random variable with parameters n and p, then

E Xð Þ¼m¼ np,

Var Xð Þ¼ s2 ¼ np 1�pð Þ:
Also the moment-generating function

MX tð Þ¼ pet + 1�pð Þ½ �n:
Proof. We derive the mean and the variance. The derivation for mgf is given in Example 2.6.5.

Using the binomial pmf, p(x)¼ (n!/(x!(n�x)!))pxqn�x, and the definition of expectation, we have

m¼E Xð Þ¼
Xn
x¼0

xp xð Þ¼
Xn
x¼0

x
n!

x! n�xð Þ!p
x 1�pð Þn�x

¼
Xn
x¼1

n!

x�1ð Þ! n�xð Þ!p
x 1�pð Þn�x

,

since the first term in the sum is zero, as x¼0.

Let i¼x�1. When x varies from 1 through n, i¼ (x�1) varies from 0 through (n�1). Hence,

m¼
Xn�1

i¼0

n!

i! n� i�1ð Þ!p
i+ 1 1�pð Þn�i�1

¼ np
Xn�1

i¼0

n�1ð Þ!
i! n�1� ið Þ!p

i 1�pð Þn�1�i

¼ np,

because the last summand is that of a binomial pmf with parameter (n�1) and p, hence, equals 1.

To find the variance, we first calculate E[X(X�1)]

E X X�1ð Þ½ � ¼
Xn
x¼0

x x�1ð Þ n!

x! n�xð Þ!p
x 1�pð Þn�x

¼
Xn
x¼2

n!

x�2ð Þ! n�xð Þ!p
x 1�pð Þn�x

,

because the first two terms are zero. Let i¼x�2. Then,

E X X�1ð Þ½ � ¼
Xn�2

i¼0

n!

i! n� i�2ð Þ!p
i+ 2 1�pð Þn�i�2

¼ n n�1ð Þp2
Xn�2

i¼0

n�2ð Þ!
i! n�2� ið Þ!p

i 1�pð Þn

¼ n n�1ð Þp2;
because the last summand is that of a binomial pmf with parameter (n�2) and p thus equals 1.
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Note that E(X(X�1))¼EX2�E(X), and so we obtain

s2 ¼Var Xð Þ¼E X2
� �� E Xð Þ½ �2

¼E X X�1ð Þ½ �+E Xð Þ� E Xð Þ½ �2

¼ n n�1ð Þp2 + np� npð Þ2 ¼�np2 + np

¼ np 1�pð Þ: n

3.2.2 POISSON PROBABILITY DISTRIBUTION
The Poisson probability distribution was introduced by the French mathematician

Siméon-Denis Poisson in his book published in 1837, which was entitled Recherches
sur la probabilité des jugements en matières criminelles et matière civile and dealt

with the applications of probability theory to lawsuits, criminal trials, and the like.

Consider a statistical experiment of which A is an event of interest. A random var-

iable that counts the number of occurrences of A is called a counting random vari-
able. The Poisson random variable is an example of a counting random variable.

Here we assume that the numbers of occurrences in disjoint intervals are independent

and the mean of the number occurrences is constant.

Definition 3.2.3 A discrete random variable X is said to follow the Poisson prob-

ability distribution with parameter l>0, denoted by Poisson (l), if

P X¼ xð Þ¼ f x, lð Þ¼ f xð Þ¼ e�llx

x!
, x¼ 0,1,2, . . . :

The Poisson probability distribution is characterized by the single parameter, l,
which represents the mean of a Poisson probability distribution. Thus, in order

to specify the Poisson distribution, we only need to know the mean number of

occurrences. This distribution is of fundamental theoretical and practical impor-

tance. Rare events are modeled by the Poisson distribution. For example, the Pois-

son probability distribution has been used in the study of telephone systems. The

number of incoming calls into a telephone exchange during a unit time might be

modeled by a Poisson variable assuming that the exchange services a large number

of customers who call more or less independently. Some other problems where

Poisson representation can be used are the number of misprints in a book, radio-

activity counts per unit time, the number of plankton (microscopic plant or animal

organisms that float in bodies of water) per aliquot of seawater, or count of bacterial

colonies per petri plate in a microbiological study. In stem cell research, the Pois-

son distribution is used to analyze the redundancy of clusters in the stem cell data-

base. A Poisson probability distribution has the unique property that its mean equals

its variance.
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MEAN, VARIANCE, AND MOMENT-GENERATING FUNCTION OF
A POISSON RANDOM VARIABLE

Theorem 3.2.2 If X is a Poisson random variable with parameter l, then

E Xð Þ¼ l,

Var Xð Þ¼ l:

Also the moment-generating function is

MX tð Þ¼ el et�1ð Þ:

The proof of this result is similar to that we used in Theorem 3.2.1 in this section.

One needs to use the Maclaurin’s expansion, el¼P i¼0
1 (li/i !).

EXAMPLE 3.2.4
Let X be a Poisson random variable with l¼1/2. Find

(a) P(X¼0)

(b) P(X�3)

Solution
(a) We have

P X¼ 0ð Þ¼ p 0ð Þ¼ e�1=2 1=2ð Þ0
0!

¼ e�1=2 ¼ 0:60653:

(b) Here we will use complementary event to compute the required probability. That is,

P X� 3ð Þ¼ 1�P X� 2ð Þ¼ 1� p 0ð Þ+ p 1ð Þ+ p 2ð Þ½ �

¼ 1� e�1=2 +
e�1=2 1=2ð Þ

1!
+
e�1=2 1=2ð Þ2

2!

" #

¼ 1�0:98561¼ 0:01439:

When n is large and p small, binomial probabilities are often approximated by

Poisson probabilities. In these situations, where performing the factorial and

exponential operations required for direct calculation of binomial probabilities is

a lengthy and tedious process and tables are not available, the Poisson approximation

is more feasible. The following theorem states this result.
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POISSON APPROXIMATION TO THE BINOMIAL PROBABILITY
DISTRIBUTION

Theorem 3.2.3 If X is a binomial r.v. with parameters n and p, then for each value x¼0, 1,

2,. . . and as p!0, n!1 with np¼l constant,

lim
n!1

n
x

� �
px 1�pð Þn�x ¼ e�llx

x!
:

The proof of this result is similar to that we used in Theorem 3.2.1. In the present

context, the Poisson probability distribution is sometimes referred to as “the distri-

bution of rare events” because of the fact that p is quite small when n is large. Usu-

ally, if p�0.1 and n�40 we could use the Poisson approximation in practice. In

general, another rule of thumb is to use Poisson approximation to binomial in the

case of n>50, and np<5.

EXAMPLE 3.2.5
If the probability that an individual suffers an adverse reaction from a particular drug is known to be

0.001, determine the probability that out of 2000 individuals, (a) exactly three and (b) more than two

individuals will suffer an adverse reaction.

Solution
Let Y be the number of individuals who suffer an adverse reaction. Then Y is binomial with n¼2000

and p¼0.001. Because n is large and p is small, we can use the Poisson approximation with

l¼np¼2.

(a) The probability that exactly three individuals will suffer an adverse reaction is

P Y¼ 3ð Þ¼ 23e�2

3!
¼ 0:18:

That is, there is approximately an 18% chance that exactly three individuals of 2000 will

suffer an adverse reaction.

(b) The probability that more than two individuals will suffer an adverse reaction is

P Y> 2ð Þ¼1�P Y¼ 0ð Þ�P Y¼ 1ð Þ�P Y¼ 2ð Þ
¼1�5e�2 ¼ 0:323:

Similarly, there is approximately a 32.3% chance that more than two individuals will have
an adverse reaction.

Now we will discuss some continuous distributions. As mentioned earlier, if X is

a continuous random variable with pdf f(x), then

P a�X� bð Þ¼
ðb
a

f xð Þdx:

1193.2 Special Distribution Functions



3.2.3 UNIFORM PROBABILITY DISTRIBUTION
The uniform probability distribution is used to generate random numbers from other

distributions and also is useful as a “first guess” if no other information about a ran-

dom variable X is known, other than that it is between a and b. Also, in real-world

problems that have uniform behavior in a given interval, we can characterize the

probabilistic behavior of such a phenomenon by the uniform distribution (see

Figure 3.1).

Definition 3.2.4 A random variable X is said to have a uniform probability dis-
tribution on (a, b), denoted by U(a, b), if the density function of X is given by

f xð Þ¼
1

b�a
, a� x� b

0, otherwise:

(

The cumulative distribution function is given by

F xð Þ¼
ðx
�1

1

b�a
dx¼

0, x< a
x�a

b�a
, a� x< b

1, x� b:

8<
:

EXAMPLE 3.2.6
If X is a uniformly distributed random variable over (0, 10), calculate the probability that (a) X<3,

(b) X>6, and (c) 3<X<8.

Solution
(a)

P X< 3ð Þ¼
ð3
0

1

10
dx¼ 3

10
:

(b)
P X> 6ð Þ¼

ð10
6

1

10
dx¼ 4

10
:

(c)
P 3<X> 8ð Þ¼

ð8
3

1

10
dx¼ 1

2
:

f (x) = 0

a b

f (x) = 0

f (x) = 1/(b-a)

FIGURE 3.1

Uniform probability density.
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MEAN, VARIANCE, AND MOMENT-GENERATING FUNCTION OF
A UNIFORM RANDOM VARIABLE

Theorem 3.2.4 If X is a uniformly distributed random variable on (a, b), then

E Xð Þ¼ a+ b

2
:

and

Var Xð Þ¼ b�að Þ2
12

:

Also, the moment-generating function is

MX tð Þ¼
etb�eta

t b�að Þ , t 6¼ 0

1, t¼ 0:

8<
:

Proof. We will obtain the mean and the variance and leave the derivation of the moment-

generating function as an exercise. By definition we have

E Xð Þ¼
ð1
�1

x
1

b�a
dx

¼
ðb
a

x
1

b�a
dx¼ 1

b�a

x2

2
jb
a

 !

¼ a+ b

2
:

Also

E X2
� �¼ ðb

a

x2
1

b�a
dx¼ 1

b�a

x3

3
jb
a
:

 !

¼ 1

3

b3�a3

b�a

¼ 1

3
b2 + ab+ a2
� �

as b3�a3 ¼ b�að Þ b2 + ab+ a2
� �

:

Thus,

Var Xð Þ¼E X2
� �� E Xð Þð Þ2

¼ 1

3
b2 + ab+ a2
� �� a + bð Þ2

4

¼ 1

12
b�að Þ2

:

n

EXAMPLE 3.2.7
The melting point, X, of a certain solid may be assumed to be a continuous random variable that is

uniformly distributed between the temperatures 100 and 120 C. Find the probability that such a solid

will melt between 112 and 115 C.

Continued
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Solution
The probability density function is given by

f xð Þ¼
1

20
, 100� x� 120

0, otherwise:

8<
:

Hence,

P 112�X� 115ð Þ¼
ð115
112

1

20
dx¼ 3

20
¼ 0:15:

Thus, there is a 15% chance of this solid melting between 112 and 115 C.

3.2.4 NORMAL PROBABILITY DISTRIBUTION
The single most important distribution in probability and statistics is the normal

probability distribution. The density function of a normal probability distribution

is bell-shaped and symmetric about the mean. The normal probability distribution

was introduced by the French mathematician Abraham de Moivre in 1733. He used

it to approximate probabilities associated with binomial random variables when n is
large. This was later extended by Laplace to the so-called Central Limit Theorem,

which is one of the most important results in probability. Carl Friedrich Gauss in

1809 used the normal distribution to solve the important statistical problem of com-

bining observations. Because Gauss played such a prominent role in determining the

usefulness of the normal probability distribution, the normal probability distribution

is often called the Gaussian distribution. Gauss and Laplace noticed that measure-

ment errors tend to follow a bell-shaped curve, a normal probability distribution.

Today, the normal probability distribution arises repeatedly in diverse areas of appli-

cations. For example, in biology, it has been observed that the normal probability

distribution fits data on the heights and weights of human and animal populations,

among others.

We should also mention here that almost all basic statistical inference is based on

the normal probability distribution. The question that often arises is, when do we

know that our data follow the normal distribution? To answer this question we have

specific statistical procedures that we study in later chapters, but at this point we can

obtain some constructive indications of whether the data follows the normal distri-

bution by using descriptive statistics. That is, if the histogram of our data can be

capped with a bell-shaped curve (Figure 3.2), if the stem-and-leaf diagram is fairly

symmetrical with respect to its center, and/or by invoking the empirical rule “back-

wards,” we can obtain a good indication whether our data follow the normal prob-

ability distribution.

Definition 3.2.5 A random variable X is said to have a normal probability dis-

tribution with parameters m and s2, if it has a probability density function given by

f Xð Þ¼ 1ffiffiffiffiffiffi
2p

p
s
e� x�mð Þ2=2s2 , �1< x<1, �1< m<1, s> 0:
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If m¼0, and s¼1, we call it standard normal random variable.
For any normal random variable with mean m and variance s2, we use the notation

X�N(m, s2). When a random variable X has a standard normal probability distribu-

tion, we will write X�N(0, 1) (X is a normal with mean 0 and variance 1). Proba-

bilities for a standard normal probability distribution are given in the normal table.

MEAN, VARIANCE, AND MGF OF A NORMAL RANDOM VARIABLE

Theorem 3.2.5 If X�N(m, s2), then E(X)¼m andVar(X)¼s2. Also the moment-generating
function is

MX tð Þ¼ etm +
1
2 t

2s2 :

If X�N(m, s2), then the z-transform (or z-score) of X,Z¼ (X�m)/s, is an N(0, 1)
random variable. This fact will be used in calculating probabilities for normal ran-

dom variables.

EXAMPLE 3.2.8
(a) For X�N(0, 1), calculate P(Z�1.13).

(b) For X�N(5, 4), calculate P(�2.5<X<10).

Solution
(a) Using the normal table,

P Z� 1:13ð Þ¼ 0:5�0:3708¼ 0:1292:
Continued
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Standard normal probabilty distribution

FIGURE 3.2

Standard normal density function.
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The shaded part in the graph represents the P(Z�1.13).

(b) Using the z-transform, we have

P �2:5<X< 10ð Þ¼ P
�2:5�5

2
<Z<

10�5

2

� �

¼ P �3:75< Z< 2:5ð Þ
¼ P �3:75< Z< 0ð Þ +P 0<Z< 2:5ð Þ
¼ 0:9938:

In the following example, we will show how to find the z values when the prob-

abilities are given.
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EXAMPLE 3.2.9
For a standard normal random variable Z, find the value of z0 such that

(a) P(Z> z0)¼0.25.

(b) P(Z< z0)¼0.95.

(c) P(Z< z0)¼0.12.

(d) P(Z> z0)¼0.68.

Solution
(a) From the normal table, and using the fact that the shaded area in the figure is 0.25, we obtain

z0�0.675.

0.0
Z0

0.1

0.2

0.3

0.4

0.5

(b) Because P(Z< z0)¼1�P(Z�z0)¼0.95¼0.5+0.45. From the normal table, z0¼1.645.

(c) From the normal table, z0¼�1.175.

(d) Using the normal table, we have P(Z> z0)¼0.5+P(0<Z< z0)¼0.68.

This implies, P(z0<Z<0)¼0.18. From the normal table, z0¼�0.465.

EXAMPLE 3.2.10
The scores of an examination are assumed to be normally distributed with m¼75 and s2¼64. What

is the probability that a score chosen at random will be greater than 85?

Solution
Let X be a randomly chosen score from the exam scores. Then, X�N(75, 64).

P X> 85ð Þ¼P
X�75

8
>
85�75

8
¼ 1:25

� �
¼P Z> 1:25ð Þ¼ 0:1056:

Continued
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0.0
1.25

0.1

0.2

0.3

0.4

0.5

Thus, there is about a 10.56% chance that the score will be greater than 85.

In practice, whenever a large number of small effects are present and acting addi-
tively, it is reasonable to assume that observations will be normal. When the number

of data is small, it is risky to assume a normal distribution without a proper testing.

Apart from histogram, box-plot, and stem-and-leaf-displays, one of the most useful

tools for assessing normality is a quantile-quantile or QQ plot. This is a scatterplot

with the quantiles of the scores on the horizontal axis and the expected normal scores

on the vertical axis. The expected normal scores are calculated by taking the z-scores
of (ri�0.5)/n, where ri is rank of the ith observation in increasing order. The steps in
constructing a QQ plot are as follows: First, we sort the data in an ascending order. If

the plot of these scores against the expected normal scores is a straight line, then the

data can be considered normal. Any curvature of the points indicates departures from

normality. This procedure obtaining a normal plot (QQ plot is similar to normal plot

for a normal distribution) is described in Project 4C. Figure 3.3 shows a normal

probability plot.

If plotted points do not fit the line well, but bend away from it in places, the dis-

tribution may be non-normal. The shapes in Figure 3.4 will give some indication of

the distribution of the data.

Almost all of the statistical software packages include a procedure for obtaining

the graph of a normal probability plot that can be used to test the normality of a data.

Errors in the measurements can also act in a multiplicative (rather than additive)

manner. In that case, the assumption of normality is not justified.

A closely related distribution to normal distribution is the log-normal distribu-

tion. A variable might be modeled as log-normal if it can be thought of as the mul-

tiplicative effect of many small independent factors. This distribution arises in

physical problems when the domain of the variate, X, is greater than zero and its his-
togram is markedly skewed. If a random variable Y is normally distributed, then

exp(Y) has a log-normal distribution. Thus, the natural logarithm of a log-normally
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FIGURE 3.3

Normal probability plot.

If  the layout of  points starts
below the normal line, bends to
follow it, and ends above it will
indicates long tails. That is, there
is more variance than we would
expect in a normal distribution.

An S shaped-layout of  points
indicates shorter than normal
tails, thus, a smaller variance is
expected.

If  the layout of  points bend down
and to the right of  the normal line
that indicates a long tail to the
left, or left skew.

If  the layout of  points appear to
bend up and to the left of  the
normal line that indicates a long
tail to the right, or right skew.

FIGURE 3.4

Shapes indicating distribution of the data.
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distributed variable is normally distributed. That is, if X is a random variable with

log-normal distribution, then ln(X) is normally distributed. Most biological evidence

suggests that the growth processes of living tissue proceed by multiplicative, not

additive, increments. Thus, the measures of body size should at most follow a

log-normal rather than normal distribution. Also, the sizes of plants and animals

are approximately log-normal. The log-normal distribution is also useful in modeling

of claim sizes in the insurance industry.

The probability density function of a log-normal random variable, X, is given as

f xð Þ¼
1

xsy
ffiffiffiffiffiffi
2p

p e� lnx�myð Þ2=2s2y , x> 0, sy > 0, �1< my <1

0, otherwise:

8<
:

where my and sy are the mean and standard deviation of Y¼ ln(X). These parameters

are related to the parameters of the random variable X as follows:

my ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4x

m2x +s2x

s !
, sy ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2x +s2x
m2x

s !
:

We can verify that the expected value X is

E Xð Þ¼ emy + s2y=2ð Þ

and the variance is

Var Xð Þ¼ es
2
y �1

� �
e2my +s

2
y :

The question of when the log-normal distribution is applicable in a given physical

problem after a certain amount of data has been obtained can be answered by creating

a normal probability plot of ln(X) and testing for normality. Thus, if the natural log-

arithms of the data show normality, log-normal distribution may be more

appropriate.

If X is log-normally distributed with parameters my and sy, and 0<a<b, then
with Y¼ ln(X)

P a�X� bð Þ¼ P lna� Y� lnbð Þ

¼ P
lna�my

sy
� Y�my

sy
� lnb�my

sy

� �

¼ P a0 � Z� b0ð Þ,
where Z�N(0, 1). This probability can be obtained from the standard normal table.

EXAMPLE 3.2.11
In an effort to establish a suitable height for the controls of a moving vehicle, information was gath-

ered about X, the amounts by which the heights of the operators vary from 60 in., which is the min-

imum height. It was verified that the data that were collected followed the log-normal distribution by

normal probability plot of Y¼ ln X. Assume that mx¼6 in. and sx¼2 in.
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(a) What percentage of operators would have a height less than 65.5 in.?

(b) If an operator is chosen at random, what is the probability that his or her height will be between

64 and 66 in.?

Solution
(a) Here, X¼65.5�60¼5.5. Also,

my ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4x

m2x +s2x

s !
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64

62 + 22

s
¼ 1:74,

sy ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2x +s2x
m2x

s !
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 + 22

62

s
¼ 0:053:

Thus,

P X� 5:5ð Þ¼P Y� ln5:5ð Þ¼P Z� ln5:5ð Þ�1:74

0:053

� �
¼P Z��0:67ð Þ¼ 0:2514

:

Hence, about 25.14% of the heights of the operators vary from 60 in.

(b) Similar to part (a), we get

P 4�X� 6ð Þ¼P ln4�Y� ln6ð Þ

¼P
ln4ð Þ�1:74

0:053
�Z� ln6ð Þ�1:74

0:053

� �

¼P �6:67�Z� 0:98ð Þ¼ 0:8365:

3.2.5 GAMMA PROBABILITY DISTRIBUTION
The gamma probability distribution has found applications in various fields. For

example, in engineering, the gamma probability distribution has been employed

in the study of system reliability. We describe the gamma function before we intro-

duce the gamma probability distribution. The gamma function, denoted by G(a), is
defined as

G að Þ¼
ð1
0

e�xxa�1dx, a> 0:

It can be shown using the integration by parts that for a>1,G(a)¼ (a�1)G(a�1). In

particular, if n is a positive integer, G(n)¼ (n�1)!.

Definition 3.2.6 A random variable X is said to possess a gamma probability

distribution with parameters a>0 and b>0 if it has the pdf given by

f xð Þ¼
1

baG að Þx
a�1e�x=b, ifx> 0

0, otherwise:

8<
:

The gamma density has two parameters, a and b. We denote this by Gamma(a, b).
The parameter a is called a shape parameter, and b is called a scale parameter.
Changing a changes the shape of the density, whereas varying b corresponds to
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changing the units of measurement (such as changing from seconds to minutes).

Varying these two parameters will generate different members of the gamma family.

If we take a to be a positive integer, we get a special case of gamma probability dis-

tribution, known as the Erlang distribution. This is used extensively in queuing the-

ory to model waiting times. Figure 3.5 gives an indication of how a and b influence

the shape and scale of f(x).

MEAN, VARIANCE, AND MGF OF A GAMMA RANDOM VARIABLE

Theorem 3.2.6 If X is a gamma random variable with parameters a>0 and b>0, then

E Xð Þ¼ ab and Var Xð Þ¼ ab2:

Also, the moment-generating function is

MX tð Þ¼ 1

1�btð Þa , t<
1

b
:

EXAMPLE 3.2.12
The daily consumption of aviation fuel in millions of gallons at a certain airport can be treated as a

gamma random variable with a¼3, b¼1.

(a) What is the probability that on a given day the fuel consumptionwill be less than 1million gallons?

(b) Suppose the airport can store only 2 million gallons of fuel. What is the probability that the fuel

supply will be inadequate on a given day?

0
0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

Gam(4,3)

Gam(2,3)

Gam(3,1)

Gamma pdfs for (2,3), (3,1), (4,3), and (2,4)

Gam(2,4)

FIGURE 3.5

Gamma pdfs for different degrees of freedom.
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Solution
(a) Let X be the fuel consumption in millions of gallons on a given day at a certain airport. Then,

X�G (a¼3, b¼1) and

f xð Þ¼ 1

G 3ð Þ 13
� �x3�1e�x ¼ 1

2
x2e�x, x> 0:

Hence, using integration by parts, we obtain

P X< 1ð Þ¼ 1

2

ð1
0

x2e�xdx¼ 1� 5

2e
¼ 0:08025:

0.00
1

0.05

0.10

0.15

0.20

0.25

0.30

Thus, there is about an 8% chance that on a given day the fuel consumption will be less than

1 million gallons.

(b) Because the airport can store only 2 million gallons, the fuel supply will be inadequate if the fuel
consumption X is greater than 2. Thus,

0.00
2

0.05

0.10

0.15

0.20

0.25

0.30

P X> 2ð Þ¼ 1

2

ð1
2

x2e�xdx¼ 0:677:

We can conclude that there is about a 67.7% chance that the fuel supply of 2 million gallons will

be inadequate on a given day. So, if the model is right, the airport needs to store more than 2 million
gallons of fuel.
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We now describe two special cases of gamma probability distribution. In the pdf

of the gamma, we let a¼1, we get the pdf of an exponential random variable.

Definition 3.2.7A random variable X is said to have an exponential probability
distribution with parameter b if the pdf of X is given by

f xð Þ¼
1

b
e�x=b, b> 0, 0� x<1

0, otherwise:

8<
:

Exponential random variables are often used to model the lifetimes of electronic

components such as fuses, for survival analysis, and for reliability analysis, among

others. The exponential distribution (Figure 3.6) is also used in developing models of

insurance risks. The exponential distribution is related to Poisson distribution. When

the events can occur more than once within a given unit of time and the time elapsed

between two consecutive occurrences is exponentially distributed and independent

of previous occurrences of the events then the random variable defined by the num-

ber of occurrences has a Poisson distribution.

MEAN, VARIANCE, AND MGF OF AN EXPONENTIAL RANDOM VARIABLE

Theorem 3.2.7 If X is an exponential random variable with parameters b>0, then

E Xð Þ¼ b and Var Xð Þ¼ b2:

Also the moment-generating function is

MX tð Þ¼ 1

1�btð Þ , t<
1

b
:

1050
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
exponential(3)

15 20

FIGURE 3.6

Probability density function for exponential r.v.
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EXAMPLE 3.2.13
The time, in hours, during which an electrical generator is operational is a random variable that fol-

lows the exponential distribution with b¼160. What is the probability that a generator of this type

will be operational for

(a) Less than 40 h?

(b) Between 60 and 160 h?

(c) More than 200 h?

Solution
Let X denote the random variable corresponding to time (in hours) during which the generator is

operational. Then the density function of X is given by

f xð Þ¼
1

160
e�

x
160ð Þ, x� 0

0, otherwise:

8<
:

Thus, we have the following:

(a) P X� 40ð Þ¼ Ð 40
0

1
160
e� x=160ð Þdx¼ 0:22119: There is about a 22.1% chance that a generator of this

type will be operational for less than 40 h.

(b) P 60�X� 160ð Þ¼ Ð 160
60

1
160
e� x=160ð Þdx¼ 0:3194: Hence, there is about a 31.94% chance that a

generator of this type will be operational between 60 and 160 h.

(c) P X> 200ð Þ¼ Ð1
200

1
160

e� x=160ð Þdx¼ 0:2865: The chance that the generator will last more than

200 h is about 28.65%.

Another special case of gamma probability distribution that is useful in statistical

inference problems is the chi-square distribution.

Definition 3.2.8 Let n be a positive integer. A random variable, X, is said to have
a chi-square (w2) distribution with n degrees of freedom if and only if X is a gamma
random variable with parameters a¼n/2 and b¼2. We denote this by X�w2(n).

Hence, the probability density function of a chi-square distribution with n degrees
of freedom is given by

f xð Þ¼
1

G n
2
ð Þ2n=2 x

n=2ð Þ�1e�x=2, 0� x<1
0, otherwise:

8<
:

Figure 3.7 illustrates the dependence of the chi-square distribution on n.
The mean and variance of a chi-square random variable follow directly from

Theorem 3.2.6.

MEAN, VARIANCE, AND MGF OF A CHI-SQUARE RANDOM VARIABLE

Theorem 3.2.8 If X is a chi-square random variable with n degrees of freedom, then

E(X)¼n and Var(X)¼2n. Also, the moment-generating function is given by

MX tð Þ¼ 1

1�2tð Þn=2
, t<

1

2
:
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Another class of distributions that plays a crucial role in Bayesian statistics is the

beta distribution. The beta distribution is used as a prior distribution for binomial or

geometric proportions. A random variable X is said to have a beta distribution with

parameters a and b if and only if the density function of X is

f xð Þ¼
xa�1 1�xð Þb�1

B a, bð Þ , a,b> 0; 0� x� 1

0, otherwise,

8><
>:

where B(a,b)¼ Ð 1
0
xa�1(1�x)b�1dx. It can be proved that B a, bð Þ¼ G að ÞG bð Þ

G a+ bð Þ , and that
E Xð Þ¼ a

a+ b andVar Xð Þ¼ ab
a +bð Þ2 a+ b + 1ð Þ :

One of the questionswemay have is: “Howdowe knowwhich distribution to use in

a given physical problem?” There is no simple and direct answer to this question. One

intuitiveway is to construct a histogram from the information at hand; from the shape of

this histogram, we decide whether the randomvariable follows a particular distribution

such as gamma distribution. Once we decide that it follows a particular distribution,

then the parameters of this distribution, such as a and b, must be statistically estimated.

In Chapter 5, we discuss how to estimate these parameters. Then a goodness-of-fit test

(discussed in Chapter 7) can be performed to see whether the distribution model seems

to be the right one.

EXERCISES 3.2
3.2.1. A fair coin is tossed 10 times. Let X denote the number of heads obtained.

Find the following.

(a) P(X¼7)

0 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
n = 2

chi-square densities, n = 2, 3, 4, and 5

n = 3

n = 4

n = 5

0.45

0.5

4 6 8 10 12

FIGURE 3.7

Chi-square pdfs for different degrees of freedom.
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(b) P(X�7)

(c) P(X>0)

(d) E(X) and Var(X).
3.2.2. Let X be a Poisson random variable with l¼1/3. Find

(a) P(X¼0)

(b) P(X�4).

3.2.3. For a standard normal random variable Z, find the value of z0 such that

(a) P(Z> z0)¼0.05

(b) P(Z< z0)¼0.88

(c) P(Z< z0)¼0.10

(d) P(Z> z0)¼0.95.

3.2.4. Let X�N(12, 5). Find the value of x0 such that

(a) P(X>x0)¼0.05

(b) P(X<x0)¼0.98

(c) P(X<x0)¼0.20

(d) P(X>x0)¼0.90.

3.2.5. Let X�N(10, 25). Compute

(a) P(X�20)

(b) P(X>5)

(c) P(12�X�15)

(d) P(jX�12j�15).

3.2.6. A quarterback on a football team has a pass completion rate of 0.62. If, in a

given game, he attempts 16 passes, what is the probability that he will

complete

(a) 12 passes?

(b) More than half of his passes?

(c) Interpret your result.

(d) Out of the 16 passes, what is the expected number of completions?

3.2.7. A consulting group believes that 70% of the people in a certain county are

satisfied with their health coverage. Assuming that this is true, find the

probability that in a random sample of 15 people from the county:

(a) Exactly 10 are satisfied with their health coverage, and interpret.

(b) Not more than 10 are satisfied with their health coverage, and interpret.

(c) What is the expected number of people out of 15 that are satisfied with

their health coverage?

3.2.8. Aman fires at a target six times; the probability of his hitting it each time is

independent of other tries and is 0.40.

(a) What is the probability that he will hit at least once?

(b) How many times must he fire at the target so that the probability of

hitting it at least once is greater than 0.77?

(c) Interpret your findings.

3.2.9. A certain electronics company produces a particular type of vacuum tube.

It has been observed that, on the average, three tubes of 100 are defective.

The company packs the tubes in boxes of 400. What is the probability

that a certain box of 400 tubes will contain
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(a) r defective tubes?

(b) At least k defective tubes?

(c) At most one defective tube?

(d) Interpret your answers to (a), (b), and (c).

3.2.10. Suppose that, on average, in every two pages of a book there is one

typographical error, and that the number of typographical errors on a single

page of the book is a Poisson r.v. with l¼1/2. What is the probability of at

least one error on a certain page of the book? Interpret your result.

3.2.11. Show that the probabilities assigned by Poisson probability distribution

satisfy the requirements that 0�p(x)�1 for all x and
P

x p(x)¼1.

3.2.12. In determining the range of an acoustic source using the triangulation

method, the time at which the spherical wave front arrives at a receiving

sensor must be measured accurately. Measurement errors in these times can

be modeled as possessing uniform probability distribution from �0.05 to

0.05 ms. What is the probability that a particular arrival time measurement

will be in error by less than 0.01 ms? What does your answer mean?

3.2.13. The hardness of a piece of ceramic is proportional to the firing time.

Assume that a rating system has been devised to rate the hardness of a

ceramic piece and that this measure of hardness is a random variable that is

distributed uniformly between 0 and 10. If a hardness in the interval [5, 9] is

desirable for kitchenware, what is the probability that a piece chosen at

random will be suitable for kitchen use?

3.2.14. A receiver receives a string of 0 and 1 s transmitted from a certain source.

The receiver used a majority rule. That is, if the receiver acquires five

symbols, xxxxx, x is 0 or 1, of which three or more are 1 s, it decides that a 1

was transmitted. The receiver is correct only 85% of the time.What is P(W),

the probability of a wrong decision if the probabilities of receiving 0 and 1 s

are equally likely? What can you conclude from your result?

3.2.15. The efficiency X of a certain electrical component may be assumed to be a

random variable that is distributed uniformly between 0 and 100 units.

What is the probability that X is:

(a) Between 60 and 80 units?

(b) Greater than 90 units?

(c) Interpret (a) and (b).

3.2.16. The reliability function of a system or a piece of equipment at time t is
defined by

R tð Þ¼P T� tð Þ¼ 1�F tð Þ

where T, the failure time, is a random variable with a known distribution. A

certain vacuum tube has been observed to fail uniformly over the interval

[t1, t2].
(a) Determine the reliability of such a tube at time t, t1� t� t2.
(b) If 180� t�220, what is the reliability of such a tube at 200 h?

(c) The failure or hazard rate function r(t) is defined by
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r tð Þ¼ f tð Þ
1�F tð Þ¼

f tð Þ
R tð Þ¼

�dR tð Þ
dt
R tð Þ :

Calculate the failure rate of this vacuum tube. Interpret your result.

3.2.17. An electrical component was studied in the laboratory, and it was

determined that its failure rate was approximately equal to 1
b¼ 0:05:What is

the reliability of such a component at 10 h?

3.2.18. Suppose that the life length of a mechanical component is normally

distributed.

(a) If s¼3 and m¼100, find the reliability of such a system at 105 h.

(b) What should be the expected life of the component if it has reliability of

0.90 for 120 h?

3.2.19. A geologist defines granite as a rock containing quartz, feldspar, and small

amounts of other minerals, provided that it contains not more than 75%

quartz. If all the percentages are equally likely, what proportion of granite

samples that the geologist collects during his lifetime will contain from

50% to 65% quartz?

3.2.20. For a normal random variable with pdf,

f xð Þ¼ 1ffiffiffiffiffiffi
2p

p
s
e� x�mð Þ2=2s2 , 1< x<1

show that
Ð1
�1 f xð Þdx¼ 1: [Hint: use polar coordinates.]

3.2.21. A professor in a large statistics class has a grading policy such that only the

15% of the students with the highest scores will receive the grade A. The

mean score for this class is 72 with a standard deviation of 6. Assuming that

all the grades for this class follow a normal probability distribution, what is

the minimum score that a student in this class has to get to receive an

A grade?

3.2.22. The scores, X, of an examination may be assumed to be normally distributed

with m¼70 and s2¼49. What is the probability that:

(a) A score chosen at random will be between 80 and 85?

(b) A score will be greater than 75?

(c) A score will be less than 90?

(d) Interpret the meaning of (a), (b), and (c).

3.2.23. Suppose that the diameters of golf balls manufactured by a certain company

are normally distributed with m¼1.96 in. and s¼0.04 in. A golf ball will be

considered defective if its diameter is less than 1.90 in. or greater than

2.02 in. What is the percentage of defective balls manufactured by the

company? What did the answer indicate?

3.2.24. Suppose that the arterial diastolic blood pressure readings in a population

follow a normal probability distribution with mean 80 mm Hg and standard

deviation 6.2 mm Hg. Suppose it is recommended that a physician be

consulted if an individual has an arterial diastolic blood pressure reading of

90 mm Hg or more. If an individual is randomly picked from this
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population, what is the probability that this individual needs to consult a

physician? Discuss the meaning of your result.

3.2.25. In a certain pediatric population, systolic blood pressure is normally

distributed with mean 115 mm Hg and standard deviation 10 mm Hg. Find

the probability that a randomly selected child from this population will

have:

(a) A systolic pressure greater than 125 mm Hg.

(b) A systolic pressure less than 95 mm Hg.

(c) A systolic pressure below which 95% of this population lies.

(d) Interpret (a), (b), and (c).

3.2.26. A physical fitness test was given to a large number of college freshmen. In

part of the test, each student was asked to run as far as he or she could in

10 min. The distance each student ran in miles was recorded and can be

considered to be a random variable, say X. The data showed that the random
variable X followed the log-normal distribution with my¼0.35 and sy¼0.5,

where Y¼ ln X. A student is considered physically fit if he or she is able to

run 1.5 miles in the time allowed. What percentage of the college freshmen

would be considered physically fit if we consider only this part of the test?

3.2.27. An experimenter is designing an experiment to test tetanus toxoid in guinea

pigs. The survival of the animal following the dose of the toxoid is a random

phenomenon. Past experience has shown that the random variable that

describes such a situation follows the log-normal distribution with my¼0

and sy¼0.65. As a requirement of good design the experimenter must

choose doses at which the probability of surviving is 0.20, 0.50, and 0.80.

What three doses should he choose?

3.2.28. Show that G(1)¼1 and for a>1, G(a)¼ (a�1)G(a�1).

3.2.29. (a) Find the moment-generating function for a gamma probability

distribution with parameter a>0 and b>0. [Hint: In the integral

representation of E(etX), change the variable t to u¼ (1�bt)x/b,
with (1�bt)>0.]

(b) Using the mgf of a gamma probability distribution, find E(X) and
Var(X).

3.2.30. Let X be an exponential random variable. Show that, for numbers a>0

and b>0,

P X> a + b jX> að Þ¼P X> bð Þ:
(This property of the exponential distribution is called the memoryless

property of the distribution.)

3.2.31. A random variable X is said to have a beta distribution with parameters a
and b if and only if the density function of X is

f xð Þ¼
xa�1 1�xð Þb�1

B a, bð Þ , a,b> 0; 0� x� 1

0, otherwise,

8<
:

where B a, bð Þ¼ Ð 1
0
xa�1 1� xð Þb�1

dx:
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(a) Show that B a, bð Þ¼ G að ÞG bð Þ
G a+ bð Þ :

(b) Show that E Xð Þ¼ a
a+ b and Var Xð Þ¼ ab

a+ bð Þ2 a+ b+ 1ð Þ :
3.2.32. The daily proportion of major automobile accidents across the United States

can be treated as a random variable having a beta distribution with a¼6 and

b¼4. Find the probability that, on a certain day, the percentage of major

accidents is less than 80% but greater than 60%. Interpret your answer.

3.2.33. Suppose that network breakdowns occur randomly and independently of

each other on an average rate of three per month.

(a) What is the probability that there will be just one network breakdown

during December? Interpret.

(b) What is the probability that there will be at least four network

breakdowns during December? Interpret.

(c) What is the probability that there will be at most seven network

breakdowns during December? Interpret.

3.2.34. Let X be a random variable denoting the number of events occurring in the

time interval (0, t]. Show that X has a gamma probability distribution with

parameters n and l.
3.2.35. In order to etch an aluminum tray successfully, the pH of the acid solution

used must be between 1 and 4. This acid solution is made by mixing a fixed

quantity of etching compound in powder form with a given volume of

water. The actual pH of the solution obtained by this method is affected by

the potency of the etching compound, by slight variations in the volume of

water used, and perhaps by the pH of the water. Thus, the pH of the solution

varies. Assume that the random variable that describes the random

phenomenon is gamma distributed with a¼2 and b¼1.

(a) What is the probability that an acid solution made by the foregoing

procedure will satisfactorily etch a tray?

(b) What would the answer to part (a) be if a¼1 and b¼2?

3.2.36. If Xi�Pois(li), i¼1,2, . . .,k, are independent, and l¼P i¼1
k li, then

Y¼P i¼1
n Xi�Pois(l).

3.2.37. If Xi�exp(b), i¼1,2, . . .,k are independent, then show that

Y¼P i¼1
k Xi�Gamma(k,b).

3.3 JOINT PROBABILITY DISTRIBUTIONS
We have thus far confined ourselves to studying one-dimensional or univariate ran-

dom variables and their properties. In many practical situations, we are required to

deal with several, not necessarily independent random variables. For example, we

might be interested in a study involving the weights and heights (W, H) of a certain
group of persons. In this situation, we need the two random variables (W,H), and it is
likely that these two are related. Then it becomes important to study the joint effect of

these random variables, which will lead to finding the joint probability distributions.

In this section, we confine our studies to two random variables and their joint distri-

butions, which are called bivariate distributions. We consider the random variables
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to be either both discrete or both continuous. We now define joint distribution of two

random variables.

Definition 3.3.1 (a) Let X and Y be random variables. If both X and Y are
discrete, then

f x, yð Þ¼P X¼ x,Y¼ yð Þ
is called the joint probability mass function (joint pmf) of X and Y.

(b) If both X and Y are continuous then f(x, y) is called the joint probability density
function (joint pdf) of X and Y if and only if

P a�X� b, c� Y� dð Þ¼
ðb
a

ðd
c

f x, yð Þdydx:

EXAMPLE 3.3.1
A probability class contains 10 African American, 8 Hispanic American, and 15white students. If 12

students are randomly selected from this class, and if X¼number of black students, and Y¼number

of white students, find the joint probability function of the bivariate random variable (X, Y).

Solution
There are a total of 33 students. The number of ways in which x African American, and y white stu-

dents can be picked (which means, the remaining 12� (x+y) students are Hispanic American) can
be obtained using the multiplication principle as

10

x

� �
15

x

� �
8

12�x�y

� �
:

The number of ways to pick 12 students from 33 students is 33
12

� �
. Hence, the joint probability

function is

P X¼ x, Y¼ yð Þ¼
10
x

� �
15
y

� �
8

12�x�y

� �
33
12

� �
where 0�x�10, 0�y�12, and 4�x+y�12. The last constraint is needed because there are only
eight Hispanic Americans, so the combined minimum number of whites and African Americans

should be at least 4.

We follow the notation:
P

x,y to denote
P

x

P
y. The joint distribution of two random

variables has to satisfy the following conditions.

Theorem 3.3.1 If X and Y are two random variables with joint probability func-
tion f(x, y), then

1. f(x, y)�0 for all x and y.
2. If X and Y are discrete, then

P
x,y f(x, y)¼1,

where the sum is over all values (x, y) that are assigned nonzero probabilities. If X
and Y are continuous, then ðð

f x, yð Þdxdy¼ 1:
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Given the joint probability distribution (pdf or pmf), the probability distribution

function of a component random variable can be obtained through the marginals.

Definition 3.3.2 The marginal pmf of X denoted by fX(x) (or f(x), when there is
no confusion) is defined by

f X xð Þ¼

ð1
�1

f x, yð Þdy, if X and Y are continuousP
ally

f x, yð Þ, if X and Y are discrete:

8><
>:

Similarly, the marginal pdf of Y is defined by

f Y yð Þ¼

ð1
�1

f x, yð Þdy, if X and Y are continuousP
ally

f x, yð Þ, if X and Y are discrete:

8><
>:

Note that

P a�X� bð Þ¼
ða
b

f xð Þdy, if X and Y are continuousP
f X xð Þ, if X and Y are discrete:

8<
:

where summation is over all values of X from a to b.

EXAMPLE 3.3.2
Find the marginal probability density function of the random variables X and Y, if their joint prob-
ability function is given by Table 3.1.

Find the marginal densities of X and Y.

Solution
By definition, the marginal pmfs of X are given by the column sums (summands over y for fixed x),

and the marginal pmfs of Y are obtained by the row sums. Hence,

xi –1 3 5 otherwise yi �2 0 1 4 otherwise

fX(xi) 0.5 0.4 0.1 0 fY(yi) 0.4 0.3 0.1 0.2 0

Using the joint probability distribution and the marginals, we can now introduce the

conditional probability distribution function.

Table 3.1 Joint pmf of X and Y

y

X �2 0 1 4 Sum

–1 0.2 0.1 0.0 0.2 0.5

3 0.1 0.2 0.1 0.0 0.4

5 0.1 0.0 0.0 0.0 0.1

Sum 0.4 0.3 0.1 0.2 1.0
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Definition 3.3.3 The conditional probability distribution of the random vari-
able X given Y is given by

f xjyð Þ¼ f xjY¼ yð Þ

¼
f x, yð Þ
f Y yð Þ , if X and Y are continuous, f Y yð Þ 6¼ 0

P X¼ x,Y¼ yð Þ
f Y yð Þ , if X and Y are discrete,

8>><
>>:

We note that both the marginal probability densities of X and Y as well as the con-

ditional pdf must satisfy the two important conditions of a pdf.

We know that two events A and B are independent if P(A\B)¼P(A)P(B). It is
usually more convenient to establish independence through the probability functions.

Hence, we define independence for bivariate probability distribution as follows.

Definition 3.3.4 Let X and Y have a joint pmf or pdf f(x, y). Then X and Y are
independent if and only if

f x, yð Þ¼ f X xð Þf Y yð Þ, for all x and y:

That is, for independent random variables, the joint pdf is the product of the
marginals.

EXAMPLE 3.3.3
Let

f x, yð Þ¼ 3x, 0� y� x� 1

0, otherwise:

	

(a) Find P X� 1
2
, 1
4
< Y< 3

4

� �
.

(b) Find the marginals fX(x) and fY(y).

(c) Find the conditional f(xjy) (0<y<1). Also compute f xjY¼ 1
2

� �
:

(d) Are X and Y independent?

Solution
(a) The domain of the function f(x, y) is given in Figure 3.8. The required probability

P X� 1
2
, 1
4
<Y< 3

4

� �
is the volume over the area of the shaded region as shown by

Figure 3.9. That is,

1

1 f (x ,y ) = 3x  in
this region

x

y

FIGURE 3.8

Domain of f(x, y).

142 CHAPTER 3 Additional Topics in Probability



P X� 1
2
, 1
4
<Y< 3

4
ð Þ¼

ð1
2

1
4

ðx
1
4

3xdydx

¼
ð1
2

1
4

3x x� 1
4

ð Þdx

¼ 3x3

3
�3x2

8

� � 1
2

1
4







¼ 5

128
:

(b) To find the marginals, we note that for each x, y varies from 0 to x (0<y<x). Therefore

f X xð Þ¼
ðx
0

3xdy¼ 3x y x
0



� �¼ 3x2, 0< x< 1:

Similarly, for each y, x varies from y to 1

f Y yð Þ¼
ðx
0

3xdx¼ 3x2

2

1

y





 ¼ 3

2
�3y2

2

¼ 3

2
1�y2
� �

, 0< y< 1:

(c) Using the definition of conditional density

f xjyð Þ¼ f x, yð Þ
f Y yð Þ ¼ 3x

3
2
1�y2ð Þ¼

2x

1�y2
, y� x� 1:

From this we have

f xjy¼ 1

2

� �
¼ 2x

1� 1
2
ð Þ2 ¼

8

3
x,

1

2
� x� 1:

(d) To check for independence of X and Y

f X 1ð Þf Y
1

2

� �
¼ 3ð Þ 9

8

� �
¼ 27

8
6¼ 3¼ f 1,

1

2

� �
:

Hence, X and Y are not independent.

FIGURE 3.9

Region of integration.
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Recall that in the case of a univariate random variable X, with probability func-

tion f(x), we have

EX¼

X
x

xf xð Þ, if
X
x

xjf xð Þj<1, for discrete r:v:ð
xf xð Þdx, if

ð
jxjf xð Þdx<1, for continuous r:v::

8><
>:

Now we define similar concepts for bivariate distribution.

Definition 3.3.5 Let f(x, y) be the joint probability function, and let g(x, y) be such

that
P

x,yjg(x,y)jf(x,y)<1 in the discrete case, or
Ð
�1
1 Ð

�1
1 jg(x,y)j f(x,y)

dx dy<1 in the continuous case. Then the expected value of g(X, Y) is given by

Eg X, Yð Þ¼

X
x,y

g x, yð Þf x, yð Þ, if X,Y are discreteð1
�1

ð1
�1

g x, yð Þf x, yð Þdxdy, if X,Y are continuous:

8>><
>>:

In particular

E XYð Þ¼

X
x,y

xyf x, yð Þ, if X,Y are discreteð1
�1

ð1
�1

xyf x, yð Þdxdy if X,Y are continuous:

8>><
>>:

The following properties of mathematical expectation are easy to verify.

PROPERTIES OF EXPECTED VALUE
1. E(aX+bY)¼aE(X)+bE(Y).
2. If X and Y are independent, then E(XY)¼E(X)E(Y). However, the converse is not necessarily

true.

EXAMPLE 3.3.4
Let f(x, y)¼3x, 0�y�x�1.

(a) Find E(4X�3Y),

(b) Find E(XY).

Solution
(a) E(X)¼ Ð x fX (x)dx and E(Y)¼ Ð y fY (y)dy.

Recall that earlier (Example 3.3.3) we have computed fX(x)¼3x2 (0<x<1) and fY(y)¼
2 (1�y2), 0�y�1. Using these results, we have

E Xð Þ¼
ð1
0

x3x2dx¼ 3

4
,

E Yð Þ¼
ð1
0

y
3

2
1�y2
� �

dy¼ 3

8
:

Hence,

E 4X�3Yð Þ¼ 3�9

8
¼ 15

8
:
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(b)
E XYð Þ¼

ð1
0

ðx
0

xy 3xð Þdydx¼ 3

10

Conditional expectations are defined in the same way as univariate expectations, except that the

conditional density is utilized in place of the unconditional density function.

Definition 3.3.6 Let X and Y be jointly distributed with pmf or pdf f(x, y). Let g be
a function of x. Then the conditional expectation of g(x) given, Y¼y is

E g Xð Þjyð Þ¼E g Xð ÞjY¼ yð Þ

¼
X
allx

g xð Þf xjyð Þ, if X,Y are discreteÐ
g xð Þf xjyð Þdx, if X,Y are continuous:

8<
:

and

Var X yjð Þ¼E Y�E X yjð Þð Þ2 yj
h i

¼E X2 yj� �� E X yjð Þ½ �2:

Note that E(g(X)jy) is a function of y. If we let Y range over all of its possible values,

the conditional expectation E(g(X)jY) can be thought of as a function of the random

variable Y. We will then be able to find the mean and variance of E(g(X)jY), as given
in the following result, the proof of which is left as an exercise.

Theorem 3.3.2 Let X and Y be two random variables. Then

(a) E(X)¼E[E(XjY)].
(b) Var(X)¼E[Var(XjY)]+Var[E(XjY)].

We can define the conditional variance, Var(YjX)¼E([Y�E(YjX)]2jX).

EXAMPLE 3.3.5
Let X and Y be two random variables with joint density function given by

f x, yð Þ¼ x2 +
xy

3
, 0� x� 1, 0� y� 2

0, otherwise:

(

Find the conditional expectation, E XjY¼ 1
2

� �
:

Solution
First we will find the conditional density, f(xjy). The marginal

f Y yð Þ¼
ð1
0

x2 +
xy

3

� �
dx¼ 1

3
+
1

6
y, 0< y< 2:

Therefore,

f xjyð Þ¼ f x, yð Þ
f Y yð Þ ¼

x2 +
xy

3
1

6
y+

1

3

, 0� x� 1:

Continued
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Hence,

f xjY¼ 1

2

� �
¼

x2 +
x

6
1

12
+
1

3

¼ 12

5
x2 +

x

6

� �
:

Thus,

E XjY¼ 1

2

� �
¼
ð1
0

xf xjyð Þdx

¼
ð1
0

x
12

5
x2 +

x

6

� �
dx¼ 11

15
¼ 0:733:

EXAMPLE 3.3.6
Let the joint density of two random variables X and Y be given by

f x, yð Þ¼
1

4
2x+ yð Þ, 0� x� 1, 0� y� 2

0, otherwise:

(

(a) Find fX(x) and fY(y).

(b) Find Var(X).

(c) Find E(XjY), and Var(XjY).
Solution
(a) We have

f X xð Þ¼
ð1
�1

f x, yð Þdy¼
ð2
0

1

4
2x + yð Þdy

¼ 1

4
4x+ 2ð Þ, 0� x� 1:

Similarly, f Y yð Þ¼
ð1
0

1

4
2x+ yð Þdx¼ 1

4
1 + yð Þ, 0� y� 2:

(b) To find the variance,

E Xð Þ¼
ð1
0

1

4
x 4x+ 2ð Þdx¼ 7

12
,

E X2
� �¼ ð1

0

1

4
x2 4x+ 2ð Þdx¼ 5

12
:

Thus, the variance of X is

Var Xð Þ¼E X2
� �� E Xð Þ½ �2

¼ 5

12
� 7

12

� �2

¼ 11

144
:

(c) First we will find the conditional density of X given that Y¼y,

f X Yj x yjð Þ¼ f x, yð Þ
f Y yð Þ ¼

1

4
2x+ yð Þ

1

4
1 + yð Þ

¼ 2x+ yð Þ
1 + yð Þ , 0� x� 1, 0� y� 2:
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Then the conditional expectation is given by

E X Yj½ � ¼
ð1
0

x
2x+ yð Þ
1 + yð Þ dx¼

1

1 + y

ð1
0

2x2 + xy
� �

dx

¼ 1

1 + y

2

3
+
1

2
y

� �
¼ 1

6

� �
4 + 3yð Þ
1 + yð Þ :

For the conditional variance, we also need to find,

E X2 Yj� �¼ ð1
0

x2
2x+ yð Þ
1 + yð Þ dx¼

1

1 + y

ð1
0

2x3 + x2y
� �

dx

¼ 1

6

� �
3 + 2y

1 + y

� �
:

Now,

Var X Yj½ � ¼E X2 Yj� �� E X Yjð Þ½ �2

¼ 1

6

� �
3 + 2y

1 + y

� �
� 1

36

� �
4 + 3yð Þ2
1 + yð Þ2

¼ 3y2 + 6y+ 2

36 1 + yð Þ2 :

3.3.1 COVARIANCE AND CORRELATION
We will now define the covariance and correlation coefficient of two random

variables.

Definition 3.3.7

(i) The covariance between two random variables X and Y is defined by

sXY ¼Cov X, Yð Þ¼E X�mXð Þ Y�mYð Þ¼E XYð Þ�mXmY ,

where mX¼E(X) and mY¼E(Y).
(ii) The correlation coefficient, r¼r(X, Y) is defined by

r¼ Cov X, Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp :

Correlation is the measure of the linear relationship between the random variables
X and Y. If Y¼aX+b (a 6¼0), then jr(X,Y)j¼1. If dependence on X and Y needs to be
specified, we will use the notation, rXY or r(X,Y).

From the definition of the covariance of X and Y, we note that if small values of X,
for which (X�mX)<0, tend to be associated with small values of Y, for which

(Y�mY)<0, and similarly large values of X with large values of Y, then Cov

(X, Y)�E[(X�mX)(Y�mY)] can be expected to be positive. On the other hand, if

small values of X tend to be associated with large values of Y and vice versa so that

(X�mX) and (Y�mY) are of opposite signs, then Cov(X, Y)<0. Thus, covariance can

be thought of as a signed measure of the variation of Y relative to X. If X and Y are

independent, then it follows from the definition of covariance that Cov(X, Y)¼0.
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The correlation coefficient of X and Y, is a dimensionless quantity that measures the

linear relationship between the random variables X and Y.

PROPERTIES OF COVARIANCE AND CORRELATION COEFFICIENT
(a) �1�r�1.

(b) If X and Y are independent, then r¼0. The converse is not true.

(c) If Y¼aX+b, then

r X; Yð Þ¼ 1, if a> 0

�1, if a< 0:

	

Note that Cov(X, X)¼Var(X).

(d) If U¼a1X+b1 and V¼a2Y+b2, then

(i) Cov(U, V)¼a1a2Cov(X, Y), and

(ii) rUV ¼ rXY ,
�rXY ,

if a1a2 > 0

otherwise:

	
(e) Var(aX+bY)¼a2Var(X)+b2Var(Y)+2abCov(X, Y). In particular, if X and Y are independent,

then Var(aX+bY)¼a2Var(X)+b2Var(Y).

(f) If X1, . . .,Xn are independent, then Var(
P

i¼1
n Xi)¼

P
i¼1
n Var(Xi).

EXAMPLE 3.3.6
The joint probability density of the random variables X and Y is given by

f x, yð Þ¼
1

64
e�y=8, 0� x� y�1
0, otherwise:

(

Find the covariance of X and Y.

Solution
We can use the formula,Cov(X, Y)¼E(XY)�E(X)E(Y).Now using integration by parts (three times)

we will get

E XYð Þ¼
ð1
0

ðy
0

xyð Þ 1
64

e�y=8 dxdy

¼ 1

64

ð1
0

ye�y=8

ðy
0

xdx

� �
dy

¼ 1

128

ð1
0

y3e�y=8 dy¼ 192:

We can also obtain

E Xð Þ¼
ð1
0

ðy
0

x
1

64
e�y=8 dxdy¼ 8

and

E Yð Þ¼
ð1
0

ðy
0

y
1

64
e�y=8dxdy¼ 16:

Thus, Cov(X, Y)¼192� (8)(16)¼64.
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Next we will define the moment-generating function for the bivariate distributions.

Definition 3.3.8 Let X and Y be jointly distributed. Then the joint moment-

generating function is defined by

M X, Yð Þ t1, t2ð Þ¼E et1X + t2Yð Þ

¼

X
y

X
x

et1x+ t1yf x, yð Þ, if X and Y are discreteð1
�1

ð1
�1

et1x+ t2yf x, yð Þdxdy, if X and Y are continous:

8>><
>>:

EXERCISES 3.3
3.3.1. An experiment consists of drawing four objects from a container, which

holds eight operable, six defective, and 10 semioperable objects. Let X be

the number of operable objects drawn and Y the number of defective objects

drawn.

(a) Find the joint probability function of the bivariate random variable

(X, Y).
(b) Find P(X¼3, Y¼0).

(c) Find P(X<3, Y¼1).

(d) Give a graphical presentation of (a), (b), and (c).

3.3.2. Let

f x, yð Þ¼
1

50
x2 + 2y
� �

, x¼ 0,1,2,3 and y¼ x + 3,

0, otherwise:

(

Show that f(x, y) satisfies the conditions of a probability mass function.

3.3.3. Let

f x, yð Þ¼ c 1�xð Þ 1�yð Þ, �1� x� 1, �1� y� 1:

Find the c that makes f(x, y) the joint probability density function of the
random variable (X, Y).

3.3.4. Let

f x, yð Þ¼ xe�xy, x� 0, y� 1:

Is f(x, y) a probability density function? If not, find the proper constant to
multiply with f(x, y) so that it will be a probability density.

3.3.5. Find the marginal probability mass function of the random variables X and

Y, if their joint probability mass function is given in Table 3.3.1.

3.3.6. Find the marginal density functions of the random variables X and Y if their

joint probability density function is given by

f x, yð Þ¼
1
5
3x�yð Þ, 1� x� 2, 1� y� 3

0, otherwise:

	

3.3.7. Determine the conditional probability P(X¼�1jY¼0) for the random

variables defined in Exercise 3.3.5.
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3.3.8. Find k so that f(x, y)¼kxy, 1� x�y�2 will be a probability density

function. Also find (i) P X� 3
2
,Y� 3

2

� �
, and (ii) P X + Y� 3

2

� �
.

3.3.9. The random variables X and Y have a joint density

f x, yð Þ¼
8

9
xy, 1� x� y� 2

0, elsewhere:

8<
:

Find:

(a) The marginal of X.
(b) P(1.5<X<1.75, Y>1).

3.3.10. The joint pdf of X and Y is

f x, yð Þ¼
1

28
4x + 2y+ 1ð Þ, 0� x� 2, 0� y� 2

0, elsewhere:

8<
:

Find (a) fX(x) and fY(y), and (b) f(yjx).
3.3.11. Find the joint mgf of the random variables (X, Y) defined in Exercise 3.3.9.
3.3.12. The joint density of a random variable (X, Y) is given by

f x, yð Þ¼
x3y3

16
, 0� x� 2, 0� y� 2

0, elsewhere:

8<
:

(a) Find marginals of X and Y, and (b) find f(yjx).
3.3.13. The joint probability mass function of a discrete random variable (X, Y) is

given by

f x, yð Þ¼
6xy

n n+ 1ð Þ 2n+ 1ð Þ
 �2

, x,y¼ 1,2, . . . ,n

0, otherwise:

8<
:

Find (a) f(yjx), and (b) f(yjx).
[Hint:

P
i¼1
n i2¼ (n(n+1)(2n+1))/6.]

3.3.14. Consider bivariate random variables with the pmf

f x, yð Þ¼
 
n

x

!
yx+ a�1 1�yð Þn�x+ b�1

, for x¼ 0, 1, . . . ,n and 0< y� 1:

Verify that

f xjyð Þ∝
 
n

x

!
yx 1�yð Þn�x

Table 3.3.1 Joint pmf of X and Y

y

X –2 0 1 4

�1 0.3 0.1 0.0 0.2

3 0.0 0.2 0.1 0.0

5 0.1 0.0 0.0 0.0
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and

f yjxð Þ∝yx+ a�1 1�yð Þn�x+ b�1:

3.3.15. The joint mass function of the discrete random variable (X, Y) is given in

Table 3.3.2.

(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient rX,Y.

3.3.16. The joint probability function of the continuous random variable (X, Y) is
given by

f x, yð Þ¼
1

28
4x+ 2y+ 1ð Þ, 0� x< 2, 0� y< 2

0, otherwise:

8<
:

(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient rXY.

3.3.17. Let X and Y be random variables and U¼aX+b, V¼cY+d, where a, b, c, d

are constants. Show that rUV ¼ rXY , ifac> 0

�rXY , otherwise:

	
3.3.18. Let X and Y be random variables, and let Y¼aX+b, where a and b are

constants. Show that (a) rXY¼1 if a>0, and (b) rXY¼�1 if a<0.

3.3.19. If jrXYj¼1, then prove that P(Y¼aX+b)¼1.

3.3.20. Let X and Y be two random variables with joint density function

f x, yð Þ¼ 8xy, 0� x� y� 1

0, otherwise:

	

(a) Find the conditional expectation, E(XjY ¼ 3/4).

(b) Find Cov(X, Y).
3.3.21. Let X and Y be two random variables with joint density function

f x, yð Þ¼ e�y, 0� x� y
0, otherwise:

	

(a) Find the conditional expectation, E(XjY¼y).

Table 3.3.2 Joint Density of (X,Y)

y

X 1 2 3

1 1
6

1
6

1
6

2 1
6

1
12

1
12

3 1
12

1
12 0
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(b) Find Cov(X, Y).
(c) Are X and Y independent? Why?

3.3.22. Let

f x, yð Þ¼ c

1 + x2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

p , �1< x<1, �1< y< 1:

Find the c that makes f(x, y) the probability density function of the

random variable (X, Y). Determine whether X and Y are independent.

3.3.23. If the random variables X and Y are independent and have equal variances,

what is the coefficient of correlation between the random variables X and

aX+Y, where a is a constant?

3.4 FUNCTIONS OF RANDOM VARIABLES
In this section we discuss the methods of finding the probability distribution of a

function of a random variable X. We are given the distribution of X, and we are

required to find the distribution of g(X). There are many physical problems that call

for the derivation of the distribution of a function of a random variable. The follow-

ing is one of the classical examples. The velocity V of a gas molecule (Maxwell-

Boltzmann law) behaves as a gamma-distributed random variable. We would like

to derive the distribution of E¼mV2, the kinetic energy of the gas molecule. Because

the value of the velocity is the outcome of a random experiment, so is the value of E.
This is a problem of finding the distribution of a function of a random variable

E¼g(V). We now illustrate various techniques for finding the distribution of g(X)
by means of examples.

3.4.1 METHOD OF DISTRIBUTION FUNCTIONS
Basically the method of distribution functions is as follows. If X is a random variable

with pdf fX(x) and if Y is some function of X, then we can find the cdf FY(y)¼P(Y�y)
directly by integrating fX(x) over the region for which {Y�y}. Now, by differenti-

ating FY(y), we get the probability density function fY(y) of Y. In general, if Y is a

function of random variables X1, . . ., Xn, say g(X1, . . ., Xn), then we can summarize

the method of distribution function as follows.

PROCEDURE TO FIND CDF OF A FUNCTION OF r.v. USING THE METHOD
OF DISTRIBUTION FUNCTIONS
1. Find the region {Y�y} in the (x1, x2, . . ., xn) space, that is find the set of (x1, x2, . . ., xn) for which

g(x1, . . ., xn)�y.

2. Find FY (y)¼P(Y�y) by integrating f (x1, x2, . . ., xn) over the region {Y�y}.
3. Find the density function fY (y) by differentiating FY (y).
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EXAMPLE 3.4.1
Let X�N(0, 1). Using the cdf of X, find the pdf of X2.

Solution
Let Y¼X2. Note that the pdf of X is

f xð Þ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2, �1< x<1:

Then the cumulative distribution function of Y for a given y�0 is

F yð Þ¼P Y� yð Þ¼P X2 � y
� �

¼P � ffiffiffi
y

p �X� ffiffiffi
y

p� �
¼
ð ffiffiyp

� ffiffi
y

p
1ffiffiffiffiffiffi
2p

p e�x2=2dx

¼
ð ffiffiyp

0

1ffiffiffiffiffiffi
2p

p e�x2=2dx, by the symmetry of e�x2=2,

Hence, by differentiating F(y), we obtain the probability density function as

f Y yð Þ¼ 2ffiffiffiffiffiffi
2p

p e�y=2 1

2
ffiffiffi
y

p

¼
1ffiffiffiffiffiffi
2p

p y�1=2e�y=2, 0< y<1
0, otherwise:

8<
:

This is a w2-distribution with 1 degree of freedom.

The same method can be used for the discrete case.

EXAMPLE 3.4.2
Suppose that the random variable X has a Poisson probability distribution

f xð Þ¼
e�llx

x!
, x¼ 0,1,2, . . .

0, otherwise:

(

Find the cumulative distribution function of Y¼aX+b.

Solution
The cdf of Y is given by

F yð Þ¼P Y� yð Þ¼P aX + b� yð Þ

¼P X� y�b

a

� �
¼
Xy�b

a½ �

x¼0

e�llx

x!

,

where [x] is the largest integer less than or equal to x. Therefore,

F yð Þ¼
0, y< bXy�b

a½ �

x¼0

e�llx

x!
, y� b:

8><
>:

It should be noted here that the pmf, fY(y) of Y, can be found from the equation

f Y yð Þ¼FY yð Þ�FY y�1ð Þ, fory¼ an+ b, n¼ 0,1,2, . . .

The multivariate case (in particular, the bivariate case), though more difficult, can be

handled similarly.
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3.4.2 THE pdf OF Y=g(X), WHERE g IS DIFFERENTIABLE AND
MONOTONE INCREASING OR DECREASING
We now consider the distribution of a random variable Y¼g(X), where X is a con-

tinuous random variable with pdf fX(x). Assume that g is differentiable and the

inverse function g�1 of g exists. Let X¼g�1(Y). Let fX(x) be the probability density

function of X. Then the density function of Y can be obtained using the method just

given. Thus,

f Y yð Þ¼ f X g�1 yð Þ� � d
dy

g�1 yð Þ:

This is a special case of the transformation method, which is explained later in

Section 3.4.4.

EXAMPLE 3.4.3
Let X�N(0, 1). Find the pdf of Y¼eX.

Solution
Here g(x)¼ex, and hence, g�1(y)¼ ln(y). Thus, d

dy g
�1 yð Þ¼ 1

y :

Also,

f X xð Þ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2, �1< x<1:

Therefore, the pdf of Y is

f Y yð Þ¼
1

y
ffiffiffiffiffiffi
2p

p e� ln yð Þ½ �2=2, y> 0

0, otherwise:

8<
:

3.4.3 PROBABILITY INTEGRAL TRANSFORMATION
Let X be a continuous random variable, with pdf f and cdf F. Let Y¼F(X). Then,

P Y� yð Þ¼P F Xð Þ� yð Þ¼P X�F�1 yð Þ� �
¼
ðF�1 yð Þ

�1
f X xð Þdx¼FX xð ÞjF�1 yð Þ

�1 ¼ y:

Hence,

f yð Þ¼ 1, 0< y< 1

0, otherwise:

	

Thus, Y has a U(0,1) distribution. The transformation Y¼F(X) is called a probability
integral transformation. It is interesting to note that irrespective of the pdf of X, Y is

always uniform in (0, 1).
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EXAMPLE 3.4.4
Let X be a normal with mean m and variance s2. Thus,

f xð Þ¼ 1ffiffiffiffiffiffi
2p

p
s
e� x�mð Þ=2s2 , �1< x<1, �1<m<1, and s2 > 0:

Let Y¼
ðX
0

1ffiffiffiffiffiffi
2p

p
s
e� x�mð Þ=2s2 du: Then Y¼F(X), where F is the cdf of a standard normal random

variable. Therefore Y is uniform on (0, 1). That is,

f yð Þ¼ 1, if 0< y< 1

0, otherwise:

	

3.4.4 FUNCTIONS OF SEVERAL RANDOM VARIABLES: METHOD
OF DISTRIBUTION FUNCTIONS
We now discuss the distribution of Y, when Y is a function of several random vari-

ables, Y¼g(X1, . . ., Xn).

EXAMPLE 3.4.5
Let X1, . . ., Xn be continuous iid random variables with pdf f(x) (cdf F(x)). Find the pdfs of

Y1 ¼ min X1, . . . , Xnð Þ and Yn ¼ max X1, . . . , Xnð Þ:
Solution
For the random variable Y1, we have

1�Fy1 yð Þ¼P Y1 > yð Þ
¼P X1 > y, X2 > y, . . . , Xn > yð Þ
¼ X1 > yð ÞP X2 > yð Þ . . .P Xn > yð Þ

because of independenceð Þ
¼ 1�F yð Þð Þn:

This implies

FY1
yð Þ¼ 1� 1�F yð Þð Þn

and

f Y1
yð Þ¼ n 1�F yð Þð Þn�1f yð Þ:

Consider Yn. Its cdf is given by

FY1
yð Þ¼P Yn � yð Þ¼ F yð Þð Þn:

This implies that

f Yn
yð Þ¼ n F yð Þð Þn�1f yð Þ:

3.4.5 TRANSFORMATION METHOD
A simple generalization of the method of distribution functions to functions of more

than one variable is the transformation method.We illustrate the method for bivariate

distributions. The method is similar for the multivariate case. Let the joint pdf of
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(X, Y) be f(x, y). Let U¼g1(X, Y); V¼g2(X, Y). The mapping from (X, Y) to (U, V) is
assumed to be one-to-one and onto. Hence, there are functions, h1 and h2 such that

x¼ h�1
1 u, vð Þ,

and

y¼ h�1
2 u, vð Þ:

Define the Jacobian of the transformation J by

J¼
@x

@u

@x

@v
@y

@u

@y

@u




















:

Then the joint pdf of U and V is given by

f u, vð Þ¼ f h�1
1 u, vð Þ,h�1

2 u, vð Þ� �
Jj j:

EXAMPLE 3.4.6
Let X and Y be independent random variables with common pdf f(x)¼e�x, (x>0). Find the joint pdf

of U¼X/(X+Y), V¼X+Y.

Solution
We have U¼X/(X+Y)¼X/V. Hence, X¼UV and Y¼V�X¼V�UV¼V(1�U). Thus, the
Jacobian

J¼ v u
�v 1�u










:

Then jJj¼v(1�u)+uv¼v(>0). Note that 0�u�1, 0<v<1.

f u, vð Þ¼ f h�1
1 u, vð Þ,h�1

2 u, vð Þ� �
Jj j

¼ e�uve�v 1�uð Þv
¼ ve�v, 0� u� 1, 0< v<1:

Suppose we want the marginal fV(v) and fU(v), that is,

FV vð Þ¼
ð1
0

ve�vdu¼ ve�v, 0< v<1

and

f U uð Þ¼
ð1
0

ve�vdv¼ 1, 0� u� 1:

Sometimes the expressions for two variables, U and V, may not be given. Only one

expression is available. In that case, call the given expression of X and Y as U, and
define V¼Y. Then, we can use the previous method to first find the joint density and

then find the marginal to obtain the pdf of U. The following example demonstrates

the method.
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EXAMPLE 3.4.7
Let X and Y be independent random variables uniformly distributed on [0, 1], Find the distribution

of X+Y.

Solution
Let

U¼X + Y,

V¼Y,

f x, yð Þ¼ 1, 0� x� 1, 0� y� 1,

X¼U�V,

Y¼V,

J¼ 1 �1

0 1










¼ 1:

Thus, we have

f u, vð Þ¼ 1,

0,

0� u�v� 1,

otherwise:
0� v� 1

	
Because V is the variable we introduced, to get the pdf of U, we just need to find the marginal pdf

from the joint pdf. From Figure 3.10, the regions of integration are 0�u�1, and 0�u�2. That is,

Continued

(1,0) (2,0)

v = u-1
u = v

v

u

FIGURE 3.10

The regions of integration.

FIGURE 3.11

Graph of fU(u).
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f U uð Þ¼ Ð f u,vð Þdv¼ Ð 1dv
¼

ðu
0

dv¼ u, 0� u� 1ð1
u�1

dv¼ 2�u, 0� u� 2:

8>><
>>:

EXERCISES 3.4
3.4.1. Let X be a uniformly distributed random variable over (0, a). Find the pdf of

Y¼cX+d.
3.4.2. The joint pdf of (X, Y) is

f x, yð Þ¼ 1

y2
e�

x+ y
y , x,y> 0, y> 0:

Find the pdf of U¼X�Y.
3.4.3. Let f(x,y) be the probability density function of the continuous random

variable (X, Y). If U¼XY, show that the probability density function of U is

given by

f U uð Þ¼
ð1
�1

f
u

v
, v

� � 1

v










dv

3.4.4. The joint pdf of X and Y is

f x, yð Þ¼ ye� x+ yyð Þ, y> 0, x> 0:

Find the pdf of XY.
3.4.5. If the joint pdf of (X, Y) is

f x, yð Þ¼ 1

2ps1s2
e
� 1

4s2
1
s2
2

x2 + y2ð Þ
,

�1< x<1, �1< y<1; s1,s2 > 0

find the pdf of X2+Y2.
3.4.6. Let X1, . . ., Xn be independent and identically distributed random variables

with pdf f(x)¼ (1/y)e�x/y, x>0, y>0. Find the pdf of
P

i¼1
n Xi.

3.4.7. Let f(x, y) be the pdf of the continuous random variable (X, Y). If U¼X+Y,
then show that the probability density function of U is given by

f U uð Þ¼
ð1
�1

f u�v,vð Þdv:

3.4.8. Let X be uniformly distributed over (�2, 2) and Y¼X2. Find the Cov(X, Y).
Are X and Y independent?

3.4.9. Let X�N(m, s2). Show that

(a) Z¼ X�mð Þ
s isN 0, 1ð Þ:

(b) U¼ X�mð Þ2
s2 isw2 1ð Þ:
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3.4.10. Let X�N(m, s2). Find the pdf of Y¼eX.

3.4.11. The probability density of the velocity, V, of a gas molecule, according to

the Maxwell-Boltzmann law, is given by

f v, bð Þ¼ cv2e�bv2 ,

0,

	
v> 0

elsewhere,

where c is an appropriate constant and b depends on the mass of the mol-

ecule and the absolute temperature. Find the density function of the kinetic

energy E, which is given by E¼ g Vð Þ¼ 1
2
mV2:

3.4.12. Let X and Y be two independent random variables, each normally

distributed, with parameters (m1,s1
2) and (m2,s2

2), respectively. Show that the

probability density function of U¼X/Y is given by

f U uð Þ¼ s1s2
p s21 +s

2
2u

2
� � , �1< u<1:

3.4.13. Let

f x, yð Þ¼ 1

2ps2
e� 1=2s2ð Þ x2 + y2ð Þ, �1< x,y<1

be the joint pdf of (X, Y). Let

U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 + Y2

p
and V¼ tan�1 Y

X

� �
, 0�V� 2p:

Find the joint pdf of (U, V).
3.4.14. Let the joint pdf of (X, Y) be given by

f x, yð Þ¼ b�2e� x+ yð Þ=bf g,
0,

	
x,y> 0, b> 0

elsewhere:

Let U¼ X�Y
2

and V¼Y Find the joint pdf of (U, V).
3.4.15. Let X and Y be independent and identically distributed random variables

with pdf

f xð Þ¼
1

2
e�x=2,

0,

(
x� 0

otherwise:

Find the distribution of (X–Y)/2.
3.4.16. If X and Y are independent and chi-square distributed random variables with

n1 and n2 degrees of freedom, respectively. Obtain the joint distribution of

(U, V), where U¼X+Y and V¼X/Y.

3.5 LIMIT THEOREMS
Limit theorems play a very important role in the study of probability theory and in its

applications. In Chapter 2, we saw that the frequency interpretation of probability

depends on the long-run proportion of times the outcome (event) would occur
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in repeated experiments. Also, in Section 3.2, we learned that some binomial prob-

abilities can be computed using either the Poisson probability distribution or the nor-

mal probability distribution using the limiting arguments. Many random variables

that we encounter in nature have distributions close to the normal probability distri-

bution. These modeling simplifications are possible because of various limit theo-

rems. In this section, we discuss the law of large numbers and the Central Limit

Theorem.

First we give Chebyshev’s theorem, which is a useful result for proving limit the-

orems. It gives a lower bound for the area under a curve between two points that are

on opposite sides of the mean and are equidistant from the mean. The strength of this

result lies in the fact that we need not know the distribution of the underlying pop-

ulation, other than its mean and variance. This result was developed by the Russian

mathematician Pafnuty Chebyshev (1821-1894).

CHEBYSHEV’S THEOREM

Theorem 3.5.1 Let the random variable X have a mean m and standard deviation s. Then
for K>0, a constant,

P X�mj j<Ksð Þ� 1� 1

K2
:

Proof. We will work with the continuous case. By definition of the variance of X,

s2 ¼E X�mð Þ2 ¼
ð1
�1

x�mð Þ2f xð Þdx

¼
ð1�Ks

�1
x�mð Þ2f xð Þdx+

ð1 +Ks

1�Ks
x�mð Þ2f xð Þdx+

ð1
1+Ks

x�mð Þ2f xð Þdx

�
ð1�Ks

�1
x�mð Þ2f xð Þdx+

ð1
1+Ks

x�mð Þ2f xð Þdx:

Note that (x�m)2�K2s2 for x�m�Ks or x�m+Ks. The equation above can be rewritten as

s2 �K2s2
ð1�Ks

�1
f xð Þdx+

ð1
1 +Ks

f xð Þdx
 �

¼K2s2 P X� m�Ksf g+P X�m+Ksf g½ �
¼K2s2P X�mj j �Ksf g: n

This implies that

P X�mj j �Ksf g� 1

K2

or

P X�mj j<Ksð Þ� 1� 1

K2
:
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We can also write Chebyshev’s theorem as

P X�mj j � ef g�
E X�mð Þ2
h i

e2
¼Var Xð Þ

e2
, for some e> 0:

Equivalently,

P X�mj j �Ksf g� 1

K2
:

In other words, Chebyshev’s inequality states that the probability that a random var-

iable X differs from its mean by at least K standard deviations is less than or equal to

1/K2 (K�2, for K¼1, the result is obvious.)

In statistics, if we do not have any idea of the population distribution,

Chebyshev’s theorem is used in the following manner. For any data set (regardless

of the shape of the distribution), at least (1� (1/k2))100% of observations will lie

within k(�1) standard deviations of the mean. For example, at least (1� (1/22))

100%¼75% of the data will fall in the interval x�2s,x+ 2sð Þ and at least 88.9%

of the observations will lie within three standard deviations of the mean. If the pop-

ulation distribution is bell-shaped, we have a better result than Chebyshev’s theorem,

namely, the empirical rule that states the following: (i) approximately 68% of the

observations lie within one standard deviation of the mean; (ii) approximately

95% of the observations lie within two standard deviations of the mean; and (iii)

approximately 99.7% of the observations lie within three standard deviations of

the mean.

EXAMPLE 3.5.1
A random variable X has mean 24 and variance 9. Obtain a bound on the probability that the random

variable X assumes values between 16.5 and 31.5.

Solution
From Chebyshev’s theorem

P m�Ks<X< m+Ksf g� 1� 1

K2
:

Equating m+Ks to 31.5 and m�Ks to 16.5 with m¼24 and s¼ ffiffiffi
9

p ¼ 3, we obtain K¼2.5.
Hence,

P 16:5<X< 31:5f g� 1� 1

2:5ð Þ2 ¼ 0:84:

EXAMPLE 3.5.2
Let X be a random variable that represents the systolic blood pressure of the population of 18- to

74-year-old men in the United States. Suppose that X has mean 129 mm Hg and standard deviation

19.8 mm Hg.

(a) Obtain a bound on the probability that the systolic blood pressure of this population will assume

values between 89.4 and 168.6 mm Hg.

Continued
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(b) In addition, assume that the distribution of X is approximately normal. Using the normal table,

find P(89.4�X�168.6). Compare this with the empirical rule.

Solution
(a) Because we are given only the mean and standard deviation, and no distribution is specified, we

use Chebyshev’s theorem. We have

P m�Ks<X<m+Ksf g� 1� 1

K2
:

Equating m+Ks to 168.6 and m�Ks to 89.4 with m¼129 and s¼19.8, we obtain K¼2. Hence,

P 89:4�X� 168:6f g� 1� 1

2ð Þ2 ¼ 0:75:

(b) Because X is normally distributed with mean 129 and standard deviation 19.8, using the z-score,
we get

P 89:4�X� 168:6ð Þ¼P
89:4�129

19:8
�Z� 168:6�129

19:8

� �
¼P �2�Z� 2ð Þ¼ 0:9544:

Hence, approximately 95.44% of this population will have systolic blood pressure values

between 89.46 and 168.6 mm Hg. This compares well with the 95% value from the empirical rule.

We could use Chebyshev’s inequality to prove the following result, which is

called the weak law of large numbers. The law of large numbers states that if the

sample size n is large, the sample mean rarely deviates from the mean of the distri-

bution of X, which in statistics is called the population mean.

LAW OF LARGE NUMBERS

Theorem 3.5.2 Let X1, . . ., Xn be a set of pairwise independent random variables with

E(Xi)¼m, and Var(Xi)¼s2. Then for any c>0,

P m�c�X�m+ c
� �� 1� s2

nc2

and as n!1, the probability approaches 1. Equivalently,

P
Sn
n
�m










< e

� �
! 1

as n!1. Here, X¼ 1
n

Xn

i¼1
Xi and Sn¼

P
i¼1
n Xi.

Proof. Because X1, . . ., Xn are independent and identically distributed (iid) random variables

(random sample), we know that Var(Sn)¼ns2, and Var(Sn/n)¼s2/n. Also, E(Sn/n)¼m. By

Chebyshev’s theorem, for any e>0,

P
Sn
n
�m










� e

� �
� s2

ne2
:

Thus, for any fixed e,

P
Sn
n
�m










� e

� �
! 0

as n!1. Equivalently,

P
Sn
n
�m










< e

� �
! 1

as n!1. n
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Thus, without any knowledge of the probability distribution function of Sn, the
(weak) law of large numbers states that the sample mean, X¼ Sn=n, will differ from
the population mean by less than an arbitrary constant, e>0, with probability that

tends to 1 as n tends to 1. Because of this, the law of large numbers is also called

the “law of averages.” This result basically states that we can start with a random

experiment whose outcome cannot be predicted with certainty, and by taking aver-

ages, we can obtain an experiment in which the outcome can be predicted with a high

degree of accuracy. The law of large numbers in its simplest form for the Bernoulli

random variables was introduced by Jacob Bernoulli toward the end of the sixteenth

century. This result in generality was first proved by the Russian mathematician A.

Khintchine in 1929. This result is widely used in its applications to insurance, sta-

tistics, and the study of heredity.

EXAMPLE 3.5.3
Let X1, . . ., Xn be iid Bernoulli random variables with parameter p. Verify the law of large numbers.

Solution
For Bernoulli random variables we know that EXi¼p, and Var(Xi)¼p(1�p). Thus, by Chebyshev’s
theorem,

P p�c�X� p + c
� �¼P

Sn

n
�p










� c

	 �
� 1� s2

nc2

¼ 1�p 1�pð Þ
nc2

! 1, as n!1:

This verifies the weak law of large numbers.

EXAMPLE 3.5.4
Consider n rolls of a balanced die. Let Xi be the outcome of the ith roll, and let Sn¼

P
i¼1
n Xi. Show

that, for any e>0,

P
Sn
n
�7

2










� e

� �
! 0

as n!1.

Solution
Because the die is balanced, EXi¼7/2. By the law of large numbers, for any e>0,

P
Sn
n
�7

2










� e

� �
! 0

as n!1, or equivalently,

P
Sn
n
�7

2










< e

� �
! 1

as n!1.

One of the most important results in probability theory is the Central Limit Theorem.

This basically states that the z-transform of the sample mean is asymptotically stan-

dard normal. The amazing thing about the Central Limit Theorem is that no matter
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what the shape of the original distribution is, the (sampling) distribution of the mean

approaches a normal probability distribution. We state one version of the Central

Limit Theorem. In a restricted case, the proof uses the idea that the moment-

generating functions of Zn converge to the moment-generating function of the stan-

dard normal random variable. The general proof is a little bit more involved. Because

the proof of the Central Limit Theorem is available in most probability books, we

will not give the proof here.

CENTRAL LIMIT THEOREM (CLT)

Theorem 3.5.3 If X1, . . ., Xn is a random sample from an infinite population with mean

m<1, and variance s2<1, then the limiting distribution of Zn ¼ X�m
� �

= s=
ffiffiffi
n

pð Þ as n!1 is
the standard normal probability distribution. That is,

lim
n!1P Zn � zð Þ¼ 1ffiffiffi

2
p

p

ðz
�1

e�t2=2dt:

If Sn¼
P

i¼1
n Xi, then we can rewrite Zn as

Zn ¼ X�m
s=

ffiffiffi
n

p ¼ n X�m
� �
ns=

ffiffiffi
n

p ,

¼ Sn�nm
s
ffiffiffi
n

p , since nX¼
Xn
i¼1

Xi:

Then the CLT states that Zn ¼ Sn�nmð Þ=s ffiffiffi
n

p
is approximately N(0, 1) for large n.

The Central Limit Theorem basically says that when we repeat an experiment a

large number of times, the average (almost always) follows a Gaussian distribution.

EXAMPLE 3.5.5
X1, X2,. . . are iid random variables such that

Xi ¼ 1,

0,

with probability p,
with probability 1�p:

	

Show that Zn ¼ Sn�npð Þ= ffiffiffiffiffiffiffiffi
npq

p
is approximately normal for large n, where Sn¼

P
i¼1
n Xi, and

q¼1�p.

Solution
We know that

E Xð Þ ¼ p; E X2
� � ¼ p;Var Xð Þ ¼ p�p2 ¼ pq:

Hence, by the CLT, the limiting distribution of Zn ¼ Sn�npð Þ= ffiffiffiffiffiffiffiffi
npq

p
as n!1 is the standard

normal probability distribution.
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EXAMPLE 3.5.6
A soft-drink vendingmachine is set so that the amount of drink dispensed is a random variable with a

mean of 8 ounces and a standard deviation of 0.4 ounces. What is the approximate probability that

the average of 36 randomly chosen fills exceed 8.1 ounces?

Solution
From the CLT, X�8

� �
= 0:4=

ffiffiffiffiffi
36

p� �� ��N 0, 1ð Þ: Hence, from the normal table,

P X> 8:1
� �¼P Z>

8:1�8:0
0:4ffiffiffiffi
36

p

( )

¼ p Z > 1:5f g ¼ 0:0668:

EXAMPLE 3.5.7
Numbers in decimal form are often approximated by the closest integers. Suppose n numbers X1, . . .,

Xn are approximated by their closest integers J1, J2, . . ., Jn. Let Ui¼Xi–Ji. Assume that Ui are uni-

form on (�0.5, 0.5) and that Ui
0s are independent.

(a) Show that

Pn
i¼1Uiffiffiffiffiffiffiffiffiffiffi
n=12

p �N 0, 1ð Þas n!1:

(b) For n¼300, find P
�5ffiffiffiffiffiffiffiffiffiffiffi
300=12

p �
Pn

i¼1
Uiffiffiffiffiffiffiffiffiffiffiffi

300=12
p � 5ffiffiffiffiffiffiffiffiffiffiffi

300=12
p

8<
:

9=
;:

(c) For n¼300, find the value of a such that P{�a�PUi�a}¼0.95

(d) For n¼106, find a such that P �a�P106

i¼1Ui � a
n o

¼ 0:99:

Solution
(a) Because Ui

0s are uniform in (�0.5, 0.5),
P

Ui¼0, Var(Ui)¼1/12. Let, Sn¼Si¼1
n Xi, and

Kn¼Si¼1
n Ji. Then

P Sn�Knj j � af g¼P �a�P Xi�Jið Þ� af g
¼P �a�PUi � af g:

By the CLT,
Sn
i¼1Ui�0ffiffiffiffiffiffiffiffiffiffi

n=12
p �N 0, 1ð Þas n!1:

(b) For n¼300; a¼5. Using the normal table,

P
�5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p �
Pn

i¼1Uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p � 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p
( )

¼ 0:68:

(c) Now,

0:95¼P �a�PUi � af g
¼P

�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p �Z� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p
( )

:

From the normal table, we get
affiffiffiffiffiffiffiffiffiffiffi

300=12
p ¼ 1:96: This implies, a¼9.8.

(d) We have

0:99¼P �a�
X106
i¼1

Ui � a

( )

¼P
�affiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=12

q �Z� affiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=12

q
8><
>:

9>=
>;

Now, using the normal table, we have a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=12

q
¼ 2:58: Hence, a¼745.
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EXAMPLE 3.5.8
A casino has a coin, suspected to be biased. Estimate p (probability of heads) such that they can be

99% confident that their estimate (say, p̂) is within 0.01 of p (unknown). What is the minimum num-

ber of times we need to toss this coin?

Solution
Set

Xj
1,

0,

if H as jth toss,

if T as jth toss:

	

Suppose we decided to use p̂¼
X

Xi

n , that is, #Heads
n

� �
:

We want P X�p


 

< 0:01
� �¼ 0:99:

Because Y¼P i¼1
n Xi�Bin(n,p), we have EY¼np, Var(Y)¼npq. By the CLT,

X�p
� �

=
ffiffiffiffiffiffiffiffiffiffi
pq=n

p �N 0, 1ð Þ: Now,

0:99¼P
�0:01ffiffiffiffiffiffiffiffiffiffi
pq=n

p <
X�pffiffiffiffiffiffiffiffiffiffi
pq=n

p <
0:01ffiffiffiffiffiffiffiffiffiffi
pq=n

p
( )

¼P
�0:01ffiffiffiffiffiffiffiffiffiffi
pq=n

p < Z<
0:01ffiffiffiffiffiffiffiffiffiffi
pq=n

p
( )

:

Using the normal table, 0:01=
ffiffiffiffiffiffiffiffiffiffi
pq=n

p� �
¼ 2:58, this implies that

ffiffiffi
n

p � 2:58
ffiffiffiffiffi
pq

p
=0:01

� �
:

Because the maximum of pq¼1/4, it is sufficient that

ffiffiffi
n

p ¼ 2:58ð Þ ffiffiffiffiffiffiffiffiffiffiffi
1=4ð Þp� �

0:01
¼ 129:

Hence, n¼ (129)2¼16,641, and we should choose the sample size n�16,641.

Note that the method used in Example 3.5.8 can be used to estimate any unknown

probability, not just unfair coin. Also, the fact that pq¼1/4 is maximum can be

shown by calculus: let f(p)¼pq¼p(1�p)¼p�p2. 0¼ f ’ (p)¼1�2p implies

p¼1/2, so q¼1/2.

The Central Limit Theorem is extremely important in statistics because it says

that we can approximate the distribution of certain statistics without much of the

knowledge about the underlying distribution of that statistics for a relatively “large”

sample size. How large the n should be for this normal approximation to work

depends on the distribution of the original distribution. A rule of thumb is that the

sample size n must be at least 30. We deal with these issues in Chapter 4.

EXERCISES 3.5
3.5.1. Let X be a random variable with probability density function

f xð Þ¼ 630x4 1�xð Þ4,
0,

0< x< 1,

otherwise:

	

(a) Obtain the lower bound given by Chebyshev’s inequality for

P{0.2<X<0.8}.

(b) Compute the exact probability, P{0.2<X<0.8}.
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3.5.2. Suppose that the number of cars arriving in 1 h at a busy intersection is a

Poisson probability distribution with l¼100. Find, using Chebyshev’s

inequality, a lower bound for the probability that the number of cars arriving

at the intersection in 1 h is between 70 and 130.

3.5.3. Prove Chebyshev’s inequality for the discrete case.

3.5.4. Suppose that number of cars arriving at a busy intersection in a given 20 min

interval in a large city has a Poisson distribution with mean 120. Determine

a lower bound for the probability that the number of cars arriving in a given

20-min period will be between 100 and 140 using Chebyshev’s inequality.

3.5.5. Find the smallest value of n in a binomial distribution for which we can

assert that
P

Xn

n
�p










< 0:1

� �
� 0:90:

3.5.6. How large should the size of a random sample be so that we can be 90%

certain that the sample mean X will not deviate from the true mean by more

than s/2?
3.5.7. Let a fair coin be tossed n times and let Sn be the number of heads that turn

up. Show that the fraction of heads, Sn/n, will be near to 1/2 for large n.What

can we conclude if the coin is not fair?

3.5.8. Suppose that a failure of certain component follows the distribution

f(x)¼px(1–p)x for x¼0, 1, and zero, elsewhere. How many components

must one test in order that the sample mean X will lie within 0.4 of the true

state of nature with probability at least as great as 0.95?

3.5.9. Let X1, . . ., Xn be a sequence of mutually independent random variables,

with probability distribution

P Xi ¼
ffiffi
i

p� �
¼ 1

2
and P Xi ¼�

ffiffi
i

p� �
¼ 1

2
:

Show that this sequence of random variables does not satisfy the

conditions of the law of large numbers.

3.5.10. Give a proof of the Central Limit Theorem.

3.5.11. Let X1, . . ., Xn be independent discrete random variables identically

distributed as

f xið Þ¼ 0:2,
0,

	
xi ¼ 0,1,2,3,4,

otherwise:

Using CTL, find the approximate value of P X100 > 2
� �

, where

X100 ¼ 1=100ð ÞS100
i¼1Xi:

3.5.12. Let X1, . . ., Xn be a sequence of independent Poisson-distributed random

variables, with parameter l. Let Sn¼Si¼1
n Xi. Show that

Zn ¼ Sn�nlð Þ= ffiffiffiffiffiffi
nl

p� ��N 0, 1ð Þ:
3.5.13. Let X1, . . ., Xn be a sequence of independent uniformly-distributed over

[0,1) random variables. Let Sn¼Si¼1
n Xi. Show that

Zn ¼ Sn�nlð Þ= ffiffiffiffiffiffi
nl

p� ��N 0, 1ð Þ:
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3.5.14. Suppose that 2500 customers subscribe to a telephone exchange. There are 80

trunk lines available. Any one customer has the probability of 0.03 of needing

a trunk line on a given call. Consider the situation as 2500 trials with

probability of “success” p¼0.03. What is the approximate probability that

the 2500 customers will “tie up” the 80 trunk lines at any given time?

3.5.15. Suppose a group of people have an average IQ of 122 with standard

deviation 2. Obtain a bound on the probability that IQ values of this group

will be between 104 and 120.

3.5.16. Let X be a random variable that represents the diastolic blood pressure

(DBP) of the population of 18- to 74-year-old men in the United States who

are not taking any corrective medication. Suppose that X has mean

80.7 mm Hg and standard deviation 9.2.

(a) Obtain a bound on the probability that the DBP of this population will

assumes values between 53.1 and 108.3 mm Hg.

(b) In addition, assume that the distribution of X is approximately normal.

Using the normal table, findP(53.1�X�108.3). Compare this with the

empirical rule.

3.5.17. Color blindness appears in 2% of the people in a certain population. How

large must a random sample be in order to be 99% certain that a color-blind

person is included in the sample?

3.5.18. A shirt manufacturer knows that, on the average, 2% of his product will not

meet quality specifications. Find the greatest number of shirts constituting a

lot that will have, with probability 0.95, fewer than five defectives.

3.5.19. A random sample of size 100 is taken from a population with mean 1 and

variance 0.04. Find the probability that the sample mean is between 0.99

and 1.

3.5.20. The lifetime X (in hours) of a certain electrical component has the pdf

f(x)¼ (1/3)e�(1/3)x, x>0. If a random sample of 36 is taken from these

components, find P X< 2
� �

:
3.5.21. A drug manufacturer receives a shipment of 10,000 calibrated

“eyedroppers” for administering the Sabin poliovirus vaccine. If the

calibration mark is missing on 500 droppers, which are scattered randomly

throughout the shipment, what is the probability that, at most, two defective

droppers will be detected in a random sample of 125?

3.6 CHAPTER SUMMARY
In this chapter we looked at some special distribution functions that arise in practice.

It should be noted that we discussed only a few of the important probability distri-

butions. There many other discrete and continuous distributions that will be useful

and appropriate in particular applications. Some of them are given in Appendix C.

A larger list of probability distributions can be found at http://www.causascientia.

org/math_stat/Dists/Compendium.pdf, among many other places. For more than
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one random variable, we learned the joint distributions. We also saw how to find the

density and cumulative distribution for the functions of a random variable. Limit the-

orems are a crucial part of probability theory. We have introduced the Chebyshev’s

inequality, the law of large numbers, and the Central Limit Theorem for the random

variables.

We now list some of the key definitions introduced in this chapter:

• Bernoulli probability distribution

• Binomial experiment

• Poisson probability distribution

• Probability distribution

• Normal (or Gaussian) probability distribution

• Standard normal random variable

• Gamma probability distribution

• Exponential probability distribution

• Chi-square (w2) distribution
• Joint probability density function

• Bivariate probability distributions

• Marginal pdf

• Conditional probability distribution

• Independence of two r.v.s

• Expected value of a function of bivariate r.v.s

• Conditional expectation

• Covariance

• Correlation coefficient

In this chapter, we have also learned the following important concepts and

procedures:

• Mean, variance, and moment-generating function (mgf) of a binomial random

variable

• Mean, variance, and mgf of a Poisson random variable

• Poisson approximation to the binomial probability distribution

• Mean, variance, and mgf of a uniform random variable

• Mean, variance, and mgf of a normal random variable

• Mean, variance, and mgf of a gamma random variable

• Mean, variance, and mgf of an exponential random variable

• Mean, variance, and mgf of a chi-square random variable

• Properties of expected value

• Properties of the covariance and correlation coefficient

• Procedure to find the cdf of a function of r.v. using the method of distribution

functions

• The pdf of Y¼g(X), where g is differentiable and monotone increasing or

decreasing

• The pdf of Y¼g(X), using the probability integral transformation
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• The transformation method to find the pdf of Y¼g(X1, . . ., Xn)

• Chebyshev’s theorem

• Law of large numbers

• Central Limit Theorem (CLT)

3.7 COMPUTER EXAMPLES (OPTIONAL)
3.7.1 THE R-EXAMPLES
Example 3.7.1 PDFs and CDFs in R

R contains functions for many distribution functions with a logical format to

access each. This example will translate to other distributions such as Poisson and

normal however the examples will be with the binomial. Specifically in R they’re

4 command prefixes (p,q,r,d) p will return the probabilities while q returns values,

r generates random values from the distribution, and d returns the density. In the case
of R and these functions everything is cumulative and you will need to adjust for this

when seeking noncumulative probabilities. Using the help() function is recom-

mended since each distribution takes different arguments. “e.g., help(pbinom)”

R Code:

pbinom(c(0:5),5,0.4);

pbinom(3,5,0.4)-pbinom(2,5,0.4);

qbinom(0.5,5,0.4);

pnorm(4.2,4,2);

qnorm(0.5,4,2);

Output:

0.07776 0.33696 0.68256 0.91296 0.98976 1.00000 CDF Where X follows the

binomial distribution

0.2304 P(X = 3)

0.5398278 P(X ≤ 4.2) Where X follows the normal

distribution

4 CDF(X ) = 0.5

Example 3.7.2 Binomial Experiment

A manufacturer of a color printer claims that only 5% of their printers require

repairs within the first year. If out of a random sample of 18 of their printers, four

required repairs within the first year, does this tend to refute or support the

manufacturer’s claim?

R Code:

1-pbinom(3,18,0.05);

Output:

0.01087322

P(X ≥ 4) for the sample of 18 given p = 0.05.

This is a very low probability suggesting

that we refute the claim. 

170 CHAPTER 3 Additional Topics in Probability



Example 3.7.3 Binomial Experiment

Suppose that a certain drug to treat a disease has a success rate of p¼0.65. This

drug is given to n¼500 patients with the disease.

(a) What is the probability that 335 or fewer show improvement?

(b) What is the probability that more than 320 show improvement?

(c) What is the probability that exactly 300 show improvement?

(d) What is the probability that the number of improvements lies in the interval

(300,350)?

R Code:

pbinom(335,500,0.65);

1-pbinom(320,500,0.65);

pbinom(300,500,0.65)-pbinom(299,500,0.65);

pbinom(349,500,0.65)-pbinom(300,500,0.65);

Output:

0.8375342 P(X < 335)

0.6648447 P(X > 320)

0.002462253 P(X = 300)

0.9784924 P(300 < X < 350)

3.7.2 MINITAB EXAMPLES
Minitab contains subroutines that can do pdf and cdf computations. For example, for

binomial random variables, the pdf and cdf can be respectively computed using the

following comments.

MTB>pdf k;

SUBC>binomial n p.

and

MTB>cdf;

SUBC>binomial n p.

Practice: Try the following and see what you get.

MTB>pdf 3;

SUBC>binomial 5 0.40.

will give
K P(X¼K)

3.00 0.2304

And

MTB>cdf;

SUBC>binomial 5 0.40.

will give

BINOMIAL WITH N¼5 P¼0.400000

K P(X LESS OR ¼ K)
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0 0.0778

1 0.3370

2 0.6826

3 0.9130

4 0.9898

5 1.0000

Similarly, if we want to calculate the cdf for a normal probability distribution

with mean k and standard deviation s, use the following comments.

MTB>cdf x;

SUBC>normal k s.

will give P(X�x).

Practice: Try the following.

MTB>cdf 4.20;

SUBC>normal 4 2.

We can use the invcdf command to find the inverse cdf. For a given probability

p, P(X�x)¼F(x)¼p, we can find x for a given distribution. For example, for

a normal probability distribution with mean k and standard deviation s, use the

following.

MTB> invcdf p;

SUBC>normal k s.

We can also use the pull-downmenus to compute the probabilities. The following

example illustrates this for a binomial probability distribution.

EXAMPLE 3.7.1
Amanufacturer of a color printer claims that only 5% of their printers require repairs within the first

year. If out of a random sample of 18 of their printers, four required repairs within the first year, does

this tend to refute or support the manufacturer’s claim? Use Minitab.

Solution
Type the numbers 1 through 18 in C1. Then

Calc > Probability Distributions > Binomial. . . > choose Cumulative probability > in

Number of trials, enter 18 and in Probability of success, enter 0.05 > in Input column: type

C1 > Click OK

The required probability is P(X�4)¼1�P(X�3)¼1�0.9891¼0.0109.

Distribution checking

In order to perform right statistical analysis, it is necessary to know the distribu-

tion of the data we are using. We can use Minitab to do this by following steps.

1. Choose Stat > Quality Tools > Individual Distribution Identification.

2. Specify the column of data to analyze and the distribution to check

it against.

3. Click OK.
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3.7.3 SPSS EXAMPLES

EXAMPLE 3.7.2
For the data of Example 3.7.1, using SPSS, find P(X�3).

Solution
Enter numbers 1 through 18 in C1. Then use the following.

Transform>Compute> type in the Target Variable: y>Use the scroll bar beside the Functions

box to find CDF.BINOM(q, n, p)>Highlight it and use the up button to load it into the Numeric

Expression: box. Set q to 3 (success, the x-value), n to 18 (total trials) and p to 0.05 (probability of

success)>OK

In the second column, we will get the y-values as 0.99. Hence, P(X�3)¼0.99.

We can use this procedure for many other distributions.

3.7.4 SAS EXAMPLES
Sometimes, we can use computer calculations to find out the exact probability

of a certain event in lieu of approximations. For example, when n is large in a binomial

experiment, we can use normal approximation to calculate the probabilities. The fol-

lowing example shows how to calculate binomial probabilities using SAS codes.

EXAMPLE 3.7.3
Suppose that a certain drug to treat a disease has a success rate of p¼0.65. This drug is given to

n¼500 patients with the disease.

(a) What is the probability that 335 or fewer show improvement?

(b) What is the probability that more than 320 show improvement?

(c) What is the probability that exactly 300 show improvement?

(d) What is the probability that the number of improvements lies in the interval (300, 350)?

Solution
Let X¼number of patients showing improvement. Then X is a binomial random variable with

parameters n¼500 and p¼0.65.

(a) First three lines in the following code are comment lines. In general, it is always helpful to

include the comment lines to explain about the program.

/*This program can be used to compute probability*/
/* that a Binomial variable with parameters p*/
/*and n is less than or equal to x*/
data binomial;

p¼0.65;
n¼500;
x¼335;
y¼probbnml(p,n,x);

cards;
proc print;
run;

Continued
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(b) To calculate P(X>320), we can use the following.

data binomial;
p¼0.65;
n¼500;
x¼320;
y¼probbnml(p,n,x);
z¼1–y;

cards;
proc print;
run;

(c) To find P(X¼300), we can use the following.

data binomial;
p¼0.65;
n¼500;
x1¼300;
y1¼probbnml(p,n,x1);
x2¼299;
y2¼probbnml(p,n,x2);
z¼y1�y2;

cards;
proc print;
run;

(d) To find P(300<X<350), use the following.

data binomial;
p¼0.65;
n¼500;
x1¼300;
y1¼probbnml(p,n,x1);
x2¼349;
y2¼probbnml(p,n,x2);
z¼y2�y1;

cards;
proc print;
run;

Similar procedures could be used to calculate probabilities for other distributions.

In order to test for normality of a given data set using a normal probability plot,

we can use PROC UNIVARIATE (see Chapter 1 for explanation) in the following

manner. Normal plot is called qqplot in SAS.

proc univariate data¼K noprint; /*Specify the name of data set as K*/

qqplot standard;

run;

quit;

Note that this avoids printing of all the standard output due to the univariate com-

mand, and we get only the QQ plot. If we need a straight line in the plot, we can

modify the commands as follows.
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proc univariate data¼K noprint; /*Specify the name of data set as B*/

qqplot standard/ normal (mu¼m, sigma¼s);

run;

quit;

PROJECTS FOR CHAPTER 3
3A. MIXTURE DISTRIBUTION

In statistical modeling, if the data are contaminated by outliers or if the samples

are drawn from a population formed by a mixture of two populations, one could

use mixture distributions. Mixture distributions are used frequently in medical

applications, such as micro array analysis. Suppose a random variable X has pdf

f1(x) with probability p1 and pdf f2(x) with probability p2, where p1+p2¼1. Then

we say that the r.v. X has a mixture distribution. This can be thought of as

observing a Bernoulli random variable Z that is equal to 1 with probability p1 and
2 with probability p2. Thus,

X¼ X1 � f 1 xð Þ, if Y¼ 1

X2 � f 2 xð Þ, if Y¼ 2:

	

(a) Show that the pdf of X is given by f(x)¼p1f1(x)+p2f2(x).
(b) If (m1,s1

2) and (m2,s2
2) are means and variances of f1(x) and f2(x), respectively,

show that

m¼E Xð Þ¼ p1m1 + p2m2,

and

s2 ¼Var Xð Þ¼ p1s
2
1 + p2s

2
1 + p1m

2
1 + p2m

2
2� p1m1 + p2m2ð Þ2:

3B. GENERATING SAMPLES FROM EXPONENTIAL AND POISSON
PROBABILITY DISTRIBUTION

(a) Generate a sample from 1
ye

�x=y (y is chosen). Let Y1, Y2, . . ., Yn be a sample

from a U(0, 1) distribution. Let F(x)¼1–e�x/y (cdf of exponential). Then

Y¼F(x) is uniform. yj¼1�e–x/y implies xj¼�y ln(1�yi)¼�y ln ui, where
u1, u2, . . ., un is a sample from U(0, 1). Then X1, . . ., Xn is a sample from an

exponential distribution with parameter y.
(b) Suppose we want to generate a sample from a Poisson probability

distribution with parameter l. X1, . . ., Xn is a sample from an exponential

distribution with parameter 1/l till
P

i¼1
n Xi just exceeds 1. Then yn(n�1)

is a sample values form a Poisson probability distribution with

parameter l.
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Exercise 3B

Let u1, u2, . . ., un be a sample from U(0, 1). Show that

(i) X¼�2
P

i¼1
n ln(ui)�w2n

2 ,

(ii) X¼�b
P

i¼1
a ln(ui)�Gamma(a,b), and

(iii) X¼
Xa

i¼1
ln uið ÞXa+b

i¼1
ln uið Þ

�Beta a, bð Þ:

(iv) Search internet and create a list of transformations that uses uniform

random variable to generate random variables from other distributions.

Discuss computational efficiency of such methods.

3C. COUPON COLLECTOR’S PROBLEM
Suppose there are n distinct colors of coupons. Each color of coupon is equally likely
to occur. When a complete set of coupons with each color represented is assembled,

you win a prize. Let X¼# coupons for a complete set. Find (a) Distribution of X, (b)
E(X), and (c) Var(X).

3D. RECURSIVE CALCULATION OF BINOMIAL AND POISSON
PROBABILITIES

A simple way to calculate binomial probabilities is as follows: For a given n and
p, evaluate b(0,n,p) and then apply the recursive relationship

b x+ 1, n, pð Þ¼ b x, n, pð Þ p n�xð Þ
1�pð Þ x + 1ð Þ

to obtain other binomial probabilities.

(a) Derive this recursion formula.

(b) For n¼15, p¼0.4, using the recursive formula, compute all other

probabilities starting from x¼0.

The following recursive formulas are very useful in calculating

successive Poisson probabilities:

f x�1,lð Þ¼ f x, lð Þ x
l

and

f x+ 1,lð Þ¼ e�llx+ 1

x+ 1!ð Þ ¼ f x, lð Þ l
x+ 1

:

For example, if l¼2.5, we know that f(0,2.5)¼e�2.5¼0.08208. Using

this, calculate (c) f(1, 2.5) and f(2, 2.5).

3E. SIMULATION OF POISSON APPROXIMATION OF BINOMIAL
Write and run R-code with various n and p to see how the errors compare as n
increases and p decreases, by calculation actual binomial probabilities as well as

Poisson probabilities with l¼np.
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OBJECTIVE

In this chapter we study the probability distributions of various sample statistics such

as the sample mean and the sample variance and illustrate their usefulness.

Abraham de Moivre

(Source: http://en.wikipedia.org/wiki/Abraham_de_Moivre#mediaviewer/File:Abraham_de_moivre.jpg)

Abraham de Moivre (1667-1754) was a French mathematician known for his

work on the normal distribution and probability theory. He is famous for deMoivre’s

formula, which links complex numbers and trigonometry. He fled France and went to

Mathematical Statistics with Applications in R
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England to escape the persecution of Protestants. In England he wrote a book on

probability theory, titled The Doctrine of Chances. This book was very popular

among gamblers. The normal distribution was first introduced by de Moivre in an

article in 1733 in the context of approximating certain binomial distributions for

large n, and this approximation result is now called theorem of de Moivre-Laplace.

4.1 INTRODUCTION
Sampling distributions play a very important role in statistical analysis and deci-

sion making. We begin with studying the distribution of a statistic computed from a

random sample. Based on the probabilistic foundation of Chapters 2 and 3, the pre-

sent study marks the beginning of our learning of statistics beyond the descriptive

phase. Because a random sample is a set of random variables X1, . . ., Xn, it follows

that a sample statistic that is a function of the sample is also random. We call the

probability distribution of a sample statistic its sampling distribution. Sampling

distributions provide the link between probability theory and statistical inference.

The ability to determine the distribution of a statistic is a critical part in the con-

struction and evaluation of statistical procedures. It is important to observe that

there is a difference between the distribution of population from which the sample

was taken and the distribution of the sample statistic. In general, a population has a

distribution called a population distribution, which is usually unknown, whereas a

statistic has a sampling distribution, which is usually different from the population

distribution. The sampling distribution of a statistic provides a theoretical model of
the relative frequency histogram for the likely values of the statistic that one would
observe through repeated sampling. Even though some of the terms in this section

have already been defined in Chapter 1, we now present these definitions in terms

of random variables. These abstractions are introduced to develop scientifically

based methods of analyzing the data, and one should always keep in mind the

underlying population.

Definition 4.1.1 A sample is a set of observable random variables X1, . . .,Xn. The
number n is called the sample size.

In most of the inferential procedures that we study in this book, we are dealing

with random samples. We call the random variables X1, . . .,Xn identically distributed
if every Xi has the same probability distribution.

Definition 4.1.2 A random sample of size n from a population is a set of n inde-
pendent and identically distributed (iid) observable random variables X1, . . ., Xn.

Note that in a sample (not a random sample), Xis need not be independent or

identically distributed. For the results of this book to be applicable, it is important

to ensure that the selection of a sample is at least approximately random. The

significance of random sampling is that the probability distribution of a statistic

can be easily derived. Random sampling helps us to control systematic basis. For

a finite population, one can serially number the elements of the population and then

select a random sample with the help of a table of random digits. One of the simplest
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ways to select a random sample of finite size is to use a table of random numbers.

When the population size is very large, such a method can become very taxing and

sometimes practically impossible. However, there are excellent computer programs

for generating random samples from large populations, and these programs can be

used. Now we define a statistic.

Definition 4.1.3 A function T of observable random variables X1, . . .,Xn that does
not depend on any unknown parameters is called a statistic.

The sample mean X¼ 1=nð Þ
Xn

i¼1
Xi is a function of X1, . . ., Xn. The sample

median and sample variance S2 are also examples of statistics. It is important to

observe that even with random sampling, there is sampling variability or error. That

is, if we select different samples from the same population, a statistic will take different

values in different samples. Thus, a sample statistic is a random variable, and hence it

has a probability distribution. In order for us to study the behavior of the phenomenon

a sample statistic represents, we must identify its probability distribution.

Definition 4.1.4 The probability distribution of a sample statistic is called the
sampling distribution.

We can illustrate these definitions with the following example with a finite pop-

ulation and a finite sample size. In this case, we take all possible samples of size n
from a population of size N.

EXAMPLE 4.1.1
Let the population consist of the numbers {1, 2, 3, 4, 5}. Consider all possible samples consisting of

three numbers randomly chosenwithout replacement from this population. Obtain the distribution of

the sample mean.

Solution
Disregarding the order, it is clear that there are

5

3

� �
¼ 10 equally likely possible samples of size 3.

They are (1,2,3), (1,2,4), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), and (3,4,5).

Calculating the mean, X, for each of the samples, we will get the sampling distribution of X as

x
2

1

7

3

8

3

3

1

10

3

11

3

4

1

p xð Þ 1

10

1

10

2

10

2

10

2

10

1

10

1

10

For example, in the table, P X¼ 8=3
� �¼ 2=10 because the two samples (1,2,5) and (1,3,4) both

give an x¼ 8=3, which is an estimate of the population mean, m.
In general, sampling distributions are theoretical distributions that consist of possibly an infinite

number of sample statistics taken from an infinite number of randomly selected samples of a fixed

sample size. For example, if a sample of size n¼30 were taken from a large population an infinite

number of times, the combined means taken from all the samples would make up the sampling dis-

tribution of the mean. Every sample statistic has a sampling distribution. The next result states that

if one selects a random sample from a population with mean m and variance s2, then regardless of

the form of the population distribution, one can obtain the mean and standard deviation of the

statistic X in terms of the mean and standard deviation of the population. This is explained in

the following result.
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Theorem 4.1.1 Let X1, . . ., Xn be a random sample of size n from a population
with mean m and variance s2. Then E X

� �¼ m and Var X
� �¼ s2=n.

Proof. The mean and variance of X is given by,

E X
� �¼E

1

n

Xn
i¼1

Xi

 !
¼ 1

n

Xn
i¼1

E Xið Þ

¼ 1

n

Xn
i¼1

m¼ 1

n
nm¼ m ,

and

Var X
� �¼Var

1

n

Xn
i¼1

Xi

 !

¼ 1

n2

Xn
i¼1

Var Xið Þ besause X0
is are independent and Var aXið Þ¼ a2Var Xið Þ� �

¼ 1

n2
ns2 ¼ s2

n
:

We denote E X
� �¼ mX and Var X

� �¼ sX
2
:Note that from the previous theorem, mX ¼

m and sX ¼ s=
ffiffiffi
n

p
:Here, sX is called the standard error of the mean. It is important to

notice that the variance of each of the random variables X1, X2, . . ., Xn is s
2, whereas

the variance of the sample mean X is s2/n, which is smaller than the population var-

iance s2 for n�2.

The implication of Theorem 4.1.1 is that the sample means become more and

more reliable as an estimate of m as the sample size is increased, as we would expect.

From Chebyshev’s inequality,

P jX�mXj< ksX
� �� 1� 1

k2
:

Let e¼ ks=
ffiffiffi
n

pð Þ: Then k¼ e
ffiffiffi
n

pð Þ=s: Since mX ¼ m, the above inequality can be

written as

P jX�mj< e
� �� 1� s2

ne2
:

Thus, for any e>0, the probability that the difference between X and m less than e can
be made arbitrarily close to 1 by choosing the sample size n is sufficiently large. We

illustrate this result in the following example. ▄

EXAMPLE 4.1.2
A particular brand of drink has an average of 12 ounces per can. As a result of randomness, there will

be small variations in how much liquid each bottle really contains. It has been observed that the

amount of liquid in these bottles is normally distributed with s¼0.8 ounce. A sample of 10 bottles

of this brand of soda is randomly selected from a large lot of bottles, and the amount of liquid, in

ounces, is measured in each. Find the probability that the sample mean will be within 0.5 ounce of

12 ounces.
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Solution
Let X1, X2, . . ., X10 denote the ounces of liquid measured for each of the bottles. We know that Xis are

normally distributed with mean m¼12 and variance s2¼0.64. From Theorem 4.1.1, X possesses a

normal distribution (actually, for the normality part, we use Corollary 4.2.2) with a mean 12 and
variance s2/n¼0.64/10¼0.064. We find

P jX�12j � 0:5
� �¼P �0:5� X�12

� �� 0:5
� �

¼P � 0:5

s=
ffiffiffi
n

p �X�12

s=
ffiffiffi
n

p � 0:5

s=
ffiffiffi
n

p
� �

¼P � 0:5

0:253
� Z� 0:5

0:253

� �
¼P �1:97�Z� 1:97ð Þ
¼ 0:9512 using standarad normal tableð Þ:

Hence, the chance is about 0.95% that the mean amount of drink in any 10 bottles randomly

chosen will be between 11.5 and 12.5 ounces.

4.1.1 FINITE POPULATION
Let {c1, c2, . . ., cN} be a finite population. Then the population mean

m¼ (1/N)
P

i¼1
N ci and the population variance s2¼ (1/N)

P
i¼1
N (ci�m)2. The follow-

ing theorem for the sample mean and variance is stated without proof.

Theorem 4.1.2 If X1, . . ., Xn is a sample of size n (chosen without replacement)
from a population {c1,c2, . . ., cN}, then

E X
� �¼ m,

Var X
� �¼ s2

n

N�n

N�1

� �
:

We remark here that the sample in the theorem is not a random sample and Xis are not
iid random variables. The factor (N�n)/(N�1) in the foregoing theorem is often

called the finite population correction factor. It is close to 1 unless the sample

amounts to a significant portion of the population. Note that the sampling without

replacement causes dependence among the Xis. However, if the sample size n is

small relative to the population size N, the population correction factor is approxi-

mately 1. Hence, we will not use the finite population correlation factor in the der-

ivation of sampling distribution, unless it is absolutely necessary.

EXAMPLE 4.1.3
Obtain the mean and variance of X in Example 4.1.1.

Solution
First note that for the population in Example 4.1.1, the population mean is m¼ (1/N)

P
i¼1
N ci¼3 and

the population variance is s2¼ (1/N)
P

i¼1
N (ci�m)2¼2. Applying the probability distribution of X

given in Example 4.3.1, we obtain

Continued

1814.1 Introduction



E X
� �¼ 2

1

10

� �
+
7

3

1

10

� �
+
8

3

2

10

� �
+ 3

2

10

� �
+
10

3

2

10

� �

+
11

3

1

10

� �
+ 4

1

10

� �
¼ 3,

and

Var X
� �¼E X

2
� �

�E X
2

� �
¼ 22

1

10

� �
+

7

3

� �2
1

10

� �
+

8

3

� �2
2

10

� �

+ 32
2

10

� �
+

10

3

� �2
2

10

� �
+

11

3

� �2
1

10

� �
+ 42

1

10

� �
�32

¼ 2

3
�1

2
¼ 0:3333:

This is the same as (s2/n). [(N�n)/(N�1)]. In this case we observe that the variance of X is

precisely one sixth of the original variance.

EXAMPLE 4.1.4
Let X1, . . ., Xn be a random sample from a population with mean m and variance s2. Consider the
sample variance

S2 ¼ 1

n�1

Xn
i¼1

Xi�X
� �2

:

Show that E(S2)¼s2.

Solution
It can be shown that (see Exercise 1.5.8)

1

n�1

Xn
i¼1

Xi�X
� �2 ¼

Xn

i¼1
X2
i �nX

2

n�1
:

Hence,

E S2
� �¼E

Xn

i¼1
X2
i �nX

2

n�1

 !
¼ 1

n�1

Xn
i¼1

E X2
i

� �� n

n�1
E X

2
� �

:

Using the fact that E(X2)¼Var(X)+m2 and Theorem 4.1.1, we have

E S2
� �¼ 1

n�1
n s2 + m2
� �� n

n�1

s2

n
+m2

� �

¼ n

n�1
� 1

n�1

� �
s2 +

n

n�1
� n

n�1

� �
m2

¼ s2:

This shows that the expected value of the sample variance is the same as the variance of the

population under consideration.
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EXERCISES 4.1
4.1.1. Let the population be given by the numbers {�2, �1, 0, 1, 2}. Take all

random samples of size 3.

(a) Without replacement, obtain the following in each case.

(i) The sampling distribution of the sample mean.

(ii) The sampling distribution of the sample median.

(iii) The sampling distribution of the sample standard deviation.

(iv) The mean and variance of the sample mean.

(b) How many samples of size 3 can we get, if we sample with

replacement?

4.1.2. (a) How many different samples of size n¼2 can be chosen from a finite

population of size 12 if the sampling is without replacement?

(b) What is the probability of each sample in part (a), if each sample of size

2 is equally likely?

(c) Find the value of the finite population correction factor.

4.1.3. Let the population be given by {1, 2, 3}. Let p(x)¼1/3 for x¼1, 2, 3. Take

samples of size 3 with replacement.

(a) Calculate m and s2.
(b) Obtain the sampling distribution of the sample mean.

(c) Obtain the mean and variance of the sample mean.

4.1.4. Find the value of the finite population correlation factor for (a) n¼8 and

N¼60.(b) n¼8 (c) N¼1000.(d) n¼15 and N¼60.

4.1.5. For a random sample X1, . . ., Xn, let S0ð Þ2 ¼ 1=nð Þ
Xn

i¼1
Xi�X
� �2

: Find
E[(S0)2]. Compare this with E(S2).

4.1.6. For a random sample X1, . . ., Xn with mean m and variance s2, let
Tn¼

P
i¼1
n Xi, the sample total. Show that E(Tn)¼nm and Var(Tn)¼ns2.

4.1.6. A particular brand of sugar is sold in 5-lb packages. The weight of sugar in

these packages can be assumed to be normally distributed with mean

m¼5 lb and standard deviation s¼2 lb. What is the probability that the

mean weight of sugar in 15 randomly selected packages will be within

0.2 lb of 5 lb?

4.1.8. A random sample of size 150 is taken from an infinite population having the

mean m¼15 and standard deviation s¼2.5. What is the probability that X
will be between 10.5 and 18.5?

4.1.9. The distribution of heights of all students in a large university has a normal

distribution with a mean of 66 inches and a standard deviation of 2 inches.

What is the probability that the mean height of 26 randomly selected

students from this university will be more than 70 inches?

4.1.10. An image-encoding algorithm, when used to encode images of a certain

size, uses a mean of 110 milliseconds with a standard deviation of 15

milliseconds. What is the probability that the mean time (in milliseconds)

for encoding 50 randomly selected images of this size will be between 90

and 135 milliseconds? What assumptions do we need to make?
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4.1.11. In order to evaluate a new release of a database management system, a

database administrator runs a benchmark program several times and

measures the time to completion in seconds. Assuming that the distribution

of times is normal with mean 95 seconds and with standard deviation of

10 seconds, what proportion of measurement times will fall below

85 seconds?

4.1.12. A population of disk drives manufactured by a certain company runs with

mean seek time of 10 milliseconds with standard deviation of 0.1

milliseconds. What proportion of samples of size 250 would you expect to

result in a mean less than 9 milliseconds? What assumptions do we need

to make?

4.1.13. Suppose that the national norm of a science test for 12th graders on a

particular year has a mean of 215 and a standard deviation of 35.

(a) A random sample of 55 12th graders is selected. What is the probability

that this group will average more than 230?

(b) A random sample of 200 12th graders is selected. What is the

probability that this group will average over 230?

(c) A random sample of 35 12th graders is selected. What is the probability

that this group will average over 230?

(d) How does the sample size influence the probability?

4.1.14. Scores on the Wechsler Adult Intelligence Scale for the 20 to 34 age group

are approximately normally distributed with mean equal to 110 and standard

deviation equal to 25. If we select 100 people at random, what is the

probability that this group will have an average score of 125 or above?

4.1.15. It is known that a healthy human body has an average temperature of

98.6 �F, with a standard deviation of 0.95 �F. Sixty healthy humans are

selected at random. What is the probability that their temperatures average

at least 99.1 �F?

4.2 SAMPLING DISTRIBUTIONS ASSOCIATED WITH
NORMAL POPULATIONS
The sampling distribution of a statistic will depend upon the population distribution

from which the samples are taken. In this section we discuss the sampling distribu-

tions of some statistics that are based on a random sample drawn from a normal dis-

tribution. These statistics are used in many statistical procedures that are very

important in solving real-world problems. The following result establishes the dis-

tribution of a linear combination of independent normal random variables.

Theorem 4.2.1 Let X1, . . ., Xn be independent random variables with the distri-
bution of Xi being normal with mean mi and variance si

2. Let a1, a2, . . ., an be real
constants. Then the distribution of Y¼P i¼1

n aiXi is normal with mean mY¼
P

i¼1
n aimi

and variance sY
2¼P i¼1

n ai
2si

2.
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Proof. The moment-generating function of Y is given by

MY tð Þ¼Ee

Xn

i¼1
aiXi

� �
t

¼
Y
i

Ee
aiXið Þt

by independence of Xi’s½ �

¼
Y
i

Ee
aitð ÞXi

¼
Y

i
MXi

aitð Þ using the definition of mgf½ �

¼
Y

i
e aimi t + 1=2ð Þa2i s2i t2ð Þ using mgf of a normal½ �

¼ e Siaimið Þt+ 1=2ð Þ Sia
2
i s

2
ið Þt2½ �

which is the mgf of a normal random variable with mean
P

iaimi and varianceP
iai
2si

2. ▄
In Theorem 4.2.1 let ai¼1/n, mi¼m, and s1

2¼s2, we obtain the following result,

which provides the distribution of the sample mean.

Corollary 4.2.2 Let X1, . . ., Xn be a random sample of size n from a normal pop-
ulation with mean m and variance s2. Then

X¼ 1=nð Þ
Xn

i¼1
Xi

is normally distributed with mean mX ¼ m and variance s2
X
¼ s2=n:

Recall that we have used the notation X�N(m, s2) to mean that the random var-

iable X is normally distributed with mean m and variance s2. From Corollary 4.2.2,

X�N m,s2=nð Þ and hence by the z-transformation we obtain the standard normal

random variable, Z¼ X�m
� �

= s=
ffiffiffi
n

pð Þ�N 0, 1ð Þ:

EXAMPLE 4.2.1
A company that manufactures cars claims that the gas mileage for its new line of hybrid cars, on the

average, is 60 miles per gallon with a standard deviation of 4 miles per gallon. A random sample of

16 cars yielded a mean of 57 miles per gallon. If the company’s claim is correct, what is the prob-

ability that the sample mean is less than or equal to 57 miles per gallon? Comment on the company’s

claim about the mean gas mileage per gallon of its cars. What assumptions did you make?

Solution
Let X represent the gas mileage for the new car (in miles per gallon). If the company’s claim is

true, then from Corollary 4.2.2, X is normally distributed with mean m¼60 and variance

s2/n¼16/16¼1. Hence,

Continued
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P X� 57
� �¼P

X�60

1
� 57�60

1

� �

¼P Z��3ð Þ	 1�0:999

¼0:001:

Therefore, if the company’s claim is correct, it is very unlikely that the mean value of the random
sample of 16 cars will be 57 miles per gallon. Because the mean is indeed 57 miles per gallon,

we conclude that the company’s claim is very likely not true. Here we have assumed that the

sample of 16 measurements comes from a normal population, so that we could apply the results

of Corollary 4.2.2.

Now we introduce some distributions that can be derived from a normal distribution.

These distributions play a very important role in inferential problems.

4.2.1 CHI-SQUARE DISTRIBUTION
A chi-square distribution is used in many inferential problems, for example, in infer-

ential problems dealing with the variance. Recall that the chi-square distribution is a

special case of a gamma distribution with a¼n/2 and b¼2. If n is a positive integer,
then the parameter n is called the degrees of freedom. However, if n is not an integer,
but b¼2, we still refer to this distribution as a chi-square. The mgf of a w2—random

variable isM(t)¼ (1–2 t)�n/2. The mean and variance of a chi-square distribution are

m¼n and s2¼2n, respectively. That is, the mean of a w2(n) random variable is equal

to its degree of freedom and the variance is twice the degree of freedom. We now

give some useful results for w2—random variables.

Theorem 4.2.2 Let X1, . . ., Xk be independent w
2—random variables with n1, . . .,

nk degrees of freedom, respectively. Then the sum V¼P i¼1
k Xi is chi-square distrib-

uted with n1+n2+ . . .+nk degrees of freedom.
Proof. The mgf of V is

MV tð Þ¼
Yk
i¼1

1�2tð Þ�ni=2 ¼ 1�2tð Þ�
Sk
i¼1ni

� �
2 :

This implies that V�w2 Sk
i¼1ni

� �
. ▄

Our next result states that the difference of two chi-square random variables is a

chi-square random variable, given by the following theorem. The proof is left as an

exercise.

Theorem 4.2.3 Let X1 and X2 be independent random variables. Suppose that X1

is w2 with n1 degrees of freedom, whereas Y¼X1+X2 is chi-square with n degrees of
freedom, where n>n1. Then X2¼Y�X1 is a chi-square random variable with n�n1
degrees of freedom.

The following result shows that we can generate a chi-square random variable

from a gamma random variable.
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Theorem 4.2.4 If a random variable X has a gamma distribution with parameters
a and b, then

Y¼ 2X

b
� w2 2að Þ:

Proof. Recall that the mgf of the gamma random variable X is (1�bt)�a.

MY tð Þ¼M2X
b
tð Þ¼E e

2X
b t

� �
¼E eX

2
btð Þ� �

¼MX
2

b
t

� �

¼ 1�2tð Þ�a ¼ 1�2tð Þ�2a2 :
Hence, Y�w2(2a). ▄

The following result states that by squaring a standard normal random variable,

we can generate a chi-square random variable, with one degree of freedom.

Theorem 4.2.5 If X is a standard normal random variable, then X2 is chi-square
random variable with 1 d.f.

Proof. Because X�N(0, 1) the moment-generating function of X2 is

MX2 tð Þ¼
ð1
�1

etx
2 1ffiffiffiffiffiffi

2p
p e�x2=2dx¼ 1�2tð Þ�1=2:

This implies that X2�w2(1). Figure 4.1 gives the probability densities of the random
variables X and X2. ▄

4

Densities of Standard normal r.v. and its square

3.5

3

2.5

2

1.5

1

0.5

0
�3 �2 �1 0 1 2 3

pdf of X 2

pdf of X

FIGURE 4.1

Pdf of Standard Normal r.v. and the Pdf of its Square.
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The following result is a direct consequence of Theorems 4.2.2 and 4.2.5. This

result illustrates how to obtain a random sample from chi-square distribution if

we have a random sample of n measurements from a normal population.

Theorem 4.2.6 Let the random sample X1, . . ., Xn be from a N(m,s2) distributed.
Then Zi¼ (Xi�m)/s, i¼1, . . ., n are independent standard normal random variables
and

Xn
i¼1

Z2
i ¼
Xn
i¼1

Xi�m
s

� �2

has a w2-distribution with n degrees of freedom. In particular, if X1, . . ., Xn are inde-
pendent standard normal random variables, then Y2¼P i¼1

n Xi
2 is chi-square distrib-

uted with n degrees of freedom.
If X�w2(n), then from the chi-square table, we can compute the values of wa

2(n)
such that

P X> w2a nð Þ� �¼ a,

as shown by Figure 4.2.

For example, if X�w2(15), to find w0.95
2 (15) look in the chi-square table with the

row labeled 15 d.f. and the column headed w0.950
2 and obtain the value as 7.26094.

Thus, with 15 degrees of freedom, P(X>7.26094)¼0.95. Also, if X is a chi-square

random variable with 11 degrees of freedom, from the chi-square table we have

w0.05
2 (11)¼19.675. Therefore, P(X>19.675)¼0.05.

EXAMPLE 4.2.2
Let the random variables X1,X2, . . ., X5 be from an N (5,1) distribution. Find a number a such that

P
X5
i¼1

Xi�5ð Þ2 � a

 !
¼ 0:90:

FIGURE 4.2

Chi-square Probability Density.
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Solution
By Theorem 4.2.6,

X5

i¼1
Z2
i ¼
X5

i¼1

Xi�5

1

� �2
¼
X5

i¼1
Xi�5ð Þ2 has a chi-square distribution with

5 degrees of freedom. Because the upper tail area is 0.10, looking at the chi-square table with 5 d.f.

and the column corresponding to w0.10
2 , we obtain a¼9.23635. Thus,

P
X5
i¼1

Xi�5ð Þ2 � 9:23635

 !
¼ 0:90:

EXAMPLE 4.2.3
Suppose that X is w2—random variable with 20 degrees of freedom. Use the chi-square table to

obtain the following:

(a) Find x0 such that P(X>x0)¼0.95.

(b) Find P(X�12.443).

Solution
(a) For 20 degrees of freedom, using the chi-square table, we have

P X > 10:851ð Þ ¼ 0:95:

Hence, x0¼10.851.

(b) From the chi-square table,

P X� 12:443ð Þ ¼ 0:10:

The following result gives the probability distribution for a function of the sample variance S2.

Theorem 4.2.7 If X1, . . ., Xn is a random sample from a normal population with
the mean m and variance s2, then

(a)
Xn

i¼1
Xi�X
� �2
s2

¼ n�1ð ÞS2
s2

:

has a chi-square distribution with (n�1) degrees of freedom.
(b) Xand S2 are independent.

Proof. We will only prove part (a). For part (b), we will give some comments on

the proof.

(a) We know from Theorem 4.2.6 that (1/s2)
P

i¼1
n (Xi�m)2 has a chi-square

distribution with n degrees of freedom. Thus,
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1

s2
Xn
i¼1

Xi�mð Þ2 ¼ 1

s2
Xn
i¼1

Xi�X +X�m
� �2

¼ 1

s2
Xn
i¼1

Xi�X
� �2

+
Xn
i¼1

X�m
� �2" #

Since2
Xn
i¼1

Xi�X
� �

X�m
� �¼ 0

 !

¼ n�1ð ÞS2
s2

+
X�m
s=

ffiffiffi
n

p
� �2

:

The left-hand side of this equation has a chi-square distribution with n degrees
of freedom. Also, since X�m

� �
= sj ffiffiffinpð Þ�N 0, 1ð Þ by Theorem 4.2.5 we have

X�m
� �

= s=
ffiffiffi
n

pð Þ	 
2 � w2 1ð Þ: Now from Theorem 4.2.3, (n�1) S2/s2�w2 (n�1).

(b) Wewill accept the result of part (b) without proof here. A rigorous proof depends

on geometric properties of the multivariate normal distribution, which is beyond

the scope of this book. A proof based on moment-generating functions is

relatively straightforward, where essentially we can first show that the random

variable X and the vector of random variables X1�X, . . . , Xn� X
� �

are

independent. Because S2 is a function of the vector X1�X, . . . , Xn� X
� �

, it is

then independent of X. ▄

EXAMPLE 4.2.4
Let X1, X2, . . ., X10 be a random sample from a normal distribution with s2¼0.8. Find two positive

numbers a and b such that the sample variance S2 satisfies

P a� S2 � b
� �¼ 0:90:

Solution
Because n�1ð ÞS2

s2 � w2 n�1ð Þ, we have

P a� S2 � b
� �¼P

n�1ð Þa
s2

� n�1ð ÞS2
s2

� n�1ð Þb
s2

� �
:

The desired values can be found by setting the upper tail area and lower tail area each equal to

0.05. Using the chi-square table with n–1¼9 degrees of freedom, we have

n�1ð Þb
s2

¼ 9b

0:8
¼ 16:919¼ w20:05,9,

which implies b¼ ((16.919)� (0.8)/9)¼1.50. Similarly,

n�1ð Þa
s2

¼ 9a

0:8
¼ 3:325¼ w20:95,9:

So we have a¼ ((3.325)� (0.8)/9)¼0.295.

Hence,

P 0:295� S2 � 1:50
� �¼ 0:90:

It is important to note that this is not the only interval that would satisfy

P a� S2 � b
� �¼ 0:90

but it is a convenient one.

190 CHAPTER 4 Sampling Distributions



EXAMPLE 4.2.5
A fruit-drink company wants to know the variation, as measured by the standard deviation, of the

amount of juice in 16-ounce cans. From past experience, it is known that s2¼2. The company stat-

istician decides to take a sample of 25 cans from the production line and compute the sample var-

iance. Assuming that the sample values may be viewed as a random sample from a normal

population, find a value of b such that P (S2>b)¼0.05.

Solution
To find the necessary probability, use the fact that (n�1) S2/s2�w2 (n�1), with n¼25,

0:05¼P S2 > b
� �¼P

24S2

2
>
24b

2

� �

¼P w2 > c
� �

:

From the chi-square table we obtain, c¼36.4151. Hence, b¼ 2
24

c¼ 2
24

36:4151ð Þ¼ 3:03 and

P S2 > 3:03
� �¼ 0:05:

SUMMARY OF CHI-SQUARE DISTRIBUTION
Let X1, . . ., Xn be iid N(m, s2) random variables. Then

1. X has N (m, s2/n) distribution,
2. (n�1)S2/s2 has a chi-square distribution with (n�1) degrees of freedom, and

3. X and S2 are independent.
4. A w2—random variable has a mean equal to its degrees of freedom and a variance equal to twice

its degrees of freedom.

4.2.2 STUDENT t-DISTRIBUTION
Let the random variables X1, . . ., Xn follow a normal distribution with mean m and

variance s2. If s is known, then we know that
ffiffiffi
n

p
X�m
� �

=s
� �

is N 0, 1ð Þ: However,
if s is not known (as is usually the case), then it is routinely replaced by the sample

standard deviation s. If the sample size is large, one could suppose that s	s and apply

the Central Limit Theorem and obtain that
ffiffiffi
n

p
X�m
� �

=S
� �

is approximately anN(0,1).
However, if the random sample is small, then the distribution of

ffiffiffi
n

p
X�m
� �

=S
� �

is

given by the so-called Student t-distribution (or simply t-distribution). This was

originally developed by W.S. Gosset in 1908. Because his employers, the Guinness

brewery, would not permit him to publish this important work in his own name,

he used the pseudonym “Student.” Thus, the distribution is known as the Student

t-distribution.
Definition 4.2.2 If Y and Z are independent random variables, Y has a chi-square

distribution with n degrees of freedom, and Z�N(0, 1), then

T¼ Zffiffiffiffiffiffiffiffi
Y=n

p
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is said to have a (Student) t-distribution with n degrees of freedom. We denote this
by T�Tn.

The probability density of the random variable T with n degrees of freedom is

given by

f tð Þ¼
G n+ 1

2

� �
ffiffiffiffiffiffi
pn

p
G

n

2

� � 1 +
t2

n

� ��n+ 1
2

, �1< t<1:

Figure 4.3 illustrates the behavior of the t-distributions for n¼2, 10, 20, and 30. It is

clear from Figure 4.3 that as n becomes larger and larger, it is almost impossible to

distinguish the graphs. It can be shown that the t-distribution tends to a standard nor-
mal distribution as the degrees of freedom (equivalently, the sample size n) tend to

infinity. In fact, the standard normal distribution provides a good approximation to
the t-distribution for sample sizes of 30 or more. We will use this approximation in

the statistical inference problems for n�30.

The t-density is symmetric about zero, and then we have E(T)¼0. If n>2, it can

be shown that Var (T)¼n/(n�2). The value of ta,n is such that P (t> ta,n)¼a
(the shaded area in Figure 4.4) is obtained from the t-table. For example, if a random

variable X has a t-distribution with 9 degrees of freedom and a¼0.01, then

t0.01,9¼2.821.

If we have a random sample from a normal population, the following result

involving a t-distribution is useful in applications.

0.4

T density for n=2,
n=10, n=20, n=30

n=2

n=10

n=20

n=30

0.35

0.3

0.25

0.2

0.15

0.1

0.05

–4 –3 –2 –1 0 1 2 3 4

FIGURE 4.3

The Student t-Distribution.

192 CHAPTER 4 Sampling Distributions



Theorem 4.2.8 If X and S2 are the mean and the variance of a random sample of
size n from a normal population with the mean m and variance s2, then

T¼ X�m
S=

ffiffiffi
n

p

has a t-distribution with (n�1) degrees of freedom.
Proof. By Corollary 4.2.2,

Z¼ X�m
s=

ffiffiffi
n

p �N 0, 1ð Þ:

By Theorem 4.2.7, we have

Y¼ n�1ð ÞS2
s2

¼ 1

s2
Xn
i¼1

Xi�X
� �2 � w2 n�1ð Þ:

Hence,

T¼
X�m
s=
ffiffi
n

pð Þffiffiffiffiffiffiffiffiffiffi
n�1ð ÞS2
s2 n�1ð Þ

q � Zffiffiffiffiffiffiffiffiffiffi
w2 n�1ð Þ
n�1

p :

Also, X and S2 are independent. Thus, Y and Z are independent, and by

Definition 4.2.2, T follows a t-distribution with (n�1) degrees of freedom. ▄
How can we distinguish between given degrees of freedom and the degrees of

freedom from a sample? For the t-distribution, if n is given as the degrees of freedom,

we will just use n. However, if a random sample of size n is given, then the corre-

sponding degrees of freedom will be (n–1), as given in Theorem 4.2.8.

0.4

f (t)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

–4 –3 –2 –1 0 t1 2 3 4

FIGURE 4.4

Probability of t-distribution.
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The assumption that the sample comes from a normal population is not that oner-

ous. In practice, it is necessary to check that the sampled population is approximately

bell shaped and not too much skewed. Construction of the normal-scores plot or his-

togram is a way to check for approximate normality. See Project 4C.

EXAMPLE 4.2.6
A manufacturer of fuses claims that with 20% overload, the fuses will blow in less than 10 minutes

on the average. To test this claim, a random sample of 20 of these fuses was subjected to a 20%

overload, and the times it took them to blow had the mean of 10.4 minutes and a sample standard

deviation of 1.6 minutes. It can be assumed that the data constitute a random sample from a normal

population. Do they tend to support or refute the manufacturer’s claim?

Solution
Given y¼ 10:4,s¼ 1:6,n¼ 20, and m¼10. Hence

t¼ y�m
s=

ffiffiffi
n

p ¼ 10:4�10

1:6=
ffiffiffiffiffi
20

p ¼ 1:118:

The degree of freedom is n–1¼19. From the t-table, the probability that t exceeds 1.328 is 0.10,
and because the observed value of t¼1.118 is less than t0.10(19)¼1.328 and 0.10 is a pretty large

probability, we conclude that the data tend to agree with the manufacturer’s claim.

We will study the problems of the foregoing type in Chapter 6, where we will be

learning about hypothesis testing. Prior to Student’s work on the t-distribution, a very
large number of observations were necessary for design and analysis of experiments.

Today, the use of the t-distribution often makes it possible to draw reliable conclu-

sions from samples as small as 15 to 30 experimental units, provided that the samples

are representative of their populations and that normality could reasonably be

assumed or justified for the population.

EXAMPLE 4.2.7
The human gestation period—the period of time between conception and labor—is approximately

40 weeks (280 days), measured from the first day of the mother’s last menstrual period. For a new-

born full-term infant, the length appropriate for gestational age is assumed to be normally distributed

with m¼50 centimeters and s¼1.25 centimeters. Compute the probability that a random sample of

20 infants born at full term results in a sample mean greater than 52.5 centimeters.

Solution
Let X be length (measured in centimeters) of a newborn full-term infant. Then X�N 50,1:56=20ð Þ:
Hence

P X> 52:5
� �¼P t>

52:5�50

1:25=
ffiffiffiffiffi
20

p ¼ 8:94

� �
	 0:

Thus, the probability of such an occurrence is negligible.

In the previous example, it should be noted that P X> 52:5
� �	 0 does not imply

that the probability of observing a newborn full-term infant with length greater than
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52.5 centimeters is zero. In fact, with 19 degrees of freedom, P(X>52.5)¼
P(t>2)	0.025.

4.2.3 F-DISTRIBUTION
The F-distribution was developed by Fisher to study the behavior of two variances

from random samples taken from two independent normal populations. In applied

problems we may be interested in knowing whether the population variances are

equal or not, based on the response of the random samples. Knowing the answer

to such a question is also important in selecting the appropriate statistical methods

to study their true means.

Definition 4.2.3 Let U and V be chi-square random variables with n1 and n2
degrees of freedom, respectively. Then if U and V are independent,

F¼U=n1
V=n2

is said to have an F-distribution with n1 numerator degrees of freedom and n2
denominator degrees of freedom. We denote this by F�F (n1, n2).

The pdf for a random variable X�F (n1, n2) is given by

f xð Þ¼
G n1 + n2ð Þ=2ð Þ
G n1=2ð ÞG n2=2ð Þ

n1
n2

� �n1=2

x
n1
2
�1

1 +
n1
n2

x

� �� n1 + n2ð Þ=2
, x> 0

8>><
>>: 0, elsewhere:

A graph of f(x) for various values of n is given in Figure 4.5.

To find Fa (n1,n2) such that P(F>Fa (n1, n2))¼a (shaded area in Figure 4.6), we
use the F-table. For example, if F has 3 numerator and 6 denominator degrees of

freedom, then F0.01 (3, 6)¼9.78.

If we know Fa (n1, n2), it is possible to find F1�a (n2, n1) by using the identity

F1�a n2, n1ð Þ¼ 1=Fa n1, n2ð Þ:

Using this identity we can obtain F0.99 (6, 3)¼1/F0.01 (3, 6)¼1/9.78¼0.10225.

When we need to compare the variances of two normal populations, we will use

the following result.

Theorem 4.2.9 Let two independent random samples of size n1 and n2 be drawn
from two normal populations with variances s1

2, s2
2, respectively. If the variances of

the random samples are given by S1
2, S2

2, respectively, then the statistic

F¼ S21=s
2
1

S22=s
2
2

¼ s22S
2
1

s21S
2
2

has the F-distribution with (n1�1) numerator and (n2�1) denominator degrees of
freedom.
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F (3, 2)

F−density with n1=3, n2=2 and n1=12, n2=6
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FIGURE 4.5

Pdfs of F-Distribution.
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F-Distribution Probability.
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Proof. From Theorem 4.2.8, we know that

U¼ n1�1ð ÞS21
s21

� w2 n1�1ð Þ

and

V¼ n2�1ð ÞS22
s22

� w2 n2�1ð Þ:

Also, U and V are independent. From Definition 4.2.3, F�F(n1�1, n2�1). ▄

Corollary 4.2.11 If s1
2¼s2

2, then

F¼ S21
S22

�F n1�1,n2�1ð Þ:

When s1
2¼s2

2, we refer to them as two populations that are homogeneous with

respect to their variances.

EXAMPLE 4.2.8
Let S1

2 denote the sample variance for a random sample of size 10 from Population I and let S2
2

denote the sample variance for a random sample of size 8 from Population II. The variance of

Population I is assumed to be three times the variance of Population II. Find two numbers a and

b such that P(a�S1
2/S2

2�b)¼0.90 assuming S1
2 to be independent of S2

2.

Solution
From the problem, we can assume that s1

2¼3s2
2 with n1¼10 and n2¼8. Thus, we can write

S21=s
2
1

S22=s
2
2

¼ S21=3s
2
2

S22=s
2
2

¼ S21
3S22

,

this has F-distribution with n1�1¼9 numerator and n2–1¼7 denominator degrees of freedom.
Using the F-table, F0.05 (9, 7)¼3.68. Now to find F0..95 such that

P
S21
3S22

<F0:95

� �
¼ 0:05:

We proceed as follows:

P
S21
3S22

<F0:95

� �
¼ P

3S22
S21

>
1

F0:95

� �
¼ 0:05:

Indexing v1¼7 and v2¼9 in the F-table, we have 1/F0.95(7, 9)¼F0.05(9,7)¼3.68 or

F0.95¼1/3.68¼0.2717. Hence, the entire probability statement is

P 0:2717� S21
3S22

� 3:68

� �
¼ P 0:815� S21

S22
� 11:04

� �
¼ 0:90:

Thus, a¼0.815 and b¼11.04.
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EXERCISES 4.2
4.2.1. Let Y have a chi-square distribution with 15 degrees of freedom. Find the

following probabilities.

(a) P(Y�y0)¼0.025

(b) P (a <Y<b)¼0.95

(c) P(Y�22.307).

4.2.2. Let Y have a chi-square distribution with 7 degrees of freedom. Find the

following probabilities.

(a) P(Y>y0)¼0.025

(b) P (a<Y<b)¼0.90

(c) P(Y>1.239).

4.2.3. The time to failure T of a microwave oven has an exponential distribution

with pdf

f tð Þ¼ 1

2
e�t=2, t> 0:

If three such microwave ovens are chosen and t is the mean of their failure

times, find the following:

(a) Distribution of T .

(b) P T> 2
� �

:

4.2.4. Let X1,X2, . . ., X10 be a random sample from a standard normal distribution.

Find the numbers a and b such that

P a�
X10
i¼1

X2
i � b

 !
¼ 0:95:

4.2.5. Let X1,X2, . . ., X5 be a random sample from the normal distribution with

mean 55 and variance 223. Let

Y¼
X5
i¼1

Xi�55ð Þ2=223

and

Z¼
X5
i¼1

Xi�X
� �2

=223:

(a) Find the distribution of the random variables Y and Z.
(b) Are Y and Z independent?

(c) Find (i) P(0.62�Y�0.76), and (ii) P(0.77�Z�0.95).

4.2.6. Let X and Y be independent chi-square random variables with 14 and 5

degrees of freedom, respectively. Find

(a) P(jX�Yj�11.15),

(b) P(jX�Yj�3.8).
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4.2.7. A particular type of vacuum-packed coffee packet contains an average of

16 ounces. It has been observed that the number of ounces of coffee in

these packets is normally distributed with s¼1.41 ounce. A random sample

of 15 of these coffee packets is selected, and the observations are used

to calculate s. Find the numbers a and b such that P(a�S2�b)¼0.90.

4.2.8. An optical firm buys glass slabs to be ground into lenses, and it is known

that the variance of the refractive index of the glass slabs is to be no more

than 1.04�10�3. The firm rejects a shipment of glass slabs if the sample

variance of 16 pieces selected at random exceeds 1.15�10�3. Assuming

that the sample values may be looked on as a random sample from a normal

population, what is the probability that a shipment will be rejected even

though s2¼1.04�10�3?

4.2.9. Assume that T has a t-distribution with 8 degrees of freedom. Find the

following probabilities.

(a) P(T�2.896)

(b) P(T��1.860)

(c) The value of a such that P(�a<T<a)¼0.99

4.2.10. Assume that T has a t-distribution with 15 degrees of freedom. Find the

following probabilities.

(a) P(T�1.341)

(b) P(T��2.131)

(c) The value of a such that P(�a<T<a)¼0.95

4.2.11. A psychologist claims that the mean age at which female children start

walking is 11.4 months. If 20 randomly selected female children are found

to have started walking at a mean age of 11.5 months with standard

deviation of 2 months, would you agree with the psychologist’s claim?

Assume that the sample came from a normal population.

4.2.12. Let U1 and U2 be independent random variables. Suppose that U1 is w
2 with

v1 degrees of freedom while U¼U1+U2 is chi-square with v degrees of

freedom, where v>v1. Then prove that U2 is chi-square random variable

with v�v1 degrees of freedom.

4.2.13. Show that if X�w2 (v), then EX¼v and Var (X)¼2v.
4.2.14. Let X1, . . ., Xn be a random sample with Xi�w2 (1), for i¼1, . . ., n. Show

that the distribution of

Z¼ X�1ffiffiffiffiffiffiffiffi
2=n

p
as n!1 is standard normal.

4.2.15. Find the variance of S2, assuming the sample X1, X2, . . ., Xn is fromN(m, s2).
4.2.16. Let X1,X2, . . ., Xn be a random sample from an exponential distribution with

parameter y. Show that the random variable 2y�1(
P

i¼1
n Xi)�w2(2n).

4.2.17. Let X and Y be independent random variables from an exponential

distribution with common parameter y¼1. Show that X/Y has an

F-distribution. What is the number for degrees of freedom?
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4.2.18. Prove that if X has a t-distribution with n degrees of freedom, then

X2�F (1, n).
4.2.19. Let X be F distributed with 9 numerator and 12 denominator degrees of

freedom. Find

(a) P(X�3.87),

(b) P(X�0.196),

(c) The value of a and b such that P (a<Y<b)¼0.95.

4.2.20. Prove that if X�F(n1,n2), then 1/X�F(n2,n1).
4.2.21. Find the mean and variance of F (n1, n2) random variable.

4.2.22. Let X11, X12, . . . , X1n1 be a random sample with sample mean X1 from a

normal population with mean m1 and variance s1
2, and let

X21, X22, . . . , X2n2 be a random sample with sample mean X2 from a

normal population with mean m2 and variance s2
2. Assume the two samples

are independent. Show that the sampling distribution of X1�X2

� �
is normal

with mean m1–m2 and variance s1
2/n1+s2

2/n2.
4.2.23. LetX1,X2, . . .,Xn1 be a random sample from a normal population with mean

m1 and variance s2, and Y1, Y2, . . ., Yn2 be a random sample from an

independent normal population with mean m2 and variance s2. Show that

T¼ X�Y
� �� m1�m2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1�1ð ÞS21 + n2�1ð ÞS22
n1 + n2�2

s
1

n1
+

1

n2

� �� T n1 + n2�2ð Þ

4.2.24. Show that a t-distribution tends to a standard normal distribution as the

degrees of freedom tend to infinity.

4.2.25. Show that the mgf of a w2 random variable is M(t)¼ (1�2t)–v/2. Using the

mgf, show that the mean and variance of a chi-square distribution are v and
2v, respectively.

4.2.26. Let the random variables X1, X2, . . ., X10 be normally distributed with mean

8 and variance 4. Find a number a such that

P
X10
i¼1

Xi�8

2

� �2

� a

 !
¼ 0:95

4.2.27. Let X2�F(1,n). Show that X� t(n).

4.3 ORDER STATISTICS
In practice, the random variables of interest may depend on the relative magnitudes

of the observed variable. For example, we may be interested in the maximum mile-

age per gallon of a particular class of cars. In this section, we study the behavior of

ordering a random sample from a continuous distribution.
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Definition 4.3.1 Let X1, . . ., Xn be a random sample from a continuous distribu-
tion with pdf f(x). Let Y1, . . ., Yn be a permutation of X1, . . ., Xn such that

Y1 � Y2 � 


 � Yn:

Then the ordered random variables Y1, . . ., Yn are called the order statistics of the
random sample X1, . . ., Xn. Here Yk is called the kth order statistic. Because of con-
tinuity, the equality sign could be ignored.

Remark. Although Xi
0s are iid random variables, the random variables Yi

0s are
neither independent nor identically distributed.

Thus, the minimum of Xi
0s is

Y1 ¼ min X1, : : : , Xnð Þ
and the maximum is

Yn ¼max X1, : : : , Xnð Þ:
The order statistics of the sample X1,X2, . . ., Xn can also be denoted by X(1), X(2), . . .,
X(n) where

X 1ð Þ < X 2ð Þ < 
 
 
< X nð Þ:

Here X(k) is the kth order statistic and is equal to Yk in Definition 4.3.1. One of the

most commonly used order statistics is the median, the value in the middle position in

the sorted order of the values.

EXAMPLE 4.3.1
(i) The range R¼Yn�Y1 is a function of order statistics.

(ii) The sample median M equals Ym+1 if n¼2m+1.

Hence, the sample median M is an order statistic, when n is odd. If n is even then the sample

median can be obtained using the order statistic, M¼ (1/2) [Yn/2+Y(n/2)+1].

The following result is useful in determining the distribution of functions of more

than one order statistics.

Theorem 4.3.1 Let X1, . . ., Xn be a random sample from a population with pdf
f(x). Then the joint pdf of order statistics Y1, . . ., Yn is

f y1, . . . , ynð Þ¼ n!f y1ð Þf y2ð Þ . . . f ynð Þ, for y1 < 
 
 
< yn

0, otherwise:

(

The pdf of the kth order statistic is given by the following theorem.

Theorem 4.3.2 The pdf of Yk is

f k yð Þ¼ f Yk
yð Þ¼ n!

k�1ð Þ! n�kð Þ! f yð Þ F yð Þð Þk�1
1�F yð Þð Þn�k

,

for –1<y<1, where F(y)¼P(Xi�y) is the cdf of Xi.
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In particular, the pdf of Y1 is f1 (y)¼nf (y) [1�F(y)]n�1 and the pdf of Yn is fn(y)¼
nf(y)[F(y)]n�1. In the following example, we will derive pdf for Yn.

EXAMPLE 4.3.2
Let X1, . . ., Xn be a random sample from U[0,1]. Find the pdf of the kth order statistic Yk.

Solution
Since the pdf of Xi is f(x)¼1,0�x�1, the cdf is F(x)¼x, 0�x�1. Using Theorem 4.3.2, the pdf of
the kth order statistic Yk reduces to

f k yð Þ¼ n!

k�1ð Þ! n�kð Þ!y
k�1 1�yð Þn�k

, 0� y� 1

which is a beta distribution with a¼k and b¼n�k+1.

The next example gives the so-called extreme (i.e. largest) value distribution,

which is the distribution of the order statistic Yn.

EXAMPLE 4.3.3
Find the distribution of the nth order statistic Yn of the sample X1, . . ., Xn from a population with

pdf f(x).

Solution
Let the cdf of Yn be denoted by Fn(y). Then

Fn yð Þ¼P Yn � yð Þ¼P max
1�i�n

Xi � y

� �
¼P X1 � y, . . . ,Xn � yð Þ¼ F yð Þ½ �n by independenceð Þ:

Hence, the pdf fn (y) of Yn is

f n yð Þ¼ d

dy
F yð Þ½ �n ¼n F yð Þ½ �n�1 d

dy
F yð Þ

¼n F yð Þ½ �n�1f yð Þ:
In particular, if X1, . . ., Xn is a random sample from U[0, 1], then the cumulative extreme

value distribution is given by

Fn yð Þ¼
0, y< 0

yn, 0� y� 1

1, y> 1:

8><
>:

EXAMPLE 4.3.4
A string of 10 light bulbs is connected in series, which means that the entire string will not light up if

any one of the light bulbs fails. Assume that the lifetimes of the bulbs, t1, . . ., t10, are independent
random variables that are exponentially distributed with mean 2. Find the distribution of the life

length of this string of light bulbs.
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Solution
Note that the pdf of ti is f(t)¼2e�2t, 0< t<1, and the cumulative distribution of ti is
Fti(t)¼1�e�2t. Let T represent the lifetime of this string of light bulbs. Then,

T ¼ min t1, : : : , t10ð Þ:
Thus,

FT tð Þ ¼ 1� 1�Fti tð Þ½ �10:
Hence, the density of T is obtained by differentiating FT(t) with respect to t, that is,

f T tð Þ¼ 10f t i tð Þ 1�Ft i tð Þ
	 
9

¼ 2 10ð Þe�2t e�2tð Þ9 ¼ 20e�20t, 0< t<1
0, otherwise:

�

The joint pdf of the order statistics is given by the following result.

Theorem 4.3.3 Let X1, . . .,Xn be a random sample with continuous probability den-
sity function f(x) and a distribution function F(x). Let Y1, . . ., Yn be the order statistics.
Then for any 1�i<k�n and –1<x�y<1, the joint pdf of Yi and Yk is given by

f Yi ,Yk
x, yð Þ¼ n!

i�1ð Þ! k� i�1ð Þ! n�kð Þ! F xð Þ½ �i�1

� F yð Þ�F xð Þ½ �k�i�1
1�F yð Þ½ �n�kf xð Þf yð Þ

EXAMPLE 4.3.5
Let X1, . . ., Xn be a random sample from U[0,1]. Find the joint pdf of Y2 and Y5.

Solution
Taking i¼2 and k¼5 in Theorem 4.3.3, we get the joint pdf of Y2 and Y5 as

f Y2,Y5
x, yð Þ¼ n!

2�1ð Þ! 5�2�1ð Þ! n�5ð Þ! F xð Þ½ �2�1

F yð Þ�F xð Þ½ �5�2�1� 1�F yð Þ½ �n�5f xð Þf yð Þ

¼
n!

2 n�5ð Þ!x y�xð Þ2 1�yð Þn�5 0< x� y< 1

0, otherwise:

8><
>:

EXERCISES 4.3
4.3.1. The lifetime X of a certain electrical fuse has the following probability

density function

f xð Þ¼
1
10
e�x=10, x> 0

0, otherwise:

(

Suppose two such fuses are in series and operate independently in a

system. Find the pdf of the lifetime Y of the system. (The system will work

only if both the fuses operate.)
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4.3.2. Suppose that time between two telephone calls at an office, in minutes, is

uniformly distributed on the interval [0, 20]. If there were 15 calls, (i)what is

the probability that the longest time interval between calls is less than

15 minutes? (ii)What is the probability that the shortest time interval

between calls is greater than 5 minutes?

4.3.3. Let X1, X2, X3 be three random variables of discrete type. Let X1, X2 take

values 0, 1, and X3 take values 1, 2, 3. What are the values of Y1, Y2, Y3?
4.3.4. Let X1, . . ., X10 be a random sample from U[0, 1]. Find the joint density of

Y2 and Y7, where Yi, i¼ 1, 2, . . ., 10 are order statistics of X1, . . ., X10.

4.3.5. Let X1, . . ., Xn be a random sample from exponential distribution with a

mean of y. Show that Y1¼min (X1, X2, . . ., Xn) has an exponential

distribution with mean y/n. Also, find the pdf of Yn¼max (X1,X2, . . ., Xn).

4.3.6. A string of 10 light bulbs is connected in parallel, which means that the

entire string will fail to light up only if all 10 of the light bulbs fail. Assume

that the lifetimes of the bulbs, t1, . . ., t10, are independent random variables

that are exponentially distributed with mean y. Find the distribution of the

lifetimes of this string of light bulbs.

4.3.7. Let X1, . . ., Xn be a random sample from the uniform distribution f(x)¼1/2,

0�x�2. Find the probability density function for the range R¼ (X(n)�X(1)).

4.3.8. Given a sample of 25 observations from a distribution with pdf

f xð Þ¼ e�x, x> 0

0, otherwise

(

let M be the sample median. Compute P(M�b).
[Hint: Note that M is the 13th order statistic.]

4.3.9. Let X1, . . ., Xn be a random sample from a normal population with mean 10

and variance 4.What is the probability that the largest observation is greater

than 10?

4.3.10. Let X1, . . ., Xn be a random sample from an exponential population with

parameter y. Let Y1, . . ., Yn be the ordered random variables.

(a) Show that the sampling distributions of Y1 and Yn are given by

f 1 y1ð Þ¼
n

y
e�ny1=y, if y1 > 0

0, otherwise,

8<
:

and

f n ynð Þ¼
n

y
e�yn=y 1�e�yn=y

h in�1

, if yn > 0

0, otherwise:

8<
:

(b) Let n¼2l+1. Show that the sampling distribution of the median, M, is

given by

f mð Þ¼
n!

l!ð Þ2ye
�m l + 1ð Þ=y 1�e�m=y

h il
, for m> 0

0, otherwise:

8><
>:
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4.3.11. Let X1, . . ., Xn be a random sample from a beta distribution with a¼2 and

b¼3. Find the joint pdf of Y1 and Yn.
4.3.12. Let X1, . . ., Xn be a random sample from a geometric distribution with pmf

pi ¼ P X ¼ ið Þ ¼ pqi�1, i ¼ 1, 2, : : : , 0 < p < 1, q ¼ 1�p:

Show that

P Yk ¼ yð Þ¼
Xn
i¼k

n
i

� �
q y�1ð Þ n�ið Þ qn�i 1�qy½ �i� 1�qy�1

	 
in o
, y¼ 1,2, . . . :

4.4 LARGE SAMPLE APPROXIMATIONS
If the sample size is large, the normality assumption on the underlying population can

be relaxed. A useful generalization of Corollary 4.2.2 follows.

Theorem 4.4.1 Suppose that the population (not necessarily normal) from which
samples are taken has a probability distribution with mean m and variance s2. Then
the standardized variable (or z-transform) associated with X, given by

Z¼ X�m
s=

ffiffiffi
n

p

is asymptotically standard normal. That is,

lim
n!1P Z� zð Þ¼ 1ffiffiffiffiffiffi

2p
p

ðz
�1

e�u2=2du:

Theorem 4.4.1 follows directly from the Central Limit Theorem. The consequence of

this for statistics is that, regardless of the form of the population distribution, the dis-

tribution of the z-transform of a sample mean X will be approximately a standard

normal random variable whenever n is large. This fact will be used in almost all large

sample inference problems. It is important to note that, by Corollary 4.2.2, if the ran-

dom sample came from a normal population, then sampling distribution of the mean

is normally distributed regardless of the size of the sample. We could use the fore-

going results if the population variance s2 is known or when the sample size is large.

Even though the required sample size to apply Theorem 4.4.1 will depend on the

particular distribution of the population, for practical purposes we will consider

the sample size to be large enough if n�30.

EXAMPLE 4.4.1
The average SAT score for freshmen entering a particular university is 1100 with a standard devi-

ation of 95. What is the probability that the mean SAT score for a random sample of 50 of these

freshmen will be anywhere from 1075 to 1110?

Solution
The distribution of X has the mean mX ¼ 1100 and sX ¼ 95=

ffiffiffiffiffi
50

p
: By Theorem 4.4.3,

X�N 1100,sX ¼ 95=
ffiffiffiffiffi
90

p� �
. The z-scores corresponding to 1075 and 1110 are

z¼ 1075�1100ð Þ=95= ffiffiffiffiffi
50

p	 
¼�1:8608 and z¼ 1110�1100ð Þ=95= ffiffiffiffiffi
50

p	 
¼ 0:74432:

Continued
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Hence,

P 1075�X� 1110
� �¼ P �1:8608�Z� 0:74432ð Þ ¼ 0:739

means that we are 73.9% certain based on the given data that the mean SAT score is between 1075

and 1110, inclusive.

4.4.1 THE NORMAL APPROXIMATION TO THE BINOMIAL
DISTRIBUTION
We know that a binomial random variable Y, with parameters n and p¼P (success),

can be viewed as the number of successes in n trials and can be written as

Y¼
Xn
i¼1

Xi

where,

Xi ¼ 1 with probability p
0 with probability 1�pð Þ:

�

The fraction of successes in n trials is

Y

n
¼ 1

n

Xn
i¼1

Xi ¼X:

Hence, Y/n is a sample mean. Since E(Xi)¼p and Var (Xi)¼p(1�p), we have

E
Y

n

� �
¼E

1

n

Xn
i¼1

Xi

 !
¼ 1

n
np¼ p

and

Var
Y

n

� �
¼ 1

n2

Xn
i¼1

Var Xið Þ¼ p 1�pð Þ
n

:

Because Y¼ nX, by the Central Limit Theorem, Y has an approximate normal dis-

tribution with mean m¼nm and variance s2¼np(1�p). Because the calculation of

the binomial probabilities is cumbersome for large sample sizes n, the normal

approximation to the binomial distribution is widely used. A useful rule of thumb

for use of the normal approximation to the binomial distribution is to make sure n
is large enough if np�5 and n(1�p)�5. Otherwise, the binomial distribution

may be so asymmetric that the normal distribution may not provide a good approx-

imation. Other rules, such as np�10 and n(1�p)�10, or np(1�p)�10, are also

used in the literature. Because all of these rules are only approximations, for consis-

tency’s sake we will use np�5 and n(1�p)�5 to test for largeness of sample size in

the normal approximation to the binomial distribution. If need arises, we could use

the more stringent condition np(1�p)�10.
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Recall that discrete random variables take no values between integers, and their

probabilities are concentrated at the integers as shown in Figure 4.7. However, the

normal random variables have zero probability at these integers; they have nonzero

probability only over intervals. Because we are approximating a discrete distribution

with a continuous distribution, we need to introduce a correction factor for continuity

which is explained below.

CORRECTION FOR CONTINUITY FOR THE NORMAL APPROXIMATION TO
THE BINOMIAL DISTRIBUTION
(a) To approximate P(X�a) or P(X>a), the correction for continuity is (a+0.5), that is,

P X� að Þ¼P Z<
a+ 0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�pð Þp

 !

and

P X> að Þ¼P Z>
a+ 0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�pð Þp

 !
:

(b) To approximate P(X�a) or P(X<a), the correction for continuity is (a�0.5), that is,

P X� að Þ¼P Z>
a�0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1�pð Þp
 !

and

P X< að Þ¼P Z<
a�0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1�pð Þp
 !

:

(c) To approximate P(a�X�b), treat ends of the intervals separately, calculating two distinct

z-values according to steps (a) and (b), that is,

P a�X� bð Þ¼P
a�0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1�pð Þp < Z<
b + 0:5ð Þ�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�pð Þp

 !
:

(d) Use the normal table to obtain the approximate probability of the binomial event.

The shaded area in Figure 4.8 represents the continuity correction for P(X¼ i).

p(x)

x

FIGURE 4.7

Probability Function of Discrete r.v.
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EXAMPLE 4.4.2
A study of parallel interchange ramps revealed thatmany drivers do not use the entire length of parallel

lanes for acceleration, but seek, as soon as possible, a gap in the major stream of traffic to merge. At

one site on Interstate Highway 75, 46% of drivers used less than one third of the lane length available

beforemerging. Supposewemonitor themerging pattern of a random sample of 250 drivers at this site.

(a) What is the probability that fewer than 120 of the drivers will use less than one third of the accel-

eration lane length before merging?

(b) What is the probability that more than 225 of the drivers will use less than one third of the accel-

eration lane length before merging?

Solution
First we check for adequacy of the sample size:

np ¼ 250ð Þ 0:46ð Þ ¼ 115 and n 1� pð Þ ¼ 250ð Þ 1� 0:46ð Þ ¼ 135:

Both are greater than 5. Hence, we can use the normal approximation. Let X be the number of
drivers using less than one third of the lane length available before merging. Then X can be con-

sidered to be a binomial random variable. Also,

m ¼ np ¼ 250ð Þ 0:46ð Þ ¼ 115:0

and

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�pð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250 0:46ð Þ 0:54ð Þ

p
¼ 7:8804:

(a) P X< 120ð Þ¼P Z<
119:5�115
7:8804 ¼ 0:57103

� �
¼ 0:7157, that is, we are approximately 71.57%

certain that fewer than 120 drivers will use less than one third of the acceleration length before

merging.

(b) P X> 225ð Þ¼P Z>
225:5�115
7:8804 ¼ 14:02213

� �
	 0, that is, there is almost no chance that more

than 225 drivers will use less than one third of the acceleration lane length before merging.

f (x)

i–1/2 i+1/2 x

FIGURE 4.8

Continuity Correction for P(X¼ i).
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EXERCISES 4.4
4.4.1. A random sample size of 150 is taken from an infinite population having

mean m¼8 and variance s2¼4. What is the probability that X will be

between 7.5 and 10?

4.4.2. A machine that is used to fill bottles with soda has been observed to have a

true standard deviation in the amounts of fill of approximately s¼1.25

ounces. However, the mean ounces of fill m may change from day to day,

because of change of operator or adjustments in the machine. If n¼55

observations on ounces of fill are taken on a given day, find the probability

that the sample mean will be within 0.5 ounce of the true population mean.

State any assumptions.

4.4.3. The times spent by customers coming to a certain gas station to fill up can be

viewed as independent random variables with a mean of 3 minutes and a

variance of 1.5 minutes. Approximate the probability that a random sample

of 75 customers in this gas station will spend a total time less than 3 hours.

Interpret your results and state any assumptions.

4.4.4. Refer to Exercise 4.4.3. Find the number of customers, m, such that the

probability that all the m customers can fill up in less than 3 hours is

approximately 0.2.

4.4.5. In the mathematics department of a certain university, in a particular

semester, 1250 students took the elementary algebra final examination. The

mean was 69% with a standard deviation of 5.4%. If a random sample of 60

students is selected from this population, what is the probability that the

average score of this sample will be at most 75.08? Interpret your results and

state any assumptions.

4.4.6. For a newborn full-term infant, the weight appropriate for gestational age is

assumed to be normally distributed with m¼3025 grams and s¼165 grams.

Compute the probability that a random sample of 50 infants born at full term

results in a sample mean of less than 3500 grams.

4.4.7. Let X1, . . ., Xn be a random sample, each with mean m1 and standard deviation
s1. Also, let Y1, Y2, . . ., Ym be a random sample, each with mean m2 and a

standard deviation s2. Assume that both the samples are from normal

populations. Verify that X�Y
� ��N m1�m2, 1n s

2
1 +

1
ms

2
2

� �
:

4.4.8. Let X1, . . ., Xn be a random sample, each with mean m1 and standard deviation
s1. Also, let Y1 ,Y2, . . ., Yn be a random sample independent of X1, . . ., Xn, each

with mean m2 and a standard deviation s2. Prove that the random variable

Vn ¼
X�Y
� �� m1�m2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1
+ s2

2

n

r

satisfies the conditionsofTheorem4.4.1 andhenceVn is asymptoticallynormal.

4.4.9. Suppose X is a binomial random variable with n¼20 and p¼0.2. Find the

probability that X�10 using binomial tables and compare this to the

corresponding value found from normal approximation.
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4.4.10. Using normal approximation, find the probability of obtaining at least 90

heads in 150 tosses of a fair coin. Is the normal approximation valid? Why?

4.4.11. A car rental company finds that each day 6% of the persons making

reservations will not show up. If the rental company reserves for 215

persons with only 200 automobiles, what is the probability that an

automobile will be available for every person who shows up holding a

reservation? (Use the normal approximation.)

4.4.12. The president of the United States is thought to have a positive approval

rating of 58% of the people at a certain time. In a random sample of 1200

people, what is the approximate probability that the number of positive

approvals will be at least 750? Interpret your results and state any

assumptions.

4.4.13. In the United States, sudden infant death syndrome (SIDS) is one of the

leading causes of postneonatal deaths (those occurring between the ages of

28 days and 1 year). Thus far, the most significant risk factor discovered for

SIDS is placing babies to sleep in a prone position (on their stomachs).

Suppose the rate of death due to SIDS is 0.00103 per year. In a random

sample of 5000 infants between the ages of 28 days and 1 year, what is the

approximate probability that the number of SIDS-related deaths will be at

least 10? Interpret your results and state any assumptions.

4.4.14. Let X and Y be independent binomial random variables with parameters

(n, p1) and (m, p2), respectively.

(a) Find E
X

n
�Y

n

� �
:

(b) Find Var
X

n
�Y

n

� �
:

(c) Show that
X

n
�Y

n

� �
�N E

X

n
�Y

n

� �
,Var

X

n
�Y

n

� �� �
, for large n.

4.5 CHAPTER SUMMARY
In this chapter, we learned about sampling distributions. In sampling distributions

associated with normal populations, we have seen that we can generate chi-square,

t-, and F-distributions. In Section 4.3 we dealt with order statistics. Then in

Section 4.4 we looked at large sample approximations such as the normal approxi-

mation to the binomial distribution. In the following section, we will give Minitab

examples to show how the idea of sampling distribution can be explored using sta-

tistical software.

We will now list some of the key definitions introduced in this chapter.

• Sampling distribution.

• Sample and sample size.

• Random sample.
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• Statistic.

• Standard error.

• Finite population correction factor.

• Degrees of freedom.

• t-Distribution.
• F-distribution.
• Order statistics.

In this chapter, we have also presented the following important concepts and

procedures:

• Sampling distribution associated with normal distribution.

• Results on chi-square distribution.

• Results on Student t-distribution.
• Results on F-distribution.
• Derivation of probability density functions for order statistics.

• Large sample approximations.

• Normal approximation to the binomial.

• Correction for continuity for the normal approximation to the binomial

distribution.

4.6 COMPUTER EXAMPLES
4.6.1 EXAMPLES USING R
Note: For the following problems you’re generating random samples your answers
will vary!

EXAMPLE 4.6.1 GENERATING NORMAL RANDOM SAMPLES
Create three samples of size 30 from standard normal distribution and draw histograms for each

sample.

Notice the last two arguments are the mean and standard deviation of the distribution 0, 1.

Additionally plot a density curve over the histogram. Only one output is shown for this example.

R Code:

sample1¼rnorm(30,0,1);

sample2¼rnorm(30,0,1);

sample3¼rnorm(30,0,1);

hist(sample1,prob¼T);

lines(density(sample1),col¼”red”);

hist(sample2,prob¼T);

lines(density(sample2),col¼”red”);

hist(sample3,prob¼T);

lines(density(sample3),col¼”red”);
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Output:
Histogram of  sample1

D
en

si
ty

0.4

0.3

0.2

0.1

0.0

–3 –2 –1 0
Sample1

1 2 3

EXAMPLE 4.6.2 GENERATING A NORMAL RANDOM SAMPLE
Generate 50,000 observations from a normal distribution with mean 30 and standard deviation 8.

Obtain summary statistics for this data and draw a graph.

R Code:

sample¼rnorm(50000,30,8);

summary(sample);

sd(sample);

hist(sample,prob¼T);

lines(density(sample),col¼”red”);

Output:

Min. 1st Qu. Median Mean 3rd Qu. Max.

�0.08056 24.62000 30.01000 30.03000 35.42000 60.82000

7.981699 Standard deviation

Histogram of  sample1

D
en

si
ty

0.04

0.03

0.02

0.01

0.00

0
Sample1

10 20 30 40 50 60
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EXAMPLE 4.6.3 GENERATING A RANDOM EXPONENTIAL SAMPLE
From an exponential distribution, draw 10,000 samples, each sample of size 15. Compute the mean

of each sample and draw a chart for the means. This will be an approximate sampling distribution of

x̄ for a fixed sample of size 15.

R Code:

samples_means¼c(); ##Creates an empty array for us to store the

means in.

for(i in 1:10000) { ## This for loop repeats the code inside it change

variable i over the range

sample¼rexp(15,3); ##Generates a random sample of 15 from an

exponential.

mean¼mean(sample); ## calculates the mean of that sample.

samples_means¼c(sample,mean); ## store the mean inside

our array for later use.

}

hist(samples_means,prob¼T); ##Use previous methods to check the

distribution of the means.

lines(density(samples_means),col¼”red”);

summary(samples_means);

sd(samples_means);

Output:

No output given for this particular problem, please see the graph generated by R.
You have stored the samples_means in this variable use previous analysis

methods on this variable.

4.6.2 MINITAB EXAMPLES

EXAMPLE 4.6.4
Create three samples of size 30 from standard normal distribution using Minitab, and draw histo-

grams for each sample.

Solution
We can use the following procedure:
1. Open a new worksheet.

2. Choose Calc > Random Data > Normal.

3. Generate 30 rows of data.

4. Store results in C1-C3.

5. Enter a mean of 0 and a standard deviation of 1 and click OK.

6. ChooseGraph>Character Graphs>Histogram and enterC1-C3 in the variable box and click

OK. We will not give the data or any of the three histograms that we will get. These histograms
are just lines containing *0s. If we need actual histograms, in step 6 use

Graph > Histogram and enter C1 in the graph variable box and click OK

If we wish to generate descriptive statistics, then

7. Choose Stat > Basic Statistics > Display Descriptive statistics. . ., enter C1-C3 in the variable

box, and click OK. Continued
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If we would like to see the mean for the three samples,

8. Choose Calc > Row Statistics, then clickMean and in the Input variables type C1-C3. In Store

Result in: C4 and Click OK.

To see the histogram of these averages, follow step 6 with C4 in the graph variable box.

Using a similar procedure, one could generate samples from normal distributions with different
means and standard deviations, as well as from other distributions.

4.6.3 SPSS EXAMPLES
If we have the full version of SPSS, we can write code that can be used to simulate

a sampling distribution with different values of p. However, with the student version,
it is not easy to simulate. Therefore, we will not give SPSS examples in this chapter.

4.6.4 SAS EXAMPLES

EXAMPLE 4.6.5
Generate 50,000 observations from a normal distribution with mean 30 and standard deviation 8.

Obtain summary statistics for these data and draw a graph.

Solution
We could use the following program.

title ’50000 Obs Sample from a Normal Distribution’;
title2 ’with Mean¼30 and Standard Deviation¼8’;

data normaldat;

do n¼1 to 50000;
X¼8*rannor(55)+30;
output;

end;
run;
proc univariate data¼normaldat;

var x;
run;

proc chart;
vbar x / midpoints¼6 to 54 by 2;
format x msd.;

run;

In the foregoing program, rannor(55), the number 55 is just a seed number to obtain the same

series of random numbers each time we run the program. If we use ‘0’, each time we run the program

we will get a different set of random numbers. We will not give the output.
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EXAMPLE 4.6.6
From an exponential distribution, draw 10,000 samples, each sample of size 15. Compute the mean

of each sample and draw a chart for the means. This will be an approximate sampling distribution of

X for a fixed sample of size 15.

Solution
Use the following program.

title ’10000 Sample Means with 15 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data sample15;
do Sample¼1 to 10000;

do n¼1 to 15;
X¼ranexp(3);
output;
end;

end;
proc means data¼sample 15 noprint;
output out¼mean 15 mean¼Mean;
var x;
by sample;

run;
proc chart data¼mean 15;
vbar mean/axis¼1800

midpoints¼0.10 to 2.05 by .1;
run;
proc univariate data¼mean4 noextrobs¼0 normal

mu0¼1;
var mean;

run;

This will produce an approximate sampling distribution of X. We will not give the output.

PROJECTS FOR CHAPTER 4
4A. A METHOD TO OBTAIN RANDOM SAMPLES FROM DIFFERENT
DISTRIBUTIONS
Most of the statistical software packages contain a random number generator

that produces approximations to random numbers from the uniform distribution U
[0, 1]. To simulate the observation of any other continuous random variables, we

can start with uniform random numbers and associate these to the distribution we

want to simulate. For example, suppose we wish to simulate an observation from

the exponential distribution

F xð Þ¼ 1�e�0:5x, 0< x<1:
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First produce the value of y from the uniform distribution. Then solve for x from the

equation

y¼F xð Þ¼ 1�e�0:5x:

So x¼ [�ln (1�y)]/0.5 is the corresponding value of the exponential random vari-

able. For instance, if y¼0.67, then x¼ [�ln (1�y)]/0.5¼2.2173. If we wish to sim-

ulate a sample from the distributionF from the different values of y obtained from the

uniform distribution, the procedure is repeated for each new observation x.

(a) Simulate 10 observations of a random variable having exponential distribution

with mean and standard deviation both equal to 2.

(b) Select 1500 random samples of size n¼10measurements from a population with

an exponential distribution with mean and standard deviation both equal to 2.

Calculate sample mean for each of these 1500 samples and draw a relative

frequency histogram. Based on Theorems 4.1.1 and 4.4.1, what can you conclude?

It should be noted that in general, if Y�U (0, 1) random variable, then we can

show that X¼�1nY
l inwill give an exponential random variable with parameter l.

Uniform random variables could also be used to generate random variables from

other distributions. For example, let Uis be iid U[0, 1] random variables. Then,

X¼�2
Xv
i¼1

ln Uið Þ�w22v,

and

Y¼�b
Xa
i¼1

ln Uið Þ�Gamma a, bð Þ:

Of course, these transformations are useful only when v and a are integers. More effi-

cient methods based on Monte Carlo simulations, such as MCMC methods, are dis-

cussed in Chapter 13.

4B. SIMULATION EXPERIMENTS
When the derivation via probability rules is too difficult or complicated to be carried

out, one can use simulation experiments to obtain information about a statistic’s sam-

pling distribution. The following characteristics of the experiment must be specified:

(i) The population distribution (normal with m¼10 and s¼2, exponential with

l¼5, etc.)

(ii) The sample size n and the statistic of interest (X, S, etc.)
(iii) The number of replications k (such as k¼300)

Then, using a computer program, obtain k different random samples, each of size

n, from the designated population distribution. Calculate the value of the statistic for

each of the k replications. Construct a histogram for this k statistic. This histogram
gives the approximate sampling distribution of the statistic. The larger the value of k,
the better will be the approximation.
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(a) For your simulation study, use the population distribution as normal with m¼3.4

and s¼1.2.

For n¼8 perform k¼500 replications and draw a histogram for values of the

sample means. Repeat the experiment with n¼15, n¼25, and n¼35 and

draw the histograms. Based on this exercise, you will be able to intuitively

verify the result that X based on a large n tends to be closer to m than does X based

on a small n.
(b) Repeat the experiment of part (a) with different values of k, such as k¼200,

k¼750, and k¼1000.

(c) Repeat the simulation study with different distributions such as exponential

distribution.

4C. A TEST FOR NORMALITY
Many statistical procedures require that the population be at least approximately nor-

mal. Therefore, a procedure is needed for checking that the sampled data could have

come from a normal distribution. There are many procedures, such as the normal-

score plot, or Lilliefors test for normality, available in statistics for this purpose.

We will describe the normal-score plot, which is an effective way to detect devia-

tions from normality. The normal scores consist of values of z that divide the axes
into equal probability intervals. For a sample of size 4, the normal scores are

�z0.20¼�0.84, �z0.40¼�0.25, z0.40¼�0.25, and z0.20¼0.84.

STEPS TO CONSTRUCT A NORMAL PLOT
1. Rearrange the n data points in ascending order.

2. Obtain the n normal scores.

3. Plot the kth largest observation, versus the kth normal score, for all k.

4. If the data were from a standard normal distribution, the plot would resemble a 45 degree line

through the origin.

5. If the observations were from normal (but not from standard normal), the pattern should still be a

straight line. However, the line need not pass through the origin or have a slope 1.

In applications, a minimum of 15 to 20 observations is needed to reach a more

accurate conclusion.

EXERCISES
1. For different observations, construct normal plots and check for normality of the

corresponding populations.

2. Using software (such as Minitab), generate 15 observations each from the

following distributions: (a) Normal (2, 4), (b) Uniform (0, 1), (c) Gamma (2, 4),

and (d) Exponential (2).
For each of these data sets, draw a probability plot and note the geometry of

the plots.
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OBJECTIVE

In this chapter we study some statistical methods to find estimators of population

parameters and study their properties. This will include methods of finding point esti-

mation as well as interval estimation of the unknown population parameters.

C.R. Rao

(Source: http://science.psu.edu/news-and-events/2014-news/Rao4-2014)
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Calyampudi Radhakrishna (C.R.) Rao (1920-) is a contemporary statistician

whose work has influenced not just statistics, but such diverse fields as anthropology,

biometry, demography, economics, genetics, geology, and medicine. Several statis-

tical terms and equations are named after Rao. He has worked with many other

famous statisticians such as Blackwell, Fisher, and Neyman and has had dozens

of theorems named after him. Rao earned an MA in mathematics and another MA

in statistics, both in India, and earned his PhD and ScD at Cambridge University.

The following was stated in the Preface to the 1991 special issue of the Journal
of Quantitative Economics in Rao’s honor: “Dr. Rao is a very distinguished scientist
and a highly eminent statistician of our time. His contributions to statistical theory

and applications are well known, and many of his results, which bear his name, are

included in the curriculum of courses in statistics at bachelor’s and master’s level all

over the world. He is an inspiring teacher and has guided the research work of numer-

ous students in all areas of statistics. His early work had greatly influenced the course

of statistical research during the last four decades. One of the purposes of this special

issue is to recognize Dr Rao’s own contributions to econometrics and acknowledge

his major role in the development of econometric research in India.” The importance

of statistics can be summarized in Rao’s own words: “If there is a problem to be

solved, seek statistical advice instead of appointing a committee of experts. Statistics

can throw more light than the collective wisdom of the articulate few.” http://www.

finse.uio.no/events/international-workshops/introduction-to-estimation/

5.1 INTRODUCTION
In statistical analysis, estimation of population parameters plays a very significant role.

In most applied problems, a certain numerical characteristic of the physical phenom-

enon may be of interest; however, its value may not be observable directly. Instead,

suppose it is possible to observe one ormore randomvariables, the distribution ofwhich

depends on the characteristic of interest. Our objective will be to develop methods that

use the observed values of random variables (sample data) in order to gain information

about the unknown and unobservable characteristic of the population.

In studying a real world phenomenon we begin with a random sample of size n
taken from the totality of a population. In estimation theory, it is assumed the obser-

vations are random with probability distribution dependent on some parameters of

interest. The initial step in statistically analyzing these data is to be able to identify

the probability distribution that characterizes this information. Since the parameters

of a distribution are its defining characteristics, it becomes necessary to know the

parameters. In the present chapter, we shall assume that the form of the population

distribution is known (such as a binomial, normal, etc.) but the parameters of the dis-

tribution (p for a binomial; m and s2 for a normal, etc.) are unknown. We shall esti-

mate these parameters using the data from our random sample. It is extremely

important to have the best possible estimate of the population parameter(s). Having

such estimates will lead to a better and more accurate statistical analysis.
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For example, due to phosphate mining in Florida, we may be interested in esti-

mating the average radioactivity from both uranium and radium in a clay settling area

of a mining site. Suppose that a random sample of 10 such sites resulted in a sample

average of 40 pCi/g (picocuries/gram) radioactivity. We may use this value as an

estimate of the average radioactivity for all of the settling areas of mining sites in

Florida. We may also want to know a range of values of radioactivity with certain

confidence. Since many Florida crops are grown on clay settling areas, this type of

estimates are important for accessing the risks associated with radioactivity due to

eating food from the crops grown on these clay settling areas.

There are two types of estimators, namely, point estimator and interval estimator.

First, we will introduce statistical point estimation methods, discuss their properties,

and illustrate their usefulness with a number of applications. The importance of point

estimates lies in the fact that many statistical formulas are based on them. For exam-

ple, the point estimates of mean and standard deviation are needed in the calculation

of confidence intervals and in many formulas for hypothesis testing. These topics

will be covered in subsequently. In general, the point estimates will differ from

the true parameter values by varying amounts depending on the sample values

obtained. In addition, the point estimates do not convey any measure of reliability.

To deal with these issues, we will also introduce so-called interval estimation or the

confidence intervals.

5.2 THE METHODS OF FINDING POINT ESTIMATORS
Let X1, . . ., Xn be independent and identically distributed (iid) random variables

(in statistical language, a random sample) with a probability density function or

probability mass function (pmf) f (x, y1, . . ., yl), where y1, . . ., yl are the unknown

population parameters (characteristics of interest). For example, a normal pdf has

parameters m (the mean) and s2 (the variance). The actual values of these parameters

are not known. The problem in point estimation is to determine statistics gi(X1, . . .,
Xn), i¼1, . . ., l, which can be used to estimate the value of each of the parameters—

that is, to assign an appropriate value for the parameters u¼ (y1, . . ., yl) based on

observed sample data from the population. These statistics are called estimators
for the parameters, and the values calculated from these statistics using particular

sample data values are called estimates of the parameters. Estimators of yi are
denoted by ŷi , where ŷi ¼ gi X1, . . . , Xnð Þ, i¼ 1, . . . , l. Observe that the estimators

are random variables. As a result, an estimator has a distribution (which we called

the sampling distribution in Chapter 4). When we actually run the experiment and

observe the data, let the observed values of the random variables be X1, . . ., Xn be

x1, . . ., xn; then, ŷ X1, . . . , Xnð Þ is an estimator, and its value ŷ x1, . . . , xnð Þ is an esti-

mate. For example, in case of the normal distribution, the parameters of interest

are y1¼m, and y2¼s2, that is, u¼ (m, s2). If the estimators of m and s2 are

X¼ 1=nð Þ
Xn

i¼1
Xi and S2 ¼ 1= n�1ð Þð Þ

Xn

i¼1
Xi�X
� �2

respectively, then, the
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corresponding estimates are x¼ 1=nð Þ
Xn

i¼1
xi and s

2 ¼ 1=n�1ð Þ
Xn

i¼1
xi� xð Þ2, the

mean and variance corresponding to the particular observed sample values. In this

book, we use capital letters such as X and S2 to represent the estimators, and lower-

case letters such as x and s2 to represent the estimates.

There are many methods available for estimating the true value(s) of the

parameter(s) of interest. Three of the more popular methods of estimation are the

method of moments, the method of maximum likelihood, and Bayes’ method. A very

popular procedure among econometricians to find a point estimator is the general-

ized method of moments (GMM). In this chapter we study only the method of

moments and the method of maximum likelihood for obtaining point estimators

and some of their desirable properties. In Chapter 11, we shall discuss Bayes’ method

of estimation.

There are many criteria for choosing a desired point estimator. Heuristically,

some of them can be explained as follows. An estimator, ŷ, is unbiased if the mean

of its sampling distribution is the parameter y. The bias of ŷ is given by

B¼E ŷ
� �

�y. The estimator has the sufficiency property if it fully uses all the sam-

ple information. Minimal sufficient statistics are those that are sufficient for the

parameter and are functions of every other set of sufficient statistics for those same

parameters. A method due to Lehmann and Scheffé can be used to find a minimal

sufficient statistic. In addition, the estimator are said to satisfy the consistency prop-

erty if the sample estimator has a high probability of being close to the population

value y for a large sample size. The concept of efficiency is based on comparing var-

iances of the different unbiased estimators. If there are two unbiased estimators, it is

desirable to have the one with the smaller variance. However, some of these prop-

erties will not be discussed in this book.

How do we find a good point estimator with desirable properties? To answer this

question, we will study two methods of finding point estimators, namely, the method

of moments and the method of maximum likelihood.

5.2.1 THE METHOD OF MOMENTS
One of the oldest methods for finding point estimators is the method of moments.

This is a very simple procedure for finding an estimator for one or more popu-

lation parameters. Let mk0 ¼E[Xk] be the kth moment about the origin of a

random variable X, whenever it exists. Let mk

0 ¼ (1/n)
P

i¼1
n Xi

k be the correspond-

ing kth sample moment. Then, the estimator of mk0 by the method of moments is

mk
0. The method of moments is based on matching the sample moments with the

corresponding population (distribution) moments and is founded on the assump-

tion that sample moments should provide good estimates of the corresponding

population moments. Because the population moments mk0 ¼hk(y1,y2, . . .,yl) are
often functions of the population parameters, we can equate corresponding pop-

ulation and sample moments and solve for these parameters in terms of the

moments.
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METHOD OF MOMENTS
Choose as estimates those values of the population parameters that are solutions of the equations

mk0 ¼mk
0, k¼1,2, . . ., l. Here mk0 is a function of the population parameters.

For example, the first population moment is m10 ¼E(X), and the first sample

moment is X¼
Xn

i¼1
Xi=n. Hence, the moment estimator of m10 is X. If k¼2, then

the second population and sample moments are m20 ¼E(X2) and m2
0 ¼ (1/n)

P
i¼1
n Xi

2,

respectively. Basically, we can use the following procedure in finding point estima-

tors of the population parameters using the method of moments.

THE METHOD OF MOMENTS PROCEDURE
Suppose there are l parameters to be estimated, say y¼ (y1, . . ., yl).

1. Find l populationmoments, mk0, k¼1,2, . . ., l. mk0 will contain one or more parameters y1, . . ., yl.
2. Find the corresponding l sample moments, mk

0, k¼1,2, . . ., l. The number of sample moments

should equal the number of parameters to be estimated.

3. From the system of equations, mk0 ¼mk
0, k¼1,2, . . ., l, solve for the parameter y¼ (y1, . . ., yl);

this will be a moment estimator of ŷ.

The following examples illustrate the method of moments for population param-

eter estimation.

EXAMPLE 5.2.1
Let X1, . . ., Xn be a random sample from a Bernoulli population with parameter p.

(a) Find the moment estimator for p.

(b) Tossing a coin 10 times and equating heads to value 1 and tails to value 0, we obtained the fol-

lowing values:

0 1 1 0 1 0 1 1 1 0

Obtain a moment estimate for p, the probability of success (head).

Solution
(a) For the Bernoulli random variable, mk0 ¼E[X]¼p, so we can use m1

0 to estimate p. Thus,

m0
1 ¼ p̂¼ 1

n

Xn
i¼1

Xi:

Let

Y¼
Xn
i¼1

Xi:

Then, the method of moments estimator for p is p̂¼Y=n. That is, the ratio of the total number of

heads to the total number of tosses will be an estimate of the probability of success.

(b) Note that this experiment results in Bernoulli random variables. Thus, using part (a) with Y¼6,

we get the moment estimate of p is p̂¼ 6=10¼ 0:6.

Continued
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We would use this value p̂¼ 0:6, to answer any probabilistic questions for the given problem.

For example, what is the probability of exactly obtaining eight heads out of 10 tosses of this coin?
This can be obtained by using the binomial formula, with p̂¼ 0:6, that is,

P X¼ 8ð Þ¼ 10

8

� �
0:6ð Þ8 0:4ð Þ10�8:

In Example 5.2.1, we used the method of moments to find a single parameter. We

demonstrate in Example 5.2.2 how this method is used for estimating more than one

parameter.

EXAMPLE 5.2.2
Let X1, . . ., Xn be a random sample from a gamma probability distribution with parameters a and b.
Find moment estimators for the unknown parameters a and b.

Solution
For the gamma distribution (see Section 3.2.5),

E X½ � ¼ ab and E X2
� 	¼ ab2 + a2b2:

Because there are two parameters, we need to find the first two moment estimators. Equating

sample moments to distribution (theoretical) moments, we have

1

n

Xn
i¼1

Xi ¼X¼ ab, and
1

n

Xn
i¼1

X2
i ¼ ab2 + a2b2:

Solving for a and b we obtain the estimates as a¼ x=bð Þ and b¼ 1=nð Þ
Xn

i¼1
x2i �x2

n o
=x

h i
Therefore, the method of moments estimators for a and b are

â¼X

b̂

and

b̂¼
1

n

Xn

i¼1
X2
i �X

2

X
¼
Xn

i¼1
Xi�X
� �2
nX

,

which implies that

â¼X

b̂
¼ X

2

1

n

Xn

i¼1
X2
i �X

2
¼ X

2Xn

i¼1
Xi�X
� �2 :

Thus, we can use these values in the gamma pdf to answer questions concerning the probabi-

listic behavior of the r.v. X.

Following example shows that once we find the moments estimator theoretically,

the estimate can be obtained by simply substituting sample statistic into the formula.
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EXAMPLE 5.2.3
Let the distribution of X be N(m, s2).

(a) For a given sample of size n, use the method of moments to estimate m and s2.
(b) The following data (rounded to the third decimal digit) were generated using Minitab from a

normal distribution with mean 2 and a standard deviation of 1.5.

3:163 1:883 3:252 3:716 �0:049 �0:653 0:057 2:987
4:098 1:670 1:396 2:332 1:838 3:024 2:706 0:231
3:830 3:349 �0:230 1:496

Obtain the method of moments estimates of the true mean and the true variance.

Solution
(a) For the normal distribution, E(X)¼m, and because Var(X)¼EX2�m2, we have the second

moment as E(X2)¼s2+m2.
Equating sample moments to distribution moments we have

1

n

Xn
i¼1

Xi ¼ m01 ¼ m

and

m02 ¼
1

n

Xn
i¼1

X2
i ¼s2 +m2:

Solving for m and s2, we obtain the moment estimators as

m̂¼X
and

ŝ2 ¼ 1

n

Xn
i¼1

X2
i �X

2 ¼ 1

n

Xn
i¼1

Xi�X
� �2

:

(b) Because we know that the estimator of the mean is m̂¼X and the estimator of the variance is

ŝ2 ¼ 1=nð ÞSn
i¼1X

2
i �X

2
, from the data the estimates are m̂¼ 2:005, and

ŝ2 ¼ 6:12� 2:005ð Þ2 ¼ 2:1. Notice that the true mean is 2 and the true variance is 2.25, which
we used to simulate the data.

In general, using the population pdf we evaluate the lower order moments, find-

ing expressions for the moments in terms of the corresponding parameters. Once we

have population (theoretical) moments, we equate them to the corresponding sample

moments to obtain the moment estimators.

EXAMPLE 5.2.4
Let X1, . . ., Xn be a random sample from a uniform distribution on the interval [a, b]. Obtain method

of moment estimators for a and b.

Solution
Here, a and b are treated as parameters. That is, we only know that the sample comes from a uniform
distribution on some interval, but we do not know fromwhich interval. Our interest is to estimate this

interval. The pdf of a uniform distribution is

Continued
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f xð Þ¼
1

b�a
, a� x� b

0, otherwise:

8<:
Hence, the first two population moments are

m1 ¼E Xð Þ¼
ðb
z

x

b�a
dx¼ a + b

2
and m2 ¼E X2

� �¼ ðb
a

x2

b�a
dx¼ a2 + ab+ b2

3
:

The corresponding sample moments are

m̂1 ¼X and m̂2 ¼
1

n

Xn
i¼1

X2
i :

Equating the first two sample moments to the corresponding population moments, we have

m̂1 ¼
a + b

2
and m̂2 ¼

a2 + ab+ b2

3

which, solving for a and b, results in the moment estimators of a and b,

â¼ m̂1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 m̂2� m̂21
� �q

and b̂¼ m̂1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 m̂2� m̂21
� �q

:

In Example 5.2.4, if a¼�b, that is, X1, . . ., Xn is a random sample from a uniform dis-

tribution on the interval (�b, b), the problem reduces to a one-parameter estimation

problem.However, in this caseE(Xi)¼0, so the firstmoment cannot be used to estimate

b. It becomesnecessary touse the secondmoment.For thederivation, seeExercise5.2.3.

It is important to observe that the method of moments estimators need not be

unique. The following is an example of the nonuniqueness of moment estimators.

EXAMPLE 5.2.5
Let X1, . . ., Xn be a random sample from a Poisson distribution with parameter l>0. Show that both

(1/n)
P

i¼1
n Xi and 1=nð Þ

Xn

i¼1
Xi

2� 1=nð Þ
Xn

i¼1
Xi

� �2
are moment estimators of l.

Solution
We know that E(X)¼l, from which we have a moment estimator of l as (1/n)

P
i¼1
n Xi. Also,

because we have Var(X)¼l, equating the second moments, we can see that

l¼E X2
� �� EXð Þ2,

so that

l̂¼ 1

n

Xn
i¼1

X2
i �

1

n

Xn
i¼1

Xi

 !2

:

Thus,

l̂¼ 1

n

Xn
i¼1

Xi

and

l̂¼ 1

n

Xn
i¼1

X2
i �

1

n

Xn
i¼1

Xi

 !2

:

Both are moment estimators of l. Thus, the moment estimators may not be unique. We generally

choose X as an estimator of l, for its simplicity.
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It is important to note that, in general, we have as many moment conditions as the

parameters. In Example 5.2.5, we have more moment conditions than parameters,

because both the mean and variance of Poisson random variables are the same.

Given a sample, this results in two different estimates of a single parameter.

One of the questions could be, can these two estimators be combined in some

optimal way? This is done by the so-called GMM. We will not deal with this

topic. The method of moments often provides estimators when other methods fail

to do so or when estimators are harder to obtain, as in the case of a gamma dis-

tribution. Compared to other methods, method of moments estimators are easier

to compute and have some desirable properties that we will discuss in ensuing

section.

5.2.2 THE METHOD OF MAXIMUM LIKELIHOOD
Now we will present an important method for finding estimators of parameters

proposed by geneticist/statistician Sir Ronald A. Fisher around 1922 called the

method of maximum likelihood. Even though the method of moments is intuitive

and easy to apply, it usually does not yield “good” estimators. The method of

maximum likelihood is intuitively appealing, because we attempt to find the values

of the true parameters that would have most likely produced the data that we in

fact observed. For most cases of practical interest, the performance of MLEs is

optimal for large enough data. This is one of the most versatile methods for fitting

parametric statistical models to data. First, we define the concept of a likelihood

function.

Definition 5.2.1 Let f(x1, . . ., xn; y), y2Y�ℝk , be the joint probability (or
density) function of n random variables X1, . . ., Xn with sample values x1, . . ., xn.
The likelihood function of the sample is given by

L y; x1, . . . , xnð Þ¼ f x1, . . . , xn; yð Þ, ¼ L yð Þ, in a briefer notation½ �:
We emphasize that L is a function of y for fixed sample values.

The likelihood of a set of parameter values u, given x1, . . ., xn, is equal to the

probability of those observed outcomes given the parameter values. If X1, . . ., Xn are

discrete iid random variables with probability function p(x, y), then, the likelihood

function is given by

L yð Þ¼P X1 ¼ x1, . . . ,Xn ¼ xnð Þ
¼
Yn
i¼1

P Xi ¼ xið Þ, by multiplication rule for independent random variablesð Þ

¼
Yn
i¼1

p xi, yð Þ

and in the continuous case, if the density is f(x, y), then the likelihood function is

L yð Þ¼
Yn
i¼1

f xi, yð Þ:
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It is important to note that the likelihood function, although it depends on the

observed sample values x¼ (x1, . . ., xn), is to be regarded as a function of the param-

eter y. In the discrete case, L(y; x1, . . ., xn) gives the probability of observing

x¼ (x1, . . ., xn), for a given y. Thus, the likelihood function is a statistic, depending

on the observed sample x¼ (x1, . . ., xn).

EXAMPLE 5.2.6
Let X1, . . ., Xn be iid N(m, s2) random variables. Let x1, . . ., xn be the sample values. Find the like-

lihood function.

Solution
The density function for the normal variable is given by f xð Þ¼ 1

s
ffiffiffiffi
2p

p exp � x�mð Þ2
2s2

 !
. Hence, the

likelihood

L m, s2
� �¼Yn

i¼1

1ffiffiffiffiffiffiffiffi
2ps

p exp � xi�mð Þ2
2s2

 !
¼ 1

2pð Þn=2sn
exp �

Xn
i¼1

xi�mð Þ2

2s2

0BBB@
1CCCA:

A statistical procedure should be consistent with the assumption that the best expla-

nation of a set of data is provided by an estimator ŷ, which will be the value of the

parameter y that maximizes the likelihood function. This value of ywill be called the
MLE. The goal of maximum likelihood estimation is to find the parameter value(s)

that makes the observed data most likely.

Definition 5.2.2 TheMLEs are those values of the parameters that maximize the
likelihood function with respect to the parameter y. That is,

L ŷ; x1, . . . , xn
� �

¼ max
y2Y

L y; x1, . . . , xnð Þ

where Y is the set of possible values of the parameter y.
The method of maximum likelihood extends to the case of several parameters.

Let X1, . . ., Xn be a random sample with joint pmf (if discrete) or pdf (if continuous)

L y1, . . . , ym; x1, . . . , xnð Þ¼ f x1, x2, . . . , xn; y1, y2, . . . , ymð Þ
where the values of the parameters y1, . . ., ym are unknown and x1, . . ., xn are the

observed sample values. Then, the maximum likelihood estimates ŷ1, . . . , ŷm are

those values of the yi ’ s that maximize the likelihood function, so that

f x1, . . . , xn; ŷ1, . . . , ŷm
� �

� f x1, . . . , xn; y1, . . . , ymð Þ for all allowable y1, . . . ,ym:

Note that the likelihood function conveys to us how feasible the observed sample is

as a function of the possible parameter values. Maximum likelihood estimates give

the parameter values for which the observed sample is most likely to have been gen-

erated. In general, the maximum likelihood method results in the problem of
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maximizing a function of single or several variables. Hence, in most situations, the

methods of calculus can be used. In deriving the MLEs, however, there are situations

where the techniques developed are more problem specific. Sometimes we need to

use numerical methods, such as Newton’s method.

In order to find a MLE, we need only to compute the likelihood function and then

maximize that function with respect to the parameter of interest. In many cases, it is

easier to work with the natural logarithm (ln) of the likelihood function, called the

log-likelihood function. Because the natural logarithm function is increasing, the

maximum value of the likelihood function, if it exists, will occur at the same point

as the maximum value of the log-likelihood function. We now summarize the

calculus-based procedure to find MLEs.

PROCEDURE TO FIND MLE
1. Define the likelihood function, L(y).
2. Often it is easier to take the natural logarithm (ln) of L(y).
3. When applicable, differentiate ln L(y) with respect to y, and then equate the derivative to zero.

4. Solve for the parameter y, and we will obtain ŷ.
5. Check whether it is a maximizer or global maximizer.

EXAMPLE 5.2.7
Suppose X1, . . ., Xn are a random sample from a geometric distribution with parameter p, 0�p�1.

Find MLE p̂.

Solution
For the geometric distribution, the pmf is given by

f x, pð Þ¼ p 1�pð Þx�1
, 0� p� 1, x¼ 1,2,3, . . .

Hence, the likelihood function is

L pð Þ¼
Yn
i¼1

p 1�pð Þx�1
h i

¼ pn 1�pð Þ�n +
Pn

i¼1xi :

Taking the natural logarithm of L(p),

lnL¼ n lnp+ �n +
Xn
i¼1

xi

 !
ln 1�pð Þ:

Taking the derivative with respect to p, we have

d lnL

dp
¼ n

p
�
�n+

Xn

i¼1
xi

1�p
:

Equating
d lnL pð Þ

dp to zero, we have

n

p
�
�n +

Xn

i¼1
xi

1�p
¼ 0:

Solving for p,

Continued
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p¼ nXn

i¼1
xi
¼ 1

x
:

Thus, we obtain an MLE of p as

p̂¼ nXn

i¼1
xi
¼ 1

X
:

We remark that 1=X
� �

is the maximum likelihood estimate of p. It can be shown that p̂ is a global

maximum.

EXAMPLE 5.2.8
(a) Suppose X1, . . ., Xn are random samples from a Poisson distribution with parameter l. Find

MLE l̂.
(b) Traffic engineers use Poisson distribution to model light traffic. This is based on the rational that

when rate is approximately constant in a light traffic, the distribution of counts of cars in a given

time interval should be Poisson. Following data shows the number of vehicles turns left in 15

randomly chosen 5 minute intervals at a specific intersection. Calculate maximum likelihood

estimate.

10 17 12 6 12 11 9 6

10 8 8 16 7 10 6

Solution (a)

We have the probability mass function

p xð Þ¼ lxe�l

x!
, x¼ 0,1,2, . . . , l> 0:

Hence, the likelihood function is

L lð Þ¼
Yn
i¼1

lxie�l

xi!
¼l
Pn

i¼1
xie�nlYn

i¼1
xi!

:

Then, taking the natural logarithm, we have

lnL lð Þ¼
Xn
i¼1

xi lnl�nl�
Xn
i¼1

ln xi!ð Þ

and differentiating with respect to l results in

d lnL lð Þ
dl

¼
Xn

i¼1
xi

l
�n

and

d lnL lð Þ
dl

¼ 0, implies

Xn

i¼1
xi

l
�n¼ 0:

That is,

l¼
Xn

i¼1
xi

n
¼ x:

Hence, the MLE of l is

l̂¼X:

(b) From part (a) we have the estimate as l̂¼ x¼ 9:8

Or approximately 10 vehicles per 5 minutes turn left at this intersection.
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It can be verified that the second derivative is negative and, hence, we really have a

maximum.

Sometimes the method of derivatives cannot be used for finding the MLEs. For

example, the likelihood is not differentiable in the range space. In this case, we need

to make use of the special structures available in the specific situation to solve the

problem. The following is one such case.

EXAMPLE 5.2.9
Let X1, . . ., Xn be a random sample from U(0, y), y>0. Find the MLE of y.

Solution
Note that the pdf of the uniform distribution is

f xð Þ¼
1

y
, 0� x� y

0, otherwise:

8<:
Hence, the likelihood function is given by

L y, x1, x2, . . . , xnð Þ¼
1

yn
, 0� x1,x2, . . . ,xn � y

0, otherwise:

8<:
When y�max(xi), the likelihood is (1/yn), which is positive and decreasing as a function of y

(for fixed n).However, for y<max(xi) the likelihood drops to 0, creating a discontinuity at the point
max(xi) (this is the minimum value of y that can be chosen which still satisfies the condition

0�xi�y), and Figure 5.1 shows that the maximum occurs at this point. Hence, we will not be able

to find the derivative. Thus, the MLE is the largest order statistic,

ŷ¼ max Xið Þ¼X nð Þ:

In the previous example, because E(X)¼ (y/2), we can see that y¼2E(X). Hence, the
method of moments estimator for y is ŷ¼ 2X:Sometimes the method of moments

estimator can give meaningless results. To see this, suppose we observe values 3,

5, 6, and 18 from a U(0, y) distribution. Clearly, the maximum likelihood estimate

FIGURE 5.1

Likelihood function for uniform probability distribution.
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of y is 18, whereas the method of moments estimate is 16, which is not quite accept-

able, because we have already observed a value of 18.

As mentioned earlier, if the unknown parameter y represents a vector of param-

eters, say y¼ (y1, . . ., yl), then theMLEs can be obtained from solutions of the system

of equations

@

@y
lnL y1, . . . , ynð Þ¼ 0, for i¼ 1, . . . , l:

These are called the maximum likelihood equations and the solutions are denoted by
ŷ1, . . . , ŷl
� �

.

EXAMPLE 5.2.10
Let X1, . . ., Xn be N (m, s2).

(a) If m is unknown and s2¼s0
2 is known, find the MLE for m.

(b) If m¼m0 is known and s2 is unknown, find the MLE for s2.
(c) If m and s2 are both unknown, find the MLE for y¼ (m, s2).

Solution
In order to avoid notational confusion when taking the derivative, let y¼s2. Then, the likelihood
function is

L m, yð Þ¼ 2pyð Þ�n=2
exp �

Xn

i¼1
xi�mð Þ2
2y

 !

or

lnL m, yð Þ¼�n

2
ln 2pð Þ�n

2
lny�

Xn

i¼1
xi�mð Þ2
2y

:

(a) When y¼y0¼s0
2 is known, the problem reduces to estimating the only one parameter, m.

Differentiating the log-likelihood function with respect to m,

@

@m
lnL m, y0ð Þð Þ¼

2
Xn

i¼1
xi�mð Þ

2y0
:

Setting the derivative equal to zero and solving for m,Xn
i¼1

xi�mð Þ¼ 0:

From this, Xn
i¼1

xi ¼ nm or m¼ x:

Thus, we get m̂¼X:

(b) When m¼m0 is known, the problem reduces to estimating the only one parameter, s2¼y.
Differentiating the log-likelihood function with respect to y,

@ lnL m, yð Þ
@y

¼�n

2y
+

Xn

i¼1
xi�mð Þ2

2y2
:

Setting the derivative equal to zero and solving for y, we get
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ŷ¼ ŝ2 ¼
Xn

i¼1
Xi�m0ð Þ2
n

:

(c) When both m and y are unknown, we need to differentiate with respect to both m and y
individually:

@ ln L m, yð Þ
@m

¼
2
Xn

i¼1
xi�mð Þ

2y

and

@ ln L m, yð Þ
@y

¼�n

2y
+

Xn

i¼1
xi�mð Þ2

2y2
:

Setting the derivatives equal to zero and solving simultaneously, we obtain

m̂ ¼ X,

ŝ2 ¼ ŷ¼
Xn

i¼1
Xi�X
� �2
n

¼ S02:

Note that in (a) and (c), the estimates for m are the same; however, in (b) and (c), the estimates
for s2 are different.

At times, the MLEs may be hard to calculate. It may be necessary to use numerical

methods to approximate values of the estimate. The following example gives one

such case.

EXAMPLE 5.2.11
Let X1, . . ., Xn be a random sample from a population with gamma distribution and parameters a and
b. Find MLEs for the unknown parameters a and b.

Solution
The pdf for the gamma distribution is given by

f xð Þ¼
xa�1e�x=b

G að Þba , x> 0, a> 0, b> 0

0, otherwise:

8<:
The likelihood function is given by

L¼ L a, bð Þ¼ 1

G að Þbað Þn
Yn
i¼1

xa�1
i e�

Pn

i¼1
xi=b:

Taking the logarithms gives

ln L¼�n lnG að Þ�na lnb+ a�1ð Þ
Xn
i¼1

lnxi�
Xn
i¼1

x

b
:

Now taking the partial derivatives with respect to a and b and setting both equal to zero, we
have

@

@a
ln L¼�n

G0 að Þ
G að Þ �n lnb+

Xn
i¼1

lnxi ¼ 0

@

@b
ln L¼�n

a
b
+
Xn
i¼1

xi

b2
¼ 0:

Continued
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Solving the second one to get b in terms of a, we have

b¼ x

a
:

Substituting this b in the first equation, we have to solve

�n
G0 að Þ
G að Þ �n ln

x

a
+
Xn
i¼1

lnxi ¼ 0

for a>0. There is no closed-form solution for a and b. In this case, one can use numerical methods
such as the Newton-Raphson method to solve for a, and then use this value to find b.

There are many references available on the Web. (such as http://www.mn.uio.no/

math/tjenester/kunnskap/kompendier/num_opti_likelihoods.pdf) explaining the

Newton-Raphson method for the gamma distribution.

In only a few cases are we able to obtain a simple form for the maximum like-

lihood equation that can be solved by setting the first derivative to zero. Often we

cannot write an equation that can be differentiated to find the MLE parameter esti-

mates. This is especially true in the situation where the model is complex and

involves many parameters. Evaluating the likelihood exhaustively for all values

of the parameters becomes almost impossible, even with modern computers. This

is why so-called optimization algorithms have become indispensable to statisticians.

The purpose of an optimization algorithm is to find as fast as possible the set of

parameter values that make the observed data most likely. There are many such algo-

rithms available. We describe the Newton-Raphson method in Project 5F, and

another powerful algorithm, known as the EM algorithm, is given in Section 13.4.

We have been introduced to several classical discrete and continuous pdf, such as

the Binomial, Poison, Gaussian (normal), Gamma, exponential pdf, among others.

Note that when we use one of these pdf to study a given set of data we refer to it

as parametric analysis, because each of the classical pdf’s contains at least one

parameter that plays a major role in the shape of the probability distribution that char-

acterizes the behavior of the phenomenon of interest.

Some Additional Probability Distributions
Now, we will introduce some additional probability distributions that play a major

role in analyzing data, or information, in health science, environmental science, engi-

neering, business and economics, among many other important areas in our society.

We shall study the three parameter gamma pdf, and the Weibull pdf. The Ray-
leigh pdf, and the power exponential pdf are other examples, that will be given in

Chapter 7. Each of these pdf’swill be applied to real data: cancer data, hurricane data,
global warming data, and environmental (rainfall) data in Chapter 7.

In Example 5.2.11, we have studied the two-parameter gamma probability distri-

bution (pdf), here we shall introduce the three-parameter version that is useful when

we analyze data that exhibits positive skewness. The three-parameter gamma
pdf is given by

f xð Þ¼ 1

baG að Þ
x� gð Þa�1

exp� x� gð Þ
b

,

where x>g, b>0 and G(a) ¼
Ð
0

1
xa�1e�xdx.
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The corresponding cumulative distribution function (cdf) is given by

F xð Þ¼P X� xð Þ
¼
ðx
g

1

baG að Þ
y�gð Þa�1

exp� y� gð Þ
b

dy

¼Gx�g
b
að Þ: 1

G að Þ :

The expected value is given by

E Xð Þ¼
ð1
0

xf xð Þdx¼ g+ ab:

Note when the location parameter g¼0 we obtain the two-parameter gamma (pdf).

EXAMPLE 5.2.12
Given a random sample X1, . . .,Xn from a three-parameter gamma distribution, obtain the MLEs of

the parameters.

Solution
The likelihood function is given by

L a, b, gð Þ¼
Yn
i¼1

f xð Þ

¼ 1

baG að Þ
� �nXn

i¼1

xi� gð Þ
a�1Yn

i¼1

exp� xi� g
b

� �
,

and the log-likelihood function ‘(a,b,g) of L(a,b,g) is given by

‘ a, b, gð Þ¼�na lnb�n lnG að Þ + a�1ð Þ
Xn
i¼1

ln xi� gð Þ�
Xn
i¼1

xi�g
b

:

a�1ð Þ
Xn
i¼1

ln x1� gð Þ�
Xn
i¼1

x1� g
b

:

The MLE can be obtained by setting
@‘
@a ¼ 0,

@‘
@b ¼ 0 and

@‘
@g¼ 0.

That is,

@‘

@b
¼�na

b
+

Xn

i¼1
xi�gð Þ

b2
¼ 0

which results in the MLE of b to be

b̂¼
Xn

i¼1
xi� ĝð Þ

nâ
, (5.1)

@‘

@a
¼�n lnb�n

G0 að Þ
G að Þ +

Xn
i¼1

ln xi� gð Þ¼ 0:

Substituting b̂ in the above expression we have

ln â�G0 âð Þ
G âð Þ ¼ ln

1

n

Xn
i¼1

x1� ĝð Þ
" #

�1

n

Xn
i¼1

ln xi� ĝð Þ, (5.2)

Continued
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where
G0 að Þ
G að Þ is called the digamma function which is defined as the logarithmic derivative of the

gamma function. Now,

@‘

@a
¼� a�1ð Þ

Xn
i¼1

1

xi� gð Þ +
Xn
i¼1

1

b
¼ 0

which reduces to

Xn
i¼1

1

xi� ĝ
¼ n

b̂ â�1ð Þ : (5.3)

Thus, we can proceed to numerically solve Equations (5.1), (5.2), and (5.3) to obtain (numer-
ically) an approximate MLE â, b̂,and ĝ so that we can apply the subject pdf to real data.

We can also use the cumulative probability distribution of the three-parameter

gamma pdf to obtain the quantile, xp, for which F(xp)¼1�p , that is,

F xp
� �¼Gxp � g að Þ

b
� 1

G að Þ
¼ 1�p:

Substituting the MLE for a,b, and g, that is, â, b̂,and ĝ and proceed to obtain approx-
imate estimates of xp.

The Weibull probability distribution is very important in characterizing the

behavior of health, engineering and environmental data, among others. TheWeibull
pdf is given by

f xð Þ¼ a
b

x� g
b

� �a�1

exp � x� g
b

� �a� �
,

where x>0, the shape parameter a, is greater than zero, the scale parameter b is

b>0 and the location parameter g is x>g. The cumulative probability distribution

of Weibull pdf is given by,

F xð Þ¼P X� xð Þ¼
ðx
g

a
b

t� g
b

� �a�1

exp � t� g
b

� �a� �
dt

¼ 1�exp � x� g
b

� �a� �
:

When g¼0, the subject pdf is reduced to a two-parameter Weibull and it is com-

monly used because of the difficulty in estimating the three-parameters.
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EXAMPLE 5.2.13
For random sample X1, . . .,Xn drawn from the three-parameter Weibull pdf, obtain MLEs for the

parameters.

Solution
The likelihood function, L(a,b,g) is given by

L a, b, gð Þ¼ anb�na
Yn
i¼1

xi� gð Þ
( )a�1

exp �b�a
Xn
i¼1

xi� gð Þa
( )

and the log-likelihood function ‘(a,b,g) of L(a,b,g) is given by

‘ a, b, gð Þ¼ n lna�na lnb+ a�1ð Þ�

Xn
i¼1

ln xi� gð Þ�b�a
Xn
i¼1

xi� gð Þa:

Setting @‘
@a¼ 0, @‘

@b¼ 0 and @‘
@g¼ 0and taking the partial derivativesand substitutinga¼ â, b¼ b̂,

and g¼ ĝ and simplifying the resulting expression we have

â+
Xn
i¼1

ln xi� ĝð Þ¼
n
Xn

i¼1
xi� ĝð Þâ ln xi� ĝð ÞXn

i¼1
xi� ĝð Þâ

,

nâ
Xn

i¼1
xi� ĝð Þâ�1Xn

i¼1
xi� ĝð Þâ

¼ â�1ð Þ
Xn
i¼1

1

xi� ĝ

and

b̂¼ 1

n

Xn
i¼1

xi� ĝð Þâ
( )1

â

:

The above equation cannot be analytically solved without further restrictions, so that we cannot

obtain exact values for â, b̂, and ĝ, however, there are software packages that we can use to

obtain approximate estimates of the subject parameters.

One of the solutions for Example 5.2.13 is given in http://math.ut.ee/acta/12/

Bartkute-Sakalauskas.pdf. Thus, we can see from the previous examples is that even

though MLEs are elegent estimators, sometimes, it is not easy or possible to obtain

explicit forms. For these estimates to perform parametric analysis on a given set of

data that represents a real world phenomenon of interest, we will need numerical

approximations.

We can use the cumulative probability distribution function F(x), to the quantile
xp for which F(xp)¼1�p, which reduces to

xp ¼ g+ b � lnpð Þ1a:
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Thus using the MLE of the parameters, we have

x̂p ¼ ĝ + b̂ � lnpð Þ1a:

The following graphs illustrate how Weibull pdf varies with the shape parameter a
(Figure 5.2a) and with scale parameter b (Figure 5.2b).

The exponential power or error probability distribution is usually applicable in

characterizing continuous data that is very nonsymmetric with respect to its mean. It

has been shown to be useful in analyzing environmental, engineering and health data,

among others. It is characterized by three parameters that offer the flexibility of

addressing different skewness behaviors. Let X be a continuous random variable that

Weibull distribution PDF (scale=1)
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FIGURE 5.2

(a) Weibull distribution with different shape parameters (scale¼1). (b) Weibull distribution

with different scale parameters (shape¼3).
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characterizes the behavior of a certain problem of interest, the power exponential or

error pdf is given by

f xð Þ¼ l e1�elx
k

� �
elx

k

xk�1, x> 0, l> 0, k> 0

where l and k are location and shape parameters, respectively.

The cumulative probability distribution function of the random variable X that

follows the exponential power pdf is given by

F xð Þ¼ 1�e1�elx
k

, x> 0, l> 0, k> 0:

The population mean and variance of X are mathematically intractable. Obtaining

MLE analytically is difficult.

The Rayleigh distribution characterizes the behavior of continuous random var-

iable that represents many real world problems. This pdf arise when a two-

dimensional vector, for example, wind velocity data as measured by an anemometer

and wind range that consists of speed value and direction, each of their components is

normally distributed, are not correlated and have equal variance. Let X be a contin-

uous random variable that assume such data, the Rayleigh pdf of the random variable

X is given by

f x; sð Þ¼ x

s2
e

�x2

2s2

� �
, x> 0

where the scale parameter s>0. The pdf of various values of parameters is given in

Figure 5.3.

The cdf is given by

P X� xð Þ¼ 1

s2

ðx
0

t

s2
e

�t2

2s2

� �
dt¼ 1�e

�x2

2s2 , x> 0,s> 0:

1.2 s=0.5
s=1
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FIGURE 5.3

Rayleigh pdg for various values of s.
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The expected value and the variance are given by

E Xð Þ¼ s

ffiffiffi
p
2

r
¼ 1:25s

and

Var Xð Þ¼ 4�p
2

s2 ¼ 0:429s2:

For a random sample X1, . . .,Xn fromRayleigh pdf, we can verify that theMLE of s is
given by

ŝ¼ 1

2n

Xn

i¼1
X2
i

� �
:

Sometimes, it may be necessary to estimate a function of a parameter. The following

invariance property of MLEs is very useful in those cases.

Theorem 5.2.1 Let h(y) be a one-to-one function of y. If ŷ¼ ŷ1, . . . , ŷl
� �

is the
MLE of y¼ (y1, . . ., yl), then the MLE of a function h(y)¼ (h1(y), . . ., hk(y)) of these

parameters is h ŷ
� �

¼ h1 ŷ
� �

, . . . ,hk ŷ
� �� �

for 1�k� l.

As a consequence of the invariance property, in Example 5.2.10, we can obtain

the estimator of the true standard deviation as ŝ¼
ffiffiffiffiffi
ŝ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nð ÞSn

i¼1 Xi�X
� �2q

.

It is also known that, under very general conditions on the joint distribution of the

sample and for a large sample size n, the MLE ŷ is approximately the minimum var-

iance unbiased estimator (MVUE) (this concept is introduced in the next section) of y.

EXERCISES 5.2
5.2.1. Let X1, . . ., Xn be a random sample of size n from the geometric distribution

for which p is the probability of success.

(a) Use the method of moments to find a point estimator for p.
(b) Use the following data (simulated from geometric distribution) to find

the moment estimator for p:

2 5 7 43 18 19 16 11 22

4 34 19 21 23 6 21 7 12

How will you use this information? [The pdf of a geometric

distribution is f(x)¼p(1�p)x�1, for x¼1,2,. . .. Also m¼1/p.]
5.2.2. Let X1, . . ., Xn be a random sample of size n from the exponential distribution

whose pdf (by taking y¼1/b in Definition 2.3.7) is

f x, yð Þ¼ ye�yx, x� 0

0, x< 0:



(a) Use the method of moments to find a point estimator for y.
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(b) The following data represent the time intervals between the emissions of

beta particles.

0:9 0:1 0:1 0:8 0:9 0:1 0:1 0:7 1:0 0:2

0:1 0:1 0:1 2:3 0:8 0:3 0:2 0:1 1:0 0:9

0:1 0:5 0:4 0:6 0:2 0:4 0:2 0:1 0:8 0:2

0:5 3:0 1:0 0:5 0:2 2:0 1:7 0:1 0:3 0:1

0:4 0:5 0:8 0:1 0:1 1:7 0:1 0:2 0:3 0:1

Assuming the data follow an exponential distribution, obtain a

moment estimate for the parameter y. Interpret.
5.2.3. Let X1, . . ., Xn be a random sample from a uniform distribution on the interval

(y�1, y+1).
(a) Find a moment estimator for y.
(b) Use the following data to obtain a moment estimate for y:

11:72 12:81 12:09 13:47 12:37

5.2.4. The probability density of a one-parameter Weibull distribution is given by

f xð Þ¼ 2axe�ax2 , x> 0

0, otherwise:



(a) Using a random sample of size n, obtain a moment estimator for a.
(b) Assuming that the following data are from a one-parameter Weibull

population,

1:87 1:60 2:36 1:12 0:15
1:83 0:64 1:53 0:73 2:26

obtain a moment estimate of a.
5.2.5. Let X1, . . ., Xn be a random sample from the truncated exponential

distribution with pdf

f xð Þ¼ e� x�yð Þ, x� y
0, otherwise:


Find the method of moments estimate of y.

5.2.6. Let X1, . . ., Xn be a random sample from a distribution with pdf

f x, að Þ¼ 1 + ax
2

, �1� x� 1 and �1� a� 1:

Find the moment estimators for a.
5.2.7. Let X1, . . ., Xn be a random sample from a population with pdf

f xð Þ¼
2a2

x3
, x� a

0, otherwise:

8<:
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Find a method of moments estimator for a.
5.2.8. Let X1, . . ., Xn be a random sample from a negative binomial distribution

with pmf

p x, r, pð Þ¼ x + r�1

r�1

� �
px 1�pð Þx, 0� p� 1, x¼ 0,1,2, : . . .

Find method of moments estimators for r and p. [Here E[X]¼ r(1�p)/p and
E[X2]¼ r(1�p)(r� rp+1)/p2.]

5.2.9. Let X1, . . ., Xn be a random sample from a distribution with pdf

f xð Þ¼ y + 1ð Þxy, 0� x� 1, y>�1

0, otherwise:

(

Use the method of moments to obtain an estimator of y.
5.2.10. Let X1, . . ., Xn be a random sample from a distribution with pdf

f xð Þ¼
2b�2x

b2
, 0< x< b

0, otherwise:

8<:
Use the method of moments to obtain an estimator of b.

5.2.11. Let X1, . . ., Xn be a random sample with common mean m and variance s2.
Obtain a method of moments estimator for s.

5.2.12. Let X1, . . ., Xn be a random sample from the beta distribution with

parameters a and b. Find the method of moments estimator for a and b.
5.2.13. Let X1, X2, . . ., Xn be a random sample from a distribution with unknown

mean m and variance s2. Show that the method of moments estimators for m
and s2 are, respectively, the sample mean X and

S02 ¼ 1=nð ÞPn
i¼1 X�X
� �2

:Note that S02¼ [(n�1)/n]S2 where S2 is the
sample variance.

5.2.14. Let X1, . . ., Xn be a random sample recorded as heads or tails resulting from

tossing a coin n times with unknown probability p of heads. Find the MLE p̂
of p. Also using the invariance property, obtain an MLE for q¼1�p. How
would you use the results you have obtained?

5.2.15. Suppose X1, . . ., Xn are a random sample from an exponential distribution

with parameter y. Find the MLE of ŷ. Also using the invariance property,

obtain an MLE for the variance.

5.2.16. Let X be a random variable representing the time between successive

arrivals at a checkout counter in a supermarket. The values of X in minutes

(rounded to the nearest minute) are

1 2 3 7 11 4 13

12 7 3 2 11 7 2

Assume that the pdf of X is f(x)¼ (1 /y)e�(x/y). Use these data to findMLE ŷ.
How can you use this estimate you have just derived? Also find the method

of moment estimate.
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5.2.17. Let X1, . . ., Xn be a random sample from the truncated exponential

distribution with pdf

f xð Þ¼ e� x�yð Þ, x� y

0, otherwise:

(
Show that the MLE of y is min(Xi;).

5.2.18. The pdf of a random variable X is given by

f xð Þ¼
2x

a2
e�x2=a2 , x> 0

0, otherwise:

8<:
Using a random sample of size n, obtain MLE â for a.

5.2.19. The pdf of a random variable X is given by

P X¼ nð Þ¼ 1

n!
exp an�eað Þ, n¼ 0,1,2, : . . .

Using a random sample of size n, obtain MLE â for a.
5.2.20. Let X1, . . ., Xn be a random sample from a two-parameter Weibull

distribution with pdf

f xð Þ¼
a
ba

xa�1e� x=bð Þa , x� 0

0, otherwise:

8<:
Find the MLEs of a and b.

5.2.21. Let X1, . . ., Xn be a random sample from a Rayleigh distribution with pdf

f xð Þ¼
x

a
e�x2=2a, x> 0

0, otherwise:

8<:
Find the MLEs of a.

5.2.22. Let X1, . . ., Xn be a random sample from a two-parameter exponential

population with density

f x, y, uð Þ¼ 1

y
e�

x�uð Þ
y , for x� u, y> 0:

Find MLEs for y and u when both are unknown.

5.2.23. Let X1, . . ., Xn be a random sample from the shifted exponential distribution

with

f xð Þ¼ le�l x�yð Þ, x� y

0, otherwise:

(
Obtain the MLEs of y and l.

5.2.24. Let X1, . . ., Xn be a random sample on [0, 1] with pdf

f xð Þ¼G 2yð Þ
G yð Þ2 x 1�xð Þ½ �y�1

, y> 0:

What equation does the maximum likelihood estimate of y satisfy?

2435.2 The Methods of Finding Point Estimators



5.2.25. Let X1, . . ., Xn be a random sample with pdf

f xð Þ¼ a+ 1ð Þxa, 0� x� 1

0, otherwise:

(

Find the MLE of a.
5.2.26. Let X1, . . ., Xn be a random sample from a uniform distribution with pdf

f xð Þ¼
1

3y + 2
, 0� x� 3y + 2

0, otherwise:

8<:
Obtain the MLE of y.

5.2.27. Let X1, . . ., Xn be a random sample from a Cauchy distribution with pdf

f xð Þ¼ 1

p 1 + x�bð Þ2
h i , �1< x<1:

Find the MLE for b.
5.2.28. The following data represent the amount of leakage of a fluorescent dye

from the bloodstream into the eye in patients with abnormal retinas:

1:6 1:4 1:2 2:2 1:8 1:7
1:8 6:3 2:4 2:3 18:9 22:8

Assuming that these data come from a normal distribution, find the maxi-

mum likelihood estimate of (m, s).
5.2.29. Let X1, . . ., Xn be a random sample from a population with gamma

distribution and parameters a and b. Show that the MLE of m¼ab is the

sample mean m̂¼X.
5.2.30. The lifetimes X of a certain brand of component used in a machine can be

modeled as a random variable with pdf f(x)¼ (1/y) e�(x/y). The reliability

R(x) of the component is defined as R(x)¼1�F(x). Suppose X1, X2, . . ., Xn

are the lifetimes of n components randomly selected and tested. Find the

MLE of R(x).
5.2.31. Using the method explained in Project 4A, generate 20 observations of a

random variable having an exponential distribution with mean and standard

deviation both equal to 2. What is the maximum likelihood estimate of the

population mean? How much is the observed error?

5.2.32. Let X1, . . ., Xn be a random sample from a Pareto distribution (named after

the economist Vilfredo Pareto) with shape parameter a. The density

function is given by

f xð Þ¼
a

xa+ 1
, x� 1

0, otherwise:

8<:
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(The Pareto distribution is a skewed, heavy-tailed distribution.

Sometimes it is used to model the distribution of incomes.) Show that the

MLE of a is

â¼ nXn

i¼1
ln Xið Þ

:

5.2.33. Let X1, . . ., Xn be a random sample from N (y, y),0<y<1. Find the

maximum likelihood estimate of y.

5.3 SOME DESIRABLE PROPERTIES OF POINT ESTIMATORS
Two different methods of finding estimators for population parameters have

been introduced in the preceding section. We have seen that it is possible to have

several estimators for the same parameter. For a practitioner of statistics, an im-

portant question is going to be which of many available sample statistics, such as

mean, median, smallest observation, or largest observation, should be chosen to rep-

resent all of the sample? Should we use the method of moments estimator, theMLE,

or an estimator obtained through some other method such as the least squares

(we will see this method in Chapter 8)? Now we introduce some common ways

to distinguish between them by looking at some desirable properties of these

estimators.

5.3.1 UNBIASED ESTIMATORS
It is desirable to have the property that the expected value of an estimator of a param-

eter is equal to the true value of the parameter. Such estimators are called unbiased

estimators.

Definition 5.3.1 A point estimator ŷ is called an unbiased estimator of the

parameter y if E ŷ
� �

¼ y for all possible values of y.Otherwise ŷ is said to be biased.

Furthermore, the bias of ŷ is given by

B¼E ŷ
� �

�y:

Note that the bias is nothing but the expected value of the (random) error, E ŷ�y
� �

.

Thus, the estimator is unbiased if the bias is 0 for all values of y. The bias occurs

when a sample does not accurately represent the population from which the sample

is taken. It is important to observe that in order to check whether ŷ is unbiased, it is

not necessary to know the value of the true parameter. Instead, one can use the sam-

pling distribution of ŷ. We demonstrate the basic procedure through the following

example.
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EXAMPLE 5.3.1
Let X1, . . .,Xn be a random sample from a Bernoulli population with parameter p. Show that the

method of moments estimator is also an unbiased estimator.

Solution
We can verify that the moment estimator of p is

p̂¼
Xn

i¼1
Xi

n
¼Y

n
:

Because for binomial random variables, E(Y)¼np, it follows that

E p̂ð Þ¼E
Y

n

� �
¼ 1

n
E Yð Þ¼ 1

n
�np¼ p:

Hence, p̂¼ Y=n is an unbiased estimator for p.

In fact, we have the following result, which states that the sample mean is always an

unbiased estimator of the population mean.

Theorem 5.3.1 The mean of a random sample X is an unbiased estimator of the
population mean m.

Proof. Let X1, . . ., Xn be random variables with mean m. Then, the sample mean is

X¼ 1=nð ÞSn
i¼1Xi.

EX¼ 1

n

Xn
i¼1

EXi ¼ 1

n
�nm¼ m:

Hence, X is an unbiased estimator of m. n

How is this interpreted in practice? Suppose that a data set is collected with n
numerical observations x1, . . .,xn. The resulting sample mean may be either less than

or greater than the true population mean, m (remember, we do not know this value). If

the sampling experiment was repeated many times, then the average of the estimates

calculated over these repetitions of the sampling experiment will equal the true

population mean.

If we have to choose among several different estimators of a parameter y, it is
desirable to select one that is unbiased. The following result states that the sample

variance S2 ¼ 1=n�1ð ÞSn
i¼1 Xi�X
� �2

is an unbiased estimator of the population var-

iance s2. This is one of the reasons why in the definition of the sample variance,

instead of dividing by n, we divide by (n�1).

Theorem 5.3.2 If S2 is the variance of a random sample from an infinite popu-
lation with finite variance s2, then S2 is an unbiased estimator for s2.

Proof. Let X1, . . ., Xn be random sample with variance s2<1. We have

E S2
� �¼ 1

n�1
E
Xn
i¼1

Xi�X
� �2 ¼ 1

n�1
E
Xn
i¼1

Xi�mð Þ� X�m
� �� �2" #

¼ 1

n�1

Xn
i¼1

E Xi�mf g2�nE X�m
� �2" #

:
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Because E{(Xi�m)2}¼s2 and E X�m
� �2n o

¼ s2=n, it follows that

E S2
� �¼ 1

n�1

Xn
i¼1

s2�n
s2

n

" #
¼ s2:

Hence, S2 is an unbiased estimator of s2. n

It is important to observe the following:

1. S2 is not an unbiased estimator of the variance of a finite population.

2. Unbiasedness may not be retained under functional transformations, that is; if ŷ is

an unbiased estimator of y, it does not follow that f ŷ
� �

is an unbiased estimator

of f(y).
3. MLEs or moment estimators are not, in general, unbiased.

4. In many cases it is possible to alter a biased estimator by multiplying by an

appropriate constant to obtain an unbiased estimator.

The following example will show that unbiased estimators need not be unique.

EXAMPLE 5.3.2
Let X1, . . ., Xn be a random sample from a population with finite mean m. Show that the sample mean

X and 1
3
X + 2

3
X1 are both unbiased estimators of m.

Solution
By Theorem 5.3.1, X is unbiased. Now

E
1

3
X +

2

3
X1

� �
¼ 1

3
m+

2

3
m¼m:

Hence, 1
3
X + 2

3
X1 is also an unbiased estimator of m.

Howmany unbiased estimators can we find? In fact, the following example shows that

if we have two unbiased estimators, there are infinitely many unbiased estimators.

EXAMPLE 5.3.3
Let ŷ1 and ŷ2 be two unbiased estimators of y. Show that

ŷ3 ¼ aŷ1 + 1�að Þŷ2, 0� a� 1

is an unbiased estimator of y. Note that ŷ3 is a convex combination of ŷ1 and ŷ2. In addition, assume

that ŷ1 and ŷ2 are independent, Var ŷ1
� �

¼s21 and Var ŷ2
� �

¼s22. How should the constant a be cho-

sen in order to minimize the variance of ŷ3?

Solution
We are given that E ŷ1

� �
¼ y and E ŷ2

� �
¼ y. Therefore,

E ŷ3
� �

¼E aŷ1 + 1�að Þŷ2
h i

¼ aEŷ1 + 1�að ÞEŷ2
¼ ay + 1�að Þy¼ y:

Hence ŷ3 unbiased. By independence,
Continued
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Var ŷ3
� �

¼Var aŷ1 + 1�að Þŷ2
h i

¼ a2Var ŷ1
� �

+ 1�að Þ2Var ŷ2
� �

¼ a2s21 + 1�að Þ2s22:
To find the minimum,

d

da
Var ŷ3
� �

¼ 2as21�2 1�að Þs22 ¼ 0,

gives us

a¼ s22
s21 +s

2
2

:

Because d2

da2V ŷ3
� �

¼ 2s21 + 2s
2
2 > 0,V ŷ3

� �
has a minimum at this value of 0a0. Thus, if s1

2¼s2
2,

then a¼1/2.

EXAMPLE 5.3.4
Let X1, . . ., Xn be a random sample from a population with pdf

f xð Þ¼
1

b
e�x=b, x> 0

0, otherwise:

(
Show that the method of moments estimator for the population parameter b is unbiased.

Solution
From Section 5.2, we have seen that the method of moments estimator for b is the sample mean X,
and the population mean is b. Because E X

� �¼m¼b, the method of moments estimator for the pop-
ulation parameter b is unbiased.

As we have seen, there can be many unbiased estimators of a parameter y. Which one

of these estimators can we choose? If we have to choose an unbiased estimator, it will

be desirable to choose the one with the least variance. If an estimator is biased, then

we should prefer the one with low bias as well as low variance. Generally, it is better

to have an estimator that has low bias as well as low variance. This leads us to the

following definition.

Definition 5.3.2 Themean square error of the estimator ŷ, denoted byMSE ŷ
� �

,

is defined as

MSE ŷ
� �

¼E ŷ�y
� �2

:

Through the following calculations, we will now show that theMSE is a measure that

combines both bias and variance.

MSE ŷ
� �

¼E ŷ�y
� �2

¼E ŷ�E ŷ
� �� �

+ E ŷ
� �

�y
� �h i2

¼E ŷ�E ŷ
� �� �2

+ E ŷ
� �

�y
� �2

+ 2 ŷ�E ŷ
� �� �

E ŷ
� �

�y
� �� �

¼E ŷ�E ŷ
� �� �2

+E E ŷ
� �

�y
� �2

+ 2E ŷ�E ŷ
� �� �

E ŷ
� �

�y
� �

¼Var ŷ
� �

+ E ŷ
� �

�y
h i2

:
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Letting B¼E ŷ
� �

�y, we get

MSE ŷ
� �

¼Var ŷ
� �

+B2:

B is called the bias of the estimator. Also, E ŷ�E ŷ
� �� �

E ŷ
� �

�y
� �

¼ 0:

Because the bias is zero for unbiased estimators, it is clear that

MSE ŷ
� �

¼Var ŷ
� �

. Mean square error measures, on average, how close an estima-

tor comes to the true value of the parameter. Hence, this could be used as a criterion

for determining when one estimator is “better” than another. However, in general, it

is difficult to find ŷ to minimize MSE ŷ
� �

: For this reason, most of the time, we look

only at unbiased estimators in order to minimize Var ŷ
� �

: This leads to the following

definition.

Definition 5.3.3 The unbiased estimator ŷ that minimizes the mean square error
is called the MVUE of y.

EXAMPLE 5.3.5
Let X1, X2, X3 be a sample of size n¼3 from a distribution with unknown mean m, �1<m<1,

where the variance s2 is a known positive number. Show that both ŷ1 ¼X and

ŷ2 ¼ 2X1 +X2 + 5X3ð Þ=8½ � are unbiased estimators for m. Compare the variances of ŷ1 and ŷ2.

Solution
We have

E ŷ1
� �

¼E X
� �¼ 1

3
�3m¼ m,

and

E ŷ2
� �

¼ 1

8
2EX1 +EX2 + 5EX3½ �

¼ 1

8
2m+m+ 5m½ � ¼m:

Hence, both ŷ1 and ŷ2 are unbiased estimators.

However,

Var ŷ1
� �

¼s2

3
,

whereas

Var ŷ2
� �

¼Var
2X1 +X2 + 5X3

8

� �
¼ 4

64
s2 +

1

64
s2 +

25

64
s2 ¼ 30

64
s2:

Because Var ŷ1
� �

<Var ŷ2
� �

, we see that X is a better unbiased estimator in the sense that the

variance of X is smaller.

It is important to observe that theMLEs are not always unbiased, but it can be shown

that for such estimators the bias goes to zero as the sample size increases.
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5.3.2 SUFFICIENCY*
In the statistical inference problems on a parameter, one of the major questions is:

Can a specific statistic replace the entire data without losing pertinent information?

Suppose X1, . . ., Xn is a random sample from a probability distribution with unknown

parameter y. In general, statisticians look for ways of reducing a set of data so that

these data can be more easily understood without losing the meaning associated with

the entire collection of observations. Intuitively, a statistic U is a sufficient statistic

for a parameter y if U contains all the information available in the data about the

value of y. For example, the sample mean may contain all the relevant information

about the parameter m, and in that case U¼X is called a sufficient statistic for m. An
estimator that is a function of a sufficient statistic can be deemed to be a “good” esti-

mator, because it depends on fewer data values. When we have a sufficient statisticU
for y, we need to concentrate only on U because it exhausts all the information that

the sample has about y. That is, knowledge of the actual n observations does not con-
tribute anything more to the inference about y.

Definition 5.3.4 Let X1, . . ., Xn be a random sample from a probability distribu-
tion with unknown parameter y. Then, the statistic U¼g(X1, . . ., Xn) is said to be
sufficient for y if the conditional pdf or pf of X1, . . ., Xn given U¼u does not depend
on y for any value of u. An estimator of y that is a function of a sufficient statistic for y
is said to be a sufficient estimator of y.

EXAMPLE 5.3.6
Let X1, . . .,Xn be iid Bernoulli random variables with parameter y. Show thatU¼Si¼1

n Xi is sufficient

for y.

Solution
The joint probability mass function of X1, . . ., Xn is

f X1, . . . , Xn; yð Þ¼ y
Pn

i¼1
Xi 1�yð Þn�

Pn

i¼1
Xi , 0� y� 1:

Because U¼Si¼1
n Xi we have

f X1, . . . , Xn; yð Þ¼ yU 1�yð Þn�U
, 0�U� n:

Also, because U�B(n, y), we have

f u; yð Þ¼ n
u

� �
yU 1�yð Þn�U:

Also,

f x1, . . . ,xnjU¼ uð Þ¼ f x1, . . . , xn, uð Þ
f U uð Þ ¼

f x1, . . . , xnð Þ
f U uð Þ , u¼

X
xi

0, otherwise:

8<:
Therefore,

f x1, . . . ,xnjU¼ uð Þ¼
yu 1�yð Þn�u

n
u

� �
yu 1�yð Þn�u

¼ 1

n
u

� � , ifu¼
X

xi

0, otherwise:

8>><>>:
which is independent of y. Therefore U is sufficient for y.
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EXAMPLE 5.3.7
Let X1, . . ., Xn be a random sample from U(0, y). That is,

f xð Þ¼
1

y
, if 0< x< y

0, otherwise:

8<:
Show that U¼ max

1�i�n
Xi is sufficient for y.

Solution
The joint density or the likelihood function is given by

f x1, . . . , xn; yð Þ¼
1

yn
, if 0< x1, . . . ,xn < y

0, otherwise:

8<:
The joint pdf f(x1, . . ., xn; y) can be equivalently written as

f x1, . . . , xn; yð Þ¼
1

yn
, if xmin > 0, xmax < y

0, otherwise:

8<:
Now, we can compute the pdf of U.

F uð Þ¼P U� uð Þ¼P X1, . . . ,Xn � uð Þ
¼
Yn
i¼1

P Xi � uð Þ, because of independence

¼
Yn
i¼1

ðu
0

1

y
dx

0@ 1A¼ un

yn
, 0< u< y:

The pdf of U may now be obtained as

f uð Þ¼ d

du
F uð Þ¼ nun�1

yn
, 0< u< y

Moreover,

f x1, . . . ,xnjuð Þ¼
f x1, . . . , xn, uð Þ

f U uð Þ ¼ f x1, . . .xnð Þ
f U uð Þ , if u¼ xmax and xmin > 0

0, otherwise:

8<:
Using the expressions for f(x1, . . ., xn) and fU(u) we obtain

f x1, . . . ,xnju¼ uð Þ¼
1=yn

nun�1=yn
¼ 1

nun�1
, if u¼ xmax and xmin > 0

0, otherwise:

8<:
f(X1, . . ., XnjU) is a function of u and xminwhich is independent of y.Hence,U¼ max

1�i�n
Xi is sufficient

for y.

The outcome X1, . . ., Xn is always sufficient, but we will exclude this trivial statistic

from consideration. In the previous two examples, we were given a statistic and

asked to check whether it was sufficient. It can often be tedious to check whether

a statistic is sufficient for a given parameter based directly on the foregoing defini-

tion. If the form of the statistic is not given, how do we guess what is the sufficient

statistic? Now think of working out the conditional probability by hand for each of

our guesses! In general, this will be a tedious way to go about finding sufficient sta-

tistics. Fortunately, the Neyman-Fisher factorization theorem makes it easier to spot
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a sufficient statistic. The following result will give us a convenient way of verifying

sufficiency of a statistic through the likelihood function.

NEYMAN-FISHER FACTORIZATION CRITERIA

Theorem 5.3.3 Let U be a statistic based on the random sample X1, . . ., Xn. Then, U is a

sufficient statistic for y if and only if the joint pdf (or pf ) f(x1, . . ., xn; y) (which depends on the
parameter y) can be factored into two nonnegative functions.

f x1, . . . , xn; yð Þ¼ g u, yð Þh x1, . . . , xnð Þ, for all x1, . . . ,xn,

where g (u, y) is a function only of u and y and h (x1, . . ., xn) is a function of only x1, . . ., xn and
not of y.

Proof. (Discrete case.) We will only give the proof in the discrete case, even though the result is

also true for the continuous case. First suppose that U (X1, . . ., Xn) is sufficient for y. Then, X1¼x1,
X2¼x2, . . ., Xn¼xn if and only if X1¼x1, X2¼x2, . . ., Xn¼xn andU (X1, . . ., Xn)¼U (x1, . . ., xn)¼u

(say). Therefore,

f x1, . . . , xn; yð Þ¼Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xn andU¼ uð Þ
¼Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xnjU¼ uð ÞPy U¼ uð Þ: n

Because U is assumed to be sufficient for y, the conditional probability

Py(X1¼x1, . . .,Xn¼xnjU¼u) does not depend on y. Let us denote this conditional

probability by h(x1, . . ., xn). Clearly, Py(U¼u) is a function of u and y. Let us denote
this by g(u, y).

It now follows from the equation above that

f x1, . . . , xn; yð Þ¼ g u, yð Þh x1, . . . , xnð Þ
as was to be shown.

To prove the converse, assume that

f x1, . . . , xn; yð Þ¼ g u, yð Þh x1, . . . , xnð Þ:
Define the set Au by

Au ¼ x1, . . . , xnð Þ :U x1, . . . , xnð Þ¼ uf g:
That is, Au is the set of all (x1, . . ., xn) such thatUmaps it into u. We note that Au does

not depend on y. Now
Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xnjU¼ uð Þ

¼Py X1 ¼ x1,X2 ¼ x2, . . .Xn ¼ xn and U¼ uð Þ
Py U¼ uð Þ

¼
Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xn and U¼ uð Þ

Py U¼ uð Þ , if x1, . . . , xnð Þ 2Au

0, if x1, . . . , xnð Þ 62Au:

8<:
If (x1, . . ., xn) 62Au, then, clearly,

f x1, . . . , xn; yð Þ¼Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xnjU¼ uð Þ
which is independent of y.
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If (x1, . . ., xn) 62 Au, then, using the factorization criterion, we obtain

Py X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xnjU¼ uð Þ
¼Py X1 ¼ x1,X2 ¼ x2, . . .Xn ¼ xnð Þ

Py U¼ uð Þ
¼ f x1, . . . , xn; yð Þ

Py U¼ uð Þ ¼ g u, yð Þh x1, . . . , xnð ÞX
x1, ..., xnð Þ2 Au

g u, yð Þh x1, . . . , xnð Þ

¼ g u, yð Þh x1, . . . , xnð Þ
g u, yð Þ

X
x1, ..., xnð Þ2 Au

h x1, . . . , xnð Þ¼
h x1, . . . , xnð ÞX

x1, ..., xnð Þ2 Au

h x1, . . . , xnð Þ :

Therefore, the conditional distribution of X1, . . ., Xn given U does not depend on y,
proving that U is sufficient.

One can use the following procedure to verify that a given statistic is sufficient.

This procedure is based on factorization criteria rather than using the definition of

sufficiency directly.

PROCEDURE TO VERIFY SUFFICIENCY
1. Obtain the joint pdf or pf fy(x1, . . ., xn).

2. If necessary, rewrite the joint pdf or pf in terms of the given statistic and parameter so that one

can use the factorization theorem.

3. Define the functions g and h, in such a way that g is a function of the statistic and parameter only

and h is a function of the observations only.

4. If step 3 is possible, then the statistic is sufficient. Otherwise, it is not sufficient.

In general, it is not easy to use the factorization criterion to show that a statisticU
is not sufficient. We now give some examples using the factorization theorem.

EXAMPLE 5.3.8
LetX1, . . .,Xn denote a random sample from a geometric populationwith parameter p. Show thatX is

sufficient for p.

Solution
For the geometric distribution, the pf is given by

f x, pð Þ¼ p 1�pð Þx�1
,x� 1

0, otherwise:


Hence, the joint pf is

f x1, . . . , xn; pð Þ¼ pn 1�pð Þ�n +
Pn

i¼1
xi

¼ pn 1�pð Þnx�n
, if x1, . . . ,xn � 1

0, otherwise:


Take,

g x, pð Þ¼ pn 1�pð Þnx�n
and h x1, . . . , xnð Þ¼ 1, if xi � 1

0, otherwise:


Thus, X is sufficient for p.
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EXAMPLE 5.3.9
Let X1, . . ., Xn denote a random sample from a U (0, y) with pdf

f y xð Þ¼
1

y
, 0< x< y, y> 0

0, otherwise

(
:

Show that X nð Þ ¼ max
1�i�n

Xi is sufficient for y, using the factorization theorem.

Solution
The likelihood function of the sample is

f y x1, . . . , xnð Þ¼
1

yn
, if 0< x1, . . . ,xn < y

0, otherwise

(
:

We can now write fy (x1, . . .., xn) as

f y x1, . . . , xnð Þ¼ h x1, . . . , xnð Þg y, x nð Þ
� �

, forall x1, . . . ,xn

where

h x1, . . . , xnð Þ¼ 1, if x1, . . . ,xn > 0

0, otherwise


and

g y; x nð Þ
� �¼ 1

yn
, if 0< x nð Þ < y

0, otherwise

(
:

From the factorization theorem, we now conclude that X(n) is sufficient for y. In the next def-

inition, we introduce the concept of joint sufficiency.

Definition 5.3.5 Two statistics U1 and U2 are said to be jointly sufficient for the
parameters y1 and y2 if the conditional distribution of X1, . . ., Xn given U1 and U2

does not depend on y1 or y2. In general, the statistic U¼ (U1, . . ., Un) is jointly
sufficient for y¼ (y1, . . ., yn) if the conditional distribution of X1, . . ., Xn given U
is free of u.

Now we state the factorization criteria for joint sufficiency analogous to the sin-

gle population parameter case.

THE FACTORIZATION CRITERIA FOR JOINT SUFFICIENCY

Theorem 5.4.4 The two statistics U1 and U2 are jointly sufficient for y1 and y2 if and only if
the likelihood function can be factored into two nonnegative functions,

f x1, . . . , xn; y1, y2ð Þ¼ g u1, u2; y1, y2ð Þh x1, . . . , xnð Þ
where g (u1, u2; y1, y2) is only a function of u1, u2; y1 and y2, and h(x1, . . ., xn) is free of y1 or y2.
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EXAMPLE 5.3.10
Let X1, . . ., Xn be a random sample from N(m, s2).

(a) If m is unknown and s2¼s0
2 is known, show that X is a sufficient statistic for m.

(b) If m¼m0 is known and s2 is unknown, show that Si¼1
n (Xi�m0)

2 is sufficient for s2.
(c) If m and s2 are both unknown, show that Si¼1

n Xi and Si¼1
n Xi

2 are jointly sufficient for m and s2.

Solution
The likelihood function of the sample is

L¼ 1

2pð Þn=2sn
exp �

Xn

i¼1
Xi�mð Þ2

2s2

" #

¼ 1

2pð Þn=2sn
exp

1

2s2
Xn
i¼1

x2i �2m
Xn
i¼1

xi + nm2
 !" #

¼ 2pð Þ�n=2s�nexp �
Xn

i¼1
x2i

2s2

 !
exp

2mnx
2s2

� �
exp �nm2

2s2

� �
:

(a) When s2¼s0
2 is known, use the factorization criteria, with

g x, mð Þ¼ exp
2nmx�nm2

2s20

� �
and

h x1, . . . , xnð Þ¼ 2pð Þ�n=2s�nexp �

Xn
i¼1

x2i

2s2

0BBB@
1CCCA:

Therefore, X is sufficient for m.
(b) When m¼m0 is known, let

g
Xn
i¼1

Xi�mð Þ2,s2
 !

¼s�nexp �

Xn
i¼1

xi�mð Þ2

2s2

���������

���������
and

h x1, . . . , xnð Þ¼ 1

2pð Þn=2
:

Thus Si¼1
n (Xi�m)2 is sufficient for s2.

(c) When both m and s2 are unknown, use

g
Xn
i¼1

xi,
Xn
i¼1

x2i ,m,s
2

 !
¼s�nexp �

Xn

i¼1
x2i �2m

Xn

i¼1
xi + nm2

2s2

�����
�����

and

h x1, . . . , xnð Þ¼ 1

2pð Þn=2
:

Hence, Si¼1
n Xi and Si¼1

n Xi
2 are jointly sufficient for m and s2.
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EXAMPLE 5.3.11
Suppose that we have a random sample X1, . . ., Xn from a discrete distribution given by

f y xð Þ¼C yð Þ2�x=y, x¼ y,y + 1,y + 2, . . . ; y> 0

whereC(y)>0 is anormalizing constant.Using the factorization theorem, finda sufficient statistic fory.

Solution
The joint density function f(x1,. . .,xn; y) of the sample X1, . . ., Xn is

f x1, . . . , xn; yð Þ¼ C yð Þ2�
Pn

i¼1
xi=yð Þ, x1,x2, . . . ,xn are integers � y

0, otherwise

(
:

The function f(x1, . . ., xn; y) can be written as

f x1, . . . , xn; yð Þ¼ h x1, . . . , xnð ÞC yð Þ2�
Pn

i¼1
xi=yð Þg1 y, x 1ð Þ

� �
where x(1)¼min i(x1, . . ., xn), and

h x1, x2, . . . , xnð Þ¼ 1, if xj�x 1ð Þ � 0 is an integer for j¼ 1,2, . . . ,n
0, otherwise


and

g1 y, x 1ð Þ
� �¼ 1, if x 1ð Þ � y

0, otherwise


:

Thus,

f x1, . . . , xn; yð Þ¼ h x1, . . . , xnð Þg y,
X

xi,x 1ð Þ
� �

where g(y,Sxi,x(1))¼C(y)2 g1(y,x(1)) . Using the factorization theorem, we conclude that (Sxi,x(1))

is jointly sufficient for y. This result shows that even for a single parameter, we may need more than
one statistic for sufficiency.

When using the factorization criterion, one has to be careful in cases where the range space
depends on the parameter.

Using the factorization criterion, we can prove the following result, which says that if

we have a uniqueMLE, then that estimator will be a function of the sufficient statistic.

Theorem 5.3.5 If U is a sufficient statistic for y, the MLE of y, if unique, is a
function of U.

Proof. Because U is sufficient, by Theorem 5.4.1, the joint pdf can be factored as

f x1, . . . , xn; yð Þ¼ g u, yð Þh x1, . . . , xnð Þ:
This depends on y only through the statistic U. To maximize L we need to maximize

g(U,y). n

Many common distributions such as Poisson, normal, gamma, and Bernoulli are

members of the exponential family of probability distributions. The exponential fam-

ily of distributions has density functions of the form

f x; yð Þ¼ exp k xð Þc yð Þ+ S xð Þ + d yð Þ½ �, if x2B
0, x 62B


where B does not depend on the parameter y.
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EXAMPLE 5.3.12
Write the following in exponential form.

(a)
e�llx

x!
(b) px(1�p)1�x

(c) 1ffiffiffiffi
2p

p e� x�mð Þ2=2

Solution
(a) We have

e�llx

x!
¼ exp x lnl� lnx!�l½ �:

Here k(x)¼x, c(l)¼ ln l, S(x)¼� ln(x !), and d(l)¼�l.
(b) Similarly,

px 1�pð Þ1�x ¼ exp x ln
p

1�p

� �
+ ln 1�pð Þ

� �
, x¼ 0or 1:

(c) This is the standard normal density.

1ffiffiffiffiffiffi
2p

p e� x�mð Þ2=2 ¼ exp xm�x2

2
�m2

2
�1

2
ln 2pð Þ

� �
, �1< x<1:

Note that in the previous example, for each of the cases, Si¼1
n Xi is a sufficient

statistic for the parameter. In the next result, we give a generalization of

this fact.

Theorem 5.3.6 Let X1, . . ., Xn be a random sample from a population with pdf or
pmf of the exponential form

f x; yð Þ¼ exp k xð Þc yð Þ+ S xð Þ+ d yð Þ½ �, if x2B
0, x 62B


where B does not depend on the parameter y. The statistic Si¼1

n k(Xi) is sufficient
for y.

Proof. The joint density

f x1, . . . , xn; yð Þ¼ exp c yð Þ
Xn
i¼1

k xið Þ+
Xn
i¼1

S xið Þ + nd yð Þ
" #

¼ exp c yð Þ
Xn
i¼1

k xið Þ+ nd yð Þ
" #( )

exp
Xn
i¼1

S xið Þ
" #( )

:

Using the factorization theorem, the statistic Si¼1
n k(Xi) is sufficient. n
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It does not follow that every function of a sufficient statistic is sufficient.

However, any one-to-one function of a sufficient statistic is also sufficient.

Every statistic need not be sufficient. When they do exist, sufficient estimators

are very important, because if one can find a sufficient estimator it is ordinarily

possible to find an unbiased estimator based on the sufficient statistic.

Actually, the following theorem shows that if one is searching for an unbiased

estimator with minimal variance, it has to be restricted to functions of a sufficient

statistics.

RAO-BLACKWELL THEOREM

Theorem 5.4.7 Let X1, . . ., Xn be a random sample with joint pf or pdf f (x1, . . ., xn; y) and let
U¼ (U1, . . ., Un) be jointly sufficient for y¼ (y1, . . ., yn). If T is any unbiased estimator of k(y), and if
T*¼E(T jU), then:
(a) T* is an unbiased estimator of k(y).
(b) T* is a function of U, and does not depend on y.
(c) Var(T*)�Var(T) for every y, andVar(T*)<Var(T) for some y unless T*¼T with probability 1.

Proof.

(a) By the property of conditional expectation and by the fact that T is an unbiased estimator of k(y),

E T	ð Þ¼E E TjUð Þð Þ¼E Tð Þ¼ k yð Þ:
Hence, T* is an unbiased estimator of k(y).

(b) BecauseU is sufficient for y, the conditional distribution of any statistic (hence, for T), givenU,
does not depend on y. Thus, T*¼E(TjU) is a function of U.

(c) From the property of conditional probability, we have the following:

Var Tð Þ¼E Var TjUð Þð Þ+Var E TjUð Þð Þ
¼E Var TjUð Þð Þ+Var T	ð Þ:

n

Because Var(TjU)�0 for all u, it follows that E(Var(TjU))�0. Hence, Var(T*)�
Var(T). We note that Var(T*)¼Var(T) if and only if Var(TjU)¼0 or T is a function

of U, in which case T*¼T (from the definition of T*¼E (TjU)¼T).
In particular, if k (y)¼y, and T is an unbiased estimator of y, then T*¼E (TjU)

will typically give the MVUE of y. If T is the sufficient statistic that best summarizes

the data from a given distribution with parameter y, and we can find some function g
of T such that E (g (T))¼y, it follows from the Rao-Blackwell theorem that g(T ) is

the UMVUE for y.

EXERCISES 5.3

5.3.1. Let X1, . . ., Xn be a random sample from a population with density

f xð Þ¼ e� x�yð Þ, for x> y
0, otherwise


:
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(a) Show that X is a biased estimator of y.
(b) Show that X is an unbiased estimator of m¼1+y.

5.3.2. The mean and variance of a finite population {a1, . . ., aN} are defined by

m¼ 1

N

XN
i¼1

ai and s2 ¼ 1

N

XN
i¼1

ai�mð Þ2:

For a finite population, show that the sample variance S2 is a biased

estimator of s2.
5.3.3. For an infinite population with finite variance s2, show that the sample

standard deviation S is a biased estimator for s. Find an unbiased estimator of

s. [We have seen that S2 is an unbiased estimator of s2. From this exercise,

we see that a function of an unbiased estimator need not be an unbiased

estimator.]

5.3.4. Let X1, . . ., Xn be a random sample from an infinite population with finite

variance s2. Define

S02 ¼ 1

n

Xn
i¼1

Xi�X
� �2

:

Show that S02 is a biased estimator for s2, and that the bias of S02 is �s2

n
.

Thus, S02 is negatively biased, and so on average underestimates the variance.

Note that S02 is the MLE of s2.
5.3.5. Let X1, . . ., Xn be a random sample from a population with the mean m. What

condition must be imposed on the constants c1, c2, . . ., cn so that

c1X1 + c2X2 + � � �+ cnXn

is an unbiased estimator of m?
5.3.6. Let X1, . . ., Xn be a random sample from a geometric distribution with

parameter y. Find an unbiased estimate of y.
5.3.7. Let X1, . . ., Xn be a random sample from U (0, y) distribution.

Let Yn¼max{X1, . . ., Xn}. We know (from Example 5.3.4) that ŷ1 ¼ Yn is

a MLE of y.
(a) Show that ŷ2 ¼ 2X is a method of moments estimator.

(b) Show that ŷ1 is ,a biased estimator, and ŷ2 is an unbiased estimator of y.
(c) Show that ŷ3 ¼ n+ 1

n ŷ1 is an unbiased estimator of y.
5.3.8. Let X1, . . ., Xn be a random sample from a population with mean m and

variance 1. Show that m̂2 ¼X
2
is a biased estimator of m2, and compute

the bias.

5.3.9. Let X1, . . ., Xn be a random sample from an N (m, s2) distribution. Show that

the estimator m̂¼X is the MVUE for m.
5.3.10. Let X1, . . . ,Xn1 be a random sample from an N (m1, s

2) distribution and let

Y1, . . . ,Yn2 be a random sample from a N (m2, s
2) distribution. Show that the

pooled estimator

ŝ2 ¼ n1�1ð ÞS21 + n2�1ð ÞS22
n1 + n2�2

is unbiased for s2, where S1
2 and S2

2 are the respective sample variances.
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5.3.11. Let X1, . . ., Xn be a random sample from an N (m, s2) distribution. Show that

the sample median, M, is an unbiased estimator of the population mean m.
Compare the variances of X and M. [Note: For the normal distribution, the

mean, median, and mode all occur at the same location. Even though both X
and M are unbiased, the reason we usually use the mean instead of the

median as the estimator of m is that X has a smaller variance than M.]

5.3.12. Let X1, . . ., Xn be a random sample from a Poisson distribution with

parameter l. Show that the sample mean X is sufficient for l.
5.3.13. Let X1, . . ., Xn be a random sample from a population with density function

f s xð Þ¼ 1

2s
exp � xj j

s

� �
, �1<X<1, s> 0:

Find a sufficient statistic for the parameter s.
5.3.14. Show that if ŷ is a sufficient statistic for the parameter y and if theMLE of y

is unique, then the MLE is a function of this sufficient statistic ŷ.
5.3.15. Let X1, . . ., Xn be a random sample from an exponential population with

parameter y.
5.3.16. Show that Si¼1

n Xi is sufficient for y. Also show that X is sufficient for y.
5.3.17. The following is a random sample from exponential distribution.

1:5 3:0 2:6 6:8 0:7 2:2 1:3 1:6 1:1 6:5
0:3 2:0 1:8 1:0 0:7 0:7 1:6 3:0 2:0 2:5
5:7 0:1 0:2 0:5 0:4

5.3.18. What is an unbiased estimate of the mean?

5.3.19. Using part (a) and these data, find two sufficient statistics for the parameter y.
5.3.20. Let X1, . . ., Xn be a random sample from a one-parameter Weibull

distribution with pdf

f xð Þ¼ 2axe�ax2 ,x> 0

0, otherwise:



5.3.19.1. Find a sufficient statistic for a.
5.3.19.2. Using part (a), find an UMVUE for a.
5.3.21. Let X1, . . ., Xn be a random sample from a population with density function

f xð Þ¼
1

y
, �y

2
� x� y

2
, y> 0

0, otherwise:

8<:
Show that min

1�i�n
Xi, max

1�i�n
Xi

� �
is sufficient for y.

5.3.22. Let X1, . . ., Xn be a random sample from a G(1, b) distribution.
(a) Show that U¼P i¼1

n Xi is a sufficient statistic for b.
(b) The following is a random sample from a G(1,b) distribution.

0:3 3:4 0:4 1:8 0:7 1:0 0:1 2:3 3:7 2:0
0:3 3:7 0:1 1:3 1:2 3:3 0:2 1:3 0:6 0:4
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Find a sufficient statistic for b.
5.3.23. Show that X1 is not sufficient for m, if X1, . . ., Xn is a sample from N(m, 1).
5.3.24. Let X1, . . ., Xn be a random sample from the truncated exponential

distribution with pdf

f xð Þ¼ ey�x, x> 0

0, otherwise


:

Show that X(1)¼min(Xi) is sufficient for y.
5.3.25. Let X1, . . ., Xn be a random sample from a distribution with pdf

f xð Þ¼ yxy�1, 0< x< 1, y> 0

0, otherwise


:

Show that U¼X1, . . ., Xn is a sufficient statistic for y.
5.3.26. Let X1, . . ., Xn be a random sample from a Rayleigh distribution with pdf

f xð Þ¼
2x

a
e�x2=a,x> 0

0, otherwise:

(

Show that
P

i¼1
n Xi

2 is sufficient for the parameter a.

5.4 A METHOD OF FINDING THE CONFIDENCE INTERVAL:
PIVOTAL METHOD
In the previous sections, we studied methods for finding point estimators for the pop-

ulation parameters. In general, the estimates will differ from the true parameter

values by varying amounts depending on the sample values obtained. In addition,

the point estimates do not convey any measure of reliability.

Now,we discuss another type of estimation, called an interval estimation. Although
point estimators are useful, interval estimators conveymore information about the data

that are used to obtain the point estimate. The purpose of using an interval estimator is to

have some degree of confidence of securing the true parameter. For an interval estima-

tor of a single parameter y, wewill use the randomsample to find two quantitiesL andU
such that L<y<U with some probability. Because L and U depend on the sample

values, they will be random. This interval (L, U) should have two properties: (1)

P(L<y<U) is high, that is, the true parameter y is in (L, U) with high probability,

and (2) the length of the interval (L, U) should be relatively narrow on the average.

In summary, interval estimation goes a step beyond point estimation by provid-

ing, in addition to the estimating interval (L, U), a measure of one’s confidence in

the accuracy of the estimate. Interval estimators are called confidence intervals
and the limits are calledU and L, the upper and lower confidence limits, respectively.
The associated levels of confidence are determined by specified probabilities. The

width of the confidence interval reflects the amount of variability inherent in

the point estimate. Thus, our objective is to find a narrow interval with high
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probability of enclosing the true parameter, y. We will restrict our attention to single

parameter estimation.

The probability that a confidence interval will contain the true parameter y is called
the confidence coefficient. The confidence coefficient gives the fraction of the time that

the constructed interval will contain the true parameter, under repeated sampling.

Let L andU be the lower and upper confidence limits for a parameter y based on a
random sample X1, . . ., Xn. Both L and U are functions of the sample. We can write

the interval estimate of y as

P L� y�Uð Þ¼ 1�a

and we read it as we are (1�a) 100% confident that the true parameter y is located in
the interval (L, U). The number 1�a is the confidence coefficient, and the interval

(L, U) is referred to as a (1�a) 100% confidence interval ((1�a) 100% CI) for y.
Thus, if we want a 95% confidence interval for, say, population mean m, then
a¼0.05. Note that for the discrete random variables, we may not be able to find

a lower bound L and an upper bound U such that the probability, P(L�y�U), is
exactly (1�a). In such a case we can choose L and U such that P(L�y�U)�1�a.

How do we find the confidence interval? For this, we use the error structure of the

point estimator to obtain this interval. For instance, we know that the sample mean,

X, is a point estimate (MLE or unbiased estimator) of the population mean m. In this
case, we also know that the standard error of X is s=

ffiffiffi
n

p
: If the sample came from a

normal population, then for a 95% confidence interval for the mean, multiply the

standard error by 1.96 and then add and subtract this product from the sample mean.

From this we can also observe that, if everything else remains the same, the size of

the confidence interval reduces as the sample size increases.

EXAMPLE 5.4.1
As part of a promotion, the management of a large health club wants to estimate average weight loss

for its members within the first 3 months after joining the club. They took a random sample of 45

members of this health club and found that they lost an average of 13.8 pounds within the first

3 months of membership with a sample standard deviation of 4.2 pounds. Find a 95% confidence

interval for the true mean. What if a random sample of 200 members of this health club also resulted

in the same sample mean and sample standard deviation?

Solution
Here a point estimate of the true mean m is the sample mean x¼ 13:8 pounds. Because n¼45 is large
enough, we can use the Central Limit Theorem and use approximate normality for the distribution of

X with mean m and the approximate standard error 4:2=
ffiffiffiffiffi
45

p� �¼ 0:626: Thus a 95% confidence

interval is 13.8
 (1.96)(0.626), resulting in the interval (12.57, 15.03). Thus, on average, with

95% confidence, one can expect the true mean to lie in this interval.
For n¼200, the standard error is 4:2=

ffiffiffiffiffiffiffiffi
200

p� �� 0:297: Thus a 95% confidence interval is

13.8
 (1.96)(0.297) resulting in the interval (13.22, 14.38). Thus the more sample values (that

is, the more information) we have, the tighter (smaller width) the interval.
The previous example was built on our knowledge of the sampling distribution of the sample

mean. What if the sampling distribution of the statistic we are interested in is not readily available?

More generally, our success in building confidence intervals for an estimate of a parameter depends

on identifying a quantity known as the pivot. We now describe this method.

262 CHAPTER 5 Statistical Estimation



The pivotal method is a general method of constructing a confidence interval

using a pivotal quantity. This relies on our knowledge of sampling distributions. Here

we have to find a pivotal quantity with the following two characteristics:

(i) It is a function of the random sample (a statistic or an estimator ŷ) and the

unknown parameter y, where y is the only unknown quantity, and

(ii) It has a probability distribution that does not depend on the parameter y.

Suppose that ŷ¼ ŷ Xð Þ is a point estimate of y, and let p ŷ, y
� �

be the pivotal quan-

tity. Now, for a given value of a, (0<a<1), and constants a and b, with (a<b), let

P a� p ŷ, y
� �

� b
� �

¼ 1�a:

Hence, given ŷ, the inequality is solved for y to obtain a region of y values, usually an
interval corresponding to the observed ŷ-value. This will be a desired confidence

interval.

From (i) and (ii), it is important to note that the pivotal quantity depends on the

parameter, but its distribution is independent of the parameter. Let X1, . . ., Xn be a

random sample and let ŷ be a reasonable point estimate of y. For instance, ŷ could be
the maximum likelihood (or some other) estimator of y. In general, finding a pivotal
quantity may not be easy. However, if ŷ is the sample mean X or sample variance S2,
we could find a pivotal quantity with known sampling distributions. Suppose p ŷ, y

� �
is a pivotal quantity with known probability distribution that is independent of y.
(Usually, the probability distribution of the pivotal quantity will be standard normal,

t, w2, or F-distribution.) The following are some of the standard pivotal quantities: If

the sample X1, . . ., Xn is from N(m, s2)
With m unknown and s known, let X be the sample mean. Then the pivot is

X�m
� �

= s=
ffiffiffi
n

pð Þ, which has an N(0, 1) distribution (see comments after Corollary

4.2.2).

With m unknown and s unknown, then the pivot is X�m
� �

= S=
ffiffiffi
n

pð Þ, which has a
t-distribution with (n�1) degrees of freedom (see Theorem 4.2.9). If n is large, using
CLT, the distribution of the pivot is approximately N(0, 1).

If s2 is unknown, then the pivot is (n�1)S2/s2, which has a w2-distribution with

(n�1) degrees of freedom (see Theorem 4.2.8).

The following examples illustrate the pivotal method.

EXAMPLE 5.4.2
Suppose we have a random sampleX1, . . .,Xn fromN(m, 1). Construct a 95% confidence interval for m.

Solution
Here the confidence coefficient is 0.95. We know that the MLE of m is X which has an N(m,1/n)
distribution. Note that this distribution depends on the unknown value of m, and hence X cannot

be a pivot. However, taking the z-transform of X we obtain the pivotal quantity as

Z¼ X�m
s=

ffiffiffi
n

p ¼ X�m
1=

ffiffiffi
n

p

Continued
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which has an N(0, 1) distribution that is a function of the sample measurements and does not depend

on m. Hence, this Z can be taken as a pivot p ŷ, y
� �

: Now to find a and b such that
P a�Zð Þ¼ p ŷ, y

� �
� bÞ¼ 0:95: One such choice is to find the value of a such that P

(�a�Z�a)¼0.95. From the normal table,

P �za=2 � Z� za=2
� �¼ 0:95,

where za/2 represents the value of z with tail area a/2. This implies a¼ za/2¼1.96. Hence,

P �1:96�Z� 1:96ð Þ¼ 0:95

or, using the definition of Z and solving for m, we obtain

P X�1:96ffiffiffi
n

p �m�X +
1:96ffiffiffi

n
p

� �
¼ 0:95:

Hence, a 95% confidence interval for m is X� 1:96=
ffiffiffi
n

pð Þ,X + 1:96=
ffiffiffi
n

pð Þ� �
: Thus, the lower

confidence limit L is X� 1:96=
ffiffiffi
n

pð Þ and the upper confidence limit U is X + 1:96=
ffiffiffi
n

pð Þ:

From the derivation of Example 5.4.1, it follows that

P X�m
�� �� < za=2

sffiffiffi
n

p
� �

¼ 1�a:

Thus, for a normal populationwith known variances2, ifX is used as an estimator of the

truemeanm, the probability that the errorwill be less than za=2s=
ffiffiffi
n

p
is 1�a. It is impor-

tant to note that there is some arbitrariness in choosing a confidence interval for a given

problem. Theremaybe several pivotals for ŷ that could be used.Also, it is not necessary
to allocate equal probability to the two tails of the distribution; however, doing so may

result in the shortest length confidence interval for a given confidence coefficient.

When we make the statement of the form

P X�1:96ffiffiffi
n

p � m�X +
1:96ffiffiffi

n
p

� �
¼ 0:95,

we mean that, in an infinite series of trials in which repeated samples of size n are

drawn from the same population and 95% confidence intervals for m are calculated

by the same method for each of the samples, the proportion of intervals that actually

include m will be 0.95. Figure 5.4 illustrates this idea, where the vertical line repre-

sents the position of true mean m and each of the horizontal lines represents a 95%

confidence interval of the sample, 20 samples of size n are taken.

A statement of the type P x� 1:96=
ffiffiffi
n

pð Þ� m� x + 1:96=
ffiffiffi
n

pð Þð Þ¼ 0:95, where x
is the observed sample mean, is misleading. Once we calculate this interval using a

particular sample, then either this interval contains the true mean m or not, and hence

the probability will be either 0 or 1. Thus, the correct interpretation of confidence

interval for the population mean is that if samples of the same size, n, are drawn

repeatedly from a population, and a confidence interval is calculated from each

sample, then 95% of these intervals should contain the population mean. This is often

stated as “We are 95% confident that the true mean is in the interval

X� za=2 s=
ffiffiffi
n

pð Þ,X + za=2 s=
ffiffiffi
n

pð Þ� �
:” Thus, the correct interpretation requires the

confidence limits to be variables. This concept of confidence interval is attributed

to Neyman.
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We can follow the accompanying procedure to find a confidence interval for the

parameter y.

PROCEDURE TO FIND A CONFIDENCE INTERVAL FOR u USING THE PIVOT
1. Find an estimator ŷ of y: usually MLE of y works.

2. Find a function of y and ŷ,p y, ŷ
� �

(pivot), such that the probability distribution of p(.,.) does not

depend on y.
3. Find a and b such thatP a� p y, ŷ

� �
� b

� �
¼ 1�a:. Choose a and b such that P p y, ŷ

� �
� a

� �
¼

a=2 and P p y, ŷ
� �

� b
� �

¼ a=2 (see Figure 5.5 where the shaded area in each side is a/2).
4. Now, transform the pivot confidence interval to a confidence interval for the parameter y. That is,

work with the inequality in step 3 and rewrite it as P(L�y�U)¼1�a, where L is the lower

confidence limit and U is the upper confidence limit.

m

FIGURE 5.4

95% confidence intervals for m.

FIGURE 5.5

Probability density of the pivot.
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The following example is given to show that the success of finding a pivotal

quantity depends on our ability to find the right transformation of the statistic and

its distribution so that the transformed variable is a pivot.

EXAMPLE 5.4.3
Suppose the random sample X1, . . ., Xn hasU(0,y) distribution. Construct a 90% confidence interval

for y and interpret. Identify the upper and lower confidence limits.

Solution
From Example 5.3.4, we know that

U¼ max Xi
1�i�n

is the MLE of y. The random variable U has the pdf

f U uð Þ¼ nun�1=yn, 0� u� y:

This is not independent of the parameter y. Let Y¼U/y, then (using the Jacobians described in
Chapter 3) the pdf of Y is given by

f Y yð Þ¼ nyn�1, 0� y� 1:

Hence, Y satisfies the two characteristics of the pivotal quantity. Thus, Y¼U/y is a pivot. Now,
we have to find a and b such that

p a�U

y
� b

� �
¼ 0:90:

PDF of  Y
0.05

0.05

0 1y

To find a and b we use the cdf of Y, FY(y)¼yn, 0�y�1, as follows.
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FY að Þ¼ 0:05 and FY bð Þ¼ 0:95

which implies that

an ¼ 0:05 and bn ¼ 0:95

resulting in

a¼
ffiffiffiffiffiffiffiffiffi
0:05

n
p

and b¼
ffiffiffiffiffiffiffiffiffi
0:95

n
p

:

Write

P
ffiffiffiffiffiffiffiffiffi
0:05

n
p

<
U

y
<

ffiffiffiffiffiffiffiffiffi
0:95

n
p� �

¼ 0:90:

Solving, the 90% confidence interval for y is

Uffiffiffiffiffiffiffiffiffi
0:95n

p ,
Uffiffiffiffiffiffiffiffiffi
0:05n

p
� �

or

P
Uffiffiffiffiffiffiffiffiffi
0:95n

p � y� Uffiffiffiffiffiffiffiffiffi
0:95n

p
� �

¼ 0:90:

Thus, the lower confidence limit is U=
ffiffiffiffiffiffiffiffiffi
0:95n

p
and the upper confidence limit is U=

ffiffiffiffiffiffiffiffiffi
0:05n

p
, and

the 90% confidence interval is U=
ffiffiffiffiffiffiffiffiffi
0:95n

p
,U=

ffiffiffiffiffiffiffiffiffi
0:05n

p Þ:�

We can interpret this in the following manner. In a large number of trials in which

repeated samples are taken from a population with uniform pdf with parameter y,
approximately 90% of the intervals will contain y. For instance, if we observed

n¼20 values from a uniform distribution with the maximum observed value being

15, then a 90% confidence interval for y is (15.04, 17.42). Thus, we are 90% con-

fident that these data came from a uniform distribution upper limit falling somewhere

in this interval.

It is important to note that the pivotal method may not be applicable in all

situations. For example, in the binomial case, to find a confidence interval for p,
there is no quantity that satisfies the two conditions of a pivot. However, if sample

size is large, then the z-score of sample proportion can be used as a pivot with ap-

proximate standard normal distribution. For pivotal method to work, there is the

practical necessity that the distribution of the pivotal quantity make it easy to

compute the probabilities. In cases where the pivotal method does not work, we

may need to use other techniques such as the method based on sampling distributions

(see Project 4A). A proper discussion of these methods is beyond the level of

this book.
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EXERCISES 5.4

5.4.1. (a) Suppose we construct a 99% confidence interval. What are we 99%

confident about?

(b) Which of the confidence intervals is wider, 90% or 99%?

(c) In computing a confidence interval, when do you use the t-distribution
and when do you use z, with normal approximation?

(d) How does the sample size affect the width of a confidence interval?

5.4.2. Suppose X is a random sample of size n¼1 from a uniform distribution

defined on the interval (0, y). Construct a 98% confidence interval for y
and interpret.

5.4.3. Consider the probability statement

P �2:81� Z¼ X�m
s=

ffiffiffi
n

p � 2:75

� �
¼ k

where X is the mean of a random sample of size n fromN(m, s2) distribution
with known s2.
(a) Find k.
(b) Use this statement to find a confidence interval for m.
(c) What is the confidence level of this confidence interval?

(d) Find a symmetric confidence interval for m.
5.4.4. A random sample of size 50 from a particular brand of 16-ounce tea packets

produced a mean weight of 15.65 ounces. Assume that the weights of these

brands of tea packets are normally distributed with standard deviation of

0.59 ounce. Find a 95% confidence interval for the true mean m.
5.4.5. Let X1, . . ., Xn be a random sample from an N(m, s2), where the value of s2

is unknown.

(a) Construct a (1�a) 100% confidence interval for s2, choosing an

appropriate pivot. Interpret its meaning.

(b) Suppose a random sample from a normal distribution gives the

following summary statistics: n¼21, x¼ 44:3, and s¼3.96. Using part

(a), find a 90% confidence interval for s2. Interpret its meaning.

5.4.6. Let X1, . . ., Xn be a random sample from a gamma distribution with a¼2

and unknown b. Construct a 95% confidence interval for b.
5.4.7. Let X1, . . ., Xn be a random sample from an exponential distribution with pdf

f(x)¼ (1/y)e�x/y, y>0, x>0. Construct a 95% confidence interval for y and

interpret. [Hint:Recall that
P

i¼1
n Xihasagammadistributionwitha¼n,b¼y.]

5.4.8. Let X1, . . ., Xn be a random sample from a Poisson distribution with

parameter l.
(a) Construct a 90% confidence interval for l.
(b) Suppose that the number of raisins in a bowl of a particular brand of

cereal is observed to be 25. Assuming that the number of raisins in a

bowl is Poisson distributed, estimate the expected number of raisins per

bowl with a 90% confidence interval.
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(c) How many bowls of cereal need to be sampled in order to estimate the

expected number of raisins per bowlwith a standard error of less than 0.2?

5.4.9. Let X1, . . ., Xn be a random sample from an N(m, s2).
(a) Construct a (1�a) 100% confidence interval for mwhen the value of s2

is known.

(b) Construct a (1�a) 100% confidence interval for mwhen the value of s2

is unknown.

5.4.10. Let X1, . . ., Xn be a random sample from anN(m1, s
2) population and Y1, . . .,

Yn be an independent random sample from an N(m2, s
2) distribution where

s2 is assumed to be known. Construct a (1�a) 100% interval for (m1�m2).
Interpret its meaning.

5.4.11. Let X1, . . ., Xn be a random sample from a uniform distribution on [y, y+1].
Find a 99% confidence interval for y, using an appropriate pivot.

5.5 ONE SAMPLE CONFIDENCE INTERVALS
In this section, we will find confidence intervals for one sample case for both large

and small sample situations.

5.5.1 LARGE SAMPLE CONFIDENCE INTERVALS
If the sample size is large, then by the Central Limit Theorem, certain sampling dis-

tributions can be assumed to be approximately normal. That is, if y is an unknown

parameter (such as m, p, (m1�m2), (p1�p2)), then for large samples, by the Central

Limit Theorem, the z-transform

z¼ ŷ�y
sŷ

possesses an approximately standard normal distribution, where ŷ is the MLE of y
and sŷ is its standard deviation. Then as in Example 5.4.1, the pivotal method can be

used to obtain the confidence interval for the parameter y. For y¼m, n�30 will be

considered large; for the binomial parameter p, n is considered large if np, and
n(1�p) are both greater than 5. Note that these numbers are only a rule of thumb.

PROCEDURETOCALCULATE LARGESAMPLECONFIDENCE INTERVAL FORu
1. Find an estimator (such as the MLE) of y, say ŷ.
2. Obtain the standard error, sŷof ŷ:
3. Find the z-transform z¼ ŷ�y

� �
=sŷ: Then z has an approximately standard normal distribution.

4. Using the normal table, find two tail values� za/2 and za/2.

5. An approximate (1�a) 100% confidence interval for y is ŷ� za=2sŷ, ŷ+ za=2sŷ
� �

, that is,

P ŷ� za=2sŷ � y� ŷ + za=2sŷ
� �

¼ 1�a:

6. Conclusion: We are (1–a) 100% confident that the true parameter y lies in the interval

ŷ� za=2sŷ, ŷ + za=2sŷ
� �

:
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EXAMPLE 5.5.1
Let ŷ be a statistic that is normally distributed with mean y and standard deviation sŷ, where s is

assumed to be known. Find a confidence interval for y that possesses a confidence coefficient equal
to 1–a.

Solution
The z-transform of ŷ is

Z¼ ŷ�y
sŷ

and has a standard normal distribution. Select two tail values� za/2 and za/2 such that

P �za=2 � Z� za=2
� �¼ 1�a:

Because of symmetry, this is the shortest interval that contains the area 1�a. Then,

P ŷ� za=2sŷ � y� ŷ + za=2sŷ
� �

¼ 1�a:

Therefore, the confidence limits of y are ŷ� za=2sŷ and ŷ + za=2sŷ: Hence, (1�a)100% confi-
dence interval for y is given by ŷ
 za=2sŷ:

If in particular for a large sample of size n, let ŷ¼X be the sample mean. Then the

large sample (1�a) 100% confidence interval for the population mean m is

X
 za=2
sffiffiffi
n

p ’X
 za=2
Sffiffiffi
n

p

where S is a point estimate of s. That is,

P X� za=2
Sffiffiffi
n

p � m�X
 za=2
Sffiffiffi
n

p
� �

¼ 1�a:

As we have seen in Section 5.4, the correct interpretation of this confidence interval

is that in a repeated sampling, approximately (1�a) 100% of all intervals of the form

X
 za=2 S=
ffiffiffi
n

pð Þ include m, the true mean. Suppose x and s are the sample mean and

the sample standard deviation, respectively, for a particular set of n observed sample

values x1, . . ., xn. Then we do not know whether the particular interval

x� za=2 s=
ffiffiffi
n

pð Þ,x� za=2 s=
ffiffiffi
n

pð Þ
� �

contains m. However, the procedure that produced

this interval does capture the true mean in approximately (1�a) 100% of cases. This

interpretation will be assumed hereafter, when we make a statement such as, “We are

95% confident that the true mean will lie in the interval (74.1, 79.8).”

EXAMPLE 5.5.2
Two statistics professors want to estimate average scores for an elementary statistics course that has

two sections. Each professor teaches one section and each section has a large number of students. A

random sample of 50 scores from each section produced the following results:

(a) Section I: x1 ¼ 77:01,s1¼10.32.

(b) Section II: x2 ¼ 72:22,s2¼11.02.

Calculate 95% confidence intervals for each of these three samples.

270 CHAPTER 5 Statistical Estimation



Solution
Because n¼50 is large, we could use normal approximation. For a¼0.05, from the normal table:

za/2¼ z0.025¼1.96. The confidence intervals are:

(a) We have

x1
 za=2
s1ffiffiffi
n

p ¼ 77:01
1:96
10:32ffiffiffiffiffi

50
p

� �
which gives a 95% confidence interval (74.149, 79.871).

(b) We can compute

x2
 za=2
s2ffiffiffi
n

p ¼ 72:22
1:96
11:02ffiffiffiffiffi

50
p

� �
which gives the interval (69.165, 75.275).

It may be noted that if the population is normal with a known variance s2, we
can use X
 za=2 s=

ffiffiffi
n

pð Þ as the confidence interval for the population mean m, irre-
spective of the sample size. However, if s2 is unknown, in order to use

X
 za=2 s=
ffiffiffi
n

pð Þ as an approximate confidence interval for m, the sample size has

to be large for the Central Limit Theorem to hold. However to use this approximate

procedure, we do not need the condition that samples arise from a normal distribu-

tion. We will consider sample size to be large if n�30 (applicable to estimators of

the mean). If not, we shall use the small sample procedure discussed in the next

section.

EXAMPLE 5.5.3
Fifteen vehicles were observed at random for their speeds (in mph) on a highway with speed limit

posted as 70 mph, and it was found that their average speed was 73.3 mph. Suppose that from past

experience we can assume that vehicle speeds are normally distributed with s¼3.2. Construct a

90% confidence interval for the true mean speed m, of the vehicles on this highway. Interpret the

result.

Solution
Because the population is given to be normal with standard deviation s¼3.2, sample size need not

be large given x¼ 73:3 and s¼3.2. Here, n¼15, and a¼0.10. Thus, za/2¼z0.05¼1.645. Hence, a

90% confidence interval for m is given by

73:3�1:645
3:2ffiffiffiffiffi
15

p < m< 73:3 + 1:645
3:2ffiffiffiffiffi
15

p

or

71:681< m< 74:919:

Interpretation: We are 90% confident that the true mean speed m of the vehicles on this highway
is between 71.681 and 74.919.
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5.5.2 CONFIDENCE INTERVAL FOR PROPORTION, p
Consider a binomial distribution with parameter p. Let X be the number of successes

in n trials. Then the MLE p̂ of p is p̂¼X=n: It can be shown, using the procedure

outlined at the beginning of this section, that an approximate large sample (1�a)
100% confidence interval for p is

p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
, p̂ + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r !
:

That is,

P p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
< p< p̂+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r !
¼ 1�a:

A natural question is: “How do we determine the sample size that we have is suffi-

cient for the normal approximation that is used in the foregoing formula?” There are

various rules of thumb that are used to determine the adequacy of the sample size for

normal approximation. Some of the popular rules are that np and n(1–p) should be

greater than 10, or that p̂
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=np

should be contained in the interval (0,1), or

np(1�p)�10, etc. All of these rules perform poorly when p is nearer to 0 or 1.

Recently, there have been many works on coverage analysis for confidence intervals.

We refer to a survey article by Lee et al. for more details on this topic. For simplicity

of calculations, we will use the rule that np and n(1�p) are both greater than 5.

EXAMPLE 5.5.4
An auto manufacturer gives a bumper-to-bumper warranty for 3 years or 36,000 miles for its new

vehicles. In a random sample of 60 of its vehicles, 20 of them needed five or more major warranty

repairs within the warranty period. Estimate the true proportion of vehicles from this manufacturer

that need five or more major repairs during the warranty period, with confidence coefficient 0.95.

Interpret.

Solution
Here we need to find a 95% confidence interval for the true proportion, p. Here, p̂¼ 20=60¼ 1=3:

For a¼0.05, za/2¼z0.025¼1.96. Hence, a 95% confidence interval for p is

p̂
 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
¼ 1

3

1:96

ffiffiffiffiffiffiffiffiffiffiffiffi
1
3

� �
2
3

� �
60

s
which gives the confidence interval as (0.21405, 0.45262). That is, we are 95% confident that the

true proportion of vehicles from this manufacturer that need five or more major repairs during the
warranty period will lie in the interval (0.21405, 0.45262).

5.5.2.1 MARGIN OF ERROR AND SAMPLE SIZE
In real-world problems, the estimates of the proportion p are usually accompanied by

a margin of error, rather than a confidence interval. For example, in the news media,

especially leading up to election time, we hear statements such as “The CNN/USA

Today/Gallup poll of 818 registered voters taken on June 27-30 showed that if the
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election were held now, the president would beat his challenger 52% to 40%, with

8% undecided. The poll had a margin of error of plus or minus four percentage

points.” What is this “margin of error”? According to the American Statistical Asso-

ciation, the margin of error is a common summary of sampling error that quantifies

uncertainty about a survey result. Thus, the margin of error is nothing but a confi-

dence interval. The number quoted in the foregoing statement is half the maximum

width of a 95% confidence interval, expressed as a percentage.

Let b be the width of a 95% confidence interval for the true proportion, p. Let
p̂¼ x=n be an estimate for p where x is the number of successes in n trials. Then,

b¼x

n
+ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=nð Þ 1� x=nð Þð Þ

n

r
� x

n
�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=nð Þ 1� x=nð Þð Þ

n

r !

¼3:92

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=nð Þ 1� x=nð Þð Þ

n

r
� 3:92

ffiffiffiffiffi
1

4n

r
,

because x=nð Þ 1� x=nð Þð Þ¼ p̂ 1� p̂ð Þ� 1
4
:

Thus, the margin of error associated with p̂¼ x=nð Þ is 100d%, where

d¼ maxb

2
¼ 3:92

ffiffiffi
1
4n

p
2

¼ 1:96

2
ffiffiffi
n

p :

From the foregoing derivation, it is clear that we can compute the margin of error for

other values of a by replacing 1.96 by the corresponding value of za/2.
A quick look at the formula for the confidence interval for proportions reveals

that a larger sample would yield a shorter interval (assuming other things being

equal) and hence a more precise estimate of p. The larger sample is more costly

in terms of time, resources, andmoney, whereas samples that are too small may result

in inaccurate inferences. Then, it becomes beneficial for finding out the minimum

sample size required (thus less costly) to achieve a prescribed degree of precision

(usually, the minimum degree of precision acceptable). We have seen that the large

sample (1�a) 100% confidence interval for p is

p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
< p< p̂ + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
:

Rewriting it, we have

p̂�pj j � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
¼ za=2ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

p
which shows that, with probability (1�a), the estimate p̂ is within za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=np

units of p. Because p̂ 1� p̂ð Þ� 1=4, for all values of p̂, we can write the foregoing

inequality as

p̂�pj j � za=2ffiffiffi
n

p
ffiffiffi
1

4

r
¼ za=2

2
ffiffiffi
n

p :
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If we wish to estimate p at level (1�a) to within d units of its true value, that is

jp̂�pj � d, the sample size must satisfy the condition za=2= 2
ffiffiffi
n

pð ÞÞ� d,
�

or

n�
z2a=2

4d2
:

Thus, to estimate p at level (1�a) to within d units of its true value, take the minimal

sample size as n¼ za/2
2 /4d2, and if this is not an integer, round up to the next integer.

Sometimes, we may have an initial estimate ep of the parameter p from a similar

process or from a pilot study or simulation. In this case, we can use the following

formula to compute the minimum required size of the sample to estimate p, at level
(1�a), to within d units by using the formula

n¼
z2a=2ep 1�epð Þ

d2

and, if this is not an integer, rounding up to the next integer.

A similar derivation for calculation of sample size for estimation of the popula-

tion mean m at level (1�a) with margin of error E is given by

n¼
z2a=2s

2

E2

and, if this is not an integer, rounding up to the next integer. This formula can be used

only if we know the population standard deviation, s. Although it is unlikely to know
s when the population mean itself is not known, we may be able to determine s from

an earlier similar study or from a pilot study/simulation.

EXAMPLE 5.5.5
A dendritic tree is a branched formation that originates from a nerve cell. In order to study brain

development, researchers want to examine the brain tissues from adult guinea pigs. How many cells

must the researchers select (randomly) so as to be 95% sure that the sample mean is within 3.4 cells

of the population mean? Assume that a previous study has shown s¼10 cells.

Solution
A 95% confidence corresponds to a¼0.05. Thus, from the normal table, za/2¼ z0.025¼1.96. Given

that E¼3.4 and s¼10, and using the sample size formula, the required sample size n is

n¼
z2a=2s

2

E2
¼ 1:96ð Þ2 10ð Þ2

3:4ð Þ2 ¼ 33:232:

Thus, take n¼34.

EXAMPLE 5.5.6
Suppose that a local TV station in a city wants to conduct a survey to estimate support for the pres-

ident’s policies on economy within 3% error with 95% confidence.

(a) How many people should the station survey if they have no information on the support level?

(b) Suppose they have an initial estimate that 70% of the people in the city support the economic

policies of the president. How many people should the station survey?
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Solution
Here a¼0.05, and thus za/2¼1.96. Also, d¼0.03.

(a) With no information on p, we use the sample size formula:

n¼
z2a=2

4d2
¼ 1:96ð Þ2
4 0:03ð Þ2 ¼ 1067:1:

Hence, the TV station must survey 1068 people.

(b) Because ep¼ 0:7, the required sample size is calculated from

n¼
z2a=2ep 1�epð Þ

d2

¼ 1:96ð Þ2 0:70ð Þ 0:30ð Þ
0:03ð Þ2 ¼ 896:37:

Thus, the TV station must survey at least 897 people.

In practice, we should realize that one of the key factors of a good design is not

sample size by itself; it is getting representative samples. Even if we have a very large

sample size, if the sample is not representative of our target population, then sample

size means nothing. Therefore, whenever possible, we should use random sampling

procedures (or other appropriate sampling procedures) to ensure that our target pop-

ulation is properly represented.

5.5.3 SMALL SAMPLE CONFIDENCE INTERVALS FOR m

Now we will consider the problem of finding a confidence interval for the true mean

m of a normal population when the variance s2 is unknown and obtaining a large sam-

ple is either impossible or impractical. Let X1, . . ., Xn be a random sample from a

normal population. We know that

T¼
ffiffiffi
n

p
X�m
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1ð ÞS2= s2 n�1ð Þ½ �
q ¼ X�m

S=
ffiffiffi
n

p

has a t-distribution with (n�1) degrees of freedom, irrespective of the value of s2.
Thus, X�m

� �
= S=

ffiffiffi
n

p Þð can be used as a pivot. Hence, for n small (n<30) and s2

unknown, we have the following result.

Theorem 5.5.1 If X and S are the sample mean and the sample standard deviation
of a random sample of size n from a normal population, then

X� ta=2:n�1

Sffiffiffi
n

p < m<X + ta=2,n�1

Sffiffiffi
n

p

is a (1�a) 100% confidence interval for the population mean m.
Note that if the confidence coefficient, 1�a, and X and S remain the same, the

confidence range CR¼ ŷU� ŷL decreases as the sample size n increases, which

means that we are closing in on the true parameter value of y.
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One can use the following procedure to find the confidence interval for the mean

when a small sample is from an approximately normal distribution.

PROCEDURE TO FIND SMALL SAMPLE CONFIDENCE INTERVAL FOR m
1. Calculate the values of X and S, from the sample X1, . . ., Xn.

2. Using the t-table, select two tail values� ta/2 and ta/2.
3. The (1�a) 100% confidence interval for m is

X� ta=2,n�1

Sffiffiffi
n

p , X + ta=2,n�1

Sffiffiffi
n

p
� �

that is,

P X� ta=2,n�1

Sffiffiffi
n

p � m�X + ta=2,n�1

Sffiffiffi
n

p
� �

¼ 1�a:

4. Conclusion: We are (1�a) 100% confident that the true parameter m lies in the interval

X� ta=2,n�1 S=
ffiffiffi
n

pð Þ,X + ta=2,n�1 S=
ffiffiffi
n

pð Þ� �
:

5. Assumption: The population is normal.

In practice, the first step in the previous procedure should include a test of nor-

mality (see Project 4C). A built-in test of normality is available in most of the sta-

tistical software packages. In Example 5.5.9, we show how this test is utilized. Even

when the data fail the normality test, most statistical software will produce a confi-

dence interval based on normality or give an error report. We should understand that

generally such answers are meaningless. In those cases, nonparametric methods

(Chapter 12) such as the Wilcoxon rank sum method or bootstrap methods

(Chapter 13) will be more appropriate. For more discussion, refer to Section 14.4.1.

EXAMPLE 5.5.7
The following is a random data from a normal population.

7:2 5:7 4:9 6:2 8:5 2:8

Construct a 95% confidence interval for the population mean m. Interpret.

Solution
The first step is to calculate mean and standard deviation of the sample. We compute as the mean

x¼ 5:883 and standard deviation, s¼1.959. For 5 degrees of freedom, and for a¼0.05, from the

t-table, t0.025¼2.571. Hence, a 95% confidence interval for m is

x� ta=2,n�1

2ffiffiffi
n

p , x + ta=2,n�1

2ffiffiffi
n

p
� �
¼ 5:883�2:571

1:959ffiffiffi
6

p
� �

,5:5883 + 2:571
1:959ffiffiffi

6
p

� �� �
¼ 3:827, 7:939ð Þ

:

This can be interpreted as that we are 95% confident that the true mean m will be between 3.827

and 7.939.
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EXAMPLE 5.5.8
The scores of a random sample of 16 people who took the TOEFL (Test of English as a Foreign

Language) had a mean of 540 and a standard deviation of 50. Construct a 95% confidence interval

for the population mean m of the TOEFL score, assuming that the scores are normally distributed.

Solution
Because n¼16 is small, using Theorem 6.3.1 with degrees of freedom 15, a 95% confidence interval

for m is

x
 ta=2,n�1

sffiffiffi
n

p ¼ 540
2:131
50ffiffiffiffiffi
16

p
� �

:

So the 95% confidence interval for the population mean m of the TOEFL scores is (513.36,

566.64).

A Dobson unit is the most basic measure used in ozone research. The unit is named

after G.M.B. Dobson, one of the first scientists to investigate atmospheric ozone

(between 1920 and 1960). He designed the Dobson spectrometer—the standard

instrument used to measure ozone from the ground. The data in Example 5.5.9 rep-

resent the total ozone levels at randomly selected points on the earth (represented by

the pair (Latitude, Longitude)) on a particular day.

EXAMPLE 5.5.9
The following data represent the total ozone levels measured in Dobson units at randomly selected

locations of earth on a particular day.

269 246 388 354 266 303

295 259 274 249 271 254

Can we say that the data are approximately normally distributed? Construct a 95% confidence

interval for the population mean m of ozone levels on this day.

Solution
The following is the probability plot of these data created using Minitab.
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Normal probability plot for ozone data

Continued
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Because all the data values lie within the bounds on the normal probability plot (see the

discussion in Section 3.2.4), we can assume that the data have approximate normality. We have
x¼ 285:7 and s¼43.9. Also n¼12. For a¼0.05, t0.025,11¼2.201. A 95% confidence interval

for m is

x
 ta=2, n�1ð Þ
sffiffiffi
n

p ¼ 285:7
2:201
43:9ffiffiffiffiffi
12

p
� �

:

Hence, a 95% confidence interval for m, the average ozone level over the earth, lies in (257.81,
313.59).

EXERCISES 5.5
5.5.1. A survey indicates that it is important to pay attention to truth in political

advertising. Based on a survey of 1200 people, 35% indicated that they

found political advertisements to be untrue; 60% say that they will not vote

for candidates whose advertisements are judged to be untrue; and of this

latter group, only 15% ever complained to the media or to the candidate

about their dissatisfaction.

(a) Find a 95% confidence interval for the percentage of people who find

political advertising to be untrue.

(b) Find a 95% confidence interval for the percentage of voters who will not

vote for candidates whose advertisements are considered to be untrue.

(c) Find a 95% confidence interval for the percentage of those who avoid

voting for candidates whose advertisements are considered untrue and

who have complained to the media or to the candidate about the

falsehood in commercials.

(d) For each case above, interpret the results and state any assumptions you

have made.

5.5.2. Many mutual funds use an investment approach involving owning stocks

whose price/earnings multiples (P/Es) are less than the P/E of the S&P

500. The following data give P/Es of 49 companies a randomly selected

mutual fund owns in a particular year.

6:8 5:6 8:5 8:5 8:4 7:5 9:3 9:4 7:8 7:1
9:9 9:6 9:0 9:4 13:7 16:6 9:1 10:1 10:6 11:1
8:9 11:7 12:8 11:5 12:0 10:6 11:1 6:4 12:3 12:3

11:4 9:9 14:3 11:5 11:8 13:3 12:8 13:7 13:9 12:9
14:2 14:0 15:5 16:9 18:0 17:9 21:8 18:4 34:3

Find a 98% confidence interval for the mean P/Emultiples. Interpret the

result and state any assumptions you have made.

5.5.3. Let X1, . . ., Xn be a random sample from N(m, s2) distribution, s2 known.
(a) Show that m̂¼X is a MLE of the population mean m.
(b) Show that

P X� 2sffiffiffi
n

p < m<X +
2sffiffiffi
n

p
� �

¼ 0:954:
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(c) Let

P X� ksffiffiffi
n

p < m<X +
ksffiffiffi
n

p
� �

¼ 0:90:

Find k.
5.5.4. Let the observed mean of a sample of size 45 be x¼ 68:51 from a

distribution having variance 110. Find a 95% confidence interval for the

true mean m and interpret the result and state any assumptions you

have made.

5.5.5. In a random sample of 50 college seniors, 18 indicated that they were

planning to pursue a graduate degree. Find a 98% confidence interval

for the true proportion of all college seniors planning to pursue a

graduate degree, and interpret the result, and state any assumptions you

have made.

5.5.6. DVD players coming off an assembly line are automatically checked to

make sure they are not defective. The manufacturer wants an interval

estimate of the percentage of DVD players that fail the testing procedure.

Compute a 90% confidence interval, based on a random sample of size 105

in which 17 DVD players failed the testing procedure. Also, interpret the

result and state any assumptions you have made.

5.5.7. Studies have shown that the risk of developing coronary disease increases

with the level of obesity, or accumulation of body fat. A study was

conducted on the effect of exercise on losing weight. Fifty men who

exercised lost an average of 11.4 lb, with a standard deviation of 4.5 lb.

Construct a 95% confidence interval for the mean weight loss through

exercise. Interpret the result and state any assumptions you have made.

5.5.8. Basing findings on 60 successful pregnancies involving natural birth, an

experimenter found that the mean pregnancy term was 274 days, with a

standard deviation of 14 days. Construct a 99% confidence interval for the

true mean pregnancy term m.
5.5.9. Let Y be the binomial random variable with parameter p and n¼400. If the

observed value of Y is y¼120, find a 95% confidence interval for p.
5.5.10. For a health screening in a large company, the diastolic and systolic blood

pressures of all the employees were recorded. In a random sample of 150

employees, 12 were found to suffer from hypertension. Find 95% and 98%

confidence intervals for the proportion of the employees of this company

with hypertension.

5.5.11. In a random sample of 500 items from a large lot of manufactured items,

there were 40 defectives.

(a) Find a 90% confidence interval for the true proportion of defectives in

the lot.

(b) Is the assumption of normal approximation valid?

(c) Suppose we suspect that another lot has the same proportion of

defectives as in the first lot. What should be the sample size if we want

to estimate the true proportion within 0.01 with 90% confidence?
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5.5.12. Pesticide concentrations in sediment from irrigation areas can provide

information required to assess exposure and fate of these chemicals in

freshwater ecosystems and their likely impacts to the marine environment.

In a study (Jochen et al., 2000), 103 sediment samples were collected from

irrigation channels and drains in 11 agricultural areas of Queensland. In 74

of these samples, they detected DDTs with concentration levels up to

840 ngg�1 dw. Obtain a 95% confidence interval for the proportion of total

number of sediments with detectable DDTs.

5.5.13. Let X be the mean of a random sample of size n from an N(m, 16)
distribution. Find n such that p X�2< m<X + 2

� �¼ 0:95:
5.5.14. Let X be a Poisson random variable with parameter l. A sample of 150

observations from this population has a mean equal to 2.5. Construct a

98% confidence interval for l.
5.5.15. An opinion poll conducted in March of 1996 by a newspaper (Tampa

Tribune) among eligible voters with a sample size 425 showed that the

president, who was seeking reelection, had 45% support. Give a 95% and a

98% confidence interval for the proportion of support for the president.

5.5.16. A random sample of 100 households located in a large city recorded the

number of people living in the household, Y, and the monthly

expenditure for food, X. The following summary statistics are given.

X100
i¼1

Yi ¼ 340

X100
i¼1

Y2
i ¼ 1650

X100
i¼1

Xi ¼ 40,000

X100
i¼1

X2
i ¼ 44,000,000

:

(a) Form a 95% confidence interval for the mean number of people living

in a household in this city.

(b) Form a 95% confidence interval for the mean monthly food expenses.

(c) For each case just given, interpret the results and state any assumptions

you have made.

5.5.17. Let X1, . . ., Xn be a random sample from an exponential distribution with

parameter y. A sample of 350 observations from this population has a mean

equal to 3.75. Construct a 90% confidence interval for y.
5.5.18. Suppose a coin is tossed 100 times in order to estimate p¼p (Head). It is

observed that head appeared 60 times. Find a 95% confidence interval for p.
5.5.19. Suppose the population is women at least 35 years of age who are pregnant

with a fetus affected by Down syndrome. We are interested in testing

positive on a noninvasive screening test for fetuses affected by Down
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syndrome in women at least 35 years of age. In an experiment, suppose 52

of 60 women tested positive. Obtain a 95% confidence interval for the true

proportion of women at least 35 years of age who are pregnant with a fetus

affected by Down syndrome who will receive positive test results from this

procedure.

5.5.20. (a) Let X1, . . ., Xn be a random sample from a Poisson distribution with

parameter l. Derive a (1�a) 100% large sample confidence interval

for l.
(b) To date nodes in a phylogenetic tree, the mean path length (MPL) is

used in estimating the relative age of a node. The following data

represent the MPL for 39 nodes (source: TomBritton, Bengt Oxelman,

Annika Vinnersten, and Kåre Bremer, “Phylogenetic dating with

confidence intervals using mean path-lengths”). Assume that the data

(given in centimeters) follow a Poisson distribution with parameter l.

65:2 47:0 38:2 13:5 18:0 25:6 16:3 14:0 23:2 18:8
7:5 13:3 11:0 54:9 22:0 50:1 32:6 26:0 13:0 9:0
7:2 4:7 4:5 41:1 45:8 37:0 8:5 30:5 29:3 13:8
7:7 5:5 24:1 12:5 22:3 19:0 9:5 4:7 3:0

Obtain a 95% confidence interval for l and interpret.

5.5.21. A person plans to start an Internet service provider in a large city. The plan

requires an estimate of the average number of minutes of Internet use of a

household in a week. How many households must be (randomly) sampled

to be 95% sure that the sample mean is within 15 minutes of the population

mean? Assume that a pilot study estimated the value of s¼35 minutes.

5.5.22. The fruit flyDrosophila melanogaster normally has a gray color. However,

because of mutation a good portion of them are black. A biologist eager to

learn about the effect of mutation wants to collect a random sample to

estimate the proportion of black fruit flies of this type within 1% error with

95% confidence.

(a) How many individual flies should the researcher capture if there is no

information on the population proportion of black flies?

(b) Suppose the researcher has the initial estimate that 25% of the fruit fly

Drosophila melanogaster have been affected by this mutation. What is

the sample size?

5.5.23. In a pharmacological experiment, 35 lab rats were not given water for

11 hours and were then permitted access to water for 1 hour. The

amounts of water consumed (mL/hour) are given in the following table.

10:6 13:3 15:5 10:7 9:6 12:1 11:8 10:9 9:9 13:2
9:3 11:7 9:9 13:0 12:3 11:0 13:1 11:0 12:5 13:9

14:1 14:8 15:1 12:8 14:0 7:1 14:1 12:7 9:6 12:5
9:0 12:7 13:6 12:5 12:6

Obtain a 98% confidence interval for the mean amount of water

consumed.
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5.5.24. In sociology, a social network is defined as the people you make frequent

contact with, say through Facebook. The personal network size for each

adult in a random sample of 3000 adults was calculated. The sample had a

mean personal network size of 190 with a known population standard

deviation of 25. Find a 95% confidence interval for the mean personal

network size of all adults in order to see if we have normal amount of friends

in our network.

5.5.25. (a) How does the t-distribution compare with the normal distribution?

(b) How does the difference affect the size of confidence intervals

constructed using z (normal approximation) relative to those

constructed using the t-distribution?
(c) Does sample size make a difference?

(d) What assumptions do we need to make in using the t-distribution for

the construction of a confidence interval?

5.5.26. Use the t-table to determine the values of ta/2 that would be used in the

construction of a confidence interval for a population mean in each of

the following cases:

(a) a¼0.99, n¼20

(b) a¼0.95, n¼18

(c) a¼0.90, n¼25

5.5.27. Let X1, . . ., Xn be a random sample from a normal population. A particular

realization resulted in a sample mean of 20 with the sample standard

deviation 4. Construct a 95% confidence interval for m when:

(a) n¼5, (b) n¼10, and (c) n¼25. What happens to the length of the

confidence interval as n changes?

5.5.28. In a large university, the following are the ages of 20 randomly chosen

employees:

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

Assuming that the data came from a normal population, construct a 95%

confidence interval for the population mean m of the ages of the employees

of this university. Interpret your answer.

5.5.29. A random sample of size 26 is drawn from a population having a normal

distribution. The sample mean and the sample standard deviation from the

data are given, respectively, as x¼�2:22 and s¼1.67. Construct a 98%

confidence interval for the population mean m and interpret.

5.5.30. A drug is suspected of causing an elevated heart rate in a certain group of

high-risk patients. Twenty patients from the group were given the drug. The

changes in heart rates were found to be as follows.

�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 98% confidence interval for the mean change in heart rate.

Assume that the population has a normal distribution. Interpret your answer.
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5.5.31. Ten bearings made by a certain process have a mean diameter of 0.905 cm

with a standard deviation of 0.0050 cm. Assuming that the data may be

viewed as a random sample from a normal population, construct a 95%

confidence interval for the actual average diameter of bearings made by

this process and interpret.

5.5.32. Air pollution in large US cities is monitored to see whether it conforms to

requirements set by the Environmental Protection Agency. The following

data, expressed as an air pollution index, give the air quality of a city for 10

randomly selected days.

57:3 58:1 58:7 66:7 58:6 61:9 59:0 64:4 62:6 64:9

Assuming that the data may be looked upon as a random sample from a

normal population, construct a 95% confidence interval for the actual

average air pollution index for this city and interpret.

5.5.33. In order to find out the average hemoglobin (Hb) level in children with

chronic diarrhea, a random sample of 10 children with chronic diarrhea

is selected from a city and their Hb levels (g/dL) are obtained as follows:

12:3 11:4 14:2 15:3 14:8 13:8 11:1 15:1 15:8 13:2

Assuming that the data may be looked upon as a random sample from a

normal population, construct a 99% confidence interval for the actual

average Hb level in children with chronic diarrhea for this city and

interpret. Draw a box plot and normal plot for this data, and comment.

5.5.34. Suppose that you need to estimate the mean number of typographical errors

per page in the rough draft of a 400-page book. A careful examination of 10

pages gives an average of 6 errors per page with a standard deviation of 2

errors. Assuming that the data may be looked upon as a random sample

from a normal population, construct a 99% confidence interval for the

actual average number of errors per page in this book and interpret. In this

problem, is the normal model appropriate?

5.5.35. Creatine kinase (CK) is found predominantly in muscle and is released into

the circulation during muscular lesions. Therefore, serum CK activity has

been theoretically expected to be useful as a marker in exercise physiology

and sports medicine for the detection of muscle injury and overwork. The

following data represent the peak CK activity (measured in IU/L) after

90 minutes of exercise in 15 healthy young men. (Source: Manabu Totsuka,

Shigeyuki Nakaji, Katsuhiko Suzuki, Kazuo Sugawara, and Koki Sato,

Break point of serum creatine kinase release after endurance exercise,

http://jap.physiology.org/cgi/content/full/93/4/1280.)

1112 722 689 251 196 185 128 102 166 178

775 694 514 244 208

Construct a 95% confidence interval for the mean peak CK activity.
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5.5.36. A random sample of 20 observations gave the following summary

statistics:
P

xi¼234 and
P

xi
2¼3048. Assuming that the data may be

looked upon as a random sample from a normal population, construct a

95% confidence interval for the actual average, m.
5.5.37. Let a random sample of size 17 from a normal population for which both

mean m and variance s2 are unknown yield x¼ 3:12 and s2¼1.04.

Determine a 99% confidence interval for m.
5.5.38. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

(a) Calculate an unbiased estimate ŷ of the population mean.

(b) Give approximate 99% confidence interval for the population mean.

5.5.39. The following are random data from a normal population.

3:3 3:3 4:7 2:6 6:4 4:7 1:7 4:5 5:0 3:0

Construct a 98% confidence interval for the population mean m.
5.5.40. The following data represent the rates (micrometers per hour) at which a

razor cut made in the skin of anesthetized newts is closed by new cells.

28 20 21 39 32 23 18 31 14 23

18 22 28 24 33 12 23 21 25 25

(a) Can we say that the data are approximately normally distributed?

(b) Find a 95% confidence interval for population mean rate m for the new

cells to close a razor cut made in the skin of anesthetized newts.

(c) Find a 99% confidence interval for m.
(d) Is the 95% CI wider or narrower than the 99% CI? Briefly explain why.

5.5.41. For a particular car, when the brake is applied at 62 mph, the following data

give stopping distance (in feet) for 10 random trials on a dry surface.

(Source: http://www.nhtsa.dot.gov/cars/testing/brakes/b.pdf.)

146:9 148:4 149:4 148:6 150:3
147:5 147:5 149:3 148:4 145:5

(a) Can we say that the data are approximately normally distributed?

(b) Find a 95% confidence interval for populationmean stopping distance m.

5.6 A CONFIDENCE INTERVAL FOR THE POPULATION
VARIANCE
In this section we derive a confidence interval for the population variance s2 based
on the chi-square distribution (w2-distribution). Recall that the w2-distribution, like
the Student t-distribution, is indexed by a parameter called the degrees of freedom.
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However, the w2-distribution is not symmetric and covers positive values only, and

hence it cannot be used to describe a random variable that assumes negative values.

Let X1, . . ., Xn be normally distributed with mean m and variance s2, with both m and

s unknown. We know that Xn

i¼1
Xi�X
� �2
s2

¼ n�1ð ÞS2
s2

has a w2-distribution with (n�1) degrees of freedom irrespective of s2. Hence it can
be used as a pivot. We now find two numbers wL

2 and wU
2 such that

P w2L �
n�1ð ÞS2
s2

� w2U

� �
¼ 1�a:

The foregoing inequality can be rewritten as

P
n�1ð ÞS2
w2U

� s2 � n�1ð ÞS2
w2L

� �
¼ 1�a:

Hence, a (1�a) 100% confidence interval for s2 is given by ((n�1)S2/wU
2 , (n�1)

S2/wL
2). For convenience, we take the areas to the right of wU

2 ¼wa/2
2 and to the left of

wL
2¼w1�a/2

2 to be both equal to a/2; see Figure 5.6. Using the chi-square table we can
find the values of wa/2

2 and w1�a/2
2 . Then, we have the following result.

Theorem 5.6.1 If X and S are the mean and standard deviation of a random
sample of size n from a normal population, then

P
n�1ð ÞS2
w2a=2

� s2 � n�1ð ÞS2
w2
1�a=2

 !
¼ 1�a

where the w2-distribution has (n�1) degrees of freedom.
That is, we are (1�a) 100% confident that the population variance s2 falls in

the interval ((n�1)S2/wa/2
2 , (n�1)S2/w1�a/2

2 ).

FIGURE 5.6

Chi-square density with equal area on both sides of the CI.
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EXAMPLE 5.6.1
A random sample of size 21 from a normal population gave a standard deviation of 9. Determine a

90% confidence interval for s2.

Solution
Here n¼21 and s2¼81. From the w2-table with 20 degrees of freedom, w0.05

2 ¼31.4104 and
w0.95
2 ¼10.8508. Therefore, a 90% confidence interval for s2 is obtained from

n�1ð ÞS2
w2a=2

,
n�1ð ÞS2
w2
1�a=2

 !
:

Thus, we get

20ð Þ 81ð Þ
31:4104

<s2 <
20ð Þ 81ð Þ
10:8508

or, we are 90% confident that 51.575<s2<149.298.

We can summarize the steps for obtaining the confidence interval for the true var-

iance as follows.

PROCEDURE TO FIND CONFIDENCE INTERVAL FOR s2

1. Calculate x and s2 from the sample x1, . . ., xn.

2. Find wU
2 ¼wa/2

2 , and wL
2¼w1�a/2

2 using the w2-square table with (n�1) degrees of freedom.

3. Compute the (1�a) 100% confidence interval for the population variance s2 as
((n�1)s2/wa/2

2 , (n�1)s2/w1�a/2
2 ), where w2-values are with (n�1) degrees of freedom.

Assumption: The population is normal.

EXAMPLE 5.6.2
The following data represent cholesterol levels (in mg/dL) of 10 randomly selected patients from a

large hospital on a particular day.

360 352 294 160 146 142 318 200 142 116

Determine a 95% confidence interval for s2.

Solution
From the data, we can get x¼ 223 and standard deviation s¼96.9. The following probability graph
is obtained by Minitab.
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Even though the scattergram does not appear to follow a straight line, the data are still within

the band, so we can assume approximate normality for the data. (In situations like this, it is more

appropriate to use nonparametric tests explained in Chapter 12.) A box plot of the data shows that

there are no outliers. From the w2-table, w0.025
2 (9)¼19.023 and w0.975

2 (9)¼2.70. Therefore a 90%

confidence interval for s2 is obtained from

n�1ð ÞS2
w2a=2 n�1ð Þ ,

n�1ð ÞS2
w2
1�a=2 n�1ð Þ

 !
:

Thus, we get

9ð Þ 96:9ð Þ2
19:023

< s2 <
9ð Þ 96:9ð Þ2
2:70

or, we are 95% confident that 4442.3<s2<31,299. Note that the numbers look very large, but it is
the value of variance. By taking the square root of the numbers on the both sides, we can also get a

confidence interval for the standard deviation s.
As remarked in the previous exercise, in general to find a (1�a)100% confidence interval for

the true population standard deviation, s, take the square roots of the end points of the confidence
interval of the variance.

EXERCISES 5.6
5.6.1. A random sample of size 20 is drawn from a population having a normal

distribution. The sample mean and the sample standard deviation from the

data are given, respectively, as x¼�2:2 and s¼1.42. Construct a 90%

confidence interval for the population variance s2 and interpret.

5.6.2. A drug is suspected of causing an elevated heart rate in a certain group of

high-risk patients. Twenty patients from the group were given the drug. The

changes in heart rates were found to be as follows.
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�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 95% confidence interval for the variance of change in heart

rate. Assume that the population has a normal distribution and interpret.

5.6.3. Air pollution in large US cities is monitored to see whether it conforms to

requirements set by the Environmental Protection Agency. The following

data, expressed as an air pollution index, give the air quality of a city for 10

randomly selected days.

56:23 57:12 57:7 65:80 59:40
62:90 58:00 64:56 63:92 63:45

Assuming that the data may be viewed as a random sample from a

normal population, construct a 99% confidence interval for the actual

variance of the air pollution index for this city and interpret.

5.6.4. A random sample of 25 observations gave the following summary

statistics:
P

xi¼234 and
P

xi
2¼3048. Assuming that the data can be

looked upon as a random sample from a normal population, construct a

95% confidence interval for the actual variance, s2.
5.6.5. Let a random sample of size 18 from a normal population with both mean m

and variance s2 unknown yield x¼ 2:27 and s2¼1.02. Determine a 99%

confidence interval for s2.
5.6.6. Suppose we want to study contaminated fish in a river. It is important for

the study to know the size of the variance s2 in the fish weights. The 25

samples of fish in the study produced the following summary statistics: x¼
1030:5g, and the standard deviation s¼200.6 g. Construct a 95%

confidence interval for the true variation in weights of contaminated fish in

this river.

5.6.7. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

(a) Calculate an unbiased estimate ŝ2 of the population variance.

(b) Give approximate 99% confidence interval for the population variance.

(c) Interpret your results and state any assumptions you made in order to

solve the problem.

5.6.8. It is known that some brands of peanut butter contain impurities within an

acceptable level. A test conducted on randomly selected 12 jars of a certain

brand of peanut butter resulted in the following percentages of impurities:

1:9 2:7 2:1 2:8 2:3 3:6 1:4 1:8 2:1 3:2 2:0

Construct a 95% confidence interval for the average percentage of

impurities in this brand of peanut butter.

288 CHAPTER 5 Statistical Estimation



Give anapproximate 95%confidence interval for the population variance.

Interpret your results and test for normality.

5.6.9. The following data represent themaximal headmeasurements (across the top

of the skull) in millimeters of 15 Etruscans (inhabitants of ancient Etruria).

152 147 126 140 135 139 149 140

142 147 132 148 146 143 137

Calculate an unbiased estimate ŝ2 of the population variance.

Give approximate 95% confidence interval for the population variance.

Interpret your results and test for normality.

5.6.10. A pharmaceutical company tested a new drug to be marketed for the

treatment of a particular type of virus. In order to obtain an estimate on

themean recovery time, this drugwas tested on 15 volunteer patients, and the

recovery time (in days) was recorded. The following data were obtained.

8 17 10 6 34 11 13 6 9 8

19 4 12 17 7

(a) Obtain a 95% confidence interval estimate of the mean recovery.

(b) What assumptions do we need to make? Test for these assumptions.

5.6.11. The rates of return (rounded to the nearest percentage) for 25 clients of a

financial firm are given in the following table.

13 11 28 6 �4 15 13 6 11 11

3 12 20 3 16 16 15 8 20 15

4 1 12 2 �9

Find a 98% confidence interval for the variance s2 of rates of return. Use
this to find the confidence interval for the population standard deviation, s.

5.6.12. In order to test the precision of a new type of blood sugar monitor for

diabetic patients, 20 randomly selected monitors of this type were used.

A blood sample with 120 mg/dL was tested in each of these monitors, and

the resulting readings are given in the following table.

117 116 121 120 122 117 120 120 118 119

118 123 119 123 119 122 118 122 121 120

(a) Obtain a 99% confidence interval for the variance s2.
(b) Is it reasonable to assume that the data follow a normal distribution?

5.7 CONFIDENCE INTERVAL CONCERNING TWO POPULATION
PARAMETERS
In the earlier sections we studied the confidence limits of true parameters from sam-

ples from single populations. Now, we consider the interval estimation based on sam-

ples from two populations. Our interest is to obtain a confidence interval for the
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parameters of interest based on two independent samples taken from these two

populations.

Let X11, . . . , X1n1 be a random sample from a normal distribution with mean m1
and variance s1

2, and let X21, . . . , X2n2 be a random sample from a normal distribution

with mean m2 and variance s2
2, Let X1 ¼ 1=n1ð Þ

Xn1

i¼1
X1i and X2 ¼ 1=n2ð Þ

Xn2

i¼1
X2i:

We will assume that the two samples are independent. Then X1 and X2 are indepen-

dent. The distribution of X1�X2 is N(m1�m2, (1/n1)s1
2+(1/n2)s2

2). Now as in the one-

sample case, the confidence interval for m1�m2 is obtained as follows.

LARGE SAMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE OF
TWO MEANS
(a) s1, s2 are known. The (1�a) 100% large sample confidence interval for m1�m2 is given by

X1�X2

� �
 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

� �s
:

(b) If s1 and s2 are not known, s1 and s2 can be replaced by the respective sample standard devi-

ations S1 and S2 when ni�30, i¼1,2. Thus, we can write

p X1�X2

� �� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

+
S22
n2

� �s
�m1�m2

 

� X1�X2

� �
+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

+
S22
n2

� �s !
¼ 1�a:

Assumption: The population is normal, and the samples are independent.

EXAMPLE 5.7.1
A study of two kinds of machine failures shows that 58 failures of the first kind took on the average

79.7 minutes to repair with a standard deviation of 18.4 minutes, whereas 71 failures of the second

kind took on average 87.3 minutes to repair with a standard deviation of 19.5 minutes. Find a 99%

confidence interval for the difference between the true average amounts of time it takes to repair

failures of the two kinds of machines.

Solution
Here, n1¼58, n2¼71, x1¼79.7, s1¼18.4, x2¼87.3, and s2¼19.5. Then the 99% confidence inter-
val for m1�m2 is given by

79:7�87:3ð Þ
2:575

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:4ð Þ2
58

+
19:5ð Þ2
71

s
:

That is, we are 99% certain that m1�m2 is located in the interval (�16.215, 1.0149). Note that

�16.215<m1�m2<1.0149 means that more than 90% of the length of this interval is negative.

Thus, we can conclude that m2 dominates m1, that is, m2>m1 more than 90% of the time.
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In the small sample case, the problem of constructing confidence intervals for the

difference of the means from the two normal populations with unknown variances

can be a difficult one. However, if we assume that the two populations have a com-

mon but unknown variance, say s1
2¼s2

2¼s2, we can obtain an estimate of the var-

iance by pooling the two sample data sets. Define the pooled sample variance Sp
2 as

S2p ¼
Xn1

i¼1
X1i�X1

� �2
+
Xn2

i¼1
X2i�X2

� �2
n1 + n2�2

¼ n1�1ð ÞS21 + n2�1ð ÞS22
n1 + n2�2

:

Now, when the two samples are independent,

T¼ X1�X2

� �� m1�m2ð Þ
Sp

ffiffiffiffiffiffiffiffiffiffiffi
1
n1
+ 1

n2

p
has a t-distribution with n1+n2�2 degrees of freedom. We summarize the CI for

m1�m2 below.

SMALL SAMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO
MEANS (s1

2¼s2
2)

The small sample (1�a)100% confidence interval for m1�m2 is

X1�X2

� �
 ta=2, n1 + n2�2ð ÞSp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r
:

Assumption: The samples are independent from two normal populations with equal variances.

EXAMPLE 5.7.2
Independent random samples from two normal populations with equal variances produced the fol-

lowing data.

Sample 1 : 1:2 3:1 1:7 2:8 3

Sample 2 : 4:2 2:7 3:6 3:9

(a) Calculate the pooled estimate of s2.
(b) Obtain a 90% confidence interval for m1�m2.

Solution
(a) We have n1¼5 and n2¼4. Also,

x1 ¼ 2:36, s21 ¼ 0:733,
x2 ¼ 3:6, s22 ¼ 0:42:

Hence,

s2p ¼
n1�1ð Þs21 + n2�1ð Þs22

n1 + n2�2
¼ 0:5989:

Continued
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(b) For the confidence coefficient 0.90, a¼0.10 and from the t-table, t0.05,7¼1.895. Thus, a 90%

confidence interval for m1�m2 is

X1�X2

� �
 ta=2, n1 + n2�2ð Þsp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r
¼ 2:36�3:6ð Þ
1:895

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5989

1

5
+
1

4

� �s
¼�1:24
0:98¼ �2:22,�0:26ð Þ:

Here, m2 dominates m1 uniformly. Note that we can decrease the confidence range �2.22 to
0.26, by increasing n1 and n2 with 1�a¼0.90 to remain the same. This means that we are closing

on the unknown true value of m1�m2.

In the small sample case, if the equality of the variances cannot be reasonably

assumed, that is s1
2 6¼s2

2, we can still use the previous procedure, except that we

use the following degrees of freedom in obtaining the t-value from the table. Let

v¼
s2
1

n1
+ s2

2

n2

� �2
s2
1

n1

� �2
n1�1

+

s2
2

n2

� �2
n2�1

:

The number given in this formula is always rounded down for the degrees of free-

dom. Hence, in this case, a small sample (1�a) 100% confidence interval for m1�m2
is given by

X1�X2

� �
 ta=2,v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

+
S22
n2

s
,

where the t-distribution has v degrees of freedom as given previously.

EXAMPLE 5.7.3
Assuming that two populations are normally distributed with unknown and unequal variances. Two

independent samples are taken with the following summary statistics:

n1 ¼ 16 x1 ¼ 20:17 s1 ¼ 4:3
n2 ¼ 11 x2 ¼ 19:23 s2 ¼ 3:8

Construct a 95% confidence interval for m1�m2.

Solution
First let us compute the degrees of freedom,

v¼
s21
n1
+ s22

n2

� �2
s2
2

n2

� �2
=n2�1

� �
+ s2

2

n2

� �2
=n2�1

� �¼ 4:3ð Þ2
16

+ 3:8ð Þ2
11

� �
4:3ð Þ2
16

� �2
=15

� �
+ 3:8ð Þ2

11

� �2
=110

� �¼ 23:312:

Hence, v¼23, and t0.025,23¼2.069.

Now a 95% confidence interval for m1�m2 is
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x1�x2ð Þ
 ta=2,v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s
¼ 20:17�19:23ð Þ


 2:069ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:3ð Þ2
16

+
3:8ð Þ2
11

s
,

which gives the 95% confidence interval as

�2:3106<m1�m2 < 4:1906:

In a real-world problem, how do we determine if s1
2¼s2

2, or s1
2 6¼s2

2, so that we can

select one of the two methods just given? In Chapter 14, we discuss a procedure that

determines the homogeneity of the variances (i.e. whether s1
2¼s2

2). For the time

being a good indication is to look at the point estimators of s1
2 and s2

2, namely, S1
2

and S2
2. If the point estimators are fairly close to each other, then we can select

s1
2¼s2

2. Otherwise, s1
2 6¼s2

2. For a more general method of testing for equality of var-

iances, we refer to Section 14.4.3.

We now give a procedure for a large sample confidence interval for the difference

of the true proportions, p1�p2, in two binomial distributed populations.

LARGE SAMPLE CONFIDENCE INTERVAL FOR p1�p2
The (1�a)100% large sample confidence interval for p1�p2 is given by

p̂1� p̂2ð Þ
 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1�p̂1ð Þ

n1
+

p̂2 1�p̂2ð Þ
n2

� �r
,

where p̂1 and p̂2 are the points estimators of p1 and p2. This approximation is applicable if p̂ini �
5, i¼ 1,2 and 1� p̂ið Þni � 5, i¼ 1,2: The two samples are independent.

EXAMPLE 5.7.4
Iron deficiency, the most common nutritional deficiency worldwide, has negative effects on work

capacity and on motor and mental development. In a 1999-2000 survey by the National Health

and Nutrition Examination Survey (NHANES), iron deficiency was detected in 58 of 573 white,

non-Hispanic females (10% rounded to whole number) and 95 of 498 (19% rounded to whole

number) black, non-Hispanic females (source: http://www.cdc.gov/mmwr/preview/mmwrhtml/

mm5140a1.htm). Let p1 be the proportion of black, non-Hispanic females with iron deficiency

and let p2 be the proportion of black, non-Hispanic females with iron deficiency. Obtain a 95%

confidence interval for p1�p2.

Solution
Here, n1¼573 and n2¼498. Also, p̂1 ¼ 58

573
¼ 0:10122� 0:1, and p̂2 ¼ 95

498
¼ 0:1907� 0:19: For

a¼0.05, z0.015¼1.96. Hence, a 95% confidence interval for p1�p2 is

p̂1� p̂2ð Þ
 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1� p̂1ð Þ

n1
+
p̂2 1� p̂2ð Þ

n2

� �s

¼ 0:1�0:19ð Þ
 1:96ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð Þ 0:9ð Þ
573

+
0:19ð Þ 0:81ð Þ

498

r
¼ �0:13232,�0:047685ð Þ:

Continued
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Here, the true difference of p1�p2 is located in the negative portion of the real line, which tells

us that the true proportion of black, non-Hispanic females with iron deficiency is larger than the

proportion of white, non-Hispanic females with iron deficiency.

There are situations in applied problems that make it necessary to study and compare

the true variances of two independent normal distributions. For this purpose, we will

find a confidence interval for the ratio s1
2/s2

2 using theF-distribution. LetX1, . . . , Xn1

and Y1, . . . , Yn2 be independent samples of size n1 and n2 from two normal distri-

butions N(m1,s1
2) and N(m2,s2

2), respectively. Let S1
2 and S2

2 be the variances of the

two random samples. The confidence interval for the ratio s1
2/s2

2 is given as follows.

A (1�a)100% CONFIDENCE INTERVAL FOR s1
2/s2

2

A (1�a)100% confidence interval for s1
2/s2

2 is given by

S21
S22

� �
1

Fn1�1,n2�1,1�a=2

� �
,

S21
S22

� �
1

Fn1�1,n2�1, a=2ð Þ

� �� �
:

That is,

P
S21
S22

� �
1

Fn1�1,n2�1,1�a=2

� �
� s21
s22

� S21
S22

� �
1

Fn1�1,n2�1, a=2ð Þ

� �� �
¼ 1�a

:

Assumptions: This two populations are normal, and the sample are independent.

Note that we can also write a (1�a)100% confidence interval for s1
2/s2

2 in the form

S21
S22

� �
1

Fn1�1,n2�1,1�a=2

� �
,

S21
S22

� �
Fn2�1,n1�1,1�a=2

� �
:

The following example illustrates how to find the confidence interval for s1
2/s2

2.

EXAMPLE 5.7.5
Assuming that two populations are normally distributed, two independent random samples are taken

with the following summary statistics:

n1 ¼ 21 x1 ¼ 20:17 s1 ¼ 4:3
n2 ¼ 16 x2 ¼ 19:23 s2 ¼ 3:8

Construct a 95% confidence interval for s1
2/s2

2.

Solution
Here, n1¼21, n2¼16, and a¼0.05. Using the F-table, we have

Fn1�1, n2�1, 1�a=2 ¼F 20, 15, 0:975ð Þ¼ 2:76

and

Fn2�1, n1�1, 1�a=2 ¼F 15, 20, 0:975ð Þ¼ 2:57:

A 95% confidence interval for s1
2/s2

2 is
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S21
S22

� �
1

Fn1�1,n2�1,1�a=2

� �
,

S21
S22

� �
Fn2�1,n1�1,1�a=2

� �
¼ 4:3ð Þ2

3:8ð Þ2
 !

1

2:76

� �
,

4:3ð Þ2
3:8ð Þ2

 !
2:57ð Þ

 !
¼ 0:46394, 3:2908ð Þ:

That is, we are 95% confident that the ratio of true variance, s1
2/s2

2, is located in the interval that

implies a 95% confidence interval (0.46394, 3.2908).

EXERCISES 5.7
5.7.1. A study was conducted to compare two different procedures for assembling

components. Both procedures were implemented and run for a month to

allow employees to learn each procedure. Then each was observed for

10 days with the following results. Values are number of components

assembled per day.

Procedure I 115 101 113 64 104 97 114 96 87 93

Procedure II 86 99 100 78 97 111 102 94 88 99

Construct a 98% confidence interval for the difference in the mean

number of components assembled by the two methods. Assume that the

data for each procedure are from approximately normal populations with a

common variance. Interpret the result.

5.7.2. A study was conducted to see the differences between oxygen consumption

rates for male runners from a college who had been trained by two different

methods, one involving continuous training for a period of time each day

and the other involving intermittent training of about the same overall

duration. The means, standard deviations, and sample sizes are shown in

the following table.

Continuous training n1 ¼ 15 x1 ¼ 46:28 s1 ¼ 6:3
Intermittent training n2 ¼ 7 x2 ¼ 42:34 s2 ¼ 7:8

If the measurements are assumed to come from normally distributed

populations with equal variances, estimate the difference between the

population means, with confidence coefficient 0.95, and interpret.

5.7.3. Studies have shown that the risk of developing coronary disease increases

with the level of obesity. A study comparing two methods of losing weight:

diet alone and exercise alone were conducted on 82men over 1-year period.

Forty-two men dieted and lost an average of 16.0 lb over the year, with a

standard deviation of 5.6 lb. Forty-five men who exercised lost an average

of 10.6 lb, with a standard deviation of 7.9 lb. Construct a 99% confidence

interval for the difference in the mean weight loss by these two methods.

State any assumptions you made and interpret the result you obtained.

5.7.4. The following information was obtained from two independent samples

selected from two normally distributed populations with unknown but

equal variances.
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Sample 1 14 15 12 13 6 14 11 12 17 19 23

Sample 2 16 18 12 20 15 19 15 22 20 18 23 12 20

Construct a 95% confidence interval for the difference between the

population means and interpret.

5.7.5. In the academic year 2001-2002, two random samples of 25 male

professors and 23 female professors from a large university produced a

mean salary for male professors of $58,550 with a standard deviation of

$4000; the mean for female professors was $53,700 with a standard

deviation of 3200. Construct a 90% confidence interval for the difference

between the population mean salaries. Assume that the salaries of male and

female professors are both normally distributed with equal standard

deviations. Interpret the result.

5.7.6. Let the random variables X1 and X2 follow binomial distributions that have

parameters n1¼100, n2¼75, Let x1¼35 and x2¼27 be observed values of

X1 and X2. Let p1 and p2 be the true proportions. Determine an appropriate

95% confidence interval for p1�p2.
5.7.7. The following information is obtained from two independent samples

selected from two populations.

n1 ¼ 40 x1 ¼ 28:4 s1 ¼ 4:1
n2 ¼ 32 x2 ¼ 25:6 s2 ¼ 4:5

(a) What is the MLE of m1�m2?
(b) Construct a 99% confidence interval for m1�m2.

5.7.8. In order to compare the mean hemoglobin (Hb) levels of well-nourished

and undernourished groups of children, random samples from each of

these groups yielded the following summary.

Construct a 95% confidence interval for the true difference of means,

m1�m2.
5.7.9. In a certain part of a city, the average price of homes in 2000 was $148,822,

and in 2001 it was $155,908. Suppose these means were based on a random

sample of 100 homes in 1997 and 150 homes in 1998 and that the sample

standard deviations of sale prices were $21,000 for 2000 and $23,000 for

2001. Find a 98% confidence interval for the difference in the two

population means.

5.7.10. Two independent samples from a normal population are taken with the

following summary statistics:

Number of
Children

Sample
Mean

Sample Standard
Deviation

Well nourished 95 11.2 0.9

Undernourished 75 9.8 1.2
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n1 ¼ 16 x1 ¼ 2:4 s1 ¼ 0:1
n2 ¼ 11 x2 ¼ 2:6 s2 ¼ 0:5

Construct a 95% confidence interval for s1
2/s2

2.

5.7.11. The following information was obtained from two independent samples

selected from two normally distributed populations.

Sample 1 35 36 33 34 27 35 32 33 38 40 44

Sample 2 37 39 33 41 36 40 36 43 41 39 44 33 41

Construct a 90% confidence interval for s1
2/s2

2.

5.7.12. The management of a supermarket wanted to study the spending habits of

its male and female customers. A random sample of 16 male customers

who shopped at this supermarket showed that they spent an average of $55
with a standard deviation of $12. Another random sample of 25 female

customers showed that they spent $85 with a standard deviation of $20.50.
Assuming that the amounts spent at this supermarket by all its male and

female customers were approximately normally distributed, construct a

90% confidence interval for the ratio of variance in spending for males and

females, s1
2/s2

2.

5.7.13. An experiment is conducted comparing the effectiveness of a new method

of teaching algebra for eighth-grade students. Twelve gifted and 12 regular

students are taught using this method. Their scores on a final exam are

shown in the following table.

Average 58 69 55 65 88 52 99 76 45 86 55 79

Gifted 77 86 84 93 77 91 87 95 68 78 74 58

(a) Compute the 95% confidence interval on the difference between the

mean of the students being taught by this new method.

(b) Construct a 95% confidence interval for the ratio of variance in test

scores for regular and gifted students, s1
2/s2

2.

(c) What are the assumptions you made in parts (a) and (b)? Are these

assumptions justified?

5.7.14. Assume that two populations have the same variance s2. If a sample of size

n1 produced a variance S1
2 from population I and a sample of size n2

produced a variance S2
2 from population II, show that the pooled variance

S2p ¼
n1�1ð ÞS21 + n2�1ð ÞS22

n1 + n2�2
,

is an unbiased estimator of s2. Show that (S1
2+S2

2)/2 is also an unbiased esti-

mator of s2. Which of the two estimators would you prefer? Give reasons

for your choice.
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5.8 CHAPTER SUMMARY
In this chapter we have discussed the basic concepts of estimation, both point

estimation and interval estimation. Two methods of finding point estimators were

described—the method of moments and the method of maximum likelihood. Some

desirable properties of the point estimators that we have discussed are unbiasedness,

and sufficiency. Unbiasedness guards against consistently producing under- or

overestimates of the parameter in repeated sampling. A sufficient estimator is a

“good” estimator of the population parameter y in the sense that it depends on fewer
data values. Later, this chapter discusses the concept of interval estimation. A (1�a)
100% confidence interval (CI) for an unknown parameter y is computed from

sample data. The so-called pivotal method is introduced for deriving a confidence

interval. Large sample and small sample confidence intervals are derived for

population mean m. Confidence intervals in the case of two samples are also

discussed. Additionally, confidence intervals for variance and ratio of variances

are derived.

We will now list some of the key definitions introduced in this chapter.

• Method of moments.

• Likelihood function.

• Maximum likelihood equations.

• Unbiased estimator.

• Mean square error.

• Minimum variance unbiased estimator.

• Sufficient estimator.

• Jointly sufficient.

• Upper and lower confidence limits.

• Confidence coefficient.

• 100 (1�a)% confidence interval for y.
• Interval estimation.

• Confidence interval.

In this chapter, we have also learned the following important concepts and

procedures.

• The method of moments procedure.

• Procedure to find MLE.

• Procedure to verify.

• Pivotal method.

• Procedure to find a confidence interval for y using the pivot.

• Procedure to find a large sample confidence interval for y.
• Procedure to find a small sample confidence interval for m.
• Procedure to find a confidence interval for the population variance s2.
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• Large sample confidence interval for the difference of the means.

• Small sample confidence interval for the difference of two means (s1
2¼s2

2).

• Small sample confidence interval for the difference of two means (s1
2 6¼s2

2).

• Large sample confidence interval for p1�p2.
• A (1�a) 100% confidence interval for s1

2/s2
2

5.9 COMPUTER EXAMPLES
5.9.1 EXAMPLES USING R
It should be noted that for the problems where you’re generating random samples
your answers will vary!

EXAMPLE 5.9.1 DESCRIPTIVE POINT ESTIMATES
Generate 50 sample points from an N(4, 4) distribution and find the descriptive statistics. Obtain an

unbiased and sufficient estimate of m.
R Code:

sample¼rnorm(50,4,4);

summary(sample);

sd(sample);

sd(sample)/sqrt(length(sample));
Standard error of the mean

Output:

Your output will be unique since the samples are generated randomly, take notice of standard

error.
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.292 1.105 4.012 3.865

Notice this is an estimate

we know that the population
mean is 4 as we defined it.

6.478 14.790

4.288085 Standard deviation
0.6064268 Standard error of the mean

EXAMPLE 5.9.2 UNIFORM MAXIMUM LIKELIHOOD
Generate 35 samples from a U(0,5) distribution and using the descriptive statistics command, find

the maximum likelihood estimate for this data.

Solution
We know that for a random sample X1, . . .,Xn from U(0,y) the MLE, ŷ¼ max Xið Þ¼X nð Þ, the nth
order statistic. We can use the following steps to obtain the estimate.

R Code:

sample¼runif(35,0,5);

summary(sample);

Continued
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Output:

Your output will be unique since the

samples are generated randomly.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1155 1.5710 2.9520 2.7620 4.0920 4.9900

The MLE of the data 4.99

EXAMPLE 5.9.3 CONFIDENCE INTERVAL
Obtain a 95% confidence interval for m using the following data:

Sample (x) : 7.227 5.7383 4.9369 6.238 8.4876 2.7618

This example assumes you’ve stored your data into variable x. Please modify code

appropriately.

R Code:

t.test(x,conf.level¼0.95);

Output:

One Sample t-test

data: x

t¼7.3399, df¼5, p-value¼0.0007365

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

3.832566 7.963967

sample estimates:

Notice the interval

rather than point estimate.mean of x

5.898267

EXAMPLE 5.9.4 CONFIDENCE INTERVAL
For the following data obtain a 98% confidence interval for m

Sample (x) : 6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9 9.6 9.0 13.7 9.4 16.6 9.1 10.1 10.6 11.1 8.9

11.7 12.8

11.5 10.6 12.0 11.1 6.4 12.3 12.3 11.4 9.9 15.5 14.3 11.5 13.3 11.8 12.8 13.7 13.9 12.9 14.2 14.0

This example assumes you’ve stored the data into variable x. Please modify your code

appropriately.

R Code:

t.test(x,conf.level¼0.98);

Output:

One Sample t-test

data: x

t¼27.7762, df¼42, p-value<2.2e-16

alternative hypothesis: true mean is not equal to 0

98 percent confidence interval:

9.910598 11.801030

sample estimates:

Notice the interval

rather than point estimate.
mean of x

10.85581
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EXAMPLE 5.9.5 CONFIDENCE INTERVAL
For the following data, find a 90% confidence interval for m1�m2 using the following data.

Sample (x) : 1.2 3.1 1.7 2.8 3.0

Sample (y) : 4.2 2.7 3.6 3.9

This example assumes you’ve stored your data into variables x and y. Please modify your code

appropriately.

R Code:

t.test(x,y,conf.level¼0.90);

Output:

Welch Two Sample t-test

data: x and y

t¼ -2.4721, df¼6.996, p-value¼0.04272

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-2.1903896 -0.2896104 90% Confidence Interval

sample estimates:

mean of x mean of y

2.36 3.60

5.9.2 MINITAB EXAMPLES

EXAMPLE 5.9.6
Generate 50 sample points from an N(4, 4) distribution and find the descriptive statistics. Obtain an

unbiased and sufficient estimate of m.

Solution
Because we know that the sample mean x is an unbiased and sufficient estimate of the population

mean m, we only need to find the sample mean of the generated data.

Calc>Random Data>Normal . . .>Type 50 in Generate __ rows of data>Store in column(s):

type C1

>type in Mean: 4.0 and in Standard deviation: 2.0>click OK

EXAMPLE 5.9.7
Generate 35 samples from a U(0, 5) distribution and using the descriptive statistics command, find

the maximum likelihood estimate for this data.

Solution
We know that for a random sample X1, . . ., Xn from U(0, y), the MLE, ŷ ¼ max(Xi)¼X(n), the nth
order statistic. We can use the following steps to obtain the estimate.

Calc>Random Data>Uniform. . .>Type 35 in Generate __ rows of data>Store in

column(s): type C1> type in Lower end point: 0.0 and in Upper end point: 5.0>

click OK.
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EXAMPLE 5.9.8
(Small Sample): Using Minitab, obtain a 95% confidence interval for m using the following data

7:227 5:7383 4:9369 6:238 8:4876 2:7618

Solution
Use the following commands.

Enter the data in C1. Then

Stat>Basic Statistics>1-sample t. . . , in variables: enter C1, click Confidence

interval, in Level default value is 95, if any other value, enter that value, and click OK.

EXAMPLE 5.9.9
(Large Sample): For the data

6:8 5:6 8:5 8:5 8:4 7:5 9:3 9:4 7:8 7:1 9:9
9:6 9:0 13:7 9:4 16:6 9:1 10:1 10:6 11:1 8:9 11:7
12:8 11:5 10:6 12:0 11:1 6:4 12:3 12:3 11:4 9:9 15:5
14:3 11:5 13:3 11:8 12:8 13:7 13:9 12:9 14:2 14:0

obtain a 98% confidence interval for m.

Solution
Enter the data in C1. Then click

Stat>Basic Statistics>1-Sample Z. . . >, in Variables: type C1>click Confidence

interval, and enter 98 in Level:> enter 5 in Sigma:>OK.

EXAMPLE 5.9.10
For the following data, find a 90% confidence interval for m1�m2

Sample 1 1.2 3.1 1.7 2.8 3.0

Sample 2 4.2 2.7 3.6 3.9

Solution
Enter sample 1 in C1 and sample 2 in C2. Then click

Stat>Basic Statistics>2-Sample t. . .>click Sample in different columns> in

First: enter C1 and in Second: enter C2>enter 90 in Confidence Level: (if equality of

variance can be assumed, click Assume equal variances)>OK.

5.9.3 SPSS EXAMPLES

EXAMPLE 5.9.11
Consider the data

66 74 79 80 77 78 65 79 81 69

Using SPSS, obtain a 99% confidence interval for m.

Solution
One easy way to obtain the confidence interval in SPSS is to use the hypothesis testing procedure.
The procedure is as follows: First enter the data in C1. Then click
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Analyze>Compare Means>One-sample t Test. . ., > Move var00001 to Test

Variable(s), and Click Options. . . , and enter 99 in Confidence interval:, click
Continue, and OK.

Note that the default value is 95%.

5.9.4 SAS EXAMPLES
We will not give the output in this section.

EXAMPLE 5.9.12
The following data give P/E for a particular year of 49 mutual fund companies owned by a randomly

selected mutual fund.

6:8 5:6 8:5 8:5 8:4 7:5 9:3 9:4 7:8 7:1
9:9 9:6 9:0 16:6 9:1 10:1 10:6 11:1 8:9 11:7

12:8 11:5 12:0 10:6 11:1 6:4 11:4 9:9 14:3 11:5
11:8 13:3 13:9 12:9 14:2 14:0 15:5 17:9 21:8 18:4
34:3 13:7 12:3 18:0 9:4 12:3 16:9 12:8 13:7

Find a 98% confidence interval for the mean P/E multiples. Use SAS procedures.

Solution
We could use the following procedure.

DATA peratio;
INPUT patio @@;
DATALINES;

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8
7.1 9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6

11.1 8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3
12.3 11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9

12.9
14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3
;

PROC MEANS data¼peratio lclm uclm alpha¼0.02;
var peratio;

RUN;

EXERCISES 5.9
5.9.1. Using any of the software packages (R, Minitab, SPSS, or SAS), obtain

confidence intervals for at least one data set taken from each section of this

chapter.

PROJECTS FOR CHAPTER 5
5A. ASYMPTOTIC PROPERTIES
In general, we do not have a single sample with one estimator of the unknown param-

eter y. Rather, we will have a general formula that defines an estimator for any sam-

ple size. This gives a sequence of estimators of y:

ŷ¼ hn X1, . . . , Xnð Þ, n¼ 1, 2, . . . ..
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In this case, we can define the following asymptotic properties:

(i) The sequence of estimators ŷn is said to be asymptotically unbiased for y if

bias ŷn
� �

! 0 as n!1.

(ii) Suppose ŷn
� �

and ŷn are two sequences of estimators that are asymptotically

unbiased for y. The asymptotic relative efficiency of ŷn to ŷn is defined by

lim
n

Var ŷn
� �

Var ŷnð Þ :

(a) Show that ŷn is asymptotically unbiased if and only if

E ŷn
� �

! y as n!1:

(b) Let X1, . . ., Xn be a random sample from a distribution with unknown mean

m and variance s2. It is known that the method of moments estimators for m
and s2 are, respectively, the sample mean X and

S02n ¼ 1=nð Þ
Xn

i¼1
Xi�X
� �2 ¼ n�1ð Þ=nð ÞS2n, where Sn2 is the sample

variance.

(i) Show that S0n
2 is an asymptotically unbiased estimator of s2.

(ii) Show that the asymptotic relative efficiency of S0n
2 to Sn

2 is 1.

(iii) Show that MSE (S0n
2)<MSE (Sn

2). Thus, (Sn
2) is unbiased but (S0n

2)

has a smaller mean square error. However, it should be noted

that the difference is very small and approaches zero as n
becomes large.

5B. ROBUST ESTIMATION
The estimators derived in this chapter are for particular parameters of a presumed

underlying family of distributions. However, if the choice of the underlying family

of distributions is based on past experience, there is a possibility that the true pop-

ulation will be slightly different from the model used to derive the estimators. For-

mally, a statistical procedure is robust if its behavior is relatively insensitive to

deviations from the assumptions on which it is based. If the behavior of an estimator

is taken as its variance, a given estimator may have minimum variance for the dis-

tribution used, but it may not be very good for the actual distribution. Hence, it is

desirable for the derived estimators to have small variance over a range of distribu-

tions. We call such estimators robust estimators. The following illustrates how the

variance of an estimator can be affected by deviations from the presumed underlying

population model.

Consider estimating the mean of a standard normal distribution. Let X1, . . ., Xn be

a random sample from a standard normal distribution. Suppose the population
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actually follows a contaminated normal distribution. That is, for 0�d�1, 100

(1�d) % of the observations come from an N(0, 1) distribution and the remaining

100d% of observations come from an N(0, 5) distribution. We already know that the

MVUE of the mean m of an uncontaminated normal distribution is the sample mean.

A less effective alternative would be the sample median.

(a) Conduct a simulation study with sample size n that takes, say, 5000 random

samples of 100 observations each. Find the mean and median. Also find the

sample variance of each. For various values of d, say 0.0, 0.01, 0.05, 0.1, 0.2, 0.3,
and 0.4, create a table of variances of sample mean and sample variance.

Compare the variances as the value of d increases.

(b) The aim of robust estimation is to derive estimators with variance near that of the

sample mean when the distribution is standard normal while having the variance

remain relatively stable as d increases. One such estimator is the a-trimmed
mean. Let 0�a�0.5, and define k¼ [na], where [x] is the greatest integer that is
less than or equal to x. For the ordered sample, discard the k highest and lowest

observations and find the mean of the remaining n�k observations. That is, let
X(1)�X(2)�� � �<X(n) be the ordered sample, and define

Xa ¼
X 1 + kð Þ �X 2 + kð Þ � �� � �X n+ kð Þ

n�2k
:

For the values of d and the samples in part (a), compute the mean and the 0.05-,

0.1-, 0.25-, and 0.5-trimmed means. Discuss the robustness.

5C. NUMERICAL UNBIASEDNESS AND CONSISTENCY
(a) Run the simulation of a normal experiment with increasing sample size.

Numerically show the unbiased and consistent properties of the sample mean.

Run the experiment at least up until n¼1000.

(b) Repeat the experiment of part (a), now with an exponential distribution.

5D. AVERAGED SQUARED ERRORS (ASES)
Generate 25 samples of size 40 from a normal population with m¼10, and s2¼4. For

each of the 25 samples:

(a) Compute: x, s2 ¼
X40

i¼1
xi� xð Þ2
39

, s21 ¼
X40

i¼1
xi� xð Þ2
40

, and s22 ¼
X40

i¼1
xi� xð Þ2
41

.

(b) Compute the average squared error (ASE) for each of the estimates s2, s1
2, s2

2 as

follows.

Let Ks2 ¼
XK

i¼1
xi� xð Þ2

h i
=39

h i
for K¼1, 2, . . ., 25; and Ks2 be the sample

variance for the Kth sample. Then, the average squared error is

ASE¼
X25

i¼1
KS2 �s2
� �2
25

:
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Repeat this procedure for the other two estimators. Compare the three ASEs

and check which has the least ASE.

(c) Repeat (a) and (b) with a sample size of 15.

5E. ALTERNATE METHOD OF ESTIMATING THE MEAN AND VARIANCE
(a) Consider the following alternative method of estimating m and s2. We sample

sequentially, and at each stage we compute the estimates of m and s2 as follows.
Let X1, . . ., Xn, Xn+1 be the sample values.

Compute

Xn ¼
Xn

i¼1
Xi

n
, Xn+ 1 ¼

Xn+ 1

i¼1
Xi

n+ 1
,

S2n ¼
Xn

i¼1
Xi�Xn

� �2
n�1

, and S2n+ 1 ¼
Xn+ 1

i¼1
Xi�Xn

� �2
n

:

The sequential procedure is stopped when

S2n�S2n+ 1
�� ��� 0:01:

This will also determine the sample size.

(b) Compare the sample sizes and estimates in 5D and 5E.

5F. NEWTON-RAPHSON IN ONE DIMENSION
For a given function g(x), suppose we need to solve g(y)¼0. Using the first-order

Taylor expansion, g(y)�g(x)+ (y�x)g0(x), where g0 xð Þ¼ dg
dx, and setting g(y)¼0,

we get y� x� g xð Þ
g0 xð Þ. Thus, starting with an initial guess solution x, the guess is updated

by y using the previous formula. This derivation is the basis for the Newton-Raphson

iterative method for obtaining the solution of g(y)¼0. This is given by

y n+ 1ð Þ ¼ yn� g ynð Þ
g0 ynð Þ , n� 0,

where yn is the value of y at the nth iteration, starting with the initial guess, y0. For a
good approximation of the solution, the choice of y0 is important. The convergence

of this algorithm cannot be guaranteed.

For the MLE, we want to find a solution of

g yð Þ¼ dL

dy
¼ 0,

where L¼L(y) is the likelihood function of the random sample X1, . . ., Xn . An iter-

ative algorithm for finding the MLE can be given by

y n+ 1ð Þ ¼ yn�
dL

dy
ynð Þ

d2L

dy2
ynð Þ

, n� 0:
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Write a computer program to find theMLE of a for a gamma distribution with param-

eters a and b.

5G. THE EMPIRICAL DISTRIBUTION FUNCTION
The estimators in this chapter yield a single real value (point estimate) for each

parameter. In Chapter 6, we will learn about so-called interval estimates. In this pro-

ject, we use an estimation procedure that estimates the whole distribution function,F,
of a random variable X. We now define the empirical distribution.

The empirical distribution function for a random sample X1, . . ., Xn from a dis-

tribution F is the function defined by

Fn xð Þ¼ 1

n
# i,1� i� n :Xi � xf g:

It can be shown that nFn(x) is a binomial random variable with

E Fn xð Þ½ � ¼F xð Þ and Var Fn xð Þ½ � ¼ 1

n
F xð Þ 1�F xð Þ½ �:

Also, by the strong law of large numbers, for each real number x,

lim
n!1 Fn xð Þ¼F xð Þ with probability 1:

One of the tests to determine whether a random sample comes from a specific dis-

tribution is the Kolmogorov-Smirnov (K-S) test. The K-S test is based on the max-

imum distance between the empirical distribution function and the actual cumulative

distribution function of this specific distribution (such as, say, the normal

distribution).

Using the method of Project 4A (or using any statistical software), generate 100

sample points from a normal distribution with mean 2 and variance 9. Graph the

empirical distribution function for this sample. Compare this graph with the graph

of the N(2, 9) distribution.

5H. SIMULATION OF COVERAGE OF THE SMALL CONFIDENCE
INTERVALS FOR m
(a) Generate 25 samples of size 15 from a normal population with m¼10 and s2¼4.

Using a statistical package (such as Minitab), compute the 95% confidence

intervals for each of the samples using the small sample formula. From your

output, determine the proportion of the 25 intervals that cover the true mean

m¼10.

(b) What would you expect if the sample size is increased to 100? Would the width

of the interval increase or decrease? Would you expect more or fewer of these

intervals to contain the true mean 10? Check your answers with actual

computation.

(c) Repeat with 20 samples of size 10.
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5I. CONFIDENCE INTERVALS BASED ON SAMPLING DISTRIBUTIONS
If we want to obtain a (1�a) 100% confidence interval for y, begin with an estimator

ŷ of y and determine its sampling distribution. Now select two probability levels, a1
and a2, so that a¼a1+a2. Generally we let a1¼a2. Take a sample and calculate the

value of ŷ, say ŷ¼ k: Now we need to determine the values of the upper and lower

confidence limits. Find a value yL such that

p ŷ� k
� �

¼ a1

and yU such that

p ŷ� k
� �

¼ a2:

Then a (1�a) 100% confidence interval for y will be

yL < y< yU:

(a) Let X1, . . ., Xn be a random sample from U(0,y) distribution. Obtain a (1�a)
100% confidence interval for y, using the method of sampling distribution.

(b) Let X have a binomial distribution with parameters n and p. First show that there is

no quantity that satisfies the conditions of a pivotal quantity. Then using the

method of sampling distributions, obtain a (1�a) 100% confidence interval for p.

5J. LARGE SAMPLE CONFIDENCE INTERVALS: GENERAL CASE
The method of finding a confidence interval for a parameter y that we described in

this chapter depends on our ability to find the pivotal quantity. We have seen that

such a quantity may not exist. In those cases, the method of sampling distribution

described in the previous project could be used. However, this method can involve

some difficult calculations. For large samples, we can utilize the following proce-

dure, which is based on the asymptotic distribution of MLEs. Under fairly general

conditions, the MLEs have a limiting distribution that is normal. Also, MLEs are

asymptotically efficient. Hence, for a large sample the MLE ŷ of y will have approx-
imately normal distribution with mean y. Also, if the Cramér-Rao lower bound

exists, the limiting variance of ŷ will be

s2
ŷ
¼ 1

E @1nL
@y

� �2h i :
Hence,

Z¼ ŷ�y
sŷ

�N 0, 1ð Þ:

Then a large sample (1�a) 100% confidence interval is obtained from the probabil-

ity statement
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P �za=2 <
ŷ�y
sŷ

< za=2

 !
� 1�a:

We summarize the procedure to construct large sample confidence intervals.

1. Determine the MLE, ŷ, of y. Also find the MLEs of all other unknown

parameters.

2. Obtain the variance sŷ, (if possible directly, otherwise by using the Cramér-Rao

lower bound).

3. In the expression for sŷ, substitute ŷ for y. Replace all other unknown parameters

by its MLEs. Let the resulting quantity be denoted by sŷ:
4. Now construct a (1�a) 100% confidence interval for y from

ŷ� za=2sq̂ < y< ŷ + za=2sq̂:

(a) Using the foregoing procedure, show that a large sample (1�a) 100%
confidence interval for the parameter p in a binomial distribution based on n
trials is

p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
< p< p̂ + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
:

(b) Let X1, . . ., Xn be a random sample from a normal population with parameters

m and s2. Derive a large sample confidence interval for s2 using the above

procedure.

(c) Let X1, . . ., Xn be a random sample from a population with a pdf

f xð Þ¼ 1
ye

�x=y, x> 0

0, otherwise


:

Derive a large sample confidence interval for y.

5K. PREDICTION INTERVAL FOR AN OBSERVATION FROM A
NORMAL POPULATION
In many cases, we may be interested in predicting future observations from a pop-

ulation, rather than making an inference. A (1�a) 100% prediction interval for a
future observation X is an interval of the form (XL, XU) such that P-
(XL<X<XU)¼1�a. Similarly to confidence intervals, we can also define

one-sided prediction intervals. Assume that the population is normal with known

variance s2. Let X1, . . ., Xn be a random sample from this population. Then the sam-

pling distribution of the difference X�X (we use X to denote Xn) is normal with

mean zero and variance s2+s(2/X)¼ (1+(1/n))s2. Then a (1�a) 100% prediction

interval for X is given by
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X� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n

� �
s2

s
, X + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n

� �
s2

s !
:

Thus, we are (1�a) 100% confident that the next observation, Xn+1, will lie in this

interval. As in confidence intervals, if the sample size is large, replace s by sample

standard deviation s.
In case, where both m and s are not known, and the sample size is small (so that

the Central Limit Theorem cannot be applied), it can be shown that

Xn + 1�Xn

� �
= Sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1=nð Þp� �� 	

has a t-distribution with (n�1) degrees of freedom.

Thus, a (1�a) 100% prediction interval for Xn+1 is given by

X� ta=2,n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1=nð Þð ÞS2

q
, X + ta=2,n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1=nð Þð ÞS2

q� �
:

A standard measure of the capacity of lungs to expel air in breathing is called forced

expiratory volume (FEV). The FEV1 is the volume exhaled during the first second of

a forced expiratory maneuver started from the level of total lung capacity. The fol-

lowing data (source: M. Bland, An Introduction to Medical Statistics, Oxford Uni-

versity Press, 1995) represents FEV measurements (in liters) from 57 male medical

students.

4:47 3:10 4:50 4:90 3:50 4:14 4:32 4:80 3:10 4:68
4:47 3:57 2:85 5:10 5:20 4:80 5:10 4:30 4:70 4:08
3:48 4:20 3:70 5:30 4:71 4:10 4:30 3:39 3:69 4:44
5:00 4:50 4:20 4:16 3:70 3:83 3:90 4:47 3:30 5:43
3:42 3:60 3:20 4:56 4:78 3:60 3:96 3:19 2:85 3:04
3:78 3:75 4:05 3:54 4:14 2:98 3:54

Obtain a 95% prediction interval for a future observation Xn+1.
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OBJECTIVE

In this chapter, various methods of testing hypotheses will be discussed.

Jerzy Neyman
(Source: http://www.learn-math.info/history/photos/Neyman.jpeg)

Jerzy Neyman (1894-1981) was a Polish statistician and mathematician who after

spending time in various institutions in Warsaw, Poland, came to the University of

California, Berkeley. He had made far-reaching contributions in hypothesis testing,

confidence intervals, probability theory, and other areas of mathematical statistics.
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His work with Egon Pearson gave logical foundation and mathematical rigor to the

theory of hypothesis testing. Neyman made a broader impact in statistics throughout

his lifetime.

6.1 INTRODUCTION
Statistics plays an important role in decision making. In statistics, one utilizes

random samples to make inferences about the population from which the samples

were obtained. Statistical inference regarding population parameters takes two

forms: estimation and hypothesis testing, although both may be viewed as different

aspects of the same general problem of arriving at decisions on the basis of observed

data. We already saw several estimation procedures in earlier chapters. Hypothesis

testing is the subject of this chapter. This has an important role in the application of

statistics to real-life problems. Here we utilize the sampled data to make decisions

concerning the unknown distribution of a population or its parameters. Pioneering

work on the explicit formulation as well as the fundamental concepts of the theory

of hypothesis testing is due to J. Neyman and E.S. Pearson.

A statistical hypothesis is a statement concerning the probability distribution of a

random variable or population parameters that are inherent in a probability distribu-

tion. The following example illustrates the concept of hypothesis testing. An impor-

tant industrial problem is that of accepting or rejecting lots of manufactured products.

Before releasing each lot for the consumer, the manufacturer usually performs some

tests to determine whether the lot conforms to acceptable standards. Let us say that

both the manufacturer and the consumer agree that if the proportion of defectives in a

lot is less than or equal to a certain number p, the lot will be released. Very often,

instead of testing every item in the lot, we may test only a few at random from

the lot and make decisions about the proportion of defectives in the lot; that is,

we make the decisions about the population on the basis of sample information. Such

decisions are called statistical decisions. In attempting to reach decisions, it is useful

to make some initial conjectures about the population involved. Such conjectures are

called statistical hypotheses. Sometimes the results from the sample may be mark-

edly different from those expected under the hypothesis. Then we can say that the

observed differences are significant and we would be inclined to reject the initial

hypothesis. The procedures that enable us to decide whether to reject hypotheses

or to determine whether observed samples differ significantly from expected results

are called tests of hypotheses, tests of significance, or rules of decision.
In any hypothesis testing problem, we formulate a null hypothesis and an alter-

native hypothesis such that if we reject the null, then we have to accept the alterna-

tive. The null hypothesis usually is a statement of either the “status quo” or “no

effect.” A guideline for selecting a null hypothesis is that when the objective of

an experiment is to establish a claim, the nullification of the claim should be taken

as the null hypothesis. The experiment is often performed to determine whether the

null hypothesis is false. For example, suppose the prosecution wants to establish that
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a certain person is guilty. The null hypothesis would be that the person is innocent

and the alternative would be that the person is guilty. Thus, the claim itself becomes

the alternative hypothesis. Customarily, the alternative hypothesis is the statement

that the experimenter believes to be true. For example, the alternative hypothesis

is the reason a person is arrested (police suspect the person is not innocent). Once

the hypotheses have been stated, appropriate statistical procedures are used to deter-

mine whether to reject the null hypothesis. For the testing procedure, one begins with

the assumption that the null hypothesis is true. If the information furnished by the

sampled data strongly contradicts (beyond a reasonable doubt) the null hypothesis,

then we reject it in favor of the alternative hypothesis. If we do not reject the null,

then we automatically reject the alternative. Note that we always make a decision

with respect to the null hypothesis. Failure to reject the null hypothesis does not nec-

essarily mean that the null hypothesis is true. For example, a person being judged

“not guilty” does not mean the person is innocent. This basically means that there

is not enough evidence to reject the null hypothesis (presumption of innocence)

beyond “a reasonable doubt.”

We summarize the elements of a statistical hypothesis in the following.

THE ELEMENTS OF A STATISTICAL HYPOTHESIS
1. The null hypothesis, denoted by H0, is usually the nullification of a claim. Unless evidence from

the data indicates otherwise, the null hypothesis is assumed to be true.

2. The alternate hypothesis, denoted by Ha (or sometimes denoted by H1), is customarily the claim

itself.

3. The test statistic, denoted by TS, is a function of the sample measurements upon which the

statistical decision, to reject or not reject the null hypothesis, will be based.

4. A rejection region (or a critical region) is the region (denoted by RR) that specifies the values of

the observed test statistic for which the null hypothesis will be rejected. This is the range

of values of the test statistic that corresponds to the rejection of H0 at some fixed level of

significance, a, which will be explained later.

5. Conclusion: If the value of the observed test statistic falls in the rejection region, the null hypoth-

esis is rejected and we will conclude that there is enough evidence to decide that the alternative

hypothesis is true. If the TS do not fall in the rejection region, we conclude that we cannot reject

the null hypothesis.

In practice one may have hypotheses such as H0:m¼m0 against one of the

following alternatives:

Ha : m 6¼ m0, called a two� tailed alternative

or Ha : m< m0, called a lower or leftð Þ tailed alternative
or Ha : m> m0, called an upper or rightð Þ tailed alternative:

8<
:

A test with a lower or upper tailed alternative is called a one-tailed test. One of the
issues in hypothesis testing is the choice of the form of alternative hypothesis. Note

that as we discussed earlier, the null hypothesis is always concerned with the ques-

tion posed—the claim. The alternative hypothesis must reflect the aim of the claim

when in fact we reject the claim; we want to know why we rejected. For example,
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suppose that a pharmaceutical company claims that drug A is 80% effective (i.e.

p¼0.8). We conduct an experiment, clinical trials to test this claim. Thus, the null

hypothesis is that the claim is true. Now if we don’t want to reject the null hypothesis,

no problem, but if we reject the null hypothesis, we want to know why. Thus, the

alternative must be one tail test, p<0.8, that is, the claim is not true. If we were

to use a two tail test, we wouldn’t know whether the rejection was due because

p<0.8 or p>0.8 in this case is actually part of the null hypothesis. It is important

to note that when using one-sided test in a certain direction, if the consequence of

missing an effect in the other direction is not negligible, it is better to use two-sided

test. Also choosing a one-tailed test after doing a two-tailed test that failed to reject

the null hypothesis is not appropriate. Therefore, choice of the alternative is based

on what happens if we reject the null hypothesis. In an applied hypothesis testing

problem, we can use the following general steps.

GENERAL METHOD FOR HYPOTHESIS TESTING
1. From the (word) problem, determine the appropriate null hypothesis,H0, and the alternative,Ha.

2. Identify the appropriate test statistics and calculate the observed test statistic from the data.

3. Find the rejection region by looking up the critical value in the appropriate table.

4. Draw the conclusion: Reject or fail to reject the null hypothesis, H0.

5. Interpret the results: State in words what the conclusion means to the problem we started with.

It is always necessary to state a null and an alternate hypothesis for every statis-

tical test performed. All possible outcomes should be accounted for by the two

hypotheses. Note that, a critical value is the value that a test statistic must surpass

in order for the null hypothesis to be rejected, and is derived from the level of sig-

nificance a of the test. Thus, the critical values are the boundaries of the rejection

region. It is important to observe that both null and alternate hypotheses are stated

in terms of parameters, not in terms of statistic.

EXAMPLE 6.1.1
In a coin-tossing experiment, let p be the probability of heads.We start with the claim that the coin is

fair, that is, H0:p¼1/2. We test this against one of the following alternatives:

(a) Ha: The coin is not fair (p 6¼1/2). This is a two-tailed alternative.

(b) Ha: The coin is biased in favor of heads (p>1/2). This is an upper tailed alternative.

(c) Ha: The coin is biased in favor of tails (p<1/2). This is a lower tailed alternative.

It is important to observe that the test statistic is a function of a random sample.

Thus, the test statistic itself is a random variable whose distribution is known under

the null hypothesis. The value of a test statistic when specific sample values are

substituted is called the observed test statistic or simply test statistic.

For example, consider the hypothesis H0:m¼m0 versus Ha:m 6¼m0, where m0 is

known. Assume that the population is normal with a known variance s2. Consider
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X, an unbiased estimator of m based on the random sample, X1, . . .,Xn. Then

Z¼ X�m0
� �

= s=
ffiffiffi
n

pð Þ is a function of the random sample X1, . . .,Xn, and has a known

distribution, say a standard normal, under H0. If x1, x2, . . .,xn are specific sample

values, then z¼ x�m0ð Þ= s=
ffiffiffi
n

pð Þ is called the observed sample statistic or simply

sample statistic.
Definition 6.1.1 A hypothesis is said to be a simple hypothesis if that hypothesis

uniquely specifies the distribution from which the sample is taken. Any hypothesis
that is not simple is called a composite hypothesis.

EXAMPLE 6.1.2
Refer to Example 6.1.1. The null hypothesis p¼1/2 is simple, because the hypothesis completely

specifies the distribution, which in this case will be a binomial with p¼1/2 and with n being the

number of tosses. The alternative hypothesis p 6¼1/2 is composite because the distribution now is

not completely specified (we do not know the exact value of p).

Because the decision is based on the sample information, we are prone to commit

errors. In a statistical test, it is impossible to establish the truth of a hypothesis with

100% certainty. There are two possible types of errors. On the one hand, one can

make an error by rejecting H0 when in fact it is true. On the other hand, one can also

make an error by failing to reject the null hypothesis when in fact it is false. Because

the errors arise as a result of wrong decisions, and the decisions themselves are based

on random samples, it follows that the errors have probabilities associated with them.

We now have the following definitions.

The decision and the errors are represented in Table 6.1.

Definition 6.1.2 (a) A type I error is made if H0 is rejected when in fact H0 is
true. The probability of type I error is denoted by a. That is,

P rejectingH0jH0 istrueð Þ¼ a:

The probability of type I error, a, is called the level of significance.

(b) A type II error is made if H0 is accepted when in fact Ha is true. The probability
of a type II error is denoted by b. That is,

P notrejectingH0jH0 isfalseð Þ¼ b:

It is desirable that a test should have a¼b¼0 (this can be achieved only in trivial

cases), or at least we prefer to use a test that minimizes both types of errors.

Table 6.1 Statistical Decision and Error Probabilities

Statistical Decision

True State of Null Hypothesis

H0 True H0 False

Do not reject H0 Correct decision Type II error (b)
Reject H0 Type I error (a) Correct decision
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Unfortunately, it so happens that for a fixed sample size, as a decrease, b tends to

increase and vice versa. There are no hard and fast rules that can be used to make

the choice of a and b. This decision must be made for each problem based on quality

and economic considerations. However, in many situations it is possible to determine

which of the two errors is more serious. It should be noted that a type II error is only

an error in the sense that a chance to correctly reject the null hypothesis was lost. It is

not an error in the sense that an incorrect conclusion was drawn, because no conclu-

sion is made when the null hypothesis is not rejected. In the case of type I error, a

conclusion is drawn that the null hypothesis is false when, in fact, it is true. There-

fore, type I errors are generally considered more serious than type II errors. For

example, it is mostly agreed that finding an innocent person guilty is a more serious

error than finding a guilty person innocent. Here, the null hypothesis is that the per-

son is innocent, and the alternate hypothesis is that the person is guilty. “Not rejecting

the null hypothesis” is equivalent to acquitting a defendant. It does not prove that the

null hypothesis is true, or that the defendant is innocent. In statistical testing, the sig-

nificance level a is the probability of wrongly rejecting the null hypothesis when it is
true (i.e. the risk of finding an innocent person guilty). Here the type II risk is acquit-

ting a guilty defendant. The usual approach to hypothesis testing is to find a test pro-

cedure that limits a, the probability of type I error, to an acceptable level while trying
to lower b as much as possible.

The consequences of different types of errors are, in general, very different. For

example, if a doctor tests for the presence of a certain illness, incorrectly diagnosing

the presence of the disease (type I error) will cause a waste of resources, not to

mention the mental agony to the patient. On the other hand, failure to determine

the presence of the disease (type II error) can lead to a serious health risk.

To formulate a hypothesis testing problem, consider the following situation. Sup-

pose a toy store chain claims that at least 80% of girls under 8 years old prefer dolls

over other types of toys. We feel that this claim is inflated. In an attempt to dispose of

this claim, we observe the buying pattern of 20 randomly selected girls under 8 years

old, and we observe X, the number of girls under 8 years old who buy stuffed toys or

dolls. Now the question is, how can we use X to confirm or reject the store’s claim? Let

p be the probability that a girl under 8 chosen at random prefers stuffed toys or dolls.

The question now can be reformulated as a hypothesis testing problem. Is p�0.8 or

p<0.8? Because we would like to reject the store’s claim only if we are highly cer-

tain of our decision, we should choose the null hypothesis to be H0:p�0.8, the rejec-

tion of which is considered to be more serious. The null hypothesis should be H0:

p�0.8, and the alternative Ha:p<0.8. In order to make the null hypothesis simple,

we will use H0:p¼0.8, which is the boundary value with the understanding that it

really represents H0:p�0.8. We note that X, the number of girls under 8 years old

who prefer stuffed toys or dolls, is a binomial random variable. Clearly a large sam-

ple value of X would favor H0. Suppose we arbitrarily choose to accept the null

hypothesis if X>12. Because our decision is based on only a sample of 20 girls under

8, there is always a possibility of making errors whether we accept or reject the store

chain’s claim. In the following example, we will now formally state this problem and

calculate the error probabilities based on our decision rule.
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EXAMPLE 6.1.3
A toy store chain claims that at least 80% of girls under 8 years old prefer dolls over other

types of toys. After observing the buying pattern of many girls under 8 years old, we feel that

this claim is inflated. In an attempt to dispose of this claim, we observe the buying pattern of

20 randomly selected girls under 8 years old, and we observe X, the number of girls who buy

stuffed toys or dolls. We wish to test the hypothesis H0:p¼0.8 against Ha:p<0.8. Suppose we

decide to accept the H0 if X>12 (i.e. X�13). This means that if {X�12} (i.e. X<13) we will

reject H0.

(a) Find a.
(b) Find b for p¼0.6.

(c) Find b for p¼0.4.

(d) Find the rejection region of the form {X�K} so that (i) a¼0.01; (ii) a¼0.05.

(e) For the alternative Ha:p¼0.6, find b for the values of a in part (d).

Solution
The TS X is the number of girls under 8 years old who buy dolls. X follows the binomial distribution
with n¼20 and p, the unknown population proportion of girls under 8 who prefer dolls. We now

calculate a and b.

(a) For p¼0.8, the probability of type I error is

a¼P reject H0 H0 is truejf g
¼P X� 12 p¼ 0:8jf g
¼
X12
x¼0

20

x

� �
0:8ð Þx 0:2ð Þ20�x

¼ 0:0321:

If we calculate a for any other value of p>0.8, then we will find that it is smaller than 0.0321.

Hence, there is at most a 3.21% chance of rejecting a true null hypothesis. That is, if the

store’s claim is in fact true, then the chance that our test will erroneously reject that claim

is at most 3.21%.
(b) Here p¼0.6. The probability of type II error is

b¼P accept H0 H0 falsejf g
¼P X> 12 p¼ 0:6jf g
¼1�P X� 12jp¼ 0:6f g
¼1�0:584
¼0:416:

so there is a 41.6% chance of accepting a false null hypothesis. Thus, in case the store’s claim is not
true, and the truth is that only 60% of girls under 8 years old prefer dolls over other types of toys,

then there is a 41.6% chance that our test will erroneously conclude that the store’s claim is true.

(c) If p¼0.4, then

b¼P accept H0jH0 falsef g
¼P X> 12jp¼ 0:4f g
¼ 1�P X� 12jp¼ 0:4f g
¼ 1�0:979

¼ 0:021:

That is, there is a 2.1% chance of not rejecting a false null hypothesis.
Continued
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(d) (i) To find K such that

a¼P X�Kjp¼ 0:8f g¼ 0:01

from the binomial table, K¼11. Hence, the rejection region is: Reject H0 if {X�11}.

(ii) To find K such that

a¼P X�Kjp¼ 0:8f g¼ 0:05

from the binomial table, a¼0.05 falls between K¼12 and K¼13. However, for K¼13, the value
for a is 0.087, exceeding 0.05. If we want to limit a to be no more than 0.05, we will have to take
K¼12. That is, we reject the null hypothesis if X�12, yielding an a¼0.0321 as shown in (a).

(e) (i) When a¼0.01, from (d), the rejection region is of the form {X�11}. For p¼0.6,

b¼P accept H0jH0 falsef g
¼P Y> 11jp¼ 0:6f g
¼ 1�P Y� 11jp¼ 0:6f g
¼ 1�0:404

¼ 0:596:

(ii) From (a) and (b) for testing the hypothesis H0:p¼0.8 against Ha:p<0.8with n¼20. We see

that when a is 0.0321, b is 0.416. From (d)(i) and (e)(i) for the same hypothesis, we see that

when a is 0.01, b is 0.596. This holds in general. Thus, we observe that for fixed n as a
decrease, b increases and vice versa.

In the next example, we explore what happens to b as the sample size increases,

with a fixed.

EXAMPLE 6.1.4
Let X be a binomial random variable. We wish to test the hypothesis H0:p¼0.8 against Ha:p¼0.6.

Let a¼0.03 be fixed. Find b for n¼10 and n¼20.

Solution
For n¼10, using the binomial tables, we obtain P{X�5jp¼0.8}ffi0.03. Hence the rejection region
for the hypothesis H0:p¼0.8 versus Ha:p¼0.6 is given by reject H0 if X�5. The probability of type

II error is

b¼P acceptH0jp¼ 0:6f g,
b¼P X> 5jp¼ 0:6f g¼ 1�P X� 5jp¼ 0:6f g¼ 0:733:

For n¼20, as shown in Example 7.1.3, if we reject H0 for X�12, we obtain

P X� 12jp¼ 0:8ð Þffi 0:03

and

b¼P X> 12jp¼ 0:6ð Þ¼ 1�P X� 12jp¼ 0:6f g¼ 0:416:

We see that for a fixed a, as n increases b decreases and vice versa. It can be shown that this result

holds in general.

In order for us to compute the value of b, it is necessary that the alternate hypoth-
esis is simple. Now we will discuss a three-step procedure to calculate b.
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STEPS TO CALCULATE b
1. Decide an appropriate test statistic (usually this is a sufficient statistic or an estimator for the

unknown parameter, whose distribution is known under H0).

2. Determine the rejection region using a given a, and the distribution of the test statistic (TS).

3. Find the probability that the observed test statistic does not fall in the rejection region assuming

Ha is true. This gives b. That is,

b ¼ P TS falls in the complement of the rejection region jHa is trueð Þ:

EXAMPLE 6.1.5
A random sample of size 36 from a population with known variance, s2¼9, yields a sample mean of

x¼ 17. For the hypothesis H0:m¼15 versus Ha:m>15, find b when m¼16. Assume a¼0.05.

Solution
Here n¼36, x¼ 17, and s2¼9. In general, to test H0:m¼m0 versus Ha:m>m0, we proceed as

follows. An unbiased estimator of m is X. Intuitively we would reject H0 if X is large, say X> c.

Now using a¼0.05, we will determine the rejection region. By the definition of a, we have

P X> cjm¼ m0
� �¼ 0:05 or

P
X�m0
s=

ffiffiffi
n

p >
c�m0
s=

ffiffiffi
n

p jm¼ m0

� �
¼ 0:05:

But if m¼m0, because the sample size n�30, X�m0
� �

= s=
ffiffiffi
n

pð Þ� ��N 0, 1ð Þ: Therefore,

P
X�m0
s=

ffiffiffi
n

p >
c�m0
s=

ffiffiffi
n

p
� �

¼ 0:05 is equivalent to P Z>
c�m0
s=

ffiffiffi
n

p
� �

¼ 0:05: From standard normal tables,

we obtain P(Z>1.645)¼0.05. Hence
c�m0
s=

ffiffiffi
n

p ¼ 1:645 or c¼ m0 + 1:645 s=
ffiffiffi
n

pð Þ:
Therefore, the rejection region is the set of all sample means x such that

x> m0 + 1:645
sffiffiffi
n

p
� �

:

Substituting m0¼15, and s¼3, we obtain

m0 + 1:645
sffiffiffi
n

p
� �

¼ 15 + 1:645
3

36

� �
¼ 15:8225:

The rejection region is the set of x such that x� 15:8225.

Then by definition,

b¼P X� 15:8225, whenm¼ 16
� �

:

Consequently, for m¼16,

b¼P
X�16

s=
ffiffiffi
n

p � 15:8225�16

3=
ffiffiffiffiffi
36

p
 !

¼P Z��0:36ð Þ
¼ 0:3594:

That is, under the given information, there is a 35.94% chance of not rejecting a false null

hypothesis.
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6.1.1 SAMPLE SIZE
It is clear from the preceding example that once we are given the sample size n, an a,
a simple alternativeHa, and a test statistic, we have no control over b and it is exactly

determined. Hence, for a given sample size and test statistic, any effort to lower b
will lead to an increase in a and vice versa. This means that for a test with fixed sam-

ple size it is not possible to simultaneously reduce both a and b. We also notice from

Example 6.1.4 that by increasing the sample size n, we can decrease b (for the same

a) to an acceptable level. The following discussion illustrates that it may be possible

to determine the sample size for a given a and b.
Suppose we want to test H0:m¼m0 versus Ha:m>m0. Given a and b, we want to

find n, the sample size, and K, the point at which the rejection begins. We know that

a¼P X>K, when m¼ m0
� �

¼P
X�m0
s=

ffiffiffi
n

p >
K�m0
s=

ffiffiffi
n

p , when m¼ m0

� �
¼P Z> zað Þ

(6.1)

and for some particular value m¼ma>m0,

b¼P X�K, when m¼ ma
� �

¼P
X�ma
s=

ffiffiffi
n

p �K�ma
s=

ffiffiffi
n

p , when m¼ ma

� �
¼P z� zb
� �

:

(6.2)

From Equations (6.1) and (6.2),

za ¼K�m0
s=

ffiffiffi
n

p

and

�zb ¼K�ma
s=

ffiffiffi
n

p :

This gives us two equations with two unknowns (K and n), and we can proceed to

solve them. Eliminating K, we get

m0 + za
sffiffiffi
n

p
� �

¼ ma� zb
sffiffiffi
n

p
� �

:

From this we can derive

ffiffiffi
n

p ¼ za + zb
� �

s
ma�m0

:

Thus, the sample size for an upper tail alternative hypothesis is

n¼ za + zb
� �2s2
ma�m0ð Þ2 :
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The sample size increases with the square of the standard deviation and decreases

with the square of the difference between mean value of the alternative hypothesis

and the mean value under the null hypothesis. Note that in real-world problems, care

should be taken in the choice of the value of ma for the alternative hypothesis. It may

be tempting for a researcher to take a large value of ma in order to reduce the required
sample size. This will seriously affect the accuracy (power) of the test. This alterna-

tive value must be realistic within the experiment under study. Care should also be

taken in the choice of the standard deviation s. Using an underestimated value of the

standard deviation to reduce the sample size will result in inaccurate conclusions

similar to overestimating the difference of means. Usually, the value of s is estimated

using a similar study conducted earlier. The problem could be that the previous study

may be old and may not represent the new reality. When accuracy is important, it

may be necessary to conduct a pilot study only to get some idea on the estimate

of s. Once we determine the necessary sample size, we must devise a procedure

by which the appropriate data can be randomly obtained. This aspect of the design

of experiments is discussed in Chapter 9.

EXAMPLE 6.1.6
Let s¼3.1 be the true standard deviation of the population from which a random sample is chosen.

How large should the sample size be for testingH0:m¼5 versusHa:m¼5.5, in order that a¼0.01 and

b¼0.05?

Solution
We are given m0¼5 and ma¼5.5. Also, za¼ z0.01¼2.33 and zb¼ z0.05¼1.645. Hence, the sample size

n¼ za + zb
� �2s2
ma�m0ð Þ2 ¼ 2:33 + 1:645ð Þ2 3:1ð Þ2

0:5ð Þ2 ¼ 607:37:

So, n¼608will provide the desired levels. That is, in order for us to test the foregoing hypothesis, we

must randomly select 608 observations from the given population.

From a practical standpoint, the researcher typically chooses a and the sample

size, b is ignored. Because a trade-off exists between a and b, choosing a very small

value of a will tend to increase b in a serious way. A general rule of thumb is to pick

reasonable values of a, possibly in the 0.05-0.10 range so that b will remain

reasonably small.

EXERCISES 6.1
6.1.1. An appliance manufacturer is considering the purchase of a new machine for

stamping out sheet metal parts. If m0 (given) is the true average of the number

of good parts stamped out per hour by their old machine and m is the

corresponding true unknown average for the new machine, the manufacturer

wants to test the null hypothesis m¼m0 versus a suitable alternative. What
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should the alternative be if he does not want to buy the new machine unless it

is (a) more productive than the old one? (b) At least 20% more productive

than the old one?

6.1.2. Formulate an alternative hypothesis for each of the following null

hypotheses.

(a) H0: Support for a presidential candidate is unchanged after the start of the

use of TV commercials.

(b) H0: The proportion of viewers watching a particular local news channel

is less than 30%.

(c) H0: The median grade point average of undergraduate mathematics

majors is 2.9.

6.1.3. It is suspected that a coin is not balanced (not fair). Let p be the probability of
tossing a head. To test H0:p¼0.5 against the alternative hypothesis Ha:

p>0.5, a coin is tossed 15 times. Let Y equal the number of times a head is

observed in the 15 tosses of this coin. Assume the rejection region to be

{Y�10}.

(a) Find a.
(b) Find b for p¼0.7.

(c) Find b for p¼0.6.

(d) Find the rejection region for {Y�K} for a¼0.01, and a¼0.03.

(e) For the alternative Ha:p¼0.7, find b for the values of a given in (d).

6.1.4. In Exercise 6.1.3:

(a) Assume that the rejection region is {Y�8}. Calculate a and b if p¼0.6.

Compare the results with the corresponding values obtained in

Exercise 6.1.3. (This gives the effect of enlarging the rejection region

on a and b.)
(b) Assume that the rejection region is {Y�8}. Calculate a and b if p¼0.6

and (i) the coin is tossed 20 times, or (ii) the coin is tossed 25 times.

(This shows the effect of increasing the sample size on a and b for a

fixed rejection region.)

6.1.5. Suppose we have a random sample of size 25 from a normal population with

an unknown mean m and a standard deviation of 4. We wish to test the

hypothesis H0:m¼10 versus Ha:m>10. Let the rejection region be defined

by: reject H0 if the sample mean X> 11:2:
(a) Find a.
(b) Find b for Ha:m¼11.

(c) What should the sample size be if a¼0.01 and b¼0.2?

6.1.6. A process for making steel pipe is under control if the diameter of the

pipe has mean 3.0 in. with standard deviation of no more than 0.0250 in.

To check whether the process is under control, a random sample of size

n¼30 is taken each day and the null hypothesis m¼3.0 is rejected if X is

less than 2.9960 or greater than 3.0040. Find (a) the probability of type I

error; (b) the probability of type II error when m¼3.0050 in. Assume

s¼0.0250 in.
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6.1.7. A bowl contains 20 balls, of which x are green and the remainder red. To test

H0:x¼10 versus Ha:x¼15, three balls are selected at random without

replacement, and H0 is rejected if all three balls are green. Calculate a and b
for this test.

6.1.8. Suppose we have a sample of size 6 from a population with probability

density function (pdf) f(x)¼ (1/y)e�x/y, x>0, y>0. We wish to test

H0:y¼1 versus Ha:y>1. Let the rejection region be defined by reject H0 ifP
i¼1
6 Xi>8. (a) Find a. (b) Find b for Ha:y¼2.

6.1.9. Let s2¼16 be the variance of a normal population from which a random

sample is chosen. How large should the sample size be for testing H0:m¼25

versus Ha:m¼24, in order that a¼0.05 and b¼0.05?

6.2 THE NEYMAN-PEARSON LEMMA
In practical hypothesis testing situations, there are typically many tests possible with

significance level a for a null hypothesis versus alternative hypothesis (see Project

7A). This leads to some important questions, such as (1) how to decide on the test

statistic and (2) how to know that we selected the best rejection region. In this sec-

tion, we study the answer to these questions using the Neyman-Pearson approach.

Definition 6.2.1 Suppose that W is the test statistic and RR is the rejection region
for a test of hypothesis concerning the value of a parameter y. Then the power of the
test is the probability that the test rejects H0 when the alternative is true. That is,

p¼ Power yð Þ
¼P W in RR when the parameter value is an alternative yð Þ:

If H0:y¼y0 and Ha:y 6¼y0, then the power of the test at some y¼y1 6¼y0 is

Power y1ð Þ¼P rejectH0 y¼ y1jð Þ:
But, b(y1)¼P(accept H0jy¼y1). Therefore,

Power y1ð Þ¼ 1�b y1ð Þ:
In otherwords, power refers to the probability that the test will find a statistically
significant difference when such a difference actually exists. A good test will have
high power. In statistical tests, it is generally accepted that power should be 0.8
or greater.

Note that the power of a test H0 cannot be found until some true situation Ha is

specified. That is, the sampling distribution of the test statistic when Ha is true must

be known or assumed. Because b depends on the alternative hypothesis, which being

composite most of the time does not specify the distribution of the test statistic, it is

important to observe that the experimenter cannot control b. For example, the alter-

native Ha:m<m0 does not specify the value of m, as in the case of the null hypothesis,
H0:m¼m0.
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EXAMPLE 6.2.1
Let X1, . . ., Xn be a random sample from a Poisson distribution with parameter l, that is, the pdf is
given by f(x)¼e�llx/(x!). Then the hypothesis H0:l¼1 uniquely specifies the distribution, because

f(x)¼e�1/(x!) and hence is a simple hypothesis. The hypothesis Ha :l>1 is composite, because f(x)

is not uniquely determined.

Definition 6.2.2 A test at a given a of a simple hypothesis H0 versus the simple
alternative Ha that has the largest power among tests with the probability of type I
error no larger than the given a is called a most powerful test.

Consider the test of hypothesis H0:y¼y0 versus Ha:y¼y1. If a is fixed, then our

interest is to make b as small as possible. Because b¼1�Power(y1), by minimizing

bwewould obtain amost powerful test. The following result says that among all tests

with given probability of type I error, the likelihood ratio test given later minimizes

the probability of a type II error, in other words, it is most powerful.

Theorem 6.2.1 (Neyman-Pearson Lemma) Suppose that one wants to test a
simple hypothesis H0:y¼y0 versus the simple alternative hypothesis Ha:y¼y1 based
on a random sample X1, . . ., Xn from a distribution with parameter y. Let L(y)�L(y;
X1, . . ., Xn)>0 denote the likelihood of the sample when the value of the parameter
is y. If there exist a positive constant K and a subset C of the sample space ℝn

(the Euclidean n-space) such that

1.
L y0ð Þ
L y1ð Þ�K, for x1, x2, . . . , xnð Þ 2C,

2.
L y0ð Þ
L y1ð Þ�K, for x1, x2, . . . , xnð Þ 2C0, where C0 is the complement of C, and

3. P[(X1, . . .,Xn)2C;y0] ¼a

Then the test with critical region Cwill be the most powerful test for H0 versus Ha. We
call a the size of the test and C the best critical region of size a.

Proof.We prove this theorem for continuous random variables. For discrete ran-

dom variables, the proof is identical with sums replacing the integral. Let S be some

region in ℝn, an n-dimensional Euclidean space. For simplicity we will use the fol-

lowing notation: ð
S

L yð Þ¼
ð
S

. . .

ð
S

L y; x1, x2, . . . , xnð Þdx1 dx2, . . . ,dxn

Note that

P X1, . . . , Xnð Þ 2C;y0ð Þ¼
ð
C

f x1, . . . , xn; y0ð Þdx1, . . . ,dxn

¼
ð
C

L y0; x1, . . . , xnð Þdx1, . . . ,dxn:

Suppose that there is another critical region, say B, of size less than or equal to a, that
is
Ð
BL(y0)�a. Then
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0�
ð
C

L y0ð Þ�
ð
B

L y0ð Þ, because
ð
C

L y0ð Þ¼ a by assumption 3:

Therefore,

0�
ð
C

L y0ð Þ�
ð
B

L y0ð Þ

¼
ð
C\B

L y0ð Þ+
ð
C\B0

L y0ð Þ�
ð
C\B

L y0ð Þ�
ð
C0\B

L y0ð Þ

¼
ð
C\B0

L y0ð Þ�
ð
C0\B

L y0ð Þ:

Using assumption 1 of Theorem 6.2.1, KL(y1)�L(y0) at each point in the region C
and hence in C\B0. Thus ð

C\B
L y0ð Þ�K

ð
C\B0

L y1ð Þ:

By assumption 2 of the theorem, KL(y1)�L(y0) at each point in C0, and hence in

C0 \B. Thus, ð
C0\B

L y0ð ÞK�
ð
C0\B

L y1ð Þ:

Therefore,

0�
ð
C\B0

L y0ð Þ�
ð
C0\B

L y0ð Þ

�K

ð
C\B0

L y1ð Þ�
ð
C0\B

L y1ð Þ
	 


:

That is,

0�K

ð
C\B

L y1ð Þ+
ð
C\B0

L y1ð Þ�
ð
C\B

L y1ð Þ�
ð
C\B

L y1ð Þ
	 


¼K

ð
C

L y1ð Þ�
ð
B

L y1ð Þ
	 


:

As a result, ð
C

L y1ð Þ�
ð
B

L y1ð Þ

Because this is true for every critical region B of size�a, C is the best critical region

of size a, and the test with critical region C is the most powerful test of size a.
When testing two simple hypotheses, the existence of a best critical region is

guaranteed by the Neyman-Pearson lemma. In addition, the foregoing theorem pro-

vides a means for determining what the best critical region is. However, it is impor-

tant to note that Theorem 6.2.1 gives only the form of the rejection region; the actual

rejection region depends on the specific value of a.
In real-world situations, we are seldom presented with the problem of testing two

simple hypotheses. There is no general result in the form of Theorem 6.4.1 for
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composite hypotheses. However, for hypotheses of the form H0:y¼y0 versus

Ha:y>y0, we can take a particular value y1>y0 and then find a most powerful test

forH0:y¼y0 versusHa:y>y1. If this test (i.e. the rejection region of the test) does not
depend on the particular value y1, then this test is said to be a uniformly most powerful
(UMP) test for H0:y¼y0 versus Ha:y>y0.

The following example illustrates the use of the Neyman-Pearson lemma.

EXAMPLE 6.2.2
Let X1, . . ., Xn denote an independent random sample from a population with a Poisson distribution

with mean l. Derive the most powerful test for testing H0:l¼2 versus Ha:l¼1/2.

Solution
Recall that the pdf of Poisson variable is

p xð Þ¼
e�llx

x!
, l> 0, x¼ 0,1,2, . . .

0, otherwise:

(

Thus, the likelihood function is

L¼
l
Pn

i¼1
xið Þe�ln

h i
Yn

i¼1
xi!ð Þ

:

For l¼2,

L y0ð Þ¼ L l¼ 2ð Þ¼
2
Pn

i¼1
xið Þe�2n

h i
Yn

i¼1
xi!ð Þ

:

and for l¼1/2,

L y1ð Þ¼ L l¼ 1

2

� �
¼

1
2

Pn

i¼1
xið Þ
e� 1=2ð Þn

h i
Yn

i¼1
xi!ð Þ

:

Thus,

L y0ð Þ
L y1ð Þ¼

2
P

xið Þe�2n
� �

1
2

P
xie�n=2

<K

which implies

4ð Þ
P

xi e�3n=2
� �

<K

or, taking natural logarithm,

X
xi

� �
ln 4�3n

2
< lnK:

Solving for
P

xið Þ and letting {[ln K+(3n/2)]/ln 4}¼K0, we will reject H0 whenever
P

xið Þ<K0.
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A step-by-step procedure in applying the Neyman-Pearson lemma is now given.

PROCEDURE FOR APPLYING THE NEYMAN-PEARSON LEMMA
1. Determine the likelihood functions under both null and alternative hypotheses.

2. Take the ratio of the two likelihood functions to be less than a constant K.
3. Simplify the inequality in step 2 to obtain a rejection region.

EXAMPLE 6.2.3
Suppose X1, . . ., Xn is a random sample from a normal distribution with a known mean of m and an

unknown variance of s2. Find the most powerful a-level test for testing H0 :s
2¼s0

2 versus

Ha :s
2¼s1

2, (s1
2>s0

2). Show that this test is equivalent to the w2-test. Is the test UMP for

Ha :s
2>s0

2?

Solution
To test H0 :s

2¼s0
2 versus Ha :s

2>s1
2. We have

L s20
� �¼Yn

i¼1

1ffiffiffiffiffiffi
2p

p
sn0

e
� xi�mð Þ2

2s2
0

¼ 1ffiffiffiffiffiffi
2p

p� �n
sn0

e
�
P

xi�mð Þ2
2sn

0

:

Similarly,

L s21
� �¼ 1ffiffiffiffiffiffi

2p
p� �n

sn1
e
�
P

xi�mð Þ2
2s2

1

:

Therefore, the most powerful test is, reject H0 if,

L s20
� �

L s21
� �¼ s21

s20

� �n

e
� s2

1
�s2

0ð Þ2
2s2

1
s2
0

P
xi�mð Þ2

 �
�K

for some K.

Taking the natural logarithms, we have

n ln
s1
s0

� �
� s21�s20
� �
2s21s

2
0

X
xi�mð Þ2 � lnK

or

X
xi�mð Þ2 � n ln

s1
s0

� �
� lnK

 �
2s21s

2
0

s21�s20

� �
�C:

To find the rejection region for a fixed value of a, write the region asX
xi�mð Þ2
s20

� C

s20
¼C0:

Note that by Theorem 4.2.7,
P

(xi�m)2/s0
2 has a w2-distribution with n degrees of freedom. Thus,

this test is equivalent to the w2-test. Under the H0, because the same rejection region (does not
depend upon the specific value of s1

2 in the alternative) would be used for any s1
2>s0

2, the test

is UMP.
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The foregoing example shows that, in order to test for variance using a sample

from a normal distribution, we could use the chi-square table to obtain the critical

value for the rejection region given a.

EXERCISES 6.2
6.2.1. Suppose X1, . . ., Xn is a random sample from a normal distribution with a

known variance of s2 and an unknown mean of m. Find the most powerful

a-level test of H0:m¼m0 versus Ha:m¼ma if (a) m0>ma, and (b) ma>m0.
6.2.2. Show that the most powerful test obtained in Example 6.2.1 is UMP for

testing H0:m�m0 versus Ha:m>ma, but not UMP for testing H0:m¼m0
versus Ha:m 6¼m0.

6.2.3. Suppose X1, . . ., Xn is a random sample from a U(0, y) distribution. Find the

most powerful a-level test for testing H0:y¼y0 versus Ha:y¼y1, where
y0<y1.

6.2.4. Let X1, . . ., Xn be a random sample from a geometric distribution with

parameter p. Find the most powerful test ofH0:p¼p0 versusHa:p¼pa (>p0).
Is this UMP test for H0:p¼p0 versus Ha:p>p0?

6.2.5. Let X1, . . ., Xn be a random sample from a distribution having a pdf of

f yð Þ¼
2y

n2
e�y2=n2 if x> 0

0, otherwise:

8<
:

Find a UMP test for testing H0:�¼�0 versus Ha:�<�0.
6.2.6. Let X be a single observation from the pdf

f xð Þ¼ yxy�1, 0< x< 1

0, otherwise:

	

Find the most powerful test with a level of significance a¼0.01 to test

H0:y¼3 versus Ha:y¼4.

6.2.7. Let X1, . . ., Xn be a random sample from a Bernoulli distribution with

parameter p. Find the most powerful test ofH0:p¼p0 versusHa:p¼pa, where
pa>p0.

6.2.8. Let X1, . . ., Xn be a random sample from a Poisson distribution with mean l.
Find a best critical region for testing H0:l¼3 against Ha:l¼6.

6.3 LIKELIHOOD RATIO TESTS
The Neyman-Pearson lemma provides a method for constructing most powerful tests

for simple hypotheses. We also have seen that in some instances when a hypothesis is

not simple, it is possible to find UMP tests. In general, UMP tests do not exist for

composite hypotheses. As an example, consider the two-sided hypothesis, at level

a, given by

H0 : m¼ m0 versus Ha : m 6¼ m0
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where m is the mean of a normal population with known variance s2. If X is the

sample mean of a random sample of size n, then as shown earlier, we can use the

test statistic

Z¼X�m0
s=

ffiffiffi
n

p :

For Ha :m¼m1>m0, the rejection region for the most powerful test would be

Reject H0 if z> za:

On the other hand for Ha :m¼m2<m0, the rejection region for the most powerful test

would be

Reject H0 if z<�za:

Thus, the rejection region depends on the specific alternative. Consequently, the

two-sided hypothesis just given has no UMP test.

In this section, we shall study a general procedure that is applicable when one or

both H0 andHa are composite. In fact, this procedure works for simple hypotheses as

well. This method is based on the maximum likelihood estimation and the ratio of

likelihood functions used in the Neyman-Pearson lemma. We assume that the pdf

or probability mass function (pmf) of the random variable X is f(x,y), where y
can be one or more unknown parameters. Let Y represent the total parameter space

that is the set of all possible values of the parameter y given by either H0 or Ha.

Consider the hypotheses

H0 : y2Y0 versus Ha : y2Ya ¼Y�Y0:

where y is the unknown population parameter (or parameters) with values inY, and

Y0 is a subset of Y.

Let L(y) be the likelihood function based on the sample X1, . . ., Xn. Now we

define the likelihood ratio corresponding to the hypothesesH0 andHa. This ratio will

be used as a test statistic for the testing procedure that we develop in this section. This

is a natural generalization of the ratio test used in the Neyman-Pearson lemma when

both hypotheses were simple.

Definition 6.3.1 The likelihood ratio l is the ratio

l¼
max
y2Y0

L y; x1, . . . , xnð Þ
max
y2Y

L y; x1, . . . , xnð Þ¼
L�0
L� :

We note that 0�l�1. Because l is the ratio of nonnegative functions, we have l�0.
Because Y0 is a subset of Y, we know that max

y2Y0

L yð Þ� max
y2Y

L yð Þ. Hence, l�1.

If the maximum of L inY0 is much smaller as compared with the maximum of L
inY, that is, if l is small, it would appear that the data X1, . . ., Xn do not support the

null hypothesis y2Y0. Thus, there are some parameter values in Ha for which

observed sample more likely came from than for any parameter values in H0. On

the other hand, if l is close to 1, one could conclude that the data support the null
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hypothesis, H0. Therefore, small values of l would result in rejection of the

null hypothesis, and large values nearer to 1 will result a decision in support of

the null hypothesis.

For the evaluation of l, it is important to note that maxy2YL yð Þ¼ L ŷml:

� �
, where

ŷml: is the maximum likelihood estimator of y2Y, and maxy2Y0
L yð Þ is the likeli-

hood function with unknown parameters replaced by their maximum likelihood esti-

mators subject to the condition that y2Y0. We can summarize the likelihood ratio

test as follows.

LIKELIHOOD RATIO TESTS
To test

H0 : y2Y0 versus Ha : y2Ya,

l¼
max
y2Y0

L y; x1, . . . , xnð Þ
max
y2Y

L y; x1, . . . , xnð Þ¼
L�0
L�

will be used as the test statistic.

The rejection region for the likelihood ratio test is given by

Reject H0 if l�K:

K is selected such that the test has the given significance level a.

Note that different choices of K2 [0,1] will give different tests and rejection

regions. Smaller values of Kwill result in smaller values of Type I error probabilities

and the larger values of K will result in smaller Type II error probabilities.

EXAMPLE 6.3.1
Let X1, . . ., Xn be a random sample from anN(m, s2). Assume that s2 is known. At level a, we wish to
test, H0:m¼m0 versus Ha:m 6¼m0. Find an appropriate likelihood ratio test.

Solution
We have seen that to test

H0 :m¼ m0 versus Ha :m 6¼m0
there is no UMP test. The likelihood function is

L mð Þ¼ 1ffiffiffiffiffiffi
2p

p
s

� �n

e�
Pn

i¼1
xi�mð Þ2

2s2 :

Here, Y0¼{m0} and Ya¼ℝ�{m0}.
Hence,

L�0 ¼max
m¼m0

1

s
ffiffiffiffiffiffi
2p

p
� �n

e�
Pn

i¼1
xi�mð Þ2

2s2

¼ 1ffiffiffiffiffiffi
2p

p
s

� �n

e�
Pn

i¼1
xi�m0ð Þ2

2s2 :

Similarly,

L* ¼ max�1<m<1
1ffiffiffiffiffiffi
2p

p
s

� �n

e�
Pn

i¼1
xi�mð Þ2

2s2 :
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Because the only unknown parameter in the parameter space Y is m, �1<m<1, the maxi-

mum of the likelihood function is achieved when m equals its maximum likelihood estimator, that is,

m̂ml ¼X:

Therefore, with a simple calculation we have

l¼ e�
Pn

i¼1
xi�m0ð Þ2ð Þ=2s2

e�
Pn

i¼1
xi�xð Þ2ð Þ=2s2 ¼ e�n x�m0ð Þ2=2s2 :

Thus, the likelihood ratio test has the rejection region

Reject H0 ifl�K

which is equivalent to

� n

2s2
X�m0
� �2 � lnK,
X�m0
� �2
s2=n

� 2 lnK,
X�m0
s=

ffiffiffi
n

p
����

����� 2 lnK¼ c1, say:

Note that we use the symbol , to mean “if and only if.” We now compute c1. Under H0,

X�m0
� �

= s=
ffiffiffi
n

pð Þ� ��N 0, 1ð Þ:
Observe that

a¼P
X�m0
s=

ffiffiffi
n

p
����

����� c1

	 


This gives a possible value of c1 as c1¼ za/2. Hence, likelihood ratio test (LRT) for the given hypoth-

esis is

Reject H0 if
X�m0
s=

ffiffiffi
n

p
����

����� za=2:

Thus, in this case, the LRT is equivalent to the z-test for large random samples.

In fact, when both the hypotheses are simple, the LRT is identical to the Neyman-

Pearson test. We can now summarize the procedure for the LRT.

PROCEDURE FOR THE LRT
1. Find the largest value of the likelihood L(y) for any y02Y0 by finding the maximum likelihood

estimate within Y0 and substituting back into the likelihood function.

2. Find the largest value of the likelihood L(y) for any y2Y by finding the maximum likelihood

estimate within Y and substituting back into the likelihood function.

3. Form the ratio

l¼ l x1, x2, . . . , xnð Þ¼ L yð ÞinY0

L yð ÞinY :

4. Determine a K so that the test has the desired probability of type I error, a.
5. Reject H0 if l�K.

In the next example, we find a LRT for a testing problemwhen bothH0 andHa are

simple.
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EXAMPLE 6.3.2
Machine 1 produces 5% defectives. Machine 2 produces 10% defectives. Ten items produced by

each of the machines are sampled randomly; X¼number of defectives. Let y be the true proportion
of defectives. Test H0:y¼0.05 versus Ha:y¼0.1. Use a¼0.05.

Solution
We need to test H0:y¼0.05 versus Ha:y¼0.1. Let

L yð Þ¼
10

x

� �
0:05ð Þx 0:95ð Þ10�x, if y¼ 0:05

10

x

� �
0:1ð Þx 0:90ð Þ10�x, if y¼ 0:10:

8>><
>>:

and

L1 ¼L 0:05ð Þ¼ 10

x

� �
0:05ð Þx 0:95ð Þ10�x

and

L2 ¼L 0:1ð Þ¼ 10

x

� �
0:1ð Þx 0:90ð Þ10�x:

Thus, we have

L1
L2

¼ 0:05x

0:1x
0:95ð Þ10�x

0:9ð Þ10�x ¼ 1

2

� �x
19

18

� �10�x

:

The ratio

l¼ L1
max L1, L2ð Þ :

Note that if max(L1, L2)¼L1, then l¼1. Because we want to reject for small values of l,

max(L1, L2)¼L2, and we reject H0 if (L1/L2)�K or (L2/L1)>K (note that
L2
L1

¼ 2x
18

19

� �10�x

Þ:
That is, reject H0 if

2x
18

19

� �10�x

>K

, 2

18

19

0
B@

1
CA

x

>K1

, 19

9

� �x

>K1:

Hence, reject H0 if X>C; P(X>CjH0:y¼0.05)�0.05.

Using the binomial tables, we have

P X> 2jy¼ 0:05ð Þ¼ 0:0116

and

P X� 2jy¼ 0:05ð Þ¼ 0:0862:

Reject H0 if X>2. If we want a to be exactly 0.05, we have to use randomized test. Reject with

probability
0:0384

0:0762
¼ 0:5039 if X¼2.

The LRTs do not always produce a test statistic with a known probability distribution

such as the z-statistic of Example 6.3.1. If we have a large sample size, then we can

obtain an approximation to the distribution of the statistic l, which is beyond the

level of this book.
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EXERCISES 6.3
6.3.1. Let X1, . . ., Xn be a random sample from an N(m,s2). Assume that s2 is

unknown. We wish to test, at level a, H0:m¼m0 versus Ha:m<m0. Find an

appropriate LRT.

6.3.2. Let X1, . . ., Xn be a random sample from an N(m,s2). Assume that both m and

s2 are unknown. We wish to test, at level a, H0 :s
2¼s0

2 versus Ha :s
2>s0

2.

Find an appropriate LRT.

6.3.3. Let X1, . . ., Xn be a random sample from an N(m1, s
2) and let Y1,Y2, . . ., Yn be

an independent sample from an N(m2, s
2), where s2 is unknown. We wish to

test, at level a, H0:m1¼m2 versus Ha:m1 6¼m2. Find an appropriate LRT.

6.3.4. Let X1, . . ., Xn be a sample from a Poisson distribution with parameter l.
Show that a LRT of H0:l¼l0 versus Ha:l 6¼l0 rejects the null hypothesis if
X�m1 or X�m2:

6.3.5. Let X1, . . ., Xn be a sample from an exponential distribution with parameter y.
Show that an LRT of H0:y¼y0 versus Ha:y 6¼y0 rejects the null hypothesis ifP

i¼1
n Xi�m1 or

P
i¼1
n Xi�m2.

6.3.6. A clinical oncology program developed a set of guidelines for their cancer

patients to follow. It is believed that the proportion of patients who are still

living after 24 months is greater for those who follow the guidelines. Of the 40

patients who followed the guidelines, 30 are still living after 24 months,

whereas of 32 patients who did not follow the guidelines, 21 are living after

24months. Find an LRT at a¼0.01 to decide whether the program is effective.

6.4 HYPOTHESES FOR A SINGLE PARAMETER
In this section, we first introduce the concept of p-value. After that, we study hypoth-
esis testing concerning a single parameter.

6.4.1 THE p-VALUE
In hypothesis testing, the choice of the value of a is somewhat arbitrary. For the same

data, if the test is based on two different values of a, the conclusions could be dif-

ferent. Many statisticians prefer to compute the so-called p-value, which is calcu-

lated based on the observed test statistic. For computing the p-value, it is not

necessary to specify a value of a. We can use the given data to obtain the p-value.
Definition 6.4.1 Corresponding to an observed value of a test statistic, the p-

value (or attained significance level) is the lowest level of significance at which
the null hypothesis would have been rejected.

For example, if we are testing a given hypothesis with a¼0.05 and we make a

decision to reject H0 and we proceeded to calculate the p-value equal to 0.03, this

means that we could have used an a as low as 0.03 and still maintain the same deci-

sion, rejecting H0.
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Based on the alternative hypothesis, one can use the following steps to compute

the p-value.

STEPS TO FIND THE p-VALUE
1. Let TS be the test statistic.

2. Compute the value of TS using the sample X1, . . ., Xn. Say it is a.

3. The p-value is given by

p�value¼
P TS< ajH0ð Þ, if lower tail test

P TS> ajH0ð Þ, if lower tail test

P jTSj> jajjH0ð Þ, if lower tail test:

8<
:

EXAMPLE 6.4.1
To testH0:m¼0 versusHa:m 6¼0, suppose that the test statistic Z results in a computed value of 1.58.

Then, the p-value¼P(jZj>1.58)¼2(0.0571)¼0.1142. That is, we must have a type I error of

0.1142 in order to reject H0. Also, if Ha:m>0, then the p-value would be P(Z>1.58)¼0.0582.

In this case we must have an a of 0.0582 in order to reject H0.

The p-value can be thought of as a measure of support for the null hypothesis: The

lower its value, the lower the support. Typically one decides that the support forH0 is

insufficient when the p-value drops below a particular threshold, which is the signif-

icance level of the test.

REPORTING TEST RESULT AS p-VALUES
1. Choose the maximum value of a that you are willing to tolerate.

2. If the p-value of the test is less than the maximum value of a, reject H0.

If the exact p-value cannot be found, one can give an interval in which the p-value
can lie. For example, if the test is significant at a¼0.05 but not significant for

a¼0.025, report that 0.025�p-value�0.05. So for a>0.05, reject H0, and for

a<0.025, do not reject H0.

In another interpretation, 1� (p-value) is considered as an index of the strength of
the evidence against the null hypothesis provided by the data. It is clear that the value

of this index lies in the interval [0, 1]. If the p-value is 0.02, the value of index is 0.98,
supporting the rejection of the null hypothesis. Not only do p-values provide us with
a yes or no answer, they provide a sense of the strength of the evidence against the

null hypothesis. The lower the p-value, the stronger the evidence. Thus, in any test,

reporting the p-value of the test is a good practice.
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Because most of the outputs from statistical software used for hypothesis testing

include the p-value, the p-value approach to hypothesis testing is becoming more and

more popular. In this approach, the decision of the test is made in the following way.

If the value of a is given, and if the p-value of the test is less than the value of a, we
will reject H0. If the value of a is not given and the p-value associated with the test is
small (usually set at p-value<0.05), there is evidence to reject the null hypothesis in

favor of the alternative. In other words, there is evidence that the value of the true

parameter (such as the population mean) is significantly different (greater, or lesser)

than the hypothesized value. If the p-value associated with the test is not small

(p>0.05), we conclude that there is not enough evidence to reject the null hypoth-

esis. In most of the examples in this chapter, we give both the rejection region and

p-value approaches.

EXAMPLE 6.4.2
The management of a local health club claims that its members lose on the average 15 pounds

or more within the first 3 months after joining the club. To check this claim, a consumer agency

took a random sample of 45 members of this health club and found that they lost an average of

13.8 pounds within the first 3 months of membership, with a sample standard deviation of 4.2

pounds.

(a) Find the p-value for this test.
(b) Based on the p-value in (a), would you reject the null hypothesis at a¼0.01?

Solution
(a) Let m be the true mean weight loss in pounds within the first 3months of membership in this club.

Then we have to test the hypothesis

H0 :m¼ 15 versus Ha : m< 15

Here n¼45, x¼ 13:8, and s¼4.2. Because n¼45>30, we can use normal approximation.
Hence, the test statistic is

z¼ 13:8�15

4:2=
ffiffiffiffiffi
45

p ¼�1:9166

and

p�value¼P Z<�1:9166ð Þ�P Z<�1:92ð Þ¼ 0:0274:

Thus, we can use a as small as 0.0274 and still reject H0

(b) No. Because the p-value¼0.0274 is greater than a¼0.01, one cannot reject H0.

In any hypothesis testing, after an experimenter determines the objective of an

experiment and decides on the type of data to be collected, we recommend the fol-

lowing step-by-step procedure for hypothesis testing.
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STEPS IN ANY HYPOTHESIS TESTING PROBLEM
1. State the alternative hypothesis, Ha (what is believed to be true).

2. State the null hypothesis, H0 (what is doubted to be true).

3. Decide on a level of significance a.
4. Choose appropriate TS and compute the observed test statistic.

5. Using the distribution of TS and a, determine the rejection region(s) (RR).

6. Conclusion: If the observed test statistic falls in the RR, rejectH0 and conclude that based on the

sample information, we are (1�a)100% confident thatHa is true. Otherwise, conclude that there

is not sufficient evidence to reject H0. In all the applied problems, interpret the meaning of your

decision.

7. State any assumptions you made in testing the given hypothesis.

8. Compute the p-value from the null distribution of the test statistic and interpret it.

6.4.2 HYPOTHESIS TESTING FOR A SINGLE PARAMETER
Nowwe study the testing of a hypothesis concerning a single parameter, y, based on a
random sample X1, . . ., Xn. Let ŷ be the sample statistic. First, we deal with tests for

the population mean m for large and small samples. Next, we study procedures

for testing the population variance s2. We conclude the section by studying a test

procedure for the true proportion p.
To test the hypothesisH0 :m¼m0 concerning the true populationmean m, when we

have a large sample (n�30) we use the test statistic Z given by

Z¼X�m0
S=

ffiffiffi
n

p

where S is the sample standard deviation and m0 is the claimed mean under H0 (if the

population variance is known, we replace S with s).
For a small random sample (n<30), the test statistic is

T¼X�m0
S=

ffiffiffi
n

p

where m0 is the claimed value of the true mean, and X and S are the sample mean

and standard deviation, respectively. Note that we are using the lowercase letters,

such as z and t, to represent the observed values of the test statistics Z and T,
respectively.

In practice, with raw data, it is important to verify the assumptions. For

example, in the small sample case, it is important to check for normality by using

normal plots. If this assumption is not satisfied, the nonparametric methods

described in Chapter 12 may be more appropriate. In addition, because the sam-

ple statistic such as X and S will be greatly affected by the presence of outliers,

drawing a box plot to check for outliers is a basic practice we should incorporate

in our analysis.

We now summarize the typical test of hypothesis for tests concerning population

(true) mean.
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In order to compute the observed test statistic, z in the large sample case and t in
the small sample case, calculate the values of z¼ x�m0ð Þ= s=

ffiffiffi
n

pð Þ and

t¼ x�m0ð Þ= s=
ffiffiffi
n

pð Þ½ 	, respectively.

SUMMARY OF HYPOTHESIS TESTS

For m

Large Sample (n�30) Small Sample (n<30)

To test To test

H0:m¼m0 H0:m¼m0
versus versus

Ha :
m> m0, upper tail test

m< m0, lower tail test

m 6¼ m0, two-tailed test

Ha :
m> m0, upper tail test

m< m0, lower tail test

m 6¼ m0, two-tailed test

Test statistic: Z¼ X�m0
s=
ffiffi
n

p Test statistic: T¼ X�m0
S=
ffiffi
n

p

Replace s by S, if s is unknown.

Rejection region :

z< za, upper tail RR

z<�za, lower tail RR

zj j> za=2, two tailRR

8<
: RR :

t< ta,n�1, upper tail RR

t<�ta,n�1, lower tail RR

tj j> ta= 2n�1ð Þ, two tailRR

8<
:

Assumption: n�30 and s2<1. Assumption: Random sample comes from a

normal population

Decision: Reject H0, if the observed test statistic falls in the RR and conclude that Ha is true with

(1�a)100% confidence. Otherwise, keepH0 so that there is not enough evidence to conclude thatHa

is true for the given a and more experiments may be needed.

EXAMPLE 6.4.3
It is claimed that sports-car owners drive on the average 18,000 miles per year. A consumer firm

believes that the average mileage is probably lower. To check, the consumer firm obtained infor-

mation from 40 randomly selected sports-car owners that resulted in a sample mean of 17,463 miles

with a sample standard deviation of 1348 miles. What can we conclude about this claim? Use

a¼0.01. What is the p-value?

Solution
Let m be the true population mean. We can formulate the hypotheses as H0:m¼18,000 versus
Ha:m<18,000.

The observed test statistic (for n�30) is

z¼ x�m0
s=

ffiffiffi
n

p ffi 17,463�18,000

1348=
ffiffiffiffiffi
40

p
¼�2:52:

Rejection region is {z<�z0.01}¼{z<�2.33}.

Decision:Because z¼�2.52 is less than�2.33, the null hypothesis is rejectedata¼0.01.There is
sufficient evidence to conclude that the mean mileage on sport cars is less than 18,000miles per year.

p -Value¼P(z<�2.52)¼0.0059. This p-value is less than 0.01 also supports rejection of the

null hypothesis.
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EXAMPLE 6.4.4
In a frequently traveled stretch of the I-75 highway, where the posted speed is 70 mph, it is thought

that people travel on the average of at least 70 mph. To check this claim, the following radar

measurements of the speeds (in mph) are obtained for 10 vehicles traveling on this stretch of the

interstate highway

66 74 79 80 69 77 78 65 79 81

Do the data provide sufficient evidence to indicate that the mean speed at which people travel on

this stretch of highway is at least 70 mph (the posted speed limit)? Test the appropriate hypothesis

using a¼0.01. Draw a box plot and normal plot for this data, and comment.

Solution
We need to test

H0 : m¼ 70 versus Ha :m> 70

For this sample, the sample mean is x¼ 74:8mph and the standard deviation is s¼5.9963 mph.

Hence, the observed test statistic is

t¼ x�m0
s=

ffiffiffi
n

p ¼ 74:8�70

5:9963=
ffiffiffiffiffi
10

p

¼ 2:5314:

From the t-table, t0.01,9¼2.821. Hence, the rejection region is {t>2.821}.

Because, t¼2.5314 does not fall in the rejection region, we do not reject the null hypothesis at

a¼0.01. This can also be verified by the fact that the p-value of 0.01608 is larger than a¼0.01. this
p-value is obtained from R (if we use the t-table, we will see that 0.01<p -value<0.025.) Note that

we assumed that the vehicles were randomly selected and that collected data follow the normal

distribution, because of the small sample size, n<30, we use the t-test.

Figures 6.1 and 6.2 are the box plot and the normal plot of the data, respectively.
The box plot suggests that there are no outliers present. However, the normal plot indicates that

the normality assumption for this data set is not justified. Hence, it may be more appropriate to do a

nonparametric test.

65

70

75

80

S
p

e
e

d

FIGURE 6.1

Box plot of speed data.
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EXAMPLE 6.4.5
In attempting to control the strength of the wastes discharged into a nearby river, an industrial firm

has taken a number of restorative measures. The firm believes that they have lowered the oxygen

consuming power of their wastes from a previous mean of 450 manganate in parts per million. To

test this belief, readings are taken on n¼20 successive days. A samplemean of 312.5 and the sample

standard deviation 106.23 are obtained. Assume that these 20 values can be treated as a random

sample from a normal population. Test the appropriate hypothesis. Use a¼0.05.

Solution
Here we need to test the following hypothesis:

H0 :m¼ 450 versus Ha : m< 450

Given n¼20, x¼ 312:5, and s¼106.23. The observed test statistic is

t¼ 312:5�450

106:23=
ffiffiffiffiffi
20

p ¼�5:79:

The rejection region for a¼0.05 and with 19 degrees of freedom is the set of t-values such that

t<�t0:05:19f g¼ t<�1:729f g:
Decision: Because t¼�5.79 is less than �1.729, reject H0. There is sufficient evidence to

confirm the firm’s belief.

For large random samples, the following procedure is used to perform tests of

hypotheses about the population proportion, p.

99

95
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40P
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nt

Data

30
20
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5

55 65 85 95

ML Estimates
Mean :  74.8
Std Dev: 5.68858

75

1

FIGURE 6.2

Normal probability plot for speed.
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EXAMPLE 6.4.6
A machine is considered to be unsatisfactory if it produces more than 8% defectives. It is suspected

that the machine is unsatisfactory. A random sample of 120 items produced by the machine contains

14 defectives. Does the sample evidence support the claim that the machine is unsatisfactory? Use

a¼0.01.

Solution
Let Y be the number of observed defectives. This follows a binomial distribution. However, because

np0 and nq0 are greater than 5, we can use a normal approximation to the binomial to test the
hypothesis. So we need to test H0:p¼0.08 versus Ha:p>0.08. Let the point estimate of p be

p̂¼ Y=nð Þ¼ 0:117, the sample proportion. Then the value of the TS is

z¼ p̂�p0ffiffiffiffiffiffiffiffiffi
p0q0
n

r ¼ 0:117�0:08ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:08ð Þ 0:92ð Þ

120

r ¼ 0:137:

For a¼0.01, z0.01¼2.33. Hence, the rejection region is {z>2.33}.

Decision: Because 0.137 is not greater than 2.33, we do not reject H0. We conclude that the
evidence does not support the claim that the machine is unsatisfactory.

SUMMARY OF LARGE SAMPLE HYPOTHESIS TEST FOR p
To test

H0 : p¼ p0

versus

Ha :
p> p0, upper tail test

p< p0, lower tail test:

Test statistic:

Z¼ p̂�p0
sp̂

, where sp̂ ¼
ffiffiffiffiffiffiffiffiffi
p0q0
n

r
, where q0 ¼ 1�p0:

Rejection region :
z> za, upper tail RR

z<�za, lower tail RR

zj j> za=2, two tail RR,

8<
:

where z is the observed test statistic.

Assumption: n is large. A good rule of thumb is to use the normal approximation to the bino-

mial distribution only when np0 and n(1�p0) are both greater than 5.

Decision:RejectH0, if the observed test statistic falls in the RR and conclude thatHa is true with

(1�a)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to

conclude that Ha is true for given a and more data are needed.

Note that this an approximate test, and the test can be improved by increasing the

sample size.

Now we give the procedure for testing the population variance when the samples

come from a normal population.
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SUMMARY OF HYPOTHESIS TEST FOR THE VARIANCE s2

To test

H0 : s2 ¼ s20
versus

Ha :
s2 >s20, upper tail test

s2 <s20, lower tail test

s2 6¼ s20, two-tailed test:

Test statistic:

w2 ¼ n�1ð ÞS2
s20

where S2 is the sample variance.

Observed value of test statistic:

n�1ð Þs2
s20

Rejection region :

w2 > w2a,n�1, upper tail RR

w2 < w21�a,n�1, lower tail RR

w2 > w2a=2,n�1 or w
2 < w21�a=2,n�1, two tail RR

8><
>:

where wa,n�1
2 is such that the area under the chi-square distribution with (n�1) degrees of freedom to

its right is equal to a.
Assumption: Sample comes from a normal population.

Decision:RejectH0, if the observed test statistic falls in the RR and conclude thatHa is true with

(1�a)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to con-

clude that Ha is true for given a and more data are needed.

Because the chi-square distribution is not symmetric, the “equal tails” used for

the two-sided alternative may not be the best procedure. However, in real-world

problems we seldom use a two tail test for the population variance.

EXAMPLE 6.4.7
A physician claims that the variance in cholesterol levels of adult men in a certain laboratory is at least

100 mg/dL. A random sample of 25 adult males from this laboratory produced a sample standard devi-

ation of cholesterol levels as 12 mg/dL. Test the physician’s claim at 5% level of significance.

Solution
To test

H0 :s2 ¼ 100 versus Ha : s2 < 100

for a¼0.05, and 24 degrees of freedom, the rejection region is

RR¼ w2 < w21�a,n�1

� �¼ w2 < 13:484
� �

:

The observed value of the TS is

w2 ¼ n�1ð ÞS2
s20

¼ 24ð Þ 144ð Þ
100

¼ 34:56:

Because the value of the test statistic does not fall in the rejection region, we cannot reject H0 at

5% level of significance. Here, we assumed that the 25 cholesterol measurements follow the normal
distribution.
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EXERCISES 6.4
6.4.1. A random sample of 50 measurements resulted in a sample mean of 62 with a

sample standard deviation 8. It is claimed that the true population mean is at

least 64.

(a) Is there sufficient evidence to refute the claim at the 2% level of

significance?

(b) What is the p-value?
(c) What is the smallest value of a for which the claim will be rejected?

6.4.2. Amachine in a certain factory must be repaired if it produces more than 12%

defectives among the large lot of items it produces in a week. A random

sample of 175 items from a week’s production contains 35 defectives, and it

is decided that the machine must be repaired.

(a) Does the sample evidence support this decision? Use a¼0.02.

(b) Compute the p-value.
6.4.3. A random sample of 78 observations produced the following sums:

X78
i¼1

xi ¼ 22:8,
X78
i¼1

xi� xð Þ2 ¼ 2:05:

(a) Test the null hypothesis that m¼0.45 against the alternative hypothesis

that m<0.45 using a¼0.01. Also find the p-value.
(b) Test the null hypothesis that m¼0.45 against the alternative hypothesis

that m<0.45 using a¼0.01. Also find the p-value.
(c) What assumptions did you make for solving (a) and (b)?

6.4.4. Consider the testH0:m¼35 versusHa:m>35 for a population that is normally

distributed.

(a) A random sample of 18 observations taken from this population

produced a sample mean of 40 and a sample standard deviation of 5.

Using a¼0.025, would you reject the null hypothesis?

(b) Another random sample of 18 observations produced a sample mean of

36.8 and a sample standard deviation of 6.9. Using a¼0.025, would you

reject the null hypothesis?

(c) Compare and discuss the decisions of parts (a) and (b).

6.4.5. According to the information obtained from a large university, professors

there earned an average annual salary of $55,648 in 1998. A recent random

sample of 15 professors from this university showed that they earn an average

annual salary of $58,800 with a sample standard deviation of $8300. Assume

that the annual salaries of all the professors in this university are normally

distributed.

(a) Suppose the probability of making a type I error is chosen to be zero.

Without performing all the steps of test of hypothesis, would you accept

or reject the null hypothesis that the current mean annual salary of all

professors at this university is $55,648?
(b) Using the 1% significance level, can you conclude that the current mean

annual salary of professors at this university is more than $55,648?
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6.4.6. Acheck-cashing service company found that approximately 7%of all checks

submitted to the service were without sufficient funds. After instituting a

random check verification system to reduce its losses, the service company

found that only 70 were rejected in a random sample of 1125 that were

cashed. Is there sufficient evidence that the check verification system

reduced the proportion of bad checks at a¼0.01? What is the p-value
associated with the test? What would you conclude at the a¼0.05 level?

6.4.7. Preliminary results of a study (The journal Environmental News reported in

April 1975 that “The continuing analysis of lead levels in the drinkingwater of

several Boston communities has verified elevated lead concentrations in the

water supplies of Somerville, Brighton andBeaconHill.”) found that “20%of

the 248 randomly chosen households tested in these communities showed lead

levels exceeding the U.S. Public Health Service standard of 50 parts per

million.” In contrast, inCambridge,which adds anticorrosive to its water in an

attempt to keep the lead from leaching out of the pipes, “only 5% of the 100

randomly sampled households showed lead levels exceeding the standard.”

Find a 95% confidence interval for the difference in the proportions of

households in Somerville, Brighton and Beacon Hill on the one hand and

Cambridge on the other that had lead levels exceeding the government

standard, and carry out a test of the hypothesis of no difference at a¼0.05.

6.4.8. A manufacturer of washers provides a particular model in one of three

colors, white, black, or ivory. Of the first 1500 washers sold, it is noticed

that 550 were of ivory color. Would you conclude that customers have a

preference for the ivory color? Justify your answer. Use a¼0.01.

6.4.9. Atestof thebreakingstrengthof six ropesmanufacturedbyacompanyshowed

a mean breaking strength of 7225 lb and a standard deviation of 120 lb.

However, the manufacturer claimed a mean breaking strength of 7500 lb.

(a) Canwesupport themanufacturer’s claimata levelof significanceof0.10?

(b) Compute the p-value.What assumptions did youmake for this problem?

6.4.10. A sample of 10 observations taken from a normally distributed population

produced the following data:

44 31 52 48 46 39 43 36 41 49

(a) Test the hypothesis that H0:m¼44 versus Ha:m 6¼44 using a¼0.10.

Draw a box plot and normal plot for this data, and comment.

(b) Find a 90% confidence interval for the population mean m.
(c) Discuss the meanings of (a) and (b). What can we conclude?

6.4.11. The principal of a charter school in Tampa believes that the IQs of its

students are above the national average of 100. From the past experience,

IQ is normally distributed with a standard deviation of 10. A random sample

of 20 students is selected from this school and their IQs are observed.

The following are the observed values.

95 91 110 93 133 119 113 107 110 89

113 100 100 124 116 113 110 106 115 113
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(a) Test for the normality of the data.

(b) Do the IQs of students at the school run above the national average

at a¼0.01?

6.4.12. In order to find out whether children with chronic diarrhea have the

same average hemoglobin level (Hb) that is normally seen in healthy

children in the same area, a random sample of 10 children with

chronic diarrhea are selected and their Hb levels (g/dL) are obtained as

follows.

12:3 11:4 14:2 15:3 14:8 13:8 11:1 15:1 15:8 13:2

Do the data provide sufficient evidence to indicate that the mean Hb

level for children with chronic diarrhea is less than that of the normal value

of 14.6 g/dL? Test the appropriate hypothesis using a¼0.01. Draw a box

plot and normal plot for this data, and comment.

6.4.13. A company that manufactures precision special-alloy steel shafts claims

that the variance in the diameters of shafts is no more than 0.0003. A

random sample of 10 shafts gave a sample variance of 0.00027. At the 5%

level of significance, test whether the company’s claim can be

substantiated.

6.4.14. It was claimed that the average annual expenditures per consumer unit had

continued to rise, as measured by the Consumer Price Index annual

averages (Bureau of Labor Statistics report, 1995). To test this claim, 100

consumer units were randomly selected in 1995 and found to have an

average annual expenditure of $32,277 with a standard deviation of $1200.
Assuming that the average annual expenditure of all consumer units

was $30,692 in 1994, test at the 5% significance level whether the

annual expenditure per consumer unit had really increased from 1994

to 1995.

6.4.15. It is claimed that two of three Americans say that the chances of world peace

are seriously threatened by the nuclear capabilities of other countries. If in a

random sample of 400 Americans, it is found that only 252 hold this view,

do you think the claim is correct? Use a¼0.05. State any assumptions you

make in solving this problem.

6.4.16. According to the Bureau of Labor Statistics (1996), the average

price of a gallon of gasoline in all US cities in the United States in January

1996 was $1.129. A later random sample in 24 cities found the mean

price to be $1.14 with a standard deviation of 0.01. Test at a¼0.05 to see

whether the average price of a gallon of gas in the cities had recently

changed.

6.4.17. A manufacturer claims that the mean life of batteries manufactured by his

company is at least 44 months. A random sample of 40 of these batteries

was tested, resulting in a sample mean life of 41 months with a sample

standard deviation of 16 months. Test at a¼0.01 whether the

manufacturer’s claim is correct.
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6.5 TESTING OF HYPOTHESES FOR TWO SAMPLES
In this section we study the hypothesis testing procedures for comparing the means

and variances of two populations. For example, suppose that we want to determine

whether a particular drug is effective for a certain illness. The sample subjects will be

randomly selected from a large pool of people with that particular illness and will be

assigned randomly to the two groups. To one group we will administer a placebo; to

the other we will administer the drug of interest. After a period of time, we measure a

physical characteristic; say the blood pressure, of each subject that is an indicator of

the severity of the illness. The question is whether the drug can be considered effec-

tive on the population from which our samples have been selected. We will consider

the cases of independent and dependent samples.

6.5.1 INDEPENDENT SAMPLES
Two random samples are drawn independently of each other from two populations,

and the sample information is obtained. We are interested in testing a hypothesis

about the difference of the true means. Let X11, . . . ,X1n1 be a random sample from

population 1 with mean m1 and variance s1
2, and X11, . . . ,X1n2 be a random sample

from population 2 with mean m2 and variance s2
2. Let Xi, i¼1, 2, represent the respec-

tive sample means and Si
2,i¼1, 2, represent the sample variances. In this case, we

shall consider following three cases in testing hypotheses about m1 and m2: (i) when
s1
2 and s2

2 are known, (ii) when s1
2 and s2

2 are unknown and n1�30 and n2�30, and

(iii) when s1
2 and s2

2 are unknown and n1<30 and n2<30. In case (iii) we have the

following two possibilities, (a) s1
2¼s2

2, and (b) s1
2 6¼s2

2.

In the large sample case, knowledge of population variances s1
2 and s2

2 does not

make much difference. If the population variances are unknown, we could replace

them with sample variances as an approximation. If both n1�30 and n2�30 (large

sample case), we can use normal approximation. The following box sums up a

large sample hypothesis testing procedure for the difference of means for the large

sample case.

SUMMARY OF HYPOTHESIS TEST FOR m1–m2 FOR LARGE SAMPLES
(n1 AND n2‡30)
To test

H0 : m1�m2 ¼D0

versus

Ha :
m1�m2 >D0, upper tailed test

m1�m2 <D0, lower tailed test

m1�m2 6¼D0, two-tailed test:

8<
:

Continued
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The test statistic is

Z¼X1�X2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s :

Replace si by Si, if si, i¼1,2 are not known.

Rejection region is

RR :
z> za, lower tail RR

zj j> za=2, two tail RR

	
,

where z is the observed test statistic given by

z¼ x1�x2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s :

Assumption: The samples are independent and n1 and n2�30.

Decision: Reject H0, if test statistic falls in the RR and conclude that Ha is true with (1�a)
100% confidence. Otherwise, do not reject H0 because there is not enough evidence to conclude

that Ha is true for given a and more experiments are needed.

EXAMPLE 6.5.1
In a salary equity study of faculty at a certain university, sample salaries of 50 male assistant pro-

fessors and 50 female assistant professors yielded the following basic statistics.

Test the hypothesis that the mean salary of male assistant professors is more than the mean

salary of female assistant professors at this university. Use a¼0.05.

Solution
Let m1 be the truemean salary for male assistant professors and m2 be the true mean salary for female
assistant professors at this university. To test

H0 :m1�m2 ¼ 0 versus Ha :m1�m2 > 0

the test statistic is

z¼ x1�x2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s ¼ 46,400�46,000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
360ð Þ2
50

+
220ð Þ2
50

s ¼ 6:704:

The rejection region for a¼0.05 is {z>1.645}.

Because z¼6.704>1.645,we reject the null hypothesis at a¼0.05.We conclude that the salary

of male assistant professors at this university is higher than that of female assistant professors for
a¼0.05. Note that even though s1

2 and s2
2 are unknown, because n1�30 and n2�30, we could

replace s1
2 and s2

2 by the respective sample variances. We are assuming that the salaries of male

and female are sampled independently of each other.

Sample Mean
Salary

Sample Standard
Deviation

Male assistant professor $46,400 360

Female assistant
professor

$46,000 220
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Given next is the procedure we follow to compare the true means from two indepen-

dent normal populations when n1 and n2 are small (n1<30 or n2<30) and we can

assume homogeneity in the population variances, that is, s1
2¼s2

2. In this case, we

pool the sample variances to obtain a point estimate of the common variance.

COMPARISON OF TWO POPULATION MEANS, SMALL SAMPLE CASE
(POOLED t-TEST)
To test

H0 : m1�m2 ¼D0

versus

Ha :
m1�m2 >D0, upper tailed test

m1�m2 <D0, lower tailed test

m1�m2 6¼D0, two-tailed test:

The test statistic is

T¼X1�X2�D0

Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r

Here the pooled sample variance is

S2p ¼
n1�1ð ÞS21 + n2�1ð ÞS22

n1 + n2�2
:

Then the rejection region is

RR :
t> ta, upper tailed test

t<�ta, lower tail test

tj j> ta=2, two-tailed test

8<
:

where t is the observed test statistic and ta is based on (n1+n2�2) degrees of freedom, and such that

P(T> ta)¼a.
Decision:RejectH0, if test statistic falls in the RR and conclude thatHa is true with (1�a)100%

confidence. Otherwise, do not reject H0 because there is not enough evidence to conclude that Ha is

true for given a.
Assumptions: The samples are independent and come from normal populations with means m1

and m2, and with the (unknown) but equal variances, that is, s1
2¼s2

2.

Now we shall consider the case where s1
2 and s2

2 are unknown and cannot be

assumed to be equal. In such a case the following test is often used. For the

hypothesis

H0 : m1�m2 ¼D0 versus H0 :
m1�m2 >D0

m1�m2 <D0

m1�m2 ¼D0

8<
:

define the test statistic Tv as

Tv ¼X1�X2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

+
S22
n2

s
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where Tv has a t-distribution with v degrees of freedom, and

v¼
s2
1

n1
+

s2
2

n2

h i2
s21=n1
� �2
n1�1

+
s22=n2
� �2
n2�1

:

The value of v will not necessarily be an integer. In that case, we will round it down

to the nearest integer. This method of hypothesis testing with unequal variances

is called the Smith-Satterthwaite procedure. Even though this procedure is not

widely used, some simulation studies have shown that the Smith-Satterthwaite pro-

cedure perform well when variances are unequal and it gives results that are more

or less equivalent to those obtained with the pooled t-test when the variances are

equal. However, when the sample sizes are approximately equal, the pooled t-test
may still be used. Note that in addressing the question which of the cases (iii) (a)

or (iii) (b) to use in a given problem, we suggest that if the point estimates S1
2 of

s1
2, and S2

2 of s2
2 are approximately the same, then it is logical to assume homogeneity,

s1
2¼s2

2 and use (iii)(a), whereas if S1
2 and S2

2 are significantly different we use (iii)(b).

More appropriately, we have tests that can be used to test hypotheses concerning

s1
2¼s2

2 or s1
2 6¼s2

2, known as the F-test, which we discuss at the end of this

subsection.

EXAMPLE 6.5.2
The intelligence quotients (IQs) of 17 students from one area of a city showed a sample mean of 106

with a sample standard deviation of 10, whereas the IQs of 14 students from another area chosen

independently showed a sample mean of 109 with a sample standard deviation of 7. Is there a

significant difference between the IQs of the two groups at a¼0.02? Assume that the population

variances are equal.

Solution
We test

H0 :m1�m2 ¼ 0 versus Ha :m1�m2 6¼ 0:

Here n1¼17, x1 ¼ 106, and s1¼10. Also, n2¼14, x2 ¼ 109, and s2¼7.

We have

s2p ¼
n1�1ð Þs21 + n2�1ð Þs22

n1 + n2�2

¼ 16ð Þ 10ð Þ2 + 13ð Þ 7ð Þ2
29

¼ 77:138:

The test statistic is

T¼X1�X2�D0

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r ¼ 106�109ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
77:138

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

17
+

1

14

r ¼�0:94644:

For a¼0.02, t0.01,29¼2.462. Hence, the rejection region is t<� 2.462 or t>2.462.

Because the observed value of the test statistic, T¼�0.94644, does not fall in the rejection

region, there is not enough evidence to conclude that the mean IQs are different for the two groups.

Here we assume that the two samples are independent and taken from normal populations.
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EXAMPLE 6.5.3
Assume that two populations are normally distributed with unknown and unequal variances.

Two independent samples were drawn from these populations and the data obtained resulted in

the following basic statistics:

n1 ¼ 18 x1 ¼ 20:17 s1 ¼ 4:3
n2 ¼ 12 x2 ¼ 19:23 s2 ¼ 3:8

Test at the 5% significance level whether the two population means are different.

Solution
We need to test the hypothesis

H0 : m1�m2 ¼ 0 versus Ha : m1�m2 6¼ 0:

Here n1¼18, x1 ¼ 20:17, and s1¼4.3. Also, n2¼12, x2 ¼ 19:23, and s2¼3.8. The degrees of

freedom for the t-distribution are given by

v¼
s2
1

n1
+

s2
2

n2

� �2
s21=n1
� �2
n1�1

+
s22=n2
� �2
n2�1

¼
4:3ð Þ2
18

+
3:8ð Þ2
12

� �2
4:3ð Þ2=18

� �2
17

+
3:8ð Þ2=12

� �2
11

¼ 25:685:

Hence, we have v¼25 degrees of freedom. For a¼0.05, t0.025,25¼2.060. Thus, the rejection
region is t<�2.060 or t>2.060.

The test statistic is given by

Tv ¼ x1�x2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

+
S22
n2

s

¼ 20:17�19:23ffiffiffiffiffiffiffiffiffiffiffiffi
4:3ð Þ2
18

s
+

3:8ð Þ2
12

¼ 0:62939:

Because the observed value of the test statistic, Tu¼0.62939, does not fall in the rejection

region, we do not reject the null hypothesis. At a¼0.05 there is not enough evidence to conclude

that the population means are different. Note that the assumptions we made are that the samples are
independent and came from two normal populations. No homogeneity assumption is made.

EXAMPLE 6.5.4
Infrequent or suspendedmenstruation can be a symptom of seriousmetabolic disorders in women. In

a study to compare the effect of jogging and running on the number of menses, two independent

subgroups were chosen from a large group of women, who were similar in physical activity (aside

from running), heights, occupations, distribution of ages, and type of birth control methods being

used. The first group consisted of a random sample of 26 women joggers who jogged “slow and

easy” 5-30miles per week, and the second group consisted of a random sample of 26 women runners

who ran more than 30 miles per week and combined long, slow distance with speed work. The

following summary statistics were obtained (Dale et al., 1979).

Continued
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Joggers x1 ¼ 10:1, s1 ¼ 2:1
Runners x2 ¼ 9:1, s2 ¼ 2:4

Using a¼0.05, (a) test for differences in mean number of menses for each group assuming

equality of population variances, and (b) test for differences in mean number of menses for each

group assuming inequality of population variances.

Solution
Here we need to test

H0 :m1�m2 ¼ 0 versus Ha :m1�m2 6¼ 0:

Here, n1¼26, x1 ¼ 10:1, and s1¼2.1. Also, n2¼26, x2 ¼ 9:1, and s2¼2.4.

(a) Under the assumption s1
2¼s2

2, we have

s2p ¼
n1�1ð Þs21 + n2�1ð Þs22

n1 + n2�2

¼ 25ð Þ 2:1ð Þ2 + 25ð Þ 2:4ð Þ2
50

¼ 5:085:

The test statistic is

T¼X1�X2�D0

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r

¼ 10:1�9:1ffiffiffiffiffiffiffiffiffiffiffi
5:085

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

26
+

1

26

r ¼ 1:5989:

For a¼0.05, t0.025,50
1.96. Hence, the rejection region is t<�1.96 and t>1.96. Because

T¼1.589 does not fall in the rejection region, we do not reject the null hypothesis. At a¼0.05 there

is not enough evidence to conclude that the population mean number of menses for joggers and

runners are different.
(b) Under the assumption s1

2 6¼s2
2, we have

v¼
s21
n1

+
s22
n2

� �2

s21=n1
� �2
n1�1

+
s22=n2
� �2
n2�1

¼

2:1ð Þ2
26

+
2:4ð Þ2
26

 !2

2:1ð Þ2=26
� �2

25
+

2:4ð Þ2=26
� �2

25

¼ 49:134:

Hence, we have v¼49 degrees of freedom. Because this value is large, the rejection region is

still approximately t<�1.96 and t>1.96. Hence, the conclusion is the same as that of part (a). In

both parts (a) and (b), we assumed that the samples are independent and came from two normal
populations.

Now we present the summary of the test procedure for testing the difference of

two proportions, inherent in two binomial populations. Here, again we assume that

the binomial distribution is approximated by the normal distribution and thus it is an

approximate test.
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SUMMARY OF HYPOTHESIS TEST FOR (p1–p2) FOR LARGE SAMPLES
(nipi>5 AND niqi>5, FOR i=1, 2)
To test

H0 : p1�p2 ¼D0

versus

Ha :
p1�p2 <D0, upper tailed test

p1�p2 >D0, lower tailed test

p1�p2 6¼D0, two-tailed test

at significance level a, the test statistic is

Z¼ p̂1� p̂2�D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1q̂1
n1

+
p̂2q̂2
n2

r
where z is the observed value of Z.

The rejection region is

RR :
z> za, upper tailedRR

z<�za, lower tailedRR

zj j> za=2, two-tailedRR:

8<
:

Assumption: The samples are independent and

nipi > 5 and niqi > 5, for i¼ 1,2:

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1�a)
100% confidence. Otherwise, do not rejectH0, because there is not enough evidence to conclude that

Ha is true for given a and more experiments are needed.

EXAMPLE 6.5.5
Because of the impact of the global economy on a high-wage country such as the United States, it is

claimed that the domestic content in manufacturing industries fell between 1977 and 1997. A survey

of 36 randomly picked US companies gave the proportion of domestic content total manufacturing

in 1977 as 0.37 and in 1997 as 0.36. At the 1% level of significance, test the claim that the domestic

content really fell during the period 1977-1997.

Solution
Let p1 be the domestic content in 1977 and p2 be the domestic content in 1997.

Given n1¼n2¼36, p̂1 ¼ 0:37 and p̂2 ¼ 0:36. We need to test

H0 : p1�p2 ¼ 0 versus Ha : p1�p2 > 0:

The test statistic is

z¼ p̂1� p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1q̂2
n1

+
p̂1q̂2
n2

r

¼ 0:37�0:36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:37ð Þ 0:63ð Þ

36
+

0:36ð Þ 0:64ð Þ
36

r ¼ 0:08813:

For a¼0.01, z0.01¼2.325.Hence, the rejection region is z>2.325. Because the observed value

of the test statistic does not fall in the rejection region, at a¼0.01, there is not enough evidence to

conclude that the domestic content in manufacturing industries fell between 1977 and 1997.
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Let X1, . . ., Xn and Y1, . . .,Yn be two independent random samples from two normal

populations with sample variances s1
2 and s2

2, respectively. The problem here is of

testing for the equality of the variances, H0 :s1
2¼s2

2. We have already seen in

Chapter 4 that

F¼ S21=s
2
1

S22=s
2
2

follows the F-distribution with v1¼n1�1 numerator and v2¼n2�1 degrees of

freedom. Under the assumption H0 :s1
2¼s2

2, we have

F¼ S21
S22

which has an F-distribution with (v1, v2) degrees of freedom. We summarize the test

procedure for the equality of variances.

TESTING FOR THE EQUALITY OF VARIANCES
To test

H0 :s21 ¼s22

versus

Ha :

s21 > s22, lower tailed test

s21 < s22, upper tailed test

s21 6¼ s22, two-tailed test

at significance level a, the test statistic is

F¼ S21
S22

:

The rejection region is

RR :
f >Fa v1, v2ð Þ, upper tailedRR

f <F1�a v1, v2ð Þ, lower tailedRR

f >Fa=2 v1, v2ð Þor f <F1�a=2 v1,v2ð Þ, two-tailedRR

8<
:

where f is the observed test statistic given by f¼ s1
2/s2

2.

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1�a)
100% confidence. Otherwise, keep H0, because there is not enough evidence to conclude that Ha is

true for a given a and more experiments are needed.

Assumption:

(i) The two random samples are independent.

(ii) Both populations are normal.

Recall from Section 4.2 that in order to find F1�a(v1, v2), we use the identity

F1–a(v1,v2) ¼ (1/Fa(v2,v1)).
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EXAMPLE 6.5.6
Consider two independent random samples X1, . . ., Xn from an N(m1,s1

2) distribution and

Y1, . . ., Yn from an N(m2,s2
2) distribution. Test H0 :s1

2¼s2
2 versus Ha :s1

2 6¼s2
2 for the following

basic statistics:

n1 ¼ 25, x1 ¼ 410, s21 ¼ 95, and n2 ¼ 16, x2 ¼ 390, s22 ¼ 300

Use a¼0.20.

Solution
Test H0 :s1

2¼s2
2 versus Ha :s1

2 6¼s2
2. This is a two-tailed test.

Here the degrees of freedom are v1¼24 and v2¼15. The test statistic is

F¼ s21
s22
¼ 95

300
¼ 0:317:

From the F-table, F0.10(24, 15)¼1.90 and F0.90(24, 15)¼ (1/F0.10(15, 24))¼1/1.78¼0.56.

Hence, the rejection region is F>1.90 or F<0.56. Because the observed value of the test

statistic, 0.317, is less than 0.56, we reject the null hypothesis. There is evidence that the population

variances are not equal.

6.5.2 DEPENDENT SAMPLES
We now consider the case where the two random samples are not independent. When

two samples are dependent (the samples are dependent if one sample is related to the

other), then each data point in one sample can be coupled in some natural, nonran-

dom fashion with each data point in the second sample. This situation occurs when

each individual data point within a sample is paired (matched) to an individual data

point in the second sample. The pairing may be the result of the individual observa-

tions in the two samples: (1) representing before and after a program (such as weight

before and after following a certain diet program), (2) sharing the same characteris-

tic, (3) being matched by location, (4) being matched by time, (5) control and exper-

imental, and so forth. Let (X1i, X2i), for i¼1, 2, . . ., n, be a random sample. X1i, and

X2j (i 6¼ j) are independent. To test the significance of the difference between two

population means when the samples are dependent, we first calculate for each pair

of scores the difference, Di¼X1i�X2i, i¼1, 2, . . ., n, between the two scores. Let

mD¼E(Di), the expected value of Di. Because pairs of observations form a random

sample D1, . . ., Dn are independent and identically distributed random variables, if

d1, . . ., dn are the observed values of D1, . . ., Dn, then we define

d¼ 1

n

Xn
i¼1

di and s2d ¼
1

n�1

Xn
i¼1

di�d
� �2 ¼

Xn

i¼1
did

2
i �

1

n

Xn

i¼1
di

� �2
n�1

:

Now the testing for these n observed differences will proceed as in the case of a single
sample. If the number of differences is large (n�30), large sample inferential

methods for one sample case can be used for the paired differences. We now sum-

marize the hypothesis testing procedure for small samples.
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SUMMARY OF TESTING FOR MATCHED PAIRS EXPERIMENT
To test

H0 :mD ¼ d0 versus Ha :
mD > d0, upper tail test

mD < d0, lower tail test

mD 6¼ d0, two-tailed test

the test statistic: T¼ D�D0

� �
= SD=

ffiffiffi
n

pð Þ (this approximately follows a Student t-distribution with

(n�1) degrees of freedom).

t> ta,n�1, upper tail RR

t<�ta,n�1, lower tail RR

tj j> ta=2,n�1, two-tailed RR

8<
:

where t is the observed test statistic.

Assumptions: The differences are approximately normally distributed.

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1�a)
100% confidence. Otherwise, do not rejectH0, because there is not enough evidence to conclude that

Ha is true for a given a and more data are needed.

EXAMPLE 6.5.7
A new diet and exercise program has been advertised as remarkable way to reduce blood glucose

levels in diabetic patients. Ten randomly selected diabetic patients are put on the program, and the

results after 1 month are given by the following table:

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203

Do the data provide sufficient evidence to support the claim that the new program reduces blood

glucose level in diabetic patients? Use a¼0.05.

Solution
We need to test the hypothesis

H0 :mD ¼ 0 versus Ha :mD < 0:

First we calculate the difference of each pair given in the following table.

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203

Difference (afterbefore) �162 �39 �29 �82 �104 �127 �35 �122 �37 18

From the table, the mean of the differences is d¼�71:9 and the standard deviation sd¼56.2.

The test statistic is

t¼ d�d0
sd=

ffiffiffi
n

p ¼ �71:9

56:2=
ffiffiffiffiffi
10

p ¼�4:0457
�4:05:

From the t-table, t0.05,9¼1.833. Because the observed value of t¼�4.05<� t0.05,9¼�1.833,

we reject the null hypothesis and conclude that the sample evidence suggests that the new diet and

exercise program is effective.
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We can also obtain a (1�a) 100% confidence interval for mD using the formula

D� ta=2
Sdffiffiffi
n

p ,D+ ta=2
Sdffiffiffi
n

p
� �

where ta/2 is obtained from the t-table with (n�1) degrees of freedom. The interpre-

tation of the confidence interval is identical to the earlier interpretation.

EXAMPLE 6.5.8
For the data in Example 6.5.7, obtain a 95% confidence interval for mD and interpret its meaning.

Solution
We have already calculated d¼�71:9 and sd¼56.2. From the t-table, t0.025,9¼2.262. Hence, a
95% confidence interval for mD is (�112.1, �31.7). That is, P(�112.1�mD��31.7)¼0.95. Note

that mD¼m1�m2, and from the confidence limits we can conclude with 95% confidence that m2 is
always greater than m1, that is, m2>m1.

It is interesting to compare the matched pairs test with the corresponding

two independent sample test. One of the natural questions is, why must we take

paired differences and then calculate the mean and standard deviation for the

differences—why can’t we just take the difference of means of each sample, as

we did for independent samples? The answer lies in the fact that s 2
D need not be equal

to s2
X1�X2ð Þ. Assume that

E Xji

� �¼ mj, Var Xji

� �¼ s2j , for j¼ 1,2,

and

Cov X1i, X2ið Þ¼ rs1s2

where r denotes the assumed common correlation coefficient of the pair (X1i, X2i) for

i¼1, 2, . . ., n. Because the values of Di, i¼1, 2, . . ., n, are independent and identi-

cally distributed,

mD ¼E Dið Þ¼E X1ið Þ�E X2ið Þ¼ m1�m2

and

s2D ¼Var Dið Þ¼Var X1ið Þ+Var X2ið Þ�2Cov X1i,X2ið Þ
¼ s21 + s

2
2�2rs1s2:

From these calculations,

E D
� �¼ mD ¼ m1�m2

and

sD2 ¼Var D
� �¼ s2D

n
¼ 1

n
s21 +s

2
2�2rs1s2

� �
:
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Now, if the samples were independent with n1¼n2¼n,

E X1�X2

� �¼ m1�m2

and

s2
X1�X2ð Þ ¼

1

n
s21 +s

2
2

� �
:

Hence, if r>0, then s 2
D< s2

X1�X2ð Þ. As a result, we can see that the matched pairs

test reduces any variability introduced by differences in physical factors in compar-

ison to the independent samples test when r>0. It is also important to observe that

normality assumption for the difference does not imply that the individual samples

themselves are normal. Also, in a matched pairs experiment, there is no need to

assume the equality of variances for the two populations. Matching also reduces

degrees of freedom, because in case of two independent samples, the degrees

of freedom is (n1+n2�2), whereas for the case of two dependent samples it is

only (n�1).

EXERCISES 6.5
6.5.1. Two sets of elementary school children were taught to read by different

methods, 50 by each method. At the conclusion of the instructional period, a

reading test gave results y1 ¼ 74, y2 ¼ 71, s1¼9, and s2¼10. What is the

attained significance level if you wish to see if there is evidence of a real

difference between the two population means? What would you conclude if

you desired an a-value of 0.05?
6.5.2. The following information was obtained from two independent samples

selected from two normally distributed populations with unknown but equal

variances.

Sample 1 14 15 11 14 10 8 13 10 12 16 15

Sample 2 17 16 21 12 20 18 16 14 21 20 13 20 13

Test at the 2% significance level whether m1 is lower than m2.
6.5.3. In the academic year 1997-1998, two random samples of 25 male professors

and 23 female professors from a large university produced a mean salary for

male professors of $58,550 with a standard deviation of $4000 and an

average for female professors of $53,700 with a standard deviation of $3200.
At the 5% significance level, can you conclude that the mean salary of all

male professors for 1997-1998 was higher than that of all female professors?

Assume that the salaries of male and female professors are both normally

distributed with equal standard deviations.
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6.5.4. It is believed that the effects of smoking differ depending on race. The

following table gives the results of a statistical study for this question.

Do the data indicate that African Americans are more likely to develop

lung cancer due to smoking? Use a¼0.05.

6.5.5. A supermarket chain is considering two sources A and B for the

purchase of 50-pound bags of onions. The following table gives the results

of a study.

Test at a¼0.05 whether there is a difference in the mean weights.

6.5.6. In order to compare the mean Hemoglobin (Hb) levels of well-nourished and

undernourished groups of children, random samples from each of these

groups yielded the following summary.

Test at a¼0.01 whether the mean Hb levels of well-nourished children

were higher than those of undernourished children.

6.5.7. An aquaculture farm takes water from a stream and returns it after it has

circulated through the fish tanks. In order to find out how much organic

matter is left in the waste water after the circulation, some samples of the

water are taken at the intake and other samples are taken at the

downstream outlet and tested for biochemical oxygen demand (BOD).

BOD is a common environmental measure of the quantity of oxygen

consumed by microorganisms during the decomposition of organic

matter. If BOD increases, it can be said that the waste matter contains

Number of
Children

Sample
Mean

Sample Standard
Deviation

Well nourished 95 11.2 0.9

Undernourished 75 9.8 1.2

Number in
the Study

Average Number of
Cigarettes per Day

Number of Lung
Cancer Cases

Whites 400 15 78

African
Americans

280 15 70

Source A Source B

Number of bags weighed 80 100

Mean weight 105.9 100.5

Sample variance 0.21 0.19
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more organic matter than the stream can handle. The following table gives

data for this problem.

Upstream 9.0 6.8 6.5 8.0 7.7 8.6 6.8 8.9 7.2 7.0

Downstream 10.2 10.2 9.9 11.1 9.6 8.7 9.6 9.7 10.4 8.1

Assuming that the samples come from a normal distribution,

(a) Test that the mean BOD for the downstream samples is more than for the

samples upstream at a¼0.05. Assume that the variances are equal.

(b) Test for the equality of the variances at a¼0.05.

(c) In parts (a) and (b), we assumed samples are independent. Now, we feel

this assumption is not reasonable. Assuming that the difference of each

pair is approximately normal, test that the mean BOD for the

downstream samples is more than for the upstream samples at a¼0.05.

6.5.8. Suppose we want to know the effect on driving of a drug for cold and allergy,

in a study in which the same people were tested twice, once after 1 h of

taking the drug and once when no drug is taken. Suppose we obtain the

following data, which represent the number of cones (placed in a certain

pattern) knocked down by each of the nine individuals before taking the drug

and after an hour of taking the drug.

No drug 0 0 3 2 0 0 3 3 1

After drug 1 5 6 5 5 5 6 1 6

Assuming that the difference of each pair is coming from an approximately

normal distribution, test if there is any difference in the individuals’ driving

ability under the two conditions. Use a¼0.05. What is the p-value?
6.5.9. Suppose that we want to evaluate the role of intravenous pulse

cyclophosphamide (IVCP) infusion in the management of nephrotic

syndrome in children with steroid resistance. Children were given a monthly

infusion of IVCP in a dose of 500-750 mg/m2. The following data

(source: S. Gulati and V. Kher, “Intravenous pulse cyclophosphamide—a

new regime for steroid resistant focal segmental glomerulosclerosis,” Indian
Pediatr. 37, 2000) represent levels of serum albumin (g/dL) before and

after IVCP in 14 randomly selected children with nephrotic syndrome.

Pre-IVCP 2.0 2.5 1.5 2.0 2.3 2.1 2.3 1.0 2.2 1.8 2.0 2.0 1.5 3.4

Post-IVCP 3.5 4.3 4.0 4.0 3.8 2.4 3.5 1.7 3.8 3.6 3.8 3.8 4.1 3.4

Assuming that the samples come from a normal distribution:

(a) Here, we cannot assume that samples are independent. Assuming that

the difference of each pair is approximately normal, test that the mean

Pre-IVCP is less than the Post-IVCP at a¼0.05.

(b) Test for the equality of the variances at a¼0.05.
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6.5.10. Show that SD
2 is an unbiased estimator of sD

2 .

6.5.11. Test H0 :s1
2¼s2

2 versus Ha :s1
2 6¼s2

2 for the following data.

n1 ¼ 10, x1 ¼ 71, s21 ¼ 64 and n2 ¼ 25, x2 ¼ 131, s22 ¼ 96:

Use a¼0.10.

6.5.12. The IQs of 17 students from one area of a city showed a mean of 106 with a

standard deviation of 10, whereas the IQs of 14 students from another area

showed a mean of 109 with a standard deviation of 7. Test for equality of

variances between the IQs of the two groups at a¼0.02.

6.5.13. The following data give SAT mean scores for math by state for 1989 and

1999 for 20 randomly selected states (source: TheWorld Almanac and Book
of Facts 2000).

State 1989 1999

Arizona 523 525

Connecticut 498 509

Alabama 539 555

Indiana 487 498

Kansas 561 576

Oregon 509 525

Nebraska 560 571

New York 496 502

Virginia 507 499

Washington 515 526

Illinois 539 585

North Carolina 469 493

Georgia 475 482

Nevada 512 517

Ohio 520 568

New Hampshire 510 518

Assuming that the samples come from a normal distribution:

(a) Test that the mean SAT score for math in 1999 is greater than that in

1989 at a¼0.05. Assume the variances are equal.

(b) Test for the equality of the variances at a¼0.05.

6.6 CHAPTER SUMMARY
In this chapter, we have learned various aspects of hypothesis testing. First, we dealt

with hypothesis testing for one sample where we used test procedures for testing

hypotheses about true mean, true variance, and true proportion. Then we discussed

the comparison of two populations through their true means, true variances, and true
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proportions. We also introduced the Neyman-Pearson lemma and discussed LRTs

and chi-square tests for categorical data.

We now list some of the key definitions in this chapter.

• Statistical hypotheses.

• Tests of hypotheses, tests of significance, or rules of decision.

• Simple hypothesis.

• Composite hypothesis.

• Type I error.

• Type II error.

• The level of significance.

• The p-value or attained significance level.

• The Smith-Satterthwaite procedure.

• Power of the test.

• Most powerful test.

• Likelihood ratio.

In this chapter, we also learned the following important concepts and procedures:

• General method for hypothesis testing.

• Steps to calculate b.
• Steps to find the p-value.
• Steps in any hypothesis testing problem.

• Summary of hypothesis tests for m.
• Summary of large sample hypothesis tests for p.
• Summary of hypothesis tests for the variance s2.
• Summary of hypothesis tests for m1�m2 for large samples (n1 and n2�30).

• Summary of hypothesis tests for p1�p2 for large samples.

• Testing for the equality of variances.

• Summary of testing for a matched pairs experiment.

• Procedure for applying the Neyman-Pearson lemma.

• Procedure for the LRT.

6.7 COMPUTER EXAMPLES
In the following examples, if the value of a is not specified, we will always take it

as 0.05.

6.7.1 R-EXAMPLES

EXAMPLE 6.7.1
One-sample t-test:

Using the following data:

Sample x: 66 74 79 80 69 77 78 65 79 81
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Test H0 :m¼70 versus Ha :m>70

This example assumes you’ve stored the data in variable x, please modify the code

appropriately.

R Code:

t.test(x, mu¼70, alternative¼“greater”);

Output:

One Sample t-test

data: x

t¼2.5314, df¼9, p-value¼0.01608

alternative hypothesis: true mean is greater than 70

95 percent confidence interval:

71.32406 Inf

sample estimates:

mean of x

74.8

Conclusion: since the p-value¼0.01608>0.01, we will not reject H0 at a¼0.01.However, if a
is greater than 0.01608, then we will reject the null hypothesis.

EXAMPLE 6.7.2
The management of a local health club claims that its members lose on the average 15 pounds or

more within the first 3 months after joining the club. To check this claim, a consumer agency

took a random sample of 45 members of this health club and found that they lost an average of

13.8 pounds within the first 3 months of membership, with a sample standard deviation of 4.2

pounds.

(a) Find the p-value for this test.

(b) Based on the p-value in (a), would you reject the null hypothesis at a¼0.01?

R-code:

>xbar¼13.8 #sample mean

>mu0¼15 #hypothesized value

>sigma¼4.2

>n¼45

>z¼(xbar-mu0)/(sigma/sqrt(n))

>z

[1] -1.91663

>alpha¼.01

>z.alpha¼qnorm(1-alpha)

>-z.alpha

[1] -2.326348

Since observed z- doesnot fall in the rejection region, we do not reject the null hypothesis at

a¼0.01.

If we need p-value approach, then:

>pval¼pnorm(z)

>pval

Output:

[1] 0.0276425

Again since p-value is larger that a¼0.01, we do not reject the null hypothesis.
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EXAMPLE 6.7.3 R-CODE FOR EXERCISE 6.4.9
>xbar¼7225

>mu0¼7500

>s¼120

>n¼6

>t¼(xbar-mu0)/(s/sqrt(n))

>t

[1] -5.613414

>alpha¼0.01

>t.alpha¼qt(1-alpha, df¼n-1)

>-t.alpha

[1] -3.36493

> pval¼pt(t, df¼n�1)

>pval

[1] 0.001240944

EXAMPLE 6.7.4 TWO SAMPLE t-TEST:
Using the following data:

Sample x: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample y: 14 15 10 13 11 7 12 11 12 15 14

Test H0 :mx¼my versus Ha :mx<my using a¼0.02.

This example assumes you’ve stored the data in variables x and y. Please modify your code

appropriately.

R Code:

t.test (x, y, alternative¼”less”);0

Output:

Welch Two Sample t-test

data: x and y

t¼4.8077, df¼21.963, p-value¼1

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf 6.852384

sample estimates:

mean of x mean of y

17.23077 12.18182

EXAMPLE 6.7.5 ONE-SAMPLE t-TEST (TWO-TAILED):
Using the following data:

Sample X: 6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1 8.9

11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3 12.3 11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9 14.2 14.0

15.5 16.9 18.0 17.9 21.8 18.4 34.3

Test H0 :mx¼12 versus Ha :mx 6¼12 using a¼0.05.

This example assumes you’ve stored the data in variable x. Pleasemodify your code appropriately.

R Code:

t.test (x, mu¼12);

Since our p-value is greater than
0.02, we fail to reject the null.
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Output:

One Sample t-test

data: x

t¼0.1854, df¼48, p-value¼0.8537

alternative hypothesis: true mean is not equal to 12

95 percent confidence interval:

10.77437 13.47461

sample estimates:

mean of x

12.12449

EXAMPLE 6.7.6 PAIRED SAMPLES t-TEST:
Using data:

Upstream (x) 9.0 6.8 6.5 8.0 7.7 8.6 6.8 8.9 7.2 7.0

Downstream (y) 10.2 10.2 9.9 11.1 9.6 8.7 9.6 9.7 10.4 8.1

Test Ha :md¼0 versus Ha :md<0 using a¼0.05.

This is a paired t-test and assumes you’ve stored the data in variables x and y. Please modify

code appropriately.

R Code:

t.test (x, y, paired¼TRUE, alternative¼”less”);

Output:

Paired t-test

data: x and y

t¼�5.3982, df¼9, p-value¼0.000217

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf�1.38689

sample estimates:

mean of the differences

-2.1

6.7.2 MINITAB EXAMPLES

EXAMPLE 6.7.7
(t-Test): Consider the data

66 74 79 80 69 77 78 65 79 81

Using Minitab, test H0:m¼75 versus H1:m>75.

Solution
Enter the data in C1. Then

Stat>Basic Statistics>1-sample. . .> In Variables: enter C1>choose Test Mean>enter 75> in

Alternative: choose greater than and click OK

Since the p-value is greater than 0.05,
we fail

to reject the null hypothesis

We reject the null hypothesis since our
p-value is less than 0.05 suggesting 

than the mean difference is less than 0.
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EXAMPLE 6.7.8
For the following data:

Sample1: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2: 14 15 10 13 11 7 12 11 12 15 14

Test H0:m1¼m2 versus H1:m1<m2. Use a¼0.02.

Solution
Enter sample 1 data in C1 and sample 2 data in C2. Then

Stat>Basic Statistics>2-sample t. . .>Choose Samples in different columns> in Alternative:

choose less than> in Confidence level: enter 98>click Assumed equal variances and click OK

We obtain the following output.

Two Sample T-test and Confidence Interval

Two sample T for C1 vs C2

N Mean StDev SE Mean

C1 13 17.23 2.74 0.76

C2 11 12.18 2.40 0.76

98% CI for mu C1�mu C2: (2.38, 7.71)

T-Test mu C1¼mu C2 (vs <): T¼4.75, P¼1.0, DF¼22

Both use Pooled StDev¼2.59

If we did not select Assumed equal variances, we will obtain the following

output.

Two Sample T-Test and Confidence Interval

Two sample T for C1 vs C2

N Mean StDev SE Mean

C1 13 17.23 2.74 0.76

C2 11 12.18 2.40 0.72

98% CI for mu C1 - mu C2: (2.40, 7.69)

T-Test mu C1¼mu C2 (vs <): T¼4.81 P¼1.0 DF¼21

EXAMPLE 6.7.9
For the following data:

6:8 5:6 8:5 8:5 8:4 7:5 9:3 9:4 7:8 7:1
9:9 9:6 9:0 9:4 13:7 16:6 9:1 10:1 10:6 11:1
8:9 11:7 12:8 11:5 12:0 10:6 11:1 6:4 12:3 12:3

11:4 9:9 14:3 11:5 11:8 13:3 12:8 13:7 13:9 12:9
14:2 14:0 15:5 16:9 18:0 17:9 21:8 18:4 34:3

Test H0:m¼12 versus H1:m 6¼12. Use a¼0.05.

Solution
Enter the data in C1. Then

Stat>Basic Statistics>1-sample z. . .> in Variables: Type C1>choose Test Mean and enter

12>choose not equal in Alternative, and Type 4.7 for sigma>Click OK
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EXAMPLE 6.7.10
(Paired t-Test): Consider the data of Example 7.5.7. Using Minitab, perform a paired t-test.

Solution
Enter sample 1 in column C1 and sample 2 in column C2. Then:

Stat>Basic Statistics>Paired t. . .> in First Sample: Type C2, and in the Second sample: Type

C1>click options>and click less than (if a is other than 0.05, enter appropriate percentage in

Confidence level: and enter appropriate number if it is not zero in Test mean:)>click OK>OK

6.7.3 SPSS EXAMPLES

EXAMPLE 6.7.11
Consider the data

66747980 69777865 7981

Using SPSS, test H0:m¼75 versus H1:m>75.

Solution
Use the following procedure:

1. Enter the data in column 1.

2. Click Analyze>Compare Means>One-sample t-Test. . ., Move var00001 to Test Variable(s),

and change Test Value: 0 to 75. Click OK

If we want the computer to calculate the p-value in the previous example, use the

following procedure.

1. Enter the test statistic (�0.105) in the data editor using ‘teststat’.

2. Click Transform>compute. . .

3. Type ‘p-value’ in the box called Tarobtain value. In the box called Functions: scroll and click

on CDF.T(q,df) and move to Numeric Expressions.

4. The CDF(q,df) will appear as CDF(?,?) in the Numeric Expressions box. Replace teststat for q

and 9 for df (the degree of freedom in this example is 9). Click OK

EXAMPLE 6.7.12
For the following data

Sample 1 : 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2 : 14 15 10 13 11 7 12 11 12 15 14

Test H0:m1¼m2 versus H1:m1<m2. Use a¼0.02.

Solution
In column 1, under the title “group” enter 1 s to identify the sample 1 data and 2 s to identify sample

2 data. In column C2, under the title “data” enter the data corresponding to samples 1 and 2. Then:

Analyze>Compare Means> Independent Samples t-test. . .>bring Data to Test Variable(s): and

group to Grouping Variable:, click Define Groups. . ., and enter 1 for sample 1, 2 for sample

2>click continue>click Options. . . Enter 98 in Confidence interval: >click continue>OK
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EXAMPLE 6.7.13
(Paired t-Test) For the data of Example 7.5.7, use SPSS to test whether the data provide sufficient

evidence for the claim that the new program reduces blood glucose level in diabetic patients. Use

a¼0.05.

Solution
Enter after data in column C1 and before data in column C2. Then:

Analyze>Compare Means>Paired-Sample T-Test>bring after and before to Paired Variables:

so that it will look after-before>click OK

6.7.4 SAS EXAMPLES
To conduct a hypothesis test using SAS, we could use proc ttest, or proc means with

option of computing the t-value and corresponding probability. However, to use

this, we need a hypothesis of the form H0:m¼0. For testing nonzero values,

H0:m¼m0, we must create a new variable by subtracting m0 from each observation,

and then use the test procedure for this new variable. The following example illus-

trates this concept.

EXAMPLE 6.7.14
(t-Test): The following radar measurements of speed (in miles per hour) are obtained for 10 vehicles

traveling on a stretch of interstate highway.

66 74 79 80 69 77 78 65 79 81

Do the data provide sufficient evidence to indicate that the mean speed at which people travel on

this stretch of highway is at least 75mph?Test using a¼0.01. Use anSASprocedure to do the analysis.

Solution
In the SAS editor, type in the following commands.

data speed;

title ’Test on highway speed’;.

input X @@;

Y¼X-75;

datalines;

66 74 79 80 69 77 78 65 79 81

;

PROC TTEST data¼ speed;

run;

We obtain the following output.

Test on highway speed

The TTEST Procedure Statistics

Statistics

Lower CL Upper CL Lower Upper

CL CL

Variable N Mean Mean Mean Std Std Std Std

Dev Dev Dev Err
Continued
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X 10 70.511 74.8 79.089 4.1245 5.9963 10.947 1.8962

Y 10 �4.489 �0.2 4.0895 4.1245 5.9963 10.947

T-Tests

Variable DF t Value Pr> jtj
X 9 39.45 < .0001

Y 9 �0.11 0.9183

To test H0:m¼75, we need to look at the Y-values. The corresponding t-value is �0.11, and

because this is a one-sided test, we need to divide 0.9183 by 2 to obtain the p-value as

p¼0.45915. Because the p-value is larger than 0.01¼a, we cannot reject the null hypothesis.

One of the easier ways to conduct large sample hypothesis testing using SAS pro-

cedures is through the computation of the p-value. The following example illustrates

the procedure.

EXAMPLE 6.7.15
(z-Test): It is claimed that the average miles driven per year for sports cars is at least 18,000 miles.

To check the claim, a consumer firm tests 40 of these cars randomly and obtains a mean of 17,463

miles with standard deviation of 1348 miles. What can it conclude if a¼0.01?

Solution
Here we will find the p-value and compare that with a to test the hypothesis. We use the following
SAS procedure:

Data ex888;

z¼ (17463-18000)/(1348/(SQRT(40)));

pval¼probnorm(z);

run;

proc print data¼ex888;

title ’Test of mean, large sample’;

run;

We obtain the following output.

Test of mean large sample

Obs z pval

1 2.51950 .005876079

Because the p-value of 0.005876079 is less than a¼0.01, we reject the null hypothesis.

There is sufficient evidence to conclude that the mean miles driven per year for sport cars is less

than 18,000.

Note that in the previous example, the value of z was negative. If the value of z is
positive, use pval¼probnorm(�z);, also, if it is a two-sided hypothesis, we need

to multiply by 2, so use pval¼probnorm(z)*2; to obtain the p-value.
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EXAMPLE 6.7.16
(Paired t-Test): For the data of Example 7.5.7, use SAS to test whether the data provide sufficient

evidence for the claim that the new program reduces blood glucose level in diabetic patients. Use

a¼0.05.

Solution
We can use the following commands.

data dietexr;

input before after;

diff¼after - before;

datalines;

268 106

225 186

252 223

192 110

307 203

228 101

246 211

298 176

231 194

185 203

;

run;

proc means data¼dietexr t prt;

var diff;

title ’Test of mean, Paired difference’;

run;

PROJECTS FOR CHAPTER 6
6A. TESTING ON COMPUTER-GENERATED SAMPLES
(a) Small sample test:

Generate a sample of size 20 from a normal population with m¼10, and

s2¼4.

(i) Perform a t-test for the test H0:m¼10 versus Ha:m 6¼10 at level a¼0.05.

(ii) Perform the test H0:s
2¼4 versus Ha:s

2 6¼4 at level a¼0.05.

Repeat the procedure 10 times, and comment on the results.

(b) Large sample test:
Generate a sample of size 50 from a normal population with m¼10, and

s2¼4. Perform a z-test for the test H0:m¼10 versus Ha:m 6¼10 at level a¼0.05.

Repeat the procedure 10 times and comment on the results.
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6B. CONDUCTING A STATISTICAL TEST WITH CONFIDENCE INTERVAL
Let y be any population parameter. Consider the three tests of hypotheses

H0 : y¼ y0 versus Ha : y> y0, (1)

H0 : y¼ y0 versus Ha : y< y0, (2)

H0 : y¼ y0 versus Ha : y 6¼ y0: (3)

The following procedure can be exploited to test a statistical hypothesis utilizing the

confidence intervals.

Procedure to Use Confidence Interval for Hypothesis Testing

Let y be any population parameter.

(a) For test (1), that is,

H0 : y¼ y0 versus Ha : y> y0

choose a value for a. From a random sample, compute a confidence interval for y
using a confidence coefficient equal to 1–2a. Let L be the lower end point of this
confidence interval.

Reject H0 ify0 < L:

That is, we will reject the null hypothesis if the confidence interval is completely

to the right of y0.
(b) For test (2), that is,

H0 : y¼ y0 versus Ha : y< y0

choose a value for a. From a random sample, compute a confidence interval for y
using a confidence coefficient equal to 1–2a. LetU be the upper end point of this

confidence interval.

Reject H0 ifU< y0:

That is, we will reject the null hypothesis if the confidence interval is

completely to the left of y0.
(c) For test (3), that is,

H0 : y¼ y0 versus Ha : y 6¼ y0

choose a value for a. From a random sample, compute a confidence interval

for y using a confidence coefficient equal to 1–a. Let L be the lower end point

and U be the upper end point of this confidence interval.

Reject H0 if y0 < L or U< y0:

That is, we will reject the null hypothesis if the confidence interval does not

contain y0.
(i) For any large data set, conduct all three of these hypothesis tests using a

confidence interval for the population mean.

(ii) For any small data set, conduct all three of these hypothesis tests using a

confidence interval for the population mean.
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OBJECTIVE

In this chapter, we will study various methods of testing, goodness-of-fit, to deter-

mine if a given set of data follows a particular probability distribution. In addition,

we will perform parametric analysis using real data, from economics, environment,

and health sciences.

Karl Pearson
(Source: http://www-history.mcs.st-and.ac.uk/~history/PictDisplay/Pearson.html)

Karl Pearson (1857-1936) is considered the founder of the twentieth-century sci-

ence of statistics. Pearson has contributed in several different fields such as anthro-

pology, biometry, genetics, scientific methods, and statistical theory. He applied

Mathematical Statistics with Applications in R
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statistics to biological problems of heredity and evolution. In 1911, he founded the

world’s first university statistics department at the University College London.

He is the author of The Grammar of Science, the three volumes of The Life, Let-
ters and Labors of Francis Galton, and The Ethic of Free Thought. Pearson was the

founder of the statistical journal Biometrika.
In 1900, he published a paper on the chi-square goodness-of-fit test that we will

study in this Chapter. This is one of Pearson’s most significant contributions to sta-

tistics. In 1893, Pearson coined the term “standard deviation.”

7.1 INTRODUCTION
In studying various real world phenomena, we begin with a random sample of data

X1, . . .,Xn that represents values of some sort of a subject of interest. These measure-

ments could represent the amount of carbon dioxide, CO2, in the atmosphere on a

daily basis, the sizes of cancerous breast tumors, the monthly average rainfall in

the State of Florida, the average monthly unemployment rate in the United States,

the hourly wind forces of a hurricane, etc. In order for us to probabilistically

understand the behavior of these phenomena, we need to identify the probability

distribution that follows or the given data are drawn from. For example, at a certain

time point we say that these data follow or come from the normal or exponential

probability distribution. One of the important questions then is whether observed

data are representative or follow a particular probability distribution. In fact, there

is nothing we can do parametrically or statistically unless through goodness-of-fit

testing identifies the probability density functions, pdf, that probabilistically charac-
terizes the behavior of the given data, the phenomenon of interest.

To accomplish this objective of identifying the underlying probability distribution,

we will discuss four statistical tests (methods), that we can use to determine how good

the data fits a particular probability distribution. These four tests are as follows:

Pearson’s chi-square test

Kolmogorov-Smirnov test

Anderson-Darling test

Shapiro-Wilk test

P-P plots

Q-Q plots

There are other methods we can follow, if we are not able to identify the appro-

priate pdf, such as nonparametric or probability distribution free analysis, which will

be discussed in Chapter 12.

7.2 THE CHI-SQUARE TESTS FOR COUNT DATA
In this section, wewill study several commonly used tests for count data, where obser-

vations are given by counting and assume non-negative integer values {0, 1, 2,. . .}.
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These are basically large sample tests based on a w2-approximation. A chi-square test

is designed to analyze categorical data and it is intended to test how likely it is that an

observed probability distribution is due to chance. Suppose that we have outcomes of

a multinomial experiment that consists of k mutually exclusive and exhaustive

events A1, . . .,Ak. Let P(Ai)¼pi, i¼1,2, . . .,k. Then
P

i¼1
n pi¼1. Let the experiment

be repeated n times, and let Xi (i¼1, 2, . . ., k) represent the number of times the event

Ai occurs. Then (X1, . . ., Xk) have a multinomial distribution with parameters n,
p1, . . .,pk.

Let

Q2 ¼
Xk
i¼1

Xi�npið Þ2
npi

:

It can be shown that for large n, the random variable Q2 is approximately w2-
distributed with (k�1) degrees of freedom. It is required that npi�5 (i¼1, 2, . . .,
k) for the approximation to be valid, although the approximation generally works

well if we only have a few values of i (about 20%), npi�1 and the rest (about

80%) satisfy the condition that npi�5. This statistic was proposed by Karl Pearson

in his 1900 paper.

It should be noted that the w2-tests that we are studying in this section is an

approximate tests valid for large samples. Often Xi is called the observed frequency

and is denoted by Oi (this is the observed value in class i), and npi is called the

expected frequency and is denoted by Ei (this is the theoretical distribution frequency

under the null hypothesis). Thus, with these notations, we can calculate

Q2 ¼
Xk
i¼1

Oi�Eið Þ2
Ei

:

The example given below, illustrates how we apply this goodness-of-fit test.

EXAMPLE 7.2.1
A plant geneticist grows 200 progeny from a cross that is hypothesized to result in a 3:1 phenotypic

ratio of red-flowered to white-flowered plants. Suppose the cross produces 170 red- to 30 white-

flowered plants. (a) Calculate Q2 for this experiment. (b) Does the given data support the 3:1 ratio

at a¼0.05?

Solution
There are two categories of data totaling n¼200.Hence, k¼2. Let i¼1 represent red-flowered and

i¼2 represent white-flowered plants. Then O1¼170, and O2¼30.

Here, we want to test the hypothesis to answer the posed question.

H0 :The flower color population ratio is not different from3 : 1,

versus

Ha : The flower color population sampledhas a flower color ratio that is not 3 red : 1white:

(a) We are given that p1¼ 3
4
, and p2¼ 1

4
and the condition that np1�5 and np2�5 are satisfied.

Thus, we proceed to calculate Q2 for the information that is given.

Thus,
Continued
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E1 ¼ np1 ¼ 200ð Þ 3

4

� �
¼ 150, and E2 ¼ np2 ¼ 200ð Þ 1

4

� �
¼ 50

and

Q2 ¼
X2
i¼1

Oi�Eið Þ2
Ei

¼ 170�150ð Þ2
150

+
30�50ð Þ2

50
¼ 10:667:

(b) Since k¼2, from the w2-table with 1 degree of freedom and a¼0.05, the rejection region is

{x1,0.05
2 >3.841}. Since 10.667 is greater than 3.841, we reject the null hypothesis and conclude that

the color ratio is not 3:1. The data support the alternative hypothesis that the ratio is not 3 red:

1 white

The type of calculation in Example 7.2.1 gives a measure of how close our observed

frequencies come to the expected frequencies and is referred to as a measure of

goodness-of-fit. Smaller values of Q2 indicate better fit.

Unless the sample size is exactly 100, percentages cannot be used. These tests

that we will study are approximate test, but very useful in performing statistical anal-

ysis. Let the random variables (X1, . . ., Xk) have a multinomial distribution with

parameters n, p1, . . ., pk. Let n be known. We will now present some important tests

based on the chi-square w2-statistic.

7.2.1 TESTING THE PARAMETERS OF A MULTINOMIAL
DISTRIBUTION: GOODNESS-OF-FIT TEST
One of the most frequent uses of the w2-test is in comparison of observed fre-

quencies. The test is also called a “goodness-of-fit” test statistic, because this

measure how well the observed distribution of data fits with the distribution that

is expected if the variables are independent. Let an experiment have k mutually

exclusive and exhaustive outcomes A1, A2, . . ., Ak. We would like to test the null

hypothesis that all the pi¼p(Ai), i¼1, 2, . . ., k are equal to known numbers pi0,
i¼1, 2, . . .,k.

The test procedure that we use to test the subject hypothesis is highlighted below.

TESTING THE PARAMETERS OF A MULTINOMIAL
DISTRIBUTION (SUMMARY)
To test

H0 : p1 ¼ p10, . . . ,pk ¼ pk0

versus

Ha :Atleastoneof theprobabilitiesisdifferentfromthehypothesizedvalue:

The test is always a one-sided upper tail test.

LetOi be the observed frequency, Ei¼npi0 be the expected frequency (frequency under the null
hypothesis), and k be the number of classes. The test statistic is

Q2 ¼
Xk
i¼1

Oi�Eið Þ2
Ei

:
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The test statisticQ2 has an approximate chi-square probability distribution with k�1 degrees of

freedom.The rejection region is given by

Q2 �w2a,k�1:

Assumption: Ei�5.

This test is known as the w2-goodness-of-fit test. It implies that if the observed

data are very close to the expected data, we have a very good fit and we do not reject

the null hypothesis. That is, for small Q2 values, we do not have enough evidence to

reject H0 and hence we will accept H0.

The following examples illustrate how we apply the subject goodness-of-fit test.

EXAMPLE 7.2.2
ATV station broadcasts a series of programs on the ill effects of smokingmarijuana. After the series,

the station wants to know whether people have changed their opinion about legalizing marijuana.

Given in the following tables are the data based on a survey of 500 randomly chosen individuals:

Before the series was shown

After the series was shown

Here, k¼4, and we wish to test the following hypothesis:

H0 : p1 ¼ 0:07; p2 ¼ 0:18; p3 ¼ 0:65; p4 ¼ 0:1

versus

Ha :Atleastoneof theprobabilitiesisdifferentfromthehypothesizedvalue:

The test is always an upper tail test. Test this hypothesis using a¼0.01.

Solution
We have

E1 ¼ 500ð Þ 0:07ð Þ¼ 35; E2 ¼ 90; E3 ¼ 325; E4 ¼ 50:

The observed frequencies are

O1 ¼ 500ð Þ 0:39ð Þ¼ 195; O2 ¼ 45; O3 ¼ 180; O4 ¼ 80:

The value of the test statistic is

Q2 ¼
X4
i¼1

Oi�Eið Þ2
Ei

¼ 195�35ð Þ2
35

+
45�90ð Þ2

90
+

180�325ð Þ2
325

+
80�50ð Þ2

50

" #

¼ 836:62:

From the w2-table, w0.01,3
2 ¼11.3449. Because the test statistic Q2¼836.62>11.3449, we reject

H0 at a¼0.01.Hence, the data suggest that people have changed their opinion after the series on the

ill effects of smoking marijuana was shown.

For
Legalization Decriminalization

Existing Law (Fine or
Imprisonment)

No
Opinion

39% 9% 36% 16%

For
Legalization Decriminalization

Existing Law (Fine or
Imprisonment)

No
Opinion

7% 18% 65% 10%

3757.2 The Chi-Square Tests for Count Data



EXAMPLE 7.2.3
A die is rolled 60 times and the face values are recorded. The results are as follows.

Up face 1 2 3 4 5 6

Frequency 8 11 5 12 15 9

Is the die balanced fair? Test this question using a¼0.05.

Solution
If the die is fair, we must have

p1 ¼ p2 ¼ �� �¼ p6 ¼
1

6

where pi¼P(face value on the die is i), i¼1, 2, . . ., 6. This has the discrete uniform distribution.

Hence,

H0 : p1 ¼ p2 ¼ �� �¼ p6 ¼
1

6

versus

Ha :At least one of the probabilities is different from the hypothesized value of
1

6

Note that E1¼n1p1¼ (60)(1/6)¼10, . . ., E6¼10, and the assumption of using the test is

satisfied.

We summarize the calculations in the following table:

Face value 1 2 3 4 5 6

Frequency, Oi 8 11 5 12 15 9

Expected value, Ei 10 10 10 10 10 10

The test statistic value is given by

Q2 ¼
X6
i¼1

Oi�Eið Þ2
Ei

¼ 6:

From the chi-square table with 5 degrees of freedom., w0.05,5
2 ¼11.070.

Thus, w0.05,5
2 ¼11.070¼11.07>Q2¼6 and since the value of the test statistic does not fall in the

rejection region, we do not reject H0. Therefore, we do not have enough evidence to conclude that

the die is not fair.

7.2.2 CONTINGENCY TABLE: TEST FOR INDEPENDENCE
Another important use of the w2-statistic is testing for dependencies between the rows
and columns in a contingency table. Here, we have n randomly selected items are

classified according to two different criteria, or two factors (row factor and column

factor) where the row factor has r levels and the column factor has c levels. The

obtained data are displayed as shown in the following table, where nij represents
the number of data values in row i and column j. This display of the data is called

a contingency table. Our interest here is to test for independence of two methods of
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classifications of observed events. For example, we might classify a sample of stu-

dents by male or female and by their grade on a statistics course in order to test the

hypothesis that the grades are independent of gender. More generally the problem is

to investigate a dependency (or contingency) between two classification criteria.

In the present study, the given data of a problem are presented in a tabular form as

illustrated by the table below:

Levels of column factor

1 2 . . . c Row total

Row 1 n11 n12 n1c n1

Levels 2 n21 n21 n2c n2

�
�
r nr1 nr2 nrc nr

Column totals n.1 n.2 n.c N

where N¼P
j¼1
c n. j¼

P
i¼1
r ni.¼

P
i¼1
r P

j¼1
c nij is the grand total.

Here, we wish to test the hypothesis that the two factors (rows and columns) are

independent. We summarize the procedure in the following table for testing that

the factors represented by the rows are independent with those represented by

the columns.

TESTING FOR THE INDEPENDENCE OF TWO FACTORS
To Test

H0 :The factors are independent

versus

Ha :The factors are dependent

the test statistic is,

Q2 ¼
Xr

i¼1

Xc
j¼1

Oij�Eij

� �2
Eij

,

where

Oij ¼ nij

and

Eij ¼ ninj
N

:

Then under the null hypothesis the test statistic Q2 has an approximate chi-square probability

distribution with (r�1)(c�1) degrees of freedom.

Hence, the rejection region is Q2>wa,(r�1)(c�1)
2 .

Assumption: Eij�5.
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EXAMPLE 7.2.4
The following table gives a classification according to religious affiliation and marital status for 500

randomly selected individuals (Table 7.1).

Using a level of significance, a¼0.01, test the null hypothesis that marital status and religious

affiliation are independent.

Solution
We need to test the hypothesis

H0 :Maritalstatusandreligiousaffiliationareindependent

versus

Ha :Maritalstatusandreligiousaffiliationaredependent:

Here, c¼5, and r¼2. For a¼0.01, and for (c–1)(r–1)¼4 degrees of freedom, we have

w20:01,4 ¼ 13:2767:

Hence, the rejection region is Q2>13.2767.

We have Eij ¼ n
i
nj
N

: Thus,

E11 ¼ 116ð Þ 211ð Þ
500

¼ 48:952; E12 ¼ 116ð Þ 80ð Þ
500

¼ 18:5;

E13 ¼ 116ð Þ 56ð Þ
500

¼ 12:992; E14 ¼ 116ð Þ 98ð Þ
500

¼ 22:736;

E15 ¼ 116ð Þ 55ð Þ
500

¼ 12:76; E21 ¼ 384ð Þ 211ð Þ
500

¼ 162:05;

E22 ¼ 384ð Þ 80ð Þ
500

¼ 61:44; E23 ¼ 384ð Þ 56ð Þ
500

¼ 43:008;

and

E24 ¼ 384ð Þ 98ð Þ
500

¼ 75:264; E25 ¼ 384ð Þ 55ð Þ
500

¼ 42:24:

The value of the test statistic is

Q2 ¼
Xr

i¼1

Xc
j¼1

Oij�Eij

� �2
Eij

¼ 39�48:952ð Þ2
48:952

+
19�18:5ð Þ2

18:5
+

12�12:992ð Þ2
12:992

+
28�22:736ð Þ2

22:736

" #

+
18�12:76ð Þ2

12:76
+

172�162:05ð Þ2
162:05

+
61�61:44ð Þ2

61:44
+

44�43:08ð Þ2
43:08

+
70�75:264ð Þ2

75:264
+

37�42:24ð Þ2
42:24

¼ 7:1351:

Table 7.1 Marital Status and Religious Affiliation

Religious Affiliation

TotalA B C D None

Marital Status Single 39 19 12 28 18 116

With spouse 172 61 44 70 37 384

Total 211 80 56 98 55 500
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Because the observed value of Q2 does not fall in the rejection region, we do not reject the null

hypothesis at a¼0.01. Therefore, based on the given data, the marital status and religious affiliation
are independent. Note that the assumption of Eij�5 is satisfied.

EXERCISES 7.2
7.2.1. If we toss a coin few times, we expect it half heads and half tails. Suppose we

tossed a coin 200 times and obtained 104 heads. Can we assume the coin

is fair?

7.2.2. The following table gives the opinion on collective bargaining by a random

sample of 200 employees of a school system, belonging to a teachers’ union.

Opinion on Collective Bargaining by Teachers’ Union

For Against Undecided Total

Staff 30 15 15 60

Faculty 50 10 40 100

Administration 10 25 5 40

Column totals 90 50 60 200

Test the hypotheses

H0 :Opinion on collective bargaining is independent of employee classification

versus

Ha :Opinion on collective bargaining is dependent on employee classification

using a¼ 0:05:

7.2.3. A random sample was taken of 300 undergraduate students from a university.

The students in the sample were classified according to their gender and

according to the choice of their major. The result is given in the

following table.

College

Gender Arts and sciences Engineering Business Other Total

Male 75 40 24 66 205

Female 45 12 15 23 95

Total 120 52 39 89 300

Test the hypothesis that the choice of the major by undergraduate students in

this university is independent of their gender. Use a¼0.01.

7.2.4. A presidential candidate advertises on TV by comparing his positions on

some important issues with those of his opponent. After a series of

advertisements, a pollster wants to know whether people have changed their

opinion about the candidate. The following are the data based on a survey of

950 randomly chosen people:
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Before the Advertisement Was Shown

Support the
Candidate

Oppose the
Candidate

Need to Know More
About the Candidate Undecided

40% 20% 5% 35%

After the Advertisement Was Shown

Support the
Candidate

Oppose the
Candidate

Need to Know More
About the Candidate Undecided

45% 25% 2% 28%

Let pi, i¼1, 2, 3, 4, represent the respective true proportions.

Test

H0 : p1 ¼ 0:35; p2 ¼ 0:20; p3 ¼ 0:15; p4 ¼ 0:3

versus

Ha :At least one of the probabilities is different from the hypothesized value:

Test this hypothesis using a¼0.05.

7.2.5. A survey of footwear preferences of a random sample of 100 undergraduate

students (50 females and 50 males) from a large university resulted in the

following data.

Boots Leather shoes Sneakers Sandals Other

Female 12 9 12 10 7

Male 10 12 17 7 4

(a) Let pi, i¼1, 2, 3, 4, 5, represent the respective true proportions of

students with a particular footwear preference, and let

H0 : p1 ¼ 0:20; p2 ¼ 0:20; p3 ¼ 0:30; p4 ¼ 0:20; p5 ¼ 0:10

versus

Ha :At least one of the probabilities is different from the hypothesized value:

Test this hypothesis using a¼0.05.

(b) Test the hypothesis that the choice of footwear by undergraduate

students in this university is independent of their gender, using a¼0.05.

7.2.6 A casino game involves rolling three dice. The winning are directly

proportional to the total number of sixes rolled. Suppose a gambler plays the

game 150 times, with the following observed counts:

Number of sixes 0 1 2 3

Number of rolls 72 51 21 6

Assuming that roll of one die does not affect the roll of others, test if the

dice are fair.
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7.3 GOODNESS-OF-FIT TESTS TO IDENTIFY THE
PROBABILITY DISTRIBUTION
In this section, we will explain a few popular goodness-of-fit tests used to identify the

pdf that characterizes the behavior or fits a given set of data.

7.3.1 PEARSON’S CHI-SQUARE TEST
When we are interested in studying the behavior of a given unknown phenomenon,

we begin by obtaining thorough experimentation or other means a set of data, the

random sample. The initial step of studying this phenomenon is to try to identify

the probability distribution that characterizes the behavior of the given data. The

methods that we use are called goodness-of-fit test. That is, if we assume that a given

set of data follows the normal or Gaussian probability distribution, the data must be a

good fit to this distribution with a high degree of assurance. Historically the first sta-

tistical method to identify the pdf for a given set of data was Person’s Chi-Square

Goodness-of-fit tests.

In hypothesis testing problems we often assume that the form of the population

distribution is known. For example, in a w2-test for variance, we assume that the pop-

ulation is normal. The goodness-of-fit tests examine the validity of such an assump-

tion if we have a large enough sample. We now describe the goodness-of-fit test

procedure for such an application. This test uses a measure of goodness-of fit which

is the mean of the differences between the observed and expected outcome frequen-

cies (counts of observations), each squared and divided by the expectation. That is,

the test statistic is given by:

Q2 ¼
Xk
i¼1

Oi�Eið Þ2
Ei

:

Here, Oi is the ith observed outcome frequency (in class i), Ei is the ith expected

(theoretical) frequency and i¼1,2, . . .,k is the number of classes. The expected

frequency, Ei is calculated by,

Ei ¼ F0 yuð Þ�F0 ylð Þ½ �n,

where F0 is the cumulative probability distribution that is being tested (assumed) to

determine if the given data follows (fits) this probability distribution, Yu and Yl are
the upper and lower limit of class i, respectively and n is the sample size. Thus we

proceed to setup the hypothesis,

H0 :The given data follow a specific probability distribution Fð Þ
versus

Ha :The data do not follow the specified probability distribution

We proceed to calculate the value of the Q2 statistic and if it is greater than the value

we obtain from the wa,k�1
2 tables for a given level of significance a and k�1 degrees
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of freedom, we reject the hypothesis. That is, the data does not follow or fit the spec-

ified probability distribution. Thus, if the calculated value of the chi-square test sta-

tistic is less than the wa,k�1
2 value that we obtain from the tables, indeed the specified

data fits the specified probability distribution at a level of significance a. That is, the
critical region is given by

P Q2 � w2a,k�1

� �¼ a

The basic assumptions for applying this test are

i. The observed frequencies in the k classes should be independent.

ii.
P

i¼1
k Ei ¼

P
i¼1
k Oi ¼n

iii. The total frequency, n, should be approximately more than 50.

iv. Each expected frequency, Ei, in each class should be at least 5.

In testing the above hypothesis we usually assume a value of the level of signif-

icance a, like a¼0.01,0.05, 0.1, etc. and proceed to make the decision of accepting

or rejecting the null hypothesis based on the assumed a. However, by using statistical
packages such as R it gives you a p-value, in contrast to fixed a value, that is calcu-

lated based on the test statistic, and denotes the threshold value of the significance

level in the sense that the null hypothesis, will be accepted at all significance a level
less than the calculated p-value. For example, if p¼0.05, the null hypothesis will not

be rejected for all values of assumed a<p -value of 0.05, and will be rejected for

higher levels. Given below is a summary of a step-by-step procedure for applying

the subject test.

GOODNESS-OF-FIT TEST PROCEDURES FOR PROBABILITY
DISTRIBUTIONS
Let X1, . . .,Xn be a sample from a population with cumulative distribution function (cdf) F(x), which

may depend on the set of unknown parameter y. We wish to test H0 :F(x)¼F0(x), where F0(x) is
completely specified (assumed) pdf.

1. Divide the range of values of the random variables X1 into k non-overlapping intervals I1, I2, . . .,
Ik. Let Oj be the number of sample values that fall in the interval Ij (j¼1, 2, . . ., k).

2. Assuming the distribution of X to be F0(x), find P(X2 Ij). Let P(X2 Ij)¼pi. Let ej¼npj be the
expected frequency.

3. Compute the test statistic Q2 given by

Q2 ¼
Xk
i¼1

Oi�Eið Þ2
Ei

:

The test statistic Q2 has an approximate w2- distribution with (k–1) degrees if freedom.

4. Reject the H0 if Q
2 �xa(k�1)

2 .

5. Assumptions: Ej �5, j¼1, 2, . . ., k.

Note that if the observed data, Oi is very close to the expected value Ei, the dif-

ference Oi�Ei is going to be very small which implies the Q2 statistics will be small

and thus, a good fit of the given data to the assumed pdf.
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EXAMPLE 7.3.1
We are given a random sample of n¼30 observations of a given experiment of a certain phenom-

enon of interest, that is,

1.79 2.62 7.92 9.77 12.13 15.04 16.14 20.74 22.73 23.29 24.97 26.12

27.06 29.60 32.47 36.32 42.18 45.06 45.64 48.34 48.87 64.99 66.28 68.00

68.60 75.34 99.32 162.48 164.38 235.95

We believe that this data may follow the exponential pdf. Test our belief at a¼0.05.

Solution
We need to test

H0 :The given data follow an expontential probability distribution

versus

Ha :The data do not follow the specified probability distribution

We shall use the w2 goodness-of-fit test given above to test the stated hypothesis. By using the

following R-code we can perform the subject hypothesis

R-code

x¼c(1.79,2.62,7.92,9.77,12.13,15.04,16.14,20.74,22.73,23.29,24.97,26.12,

+ 27.06,29.60,32.47,36.32,42.18,45.06,45.64,48.34,48.87,64.99,66.28,68.00,

+ 68.60,75.34,99.32,162.48,164.38,235.95)

chisq.test(cbind(x,dexp(x)))

Output

Pearson’s Chi-squared test

X-squared¼104.0212, df¼29, p-value¼2.201e-10

Thus, for a p-value of 2.201e-10, we reject the null hypothesis and we conclude that the given

data does not follow the exponential pdf.

EXAMPLE 7.3.2
The grades of students in a class of 200 are given in the following table. Test the hypothesis that the

grades are normally distributed with a mean of 75 and a standard deviation of 8. Use a¼0.05.

Range 0-59 60-69 70-79 80-89 90-100

Number of students 12 36 90 44 18

Solution
To test the hypothesis,

H0 : Student grades are normally distributed:

versus

Ha : Student grades are not normally distributed:

We have O1¼12, O2¼36, O3¼90, O4¼44, O5¼18.

We now compute pi(i¼1, 2, . . ., 5), using the continuity correction factor,

p1 ¼P X� 59:5jH0f g¼P z� 59:5�75

8

� �
¼ 0:0262,

p2 ¼ 0:2189, p3 ¼ 0:4722, p4 ¼ 0:2476, p5 ¼ 0:0351,

and
Continued
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E1 ¼ 5:24, E2 ¼ 43:78, E3 ¼ 94:44, E4 ¼ 49:52, E5 ¼ 7:02:

The test statistic results in

Q2 ¼
Xn
i¼1

Oi�eið Þ2
ei

¼ 12�5:74ð Þ2
5:74

+
36�43:78ð Þ2

43:78
+

90�94:44ð Þ2
94:44

+
44�49:52ð Þ2

49:52
+

18�7:02ð Þ2
7:02

¼ 26:22:

Q2 has a chi-square distribution with (5–1)¼4 degrees of freedom. The critical value is

w0.05,4
2 ¼7.11. Hence, the rejection region is Q2>7.11. Because the observed value of
Q2¼26.22>7.11, we reject H0 at a¼0.05. Thus, we conclude that the given data do not follow

(or drawn) from the normal pdf.

7.3.2 THE KOLMOGOROV-SMIRNOV TEST: (ONE POPULATION)
Let Xi, i¼1,2, . . .,n be a random sample of n observations and we will assume is

drawn (it-follows) a probability distribution whose cumulative distribution is spec-

ified to be F0(x). Our objective now is to determine if the actual (correct) cumulative

probability is F(x) based on the assumed F0(x). That is, we wish to test the following
hypothesis:

H0 :The true probability distribution that follows the given data, F xð Þ,
is actually the assumed distribution F0 xð Þ

versus

Ha :The actual cumulative distribution,F xð Þ is not F0 xð Þ,
based on level of significance a.

The Kolmogorov-Smirnov goodness-of-fit test to test the above hypothesis is

based on the following test statistic

D¼Max F0 xð Þ�Fn xð Þj j:

PROCEDURE TO CALCULATE D
To calculate the value of the test statistic D, we follow the following three steps.

1. We calculate the assumed cumulative distribution, F0(x), based on the given data of observations

and the specified population distribution.

2. We proceed to obtain the cumulative distribution of the sample, Fn(x) is the empirical distribu-

tion function defined as a step function,

Fn xð Þ¼Xi�x

n
,

the number of observations Xi�x divided by n.

3. We find the absolute difference

F0 xð Þ�Fn xð Þj j:
Thus, we have a value of the test statistic D and if:

D�Da:
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We accept the hypothesis, where Da is the critical value from the Kolmogorov-

Smirnov tables that is based on a given a and n. The following example illustrates

how we apply this test.

EXAMPLE 7.3.3
From a large statistics class, we have taken a random sample of fifty five students, n¼55 and

recorded their ages. The resulted data are:

27 25 24 24 22 20 21 22 21 25 24

26 25 24 23 22 20 21 19 21 25 24

26 25 22 23 22 22 21 19 21 23 21

26 24 22 23 22 22 20 19 21 23 21

26 24 22 23 21 19 20 18 20 20 18

We believe that this data follows the normal pdf and wish to use the Kolmogorov-Smirnov

goodness-of-fit test, given above to test our believe. That is, test,

H0 :The ages of the students follow the normal probability distribution

versus

Ha :The ages of students do not follow the normal probability distribution:

Solution
It usually helps to obtain a possible visual indication of the pdf by structuring a histogram of the

given data (Figure 7.1). That is, visually, it seems that the normal pdf is a good possibility.We shall

now test it statistically.

The sample mean is x¼ 22 and the sample standard deviation is s¼2.08. The three steps pro-
cedure of the subject test to obtain the value of the test statistic D can be easily calculated using the

following table,

Continued
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Histogram of the ages.
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Row Age F0(x) Fn(x) jF0(x)�Fn(x)j D Critical Value

1 18 0.028 0.018 0.010 0.127 0.183

2 18 0.028 0.036 0.009

3 19 0.071 0.055 0.017

4 19 0.071 0.073 0.001

5 19 0.071 0.091 0.019

6 19 0.071 0.109 0.038

7 20 0.155 0.127 0.028

8 20 0.155 0.145 0.010

9 20 0.155 0.164 0.009

10 20 0.155 0.182 0.027

11 20 0.155 0.200 0.045

12 20 0.155 0.218 0.063

13 21 0.286 0.236 0.050

14 21 0.286 0.255 0.032

15 21 0.286 0.273 0.013

16 21 0.286 0.291 0.005

17 21 0.286 0.309 0.023

18 21 0.286 0.327 0.041

19 21 0.286 0.345 0.059

20 21 0.286 0.364 0.078

21 21 0.286 0.382 0.096

22 21 0.286 0.400 0.114

23 22 0.454 0.418 0.036

24 22 0.454 0.436 0.018

25 22 0.454 0.455 0.000

26 22 0.454 0.473 0.018

27 22 0.454 0.491 0.037

28 22 0.454 0.509 0.055

29 22 0.454 0.527 0.073

30 22 0.454 0.545 0.091

31 22 0.454 0.564 0.109

32 22 0.454 0.582 0.127

33 23 0.631 0.600 0.031

34 23 0.631 0.618 0.013

35 23 0.631 0.636 0.005

36 23 0.631 0.655 0.023

37 23 0.631 0.673 0.041

38 23 0.631 0.691 0.059

39 24 0.784 0.709 0.075

40 24 0.784 0.727 0.057

41 24 0.784 0.745 0.039

42 24 0.784 0.764 0.020

43 24 0.784 0.782 0.002

44 24 0.784 0.800 0.016

45 24 0.784 0.818 0.034

46 25 0.892 0.836 0.055

47 25 0.892 0.855 0.037



Since the D-statistic¼0.127<Da¼0.05¼0.183, we fail to reject the null hypothesis at the level

of significance a¼0.05. Thus, the ages of the students in the class indeed follows the normal pdf.
Also, we can easily calculate the Kolmogorov-Smirnov test statistics and the p-value using

R-code and the output is given below:

Ks.test(x,pnorm,mean(x),sd(x));

Output

One-sample Kolmogorov-Smirnov test

Data: x

D¼0.1271, p-value¼0.7085

Alternative hypothesis: two-sided
Since p-value is large, we cannot reject the null hypothesis.

7.3.3 THE ANDERSON-DARLING TEST
The Anderson-Darling goodness-of-fit test is also used to determine if a given set

of data is drawn from a population that follows a specific probability distribution.

Let Xi, i¼1,2, . . .,n, be a random sample of observations and Yi, i¼1,2, . . .,n
is the corresponding ordered value according to size. The hypothesis that we wish

to test is

H0 :The given data follow a specific probability distribution

versus

Ha : The given data do not follow the specified probability distribution:

The Anderson-Darling test statistic for testing the above hypothesis is given by

A2 ¼�n� s,

where s¼
Xn

i¼1

2i�1ð Þ
n

lnF Yið Þ+ ln 1�F Yn+ 1�ið Þð Þ½ � n is the random sample size,

Yi the ordered data and F the specified probability distribution that we are testing.

For a given level of significance a, the hypothesis is rejected if the value of the test

statistic A is greater than the critical value Aa, that is, if

A>Aa:

Thus, we reject the null hypothesis in favor of the alternative hypothesis; the spec-

ified probability distribution does not fit the distribution of the drawn data from the

population. The Aa is obtained from the Anderson-Darling tables for a given a. The
following example illustrates how we apply the subject test.

48 25 0.892 0.873 0.019

49 25 0.892 0.891 0.001

50 25 0.892 0.909 0.017

51 26 0.954 0.927 0.027

52 26 0.954 0.945 0.009

53 26 0.954 0.964 0.010

54 26 0.954 0.982 0.028

55 27 0.984 1.000 0.016
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EXAMPLE 7.3.4
Use ages of the 55 students given in Example 7.3.3 to illustrate the applicability of the Anderson-

Darling goodness-of-fit test.

Solution
The data is given in Example 7.3.3 and proceed to test our belief that the students’ ages follow the
normal pdf.

The Anderson-Darling statistic is A¼0.646 with a p-value of 0.087. Thus, at 5% level of sig-

nificance we fail to reject the null hypothesis. The data fits normal distribution with mean 22 and
standard deviation 2.

7.3.4 SHAPIRO-WILK NORMALITY TEST
The Shapiro-Wilk goodness-of-fit test is used to determine if a random sample Xi,

i¼1,2, . . .,n, is drawn from a Normal Gaussian probability distribution with true

mean and variance, m and s2, respectively. That is, X�N(m,s2). Thus, we wish to

test the following hypothesis:

H0 :The random sample was drawn from a normal population, N m, s2
� �

versus

Ha :The random sample does not follow N m, s2
� �

:

To test this hypothesis we use the Shapiro-Wilk test statistic which is given by

W¼
Xn

i¼1
aix ið Þ

� �2

Xn

i¼1
xi� xð Þ2

,

where x(i) are the ordered sample values and ai are constants generated by the

expression

a1, a2, . . . , anð Þ¼ mT V�1

mT V�1m
� �1=2

with m¼ (m1,m2, . . ..,mn)
T are the expected values of the ordered statistics that are

independent and identically distributed random variables that follow the standard

normal, N(0,1), and V is the covariance matrix of the order statistics.

EXAMPLE 7.3.5
Proceed to use the Shapiro-Wilk normality test for the data of Example 7.3.3 that we used the

Anderson-Darling goodness-of-fit test to see if the ages of the students follow the normal pdf.

Use a¼0.05.

Solution
The R-code for the subject test is

Shapiro.test(x)

Output

Shapiro-Wilk normality test
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Data: x

W¼0.9683, p-value¼0.1551
Thus, since the p-value is larger than 0.05, we fail to reject the null hypothesis and the ages of

the students indeed follow the normal pdf.

7.3.5 THE P-P PLOTS AND Q-Q PLOTS
We commonly use a visual interpretation of graphs (plots) to determine if a given

random sample of data follows or is drawn from a well-known probability distribu-

tion. These graphs are the probability, P-P plots and the quantile, Q-Q plots.

The P-P plot is a graphical tool used to determine how well a given data set fits a

specific probability that we are testing. This plot compares the empirical cdfs of the

given data with that of the assumed true cumulative probability distribution functions.

If the plot of these two distributions is approximately linear; it indicates that the assumed

true pdf gives a reasonably good fit to the given data that we seek to find its true pdf.

Steps to construct the P-P plot
Let F(x) be the cumulative pdf of the random variable, X with a random sample

x(1),x(2), . . .,x(n) of ordered data values with associated probabilities Ĉ ið Þ ¼ i

n+ 1
, the

scattered P-P plot is the plot of Ĉ ið Þ versus C(i)¼F[X¼x(i)], of the possibly true

cumulative pdf that we are testing.

STEPS FOR P-P PLOT
Step 1. Given a random sample x1,x2, . . .,xn sort the data in ascending order,

x 1ð Þ,x 2ð Þ, . . . ,x nð Þ:

Step 2. Associate with each of the order data value x(1) a cumulative probability,

Ĉ ið Þ ¼ i

n+ 1
:

Step 3. Determine the hypothetical probabilities associated with the probability distributionwe are

testing

C ið Þ ¼F X¼ x ið Þ
� 	

,

F xð Þ¼P X� x½ �,
where F(x) is the cumulative pdf.

Step 4. Construct the scatter plot of Ĉ ið Þ versus C(i)¼F[X¼x(i)].

Step 5. Interpret the plot, if the overall pattern follows approximately a straight line, then the data fol-

low the assumed probability distribution, and if the overall pattern has curvature or shelves,

then the data have skewed behavior and therefore it does not follow the assumed pdf.

EXAMPLE 7.3.6
Using the data of Example 7.3.3, obtain the P-P plot using R (Figure 7.2). The R-code is simply: PP

line (data).

Thus, the data fall on a straight line and we can conclude that the information of the ages of the

students follow the normal pdf.

Continued
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TheQ-Q plot is another graphical method that is commonly used to obtain a graphical indication

of the true pdf that the given data come from. This method is a graph of the quantiles of the empirical

distribution of the given data versus the quantiles of the assumed true pdf that we are testing. If the

resulting graph of these two distributions follows a linear pattern it indicates that the assumed pdf fits

the given data reasonably well.

STEPS TO OBTAIN Q-Q PLOTS
The Q-Q plot is obtained by following the step-by-step procedure given below:

Let F(x) be the assumed cumulative pdf of the random variable X, with a random sample x(1),
x(2), . . .,x(n) of ordered data values with associated probabilities Ĉ ið Þ ¼ i

n+ 1
:, the Q-Q plot is the

x ið Þ ¼F�1 Ĉ ið Þ
� �

, the inverse function of F(x).

Step 1. Given a random sample x1,x2, . . .,xn sort the data in ascending order,

x 1ð Þ,x 2ð Þ, . . . ,x nð Þ:

Step 2. Associate with each of the order data value x(1) a cumulative probability,

Ĉ ið Þ ¼ i

n+ 1
:

Step 3. Determine the estimated value of the random variable associated with the assumed

probability distribution

x ið Þ ¼F�1 Ĉ ið Þ
� �

where F(x) is the cumulative pdf.

Step 4. Construct the scatter plot of x(i) versus x̂ ið Þ ¼F�1 Ĉ ið Þ
� 	

.

Step 5. If the overall pattern follows approximately a straight line, then the data follows the

assumed probability distribution. If the overall pattern has curvature or shelves, then

the data has skewedbehavior and it does not follow the assumedprobability distribution.
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P-P plot of the ages.
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EXAMPLE 7.3.7
We shall use the data given in Example 7.3.3, the ages of 55 students to construct the Q-Q plot with

R. The R-code is simply qq line (data).

Solution
The results are given in Figure 7.3. Note that the plot follows approximately a straight line, which
suggest that the data follow the normal pdf, which we have also proven using two other goodness-

of-fit tests.

EXERCISES 7.3
7.3.1. The speeds of vehicles (in mph) passing through a section of Highway 75 are

recorded for a random sample of 150 vehicles and are given below. Test the

hypothesis that the speeds are normally distributed with a mean of 70 and a

standard deviation of 4. Use a¼0.01.

Range 40-55 56-65 66-75 76-85 >85

Number 12 14 78 40 6

7.3.2. Based on the sample data of 50 days contained in the following table, test the

hypothesis that the daily mean temperatures in the City of Tampa are

normally distributed with mean 77 and variance 6. Use a¼0.05.

City of Tampa

Temperature 46-55 56-65 66-75 76-85 86-95

Number of days 4 6 13 23 4

7.3.3. A sample of 30 electronic circuit components is randomly selected from a

production process. The life time, in hours, of each component is precisely

measured by testing it until it fails. The times in hours that it took the

component to fail is given below:
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Q-Q plot for the ages.
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268.276 420.559 6.590 78.389 14.123 85.507 216.594 39.892 9.468

83.088

519.682 315.754 139.046 4.522 81.480 209.099 170.128 77.794 115.778

108.640

226.053 443.029 35.662 115.668 5.032 17.357 331.462 184.734 79.502

67.019

Using the Pearson’s chi-square goodness-of-fit test, test the hypothesis that

the life times of the components follow an exponential distribution with

mean of 200 hours. Use a¼0.05.

7.3.4. For the data given in Example 7.3.3, test the goodness-of-fit that the data

follows:

(a) the gamma pdf and

(b) the Weibull pdf.

7.3.5. Using the data given in Example 7.3.1, construct the P-P plot and interpret

the meaning of the graph.

7.3.6. For the data given in Example 7.3.2, construct the P-P plot and interpret its

meaning.

7.3.7. Using the data given in Example 7.3.1, construct the graph of the Q-Q plot

and interpret its meaning.

7.3.8. For the data given in Example 7.3.2, construct the graph of the Q-Q plot and

interpret its meaning.

7.4 APPLICATIONS: PARAMETRIC ANALYSIS
In this section, we will use the goodness-of-fit methods discussed in the previous

sections to identify the probability distribution that characterizes the behavior of

some real world problems that our society is facing. All the data sets used in this

section are available at http://booksite.elsevier.com/9780124171138.

7.4.1 GLOBAL WARMING
The concept of “Global Warming” consists of two interacting entities, the atmo-

spheric temperature and carbon dioxide, CO2, in the atmosphere. The United States

collects annual data for both of these variables in our observatories in Alaska and

Hawaii. The actual data can be found on the website: http://scrippsco2.ucsd.edu/

data/atmosperic-co2.html.

Our objective is to identify the probability distribution function, pdf, that follows

the CO2 data that is given in thousands in metric tons annually for 31 years. Once we

know the pdf that fits the CO2 data, we can obtain useful information, such as, prob-

abilistic characterization of its behavior, the expected value of CO2 (theoretical aver-

age), obtain confidence limits on the true amount of CO2, among other interesting

information.

We begin our process of identifying the pdf by structuring a histogram of the 31

randomly selected measurements of CO2. The histogram of the subject data will
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give us some idea about the possible pdf that we should be testing. After some pre-

liminary testing of some pdf’s we proceeded to test the following hypothesis:

H0 :The CO2 data follow the gamma pdf

versus

Ha :The CO2 data do not follow the gamma pdf:

To test this hypothesis we applied the Kolmogorov-Smirnov, Anderson-Darling, and

the Chi-Square tests with a level of significance a¼0.05. The test statistic results of

the three goodness-of-fit tests are given below:

Kolmogorov-Smirnov Test : D¼0.08771, p-value 0.954

Anderson-Darling Test : A¼0.3627, p-value 0.883

Chi-Square Test : w2¼0.95844, p-value 0.811

All three goodness-of-fit tests strongly support the null hypothesis that the CO2 mea-

surements follow the gamma pdf. We obtained the maximum likelihood estimates of

the two parameters a and b of the gamma pdf as a¼635.29 and b̂¼0.557. Thus, we

can write the gamma pdf for the subject data. That is,

f xð Þ¼ x635:29�1

0:557ð Þ635:29 635:29ð Þexp
�x

0:557
, 0< x

� �
:

We can use f(x) to determine various probabilities of interest concerning the behavior

of X, the amount of CO2 in the atmosphere. Also, we can calculate F(x), the expected
amount that we would find in the atmosphere, confidence limits, among other inter-

esting questions about the behavior of CO2.

7.4.2 HURRICANE KATRINA
One of the most devastating hurricanes in the last 100 years to hit the United States

was Hurricane Katrina. The Atlantic based hurricane, category 5, (most devastating)

lasted nine (9) days, August 23-31, 2005. The pressure wind velocity of Katrina in

one of the most important variables and we wish to identify the pdf that characterizes

its behavior. That is, perform goodness-of-fit testing to determine the pdf that follows

the pressure wind data that was obtained from: http://weather.unisys.com/hurricane/

atlantic/2005H/KATRINA/track.dat

We have 63 observations of the wind velocity, mph, that reached a maximum

wind velocity of 150 miles per hour. After looking at the histogram of the data,

we believe that the wind velocity of Katrina, follows the two parameter (d¼0), Wei-

bull pdf. Thus, we proceeded to test the following hypothesis:

H0 :The wind velocity data of Hurricane Katrina follow the two parameter Weibull pdf

versus

Ha :The wind velocity data of Hurricane Katrina do not follow the Weibull pdf:

To test this hypothesis we applied the Kolmogorov-Smirnov, Anderson-Darling, and

the Chi-Square tests.
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All these tests strongly support the acceptance of the null hypothesis. The test

results are given below:

Kolmogorov-Smirnov Test : D¼0.0792, p-value 0.795

Anderson-Darling Test : A¼0.5949, p-value 0.863

Chi-Square Test : w2 ¼ 3.4031, p-value 0.638

Thus, the wind velocity measurements of Hurricane Katrina follows the two param-

eter Weibull pdf with the maximum likelihood estimates of the parameter given by

â¼2.1281 and b̂¼86.376. The pdf of the subject data is given by:

f xð Þ¼ 86:376

2:1281

x

2:1281

� �85:376

exp
x

2:1281

� �86:376

for x>0 and zero elsewhere, a graphical display of f(x) is given in Figure 7.4.

Knowing the pdf that characterize the two probabilistic behavior of the wind

velocity of Katrina, we can calculate the expected wind velocity and confidence

limits. That is,

E Xð Þ¼ 76miles per hour

and the 95% confidence limits of the true mean of the wind velocity is between 23.8

and 150.6 miles per hour.

That is, we are at least 95% certain that the true wind velocity of Hurricane

Katrina or similar hurricanes will between 23.8 and 150.6 miles per hour.
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FIGURE 7.4

Weibull pdf of wind velocity of Hurricane Katrina.
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Also, the cumulative probability distribution, F(x), of the wind velocity in its ana-
lytical and graphical form is given below:

F xð Þ¼P X� xð Þ¼
ðx
0

b
a

t

a

� �b�1

e�
t
a

� �b

dt, 0< x

and for the given data,

F xð Þ¼
ðx
0

86:37

2:128

t

2:128

� �85:37

 �b�1

e�
t

2:128

� �86:37

dt:

Thus, we can use the graph (see Figure 7.5) to obtain various probabilities, for exam-

ple if we are interested in the probability that the wind velocity of category 5 hur-

ricane is less than 150 miles per hour we can obtain an approximate estimate

from the graph above, that is,

F 150ð Þ¼P X� 150½ � � 0:93:

This means that based on the given data we are approximately 93% certain that the

wind velocity will be less than 150 miles per hour.

Given below in the R-code for the goodness-to-fit tests for the Katarina data.

HK<�read.delin(“�/Documents/Hurricane Katrina.txt”)

View(HK)

summary(HK) #### descriptive Stat###

xk¼HK$WIND

hist(xk) ### Histogram ####

library(lessR)

dens(xk,type¼c(“both”,”normal”),xlab¼”Wind”,ylab¼”f(x)”)
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FIGURE 7.5

Weibull cdf of wind velocity of Hurricane Katrina.
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color.density(xk)

m¼mean(xk);m

std¼ sqrt(var(xk));std hist(xk),density¼12,breaks¼8,prob¼T,col¼”

plum4”,xlab¼”Wind”,xlim¼c(0,200),main¼”Hi

stogram of Wind velocity of Hurricane Katrina”)

library(vcd) ## Goodness of fit test

fitdistr(xk,’weibull’) ### estimate the parameters using MLE ks.test

(xk,”pweibull”,shape¼1.805,scale¼52.323) #Kolmogorov-Smirnov test

ad.test(xk)#Anderson-Darling

7.4.3 NATIONAL UNEMPLOYMENT
The aim in the present problem is to identify the probability distribution that char-

acterizes the rates of unemployment in the US. The subject data was obtained from

the U.S. Bureau of Labor Statistics, www.bls.gov/, under Database &Tools. The data

in the annual average of unemployment rate in the US from 1957 to 2008. Initially,

we looked at the histogram of the data and it gave us a visual interpretation that it may

follow the gamma pdf. Initially we tested for the two parameter gamma pdf and

obtained a fairly good fit, but when we tried the three parameter gamma pdf, we

obtained a better fit. That is,

H0 :The annual average rates of unemployment in the U:S:follow the three

parameter gamma pdf:
versus

Ha :The subject data do not fit the three parameter gamma pdf:

Given below is the value of the goodness-of-fit test statistics for a sample of 51 data

points:

Kolmogorov-Smirnov Test : D¼0.0847, p-value 0.8276

Anderson-Darling Test : A¼0.3424, p-value 0.7916

Chi-Square Test : w2 ¼ 2.2353, p-value 0.8172

All three goodness-of-fit tests strongly support that the three parameter gamma pdf is

probabilistically the best to characterize the behavior of the U.S. annual average of

unemployment with the maximum likelihood estimate of the parameter â¼5.5871,

b̂¼0.5954, and ĝ¼2.5008. Thus, the subject pdf is given by

f xð Þ¼ 1

0:5954ð Þ5:5871 G 0:5954ð Þ x�2:5008ð Þ4:5871exp �x�2:5008

0:5954


 �
, 0< x:

The expected value of the subject pdf is

E X½ � ¼ d̂ + â b̂
� �

¼ 2:5008 + 5:5871ð Þ 0:5954ð Þ¼ 5:83:

Thus, one will expect that the unemployment rate to be approximately 5.83% based

on the actual date we analyzed. A graphical form of f(x) over the initial histogram that

guided us to the three parameter gamma pdf is shown in Figure 7.6.
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We can use the pdf to obtain confidence limits on the true rate of unemployment,

the cumulative pdf, F(x), to obtain various probabilities of interest on the subject

problem, among other useful information.

7.4.4 BRAIN CANCER
A brain tumor is an abnormal growth of cells within the brain, which can be cancerous

(malignant) or benign. It is estimated that there aremore than 43,800 new cases of brain

cancerous tumors in the U.S. during the last few years. In this application we are inter-

ested in studying the behavior of themalignant tumor sizes in the brain. The subject data

was obtained from the Surveillance Epidemiology and End Results (SEER) data base.

Wehave taken a randomsample of 200 brain cancer patients froma large data basewith

their cancerous tumor size measured in millimeters. Our aim is to find the probability

distribution that characterizes the behavior of the tumor sizes.Thus, after testing several

pdf’s and looking at the histogram we believe that the three parameter Weibull pdf is

a prime candidate. The data we have provided for this book in the internet site http://

booksite.elsevier.com/9780124171138 contains another 250 random data values.

It should be noted that you will get different parameters and pdf for that data set.

Now, we proceed to test our belief.

H0 :The sizes of the malignant tumor in the brain fits the three parameter Weibull pdf:

Versus

Ha :The subject data do not follow the three parameter Weibull pdf:

We are applying the most commonly used goodness-of-fit tests to make a decision

concerning accepting or rejecting the stated hypothesis for say, a¼ .01, 05, 0.10. The

results of the three tests are given below:

Kolmogorov-Smirnov Test : D¼0.0502, p-value 0.6746

Anderson-Darling Test : A¼0.6948, p-value 0.7321

Chi-Square Test : w2¼9.6143, p-value 0.2115
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FIGURE 7.6

Three-parameter gamma pdf for unemployment in the United States.
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Thus, all three goodness-of-fit tests, for all level of significance, support the null

hypothesis that the cancerous tumor sizes of the brain follows the three parameter

Weibull pdf. The approximate maximum likelihood estimates of the three parameters

used are â¼9.4826E+7, b̂¼1.4060E+9, and ĝ¼1.3940E+9. Thus, we can write the

pdf that characterizes probabilistically the malignant tumor sizes in the brain by

f xð Þ¼ 9:4826E+ 7

1:4060E+ 9

x+ 1:3940E + 9

1:4060E + 9


 �9:4826E + 7�1

exp � x+ 1:3940E + 9

1:4060E + 9


 �9:4826E + 7
" #

and the cumulative pdf is gen by

F xð Þ¼ 1� exp � x+ 1:3940E + 9

1:4060E + 9


 �9:4826E+ 7
" #

, 0< x:

A graphical illustration of the three parameterWeibull pdf along with a frequency

histogram of the data is shown in Figure 7.7.

We can use the above diagram to obtain approximate probabilities of the behavior

of the cancerous tumor sizes. For example, the probability that the tumor size is less

60 mm is approximately 25%, that is,

P X� 60mm½ � ¼ 0:25,

the probability that the tumor size is larger than 48 mm is approximately 74%, that is,

P X� 48mm½ � ¼ 1�P X< 48mm½ � � 0:74:

We also can proceed to obtain the expected value of the tumor size and approximate

confidence limits on the true size of the tumor, among other interesting information.
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Three-parameter Weibull pdf for tumor size data.

398 CHAPTER 7 Goodness-of-Fit Tests Applications



7.4.5 RAINFALL
For the Southern Region of the U.S., we have the average annual rainfall data in

inches from 1975 to 2007. The actual data are given below in Table 7.2:

Using 33 measurements (n¼33), we wish, if possible to identify the probability

distribution function that probabilistically characterize the behavior of the average

annual rainfall of the Southern District of U.S. Having such pdf we can calculate

the amount of rain we will expect in the region, obtain confidence limits of the true

amount of annual rainfall, among other interesting questions.

From a preliminary view of the histogram of the data we believe that the rainfall

data follow the beta pdf.

Thus, let us proceed to test our belief:

H0 :We believe that the rainfall data follow the beta pdf:

versus

Ha :The subject data do not follow the beta pdf:

Given below are the goodness-of-fit results applying the three commonly used sta-

tistical tests:

Kolmogorov-Smirnov Test : D¼0.0773, p-value 0.9806

Anderson-Darling Test : A¼0.2098, p-value 0.8836

Chi-Square Test : w2 ¼ 0.2888, p-value 0.9905

For all commonly used level of significance, a¼0.01, 0.05, and 0.10, we strongly

accept the null hypothesis that our belief is true, that is, the given rainfall data follow

the beta pdf. The maximum likelihood estimates of the parameter a and b of the beta

pdf are â¼2.2823 and b̂¼1.8754. Thus, the beta pdf of the rainfall data is

f xð Þ¼
G 2 + b̂
� �

G 2ð ÞG b̂
� �xâ�1 1�xð Þb̂�1

, 0� x

or

f xð Þ¼ 2:5237

5:7593
x0:2823 1�xð Þ0:8754,

where

G 2:2823 + 1:8754ð Þ¼ 2:5237 and G 2:2823ð ÞG 1:8754ð Þ¼ 5:7593:

The graph of the subject pdf over the histogram of the data is shown in Figure 7.8.

The expected amount of average rainfall in the Southern Region is 4.2998 inches,

that is,

E xð Þ¼
ð∝
0

xf xð Þdx¼ 4:2998 inches:

We can also calculate confidence limits around the true value of the annual average

rainfall. For example, we are at least 95% confident that the true annual average rain-

fall in the Southern District in between 4.0579 and 4.5167 inches.
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Table 7.2 Rainfall Data

Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain

1975 3.957 1981 3.68 1987 4.465 1993 4.175 1999 4.103 2005 5.22

1976 4.031 1982 5.224 1988 4.487 1994 4.889 2000 2.737 2006 3.526

1977 3.918 1983 5.639 1989 3.612 1995 5.468 2001 4.104 2007 3.211

1978 4.299 1984 3.563 1990 3.322 1996 3.668 2002 5.037

1979 4.942 1985 3.592 1991 4.463 1997 5.029 2003 4.633

1980 3.921 1986 4.307 1992 4.514 1998 4.73 2004 5.219
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7.4.6 PROSTATE CANCER
In this application, we will study the behavior of the cancerous tumor in Prostate

Cancer patients. We shall use real prostate cancer data for white men from 1973

to 2007 from the Surveillance Epidemiology and End Results known as the SEER

Program. The tumor size is the random variable of interest for 20,645 prostate cancer

patients. Our primary objective is to identify the pdf that characterizes probabilisti-

cally the behavior of the cancerous tumor size in mm. From the initial structure of the

histogram we believe that the two-parameter Weibull pdf may fit the subject data.

Thus, we set up our hypothesis to test our belief,

H0 :The prostate cancerous tumor sizes followstheWeibull pdf:

versus

Ha :The subject data do not follow theWeibull pdf:

Applying the Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests, all

support the null hypothesis that the subject data follow the two-parameter Weibull

pdf. The maximum likelihood estimates of the parameter a and b that drive the Wei-

bull pdf are â¼0.8704 and b̂¼12.4403.

Thus, the two-parameter Weibull pdf is given by:

f xð Þ¼ 0:8704

12:4403

x

12:4403

� ��0:1296

exp � x

12:4403

� ��0:8704
�
, 0� x,

where x represents the size of the cancerous tumor in mm. The cumulative Weibull

pdf is useful in obtaining various probabilities of the size of the tumor and is given by

F xð Þ¼P X� x½ � ¼ 1�exp � x

12:4403

� ��0:8704
�
, 0� x:

The Weibull pdf over the initial histogram along the cumulative pdf is given in

Figure 7.9. Thus, an individual patient that falls in the subject population we expect

his cancer tumor size to be 13.341 mm, that is,
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Beta pdf for rainfall data.
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E xð Þ¼
ð1
0

x f xð Þdx¼ 13:341mm:

Furthermore, we can calculate confidence limits around the true unknown size of the

prostate tumor, that is, a 90% confidence interval for the true mean size is (0.410,

43.81). We can conclude that we are at least 90% certain that the true size of the

tumor will be between 0.410 and 43.81 mm for an individual that falls in the subject

population.

EXERCISES 7.5
7.5.1. Global Warming

Carbon Dioxide CO2 data in the United States in collected in two

locations in the Inland of Hawaii, Point Barrow and Mauna Lao.

These data are given in http://booksite.elsevier.com/9780124171138.

Using the CO2 data collected in Point Barrow from 1974 to 2004, perform

the following analysis:

(a) Structure a histogram of the data and interpret its visual behavior

(b) Apply the Chi-Square goodness-of-fit test to prove or disprove that the

CO2 data follows the exponential power probability distribution, using

a¼0.05.

(c) If you have proven that the CO2 data follow the exponential power pdf,

proceed to calculate and interpret the expected vale of the subject pdf.

7.5.2. Answer the same questions stated in Exercise 7.4.1 using the CO2 data that

was collected at Mauna Lao.

7.5.3. Rainfall Data

In http://booksite.elsevier.com/9780124171138., you will find the

average yearly rainfall data in inches for the North, Central and Southern

FIGURE 7.9

Weibull pdf and cdf for prostate tumor sizes.
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Region of the United States from 1975 to 2007. Using the North Region

data, perform the following analysis:

(a) Construct a histogram of the yearly average rainfall for the Northern

Region. Does the histogram give you any visual indication of the type

of pdf that the data follows?

(b) Using the Kolmogorov-Smirnov goodness-of-fit test, verify if the

subject data follows the normal pdf for a¼0.05.

(c) If you have proven that the data follows the normal pdf, what is the

expected rainfall for a given year? Also, calculate a 95% confidence

limits for the true average rainfall and interpret its meaning.

(d) Calculate P-P plot and interpret its visual meaning with respect to part b).

7.5.4. Using the average yearly rainfall from the Central Region of the United

States, perform the same analysis as the Northern Region and in place of the

normal pdf use the gamma pdf.

7.5.5. Use the data given for the Southern Region of the United States perform the

same analysis as the Northern Region, Exercise 7.5.3, with the normal pdf

replaced with the beta pdf.

7.5.6. Hurricane Katrina

Hurricane Katrina was the most devastating hurricane to hit the United

States in the last 100 years. Katrina was an Atlantic based hurricane

category 5 that reached wind velocity of more than 160 miles per hour. In

http://booksite.elsevier.com/9780124171138, you will find 63

measurements of the wind velocity of Katrina. Using the subject data

perform the following analysis:

(a) We believe that the measurements of the wind velocity measurements

of hurricane Katrina follow the three parameter Weibull pdf. Test this

belief using:

(i) The Kolmogorov-Smirnov goodness-of-fit test.

(ii) The Anderson-Darling goodness-of-fit test

Using a¼0.05

(b) Discuss the results of (i) and (ii) above. What conclusion have you

reached about our belief?

(c) If our belief is correct, write the complete form of the pdf that

characterizes the behavior of the wind velocity of hurricane Katrina.

(d) If in the future we experience a category 5 hurricane, what would the

expected velocity be of such a hurricane?

7.5.7. With respect to Exercise 7.4.6, there is a group of scientists that believe that

the Rayleigh pdf is a better fit of the wind speed measurements of Hurricane

Katrina, follow the same questions posed in Exercise 7.4.6 using the

Rayleigh pdf. What do you conclude in comparing the results of Exercise

7.4.6 with those of Exercise 7.4.7?

7.5.8. National Unemployment

In http://booksite.elsevier.com/9780124171138., you will find

the annual percent average of unemployment data for the
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United States from 1957 to 2007. Using this data perform the following

analysis:

(a) Structure a histogram of the data. Does this histogram convey any

useful information concerning the behavior of the data?

(b) Using the goodness-of-fit test of your choice, can you identify the pdf

that characterizes the behavior of the data, that is, the pdf that the

subject data were drawn from using a¼0.05?

(c) Once you have found the subject pdf of the unemployment data,

calculate the expected value of the annual average percentage of

unemployment rate.

7.5.9. Breast Cancer

In http://booksite.elsevier.com/9780124171138, we have the malignant

breast tumor size in mm of 250 breast cancer patients. In the data base, draw

a random sample of the tumor sizes of n¼50 breast cancer patients. For the

50 tumor sizes in mm perform the following analysis:

(a) Structure a histogram of the 50 tumor sizes. Discuss any visual

information you might obtain concerning the possible pdf that

characterizes the data behavior.

(b) Identify if possible a pdf that you believe may characterize the given

data, using one or more of the goodness-of-fit test, using a¼0.05

(c) If you were not able to identify the pdf, why not? If you were successful,

identify completely the pdf, with appropriate parameter estimates.

(d) If you have identified correctly the pdf, calculate and interpret the

expected value of the subject data.

7.5.10. In http://booksite.elsevier.com/9780124171138, we have the survival times

(in years) of 250 breast cancer patients, that is, the age that they died due to

breast cancer. From this data base, draw a random sample of n¼50 survival

times. Use these survival times to perform the following analysis:

(a) Structure a histogram to possibly guide you in identifying the pdf of the

subject data.

(b) Use any of the goodness-of-fit test to search in identifying the correct pdf

that characterizes the behavior of the given survival times for a¼0.05

(c) State completely the pdf you have identified and discuss its usefulness

in obtaining information about the subject data.

(d) Obtain the cdf F(t) of the pdf f(t) you have found. If you take one minus

the F(t) you will obtain the survival function, S(t), of the given data.

That is, S(t)¼1–F(t). The survival function, S(t), gives you the

probability that a given patients drawn the data base of 250 breast

cancer patients will survive a specified year.

(e) Write the survival function of the given data set and graph it, that is, S(t)
versus t. Discuss the useful information that the graph gives concerning

breast cancer patients.

7.5.11. Lung Cancer

In http://booksite.elsevier.com/9780124171138, we have the

malignant tumor sizes for male and female lung cancer patients. We also
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include the survival times of both genders; that is, the age in years that

they died due to lung cancer. From the male data base draw a random

sample of n¼60, malignant tumor sizes and perform the following

analysis:

(a) Structure a histogram of the 60 measurement of the tumor sizes

in mm.

(b) Let part a) guide you, if possible in performing goodness-of-fit testing

at a¼0.05 to identify the best possible pdf that characterizes the

probabilistic behavior of the tumor sizes.

(c) Write the pdf completely with appropriate parameter estimates and

obtain and interpret its expected value.

7.5.12. Proceed to obtain a random sample of n¼60 from the female data base and

perform the same analysis (a)-(c) as in Exercise 7.4.11.

7.5.13. Give a precise comparison of males and females for each of the analysis you

performed (a)-(c) in Exercises 7.4.11 and 7.4.12. Discuss your comparison

findings.

7.5.14. In the lung cancer data base, we have also given information about

the survival times of male and female lung cancer patients. Take a

random sample of n¼50 of the survival times of male lung patients and

proceed to perform the same analysis for the survival times as in Exercise

7.4.10.

7.5.15. Similarly as in Exercise 7.4.4 proceed to take a random sample of n¼50 of

the survival times of female lung patients and proceed to perform the same

analysis as you did for the male patients in Exercise 7.5.14.

7.5.16. Give a precise comparison of the analysis of the findings of male and female

lung patients that you have found in Exercises 7.4.14 and 7.4.15,

respectively. Discuss your comparison findings.

7.5.17. Colon Cancer

In http://booksite.elsevier.com/9780124171138, we have the malignant

tumor sizes of male and female colon cancer patients. From this data base

draw a random sample of n¼50 tumor sizes of the male colon cancer

patients. Using this data proceed to perform the same analysis that you did

for the lung cancer data in Exercise 7.4.11.

7.5.18. Proceed to draw a random sample of n¼50 from the female data base that

gives the malignant colon tumor size. Perform the same analysis for the

females that you did for the males in Exercise 7.4.17.

7.5.19. In the colon cancer data base, we also give the survival times for both male

and female patients. From the male data base draw a random sample of

n¼60 survival times and proceed to perform the same analysis as you did in

Exercise 7.5.11.

7.5.20. From the survival times of female colon cancer patients draw a random

sample of n¼60 and proceed with the same analysis that you did for the

male patients in Exercise 7.4.19.

7.5.21. Give a precise comparison of the survival times analysis (a)-(c) for males

and females.
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7.6 CHAPTER SUMMARY
In this chapter, we learned different goodness-of-fit methods and how we use them

to attempt to identify the pdf that characterizes the behavior of a given set of data.

These are the methods; Chi-square, Kolmogorov-Smirnov, Anderson-Darling, and

Shapiro-Wilk tests. We used these tests to perform parametric analysis of real data

on some very important problems that our global society is facing in unemployment,

global warming, various types of cancers, environment, among others.

A list of some of the key definitions introduced in this chapter is given below:

• Chi-square tests for count data.

• Goodness-of fit.

• Test for independence.

• Contingency table.

• P-P plot.

• Q-Q plot.

• Shapiro-Wilk normality test.

• CO2 data.

• Wind velocity data.

• National unemployment data.

• Brain cancer data.

• Rain fall data.

• Prostate cancer data.

In this chapter, we have also learned the following important concepts and

procedures.

• Pearson’s Chi-square test procedure.

• Kolmogorov-Smirnov test procedure.

• Anderson-Darling test procedure.

• Shapiro-Wilk test procedure.

• P-P plots construction procedure.

• Q-Q plots construction procedure.

7.7 COMPUTER EXAMPLES
7.7.1 R-COMMANDS
Since most of the R-codes are already given in the chapter, we will only give the R-

code for selecting a random sample from a large data set.

In R, sample() function can be used to take a random sample of size n. Suppose
we want to take a random sample of size 40 from a data set named mydata without

replacement.

R-code:

Mysample<� mydata[sample(1:nrow(mydata), 40, replace¼FALSE),]
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R can also be used to calculate log likelihood of a data set. The distribution with

smallest log likelihood can be chosen as best fit. Download package ‘MASS’. Then

do the following:

library(MASS)

fitdistr(mydata, ’t’)$loglik
> fitdistr(x, ’normal’)$loglik
> fitdistr(mydata, ’logistic’)$loglik
> fitdistr(mydata, ’weibull’)$loglik
> fitdistr(mydata, ’gamma’)$loglik
> fitdistr(mydata, ’lognormal’)$loglik
> fitdistr(mydata, ’exponential’)$loglik
Some other distributions such as beta may need specification of additional parame-

ters. We suggest you look at R-help.

7.7.2 MINITAB EXAMPLES

EXAMPLE 7.7.1
(Contingency Table): Consider the following data with five levels and two factors. Test for depen-

dence of the factors.

Factors

Levels

1 2 3 4 5

1 39 19 12 28 18

2 172 61 44 70 37

Solution
In C1 enter the data in column 1 (39 and 172), and continue to C5. Then

Stat>Tables>Chi-Square-Test. . .> in Columns containing the table: Type C1 C2 C3 C4

C5>click OK

We will obtain the following output.

Chi-Square Test

Expected counts are printed below observed counts

C1 C2 C3 C4 C5 Total

1 39 19 12 28 18 116

48.95 18.56 12.99 22.74 12.76

2 172 61 44 70 37 384

162.05 61.44 43.01 75.26 42.24

Total 211 80 56 98 55 500

Chi-Sq¼2.023+0.010+0.076+1.219+2.152 +

0.611 + 0.003+0.023+0.368+0.650¼7.135

DF¼4, p-value¼0.129
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PROJECTS FOR CHAPTER 7
7A. FITTING A DISTRIBUTION TO DATA
A common problem is statistical modeling is fitting a probability distribution to a set

of observations (data set) for a variable. By graphically (like histogram) wemay have

some rough idea. If we do goodness-of-fit tests, with say two different distributions,

it can happen that both hypothesis may not be rejected. So which one should we

choose? This is mainly important in forecasting. Do a short paper on fitting a distri-

bution to data and apply your results to each of the data in Section 7.4 to check if the

chosen distributions are best possible. Some references are:

(1) FITTING DISTRIBUTIONS WITH R, http://cran.r-project.org/doc/contrib/

Ricci-distributions-en.pdf

(2) Fitting distributions to data and why you are probably doing it wrong, By David

Vose,http://www.vosesoftware.com/whitepapers/Fitting%20distributions%

20to%20data.pdf.
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OBJECTIVE

In this chapter we will study linear relationships in sample data and use the method of

least squares to estimate the necessary parameters.

Sir Francis Galton

(Source: http://en.wikipedia.org/wiki/Francis_Galton)
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English scientist Sir Francis Galton (1822-1911), a cousin of Charles Darwin, made

significant contributions tobothgeneticsandpsychology.He is the inventorof regression

and a pioneer in applying statistics to biology. One of the data sets that he considered

consistedof theheights of fathers and first sons.Hewas interested inpredicting theheight

of son based on the height of father. Looking at the scatterplots of these heights, Galton

saw that the trend was linear and increasing. After fitting a line to these data (using the

techniques described in this chapter), he observed that for fathers whose heights were

taller than the average, the regression line predicted that taller fathers tended to have

shorter sons and shorter fathers tended to have taller sons. There is a regression toward

the mean. That is how the method of this chapter got its name: regression.

8.1 INTRODUCTION
In earlier chapters, we were primarily concerned about inferences on population

parameters. In this chapter, we examine the relationship between one or more vari-

ables and create a model that can be used for predictive purposes. For example, con-

sider the question “Is there statistical evidence to conclude that the countries with the

highest averageblood-cholesterol levels have the greatest incidence of heart disease?”

It is important to answer this if we want to make appropriate lifestyle and medical

choices. We will study the relationship between variables using regression analysis.

Our aim is to create amodel and study inferential procedures when one dependent and

several independent variables are present. We denote by Y the random variable to be

predicted, also called the dependent variable (or response variable) and by xi the inde-
pendent (or predictor) variables used to model (or predict) Y. For example, let (x, y)
denote the height andweight of an adult male. Our interest may be to find the relation-

ship between height andweight froma samplemeasurement of n individuals. The pro-
cess of finding a mathematical equation that best fits the noisy data is known as

regression analysis. In his book Natural Inheritance, Sir Francis Galton introduced

the word regression in 1889 to describe certain genetic relationships. The technique

of regression is one of themost popular statistical tools to study the dependence of one

variablewith respect to another. There are different forms of regression: simple linear,
nonlinear, multiple, and others. The primary use of a regression model is prediction.

When using a model to predict Y for a particular set of values of x1, . . ., xk, one may

want to know how large the error of prediction might be. Regression analysis, in gen-

eral after collecting the sample data, involves the following steps.

PROCEDURE FOR REGRESSION MODELING
1. Hypothesize the form of the model as Y¼ f (x1, . . ., xk ; b0, b1, . . ., bk)+e. Here e represents the

random error term.We assume that E(e)¼0 but Var(e)¼s2 is unknown. From this we can obtain

E(Y)¼ f (x1, . . ., xk ; b0, b1, . . ., bk).
2. Use the sample data to estimate unknown parameters in the model.

3. Check for goodness of fit of the proposed model.

4. Use the model for prediction.
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The function f(x1, . . ., xk; b0, b1, . . ., bk) (k�1) contains the independent or pre-

dictor variables x1, . . ., xn (assumed to be nonrandom) and unknown parameters or

weights b0, b1, . . ., bk and e representing the random or error variable. We now pro-

ceed to introduce the simplest form of a regression model, called simple linear

regression.

8.2 THE SIMPLE LINEAR REGRESSION MODEL
Consider a random sample of n observations of the form (x1, y1), (x2, y2), . . ., (xn, yn),
where X is the independent variable and Y is the dependent variable, both being

scalars. A preliminary descriptive technique for determining the form of relationship

between X and Y is the scatter diagram. A scatter diagram is drawn by plotting the

sample observations in Cartesian coordinates. The pattern of the points gives an

indication of a linear or nonlinear relationship between the variables.

In Figure 8.1a, the relationship between x and y is fairly linear, whereas the

relationship is somewhat like a parabola in Figure 8.1b, and in Figure 8.1c there

is no obvious relationship between the variables.

Once the scatter diagram reveals a linear relationship, the problem then is to find

the linear model that best fits the given data. To this end, we will first give a general

definition of a linear statistical model, called a multiple linear regression model.

Definition 8.2.1 Amultiple linear regressionmodel relating a random response
Y to a set of predictor variables x1, . . ., xk is an equation of the form

Y¼ b0 +b1x1 +b2x2 + � � � +bkxk + e

+
+

+
+

+

+
+

+

+

+

++

Linear relationship

No relationship(c)

(a) (b)

X

y

X
X

y y

Quadratic relationship

FIGURE 8.1

Scatter diagram.
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where b0, . . ., bk are unknown parameters, x1, . . ., xk are the independent nonrandom
variables, and e is a random variable representing an error term. We assume that
E(e)¼0, or equivalently,

E Yð Þ¼ b0 + b1x1 +b2x2 + � � �+ bkxk:

To understand the basic concepts of regression analysis we shall consider a single

dependent variable Y and a single independent nonrandom variable x. We assume

that there are no measurement errors in xi. The possible measurement errors in y
and the uncertainties in the assumed model are expressed through the random error

e. Our inability to provide an exact model for a natural phenomenon is expressed

through the random term e, which will have a specified probability distribution (such
as a normal) with mean zero. Thus, one can think of Y as having a deterministic com-

ponent, E(Y), and a random component, e. If we take k¼1 in the multiple linear

regression model, we have a simple linear regression model.

Definition 8.2.2 If Y ¼ b0 + b1x + e, this is called a simple linear regression

model. Here, b0 is the y-intercept of the line and b1 is the slope of the line. The term
e is the error component.

This basic linear model assumes the existence of a linear relationship between the

variables x and y that is disturbed by a random error e. The known data points are the
pairs (x1, y2), (x2, y2), . . ., (xn, yn); the problem of simple linear regression is to fit a

straight line optimal in some sense to the set of data, as shown in Figure 8.2.

Now, the problem becomes one of finding estimators for b0 and b1. Once we

obtain the “good” estimators b̂0 and b̂1, we can fit a line to the data given by the

prediction equation Ŷ¼ b̂0 + b̂1x: The question then becomes whether this predicted

line gives the “best” (in some sense) description of the data. We now describe the

most widely used technique, called the method of least squares, to obtain the estima-

tors or weights of the parameters.

15

10

5

−20 −10 10 20 30 40 50 60

FIGURE 8.2

Scatterplot and least-squares regression line.
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8.2.1 THE METHOD OF LEAST-SQUARES
As stated (x1, y1), (x2, y2), . . ., (xn, yn) are the n observed data points, with correspond-
ing errors ei, i¼1, . . ., n. That is,

Yi ¼ b0 +b1xi + ei, i¼ 1,2, . . .,n:

We assume that the errors ei, i¼ 1, . . .,n. are independent and identically distributed
with E(ei) ¼ 0, i ¼ 1, . . .,n, and Var(ei) ¼ s2, i ¼ 1, . . .,n. One of the ways to

decide on how well a straight line fits the set of data is to determine the extent to

which the data points deviate from the line. The straight line model for the response

Y for a given x is

Y¼ b0 +b1x+ e:

Because we assumed that E(e)¼0, the expected value of Y is given by

E Yð Þ¼ b0 +b1x:

The estimator of the E(Y), denoted by Ŷ, can be obtained by using the estimators b̂0
and b̂1 of the parameters b0 and b1, respectively. Then, the fitted regression line we

are looking for is given by

Ŷ¼ b̂0 + b̂1x:

For observed values (xi,yi), we obtain the estimated value of yi as

ŷi ¼ b̂0 + b̂1xi:

The deviation of observed yi from its predicted value ŷi, called the ith residual, is
defined by

ei ¼ yi� ŷið Þ¼ yi� b̂0 + b̂1xi
� �h i

:

The residuals, or errors ei, are the vertical distances between observed and predicted
values of yi

0s (Figure 8.3).

y

x

ei

FIGURE 8.3

Illustration of ei.

4138.2 The Simple Linear Regression Model



Definition 8.2.3 The sum of squares for errors (SSE) or sum of squares of the
residuals for all of the n data points is

SSE¼
Xn
i¼1

e21 ¼
Xn
i¼1

yi� b̂0 + b̂1xi
� �h i2

The least-squares approach to estimation is to find b̂0 and b̂1 that minimize the sum

of squared residuals, SSE. Thus, in the method of least squares, we choose b0 and b1
so that SSE is a minimum. The quantities b̂0 and b̂1 that make the SSE aminimum are

called the least-squares estimates of the parameters b0 and b1, and the corresponding
line ŷ¼ b̂0 + b̂1x is called the least-squares line.

Definition 8.2.4 The least-squares line ŷ¼ b̂0 + b̂1x is one that satisfies the
following property:

SSE¼
Xn
i¼1

yi� ŷið Þ2

is a minimum for any other straight line model with

SE¼
Xn
i¼1

yi� ŷið Þ¼ 0

Thus, the least-squares line is a line of the form y¼b0+b1x for which the error sum of

squares
P

i¼1
n (yi�b0�b1x)

2 is a minimum. The minimum is taken over all values of

b0 and b1, and (x1, y1), (x2, y2), . . ., (xn, yn) are observed data pairs.

The problem of fitting a least-squares line now reduces to finding the quantities

b̂0 and b̂1 that minimize the error sum of squares.

8.2.2 DERIVATION OF b̂0 AND b̂1

Now we derive expressions for b̂0 and b̂1. If SSE attains a minimum, then the partial

derivatives of SSE with respect to b0 and b1 are zeros. That is,

@SSE

@b0
¼
@
Xn

i¼1
yi� b0 +b1xið Þ½ �2

n o
@b0

¼�
Xn
i¼1

2 yi� b0 + b1xið Þ½ �

¼ 2
Xn
i¼1

yi�nb0�b1
Xn
i¼1

xi

 !
¼ 0

(8.1)

and

@SSE

@b1
¼
@
Xn

i¼1
yi� b0 +b1xið Þ½ �2

n o
@b1

¼�
Xn
i¼1

2 yi� b0 + b1xið Þ½ �xi

¼�2
Xn
i¼1

xiyi�b0
Xn
i¼1

xi�b1
Xn
i¼1

x2i

 !
¼ 0:

(8.2)
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Equations (8.1) and (8.2) are called the least-squares equations for estimating the

parameters of a line. From Equations (8.1) and (8.2) we obtain a set of linear equa-

tions called the normal equations,

Xn
i¼1

yi ¼ nb0 +b1
Xn
i¼1

xi (8.3)

and

Xn
i¼1

xiyi ¼ b0
Xn
i¼1

xi +b1
Xn
i¼1

x2i : (8.4)

Solving for b0 and b1 from Equations (8.3) and (8.4), we obtain

b̂1 ¼
Xn

i¼1
xi� xð Þ yi� yð ÞXn

i¼1
xi� xð Þ2

¼
n
Xn

i¼1
xiyi�

Xn

i¼1
xi
Xn

i¼1
yi

n
Xn

i¼1
x21�

Xn

i¼1
xi

� �2 ¼
Xn

i¼1
xiyi�

Xn

i¼1
xi
Xn

i¼1
yi

nXn

i¼1
x21�

Xn

i¼1
xi

� �2

n

(8.5)

and

b̂0 ¼ y� b̂1x: (8.6)

To simplify the formula for b̂1, set

Sxx ¼
Xn
i¼1

x2i �
Xn

i¼1
xi

� �2
n

, Sxy ¼
Xn
i¼1

xiyi�
Xn

i¼1
xi

� � Xn

i¼1
yi

� �
n

we can rewrite Equation (8.5) as

b̂1 ¼
Sxy
Sxx

:

It can be shown (by using the second derivatives) that Equations (8.5) and (8.6) do

indeed minimize SSE. Now we will summarize the procedure for fitting a least-

squares line.

PROCEDURE FOR FITTING A LEAST-SQUARES LINE
1. Form the n data points (x1, y1), (x2, y2), . . ., (xn, yn), and compute the following quantities:P

i¼1
n xi,

P
i¼1
n xi

2,
P

i¼1
n yi,

P
i¼1
n yi

2, and
P

i¼1
n xiyi. Also compute the sample means,

x¼ 1=nð Þ
Xn

i¼1
xi and y¼ 1=nð Þ

Xn

i¼1
yi:

2. Compute

Sxx ¼
Xn
i¼1

x2i �
Xn

i¼1
xi

� �2
n

¼
Xn
i¼1

xi�xð Þ2

and

Sxy ¼
Xn
i¼1

xiyi�
Xn

i¼1
xi

� � Xn

i¼1
yi

� �
n

¼
Xn
i¼1

xi�xð Þ yi�yð Þ:

Continued
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3. Compute b̂0 and b̂1 by substituting the computed quantities from step 1 into the equations

b̂1 ¼
Sxy
Sxx

and

b̂0 ¼ y� b̂1x:

4. The fitted least-squares line is

ŷ¼b̂0 + b̂1x:

For a graphical representation, in the xy-plane, plot all the data points and draw the least-squares

line obtained in step 4.

Once we have accomplished the best-fit combination of the two parameters

b0 and b1, any deviation of either parameter away from its optimum value will cause

the sum of squares error to increase. Thus, the optimum combination of the pairs

b̂0, b̂1
� �

forms a global minimum point of the error sum of squares among all pos-

sible values of b0 and b1 for the given data set.

EXAMPLE 8.2.1
Use the method of least squares to fit a straight line to the accompanying data points. Give the esti-

mates of b0 and b1. Plot the points and sketch the fitted least-squares line. The observed data values
are given in the following table.

x �1 0 2 �2 5 6 8 11 12 �3

y �5 �4 2 �7 6 9 13 21 20 �9

Solution
Form a table to compute various terms

xi yi xiyi xi
2

�1 �5 5 1

0 �4 0 0

2 2 4 4

�2 �7 14 4

5 6 30 25

6 9 54 36

8 13 104 64

11 21 231 121

12 20 240 144

�3 �9 27 9P
xi¼38

P
yi¼46

P
xiyi¼709

P
xi
2¼408
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Sxx ¼
Xn
i¼1

x2i �
Xn

i¼1
xi

� �2
n

¼ 408� 38ð Þ2
10

¼ 263:6,

Sxy ¼
Xn
i¼1

xiyi�
Xn

i¼1
xi

� � Xn

i¼1
yi

� �
n

¼ 709� 38ð Þ 46ð Þ
10

¼ 534:2,

x¼3:8 and y¼ 4:6:

Therefore,

b̂1 ¼
Sxy
Sxx

¼ 534:2

263:6
¼ 2:0266

and

b̂0 ¼ y� b̂1x

¼ 4:6� 2:0266ð Þ 3:8ð Þ¼�3:1011:

Hence, the least-squares line for these data is

ŷ¼ b̂0 + b̂1x¼�3:1011+ 2:0266x

and its plot is shown in Figure 8.4.

Recall that for the regression line ŷ¼ b̂0 + b̂1x: We have defined SSE to be

SSE¼
Xn
i¼1

yi� ŷið Þ2 ¼
Xn
i¼1

yi� b̂0� b̂1xi
� �2

:

12.510.07.55.02.50.0−2.5−5.0

25
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15
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5

0
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−10

S 0.988314
R-Sq 99.3%
R-Sq(adj) 99.2%

x

y

Fitted line plot
y = −3.101 + 2.027 x

FIGURE 8.4

Simple regression line.
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We now show that

SSE¼ Syy� b̂1Sxy, where Syy ¼
Xn
i¼1

y2i �
Xn

i¼1
yi

� �2
n

¼
Xn
i¼1

yi� yð Þ2:

We know that

SSE¼
Xn
i¼1

yi� b̂0� b̂1xi
� �2

¼
Xn
i¼1

yi� y+ b̂1x� b̂1xi
� �2

¼
Xn
i¼1

yi� yð Þ� b̂1 xi� xð Þ
h i2

¼
Xn
i¼1

yi� yð Þ2 + b̂21
Xn
i¼1

xi� xð Þ2�2b̂1
Xn
i¼1

xi� xð Þ yi� yð Þ

¼ Syy + b̂
2

1Sxx�2b̂1Sxy:

Recall that b̂1 ¼ Sxy
Sxx
:

Substituting for b̂1, we obtain

SSE¼ Syy� Sxy
Sxx

� �2

Sxx�2
Sxy
Sxx

Sxy

¼ Syy�Sxy
Sxx

Sxy

¼ Syy� b̂1Sxy:

8.2.3 QUALITY OF THE REGRESSION
Once we obtain the linear model, the question is, how well does this line fit the data?

We could make use of the residuals

êi ¼ yi� b̂0� b̂1xi

to answer the question and to assess the quality of the fit. If our model is good, then

the residual êi should be close to the random error e with mean zero. Furthermore,

the residuals should contain little or no information about the model, and there

should be no recognizable pattern. If we plot the residuals versus the independent

variables on the x-axis, ideally, the plot should look like a horizontal blur, the resid-
uals showing no relationship to the x-values, as shown by Figure 8.5. Otherwise,

these plots reveal a not very good fit of the given data, as shown by Figure 8.6,

and we need to improve our model specifications. Thus, a symmetric trend in

the plot of residuals ei versus xi or ŷi i¼ 1, . . . ,nð Þ indicates that the assumed regres-

sion model is not correct.
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Whereas the residual plots give us a visual representation of the quality of fit, a

numerical measure of how well the regression explains the data is obtained by

calculating the coefficient of determination, also called the R2 of the regression.

Particular (observed) value of realized R2 is

r2 ¼ Syy�SSE

Syy
¼ 1�

Xn

i¼1
yi� ŷið Þ2Xn

i¼1
yi� yð Þ2

:

Further discussion is given in Project 8B. Regression analysis with any of the stan-

dard statistical software packages will contain an output value of the R2. This value

will be between 0 and 1; closer to 1 means a better fit. For example, if the value of R2

is 0.85, the regression captures 85% of the variation in the dependent variable. This is

generally considered good regression.

.
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. . .

.
...

. .

.
y 

e

^

FIGURE 8.5

Good fit.

FIGURE 8.6

Not a good fit.
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8.2.4 PROPERTIES OF THE LEAST-SQUARES ESTIMATORS
FOR THE MODEL Y5b0+b1x+«
We discussed in Chapter 4 the concept of sampling distribution of sample statistics

such as that of X. Similarly, knowledge of the distributional properties of the least-

squares estimators b̂0 and b̂1 is necessary to allow any statistical inferences to be

made about them. The following result gives the sampling distribution of the

least-squares estimators.

Theorem 8.2.1 Let Y¼b0+b1x+ e be a simple linear regression model with e�N
(0, s2), and let the errors ei associated with different observations yi (i¼1, . . ., N) be
independent. Then

(a) b̂0 and b̂1 have normal distributions.
(b) The mean and variance are given by

E b̂0
� �

¼ b0, Var b̂0
� �

¼ 1

n
+
x2

Sxx

� �
s2,

and

E b̂1
� �

¼ b1, Var b̂1
� �

¼ s2

Sxx
,

where Sxx ¼
Xn

i¼1
x2i �

1

n

Xn

i¼1
xi

� �2
: In particular, the least-squares estimators b̂0

and b̂1 are unbiased estimators of b0 and b1, respectively.
Proof. We know that

b̂1 ¼
Sxy
Sxx

¼ 1

Sxx

Xn
i¼1

xi� xð Þ Yi�Y
� �

¼ 1

Sxx

Xn
i¼1

xi� xð ÞYi�Y
Xn
i¼1

xi� xð Þ
" #

¼ 1

Sxx

Xn
i¼1

xi� xð ÞYi

where the last equality follows from the fact that
Xn

i¼1
xi� xð Þ¼

Xn

i¼1
xi�nx¼ 0.

Because Yi is normally distributed, the sum 1
Sxx

Xn

i¼1
xi� xð ÞYi is also normal.

Furthermore,

E b̂1
h i

¼ 1

Sxx

Xn
i¼1

xi� xð ÞE Yi½ �

¼ 1

Sxx

Xn
i¼1

xi� xð Þ b0 +b1xið Þ

¼ b0
Sxx

Xn
i¼1

xi� xð Þ+ b1
Sxx

Xn
i¼1

xi� xð Þxi

¼ b1
1

Sxx

Xn
i¼1

xi� xð Þxi
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¼ b1
1

Sxx

Xn
i¼1

x2i � x
Xn
i¼1

xi

" #

¼ b1
1

Sxx

Xn
i¼1

x2i �
Xn
i¼1

xi

 ! Xn

i¼1
xi

n

 !" #

¼ b1
1

Sxx

Xn
i¼1

x2i �
Xn

i¼1
xi

� �2
n

2
64

3
75

¼ b1
1

Sxx
Sxx ¼ b1:

For the variance we have,

Var b̂1
h i

¼Var
1

Sxx

Xn
i¼1

xi� xð ÞYi

" #

¼ 1

S2xx

Xn
i¼1

xi� xð Þ2Var Yi½ �, since the Yi’s are independent

¼ s2
1

S2xx

Xn
i¼1

xi� xð Þ2 Var Yið Þ¼Var b0 +b1 + eið Þ¼Var eið Þ¼ s2
� �

¼ s2

Sxx
:

Note that both Y and b̂1 are normal random variables. It can be shown that they are

also independent (see Exercise 8.3.3). Because b̂0 ¼ y� b̂1x is a linear combination

of Y and b̂1, it is also normal. Now,

E b̂0
h i

¼E Y� b̂1x
h i

¼E Y
� 	� xE b̂1

h i

¼E
1

n

Xn
i¼1

Yi

" #
� xb1 ¼

1

n

Xn
i¼1

b0 +b1xð Þ�xb1

¼ b0 + xb1� xb1 ¼ b0:

The variance of b̂0 is given by

Var b̂0
h i

¼Var Y� b̂1x
h i

¼Var Y
� 	

+ x2Var b̂1
h i

, since Y and b̂1 are independent

¼ s2

n
+
x2s2

Sxx
¼ 1

n
+
x2

Sxx

� �
s2: z

If an estimator ŷ is a linear combination of the sample observations and has a variance

that is less than or equal to that of any other estimator that is also a linear combination

of the sample observations, then ŷ is said to be a best linear unbiased estimator
(BLUE) for y. The following result states that among all unbiased estimators for

b0 and b1 which are linear in Yi, the least-square estimators have the smallest variance.
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GAUSS-MARKOV THEOREM

Theorem 8.2.2 Let Y¼b0+b1x+e be the simple regression model such that for each xi
fixed, each Yi is an observable random variable and each e¼ ei, i¼1, 2, . . ., n is an unobservable

random variable. Also, let the random variable ei be such that E[ei]¼0, Var(ei)¼s2 and Cov(ei,
ej)¼0, if i 6¼ j. Then the least-squares estimators for b0 and b1 are best linear unbiased estimators.

It is important to note that even when the error variances are not constant, there

still can exist unbiased least-square estimators, but the least-squares estimators do

not have minimum variance.

8.2.5 ESTIMATION OF ERROR VARIANCE s2

The greater the variance, s2, of the random error e, the larger will be the errors in the
estimation of model parameters b0 and b1. We can use already-calculated quantities

to estimate this variability of errors. It can be shown that (see Exercise 8.2.1(b)) that

E SSEð Þ¼ n�2ð Þs2:
Thus, an unbiased estimator of the error variance, s2, is ŝ2 ¼ SSEð Þ= n�2ð Þ:Wewill

denote (SSE)/(n�2) by MSE (Mean Square Error).

EXERCISES 8.2
8.2.1 For a random sample of size n,

(a) Show that the error sum of squares can be expressed by

SSE¼ Syy� b̂1Sxy:

(b) Show that E[SSE]¼ (n�2)s2.
8.2.2 The following are midterm and final examination test scores for 10 students

from a calculus class, where x denotes the midterm score and y denotes the
final score for each student.

x 68 87 75 91 82 77 86 82 75 79

y 74 79 80 93 88 79 97 95 89 92

(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.3. The following data give the annual incomes (in thousands of dollars) and

amounts (in thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100
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(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.4. Consider a simple linear model Y¼b0+b1x+ e, with e�N(0, s2). Show that

Covðb̂0, b̂1Þ¼
�s2

Xn

i¼1
xi

n
Xn

i¼1
x2i �

Xn

i¼1
xi

� �2 :

8.2.5. (a) Show that the least-squares estimates of b0 and b1 of a line can be

expressed as

b̂0 ¼ y� b̂1x

and

b̂1 ¼
Xn

i¼1
xi� xð Þ yi� yð ÞXn

i¼1
xi� xð Þ2

:

(b) Using part (a), show that the line fitted by the method of least squares

passes through the point x, yð Þ:
8.2.6. Crickets make their chirping sounds by rapidly sliding one wing over the

other. The faster they move their wings, the higher the number of chirping

sounds that are produced. Scientists have noticed that crickets move their

wings faster in warm temperatures than in cold temperatures (they also do

this when they are threatened). Therefore, by listening to the pitch of the

chirp of crickets, it is possible to tell the temperature of the air. The following

table gives the number of cricket chirps per 13 s recorded at 10 different

temperatures. Assume that the crickets are not threatened.

Temperature 60 66 70 73 78 80 82 87 90 92

Number of chirps 20 25 31 33 36 39 42 48 49 52

Calculate the least-squares regression line for these data and discuss its

usefulness.

8.2.7. Consider the regression model

Y¼ b1x + e

where e�N(0, s2). Show that

b̂1 ¼
Xn

i¼1
xiyiXn

i¼1
x2i

:

8.2.8. A farmer collected the following data, which show crop yields for various

amounts of fertilizer used.
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Fertilizer (pounds/100 sq. ft) 0 4 8 10 15 18 20 25

Yield (bushels) 6 7 10 13 17 18 22 23

(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.9. An economist desires to estimate a line that relates personal disposable

income (DI) to consumption expenditures (CE). Both DI and CE are in

thousands of dollars. The following gives the data for a random sample of

nine households of size four.

DI 25 22 19 36 40 47 28 52 60

CE 21 20 17 28 34 41 25 45 51

(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.10. The following data represent systolic blood pressure readings on 10

randomly selected females between ages 40 and 82.

Age (x) 63 70 74 82 60 44 80 71 71 41

Systolic (y) 151 149 164 157 144 130 157 160 121 125

(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.11. It is believed that exposure to solar radiation increases the pathogenesis of

melanoma. Suppose that the following data give sunspot relative number

and age-adjusted total incidence (incidence is the number of cases per

100,000 population) for eight different years in a certain region.

Sunspot relative number 104 12 40 75 110 180 175 30

Incidence total 4.7 1.9 3.8 2.9 0.9 2.7 3.9 1.6

(a) Calculate the least-squares regression line for these data.

(b) Plot the points and the least-squares regression line on the same graph.

8.2.12. It is believed that the average size of a mammal species is a major factor in

the period of gestation (the period of development in the uterus from

conception until birth). In general, it is observed that the bigger the mammal

is, the longer the gestation period. Table 8.2.1 gives adult mass in kilograms

and gestation period in weeks of some species (source: http://www.

saburchill.com/chapters/chap0037.html).

(a) Calculate the least-squares regression line for these data with adult

mass as the independent variable.

(b) Plot the points and the least-squares regression line on the same graph.
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(c) Calculate the least-squares regression line for these data with gestation

period as the independent variable.

(d) Assuming that the regression model of part (c) holds for all mammals,

estimate the adult mass in kilograms for the mammals given in

Table 8.2.2.

8.2.13. Using internet, obtain home sales data for your area of interest and obtain a

least-squares regression line for these data. Test for all the assumptions for

this analysis and see if your data satisfies these assumptions.

8.3 INFERENCES ON THE LEAST-SQUARES ESTIMATORS
Oncewe obtain the estimators of the slope b1 and intercept b0 of the model regression

line, we are in a position to use Theorem 8.2.1 to make inferences regarding these

model parameters. Using the properties of b̂0 and b̂1, in this section we study the

confidence intervals and hypothesis tests concerning these parameters.

From Theorem 8.2.1, we can write

Z1 ¼ b̂1�b1
s=

ffiffiffiffiffiffi
Sxx

p �N 0, 1ð Þ:

Table 8.2.1 Adult Mass and Gestation Period of Mammals

Species Adult Mass (kg)
Gestation Period
(weeks)

African elephant 6000 88

Horse 400 48

Grizzly bear 400 30

Lion 200 17

Wolf 34 9

Badger 12 8

Rabbit 2 4.5

Squirrel 0.5 3.5

Table 8.2.2 Gestation Period of Mammals

Species
Gestation Period
(weeks)

Indian elephant 89.0

Camel 57.0

Sea lion 51.4

Dog 8.7

Rat 3.0

Hamster 2.3
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Also, it can be shown that SSE/s2 is independent of b̂1 and has a chi-square

distribution with n�2 degrees of freedom. Let the mean square error be defined by

MSE¼ SSE

n�2
¼ 1

n�2
¼
Xn
i¼1

yi� b̂0 + b̂1xi
� �h i2

:

Then using Definition 4.2.2, we have

tb1 ¼
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE=s2ð Þ
n�2

r ¼ b̂1�b1ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r

which follows the t-distribution with n�2 degrees of freedom.

Similarly, let

Z0 ¼ b̂0�b0

s
1

n
+
x2

Syy

� ��N 0, 1ð Þ:

Also, it can be shown that b̂0 and SSE are independent. Hence,

tb0 ¼
z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE=s2

n�2

r ¼ b̂0�b0

MSE 1
n + x2

Sxx

� �h i1=2
follows the t-distribution with n�2 degrees of freedom.

From these derivations, we can obtain the following procedure about the confi-

dence intervals for the slopes b1 and for the intercept b0.

PROCEDURE FOR OBTAINING CONFIDENCE INTERVALS FOR b0 AND b1

1. Compute Sxx, Sxy, Syy, y, and x as in the procedure for fitting a least-squares line.

2. Compute b̂1, b̂0 using equations b̂1 ¼ Sxy=Sxx and b̂0 ¼ y� b̂1x, respectively.
3. Compute SSE by SSE¼ Syy� b̂1Sxy.
4. Define MSE to be

MSE¼ SSE

n�2
,

where n¼Number of pairs of observations (x1,y1), . . ., (xn,yn)
5. A(1�a)100% confidence interval for b1 is given by

b̂1� ta=2,n�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Sxx
,

r
b̂1 + ta=2,n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r� �

where ta/2 is the upper tail a/2-point based on a t-distribution with (n�2) degrees of freedom.

6. A(1�a)100% confidence interval for b0 is given by

b̂0� ta=2,n�2 MSE
1

n
+
x2

Sxx

� �� �1=2
, b̂0 + ta=2,n�2 MSE

1

n
+
x2

Sxx

� �� �1=2 !
:

We illustrate this procedure for obtaining confidence limits with an example.
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EXAMPLE 8.3.1
For the data of Example 8.2.1:

(a) Construct a 95% confidence interval for b0 and interpret.

(b) Construct a 95% confidence interval for b1 and interpret.

Solution
The following calculations were obtained in Example 8.2.1:

Sxx ¼ 263:6, Sxy ¼ 534:2, y¼ 4:6 and x¼ 3:8:

Also,

b̂1 ¼ 2:0266, b̂0 ¼�3:1011:

In addition to those calculations, we can compute

Xn
i¼1

y2i ¼ 1302 and Syy ¼
Xn
i¼1

y2i �
Xn

i¼1
yi

� �2
n

¼ 1302� 46ð Þ2
10

¼ 1090:4:

Now,

SSE¼ Syy� b̂1Sxy
¼ 1090:4� 2:0266ð Þ 534:2ð Þ
¼ 7:79028

:

Hence,

MSE¼ SSE

n�2
¼ 7:79028

8
¼ 0:973785:

Now from the t-table, we have t0.025,8¼2.306.

(a) A 95% confidence interval for b0 is given by

b̂0� taj2,n�2 MSE
1

n
+
x2

Sxx

� �� �1j2
, b̂0 + taj2,n�2 MSE

1

n
+
x2

Sxx

� �� �1j2 !

¼ �3:1011� 2:306ð Þ 0:973785ð Þ 1

10
+

3:8ð Þ2
263:6

 !" #1j20
@

�3:1011 + 2:306ð Þ 0:973785ð Þ 1

10
+

3:8ð Þ2
263:6

 !" #1j21A:

From which we obtain a 95% confidence interval for b0 as (�3.9846,�2.2176). Thus, we can con-
clude with 95% confidence that the true value of the intercept, b0, is between�3.9846 and�2.2176.

(b) A 95% confidence interval for b1 is given by

b̂1� taj2,n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r
, b̂1 + taj2,n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r� �

¼ 2:0266� 2:306ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:973785

236:6

r
, 2:0266 + 2:306ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:973785

236:6

r !

from which we obtain a 95% confidence interval for b1 as (1.8864, 2.1668). Thus, we can conclude
with 95% confidence that the true value of the slope of the linear regression model is between 1.8864
and 2.1663.
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One of the assumptions for linear regression model that we have made is that the

variance of the errors is a constant and independent of x. Errors with this property

are called homoscedastic. If the variance of the errors is not constant, the errors are
called heteroscedastic. In the heteroscedastic case, standard errors and confidence

intervals based on the assumption that s2 is an estimate of s2 may be somewhat

deceptive.

Now we introduce hypothesis testing concerning the slope and intercept of the

fitted least-squares line. We use tb0 and tb1 defined earlier as the test statistic for

testing hypotheses concerning b0 and b1, respectively. The usual one- and two-sided
alternatives apply. We proceed to summarize these test procedures.

Hypothesis Test for b0
One-sided test Two-sided test

H0: b0¼b00 (b00 is a specific value of b0) H0: b0¼b00
Ha: b0>b00 or b0<b00 Ha: b0 6¼b00
Test statistic: Test statistic:

tb0 ¼
b̂0�b00

MSE 1
n + x

Sxx

� �h i1=2 tb0 ¼
b̂0�b00

MSE 1
n + x

Sxx

� �h i1=2
Rejection region: Rejection region:
t> ta,(n�2), (upper tail region) jtj> ta/2,(n�2)

t<� ta,(n�2), (lower tail region)

Decision: If tb0 falls in the rejection region, reject the null hypothesis at level of significance a.
Assumptions: Assume that the errors ei , i¼1, . . ., n are independent and normally distributed
with E (ei)¼0, i¼1, . . ., n, and Var(ei)¼s2, i¼1, . . ., n.

We now illustrate this procedure with the following example.

EXAMPLE 8.3.2
Using the data given in Example 8.2.1, test the hypothesisH0: b0¼�3 versusHa: b0 6¼�3 using the

0.05 level of significance.

Solution
We test H0 : b0¼�3 versus Ha: b0 6¼�3.

Here b00¼�3. The rejection region is t<�2.306 or t>2.306.

From the calculations of the previous example, we have

tb0 ¼
b̂0�b00

MSE
1

n
+
x2

Sxx

� �� �1j2

¼ �3:1011� �3ð Þ

0:973785ð Þ 1

10
+

3:8ð Þ2
263:2

 !" #1j2

¼�0:26041:

Because the test statistic does not fall in the rejection region, at a¼0.05, we do not reject H0.
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Hypothesis Test For b1
One-sided test Two-sided test

H0: b1¼b10 (b10 is a specific value of b1) H0: b1¼b10
Ha: b1>b10 or b1<b10 Ha: b1 6¼b10
Test statistic: Test statistic:

tb1 ¼
b̂1�b10ffiffiffiffiffiffiffiffi

MSE

Sxx

r tb1 ¼
b̂1�b10ffiffiffiffiffiffiffiffi

MSE

Sxx

r
Rejection region: Rejection region:
t> ta,(n�2) (upper tail region) jtj> ta/2, (n�2)

t<� ta,(n�2) (lower tail region)

Decision: If tb1 falls in the rejection region, reject the null hypothesis at level of significance a.
Assumptions: Assume that the errors ei , i¼1, . . ., n are independent and normally distributed
with E (ei)¼0, i¼1, . . ., n, and Var (ei)¼s2, i¼1, . . ., n.

The test of hypothesisH0: b1¼0 answers the question, is the regression significant? If

b1¼0,we conclude that there is no significant linear relationship betweenX andY, and
hence, the independent variable X is not important in predicting the values of Y if the

relationship of Y and X is not linear. Note that if b1¼0, then the model

becomes y¼b0+ e. Thus, the question of the importance of the independent variable

in the regressionmodel translates into a narrower question of the test of hypothesisH0:

b1¼0. That is, the regression line is actually a horizontal line through the intercept,b0.

EXAMPLE 8.3.3
Using the data given in Example 8.2.1, test the hypothesisH0: b1¼2 versusHa: b1 6¼2 using the 0.05

level of significance.

Solution
We test

H0 :b1 ¼ 2 versus Ha : b1 6¼ 2:

We know that b̂1 ¼ 2:0266:

For a¼0.05 and n¼10, the rejection region is t<�2.306 or t>2.306. The test statistic is

tb1 ¼
b̂1�b10ffiffiffiffiffiffiffiffiffiffi

MSE

Sxx

r

¼ 2:0266�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0266�2

263:6

r ¼ 0:4376:

Because the test statistic does not fall in the rejection region, at a¼0.05, we do not reject H0.

Thus, for a¼0.05, the given data support the null hypothesis that the true value of the slope, b1, of
the regression line is equal to 2.

Another problem closely related to the problem of estimating the regression coeffi-

cients b0 and b1 is that of estimating the mean of the distribution of Y for a given

value of x, that is, estimating b0+b1x. For a fixed value of x, say x0, we have the

following confidence limits.
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A (1�a)100% confidence interval for b0+b1x is given by

b̂0 + b̂1x
� �

� ta=2se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
+

x0�xð Þ2
Sxx

s

where

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syy� Sxy

� �2
n�2ð ÞSxx :

s

We could use the data from the previous example to easily calculate a confidence

interval for b0+b1x.

8.3.1 ANALYSIS OF VARIANCE (ANOVA) APPROACH
TO REGRESSION
Another approach to hypothesis testing is based onANOVA.A detailed explanation of

this approach isgiven inChapter10.Herewepresent necessary steps for regression.The

main reason for this presentation is the fact that most of the major statistical software

outputs for regression analysis (seeSection8.9) are given in the formofANOVAtables.

It can be verified that (see Exercise 8.3.7)Xn
i¼1

yi� yð Þ2 ¼
Xn
i¼1

yi� ŷið Þ2 +
Xn
i¼1

ŷi� yð Þ2:

Denoting

SST¼
Xn
i¼1

yi� yð Þ2, SSE¼
Xn
i¼1

yi� ŷið Þ2, and SSR¼
Xn
i¼1

ŷi� yð Þ2,

the foregoing equation can be written as

SST¼ SSR+SSE:

Note that the total sum of squares (SST) is a measure of the variation of yi
0s around

the mean y, and SSE is the residual or error sum of squares that measures the lack of

fit of the regression model. Hence, sum of squares of regression or model (SSR) mea-

sures the variation that can be explained by the regression model.

We saw that to test the hypothesis H0: b1¼0 versus Ha: b1 6¼0, the statistic

tb1 ¼
b̂1ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r

was used, where tb1 follows a t-distribution with (n�2) degrees of freedom. From

Exercise 4.2.18, we know that

t2b1 ¼
b̂
2

1

MSE

Sxx

� �
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follows an F-distribution with numerator degrees of freedom 1 and denominator

degrees of freedom (n�2). We can also verify that

t2b1 ¼
MSR

MSE
,

where MSR is the mean sum of squares of regression.

Thus, to test H0: b1¼0 versus Ha: b1 6¼0, we could use the statistic

MSR

MSE
�F 1,n�2ð Þ

and reject H0 if

MSR

MSE
�Fa 1,n�2ð Þ:

These can be summarized by Table 8.1, known as the ANOVA table.

The last column in the ANOVA table gives the statistic (MSR)/(MSE). It is also

customary to give another column with the p-value of the test.

EXAMPLE 8.3.4
In a study of baseline characteristics of 20 patients with foot ulcers, we want to see the relationship

between the stage of ulcer (determined using the Yarkony-Kirk scale, a higher number indicating a

more severe stage, with range 1 to 6), and duration of ulcer (in days). Suppose we have the data

shown in Table 8.2.

(a) Give an ANOVA table to test H0: b1¼0 versus Ha: b1 6¼0. What is the conclusion of the test

based on a¼0.05?

(b) Write down the expression for the least-squares line.

Solution
(a) We test H0: b1¼0 versus Ha: b1 6¼0. We will use Minitab to generate the ANOVA table

(Table 8.3). Because the p-value is less than 0.001, for a¼0.05, we reject the null hypothesis
that b1¼0 and conclude that there is a relationship between the stage of ulcer and its

duration.

(b) Again, using the Minitab output, we get the least-squares line as

d¼ 4:61x�2:40:
Continued

Table 8.1 ANOVA Table for Simple Regression

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Sum
of Squares

F-
Ratio

Regression
(model)

1 SSR MSR¼ SSR

d:f:

MSR

MSE

Error (residuals) n�2 SSE
SSE

d:f:
Total n�1 SST
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EXERCISES 8.3
8.3.1. An experiment was conducted to observe the effect of an increase in

temperature on the potency of an antibiotic. Three one ounce portions of the

antibiotic were stored for equal lengths of time at each of the following

Fahrenheit temperatures: 40�, 55�, 70�, and 90� .The potency readings

observed at the end of the experimental period were

Potency reading, y 49 38 27 24 38 33 19 28 16 18 23

Temperature, x 40� 55� 70� 90�

(a) Find the least-squares line appropriate for these data.

(b) Plot the points and graph the line as a check on your calculations.

(c) Calculate the 95% confidence intervals for b0 and b1, respectively.
8.3.2. Consider the data

x 38 26 48 22 40 15 30 33

y 10 11 16 8 12 5 10 11

(a) Find the least-squares line appropriate for these data.

(b) Plot the points and graph the line as a check on your calculations.

(c) Calculate the 95% confidence intervals for b0 and b1, respectively.
8.3.3. Show that Y and b̂1 are independent, under the usual assumptions of a simple

linear regression model.

Table 8.3 ANOVA Table for Foot Ulcer Data

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Sum
of Squares F-Ratio p-Value

Regression
(model)

1 570.04 570.04 77.05 0.000

Error
(residuals)

18 133.16 7.40

Total 19 703.20

Table 8.2 Stage and Duration of Foot Ulcers

Stage of Ulcer (x) 4 3 5 4 4 3 3 4 6 3

Duration (d) 18 6 20 15 16 15 10 18 26 15

Stage of Ulcer (x) 3 4 3 2 3 2 2 3 5 6

Duration (d) 8 16 17 6 7 7 8 11 21 24
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8.3.4. Using the data of Exercise 8.2.10, calculate the 95% confidence intervals for

b0 and b1, respectively.
8.3.5. The following data represent survival time in days after a heart transplant and

patient age in years at the time of transplant for 10 randomly selected patients.

Age at transplant 28 41 46 53 39 36 47 29 48 44

Survival time, in days 7 278 44 48 406 382 1995 176 323 1846

(a) Find the least-squares line appropriate for these data.

(b) Plot the points and graph the line.

(c) Calculate the 95% confidence intervals for b0 and b1, respectively.
8.3.6. The following data represent weights of cigarettes (g) from different

manufacturers and their nicotine contents (mg).

Weight 15.8 14.9 9.0 4.5 15.0 17.0 8.6 12.0 4.1 16.0

Nicotine 0.957 0.886 0.852 0.911 0.889 0.919 0.969 1.118 0.946 1.094

(a) Find the least-squares line appropriate for these data.

(b) Plot the points and graph the line. Do you think the linear regression is

appropriate?

(c) Calculate the 95% confidence intervals for b0 and b1, respectively.
8.3.7. The following data represents total CO2 emissions per vehicle (in Metric tons

per vehicle) [http://corporate.ford.com/microsites/sustainability-report-

2012-13/environment-data-energy].

Year 2007 2008 2009 2010 2011 2012

Total 1.01 1.09 1.07 1.01 0.91 0.90

(a) Find the least-squares line appropriate for these data.

(b) Plot the points and graph the line.

(c) Calculate the 95% confidence intervals for b0 and b1, respectively.
8.3.8. Show that

Xn
i¼1

yi� yð Þ2 ¼
Xn
i¼1

yi� ŷið Þ2 +
Xn
i¼1

ŷi� yð Þ2:

8.4 PREDICTING A PARTICULAR VALUE OF Y
In the earlier sections, we have seen how to fit a least-squares line for a given set of

data. Also using this line, we could find E(Y), for any given value of x. Instead of

obtaining this mean value, we may be interested in predicting the particular value

of Y for a given x. In fact, one of the primary uses of the estimated regression line

is to predict the response value of Y for a given value of x. Prediction problems are
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very important in several real-world problems; for example, in economics one may

be interested in a particular gain associated with an investment.

Let Ŷ0 denote a predictor of a particular value of Y¼Y0 and let the corresponding
values of x be x0. We shall choose Ŷ0 to be E Ŷjx0

� �
: Let Ŷ denote a predictor of a

particular value of Y. Then the error � of the predictor in comparison to a particular

value of Y is

�¼ Y� Ŷ0:

Both Y and Ŷ are normal randomvariables, and the error is a linear function ofY and Ŷ.
This means that � itself is normally distributed. Also, because E Ŷ

� �¼E Yð Þ, we have
E �ð Þ¼E Yjx0ð Þ�E Ŷ

� �¼ 0:

Furthermore,

Var �ð Þ¼Var Y� Ŷ
� �¼Var Yð Þ+Var Ŷ

� ��2Cov Y, Ŷ
� �

:

We can consider Y and Ŷ as independent, because we are predicting a different value

of Y, not used in the calculation of Ŷ. Therefore, Cov Y, Ŷ
� �¼ 0. In that case

Var �ð Þ¼Var Y0ð Þ+Var Ŷ0

� �
¼ s2 + s2

1

n
+

x�xð Þ2
Sxx

" #

¼ 1 +
1

n
+

x� xð Þ2
Sxx

" #
s2

:

Hence, the error of predicting a particular value of Y, given x, is normally distributed

with mean zero and variance 1 +
1

n
+

x� xð Þ2
Sxx

" #
s2:

That is,

��N 0, 1 +
1

n
+

x� xð Þ2
Sxx

" #
s2

 !
,

and

Z¼ Y� Ŷ

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x�xð Þ2
Sxx

� �s �N 0, 1ð Þ:

If we substitute the sample standard deviation S for s, then we can show that

T¼ Y� Ŷ

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x� xð Þ2
Sxx

� �s

follows the t-distribution with [n� (k+1)] degrees of freedom. Using this fact, we now

give a prediction interval for the random variable Y, the response of a given situation.
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We know that

P �ta=2 < T< ta=2
� �¼ 1�a:

Substituting for T, we have

P �ta=2 <
Y� Ŷ

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x�xð Þ2
Sxx

" #vuut
< ta=2

0
BBBBBB@

1
CCCCCCA

¼ 1�a

which implies that

P Ŷ� ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x�xð Þ2
Sxx

" #vuut < Y< Ŷ + ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x�xð Þ2
Sxx

" #vuut
2
4

3
5¼ 1�a:

Hence, we have the following.

A (1�a)100% prediction interval for Y is

Ŷ� ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

n
+

x�xð Þ2
Sxx

" #vuut

where ta/2 is based on (n�2) degrees of freedom and S2 ¼ SSE

n�2
¼

ffiffiffiffiffiffiffiffiffiffi
MSE

p
:

We illustrate this statistical procedure with the following example.

EXAMPLE 8.4.1
Using the data given in Example 8.2.1, obtain a 95% prediction interval at x¼5.

Solution
We have shown that ŷ¼�3:1011+ 2:0266x Hence, at x¼5, ŷ¼ 7:0319:

Also x¼ 3:8, Sxx¼263.6, SSE¼7.79028, and S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
7:79028

8

q
¼ 2:306:

From the t-table, t0.025,8¼2.306.

Thus, we have

7:0319� 2:306ð Þ 0:98681ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

10
+

5�3:8ð Þ2
263:6

" #vuut
which gives the 95% prediction interval as (4.6393, 9.4245).

We can conclude with 95% confidence that the true value of Y at the point x¼5 will be some-

where between 4.6393 and 9.4245.
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EXERCISES 8.4
8.4.1. The following are midterm and final examination test scores for 10 calculus

students, where x denotes the midterm score and y denotes the final score for
each student.

x 68 87 75 91 82 77 86 82 75 79

y 74 89 80 93 88 79 97 95 89 92

Obtain a 95% prediction interval for x¼92 and interpret its meaning.

8.4.2. The following data give the annual incomes (in thousands of dollars) and

amounts (in thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

Obtain a 90% prediction interval for x¼59 and interpret its meaning.

8.4.3. For the following data, construct a 95% prediction interval for x¼12.

x 1 3 5 7 9 11

y 16 36 43 65 80 88

8.4.4. The data given below are from a random sample of height (in inches) and

weight (in pounds) of seven basketball players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Construct a 99% prediction interval for height equal to 90. Interpret the

result and state any assumptions.

8.4.5. For the data in Exercise 8.2.10, obtain a 95% prediction interval for the age,

x¼85, interpret and state any assumptions.

8.4.6. For the CO2 emission data of Exercise 8.3.7, construct a 95% prediction

interval for the year 2013 emission.

8.5 CORRELATION ANALYSIS
Using the regression model, we can evaluate the magnitude of change in the depen-

dent variable due to certain changes in the independent variables. One of the main

assumptions we have used is that the independent variables are known. However,
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there are problems where the x-values as well as the y-values are assumed by random

variables. This would be the case, for example, if we study the relationship between

secondhand smoking and the incidence of a certain disease. Here, basically, one

treats X as random, and hence the simple linear regression model is

Y¼ b0 + b1X + e

This implies that

E YjX¼ xð Þ¼ b0 + b1x

and one looks for dependence ofX andY. Oncewe have determined that there is a rela-

tionship between the variables, the next question that arises is how closely the vari-

ables are associated. A measure of the amount of linear dependency of two random

variables is the correlation. The correlation coefficient tells us how strongly two vari-

ables are linearly related. The statistical method used to measure the degree of corre-

lation is referred to as correlation analysis. We will assume that the vector random

variable (X, Y) has a bivariate normal distribution. In this case, it can be shown that

E YjX¼ xð Þ¼ b0 +b1x:

At times, our interest may not be in the linear relationship; rather, we may merely

want to know whether X and Y are independent random variables. If (X, Y) has a
bivariate normal distribution, then testing for independence is equivalent to testing

that the correlation coefficient, r¼sxy/(sxsy), is equal to zero. Note that r is positive

if X and Y increase together and r is negative if Y decreases as X increases. If r¼0,

there is no relation between X and Y; if r>0, there is a positive relation between X
and Y (increasing slope); and when r<0, we have a negative relationship (decreas-

ing slope). Thus, the correlation coefficient can be used to measure how well the lin-

ear regression model fits the data.

Let (X1, Y1), (X2, Y2), . . ., (Xn, Yn) be a random sample from a bivariate normal

distribution. The maximum likelihood estimator of r is the sample correlation coef-

ficient defined by r̂ or r,

r¼
Xn

i¼1
Xi�X
� �

Yi�Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi�X
� �2Xn

i¼1
Yi�Y
� �2q

¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p :

(8.7)

Equivalently, we can rewrite Equation (8.7) by

r¼
n
Xn

i¼1
XiYi�

Xn

i¼1
Xi

Xn

i¼1
Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Xn

i¼1
X2
i�

Xn

i¼1
Xi

� �2� �
n
Xn

i¼1
Y2
i�

Xn

i¼1
Yi

� �2� �s :

We can see that �1	 r	1. The value of r could readily be obtained by the calcu-

lations one already has performed for the regression analysis. Observe that the

numerator of r is exactly the same as the numerator of b̂1 derived in Section 8.2.
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Because the denominators of both b̂1 and r are nonnegative, they have the same sign.

It can be shown that this estimator is not unbiased. If the value of r is near or equal to
zero, this implies little or no linear relationship between x and y. On the other hand,

the closer r is to 1 or �1, the stronger the linear relationship between x and y. When

r>0, values of y increase as the values of x increase, and the data set is said to be

positively correlated. When r<0, values of y decrease as the values of x increase,

and the data set is said to be negatively correlated. In this book, we use the term cor-
relation only when referring to linear relationships. In actual practice we can use the
value of r to decide whether it is appropriate to develop linear regression models in a

given situation. As a rule of thumb, if r>0.30 or r<�0.30, we proceed with devel-

oping a linear regression model. However, a much higher or lower value is desirable.

For example, if in a given problem where r¼0.77, it conveys to us that approxi-

mately 77% of the data we have are linearly related.

The probability distribution for r is difficult to obtain. For large samples, this dif-

ficulty could be overcome by using the fact that the Fisher z-transform, given by

z¼ 1

2
ln 1 + rð Þ= 1� rð Þ½ �

is approximately normally distributed with mean mz¼ 1
2
ln[(1+r)(1�r)] and variance

sz¼1/(n�3). Thus, for large random samples, we can test hypotheses about r using

the approximate test statistic:

Z¼ z�mz
sz

¼
1

2
ln

1 + r

1� r

� �
�1

2
ln

1 +r
1�r

� �
1ffiffiffiffiffiffiffiffiffiffi
n�3

p
:

For example, suppose we are interested in testing the hypothesis that the true value of

r is a specific number, say, r0, with a certain value of a. We can proceed to make a

decision by following the procedure given next.

HYPOTHESIS TEST FOR r
One-sided test
H0: r¼r0
Ha: r>r0 or
Ha: r<r0
Test statistic:

Z¼
1

2
ln

1+ r

1� r

� �
� 1

2
ln

1+ r0
1�r0

� �
1ffiffiffiffiffiffiffiffiffiffiffi
n�3

p

Rejection region:
z>za (upper tail region)
z<�za (lower tail region)

Two-sided test
H0: r¼r0
Ha: r¼r0
Test statistic:

Z¼
1

2
ln

1+ r

1� r

� �
� 1

2
ln

1+ r0
1�r0

� �
1ffiffiffiffiffiffiffiffiffiffiffi
n�3

p

Rejection region:
jzj>za/2

Decision: If z falls in the rejection region, reject the null hypothesis at confidence level a.
Assumption: (X, Y) follow the bivariate normal, and this test procedure is approximate.
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EXAMPLE 8.5.1
For the data given in Example 8.2.1, would you say that the variables X and Y are independent? Use

a¼0.05.

Solution
We test

H0 :r¼ 0 versus Ha : r 6¼ 0:

From Example 8.2.1, we have the following summary:

Xn
i¼1

xi ¼ 38;
Xn
i¼1

yi ¼ 46;
Xn
i¼1

xiyi ¼ 709

and

Xn
i¼1

x2i ¼ 408;
Xn
i¼1

y2i ¼ 1302; n¼ 10:

Hence,

r¼
n
Xn

i¼1
XiYi�

Xn

i¼1
Xi

Xn

i¼1
Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Xn

i¼1
X2
i �

Xn

i¼1
Xi

� �2� �
n
Xn

i¼1
Y2
i �

Xn

i¼1
Yi

� �2� �s

¼ 10ð Þ 709ð Þ� 38ð Þ 46ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð Þ 408ð Þ� 38ð Þ2

h i
10ð Þ 1302ð Þ� 46ð Þ2

h ir
¼ 0:99641:

The test statistic is

z¼
1

2
ln

1 + r

1� r

� �
�1

2
ln

1 +r0
1�r0

� �
1ffiffiffiffiffiffiffiffiffiffi
n�3

p

¼
1

2
ln

1 + 0:99641

1�0:99641

� �
�1

2
ln

1 + 0

1�0

� �
1ffiffiffi
7

p

¼ 8:3618:

For za/2¼z0.025¼1.96, the rejection region is jzj>1.96. Because the observed value of the test

statistic falls in the rejection region, we reject the null hypothesis and conclude that at a¼0.05, the
variables X and Y are dependent.

EXERCISES 8.5
8.5.1. The table shows the midterm and final examination test scores for 10 students

from a differential equations class, where x denotes the midterm scores and y
denotes the final scores.

x 68 87 75 91 82 77 86 82 75 79

y 74 89 80 93 88 79 97 95 89 92

4398.5 Correlation Analysis



(a) At 95% confidence level, test whether X and Y are independent.

(b) Find the p-value.
(c) State any assumptions you have made in solving the problem.

8.5.2. The following table gives the annual incomes (in thousands of dollars) and

amounts (in thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

(a) At the 98% confidence level, test whether annual income and the amount

of life insurance policies are independent.

(b) Find the attained significance level.

(c) State any assumptions you have made in solving the problem.

8.5.3. Show that

r¼
n
Xn

i¼1
XiYi�

Xn

i¼1
Xi

Xn

i¼1
Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Xn

i¼1
X2
i�

Xn

i¼1
Xi

� �2� �
n
Xn

i¼1
Y2
i�

Xn

i¼1
Yi

� �2� �s

is not an unbiased estimator of the population coefficient, r.
8.5.4 Using the data in Example 8.2.1:

(a) Compute r, the coefficient of correlation.
(b) Would you say that the variables X and Y are independent? Use a¼0.05.

(c) State any assumptions you have made in solving the problem.

8.5.5 A new drug is tested for serum cholesterol-lowering properties on six

randomly selected volunteers. The serum cholesterol values are given in the

following table.

Before treatment: 232 254 220 200 213 222

After treatment: 212 240 225 205 204 218

(a) At 95% confidence level, test whether X and Y are independent.

(b) Find the p-value.
(c) Calculate the least-squares regression line for these data.

(d) Interpret the usefulness of the model.

(e) State any assumptions you have made in solving the problem.

8.6 MATRIX NOTATION FOR LINEAR REGRESSION
Most real-life applications of regression analysis use models that are more complex

than the simple straight-line model. For example, a person’s body weight may

depend not just on the person’s eating habits; it may depend on additional factors

such as heredity, exercise, and type of work. Hence, we may want to incorporate
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other potential independent variables in the modeling. We now study the situation

where k (>1) independent variables are used to predict the dependent variable.

The model to be studied is of the form

Y¼ b0 + b1x1 + b1x2 + � � �+bkxk + e:
Here, e�N(0, s2). This model is called a multiple regression model.

Let y1, y2, . . ., yn be n independent observations on Y. Then each observation yi
can be written as

yi ¼ b0 +b1xi1 +b2xi2 + � � �+ bkxik + e
where xij is the jth independent variable for the ith observation, i¼1, 2, . . ., n, and ei0s
are independent as in the simple linear regression case. It is sometimes advantageous

to introduce matrices to study the linear equations. Let x0¼1. Define the following

matrices:

X¼

x0 x11 x12 : : x1k

x0 x21 x22 : : x2k

: : : : : :

: : : : : :

: : : : : :

x0 xn1 xn2 : : xnk

2
666666664

3
777777775
, Y¼

y1

y2

:

:

:

yn

2
666666664

3
777777775
,

b¼

b0
b1
:

:

:

bn

2
666666664

3
777777775
, and e¼

e1
e2
:

:

:

en

2
666666664

3
777777775
:

(8.8)

Thus the n equations representing the linear equations can be rewritten in the matrix

form as

Y¼Xb + e:

In particular, for the n observations from the simple linear model of the form

Y¼ b0 + b1x+ e

we can write

Y¼Xb + e,

where

Y¼

y1
y2
:
:
:
yn

2
6666664

3
7777775
, X¼

1 x1
1 x2
1 :
1 :
1 :
1 xn

2
6666664

3
7777775
, e¼

e1
e2
:
:
:
en

2
6666664

3
7777775
, and b¼ b0

b1

� �
:
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We can see that

X0X¼ 1 1 : : : 1

x1 x2 : : : xn

" #
1 x1

1 x2

1 :

1 :

1 :

1 xn

2
66666666664

3
77777777775
¼

n
Xn

i¼1
xiXn

i¼1
xi
Xn

i¼1
x21

2
4

3
5,

where 0 denotes the transpose of a matrix.

Also,

X0Y¼
Xn

i¼1
yiXn

i¼1
xiyi

2
4

3
5:

Let us now go back to the multiple regression model

Y¼ b0 +b1x1 +b1x2 + � � �+ bkxk + e:

The least-squares estimators b̂i of bi for i¼0, 1, 2, . . ., k are the ones that

minimize the sum of squares

SSE¼
Xn
i¼1

e2i ¼
Xn
i¼1

yi� b̂0 + b̂1x1 + b̂2x2 + � � � + b̂kxk
� �h i2

¼ y�Xb̂
� �

0 y�Xb̂
� �

¼ y0y�y0Xb̂� Xb̂
� �

0y + b̂X
� �

0Xb̂:

To minimize SSE with respect to b, we differentiate SSE with respect to b and

equate it to zero. Thus,

@

@b
y0y�y0X0b�b0X0y+X0b0Xbð Þ¼ 0

yielding

X0Xð Þb̂¼X0Y:

Assuming the matrix (X0X) is invertible, we obtain

b̂¼ X0Xð Þ�1
X0Y:

Nowwe summarize the procedure to obtain a multiple linear regression equation.
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PROCEDURE TO OBTAIN A MULTIPLE LINEAR REGRESSION EQUATION
1. Rewrite the n observations

Yi ¼b0 +b1x1 i +b1x2 i + � � � +bkxki, i¼ 1,2, . . . ,n

in the matrix notation as

Y¼Xb+ e

where X, Y , and b are defined in (1).

2. Compute (X0X)�1 and obtain the estimators of b as

b̂¼ X0Xð Þ�1
X0Y:

3. Then the regression equation is

Ŷ¼Xb̂:

EXAMPLE 8.6.1
Using the data given in Example 8.2.1, use the matrix approach to solve the problem of operations.

Solution
From the data of Example 8.2.1 we have

Y¼

�9

�7

�5

�4

2

6

9

13

21

20

2
666666666666664

3
777777777777775

and X¼

1 �3

1 �2

1 �1

1 0

1 2

1 5

1 6

1 8

1 11

1 12

2
666666666666664

3
777777777777775

:

Thus, we can write

X0X¼ 10 38

38 408

� �
X0Y¼ 46

709

� �
X0Xð Þ�1 ¼ 0:1548 �0:0144

�0:0144 0:0038

� �
:

Hence,

b̂¼ X0Xð Þ�1
X0Yð Þ¼ 0:1548 �0:0144

�0:0144 0:0038

� �
46

709

� �

¼ �3:1009
2:0266

� �
¼ b̂0

b̂1

� �
:

Thus, the least-squares line is given by

ŷ¼�3:1009 + 2:0266X,

which is identical to the regression line we obtained in Example 8.2.1.
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EXAMPLE 8.6.2
The following data relate to the prices (Y) of five randomly chosen houses in a certain neighborhood,

the corresponding ages of the houses (x1), and square footage (x2).

Price y in thousands

of dollars Age x1 in years

Square footage x2 in

thousands of square feet

100 1 1

80 5 1

104 5 2

94 10 2

130 20 3

Fit a multiple linear regression model

Y¼b0 +b1x1 +b2x2 + e

to the foregoing data.

Solution
We have

Y¼

100

80

104

94

130

2
6666664

3
7777775
, X¼

1 1 1

1 5 1

1 5 2

1 0 2

1 20 3

2
6666664

3
7777775
,

X0X¼
5 41 9

41 551 96

9 96 19

2
64

3
75, and X0Y¼

508

4560

966

2
64

3
75:

and

X0Xð Þ�1 ¼
2:3076 0:1565 �1:8840
0:1565 0:0258 �0:2044

�1:8840 �0:2044 1:9779

2
4

3
5:

Hence,

X0Xð Þ�1
X0Yð Þ¼

66:1252
�0:3794
21:4365

2
4

3
5:

Thus, the regression model is

y¼ 66:12�0:3794x1 + 21:4365x2:

8.6.1 ANOVA FOR MULTIPLE REGRESSION
As in Section 8.3, we can obtain an ANOVA table for multilinear regression (with k
independent or explanatory variables) to test the hypothesis

H0 : b1 ¼ b2 ¼ �� � ¼ bk ¼ 0
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versus

Ha : At least one of the parameters bj 6¼ 0, j¼ 1, . . . ,k:

The calculations for multiple regression are almost identical to those for simple

linear regression, except that the test statistic (MSR)/(MSE) has an F(k, n�k�1)

distribution. Note that the F-test does not indicate which of the parameters bj 6¼0,

except to say that at least one of them is not zero. The ANOVA table for multiple

regression is given by Table 8.4.

EXAMPLE 8.6.3
For the data of Example 8.6.2, obtain an ANOVA table and test the hypothesis

H0 :b1 ¼ b2 ¼ 0 versus Ha : Atleastoneof thebi 6¼ 0, i¼ 1,2:

Use a¼0.05.

Solution
We test H0: b1¼b2¼0 versus Ha: At least one of the bi 6¼0, i¼1, 2.Here n¼5, k¼2.UsingMinitab,

we obtain the ANOVA table (Table 8.5). Based on the p-value,we cannot reject the null hypothesis at
a¼0.05.

EXERCISES 8.6
8.6.1. Given the data

X1 X2 y
3 1 4

2 5 3

3 3 6

1 2 5:

Table 8.4 ANOVA Table for Multiple Regression

Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean Sum of
Squares F-Ratio

Regression (Model) k SSR MSR¼ SSR

df

MSR

MSE

Error (Residuals) n�k�1 SSE
SSE

df
Total n�1 SST

Table 8.5 ANOVA Table for Home Price Data

Source of
Variation

Degrees
of
Freedom

Sum of
Squares

Mean
Sum of
Squares F-Ratio p-Value

Regression (Model) 2 956.5 478.2 2.50 0.286

Error (Residuals) 2 382.7 191.4

Total 4 1339.2
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(a) Write the multiple regression model in matrix form.

(b) Find X0X, (X0X)�1, and X0y.
(c) Estimate b.

8.6.2. A study is conducted to estimate the demand for housing (y) based on current
interest rate X1 and the rate of unemployment. The data in Table 8.6.1 are

obtained.

(a) Fit the multiple regression model

y¼ b0 +b1x1 +b1x2 + e:

(b) Test whether the model is significant.

8.6.3. The following data give the annual incomes (in thousands of dollars) and

amounts (in thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

Calculate the least-squares regression line for these data using matrix

operations.

8.6.4. The following is a random sample of height (in inches) and weight (in

pounds) of seven basketball players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data using matrix

operations.

8.7 REGRESSION DIAGNOSTICS
In the previous sections, we derived least-squares estimators for the parameters in the

linear regression model. These estimators are useful as long as we can determine (1)

how well the model fits the data and (2) how good our estimates are in providing

possible relationships between variables of interest. Some of these problems are

Table 8.6.1 Housing Demand, Interest Rate, and Unemployment Rate

Units Sold Interest Rate (%) Unemployment Rate (%)

65 9.0 10.0

59 9.3 8.0

80 8.9 8.2

90 9.1 7.7

100 9.0 7.1

105 8.7 7.2
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discussed in Chapter 14 in a unified manner. We now briefly discuss some aspects of

the adequacy of the simple linear regression model. In multiple regression, in addi-

tion to the problems discussed here, there are other problems, such as collinearity and

model specification (inclusion of all relevant variables, as well as exclusion of

irrelevant variables), that need to be examined. They are beyond the level of this text.

Many graphical methods and numerical tests dealing with these problems are

available in the literature and are often called regression diagnostics. Most of the

major statistical software packages incorporate these tests, making it easier to

perform regression diagnostics so as to detect potential problems.

We have seen that the (ordinary) least-squares regression model must meet the

following assumptions.

1. Linearity. The existence of a linear relationship between x and y is the basis of
the simple linear regression model. A simple method to test for linearity is to

draw a scatterplot of data points. As we explained in Section 8.2, we could also

plot residual ei versus xi or Ŷi. A symmetric trend in the plot of the residuals

versus the explanatory variable or the fitted values indicates there is a problem

with the obtained regression model. For a correct model, the residuals should

center around zero across the explanatory variables and the fitted values. The

degree of linear relationship can be ascertained by the correlation coefficient, r,
given in Section 8.5 or by using the value of the coefficient of determination r2,
explained in Project 8B. Most statistical software packages give the value of r2

(refer to outputs given in Section 8.9). The closer the value of r2 is to 1, the better
the least-squares equation ŷ¼ b̂1x + b̂0 performs as a predictor of y.

2. Homoscedasticity (homogeneity of variance). This assumption says that the

variance of the error term remains constant across all values of x. In this case we
know by the Gauss-Markov theorem that the least-squares estimators b̂0 and b̂1
are the best linear unbiased estimators of b0 and b1. A frequently used graphical

method is to draw the residuals versus a fitted plot. This can be easily done using

statistical software packages. The graph of residuals ei versus fitted values Ŷi or

explanatory variable xi indicates a change in the spread of residuals as Ŷ or x
changes. It may look like Figure 8.7.

If the variances of yi values are not constant, the inferences we made, such as

confidence intervals on means, prediction, and so forth, are off. The severity of this

discrepancy depends on the degree of the assumption violation. If we see that the

patternofdatapointsonlychangesslightly, thatwill indicateamildheteroscedasticity.

Two numerical tests for heteroscedasticity are explained in Section 14.4.3.

3. Independence of ei and ej, for i 6¼ j. This assumption specifies that the errors

associated with one observation should not be correlated with the errors of any

other observation. In general, whether the two samples are independent of each

other is decided by the structure of the experiment from which they arise.

Violation of the independence assumption can occur in a variety of situations.

For example, if we take a survey on a certain issue on children’s education from

one particular school, these observations may reflect some pattern, thus violating
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the independence assumption. If data are collected on the same variable over

time, then the assumption of independence will be violated. Project 12B explains

a run test for check of this assumption. Also, see Section 14.4.4.

4. Normality of the errors. This assumption specifies that the distribution of the ei
values shouldbenormal.This assumption is crucialwhen sample size is small if thep-
value for the test is to be valid. For large samples, by the Central Limit Theorem this

assumption becomes less important unless the prediction of a single value of y is
involved. Thus a test of normality is necessary mainly when the t-test is used.
Section 14.4.1 explains some of the tests for normality. A simple way is to draw a

probabilityplot for theerrors toconformto theassumptionofnormality. Ifweobserve

nonnormality, one of the ways to overcome the problem is to use data transformation

such as logarithmic transformation, as explained in Section 14.4.2, and perform the

regression analysis on the transformed data. Sometimes nonparametricmethodsmay

be more appropriate, but we will not deal with this topic in this book.

Another important issue is the existence of influential observations, individual obser-
vations that have a strong influence on estimated coefficients. If a single observation

substantially changes our results, we need to do further investigation. The ordinary

least-squares method is quite sensitive for outlying observations, both for indepen-

dent variables and for dependent variables, and can have an adverse effect on the

estimate. In higher dimensional data, these outlying observations can remain unno-

ticed. This aspect in one explanatory variable case is discussed in Project 8C. One of

the simple ways to identify such observations is to draw a scatterplot. In the scatter-

plot, if we see a data point that is farther away from the rest of the data points, that is

an indication of possible influential points.
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FIGURE 8.7

Scatterplot of fitted values versus residuals.
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The natural question is, if we find that the data violate one or more of the assump-

tions, what can we do about it? We have already explained that violation of the nor-

mality assumption in large samples is not an issue unless prediction is involved,

because prediction depends on normality of an individual observation. Thus, if the

inferences are based on the t- or F-tests or prediction is involved, we may be able

to transform Y to Y0 to achieve normality. If we have predicted Y0, then back-transform
to predict Y. If we observe nonlinearity of data, we may be able to transform x to x0 ¼
h(x) such that Y is linear in x0, or consider a polynomial model in x, in which case the
ideas of multiple linear regression may be utilized. Robust estimates of variances of

b0 and b1 or the method of weighted least squares may be used to deal with the case of

nonconstant variance.Often careful experimental designcouldbedone to removepos-

sible correlation in errors. There are also robustmethods available for correlation anal-

ysis. We refer to specialized books on regression methods for further details on these

issues. If we detect influential observations, there are statistical techniques available,

such as least trimmed squares estimators, to deal with outlying observations.

8.8 CHAPTER SUMMARY
In this chapter, we first derived the least-squares line and its properties. Then we

learned about the confidence intervals for the coefficients in the regression model

and did hypothesis tests on the values of the coefficients. We introduced the matrix

notation for linear regression as well as for multiple regression. We discussed how to

predict a particular value of Y for a given value of X. In order to study the dependence
of X and Y, we presented correlation analysis.

The following are some of the key definitions we have used in this chapter.

• Predictors.

• Response variable.

• Regression analysis.

• Multiple linear regression model.

• Simple linear regression model.

• Sum of squares for errors (SSE).

• Sum of squares of the residuals.

• Least-squares line.

• Least-squares equations.

• Normal equations.

• Best linear unbiased estimator (BLUE).

• Correlation analysis.

The following important concepts and procedures were discussed in this chapter:

• Procedure for regression modeling.

• Procedure for fitting a least-squares line.

• Properties of the least-squares estimators for the model Y¼b0+b1x+ e.
• The Gauss-Markov theorem.
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• Procedure for obtaining confidence intervals of b0 and b1.
• Procedure to obtain a multiple linear regression equation.

• Prediction interval for the response variable Y.
• Hypothesis testing for correlation, r.
• Linearity.

• Homoscedasticity.

• Independence of ei and ej, for i 6¼ j.
• Normality of the errors.

• Influential observations.

8.9 COMPUTER EXAMPLES
8.9.1 EXAMPLES USING R

EXAMPLE 8.9.1
For the following data, use the method of least squares regression to fit a straight line to the accompa-

nying data points. Give the estimates ofb0 andb1. Plot the points and sketch the fitted least-squares line.

Sample (x) �1 0 2 �2 5 6 8 11 12 �3

Sample (y) �5 �4 2 �7 6 9 13 21 20 �9

This example assumes you put the data into variables x and y. Please modify your code

appropriately.

R Code:

model¼lm(y�x);

summary(model);

Solution

From the output below the estimate of b0 is�3.10091, and the estimate of b1 is 2.02656. Hence, the
regression line is ŷ¼�3:10091 + 2:02656x

Output:

Residuals:

Min 1Q Median 3Q Max

�1.21775 -0.70220 0.03452 0.17394 1.80880

Coefficients:

Estimate Std. Error t value Pr(>jtj)
(Intercept) �3.10091 0.38882 �7.975 4.47e-05 ***

x 2.02656 0.06087 33.292 7.23e-10 ***

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9883 on 8 degrees of freedom

Multiple R-squared: 0.9928, Adjusted R-squared: 0.9919

F-statistic: 1108 on 1 and 8 DF, p-value: 7.232e-10
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EXAMPLE 8.9.2
Now obtain the fitted regression line, using results from the previous example.

This example assumes you have your linear model stored in the variable model from the previous

example. This example also assumes you have the data from the previous example stored in x and y.

Please modify your code appropriately.

R Code:

Yhat¼predict(model,data¼x);

plot(x,y);

lines(x,yhat);

c¼confint(model); New command for confidence interval of model estimates

m¼model;

m$coefficients[1]¼c[1];

lines(x,predict(m,data¼x),col¼”blue”);

m$coefficients[1]¼c[3];

lines(x,predict(m,data¼x),col¼”blue”);

m¼model;

m$coefficients[2]¼c[2];

lines(x,predict(m,data¼x),col¼”red”);

m$coefficients[2]¼c[4];

lines(x,predict(m,data¼x),col¼”red”);

Output:

We obtain a graph with confidence intervals for the intercept in blue and confidence intervals for the
slope in red. The coefficient of determination r2 is 0.9928, and the p-value is small suggesting the

model fit pretty good.
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EXAMPLE 8.9.3
In this example we’ll be using matrix multiplication to preform linear regression. The follow-

ing is a random sample of height (in inches) and weight (in pounds) of several basketball

players.

Sample (x) ¼ 73 83 77 80 85 71 80

Sample (y) ¼ 186 234 208 237 265 190 220

Calculate the least-squares regression line for this data. This example assumes you have placed

the data into variables x and y. Please modify your code appropriately.

R Code:

library(’MASS’); Required for ginv() function

x¼cbind(c(1:length(x))*0+1,x); Creates a matrix with a column of 1's for the intercept

b¼ginv(t(x)%*%x)%*%t(x)%*%y; Store coefficients into b

yhat¼x%*%b; Calculate yhat using the regression equation

plot(x[,2],y);

lines(x[,2],yhat);

Output:

Looking at the coefficients, we see that b̂0 ¼�188:476 and b̂1 ¼ 5:208.Hence, the regression line is
given by ŷ¼�188:476+ 5:208x. It is more difficult to preform confidence intervals and other tasks

since this is done using matrices instead of model objects.

260

240

220

y

200

72 74 76 78
x

80 82 84
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EXAMPLE 8.9.4
Consider the following advertisement expense versus total sales data.

Year

Advertising

Cost ($)
Yearly Sales

Volume (Units)

1999 20,210 112,485

2000 22,469 118,332

2001 23,982 122,435

2002 24,645 125,569

2003 24,988 125,880

2004 25,250 127362

2005 25,978 125,967

2006 26,556 127,252

2007 26,978 127,456

2008 27,125 127,789

2009 27,461 128,313

2010 28,120 128,662

2011 28,888 128,879

2012 29,200 129,290

Use the method of least-squares regression to fit a straight line to the accompanying data points.

Plot the points and sketch the fitted least-squares line. Interpret the output.

R-code

>x<�c(22469,23982,24645,24988,25250,25978,26556,26978,27125,27461,28120,28888,29200)

>y<�c(118332,122435,125569,125880,127362,125967,127252,127456,127789,128313,

128662,128879,129290)

> model¼ lm(y�x)

> summary(model)

8.9.2 MINITAB EXAMPLES

EXAMPLE 8.9.5
For the data in Example 8.2.1, use the method of least squares to fit a straight line to the accompanying

data points. Give the estimates of b0 and b1. Plot the points and sketch the fitted least-squares line.

Solution
Enter independent variable, x, in C1 and the response variable, y, in C2. Then:

Stat > Regression > Regression. . . > in Response: type C2, and in Predictors: type C1 > click

OK.

Now to obtain the fitted regression line, use the following procedure:

Stat>Regression>Fitted Line Plot. . .> inResponse(Y): typeC2, and in Predictors(X): typeC1

> click Linear OK.

If in addition, we need, say, 95% confidence and predictor bands, then use

Stat> Regression> Fitted Line Plot. . .> in Response(Y): type C2, and in Predictor(X): type C1

> click

Linear > click options. . . > click Display confidence bands and Display predictor bands > in

Title: type a title for the graph and OK > OK.
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8.9.3 SPSS EXAMPLES
A detailed explanation of regression methods including diagnostics using SPSS can

be obtained at the site: http://www.ats.ucla.edu/stat/spss/webbooks/reg/.We will just

demonstrate a simple case with an example.

EXAMPLE 8.9.6
The following is a random sample of height (in inches) and weight (in pounds) of seven basketball

players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data using SPSS

Solution
Enter height in column 1 and weight in column 2. Then

Analyze > Regression > Linear. . . > move var00002 to dependent:, and var00001 to

Independent(s): > click OK.

8.9.4 SAS EXAMPLES
For regression analysis, we can use the SAS procs called GLM, which stands for gen-

eral linear model, and REG, which stands for regression. In the following example,

we will give a simplified version of the foregoing procedure. A good explanation of

regression methods including diagnostics using SAS can be obtained at http://www.

ats.ucla.edu/stat/sas/webbooks/reg/.

EXAMPLE 8.9.7
Using the SAS commands, redo Example 8.9.1.

Solution
We can use the following commands.

options nodate nonumber;
data exreg;
INPUT x y @@;
datalines;
�1 �5
0 �4
2 2

�2 �7
5 6
6 9
8 13

11 21
12 20
�3 �9
;
proc reg data¼exreg;

title ‘Regression of Y on X’;
model y¼x / p clm;
run;
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We obtain the following output.

Regression of Y on X

The REG Procedure
Model: MODEL1

Dependent Variable: y
Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 1082.58589 1082.58589 1108.34 <.0001

Error 8 7.81411 0.97676
Corrected Total 9 1090.40000
Root MSE 0.98831 R-Square 0.9928
Dependent Mean 4.60000 Adj R-Sq 0.9919

Coeff Var 21.48508

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > jtj
Intercept 1 –3.10091 0.38882 �7.98 <.0001

x 1 2.02656 0.06087 33.29 <.0001

Regression of Y on X
The REG Procedure

Model: MODEL1
Dependent Variable: y

Output Statistics
Dep Var Predicted Std Error

Obs y Value Mean Predict 95% CL Mean Residual
1 –5.0000 –5.1275 0.4278 –6.1141 –4.1409 0.1275
2 –4.0000 –3.1009 0.3888 –3.9975 –2.2043 0.8991
3 2.0000 0.9522 0.3312 0.1885 1.7159 1.0478
4 –7.0000 –7.1540 0.4715 –8.2413 –6.0667 0.1540
5 6.0000 7.0319 0.3210 6.2917 7.7720 –1.0319
6 9.0000 9.0584 0.3400 8.2743 9.8425 –0.0584
7 13.0000 13.1115 0.4038 12.1804 14.0427 –0.1115
8 21.0000 19.1912 0.5383 17.9499 20.4325 1.8088
9 20.0000 21.2178 0.5889 19.8597 22.5758 –1.2178
10 –9.0000 –9.1806 0.5187 –10.3766 –7.9845 0.1806

Sum of Residuals 0
Sum of Squared Residuals 7.81411
Predicted Residual SS (PRESS) 14.18340

By looking at the parameter estimates in the foregoing output, we see that an

intercept value of �3.10091 is the estimate of b0, and the estimate of b1 is

2.02656, corresponding to the variable x. For each value of x, the actual value

and predicted value of y are given as the output statistics.

It is important to note that the presentation of results of analysis in a simple way is

as important as the analysis itself. For example, if one is interested only in a simple

linear regression, most of the output values in the foregoing output may not be

necessary. All the values until the parameter estimates are giving us the analysis

of variance results, and all the values in the REG procedure are dealing with
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prediction and confidence intervals. For clarity and simplicity of report, we may only

need to report the regression line, and perhaps the graph of the line.

If we need the plot of the points (x, y), add the following commands to the pre-

vious program. We will not give the corresponding graph.

proc plot data¼exreg;

title ‘Plot of Y Vs. X’;

plot y*x;

run;

If we need the graph of the regression line along with, say, 95% prediction and

confidence intervals, we add the following.

proc gplot data¼exreg;

plot y*x

y*x

y*x / overlay frame vaxis¼axis1 haxis¼axis2;

symbol1 v¼�h¼1.5 i¼none c¼black;

symbol2 v¼none i¼rlclm95 c¼red;

symbol3 v¼none i¼rlcli95 c¼blue;

axis1 order ¼ (�5 to 14 by 1)

offset¼(1)

label¼(h¼1.5 f¼duplex);

axis2 order¼(�10 to 20 by 1)

offset¼(1)

label¼(h¼1.5 f¼duplex);

title h¼1.5

’Effect of X on Y’;

title2 h¼1.2 f¼duplex

’Common regression line with 95% confidence

interval’;

title3 h¼1.5 f¼duplex

’Regression line is predicted Y¼�3.1011

+2.0266X’;

run;

PROJECT FOR CHAPTER 8
8A. CHECKING THE ADEQUACY OF THE MODEL BY SCATTERPLOTS
If the regression model is adequate, then the fitted equation can be used to make

inferences. Otherwise, the inferences made will be practically useless. Note that

the residuals give all the information on lack of fit. Figures 8.5 and 8.6 give an indi-

cation of good fit and misfit.

(i) Collect a couple of real-life data and find a regression line for each.

(ii) Draw the scatterplot for the residuals ei versus x and determine whether the

regression lines obtained in (i) are a good fit or not.
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8B. THE COEFFICIENT OF DETERMINATION
One of the ways to measure the contribution of x in predicting y is to consider how

much the prediction errors were reduced by using the information provided by the

variable x. The quantity called the coefficient of determination measures how well

the least-squares equation ŷ¼ b̂1x+ b̂0 performs as a predictor of y. If x contributes
no information for predicting y, then the best prediction for values of y is simply the

sample mean y. The resulting sum of squares of deviation for this model ŷ¼ y is Syy ¼Pn
i¼1 yi� yð Þ2: In the case where x contributes information for predicting y, then we

have seen that the sum of squares of deviation for the model ŷ¼ b̂1x+ b̂0 is

Syy ¼
Pn

i¼1 yi� ŷið Þ2: It can be shown that
Pn

i¼1 yi� ŷið Þ2 	Pn
i¼1 yi� yð Þ2:

The coefficient of determination is the proportion of the sum of squares of devi-

ations of the y-values that can be credited to a linear relationship between x and y.
This is defined by

r2 ¼ Syy�SSE

Syy

¼ 1�SSE

Syy

¼ 1�
Xn

i¼1
yi� ŷið Þ2Xn

i¼1
yi� yð Þ2:

We can see that 0	 r2	1. We can interpret r2 to be the proportion of variability

explained by the regression line. When x contributes no information for predicting

y, Syy and SSE will be nearly equal, and hence r2 will be near to zero. If x contributes
information for predicting y, Syy will be larger than SSE, and hence r

2 will be greater

than zero. Thus, r2¼0.75 means that use of ŷ instead of y to predict y reduced the sum
of squares of deviations of the y-values about their predicted values ŷ by 75%. This

can also be interpreted as meaning that nearly 75% of the variation is explained by

the independent variable x. In general, about (r2
100)% of the sample variation in y
can be attributed to using x to predict y in the linear model. The coefficient of
nondetermination is the percent of variation that is unexplained by the regression

equation and is given by 1� r2.

(i) For Exercises 8.2.2 and 8.2.3, find the coefficient of determination, and discuss

the information contributed by x in predicting y.
(ii) Collect a couple of real-life data and find the corresponding regression lines.

Also draw the scatterplot for ei versus ŷ and determine whether the regression

line obtained is a good fit or not based on the coefficient of determination.

8C. OUTLIERS AND HIGH LEVERAGE POINTS
One of the important aspects of residual analysis is to identify any existence of

unusual observations in a data set. There are two possibilities for a data point to

be unusual. It could be in the response variable (i.e. in the horizontal direction) repre-

senting model failure, or in the predictor variable (i.e. in the vertical direction). It
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should be noted that unusual observations in the horizontal direction occur when we

assume that the independent variable X in the linear model is random. An observation

that is unusual in the vertical direction is called an outlier. An observation that is

unusual in the horizontal direction is called a high leverage point (or just leverage
point).

Consider the following 10 points, which we will call base points, and three

additional points representing an outlier (O), a high leverage point (H), and both

(OH), respectively.

10 Base points O H OH

x �1 0 2 �2 5 6 8 11 12 �3 6 19 19

y �5 �4 2 �7 6 9 13 21 20 �9 30 13 30

Investigate the effect of adding a single aberrant point by running four separate

regressions: (i) regression for 10 base points; (ii) regression for 10 base points plus

O; (iii) regression for 10 base points plus H; and (iv) regression for 10 base points

plus OH. For each of them, find b̂0 and b̂1 as well as the coefficient of determination.

Discuss the effects of each type of outlier on the regression line.
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OBJECTIVE

To study the basic design concepts for experiments and through which we can make

comparisons of treatments with respect to the observed responses.

Genichi Taguchi

(Source: http://www.amsup.com/BIOS/g_taguchi.html)
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Genichi Taguchi (1924-2012) acquired his statistical skills under the guidance of

Prof. Motosaburo Masuyama, one of the best statisticians of his time. After World

War II, Japanese manufacturers were struggling to survive with very limited

resources. Taguchi revolutionized the manufacturing process in Japan through cost

savings. He understood that all manufacturing processes are affected by outside

influences—noise. However, Taguchi realized methods of identifying those noise

sources that have the greatest effects on product variability. Isolating these factors

to determine their individual effects can be a very costly and time-consuming

process. Taguchi devised a way to use the so-called orthogonal arrays to isolate these

noise factors from all others in a cost-effective manner. He introduced the loss func-

tion to quantify the decline of a customer’s perceived value of a product as its quality

declines. Taguchi referred to the ability of a process or product to work as intended

regardless of uncontrollable outside influences as robustness. This was a novel

concept in the DOEs with profound influence in manufacturing. His ideas have been

adopted by successful manufacturers around the globe because of their results

in creating superior production processes at much lower costs.

9.1 INTRODUCTION
In statistics, we are concerned with the analysis of data generated from an experi-

ment. How do we collect data to answer our research questions? What should our

design be? It is desirable to take the necessary time and effort to organize the exper-

iment appropriately so that we have the right type of data and sufficient amount of

data to answer the questions of interest as clearly and efficiently as possible. This

process is called experimental design. We can trace the roots of modern experimental

design to the 1935 publication of the book The Design of Experiments,written by Sir
Ronald A. Fisher. He showed how one could conduct credible experiments in the

presence of many naturally fluctuating conditions such as the soil condition, temper-

ature, and rainfall, in an agricultural experiment. The design principles that were

developed for agricultural experiments were successfully modified and adapted to

industrial, military, and other applications. In modern industry it is essential to man-

ufacture parts efficiently and with practically no defects. As a result, variation reduc-

tion in quality characteristics of these parts has become a major focus of quality and

productivity improvement. Dr Genichi Taguchi pioneered the use of design of exper-

iments (DOE) in designing robust products—those relatively insensitive to changes

in design parameters. Presently, DOE is used as an essential tool for improving the

quality of goods and services. It is important to note that, unless a sound design is

employed, it may be very difficult or even impossible to obtain valid conclusions

from the resulting data. Also, properly designed experiments will generate more pre-

cise data while using substantially fewer experimental runs than ad hoc approaches.
In industrial manufacturing, some of the major benefits of DOE are lower costs,

simultaneous optimization of several factors, fast generation and organization of

quantitative information, and overall quality improvement.
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It is important to clearly identify the particular questions that an experiment is

intended to answer (i.e. the major objective of the experiment) before performing

the experiment. These objectives may be to estimate or predict some unknown

parameters, to explore relationships among various factors, to compare a collec-

tion of effects or parameters, or any combinations of these. When the intention is

to compare parameters, the objective may be to corroborate a hypothesis, or to

explore some simple relationships. In any design, it is necessary to identify the

populations that are to be studied and the type of information about these popula-

tions that will be needed to answer the desired questions. While planning an

experiment to investigate the primary objectives of the investigation, we need

to ensure that the measurement process is simple, the cost of the study is reason-

able, the study can be concluded in a reasonable time frame, and the study pro-

duces reliable data. Because of the complex nature of real-world problems,

planning an effective experiment is not an easy task. The important issues con-

fronting one area, say engineering, will be different from those for another area

such as biology or medicine. As a result, the DOEs can take several forms. In this

chapter, we will follow a general framework. Two of the major distinguishing

elements of DOE are (1) simultaneous variation and evaluation of various factors,

and (2) systematic removal of some of the possible test combinations to cut back

experimental time and cost. Thus, a researcher should ensure that the statistical

design is as simple as possible given the objectives of the experiment and within

the practical constraints such as material, labor, and cost. Some other desirable

criteria of a good design are that it provides unbiased estimates of treatment

effects and the experimental error. In addition, it should be able to detect impor-

tant small differences with sufficient precision, and it should provide an estima-

tion of uncertainty in the conclusions and the confidence with which the result can

be extended to other analogous situations. The experimental design determines

the basic characteristics of the data collected. These data are then processed using

statistical analysis techniques, with the goals of these analyses being determined

by the experimental objectives. Conclusions are obtained by looking at the results

of the statistical analyses.

9.2 CONCEPTS FROM EXPERIMENTAL DESIGN
In this section we introduce some of the basic definitions, methods, and procedures

used in the experimental design. Many of the terms used have an agricultural basis,

because the early development and applications of DOE were in the field of

agriculture.

9.2.1 BASIC TERMINOLOGY
The first step in planning an experiment is to formulate a clear statement of objec-

tives of the test program. The purpose of most statistical experiments is to determine
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the effect of one or more independent variables on the response variable. The main

variable of interest in a study is the response variable, also called an output variable.
These are the dependent variables (also referred to as criteria, effect, or predicted

variable) in an experiment that describes the factors we are interested in predicting

or comparing. The response variable is measured with different values of indepen-

dent variables (representing those factors that are assumed to be the causes of the

outcome) and analyzed to determine whether the independent variables have any

effect. For example, in an agricultural experiment, the crop yield could be the

response variable, whereas the type of soil, temperature, and rainfall could be the

independent variables. We would like also to identify known or expected sources

of variability in the experimental units, because one of the main aims of a designed

experiment is to reduce the effect of these sources of variability on the answers to

questions of interest. Hence, we must make a list of the factors that may affect

the value of the response variable. We must also decide how many observations

should be taken and what values should be chosen for each independent variable

in each individual test run.

Definition 9.2.1 The variables that an experimenter is able to completely control
in the DOE are called independent variables or treatment variables. These are
also called input variables, explanatory variables, or factors.

Basically, factors are independent variables whose effect on the response vari-

able is a main objective of the study. These are control variables selected by the ana-

lyst for comparison. A factor is a general category or type of treatment. Factors can

be either quantitative or qualitative based on whether the variable is measured on a

numerical scale or not. For example, a rice field is divided into six parts, and each

part is treated with a different fertilizer to see which produces the most rice. Here the

response variable is the amount of rice output. The objective of the study is to com-

pare the effects of different fertilizers on the rice output. Thus, the type of fertilizer is

the factor.

Definition 9.2.2 Independent variables that are unknown or known but nonma-
nipulable are called nuisance variables.

The factors, that we could change but we deliberately keep fixed, are called the

constants in the experiment. A factor can have different levels referred to as the treat-
ment or factor levels. Different treatments constitute different levels of a factor.

Levels are the values at which the factors are set in an experiment. The level of a

variable or treatment means its amount or magnitude. For example, if the experimen-

tal units of a medication were given as 2.5, 5, and 10 mg, those amounts would be

three levels of the treatment. Level is also used for categorical variables, such as

drugs I, II, and III, where the three are different kinds of drugs, not different amounts

of the same thing. Suppose four different groups of students are subjected to four

different teaching methods. The students are the experimental units, the teaching

methods are the treatments, and the four types of teaching methods constitute four

levels of the factor “type of teaching.” Note that this is a single-factor experiment, the

factor being the method of teaching.
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Definition 9.2.3 Noise is the effect of all the uncontrolled factors in an
experiment.

In some experiments, all the noise factors are known; however, in most cases

only some of them are known. When an analyst controls the specification of the

treatments and the method of allocating the experimental units to each of the treat-

ments, the experiment is called designed. For example, n rats are randomly

assigned to one of the five dose levels of an experimental drug under investigation.

The analyst can also decide on the number ni of rats for each dose level such thatP
i¼1
5 ni¼n.
Sometimes, conducting a designed experiment may not be practical or ethical.

For example, if an analyst wants to know the relationship between fat content in

a diet and the cholesterol level, it would be unethical and costly as well as time con-

suming to subject human volunteers to different fat-content diets. However, it is pos-

sible to observe the cholesterol levels of people who consume different diets. Care

must be taken to record various other factors, such as exercise habits, age, and gen-

der, before reporting any association between cholesterol levels and fat content of

diets. The experiment is called observational, if the analyst is just an observer of

the treatments on a sample of experimental units. Note that the experimental units
are objects to which treatments are applied.

The crucial difference between an experiment and an observational study for

comparing the effects of treatments is that, in an experiment, the researcher decides

which experimental units receive which treatments, whereas in an observational

study, the researcher simply compares experimental units that happen to be there that

have received each of the treatments. Observational studies are often useful for iden-

tifying possible causes of treatment effects, and they are often cheaper. Their main

disadvantage is that they are less conclusive. Only properly designed and executed

experiments can lead to reliable conclusions. Hence, in general designed experi-

ments are preferred over observational experiments. In designing the experiment,

there are almost always going to be constraints such as budget, time, and availability

of experimental units.

The following example illustrates an observational experiment,where the analyst
has control over the random sampling from the treatment populations as well as the

size of each sample, but has no control over the assignment of the experimental units

to the treatments.

EXAMPLE 9.2.1
In order to compare the risk-taking tendency of the people that invest in mutual funds, samples are

taken of individuals from three income groups—low income class, middle income class, and high

income class. A score is given based on the percentage of their investment allocation on different

types of mutual funds, such as large-cap, mid-cap, small-cap, hybrid, and specialty. The mean score

for each income group is calculated. Identify each of the following elements: response, factors and
factor type(s), treatments, and experimental units.

Continued
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Solution
The response is the variable of interest, which is the score given to each individual investor. The only

factor investigated is the income class. This is a qualitative variable. The three income classes rep-

resent the levels of this factor. The treatment is the percentage investments in different types of
mutual funds, such as large-cap, mid-cap, small-cap, hybrid, and specialty. The experimental unit

is the individual investor.

There are single-factor experiments and multifactor experiments. The previous

example was a case of a single-factor experiment. Single-factor experiments have only

one independent variable. Another example of a single-factor experiment is when we

are interested in the effect of size of the screen of a computer monitor on the reading

speed. In this case, the size of the screen is the single factor. If there are only two sizes,

say 15 and 17-in. monitors, that wewish to compare, tests such as the two-sample t-test
could be used to compare average reading speed. If there are more than two sizes of

monitors, then the one-way analysis of variance (ANOVA) methods described in

Chapter 10 could be used for analysis of the resulting data.

Even though the single-factor experiments are simple and elegant, they are costly

and not very effective when there is more than one independent variable. Efficient

use of resources is achieved through multifactor experiments in comparison to con-

ducting many single-factor experiments. A multifactor experiment involves two or

more independent variables and a dependent variable. Also, a greater range of ques-

tions could be answered using multifactor experiments. The resulting data are ana-

lyzed using ANOVA as described in Chapter 10. The following is an example of a

multifactor experiment.

EXAMPLE 9.2.2
In order to study the conditions under which a particular type of commercially raised fish reach

maximum weight, an experiment is conducted at four water temperatures (60, 70, 80, and 90 �F)
and four water salinity levels (1%, 5%, 10%, and 15%). Fish are raised in tanks with specific salinity

levels and temperature levels. There are 32 tanks and one of the four temperatures and one of the four

salinity levels are assigned randomly to each tank. The weights are recorded at the beginning of the

experiment and after two months. Identify each of the following elements: response, and factors and

factor type(s). Write all the treatments from the factor-level combinations.

Solution
The response is the variable of interest, which is the weight gain of a fish. This experiment has two

factors: water temperatures at four levels and water salinity at four levels. There are 4�4¼16 pos-

sible treatments:

60�F,1%ð Þ 60�F,5%ð Þ 60�F,10%ð Þ 60�F,15%ð Þ
70�F,1%ð Þ 70�F,5%ð Þ 70�F,10%ð Þ 70�F,15%ð Þ
80�F,1%ð Þ 80�F,5%ð Þ 80�F,10%ð Þ 80�F,15%ð Þ
90�F,1%ð Þ 90�F,5%ð Þ 90�F,10%ð Þ 90�F,15%ð Þ:

It should be noted that there may be other factors, such as the density of the fish pop-

ulation, the initial size of the fish, and the type of feeding that may affect weight gain

of fish.
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Definition 9.2.4 The experimental error explains the variation in the responses
among experimental units that are assigned the same treatment and observed under
identical experimental conditions.

Experimental error can occur for many reasons, among them (1) the difference in

the devices that record the measurements, (2) the natural dissimilarities in the exper-

imental units prior to their receiving the treatment, (3) the variation in setting the

treatment conditions, and (4) the effect on the response variable of all extraneous

factors other than the treatment factors.

In order to construct confidence intervals on the treatment population means

and to test hypotheses, it is necessary to obtain an estimate of the variance of exper-

imental design. In a single-factor experiment with k levels, the estimate of the var-

iance of experimental design could be taken as the pooled variance of responses

from experimental units receiving the identical treatments. A large variance of

experimental error will compromise the accuracy of inferences made from

the experiments. Also, large amounts of experimental error make it difficult to

determine whether the treatment has produced an effect or not, so one of the design

goals is to reduce the experimental error. Bad execution of a design can lead to

the whole experiment becoming a waste of time and resources. It is necessary to

implement techniques to reduce experimental error in order to obtain more acc-

urate inferences. One approach to reducing experimental error is to take extra care

in conducting the experiment. The effect of experimental error can be reduced

by using more homogeneous experimental materials (if available), and using

the fundamental principles of replication, randomization, and blocking (see

Section 9.2.2).

The one-way ANOVA (in a single-factor experiment at several levels) enables one

to compare several groups of observations, all of which are independent with the pos-

sibility of a different mean for each group. A test of significance is whether or not all

the means are equal. Two-way ANOVA is a method of studying the effects of two

factors on the response variable.

There are other terms that are important in different applications. For example,

in the medical field, the terms blinding, double-blind, and placebo are used. In a

medical experiment, the comparison of treatments may be distorted if the patient,

the person administering the treatment, and those evaluating it knowwhich treatment

is being allocated to which patient. It is therefore necessary to ensure that the patient,

and/or the person administering the treatment, and/or the trial evaluators do not

know (are blind to) which treatment is allocated to whom. If only the patient is

unaware of the treatment, it is called blinding, and if both the patient and the person
administering the treatment are blind to which treatment is being allocated, it is

called double-blinding. In order to study the effect of a particular drug, experi-

menters divide the study population into two groups and treat one group with the

drug and the other group with a so-called placebo, which could be just sugar pills.

In order to clarify the objective of a design, it is necessary for an experimental

designer to consult a wide range of people, especially those affected by the problem

to be solved.
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9.2.2 FUNDAMENTAL PRINCIPLES: REPLICATION, RANDOMIZATION,
AND BLOCKING
A good design of an experiment makes efficient use of resources to gather the data

needed to meet the goals of the study. There are three fundamental principles that

need to be considered in a good experimental design. They are replication, random-
ization, and blocking. Replication and blocking increase precision in the experiment,

whereas the randomization reduces the bias.

Definition 9.2.5 Replicationmeans that the same treatment is applied (i) several
times to the same experimental units, or (ii) one time to several similar experimental
units, called replicate units.

Replications are necessary for the estimation of the error variance in an experi-

ment against which the differences among treatments are assessed. If an experiment

is intended to test whether or not a number of treatments differ in their effects, these

treatments must be applied to replicate units of the experiment. In order to show that

two treatments have different mean effects, we need to measure several samples

given the same treatment. For example, observing that one plant of a particular geno-

type is more resistant to a disease than another plant of a different genotype does not

convey anything about the difference between the mean disease resistances of the

two genotypes. This difference could have been caused by the environment or the

inoculation procedure affecting the two plants differently. Hence, to make any infer-

ence about the mean difference between the genotypes, we have to test several plants

of each type. Thus, increasing the number of replications increases the reliability of

inferences drawn from the observed data. It is necessary to increase the number of

replications with varied experimental conditions to decrease the variance of the treat-

ment effect estimates and also to provide more power for detecting differences in

treatment effects. We should not confuse multiple observations of the same exper-

imental unit with replication. Replication involves applying the treatment to a num-

ber of experimental units.

Definition 9.2.6 A block is a portion of the experimental unit that is more likely
to be homogeneous within itself than with other units.

Blocking refers to the distribution of the experimental units into blocks in such a

way that the units within each block are more or less homogeneous. The experi-

menter uses information of the possible variability among units to group them in such

a way that most of the unwanted experimental error can be removed through the

block effect.

For blocking to be effective, the units should be arranged so that within-block

variation is much smaller than between-block variation. As an example, suppose

a researcher wishes to compare the yields of rice for four different kinds of fertilizers.

In order to minimize the effect of environmental and soil conditions, the field may be

divided into smaller blocks and each block is further parceled into four plots. Each

variety of fertilizer is applied in each block with one in each parcel. This method

ensures that the external conditions from plot to plot within a block will be relatively

uniform. Then we can use the ANOVAmethods to pool from block to block to obtain
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the within-block information about the treatment differences while avoiding

between-block differences. The relevant analysis is given in Section 10.5. Time

could also be a block factor, because the concentration or expertise could alter as

one carries out a task, such as determining disease levels or scoring microscope

slides.

Definition 9.2.7 Randomization is the process of assigning experimental units
to treatment conditions in an entirely chance manner.

The main objective of randomization is to negate the effects of all uncontrolled

extraneous variables. Usually, randomization is associated with design functions

such as random sampling or selection, random assignment, and random order. Ran-

dom assignment of experimental units to groups tends to spread out differences

between subjects in unsymmetric or random ways so that there is no tendency to give

an edge to any group. In any well-conducted experiment, randomization eliminates

bias from the experiment, enables us to use statistical tests of significance, and cre-

ates valid estimates of experimental error. For instance, suppose we are measuring

the time of flowering of plants in a glass house or in a growth cabinet. If the pots are

arranged so that all the plants of one variety are next to each other, and we observe

that one variety flowers earlier than the rest, does this imply that this variety is inher-

ently earlier-flowering, or does it suggest that the light and temperature conditions in

that part of the cabinet or glass house cause plants to flower early? It is not possible to

tell from an experiment designed in this manner. Randomizing the treatments in time

or space is an insurance policy, to take account of variation that we may or may not

know to exist under the conditions of our experiment. For instance, the levels of light

in growth cabinets vary considerably, so randomizing the layout of the plants of dif-

ferent types is essential to make sure that no one type is consistently exposed to light

and temperature levels that are particularly high or low. Another way of selecting

experimental units is simply to use intact groups, such as all students in a particular

statistics classroom. Results obtained this way may be highly biased and hence not

desirable. In general the process of randomization ensures independent observations,

it should be noted that random assignment does not completely eliminate the prob-

lem of correlated data values.

Now we study some steps that can be used for randomization. Suppose there are

N homogeneous experimental units and k treatments. In order to randomly assign

ri experimental units to the ith treatment with
P

i¼1
k ri¼N, we could use the following

steps.

PROCEDURE FOR RANDOM ASSIGNMENT
1. Number the experimental units from 1 to N.

2. Use a random number table or statistical software to get a list of numbers that are random per-

mutations of the numbers 1 to N.
3. Give treatment 1 to the experimental units having the first r1 numbers in the list. Treatment 2 will

be given to the next r2 numbers in the list, and so on; give treatment k to the last rk units in the list.
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The following example illustrates the random assignment procedure.

EXAMPLE 9.2.3
In order to study the number of hours to relief provided by five different brands (A, B, C, D, and E) of

pain reliever, doses are administered to 25 subjects numbered 1-25 with each brand administered to

five subjects. Develop a design using the random assignment procedure.

Solution
Using Minitab, we obtained the following random permutations of the numbers from 1 to 25.

1 8 7 12 10 25 23 4 6 3

9 21 5 24 18 16 22 14 17 15

20 13 2 11 19

Using the randomized procedure, we obtain the design given in Table 9.1.

That is, subject number 8 will get brand A pain reliever, subject 23 will get brand B pain

reliever, and so forth. We can rewrite Table 9.1 as shown in Table 9.2.

It should be noted that once we create the design, the actual data will contain the number of

hours to relief for each individual.

It is important to note that randomization may not be possible in some cases. Obser-

vational studies may be necessary whenever the researcher cannot use controlled ran-

domized experiments. For example, if we want to study the effect of smoking on lung

cancer, randomization will mean that we should be able to select a group of people

and tell a randomly selected subgroup to smoke and the other subgroup not to smoke.

This is not only practically impossible; it is also unethical to deliberately expose

people to a potentially hazardous substance.

Table 9.2 Random Permutation of Numbers by Brand

Brand Subject

A 1 8 7 12 10

B 25 23 4 6 3

C 9 21 5 24 18

D 16 22 14 17 15

E 20 13 2 11 19

Table 9.1 Random Permutation of Numbers 1 to 25

Subject 1 8 7 12 10 25 23 4 6 3 9 21

Brand A A A A A B B B B B C C

Subject 5 24 18 16 22 14 17 15 20 13 2 11 19

Brand C C C D D D D D E E E E E
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9.2.3 SOME SPECIFIC DESIGNS
In this subsection, we will introduce three specific designs: completely randomized

design, randomized complete block design, and Latin square design. The structure of

the experiment in a completely randomized design is presumed to be such that the

treatments are assigned to the experimental units completely at random.

Example 9.2.1 is one such a design. In order to create a completely randomized

design, follow the procedure given in Section 9.2.2.

The randomized complete block design is a design in which the subjects are

matched according to a variable that the experimenter wants to control. The subjects

are put into groups (blocks) of the same size as the number of treatments. The ele-

ments of each block are then randomly assigned to different treatment groups so as to

reduce the influence of unknown variables. For example, a researcher is carrying out

a study of three different drugs for the treatment of high cholesterol. Suppose she has

45 patients and divides them into three treatment groups of 15 patients each. Using a

randomized block design, the patients are rated and put in blocks of three, based on

the cholesterol level: the three patients with the highest cholesterol are put in the first

block, those with the next highest levels are put in the second block, and so on. The

three members of each block are then randomly assigned, one to each of the three

treatment groups. If there is very little extraneous, systematic variation, complete

randomization allows differences between the mean effects of the treatments to

be estimated with higher precision than other designs. However, it does not allow

for the possibility that there could be some unknown extraneous factors, so if in

doubt, use a randomized complete block design.

Suppose we have k treatments and N experimental units. Further, assume that the

experimental units can be grouped into b groups containing k experimental units, so

thatN¼bk.We could use the following steps for a randomized complete block design.

PROCEDURE FOR RANDOMIZATION IN A RANDOMIZED COMPLETE
BLOCK DESIGN
1. Group the experimental units into b groups (blocks) containing k homogeneous

experimental units.

2. In group 1, number the experimental units from 1 to k and obtain a random permutation of num-

bers 1 to k using a random number generator.

3. In group 1, the experimental unit corresponding to the first number in the permutation receives

treatment 1, the experimental unit corresponding to the second number in the permutation

receives treatment 2, and so on.

4. Repeat steps 2 and 3 for each of the remaining blocks.

We illustrate the step-by-step procedure just given in the following example.

EXAMPLE 9.2.4
In order to study the number of hours to relief provided by five different brands (A, B, C, D, and E) of

pain relievers for pain resulting from different causes [headache (H), muscle pain (M), pain due to

Continued
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cuts and bruises (CB)], doses are administered to five subjects each having similar types of pain.

Create a randomized complete block design. Choose, as blocks, the different types of pain (H,

M, or CB).

Solution
UsingMinitab with k¼5we have generated the random permutations shown in Table 9.3 for each of

the b¼3 blocks of five numbers and assigned the treatments according to the procedure just

explained. As the table indicates, among persons with headache, subject number 3 is treated with
brand A pain killer, and so forth.

In the previous example, we had only one replication of each treatment per block.

This idea can be generalized to have r replications of each treatment per block. Then

the generalized randomized complete block design with k treatments, b blocks, and

r replications with N¼kbr which has kr homogeneous experimental units, can be

randomized as follows.

PROCEDURE FOR A RANDOMIZED COMPLETE BLOCK DESIGN
WITH r REPLICATIONS
1. Group the experimental units into b groups (called blocks), each containing rk homogeneous

experimental units.

2. In group 1, number the experimental units from 1 to rk and generate a list of numbers that are

random permutations of the numbers 1 to rk.
3. In group 1, assign treatment 1 to the experimental units having numbers given by the first r num-

bers in the list. Assign treatment 2 to the experiments having next r numbers in the list, and so on

until treatment k receives r experimental units.

4. Repeat steps 2 and 3 for the remaining blocks of experimental units.

The following example illustrates this procedure.

EXAMPLE 9.2.5
With the following modifications, consider Example 9.2.2. Three groups of subjects are considered,

with each group having 15 subjects. Group I consists of subjects with only headache (H), group II of

subjects only with muscle pain (M), and group III of subjects only pain due to cuts and bruises (CB).

Of the 15 with headache (group I), three are treated with brand A pain killer, three with brand B, and

so forth. Subjects with other types of pain are treated similarly. Here the number of replications is

Table 9.3 Random Permutation of Numbers by Block

H M CB

3(A) 5(A) 1(A)

1(B) 4(B) 2(B)

2(C) 3(C) 4(C)

5(D) 1(D) 3(D)

4(E) 2(E) 5(E)
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three for each type of drug and for each type of pain. Create a randomized complete block design

with three replications.

Solution
Using Minitab, for the group with headache (H), we generate a random permutation of numbers

1 to 15. The first three are given pain killer A, the next three B, and so forth. The process is repeated

for other types of pain killers. The design is given in Table 9.4 where “2(A)” means that patient

2 is given brand A pain killer.

By increasing the number of replications, we can increase the accuracy of esti-

mators of treatment means and the power of the tests of hypotheses regarding differ-

ences between treatment means. However, because of constraints such as cost, time

needed to handle a large number of experimental units, and even availability of

experimental units, it is not realistic to have a large number of replications. It is

then necessary to determine the minimum number of replications needed to meet

reasonable specifications on the accuracy of estimators or on the power of tests of

hypotheses. We give a simple procedure for determining the number of

replications needed.

Let r be the number of replications that we need to determine. Let s be the exper-

imental standard deviation, and E be the desired accuracy of the estimator. Then the

sample size required to be (1�a) 100% confident that the estimator is within E units

of the true treatment mean, m, is

r¼ za=2
� �2ŝ2

E2
:

The values of ŝ could be obtained from past experiments, from a pilot study, or by

using a rough estimator

ŝ¼ largest observation� smallest observationð Þ=4:

Following is an example for determining the appropriate number of replications.

Table 9.4 Random Permutation of Numbers by Brand and Block

H M CB H M CB

2(A) 8(A) 3(A) 15(C) 9(C) 11(C)

14(A) 13(A) 8(A) 7(D) 4(D) 2(D)

10(A) 5(A) 14(A) 5(D) 11(D) 13(D)

8(B) 2(B) 6(B) 6(D) 15(D) 5(D)

12(B) 1(B) 15(B) 3(E) 7(E) 1(E)

11(B) 10(B) 12(B) 9(E) 12(E) 4(E)

4(C) 3(C) 10(C) 13(E) 6(E) 9(E)

1(C) 14(C) 7(C)
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EXAMPLE 9.2.6
A researcher wants to know the effect of class sizes on the mean score in a standardized test. She

wants to estimate the treatment means m1, m2, m3, and m4 such that she will be 95% confident that the

estimates are within 10 points of the truemean score.What is the necessary number of replications to

achieve this goal? It is known from the previous experiments that scores have ranged from 46 to 98.

Solution
A rough estimator of s is

ŝ¼Range

4
¼ 98�46

4
¼ 13:

From the normal table, z0.025¼1.96. The value of E¼10. Thus, the number of replications nec-

essary is

r¼ za=2
� �2ŝ2

E2
¼ 1:96ð Þ2 13ð Þ2

10ð Þ2 ¼ 6:4923ffi 7:

Thus, the researcher should use seven replications of each of the treatments to obtain the

desired precision.

We have used the randomized complete block design when we wanted to control a

single source of extraneous variation and there is only one factor of interest. When

we need to compare k treatment means and there are two possible sources of extra-

neous variation, a Latin square design is the appropriate DOE.

Definition 9.2.8 A k�k Latin square design contains k rows and k columns. The
k treatments are randomly assigned to the rows and columns so that each treatment
appears in every row and column of the design.

It was the famous mathematician Leonhard Euler who introduced Latin squares

in 1783 as a new kind of magic squares. Even though the idea is fairly elementary, a

systematic use of Latin squares to the DOEs was advanced by Ronald A. Fisher only

around 1921. Fisher realized that in a two-dimensional plot of land, the systematic

error due to variation in soil and other factors could be minimized by a suitable Latin

square partition of the plot.

The following example illustrates a case in which the experimental problems

are affected by two sources of extraneous variation, the type of car and type of

driver used.

EXAMPLE 9.2.7
A gasoline company is interested in comparing the effect of four gasoline additives (A, B, C, and D)

on the gas mileage achieved per gallon. Four cars (I, II, III, and IV) and four drivers (1, 2, 3, and 4)

will be used in the experiment. Create a Latin square design.

Solution
We can filter out the variability due to type of cars used by ensuring that in each row only one of the
additive types appears. Also, to filter the driver effect, use each additive only once for each driver.

One such randomization results in the Latin square design given in Table 9.5.

To construct a basic Latin square, one can use the following method, which we will present only

for the 4�4 Latin square of Example 9.2.7.
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PROCEDURE FOR CONSTRUCTING A 4×4 LATIN SQUARE
1. Begin with the first row as A, B, C, and D.

2. Generate each succeeding row by taking the first letter of the preceding row and placing it last,

which has the effect of moving the other letters one position to the left.

3. Randomly assign one block factor to the rows and the other to the columns.

4. Randomly assign levels of the row factor, column factor, and treatment to row positions, column

positions, and letters, respectively.

In step 2 of the foregoing procedure, instead of using the cyclic placement of

rows, we can perform a cyclic placements for the columns. Accordingly, change

the procedures in steps 3 and 4.

The following example illustrates a 4�4 Latin square design.

EXAMPLE 9.2.8
Using the previous procedure, construct a Latin square for the case of Example 9.2.7.

Solution
Following the procedure just given, the Latin square in Example 9.2.7, the basic Latin square is

represented by Table 9.6.

Now one random assignment of cars, I, II, III, and IV, is to the rows 4, 3, 2, and 1 (this is a

random order of numbers 1, 2, 3, and 4) of Table 9.6. This gives Table 9.7.

Continued

Table 9.5 Latin Square Design of Gasoline Additives

Cars

Drivers

1 2 3 4

I D B A C

II C A D B

III B D C A

IV A C B D

Table 9.6 Latin Square Design of Cars and Drivers

Cars

Drivers

1 2 3 4

I A B C D

II B C D A

III C D A B

IV D A B C
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Now one random assignment of the drivers 1, 2, 3, and 4 is to the columns 1, 2, 4, 3 (this is a

random order of numbers 1, 2, 3, and 4) of Table 9.7, resulting in the Latin square shown in

Table 9.8.

Now along with this Latin square, we can represent the corresponding observations (numbers in
parentheses are the gas mileage in miles per gallon) as shown in Table 9.9.

Note that if we use the notation 1 for additive A, 2 for additive B, 3 for additive C,

and 4 for additive D, the Latin square in the previous example can be rewritten as

shown in Table 9.10.

This representation will be convenient if we need to write down a model. In order

to test for the treatment effects, one could use the ANOVA methods discussed in

Chapter 10.

Table 9.7 Latin Square Design of Drivers and Random
Order of Cars

Cars

Drivers

1 2 3 4

I D A B C

II C D A B

III B C D A

IV A B C D

Table 9.8 Latin Square Design of Cars and Random
Order of Drivers

Cars

Drivers

1 2 3 4

I D A C B

II C D B A

III B C A D

IV A B D C

Table 9.9 Latin Square Design of Cars and Drivers with
Gasoline Additive

Cars

Drivers

1 2 3 4

I D(18) A(22) C(25) B(19)

II C(22) D(24) B(26) A(24)

III B(21) C(20) A(22) D(23)

IV A(17) B(24) D(23) C(21)
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For Latin square experiments involving k treatments, it is necessary to include k
observations for each treatment resulting in a total of k2 observations. Table 9.11

shows two examples of Latin squares for n¼3, and n¼5.

We have used the Latin square design to eliminate two extraneous sources of var-

iability. In order to eliminate three extraneous sources of variability, we can use a

design called the Greco-Latin square. Greco-Latin squares are also called orthogo-
nal Latin squares. This design consists of k Latin and k Greek letters. In this design,
we take a Latin square and superimpose upon it a second square with treatments

denoted by Greek letters. In this superimposed square, each Latin letter coincides

with exactly one of each Greek letter. In our gasoline example, if we introduce

the effect of, say, four different days, represented by Greek letters, then

Table 9.12 shows the 4�4 Greco-Latin square.

Wewill not go into more detail on this design, or on the many other similar designs.

When developing an experimental design, it is important for the researcher to

learn more about the terminology as well as the intricacies of the field in which

Table 9.10 Latin Square Design of Cars and Drivers
with Gasoline Additive in Numbers

Cars

Drivers

1 2 3 4

I 4 1 3 2

II 3 4 2 1

III 2 3 1 4

IV 1 2 4 3

Table 9.11 Latin Square for n=5 and n=3

A B C D E

B A E C D

C D A E B

D E B A C

E C D B A

5�5

A B C

C A B

B C A

3�3

Table 9.12 Greco-Latin Squares

Aa Bb Cg Dd
Bd Ag Db Ca
Cb Da Ad Bg
Dg Cd Ba Ab
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the experiment will be performed. It is also important to observe that there are many

other practical constraints affecting the DOEs. For example, experiments are done by

organizations and individuals that have limited resources of money and time. Appro-

priating these resources within the constraints is an integral part of planning an

experiment. Also, many problems are approached sequentially in several stages.

Planning for each stage is built on what has been learned before. Dealing with these

types of issues is beyond the scope of this book.

EXERCISES 9.2
9.2.1. In order to study the conditions under which hash-brown potatoes will absorb

the least amount of fat, an experiment is conducted with four frying durations

(2, 3, 4, and 5 min) and using four different types of fats (animal fat I, animal

fat II, vegetable fat I, and vegetable fat II). The amount of fat absorbed is

recorded. Identify each of the following elements: response, factors, and

factor type(s). Write all the treatments from the factor-level combinations.

9.2.2. A team of scientists is interested in the effects of vitamin A, vitamin C, and

vitamin D on the number of offspring born for a specific species of mice. An

experiment is set up using the same species of mice. The mice are randomly

assigned to three groups. Each mouse in the study gets the same amount of

food and daily exercise and is kept at the same temperature. One group of

mice gets extra vitamin A, another group gets extra vitamin C, and the

remaining group gets extra vitamin D. The supplements are added to their

food. The number of offspring are counted and recorded for each group.

(a) What is the response variable?

(b) What is the factor?

9.2.3. Thirty rose bushes are numbered 1-30. Three different fertilizers are to be

applied to 10 bushes each. Develop a design using the random assignment

procedure.

9.2.4. Three different fertilizers are to be applied to five bushes each for three

varieties of flower plants: gardenia (G), rose (R), and jasmine (J). Create a

randomized complete block design. Choose as blocks the different types of

plants (G, R, or J).

9.2.5. With the following modifications, consider Exercise 9.2.4. Three groups of

flower plants are considered, with each group having nine plants. Group I

consists of gardenia (G), group II consists of rose (R), and group III consists

of jasmine (J). Of the nine gardenias (group I), three are treated with brand A

fertilizer, three with brand B, and three with brand C fertilizer. Other plant

types are treated similarly. Here the number of replications is three for each

type of fertilizer and for each type of plants. Create a randomized complete

block design with three replications.

9.2.6. What are the reasons for using randomization in Exercises 9.2.3–9.2.5?

9.2.7. Suppose a food processing company wants to package sliced pineapples in

cans. They have four different processing plants, say, A, B, C, and D.
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Suppose they have 56 truckloads (numbered 1-56) of pineapples collected

from different parts of the country. In order to get some uniformity in taste,

it is better to randomly assign the trucks to the four plants. Develop a

design using the random assignment procedure.

9.2.8. In Exercise 9.2.1, suppose there are four pans and 25 packets of hash-brown

potatoes. Randomly select six of the 25 packets to be fried with each of

the fat types.

(a) Create a randomized complete block design.

(b) Create a Latin square design.

9.2.9. A chemist is interested in the effects of five different catalysts (A, B, C, D,

and E) on the reaction time of a chemical process. There are five batches of

new material (1, 2, 3, 4, and 5). She decides to study the effect of each

catalyst on each material for five days (1, 2, 3, 4, and 5). Construct a Latin

square design for this experiment.

9.2.10. Suppose a dating service wants to schedule dates for four women, Anna,

Carol, Judy, and Nancy, with Ed, John, Marcus, and Richard on Thursday,

Friday, Saturday, and Sunday in such a way that each man dates each

woman in the four days. Create a Latin square design displaying a schedule

that the dating service could follow.

9.2.11. In order to test the relative effectiveness of four different fertilizer

mixtures on an orange crop, a Florida farmer applies the fertilizer and

measures the yield per unit area when it harvests. The four experiments

cannot be carried out on the same plot of land. Devise a Latin square

arrangement of dividing a single plot into a 4�4 grid of subplots for

administering the fertilizers (labeled randomly A, B, C, and D).

9.2.12. A researcher wants to know the effect of four different types of fertilizers

on the mean number of tomatoes produced. He wants to estimate the

treatment means m1, m2, m3, and m4 such that he will be 90% confident that

the estimates are within five tomatoes of the true mean number of tomatoes.

What is the necessary number of replications to achieve this goal? It is

known from previous experiments that the numbers of tomatoes per plant

have ranged from 20 to 60.

9.3 FACTORIAL DESIGN
In this section, we introduce a treatment design where the treatments are constructed

from several factors rather than just being k levels of a single factor. The treatments

are combinations of levels of the factors. A factorial experiment can be defined as an
experiment in which the response variable is observed at all factor-level combina-

tions of the independent variables. A factorial design is used to evaluate two or more

factors simultaneously. In general, there are three ways to obtain experimental data:

one-factor-at-a-time, full factorial, and fractional factorial. The most efficient design

is the fractional factorials. A simple approach for examining the effect of multiple
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factors is the one-at-a-time approach. The advantages of factorial designs over

one-factor-at-a-time experiments is that they allow interactions to be spotted.

An interaction occurs when the effect of one factor varies with the level of another

factor or with some combination of levels of other factors when there are multiple

factors.

The one-way ANOVA, discussed in the next chapter, enables us to compare

several groups of observations, all of which are independent with the possibility

of a different mean for each group. A test of significance is whether or not all the

means are equal. Two-way ANOVA is a way of studying the effects of two factors

separately, such as their main effects, and together, with their interaction effect.

9.3.1 ONE-FACTOR-AT-A-TIME DESIGN
In one-factor-at-a-time design, one conducts the experiment with one factor at a time.

Here we hold all factors constant except one and take measurements on the response

variable for several levels of this one factor, then choose another factor to vary, keep-

ing all others constant, and so forth. We are familiar with this type of experiment

from undergraduate chemistry or physics labs. One of the drawbacks of this method

is that all factors are evaluated while the other factors are at a single setting. For

example, in the case of Example 9.2.2, we would set a fixed temperature and study

the effect of water salinity on fish weight gains, and then set a fixed water salinity and

vary temperature. All these are time consuming.

EXAMPLE 9.3.1
Consider the following hypothetical data, in which two types of diet (fat, carbohydrates) in two

levels (high, medium) were administered for a week for a sample of individuals. At the end of

the week, each subject was put on a treadmill and time of exhaustion, in seconds, was measured.

The objective was to determine the factor-level combination that will give maximum time of

exhaustion. Table 9.13 gives average time to exhaustion for each combination of diet.

Discuss this as a one-factor-at-a-time experiment to predict average time of exhaustion.

Solution
We can see that the average time of exhaustion decreases when fat content is increased frommedium

to high while holding carbohydrate at medium. The average time of exhaustion also decreases when

carbohydrate content is increased from medium to high while holding fat at medium. Thus, it is
tempting to predict that increasing both fat and carbohydrate consumption will result in a lower

average time of exhaustion. The problem with this reasoning is that the prediction is based on

Table 9.13 Average Time to Exhaustion

Average Time to Exhaustion Fat Carbohydrate

88 High Medium

98 Medium Medium

77 Medium High

74 High High
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the assumption that the effect of one factor is the same for both levels of the other factor. Changing

the fat content frommedium to high, keeping carbohydrate at medium, and the carbohydrate content
from medium to high, keeping fat at medium, reduced the average time of exhaustion by approxi-

mately 10 s. The question then is, can we predict that increasing both fat and carbohydrate content

to high will lower the average time of exhaustion to approximately 67 s? To answer this question, we

need to administer high levels of both diets to a sample and observe the average time of exhaustion.
If it is 67 s, then our observation is correct. However, what if the observation is 74 s? The average

time of exhaustion has been lowered, but not as much. If this happens, we say that the two factors

interact. When factors interact, the effect of one factor on the response is not the same for different
levels of the other factor. Hence, the information obtained from the one-factor-at-a-time approach

would lead to an invalid prediction.

The factor-level combination for a one-factor-at-a-time approach of

Example 9.3.1 can be seen from Figure 9.1.

If there is no interaction, we get Figure 9.2, which shows average time to exhaus-

tion with three given points and a possible point of around 67 s.
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No interaction.
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Definition 9.3.1 Two factors I and II are said to interact if the difference in mean
responses for different levels of one factor is not constant across levels of the second
factor.

If there is interaction, the lines in Figure 9.2 might cross each other, in which case

a one-factor-at-a-time approach may not be the appropriate design. In that case, the

following alternative designs will give more accurate data.

9.3.2 FULL FACTORIAL DESIGN
One way to get around the problem of interaction in one-factor-at-a-time design is to

evaluate all possible combinations of factors in a single experiment. This is called a

full factorial experiment. The main benefit of a full factorial design is that every pos-

sible data point is collected. The choice of optimum condition becomes easy. For

example, in an experiment such as the one in Example 9.2.2, one could conduct a

full factorial design. The simplest form of factorial experiment involves two factors

only and is called a two-way layout. A full factorial experiment with n factors and

two levels for each factor is called a 2n factorial experiment. A full factorial exper-

iment is practical if only a few factors (say, fewer than five) are being investigated.

Beyond that, this design becomes time consuming and expensive.

9.3.3 FRACTIONAL FACTORIAL DESIGN
In a fractional factorial experiment, only a fraction of the possible treatments are

actually used in the experiment. A full factorial design is the ideal design, through

which we could obtain information on all main effects and interactions. But because

of the prohibitive size of the experiments, such designs are not practical to run. For

instance, consider Example 9.2.2. Now if we were to add say, two different densities,

three sizes of fish, and three types of food, the number of factors becomes five, and

total number of distinct treatments will be 4�4�2�3�3¼288. This method

becomes very time consuming and expensive. The number of relatively significant

effects in a factorial design is relatively small. In these types of situations, fractional

factorial experiments are used in which trials are conducted on only a well-balanced

subset of the possible combinations of levels of factors. This allows the experimenter

to obtain information about all main effects and interactions while keeping the size of

the experiment manageable. The experiment is carried out in a single systematic

effort. However, care should be taken in selection of treatments in the experiment

so as to be able to answer as many relevant questions as possible. The fractional fac-

torial design is useful when the number of factors is large. Because we are reducing

the number of factors, a fractional factorial design will not be able to evaluate the

influence of some of the factors independently. Of course, the question is how to

choose the factors and levels we should use in a fractional factorial design. The ques-

tion of how fractional factorial designs are constructed is beyond the scope of

this book.
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EXERCISES 9.3
9.3.1. Suppose a large retail chain decides to introduce clothing in two types of

materials’ (ordinary, fine) qualities. Each store will have two different

proportions (40, 60%) displayed. At the end of the month, profits from each

store for these two types of clothing are recorded. Table 9.3.1 represents the

average profits for each of the quality-proportion combinations.

Discuss this as a one-factor-at-a-time experiment to predict the average

amount of profit.

9.3.2. Draw graphs for the data to represent quality-proportion combinations (a) for
the one-factor-at-a-time approach and (b) for the case where there is no

interaction.

9.3.3. Discuss how a fractional factorial design can be performed for the problem in

Exercise 9.3.1.

9.3.4. Suppose a researcher wants to conduct a series of experiments to study the

effect of fertilizer and temperature on plant growth. She uses four different

brands of fertilizers in three different settings for the rose plants of the same

age and of similar growth.

(a) How many factor-level combinations are possible in this experiment?

(b) Each experiment makes use of one fertilizer-temperature combination

(one-factor-at-a-time design). How should she implement randomization

in this experiment?

9.4 OPTIMAL DESIGN
In 1959, J. Kiefer presented a paper to the Royal Statistical Society about his work on

the theory of optimal design. He was trying to answer the major question, “How do

we find the best design?” This work initiated a whole new field of optimal design.

Optimal designs are a class of experimental design, which are optimal with respect to

certain statistical criterion. For instance, in estimation problems, these designs allow

parameters to be estimated without bias and minimal variance. The methods of opti-

mal experimental design provide the technical tools for building experimental

designs to attain well-defined objectives with efficiency and with minimum cost.

The cost can be the monetary cost, time, number of experimental runs, and so on.

Table 9.3.1 Two Types of Clothing and Profit

Average Profit Quality Proportion (%)

$10,000 Fine 40

$25,000 Ordinary 40

$9500 Ordinary 60

? Fine 60
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There are many methods of achieving optimal designs such as sequential (simplex)

or simultaneous experiment designs. In sequential design, experiments are per-

formed in succession in a direction of improvement until the optimum is reached.

Simultaneous experiment designs such as response surface designs are used to build

empirical models. A survey by Atkinson in 1988 contains many references on opti-

mal design.

In this section, we focus only on one simple example to illustrate the ideas of

optimal design in terms of choosing appropriate sample size. It is not possible to have

a single design that is best for securing information concerning all types of popula-

tion parameters. Indeed, it is beyond the scope of this section to present a general

theory of optimal design.

9.4.1 CHOICE OF OPTIMAL SAMPLE SIZE
The sample size estimation is an essential part of experimental design; otherwise,

sample size may be very high or very low. If sample size is too low, the experiment

will lack the accuracy to provide dependable answers to the questions we are

investigating. If sample size is too large, time and resources will be wasted, often

for insignificant gain. We now illustrate a simple case of optimal sample size

determination.

Let X11, . . . ,X1n1 be a random sample from population 1 with mean m1 and var-

iance s1
2 and X21, . . . ,X2n2 be random samples from population 2 with mean m2

and variance s2
2. Assume that the two samples are independent. Then we know that

X1�X2 is an unbiased estimator of m1�m2 with standard error

s2
X1�X2ð Þ ¼Var X1�X2

� �
¼ s21
n1

+
s22
n2

:

Suppose that there is a restriction that the total observations should be n, that is,
n1+n2¼n. Such a restriction may be due to cost factors or to a shortage of available

subjects. An important design question is how to choose the sample sizes n1 and n2 so
as to maximize the information in the data relevant to the parameter m1�m2. We

know that the samples contain maximum information when the standard error is min-

imum. Hence, the problem reduces to minimization of Var X1�X2

� �
. Let a¼ n1

n
be

the fraction on n observations that is assigned to sample 1. Then n1¼na and n2¼n
(1�a), and we have

Var X1�X2

� �¼ s21
n1

+
s22
n2

¼ s21
na

+
s22

n 1�að Þ
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The problem is now reduced to finding an a that minimizes the function

g að Þ¼ s21
na

+
s22

n 1�að Þ. This problem can be solved using calculus. By taking the

derivative with respect to a,
d

da
g að Þ and equating it to zero, we have

� s21
na2

+
s22

n 1�að Þ2 ¼ 0:

Multiplying throughout by na2(1�a)2, we have

�s21 1�að Þ2 +s22a2 ¼ 0,

which results in the quadratic equation

s22�s21
� �

a2 + 2s21a�s21 ¼ 0:

Using the quadratic formula, we obtain the two roots as

a1 ¼ s1
s1 +s2

and

a2 ¼ s1
s1�s2

:

However, a2 cannot be the solution because, if s1>s2, then a2>1, otherwise a2<0;

both are not admissible because a is a fraction. Hence,

a¼ s1
s1 +s2

and 1�a¼ s2
s1 +s2

:

Using the second derivative test, we can verify that this indeed is a minimum for

Var X1�X2

� �
. From this analysis we can see that the sample sizes that maximize

the information in the data relevant to the parameter m1�m2 subject to the constraint
n1+n2¼n are

n1 ¼ s1
s1 +s2

n and n2 ¼ s2
s1 +s2

n:

As a special case, we can see that when s1
2¼s2

2, the optimal design is to take n1¼n2.

EXERCISES 9.4
9.4.1. A total of 100 sample points were taken from two populations with variances

s1
2¼4 and s2

2¼9. Find n1 and n2 that will result in the maximum amount

of information about (m1�m2).
9.4.2. Suppose in Exercise 9.4.1, we want to take n¼n1¼n2. How large should

n be to obtain the same information as that implied by the solution of

Exercise 9.4.1?
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9.5 THE TAGUCHI METHODS
Taguchi methods were developed by Genichi Taguchi to improve the implementa-

tion of total quality control in Japan. These methods are claimed to have provided as

much as 80% of Japanese quality gains. They are based on the DOEs to provide near-

optimal quality characteristics for a specific objective. A special feature of Taguchi

methods is that they integrate the methods of statistical DOEs into a powerful engi-

neering process. The Taguchi methods are in general simpler to implement.

Taguchi methods are often applied on the Japanese manufacturing floor by tech-

nicians to improve their processes and their product. The goal is not just to optimize an

arbitrary objective function, but also to reduce the sensitivity of engineering designs to

uncontrollable factors or noise. The objective function used is the signal-to-noise ratio,

which is then maximized. This moves design targets toward the middle of the design

space so that external variation affects the behavior of the design as little as possible.

This permits large reductions in both part and assembly tolerances, which are major

drivers of manufacturing cost. Linking quality characteristics to cost through the

Taguchi loss function (Taguchi and Yokoyama, 1994) was a major advance in quality

engineering, as well as in the ability to design for cost. Taguchi methods are also called

robust design. In 1982, the American Supplier Institute introduced Dr Taguchi and his

methods to the US market.

Using a well-planned experimental design, such as a fractional factorial design, it

is possible to efficiently obtain information about the model and the underlying pro-

cess. Clearly, the purpose of these methods is to control and ensure the quality of the

end product. In the conventional approach, this is achieved by further testing a few

end products that are randomly chosen or using control charts and making decisions

based on certain preset criteria, such as acceptable or unacceptable. Thus, “quality”

of the product is thought of as inside or outside of specifications. Instead, Taguchi

suggested that we should specify a target value, and the quality should be thought of

as the variation from the target.

As an example, suppose we make n observations of the output x1, . . .,xn of a pro-
cess at times 1, 2, . . ., n, as shown in Figure 9.3.

. 
TU

x . 
T = Target value

. 
TL

1 2 n
Time

FIGURE 9.3

Control plot of processing times and outputs.
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The control chart consists of a plot of observed output values (xi
0s) on the y-axis

and the times of observation, 1, 2, . . ., n on the x-axis, as shown in the figure. The

letter T represents the target value. If the output value is between TL and TU, the pro-
cess is deemed to be operating satisfactorily; otherwise the process is said to be out of

control and the output value is considered unsatisfactory.

Some other examples are (1) defining specification limits for acceptance, such as

stating that the diameter of bolts must be between 9.8 and 10.2 mmwithmean 10 mm

and (2) that the waiting time in a line should be less than 30 min for at least 90% of

customers.

In all these situations, the specifications partition the state of the process as

acceptable or unacceptable, that is, it classifies the state as a dichotomy. This is often

called the “goal post mentality.”

The basic idea of the Taguchi approach is a shift in mindset from demarking the

quality as acceptable or unacceptable to a more flexible and realistic classification.

The traditional approach to quality control does not take into account the size of

departure from the target value. To accommodate the size of such departure as a sig-

nificant factor in quality control, let us introduce the concept of loss function (see

Chapter 11). If an output value x differs from the target value T, let L(T, x) denote
the loss incurred, say in dollars. Other possible losses could also be reputation or cus-

tomer satisfaction.

For the control chart example, we can assign the loss function

L T, xð Þ¼ 0, ifTU < x< TL

L, ifx> TL or x< TU

�
,

where L is a constant and x is the measured value. This is schematically shown in

Figure 9.4.

From Figure 9.4, it is seen that we view outputs x1 and x2 as having equal quality,
whereas x2 and x3 are considered to have vastly differing quality (x2 is acceptable and
x3 is not acceptable). A more reasonable conclusion would be that x1 has excellent
quality, whereas x2 and x3 are similar, both being poor.

In Taguchi’s approach, the loss function takes into account the size of departure

from the target value. For example, a popular choice for the loss function is

L T, Xð Þ¼ k X�Tð Þ2,
where L is the loss incurred, k is constant, X is actual value of the measured output,

and T is target value.

LL

TL T      x1 x2 TU x3

FIGURE 9.4

Loss function.
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We can schematically represent the behavior as shown by Figure 9.5.

This form of loss function is called the quadratic loss function. The choice of k
depends on the particular problem. For example, the scaling factor k can be used

to convert loss into monetary units to accommodate comparisons of systems with

different capital loss. Or, in product manufacturing, let D denote the allowed devi-

ation from the target, and let A denote the loss due to a defective product. Then a

choice of k can be k¼ (A/D)2. As shown earlier, the average loss is E(L) and is

given by

E Lð Þ¼ k E Xð Þ�Tð Þ2 +s2
h i

¼ k biasð Þ2 + variance
h i

,

where s2 is the variance of X (measured quality, which is assumed to be random). In

Taguchi, the variation from the target can be broken into components containing

bias and product variation. Thus, if our aim is to minimize the expected loss, E(L),
we should not only require E(X)¼m to be close to T but also should reduce the var-

iance. It turns out that often these requirements are contradictory. The objective is

to choose the design parameters (the factors that influence the quality) optimally to

obtain the best quality product. In practice, the parameters m and s2 are not known
and are being estimated by X and S2, respectively. This results in the Taguchi loss

function

L¼ k X�T
� �2

+ S2
h i

:

This loss function penalizes small deviations from T only slightly, while assessing a

larger penalty for responses far from the target. The expected loss is similar to a mean

squared error loss, which we have seen in regression analysis in the form of least

squares.

Why is controlling both bias and variance important? Suppose you want your

community swimming pool temperature at 80 �F, which is the T here. Suppose

the temperature varies between 60 and 100 �F. Clearly the average (bias) is zero;

however, it will be pretty uncomfortable to swim at 60 �F or 100 �F. Here the bias

takes the ideal value of zero, but the variance is large. In another scenario, the

L(T , x)

L

TL x T TU

FIGURE 9.5

Quadratic loss function.
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variance may be small, but the average temperature may be farther away from the

target value of 80 �F (e.g. the temperature is constant at 60 �F). Hence, we want

the pool temperature to be near to the target value of 80 �F, with as small variance

as possible (say, within 1-2 �F).
Taguchi coined the term design parameters as the generic description for fac-

tors that may influence the quality and whose levels we want to optimize. Tagu-

chi’s philosophy is to “design quality in” rather than to weed out the defective

items after manufacturing. In order to obtain an optimal set of design parameters

that affect the quality of the end product, the Taguchi method utilizes appropriately

designed experiments. More specifically, orthogonal arrays are used for fractional

factorial designs. Orthogonal arrays provide a set of well-balanced experiments.

Taguchi provides tables for these designs so that even a nonspecialist can use them.

For two-level designs (high, low), we have a table for an L4 orthogonal array up to

three factors; a table for an L8 orthogonal array up to seven factors; and so forth.

Similar tables are available for three-level designs. We will not describe these

design issues in this section. We refer the reader to specialized books on the subject

for further details.

We can summarize the Taguchi approach to quality design as follows:

1. Taguchi’s methods for experimental design are ready made and simple to use in

the design of efficient experiments, even by nonexperts.

2. Taguchi’s approach to total quality management is holistic and tries to design

quality into a product rather than inspecting defects in the final product.

3. Taguchi’s techniques can readily be applied to other fields such as management

problems.

EXERCISES 9.5
9.5.1. Suppose the following data represent thickness between and within silicon

wafers (in microns), with a target value of 14.5 microns

13:688 13:788 14:173 14:557
13:925 14:545 13:797 14:778:

Compute the Taguchi loss function.

9.5.2 One of the commonly used performance measures in the Taguchi method is

log
meanð Þ2
s2

 !
,

where s2 is the sample variance. In general, the higher the performance mea-

sure, the better the design. This measure is called robustness statistics. For the
problem of Exercise 9.5.1, suppose that we run the experiment by controlling

various factors affecting the thickness. Table 9.5.1 shows the data obtained in

four different runs.
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(a) Using the robustness statistics given earlier, which of the processes gives

us an improved performance?

(b) Another commonly used performance statistic is

� log s2
� �

:

Using this robustness statistic, which of the processes gives us an

improved performance? Compare this with the results of part (a).

9.6 CHAPTER SUMMARY
In this chapter, we have learned some basic aspects of experimental design. Some

fundamental definitions and tools for developing experimental designs such as ran-

domization, replication, and blocking were introduced in Section 9.2. Basic concepts

of factorial design were given in Section 9.3. In Section 9.4, we saw an example of

optimal design. The Taguchi method was introduced in Section 9.5. In the next chap-

ter, we introduce the analysis component. We have discussed only a very small col-

lection of experimental designs in this chapter. There exist a wide variety of

experimental designs to deal with a large number of treatments and to suit specific

needs of research experiments in diverse fields. It is an exciting and growing area for

the interested student to apply and explore.

We list some of the key definitions introduced in this chapter:

• Response variable (output variable).

• Independent variables (treatment variables or input variables or factors).

• Nuisance variables.

• Noise.

• Observational.

• Experimental units.

• Single-factor experiments

• Multifactor experiments.

• Experimental error.

• Blinding, double-blinding, and placebo.

• Replication.

• Block.

Table 9.5.1

Run 1: 14.158 14.754 14.412 14.065 13.802 14.424 14.898 14.187

Run 2: 13.676 14.177 14.201 14.557 13.827 14.514 13.897 14.278

Run 3: 13.868 13.898 14.773 13.597 13.628 14.655 14.597 14.978

Run 4: 13.668 13.788 14.173 14.557 13.925 14.545 13.797 14.778
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• Randomization.

• Completely randomized design

• Randomized complete block design.

• k�k Latin square design.

• Greco-Latin square.

• Design parameters.

In this chapter, we have also learned the following important concepts and

procedures.

• Procedure for random assignment.

• Procedure for randomization in a randomized complete block design.

• Procedure for a randomized complete block design with r replications.
• Procedure for constructing a 4�4 Latin square.

• One-factor-at-a-time design.

• Full factorial design.

• Fractional factorial design.

• Choice of optimal sample size.

• The Taguchi methods.

9.7 COMPUTER EXAMPLES
In this chapter, we present R, Minitab and SAS commands only. SPSS commands

can be performed similarly to Minitab.

9.7.1 EXAMPLES USING R

EXAMPLE 9.7.1
Permutation

Obtain a random perturbation of the numbers from 1 to n. Where n¼10.

R Code:
sample(c(1:10));

Frequently used in R, c(1:10) is similar
to c(1,2,3,4,5,6,7,8,9,10). Anywhere

you want a range of values use 1:n.

Output:

This output will be a random sample without replacement, your output will look similar.
6 7 9 2 10 1 5 3 8 4
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EXAMPLE 9.7.2
Randomized Block Design

In order to study the number of hours to relief provided by five different brands (A, B, C, D, and

E) of pain relievers for pain resulting from different causes [headache (H), muscle pain (M), pain due

to cuts and bruises (CB)], doses are administered to five subjects each having similar types of pain.

Create a randomized complete block design. Choose the different types of pain (H, M, and CB) as

the blocks.

R Code:
h¼ sample(c(1:5));

m¼ sample(c(1:5));

cb¼ sample(c(1:5));

table¼cbind(h,m,cb);
table¼as.data.frame(table);

colnames(table)¼c(“H”,“M”,“CB”);

rownames(table)¼c(“A”,“B”,“C”,“D”,“E”);

print(table);

Output:

This output will be a random sample without replacement, your output will look similar.
H, M, CB

A 4 2 1

B 2 1 4

C 3 4 5

D 5 5 3

E 1 3 2

EXAMPLE 9.7.3
Latin Squares

A gasoline company is interested in comparing the effect of four gasoline additives (A, B, C,

and D) on the gas

mileage achieved per gallon. Four cars (1, 2, 3, and 4) and four drivers (I, II, III, and IV) will

be used in the experiment. Create a Latin square design.

R Code:

gasadd¼c(“A”,“B”,“C”,“D”);

table¼c();
for(i in 1:4) {

table¼cbind(table,c(gasadd[i:4],gasadd[0:(i�1)]));

} table¼as.data.frame(table);
colnames(table)¼c(1:4);

rownames(table)¼c(“I”,“II”,“III”,“IV”);

print(table[,sample(c(1:4))]);

Random samples from 5 subjects 
Without replacement are generated for

each type of pain. For the sake of formatting we create 
a matrix using cbind() to bind columns.

Notice we added a column of row titles.
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Output:

This output will be a random sample without replacement, your output will look similar.
4 1 3 2

I D A C B

II A B D C

III B C A D

IV C D B A

9.7.2 MINITAB EXAMPLES

EXAMPLE 9.7.4
Obtain a random permutation of numbers 1 to n.

Solution
Enter in C1 the numbers 1 to n, say n¼10. Then

calc> random data> samples from column. . . >

enter sample 10> rows from column(s) C1>Store samples in: C2>OK

The result is a random permutation of numbers 1 to n(¼10). Now if we need to generate blocks
of random permutations of numbers from 1 to n(¼10), in the foregoing steps, just store samples in

C3, C4, . . .

9.7.3 SAS EXAMPLES

EXAMPLE 9.7.5
For the data of Example 9.2.4, conduct a randomized complete block design using SAS.

Solution
We represent blocks that are reasons for pain by H¼1, M¼2, and CB¼3. Similarly five brands

which are treatments by A¼1, B¼2, C¼3, D¼4, and E¼5. Then we can use the following code
to generate a randomized complete block design.

options nodate nonumber;
data a;
do block ¼ 1 to 3;

do subject ¼ 1 to 5;
x ¼ ranuni(0);
output;

end;
end;

proc sort; by block x;
data c; set a;
trt ¼ 1 + mod(N � 1, 5); /* mod ¼ remainder of N/5 */
proc sort; by block subject;
proc print;
var block subject trt;

run;
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We get the following output.

Completely randomized 2�3 design, 4 subjects per cell

Obs Block Subject trt

1 1 1 5

2 1 2 4

3 1 3 3

4 1 4 2

5 1 5 1

6 2 1 2

7 2 2 5

8 2 3 3

9 2 4 4

10 2 5 1

11 3 1 4

12 3 2 5

13 3 3 1

14 3 4 2

15 3 5 3

Note that the numbers in the column corresponding to a block identify the type of

pain, the numbers in the subject column correspond to the subjects, and the numbers

in the column corresponding to trt identify the brands. Using the corresponding let-

ters, we can rewrite the foregoing table in the familiar form shown in Table 9.14.

The PLAN procedure constructs experimental designs. The PLAN procedure

does not have a DATA¼option in the PROC statement; in this procedure, both

the input and output data sets are specified in the OUTPUT statement. We will

use this to construct a Latin square design.

EXAMPLE 9.7.6
A gasoline company is interested in comparing the effect of four gasoline additives (A, B, C, and D)

on the gas mileage achieved per gallon. Four cars (1, 2, 3, and 4) and four drivers (I, II, III, and IV)

will be used in the experiment. Create a Latin square design.

Solution
We can use the following program, where we represent the additives by 1¼A, 2¼B, 3¼C, and 4¼D.

Table 9.14

H M CB

1(E) 1(B) 1(D)

2(D) 2(E) 2(E)

3(C) 3(C) 3(A)

4(B) 4(D) 4(B)

5(A) 4(A) 5(C)
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Options nodate nonumber;

title ’Latin Square design for 4 additives’;

proc plan seed¼37432;

factors rows¼4 ordered cols¼4 ordered/NOPRINT;

treatments tmts¼4 cyclic;

output out¼g

rows cvals¼(’car 1’ ’car 2’ ’car 3’ ’car 4’)

random

cols cvals¼(’Driver 1’ ’Driver 2’ ’Driver 3’

’Driver 4’) random

tmts nvals¼(1 2 3 4) random;

run;

proc tabulate;

class rows cols;

var tmts;

table rows, cols*(tmts*f¼1.);

keylabel sum¼’ ’;

run;

PROJECTS FOR CHAPTER 9
9A. SAMPLE SIZE AND POWER
Suppose that the experimenter is interested in comparing the true means of two inde-

pendent populations. If two similar treatments are to be compared, the assumption of

equality of variances is not unreasonable. Hence, assume that the common variance

of the two populations is s2, and the experimenter has a prior estimate of the vari-

ance. We have learned in Section 9.4 that in this case, the optimal design will be to

take sample sizes n1 and n2 to be equal. Let n¼n1¼n2 be the size of the random

sample that the experimenter should take from each population.

Now, suppose that the experimenter has decided to use the one-sided large sam-

ple test, H0: m1¼m2 versus Ha: m1>m2 with a fixed a¼P(Type I error). He wants to
choose n to be so large that if m1¼m2+ks, he will get a fixed power (1–b) of deciding
m1>m2. Recall that power of a test is the probability of (correctly) rejecting H0 when

H0 is false. Find the approximate value of n. Note that, for a given a, this will be an
optimal sample size with a desired value of the power.

In particular, what should be the sample size in the hypothesis testing problem,

H0: m1–m2¼0 vs. Ha: m1–m2¼3, if a¼b¼0.05. Assume that s¼7.

9B. EFFECT OF TEMPERATURE ON SPOILAGE OF MILK
Suppose you have observed that milk in your refrigerator spoils very fast. You may

be wondering whether it has anything to do with the temperature settings. Design an

experiment to study the effect of temperature on spoiled milk, with at least three
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meaningful settings of the temperature. (i) Write a possible hypothesis for your

experiment. (ii)What are the independent and dependent variables? (iii)Which vari-

ables are being controlled in this experiment? (iv) Discuss how you used the three

basic principles of replication, blocking, and randomization. (v) What conclusions

can you make? Think through any possible flaws in the design that may affect the

integrity of your findings.
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OBJECTIVE

To analyze the means of several populations by identifying sources of variability of

the data.

John Wilder Tukey

(Source: http://en.wikipedia.org/wiki/John_Tukey)

JohnW. Tukey (1915-2000), a chemist-turned-topologist-turned statistician, was

one of the most influential statisticians of the past 50 years. He is credited with

inventing the word software. He worked as a professor at Princeton University

Mathematical Statistics with Applications in R
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and a senior researcher at AT&T’s Bell Laboratories. He made significant contribu-

tions to the fields of exploratory data analysis and robust estimation. His works on the

spectrum analysis of time series and other aspects of digital signal processing have

been widely used in engineering and science. He coined the word bit, which refers to
a unit of information processed by a computer. In collaboration with Cooley, in 1965,

Tukey introduced the fast Fourier transform (FFT) algorithm that greatly simplified

computation for Fourier series and integrals. Tukey authored or coauthored many

books in statistics and wrote more than 500 technical papers. Among Tukey’s most

far-reaching contributions was his development of techniques for “robust analysis,”

an approach to statistics that guards against wrong answers in situations where a ran-

domly chosen sample of data happens to poorly represent the rest of the data set.

Tukey also made significant contributions to the ANOVA.

10.1 INTRODUCTION
Suppose that we are interested in the effect of four different types of chemical fer-

tilizers on the yield of rice, measured in pounds per acre. If there is no difference

between the different types of fertilizers, then we would expect all the mean yields

to be approximately equal. Otherwise, we would expect the mean yields to differ.

The different types of fertilizers are called treatments and their effects are the treat-

ment effects. The yield is called the response. Typically, we have a model with a

response variable that is possibly affected by one or more treatments. The study

of these types of models falls under the purview of design of experiments, which

we discussed in Chapter 9. In this chapter, we concentrate on the analysis aspect

of the data obtained from the designed experiments. If the data came from one or

two populations, we could use the techniques learned in Chapters 6 and 7. Here,

we introduce some tests that are used to analyze the data from more than two popu-

lations. These tests are used to deal with treatment effects, including tests that take

into account other factors that may affect the response. The hypothesis that the pop-

ulation means are equal is considered equivalent to the hypothesis that there is no

difference in treatment effects. The analytical method we will use in such problems

is called the analysis of variance (ANOVA). Initial development of this method

could be credited to Sir Ronald A. Fisher who introduced this technique for the anal-

ysis of agricultural field experiments. The “green revolution” in agriculture would

have been impossible without the development of theory of experimental design

and the methods of ANOVA.

ANOVA is one of the most flexible and practical techniques for comparing sev-

eral means. It is important to observe that ANOVA is not about analyzing the pop-

ulation variance. In fact, we are analyzing treatment means by identifying sources of

variability of the data. In its simplest form, ANOVA can be considered as an exten-

sion of the test of hypothesis for the equality of two means that we learned in

Chapter 7. Actually, the so-called one-way ANOVA is a generalization of the
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two-means procedure to a test of equality of the means of more than two independent,

normally distributed populations.

Recall that the methods of testing H0 :m1 � m2 ¼ 0, such as the t-test, were dis-
cussed earlier. In this chapter, we are concerned with studying situations involving

the comparison of more than two population or treatment means. For example, we

may be interested in the question “Do the rates of heart attack and stroke differ for

three different groups of people with high cholesterol levels (borderline high such as

150-199 mg/dL, high such as 200-239 mg/dL, very high such as greater than 240 mg/

dL) and a control group given different dosage levels of a particular cholesterol-

lowering drug (say, a particular statin drug)?” Let us consider four populations with

means m1, m2, m3, and m4, and say that we wish to test the hypotheses m1 ¼ m2 ¼ m3 ¼
m4. That is, the mean rate is the same for all the four groups. The question here is: why

do we need a newmethod to test for differences among the four procedure population

means? Why not use z- or t-tests for all possible pairs and test for differences in each
pair? If any one of these tests leads to the rejection of the hypothesis of equal means,

then we might conclude that at least two of the four population means differ. The

problem with this approach is that our final decision is based on results of

4

2

� �
¼6 different tests, and any one of them can be wrong. For each of the six tests,

let a¼0.10 be the probability of being wrong (type I error). Then the probability that

at least one of the six tests leads to the conclusion that there is a difference leads to an

error 1� (0.9)6¼ 0.46856, which clearly is much larger than 0.10, thus resulting in a

large increase in the type I error rate. Hence, if an ordinary t-test is used to make

several treatment comparisons from the same data, the actual a-value applying to

the tests taken as a group will be larger than the specified value of a, and one is likely
to declare significance when there is none.

ANOVA procedures were developed to eliminate the increase in error rates

resulting from multiple t-tests. With ANOVA, we are able to set one alpha level

and test whether any of the group means differ from one another. Given a sample

from each of the populations, our interest is to answer the question: are the observed

discrepancies among the different sample means (SMs) merely due to chance fluc-

tuations, or are they due to inherent differences among the populations? ANOVA

separates the effect of purely random variations from those caused by existing dif-

ferences among population means: the phrase “analysis of variance” springs from the

idea of analyzing variability in the data to see how much can be attributed to differ-

ences in m and how much is due to variability in the individual populations. The

ANOVA method incorporates information on variability from all of the samples

simultaneously. At the heart of ANOVA is the fact that variances can be partitioned,

with each partition attributable to a specific source. The method inspects various

sums of squares (which are measures of variation in a sample) calculated from

the data. ANOVA looks at two types of sums of squares: sums of squares within

groups and sums of squares between groups. That is, it looks at each of the distribu-

tions and compares the between-group differences (variation in group means) with

the within-group differences (variation in individuals’ scores within groups).
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10.2 ANOVA METHOD FOR TWO TREATMENTS (OPTIONAL)
In this section, we present the simplest form of the ANOVA procedure, the case of

studying the means of two populations I and II. For comparing only two means, the

ANOVA will result in the same conclusions as the t-test for independent random
samples. The basic purpose of this section is to introduce the concept of ANOVA

in simpler terms. Let us consider two random samples of size n1 and n2, respectively.
That is, y11, y12, : : : , y1n1

from population I and y21, y22, : : : , y2n2
from popula-

tion II. Let

y1 ¼
y11 + y12 + � � �+ y1n1

n1
sample mean from population Ið Þ

and

y2 ¼
y21 + y22 + � � �+ y2n2

n2
sample mean from population IIð Þ:

These samples are assumed to be independent and come from normal populations

with respective means m1, m2, and variances s1
2¼s2

2. We wish to test the hypothesis

H0 : m1 ¼ m2 versus Ha : m1 6¼ m2:

The total variation of the two combined response measurements about y (the SM of

all n ¼ n1 + n2 observations) is (SS is used for sum of squares) defined by

Total SS¼
X2
i¼1

Xni
j¼1

yij� y
� �2

: (10.1)

That is,

y¼ y11 + y12 + � � �+ y1n1
+ y21 + y22 + � � �+ y2n2
n

¼ 1

n

X
ij

yij:

The total sums of squares measures the total spread of scores around the grand mean

(GM), y. We can rewrite Equation (10.1) as

Total SS¼
X2
i¼1

Xni
j¼1

yij� y
� �2

¼
Xn1
j¼1

y1j� y
� �2

+
Xn2
j¼1

y2j� y
� �2

¼
Xn1
j¼1

y1j� y1 + y1� y
� �2

+
Xn2
j¼1

y2j� y2 + y2� y
� �2

¼
Xn1
j¼1

y1j� y1

� �2
+ n1 y1� yð Þ2 + 2 y1� yð Þ

Xn1
j¼1

y1j� y1

� �

+
Xn2
j¼1

y2j� y2

� �2
+ n2 y2� yð Þ2 + 2 y2� yð Þ

Xn2
j¼1

y2j� y2

� �
:

Note that
Xn1

j¼1
y1j� y1

� �
¼ 0¼

Xn2

j¼1
y2j� y2

� �
: We obtain
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Total SS¼
Xn1
j¼1

y1j� y1

� �2
+
Xn2
j¼1

y2j� y2

� �2
+ n1 y1� yð Þ2 + n2 y2� yð Þ2

¼
X2
i¼1

Xni
j¼1

yij� yi

� �2
+
X2
i¼1

ni yi� yð Þ2:
(10.2)

Define SST, the sum of squares for treatment by

SST¼
X2
i¼1

ni yi � yð Þ2:

The SST measures the total spread of the group means yi with respect to the GM, y.
Also, SSE represents the sum of squares of errors given by

SSE¼
X2
i¼1

Xni
j¼1

yij� yi

� �2

¼
Xn1
j¼1

y1j� y1

� �2
+
Xn2
j¼1

y2j� y2

� �2
¼ n1�1ð Þs21 + n2�1ð Þs22

where s1
2 and s2

2 are the unbiased sample variances of the two random samples. Note

that this connects the sum of squares to the concept of variance we have been using in

previous chapters. We can now rewrite Equation (10.2) as

Total SS¼ SSE+SST:

It should be clear that the SSE measures the within-sample variation of the y-values
(effects), whereas SST measures the variation among the two SMs. The logic by

which the ANOVA tests is as follows: if the null hypothesis is true, then SST as com-

pared to SSE should be about the same, or less. The larger SST, the greater will be the

weight of evidence to indicate a difference in the means m1 and m2. The question then
is, how large?

To answer this question, let us suppose we have two populations that are normal.

That is, let Yij be N (mi, s
2) distributed with values yij. Then the pooled unbiased esti-

mate of s2 is given by

s2p ¼
n1�1ð Þs21 + n2�1ð Þs22

n1 + n2�2
¼ SSE

n1 + n2�2
:

Hence,

s2 ¼E S2p

� �
¼E

SSE

n1 + n2�2

� �
:

Also, we can write

SSE

s2
¼
Xn1
j¼1

Y1j�Y1

� �2
s2

+
Xn2
j¼1

Y2j�Y2

� �2
s2
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which has a w2-distribution with (n1 + n2 � 2) degrees of freedom.

Under the hypothesis that m1¼m2, E(SST)¼s2. Furthermore,

Z¼ Y1 �Y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1

n1
+

1

n2

� �r �N 0, 1ð Þ:

This implies that

Z2 ¼ 1

n1
+

1

n2

� �
Y1 �Y2

s2

	 

¼SST

s2

has a w2-distribution with 1 degree of freedom. It can be shown that SST and SSE are

independent. From Chapter 4, we restate the following result.

Theorem 10.2.1 If w1
2 has u1 degrees of freedom w2

2 has u2 degrees of freedom, and

w1
2 and w2

2 are independent, then F¼ w21=u1
w22=u2

has an F-distribution with u1 numerator

degrees of freedom and u2 denominator degrees of freedom.
Using the foregoing result, we have

SST= 1ð Þs2
SSE= n1 + n2�2ð Þs2 ¼

SST=1

SSE= n1 + n2�2ð Þ
which has an F-distribution with u1¼1 numerator degrees of freedom and u2 ¼
(n1 + n2 � 2) denominator degrees of freedom.

Now, we introduce the mean square error (MSE), defined by

MSE¼ SSE

n1 + n2�2ð Þ
¼ n1�1ð Þs21 + n2�1ð Þs22

n1 + n2�2ð Þ
and the mean square treatment (MST) given by

MST¼ SST

1

¼ n1 y1� yð Þ2 + n2 y2� yð Þ2
h i

:

Under the null hypothesis,H0: m1¼m2, both MST and MSE estimate s2 without bias.
When H0 is false and m1 6¼m2, MST estimates something larger than s2 and will be

larger than MSE. That is, if H0 is false, then E(MST)>E(MSE) and the greater the

differences among the values of m, the larger E(MST) will be relative to E(MSE).

Hence, to test H0 :m1¼m2 versus Ha :m1 6¼m2, we use the F-test given by

F¼MST

MSE

as the test statistic. Thus, for given a, the rejection region is {F>Fa}. It is important

to observe that compared to the small sample t-test, here we work with variability.

Now we summarize the ANOVA procedure for the two-sample case.
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ANOVA PROCEDURE FOR TWO TREATMENTS
For equal sample sizes n¼n1¼n2, assume s1

2¼s2
2.

We test

H0 :m1 ¼ m2 versus Ha : m1 6¼m2:

1. Calculate: y1,y2,
X

ij
y2ij,
X

ij
yij and find

SST¼
X2
i¼1

ni yi�yð Þ2:

Also calculate

Total SS¼
X
i

X
j

y2ij�
X

i

X
j
yij

� �2
n1 + n2

:

Then

SSE¼Total SS�SST:

2. Compute

MST¼SST

1

MSE¼ SSE

n1 + n2�2
:

3. Compute the test statistic,

F¼MST

MSE
:

4. For a given a, find the rejection region as

RR :F>Fa,

based on 1 numerator and (n1+n2�2) denominator degrees of freedom.

5. Conclusion: If the test statistic F falls in the rejection region, conclude that the sample evidence

supports the alternative hypothesis that the means are indeed different for the two treatments.

Assumptions: Populations are normal with equal but unknown variances.

EXAMPLE 10.2.1
The following data represent a random sample of end-of-year bonuses for lower-level managerial

personnel employed by a large firm. Bonuses are expressed in percentage of yearly salary.

Female 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7

Male 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8

The objective is to determinewhether themale and female bonuses are the same.We can answer

this question by connecting the following.

Continued
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(a) Use the ANOVA approach to test the appropriate hypotheses. Use a¼0.05.

(b) What assumptions are necessary for the test in part (a)?

(c) Test the appropriate hypothesis by using the two-sample t-test for comparing population means.

Compare the value of the t-statistic to the value of the F-statistic calculated in part (a).

Solution
(a) We need to test

H0 : m1 ¼ m2 versus Ha :m1 6¼m2
From the random sample, we obtain the following needed estimates, n1¼n2¼8:

y1 ¼ 7:8375, y2 ¼ 10:0625,
X
ij

y2ij ¼ 1319:34,
X
ij

yij ¼ 143:20, y¼ 8:95

SST¼
X2
i¼1

ni yi�yð Þ2 ¼ 19:8025:

Therefore,

Total SS¼
X
i

X
j

y2ij�
X

i

X
j
yij

� �2
n1 + n2ð Þ

¼ 1391:34� 143:2ð Þ2
16

¼ 109:70:

Then

SSE¼Total SS�SST

¼ 109:7�19:8025

¼ 89:8975,

MST¼ SST

1
¼ 19:8025

and

MSE¼ SSE

2n1�2

¼ 89:8975

14

¼ 6:42125:

Hence, the test statistic

F¼MST

MSE

¼ 19:8025

6:42125

¼ 3:0839:

For a¼0.05, F0.05,1,14¼4.60. Hence the rejection region is {F>4.60}. Because 3.0839 is not
greater than 4.60, H0 is not rejected. There is not enough evidence to indicate that the average

bonuses are different for men and women at a¼0.05.

(b) To solve the problem, we assumed that the samples are random and independent with n1¼ n2¼ 8,

drawn from two normal populations with means m1 and m2 and common variance s2.
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(c) The value of MSE is the same as s2¼ sp
2¼6.42125. Also, y1 ¼ 7:8375 and y2 ¼ 10:0625. Then,

the t-statistic is

t¼ y1�y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
+

1

n2

� �s ¼ 7:8375�10:0625ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:42125

1

8
+
1

8

� �s ¼�1:756:

Now, t0.025, 14¼2.145 and the rejection region is {t<�2.145}.

Because�1.756 is not less than�2.145,H0 is not rejected, which implies that there is no significant
difference between the bonuses for the males and the females.

Note also that t2¼F, that is, (�1.756)2¼3.083 implying that in the two-sample case, the t-test and

F-test lead to the same result.

It is not surprising that in the previous example, the conclusions reached using

ANOVA and two-sample t-tests are the same. In fact, it can be shown that for

two sets of independent and normally distributed random variables, the two proce-

dures are entirely equivalent for a two-sided hypothesis. However, a t-test can also be
applied to a one-sided hypothesis, whereas ANOVA cannot. The purpose of this sec-

tion is only to illustrate the computations involved in the ANOVA procedures as

opposed to simple t-tests. The ANOVA procedure is effectively used for three or

more populations, which is described in the next section.

EXERCISES 10.2
10.2.1. The following information was obtained from two independent samples

selected from two normally distributed populations with unknown but equal

standard deviations. Do the data present sufficient evidence to indicate that

there is a difference in the mean for the two populations?

Sample 1 1 2 3 3 1 2 1 3 1

Sample 2 2 5 2 4 3 1 2 3 3

(a) Use the ANOVA approach to test the appropriate hypotheses. Use

a¼0.05.

(b) Test the appropriate hypothesis by using the two-sample t-test for
comparing population means. Compare the value of the t-statistic to the
value of the F-statistic calculated in part (a).

10.2.2. The following information was obtained from two independent samples

selected from two normally distributed populations with unknown but equal

standard deviations. Do the data present sufficient evidence to indicate that

there is a difference in the mean for the two populations?

Sample 1: 15 13 11 14 10 12 7 12 11 14 15

Sample 2: 18 16 13 21 16 19 15 18 19 20 21 14
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(a) Use the ANOVA approach to test the appropriate hypotheses. Use

a¼0.01.

(b) Test the appropriate hypothesis by using the two-sample t-test for
comparing population means. Compare the value of the t-statistic to the
value of the F-statistic calculated in part (a).

10.2.3. A company claims that its medicine, brand A, provides faster relief from

pain than another company’s medicine, brand B. A random sample from

each brand gave the following times (in minutes) for relief. Do the data

present sufficient evidence to indicate that there is a difference in the mean

time to relief for the two populations?

Brand A: 47 51 45 53 41 55 50 46 45 51 53 50 48

Brand B: 44 48 42 45 44 42 49 46 45 48 39 49

(a) Use the ANOVA approach to test the appropriate hypotheses. Use

a¼0.01.

(b) What assumptions are necessary for the conclusion in part (a)?

(c) Test the appropriate hypothesis by using the two-sample t-test for
comparing population means. Compare the value of the t-statistic to the
value of the F-statistic calculated in part (a).

10.2.4. Table 10.2.1 gives mean SAT scores for math by state for 1989 and 1999 for

20 randomly selected states (source: The World Almanac and Book of Facts
2000).

Table 10.2.1

State 1989 1999

Arizona 523 525

Connecticut 498 509

Alabama 539 555

Indiana 487 498

Kansas 561 576

Oregon 509 525

Nebraska 560 571

New York 496 502

Virginia 507 499

Washington 515 526

Illinois 539 585

North Carolina 469 493

Georgia 475 482

Nevada 512 517

Ohio 520 568

New Hampshire 510 518
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Using the ANOVA procedure, test that the mean SAT score for math in

1999 is greater than that in 1989 at a¼0.05. Assume that the variances are

equal and the samples come from a normal distribution.

10.2.5. Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 be two sets of independent, normally

distributed random variables with means m1 and m2, and the common

variance s2. Show that the two-sample t-test and the ANOVA are

equivalent for testing H0 :m1 ¼ m2 versus Ha :m1 > m2.

10.3 ANOVA FOR COMPLETELY RANDOMIZED DESIGN
In this section, we study the hypothesis testing problem of comparing population

means for more than two independent populations, where the data are about several

independent groups (different treatments being applied, or different populations

being sampled). We have seen in Chapter 9 that the random selection of independent

samples from k populations is known as a completely randomized experimental

design or one-way classification.

Let m1, . . .,mk be the means of k normal populations with unknown but equal

variance s2. The question is whether the means of these groups are different or

are all equal. The idea is to consider the overall variability in the data. We partition

the variability into two parts: (1) between-groups variability and (2) within-groups

variability. If between groups is much larger than that within groups, this will indi-

cate that differences between the groups are real, not merely due to the random

nature of sampling. Let independent samples be drawn of sizes ni, i¼1, 2,. . .,k
and let N ¼ n1 +� � � + nk. Let yij be the measured response on the jth experimental

unit in the ith sample. That is, Yij is the jth observation from population

i, i ¼ 1, 2, . . ., k, and j ¼ 1,2, . . .,ni. Let y be the overall mean of all observa-

tions. The problem can be formulated as a hypothesis testing problem, where

we need to test

H0 : m1 ¼ m2 ¼ �� � ¼mk versus Ha : Not all the mis are equal:

The method of ANOVA tests the null hypothesisH0 by comparing two unbiased esti-

mates of the variance, s2, an estimate based on variations from sample to sample and

the other one based on variations within the samples. We will be rejecting H0 if the

first estimate is significantly larger than the second, so that the samples cannot be

assumed to come from the same population.

We can write the total sum of squares of deviations of the response measurements

about their overall mean for the k samples into two parts, from the treatment (SST)

and from the error (SSE). This partition gives the fundamental relationship in

ANOVA, where total variation is divided into two portions: between-sample varia-

tion and within-sample variation. That is,

Total SS¼ SST+SSE:
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The following derivations will make computation of these quantities simpler. The

total SS can be written as

Total SS¼
Xk
i¼1

Xni
j¼1

yij� y
� �2

¼
Xk
i¼1

Xni
j¼1

y2ij�2y
Xk
i¼1

Xni
j¼1

yij +Ny
2:

Note that y¼
Xk

i¼1

Xni

j¼1
yij

N , and then we have

Total SS¼
Xk
i¼1

Xni
j¼1

y2ij�CM

where CM is the correction factor for the correction for the means and is given by

CM¼
Xk

i¼1

Xni

j¼1
yij

� �2
N

¼Ny2:

Let

Ti ¼
Xni
j¼1

yij, be the sum of all the observations in the ith sample

and

Ti ¼
Xni

j¼1
yij

ni
, the mean of the observations in the ith sample:

We can rewrite y as

y¼
Xk

i¼1

Xni

j¼1
yij

N
¼
Xk

i¼1
niTi

N

Now, we introduce SST, the sum of squares for treatment (sometimes known as

between group sum of squares, SSB) by

SST¼
Xk
i¼1

ni Ti � y
� �

2:

We note that Ti

� �
is the mean response due to its ith treatment and y is the overall

mean. A large value of Ti � y
� �

is likely to be caused by the ith treatment effect being

much different from the rest. Hence SST can be used to measure the differences in

the treatment effects.

Thus, the sum of squares of errors (SSE) is

SSE¼Total SS�SST:

Wemust state that the SSE is the sum of squares within groups (thus, sometimes SSE

is referred to as within group sum of squares, SSW) and this can be seen from rewrit-

ing the expression as
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SSE¼
Xk
i¼1

Xni
j¼1

yij�Ti

� �
2:

The decomposition of total sum of squares can be easily seen in Figure 10.1.

Figure 10.2 represents one point for each observation against each sample, with

SM representing the sample means and GM representing the grand mean. The dotted

line between SMs and GM is the distance between them. Taking this distance,

SST (or between
group sum of squares)

SSE (or within group sum
of squares)

Total sum of
squares

(yij – Ti)
2

i =1

k ni

j =1
ΣΣ −

= Ti  – y  2

i =1

k
niΣ − −⎛

⎝
⎛
⎝=

FIGURE 10.1

Decomposition of total SS.
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FIGURE 10.2

ANOVA decomposition.
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squaring, multiplying by the corresponding sample sizes, and summing, we get SST.

To obtain SSE, we take the distance from each group mean, SM, to each member of

the group, square them, and add them. In addition, to give an idea of within-group

variations, it is customary to draw side-by-side box plots.

As mentioned earlier, SST estimates the variation among the mi’s, and hence if all
the mi’s were equal, the Ti s would be similar and the SST would be small. It can be

verified that the unbiased estimator of s2 based on (n1 + n2 +� � �+ nk–k) degrees of
freedom is

S2 ¼MSE

¼ SSE

n1 + n2 + � � �+ nk�kð Þ

¼ SSE

N�k

:

Note that the quantity MSE is a measure of variability within the groups. If there

were only one group with n observations, then the MSE is nothing but the sample

variance, s2. The fact that ANOVA deals simultaneously with all the k groups can

be seen by rewriting MSE in the following form:

MSE¼ n1�1ð Þs21 + n2�1ð Þs22 + � � � + nk�1ð Þs2k
n1�1ð Þ+ n2�1ð Þ+ � � �+ nk�1ð Þ :

The mean square for treatments with (k�1) degrees of freedom is

MST¼ SST

k�1
:

The MST is a measure of the variability between the SMs of the groups. We now

summarize the ANOVA hypothesis testing method for two or more populations.

ONE-WAY ANOVA FOR k ‡2 POPULATIONS
We test

H0 : m1 ¼ m2 ¼ �� �¼ mk versus Ha :At least twoof themi
0s are different:

When H0 is true, we have

E MSTð Þ¼E MSEð Þ
The greater the differences among the m’s, the larger the E(MST) will be relative to E(MSE).

Test statistic:

F¼MST

MSE
:

Rejection region is

RR :F>Fa

with u1¼ (k�1) numerator degrees of freedom and u2¼
P

i¼1
k ni�k¼N�k denominator degrees of

freedom, where N¼P i¼1
k ni.

Assumptions: The observations Yij
0s are assumed to be independent and normally distributed

with mean mi, i¼1, 2, . . . , k, and variance s2.
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Now we give a five-step computational procedure that we could follow for

ANOVA for the completely randomized design.

ONE-WAY ANOVA PROCEDURE FOR k ‡2 POPULATIONS
We test

H0 :m1 ¼m2 ¼ �� � ¼mk versusHa :At least twoof themi
0s are different:

1. Compute

Ti ¼
Xni
j¼1

yij,T¼
Xk
i¼1

Xni
j¼1

yij, and
Xk
i¼1

Xni
j¼1

y2ij,

CM¼
Xk

i¼1

Xni

j¼1
yij

� �2
N

¼ T2

N
, where N¼

Xk
i¼1

ni, and

Ti ¼ Ti

ni
,

Total SS¼
Xk
i¼1

Xni
j¼1

y2ij�CM:

2. Compute the sum of squares between samples (treatments),

SST¼
Xk
i¼1

T2
i

ni
�CM:

and the sum of squares within samples,

SSE¼TotalSS�SST

Let

MST¼ SST

k�1
,

and

MSE¼ SSE

n�k
:

3. Compute the test statistic:

F¼MST

MSE
:

4. For a given a, find the rejection region as

RR :F>Fa

with u1¼ (k�1) numerator degrees of freedom and u2¼ (
P

i¼1
k ni)�k¼N�k denominator

degrees of freedom, where N¼P i¼1
k ni.

Continued
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5. Conclusion: If the test statistic F falls in the rejection region, conclude that the sample evidence

supports the alternative hypothesis that the means are indeed different for the k treatments and

are not all equal.

Assumptions: The samples are randomly selected from the k populations in an independent manner.

The populations are assumed to be normally distributed with equal variances s2 and means

m1, . . .,mk .

Even though the completely randomized design is extremely easy to construct

and the calculations described above are relatively easy, the homogeneousness of

the treatments is crucial. Any extraneous sources of variability will make it more

difficult to detect differences among treatment means due to inflation of the

error term.

10.3.1 THE p-VALUE APPROACH
Note that if we are using statistical software packages, the p-value approach can be

used for the testing. Just compare the p-value and a to arrive at a conclusion. Refer to
the computer examples in Section 10.7.

The following example illustrates the ANOVA procedure.

EXAMPLE 10.3.1
The three random samples in Table 10.1 represent test scores from three classes of statistics taught

by three different instructors and are independently obtained. Assume that the three different popu-

lations are normal with equal variances.

At the a¼0.05 level of significance, test for equality of population means.

Solution
We test

H0 :m1 ¼m2 ¼m3 versus Ha : At least two of the m0s are different:

Here, k¼3, n1¼5, n2¼3, and N¼n1+n2+n3¼11.

Also,

Ti 380 199 257

ni 5 3 3

Ti 76 66.33 85.67

Table 10.1

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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Clearly, the SMs are different. The question we are going to answer is: Is this difference due to

just chance, or is it due to a real difference caused by different teaching styles? For this, we now
compute the following:

CM¼
X

i

X
j
yij

� �2
N

¼ 836ð Þ2
11

¼ 63,536,

TotalSS¼
X
i

X
j

y2ij�CM

¼ 64,560�63,536¼ 1024,

SST¼
X
i

T2
i

ni
�CM

¼ 380ð Þ2
5

+
199ð Þ2
3

+
257ð Þ2
3

�CM

¼ 64,096:66�63,536¼ 560:66,

SSE¼Total SS�SST

¼ 1024�560:66¼ 463:34:

Hence,

MST¼ SST

k�1
¼ 560:66

2
¼ 280:33,

and

MSE¼ SSE

N�k
¼ 463:34

8
¼ 57:9175:

The test statistic is

F¼MST

MSE
¼ 280:33

57:9175
¼ 4:84:

From the F-table, F0.05,2,8¼4.46

Therefore, the rejection region is given by

RR :F> 4:46:

Decision: Because the observed value of F¼4.84 falls in the rejection region, we do reject H0

and conclude that there is sufficient evidence to indicate a difference in the true means.
If we want the p-value, we can see from the F-table that 0.025<p-value<0.05, indicating the

rejection of the null hypothesis with a¼0.05. Using statistical software packages, we can get the

exact p-value.

The calculations obtained in analyzing the total sum of squares into its components

are usually summarized by the analysis-of-variance table (ANOVA table), given in

Table 10.2.

Sometimes, one may also add a column for the p-value, P(Fk–1,n–k�observed F),
in the ANOVA table.

For the previous example, we can summarize the computations by the ANOVA

table shown in Table 10.3.
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10.3.2 TESTING THE ASSUMPTIONS FOR ONE-WAY ANOVA
The randomness assumption could be tested using theWald-Wolfowitz test (see Pro-

ject 12B). The assumption of independence of the samples is hard to test without

knowing how the data are collected and should be implemented during collection

of data in the design stage. Normality can be tested (this should be performed sep-

arately for each sample, not for the total data set) using probability plots or other tests

such as the chi-square goodness-of-fit test. ANOVA is fairly robust against violation

of this assumption if the sample sizes are equal. Also, if the sample sizes are fairly

large, the central limit theorem helps. The presence of outliers is likely to increase the

sample variance, thus decreasing the value of the F-statistic for ANOVA, which will
result in a lower power of the test. Box plots or probability plots could be used to

identify the outliers. If the normality test fails, transforming the data (see

Section 14.4.2) or a nonparametric test such as the Kruskal-Wallis test described

in Section 12.5.1 may be more appropriate. If the sample sizes of each sample are

equal, ANOVA is mostly robust for violation of homogeneity of the variances.

A rule of thumb used for robustness for this condition is that the ratio of sample var-

iance of the largest sample variance s2 to the smallest sample variance s2 should be no
more than 3:1. Another popular rule of thumb used in one-way ANOVA to verify the

requirement of equality of variances is that the largest sample standard deviation not

be larger than two times the smallest sample standard deviation. Graphically, repre-

senting side-by-side box plots of the samples can also reveal lack of homogeneity of

variances if some box plots are much longer than others (see Figure 10.3e). For a

significance test on the homogeneity of variances (Levene’s test), refer to

Section 14.4.3. If these tests reveal that the variances are different, then the

Table 10.2

Source of
Variation

Degree of
Freedom Sum of Squares

Mean
Squares

F-
statistic

Treatments k–1 SST¼Pk
i¼1

Ti
2

ni
�CM MST¼ SST

k�1

MST

MSE

Error N–k SSE¼Total SS–SST MSE¼ SSE

N� k
Total N–1 Total SS¼Pk

i¼1

Pni
i¼1 yij�y
� �2

Table 10.3

Source of
variation

Degree of
freedom

Sum of
squares

Mean
square

F-
statistic

p-
Value

Treatments 2 560.66 280.33 4.84 0.042

Error 8 463.34 57.917

Total 10 1024
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populations are different, in spite of what ANOVA concludes about differences of

the means. But this itself is significant, because it shows that the treatments had

an effect.

EXAMPLE 10.3.2
In order to study the effect of automobile size on the noise pollution, the following data are randomly

chosen from the air pollution data (source: A.Y. Lewin and M.F. Shakun, Policy Sciences: Meth-

odology and Cases, Pergamon Press, 1976, p. 313). The automobiles are categorized as small,

medium, large, and noise level reading (decibels) are given in Table 10.4.

At the a¼0.05 level of significance, test for equality of population mean noise levels for dif-

ferent sizes of the automobiles. Comment on the assumptions.

Solution
Let m1, m2, and m3 be population mean noise levels for small, medium, and large automobiles, respec-
tively. First we test for the assumptions. Using Minitab, run tests for each of the samples; we can

justify the assumption of randomness of the sample values. A normality test for each column gives the

graphs shown in Figures 10.3a through 10.3c, through which we can reasonably assume the nor-

mality. Because the sample sizes are equal, we will use the one-way ANOVAmethod to analyze these
data.

Figure 10.3d indicates that the relative positions of the SMs are different, and Figure 10.3e

(Minitab steps for creating side-by-side box plots are given at the end of Example 10.7.1) gives
an indication of within-group variations; perhaps the group 2 (medium-size) variance is larger.

Now, we will do the analytic testing.

We test

H0 : m1 ¼ m2 ¼m3 versus Ha :At least two of the m0s are different:

Here, k ¼ 3,n1 ¼ 5,n2 ¼ 5,n3 ¼ 5 and N ¼ n1 + n2 + n3 ¼ 15.

Also,

Ti 4125 4175 3860

ni 5 5 5

Ti 825 835 772

In the following calculations, for convenience we will approximate all values to the nearest
integer.

Continued

Table 10.4

Size of Automobile

Small Medium Large

Noise Level (decibels) 820 840 785

820 825 775

825 815 770

835 855 760

825 840 770
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FIGURE 10.3

(a) Normal plot for noise level of small automobiles. (b) Normal plot for noise level of medium-

sized automobiles.
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FIGURE.10.3, cont’d (c) Normal plot for noise level of large automobiles. (d) Mean decibel

levels for three sizes of automobiles.

Continued

51510.3 ANOVA for Completely Randomized Design



CM¼
X

i

X
j
yij

� �2
N

¼ð12,160Þ2
15

¼ 9,857,707,

TotalSS¼
X
i

X
j

y2ij�CM

¼ 12,893,

SST¼
X
i

T2
i

ni
�CM

¼ 11,463,

SSE¼TotalSS�SST

¼ 1430:

Hence,

MST¼ SST

k�1
¼ 11,463

2
¼ 5732

and

MSE¼ SSE

N�k
¼ 1430

12
¼ 119:

The test statistic is

F¼MST

MSE
¼ 5732

119
¼ 48:10:

From the table, we get F0.05,2,12¼3.89. Because the test statistic falls in the rejection region, we

reject at a¼0.05 the null hypothesis that the mean noise levels are the same.We conclude that size of
the automobile does affect the mean noise level.

It should be noted that the alternative hypothesis Ha in this section covers a wide

range of situations, from the case where all but one of the population means are equal

321
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FIGURE.10.3, cont’d (e) Side-by-side box plots for decibel levels for three sizes of automobiles.
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to the case where they are all different. Hence, with such an alternative, if the samples

lead us to reject the null hypothesis, we are left with a lot of unsettled questions about

the means of the k populations. These are called post hoc testing. This problem of

multiple comparisons is the topic of Section 10.5.

10.3.3 MODEL FOR ONE-WAY ANOVA (OPTIONAL)
We conclude this section by presenting the classical model for one-way ANOVA.

Because the variables Yij values are random samples from normal populations with

E(Yij)¼mi and with common variance Var(Yij)¼s2, for i¼1,. . .,k and j¼1,. . ., ni, we
can write a model as

Yij ¼ mi + eij, j¼ 1, ....,ni

where the error terms eij are independent normally distributed random variables with

E(eij)¼0 and Var(eij)¼s2. Let ai¼mi�m be the difference of mi (ith population

mean) from the GM m. Then ai can be considered as the ith treatment effect. Note

that the ai values are nonrandom. Because m¼Si (ni mi/N), it follows that
P

i¼1
k ai¼0.

This will result in the following classical model for one-way layout:

Yij ¼ m + ai + Eij, i¼ 1, . . . ,k, j¼ 1, . . . ,ni:

With this representation, the test H0 : m1 ¼ m2 ¼ � � � ¼ mk reduces to testing the null

hypothesis that there is no treatment effect, H0 :ai ¼ 0, for i ¼ 1, . . .,k.

EXERCISES 10.3
10.3.1. In an effort to investigate the premium charged by insurance companies

for auto insurance, an agency randomly selects a few drivers who are

insured by one of three different companies. These individuals have

similar cars, driving records, and levels of coverage. Table 10.3.1 gives the

premiums paid per six months by these drivers with these three companies.

(a) Construct an ANOVA table and interpret the results.

(b) Using the 5% significance level, test the null hypothesis that the mean

auto insurance premium paid per six months by all drivers insured for

each of these companies is the same. Assume that the conditions of

completely randomized design are met.

Table 10.3.1

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474 432
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10.3.2. Three classes in elementary statistics are taught by three different persons:

a regular faculty member, a graduate teaching assistant, and an adjunct

from outside the university. At the end of the semester, each student is

given a standardized test. Five students are randomly picked from each of

these classes, and their scores are as shown in Table 10.3.2.

(a) Construct an ANOVA table and interpret your results.

(b) Test at the 0.05 level whether there is a difference between the mean

scores for the three persons teaching. Assume that the conditions of

completely randomized design are met.

10.3.3. Let n1 ¼ n2 ¼ � � �¼ nk ¼ n 0. Show that

Xk
i¼1

Xn0
j¼1

yij� y
� �2

¼
Xk
i¼1

Xn0
j¼1

yij�Ti

� �2
+ n
Xk
i¼1

Ti � y
� �2

:

10.3.4. For the sum of squares for treatment

SST¼
Xk
i¼1

ni Ti � y
� �2

show that

E SSTð Þ¼ k�1ð Þs2 +
Xk
i¼1

ni mi�mð Þ2

where m¼ 1

N

Xk

i¼1
nimi:

[This exercise shows that the expected value of SST increases as the dif-

ferences among the mi’s increase.]
10.3.5. (a) Show that

SSE¼
Xk
i¼1

ni�1ð ÞS2i ¼
Xk
i¼1

Xni
j¼1

Yij�Ti

� �2
,

where S2i ¼ 1

n�1
Sni
j¼1 Yij�Ti

� �2
provides an independent, unbiased

estimator for s2 in each of the k samples.

(b) Show that SSE/s2 has a chi-square distribution with N – k degrees of
freedom, where N¼Si¼1

k ni.

Table 10.3.2

Faculty Teaching Assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47
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10.3.6. Let each observation in a set of k independent random samples be

normally distributed with means m1, . . .,mk and common variance s2.
If H0 ¼ m1 ¼ m2 ¼ � � �¼ mk is true, show that

F¼ SST= k�1ð Þ
SSE= n�kð Þ¼

MST

MSE

has an F-distribution with k–1 numerator and n–k denominator degrees of

freedom.

10.3.7. The management of a grocery store observes various employees for work

productivity. Table 10.3.3 gives the number of customers served by each

of its four checkout lanes per hour.

(a) Construct an ANOVA table and interpret the results. Indicate any

assumptions that were necessary.

(b) Test whether there is a difference between the mean numbers of

customers served by the four employees at the 0.05 level. Assume that

the conditions of completely randomized design are met.

10.3.8. Table 10.3.4 represents immunoglobulin levels (with each observation

being the IgA immunoglobulin level measured in international units) of

children under 10 years of age of a particular group. The children are

grouped as follows: A: ages 1 to less than 3, B: ages 3 to less than 6, C: ages

6 to less than 8, and D: ages 8 to less than 10. Test whether there is a

difference between the means for each of the age groups. Use a¼0.05.

Interpret your results and state any assumptions that were necessary to

solve the problem.

10.3.9. Table 10.3.5 gives rental and homeowner vacancy rates by US region

(source: US Census Bureau) for 5 years.

Table 10.3.4

A 35 8 12 19 56 64 75 25

B 31 79 60 45 39 44 45 62 20 66

C 74 56 77 35 95 81 28

D 80 42 48 69 95 40 86 79 51

Table 10.3.3

Lane 1 Lane 2 Lane 3 Lane 4

16 11 8 21

18 14 12 16

22 10 17 17

21 10 10 23

15 14 13 17

10 15
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Test at the 0.01 level whether the true rental and homeowner vacancy

rates by area are the same for all 5 years. Interpret your results and state

any assumptions that were necessary to perform the analysis.

10.3.10. Table 10.3.6 gives lower limits of income (approximated to the nearest

$1000 and calculated as of March of the following year) of the top

5% of US households by race from 1994 to 1998 (Source: US Census

Bureau).

Test at the 0.05 level whether the true lower limits of income for the

top 5% of US households for each race are the same for all 5 years.

10.3.11. Table 10.3.7 gives mean serum cholesterol levels (given in milligrams per

deciliter) by race and age for the adult population in the United States

between 1978 and 1980 (source: “Report of the National Cholesterol

Education Program Expert Panel on Detection, Evaluation, and Treatment

of High Blood Cholesterol in Adults,” Arch. Intern. Med. 148,
January 1988).

Test at the 0.01 level whether the true mean cholesterol levels for adult

population in the United States between 1978 and 1980 are the same.

Table 10.3.5

Rental Units 1995 1996 1997 1998 1999

Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2

Table 10.3.6

Race Year

1994 1995 1996 1997 1998

All Races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

Table 10.3.7

Race Age

20-24 25-34 35-44 45-54 55-64 65-74

All Races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217
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10.4 TWO-WAY ANOVA, RANDOMIZED COMPLETE
BLOCK DESIGN
A randomized block design, or the two-way ANOVA, consists of b blocks of k exper-
imental units each. In many cases we may be required to measure response at com-

binations of levels of two or more factors considered simultaneously. For example,

we might be interested in gas mileage per gallon among four different makes of cars

for both in-city and highway driving, or to examine weight loss comparing five dif-

ferent diet programs among whites, African Americans, Hispanics, and Asians

according to their gender. In studies involving various factors, the effect of each fac-

tor on the response variable may be analyzed using one-way classification. However,

such an analysis will not be efficient with respect to time, effort, and cost. Also, such

a procedure would give no knowledge about the likely interactions that may exist

among different factors. In such cases, the two-way ANOVA is an appropriate sta-

tistical method to use.

In a randomized block design, the treatments are randomly assigned to the units in

each block, with each treatment appearing exactly once in every block (that is, there

is no interaction between factors). Thus, the total number of observations obtained in

a randomized block design is n¼bk. The purpose of subdividing experiments into

blocks is to eliminate as much variability as possible, that is, to reduce the experi-

mental error or the variability due to extraneous causes. Refer to Section 9.2.3 for

a procedure to obtain completely randomized block design. The goal of such an

experiment is to test the equality of levels for the treatment effect. Sometimes, it

may also be of interest to test for a difference among blocks. We proceed to give

a formal statistical model for the completely randomized block design.

For i¼1, 2, . . ., k and j¼1, 2, . . ., b, let Yij¼m+ai+bj+eij, where Yij is the obser-
vation on treatment i in block j, m is the overall mean, ai is the nonrandom effect of

treatment i, bj is the nonrandom effect of block j, and eij are the random error terms

such that Eij are independent normally distributed random variables with E (eij)¼0 and

Var (eij)¼s2. In this case, Sai¼0, and Sbj¼0.

The ANOVA for a randomized block design proceeds similarly to that for a

completely randomized design, the main difference being that the total sum of squares

of deviations of the response measurements from their means may be partitioned into

three parts: the sum of squares of blocks (SSB), treatments (SST), and error (SSE).

Let Bj¼Si¼1
k yij and Bj denote, respectively, the total sum and mean of all obser-

vations in block j. Represent the total for all observations receiving treatment i by
Ti¼Sj¼1

b yij , and mean and Ti , respectively. Let

y¼ average of n¼ bk observations¼ 1

n

Xb
j¼1

Xk
i¼1

yij

and

CM¼ 1

n
total of all observationsð Þ2

¼ 1

n

Xb
j¼1

Xk
i¼1

yij

 !2

:
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For convenience, we can represent the two-way classification as in Table 10.5.

Note that from Table 10.5, we can obtain
P

j¼1
b P

i¼1
k yij¼

P
j¼1
b Bj. Hence,

CM¼ (1/n) (
P

j¼1
b Bj)

2.

Then for a randomized block design with b blocks and k treatments, we need to

compute the following sums of squares. They are

Total SS¼ SSB+SST+ SSE

¼
Xb
j¼1

Xk
i¼1

yij� y
� �2

¼
Xb
j¼1

Xk
i¼1

y2ij�CM

SSB¼ k
Xb
j¼1

Bj� y
� �2 ¼

Xb

j¼1
B2
j

k
�CM

and

SSB¼ b
Xk
i¼1

Ti � y
� �2 ¼

Xk

i¼1
T2
i

b
�CM

SSE¼TotalSS�SSB�SST:

We define

MSB¼ SSB

b�1
,

MST¼ SST

k�1
,

and

MSE¼ SSE

n�b�k + 1
:

Table 10.5

Blocks

1 2 . . . j . . . b Total Ti Mean Ti

Treatment 1 y11 y12 . . . y1j . . . y1b T1 T1

Treatment 2 y21 y22 . . . y2j . . . y2b T2 T2

� � �
� � �
� � �
Treatment i yi1 yi2 . . . yij . . . yib Ti T i

� �
� �
� �
Treatment k yk1 yk2 . . . ykj . . . ykb Tk Tk

Total Bj B1 B2 . . . Bj . . . Bb

Mean Bj B1 B2 . . . Bj . . . Bb y

522 CHAPTER 10 Analysis of Variance



The ANOVA for the randomized block design is presented in Table 10.6. The col-

umn corresponding to d.f. represents the degrees of freedom associated with each

sum of squares. MS denotes the mean square.

To test the null hypothesis that there is no difference in treatment means, that is,

to test

H0 : ai ¼ 0, i¼ 1, . . . ,k versus Ha : Not all ais are zero

We use the F-statistic

F¼MST

MSE

and reject H0 if F>Fa based on (k–1) numerator and (n–b–k+1) denominator

degrees of freedom.

Although blocking lowers the experimental error, it also furnishes a chance to see

whether evidence exists to indicate a difference in the mean response for blocks. In

this case we will be testing the hypothesis

H0 : bj ¼ 0, j¼ 1, . . . ,b versus Ha :Not all bj
0s are zero:

Under the assumption that there is no difference in the mean response for blocks,

MSB provides an unbiased estimator for s2 based on (b–1) degrees of freedom.

If there is a real difference that exists among block means, MSB will be larger in

comparison with MSE and

F¼MSB

MSE

will be used as a test statistic. The rejection region will be if F>Fa based on (b–1)
numerator and (n–b–k+1) denominator degrees of freedom.

We now summarize the foregoing methodology in a step-by-step computational

procedure. For a reasonable data size, we could use scientific calculators for handling

the ANOVA calculations. For larger data sets, the use of statistical software packages

is recommended.

Table 10.6

Source d.f. SS MS

Blocks b–1 SSB
SSB

b�1

Treatments k–1 SST
SST

k�1

Error (b–1)(k–1)¼n–b–k+1 SSE
SST

n�b�k +1
Total n–1 Total SS
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COMPUTATIONAL PROCEDURE FOR RANDOMIZED BLOCK DESIGN
1. Calculate the following quantities:

(i) Sum the observations for each row to form row totals:

T1,T2, . . . ,Tk , where Ti ¼
Xb
j¼1

yij:

(ii) Sum the observations for each column to form column totals:

B1,B2, . . . ,Bb, where Bj ¼
Xk
i¼1

yij:

(iii) Find the sum of all observations:

Xb
j¼1

Xk
i¼1

yij ¼
Xb
j¼1

Bj:

2. Calculate the following quantities:

(i) Square the sum of the totals for each column and divide it by n¼bk to obtain

CM¼ 1

n

Xb
j¼1

Bj

 !2

:

(ii) Find the sum of squares of the totals of each column and divide it by k to obtain

1

k

Xb
j¼1

B2
j

and

SSB¼
Xb

j¼1
B2
j

k
�CM and MSB¼ SSB

b�1
:

(iii) Find the sum of squares of the totals of each row and divide it by b to obtain

Xk

i¼1
T2
i

b

and

SST¼
Xk

i¼1
T2
j

b
�CM and MSB¼ SST

k�1
:

(iv) Find the sum of squares of individual observations:

Xb
j¼1

Xk
i¼1

y2ij

Also compute

TotalSS¼
Xb
j¼1

Xk
i¼1

y2ij�CM:

524 CHAPTER 10 Analysis of Variance



(v) Using (ii), (iii), and (iv), find

SSE¼Total SS�SSB�SST and MSE¼ SSE

n�b�k + 1
:

3. To test the null hypothesis that there is no difference in treatment means:

(i) Compute the F-statistic,

F¼MST

MSE
:

(ii) From the F-table, find the value of Fa,u1,u2, where u1¼ (k�1) is the numerator and

u2¼ (n�b�k+1) the denominator degrees of freedom.

(iii) Decision: RejectH0 if F>Fa,u1,u2 and conclude that there is evidence to conclude that there

is a difference in treatment means at level a.
4. To test the null hypothesis that there is no difference in the mean response for blocks,

(i) Compute the F-statistic,

F¼MSB

MSE
:

(ii) From the F-table, find the value of Fa,u1,u2, where u1¼ (b�1) is the numerator and

u2¼ (n�b�k+1) the denominator degrees of freedom.

(iii) Decision: RejectH0 if F>Fa,u1,u2 and conclude that there is evidence to conclude there is a

difference in the mean response for blocks at level a.
Assumptions: The samples are randomly selected in an independent manner from n¼bk popu-

lations. The populations are assumed to be normally distributed with equal variances s2. Also, there
are no interactions between the variables (two factors).

We have already discussed the assumptions and how to verify those assumptions

in one-way analysis. The only new assumption in the randomized blocked design is

about the interactions. One of the ways to verify the assumption of no interaction is to

plot the observed values against the sample number. If there is no interaction, the line

segments (one for each block) will be parallel or nearly parallel; see Figure 9.2. If the

lines are not approximately parallel, then there is likely to be interaction between

blocks and treatments. In the presence of interactions, the analysis of this section

needs to be modified. For details on those procedures, refer to more specialized

books on ANOVA methods.

We illustrate the randomized block design procedure with the following example.

EXAMPLE 10.4.1
A furniture company wants to know whether there are differences in stain resistance among the four

chemicals used to treat three different fabrics. Table 10.7 shows the yields on resistance to stain (a

low value indicates good stain resistance).

At the a¼0.05 level of significance, is there evidence to conclude that there is a difference in

mean resistance among the four chemicals? Is there any difference in the mean resistance among the

materials? Give bounds for the p-values in each case.

Continued
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Solution
Here T1¼16, T2¼28, T3¼14, and T4¼24. Also, B1¼21, B2¼32, and B3¼29. In addition, b¼3,

k¼4, and n¼bk¼12. Now

CM¼ 1

n

Xb
j¼1

Bj

 !2

¼ 1

12
82ð Þ2 ¼ 560:3333:

We can compute the following quantities:

SSB¼
Xb

j¼1
B2
j

k
�CM¼ 2306

4
�560:3333¼ 16:1667,

MSB¼ SSB

b�1
¼ 16:1667

2
¼ 8:0834,

SST¼
Xk

i¼1
T2
i

b
�CM¼ 1812

3
�560:3333¼ 43:6667,

and

MST¼ SST

k�1
¼ 43:6667

3
¼ 14:5556:

We have
P

j¼1
b P

i¼1
k yij

2¼632. From this

TotalSS¼
Xb
j¼1

Xk
i¼1

y2ij�CM¼ 632�560:3333¼ 71:666,

SSE¼TotalSS�SSB�SST¼ 71:6667�16:1667�43:6667
¼ 11:8333

and

MSE¼ SSE

n�b�k + 1
¼ 11:8333

6
¼ 1:9722:

The F-statistic is

F¼MST

MSE
¼ 14:5556

1:9722
¼ 7:3804

From the F-table, F0.05,3,6¼4.76. Because the observed value F¼7.3804>4.76, we reject the
null hypothesis and conclude that there is a difference in mean resistance among the four chemicals.

Because the F-value falls between a¼0.025 and a¼0.01, the p-value falls between 0.01 and 0.025.

To test for the difference in the mean resistance among the materials,

F¼MSB

MSE
¼ 8:0834

1:9722
¼ 4:0987:

From the F-table, F0.05,2,6¼5.14. Because the observed value of F¼4.098<5.14, we conclude
that there is no difference in the mean resistance among the materials. Because the F-value falls

between a¼0.10 and 0.05, the p-value falls between 0.05 and 0.10.

Table 10.7

Chemical Material

I II III Total

C1 3 7 6 16

C2 9 11 8 28

C3 2 5 7 14

C4 7 9 8 24

Total 21 32 29 82
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EXERCISES 10.4
10.4.1. Show that

Xb
j¼1

Xk
i¼1

yij� y
� �2

¼
Xk
i¼1

Xb
j¼1

yij�Ti �Bj � y
� �2

+ b
Xk
i¼1

Ti � y
� �2

+ k
Xb
j¼1

Bj � y
� �2

:

[Hint: Use the identity yij� y¼ yij�Ti�Bj� y
� �

+ Ti� y
� �

+ Bj� y
� �

:�
10.4.2. Show the following:

(a) E(MSE) ¼ s2,

(b) E MSBð Þ¼ k

b�1

Xb
j¼1

B2
j + s

2,

(c) E MSTð Þ¼ b

k�1

Xk
i¼1

t2i + s
2:

10.4.3. The least-square estimators of the parameters m, ti’s, and bj’s are obtained
by minimizing the sum of squares

W¼
Xk
i¼1

Xb
j¼1

yij�m� ti�bj
� �2

with respect to m, ti’s, and bj’s; subject to the restrictions:P
i¼1
k ti¼

P
j¼1
b bj¼0. Show that the resultant estimators are

m̂¼ y,
t̂i ¼ Ti � y, i¼ 1,2, . . . ,k,

and

b̂j ¼Bj� y, j¼ 1, . . . ,b:

10.4.4. In order to test the wear on four hyperalloys, a test piece of each alloy was

extracted from each of the three positions of a test machine. The reduction

of weight in milligrams due to wear was determined on each piece, and the

data are given in Table 10.4.1.

Table 10.4.1 Loss in Weights Due to Wear Testing of Four Materials (in mg)

Position

Type of alloy 1 2 3

1 241 270 274

2 195 241 218

3 235 273 230

4 234 236 227
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At a¼0.05, test the following hypotheses, regarding the positions as

blocks:

(a) There is no difference in average wear for each material.

(b) There is no difference in average wear for each position.

(c) Interpret your final result and state any assumptions that were necessary

to solve the problem.

10.4.5. For the data of Exercise 10.3.10, test at the 0.05 level that the true income

lower limits of the top 5% of US households for each race are the same for

all 5 years. Also, test at the 0.05 level that the true income lower limits of

the top 5% of US households for each year between 1994 and 1998

are the same.

10.4.6. For the data of Exercise 10.3.11, test at the 0.01 level that the true mean

cholesterol levels for all races in the United States during 1978–1980 are the

same. Also, test at the 0.01 level that the true mean cholesterol levels for all

ages in the United States during 1978-1980 are the same.

10.4.7. In order to see the effect of hours of sleep on tests of different skill

categories (vocabulary, reasoning, and arithmetic), tests consisting of 20

questions each in each category were given to 16 students, four each based

on the hours of sleep they had on the previous night. Each right answer is

given one point. Table 10.4.2 gives the cumulative scores of the each of the

four students in each category.

Test at the 0.05 level whether the true mean performance for different

hours of sleep is the same. Also, test at the 0.05 level whether the true mean

performance for each category of the test is the same.

10.5 MULTIPLE COMPARISONS
The ANOVA procedures that we have used so far showed whether differences

among several means are significant. However, if the equality of means is rejected,

the F-test did not pinpoint for us which of the given means or group of means differs

significantly from another given mean or group of means. With ANOVA, when the

null hypothesis of equality of means is rejected, the problem is to see whether there is

some way to follow up (post hoc) this initial testH0 :m1¼ m2¼ � � �¼ mk by looking at
subhypotheses, such as H0 :m1 ¼ m2 .

Table 10.4.2

Hours of sleep Category

Vocabulary Reasoning Arithmetic

0 44 33 35

4 54 38 18

6 48 42 43

8 55 52 50
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This involves multiple tests. However, the solution is not to use a simple t-test
repeatedly for every possible combination taken two at a time. That, apart from intro-

ducing many tests, will considerably increase the significance level, the probability

of type I error. For example, to test four samples we will need (2
4)¼6 tests. If each one

of the comparisons is tested with the same value of a¼P (type I error), and if all the

null hypotheses involving six comparisons are true, then the probability of rejecting

at least one of them is

P at least one type I errorð Þ¼ 1� 1�að Þ6:

In particular, if a¼0.01, then P (at least one type I error)¼0.077181, which is sig-

nificantly higher than the original error value of 0.01.

One way to investigate the problem is to use a multiple comparison procedure.

A good deal of work has been done on problems of multiple comparisons. There are a

variety of techniques available in the literature, such as the Bonferroni procedure,

Tukey’s method, and Scheffe’s method. We now describe one of the more popular

procedures called Tukey’s method for completely randomized, one-factor design.

In this multiple comparison problem, we would like to test H0 :mi ¼
mj versus Ha :mi 6¼ mj, for all i 6¼ j. Tukey’s method will be used to test all possible

differences of means to decide whether at least one of the differences mi–mj is con-
siderably different from zero. In this comparison problem, Tukey’s method makes

use of confidence intervals for mi–mj. If each confidence interval has a confidence

level 1–a, then the probability that all confidence intervals include their respective

parameters is less than 1–a. We now describe this method where each of the k SMs is

based on the common number of observations, n.
Let N¼kn be the total number of observations and let

S2 ¼ 1

N�k

Xk
i¼1

Xni¼n

j¼1

Yij�Ti

� �2
:

Let Tmax ¼ max T1, . . . , Tk

� �
and Tmin ¼ min T1, . . . , Tk

� �
: Define the random

variable

Q¼ Tmax�Tmin

S
ffiffiffi
n

p :

The distribution of Q under the null hypothesis H0 :m1 ¼ � � �¼ mk. is called the

Studentized range distribution, which depends on the number of samples k and

the degrees of freedom u¼N–k¼ (n–1)k. We denote the upper a critical value

by qa,k,u. The Studentized range distribution table gives values for selected values

of k, u, and a¼0.01, 0.05, and 0.10. The following theorem, due to Tukey, defines

the test procedure.

Theorem 10.5.1 Let Ti, i ¼ 1,2, . . . ,k be the k SMs in a completely randomized
design. Let mi, i ¼ 1,2, . . .,k be the true means and let ni¼n be the common sample
size. Then the probability that all (2

k) differences mi–mj will simultaneously satisfy the
inequalities
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Ti �Tj

� ��qa,k,u
sffiffiffi
n

p � mi�mj � Ti �Tj

� �
+ qa,k,u

sffiffiffi
n

p ,

is (1–a), where qa,k,u is the upper a critical value of the Studentized range distribu-
tion. If, for a given i and j, zero is not contained in the preceding inequality, H0:

mi¼mj can be rejected in favor of Ha : mi 6¼mj, at the significance level of a.
Now we give a step-by-step approach to implementing the Tukey’s method dis-

cussed earlier.

PROCEDURE TO FIND (1–a)100% CONFIDENCE INTERVALS FOR
DIFFERENCE OF MEANS WITH COMMON SAMPLE SIZE N:
TUKEY’S METHOD

1. There are
k

2

� �
comparisons of mi versus mj.

2. Compute the following quantities:

Ti ¼
Xni

j¼1
yij

ni
, i¼ 1,2, . . . ,k,

and

s2 ¼ 1

N�k

Xk
i¼1

Xni¼n

j¼1

yij�Ti

� �2
, whereN¼ kn:

3. From the Studentized range distribution table, find the upper a critical value, qa, k, u, where

u¼N�k¼ (n�1)k.

4. For each of
k

2

� �
pair (i, j), i 6¼ j, compute the Tukey’s interval

Ti �Tj

� ��qa,k,u
sffiffiffi
n

p , Ti �Tj

� �
+ qa,k,u

sffiffiffi
n

p
� �

:

5. Let NR denote insufficient evidence for rejecting H0. Create the following table for each of (2
k)

pairwise difference mi�mj, i 6¼ j, and do not reject if the Tukey interval contains the number 0.

Otherwise reject.

Table 10.8 is used to summarize the final calculations of the Tukey method.

In practice, there are now numerous statistical packages available for Tukey’s

purpose. The following example is solved using Minitab. The necessary Minitab

commands are given in Example 10.7.3.

Table 10.8

mi–mj Ti�Tj Tukey Interval Observation Conclusion

m1–m2 T1�T2 . . . Doesn’t contain 0 Reject

m1–m3 T1�T3 . . . Contains 0 Do not reject

. . . . .

. . . . .

. . . . .
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EXAMPLE 10.5.1
Table 10.9 shows the one-year percentage total return of the top five stock funds for five different

categories (source:Money, July 2000). Which categories have similar top returns and which are dif-

ferent? Use 95% Tukey’s confidence intervals.

Solution
For simplicity of computation, we will use SPSS (Minitab steps are given in Example 10.7.2). The

following is the output.

One-way
ANOVA

RETURN

Note that since the p-value is 0.001, we are rejecting the null hypothesis that all means are

equal. To find out which of the means might be different, we use the multiple comparison output.
Post Hoc Tests

Multiple Comparisons

Dependent Variable: RETURN

Tukey HSD

Continued

Table 10.9

Large-cap Mid-cap Small-cap Hybrid Specialty

110.1 299.8 153.8 68.3 181.6

102.9 139.0 139.8 67.1 159.3

93.1 131.2 138.3 42.5 138.3

83.0 110.5 121.4 40.0 132.6

83.3 129.2 135.9 41.0 135.7

Sum of Squares df Mean Square F Sig.

Between Groups 41,243.698 4 10,310.925 7.397 0.001

Within Groups 27,877.580 20 1393.879

Total 69,121.278 24

(I)
Fund

(J)
Fund

Mean
Difference
(I�J)

Std.
Error Sig.

95% Confidence
Interval

Lower
Bound

Upper
Bound

1.00 2.00 –67.4600 23.61253 0.066 –138.1175 3.1975

3.00 –43.3600 23.61253 0.382 –114.0175 27.2975

4.00 42.7000 23.61253 0.396 –27.9575 113.3575

5.00 –55.0200 23.61253 0.177 –125.6775 15.6375

2.00 1.00 67.4600 23.61253 0.066 –3.1975 138.1175

3.00 24.1000 23.61253 0.843 –46.5575 94.7575
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Homogeneous Subsets

RETURN

Tukey HSDa

The Tukey intervals for pairwise differences (mi–mj) are in the foregoing computer printout.
For example, the Tukey interval for (m1–m2) is (�138.1, 3.2) and for (m2–m4) is (39.5, 180.8). Also,
SM and standard deviation are given in the output. For example, 94.48 is the SM of the five data points

of large-cap funds, and 11.97 is the sample standard deviation of the five data points of large-cap
funds.

If the Tukey interval for a particular difference (mj–mi) contains the number zero, we do

not reject the H0 : mi¼mj. Otherwise, we reject the H0 : mi¼mj. For example the interval for

(m4–m2) is (39.5–180.8) and does not contain zero. Hence we reject H0 : m4¼m2.
The complete table corresponding to step 5 is produced in Table 10.10, where N.R. represents

“not reject.”

(I)
Fund

(J)
Fund

Mean
Difference
(I�J)

Std.
Error Sig.

95% Confidence
Interval

Lower
Bound

Upper
Bound

4.00 110.1600* 23.61253 0.001 39.5025 180.8175

5.00 12.4400 23.61253 0.984 –58.2175 83.0975

3.00 1.00 43.3600 23.61253 0.382 –27.2975 114.0175

2.00 –24.1000 23.61253 0.843 –94.7575 46.5575

4.00 86.0600* 23.61253 0.012 15.4025 156.7175

5.00 –11.6600 23.61253 0.987 –82.3175 58.9975

4.00 1.00 –42.7000 23.61253 0.396 –113.3575 27.9575

2.00 – 110.1600* 23.61253 0.001 –180.8175 –39.5025

3.00 –86.0600* 23.61253 0.012 –156.7175 –15.4025

5.00 – 97.7200* 23.61253 0.004 –168.3775 –27.0625

5.00 1.00 55.0200 23.61253 0.177 –15.6375 125.6775

2.00 –12.4400 23.61253 0.984 –83.0975 58.2175

3.00 11.6600 23.61253 0.987 –58.9975 82.3175

4.00 97.7200* 23.61253 0.004 27.0625 168.3775

*The mean difference is significant at the 0.05 level.

Subset for alpha¼0.05

FUND N 1 2

4.00 5 51.7800

1.00 5 94.4800 94.4800

3.00 5 137.8400

5.00 5 149.5000

2.00 5 161.9400

Sig. 0.396 0.066

Means for groups in homogeneous subsets are displayed.
aUses Harmonic Mean Sample Size¼5.000.
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Based on the 95% Tukey intervals, the average top return of hybrid funds is different from those

for mid-cap, small-cap, and specialty funds. All other returns are similar.

In Tukey’s method, the confidence coefficient for the set of all pairwise comparisons

{mi–mj} is exactly equal to 1–a when all sample sizes are equal. For unequal sample

sizes, the confidence coefficient is greater than 1–a. In this sense, Tukey’s procedure is
conservative when the sample sizes are not equal. In the case of unequal sample sizes,

one has to estimate the standard deviation for each pairwise comparison. Tukey’s pro-

cedure for unequal sample sizes is sometimes referred to as the Tukey-Kramer method.

EXERCISES 10.5
10.5.1. A large insurance company wants to determine whether there is a difference

in the average time to process claim forms among its four different

processing facilities. The data in Table 10.5.1 represent weekly average

number of days to process a form over a period of four weeks.

(a) Test whether there is a difference in the average processing times at the

0.05 level.

(b) Test whether there is a difference, using Tukey’s method to find which

facilities are different.

(c) Interpret your results and state any assumptions you have made in

solving the problem.

Table 10.5.1

Facility 1 Facility 2 Facility 3 Facility 4

1.50 2.25 1.30 2.0

0.9 1.85 2.75 1.5

1.12 1.45 2.15 2.85

1.95 2.15 1.55 1.15

Table 10.10

mi –mj Ti�Tj Tukey interval Reject or N.R. Conclusion

m1–m2 161.94–94.48 (�138.1, 3.2) N.R. m1¼m2
m1–m3 137.84–94.48 (�114.0, 27.3) N.R. m1¼m3
m2–m3 137.84–161.94 (�46.6, 94.8) N.R. m3¼m2
m1–m4 51.78–94.48 (�27.9, 113.3) N.R. m4¼m1
m2–m4 51.78–161.94 (39.5, 180.8) R m4 6¼m1
m3–m4 51.78–137.84 (15.4, 156.7) R m4 6¼m3
m1–m5 149.50–94.98 (�125.6, 15.6) N.R. m5¼m1
m2–m5 149.50–161.94 (�58.2, 83.1) N.R. m5¼m2
m3–m5 149.50–137.84 (�82.3, 59.0) N.R. m5¼m3
m4–m5 149.50–51.78 (�168.3,–27.1) R m5 6¼m4
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10.5.2. Table 10.5.2 gives the rental vacancy rates by US region (source: US

Census Bureau) for 5 years.

(a) Test at the 0.01 level whether the true rental vacancy rates by region are

the same for all 5 years.

(b) If there is a difference, use Tukey’s method to find which regions are

different.

10.5.3. Table 10.5.3 gives lower limits of income (approximated to nearest

$1000 and calculated as of March of the following year) by race for

the top 5% of US households from 1994 to 1998. (Source: US Census

Bureau.)

(a) Test at the 0.05 level whether the true lower limits of income

for the top 5% of US households for each race are the same for all

5 years.

(b) If there is a difference, use Tukey’s method to find which is different.

(c) Interpret your results and state any assumptions you have made in

solving the problem.

10.5.4. The data in Table 10.5.4 represent the mean serum cholesterol levels (given

in milligrams per deciliter) by race and age in the United States from 1978

to 1980 (source: “Report of the National Cholesterol Education Program

Table 10.5.3

Race 1994 1995 1996 1997 1998

All Races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

Table 10.5.4

Race Age

20-24 25-34 35-44 45-54 55-64 65-74

All races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217

Table 10.5.2

Rental units 1995 1996 1997 1998 1999

Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2
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Expert Panel on Detection, Evaluation, and Treatment of High Blood

Cholesterol in Adults,” Arch. Intern. Med. 148, Jan. 1988).
(a) Test at the 0.01 level whether the true mean cholesterol levels for all

races in the United States during 1978–1980 are the same.

(b) If there is a difference, use Tukey’s method to find which of the races

are different with respect to the mean cholesterol levels.

10.6 CHAPTER SUMMARY
In this chapter, we have introduced the basic idea of analyzing various experimental

designs. In Section 10.3, we explained the one-way ANOVA for the hypothesis test-

ing problem for more than twomeans (different treatments being applied, or different

populations being sampled). The two-way ANOVA, having b blocks and k treat-

ments consisting of b blocks of k experimental units each, is discussed in

Section 10.5. We also describe one popular procedure called Tukey’s method for

completely randomized, one-factor design for multiple comparisons. We saw in

Chapter 9 that there are other possible designs, such as the Latin square design or

Taguchi methods. We refer to specialized books on experimental design (Hicks

and Turner) for more details on how to conduct ANOVA on such designs. In the final

section, we give some computational examples.

We now list some of the key definitions introduced in this chapter:

• Completely randomized experimental design

• Randomized block design

• Studentized range distribution

• Tukey-Kramer method

In this chapter, we also learned the following important concepts and procedures:

• ANOVA procedure for two treatments

• One-way ANOVA for k�2 populations

• One-way ANOVA procedure for k�2 populations

• Procedure to find (1–a) 100% confidence intervals for difference of means with

common sample size n; Tukey’s method

• Computational procedure for randomized block design

10.7 COMPUTER EXAMPLES
Minitab, SPSS, SAS, and other statistical programming packages are especially use-

ful when we perform an ANOVA. As we have experienced in earlier sections, an

ANOVA computation is very tedious to complete by hand.
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P -values suggest that the
chemical is a significant factor
but the material is not.

10.7.1 EXAMPLES USING R

EXAMPLE 10.7.1 ONE-WAY ANOVA
The three following random samples in the table are independently obtained from three different nor-

mal populations with equal variances. At the a¼0.05 level of significance, test for equality of means.

Sample 64 84 75 77 80 56 74 69 81 92 84

Group 1 1 1 1 1 2 2 2 3 3 3

This example assumes you have stored the data into two variables sample and group. Please

modify your code appropriately.

R Code:

model¼ lm(sample�as.factor(group));
Notice we must use as.factor() to

get the proper degrees of freedom.anova(model);

Output:

Analysis of Variance Table

Response: sample

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(group) 2 560.67 280.333 4.8403 0.04192*

Residuals 8 463.33 57.917

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Since p-value is less than 0.05, we reject H0 of equal means.

EXAMPLE 10.7.2 TWO-WAY ANOVA
A furniture company wants to know whether there are differences in stain resistance among the four

chemicals used to treat three different fabrics. The following table shows the yields on resistance to

stain (a low value indicates good stain resistance). At the a¼0.05 level of significance, is there evi-

dence to conclude that there is a difference in mean resistance among the four chemicals? Is there

any difference in the mean resistance among the materials?

Chemical 1 2 3 4 1 2 3 4 1 2 3 4

Resistance 3 9 2 7 7 11 5 9 6 8 7 8

Material 1 1 1 1 2 2 2 2 3 3 3 3

This example assumes you have stored data into three variables chemical, resistance, and mate-

rial. Please modify your code appropriately.

R Code:

model¼ lm(resistance�as.factor(chemical)+as.factor(material));

anova(model);

Output:

Analysis of Variance Table

Response: resistance

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(chemical) 3 43.667 14.5556 7.3803 0.01943 *

as.factor(material) 2 16.167 8.0833 4.0986 0.07548

Residuals 6 11.833 1.9722

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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EXAMPLE 10.7.3
Tukey’s Method

The following table shows the one-year percentage total return of the top five stock funds for

five different categories (source:Money, July 2000). Which categories have similar top returns and

which are different? Use 95% Tukey’s confidence intervals. This example assumes you have stored

your data into “stocks” and “groups” variable that pair.

Large-cap Mid-cap Small-cap Hybrid Specialty

110.1 299.8 153.8 68.3 181.6

102.9 139.0 139.8 67.1 159.3

93.1 131.2 138.3 42.5 138.3

83.0 110.5 121.4 40.0 132.6

83.3 129.2 135.9 41.0 135.7

R Code:

groups¼c(rep(“Large-cap”,5),rep(“Mid-cap”,5),rep(“Small-

cap”,5),rep(“Hybrid”,5),rep(“Specialty”,5));

This assumes your “stocks”

variable is typed in column

by column, top to bottom.

model¼aov(stocks�as.factor(groups));

TukeyHSD(model);

Output:

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula¼ stocks�as.factor(groups))

$‘as.factor(groups)‘

diff lwr upr p adj

Large-cap-Hybrid 42.70 �27.957536 113.35754 0.3963504

Mid-cap-Hybrid 110.16 39.502464 180.81754 0.0012546*

Small-cap-Hybrid 86.06 15.402464 156.71754 0.0124242*

Specialty-Hybrid 97.72 27.062464 168.37754 0.0041271*

Mid-cap-Large-cap 67.46 �3.197536 138.11754 0.0657451

Small-cap-Large-cap 43.36 �27.297536 114.01754 0.3816028

Specialty-Large-cap 55.02 �15.637536 125.67754 0.1765264

Small-cap-Mid-cap �24.10 �94.757536 46.55754 0.8429013

Specialty-Mid-cap �12.44 �83.097536 58.21754 0.9835150

Specialty-Small-cap 11.66 �58.997536 82.31754 0.9870429

This shows that mean returns for Hybrid to mid-cap, small-cap, and specialty are different.

10.7.2 MINITAB EXAMPLES

EXAMPLE 10.7.4
(One-way ANOVA) The three random samples in Table 10.11 are independently obtained from

three different normal populations with equal variances.

At the a¼0.05 level of significance, test for equality of means.

Solution
Enter sample 1 data in C1, sample 2 in C2, and sample 3 in C3.

Stat>ANOVA>One-way (unstacked) . . .> in Responses (in separate columns): type C1 C2 C3

and click OK

Continued
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We get the following output:

One-Way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 2 560.7 280.3 4.84 0.042
Error 8 463.3 57.9
Total 10 1024.0

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+--------+---------+---------+--
C1 5 76.000 7.517 (-----*------)
C2 3 66.333 9.292 (-----*------)
C3 3 85.667 5.686 (-----*------)

----+---------+--------+---------+--
Pooled StDev ¼ 7.610 60 72 84 96

We can see that the output contains, SS, MS, individual column means, and standard deviation

values. Also, the F-value gives the value of the test statistic, and the p-value is obtained as 0.042.

Comparing this p-value of 0.042 with a¼0.05, we will reject the null hypothesis.
If we want to create side-by-side box plots to graphically test homogeneity of variances, we can

do the following.

Enter all the data (from all three samples) in C1, and enter the sample identifier number in C2
(that is, 1 if the data belong to sample 1, 2 for sample 2, and 3 for sample 3).

Graph>Boxplot> in Y column, type C1 and in X column, type C2>click OK

Then as in Example 10.3.2, interpret the resulting box plots.

EXAMPLE 10.7.5
Give Minitab steps for randomized block design for the data of Example 10.4.1.

Solution
To put the data into the format for Minitab, place all the data values in one column (say, C2). Let

numbers 1, 2, 3, 4 represent the chemicals and numbers 1, 2, 3 represent the fabric material. In one
column (say, C1) place numbers 1 through 4 with respect to the data values identifying the factor

(chemical) used. In another column (say, C3) place corresponding numbers 1 through 3 to identify

the second factor (material) used. See Table 10.12.

Then do the following:

Stat>ANOVA>Two-way. . .> in Response: type C2, in Row Factor: type C1, and in Column fac-

tor: type C3>OK

We will get the following output.

Table 10.11

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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Two-Way Analysis of Variance

Analysis of variance for Response
Source DF SS MS F P
Chemical 3 43.67 14.56 7.38 0.019
Material 2 16.17 8.08 4.10 0.075
Error 6 11.83 1.97
Total 11 71.67
Note that the output contains p-values for the effect both of the chemicals and of the materials.

Because the p-value of 0.019 is less than a¼0.05, we reject the null hypothesis and conclude that

there is a difference in mean resistance among the four chemicals. For the materials, the p-value of
0.075 is greater than a¼0.05, so we cannot reject the null hypothesis and conclude that there is no

difference in the mean resistance among the materials.

EXAMPLE 10.7.6
Give the Minitab steps for using Tukey’s method for the data of Example 10.5.1.

Solution
In order to use Tukey’s method, it is necessary to enter the data in a particular way. Enter all the

data points in column C1; first five from large-cap, next five from mid-cap, and so on, with the last
five from specialty. In column C2, enter the number identifying the data points; the first four num-

bers are 1 (identifying 1 as the data belonging to large-cap), next five numbers are 2, and so on; the

last five numbers are 5. Then:

Stat>ANOVA>One-way. . .>Comparisons. . .>click Tukey’s, family error rate: and type 5 (to

represent 100a% error)>OK> in Response: type C1, and in Factor: type C2>OK

We will get the output similar to that given in the solution part of Example 10.5.1. For discussion of
the output, refer to Example 10.5.1.

Table 10.12

C1 Chemical C2 Response C3 Material

1 3 1

2 9 1

3 2 1

4 7 1

1 7 2

2 11 2

3 5 2

4 9 2

1 6 3

2 8 3

3 7 3

4 8 3
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10.7.3 SPSS EXAMPLES

EXAMPLE 10.7.7
Conduct a one-way ANOVA for the data of Example 10.7.1. Use a¼0.05 level of significance, and

test for equality of means.

Solution
In SPSS, we need to enter the data in a special way. First name column C1 as Sample, and column

C2 asValues. In the Sample column, enter the numbers to identify from which group the data comes.
In this case, enter 1 in the first five rows, 2 in the next three rows, and 3 in the last three rows. In the

Values column, enter sample 1 data in the first five rows, sample 2 data in the next five rows, and

sample 3 data in the last three rows. Then:

Analyze>Compare Means>One-way ANOVA. . .>Bring Values toDependent List: and Sample

to Factor: > OK

EXAMPLE 10.7.8
Give the SPSS steps for using Tukey’s method for the data of Example 10.5.1.

Solution
First name column C1 as Fund and column C2 as Return. In the Fund column, enter the numbers to
identify from which group the data comes. In this case, the first four numbers are 1 (identifying 1 as

the data belonging to large-cap), the next four numbers are 2, and so on, until the last four numbers

are 5. In the Return column, enter large-cap return data in the first four rows, mid-cap data in the

next four rows, and so on; the last four from speciality. Then:

Analyze>CompareMeans>One-way ANOVA. . .>BringReturn toDependent List: andFund to

Factor: > Click Post-Hoc. . .>click Tukey>click Continue>OK

We will get the output as in Example 10.5.1.

Interpretation of output is given in Example 10.5.1. When the treatment effects are significant, as in

this example where the p-value is 0.001, the means must then be further examined to determine the

nature of the effects. There are procedures called post hoc tests to assist the researcher in this task.
For example, looking at the output column Sig., we could observe that there are significant differ-

ences in the mean returns between funds 2 and 4, and funds 4 and 5.

10.7.4 SAS EXAMPLES

EXAMPLE 10.7.9
Using SAS, conduct a one-way ANOVA for the data of Example 10.7.1. Use a¼0.05 level of sig-

nificance, and test for equality of means.

Solution
We could use the following code.

Options nodate nonumber;
options ls¼80 ps¼50;
DATA Scores;
INPUT Sample Value @@;
DATALINES;
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1 64 1 84 1 75 1 77 1 80
2 56 2 74 2 69
3 81 3 92 3 84
;
PROC ANOVA DATA¼Scores;
TITLE ‘ANOVA for Scores’;
CLASS Sample;
MODEL Value¼Sample;
MEANS Sample;
RUN;

We could have used PROC GLM instead of PROC ANOVA to perform the ANOVA procedure.

Usually, PROC ANOVA is used when the sizes of the samples are equal; otherwise PROC GLM is

more desirable. The next example will show how to do the multiple comparison using Tukey’s
procedure.

EXAMPLE 10.7.10
Give the SAS commands for using Tukey’s method for the data of Example 10.5.1.

Solution
We could use the following code:

Options nodate nonumber;
options ls¼80 ps¼50;
DATA Mfundrtn;
INPUT Fund Return @@;
DATALINES;
1 110.1 2 299.8 3 153.8 4 68.3 5 181.6
1 102.9 2 139.0 3 139.8 4 67.1 5 159.3
1 93.1 2 131.2 3 138.3 4 42.5 5 138.3
1 83.3 2 129.2 3 135.9 4 41.0 5 135.7
1 83.0 2 110.5 3 121.4 4 40.0 5 132.6
;
PROC GLM DATA¼Mfundrtn;
TITLE ‘ANOVA for Mutual fund returns’;
CLASS Fund;
MODEL Return¼Fund;
MEANS Fund / tukey;
RUN;

ANOVA for Mutual fund returns
The GLM Procedure

Class Level Information
Class Levels Values

Fund 5 1 2 3 4 5
Number of observations 25
ANOVA for Mutual fund returns

The GLM Procedure
Dependent Variable: Return

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 4 41,243.69840 10,310.92460 7.40 0.0008

Continued
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Error 20 27,877.58000 1393.87900
Corrected Total 24 69,121.27840

R-Square Coeff Var Root MSE Return Mean
0.596686 31.34524 37.33469 119.1080

Source DF Type I SS Mean Square F Value Pr > F
Fund 4 41,243.69840 10,310.92460 7.40 0.0008
Source DF Type III SS Mean Square F Value Pr > F
Fund 4 41,243.69840 10,310.92460 7.40 0.0008

ANOVA for Mutual fund returns
The GLM Procedure

Tukey’s Studentized Range (HSD) Test for Return
NOTE: This test controls the Type I experiment wise error rate, but it

generally has a higher Type II error rate than REGWQ.
Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Minimum Significant Difference 70.658
Means with the same letter are not significantly different.
Tukey Grouping Mean N Fund

A 161.94 5 2
A
A 149.50 5 5
A
A 137.84 5 3
A

B A 94.48 5 1
B
B 51.78 5 4

The GLM Procedure
Tukey’s Studentized Range (HSD) Test for Value

NOTE: This test controls the Type I experiment wise error rate, but it
generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Minimum Significant Difference 70.658
Means with the same letter are not significantly different.
TurkeyGrouping Mean N Sample

A 161.94 5 2
A
A 149.50 5 5
A
A 137.84 5 3
A

B A 94.48 5 1
B
B 51.78 5 4

Looking at the p-value of 0.008, which is less than a¼0.05, we conclude that there is a differ-
ence in mutual fund returns.

In the previous example, we used the post hoc test Tukey. We could have used other options such

as DUNCAN, SNK, LSD, and SCHEFFE. The test is performed at the default value of a¼0.05. If we
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want to specify, say, a¼0.01, or 0.1, we could have done so by using the command MEANS Fund /

Tuckey ALPHA¼0.01;.
If we need all the confidence intervals in the Tukey method, in the code just given, we have to

modify ‘MEANS Fund / Tukey;’ to ‘MEANS Fund / LSD TUKEY CLDIFF;’ which will result in the

following output.

ANOVA for Mutual fund returns
The GLM Procedure

Class Level Information
Class levels Values

Fund 5 1 2 3 4 5
Number of observations 25

ANOVA for Mutual fund returns
The GLM Procedure

Dependent Variable: Return
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 4 41,243.69840 10,310.92460 7.40 0.0008
Error 20 27,877.58000 1393.87900
Corrected Total 24 69,121.27840

R-Square Coeff Var Root MSE Return Mean
0.596686 31.34524 37.33469 119.1080

Source DF Type I SS Mean Square F Value Pr > F
Fund 4 41,243.69840 10,310.92460 7.40 0.0008
Source DF Type III SS Mean Square F Value Pr > F
Fund 4 41,243.69840 10,310.92460 7.40 0.0008

ANOVA for Mutual fund returns
The GLM Procedure

t-tests (LSD) for Return
NOTE:ThistestcontrolstheTypeI comparison wiseerrorrate,notthe

experiment wise error rate.
Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of t 2.08596
Least Significant Difference 49.255

Comparisons significant at the 0.05 level are indicated by ***.
Difference

Fund Between 95% Confidence
Comparison Means Limits
2 – 5 12.44 �36.81 61.69
2 – 3 24.10 �25.15 73.35
2 – 1 67.46 18.21 116.71 ***
2 – 4 110.16 60.91 159.41 ***
5 - 2 � 12.44 �61.69 36.81
5 – 3 11.66 �37.59 60.91
5 – 1 55.02 5.77 104.27 ***
5 – 4 97.72 48.47 146.97 ***
3 - 2 �24.10 �73.35 25.15
3 - 5 �11.66 �60.91 37.59
3 – 1 43.36 �5.89 92.61
3 – 4 86.06 36.81 135.31 ***
1 – 2 �67.46 �116.71 �18.21 ***

Continued
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1 – 5 �55.02 �104.27 �5.77 ***
1 – 3 �43.36 �92.61 5.89
1 – 4 42.70 �6.55 91.95
4 – 2 �110.16 �159.41 �60.91 ***
4 – 5 �97.72 �146.97 �48.47 ***
4 – 3 �86.06 �135.31 �36.81 ***
4 – 1 �42.70 �91.95 6.55

ANOVA for Mutual fund returns
The GLM Procedure

Tukey’s Studentized Range (HSD) Test for Return
NOTE: This test controls the Type I experiment wise error rate.
Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Least Significant Difference 70.658
Comparisons significant at the 0.05 level are indicated by ***.

Difference
Fund Between Simultaneous 95%

Comparison Means Confidence Limits
2 – 5 12.44 �58.22 83.10
2 – 3 24.10 �46.56 94.76
2 – 1 67.46 �3.20 138.12
2 – 4 110.16 39.50 180.82 ***
5 – 2 �12.44 �83.10 58.22
5 – 3 11.66 �59.00 82.32
5 – 1 55.02 �15.64 125.68
5 – 4 97.72 27.06 168.38 ***
3 – 2 �24.10 �94.76 46.56
3 – 5 �11.66 �82.32 59.00
3 – 1 43.36 �27.30 114.02
3 – 4 86.06 15.40 156.72 ***
1 – 2 �67.46 �138.12 3.20
1 – 5 �55.02 �125.68 15.64
1 – 3 �43.36 �114.02 27.30
1 – 4 42.70 �27.96 113.36
4 – 2 �110.16 �180.82 �39.50 ***
4 – 5 �97.72 �168.38 �27.06 ***
4 – 3 �86.06 �156.72 �15.40 ***
4 – 1 �42.70 �113.36 27.96

EXERCISES 10.7
10.7.1. For the data of Exercise 10.5.4, perform a one-way ANOVAusing any of the

software (R, Minitab, SPSS, or SAS).

10.7.2. For the data of Exercise 10.5.2, perform Tukey’s test using any of the

software (R, Minitab, SPSS, or SAS).

10.7.3. For the data of Exercise 10.5.4, perform Tukey’s test using any of the

software (R, Minitab, SPSS, or SAS).
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PROJECTS FOR CHAPTER 10
10A. TRANSFORMATIONS
The basic model for the ANOVA requires that the independent observations come

from normal populations with equal variances. These requirements are rarely met

in practice, and the extent to which they are violated affects the validity of the sub-

sequent inference. Therefore, it is important for the investigator to decide whether

the assumptions are at least approximately satisfied and, if not, what can be done

to rectify the situation. Hence it is necessary to (a) examine the data for marked

departures from the model and, if necessary, (b) apply an appropriate transformation

to the data to bring it more in line with the basic assumptions.

A simple way to check for the equality of the population variances is to calculate

the sample variances and plot against mean as in Figure 10.3. If the graph suggests a

relation between SM and variance, then the relation very likely exists between pop-

ulation mean and variance, and hence the population from which the samples are

taken may very well be nonnormal.

If a study of SMs and variances reveals a marked departure from the model, the

observations maybe transformed into a new set to which the methods of ANOVA are

better suited. Three commonly used transformations are the following:

(a) The logarithmic transformation: If the graph of SMs against sample variance

suggests a relation of the form

s2 ¼C X
2

� �
,

replace each observation X by its logarithm to the base 10,

Y¼ log10 X;

or, if some X-values are zero, by Y¼ log10 (X+1).
(b) The square root transformation: If the relation is of the form

s2 ¼CX

replace X by its square root,

Y¼
ffiffiffiffi
X

p

or, if the values of X are very close to zero, by the square root of (X+½). This

relation is found in data from Poisson populations, where the variance is equal to

the mean.

(c) The angular transformation: If the observations are counts of a binomial

nature, and p̂ is the observed proportion, replace p̂ by

y¼ arcsin
ffiffiffî
p

p
,

which is the principal angle (in degrees or radians) whose sine is the square root of p̂.
(i) To check for the equality of the population variances, calculate the sample

variances for each of the data sets given in the exercises of Section 10.3 and

plot against the corresponding mean.

(ii) If there is assumption violation, perform one of the transformations

described earlier and do the ANOVA procedure for the transformed data.
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10B. ANOVA WITH MISSING OBSERVATIONS
In the two-way ANOVA, we assumed that each block cell has one treatment value.

However, it is possible that some observations in some block cells may be missing

for various reasons, such as that the investigator failed to record the observations, the

subject discontinued participation in the experiment, or the subject moved to a dif-

ferent place or died prior to completion of the experiment. In those cases, this project

gives a method of inserting estimates of the missing values.

Let y.. denote the total of all kb observations. If the observation corresponding to
the ith row and the jth column, which is denoted by yij., is missing, then all the sums

of squares are calculated as before, except that the yij term is replaced by

ŷij ¼
bB0

j + kT
0
i�y0 ..

k�1ð Þ b�1ð Þ ,

where T 0
i denotes the total of b–1 observations in the ith row, B

0
j denotes the total of

k–1 observations in the jth column, and y0.. denotes the sum of all kb–1 observa-

tions. Using calculus, one can show that ŷij minimizes the error sum of squares.

One should not include these estimates when computing relevant degrees of free-

dom. With these changes, proceed to perform the analysis as in Section 10.4. For

more details on the method, refer to Sahai and Ageel (2000), p. 145.

Perform the test of Example 10.4.1, now with a missing value for material III and

chemical C4. Does the conclusion change?

10C. ANOVA IN LINEAR MODELS
In order to determine whether the multiple regression model introduced in

Section 8.5 is adequate for predicting values of dependent variable y, one can use

the ANOVA F-test. The model is

Y¼ b0 + b1x1 + b2x2 + � � �+ bkxk + e,
where e¼ (e1, e2,. . .,en)�N (0, s2) and ei and ej are uncorrected if i 6¼ j. Define the

multiple coefficient of determination, R2, by

R2 ¼ 1�
X

yi� ŷið Þ2X
yi� yð Þ2 :

The ANOVA F-Test

H0 : b1 ¼ b2 ¼ ��� ¼ bk ¼ 0 versus

Ha :At least one of the parameters, b1,b2, . . . , bk, differs from0:

Test statistic:

F¼Mean square formodel

Mean square for error

¼ SS modelð Þ=k
SSE= n� k + 1ð Þ½ �

¼ R2=k

1�R2
� �

= n� k + 1ð Þ½ � ,
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where

n¼ number of observations

k¼ number of parameters in the model excluding b0:

From the F-table, determine the value of Fa with k numerator d.f. and n–(k+1)
denominator d.f. Then the rejection region is {F>Fa}.

If we reject the null hypothesis, then the model can be taken as useful in predict-

ing values of y.
For the data of Example 8.5.1, test the overall utility of the fitted model

y¼ 66:12�0:3794X1 + 21:4365X2

using the F-test described earlier.
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OBJECTIVE

To study Bayesian analysis methods and procedures that are becoming very popular

in building statistical models for real-world problems.

The Reverend Thomas Bayes

(Source: http://en.wikipedia.org/wiki/Thomas_Bayes)

The Reverend Thomas Bayes (1702-1761) was a Nonconformist minister. In the

1720s Bayes started working on the theory of probability. Even though he did not

publish any of his works on mathematics during his lifetime, Bayes was elected a

Fellow of the Royal Society in 1742. His famous work titled “Essay toward solving

a problem in the doctrine of chances” was published in the Philosophical

Mathematical Statistics with Applications in R

Copyright © 2015 Elsevier Inc. All rights reserved.
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Transactions of the Royal Society of London in 1764, after his death. The paper was
sent to the Royal Society by Richard Price, a friend of Bayes. Another mathematical

publication on asymptotic series also appeared after his death.

11.1 INTRODUCTION
Bayesian procedures are becoming increasingly popular in building statistical

models for real-world problems. In recent years, the Bayesian statistical methods

have been increasingly used in scientific fields ranging from archeology to comput-

ing. Bayesian inference is a method of analysis that combines information collected

from experimental data with the knowledge one has prior to performing the exper-

iment. Bayesian and classical (frequentist) methods take basically different outlooks

toward statistical inference. In this approach to statistics, the uncertainties are

expressed in terms of probabilities. In the Bayesian approach, we combine any

new information that is available with the prior information we have, to form the

basis for the statistical procedure. The classical approach to statistical inference that

we have studied so far is based on the random sample alone. That is, if a probability

distribution depends on a set of parameters y, the classical approach makes infer-

ences about y solely on the basis of a sample X1, . . ., Xn. This approach to inference

is based on the concept of a sampling distribution. To correctly interpret traditional

inferential procedures, it is necessary to fully understand the notion of a sampling

distribution. In this approach, we analyze only one set of sample values. However,

we have to imagine what could happen if we drew a large number of random samples

from the population. For example, consider a normal sample with known variance.

We have seen that a 95% confidence interval for the population mean m is given by

the random interval X�1:96s=
ffiffiffi
n

p
, X + 1:96s=

ffiffiffi
n

p� �
: This means that when samples

are repeatedly taken from the population, at least 95% of the random intervals con-

tain the true mean m. The classical inferential approach does not use any of the prior
information we might have as a result of, say, our familiarity with the problem, or

information from earlier studies. Scientists and engineers are faced with the problem

that there is typically only a single data set, and they need to determine the value of

the parameter at the time the data are taken. The basic question then is, “What is the

best estimate of a parameter one can make from the data using one’s prior informa-

tion?” Statistical approaches that use prior knowledge, possibly subjective, in addi-

tion to the sample evidence to estimate the population parameters are known as

Bayesian methods.

Bayesian statistics provides a natural method for updating uncertainty in the light

of evidence. Data are still assumed to come from a distribution belonging to a known

parametric family. However, the Bayesian outlook toward inference is founded on

the subjective interpretation of probability. Subjective probability is a way of stating

our belief in the validity of a random event. The following example will illustrate the

idea. Suppose we are interested in the proportion of all undergraduate students at a

particular university who take on out-of-campus jobs for at least 20 hours a week.
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Suppose we randomly select, say, 50 students from this university and obtain the pro-

portion of students who have out-of-campus jobs for at least 20 hours a week. Let us

assume that the sample proportion is 30/50¼0.6. In a frequentist approach, all of the

inferential procedures, such as point estimation, interval estimation, or hypothesis

testing, are based on the sampling distribution.

That is, even though we are analyzing only one data set, it is necessary to have the

knowledge of the mean, standard deviation, and shape of this sampling distribution

of the proportion for the correct interpretation in classical inferential procedures. In

the subjective interpretation of probability, the proportion of undergraduates who

work on an out-of-campus job for at least 20 hours a week is assumed to be unknown

and random. A probability distribution, called the prior, that represents our knowl-

edge or belief about the location of this proportion before any data collected is used.

For instance, the college placement office already may have an opinion on this pro-

portion based on its earlier experience. The classical approach ignores this prior

knowledge, whereas the Bayesian approach incorporates this knowledge with the

current observed data to update the value of this proportion. That is, after the data

are collected our opinion about the proportion may change. Using Bayes’ rule, we

will compute the posterior probability distribution for the proportion, based on

our prior belief and evidence from the data. All of our inferences about the proportion

are made by computing appropriate statistics of the posterior distribution.

The Bayesian approach seeks to optimally merge information from two sources:

(1) knowledge that is known from theory or opinion formed at the beginning of the

research in the form of a prior, and (2) information contained in the data in the form

of likelihood functions. Basically, the prior distribution represents our initial belief,

whereas the information in the data is expressed by the likelihood function. Combin-

ing prior distribution and likelihood function, we can obtain the posterior distribu-

tion. This expresses our revised uncertainty in light of the data. The main

difference between the Bayesian approach and the classical approach is that in

the Bayesian setting, the parameter is viewed as random variables, whereas the clas-

sical approach considers the parameter to be fixed but unknown. The parameter is

random in the sense that we can assign to it a subjective probability distribution that

describes our confidence about the actual value of the parameter.

Some of the reasons for Bayesian approaches are as follows: (1) Most Bayesian

inferential conclusions are made conditional on the observed data. Unlike the tradi-

tional approach, one need not be concerned with data sets other than the one that is

observed. There is no need to discuss sampling distributions using the Bayesian

approach. Also, (2) from a Bayesian viewpoint, it is legitimate to talk about the prob-

ability that the proportion falls in a specific interval, say (0.2, 0.6), or the probability

that a hypothesis is true. Too often, traditional inferential conclusions are misstated;

for example, if a confidence interval computed from a sample for a parameter is (0.2,

0.6), it is common for the student to incorrectly state that the population parameter

falls in the interval (0.2, 0.6) with probability at least 0.90. The Bayesian viewpoint

provides a convenient model for implementing the scientific method. The prior prob-

ability distribution can be used to state initial beliefs about the population of interest,
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relevant sample data are collected, and the posterior probability distribution reflects

one’s new updated beliefs about the population parameter in light of the new data that

were collected. All inferences about the parameter are made by computing appropri-

ate summaries of the posterior probability distribution. Because of formidable the-

oretical and computational challenges, the Bayesian approach has found relatively

limited use. Recent advances in Bayesian analysis combined with the growing power

of computers are making Bayesian methods practical and increasingly popular. The

Markov chain Monte Carlo (MCMC) method described in Section 13.5 is one of the

computationally intensive methods that is often useful in Bayesian estimation.

11.2 BAYESIAN POINT ESTIMATION
The cornerstone of Bayesian methodology is the Bayes theorem. It helps us to update

our beliefs in the form of probability statements about the parameters after the sam-

ple has been taken. The conditional distribution of the parameters after observing the

data is called the posterior distribution that integrates the prior and the sample infor-

mation. Suppose we have two discrete random variables, X and Y. Then the joint

probability function (pmf) can be written as p(x, y)¼p(xjy)pY(y), and the marginal

probability density function of X is pX(x)¼
P

yp(x,y)¼
P

yp(xjy)pY(y). Then Bayes’
rule for the conditional p(yjx) is

p yjxð Þ¼ p x, yð Þ
pX xð Þ ¼ p xjyð ÞpY yð Þ

pX xð Þ ¼ p xjyð ÞpY yð ÞX
y
p xjyð ÞpY yð Þ :

The denominator in this expression is a fixed normalizing factor that ensures that theP
yp(yjx)¼1. If Y is continuous, the Bayes theorem can be stated as

p yjxð Þ¼ p xjyð ÞpY yð Þð
p xjyð ÞpY yð Þdy

,

where the integral is over the range of values of y. These two equations are the Bayes
formulas for random variables.

In Bayesian terminology, pY(y) represents the probability statement of our prior
belief, p(xjy) is the probability of the data x given our prior beliefs, which is called the
likelihood, and the updated probability p(xjy) is the posterior. Because pX(x) (which
is the likelihood accumulated over all possible prior values) is independent of y, we
can express the posterior distribution as proportional (∝) to [(likelihood)� (prior

distribution)], that is,

p yjxð Þ∝p xjyð Þp yð Þ:
We use the notation f(xjy) to represent a probability distribution whose population

parameter is considered to be a random variable. Now one of the problems is of find-

ing a point estimate of the parameter y (possibly a vector) for the population with

distribution f(xjy), given y. Since y is assumed to be a random variable, we can talk
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of the distribution of y. Assume that p(y) is the prior distribution of y, which reflect

the experimenter’s prior belief about y. We will not distinguish between the scalars

and vectors, which will be clear based on the specific situation. Suppose that we have

a random sample X¼ (X1, . . .,Xn) of size n from f(xjy). Then the posterior distribution
of y can be written as

f yjX1, . . . ,Xnð Þ¼ f y, X1, . . . , Xnð Þ
f X1, . . . , Xnð Þ ¼L X1, . . . ,Xnjyð Þp yð Þ

f X1, . . . , Xnð Þ ,

where L(X1, . . ., Xnjy) is the likelihood function. Letting C represent all terms that do

not involve y (in this case, C¼1/f(X1, . . ., Xn)), we have

f yjX1, . . . ,Xnð Þ¼CL X1, . . . ,Xnjyð Þp yð Þ,
For specific sample values X1¼x1, X2¼x2, . . ., Xn¼xn, the foregoing equation can

be written in a compact form as

f yjxð Þ∝ f xjyð Þp yð Þ, where x¼ x1, x2, . . . , xnð Þ:
This can be expressed as

posterior distributionð Þ∝ prior distributionð Þ� likelihoodð Þ:
The full result including the normalization can be written as

posterior distributionð Þ¼ prior distributionð Þ� likelihoodð Þ½ �=
X

prior� likelihoodð Þ
h i

where the denominator is a fixed normalizing factor obtained by the likelihood accu-

mulated over all possible prior values. We can now give a formal definition.

Definition 11.2.1 The distribution of y, given data x1, . . ., xn, is called the pos-
terior distribution, which is given by

p yjxð Þ¼ f xjyð Þp yð Þ
g xð Þ , (11.1)

where g (x) is the marginal distribution of X. The Bayes estimate of the parameter y
is the posterior mean.

The marginal distribution g(x) can be calculated using the formula

g xð Þ¼

X
y

f xjyð Þp yð Þ, in discrete caseð1
�1

f xjyð Þp yð Þdy, in continuous case

8><>:
where p(y) is the prior distribution of y. Here, the marginal distribution g (x) is also
called the predictive distribution of X, because it represents our current predictions of
the values of X taking into account both the uncertainty about the value of y and the
residual uncertainty about the random variable X when y is known.

In a Bayesian setting, all the information about y from the observed data and from

the prior knowledge is contained in the posterior distribution, p(yjx). In almost all

practical cases, because we are combining our prior information with the information

contained in the data, the posterior distribution provides a more refined estimation
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of y than the prior. All inferences from Bayesian methods are based on the posterior

probability distribution of the parameter y. Using the explanation given later, we will
take the Bayes estimate of a parameter as the posterior mean.

Furthermore, consider a Bayesian statistical inference problem where the param-

eter is a population proportion. In the Bernoulli trials, the population contains two

types called “successes” and “failures.” The proportion of successes in the popula-

tion is denoted by y. We take a random sample of size n from the population and

observe s successes and f failures. The goal is to learn about the unknown proportion
y on the basis of these data.

In this situation, a model is represented by the population proportion y.We do not

know its value. In Chapter 5, we have seen that we could use the maximum likelihood

estimator (MLE) for estimating y, which did not use any prior knowledge we may

have about y. Note that the maximum likelihood estimate is broadly equivalent to

finding the mode of the likelihood. In a Bayesian setting, we represent our beliefs

about location of y in terms of a prior probability distribution. We introduce propor-

tion inference by using a discrete prior distribution for y.We can construct a prior by

specifying a list of possible values for the proportion y, and then assigning probabil-
ities to these values that reflect our knowledge about y. Then the posterior probabil-
ities can be computed using the Bayes theorem. The following example illustrates

this concept.

EXAMPLE 11.2.1
It is believed that cross-fertilized plants produce taller offspring than the self-fertilized plants. In

order to obtain an estimate on the proportion y of cross-fertilized plants that are taller, an experi-

menter observes a random sample of 15 pairs of plants that are exactly the same age. Each pair

is grown in the same conditions with some cross-fertilized and the others self-fertilized. Based

on previous experience, the experimenter believes that the following are possible values of y and

that the prior probability for each value of y (prior weight) is p(y).

y : 0:80 0:82 0:84 0:86 0:88 0:90
p yð Þ : 0:13 0:15 0:22 0:25 0:15 0:10

From the experiment, it is observed that in 13 of 15 pairs, cross-fertilized is taller. Create a table with

columns of the prior p(y), likelihood of L(X1, X2, . . ., Xnjy) for different values of y and for the given
sample, prior times likelihood, and posterior probability of y. Based on the posterior probabilities,

what value of y has the highest support? Also, find E(y) based on the posterior probabilities.

Solution
The likelihood of obtaining 13 of 15 taller plants to the different prior values of p are given using the

binomial pdf
15

13

� �
y13 1�yð Þ2. For example, if the prior value of y is 0.80, then the likelihood of y

given in the sample is

f xjyð Þ¼ 15

13

� �
0:8ð Þ13 0:2ð Þ2 ¼ 0:2309:

From Table 11.1 we obtain
P

(prior� likelihood)¼0.27217. Hence, the normalized value cor-

responding to y¼0.80 is the posterior probability f(yjx), which is equal to (0.030017/0.27217)¼
0.11029. Now, we can obtain the table of posterior distribution of a proportion p using the discrete
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prior given in Table 11.1. When we substitute in Bayes’ rule, the factor
15

13

� �
would be canceled.

Hence, in the calculation of the likelihood function, we could have just used y13(1�y)2 instead of the

full expression
15

13

� �
y13 1�yð Þ2.

Thus, the Bayesian estimate of y is

E yð Þ¼ 0:8ð Þ 0:11029ð Þ+ 0:82ð Þ 0:14028ð Þ + 0:84ð Þ 0:22528ð Þ
+ 0:86ð Þ 0:2661ð Þ + 0:88ð Þ 0:15817ð Þ+ 0:9ð Þ 0:098065ð Þ

¼ 0:84879� 0:85:

It may be noted that the MLE of y is 13/15¼0.867.

In Example 11.2.1, the priors are called informative priors, because it favored certain
values of y; for example for the value y¼0.86, the prior value of p (y) is 0.25, which
is higher than all the rest of the values. If there was no information or no strong prior

opinions, then we could select a noninformative prior, which would have assigned

equal prior probability of 1/6 to each of the possible values of y. A noninformative

prior (also called a flat or uniform prior) provides little or no information. Based on

the situation, noninformative priors may be quite disperse, may avoid only impos-

sible values of the parameter, and oftentimes give results similar to those obtained

by classical frequentist methods.

EXAMPLE 11.2.2
Repeat the Example 11.2.1 using a noninformative prior, p(y)¼1/6, for each given value of y.

Solution
Here p(y)¼1/6 for each value of y. See Table 11.2.

The Bayesian estimate for the noninformative prior is

E yð Þ¼ 0:8ð Þ 0:14333ð Þ + 0:82ð Þ 0:16003ð Þ+ 0:84ð Þ 0:173ð Þ
+ 0:86ð Þ 0:17982ð Þ+ 0:88ð Þ 0:17815ð Þ
+ 0:9ð Þ 0:16567ð Þ¼ 0:85173:

Continued

Table 11.1 Summary of Prior and Posterior Probabilities

Prior
Values
of u

Prior
Probability
p(u)

Likelihood of u
Given Sample

Prior Times
Likelihood

Posterior
Probability
of u

0.80 0.13 0.2309 3.0017�10�2 0.11029

0.82 0.15 0.2578 0.03867 0.14208

0.84 0.22 0.2787 6.1314�10�2 0.22528

0.86 0.25 0.2897 7.2425�10�2 0.2661

0.88 0.15 0.2870 0.4305 0.15817

0.90 0.10 0.2669 0.02669 0.098064

Total 0.27217 0.9998�1.0
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It should be noted that because the choice of priors in Example 11.2.1 is only

mildly informative, we do not see much difference in the values of Bayesian esti-

mates. In general, it is difficult to construct an acceptable prior, because most often

it has to be based on subjective experiences. Therefore, it is relatively easy to use a

“noninformative” prior. For example, if we have no information on the values of pro-

portion y, then one type of standard “noninformative” prior is to take the proportion y
as one of the equally spaced values 0, 0.1, 0.2,. . ., 0.9, 1.We can assign for each value

of y the same probability, p(y)¼1/11. This prior is convenient and may work rea-

sonably well when we do not have much data. It is fairly easy to construct a prior

when there exists considerable prior information about the proportion of interest.

The posterior distribution gives us information regarding the likelihood of values

of y given sample data. Then the question is how to use this information to estimate y.
Instead of having explicit probabilities, the prior may be given through an assumed

probability distribution. We illustrate the calculations involved to find the posterior

distribution in the following example.

EXAMPLE 11.2.3
Let X be a binomial random variable with parameters n and p. Assume that the prior distribution of p

is uniform on [0,1]. Find the posterior distribution, f(pjx).
Solution
Because X is binomial, the likelihood function is given by

f xjpð Þ¼ n
x

� �
px 1�pð Þn�x:

Because p is uniform on [0,1], p(p)¼1, 0�p�1.

Then the posterior distribution is given by

f pjxð Þ∝f xjpð Þp pð Þ¼ n
x

� �
px 1�pð Þn�x

, x¼ 0,1, . . . ,n

which is the same as the likelihood.

Table 11.2 Prior and Posterior Probabilities with Noninformative Prior

Prior
Values
of u

Prior
Probability
p(u)

Likelihood of u
Given Sample

Prior Times
Likelihood

Posterior
Probability
of u

0.80 1/6 0.2309 3.8483�10�2 0.14333

0.82 1/6 0.2578 4.2967�10�2 0.16003

0.84 1/6 0.2787 0.04645 0.173

0.86 1/6 0.2897 4.8283�10�2 0.17982

0.88 1/6 0.2870 4.7833�10�2 0.17815

0.90 1/6 0.2669 4.4483�10�2 0.16567

Total 0.2685 1.0
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Note that in the previous example, the form of the pmf in both f(xjp) and f(pjx) are
same, however, in f(pjx), p is considered random and in f(xjp), p is not random. This

particular form of f(pjx) is also called beta-binomial distribution for p with param-

eters a¼x+1 and b¼n�x+1. This example illustrates that if the prior is noninfor-

mative (uniform), then the posterior is essentially the likelihood function. In the case

where the prior and posterior are of the same functional form, we call it a conjugate
prior. Bayesian inference becomes simpler when the prior density has the same func-

tional form as the likelihood (which is the case for the conjugate prior) or when data

are an independent sample from an exponential family (such as normal, Poisson, or

binomial). Bayesian priors act just like adding pseudo observations to the data.

The following example demonstrates the method of finding posterior distribution

for a continuous random variable.

EXAMPLE 11.2.4
Suppose thatX is a normal random variable with mean m and variance s2, where s2 is known and m is
unknown. Suppose that m behaves as a random variable whose probability distribution (prior) is p(m)
and is also normally distributed with mean mp and variance sp

2, both assumed to be known or esti-

mated. Find the posterior distribution f(mjx).
Solution
Using the Bayes theorem, we have

f mjxð Þ¼ f xjmð Þp mð ÞÐ
f xjmð Þp mð Þdm

¼
1ffiffiffiffiffiffi
2ps

p e� x�mð Þ2=2s2 1ffiffiffiffiffiffiffi
2psp

p e� m�mpð Þ2=2s2pÐ
1ffiffiffiffiffiffi
2ps

p e� x�mð Þ2=2s2 1ffiffiffiffiffiffi
2ps

p
p
e� m�mpð Þ2=2s2pdm

¼ 1

2pssp
e
� x�mð Þ2

2s2
+

m�mpð Þ2
2s2p

h i
:

(11.2)

Consider the exponential term in (11.2), namely, x�mð Þ2
2s2 +

m�mpð Þ2
2s2p

:

x�mð Þ2
2s2

+
m�mp
� �2

2s2p
¼ 1

2

x�mð Þ2
s2

+
m�mp
� �2

s2p

" #

¼ 1

2

1

s2
+

1

s2p

 !
m2�2

mp
s2p

+
x

s2

 !
m+

x2

s2
+
m2p
s2p

 !" #

¼ 1

2

s2p +s
2

s2s2p
m2�2

mp
s2p

+
x

s2

 !
m+

x2

s2
+
m2p
s2p

 !" #

¼ 1

2

s2p + s
2

s2s2p
m2�2

s2s2p
s2p +s2

mp
s2p

+
x

s2

 !
m

"

+
s2s2p
s2p +s2

x2

s2
+
m2p
s2p

 !#

¼ 1

2

s2p + s
2

s2s2p
m2�2

s2

s2p + s2
mp +

s2p
s2p +s2

x

 !"
m

+
s2

s2p + s2
mp +

s2p
s2p +s2

x

 !2
35

Continued
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+
1

2

s2p +s
2

s2s2p

x2

s2
+
m2p
s2p

� s2p
s2p +s2

x+
s2

s2p +s2
mp

 !2
24 35

¼ 1

2

s2p +s
2

s2s2p
m� s2

s2p +s2
mp +

s2p
s2p +s2

x

 !" #2
+ eK,

where

eK¼ 1

2

s2p +s
2

s2s2p

x2

s2
+
m2p
s2p

� s2

s2 +s2p
mp +

s2p
s2 +s2p

x

 !2
24 35:

From the foregoing derivation, we obtain

f mjxð Þ¼Ke
�1

2

s2p + s
2

s2s2p m� s2

s2p + s2
mp +

s2p
s2p +s2

x

 !" #2
,

where K does not contain m.
This implies that the posterior density f(mjx) is the pdf of normal random variable with mean

s2

s2p + s2
mp +

s2p
s2p + s2

x

 !
and variance

s2s2p
s2p + s2

:

If we let tp ¼ 1
s2p
and t¼ 1

s2, then the posterior density can be rewritten as the pdf of normal ran-
dom variable with mean 1

tp + t
tpmp + tx
� �

and variance 1
tp + t

:

As an example, suppose that mp¼100, sp¼15, and s¼10, x¼115. Then f(mjx) is the pdf of a
normal random variable with

Mean¼ 100

100 + 225
100ð Þ+ 225

100 + 225
115ð Þ¼ 110:4

and

Variance¼ 100ð Þ 225ð Þ
100+ 225

¼ 69:2:

11.2.1 CRITERIA FOR FINDING THE BAYESIAN ESTIMATE
In the Bayesian approach to parameter estimation, we use both the prior and obser-

vations. This leads to an estimation strategy based on the posterior distribution. How

do we know that the estimate thus obtained is “good”? To assess the quality of likely

estimators, we use a loss function L(y,a) that measures the loss incurred by using a as
an estimate of y. Here y is the parameter being estimated (in real-world problems it is

not known), and a is the estimate of y. Then the “optimal” or “best” estimate a¼ ŷ

is chosen so as to minimize the expected loss E L y, ŷ
� �h i

, where the expectation is

taken over y with respect to the posterior distribution f(yjx). Here we mention two

types of commonly used loss functions: quadratic and absolute error loss functions

and the resulting estimates.
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(1) A quadratic (or squared error) loss function is of the form L(y,a)¼ (a�y)2. In
this case,

E L y, að Þ½ � ¼
ð
L y,að Þf yjx1, . . . ,xnð Þdy

¼
ð
a�yð Þ2f yjx1, . . . ,xnð Þdy:

Differentiating with respect to a and equating to zero, we obtain

2

ð
a�yð Þf yjx1, . . . ,xnð Þdy¼ 0

This implies

a¼
ð
yf yjx1, . . . ,xnð Þdy:

This is the posterior mean (expected value) of y, E(yjx1, . . ., xn). Hence the quadratic
loss function is minimized by taking the estimate of y, that is, ŷ, to be the posterior

mean. In previous examples in this section, we used this value as the estimate ŷ. Note
that what the quadratic loss function displays is that if the estimate ŷ and the true

parameter y are close to each other, the loss we expect is very small. Likewise, if

the difference is larger, the expected loss in estimating y with ŷ is going to be large.

(2) An absolute error loss function is of the form L(y, a)¼ja�yj. In this case,

E L y, að Þ½ � ¼
ð
L y,að Þf yjx1, . . . ,xnð Þdy

¼
ða
y¼�1

a�yð Þf yjx1, . . . ,xnð Þdy

+

ð1
y¼a

y�að Þf yjx1, . . . ,xnð Þdy:

Differentiating with respect to a and equating to zero, we obtainða
y¼�1

f yjx1, . . . ,xnð Þdy�
ð1
y¼a

f yjx1, . . . ,xnð Þdy¼ 0:

The minimum loss is attained when the values of both integrals are equal to 1/2. This

can be achieved by taking ŷ to be the posterior median.
There are other loss functions such as the all or nothing (or 0-1) loss function

given by

L a, yð Þ¼ 1�day ¼ 0, if y¼ a
1, otherwise

	
where d is the Kronecker Delta function. This loss function is used mostly when

values of y is assumed to be discrete. In this case, it can be shown that expected loss

is minimized when ŷ is the maximum of the posterior (MAP) distribution, or

the mode.

The following can be considered as a general Bayesian procedure for point

parameter estimation.
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BAYESIAN PARAMETER ESTIMATION PROCEDURE
1. Consider the unknown parameter y as a random variable.

2. Use a probability distribution (prior) to describe the uncertainty about the unknown parameter.

3. Update the parameter distribution using the Bayes theorem:

P yjDatað Þ∝P yð ÞP Datajyð Þ,
that is,

posterior of yð Þ∝ prior of yð Þ likelihoodð Þ:

4. The Bayes estimator of y is set to be the expected value of the posterior distribution P(y jData)
under quadratic loss function.

From the procedure of Bayesian estimation, it is clear that a bad choice of prior

may result in a bad estimate. Generally, if the priors are based on a previous and trust-

worthy sample, Bayesian estimation methods are desirable. A schematic figure of

steps involved in the Bayesian estimate is given in Figure 11.1.

In this chapter, we use only the quadratic loss function unless it is explicitly stated

otherwise. We also mention that this loss function is very popular because of its ana-

lytic tractability. We now derive Bayesian point estimates for some specific

distributions.

Whereas uniform priors are useful in the noninformative situations, the beta fam-

ily of distributions is one of the commonly taken informative priors. Distributions in

the beta family take values in the interval (0, 1). Recall that if X�beta(a, b), then the
pdf of X is given by

f xð Þ¼
G a+ bð Þ
G að ÞG bð Þx

a�1 1�xð Þb�1
, 0� x< 1

0, otherwise, a> 0, b> 0

	
:

The beta pdf can be written as

f xð Þ¼Cxa�1 1�xð Þb�1∝xa�1 1�xð Þb�1
,

Prior  info, 
P(θ)

Likelihood
P(Data | θ)

Posterior
P(θ | Data)

Loss 
Function

Updated

FIGURE 11.1

Bayesian estimation procedure.
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where C¼ G a+ bð Þ
G að ÞG bð Þ : We also know that

E Xð Þ¼ a
a+b

, and Var Xð Þ¼ ab

a+bð Þ2 a+b + 1ð Þ :

When using beta prior, we will take number of successes as a�1 and the number of

failures as b�1.

EXAMPLE 11.2.5
Let X1, . . ., Xn be a sample from geometric distribution with parameter p, 0�p�1. Assume that the

prior distribution of p is beta with a¼4, and b¼4.

(a) Find the posterior distribution of p.

(b) Find the Bayes estimate under quadratic loss function.

Solution
(a) Because p is Beta(4,4), the prior density is

G 8ð Þ
G 4ð ÞG 4ð Þp

3 1�pð Þ3 ¼ 140p3 1�pð Þ3:

Because the r.v.’s Xi’s have geometric distribution with parameter p, the likelihood is given by

L X1, . . . ,Xnjyð Þ¼
Yn
i¼1

p 1�pð Þxi�1 ¼ pn 1�pð Þ
Pn

i¼1
xi�n:

The product of the likelihood function and the prior is given by

pn 1�pð Þ
Pn

i¼1
xi�n

140p3 1�pð Þ3
h i

¼ 140pn+ 3 1�pð Þ
Pn

i¼1
xi�n + 3:

Because, (posterior of p)∝ (prior of p).(likelihood), rewriting the normalizing constant in the

denominator of Equation (11.1) as C, and letting C1¼140C, the posterior distribution (because

a�1¼n+3, and b�1¼P i¼1
n xi�n+3) is Beta n+ 4,

Xn
i¼1

xi�n+ 4

 !
:

(b) Recall that for aBeta(a, b) random variable, the mean is [a/(a+b)]. Because the Bayes estimate
is the posterior mean, the mean of Beta(n+4,

P
i¼1
n xi�n+4) is

n + 4Xn

i¼1
xi�n + 4

h i
+ n + 4ð Þ

¼ n + 4Xn

i¼1
xi + 8

Note that for large n, the Bayes estimate is approximately n/
P

i¼1
n xi, which is the MLE of p.

In general, for a Bernoulli random variable with unknown probability of success p in [0,1], the

usual conjugate prior is the beta distribution, where the parameters of the beta distribution are cho-

sen to reflect any prior information that we have.

We will follow the idea of the previous example in a binomial experiment of tossing a coin.

EXAMPLE 11.2.6
Suppose we are flipping a biased coin, where the probability of heads p could be any value between

0 and 1. Given a sequence of toss samples x1, . . ., xn, we want to estimate P (H)¼p. We may have

two sources of information: our prior belief, which we will express as a beta distribution, and the

Continued
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data, which could come from counts of heads x in n¼20 independent flips of the coin, say x¼13.

Suppose that in six prior tosses, we observed three heads and three tails, which lead us to believe that

the value of p is near 0.5. Obtain the posterior distribution of p.

Solution
Here our prior belief or assumption can be written in terms of beta distribution as

p pð Þ¼ G a +bð Þ
G að ÞG bð Þp

a�1 1�pð Þb�1

where a¼4 and b¼4. That is (noting G(n)¼ (n�1)!)

p pð Þ¼ 7!

3!ð Þ 3!ð Þp
3 1�pð Þ3:

Hence, p(p)∝p3(1�p)3. Because the mean of a beta distribution is a/(a+b) and the variance is
ab/((a+b)2 (a+b+1)), for the prior,

Mean pð Þ¼ 4

4 + 4
¼ 0:5,

and

Var pð Þ¼ 4ð Þ 4ð Þ
4 + 4ð Þ2 4 + 4 + 1ð Þ¼ 0:028:

Let X denote the number of heads in 20 flips of this coin. Then X has a binomial distribution, and
the pmf is given by

f xjpð Þ¼ 20

x

� �
px 1�pð Þ20�x

, x¼ 0,1, . . . ,20:

This we can write as

f xjpð Þ∝px 1�pð Þ20�x:

In the 20 flips we have observed 13 heads. Then fix x¼13, and we are interested in the like-

lihood, which is the relative value of the function at different values of p:

f 13jp,20ð Þ∝p13 1�pð Þ7:
The posterior probability of p, given x¼13, is

p pjx¼ 13ð Þ∝f xjpð Þp pð Þ
¼ p13 1�pð Þ20�13
� �

p3 1�pð Þ3

¼ p16 1�pð Þ10:
Thus, the posterior is a beta distribution with a¼17 and b¼11. Consequently, we can now

obtain the mean and variance of p as

Mean pð Þ¼ 17

17 + 11
¼ 0:607

and

Var pð Þ¼ 17ð Þ 11ð Þ
17+ 11ð Þ2 17 + 11+ 1ð Þ¼ 0:008:

Note that the prior was beta distribution with mean 0.5 and variance 0.028. Figure 11.2 gives

the prior and posterior densities.
Note that if we had ignored the prior and just took the point estimation, then the MLE of p is

MLE pð Þ¼ p̂¼ 13
20
¼ 0:65:Compare this with the Bayesian estimate of p¼0.607. BecauseBeta(1,1) is

the Uniform [0, 1], the method of the previous example can be used for noninformative priors. The

562 CHAPTER 11 Bayesian Estimation Inference



method could also be used in many applications. For example, suppose p represents the proportion

of infected individuals in a population, and x is the number of infected individuals in a sample of size

n. Then with a noninformative prior, we can show that the posterior of p is Beta(x+1, n�x+1). This
type of setting can be used for estimating the true proportion of infected individuals in the

population.

EXAMPLE 11.2.7
Suppose for the past million days we have been predicting whether the sun will rise the next morning

or not. Each evening we say that the sun will rise the next morning R̂
� �

, and we were right (R) all

these days. Suppose on the 106 evenings we predicted that the sun will rise on the next day. What is

the probability that the sun will rise the next day?

Solution
The problem can be cast in the following table form.

1 2 . . . 106 106+1

R̂ R̂ . . . R̂ R̂

R R . . . R ?

P RjR̂� �¼ 1 if we use the frequencymethod of estimation (for example theMLE). Let us now consider

the Bayes method. Suppose the prior is uniform on [0,1]. That is,

p pð Þ¼ 1, if 0� p� 1

0, otherwise:

	
Continued
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FIGURE 11.2

Prior and posterior distributions for the proportions.
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Suppose we predict n times and we succeed x times. Then

f xjpð Þ¼ n
x

� �
px 1�pð Þn�x:

The joint pdf is given by

f x, pð Þ¼ f xjpð Þp pð Þ
¼ n

x

� �
px 1�pð Þn�x

, x¼ 0,1, . . . ,n; 0� p� 1:

By the Bayes theorem, the posterior pdf p(pjx) is

p pjxð Þ¼ f xjpð Þp pð Þð1
0

xjpð Þp pð Þdp

¼K n, xð Þpx 1�pð Þn�x, 0� p� 1, 0� x� n,

which is a beta probability distribution. Recall that the beta density is given by

f yð Þ¼ 1

B a, bð Þy
a�1 1�yð Þb�1

and E Yð Þ¼ a
a +b : Thus,

E p pjxð Þ½ � ¼ x+ 1

x+ 1ð Þ + n�xð Þ + 1¼
x+ 1

n + 2
:

In our example, x¼106, n¼106, which implies that the posterior mean is given by

p̂b ¼
106 + 1

106 + 2
� 1:

EXAMPLE 11.2.8
Let X1, X2, . . ., Xn be N(m,s

2) random variables with prior p(m) having N(m0,s0
2) distribution with

known s2.

(a) Obtain the posterior distribution of m.
(b) Suppose it is known from past experience that the weight loss for a particular combination of

diet and exercise program (if followed for a month) is normally distributed with mean 10 lb and

standard deviation of 2 lb. A random sample of five persons who went through this program for

a month produced the following weight loss in pounds:

14 8 11 7 11

What is the point estimate of the mean, m? Assume s2¼4.

Solution
(a) Because p(m)�N(m0,s0

2),p(m)∝exp[(m�m0)
2/s0

2] and we omit the terms that do not depend on
m. We have from the data x¼ (x1, . . ., xn), the likelihood function,

L x1, . . . ,xnjmð Þ ¼ f xjmð Þ∝
Yn
i¼1

exp � xi�mð Þ2
2s2

( )

¼ exp �
Xn
i¼1

xi�mð Þ2j2s2
h i( )

,
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where m is determined by the posterior distribution. The product of the likelihood function and

the prior gives the posterior, which is obtained (after some algebra) as follows:

f mjxð Þ∝p mð Þ∝exp � m�m1ð Þ2=2s21
h i

where

m1 ¼
n=s2ð Þx+ 1=s20

� �
m0

n

s2
+

1

s20
and

s21 ¼
1

n

s2
+

1

s20

:

Thus, the posterior distribution of m is N(m1,s1
2).

(b) Note that the sample mean x¼ 10:2lb, and sample standard deviation s¼2.77 lb. Now from

part (a), the posterior distribution of m is normal with mean

m1 ¼
n=s2ð Þx+ 1=s20

� �
m0

n

s2
+

1

s20

¼ 5=22
� �

10:2 + 1=22
� �

10

5

22
+

1

22

¼ 10:167

and variance

s21 ¼
1

n

s2
+

1

s20

¼ 1

5

22
+

1

22

¼ 0:66667:

Thus, the point estimate of m is the posterior mean, 10.167. Figure 11.3 represents

the prior and posterior densities of m.
Sometimes, the inverse of variance in the normal distribution is called the pre-

cision of the normal distribution and denoted by t¼1/s2. Also note that in part

(a) of the previous example, if the prior variance s0
2!1, then the prior flattens

out, p(m)∝c, a constant. This basically amounts to saying that prior information

on m decreases, that is, all m are equally probable. This corresponds to a noninforma-

tive prior. Also, in this case as s20 !1, s21 ! s2
n and m1 ! x. Hence, in the limit (i.e.

for noninformative priors), the posterior f(mjx) will have an N x,s2=nð Þ distribution,
which is exactly the same inference as in classical statistics.

In Bayesian inference problems, one of the questions is, which will have rela-

tively more influence, prior or likelihood? As we observe a large amount of data,

it can be shown that the posterior distribution is almost exclusively determined by

the data. That is, asymptotically, observed data will have a larger influence compared

to the choice of prior, and thus the prior will be irrelevant. Hence, we can make the

following general observations. If the prior is noninformative and we have a large

data set, then we can expect that the likelihood will have greater influence. Whereas,

if we have a small data set and an informative prior, then the prior will have a larger

influence on the updated posterior distribution. Bayesian estimators are more

56511.2 Bayesian Point Estimation



complicated to compute than calculating the maximum likelihood estimates in sim-

ple cases. However, in complex settings Bayesian statistics are often relatively easier

to compute.

One of the problems in using Bayesian analysis is choosing an appropriate prior.

There are no specific rules available for this purpose. For instance, the following

priors are commonly used in the literature. If data are in [0,1], we could use uniform

or beta distribution. If the data are in [0,1), normal (with nonnegative and relatively

large m), gamma, or log-normal distributions are used. If the data are in (�1, 1),

normal or t-distributions are commonly used.

EXERCISES 11.2
11.2.1. Suppose in a casino, two kinds of dice are used, one kind of which 98% are

fair, and 2% are loaded such that five comes up 60% of the time and

the rest of the numbers are equally probable. We pick a die at random

and roll it three times. We get three consecutive fives. What is the

probability that the dice is loaded?

11.2.2. It is believed that cross-fertilized plants produce taller offspring than

self-fertilized plants. In order to obtain an estimate on the proportion y
of cross-fertilized plants that are taller, an experimenter observes a random

sample of 15 pairs of plants exactly the same age, with each pair grown

in the same conditions with one cross-fertilized and the other self-

fertilized. Based on previous experience, the experimenter believes that

0.5

0.45

0.4

0.35

0.3

0.25

0.2

prior

posterior

0.15

0.1

0.05

0
4 6 8 10

m

P
(m

)

12 14 16

FIGURE 11.3

Prior and posterior densities of m.
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the following are possible values of p and prior probabilities for each value
(prior weight), p(y):

y: 0.80 0.82 0.84 0.86 0.88 0.90

p(y): 0.03 0.40 0.22 0.15 0.15 0.05

From the experiment, it is observed that in 13 of 15 pairs, the cross-

fertilized is taller

(a) Create a table with columns for prior, likelihood of y given sample,

prior times likelihood, and posterior probability of y. Based on the

posterior probabilities, what value of y has the highest support? Also,
find E(y) based on the posterior probabilities.

(b) Redo part (a) with a completely noninformative prior, that is, take the

prior for the proportion y as one of the equally spaced values 0, 0.1,

0.2, . . ., 0.9, 1. Also assign for each value of y the same probability,

p(y)¼1/11.

(c) Calculate the MLE of y and compare it with the Bayesian estimate.

11.2.3. Consider the problem of estimating p in a binomial distribution. Let X be

number of successes in a sample of size n.
(a) Let the prior distribution of p be given by Beta(3,1), that is

p pð Þ¼ 3p2, 0< p< 1

0, otherwise:

	
Find the posterior distribution of p.

Hint : f xjpð Þ¼
n
x

� �
px 1�pð Þn�x

, x¼ 0,1,2, . . . ,n

0, otherwise:

8<:
24 35

(b) Let the prior distribution of p be given by Beta(a,b) (that is,
p(p)∝pa�1 (1�p)b�1). Find the posterior distribution of p.

11.2.4. A biased coin is tossed n times. Let xi be 1 if the ith toss is heads and 0 if it
is tails. Assume a noninformative prior, p(y)¼1, 0�y�1. Let t be the
number of heads obtained. Show that the posterior distribution of y is Beta
(t+1, n� t+1).

11.2.5. Let X1, X2, . . ., Xn be exponential random variables with parameter l. Let
the prior p(l) be exponentially distributed with parameter m, which is a

fixed and known constant.

(a) Show that the posterior distribution of l is Gamma (n+1,
m+
P

i¼1
n xi).

(b) Obtain the Bayes estimate of l.
11.2.6. Let X1, X2, . . ., Xn be Poisson random variables with parameter l. Assume

that l has a Gamma (a, b) prior.
(a) Compute the posterior distribution of l.
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(b) Obtain the Bayes estimate of l.
(c) Compare the MLE of l with the Bayes estimate of l.
(d) Which of the two estimates is better? Why?

11.2.7. Let X1, X2, . . ., Xn be Poisson random variables with parameter l. Assume

that l has an exponential distribution with y¼1 prior.

(a) Compute the posterior distribution of l and show that it is Gamma
((
P

i¼1
n xi+1), (n+1)).

(b) Find the Bayes estimate of l.
11.2.8. It is known that a certain disease has affected 10% of a population. In a

random sample of 50 patients typical of the disease group who are exposed

to a new treatment, we observe that 12 patients were hospitalized in a year.

Let m be the rate of population that need hospitalization. Assume that

m�Gamma 0:1, 2ð Þ and f xjmð Þ� Poi 50mð Þ:
Given that 0.24 is an observation from f(xjm), find the Bayesian

estimator of m (that is, obtain E(mjx)).
11.2.9. Let X1, . . .,Xn be anN(m, 2) random sample with prior p(m) havingN(0, s2)

distribution with known s2. Obtain the posterior distribution of m.
11.2.10. Let X1, . . ., Xn be an N(m, 1) random sample with prior p(m) having the pdf

[1/p (1+m2)]. Show that the posterior

p mjxð Þ∝ exp �n m� xð Þ2
2

( )
1

1 + m2
:

11.3 BAYESIAN CONFIDENCE INTERVAL OR CREDIBLE
INTERVALS
In this section, we want to study the question, “Can we construct an interval where

we are confident that the interval contains the unknown true value of y?” We have

seen how inmany situations it may be preferable to use an interval estimate instead of

a point estimate for a population parameter y. Such intervals in classical statistics

were called confidence intervals. We can extend the concept of interval estimation

to a Bayesian setting. The Bayesian analog of a confidence interval is called a cred-

ible interval and is defined as follows.

Definition 11.3.1 A 100(1�a)% credible interval for y is an interval (a, b) such
that

p a� y� bjx1, . . . ,xnð Þ� 1�að Þ
Here a is given as a small positive number between 0 and 1, and x1, . . ., xn are the
sample values.

Note that we read this definition backwards, that is, we are at least (1�a) 100%
confident that the true value of y is between a and b, given the sampled information.
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Because the conditional distribution of y given X1, . . ., Xn is actually a probability

distribution, it makes sense to talk about the probability that y is in the interval (a, b).
Once we have observed data, the credible interval is fixed while y is random. This is

in contrast to theclassical confidence intervalwhere the interval is randombuty is a fixed
parameter. In the classical case, we would say, “In the long run, 100(1�a)% of all such

intervals will contain the true parameter y.” In the Bayesian approach, we would say,

“The probability is at least (1�a) that y lies within the specified interval (a, b).”
As in the classical case, it would be desirable to minimize the length of the cred-

ible interval. This entails choosing only those points with highest values in the pos-

terior density of f(yjx1, . . ., xn), as shown in Figure 11.4. This will be better

especially if the density is not symmetric.

Definition 11.3.1 can be rephrased as follows using the posterior distribution of y.
Definition 11.3.2 A100(1�a)%credible interval fory isan interval (a,b) such that

1.
Ð
a
bf(yjx1, . . .,xn)dy�1�a if y is continuous, and the posterior pdf of y is

f(yjx1, . . ., xn).
2.
Xb

f yjx1, . . . ,xnð Þ� 1�a if y is discrete.

We will now give some examples for computing credible intervals.

EXAMPLE 11.3.1
Suppose X1, . . ., Xn is a random sample from N(m, s2) with s2¼4. Suppose the prior pdf of m is

N(0, 1), that is, p(m)�N (0, 1). Find a 95% credible interval for m.

Solution
We have seen from Example 11.2.8 that the posterior distribution of m given x1, . . ., xn, is normally

distributed with

Mean¼ 1

1 + 4
n

x

and

Variance¼ 1

1 + n
4

:

Continued

1-a

q

a b
0

f(q |x1..., xn)

a / 2

FIGURE 11.4

Credible interval for y.
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Figure 11.5 represents the posterior distribution of m.
To find the 95% credible interval for m, we have to find two numbers a and b such that

p a�X� bð Þ¼ 0:95

where

X�N m¼ x

1 + 4
n

,s2 ¼ 1

1 + n
4

� �
:

We choose a to be �b (b is positive). Using z-scores, we get (X is continuous),

p �za=2 <
m� 1= 1 + 4

n

� �� �
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= 1 + n
4

ð Þp < za=2

 !
¼ 1�a

which can be rearranged as

p
1

1 + 4
n

x� 1ffiffiffiffiffiffiffiffiffi
1 + n

4

p za=2 < m<
1

1 + 4
n

x+
1ffiffiffiffiffiffiffiffiffi
1 + n

4

p za=2

 !
¼ 1�a:

Thus, a 95% credible interval for m is

1

1 + 4
n

x� 1ffiffiffiffiffiffiffiffiffi
1 + n

4

p za=2,
1

1 + 4
n

x +
1ffiffiffiffiffiffiffiffiffi
1 + n

4

p za=2

 !
:

For convenience, we summarize this procedure in the following steps.

Bayesian Credible Interval Procedure
1. Consider y as a random variable with prior pdf (or pmf) p(y).
2. Update the prior distribution p(y) using the Bayes theorem. That is find the posterior distribution

of y by the formula

p yjdatað Þ¼

f datajyð Þp yð Þð
f datajyð Þp yð Þdy

, if continuous

f datajyð Þp yð ÞX
f datajyð Þp yð Þ , if discrete:

8>>>>><>>>>>:
3. Find two numbers a and b such that

(1+ −)−1x
−

n
4

1+ −n
4

1
Var =

m

p (m)

FIGURE 11.5

Posterior distribution of m.
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ðb
a

p yjdatað Þdy� 1�a, if continuous,

Xb
y¼a

p yjdatað Þ� 1�a, if discrete:

Note: The numbers a and b are found such thatða
�1

p yjdatað Þdy¼ a=2, if continuous,X
y�a

p yjdatað Þ¼ a=2, if discrete:

And ð1
b

p yjdatað Þdy¼ a=2, if continuous,X
y�b

p yjdatað Þ¼ a=2, if discrete:

4. The (1�a)100% credible interval for y is the interval (a, b).

In the discrete case, an easy way of finding a credible interval of smallest length is

to arrange the values of y from most likely to least likely (that is, in the order of the

magnitude of the posterior probabilities), and then put values of y into the interval

until the cumulative posterior probability of the set exceeds (1�a)100%. Such an

interval is called a highest posterior density (HPD) interval. It can be shown that

the HPD interval always exists, and it is unique, so long as for all intervals of prob-

ability (1�a), the posterior density is never uniform in any interval of values of y.

EXAMPLE 11.3.2
For the data of Example 11.2.1, find a 90% credible interval for y.

Solution
Arranging the values of y from most likely to least likely, we have Table 11.3. Looking at the “cumu-

lative probability” column, we see that the probability that y is in the set {0.86, 0.84, 0.88, 0.82,

0.80} is 0.90192. So this set is a 90% probability (or credible) interval for y.

Table 11.3 Posterior and Cumulative Probability

Prior Values of u Posterior Probability of u Cumulative Probability

0.86 0.2661 0.2661

0.84 0.22528 0.49138

0.88 0.15817 0.64955

0.82 0.14208 0.79163

0.80 0.11029 0.90192

0.90 9.8064�10�2 0.99984
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EXERCISES 11.3
11.3.1. (a) Suppose X1, . . ., Xn is a random sample from N(m, s2) with s2¼9.

Suppose the prior pdf of m is N(0,1); that is p(m)�N(0,1). Find a 95%

credible interval for m.
(b) The following is a set of random data from a normal distribution with

variance 9.

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87
7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78

Using the results of part (a), compute a 95% credible interval for m, interpret
its meaning, and state any assumptions you have made.

11.3.2. Suppose that a person believes that his last year’s weight was normally

distributed with mean of 165 lb and standard deviation of 5 lb. That is, the

prior pdf of m is N(165, 25), or p(m)�N(165, 25). He expects his current

weight X is normally distributed with mean m and standard deviation 7 lb.

Following are 10 random measurements (in pounds) from this year.

176 165 180 172 175

179 166 177 184 183

Find a 95% credible interval for m.
11.3.3. It is known that a certain disease affects 10% of a population. In a random

sample of 50 patients in the disease group who are exposed to a new

treatment, we observe that 12 patients were hospitalized in a year. Let m be

the population rate that needs hospitalization in a year. Assume m has a

Gamma (0.1, 2) prior. Let m�Gamma (0.1,2) and f(xjm)�Poi (50m). Given
that x¼0.24 is an observation of X, find 95% credible internal for m. Obtain
a Bayesian credible interval for m. (If X is the number of patients admitted in

a year, assume X�Poi (50m), the Poisson approximation of the binomial.)

How can we improve on this estimate?

11.3.4. For an upcoming congressional election, suppose we want to estimate the

amount of support for a particular candidate in a district. By previous

experience and voter registration data, we can assume that the prior

distribution of the proportion of support, p, is a beta distribution with

m¼10, and b¼8 (i.e. p (p)�Beta (10, 8)). We conducted a survey of 1000

randomly selected voters, of whom 600 support the candidate. Obtain a

95% credible interval for p. What will happen to the credible interval if we

reduce the confidence interval? What will happen to the 95% credible

interval if we increase the sample size?

11.3.5. It is recommended that the daily intake of sodium be 2400 mg per day.

From a previous study on a particular ethnic group, the prior distribution of

sodium intake is believed to be normal with mean 2700 mg and standard

deviation 250 mg. If a recent survey for this group resulted in a mean of

3000 mg and standard deviation of 300 mg, obtain a 95% credible interval

for the mean intake of sodium for this ethnic group.
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11.3.6. Suppose we have a coin (not necessarily balanced) with p being the

probability of heads. Assume a uniform prior for p. Suppose in

20 tosses of this coin, we obtained 12 heads. Obtain a 90% credible

interval for p.
11.3.7. Suppose that in a particular telephone exchange, the number of

calls received per minute has a Poisson distribution with parameter l.
Assume an exponential prior for l with parameter 2. Suppose this

exchange had received 25 calls in 5 min. Obtain a 95% credible

interval for l.

11.4 BAYESIAN HYPOTHESIS TESTING
The Bayesian approach to hypothesis testing for simple hypotheses is pretty straight-

forward. Deciding between two hypotheses for a given set of data x reduces to com-

puting their posterior probabilities. If an explicit loss function is available, the Bayes

rule is chosen to minimize the expected value of the loss function with respect to the

posterior distribution. In the absence of a loss function, the probabilities of type I and

type II errors are of little interest to the Bayesian.

In the classical hypothesis testing, we test a null hypothesis (denoted by H0)

against an alternative hypothesis (denoted by H1 or Ha). The test procedure is based

on controlling the two types of errors—type I and type II. The classical test proce-

dures limit the type I error to a and minimize the type II error. If the type II error is

unacceptably high, it is reduced by increasing the sample size.

In the Bayesian approach, the problem of deciding between the null and alterna-

tive is rather straightforward. Consider the problem of hypothesis testing with

H0 : y2Y0 vs: H1 : y2Y1 (11.3)

where Y0, Y1 are subsets of the real line. Let X1, . . ., Xn be the sample from a pop-

ulation with pdf fy(x).
In the Bayesian hypothesis testing approach we compute the following posterior

probabilities:

a0 ¼ p y2Y0jx1, . . . ,xnð Þ (11.4)

and

a1 ¼ p y2Y1jx1, . . . ,xnð Þ: (11.5)

If a0>a1, we accept the null hypothesis, and if a0<a1, we reject the null hypothesis.
We now outline the Bayes hypothesis testing procedure for testing hypothesis (11.3).

Let p(y) be the prior. Also,

p0 ¼ p y2Y0ð Þ
and

p1 ¼ p y2Y1ð Þ
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Definition 11.4.1 The ratio p0/p1 is called the prior odds ratio. The ratio a0/a1
(see Equations (11.4) and (11.5)) is called the posterior odds ratio.

The posterior odds ratio is the ratio of the posterior probabilities, given the data,

of the null and alternate hypotheses. The posterior odds ratio will be used in decision

making for testing the hypotheses. We now compute a0 and a1 using the Bayes the-

orem. That is,

a0 ¼p y2Y0jx1, . . . ,xnð Þ

¼

ð
Y0

f yjx1, . . . ,xnð Þdy, if continuous

X
y2Y0

f yjx1, . . . ,xnð Þ, if discrete:

8>>>><>>>>:
Similarly,

a1 ¼p y2Y1jx1, . . . ,xnð Þ

¼

ð
Y1

f yjx1, . . . ,xnð Þdy, if continuous

X
y2Y1

f yjx1, . . . ,xnð Þ, if discrete:

8>>>><>>>>:
We reject H0 if the odds ratio (a0/a1)<1 and accept H0 if (a0/a1)>1.

This method of hypothesis testing is called Jeffreys’ hypothesis testing criterion.

It basically says that if the posterior odds ratio is greater than 1, we accept the null

hypothesis; otherwise, we reject the null in favor of the alternative hypothesis.

Because we cannot determine the probability of a single value in the continuous

variable case, it should be noted that for a simple null hypothesis of the form y equals
some specified value cannot be dealt with easily in the Bayesian framework. Hence,

unlike the classical framework, here we mostly deal with the composite hypotheses

for both null and alternative.

EXAMPLE 11.4.1
A student taking a standardized test is classified as gifted if he or she scores at least 100 out of a

possible score of 150. Otherwise the student is classified as not gifted. Suppose the prior distribution

of the scores of all students is a normal with mean 100 and standard deviation 15. It is believed that

scores will vary each time the student takes the test and that these scores can be modeled as a normal

distribution with mean m and variance 100. Suppose the student takes the test and scores 115. Test

the hypothesis that the student can be classified as a gifted student.

Solution
The hypothesis testing problem can be phrased as

H0 : y< 100 vs: Ha : y� 100:

Referring to Example 11.2.8, we know that the posterior distribution f(yjx) is a normal with

mean 110.4 and variance 69.2. Because the prior is an N(100,225), we have p0¼P(y<100)¼
1/2 and p1¼P(y�100)¼1/2.
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We can now compute

a0 ¼ p y< 100jx¼ 115ð Þ

¼ p
y�110:4ffiffiffiffiffiffiffiffiffi

69:2
p <

100�110:4ffiffiffiffiffiffiffiffiffi
69:2

p
� �

¼ p z�� 10:4ffiffiffiffiffiffiffiffiffi
69:2

p
� �

¼ 0:106

and

a1¼ p y� 100jx¼ 115ð Þ
¼ 1�p y< 100jx¼ 115ð Þ
¼ 1�0:106¼ 0:894:

Thus, a0/a1¼ (0.106/0.894)¼0.119<1, and we reject H0.

Bayesian Hypothesis Testing Procedure
To test H0: y 2Y0 versus H1: y 2Y1, where Y0 and Y1 are given sets:

1. Consider y as a random variable with prior distribution p(y).
2. Compute the posterior distribution f(yjx1, . . .,xn) of y given x1, . . ., xn, using Bayes’ theorem.

3. Compute a0 and a1 using the following formulas:

a0 ¼ p y2Y0jx1, . . . ,xnð Þ

¼

ð
Y0

f yjx1, . . . ,xnð Þdy, if continuous

X
y2Y0

f yjx1, . . . ,xnð Þ, if discrete

8>>>><>>>>:
and

a1 ¼ p y2Y1jx1, . . . ,xnð Þ

¼

ð
Y1

f yjx1, . . . ,xnð Þdy, if continuous

X
y2Y1

f yjx1, . . . ,xnð Þ, if discrete:

8>>>><>>>>:
4. Reject H0 if the posterior odds ratio,

a0
a1
< 1: Otherwise accept.

In the foregoing procedure, we assume that P(y2Y0) and P(y2Y1) are both

greater than zero.

EXERCISES 11.4
11.4.1. The following is random data from a normal distribution with variance 9.

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87
7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78
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(a) Test the hypothesis,H0: m�0 versusHa: m>0. Assume that the prior is

N(0, 4), so that m�0 and m>0 are equally probable.

(b) Compare your decision with classical hypothesis testing, with a¼0.05.

11.4.2. (a) For the data of Exercise 11.3.2, using the Bayesian method, test the

hypothesis H0: m�170 versus Ha: m>170.

(b) Compare your decision with classical hypothesis testing, with a¼0.05.

11.4.3. It is known that a certain disease affects 10% of a population. Of a random

sample of 50 patients in the disease group who are exposed to a new

treatment, we observe that 12 patients were hospitalized in a year. Let m be

the population rate that needs hospitalization in a year. Assume m has a

Gamma(0.1,2) prior. Let m�Gamma(0.1,2) and f(xjm)�Poi(50m). Given
that x¼0.24 is an observation of X, test the hypothesis H0: p�0.10 versus

Ha: p>0.10. (If X is the number of patients admitted in a year, assume

X�Poi (50m), the Poisson approximation of the binomial.)

11.4.4. For an upcoming congressional election, suppose we want to estimate the

amount of support for a particular candidate in a district. By previous

experience and voter registration data, we can assume that the prior

distribution, the proportion of support, p, is a beta distribution with a¼10,

and b¼8 (i.e. p(p)�Beta (10, 8)). We conducted a survey of 1000

randomly selected voters, of whom 600 support the candidate. Test the

hypothesis H0: p�0.60 versus Ha: p<0.60.

11.4.5. For the data of Exercise 11.3.5, test the hypothesis H0: m�2400 mg versus

Ha: m>2400 mg for this ethnic group.

11.4.6. Suppose we have a coin (not necessarily balanced) with p being the

probability of heads. Assume a uniform prior for p. Suppose in 20 tosses of
this coin, we obtained 12 heads. Test the hypothesis H0: p�0.50 versus Ha:

p>0.50.

11.5 BAYESIAN DECISION THEORY
Bayesian methods in general are more concerned with problems of decision making

than with problems of inference. Decision theory, as the name implies, is concerned

with the problem of making decisions. Statistical decision theory is concerned with

optimal decisionmaking under uncertainty or when statistical knowledge is available

only on some of the uncertainties involved in the decision problem. Uncertainty

could be about the true value related to the decision, or, uncertainty could be about

the actual state of the nature. Abraham Wald (1902-1950) laid the foundation for

statistical decision theory. Original works on the decision theory emerged out of

game theory considerations. Many books and articles have been written on the var-

ious aspects of decision theory. The Bayesian approach to the decision theory was

introduced by Leonard Jimmie Savage in 1954. In this section, we introduce the gen-

eral idea of decision theory. We basically deal with analytical procedures for the

decision-making process. This will involve selection of an optimum decision from
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a choice of courses of action among two or more alternatives. The Bayesian decision

theory quantifies the trade-offs between different decisions using costs and probabil-

ities that accompany such decisions.

Consider, as an example, a company deciding whether or not to market a new

brand of toothpaste with a whitening agent. Clearly many factors will affect the deci-

sion (for example, the proportion of people who are likely to switch to the new brand,

and the likelihood of other competing companies introducing similar toothpastes).

These factors are generally unknown, but estimates can be obtained from statistical

investigations.

The classical statistical approach relies exclusively on the data obtained from

these statistical investigations, ignoring other relevant information such as the com-

pany’s past experiences in marketing similar products. Statistical decision theory

tries to combine other relevant information with the sample information to arrive

at the optimal decision. Therefore, a Bayesian setting seems to be more appropriate

for decision theory.

One piece of relevant information that decision theory considers is the possible

consequences of the decisions. Often these consequences can be quantified. That is,

the loss or gain of each decision can be expressed as a number (called the loss or
utility). A loss or utility to a decision maker is the effect of the interaction of two

factors: (1) the decision or action selected by the decision maker; and (2) the event

or state of the world that actually occurs. Classical statistics does not explicitly use a

loss function or a utility (payoff) function.

A second source of information that decision theory utilizes is the prior informa-

tion. Prior information could be based on past experiences of similar situations or on

expert opinion. We can follow the procedure explained next as a guideline for deci-

sion making.

General Decision Theory Procedure
1. Identify the objectives of the decision-making process.

2. Identify the set of actions and set of possible events (states of nature).

3. Assign probabilities to the occurrence of each possible state of nature (prior). If more observa-

tions are available, calculate the posterior probabilities to the occurrence of each possible state of

nature.

4. For each possible event, assign a numerical value to the anticipated payoff (or loss) of each

course of action.

5. Compute the expected value of the payoffs (utility or loss function). This could be done by either

using the prior probabilities if there are no observations, or using the posterior probabilities.

6. Select the optimum decision among the available alternative courses of action that maximizes

the expected value of the payoffs.

There are many other decision criterion available in literature. In this section, we

only consider the expected utility or loss function approach. We now consider an

example to illustrate the idea of statistical decision making.
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EXAMPLE 11.5.1
Suppose you own a small stall at a flea market that is open only on weekends. If the weather is good,

you make a profit of $200, and if it is bad, you close your stall and you make no (zero) profit. How-

ever, you have the option of buying, from an insurance company, weather insurance that costs $75.
The company pays you $210 if the weather is bad. Suppose you believe that the probability of good
weather on a particular weekend is p. Compute the expected gain if you insure and if you do not.

What is the best course of action? Arrive at a decision.

Solution
From the information in the problem, we can obtain the utility gain or profit table shown in

Table 11.4, based on our decision to insure or not insure. Suppose that we model the state of weather
as good or bad by means of a random variable defined as follows.

y¼ 1, if the weather is good

0, if the weather is bad:

	

Suppose for our example we believe that during a particular weekend P(y¼1)¼p, and
P(y¼0)¼1�p. This can be considered as prior information. The different values of y are called

states of nature. We assign (perhaps subjectively) a probability structure for the states of nature

defined by a prior distribution p(y). Now we can compute the expected gain when we insure and
when we do not.

Using the values in the table,

Expected gain given we insure ¼ 125ð Þp+ 135ð Þ 1�pð Þ
¼ 135�10p,

Expected gain when do not insure ¼ 200ð Þp + 0ð Þ 1�pð Þ
¼ 200p:

Hence, insurance is preferable if

135�10p> 200p

or

p<
135

210
¼ 0:643:

That is, we should take the insurance if we believe the probability of good weather is less than 0.643.

In general the states of the nature are represented by y1, . . ., yn and the possible

decisions (actions) are represented by d1, . . ., dm. Let U (dj,yi) represent the net gain
when the true states of nature is yi and the decision dj is made. Then we can construct

the general utility table shown in Table 11.5.

Table 11.4 Weather Insurance

Weather

Parameter space! Good Bad

Decision space #D (y1) (y2)
Insurance (I)(d1) $125 (200-75) $135(210-75)

No insurance (NI)(d2) $200 $0
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In Bayesian decision theory, we assume a probability distribution on the states of

nature called the prior distribution. Using this probability distribution, we can find

the decision that maximizes the expected utility. That is, let the states of nature

be initially modeled by a random variable y with probability function p(y) such that

P(y¼yi)¼p(yi), i¼1, . . . ,n. Let U denote the utility. Then the expected utility for

decision dj is given by

E Ujdj
� �¼Xn

i¼1

U dj, yi
� �

p yið Þ:

The optimal decision, called the Bayes decision, denoted by d*, is that which max-

imizes the expected utility. That is, d* satisfies the following equation:

max
dj

Xn
i¼1

U dj, yi
� �

p yið Þ¼
Xn
i¼1

U d	, yið Þp yið Þ:

This procedure is called the Bayes decision procedurewith respect to the assumed or

given prior p(yi), i¼1, 2, . . ., n.

PROCEDURE TO FIND OPTIMAL DECISION
1. For each decision di, compute

P
i�1
n U(dj,yi)p(yi)

2. Find a decision d* from the decision space that maximizes the sum in step 1. This is the Bayes

decision.

In determining the Bayes decision, we have assumed a prior distribution p (y) for
the states of nature {yi}. Naturally the question arises: can there be information or

observations that will help us to determine p (y)?
Definition 11.5.1 Observations that can aid us in determining the relative likeli-

hoods of the possible states of nature are called observables.

Table 11.5 General Utility Table

States of Nature

u1 u2 . . . ui . . . un

d1 U (d1, y1) U (d1, y2) U (d1, yi) U (d1, yn)
d2

Decision 

States

dj U (dj, yi)



dm U (d1, y1) U (dm, yn)
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We remark that observables enable us to refine and update our initial prior p(y).
The updated prior is the conditional distribution p(yjobservables), which clearly

depends on the observables as well as the initial prior p(y). The updated prior is also
called the posterior.

For example, to determine the nature of weather wemay hear the weather forecast

(80% chance of rain), in which case we may assume P(G)¼0.2, and P(B)¼0.8.

However, the weather forecast is not perfect. Let Ĝ and B̂ denote the meteorologist’s

prediction. We may like to know P GjĜ� �
and P GjB̂� �

. That is, what is the proba-

bility of the weather being good when the meteorologist predicts the weather will

be good, and what is the probability that the weather is good when the meteorologist

predicts the weather will be bad?

It may be noted that there is no direct cause-effect relation in GjĜ. That is, the
prediction of the weather forecast does not influence the weather. If a probability

distribution depends on a set of parameters y, the classical approach estimates y
on the basis of an observed sample X1, . . ., Xn. The samples X1, . . ., Xn are the observ-

ables. Thus, observables are used to estimate the parameters, that is, we want the

distribution of y given X1, . . ., Xn or p(yjX1, . . ., Xn). In our weather situation, the

observable is the weather forecast, whereas the parameter is one of the weather con-

ditions, good or bad. In P ĜjG� �
we are asking, “Given that the weather is good, what

is the probability that the weather forecast is correct?” We can imagine that meteo-

rological conditions such as the barometric pressure determine the weather (that is,

G¼ f(m1, . . .,mk),mi¼meterological factor), and in this sense we can consider thatG
is a parameter. We thus want P GjĜ� �

:
To compute the posterior P GjĜ� �

, we use the Bayes theorem (which needs a

prior distribution, P(G)). That is,

P GjĜ� �¼ P ĜjG� �
P Gð Þ

P ĜjG� �
P Gð Þ+P ĜjB� �

P Bð Þ :

Similarly, we can compute P BjB̂� �
:

Coming back to our weather situation, if P(G) is known and P ĜjG� �
,P B̂jB� �

are

known, we could obtain the required posterior distributions P GjĜ� �
and P BjB̂� �

.

We can now use this distribution to calculate the expected utilities and choose the

decision that maximizes the expected utility.

We now consider an example.

EXAMPLE 11.5.2
Let us initially assume P(y¼1)¼P(y¼0)¼ 1

2
. That is,

P good weatherð Þ ¼ P bad weatherð Þ¼ 1

2
:

Suppose we have the following record on the meteorologist’s predictions. The meteorologist

predicts good weather Ĝ
� �

, given the weather is good, 2
3
of the time, that is, P ĜjG� �¼ 2

3
, and predicts

bad weather, given the weather is bad, 3
4
of the time, that is, P B̂jB� �¼ 3

4
. Thus, given that the mete-

orologist predicts good weather, what is the probability that the weather will turn out to be good, and
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given the meteorologist predicts bad weather, what is the probability that the weather will turn out to

be bad?

Solution
To compute the true probabilities, we use the Bayes theorem.

We are given P ĜjG� �¼ 2
3
and P B̂jB� �¼ 3

4
, which imply P B̂jG� �¼ 1

3
and P ĜjB� �¼ 1

4
. Using the

Bayes theorem, we obtain the likelihood of G as

P GjĜ� � ¼ P ĜjG� �
P Gð Þ

P ĜjG� �
P Gð Þ+P ĜjB� �

P Bð Þ
¼

2
3

� �
1
2
ð Þ

2
3

� �
1
2
ð Þ+ 1

4
ð Þ 1

2
ð Þ¼

8

11
,

and the likelihood of B is

P BjB̂� � ¼ P B̂jB� �
P Bð Þ

P B̂jB� �
P Bð Þ +P B̂jG� �

P Gð Þ
¼

3
4
ð Þ 1

2
ð Þ

3
4
ð Þ 1

2
ð Þ + 1

3

� �
1
2
ð Þ¼

9

13
:

Thus, we have the following updated prior depending upon the meteorologist’s prediction. The

updated prior when the meteorologist predicts good weather is

p Gð Þ¼P GjĜ� �¼ 8

11
; p Bð Þ¼ 1�p Gð Þ¼ 3

11
:

Thus, the updated p(G) is actually pĜ Gð Þ: Similarly, the updated prior when the meteorologist pre-
dicts bad weather that is, pB̂ Gð Þ� �

is

p Gð Þ¼P GjB̂� �¼ 4

13
; p Bð Þ¼P BjB̂� �¼ 9

13
:

That is, if the meteorologist predicts good weather, he will be right about 72.7% of the time, and if he
predicts bad weather, he will be right about 69.2% of the time.

EXAMPLE 11.5.3
Consider Example 11.5.2, with the additional information that the meteorologist has predicted that

the weather will be good on a given weekend. Referring to the utility table (Table 11.5) given in

Example 11.5.1, we ask, what should be our decision—to insure or not to insure—in light of this

prediction?

Solution
From Example 11.5.2, we know that the updated prior, given that the meteorologist predicts good
weather, is

p Gð Þ¼P GjĜ� �¼ 8

11
and p Bð Þ¼P BjĜ� �¼ 3

11
:

Using the foregoing prior and the utility table in Example 11.5.2, we can compute the following

expected gains:

Expected gain if we insure ¼ 125ð Þp Gð Þ + 135ð Þp Bð Þ
¼ 125ð Þ 8

11
+ 135ð Þ 3

11
¼ 127:73:

Continued
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and

Expected gain if we do not insure¼ 200ð Þ 8
11

¼ 145:45:

Therefore our decision, given that the meteorologist predicts good weather, is not to insure.

EXERCISES 11.5
11.5.1. Suppose that we will receive $25 if we get two consecutive heads (H) on

two flips of a balanced coin. If only one head appears, we will get $10. On
the other hand, if there is no heads, we will lose $15. If monetary return is

the only concern, should we play this game? Why?

11.5.2. In the previous problem, suppose we suspect the coin is not balanced.

We feel that P(H) is only 0.4. In our last 10 observations, we counted

three heads and seven tails. Should we play the game? Defend your

answer.

11.5.3. The owner of a small structural engineering firm in Tampa wants to open a

new branch office in Orlando. The single most influential factor is the

projected state of the economy for the next 4 years. If the economy keeps

expanding or at least does not take a turn for the worse, the owner expects an

annual profit of $300,000 by opening the new office. If the economy

experiences a downward trend, then the owner forecasts an annual loss of

$200,000. If he just continues to operate his business in Tampa, he expects a

$50,000 annual profit. Suppose a government forecast indicates that there is

a 70% chance of economic expansion or status quo in the next 4 years and

there is a 30% chance that the economy will show a decline. What is the

optimal decision in this problem? Did you make any assumption in

obtaining this optimal decision?

11.5.4. In Exercise 11.5.3, suppose the owner decides to look at the accuracy of past

forecasts by the government. Suppose his study indicates that a forecast of

economic expansion came true only 2/3 of the time, whereas an economic

downturn came true 4/5 of the time. Now based on this new evidence, what

is the optimal option for the owner?

11.5.5. Consider the weather Example 11.5.1, discussed earlier. The

meteorologist’s prediction record over the past 15 days is as follows:

Weather person’s prediction G B B G G G B G G B B G B G G

How the weather turned out to be B B B G G B B G B G B G G G G

(a) Assuming a uniform distribution for the states of nature, obtain an

updated prior (posterior) based on the meteorologist’s record.

(b) Obtain the Bayes decision.

11.5.6. A coin (not necessarily fair) will be tossed once, and you have to predict the

outcome. If you predict the outcome correctly you win $1000. Otherwise,
you lose $5.
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(a) What are the states of nature? What is the decision space? Write the

utility table.

(b) Suppose that you believe that the probability of heads is 2/3. What is

your price for the states of nature? Find the expected gains.

(c) Suppose that you are allowed to toss the coin twice and you find that the

first toss results in heads and the second in tails.What are theobservables?

(d) Assume the situation in (c). The coin is going to be tossed again and you

have to predict the outcome. What is your updated prior?

(e) What are your expected gains, and what is your decision for the

situation in (d)?

11.5.7. We are given the following utility table:

States of nature

y1 y2 y3
d1 0 10 4

d2 �2 5 1

Determine the Bayes decision assuming a uniform prior for the states of

nature.

11.5.8. Suppose that we have an observable X that can take only two values, X1 and

X2, for the situation in Exercise 11.5.7. The distribution of X depends on the

states of nature and is as follows:

y1 y2 y3
X1 0.1 0.5 0.6

X2 0.9 0.5 0.4

That is, P(X¼x1jy1)¼0.1 or P(X¼x2jy3)¼0.4, and so forth.

Suppose you observe X1; what is the updated prior? What is the Bayes

decision?

11.5.9. A large lot has p% defectives and you have to predict p. If you predict p
correctly you gain $g, and if the prediction is wrong, you lose $l. It is known
that the possible values of p are p1, p2, . . ., pk.
(a) Set up a utility table.

(b) Suppose you assume a uniform prior for p. That is
p pið Þ¼ 1

k , i¼ 1,2, . . . ,k . Find an expression for the Bayes decision.

(c) Suppose you have an observable X such that P(X¼x1jpi)¼ai, i¼1, 2

. . ., k and P(X¼x1jpi)¼1�ai, i¼1, 2,. . ., k. Find the updated prior for
p. What is the Bayes decision in this case?

11.6 CHAPTER SUMMARY
In this chapter we introduced the basic philosophy, definitions, and methods of per-

forming statistical analysis in a Bayesian setting. The treatment of unknown param-

eters as if they are random variables provides a feedback mechanism to update our

58311.6 Chapter Summary



original beliefs about the parameter(s). The posterior distribution of the parameter(s)

represents our revised belief and is calculated by combining data and prior knowl-

edge. We also saw a brief explanation of Bayesian decision theory. It should be noted

that there are various other aspects ofBayesian analysis, such asBayesian regression, in

which priors are used about the regression coefficients as well as about the error vari-

ance. It is beyond the scope of one chapter to deal with all aspects of Bayesian analysis.

There are many publications on Bayesian statistics. We have also briefly studied some

elements of decision theory, which has a natural base in the Bayesian approach.

We now list some of the key definitions introduced in this chapter:

• Posterior distribution.

• Quadratic loss function.

• Absolute error loss function.

• 100 (1�a)% credible interval.

• Prior odds ratio.

• Posterior odds ratio.

• Observable.

In this chapter, we have also learned the following important concepts and

procedures:

• Bayesian parameter estimation procedure.

• Bayesian credible interval procedure.

• General decision theory procedure.

• Procedure to find optimal decision.

11.7 COMPUTER EXAMPLES
A very popular software (and it is free) for the Bayesian computation is WinBUGS,

which can be obtained from http://www.mrc-bsu.cam.ac.uk/bugs/. Computing pos-

terior probability for proportions using the steps we learned in Section 11.2 can be

performed using Minitab. Refer to the book, Bayesian Computation Using Minitab,
by Jim Albert (Wadsworth, 1996). For R help, we suggest the book, Bayesian Com-

putation with R (Second Edition), by Jim Albert, Springer, 2009. The methods

explained in this book can also be used in Chapter 13.

11.7.1 EXAMPLES WITH R
In order to do the R-codes in this section, download the R-package “LearnBayes”.

EXAMPLE 11.7.1
For the data of Example 11.2.1 write an R-code to obtain posterior.

Solution: We use p¼y.
p¼ seq(0.8, 0.9, by¼0.02)
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prior¼c(0.13, 0.15, 0.22, 0.25, 0.15, 0.10)

prior¼prior/sum(prior)
plot(p, prior, type¼“h”, ylab¼“Prior Probability”)

data¼c(13, 2)

post¼pdisc(p, prior, data)

post¼pdisc(p, prior, data)
round(cbind(p, prior, post), 2)

Output:

0.25

0.20

P
rio

r 
P

ro
ba

bi
lit

y

0.15

0.10

0.80 0.82 0.84
p

0.86 0.88 0.90

Discrete prior distribution for a proportion p.

p prior post

[1,] 0.80 0.13 0.11

[2,] 0.82 0.15 0.14

[3,] 0.84 0.22 0.23

[4,] 0.86 0.25 0.27

[5,] 0.88 0.15 0.16

[6,] 0.90 0.10 0.10

EXAMPLE 11.7.2 (POSTERIOR CALCULATION)
Consider Example 11.2.4 with mp¼100, sp¼15, and x¼115. Write an R-code to find posterior.

Solution
R-code:
library (LearnBayes)

Continued
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mup¼100

sigmp¼15

sigma¼10

x¼115

post¼ rnorm(1000,((sigma 2̂*mup/(sigmp 2̂+sigma 2̂))+(sigma 2̂*x/(sigmp 2̂+sigma 2̂))),

(sigma 2̂*sigmp 2̂/(sigmp 2̂+sigma 2̂)))

post

hist(post)

Output
Along with many posterior sample values, we will get following histogram for the posterior.

250

200

150

100

50

0

-100 0 100
post

Histogram of post

Fr
eq

ue
nc

y
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EXAMPLE 11.7.3
(Credible interval) Obtain a 95% credible interval for the posterior obtained in Example 11.7.2.

Solution
Once we have posterior stored in post, then following will give us the credible interval.

R-code

quantile(post, c(0.025,0.5,0.975))

Output

2.5% 50% 97.5%

�76.84277 66.83870 207.86700
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Post. Odds <1
reject the null hypothesis

EXAMPLE 11.7.4 (BAYESIAN HYPOTHESIS TESTING)
The following is random data from a normal distribution with variance 9.

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87
7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78

Test the hypothesis, H0: m�0 versus Ha: m>0. Assume that the prior is N(0, 4), so that m�0 and

m>0 are equally probable.

Solution
R-code

y¼c(0.92, 7.42, 1.05, 1.76, 5.53, 0.01, 3.64, 2.69, �4.47, 1.54,
+ �2.60, 3.97, 0.71, 1.34, �3.66, �1.63, 1.38, �1.24, 3.87, �4.78)

pop.s¼3

norpar¼c(0,4) # vector of mean and standard deviation of the normal prior distribution

m0¼0 # value of the normal mean to be tested

mnormt.onesided(m0,normpar,data)

Output

$BF (Bayes factor in support of the null hypothesis)
[1] 0

$prior.odds (prior odds of the null hypothesis)
[1] 0.7621303

$post.odds (posterior odds of the null
hypothesis)

[1] 0

$postH (posterior probability of null hypothesis)

[1] 0

PROJECTS FOR CHAPTER 11
11A. PREDICTING FUTURE OBSERVATIONS
Suppose we want to predict the value of future observations based on the prior and

observed data. In addition to the posterior distribution f(yjx), in Bayesian statistics we
are interested in the marginal density of the observations (note that because both y
and x are random, it makes sense to speak about their joint, marginal, and conditional

densities). Using the Bayes theorem, we have seen that g (x) is at x¼ (x1, . . ., xn) (for
the continuous case) to be

g xð Þ¼
ð
f xjyð Þp yð Þdy

where f (xjy)p (y) is the joint density of x and y. This also can be written as

g xð Þ¼E f xjyð Þ½ �,
the expected density of observations with respect to the prior distribution p (y). With

the help of g (x), we can predict observations.

We are more interested in the density of future observations y, given present data
x. However, because we have already updated the value of y using the posterior den-
sity, this should be reflected in our prediction:
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f yjxð Þ ¼
ð
f y,yjxð Þdy

¼
ð
f yjy,xð Þ
p yjxð Þdy

¼
ð
f yjyð Þp yjxð Þdy,

if y and x are conditionally independent given y. Conditional independence is

achieved, for example, when x¼ (x1, . . ., xn)
0 and y¼ (xn+1, . . ., xn+m)

0 both are sam-

ples from f (xjy).
We see that the density of future observations is the expected density of obser-

vations with respect to posterior distribution. Consider two different priors for y.
Uniform [0,2], (2) N (1, 1/16). Assume f (xjy)�N (y, 1). Find the predictive dis-

tributions given the sample X1, X2, . . ., Xn.
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OBJECTIVE

In this chapter we shall introduce several classical Nonparametric or distribution-free

tests. These tests do not require distributional assumptions about the population such

as the normality.

Jacob Wolfowitz
(Source: http://apprendre-math.info/anglais/historyDetail.htm?id=Wolfowitz)

Jacob Wolfowitz was born on 19 March 1910 in Warsaw, Russian Empire (now

Poland), and died on 16 July 1981 in Tampa, Florida, USA. Wolfowitz’s earliest
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interest was nonparametric inference, and the first joint paper he wrote with Abra-

ham Wald introduced methods of calculating confidence intervals that are not nec-

essarily of fixed width. It is in this paper by Wolfowitz in 1942 that the term

nonparametric appears for the first time. Later, he worked on the area of sequential

analysis and published work on sequential estimators of a Bernoulli parameter and

results on the efficiency of certain sequential estimators. He also studied asymptotic

statistical theory and worked on many aspects of the maximum likelihood method.

Information theory pioneered by Shannon was another area to which Wolfowitz

made important contributions, culminating in a classic book titled Coding Theorems
of Information Theory (3rd ed. 1978). After working at different places such as the

Statistical Research Group at Columbia University, the University of North Carolina,

and the University of Illinois at Urbana, in 1978 he joined the faculty of the Univer-

sity of South Florida at Tampa. Wolfowitz was elected to the National Academy of

Sciences and the American Academy of Arts and Sciences. He was also elected a

Fellow of the Econometric Society, the International Statistics Institute, and the

Institute ofMathematical Statistics. In 1979, he was Shannon Lecturer of the Institute

of Electrical and Electronic Engineers.

12.1 INTRODUCTION
Most of the tests that we have learned up to this point are based on the assumption

that the sample(s) came from a normal population, or at the least that the population

probability distribution(s) is specified except for a set of free parameters. Such tests

are called parametric tests. In general, a parametric test is known to be generally

more powerful than other procedures when the underlying assumptions are met. Usu-

ally the assumption of normality or any other distributional assumption about the

population is hard to verify, especially when the sample sizes are small or the data

are measured on an ordinal scale such as the letter grades of a student, in which case

we do not have a precise measurement. For example, incidence rates of rare diseases,

data from gene-expression microarrays, and the number of car accidents in a given

time interval are not normally distributed. Nonparametric tests are tests that do not

make such distributional assumptions, particularly the usual assumption of normal-

ity. In situations where a distributional model for a set of data is unavailable, non-

parametric tests are ideal. Even if the data are distributed normally, nonparametric

methods are frequently almost as powerful as parametric methods. These tests

involve only order relationships among observations and are based on ranks of

the variables and analyzing the ranks instead of the original values. Nonparametric

methods include tests that do not involve population parameters at all, such as testing

whether the population is normal. Distribution-free tests generally do make some

weak assumptions, such as equality of population variances and/or the distribution,

and are of the continuous type.

Sometimes we may be required to make inferences about models that are difficult

to parameterize, or wemay have data in a form that make, say, the normal theory tests
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unsuitable. For example, incomes of families generally follow a skewed distribution.

If we do a sample survey of a large number of the families in a feeder area, the

income distribution may look as in Figure 12.1.

This distribution is clearly difficult to parameterize, that is, to identify a classical

probability distribution that will characterize the data’s behavior. Moreover, the

mean income of this sample may be misleading. A better measure of the central ten-

dency is the median income. At least we know that 50% of the families are below the

median and 50% above. Appropriate techniques of inference in these situations are

based on distribution-free methods. Most of the nonparametric methods use only the

order of magnitude of observations, known as order statistics, in a sample, rather than

the observed values of the random variables.

In general, nonparametric methods are appropriate to estimation or hypothesis

testing problems when the population distributions could only be specified in general

terms. The conditions may be specified as being continuous, symmetric, or identical,

differing only in median or mean.

The distributions need not belong to specific families such as normal or gamma.

Because most of the nonparametric procedures depend on a minimum number of

assumptions, the chance of their being improperly used is relatively small. Most

of the nonparametric procedures involve ranking data values and developing testing

methods based on the ranks. Because of this, nonparametric procedures may be used

when the data are measured on a weak scale such as only count data or rank data. We

may ask: why not use nonparametric methods all the time? The answer lies in the fact

that when the assumptions of the parametric tests can be verified as true, parametric

tests are generally more powerful than nonparametric tests. Because only ranks are

used in nonparametric methods, and even though the ranks preserve information

about the order of the data, because the actual values are not used some information

is lost. Because of this, nonparametric procedures cannot be as powerful as their

parametric counterparts when parametric tests can be used. For brevity and clarity,

this chapter is presented without much theoretical explanation to focus on the

Frequency

Unemployed

Part time

Full time

People with
large assets

Income

FIGURE 12.1

Income distribution of families.
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methods. Theoretical developments can be found in many specialized books on the

subject.

In this chapter, we study some of the commonly used classical nonparametric

methods that are based on ordering, ranking, and permutations. The modern

approaches are based on resampling methods such as bootstrap and will be discussed

in Chapter 13.

12.2 NONPARAMETRIC CONFIDENCE INTERVAL
We have seen that for a large sample, using the Central Limit Theorem, we can

obtain a confidence interval for a parameter within a well-defined probability distri-

bution. However, for small samples, we need to make distributional assumptions that

are often difficult to verify. For this reason, in practice it is often advisable to con-

struct confidence intervals or interval estimates of population quantities that are not

parameters of a particular family of distributions. In a nonparametric setting, we need

procedures where the sample statistics used have distributions that do not depend on

the population distribution. Themedian is commonly used as a parameter in nonpara-

metric settings. We assume that the population distribution is continuous.

Let M denote the median of a distribution and X (assumed to be continuous) be

any observation from that distribution. Then

P X�Mð Þ¼P X�Mð Þ¼ 1

2
:

This implies that, for a given random sample X1, . . ., Xn from a population

with median M, the distribution of the number of observations falling below M will

follow a binomial distribution with parameters n and p¼ 1
2
, irrespective of the pop-

ulation distribution. That is, let N� be the number of observations less thanM. Then

the distribution of N� is binomial with parameters n and p¼ 1
2
for a sample of size n.

Hence, we can construct a confidence interval for the median using the binomial

distribution.

For a given probability value a, we can determine a and b such that

P N� � að Þ ¼
Xa
i¼0

n

i

� �
1

2

� �i
1

2

� �n�i

¼
Xa
i¼0

n

i

� �
1

2

� �n

¼ a
2

and

P N� � bð Þ ¼
Xn
i¼b

n
i

� �
1

2

� �i
1

2

� �n�i

¼
Xn
i¼b

n
i

� �
1

2

� �n

¼ a
2
:
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If exact probabilities cannot be achieved, choose a and b such that the probabilities

are as close as possible to the value of a/2. Furthermore, let X(1), X(2), . . ., X(a), . . .,
X(b), . . ., X(n) be the order statistics of X1, . . ., Xn as in Figure 12.2.

Then the population median will be above the order statistic, X bð Þ, a
2

� �
100% of the

time and below the order statistic, X að Þ, a
2

� �
100% of the time. Hence, a (1–a)100%

confidence interval for the median of a population distribution will be

X að Þ <M<X bð Þ:

We can write this result as P(X(a)<M<X(b))¼1–a.
By dividing the upper and lower tail probabilities equally, we find that b¼n+1–a.

Therefore, the confidence interval becomes

X að Þ <M<X n+ 1�að Þ:

In practice, a will be chosen so as to come as close to attaining a
2
as possible.

We can summarize the nonparametric procedure for finding the confidence inter-

val for the population median as follows.

PROCEDURE FOR FINDING (1�a) 100% CONFIDENCE INTERVAL FOR
THE MEDIAN M
For a sample of size n:

1. Arrange the data in ascending order.

2. From the binomial table with n and p¼ 1
2
, find the value of a such that

p X� að Þ¼ a
2

or nearest to
a
2
:

3. Set b¼n+1�a.
4. Then the confidence interval is such that the lower limit is the ath value and the upper limit is the

bth value of the observations in step 1.

Assumptions: Population distribution is continuous; the sample is a simple random sample.

We illustrate this four-step procedure with an example.

EXAMPLE 12.2.1
In a large company, the following data represent a random sample of the ages of 20 employees.

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

Continued

X(1) X(2) X(a) X(b) X(n−1) X(n)M

FIGURE 12.2

Ordered sample.
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Construct a 95% confidence interval for the population medianM of the ages of the employees

of this company.

Solution
For a 95% confidence interval, a¼0.05. Hence, a

2
¼0.025. The ordered data are

24 28 28 31 32 33 38 39 41 43

48 49 49 51 52 56 56 58 62 63

Looking at the binomial table with n¼20 and p¼ 1
2
, we see that P(X�5)¼0.0207. Hence, a¼5

comes closest to achieving a
2
¼0.025. Hence, in the ordered data, we should use the fifth observation,

32, for the lower confidence limit and the 16th observation (n+1–a¼21–5¼16), 56, for the

upper confidence limit. Therefore, an approximate 95% confidence interval for M is

32<M< 56:

That is, we are at least 95% certain that the true median of the employee ages of this company

will be greater than 32 and less than 56.
The data of Example 12.2.1 passes the normality test and we can calculate the 95% parametric

confidence interval as (38.40, 49.70). Comparing this to the nonparametric confidence interval,

length of parametric confidence interval, in general, is smaller whenever parametric assumption

can be made.

EXAMPLE 12.2.2
A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty

patients from this group were given the drug. The changes in heart rates were found to be as follows.

�1 8 5 10 2 12 7 9 1 3

4 6 4 20 11 2 �1 10 2 8

Construct a 98% confidence interval for the mean change in heart rate. Can we assume that the

population has a normal distribution? Interpret your answer.

Solution
First testing for normality, we get the probability plot shown in Figure 12.3.

This shows that the normality assumption may not be satisfied, and thus the nonparametric

method is more suitable (this conclusion is based strictly on the normal probability plot). Using

a box plot, we could also test for outliers. The ordered data are

�1 �1 1 2 2 2 3 4 4 5

6 7 8 8 9 10 10 11 12 20

Looking at the binomial table with n¼20 and p¼ 1
2
, we see that P(X�4)¼0.006. Hence, a¼4

comes closest to achieving a
2
¼0.01. Hence, in the ordered data, we should use the fourth observation,

2, for the lower confidence limit and the 17th observation (n+1–a¼21–4¼17), 10, for the upper

confidence limit. Therefore, an approximate 98% confidence interval for M is

2<M< 10:

That is, we are at least 98% certain that the true median of the mean change in heart rate will be

greater than 2 and less than 10.
If we perform the usual t-test, we will get the 98% confidence interval as (3.20, 9.0). However,

such an interval is not valid, because the normality assumptions are not satisfied.
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EXERCISES 12.2
12.2.1. For the following random sample values, construct a 95% confidence

interval for the population median M:

7:2 5:7 4:9 6:2 8:5 2:7 5:9 6:0 8:2

12.2.2. The following data represent a random sample of end-of-year bonuses for

the lower-level managerial personnel employed by a large firm. Bonuses

are expressed in percentage of yearly salary.

6:2 9:2 8:0 7:7 8:4 9:1 7:4 6:7 8:6 6:9
8:9 10:0 9:4 8:8 12:0 9:9 11:7 9:8 3:2 4:6

Construct a 98% confidence interval for the median bonus expressed in

percentage of yearly salary of this firm. Also, draw a probability plot and

test for normality. Can this be considered a random sample?

12.2.3. Air pollution in large U.S. cities is monitored to see if it conforms to

requirements set by the Environmental Protection Agency. The following

data, expressed as an air pollution index, give the air quality of a city for 10

randomly selected days.

57:3 58:1 58:7 66:7 58:6 61:9 59:0 64:4 62:6 64:9

1

�10 0 10
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Normal probability plot for heart rate
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Std Dev: 4.97896
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FIGURE 12.3

Normal probability plot for heart rate.

59512.2 Nonparametric Confidence Interval



(a) Draw a probability plot and test for normality.

(b) Construct a 95% confidence interval for the actual median air

pollution index for this city and interpret its meaning.

12.2.4. A random sample from a population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

Give a 99% confidence interval for the population median.

12.2.5. In an experiment on the uptake of solutes by liver cells, a researcher found

that six determinations of the radiation, measured in counts per minute

after 20 minutes of immersion, were:

2728 2585 2769 2662 2876 2777

Construct a 99% confidence interval for the population median and

interpret its meaning.

12.2.6. The nominal resistance of a wire is 0.20 ohm. A testing of the wire

randomly chosen from a large collection of such wires yields the following

resistance data.

0:199 0:211 0:198 0:201 0:197 0:200 0:198 0:208

Obtain a 95% confidence interval for the population median.

12.2.7. In order to measure the effectiveness of a new procedure for pruning

grapes, 15 workers are assigned to prune an acre of grapes. The

effectiveness is measured in worker-hours per acre for each person.

5:2 5:0 4:8 4:5 3:9 6:1 4:2 4:4 5:5 5:8
4:2 5:3 4:9 4:7 4:9

Obtain a 99% confidence interval for the median time required to

prune an acre of grapes for this procedure and interpret its meaning.

12.2.8. The following data give the exercise capacity (in minutes) for 10 randomly

chosen patients being treated for chronic heart failure.

15 27 11 19 12 21 11 17 13 22

Obtain a 95% confidence interval for the median exercise capacity for

patients being treated for chronic heart failure.

12.2.9. The data given below refer to the in-state tuition costs (in dollars) of 15

randomly selected colleges from a list of the 100 best values in public

colleges (source: Kiplinger’s Magazine, October 2000).

3788 4065 2196 7360 5212 4137 4060 3956

3975 7395 4058 3683 3999 3156 4354

Obtain a 95% confidence interval for the median in-state tuition costs

and interpret its meaning.

12.2.10. Sepsis is an extreme immune system response to an infection that has

spread throughout the blood and tissues. Sepsis can reduce blood flow to
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kidneys resulting in acute renal failure (also called acute kidney injury).

Relative risk of mortality associated with developing acute renal failure as

of sepsis in 16 studies is given below (Crit Care. 2002: 6(6): 509–513).

0.75 2.03 2.29 2.11 0.80 1.50 0.79 1.01

1.23 1.48 2.45 1.02 1.03 1.30 1.54 1.27

Obtain a 95% confidence interval for the median relative risk of

mortality.

12.3 NONPARAMETRIC HYPOTHESIS TESTS FOR
ONE SAMPLE
In this section, we study two popular tests for testing hypotheses about the population

location, or median using the sign test and the Wilcoxon signed rank test. The com-

parison of medians rather than means is a technicality that is not important unless the

data are skewed substantially. In such cases, medians are somewhat more accurate

than means for comparing the locations of probability distributions. Further discus-

sions on nonparametric tests can be found in many references, such as those by W. J.

Conover and by E. L. Lehmann. Before using nonparametric tests, it is desirable to test

for normality of the data using normal probability plots, and for the existence of outliers

using box plots, and run tests for test of randomness of the data. When we make any

particular choice of method, test for the assumptions made. These assumption checks

are relatively easier using statistical software packages. Many of the examples in this

chapteraregivenmore for illustrationof thenonparametricmethods thanforassumption

violationsofparametric tests or for comprehensive assumption testing techniques.Also,

whenweuse statistical softwarepackages, generally, thep-valueof the testwill begiven
in theoutput. Inorder tomakeadecisiononaparticularhypothesis,we just need to com-

pare the p-value with the chosen value of a. We are going to explain a more traditional

approach instead of using the p-value approach in the discussion; however the computer

example section will illustrate the p-value approach.

12.3.1 THE SIGN TEST
In this section, we describe a test that is the nonparametric alternative to the one-

sample t-test and to the paired-sample t-test. Let M be the median of a certain pop-

ulation. Then we know that

P X�Mð Þ¼ 0:5¼P X>Mð Þ:
We consider the problem of testing the null hypothesis

H0 : M¼m0 versus Ha : M>m0:

Assume that the underlying population distribution is continuous. Let Xi be the ith

observation and let N+ be the number of observations that are greater than m0.
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N+ will be our test statistic. We will reject H0 if, n
+ the observed value of N+, is too

large. This test is called the sign test. A test at significance level a will reject H0 if

n+�k, where k is chosen such that

P N + � k when M¼m0ð Þ¼ a:

Similarly, if the alternative is of the formHa:M 6¼m0, the critical region is of the form

N+�k or N+�k1, where P(N+�k)+P(N+�k1)¼a.
In order to determine such a k and k1, we need to determine the distribution of N+.

The test works on the principle that if the sample were to come from a population

with a continuous distribution, then each of the observations falls above the median

or below the median with probability 1
2
. Hence, the number of sample values falling

below the median follows a binomial distribution with parameters n and p¼ 1
2
, n

being the sample size. If a sample value equals the hypothesized median m0, that

observation will be discarded and the sample size will be adjusted accordingly

(we remark that such values should be very few). Thus, whenH0 is true, N
+ will have

a binomial distribution with parameters n and p¼ 1
2
. For this reason, some authors

call this test the binomial test. The following box summarizes the test procedure

and the corresponding critical regions.

SIGN TEST

H0 : M¼m0

Alternative Hypothesis Critical Region

Ha : M>m0
N + � k, where

Xn

i¼k

n
i

� �
1

2

� �n

¼ a

Ha : M<m0
N + � k, where

Xk

i¼0

n
i

� �
1

2

� �n

¼ a

Ha : M 6¼m0
N + � k1,where

Xn

i¼k1

n
i

� �
1

2

� �n

¼ a
2

or

N + � k,where
Xk

i¼0

n
i

� �
1

2

� �n

¼ a
2

If a or a
2
cannot be achieved exactly, choose k (or k and k1) so that the probability comes as close

to a (or a/2) as possible.

We now summarize the procedure of the sign test in the case of an upper tail alter-

native. The other two cases are similar.

HYPOTHESIS TESTING PROCEDURE BY SIGN TEST
We test

H0 : M¼m0 versus H1 : M>m0:
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1. Replace each value of the observation that is greater thanm0 by a plus sign and each sample value

less thanm0 by a minus sign. If the sample value is equal tom0, discard the observation and adjust

the sample size n accordingly.

2. Let n+ be the number of +’s in the sample. For n and p¼ 1
2
, from the binomial table, find

g¼P N + � n+ð Þ:
3. Decision: If g is less than a, H0 must be rejected. Based on the sample, we will conclude that

the median of the population is greater than m0 at the significance level a. Otherwise do not

reject H0.

Assumptions: The population distribution is continuous. The number of ties is small (less than

10% of the sample).

Note that the approach described in the foregoing procedure is nothing but the p-
value method for hypothesis testing regarding a median using the sign test. Recall

that the p-value is the probability of observing a test statistic as extreme or more

extreme than what was really observed, under the assumption that the null hypothesis

is true. In the sign test, we had assumed that the median isM¼m0, so 50% of the data

should be less than m0 and 50% of the data greater than m0. Thus, we expect half of

the data to result in plus signs and half to result in minus signs. Hence, we can think of

the data as following a binomial distribution with p¼ 1
2
under the null hypothesis. The

p-value is computed from its definition given by the formula

p-value¼P N + � n +ð Þ¼
Xn
i¼k

n
i

� �
1

2

� �n

¼ g:

The p-value method is to reject the null hypothesis if the computed p-value is greater
than a. These binomial probabilities can be obtained from the binomial tables, or

statistical software packages. The following example illustrates how we apply the

three-step procedure.

EXAMPLE 12.3.1
For the given data from an experiment

1:51 1:35 1:69 1:48 1:29 1:27 1:54 1:39 1:45

test the hypothesis that H0: M¼1.4 versus Ha: M>1.4 at a¼0.05.

Solution
We test

H0 : M¼ 1:4 versus Ha : M> 1:4:

Replacing each value greater than 1.4 with a plus sign and each value less than 1.4 with a minus
sign, we have

+ � + + ��+ � + :

Thus, n+¼5. From the binomial table with n¼9 and p¼ 1
2
, we have

P N + � 5ð Þ¼ 0:50:

Thus, the p-value is 0.5. Because a¼0.05<0.50, the null hypothesis is not rejected. We con-

clude that the median does not exceed 1.4.
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When the sample size n is large, we can apply the normal approximation to the bino-

mial distribution. That is, the test statistic N+ is approximately normally distributed.

Thus, under H0, N
+ will have approximate normal distribution with mean np¼ n

2
and

variance of np 1�pð Þ¼ n
4
. By the z-transform, we have

Z¼N + �n=2ffiffiffiffiffiffiffiffi
n=4

p ¼ 2N + �nffiffiffi
n

p �N 0, 1ð Þ:

We could utilize this test if n is large, that is, if np�5 and n(1–p)�5. Hence, under

H0, because p¼ 1
2
, if n�10, we could use the large sample test. The following table

summarizes the large sample sign test.

A SIGN TEST FOR A LARGE RANDOM SAMPLE
When the sample size is large (n�10), we can use the normal approximation to a binomial. This

leads to the large sample sign test:

H0 : M¼m0

versus

Alternative Hypothesis Rejection Region

Ha : M>m0 z�za
Ha : M<m0 z�� za
Ha : M 6¼m0 jzj�za/2

The test statistic is

Z¼ 2N + �nffiffiffi
n

p :

Decision: Reject H0, if the test statistic falls in the rejection region, and conclude thatHa is true

with (1�a)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to

conclude that Ha is true for a given a, and more experiments are needed.

Assumptions: (i) Population distribution is continuous. (ii) Sample size greater than or equal to

10 (after the removal of ties). (iii) The number of ties is small (less than 10% of the sample size).

We illustrate this procedure with the following example.

EXAMPLE 12.3.2
In order to measure the effectiveness of a new procedure for pruning grapes, 15 workers are assigned

to prune an acre of grapes. The effectiveness is measured in worker-hours/acre for each person.

5:2 5:0 4:8 3:9 6:1 4:2 4:4 5:5 5:8 4:5
4:2 5:3 4:9 4:7 4:9

Test the null hypothesis that the median time to prune an acre of grapes with this method is 4.5 h

against the alternative that it is larger. Use a¼0.05.

Solution
We test

H0 : M¼ 4:5 versus H0 : M> 4:5:
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Replacing each value greater than 4.5 with a plus sign and each value less than 4.5 with a minus

sign, we have

+ + + � + �� + + � + + + + :

Because there is one observation that is equal to 4.5, we must discard it and take n¼14. Thus
N+¼10, using the large sample approximation, the test statistic is

Z¼ 2N + �nffiffiffi
n

p ¼ 20�14ffiffiffiffiffi
14

p ¼ 1:6:

For a¼0.05, from the standard normal table, the value of z0.05¼1.645. Hence, the rejection

region is z¼1.645. Because the observed value of the test statistic does not fall in the rejection
region, we do not reject the null hypothesis at a¼0.05 and conclude that the median time to prune

an acre of grapes is 4.5 h.

12.3.2 WILCOXON SIGNED RANK TEST
In the sign test, we have considered only whether each observation is greater thanm0

or less than m0 without giving any importance to the magnitude of the difference

from m0. Neglecting information on the magnitude of the observations is rather inef-

ficient and may reduce the statistical power of the test. An improved version of the

sign test is the Wilcoxon signed rank test, in which one replaces the observations by

their ranks of the ordered magnitudes of differences, jxi�m0j. The smallest obser-

vation is ranked as 1, the next smallest will be 2, and so on. However, the Wilcoxon

signed rank test requires an additional assumption that the continuous population
distribution is symmetric with respect to its center. Thus, if the data are ordinal,

the Wilcoxon test cannot be used.

HYPOTHESIS TESTING PROCEDURE BY WILCOXON SIGNED RANK TEST
We test

H0 : M¼m0 versus H1 : M 6¼m0:

1. Compute the absolute differences zi¼jxi�m0j for each observation. Replace each value of the

observation that is greater than m0 by a plus sign and each sample value that is less than m0 by a

minus sign. If the sample value is equal tom0, discard the observation and adjust the sample size

n accordingly.

2. Assign each zi a value equal to its rank. If two values of zi are equal, assign each zi a rank equal to

the average of ranks each should receive if there were not a tie.

3. Let W+ be the sum of the ranks associated with plus signs and W� be the sums of ranks with

negative signs.

4. Decision: If m0 is the true median, then the observations should be evenly distributed about m0.

For a size a critical region, reject H0 if

W + � c1,whereP W + � c1ð Þ¼ a
2
,

or

W + � c2,whereP W + � c2ð Þ¼ a
2
,

Assumptions: The population distribution is continuous and symmetrical. The number of ties is

small, less than 10% of the sample size.
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The exact distribution of W+ is considerably complicated and we will not derive

it. However, for certain values of n, the distribution is given in the Wilcoxon signed

rank test table.

For the Wilcoxon signed rank test, the rejections region based on the alternative

hypothesis is given next.

For

Ha : M>m0, rejection region is W
+ � c, where P W + � cð Þ¼ a:

and for

Ha : M<m0, rejection region is W
+ � c, where P W + � cð Þ¼ a:

We illustrate the Wilcoxon signed rank test with the following examples.

EXAMPLE 12.3.3
For the given data that resulted from an experiment

1:51 1:35 1:69 1:48 1:29 1:27 1:54 1:39 1:45

test the hypothesis that H0 : M¼1.4 versus Ha : M 6¼ 1.4. Use a¼0.05.

Solution
We test

H0 : M¼ 1:4 versus Ha : M 6¼ 1:4:

Here, a¼0.05, and m0¼1.4. The results of steps 1-3 are given in Table 12.1.

Thus, we have W+¼29 and n¼9. From the Wilcoxon signed rank test table in the appendix, we

should reject H0 if W
+�6 or W+�38 with actual size of a¼0.054. Because W+¼29 does not fall in

the rejection region, we do not reject the null hypothesis that M¼1.4.

Table 12.1 Data Summary for Wilcoxon Signed Rank Test

xi zi¼jxi–1.4j Sign Rank

1.51 0.11 + 5.5

1.35 0.05 – 3

1.69 0.29 + 9

1.48 0.08 + 4

1.29 0.11 – 5.5

1.27 0.13 – 7

1.54 0.14 + 8

1.39 0.01 – 1.5

1.45 0.01 + 1.5
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EXAMPLE 12.3.4
Air pollution in large US cities is monitored to see whether it conforms to requirements set by the

Environmental Protection Agency. The following data, expressed as an air pollution index, give the

air quality of a city for ten randomly selected days.

57:3 58:1 58:7 66:7 58:6 61:9 59:0 64:4 62:6 64:9

Test the hypothesis that H0: M¼65 versus Ha: M<65. Use a¼0.05.

Solution
We test

H0 : M¼ 65 versus Ha : M< 65:

Here, a ¼ 0.05, and m0 ¼ 65.

The results of steps 1-3 are given in Table 12.2.

Thus, W+¼3, and n¼10. Using the Wilcoxon signed rank test table, we should reject H0 if

W+�10 with actual size of a¼0.042. Because the observed value of W+ falls in the rejection region,
we reject H0 and conclude that the sample evidence suggests that we conclude the median air pol-

lution index is less than 65.

The Wilcoxon signed rank test is a nonparametric alternative to the one-sample t-test.
The question then is, how dowe decidewhich one to choose? Choose the one-sample t-
test if it is reasonable to assume that the population follows a normal distribution. Oth-

erwise, choose theWilcoxon nonparametric test. However, theWilcoxon test will have

less power. For example, a normal probability plot of the data of Example 12.3.4 is

given in Figure 12.4. Looking at this figure, we can see that the normality assumption

is a suspect. It may make more sense to use the nonparametric method.

When sample size n is sufficiently large, under the assumption of H0 being true,

the distribution of W+ is approximately normal with mean

E W +ð Þ¼ 1

4
n n + 1ð Þ

and variance

Var W +ð Þ¼ n n+ 1ð Þ 2n+ 1ð Þ
24

:

Table 12.2 Summary Calculations for Air Pollution Data

xi zi¼jxi–65j Sign Rank

57.3 7.7 – 10

58.1 6.9 – 9

58.7 6.3 – 8

66.7 1.7 + 3

58.8 6.2 – 7

61.9 4.1 – 5

59.0 6.0 – 6

64.4 0.6 – 2

62.6 2.4 – 4

64.9 0.1 – 1
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Hence, the test statistic is given by

Z¼
W + �1

4
n n+ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n+ 1ð Þ 2n+ 1ð Þ=24p
which is approximately the standard normal distribution. This approximation can be

used when n>20.

SUMMARY OF THE WILCOXON SIGNED RANK TEST FOR LARGE
SAMPLES (n>20)
We test

H0 : M¼m0

versus

M>m0,upper tailed test

Ha : M<m0, lower tailed test

M 6¼m0, two� tailed test:

The test statistic:

Z¼ W + � 1
4
n n+ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ 2n + 1ð Þ=24p :

Rejection region:

z> za, upper tail RR

z<�za, lower tail RR

jzj> za=2, two tail RR:

8<
:

57 58 59 60 61 62
Index

P
ro
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bi

lit
y

Normal probability plot

Average: 61.22
Std Dev: 3.32158
N: 10

Kolmogorov-Smirnov Normality Test
D�: 0.248 D�: 0.131 D: 0.248
Approximate P-Value: 0.081

0.001
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FIGURE 12.4

Normal probability for air pollution index.
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Decision: Reject H0, if the test statistic falls in the RR, and conclude that Ha is true with (1�a)
100% confidence. Otherwise, do not rejectH0, because there is not enough evidence to conclude that

Ha is true for a given a and more experiments are needed.

Assumptions: (i) The population distribution is continuous and symmetric about 0. (ii) Sample

size is greater than or equal to 20. (iii) The number of ties is small, <10% of the sample size.

We illustrate the Wilcoxon signed rank test with the following example.

EXAMPLE 12.3.5
The following data give the monthly rents (in dollars) paid by a random sample of 25 households

selected from a large city.

425 960 1450 655 1025 750 670 975 660 880

1250 780 870 930 550 575 425 900 525 1800

545 840 765 950 1080

Using the large sample Wilcoxon signed rank test, test the hypotheses that the median rent in

this city is $750 against the alternative that it is higher with a¼0.05.

Solution
We test

H0 : M¼ 750 versus Ha : M> 750:

Here a¼0.05, and m0¼750. The results of steps 1–3 are given in Table 12.3 (where the asterisk

indicates zi¼0).

Continued

Table 12.3 Summary Calculations for
Monthly Rent Data

xi zi¼jxi–750j Sign Rank

425 325 – 19.5

960 210 + 15

1450 700 + 23

655 95 – 6

1025 302 + 18

750 0 * ignore

670 80 – 3

975 225 + 16.5

660 90 – 4.5

880 130 + 8

1250 500 + 22

780 30 + 2

870 120 + 7

930 180 + 11

550 200 – 12.5

575 175 – 10

425 325 – 19.5
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Here, for n¼24, W+¼172.5, and the test statistic is

Z¼
W + �1

4
n n + 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n+ 1ð Þ 2n+ 1ð Þ=24p

¼
172:5� 1

4

� �
24ð Þ 25ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24ð Þ 25ð Þ 49ð Þ
24

r ¼ 0:64286:

For a¼0.05, the rejection region is z>1.645. Because the observed value of the test statistic

does not fall in the rejection region, we do not reject the null hypothesis. There is not enough evi-

dence to conclude that the median rent in this city is more than $750.

The rank tests are useful for situations when you suspect that the data do not follow

the normal population. It is important to note that ignoring the tied observations

reduces the effective sample size, which in turn reduces the power of the test (see

Example 7.1.4 for the effect of n on the value of b). This loss is not significant if
there are only a few ties. However, if the ties are 10% or more, hypothesis testing

using rank tests becomes considerably conservative. That is, they yield error prob-

abilities that are significantly high.

12.3.3 DEPENDENT SAMPLES: PAIRED COMPARISON TESTS
The sign test and the Wilcoxon signed rank test can also be used for paired compar-

isons. The experimental procedure typically consists of taking “before” and “after”

type or otherwise matched as in the paired t-test case readings for each unit. Suppose

there are n pairs of before and after observations and we are interested in testing the

equality of the two medians. One way to test such observations is to consider the

difference between the two observations for a unit to be a single observation on that

unit. Thus, we can treat the sample as being n observations on a population of dif-

ferences. For this new sample of differences, the testing problem becomes

Table 12.3 Summary Calculations for
Monthly Rent Data—cont’d

xi zi¼jxi–750j Sign Rank

900 150 + 9

525 225 – 16.5

1800 1050 + 24

545 205 – 14

840 90 + 4.5

765 15 + 1

950 200 + 12.5

1080 330 + 21
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H0 : M¼ 0 versus Ha : M> 0 orM< 0, orM 6¼ 0ð Þ:
Hence, the basic procedure could be summarized to first find the difference between

the two units for each of the observations, and then follow the testing procedures

explained earlier for the sign test or theWilcoxon signed rank test. Both small sample

and large sample cases can be handled as before. In the following example, we illus-

trate this concept for a large sample sign test.

EXAMPLE 12.3.6
A dietary program claims that three months of its diet will reduce weight. In order to test this claim, a

random sample of eight individuals who went through this program for three months is taken. The

following table gives weight in pounds.

Before 180 199 175 226 189 205 169 211

After 172 191 172 230 178 199 171 201

Using a 5% significance level, is there evidence to conclude that the program really reduces the

population median weight?

Solution
Let M denote the median of the population of difference of weights. We will use the difference as

“after”–“before.” Then we will test

H0 : M¼ 0 versus Ha : M< 0:

Wewill use the large sample sign test. Replacing each value of the difference that is greater than
zero by a ‘+’ sign and less than zero by a ‘–’ sign, we have

Difference �8 �8 �3 4 �11 �6 2 �10

Sign – – – + – – + –

For n¼8 and N+¼2, the test statistic is given by

Z¼ 2N + �nffiffiffi
n

p ¼ 4�8ffiffiffi
8

p ¼�1:414:

For a¼0.05, z0.05¼1.645, and the rejection region is z<�1.645. Because the observed value
of the test statistic does not fall in the rejection region, we do not reject the null hypothesis. Thus,

there is not enough evidence to conclude that the new program reduces the weight. Note that even

though n¼8 is small, here we are using the large sample test only for the demonstration purpose.

EXERCISES 12.3
12.3.1. It was reported that the median interest rate on 30-year fixed mortgages

in a certain large city is 7.75% on a particular day, with zero points.

A random sample of nine lenders produced the following data of interest

rates in percentage.

7:625 7:375 8:00 7:50 7:875 8:00 7:625 7:75 7:25

Test the hypothesis that the median interest rate in this city is different

from 7.75%, using (a) the sign test, and (b) the Wilcoxon signed rank test.

Use a¼0.01. Compare the two results.
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12.3.2. It is believed that a typical family spends 35% of its income on food and

groceries. A sample of eight randomly selected families yielded the

following data.

30 29 39 49 36 33 37 35

Test the hypothesis that the median percentage of family income spent

for food and groceries is 35 against the alternative that it is less than 35.

Use a¼0.05.

12.3.3. The SAT scores (out of a maximum possible score of 1600) for a random

sample of 10 students who took this test recently are:

1355 765 890 1089 986 1128 1157 1065 1224 567

Test the hypothesis that the median SAT score is 1000 against the

alternative that it is greater using a¼0.05. Use both the sign test and the

Wilcoxon signed rank test. Explain if the conclusions are different.

12.3.4. The regulatory board of health in a particular state specifies that the

fluoride levels in water must not exceed 1.5 parts per million (ppm). The

20 measurements given here represent the randomly selected daily early

morning readings on fluoride levels in water at a certain city.

0:88 0:82 0:97 0:95 0:84 0:90 0:87 0:78 0:75 0:83
0:71 0:92 1:11 0:81 0:97 0:85 0:97 0:91 0:78 0:87

Test the hypothesis that the median fluoride level for this city is 0.90

against the alternative that the median is different from 0.9 at a¼0.01,

using (a) the large sample sign test, and (b) the Wilcoxon signed rank test.

Interpret the results.

12.3.5. The following data give the weights (in pounds) for a random sample of 20

NFL players.

285 178 311 276 192 232 259 189 298 211

269 285 296 193 288 254 246 234 274 229

Test the hypothesis that the median weight of NFL players is 250

pounds against the alternative that it is greater at a¼0.05, using (a) the

large sample sign test and (b) the Wilcoxon signed rank test.

12.3.6. The following data give the amount of money (in dollars) spent on

textbooks by 18 students for the last academic year at a large university.

510 425 190 298 157 260 320 615 455

490 188 115 230 610 220 155 315 110

Test the hypothesis that the median amount spent on books at this

university is $325 against the alternative that it is different using the

large-sample sign test. Use a¼0.05.

12.3.7. It is desired to study the effect of a special diet on systolic blood pressure.

The following sample data are obtained for eight adults over 40 years of

age before and after six months of this diet.
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Before 185 222 235 198 224 197 228 234

After 188 217 229 190 226 185 225 231

At 95% confidence level, is there evidence to conclude that the new

diet reduces the systolic blood pressure in individuals of over 40 years old?

Test (a) using the sign test, and (b) using the Wilcoxon signed rank test.

Interpret the results.

12.3.8. In an effort to study the effect on absenteeism of having a day-care facility

at the workplace for women with newborn babies (less than 1 year old), a

large company compared the number of absent days for a year for seven

women with newborn children before and after instituting a day-care

facility.

Before 20 18 35 22 17 24 15

After 16 9 22 28 19 13 10

At 99% confidence level, is there evidence to conclude that having a

day-care facility at the workplace reduces absenteeism for women with

newborn children?

12.3.9. For a popular computer tablet, the user ratings (1 through 5 stars, with 5

start being highest rating) of 10 randomly selected are given as follows

5, 5, 1, 4, 3, 5, 4, 4, 5, 4

At the 0.05 level, is there evidence that the median rating is at least 4?

12.3.10. For the data of Exercise 12.2.10, does the combined evidence from all 16

studies suggest that developing acute renal failure as a complication of

sepsis impacts on mortality? Use a¼0.05. Do both sign test andWilcoxon

signed rank test.

12.4 NONPARAMETRIC HYPOTHESIS TESTS FOR TWO
INDEPENDENT SAMPLES
In this section, we learn how to test the equality of the medians of two independent

samples from two populations. This is especially useful when one studies the treat-

ment effects, such as the effect of a certain drug to treat a given medical condition

when we have two groups—an experimental group and a control group—or the

effect of a particular type of teaching method. Even though this test can be used

for more than two samples, here, we will restrict to two samples. We will describe

the median test, which corresponds to the sign test, and the Wilcoxon rank sum test.

12.4.1 MEDIAN TEST
Let m1 and m2 be the medians of two populations 1 and 2, respectively, both with

continuous distributions. Assume that we have a random sample of size n1 from pop-

ulation 1 and a random sample of size n2 from population 2. The median test can be

summarized as follows.
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HYPOTHESIS TESTING PROCEDURE USING MEDIAN TEST
We test

H0 : m1 ¼m2 versus Ha :
m1 >m2, upper tailed test

m1 <m2, lower tailed test

m1 6¼m2, two� tailed test:

1. Combine the two samples into a single sample of size n¼n1+n2, keeping track of each obser-

vation’s original population. Arrange the n1+n2 observations in increasing order and find the

median of this combined sample. If the median is one of the sample values, discard those obser-

vations and adjust the sample size accordingly.

2. Define N1b to be the number of observations of a sample from population 1.

3. Decision: If H0 is true, then we would expect N1b to be equal to some number around n1/2. For

Ha: m1>m2, rejection region is N1b�c, where P(N1b�c )¼a, for Ha: m1<m2, rejection region

is N1b�c, where P(N1b�c )¼a, and for Ha: m1¼m2, rejection region is N1b�c1, or N1b�c2,

where

P N1b � c1ð Þ¼ a
2

and P N1b � c2ð Þ¼ a
2
:

Assumptions: (i) Population distribution is continuous. (ii) Samples are independent.

Note that since some observations can be equal to the overall median, and those

values will be discarded, N1b need not be equal to n1. Let n1+n2¼2k. Under H0, N1b

has a hypergeometric distribution given by

P N1b ¼ n1bð Þ¼
n1
n1b

� �
n2
k�n1b

� �
n1 + n2
k

� � , n1b ¼ 0,1,2, . . . ,n1:

with the assumption that
i
j

� �
¼ 0, if j> i: Note that the hypergeometric distribution

is a discrete distribution that describes the number of “successes” in a sequence of n

draws from a finite population without replacement. Thus, we can find the values of c,
c1, and c2, required earlier. This calculation can be tedious. To overcome this, we can

use the following large sample approximation valid for n1>5 and n2>5. First classify

each observation as above or below the sample median as shown in Table 12.4.

It can be verified that the expected value and variance of N1a (similarly for N1b)

are given by

Table 12.4 Data Classification with Respect to Median

Below Above Totals

Sample 1 N1b N1a n1

Sample 2 N2b N2a n2

Total Nb Na n1+n2¼n
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E N1að Þ¼Nan1
n

, andVar N1að Þ¼Nan1n2Nb

n2 n�1ð Þ :

Thus, for a large sample we can write

:

z¼N1a�E N1að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var N1að Þp �N 0, 1ð Þ:

Hence, we can follow the usual large sample rejection region procedure, which is

summarized next.

SUMMARY OF LARGE SAMPLE MEDIAN SUM TEST (n1>5 AND n2>5)
We test

H0 : m1 ¼m2 versus Ha :
m1 >m2, upper tailed test

m1 <m2, lower tailed test

m1 6¼m2, two� tailed test:

8<
:

The test statistic:

Z¼N1a�E N1að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var N1að Þp ,

where

E N1að Þ¼Nan1
n

and

Var N1að Þ¼Nan1n2Nb

n2 n�1ð Þ :

Rejection region:

z> za, upper tail RR

z<�za, lower tail RR

jzj> za=2, two tail RR:

8<
:

Decision: Reject H0, if the test statistic falls in the RR, and conclude that Ha is true with (1�a)
100% confidence. Otherwise, do not rejectH0, because there is not enough evidence to conclude that

Ha is true for a given a and more experiments are needed.

Assumptions: (i) Population distributions are continuous. (ii) n1>5 and n2>5.

We illustrate this procedure with the following example.

EXAMPLE 12.4.1
Given below are the mileages (in thousands of miles) of two samples of automobile tires of two

different brands, say I and II, before they wear out.

TireI : 34 32 37 35 42 43 47 58 59 62 69 71 78 84

TireII : 39 48 54 65 70 76 87 90 111 118 126 127

Use the median test to see whether tire II gives more median mileage than tire I. Use a¼0.05.

Continued
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Solution
We test

H0 : m1 ¼m2 versus H0 : m1 <m2:

Because the sample size assumption is satisfied, we will use the large sample normal approx-

imation. The results of steps 1 and 2, using the notation A for above the median and B for below the

median, are given in Table 12.5.

The median is 63.5. Thus, we obtain Table 12.6.

Table 12.5 Data Classification of Mileage Data

Sample Values Population Above/Below the Median

32 I B

34 I B

35 I B

37 I B

39 II B

42 I B

43 I B

47 I B

48 II B

54 II B

58 I B

59 I B

62 I B

65 II A

69 I A

70 II A

71 I A

76 II A

78 I A

84 I A

87 II A

90 II A

111 II A

118 II A

126 II A

127 II A

Table 12.6 Summary of Mileage Data for Automobile Tires

Below Above Totals

Sample 1 N1b¼10 N1a¼4 n1¼14

Sample 2 N2b¼3 N2a¼9 n2¼12

Total Nb¼13 Na¼13 n1+n2¼n¼26
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Also,

EN1a ¼Nan1
n

¼ 13ð Þ 14ð Þ
26

¼ 7

and

Var N1að Þ¼Nan1n2Nb

n2 n�1ð Þ ¼
13ð Þ 13ð Þ 14ð Þ 12ð Þ

16,900
¼ 1:68:

Hence, the test statistic is

z¼N1a�E N1að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var N1að Þp ¼ 4�7ffiffiffiffiffiffiffiffiffi

1:68
p ¼�2:31:

For a¼0.05, z0.05¼1.645. Hence, the rejection region is {z<�1.645}. Because the observed

value of z does fall in the rejection region, we rejectH0 and conclude that there is enough evidence to

conclude that there is difference in the median mileage for the two types of tires.

12.4.2 THE WILCOXON RANK SUM TEST
The Wilcoxon rank sum test is used for comparing the medians of two independent

populations, as in the two-sample t-test in the parametric case. For accurate results,

it is necessary to assume that the variances of the populations are equal. This test is quite

similar to theWilcoxon signed rank test.Whereas theone-sampleWilcoxon signed rank

test requires an additional assumption that the population distribution is symmetric,

such an assumption is not necessary for the two-sample Wilcoxon rank sum test. This

test can be applied for skewed distributions. The test is almost as powerful as the para-

metric version when the population distributions are close to normal. Many statistical

software packages do not give the Wilcoxon rank sum test; instead the Mann-Whitney

test is given. It should be noted that the Wilcoxon rank sum test is equivalent to the

Mann-Whitney U-test. We will not separately describe the Mann-Whitney test; how-

ever, in practice just perform the Mann-Whitney test if the software has only that test.

Assume that we have n1 observations randomly sampled from population I and n2
observations randomly sampled from population II with n1�n2. The Wilcoxon rank

sum test procedure can be summarized as follows.

HYPOTHESIS TESTING PROCEDURE BY WILCOXON RANK SUM TEST
We test

H0 :m1 ¼m2 versus H1 :m1 6¼m2:

1. Combine the two samples into a single sample of size n1+n2, keeping track of each observation’s

original population. Arrange the n1+n2 observations in ascending order and assign ranks.

2. Sum the ranks of observations from population II and call it R.

3. Let the test statistic be W¼R� 1
2
n2 n2 + 1ð Þ:

4. Decision: If H0 is false, one would expect that the value ofWwould be very small or very large.

For a size a critical region, reject H0 if

W� c1,whereP W� c1ð Þ¼ a
2
,

Continued
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or

W� c2,whereP W� c2ð Þ¼ a
2
:

Note: The exact distribution ofW is given in the Wilcoxon rank sum test table in the appendix

for small values of n1 and n2.

In the Wilcoxon rank sum test, based on the alternative hypothesis, we have the

following rejection regions.

For

Ha : m1 >m2, rejection region isW� c, whereP W� cð Þ¼ a:

and for

Ha : m1 <m2, rejection region isW� c, whereP W� cð Þ¼ a:

We will illustrate the foregoing procedure with the following example.

EXAMPLE 12.4.2
Comparison of the prices (in dollars) of two brands of similar automobile tires resulted in the data in

Table 12.7.

Use the Wilcoxon rank sum test with a¼0.05 to test the null hypothesis that the two population

medians are the same against the alternative hypothesis that the population medians are different.

Solution
Here we need to test

H0 : m1 ¼m2 versus Ha : m1 6¼m2:

The sample sizes are n1¼6, and n2¼8. Combining steps 1 and 2, we have the results shown in

Table 12.8.

The sum of ranks of observations from population II is R¼56. Hence, the test statistic is

W ¼R�1

2
n2 n2 + 1ð Þ

¼ 56�1

2
8ð Þ 9ð Þ¼ 20:

Table 12.7 Prices of Two Brands of Tires

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115

Table 12.8 Ranking of Prices of Tires

Value 67 69 70 85 87 90 93 99 100 105 105 110 110 115

Population II II II I I II II I I I II I II II

Rank 1 2 3 4 5 6 7 8 9 10.5 10.5 12.5 12.5 14
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For a¼0.05, the rejection region is W�9 or W>38, with the actual a being 0.0592. Because

the observed value of the test statistic does not fall in the rejection region, H0 is not rejected. Thus,
we do not have enough evidence to conclude that the median prices are different for these two brands

of automobile tires.

When the sample sizes are large and whenH0 is true, the distribution of theWilcoxon

rank sum test can be approximated by the normal distribution. It can be shown that

under H0, when both n1 and n2 are greater than 10, the distribution of W is approx-

imately normal with

E Wð Þ¼ n1n2
2

and Var Wð Þ¼ n1n2 n1 + n2 + 1ð Þ
12

:

For a large random sample, we can summarize the test procedure as follows.

SUMMARY OF LARGE SAMPLE MEDIAN SUM TEST (n1>10
AND n2>10)
We test

H0 : m1 ¼m2 versus Ha :
m1 >m2, upper tailed test

m1 <m2, lower tailed test

m1 6¼m2, two� tailed test:

8<
:

The test statistic:

Z¼ W�n1n2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 n1 + n2 + 1ð Þ=12p :

Rejection region:

z> za, upper tail RR

z<�za, lower tail RR

jzj> za=2, two tailRR:

8<
:

Assumption: The samples are independent and n1>10 and n2>10.

Decision: Reject H0, if the test statistic falls in the RR, and conclude that Ha is true with (1–a)
100% confidence. Otherwise, do not rejectH0, because there is not enough evidence to conclude that

Ha is true for a given a and more data are needed.

We will use the foregoing procedure to solve the following problem.

EXAMPLE 12.4.3
In an effort to determine the immunoglobulin D (IgD) levels of a certain ethnic group, a large num-

ber of blood samples representing both sexes for 12-year-olds were taken. The following sample

data give the IgD levels (in mg/100 mL).

Male: 9.3 0.0 12.2 8.1 5.7 6.8 3.6 9.4 8.5 7.3 9.7

Female: 7.1 0.0 5.9 7.6 2.8 5.8 7.2 7.4 3.5 3.3 7.5 7.0

Continued
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Use the large sample Wilcoxon rank sum test with the significance level a¼0.01 to test the

hypothesis that there is no difference between the sexes in the median level of IgD.

Solution
We need to test

H0 : m1 ¼m2 versus Ha : m1 6¼m2:

Here, n1¼11, and n2¼12, and the results of step 1 and step 2 are given in Table 12.9, where we

use M or F to identify the population from which the data are coming.The sum of the ranks for
females is R¼114.5, and

W¼R�1

2
n2 n2 + 1ð Þ

¼ 114:5�1

2
12ð Þ 13ð Þ¼ 36:5

Therefore, the test statistic results in

Z¼ W�n1n2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 n1 + n2 + 1ð Þ=12p

¼ 36:5� 11ð Þ 12ð Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ð Þ 12ð Þ 24ð Þ=12p ¼�1:815��1:82:

For a¼0.01, we have za/2¼z0.005¼2.575. Hence, the rejection region is z<�2.575 or
z>2.575. Because the test statistic does not fall in the rejection region, we do not reject H0 at

a¼0.01 and conclude that there is not enough evidence to conclude that there is any difference

between the sexes in the median level of IgD.

Witha slightmodificationof the ranking systemin theWilcoxon ranksumtest,wecould

test for the equality of variances when the normality assumption of the F-test fails.

EXERCISES 12.4
12.4.1. The following data give the winning proportions of the top six football

teams from each of the two conferences of the NFL.

American Conference 0.818 0.727 0.909 0.818 0.727 0.545

National Conference 0.636 0.545 0.636 0.636 0.818 0.455

Use the Wilcoxon rank sum test at the significance level of 0.05 to test

the null hypothesis that the two samples contain populations with identical

Table 12.9 Ranking of Immunoglobulin D (IgD) Levels

Value 0 0 2.8 3.3 3.5 3.6 5.7 5.8 5.9 6.8 7 7.1

M or F M F F F F M M F F M F F

Rank 1.5 1.5 3 4 5 6 7 8 9 10 11 12

Value 7.2 7.3 7.4 7.5 7.6 8.1 8.5 9.3 9.4 9.7 12.2

M or F F M F F F M M M M M M

Rank 13 14 15 16 17 18 19 20 21 22 23
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medians against the alternative hypothesis that the medians are not equal.

State any assumptions you have made to solve the problem.

12.4.2. Comparison of two protective methods against corrosion yielded the

following maximum depths of pits (in thousandths of an inch) in pieces of

similar metals subjected to the respective treatments:

Method I: 68 75 69 75 70 69 72

Method II: 61 65 57 63 58

Use the Wilcoxon rank sum test at the significance level of 0.01 to test

the null hypothesis that the two samples have identical medians against the

alternative hypothesis that the medians are not equal.

12.4.3. Show that whenH0 is true, the mean and variance of theWilcoxon rank sum

test with sample sizes n1 and n2 are

E Wð Þ¼ n1n2
2

and Var Wð Þ¼ n1n2 n1 + n2 + 1ð Þ
12

:

12.4.4. In order to make inferences about the temporal muscles of the cat, a certain

dose of tubocurarine is injected into a random sample of nine cats. The

following data give the tetanus frequency (in hertz) in the temporal (T)

muscles before and after injection of tubocurarine.

T before 24 33 27 23 31 28 31 24 19

T after 27 38 34 32 37 28 35 28 41

Use the Wilcoxon rank sum test at the significance level of 0.05 to test

the null hypothesis that the median tetanus frequency (in hertz) in the

temporal (T) muscles is larger after injection of tubocurarine. State any

assumptions you made to solve the problem.

12.4.5. In a study of the net conversion of progesterone in rat liver, the following

samples were attained for the net conversion in rats 3-4 weeks old:

Male: 16.9 16.0 13.5 13.1 14.2 11.6 12.8 17.3 13.8 9.8 16.0 15.9 16.7 15.1

Female: 13.8 11.2 7.5 10.4 15.8 14.5 9.5 9.8 5.1 5.5 6.5 7.2

Use the large sample Wilcoxon rank sum test at the significance level of

0.05 to test the hypothesis that the median net conversion of progesterone in

male rats is larger than that in female rats. What would be your conclusion if

you were to use the median test?

12.4.6. Two groups of randomly selected 1-acre plots were treated with two

different brands of fertilizer. The following data give the yields of corn (in

bushels) from each of these plots.

Fertilizer I: 89 93 105 94 92 96 93 101

Fertilizer II: 85 88 94 87 86 91
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Use the data to determine whether there is a difference in yields for two

brands of fertilizers. Use a¼0.01. State any assumptions you made to solve

the problem.

12.4.7. The following information is obtained from two independent samples.

Sample 1: 15 8 12 4 10 8 13 7 12 6 14 11

Sample 2: 18 13 15 19 17 13 17 16

Test at 1% significance level that the median for sample 1 is less than the

median for sample 2 and interpret the meaning of your result.

12.4.8. In order to determine if a new hybrid seeding produces a bushier flowering

plant, data are collected on shrub girth (in inches) for both current variety

and hybrid plants resulted in the following values.

Current variety 27.7 25.1 35.4 36.5 22.0 30.5

hybrid 35.8 30.0 34.6 37.5 31.9 32.6 39.7

Test at 1% significance level that the median for sample 1 is different

from the median for sample 2 and interpret the meaning of your result.

12.5 NONPARAMETRIC HYPOTHESIS TESTS FOR k‡2
SAMPLES
In this section, we learn how to compare the medians of more than two independent

samples and to determine whether medians of the groups differ. These tests are non-

parametric alternatives to the analysis of variance (ANOVA) methods discussed in

Chapter 10. We study the Kruskal-Wallis test and Friedman test. Both of these

methods test the equality of the treatment medians.

12.5.1 THE KRUSKAL-WALLIS TEST
The Kruskal-Wallis test is a generalization of the Wilcoxon rank sum test for two

independent samples to several independent samples. This test is a nonparametric

alternative to one-way ANOVA. The Kruskal-Wallis test is almost as powerful as

the one-way ANOVA when the data are from a normal distribution, and more pow-

erful in case of nonnormality or in the presence of outliers. We now describe this test.

Suppose that we have k populations, with yi being the median of the population i
and k independent random samples from these populations. Let the samples from the

ith population be ni. We wish to test the equality of the medians of different groups—

that is, to test the hypothesis

H0 : y1 ¼ y2 ¼ ��� ¼ yk ¼ 0 versus Ha : not all y’s equal 0:

We shall show that the hypothesis y1¼� � �¼yk is equivalent to the hypothesis H0 :

y1¼y2¼� � �¼yk¼0. Let y1¼� � �¼yk¼ t (same number). Then the observations

yij� t (i¼1,2, . . .,k) will be from a population with median zero. Because the
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Kruskal-Wallis test procedure depends only on the ranks of yij values in the com-

bined sample and the ranks of (yij– t) values are identical to those of yij values,
the two hypotheses are equivalent.

We summarize the Kruskal-Wallis procedure to solve this type of problem in the

following steps.

KRUSKAL-WALLIS TEST PROCEDURE
1. Combine and rank all N¼P i¼1

n ni observations yij in ascending order. Also keep track of the

groups from which the observations came. Assign average ranks in case of ties. Let

rij ¼ rank yij

� �
:

2. Calculate the group sum,

ri ¼
Xni
i¼1

rij, i¼ 1,2, . . . , k:

and the group averages

ri ¼ ri
ni
, i¼ 1,2, . . . , k:

3. Let

r¼
Xk
i¼1

ri ¼N N + 1ð Þ
2

(this can be used as a check for accuracy of your calculation of ri
0 s ) and let

r¼ r

N
¼N + 1

2
:

4. Calculate the Kruskal-Wallis test statistic

H¼ 12

N N + 1ð Þ
Xk
i¼1

ni ri� rð Þ2

or the convenient computational form of H,

H¼ 12

N N + 1ð Þ
Xk
i¼1

r2i
ni
�3 N + 1ð Þ:

Note that to compute the convenient form of H, there is no need to calculate ri and r.

5. Reject H0 if

H� c,

where the constant c is chosen to achieve a specified value for a.

The exact distribution of H is complicated. It depends on the sample sizes, n1, n2,
. . ., nk, and so it is not practical to tabulate its values beyond a small number of cases.

When k or N is large, the exact distribution of H under the null hypothesis can be

approximated by the chi-square distribution with (k–1) degrees of freedom. To this

effect, we state the Kruskal-Wallis theorem without proof.
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Theorem 12.5.1When H0 :y1¼y2¼� � �¼yk is true, then as N becomes large, the
statistic

H¼ 12

N N + 1ð Þ
Xk
i¼1

ni ri� rð Þ2

has an asymptotic distribution that is chi-square with (k–1) degrees of freedom.
Thus, for approximate large samples the Kruskal-Wallis test for a given a is to

reject H0 if

H> w2a k�1ð Þ:
The chi-square approximation is acceptable when the group sample sizes ni>5 with

k�3. However, for convenience, we will use the chi-square approximation for all

values of ni. For this test, we follow the procedure described earlier except that

for finding the rejection region, we use the chi-square table.

The following example illustrates how we use the foregoing procedure to test the

appropriate hypothesis for three populations.

EXAMPLE 12.5.1
In an effort to investigate the premium charged by insurance companies for auto insurance, an

agency randomly selects a few drivers who are insured with three different companies. Assume that

these persons have similar autos, driving records, and level of coverage. Table 12.10 gives the pre-

miums paid per six months by these drivers with these three companies. Using the 5% level of sig-

nificance, test the null hypothesis that the median auto insurance premium paid per six months by all

drivers insured with each of these companies is the same.

Solution
Here we need to test

H0 : M1 ¼M2 ¼M3 ¼ 0 versus Ha : not all Mi’s equal 0,

where Mi is the true median of the auto insurance premium paid to company i, i¼1, 2, 3.

Here n1¼4, n2¼3, and n3¼5. Hence, there are N¼P i¼1
3 ni¼12 observations. Let Y denote the

observations in ascending order. Table 12.11 gives the combined data in ascending order while
keeping track of the groups and their ranks.

Thus, the group rank sums are

r1 ¼ 24, r2 ¼ 23, and r3 ¼ 31:

Table 12.10 Auto Insurance Premium by Company

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432
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As a check for accuracy of these calculations, note that

r1 + r2 + r3 ¼ 78¼ N N + 1ð Þ
2

¼ 12ð Þ 13ð Þ
2

:

The test statistic is given by

H ¼ 12

N N + 1ð Þ
Xk
i¼1

r2i
ni
�3 N + 1ð Þ

¼ 12

12ð Þ 13ð Þ
24ð Þ2
4

+
23ð Þ2
3

+
31ð Þ2
5

 !
�3 13ð Þ

¼ 0:42564:

From the chi-square table, w0.05
2 (2)¼5.991, and hence the rejection region is H�5.991.

Because the observed value of H does not fall in the rejection region, we do not reject H0 and con-
clude that there is no evidence to show that the median auto insurance premiums paid per six months

by all drivers insured in each of these companies are different.

12.5.2 THE FRIEDMAN TEST
The Friedman test, named after the Nobel laureate economist Milton Friedman, tests

whether several treatment effects (measured as locations) are equal for data in a two-

way layout. We will assume that there are k different treatment levels and l blocks. In
each block, assign one experimental unit to each treatment level. We want to test

whether the true medians for different treatment levels are the same in each

block—that is, to test

H0 : True medians at different levels are all equal

versus

Ha : Not all themedians are equal:

Rather than combine the entire sample as in the Kruskal-Wallis statistic, here we

order the y-values within each block and then assign each its rank. In order to elim-

inate the differences due to blocks, we take the sum of ranks for each treatment level.

The following gives a summary of the procedure.

THE FRIEDMAN TEST PROCEDURE
1. Rank observations from k treatments separately within each block. Assign average ranks in case

of ties. Let Rij¼ rank(Yij ), the rank of the observation for treatment level i in block j.

2. Calculate the rank sums

Ri ¼
Xl
j¼1

Rij, i¼ 1,2, . . . , k:

Continued

Table 12.11 Ranking of Auto Insurance Premium

Premium 294 318 330 336 348 360 378 396 432 438 474 522

Group 3 1 3 1 2 2 3 1 3 1 3 2

Rank 1 2 3 4 5 6 7 8 9 10 11 12
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3. Calculate the Friedman statistic

S¼ 12

lk k + 1ð Þ
Xk
i¼1

Ri� l k + 1ð Þ
2

� �2

or a convenient computational form,

S¼ 12

lk k + 1ð Þ
Xk
i¼1

R2
i �3l k + 1ð Þ:

4. Reject H0 if S�c, where the constant c is chosen to achieve a specified value for a.

The exact distribution of S is complicated. Here, for k¼3, 4, 5, and for various

values of l, the Friedman distribution has been calculated and its values are given in

the table in the Table E.8. We will illustrate this four-step procedure with an

example.

EXAMPLE 12.5.2
Three classes in elementary statistics are taught by three different persons, a regular faculty member,

a graduate teaching assistant, and an adjunct from outside the university. At the end of the semester,

each student is given a standardized test. Five students are randomly picked from each of these clas-

ses, and their scores are given in Table 12.12. Test whether there is a difference between the scores

for the three persons teaching with a¼0.05.

Solution
Here we need to test

H0 : Median for the three persons scores are all equal

Ha : The medians are not equal

We are given a¼0.05, k¼3, and l¼5. To compute the value of the statistic S, we first assign

ranks for each student as shown in Table 12.13. Ha: Note that they are not all equal.

Thus, we have

R1 ¼ 12, R2 ¼ 11, and R3 ¼ 7,

and the test statistic is given by

S ¼ 12

lk k + 1ð Þ
Xk
i¼1

R2
i �3l k + 1ð Þ

¼ 12

5ð Þ 3ð Þ 4ð Þ 12ð Þ2 + 11ð Þ2 + 7ð Þ2
� �

� 3ð Þ 5ð Þ 4ð Þ¼ 2:8:

Table 12.12 Test Grades by Instructor

Faculty Teaching Assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47
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From the Friedman table, the rejection region is S�5.20 at an exact significance level of

0.092. Because the computed value of the test statistic does not fall in the rejection region, we

do not reject H0 and conclude that there is no difference in scores based on who teaches the course.

When the number of blocks, l, becomes large, the Friedman test statistic has an

approximate chi-square distribution under the null hypothesis. That is:

Theorem 12.5.2 When H0 : y1¼y2¼� � �¼yk is true then, as l becomes large,

S¼ 12

lk k + 1ð Þ
Xk
i¼1

Ri� l k + 1ð Þ
2

� �2

has an asymptotic distribution that is chi-squared with (k–1) degrees of freedom.

Thus, for an approximate large random sample, the Friedman test for given a is to
reject H0 if S>wa

2(k�1).

When the values of k and l exceed the values given in the Friedman table, we

could use the chi-square approximation, which gives acceptable results. We proceed

to illustrate the Friedman test with the following example.

EXAMPLE 12.5.3
In the previous example, we now randomly select 10 student grades from each class, resulting in the

data shown in Table 12.14.

Continued

Table 12.13 Ranks of Test Scores by Instructor

Faculty Teaching Assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1

Table 12.14 Test Grades of 10RandomStudents from
Each Instructor

Faculty Teaching Assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

45 74 88

99 23 77

86 61 18

82 60 66

74 77 55
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Test whether there is a difference between the scores for the three persons teaching. Use

a¼0.05.

Solution
Here we need to test

H0 : The true median scores for the three instructors are all equal

versus

Ha : They are not all equal:

We are given a¼0.05, k¼3, and l¼10.We use the chi-square approximation to solve the prob-

lem. To compute the value of the statistic S we first assign ranks for each student as shown in

Table 12.15. The Friedman test statistic is

S ¼ 12

lk k + 1ð Þ
Xk
i¼1

R2
i �3l k + 1ð Þ

¼ 12

10ð Þ 3ð Þ 4ð Þ 24ð Þ2 + 20ð Þ2 + 16ð Þ2
� �

� 3ð Þ 10ð Þ 4ð Þ¼ 3:2:

From the chi-square table, w0.05
2 (2)¼5.992. Hence, the rejection region is S�5.992. The com-

puted value of the test statistic does not fall in the rejection region, and we do not reject H0. We

conclude that there is no difference in scores based on who teaches the course.

Friedman’s test is an alternative to the repeated measures ANOVA, when assump-

tions such as that of normality or equality of variance are not satisfied. Because this

test, like many other nonparametric tests, does not make a distribution assumption, it

is not as powerful as the ANOVA.

EXERCISES 12.5
12.5.1 Table 12.16 shows a random sample of observations on children under

10 years of age, each observation being the IgA immunoglobulin level

Table 12.15 Ranks of Test Scores of 10 Random Students

Faculty Teaching Assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1

1 2 3

3 1 2

3 2 1

3 1 2

2 3 1

Total 24 20 16
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measured in international units from a large number of blood samples, and

the population is studied in blocks in terms of age groups (the upper value is

not included) as I: (1 to 3), II: (3 to 6), III: (6 to 8), and IV: (8 to 10). Test for

the hypothesis of equality of true medians for IgA level in each block (age

level), (a) with the 5% level and (b) with the 1% level of significance.

Compare the results obtained.

12.5.2. In an effort to study the effect of four different preventive maintenance

programs on downtimes (in minutes) for a certain period of time in a

production line, a factory runs four parallel production lines, and each line

has five different types of machine. The different maintenance programs are

randomly assigned to each of the four production lines so as to treat the

various machines as blocks. Results are shown in Table 12.17.

Test the hypothesis,H0: Truemedians of the four maintenance programs

are equal versusHa: Not all are equal. [Hint: In the Friedman test, k¼4, and

l¼6.] State any assumptions you have made to solve this problem.

12.5.3. Show that, when k¼2, the Kruskal-Wallis statistics,

H¼ 12

N N + 1ð Þ
Xk
i¼1

r2i
ni
�3 N + 1ð Þ

becomes equivalent to the Wilcoxon rank sum test.

12.5.4. A consumer testing agency is interested in determining whether there is a

difference in the mileage for three brands of gasoline. To test this, four

different vehicles are driven with each of these gasoline. Results are shown

in Table 12.18.

Test whether there is a difference between the three gasoline medians at

the 0.05 level.

Table 12.17 Downtimes by Program

Machine Method 1 Method 2 Method 3 Method 4

I 181 124 126 181

II 185 122 125 160

III 67 65 68 69

IV 121 66 120 68

V 62 60 62 65

Table 12.16 IgA Immunoglobulin Level of Children

I 6 37 19 14 51 68 27 75

II 32 65 76 42 45 41 38 63

III 73 75 59 90 37 32 63 80

IV 81 42 48 60 98 100 79 45
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12.5.5. In order to study the effect of fertilizers, five groups of 1-acre plots were

randomly selected. One group was not treated with any fertilizers and the

remaining four groups were treated with four different brands of fertilizers.

Table 12.19 gives the yields of corn (in bushels) from each of these plots.

Use the data to determine whether there is a difference in yields for

different fertilizers. Use a¼0.01.

12.5.6. In order to compare grocery prices of four different grocery stores on a

particular day in November 1999, 11 randomly selected items with same

brands are given in Table 12.20.

Table 12.19 Yield by Fertilizer

None: 58 27 36 41 48 36 50 50 39

Fertilizer I: 69 67 57 63 49 65 78 69

Fertilizer II: 95 92 92 89 100 88 79 97 75

Fertilizer III: 102 111 92 103 102 94 100 112 96

Fertilizer IV: 127 115 112 122 114 107 116 112 108

Table 12.20 Grocery Prices by Store

Product Store A Store B Store C Store D

Bread (20 oz) $1.39 $1.39 $1.39 $1.39

Red apple (1 lb) 1.29 1.29 0.99 0.68

Large eggs (1 dozen) 0.69 0.88 0.89 0.89

Orange Juice (64 oz) 3.29 2.99 2.79 2.69

Cereal (15 oz) 3.59 3.19 3.19 3.58

Canned corn (15.25 oz) 0.50 0.53 0.50 0.49

Crystals sugar (5 lb) 1.99 2.09 1.99 1.89

2% milk (1 gal) 3.19 3.19 3.09 3.09

Frozen pizza (21.5 oz) 3.00 4.59 3.50 3.50

Puppy Chow (4.4 lb) 4.59 3.69 3.69 3.99

Diapers (56-pack) 12.99 12.99 12.99 11.88

Table 12.18 Mileage by Gasoline Type

Vehicle

Gasoline

A B C

I 19 25 22

II 26 33 39

III 20 28 25

IV 18 30 21
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Use the data to determine whether there is a difference in prices at these

four grocery store chains. Use a¼0.01. State any assumptions you have

made to solve this problem.

12.6 CHAPTER SUMMARY
In this chapter, we first learned about nonparametric approaches to interval estima-

tion and nonparametric hypothesis tests for one sample, such as the sign test, theWil-

coxon signed rank test, and dependent sample paired comparison tests. Then

nonparametric hypothesis tests for two independent samples such as the median test

and Wilcoxon rank sum test were considered. Later the Kruskal-Wallis test and the

Friedman test were explained for more than two samples.

It is natural to ask, “Why do we substitute a set of nonnormal numbers, such as

ranks, for the original data?” Few data are truly normal. Rank tests are sometimes

called “approximate” tests. They are most useful in instances when we suspect that

the data are not normal, and we either cannot transform the data to make them more

normal, or do not like to do so. One of the simple ways to check for appropriateness of

use of nonparametric tests is to simply construct a stem-and-leaf display or a histogram

for the sample data and see whether they look symmetric and approximately bell

shaped. If this is not so, we may often be better off using a nonparametric approach.

Since the 1940s, many nonparametric procedures have been introduced, and the

number of procedures continues to grow. The nonparametric tests presented in this

chapter represent only a small portion of available nonparametric tests. There are

many references available in the bibliography for further reading on the subject.

In this chapter, we have also learned the following important concepts and

procedures.

• Procedure for finding (1–a)100% confidence interval for the median M
• Hypothesis testing procedure by sign test

• A large sample sign test

• Hypothesis testing procedure by Wilcoxon signed rank test

• Summary of large sample Wilcoxon signed rank test (n>20)

• Summary of large sample median sum test (n1>5 and n2>5)

• Hypothesis testing procedure by Wilcoxon rank sum test

• Summary of large sample Wilcoxon rank sum test (n1>10 and n2>10)

• Kruskal-Wallis test procedure

• Friedman test procedure

12.7 COMPUTER EXAMPLES
In this section, we illustrate some nonparametric procedures using statistical soft-

ware packages.
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Fail to reject the null hypothesis since

the p -value is larger than our alpha.

This suggests the median difference is zero.

We fail to reject the null hypothesis 
suggesting that the true mean is equal to 1.4

for any reasonable level of significance. 

Our p -value suggests that we fail to

reject the null hypothesis for any 

reasonable level of significance and

that the medians are equal.

12.7.1 EXAMPLES USING R

EXAMPLE 12.7.1
(Sign test): Using the following data test H0 :M¼1.4 versus Ha :M>1.4,using the sign test.

Sample (x): 1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45
R Code:

y¼ length(which(x>1.4));

n¼ length(x);

binom.test(y,n,alternative¼“greater”);

Output:

Exact binomial test

data: y and n

number of successes¼5, number of trials¼9, p-value¼0.5

alternative hypothesis: true probability of success is greater than 0.5

95 percent confidence interval:

0.2513676 1.0000000

sample estimates:

probability of success

0.5555556

EXAMPLE 12.7.2
(Wilcoxon Test): Using the data from the previous example test H0 :M¼1.4 versus Ha :M 6¼1.4,

using one-sample Wilcoxon test.
R Code:

wilcox.test(x,mu¼1.4);

Output:

Wilcoxon signed rank test

data: x

V¼30, p-value¼0.4258

alternative hypothesis: true location is not equal to 1.4

EXAMPLE 12.7.3
(Two-sample Sign Test): Using the following data, test H0 : M¼0 versus Ha : M<0, using the

two-sample sign test, where M is the median difference. Use a¼0.05.

Sample (x) : 180 199 175 226 189 205 169 211

Sample (y) : 172 191 172 230 178 199 171 201
R Code:

z¼x-y;

y¼ length(which(z<0));

n¼ length(z);

binom.test(y,n,alternative¼”less”);

Output:

Exact binomial test

data: y and n

number of successes¼2, number of trials¼8, p-value¼0.1445

alternative hypothesis: true probability of success is less than 0.5
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Fail to reject the null 
hypothesis 

95 percent confidence interval:

0.0000000 0.5996894

sample estimates:

probability of success

0.25

EXAMPLE 12.7.4
(Wilcoxon Two-sample Test):Use the Wilcoxon rank sum test with a¼0.05 to test the null hypoth-

esis that the two population medians are the same against the alternative hypothesis that the pop-

ulation medians are different.
Sample (x) : 85 99 100 110 105 87

Sample (y) : 67 69 70 93 105 90 110 115

R Code:

wilcox.test(x,y);

Output:

Wilcoxon rank sum test with continuity correction

data: x and y

W¼28, p-value¼0.6507

alternative hypothesis: true location shift is not equal to 0

EXAMPLE 12.7.5
(Kruskall-Wallis Test): In an effort to investigate the premium charged by insurance companies for

auto insurance, an agency randomly selects a few drivers who are insured by three different com-
panies. Assume that these persons have similar cars, driving records, and levels of coverage. The

following data is the premiums paid per 6 months by these drivers with these three companies. Using

a¼0.05, test the null hypothesis that the median auto insurance premium paid per 6 months by all

drivers insured in each of these companies is the same.

Company C1 C1 C1 C1 C2 C2 C2 C3 C3 C3 C3 C3

Value 396 438 336 318 348 360 522 378 330 294 474 432

R Code:

kruskal.test(value, company);

Output:

Kruskal-Wallis rank sum test

data: value and company

Kruskal-Wallis chi-squared¼0.4256, df¼2, p-value¼0.8083

A large p -value suggests we

fail to reject thefnull hypothesis

EXAMPLE 12.7.6
(Friedman test): Using the following data conduct a Friedman test.

C1 93 61 87 75 92 45 99 86 82 74

C2 88 90 76 82 58 74 23 61 60 77

C3 86 56 73 90 47 88 77 18 66 55

Continued
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R Code:

blocks¼c(c(1:10), c(1:10), c(1:10)); A data set called blocks contains

matching block data ranged 1 to 10
friedman.test(values, groups, blocks);

Output:

Friedman rank sum test

data: values, groups and blocks

Friedman chi-squared¼3.2, df¼2, p-value¼0.2019

12.7.2 MINITAB EXAMPLES

EXAMPLE 12.7.7
(One-sample sign): For the data

1:51 1:35 1:69 1:48 1:29 1:27 1:54 1:39 1:45

test H0: M¼1.4 versus Ha: M>1.4, using sign test.

Solution
Enter data in C1. Then

Stat>Nonparametric>1-Sample Sign . . .> in Variables: type C1>click Test median: type

1.4> in Alternative: click greater than>click OK

We can obtain the nonparametric confidence interval using the following procedure.

Enter in variable, C1, and then

Stat>Nonparametric>1-Sample Sign . . .> in Variables: type C1>click Confi-
dence interval> in level: enter appropriate, say, 95.0>Click OK

EXAMPLE 12.7.8
(One-sample Wilcoxon): For the data

1:51 1:35 1:69 1:48 1:29 1:27 1:54 1:39 1:45

test H0: M¼1.4 versus Ha: M 6¼1.4, using one-sample Wilcoxon test.

Solution
We will give only Sessions commands; the Windows procedure is similar to the previous example.

Stat>Nonparametric>1-Sample Wilcoxon. . .> in Variables: type C1>click Test median:

type 1.4> in Alternative: click not equal>click OK

EXAMPLE 12.7.9
(Two-sample Sign Test): For the data

Sample 1 180 199 175 226 189 205 169 211

Sample 2 172 191 172 230 178 199 171 201

test H0: M¼0 versus Ha: M<0, using the two-sample sign test, where M is the median of the dif-

ference. Use a¼0.05.
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Solution
After entering sample 1 data in C1 and sample 2 data in C2, we can use the following sequence:

Calc>Calculator. . .> in Store result in variable: type C3> in Expression: type C2-C3>click OK
We will get the pairwise difference of the two samples. For these values, we will apply the one-

sample sign test.

Stat>Nonparametric>1-sample sign. . .> in Variables: type C3>click Test median : and in

Alternative: choose less than>click OK

EXAMPLE 12.7.10
(Kruskal-Wallis test): In an effort to investigate the premium charged by insurance companies for

auto insurance, an agency randomly selects a few drivers who are insured by three different com-

panies. Assume that these persons have similar cars, driving records, and levels of coverage.

Table 12.21 gives the premiums paid per 6 months by these drivers with these three companies.

Using the 5% significance level, test the null hypothesis that the median auto insurance pre-

mium paid per 6 months by all drivers insured in each of these companies is the same. Use Minitab.

Solution
Enter data for company I inC1, for company II inC2, and for company III inC3. First stack the data

while keeping track of the companies in the following way.

Manip>Stack/Unstack>Stack Columns. . .> in Stack the following columns: typeC1C2C3> in

Stored data in: type C4> in Store subscripts in: type C5>Click OK

Now we can use Kruskal-Wallis as follows.

Stat>Nonparametric>Kruskall-Wallis. . .> in Response: type C4> in Factor: type C5>click OK

We will get the output shown in Table 12.22.

Because the p-value of 0.808 is larger than a¼0.05, we cannot reject the null hypothesis.

Table 12.21 Auto Insurance Premium by Company

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432

Table 12.22 Kruskal-Wallis Test

Kruskal-Wallis Test on C4

C5 N Median Ave rank Z

1 4 366.0 6.0 �0.34

2 3 360.0 7.7 0.65

3 5 378.0 6.2 �0.24

Overall 12 6.5

H¼0.43 DF¼2 P¼0.808

*NOTE*One or more small samples
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EXAMPLE 12.7.11
(Friedman test): For the following data, conduct a Friedman test.

93 61 87 75 92 45 99 86 82 74

88 90 76 82 58 74 23 61 60 77

86 56 73 90 47 88 77 18 66 55

Solution
Enter each row of data inC1,C2, andC3 respectively. Then stack the data inC1,C2, andC3 in the

following way.

Manip>Stack/Unstack>Stack Columns. . .> in Stack the following columns: typeC1C2C3> in

Stored data in: type C4> in Store subscripts in: type C5>Click OK

In C6, enter numbers 1 through 10 in the first 10 rows, enter numbers 1 through 10 in the next 10

rows, and enter numbers 1 through 10 in the following 10 rows. Nowwe can use the Friedman test as

follows.

Stat>Nonparametric>Friedman. . .> inResponse: typeC4> in Treatment: C5> inBlocks: type

C6>click OK

We will get the output shown in Table 12.23.

Because the p-value is 0.202, for any value of a<0.202, we cannot reject the null hypothesis.

12.7.3 SPSS EXAMPLES

EXAMPLE 12.7.12
(Wilcoxon rank sum test): For the data of Example 12.4.2, use the Wilcoxon rank sum test at the

significance level of 0.05 to test the null hypothesis that the two population medians are the same

against the alternative hypothesis that the population medians are different. Use an SPSS procedure.

Solution
Because the SPSS pull-down menu does not have the Wilcoxon rank sum test, we will use the Mann-

Whitney U-test. The Mann-Whitney U-test is equivalent to the Wilcoxon rank sum test, although we
calculate it in a slightly different way. For the same data set, any p-values generated from one test

will be identical to those generated from the other. The following gives the steps to follow. Enter tire

brands as 1 to identify brand 1 and 2 to identify brand 2, in C1. Enter the corresponding prices in
C2. Name C1 as Brand and C2 as Price. Then click

Analyze>Nonparametric Tests>2 Independent Samples. . .>moveBrand toGroupingVariable:

and Price to Test Variable list:> clickDefine Groups. . .>enter 1 inGroup 1:, and 2 inGroup 2:>
click continue>choose Mann-Whitney U>OK

Table 12.23 Friedman Test for C4 by C5 Blocked by C6 S¼3.20 DF¼2
P¼0.202

C5 N Est median Sum of Ranks

1 10 81.500 24.0

2 10 72.000 20.0

3 10 68.000 16.0

Grand median¼73.833
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We get the following output:

Mann-Whitney Test

Ranks

BRAND N Mean Rank Sum of Ranks

PRICE 1.00 6 8.17 49.00

2.00 8 7.00 56.00

Total 14

Test Statistics

PRICE

Mann-Whitney U 20.000

Wilcoxon W 56.000

Z –0.518

Asymp. Sig. (2-tailed) 0.605

Exact Sig. [2*(1-tailed Sig.)] 0.662

(a) Not corrected for ties.
(b) Grouping Variable: BRAND

In the first table just shown, ranks show the mean ranking of tire brand I and tire brand II. The
Mann-Whitney test is used to assess whether the distribution of ranks is statistically significant.

Under the null hypothesis, the distribution of ranks should be the same for both groups. Looking

at the second table, the calculated value of the Mann-Whitney U is 20. The value U represents

the amount by which the ranks for tire brand I and tire brand II deviate from what we would expect
under the null hypothesis. For a 0.05 significance level, we can reject the null hypothesis if the 2-

tailed significance (see Asymp. sig in the second table) is less than 0.05. In this case, because Asymp.

Sig. (2-tailed)¼0.605, we do reject the null hypothesis.

EXAMPLE 12.7.13
(Kruskal-Wallis test): For the data of Example 12.5.1, conduct the Kruskal-Wallis test using SPSS.

Solution
Enter insurance companies as 1 to identify company I, 2 to identify company II, and 3 to identify

company III, in C1. Enter the corresponding premiums in C2. Name C1 as Company, and C2

as Premium. Then:

Analyze>Nonparametric Tests>K Independent Samples. . .>move Premium to Test Variable

List: and Company to Grouping variable: > click Define Rage. . .>enter 1 in Minimum, and 3

in Maximum>click continue>click Kruskal-Wallis H>OK

If we need to do a Friedman test, say for the data of Example 12.7.5, enter each row of data in C1,

C2, and C3, respectively. Then use the following sequence to obtain the appropriate output.

Analyze>Nonparametric Tests>K Related Samples. . .>move each of the three columns to Test

Variables: > check in Test Type Friedman>OK

12.7.4 SAS EXAMPLES
To perform the nonparametric tests, use the SAS statement PROC NPAR1WAY. In

the procedure, if we include the EXACT statement, the program will compute the

exact p-value computations for the Wilcoxon rank sum test.
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EXAMPLE 12.7.14
(Wilcoxon rank sum test): Comparison of the prices (in dollars) of two brands of similar tires gave

the following data.

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis that

the two population medians are the same against the alternative hypothesis that the population

medians are different. Use the SAS procedure.

Solution
We can use the following procedure.

options nodate nonumber;
DATA tprice;
INPUT Brand Price @@;
CARDS;
1 85 1 99 1 100 1 110 1 105 1 87
2 67 2 69 2 70 2 93 2 105 2 90 2 110 2 115
;
/* Nonparametric statistics/Wilcoxon Rank-Sum */
PROC NPAR1WAY DATA¼tprice WILCOXON;
CLASS Brand;
VAR Price;
EXACT WILCOXON;
run;

EXAMPLE 12.7.15
(Kruskal-Wallis test): For the data of Example 12.7.4, perform the Kruskal-Wallis test using SAS.

Solution
We can use the following code.

options nodate nonumber;
DATA insprice;
INPUT Company Price @@;
CARDS;
1 396 1 438 1 336 1 318
2 348 2 360 2 522
3 378 3 330 3 294 3 474 3 432
;
proc npar1way data¼insprice;
class company;
var Price;
run;
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PROJECTS FOR CHAPTER 12
12A. COMPARISON OF WILCOXON TESTS WITH NORMAL
APPROXIMATION
(i) For the Wilcoxon signed rank test, compare the results from the Wilcoxon

signed rank test table with the normal approximation using several sets of

data of various sample sizes. Also, if the sample size is very small, compare the

results from the Wilcoxon signed rank test with a small sample t-test.
(ii) For the Wilcoxon rank sum test, compare the results from the Wilcoxon rank

sum test table with the normal approximation using several sets of data

(from pairs of samples) of various sample sizes. Also, if the sample sizes are

very small, compare the results from the Wilcoxon rank sum test with small

sample t-test for two samples.

12B. RANDOMNESS TEST (WALD-WOLFOWITZ TEST)
When we have no control over the way in which the data are selected, it is useful to

have a technique for testing whether the sample may be looked on as random. The

condition of randomness is essential for all of the analysis explained in this book: that

is, whether a sequence of random variables X1, . . ., Xn are independent based on a set

of observations x1, . . ., xn of these random variables. Here we will give a method

based on the number of runs displayed in the sample events. This is a nonparametric

procedure. The run test is used to test the randomness of a sample at 100(1–a)%
confidence level.

Given a sequence of two symbols, sayH and T, a run is defined as a succession of
identical symbols contained between different symbols or none at all. The total num-

ber of runs in a sequence of n trials serves as an indication whether the arrangement is

random or not. If a sequence contains n1 symbols of one kind and n2 symbols of

another kind and both n1 and n2 are greater than 10 (this is a rule of thumb; for more

accuracy we can also take both n1 and n2 as greater than 20), then the sampling

distribution of the total number of runs, R, has an asymptotic normal distribution with

mean

mR ¼
2n1n2
n1 + n2

+ 1

and variance

s2R ¼
2n1n2 2n1n2�n1�n2ð Þ
n1 + n2ð Þ2 n1 + n2�1ð Þ :

For example, if we have the following symbols

HHH T HH TTTT HH TTT
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there are six runs indicated by the underlines and n1¼7 and n2¼8. If the sample

contains numerical data, the run test is used by counting runs above and below

the median. Denoting the observations above the median by the letter A and obser-

vations below the median by the letter B, we can determine the run as before. For

example, if we have data values

2 5 11 13 7 22 6 8 15 9

then the median is 8.5. Hence, we get the following arrangement of values above and

below the median:

BB AA B A BB AA:

Hence, there are six runs with n1¼5 and n2¼5.

Now we can formulate the test of randomness as a hypothesis testing problem as

described in the following procedure.

PROCEDURE FOR TEST OF RANDOMNESS USING RUN TEST
To test

H0 : Arrangement of sample values is random

versus

Ha : Data are not random:

1. Compute the median of the sample.

2. Going through the sample values, replace any observation with A if the value is above the

median, or B if the value is below the median. Discard any ties.

3. Compute n1, n2, and R. Also, compute the mean and variance of R.

mR ¼ 2n1n2
n1 + n2

+ 1,

s2R ¼ 2n1n2 2n1n2�n1�n2ð Þ
n1 + n2ð Þ2 n1 + n2�1ð Þ :

4. Compute the test statistic:

Z¼R�mR
sR

:

5. Rejection region:

Zj j> za=2:

6. Decision: If the test statistic falls in the rejection region, rejectH0 and conclude that the sample is

not random with (1–a) 100% confidence.

Assumption: n1�10 and n2�10.

Note 1: Sometimes the same procedure is used with the median replaced by the

mean of the sample. That is, if the observation is above the sample, use A, and if it is

below the sample, use B. We use this procedure for large samples. For small sample

sizes, to determine the upper and lower critical values, a special table is needed.

Some statistical software packages have the ability to use the run test for randomness.

For example, in Minitab we can use following procedure.
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Enter the data that we want to test for randomness in C1. Then:

Stat>Nonparametric>Runs Test. . .> In variables: enter C1>OK

Default in Minitab is a run test with the mean. If we prefer median, type the value

of the median by first clicking Above and below:.

EXAMPLE 12.B.1
The following table gives radon concentration in pCi/L obtained from 40 houses in a certain area.

2:9 0:6 13:5 17:1 2:8 3:8 16:0 2:1 6:4 17:2
7:9 0:5 13:7 11:5 2:9 3:6 6:1 8:8 2:2 9:4

15:9 8:8 9:8 11:5 12:3 3:7 8:9 13:0 7:9 11:7
6:2 6:9 12:8 13:7 2:7 3:5 8:3 15:9 5:1 6:0

Test using Minitab (or some other software) whether the data are random at 95%

confidence level.

Solution
Running the data with Minitab, we get the following output.

radon
K¼8.3400
The observed number of runs¼17
The expected number of runs¼20.9500
19 Observations above K 21 below
The test is significant at 0.2046
Cannot reject at alpha¼0.05

Thus the data set is a random sample at 95% confidence level.

Note 2: If the large samples assumption is not satisfied (that is, n1<10 and

n2<10, for more accuracy use 20 instead of 10), then use the total number of runs,

R, itself as the test statistic and we can find lower and upper critical values for a given
a from Frieda S. Swed and C. Eisenhart Tables for testing randomness of grouping in

a sequence of alternatives, Annals of Mathematical Statistics, 14, 83–86, 1943. We

will not be giving this table in this book.

Exercise

Pick a couple of data sets from this book or your own and test for randomness

using (i) hand calculations, and (ii) a statistical software package.
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OBJECTIVE

In this chapter, we introduce several empirical methods that are being increasingly

used in statistical computations as an alternative or as an improvement to classical

statistical methods.

Stanislaw Ulam

(Source: http://scienceworld.wolfram.com/biography/Ulam.html)

Stanislaw Ulam (1909-1986) was a Polish-American mathematician who was

born in Lwów, Poland, and came to the United States in 1936. He worked at Prin-

ceton University. He was involved with the Manhattan Project to build the first

atomic bomb. Ulam solved the problem of how to initiate fusion in the hydrogen
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bomb. Ulam was interested in astronomy, physics, and mathematics from an early

age. He obtained his Ph.D. from the Polytechnic Institute in Lwów in 1933, where

he studied under a famous mathematician named Banach. Ulam’s writing included A
Collection of Mathematical Problems (1960), Sets, Numbers and Universes (1974),
and Adventures of a Mathematician (1976). His major contribution to statistics is

through the introduction of the Monte Carlo methods along with Metropolis in

1949. These methods are widely used in solving mathematical problems using sta-

tistical sampling. Monte Carlo methods became widely popular with the ever-

increasing power of computers and the development of specialized mathematical

and statistical software.

13.1 INTRODUCTION
In statistics, major efforts are made to develop and study accurate statistical models

that are able to describe natural phenomena. The dilemma is whether to use the stan-

dard model that may allow closed-form solutions, or to describe the phenomenon

more accurately, which would often preclude the computation of explicit answers.

Obtaining methods that result in useful qualitative and quantitative understanding

of realistic complex systems is difficult, and obtaining exact analytical tools is

not practical either. Because of this problem, practitioners have relied on

simulation-based methods. Computer simulation methods are becoming tools of

choice for problems in statistics. Most of the empirical methods discussed in this

chapter had been in existence in the statistical literature as possible numerical

methods for some time. Because of the difficulty of computing by hand, these

methods did not gain much popularity. These numerical techniques became popular

and practical with the advent of high-quality pseudorandom number generators and

high-speed computers. Modern statistics is increasingly being equipped with

theoretical concepts complemented with effective computational tools to handle

the challenges that arise in science and technology. The methods presented in this

chapter could be effectively used for Bayesian computation and for problems arising

in such diverse areas as environmental modeling, epidemiology, finance, genetics,

image analysis, and statistical physics.

It is important to note that the literature on these simulation methods is growing,

and it is impossible to present the whole picture in a single chapter. The purpose of

this chapter is only to introduce some basic and popular computational methods.

There are many specialized books for further study.

13.2 THE JACKKNIFE METHOD
It was Tukey who in 1958 gave the name “jackknife” (sometimes also known as the

Quenouille-Tukey jackknife) to a general statistical method, invented by Maurice

Quenouille in 1956, for testing hypotheses and finding confidence intervals where
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traditional methods are not applicable or not well suited. In general usage, a jackknife

is a large clasp knife that has a multitude of small pull-out tools. Because this method

could be used for small tasks without resorting to other tools, it was named the jack-

knife. The jackknife method could also be used with multivariate data. However,

here we will only present the method for univariate data. The jackknife procedure

is very useful when outliers are present in the data or the dispersion of the distribution

is wide. In the jackknife method, we systematically recompute the statistic, leaving

out one observation at a time from the observed sample. This is used to estimate the

variability of statistic from the variability of that statistic between subsamples. This

avoids the parametric assumptions that we used in obtaining the sampling distribu-

tion of the statistic to calculate standard error. Thus, this can be considered as a non-

parametric estimate of the parameter. Initially, the jackknife method was introduced

for bias reduction (thus improving a given estimator) and is a useful method for var-

iance estimation. In this section, we study only how to compute a jackknife estimate

and a confidence interval. We do not discuss how it reduces bias or any other the-

oretical properties. Jackknife methods predates the bootstrap method discussed in the

next section.

Let X1, . . ., Xn be a random sample from a population with finite variance. Then

the sample mean is

X¼ 1

n

Xn
i¼1

Xi:

If one of the observations, say, the kth observation, is taken out (or missing), then

X�k ¼ 1

n�1

Xn
i¼1

Xi�Xk

 !
¼ 1

n�1

Xn
k 6¼i¼1

Xi:

Now, if we know the overall sample mean X and we calculated X�k, then we can

obtain the deleted observation Xk by using the formula

Xk ¼ nX� n�1ð ÞX�k:

In general, suppose that the population parameter y is estimated by a function of

the sample values ŷ (X1, . . ., Xn), represented by ŷ, and let ŷ�k be the corresponding

estimate by removing the kth observation. Note that here y is any parameter; it need

not be the population mean. Then the set of “pseudovalues” ŷ
�
k , k¼ 1,2, . . . ,n is

obtained by

ŷ
�
k ¼ nŷ� n�1ð Þŷ��k:

The average of these pseudovalues

ŷ
� ¼ 1

n

Xn
k¼1

ŷ
�
�k,

is the jackknife estimate of the parameter y.
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Let s�
2

be the sample variance of these pseudovalues. Then, the variance of ŷ
�
is

estimated by s�
2

=n, and a (1�a) 100% jackknife confidence interval for y is given by

ŷ
� � ta=2

s�ffiffiffi
n

p

where ta/2 is evaluated with (n�1) degrees of freedom.

A PROCEDURE FOR JACKKNIFE POINT AND INTERVAL ESTIMATION
1. Generate a random sample X1, . . ., Xn from a population.

2. First remove X1 from the sample (so the new sample will be X2, . . ., Xn) and compute the esti-

mator ŷ�1 (such as the sample mean); then removeX2 (the resulting sample will beX1,X3, . . .,Xn)

and compute the estimator ŷ�2, and so on until the last sample is X1, . . ., Xn�1, with the estimator

being ŷ�n.

3. The jackknife point estimate of y is

ŷ
� ¼ 1

n

Xn
k¼1

ŷ
�
�k:

4. Calculate the sample variance of the values ŷ�i, i¼ 1, . . . ,n, and denote the variance by s�
2

.

5. A (1�a)100% jackknife confidence interval for y is given by

ŷ
� � ta=2

s�ffiffiffi
n

p :

EXAMPLE 13.2.1
A random sample of n¼6 from a given population resulted in the following data:

7:2 5:7 4:9 6:2 8:5 2:8

(a) Find a jackknife point estimate of the population mean m.
(b) Construct a 95% jackknife confidence interval for the population mean m.

Solution
(a) Here n¼6. Table 13.1 represents the original sample and the six jackknife samples.

Table 13.1 Jackknife Samples

Original Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

7.2 5.7 7.2 7.2 7.2 7.2 7.2

5.7 4.9 4.9 5.7 4.9 4.9 4.9

4.9 6.2 6.2 6.2 5.7 6.2 6.2

6.2 8.5 8.5 8.5 8.5 5.7 8.5

8.5 2.8 2.8 2.8 2.8 2.8 5.7

2.8
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Using Minitab descriptive statistics, we obtained the summary of the analysis given in Table 13.2.

Now taking themeanandstandarddeviationof themeansof the six jackknife samples,weget m̂� ¼ 5:883,

and the standard deviation s*¼0.392. Thus the jackknife point estimate of m is m̂� ¼ 5:883, that is the

same as themean of the original sample.However, we can see that the standard deviation resulting from

the jackknife is reduced to only 0.392, compared to 1.959 for the original sample.

(b) A 95% jackknife confidence interval for m is

m̂� � ta=2
s�ffiffiffi
n

p ¼ 5:883�2:571
0:392ffiffiffi

6
p

resulting in (5.471, 6.2944).Compare this with Example 5.5.7, where we got the confidence interval
as (3.827, 7.939). Thus, through the jackknife method, we get a much tighter confidence interval

for m.

The jackknife method of resampling is also known as the “leave-one-out” method

because it uses all observations but one in each subsample. Here, every observation is

left out exactly once. Note that in the jackknife method, sampling is done without

replacement. This procedure can also be used for other statistical procedures such

as hypothesis testing and regression.

EXERCISES 13.2
13.2.1. The following data represent the total ozone levels measured in Dobson

units at randomly selected locations on earth on a particular day.

269 246 388 354 266 303

295 259 274 249 271 254

(a) Find a jackknife point estimate of the population mean m ozone level.

(b) Construct a 95% jackknife confidence interval for the populationmeanm.
(c) Compare the confidence interval obtained in part (b) with that in

Example 6.3.3.

Table 13.2 Summary Statistics for Jackknife Samples

Variable N Mean Median Tr Mean St. Dev SE Mean

Original 6 5.883 5.950 5.883 1.959 0.800

Sample 1 5 5.620 5.700 5.620 2.068 0.925

Sample 2 5 5.920 6.200 5.920 2.188 0.978

Sample 3 5 6.080 6.200 6.080 2.123 0.949

Sample 4 5 5.820 5.700 5.820 2.183 0.976

Sample 5 5 5.360 5.700 5.360 1.656 0.741

Sample 6 5 6.500 6.200 6.500 1.395 0.624
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13.2.2. A drug is suspected of causing an elevated heart rate in a certain group of

high-risk patients. Twenty patients from those groups were given the drug.

The changes in heart rates were found to be as follows:

�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 98% jackknife confidence interval for the mean change in heart

rate. Interpret your answer.

13.2.3. Air pollution in large U.S. cities is monitored to see whether it conforms to

requirements set by the Environmental Protection Agency. The following

data, expressed as an air pollution index, give the air quality of a city for 10

randomly selected days.

57:3 58:1 58:7 66:7 58:6 61:9 59:0 64:4 62:6 64:9

Construct a 95% jackknife confidence interval for the actual average air

pollution index for this city and interpret.

13.2.4 The mileage (in thousands) for a random sample of 10 rental cars from a

large rental company’s fleet is listed.

7 13 5 5 11 15 7 9 13 8

Find a 95% jackknife confidence interval for the population mean mileage

of the rental cars of this company.

13.2.5. The following data represent cholesterol levels (in mg/dL) of 10 randomly

selected patients from a large hospital on a particular day.

360 352 294 160 146 142 318 200 142 116

Determine a 95% jackknife confidence interval for s2. Compare this with

the confidence interval obtained in Example 6.4.2.

13.2.6. Air pollution in large U.S. cities is monitored to see whether it conforms to

requirements set by the Environmental Protection Agency. The following

data, expressed as an air pollution index, give the air quality of a city for five

randomly selected days.

56:23 57:12 57:7 63:92 59:40

Construct a 99% jackknife confidence interval for the actual variance of the

air pollution index for this city and interpret.

13.2.7. It is known that some brands of peanut butter contain impurities within an

acceptable level. A test conducted on 12 randomly selected jars of a certain

brand of peanut butter resulted in the following percentages of impurities:

1:9 2:7 2:1 2:8 2:3 3:6 1:4 1:8 2:1 3:2 2:0 1:9

(a) Construct a 95% jackknife confidence interval for the average

percentage of impurities in this brand of peanut butter.

(b) Give an approximate 95% jackknife confidence interval for the

population variance.

(c) Interpret your results.
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13.2.8. The following is a random sample taken from the data that represents the

time intervals in days between earthquakes that either registered

magnitudes greater than 7.5 on the Richter scale or produced more than

1000 fatalities during the time period December 1902 to March 1977.

263 1901 121 832 150 99

(a) Construct a 95% jackknife confidence interval for the average number

of days between earthquakes of this type.

(b) Give an approximate 95% jackknife confidence interval for the

population variance of number of days between earthquakes of

this type.

13.3 AN INTRODUCTION TO BOOTSTRAP METHODS
In this section, we describe some aspects of a relatively recent statistical technique

known as the bootstrap method that can be used when the statistical distribution is

unknown or the assumptions of normality are not satisfied. This is a general method

for estimating sampling distributions. The concept of the bootstrap was introduced

by Bradley Efron in 1979 and further developed by Efron and Tibishirani in 1993.

We often try to determine the exact (sampling) distribution in an inferential proce-

dure, such as the sampling distribution of the sample mean, the median, or the

variance, to be used in computing confidence intervals and for testing hypotheses.

However, as we have seen, this is often the most difficult part of the work, because

the sampling distribution depends on the population distribution, which is often

unknown. This is the reason why asymptotic methods are quite frequently used

for hypothesis testing and interval estimation. The bootstrap procedure provides

us with a simple method for obtaining an approximate sampling distribution of

the statistic, conditional on the observed data. However, it should be noted that

the distribution thus obtained is only approximate. It is not as “good” as the exact

distribution, because we have only a sample from the population. However, often,

a bootstrap sampling distribution is easier to compute. Bootstrap methods are

computer-intensive methods that use simulation to calculate standard errors, confi-

dence intervals, and significance tests. The methods are applied by researchers in

business, econometrics, life sciences, medical sciences, social sciences, and other

areas where statistics is being utilized. The bootstrap method uses computer-

generated pseudorandom numbers. So the same situations might give similar but

possibly different results. Also, it is computationally more involved to obtain results

than by using the asymptotic distribution. The advantage is that the results are con-

ditional on observed data, not based on large sample approximations. How does

bootstrap help in reality? For instance, suppose we have 10 years of monthly return

data on a particular stock. If we were to use these data to predict the future return, say

through linear regression, we would be assuming that the future is going to behave
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similarly to what happened in the past. We know from experience that such an

assumptionmay not give us a good prediction and the underlying parametric assump-

tions may not hold. By creating bootstrap samples from these available data, what we

are creating is not what happened, but rather what could have happened in the past

from what did happen. For example, to see how resampling affects sample mean, a

particular mutual fund had the following total return (in percentage) for the past

5 years:

Year 1 2 3 4 5

Total return 40.7 10.8 29.2 9.9 0.7

In this case, the average return for the past 5 years is 18.26%. A two-times resampling

(what could have happened) resulted in the following outcomes.

Year 1 2 3 4 5

Total return 29.2 40.7 9.9 10.8 10.8

Here, the average is 20.28%. The next one gave the following:

Year 1 2 3 4 5

Total return 0.7 0.7 40.7 0.7 9.9

The resulting average return is 10.54%. A realistic future prediction method should

depend on these possible fluctuations that could have happened in different

scenarios.

Most of the inferential procedures we learned are based on a single sample drawn

from the population. Bootstrap methods, in contrast, generate repeated subsamples

from the single original sample itself and make inferences without assuming any par-

ticular functional form for the population distribution. Because this has the effect of

sampling with replacement, we can create as many subsamples as we wish. These

subsamples will have the same sample size and values as the original sample, except

that many values in each of the subsamples will be repeated because of sampling with

replacement. It should be noted that the effectiveness of a bootstrap procedure

depends on the original sample being representative of the population. If the original

sample is not representative, the conclusions drawn from the bootstrap methods will

be completely inappropriate.

Using the jackknife method, the size of resamples is confined to (n�1), and the

number of total possible samples is only n, the original sample size. The resampling

strategy based on bootstrap has no such limitations in terms of the number and mag-

nitude of replications possible. The only limitation comes from the computing

resources, and these new sets of samples can be treated as a virtual population.

646 CHAPTER 13 Empirical Methods



EXAMPLE 13.3.1
Suppose that the population distribution is an N (1, s2). Estimate s2.

Solution
Because we know the functional form of the distribution, we could use the estimation procedures
discussed in Chapter 5. There is no need for the bootstrap method. These steps are as follows.

Step 1. If we have a random sample from N(1, s2) of size n use it. Otherwise, generate a random
sample X1, . . ., Xn from N(m, s2). This could be done using the method described in Project
4A of Chapter 4.

Step 2. Estimate s2 by using, the method of maximum likelihood, yielding

ŝ2ml ¼
1

n

Xn
i¼1

Xi�X
� �2

:

Note that the maximum likelihood procedure requires the knowledge of the func-

tional form of the distribution; see the derivation in Chapter 5. Suppose the form of

the population distribution is not known but we do have a random sample X1, . . ., Xn

from a distribution. Now we will describe how we can estimate s2 using the

bootstrap method.

Let X1, . . ., Xn be a random sample from a probability distribution F with

m¼E(Xi) and s2¼Var(Xi). Then the standard error of X is defined as s2/n. In
general, the population distribution F is unknown. A simple estimate of F is the

empirical (or sample) cumulative distribution function defined by

F̂ xð Þ¼ # Xi � xf g
n

¼ Proportion of X0
is� x:

This F̂ is a step function with the size of the jump being 1/n at each ordered Xi.

SUMMARY OF BOOTSTRAP METHOD OF ESTIMATING THE STANDARD
ERROR OF X
Step 1. Use the sample X1, . . ., Xn and find F̂, the empirical cumulative distribution function of F.

Step 2. Generate a sample {X11*, X12*, . . ., X1n*} from F̂. From this sample, compute X
�
1.

Step 3. Repeat step 2, (N�1) times to obtain samples {Xi1*, Xi2*,...., Xin*}, i¼1, 2, . . ., N and find

X
�
2, X

�
3, . . . , X

�
N . Now calculate X

� ¼ 1

N

XN

i¼1
X
�
i . This is the bootstrap mean.

Step 4. Then the bootstrap estimate of Var X
� �

, denoted by ŝ2bs0 , is given by

ŝ2bs ¼
1

N�1

XN
i¼1

X
�
i �X

�� �2
:

Observe that once we have the subsample means X
�
1, . . . , X

�
N, the formulas for

calculating the bootstrap mean and bootstrap variance are the same as those for cal-

culating the mean and variance of a given sample.
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Note that when F̂ is taken to be the empirical cumulative distribution function,

generating a sample from F̂ is equivalent to generating a sample from {X1, . . .,
Xn} with replacement. As a result, we obtain the following algorithm.

BOOTSTRAP ALGORITHM FOR ESTIMATING THE STANDARD ERROR OF X
1. Draw N random samples with replacement from the original sample X1, . . ., Xn, with each

observation having the same probability of being drawn (1/n). Let these bootstrap samples be

denoted by {{Xi1*,Xi2*, . . .,Xin*}, i¼1,2, . . .,N}.

2. Calculate the sample means of each of these bootstrap samples and the overall sample mean by

X
�
i ¼

1

n

Xn
j¼1

X�
ij and X

� ¼ 1

N

XN
i¼1

X
�
ij:

3. Compute

ŝ2bs ¼
1

N�1

XN
i¼1

X
�
i �X

�� �2
:

4. Then the bootstrap estimate of Var X
� �

is ŝ2bs or equivalently, the standard error of X is

ffiffiffiffiffiffi
ŝ2bs

q
:

It is not necessary that the size of the bootstrap sample also must be n or the

samples have to be obtained with replacement. However, it is suggested that the best

results are obtained when the repeated samples are the same size n as the original

sample and when the samples are obtained with replacement. The number of

bootstrap samples N could be in the hundreds or more, depending only on the capac-

ity of the software that we are using to generate these samples.

EXAMPLE 13.3.2
The following data represent the total ozone levels measured in Dobson units at randomly selected

locations on Earth on a particular day.

269 246 388 354 266 303

295 259 274 249 271 254

GenerateN¼6 bootstrap samples of size 12 each and find the bootstrapmean and standard deviation

(standard error).

Solution
Using Minitab (see Example 13.7.1 for the steps) we have created 200 bootstrap samples of size 12.

We obtain the following summary results.

X
� ¼ 285:74

and

ŝ2bs ¼ 153:02 and ŝbs ¼ 12:37:

Note that the mean of the original sample is 285.7, but the standard deviation is 43.9 (see

Example 5.5.9). Even though the means of the original sample and the bootstrap means are very

close, their standard deviations are substantially different.
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In real applications, one of the difficulties is to estimate the standard errors of more

complicated statistics. We can now generalize the bootstrap method for those situ-

ations. Let ŷ¼ ŷ X1, . . . , Xnð Þ be a sample statistic that estimates of the parameter y of
an unknown distribution F using some procedure. We wish to estimate the standard

error of ŷ using the bootstrap procedure, which is summarized next.

GENERAL BOOTSTRAP PROCEDURE TO ESTIMATE THE STANDARD
ERROR OF û
1. DrawN sampleswith replacement from the original sample, (X1, . . ., Xn). Denote these bootstrap

samples by {Xi1*,Xi2*, . . .,Xin*}, i¼1, 2, . . ., N.

2. Compute ŷ1, ŷ2, . . . , ŷN , where

ŷ
�
i ¼ ŷi Xi1, Xi2, . . . , Xinð Þ:

The procedure for computing ŷ
�
i is the same procedure as that used to compute ŷ original sample

X1, . . ., Xn. Also, compute

ŷ
� ¼ 1

N

XN
i¼1

ŷ
�
i :

3. The bootstrap estimator of standard error (BSE) of ŷ is given by

^
BSE ŷ

� �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ŷ
�
i � ŷ

�� �2
N�1

vuut
:

It is clear that these algorithms are considerably computer intensive and it is nec-

essary to have suitable software to implement them. The accuracy of the bootstrap

approximation depends on the accuracy of F̂ as an estimate of F and how large a

bootstrap sample is used to estimate the standard error of ŷ. We will leave the com-

putation to Project 13A. We now give a theoretical example.

EXAMPLE 13.3.3
Let X1, . . ., Xn be a sample from a Poisson distribution with parameter l. Let

y¼P X� 1f g¼ e�l 1 + lð Þ:
Obtain a bootstrap estimate of y.

Solution
It can be shown that the maximum likelihood estimator (MLE) of y is

ŷml ¼ e�X 1 +Xð Þ:
In order to estimate the bias of y, take N bootstrap samples from {X1, . . ., Xn}. Let

ŷi ¼ e�Xi 1 +Xi

� �� #X0
is� 1

	 

n

:

Continued
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Then the bootstrap estimate of the bias of y is

ŷbias ¼ ŷ1 + � � �+ ŷN
N

:

One might now use

e�Xi 1 +Xi

� �� ŷbias

as an estimator of y.

13.3.1 BOOTSTRAP CONFIDENCE INTERVALS
We could use the repeated sampling method to construct bootstrap confidence inter-

vals. We now give a procedure to obtain this.

PROCEDURE TO FIND BOOTSTRAP CONFIDENCE INTERVAL FOR
THE MEAN
1. DrawN samples (Nwill be in the hundreds, and if the software allows, in the thousands) from the

original sample with replacement.

2. For each of the samples, find the sample mean.

3. Arrange these sample means in order of magnitude.

4. To obtain, say, a 95% confidence interval, we will find the middle 95% of the sample means. For

this, find the means at the 2.5% and 97.5% quartile. The 2.5th percentile will be at the position

(0.025)(N+1), and the 97.5th percentile will be at the position (0.975)(N+1). If any of these

numbers are not integers, round to the nearest integer. The values of these positions are the lower

and upper limits of the 95% bootstrap interval for the true mean.

It should be noted that every time we do this procedure, we may get a slightly

different bootstrap interval. We now give an example.

EXAMPLE 13.3.4
For the data given in Example 13.3.2, obtain a 95% bootstrap confidence interval for m.

Solution
We took N¼200 samples of size 12. Thus 0.025�201¼5.025�5 and 0.975�201¼195.975�196.

Thus, taking the 5th and 196th values of sorted (in ascending order) sample means, we get the 95%

bootstrap confidence interval for m as

263:8, 311:5ð Þ:
1. Comparing the classical confidence interval we obtained in Example 6.3.3, which is (257.81,

313.59), the bootstrap confidence interval of Example 13.3.4 has smaller length, and thus less

variability. In addition, we saw in Example 6.3.3 that the normality assumption necessary for the

confidence interval there was suspect. In the bootstrap method, we did not have any distribu-
tional assumptions.

2. Because the bootstrap methods are more in tune with nonparametric methods, sometimes it

makes sense to obtain a confidence interval about the median rather than the mean. With a slight
modification of the procedure that we have described for the bootstrap confidence interval for

the mean, we can obtain the bootstrap confidence interval for the median.
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PROCEDURE TO FIND BOOTSTRAP CONFIDENCE INTERVAL FOR
THE MEDIAN
1. DrawN samples (Nwill be in the hundreds, and if the software allows, in the thousands) from the

original sample with replacement.

2. For each of the samples, find the sample median.

3. Arrange these sample medians in order of magnitude.

4. To obtain, say, a 95% confidence interval we will find the middle 95% of the sample medians.

For this, find the medians at the 2.5% and 97.5% quartile. The 2.5th percentile will be at the

position (0.025)(N+1), and the 97.5th percentile will be at the position (0.975)(N+1). If any

of these numbers are not integers, round to the nearest integer. The values of these positions

are the lower and upper limits of the 95% bootstrap interval for the median.

In practice, how many bootstrap samples should be taken? The answer depends

on two things: how much the result matters, and what type of computing power is

available. In general, it is better to start with 1000 subsamples. With the computa-

tional power available now, even taking 10,000 replications is not much of a prob-

lem. There are many works in the literature on bootstrap hypothesis testing and

regression. These are beyond the scope of this chapter.

EXERCISES 13.3
13.3.1. For the data of Exercise 13.2.2, generate N¼8 bootstrap samples of size 20

each and find the bootstrap mean and standard deviation (standard error).

13.3.2. For the data of Exercise 13.2.5, generate N¼12 bootstrap samples of size

10 each and find the bootstrap mean and standard deviation (standard error).

13.3.3. For the data of Exercise 13.3.3, obtain a 95% bootstrap confidence interval

for m.
13.3.4. For the data of Exercise 13.2.6, (a) obtain a 95% bootstrap confidence

interval for m, and (b) obtain a 95% bootstrap confidence interval for the

population median.

13.3.5. For the data of Exercise 13.2.8, (a) obtain a 95% bootstrap confidence

interval for m, and (b) obtain a 95% bootstrap confidence interval for the

population median.

13.4 THE EXPECTATION MAXIMIZATION ALGORITHM
In this section, we introduce an algorithm, called the expectation maximization
(EM) algorithm that is widely used to compute maximum likelihood estimates

when some elements of the data set are either missing, unobservable or incomplete.

In real-life problems, observing the complete data is the exception rather than the

rule. For example, in lifetime studies, when n items are placed on a given test, we

may have the failure times of only n1<n items while for the rest of (n�n1) items
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we only know the censored failure time, that they survived a particular failure time

T (fixed beforehand). For example, we may want to know whether the lifetime of a

certain brand of fluorescent light bulbs is at least 24 months. For this purpose, let us

say we randomly test 100 light bulbs of this brand. In this case, our data will contain

all the months within which the bulbs burned out, and some that survived for

24 months. After 24 months, we may not follow when these bulbs burn out; all

we know is that these bulbs lasted for 24 months. Such a data is an example of

censored data. We can consider the censored failure times of (n�n1) items as

the unobservable data values.

Another common problem is of missing data. For example, suppose we were to

take a survey on some socioeconomic problems from a random sample of families

from a city in 2009 and then a follow-up study on the same families in 2014. This

may result in many missing values in the follow-up study, because it is possible that

we may not be able to locate some of the families. Missing values can also occur if

some of the respondents refuse to answer certain questions. We have seen in

Section 5.3 that sometimes it is not possible to obtain closed-form solutions for

MLE. In the completely observed case, there are other algorithms, such as

Newton-Raphson, that can be used to numerically obtain the estimates. With

missing values, those algorithms cannot be used. The name EM algorithm was

coined by Dempster, Laird, and Rubin in 1977. This is a general iterative algorithm

to obtain the MLE when the data set is incomplete. The EM algorithm is a

formalization of an intuitive idea of estimating parameters with missing data:

(i) replace missing values with estimated values as true values, (ii) estimate

parameters, (iii) repeat.

Let X1, . . . ,Xn1 be the n1 observed data values, and let y1, . . . ,yn�n1 be the (n�n1)
unobserved data values. Assume that Xi

0s are iid random variables with pdf f (xjy) and
Xi

0s and Yi
0s are independent, that is, data are missing at random.

We denote the random vector by X and the corresponding data vector by x.

The joint pdf of X1, . . . ,Xn1 is represented by f(xjy), where y is the parameter

vector with values in Y	Rp, a p-dimensional Euclidean space. Let g(x, yjy) denote
the pdf of the complete data set x and y, that is, the vector (x, y) represents the

conceptualized complete data set. Let h(yjy, x) be the conditional pdf of the

unobserved data y given y and the observed data x. The likelihood function for

the observed data x is, by definition,

L y; xð Þ¼ f x yjð Þ:
The likelihood function for the combined data (x, y) is again by definition given by

Lc y; x, yð Þ¼ g x,y yjð Þ:
The problem is to find the MLE that maximizes the likelihood function L(y, x), at the
same time using Lc(y; x, y).

From the foregoing definitions, we know that

g x,y yjð Þ¼ f x yjð Þh y yj ,xð Þ:

652 CHAPTER 13 Empirical Methods



Thus, we have the conditional pdf of the missing (or unobserved) data y, given x:

h yjy,xð Þ¼ g x,y yjð Þ
f xjyð Þ

or equivalently

f xjyð Þ¼ g x,y yjð Þ
h yjy,xð Þ : (13.1)

Let y02Y be a given y-value. Because h(yjy0, x) is a pdf, we haveð
h yjy0,xð Þdy¼ 1:

Thus ln of observed likelihood,

lnL y; xð Þ¼ ln L y; xð Þ
ð
h yjy0,xð Þdy

¼
ð
lnL y; xð Þh yjy0,xð Þdy as ln L y; xð Þ is independent of yð Þ:

Because L(y, x)¼ f(xjy), we have

lnL y; xð Þ¼
ð
ln f x yjð Þh y y0j ,xð Þdy

¼ lng x,y yjð Þ� lnh yjy,xð Þ½ 
h yjy0,xð Þdy from 1ð Þð Þ
¼
ð
lng x,y yjð Þh yjy0,xð Þdy�

ð
lnh yjy,xð Þh yjy0,xð Þdy

¼Ey0 lng x,y yjð Þ½ 
�Ey0 lnh y y, xjð Þ½ 
,

(13.2)

where the expectation is taken with respect to the conditional distribution of y given

y0 and x. Let us now consider maximizing this with respect to y. This maximization is

the maximization step (M-step) in the EM algorithm.

Let y0 be an initial estimate of y. The choice of this initial value y0 could be

done randomly or heuristically based on any prior knowledge about the optimal

value of the parameter. For instance, suppose we have to estimate mean and var-

iance of a normal distribution. One good starting point could be to take the sample

mean x and sample variance s2 based on a subset of data containing no missing

values.

Let

Q y y0j ,xð Þ¼Ey0 lnLc y; x, yð Þ½ 

¼Ey0 lng x,y yjð Þ½ 


Here, y0 is used only to compute the expectation; we should not substitute for y in the
complete data log-likelihood. Let ŷ 1ð Þ be the maximizer that maximizes Q(y jy0, x)
with respect to y. That is, Q ŷ 1ð Þ y0j ,x

� �
�Q y y0j ,xð Þ for all y02Y. Then ŷ 1ð Þ is the

first-step estimator of y. Continuing the procedure we obtain a sequence of estima-

tors ŷ mð Þ, which under appropriate conditions converges to the maximum likelihood

estimate with likelihood Lc(y; x, y).
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STEPS FOR EM ALGORITHM
1. ŷ nð Þ is the estimate of the parameter y on the nth step.

2. Expectation step (E-step). Compute

Q y ŷ nð Þ, x
���� �

¼Eŷ nð Þ
lng x;y yjð Þ½ 


where the expectation is with respect to the conditional pdf of y given ŷ nð Þ and x (i.e. with respect
to h y ŷ nð Þ, x

���� �
).

3. Maximization step (M-step). Find ŷ n + 1ð Þ 2Y such that

ŷ n+ 1ð Þ ¼ max
y

Q y ŷ nð Þ, x
���� �

:

4. Repeat until convergence criteria are met.

Thus, in the EM algorithm, each iteration involves two steps: the expectation step

(E-step), followed by the maximization step (M-step). In the E-step, we find the con-

ditional expectation of the unobserved or missing data given the observed data and

the current estimated parameters. That is, the E-step constitutes the calculation of

Q yjŷ nð Þ,x
� �

¼Eŷ nð Þ
lng x,y yjð Þ½ 


¼
ð
lng x,y yjð Þh y y nð Þ

�� ,x
� �

dy

(which is the sum if discrete), where the integration is over the range of values that y

can take. TheM-step constitutes maximization ofQ yjŷ nð Þ,x
� �

with respect to y. This
procedure improves the log-likelihood at every iteration, that is, the log-likelihood is

nondecreasing for every iteration. Thus, for the sequence ŷ nð Þ
� �

obtained through the

EM algorithm, we have L ŷ n+ 1ð Þ; x
� �

� L ŷ nð Þ; x
� �

with equality holding if and only

if Q ŷ n + 1ð Þjŷ nð Þ,x
� �

¼Q ŷ nð Þjŷ nð Þ,x
� �

: When we have filled the completed data set,

the parameter y can be estimated by maximizing the log-likelihood estimating

procedure (M-step). It can be shown that under some conditions (such as that ln f(xjy)
is bounded, or that Q(yjy0,x) is continuous in both y and y0), ŷ nð Þ converges in prob-
ability as n!1 to the maximum likelihood estimate based on the complete likeli-

hood Lc(y; x, y).
For computational convergence purposes, the E-step and M-step are alternated

repeatedly until the difference L ŷ n + 1ð Þ, x
� �

�L ŷ nð Þ, x
� �

is less than d, a small but

prescribed quantity. Another possible convergence criterion is to stop the iteration

when the distance between ŷ n+ 1ð Þ and ŷn becomes arbitrarily small. In practice, it

may be necessary to run the EM algorithm a number of times with different (random)

starting points to ensure that the global maximum is obtained.

In general, the E-step and M-step could be complex. Even though the EM

algorithm is applicable to any model, it is particularly effective if the data come from

an exponential family. It turns out that, in this case, the log-likelihood is linear in the
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sufficient statistic for y. For the E-step, simply compute the expectation of the

complete data sufficient statistic given the observed data. By substituting the condi-

tional expectations of the sufficient statistics computed in the E-step for the sufficient

statistics that occurs in the expression obtained for the complete data MLEs of y, we
can obtain the next iterate in the M-step. Thus, when the complete data set is from an

exponential family, both the E-step and the M-step are simplified.

Let z¼ (x, y) be the complete observation vector. A particular case in which

g(x, yjy)¼g(z, y) is from an exponential family:

g z, yð Þ¼ a xð Þexp k0 yð Þt xð Þf g=c yð Þ
where t(x) is a vector of sufficient statistics with complete data, k0(y) is a vector

function of the parameter vector y, and a(x) and c(y) are scalar functions. Recall that
the members of the exponential family include many popular distributions, such

as the normal, multivariate normal, Poisson, and multinomial distributions. In this

case, the E-step can be written as

Q yjy nð Þ,x
� �¼Ey nð Þ lna xð Þ xj½ 
+k0 yð Þt nð Þ � lnc yð Þ

where t(n)¼Ey(n) [t(Z)jx] is an estimator of the sufficient statistic. The M-step max-

imizes the Q-function with respect to y. Because Ey(n) [ln a(x)jx] does not depend on
y, we can rewrite the steps as follows:

E-step: Compute t(n)¼Ey(n) [t(Z)jx].
M-step: Find ŷ n+ 1ð Þ 2Y such that

ŷ n+ 1ð Þ ¼ max
y

k0 yð Þt nð Þ � lnc yð Þ� 
:

The following example gives an EM algorithm for a special case of censored survival

times. In the following example, the survival function is defined as the probability

that an individual survives beyond time y, that is, S(y)¼P(Y>y).

EXAMPLE 13.4.1
Let x¼ x1, . . . , xn1ð Þ be observed data and the censored observations at T are y¼ y1, . . . , yn2

� �
(that

is, the survival time is at least T). Let the mean survival time be y, and the probability density be

given by

f x yjð Þ¼ y�1exp �x=yð Þ, x> 0:

(a) Obtain the MLE, ŷML:

(b) Obtain an EM algorithm.

(c) Consider the following censored data, which represent the number of years 20 patients survived

after a major surgery, where a+ symbol represents that we know only that this patient survived

for 4 years and no further information.

4+ 12 12 1 4+ 3 3 5 2 0

5 1 4+ 0 3 13 13 1 0 4

Continued
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Using the algorithm developed in part (b), run for 50 iterations with initial value of y0 being the
observed sample mean, x, and with y0¼0. Comment on the results.

Solution
The joint pdf of the uncensored observation, x, is

f xjyð Þ¼ 1

yn
exp �

Xn1
i¼1

xi=y

 !

For the right censored (at T) observations yi, i¼1, . . ., n2, the pdf can be calculated as follows:

K

ð1
T

1

y
e�y=ydy¼ 1

implies that K¼eT/y. Thus, the pdf of yi is given by

h y y, xjð Þ¼ eT=y

y
e�y=y ¼ 1

y
e
1
y T�yð Þ, y�T:

(a) The likelihood, Lc(y, x, y), can also be written in the form

Lc y, x, yð Þ¼ 1

yn1
e�
Pn1

i¼1
xi=yð Þ 1�F Tð Þ½ 
n2

¼ 1

yn1
e�
Pn1

i¼1
xi=yð Þe� n2T=yð Þ

Thus,

ln Lc y, x, yð Þ¼�n1 lny�
Xn1

i¼1
xi

y
�n2T

y
:

Differentiating with respect to y, and equating to zero,

@

@y
ln Lc y, x, yð Þ¼�n1

y
+

Xn1

i¼1
xi

y2
+
n2T

y2
¼ 0:

This implies

n1y¼
Xn1
i¼1

xi + n2T

or

ŷ¼ 1

n1

Xn1
i¼1

xi +
n2
n1

T¼ x+
n2
n1

T:

Hence, the MLE is

ŷML ¼X +
n2
n1

T:

(b) Because g(X, Yjy) denote the pdf of the complete data, and we assumed the pdf of all the data

(censored or not) follows exponential distribution, we have

g x,y yjð Þ ¼ 1

yn1
e�
Pn1

i¼1
xi=yð Þ 1

yn2
e�
Pn1

i¼1
yi=yð Þ,

we get

lng x,y yjð Þ ¼�n1 lny�
Xn1
i¼1

xi
y
�n2 lny�

Xn2
i¼1

yi
y
:

For the E-step of the EM algorithm, we first compute
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Ey0Y¼ eT=y0
ð1
T

y
1

y0
e�y=y0 dy

¼ T + y0 using the integration by partsð Þ:
So, we get

Q y y0j ,xð Þ¼Ey0 g x,y yjð Þ½ 

¼Ey0 �n1 lny�

Xn1
i¼1

xi
y
�n2 lny�

Xn2
i¼1

yi
y

" #

¼�n1 lny�
Xn1
i¼1

xi
y
�n2 lny�1

y

Xn2
i¼1

Ey0 yið Þ

¼�n1 lny�
Xn1
i¼1

xi
y
�n2 lny�1

y
n2 T + y0ð Þ

¼�n1 lny�
Xn1
i¼1

xi
y
�n2 lny�n2T + n2y0

y
:

For the M-step, we differentiate Q(yjy0,x) with respect to y,

@

@y
Q y y0j ,xð Þ¼ @

@y
�n1 lny�

Xn1
i¼1

xi
y
�n2 lny�n2T + n2y0

y

" #

¼�n1
y
+

Xi¼1

n1
xi

y2
�n2

y
+
n2T + n2y0

y2
¼ 0

n1 + n2½ 
y¼
Xn1
i¼1

xi + n2T + n2y0

ŷ1 ¼ 1

n1 + n2½ 

Xn1
i¼1

xi +
n2T

n1 + n2½ 
 +
n2

n1 + n2½ 
y0

¼ n1
n1 + n2½ 
x +

n2T

n1 + n2½ 
 +
n2

n1 + n2½ 
y0:

Thus, for the general n, the algorithm is

ŷ n + 1ð Þ ¼ n1
n1 + n2½ 
x +

n2T

n1 + n2½ 
 +
n2

n1 + n2½ 
 ŷ nð Þ:

Now putting y(k+1)¼y(k)¼y* in the previous equation and solving for y*, we have that the EM
sequence {y(k)} has the MLE ŷML as its unique limit point, as k!1. That is, y� ¼ ŷML:

(c) We used the following MATLAB code to run the algorithm with starting value y0 as the sample
mean, that is 4.5. Here T¼4. We run it for 50 iterations

A(1) ¼ 4.5
for n¼2: 50
A(n) ¼ 4.41*(17./20)+3*4/20+(3./20)*A(n�1)
End

Following is the output.

4.5000 5.0235 5.1020 5.1138 5.1156 5.1158 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159

Continued
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Thus ŷ¼ 5:1159:

To run with y0¼0, in the previous code, just change A(1)¼0. We get the following output.

0.0000 4.3485 5.0008 5.0986 5.1133 5.1155

5.1158 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159

With y0 ¼ x¼ 4:5, it took six iteration steps to converge, whereas with y0¼0, it took seven steps

to converge. Note that in both cases, ŷ¼ 5:1159¼ ŷML:

Example 13.4.1 is a simple case, where there is no need for iterative computation

of ŷML:However, this demonstrates how the EM algorithm would work. These types

of problems are abundant in the medical field. For example, we may be interested in

the survival times of n patients after a treatment. For practical reasons, we may be

observing only for a fixed duration, such as 10 years. In Example 13.4.1, the vector x

will represent the time of death for the n1 individuals. For the remaining n2¼n�n1
individuals, the only data we have state that they survived for more than 4 years.

Thus the value of T is 4. There is a possibility that during these experimental times,

we may lose contact with some individuals, perhaps because they moved to some

other place or they simply refused to participate in this experiment. In those cases,

we will know only that the individual survived until we lost contact. This gen-

eralization of Example 13.4.1 to where the survival time data are different for each

observation is given in Exercise 13.4.5. We now give a similar example with a

normal sample.

EXAMPLE 13.4.2
Let x¼ x1, . . . , xn1ð Þ be observed data from a normal population with mean y and variance 1. Let the
censored observations at T be y¼ y1, . . . , yn2

� �
(that is, the survival time is at least T) from the same

population. Assume that the two sets of observations {xi} and {yi} are independent. Write down an

EM algorithm to estimate y.

Solution
For the uncensored observed sample x1, . . . ,xn1 , the likelihood function is

L y xjð Þ ¼ f x x yjð Þ¼ 1ffiffiffiffiffiffi
2p

p� �n1 e�1
2

Pn1
i¼1 xi�yð Þ2 :

Furthermore, the complete likelihood for both the samples is

L y x, yjð Þ ¼ 1ffiffiffiffiffiffi
2p

p� �n1 e�1
2

Pn1
i¼1 xi�yð Þ2 1ffiffiffiffiffiffi

2p
p� �n2 e�1

2

Pn2
i¼1 yi�yð Þ2 : (13.3)
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From the definition of Q(yjy0, x), we obtain

Q y y0j ,xð Þ¼Ey0 lnLc y x, yjð Þ½ 
 (13.4)

where the expectation is taken with respect to the conditional pdf

h yjy0,x,Tð Þ¼ 1ffiffiffiffiffiffi
2p

p e� y�y0ð Þ2=2 1

1�FY T, y0ð Þ

¼ 1ffiffiffiffiffiffi
2p

p e� y�y0ð Þ2=2 1

1�F T�y0ð Þ
,

where

FY T, y0ð Þ¼
ðT
�1

1ffiffiffiffiffiffi
2p

p e� y�y0ð Þ2=2dy¼
ðT�y0

�1

1ffiffiffiffiffiffi
2p

p e�u2=2du¼F T�y0ð Þ:

Thus, from Equations (13.4) and (13.5),

Q yjy0,xð Þ¼Ey0

Xn1
i¼1

ln
1ffiffiffiffiffiffi
2p

p e�
xi�yð Þ2

2

� �
+Ey0 ln

1ffiffiffiffiffiffi
2p

p n2 e
� yi�yð Þ2

2

� �

¼�n1
2

ln 2pð Þ�
Xn1
i¼1

xi�yð Þ2
2

+ n2

ð1
T

ln
1ffiffiffiffiffiffi
2p

p� �n2 e� yi�yð Þ2
2

" #
� 1ffiffiffiffiffiffi

2p
p e� y�y0ð Þ2=2 1

1�F T�y0ð Þdy:

Now taking the derivative with respect to y,

@Q

@y
¼
Xn1
i¼1

xi�yð Þ2 + n2ffiffiffiffiffiffi
2p

p
ð1
T

y�yð Þ e� y�y0ð Þ2=2

1�F T�y0ð Þdy

¼
Xn1
i¼1

xi�n1y+
n2

1�F T�y0ð Þ½ 
F T�y0ð Þ�n2 y�y0ð Þ
:

Solving @Q
@y ¼ 0, and letting n¼n1+n2, we obtain

y¼
Xn1

i¼1
xi

n
+
n2
n
y0 +

n2F T�y0ð Þ
1�F T�y0ð Þ : (13.5)

From Equation (13.5), we obtain the EM algorithm as

ŷm+ 1 ¼
Xn1

i¼1
xi

n
+
n2
n
ŷm +

n2F T� ŷm
� �

1�F T� ŷm
� �

where F is the cumulative distribution function of a standard normal random variable.

We have seen that the incomplete data could occur as a result of missing data, or the

complete data may contain variables that are not observable (hidden). The following

is an example of the latter situation.
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EXAMPLE 13.4.3
Suppose that in a set of n twin pairs of children, n1 are male twin pairs, n2 are female twin pairs, and

n3¼n� (n1+n2) are opposite-sex twin pairs. Let p be the probability that a twin pair is identical and

q be the probability that a child is male. It is not known which pairs of same-sex twins are identical.

Obtain an EM sequence for y¼ (p, q).

Solution
We have n¼ (n1+n2+n3), and y¼ (p, q) is the parameter vector. Let x¼ (n1, n2, n3) be the observed

data. Because we don’t know which pairs of the same sex are identical, postulate the complete data
set as z¼ (n11, n12, n21, n22, n3), where n11 is the number of male identical pairs, n21 is the number of

female identical pairs, and n12 and n22 are the nonidentical pairs for males and females, respec-

tively. Here, the complete data, z, has a multinomial distribution with the likelihood given by

L z, yð Þ¼ f z yjð Þ
¼ n

n11,n12,n21,n22,n3

� �
pqð Þn11 1�pð Þq2½ 
n12 p 1�qð Þ½ 
n21

� 1�pð Þ 1�qð Þ2
h in22

2 1�pð Þ 1�qð Þq½ 
n3

where the identical twins involve one choice of sex and the nonidentical twins involve two choices of

sex. The log-likelihood for the complete data is

ln f x yjð Þ¼ n11 + n21ð Þ lnp + n12 + n22 + n3ð Þ ln 1�pð Þ
+ n11 + 2n12 + n3ð Þ lnq+ n21 + 2n22 + n3ð Þ
� ln 1�qð Þ+ constant:

For the E-step, use Bayes’ rule to obtain the following:

n
kð Þ
11 ¼E n11 x, y kð Þ

��� �¼ n1
p kð Þq kð Þ

p kð Þq kð Þ + 1�p kð Þ
� �

q kð Þ
� �2 ,

n
kð Þ
12 ¼E n12 x, y kð Þ

��� �¼ n1
1�p kð Þ
� �

q kð Þ
� �2

p kð Þq kð Þ + 1�p kð Þ
� �

q kð Þ
� �2 ,

n
kð Þ
21 ¼E n21 x, y kð Þ

��� �¼ n2
p kð Þ 1�q kð Þ
� �

p kð Þ 1�q kð Þ
� �

+ 1�p kð Þ
� �

1�q kð Þ
� �2 ,

n
kð Þ
22 ¼E n22 x, y kð Þ

��� �¼ n2
1�p kð Þ
� �

1�q kð Þ
� �2

p kð Þ 1�q kð Þ
� �

+ 1�p kð Þ
� �

1�q kð Þ
� �2 :

Thus, the Q-function is given by

Q y, y kð Þ
� �¼ n

kð Þ
11 + n

kð Þ
21

� �
lnp+ n

kð Þ
12 + n

kð Þ
22 + n3

� �
ln 1�pð Þ

+ n
kð Þ
11 + 2n

kð Þ
21 + n3

� �
lnq + n

kð Þ
21 + 2n

kð Þ
22 + n3

� �
� ln 1�qð Þ+ constant:

It can be verified that the M-step gives the following:

p k + 1ð Þ ¼
n

kð Þ
11 + n

kð Þ
21

n
,

q k + 1ð Þ ¼
n

kð Þ
11 + 2n

kð Þ
12 + n3

n + n
kð Þ
12 + n

kð Þ
22

:
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Substituting for the log-likelihoods by log-posteriors, the EM algorithm can also be

used for computations related to Bayesian analysis to find the posterior mode of y. In
the context of incomplete data coming from mixtures of parametric families, the EM

algorithm provides a very powerful numerical technique. In this book, we will not go

into the mixture models. The steps necessary to compute the required quantities

depend on the particular application, and thus in general how to code the EM algo-

rithm is not clear. There are special cases available in some software packages such

as SAS using PROC MI with EM option when the data come from a multivariate

normal distribution. It is desirable to search the literature on the particular software

you are using to find out the availability of “EM codes” to suit the particular appli-

cation in which you are interested. Also, another difficulty with implementation of

EM algorithm is that in each E-step, we require computation of the conditional

expectation. To overcome this difficulty, Wei and Tanner in 1990 proposed an algo-

rithm called MCEM (Monte Carlo EM) based on the Monte Carlo approach

explained in Section 13.5. This basically involves simulating m variables, Y1, . . .,
Ym, from the conditional distribution h(yjy(n), x) and then maximizing the approxi-

mate complete data likelihood

Q̂ y ŷ nð Þ, x
���� �

¼ 1

m

Xm
i¼1

lng x,y yjð Þ½ 
:

We will not go into the details of these methods. The student may refer to Wei and

Tanner’s paper for further details.

EXERCISES 13.4
13.4.1. Suppose that Y is a noise-corrupted observation of a signal S. That is, Y¼S

+N, where S is independent of N. Assume that for a known s, N�N(0, s2)
and S�N (0, y2), where y is unknown. Given the observation Y¼y:
(a) Obtain the MLE, ŷML:
(b) Obtain an EM algorithm.

13.4.2. Let X1, . . ., Xn be an observed random sample and X n1 + 1ð Þ, . . . ,Xn be the

missing (at random) observations. Assume that Xi are iid from an N(m, s2)
distribution.

(a) Show that (Si¼1
n Xi, S i¼1

n Xi
2 ) are sufficient statistics for y¼ (m, s2).

(b) Obtain the EM sequence for y¼ (m, s2).
(c) Consider a censored normal sample with n¼10, with the largest three

being censored [Gupta].

1:613 1:644 1:663 1:732 1:740 1:763 1:778

Using the results of part (a), obtain an EM estimate of y¼ (m, s2) with an
arbitrary starting point.

13.4.3 In Example 13.4.3, suppose that q is the probability that a child is a female.

Obtain an EM sequence for y¼ (p, q).
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13.4.4 Let x¼ x1, . . . , xn1ð Þ and censored observations xn1 + 1, . . . ,xnð Þ (that is, ith
experiment, if i>n1, the survival time is at least yi). Let the new complete

censored data yi be such that

yi ¼ xi, i� n1
yi, i> n1

�
:

Let the mean survival time be y and the probability density of y be

f y yjð Þ¼ y�1exp �y=yð Þ, y> 0

and let the survival function be defined as the probability that an individual

survives beyond time y, that is, S(y)¼P(Y>y). Thus,

S yð Þ¼ exp �y=yð Þ, y> 0:

(a) Obtain the MLE, ŷML:
(b) Obtain an EM algorithm.

13.4.5. Let x¼ x1, . . . , xn1ð Þ be observed data and the censored observations be y¼
y1, . . . , yn2
� �

(that is, in the ith experiment, if i>n1, the survival time is at

least yi). Let the mean survival time be 9, and the probability density be

given by

f x yjð Þ¼ 1ffiffiffiffiffiffi
2p

p exp �1

2
x�yð Þ2

� �
:

(a) Obtain the MLE, ŷML:
(b) Obtain an EM algorithm.

13.5 INTRODUCTION TO MARKOV CHAIN MONTE CARLO
In this section, we give a brief introduction to Markov chain Monte Carlo (MCMC)

methods. Among the computational simulation methods, MCMC is enormously use-

ful for realistic statistical modeling. MCMC methods were initially developed and

used in physics. These methods have had profound influence on statistics over the

past two decades, especially in Bayesian inference. MCMC methods are used to

solve problems in many diverse areas such as archeology, biology, biophysics, com-

putational chemistry, computer graphics, finance, nuclear medicine, transport the-

ory, and zoology. These methods have enabled researchers to exploit a degree of

complexity and realism inmodeling and analysis of problems in these areas that were

previously beyond reach. The name Monte Carlo method was coined by Stan Ulam

and John von Neumann, who introduced this method to solve neutron shielding and

other related problems at Los Alamos in the early 1940s.

The popular MCMC procedures make use of two standard algorithms: the

Metropolis algorithm, and the Gibbs sampler. In the Metropolis approach, all the
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parameters are varied at once. In the Gibbs method, each variable of the target pdf is

changed one at a time. An improvement on Metropolis, called the Metropolis-

Hastings algorithm, was introduced by Hastings in 1970. There are other hybrid

methods, such as the Hamiltonian method that alternates between Gibbs andMetrop-

olis procedures. In our present study, we will explain only the first three methods,

namely, the Metropolis algorithm, the Metropolis-Hastings algorithm, and the Gibbs

sampler.

The objective of MCMC techniques is to generate random variables having cer-

tain distributions called target distributions with pdf p(x). The simulation of standard

distributions is readily available in many statistical software packages, such as Mini-

tab. In cases where the functional form of p(x) is not known, MCMC techniques

become very useful. The basic idea of MCMC methods is to find a Markov chain

with a stationary distribution that is the same as the desired probability distribution

p(x); this is the target distribution. Run the Markov chain for a long time (say, K iter-

ations) and observe in which state the chain is after theseK iterations. The probability

that the chain is in state x will be approximately the same as the probability that the

discrete random variable equals x.
In Bayesian analysis, whether we are finding a posterior distribution or a Bayesian

estimate (usually, the posterior mean), integration is involved.We know from calculus

that obtaining closed-form solutions for integrations becomes almost impossible (too

difficult) for all but some simple functions. A standard approach to numerical integra-

tion of a function f(x) is to first divide the range of integration R into n segments

x1, . . ., xn, calculate the value of f(x) at each of these points f(x1), . . ., f(xn), multiply

the values by the length of each segment, and sum these rectangles to approximate the

integral, which is the area under the curve. The error in this approximation is reduced

by increasing the number of segments n.
In Monte Carlo integration, instead of taking x1, . . ., xn as fixed deterministic

numbers, we proceed to draw a random sample from a uniform distribution over

the range of integration R, then evaluate f(xi) for each xi and take the average. This

assumes that the range R is bounded. If R is not bounded, then f(x) can be integrated
when it can be written as the product of another function h(x) and a distribution func-
tion p(x) from which we can draw values of x (that is, x1, . . ., xn is drawn from the

distribution p(x)). That is,
ð
f xð Þdx¼

ð
h xð Þp xð Þdx

where integration is over the range R. Then, the integral can be approximated with

averaging the f(xi) values, that is,

ð
f xð Þdx� 1

n

Xn
i¼1

h xið Þ,

where we assume that xi values are a random sample from p(x) and in the range R.
When p(x) is a standard distribution, many statistical software packages, such as
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Minitab, can generate random samples from this distribution. In those cases, a gen-

eral coding to evaluate this integral can be written as

sum¼: 0

For i¼1 to n

{Draw xi from p(x)

sum¼: sum+h(xi)}

return sum/n

In the preceding coding, by multiplying h(xi) by the indicator function of R (that

is, IR (xi)¼1, if xi2R, and zero otherwise), we can avoid the assumption that xi values
are in the range R. For instance, let X1, . . ., Xn be a random sample generated from a

target pdf, p(x). Then the expectation of any function f(X) can be estimated using the

Monte Carlo method by

Epf Xð Þ¼
ð
f xð Þp xð Þdx� 1

n

Xn
i¼1

f xið Þ¼ f

where Ep denotes the expectation with respect to the pdf p(x). By the law of large

numbers, it follows that

1

n

Xn
i¼1

f Xið Þ!Ep f Xð Þ½ 
asn!1

provided X1, . . ., Xn are independent. We can verify that f is an unbiased estimate of

Ep f. In addition, the sampling distribution of f is approximately normal, with var-

iance s2/n, where s2 is estimated by

s2 ¼ 1

n

Xn
i¼1

f xið Þ� f
� �2

:

For example, in a Bayesian setting, an estimate of the posterior mean can be obtained

by taking f(x)¼x, and the variance can be obtained by taking f xð Þ¼ x� xð Þ2, if p(x)
is the posterior distribution (recall that in Chapter 11, we used the notation p (yjx) for
the posterior distribution). Using the sampling distribution of f , we can also construct
point and interval estimates for Ep f.

Observe that the heart of the Monte Carlo method is to obtain random samples

from the target distribution p(x). One of the problems encountered using this

approach is that, while it is easy to generate samples from standard distributions

using popular statistical software packages, it is very difficult (sometimes not feasi-

ble) to do so from any distribution that is not standard (see Project 4A for a method of

generating random samples from a given distribution). For these reasons, the ordi-

nary Monte Carlo method can be implemented in only a very few cases for Bayesian

inference. That is where the MCMC method plays a crucial role. MCMC methods

allow the data analyst to build and analyze more realistic statistical models that

may be more complex than standard formulations.

Using the MCMC methods, we will construct a Markov chain {Xn} with a

limiting distribution as the target distribution, p(x). Let us first introduce the

concept of Markov chains. For a brief description of Markov chains, refer to
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Appendix B. We call a sequence of random variables {Xn} a Markov chain (MC)

with state space S if

P Xn ¼ xn Xn�1j ¼ xn�1, . . . ,X1 ¼ x1ð Þ¼P Xn ¼ xn Xn�1j ¼ xn�1ð Þ:
That is, the probability distribution of future states of a MC depends only on the pre-

sent state and not on the past states. However, it is important to note that a Markov

chain {Xn} is a dependent sequence of random variables; thus, the independence

assumption inherent in a random sample cannot be used. The transition probability
function of a discrete parameter Markov chain is defined as

pm,n x, yð Þ¼P Xn ¼ y Xmj ¼ xð Þ, x,y in S:

We simply denote this transition probability by p(x, y). When the number of elements

in the state space S is finite, we can form a matrix P with the (x, y)th element being

p(x, y). This matrix is called a one-step transition probability matrix. p(x) is called an
invariant (limiting) distribution if it satisfies the equation

p xð Þ¼
X
y2S

p yð Þp y, xð Þ:

We say that the chain satisfies the reversibility or detailed balanced condition if p(x)
p(x, y)¼p(y)p(y, x) holds for some p(�). It can be shown that such a p(x) that satisfies
the reversibility condition is invariant. Basically, if a Markov chain is reversible and

its limiting distribution exists, then the limiting distribution is the invariant

distribution.

The results explained for discrete Markov chains can be extended to continuous

time defined in a continuous state space. The stationary or the equilibrium distribu-

tion p(x) of a continuous Markov chain satisfies

p xð Þ¼
ð
p y, xð Þp yð Þdy:

Assume that the samples are generated from a Markov chain whose equilibrium dis-

tribution is the target distribution, p(x). We know by the law of large numbers that

1

n

Xn
i¼1

f Xið Þ!Ep f Xð Þ½ 
as n!1

provided X1, . . ., Xn are independent. It turns out that, if we generate a Markov chain

X1, . . ., Xn from the target distribution p(x), the result

1

n

Xn
i¼1

f Xið Þ!Ep f Xð Þ½ 
as n!1

still holds. In this sense, the chain {Xi} resulting from an MCMC algorithm with sta-

tionary distribution p is similar to the use of a random sample from p. The analytical
details are beyond the scope of this book. Instead, we focus on the question: How do

we construct a Markov chain whose stationary distribution is our target distribution,

p(x)? The answer is given by the Metropolis-Hastings algorithm, and the two special

cases: the Metropolis algorithm, and the Gibbs sampler. A MCMC method for
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simulating a distribution p can be defined as any method that produces an ergodic

(thus, forgets the initial starting point x0). Markov chain {Xi} whose stationary dis-

tribution is p. We start with the Metropolis algorithm. Subsequently, we will explain

both the Metropolis-Hastings algorithm and the Gibbs sampler. MCMCmethods are

increasingly being used for simulation of complex probability models, for computa-

tion of integrals, and optimization.

13.5.1 METROPOLIS ALGORITHM
One of the simplest algorithms in MCMC calculations is the Metropolis algorithm,

introduced by the Greek-American mathematician Nicholas Constantine Metropolis

and colleagues in 1953. This work was mentioned inComputing in Science and Engi-
neering as being among the top 10 algorithms having the “greatest influence on the

development and practice of science and engineering in the twentieth century.” In

this case, we make a trial perturbation from the current position in a parameter space

by randomly selecting a trial step from a symmetric probability distribution called

candidate-generating density or proposal density q(x, y) (in the discrete case, it is

a symmetric matrix called the nominating matrix A¼ (aij), with aij¼aji, where i,
j2S, the state space of the Markov chain). The q(x, y) depends only on the current

state x and the new proposed state y (that is, q(x, y)¼qx(y) is a function of the next

proposed state y that is allowed to depend on the current state x). Thus, starting at x,
q(x, y) can be regarded as the conditional density of landing at y in one transition step.
The trial step is either accepted or rejected on the basis of the probability of the new

position relative to the previous one. The Metropolis Algorithm is formulated as an

instance of the rejection method used for generating steps in a Markov chain. Idea of

the rejection algorithm is that if we want to sample from a specific distribution, sim-

ply sample from any distribution that is convenient, but keep only the good samples.

We now give the Metropolis algorithm for a discrete distribution. We want to

obtain a sample from a distribution {pj}, where p(j)¼P(Xk+1¼ j), and we have a

symmetric nominating matrix A; then we can write the Metropolis algorithm in five

steps as follows.

METROPOLIS ALGORITHM (DISCRETE CASE)
For k¼0, start with an arbitrary point, xk¼ i.

1. Generate j from the probability distribution {aij, j¼1, 2, . . .}.
2. Set

r¼ p jð Þ
p ið Þ :

3. If r�1 set xk+1¼ j (acceptance),otherwise generate u from Uniform (0, 1),if u< r set xk+1¼ j
(acceptance), else xk+1¼xk (rejection); (note that the value of xk+1 becomes the next state).

4. Set k¼k+1, go to step 1.
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Each of the accepted points is considered to be a sample value from the target

distribution {pj}.
The continuous case of the Metropolis algorithm is given next.

METROPOLIS ALGORITHM (CONTINUOUS CASE)
1. Start with an arbitrary point, x0.
2. Select a new position x*¼xk+Dx, where Dx is randomly chosen from a symmetric distribution.

3. Calculate the ratio

r¼p x�ð Þ
p xkð Þ

where p(x) is the target distribution.
4. Accept the trial position, that is, set

xk + 1 ¼ x�, if r� 1:

Otherwise generate u from Uniform (0, 1) If u< r set xk+1¼x* else set xk+1¼xk.
5. Set k¼k+1, go to step 2.

If the proposal step size is dx, we could use the proposal distribution asU(�dx, dx);
for example, if the step size is 1, then randomly chooseDx�U(�1, 1). For further dis-

cussion on selection of the proposal distribution, read Section 13.5.4. TheMetropolis

algorithm generates a set of states that is a Markov chain because each state xk+1
depends only on the previous state xk. UsingMarkov chain techniques, it can be shown

that the equilibrium distribution of the chain constructed by theMetropolis algorithm

is indeed p(x*). Note that in the Metropolis algorithm, it is not necessary to have the

pdf; instead, all that is necessary is to know the ratio p(x*)/p(xk). Thus, none of the
multiplicative constants in the pdf p plays a role in the algorithm.

This algorithm works well in most applications. Following is a simple example to

show how the Metropolis algorithm works.

EXAMPLE 13.5.1
Using the Metropolis algorithm, generate a random sample from a Poisson distribution with mean l.
For the nominating matrix, use the symmetric matrix with elements

a00 ¼ 1=2, aij ¼
1=2, j¼ i�1

1=2, j¼ i+ 1
0, otherwise:

8<
:

Solution
The nominating probability matrix is a one-step transition matrix (see Appendix B),

A¼

1=2 1=2 0 0 0 . . .
1=2 0 1=2 0 0 . . .
0 1=2 0 1=2 0 . . .
0 0 1=2 0 1=2 . . .
: : : : : :
: : : : : :
: : : : : :

2
666666664

3
777777775
:

Continued
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Now we apply the Metropolis algorithm for generating samples from Poisson (l) in the follow-
ing steps.

Step 1. Start with xn�1¼ i.
Step 2. Generate j from A¼{aij}. How do we do it?We can do this using the following procedure:

For i 6¼0,

Generate u1 from U(0, 1).

If u1�1/2, set j¼ i+1 else set j¼ i�1.

For i¼0,

If u1<1/2, set j¼0

else set j¼1.

Step 3. Set

r¼ p ið Þ
p ið Þ¼

e�lli
j
=j!

e�lli=i!
¼ i!li

j

j!li
i ¼

i!li
j�i

j!
:

Set

r¼
1, if i¼ 0, j¼ 0
l
j, if j¼ i+ 1
i
l, if j¼ i�1

:

8<
:

Step 4. Acceptance/rejection:

If r�1, set xn¼ j (i.e. accept the new state j).
Otherwise, generate u2 from U(0, 1)

if u2< r, set xn¼ j (i.e. accept the new state j)

else set xn¼xn�1 (i.e. reject the new state j and keep the current state i).
Step 5. Set n¼n+1, go to step 2.

In Example 13.5.1, let us say we want to generate a random sample from Poisson

withl¼2 andwe are at state i¼3 in the iteration step (n�1). If our proposed newstate

is j¼4, then r¼2/4¼1/2. Suppose we obtained the value of u2 as 0.672772. Because
this value is larger than 1/2,we reject the proposed new state 4 and stay at state 3 for the

iteration step n (if you generate a new u2, your decision might be different). Instead,

suppose our proposed step was j¼2; then r¼ i/l¼3/2>1, and we will immediately

accept our new state as j¼2 (no need to generate a uniform randomnumber; if you did,

it would have been smaller than 3/2 anyway) for the iteration step n.

EXAMPLE 13.5.2
Let p(x)¼c exp (�f(x)) be the form of the target distribution function. Write a general Metropolis

algorithm to generate a sample from p.

Solution
Let q(x, y) be any symmetric distribution. Starting from an arbitrary x(0),we can write theMetropolis

algorithm through the following steps.

Step 1. Let x(t) be the current state.

Step 2. Generate y from the distribution q(x, y). Because,

r¼ p yð Þ
p x tð Þ
� �¼ c exp �f yð Þð Þ

c exp �f x tð Þ
� �� �¼ exp �f yð Þ� f x tð Þ

� �� �
,

calculate the change in f, D f¼ f(y)� f (x(t)).
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Step 3. Generate a random number from the uniform distribution, U(0, 1). If u�exp(�Df), set
x(t+1)¼y (accept the proposed new state), otherwise set x(t+1)¼x(t) (reject the proposed
new state).

Step 4. Continue (i.e. go to step 1).

Note that in the previous example, the normalizing constant in p(x) is not

important, because it cancels in the ratio. In fact this is true in all Metropolis

and Metropolis-Hastings algorithms. In the special case, where q(x, y)¼q (jy�xj),
the Metropolis algorithm is also called the random-walk Metropolis. Another

special choice is q(x, y)¼q(y); this is called the independence sampler. In all of

these cases, it is important to observe that whereas the target distribution is

independent of the positions, the proposal functions depend on where we are.

For example, let p(x) be standard normal density, and let the proposal density

be of the form

q x, yð Þ∝exp � y�xð Þ2
2 0:25ð Þ2

 !
:

Figure 13.1 gives a representation of the target distribution and some representative

proposals. For each point x of the target distribution, we generate a y from the cor-

responding proposal distribution. Then, according to the accept/reject rule that we

specified earlier, we will make a decision whether to treat this new value y as being
from the target distribution.
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FIGURE 13.1

Target and proposal densities.
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13.5.2 THE METROPOLIS-HASTINGS ALGORITHM
The Metropolis-Hastings (M-H) algorithm is a generalization of the Metropolis

algorithm, in which we need not assume symmetry of the nominating matrix A
(or for proposal density q(x, y)). The acceptance probability is given by

a i, jð Þ¼ min
p jð Þaji
p ið Þaij , 1

� �
:

This algorithm is the basic building block of MCMC methods. The Metropolis-

Hastings algorithm is widely used in applied statistics and is very useful for sampling

from complicated, high-dimensional probability distributions. Now we present the

steps involved in the Metropolis-Hastings algorithm in the discrete case.

METROPOLIS-HASTINGS ALGORITHM (DISCRETE CASE)
For k¼0, start with an arbitrary point, xk¼ i.

1. Generate j from the nominating distribution {aij, j¼1, 2, . . .}.
2. Set

r¼ p jð Þaji
p ið Þaij :

3. If r�1 set xk+1¼ j.

Otherwise generate u from U(0, 1)

if u< r, set xk+1¼ j

else set xn¼xn�1.

4. Set k¼k+1, go to step 1.

In the preceding algorithm, if we calculate a(i, j)¼min{r, 1}, basically, we
accept the proposed new step j if u<a(i, j); otherwise we stay at the current step

i. The resulting Markov chain from both Metropolis and Metropolis-Hastings algo-

rithms would have the transition probability matrices defined by

p i, jð Þ¼ aija i, jð Þ fori 6¼ j,

p i, ið Þ¼ 1�
X
j6¼i

aija i, jð Þ:

In the continuous case, for any given p(x), the Metropolis-Hastings algorithm takes

the following form. To start the algorithm, we choose an arbitrary proposal distribu-

tion q(x, y) so that it is easy to obtain a sample from this distribution. Define the

acceptance/rejection function as

a x, yð Þ¼ min
p yð Þq y, xð Þ
p xð Þq x, yð Þ , 1
� �

:

If both p(x) and p(y) are zero, set a(x, y)¼0.
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METROPOLIS-HASTINGS ALGORITHM (CONTINUOUS CASE)
Step 1. Start with an arbitrary point, x0.
Step 2. Given a current state x(t), draw y from the proposal distribution q(x, y).

Step 3. Draw u from U[0, 1].

Step 4. If u<a (x(t), y), set x(t+1)¼y, otherwise set x(t+1)¼x(t).

Step 5. Set t¼ t+1, go to step 2.

Note that if the q(x, y) is symmetric (i.e. q(x, y)¼q(y, x)), then the Metropolis-

Hastings algorithm reduces to the Metropolis algorithm. In practice, there are other

forms of acceptance/rejection functions suggested. Observe that in the Metropolis-

Hastings algorithm, as in theMetropolis algorithm, it is not necessary to have the pdf;

instead, all that is necessary is to know the ratio p(y)/p(x). Thus, none of the multi-

plicative constants in the pdf, p, plays a role in the algorithm.

Because of the versatility of this method, there are many generalizations of the

Metropolis-Hastings algorithm in the literature. It is also necessary to impose some

conditions both on p and on the proposal distribution q for p to be the limiting dis-

tribution of theMarkov chain {X(t)} produced by the M-H algorithm.We do not want

a large ratio of the proposed new values to be rejected. Discussion of these issues is

beyond the scope of this book.

EXAMPLE 13.5.3
Using the Metropolis-Hastings algorithm, generate a sample from the following distribution. Let

O¼{2, 3, . . ., 11, 12}, which represents the sum of the up faces of two balanced dice, and let

the distribution be given by

Sum i 2 3 4 5 6 7 8 9 10 11 12

p(i) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Using the nominating matrix

a22 ¼ a 12ð Þ 12ð Þ ¼ 1=2, aij ¼
1=2, j¼ i�1

1=2, j¼ i+ 1, i, j2O
0, otherwise

8<
:

write the M-H algorithm to generate samples from the distribution p.
Solution
Suppose we start with state i∊O, say at 5 (starting at any other state is ok).

Step 1. Generate j from the nominating distribution {aij, j¼1, 2, . . .}. Thus, j¼ i�1 or i+1, and in

this case j has to be 4 or 6.We can follow the same procedure as in Example 13.5.1 to choose
between i�1 and i+1. Let us say, we got j¼ i+1, here 6.

Step 2. Set r¼ p jð Þaji
p jð Þaij . In this case, r¼ p 6ð Þ

p 5ð Þ ¼ 5=36
4=36¼ 5

4
. (if we had chosen 4, then, r¼ p 4ð Þ

p 5ð Þ ¼ 3
4
)

Step 3. If r�1 set xn¼ j. Here r>1; hence, we accept the new state, xn¼6. Otherwise generate u
from U(0, 1) if u<r, set xn¼ j else set xn¼xn�1.

Step 4. Set n¼n+1, and go to step 1.
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EXAMPLE 13.5.4
Write a Metropolis-Hastings algorithm to generate samples from N(0, 1) based on the proposal

U[�1, 1].

Solution
Note that in order for y to be generated based on U[�1, 1], we need y – x(t)�U[�1, 1]. Thus, y�U
[x(t) �1, x(t)+1]. Figure 13.2 shows the target distribution as the standard normal, and the repre-

sentative proposals that are uniform at points x(t)¼�2 and 2.

Now, the M-H algorithm can be obtained in the following way.

Set

a x tð Þ, y
� �¼ min

p yð Þq y, xð Þ
p xð Þq x, yð Þ , 1
� �

¼ min exp x tð Þ2 �y2=2
n o� �x+ 1

y+ 1
,1

� �

Generate u�U[0, 1]

If u<a (x(t), y), set x(t+1)¼y, otherwise set x(t+1)¼x(t). Continue.

Observe that in order to generatenormal randomvariables, it is not necessary touse

M-H algorithms. Most of the statistical software packages will give us a random

sample from the normal distribution. Example 6.5.2 (originally suggested byHastings

in 1970) is given for demonstration of theM-Halgorithm.The algorithm is effective in

general cases, for instance, to generate a sample from a gamma distribution. In

Gamma(a, b), if a is an integer, we can use the method of Project 4A to generate a

random sample. However, if a is not an integer, we could use Gamma([a], b) (here
[a] denotes the integer part of a) as the proposal distribution, and follow the steps

of the M-H algorithm to generate a sample from Gamma(a, b) (see Exercise 13.5.3).

Target

Proposals

6420

1

−2−4−6

FIGURE 13.2

Normal target and uniform proposal distributions.
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13.5.3 GIBBS ALGORITHM
The name Gibbs algorithm (or Gibbs sampler) was coined by the brothers Stuart

Geman and Donald Geman in 1984 and refers to Gibbs distributions in statistical

physics. This is very useful in obtaining a sequence of observations from a specified

multivariate probability distribution, when direct sampling is hard or the joint distri-

bution is not known explicitly. Gibbs sampler can be used in those situations when

the conditional distribution of each variable is known and is relatively easier to sam-

ple from. In the Gibbs sampler, only one parameter is varied at a time, while all others

are held fixed. The parameter then is randomly drawn from a conditional probability

density function, the probability distribution of one parameter, given all other param-

eters; p (xijx�i), where x�i is the full set of parameters excluding only the single com-

ponent xi. Let x¼ (x1, . . ., xk) be k(�2)-dimensional. Recall from Chapter 3 that these

conditional densities can be obtained as follows:

p xi x�ijð Þ ¼ p xi x1j , . . . ,xi�1, xi + 1, . . . ,xkð Þ
¼ p x1, . . . ,xi�1, xi, xi + 1, . . . ,xkð Þð

p x1, . . . ,xi�1, xi, xi + 1, . . . ,xkð Þdxi
:

The basic assumption under which the Gibbs algorithm works is that we could easily

draw a random sample from these conditional pdfs. Thus, the Gibbs algorithm is a

particular case of Metropolis-Hastings algorithms. For example, at the ith step, yi is
generated from the nominating density qi (xi, yi) where qi depends on the current state
xi. The candidate yi is accepted with probability

ai xi, yið Þ¼ min
pi yið Þqi yi, xið Þ
pi xið Þqi xi, yið Þ , 1
� �

:

If yi is accepted, we will set the ith component of xn, xn, i¼yi; otherwise set xn, i¼xn i.

The remaining components of xn are not changed in step i. This is repeated for each i,
at the end of which the entire vector xn would have been updated. Thus, if we are in

state x at time t, at time t+1 we either remain at x or go to y by modifying only one

component of x. It is important to use the most recent values of updated components

to update the next component. That is, given x(t)¼ (x1
(t), . . .,xk

(t)) at time t, generate

x
t + 1ð Þ
1 � p x1 x

tð Þ
2 , x

tð Þ
3 , . . . , x

tð Þ
k

���� �
x

t + 1ð Þ
2 � p x2 x

t + 1ð Þ
1 , x

tð Þ
3 , . . . , x

tð Þ
k

���� �
x

t + 1ð Þ
3 � p x3 x

t + 1ð Þ
1 , x

t + 1ð Þ
2 , x

tð Þ
4 , . . . , x

tð Þ
k

���� �
:
:
:
x

t + 1ð Þ
k � p xk x

t+ 1ð Þ
1 , x

t+ 1ð Þ
2 , . . . , x

t + 1ð Þ
k�1

���� �
:

For instance, let k¼2. The Gibbs sampler updates in the following manner. Start at

x(0)¼ (x1
(0),x2

(0)); first update x1
(0) to x1

(1), using this updated value x1
(1) and x2

(0), update

67313.5 Introduction to Markov Chain Monte Carlo



x2
(0) to x2

(1), resulting in the updated vector x(1). Repeat this procedure to obtain x(2),

x(3), . . .. Figure 13.3 depicts this updating procedure.

The conditional densities f1, . . ., fk are called the full conditionals. In the Gibbs

sampler, only these conditional densities are needed for simulation. Thus, this pro-

cedure becomes very efficient when the vector x is large, because all of the simula-

tions can be done as univariate.

The following example of bivariate density is popularly used in the literature to

illustrate the Gibbs sampler. It is the case where the joint density is complex, because

one variable (x) is discrete, while the other variable (y) is continuous. However, the
conditional densities are simple known distributions, binomial and beta distributions,

respectively. It is then easier to simulate these distributions, thus demonstrating the

power of the Gibbs sampler.

EXAMPLE 13.5.5
(a) Write a Gibbs sampler for generating samples from the following bivariate density:

f x, yð Þ¼ n
x

� �
yx+ a�1 1�yð Þn�x +b�1

, for x¼ 0,1, . . . ,n

and 0� y� 1:

(b) Starting with y0¼1/4, n¼15, and a¼1, b¼2, obtain the first three realizations of the Gibbs

sequence.

Solution
(a) From Exercise 3.3.14, we know that

f x yjð Þ∝ n
x

� �
yx 1�yð Þn�x:

updated

X(1)
X(3)

x2
(0)

x2

x1

x1
(0)

X(0)

X(2)

updated

FIGURE 13.3

Gibbs updating procedure.
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That is, the conditional distribution of x (treating y as a constant) is binomial with parameters n

and y, 0�y�1. Also,

f x yjð Þ∝yx+ a�1 1�yð Þn�x +b�1:

Thus, the conditional distribution of y given x is a beta distribution with parameters x+a and

n–x+b. The Gibbs sampler for generating bivariate samples from f (x, y) is then given as follows:

For i¼1, . . ., n, repeat:

1. Generate yi from fYjX(. jx(i�1)), that is from Beta (xi–1+a, n�xi�1+b).
2. Generate xi from fXjY(. jy(i)), that is from binomial (n, yi).

3. Return (xi, yi).
(b) We proceed with the following steps.

(i) For y0¼1/4, x0 is obtained from generating a random variable from binomial with n¼15,

y0¼1/4, that is, from B(15, 1/4), resulting in a value of 4 (generated using Minitab; you
may get a different value when you do it). Thus, x0¼4.

(ii) Generate y1 randomly from

Beta x0 + a,n�x0 + bð Þ¼Beta 4 + 1,15�4 + 2ð Þ
¼Beta 5, 13ð Þ

resulting in y1¼0.53 (approximated to second digit).Now x1�B(15, 0.53), resulting in x1¼6.

(iii) Generate y2 randomly from

Beta x1 + a,n�x1 +bð Þ¼Beta 7, 11ð Þ
resulting in y2¼0.30. Now x2�B(15, 0.30), resulting in x2¼3.

Thus, a particular realization of the Gibbs sampler for the first three iterations is

(4, 0.25), (6, 0.53), and (3, 0.30).

FromExercise 13.5.8, it can be observed that at the beginning, the values of the chain

are highly dependent on the choice of the initial value y0. In practice, it is necessary to run
a sufficient number of iterations to remove the effect of the starting values. Even though

theGibbssampler is a special caseof theMetropolis-Hastingsalgorithm, it is important to

observe that unlike theM-Halgorithm, every samplegeneratedby theGibbs algorithm is

accepted.Also,we shouldhaveat least a two-dimensional problemfor theGibbssampler

tobeused.SinceGibbs sampling (likeotherMCMCsampling)generatesaMarkovchain

of samples, each sample is correlatedwith neighboring samples, to obtain a randomsam-

ple, one need to perform thinning the resulting chain by only taking every kth value (like
takingevery50thvalue).There are someprosandcons in thepractice of thinning, for that

and some nice applications of Gibbs method, we refer reader to specialized books.

From the previous discussions, we can see that a general description of anMCMC

method can be summarized in the following algorithm.

Initialize X0

For i¼1; . . .; N repeat

x¼Xi�1;

Generate Y from a nominating density, q(x; y);

Calculate the acceptance rate, a(x; y);
Generate U from the uniform U(0; 1);
If (U<a(x; y)) set X(i)¼y,

Else set X(i)¼x;

End;
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If we choose a nominating density q(x, y) and an acceptance rate a(x, y) such that
the reversibility condition

p xð Þa x, yð Þq x, yð Þ¼p yð Þa y, xð Þq y, xð Þ,
is satisfied, then the foregoing procedure generates a Markov chain with limiting dis-

tribution p(x). In order to use Gibbs sampling for Bayesian analysis, we must have an

explicit analytical posterior conditional distribution.

13.5.4 MCMC ISSUES
Two major issues in MCMC are convergence and burn-in. Because in all three

MCMC algorithms we start the sequence from an arbitrary point, any particular

sequence may take some time to pass through the transient stage, and the effect

of the starting value is very small and can be ignored—that is, it attains convergence.

In practice, we will have to run the algorithm for a few thousand iterations so that the

effect of this initial state is negligible. The samples obtained during this burn-in

period should be discarded for the subsequent analysis as they do not represent

the target pdf. By monitoring the sequence itself, we can determine whether the

sequence has reached the convergence. A simple way to decide how much burn-

in is necessary is to create scatterplots of Xi versus Xj, i 6¼ j. When the wild variations

stop, then it is safe to assume that the chain has reached stationarity.

Another major issue in the implementation of MCMC algorithms is the choice of

proposal density. In the continuous case, popular choices among others are the mul-

tivariate normal density and the multivariate t with specified parameters. Even in

these cases, there is the question of appropriate size of the spread, or scale of the

proposal density. The size of the acceptance ratio is another issue. If the ratio is

too small, the samples will get stuck (because almost all proposed new states will

be rejected), and if the ratio is too high, the samples will show tracking. A general

rule of thumb is that the acceptance ration should be within 30% to 60%. If not, adjust

the step size (for a small ratio, decrease the step size, and for a high ratio, increase the

step size). There are many pulications devoted to these issues.

For the Bayesian computation, MCMC allows us to sample from any posterior.

Because of the availability of specialized software packages, such as BUGS, it is

practical to code up for a particular problem.

There are many references including books on MCMC methods; some of these

are listed in the references at the end of this book. For a good discussion including

some technical details, refer to http://vcla.stat.ucla.edu/old/MCMC/MCMC_

tutorial.htm.

EXERCISES 13.5
13.5.1. For Example 13.5.1, let l¼3. Starting with initial state x0¼6, compute

relevant quantities performing 10 iterations of the algorithm.
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13.5.2. Using the Metropolis-Hastings algorithm, generate a random sample from

a geometric distribution with mean y. Use the nominating distribution

{aij, j¼1, 2, . . .} such that

aij ¼
1
2
j¼ i�1, i+ 1,and i¼ 1,2,3, . . .

1
2
j¼ 0,1 and i¼ 0

0 otherwise:

8<
:

[Recall that if X is geometric with parameter y, then P(X¼x)¼
(1–y)xy, for x¼0, 1, 2, . . .]

13.5.3. Write down the Metropolis-Hastings algorithm to generate a sample from

Gamma(a, b) using the proposal density as Gamma([a], [a]/a).
13.5.4. Write down the Metropolis-Hastings algorithm for simulating a Markov

chain with stationary distribution p¼ (1/6, 2/3, 1/6), using the “proposal”

transition matrix

Q¼
1=2 1=2 0

1=2 0 1=2
0 1=2 1=2

0
@

1
A:

13.5.5. In tossing three fair coins, let the random variable X be defined as

X¼number of tails. Then the distribution of X is given by Write down

the Metropolis or Metropolis-Hastings algorithm for simulating a

Markov chain with stationary distribution p(x). Use any nominating

matrix.

x 0 1 2 3

p(x) 1/8 3/8 3/8 1/8

13.5.6. Write a Metropolis algorithm to generate samples from a target

distribution, p xð Þ∝exp �x2

2
ð Þ, based on the proposal

qx yð Þ¼ exp � y�xð Þ2
2 0:4ð Þ2

 !
:

13.5.7. Write a general Metropolis or Metropolis-Hastings algorithm to generate a

sample from a target distribution p, where p is an exponential random

variable with parameter y.
13.5.8. Write a general Metropolis or Metropolis-Hastings algorithm to generate a

sample from a target distribution p, where p(x) a x34(1�x)38(2+x)125. Use
the proposal density as q(x, y)¼1 on the interval [0, 1].

13.5.9. For the bivariate density given in Example 13.5.5, starting with three

different values of y0, say, 1/3, 1/2, and 2/3 n¼15, and a¼1, b¼2, obtain

the first three realizations of the Gibbs sequence. Comment on the

influence of the initial values.
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13.5.10. Consider a problem of sampling bivariate random variables with joint

density given by

f x, yð Þ¼ ce� x+ y+ 4xyð Þ, x� 0, y� 0

0, otherwise:

�

(a) Find f (xjy) and f (yjx).
(b) Write a Gibbs procedure to generate samples from this distribution.

Discuss why it is easier to use the Gibbs sampler for this case.

(c) Starting from an arbitrary point, obtain the first three sample points.

13.5.11. Suppose the target distribution is

X, Yð Þ�N
0

0

� �
,

1 r
r 1

� �� �
:

Thenwrite theGibbs sampler to generate a sample from this distribution. In

particular, say,we startwith (X,Y)¼ (12, 12) andr¼0.7.What is theGibbs

procedure to generate a sample from a binormal distribution? [The pdf of a

bivariate normal distribution with

x¼ x
y

� �
m¼ mx

my

� �
S¼ s2X rsXsY

rsXsY s2Y

� �

is given by

f xð Þ¼ 1

2p
detSð Þ�1=2

exp �1

2
x�mð Þ0S�1 x�mð Þ

� �
,

where 0 denotes the vector transpose.]
13.5.12 Suppose the target distribution is

X, Yð Þ�N
m
m

� �
,

2 1

1 1

� �� �
:

Then write the Gibbs sampler to generate a sample from this distribution.

13.6 CHAPTER SUMMARY
In this chapter, we introduced some empirical methods that are becoming increas-

ingly popular in modern statistical analysis. The methods presented must be viewed

as introductory in nature and by no means most efficient or general. Because of ever-

evolving applications and advancements in technology, most of the methods pre-

sented here also evolve. Also, based on the situation, it is necessary to write computer

codes to run the algorithms introduced in this chapter. Our hope is that students will

explore these topics in more detail by referring to specialized books and publications.

In this chapter, we also learned the following important concepts and procedures:

• The jackknife method.

• General bootstrap procedure to estimate the standard error of ŷ:
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Create a function returning your parameter

to be estimated. Notice this requires an index.

• Bootstrap confidence intervals.

• EM algorithm.

• MCMC methods.

• Metropolis algorithm.

• Metropolis-Hastings algorithm.

• Gibbs sampler.

13.7 COMPUTER EXAMPLES
Most of the procedures described in this chapter could be implemented using

Minitab, SAS, or SPSS. There are other specialized programs that will do a good

job of implementing the methods discussed in this chapter. BUGS (Bayesian

inference using Gibbs sampling) is free software that has proven to be effective

in MCMC computations, and the details are at the Web site: http://www.mrc-bsu.

cam.ac.uk/bugs/. Most of the procedures discussed in this chapter can also be

implemented in “R,” which is also free software that can be downloaded

from http://www.rproject.org/. Few examples in R are given. We will also

present an example in Minitab. However, we will not discuss SAS or SPSS

examples.

13.7.1 EXAMPLES USING R

EXAMPLE 13.7.1 BOOTSTRAP
Using the following data, perform a bootstrap point and interval estimate for the median. Generate

six replications or bootstrap samples of size 12 each.

Sample (x) : 269 246 388 354 266 303 295 259 274 249 271 254

R Code:

library(’boot’); Load the boot library

mystatfun¼ function(data,index) {

return(median(data[index]));

}

mybs¼boot(x,mystatfun,R¼6);

print(mean(mybs$t)); mybs$t contains the values generated by
your function from each bootstrap replication

print(sd(mybs$t));
boot.ci(mybs,type¼"basic");

Output:

269.6667

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 6 bootstrap replicates

CALL :

boot.ci(boot.out¼mybs, type¼"basic")

Continued
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Intervals :

Level Basic

95% (241, 286)

Calculations and Intervals on Original Scale

Warning : Basic Intervals used Extreme Quantiles

Some basic intervals may be unstable

EXAMPLE 13.7.2
Jackknife

Using the Data from the previous example, perform a jackknife point estimate for the mean, and

standard deviation. Notice the jackknife computation is not simulated like the bootstrap and will

have one answer.

R Code:

tmp¼c();

for(i in 1:12) {

tmp¼c(tmp,mean(x[-i]));

}

mean(tmp);

sd(tmp);

Output:

285.6667 Mean

3.988777
Standard deviation

EXAMPLE 13.7.3 MCMC
MCMC is used to simulate random variables from distributions we cannot sample from. In this

example our target distribution is the chisq(4) and our proposal distribution is normal(i,1). Notice

we can use the rchisq() function to do this and obtain a better result, however we are going to

compare the results of rchisq() to MCMC for learning purposes. Another important note, our

proposal distribution’s mean is the previous value in the Markov Chain.

The chain variable maybe treated as a generated random sample from our target distribution.

Notice we can evaluate the target distribution but perhaps we cannot sample or integrate the
target.

Your means will be unique for both your rchisq() and chain but they should be close. Observe

the density curves over the histogram.

R Code:

i¼10; #Step 1

chain¼c();

680 CHAPTER 13 Empirical Methods



for(c in 1:100000) {

j¼rnorm(1,i,1); #Step 2

u¼runif(1,0,1); #Step 3

r¼ (dchisq(j,df¼4)*dnorm(j,i,1))/(dchisq(i,df¼4)*dnorm(i,j,1));

a¼min(c(r,1),na.rm¼TRUE);

if(u<a) {

chain¼c(chain,j);

i¼ j;

} else {

chain¼c(chain,i);

}

}

mean(chain);

mean(rchisq(3000,df¼4));

plot(density(chain),col¼"blue",type¼"l");

lines(density(rchisq(3000,df¼4)),col¼”red”);

lines(seq(0,25,by¼0.1),dchisq(seq(0,25,by¼0.1),df¼4),col¼”black”);

Output:(Figure 13.4)

0.15

0.10

0.05

0.00

0

Density.default (x = chain)

5 10

N = 100000 Bandwidth = 0.2305

D
en

si
ty

15 20 25

FIGURE 13.4

Simulated kernel densities.

Step 4
Step 5
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EXAMPLE 13.7.4 (EM ALGORITHM)
For the data of Exercise 13.4.2 (c) give R-code.

Solution
We take arbitrary Initial values for the parameters m and s.

#Change the values in (*) and (**) and put any arbitrary values as follows:

em.norm< - function(Y){

Yobs< - Y[!is.na(Y)]

Ymis< - Y[is.na(Y)]

n< - length(c(Yobs, Ymis))

r< - length(Yobs)

# initial values

mut< - 1 # (*)put arbitrary value for m

sit< - 0.1 # (**)put arbitrary value for s

# Define log-likelihood function

ll< - function(y, mu, sigma2, n){

-0.5*n*log(2*pi*sigma2)-0.5*sum((y-mu)^2)/sigma2

}

# Compute the log-likelihood for the initial values, and ignoring themissing datamechanism

lltm1< - ll(Yobs, mut, sit, n)

repeat{

# E-step

EY< - sum(Yobs)+(n-r)*mut

EY2< - sum(Yobs 2̂)+(n-r)*(mut^2+sit)

# M-step

mut1< - EY//n

sit1< - EY2//n - mut1^2

# Update parameter values

mut< - mut1

sit< - sit1

# compute log-likelihood using current estimates, and igoring the missing data mechanism

llt< - ll(Yobs, mut, sit, n)

# Print current parameter values and likelihood

cat(mut, sit, llt, "\n")

# Stop if converged

if (abs(lltm1 - llt)<0.001) break

lltm1< - llt

}

# fill in missing values with new mu.

return(mut,sit)

}
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EXAMPLE 13.7.5 (MCMC)
Write MCMC algorithm for Example 13.5.4.

Solution

metrop3¼function(n¼1000,eps¼0.5)
{

vec¼vector("numeric", n)
x¼0
oldll¼dnorm(x,log¼TRUE)
vec[1]¼x
for (i in 2:n) {

can¼x+runif(1,-eps,eps)
loglik¼dnorm(can,log¼TRUE)
loga¼loglik-oldll
if (log(runif(1)) < loga) {

x¼can
oldll¼loglik
}

vec[i]¼x
}
vec

}

In addition, if we want to plot the results, use following code:

plot.mcmc<-function(mcmc.out)
{

op¼par(mfrow¼c(2,2))
plot(ts(mcmc.out),col¼2)
hist(mcmc.out,30,col¼3)
qqnorm(mcmc.out,col¼4)
abline(0,1,col¼2)
acf(mcmc.out,col¼2,lag.max¼100)
par(op)

}
metrop.out<-metrop3(10000,1)

plot.mcmc(metrop.out)

With the plot, we get the following output

Continued
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EXAMPLE 13.7.6 (GIBBS SAMPLER)
Write an R code for Example 13.5.5 (b).

Solution
#R program for Gibbs sampling

>

>n¼15

>y0¼1/4

>p¼y0

>x0¼rbinom(1,n,p)

>

>a¼1

>b¼2

>A¼x0+a

>B¼n-x0+b

>X¼matrix(x0,3);Y¼matrix(y0,3)

>
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>for(i in 2:3){#sample from f(y/x)

+Y[i]¼rbeta(1,A,B)

+#sample from f(x/y)

+X[i]¼rbinom(1,n,Y[i])

}

>print(matrix(c(X,Y),3,2))

Output

[,1] [,2]

[1,] 5 0.2500000

[2,] 5 0.4011747

[3,] 4 0.2047587

It should be noted that each time we run the code, we may get different output.

13.7.2 EXAMPLES WITH MINITAB

EXAMPLE 13.7.7
For the data of Example 13.3.2, give the Minitab steps.

Solution
Enter the data in C1. Enter 0.08 (�1/12) 12 times in C2. Then

Calc>Random Data>Discrete. . .>Generate [enter 200] rows of data>Store in column(s):

enter C3-C14>values in: enter C1>Probabilities in: enter C2>click OK

We will get 200 rows of data stored in 12 columns. Because the data are generated randomly from

the original data with replacement, we will consider the row data (C3-C14) as the sample size and
the 200 columns as the number of samples. Thus N¼200, and n¼12. Now for each row we can find

the mean, X
�
i by doing the following.

Calc>Row Statistics. . .>clickMean> in Input variables: enter C3-C14> store results in: enter

C15>click OK

We will get 200 values representing the sample means. To get the bootstrap mean,

Stat>Basic Statistics>Display Descriptive Statistics. . .>Variables: enter C15>click OK

The value in the mean is the bootstrap mean, and the value in the standard deviation is the bootstrap
standard deviation.

If we want to get say, a 95% bootstrap confidence interval, first sort the sample means in

ascending order:

Manip>Sort. . .>Sort column(s): enter C15> store sorted column(s) in: enter C16> sorted by

column: enter C15>click OK

Calculate the values of 0.025� (N+1)¼0.025 x 201¼5.025 and 0.975� (N+1)¼
0.975�201¼195.975. Approximating these values to the nearest integer, we get 5 and 196,

respectively. The lower confidence limit will be the fifth entry in the sorted means, and upper

confidence limit will be the 196th value in the sorted means.
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If we want to obtain a confidence interval for the median, we follow very much

the same steps as before, but instead of using the mean in the procedure, we substitute

the median. For example:

Calc>Row Statistics. . .>click Median> in Input variables: enter C3-
C14> store results in: enter C15>click OK

The rest of the steps are similar.

13.7.1 SAS EXAMPLES
There are %JACK and%BOOTmacros available to do jackknife and bootstrap com-

putations. A good site with example programs from SAS institute is http://ftp.sas.

com/techsup/download/ stat/jackboot.html. Sometimes, PROC IML could also be

used to bootstrap. In the case of multivariate normal data, PROC MI with the EM

option will perform the EM algorithm in SAS. Refer to http://support.sas.com/docu

mentation/cdl/en/statug/63033/HTML/default/viewer.htm#mcmc_toc.htm for the

options available for the MCMC procedure. Example SAS codes could be obtained

from a simple search of the Web for almost all the procedures explained in

this chapter.

PROJECTS FOR CHAPTER 13
13A. BOOTSTRAP COMPUTATION
Use any statistical computer programs to generate random numbers. By specifying

a particular distribution, such as normal with mean 0 and variance 1 or other similar

distributions, we can then generate numbers that follow this distribution. (This can

be done either directly, if your software allows, or by the method described in

Project 4A.)

(a) Use such a package to generate 200 numbers from an N (0, 1) distribution. Then

calculate the sample mean and sample variance. (They will be slightly off from

the actual mean and variance. From this, we can draw the conclusion that the

estimates of data parameters which are computed using the data set are not

necessarily the true parameters, but often are reasonable guesses.) Using these

values, calculate an estimate of the standard error.

(b) Now for the same data, pretend that we are not really sure what the distribution

is. Then, we could consider letting the observed data specify what the

distribution is. This is the essence of bootstrapping. In particular, sample, with

replacement from a distribution that we have observed (the empirical

distribution of the data), in order to study the possible estimates that might have

resulted from a similar sample (same data observations, but in possibly different

quantities). Using the bootstrap algorithm described in Section 13.3, obtain a

bootstrap estimate of the standard error and compare this with the estimate

obtained in part (a).
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OBJECTIVE

In this chapter we discuss some general concepts and useful methods with applica-

tions to real-world problems.

Florence Nightingale

(Source: http://commons.wikimedia.org/wiki/File:Florence_Nightingale_1920_reproduction.jpg)
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Florence Nightingale (1820-1910) is most remembered as a pioneer of nursing

and a reformer of hospital sanitation methods. Her statistical contributions caused

Karl Pearson to acknowledge Nightingale as a “prophetess” in the development

of applied statistics. Nightingale used data as a tool for improving medical and sur-

gical practices. During the Crimean War, she plotted the incidence of preventable

deaths in the military and introduced polar-area charts to demonstrate the unneces-

sary deaths due to unsanitary conditions. With her analysis, Florence Nightingale

showed the need for reform and revolutionized the idea that social phenomena could

be objectively measured and subjected to mathematical analysis. In addition, she

developed a Model Hospital Statistical Form for hospitals to collect and generate

data and statistics. She became a Fellow of the Royal Statistical Society in 1858

and an honorary member of the American Statistical Association in 1874.

14.1 INTRODUCTION
Basically, there can be three major problems in applying the statistical methods that

we have studied in the previous chapters to real-world problems. These involve

sources of bias, errors in methodology, and the interpretation of the analytical
results. Bias occurs in situations or conditions that affect the validity of statistical

results. In order for the statistical inferences to be valid, the observed sample must

be representative of the target population, and the observed variables must conform

to assumptions that underlie the statistical procedures to be used. Of course the sta-

tistical methodology chosen must be also appropriate for the problem under study.

We must be careful with the interpretation of the statistical results. For example, in a

regression problem, a cause-and-effect relationship may not be warranted, or in a

hypothesis testing problem, wemay not accept the null hypothesis, without exploring

the probability of type II error. If we present the results graphically, the graphs should

be accurate and should reflect the data variations clearly.

In this textbook, we have assumed that a data set is available to us: Either it is a

small data set that we can handle without much effort, or it is in a computer-readable

file. In practical situations, the proper handling of a statistical data set is not an easy

task. Going from a stack of disorganized hard copy to online data that are trustwor-

thy, that is, to input, debug, and manipulate the data, is a problem one will face even

before one starts the statistical analysis. Here, we will not be dealing with these

issues. Interested readers should refer to the references at the end of this book for

further study on these aspects.

It is not our aim to discuss comprehensively all the problems that come up in

applications. Most of the material presented in this chapter has already been dis-

cussed in various parts of the book. One of the problems we face when we study

a book of this sort is that the problems of each chapter, say, Chapter 6 on hypothesis

testing, we know that we only need to use the techniques of that section, at most of

that chapter. For the parametric analysis, in Chapter 7, we gave ways to do goodness-

of-fit for choosing particular distribution. In a real-world situation, we will not be

able to look at the data analysis in a chapter by chapter manner. The purpose of this
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chapter is to present some methods in a unified way and to discuss generally the

various ways in which the techniques developed in previous chapters could be

applied to real-world data. Because the material in this chapter is a collection of

available techniques, we will not follow the more rigorous pattern of previous

chapters, and no proofs will be given.

14.2 GRAPHICAL METHODS
We first present some useful graphical methods that were not introduced in Chapter 1

on descriptive statistics. Graphical analysis is a very important aspect of any statis-

tical study. Before attempting a complex statistical analysis, summarize the data with

a graph. Graphical displays of data analysis help in data exploration, analysis, and

presentation and in communication of results. In data analysis, one of the significant

steps is to summarize and plot the data. Graphs help in the communication of final

results and recommendations inferred from quantitative models. A statistical model

is often suggested by an initial graphical analysis. Adequacy of statistical models

depends on the model conditions. Because the violations of these model assumptions

may sometimes occur as nonlinearities, graphical methods provide an easy and

perhaps very effective method of detection. Some examples of graphical displays

are the histograms, dotplots, box plots, and scatterplots. Methods of graphing

multivariate data are more complex and include scatterplot matrices, and icon plots.

These are beyond the level of this book.

If we have a data set with one variable (univariate), we first create a dotplot and

summary of basic statistics. In a dotplot, we plot the data as dots (one dot for each

observation) above the horizontal axis that covers the entire range of observations

(see Figure 14.1). The dotplot will provide us with an idea of the distribution of

the data and any unusual behavior of the data that may not be apparent from summary

statistics such as mean, median, or standard deviation. The dotplots allow us to

visualize the entire distribution of the data set by listing each possible outcome

and the frequency of the variable. Other ways of summarizing univariate data, such

as histograms, have been discussed in Chapter 1. The histogram differs from the

dotplot in that it groups data into categories. We illustrate these problems with sev-

eral examples.

EXAMPLE 14.2.1
The following data give the lifetime of 30 light bulbs (rounded to nearest hour) of a particular type.

1122 922 1146 1120 1079 905 1095 977 1138 966

1150 977 1137 1088 1139 1055 1082 1053 1048 1132

1088 996 1102 1028 1130 1002 990 1052 1116 1135

Construct a dotplot.

Solution
Figure 14.1 is the dotplot for these data.

Continued
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The dotplot suggests a distribution that is skewed toward the right, because most of the obser-

vations are located to the right.

Some of the graphing methods can also be applied to compare two variables—for

example, their frequency distributions. For instance, dotplots could also be used

to compare bivariate (two variables) or multivariate (many variables) data. When

we have independent samples, side-by-side box plots could be used for comparing

two sample distributions in terms of their centers, dispersions, and skewnesses.

When there are two variables, a scatter plot is used as one of the basic graphic

tools to examine the relationship between two variables.

The scatterplot in Figure 14.2 for two variables x and y indicates a possible linear
relation between x and y. The strength of the relationship between two variables is

often represented through a correlation statistic. It should be noted that the correla-

tion coefficient is a single number that is easy to calculate and comprehend, though it

only measures the strength of a linear relationship and hence is often used as the

primary statistic of interest. However, scatterplots provide information about the

strength of association, not necessarily linear, between variables. In addition,

scatterplots help us understand other aspects of the data, such as the range. Given
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FIGURE 14.2

Scatterplot.
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FIGURE 14.1

Dotplot for lifetime of light bulbs.
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n observations on two variables, X and Y, we plot a character or symbol at n points

representing (xi, yi). If two or more observations in a scatterplot are identical, the

plotted symbols will coincide, masking possibly important information.

EXAMPLE 14.2.2
The following data give the cholesterol levels before a certain treatment and after four months of the

treatment.

Before 235 212 277 262 162 212 226 252 185 276

216 315 289 283 234 223 275 282 311 285

After 233 214 200 266 146 212 238 284 191 247

244 268 241 289 220 202 221 196 212 247

Draw a scatterplot. Also find the correlation between before- and after-treatment values.

Solution
Figure 14.3 is a scatterplot of the data.

Looking at the scatterplot in Figure 14.3, we see a trend in the cholesterol levels before and

after the treatment. Correlation of before- and after-treatment data is measured by r, where

r¼
Xn

i¼1
xi�xð Þ yi�yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi�xð Þ2P yi�yð Þ2
q :

The quantile-quantile (QQ) plot is another useful technique in comparing bivariate

data. In a QQ plot, the quantiles of the two samples are plotted against each other. For

two distributions that are almost the same, their quantiles would be nearly equal. As a
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FIGURE 14.3

Scatterplot for cholesterol levels.
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result, the quantiles would plot along the 45-degree line. Deviation of plots from this

line can be used to draw inferences about how the two samples differ from one

another. If the two sample sizes n1 and n2 are equal, then we can draw the QQ plot

by graphing the order statistics x(i) and y(i) against each other. If the two samples are

not of the same size, then we can use the following procedure to create the QQ plot. If

n1>n2, then draw the (1/(ni+1))th quantiles of the two samples against each other.

For a large sample, they are the order statistics, x 1ð Þ < � � �< x n1ð Þ. For the smaller sam-

ple sizes, the pth quantile value is obtained by using the following formula:

exp ¼ xp n+ 1ð Þ, if p n+ 1ð Þ, is an integer

x mð Þ + p n + 1ð Þ�m½ � x m+ 1ð Þ �x mð Þ
� �

, if p n+ 1ð Þ, is a fraction

�
(14.1)

where m denotes the integer part of p(n+1). It should be noted that a QQ plot is not

useful for paired data because the same quantiles based on the ordered observations

do not, in general, come from the same pair.

EXAMPLE 14.2.3
Draw a QQ plot for the data given in Example 14.2.2.

Solution
Here n1¼n2¼20. First sort the data in ascending order.

Before 162 185 212 212 216 223 226 234 235 252

262 275 276 277 282 283 285 289 311 315

After 146 191 196 200 202 212 212 214 220 221

233 238 241 244 247 247 266 268 284 289

Because the QQ plot points lie mostly below the 45-degree line, we may conjecture that the

cholesterol level before is generally higher than that after (Figure 14.4).
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FIGURE 14.4

Q-Q plot for cholesterol levels.
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We saw in Chapter 1 that box plots could be used for identification of outliers. To

summarize, we emphasize that graphical procedures, although preliminary, are an

integral part of any statistical analysis.

14.2 EXERCISES
14.2.1 In order to study any possible relationship between expense and return, the

following data give percentage of expense ratio and total one-year return for

randomly selected stock mutual funds for the year 2000 (source: Money,
February 2000).

% Expense ratio 1.03 1.80 1.90 1.53 1.03 2.06 3.20 0.49 1.10 1.07

1.48 1.30 1.23 1.22 1.60 1.50 1.81 1.75 0.97 1.28

% Return 7.3 9.5 32.2 11.0 19.5 7.3 25.1 10.2 1.5 7.9

18.9 26.1 3.4 3.7 23.5 2.9 14.5 14.9 22.7 21.9

Draw a scatterplot. Also find the sample correlation of percent expense

ratio and percent return.

14.2.2 In order to study any possible relationship between age and change in

systolic blood pressure (BP) (mm Hg) in 24 h in response to a treatment, the

following data were obtained from 11 individuals.

Age 70 51 65 70 48 70 45 48 35 48 30

Systolic BP
change

�28 �10 �8 �15 �8 �10 �12 3 1 �5 5

(a) Draw a scatterplot.

(b) Find the sample correlation of age and systolic BP.

(c) Fit a least-squares regression line.

(d) Interpret (a), (b), and (c).

14.2.3 The following data represent 15 randomly selected state finances: revenue

and expenditures (in millions of dollars) for the fiscal year 1997 (source: The
World Almanac and Book of Facts 2000).

Revenue: 9439
26,538

8845
5,537

14,520
6,494

24,028
2818

39,038
49,318

5215
4229

20,128
7724

7467

Expenditure: 5722
25,791

7685
4808

13,862
5130

21,975
2426

35,302
39,296

4441
4002

16,200
6818

7145

(a) Draw a scatterplot.

(b) Find the sample correlation between revenue and expenditure.

(c) Draw a QQ plot.

(d) Interpret (a), (b), and (c).
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14.2.4 The following data give birth rates (per 1000 population) for 20 selected

states in 1998 (source: The World Almanac and Book of Facts 2000).

14:4 16:3 13:5 14:6 13:7 15:6 10:9 12:8 13:0 14:2
13:4 13:9 15:9 13:3 14:1 15:7 15:2 13:9 15:4 11:3

:

14.2.5 Construct a dotplot and interpret.
The following data give the median prices (rounded to nearest $1000) of

single-family homes for 18 randomly selected US cities in 1998 (source: The
World Almanac and Book of Facts 2000).

128 146 109 90 105 152 79 89 109

93 108 128 188 158 93 78 123 137

Construct a dotplot and interpret.

14.3 OUTLIERS
All statistical procedures make assumptions about a population and the sample

values obtained from the population. Before we proceed to analyze the data, we must

check to see if there are any outliers, that is, data points that do not belong in the data

set or are not in line with the rest of the data.

Outliers are observations that appear to have an abnormal value as compared with

the rest of the values in the data set; that is, the value of an outlier is either much

higher or significantly lower than any other value in the data set. An outlier could

be a discordant observation or a contaminant. A discordant observation is one that

appears surprising or discrepant to the investigator and is to some extent subjective.

A contaminant is an observation that is from a different distribution than the rest of

the data. Outliers may occur as a result of some limitations on measuring techniques

or recording errors. They may also be due to the sample not being entirely from the

same population. Extreme values in a data set could also be due to a skewed

population. It should be noted that sometimes a data point that is labeled as an outlier

may really be indicative of a novel phenomenon. In these cases, an extreme

observation may not be classified as an outlier.

The presence of outliers can dramatically affect the estimate of the mean and

variance of the sample, especially if the sample size is small. As a result, any test

statistic computed from such data would be unreliable, and so would be the statistical

inferences. For example, presence of outliers might lead to an incorrect conclusion

that the variances of two samples are not equal if the outlier is the result of a record-

ing or measurement error.

In a controlled experiment, such as in a laboratory setting, good record

keeping with a clear understanding of the phenomenon under investigation and

information about all the data will minimize the occurrence of outliers due to

recording errors.
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What to do with outliers? As long as these points remain observations, we cannot

throw them out on a whim. There are basically two methods that are employed in

dealing with outliers. One method is to use statistical testing procedures to detect

outliers, possibly removing them from the data set if we know that these are

measurement errors, incorrectly entered values, or impossible values in real life,

and letting the analysis deal only with the rest of the data. The second method is

to use statistical procedures, such as nonparametric tests or data transformations, that

are immune or only minimally sensitive to the presence of outliers. Of course, we

could run the analysis both with and without the outliers and report both results.

We now present some commonly used tests for labeling outliers.

In data analysis, it is necessary to label suspected outliers for further study. For

normally distributed data, we give three simple methods to identify an outlier:

z-score, modified z-score, and box plot.

In a z-test, first find the z-scores of the entire data set and label any observation

with a z-score greater than 3 or less than�3 as an outlier. Recall that for the observed

values x1, . . ., xn, the z-score is defined by

zi ¼ xi� x

s

where s is the sample standard deviation of the sample, that is,

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Xn
i¼1

xi� xð Þ2
s

:

Because both the sample mean and the sample standard deviation are affected by the

outliers, this labeling method is not very reliable.

In a modified z-score test, the median of absolute deviation (MAD) about the

median is used. Let

MAD¼median xi�mj jð Þ
where m is the median of the observations. Then

zi ¼ xi� xð Þ
MAD

:

An observation is labeled as an outlier if the corresponding modified z-score is

greater than 3.5. A normal plot may be used for testing normality for the data.

If we want a reasonably robust distribution-free test, an observation x0 is labeled
as an outlier if

x0�mj j
MAD

> 5:

Here, the choice of 5 is somewhat arbitrary.

A box plot (also called box-and-whisker plot) gives a method of labeling outliers

through a graphical representation. We have seen the method of construction of box

plots in Chapter 1. A box plot consists of a box, whiskers, and outliers. We draw a
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line across the box at the median. For example, in Minitab, the bottom of the box is at

the first quartile (Q1) and the top is at the third quartile (Q3). The whiskers are the
lines that extend from the top and bottom of the box to the adjacent values, the lowest

and highest observations still inside the region defined by the lower limit Q1�1.5

(Q3�Q1) and the upper limit Q1+1.5(Q3�Q1). Outliers are points outside the

lower and upper limits, plotted with asterisks (*).

EXAMPLE 14.3.1
The following data give the hours worked by 25 employees of a company in a randomly selected

week.

45 40 39 36 42 40 55 58 42 41

48 50 47 54 40 34 18 40 60 56

42 43 46 43 54

Label all possible outliers using:

(a) z-Score test, distribution-free test, and modified z-score test.

(b) Box plot.

Solution
(a) We can create Table 14.1, where dfree z stands for the distribution-free scores, and modified

stands for the modified z-scores. By the z-score test, there are no outliers. Using the

distribution-free test, the 18 is the only outlier. By the modified z-score test, 18 and 60 are pos-

sible outliers.
(b) The box plot is given in Figure 14.5.

Hence the observation 18 is identified as an outlier using the box plot.

Table 14.1 Hours Worked and Modified Scores

Data z-Score dfree z Modified

45 0.05355 0.12 0.12

40 �0.50427 1.13 �1.13

39 �0.61583 1.38 �1.38

36 �0.95053 2.13 �2.13

42 �0.28114 0.63 �0.63

40 �0.50427 1.13 �1.13

55 1.16919 2.62 2.62

58 1.50389 3.75 3.37

42 �0.28114 0.63 �0.63

41 �0.39271 0.88 �0.88

48 0.38824 0.87 0.87

50 0.61137 1.37 1.37

47 0.27668 0.62 0.62

54 1.05763 2.37 2.37

40 �0.50427 1.13 �1.13
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Once we identify the outliers, then the question is what to do with them. If we can

rule out recording errors as the source of outliers, the situation becomes more diffi-

cult. It is often impossible to say whether an outlier is really an extreme value within

a skewed population or whether it represents a value drawn from a different popu-

lation. As we indicated earlier, an outlier can be a legitimate observation representing

special feature of the sample population. In those cases, discarding the outliers may

simplify the statistical analysis, although it also reduces the usefulness of such anal-

ysis. Understanding the experiment that generated the data might help in determining

whether to discard or keep the outliers.

Once we decide to include the outliers, there are two possible ways to deal with

them. One is to transform the data, such as by taking the natural logarithm, so as to

reduce the undue influence of the outliers. Another possibility is to perform the anal-

ysis twice, with and without outliers, and report both results.

If we have bivariate data, a scatterplot may reveal any possible outliers; see

Figure 14.27. There are other methods available to detect multivariate data.

34 �1.17366 2.63 �2.63

18 �2.95868 6.63 �6.63

40 �0.50427 1.13 �1.13

60 1.72701 3.87 3.87

56 1.28076 2.87 2.87

42 �0.28114 0.63 �0.63

43 �0.16958 0.38 �0.38

46 0.16512 0.37 0.37

43 �0.16958 0.38 �0.38

54 1.05763 2.37 2.37

60

50

40

30

20

C
1

FIGURE 14.5

Box plot for hours of work per week.
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14.3 EXERCISES
14.3.1 Motor vehicle thefts are a big problem in cities. Table 14.3.1 displays data

on motor vehicle thefts per 100,000 population in the year 1997 for 15

randomly selected large US cities (source: Statistical Abstracts of the United
States, 1999).

Label all possible outliers using:

(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.2 For the data of Example 14.2.1, label all possible outliers using:

(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.3 The following data represent test scores of 36 randomly selected students

from a large mathematics class.

67 63 39 80 64 95 90 93 21 36 44 66

100 66 72 34 78 66 68 98 74 81 71 100

60 50 81 66 90 89 86 49 77 63 58 43

Label all possible outliers using:

(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.4 The following data represent the number of days in 1997 on which selected

US metropolitan areas failed to meet acceptable air-quality standards at

trend sites (source: The World Almanac and Book of Facts 2000).

26 55 30 8 9 15 0 12 3 50 16

47 0 63 3 0 19 23 3 32 15 20

106 2 15 1 14 0 1 44 28

Label all possible outliers using:

(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

Table 14.3.1 Motor Vehicle Thefts per 100,000 Population

Chicago, IL 1215.1 San Antonio, TX 830.0

Columbus, OH 1109.9 Charlotte, NC 780.1

Nashville, TN 1536.5 Tucson, AZ 1403.3

Albuquerque, NM 1797.8 Atlanta, GA 1869.7

Sacramento, CA 1630.5 St. Louis, MO 2152.8

Toledo, OH 939.7 Tampa, FL 1410.0

Birmingham, AL 1219.7 Anchorage, AK 532.8

Norfolk, VA 519.9
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14.4 CHECKING ASSUMPTIONS
With some exceptions, checking data for agreement with assumptions is not a topic

that is strongly emphasized in other textbooks at this level. Even in more advanced

books, this step is frequently omitted. In order for the inferences to work correctly,

the measured variables must conform to assumptions that underlie the statistical

procedures to be applied. In hypothesis testing such as the t-tests and ANOVA,

we made some fundamental assumptions that the random samples need to satisfy

for the tests to yield correct results.

As an example the basic assumptions underlying a t-test are:

(i) The sample comes from a normal population.

(ii) The sample is random. In case of two sample tests (excluding paired tests),

the measurements in one sample are independent of those in the other

sample.

(iii) When we are given two random samples, most of the results assume the

equality of population variances, that is, s1
2¼s2

2. This assumption is called

the homogeneity of variances. The test for equality of variance may have to be

performed first if we doubt the equality of the variance.

Likewise, analysis of variance is based on a model that requires the following

three primary assumptions:

(i) The samples come from normal populations.

(ii) Each of the samples is randomly selected from each group, and the samples are

independent of each other.

(iii) The population variances for all the samples are equal. That is, if we have k
populations with variances s1

2, i¼1, 2, . . ., k, then s1
2¼s2

2¼� � �¼sk
2.

When we say we have a random sample, we implicitly assume that the data are

identically distributed. The presence of outliers in an observed sample may affect

such an assumption.We now explain a few tests for checking these assumptions such

as the assumptions of normality, data transformations, and equality of variances.

14.4.1 CHECKING THE ASSUMPTION OF NORMALITY
We start with the assumption of normality. Let us consider the example of randomly

selected scores of 28 calculus students.

EXAMPLE 14.4.1
Given in the following tableare the test scoresof28 randomly selectedstudents fromacalculus1class.

86 95 82 53 98 85 87 80 49 71 99 40 96 97

94 89 69 23 72 76 78 91 96 77 77 91 35 47

Continued
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Construct a dotplot and a histogram, and compute the percentage of observations that fall in the

intervals x� s, x�2s, and x�3s:

Solution
The dotplot is shown in Figure 14.6.

The histogram is shown in Figure 14.7.

We have x¼71.18 and s¼20.99. Also, 57% of the random sample (i.e. 16 observations) fall in

the interval 71.18�20.99¼ (50.19, 92.17). There are 27 observations, or about 96%, that fall in
71.18�41.98¼ (29.2, 113.16), and all the observations fall in 71.18�62.97¼ (8.21, 134.94). This

suggests that the data set is approximately normally distributed. This procedure is the

empirical rule.

For the previous example, we have seen that the dotplot does not suggest any

normality. A histogram also does not suggest any normality (see Figure 14.7).

However, if we used the empirical rule as a test for normality, the data suggest

normality. Clearly this leads to a conflicting situation with a simple theoretical check

suggesting normality, while visual displays suggest nonnormality. In this case more

sophisticated procedures are warranted.

24 36 48 60 72 84 96

FIGURE 14.6

Dotplot of student scores.
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FIGURE 14.7

Histogram for student scores.
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Sometimes, skewness and kurtosis can be used to test for tilt in and peakedness of

a distribution. After getting skewness and kurtosis from the descriptive statistics,

divide these by the standard errors. If both skew and kurtosis are within the�2 range,

the data can be considered normal.

We mention some sophisticated testing procedures for two of the most important

of the parametric assumptions when running single-factor trials, namely, normality

and homogeneity of variance. We have already seen in Project 4C how to construct a

normal probability plot and to check for normality. In this chapter, we will use the

Minitab normal plot to check for normality. Figure 14.8 graphs a normal probability

plot (using Minitab) for Example 14.4.1.

We see that the test scores follow the straight line on the normal probability plot

pretty well. The serious departures occur for the last four scores, because the values

fall well above the line. This suggests normality with possible outliers.

It should be noted that for skewed data, in the normal probability plot, positively

skewed data fall below the straight line, whereas the negatively skewed data rise

above the straight line. A normal probability plot for the lifetime of 30 light bulbs

in Example 14.2.1 is given in Figure 14.9.

This graph suggests that the data may not be normal and are more toward

negatively skewed. Figure 14.10 is a normal probability plot for 30 data points

generated from a standard normal distribution.

In this textbook, we have presented only simple graphical tests for testing of

normality. We should mention that in the literature, a variety of procedures for
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testing for normality are available, including the Kolmogorov-Smirnov test, the

Shapiro-Wilks W test, and the Lilliefors test. Some of these tests are incorporated

in statistical software packages such as Minitab and could be performed as easily as

the graphical tests. If the sample size is very small, with any of these tests it may be
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Normal probability plot for the lifetime of light bulbs.
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difficult to detect assumption violations. It is important to keep in mind that these

tests are only rough indicators of assumption violations. For small sample sizes,

even when the tests show that none of the test assumptions is violated, a normality

test may not have sufficient power to detect a significant departure from normality,

though it is present.

14.4.2 DATA TRANSFORMATION
Many data in real life do not meet the assumptions of parametric statistical tests: they

may not be normally distributed, the variances may not be homogeneous, or both.

Using most of the parametrical tests on those data may give a misleading result. Data

transformation uses mathematical operations (filters) on each of the observations,

transforming the original scores into a new set of scores. An appropriate transforma-

tion may (i) reduce the influence of outliers, (ii) make data, from a nonnormal

distribution, more normal, and/or (iii) make the variances of different data sets more

homogeneous. Some of the more commonly used transformations are (i) power

transformations such as square root, (ii) logarithm, (iii) reciprocal, and (iv) arcsine.
Used correctly, data transformation can be a useful tool for the practitioner. Some of

these transformations can be put into a popular class of transformations called the

Box-Cox power law transformation

y¼ xl�1

l

where l can be optimally adjusted from 0 to 1. For example, as l!0, we obtain the

y¼ ln x (logarithmic filter) transformation, and when l¼1/2, we get the square root

transformation.

Even though we have done a statistical test on a transformed variable, it is not a

good idea to report the summary statistics such as mean, standard errors, etc. in trans-

formed units. We should back transform by doing the opposite of the mathematical

function we used in the data transformation. For instance, if we had originally used

the natural logarithm, we should use exponential transformation as the back

transformation. For instance, if we got a symmetric confidence interval for

transformed mean as in Chapter 5 which is symmetric for a ln transformed data,

we should take exponentials of the lower and upper limits. In the process, we

may lose the symmetry of the confidence interval.

As we have seen in Project 9A, it is sometimes possible to use appropriate data

transformations to transform nonnormal data into approximately normal data. Then

we can use this normality property to perform statistical analysis on these trans-

formed values. For instance, if the distribution of data has a long tail (which could

be seen by drawing a histogram of observations) or a few laggards on the right (which

could be seen by drawing a dotplot of observations), the
ffiffiffi
x

p
or ln x transforms will

pull larger values down further than they pull the smaller or center values. Sometimes

it is necessary to try several different transformations (trial and error) in order to find

one that is more appropriate.
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EXAMPLE 14.4.2
Consider the following data from an experiment.

1:15 3:84 0:01 2:06 3:28 2:61 0:59 3:19 1:32 1:07
7:80 1:74 0:25 0:21 3:42 4:52 0:43 0:38 0:07 1:26
4:03 7:28 0:85 3:24 0:62

(a) Draw a histogram and normal plot.

(b) Take the transform y¼ ffiffiffi
x

p
and draw a histogram and normal plot for the transformed data.

Solution
(a) The histogram and normal plots for the data are shown in Figures 14.11 and 14.12.These graphs

clearly show that the data do not follow a normal distribution.
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A histogram of the data.
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(b) The histogram and normal plot for the transformed data are shown in Figures 14.13

and 14.14. With this transformation (filter), we can see that the filtered data follow normality

We have only pointed out transformations in single-variable cases. The transfor-

mation methods are also useful in multivariable and multi-factor studies; however,

these involve more difficult analysis.
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Histogram of the transformed data.
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14.4.3 TEST FOR EQUALITY OF VARIANCES
Now we discuss the tests for equality of variances, that is, the tests for heteroscedas-

ticity. Our recommendation is that, in a real-world problem, after accounting for out-

liers one should conduct tests for normality and heterogeneity of variance routinely

before analyzing any data. Here, we give two tests. One, for the two-sample case, is

based on the F-test, and for the multisampling case we give Levene’s test based on

analysis of variance procedures. Albert Madansky’s book Prescriptions for Working
Statisticians (Springer-Verlag, 1988) gives various other tests for normality and

heteroscedasticity.

(a) Testing Equality of Variances for Two Normal Populations
The following procedure has already been discussed in the hypothesis testing

chapter. For the sake of completeness, here we again briefly discuss this procedure.

Let X11, . . . , X1n1
be a random sample from an N(m1,s1

2) distribution and

X21, . . . , X2n2 be a random sample from an N(m2,s2
2) distribution. Assume that the

X1i ’ s and X2j ’ s are independent of each other for all i, j. Let

xi ¼ 1

ni

Xni
j¼1

xij, i¼ 1,2:

Assuming that m1 and m2 are unknown, we can test the hypothesis that s1
2¼s2

2 based

on the ratio

F¼ s21
s22
¼
Xn1

j¼1
x1j� x1
� �

2= n1�1ð ÞXn2

j¼1
x2j� x2
� �

2= n2�1ð Þ
:

We know that (n1�1)s1
2/s1

2 has a w2(n1�1) distribution and (n2�1)s2
2/s2

2 has a

w2(n2�1) distribution. Therefore, under the null hypothesisH0 : s1
2¼s2

2, the statistic

F has an F(n1�1, n2�1) distribution.

Based on the alternate hypothesis, we will reject the equality of variance

assumption if the test statistic falls into the appropriate tail of the F-distribution.
For example, if Ha : s1

2>s2
2 with a¼0.05, we would reject H0 when F>F0.95

(n1�1, n2�1), and if Ha :s1
2<s2

2 with a¼0.05, we would reject H0 when

F�F0.05(ni�1, n2�1). When Ha : s1
2 6¼s2

2 with a¼0.05, we would reject H0 when

F�F0 975(n1�1, n2�1) or F�F0 025(n1�1, n2�1). It should be noted that in the

case of a two-sided alternative, this procedure is not the best one in the sense of

minimizing the type II error. However, for simplicity, we will not discuss the opti-

mal two-tailed procedure.

EXAMPLE 14.4.3
An aquaculture farm takes water from a stream and returns it after it has circulated through the fish

tanks. Suppose the owner thinks that, because the water circulates rather quickly through the tank,

there is little organic matter in the effluent. To find out, some samples of the water are taken at the

intake and other samples are taken at the downstream outlet, and tests are performed for biochemical

oxygen demand (BOD). If BOD increases, it can be said that the effluent contains more organic

matter than the stream can handle. Table 14.2 gives the data for this problem.
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(a) Using normal plots, check for normality of each sample.

(b) Test for the equality of variances of the BOD for the downstream and upstream samples at

a¼0.05.

Solution
(a) The normal plots are shown in Figures 14.15 and 14.16.The BOD data for the downstream and

upstream samples are approximately normal.

(b) We test H0 : s1
2¼s2

2 versus Ha: s1
2 6¼s2

2. We have n1¼n2¼10, and a¼0.05. Because the nor-
mal plots of each sample conform with the normality assumption, we can use the F-statistic:

F¼ s21
s22
¼ 0:729ð Þ2

0:654ð Þ2 ¼ 1:2425:
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Normal plot of upstream data.

Table 14.2 Biochemical Oxygen Demand

Upstream Downstream

7.863 8.132

5.714 9.128

5.871 7.574

6.479 8.678

7.124 9.336

7.539 8.798

6.682 8.457

5.877 9.756

6.227 8.548

6.771 7.992
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From the F-table, the rejection region is {F�F0.025(9, 9)¼0.248} or {F>F0.975(9, 9)¼4.03}.

Because the observed value of the test statistic does not fall in the rejection region, we conclude

based on the sample evidence that the variances of the two populations are equal.

(b) Test for Equality of Variances, k�2 Populations
Generalizing to k populations, let Xi1 , Xi2 , . . . , Xini be a random sample from

N(mi,si
2) distributions for i¼1, 2, with both mi0s and si0s unknown. Also assume that

Xij, Xkl are independent for all (i, j), (k, l). We wish to test the hypothesis

H0 :s1
2¼s2

2¼�� �¼sk
2 against Ha: At least one of the si

2 is different. There are many

tests available. One of the basic graphical procedures is to use a side-by-side box

plots (see Example 10.3.1). We describe Levene’s test based on the analysis of

variance (source: Levene, 1960).

Let yij ¼ jxij� xi j: Now perform an analysis of variance test for equality of the

means of the yij. Let

n¼
Xk
i¼1

ni, yi:¼
Xni
j¼1

yij=ni and y ..¼
Xk
i¼1

Xni
j¼1

yij

�Xk
i¼1

ni:

The analysis of variance statistic is

z¼
Xk

i¼1
ni yi:�y ..
� �2

= k�1ð ÞXk

i¼1

Xni

j¼1
yij� yi:

� �2

= n�kð Þ
¼MST

MSE
:

Recall that MST (mean square for treatments) and MSE (mean square error) were

defined in Section 10.3; the MST is a measure of the variability between the sample
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Normal plot of downstream data.
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means of the groups and the MSE is a measure of variability within the groups. For a

95% confidence level, the rejection region is {z>F0.95 (k�1, n�k)}.
It shouldbenoted that the yij is not independent, but the analysis of variancemethod

is found to be robust against the deviation from this assumption of independence.

EXAMPLE 14.4.4
The three random samples in Table 14.3 are independently obtained from three different normal

populations.

At the a¼0.05 level of significance, test for equality of variances.

Solution
We test H0 : s1

2¼s2
2¼s3

2 versus Ha: Not all the si
2 are equal. For this sample, x1 ¼ 76, x2 ¼ 66:33,

and x3 ¼ 85:67. Also n¼11, and k¼3. Letting yij ¼ jxij�xi j, we obtain the following yij values:

12 10.33 4.67000

8 7.67 6.33000

1 2.67 1.67000

1

4

The test statistic is

z¼
Xk

i¼1
ni yi:� y ..
� �2

= k�1ð ÞXk

i¼1

Xni

j¼1
yij�yi:

� �2

= n�kð Þ

¼MST

MSE
¼ 5:5

16:5
¼ 0:33:

From the F-table, the 95% point is F0.05(2, 8)¼4.46. Hence the rejection region is {z>4.46}.

Because the observed value of z¼0.33 does not fall in the rejection region, the null hypothesis is not

rejected, and we conclude that the assumption of equality of variances seems to be justified.

Through our tests, if we find that the homogeneity of variance of the data is violated

significantly, then nonparametric tests are more appropriate. Another popular test for

equality of variance is Bartlett’s test.

14.4.4 TEST OF INDEPENDENCE
Almost all the results in this book assume that we have independent random samples.

In the situation where we suspect that the sample data may not be independent, per-

form a run test as described in Project 12B to test for independence. There are

Table 14.3 Three Independent Samples from Normal Population

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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parametric procedures available to test independence; however, the run test is inde-

pendent of the distributional assumptions and simpler to perform. In general, whether

the two samples are independent of each other is decided by the structure of the

experiment from which they arise. In case of correlated samples, such as a set of

pre- and post-test observations on the same subject that are not independent, a

two-sample paired test may be more appropriate. Another popular method used to

check for independence is the chi-squared test of independence; see Section 7.6.2.

For time series data, the Durbin-Watson test (http://www.alchemygroup.net/Permu

tation%20Durbin-Watson%20Final.pdf) is effective.

In practical sampling situations, the underlying populations are unlikely to be

exactly normally distributed with homogeneity of variances. Both t-tests and

ANOVA are robust for reasonable departures in some of these assumptions.

However, these tests may not be robust with respect to certain other assumption

violations. For example, ANOVA is quite sensitive to the violation of independence

assumption. These factors need to be given special attention in data analysis.

14.4 EXERCISES
14.4.1 The scores of 25 randomly selected students from a large calculus class are

given below

47 73 90 22 68 86 94 32 88 86

80 97 48 70 61 82 67 73 78 55

63 59 42 46 90

(a) Test the data for normality.

(b) If the data are not normal, try a suitable transformation (filter) to make

the transformed data normal.

14.4.2 Refer to Example 14.3.1. Suppose we use the transformation yi¼ ln xi for
each observation.

(a) Test whether the transformed data are normal.

(b) Determine whether the data value 18 is still an outlier in the

transformed data set.

14.4.3 The data shown in the following table related to the concealed weapons

permits issued in 13 randomly selected Florida counties in 1996.

31,603 20,873 15,963 10,294 8956 7901 6820

5695 5485 4827 3969 3278 1731

(a) Test whether the data are normal.

(b) If not, try a suitable transformation tomake the transformed data normal.

14.4.4 The following table represents a summary by state forMedicare enrollment

(in thousands) for 15 randomly selected states in 1998 (source: Statistical
Abstracts of the United States, 1999).

665 3,757 623 757 541 448 478 2,728 103 771

224 86 623 1,373 713
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(a) Test to determine whether the data are normal.

(b) If not, try a suitable transformation to make the transformed data

approximately normal.

(c) Test for outliers. If an observation is extreme, would you classify it as

an outlier?

14.4.5 Given in the following table are 15 randomly selected state expenditures

(in millions of dollars) for the fiscal year 1997 (source: TheWorld Almanac
and Book of Facts 2000).

5722 7685 13,862 21,975 35,302 4441 16,200 25,791

4808 5130 2426 39,296 4002 6818 7145

(a) Test the data for normality.

(b) If the data are not normal, try a suitable transformation to make the

transformed data approximately normal.

14.4.6 For the data of Exercise 14.3.4.

(a) Test whether the data are normal.

(b) If not, try a suitable transformation to make the transformed data

approximately normal.

14.4.7 The following data give in-city mileage per gallon for 25 small and midsize

cars (source: Money Magazine, March 2001).

25 23 20 20 27 26 20 32 25 22

24 21 28 20 22 19 21 29 23 32

23 52 24 24 22

(a) Test to determine whether the data are normal.

(b) If not, try a suitable transformation to make the transformed data

approximately normal.

(c) Test for outliers. If an observation is extreme, would you classify it as

an outlier?

14.4.8 The following table gives in-state tuition costs (in dollars) for 15 randomly

selected colleges taken from a list of the 100 best values in public colleges

(source: Kiplinger’s Magazine, October 2000).

3788 4065 2196 7360 5212 4137 4060 3956 3975 7395

4058 3683 3999 3156 4354

(a) Test for outliers.

(b) Test whether the data are normal.

14.4.9 For the data of Exercise 14.2.1, test for equality of variances.

14.4.10 For the data of Exercise 14.2.3, test for equality of variances.

14.4.11 The following data represent a random sample of end-of-year bonuses for

lower-level managerial personnel employed by a large firm. Bonuses are

expressed in percentage of yearly salary.

Female 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7

Male 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8
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Test for equality of variances. State any assumptions you have made, and

interpret your result.

14.4.12 In an effort to investigate the premium charged by insurance companies for

auto insurance, an agency randomly selects a few drivers who are insured

by three different companies. These individuals have similar cars, driving

records, and level of coverage. Table 14.4.1 gives the premiums paid per

six months by these drivers with these three companies.

Test for equality of variances. State any assumptions you have made,

and interpret your result.

14.4.13 Three classes in elementary statistics are taught by three different persons,

a regular faculty member, a graduate teaching assistant, and an adjunct

from outside the university. At the end of the semester, each student is

given a standardized test. Five students are randomly picked from each of

these classes, and their scores are as shown in Table 14.4.2.

Test for equality of variances. State any assumptions you have made,

and interpret your result.

14.5 MODELING ISSUES
A model is a theoretical description in the language of mathematical statistics of a

physical phenomenon. Even though interpretations can be developed by analogy,

past experience, or intuition, the scientific approach requires a model for the

Table 14.4.1 Auto Insurance Premiums

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432

Table 14.4.2 Exam Scores

Faculty Teaching Assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47
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phenomenon of interest. Models are simplifications (or approximations) of real-

world situations and are designed to make it easier to identify and to understand

relationships among variables. A good model is crucial for accurate estimation,

forecasting, or predicting. If the observed data show a good fit to the estimates

obtained through the model, we consider the model to be an adequate representa-

tion of the real-world phenomenon. If not, the model must be improved, to incor-

porate additional variables or modify the equations defining the relationships. In

statistical modeling, it is important not to lose perspective on the essential purpose

of the modeling effort. The emphasis should be on making these models work on

real data sets in lieu of spending a large amount of time on the capabilities of the

models. Even though the study of properties and abilities of models is important,

equally important is an ability to know when and how to fit models to a particular

data set. A regression line is a two-parameter model that depicts a linear depen-

dence of one variable on another. Again, it is not our objective to discuss all the

issues related to statistical modeling. We will only discuss briefly some simple

issues relevant to modeling.

14.5.1 A SIMPLE MODEL FOR UNIVARIATE DATA
Suppose that we have a data set that characterizes a phenomenon of interest. Sup-

pose our problem is to create a statistical model for the data set in the form of a

probability distribution from which the data set came. First we create a dotplot

and summary of the basic statistics. The dotplot will provide us with an idea of

the probability distribution of the data and any unusual behavior of the data that

will not be apparent from the basic statistics such as sample mean and sample stan-

dard deviation. Having identified the probability distribution of the sample statistic,

we can proceed to obtain 95% confidence limits on parameters such as the mean

and variance. In addition, we can obtain a 95% prediction interval of the next obser-

vation using the expression

y� t�valueð Þs
ffiffiffiffiffiffiffiffiffiffi
1 +

1

n

r
:

Note that the prediction interval is always wider than the corresponding confidence

interval. The confidence interval provides a measure of reliability for estimating a

parameter. The prediction interval provides a measure of reliability for the prediction

of an observation. Thus, the prediction interval needs to account for estimation error

as well as the natural variability of a single observation. These steps can be consid-

ered as the first modeling effort for univariate data. Note that if we have a small sam-

ple size, using a t-value in the confidence interval and/or prediction interval supposes
a modeling assumption of normality for the corresponding population. The prelim-

inary verification of this is done by the dotplot. For more detailed verification of this

modeling assumption, use the normal plots.
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EXAMPLE 14.5.1
Consider the following data from an experiment:

0.15 0.14 0.15 0.14 0.26 0.00 0.00 0.47 0.35 0.16

0.15 0.15 0.23 0.13 0.19 0.15 0.22 0.53 0.17 0.23

0.22 0.16 0.12 0.13 0.11 0.14 0.18 0.15 0.14 0.21

0.13 0.12 0.13 0.13 0.21 0.22 0.18 0.20 0.22 0.16

0.17 0.00 0.23 0.21 0.18 0.05 0.16 0.13 0.23 0.18

0.14 0.29 0.21 0.22 0.11 0.16 0.23 0.13 0.07 0.17

0.08 0.14 0.06 0.08 0.07 0.11 0.12 0.14 0.16 0.12

0.10 0.27 0.19 0.13 0.27 0.16 0.07 0.09 0.04 0.53

0.29 0.15 0.12 0.11 0.10 0.14 0.14 0.16 0.16 0.17

0.36 0.46 1.21 0.39 0.01 0.52 0.09 0.18 0.16 0.16

0.14 0.15 0.09 0.09 0.13 0.13 0.08 0.14 0.20 0.09

0.09 0.16 0.08 0.10 0.34 0.24 0.15 0.44 0.08 0.08

0.16 0.14 0.18 0.23 0.19 0.11 0.19 0.10 0.14 0.11

0.14 0.17 0.17 0.17 0.05 0.12 0.14 0.11 0.20 0.14

0.23 0.03 0.10 0.29 0.13 0.26 0.13 0.15 0.27 0.14

0.50 0.16 0.15 0.18 0.16 0.14 0.13 0.08 0.20 0.17

0.17 0.16 0.15 0.11 0.13 0.76 0.18 0.19 0.09 0.12

0.11 0.12 0.08 0.26 0.23 0.20 0.19 0.19 0.16 0.11

0.12 0.13 0.32 0.05 0.18 0.12 0.13 0.50 0.13 0.04

0.00 �0.11 0.18 0.15 0.14 0.15 0.02 0.20

(a) Obtain a dotplot.

(b) Calculate the basic statistics, sample mean, sample median, and sample standard deviation.

(c) Obtain a 95% confidence interval for the true mean.

(d) Obtain a 95% prediction interval.

Solution
(a) Each dot in Figure 14.17 represents three points.

(b) We can use Minitab’s describe command to obtain the following.

N Mean Median TR mean St. dev SE mean

C1 198 0.17038 0.15121 0.15982 0.13610 0.00967

Min Max Q1 Q3
�0.39575 1.22076 0.12059 0.19284

(c) Again using Minitab commands, we can obtain (where data are stored in C1), MTB>ZInterval
95.0 0.136 c1.

The assumed Sigma=0.136

N Mean STdev SE mean 95.0% C.I.

C1 198 0.17038 0.13610 0.00967 (0.15143, 0.18933)

(d) For the prediction interval use the large sample formula y� za=2
� �

s
ffiffiffiffiffiffiffiffiffiffi
1 + 1

n0

q
to obtain the 95%

prediction interval for the true mean as (0.097, 0.4387).
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14.5.2 MODELING BIVARIATE DATA
When a scatterplot of bivariate data exhibits a linear pattern, the modeling is usu-

ally done using linear regression to study their linear relationship as explained in

Chapter 8. Clearly a linear relationship is desirable because it is easy to interpret,

departure from linearity is easy to detect, and predicting dependent values from

independent variables is straightforward. However, when a scatterplot shows a

curved nonlinear pattern, then finding a “good” model that fits the observed data

may not be very easy. Sometimes, instead of fitting a curve we may be able to

transform the data so as to make the scatterplots of the transformed data look

more linear.

A popular statistical method used to straighten a plot is the so-called power

transformation. The power transformation is defined by specifying an exponent,

k, which could be a positive or negative real number, then computing each trans-

formed value as the original value to the power k. Note that k¼1/2 gives the square

root transform. When k¼0, every transformed value is equal to 1. Instead it is cus-

tomary to think of k¼0 as corresponding to a logarithmic transformation so as to

unify the transformation concept. The power k¼1 corresponds to no transformation

at all. Observe that these are the same transformations we have explained in

Section 14.4.2 to transform nonnormal data into normal transformed data. The

shape of the scatterplots should suggest an appropriate transformation. The four

curves in Figure 14.18 represent possible shapes of scatterplots that are usually

encountered in practice.

0.00 0.18 0.36 0.54 0.72 0.90 1.08

FIGURE 14.17

Dotplot of the data.
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We can use the following as a general guideline for making transformations.

If we have a scatterplot that looks like plot 1 of Figure 14.18, then to straighten

the plot, we should use a power k<1 for x (the independent variable) and/or use

a power k>1 for y (the dependent variable). Similarly, for curve 2, k>1 for x
and/or k<1 (such as

ffiffiffi
y

p
or ln y) for y. For curve 3, take k>1 for x (such as x2

or x3) and/or k>1 for y. Finally, for curve 4, take k<1 for x and/or k>1 for y. Once
we straighten the data through transformations, obtain the least-squares equation of

the line as explained in Chapter 8. By reversing the transformation (or solving for y
in the transformed equation) we can obtain the original nonlinear relationship

between x and y.

EXAMPLE 14.5.2
For the following bivariate data:

x 0 4 8 10 15 18 20 25

y 2.4 2.6 3.1 3.6 4.1 4.2 4.6 4.7

(a) Draw a scatterplot.

(b) Use appropriate transformation (if necessary) to linearize the scatterplot.

(c) Fit the data to an appropriate curve.

Solution
(a) The scatterplot is shown in Figure 14.19.

This looks more like curve 4.
(b) Let us use the transformation x0 ¼ ln x and y0 ¼y2. We will get the scatterplot shown in

Figure 14.20.

This looks more linear.

(c) The regression line for the transformed data is y0 ¼8.86x0 �6.96. Therefore, for the original
data, y2¼8.86 ln x�6.96. The fitted curve is shown in Figure 14.21.

Looking at Figure 14.21, we can see that the data are only slightly nonlinear. In addition, using
the equation, for a given value of x we can predict the value of the response variable y. For instance,

if x¼1.5, we estimate y2 to be �3.3676.

y y

x x x x
4321

y y

FIGURE 14.18

Possible shapes of a scatterplot.
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Continued
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FIGURE 14.19

Scatterplot of the data.
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FIGURE 14.20

Scatterplot of the transformed data.

71714.5 Modeling Issues



There are various other modeling issues that onemay encounter in applications. For

example, in multiple regression modeling, an investigator may have data on number of

predictor variables thatmight be incorporated into amodel. Some of these variablesmay

be irrelevant ormay duplicate the information provided by other variables. The problem

then is how to detect and eliminate the duplicating variables. However, for the sake of

brevity and level of presentation, we will not go into these issues of model selection.

EXERCISES 14.5
14.5.1 For the data of Exercise 14.4.5:

(a) Obtain a dotplot.

(b) Describe the data, such as mean, median, and standard deviation.

(c) Obtain a 95% confidence interval for the mean.

(d) Obtain a 95% prediction interval.

(e) Explain your solutions and state any assumptions.

14.5.2 For the gas mileage data of Exercise 14.4.7

(a) Obtain a dotplot.

(b) Describe the data, such as mean, median, and standard deviation.

(c) Obtain a 95% confidence interval for the mean.

(d) Obtain a 95% prediction interval.

14.5.3 The following represents the midterm and final exam scores for 35 randomly

selected students from a large mathematics class.

Midterm: 67 63 39 80 64 95 90 93 21 36

44 66 66 72 34 78 66 68 98 43

74 81 71 100 60 50 81 66 90 89

86 49 77 63 58

Final: 29 33 100 33 55 20 10 5 67 64

71 25 34 66 28 34 16 27 32 20

14 21 16 62 50 14 61 11 14 41

52 35 37 51 43

2

1

0

−1

−2

1.4 2.4
C3

C
5

3.4

FIGURE 14.21

Fitted curve.
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(a) Draw a scatterplot.

(b) Use appropriate transformation (if necessary) to linearize the

scatterplot.

(c) Fit the data to an appropriate curve and explain the usefulness.

14.5.4 For the state finance data of Exercise 14.2.3:

(a) Draw a scatterplot.

(b) Fit a least-squares line.

(c) Explain your solutions and state any assumptions.

14.5.5 Table 14.5.1 gives in-state tuition costs (in dollars) and four-year graduation

rate (%) for 15 randomly selected colleges taken from a list of the 100 best

values in public colleges (source: Kiplinger’s Magazine, October 2000).
(a) Draw a scatterplot.

(b) Fit a least-squares line and graph it.

(c) Looking at the scatterplot of part (a), do you think the least-squares line

is a good choice? Discuss.

14.6 PARAMETRIC VERSUS NONPARAMETRIC ANALYSIS
Up until Chapter 11, we basically assumed that random variables belong to specific

probability distributions, such as a normal distribution or binomial distribution.

The members of those distributions are associated by different parameters such as

means or variances.Most of our efforts were concentrated onmaking some inferences

about the unknown parameters. In this vein, we looked at point estimators, confidence

intervals, and hypothesis testing problems. In practice the assumption that observa-

tions come from a particular family of distributions such as normal or exponential

may be quite sensible. As we have already mentioned, slight violations of these

assumptions inmanypractical casesmay not significantly affect statistical inferences.

However, this is not always true. Furthermore, sometimeswemaywant tomake infer-

ences that have nothing to do with parameters. We may not even have precise mea-

surement data, but only the rank order of observations. For example, if we want to

study the performance of students at an institution, wemay not have the precise scores

the students obtained; instead wemay only have their letter grades such as A, B, C, D,

and F. Even if we have precise measurements, we may not be able to assume a distri-

bution, such as normality. Still, we may be able to say that the distribution is symmet-

ric, or skewed, or has some other characteristics. Basically, if there is doubt about the

Table 14.5.1 Tuition Amount Versus Graduation Rate

In-state Tuition: 3788 4065 2196 7360 5212 4137 4060 4354

Graduation Rate: 45 64 40 58 38 20 39 48

In-state Tuition: 3956 3975 7395 4058 3683 3999 3156

Graduation Rate: 40 20 45 39 39 20 9 48
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parametric assumptions, or the data are not suitable for parametric inference, orwe are

not interested in inference about parameters, a nonparametric test that is valid under

weaker assumptions is preferable. It should be noted that weaker assumptions do not

mean that nonparametricmethods are assumption free. The inference that can bemade

depends on valid assumptions that are made.

When using nonparametric tests, a common question is “Why substitute a set of

nonnormal numbers, such as ranks, for the original data?” Rank tests are often useful

in circumstances when we have no idea about the population distribution.We suspect

that the data are not normal, and either we cannot transform the data to make them

more normal, or we do not wish to do so. Few data are truly normal, despite the

robustness of common parametric tests; unless we are quite sure that the nonnorm-

ality is a minor problem and would not affect the conclusions, we may often be better

off using a rank test. However, there is a small penalty for using delete rank tests. If

the original data are really normal, in the long run, the rank tests will be about 95.5%

as efficient as a Student t-test would have been. This means that in such situations,

the t-test will require about 95 samples compared to 100 for the rank test. But when

data are far from normal, the rank tests will require fewer samples than the t-test; in
fact, we should not use the t-test in such cases.

Basically, if we know the distribution of the underlying population, we can use

parametric tests. Otherwise, for a given data set, we first perform the normality test as

explained in Section 14.3. If normality fails, in general, we can use nonparametric

methods for data analysis.

Another situation in which we can use nonparametric tests is when the data con-

tain some outliers. A box plot or a normal plot, as explained in Section 14.3, will

reveal the existence of outliers. However, in many applied areas such as in most bio-

availability data, there will appear to be outliers. It is not feasible to determine

whether these are skewed or contaminated distributions. They are not errors. In those

situations, a conservative approach will be to use nonparametric methods. For exam-

ple, because the statistic for the rank sum test is resistant to outliers, it will not be

seriously affected by the presence of outliers unless the number of outliers becomes

large relative to the sample size.

It should be noted that we ought to be careful even when we use nonparametric

tests. For example, if the data for one or both of the samples to be analyzed by a rank

sum test come from a population whose distribution violates the assumption that the

distributional shapes are the same, then the rank sum test on the original data may

provide misleading results or may not be the most powerful test available. Trans-

forming the data (for example, a logarithmic transformation pulls in long tails) to

obtain normality and then performing a two-sample t-test, or using another nonpara-
metric test, may be more appropriate for the analysis. In general, nonparametric

methods are appropriate when the sample sizes are small. When the data set is large,

say n>100, it often makes little sense to use nonparametric statistics.

Finally,wemust conclude thatwe do not perform nonparametric tests on a given set

of data unless it is necessary, that is, if we cannot assume a classical probability distri-

bution that characterizes the given data. Also, parametric statistical analysis is, in
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general,more powerful than the nonparametric analysis.Wewill end this sectionwith a

quote fromW.J. Conover: “Nonparametricmethods use approximate solutions to exact

problems, while parametric methods use exact solutions to approximate problems.”

EXERCISES 14.6
14.6.1 Consider the following data.

0:01 0:012 0:016 0:018 0:036 0:042 0:036 0:048
0:072 0:042 0:22 0:096 0:76 0:055 0:13 0:016

(a) Test for normality and comment whether a parametric or nonparametric

test is appropriate.

(b) Try a suitable transformation (filter) to make the transformed data

normal, if possible, and then use a parametric procedure.

14.6.2 For the Medicare data of Exercise 14.4.4, if parametric procedures are not

appropriate, use a nonparametric procedure.

14.7 TYING IT ALL TOGETHER
Now we will give some real data on which we will use standard methods to analyze

the given data. Software reliability is a major aspect in any kind of software devel-

opment. One of the ways to do this is to observe time to failure and/or time between

failure (TBF). If the defects are fixed, we would expect, on average, the TBF to

increase. Based on that data, one studies reliability of the software. There are a vari-

ety of methods to analyze the software reliability problems. Here we will not dwell

on the reliability issues. We will only do some simple data analysis on a set of soft-

ware failure data. The following data represent software failure times in the Apollo

8 software system. They were obtained from www.dacs.dtic.mil/databases/sled/

swrel.shtml. It is assumed that these failure times are random.

EXAMPLE 14.7.1
The following data set consists of 26 software failure times taken from testing of the Apollo 8 soft-

ware system.

T : 9 21 32 36 43 45 50 58 63

70 71 77 78 87 91 92 95 98

104 105 116 149 156 247 249 250

TBF : 9 12 11 4 7 2 5 8 5

7 1 6 1 9 4 1 3 3

6 1 11 33 7 91 2 1

(a) Obtain a dotplot and describe the TBF data.

Continued
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(b) Identify any outliers and test for normality with and without outliers for TBF data. If the data are

not normal, does any simple transformation make the data normal?

(c) Obtain a 95% confidence interval for TBF.

(d) For estimation problems, does a parametric or nonparametric method seemmore appropriate for

the data?

(e) Obtain a scatterplot between T and TBF and discuss its usefulness.

Solution
(a) The dotplot for the TBF data is shown in Figure 14.22. The following is the result of the describe

command from Minitab.

TBF N Mean Median TR mean St. dev SE mean

26 9.62 5.50 6.58 17.79 3.49

TBF Min Max Q1 Q3
1.00 91.00 2.00 9.00

(b) We will use the box plot shown in Figure 14.23 to identify the outliers.

From the box plot the observations 33 and 91 are outliers.

Figures 14.24 and 14.25 show the normal plots with and without outliers.
It is clear that the data with outliers are not normal, whereas if we remove the outliers, the data

become normal.

Figure 14.26 gives the normal plot by taking the natural log of the TBF data with outliers. The

figure shows that the data become approximately normal.
(c) It is clear that to obtain a small sample confidence interval, to satisfy the assumption of nor-

mality, we need to take the data without the outliers. Hence a 95% confidence interval for

TBF with the outliers removed is (3.77, 6.73). Running a nonparametric Wilcoxon test in Mini-
tab for the 95% confidence interval with outliers gave the following.

0 12 24 36 48 60 72 84

FIGURE 14.22

Dotplot of TBF data.
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FIGURE 14.23

Box plot of TBF data.
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Estimated Achieved

TBF N Median Confidence Confidence interval

26 6.00 94.9 (4.00, 8.00)

(d) If we are analyzing the data without outliers or the log-transformed data, parametric methods
are better.With the original data, because the normality assumption may not be appropriate, we

need to use nonparametric methods.

(e) Figure 14.27 gives the scatterplot of T and TBF.

Continued

Anderson-Darling Normality Test
A-Squared: 5.075
p-value: 0.000

Average: 9.61539
Std Dev: 17.7878
N of data: 26
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FIGURE 14.24

Normal probability plot of TBF data with outliers.

A-Squared: 0.504
p-value: 0.184
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FIGURE 14.25

Normal probability plot of TBF data without outliers.

72314.7 Tying it All Together



A-Squared: 0.576
p-value: 0.121

Anderson-Darling Normality TestAverage: 1.56762
Std Dev: 1.10478
N of data: 26
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FIGURE 14.26

Normal probability plot of transformed TBF data with outliers.
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FIGURE 14.27

Scatterplot of T and TBF.
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EXAMPLE 14.7.2
Table 14.4 gives dealer cost and sticker price for four-door base models of 25 small and midsize cars

(source: Money Magazine, March 2001).

(a) Obtain a dotplot and describe the sticker price data.

(b) Identify any outliers and test for normality with and without outliers for sticker price data. If the

data are not normal, does any simple transformation make the data normal?

(c) Obtain a 95% confidence interval for sticker price.

(d) For estimation problems, do parametric or nonparametric methods seem more appropriate for

the data?

(e) Obtain a scatterplot between dealer cost and sticker price.

(f) Fit a least-squares regression line and run a residual model diagnostic using Minitab.

Solution
(a) The dotplot for the sticker price is shown in Figure 14.28.

The following summary statistics are obtained by the describe command in Minitab.

Continued

Table 14.4 Dealer Cost and Sticker Price

Model Dealer Cost (in dollars) Sticker Price (in dollars)

Acura Integra GS 19,479 21,600

Chevy Cavalier 12,398 13,260

Chevy Impala LS 21,251 23,225

Chrysler Concord LX 20,834 22,510

Dodge Neon SE 11,856 12,715

Ford Escort 12,277 12,970

Ford Taurus SE 17,606 19,035

Honda Civic DX 11,723 12,960

Honda Accord 2.3 LX 16,727 18,790

Hyundai Sonata 13,805 14,999

Kia Sephia 9914 10,595

Mazda 626 LX V6 18,181 19,935

Mitsubishi Mirage ES
Mercury Sable GS

12,534
17,777

13,627
19,185

Nissan Maxima GXE 19,430 21,249

Oldsmobile Intrigue GL 22,097 24,150

Pontiac Grand Am GT 18,790 20,535

Saturn SL 9936 10,570

Subaru Impreza L 14,695 15,995

Toyota Corolla LE 12,042 13,383

Toyota Camry LE 18,169 20,415

Toyota Prius 18,793 19,995

VW Jetta GLS 15,347 16,500

VW Passat GLS 19,519 21,450

Volvo S40 22,090 23,500
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N Mean Median TR mean St. dev SE mean

St. price 25 17726 19035 17758 4278 856

Min Max Q1 Q3

St. price 10570 24150 13322 21350

(b) The box plot for the sticker price is shown in Figure 14.29.
According to this, there are no outliers. The normal plot is shown in Figure 14.30. This is

approximately normal.

(c) The 95% confidence interval for the sticker price is

N Mean St. dev SE mean 95.0% C.I.

St. price 25 17,726 4278 856 (15,960, 19,492)

(d) Because there are no outliers and the data look approximately normal, parametric tests seems to
be appropriate for these data.

(e) The scatterplot for dealer cost versus sticker price is shown in Figure 14.31.

(f) Figure 14.32 shows the fitted regression line.

An analysis of residuals by Minitab gives Figure 14.33.

By looking at the residuals versus fits, we can see that we have a good fit, and hence the model
looks appropriate.
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FIGURE 14.29

Box plot for the sticker price.
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FIGURE 14.28

Dotplot for the sticker price.
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FIGURE 14.30

Normal plot for the sticker price.
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FIGURE 14.31

Scatterplot for dealer cost versus sticker price.
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FIGURE 14.32

Regression line for dealer cost versus sticker price.
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FIGURE 14.33

Residuals versus fit.
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EXERCISES 14.7
14.7.1 Table 14.7.1 gives revenue (in thousands) for public elementary and

secondary schools, by state, for 1997-1998 and corresponding pupils per

teacher for that state for 20 randomly selected states (source: The World
Almanac and Book of Facts 2000).
(a) Obtain a dotplot and describe the pupils per teacher data.

(b) Identify any outliers and test for normality with and without outliers for

the pupils per teacher data. If the data are not normal, does any simple

transformation make the data normal?

(c) Obtain a 95% confidence interval for pupils per teacher.

(d) Obtain a scatterplot between total revenue and pupils per teacher.

(e) Fit a regression line between total revenue and pupils per teacher.

14.7.2. Table 14.7.2 gives the dealer cost and sticker price for luxury cars and sports

utility vehicles with popular options (source:MoneyMagazine,March 2001).

(a) Obtain a dotplot and describe the sticker price data.

(b) Identify any outliers and test for normality with and without outliers for

sticker price data. If the data are not normal, does any simple

transformation make the data normal?

(c) Obtain a 95% confidence interval for sticker price.

(d) Do parametric or nonparametric methods seem more appropriate for

the data?

(e) Obtain a scatterplot between dealer cost and sticker price.

(f) Fit a least-squares regression line and run a residual model diagnostics

using Minitab.

Table 14.7.1 School Revenue and Number of Pupils per Teacher

State Total Revenue Pupils Per Teacher

Arizona 4,388,915 19.8

Connecticut 5,112,950 14.2

Alabama 4,030,356 16.3

Indiana 7,006,752 17.2

Kansas 3,090,829 14.9

Oregon 3,119,028 20.1

Nebraska 1,688,662 14.5

New York 27,690,556 15.0

Virginia 6,661,612 14.7

Washington 6,722,916 20.2

Illinois 13,649,628 16.8

North Carolina 7,127,549 15.9

Georgia 8,579,628 16.2

Nevada 1,754,717 18.5

Ohio 12,694,407 16.7

New Hampshire 1,365,391 15.6
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14.7.3. For the college tuition data of Exercise 14.5.5, fit a least-squares regression

line and run a residual model diagnostics using Minitab

14.7.4. The following data give the area (in square feet) and the sale prices

(approximated to the nearest $1000) of homes that were sold in a particular

city in a six-week period of 2003.

Area: 1123 1028 1490 2172 2300 1992 3200 3063 3720

7228 720 943 904 912 1031 1152 1482 1426

1491 1184 1650 1392 1755 2062 2495 3253 5152

1270 1723 1161 1220 837 1446 2442 2300 2518

Price: 75 75 102 149 152 154 327 425 625

775 775 57 66 68 75 86 90 93

95 95 104 105 135 159 169 253 725

67 67 110 65 74 95 156 183 207

Table 14.7.2 Dealer Cost and Sticker Price for Luxury and Sport Cars

Model
Dealer Cost (in
dollars)

Sticker Price (in
dollars)

Acura TL 3.2 26,218 29,030

Audi A6 4.2 45,385 50,754

BMW 525i 33,800 37,245

Cadillac DeVille DHS4 43,825 47,603

Infiniti I30 Touring 28,604 32,065

Jaguar XJ8 52,535 58,171

Lexus GS430 41,881 48,581

Mercedes-Benz C320 35,067 36,950

SAAB 9-3 Viggen 35,270 38,690

Volvo S80T-6 39,315 41,768

BMW X5 4.4i 45,994 50,774

Chevrolet Blazer LT 26,958 29,725

Dodge Durango 26,845 29,370

GMC Jimmy SLE 26,637 29,370

Honda CR-V LX 17,578 19,190

Isuzu Trooper LS 27,901 31,285

Jeep Cherokee SE 21,392 23,130

Lexus LX470 54,785 63,474

Mercedes-Benz ML430 42,243 45,337

Nissan Pathfinder SE 27,203 29,869

Pontiac Aztek GT 22,912 24,995

Subaru Forester S 21,990 24,190

Suzuki Vitara JS 16,063 17,079

Toyota RAV4 18,786 20,630
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(a) Obtain a dotplot and describe the home price data.

(b) Identify any outliers and test for normality with and without outliers for

home price data. If the data are not normal, does any simple

transformation make the data normal?

(c) Obtain a 95% confidence interval for home price.

(d) Do parametric or nonparametric methods seem more appropriate for

the data?

(e) Obtain a scatterplot between the square-foot area of a home and

its price.

(f) Fit a least-squares regression line and run a residual model diagnostics

using Minitab.

14.8 CONCLUSION
We have briefly discussed some of the problems that arise in applied data analysis.

However, this discussion is not exhaustive. There are various other special problems

that can arise in applied data analysis. For example, if one or both of the sample sizes

are small, it may be hard to detect violations of some of the assumptions. For small

samples, violation of assumptions such as inequalities of variances is hard to dis-

cover. Also, for small sample sizes, possible outliers whose detection may be in

doubt may have undue influence on the inferences. It is better to avoid such problems

in the design stage of an experiment, when suitable sample sizes can be determined

before we start collecting data.

Differences in distributional shapes can influence the testing procedures of two or

more samples. In those cases, utilizing a transformation may settle that problem and

may also promote normality as well as correct the problem of inequality of variances.

There are also many issues related to simulation that are discussed in Chapter 13 in

the utilization of empirical methods—for instance, in the application of Markov

chain Monte Carlo (MCMC) methods, the issues of burn-in, choice of the correct

proposal function, and convergence. These are beyond the scope of this book.

Combining the issues discussed in this chapter with the rest of the material of this

textbook should give the student a good footing in the theory of statistics as well as

the ability to deal with many real-world problems.
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APPENDIX

Set Theory A
In this appendix, we present some of the basic ideas and concepts of set theory that

are essential for a modern introduction to probability and statistics. The origin of set

theory is credited to Georg Cantor, when he proved the uncountability of the real line

in 1873. A set is defined as a collection of well-defined distinct objects. These objects
of a set are called elements or members. The elements of a set can be anything: the

alphabet, numbers, people, other sets, and so forth. Sets are conventionally denoted

with capital letters, A, B, C, and so on. A universal set, denoted by S, is the collection
of all possible elements under consideration. If a is an element of a set A, we write
a2A. If a is not an element of A, we write a 62A.

A set is described either by listing its elements or by stating the properties that

characterize the elements of the set. For example, to specify the set A of all positive

integers less than 12, we may write

A¼
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11f g

all positive integres less than 12f g
x : x< 12, x a positive integerf g

8<
: :

Sets are classified as finite or infinite. A set is finite if it contains exactly n objects,

where n is a nonnegative integer. A set is infinite if it is not finite. For example, if A is

a set containing all positive integers less than or equal to 50, then A is a finite set. If B
is a set containing all the positive integers, it is an infinite set.

Describing a set by stating its properties is the practical way to represent a set with

a large or infinite number of elements.

A set B is a subset of a set A if every element of B is also an element of A. We

denote this by writing B�A, which is read “A contains B” or “B is contained in A.”
For example, if A is the set of real numbers and

B¼ x : x� 5, x a positive integerf g,
it is clear that B is a subset of A. Also, every subset is a subset of itself. Two setsA and

B are equal, A¼B, if and only if A�B and B�A. Thus, two sets A and B are said to

be equal if they have the same members. A set B is a proper subset of a set A if every

element of B is an element of A and A contains at least one element that is not an

element of B. We denote this relationship by B�A. In the previous example, we have

B�A. The set, which contains no elements, is called the empty set (or null set) and is
denoted by ∅. The null set ∅ is a subset of every set.

A Venn diagram is used for visual representation of sets (Figure A.1). In the

Venn diagram, the universal set, S, is represented by a rectangle. The subsets are

represented by circles inside this rectangle.
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A.1 SET OPERATIONS
Union, »: The union of two sets A and B (Figure A.2) is the set of all elements that

belong to A or B (or both; elements that belong to both sets are included only once)

and is denoted by A[B,
A[B¼ x : x2A or x2Bf g:

Intersection, «: The intersection of two sets A and B (Figure A.3) is the set of all

elements that belong to both A and B and is denoted by A\B ,

A\B¼ x2 S : x2A and x2Bf g:

FIGURE A.1

A Venn diagram.

FIGURE A.2

Union of two sets.

FIGURE A.3

Intersection of two sets.
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If A\B¼∅, then the sets A and B are said to be disjoint or mutually exclusive sets.
Complement: The complement of a set A (Figure A.4) is the set of all elements

that belong to S but not to A,

Ac ¼ x : x2 S; x 62Af g:
The difference of any two sets, A and B, denoted by A\B, is equal to A\Bc. Thus,

Ac¼S\A. It should be noted that(Ac)c¼A. The symmetric difference between any

two sets, A and B, denoted by ADB, is the set of elements in A or B, but not both,
that is, (A\B)[ (B\A).

PROPERTIES OF SETS
If A, B, and C are the subsets of the universal set S, then they satisfy the following properties.

Commutative law

A[B¼B[A:

A\B¼B\A:

Associative law

A[ B[Cð Þ¼ A[Bð Þ[C¼A[B[C:

A\ B\Cð Þ¼ A\Bð Þ\C:

Distributive law

A[ B\Cð Þ¼ A[Bð Þ\ A[Cð Þ,
A\ B[Cð Þ¼ A\Bð Þ[ A\Cð Þ,

Idempotent law

A[A¼A, A\A¼A

Identity law

A[S¼ S, A\S¼A;

A[∅¼A, A\∅¼∅
Continued

S

Ac

FIGURE A.4

Complement of a set.
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Complement law

A[Ac ¼ S, A\Ac ¼∅

De Morgan’s laws

A[Bð Þc ¼Ac\Bc

A\Bð Þc ¼Ac[Bc

The two sets A and B are said to be in one-to-one correspondence (denoted by

1:1) if each element a2A is paired with one and only one element b2B in such a

manner that each element of B is paired with exactly one element of A. For example,

if A¼{a1,a2,a3,a4} and B¼{1,2,3,4}, then A and B in a 1:1 correspondence.

A set whose elements can be put into a one-to-one correspondence with the set of

all positive integers is referred to as being a countably infinite set. Also, a set is said
to be countable, denumerable, or enumerable if it is finite or countably infinite. The
product or Cartesian product of sets A and B is denoted by A�B and consists of all

ordered pairs (a,b), where a2A and b2B, that is,

A�B¼ a, bð Þ : a2A, b2Bf g:
For example, if A¼{a1,a2,a3} and B¼{1,2}, then

A�B¼ a1, 1ð Þ, a1, 2ð Þ, a2, 1ð Þ, a2, 2ð Þ, a3, 1ð Þ, a3, 2ð Þf g:
The notion of a Cartesian product can be extended to any finite number of sets; that

is, A1�A2� . . .�An is the set of all ordered n-tuples, (a1,a2, . . .,an), where

a1 2A1,a2 2A2, . . . ,an 2An:
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APPENDIX

Review of Markov Chains B
A stochastic or random process is defined as a family of random variables, {X(t)},
describing an empirical process, the development of which in time is governed by

probabilistic laws. The state space, S, of the stochastic process is the set of all pos-
sible values that the random variable X(t) can take. The parameter t is often inter-

preted as time and may be either discrete or continuous. When the set of possible

values of t forms a countable set, the process {X(t), t¼0,1,2, . . .}, is discrete. If t
forms an interval of real line, the process {X(t), t�0} is said to be continuous.
In the discrete case, the state space can be finite or infinite.

Among many different discrete stochastic processes, we are interested in a spe-

cial class called Markov chains. The basic concepts of Markov chains were intro-

duced in 1907 by the Russian mathematician A.A. Markov.

Let i1, i2, . . . represent the states of the chain. The sequence of random variables

X1,X2, . . . is called a Markov chain if

P Xn ¼ iknð X1 ¼ ik1 , . . . ,Xn�1 ¼ ikn�1
j Þ ¼P Xn ¼ iknð Xn ¼ ikn�1

j Þ
An intuitive interpretation is that a stochastic process {X(t)} has theMarkov property

if the conditional probability of any future state, given the present and past states, is

independent of the past states and depends only on the present state. Thus, a Markov

chain can be used to model the position of an object in a discrete set of possible states

over time, in which the subsequent position is chosen at random from a distribution

that depends only on the current location of the chain and not on any previous loca-

tions of the chain.

The conditional probabilities that the chain moves to state j at time n, given that it
is in state i at time n�1, are called transition probabilities and are denoted by pij,

pij ¼P Xn ¼ jð Xn�1 ¼ ij Þ
with the subscript ij of p indicating the direction of transition i! j. Sometimes, pij
may also be represented by p(i, j), and if we need to represent the time points, then we

use the notation, pn�1,n(i, j)¼P(Xn¼ jjXn�1¼ i).
Two basic assumptions we make are that (i) pij�0 for all i and j; the transition

probabilities are nonnegative. Also, (ii) for every i,

X1
j¼1

pij ¼ 1
Xn
j¼1

pij ¼ 1 if the state space is finite

 !

that is, the chain makes a transition to some state in the state space.
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If the transition probabilities pij depend only on the states i and j and not on the

time n, then the conditional probabilities are called stationary. Markov chains with

stationary probabilities are called (time) homogeneous Markov chains. We shall

consider only homogeneous Markov chains.

The behavior of homogeneous Markov chains is described by the transition or

stochastic matrices of the processes where the transition probabilities are arranged

as elements of a matrix. The transition or stochastic matrix of a chain having tran-

sition probabilities i, j¼1,2, . . .,n is

P¼
p11 . . . p1n
..
. . .

. ..
.

pn1 � � � pnn

0
B@

1
CA

In the infinite state space case, we represent the transition matrix in the following

manner:

p11 � � � p1n � � �
..
. . .

. . .. ..
.

pm1 � � � pmn � � �
..
. ..

. ..
. ..

.

0
BBBB@

1
CCCCA

Each element of the matrix is nonnegative, and each row sums to 1. If we look at any

particular row, say the mth row, then we can see the probabilities of going from state

m to the various other states including the state m.

EXAMPLE B.1

Four quarterbacks are warming up by throwing a football to one another. Let 1, 2, 3, and 4 denote the

four quarterbacks. It has been observed that 1 is as likely to throw the ball to 2 as to 3 and 4. Player 2

never throws to 3 but splits his throws between 1 and 4. Quarterback 3 throws twice as many passes

to 1 as to 4 and never to 2, but 4 throws only to 1. This process forms a Markov chain because the

player who is about to throw the ball is not influenced by the player who had the ball before him. The

one-step transition matrix is

0 1
3

1
3

1
3

1
2
0 0 1

2
2
3
0 0 1

3

1 0 0 0

0
BB@

1
CCA

Following is a standard example of a chain with infinite state space.

EXAMPLE B.2

Consider a chain with state space S¼ (0,1,2,3, . . .) and transition matrix

P¼

r0 p0 0 0 0 � � �
q1 r1 p1 0 0 � � �
0 q2 r2 p2 0 � � �
0 0 q3 r3 p3 � � �
..
. ..

. ..
. ..

. ..
. ..

.

0
BBBBB@

1
CCCCCA
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where pi,qi, ri�0 for all i�0, p0+ r0¼1, and pi+qi+ ri¼1 for all i�1. Thus, for this Markov chain,

the transition probabilities are: p00¼ r0, p01¼p0, and for i, j 6¼0,

pij ¼
pi, j¼ i+ 1,

ri, j¼ i,

qi, j¼ i�1,

0, otherwise:

8>>><
>>>:

This chain is known as the random walk chain (with barrier at 0).

The following example gives a transition matrix for the random walk chain in a

special case.We can think of this as a chain resulting from tossing of a fair coin. If we

are not at state zero, then if heads comes up, we take a step to the right and if tails

comes up, we take a step to the left. If at state 0, we remain at zero for a tails outcome

and move a step to the right for heads.

EXAMPLE B.3

Consider a Markov chain with state space S¼ (0,1,2,3, . . .) and the transition probabilities given by

p00 ¼ 1

2
, pij ¼

1
2
, j¼ i�1
1
2
, j¼ i+ 1

0, otherwise

8<
: :

This results in the symmetric transition matrix with elements

A¼

1
2

1
2
0 0 0 � � �

1
2
0 1

2
0 0 � � �

0 1
2
0 1

2
0 � � �

0 0 1
2
0 1

2
� � �

� � � � � �
� � � � � �
� � � � � �

2
66666666664

3
77777777775
:

The n-step transition probability, pij
(n), is defined as the probability that the chain is in state i

and will go to state j in n steps. If pij is the one-step transition probability, pij
(n) can be obtained

as follows. Let i be the state of the process at time, m, that is Xm¼ i. Then, the n -step transition

probability is

p
n+mð Þ
ij ¼P Xn+m ¼ jð X0 ¼ ij Þ

¼
X1
k¼0

P Xn +m ¼ j,Xn ¼ kð X0 ¼ ij Þ

¼
X1
k¼0

P Xn +m ¼ jð Xn ¼ k,X0 ¼ ij ÞP Xn ¼ kð X0 ¼ ij Þ

¼
X1
k¼0

pmkjp
n
ik

:

This can be rewritten in the matrix notation as

P n+mð Þ ¼P mð ÞP nð Þ ¼P nð ÞP mð Þ

This is known as the Chapman–Kolmogorov equation.
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The following example shows how to compute an n-step transition matrix.

EXAMPLE B.4

Consider the one-step transition matrix given in Example B.1,

0 1
3

1
3

1
3

1
2
0 0 1

2

2
3
0 0 1

3

1 0 0 0

0
BBB@

1
CCCA:

The two-step transition matrix, P2, is

P2 ¼P:P¼

0 1
3

1
3

1
3

1
2
0 0 1

2

2
3
0 0 1

3

1 0 0 0

0
BBBB@

1
CCCCA

0 1
3

1
3

1
3

1
2
0 0 1

2

2
3
0 0 1

3

1 0 0 0

0
BBB@

1
CCCA

¼

13
18

0 0 5
18

1
2

1
6

1
6

1
6

1
3

2
9

2
9

2
9

0 1
3

1
3

1
3

0
BBBB@

1
CCCCA:

The three-step transition matrix, P3, is

P3 ¼P2P¼

5
18

13
54

13
54

13
54

13
36

1
6

1
6

11
36

13
27

1
9

1
9

8
27

13
18

0 0 5
18

0
BBB@

1
CCCA:

For instance, the third row of P3,

13
27

1
9

1
9

8
27ð Þ,

denotes that, after three throws, the ball is in the hands of players 1, 2, 3, and 4, with respective

probabilities 13/27, 1/9, 1/9, and 8/27.

A transition matrix, P, all entries of which are positive, is called a positive tran-
sition matrix. A state j of a Markov chain is accessible from a state i if pij

(n)>0 for

some n�0. If state j is accessible from state i, and state i is accessible from state j, the
states are said to communicate. If all the states communicate, then the Markov chain

is called irreducible. A state i is periodic (of period d) if the only way to revisit it is

through steps of length k.d for some value of k and a fixed value of d>1. Thus, the

period, d, is the greatest common divisor of the number of steps n needed for the

chain, starting at state i, to revisit the state i:

d¼GCD n� 1f pnii > 0
�� �

If a state is not periodic, then it is called aperiodic. A state i is recurrent if it will be
revisited by the chain with probability 1. That is,

P Xn ¼ i for infinitelymany nð X0 ¼ ij Þ ¼ 1
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If a state is not recurrent, it is called transient. Recurrent, aperiodic states are called
ergodic. It is necessary to impose an extra condition for ergodicity, that the expected

recurrence time be finite. This is satisfied for recurrent states in a finite-state Markov

chain. A Markov chain is called ergodic if every state is ergodic. It is clear that a

finite state Markov chain with a positive transition matrix is ergodic.

The following result is of fundamental importance.

TheoremB.1 For an ergodicMarkov chain, limn!1pij
(n)¼pj exists, and this limit

is independent of the initial state i. Let the vectorp with elements (pj) be the limiting

or the stationary distribution of the chain. Then, this stationary probability vector is

the unique solution of the equation

p¼pP

and satisfies the normalization conditionX
j2S

pj ¼ 1

If, at any transition step n, the distribution of the chain is same as p obtained in

Theorem B.1, we say that the chain has reached the steady state. Thus, the vector

p would be the unique steady-state probability vector of the Markov chain.

Analogous to the law of large numbers for a sequence of independent random

variables, for Markov chains we can obtain the following so called ergodic theorem.

Theorem B.2 For any ergodic Markov chain {Xn} with stationary distributionp:

1

n

Xn
k¼1

f Xkð Þ!
X
i2S

f ið Þpi ¼Ef Xð Þw:p:1:

The validity of the Markov chain Monte Carlo method lies in this ergodic theorem.
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APPENDIX

Common Probability
Distributions C
Inthis appendix, we present some common probability distributions that are useful in

statistical methods that we have used in this book. There is a much greater variety of

distributions that are very important in particular area of applications. A good refer-

ence can be found at http://www.causascientia.org/math_stat/Dists/Compendium.

pdf. We give the density function, mean, variance, and moment-generating function

(mgf). For some distribution functions, if the mgf is complicated, we just leave it out

and refer the reader to one of the references in the book.
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Name Pfd Mean Variance mgf

Bernoulli distribution
f x, pð Þ¼

p, x¼ 1
1�p, x¼ 0
0, otherwise

8<
: 0<p<1

p p (1�p) q+pet, q¼1�p

Binomial
f x, n, pð Þ¼ n

x

� �
pxqn�x, x¼0,1, . . .,n

np npq (q+pet)n

Geometric f (x,p)¼qx�1p,x¼1,2, . . .0<p�1.
1

p

q

p2
pet

1�qet

Hyper-geometric
f x,N,m, nð Þ¼

m
x

� �
N�m
n�x

� �
N
n

� � ,

N¼ 0,1,2, . . . , m¼ 0,1, . . . ,N,
n¼ 0,1, . . . ,N

nm

N

n m
Nð Þ 1�m

Nð Þ N�nð Þ
N�1

Negative binomial f x, r, pð Þ¼ x + r�1
x

� �
prqx

x¼ 0,1,2, . . .

r
q

p
r
q

p2

p

1�qet

� �r

Poisson
f x, lð Þ¼ lxe�l

x!
,

x¼0,1,2, . . .

l l exp(l (et�1))

Beta
f x, a, bð Þ¼ G a+ bð Þ

G að ÞG bð Þ
� �

xa�1 1�xð Þb�1,

0< x< 1

a
a+ b

ab

a+ bð Þ2 a+ b+1ð Þ

Chi-square
f x, nð Þ¼ 2n=2xv�1e�x2=2

G x=2ð Þ ,

x� 0,n> 0 degreesof freedomð Þ

ffiffiffi
2

p G n+1ð Þ=2ð Þ
G n=2ð Þ n�m2

Exponential
f x, lð Þ¼ le�lx, x� 0,

0, otherwise,

�
l> 0

1

l
1

l2
1� t

l

� ��1

Gamma
f x, a, bð Þ¼ xa�1b

ae�bx

G að Þ ,

x> 0,a> 0,b> 0

a
b

a

b2
1� t

b

� 	�a
,

t<b.

Laplace
f x, m, sð Þ¼ 1

2s
exp � x�mj j

s

� �
,

�1< x,m

m 2s2

Normal
f x, m, s2
� �¼ 1

s
ffiffiffiffiffiffi
2p

p exp
x�mð Þ2
2s2

 !
,

�1< x, m<1,s> 0

m s2 exp mt +
s2t2

2

� �

Uniform
f x, a, bð Þ¼ 1

b�a
,

a� x�b

a+b

2

b�að Þ2
12

etb�eta

t b�að Þ

7
4
4

A
P
P
E
N
D
IX

C
C
o
m
m
o
n
P
ro
b
a
b
ility

D
istrib

u
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APPENDIX

What is R? D
Risa language and environment for statistical computing and graphics. It provides a

broad variety of statistical methods including basic statistical tests, regression

models, among many other classical and graphical methods/techniques. R can be

easily used to produce technical plots of quality along with mathematical symbols

and formulas. R is available as free software under the terms of Free Software Foun-

dation’s GNU general public license in source code form.

R is similar to S language and environment. The language S is considered the

choice in statistical methods and R provides an open source route to work with in

statistical methods, among others.

R is also designed like S around a true computer language with the flexibility in

that it allows users to add additional functions.

Finally, some users of R think it as a statistics system, others think of R as an

environment within which statistical methods and graphics are implemented.
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APPENDIX

Probability Tables E
Table E.1 Cumulative Binomial Probabilities, P(X�x)¼P

i¼0
x p(i)
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Table E.1 Cumulative Binomial Probabilities, P(X�x)¼P
i¼0

xp(i)—cont’d
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Table E.1 Cumulative Binomial Probabilities, P(X�x)¼P
i¼0

xp(i)—cont’d

Table E.2 Standard Norms Table
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Table E.2 Standard Norms Table—cont’d

Table E.3 t-Table
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Table E.4 Chi-Square Probabilities
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Table E.5 Percentage Point of F-Distributions
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.5 Percentage Point of F-Distributions—cont’d
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Table E.6 Wilcoxon Signed Rank Test: P(W+� c)
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Table E.6 Wilcoxon Signed Rank Test: P(W+� c)—cont’d
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Table E.6 Wilcoxon Signed Rank Test: P(W+� c)—cont’d
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Table E.6 Wilcoxon Signed Rank Test: P(W+� c)—cont’d
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Table E.6 Wilcoxon Signed Rank Test: P(W+� c)—cont’d
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Table E.7 Wilcoxon Rank Sum Test
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Table E.7 Wilcoxon Rank Sum Test—cont’d
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Table E.8 Friedman Test
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Table E.8 Friedman Test—cont’d
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Table E.8 Friedman Test—cont’d
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Table E.9 Studentized Range q Table
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Table E.9 Studentized Range q Table—cont’d
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Table E.9 Studentized Range q Table—cont’d
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Table E.10 Critical Values of the Kolmogorov-Smirnov One Sample Test
Statistics
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Note: Page numbers followed by b indicate boxes, f indicate figures and t indicate tables.

A
Absolute error loss function, 559

a-trimmed mean, 305

Alternate hypothesis, 313

Analysis of variance (ANOVA)

angular transformation, 545

assumptions, 699

completely randomized design (see Completely

randomized design)

F-test, 546

linear models, 546–547

logarithmic transformation, 545

Minitab, 537–539

missing observations, 546

multiple comparisons, 528–535

multiple regressions, 444–445

one-way (see One-way ANOVA)

R code, 536–537

regression, 430–432

SAS, 540–544

simple regression, 430–432

SPSS, 540

square root transformation, 545

treatments, 498–505

two-way (see Two-way ANOVA)

Anderson–Darling test, 387–388

Angular transformation, ANOVA, 545

ANOVA. See Analysis of variance (ANOVA)

Area sampling, 11

Asymptotic properties, 303–304

Asymptotic relative efficiency, 304

Average deviation, 30

Averaged squared errors (ASES), 305–306

Average weight loss estimation, 262

Axiomatic definition of probability, 57b

B
Bar graph

definition, 13

Pareto chart, 14–17, 15f

Bayes, Thomas, 549

Bayes decision, 579

Bayesian confidence interval. See Credible intervals

Bayesian decision theory

decision-making process, 576–577

statistical theory, 577

Bayesian hypothesis testing

Jeffreys’ hypothesis testing criterion, 574

null hypothesis, 573

posterior odds ratio, 574

posterior probability, 573

prior odds ratio, 574

Bayesian inference, 550

Bayesian point estimation

Bayes’ rule, 552

criteria for finding Bayesian estimate, 558–566

likelihood function, 552–553

marginal distribution, 553

population proportion, 554–555

posterior distribution, 552

probability distribution, 552–553

Bayes’ rule, 75b

Bell-shaped curve, 32

Bernoulli population, 246

Bernoulli random variable, 223, 250

probability function of, 113

Best linear unbiased estimator (BLUE), 421–422

Beta-binomial distribution, 557

Beta PDF, 399, 401f

Binomial distribution, normal approximation,

206–208

correction for continuity, 207b

Binomial experiment, 113

Binomial formula, 224

Binomial probability distribution, 113–117

Poisson approximation, 119b

Binomial random variables, 246

expected value of, 128

mean of, 116b

moment-generating function of, 116b

variance of, 116b

Binomial theorem, 114

Birthday problem, 108–109

Bivariate data, 715–718

Bivariate probability distributions, 139–140

Blinding, 465

Blocking, 466

Bootstrap methods, 645–651

R code, 679

SAS, 686

Box plot, 33–35, 33b

outliers, 695–697
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C
Cauchy distribution, 244

Central limit theorem (CLT), 164b, 262, 269–270,

271–272

Chapman–Kolmogorov equation, 739

Chebyshev’s theorem, 160b

Chi-square distribution, 186–191, 284–285

degrees of freedom, 186

density, 285–286, 285f

probabilities, 751t

probability density, 188f

random variable, 133, 133b

Chi-square tests

contingency table, 376–379

multinomial distribution, 374–376

Pearson’s, 381–384

Cluster sampling, 11

Coefficient of determination, 419, 457

Complement set, 735, 735f

Completely randomized design

ANOVA decomposition, 507–508, 507f

between-groups variability, 505

correction factor, 506

decomposition of SS, 507, 507f

null hypothesis, 505

one-way ANOVA, 508b, 509b, 512–517

population means, 505

p-value approach, 510–511

SSE, 506

unbiased estimator, 508–509

within-groups variability, 505

Composite hypothesis testing, 315

Computers and statistics, 39

Conditional probability

definition, 71

law of total probability, 74b

properties of, 71b

Conditional probability distributions, 145

Confidence intervals

computer examples, 300, 301

confidence coefficient, 262

degrees of freedom, 263

interval estimation, 261

normal population, 264

one sample, 269–284

pivotal quantity, 263

population variance, 284–289

probability density, pivot, 265, 265f

proportion, 272

sample mean, 262–263

sampling distributions, 267, 308

Tukey’s method, 530b

two population parameters, 289–297

upper and lower confidence limits, 261–262

Conjugate prior, 557

Contingency table, chi-square tests

definition, 376–377

independent factors, 377b

Minitab, 407

Continuity correction factor, 383–384

Control plot, Taguchi methods, 484, 484f

Correction factor, 506

Correlation analysis

Fisher z-transform, 438

independent variables, 436–437

maximum likelihood estimator, 437

simple linear regression model, 436–437

Correlation coefficient, 147–149, 436–437

Counting random variable, 117

Covariance, 147–149

Credible intervals

conditional distribution, 569

definition, 568

posterior distribution, 569, 570f

Cross-sectional data, 6

Cumulative binomial probabilities, 747t

Cumulative distribution function (cdf), 84, 85

Cumulative probability distribution, 236

D
Data

bivariate, 715–718

collection, 3, 3b

cross-sectional, 6

graphical representation, 13–26 (see also

Graphical representation)

nominal, 6–7

numerical description, 26–38

ordinal, 6–7

quantitative, 5

time series, 6

transformation, 703–705

types of, 5–7

de Moivre, Abraham, 177

Degrees of freedom, 186, 284–285

Descriptive point estimates, 299

Descriptive statistics, 5

Design of experiments (DOE)

basic terminology, 461–465

factorial design, 477–481

Minitab, 491

optimal design, 481–483

R code, 489–491
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replication, randomization, and blocking,

466–468

sample size and power, 493

SAS, 491–493

specific designs, 469–476

Taguchi methods, 484

temperature effect, 493–494

Digamma function, 235–236

Discrete distribution, 256

Discrete random variable, 117

Discrete uniform distribution, 376

Distribution-free tests, 695

income distribution of families, 590–591, 591f

nonparametric confidence interval, 592–597

nonparametric hypothesis tests

(see Nonparametric hypothesis tests)

outliers, 695

parametric tests, 590

projects for, 635–637

Dobson units, 277–278

DOE. See Design of experiments (DOE)

Dotplot, 689–690, 690f, 700f

Double-blind treatment method, 465

E
Elementary statistics. See also Statistics

course, 270

Empirical distribution function, 307

Empty set (null set), 733

Equality of variances, 706–709

testing, 352b

Ergodic theorem, 741

Error probability distribution, 238–239

Error variance estimation, 422

Estimation theory, 220

Expectation maximization (EM) algorithm,

651–662

R code, 682

Experimental error, 465

Exponential family of probability distributions,

256–257

Exponential power, 238–239

Exponential probability distribution, 132

F
Factorial design

fractional, 480

full, 480

one-factor-at-a-time design, 478–480

Factorization criteria, joint sufficiency, 254b

F-distribution, 195–197

Finite population correction factor, 181

Finite set, 733

Finite variance, 259

Fisher, Ronald Aylmer, 1

Fisher z-transform, 438

Fractional factorial design, 480

Friedman test, 775t

Minitab, 630–632

R code, 630

treatment effects, 621

Full conditionals, 674

Full factorial design, 480

G
Galton, Francis, 409

Gamma probability distribution, 129–134, 224, 233

Gauss, Carl Friedrich, 111

Gaussian distribution, 122

Gaussian probability distribution, 381, 388

Gauss–Markov theorem, 422b

Geometric distribution, 229, 253

Gibbs algorithm (Gibbs sampler), 673–676

Goodness-of-fit tests

Anderson–Darling test, 387–388

brain cancer, 397–398

chi-square tests, 372–380, 381–384

contingency table, 376–379

global warming, 392–393

hurricane Katrina, 393–396

Kolmogorov–Smirnov test, 384–387

Minitab, 407

multinomial distribution, 372–373, 374–376

national unemployment, 396–397

P-P plots, 389–391

prostate cancer, 401–402

Q-Q plots, 389–391

rainfall, 399–400

R-commands, 406–407

Shapiro–Wilk test, 388–389

Graphical representation

bar, 13

dotplot, 689–690, 690f, 700f

frequency table, 17–18

grouped data, 17–18

histogram, 18

pie chart, 15, 16f

quantile-quantile (QQ) plot, 691–693

relative frequency, 17

scatter plot, 690, 690f, 691

side-by-side box plots, 690

stem-and-leaf plot, 16, 17

Greco–Latin square, 475

Grouped data, numerical measures, 30–32
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H
Hardy–Weinberg law, 109, 114–115

Highest posterior density (HPD) interval, 571–572

Histogram, 385, 385f, 700f

of data, 704f

definition, 18

guideline, 18b

Homoscedasticity, 447

Hypothesis testing

composite, 315

level of significance, 315

likelihood ratio tests, 328–333, 330b

method for, 314b

Neyman–Pearson Lemma, 323–328

p-value, 333–336

sample size, 320–321

simple, 315

single parameter, 333–344

two samples, 345–359

type I error, 315

type II error, 315

I
Independent variables, 462

Inferential statistics, 5

Infinite set, 733

Informative priors, 555–556

Interquartile range (IQR), 27–28

Invariance property, 242

J
Jackknife method, 640–645

R code, 680

SAS, 686

Jeffreys’ hypothesis testing criterion, 574

Joint density function, 251, 256

Joint probability distributions, 139–152

bivariate distributions, 139–140

conditional expectation, 145

covariance and correlation, 147–149

marginal pmf, 141

Joint probability mass function, 250

K
Kolmogorov, Andrei Nikolaevich, 53

Kolmogorov–Smirnov test, one sample test

statistics, 783t

Kronecker Delta function, 559

Kruskal–Wallis test

asymptotic distribution, 620

chi-square distribution, 619–620

description, 618

Minitab, 631

R code, 629

SAS, 634

SPSS, 633

L
Large sample approximations, 205–210

binomial distribution, normal approximation,

206–208

Large sample confidence intervals

difference of two means, 290b

Minitab, 302

p1-p2, 269b

Latin square design

definition, 472

Greco–Latin square, 475

R code, 490

Least-squares equations, 414–416

Least-squares estimators

definition, 414

Gauss–Markov theorem, 447

inferences, 425–433

properties of, 420–422

Least-squares line, 414

Least-squares, method of, 413–414

Least-squares regression line, 412, 412f

Least-squares regression model, 447–448

Level of significance, hypothesis testing, 315

Likelihood ratio tests (LRT), 328–333, 330b

Limit theorems, 159–168

central limit theorem (CLT), 164b

Chebyshev’s theorem, 160b

law of large numbers, 162b

Linear regression models

ANOVA, 546–547

coefficient of determination, 457

correlation analysis, 436–440

least-squares estimators, 425–433

matrix notation, 440–446

Minitab, 453

outliers and high leverage points, 457–458

particular value prediction, 433–436

regression diagnostics, 446–449

SAS, 454–456

scatterplots, 456

simple, 411–425

SPSS, 454

Logarithmic transformation, ANOVA, 545

Log-likelihood function, 229–231

Loss function, Taguchi methods, 485, 485f

Lower confidence limit, 261–262, 264,

266, 267

794 Index



M
Maclaurin’s expansion, with Poisson random

variable, 118

Marginal pmf/pdf, 141

Margin of error and sample size, 272–275

Markov chain Monte Carlo (MCMC) methods,

662–678

issues in, 676

Metropolis algorithm, 666–669

R code, 680

Markov chains, 737

aperiodic, 740–741

ergodic, 741

homogeneous, 738

irreducible, 740

periodic, 740

random walk chain, 739

steady state, 741

stochastic/random process, 737

transient, 741

transition probabilities, 737

transition/stochastic matrix, 738

Matrix notation

independent observations, 441

least-squares estimators, 442

linear equations, 441

multiple regression model, 441

Maximum likelihood equations (MLE), 231, 233

definition, 227

log-likelihood function, 229–231

optimization, 234

parameter values, 227

probability distributions, 234–240

Mean

of binomial random variable, 116b

chi-square random variable, 133b

exponential random variable, 132b

gamma probability distribution, 130b

normal probability distribution, 123b

of Poisson random variable, 118b

uniform probability distribution, 121b

and variance estimation, 306

Mean square error (MSE), 248, 500

Mean square treatment (MST), 500

Median test

hypergeometric distribution, 610

hypothesis testing procedure, 610b

large sample, 611b

Minitab, 630–632

sample median, 610, 610t

Method of moments, 222–227

Metropolis algorithm

continuous case, 667b

discrete case, 666b

random-walk, 669

Metropolis-Hastings (M-H) algorithm,

670–672

continuous case, 671b

discrete case, 670b

Minimal sufficient statistics, 222

Minimum variance unbiased estimator (MVUE),

240

Minitab, 301–302

ANOVA, 537–539

design of experiments, 491

goodness-of-fit tests, 407

linear regression models, 453

nonparametric tests, 630–632

statistical estimation, 301–302

t-test, 363

Model

issues in, 712–719

for univariate data, 713–715

Moment-generating function (MGF)

of Bernoulli random variable, 113

of binomial random variable, 116b

chi-square random variable, 133b

exponential random variable, 132b

gamma probability distribution, 130b

moments and, 91–104

normal probability distribution, 123b

of Poisson random variable, 118b

properties of, 101b

uniform probability distribution, 121b

Multifactor experiments, 464

Multinomial distribution, 374–376

Multiple comparisons, ANOVA

studentized range distribution, 529–530

Tukey’s method, 530b

Multiple linear regression model

ANOVA table, 445, 445t

definition, 411–412

N
Negative binomial distribution, 242

Newton–Raphson iterative method, 306

Neyman, Jerzy, 311

Neyman–Fisher factorization theorem, 252b

Neyman–Pearson Lemma, 323–328

Nightingale, Florence, 687

Noise, 463

Nominal data, 6–7

Noninformative priors, 555–556

Nonparametric analysis vs. parametric, 719–721
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Nonparametric confidence interval

binomial distribution, 592

central limit theorem, 592

ordered sample, 593, 593f

population median, 593

Nonparametric hypothesis tests

for one sample, 597–609

for two samples, 609–618

Nonparametric tests. See Distribution-free tests

Normal distribution, 225

Normality, assumption, 699–700

Normal probability distribution, 122–129

Normal probability plots, 701, 701f, 702f, 704f,

705f, 723f, 724f

for ANOVA, 514f, 545

Nuisance variables, 462

Null hypothesis, 312–313

Numerical description, data

average deviation, 30

bell-shaped curve, 32

empirical rule, 32b

grouped data, numerical measures, 30–32

interquartile range, 27–28

lower quartile, 27

median, 27

sample mean (empirical mean), 26

sample standard deviation, 26

sample variance, 26

upper quartile, 27

Numerical unbiasedness and consistency, 305

O
Observables

for Bayesian decision theory, 576–583

definition, 579

predicting future, 587–588

Observational experiment, 463

One-factor-at-a-time design, 478–480

One-parameter Weibull distribution, 260

One sample confidence intervals

large sample, 269–271

proportion, 272

small sample, 275–278

One-tailed test, 313–314

One-way ANOVA, 465

assumption testing, 512–517

k32 populations, 508b, 509b

Minitab, 537–539

model for, 517

R code, 513

SAS, 540

SPSS, 540

Optimal design

choice of optimal sample size, 482–483

sequential design, 481–482

simultaneous experiment design, 481–482

Optimization, 234

Order statistics, 200–205

Ordinal data, 6–7

Orthogonal Latin squares, 475

Outliers

box plot, 695–697

distribution-free test, 695

and high leverage points, 457–458

modified z-score, 695

value, 694

z-score, 695

P
Paired comparison tests, 606–607

Parametric analysis

brain cancer, 397–398

global warming, 392–393

hurricane Katrina, 393–396

national unemployment, 396–397

vs. nonparametric analysis, 719–721

prostate cancer, 401–402

rainfall, 399–400

Pareto chart, 14–17

Pareto distribution, 244

Pearson, Karl, 371

Pearson’s chi-square tests

cumulative probability distribution, 381

Gaussian probability distribution, 381

Percentage point of F-distributions, 752t

Pie chart, 15, 16f

Pivotal method. see Confidence intervals

Placebo, 465

Point estimators

method of maximum likelihood, 227–234

method of moments, 222–227

sufficiency, 250–258

unbiased estimators, 245–249

Poisson, Siméon-Denis, 117

Poisson distribution, 226, 230, 260

Poisson probability distribution, 117–119

discrete random variable and, 117

Poisson random variables, 227

definition of, 117

mean, 118b

moment-generating function of, 118b

variance, 118b

Pooled sample variance, 291

Pooled t-test, 347
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Population

defined, 4

standard deviation, 274–275

Population parameters, confidence interval

large sample, 290b

small sample, 290b

Population variance, confidence interval

chi-square density, 285–286, 285f

chi-square distribution, 284–285

Posterior distribution

Bayesian point estimation, 552–568

definition, 552

Posterior mean, 559

Posterior odds ratio, 574

Power transformation, 715

P-P plots, 389–391

Prediction interval, normal population, 309–310

Prior odds ratio, 574

Probabilistic model. See Statistics

Probability density, 241, 265, 265f

Probability distribution, 381–392

common, 743

Probability distribution function (PDF), 112–139,

220, 221–222, 234–240

references for, 112

Probability function (pf), Bernoulli random

variable, 113

Probability mass function, 221–222, 230

Probability tables

chi-square probabilities, 751t

cumulative binomial probabilities, 747t

Friedman test, 775t

Kolmogorov–Smirnov one sample test statistics,

783t

percentage point of F-distributions, 752t

standard norms table, 749t

studentized range q table, 781t

t-table, 750t

Wilcoxon rank sum test, 767t

Wilcoxon signed rank test, 762t

Probability theory

axiomatic definition, 57b

concept of, 54

counting techniques and calculation of, 63–70

experiment, defined, 55

impossible event, 55b

mutually exclusive/ disjoint, 55

origin of, 54

probability, defined, 55, 57

probability space, 55b

properties of, 58b

sample point, 55b

sample space, 55b

special distribution functions, 112–139

trial, 55

p-value

approach, 510–511

hypothesis testing, 333–336

Q
Quadratic loss function, 486, 486f, 559

Quantile-quantile (QQ) plot, 389–391, 691–693

Quantitative data, 5

R
Random assignment procedure, 468

Randomization, 467

Randomized complete block design.

See also Two-way ANOVA

definition, 469

R code, 490

replications, 470b

SAS, 491

Randomness test

asymptotic normal distribution, 635

Minitab, 637

nonparametric procedure, 635

Random variables

Bernoulli (see Bernoulli random variable)

binomial (see Binomial random variables)

counting, 117

and probability distributions, 82–91

Random variables functions, 152–159

distribution functions method, 152–153

functions of, 155

pdf, 154

probability integral transformation,

154–155

transformation method, 155–158

Random-walk metropolis, 669

Rao, C.R., 219

Rao–Blackwell Theorem, 258b

Rayleigh distribution, 239, 239f, 261

R code

Bayesian estimation inference, 584–587

design of experiments, 489–491

goodness-of-fit tests, 289–297

linear regression models, 450–453

nonparametric tests, 628–630

one-way ANOVA, 513

two-way ANOVA, 536

Regression diagnostics, 446–449

Rejection region (Critical region), 313

Relative frequency, 17, 18
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Replication

definition, 466

procedure for randomized complete block design,

470b

Response variable, 461–462

R language, 745

Robust estimation, 304–305

S
Sampling

area, 11

biased, 8

chi-square distribution, 186–191

cluster, 11

defined, 4

distribution, 179

errors in, 12

F-distribution, 195–197

finite population correction factor, 181

large sample approximations, 205–210

Minitab, 213–214

multiphase, 11

order statistics, 200–205

population distribution, 184–200

R code, 211–213

representative, 8

sample, defined, 178

SAS, 214–215

simple random, 8

size, 12–13

SPSS, 214

standard error, 180

stratified, 9, 10, 10b

student t-distribution, 191–195

systematic, 9

SAS, 303

ANOVA, 540–544

design of experiments, 491–493

linear regression models, 454–456

Nonparametric tests, 633–634

statistical estimation, 303

Scatter diagram, 287, 411, 411f

Scatter plot, 412, 412f, 456, 690, 690f, 691

Set theory

complement, 735, 735f

countably infinite, 736

difference, 735–736

disjoint/mutually exclusive, 735

elements/members, 733

empty set (null set), 733

finite, 733

infinite, 733

intersection, 734, 734f

one-to-one correspondence, 736

properties, 735–736

set, defined, 733

subset, 733

symmetric difference, 735–736

union, 734, 734f

universal set, 733

Venn diagram, 733, 734f

Shapiro–Wilk test, 388–389

Shortest length confidence interval, 264

Side-by-side box plots, 690

one-way ANOVA, 512–516, 514f

Sign test

binomial distribution, 598

hypothesis testing procedure, 598b

large random sample, 600b

Minitab, 630

null hypothesis testing, 597

population distribution, 597–598

R code, 628

z-transform, 600

Simple hypothesis testing, 315

Simple linear regression models

definition, 412

derivation of b0 and b1, 414–418
error variance estimation, 422

least-squares estimators, 420–422

least-squares regression line, 412, 412f

method of least-squares, 413–414

quality of regression, 418–419

scatter diagram, 411, 411f

Simple random sampling

advantages, 9b

definition, 8

Simple regression line, 417, 417f

Single-factor experiments, 464

Skewness and Kurtosis, 96–101, 701

Small sample confidence intervals, 307

difference of two means, 291b

Minitab, 302

simulation of coverage, 307

Smith-Satterthwaite procedure, 348–350

SPSS

ANOVA, 540

linear regression models, 454

Nonparametric tests, 632–633

statistical estimation, 302–303

Squared error loss function, 559

Square root transformation, ANOVA, 545

Standard error, 180

Standard normal density, 257

Standard normal random variable, 122–123

Standard norms table, 749t
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Standard pivotal quantity, 263

Statistic(s)

concepts of, 4

descriptive, 5

inferential, 5

population, 4

sampling, 4

Statistical decision, 312

making, 577–578

Statistical hypotheses, 312

Stem-and-leaf plot, 16, 17

Sticker price, 726f, 727f, 728f

Stratified sample

definition, 9

selection procedure, 10b

uses, 11b

Studentized range distribution, 529–530

Studentized range q table, 781t

Student t-distribution, 191–195, 284–285

Subjective probability, 550–551

Subset, 733

proper subset, 733

Sufficient estimator

conditional probability, 252

definition, 250

density functions, 256–257

factorization criterion, 253, 254b

Neyman–Fisher factorization criteria, 252b

Rao–Blackwell theorem, 258b

Sum of squares of errors (SSE), 499, 506

Systematic sampling

definition, 9

selection procedure, 9b

T
Taguchi, Genichi, 459

Taguchi methods

control plot, 484, 484f

design parameters, 487

engineering designs, 484

goal post mentality, 485

loss function, 485, 485f

quadratic loss function, 486, 486f

quality control, 484

Test of independence, 709–710

Test statistics (TS), 313

Three-parameter gamma PDF, 234, 235,

396, 397f

Three-parameter Weibull PDF, 398, 398f

Time series data, 6

Time to failure and/or time between failure (TBF),

721–731

Transformation(s)

for ANOVA, 545

power, 715

Transition probabilities, 737

function, 665

n-step, 739

positive transition matrix, 740

Treatment variables, 462

Truncated exponential distribution, 243

t-table, 750t

t-test

assumptions, 699

Minitab, 363

one-sample, 360, 362

paired samples, 363

pooled, 347

SAS, 366–368

SPSS, 365–366

two sample, 362

Tukey, John W., 495

Tukey–Kramer method, 533

Tukey’s method

calculations of, 530, 530t

confidence intervals, 529

Minitab, 539

R code, 537

SAS, 541

SPSS, 540

Two random samples, hypothesis testing, 345–359

dependent samples, 353–356

independent samples, 345–353

Two-way ANOVA, 465

computational procedure for, 524b

Minitab, 538

nonrandom effect, 521

null hypothesis, 523

R code, 536

step-by-step computational procedure, 523–525

sums of squares, 522

two-way classification, 521–522, 522t

unbiased estimator, 523

Type I error, hypothesis testing, 315

Type II error, hypothesis testing, 315

U
Ulam, Stanislaw, 639

Unbiased estimators

definition, 245

mean square error, 248

sample mean, 246

variance, 246–247

Uniform maximum likelihood estimation, 299

Uniform probability distribution, 120–122, 231, 231f
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Univariate data, 713–715

Upper confidence limit, 261–262, 264, 266, 267

V
Variance

of binomial random variable, 116b

chi-square random variable, 133b

exponential random variable, 132b

gamma probability distribution, 130b

normal probability distribution, 123b

of Poisson random variable, 118b

uniform probability distribution, 121b

Venn diagram, 733, 734f

W
Wald–Wolfowitz test. See Randomness test

Weibull cumulative probability distribution, 395,

395f, 401–402, 402f

Weibull PDF, 234, 236, 238, 238f, 394, 394f,

401–402, 402f

Wilcoxon rank sum test, 767t

hypothesis testing procedure, 613b

large sample, 615b

R code, 629

SAS, 634

SPSS, 632

Wilcoxon signed rank test, 762t

hypothesis testing procedure, 601b

large samples, 604b

Minitab, 630–632

R code, 628

Wilcoxon tests vs. normal approximation, 635

Wolfowitz, Jacob, 589

Z
z-score test, 695

Z-transform, 270
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