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Preface

This book is intended for students of physical science, applied science and
engineering, who, for the understanding and practice of their principal
subjects, need a working knowledge of applicable mathematics.

Since it is not possible in a single text to cater for all degrees of mathe-
matical facility, nor for all tastes in abstraction, a broad middle course
has been adopted, set at the level of what, at the risk of being misunder-
stood, I describe as the 'average student'. It is hoped, however, that what
is presented will also be of value to those who fall on either side of this
central band, either as a less than rigorous introduction to the subject
for the one group, or as an explanatory and illustrative text for the other.

The ground covered is roughly those areas of applied mathematics
usually met by students of the physical sciences in their first and second
years at university or technical college. Naturally much of it also forms
parts of courses for mathematics students.

In any book of modest size it is impossible to cover all topics fully, and
any one of the areas mentioned in this book can be, and has been, the
subject of larger and more thorough works. My aim has been to take a
'horizontal slice' through the subject centred on the level of an average
second-year student.

The preliminary knowledge assumed is that generally acquired by any
student prior to entering university or college. In the United Kingdom,
for example, it is that appropriate to the Advanced Level examination in
Mathematics for Natural Science of one of the British Schools' Examina-
tion Boards. In the United States the material assumed is that which
would normally be covered at junior college. Starting from this level, the
first chapter of the book, consisting of a collection of topics mostly from
the area of calculus, is aimed at providing a common base of the general
techniques used in the development of the remaining chapters. Students
who have had additional preparation, such as having offered Mathematics
as a main A-Level subject, will find much of chapter 1 already familiar.

After the opening chapter, the contents of the remainder of the book
fall under about half a dozen main headings. Chapters 2-4 deal with
vectors and their uses, 5-8 with ordinary differential equations and 9-10

                                                                                            
                                              

                                                            



xiv Preface

with partial differential equations. Stationary value problems are discussed
in chapters 12-13 and matrices and tensors in 14-15, whilst chapter 11
on numerical methods and 16 on complex variables stand more or less
alone, although both have connections with several other chapters.

The guiding principle for presenting the material has been that of
introducing it wherever possible from a heuristic, physical point of view,
and of deliberately avoiding strictly mathematical questions, such as the
existence of limits, uniform convergence, interchanging integration and
summation orders, etc., roughly speaking on the grounds that 'this is
the real world; it must behave reasonably'. Free use has therefore been
made of pictorial mathematics and sometimes of qualitative verbal
descriptions instead of more compact mathematical symbolism. This
has the effect of lengthening the book somewhat but makes the arguments
less terse and tightly knit and therefore, for the average student, easier to
unravel. In this same spirit, liberal use has also been made of parenthetical
words of clarification [enclosed in square brackets]. They are certainly
detrimental to the style and appearance of the text, but the author has
found such asides to be appreciated by students and this is a quite suffi-
cient justification for their use.

The general aim has been to present a topic in three stages, a qualitative
introduction, the more formal presentation, and an explicit check or
worked example to 'close the circle'. In the author's experience this last
step is of great value to many students, who prefer to see the developed
methods in action, rather than left as correct but abstract solutions. Such
introductions and examples are based upon familiar situations and kieas
in physical science and engineering, and it is such a general background
which is, at the same time, both an important prerequisite for appreciat-
ing the material of this book and the main beneficiary of the methods it
develops.

Straightforward manipulation and simple proofs, particularly when
similar to previously displayed work, are often omitted, but the corre-
sponding results are marked at the left-hand margin, by the symbol •>
as are illustrative exercises in the body of the text. The symbol • indi-
cates something which most definitely should be carried through by the
student. The required workings are generally neither long nor difficult
and notes on their solutions are given in many cases at the end of the
book, but most students will benefit greatly in technical skill, understand-
ing and confidence, by carrying out these parts of the arguments them-
selves.

Many equations (especially partial differential equations) can be written
more compactly by using subscripts, e.g. uxy for a second partial deriva-
tive instead of the more familiar d2u/dy dx, and this certainly saves typo-
graphical space. However, for many students, trying to put physical
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meaning to the equations rather than just manipulating them according
to a set of allowed rules, the labour of mentally unpacking such equations,
especially if u or x or y carry further subscripts, indices or primes, is
sufficiently great that it is not possible to think of the physical interpreta-
tion at the same time. Consequently it has been decided to write out such
expressions in their more obvious but longer form. For ordinary differen-
tial equations, where less confusion arises, a prime notation has generally
been used, except where the independent variable has a clear physical
connection with time when a dot notation is employed to make this
connection immediate.

The summation convention is introduced in the course of the first
chapter, and where appropriate is used in later ones, but with a brief re-
minder given as to its meaning after each substantial intermission.

It is a pleasure to record my sincere thanks to Sue Mackenzie and Jacky
Walters for their patience and care in typing a difficult text in a short time,
and to Helen Maczkiewicz for the quality of the drawings and the speed
with which she produced them.

I am also greatly indebted to those of my colleagues and students who
have read parts of the original manuscript, for pointing out errors and
making constructive suggestions. In particular I would like to thank C. M.
M. Nex and A. C. Steven of the Cavendish Laboratory, and several of the
undergraduates of Clare College, Cambridge, notably R. J. Citron, D.
Deutsch, P. N. Jones, H. J. Manning, P. D. A. Orr and O. B. R. Strimpel.
Of course all errors and ambiguities remaining are entirely the responsi-
bility of the author, and I would be most grateful to have them brought
to my attention.

My thanks also go to the University of Cambridge for permission to
use some past examination questions, and to the Cavendish teaching staff
whose lecture handouts have collectively provided the basis for some of
the examples included.

Finally I wish to place on record my appreciation of the care in setting
and printing taken by the siaff of William Clowes & Sons, Limited, and
also my sincere thanks to the editorial staff of The Cambridge University
Press for their much-appreciated advice on the preparation and presenta-
tion of the contents of this book.

Cambridge, 1973 K.F.R.



Mathematical symbols

= identically equal t o ; definition of

~ approximately equal to

~ asymptotically equal to (see section 1.1)

= corresponds to

oc proportional to

-> approaches; tends t o ; becomes

± plus or minus

+ minus or plus

| | magnitude of; determinant of (according to context)

< less than or equal to

^ greater than or equal to

<̂  much smaller than

> much greater than

O( ) (see section 1.1)

o( ) (see section 1.1)

similar terms included but not explicitly stated

n\ factorial n = 1 x 2 x 3 x • - x (n - 1) x n; 0! = l

n\ n\
binomial coefficient =\rj r\(n — r)\

In x natural logarithm of x

arcsin x the quantity whose sine is x (often sin ~1 x)

arccos x the quantity whose cosine is x (often cos " * x)

arctan x the quantity whose tangent is x (often tan"1 x)

the limit to which/(x) tends as x approaches a

the sum a± + a2 + • • • + an

exercises or working the reader should carry through



1
Preliminary calculus

Although the major part of this book is concerned with mathematics of
direct value in describing situations arising in physical science and engin-
eering, this opening chapter, although directed to the same end, is of a
less obviously 'applied' nature. It.is concerned with those techniques of
mathematics, principally in the field of calculus, which are the nuts and
bolts of the more particularly orientated methods presented in later chap-
ters.

Two particular factors have to be taken into account in its presenta-
tion; firstly the various levels of previous knowledge which different
readers will possess, and secondly the fact that the subjects to be treated
in this chapter form a less coherent whole than do those in any other.

The first of these has been approached at the 'highest common factor'
level, namely, knowledge has been presumed only of those topics which
will normally be familiar to a student who, in his previous studies, has
taken mathematics in conjunction with other science subjects, rather
than as his main or only subject. As a result, although several parts of
this chapter will almost certainly be unfamiliar to him, the reader with
more than this presumed level of knowledge may in some sections find
it sufficient to make sure he can solve the corresponding exercises, marked
by the symbol • , and then pass on to the next section.

As a result of the rather diverse nature of the topics considered, the
degree of difficulty of the material does not vary 'monotonically' through-
out the chapter. Rather, the order of presentation has been chosen so as
to reduce, as far as possible, both abrupt changes in subject matter and
forward references.

1.1 Notations and symbols

Throughout the text the notations and symbols adopted have, where
possible, been made consistent with those recommended by international
agreement.!

t Quantities, units and symbols, The Symbols Committee of the Royal
Society, 1971.



2 Preliminary calculus

For ease of future location and reference, all but the commonest of
the symbols used for mathematical operations are set out in a list of
mathematical symbols facing page 1. In nearly all cases the brief explana-
tions given there will be sufficient for the reader to understand the way
in which the symbols are used.

However, the symbols O, o and ~ need some further explanation.
These three symbols are used to compare the behaviour of two functions,
as a variable upon which they both depend tends to a particular limit,
usually infinity or zero, and obvious from the context. The variable may
be a discrete integer variable n or a continuous one x. If the two functions
are denoted by / and </>, and <f> is positive, then the definitions of these
symbols are as follows:

(i) Ifthere exists a constant A: such that | / | ^ k(f> as the limit is approached,
t h e n / = 0(<t>). The statement/= 0(1) means tha t / i s bounded,
(ii) If f/<f> tends to 0 as the limit is approached, t h e n / = o(</>). The state-
m e n t / = 0(1) means that / tends to zero.
(iii) Iff/<f> tends to a limit /, where / ^ 0, as the limit of n or x is approached,
then / ~ l(f>. The statement a ~ b means that the ratio of the two sides
tends to unity.

Although equations relating the various symbols, and a resulting
'algebra', may be established, these notations will not be used in this
book for anything more than shortening the presentation of equations,
and to reduce the repetitive use of wordy additions to equations. However,
the reader is urged to verify for himself the following examples of state-
ments involving use of the symbols.

Iff(n) = 3«2 + In and g(x) = ax112 + bx312, then:

(i) As * - • oo:/(*) = O(n2\f{n) = 0(n3)J(n) = o{n3)J(n) ~ In2.
(ii) As x-+ oo: g(x) = O(x3'2), g(x) = o{x2), g(x) ~ bx312,
cos Ax = 0(1), x'1 cos Xx = o(l).
(iii) As x^O: g(x) = 0(x112), g(x) = o(x"% g(x) ~ ax112,
cos Xx 2̂  1, x'1 cos Ax ~ x"1 .

1.2 Complex numbers

The notions of a complex number and of a complex function of a real
number [e.g. exp (ix)] are used extensively later and so we begin by sum-
marizing without proofs the basic properties of complex numbers.

We denote a general complex number z by

z = x + iy9 (1.1)

where x is the real part (Re z) and y the imaginary part (Im z) of z and i
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is usually described as 'the square root of — 1'. The numbers x and y
are themselves real. An alternative notation is

z = r cos 6 + \r sin 0, (1.2)

where r = (x2 + y2)112 and 6 = arctan (y/x) [taking regard of the signs
of x and y individually].

Im z

z = x + \y

Rez

Fig. 1.1 An Argand diagram.

Complex numbers can be represented by points on a diagram (an
Argand diagram), such as that shown in fig. 1.1, in which the relationships
between equations (1.1) and (1.2) are self-evident. The quantity r is called
the modulus of z, written r = mod z or r = |z|, and 6 is known as the
argument of z, written 6 = arg z. It is apparent that arg z is undetermined
to the extent of Irrn, where n is any integer; for this reason the principal
value of arg z is also defined, and is given by that value which lies in
— 7T< a r g z ^ 77-.

The defining laws of addition, subtraction, multiplication and division
for two complex numbers z and z' are summarized in the following for-
mulae. The commutative, associative and distributive laws hold to exactly
the same extent as they do for real numbers.

Addition: z + z' = (x + \y) + (xf + i / )
= (x + x') + \{y + / ) .

Subtraction: z — z' = (x + iy) — (x' + \y')
= (x - xf) + i(y - / ) .

Multiplication: zz' = (x + iy) x (xf + iy')
= (xxf — yy') + i(xyf -f yx').

(1.3)

(1.4)

(1.5)



Preliminary calculus

Division:

Two particular points

z

should

x -t- \y
x + iy

xxf + yy'

x2 + y2

be noted:

. xy' — yx'
•+• i

x -\- y
(1.6)

(i) If all imaginary parts are zero, i.e. y = y' = 0, then all of equations
(1.3) to (1.6) reduce to those appropriate to real numbers,
(ii) A particular case of (1.5) occurs when x = x' = 0 and y ~ y' — 1;
we then have the fundamental result

i2 = i x i = — 1 . (1.7)

These results taken in total show that we may for practical purposes
treat JC, y and i as though they are ordinary real numbers, provided that
whenever i2 appears it is replaced by — 1.

For multiplication and division, the representation of complex numbers
in terms of modulus and argument is particularly convenient, since, as

(xx' - yy')2 + (x/ + yx')2 = (x2 + y2)(x'2 + / 2 ) ,

we have from (1.5) that

mod zz' = (modz) x (modz'). (1.8)

Further, since

xy' + yx' y yf

arctan —; = arctan - + arctan — >
xx — yy x x

[from the formula tan (A + B) = (tan A + tan B)/(l - tan A tan B)]
we also conclude that

arg {zz') = arg (z) + arg (z'). (1.9)

Thus if z = r(cos 0 + i sin 0) and z' = /(cos ff + i sin 0') then zz' =
rr'[cos (6 + 6') + i sin (6 + 6%

Similarly from (1.6) it can be shown that:

• 1 . mod (z'/z) = (mod z')/(mod z), (1.10)

and

•2. arg (z'/z) = (arg z') - (arg z). (1.11)

• 3 . Show that multiplying a complex number a + ib by i corresponds to
rotating its vector on the Argand diagram by TT/2 in the positive (anti-
clockwise) sense.
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A more convenient and shorter expression for cos 0 -h i sin 0 may be
obtained as follows. Recall that for a real number x the function exponen-
tial (x) or exp (x) or e* is defined by the series

x t x2 x3 " xr

exp (JC) = 1 + JC H 1 h • • • =2, — (1-12)
Z . J. r = 0 T-

If we replace x by i0 (with 0 real) in this and reduce any power of i by
writing i2 as — 1 (see (1.7)) we obtain

02 i03

e x P ( i 0 ) = l + i 0 - - - — + . . . . (1.13)

The real and imaginary parts of this expression are

Re[exp(i0)] = 1 _ — + — - . . . (1.14a)

and

Im[exp(i0)] = 0 - - + - . (1.14 b)

But these two latter series are just the power series expansions for the
functions cos 0 and sin 0 respectively. Thus using this in (1.13) establishes
that

exp (i0) = cos 0 + i sin 0. (1.15 a)

Changing 0 to — 0 and recalling that cos (— 0) = cos 0 whilst sin (— 0) =
— sin 0, shows that

exp ( - i0) = cos 0 - i sin 0. (1.15 b)

Solving (1.15 a) and (1.15 b) for cos 0 and sin 8 gives

cos 0 = Mexp (i0) + exp (-iff)], (1.16 a)

sin 0 = - [exp (i0) - exp ( - i0)]. (1.16 b)
2i

In this notation, (1.2) becomes

z = rexp(i0), (1.17)

and, for example, (1.5) takes the form

r exp (iff)/ exp (i0') = rr' exp [i(0 + 0')]. (1.18)
It is apparent that, by repeated applications of (1.18), the following

more general result may be obtained:

. . .zn = rx exp (i0i)r2 exp (i02).. .rn exp (i0n)
= rxr2.. .rn exp [i(0x + 02 + • • • + 0n)]. (1.19)
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A particular case of this is that in which all the z; are equal and of unit
modulus, i.e. z; = exp (i0) for ally; then

[exp(i0)r = (1.20)

Written in terms of cosines and sines, this result is known as de Moivre's
theorem

(cos 6 -f i sin S)n = cos nO + i sin nd. (1.21)

The complex exponential form is a very useful way of expressing func-
tions which undergo sinusoidal variation, either in time or with distance.
Thus the function

f{t) = R exp (itot) = R cos out -f iR sin wt (1.22)

is one whose real and imaginary parts both undergo sinusoidal variations
of amplitude R and period 2TT/O>, although they are out of phase with
each other by a quarter of a cycle.

Re/(0

Fig. 1.2 The representation of exp (\u>t) in an Argand diagram.

In the Argand diagram (fig. 1.2) the point which represents/(0 at
any particular time lies on a circle of radius R. As time increases the point
moves in the positive sense (anticlockwise) with angular velocity w. It is
easily seen that the lengths OA and OB (reckoned positively or nega-
tively) give the real and imaginary parts of (1.22).
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The use of complex exponentials to describe travelling waves (in the
form exp [i(kx — o>/)]) is discussed in chapter 9.

It may also be noted that (1.15 a) and (1.16 a, b) are closely related to
the functions cosh (x) and sinh (x) which are defined as

cosh (x) = ifexp (x) + exp ( — x)]9 (1.23 a)

sinh (JC) = Mexp (*) - exp ( - * ) ] . (1.23 b)

These two functions, also known as the hyperbolic cosine and hyperbolic
sine respectively, satisfy the identity

•4. cosh2 (x) - sinh2 (x) = 1, (1.24)

as is easily verified.
If x is set equal to id in (1.23 a, b) and comparison is made between

the resulting right-hand sides and the right-hand sides of (1.16 a, b) then
the equalities

cosh(i0) = cos(0), (1.25 a)

sinh(i0) = isin(0), (1.25 b)

are established. Conversely, putting 6 equal to ix in (1.16 a, b) shows that

cos (ix) = cosh (JC), (1.26 a)

sin(ix) = isinh(;t). (1.26 b)

Finally we define the complex conjugate (or simply conjugate) of
z(= x + iy) as the complex number

z* = x - iy. (1.27)

The following properties of the complex conjugate are almost immediate,
and others can be derived from them,

(z*)* = z, (1.28 a)

z + z* = 2 R e z , (1.28 b)

z - z* = 2 i lmz , (1.28 c)

zz* = |z|2. (1.28 d)

In (r, 6) notation the conjugate of z is clearly given by

z* = r exp (-iff). (1.29)

• 5 . Verify that (1.29) is consistent with (1.28 a-d).
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1.3 Convergence of series

In several places later in this book we will have occasion to consider the
sum of a series of terms an which are all given by a single formula involv-
ing w, but each for its own value of n. For example in the two series defined
by:

(i) &n=l/2B , n = 1 , 2 , . . . (1.30 a)

(ii) c n = l / / i , / i = l , 2 , . . . (1.30 b)

b7 has the value 1/128 and c7 = 1/7. Only series with real terms will be
considered in this section.

Our concern will be with the quantity SN which is the sum of the first
N terms

SN= f an, (1.31)
n = l

and the particular question to be answered is whether or not, if we allow
N to tend to infinity, SN tends to a definite limit, or increases or decreases
without limit, or oscillates 'finitely or infinitely'. We will correspondingly
say that the series 2 cin converges, diverges to +oo or — oo, or oscillates
finitely or infinitely.

A formal analytic treatment of these matters involves careful study of
the properties of bounds and limiting processes. However we will take a
more heavy-handed approach and use expressions such as:

(a) 'tends to infinity' when we should say 'exceeds any given quantity AT;
(b) 'a series converges to the sum 5" when we should say 'given any
e > 0 there exists an No, which may depend upon e, such that I-Ŝ  — *S| <
e for all N greater than No\

Even if we can establish in a particular case that a series does converge,
this may not automatically determine the value of its sum S. The evalua-
tion of the sum is often a separate problem, and one which we will some-
times leave unsolved.

Suppose first that a series 2 #n is convergent, then it is apparent that,
however small a quantity e we may have chosen, we must be able to find
a value No of TV such that

= No +

2 < €, (1.32)

whatever the value of Nx (> 0). Put roughly in words, 'we can always
find a value No of n such that the sum of any number of terms from Â o

onwards is less than any preassigned positive quantity, however small'.
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The smaller the preassigned quantity, the larger the value of No needed,
but one can always be found.

The converse of this is also true, namely that if, given any e > 0, we
can find an No such that the statement involving inequality (1.32) is true,
then the series must be convergent. This follows since the sum of No + Nx

terms must be within ± € of SNQ for any positive Nl9 and e itself could have
been chosen arbitrarily small.

It is not usual to actually assign values to e, but for the sake of illustra-
tion we may do so and consider the series 2 bn given by (1.30 a). Suppose
we choose e as 10~3. The eleventh term of the series bxl = 2"1 1 = 1/2048,
the next term is one half of this, and the one after that (the thirteenth)
one quarter of it, and so on. It is apparent that the addition of each fur-
ther term only halves the gap between the sum starting at the eleventh
term and the value 2/2048. Hence

10~3 =
2048

for any Nl9 thus showing that 2 bn is convergent. If instead of 10"3 for
e we had chosen 10 ~6, then we would have had to take No as 21 rather
than 11. What has to be shown is that whatever value of c is given, pro-
vided it is positive, we can find a corresponding No .

The actual sum S for this particular series is rather obvious if the first
few terms are written out, and in any case as this series is a geometric
one the formula for its sum, ^/(l — •£), is probably well known to the
reader.

It is almost as straightforward to show that the series 2 cn defined by
(1.30 b) is not convergent. This can be done by grouping its terms in the
following way

SN = 2 ^ = 1 + d) + (i + i) + (I + * + i + i)

+ ( ± + ••• + A ) + .... (1.33)

The sum of the terms in each bracket is in every case ^ i, and since it is
apparent that as many such brackets can be made up as we desire, the
sum SN can be made bigger than any finite value simply by making N
large enough. This shows that SN does not tend to a limit S and that the
series 2 cn does not converge. Such a series is said to diverge.

To investigate whether or not a given series 2 #n converges, it is useful
to have a number of tests and theorems of general applicability avail-
able. Some of these we will merely state, since once they have been stated
they become almost self-evident - but are no less useful for that.
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1. Crucial consideration. In all tests for, or discussions of, the convergence
of a series, it is not what happens in the first ten, or the first thousand, or
the first million terms (or any other finite number of terms) that matters,
but what happens ultimately.

2. A necessary (but certainly not sufficient) condition for convergence is
that \an\ ->0 as n->co.

In the next four tests we will assume that all terms of all series mentioned
are non-negative (or, more precisely, that the number of negative ones is
finite).

3. If there exists a constant M such that SN = 2 Non is < M for all values
of TV, then 2 #n is convergent.! If no such constant exists 2 #n diverges.

4. Comparison test, (i) If for some No, an < Xdn for some fixed A and all
n > No, and 2 dn is convergent, then 2 #n is convergent.
(ii) If for some No, an ^ Xdn for some fixed A and all n > No, and 2 dn

diverges, then 2 an diverges also.

5. Ratio test {UAlemberi). A series 2 #n converges or diverges according
as

lim — (1.34)
n-«> an

is < 1 or > 1 respectively. If the limit (1.34) is equal to 1, no conclusion
can be drawn.

To prove this we observe that if the limit (1.34) is A where A < 1, then
we can find a value r in the range A < r < 1 and a value No such that

for all n > No. Now the terms of the series an after aNo are

tftfo + i * GNO + 2 , aN0 + 3 , ' ' ' , (1.35 a)

and each of these is less than the corresponding term of

raNo, r2aNo, r3aNo,.... (1.35 b)

However, the terms of (1.35 b) are those of a geometric series with a
common ratio r less than 1; the geometric series consequently converges

t The result is intuitively obvious, but a strict analytic proof requires a
careful discussion of bounds.
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and therefore, by the comparison test (result 4) so must the series (1.35 a).
The observation in statement 1 is now enough to establish the validity of
the ratio test.

The divergent case, where A > 1, is proved by an analogous argument.

6. Root test (Cauchy). A series 2 an converges or diverges according as

lim (an)
lln (1.36)

is < 1 or > 1 respectively. If the limit (1.36) is equal to 1, no conclusion
can be drawn.

The proof follows, almost exactly, the lines of that for the ratio test
and so will not be given here.

•6 . Construct this proof.

Apart from obvious modifications, results 3, 4, 5 and 6 hold for series
consisting entirely of negative terms, or [more liberally] with only a
finite number of positive ones.

The one type of series for which we have as yet made no provision is
one containing infinite numbers of both positive and negative terms. The
two signs may appear in alternate terms or in a less symmetric way, e.g.

+ - i + i - i + - - - , 0-37 a)

or - i + i + i + ! - i + i + ! + ! - i + - - - . 0.37 b)

The characteristic of this type of series is not that there are equal numbers
of positive and negative terms, but that the numbers of each should be
infinite. Specific to this type of series we will give only one particular test.

7. Alternating signs test. A series ^(—l)nan, where the an are positive,
converges if

(i) an-+0 as n -> oo, and (ii) an No can be found such that an > an + 1

for all n ^ No.

To prove this suppose for definiteness that No is even and consider the
series starting at aNo. First of all group the sum of its first 2m terms as

^2m-l =
 (QN0 ~~ aN0 + l) + \aN0 + 2 ~ ^No + 3/

By condition (ii) all the brackets are positive, and so S2m-i increases as
m increases. But, on the other hand

^ 2 m - l = tfjVo ~" (tfiVo + 1 ~~ ##0 + 2)

— • • • — \ClNo + 2m - 3 ~~ aN0 + 2m - 2) ~" aNc + 2m - 19
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and, since each bracket is positive, we must have S2m-i ls ^ess

These two properties of S2m-i, together with result 3, establish the validity
of the test.

It is clear that the proof does not depend in any essential way on No

being even, and this is in no way a restriction on the general result.

If from the series of terms an, the series \an\ is formed and 2 |an| is
convergent, then the series 2 an is said to be absolutely convergent. Clearly
there is no distinction between convergence and absolute convergence for
series all of whose terms are positive anyway. Series containing only a
finite (but non-zero) number of terms of a particular sign will be absolutely
convergent if they are convergent; the actual value of the sums S = ^an

and S' = 2 Wn\ will be different however.
It is apparent that a series can be convergent without being absolutely

convergent. An example of such a series is (1.37 a), which is convergent
by the alternating signs test of result 7, but is shown by the divergence
of (1.30 b) not to be absolutely convergent.

On the other hand an absolutely convergent series is necessarily con-
vergent.

•7 . Determine how the behaviour of SN = 2n = o ax11 as N -> oc depends
upon the value of x.

•8 . Find the sum SN of the first TV terms of the following series and hence
determine whether the series are convergent, divergent, or oscillatory.

[write as partial fractions],
n(n + 1)

•9. Determine whether the following series are convergent. (Their sums,
where they exist, are not required.)

* \ ^ 1 • cos(«0)
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•10. Are the following series absolutely convergent, convergent or oscil-
latory?

(- l ) n (n 2 + I)1'2

,
nlnn

( - l ) n 2 n

1.4 Differentiation

If / (x) is a function of x only, then the first derivative (or differential
coefficient) of/(x), denoted byf'(x) or df/dx is defined to be

df(x)
/• (x) = = hm

d A °

(1.38)

provided that the limit exists. The value of the limit will in almost all
cases depend upon that of x of course.

In graphical terms f'(x) also gives the slope of/(x) at the particular
value of x as illustrated in fig. 1.3.

fix)

Fig. 1.3 The derivative f'(x) as the slope of f(x). At point A the derivative is dis-
continuous.

In the definition (1.38) we allow Ax to tend to zero from either positive
or negative values and require the same limit to be obtained in both cases.
We will not concern ourselves with cases in which neither or only one of
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the limits exists nor, except to notice that they correspond to kinks in the
graph of/(x), with cases in which the two limits exist but are not equal,
such as at point A in fig. 1.3.

The second derivative of / (x) can be obtained by using (1.38) again,
but with / (x) replaced by f\x\ and so on. If we denote the nth (order)
derivative of f(x) by dfn/dxn or/ ( n )(x), with/ (1)(x) = / ' (x) , [and/ (0)(x)
formally = f(x)] then

/™(JC + Ax) - f(n\x)
/<» + !>(*) = lim — —^—U.9 (i.39)

A*-O Ax

provided that the limit exists.
All this should be familiar to the reader, as should the derivatives of

many standard functions and forms. Because of this, further discussion
will not be given; rather, the student is encouraged to carry out the
following exercises.

•11. Obtain the following from first principles, i.e. using (1.38):

(a) — (3x + 4), (b) — (x2 + x), (c) — (x2 + x),
ax dx dx2

d3 d
W-r-3(x

2 + x), (e) — (sinjc).
dx3 dx

• 12. Write down or obtain the first derivatives of the following:

(a) x8, (b) x~\ (c) (1 + x2)1/2, (d) cos(2x), (e) tan (ax),
( / ) arctan (ax), (g) exp (x), Qi) cosh (x), (/) arsinh (x), (J) In (kx\
(k) sin2 3x.

• 13. Show from first principles that

d / 1 \ 1 df

dx\f(x)J f\x)dx

Hence obtain the (first) derivative of:

1 1

(2* + 3)3

(</)cosech3(3x).

sec2x,
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1.5 Differentiation of products and quotients

Let us consider a case in which the function /(x) can be written as the
product of two functions of x, namely f(x) = g(x)h(x). For example if
f(x) were given by x3 sin x then we might take g(x) = x3 and h(x) = sin x.
Clearly in many cases the separation is not unique. (In the given example
possible alternative break-ups would be g(x) = x2, h(x) = x sin x, or
even, to stretch a point, g(x) = x4 tan x, h(x) = x" 1 cos x.) We may ask
if there is a relationship between the derivative of /and those of g and h.

To answer this, we apply definition (1.38) to/(x) . In doing this we will
have to consider f(x + Ax) — / (x), which can be rearranged, by sub-
tracting and adding g(x + Ax)h(x), as follows

f{x + Ax) _ f(x) = g(x + Ax)h(x + A*) - g(x)h(x)
= g(x + Ax)[h(x + Ax) - h(x)]

+ h(x)[g(x+ Ax)-g(x)].

Hence
d/ / (* + Ax) - / (x )
— = lim
djc AX-O AJC

= hm I g(x + Ax) r-
A*-O ^ [ Ax J

g(x + Ax) -

In the limit Ax->0, the factors in square brackets become dh/dx and
dg/dx (by the definitions of these quantities) and g(x + Ax) simply be-
comes g(x). Consequently we obtain

d df dh dg
— [g(x)Kx)] = -f = g(x) — + h(x) -2 . , (1.41)
dx dx dx dx

which is a general result obtained without making any assumptions about
the specific forms / g and h, other than f(x) = g(x)h(x). In words, the
result reads,

The derivative of the product of two functions is equal to {the
first function times the derivative of the second} plus {the second
function times the derivative of the first}.

For the example/(x) = x3 sin x given earlier, (1.41) gives

— (x3 sin x) = x3 — (sin x) + sin x — (x3)
dx dx dx

= x3 cos x + 3x2 sin x. (1.42)
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This result for the derivative of a product containing two factors can be
used to obtain one for a product of three factors by writing one of the
two factors, say /z(x), itself as a product of two factors, viz. h(x) =
j(x)k(x), so that/(x) has the three-product form

f(x) = g(x)j(x)k(x). (1.43)

Then result (1.41) shows that

~- = gM 4- UixMx)] + j(x)k(x) ̂  >
dx dx dx

and (1.41) can again be used to expand the first term on the right, giving
the complete result as

d dk d/ dp
— [g(x)j(x)k(x)] = g(x)j(x) — + g(x)k(x) -f- + j(x)k(x) -£• •
dx dx dx dx

(1.44 a)

In primed notation, without the argument x written explicitly each time,
this is

(gjk)' = gjk' + gj'k + g'jk. (1.44 b)

It is readily apparent that this can be extended to products containing
any general number of factors n, and that the expression for the derivative
will consist of n terms with a prime appearing in successive terms on each
of the n factors in turn.

•14. Verify these results formally for the previous function/= x3 sin x
by writing it variously as (a) x2-x-sin x, (b) x-x-x-sin x, (c) 2x3-^ sin x,
(d) x4-tan x-x" 1 cos x and obtaining result (1.42) each time.

•15. Obtain the first derivatives of the following:

(a) x2 exp (x), (b) sin x cosh x, (c) x(ln x — 1), (d) x3 tan3 x, (e) x sin (ax) •
exp (Ax), ( / ) x2 cos (1 - x2), (g) (a2 + x 2 ) " 1 ^ 2 + x2)"2(c2 + x2)"3.

By applying result (1.41) for the derivative of a product to a function/(x)
of the form /(x) = g(x)*[l/h(x)]9 we may obtain the derivative of the
quotient of two factors. Thus

where the result of • B has been used to evaluate (1/h)'. This can now be
rearranged in the convenient and memorizable form
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= "

As usually expressed in words [hardly mathematically, but sufficiently
clearly];

The derivative of a quotient is equal to 'the bottom times the
derivative of the top minus the top times the derivative of the
bottom, all over the bottom squared'.

•16. Find the (first) derivatives of the following:

x x

(1 -
3x2

8.x-2

- X

+

.)l/2

2x

Ax

+
+

1

2

{a + xf

(c) tan x in the form > (d)
cos x

1.6 Leibniz theorem

Following on from the question posed in the first paragraph of the
previous section about the existence of a relationship between the first
derivative of a product and the derivatives of its constituent factors, and
its answer contained in (1.41), we may further ask if corresponding results
are obtainable for any arbitrary derivative, say the nth.

It will be found that the answer is 'yes' with the general result expressed
by Leibniz theorem, but before proving this let us carry out some trials
to get a feel for what is involved.

Again suppose/is of the form/ = gh, where/, g and h are all functions
of x, and the nth derivative of, for example, g is denoted by gin). Formally
we denote the undifferentiated g itself by g(0). Then from (1.41) we have

yxi) = g<D/j(O) + g(o>#i>. (1.46 a)

If we differentiate this directly several times, as is done below, it will be
noticed that some of the terms obtained at any particular stage are re-
peated and can be gathered together before proceeding to the next differen-
tiation. Starting from (1.46 a) we obtain successively, by repeated applica-
tions'of (1.41) in its general form

(ab)f = a'b + b'a,

that

(1.46 b)
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+ 3ga)h(2) + g(°W3\ (1.46 c)

•17. /<*> = g<4W°> + V»A ( 1 ) + 6g(2)/*(2) + 4g(1W3) + g(0W4>. (1.46 d)

The forms (1.46 a-d) are certainly very suggestive, and, if it were not
for the fact that g(n) means the «th derivative dng/dxn, rather than the
«th power of g, they would simply be statements of the binomial theorem
expansions of/n for an/given by g + h, rather than gh. Even so the forms
make a very clear suggestion as to the general expression for the «th
derivative of the product g(x)h(x). This is embodied in the following
theorem.

Leibniz theorem. If f(x) = g(x)h(x), then

(n~r)h(r\ (1.47)

where the symbols/ ( r ), gin-r) and h(r\ have the meaning previously as-

signed for r = 0, 1, 2 , . . . , « , and I I is the binomial coefficient (see list

of mathematical symbols).
We note that we have already proved (1.47) for values up to n = 4 by

explicit construction. The general proof proceeds by induction as follows.
Assume (1.47) holds for fcome particular value N of n, and then construct

f{N + 1\ which will be shown to be given by (1.47) also, but with n = N + 1.
From the assumed form

+ I ) = y

(1.48)

Every term of (1.48) is of the form £<tf + i-™>A<*> for some value of m,
which is the same as one of the terms of (1.47) with n = N + 1. Hence
the general form is correct and all that remains is to show that the corre-
sponding multiplying constants are also correctly given by (1.47).

For any particular value of m there are two terms in (1.48) containing
gW + i-m^m) j - o n e a r i s ing from r = m, the other from r = m — 1], The
sum of the two corresponding binomial coefficients can be rewritten as
one binomial coefficient as follows,!

t This argument formally fails when m = 0 since we have not defined
/ N\
I 1 but the result (1.49) is obviously true for all N if m = 0.
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AH

\m) + \m - 1/ ~ m\(N - m)\\(N - m)\ (m - l)l(N - m + 1)!
N\(N - m + 1 + m)

m\(N - m + 1)!
(N+

- m)\ \ m }
(1.49)

m\(N + 1

Thus the term containing g<* + i-«>#«> in/(Ar + 1) is

/ ^ + ^^ i - r , (i.5O)
\ w /

which is exactly what is given by (1.47) if n is set equal to N + 1.
Thus the assumption that (1.47) is true for n = N enables us to prove

that it is true for n = N + 1, and hence, by repeated applications, for
any n greater than N. But we have explicitly shown (1.47) is true for
n = 1 [actually for n = 2, 3, 4 as well], and hence it must be true for all n.
This general method of proceeding is called the method of induction.

As an example we may write down immediately the third derivative
of our earlier function f(x) = x3 sin x [to begin with, reference to the
explicit formula (1.46 c) may be helpful],

d3/"
—— = 6 s i n x + 3-6XCOSJC -I- 3-3*2-( — sin x) 4- *3-( — cos*).
dx3

(1.51)

In practice, a convenient way is first to write h and its derivatives [up
to the third in this case] in the various terms from left to right, and then
g and its derivatives working from right to left, and finally to fill in the
binomial coefficients.

•18. Obtain (1.51) by direct differentiation of/(jc) = x3 sin x, and note
the relative amounts of labour involved.

•19. Find:

(a) the 2nd derivative of tan x sin 2x,
(b) the 3rd derivative of sin x In x,
(c) the 4th derivative of (2x3 + 3x2 + x + 2) exp (2x).

•20. If y(x) = x2 exp (JC), show that

_ fl/»-l> = 0.
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If a function / (x) has derivatives of all orders in some neighbourhood
containing the point x = a, then, at any point in the neighbourhood, the
function can be represented by a series in powers of x — a, as follows:

f(x) =f(a) + (x - a)f^(a) + • • • + ( * ~ ^ fr)(a) + • • •

(x - ay-1

+ ' ^-"( f l ) 4- * n . (1.52)+

Here « can have any value and Rn can be shown to have the form

K = (X ~°Tf{n\a + 6n(x - *)), (1.53)

n\
where 0n is some value which lies in the range 0 < 0n < 1. This expansion
is called a Taylor series and is very useful for obtaining a simple poly-
nomial representation of a function which is valid near x — a. The 're-
mainder' jRn can be written in a variety of forms, the one used in (1.53)
being known as Lagrange's form.

For many functions Rn -> 0 as n -> oo, and in these cases the Taylor
series can be written as

When a = 0 this reduces to Maclaurin's series

If such a series expansion is required, the methods of finding derivatives
discussed earlier in this section often prove useful.

•21. Find series expansions for the following functions about the points
indicated: (a) sin 2x about x = 0; (b) tan x about x = 0 up to the x5

term; (c) In x about x = 1; (<f) sin (x) exp (x) about x = 0 up to the x5

term.

1.7 Maxima and minima

By reference to its interpretation as the slope of the graph of/(x) against
x, when d//dx has the value 0 at some particular value of x, then / h a s a
stationary value there. Three such points are indicated in the graph of
fig. 1.4, the points B, Q and S.



1.7 Maxima and minima 21

Fig. 1.4 Stationary points of a function of a single variable. A minimum occurs at
B, a maximum at Q and a point of inflection at S.

The behaviour of f(x) is different in kind at the points B and Q from
that at S. For the former pair the value o f / a t 5 ( 0 is lower (higher)
than that at any other point in the immediate neighbourhood of B(Q),
and the function / is said to have a (local) minimum at B and a (local)
maximum at Q. Clearly, for either, a necessary condition is that

<*/
— = 0 .
dx

(1.55)

At S, although df/dx = 0 , /has neither a minimum nor a maximum since
no neighbourhood about S can be defined in which the value of f(x) is
everywhere greater than, or everywhere less than, the value of / at S.
Such a point is called a point of inflection.

To distinguish mathematically between minima and maxima we ob-
serve that as x increases and / passes through a minimum, the slope
dfjdx itself changes from a negative value (at A), through zero (at B),
to a positive value (at C). Thus in this case d//dx is increasing, which
means that its derivative d2f/dx2 must be positive. Likewise, at the maxi-
mum PQR in the figure we must have d2fdx2 is negative. It is less obvious,
but intuitively reasonable, that at S, d2fjdx2 = 0.

Such tests will not be adequate for all cases - consider, for example,
f(x) = x4 which has a clear minimum at x = 0, but has both d.fjdx and
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d2f/dx2 = 0 theref - but we may summarize the following sufficient con-
ditions for maxima and minima of functions with first and second deriva-
tives :

maximum of f(x)

minimum of f(x)

d/
dx

0

0

d2/
d*2

<0

>0
(1.56)

•22. Find the positions and natures of the stationary points of the fol-
lowing functions: (a) 2x3 — 3x2 — 36x + 2; (b) sin (ax) with a > 0;
(c) x5 + JC3; (d) x5 - x3.

•23. Find the lowest value taken by the function 3x4 + 4x3 - \2x2 + 6.

1.8 Partial differentiation

In previous sections the function / depended upon only one variable x
and was written f{x). Certain constants and parameters may also have
appeared in the definition of/, e.g. f(x) = ax + 2 contains the constant
2 and the parameter a, but only x was considered as a variable and only
the derivatives fn(x) = dnf/dxn defined.

However we may equally well consider functions which depend on
more than one variable, for example, the function f(x,y) = x2 + 3xy
depends upon the two variables x and y [and the constant 3]. For any
pair of values (x, y), f(x, y) has a well defined value, e.g. / (2 , 3) = 22.
This notion can clearly be extended to functions dependent on more than
two variables and if we wish to discuss one involving a fixed, but other-
wise arbitrary, number n of them, we will simply write it as/(jCi), meaning
by this

f(xl9x29...,xn). (1.57)

When n = 2, xx and x2 can be thought of as the x and y used above, but
for many purposes a specification of n will not be needed.

Functions of one variable, like f(x), can be represented by a graph on
a plane sheet of paper, and it is apparent that functions of two variables
can, with more effort, be represented by a surface in three-dimensional

t By studying Taylor's expansion about the stationary point, the student
will easily verify that if the first derivative not to vanish at the stationary
point is / (n), then n even gives a maximum or minimum, and n odd a point
of inflection.
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space. The analogy between this and physical models of mountains or
other geographical features need hardly be mentioned. For functions of
more than two variables such representations are not available; however,
the mathematical properties and procedures are simply the natural exten-
sions of those for the one- and two-variable cases. For the purposes of
visualizing the physical interpretation of the mathematics to be developed,
the reader is advised to think of the two-variable case even where an un-
specified ^-variable one is being discussed.

Following on from the work of earlier sections, derivatives of functions
of several variables can be defined and studied. A lead as to how this may
be done can be obtained by considering the role played by parameters
in functions of a single variable x; although of unspecified value, they are
treated as constants when derivatives with respect to x are found. From
this it is only a small step to defining the derivative with respect to x of
a function / (x , y) of two variables, by saying that it is that for a one-
variable function when y is held fixed and treated as a constant.

To signify that the derivative is with respect to x, but at the same time
recognize that another derivative with respect to y (with x held constant)
exists, it is denoted not by df/dx but by df/dx, and called the partial
derivative or partial differential coefficient of/with respect to x. To define
it formally along the lines of (1.38) we have

8f(xy) /(* + te9y)-f(x9y)
= j i m , (1.58 a)

A O Ax
dx A*-O Ax

provided that the limit exists.
The other derivative mentioned for the function f(x, y) of the two

variables x and y is df/dy defined as the limit (if it exists)

(1.58 b)
dy Ay-o Ay

It is obvious that df/dx and df/dy may both depend on both x and y,
and in general will do so. For the very simple example quoted earlier
f(x, y) = x2 + 3xy, we have directly df/dx = 2x + 3y and df/dy = 3x.

It is a common practice in connection with partial derivatives of func-
tions involving more than one variable, to indicate those which are held
constant by writing them as subscripts to the derivative symbol. Thus the
quantities defined by (1.58 a) and (1.58 b) would be written (respectively)
as

V) and (81\ • (1.59)
8x)v \8y)x
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The extension of these definitions to the general ^-variable case is
straightforward and can be formally written

L Hm {/(*!, x2,.. .,xk + Axfc,.. .,xn)
dXk **k-+<>bxk

, x2,..., xk9..., xn)}> (1.60)

provided the limit exists. For the purposes of illustration in this introduc-
tory chapter, only two-variable functions will normally be considered,
but use is made of the more general notation in some later chapters.

In terms of a three-dimensional model the partial derivatives df/dx
and df/dy are easily visualized, representing as they do the 'slopes' or
' rates of change with distance' of the function, when moving parallel to
the X- and >>-axes respectively (in the positive senses).

Just as for one-variable functions, higher derivatives may be defined.
For example, from df/dx a second derivative with respect to x, d2f/dx2,
may be found, or equally validly the derivative of df/dx with respect to y.
This latter (which of course will not normally be equal to d2f/dx2) is
denoted by

meaning — — (1.61)
dydx dy\dxt

For most functions with which we will have to deal,

ay ay
dy dx ™ dxdy'

(1.62)

continuity of the derivatives being a sufficient condition to ensure this.
As simple but concrete examples using the same function f(x, y) =

x2 + 3xy as previously, we have already noted that

"iJ " X + y* ~dy ~ Xi

and so further obtain that

ay ay a2/* ay
— = 2, — — = 3, — — = 3, — -̂ = 0.
a :̂2 dydx dx dy dy2

•24. (i) Find all the first partial derivatives of the following functions:
(a) x2y, (b) x2+y2 + 4, (c) sin (x/y), (d) arctan (y/x), (e) r(x, y, z) =
(x2 + y2 + z2)112.
(ii) For (a\ (b) and (e), find d2f/dx2, d2f/dy2, d2f/dx dy.
(iii) For {d), say, verify that d2f/dx dy = d2f/dy dx.
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Having defined partial derivatives for functions of more than one vari-
able, we must next connect them with the changes which occur in the
value of the function when all of the variables are changed at the same
time. Again for discussion purposes we consider a function f(x, y) of
two variables x and y.

Suppose that finite changes Ax and Ay are made in x and y9 and as a
result/changes t o / + A/. Then we must have

A/= fix + Ax9y + Ay) -f(x9y)

= f(x + Ax, y + Ay) - fix, y + Ay) + /(*, y + Ay) - /(*, y)
rf(x + Ax, y + Ay) - f(x, y + Ay)'

Ax
Ax

In line (1.63) we note that the quantities in square brackets are very similar
to those involved in the definitions of partial derivatives. For them to be
strictly equal to the partial derivatives, Ax and Ay would need to be
infinitesimally small. But even for finite (but not too large) Ax and Ay
an approximate formula [useful in estimating errors in / knowing those
in measured quantities x and y, for example]

A / ~ Ax + Av (1.64)
dx dy

can be obtained. It will be noticed that the first square bracket of (1.63)
actually approximates to dfix, y + Ay)/dx9 but that this has been re-
placed by &fix,y)/dx in (1.64). This approximation clearly has the same
degree of validity as that which replaces the square bracket by the partial
derivative, has itself.

How valid an approximation (1.64) is to (1.63) depends not only on
how small Ax and Ay are, but also upon the magnitudes of higher partial
derivatives. This can be seen, for example, by treating x as fixed in the
second square bracket of (1.63) and expanding the bracket by a Taylor
series in Ay to give the exact equation,

[ fix, y + Ay) — fix, y)l l^f\ 1 / #
A^ J = \ty)x

 + 'v.\&t
(1.65)

Approximation (1.64) corresponds to omitting all but the first term on
the right-hand side.

It is perhaps appropriate to mention here the analogues of Taylor's
and Maclaurin's series for functions of more than one variable. For our
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standard two-variable function, Taylor's expansion about the point
(x09y0)is

df df
f(x, y) = f(xo,yo) + (x - x0) —- + (y - y0) —

dx $y
i r d2f

— \(x - x0)
2 —- + 2(x - xo)(y - yQ)

2! L dx

d2f

'-> d.66)

where all the derivatives are evaluated at (x09y0). Maclaurin's series is
obtained by putting x0 = y0 = 0. For functions of more than two vari-
ables the corresponding result is mentioned in the next section.

When we later come to discuss integrals and integration, we will need
to consider expressions such as dx, dy and df which are known as dif-
ferentials and represent arbitrarily small quantities, not just approximately
but in principle. From what has been said previously it is apparent that
for the function / = f(x, y) they are exactly related by

The left-hand side, d/, of (1.67) is called the total differential of/.
I f /were a function of n variables and denoted by/(x f) as in (1.57),

then the corresponding expression for d/would be

In some situations, despite the fact that several variables xt appear to
be involved, effectively only one of them is. This occurs if there are sub-
sidiary relationships constraining all the x{ to have values dependent on
the value of one of them, say xx. These relationships are represented by
equations, typically of the form

Xi = s /* i ) , j = 2 , 3 , . . . , n , (1.69)

where the 7th function gy gives the dependence of xj on xx. In principle /
can then be expressed as a function of Xi alone by substituting from (1.69)
for x2, x3,..., xn, and then the total derivative [or simply the derivative]
of/with respect to xx obtained by ordinary differentiation.

Alternatively (1.68) can be used to give

8xjdxl \8xjdx,. \8xJ
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or, including the functions gj more explicitly,

v_jr+jr<ta + . . . + j ^ . (171)
dx1 dxx dx2 dxx dxn dx1

It should be noticed that the left-hand side of this equation is the total
derivative df/dxl9 whilst the partial derivative df/dxx forms only a part
of the right-hand side. In evaluating this partial derivative only explicit
appearances of xx in the function / must be taken account of, and no
allowance must be made for the knowledge that 'as xx is changed, this
necessarily changes x2, and x2 appears i n / ' . This latter contribution is
taken care of by the remaining terms on the right-hand side of (1.71).

Naturally what has been shown using x± in the above, applies equally
well to any other of the xj9 with the appropriate consequent changes.

Finally, to illustrate what has been said with a simple transparent
example, suppose that for our earlier function f(x, y) = x2 + 2>xy, y is
constrained to be y = arcsin x and we require to find d//dx. To evaluate
(1.71) [here n = 2, xx = x, and x2 = y] we need

dx ' dy

yielding

d/
— = 2x 4- 3 v 4 3x
dx (1 - x2)1/2

3x
= 2x + 3 arcsin x

•25. Show that the same result is obtained if y = arcsin x is substituted
inf(x, y) before obtaining df/dx by 'one-variable differentiation'.

•26. Obtain d//d^ using each of the two methods.

•27. Find df/dx if / = (x2 + y2 + z2)112, where x, y and z are given by
x = sec2 y and z = xz2 + x2.

1.9 The summation convention

In the previous section it was apparent that series of terms such as those
in (1.68) and (1.70) are cumbersome to write out explicitly. They can be
shortened by the use of the summation sign 2 ; for example, (1.68) could
be written
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But by the use of the summation convention, such expressions can be com-
pacted still further. The convention is:

In any expression containing subscripted (or superscripted)
variables, any lower-case alphabetic subscript (or superscript)
which appears twice and only twice in any term of the expression
is assumed to be summed over (unless the contrary is stated).

Thus a statement

df=^-dxi9 (1.73)
dXi

is completely equivalent to (1.68). Equally (1.70) can be replaced by

d/ _ df dx{

dxx dXi d*i

and the expression for the total derivative of /wi th respect to any arbi-
trary Xj written as

^ = - ^ - (1.74)
dXj dxt dXj

In this last expression it should be noted that summation over values from
1 to n applies to i only. Since j appears only once on the right-hand side,
no summation with respect to it is to be carried out. This is in line with
the fact that j appears on the left-hand side but i does not.

The general form of Taylor series for a function of n variables xt can
be conveniently written using the summation convention. For an expan-
sion about the point X%

We have here deliberately used different subscript letters j , k, / , . . . in
each of the implied summations to emphasize which factors are multi-
plied together in each summation. Of course all the subscripts run over
the range 1 to n inclusive and, for example, x3 is the same quantity whether
it arises from x, withy = 3 or xt with / = 3. All the derivatives are evalua-
ted at the point Xt.

Although the convention is introduced here in the context of partial
differentiation, it is adopted in far more general circumstances. In later
chapters expressions such as:
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(i) a^i + a2b2 + • • • + anbn,
00 a{1blk + ai2b2k + • • • + ainbnk9

( H i ) flu + fl22 + ••* + <*nn,

will appear, particularly in connection with vectors, tensors and matrices.
All three can be expressed in substantially shorter forms by using the
summation convention thus,

(i) Oibi9 (ii) aub,k, (iii) au.

This preliminary mention of the summation convention should prepare
the reader for its more regular use in subsequent chapters, although on
the first few occasions it appears, a brief reminder of its meaning is given.

•28. Use the Taylor series (1.75) to find a polynomial expansion, up to
quadratic terms in x — TT/4, y and z — 1, of the function sin (x + yz)
about the point x = TT/4, y — 0, z = 1.

1.10 Change of variables

It is sometimes necessary or desirable to make a change of coordinate
system during the course of an analysis, and consequently to have to
change an equation expressed in one set of coordinates into an equation
using another set. Effectively the same situation arises if a function /
depends upon one set of variables xi9 so t h a t / = /(x f), but the x{ are
given in terms of a further set of variables yj by equations of the form

Xi = *,0v). (1.76)

For each value of /, the function x{ on the right of this equation will be a
different function of yl9 y2,.... The two subscripts i and j need not run
over the same range, but if both the x's and >>'s are sets of independent
variables they will do so.

In this section the behaviour of derivatives under changes of coordinates
is considered. Differentials are treated later in connection with integra-
tion.

The simplest case occurs when there is only one y upon which each of
the Xi depends. Perhaps the most common physical situation is that in
which the one y represents time [then usually denoted by t of course]
and the x{ are the spatial coordinates of a point moving along a prescribed
track. With only one y the total derivative d//d,y becomes directly meaning-
ful and is given by

d/ df dx{ . . x

— = (summation convention). (1-77)
dy dx{ dy
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This can be obtained manipulatively by dividing (1.68) through by dj>,
and a proper formal proof follows closely the lines adopted in the next
few paragraphs.

The next situation to consider is that in which more than one y is in-
volved. For the function f(Xi) where x{ = xt(yj) as discussed above, we
determine the partial derivative of/with respect to one of the / s , which
we denote by yjt It is clear that/varies as y}- is changed, but because the
link is through all of the x{ (yf effecting each xi9 and / dependent on all
xt) the connection is an indirect one.

Suppose yj increases to yj + Ay, then each of the x{ will change by an
amount

by + O{(by)}. (1.78)
dy,

That is Axi is given only approximately by (dxjdyj) Ay for small but finite
Ay, but as Ay -> 0, (1.78) gives the ratio of Axt to Ay exactly. As a result
of these changes, in each of the xt, / changes its value from f(xt) to
f(xt 4- Axt), i.e. to / ( * ! + Axl9 x2 + Ax2 , . . . , xn + Axn). We are thus
interested in the limiting value of the ratio

/(s, + Axd-fjxd

Ay

The numerator of this can be expanded by a Taylor expansion (as in
(1.75)) as

f(Xi + A*,) - f(Xi) = ^- Ax{ + O{(AXi)
2}. (1.79)

dxxt

[In obtaining this from (1.75), Xt and xt of (1.75) have been replaced by
xt and Xi 4- Axt respectively. The summation convention applies to the
repeated subscript in the first term on the right-hand side.]

Next, substitution from (1.78) for Axt and division all through by Ay
gives

/(* + A, )-/<*) j / ; ^ ( 1 8 0 )

Ay dx{ dyj

[Since, as shown by (1.78), Ax{ and Ay are of the same order of smallness,
the 0{(Axt)

2} of (1.79) can be considered as being replaced by 0{(Aj;)2}.]
Finally, letting Ay tend to zero yields the required expression,
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This result is known as the chain rule for partial differentiation and is
the analogue of that for ordinary (or total) derivatives, to which it reduces
if there is only one JC and only one y,

d/ d/ dx
— = — (1.82)
dy dx dy

•29. If the position (x, y, z) of a particle at time t is given by

x = It2, y = sin2t, z = cxp(-t),

find the rate of change of radial distance r of the particle at time t.

In deriving result (1.81) no assumptions have been made about/and
so the chain rule is really a property of the operation of differentiation.
That is, it could equally well be written

d dxt d
— = —- — , (1.83)
dy, dyj dXi

which in turn can be put into words as 'to change from the independent
variables y5 to the independent variables JCj, replace each partial derivative
with respect to y5 by (dxjdyj) times the partial derivative with respect to
Xi and add the contributions for all / together'.

As an example of these procedures in practice, consider the following.

Example 1.1. Plane cylindrical polar coordinates r and <f> are given in
terms of Cartesian coordinates x and y by

x = r cos <f>, y = r sin <f>,

as in fig. 1.5. For an arbitrary function / (* , y), which when put into
(r, <f>) coordinates is g(r9 </>), transform the expression

d2f d2f

into one in r and <f>.
To identify this problem in terms of the previous notation, we have

yx^x, y2 = y, *i = >% *2 = <£,

and

r2 = x2 + y2, <£ = arctan (y/x).
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Fig. 1.5 The connection between Cartesian and polar coordinates in two dimensions.

The four partial derivatives needed are:

dr x

~dx (x2

dr y
(x2

= c o s <f>,

= s i n <f>,

-OV* 3 )
dx

d<f> (i/*)

s i n <f>

r

c o s <f>

1 + (ylxf

Thus from (1.83) we may write

and

a a s in <t> d
— = cos 6 9
dx dr r d<f>

d
—
dy

d c o s 6 d
1

dr r d<f>

(1.84)

(1.85)

Now it is only a matter of writing

d2f / a . a w d sin<f> d\
— = I cos 6 sin 6 — II cos <h 1 g
dx2 \ dr d<f>)\ Ydr r d<f>)

d / dg sin + dg\
= c o s <£ — I c o s 4> I

dr\ dr r d<f>)

s in <f> d / dg s in <f> dg\
(cos 6 1»

r d<f>\ dr r d<f>)

and a similar expression for d2f/dy2,

82f . . d I . dg cos ^ dg\
— = sin <£ — (sin j> h — — — I
dy2 dr\ dr r d<\>)

r d<f>\ dr r d<f>)
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When these two expressions are added together and the slightly lengthy
but straightforward differentiations carried out (an exercise left to the
reader), the change of variables is completed.

d2f d j d*g i d g i d*g

• 30. — + 7-i = - 7 + - — + -iT-Ti' O-86)
dx2 dy2 dr r cr rz C(pz

Although we have referred t o / a s / ( x , y) and to g as g(r, </>), both func-
tions in fact represent the same quantity in the two-dimensional space,
even though / and g will have quite different algebraic forms. For this
reason, it is not uncommon to leave the name of the function unchanged
and assume that it is expressed in an algebraic form suitable to the co-
ordinate system currently being employed.

•31. Express d2f/dx dy in plane cylindrical polar coordinates.

•32. New coordinates £ and rj are defined in terms of two-dimensional
Cartesians x and y by

£ = x + y, 7] = x - y.

Express the equation

dx2 dy2 dx dy

in the new coordinates.

1.11 Dependent functions

In obtaining (1.67) we assumed that / was a function of x and y, but
equally we could have said that y was a function of/ and x, y = y(f, x),
since if the latter two are given, y is determined. Equally x = x(f, y).
To emphasize this symmetry of relationship let us replace / by z, without
in any way intending to imply that any or all of x9 y and z are coordinate
positions.

Writing (1.67) in terms of x, y, z we have

(d(dy' (L87a)

and equally

(dx\ /dx\U f e - (l-87b)
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In equations (1.87) the subscript showing which variable is held fixed
in each partial differentiation is explicitly attached to the corresponding
partial derivative. Substitution for dx from (1.87 b) into (1.87 a) gives

< 1 8 8 )

Now it is clear that if (dz/dx)y exists and is not equal to zero, then
(dx/dz)y also exists and is equal to the reciprocal of (dz/dx)y

Of course for equations like (1.89) to be valid, the same quantities must
be held constant in the two derivatives [here y in both].

Using this general result shows that the terms in (1.88) involving dz
cancel and hence that

By using (1.89) again to write the second term of this as (dy/dz)'1, the

result may be written in the more symmetrical form

( ) , , (1.91)

, WA W
provided none of the derivatives vanish.

•33. Show that

•34. Verify explicitly the general result (1.91) for the special cases
(i) z2 = x2 + y2, (ii) z = arctan (x/y).

1.12 Maxwell's relations and Jacobians

To illustrate some of the ideas of the previous section, Maxwell's thermo-
dynamic relations will now be obtained. They express relationships be-
tween four thermodynamic quantities describing unit amount of a sub-
stance. The quantities are/7 the pressure, Fthe volume, Tthe thermodynamic
temperature and S the entropy of the substance. These four quantities
are not independent, only two of them being independently variable. For
the moment we will not specify which, but merely denote them by x and y.
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The first law of thermodynamics may be expressed as

dU = TdS - pdV, (1.93)

where U is the internal energy of the substance. Comparing this with
(1.68) and (1.70) we see that we may write

/dU\ /dS\ (dV\
(—I = r ( —I -pi—) (1.94a)
\dX/y \dX/y \dX/y

and

(—) = T (—) - p (—) • (1.94 b)

Next (1.94 a) is differentiated with respect to y with x constant and
(1.94 b) with respect to x with y constant, and the two results equated
(since 32U/dy dx = 82U/dx dy). After cancelling T32S/dy 8x - p 32V/
dy dx from each side we obtain the relationship

8T\ fdS\ /dp\ /3V\ _ (8T\ /dS\ fdp\ (dV\

(1.95)

By substitution of various pairs of quantities chosen from among /?, V,
T and S9 for x and y9 Maxwell's equations may be obtained. For example,
taking x as S and y as V yields

8Vfs \8Sj

•35. Prove the three other common Maxwell relations

Equation (1.95) can be rearranged to read

/8T\ /8S\ _ /8T\ /8S\ = /8p\ /8V\ _ /8p\ /8V\
\8y)x\8x)y \8x)y\8y)x \dy)x\dx), \8x)y\8y)x

(1.97)
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The reader who has an acquaintance with determinants will notice that
both sides of (1.97) have the appearance of being the expansion of a
2 x 2 determinant. [Determinants and matrices are discussed at length
in chapter 14.] The left- and right-hand sides have respectively the forms

/dS\ IdS^
\dx/y

\dx)y \dy)x

y \dy

y \dy

(1.98)

Such forms occur sufficiently frequently in the theory of partial differen-
tiation for them to be denoted by a special symbol defined by

df df df

dx dy dz

dx dy dz

dh dh dh

dx dy ~dz~

(1.99)

The determinant in (1.99) is known as the Jacobian of/ , g, h9... with
respect to x,y9z9 With this notation the two forms in (1.98) can be
written as Jacobians and (1.97) expressed by

d(S, T) = d(Kp)
d(x,y) d(x,y)'

(1.100)

With a little more obscurity but compensating compactness, the
Jacobian of a set of functions f{(i = 1, 2 , . . . , n) with respect to variables
Xj (j = 1, 2 , . . . , n) can be described as the determinant of the matrix
whose (/,y)th element is dfjdxj, and denoted by

(1.101)
d(xj)

I f / a n d g are two functions of variables u and v, and u and v are in
turn functions of x and y, then by a direct but slightly lengthy expansion
it can be shown that the relevant Jacobians satisfy

(1.102)
d(u,v) d(x,y)
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This result has obvious extensions to sets of n functions and more than
one intermediate set.

For readers who already have sufficient familiarity with matrices and
their properties, a fairly compact proof for sets of n functions of the
result corresponding to (1.102) can be given as follows. Other readers
may turn straight to the results (1.106 b) and (1.107 b) and return to the
proof at some later time.

Consider three sets of variables xi9 y{ and zu with / running from 1 to n
for each set, and denote by M(XY) the matrix whose (i,j)th element is
dxt/dyj. From (1.73) applied twice

ixt = p-dyt = p-p-dzk. (1.103)
dyj 8y, 8zk

Thus

8xt 8Xi By, .
— = ' [a chain rule]
8zk 8yt 8zk

or

[M(*Z)]it = [M(XY))t,[M(YZ)]ik, (1.104)

which is the statement that the matrix M(XZ) is the matrix product of
matrices M(XY) and M(YZ), in that order.

We now use the general result for determinants of product matrices
that \AB\ = \A\ x \B\ and recall that the Jacobian

= Jxy = |A#(*T)|; (1.105)

on taking the determinant'of (1.104) we obtain

JXZ=JXyJy2. (1.106 a)

As a special case, if set z{ is taken identical to set x{ and the obvious re-
sult Jxx = 1 used, we obtain

JxyJyx= 1. (1.107 a)

Written in the usual notation, these two results are

d(xl9 x2i..., xn) d(xl9 x29...,xn) d(yl9y29" -9yn)

d(zl9z2,.. ., zn) 8(yl9 y2,.. .,yn) d(zl9 z 2 , . . ., zn)

and ( 1 1 0 6 b )

8(Xl,x2,...,xn)

l , J2> • • •» Jn) 1 ^ 1 , X2,. . ., Xn)
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The similarity between the properties of Jacobians and those of deriva-
tives is apparent, and to some extent is suggested by the notation.

•36. Use (1.106 b) and (1.107 b) to show that result (1.100) can be written
as

d(S, T)
= 1.

1.13 Stationary values for functions of several variables

Just as for functions of a single variable, we may seek values of the vari-
ables x{ upon which a function f(Xi) depends, that give / a (local) maxi-
mum or minimum. However the general situation is more complex than
that for a function of one variable as may be seen from fig. 1.6.

Fig. 1.6 Stationary points of a function of two variables. A minimum occurs at B,
a maximum at P and a saddle point at 5.

This figure gives a rough sketch of part of a three-dimensional model
of a function f(x, y). At positions P and B there are a peak and a bowl
respectively - or, more mathematically, a local maximum and a local
minimum. At position S the situation is more complicated, since a sec-
tion parallel to the plane x = 0 would show a maximum, but one parallel
to the plane y = 0 would show a minimum. A point such as S is known
as a saddle point. The orientation of the 'saddle' in the xy-plane is
irrelevant; it is as shown in the diagram solely for ease of discussion.
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For a function of two variables, such as the one shown, it is geometric-
ally obvious that a necessary condition for a stationary point (maximum,
minimum or saddle point) to occur is that

df df
— = 0 and — = 0. (1.108)
dx dy

The vanishing of the partial derivatives in directions parallel to the axes
is enough to ensure that the partial derivative in any other direction does
so too, since any such derivative can be resolved along the directions of
the two axes.

A more difficult criterion to formulate mathematically is that which
determines the nature - maximum, minimum or saddle point - of the
stationary point. To do so we may employ the Taylor expansion (1.75)
about the point (JC0 , y0) keeping only the first non-vanishing terms (in
addition to f(x0, yo))9 since they can always be made to dominate later
ones by making x — x0 and y — y0 small enough. The second and third
terms of (1.75) vanish on account of (1.108) and so we are left with

l r ay
f(x, y) - f(x0, y0) = — \(x - x0)

2 —

+ 2(x - xo)(y - yQ) - ^ L + { y - y0)
2 ^ ] • (1.109)

dx dy dyz J

Arrangement in this form shows that the variation of/(x, y) from its
value f(x0, y0) at the stationary point is determined by the quantity in
square brackets. For a maximum (such as P in fig. 1.6) this quantity must
be negative whatever the values of x — x0 and y — y0, and similarly
for a minimum (such as B) it must be positive for all values. In both cases
we should more strictly say 'for all sufficiently small values of x — x0

and y - yo\
To save space let us write the quantity in square brackets as

X2A + 2XYB + Y2C, (1.110)

where A, B and C are real constants, and then rearrange it in the form of
the sum of two squares thus,

For this to be > 0 for all X and Y, we must have

(i) A > 0, (ii) C - (B2/A) > 0. (1.112 a)

In view of (i), (ii) can be written as AC > B2.
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If (for a maximum of/) expression (1.110) is to be <0 for all Xand Y,
we must have

(iii) A < 0, (iv) C - (B2/A) < 0. (1.112 b)

In view of (iii), (iv) can, like (ii), be written as AC > B2.
When expression (1.110) is positive for some values of X and Y and

negative for others we have a situation corresponding to a saddle point.
If it is zero for all X and F, then all second derivatives of/ are zero and
our criterion fails.

Stated in terms of partial derivatives, results (1.112) become

— > 0 for a minimum, I (1.113 a)

< 0 for a maximum, J

d2f d2f / d2f \2

1T1T-2 >\TJH ^ either case. (1.113 b)
dx2 dy2 \dxdy)

Failure of condition (1.113 b) implies (except where both sides are zero)
that the stationary point is a saddle point. It should not be forgotten
that the above criteria apply only at points where df/dx = df/dy = 0.

•37. Show that the function x3 exp (—x2 — y2) has a maximum at the
point ((3/2)1/2, 0), a minimum at (~(3/2)1/2, 0), and a stationary point,
whose nature cannot be determined by the above procedures, at the
origin.

What has been shown above for functions of two variables can be ex-
tended to those of an arbitrary number. We will only state the results;
the general lines of the proofs, if not the details, are probably apparent
from the statements.

For a function of n variables xi9 the condition that/should be stationary
at the point x{ = *io is that d/ = 0 for all small values of (xk - xko).
From (1.68) this implies that

f - l - o for/ = 1,2,...,?!. (1.H4)

The condition that the stationary point should be a maximum is that the
expression

a2/
Q = (xi — xiQ)(xj — xjo) (summation convention) (1.115)

GX OX
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should be < 0 for all sufficiently small values of (xk — xko). For a mini-
mum Q must be > 0 for all such values.

For the purely utilitarian purpose of practical application, we record
here that the theory of matrices and quadratic forms shows that the
question about Q can be answered as follows. Consider the series of
determinants,

ay
a*f Q

ay

ay
dxx dx2

ay

a2
a

f
dx2dx

ay

ay

ay a2/
a*2 ax2 axx

ay ay
xx ax2 a^

ay
i ax3 dXl

ay
a*3 ax2

ay

2

(1.116)

xx dx3 dx2 dx3 dx3

etc., up to the n x n determinant whose (i,j)th element is given by
d2f/dxi dXj for 1 ^ / ^ n and 1 ^ j ^ n. Then Q > 0 for all values of
(xk — xko) if all of Ql9 Q2,..., 2n are separately >0 ; also, Q < 0 for
all values of (xfc — xko) if (?i, Q 3 , . . . , 22r + i are each <0 whilst Q2»
G4 ̂  • • ^ 02r are each > 0.

The results obtained previously for a function of two variables are par-
ticular examples of these general ones, as may be checked by the reader.

•38. Show that the function

10x2 + 8 / + z2 - I2xy - 4x - 24y - 2z + 8

has only one stationary point and that that is a minimum with a value
o f - 3 3 .

1.14 Stationary values under constraints

We have considered the problem of finding stationary values of a func-
tion of two or more variables when all the variables may be independently
varied. However, it often happens in physical problems that not all the
variables used to describe a situation are in fact independent; for example,
the sum of the energies involving the different spatial variables may be
required to be constant in time.
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I f / i s a function of n variables x{ (i = 1, 2 , . . . , n), but the xf are not
truly independent, being constrained by m (^n — 1) relationships

gJ(xd = 0, j= 1,2,..., m, (1.117)

then effectively there are n — m independent variables available for varia-
tion. The form of equation given in (1.117) is no restriction on the types
of constraints so long as they can be written in algebraic form. We assume
that each of the m different functions gj has partial derivatives with respect
to each jct appearing in it.

One can visualize the procedure for this situation as that of solving
(1.117) for m of the xt and then substituting for these m variables, in terms
of the other n — m, into / . The function / would then contain n — m
independent variables and could be treated as in the previous section.
In many cases, this procedure is feasible, but in others it is either cumber-
some or impossible; for example, for some forms of the functions gj

it may not be possible to write an explicit solution for a particular vari-
able. Consider, for example, an equation such as

x\ + x\ + arcsin (xjx2) = 0,

which cannot be solved explicitly for either x1 or x2 in terms of the other.
When such situations arise, use may be made of a method known as

Lagrange's undetermined multipliers. At first sight the method appears
somewhat artificial, but in later chapters it will be seen that the apparently
arbitrarily introduced 'multipliers' in fact have close connections with
the sought-for stationary value solutions.

At a stationary point xiQ we must have d/ = 0 as before, but not now
for all sufficiently small values of xk — xko, but rather only for those which
are such that

&(**) = 0, j= 1,2,... , m. (1.117 bis)

That is, only those variations of x{ are allowed which do not change the
value of each of the gj\ as a formula,

4fc = 0, 7 = 1,2,..., m. (1.118)

Now consider a new function F of the x{, defined by

F(xi)=f(xi) + Xxfrd, (1.119)

where the Ay (m of them) are as yet unknown multiplying constants -
hence the name of the method. The fact that they are taken as constants
should be emphasized. In view of the requirements that at a stationary
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point d/must be zero and from (1.118) that dgj must also be zero, we
must have that

dF= d / + A,dgv = 0. (1.120)

From this we may write (see (1.68))

3F
—- = 0, k= 1 ,2 , . . . ,* , (1.121)
dxk

that is

X +A, £ * _ < > , k=l,2,...,n. (1-122)
dxk dxk

Line (1.122) gives n equations which may be used together with the m
equations (1.117) to provide m + n equations for what are now m + n
unknowns, namely the n quantities x{ and the m values of Ay.

Thus at the price of increasing the total number of unknowns to m + «,
the problem has been made into one in which the changes in the x{ can
be made independently.

To illustrate the undetermined-multiplier method described above, we
will now (partially) derive a well known result from statistical mechanics -
the Boltzmann distribution. We will not be concerned here with the
physical arguments involved, but merely summarize these by stating the
problem as follows.

A system contains a very large number N of particles, each of which
can be in any of R energy levels with a corresponding energy E{ (i =
1,2,... , i?). If the number of particles in the /th level is nt, and the total
energy of the system is E, then it is required to find the distribution n{

for/ = 1,2,..., JR.
Statistical arguments indicate that the distribution will be that which

maximizes the expression

P =
n1ln2\...nR\

but of course subject to the constraints
R

g^nO = N - ^ «i = 0, (1.123 a)
i = 1

and
R

= E - ^ n{E{ = 0. (1.123 b)



44 Preliminary calculus

Maximizing P is equivalent to minimizing its denominator since N\
is fixed. This is most conveniently done by considering its logarithm and
using an approximation due to Stirling! and valid for large n, that

ln(«!) ~ n[\n(n) - 1].

The problem then becomes one of minimizing
B R

\n(n1\n2l...nR\)~]? n{ In («t) - ^ nt (1.124)
t = i x = i

subject to (1.123 a) and (1.123 b). The second term on the right of (1.124)
necessarily has value — N, and so may be disregarded from the point of
view of finding stationary values. The implicit assumption has been made
here that for distributions near to the required one, all the n{ are reasonably
large.

Thus we arrive at the situation described earlier, with the n{ playing
the role of the xi? 2 ni I*1 (nd the part of/, and equations (1.123) provid-
ing two constraints on the R variables. The analogue of F in (1.119) is

F = 2 *i In fa) + Ax (N - 2 «i) + A2 (£ - ^ n.Ed . (1.125)
i * i

Taking its partial derivative with respect to a general nk gives

dF 1
— = nk — + In (nk) - A2 - \2Ek, (1.126)
dnk nk

and setting this equal to zero at the value nko, corresponding to the
stationary value of P, yields

\ n ( n k 0 ) = \ 2 E k + X 1 - l . (1.127)

Hence the distribution of the nk follows the law

nk0 = Cexp(A2£fc), (1.128)

where C is independent of k, but of course C and A2 are such that the two
equations

k

and
2 CEk exp (A2£fc) = E,

k

t More accurately, a first-order Stirling formula gives

n\ ~ (2iryi2nn +

for large n, and the form used in the text is an approximation to this in
which all terms not increasing at least as quickly as n have been dropped.
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are satisfied. [The reader is probably aware that A2 has the value - l/kT9

where k is Boltzmann's constant and Tthe thermodynamic temperature.]

•39. Find the maximum and minimum values taken by the expression
13;t2 + Sxy + ly2 on the circle x2 + y2 = 1.

1.15 Integration

The notion of an integral as the area under a curve will be familiar to the
reader. In fig. 1.7, in which the solid line is a plot of a function/(x), the
shaded area represents the quantity which is denoted by

-r.f(x)dx. (1.129)

This expression is known as the definite integral of f(x) between the
lower limit x = a and the upper limit x = b, and f(x) is called the inte-
grand.

fix)

a b

Fig. 1.7 An integral as the area under a curve.

This is not the formal definition of the integral, but a readily visualiz-
able representation of it. The formal definition of / involves subdividing
the interval a ^ x ^ b into a large number of subintervals by defining
intermediate points £ such that a = £0 < f± < £2 < — • < €n = b.
After this the sum

(1.130)
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is formed, where x{ is an arbitrary point which lies in the range f(_i ^
xt ^ fi. Then if n is allowed to tend to infinity in any way whatsoever,
subject only to the restriction that the length of every subinterval £_!
to ii tends to zero, S may or may not tend to a unique limit /. If it does,
then the definite integral off(x) between a and b is defined as having the
value / and the fact expressed by (1.129). If no unique limit exists the
integral is undefined.

This description in no way purports to be a proper analytical one, but
merely a prosaic explanation of the steps involved. The reader interested
in a rigorous development should consult a textbook on pure mathematics.

Some straightforward properties of definite integrals, for which general
lines of proof are almost self-evident are:

J 0dx = 0, (1.131a)

f(x) dx = - | f(x) dx, (1.131 b)
J a J b

f ° fix) dx = f * fix) dx + V fix) dx; (1.131 c)
J a J a J b

if m ^ f(x) ^ M for a ^ x ^ Z>, then

m(b - a) ^ I f(x) dx < M(b - a), (1.131 d)
J a

f [fix) + gix)]dx = f */(*) dx + ("gix) dx. (1.131 e)
J a J a J a

The alternative view of integration as the converse of differentiation
can be connected to the graphical representation as follows. Instead of
considering the definite integral of/between fixed limits a and b, form the
integral from a lower limit x0 to a variable upper limit y (as illustrated
by the shading in fig. 1.8). This type of integral is formally defined just
as previously, but because of its variable upper limit, it is known as an
indefinite integral. Its value depends upon the value of y and so we will
write it as F(y) where

f(x)dx. (1.132)

It is apparent that F(y) is a continuous function of y.
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Fig. 1.8 The indefinite integral of f(x) from x0 to y.

Now consider what happens if y is increased to y + Ay; then

p y + Ay

+ Ay) =

which from (1.131 c) can be written as
/• V /• 3/ + AT/

F(J> + A>>) = /(x) dx + /(x) dx
Jx 0 J y

/• y + Ay

= fO0 +J /(x)dx.

Rearranging (1.134) and dividing through by Ay yields

F(y + Ay) - F(y)

(1.133)

Ay
= — /(x)dx.

(1.134)

(1-135)

Now if A^ is allowed to tend to zero, the left-hand side of (1.135) becomes,
by definition, dF/dy, and the right-hand side becomes f(y). This latter
statement follows since all the x{ referred to in definition (1.130) have to
come from an arbitrarily small region close to x = y and so the/(Xj) have
to have the value/(j) arbitrarily precisely; the sum on the right of (1.130)
then becomes f(y) times the sum of the subintervals, which is exactly
f(y) x Ay.
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Equation (1.135) therefore, in the limit Ay -> 0, reduces to

^ - / < » , (...36,

that is, the indefinite integral F(y) of a function/(x), is that function which
has / as its derivative. This is such an important result that it is worth
repeating in a different form, namely

(1.137)

It is also apparent that the value / of the definite integral is given in terms
ofFOOby

/ = ff(x)dx= C fix) Ax- f° fix) Ax

= F(b) - F(a). (1.138)

In our presentation, different variables x and y have been used as the
arguments o f / a n d F9 and a specific lower limit included. It is common
practice to omit one or both of the limits in an indefinite integral, e.g.
to write (1.132) as

-j f(x)dx, (1.139)

and to insert them only when a specific evaluation has to be made. It is
also not uncommon to use the same symbol for both variables

F(x)=J* f(x)dx9

but this practice can be confusing, and should be avoided for that reason.

1.16 Infinite and improper integrals

The prescription given earlier for the formulation of a definite integral
does not accommodate the case in which the integration runs over an
infinite range in x, that is a or b (or both) is infinite. Nor does it deal with
the situation in which f(x) is unbounded (becomes arbitrarily large in
modulus) in some part of the range, e.g. f(x) — (2 — x)"1 / 4 near the
point x = 2.
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The failure in the case of an infinite range for x comes about because
any finite number of intermediate division points must leave at least
one infinite interval. At some point in this interval f(x) will be non-zero
(except for trivial cases) and so the corresponding term in the sum S
itself contributes an infinite amount. This difficulty is got round by
taking the limit of, say, b^-co after a finite integral with upper limit b
has been defined. Thus, if Tor finite b

I = [fix) dx = F(b) - F(a), (1.140)

and if, when b-^oo, F(b) approaches a definite finite limit L, i.e.

lim F(b) = L, (1.141)
b-» oo

then we define the infinite integral of/(x) from a to oo as having the value
L - F(a\

f
J a

f(x)dx = L - F(a). (1.142)

Other infinite integrals

f f{x)dx and f f(x)dx9
J-oo J - "

may be defined by similar limiting processes.
The second case of failure of the simple formulation, the case in which

the integrand is unbounded, leads us to define an improper integral by the
process of omitting from the range of integration a small piece of it con-
taining the point at which the integrand is unbounded, evaluating the
remaining integral, and then letting the size of the excluded range tend to
zero. If with this procedure the integral tends to a finite limit, then the
value of the improper integral is defined to be equal to that limit. The
excluded piece may be entirely inside the range or may include one of the
limits. An evaluation for the previously mentioned function will show
what is meant. Suppose we have to find [or define]

-JV
Jo

(1.143)

The integrand tends to infinity near x = 2 and so we replace / by

J
f -^)"1 / 4dx, (1.144)
o
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where an interval of length € has been removed between x = 2 — € and
x — 2. Now Jx can be evaluated as

If c is now allowed to tend to zero, Jx tends to the limit f- x 23/4 which
is thus the value of the improper integral (1.143).

•40. Determine whether the following integrals exist, and where they do
evaluate them:

1.17 Integration by parts

Particular methods of evaluating definite and indefinite integrals will not
be considered in general here, as the reader is presumed to have some
familiarity with the integration of standard forms and the method of
substitutions (changing to a new integration variable in order to reduce
an integrand to a standard form).

However, one particular method known as integration by parts is of
such general utility and will be employed so many times in the remaining
chapters, that some discussion of it is amply justified.

The basis of the method is the result derived in (1.41) for the derivative
of a product:

d dh dz
-T- [g(x)h(x)] = g— + h~ (1.41 bis)
dx dx dx

If this equation is rearranged and each term then integrated between
limits x = a and x = b, we obtain

Cb dh Cb d rbdz

J« dx Jfl dx Ja dx

Now the first term on the right is the integral of the derivative of a func-
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tion [= g(x)h(x)] and is thus immediately evaluated as the difference
between the two values of the function at the limits, namely

[g(x)h(x)]b
a (1.146 a)

or g(b)h(b) - g(a)h(a). (1.146 b)

Thus, (1.145) can be written as the equation giving the 'formula for inte-
gration by parts',

Cb dh Cb dz
g—dx=[ghfa- -^hdx, (1.147)

Ja dx Ja dX
or, expressed in terms of differentials of g and h,

[ gdh=[ghfa- [ hdg. (1.148)
Ja Ja

To see how this may be of value in evaluating an integral J f(x) dx,
where f(x) is not a 'standard form' whose integral is known, suppose
tha t / can be written as the product of two functions, one of which has a
known integral and the other of which is differentiate. Then the first
function may be taken as dhjdx in (1.147) and the second as g, and the
integral replaced by the right-hand side of (1.147). The first term of the
new expression can certainly be evaluated, and it may well be that the
second term is now an integral which can be evaluated using known re-
sults. Even if this is not so, a second integration by parts [of course h
must be integrated again and g further differentiated, or the work of the
first integration by parts will be undone] may produce the desired situa-
tion and result in two definite expressions, each to be evaluated at the
upper and lower limits, together with an integral which has a known value.

As with one or two earlier results in this chapter, integration by parts
is often remembered for practical purposes in the form of a clumsy but
recallable sentence.

The integral of a product is equal to {the first times the integral
of the second} minus the integral of {the derivative of the first
times the integral of the second}.

Although the discussion here has been in terms of definite integrals,
integration by parts applies equally well to indefinite integrals.

To demonstrate one or two ways in which integration by parts can be
used, we will solve the following three examples.

Example 1.2. Evaluate

' jccosxdjc. (1.149)
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The function whose derivative is x cos x is not directly apparent, but
if we identify the x and cos x of (1.149) with the g and dh/dx of (1.147)
respectively, then integration by parts gives

cb

I = [x sin x]b
a —I 1 x sin x dx

Ja

= b sin b — a sin a — (— cos b + cos a)

= (6 sin Z> + cos b) — (a sin a + cos 0).

Example 1.3. Evaluate

ln(x)dx.1;
Here we do not have an obvious product in the integrand, but one can

be manufactured by taking In x as one factor and unity as the other.
Since we cannot integrate In (x) [that is the whole problem] this is the
factor which must be differentiated and unity is the factor to be integrated.
Proceeding on these lines, we obtain

n cy 1
In (x) dx = [In (x) x]\ - -xdx.

Ji Ji x

The integral on the right is now trivial and the result

f *)d* = .y lnO0- 1 In (1) - [x]\

= y In (y) - y + 1

follows.

Example 1.4. By integrating by parts twice, evaluate
/•CO

/ = e~A*cos axdx, A > 0.
Jo

Integrating by parts once (using exp (-Xx) as the g of (1.147))

[ sin ax I00 f00 sin ax
e"A* - (-A)e~A* dx.

a Jo Jo a

The infinite upper limit causes no difficulty and so

A f
= 0 - 0 + -

a Jo
e~A* sin axdx.

0
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Now integrating by parts a second time,

/ = -
a

A f00 (-cos ax)
- - (_A)e"A*- -dx .

a Jo a

But the integral on the right is just a simple multiple [ — X2/a2] of the original
integral /. Thus

AT 11 A2

= _ 0 + - - - / ,
a L a] a2

and
X/a2

1 + X2/a2 a2 + A2

These examples, together with the exercises below, should be sufficient
to give the reader the working knowledge necessary to follow the use of
integration by parts made in subsequent chapters.

•41. Use integration by parts to evaluate the following:

rv rv
(i) x2sinxd.x, (11) x\n(x)dx,

Jo Ji
rv rv\n(a2 + x2)

(iii) arcsinxdx, (iv) - dx,

rn/2

(v) cos (2;c)sin (3x)d;c, (vi) repeat (v) reversing the
J° roles of the factors.

•42. If

Jo

show, by integrating by parts, that Jn = nln-x. Hence evaluate /n

•43. If Jn is the integral
/.CO

Jn = xnexp(-x2)dx9
Jo

show that
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( 2 r - l).(2
(n) j 2 r =

1.18 Multiple integrals

For a function of several variables, just as derivatives with respect to
two or more of them may be considered, so may the integral of the function
with respect to more than one variable be formed. The formal definitions
of such multiple integrals follow very much the obvious extensions of the
definition of the integral with respect to a single variable, discussed at
the beginning of section 1.15. We will discuss almost exclusively integrals
involving only two or three variables, partly because they are more readily
visualizable, and partly because they illustrate all the essential features of
those involving more. The number of variables is called the dimension of
the integral; up to the present only one-dimensional integrals have been
considered.

Y1

Fig. 1.9 The region of integration for the double integral given in equation (1.150).
The elementary strip shown is appropriate to the integral in the form ex-
pressed by line (1.151 a).

For an integral involving two variables - a double integral - we have a
function f(x, y) to be integrated with respect to x and y between certain
limits. The function/may also depend upon other variables but we will
not write these explicitly. The limits may, for both x and y9 be constants,
or the limits for x may depend on the value of y or vice-versa. Whatever
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the relationship, the limits can usually be represented by a closed curve
C in the jcy-plane, bounding an area which we will denote by S (fig. 1.9).

The integral is written symbolically as

/ = jj f(x,y)dxdy, (1.150 a)

or as

r f(x,y)dA, (1.150 b)• i
where dA (or dAxy) stands for the element of area in the xy-plane.

Some authors use a single integration symbol whatever the dimension
of the integral; others use as many symbols as the dimension. In different
circumstances, both have their disadvantages, either of ambiguity or of
clumsiness. We will adopt the convention, typified by (1.150 a, b), that
as many integration symbols will be used as differentials explicitly written.
This will allow the freedom to use the more compact form when no con-
fusion is likely, but to be explicit when emphasis is needed or ambiguity
is possible.

Form (1.150 b) makes no explicit statement about the limits of integra-
tion except by reference to a diagram such as fig. 1.9 or to an equation
c(x> y) = 0 giving the boundary curve C. This same prescription for the
limits may also be used in connection with form (1.150 a), but an explicit
statement of them can be written in the form

= P{f" (1.151a)

Expression (1.151 a) indicates (refer again to fig. 1.9) that / (x , y) is to be
integrated with respect to x between the two values x = Xi and x — x2,
where x± and x2 both depend on y, and then the result (considered as a
function of y) is to be integrated between the limits y = Yx and y = Y2.

The same result would be obtained if the order of the two integrations
were reversed, and the area S 'cut up the other way'. A formula corre-
sponding to (1.151 a) for this case would be

= J f(Xyy)dy\dx. (1.151b)
)

As a simple example consider

/= [Ux-yfdxdy

over the triangular area (shown in fig. 1.10) whose sides are x = 0,
y = 0, x + y = 1.
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0 x I x

Fig. 1.10 The triangular area for the evaluation of /.

Suppose we choose to carry out the integration with respect to y first.
With x fixed, the range of y is 0 to 1 — x, as indicated in the figure. Thus
with all its limits explicitly filled in, the expression for / becomes

Jo wo
(x - yfdyVdx,

)

which can be evaluated as

= r {-U2x - I)3 + $x3}dx
Jo

In this case the symmetry between x and y of both the integrand and inte-
gration region is sufficient by itself to show that the same result would
be obtained if the order of integrations were reversed and the integral
with respect to x evaluated first.

•44. (i) Evaluate jj x2y dx dy over the same triangular region as in the
above example (fig. 1.10).
(ii) Reverse the order of integrations and demonstrate that the same
result is obtained.

•45. Evaluate J s (x2y + JC) dA, where S is the rectangle with corners

(0, 0), (a, 0), (a, b\ (0, b).
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Three-dimensional, or triple integrals, are described in an analogous
way. Without going into details, we note that they will be written either as

f(x,y,z)dxdydz, (1.152 a)

or as

j f(x,y,z)dV or f /(*, y, z) dVxyz. (1.152 b)
Jv Jv

The integration is over a volume whose surface determines the upper
and lower limits for x, y and z. As with double integrals the particular
values of the limits appropriate to any one of the variables of integration
depends upon the order in which the individual integrations are carried
out.

Multiple integrals over ranges which are infinite in extent or include
points at which the integrand becomes infinite are treated in the same way
as similar one-dimensional integrals.

•46. Evaluate the integral Jy (x2 4- y2 + z2) dV, where Fis the rectangular

volume whose six surfaces are the planes x = ±a, y = ±b, z = ±c.

•47. Evaluate J x2y dV over the volume bounded by the planes x = 0,
y = 0, z = 0,x + y + z= 1. Use two different orders of carrying out
the integrations, and show that the same result is obtained both times.

•48. Evaluate, for A > 0,

exp ( — Ar) exp (ir cos 6) r sin 0 sin2 <f> dr dS d<j>III
over the infinite volume 0 ̂  r < oo, 0 ^ 0 ̂  TT, and 0 ^ <f> ^ 2TT. [This
is the integral of the function r"1 exp [r(-A + i cos 6)] sin2 <f> over all
space, with everything expressed in spherical polar coordinates the ele-
ment of volume being r2 sin 6 dr dd d<f>.]

1.19 Change of variables in multiple integrals

It often happens that, either because of the form of the integrand involved,
or because of the shape of the boundary of the region of integration, it is
desirable to express a multiple integral in terms of a new set of variables.

As an illustration of what is meant by this, we may refer to the note in
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•48 and see that if the function to be integrated over all space were ex-
pressed in Cartesian coordinates it would be

1

(JC2 4- y2 + z 2 ) 1 / 2
exp[-A(x2 + y2 + z2)112]

(x2 + v2)
x e x p ( i z ) - — - 7 — - j - (1.153)

x2 + y + z2

Fig. 1.11 The connection between Cartesian and spherical polar coordinates.

The connections used to link the two sets of coordinates are depicted in
fig. 1.11 and given as formulae by

x = r sin 6 cos <f>,
y = rsin0sin<^,
z = r cos 6,

and the inverse equations

r = +(*2 +_y2 + z2)1/2,
0 = arccos [z/(x2 + y2 + z2)1/2],
<̂  = arctan (y/x).

(1.154 a)

(1.154 b)

Now suppose that in the course of a calculation it is required to integrate
f(x, y, z) of expression (1.153) over all space, i.e. to evaluate the integral,

j I I 1 " • S

x exp [ - A ^ + / + z2)1'2] exp (iz) dxdydz. (1.155)
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Clearly the integrand has a simpler form when expressed in spherical polar
coordinates [namely the previously noted r"1 exp [r(—A + i cos 6)] sin2 <f>]
and changing this part of the integral to such new coordinates presents
no difficulty. Neither, in this case, do the limits of integration which
become 0 < r < oo, 0 ^ 6 ^ n and 0 < <f> < 2TT. The part of the integral
which requires more consideration is the element of volume dx dy dz,
which, it is stated in M8, becomes r2 sin 6 dr dd d<f>.

The purpose of this section is to develop a general expression relating
an element of volume (or area) in one coordinate system to the corre-
sponding element in another. If the sets of coordinates in the two systems
have corresponding physical dimensions (e.g. all are lengths, or two are
lengths and one a time, in each set) then we may speak of the local magnifi-
cation of the element of volume (or area) in going from one coordinate
system to another.

dy\ dAx

dx

Fig. 1.12 The regions of integration and the elementary areas in the original xy-
plane and the transformed 1̂7-plane.

We will use a language which suggests that we are all the time dealing
with lengths, areas and volumes, but the results obtained apply to all
sets of variables so long as there is a one-to-one correspondence between
the values taken by the variables in the two systems in describing the
same situation. Our approach will be a simple geometrical one and we
will start with the two-dimensional case.
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Suppose that we require to change an integral

f(x,y)dAxy (1.156)

in terms of coordinates x, y into one expressed in new coordinates f
and 7j which are given in terms of x and y by (differentiable) equations

i = Kx9y)9 v = <x9y). (1.157)

The area S and the curve C which bounds it will become a new area 2)
and a new boundary F in the f^-plane, as shown in fig. 1.12. The function
f(x, y) becomes <£(£, rj).

An element of area in the xy-plane is given by dAxy = dx dy as in the
figure and the question is 'what is the size of the area which this corre-
sponds to in the ^-plane?' . In general the corresponding element dA^
will not be the same as dAxy in shape, but this does not matter since all
elements are infinitesimally small and the value of the integrand is con-
stant over the elementary area providing the latter is small.

Since dx and dy are infinitesimal, the lines of lengths X and Y corre-
sponding to them will be straight and dA^ will have the shape of a paral-
lelogram. We work out the area of the parallelogram as follows (see fig.
1.12 for the notation),

dA,v = XY sin (6Y- 6X)
= Ysin 6Y Jifcos 6X - Ycos 6Y Xs in 6X

drj d£ d£ dr>
= -±dy / dx - f-dy^dx (1.158)

dy dx dy dx

T1TT)*A*>'' ( U 5 9 )

dy dy dx I
The substitutions made in line (1.158) follow from noticing that, for
example, Y sin 6Y is the projection on the 77-axis in the f 17-plane of the
line corresponding to the infinitesimal dy (parallel to the >>-axis) in the
x^-plane. Thus

drj
Ksin0y = — dy. (1.160)

dy
Similarly for the other three terms.

The quantity in brackets in (1.159) is just the Jacobian of f, rj with
respect to x9 y, discussed in section 1.12. Thus we conclude that an ele-
ment of area dA in the xj-plane corresponds to one

= £(£ v)
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times as big in the 67-plane, Le-tne Jacobian at any particular point gives
the local magnification of the size of an element of area in changing from
the (x, y) set of coordinates to the (£, rj) set.

If the 'physical' dimensions of x, y and £, 77 are different, as they are
in example 1.5 below, then it seems inappropriate to speak of magnifica-
tion. Nevertheless, the relationship between the size of the differential
of area generated by dx, dy and the size of the corresponding differential
of area generated by d£, is

, y)
(1.161)

Of course the value of the Jacobian can, and in general will, vary over the
region of integration.

The order in which a new set of variables is arranged (e.g. £, 77 rather
than 77, f) must agree with conventional use (i.e. a rotation from the f- to
the 77-axis of TT/2 is in the positive (anticlockwise) direction) or spurious
minus signs can be introduced into the double integral.

Rather than explain further in general terms the actual procedure, let
us give an elementary example of a two-dimensional change of variable
[to illustrate the method, but hardly to obtain a previously unknown
result].

Example 1.5. Find the area of the circle x2 + y2 = a2.

(a) (b)

Fig. 1.13 The region of integration for example 1.5 in (a) the Jty-plane and (6) the

In the given Cartesian coordinate system the required area a is

= a /•y= < a a - x a ) 1 / a
/• x = a

a =
Jx=-a

dydx. (1.162)
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[In this case the function f(x, y) of (1.151) is unity.] Because of the cir-
cular boundary of the integration region a change of variables to plane
polar coordinates r, <f> is indicated (fig. 1.13). The limits of the integral
are then simple, namely 0 < r < a, 0 < <f> < 2TT. This leaves only the
Jacobian of the transformation to be computed.

For this purpose we have

x = rcos</>9 y = rsin<f>. (1.163)

It is just as satisfactory to calculate d(x, y)/d(r, <f>) as to calculate
d(r,<f>)/d(x,y), since these two are, by (1.107), reciprocals of each other.
In this case it is more convenient, since the value of the Jacobian is auto-
matically expressed in r and <f> rather than in x and y, and it is dx dy
we wish to replace. Carrying out the calculation, we obtain

d(x,y) c o s <f> — rsin<f>

s in <£ r c o s <f>
= r. (1.164)

Thus we have, using (1.161) in the form

dxdy= -—d£dr), (1.165)

that

dx dy = — dr d<f> = r dr dd>.

Putting this into (1.162) expressed in the new coordinates we obtain

a = r dr d<f> = I 2-nr dr = ira2.
Jr~oJ<i> = O J r = 0

[Of course, since f(x9 y) equals 1 in (x, y) coordinates, it does so in (£, rj)
coordinates also.]

A change of variable in a three-dimensional integral follows the same
general lines as that in a two-dimensional one. Without the same amount
of subsidiary explanation as given above for the double integral, we will
outline the main points of the derivation.

Suppose we wish to change from coordinates (x, y, z) to coordinates
(L y, x)- A rectangular volume of sides dx, dy and dz in the original sys-
tem will become a parallelepiped in the new one, with edges X, Y and
Z, corresponding to dx, dy and dz as in fig. 1.14 (a) and (b).

Consider the (straight) line element X, corresponding in the $, -q, x
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(a) (b) (c)

Fig. 1.14 (a) The rectangular volume in Cartesian coordinates, (b) In (f, 17, x) co-
ordinates the volume is a parallelepiped, (c) The components of X in
(£, *?> x) space.

system to dx. It has components in the directions of the £-, rj- and x-
of

d£ drj dx

— dx, — d x , —dx
dx dx dx

(1.166)

as illustrated in fig. 1.14 (c). The lines Y and Z have components given
by (1.166), only with x replaced by y and z respectively.

At this point we must use a result which is not proved until later (equa-
tions (2.23) and (2.25) of section 2.8) but which, it should be added, does
not depend upon the present work for its proof of validity. The result
gives the volume of the parallelepiped in terms of the components of its
edges obtained above as

— dx — dv — dz
dx dy dz

— dx —dv — d z
dx dy dz

— dx —dy — d z
dx dy dz

(1.167)
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When the factor dx dy dz has been taken out of the determinant, we again
arrive at a Jacobian form of result, namely

d K«« = Tr 7 dxd^dz = -dVxyz. (1.168)
d(x, y, z) d(x, y9 z)

This shows that the ratio of elementary volumes in the two systems in
the neighbourhood of any point is given by the Jacobian at that point.

Although we will not prove it, the general result for a change of coordi-
nates in an ^-dimensional space from a set x{ to a set y5 (i,j both run from
1 to n) is

d * dX2. . . dXn - * * ' * — ' * • > dyi dy2, . . dyn, (1.169)
8 ( y )

As a final example we use relationship (1.168) to obtain the result with
which we started this section, namely that in a change from Cartesian
to spherical polar coordinates, dx dy dz becomes r2 sin 0 dr d0 d<f>.

From equations (1.154 a) we calculate the required Jacobian as

x sin 0 cos <f> r cos 0 cos <f> — r sin 0 sin <f>
sin 0 sin </> r cos 0 sin <j> r sin 0 cos <f>

d(r, 6, cos 0 — r sin 6 0
(1.170)

The determinant can be evaluated most simply by expanding it with respect
to the last row.

/ = cos B[r2 sin 0 cos 0(cos2 <j> 4- sin2 </>)]
+ r sin 6[r sin2 0(cos2 </> + sin2 <£)] + 0

= r2 sin 6{cos2 6 + sin2 6)
= r2 sin 0.

This establishes the stated result, that

dx dy dz = } * ' *' ^ dr d0 d</> = r2 sin 0 dr d^ d<f>.
d(r 0 <f>)

•49. Verify formally that the general result (1.169) is trivially valid for a
one-dimensional integral.

•50. By defining new variables f = x — y and rj = x + y, evaluate the
integral discussed in section 1.18 and fig. 1.10 (page 56)

J7<(x - y)2dxdy9

over the triangle with sides x = 09y = 0, x + y= 1.
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•51. The moment of inertia / about the origin of a uniform solid body of
density p is given by the integral

/ = I (x2 + y2 + z2)pdV

over the volume of the body. Show that the moment of inertia of a right
circular cylinder of radius a, length 2b and mass M, about its centre is

A/I— + —

[Transform to cylindrical polar coordinates r, <f>, z given by x = r cos </>,
y = r sin <£, z = z.]

1.20 Examples for solution

1. In the theory of special relativity the position coordinate x and
time coordinate t in one frame of reference, are related to those in
another by equations of the form:

x r = x cosh </> — ct s inh <j>,
ct' = — xsinh</> + ct cosh <f>.

Express x and ct in terms of x\ ct' and <j> and show that

2. The TV + 1 complex numbers o>m are given by

wm = exp {27T\mlN\ m = 0, 1, 2 , . . . , AT.

(<z) Evaluate

(i) f O>m, (ii) f "m, (Hi) 2 " -
m = O m = 0 m = 0

(6) Use these results to evaluate

(i) 2 C

m = O \

, / 2-nm 4T77W\ 3 2irm

(i) 2 C0S"TT ~ C O S " 7 T ) '
 (ii) 2 2msin

= O \ V IS I

3. In a quantum theory of a system of oscillators the average energy
E of the system is given by the expression

2n = o nhvexp(-nx)
2n = o exp (-/**)

where x = hv/kT. Carry out the summation to find E and show that
for small x, E « kT, whilst for large x, E x hv exp ( — hv/kT).
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00 (n —4. How does the convergence of the infinite series 2 r

depend on r (integral) ?

5. For what positive values of JC is 2 convergent?
n = 1 fl

00 \nr + (— l)nl
6. Prove that 2 In is absolutely convergent for

n=2 L n J

r — 2, and convergent, but not absolutely convergent, for r = 1.

7. Find the values of JC for which / (4)(JC) = 0 when /(JC) = JC2 X
exp (-jc/tf). What are the values of/(8)(JC) at these points? (a > 0).

8. If JKJC) = exp (-ijc2), show that dy/dx + xy = 0 and hence that

If ^n(jc) = exp (ix2)/n)(jc), show that for n > 0,

(i) gn satisfies g* - xg'n + ngn = 0,
(ii) g'n + ngn-! = 0,
(Hi) gn + i + xgn + ngn-i = 0.

Calculate #n(jc) for n = 0, 1, 2, 3.

9. Find a polynomial expansion of arsinh JC up to the term in JC5.

10. Use a Taylor expansion to show that

,. / (*) r / '(*)
hm = lim ,

provided the second limit exists, given that f(a) = g(a) = 0. Use
this result to evaluate

sin (3x)
(a) hm

(b) Hm

(c) lim

*-»o sinh (x)

sin x — x cosh (JC)

sinh (JC) — JC

tan (x) — x
im
- o cos (JC) — 1

11. A surface is defined in Cartesian coordinates by z = JC2 + y2,
where JC and y are both functions of two other variables s and t.
Calculate dz/dt for the following cases,

(i) JC = s cos /, y — s sin /,
(ii) JC = Us2 - t2), y = st,
(iii) JC = cosh s cos t, y = sinh 5 sin t.

12. Find the locations and characters of the stationary points of
the function z = (JC2 - y2) exp ( - J C 2 - y2).
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13. Two particles each of unit mass move in a vertical plane; the
x-axis is horizontal and the j>-axis vertical. The first particle is con-
strained to lie on the left branch of the hyperbola x2 — y2 = a2

and the second on the vertical line x2 — 2a. Both particles are
subject to gravity and to a mutually attractive force of magnitude
g/a times their relative displacement.

Assuming that at equilibrium the potential energy of the whole
system is a minimum, show that the first particle lies at a point on
the hyperbola

(*! - 2a)(yi + Id) + 4a2 =

14. Evaluate the integrals

/ = c-atcoswtdt, J = \ t-atsin wtdt,
Jo Jo

by integrating exp(-af 4- iwt) between 0 and oo. [Compare with
the methods used in example 1.4 (page 52).]

15. (i) Find positive constants a, b such that ax < sin x < bx for
0 ^ x ^ \n. Use this inequality to find upper and lower bounds
for the integral

-r
Jo

(1 + sinjt)1 / 2djc.

(Evaluate the bounds to 2 significant figures.)
(ii) Using the substitution / = tan (x/2)9 evaluate / exactly.

16. (More difficult.) Assume that the following equation is valid

d
—
d.y

Use it to show that, for any real y,

d C Cb df

dy J Ja dy

J *ni2 rv 2tdt

arcsin (tanh y sin x) dx = . % ̂
0 Jo smh 2t

Jo

and hence evaluate

tdt

jo sinhJo

[Assume that -%TT < arcsin JC < £77- if - 1 < x < 1.]

17. Evaluate jj(x 4- 2}02d;td.y over the triangle bounded by the
lines y = x, y = —x,x= 1.
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18. Evaluate jsf(x,y)dAxy over the rectangle 0 ^ JC ̂  /x, 0
y < v for the functions

= ( v -

19. Sketch the two families of curves

y* = 4U(U _ JC)> j,2

where w and v are parameters.
By transforming to the j/t?-plane evaluate the integral of

y/(x2 + y2)112 over that part of the quadrant x > 0, y > 0 bounded
by the lines JC = 0, y — 0 and the curve y2 — Aa(a — x).



2
Vector algebra

This chapter is of a preliminary nature and is designed to indicate the
level of knowledge assumed in the development of the third and subse-
quent chapters. It deals with those elementary properties of vectors and
their algebra which will be used later. The results and properties are
usually stated without proof, but with illustrations, and a set of exercises
is included at the end in section 2.10 to enable the student to decide
whether or not further preliminary study is needed. It is suggested that
the reader who already has some working familiarity with vector algebra
might first attempt the exercises and return to this chapter only if he has
difficulty with them.

2.1 Definitions

The simplest kind of physical quantity is one which can be completely
specified by its magnitude, a single number together with the units in
which it is measured. Such a quantity is called a scalar and examples
include temperature, time, work, and [scalar] potential.

Quantities which require both a magnitude (^0) and a direction in
space| to specify them are known (with a few exceptions, such as finite
rotations, discussed below) as vectors; familiar examples include position
with respect to a fixed origin, force, linear momentum and electric field.
Using an arbitrary but generally accepted convention, vectors can be used
to represent angular velocities and momenta, the axis of rotation being
taken as the direction of the vector and the sense being such that the
rotation appears clockwise when viewed parallel [as opposed to anti-
parallel] to the vector. The magnitude of the angular velocity or momentum
gives the magnitude of the corresponding vector.

A further, less intuitively obvious use of vectors is to represent a plane
element of area of a surface or to give the local orientation of the surface

t We will usually consider three-dimensional space, but most of the algebra
of vectors has meaning in a space of another dimension.

                                                                                            
                                              

                                                            



70 Vector algebra

[more precisely, of the local tangent plane to the surface]. In these cases
the normal to the surface determines the direction of the vector, whilst
its length (magnitude) is given by the size of the element in the first case
or is unity in the second.

From what was said in the last paragraph but one, it is clear that finite
rotations can be characterized by magnitudes and directions. However,
they are not vectors, since they do not obey some of the ' working rules'
given later in this chapter - for example, they do not add like vectors.

2.2 Notation

The fact that a vector has a sense of direction as well as a magnitude means
that more than one number is needed to specify it. This specification can
be done in many ways, but the simplest is in terms of components which
give the amounts of each of a standard set of vectors [usually, but not
always, mutually orthogonal] which must be added together [see section
2.5] to produce the given vector.

In common with most other textbooks, we will denote a vector by
clarendon (bold) type, e.g. a, and its magnitude by italics a, except where
confusion may arise, when the modulus sign |a| will be used explicitly.
Both upper and lower case letters will be used to represent vectors.

The components of a vector with respect to a given standard set are
written as (a±, a2,..., an), where the order of the standard vectors and
of the components correspond. The magnitude, or modulus, of a vector
a is given in terms of its components by a2 = a\ 4- a\ + • • • + eft if the
standard set consists of mutually orthogonal unit vectors [see section 2.5].
Vectors for which a = 1 are called unit vectors and will be denoted by a.
Clearly a unit vector a in the same direction as a is obtained by dividing
each of the components of a by a.

For the sake of definiteness and brevity, and since most physical prob-
lems occur in three-dimensional Euclidean space, we will continue our
discussion of vectors as if they were all in three dimensions. Many later
results and definitions in this chapter are expressed in terms of three-
dimensional Cartesian coordinates (x, y, z), but with obvious modifica-
tions are equally valid for other coordinates and also in other dimensions.
When a coordinate is denoted by xi9 where i is a general subscript running
from 1 to «, it will be understood to refer to x, y or z for i = 1, 2 or 3
respectively when applied to a Cartesian coordinate system.

Two vectors a and b are equal, a = b, if they have equal moduli and
the same direction in space. Equivalently their corresponding components,
in terms of the same standard set, are individually equal, ax — b{ (i =
1, 2, 3).
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2.3 Combining vectors

All students of elementary mechanics are familiar with the fact that the
result of applying two separate forces a and b to a body is the same as
applying a single force c to the body. This single force or resultant is
written in vector form as

c = a + b, (2.1)

and can be determined graphically by the triangle law of addition (fig.
2.1). The components of c are given in terms of those of a and b by
ct = at -f b{ (/ = 1, 2, 3), i.e. c1 = al + bl9 etc. Naturally both sets of
components must be expressed in terms of the same set of standard vec-
tors.

is
equivalent

to

x b

c = a + b

Fig. 2.1 Addition of vectors.

The addition of vectors in general is defined in accordance with this
procedure, and it is clear from either way of constructing c that the addi-
tion of vectors is commutative,

a + b = b + a. (2.2)

It can be generalized to the addition of any number of vectors and in this
is associative, namely, in the case of four vectors for example,

(a + b) + c + d = a + (b + c) + d = a + b + (c + d). (2.3)

Thus the order in which a number of vectors to be added appear is im-
material, but naturally they must all have the same dimension, and to
make physical sense must represent quantities of like kind.

leads to

Fig. 2.2 Subtraction of vectors.

The extension to subtraction is obvious and may be summarized as:
a — b is the vector given by a + ( —b), where — b is the vector having the
same magnitude and line of action as b, but in the opposite sense. The com-
ponents of a — b are given by {ax — bl9 a2 — b2, a3 — b3) and the cor-
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responding graphical construction is illustrated in fig. 2.2 [note the direc-
tions of the arrows]. The subtraction of two equal vectors yields the
zero vector 0, which has zero modulus and no direction associated with it.

2.4 Multiplication of vectors

Apart from the multiplication together of two scalars to produce a further
scalar [e.g. volume x density = mass, all are scalars], the simplest
multiplication of physical quantities is that of a vector a by a scalar A
to produce another vector b = Aa. The scalar A may be positive, negative
or zero [or even complex for some applications]. If it is zero the resultant
b is the zero vector 0, but apart from this case the direction of b is that
of a [or opposite to it if A is negative] and its magnitude is | A| times that
of a.

Multiplication of a vector by a scalar is associative, commutative and
distributive, and these properties may be summarized for arbitrary vec-
tors a and b and arbitrary scalars A and /x by

(A,z)a = A(,xa) = /.(Aa), (2.4)

and (A + //)(a + b) = Aa 4- Ab + ^a + /xb. (2.5)

As elementary illustrations of the addition and multiplication of vec-
tors we consider the following examples. All vector positions are taken
from a common origin O.

Example 2.1. To find the vector equation of a line, one point a of which
is given and whose direction is parallel to another given vector n.

Let r be the position vector of an arbitrary point R on the line (fig. 2.3).

Fig. 2.3 The line in example 2.1.

Then r is the sum of a and a vector representing the displacement A to R.
But this displacement is parallel [or antiparallel] to n and hence is given
by An for some appropriate scalar A. Thus the position of any arbitrary
point R on the line, and hence the equation of the line, is given by

r = a + An, (2.6)

where the parameter A ranges over all real values.
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Example 2.2. Any three non-collinear points in three dimensions deter-
mine a unique plane containing them. Find the (vector) equation of the
plane containing the points (whose position vectors are) a, b and c.

Denote the points by A, B and C and an arbitrary point of the plane
by R. Through R draw lines parallel to AC and AB as in fig. 2.4. Then,

Fig. 2.4 The plane in example 2.2.

from the figure it is clear that the position r of R is given by the sum of a,
a vector [AQ] parallel to b — a, and a vector [QR] parallel to c — a.
Thus r = a + h(b — a) + k(c — a), or written more symmetrically with
scalar parameters A, /x, v,

r = Aa + /itb + vc, where A + /x + v = 1. (2.7)

2.5 Base vectors

We have mentioned already the standard set of vectors in terms of which
the components of a vector generate the vector, namely that if the stan-
dard set are the vectors ef, where / runs from 1 to 3 [more generally 1 to
n], then

(2.8)a = + a2e2 + a3e3,

or a = api (using the summation convention, described in section 1.9,
that repeated subscripts are implicitly summed over, unless the contrary is
stated). The vectors in this set are called the base vectors.

The choice of suitable base vectors is by no means unique and all that
is required of a chosen set is that any vector in the space can be written
as in (2.8) for some set of numbers a±, a2, a3. This is so provided that,

(i) there are as many e{ as the dimension of the space, and
(ii) no one of them can be expressed as a linear sum [the form of (2.8)]
of the others. [In three dimensions - they are not coplanar.]

In more formal language, the base vectors must (i) span the space, and
(ii) be linearly independent. The linear independence can be expressed
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in the form that: if A^ = A ^ + A2e2 + • • • = 0 , then all Xt must be 0
if the vectors e* are linearly independent. It is natural to use a set all of
which are unit vectors and we will always assume that this is done.

x

Fig. 2.5 The base vectors i, j , k of the Cartesian system.

When working in three-dimensional space the usual choice of base vec-
tors is the mutually orthogonal set of three unit vectors in the directions
of the Cartesian x-, y- and z-axes. They are denoted by i, j and k respec-
tively [rather than the more strictly correct i, j and £] and like the axes
form a right-handed set when taken in their alphabetical order (see fig.
2.5). That is, i, j and k are in the same relative directions as the thumb,
index finger and second finger respectively, of a right hand, when the
fingers and thumb are held mutually at right angles. Components of a
vector a with respect to this base are written (ax, ay, az) and so

a = ax\ + ay\ + a2k. (2.9)

Clearly the vector i itself is given by (1, 0, 0), j by (0, 1, 0), etc.

2.6 Scalar products

We turn now to the simplest form of multiplication of one vector a by
another b. The result, called the scalar product of a and b and denoted
by a-b, is a scalar quantity given by ab cos 6 where 6 is the angle between
the two vectors (0 ^ 6 < TT). If the two vectors are perpendicular (0 =
IT 17) their scalar product is zero. The converse of this is also true, unless
at least one of the vectors is the zero vector.

From its definition, the scalar product is clearly equal to the length of
a multiplied by the projection of b on the direction of a [or vice-versa],
and so the process of taking a scalar product follows both the commuta-
tive and distributive laws.
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• 1 . By noting that

i j = j k = k i = 0, (2.10)

and i i = j j = k k = 1, (2.11)

show that for arbitrary vectors a and b, the scalar product is also given by

a b = axbx + ayby + a2b2, (2.12)

and hence that

cos 6 = lalb + mamb + natib, (2.13)

where the direction cosines /a, ma, na are given respectively by aja,
ay/a, aja and similarly for vector b. Note that la = a i , ma = a-j, etc.

Examples of scalar products arise naturally throughout physics and in
particular in connection with energy. Perhaps the simplest is the work
done in moving the point of application of a constant force F through a
displacement r when the work done is F-r; notice that, as expected, if
the displacement is perpendicular to the direction of the force then
F-r = 0 and no work is done. A second simple example is afforded by the
potential energy — m • B of a magnetic dipole, represented in strength and
orientation by a vector m, placed in an external magnetic field B.

Example 2.3. To find the equation of a plane that contains a given point
a and is perpendicular to a given unit vector ft.

O

Fig. 2.6 The plane of example 2.3 containing the point a and with unit normal n.

If R is a general point of the plane with position r then the line AR,
represented by vector r — a, lies in the plane and is therefore perpendicu-
lar to ft. Thus we have for the equation of the plane

ft-(r - a) = 0, or ft-r = ft-a. (2.14)
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•2 . Deduce that (2.14) can be written as fir = p, where p is the perpen-
dicular distance from O to the plane (the length of OP in fig. 2.6).

For some [less geometrical] applications of vectors to physical systems
it is convenient to work with complex rather than purely real components.
In these cases the scalar product definition has to be modified to

a* b = (afi?)* = (a-b*)* (2.15)

where * indicates complex conjugation. With this wider definition, the
property of commutation is lost in the sense that a * b / b*-a for general
complex vectors a and b. Of course a*-b is still equal to b-a*. The deter-
mination of magnitude however from a2 = a-a [see equation (2.12) and
section 2.2] is essentially unaltered since a*-a = a-a* = real quantity,
even if a has complex components.

Finally it should be noted that the scalar product of two vectors is an
invariant, that is its value does not depend upon the set of base vectors
chosen [although its algebraic form may well do so]. This is to be compared
with the vector components themselves, which are very much determined
by the choice of base vectors.

2.7 Vector products

In addition to the scalar product, it is possible to obtain from two vectors
a further quantity, which is itself a vector. This vector is called the vector
(or cross) product of the two vectors and will be denoted by a A b. It
is defined as a vector v which is simultaneously perpendicular to both
a and b [i.e. to the plane containing them], and has magnitude ab sin 6,

Fig. 2.7 The direction of the vector product v = a A b.

where again 6 is the angle between a and b. The sense of the vector v is
that along which a rotation about v from the direction of a to the direc-
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tion of b must be viewed in order to appear clockwise (see fig. 2.7). Stated
in another way, a, b and v form a right-handed set. It is apparent from
this definition that

b A a = - ( a A b), (2.16)

but that the distributive law holds for vector products

a A (b + c) = (a A b) + (a A c). (2.17)

Other obvious relationships include,

a A a = 0, (2.18 a)

a . ( a A b) = 0 = b (a A b), (2.18 b)

and (a-b)(a-b) 4- (a A b)-(a A b) = a2b2. (2.19)

Two straightforward examples, taken from mechanics, of physical
quantities which can be represented by the vector (cross) product of two
other vectors, are the moment of a force about a point and the linear
velocity of a point in a rotating body.

Consider first the force F (fig. 2.8) acting at the point r. Its moment
about O i s F x distance OP, which numerically is just Fr sin 6; in addi-
tion, the sense of the moment is clockwise about an axis through O per-
pendicularly into the plane of the paper. Thus the moment is completely
represented by the vector r A F, in both magnitude and spatial sense.
[Imagine the lines of r and F extended beyond R when determining the
sense of the vector product.]

Fig. 2.8 The moment of the force F about O is r A F (into the plane of the paper).

For the second example consider the point r of a body which is rotating
with angular velocity w about an axis OA through the origin. The angular
rotation is represented, as discussed in section 2.1, by the vector to in
fig. 2.9. The instantaneous linear velocity of R is into the plane of the
paper and its magnitude i s w x (PR) = wr sin 6. It is therefore com-
pletely represented by a vector v given by v = co A r.

Other examples of the vector product taken from the area of electro-
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magnetism include the force on a current-carrying wire in a magnetic
field, given in an obvious notation by F = I A B, and the energy flow or
Poynting vector of an electromagnetic wave, S = E A H.

Fig. 2.9 The velocity of the point R in a rotating body is <*) A r.

In Cartesian coordinates it is apparent that,

i A i = J A j = k A k = O, (2.20)

i A j = k = - ( j A i), (j A k) = i = - ( k A j),
k A i = j = - ( i A k), (2.21)

and from these that if v = a A b, then the components of v are given by

• 3 . (vx, vy, vz) = (aybz - azby, azbx - axbz, axby - aybx). (2.22 a)

This last result is sometimes conveniently written in determinantal form,

(2.22 b)a A b

Triple

=
ax ay

bx by

i j

products

a
b
k

2.8

By combining the notions of scalar and vector products of two vectors,
it is straightforward to construct quantities from three or more vectors.
The two commonest of these, which merit some further discussion, are
the triple products.

We first consider the triple scalar product formed in an obvious way
from three vectors, namely (a A b ) c which is a simple number, and,
using the form of a A b given in (2.22 b), can be written as

(a A b) c =
ax

bx

cx

bz

cz

(2.23)
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From this form it follows immediately that

(a A b ) c = (c A a ) b = (b A c ) a
= - ( b A a) c = - ( a A c) b = - ( c A b) a. (2.24)

The simplest geometrical interpretation of the triple scalar product is
in terms of the volume of a parallelepiped whose edges are given by a, b
and c (see fig. 2.10). The vector v = a A b is perpendicular to the base of
the solid and has magnitude v = ab sin 0, i.e. the area of the base. Further
v • c = vc cos <f>. Thus, since c cos <f> = OP = vertical height of the paral-
lelepiped, it is clear that

(a A b) • c = (area of the base) x (perpendicular height)
= volume. (2.25)

Fig. 2.10 The volume of the parallelepiped is the triple scalar product (a A b) • c.

The triple scalar product [and the volume of the solid] vanishes when
c lies in the plane of a and b, since then v is perpendicular to c. This condi-
tion can also be expressed as c = Aa 4- fih for some A and /x, a condition
which is both necessary and sufficient for the vanishing of the triple scalar
product.

Finally, from both its geometrical interpretation and the fact that it is
a scalar product, we note that the triple scalar product is invariant with
respect to the choice of base vectors.

We turn now to the vector form of triple product, which is given by
(a A b) A c and can be written in terms of simpler products as

(a A b) A c = (a c)b - (b c)a. (2.26)

This alternative expression for the triple vector product can be under-
stood in general form by reference to fig. 2.11. As remarked previously,
a A b is perpendicular to the plane containing a and b, and since (a A b) A
c must be perpendicular to a A b it must lie in the plane containing a
and b. Hence it must be expressible as Aa + /xb for some A and fi.
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Fig. 2.11 The triple vector product (a A b) A c.

•4. By applying (2.22 a) twice, show that A = — (b-c) and /x = (a-c).

• 5 . By studying the form of (2.26) and/or by drawing diagrams similar
to fig. 2.11, show that forming the triple vector product is in general non-
associative, i.e.

(a A b) A c ^ a A (b A c).

2.9 Reciprocal vectors

We conclude this introductory chapter by defining the notion of reciprocal
vectors. They have considerable use in solid state physics and crystallo-
graphy but they will be only briefly discussed in this book.

Given a set of non-coplanar vectors a, b, c, their reciprocal vectors
a', b', c' are defined by

a' = A "Kb A c),
b' = A-He A a),
c' = A"Ha A b),

(2.27)

where A is the triple scalar product of the three vectors. Clearly a' is per-
pendicular to b and c, but not to a since the three vectors are non-
coplanar, and in fact a' is of such a length that its scalar product with a
is unity.

•6. Verify that

a ' . a = b'-b = e ' e = 1,
a ' b = a ' c = 0, etc. (2.28)
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•7 . Show that the reciprocal vectors of a', b', c' are the original vectors.

It should be noted that a', b' and c' are not mutually perpendicular
unless a, b and c are.

2.10 Examples for solution

1. Which of the following statements are true? (The vectors a, b
and c are general vectors.)

(a) c ( a A b) = (b A a)-c. (b) a A (b A c) = (a A b) A c. (c)
a A (b A c) = (a-c)b — (a-b)c. (d) d = Aa + /xb implies (a A b)-
d = 0. (e) a A c = b A c implies c a — c-b = c|a — b|. (/)
(a A b) A (c A b) = b(b(c A a)).

2. Treating the earth as a sphere of radius R, find the distance
measured on the earth's surface, between two points at co-latitude-
longitude (#i,<£i) and (#2,^2). In physics, 6 is measured from the
North Pole not from the Equator and is called co-latitude.

3. Prove Lagrange's identity

(a A b)-(c A d) = (a-c)(b-d) - (a-d)(b-c).

4. Find the length of the common perpendicular to the two non-
parallel lines r = a + Ab and r = a' + jib' (-co < A, /x < co).

5. Three non-coplanar vectors a, b, c, have as their respective reci-
procal vectors the set a', b', c'. Show that the normal to the plane
containing the points h'1^, k~xb and /"1c is in the direction of the
vector Aa' + kb' + /c'.

6. ABCDEFGH is a cube of side 2a m and whose centre is O. J is
the centre of the face BCGF (see fig. 2.12).

Fig. 2.12 The cube. All edges are 2a m in length.
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(a) Express the area A EC as a vector.
(b) What is the angle between the face diagonal AF and the body
diagonal AG1
(c) Find the equation of the plane through B, parallel to the plane
CGE.
{d) Find (i) the perpendicular distance from / onto the plane OCG,
and (ii) the volume of the tetrahedron JOCG.
(e) A force of 5 N acts at H in the direction HJ. What is (i) its
moment M about the point A, and (ii) its moment about the line
AF1 (iii) If the force moves its point of application from H to G
to F to / , what is the total work done ?
(/) The cube is given two simultaneous angular velocities, one of
2 rad s"1 about the axis OJ and the other of \/3 rad s"1 about OG.
Find (i) the distance from / of the stationary point on the face
BCGF, and (ii) the speed of corner C.



3
Calculus of vectors

This chapter is concerned with the differentiation and integration of vec-
tors, both of vectors describing particular bodies, such as the velocity of
a particle, and of vector fields in which a vector is defined as a function
of the coordinates throughout some volume [one-, two- or three-dimen-
sional].

Since our aim is to develop methods for handling problems arising from
physical situations, we limit ourselves to functions which have suffi-
ciently amenable mathematical properties. In particular we will assume
that the functions with which we have to deal are continuous and differen-
tiable, except where the opposite is physically obvious [e.g. a square-wave
electrical input, or a sharp corner of an electrical conductor].

3.1 Derivatives of vectors and vector expressions

When a vector is a function of a scalar quantity it is possible to consider
the derivatives of the vector with respect to that scalar. The most common
such scalar is time and for the sake of definiteness we will call the scalar
t and interpret it as time, although clearly all our results will be valid for
any other analogous physical scalar.

Consider a vector a, with value a(7) at time t9 and value a(f + At)
a short time At later. Then the small change in the vector during At is
itself a vector Aa = a(f + At) — a(f), and we define the derivative (also
a vector) as,

da a(r + At) - a(0
— = hm > (3.1)
at At->o At

assuming that this limit exists.
The most obvious example of a vector derived in this way is the velocity

vector v of a particle which moves along a path given as a function of
time, r = r(t). Then the velocity vector is obtained as
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and, being itself both a vector and a function of t, also gives rise to a
further vector, the acceleration

dv d2r
f(/) = _ =

dt dt2

Clearly the magnitude of v at any time gives the speed of the particle,
whilst its direction is along the tangent to the path at the instantaneous
position of the particle.

In terms of coordinates [taken here as Cartesian] the derivative of a
vector is given by

^ = ^ i + ^ j + ^ k . (3.2)
dt dt dt dt

[Note that i, j and k are taken as fixed and time independent - this may
not be true of base vectors in all cases.]

In the composite vector expressions discussed in chapter 2, each of the
vectors and scalars may [in general] be functions of t, or perhaps functions
of other scalars which are themselves functions of /. However, the pro-
cedures for obtaining their derivatives (with respect to i) are intuitively
obvious from, and readily verifiable by, ordinary differential calculus.

They may be summarized by noting that differentiation is distributive
and that

da(j) d* da
= 9 where scalar s = s(t), (3.3 a)

dt dt ds
d(Aa) da dA

= A 1 a, where A is a scalar, (3.3 b)
dt dt dt

d db da
- ( a b ) = a — + — b, (3.3 c)
dt dt dt

d db da
- ( a A b ) = a A — + — A b , (3.3 d)
dt dt dt

where of course in (3.3 d) the order of the factors in the products on the
right is just as important as it was in the original vector product. The
derivatives of more complicated vector expressions can be evaluated by
the repeated use of these equations.

The integration of a vector (or an expression containing vectors) with
respect to a scalar t can be regarded in a straightforward way as the in-
verse of differentiation. The only points to be noticed are,

(i) the integral has the same nature (vector or scalar) as the integrand, and
(ii) the constant of integration must be of the same nature as the integral.
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Two simple illustrations will suffice.

n da /db \ / dc \ l

— .(b A c) + a - l— A c 1 + a-lb A — I df

= a-(b A c) + k.

Here h is an arbitrary constant vector and k an arbitrary constant scalar.

3.2 Vectors with several arguments

The ideas of the last section are easily extended to cases where the vectors
[or scalars] are functions of more than one independent scalar,
*i, t2,..., tn9 when the derivatives become partial derivatives da/dt{ de-
fined as in ordinary differential calculus. Equation (3.3 a), in particular,
generalizes to the chain rule of partial differentiation. If a = a(sl9s2,
. . . , 5n), where each s}- is a function Sj(tl912,..., tn) of the ti9 then

da da dsx da, 3s2 da dsn da ds5

dti ~ dsx dti ds2 dtt dsn dt{ ~ dsj dt{

A special case of this rule arises when a is a function of t explicitly as
well as of other scalars (^1? s2,..., sn) which are themselves functions of /.
Then we have,f

da da da ds,

~dt~"dt ~ds~dt'

In the derivation of (3.1), the notion of a small [and, in the limit Af —>• 0,
infinitesimal] vector Aa was used. In sections 3.4 onwards, we will have
repeated need for this idea and, as can be seen from the definition, the
differential da can be written as

da = — At, (3.6)
dt

or for vectors dependent on several variables,

da
da= —dt^ (3-7)

f in the interests of compactness we will henceforth use the summation
convention, wherever it does not lead to ambiguity.
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As specific examples we may consider the infinitesimal change in posi-
tion of a particle moving with velocity v in infinitesimal time dt

v dt = dr = vx dt i + vy dt j + vz dt k, (3.8)

or the change in an electric field E in moving from one position r to a
neighbouring one r + dr [here JC, y, z are the scalar arguments]

3E J dE 3E
dE = — dx + — dy + — dz. (3.9)

dx dy dz

Written more explicitly, da is a vector whose x-component is

da* A da* A i da* A— dx H dy H dz,
dx dy dz

and similarly for the other components with ax replaced by ay and az

in turn. [In chapter 4, expression (3.9) will be written more compactly
using the vector operator V as (dr-V)E.]

A further important differential expression is that used to represent an
infinitesimal element of area dS on a surface [in the limit it can be ac-
curately represented as plane]. In this case the vector is as for a finite
area (see section 2.1) except for its magnitude, thus,

dS = dS(nxi + ny\ + nzk), (3.10)

where {nx, ny, nz) are the components of a unit vector in the direction
of the outward normal to the surface [outward with respect to the volume
whose surface is being considered].

In connection with integration in particular, it should always be borne
in mind that the differentials dr and dS are vectors with a sense of direc-
tion, which in general will vary over the range of the integration. This is
to be contrasted with, for example, integrals with respect to volume,
where the infinitesimal element is a scalar e.g. dV = r2 sin 6 dr dd d</>, and
carries no directional sense.

3.3 Fields and line integrals

We now turn to the case when a particular scalar or vector quantity is
defined not just at one point in space, but continuously throughout some
volume of the space [often the whole space]. The space then has associ-
ated with it a scalar or vector field, the variation of which from point to
point we will assume to be both continuous and differentiable.

Simple examples of scalar fields include the pressure at a point in a
fluid and the electrostatic potential in the presence of an electric charge,
whilst vector fields drawn from the same areas are the velocity vector
in the fluid [giving the local strength and direction of flow] and the elec-
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trie field. The familiar notion of a line of force in the electrostatic case is
then simply a curve whose tangent anywhere is in the direction of the vec-
tor field at that point. Through each point of the space there is in general
one and only one such line. In the hydrodynamic case the correspond-
ing physical interpretation is that of a streamline. So long as the field does
not vary with time these tangent lines are also the paths that would be
followed by small free test charges in the field or particles in the fluid.

With the study of continuously varying vector and scalar fields there
arises the need to consider the integration of the field quantities, along
lines, over surfaces and throughout volumes in the space of the field. We
start with line integration between two given points [or one fixed one and
a variable upper limit] and along a prescribed path. The path may be
given parametrically by x = x(u), y — y(u), z = z(u) or by means of
simultaneous equations relating x, y, z of the path.

Before considering the important line integrals discussed in section 3.4
where the 'variable of integration' is a vector, we deal briefly, by means
of examples, with two cases in which the differential is a scalar. In the
first of these the integrand is also a scalar [field], whilst in the second it is
a vector.

Example 3.1. For the scalar function <j>(x, y) = (x — y)2, evaluate JL <j> d/
where d/ is an elemental length of the curve L which is the semicircle of
radius a joining {a, 0) and ( —#, 0) [in that sense] and for which y ^ 0.

For this path dl = a d0, where the parameter 6 has an obvious geo-
metrical meaning, and (x — y)2 = a\\ — sin 26). Thus,

f <j> dl = f a\\ - sin 20) dO = ira3

JL JO

Example 3.2. Evaluate J F dt along the path x = ct, y = c/t, z = d,
(1 ^ t ^ 2, c and d are constants) and F is the vector (field) with Car-
tesian components (xy2, 2, x).

We observe that the integral will itself be a vector, with its three com-
ponents each given by a [scalar] integral. On substituting we obtain

f2 r2c3 r2 f2

¥dt = i\ — df + j 2 d f + k ct dt
Ji Ji t J i J1

-

• 3 . Show, by writing dy = (dy/dt) dt, that j°c'
2 F dy = — fc4 i — cj —

c2 In 2 k. It will be seen that this ^ J F d*.
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3.4 Line integrals with respect to vectors

We now obtain an expression for the total work done by a force F when
it moves its point of application along a continuous curve C joining two
points A and 2?, which may or may not coincide (see fig. 3.1). We allow
the magnitude and direction of F to vary along the curve. Let the force

Fig. 3.1 Tangential line integral of F along curve C.

be acting at a point r and consider a small displacement dr along the curve,
then the small amount of work done d W = F • dr, as discussed in section
2.6. [Note that this can be either positive or negative.] It follows in the
usual way that the total work done is

Jc
dr= F(Fxdx + Fydy + Fzdz). (3.11)

Once the curve Chas been specified, this is the sum of three straightforward
integrals.

The scalar quantity formed by an integral of the form (3.11) is called
the tangential line integral of F from A to B along C. Naturally its occur-
rence is not confined to cases involving forces explicitly although this is
the commonest physical origin; for example, the electrostatic potential
energy gained by moving a charge e along a path C in an electric field
E is — e J c E-dr . We may also note that Ampere's law concerning the
magnetic field associated with a current-carrying wire can be written as
a tangential line integral,

B d r = /Lc0/, (3.12)
c

where / is the current enclosed by a closed path C traversed in a right-
handed sense with respect to the current direction.

A very simple example of such a line integral, in which F is a force,
independent of position, is provided by part (iii) of example 6(e) of sec-
tion 2.10. There, the curve C consists of the straight line segments, HG,
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GF and FJ, whilst FX9 FV9 Fz are - 5 / V 6 , - 5 / V 6 , 10/V6 respectively.
As a slightly more complicated evaluation we consider the following.

Example 3.3. Evaluate J F-dr for the F and path of example 3.2.

y

O c 2c x

Fig. 3.2 The paths C1 and C2 of example 3.3 and example 3 of section 3.8.

The path joining A, (c, c, d), and B, (2c, \c9 d) and denoted by d in
fig. 3.2 is given by

x = ct, y = c/t9 z = d.

Thus dx = c dt, dy = — c/t2 dt, dz = 0, and on substituting in (3.11) we
obtain

= c 4 ln2 - c.

•4. Evaluate the same integral between A and B, but this time along the
curve C2 (straight line) 2y = 3c — x, z = d. Show that it has value
Ifc4 - c.

It will be seen from these two examples that the value of the integral
depends not only on the vector F and the end points A and B, but also on
the path C taken. [The two values are numerically close because the two
curves C1 and C2 nearly coincide.] However, anticipating one of the re-
sults of chapter 4, we record here that for certain important kinds of vec-
tors F, the integral is in fact independent of the path taken. In these
cases, since fB = — \t for all integrals, the value of f F • dr taken round

J A J ti J

any simply connected closed loop APBQA is zero for arbitrary positions
of P and Q.



90 Calculus of vectors

We conclude this section by obtaining a line integral which is a vector.
Consider a loop of wire L carrying a current / and placed in a magnetic
field B. Then the force dF on a small length dr of the wire is given by
Fleming's left-hand rule as dF = / dr A B, and so the total force on the
loop is

= / f dr
JL

A B. (3.13)

•5 . Write the Biot-Savart law of electromagnetism in vector form and
hence obtain as a double integral an expression for the total force between
two current-carrying loops.

3.5 Surface integrals

As with line integrals, integrals taken over surfaces can involve vectors
and scalars, and equally can result in either a vector or a scalar. The
simplest case involves entirely scalars and is exemplified by the computa-
tion of the total electric charge on a surface, or of the mass of a shell,
when the charge or mass density is known,

i (3.14)

This is a double integral, since dS is a general notation for an element of
area [note that here we are only concerned with the magnitude of the
area, hence dS not dS], and in particular cases could be d.xd>> or
r2 sin 6 dd d<f> or many others. However once a suitable coordinate system
has been chosen and dS and p expressed or given in terms of it, such a
scalar integral is straightforward to evaluate.

Next consider a vector field F defined throughout a region containing
the surface S and take, as a particular case of the scalar density, the nor-
mal component of F. If, as discussed in section 3.2, we define a unit vector
ft as the local outward normal to the surface, then the normal component
of F is the scalar density F-ft. The resultant integral is called the (outward)
flux of F through S,

|
Js

ftdS= fFdS, (3.15)

this last form being justified by (3.10). This is illustrated in fig. 3.3.
Ready examples of physically important flux integrals are (i) the total

volume or mass of a fluid crossing a given area in unit time inside a fluid
in motion, j s p(r)v(r) • dS where v(r) is the velocity field, and (ii) the electro-
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magnetic flux of energy out of a given volume bounded by a surface S,

JS(E A H)-dS.

Fig. 3.3 The flux of F through surface S is J F-dS. The contribution to the integral
is positive at A and negative at B.

As an additional example of a flux integral we note also that Gauss's
theorem of electrostatics - over any closed surface, the integral of the
normal component of the electric displacement is equal to the total charge
enclosed - can be written in this form,

f D-dS = 2 > - (3-16)
Js i

If no dielectric is present D = e0E, and for an isotropic dielectric D =

The solid angle subtended at a point O by a surface [closed or other-
wise] can also be represented by an integral of the form (3.15) although it
is not strictly a flux integral [except for imaginary isotropic rays radiating
from O]. The integral

^ . (3-17)
3

gives the solid angle subtended at O by surface S if r is the position of an
element of the surface measured from O. A little thought will show that
the expression r • dS/r3 or $ • dS/r2 takes account of all three relevant fac-
tors, the size of the element of surface, its inclination to the line joining
the element to O and the distance from O. Such a general expression is
often useful for computing solid angles when the three-dimensional geo-
metry is complicated.

It will be noted that (3.17) remains valid when the surface S is not con-
vex and a single ray from O in certain directions would cut S in more than
one place [but we exclude multiply-connected surfaces]. In particular,
if the surface is closed, (3.17) yields zero if O is outside S, and 4TT if it is
an interior point.
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Surface integrals resulting in vectors are also possible, although they
occur less frequently in physical situations. However, by way of illustra-
tion, we may quote the example of the total resultant force experienced
by a body immersed in a stationary fluid, in which the hydrostatic pres-
sure p is given as p(r). The pressure is everywhere inwardly directed and
so the resultant force is the integral of —p dS taken over the whole sur-
face. An exercise relating this to the Archimedean upthrust is given in the
examples at the end of this chapter.

3.6 Volume integrals

Volume integrals are defined in an obvious way, and they too may result
in scalars or vectors. Two closely related examples, one of each kind, are
provided by the total mass of a fluid contained in a volume V and given by

j v p(r) dV, and the total linear momentum of that same fluid

J v p(r)v(r) dF, where v(r) is the velocity vector field in the fluid.
As a slightly more complicated example of a volume integral we may

consider the following example.

Example 3.4. Find an expression for the angular momentum of a solid
body rotating with angular velocity <*> about an axis through the origin.

Consider a small volume element dV situated at position r; its linear
momentum is p dVi, where p = p(r) is the density distribution, and its
angular momentum about O is r A pi d V. Thus for the whole body the
angular momentum H is

Jv
(r A r)PdV.

Jv

Putting f = to A r yields

(r A (<*> A r))p d VH-J
Jv

= f u>r2pdV - I (rco)i7>dK.
Jv Jv

•6. Show that in a Cartesian system this result can be written in terms of
coordinates as

Hi = TijWj (ij = x,y9z),

where TtJ is a 3 x 3 array in which

Txx = \ (r2 - x2)pdV, similarly Tyy9 T22,
Jv
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Txy= - \ xypdV = Tyx, similarly Jy2, Tzx.

[The Txx, etc. are called the moments of inertia and — Txy the products
of inertia. T{j is known as the inertia tensor and is discussed further in
chapter 15.]

3.7 Non-Cartesian systems

Because of the nature or symmetry of some physical situations it is useful
to be able to describe a system in other than Cartesian coordinates, and
for the work described in this chapter to be able to express, in particular,
lengths, areas and volumes in these other systems.

In three dimensions we will need three coordinates, call them ut (i =
1, 2, 3), in order to describe uniquely the position of a point in space by
a set of particular values (ul9 u2, u3) [in Cartesians they are x, y, z]. In
this brief treatment, we will confine ourselves to orthogonal systems of
coordinates, that is ones in which the three surfaces on which the u{ have
constant values ux = a, u2 = ft u3 = y and which pass through the point
(a, ft y), meet at that point at right angles. For example, in spherical polar
coordinates, ux = r, u2 = 6, u3 = <f> and the three surfaces through the
point (R, 0, O) are the sphere r = R, the circular cone 6 = 0 r and the
plane <j> = $.

We remark that wl9 u2, u3 need not themselves have the dimensions of
length. For example, of the polar coordinates /*, 0, </> only r has dimensions
of length. However a small change dw( in one of them, causes the point
originally at (a, jS, y) to move through a small length d/ given by d/ =
hi du{ (no summation), where h{ may be a function of the values a, ft y,
but is independent of the size of &u{ so long as the latter is small. To take
a concrete example, if again ul9 w2> w3 are the polar coordinates r, 0, </>,
then for a change d<£, d/ = r sin 6 d</>, i.e. h3 = r sin 6.

Since we are considering only orthogonal systems,f and hence the
changes of position in space corresponding to changes dwx, du2 and dw3

separately are at right angles to each other, the total change is given by

|dr|2 = Af(dWi)2 (summation convention). (3.18)

This is to be considered as the defining equation for the h{.
We will be concerned almost exclusively with three common cases,

Cartesians, spherical polars and cylindrical polars. For these the elements

t The extension to non-orthogonal systems can be seen by writing dr = (
dut and then forming dr-dr. For non-orthogonal systems some terms of the
form dut duj (i ^ j) will remain.
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are set out in table 3.1 below and are sufficiently familiar for no further
explanation to be needed.

[Whilst r is the internationally recommended symbol in both spherical
and cylindrical coordinates, the two r's are not the same, and the use of
p for the distance from the z-axis in cylindrical polar systems has something
to recommend it.]

Table 3.1

Cartesian

Uiu2u3 x y z
hi h2h
(dr)2

dSi

dS2

dS3

dV

3 1 1 1
djc2 + dy2 + dz2

dy dz
d*dz
dx dy
dx dy dz

Spherical polar

r 0 <f>
1 r r sin 0
dr2 + r2 d02 + r2 sin2 0 dcf>2

r2 sin 0 d0 d(f>
r sin 0 dr d<j>
rdrd0
r2 sin 0 dr d0 d<f>

Cylindrical polar

r <f> z
1 r 1
dr2 + r2 d(f>2 + dz2

r d<f>dz
drdz
r dr dcf>
r dr d<f> dz

3.8 Examples for solution

1. Write the following physical laws or descriptions in vector nota-
tion:

(a) Newton's second law for a variable mass particle;
(b) the equation of motion of a simple harmonic oscillator;
(c) Faraday's law for the electric field in a conductor cutting a
magnetic field;
(d) the motion of a charged particle in an electric and magnetic
field;
(e) the moment of all external forces acting on a system of particles
equals the rate of change of the total angular momentum.

2. Evaluate J [a(ba + b a) + a(b-a) - 2(a a)b - ba2] dt, where x
stands for dx/dt.

3. For the vector with components (xy2 + z, x2y + 2, x) evaluate
the tangential line integrals along the curves Cx and C2 of fig. 3.2
(p. 89). Show that they are the same, each equal to c(d — 1). [The
equations of Cx and C2 are given in example 3.3 and M.]

4. A single-turn coil C of arbitrary shape is placed in a magnetic
field B. Show that the couple on the coil can be written as

M = /Jc(B.r)dr-/JcB(r.dr),

where / is the current carried by the coil.
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For a planar rectangular coil of sides 2a and 2b placed with its
plane vertical, at an angle (/> to a uniform horizontal field B, evaluate
M, showing that it gives the expected answer (0, 0, AabBI cos <j>).

5. Show that the solid angle subtended by a rectangular aperture of
sides 2a and 2b at a point a distance c away from the plane of the
aperture, and on that plane normal which passes through the centre
of the rectangle, is

ac dy

(y2 + c2)(y2 + c2 + a2)112

Verify that if c > a and b, then the expected approximate value
4ab/c2 is obtained. [The integral can be evaluated exactly to give
H = 4 arctan [ab/c(a2 + b2 + c2)1/2].]

6. An axially symmetric body with its axis AB vertical is immersed
in an incompressible fluid of density p. By evaluating the vertical
(z direction) component of the resultant force (— J p dS) on the
body show that the Archimedian upthrust is as expected pgV9 with
an obvious notation. [Take the radius as r — r(z), with r(zA) =
r{zB) = 0.]

7. In a Cartesian system A and B are the points (0, 0 , - 1 ) and
(0, 0, 1) respectively. In a new coordinate system a general point P
is given by («i, u2, u3) with Ui = i(r± + r2), u2 = %{rx — r2),
u3 = cj>, where rl9 r2 are the distances AP and BP respectively and
<f> is the angle between the planes ABP and y — 0.

(a) Express z and the distance p from P to the z-axis in terms of

(b) Evaluate dx/dui9 dyfiu{, Sz/dUi (/ = 1, 2, 3).
(c) Show that the Cartesian components of u; are (dx/duj9 dy/duj9

dz/duj). Hence show that the new coordinates are mutually ortho-
gonal, and evaluate the quantities hl9 h2i h3 and the element of
volume in the new coordinate system.
(d) Determine and sketch the forms of the surfaces u{ = constant
(i = 1,2,3).



4
Vector operators

The next step in the theory of vectors is the introduction of vector opera-
tors and in particular the differential operators denoted by div, grad and
curl. It is usual to define these operators from a strictly mathematical
point of view as follows. For an arbitrary scalar <f> and an arbitrary vec-
tor a,

(i) grad <f> is a vector with components given by

( dcf> d<f> dcf>\—, —, — J , (4J)

dx dy dz)
(ii) div a is a scalar given by

dax day daz
div a = 1 1 9 (4.2)

dx dy dz

(iii) curl a is a vector with components given by

(daz day dax daz day dax\
curia = I —» > )• (4.3)

\dy dz dz dx dx dy J

These mathematical definitions are then related to particular physical
situations.

However, in this book it is our aim to introduce ideas from as physical
a basis as possible, and we will use as our definitions more cumbersome
but more physically transparent expressions. We will then show that
they are equivalent to the above if certain (mathematical) conditions are
met, which in fact they are although we will not prove this.

4.1 Gradient of a scalar

Let us first consider a scalar field <f>(x, y) defined throughout a two-
dimensional space. For example, <f> might represent the height above sea-
level of the ground at map reference (x, y) and would be represented on
a map by a series of contours which joined together all points with the
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same value of <f>. [On any realistic map of course, only representative
contours would be shown and each of these may consist of several dis-
joint parts.] Through any point P = (x, y) in the space there will be one
such contour and we can ask about the gradient (of the height) at that
point. Clearly the gradient will have a direction which is perpendicular
to the contour through P [since the direction of the contour is the direc-
tion of no change in height by definition] and a magnitude which depends
upon the 'steepness'. On moving parallel to the coordinate axes, the
rate of change of height with distance is d(f>/dx or d<f>/dy, and the total
gradient is represented completely by a two-dimensional vector with
components (d<f>/dx9 d<f>/dy). Its direction gives the direction of the local
gradient and its modulus the steepness.

This can all be recast for three dimensions and for a general scalar
field <£, defined throughout some volume. In this case, instead of lines or
contours of constant </>, we have surfaces of constant (f>, one through each
point (x, y, z). The normal to the surface through any point is in the
direction of a vector with components (3<f>/dx9 d<f>/dy, d<f>/dz), and the
magnitude of this vector is precisely equal to the rate of change of <f>
with distance in the direction of the normal. We therefore define the
gradient of </>, or grad <f>, to be the vector with these components, just as
in (4.1),

grad0 = — , — > — I (4.1 bis)
\ dx dy dz 1

It will be noticed that this can be written in the form of a vector operator
(associated with the operation of taking a gradient) acting upon a scalar
(giving the properties of the physical system), namely

ldj> dj> 8<f>\ Id 8 8\
grad 6 = I —9 —> — I = I —» —» — I <p

\dx dy dz) \dx dy dz)

(4.4)

where V stands for the linear vector operator

e d d
V ^ i — + j — + k — , (4.5)

dx dy dz

and is called del (or sometimes nabla). Equation (4.4) has the form 'vec-
tor operator acting upon a scalar producing a vector' and should be dis-
tinguished from <£V which has components (</> d/dx, <f> d/dy, <j> d/dz) and is
still a vector operator.

From its physical definition, grad <f> is clearly a vector field associated
with the space and does not change its magnitude or direction in space,
even if the coordinates used to describe the space are changed - although
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of course the values of its components will change from one coordinate
system to another.

For a particular direction given by ft, the rate of change of <f> is simply
obtained from grad <f> by forming the scalar product n- V<£. Other immedi-
ate extensions include

• 1. V(uv) = uVv 4- vVu, (4.6)

• 2 . V ( ^ ( M ) ) = (dcf>/du)Vu. (4.7)

4.2 Divergence of a vector

An important property of physical systems is the way in which the vector
fields that are associated with them vary with position. If the fields are
ones with which field lines are readily associated (e.g. electrostatic fields
or fluids in motion) then these variations are easily visualized as the
converging or diverging of the field lines.

In order to describe these variations in a quantitative way at the dif-
ferent points in space, we consider the net flux (per unit volume) of the
vector out of a small volume surrounding any particular point. Clearly
if field lines start or stop in the volume [sources or sinks present] then
this net flux will not be zero. Obvious examples include a small volume
surrounding an isolated charge, where the vector electric field is outwards
in all directions and must produce a non-zero net flux, and a medium
which is being raised in temperature as heat flows through it, more enter-
ing any particular volume than leaving it.

In a space in which a vector field a = (ax, ay, az) is defined, consider
a small volume V with surface S positioned in the neighbourhood of a
point P = (x, y, z). We will take the volume as a rectangular box with
P at one corner (fig. 4.1). The flux out of any surface element dS is a-dS

and the flux over the whole surface is J s a • dS, where S stands for the
six faces of the box, denoted by SX9 S'x (marked in the figure), Sy9 Sy,
Sz and S'z. The volume V of the box is just dx dy dz. We are thus led to
consider the scalar quantity

- l i m l f
F-0 V h

diva = lim - adS. (4.8)
v-o V Js

 K '

It is not apparent from our construction that a limit as defined in (4.8)
exists which is independent of the shape of the volume assumed, and from
this point of view a definition using (4.2) is to be preferred. However the
limit can be shown to exist and, as it is our approach to adopt the most
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Fig. 4.1 The elementary rectangular volume for the calculation of the divergence
of a.

physical starting point, (4.8) is our definition of the divergence of the
vector a at the point P.

We now show the equivalence of this to the usual definition. On the
plane surface Sx the flux is given by

a-dS = — ax dy dz,

the minus sign appearing because the outward normal to Sx is in the
negative ^-direction. For the parallel plane SX9 a distance dx away, we
have by a Taylor expansion

d
a • dS = ax dy dz -\ (ax dy dz) dx + higher orders.

Adding these two contributions together and retaining only terms which
are less than fourth order in small quantities, we have

—- dxdydz.
dx

Similar contributions come from the other pairs of surfaces to give for
the evaluation of (4.8),

(dax day daz\ I
div a = lim I 1 1 I dx dy dz / dx dy dz

dx,dy,<L2-o \ dx dy dz I I

= — + — 4- — > (4.2 bis)
dx dy dz

which is just the definition more usually adopted.
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Like grad, the divergence can also be written in terms of V. Equation
(4.2) is just ^xax + Vyay + V2a2 which can be written

Id 3 d\
d i v a = i — + j — + k — \.(iax +\ay + ka2) = V a. (4.9)

\ dx dy dzj

The divergence theorem, which relates the total flux of a vector field
out of a surface S surrounding a finite volume V to the properties of the
field inside the volume, follows almost immediately from our definition
of the divergence. The only step needed is that of going from infinitesimal
volumes to finite ones. To do this V9 in which a is continuous and differen-
tiable, is divided into a large number of smaller volumes Vi9 each of which
will ultimately be allowed to tend to zero. We then apply the definition
to each infinitesimal volume and sum the results. The flux contributions
over all the corresponding surfaces Sf, except those in common with S,
cancel in pairs to give the required result.

Carrying this out formally gives, using (4.8) for each small volume Vi9

that

K,(div«) = f a-dS.
JSi

Both sides of this equation are now summed over / and each V{ allowed to
tend to zero size. The left-hand side is then exactly the definition of
\v div a dF, whilst the right-hand side 2t jst a-dS can be divided into two
parts, one integral over those parts of the St which are also a part of S,
the other over those parts which are internal to S. For these latter, each
surface element appears in two terms with opposite signs, since the out-
ward normals in the two terms are equal and opposite, and so this part of
2i jSi a d S gives zero contribution.

Writing out the non-vanishing parts gives the divergence theorem

f divadK = f adS. (4.10)
Jv Js

Interpreted physically, it states that the sum of all net losses of flux for
all parts of a body or region equals the total loss from its surface.

The theorem finds most use as a tool in formal manipulations, but some-
times it is of value in evaluating surface integrals of the type J F-dS
over a complicated surface 5 if a simple surface S' can be found so that
S and S' enclose a volume V in which divF is easily obtained. (See
example 3 of section 4.8.)

The reader will easily verify by direct calculation that the divergence
operation satisfies the following.
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• 3 . (i) V-(Aa) = AV-a (A is constant, independent of position).
•4. (ii) V-(a + b) = V a + V b.
• 5 . (iii) V-r = 3.
•6. (iv) V-[r/(r)] = 3/(r) + rf\r\ where r2 = x2 + y2 + z2.

If the vector a is itself derived from a scalar as a = grad <f> then V a
has the form V-V<f> or, as it is usually written, V2^, where V2 (del squared)
is the differential operator

a2 d2 d2

V2 = + + (4.11)
dx2 dy2 dz2

As an example of the use of the divergence theorem, involving V2 as
well, we will now prove Green's theorems.

Consider two scalar functions <f> and I/J satisfying our usual differen-
tiability conditions, and apply the divergence theorem to the vector <f>Vifj,
giving

f </>V«/r-dS = f V• (<f>Vi/j) dV
Js Jv

= f
Jv

(4.12)
Jv

Reversing the roles of </> and \jt in (4.12) and subtracting the two equations
gives

/• /•
(<£V20 - ipV2ch)dV. (4.13)f (<£V0 - ifjV<f>)dS = I

Equation (4.12) is usually known as Green's first theorem and (4.13) as
his second. In both it is common to replace Vi/j-dS by (difj/dn)dS. The
expression (difj/dn) stands for VI/J • n, the rate of change of I/J in the direction
of the outward normal to S. [Despite its formal appearance, dip/dn is
not a partial derivative with respect to the magnitude of ii, which is unity
and therefore constant anyway.]

4.3 Curl (or rotation) of a vector

First consider a body which is rotating with angular velocity co about the
z-axis (fig. 4.2).
At the point (x, y, z) the velocity components are vx = — cor sin 6 = — coy
and vy = cor cos 6 = cox and so the velocity vector field a has the form

a = -coyi + cox] + Ok. (4.14)
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To make the connection with our previous usage, we would like to be
able to derive from this field the angular velocity vector (0, 0, OJ) which
characterizes the rotation.

wy «• * (x, y,

Fig. 4.2 The velocity field of a rigid body rotating with angular velocity u) about
the z-axis.

(x + d*, y + dy, z)

Fig. 4.3 A rectangular closed path in the jty-plane.

If, instead of a solid body, it were a liquid which had this velocity
distribution, the rotation would be immediately recognized if it were
required to swim round a simple closed path in the liquid. Clearly it
would be much easier to swim one way round than the other, and this
would be so even if the path did not enclose the axis. This help or hin-
drance, depending on which way round the path is traversed, is an indica-
tion of the rotation or curl of the liquid. Some quantitative measure of
this is the product of the velocity (counted positive or negative) and the
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distance travelled in the direction of the velocity i.e. for an infinitesimal
path length the product a • dl or for the complete course C, J c a • dl. In
general the bigger the area A of C, the bigger this integral, and as we are
interested in a local property, we consider the quantity

lim \- f adll,
«-• U JC J

(4.15)

around a simple closed curve C lying in one plane. The analogy with
(4.8) should be noticed, surface integrals have become line integrals and
volumes become areas.

We will take as C a rectangle in the xj>-plane as in fig. 4.3. Then, taking
the sides in the order they are numbered, (4.15) is evaluated using (4.14)
for a as

• ' fim —

— wydx + o)(x + dx)djF — u(y + dj)( —dx) 4- cox(-dy)

lim — a dl
Jc

_
dxdy

a) dy dx + co dx dy
= hm = 2OJ.

d*,dy^o fix dy

Now a path in the .xy-plane described in the sense used, is associated with
a vector perpendicular to the plane, i.e. in the positive z-direction. Thus
we can by this procedure associate with the z-direction a value 2OJ.

If we now draw another rectangle C in the jz-plane (with normal in
the x-direction) and recalculate the line integral we obtain,

lim — i
-4-0 A JC>

wxd^ + 0 + wx(-dy) + 0
lim — a dl = hm — = 0.

J ai/.dz-o dy dz

Thus the value associated with the x-direction is 0, and similarly with
the ^-direction. Hence we can define by this procedure a new vector with
components (0, 0, 2a>), which, within a constant, is just the angular
velocity we sought. It should be noticed that this example gives the same
vector wherever the path is chosen; in a more general case than rigid body
rotation, the vector would change with position.

The general definition of the curl of a vector is based upon the same
notion. Namely that the component of curl a in a direction n at a point
P is given by (4.15) when ii is a normal to the plane contour C of area A
enclosing (or in the neighbourhood of) the point P. The vector field a is
here of course a general one. Similar mathematical questions to the ones
mentioned in connection with the definition of divergence arise here, but
it can be shown that any shaped plane contour produces the same limit.
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We conclude this section by showing the equivalence of this physics
based definition to the mathematical one of (4.3). The rectangular con-
tour of fig. 4.3 will again be used, but now a is a general vector field with
components (ax, ay, a2) which in general will all be functions of position.
Again taking the numbered sides in order,

a • dl = ax(x, y) dx + ay(x + dx, y) dy
+ ax(x + dx,y + dy)(-dx)

+ ay(x, y + dy)( — dy) + second order.

Grouping the first and third terms together and letting dx -> 0, and the
second and fourth with dy -> 0, we have on substituting in (4.15)

• 7. (curl a)2 = lim
dy-»0

+ lim

dy

ax(x, y) - ax(x, y + dy)

ay(x + dx, y) - ay(x, y)

dx
4- lim (first order)

dav

The other components of curl a are obtained by cyclic permutation of
x, y, z to give complete agreement with (4.3)

. l*az day\ . (8ax daz\ lday dax\
curl a = l 1 + JI 1 + k I

\dy dzj \dz dx) \dx dy)

(4.3 bis)

An alternative form of (4.3), easy to remember, is a determinantal one,

i j k

d d
curl a = a

dx dy dz

ax av

(4.3 b)

[If determinants are unfamiliar, a discussion of them may be found in
the early part of chapter 14.]

•8 . Using the relations (2.20) and (2.21) show that curl a can be written
as

curl a = V A a. (4.16)

•9. Rework the case of a uniformly rotating body (about the z-axis)
using cylindrical polars (r, <f>, z) and planar paths, the sides of which lie
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in coordinate planes. Show that the vector obtained is (0, 0, 2<o) thus
supporting (but not proving) the stated independence of the limit in
(4.15) of the path shape used.

•10. Verify by direct calculation that

V ( a A b) = b (V A a) - a-(V A b) and that V A r = 0.

4.4 Stokes9 theorem

Stokes' theorem is the 'curl analogue' of the divergence theorem and is
proved in an analogous manner. It states that if a simply connected
smooth, but not necessarily plane, surface S is bounded by a line L
(closed) then

cur ladS = a dl, (4.17)
Js JL

where a is a vector field defined in a region containing S.
Following the same line as previously, this time we divide the surface S

into many small areas St with boundaries L{. Then, for one such area
J s curl a • dS is equal to {the component of curl a parallel to the normal
to dS} multiplied by dS. But from the definition (4.15) of curl a this is
just JL a • dl. Adding together all such results we have

(V A a ) d S =2f
i JL

The left-hand side of this is just the left-hand side of (4.17), whilst on
the right-hand side, all parts of all boundaries which are not part of L
as well, are included twice, being traversed in opposite directions on the
two occasions and thus contributing nothing. Those parts which are
common with L add up to produce exactly the right-hand side of (4.17)
thus proving the theorem. In all parts of the proof, boundaries are con-
sidered as traversed in the positive sense with respect to the outward
normal of the surface they bound.

As a simple example of Stokes' theorem consider the following.

Example 4.1. From Ampere's rule derive one of Maxwell's equations in
the case when the currents are steady.

Ampere's rule for distributed current with current density J is

f B dl = po [
Jc Js

JdS
S
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for any circuit C bounding a surface S. Using Stokes' theorem, the left-
hand side can be transformed into J s (V A B) • dS, and hence

I (V A B - /*0J)-dS = 0,
Js

for any surface S. This can only be so if

V A B = fi0J,

which is the required relation.

•11. From Faraday's law of electromagnetic induction, derive Maxwell's
equation curl E = - dB/dt.

4.5 Vector operator identities

As in chapter 2 for ordinary vectors, certain identities exist for vector
operators. Some of these we will merely record, leaving it for the reader
to verify them for himself. One or two will be discussed in a little more
detail.

A vector field a for which div a = \7 • a = 0 is said to be solenoidal,
and one for which curl a = 0 to be irrotational. If the vector a is itself
derived as the gradient of a scalar then it is necessarily irrotational. To
see this we simply write out the expression for curl a

8y

\dy\dzj dz\dy t

i.e. curl a = (0, 0, 0) if a = grad <f>. (4.18)

[This result might also be expected since curl a can be written as V A V</>
and looks like the vector product of a vector with itself, but with vector
operators such formal results cannot be safely presumed.]

•12. If a is derived as curl b for some vector b, then a is solenoidal, i.e.

V a = 0. (4.19)

The analogue of the triple vector product is worth a little further study
and in particular the vector given by curl (curl a) and obtained when
both b and c are replaced by V in c A (b A a). The relationship is

V A (V A a) = V(V-a) - V2a, (4.20 a)
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or in words,

curl (curl a) = grad (div a) — del squared a. (4.20 b)

It should be remarked that the right-hand side of (4.20) is not identically
zero, as can be easily verified by writing it out in Cartesian components.
For example,

d2ax d2ay d2az

dx2 dx dy dx dz

whilst [V2aL = — - -^ + —-•
dx2 dy2 dz2

In the expression V2a, the quantity V2 (called the Laplacian) is a linear
differential operator acting upon a vector [as opposed to the scalar dis-
cussed towards the end of section 4.2] with the vector itself consisting of
a sum of unit vectors multiplied by components. Two cases arise:

(i) If the unit vectors are constants [independent of the values of the
coordinates] the differential operator gives a non-zero contribution only
when acting upon the coordinates [with the unit vectors merely as multi-
pliers].
(ii) If the unit vectors vary as the values of the coordinates change [i.e. are
not constant in direction and magnitude throughout the whole space]
then the derivatives of these vectors appear as contributions to V2a.

Cartesians are an example of the first case in which (V2a)t = V2^. In
this case (4.20) can be applied to each component separately

[curl (curl a)]t = [grad (div a)], - V2at. (4.21)

On the other hand spherical and cylindrical polars come in the second
class. For them (4.20) is still true but the further step to (4.21) cannot be
made.

Equation (4.21) is proved for Cartesians in chapter 15, section 15.5,
whilst a counter example for cylindrical polar coordinates is indicated in
example 7 of section 4.8 at the end of this chapter.

4.6 Conservative fields and potentials

In this section we consider further the important result (4.18). This,
together with some other previous results and the ones proved below,
can be used to express four equivalent statements.
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A vector field a is conservative if and only if any one (and hence all)
of the following is true:

There exists a scalar function <f> whose value at the point
(x, y, z) depends only on the point (x, y, z) and is such
thata = V<£. (4.22 a)

The integral J* a-dl is independent of the path from A

toB. (4.22 b)

The integral J a d l around any closed loop is zero. (4.22 c)

V A a = 0. (4.22 d)
The validity or otherwise of any one of these statements implies the same
for the other three.

The full equivalence of (4.22 b) and (4.22 c) is almost self-evident and
is briefly discussed in section 3.4. Equation (4.18) shows that (4.22 a)
implies (4.22 d), and Stokes' theorem (4.17) shows that (4.22 d) implies
(4.22 c) and hence (4.22 b). It thus only remains to show the equivalence
of (4.22 a) and (4.22 b), to imply the equivalence of all four.

If (4.22 a) is true, then

j d<j> = <f>B — <f>A.

Now <f>B — <f>A depends only on the values of <f> at A and B, and is indepen-
dent of the path taken between them, which establishes that (4.22 a)
implies (4.22 b).

Now suppose (4.22 b) is true, and consider a quantity c/>(P) defined by

-f
JA

<KP) = ad r ,
JA

where A is a fixed point and P variable. Because of (4.22 b), </>(P) is single
valued since the right-hand side is independent of the path from A to P.
Let Q be another point dr away from P, then

<KQ) = <KP) + a-dr,

since the path APQ is one way of reaching Q from A and a is substan-
tially constant along the infinitesimal path. Thus &<f> = </>(Q) — <f>(P) =
a • dr and this means that a is just grad <f>, completing the establishment
of (4.22 a) and the equivalence of the four forms of (4.22).
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Example 4.2. In example 3 of section 3.8 it was shown that, at least for
two different paths, the tangential line integral of the vector field
a = (xy2 + z, x2y + 2, x) was independent of the path between the end
points. This illustrates but does not prove condition (4.22 b); show that
the field is in fact conservative (a) by establishing condition (4.22 d),
and (b) by establishing condition (4.22 a).

(a) Applying (4.3) to a gives

curl a = (0 - 0, 1 - 1, 2yx - 2xy) = (0, 0, 0),

thus immediately establishing condition (4.22 d).
(b) Suppose cf>(x, y, z) is to be the required function. Then firstly we must
have

d(/>/dx = xy2 + z.

Thus, <f> = \x2y2 -f zx + / ( y , z) for some function / . Secondly 8<f>/dy, =
x2y + df/dy, must also = x2y + 2. Hence / = 2y + g(z) and <f> =
\x2y2 + zx + 2y + g(z) for some function g. Finally d<f>/dz, = x 4-
dg/dz, must also = x. Hence g = constant = k. So we have explicitly
constructed a function

^(x, y, z) = ix2y2 + zx + 2y + k,

whose gradient is the vector field a, and thus established condition
(4.22 a).

•13. For the vector field of example 3.2 (section 3.3), namely
a = {xy2, 2, x), show that condition (4.22 d) is not satisfied and attempt
to construct a suitable function <j>, as above, showing where the procedure
breaks down. [Example 3.2 itself has already shown that condition
(4.22 b) and hence (4.22 c) are not valid.]

The quantity </> which figures so prominently in this section [and in
many subsequent chapters] is called the potential function of the vector
field a. More precisely it is the scalar potential function, since it is both
possible and useful at times to define a vector potential function. Its uses
in physics and engineering are so wide-spread that there is little point
here in giving particular examples, and so we merely record its great
importance in such representative areas as electrostatics, gravitation,
fluid dynamics, magnetostatics, and atomic and nuclear physics. But
before leaving it we summarize the main properties of the potential:

(i) It is a scalar.
(ii) Its value at the point P = (x9 y, z) depends only on the quantities
x, y, z (and other fixed constants).
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(iii) Its value is equal to the tangential line integral of the vector field
from an arbitrary fixed point A [at which the potential is thus defined to
be zero] to P, the value of the integral being independent of the path
from A to P.
(iv) Its gradient V<f> is the vector field.

Scalar potentials which are multivalued functions of position (but in
simple ways) are also of value in describing some physical situations,
the most obvious example being the magnetic potential associated with a
current-carrying wire.

4.7 Non-Cartesian systems

The operators which we have discussed in this chapter, grad, div, curl
and V2, were all defined in terms of Cartesian coordinates, but for many
physical situations other coordinate systems are more natural. For example,
many systems, such as a single isolated charge in space, have spherical
symmetry and spherical polar coordinates would be the obvious choice.
For axisymmetric systems, spherical or cylindrical polars are the natural
system of coordinates. The physical laws governing the behaviour of the
systems are often expressed in terms of the operators we have been con-
sidering and so it is necessary to be able to express these operators in
these other, non-Cartesian, coordinates.

We will use the notation of section 3.7 and concentrate mostly on
spherical and cylindrical polars.

Gradient. The element of length associated with a change dut in one of
the coordinates is h{ dut (no summation) and, since the gradient of a
function is the rate of change of that function with distance, the vector
grad <f> is given byf

l ad> i a<D i ao
grad <J> = VO = - _ %x + _ — e2 + - — 83. (4.23)

Aii cux n2 du2 n3 du3

It should be borne in mind that the unit vectors §( are not constant
throughout the space in general, but are defined locally to give the local
direction of increase of the coordinates u{. This is apparent from fig. 4.4
which shows the unit vectors for two different positions (r, 0, <f>) and
(/•', 0', </>') in spherical polars.

t Here we use <P for the potential to avoid confusion with the azimuthal
angle <f>.
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Fig. 4.4 The unit vectors et and ei in spherical polar coordinates at two different
positions r and r'.

Using table 3.1 and equation (4.23) we have in particular that the
components of grad $ are

(d<b 1 a<D 1 d<D\
— , , 1 in spherical polars,

\8r r 36 r sin 6 d<j>)
and

—,—,—)i
dr rd<f> dz I

in cylindrical polars.

(4.24)

(4.25)

Divergence. Consider for definiteness the case of spherical polars illus-
trated in fig. 4.5, and let us apply the definition of divergence in (4.8) to
the small near-rectangular volume generated by making small increments
in each of the coordinates. As in the argument of section 4.2 the contribu-
tion to a • dS from faces Sr and S'T together is

dr
(ar r dSr sin 6 d<f>)dr.

Similarly the contributions from {Se and SQ} and {S^ and S#} are

d d
— (ae dr r sin 6 d<f>) dd a n d — (a^ dr r d0) d<j>
dd 3<f>

respectively, giving for the total surface integral

= \ — (r2 sin6ar) + —(rsin0ae) +
CD

# 1
— (raj
v<p J

dr dd d<f>.
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Fig. 4.5 The elementary volume in spherical polar coordinates for the calculation
of the divergence of a.

Now the volume of the solid is V = dr x r d6 x r sin 6 d<f>, so that from
(4.8) we obtain for the divergence of a in polar coordinates

V a = — (r2 sin 6 a^ + — (r sin 0 ae) + — (raj
dr 3d c<f> J

dr r sin
(sin

1 da*
— — —
r s in 0 d<j)

(4.26)

Following this same method it is straightforward to obtain the result
for a general orthogonal system.

(4.27)

In particular, for cylindrical polars,

MS.
rdr r 8<f, 8z

(4.28)
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The operator V2. If we take the particular case of a = VO then (4.27)
yields an expression for V2 for a general orthogonal system. Substituting
for ax, a2, a3 in (4.27) from (4.23) gives

8u2

±(!!±!±)\ (4.29)
3u3\ h3 3uj\

For the two particular cases, we have in spherical polars;

i d / a o \ i d i . a o \ i 32$>
• 1 6 V2O = r 2 — + ( s i n 0 — I + >

r2 dr\ drj r2 sin 6 36 \ 36) r2 sin2 6 3<f>2

(4.30)

and in cylindrical polars;
1 3 / d<D\ 1 a2d) 32<&

• 17. V20> = r — 1 + +
r 3r\ 3r) r2 3<f>2 3z2

+ ( 4 . 3 1 )
3<f>2 3 2

It will be noticed that in the expressions for V2O, the last term in (4.30)
and the last two terms in (4.31) have the formal appearance of being the
result of repeating the operations which produced the corresponding
terms in the expressions for V<D (equations (4.24) and (4.25) respectively).
This they have in common with all three terms of V2® when it is expressed
in Cartesians. However, the first two terms of (4.30) and the first of (4.31)
do not possess this property.

The reason for the differences is to be found in the fact that for the
coordinates r and 6, the volume swept out in space by a given increment
in that coordinate (keeping the others constant) is dependent on the value
of that coordinate at the time, whereas for the others this is not so. For
example, the volume between the coordinate surfaces r = rx and r =
/*! + dr in spherical polars is 4nr2 dr, but that between the coordinate
planes <f> = <f>x and </> = <f>1 + d<f> is {d^jln) of the whole space and inde-
pendent of <f>±. So for r and 6 the geometry of the space itself has a 'built-
in' divergence which adds to that occurring in the scalar <f>. To illustrate
this specifically, the r term of (4.30) is

1 3 I d0>\ 32<& 2 3®
(r2 \ = + ,

r2 3r\ 3rJ 3r2 r 3r

the first term on the right being the 'expected' one and the second that
deriving from the 'geometry of the space'. Of course both must be in-
cluded in any use of the formulae.
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The reader is reminded also of the discussion at the end of section 4.5
in connection with the application of V2 to vectors, and of the complica-
tions which may arise when working with a general orthogonal system.
It is usually simplest in these circumstances to express V2a, by means of
(4.20 a), in terms of other vector operators.

Curl. Following from the defining equation (4.15) and the discussion of
section 4.3, we can construct in a straightforward manner the expression
for curl a in a general orthogonal system. By considering a small contour
lying in a plane w3 = constant [and traversed in the right-handed sense
with respect to a normal in the positive u3 direction] we obtain

1

\sh1du1h2du2

— (a2h2 dw2)
dux

- — («!*! di/i) dw2 i
du2 \)

= TT\T-{h^ ~ T~(Ml)l * (432)

hih2 {dux cu2 J
The other two components are found by cyclically permuting subscripts
1,2, 3.

•18. Show that in spherical and cylindrical polars curl a has components:

spherical polars

1 da* cot 6 1 dae

r dS r 0
 r sin 6 d<f>

1 dar a0 da*
U\ ; — — 5

r sin 6 d<f> r dr

ae dae 1 dar

r dr r 80

4.8 Examples for solution

1. Distinguish between the following expressions involving vector
a and scalar <f>, showing in particular: (a) = (d) ^ (c); (d) ^ (e);
(c) = (a) + (b);(b) = -(e).

(a) <£V A a, (b) V^ A a, (c) V A <£a, (d) (V A *)+,
(e) (a A

cylindrical polars

\daz
r ' r d</>

dar

~dz~ "

z; — +
r

da*

~~dz"'

a r '

"a7~ rdd>

2. The field of a magnetic dipole of moment M, placed in vacuum
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at the origin, is given by H = — VH, where ft is the magnetostatic
potential O = -(1/4TT)M-V(l/r). Show that

H = (l/47r)[3f(M.r)r-4 - Mr"3]

and deduce the fields in the Gauss A and B positions, of a short bar
magnet. (A position is on the axis of the magnet; B position on the
* equatorial' line.)

3. Evaluate the surface integral Js F d S over the open hemispherical
surface x2 + y2 + z2 = a2, z > 0, when F = (y - x)i + x2z\ +
(z + *2)k, (a) directly, and (b) by the use of the divergence theorem.

4. Show that the vector rnr is (i) irrotational for any value of w,
and (ii) solenoidal only if n = - 3 . Deduce the physically obvious
result that 'any spherically symmetric vector field which is every-
where directed away from the origin is irrotational'.

5. A vector field a has components ( — zxr~3, —zyr~3, (x2 + y2)r~3),
where r2 = x2 + y2 + z2. Show that the field is conservative (a) by
showing curl a = 0, and (b) by constructing its potential function <j>.

6. A force F(r) acts on a particle at r. In which of the following cases
can F be represented in terms of a potential ? When it can, find the
potential.

(a) F = [i - j - 2r(* - y)] exp (-r2).
(b) F = [zk + r(x2 + y2 - 1)] exp (-r 2 ) .
(c) F = k + (r A k)r"2.

7. Using cylindrical polar coordinates (r, <f>, z) and a vector field a
with components (u, v, 0), where for simplicity u and v are taken
as functions of r and </> only, show that the r component of
V(V-a) - V A (V A a) is

d2u u 1 du 2 dv 1 d2u

~dr2~72 + ^~dr~~r2ty r2 d<£2 '

but that V2M contains only the first, third and last of these terms.
This shows that (4.21) is not valid in a general orthogonal system.
As a very specific example, take u = constant = c ^ 0 and v = 0
and evaluate V2a comparing it with V2at.

8. For the coordinate system of example 7 in section 3.8, find the
most general function / of ux only that satisfies V2/ = 0. (The re-
quired expressions for hx, h2, h3 are given in the solutions to chapter
3.)



5
Ordinary differential equations

In the mathematical description of a physical system the basic laws are
usually expressed as equations connecting local quantities. The equations
consist of products and sums of the quantities and their derivatives, the
actual combination of forms depending upon which variables are chosen
to describe the situation.

The effect of external factors on the system is represented by the tying
of the values of some of the quantities to particular values of others. The
latter quantities are usually called the independent variables, and the
former the dependent ones. A complete description (solution) of the
physical system is obtained when the values of the dependent variables
are known for all values of (i.e. as a function of) the independent ones.

In cases where derivatives appear in the expression of the physical laws
it is thus necessary to convert a differential equation into a standard,
tabulated, or computable function. This may take the form of a series
or an integral which can be evaluated numerically. Methods by which the
conversion can be effected form the content of this and the next two chap-
ters and also (for equations containing more than one independent vari-
able) of chapters 9 and 10.

Equations of the types considered in the first three of these chapters -
those containing only one independent variable - are called ordinary
differential equations. The two other chapters deal with some methods of
solving partial differential equations, i.e. ones containing derivatives of
dependent variables with respect to more than one independent variable.

In discussing ordinary differential equations in a general way we will
take x as the independent variable and y = y(x) as the dependent one.
The derivatives of y with respect to x, dy/dx, d2y/dx2,..., dny/dxn, will,
where no confusion arises, be denoted for brevity by / , / ' , . . . , y{n\
respectively.

Two further definitions need to be made at this point. The first of these
is the order of a differential equation, which is the order of the highest
derivative appearing in the equation. The second is the degree of the
equation, this being the exponent of the highest derivative, after the equa-
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tion has been rationalized and all non-integral exponents of y and its
derivatives eliminated (if necessary).f Thus, for example,

is of third order and second degree, since ym appears and after rationaliza-
tion it is raised to the second power.

We will be concerned almost exclusively with equations of the first
degree and will generally be dealing only with equations of first
and second order. Much of our attention will be on linear equations in
which all derivatives present and y itself appear only to the first power
and at most are multiplied by a function of x (not of y or its derivatives).

5.1 General form of solution

It is helpful when considering the general form of the solutions of an ordi-
nary differential equation (d.e.) to consider the inverse process, namely
that of how a differential equation can be obtained from a given group}
of functions, such that any one of them is a solution of the d.e. Suppose
the members of the group are given by a particular form

y =f(x,a1,a2,...9an)9 (5.1)

where the a{ are a set of n parameters, with each member given by a dif-
ferent set of parameters. For example, if the group were all functions of
the [familiar] form

y = #i cos x 4- a2 sin x, (5.2)

then n would be 2.
Since a d.e. is required for which any of the group is a solution, the

equation clearly must not contain any of the at. As there are n of the at

in expression (5.1), we must obtain n + 1 equations involving them in
order that, by elimination, we can obtain one final equation without them.

Initially we have only (5.1), but if this is differentiated n times, a total
of n -f 1 equations is obtained from which (in principle) all the at can be
eliminated to give one d.e. satisfied by all the group. The n differentiations
will result in yin) being present in one of the n + 1 equations and hence
in the final equation, which will therefore be of the nth order.

In the example of equation (5.2),

y' = —ax sin x + a2 cos x, (5.3 a)

t Some authors define degree as the highest exponent which appears of any
derivative (including y itself), after the equation has been so treated. In
this case 'of first degree' is synonymous with 'linear'.

% The word 'group' is not used here in any technical algebraic sense.
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and y" = — ax cos x — a2 sin x. (5.3 b)

Here the elimination of a1 and a2 is trivial (because of the similarity of
form of/ ' and y), resulting in

/ ' + y = 0, (5.4)

a second-order equation.
Thus to summarize - a group of functions with n parameters satisfy

an nth-order differential equation in general.! The intuitive converse of
this - that the general solution of an nth-order differential equation con-
tains n arbitrary parameters (constants) - will, for our purposes of phys-
ical applications, be assumed to be valid, although a totally general proof
is difficult.

• 1. Suppose that a solution of (5.4) can be found of the form y{x) =
2 ? ciiX1. Show that exactly two of the a{ are arbitrary.

•2. If (5.4) is multiplied through by / , it can then be arranged in the
form [(/)2] ' + [ / ] ' = 0.

Show, by carrying it out, that to obtain from this an expression for y
in terms of x requires 2 integrations, resulting in 2 arbitrary constants.

These two exercises illustrate, but of course do not prove, the validity of
the assumed result.

As mentioned earlier, external factors affect a system described by a
d.e., by fixing the values of dependent variables at particular values of the
independent ones. These externally imposed (or boundary) conditions on
the solution are thus the means of determining the parameters which
specify precisely which function is the required solution. It is apparent
that the number of boundary conditions should match the number of
parameters and hence the order of the equation, if a unique solution is to
be obtained. Fewer independent boundary conditions than this will lead
to a number of undetermined parameters in the solution, whilst an excess
will usually mean that no acceptable solution is possible.

For an nth-order equation the required n boundary conditions can take
many forms, for example, the value of y at n different values of x, or the
value of any n — 1 of the n derivatives / , / ' , . . . , / n ) together with that
of y, all for the same value of x, or any of many intermediate combina-
tions.

t In some degenerate cases a d.e. of less than wth order is obtained.



5.2 First-order equations 119

• 3 . Solve, where possible, equation (5.4) with the boundary conditions,

(a)y(0) = 4, y(n/2)= - 1 ;
(b) y(0) = 4, / (0) = 2;
(c) JKTT/4) = 2;

W#= 1, / ( 0 ) = - 1 ;
(e) XW6) = i + 31/2, j<ir/4) = 3(2) -"*, /(TT/4) = -(2)" 1 ' 2 ;
(/) KV6) = i , XW4) = 3(2)-1'2, /(TT/4) = -(2)"1 '2 .

5.2 First-order equations

We begin our study of more specific forms of differential equations with
those of first order (and first degree). Our main interest from the physical
point of view will be in linear equations but to start with we consider a
slightly wider class.

Let us take as the general form of first-order equation

Qy' + P = 0, (5.5)

where Q and P are, in general, both functions of x and y [but of course
not of/ , / ' , etc.].

If, by a rearrangement or by multiplying the equation through by some
function of x and y, it can be brought to a form where the quantity
multiplying y' is a function of only one of x and y and the second term
a function only of the other, then the variables are said to be separated
and (5.5) can be written as

p(x) dx + q(y) dy = 0,

with solution

p(x1)dx1 + I q(y1)dy1 = c.

Since the general equation (5.5) is of first order, its solution will contain
one arbitrary constant. Suppose that it is possible to express the solution
so as to make this constant c the subject of the equation expressing the
solution, that is

c=f(x,y). (5.6)

Then by differentiating (5.6) with respect to x we should recover the original
equation

df df dy

ox dy dx
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where df/dx is the partial derivative! of /wi th respect to x with y held
fixed, and similarly for df/dy.

Comparing (5.7) with the original equation, we see that for a solution
of the form (5.6) we must have

?" = PIQ- (5-8)
dy

Alternatively we may say that to obtain a solution of the form/(x, y) = c,
the original equation (5.5) after possible multiplication through by a
suitable function g(x, y) should take the form (5.7). Since d2f/dx dy =
d2fldy &x, this implies as a necessary condition that

(gP) ^(gQ) (5.9)
dy ex

It can also be shown that (5.9) is a sufficient condition for a solution of
(5.5) to exist in the form (5.6).

Equations like (5.5) for which

8P dQ

dy ex

i.e. with g(x, y) = constant, are called exact equations and can be solved
immediately:

c =f(x,y) = JXP(xl9y)dx1 + h(y),

where h(y) is chosen to make

y J jX
P(Xl, y) drj 4- h\y) = Q. (5.11 a)

Clearly, depending on the actual forms of P and Q, it may be computa-
tionally easier to evaluate

c = fix, y) = Qix, yx) dy1 + k(x),

with

t This section assumes a little familiarity with partial differentiation, section
1.8 may be useful preliminary reading for the student without such famili-
arity.
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Example 5.1. Solve (JC3 + 2y)y' + 3x2y = 0.

The solution is obvious, but for illustrative purposes we will go pedantic-
ally through the above procedures.

Here, comparison with (5.5) gives Q(x9 y) = x3 -f 2y and P(x, y) =
?>x2y. Hence (5.10) is satisfied, since each side of it has values 3x2, and the
equation is therefore exact. Using (5.11 a), its solution is

•r x1 + h(y) =
J

with

—
dy

Thus h(y) = y2 and the solution is

x3y + y2 = c.

[All constants of integration may be taken as zero, i.e. formally absorbed
into c]

Alternatively [carrying right through with our pedantic illustration],
using (5.11 b) the solution is

c = f (x3 + 2yx) dy, + k(x) = x3y + y2 + k(x),

with £- (x3y + f) + k'(x) = 2>x2y.
ox

Thus k(x) = 0 and the solution is as before.

We now return to (5.9) and study the quantity g(x, y), which because of
the purpose it serves is known as an integrating factor (IF). Expanding
(5.9) we obtain after rearrangement

dy dxj dx dy

If we now substitute for P from the original equation (5.5) into the last
term of (5.12) and recall that dg/dx = dg/dx + / dg/dy, then we obtain

1 (8P 3Q\ _ 1 dg

~Q\dy dx) ~ g dx'
(5.13)

as the equation satisfied by the integrating factor g.
An explicit formula for g can be given for those cases in which the left-
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hand side of (5.13) is a function of x only (and not of y), for then simple
integration gives

g(x) = exp — — dxx (5.14)
U (?(*!,>>) \ ty dxx I J

as the required integrating factor.
Often simple integrating factors can be determined by inspection, but

in more complicated cases, provided its integrand is a function of x only,|
(5.14) will provide the necessary IF and hence solution of the equation.
Notice that if the integrand is zero, the original equation is already exact.

•4. Solve the following by separation of variables to obtain y = y(x):

(a) y - xy* = 0;
(b) y' arctan x - y{\ + x2)"1 = 0;
(c) x2y' + xy2 = 4 / .

•5 . Show that the following equations are either exact or can be made
so, and solve them:

(a) y(2x2y2 + 1 ) / + x(y* + 1) = 0;
(b) 2xy' + 3JC + y = 0;
(c) (cos2 x + y sin 2x)y' + y2 = 0.

If in (5.5), P(x, y)/Q(x, y) can be expressed entirely as a function of
(y/x), then the equation is said to be dimensionally-homogeneous and a
general form of solution can be found. This method is treated in example 1
of section 5.12.

5.3 Linear first-order equations

Turning to linear equations of the first order produces some simplifica-
tion of our general results.

For linear equations we have, using the notation of (5.5), that (i)
Q = Q(x) (and not Q(x, y)), and (ii) P(x, y) = yR(x) + S(x). This
means that the important criterion quantity dP/dy — dQ/dx has the form

dP/dy - dQ/dx = R(x) - Q'(x)

t This is not intended to imply that an IF cannot be found if the integrand
does depend on y - only that it must be sought by other means.
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and is therefore necessarily a function of x only. Thus an integrating fac-
tor

G(*i)
l

g(x) = exp
.J W*i) J

(5.15)
Q(x)

can always be found.
It is usually convenient in practice to divide the linear equation

Q(x)y' + R(x)y + S(x) = 0 (5.16)

through by Q(x) before starting to find the IF; the equation then reduces
to

y + r(x)y + s(x) = 0, (5.17)

and the integrating factor to

.[rK*i)d*ilexp I I r(*i)d*i |- (5.18)

Example 5.2. A particle of mass m starts from rest at time t = 0 and is
acted upon by an accelerating force m exp {—fit). Its motion is opposed
by a viscous force of magnitude mrj times its velocity. Find its velocity
at subsequent times and the total distance it travels.

Denoting the distance by y and its velocity dy/dt by v, we have as the
equation of motion

mv = m exp (—fit) —
or v 4- rjv == exp (—fit).

From (5.18) the integrating factor is

(T QXp(rjt)9

giving v exp (rjt) + T\V exp (rjt) = exp (rjt - fit).

Then, either by inspection or by applying (5.11 b) we obtain

v exp (vt) = (v- fi)-1 exp [(rj - fi)t] + c.

The initial condition, v(0) = 0, gives

^ = V(t) = —^— [exp (-fit) - exp (-vt)].
dt -q - fi
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The variables here are trivially separable, and integration gives the total
distance travelled as

1 r l i l00 1
y(co) - y(0) = - - exp (-£/) + - exp (-rjt)\ = — •

vn - p)l p v Jo VP

•6 . Solve, by finding a suitable IF:

(a) (1 - x2)y' + 2xy = (1 - x2)312;
(b) y — y cot x + cosec x = 0;
(c) (x + j>4)/ = y [treat >> as the independent variable].

5.4 Higher degree first-order equations

First-order equations of higher degree than the first do not occur often
in the description of physical systems,! since squared and higher powers
of first derivatives usually arise from resistive or driving mechanisms and
then an ' acceleration' or other higher derivative is present, and the equa-
tion is not first-order. They do however sometimes appear in connection
with geometrical equations. If the equation can be explicitly solved for
one of x, y or y\ then either an explicit or a parametric solution can some-
times be obtained.

If the nth degree equation for y' can be solved for y\ we obtain instead,
n equations of the first degree, which in simple cases can be treated by
previous methods. Somewhat more interesting from a technique point
of view, are the cases where attempted solution along these lines produces
an insoluble first-order equation.

Consider

x{yff + y' - y = 0. (5.19)

Solving directly for y' gives two equations

y' = -(2.x)-1 ± (2x)"1(l + 4xy)112,

which cannot be solved by simple methods. However a parametric solu-
tion can be obtained as follows.

Denote y' by z, and write (5.19) as

y = z2x + z. (5.20)

t With the alternative definition of degree given in the footnote at the begin-
ning of this chapter, this statement is no longer true, since Ricatti-type
equations involving y' and powers of y higher than the first, have significant
physical importance.
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Differentiating with respect to x gives

z = / = z2 + (2zx + l)z',

which can be made into a linear equation for x, using z as the indepen-
dent variable

(z - z2)^- 2zx- 1 = 0 .

The integrating factor for this is

•7. (1 - z)z~1

yielding,

dz

This on solution gives

(1 - zfx = lnz - z + c. (5.21)

Together with (5.20), (5.21) gives a parametric representation of the
solution of (5.19) with z as the parameter.

•8 . Obtain essentially the same result by the following procedure in which
the roles of x and y are reversed.

(i) Solve (5.19) for x.
(ii) Differentiate with respect to y, putting dx/dy = z"1.
(iii) Arrange as a linear equation in y.
(iv) Find the integrating factor.
(v) Solve for y in terms of the parameter z.
(vi) Compare with y as obtained from (5.20) and (5.21).

5.5 Second-order equations

It is an empirical fact that many natural processes and laws, when put
into mathematical form, appear as second-order equations of the first
degree. Some, such as the wave equation

d2y 1 d2y

~dx2 ~ 'c2"dt29

contain two second (partial) derivatives; others, for example the equation
of an undriven damped oscillator

my + Thy + ky = 0, (5.22)

involve only a single second derivative.
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A further feature common to these two equations and to many others
of physical science is that they are linear. We will in consequence concern
ourselves almost exclusively with linear second-order equations in the
remainder of this chapter.

As we have shown previously, to obtain a unique solution for a second-
order equation, two independent boundary conditions are required, in
order to determine the values of two otherwise arbitrary parameters. We
next demonstrate the general method whereby the solutions of such linear
second-order equations may be sought and the two parameters deter-
mined.

We take the general linear equation for solution as

either f2(x)y\x) + Mx)y'(x) + fo(x)y(x) = /(*), (5.23 a)

or f2(x)y"(x) + Mx)y'(x) + fo(x)y(x) = 0, (5.23 b)

in which for the present we will assume that, in the range of x under con-
sideration, the fi(x) are continuous and, where necessary, differentiable.

It should be noted that (5.23 a) is not really linear, in that, if y^x) and
y2(x) are both solutions of it then y(x) = ^y^x) + a2y2(x) is also a solu-
tion only if constants ax and a2 add up to unity. However, if yx(x) is a
solution of (5.23 a) but y2(x) is a solution of (5.23 b) in which the right-
hand side is zero, then yx(x) + y2(x) is a solution of (5.23 a). Taking this
one step further, and recalling that the general solutions of both (5.23 a)
and (5.23 b) will each contain two arbitrary constants, we obtain the
general result as follows.

If yi(x) is any solution of (5.23 a) and y2(x) is the general solution of
(5.23 b), containing two arbitrary constants, then the general solution of
(5.23 a) is given by X*) = yi(x) + y2(x).

The solution yx(x) for (5.23 a) with the full right-hand side is called the
particular integral, whilst that of (5.23 b) is known as the complementary
function. The result can be stated as 'the general solution is the sum of a
particular integral and a complementary function'.!

It should be emphasized that for the practical purpose of obtaining an
explicit solution, any particular integral (PI), however simple, will suffice;
roughly speaking, the difference between any two possible PI will always
be compensated by the consequent need to assign a different pair of values
to the parameters in the complementary function (CF), when matching
the boundary conditions.

To illustrate these general results we consider a very simple example
in which all the/i(.x;) are constants.

t This form of solution generalizes to any /ith-order linear equation, the
only difference being that the complementary function then contains n
arbitrary parameters.
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Example 5.3. Find the solution of

y _ 2 / - 3y = 6 (5.24)

which satisfies y(0) = /(0) = 0.
We first seek the CF which will be the general solution of

/ - 2 / - 3y = 0. (5.25)

For reasons which are discussed more fully later, we try a solution of the
form y = A exp (mx) and find that this is indeed a solution if

•9. m = 3 or m = — 1.

Now (5.25) is linear and its general solution containing two arbitrary
constants is therefore the complementary function

y2(x) = A exp (3x) + B exp (-x).

All that remains now is to find one [the simplest possible] solution of
(5.24). The most trivial is y^x) = — 2, but this is a perfectly adequate
PI, and gives as the general solution of (5.24)

y(x) = A exp (3x) + B exp (-x) - 2. (5.26)

The two boundary conditions require that

A + B - 2 = 0,
3A - B = 0,

thus determining A and B and yielding as the final solution,

y(x) = i exp (3x) + f exp (-*) - 2.

5.6 Linear equations with constant coefficients

In this section we consider specifically the class of linear second-order
equations typified by the damped oscillator equation (5.22), and given
generally by (5.23) when all the/i(;c) are restricted to be constants. Thus
we take our equation as

a2y" + axy
f + aoy = /(*), a2 * 0, (5.27)

with the a{ as constants.
Here we treat only cases in which the right-hand side/(x) is either zero

or a given manageable form. Methods available when/(x) is unspecified
or complicated are developed in chapter 7.

Our first task is to find the complementary function y2(x) for (5.27)
since this will be applicable whatever the form of f(x). We need

2 + tfij>2 + ^0^2 = 0. (5.28)
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It is clear that the best chance of finding a function which satisfies this
is to look for one which on repeated differentiation essentially repro-
duces its own form, which can then be cancelled out of (5.28) as a factor.
On this reasoning, an exponential function naturally suggests itself, and
so as a test solution we try

(5.29)

where A is at present undetermined.
Trying (5.29) in (5.28) leads to

(a2X
2 + tfiA + ao)A exp (Ax) = 0. (5.30)

From this it is apparent that (5.29) is satisfactory provided that the
auxiliary equation (an ordinary quadratic in A)

a2X
2 + axX + a0 = 0, (5.31)

is satisfied. There will in general be two values Xx, A2 of A which do this,

.HMW. ( 5 3 2 )
2 2a2

Recalling that (5.28) is linear and that (5.30) is satisfied for any A pro-
vided A satisfies (5.31), we conclude that any solution of the form

y2(x) = A exp (Ai*) + B exp (X2x) (5.33)

will satisfy (5.28). This contains two arbitrary constants and thus is the
most general solution of (5.28) and hence the required CF. The general
form remains valid even if A is complex, the only exception being when
Ai = A2, i.e. a\ = 4a2a0. In this case the general solution is

(A + Bx)exp(XlX), (5.34)

as is shown in part (iii) of the following example.

Example 5.4. Find the complementary functions for the equations:

(i) / - 6 / + %y = 16* + 12;
(ii) y" - 6/ + 13>> = 6 cos 2x + 33 sin 2x;
(iii) / ' - 6 / + 9y = exp (2x).

For all three cases the auxiliary equation is

A2 - 6A + ii = 0,

with /* = 8, 13, 9, respectively. The roots of these quadratics are:

(i) 2, 4; (ii) 3 + 2i, 3 - 2i; (iii) 3 twice.
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Thus the complementary functions for (i) and (ii) follow straightforwardly
from (5.33);

(i) y2(x) = A exp (2x) + B exp (4JC),

(ii) y2(x) = exp (3x)[A exp (2ix) + B exp ( —2ix)], or
= exp (3x)[A' cos (2x) + B' sin (2x)].

For case (iii), so far we have only a one-parameter solution y2(x) =
(A + B) exp (3x) = C exp (3x). To obtain a second, but still trying to
maintain a 'self-reproducing' form like (5.29), let us try a solution

y2(x) = g(x)exp(Xx).

Substituting this into (5.28) we get, after a little rearrangement,

[(a2X
2 + a±X + ao)g + (2a2X + ajg' + tf2#"] exp (Xx) = 0.

But A is a solution of the auxiliary equation and therefore the coefficient
of g vanishes. Also, since we are considering the case of equal roots of
the auxiliary equation, A = — aJ2a2 and therefore the coefficient of gr

vanishes as well. Thus, since a2 ^ 0 we must have g" = 0. This is trivially
satisfied if g(x) = D + Ex and the second part of the CF is Ex exp (Ax).
The D exp (Xx) term merely repeats, or is part of, the first solution found.
The completed complementary function is thus of the form given in
(5.34). For case (iii) of the example we obtain y2(x) = (C + Ex) exp (3x).

Although we will not pursue it in this chapter, the trial function method
can be applied in an obvious way to higher-order equations with constant
coefficients. Some exercises are set in the examples at the end of the chap-
ter.

The second part of the task of solving (5.27) consists of finding any
particular integral - to be added to the complementary function already
found.

Often a PI of a simple form can be obtained by inspection or by assum-
ing a parameterized form similar tof(x), but there is in general no straight-
forward way of doing this. There are however a number of rather ad hoc
ways of finding particular integrals, and since we have seen that the im-
portant thing is to find one such integral by some means or other [the
complementary function taking care of the rest of the generality], we
describe in the following sections some of these methods.

•10. Find particular integrals for the equations of example 5.4.
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5.7 The D operator

Instead of writing the original equation as it appears in (5.27) let us pre-
sent it in a more symbolic way as

L(D)y = (a2D
2 + a,D + ao)y =f(x). (5.35)

Here D is shorthand for the operator d/dx which acts upon the quanti-
ties [y only in this case] which appear to the right of it. The second deriva-
tive is

d2 d / d \ / d

and is therefore written as D2; similarly dn/dxn would be denoted by Dn.
The expression L(D) is an abbreviated way of naming the linear operator
#2D2 + cij) + a0, but may be considered to stand generically for an
/?th-order linear operator with constant coefficients for any n.

This appears a highly artificial and complicating procedure, but it
will be seen that D, although it is an operator, can often be manipulated
as if it were a purely algebraic quantity. This is so because differentiation
obeys the distributive law and index laws DmDn = Dm + n = DnDm [at
least for m, n ^ 0], and commutes with constants [but not with functions
ofx].t

Before using the D operator to find particular integrals we need to
establish certain of its properties. The proofs of these properties are given
in bare mathematical outline but the student should go through them
carefully to be sure that each step is followed.

In the proofs D is manipulated as an algebraic quantity except where
it acts upon a function of x, when either nothing further can be done
[e.g. when acting upon the arbitrary function u(x)] or the specific result
is used [e.g. when acting upon exp (Xx) or cos (px)]. It should be borne
in mind that L(D) is always a sum of terms of the kind anT>n.

(i) Dn exp (AJC) = An exp (Xx),

therefore L(D) exp (Xx) = L(X) exp (AJC) . (5.36)

(ii) Dn[w exp (AJC)] = V I ) [Dr exp (Ax)][Dn"rM] (Leibniz),

t The methods of this section are, from a purist point of view, very dubious.
But because of their great practical importance, particularly in the field
of electrical engineering, the ends justify the means and the fact that
derived solutions can be resubstituted for checking provides the necessary
insurance.
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= exp(Ajc)(D + \)nu. (5.37)

(in) D2 cos (px) = — p2 cos (px),

therefore L(D2) cos (px) = L(-p2) cos (px). (5.38)

Similarly, L(D2) sin (/?*) = L(-p2) sin

Result (i) is in fact that used in obtaining the auxiliary equation (5.31).
We now use D in a heuristic way to try to find means of producing

particular integrals.
If it were permissible to treat (5.35) in a purely algebraic way then we

would have as the solution

( 5 3 9 )

But since L(D) is an operator, what meaning are we to attach to

Consideration of the simplest case provides a part of the answer. If
L(D) were simply D then the equation would be

y' = Dy=f(x),

and the formal and actual solutions would be

y = 5 /W = I ' /(Xl) dXl' (5<40)

This clearly indicates that D ~1 is to be interpreted as an integration sym-
bol, and, by extension, that D~m represents integration m times.

This still leaves unresolved the general meaning to be attached to
(5.39), but the results (5.36)-(5.38) suggest that if f(x) has particular
forms such as exp (Ax) or cos (px), then it might mean, for example in
the former case, [L(X)] ~x exp (AJC). This certainly seems to be pushing
pure symbolism rather far, but we know that any wrong solution will be
shown up by resubstitution, and any acceptable one is all that is needed.

In this spirit, let us try as a solution of

L(D)y = A exp (Xx) (5.41)

the form

L(A)
(5.42)
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Using (5.36), the verification is immediate,

A

L(X)

= - ^ - L(A) exp (Xx) = A exp (Xx).

This result assumes that L(X) # 0. If it is equal to zero, then (D — A)
must be a factor of L(D) which can therefore be written as L(D) =
A(D)(D — A)m with A(X) / 0. In the same way that (5.34) was derived
for a special case, we can in this special case try an extension to solution
(5.42) of the form

g(x) exp (Xx)

Then evaluating L(D)y,

[txp(Xx)g(x)]
L(D)y = A(D)(D - X)m

A(X)

where (5.37) has been used with A replaced by — A and u(x)by exp (Xx)g(x).
Using (5.36), the right-hand side becomes A exp (Ax) provided that the
last factor Dm[g(x)] is equal to the constant A. This requires that g(x) =
Axm\m\ and hence gives the solution

Axmexp(Xx)
y = —. 7777-* ( 5-4 3>

m!

We will not continue any further with our generalized heuristic treat-
ment, but rather solve a number of examples illustrating how some forms
of f(x) on the right-hand side of the original equation can be treated. We
will here be concerned only with finding particular integrals. The method
of example (iv) for dealing with odd powers of D when f(x) is a sine or
cosine function should be noted.

The examples are based on the same operators as those of examples
5.4 and •lO, so as to illustrate the variety of forms f(x) which can be dealt
with, and so as to enable similar problems to be seen tackled by different
methods.
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Example 5.5. Use D operator methods to find particular integrals for the
following equations:

(i) y" - 6 / + 9y = exp (2x) [as in •lO (iii)].

e xp x

D 2 - 6 D + 9 4 - 1 2 + 9
= exp (2x) (using (5.42)).

(ii) y" - 6 / + 8>> = exp (4JC).

Here L(D) = (D - 4)(D - 2) and L(4) = 0, and so we must use
(5.43) with A(D) = (D - 2) and /w = 1.

x exp (4x)
v = = +x exp (4x).

1! 4 - 2

(iii) y" - 6/ + 9y = 2 exp
Again use (5.43) with A(D) = 1 and m = 2.

2x2 exp
= x2 exp

(iv) y" - 6y' + 9y = cos 2x.

D ' - 6D + 9 C ° S 2X - 4 - 6 D + 9 C ° S ' "

1 5 + 6D 5 + 6D
cos 2x = cos 2x5 - 6D 5 + 6D 25 - 36D2

5 + 6D 1
cos 2x = (5 cos 2x — 12 sin 2x).25 - 36(-4) 169

(v) / - 6 / + 9y = x2.

(D - 3)2 = - 1 I
9 \ 3 /

°\-2 ,
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(vi) / - 6 / + *y = x2.

1
y = 2 \ D - 4 D - 2 /(D - 4)(D - 2)

I" 1 / D D 2 \ 1 / D D 2 VI
= - - I 1 + — + — + • • • ) + - I I + — + — + • • • • ) JC2

L 8 \ 4 16 / 4 \ 2 4 ) \

= -£(*2 + i* + i) + i(*2 + * + i)
= -^-(SJC2 4- 12* + 7).

•11. Verify by direct differentiation and substitution that the solutions
of example 5.5 do indeed satisfy the equations given.

The algebra-like use of the D operator can be extended to cases in-
volving more than one dependent variable, which, for a solution, must be
connected by more than one differential equation. Without solving the
problem in full detail we show in the following example the general method
[almost a complete parallel of elementary algebraic methods].

Example 5.6. Two electrical circuits, both of negligible resistance, each
consist of a self inductance L and a capacitance C = G'1. The mutual
inductance of the two circuits is M. Find the current in the first coil after
the transients have died awayf if a generator in the first coil produces
an e.m.f. E sin a>t.

If the charges on the two capacitances are qx and q2, then the two equa-
tions are

Lq\ 4- Mij2 + Gq± = E sin wt,
Mq\ + Lq2 + Gq2 = 0,

or, in terms of the D operator [here D stands for d/dt],

(i) (LD2 + G)q1 + MD2q2 = E sin wt,
(ii) MD2qx 4- (LD2 + G)q2 = 0.

Multiplying (i) by (LD2 + G) and (ii) by MD2 and subtracting

[(L2 - M2)D4 + 2LGD2 + G2]qx = (LD2 + G)£sin wt
= (-w2L + G)£sin tot.

(5.44)

t The actual resistance must be non-zero for this to happen.
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The complementary function gives the behaviour of the transients in
terms of the roots of

(L2 - M2)A4 + 2LGA2 + G2 = 0.

For the stated problem we need a particular integral of (5.44). Using
(5.38) this is immediate as

(G - co2L)E sin cot

* (I2 - M2)co* - ILGco2 + G2

with the required current as

co(G — co2L)E COS cot

(L2 - M2) o>4 - ILGco2 + G2

5.8 Variation of parameters

Having dealt at some length with the D operator techniques of finding
particular integrals, we now turn to a second somewhat artificial [but
successful] method of determining them. Again we will restrict our atten-
tion to second-order equations, but the generalization to higher orders
proceeds without difficulty.

It should also be noted that the method to be described is applicable
when the factors fx multiplying the derivatives y(i) are functions of x, and
not just constants. [In these circumstances D operator methods have to
be used with care, since D does not commute with such functions; but
see example 9 of section 5.12.]

The equation for which a particular integral is required is

L(y) = f2{x)y"{x) + Mx)/(x) + fo(x)y(x) = f(x). (5.23 a bis)

Let the CF be [following the notation of section 5.5]

y2(x) = au±(x) + bu2(x)9 (5.45)

implying that L(wx) = L(u2) = 0. With a and b as constants, this also
means that L(y2) = 0. However if we replace a and b by two functions
of xy say A(x) and B(x), then L(y2) will no longer be equal to zero, but
might with suitable choices of A and B be made equal to f(x) thus pro-
ducing, not a complementary function, but a particular integral.

The reasons why such a procedure does not simply lead to a further
second-order differential equation are two-fold. Firstly, repeated dif-
ferentiation of products such as A{x)u1(x) always produces terms in which
one of the factors is unchanged, and so the expression L(A{x)u1(x)) in-
cludes a term which contains A(x) only in the simple product form
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A{x)Hux{x)), and this term will be zero. Secondly, with two functions
A(x) and B(x) available and only one equation [(5.23 a)] to satisfy, an
additional convenient constraint may be placed upon them. In these
circumstances we will see that we can obtain, not a differential equation,
but two simultaneous algebraic equations [for A' and B']. We now carry
through the procedure which is known as the method of variation of
parameters.

Assume that

= A(x)Ul(x) + B{x)u2{x) (5.46)

is a particular integral of (5.23 a). Differentiating (and rearranging),

y[ = Au[ + Bu'2 + (A'Ui + B'u2). (5.47)

At this point we use the freedom to impose an extra constraint and re-
quire that the term in the brackets be zero.

A'ti! + B'u2 = 0. (5.48)

This removes the derivatives of A and B from y[ and results in (5.47)
taking the form

y[ = Au[ + Bu'2. (5.49)

A further differentiation yields

y\ = Aul + Bu"2 + A'u[ + B'u'2, (5.50)

and substitution into (5.23 a) from (5.46), (5.49) and (5.50) gives

AL{Ul) + BL(u2) + f2A'u[ + f2B'u'2 = f(x). (5.51)

As we have noted, L(ux) = L(u2) = 0, and so from (5.48) and (5.51) we
obtain two simultaneous equations for A' and B\ namely

A'u^ + B'u2 = 0, (5.48 bis)

A'u[ + B'u'2=f(x)/f2(x). (5.52)

Finally provided that uxu2 ^ u2u[ [u2 is not a simple multiple of wx],
these can be solved to give

A, u2f(x)
A = T7—; K a n d B =

/( )
For specific forms of u±, u2 and f(x), these may be integrated to yield

closed expressions for A(x) and B(x), but even if this is not possible,
(5.53) provides a formal solution, enabling the general solution of (5.23 a)
to be written

y(x) = aux(x) + bu2(x) + A^u^x) + B(x)u2(x). (5.54)
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Of course a and b must still be determined by boundary conditions. This
generalized approach is used later in section 7.5 in connection with Green's
functions.

Even though what we have just shown enables us to write down the
solution from (5.53) and (5.54), we will, for illustration, go through the
working again for a specific case in the following example.

Example 5.7. Solve y" + y = cosec x subject to y(0) = X77/^) = 0. The
complementary function is trivially

y2(x) = a cos x + b sin x.

Assume a particular integral

yi(x) == A(x) cos x + B(x) sin x.

If we require, as in (5.48), that

(i) A' cos x + B' sin x = 0,

then

y'x — — A sin x + B cos x.

Differentiating again

y\ = (-A + Bf) cos x — (A' + B) sin x.

Substitution in the original equation gives

A{ — cos x + cos x) + B{ — sin x -f sin x)

— A' sin x + B' cos x = cosec x,

or (ii) — A' sin x + B' cos x = cosec x.

Solving (i) and (ii) gives

A' = —sin x cosec x = — 1, i?' = cos x cosec x = cot x.

Hence a solution is

A(x) = —x, B(x) = In (sin x),

giving as the full solution of the original equation

y(x) = (a — x) cos x + (b + In (sin x)) sin x.
The given boundary conditions require both a and b to be zero| thus
making the final solution

y(x) = sin (x) In (sin x) — x cos x.

t The limit of \i In ft, as /x -> 0, is equal to 0.
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Although our attention is focussed on second-order equations, it is
worth remarking again that the method of variation of parameters can
be applied to higher-order differential equations, additional conditions
analogous to (5.48) being imposed on each derivative of the trial function
except that of highest order.

5.9 Partially-known complementary function

An alternative and, in principle, easier method of using the complementary
function to obtain a particular integral is described in this section. Like
the variation of parameters method it can be used when the f{ in

L(y) = f2y" + / i / + foy = f(x) (5.55)

are functions of x and not just constants. The method is easier in principle
since only one of the integrals in the CF need be known. It is clear that
in most cases the other has to be found sooner or later for a complete
solution, but, as we shall see, it effectively comes from a first-order and
not a second-order equation.

Suppose one solution y2(x) of the complementary function equation
L(y) = 0 is known and try as a solution of (5.55)

yi(x) = zy2(x), (5.56)

where z is also a function of x. We now rely on a similar property to the
first of the two discussed in connection with the variation of parameters
(section 5.8); namely that when y[ and y\ are computed and substituted
in (5.55) we obtain an equation of the form

•12. f2y2z" + (2f2y2 + Uy2y + zL(y2) = / (*) . (5.57)

Since L(y2) = 0, this is a second-order equation in z, but with z absent.
Thus it is in fact a linear first-order equation for z', which can be solved
for z' and then integrated to give z and hence the particular integral yx(x).

To illustrate the method let us re-solve the equation of example 5.7,
y" + y = cosec x. Suppose that only the part of the CF, y2 = cos x,
has been noticed (or chosen to be noticed). To try to obtain a particular
integral we use

y±(x) = zcos* ,

giving

y" + yi = z" c°s x — 2z' sin x = cosec x.

This is a linear first-order equation for z' with

•13. integrating factor = cos x,
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i.e. (z' cos2 x)' = cot x,

z cos2 JC = In (sin x) + c.

f* f*
z(x) = sec2 *i In (sin x±) dxx 4- c sec2 JCI dxx

= tan x In (sin x) — x + k + c tan x.

Therefore the PI is [as in example 5.7]

yi(x) = sin x In (sin x) — x cos x + k cos x 4- c sin x. (5.58)
It will be noticed that this includes both terms of the complete CF and
thus the labour of finding the second part has been done.

•14. Obtain the same solution (5.58), starting with y2(x) = sin x as the
partial CF.

5.10 General second-order equations

As mentioned before, the method of the previous section and the variation
of parameters can be applied to linear differential equations even when the
coefficients of the derivatives are functions of x. Examples using them
appear in the exercises of section 5.12.

A further class of equations for which the methods of the previous three
sections can be applied is the class of 'dimensionally-homogeneous'
equations,! typified [for a second-order equation] by

a2x
2y" + alXy + aoy = f(x). (5.59)

By making the substitution x = exp (t), the equation can be reduced to
one with constant coefficients. The general theory will not be worked
out here, but an illustrative example is provided by exercise 14 of section
5.12.

The useful application of this substitution is actually somewhat wider
than just equations of the form (5.59), and it usually results in a simplifica-
tion when made in any equation where the 'dimensions' of x and y
individually are the same in every term on the left-hand side. In this con-
text j ( n ) has dimension 1 in y and dimension — n in x and, for example,
2x2y'y has the same dimensions as xb{y")2. Equations involving expres-
sions in which the dimensions of x and y taken together are the same in
every term (e.g. x2 4- 3xy 4- y2yf) can be reduced to this amenable form
by the substitution y = zx9 z then having dimension 0.

t Equations of the form of (5.59) are called homogeneous without qualifica-
tion in mathematics, but we will reserve this term for equations which are
linear and in which each term contains y or one of its derivatives.
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For the general second-order equation (linear or not) the occurrence
of certain forms will permit the use of methods previously discussed,
in particular those for first-order equations. The two most obvious cases
are:

(i) If y is absent from the equation. Then a new variable z = y' can be
used and a first-order equation containing x, z and z' obtained. This is
solved for z and then y' = z solved for y.
(ii) If x is absent from the equation. Again use a new variable z = y'
and write y" = z' = (dz/dy) x (dy\dx) = z(dz/dy). This gives a first-
order equation in y, z and (dz/dy) which is processed as in (i).

5.11 Laplace transform methods

Before leaving the methods of solution of ordinary differential equations
which yield solutions in the form of explicit or tabulated functions or in
the form of an integral (quadrature), we must consider the method of
Laplace transforms. Our treatment will be superficial since the area is a
large one and has filled many books by itself. We will not concern our-
selves at all with existence and uniqueness questions, but assume that all
'plausible' assumptions and operations are in fact valid.

The philosophy of the method is that a change in the variables appear-
ing in a differential equation is made, with the object of removing from
the equation all the differential and integral signs which appear so that
the resulting equation is purely algebraic. This gain is not made without
some penalty however, since, even if the resulting algebraic equations are
soluble, the problem of transforming back to the original variables still
remains.

Let us be more specific. Suppose that we have a function f(x) defined
for all positive x, then its Laplace transform F(s) (or L{f)) is defined by

•r
Jo

Uf) = F(s) = exp (sx)f(x) dx, (5.60)
Jo

provided this integral exists [which it will do for a wide range of functions
f(x) provided s > 0]. We here assume s is real, but complex values have to
be considered in a more detailed study.

In this way (5.60) defines a linear transformation which converts from
the variable x to a new variable s. As the simplest example, take/(x) = 1,
then

- f" J oL(l) = F(s) = exp (-sx) dx = s'1, for s > 0. (5.61)
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Further simple examples are
/•oo

• 15. L(xn) =\ xne\p(-sx)dx = n\s-{n + 1 \ n = 0 , 1 , 2 , . . . ,
Jo

(5.62)

63)• 16. L(sin bx) = [ sin (foe) exp (-sx) dx = b(s2 + 62)"1 • (5.
Jo

Clearly the inversion of this transformation is not going to be an easy
operation to perform, since an explicit formula for f(x), given the form
of F(s), is not straightforwardly obtained from (5.60). However a fair
amount of progress can be made without having to find such an explicit
inverse, since we can prepare from (5.60) a 'dictionary' of Laplace trans-
forms of common functions, and, when faced with an inversion to carry
out, hope to find the given transform (together with its parent function)
in the listing.

Before proceeding further we should show that this procedure will in
fact do what is intended - namely transform derivatives and integrals to
algebraic functions.

Consider first differentiation. We have to investigate the Laplace trans-
form, L(/ ') , of the derivative off(x). Using the definition of L{f)

/•oo

L(f') = \ f'(x)exp(-sx)dx, (5.64)
Jo

we integrate by parts to obtain

L(f) = [exp (-«)/(*)]£ - f (-s)exp(-sx)f(x)dx
JO

= -/(0) + sL(f).

Thus it is possible to relate the transform of the derivative/' to that off,

L(f') = sL(f)-f(0). (5.65)

This could be repeated explicitly fo r / " , / " , . . .,/<n), or (5.65) can be used
repeatedly to give

L ( f ™ ) = s { s [ . . . ( s L ( f ) - f ( 0 ) ) - •••
_/<*-3> ( ( ) ) ] _y<n-2) ( 0 )} _ /<n-D(0)

n - 1

• 17. = snL(f) - 2 sn~'r-1/(r)(0). (5.66)
r = 0

This shows that the Laplace transform of any derivative of /can be writ-
ten in terms of L(f) together with the values of all lower derivatives
evaluated at x = 0.
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We have here assumed that / and its derivatives are continuous. If
they are not, additional terms appear on the right-hand side; these can
be found by breaking up the integral into ranges in which the integrand
is continuous and repeating the above procedure. We will not consider
such cases further except to note that if a discontinuity in / occurs at
x = x0 then (5.65) is modified to

L(f) = sL(f) - / ( 0 ) - [/(xo + ) - / (*o - ) l exp( - j* o ) ,
(5.67)

where f(xo + ) means the limit off(x) as x -> x0 from above and similarly
for/(jc0 —). It will be apparent that if f(x) has a discontinuity at x = 0
then/(0) is to be interpreted as/(O + ).

We turn now to integration; this is more straightforward. From the
definition

dxexp(-sx)\

- f (-s-1)cxp(-sx)f(x)dx.
Jo

The first term on the right vanishes at both limits to give

(5.68)

•18. Deduce (5.68) directly from (5.65).

Of these two results, we will in this chapter be particularly concerned
with that showing that differential coefficients can be replaced, in the
transformed description, by polynomials. It will be apparent that the
coefficients in these polynomials are closely connected with the boundary
values of the derivatives.

Before using Laplace transform techniques to solve ordinary differen-
tial equations (their use in partial differential equations appears in sec-
tion 9.11 of chapter 9), we must compile some standard 'dictionary'
entries so that we will be in a position to complete the final stage of the
operation - converting the solution back into the given variables. Three
have already been covered in (5.61)—(5.63). These and several other com-
mon cases are given in table 5.1. In the last column is given the value s0

for which s must satisfy s > s0 in order that the transform exists. (This is
not of importance for the present work so long as s0 is finite.)
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1
2
3
4
5
6
7
8
9

10
11
12
13

5.11 Laplace transform

5.1

fix)

1
xn

sin (bx)
cos(bx)
exp (ax)
xn exp (ax)
sinh (ax)
cosh (ax)
exp (ax) sin (6x)
exp (ax) cos (bx)
X1'2

X-1I2

U(x — x0) = 1, x > x0

= 0, x < x0

methods

« / )

/l!5~(

Z<52

( J -
n\(s
a(s2

^s2 -
b[(s-
(s-
i("S-
(ir/sy

n + l)

+ b2)'1

¥ b2)-1

a)'1

- a)~(n + 1)

- a2)"1

- a2)"1

- a)2 + b2]-1

a)[(s-a)2 + b2]-1

-3\l/2

L/2

s"1 exp ( — sxo)
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So

0
0
0
0
a
a
|a|
|a|
a
a
0
0
0

•19. Verify from the definition some of the entries in the table, say results
5, 6, 7, 10 and 13.

•20. Prove result 12 by using J^ exp (-12) At = in112 and putting t2 = xs.
Deduce result 11 by integrating by parts.

In carrying out these exercises and from the results in table 5.1, it will be
apparent that multiplying a function by exp (ax) has the effect on its
transform that s is replaced by s — a. [Compare results 1 and 5, or 2
and 6, or 3 and 9]. This is easily proved generally

L(exp (ax)f(x)) = f(x) exp (ax) exp ( - sx) dx
Jo

= f"/(jc)exp[-(j-e)jc]d*
Jo

= F(s - a\ if L(f(x)) = F(s). (5.69)

As it were, multiplying/(x) by exp (ax) moves the origin of s by an amount
a.

If we multiply the transform by exp ( — bs), b > 0, what does this cor-
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respond to in the original function ? We take the negative exponent since
0 < s < oo. From the definition (5.60)

exp (-fa)F(j) = f °° exp [s(x + b)]f(x) dx
Jo

exp(-jz)/(z - b)dz, (5.70)r
Jb

on putting x + b = z. Thus exp ( — bs)F(s) is the Laplace transform of a
function g(x) defined to be

g(x) = 0 for 0 < x < b,
= f(x- b) for x > b. (5.71)

In words, the function has been translated to 'later' x by an amount b.
The results (5.69) and (5.70 and 5.71) are generally known as the sub-

stitution and translation properties respectively of Laplace transforms.
We now turn to the solution of differential equations using these

methods. This will be treated by working through a number of examples
of various kinds, and, so that Laplace transform methods can be seen
in relation to other approaches, some of the same equations we have
already considered will be re-solved here.

Consider first the solution of (5.4)

/ + ;p = 0, (5.4 bis)

with the boundary conditions, say, y(0) = A, y'(0) = B. As on previous
occasions, although the solution is immediate, we work pedantically
through the steps of the method purely to illustrate them.

We first multiply the equation through by exp ( — sx) and integrate
with respect to x from 0 to oo

y\x) exp (-sx) dx + y(x) exp (-sx) dx = 0, (5.72 a)
Jo Jo

or symbolically,

L{y") + L(y) = L(0) = 0. (5.72 b)

If functions for which the Laplace transform is not known were to ap-
pear in the original equation, the next step would be to evaluate the
corresponding integral along the lines of (5.72 a). There is of course al-
ways one function which falls into this 'transform-unknown' class,
namely y(x) itself. Let us denote its transform by Y(s). It is an algebraic
equation for Y(s) which we must construct and solve in order to find the
unknown function y(x).
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For the present example both terms are in convenient forms, and so,
using (5.66) with n = 2 to deal with the first term, we have

[ 5 2 7 ( 5 ) - ^ 0 ) - / ( 0 ) ] + Y(s) = 0.

Substituting the boundary values for y(0) and y'(0) and rearranging we
have

1 + S2 1 + S2 1 + S2

Now if we consult table 5.1, results 3 and 4 [with b = 1] show that the
right-hand side is the Laplace transform of

y(x) = A cos x 4- B sin x,

which is therefore the required solution [with the boundary conditions
correctly included].

As a second illustration, consider [yet again] example 5.4 (i) (p. 128)

y" - 6/ + Sy = 16;c + 12.

This time we omit explicit intermediate steps and go, with the help of
(5.66) and results 1 and 2 of table 5.1, straight to the transformed equa-
tion

[s2Y - sy(0) - y'(0)] - 6[sY - y(0)] + 8 F = 16s"2 4- 12s'1 .

Rearranging,

x s2B 4- s2A(s - 6) + 16 + 12s
Y{s) = — — »

s\s2 - 6s + 8)
where y(0) and y'(0) have been written as A and B respectively. The right-
hand side can be arranged in partial fractions as

3 2 4 - 2A + B 10 - 4A + B

7 + ? + 2{s - 4) 2{s - 2)

Again using table 5.1 to transform back the right-hand side term by term,
this means that

y{x) = 3 + 2x + (2 - A + ±B) exp {Ax)

which is of course the same form as has been obtained previously [example
5.4 and •10].

We lastly illustrate the use of the transform to solve simultaneous
differential equations by basically re-solving another of our previous
examples, example 5.6, but with slightly changed conditions. Suppose
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there is no external e.m.f. impressed, but that initially the second capaci-
tance is given a charge CV0 with the first one uncharged, and that at time
t = 0, a switch in the second circuit is closed. Find the subsequent cur-
rent in the first circuit.

Subject to the initial conditions ^(O) = ^(0) = q2(0) = 0 and q2(0) =
CV0 = Vo/G we have to solve

Lq\ + Mq2 + Gq1 = 0,
Mq\ + Lq2 + Gq2 = 0. (5.73)

Here L is the self-inductance of the circuits and is not to be confused with
the symbolic Laplace transform operator. Writing the transform of qx(t)
as Qi(s), we have on taking the transform

(Ls2 + G)Q1 + Ms2Q2 = sMV0Q C = 1/G,

•21. Ms2Qx + (Ls2 + G)Q2 = sLV0C.

Eliminating Q2 and rewriting as an equation for Qx

w• 2 2 .
[(L 4- M)s2 4- G)[(L - M)s2 + G]

(L + M)s (L -
2G l(L + M)s2 4- G (L - M> 2 4- G]

Thus using table 5.1

qi(t) — ̂ K0C[cos (u>it) — COS(CD20]>

where w\(L 4- M) = G and «i(L - M) = G. (5.74)

This gives finally that

*i(0 = iVoC[<x)2 sin (o>20 — ^i sin (cujr)].

With these three examples we finish our very superficial treatment of
Laplace transforms for this chapter. As indicated earlier, the general
subject is a large one and the interested reader can only be referred to
one of the many books devoted to the subject for other aspects, e.g. the
properties of the transform under differentiation and integration with
respect to s, and all existence and uniqueness results. We will briefly
return to the technique in connection with partial differential equations
in chapter 9, and an outline of the method for finding an untabulated
inverse by contour integration of a complex variable is given in chapter
16.
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5.12 Examples for solution

1. Dimensionally-homogeneous equations. Suppose P(x, y)/Q(x, y) of
(5.5) can be written as —f(y/x). Then by putting y = zx show that
the general solution is

C dz
In x = h c.

J f(z) - z

Solve (a) x2yf - (y + $x)2 = 0; (b) yf = (y/x) + sin (y/x).

2. Find the general solution of / + 2(x + l)~1y = x + 1.

3. Obtain a parametric solution of the equation y'2 — yf — exp (JC)
with y = 0 when x = 0.

4. Using the auxiliary equation find the general solutions of the
following:

(a) ym - 12/ + 16y = I2x - 8;
(b) y"" — 6ym + 1 1 / — 6 / + 10>> = 1 [i is one root of the equa-
tion].

5. Use the D operator to solve / — / — 2y = 10 cos x with
y(0) = /(0) = 0.

6. Solve / + 2 / + 3>> = exp ( — x) cos (\/2 *). Use D operator
methods and consider the real part of exp [(— 1 + \/2 i)*].

7. Continue the analysis of example 5.6 (p. 134). Show that if the
resistance of the circuits is truly zero, then the transients do not die
away but oscillate with a form

A exp (ico + i) + B exp (iw _ /),

where w2
± = G(L ± M)"1 . [See line (5.74).] Find also the ultimate

value of the current in the second circuit if the resistance is small
but finite.

8. A particle of charge e and mass m moves in magnetic and electric
fields. The electric field E is parallel to the ;t-axis and the magnetic
field B to the z-axis. Its equation of motion is

mi = ex A B + eE.

Find the two simultaneous equations describing the motion in the
jry-plane and solve them using D operator methods (to obtain un-
coupled equations) for the case when the particle starts from rest
at the origin.

9. Factorization of the operator. Suppose we need to solve xy" —
(3 + x)yf + 3y = f(x). Using D operator notation this is

(xT>2 - (3 + *)D + 3)y = / ,
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in which the operator can be written as the product of two factors

- 3)(D - \)y = / .

[It should be noticed that this is not the same as (D — 1) x
(xD — 3)y = /since D and x do not commute.] If such an arrange-
ment is possible then the problem can be reduced to two consecutive
first-order equations; solving first

(xD - 3)2 = / ,

and then using z from this to solve

(D - \)y = z.

(a) If f(x) = JC4 exp (x), use this method to find the general solu-
tion.
(b) Apply the method to, say, equation (i) of example 5.4 (page 128)
to show that the solution for constant coefficients is as found by
more direct methods.

10. Use the method of variation of parameters to solve y" — 6y' +
Sy = exp (x) cos (x).

11. Solve x2y" + 2xyf - n(n + \)y = xm, (a) by trial function,
(b) by variation of parameters. Assume m •£ n and m ^ —{n + 1).

12. Using the methods of section 5.9 solve:

(i) x2y" + (x2 tan x — 2x)y' + (2 — x tan x)y = x3 sin 2x,
(ii) (1 - x2)y" + 2(x2 + x - 1 ) / - (x2 + 2x - \)y = 0, [Try
y = exp (*).],
(iii) y" - (1 - x2)yf - x2y = 0.

13. Solve: (i) / ' + 2x(/)2 = 0; (ii) yy" + ( / ) 2 = yy\

14. By putting x = exp (/) reduce x2y" + 2xy' + \y — x~112 with
y(\) = y(e) = 0, to a simpler equation and hence solve it.

15. Solve the non-linear equation

x3y" — (x2 + xy)yf + (y2 + xy) = 0.

16. Use Laplace transforms to solve example 5.4 (iii) (page 128)
with the conditions y(0) = 3, /(0) = 9.

17. An electrical circuit consists of an uncharged capacitance G'1,
an inductance L and a resistance R, all in series with,a generator of
e.m.f. V sin tot. A switch in the circuit is closed at time t = 0. If
the charge on the condenser is q(t), identify the transient and per-
sistent terms in Q(s), the Laplace transform of q(t).

(a) Show that the transients die away with a time constant 2L/R.
(b) Show that the character of the transient response depends on
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whether AGL is greater than, less than, or equal to R2. What general
form is it in each case?
(c) Show that in the persistent response, the current is a phase angle
cf> ahead of the applied voltage where tan </> = (G — Lto2)/Rw.

18. Two unstable isotopes A and B and a stable one C have the
following decay rates per atom present: A -> B, 3s" 1 ; A -> C,
1 s"1; B -» C, 2s"1 . Initially a quantity x0 of A is present and none
of the other two types. Find the amount of C present at any sub-
sequent time. [Use Laplace transforms.]

19. The quantities x(t), y(t) satisfy the simultaneous equations

x + 2nx + n2x = 0,
y + 2ny + n2y = fix,

where x(0) = y(0) = j(O) = 0, and x(0) = A. Show that

y(t) = ifjL\t2exp(-nt)(l - }nt).



6
Series solutions of differential
equations

In the preceding chapter the solution of ordinary differential equations in
terms of standard functions or numerical integrals was discussed, and
methods for obtaining such solutions explained and illustrated. The pre-
sent chapter is concerned with a further method of obtaining solutions of
ordinary differential equations, but this time in the form of a convergent
series which can be evaluated numerically [and if sufficiently commonly
occurring, named and tabulated]. As previously, we will be principally
concerned with second-order linear equations.

There is no distinct borderline between this and the previous chapter;
for consider the equation already solved many times in that chapter

/ ' + y = 0. (6.1)

The solution in terms of standard functions is of course

y(x) = a cos x + b sin x, (6.2)

but an equally valid solution can be obtained as a series. Exactly as in
•1 of chapter 5 we could try a solution

y(x) = J anxn (6.3)
o

and arrive at the conclusion that two of the an are arbitrary [a0 and ax]
and that the others are given in terms of them by

ao = {-\Y(2n)\a2n,

ai = (-m2n+iy.a2n + 1. (6.4)

Hence the solution is

x2 x* \ ( x3 x5

(6.5)

It hardly needs pointing out that the series in the brackets are exactly
those known as cos x and sin x and that the solution is precisely that
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of (6.2); it is simply that the cosine and sine functions are so familiar that
they have a special name which is adequate to identify the correspond-
ing series without further explanation.

It will also be true of most of our examples that they have a name
(although their properties will be slightly less well known), but the methods
we will develop can be applied to a variety of equations, both named and
un-named.

Our principal 'demonstration models' will be Legendre's and Bessel's
equations and since these two equations and their solutions play such a
large role in the analysis of physics and engineering problems, we will
also, at the same time, consider in detail some of their properties not
strictly connected with their series representation. These properties will
be used in later chapters (particularly in chapter 10).

In the course of establishing the properties of the Legendre and Bessel
functions, the idea of generating functions will be introduced and illus-
trated as a convenient and compact way of representing and manipulating
a series of parameter-dependent functions.

6.1 Ordinary and singular points

We take as the general form of second-order linear equation

/ + P ( x ) / + Q(x)y = 0. (6.6)

[The general equation (5.23 b) of the previous chapter has been merely
divided through by f2(x).] Our reason for making the coefficient of y"
unity is that with this form we can say in a fairly general way when a
solution in the form of a series is possible.

Expressed in this form the two model equations are

Legendre's equation,

2* , . W
- x2 I - x2

Bessel's equation,

(6-7)

In normal usage the x of Legendre's equation is the cosine of the polar
angle in spherical polar coordinates and thus —1 ^ x ^ 1. In Bessel's
equation, x is usually a multiple of a radial distance and therefore ranges
from 0 to oo.

Suppose now that we wish to find solutions of (6.6) expressed as power
series in (x — x0) for any x0 in a certain domain with the possible excep-
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tion of a (finite) number of singular points. We are then led to consider
whether both P(x) and Q(x) can themselves be expressed as series of
(ascending) non-negative integer powers of x — x0 (i.e. are analytic).
If they can, x0 is called an ordinary point of the equation. If either or both
cannot be so expressed, then x0 is a singular point. By the expression
non-negative integer powers, we allow the possibility of constant terms
in the expansions of P and Q.

Even though an equation may be singular at the point x0, it does not
follow that all its integrals are. [An 'integral' of a differential equation
is the name often given to a function which is a solution of the equation.]
In fact the necessary and sufficient conditionf that a non-singular (finite)
integral of (6.6) exists at the point x = x0 is that (x — xo)P(x) and
(x — xo)

2Q(x) can be expressed as non-negative power series in (x — x0).
[In complex variable language (x — xo)P(x) and (x — xo)

2Q(x) are
analytic at x = x0.]

Points at which the equation is singular but a non-singular solution
exists are called regular singular points of the equation. If both the equa-
tion and all its integrals are singular, x0 is known as an irregular singular
point.

In our subsequent discussion we will consider only ordinary and regular
singular points. In addition we will take x0, the point about which the
expansion is to be made, as the origin, i.e. x0 = 0. If this is not already
the case, the substitution X = x — x0 will make it so. With these limita-
tions included we can multiply our original equation through by x2 so
that it becomes

x2y" + xp(x)y* + q{x)y = 0, (6.9)

where p(x) and q(x) are analytic, i.e.

p(x) = f Pix\ q(x) = f qjXK (6.10)
{ = 0 ; = 0

These last two expansions are valid for 0 < |JC| < R for some non-zero
R.

It will be readily noted that if the origin is an ordinary point of the
original equation (6.6), then p0 = q0 = q1 = 0.

• 1 . Verify that regular singular points occur at x = 0 for Bessel's equa-
tion and at x = ± 1 for Legendre's equation.

t See, for example, Jeffreys and Jeffreys, Methods of mathematical physics,
3rd ed. (Cambridge University Press, 1966) p. 479.



6.2 General method and indicial equation 153

6.2 General method and indicial equation

We are seeking a solution of (6.9) of the form
00

y(x) = x° 2 a n x n = x ° ( a o + a 1 x + ••• + a n x n + • • • ) , ( 6 . 1 1 )
0

in which a0 ^ 0 and the value of a has yet to be determined. We expect
this series to be convergent for |JC| < some R' except possibly (depending
on the value of a) at x = 0.

Differentiation of (6.11) and substitution into (6.9) leads to the follow-
ing equation

2(a + n)(a + n - l)anx° + n + £ (" + « K / V ^ n + m

n n, ro

+ 2a^xa + n+m = 0, (6.12)
n,m

where all summations are from 0 to oo.
Each power of x must separately have its coefficient on the left-hand

side equal to zero. The lowest power present is xa and so

[a(a - 1) + ap0 + qo]ao = 0. (6.13)

But a0 ^ 0 and so [defining at the same time the function 0(<r)]

0(<r) = o{o - 1) + ap0 + q0 = 0. (6.14)

This equation is called the indicial equation. It is a quadratic in a and in
general has two roots, the nature of which determines the forms of pos-
sible series solutions, as will be seen in the next sections.

•2. Show that for an equation for which the origin is an ordinary point,
the indicial equation has roots 0 and 1.

Equating to zero the coefficients of higher powers of x, we get for
x°+n(n > 1),

n - l n - 1

6(G + n)an + 2 (* + r)pn-rar + 2 ?n-^r = °' ( 6 1 5 )

r=0 r=0

where, as defined in (6.14),

0(c7 + n) = (or + n)(cr + n - 1) + (o- + ri)p0 + q0. (6.16)

Thus (6.15) gives a recurrence relation for the an, expressing each an as a
function of previous ar (0 ^ r < n — 1) and the coefficients of the
original equation.
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If it were not for special circumstances, the procedure from this point
on would be straightforward, namely:

(i) Solve the indicial equation to obtain two roots, ax and a2.
(ii) Select one of the roots, say o^, and also choose a0 arbitrarily,
(iii) Compute al9 a 2 , . . . successively from (6.15) to generate one series

1 Zo &ix •
(iv) Repeat the last two steps using the other root a2.
(v) Take as the general solution

y(x) = xai(a0 4- a±x 4- a2x
2 + • • •)

+ x°*(b0 + bxx + b2x
2 + • • •)• (6.17)

As an example carry through the following exercise.

• 3 . Consider an expansion about x = 0 of the solution of

•*2y ~~ i*y' + (1 + x)y = 0.

(i) Show the roots of the indicial equation are 2, \.
(ii) Find the recurrence relation corresponding to a = 2.
(iii) Write down the general term of the series.
(iv) Similarly find the general term in the series corresponding to a — %
and hence show that the general solution is

y(x) = 3aox* f { }

V«!(2« + 3)!!

+ bo\x
112 -

[The double factorial symbol {In + 1)!! = 1-3-5- . . . -In + 1, although
not included in the list of internationally recognized symbols, is a con-
venient notation for the more cumbersome equivalent in terms of ordi-
nary factorials, (2n + l)!/2n«!. However, it must not be mistaken for the
factorial of a factorial.]
(v) Show that the series converges for all finite x.

The difficulties with the described procedure, apart from its cumber-
someness if p(x) and q(x) contain more than one or two terms, occur when
either the roots of the indicial equation are not distinct or 0(a + n) = 0
for some positive integer n(^ 0). The latter case arises when a± and <J2

differ by an integer. [Since 6{a) = 0 is a quadratic and has only two roots
and say 6{a1) = 0, then 6{a1 + n) = 0 implies that ax + n = <r2.] These
special (but common) cases are considered in the following sections.
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6.3 Equal roots of the indicial equation

We have just noted that if the indicial equation has only one distinct
root cr1 then the procedure of the previous section, whilst giving one valid
series solution will not yield a second. The method of obtaining the
second solution seems slightly ad hoc but proceeds as follows.

The calculation of a first series x°i 2 0n*n goes exactly as in the pre-
vious section, but rather than putting o- = ax from the beginning of the
calculation of the an, it is kept as a variable parameter. This means that
the an computed are functions of a and that the computed solution is
now a function of or and x.

y{<j,x) = x°2an(o)x\ (6.18)

If we put a = ax in this we immediately obtain the first series, but for the
moment we leave it as a parameter.

For brevity let us denote the differential operator on the left-hand side
of (6.9) by L, i.e.

dx2 dx

and examine the effect of L on the y of (6.18).
Along the lines of the argument in section 6.2 we obtain

= a0x°d(o) + 2
71 = 1

(6-20)

The factors an(a) for n ^ 1 have been written explicitly as functions of a
because they are calculated specifically to make each of the terms in the
summation vanish individually for any given value of a, and therefore
depend upon it.

Since we are considering the case of equal roots of the indicial equation,
0(cr) has the form

^ ) = (a-Or1)2. (6.21)

We therefore have the situation that the first term of L[y(<j, x)] varies
as (or — oi)2 as a varies near a± [actually for all a] and equals zero at
(7 = 0-!, whilst the second term of L[y(a, x)] is always zero whatever
value a has [because of the way the an are calculated for n ^ 1]. Thus,
not only do both terms vanish at a = ax, but so too does their derivative
with respect to a, i.e.

4-myi°,x))] = 0 at <, = *!. (6.22)
da



156 Series solutions of differential equations

But djdo and L are operators which differentiate with respect to different
variables [a and x respectively] and so we can reverse their order, thus

L\—(a9 x)\ = 0 at a = ux.
\da I

(6.23)

But L(z) = 0 is exactly the condition that z is a solution of the original
equation (6.9) and so we have found that for the equal roots case
dy(o, x)/d<j evaluated at o = ox, is a second solution of that equation
[the first being y(a1, x)].

If we carry out the differentiation explicitly, treating y as a product,
we obtain

By d(xa) I

do do 1/

- = ^ x " • (6.24)

It will be seen from this that the general form of the second solution for
the repeated-root case is always 'the first solution multiplied by In x
plus an additional series obtained from the first solution by differentiation
with respect to the root at the value of the repeated root'.

We illustrate this with a worked example - Bessel's equation for
m = 0.

Example 6.1. Find series solutions of the equation

y" -h x~1yt + y = 0.

We first note that x = 0 is a regular singular point of the equation and
if we write it as

x2y" 4- xyf 4- x2y = 0,

then p0 = q2 = 1 and all other pt and q{ are zero. The indicial equation
is thus

6(o) = o(o - 1) 4- o = o2 = 0,

with repeated root o = 0.
First the series for a general o is calculated, taking aQ as arbitrary.

Applying (6.15), and recalling that q2 = 1 is the only relevant non-zero
quantity we have that

(a + nf
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with ax = 0. Thus
( x2

 JC4

via, x) = aox
a < 1 1 h • • •

y } \ (a + 2)2 (a + 2 ) > + 4)2

( 6 ' 2 5 )

We can now obtain both series. First putting o- = 0 in (6.25) yields
(if we choose a0 = 1)

the zeroth-order Bessel function.
The second series solution is obtained by differentiating (6.25) with

respect to a at a = 0;

^ = In x J0(x) + f *nx2\
da ^

where
d

da a=0 da {[(a + 2)(a + 4 ) . . . ( a + 2«)]2

1
• 4. = - 2 a n ( a ) |

22n(«!)2 ^ i

Thus the second series solution is

. (6-27)

and the general solution any linear combination of (6.26) and (6.27).

6.4 Roots differing by an integer

The second reason why the straightforward method of section 6.2 may
fail to produce two series solutions for the second-order equation is that
the two roots of the indicial equation may differ by an integer. Clearly
no problem arises for the series determined by the larger of the roots a1

but it is easily seen that if a1 = a2 -f N where N is an integer, then the
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formula (6.15) for finding the an runs into trouble when calculating the
series for a = <r2 at the stage when n = N. At this point 6(0 + n) =
6{a2 + N) = 0(GX)9 and this necessarily equals zero.

Two cases now arise - either the summation terms in (6.15) add up to
zero or they don't. If they do, i.e.

N-l

2 [("2 + r)pN-r + gN-r]ar = 0, (6.28)
r = 0

then (6.15) is automatically satisfied for any value of aN which therefore
becomes arbitrary and can be chosen at will. It is best (but not essential)
to choose it equal to zero, since to do otherwise merely adds in a multiple
of the o"! solution. The rest of the computation of the an then proceeds
normally.

The more difficult case is when (6.28) is not satisfied and then aN is
formally required to be infinite. We can get around this difficulty by a
device similar to that of the preceding sdction. In the present case the
indicial equation has the form

0(<T) = (o- - GX)(a - GX + N). (6.29)

Thus if in the series solution y(cr, x) corresponding to a general value of
a, we replace the constant a0 by k(a — a2) - where now we require that
not a09 but k, does not vanish - the extra factor will ensure that the new
form of (6.28) is satisfied at o- = a2.

Denoting the new function by ^(o-, x), just as in (6.20)-(6.23) we will
find that

Lly^a, x)] = k(cr — cr1)(a — cr2)
2Xa, (6.30)

showing that both y1(o2, x) and dy1(a2, X)/3G are solutions of L(y) = 0,
i.e. equation (6.9).

These series are in addition to the solution already found in which
a = ax. However, only two of the three solutions are independent, since
the series obtained from Ji(o-2,x) always has just enough of its early
coefficients vanishing for it to be in fact only a simple multiple of X^i* x);
this is shown in the next paragraph. Thus the two independent series which
go to make up the general solution are dyi(<x2, X)/3G and either y(ax, x)
or J!(CT2,X).

The quoted result in the previous paragraph is shown as follows.!
We first need to show that the coefficients an + N((r2) satisfy the same defin-
ing relationships as an(vi) and hence that they are related by a common
factor for all n. [As it were, the coefficients have all been shifted by N

t This and the next paragraph could be omitted on a first reading.
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between the two series.] This is easily seen since from (6.15), the an + N(d2)
satisfy

n + N - 1

2 [0*2 + r)Pn + N-r + Qn + N-r] ar(o2)

an + N(°2) = - — M ^ ^ _,. (6.31)
6(o2 + n + TV)

Now if we write r = N + 5 and a2 = a1 — N where appropriate, this
reads

n - l
2 [(<*! + s)/>n-. +

(6.32)

But (6.32) is exactly the set of equations satisfied by 0n(ori), thus showing
that apart from a possible common multiplier [because of the arbitrari-
ness of one coefficient in each series] the coefficients of xa*xn + N in the one
series and xa^xn in the other are identical. But of course o-2 + n + N =
o1 + n and this shows that the series are essentially the same for all
powers of x greater than o^.

Further, with the additional factor (a — a2) in the coefficients of the
CT2 series, all the early values of an(a) will vanish for that series at o- = u2

until an n is reached such that 6(a + n) in the denominator contains a
factor (o- + n — o )̂ which also vanishes at the same value of a. This, of
course, occurs when n = N and so the first non-vanishing coefficient in
this series is aN, making <J2 + N the leading power of x, i.e. the same as
in the o1 series. This and the previous paragraph together prove the re-
sult previously quoted.

Example 6.2. Solve BessePs equation (a) when m = i, and (b) when
m=\.

The equation is as before

x2y" + xy' + (x2 - m2)y = 0. (6.33)

The indicial equation is 6(6) = a(a — 1) + o- — m2 = 0 and yields

or = ±m,

and hence for both cases the two roots differ by an integer.

(a) Whenm = \\
With only p0, q0 and q2 non-zero the recurrence relation is simply
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For O-! = \ and arbitrary a0 this leads easily to

a2n + i = 0 ,

fl2n = ( 2 ^ n y r
and a series solution

• 6. y(x) = a0x
1'2 f klll^l = aox-^smx. (6.34)

n-f0 (2AZ + 1)!

For cr2 = — \ we again take an arbitrary a0 and applying (6.15) require
that

@(~i •+- l)^i = (iPi ~ ^i)^o-

The fact that 0(^) = 0 does not cause difficulty here since, as it happens,
both /?! and qx are zero; so ax is arbitrary and we take the simplest choice,
ax = 0. Proceeding as before, we obtain the second series solution as

" ^ *
) n J C 2 n

• 7. y(x) = a0x~112 ^ v = a0x~112 cos x. (6.35)
n = 0 \^I'v *

If a0 is chosen as (2/T?)1/2 in (6.34) and (6.35) the resulting functions are
denoted by Jn2(x) and J-u2(x) respectively, and the general solution of
(6.33) for m = \ is

y(x) = aJ1/2(x) 4- bJ.ll2(x).

(b) When m = 1:
The two roots here are a = ± 1. The larger root di = 1 will not give

trouble and can be shown to yield

oo / 1\n /jr\2n

• 8. y(x) = aox Y - ) ^TT ( ^ ) " (6-36)
n4-0 n!(n -h 1)1 \ 2 /

However for a2 = — 1 we have as the recurrence relation

°n =
 n(n

n-\)
and since a0 is deliberately chosen non-zero, this implies an infinite a2.
We must therefore find the second solution by the method developed at
the beginning of this section. The first job is to calculate y(a, x) for an
arbitrary a. The recurrence relation is

°n = (a + nf - f
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and thus a2n + i = 0, whilst

* 1

r = i (a + 2r)2 - 1

The solution y(a, x) is therefore given by

From this we must construct y^o, x)

= k{a - <j2)y(o, x)/a0

= kxa

• (-l)n;c2

n = i [(a + 3)(or + 5) . . . (a + 2 « - l)]2(a ^

and its derivative dji(cr, x)/do-

= In JC ji(a, x) + kx°

, ^ (-l)n*a n /(a,i!)

(6.37)

BiTi [(a + 3)(a + 5).. .(ex + In - l)]2(cr + 2« + 1

(6.39)

where

•9. /(a, n) = - - j / . 9 • n ' (64°)
cr + zn -h 1 s = ! (CT + 2s + 1)

These expressions are long, but evaluation of them is straightforward.
It only remains to put a = - 1 in (6.38), (6.39) and (6.40) to obtain two
series solutions of (6.33) with m = 1. The first few terms of the second
[and independent] series solution are

f x2 x4

+ kx I " T ^ " " ^ + 2 M ^ " ^
JC6

•10. Put a = — 1 in (6.38) and evaluate the first few terms showing that
it gives as a solution
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Evaluate the corresponding terms of (6.36) in which a = 1 and verify
that the two series are related by a constant multiplier. [From the way it
was obtained, the factor enclosed in the square brackets in the denominator
of (6.38) takes the value 1, not 0, when n = 1 and a = — 1.]

•11. Find series solutions of the equation y" — 2xyf — 2y = 0. Identify
one of the series as y = exp (x2) and verify that this is a solution by
direct substitution.

6.5 Convergence of series

Although we have discussed almost exclusively the solutions of Bessel's
equation for various values of the parameter m2, we have during the course
of the discussion demonstrated each of the cases which can arise in the
determination of two independent series solutions. Other equations for
solution in ranges containing only ordinary and regular singular points
can be treated by parallel methods. Some examples are provided in the
exercises at the end of the chapter.

We have not mentioned, in any general sense, the range of x for which
the solutions are valid. As indicated in connection with (6.11) we expect
convergence for \x\ < some R' (except possibly at x = 0). Clearly we
cannot expect the solution to be valid for any \x\ larger than that for
which the representation (6.10) of p(x) and q(x) is valid, so Rf < R. It
can be shown as a general result that R' = R, so that (6.10) and the solu-
tions have the same domain of convergence. Clearly, if, as is nearly always
the case for any tractable recurrence relation, p and q are finite poly-
nomials, then R = co and the solution converges for all x.

•12. Verify that all solutions of examples 6.1 and 6.2 converge for all x,
except in some cases at x — 0.

6.6 Finite polynomials

As has been seen, the evaluation of successive terms of a series solution
to a differential equation is carried out by means of a recurrence relation.
The form of the relation for an depends upon «, the previous values of
aT (r < n), and the parameters of the equation. It may happen as a result
of this that for some value of n = N + 1 the computed value aN + 1 is
zero, and [particularly if only one or two p{ and q{ are non-zero] that all
higher ar (r ^ N + 1) also vanish. If so, we are then left with a finite
polynomial of degree N as a solution of the original equation

N

y{x) = 2 anxn, aN*0. (6.41)
0
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In many applications of theoretical physics (particularly in quantum
mechanics) the termination of a potentially infinite series after a finite
number of terms is of crucial importance in establishing physically accept-
able descriptions and properties of systems. The condition that such a
termination occurs is therefore of considerable significance.

For the discussion of finite polynomials, Legendre's equation

2x 1(1 + 1)
/ - j / + j y = 0, (6.7 bis)

1 — x2 1 — x2

will be our 'demonstration model'. Writing it in the standard form we
have

2x2 1(1 + \)x2

x2y" - xy' + }— y = 0, (6.42)
1 — x2 1 — x2

in which, for an expansion about the origin,

p(x) = - 2 ( x 2 + x* + xG + • • • ) ,
q(x) = /(/ + X)(x2 + x4 + x6 + • • •)• (6.43)

Recurrence relation (6.15) can now be used repetitively to find the con-
ditions under which aN vanishes for each N and the two values <J = 0,
cr = 1. However, as is almost always the case when p(x) and q(x) contain
more than one or two terms, the general condition for a general N is
complicated to deduce.

•13. Show by explicit use of (6.15) that all a2n + i = 0 and

(i) for a = 0, a2 = 0 if / = 0 or - 1 , a4 = 0 if / = 2 or - 3 ;
(ii) for a = 1, a2 = 0 if / = 1 or - 2 , a4 = 0 if / = 3 or - 4 .

A simpler method of obtaining finite polynomial solutions is to
assume a solution of form (6.41) exists for some N and then substitute it
in (6.7 bis) rearranged as

(1 - x2)/ - 2xyf + /(/ + l)y = 0. (6.44)

To avoid any confusion with our previous use of an we will take (6.41)
as

N

y(x) = ^ bnx
n, bN / 0. (6.41 bis)

0

This gives

N

2 [(1 - x2)n(n - l)bnx
n~2 - 2xnbnxn-x 4- / ( / + l )6 n* n ] = 0 .

n = 0 (6.45)
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Instead of starting with the lowest power of x, we this time start with
the highest; such a one now exists because of our assumed form of solu-
tion. Thus the coefficients of xN yield

[-N(N - 1) - 2N + /(/ + l)]bN = 0,
i.e. (/ - N)(l + N + l)bN = 0. (6.46)

Since bN =£ 0 we must therefore have either I = N or I = —(N+ 1) as a
condition for obtaining a finite polynomial solution.f With either choice
/(/ + 1) = N(N + 1).

Moving to the more general coefficient of xm, we have that

(m + 2)(m + l)6m + 2 - m(m - \)bm - 2mbm + 1(1 + l)bm = 0,

which can be rearranged as the recurrence relationship

/(/ + X) - m(m
(m + \)(m + 2) L

bn. (6.47)

Since bN + 1 = 0 this immediately shows that £#_! = 6JV_3 = • • • = 0,
the final equation being b0 = 0 if N is odd and ^ = 0 if N is even.

Thus to summarize: A polynomial solution of degree N can be found
for Legendre's equation provided that I = Nor —(N + 1) with the proper-
ties:

(i) All terms in the polynomial have the same oddness or evenness in x
(parity) as xN = xl has.
(ii) The coefficients of the powers present in the polynomial are related
by (6.47), one coefficient being arbitrary.

6.7 Legendre polynomials

Apart from the arbitrary constant multiplier, the polynomials developed
in the preceding section are known as Legendre polynomials of degree /
and denoted by Pi(x). For most physical purposes —1 ^ x ^ 1, since x
is the cosine of a polar angle, but some applications involve |JC| > 1
or x complex. In addition the second solution of (6.44) [which is not
analytic at x = ± 1] is sometimes relevant.

Our purpose in the remainder of this section will be to study in some
detail the particular properties of the finite polynomials Pt(x).

t A result of great importance in the quantum mechanical theory of angular
momentum.
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It is conventional to normalize Pi(x) (that is to choose the value of the
constant multiplier) so that

Pi(l)= 1, (6.48)

and thus, as a consequence of our previous observations,

Pl(-l) = (-iy. (6.49)

We begin by explicitly constructing the first few Legendre polynomials.

(i) / = 0. Only a constant term is present, which must therefore be unity,

P0(x) = 1. (6.50)

(ii) / = 1. Z>! T* 0, and thus from (6.47), b0 = 0. Together with the normal-
ization condition (6.48) this determines that

P^x) = x. (6.51)

(iii) / = 2. b2 # 0. From (6.47), bt = 0 and

= , [ 2 ( 2 + 1 ) -0(0 +1)1
L (0 + l)(0 + 2) J(0 + l)(0 + 2)

Requiring that P2(l) = 1 establishes b0 as — \, to give

- 1). (6.52)

•14. (a) Show that P3(x) = i(5x3 - 3x), P4(x) = l(35x4 - 30JC2 + 3).
(b) Verify (6.49) for / = 0, 1 , . . . , 4.
(c) Sketch as a function of x the first few Pt(x) for (say) / = 0 to 3.

Mutual orthogonality of Legendre polynomials. The first additional property
of the Pt(x) that will be established is their mutual orthogonality, i.e. that

| PtWPjcix) dx = 0 if / * k. (6.53)

This result will be established on more general grounds in chapter 7,
but we will prove it here specifically, as well.

First write the defining equation (6.44) in the form

[(1 - X2)PIY + /(/ + l)Pi = 0, (6.54)

where P[ stands for dPi(x)/dx. Next multiply this through by Pk and
integrate from x = — 1 to x = 1,

Pfc/(/+ l ) ^ d x = 0.
-i
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Integrating the first term by parts and noting that the boundary contribu-
tion vanishes at both limits because of the (1 — x2) factor, we obtain

f.Pk(l - x2)P{ dx + Pkl(l + !)/>< dx = 0.

Now if we reverse the roles of / and k, and start again at the stage (6.54)
with the defining equation for Pk(x) we obtain

P,'(l - x2)P'k dx + I Pxk{k + \)Pk dx = 0.

Subtracting the last two equations, we conclude that

[*(* + 1) - /(/ + 1)] f1 PkPidx= 0,

and therefore since k 7̂  / we must have the result (6.53).
As a particular case we note that if we put k = 0,

I1

Pl(x)dx = 0 for / / 0. (6.55)

• 15. Verify by inspection of the sketches of •14(c), that they are not
inconsistent with this orthogonality result.

Rodrigue s formula. As an aid to establishing further properties of the
Legendre polynomials we next develop Rodrigue's representation of the
polynomials. This is

Pl{x) = ¥F.^ix2-iy- (6-56)

To prove this representation we denote (x2 — I)1 by z, then z' =
2Ix(x2 - I ) ' - 1 and

z'(x2 - 1) - llxz = 0. (6.57)

If we differentiate (6.57) / + 1 times using Leibniz' theorem

- 2/[xza + 1) + ( / + l)z(0] = 0,

(x2 - l)za + 2) -f 2xzil + 1) - 1(1 + l)za) = 0. (6.58)

Changing the sign all through (6.58) and comparing with (6.44) we see
that z(0 satisfies the same equation as Pt(x). Thus

, (6.59)
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and to establish ft we note that the only term in the expression for the
/th derivative of (x2 — I)1 which does not contain a factor (x2 — 1) and
therefore does not vanish at x = 1, is (2x)ll\(x2 — 1)°. Putting x = 1
in (6.59) therefore shows that ft must be 27!, thus completing the proof
of (6.56).

As an immediate use of Rodrigue's formula let us show

It = P />,(*)/>,(*) dx = ——-. (6.60)
J_i 2/ + 1

The result is trivially obvious for / = 0 and so assume / ^ 1, then by
Rodrigue's formula

22<(/!)2

Repeated integration by parts, with all boundary terms vanishing, reduces
this to

If we write

= r (i -xjdx,

then integration by parts gives the recurrence relation

•17. (21+ l)Jt = 2 / / , . ! ,

and

2/ 2 / - 2 2 _ 2</, 27! 2
1 2 /+ 12/ l " 3 ° 2 / 2

2 /+ 1 2 / - l 3 ° (2/+ 1)! (2/+ 1)!
(6.62)

Finally putting (6.62) into (6.61) establishes (6.60).

6.8 Generating functions

A useful device for manipulating and studying sequences of functions or
quantities which are labelled by an integer variable [here the functions
P^x) labelled by /] is the generating function. The generating function
has perhaps its greatest utility in the areas of probability theory and
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statistics. However, we will also find it a great convenience in our present
study.

The generating function for (say) a series of functions fn(x) for
n = 0, 1, 2 , . . . is a function G(x, h) containing, as well as x, a dummy
variable h, and such that

G(x,h)= 2fn(x)h\ (6.63)
n = 0

i.e. fn(x) is the coefficient of hn in the expansion of G in powers of h. The
utility of the device lies in the fact that sometimes it is possible to get a
closed form for G(x, h).

For our study of Legendre polynomials let us consider the functions
Pn(x) defined by the equation

G(x, h) = (1 - 2xh + h2)-112 = J Pn(x)h\ (6.64)
n = 0

We will prove as a result of the considerations that the {Pn(x)} so defined
are identical with the Legendre polynomials and that the function
(1 — 2xh + h2)'112 is in fact the generating function for them. In the
process we will deduce several useful relationships between the various
polynomials and their derivatives; these will be displayed for future refer-
ence in their final form, in anticipation of the ultimate identification of
the functions, in (6.70).

In the following derivation dPn(x)/dx will be denoted as usual by P'n.
First differentiate (6.64) with respect to (wrt) x

A(l - 2xh + h2)-312 = 2Khn. (6.65)

Also differentiate it wrt h

(x - h){\ - 2xh + h2)-312 = ^nPnh
n~\ (6.66)

Equation (6.65) can be written

h 2 Pnh
n = (1 - 2xh 4- h2) 2 P'nh

n,

and thus equating coefficients of hn + 1

/ \ = p ; + 1 - 2 x / > ; + />;_!. (6.67)

Equations (6.65) and (6.66) can be combined as

from which the coefficient of hn yields

xP^Pf
n.^nPn. (6.68)
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Eliminating P^-i between (6.67) and (6.68) gives the further result

( * + \)Pn=P'n + 1-xP'n. (6.69)

If we now take result (6.69) with n replaced by n — 1 and add x times
result (6.68) to it, we obtain

•18. (1 - x2)P'n = «(^n-i - xPn).

Finally differentiating both sides wrt x and using (6.68) again we find

(1 - x2)Pf; - 2xP'n = n[(Pf
n^ - xP'n) - Pn]

= n(-nPn - Pn)
= _„(* + l)Pn, (6.70)

i.e. the Pn(x) defined by (6.64) satisfy Legendre's equation. It only remains
to verify the normalization. This is easily done at x = 1 when G becomes
[(1 - h)2]-112 = 1 + h + h2 + . . . , and thus all the Pn{x) so denned
have Pn{\) = 1 as required.

This completes the proof that G(x, h) = (1 — 2xh + h2)'112 is a gener-
ating function for the Legendre polynomials and validates all the formulae
(6.64) to (6.69) for the properties of the Legendre polynomials.

•19. (a) Substitute from (6.64) into (6.66) and hence prove the recurrence
relation relating Legendre polynomials of different / at the same value of x,

(/ + l)Pl + 1(x) - (21 + l)xPt(x) + /P,-i(*) = 0. (6.71)

(b) Start with Po = 1 and use (6.71) to generate Pl9 P2, P3, P 4 . Check
your results against previous derivations.

To summarize the position concerning Legendre polynomials, we now
have three possible starting points which have been shown to be equiva-
lent, the defining equations (6.44) and (6.48), Rodrigue's formula (6.56),
and the generating function (6.64). In addition we have proved a variety
of relationships and recurrence formulae [not easily rememberable, but
collectively useful] and, as will be apparent later and particularly from
the work of chapter 10, developed a powerful tool for use in axially sym-
metric situations in which the V2 operator is involved and spherical polar
coordinates are employed.

6.9 General remarks

As was our intention, we have concentrated to a very marked degree on
Bessel's equation in connection with infinite series and Legendre's equa-
tion for finite polynomials. The techniques used are, however, applicable
to many more functions than these, but since they are in all essentials the
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same, we will not deal with them explicitly. Some further examples, e.g.
Hermite polynomials, will be found in the exercises of the next section.

An extended form of Legendre polynomials, the spherical harmonics
Y™(d, <f>) in which x = cos 6 and (j> is an azimuthal variable, are used ex-
tensively in chapter 10 in connection with physical situations involving
Laplace's, Poisson's or Schrodinger's equation. Our present motivation
has been the solution of differential equations to a large extent in a
purely mathematical context, but this has at the same time laid the founda-
tion for the future treatment of more directly physical equations.

6.10 Examples for solution

1. Find solutions, as power series in x, of the equation

4xy" + 2(1 - x)y' - y = 0.

Identify one of the solutions and verify it by direct substitution.

2. Find the solution Jm(x) of BesseFs equation which is finite at the
origin, for a general integer m. The conventional definition of Jm(x)
takes a0 = 2-m(ml)-1.

3. For what range of values of x is a power series solution in x
valid for the equation (x2 + 5x + 4 ) / ' + 2y = 0?

4. Find the general power series solution about x = 0 of

xy" + (2x - 3 ) / + 4x~xy = 0.

5. Continuation of Ml (p. 162). Using the methods of chapter 5
find the second solution of the original equation and hence show

exp(-«2)dw = exp(-x2) 2 — TTT;'
n = 0 \2n + 1)..

[Establish the constants involved by comparing coefficients for small
x.)

6. For the equation y" + x~3y = 0, show that the origin is a regular
singular point if the independent variable is changed to $ = \/x.
Hence find the solution of the form

2
o x

Do not use the general theory, but seek a second solution of the form
f(x) times the first one, showing that as x —> so the second solution
becomes c(x + In x) + 0(1) where c is an arbitrary constant.

7. Show that, if n is a positive integer, the differential equation
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y" — 2xyr + 2ny — 0 has a polynomial solution (Hermite poly-
nomial) of degree n. Find the general term of the polynomial.

8. The Hermite polynomialsf Hn(x) are defined by

$(*, h) = exp (2xh - h2) = £ — Hn{x)hn.
n = 0 w -

Show that

2x— + 2/r— = 0,
ax2 a * dh

and hence that #n(X) satisfy the equation of example 7. Use 0 to
prove

(i) Hn(x) = 2nHn.1{x),
(ii) # n + 1(*) - 2jcfTn(jc) + inHn-^x) = 0.

9. By writing O(x, A) of example 8, as a function of (h — x) rather
than h, and by noting that for a function of (h — x)

dh, dx

show that an alternative representation of the nth Hermite poly-
nomial is

Hn(x) = ( - 1)» exp (x2) — [exp ( - x2)].
dxn

[Note that Hn(x) = dn^/dhn at h = 0.]

10. Carry through the following procedure as an alternative proof
that

W ] 2 d

(i) Use the generating function equation for the Legendre poly-
nomials and square both sides.
(ii) Express the right-hand side as a sum of powers of h, obtaining
expressions for the coefficients.
(iii) Integrate the right-hand side from — 1 to 1 and use the ortho-
gonality results (6.53).
(iv) Similarly integrate the left-hand side and expand the result in
powers of h.
(v) Compare coefficients.

11. A charge +2e is situated at the origin and charges of - ^ at
distances ± a from it along the polar axis. By relating it to the gen-

t Of importance in the quantum mechanical harmonic oscillator problem.
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erating function for the Legendre polynomials, show that the electro-
static potential 0 at the point (r, 6, <f>), with r > a, is

2e " /a\2s
O(r, 0y<f>) = — > P2s(cos v) I — i .



7
Superposition methods

In the previous two chapters we have dealt with the solution of a differen-
tial equation of order n by two methods. In one, by finding n indepen-
dent solutions of the equation and then combining them, weighted with
coefficients determined by the boundary conditions; in the other by
finding a solution in terms of a series whose coefficients are related by
(in general) an n term recurrence relation, and thence fixed by the bound-
ary conditions. For both approaches the linearity of the equation was an
important (essential) factor in the utility of the method, and in this
chapter our aim will be to exploit the superposition properties of linear
equations even further.

This present chapter is more formal than most in the book and is aimed
at a general introduction to the more specific methods of chapters 8, 9
and 10. It is intended to be sufficiently concrete for general ideas to be
grasped from it alone, but the reader may find some benefit from re-
reading it after assimilating the material of these three later chapters, since
they illustrate the ideas presented here.

We will be concerned with the solution of equations of the homogeneous
form

L{y) = 0, (7.1)

but with the ultimate object of treating the inhomogeneous variety

L(y)=f(x), (7.2)

where f(x) is a prescribed or general function, and the boundary condi-
tions to be satisfied by the solution y = y(x) at the limits x = a and
x — b are given. In these two equations the expression L(y) stands for a
linear differential operator acting upon the function y(x); for example,
in the case of the damped harmonic oscillator in chapter 5, L has the
form

d2 d

dx2 dx
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x having the physical interpretation of time and y that of the displacement
of the oscillator. For this system (7.1) then gives the equation of free
oscillations whilst (7.2) corresponds to forced oscillations. For a more
general differential operator the coefficients of &nl&xn may be functions
of x [but clearly not of y if L is to be linear].

In general, unless/(x) is both known and simple, it will not be possible
to find particular integrals of (7.2), even if complementary functions can
be obtained from (7.1). The idea is therefore to exploit the linearity of L
by building up the required solution as a superposition, generally contain-
ing an infinite number of terms, of some set of functions which each indi-
vidually satisfy the boundary conditions. This clearly brings in a quite
considerable complication, but since, within reason, we may select the
set of functions to suit ourselves, we can obtain sizeable compensation
for this complication. Indeed, if the set chosen is one containing functions
which, when acted upon by L, produce particularly simple results, we
can 'show a profit' on the operation. In particular, if the set consists of
those functions y{{x) for which the resultant function L(y^) is simply
— \yi where X{ is purely a constant,! then a distinct advantage may be
obtained from the manoeuvre because all the differentiation will have
disappeared from (7.2).

Let us carry this out in a slightly more formal manner. Suppose that
we can find a set of functions {yt(x)} where / is a label running from 0 to
oo, such that

-Kyi- (7.3)

As a possible solution of (7.2) try

L «<*(*), (7.4)

which automatically satisfies the boundary conditions, since each yt does
so. Now, making full use of the linearity of L we have

f(x) = L(y) = L(2 aiyi) = I a{L{yd = ~I at\yi. (7.5)

Thus we are left with an equation which contains no differential opera-
tors - but at the price of having introduced the unknown a{. This, how-
ever, can also be put right if, in addition, the set {yi(x)} is in some sense
mutually orthogonal, e.g.,

£ if i*j. (7.6)

t The minus sign is conventional and is included here only to give the Sturm-
Liouville equation (7.9) its usual form.
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Here y*(x) is the complex conjugate of jy/x). The orthogonality expressed
by this equation is more strictly called Hermitian orthogonality, although
the word 'Hermitian' is usually omitted. Straightforward orthogonality
of functions yK and y5 would not involve taking the complex conjugate of
one of them in the integrand. This latter type of orthogonality has some
uses in physics, but we will take the word 'orthogonal' in the Hermitian
sense expressed by (7.6).

If (7.6) is satisfied, both sides of (7.5) can be multiplied through by y*9

the integration carried out, and an explicit formula for a5 obtained

1 r y*(z)f(z) dz

'~ ~M>*()^)d'
This would complete the solution of the equation since each aj is given

in terms of the original function f(x) and the required solution is given
by y{x) = 2 ctiy{{x). All that remains is to establish whether it is indeed
possible to find a set of functions {^(JC)} with the property (7.3), which
satisfy the boundary conditions, and have the necessary mutual orthogon-
ality. Functions which satisfy (7.3) are called eigenfunctions of the operator
L, and Xt are the corresponding eigenvalues.

In the next section we will show that at least for linear operators L
of a particular form, such suitable sets of functions can be found, in the
sense that if they satisfy an equation like (7.3) then they will have the
necessary orthogonality properties and that certain (fairly broad) types
of boundary conditions can be accommodated.

7.1 Sturm-Liouville theory

Second-order linear differential equations in which L(y) has the form,

L(y) = p(x)y" + r(x)yf - q(x)y with r(x) = p'(x), (7.8)

and /?, q and r are real functions of x, were first intensively studied by the
French mathematicians Sturm and Liouville in the 1830s. Here y = y(x),
and a prime denotes differentiation with respect to x.

As will be seen in the subsequent discussion the class of differential
equations of the form

L(y) = -XP(x)y, (7.9)

withL(>>) of the form (7.8), includes very many of those occurring naturally
in physics and engineering.

Writing (7.8) and (7.9) together we obtain the equation

= 0. (7.10)
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This is known as the Sturm-Liouville equation, and its properties and
uses will form the main content of the remainder of this chapter. Second-
order linear differential operators L, for which L(y) can be written in
the form

L{y) = (/>/)' - qy,

where p and q are functions of x, are known as self-adjoint operators.!
Equation (7.9) is a slight extension of (7.3) to include on the right-hand

side a weight function p(x) and so allow a somewhat wider class of equa-
tions to be treated. In particular a linear operator in an equation which
is not already self-adjoint, can be made so by multiplying the equation
through by a suitable function, as is explained more fully in section 7.2.
In many applications p(x) is unity for all x and then (7.3) is recovered;
in general it is a function determined by the choice of coordinate system
used in describing a particular physical situation. The only requirement
on it is that it is real and does not change sign in the range a ^ x < b,
and can therefore, without loss of generality, be taken to be non-negative
throughout.

We now turn to demonstrating that the solutions of the Sturm-Liouville
(S-L) equation have the required properties to enable us to carry through
the solution of differential equations by superposition methods.

Let us introduce the assumed boundary conditions immediately, so as
not to interrupt the general argument later. Naturally they will appear
ad hoc by being introduced at this stage, but the reasons for the choice
will soon be apparent. We assume they are such as to satisfy

[ytpy'i\x-a = [yjpyllx^ for all ij, (7.11)

where yt(x) and y^x) are any two solutions of the S-L equation (perhaps
corresponding to two different values Ai5 A; of the constant A, if i ^ j).
This is in fact a fairly mild assumption about the boundary conditions and
is met by many commonly occurring cases, e.g. y(a) = y(b) = 0, y(a) =
y\b) = 0, p{a) = p{b) = 0, and many more. The important point to

t For our present purposes this will suffice. More generally, the (Hermitian)
adjoint of L is found by integrating the expression J v(x)L[u(x)] dx by
parts until it has the form J u(x)L*[v(x)] dx together with boundary contri-
butions. This then defines the adjoint L*, and L is self-adjoint if L and L*
have the same form. In particular if, in terms of the D operator of chapter 5,
L(u) = 2 ln, <m an(x) D»*/« then £•(«) = 2I»I <•» ( - D|B| Bnlan(x)u(x)). This
procedure generalizes to equations involving more than one independent
variable, when dx represents dx± dx2 It should be emphasized that the
* in L* does not simply mean complex conjugation of the various terms in
L.
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notice is that to satisfy (7.11), one boundary condition must be specified
at each end of the range.

Reality of the eigenvalues. Let yt be a solution of (7.10) corresponding to
a particular value of Ai? and consider the complex conjugate of (7.10)

(pyt'Y - wf + Kpyf = o. (7.12)
Multiplying this through by y5 and integrating from a to b (the first term
by parts) we obtain

VWa - f y'ApyT) d* - f* ykq - AT,>K d* = o. (7.
Ja Ja

13)

The first term vanishes by virtue of the complex conjugate of (7.11) and
a second integration by parts gives

dx = 0. (7.14)

Again the first term is zero because of (7.11), yielding

+ X*pyj]y* dx = 0. (7.15)f
JaBut, from the original S-L equation for yj9 we obtain by multiplying

through by yf and integrating, that

I Kpy'jY — qyj + Kpyi\y* d* = o. (7.16)
Ja

Subtracting (7.16) from (7.15) gives

(A? - \) yfpyjdx = o. (7.17)
Ja

However, p(x) is non-negative and so, if we take / = j , jyfpyi dx cannot
be zero, and so we conclude that Xf = A{, i.e. that the eigenvalues of the
S-L equation are real.

Further since A* = A comparison of (7.10) with (7.12) shows that y*
and y are eigenfunctions corresponding to the same eigenvalue and hence,
because of the linearity of the S-L equation, that at least one of (y* + y)
and i(j>* — y) is a non-zero real eigenfunction corresponding to that
eigenvalue. Henceforth we will therefore assume that the eigenfunctions
are real or have been made so by taking suitable linear combinations (the
necessity for this occurs non-trivially only if a particular A is degenerate,
i.e. corresponds to more than one linearly independent eigenfunction).
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Orthogonality and normalization of the eigenfunctions. Two further results
follow from (7.17). The first shows that two different eigenfunctions are
orthogonal in the sense

f yiPyjdx = 0,

where the weight function has been included. This is trivially obvious if
Af ^ Ay. The small extension of this proof needed for the case when
X{ = A; in order to establish mutual orthogonality for a suitable set of
independent eigenfunctions is considered in example 1 of section 7.7.

The second point concerns the normalization of the yi(x), which be-
cause of the linearity of the S-L equation is arbitrary. We will assume for
definiteness that they are normalized so that J y{pyi dx = 1 or, combining
this with the other result, thatf

Ja
(7.18)

A quadratic form. It is convenient to note here, as a by-product, a result
which will be useful in the variational methods discussed in chapter 13.
Referring to (7.13) and recalling that A* and y{ can be taken as real and
that the first term is zero, we have

{yipyl + >Wi) dx = Xt
Ja Ja

dx

= Xfiij (no summation), (7.19)

the last step applying if the functions are normalized. Hence this integral
of a particular quadratic form in the yt and y\ has a value related to the
corresponding eigenvalue.

7.2 Examples of Sturm-Liouville equations

In order to illustrate the wide application of the S-L theory we will in
this section make a short catalogue of some common equations of physics
which have the Sturm-Liouville form. The sceptic will no doubt remark
that such equations are common precisely because they have a manage-
able form, but it should be noted that any second-order linear differential
equation

p{x)y° + r{x)yf + q(x)y + XP(x)y = 0, (7.20)

t 8 ,̂ which has the value 1 when i = j and the value 0 when i =£ y, is known
as the Kronecker delta.
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can be converted to the required type by multiplying through by the factor

(7.2D

provided that the indefinite integral is defined. It then takes on the S-L
form

• 1 . [F(x)p(x)y'\ - [~F(x)q(x))y + XF(x)P(x)y = 0,

but clearly with a different [but still non-negative] weight function. Note
that this procedure is analogous to the use of an integrating factor in
section 5.2.

One example of an S-L equation, which has already been discussed and
solved by the series method in chapter 6, is Legendre's equation (6.7)
which has the form,

(1 - x2)/ - 2xy' + 1(1 + \)y = 0, (7.22 a)

or [(1 - x2)y']f + 1(1 + \)y = 0. (7.22 b)

Clearly this is an S-L equation with p = 1 — x2, q = 0, unit weight
function, and eigenvalue /(/ + 1). The mutual orthogonality property
of its solutions yl = Pi(x) has been previously demonstrated (equation
(6.53)).

•2. How should al be chosen so that the set yi(x) = ^P^x) satisfy (7.18)?

• 3 . Use (7.19) to evaluate jl1 [PfM]2(l - /x2) d/x.

Legendre's equation and its solutions (the Legendre polynomials)
appear most readily in the analysis of physical situations involving the
operator V2 and axial symmetry, since the linear differential operator
involved has the form of the polar angle part of V2, when the latter is
expressed in spherical polars. Immediate examples include the solution
of Laplace's equation in axially symmetric situations and Schrodinger's
equation for a quantum mechanical system involving a central potential.

Very closely related to these situations are those involving the associated
Legendre equation

[(1 - x2)/]' + I/(/ + 1) - p — ^ I y = 0, (7.23)

and its polynomial solutions. These arise in physical situations in which
there is dependence on the azimuthal angle </» of the form exp (im<f>) or
cos (m<f>). From the point of view of the S-L equation, they are the same
as for the Legendre equation itself, except that q(x) is now m2(l — x2)"1 .
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Both of these equations will appear again in connection with the method
of separation of variables considered in chapter 10.

Bessel's equation which arises from similar physical situations, but ex-
pressed in a cylindrical polar coordinate system, is also treated in chapter
10. It has the form

x2y" + xy' + (x2 - n2)y = 0, (7.24)

but on changing variables to £ = x/a, it takes on the S-L form with

• 4 . p = €, q = n2/g, p = £ and A = a2.

The most trivial of Sturm-Liouville equations, in which p = 1, # = 0
and p = 1, is the simple harmonic motion equation

/ + «?y = 0. (7.25)

The whole of chapter 8 is concerned with solutions of this equation and
their properties and we will not consider it further here.

Two further examples of solutions of linear second-order differential
equations taken from the quantum mechanical study of simple physical
systems are:

(i) the Hermite polynomials involved in the description of the wave func-
tion of a harmonic oscillator and satisfying

/ - 2xy' + lay = 0, (7.26)

and (ii) the Laguerre polynomial solutions for the hydrogen atom, satis-
fying

xy" + (1 - x)yf + ay = 0. (7.27)

Both of these can be converted to Sturm-Liouville form, although there
are some formal difficulties associated with a singularity of the Laguerre
equation at the origin.

•5 . Find the 'integrating factors' for (7.26) and (7.27) and arrange them
in the form (7.10).

•6. Do the same for the Chebyshev equation (1 — x2)y" — xy' +
n2y = 0.

7.3 Application of superposition

Now that we have developed in sections 7.1 and 7.2 a class of functions
with the necessary properties to make an eigenfunction expansion solu-
tion of an equation of the type (7.2) a possibility, we will, in this section,
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work out in detail an application to a specific problem. We will use one
containing only a very simple operator (d2/dx2) so that the corresponding
eigenfunctions are familiar.

Example 7.1. Solve the equation y" + \y = f(x) with y(0) = J(TT) = 0.
The operator on the left-hand side of this equation is already self-

adjoint and so we seek its eigenfunctions satisfying the S-L equation

/ + iy + Ay = 0,

with unit weight function. These are obviously

yn(x) = An sin nx + Bn cos nx,

corresponding to eigenvalues An given by

n2 = An + i.

The boundary conditions, which clearly satisfy (7.11), require that n
is a positive integer and that Bn = 0. Thus the appropriate functions are
given by

yn(x) = An sin nx

and the normalization condition (7.18) requires

Al sin2 nx dx = 1, hence An = I -

Thus if we write as the solution of the original problem y(x) = 2n anyn{x),
we obtain, as in (7.5) and (7.7),

an= -(An)"1 f yn(z)f(z)dz
Jo

= -(n2 - i)"1 J ( - j sin (nz)f(z) dz,

and finally that the solution in terms of the given function/(x) isf

y(x) = -- f ^ ^ I" f(z) sin (nz) dz. (7.28)
77 ^ « 2 - i Jo

Example 7.2. A particle moves in a potential such that if it is displaced
from the origin it executes simple harmonic motion of angular frequency ^.
As it moves through the origin it is suddenly subjected to an additional

t This result is also the Fourier series form because of the particular form
of linear operator involved. However the above method is a general model
for all equations involving S-L-like operators.



182 Superposition methods

acceleration of 4-1 for a period TT/2 and then to one of — 1 for the
next TT/2 period. Use the results of example 7.1 to find the particle's initial
velocity, if it is to be at the origin at the end of the second period.

The equation of motion is clearly

y + iy=l, 0 ^ t < TT/2,
= — 1, n/2 ^ t < 7T,

with y(0) = y(7r) = 0. Thus writing t for x in (7.28) we have an explicit
expression for y(t) for all 0 ^ t ^ n9 once we have evaluated

f*
• 7. f(z) sin (nz) dz = / r ^ l - 2 cos (mr/2) + ( - l)n]

Jo
= 4//i if n = 4m + 2,

= 0 otherwise.

Thus we obtain as the displacement at time t,

AO -
Q oo

17 ^Q (4m

and, by differentiation at t =

y

as the required

7.4 Green'

8 V
T m^o (4m

initial velocity

s functions

sin [(4m +

+ 2)[(4m +

o,
1

+ 2)2 - i

2)/]

2)2 - i ]

081

The Green's function method described in this section relies heavily on
the properties of the S-function, which is treated in the next chapter
(section 8.8). The reader who does not have prior knowledge of these
properties is advised to omit this section at present, and, as mentioned
elsewhere, to return to it later.

In a preceding section we saw that

y = - 2 tfyM f tf(*)/(*)dz (7-29)

j Ja

gave a solution of

=/(*) , (7.30)

where the set {y^x)} depended upon L. Now let us assume that we may
interchange the order of summation and integration and write (7.29) as
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In this form the solution has clearer properties. We first observe that the
expression in the curly brackets, being summed over j9 is a function of x
and z only, and could therefore be written as G(x,z). Equation (7.31)
is then

><*)= f G(x,z)/(z)dz. (7.32)
Ja

Now the structure of the solution of (7.30) is even more apparent, being
the integral of the product of two factors, of which:

(i) the first, G(x, z), is determined entirely by the boundary conditions
and the eigenfunctions yj9 and hence by L itself, and
(ii) the second, /(z), depends purely on the right-hand side of (7.30).

It is apparent from this that we have the possibility of finding, once
and for all, for any given L, a function G(x, z) which will enable us to
solve (7.30) for any right-hand side. The solution will be in the form of
an integral which, at worst, can be evaluated numerically. This function,
G(x, z), is called the Green's function for the operator L.

One expression for the Green's function has already been given, namely

G(x,z) = - ^ ^1yj{x)yj(z). (7.33)

But for an alternative way of finding the form of G(x, z), we also note that
expression (7.32) is by construction a solution of (7.30). Hence,

L(y)=f L[G(x,z)]f(z)dz=f(x). (7.34)
J a

But, as in equation (8.48 iii) of the next chapter,

f(x) = f f(z)8(z - x) dz, a ^ x ^ b,
Ja

where S(z — x) is the Dirac 8-function, and so

{L[G(x, z)] - 8(z - x)}f(z) dz = 0. (7.35)

However this is to hold for any/, and so we must have

L[G(x,z)] = S(z - JC). (7.36)

In words, the Green's function G is the solution of the differential equa-
tion obtained by replacing the right-hand side of (7.30) by a S-function.
Note that in (7.36) z is only a parameter and all the differential operations
implicit in L act upon the variable x.

Looked at directly from the superposition point of view, our result is

/ •
Ja
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that the solution of (7.30) is the superposition of the effects of isolated
'impulses' of size f(z) dz occurring at positions x = z. Each 'impulse'
of course has effects (propagated by (7.36)) at positions other than that
at which it occurs and so the total result at any particular x has to be ob-
tained by integrating over all z.

•8 . Use the preceding results to show the closure property of the eigen-
functions of L, namely

2 yf(x)y?(z) = «(z - x). (7.37)
j

[If the spectrum of eigenvalues of L is anywhere continuous, then the
eigenfunction >>,(*) m u s t ^ e treated as y(j, x) and an integration carried
out over / ]

7.5 Forms of Green's functions

To illustrate the form that Green's functions may take, we will find ex-
pressions for them in two cases. In the first of these, boundary conditions
will be prescribed at two different positions, whereas in the second we will
consider a case in which time is the independent variable and the system
starts from rest.

For the first example we will re-solve our earlier illustration of example
7.1, but by a different method, giving an alternative expression from which
a Green's function can be extracted by inspection. This is done purely
to illustrate the form of the function, since clearly the Green's function
method would be pointless if it were always necessary to solve the prob-
lem another way first in order to extract the Green's function.

Example 7.3. Let us apply the method of variation of parameters (section
5.8) to

Putting y = A sin (JC/2) + B cos (x/2), we require A(ir) = 0 and B(0) = 0.
If we make A and B satisfy A' sin (x/2) + Bf cos (x/2) = 0, we obtain
in the usual way,

•9 . \A' cos (JC/2) - \B' sin (x/2) = / ( * ) ,

and hence the results

•10. A' = 2/(JC) cos (x/2), B' = -2f(x) sin (x/2).

On integrating, and taking into account the boundary conditions on A
and B, we obtain for y(x) the solution,
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• 11. y(x) = - cos (x/2) f 2/(z) sin (z/2) dz
Jo

- sin (x/2) f 2/(z) cos (z/2) dz.

From this it is apparent that the Green's function G(x, z) has the form

G(x, z) = - 2 cos (x/2) sin (z/2), 0 ^ z ^ x,
= - 2 sin (x/2) cos (z/2), x < z ^ -n. (7.38)

This is an [more readily computable] alternative to our previous expres-
sion (from (7.28)),

| | r i n y r i ° ( > g ) - (7.39)

It will be noticed in (7.38) that G(x, z) changes its form as z passes
through the value z = x. This is to be expected since (7.36) in the present
case is

y" + iy = Kx - z),

and if we formally integrate this with respect to x between x = z_ and
x = z+, two values one each side ofx = zwe obtain

l/llt + 4 J y d x = j S(* " z) dx = l -
As we let z+ and z_ tend to z, the second term on the left tends to zero,
showing that

/ ( z + ) - / ( z _ ) = 1, (7.40)

i.e. the derivative of y has a discontinuity of unit magnitude at the point
x = z [and also that j> itself is therefore continuous there].

In our next example we can expect that not only will the Green's func-
tion change its form at x = z, but that it will be identically zero for
z > x.

Example 7.4. A damped harmonic oscillator of mass m initially at rest
is driven by a time dependent external force mf(t), for t > 0. Find the
subsequent motion.

The equation of motion is of the form

x + 2fii + CJ2X = f(t), with x(0) = x(0) = 0. (7.41)

Formally we will have as the solution

*(')= P/(z)G(f, z) dz, (7.42)
Jo
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where G(t, z) satisfies

0 + ipC + co2G = S(z - t). (7.43)

Our qualitative discussion of section 7.4 in terms of 'impulses' is even
more physically appropriate here, since the x of that discussion now
has the role of time and mf(z) dz is an impulse in the mechanics sense.
Since G(t, z) effectively represents the effect at time t of a unit impulse
occurring at time z, we would expect on physical grounds ['causality']
that

G(t,z) = 0 forz ^ t. (7.44)

We now have to solve (7.43), treating z as a fixed parameter, for the
region 0 < z ^ t. This we will do using the complementary functions
for z < t and the step function condition (7.40) on G at t = z.

Putting G(t, z) = A exp (pt) into (7.43) with the right-hand side set
equal to zero, we obtain

P± = ~P ± (P2 ~ " 2 ) 1 / 2 - (7.45)

Thus G = A exp (p + t) + B exp (p.t), for t > z.

Continuity at / = z, together with (7.44), gives

0 = A exp (p+z) + Bcxp (p-z), (7.46)

whilst the condition on C yields

1 = p+A exp (/?+z) + p.Bexp (p-z). (7.47)

Solving (7.46) and (7.47) for A and B gives finally that

G{U z) = (p+ - / O - ^ e x p [p+(t - z)] - exp [/?_(' - *)]}

•12 . = (j82 - a>2)"1/2 exp [-P(t - z)]
x sinh [(£2 - w2Y'2(t - z)] , (7.48)

for 0 < z ^ t. [Not surprisingly a function of (t — z) only.] Combining
(7.48) and (7.44) with (7.42) thus produces an integral expression for the
motion of the oscillator

*('> = f ,02 / ( Z )
2 M / 2 e xP 1 - ^ " Z)JJo (P — ^ )

x sinh [(02 - o>2)1/2(/ - z)] dz. (7.49)

Figure 7.1 illustrates the form of the Green's function for a few sample
values of p and a>. It should be remembered that the curves give the re-
sponses of the system to a unit impulse at the time t = z9 under the
various conditions.
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Fig. 7.1 Some Green's functions described by equation (7.48). All vertical scales
are in units of w'1. The bottom curve shows the input to the system.
(a) For ]3 = 0 the response is an undamped sine wave, (b) For p = \o>
the response is a damped sine wave, (c) For p — to the response is critic-
ally damped of the form (t — z) exp [ — o>(r — z)]. (d) For p = 2o> no
oscillations occur but the effect of the impulse is long-lived.

7.6 Generalization

Finally, we formally collect together the elements of the Green's function
method in a slightly more generalized way. If we seek solutions, for a
self-adjoint [Hermitian] operator L, of the equation

(7.50)

then, in terms of the functions y{{x) which satisfy [for generality taking i
as continuous]

(7.51 a)

i= S(x-z),

(7.51 b)

(7.51 c)
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y is given by

y(x) = J G(jt,z)/(z)dz, (7.52)

with

G(x,z) = — di. (7.53)
J fi - \

•13. Verify by substitution that (7.52) is in fact a solution, when the
original equation (7.50) contains a term involving a weight function p(x).

1.1 Examples for solution

1. Suppose that a particular eigenvalue of (7.9) is TV-fold degenerate
i.e. Ly{ + Xpy{ — 0 for i = 1, TV, and that in general J yfpyj dz ^ 0
even if i ^ j . Then show that the new set of normalized functions
ut(x) defined by

'-1 / r \)
~ A ui I u*pyi dz I > » / = 2, 3 , . . . , TV,

are (a) all eigenfunctions of L with eigenvalue A, and (b) mutually
orthogonal with respect to the weight function p. Here JV{V{X)}

stands for v(x)/§ v*(z)p(z)v(z) dz. [Use a process of induction.]

2. Express the Gauss equation

(x2 - x)y" + [(1 + a + fix - y ] / + afiy = 0,

where a, p and y are parameters, in Sturm-Liouville form.

3. A particular associated Legendre function yn corresponding to
eigenvalue n is a solution of

/ 1 * 3 \
xy" + 2y' + in y = 0,

\ 2 4 4x1

with yn(0) = ^(GO) = 0. Show that this implies

xyn(x)ym(x) dx = 0, if m ^ «.
Jo

4. Use the solutions of the equation y" + Xy = 0 with boundary
conditions y(0) = 0, y'(7r) = 0 to find an expansion of the function
f(x) = x2 — 2-TTX. Hence solve y" + y — x2 — 2TTX, with these same
boundary conditions.
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5. (a) Find the solution of (1 — x2)y" — 2xyf + by = f(x), valid
in the range [—1, 1] and finite at x = 0, in terms of Legendre poly-
nomials.
(b) If b = 14 and f(x) = 5x3

9 find the explicit solution and verify
it by direct substitution.

6. By substituting x = exp (/) find the normalized eigenfunctions
yn(x) and eigenvalues An of the operator L defined by

L(y) = x2yn 4- 2xy' 4- iy, 1 ^ x < e,

with y(l) — y(t) — 0. Find, as a series 2 tfnJVnO*), the solution of
L(y) = x-1'2.

7. Express the solution of Poisson's equation in electrostatics
V2(f>(r) = — />(r)/e0, where p is the non-zero charge density over a
finite part of space, in the form of an integral and hence identify
the Green's function for the V2 operator.

8. Extension to example 7.4 (page 185). Consider the particular case
when/(0 = Fsin (pt) and fi2 - w2 < 0 = -n2 (say). Evaluate the
integral (7.49) and show that it leads to decaying transients and
steady state terms, the same as would be obtained by the comple-
mentary function and particular integral methods of chapter 5.
[The algebra is rather lengthy but straightforward.]

9. In the quantum mechanical study of the scattering of a particle
by a potential, a (Born approximation) solution can be obtained in
terms of a function y(r) which satisfies an equation of the form

(-V 2 - K2)y(r) = F(r).

Assuming that j>k(r) = (2TT) ~312 exp (ik • r) is a suitably normalized
eigenfunction of — V2 corresponding to an eigenvalue — k2, find a
suitable Green's function GK(r, r'). By taking the direction of the
vector r — r' as polar axis for a k-space integration, show GK(r, r')
can be reduced to

1 f °° w sin w
dw,w2 -

where w0 = K\r — r'|. [This integral can be evaluated by contour
integration (chapter 16) to give (47r|r - r'))"1 exp (iK\r - r'|).]
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It will undoubtedly have been observed by the reader who has only a
moderate familiarity with the mathematical methods used for physical
problems, that harmonic waves (of the form exp (W) or cos tut) are
very convenient functions to deal with. It is straightforward to differen-
tiate, integrate and multiply them; their moduli are easily taken, and each
contains only one frequency [or wavenumber, for forms like exp (ikx),
using an obvious notation]. This last point is important since the response
of many physical systems, such as an electronic circuit or a prism, depends
most directly on the frequency content of the input the system receives.

Even if we were not familiar with the results of the Sturm-Liouville theory
discussed in the previous chapter, these properties by themselves would
indicate that it may be advantageous in some cases to express all the
functions involved in a problem as superpositions of harmonic wave
functions (Fourier series or transforms). The otherwise difficult parts of
the problem might then be carried through more simply, and finally, if
necessary, the output functions reconstituted from the 'processed'
waves.

In fact, we recognize the harmonic wave y(x) = exp (ikx) as an eigen-
function of the simplest non-trivial Sturm-Liouville equation, with
p = 1, q = 0, p = 1 and A = k2, and thus, provided that [yy']b

a = 0, we
may apply the general results of chapter 7. This boundary condition is
clearly going to be satisfied if we consider periodic problems of period
b — a, and so we are led to Fourier series, or if a-> — oo and b-^co,
to Fourier transforms.

There are thus at least three different but connected ways in which the
harmonic waves of Fourier methods may be considered to arise; as sets
of mathematically simple and manageable functions, as the set of eigen-
functions of a particularly simple S-L equation, and, most physically,
as the set of functions arising naturally in the description of a wide range
of physical situations, such as the vibrations of a finite string, the scatter-
ing of light by a diffraction grating, and the transmission of an input signal
by an electronic circuit.
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8.1 Sets of functions

All that is required to be known about the sets of functions needed can
be obtained directly from the Sturm-Liouville theory, namely their
completeness [any 'reasonable' function can be expressed as a linear sum
of them] and mutual orthogonality over an appropriate range, but it is
both straightforward and instructive to obtain these properties in an
empirical way as well.

Let us suppose that we are given a function which is periodic, e.g. that
describing a circuit input voltage consisting of a regularly repeating wave
train [periodic in time], or the potential experienced by an electron in a
regular crystal [periodic in space], or a single-valued gravitational poten-
tial [periodic in azimuthal angle <j>]. This function is to be represented as
a (generally infinite) sum of Fourier terms.

We will work with t as the variable in which the periodicity occurs and
with T as the period, but of course the physical interpretation of / will
not necessarily be that of time. In periodic situations the origin of t is
arbitrary but we will choose it so that the basic period is — T/2 to T/2.

Consider first the set of functions

hn(t) = cos (2irnt/T), 0 < n < oo. (8.1)

Could this be a possible set for the expansion, using all integral values
of ni We test first their mutual orthogonality over ( — 772, T/2). Using
o) to denote the quantity (2TT/T), we have

CTI2 /2irnt\ (2irmt\ A

cos cos dr
J-r/2 \ T \ T

772

|[cos (n + m)ojf + cos (n — m)wt] dt
- 7 7 2

= 0 unless n = m, (8.2)

since the integral of a cosine (or sine) function over a complete number of
cycles [here n + m and n — m cycles] is zero. If n = m the integral has
the value T/2, as is easily verified. Thus the functions hn{t) are mutually
orthogonal as required.

We now have to ask whether any periodic function/(f) can be expressed
in terms of them, i.e. f{t) = 2n anhn{t), with an constants. This is clearly
not so, since cos (nwt) is an even function of t and so therefore is any
function of the form 2nfln^n(0; hence any odd periodic function of t
such as tan (wt) cannot be represented by such a sum. We conclude there-
fore that the set of functions given by (8.1) is not suitable.
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In a similar way, the set

gn(t) = sin(27rnt/T), 0 < n(hitegral) < oo, (8.3)

is inappropriate.

• 1 . Show that the gn(t) are mutually orthogonal, but do not enable all
periodic functions to be expanded in terms of them.

The set gn(t) fail because even functions of t cannot be expressed in
terms of them. However, any function f(t) can be written as the sum of
an odd and an even part,

fit) = M/(0 +/(-*)] + *[/(') - /(- ' )]
= /even(0+/odd(0, (8.4)

and so by combining the sets hn(t) and gn(t) together, f{t) could be ex-
pressed in terms of the larger set so formed [/even in terms of the hn, and
/odd by the gn]. All that remains is to determine whether the enlarged set
is still a mutually orthogonal one. This is easily done since

r T\i pr/2
K(t)gm(t) dt = cos (nwt) sin (mcot) dt

J-T/2 J-T/2
•r/2p

= I i[sin {m + ri)wt + sin (m — ri)a)t] dt
J -r/2

= 0 for all m and n [even m = ri\. (8.5)

We thus arrive at the set of functions cos (lirnt/T) and sin (27rmt/T)9

with n and m running over all integral values. This is the same set as could
have been obtained from the simple case of the Sturm-Liouville equation
discussed above, but here arrived at in a more heuristic way.

As noted in chapter 7, the set of functions is not always unique if the
eigenvalues are degenerate and in the present case an alternative, and in
some cases preferable, set of functions can be obtained by taking linear
combinations of the previous set,

/ \hrnt \ I2nnt \ 12nnt \
exP \-f-)= cos \~Fj+ {sin \"r"j'( 2-nm

T
— oo < n (integral) < oo. (8.6)

This alternative set allows some economy of expression, useful in formal
manipulations, and is the natural set from which to proceed to the Fourier
transform (section 8.6).
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8.2 The expansion and coefficients

Returning to the expansion of a periodic function of period T (see fig.
8.1), we assume that / ( / ) can be written as a Fourier series (FS), namely

f(t) = -^0 + JT [An cos (ncot) + Bn sin (nut)], (8.7)
n = l

00

or f(t)= ^ C.exp(iii«/), (8.8)
n = — oo

where, as before, 2TT/T has been written as w, the fundamental frequency.

-7 /2 772

\y

Fig. 8.1 A periodic function of period T.

Physically both formulae contain a superposition of amplitudes having
the fundamental frequency and its harmonics, together with a possible
constant [n = 0 term]. The factor \ in (8.7) is conventional and, as will
be seen later, is included in order to make the calculation of Ao the same
as that of other An. Clearly Co = %AQ.

By writing cosine and sine in terms of exponentials it is straightforward
to show that,

•2 . = i(An-iBn) and C_n = i(An + \Bn). (8.9)

These equations and their inverses establish the link between the two com-
monest sets of functions.

The next requirement is that of obtaining explicit expressions for An

and Bn once/(f) is given. To do this we multiply (8.7) through by cos (mcot)
and integrate it from -T/2 to T/2. [This will 'project out' all parts of
bo th /and the series which are orthogonal to cos (mcot).]

AoJ r/2

-772

f(t) cos (mwt)
pr/2 r

dt=\ \-
J-T/2 K

cos (mwt)

cos (nwt) cos (mojt) + Bn sin (nwt) cos (moot)] > dt.

(8.10)
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The first term on the right-hand side is zero unless m = 0 when it has
the value \A0T, and, in view of the previously shown mutual ortho-
gonality of the set of functions {cos nwt, sin moot}, the only non-zero term
appearing in the summation is that from the cosine series for which
n = m # 0; this term has the value %AmT.

With this enormous simplification of the right-hand side, (8.10) can
be rewritten to give an explicit expression for Am

2 f 772
Am = - / ( O c o s ( m o > / ) d / , w = 0 , 1 , . . . , oo. (8.11a)

T J-772

• 3 . Follow a similar procedure to show that

2 f 772
Bm = - / ( / ) sin imwt) dt, m = 1, 2 , . . . , oo. (8.11 b)

T i-i-772

•4. Deduce that

1 fr/2
Cm = - fit)expi-imu>t)dt, -oo < m < oo. (8.11c)

-/ J-772

• 5 . Show that if the function fit) is real, then C.n = C*.

Using these explicit formulae it is now possible to write any given
periodic function fit) of period T = 2TT/OJ in the form of a series of
sinusoidal terms, containing the fundamental frequency w and some
or all of its harmonics (together with a possible constant). The ampli-
tudes of the various harmonics are obtainable from the original function
by means of equations (8.11).

As an example (which will be used for illustration throughout this
chapter) consider the square-wave function fit) illustrated in fig. 8.2
and given by

/ ( 0 = - i , -772 ^ r < o ,
= + 1 , 0 ^ t < T/2. (8.12)

This function is to be represented as a Fourier series [perhaps so that
the effect of a frequency dependent integrating circuit on an electrical
input of this form can be determined] and is therefore assumed to be
representable in the form of expression (8.7). The required coefficients
are obtained by substituting (8.12) in (8.11 a, b). Since fit) is in this
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-r/2

- 1

r/2

Fig. 8.2 The square-wave function/(/).

case an odd function of t whereas cos (mojt) is an even one, all Am given
by (8.11 a) are zero. Recalling that OJT = 2?r, we have also that

2 TT/2

= - fit) sin (mo
1 J-TI2

4 rr/2
= — I sin (mcot) dt

T Jo

= —(i - ( - I D .

d/

This is zero if m is even and equals AJTrm for m odd.
Thus, instead of (8.12), we can wri te/(0 as

At)
4 r •

= - SI

T L

sin (ait) +
sin (3u>t) sin (5a>t)

(8.13)

(8.14)

i.e. expressed in terms of its component frequencies with simple sinusoidal
functions [but at the price of having introduced an infinite series]. As
the number of terms in the series is increased the function/(f) given by
(8.14) approaches more and more closely the original function given by
(8.12) and fig. 8.2.

The general question as to under what circumstances a series generated
by the above procedures (expanding according to (8.7) with coefficients
given by (8.11)) is a valid representation of the original function is mathe-
matically complicated, but for practical purposes the answer may be sum-
marized as:

If (i) there exists only a finite number of maxima, minima
and discontinuities of the function/(r) in one period, and
(ii) J^y/2 |/(0l & is convergent, then the Fourier
series converges to f(t) as the number of terms -> 00. (8.15)

At the discontinuities (if any) of / (0 a further result is needed. If f(t)
is discontinuous at t = tx then the series converges to ilfih — ) + f(h+)]
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at that point. Here the quantity f(t1+) is the limit off(t) as f-> tx from
values greater than tl9 and/(/ i—) is the corresponding limit as t-> tx

from below. It should be remembered that in the series, t is fixed at the
value tx and it is the increasing number of terms that brings about the
convergence.

Referred specifically to our example, these results mean that in the
range 0 < t < T/2 the series (8.14) tends to a limit in value of 1 for all t,
that in -T/2 < t < 0, series (8.14) tends to - 1 for all t, but that at
/ = 0 we must expect it to yield the value i [ ( - l ) + (+1)] = 0. Like-
wise at t = T/2, we expect the series to give i [ ( + l ) + ( -1)] = 0. Since
at t = 0 or 772 every term of the calculated series individually vanishes,
its values at the discontinuities are immediately verified. For values of
t outside the range ( — T/2, T/2), the series repeats periodically the values
it takes inside the range.

In order to illustrate pictorially the convergence of the series (8.14) to
the original function, the value of the series is shown graphically super-
imposed upon the original function in fig. 8.3, after various numbers of
terms have been added. In each picture except the last, the next contribu-
tion to be made (but not yet included) is shown dashed. It will be seen
that after only a few terms the series is a reasonable approximation except
near the discontinuities of f(t).

r\

-T/2 ! \

(a)

-A'
-A

0 \! T/2

\y \j

(b)

1

T/2

I , 0 T/2

id)

Fig. 8.3 The evaluation of equation (8.14) after various numbers of terms have
been added. The next term to be added is shown dashed. In (d) 8 gives
the Gibbs overshoot. For an explanation of A, A\ etc. see the text.
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It will be noticed how in any particular range of t values and after any
particular number of terms have been included, the next term generally
has, at around that value of t, the correct sign to (over-) compensate the
discrepancy between the sum so far and the original function. This is
not true for every t value [or consequently for every range of t value],
but can be illustrated by examining, for example, the values near the
points A, B, C of the next terms to be added and the corresponding dis-
crepancies A', B\ C between the sum so far and/( / ) .

As the number of terms in the series is increased the 'overshoot'
nearest a point of discontinuity moves closer to the discontinuity (see
8.3 (d)), but in fact never disappears even in the limit of infinitely many
terms, although it moves in position arbitrarily close to the discontinuity.
This behaviour is known as the Gibbs phenomenon. It does not contradict
our previous results since for any / inside the range 0 to 7/2 for example,
the partial sum to TV terms of the series can be made arbitrarily close to
+ 1 for all N > some No, by taking No large enough. [Roughly speaking,
the Gibbs overshoot has to be squeezed into the non-zero gap between t
and the position of the discontinuity, 0 or 772.] The Gibbs phenomenon is
characteristic of Fourier series at a discontinuity, its size being propor-
tional to the magnitude of the discontinuity. For the unit square-wave
function discussed here, its value 8 = 0.179... (see fig. 8.3 (d)).

8.3 Symmetry considerations

In the example of the previous section all the coefficients Am were shown
to be zero on account of the antisymmetry of the particular function/(f).
In general, if the given function f(t) possesses some degree of symmetry
about the point t = 0 or t = 7/4, then some economy of labour can be
affected in the calculation of the expansion coefficients.

Since cos (moot) and sin (mtot) are even and odd functions of / respec-
tively it is apparent by (8.11 a, b), that as general results:

I f / ( 0 is an odd function of t, i . e . / ( - 0 = -f(t), then
Am = 0 for all m. (8.16)

If f(t) is an even function of t, i.e. / ( - / ) — f{t\ then
Bm = 0 for all m. (8.17)

Nothing beyond the oddness or evenness of f(t) is required for these
results, since they each depend only on the fact that the integral from
— 7/2 to 7/2 of an odd and an even function multiplied together is neces-
sarily zero. A general function f(t) will usually be neither even nor odd
and so both Am and Bm are in general non-zero.

The consequences of symmetry or antisymmetry of f(t) about t = 7/4
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are a little harder to see, but the following argument gives the required
result.

Suppose f(t) has either even or odd symmetry about t = T/4, i.e.
J( — s) = ±f(s), where s has been written for t — T/4. Then according
to (8.11b) '

2 rr/2
= - f(t)gn(0dt9

l J-1

(8.18)
- T / 2

where gm(t) = sin (moot). Expressed in terms of s, gm becomes Gm(s) =
sin (mtus -f mwT/4), and, recalling that wT = 2n, we have

Gm(s) = sin cos cos sin

If w is even then sin (mn/T) = 0 and Gm(s) is an odd function of s, whilst
if m is odd cos (m?r/2) = 0 and Gm is an even function. For the evalua-
tion of Bm, the independent variable in the integral can be changed from
t to s. The limits of integration can in fact be left unaltered since / i s of
course periodic in s as well as t. Two particular combinations of circum-
stances of interest now arise,

(i) if /( — s) — f(s) and m is even [i.e. Gm is odd] then the integral is zero,
(ii) if / ( — s) = —f(s) and m is odd [i.e. Gm is even] then the integral is
zero.

- 7 7 2

-y + y

- r / 4 oft

7
— a ! +

r/4 \

8

772
t

Fig. 8.4 Contributions to B2 for a function (solid line) with symmetry about
/ = 774. The contributions are ± «, etc., and the dashed curve is sin (lot).

As a pictorial way of visualizing these results, fig. 8.4 illustrates case (i)
for some periodic function (solid line) which is symmetric about t = T/4
(but has no other particular symmetry). The function sin (2a>t) is also
shown (dashed line). The range — T/2 to T/2 has been marked off into
sections and labelled with the contributions each section would make to
the integral (8.18) for B2. Where the function and sin (2a>t) have opposite
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signs the contribution is negative. The quantities a, jS, y are positive but
their actual values are irrelevant for our purpose, the important point
being that because of the symmetry of the function about T/4 the contri-
butions cancel in pairs.

•6. By making a similar sketch for say sin (3tot) verify that the integral
does not necessarily vanish for odd values of m.

Corresponding results about the Am for functions with some symmetry
about t = T/4 can be obtained by considering the symmetry properties
of cos (mas + mtoT/4). These and the other results of this section are
summarized in the following table, where those coefficients Am and Bm

which are necessarily zero are indicated.

/even
/odd
/even
/odd

about t = 0
about/ = 0
about t = 774

about t = T/4

A2n

0

0

A2n + i

0
0

B2n
0

0

# 2 n

0

0 (8.19)

All of the above results follow automatically when (8.11 a, b) are evalu-
ated in any particular case, but a prior knowledge of them will often enable
some coefficients to be set to zero on inspection and so substantially re-
duce the computational labour. As an example the square-wave function
of equation (8.12) and fig. 8.2, is

(i) an odd function of t, and therefore all Am = 0, and
(ii) even about T/4 and therefore B2n = 0.

Thus we can say immediately that only sine terms of odd harmonics will
be present in the series and therefore need to be calculated; this is con-
firmed in expansion (8.14).

•7. Find, without calculation, which terms will be present in the Fourier
series for the periodic functions f(t) of period T, given in the range
-772 toT/2 by,

( i ) / = 2 f o r O ^ |; | < T/4,f= 1 for T/4 ^ \t\ < T/2;
= e x p [ - ( ; - 7 7 4 ) 2 ] ;

' = - 1 for - r / 2 ^ t < -3778 and 3J/8 < / < J/2, / = 1 for
— 7/8 < t < r/8, and the graph of/ is completed by two straight lines
in the remaining ranges so as to form a continuous function.
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8.4 Function continuation for fixed intervals

Even when a physically occurring function is not periodic, Fourier analysis
can in some cases still be usefully employed. If a function is defined only
over a fixed finite interval [for example, the displacement of a violin
string] and the physical behaviour of the system is required only in that
interval, then, by assuming that the function is mathematically defined
outside that interval in a suitably periodic way, a Fourier representation
of the function can be used. This is so, since (provided the function satis-
fies the conditions of statement (8.15)) everywhere within the interval
the Fourier series will certainly converge to the function, and it will also
do so at the end points if the choice of mathematical continuation makes
the function continuous there.

Rather than discuss the choice of continuation in general terms we will
use a specific example and treat it in some detail.

(a)

(b) ''

(c)

0

0 i

/

f 2 /

s'll

0 / 2/

Fig. 8.5 Plucked string with fixed ends: (a) the physical situation; (b)-(d) show
possible mathematical continuations; (c) is antisymmetric about 0 and
(d) symmetric.

Consider a string of length / which is plucked at some point along its
length, as in fig. 8.5 (a). Inside the range 0 to / [here distance x replaces
time] the displacement is given by f(x), whilst outside it is undefined.
The most natural assumption is that it is zero outside the range, but in
order to express the displacement as a Fourier series we must make the
function periodic. The choice of continuation is by no means unique.
Figure 8.5 (b) shows the most obvious periodic continuation, producing
a series of period /, but with no particular symmetry properties.

A second choice is shown in (c). Here the period is 2/ and so in the
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resulting series there will be twice as many wave numbers [spatial analogue
of frequencies] below any given wave number, but on the other hand the
function is now an odd function of x and so only sine terms will be present.
Since for analytically tractable cases all the required coefficients are thus
found from a single formula, this means a saving in computational labour.
Choice (d) is similar to (c) except that here only cosine terms appear.

Example 8.1. Find Fourier series to represent the displacement of the
string when it is pulled aside by y0 at the point x = 1/4.

The function to be represented is

y(x) = 4yox/li 0 ^ x < 1/4,

Solution 1. Take the continuation as in fig. 8.5 (b) and then the series is

„ °°

y(x) = — + 2 , [°n c o s (nkx) + bn sin (nkx)],
2 n = l

where k = lirjl and is the fundamental wave number.
Then, from (8.11) we have (taking the integral from 0 to / rather than

— //2 to 1/2 for convenience),

2 f//4 4vnx 2 Cl 4vn / x\
an = - -Z±- cos (nkx) dx + - - ^ 1 - - cos (nkx) dx.

I JO I I J'/4 3 \ / /

Using integration by parts the student should show that this gives

• 8 . an = y0 for n = 0,
= — 8j>0/3«27T2 for n odd,
= - \6yQ/2>n27T2 for n = 4m + 2,
= 0 for n = 4m (m ^ 0).

The values of Z?n are similarly obtained from

4 * T <** sin (Bfac) d, + 1 f' % (l - f ) sin (nkx) dx,
I JO I I Jj/4 3 \ / /

and are

• 9 . bn = 8yo(- ly^-vftn2-*2, for n odd,
= 0, for « even.
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The first few terms of the Fourier series thus obtained are

yo 8>>o T (2TTX\ [2TTX\ /4TTX\

y(x) = cos I 1 — sin I 1 + \ cos I I
2 3?r L \ I ) \ I I \ I I

+ icosl—J + is inl— J + -h cos ( - y I - •'' ' (8-20)

Solution 2. This time we continue the function as in fig. 8.5 (c) so that the
series contains only sine terms

00

y(x) = ^ £nsin(w/r'x),
n = 1

where here k' = 2TT/2/. The coefficients Bn are given by
2 r

i?n = — I y(x) sin («A: x) dx
2/ J-z

1 f'
= 2—1 y(x) sin (n/r'x) dx,

since the integrand is symmetric about x = 0.
Proceeding as before the integral is found to be

•10. Bn = 32y0 sin (mr/4)/3/i27r2.

This solution thus gives a series

•11. Show that the series corresponding to the continuation in fig. 8.5 (d)
is

, . Jo 8^0 <£ 4COS(WTT/4) - 3 - ( - l ) n

y(x) = > COS I I •
\ / /

(8.22)

It will be apparent to the reader who has carried through the calcula-
tions needed to obtain equations (8.20)-(8.22), that the introduction of
some symmetry, in the latter two, produces a significant saving in computa-
tional labour. It should be emphasized that all choices of continuation
give series which converge to the function in fig. 8.5 (a) in the interval
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0 to /, but of course differ widely outside that range. A further considera-
tion in the choice of continuation is the convergence of the resultant
series. We will again show this by considering a specific example.

Example 8.2. Find Fourier series to represent the function y(x) = x
in the range 0 ^ x < -n.

7T —IT

y''

(a) (b) (c)

Fig . 8.6 The function y = xin0^x<7T and two possible continuations.

The function is shown in fig. 8.6 (a). Two possible continuations with
period 2TT and fundamental wave number = 1 are shown in fig. 8.6 (/>)
and (c). Continuation (b) is symmetric and yields a cosine series with
coefficients

2 f*
in = — X 2

277 Jo

x cos (nx) dx

giving

= 0 for n even (n / 0),

= 77 for n = 0,

= — 4/nn2 for n odd,

77 4 ^ cos (2m + \)x

Z2 77mfo (2m + I)2

On the other hand continuation (c) yields a sine series

• 12. y(x) = 2 V ( - l ) ^ 1 ^

(8.23)

(8.24)

Again both series converge to y(x) = x in 0 < x < n, but (8.23) is
clearly preferable for numerical computation since (a) it has an n~2
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convergence whereas (8.24) converges only as n~ \ and (b) it does not show
the Gibbs phenomenon which accompanies the discontinuous function
produced by the continuation in fig. 8.6 (c). The choice of continuation
or period is not always as wide as this section may have suggested. For
some situations additional physical conditions at the ends of the given
interval limit or determine the allowed forms or periods. Examples of this
occur, for example, in connection with the Fourier solutions of flow and
diffusion problems considered in chapter 10.

8.5 Differentiation and integration

Since in a Fourier expansion both sides are functions of the independent
variable, it is natural to consider differentiation and integration with
respect to that variable. We will not prove the relevant properties but
merely state them and give an illustration.

(i) Differentiation. The Fourier series for the derivative f'(t) can be ob-
tained from the FS for f(t) by differentiating term by term,
(ii) Integration. The Fourier series for the indefinite integral F(t) =
jlf(s) ds can be obtained (to within a constant) by term by term integra-
tion of the FS for f(t).

In terms of formulae, f o r / ( 0 given by (8.7),
00

/ ' ( / ) = 2 [-na>An sin (nwt) + nwBn cos (nwt)], (8.25)
n = l

and

F(t) = — + f \— (1 - cos nwt) + — sin (n<ot)]> (8.26)
2 ^1lnw nco J

where the constant of integration is 2 (BJnoj) and is chosen here so as
to make F(0) = 0.

As shown in (8.25) each differentiation produces an additional factor
no) in the numerator of each term and consequently the convergence of
the series becomes less and less rapid. In any case, the process can only
be used as many times a s / ( 0 is itself differentiable.

As an example we may use the function already considered in fig.
8.6 (b) and given by (8.23) as

7T 4 * cos (2m + 1)JC

y(x) = y — (8.23 bis)
2 ^ 4 (2m + I)2

Differentiating term by term yields

^ = 1 f sin (2m + *)* (8 2
dx 77 m40 2m + 1
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This is just the series given in (8.14) with, as in this case, T — 2n, u> = 1
and a change of notation. The series (8.27) is thus that for the periodic
function g(x) = — 1, for — ir ^ x < 0 and g(x) = 1, for 0 < JC < TT; but
this is precisely the value of the derivative of the original function, thus
verifying the differentiation property for this case. The validity of the
integration procedure for this example worked backwards is obvious,
the constant of integration having to be determined separately.

•13. Using a set of tables evaluate the series (8.23) for the function
y(x) = x, by adding on successive terms. Use values of x of (say) rn/6
for r = (0, 6). Note how the factor (2m + I )" 2 produces rapid conver-
gence.

•14. Illustrate the limitations of the differentiation property by 'deducing'
from (8.24) that, if the differentiability or otherwise of the original func-
tion is ignored, then

1 + 1 + l + . . . = - i ,

•15. As far as possible, determine by inspection the form of the functions
of which the following are the Fourier series,

(i) cos 6 + £ cos 30 + 2V cos 50 4- • • •;

(ii) sin 0 + -^ sin 30 + T | T sin 56 + • • •;

i c o s ( — ) + i c o s ( — ) - •

[You may find it helpful to deduce from (8.23) that

and other summation relationships derivable from this.]

8.6 Fourier transforms

So far we have considered physically periodic functions and functions
defined in a fixed finite interval, in so far as representing them as super-
positions of sinusoidal functions is concerned. For the reasons discussed
at the beginning of the chapter it is desirable to obtain such a representa-
tion even for functions defined over an infinite interval and with no
periodicity. The representation we will obtain in this case is called the
Fourier integral or transform of the particular function, and is obtained
formally by letting the interval T of the Fourier series become infinite.
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Before carrying out this procedure properly, we give a qualitative outline
of what is involved.

The frequencies present in a Fourier series are all those of the form
a, = 27rn/Tfor all integral values of n. If Ttends to infinity the 'quantum'
of frequency 2-rr/T becomes vanishingly small and the spectrum of fre-
quencies allowed becomes a continuum. With this continuum of admitted
frequencies the Fourier sum goes over into an integral and the expansion
coefficients An, Bn or Cn become functions of the continuous variable w.
In previous parts of this chapter the symbol OJ has been used to indicate
the fixed quantity 2n/T, but in connection with Fourier transforms (FT)
it will be used as the continuous variable analogous to the integral variable
n of Fourier series. For passage from the series to the transform it will
be more convenient to use the exponential base set exp {ilirntlT) for the
series, rather than the sine and cosine set.

Turning the above discussion into equations we expect that on letting
T-> oo, expansion (8.8) will take on the general form

/ ( ' ) = * ! *(«)exp(i«Od«, (8-28)
J - oo

and that (8.11 c) for the series coefficients Cm will become an equation
for gicxj) of the form

g(aj) = K2 f fit)expi-ia>t)dt. (8.29)

Here Kx and K2 are constants and their relative values are clearly
arbitrary as any increase in Kx can always be compensated by a decrease
in K2. However since (8.29) can be substituted back into (8.28) and hence
/ ( / ) obtained on both sides of an equation, the product KXK2 is not
arbitrary.

Having sketched in outline the procedure to be followed in making
the transition to continuous frequencies and the Fourier integral, we
now carry it through in a quantitative way. We first note, for any function
fit) given by a series, the trivial result that

At) = f Fn=L 2 ^ Fn. (8.30)

For our particular case fig. 8.7 shows that 2 (2W^)^n has a readily
interpretable meaning. Plotting Fn as a function of n and o> = l-rrnlT
simultaneously, it is clear that ilTTJT)Fn is just the area of the «th rectangle
( — oo < n < oo) and that the sum approximates the area under the solid
curve. Expressed in terms of w it is f^ F(OJ) dw where now F is treated
as a function of cu. This now is not merely an approximate relationship
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Fig. 8.7 The relationship between the Fourier terms Fn for a function of period T
and the Fourier integral f F(w) dco of the function. The solid line shows
F(co).

but is, as T-> oo and consequently the widths of the rectangles tend to
zero, the mathematical definition of the integral. Recalling that in the
Fourier series Fn = Cn exp (Unfit/T) = c(w) exp (io>/), we obtain from
(8.8) that

fit)
T r

= 2^ J . t
exp

whilst from (8.11 c) we get

I fTI21 rT/2
= — I f(t)exp(-iwt)dt.

T J-TI2
Finally writing TC(W)I(2TT)112 = g(w) and letting r~>oo we obtain the
two defining relationships for the Fourier transform

AO =

and g(w) =

(2TT)1 / 2 J _ C

r
(2*y

g(w) exp (ic

f(t)exp(-iwt) dt.

(8.31)

(8.32)

Including the (2TT)~112 in the definition of g(w)9 whose mathematical
existence as T-> oo is here assumed without proof, amounts to choosing
the relative values of Kx and K2. The actual choice made is aimed at mak-
ing (8.31) and (8.32) as symmetric as possible. The function g(aj) is often
called the (amplitude) spectrum of /(*). It is assumed of course that
/ : . | / ( 0 | d/exists.

To illustrate these definitions we consider the following simple example.
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Example 8.3. Find the Fourier transform of the exponential decay func-
t i on / (0 = 0 for t < 0 a n d / ( 0 = exp ( - Xt) for t > 0 (A > 0).

Using definition (8.32)

g(oj) = (In) ~1/2 f exp ( - Xt) exp ( - iwt) dt

which is the required transform. [This may be verified by resubstitution
of the result into (8.31) to recover f(t)9 but evaluation of the integral
requires the use of complex variable contour integration (chapter 16).]

An important function which appears in many areas of physical science,
either precisely or as an approximation to a physical situation, is the
Gaussian or normal distribution. Its Fourier transform is of importance
both for itself and because, when interpreted statistically, it readily illus-
trates a form of 'Uncertainty Principle', independent of the introduction
of quantum mechanics.

We take the Gaussian distribution in the normalized form

which, interpreted as a distribution, has zero mean and a root-mean-
square deviation At = r. To find its Fourier transform or spectrum we
evaluate

g(a>) = (ITTT)-1 f exp (-t2/2r2) exp (-itot) dt
J- 00

= (2nr)^ f exp{--L[/2 + 2r2W
J- oo I 2 T 2

+ (r2io>)2 -

where the quantity — (r2io>)2/2r2 has been both added and subtracted
in the exponent in order to allow the factors involving the variable of
integration t to be expressed as a complete square. On bringing the last
[/-independent] factor outside the integral sign, the expression can be
written as

exp(-r2a>2/2)
1/2

1 f- r (mrVl
I exp dt.

7TY'2T J . . F L 2r2 J
* (2TT)

The last factor is in fact the normalization integral for the Gaussian
distribution (8.33) and equals unity, although to show this strictly, needs
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results from complex variable theory (chapter 16). That it is equal to
unity can be made plausible by a change of variable to s = t + ir2o>
and assuming the imaginary parts introduced into the integration path
and limits (where the integrand goes rapidly to zero anyway) make no
difference.

We are thus left with the result that

which is another Gaussian distribution with zero mean and an R.M.S.
deviation Acu = 1/T. The R.M.S. deviation in / was r, and so it is seen
that the deviations or 'spreads' in t and o> are inversely related by

AaiAt = 1, (8.35)

independent of the value of T. In the physical terms of time and frequency,
the narrower an electrical impulse (say) is in time the greater the spread
of frequency components it must contain. Similar physical statements
are valid for other pairs of Fourier related variables, such as spatial posi-
tion and wave number. In an obvious notation Ak Ax = 1.

Uncertainty relationships, as usually expressed in quantum mechanics,
can be related to the above if the de Broglie and Einstein relationships
for momentum p and energy E are introduced,

p = hk and E = hu>.

Here h is Planck's constant divided by 2TT. In quantum mechanics f(t)
is a wave function and the distribution of the wave intensity in time is
given by | / | 2 (also a Gaussian). Similarly the intensity distribution in
frequency is given by \g\2. These two distributions have R.M.S. devia-
tions of r/\/2 and l/(\/2r), giving together with the above relations

AE- At = \h and Ap- Ax = \h.

The factors of \ which appear are specific to the Gaussian form, but any
distribution f(t) produces for the product Aa>At a quantity Xh in which
A is strictly positive [in fact the Gaussian value of \ is the minimum pos-
sible].

Our second example, the diffraction grating is taken from optics and
illustrates a spatial Fourier transform. The pattern of transmitted light
produced by a partially opaque (or phase changing) object upon which a
coherent beam of radiation falls, is called its diffraction pattern, and in
particular, when the cross-section of the object is small compared with the
distance at which the light is observed the pattern is known as the Fraun-
hofer diffraction pattern. The essential quantity is the dependence of the
light amplitude (and hence intensity) on the angle the viewing direction
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makes with the incident beam. As will be seen, this is entirely determined
by the amplitude and phase of the light at the object, the intensity in a
particular direction being determined by the Fourier component of this
spatial distribution corresponding to a particular wave number directly
related to that direction.

Y

k
0

-Y

y

Fig. 8.8 Diffraction grating of width 2 Y with light of wave length In/k being dif-
fracted through an angle 6.

We consider a simple one-dimensional screen of width 2 Y on which
light of wave number k ( = 2TT/A) is incident normally (see fig. 8.8), and
suppose at the position (0, y) the amplitude of transmitted light is f(y)
per unit length in the ^-direction [f(y) may be complex]. Both the screen
and beam are assumed infinite in the z-direction.

At a position r' = (xf, y') with xf > 0 the total light amplitude will
be the superposition of all the (Huygen) wavelets originating from the
various parts of the screen. For large r', these can be treated as plane
waves to givef

A{j') =
- yi\

dy • (8.36)

where j is the unit vector in the ^-direction. The factor exp [ik' • (r' — yj)]
represents the phase change undergone by the light in travelling from the
point y\ on the screen to the point r', and the denominator represents the
reduction in amplitude with distance. [Recall that the system is infinite

t This is the approach first used by Fresnel. For simplicity we have omitted
from the integral a multiplicative inclination factor which depends on
angle 0, and decreases as 6 increases.
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in the z-direction and so the 'spreading' is effectively in two dimensions
only.]

If the medium is the same on both sides of the screen k' = {k cos 0,
k sin 0, 0), and if r' > F, expression (8.36) can be approximated by

exp(ik'r ') F
J- c

/(y) exp ( - ik sin 6 y)dy. (8.37)

We have used that/(y) = 0 for | y\ > Y, to extend the integral to infinite
limits. The intensity in direction 6 is then given by

(8.38)

The function/(o>) is an alternative notation for g(a>), as defined by (8.32).
The amplitude in a direction 6 is thus directly proportional to the Four-

ier component of the light amplitude distribution at the screen corres-
ponding to wave number k sin 6. This result is general and does not depend
upon any periodicity in the screen, but if the screen transmits light in
such a way that the amplitude is periodic in y, further, more specific,
results can be obtained.

-4a -2a 2a

Fig. 8.9 The amplitude of light transmitted through a uniformly illuminated dif-
fraction grating consisting of alternate transparent and opaque strips,
all of width a.

As a particular case consider a grating consisting of 4N equal strips
of width a (in the j>-direction), alternately opaque and transparent. Then,
if the grating is uniformly illuminated

f(y) = A when {In + \)a < y ^ {In + 2)a, -N ^ n < N,
= 0 otherwise,

as is illustrated in fig. 8.9. Writing k sin 6 = fi, we require to evaluate

/(y) exp ( - w) dy

= (2*)"1/2 Z g{y-2ar)exp{-iny)dy,
r= - N J- °o
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where g(u) = A for a ^ u < 2a and g(u) = 0 elsewhere. Now in the
integral for the rth term replace y — 2ar by u to give

= (27T)-1'2 fexp (-i2ar/i) f A exp (-i/xw) dw

/A cos O/z/2)

Hence,

/x2cos2(«W2)
with

, 2TT .
= k sin d = — sin 6.

This distribution has maxima and minima at those values of \L which
make la^N an odd or even multiple of TT/2. For large N these are very
closely spaced and effectively give a low intensity background. More
pronounced maxima of intensity occur where 6 is such that the denomi-
nator vanishes, namely \a\x. = \{2m + 1)TT, i.e. a sin 0 = ^(2m + 1)A with
m integral. The value of |/(/*)| under these conditions is

lim

lim
W-(2m + l

2aNA cos
(2TT)1/2 COS (a/x/2) - ifl/x sin (ofi/2)

4aNA
( 8 > 3 9 )

and as expected 1(6) is proportional to N2, i.e. for these values of 6 the
light from the 2N transparent slits interferes constructively.

The principal maximum occurs at /x = 0, with (using the procedure of
(8.39)) the value |/(0)| given by 2aNA/(27r)112. Hence the distribution has
a central maximum (6 = 0) with subsidiary maxima at angles arcsin
[(2m + l)A/2fl], with intensities reduced by factors of (2m + 1)2TT2/4 relative
to the central one. This is illustrated schematically in fig. 8.10 for a
moderate value of N. Naturally, for a diffracted spectrum to be ob-
servable the corresponding value of |0| must be <n/2.

8.7 Properties of Fourier transforms

As would be expected, Fourier transforms have many properties analogous
to those of Fourier series (section 8.5) with regard to the connection be-
tween transforms of related functions. Here they will only be listed, but
the reader should verify them directly by working from the definition of
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1(0)

- 5 - 3 - 1 0
2a sin 6

Fig. 8.10 Diffraction pattern from the grating discussed in the text.

the transform. As previously we denote FT{f(t)} by g(w). The unfamiliar
last term in (8.41) is discussed below.

•17. Differentiation

•18. Integration

FT{f'(t)} = ia>g(co). (8.40)

FT{j*f(s)ds} = - i a r ^ (o ) + 2irC8(w).
(8.41)

•19. Translation FT{f(t + a)} = exp (iaoj)g(oj). (8.42)

•20. Exponential multiplication FT{exp (at)f(t)} = g(w + ia). (8.43)

In (8.43) a may be real, imaginary or complex. The last term 2TTCS(W)

in (8.41) represents the FT of the constant of integration associated with
the definition of the indefinite integral. The function involved, S(a>), is
fully discussed in the next section.

To illustrate both a use, and the proof, of one of the above relations,
we may consider (8.43) in connection with an amplitude-modulated radio
wave. Suppose a message to be broadcast is represented by f(t). The
message can be added electronically to a constant signal a of such a
magnitude that a + f(t) is never negative, and the sum then used to
modulate the amplitude of a carrier signal of frequency wc. Using a com-
plex exponential notation, the transmitted amplitude is now

F(t) = A(a + / ( / ) ) exp (ioc/). (8.44)

Ignoring in the present context the effect of the term Aa exp (ia>ct)
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which gives a contribution to the transmitted spectrum only at OJ = a>c,
we obtain for the new spectrum

G(w) = (2TT)-1/2 A I f(t) exp (iojct) exp (-icot) dt

= (2n)-u* A r /( /) exp [-i(o - a,c)t] dt

J - 00

= Ag(w - Ole), (8.45)
which is simply a shift of the whole spectrum by the carrier frequency.
The use of different carrier frequencies enables signals to be separated.

8.8 The S-function

In the previous section the 8-function was referred to without having been
either introduced or defined; this was done so that related properties of
the FT could be presented together. In this section we remedy this omis-
sion.

Referring back to the defining equations (8.31) and (8.32) and substi-
tuting from one into the other we obtain the equation

/ ( / ) = (2TT)-1/2 I dw exp (itot)
J - 00

/•oo

x (2TT)"1/2 dt' exp (-iarf')/(O
J-oo

= P dr ' / (O x (27T)"1 f da,exp M * - /')]• (8.46)
J-00 J - 00

Here we have written the differentials immediately following the integral
signs to which they refer and in obtaining the second line from the first
we have assumed that the order of the integrations can be reversed.

Now, if it is recalled that f(t) is an arbitrary [but sufficiently well-
behaved] function, and also noted that in (8.46) the left-hand side refers
to a value of /a t & particular value of t, whilst the right-hand side contains
an integral over all values of the argument of/, then it is clear that the
expression

(277)"1 do>exp [io.(f - t')], (8.47)
J- oo

considered as a function of /', has some remarkable properties. The
expression is known as the Dirac S-function and is denoted by S(t — t').

Qualitatively speaking, since the left-hand side of (8.46) is independent
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of the value off(t') for all t' / / and/itself is an arbitrary function, the
8-function must have the effect of making the integral over t' receive
zero contribution from all t' except in the immediate neighbourhood of
X' = t, where the contribution is so large that a finite value for the integral
results. We are thus able to rewrite (8.46) in the following (somewhat
unrigorous) form

r
J — 00

r°° f f r t + €

J-oo Jt-€

where e is any quantity > 0. Expressed in another way,

8(/ - t')dt' = 1

if the range of integration includes /' = /.
The 8-function is a less obviously valid mathematical function than

most which are encountered in physical science, but its admissibility has
by now been well justified by pure mathematical methods and its utility
demonstrated in many applications, both idealized and practical. Its for-
mal properties may be summarized as,

(i) 8(JC) = 0 for x # 0,

C
J-a

S(x)dx = 1 , alia, b > 0,

(iii) \f(y) Kx - y) dy = f(x) if the range of
integration includes
the point y = x,

^ OyX — X\)
(iv) &(h(x)) =

t \h (xt)\

(8.48)

The last of these in which the x{ are those values of x for which h(x) = 0
and h\x) stands for dh/dx, may be verified by considering an integral of
the form \f(x) S(h(x)) dx and making a change of variable to z = h(x).

The S-function can be visualized as a very sharp narrow pulse (in space,
time, density, etc.) producing an integrated effect of definite magnitude.
For many practical purposes, effects which are not strict 8-functions may
be analysed as such, if they take place in an interval which is much shorter
than the response interval of the system on which they act. The idealized
notions of an impulse at time to,j(t) = J &(t — t0), or of a point charge
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q at position r0, />(r) = q S(r - r0) = ? S(x - x0) 8(y - y0) S(z - z0),
are examples of cases in which the S-function can also be employed, to
present a discrete quantum as if it were a continuum distribution.

Mention was made in the discussion of chapter 7 of the use of S-func-
tions in enabling the general solution of linear differential equations with
arbitrary driving terms, to be built up in terms of Green's functions. As
has been indicated, chapter 7 should be restudied after the methods of
this and the next two chapters have been assimilated.

We have already obtained one representation of the 8-function, as an
integral

8(0 = (2*)- exp (io>0 da>. (8.49)

Considered as a Fourier transform it shows that a very narrow time peak
at the origin results from the superposition of a complete spectrum of
harmonic waves, all frequencies having the same amplitude, and all
waves being in phase at t = 0. This suggests that the 8-function may also
be represented as the limit of the transform of a uniform distribution of
unit height as the width of the distribution becomes infinite.

/o(0

- Q n
-A

7T/Q

(a) (b)

Fig. 8.11 (a) A Fourier transform showing a rectangular distribution of frequencies
between ± ft; (b) the function of which it is the transform is proportional
to t~l sin Qt.

Consider the distribution shown in fig. 8.11 (a). From (8.31)

/ Q ( 0 = (2TT)"1/2 f 1 x exp(io>0do>

• 21.

(8.50)

sin
(2TT)I /2 at
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This function is illustrated in fig. 8.11 (b) and it is apparent that, for
large Q, it both gets very large at t = 0 and also becomes very narrow
about t = 0, as we qualitatively expect and require. We also note that
in the limit Q. -> oo,/Q(0, as defined in (8.50), tends to (2TT)1/2 8(t) by vir-
tue of (8.49). Hence we may conclude that the S-function can also be
represented by

sin (DO
8(0 = lim — - • (8.51)

Several other limit function representations are equally valid, e.g. the
limiting cases of rectangular or triangular distributions; the only essential
requirements are a knowledge of the area under such a curve and that
undefined operations such as differentiation are not inadvertently carried
out on the S-function whilst some non-explicit representation is being
employed.

8.9 ParsevaFs theorem

Using the result of the previous section we can now prove Parseval's
theorem,! which relates the integral of | / ( 0 | 2 over all t to the integral of
|g(o>)|2 over all to. When /and g are physical amplitudes these integrals
relate to the total intensity involved in some physical process.

From the complex conjugate of the definition of the inverse FT

/ * ( 0 = (27T)-1'2 f" g*(a / )exp(- ia , '0da/ .
J— oo

Substituting this and the definition into

/= r i/wi2d/= r At)f*(t)dt,
J — 00 J — 00

we obtain (all integrals are from — oo to + oo)

/ = f dt x (2T7)-1/2 f dwg(a>) exp (iwt)

X(2TT)-1/2 rda /g*(a / )exp(- ia /O

= I dwg(a>) I do>g*{w) x (ITT)-1 I d /exp [i(co - a>')t]

= I dtxi g(w) I doig*{oi')h{(x) — wf), using (8.47),

f This is a particular case of the more general Parseval's theorem, which,
for two functions fx{t) and/2(0, relates J f$f2 dt to J gt g* do>.
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= I da) g(w)g*(w), using (8.48 iii),

= f \g(«>)\2da>.

Hence we have Parseval's theorem, that

\g(<»)\2da>. (8.52)
J - 0

•22. Prove the corresponding result for Fourier series

d0 = 2 7 r 2 | C n | 2 . (8.53)
J-

It should be noted that the constants which appear in these relationships
depend upon the normalizations assumed in the definitions of the series
and transforms.

As an example of Parseval's theorem applied to series we may take our
previous example of a plucked string. Here f(x) is the displacement of
the string at position x, and |/(x)|2 is proportional to the stored energy
per unit length. On the other hand |Cn|2 is proportional to the stored
energy in the Azth mode. It is apparent that both jl

Q \f(x)\2 dx and 2n |Ci|2

represent (to within a constant) the total work done in producing the
given configuration.

For an example from Fourier transforms, we may consider a damped
oscillatory function

f(t) = 0, / < 0,
= exp ( - / / r ) sin (a>of), t ^ 0.

This could represent the displacement of a damped harmonic oscillator,
the current in an antenna, or the electric field of a radiated wave. The
transform is easily obtained

J- 0
/ / (Oexp(- ico/)d/

J- 00

1 [
+ O>0 — ( 1 / T ) CD — O)0 — O /

The physical interpretation of |g(co)|2 as the energy radiated or dissipated
per unit frequency interval is immediate, as is the identification of Par-
seval's theorem as a statement about the total energy involved.

As a by-product it may also be noted that, if rw0 > 1, then for OJ « u>09
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( « - + (1/r2)

which is the familiar form of the response of a damped oscillator to driv-
ing frequencies near to its resonant frequency. This indicates that the
radiated intensity spectrum from such a system is very similar to its
'response spectrum'.

8.10 Convolution and deconvolution

It is apparent that an attempt to measure the value of any physical quan-
tity as a function of some independent variable is, to some extent, rendered
less precise than is intrinsically possible by the finite resolution of the
measuring apparatus employed. In this section we will show how one of
the properties of Fourier transforms can be used to make allowance for
the resolution of the apparatus.

g(y)

I///
0 y—+

Fig. 8.12 Resolution functions: (a) ideal S-function; (b) typical unbiased resolu-
tion; (c) and (d) show biases tending to shift observations to higher values
than the true one.

Let g(y) be the resolution function of the apparatus. By this we mean
that the probability that a reading which should have been at y = 0 but
is recorded instead as having been between y and y -f dy, is given by
g(y)dy. Figure 8.12 shows qualitatively some possible functions of this
sort. It is obvious that a resolution such as (a), as much like a S-function
as possible, is desirable. Curve (b) is typical of the effective resolution of
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many measuring systems, having a finite spread but no significant bias.
The other two curves (c) and (d) show bias to various degrees.

Suppose that a physical quantity has a true distribution f(x) as a func-
tion of an independent variable x, but is measured by an instrument with
resolution function g(y); then we wish to calculate what the observed
distribution h(z) will be. The symbols x, y and z all refer to the same phys-
ical variable (e.g. length or angle), but are denoted differently because the
variable appears in the analysis in three different roles.

We first require the probability that a true reading lying between x
and x + dx (which has a probability f(x) dx of being selected) is moved
by the instrumental resolution through an interval z — x into an interval
dz wide; this is g{z — x)dz. Hence the combined probability that the
interval dx will give rise to an observation appearing in the interval dz
is f(x)dxg(z — x) dz, and combining together all values of x which
can lead to an observation in the range z to z + dz, we obtain

h(z) dz = dz f dxf(x)g(z - x). (8.54)
J- 00

The integral on the right-hand side is called the convolution of the
functions / and g and is often written f*g [not to be confused with
multiplication as denoted in some computer programming languages].
In words, our result is that the observed distribution is the convolution
of the true distribution and the experimental resolution function. This
can only result in the observed distribution being broader and smoother
than the true one and, if g(y) has a bias, in maxima normally being dis-
placed from their true positions.

It is obvious from (8.54) that if the resolution function can be repre-
sented by a 8-function, g(y) = S(y), then h(z) = /(z) and the observed
distribution is the true one.

•24. Show that convolution is commutative, i .e . /* g = g *f. (8.55)

The next step is to obtain a result from Fourier transform theory which
also involves convolution. To do this we consider the FT of a function
f(t) which can be written as a product f{t) = f1(t)f2(t). For such a func-
tion its FT is given by (all integrals are from — oo to oo)

Jg(a>) = Gir)-1'8 J Mt)f2(t) exp(-ia,f) dt

fda/gi(a/ ) exp (ia>7
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= (2*)-1 f &v'glW) j dt /2(0 exp [-i(« - my\

= &r)-»*gl*ga. (8.56)

Hence the FT of a product is equal to the convolution of the separate
Fourier transforms multiplied by (2TT)~1/2 (the Convolution theorem).

The similarity between (8.54) and (8.56) enables us to find a solution
to the following problem.

Example 8.4. An experimental quantity f(x) is measured by an instru-
ment with known resolution function g(y) to give an observed distribu-
tion h(z). How may/(x) be extracted from the measured distribution?

To save lengthy explicit formulae, we will use a symbolic notation. As
on a previous occasion denote the FT of a function k(t) [in our problem
t could be x, y or z] by £, a function of o>, and the inverse FT (equation
(8.31))ofy(co)by/=;(0.

Consider now, for the function k(t),

£ = (2TT)-1/2 f do>exp(iwt) x (2TT)"1/2 f dt'k(t')exp{-io>t')

= (In)-1 f df'Jfc(f') f dwQxp [iw(t - t')]

= f dt'k(t')8(t - O

= Kt),

i.e. k = k.

•25. Prove/ = / .

For the problem we have from (8.54) that

h=f*g.

Let us define F, G, H, all functions of to, such that

f=F, g = G, h = H, (8.57 a)

and consequently that

/ = / = / , etc. (8.57 b)
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Then, comparing the above with (8.56) (with the roles of t and to inter-
changed, i.e. in the form 'that if g(co) = gi(co)g2(<^), then /(/) =
(27r)-1/2/1(0*/2(0') we see that

(2TT)-II2H(W) = F(w)G(u>)

H(w) h
or F(a>) = (In)-^ -±-Z = (2*)-*'2 T •

G(w) g

Finally we obtain an expression for the required/in terms of the meas-
ured h and the known g as

/ \

/ = / = (27r)-1/a^V (8.58)

In words, ' to extract the true distribution, divide the FT of the observed
distribution by that of the resolution function for each value of w, and
then take the inverse FT of the function so generated'.

This explicit method of extracting true distributions is straightforward
for exact functions, but in practice, because of experimental and statis-
tical uncertainties in experimental data or because data over only a limited
range is available, it is often not very precise, involving as it does three
(numerical) transforms each requiring (in principle) an integral over an
infinite range.

•26. Treating the modulated signal of (8.44) as a product, use the Con-
volution theorem to obtain result (8.45).

8.11 Examples for solution

1. Represent a periodic rectangular voltage of magnitude V, period
7, and mark-space ratio 1/3, by a Fourier series. (The length of the
pulse is 7/3 and assume it occurs symmetrically about t = 0.)
Show that every third harmonic is absent.

2. A given function f{t) is periodic in t with period 2TT/OJ. It is re-
quired to approximate / ( / ) by a sine and cosine series fN(t) with a
finite number of terms TV, each of frequency w or one of its harmonics.
Show that for any N the mean square error is least when the coeffi-
cients of the finite series are equal to the corresponding Fourier
coefficients.

3. A function f(x) = exp (-x2) in 0 ̂  x < 1. Show how it should
be continued to give as its Fourier series, a series (the actual form is
not wanted) (i) with only cosine terms, (ii) with only sine terms,
(iii) with period 1, (iv) with period 2. Would there be any difference
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between the values of the series in (iii) and (iv), (a) at x = 0, (b) at
x = 1?

4. Electricity from the mains is supplied to a rectifying device in
order to produce a d.c. supply. The output voltage of the rectifier
is / ( / ) = cos wt if cos cot > 0, and / ( / ) = 0 otherwise. This voltage
is fed into a linear smoothing device which reduces any sinusoidal
wave of frequency nw by a factor 1/10/r2 (n ^ 0). What will be the
approximate amplitude of the voltage fluctuations in the final out-
put?

5. Laplace's equation V2u = 0 is to be solved in two-dimensional
polar coordinates (r, 6) for the interior of the unit circle, with the
boundary conditions

u(r = 1, 6) = sin 0, 0 ^ 6 ^ TT,

= 0, IT < 0 ^ 2TT.

The method of separation of variables (chapter 10) leads to a solu-
tion of the form

u(r, 6) = 2 r"lAn cos (nd) + Bn sin (nd)].
n = 0

Find the actual solution and compare it with that found in example
4 above. In both cases, by sketching the function to be represented
by the sum of harmonics of the basic frequency, verify that the series
found has the correct symmetry properties.

6. Demonstrate explicitly for the function defined in (8.12) that
Parseval's theorem is valid, namely

rr/2 *

| / ( / ) | a d / = T 2 |Cn |2.
J-TI2 n= - ao

[Use the result (8.14) and the one quoted in MS.] Show that a
filter which will pass frequencies only up to STT/T will still transmit
more than 90 per cent of the power in such a square-wave voltage
signal.

7. [To be treated by the reader without familiarity with quantum
mechanics as an exercise in Fourier transforms.]

In quantum mechanics two equal mass particles of momenta and
energies (py, Ej9j= 1, 2) and represented by plane wave functions!
<j>j = exp [i(pj-Tj — Ejt)] interact through a potential V =
^(ki — 1*21). The probability of scattering to a state with momenta
and energies (p ,̂ E]) is determined by the modulus squared of the

t Planck's constant h has been set equal to 2TT.
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quantity M = J" „/"„/"«, 0? K^ dri dr2 d/. The initial state
0j = ^!^2 and the final state 0f = </>i</>2 •

(i) By writing 1*1 + r2 = 2R and rx — r2 = r and assuming dri dr2 =
constant x (dR dr), show that M can be written as the product of
three 1-variable integrals.
(ii) From two of the integrals deduce energy and momentum con-
servation in the form of S-functions.
(iii) Show that M is proportional to the Fourier transform of V,
i.e. F(k) where 2k = (p2 - Pi) - (p2 - pi).

8. In the previous example, for some ion-atom scattering, V may
be approximated by V — |rx — r2| "

1 exp ( — \x\rx — r2|). Show
that the probability of scattering is proportional to (/x2 + A:2)"2

where k = |k|. [Use the direction of k as the polar axis for the r-
integration.]

9. [For those who have access to a computer.] Evaluate the series
of (8.24) for a number of values of x (say 20 values in 0 ^ x ^ TT)
and for an increasing number of terms, so as to demonstrate the
Gibbs phenomenon discussed in section 8.2.
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Partial differential equations

In this and the following chapter the solution of differential equations of
the types typically encountered in physical science and engineering is
extended to situations involving more than one independent variable.
Only linear equations will be considered.

The most commonly occurring independent variables are those des-
cribing position and time, and we will couch our discussion and examples
in notations which suggest these variables; of course the methods are not
restricted to such cases. To this end we will, in discussing partial differen-
tial equations (p.d.e.), use the symbols w, v, w, for the dependent variables
and reserve x, y9 z, t for independent ones. For reasons explained in the
preface, the partial equations will be written out in full rather than employ
a suffix notation, but unless they have a particular significance at any
point in the development, the arguments of the dependent variables, once
established, will be generally omitted.

As in other chapters we will concentrate most of our attention on
second-order equations since these are the ones which arise most often
in physical situations. The solution of first-order p.d.e. will necessarily
be involved in treating these, and some of the methods discussed can be
extended without difficulty to third- and higher-order equations.

The method of 'separation of variables' has been placed in a separate
chapter, but the division is rather arbitrary and has really only been made
because of the general usefulness of that method. It will be readily ap-
parent that some of the results of the present chapter are in fact solutions
in the form of separated variables, but arrived at by a different approach.

9.1 Arbitrary functions

As with ordinary differential equations (chapter 5), it is instructive to
study how p.d.e. may be formed from a potential set of solutions. Such
study can provide an indication of how equations obtained, not from
potential solutions but from physical arguments, might be solved.

For definiteness let us suppose we have a group of functions {Wf(x, y)}
involving two independent variables x and y. Without further specifica-
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tion this is of course a very wide set of functions and we could not expect
to obtain a useful equation which they all satisfy. However among these
functions are those in which x and y appear in a particular way; either
the function is a simple one, or it can be written as a function [however
complicated] of a single variable p which is itself a simple function of
x and y.

Let us illustrate this latter case by considering the three functions of
x and y

(0 u1(x,y) = x* + 4(x2y + y2 + 1),

(ii) u2(xi y) = sin x2 cos 2y + cos x2 sin 2y9

/..-x / x x2 + 2y + 2
(m) u3(x,y) = — — — • (9.1)

3x2 + 6y + 5
All are fairly complicated functions of x and y and a single differential
equation of which each one is a solution is not obvious. However, if we
observe that in fact each is a function of a variable p given by p — x2 H- 2y,
then a great simplification takes place. [It is not suggested that the exis-
tence and form of/? are apparent from the equations - the examples are
only given in order that possible methods of solving future given p.d.e.
can be indicated.]

Written in terms of/? the equations become,

(i) Wl(x, y) = (x2 + 2yf + 4 = p2 + 4 = /!(/?),

(ii) u2(x,y) = sinC*2 + 2y) = sin/? =/2(/?),

Now let us form, for each w{, the partial differentials dujdx and
In each case these are (writing both the form for general p and the one
appropriate to our particular value of p = x2 + 2y)

(9.3)

(9.4)

dtii

dx

dut

dy

From these

dp

dy

all

dut

dx

AMP)
dp

<*MP)
dp

i>P
dx

dp

dy

reference to

dp

dx

8Ui

dy

•2xf't, i

2fi, i-

the form

- 1,2, or 3,

= 1,2, or 3.

of the /( can be eliminated thus,
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or, for the specific form of/?,

du{ dui

r- = V- (9.5)
dx dy

It is thus apparent that not only the three functions wl5 u2, w3 of (9.1)
are solutions of p.d.e. (9.5), but so also is any arbitrary function f(p) in
which its argument p is given the value x2 + 2y.

• 1 . Verify by direct differentiation with respect to x and y that ul9 w2>
 W3

are solutions of (9.5).

•2. For the following functions,

(i) x\x2 - 4) + 4y(x2 - 2) + 4(y2 - 1),

(ii) x4 + 2x2y + y2,

x* + 4x2y + 4j>2 + 4
(iii) 2JC4 + *2(8.y + 1) 4- 8 /

(a) determine whether they can be written as functions of p = x2 + 2y
only,
(b) determine whether they satisfy p.d.e. (9.5) by direct substitution.

In summary, the first order p.d.e. (9.5) has as a solution any function
of the variable x2 + 2y\ this points the way for the solution of p.d.e. of
other orders as follows. It is not generally true that an nth order p.d.e.
can always be considered as resulting from the elimination of n arbitrary
functions from its solution. However, given specific equations, we may
try to solve them by seeking combinations of variables in terms of which
the solutions may be expressed as arbitrary functions. Where this is
possible we may expect n combinations to be involved in the solution.

Now let us start afresh and suppose we are presented with a first-order
p.d.e. as in (9.5), namely

du du /rk ,xx— = 0 . (9-6)
dx dy

As a possible solution try a form u(x, y) = f(p) where p is some, at
present unknown, combination of x and y. Then, just as in (9.3), du/dx =
f'(p)(dP/8x) and du/dy = f\p) (dp/dy), or, on substitution into (9.6),

^ - * ^ = 0. (9.7)
dx dy
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But now consider also the necessary condition for f(p) to remain con-
stant as x and y vary; this is that p remains constant. In mathematical
form therefore, / = constant implies that x and y vary in such a way
that

dp dpd £d + d ° (98)

Now the forms of (9.7) and (9.8) are very alike, and become the same if
we require that

dx dy

or, on integration, that

--^t2 = y + c. (9.9)

Identifying the constant of integration c with the constant — \p, we con-
clude in a deductive way that if x and y satisfy

p = x2 + 2y (9.10)

(but are otherwise arbitrary), then u(x, y) = f(p) is a constant.
Since (9.7) was obtained directly from (9.6), and condition (9.10) makes

(9.7) and (9.8) identical, we conclude that any u(x, y) which can be ex-
pressed in this way, as/(/?) with/? given by (9.10), must also be a solution
of (9.6).

Naturally, the exact functional form of / for any particular situation
must be determined by some set of boundary conditions. For complete
determination the conditions will have to take a form equivalent to speci-
fying w(x, y) along a suitable continuum of points in the ;t}>-plane [usually
along a line].

Finally, to go round the cycle once more, we can confirm this form of
solution by changing to a new variable

f = X2 + 2y (9.11)

when (9.6) becomes

du du

i.e. an identity - again showing that u is an arbitrary function of g.

9.2 General solutions and boundary conditions

Although most of the p.d.e. we will wish to consider in a physical context
will be of second order (i.e. containing d2u/dx2 or d2u/dx dy, etc.), we will
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use first-order equations to illustrate the general considerations involved
in the form of solution and in the matching of given boundary conditions.
The algebra can then be kept very elementary without losing any of the
essential features. A simple example will first be worked in order to give
a concrete illustration for the subsequent discussion.

Example 9.1. Find a solution of

du du
x — -2y — =0, (9.12)

dx dy
(a) which takes the value 2y + 1 on the line x = 1, and (b) which has
value 4 at the point (1, 1) [separately].

Comparing the given equation with that of (9.6) and following the
same arguments as in (9.7)-(9.9), we see that u(x, y) will be constant along
lines of x, y which satisfy

dx dy

x —2y
i.e. c = x2y.

Thus the general solution of the given equation is an arbitrary function
of x2y and the boundary value condition (a) shows that the particular
function required is

u ( x , y ) = 2(x2y) + 1 = 2 x 2 y + 1 . (9.13)

For boundary condition (b) some obvious acceptable solutions are

u(x,y) = x2y + 3, (9.14 a)
u(x,y) = 4x2y, (9.14 b)
u(x,y) = 4. (9.14 c)

Each is a valid solution [the freedom of choice of form arising from the
fact that u is specified only at one point (1, 1), and not (say) along a con-
tinuum as in boundary condition (a)] and all three are particular examples
of the general solution which may be written, for example,

u(x,y) = x2y + 3+g(x2y), (9.15)

where g = g(p) is an arbitrary function subject only to g(\) — 0. For
example, the forms of g corresponding to the particular solutions (9.14 a-c)
are g(p) = 0, g(p) = 3p - 3, g(p) •= 1 - p.

•4. Find the forms of g corresponding to the three solutions of (9.14),
if the general form is written as

(i) 4 + g(x2j), 00 xY + g(x2y).
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Let us now discuss these particular results in a more general form. It
is clear that so far as the equation is concerned, if w(x, y) is a solution
then so is any multiple of w(x, y) or any linear sum of separate solutions
Wi(x, y) 4- u2(x, y). However, when it comes to fitting the boundary condi-
tions this is not so - for example, although w(x, y) of (9.13) satisfies (9.12)
and takes the value 2y + 1 on the line x — 1, ux(x, y) = 4u(x, y) =
Sx2y + 4, whilst satisfying the p.d.e., has the value Sy + 4 on x = 1.
Likewise u2(x, y) = u(x, y) + f1(x

2y), for arbitrary / i , satisfies (9.12) but
takes the value 2y + 1 + /i(>>) on the line x = 1 and this is not the re-
quired form unless/x is identically zero.

Thus we see that when treating the superposition of solutions of p.d.e.,
two considerations arise, one concerning the equation itself, the other
connected with the boundary conditions. The equation is said to be
homogeneous if 4w(x, y) is a solution implies that \u(x, y), for any con-
stant A, is also a solution'. The problem is said to be homogeneous if,
in addition, the boundary conditions are such that if they are satisfied
by u(x, y) then they are also satisfied by \u(x, y). This last requirement by
itself is referred to as homogeneous boundary conditions.

As examples, (9.6) is homogeneous, but

du du
— - x— +au = g(x,y) (9.16)
ox oy

would not be unless g(x, y) were zero. Boundary condition (a) of example
9.1 is not homogeneous, but a boundary condition

u{x, y) = 0 on the line y = 4x~2 (9.17)

would be, since

u(x,y) = X(x2y - 4) (9.18)

satisfies (9.17) for any A [and being a function of x2y satisfies (9.12)].
The reason for discussing the homogeneity of the equation and its

boundary conditions is that there is a close parallel in linear p.d.e. of
the complementary function and the particular integral property of
ordinary differential equations. This is that the general solution of the
inhomogeneous problem can be written as the sum of any particular solu-
tion of the problem and the general solution of the corresponding homo-
geneous problem. Thus, for example, the general solution of (9.16)
subject to, say, the boundary condition W(JC, y) = h(y) on the line x = 0,
is given by

u(x,y) = i*x,y) + w(x,y), (9.19)
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where v(x, y) is any solution (however simple) satisfying (9.16) and such
that v(0, y) = h(y), and w(x, y) is the general solution of

dw dw
x — + aw = 0, (9.20)

dx dy

with w(0, y) = 0. If the boundary conditions are sufficiently completely
specified then the only possible solution of (9.20) will be H'(JC, y) = 0
and v(x, y) will be the complete solution by itself as in part (a) of the
example already worked.

• 5 . Find (the most general) solutions «(JC, y) of the following equations
consistent with the boundary values given.

du du
(i) y x — = 0 : u(x, 0) = 1 + sin x.

dx dy

du du
(ii) i — = 3 — : u = (4 + 3i)x2 on the line x = y.

dx- dy

du du
(iii) sin x sin y h cos x cos y — = 0:

dx dy
u = cos 2y on x + y = \TT.

du du
(iv) h 2x — = 0: w = 2 on parabola v = x2.

dx dy

du du
(v) y — ~~ x — = 3x:(a) u = x2 on the line y = 0,

dx dy (b) u = 2 at the point (1,0).
du du

(vi) y2 — + x2 — = x2y2(x3 + / ) :
dx dy

9.3 Second-order equations

The class of differential equations to be considered next, that of second-
order linear p.d.e., contains most of the important partial equations of
physics. Just to gain familiarity with their general form, some of the more
important ones will now be briefly discussed.

As indicated at the beginning of the chapter, commonly occurring
independent variables are those of position and time, and equations govern-
ing oscillations and waves are ready examples of the type to be considered.

The transverse vibrations of a uniform string held under a uniform
tension T satisfy the equation

dx2 T dt2 T
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where p is the mass per unit length of the string and/(x, t) is the external
transverse force per unit length acting on the string at time t. This equa-
tion is second-order (since the highest derivative present is the second),
but unless/(x, t) is zero, it is not homogeneous. As is probably familiar
to the student, the quantity T/p gives the square of the velocity of propa-
gation c of a transverse disturbance on a string when no external force
acts. In this circumstance the vibrations satisfy

£*_p£*_JLf«. (9>21b)
3x2 T dt2 c2 dt2

Free longitudinal vibrations of an elastic rod obey a very similar equation,

(9.22)
32u P d2u 1 32u

3x2 E dt2 c2 dt2

The only difference is that here p is the normal density (mass per unit
volume) and E is Young's modulus.

Closely similar examples, but involving two or three spatial dimensions
rather than one, are provided by the second-order equations governing
the vibrations of a stretched membrane subject to an external force
density f(x,y, t\

d2u d2u\ 32u

) f { ) { ) 3 )

(with obvious meanings for p and 7), and by Schrodinger's equation for
a non-relativistic quantum mechanical particle in a potential V(x, y, z),

d2u 32u\ 3u
+ ) K ( w ) M = i * l T (9-24)

The function u = u(x, y, z) in this latter equation is more usually de-
noted by ijj the quantum mechanical wave function; h is Planck's con-
stant divided by 2TT and m0 is the mass of the particle. This equation con-
tains four independent variables x, y, z and t, being second-order in the
three spatial ones and first-order in the time t. Further, the equation is
homogeneous, since if u(x, y, z, t) is a solution then so is Xu for any
constant A.

An important equation of the same general form as Schrodinger's
but occurring in the classical theory of flow processes is the heat diffusion
equation (or with a change of interpretation of the physical parameters,
the general diffusion equation). For a material of uniform thermal con-
ductivity k, specific heat s and density p9 the temperature u satisfies

82u 8u\ du
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[For the more general case the first term is div (kVu) and sp may depend
on x, y, z.] The second term/(x, y, z, t), representing the density of heat
sources, is often missing in practical applications, whilst in the simplest
cases the heat flow is one-dimensional resulting in the two-variable homo-
geneous p.d.e.

^ = ^ . (9.26)
dx2 k dt

9.4 Equation and boundary condition types

For the solution of actual physical problems any of the above equations
must be supplemented by boundary conditions, as we have seen in con-
nection with first-order p.d.e. Since the equations are of second order
we might expect that relevant boundary conditions would involve speci-
fying t/, or some of its first derivatives, or both, along a suitable set of
boundaries bordering or enclosing the region (of independent variables)
over which a solution is sought.

Three common types of boundary conditions occur and are associated
with the names of Dirichlet, Neumann and Cauchy. They are:

Dirichlet. u is given at each point of the boundary.

Neumann, du/dn, the normal component of the gradient of w, is given at
each point of the boundary.

Cauchy. Both u and du/dn are given at each point of the boundary.

We will not go into details,! but merely note that whether the various
types of boundary conditions are appropriate (in that they give a unique,
sometimes to within a constant, well-defined solution) depends upon the
type of second-order equation under consideration and on whether the
region of solution is bounded by a closed or open curve [or surface if
there are more than two independent variables]. A part of a closed
boundary may be at infinity if conditions are imposed on u or du/dn
there.

The classification of the types of second-order equation involving two
independent variables is carried out as follows. Let the second-order
linear p.d.e. be written as

d2u d2u d2u du du
A— + 2B — — + C — = function Ofx9y9—,—. (9.27)

dx2 dx dy dy2 dx dy

t For a discussion the reader is referred, for example, to Morse and Fesh-
bach, Methods of theoretical physics, Part I (McGraw-Hill, 1953) chapter 6.
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Then the equation type is said to be,

(i) hyperbolic if B2 > AC, ]
(ii) parabolic if B2 = AC, > (9.28)
(iii) elliptic if B2 < AC. J

This classification holds good even in cases where A, B and C are
functions of x and y (and not restricted to be constants), but in these
cases the equation may be of a different type in different parts of the
region. Furthermore the equation type is not changed if a new pair of
independent variables f and 77, given by a one-to-one mapping with
continuous first and second derivatives, is used instead of x and y (see
example 4 of section 9.14).

It can be shown (for example in the reference given) that the appropriate
boundary condition and equation type pairings are

Equation type Boundary Conditions

Hyperbolic Open Cauchy
Parabolic Open Dirichlet or Neumann
Elliptic Closed Dirichlet or Neumann.

As examples, the one-dimensional wave equation (9.21 b) is hyperbolic
[B2 - AC = - O X - l / c 2 ) > 0], the diffusion equation (9.26) is para-
bolic [B = C = 0], whilst Laplace's equation in two dimensions,

d2u d2u
+ — = o, (9.29)

dx2 dy2 K

is clearly elliptic. Extensions can be made to cover equations containing
more than two independent variables; a more detailed discussion is
called for but we will content ourselves with stating that the equations
just mentioned do not change their type when extended to two or three
spatial dimensions. Thus the 3D-Laplace equation is elliptic and requires
either Dirichlet or Neumann boundary conditions and a closed boundary
which, as we have already noted, may be at infinity if the behaviour of u
is specified there [most often u or dujdn -> 0 at infinity].

•6. Consider the following equations and situations in an entirely quali-
tative way and satisfy yourself in each case that the boundary curve in
the xt- or r0-plane should be as given, and that the stated boundary condi-
tions are appropriate.

(a) Equation (9.21 b) for transverse waves on a semi-infinite string the
end of which is made to move in a prescribed way. Open, Cauchy.
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(b) Equation (9.26) for one-dimensional heat diffusion in a bar of length
L which is given an initial temperature distribution and then thermally
isolated. Open, Dirichlet and Neumann.
(c) Laplace's equation in two-dimensional polars

d2u 1 du 1 d2u

~drT^ ~~rTr + ~? IW ~ '

for two long conducting concentric cylinders of radii a and b (b > a).
Closed, Dirichlet and Neumann, but not both simultaneously on any
part of the boundary.

9.5 Uniqueness theorem

Although we have merely stated the appropriate boundary types and
conditions for the general case, one particular example is sufficiently
important that a proof that a unique solution is obtained will now be
given.

This is Poisson's equation in three dimensions,

V2w= -/>/€€0, (9.30)

(for the electrostatic case) with either Dirichlet or Neumann conditions
on a closed boundary appropriate to such an elliptic equation. What will
be shown is that (to within an unimportant constant) the solution of
(9.30) is unique if either the potential u or its normal derivative is specified
on all surfaces bounding a given region of space (including, if necessary,
a hypothetical spherical surface of indefinitely large radius on which u
or du/dn is prescribed to have an arbitrarily small value).

Stated somewhat more formally this is:

Uniqueness theorem. If u is real and its first and second partial derivatives
are continuous in a region V and on its boundary S, and if V2w = / a n d
either u = g or du/dn = h on 5, where/, g and h are prescribed functions,
then u is unique (at least to within a constant).

To prove the theorem suppose that two solutions u = ux{x, y, z) and
u = u2(x, y, z) both satisfy the conditions given above. Then we will
show that wx = u2 + constant.

Denote the function ux — u2 by v. Then since V2wx = / = V2w2 in V
and either ux = g = u2 or cu^cn = h = cu2icn on S we must have

V2r = 0 in F, (9.31)

and,

either v = 0, or dv/dn = 0 on S. (9.32)
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Now if we use Green's first theorem (equation (4.12) of chapter 4) for
the case where both scalar functions are taken as v we have

r dv r
v — dS = I {vV2v + (Vv)2} dV.

Js dn Jv
(9.33)

But either part of (9.32) makes the left-hand side vanish, whilst the first
term on the right is zero because of (9.31). Thus we are left with

I (VvfdV = 0.

Since (Vv)2 can never be negative, this can only be satisfied if

Vv = 0

or v, and hence u± — «2, is a constant in V.
If Dirichlet conditions are given, then ux = u2 on (some part of) S

and hence everywhere in V. For Neumann conditions ux and w2 can differ
throughout V by an arbitrary (but unimportant) constant.

The importance of the Uniqueness theorem lies in the fact that it shows
that if a solution to a Poisson (or Laplace) equation can be found which
fits a given set of Dirichlet or Neumann conditions, by any means what-
ever, then that solution is the correct one, since only one exists.

This result is the mathematical justification for the method of treating
some problems in electrostatics by what is called the 'method of images'.
We will only discuss briefly the most familiar and elementary of such
problems (others will be found at the end of the chapter).

Example 9.2. Find the electrostatic potential associated with a charge e
placed at a point P a distance h above an infinite earthed conducting plane.

P .e

h

(a)

P .e

h

(b)

Fig. 9.1 A charge e placed at a distance h from an infinite earthed conducting plane:
(a) the physical system; (b) the image charge system.
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The physical situation is shown in fig. 9.1 (a). The potential ul9 due to
the charge, at the general point R (with position r) is straightforwardly

Mi =
47reo|r — r P

but the potential at R due to the induced charge on the plate is difficult
to calculate.

However posed as a problem in solving

V2w = -e 8(r - rP)/e0 (above the plane) (9.34)

with the boundary conditions u = 0 on the plane and at infinity in the
upper half-space, the solution can be obtained by another approach and
justified by the Uniqueness theorem.

Consider the system of charges shown in fig. 9.1 (b); the charge — e is
called the image charge t of the original. In the region V above the plane,
only the charge +e is present and so (9.34) is still satisfied; furthermore
the potential due to both charges -» 0 at infinity in the upper half-space
[actually in all directions] and on the plane is zero everywhere, since at
all points it receives equal and opposite contributions from the two equal
and opposite charges.

The potential is in fact

r — rP| 47T€0| r —
(9-35)

and although it has been obtained by unusual methods, it does satisfy
all the required boundary conditions as well as (9.34) in the appropriate
region and must therefore by the Uniqueness theorem be the required
solution.

Since the potential is unique, so also is the force field derived from it,
so that the force experienced by an infinitesimal test charge anywhere in
the upper half-space of the physical system is the same as it would ex-
perience in the presence of the original charge and its image [but of course
with the plane ignored].

It should be noted that (9.35) in no way represents the correct potential
below the plane in the physical situation of fig. 9.1 (a).

t The name * method of images' is somewhat misleading since no actual
method is involved. The appropriate set of image charges for any given
set of conductors is obtained either from experience or in an ad hoc way.
The only methodical aspect is the subsequent justification of the solution
by means of the Uniqueness theorem.
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9.6 Equations with constant coefficients

We now return to the problem of finding specific solutions to some types
of second-order p.d.e. and begin by seeking solutions which are arbitrary
functions of particular combinations of the independent variablesf (just
as in section 9.2 for first-order p.d.e.).

Clearly we can only hope to find such solutions if all the terms of the
equation involve the same total number of differentiations, i.e. all terms
are of the same order [although the number of differentiations with
respect to the individual independent variables may be different]. For our
present investigation this means that all terms are second order and that
no terms in du/dx, du/dy or u are present, and in addition the equation
is homogeneous.

Both the wave equation

(9.21 bis)

and the 2-D Laplace equation

d2u d2u

^ + ^ = ° ' (9.29 bis)

meet this requirement, but the diffusion equation

d2u so du /rk _ , . .
L _ = 0, (9.26 bis)

dx2 kdt
does not.

With both terms in each of (9.21) and (9.29) involving two differentia-
tions, by assuming a solution of the form u(x, y) = /(/?), where p is some
at present unknown function of x and y (or t), we may be able to obtain
a common factor f'\p) as the only appearance o f / o n the left-hand side.
Then, because of the zero on the right-hand side, all reference to the form
of/can be cancelled out.

We can gain some guidance as to suitable forms for the combination
p = p(x, y) by considering du/dx when u is given by u(x, y) = f(p), for
then

Clearly a second differentiation with respect to x (or y) is going to lead
to a single term on the right-hand side containing/only as / " , only if the

t In order to keep the level of presentation elementary, we have deliberately
omitted any explicit discussion of characteristics.
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factor dpjdx is a constant so that d2p/dx2 (or d2p/dy dx) is necessarily
zero. This shows that p must be a linear function of x. In an exactly
similar way p must be a linear function of y.

It is now possible to obtain a general form of solution for the restricted
type of second-order p.d.e. we have discussed, namely

d2u d2u d2u
A +2B + C = 0, (9.36)

dx2 dxdy dy2

A, B and C being constants. As in the preliminary discussion, we assume
a solution

(9.37)

where p is a linear function of x and y,

p = ax + by. (9.38)

Now proceeding to evaluate the terms ready for substitution in (9.36) we
obtain

du
~dx~ =

d2u

dx2

aj (/

\P),

du

d2u

dxdy
d2u

= abf"(p), — = b2f"(p),
dy2

and on substituting,

(Aa2 + 2Bab + Cb2)f"(p) = 0. (9.39)

This is the form we have been seeking, since now a solution indepen-
dent of the form of/can be obtained if we require that a and b satisfy

Aa2 + 2Bab + Cb2 = 0. (9.40)

From this quadratic, two values for the ratio [all that matters] of the
two constants a and b are obtained,

b/a = [-B ± (B2 - AC)1I2]/C. (9.41)

If we denote these two ratios by Xx and A2, then any functions of the two
variables

Pl = x + Xxy9

p2 = x + \2y, (9.42)

will be solutions of the original equation (9.36). The omission of the con-
stant factor a from p± and p2 is of no consequence since this can always
be absorbed into the particular form of any chosen function - only the
relative weighting of x and y in p is important.
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With /?! and p2 being different (in general), we can thus write the
general solution of (9.36) as

u(x, y) = Mx + X,y) + f2(x + A2j), (9.43)

where/i and/2 are arbitrary functions.

•7. Show that the alternative solution f"{p) = 0 of (9.39) only leads to
the trivial solution u(x, y) = gx + hy + k, for which all second deriva-
tives are individually zero.

•8. Show that the requirement that neither Ax nor A2 is a function of
x or y (so as to maintain the linearity of p in x and y) means that the
type of solution discussed is only appropriate to A, B and C all being
constants (or all having the same dependence on x and y).

By considering

£ d2u d2u f 3 d2u
6x 2y (y +ix) = 0,

dx2 dxdy V ' 2 } dy2

show that if only A2 were required to be a constant, this restriction would
not apply.

Example 9.3. Find the general solution of the one-dimensional wave
equation (9.21 b).

3 2 u 1 d2u _

~dx2 " "c» ' d t 2 ^

This equation is that of (9.36) with A = I, B = 0 and C = - 1/c2 and
so the two values of Ax and A2 are, from (9.41), — c and c. This means that
any arbitrary functions of the quantities

Pl = x - ct, p2 = x 4- ct,

will be satisfactory solutions of (9.21 b), and that the general solution
will be

u(x9 t) = fx(x - ct) + f2(x + ct). (9.44)

Since u(x, t) = fx(x — ct) represents the displacement of a string at
time t and position x, it is clear that all positions x and times t for which
'x — CMS the same' will have the same instantaneous displacement. But
'x — ct is the same' is exactly the relation between the time and position
of an observer travelling with velocity c along the positive ^-direction.
Consequently a moving observer sees a constant displacement of the
string, i.e. to a stationary observer, the initial profile u(x9 0) moves with
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velocity c along the x-axis as if it were a rigid system. Thus fx(x — ct)
represents a wave form of constant shape travelling along the positive
x-axis with velocity c, the actual form of the wave depending upon the
function fx.

Similarly the term /2(x + ct) is a constant wave form travelling with
velocity c in the negative x-direction. The general solution (9.44) repre-
sents a superposition of these.

If the functions fx and f2 are the same, then the complete solution
(9.44) represents identical progressive waves going in opposite directions.
This may result in a wave pattern whose profile does not progress and is
described as a standing wave.

As a simple example, suppose both f±(p) and/2(/?) have the form|

fip) = A cos (kp + e).

Then (9.44) can be written as

w(x, t) = v4[cos (kx — kct + e) + cos (kx + kct + e)]
= 2A cos (kx + e) cos (kct).

The important thing to notice is that the shape of the wave pattern is the
same at all times but that its amplitude depends upon the time. At some
points x which satisfy

cos(kx + e) = 0,

there is no displacement at any time. Such points are called nodes.
The type of solution obtained here is discussed further in chapter 10

on the method of separation of variables.

•9. Verify by direct differentiation and substitution that (9.44) is indeed
a solution of the wave equation (9.21 b).

Example 9.4. Find the general solution of the two-dimensional Laplace
equation (9.29),

d2u d2u
0

Following the established procedure, we look for a solution which is a
function f(p) of p = x 4- Ay. Substituting this we obtain directly (or by
means of (9.41)) that

1 + A2 = 0.

t In the usual notation, k is the wave number (=27r/wavelength) and kc = o>,
the angular frequency of the wave.
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This requires that A = ± i, and thus the satisfactory variables p are

P = x ± \y.

The general solution required is therefore, in terms of arbitrary functions
/ i and/2 ,

u(x9 y) = Mx + iy) + f2(x - iy). (9.45)

It will be apparent from these two worked examples that the nature
of the appropriate linear combination of x and y depends upon whether
or not B2 > AC. This is exactly the same criterion as determines whether
the p.d.e. is hyperbolic or elliptic. Hence, as a general result, hyperbolic
and elliptic equations of the form (9.36) have as solutions functions whose
arguments have the form x + ay and x 4- ifiy respectively, where a and
P themselves are real.

The one case not taken care of by this result is that in which B2 = AC,
i.e. a parabolic equation. In this case Ax and A2 are not different and only
one suitable combination of x and y results,

u(x,y)=f1[x-(B/C)y). (9.46)

To find the second part of the general solution we try [in analogy with
the corresponding situation in ordinary differential equations] a solution
of the form

u(x,y) = g(x,y)f2[x-(B/C)y].

Substituting this and using A = B2/C results in

• 10. [A - 4 + 2B7TT+ C ^ 4 /« = °« <9'47)
\ d2 d d z}
\ dx2 dx dy cyz}

There are several simple solutions of this equation for g, but as only one
is required we take the simplest non-trivial one

g(x,y) = x,

to give as the general solution of the parabolic equation

u(x, y) = fx[x - (B/C)y] + xf2[x - (B/C)y]. (9.48)

•11. Convince yourself that alternative solutions of (9.47), e.g. g(x, y) = y9

do not lead to a solution which is not represented by (9.48).

To complete this section we will give alternative derivations of the
general solutions (9.43) and (9.48) by expressing the original p.d.e. in
terms of new variables before solving it. The actual solution will then



9.6 Equations with constant coefficients 243

become almost trivial; but, of course, it will be recognized that suitable
new variables could hardly have been guessed if it were not for the work
already done. This does not detract from the validity of the derivation
to be described, only from the likelihood that it would be discovered by
inspection.

We start again with (9.36) and change to new variables

f = * + A^, rj = x + \2y. (9.49)

With this change of variable, we can replace the differentiations in (9.36)
by

d 3 d

8 8 8
— = AX— + A 2 - - (9.50)
0y Of or;

When this is carried out, and the fact that

A + 2BXt + CXf = 0 , / = 1,2, (9.51)

is used, (9.36) becomes

82u
• 12. [2A + 2B(X1 + A2) + 2CA,A2] — — = 0. (9.52)

eg crj

Then, providing the factor in square brackets does not vanish, we obtain

d2u

d£ d-q

which has as its successive integrals

du
— = Hv) (9.54)

and

u(tv) =f(v) +g(f). (9-55)

This is just the same as (9.43)

u(x, y) = g(x + A^) + f(x + \2y). (9.56)

•13. Verify that the condition that the factor in square brackets of (9.52)
does not vanish is that B2 # AC, i.e. that the original equation is not
parabolic.
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If the equation is parabolic (B2 = AC), instead of (9.49) we use new
variables

£ = x + Xy, r) = x9 (9.57)

and (9.36) reduces to [recall A = -(B/C)]

82u
• 14. A— = 0. (9.58)

3r)2

Two straightforward integrations give as the general solution of (9.58)

u(i,v) = rif({) + g(i)9 (9.59)

which in terms of x and y has exactly the form of (9.48)

u(x9 y) = xf(x + Ay) + g(x + Xy). (9.60)

This concludes the alternative and independent derivations of the
general solution of homogeneous p.d.e. with constant coefficients of the
type given by (9.36).

Example 9.5. u(x, y) satisfies

d2u d2u d2u
3 i 2 = 0

dx2 dxdy dy2

Find the value of w(0, 1) if u = —x2 and du/dy = 0 for y = 0 and all x.
From our general result, functions of p = x + Xy will be solutions

provided that

1 - 3A + 2A2 = 0,
i.e. A = 1 o r * .

The general solution is thus

u(x, y) = fix + y) + g(x + iy). (9.61)

The boundary condition u(x, y) = — x2 on y = 0 implies

-P*=f<J>) + g(p), for all p9 (9.62)

whilst du/dy = 0 when y = 0 yields

0=f(p) + ig'<j>), for Blip. (9.63)

Differentiating (9.62) with respect to p and subtracting from (9.63)
gives

2p = -
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or that

g(p) = -2p2 + k.

Equation (9.62) then gives that

f(p) = P
2-k

and thus that

"(•*, y) = f(x + y) + g(x + i.y)
= (* + yf - k - 2(x + \y)2 + k

Finally at the point (0, 1),

u(0, 1) = h

•15. Solve example 9.5 if the boundary condition is u = du/dy = 1,
when y = 0 (for all x).

•16. Solve

d2u d2u d2u

'dx1 + 2dxdy ^~df = ° '

subject to u = 0 when x = 0, and u = x2 when v = 1.

9.7 The wave equation

We have already found the general solution of the one-dimensional wave
equation as (9.44)

u(x, t) =f(x - ct) + F(x + ct)9 (9.64)

with/and F arbitrary functions. However, the equation is of such general
importance that further discussion will not be out of place. Let us see
how to obtain its solution if we are given initial conditions (boundary
conditions) in the general form:

initial displacement w(x, 0) = <£(*)> (9.65 a)

initial velocity ^ ^ = #x ) , (9-65 b)
dt

for all parts of a string whose transverse displacement is u(x, t). The func-
tions <f>(x) and I/J(X) are given and describe the displacement and velocity
of each part of the string at the arbitrary time / = 0.

It is clear that what is needed are the particular forms of the functions
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/ and Fin (9.64) which takes the values given by (9.65) aW = 0. This means
that

<j>ix) = u(x, 0) = f(x - 0) + Fix + 0) (9.66 a)

and ifjix) = dJ^^) = -cfix - 0) + cF\x + 0). (9.66 b)

It should be noted that fix - 0) stands for dfip)/dp evaluated, after the
differentiation, at /? = x — c x 0 and likewise with F\x + 0).

Looking on the two left-hand sides as functions of p = x + ct, but
everywhere evaluated at t = 0, we may integrate (9.66 b) between an
arbitrary [and irrelevant] lower limit p0 and an indefinite upper limit p
and obtain

+ K = -fip) + F(p), (9.67)

the constant K depending upon p0.
Adding and subtracting (9.66 a) [with x replaced by p] and (9.67), we

can establish the forms of the functions/and F as

f(p) = ^ r " w- [P ̂  Aq ~ T (9-68

2 2c JP0 2

and F(/7) = ^ + 1 f' ftq) dq + | • (9.68 b)
2 2c Jp0 2

Adding (9.68 a), with p = x - ct, to (9.68 b), with /? = x + c/, gives
as the solution to the original problem (equation (9.64))

uix, t) = i[<Kx - ct) + <f>ix + ct)] + ^ - [X + Ct +iq) dq. (9.69)

Notice that all dependence on p0 has disappeared.
Each of the terms in (9.69) has a fairly straightforward physical inter-

pretation. In each case the \ represents the fact that only half of a dis-
placement profile which starts at any particular point on the string
travels towards any other position x, the other half travelling away from
it. The first term i<f>ix — ct) arises from the initial displacement at a dis-
tance ct to the left (negative direction) of x which travels forward arriving
at x at time t. Similarly the second contribution is due to the initial dis-
placement at a distance ct to the right of x.
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The interpretation of the final term is a little less obvious, but viewed
in the form

•j_ Ctf = x/c+t (initial transverse velocity evaluated at a
2 )t' = xic-t distance ct' from x) df', (9 '7°)

it clearly represents the accumulated transverse displacement at position
x, due to the passage past x of all parts of the initial motion whose effects
can reach x in a time t, both backward and forward travelling.

The extension to the three-dimensional wave equation of solutions of
the type we have so far considered presents no serious difficulty. In Car-
tesian coordinates the 3-D wave equation is

d2u d2u d2u 1 32u
+ — + = 0. (9.71)

dx2 dy2 dz2 c2 dt2

In close analogy with the 1-D case we try solutions which are functions of
linear combinations of all four variables

p = lx + my + nz + fit. (9.72)

It is clear that a solution of (9.71), u(x, y, z, t) = /(/?), will be acceptable
provided that

(/2 + m2 + n2 - flc*)f*{p) = 0. (9.73)

Thus, as in the 1-D case,/can be arbitrary provided that

I2 + m2 + n2 = IL2\C2.

Using the obvious normalization, we take /x = ± c and /, m, n three
numbers such that

I2 + m2 + n2 = 1.

In other words (/, m, n) are the Cartesian components of a unit vector
A, which points along the direction of propagation of the wave. The quan-
tity p can be written in terms of vectors as the scalar expression p =
ftr ± ct, and the general solution of (9.71) as

u(x, y, z, 0 = w(r, t) = Mft-r - ct) + /2(ft-r + ct), (9.74)

where ft is any unit vector. It would perhaps be more transparent to write
ft explicitly as one of the arguments of u.

9.8 Particular integrals

As was discussed in section 9.2, in order to obtain the general solution of
a p.d.e. a particular integral is needed. [For the homogeneous problem -
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equation and boundary conditions - it is formally a solution which is
identically zero.]

We will not discuss at length general methods for obtaining such par-
ticular integrals, but merely note that some of those available for ordinary
differential equations can be suitably extended,! and give an example
using D-operator methods.

Example 9.6. Find the general solution of the equation

d2u d2u
— + —2=6(x + y)- (9.75)
dx2 dy2

Following our previous methods and results, the complementary func-
tion is u(x, y) = fi(x + \y) + f2(x — iy), and only a particular integral
now remains to be found.

One solution [perfectly adequate in itself] is obvious by inspection,
namely

u(x,y) = x3 + y3. (9.76)

However we will pretend this has not been noticed and proceed by a
formal D-operator method.

Let the operator Dx stand for d/dx and Dy for d/dy. Then a solution
of (9.75) can be written formally as

Using methods analogous to those of chapter 5 this can be evaluated as
follows [recall D" 1 represents an integration]

u(x,y) = — [1 -f (Dy/Dx)]~1(x + y)

= — (x2

= x3 + 3 ^ 2 .

t See for example Piaggio, Differential equations (Bell, 1954), pp. 175 et seq.
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Since we require only one particular solution, all arbitrary functions of
y have been set equal to zero when integrating with respect to x.

Thus the general solution of (9.75) can be written

u(x, y) = Mx + iy) + f2(x - iy) + x3 + 3yx2.

•17. Show that this result is not in contradiction with the result (9.76)
obtained by inspection; i.e. show that the difference between x3 + y3

and x3 + 3yx2 can be written in the form g(x 4- iy) + h(x — iy).

9.9 The diffusion equation

One important class of second-order p.d.e. which we have not yet con-
sidered is that in which the second derivative with respect to one inde-
pendent variable appears, but only the first derivative with respect to
another [usually time]. This is exemplified by the one-dimensional diffu-
sion equation of section 9.3

ox- " = W (9J1)

in which K is a constant with the dimensions of length2 x time"1. The
physical constants which go to make up K in a particular case depend
upon the nature of the process (e.g. solute diffusion, heat flow, etc.) and
the material being described.

With (9.77) we cannot hope to successfully repeat the method of sec-
tion 9.6, since now u(x, t) is differentiated a different number of times on
the two sides of the equation. Any attempted solution in the form w(x, /) =
f(p) with p = ax 4- bt, therefore, will only lead to an equation in which
the form of/cannot be cancelled out. Clearly we must try other methods.

Solutions may be obtained using the standard method of separation
of variables and this is discussed in the next chapter.

A simple solution is also given if both sides of (9.77), as it stands, are
separately set equal to a constant, say «,

f^-Jl, (9.78 a)
dx2 K

— = « . (9.78 b)

These have general solutions

2 K

and u = at + k(x),
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which may be made compatible with each other if g(t) is taken as a con-
stant (or zero), h(t) taken as at, and k(x) as (a/2K)x2 + gx. An acceptable
solution is thus

1 a
u(x, t) = x2 + gx + «r + constant. (9.79)

2 Â

For an example of the use of this form of solution see example 15 of sec-
tion 9.14.

Let us now return to seeking solutions of equations by combining the
independent variables in particular ways. Having seen that a linear
combination of x and / will be of no value, we must search for other pos-
sible combinations. It has already been noted that K has the dimensions
of length2 x time"1 and so the combination of variables

, - £ . (9.80,

will be dimensionless. Let us see if we can mathematically satisfy (9.77)
with a solution u(x, t) which has the form u(x, t) = f(rj) first, and leave
its interpretation until afterwards.

Evaluating the necessary derivatives we have

— = / (v) T- = / (v) — 'dx dx Kt

du x2

— = -f(r)) (9.81)
dt Kt2

Substituting from (9.81) into (9.77) we find the new equation can be
written entirely in terms of 77,

• 18. 47?/"^) + (2 + v)fXri) = 0. (9.82)

This is a straightforward ordinary differential equation which can be
integrated (with a minimum of explanation) as follows,

A
-I7
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rv
f(v) = A \ fi ~1/2 exp ( - i/x) d/n, (9.83)

with rj given by (9.80).

If we now write this in terms of a slightly different variable

Tj112 X

^ = ^ = ^ ^ 7 7 ^ ' (9-84)

then df = i^- 1 / 2 d^, and (9.83) takes the form

u(x, t) = f{rj) = g(0 = B \ exp ( - v2) dv. (9.85)

Here B is a constant and it should be noticed that x and t only appear on
the right-hand side in the indefinite upper limit £, and then only in the
combination xt~112. This kind of function of x and t may be slightly
unfamiliar but is in essence no different from (say) sin (x/Kll2t112). If f0
is chosen as zero, it is, to within a constant factor,f the error function
Erf (x/2(Kt)112), which is tabulated in many books of tables. Only non-
negative values of JC and t are to be considered here so f ^ £0.

Next let us try to determine what kind of (say) temperature distribution
and flow this represents. For definiteness we take £0 = 0. Firstly since
u(x, t) in (9.85) only depends upon the product xt ~1/2, it is clear that all
points x at times t such that xt~112 have the same value, have the same
temperature. Put another way, at any specific time /, the region having a
particular temperature has moved along the positive x-axis a distance
proportional to the square root of the time. This is a typical diffusion
process.

It will also be noticed that at t = 0, f -> oo, and u becomes quite inde-
pendent of x (except perhaps at x = 0); the solution then represents a
uniform spatial temperature distribution. On the other hand at x = 0,
u(x, t) is identically =0 for all t.

•19. In order to get a feel for the temperature distribution described by
(9.85), use axes as illustrated in fig. 9.2 and roughly sketch some of the
contours of equal temperature. (Do not worry about the overall normaliza-
tion.)

A calculation about a resistive cable involving this general kind of solu-
tion will be found in the exercises at the end of this chapter.

t Take B = 2TT~112 to give the usual error function normalized so that
Erf(oo) = 1.
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X, t)

t o
0

Fig. 9.2 Axes for exercised 19.

Example 9.7. An infrared laser delivers a pulse of energy (heat) E to a
point P o n a large insulated sheet of thickness b, thermal conductivity k,
specific heat s and density p. The sheet is initially at a uniform tempera-
ture. If w(r, t) is the excess temperature, a time t later, at a point a dis-
tance r{^>b) from P, then show (by substitution in the appropriate equa-
tion) that a suitable expression for u is

u(r,t) = -exp(-r 2 /2 j3O

where a and j8 are constants.

(9.86)

(i) Show that p =
(ii) Show that, as expected, the total heat in the sheet is independent of
time and hence evaluate a.
(iii) Show that the total heat which ultimately flows past any radius r
is E.

The equation to be solved is the heat diffusion equation

r, 02u(r, t) = sP dt
(9.87)

Since we only require the solution for r > b we can treat the problem
as two-dimensional with obvious circular symmetry. We thus need only
the r-derivative term in the expression for V2 giving

k d / du\ du
r — = so —»

r dr\ drj H dt
(9.88)

where now w(r, t) = w(r, t).

(i) Substitution of the given expression (9.86) into (9.88) shows that it
is a solution provided that
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•20. p = Ikjsp.

(ii) The total heat in the system at any time / is

l-rrrdrbps- w(r, t) = 2-nbpsa - exp ( - r2/2^t) dr
Jo Jo t

• 21. = I-Trbpsafi.

This is independent of / and must equal the total heat input E. Thus

E E

Anbk

(iii) The total heat flow past a radius r is
f00 du{r,t) Ca

- k l-nrbdt = -
Jo fr Jo

(-r)

47r6fo #
x exp(-r 2 /2£0-df

•22 . =£[exp(-r2 /2i3r)]0
o

= E for all r.

9.10 Superposing solutions

The solution of this last example and of the result (9.85) are worth a little
further discussion. It will be clear from the way it was derived and from
the results (ii) and (iii) of example 9.7, that (9.86) gives the temperature
response of the sheet to a heat impulse of magnitude E at position r = 0
and time f = 0. In fact, in mathematical terms it is the response to a h-
function input, i.e. it is the solution of (see (9.25)),

kV2u + E 8(r) 8(t) = sp du/dt.

In the theory of ordinary differential equations, such a response function
was called the Green's function and the same name is used here [although
now we have two independent variables].

The point of this observation is that, since the diffusion equation
without internal heat sources is linear, the temperature distribution
w(r, t) in space and time can be built up for an arbitrary energy input
pattern by superposing the corresponding Green's function solutions.
This is an exact parallel of the procedures of chapter 7. In practice, the
labour of computing superposed solutions is generally rather large and
makes the method unattractive.
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Equation (9.85) does not give the response to a S-function initial con-
dition, but rather that to a 'step function' initial condition. As we have
noted, it corresponds to the situation of a long one-dimensional conduct-
ing bar which is initially everywhere (all x) at the same temperature
[oc B]9 but one end of which (x = 0) is maintained permanently (all t)
at zero temperature, w(0, /) = 0. The heat subsequently flows out of the
bar at the x = 0 end and ultimately the temperature at all points of the
bar falls to zero (f -> 0 as / -> oo for all x > 0).

It is clear that in principle any initial temperature distribution in the
bar can be represented as a superposition of such step functions (using
different lower limits £0 corresponding to different 'lower ends' x0 of
each uniform temperature distribution). Like our other superposition
method this approach is usually cumbersome in practice [the superposition
becomes an integral for any smoothly varying temperature distribution]
and we will not attempt to take it any further in this book.

•23. Confirm that your sketched contours of M9 are in agreement with
the physical description in the last paragraph but one.

•24. Confirm that u(x, t) given by (9.85) with £0 = 0, B = 2TT-1I2T, and
x no longer restricted to be positive, is the appropriate temperature dis-
tribution to describe the situation in which two semi-infinite conducting
rods, initially at temperatures +7" and — 7", are brought together, end to
end, at time / = 0.

9.11 Laplace transform methods

To conclude our treatment of the diffusion equation for this chapter, we
will demonstrate, by means of an example and a brief discussion, its
solution using integral transform methods - in particular the Laplace
transform.

Example 9.8. A semi-infinite tube of unit cross-section initially contains
pure water. At time t = 0, one end of the tube is put into contact with a
salt solution and maintained at a constant concentration u0. Find the
total amount of salt that has diffused into the tube at time /, if the dif-
fusion constant is K.

The concentration u(x, t) at time t and distance x from the end of the
tube satisfies

32u du
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This equation has to be solved subject to the boundary conditions
w(0, t) = u0 for all t and u(x, 0) = 0 for all x > 0.

It will be recalled from chapter 5 that one of the major virtues of
Laplace transformations is the possibility of replacing derivatives of
functions by simple multiplication by a scalar. In our equation, if the
derivative with respect to time were so removed, it would contain only
differentiation with respect to a single variable; let us therefore take
the Laplace transform of (9.89) with respect to t,

d2uf00 d2u C^du
K—exp(-st)dt = \ — exp(-50dr.

Jo dx2 Jo dt

Denoting the transform of u(x, t) by U(x, s) and using result (5.65) to
evaluate the right-hand side, together with u(x, 0) = 0 [or by integrating
directly by parts], we then obtain

a2 u
K —=sU. (9.90)

dx2

Notice that, as indicated, the differentiation 82/dx2 can be brought out-
side the integral sign since the integration is with respect to / and does
not affect x.

The solution of (9.90) is immediate

U(x9 s) = A exp [(s/K)ll2x] + £exp [-(s/K)ll2x],

At x = oo, u(x, t) must =0 for all finite / and so £/(oo, s) must =0 also;
consequently we must require that 4̂ = 0. The value of B is determined
by the need for w(0, t) = u0 and hence that [see table 5.1, result 1]
U(0,s) = uQs-\

We thus conclude that the appropriate expression for the Laplace
transform of w(x, /) is

U(x, s) = - exp 1̂ - y jrj. (9.91)

To obtain u(x, t) from this would require the inversion of this trans-
form - a task which we have seen in chapter 5 is generally difficult and
requires a contour integration. However in the present problem an alter-
native method is available.

Let w(t) be the amount of salt that has diffused into the tube in time t,
then

H<0 = f w(x, 0 dx,
0
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and its transform

W{s) = f exp (-st) dt I u(x, t) dx,
Jo Jo

/•CO /»CO

= \ d* \ u{x, t)exp(-st)dt
Jo Jo

= f U(x9 s) dx
Jo

• 25. = u0K
ll2s-312 .

Referring to result 11 of table 5.1, this shows that w(t) = 2(Kl7r)112 x
u0t

112, which is thus the required expression for the amount of diffused
salt at time t.

This example shows that in some circumstances the use of a Laplace
transformation can greatly simplify the solution of a p.d.e. However it
will have been observed that (as with ordinary d.e.) the easy elimination
of some derivatives is usually paid for by the introduction of a difficult
inverse transformation. It need hardly be pointed out that the boundary
conditions must be capable of being incorporated into the transform in
a manageable way.

9.12 The telegraphy equation

So far we have considered only equations in which there is a single depen-
dent variable, but in the theory of transmission lines, for example, two
dependent variables are present, the voltage and the current, both being
functions of position and time.

Suppose a line has resistance R, inductance L, capacitance C, and leak-
age conductance G, all per unit iength. We may construct the (coupled)
p.d.e. satisfied by the voltage v(x, t) and current /(*, t), by considering
a small length 8x of the line (AB in fig. 9.3) and working to first order in
Sx. Fig. 9.3 shows the equivalent electrical network for this small (infini-
tesimal) length of line and the currents and voltages at points A and B
[the conductor FD may be arbitrarily assumed at zero voltage].

Considering the voltage change along AB immediately leads to

di dv
Rihx + L — hx = 8x.

dt dx

The currents flowing (towards FD) through the capacitance and leakage
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Fig. 9.3 Equivalent circuit for a length bx of a transmission line of resistance /?,
inductance L, capacitance C and leakage conductance G, all per unit
length.

conductance are (dv/dt)C8x and vG Sx respectively and so current con-
servation gives

dv di
i = C — 8x + Gv Sx + i + — 8x.

In the limit of Sx -
first order p.d.e.

di
Ri + L — = -

dt

dv
Gv + C — =

0 these two physical statements lead to the coupled

dv

dx9

di

~ ax'

(9.92 a)

(9.92 b)

In general these equations will have to be solved subject to initial condi-
tions that i(x, 0) and v(x, 0) are certain specified functions of x, and also
subject to boundary conditions [e.g. the line being short circuited (v = 0)
or open circuited (/ = 0) at certain points].

In some circumstances they can be reduced to a p.d.e. containing only
one of the dependent variables. For example, in a 'lossless' transmission
line in which R and G can be taken as zero, by differentiating one of equa-
tions (9.92) with respect to t and the other with respect to x, either v or i
can be eliminated, yielding for the other the second-order equation

d2u d2u
• 26. LC = 0 ,

dx2 dt2
(9.93)

where u stands for either i(x91) or v(x, t). This is exactly the one-dimen-
sional wave equation of example 9.3 and has the solutions discussed in
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that example. The velocity of propagation of the current or voltage waves
is (LC)~112 [L and C are defined per unit length and so this expression
has the correct dimensions for a velocity].

As a second special case consider a submarine cable which has no induc-
tance or leakage conductance, L — G = 0. Again differentiation of the
two equations (9.92) with respect to different independent variables allows
the elimination of either / or v and results in an equation identical in form
to the diffusion equation

• 27. J _ ^ = ^ . (9.94)
RC dx2 dt

As before, u stands for either i(x, t) or v(x, t).

•28. Check that (RC)'1 has the appropriate dimensions for a diffusion
constant.

In less specialized cases, when the elimination of / or v is not practicable,
solutions of (9.92) can be found using Laplace transform methods. This
removes the time differentiations and produces ordinary coupled differen-
tial equations. Initial conditions on the current and voltage are usually
straightforward to incorporate in this approach.

If we denote the specified values of i(x9 0) and v(x9 0) by io(x) and
vo(x) respectively, then Laplace transforming equations (9.92) yield

dV(x s)
(R + Ls)I(x, s) = — + Lio(x) (9.95 a)

dx

dlix, s)
and (G + Cs)V{x, s) = + Cvo(x). (9.95 b)

dx

These two coupled equations for the transforms I(x, s) and V{x, s) of
the current and voltage [together with the transform of any imposed
boundary conditions, e.g. V(a, s) = 0 (short circuit) or I(a, s) = 0 (open
circuit) at some point x = a] are then used to obtain / and V and hence,
by means of tablesf or contour integration, the solution /(*, t) and

For a continuation of this approach the reader is referred to example 18
of section 9.14 at the end of this chapter.

t And a certain trust that the solution is unique.
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9.13 Some other equations

We will conclude our treatment of p.d.e. by considering briefly two further
equations of physical science; one taken from the realm of engineering,
and one from quantum physics.

The first, which approximately describes the transverse vibrations of a
rod, is

a4w d2u
* ^ + ^ = 0. (9.96)

The value of the constant a depends upon the geometry of the rod, and
the density and Young's modulus of the material from which it is made.

This is a new type of p.d.e. for which we have no particular method.
However, with its simplicity of form we might be able to guess a suitable
solution. In view of the different number of differentiations in the two
terms, we are led to seek a function which retains its essential form on
repeated differentiation. Perhaps the simplest such function to try is

u(x, t) = A exp (Ax + fit). (9.97)

[This is at one and the same time both a 'combination' and a 'separation'
of the variables x and t.]

Substituting in (9.96) gives

(a4A4 + IL2)U(X, 0 = 0,

which can be satisfied non-trivially if A is taken as (/x1/2/fl) exp [i(2m + 1)777]
with m = 0, 1, 2, 3 (taking /x as real and >0). The same sort of solutions
result if/x = in, as is appropriate to the case of (9.97) describing periodic
vibrations.

•29. Verify that the solution just obtained is equivalent to the 'separation
of variables' result that 'if the solution of (9.96) is written u(x9 t) =
f(x)g(t) and g(t) = cos (nt + e), then

f(x) = A sin Ax + B cos Ax + C sinh Ax + D cosh Ax, (9.98)

where A = nll2/a\

From the field of quantum mechanics we may consider the Schrodinger
equation (9.24). The general solution of this equation forms a major part
of the whole of non-relativistic quantum mechanics, but we will do no
more than find its simplest solution for the potential-free case,
V(x9 y, z) = 0. For this case the equation becomes

h2 (d2u d2u d2u\ 3u
+ + 1= \h — (9.99)

2mo\dx2 dy2 dz2] dt
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As has been previously noted this has the appearance of a diffusion
equation, but the presence of the i on the right-hand side produces dif-
ferent physical consequences, e.g. changing decaying solutions into oscil-
latory ones.

As on previous occasions when faced with a p.d.e. containing derivatives
of different orders, but with constant coefficients, we try as a solution an
exponential function with the independent variables appearing linearly
in the exponent. Thus, putting

u(x, y, z,t) = A exp (Ix + my + nz + Xt)9 (9.100)

we obtain, after substitution in (9.99) [and cancellation of common fac-
tors], that

- — (I2 + m2 + n2) = \hX. (9.101)
2m 0

Several possibilities for /, m, n and A will satisfy this equation, but one
of particular interest is that in which A is taken as — \Ejh and /, m and n
are taken as ipx/ti, ipy/h and ipjh respectively. As presented here, this is
nothing but playing with nomenclature, but put in this form (9.101)
takes the very familiar form of the relationship between the kinetic energy
and momentum of a non-relativistic particle, namely

• 30. -L(p* + pl+p*) = E. (9.102)
2m 0

Readers familiar with elementary modern physics will recognize the
identification of /, m, n and A as essentially the content of de Broglie's
and Einstein's relations.

Solution (9.100) now has the form of a plane wave

u(x, y, z, t) = w(r, t) = A exp [i(p. r - Et)/fi], (9.103)

describing a free quantum mechanical particle of mass m0 and kinetic
energy E travelling with momentum p = (px, py, p2) in a direction given
by the unit vector p//?.

9.14 Examples for solution

1 du 1 du
1. Find solutions of 1 = 0,

x dx y dy

for which (i) «(0, y) = y; (ii) u = 1 at the point (1, 1).

du du
2. Solve sin x — + cos x — = cos x,

dx dy

subject to (i) II(TT/2, y) = 0; (ii) K(TT/2, y) = y(y + 1).
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3. A function u(x, y) satisfies Idujdx + 3du/dy = 10, and on the
line y = 4x has the value 3. Evaluate w(2, 4).

4. Show that if a change of variables £ = £(x, y), rj = rj(x, y) is
made in (9.27) so that it reads

d2u d2u d2u du du
A' + 2Bf + C = function of f, r?, —, —,

d£2 dtj drj V H to\

then

and hence that the equation type is unchanged by the change of
variable. [The algebra is somewhat lengthy, but straightforward.]

5. A point charge e is placed at point P a distance b from the origin
O and a second charge of magnitude -ea/b (a < b) at a point Q
between O and P and at a distance a2/b from O. Show by consider-
ing similar triangles QOS and SOP, where S is any point on the
surface of a sphere, centre O and radius a, that the net potential
anywhere on the sphere due to the two charges is zero.

Use this result (backed up by the Uniqueness theorem) to find the
force with which a point charge e placed a distance b from the
centre of a spherical conductor of radius a (< b) is attracted to the
sphere (i) if the sphere is earthed, and (ii) if the sphere is uncharged
and insulated.

6. By putting £ = x + iy, rj = x — \y reduce the Laplace equation
in two dimensions to

d2v
4—— = 0,

dtd

where r(£, 77) = u(x, y). Integrate this twice to obtain result (9.45)
directly.

7. In M5 (page 245), if the boundary condition were u = du/dy = 1
when y — 0 for all x > 0, in which region of the ;cy-plane would u
be determined?

d2u d2u d2u
8. Solve 6 5 + — = 1 4 ,

dx2 dx dy By2

subject to u — 2x + 1 and du/dy = 4 — 6x both on y = 0.

d2u d2u
9. Solve + 3 —- = x(2y + 3x).

dx dy dy2
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10. An incompressible fluid of density p and negligible viscosity
flows with velocity v along a long thin straight tube, perfectly light
and flexible, of cross-section A and held under a tension T. Assume
that small transverse displacements u of the tube are governed by

d2u d2u
+ 2v

d2

/ T\ d2u
+ lv2 ) = 0.

\ pAJ dx2dt2 dxdt \ pA

Show that the general solution consists of a superposition of two
wave forms travelling with different velocities.

The tube initially has a small transverse displacement a cos kx
and is suddenly released from rest. Find its subsequent motion.

11. Find the general solution of d2u/dx2 + d2u/dy2 = x2 + y2,
(i) by inspection, (ii) by using D-operator methods. By considering
(x + iy)4 + (x — ij>)4 [or some similar function] verify that they
are equivalent.

12. Find the most general solution of d2u/dx2 + d2u/dy2 = x2y2.

13. Obtain the general solution of the one-dimensional wave equa-
tion by factorizing the differential operator.

14. Obtain a solution to example 9.6 (page 248) by changing vari-
ables to £ = x + \y and rj = x — \y in equation (9.75) and solving
in terms of £ and rj before resubstituting for x and y.

15. A sheet of material of thickness w, specific heat s, density p
and thermal conductivity k, is isolated in a vacuum but its two sides
are exposed to sources of heat radiation of intensities Jx and J2

W m~2. Ignoring short-term transients and assuming a solution of
the form (9.79), show that:

(i) its rate of temperature rise is, as expected, (/i + J^jspw deg. s~\
(ii) the temperature difference between its two surfaces is
(/2 - Ji)w/2k deg.

16. In a cable of resistance R and capacitance C per unit length,
voltage signals obey the equation d2V/dx2 = RC dV/dt. This has
solutions of the form given in (9.85) and also of the form V =
Ax + D. Find a combination of these which represents a steady
voltage Vo applied at x = 0 at time t = 0. Obtain a solution des-
cribing the propagation of the voltage signal resulting from the
application of the signal V = Vo for 0 < t < T, V = 0 otherwise,
to the x = 0 end of an infinite cable. Show that for t > T the maxi-
mum signal occurs at a value of x proportional to t112 and has a
magnitude proportional to t~x.

17. The daily and annual variations of temperature at the surface
of the earth may be represented by sine-wave oscillations with equal
amplitude and periods of 1 and 365 days respectively. Assume that
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for (angular) frequency co the temperature at depth x in the earth
is given by u(x, t) = A sin (wt + /JLX) exp ( - AJC), where A and /x
are constants (to be found).

Find the ratio of the depths below the surface at which the ampli-
tudes have dropped to 1/20 of their surface values.

At what time of year is the soil coldest at the greater of these
depths, assuming the smoothed annual variation at the surface has
a minimum at 25 January?

18. Transmission line using Laplace transforms (cont).
(a) Eliminate I(x, s) from (9.95) to obtain a second-order equation
for V(x, s).
(b) For the simplest case in which io(x) and vo(x) are identically
zero and the end x = 0 of a semi-infinite line is maintained at a
constant voltage E for all t > 0, show that the general solution for
K(JC, s) is

V(x, s) = A(s) exp (-AJC) + B(s) exp (AJC),

with the boundary conditions F(0, s) = Es'1, F(oo, s) is finite, and
A = A(s) given by

A2 = (R + Ls)(G + Cs),

(c) From (b) the voltage transform V(x, s) is given by

V(x, s) = | e x p {-x[(R + Ls)(G + Cs)]112}.

The general inversion of this to give v(x, t) is difficult, but, using
table 5.1 of transforms, establish the given solutions for the follow-
ing special cases:

(i) The lossless line, R = G = 0 for which v(x, t) = EU(t - (x/c))
with c = (LC)~1/2, i.e. the voltage is zero until the effect of the
applied voltage, travelling with velocity c, reaches the point x, after
which it always has the value E.
(ii) The 'distortionless' line in which the geometry and materials
are so arranged that (R/L) = (G/C) = a. For such a line

v(x, t) = £exp(-ca:/c)£/(f - x/c),

i.e. the effect of the applied voltage still propagates with velocity
c = (LC)~112, but suffers an attenuation e"1 in a distance c/a. [For
general values of R, L, G and C, attenuation always occurs with the
amount of it depending upon the frequency of the signal. For the
particular arrangement (R/L) = (G/C) all frequencies are attenuated
by the same factor and so any signal - in the above case a step
function - is transmitted undistorted.]
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(iii) The submarine cable, L = G = 0. Here the transform of the
voltage v(x, t) is given by

V(x,s) = - e x p [-x(CR)1!2s112].
s

The inverse transform of this is not given in table 5.1, but is in fact

v(x, t) = E{\ - Erf[x(CR)ll2/2t112]}.

[In view of the discussion leading to (9.94) and the form (9.85)
of a solution to the diffusion equation, this general type of solution
is not surprising.]

19. A rod is clamped at both ends, JC = 0 and x = /. Show that if
it executes transverse vibrations as described in section 9.13 with
angular frequency n = a2A2, then A must satisfy

cosh XI = sec XI

and that the vibration is described by

u(x, t) = /*[(sinh Xx - sin Ax)(cosh XI — cos XI)
— (cosh Xx — cos Ajc)(sinh XI — sin XI)] cos (a2X2t + e).

[At a clamped point both u and du/dx must vanish.]

20. By forming and solving its Laplace transform find the solution
of the one-dimensional wave equation

d2u 1 d2u

~dx2 ~ c2 aT2'

subject to the conditions

wU, 0) = ' = 0 and «(0, /) = / ( / ) .
dt

Find in particular the displacement at time / and position JC of
a string which is initially at rest and one end of which is raised,
starting at t = 0, through a height h at a constant velocity v.

21. Consider a lossless transmission line (R = G = 0) of length /,
which is initially at zero voltage and carries no current. The end
x = I is shorted and a constant voltage E is applied at x = 0 at
time / = 0. Obtain an expression for the Laplace transform V(x, s)
of the voltage and by expanding it in a (convergent) sum of exponen-
tials show that the voltage at the point x has the form shown in
fig. 9.4.
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*>(*, 0

x_
e

21 - x 21 + x
c c

41- x 4 / + x
c c

Fig. 9.4 The voltage v(x, t) at position j c a s a function of time t for the transmis-
sion line of example 21.
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Separation of variables

In the previous chapter we demonstrated methods by which some of the
simplest partial differential equations may be solved. In particular, solu-
tions containing the independent variables in definite combinations were
sought, thus reducing the effective number of them. Alternatively one of
the independent variables was eliminated (at least from differential coeffi-
cients) by making a Laplace transformation.

In the present chapter the opposite policy will be pursued, namely that
of trying to keep the independent variables as separate as possible. By
this we mean that if we are seeking a solution u(x, y, z, /) to some p.d.e.
then we attempt to obtain one which has the product form|

u(x9 y, z, 0 = X(x)Y(y)Z(z)T(t). (10.1)

A solution which has this form is said to be separable in x, y, z and t
and seeking solutions of this form is called the method of separation of
variables.

As simple examples, we may observe that of the functions

(i) xyz2 sin bt, (ii) xy + zt, (iii) (x2 4- y2)z cos wt,

(i) is completely separable, (ii) is inseparable in that no single variable
can be separated out from it and written as a multiplicative factor, whilst
(iii) is separable in z and t but not in x and y.

When seeking p.d.e. solutions of the form (10.1), we are not requiring
that there is no connection at all between the functions X, Y, Z and T
(for example, certain parameters may appear in two or more of them),
only that the function X does not depend upon y, z, /, that Y does not
depend upon x, z, r, etc.

t It should be noted that the use of upper-case (capital) letters here to denote
functions of the corresponding lower-case variable is intended to enable
an easy correspondence between a function and its argument to be made.
In the present chapter, upper-case letters have no connection at all with the
Laplace transform of the corresponding lower case variable.
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10.1 The general method

For a general partial equation it is likely that a separable solution is im-
possible, but certainly some common and important equations do have
physically applicable solutions of this form and we will illustrate the
method of solution by studying the three-dimensional wave equation.
[A closely related result has already been derived in section 9.7.]

The wave equation in three dimensions is

1 d2u
V2w = (10.2)

c2 3t2

We will work in Cartesian coordinates for the present and assume a
solution of the form (10.1). (The solution in alternative coordinate sys-
tems, e.g. spherical polars, is considered later in the chapter.) Expressed
in Cartesian coordinates (10.2) takes the form

d2u d2u 32u 1 32u / i n ^
+ + — = ' (10.3)

dx2 3y2 dz2 c2dt2

and substituting (10.1) gives

X" YZT + XY'ZT + XYZ'T = c~2XYZT". (10.4)

It will be noticed that we have here reverted to a dashed notation for
derivatives even though (10.3) is expressed in partial derivatives. This is
to emphasize the fact that each of the functions X, Y, Z and T has only
one independent variable and thus its only derivative is its total deriva-
tive. For the same reason, in each term of (10.4) three of the four func-
tions are unaltered by the differentiation and behave exactly as constant
multipliers.

If we now divide (10.4) throughout by u = XYZTwe obtain the equa-
tion as

y» y» y» i f"
_ + _ + _ = — — • (10.5)
X Y Z 2 T

This form shows the particular characteristic which is the basis of the
method of separation of variables, namely that, of the four terms, the
first is a function of x only, the second of y only, the third of z only, and
the right-hand side a function of t only, and yet there is an equation con-
necting them. This can only be so if each of the terms does not in fact
[despite appearances] depend upon the corresponding independent vari-
able, but is equal to a constant, the four constants being such that (10.5)
is satisfied.
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Since there is only one equation to be satisfied and four constants in-
volved, there is considerable freedom in the values they may take. For
the purposes of continuing our illustrative example let us make the
choice of —/2, — m2, — n2, for the first three constants. The constant
associated with c~2T"jT must then necessarily have the value — /x2 =
- ( / 2 + m2 + n2).

Having recognized that each term of (10.5) is individually equal to a
constant (parameter), we can now replace it by four separate ordinary
differential equations,

v" y y i T"

— = - / 2 , — = -m\ — = -n\ = - V . (10.6)
X Y Z c2 T

These can be solved without difficulty; the general solution of the first
one for example being

X(x) = A exp (i/jc) + B exp (-i /x), (10.7)

and similarly with the others.
The important point to notice however is not the simplicity of the

equations (10.6) [the corresponding ones for a general p.d.e. are usually
far from simple], but that, by the device of assuming a separable solution,
a partial differential equation (10.3), which contained derivatives with
respect to four independent variables all in one equation, has been re-
duced to four separate ordinary differential equations (10.6). These ordi-
nary equations are connected only through four constant parameters
which satisfy an algebraic equation. The constants are called the separa-
tion constants.

To finish off our example by explicitly constructing a solution, suppose
that we take as particular solutions of (10.6) the four functions

X{x) = exp (i/x), Y(y) = exp (iray),

Z(z) = exp (iwz), 7X0 = exp (-ic^t). (10.8)

Then the particular solution of (10.3) so constructed is

w(x, y, z, t) = exp (i/x) exp (imy) exp (iwz) exp ( — ic^t) (10.9 a)

= exp [i(/x + my + nz - cpt)]. (10.9 b)

This is a special case of the general solution (9.74) obtained in the pre-
vious chapter and represents a plane wave [of unit amplitude] propagating
in a direction given by the vector (/, m, n) with velocity c. In the conven-
tional notation of wave theory, /, m and n are the components of the wave
number k [whose magnitude k = 27r/(wavelength of the wave)] and c/x
is the angular frequency w of the wave. This gives the equation in the
form
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w(x, y9 z, t) = exp [\(kxx + kyy + kzz - wt)]

= exp[i(k-r - cot)], (10.10)

and makes the exponent in the exponential dimensionless.
It has been noted in the previous chapter that exponential solutions of

p.d.e. have at one and the same time both a 'combination' and a 'separa-
tion' of variables aspect; they are therefore perhaps somewhat misleading
to use in illustrative examples. However, the point is that so far as the
method of separation of variables is concerned, the above problem is
finished at equation (10.9 a) and the remainder of the manipulation is
only for the purpose of tying the result in with our previous work.

10.2 Some particular equations (revisited)

In this section we will use the separation method to obtain further solu-
tions to some of the equations which were considered in the last chapter,
restricting ourselves for the moment to Cartesian coordinates. Some re-
sults will be given as worked examples and others left for the reader to
obtain from the • exercises.

Example 10.1. Use the method of separation of variables to obtain for
the one-dimensional diffusion equation

d2u du
K = — > (10.11)

dx2 dt

a solution which —> 0 as t -» oo for all x.
Here we have only two independent variables x and t, and therefore

assume a solution of the form

u(x,t) = X(x)T{t). (10.12)

Substituting in (10.11) and dividing through by u = AT we obtain

Now, arguing exactly as before that the left-hand side is a function of x
only and the right-hand side of / only, we conclude that each side must
equal a constant which we will take as —A. This gives us two ordinary
equations

KX" + XX = 0,

r + XT = o,
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with solutions

X(x) = A sin [(X/K)ll2x] + B cos [(\/K)ll2x], (10.13 a)

7(0 = cxp( -A0 . (10.13 b)

Combining these to give the assumed solution (10.12) yields

ii(jc, 0 = [A sin (X/K)ll2x + B cos (X/K)ll2x] exp ( -A0- (10.14)

In order to satisfy the requirement that u -> 0 as t -> oo, A must be > 0
[and since K > 0 the solution is sinusoidal in x - and not a disguised
hyperbolic function].

It will be noticed in this example that any value of A, provided it is
positive, will suffice. The only requirement is that the function (10.13 a)
appearing in the solution (10.14) is multiplied by the function (10.13 b)
corresponding to the same value of A. In view of the linearity of (10.11),
this opens up the possibility that further solutions might be obtained
which are sums (superpositions) of functions like (10.14), but involving
different values of A in each term. This point will be taken up again in a
later section.

• 1 . For the case of no external force density, find solutions of (9.23), des-
cribing the vibrations of a uniform stretched membrane, which are
separable in x, y and /.

In particular find those solutions which describe the vibration of a
membrane stretched on a rectangular frame of length a and width b,
so determining the natural frequencies of such a membrane as

1 iri

p

where n and m are any positive integers.

•2. Obtain solution (9.103) for the Schrodinger equation (9.99) using
separation of variables and show that the separation constants must be
such that equation (9.102),

Pi + Pv + Pi = 2m0E,

is satisfied.

• 3 . Obtain a different solution to the Schrodinger equation describing a
particle confined to a cubical box of side a [u must vanish at the walls
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of the box]. For this situation show the quantum mechanical result that
the energy of the system can take only the (quantized) values

E= _ n \'"X ' y ZS »

2moa
2

where nx, ny, nz are positive integers.
As a final example, before passing on to non-Cartesian coordinate sys-

tems, we will investigate the separable solutions of the two-dimensional
Laplace equation in the form

^ + —2 = 0. (10.15)

If we assume a solution u(x, y) = X(x) Y(y) then we must have

•4 . X" = XX and Y" = -XY. (10.16)

Taking A as > 0, the general solution, for that particular A, becomes

u(x, y) = {A cosh JJLX 4- B sinh /xx)(C cos py + D sin /zy), (10.17)

where /z2 = A. If A is <0 then the roles of x and y interchange. The par-
ticular combinations of sinusoidal and hyperbolic functions and the values
of A allowed will be determined by the geometrical properties of any specific
problem, together with any prescribed or necessary boundary conditions.

A particular case of (10.17) links up with the 'combination' result
w(x, y) = f(x + \y) of the previous chapter, namely when

•5. A = B, D = iC, and /(/?) = AC cxp (/z/?).

10.3 Laplace's equation in polar coordinates

So far we have considered the solution of p.d.e. only in Cartesian coordi-
nates, but many systems in two and three dimensions are more naturally
expressed in some form of polar coordinates, in which full advantage can
be taken of inherent symmetries. For example, the potential associated
with an isolated charge has a very simple expression e/47reor when polar
coordinates are used, but involves all three coordinates [and square roots]
when Cartesians are employed. For these reasons we now turn to the use
of separation of variables in two-dimensional polar, spherical polar and
cylindrical polar coordinates.

Most of the partial equations we have considered so far have involved
the operator V2, e.g. the wave equation, the diffusion equation, Schro-
dinger's and Poisson's equations. It is therefore appropriate that we recall
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the expressions for V2 when expressed in these polar coordinate systems.
From section 4.7 they are:

\ 8 I d\ \ 32

V2 = r — I H (two-dimensional polars), (10.18 a)
r 8r\ 8r / r2 8<j>2

1 d ( 2 d \ l d ( • d \ l d2

~ r2 ~3r \ dr / r2 sin 6 86 \ ~8~6) r2 sin2 6 ~8$2

(spherical polars), (10.18b)

va = I i . / r !U — + —
r dr\ dr) r2 8<f>2 8z2

(cylindrical polars). (10.18 c)

The first of these is not given explicitly in chapter 4, but may be obtained
from the last by taking z identically zero, or from the general expression
(4.29), or by substituting x = r cos </>, y = r sin </> into the Cartesian
formula for V2.

The simplest of the equations containing V2 is Laplace's equation

V2u = 0. (10.19)

It contains most of the essential features of the other more complicated
equations and so we will consider its solution first.

1. Two-dimensional polars. Suppose that we need to find a solution of
(10.19) which has a prescribed behaviour on the circle r = a (e.g. to find
the shape taken up by a circular drumskin when its rim is slightly deformed
from being planar). Then we may seek solutions of (10.19) which are
separable in r and </> (measured from some arbitrary radius as <f> = 0),
and hope to accommodate the boundary condition by examining the
solution found for r set equal to a.

Thus, writing w(r, <f>) = R(r)<b(<t)) and using (10.18 a), Laplace's equation
(10.19) becomes

o 8 i 8R\ R a2o>
r — I + — = 0.

r 8r \ dr J r 8<j>2

Now, employing the same device as previously, that of dividing through
by u = RQ> (and multiplying through by r2), results in the separated equa-
tion

r 8 ( 8R\ 1 82Q>
r _ \ + = o. (10.20)

R8r\ 8r) ®8<i>2
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Following our earlier argument this must mean that the two ordinary
equations

r d / dR\
- - ' — = " , (10.21a)
Rdr\ dr /
1 d2O

- — - = -n\ (10.21b)
a> d</>2

are valid. We have chosen the separation constants to have the form
±n2 for later convenience; for the present, n is a general (complex)
number.

The second of the equations (10.21 b) has the immediate general solu-
tion

= A exp (in<f>) + B exp (-i«<£). (10.22)

Equation (10.21 a) is the homogeneous equation

r2R" + rRr - n2R = 0,

which can be solved either by trying a power solution in r, or, more de-
ductively, by making the substitution r = exp (t) as described in section
5.10 and so reducing it to an equation with constant coefficients.

•6. Carry out this latter procedure to show that

R(r) = Crn + Dr~n. (10.23)

Returning to the solution (10.22) of the azimuthal equation, we can
see that if O, and hence w, is to be single-valued and not change when </>
increases by 2TT, then we must have that n is a real integer. Mathematically
other values of n are permissible, but for the description of real physical
situations it is clear that this limitation must be imposed. Having thus
restricted the possible values of n, the same limitations must be carried
over into (10.23) - the same n must be in both if they are to be compatible
factors in a solution of (10.20).

We may thus write a particular solution of the two-dimensional Laplace
equation as

u(r, cf>) = [A exp (in<f>) + B exp (-in<f>)][Crn + Dr~n], (10.24)

where A, B, C, D are arbitrary constants and n is a real integer.
As an (artificial) example of matching a boundary condition, we may

reconsider the deformed circular drumskin and suppose that its support-
ing rim r = a is twisted so that it is not planar by a small amount e sin <f>
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[roughly sketched and greatly exaggerated in fig. 10.1]. We require to
choose n and the constants so that

e sin <f> = u(a, <f>) = [A exp (in<f>) + B exp (-in<f>)][Can + Da~n]9

Fig. 10.1 Sketch of the deformed circular drumskin discussed in section 10.3.

and, in addition, to ensure that the deformation of the skin remains finite
everywhere. This second condition requires that D = 0, and the first
that n = 1 and AC = -EC = efl-n/2i.

Hence the appropriate shape for the drumskin [valid over the whole
skin, not just on the rim] is

er

a

2. Spherical polars. Passing now to three dimensions, we come to pos-
sibly the most widely applicable single equation in physical science,
namely the solution of V2w = 0 in spherical polar coordinates,

I d du 1
r2 sin 0

d / . du 1
r2 sin2 6 d

d2u

(10.25)

Our method of procedure will be as before; we try a solution of the
form

u(r9 0 , # = (10.26)
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Substituting this in (10.25), dividing through by u = i?0O, and multi-
plying by r2, we obtain

1 3 1 3R\ 1 8 / 8Q\ . 1

<f> sin2 6 8<j>2

(10.27)

The first term depends only on r and the second and third (taken
together) only on 6 and <f>. Thus (10.27) is equivalent to the two equations

( , ) A . (10.28 a)
Rdr\ drj K

1 8 ( d&
ifl

8 1 20 \ 1 d2d>
— s i n 0 — + = - A . (10.28 b)
86 \ 86} 0) sin2 6 8<$>20 sin 0 36

Equation (10.28 a) is a homogeneous equation

r2R" + 2rRf - XR = 0, (10.29)

which can be reduced by the substitution r = exp (/) and R{r) = S{t) to

•8 . S" + S' - XS = 0.

This has the general solution

S(t) = v4 exp (#?!/) + B exp (m20>

i.e. R(r) = Armi + 5rm2, (10.30)

where

W l + W 2 = - l , (10.31 a)

mim2 = _ A . (10.31 b)

In view of (10.31 a) we can take mx and m2 as given by / and — (/ + 1)
and then A has the form /(/ + 1). [It should be noted that at this stage
nothing has been either assumed or proved about / being an integer.]

Hence we have obtained some information about the first factor in
the separated variable solution which will now have the form

n(r, 69 $) = (Arl + 5r- ( ' + 1>)0(0)O(c£), (10.32)

where 0 and O must satisfy (10.28 b) with A = /(/ + 1).
The next step is to take this latter equation further. Multiplying it

through by sin2 6 and substituting for A, it too takes a separated form

6 8 ( 8&\ 1 1 £2<DM i ^ ) /(/ + 1)sin2'J + ̂  = 0- (1033)
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Taking the separation constants as m2 and — m2, the equation in the azi-
muthal angle <f> has the by now very familiar solution

O(<£) = c sin m<f> + D cos m<f>. (10.34)

As in the two-dimensional case, single-valuedness of u requires that m
is a non-zero integer. The particular case m = 0 yields the solution

<D(<£) = Cc/> + D . (10.35)

This form is appropriate to a solution with axial symmetry (C = 0) or
one, such as the magnetic scalar potential associated with a wire carrying
a current I(C = IJITT and D arbitrary), which is multivalued [but manage-
ably so].

Having settled the form of O(^), we are left only with the equation
satisfied by 0(0) which is (from (10.33))

! ^ £ _ ( s i n 0 — ) + /(/ + 1) sin2 0 = m2. (10.36)
0 d0 \ d0 /

A change of the independent variable from 0 to /x = cos 0 [we avoid
x = cos 0 in case confusion with the spatial coordinate arises] will
reduce this to a form for which solutions are known, and of which some
study has been made in an earlier chapter (chapter 6).

Putting

da d d
/i = cos 0, -f = -s in 0, — = - ( 1 - / *T 2 — >

d0 d0 d/x

gives the following equation for M(u) = 0(0),

d M = °- (10-37)
This equation is the associated Legendre equation which was mentioned
(equation (7.23)) in the discussion of Sturm-Liouville equations.

For the case m = 0, (10.37) reduces to the Legendre equation which
was studied at length in section 6.7 and has the solution (finite at u = 0)

M(u)=P,0z). (10.38)

We have not explicitly solved (10.37) for general m, but the solution to it
is the so-called associated Legendre function^

9(6) = MQi) = /»,%*) = (1 - M2)i|ml £ ^ /»,(/*). (10-39)

t The reader may refer to Morse and Feshbach, Methods of theoretical
physics (McGraw-Hill, 1953) for example, for full details. For a proof that
(10.39) satisfies (10.37) see example 4 of section 10.8.
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Here m must be an integer with 0 ^ \m\ ^ /.
It is one of the important conditions for obtaining finite polynomial

solutions of Legendre's equation that / is an integer ^ 0. This condition
therefore also applies to the solutions (10.38) and (10.39) and is reflected
back to the radial part of the general solution, as given in (10.32).

Now that the solutions of each of the three ordinary differential equa-
tions governing R, 0 and 0 have been obtained, either explicitly or in
terms of tabulated functions, we may finally assemble the complete separ-
ated variable solution of Laplace's equation in spherical polars. It is

u(r, 0,<f>) = [Arl

6)[C sin m<f> + D cos m<f>], (10.40)

where the three multiplicative functions are connected only [but crucially]
through the integer parameters / and m with / ^ \m\ ^ 0.

•10. Denoting the three terms of V2 as given in (10.18 b) by Vr
2, V2, V2,

in an obvious way, evaluate directly for the two functions given, V2w,
Vfw, V^w, and verify in each case that, although the individual terms are
not necessarily zero, their sum V2w is. Identify the corresponding values
of / and m.

(i) u(r, 0, </>) = + ^
3cos20 -

(ii) w(r, 0, <£) = \Ar + -J sin 6 exp (ty)

Example 10.2. An uncharged conducting sphere of radius a is placed at
the origin in an initially uniform electrostatic field E. Show that it be-
haves as an electric dipole.

Fig. 10.2 Induced charge and field lines associated with the conducting sphere of
example 10.2.
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The uniform field, taken in the direction of the polar axis, has an electro-
static potential

u = Ez = Er cos 0,

where u is arbitrarily taken as zero at r = 0. This satisfies the Laplace
equation V2w = 0, as must the potential v when the sphere is present;
for large r the asymptotic form of v must still be Er cos 6.

The cos 8 dependence of v [and the absence of any azimuthal depen-
dence] indicates that the 6, <f> dependence of v(r, 0, <f>) is given by
/^(cos 6) = cos 0. Thus the r dependence of v must also correspond to
an / = 1 solution. The most general such solution is Ar1 + Br~2. The
asymptotic form immediately gives A as E and so yields for the solution
(outside the sphere, r ^ a),

Since the sphere is conducting, v must not depend on 0 for any r equal to
a. This can only be if B/a2 = — Ea, thus fixing B. The final solution is
therefore

/ a3

v = Eh - -^

showing that the sphere behaves as a dipole of moment —Ea3 [physically
because of the effect of the charge distribution induced in the sphere, as
roughly indicated in fig. 10.2].

3. Cylindrical polars. Having dealt with the spherical polar case at some
length, only an outline of the solution in cylindrical polars will be given,
leaving the details for the reader to fill in.

The equation to be solved is

1 d2u d2u
0

Substituting u(r, <f>, z) = R(r)<&(<j>)Z{z) and using separation constants
± n2 and ± m2 yields the three ordinary equations

Z " - n2Z = 0 , (10.42 a)

0 > ( 1 0 42 b)

d / dR\
• 11. r—\r-—\ + (n2r2 - m2)R = 0. (10.42c)

dr \ ar 1
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The first two equations have straightforward solutions and the third
can be transformed by writing

M = nr9 r — = M — , R(r) = M(ji), (10.43)
dr d/x

into Bessel's equation of order m\

d2M 1 dM ( m2\ ,^AA^
• 12. — + — — + 1 - — JM = 0. (10.44)

d/-r /x d/x \ /xV

The solutions /m(/x) of Bessel's equation were investigated in chapter 6
and will not be pursued here.

The complete separated variable solution in cylindrical polars of
V2M = 0 is therefore

u(r, <f>, z) = Jm(nr)[A cos m<f> + B sin m</>]
x [Cexp (nz) + D exp (-wz)]. (10.45)

10.4 Spherical harmonics

In obtaining solutions in polar coordinates of V2w = 0, we found that the
angular part of the solution was given by

0(0)O>(<£) = P?(cos 0)[C sin m<f> + D cos m<f>]. (10.46)

This general form is sufficiently common that particular functions of
6 and </> called spherical harmonics are defined and tabulated. The spherical
harmonics Yf(6, <f>) are defined by

r2/ + I (/ — m)iy12

wo, <t>) = (- ir —— ^ — ^
L 4TT (/ + /w)U

x P^cos 6) exp (im </>), for m ^ 0. (10.47)

For values of m < 0 the relation
>) (10.48)

defines the spherical harmonic. The asterisk denotes complex conjugation.
Since they contain as their ^-dependent part the solution to the associ-

ated Legendre equation, and this is a Sturm-Liouville equation, the Yf
are mutually orthogonal when integrated from — 1 to +1 over d (cos 6).
Their mutual orthogonality with respect to <j> (0 ^ <j> ^ l-n) is even more
obvious. The numerical factor in (10.47) is chosen to make the Yf an
orthonormal set, i.e.

Y /
m*(^,^) Yp'(6, <f>) d<j> d (cos 6) = Slv 8m m , . (10.49)
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As well as forming an orthonormal set they form a complete set in
that any reasonable (likely to be met in a physical situation) function of
6 and <f> can be expanded as a sum of such functions

/(M) = 2 1 fli.W.*). (10.50)
1 = 0 m--I

with the constants aXm given by

alm = I" I^ Yr*(094>)f(0, <f>) d<£ d(cos ff). (10.51)
J-i Jo

This is an exact analogy with Fourier series and a particular example
of the general property of Sturm-Liouville solutions (chapter 7).

•13. Starting with the information (chapter 6) that P0(IJ) = 1, Pi(p) = /x,
P2(/x) = i(3/x2 — 1), obtain expressions as functions of 6 and <f> for all
17(0, <t>) up to / = 2.

Verify the normalization of (say) Y\ and the orthogonality of (say)
Y\.

•14. Without worrying about the normalization, make rough polar
sketches of the modulus squared | Y™(0, <f>)\2 of the spherical harmonics
calculated in • B . (In a polar plot the length of the radius vector in a
particular direction 6 gives the value of the function for that 8.)

[These plots, which are independent of <f>, give the probability distribu-
tions for finding an atomic electron in different polar directions - for a
fixed r - when the electron is in a state with angular momentum quantum
numbers / and m.]

10.5 The wave and Schrodinger equations in spherical polars

The development of solutions of V2w = 0 carried out in the previous two
sections can be readily employed in solving some other equations in
which the V2 operator appears. In particular, partial differential equations
expressed in polar coordinates in which the variables 6 and <f> appear only
in the V2 term can be solved in an almost identical way. What is more,
the angular parts of the solutions ®(0)O(<£) are identical to those of the
Laplace solutions.

As a specific example, consider the three-dimensional wave equation

1 d2u
- - . (10.52)
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Expressed in spherical polar coordinates and with a separated variable
trial solution u(r, 6, </>, t) = R(r)®(6)®(<f>)T(t) this becomes in the usual
way,

1 8 ( 8R\ 1 8 I . d@\ 1 32O/ 28R\ 1 3 / . 0 0 \
\ ~~8r) + 0r2sin(9 a^\S m ~86JRr2 8r\ 8r j 0r2 sin 6 36 \ 86/ Or2 sin2 6 8<f>2

1 82T
= (10.53)

c2T 8t2 V '

Setting both sides equal to a separation constant — k2 (k2 must be >0
to give a physically oscillating solution), T has the general solution

T(t) = A exp (ikct) + B exp (-ifccf). (10.54)

The quantity kc is usually written as co, the angular frequency of the wave;
k itself is the wave number.

After this separation off of the t dependence, (10.53) with the right-hand
side now set equal to —A:2, is identical to (10.25) except for the — k2 term.
On multiplying through by r2 an additional term k2r2R is added to the
equation for i?, but 0 and 0 are identical to those obtained in (10.39)
and (10.34) respectively.

With the additional term k2r2R, instead of (10.29) we have as the equa-
tion satisfied by R,

r2R" + 2rR + [£2r2 - /(/ + \)]R = 0. (10.55)

This looks much like Bessel's equation (cf. equation (10.44)) and can in
fact be reduced to it by writing R(r) = r~ll2S(r). The function S(r) then
satisfies

•15. r2S" + rS' + [k2r2 - (/ + i)2]S = 0, (10.56)

which, after changing the variable to fx = kr, is Bessel's equation of order
/ + i and has as its solutions S(fj) = JI + U2(H) OT Yl + ll2(ii)9 the latter
being the second independent solution (infinite at ^ = 0 and not to be
confused with a spherical harmonic).

One possible complete solution of the wave equation is thus

«(r, 0, </>, t) = r-ll2Jl + ll2(kr)Pr(cos 6)
x [A cos m<f> + B sin m<f>] exp (ikct). (10.57)

•16. It was shown in (6.34) that /1/2(/x) oc/x~1/2 sin/x, thus giving the
dependence of (10.57) as

sin (AT)
x exp (ikct)
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when / = 0. Show directly that this is a solution of (10.53) - one which
has no 6 or <f> dependence.

The solutions oc r~ll2Jl + ll2(kr) of (10.55), when suitably normalized
are called spherical Bessel functions and denoted by j\(kr). The normaliza-
tion is

\2~) y ' + 1 ( 1 0 ' 5 8 )

They are trigonometric functions of /x and for / = 0 and 1 are given by

jo(ji) = sin/i,

sin a
JiM = ^ - c o s / x . (10.59)

The independent solutions of (10.55), A?Z(/X) are derived similarly from the

It will be noticed that although the solution (10.57) corresponds to a
definite frequency solution w = kc, except for the case / = 0 involving
jo(fj), the zeros of the radial function (ji(kr)) are not equally spaced in r
and so there is no precise wavelength associated with the solution.

To conclude this section, let us mention briefly the Schrodinger equation
applicable to the electron in a hydrogen atom, the nucleus of which is
taken at the origin and is assumed massive compared to the electron.
Under these circumstances the equation is (equation (9.24))

h2 e2 u du / i r . ,,..
V2w = \h — • (10.60)2m 0 4TT€0 r dt

Assuming a 'stationary state' solution for which the energy is E and
the time dependent factor T in u is given by T(t) = exp ( - \Etjh), this
also becomes an equation similar to (10.25), except that again the r-
dependent part is modified.! However, as with the wave equation, the
angular parts of the solution are identical with those of equations (10.34)
and (10.39) and are expressed in terms of spherical harmonics (see the
note to •14).

The important point to make is that for any equation involving V2,
so long as 6 and <f> do not appear in the equation other than as part of
V2, then a separated variable solution in spherical polars will always
lead to spherical harmonic solutions.

t For the solution by series of the r-equation the reader may consult, e.g.
Schiff, Quantum mechanics (McGraw-Hill, 1955) p. 82.
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10.6 Superposition methods

As has been hinted at earlier in this chapter, the solutions we have ob-
tained so far in separated variable form have by no means been used to
their full capabilities. In fact, to illustrate them physically we have con-
trived situations which fit the solutions, rather than the other way about.
The contrivance has been in choosing problems whose boundary condi-
tions are immediately met by the choice of a single constant.

However, we have seen that in obtaining the separated solutions, there
is in general a considerable freedom in the values of the separation con-
stants; sometimes they must be integers, or must be ^ 0 , or some such
conditions, but even such restrictions normally leave a lot of latitude.
The only essential condition is that we associate the correct function of
one independent variable with the appropriate functions of the others -
the correct one being the one with the same values of the separation con-
stants.

If the original partial equation is linear (as are Laplace's, Schrodinger's,
the diffusion and the wave equations) then mathematically acceptable
solutions can be formed by superposing (adding) solutions corresponding
to different values of the separation constants. To take a two-variable
example, if

uAl(x,y) = XXl{x)Y^{y) (10.61)

is a solution of a linear p.d.e. obtained by giving the separation constant
the value X1, then the superposition

u { x , y ) = « ! * * , ( * ) r A l 0 ; ) + a 2 X ^ ( x ) Y k 2 ( y ) + •••

2 > * ) W (10-62>
is also a solution of the same p.d.e. for any constants at.

The value of this is that a boundary condition, say that u(x, y) takes a
particular form/(x) when y = 0, might be met by choosing the constants
at so that

f(x) = 2aiY^X^)- (10.63)
i

This will generally be possible provided the functions XAi(x) form a com-
plete set - as do the sinusoidal functions of Fourier series or the spherical
harmonics of section 10.4.

To illustrate this approach by a concrete example and at the same time
indicate that generally some boundary conditions must be obtained by
physical arguments, we will apply it to the following example (with more
explanation than would be usual in a normal solution).
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Example 10.3. A bar of length / is initially at a temperature of 0 °C. One
end of the bar (x = 0) is held at 0 °C and the other is supplied with heat
at a constant rate per unit area of H. Find the temperature within the
bar after time /.

With the notation we have used several times before, the heat diffusion
equation satisfied by the temperature u(x, t) is

d2u du
K^ = Tt>

 (ia64)

with K = k/sp.
It is clear that ultimately (t = oo), when all the transients have died

away, the end x = I will attain a temperature u0 such that

H

and there will be a constant temperature gradient,

u(x,oo) = — • (10.65)

In example 10.1 we obtained a separated variable solution for the one-
dimensional diffusion equation

u(x, t) = [A sin (X/K)ll2x
+ Bcos(X/K)ll2x]exp(-\t), (10.14 bis)

corresponding to a separation constant A. If we restrict A to be positive
then all of these solutions are transient ones decaying to zero as f-> oo.
These are just what is needed for adding to (10.65) to give the correct
solution as / -> oo, but at the same time allowing the possibility of satis-
fying the initial condition that the bar is everywhere at zero temperature,

H(JC,0) = 0 for all x. (10.66)

One further boundary condition to be met is that the x = 0 end is
permanently at zero temperature, i.e. w(0, t) = 0 for all t. Looking at the
sum of (10.65) and (10.14 bis) for x = 0, this implies that B = 0 for each
A and so reduces the proposed solution to

u(x,t) = ^ + 2 ^sinr(pV/2xlexp(-A0. (10.67)
* someA>0 L\^ / J

As we have noted [and contrived] this satisfies all physical conditions
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at t = oo and at JC = 0, as well as being a solution of (10.64); all that
remains is to satisfy (10.66). This requires that

0 = ^7~ + 2 ^ sin (~V / 2 x, 0 ^ x ^ /. (10.68)
* some A > 0 \ K /

That the AK can be chosen to make this true for all x in 0 ^ x ^ /
follows from the work of chapter 8 on Fourier series. The physical func-
tion — uox/l for which a Fourier series is needed is shown in fig. 10.3 (a).
Equation (10.68) shows that we want a series, which is odd in x [sine
terms only] and continuous at x = 0 and / [no discontinuities, since the
series must converge at the end points]. This leads to the continuation
shown in fig. 10.3 (b) with a period of 41.

(a)

- 2 / - /

Fig. 10.3 (a) The equilibrium temperature distribution of the bar in example 10.3.
(b) The appropriate continuation for a Fourier series containing only sine
functions.

The corresponding Fourier series can be found in the usual way as

^Tirsin[—2#—J-
Comparing this with (10.68) shows that the only values of A needed are
those given by

AV/2 (2«+ IV „ _/ XV'2 (In +

\K) - - 2

and that then

T72 (2n + I ) 2 '
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The final formula for u(x, t) is thus

/ Ex SHI - (-l)n . r(2« + ly*]
u(x, t) = > sin

V ' k kn2
 n 4 0 (2n + I)2 L 2/ Jk(2n + l)27r2n

giving the temperature for all positions 0 < x ^ / and for all times t ^ 0.

10.7 Solutions by expansion

It is sometimes possible to use the Uniqueness theorem of the previous
chapter together with the results we obtained in section 10.3, where
Laplace's equation was considered in polar coordinates, to obtain the
solution of the equation appropriate to a particular physical situation.

The essence of the method is to assume that the required solution of
the Laplace equation, V2w = 0, can be written as a superposition of (say)
the solutions found in (10.40), namely

u(r9 0, fl = 2 2 [Arl + A""a + I)]^il(cos 0)2
1 = 0 m=-1

 x [Csmmt + D cos m<f>], (10.69)

where all the constants, A, B, C, D, may depend upon / and m.
Boundary conditions of a physical nature will then fix or eliminate

some of the constants, e.g.

(i) u is finite at the origin implies all B = 0,
(ii) u -> 0 as r -> oo implies all A = 0,
(iii) axial symmetry of the solution implies that only m = 0 terms are
present,
(iv) u = 0 at r = a relates the constants A and B.

The remaining constants are then found by determining u at values of
r, 6, <f> for which it can be evaluated by other means, e.g. by direct calcula-
tion on an axis of symmetry. Once the remaining constants have been
fixed by these special considerations to have particular values, the Unique-
ness theorem can be invoked to establish that they must have these values
in general.

To illustrate the method consider the problem of calculating the gravi-
tational potential at a general point in space due to a uniform ring of
matter. Everywhere except on the ring the potential w(r) satisfies the La-
place equation and so if we use polar coordinates with the normal to the
ring as polar axis (fig. 10.4) a solution of the form (10.69) can be assumed.
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Fig. 10.4 The polar axis Oz is taken normal to the plane of the ring of matter and
passing through its centre.

We expect the potential u(r, #, (/>) to —> 0 as r -> oo and also to be finite
at r = 0. At first sight this might seem to imply that all A and B and hence
u must be identically zero - an unacceptable result. In fact, what it means
is that different expressions must apply to different regions of space.
On the ring itself we no longer have V2w = 0 and so it is not surprising
that the form of expression changes there. Let us therefore take two
separate regions.

1. r > a. In this region

(i) we must have u —> 0 as r -> oo implying all A = 0,
(ii) the system is axially symmetric and so only m = 0 terms appear.

With these restrictions we can write as the trial form

u(r, 0, = j[ Bl

1 = 0

with the constants Bx still to be determined. This we do by calculating
directly the potential where it can be done simply - clearly, in this case,
on the polar axis.

Considering the point P a distance z from the plane of the ring (taken
as 6 = TT/2), all parts of the ring are a distance (z2 4- #2)1/2 from it, where
a is the radius of the ring. The potential there is thus straightforwardly

0,
GM

(z2 + a2),2\l/2
(10.71)

with G the gravitational constant and M the mass of the ring of matter.
This has to be the same as (10.70) for the particular values r = z, 6 = 0,
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and <f> undefined. Recalling that P?(cos 6) = ^(cos 6) with P,(l) = 1,
putting r = z in (10.70) gives

(of) 2h (1 0 7 2)

On the other hand, expanding (10.71) for z > a (as it is in this region
of space) we obtain

GM\ \IaV 3 (ay 1

[ ( ) ( ) } (10.73)
Comparing (10.72) and (10.73) shows that |

Bo = GM,
/ - i \ GMa2l{-\)l(2l - 1)!!

B2l = GMa*y i J = K—^ - > (/ ̂  1), (10.74)

We can now conclude the argument by saying that if a solution for a
general point (r, 6, <f>) exists at all [which of course we very much expect
on physical grounds] then it must be (10.70) with the Bt given by (10.74).
This is so because it is a function with no arbitrary constants which
satisfies all the boundary conditions and the Uniqueness theorem states
that there is only one such function.

The expression for the potential in the region r > a is therefore

e,4>)= —
(10.75)

2. r < a. In a similar way an expression valid for r < a can be found.
Without much explanation, the main steps in its derivation are as follows.

The finiteness of u at r = 0 and the axial symmetry give
00

u(r9 e9 <f>) = ^ Ax r lP?(cos 0). (10.76)

Comparing (10.76) for r = z, 0 = 0 with the z < a expansion of
(10.71) [which is valid for any z] establishes A2i + i = 0, Ao = GM/a
and

GM / -

t ( 2 / - 1 ) ! ! = 1 x 3 x ••• x (21 - 1) .
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The final expression valid [and convergent] for r < a is thus

(10.77)

•19. Check that the solution obtained (i) has the expected physical value
for large r and for r = 0, (ii) is continuous at r = a.

10.8 Examples for solution

1. Solve the first-order equations

du du du du

dx dy dx dy

by separating the variables. Verify in each case that the solution is
compatible with the general forms deduced for these equations in
sections 9.1 and 9.2.

2. A conducting cube has as its six faces the planes x, y, z — 0, a
and contains no internal sources of heat. Verify that the tempera-
ture distribution

[TTX\ (TTZ\ I IKlT2 \
u(x, y, z, t) = A cos I — \ sin I — I exp I — t\,

where K has the same meaning as in example 10.1, obeys the appro-
priate diffusion equation.

On a rough sketch indicate the temperature distribution and heat
flow pattern to which this solution corresponds.

3. As described in section 9.13 the free transverse vibrations of a
thick rod satisfy the equation

d4u d2u
a* — + — = 0.

dx* dt2

Obtain a solution in the form of separated variables, and for a rod
clamped at one end x = 0 and free at the other x — I show that the
angular frequency w of the vibrations satisfies

u . _ . . .u>ll2l
cosh

(wll2l\

[At a free end d2u/dx2 and d3u/dx3 both vanish.]
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4. Prove (10.39) satisfies the associated Legendre equation (10.37)
as follows:

(i) Evaluate dP?/dfi and d^PT/d^ with P? given by (10.39).
(ii) Substitute these results in the left-hand side of (10.37) in the
form

d2pm dpmdpm r ^ 2 "1

d/Lt L 1 - f i2Jd/x2 d/Lt

(iii) Differentiate the Legendre equation m times using Leibniz'
theorem to obtain

dPt
+ [1(1 + 1) - m(m + 1)] = 0.

d^

(iv) Verify that A = (1 - /x2)m/2£, and therefore ^ = 0; this
proves that Pf1 satisfies (10.37).

5. For / = 0, 1, 2 use the results of M 3 to evaluate

2 l>7(M)la.
m = - I

showing that whatever the values of 0 and <f>, the above expression
is independent of them. Use this result to reconcile the note to M4
with the clearly arbitrary choice of polar axis in describing a (un-
polarized) collection of atoms.

[The above expression is independent of 0 and <f> for any /, but a
general proof is more involved.]

6. Express the function f(6, <f>) = sin 0[sin2 (0/2) cos </> + i cos2 (6/2)
x sin <f>] + sin2 (6/2) as a sum of spherical harmonics.

7. Find the formf assumed by a membrane stretched on a circular
drum of unit radius, when one half of the rim is held flat and the
other given a sinusoidal distortion. Mathematically, solve Laplace's
equation for the interior of the unit circle with the boundary condi-
tion

u(r = 1,0) = sin <f> for 0 ^ (j> ^ TT,
= 0 f o r TT ^ <f> ^ 2TT.

[See example 5 of section 8.11.]

t Consider the possibility of n = 0 terms arising from (10.21).
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8. Find the formf of a membrane stretched between two concentric
rings of radii a and b (b > a) if the smaller one is distorted out of
being planar by an amount c\<f>\, { — TT ^ <f> ^ IT).

9. A string of length /, fixed at its two ends is plucked at its mid-
point by an amount A and then released. Assume (but prove if you
wish) that the subsequent displacement is given by

* $A 1 {In + \)irx {In + X)Trct
w(x, t) = / sin cos >

n%n2 ( 2 n + I)2 / /

where, in the usual notation, c2 — T/p.
Calculate the total kinetic energy of the string when it passes

through its unplucked position, by finding it for each mode (each ri)
and then summing. [2o (2/z + 1)~2 = TT2/8.]

Show that it is equal to the work done in plucking the string
initially.

10. (i) By integrating the relation

(1 - 2/*f + f2)-1 '2 = 2 '"i>n(/x),
n = 0

show that,

'-n-xrv-r- 2
a» + 1/f!(/! + 1 } ,

(ii) A conducting spherical shell of radius a is cut round its equator
and the two halves connected to voltages of + V and - V. Find an
expression for the potential anywhere inside the two hemispheres.
[j1_1PiQi)dfi = 2/(2/! + 1).]

i a ^ i, V (-0B(2«)!(4/i + 3)Answer: w(r, 6,6) = V >
- D!

/ r \ 2 n + l

11. Develop the problem corresponding to the previous one, for
cylindrical coordinates; namely find a potential u{r, <f>) which satis-
fies:

{a) V2u = 0 inside the cylinder r = b\
{b) w = F o n the half-cylinder r = b, cos(f> > 0;
(c) u = — V on the half-cylinder r = b, cos </> < 0.

[The geometry here is three-dimensional, but the problem is effec-
tively two-dimensional with no z-dependence.]

f Consider the possibility of n = 0 terms arising from (10.21).
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12. A slice of biological material of thickness L is placed into a
solution of a radioactive isotope of concentration Co. Find the
concentration of radioactive ions at a distance x from either surface
after a time /. [Very closely related to example 10.3.]

13. Two identical copper bars each of length a are initially one at
0 °C and the other at 100 °C. They are joined end to end and therm-
ally isolated at time t = 0. Obtain in the form of a Fourier series
an expression u(x, t) for the temperature at any point distance x
from the join at a later time /. [Bear in mind the heat flow conditions
at the free ends of the bars.]

Verify that your series gives the obvious answer for the total heat
ultimately flowing across the junction. [2? (2n 4- 1)~2 = TT2/8.]

Taking a = 0.5 m estimate the time it takes for one of the free
ends to attain a temperature of 55 °C. [Thermal conductivity of
copper = 3.8 x 102 J m"1 K 1 s"1, sp for copper = 3.4 x 106

Jm-3 . ]

14. (i) Show that the gravitational potential due to a uniform disc
of material of radius a and mass M is given by

2GM [ r 1 /r\2
1 - - ^(cos 6) + - - ) P2(cos 0)

a I a 2\aJ

- - / -VP 4 (COS 6) + - • • 1 for r < a,

GM r i /fl\2 i /a\4 -i
1 - - l - l P2(cos0) + - - I PA{cos6) - • . . forr > a,

r L 4 W 8 W J

where the polar axis is normal to the plane of the disc.
(ii) Reconcile the presence of a Pi (cos 6) term for which Px( — cos 6) =
— Pi(cos 0) with the symmetry, with respect to the plane of the disc,
of the physical system.
(iii) Deduce the gravitational field near an infinite sheet of matter
of constant density p per unit area.
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Numerical methods

It frequently happens that the end product of a calculation or piece of
analysis is one or more equations, algebraic or differential (or an integral),
which cannot be evaluated in closed form or in terms of available tabulated
functions. From the point of view of the physical scientist or engineer,
who needs numerical values for prediction or comparison with experi-
ment, the calculation or analysis is thus incomplete. The present chapter
on numerical methods indicates (at the very simplest levels) some of the
ways in which further progress towards extracting numerical values might
be made.

In the restricted space available in a book of this nature it is clearly
not possible to give anything like a full discussion, even of the elementary
points that will be made in this chapter. The limited objective adopted
is that of explaining and illustrating by very simple examples some of the
basic principles involved. The examples used can in many cases be solved
in closed form anyway, but this 'obviousness' of the answer should not
detract from their illustrative usefulness, and it is hoped that their trans-
parency will help the reader to appreciate some of the inner workings of
the methods described.

The student who proposes to study complicated sets of equations or
make repeated use of the same procedures by, for example, writing com-
puter programmes to carry out the computations, will find it essential to
acquire a good understanding of topics hardly mentioned here. Amongst
these are the sensitivity of the procedures adopted to errors introduced
by the limited accuracy with which a numerical value can be stored in a
computer (rounding errors), and to the errors introduced as a result of
the approximations made in setting up the numerical procedures (trunca-
tion errors). For this scale of application, books specifically devoted to
numerical analysis, data analysis and computer programming should be
consulted.

So far as is possible the method of presentation here is that of indicating
and discussing in a qualitative way the main steps in the procedure, and
then to follow this with an elementary worked example. The examples
have been restricted in complexity to a level at which they can be carried
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out with a set of mathematical tables and a desk calculator. Naturally it
will not be possible for the student to check all the numerical values pre-
sented unless he has a calculator or computer readily available [and even
then it might well be tedious to do so]. However, he is advised to check
the initial step and at least one step in the middle of each repetitive calcula-
tion given, in order to be sure that he understands correctly how the
symbolic equations are used with actual numbers. There is clearly some
advantage in choosing a step at a point in the calculation where the values
involved are changing sufficiently that whatever calculating device he is
using will have the accuracy to show this.

Where alternative methods for solving the same type of problem are
discussed, for example, in finding the roots of a polynomial equation, we
have usually used the same example to illustrate each method. This could
give the wrong impression that the methods are very restricted in applic-
ability, but it is felt by the author that using the same examples repeatedly
has sufficient advantages in terms of illustrating the relative characteristics
of competing methods, as to justify doing so. Once the principles are clear,
little is to be gained by using new examples each time and, in fact, having
some prior knowledge of the 'correct answer' should allow the reader to
make for himself some evaluation of the efficiency and dangers of par-
ticular methods as he follows the successive steps through.

Two other points remain to be mentioned. The first of these is the
location of a chapter on numerical methods in a book of this kind. To
the extent that large parts of the book can be read in any order, the
position of an individual chapter does not matter. However, some methods
are discussed here which relate to matrices and simultaneous linear
algebraic equations, but matrices themselves are not discussed in any
detail until chapter 14. On the other hand it was felt that the present
chapter should follow closely after those on the solution of differential
equations and this accounts for its actual location. The reader who has
no familiarity with matrix equations presumably has no need to solve
them numerically, and so can with equanimity omit the corresponding
sections of the present chapter until he has need of them.

Finally, unlike the case with every other chapter, the value of a reason-
ably large selection of examples at the end of this one for the student to
use as practice or for self-testing, is not too clear cut. The reader with
sufficient computing resources available to tackle them can easily devise
for himself algebraic or differential equations to be solved, or functions
to be integrated (perhaps ones which have arisen in other contexts).
Further, their solutions for the most part will be self-checking. Conse-
quently, although a few simple examples are included, no attempt has
been made to test the full range of ideas which may have been learned
from reading the chapter.
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11.1 Algebraic and transcendental equations

The problem of finding the real roots of an equation of the form/(x) = 0,
where f{x) is an algebraic or transcendental function of x, is one which
can sometimes be treated numerically even if explicit solutions in closed
form are not feasible. Examples of the types of equations referred to are
the quartic equation

#x4 + bx + c = 0,

and the transcendental equation

x — 3 tanh x = 0.

The latter type is characterized by the fact that it effectively contains an
infinite polynomial on the left-hand side.

We will discuss four methods which in various circumstances, can be
used to obtain the real roots of equations of the above types. In all
cases we will take as the specific equation to be solved the fifth order
polynomial equation

f(x) = x5 - 2x2 - 3 = 0. (11.1)

The reasons for using the same equation each time are discussed in the
previous section.

For future reference and so that the reader may, with the help of a
ruler, follow some of the calculations leading to the evaluation of the
real root of (11.1), a reasonably accurate graph of f(x) for the range
0 ^ x ^ 1.9 is shown in fig. 11.1.

Equation (11.1) is one for which no solution can be found with x in
closed form, that is in the form x = a, where a does not explicitly contain
x. The general scheme to be employed will be an iterative one in which
successive approximations to a real root of (11.1) will be obtained, hope-
fully with each approximation better than the preceding one, but cer-
tainly with the requirement that the approximations converge and that
they have as their limit the sought-for root. Let us denote the required
root by f and the values of successive approximations by xl9 x2,...,
xn,.... Then for any particular method to be successful

l imx B = f, where / (a = 0. (11.2)

However, success as used here is not the only criterion. Since, in prac-
tice, only a finite number of iterations will be possible, it is important
that the values of xn be close to that of $ for all n > N, where TV is a
relatively low number. Exactly how low naturally depends upon the
computing resources available and the accuracy required in the final
answer.
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f(x) = x5 - 2x2 - 3
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Fig. 11.1 A graph of the function/(x) = JC5 - 2x2 - 3 for x in the range 0 < x
1.9.
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So that the reader may assess the progress of the calculations which
follow, we record that to 9 significant figures the real root of (1 LI) has
the value

€ = 1.495 106 40. (11.3)

We now consider in turn each of four methods for determining this value.

1. Rearrangement of the equation. If the equation/(x) = 0 can be recast
into the form

x = <£(*), (11.4 a)

where (f>(x) is a slowly varying function of x, then an iteration scheme

Xn + 1 =<f>(Xn) (11.4 b)

will often produce a fair approximation to g after a few iterations. Clearly
€ = <£(£) since /(£) = 0, and thus when xn is close to £ the next approxi-
mation xn + 1 will differ little from xn, the actual size of the difference
giving an order of magnitude indication of the inaccuracy in xn + 1 (as
compared to f).

In the present case the equation can be written

x = (2x2 + 3)1/5. (11.5 a)

Because of the presence of the l/5th power, the right-hand side is insensi-
tive to the value of x and so the form (11.5 a) fits the general requirements
for the method to work satisfactorily. It only remains to choose a starting
approximation. It is relatively easy to see from fig. 11.1 that the value
1.5 would be a good starting value, but so that the behaviour of the pro-
cedure at values some way from the actual root can be studied, we will
make the poorer choice of Xx = 1.7.

With this starting value and the general recurrence relationship

xn + 1 = {2x1 + 3)1'5, (11.5 b)

successive values can be found. These are recorded in table 11.1. Although
not strictly necessary, the value of f(xn) = x% — 2x\ — 3 is also shown
at each stage.

It is seen that JC7 and all later xn agree with the precise answer (equation
(11.3)) to within 1 part in 104. On the other hand/(xn) and xn - £ are
both reduced by a factor of only about 4 for each iteration; thus a large
number of them would be required to produce a very accurate answer.
The factor of 4 is of course specific to this particular problem and would
be different for a different equation. Although they do not illustrate a
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great deal in this case, the successive values of xn are shown in graph (a)
of fig. 11.2.

2. Linear interpolation. In this approach two values Ax and Bx of x are
chosen with A1 < B± and such tha t /X^) and/(2?a) have opposite signs.

- 5 -

I I I I 9 I \ 1

1.7

i A
A l X2 X3 - 5

5 -

- 5 -

(c)

x3

Xi \

1 1 1 1 1 '

—«

V

/XJ
1

1

/ ! 1

I
ir

x2

i i i i V / i i i

- 5

Fig. 11.2 Graphical illustrations of the iteration methods discussed in the text:
(a) rearrangement; (b) linear interpolation; (c) binary chopping; (d) New-
ton-Raphson.
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Table 11.1
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n :

1
2 ]
3 ]
4 1
5 ]
6 1
7 1
8 1

1.7
1.544
1.506
.497
1.495
1.495
.495
.495

18
86
92
78
27
14
12

f(xn)

5.42
1.01
2.28
5.37
1.28
3.11
7.34
1.76

x
X

X

X

X

X

10"1

10~2

lO"2

10"3

10"4

10"4

The chord joining the two points 041?/04i)) and (Blif(B1)) is then
notionally constructed, as illustrated in graph (b) of fig. 11.2, and the
value x± at which the chord cuts the x-axis determined by the interpola-
tion formula

Anf(Bn) - Bnf(An)
f(Bn)-f(An)

(11.6)

with n = 1. Next /(xO is evaluated and the process repeated after re-
placing with xx either A± or B1, according as/(*i) has the same sign as
f{Ax) or a s /C^) respectively. [In fig. 11.2 (&), Ax is the one replaced.]

As in our particular example, there is a tendency (if the curvature of
f{x) is of constant sign near the root) for one of the two ends of the suc-
cessive chords to be fixed.

Starting with the initial values Ax = 1 and B1 = 1.7, the results of the
first five iterations using (11.6) are given in table 11.2 and indicated in
graph (b) of fig. 11.2.

Table

n

1
2
3
4
5
6

11.2

An

1.0
1.2973
1.4310
1.4762
1.4897
1.4936

f(An)

-4.0000
-2.6916
-1.0957
-0.3482
-0.1016
-0.0289

Bn

1.7
1.7
1.7
1.7
1.7
1.7

f{Bn)

5.4186
5.4186
5.4186
5.4186
5.4186
5.4186

1.2973
1.4310
1.4762
1.4897
1.4936
1.4947

f(Xn)

-2.6916
-1.0957
-0.3482
-0.1016
-0.0289
-0.0082
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As with the rearrangement method the improvement in accuracy is a
fairly constant factor at each iteration (approximately 3 in this case),
and for our particular example there is little to choose between the two.
Both tend to their limiting value of $ monotonically, from either higher
or lower values, and this makes it difficult to estimate limits within which
f can safely be presumed to lie. The next method to be described gives
at any stage a range of values within which £ is known to lie.

3. Binary chopping. Again two values of x, Ax and Bx which straddle the
root are chosen, with Ax < Bx and/040 and/(i?0 having opposite signs.
The interval between them is then halved by forming

+ *n), (".7)

with n = 1, and/(xO evaluated. [Notice that xx is determined solely by
Ax and Bx and not by the values of/040 and/(2?0> as in the linear inter-
polation method.] Now xx is used to replace either Ax or Bl9 depending
on which of f(Ax) or/(i?0 has the same sign as /(*0> i.e. if /G40 and
/(xO have the same sign, xx replaces A1. The process is then repeated
to obtain x2, x3, etc.

This has been carried through below for our standard equation (11.1)
and is illustrated in fig. 11.2 (c). The entries in table 11.3 have been
rounded to 4 places of decimals. It is suggested that the reader follows
through the sequential replacements of the An and Bn in the table and
correlates the first few of these with graph (c) of fig. 11.2 and also with
the schematic tree in fig. 11.3.

Table

n

1
2
3
4
5
6
7 r

11.3

An

1.0000
1.3500
1.3500
1.4375
1.4813
1.4813
1.4922
1.4922

f(An)

-4.0000
-2.1610
-2.1610
-0.9946
-0.2573
-0.2573
-0.0552
-0.0552

Bn

1.7000
1.7000
1.5250
1.5250
1.5250
1.5031
1.5031
1.4977

f(Bn)

5.4186 ]
5.4186 1
0.5968
0.5968 1
0.5968 1
0.1544 ]
0.1544
0.0487 1

Xn

1.3500
1.5250
1.4375
1.4813
1.5031
1.4922
L4977
.4949

/(*n)

-2.1610
0.5968

-0.9946
-0.2573
0.1544

-0.0552
0.0487

- 0.0085

Clearly the accuracy with which f is known in this approach increases
by only a factor of 2 at each step, but this accuracy is predictable at the
outset of a calculation and (unless f(x) has very violent behaviour near
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x = £) a range of x in which £ lies can be safely stated at any stage. At
the stage reached above it may be stated that 1.4949 < £ < 1.4977.
Binary chopping thus gives a simple (less multiplication than linear inter-
polation, for example), predictable, and relatively safe method of solving
algebraic or transcendental equations although its convergence is slow.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Fig. 11.3 Schematic tree of the binary chopping procedure used to obtain table 11.3.

4. Newton-Raphson method. The Newton-Raphson (N-R) procedure is
somewhat similar to the interpolation method but, as will be seen, has
one distinct advantage over it. Instead of constructing the chord between
two points on the curve of/(x) against x, the tangent to the curve is notion-
ally constructed at each successive value of xn and the next value xn + x

taken at the point at which the tangent cuts the axis f(x) = 0. This is
illustrated in graph (d) of fig. 11.2.

If the nth value is xn then the tangent to the curve of f(x) at that point
has slope f'(xn) and passes through the point x = xn, y = f(xn). It is thus

= (x-xn)f'(xn)+f(xn). (11.8)

The value of x at which y = 0 is then taken as xn + 1; thus the condition
y(xn + 1) = 0 yields from (11.8) the iteration scheme

— xn
f(Xn)

f'(Xn)
(11-9)

This is the Newton-Raphson iteration formula. Clearly when xn is close
to $, xn + i is close to xn, as it should be. It is also apparent that if any of
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the xn comes close to a stationary point o f / so that f'(xn) is close to zero,
then the scheme is not going to work well.

For our standard example, (11.9) becomes

y5 _ 2x2 - 3

^Xn Z.X- ~r ^
(11.10)

Again taking a starting value of xx = 1.7 we obtain in succession the
entries in table 11.4. The different values are given to an increasing num-
ber of decimal places as the calculation proceeds and f(xn) is recorded
also.

Table

n

1
2
3
4
5
6

11.4

Xn

1.7
1.545
1.498
1.495
1.495
1.495

01
87
13
106 40
106 40

f{Xn)

5.42
1.03
7.20 x
4.49 x
2.6 x
—

lO"2

10"4

10~8

It is apparent that this method is unlike the previous ones in that the
increase in accuracy of the answer is not constant throughout the itera-
tions, but improves dramatically as the required root is approached. Away
from the root the behaviour of the series is less satisfactory and from its
geometrical interpretation it can be seen that if, for example, there were a
maximum or minimum near the root then the series could oscillate be-
tween values on either side of it (instead of 'homing' on the root).
The reason for the good convergence near the root is discussed in the
next section.

Of the four methods mentioned, no single one is ideal and in practice
some mixture of them is usually to be preferred. The particular combina-
tion of methods selected will depend a great deal on how easily the pro-
gress of the calculation may be monitored, but some combination of the
first three methods mentioned, followed by the Newton-Raphson scheme
if great accuracy is required, would be suitable for most circumstances.
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11.2 Convergence of iteration schemes

For iteration schemes in which xn + 1 can be expressed as a differentiable
function of xn, e.g. the rearrangement or Newton-Raphson methods of
the previous section, a partial analysis of the conditions necessary for a
successful scheme can be made as follows.

Suppose the general iteration formula is expressed as

xn + 1 = F(xn) (11.11)

[(11.5 b) and (11.10) are examples]; then the sequence of values xl9

x2,..., xn,... is required to converge to the value £, which satisfies both

f(0 = 0, (11.12 a)

and

f = F(£). (11.12 b)

If the error in the solution at the nth stage is en, i.e. xn — f + en, then

f + en + 1 = xn + 1 = F(xn) = F(£ + €n). (11.13 a)

For the iteration process to converge, a decreasing error is required, that
is |en + i| < |cn|. To see what this implies about F, we expand the right-
hand term of (11.13 a) by means of a Taylor series to replace (11.13 a)
by

f + *n + i = £ + €BF'(0 + HF'XO + • • •. (11.13 b)

This shows that for small en,

and that a necessary (but not sufficient) condition for convergence is
that

\F'(0\ < 1. (H.14)

[Notice that this is a condition on F'(£) and not one on/'(£), which may
have any finite value.]

Figure 11.4 illustrates in a graphical way how the convergence proceeds
for the case 0 < F'(0 < 1.

• 1 . Sketch corresponding graphs showing

(i) the convergence for the case — 1 < F'(0 < 0,
(ii) the divergence when F'(£) > 1-

Equation (11.13b) suggests that if F(x) can be chosen so that F'(£) = 0
then the ratio |en + i/€n| could be made very small, of order en in fact.
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y = Fix)

Fig. 11.4 Illustration of the convergence of the iteration scheme xn + 1 = F(xn)
when 0 < F'ff) < 1, where £ =

Or to go even further, if it can be arranged that the first several derivatives
of F vanish at x = £, then the convergence, once xn has become close to
f, could become very rapid indeed. If the first N — 1 derivatives of i7

vanish at x = £, i.e.

and consequently

(11.15 a)

(11.15 b)

then the scheme is said to have Nth order convergence.
This is the cause of the significant difference in convergence between

the Newton-Raphson scheme and the others discussed (judged by refer-
ence to (11.15 b), so that the differentiability of the function F is not a
prerequisite). The N-R procedure has second-order convergence as is
shown by the following analysis. Since

[f(x)f"(x)]/[f'(x)f
= x-f(x)/f'(x)9

F'(x) = 1 -f(x)/f(x) +
= f{x)f'\x)l[f\x)f.
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Now, provided /'(£) # 0, that F'(g) = 0 follows because f(x) = 0 at
* = f.

•2 . A common iteration scheme for rinding the square root of the num-
ber X is

Show that it has second-order convergence and illustrate its efficiency
by finding say \/\6 starting with the very bad guess y/\6 = \.

11.3 Simultaneous linear equations

Many situations in physical science can be described approximately or
exactly by means of a number N of simultaneous linear equations in N
variables xt (/ = 1,2,..., N). They take the general form

022*2 + • • • + a2NxN = y2,

0*2*2 + • • • + 0**** = yN, (H.17)

where the aXj are constants and form the elements of a square matrix A.
The y{ are given and form a vector y.

If A is non-singular, i.e. the determinant of A is not zero, then the
inverse matrix A ~x can be formed and the values of the xx obtained in
terms of it as

x = ^" 1 y , (11.18 a)

or, using subscripts and the summation convention,

Xi = (A-%yf. (11.18 b)

This approach is discussed in chapter 14 in much more detail and will
not be pursued here.

The idea of eliminating the variables one at a time (Gaussian elimina-
tion) from equations like (11.17) is probably very familiar to the reader
and so a specific example will not be given to illustrate this alone. Instead
we will show how a calculation along such lines might be arranged, so
that the errors due to the inherent lack of perfect precision in any cal-
culating equipment do not become excessive. This can happen if the value
of N is large and particularly (we will merely state this) if the elements on
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the leading diagonal of the matrix (an, a22,. -., aNN, in (11.17)) are small
compared with the off-diagonal ones.

The process to be described is known as Gaussian elimination with
interchange. The only difference from straightforward elimination is that
before each variable xt is eliminated (to reduce the number of variables
and equations both by one) the equations are reordered to put the largest
(in modulus) remaining coefficient of x{ on the leading diagonal.

We will take as an illustration a straightforward three-variable example,
which can in fact be solved perfectly well without any interchange, since
with simple numbers and only two eliminations to perform, rounding
errors do not have a chance to build up. However the important thing
is that the reader appreciates how this would be applied in say a computer
programme for a 100-variable case, perhaps with unforseeable zeros or
very small numbers appearing on the leading diagonal.

Example 11.1. Solve the simultaneous equations

JCI + 6x2 - 4x3 = 8, (a)
3xx - 20JC2 + x3 = 12, (b)

-x± + 3x2 + 5x3 = 3 . ( c ) (11.19)

Firstly interchange rows (a) and (b) to bring the 3xx onto the leading
diagonal

3*! - 20JC2 + x3 = 12, (i)

JCI + 6x2 - 4x3 = 8, (d)
- * ! + 3x2 -f 5x3 = 3. (e)

For j = (d) and (e), replace row (j) by

row (j) x row (i),

to give the two equations

(6 4- 20/3)x2 + ( - 4 - l/3)x3 = 8 - 1 2 / 3 , (ii)
(3 - 20/3)x2 + (5 + l/3)x3 = 3 + 12/3. ( / )

Now |(6 + 20/3)| > |(3 - 20/3)| and so no interchange is needed before
the next elimination. To eliminate x2, replace row (/) by

row ( /) - x row (n).

This gives

[16 11 (-13)1 11
— + — x \x3 = 1 + — x 4. (in)

L 3 38 3 J 38
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Collecting together and tidying up the final equations we have

3*! - 20x2 + x3 = 12, (i)
38x2 - 13JC3 = 12, (ii)

x3 = 2. (iii)

Starting with (iii) and working backwards it is now a simple matter to
obtain

x1 = 10, x2 = 1, x3 = 2,

the required solution.

This example gives an explicit way of solving (11.19) to an accuracy
that is limited only by the rounding errors in the calculating facilities
available, and the calculation has been planned to minimize these. How-
ever, in some cases it may be that only an approximate solution is needed,
and then for large numbers of variables an iterative method may produce
a satisfactory degree of precision with less calculation. The method we will
describe is the Gauss-Seidel iteration and is based upon the following
analysis.

The problem is, given the matrix and vector equation

Ax = y, (11.20)

where A and y are known, to find the components of vector x. The pro-
cedure is:

(i) Rearrange the equations (usually by simple division on both sides
of each equation) so that all diagonal elements of the new matrix B are
unity, that is (11.20) becomes

Bx = z, (11.21)

where

B = I - C (11.22)

and C has zeros as its diagonal elements,
(ii) Putting (11.22) into (11.21) produces

Cx + z = /x = x, (11.23)

which forms the basis of an iteration scheme

x(m + l) = Cx(m) + z (11.24)

where the vector x(m) is the mth approximation to the required solution
of (11.20), which we denote by £• [x(m) is not to be confused with the
mth derivative of x, but is used here instead of xm because, as is customary,
we are denoting the /th element of x by xt.]
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(iii) To improve the convergence, the matrix C (which has zeros on its
diagonal) can be written as the sum of two matrices L and U which have
non-zero elements only below and above the leading diagonal respec-
tively;

Ui = Qj (i > j), Li} = 0 (i ^ j), (11.25 a)

Utj = Q , (i < j), U{j = 0 (i > j). (11.25 b)

This enables the latest values of the components of x to be used at each
stage and an improved form of (11.24) to be obtained

£/x(m)
Z (11.26)

To see why this is possible we may notice, for example, that when cal-
culating say x(r + 1\ the quantities x(

3
m + 1), x(

2
m+1) and x({l + 1) are already

known and that these are the only ones needed to evaluate (Lx(m + 1))4

because of the structure of L.

Example 11.2. Obtain an approximate solution to the equations of example
11.1.

The equations are

x± + 6x2 - 4x3 = 8, 1

3*! - 20x2 + *3 = 12, I (11.19 bis)

- * i + 3x2 + 5x3 = 3. J

Divide the equations by 1, —20 and 5 respectively to give

x1 + 6x2 - 4x3 = 8,

-0 .15*! + x2 - 0.05*3 = - 0 . 6 ,

- 0 . 2 * ! + 0.6JC2 + JC3 = 0.6.

Thus, set out in matrix form, (11.26) is in this case

<m + 1)

0

0.15

0.2

0 0

0 0

-0 .6 0.

0 - 6 4

0 0 0.05

0 0 0

(m + l )

-0 .6

0.6

(11.27)

= x2
1} = = 2. ThenSuppose initially we make the guess that

the successive sets of values of the three quantities generated by (11.27)
are as shown in table 11.5.
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Table 11.5

309

m

1
2
3
4
5
6
7

x[m)

2
4

12.76
9.008

10.321
9.902

10.029

• 4 m )

2
0.1
1.381
0.867
1.042
0.987
1.004

* ( 3 m >

2
1.34
2.323
1.881
2.039
1.988
2.004

Thus it is seen that, even with the rather poor initial guess, a close
approximation to the exact result x± = 10, x2 = 1, x3 = 2 is obtained
in only a few iterations.

Although for the solution of most matrix equations Ax = y the num-
ber of operations involved increases rapidly with the size of the matrix
(roughly as the cube of the number of variables, N) for one particularly
simple kind of matrix the computing required is only proportional to TV.
This type often occurs in physical situations in which an ordered set of
objects interact only with their nearest neighbours, and is one in which
only the leading diagonal and the diagonals immediately above and below
it contain non-zero entries. Such matrices are known as tridiagonal
matrices.

A typical matrix equation involving a tridiagonal matrix is thus

a2 b2 c2

a3 b3 c3

o

o aN _ i bN _ i cN _ !

aN bN

(11.28)

In such an equation the first and last rows involve xx and xN respectively,
and so a solution could be found by letting x1 be unknown and then
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solving each row of the equation in turn in terms of xx, and finally deter-
mining Xi by requiring the next to last line to generate for xN an equation
compatible with that given by the last line. However, if the matrix is large
this becomes a very cumbersome operation and a simpler method is to
assume a form of solution (no summation convention in this section)

(11.29)

Then, since the ith line of (11.28) is

aixi.1 + biXt 4- CiXi + 1 = yu

we must have, by substituting for xt _ i, that

4- = yt -

This again is of the form (11.29) but with / replaced by i + 1.
Thus the recurrence formulae for the 0i and fa are |

(11.30)

and from the first row of (11.28), Bx = ~c1lb1 and <f>x = yj^. The
equation may therefore be solved for the x{ in two stages without carrying
an unknown quantity throughout. First, all the 6t and fa are generated
using (11.30) and the values of 81 and <f>l9 and then after these are ob-
tained, (11.29) is used to evaluate the x{ starting with xN(= <f>N) and work-
ing backwards.

As a simple worked example consider the equation

1 0 0 0 0 0

- 1 2 1 0 0 0

0 2 - 1 2 0 0

0 0 3 1 1 0

0 0 0 3 4 2

0 0 0 0 0 2

x2

x3

x,

x,

Li

2 "

3

- 3

10

7

2 _

(11.31)

and its solution by means of table 11.6, in which the arrows indicate the
general flow of the calculation.

It will be seen later that such equations can be used to solve certain
types of differential equations by numerical approximation.

t The method fails if the matrix elements are such as to make atBt _ x + bt = 0
for any i.
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Numerical integration

1

2

- 1

1

4

2

0

1

2

1

2

—
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2

_2

4

13/4

2

ft

0

- 1 / 2

1

- 1 / 4

-8 /13

—

2

3

- 3

10

7

2

_

- 2

5

12

- 3 / 2

0

*

2 -

5/2

4

- 1 / 2

34/13

1 -

L* 2

1

3

- 1

2

-* 1
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(check)

I
t1
t1
t1
t
1

11.4 Numerical integration

Sometimes, for example, when a function is presented in the form of a
tabulation, it is not possible to evaluate a required integral in closed form,
that is to give an explicit expression equal to the integral

Ja
f(x)dx; (11.32)

then a numerical evaluation becomes necessary. This is done by regarding
/a s representing the area under the curve off(x), as discussed in chapter 1,
and attempting to estimate this area.

The simplest methods of doing this involve dividing up the interval
a ^ x ^ b into N equal sections each of length h = (b — a)/N. The

fix) fix)

L - ^ parabola

Fig. 11.5 (a) Definition of nomenclature, (b) The approximation in using the tra-
pezium rule, (c) The Simpson's rule approximation.
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dividing points are labelled x{ with x0 = a9 xN = b and / running from
0 to N. The point x{ is at a distance ih from a. The central value of x in
a strip (at x{ + £/j) is denoted for brevity by xi + ll2, and for the same
reason f(xt) is written as / ( . This nomenclature is indicated graphically
in fig. 11.5 (a).

So that we may compare later estimates of the area under the curve
with the true value, we next calculate exactly an expression [even though
we cannot evaluate it] for /. To do this we need consider only one strip,
say that between x{ and xi + 1. For this strip the area is

fhl

J-h J-HI2 n = 0

Z-, fi + w
neven

(Taylor's

2 / A \ n 4

"(»+ l ) !V2J

expansion)

(exact).

(11.33)

Notice that only even derivatives of/survive the integration and that all
derivatives are evaluated at x1 + i/2.

Now we turn to various ways of approximating /, given the values of,
or a means to calculate,/ for / = 0, 1, . . . , N.

1. Trapezium rule. In this simple case the area shown in fig. 11.5 is ap-
proximated by that drawn in (b), i.e. by a trapezium. The area At of the
trapezium is clearly

4 = -H/i+/ i + i)*, (11.34)

and if such contributions for all strips are added together the estimate of
the total area, and hence of / is

/(estim.) = J A, = - (/o + 7fx + 2/2 + • • • + 2/N_! +fN).

(11-35)

This provides a very simple expression for estimating integral (11.32);
its accuracy is limited only by the extent to which h can be made very
small (and hence N very large) without making the calculation excessively
long. Clearly the estimate provided is only exact if f(x) is a linear function
of*.

The error made in calculating the area of a strip when the trapezium
rule is used may be estimated as follows. The values used are (equation
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(11.34)) / ( a n d / i + i. These can be (accurately) expressed in terms of
/i + i/2 and its derivatives by a Taylor series

h , 1 /h\2 „ 1 //A3

Ji + ll2±ll2 — / i + 1/2 ± — / i + 1/2 + T f l T l / i + 1/2 i T T I T )

x/ , (
+

3 i ,2+ •••• (11-36)

Thus

whilst,

A{ (estim.) =

from the first

At (exact) =

Thus the error

AAi = ^ i ( es

* l / + 1M + 2 ! ( 2 ) -
few terms of the exact

2 h3 „/ ! f i + 1 ' 2 + 3 T ? / i + 1

tim.) - ^(exact) =

12 -

u
h3

1 /"N

1/2 + 0

result (1

f O(h5)

1\

"" 24/

(A 4 ) ] .
1.33),

h%\ m H

(11

(11

r O(A5)

(11

.37)

.38)

.39)

The total error in /(estim.) is thus approximately given by

where </"> represents an average value for the second derivative o f /
over the interval a to b.

2. Simpson's rule. Whereas the trapezium rule makes a linear interpola-
tion of/, Simpson's rule effectively mimics the local variation off(x)
with parabolas. The strips are treated two at a time (fig. 11.5 (c)) and
therefore the number of them should be made even (that is N should be
even).

In the neighbourhood of xt (where i is odd) it is supposed that/(x) can
be adequately represented by a quadratic form

y)=fi + ay + by*. (11.41)

Applying this in particular to y = ± h yields an expression for b,

/ , + ! = / ( * ! + * ) = / « + «* + &A2,
fi-i=f(xi-h)=fi-ah + bh*.
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Thus bh2 = | ( / i + i + / , - i - 2/J). (11.42)

Now if representation (11.41) is assumed, the area of the double strip
from Xi_! to xi + 1 is given by

^(estim.) = P 05 + ay + 6 / ) dj> = 2hft + ^ A3.

J-/t 3

Substituting for bh2 from (11.42) then yields for the estimated area

^(estim.) = 2A/ + * / , + i+/ , - i ) , (11.43)

an expression involving only given quantities. [Note that the value of b
need never be calculated.]

For the full integral,

/(estim.) = - ( / 0 +/w + 4 £ /« + 2 £ /mV (11.44)
m odd m even '

• 3 . Follow the same procedure as in the trapezium rule case to show that
the error in the estimated area is approximately

[In (11.33) and (11.36) replace A/2 by A and i + ± by i.]

In the two cases considered, the function / was mimicked by linear
and quadratic functions. These yield exact answers if / i s itself a linear or
quadratic function (respectively) of x. This process could be continued
by increasing the order of the polynomial mimicking function so as to
increase the accuracy with which more complicated functions / could be
numerically integrated; but the same effect can be achieved with less effort
by not insisting upon equally spaced points x{.

The detailed analysis of methods of numerical integration, in which
the integration points are not equally spaced and the weightings given to
the values at each point do not fall into a few simple groups, is too long
to be given here. The reader is referred to books devoted specifically to
the theory of numerical analysis, where he will find details of the integra-
tion points and weights for many possible schemes.!

We will content ourselves here with mentioning only Gaussian integra-
tion which is based upon the orthogonality properties, in the interval

t The points and weights may be found in; e.g. Abramowitz and Stegun,
Handbook of mathematical functions (Dover, 1965) p. 887.
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— 1 ^ x ^ 1, of the Legendre polynomials Pt{x) [discussed in chapter 6].
In order to use these properties the integral between limits a and b in
(11.32) has to be changed to one between limits - 1 and + 1 . This is easily
done by a change of variable from x to z given by

2x - b - a
z = — > (11.45 a)

b — a

when / becomes

(b - a)?1

/ = — - — g(z)dz, (11.45 b)
2 J-i

in which g(z) =
The integration points xt for an «-point Gaussian integration are given

by the zeros of Pn(x)9 i.e. the xt are such that Pn(xi) = 0. For example, the
Xi for a 3-point integration are at 0 and ±0.774 60. The corresponding
weightings w{ (also obtainable from the theory of Legendre polynomials)
are 0.888 89 and 0.555 56. The value of the integral of f(x) between - 1
and +1 is given by 2i Wf/(xO. It can be shown that an «-point Gaussian
integration can evaluate exactly the integral of a 2n — 1 degree poly-
nomial.

We will finish this section by evaluating the same integral

hdx (1M6)

by each of the three methods (using in each case a three-point formula,
i.e. using x0, xx and x2) and also exactly, so that they may be compared.

(i) The exact evaluation.

= [arctanxlj = j = 0.785 40.
4o 1 + x

(ii) Trapezium rule.

= HI + 8/5 + 1/2] = 0.7750.

(iii) Simpson's rule.

+ 16/5 + 1/2] = 0.7833.
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(iv) Gaussian integration.

— o
I = 'I-2 J - i l + i ( z + I)2

= #0.555 56[/(-0.774 60) + /(0.774 60)] + 0.888 89/(0)}

= #0.555 56[0.987 458 + 0.559 503] + 0.888 89[0.8]}

= 0.785 27.

These results are sufficient to indicate that in practice a compromise
has to be struck between the accuracy of the result achieved and the cal-
culational labour which goes into obtaining it.

11.5 Finite differences

In several places in the previous section comparison was made between,
on the one hand, sums and differences of sequential values of/ , and,
on the other, the derivatives off at one of the points at which t h e / were
evaluated. Here, by way of preparation for the numerical treatment of
differential equations in the next and subsequent sections, we will do this
in a more systematic way.

Again we consider a set of values / of a function f(x) evaluated at
equally spaced points xi9 with common separation h. The basis for our
discussion will again be the Taylor series expansion, but on this occasion
about the point xt. It is

df h2 d2/ h3 d3/
/ j ± 1 = / ( ± / , - + _ _ ± - _ + . . , (11-47 ±)

where all the derivatives are evaluated at x = x{ and a general one will
be denoted by/,(n).

From (11.47), three different expressions which approximate f\1} can
be derived. The first of these, obtained by subtracting the two equations
is

dx
f"'-f-> » * . . . . (U.48)

c< 2h 3!dx3

The quantity (fi + i — fi- i)/2h is known as the central difference approxi-
mation to /"i1} and can be seen from (11.48) to be in error by approximately
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An alternative approximation, obtained from (11.47 + ) alone, is
given by

dx xi

A d2/

l id?" - - (1M9)

The forward difference, (fi + 1 — /,)//?, is clearly a poorer approximation
since it is in error by approximately (h/2)fl2) (as compared with (h2/6)f\3)),
and similarly for the backward difference, ( / — fi-^/h, obtained from
(11.47 —), although the sign of the error is reversed in this latter case.

This type of differencing approximation can be continued to the higher
derivatives of/in an obvious manner. By adding the two equations (11.47)
a central difference approximation to /J2) can be obtained as

d2f
Ji ~ dx2

/l+l " 2/,
(11.50)

The error in this approximation (also known as the second difference of
/ ) is easily shown to be (A2/12)/{4).

Of course if the function f(x) is a sufficiently simple function of x, all
derivatives beyond a particular one may vanish anyway, and then there
is no error in taking the difference to give the derivative.

•4. The following is copied from a table of entries for the values of a
second-order polynomial/(x) at values of x from 1 to 12 inclusive,

2, 2, ?, 8, 14, 22, 32, 46, ?, 74, 92, 112.

The entries marked ? were illegible and in addition an error was made
in the transcription. Find the illegible entries and locate and correct the
copying error.

Would your procedure have worked if the copying error had been
in f (6)1

11.6 Difference schemes for differential equations

For the remaining sections of this chapter our attention will be on the
solution of differential equations by numerical methods. We consider first
the simplest kind of equation - one of first order, represented typically
by

T-=Ax9y)9 (11.51)
dx

where y is taken as the dependent variable and x the independent one. If
this equation can be solved analytically then this is the best course to
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adopt; but sometimes this is not possible and a numerical approach
becomes necessary. Some of the examples we will use can in fact be solved
easily by an explicit integration, but, for the purposes of illustration, this
is an advantage rather than the reverse since useful comparisons can then
be made between the numerically derived solution and the exact one.

The first method to be described is not so much numerical as graphical,
but as it is sometimes useful it is included here. The method, known as
that of isoclines, is to sketch for a number of values of a constant c those
curves (the isoclines) in the xy-plane along which f(x, y) = c, that is
those curves along which dy/dx (where y is the required solution) is a
constant of known value. [Notice that these are not generally straight
lines.] Since a straight line of slope dy\dx at and through any particular
point is a tangent to the curve y = y(x) at that point, small elements of
straight lines of slopes appropriate to the isoclines they cut, effectively
form the curve y = y(x).

1.0

Fig. 11.6 The isocline method. The cross lines on each isocline show the slopes
that solutions of dy/dx = — 2xy must have at the points where they cross
the isoclines. The heavy line is the solution with y(Q) = 1, viz. exp ( — x2).

Of
Figure 11.6 illustrates in outline the method as applied to the solution

— = -Ixy.
dx

(11.52)
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The thinner curves (rectangular hyperbolae) are a selection of the isoclines
along which — 2xy is constant and equal to the corresponding value of c.
The small cross lines on each curve show the slopes ( = c) solutions of
(11.52) must have if they cross the curve. The thick curve is the solution
which has value y = 1 at x = 0 and takes the slope dictated by the value
of c on each isocline it crosses. [It is the function y — exp ( — x2).]

We now turn to more directly numerical methods and, so as to illus-
trate some of the difficulties in applying them to differential equations,
carry through one or two elementary calculations based upon representa-
tions of derivatives by differences, as discussed in the previous section.

Consider the differential equation

^ = ~y* M0)= 1, (11.53)

and the possibility of solving it numerically by approximating dy\dx by
the forward difference

dx t

using the notation of section 11.5, but with / now replaced by y. This
would lead to the recurrence relation

= yi- hyt [from (11.53)]

= (1 -h)yt. (11.55)

Thus since y0 = y(0) = 1 is given, yx = y(0 + h) = y{h) can be
calculated and so on (this is the Euler method). Table 11.7 shows the
values of y(x) obtained if this is done using various values of h, for selec-
ted values of x. The exact value [y(x) = exp ( — x)] is also shown.

Table

X

0
0.5
1.0
1.5
2.0
2.5
3.0

11.7

h = 0.01

(1)
0.605
0.366
0.221
0.134
0.081
0.049

h = 0.1

0)
0.590
0.349
0.206
0.122
0.072
0.042

h = 0.5

0)
0.500
0.250
0.125
0.063
0.032
0.016

h =

(1)
0
0
0
0
0
0

1 h = 1 . 5

(1)
-0.500

0.250
-0.125

0.063
-0.032

0.016

h = 2

0)
- 1

1
- 1

1
- 1

1

h = 3

(1)
- 2

4
- 8
16

- 3 2
64

Exact

(1)
0.607
0.368
0.223
0.135
0.082
0.050
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It is clear that to maintain anything like a reasonable accuracy only
very small steps h can be used. Indeed, if h is taken large enough, not only
is the accuracy bad but, as can be seen, for h > 1 the calculated solution
oscillates and for h > 2 it diverges. Equation (11.55) is of the form
yi + i = Aw* and a necessary condition for non-divergence is |A| < 1, i.e.
0 < h < 2. [Clearly the satisfaction of this condition in no way guarantees
accuracy.]

Part of this difficulty arises because of the poor approximation in
(11.54); its right-hand side is a closer approximation to dy/dx evaluated
at x = Xi 4- \h rather than at x = x{. This is the result of using a forward
difference approximation rather than the more accurate [but of course
still approximate] central difference.

If a central difference is used {Milne's method), equation (11.48) et seq.
give the recurrence relation

yi + i = yt-i + 2h(dy/dx)i (11.56 a)

in general, or

yi + i =J>i- i - 2hyt (11.56 b)

in this case. An additional difficulty then arises, since two initial values
of y are needed. These can be estimated by other means (e.g. a Taylor
series as discussed later) but for illustration we will take the accurate value
of y( — h) = exp (h) as giving j - 1 . Taking for the sake of example h = 0.5,
and using (11.56 b), gives the results shown in table 11.8.

Table 11.8

X

-0.5
0
0.5
1.0
1.5
2.0
2.5
3.0

Ax)

(1.648)
(1.000)
0.648
0.352
0.296
0.056
0.240

-0.184

Although some improvement is noticeable (as compared to the corre-
sponding column in table 11.7) in the early values of the calculated y(x),
this scheme runs into difficulties as is obvious from the last two lines.

Some part of this poor performance is not really attributable to the
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approximations made in estimating dy/dx but to the form of the equation
itself. Any rounding error occurring in the evaluation effectively introduces
a small amount of the solution of

dy

into y. This equation has solution y(x) = exp (x) and will ultimately
render the calculations totally inaccurate. [The numbers given in tables
11.7 and 11.8 are not sufficiently precise to show this effect for the small
amount of calculation carried out.]

We have only illustrated rather than analysed some of the difficulties
associated with simple (finite) difference iteration schemes for differential
equations, but they may be summarized as (i) insufficiently precise approxi-
mations to the derivatives, and (ii) inherent instability due to rounding
errors.

Difference schemes for partial differential equations are discussed briefly
later.

11.7 Taylor series solutions

Consider again the first-order equation

dv
— = / ( * , y), y(x0) = y0. (11.57)

Since a Taylor series expansion is exact if all its terms are included and
the limits of convergence are not exceeded, we may seek to use it to
evaluate yl9 y2, etc. for the above equation and boundary condition.

The Taylor series is

Xv _i_ /»\ == i>(x\ -4- hvf(x\ -4- vn(x\ -4- v^^(x\ -4- • • •

(11.58)

Turning this into the present notation at the point x = xit

ft2 h3

j«+i = yx + Ay," + — yf + — y(
3) + • • •• (11.59)

2 6
But for the required solution y{x)>

,„ dy
A jm,» (11.60 a)
dx Xi

is given, and the second derivative can be obtained from it,

+ + f9 (n.60 b)
dx dydx dx J dy
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evaluated at x = x{, y = y{. This process can be continued for the third
and higher derivatives all of which are to be evaluated at (xi9 yt).

Having obtained expressions for the derivatives y\n) in (11.59) two
alternative ways of proceeding are open.

(i) To use (11.59) to evaluate yi + 1 and then repeat the whole process to
obtain yi + 2, and so on.
(ii) To apply (11.59) several times but using a different value of h each
time and so obtain the corresponding values of y(x + h).

It is clear that approach (i) does not require so many terms of (11.59)
to be kept, but on the other hand the j f

( n ) have to be recalculated at each
step. With approach (ii) fairly accurate results for y may be obtained for
values of x close to the given starting value, but for large values of h a
large number of terms of (11.59) must be retained.

If the original equation is, say, second order,

rather than first order, then values of dy/dx will need to be calculated at
each xt in order to adopt approach (i). A given initial value for y'(x0)
will be required for either method. A Taylor series expansion for j^Vi
is easily obtained from the original Taylor expansion (11.58) by differen-
tiating it with respect to x; it is

tfVi = y,i} + M2 ) + ^ M 3 ) + ? M4) + • • •• (n.62)
2 6

As an example of a Taylor series solution using approach (ii) referred
to above, the following problem will be solved.

Example 11.3. Evaluate the solution of the equation

^ 1, (11.63)

for x = 0.1 to 0.5 in steps of 0.1.
The necessary derivatives will be calculated without commentary, since

the origin of each factor is fairly clear.

y' = 2 / / 2 , /(0) = 2.
y = 1.2//2.2//2 = 6 / , / (0) = 6.

/3> = \2y.2y312 = 24/ / 2 , /3)(0) = 24.
yw = 6oy3/2.2.y3/2 = 120/, /4)(0) = 120.
y5) = 360/-2/ / 2 = 720/ /2, /5)(0) = 720.
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Thus the Taylor expansion of the solution about the origin (more correctly
a Maclaurin series) is

6 24 120 720 K

Hence, y(estim.) = 1 + 2x + 3x2 + 4x3 -f- 5x4 + 6x5.

Table 11.9

X

0
0.1
0.2
0.3
0.4
0.5

>>(estim.)

1.0000
1.2346
1.5619
2.0331
2.7254
3.7500

j(exact)

1.0000
1.2346
1.5625
2.0408
2.7778
4.0000

Comparison with the exact value (table 11.9) shows that using the first
six terms gives a value which is correct to 1 part in 100 up to x = 0.3.

•5 . Integrate (11.63) analytically and hence verify the exact values quoted.

11.8 Prediction and correction

An improvement in the accuracy obtainable using difference methods is
possible if steps are taken, sometimes retrospectively to allow for the
inaccuracies in approximating derivatives by differences. We shall describe
only the simplest schemes of this kind and begin with a prediction method
usually called the Adams method.

The forward difference estimate of yi + l9 namely

yi+i = yx + M 1 } = Ji + ¥(xi9 yd (n.64)

(where the equation to be solved is again dy/dx = f(x, y))9 would give
exact results if y were a linear function of x in the range xt ^ x ^ x{ + h.
The idea behind the Adams method is to allow some relaxation of this
and suppose that y can be adequately approximated by a parabola over
the interval xt-x ^ x ^ xi + 1. Then dy/dx can be approximated by a
linear function in the same interval. That is

dy
f(x, y) = — ~ a + b{x - jct), for xt - h ^ x < xt + h.

dx
(11.65)
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The values of a and b are fixed by the calculated values o f / a t xi.1 and
xi9 which we may denote by/i_i and/ f , as

Thus
rxi + h r (yj - / _ ! ) I

tt + i - >>i ~ I I fi + ^ (* - *i) dx,

which yields

•6. j i + 1 = yt + hfi + # ( / , - / i - i ) . (11.67)

The last term of this expression is seen to be a correction to result
(11.64). That it is in some sense the second-order correction [i^y^Jx^]
to a first-order formula is apparent.

For using such a procedure, in addition to the usual requirement of the
value of y09 a value must be found for yx and hence / i . This has to be ob-
tained by other methods, e.g. a Taylor series expansion.

Improvements to simple difference formulae can also be obtained by
using correction methods. Here a rough prediction of the next value yt +1

is first made and then this is used in a better predicting formula [not
originally usable, since the formula itself requires a (rough) value of
yi + 1 for its evaluation]. The value of yi + 1 is then recalculated using this
better formula.

Such a scheme based on the forward difference formula might be,

(i) predict yi + 1 using yi + 1 = yt + hfi9

(ii) calculate / + x using this value,
(iii) recalculate yi + 1 using yi + 1 = y{ + \h{f{ +fi + 1). Here K/i + / i + i)
has replaced the / ( used in (i), since it better represents the average value
of dy/dx in the interval xt ^ x ^ xi + 1.

Steps (ii) and (iii) can be iterated if more accuracy is required.
Many more complex schemes of prediction and correction, in most

cases combining the two in the same process, have been devised, but the
reader is referred to more specialist texts for discussions of them.

11.9 Runge-Kutta methods

The Runge-Kutta method of integrating

¥-=f(x,y) (11.68)
dx
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is a step-by-step process of obtaining an approximation for yi + 1 starting
from the value yt. Among its advantages are that no functions other than
/ are used, no subsidiary differentiation is needed, and no subsidiary
starting values need be calculated.

To be set against these advantages is the fact t h a t / i s evaluated using
somewhat complicated arguments and that this has to be done several
times for each increase in the value of /. However, once a procedure has
been established, for example using a computer programme, the method
usually gives good results.

The basis of the method is to simulate the (accurate) Taylor series for
y(x{ + h), not by calculating all the higher derivatives of y at the point
xi9 but by taking a particular combination of the values of the first deriva-
tive of y evaluated at a number of carefully chosen points. Equation
(11.68) is used to evaluate these first derivatives. The accuracy of the
simulation can be made to be up to whatever power of h is desired, but
naturally the greater the accuracy the more complex the calculation and,
in any case, rounding errors cannot ultimately be avoided.

The setting up of the calculational scheme may be illustrated by con-
sidering the particular case in which second-order accuracy in h is re-
quired. To second order, the Taylor expansion is

h2 d/
.K + i = yi + hft + — -j- . (11.69)

2 dx Xi

where

dx * i ex

the last step being merely the definition of the abbreviated notation.
We assume that this can be simulated by a form

yi + i = yt + «ihfi + a2hf(xt + fi1h9yi + Pthfi), (11.71)

that is, effectively using a weighted mean of the value of dy/dx at xt and
its value at some point yet to be determined. The object will be to choose
values of al9 a2, & and 02, so that (11.71) coincides with (11.69) up to
the coefficient of h2.

Expanding the function/in the last term of (11.71) in a Taylor series
of its own we obtain

ft A, * + PM)

= / (* yd + ft* 7T + PM ^ + O(h2), (11.72)
ex dy



326 Numerical methods

where dfjdx and dfjdy are as defined by (11.70). Putting this result into
(11.71) and rearranging in powers of h we obtain

r) (11.73)
dy/

Comparing this with (11.69) and (11.70) shows that there is in fact
some freedom remaining in the choice of the a's and yS's. In terms of an
arbitrary ax (but # 1)

«2 = 1 - «x, p1 = ft = ——i -• (11.74)
2(1 - «0

One possible choice is a1 = \, and then a2 = i , & = j82 = 1. ^n ^ i s
case the procedure (equation (11.71)) can be summarized by

yt + i = yi + i(«i + ^2),
ai = hfiXi^yi),
a2 = hf(xt + h,yt + a,). (11.75)

Similar schemes giving higher-order accuracy in h can be devised. Two
such schemes, which we give without derivation, are

(i) To order h3,
yt+i = yt + i(bi + 4b2 + 63),

(11.76)

(ii) To

b3 =

order /?4

<?3 =

hf(Xi + i

•»+*<c

hf(xi + •

:+2C2-

\h, yx +

•b2 -

f 2Cg + c4),

(11.77)

11.10 Higher-order equations

The discussion of numerical solutions of differential equations has so far
been in terms of one dependent and one independent variable related by
a first-order equation. It is straightforward to carry out the extension
to the case of several dependent variables y[r\ governed by R first-order
equations

r > L = r\xi/
l\f2\...iy

w), r = 1,2,...,/?. (11.78)
dx
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The integration of these by the methods discussed for the one variable
case presents no particular difficulty, provided that all of the equations
are advanced through any particular step before any of them is taken
through the following one.

Higher-order equations can be reduced to a set of simultaneous equa-
tions provided that they can be written in the form

= /(*,>%/,• • > / * ~ 1 ) ) , (11.79)

where R is the order of the equation. To do this a new set of variables
pr is defined by

pr = — , r = 1,2,...,/* - 1. (11.80)
dxr

Equation (11.79) is then equivalent to the set of simultaneous first-order
equations

dj =

dx Pl9

dx

dx

These can then be treated in the way indicated in the previous paragraph.
In practical problems it often happens that boundary conditions applic-

able to a higher-order equation do not consist of the function and all
its derivatives at one particular point, but rather of (say) the value of the
function at two separate (end-) points. In these cases an explicit step-by-
step 'marching' scheme of solution is not available and other methods
have to be tried.

One obvious method is to treat the problem as a 'marching one', but
using a number of (intelligently guessed) initial values for the derivatives
at the starting point. The aim then is to find by interpolation or some
other form of iteration, those starting values for the derivatives which
produce the given value of the function at the finishing point.

In some cases, for example, that of a second-order equation for y(x)
with constant coefficients and with the value of y given at the two end-
points, the problem can be reduced by a differencing scheme to a matrix
equation.

Consider the second-order equation

/ ' + Iky1 + fiy = / (x ) , (11.82 a)
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with the boundary conditions

y(Q) = A, y(l) = B. (11.82 b)

If (11.82 a) is replaced by a central difference equation

* " - % ' + J " 1 ^ ^ (n.83)

we obtain from it the recurrence relation

(1 + kh)yi + 1 + Ox/*2 - 2)yx + (1 - kh)yx^ = h*f(xt). (11.84)

For h = l/(N - 1) this is in exactly the form of the N x TV tridiagonal
matrix equation (11.28) with

*! = bN = 1, d = aN = 0, tff = (1 - &/*),
64 = ( ^ 2 - 2), c{ = (1 + *A), i = 2, 3, . . . , N - 1,

and the y{ of that equation replaced here by y± = A, yN = B and the other
yi = h2f(Xi). The solutions can be obtained as in (11.29) and (11.30).

11.11 Partial differential equations

The extension of previous methods to partial differential equations thus
involving two or more independent variables, proceeds in a more or less
obvious way. Rather than an interval divided into equal steps by the
points at which solutions to the equations are to be found, a mesh of
points in two or more dimensions has to be set up and all the variables
given an increased number of subscripts.

Considerations of the stability, accuracy and feasibility of particular
calculational schemes are in principle the same as for the one-dimensional
case, but in practice are too complicated to be discussed here.

Rather than note generalities we are unable to pursue in any quantitative
way, we will conclude by indicating in outline how two familiar partial
equations of physical science can be set up for numerical solution. The
first of these is Laplace's equation in two dimensions

with the value of <f> given on the perimeter of a closed domain.
A grid with spacings Ax and Ay in the two directions is first chosen,

so that, for example, x{ stands for the point x0 + i Ax and <f>itj for the
value <£(xt,j>;). Next, using a second central difference formula, (11.85)
is turned into

(Zy?
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for (/ = 0, 1, . . . , N) and (j = 0, 1, . . . , M). If (Ax)2 = A(Ay)2, this then
becomes a recurrence relationship

#* + i./ + #1-1./ + *(#*./ +1 + #i./-i) = 2(1 + \)</>UJ. (11.87)

The boundary conditions in their simplest form (rectangular domain)
mean that

(#o./), (#*./), (#i.o), (#I.M), (11.88)

have predetermined values. [Clearly non-rectangular boundaries can be
accommodated, either by more complex boundary value prescriptions
or by using non-Cartesian coordinates.]

To find a set of values of <f>uj satisfying (11.87), an initial guess is made,
subject to the quantities listed in (11.88) having their fixed values, and then
the values not on the boundary are iteratively adjusted in order to try to
bring about condition (11.87) everywhere. We will not go into particular
methods of doing this here, but when it has been achieved to within some
required accuracy, the values <f)itj give the solution of (11.85).

Our final example is based upon the diffusion equation in one dimension

dt 3x2

If <f>ij stands for </>(x0 + / Ax9t0 + j At), then a forward difference repre-
sentation of the time derivative and a central difference one of the spatial
derivative lead to the following relationship

#t./ + i - #i./ ~ # i + i./ - 2^i./ + # i - i . / / n o n \

At (Ax)2 v '

This allows the construction of an explicit scheme for generating the
temperature distribution at later times, given it at an earlier one, namely

#i . / + i = «(#i + i . / + #1-1. / ) + (1 - 2 a M § i , (11.91)

where a = K At/(Ax)2.
Although this scheme is explicit it is not a good one because of the asym-

metric way the differences were formed. However, the effect of this can
be minimized if we study the errors introduced in the following way.

From Taylor's series in time

^ ^ - + . . . . (11.92)
tzot
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(still using the notation that dfajdt = ty(xit t^/dt, etc.). Thus the first
correction term to the left-hand side of (11.90) is

^ - (11.93 a)

The first omitted term on the right-hand side of the same equation is,
by a similar argument,

4! a*4

But using the fact that <f> satisfies (11.89) we obtain

3t2

3 1 326\ 32 (3<j>\ 3*6
= — A:—-1 = K — ) = K2—-> (11.94)

3t\ 3x2J 3x2\3t) 3x*

and so, to this accuracy, the two errors (11.93 a, b) can be made to cancel
if a is chosen so that

2 4!
i.e. « = £.

11.12 Examples for solution

1. Use an iteration procedure to find to 4 significant figures the root
of the equation 40* = exp (*).

2. Using the Newton-Raphson procedure, find, correct to three
decimal places, the root nearest to 7.0 of the equation 4x3 + 2x2 —
200* - 50 = 0.

3. Show that the rearrangement method discussed in section 11.1
has only first-order convergence.

4. The square root of a number N is to be determined by means of
the iteration process xn + 1 = *n[l — (TV — x2)f(N)]. Find how to
choose f(N) so that the process has second-order convergence.

Given that y/1 = 2.65 approximately, calculate \/l as accurately
as a single application of the formula will allow.

5. The following table of values of a polynomial of low degree con-
tains an error. Identify and correct the erroneous value and extend
the table up to * = 1.2.
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X

0.0
0.1
0.2
0.3
0.4

P(x)

0.000
0.011
0.040
0.081
0.128

X

0.5
0.6
0.7
0.8
0.9

P(x)

0.157
0.216
0.245
0.256
0.243

6. Use a Taylor series to solve the equation

dy
— + xy = 0, y(0) = 1,
ax

evaluating y(x) for x = 0.0 to 0.5 in steps of 0.1.



12
Calculus of variations

In a previous chapter it was shown how to find stationary values of func-
tions of a single variable /(x), of several variables f(x,y9...) and of
constrained variables f(x, y,...) subject to gt(x, y,...) = 0, ( 7 = 1 ,
2 , . . . , m). In all these cases the forms of the functions/and g{ were known
and the problem was one of finding suitable values of the variables
x, y,....

We now turn to a different kind of problem, one in which there are
not free variables which must be chosen in order to bring about a particular
condition for a given function, but in which the functions are free and
must be chosen to bring about a particular condition for a given expres-
sion which depends upon these functions.

To give a more concrete example of the type of question to be answered,
we may ask the following. 'Why does a uniform rope suspended between
two points take up the shape it does ? Why doesn't it hang in an arc of a
circle or in the form of three sides of a rectangle ? Is it possible to predict
the shape in which it will hang, that is to find a. function, y = y(x), that
gives the vertical height of the rope as a function of horizontal position?'

The answers to the first two questions lie directly in the realm of physics
and the 'umbrella' answer would be that the rope takes up the shape it
does because for that shape the gravitational potential energy is the lowest
possible consistent with having the rope of a certain length and with hav-
ing its ends fixed.| On the basis of the general physical statement that
'the gravitational potential energy is . . . ends fixed', the calculus of
variations, which forms the subject of this chapter, aims to answer the
third question affirmatively and to produce the explicit function y = y(x).

Two other more transparent examples may also be given of the type of
question involved. 'Along what curve joining two fixed points is the total
path-length of the curve a minimum?' 'In what shape should a fixed
length of fencing be arranged so as to enclose the largest possible area?'
The answers to the questions are physically obvious, but the important

t In this particular case an alternative analysis based upon there being no
net force acting upon any small part of the rope, is available.
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point to notice here is that the questions do not contain any particular
functions. It is the answers which give the functions [and the calculus of
variations which provides the answers].

What the questions do provide are the general principles by which the
particular functions are to be determined; these principles must be
expressible in mathematical form. The mathematical form common to
the three examples cited is an integral. In each case the quantity which
has to be maximized or minimized by an appropriate choice of a function
may be expressed as an integral involving the function and the variables
describing the geometry of the situation [which are at the same time the
variables upon which the function depends].

In the case of the rope, each elementary piece of the rope has a gravita-
tional potential energy proportional to its vertical height above an arbi-
trary but common zero and to the length of the piece. The total potential
energy is thus given by an integral for the whole rope of such elementary
contributions. For the shortest-path and fencing problems the quantities
to be minimized and maximized (respectively) are even more obviously
expressed by integrals whose integrands involve the functions giving the
shape of the shortest path or the lay-out of the fencing.

So we are led by this different type of question to study the value of
an integral, for which the integrand has a specified form in terms of a
function and its derivatives, and how that value changes when the form
of the function is varied. Specifically we aim to find the function which
makes the integral stationary, that is the function which makes the value
of the integral a (local) maximum or minimum.

12.1 Euler's equation

As has been our practice elsewhere, we will assume that all the functions
we need to deal with are sufficiently smooth and differentiable.

Let us take as the integral for study

/= fF(y,y\x)dx, (12.1)
J a

where a, b and the form of F are fixed by given considerations, e.g. the
physics of the problem, but the curve y = y(x) has to be chosen so as to
give a stationary value to /, which clearly is a function [more technically
a functional] of the curve, i.e. / = l(y).

As an example for the form F, we could consider the total energy of a
particle moving in a harmonic potential well V = jky2,

E = \my2 + iky2.
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Here the independent variable x of (12.1) has been replaced by time, but
the form F(u1,u2,u3) = \mu\ + \ku\, illustrates what is meant by
W ) i

y1

Fig. 12.1 Possible paths for the integral of equation (12.1). The solid line is the curve
along which the integral is assumed stationary. The dashed curves repre-
sent small variations of the path from this.

Referring to fig. 12.1, we now want to choose a function y — y{x)
(given, say, by the solid line) such that first-order small changes in it
(for example the two dashed paths) will make only second-order changes
in the values of /. Put in other words, we require that the changes in the
contributions to / of the various factors and parts in F when the path is
varied, should cancel each other to a first approximation.

Writing this in more mathematical form, let us suppose that y = y(x)
is the required function for making / stationary, and consider replacing
y(x) by y(x) -f ocrj(x) where r)(x) is another function and a is small. Here
7)(x) is arbitrary, but like y(x) it is assumed to have sufficiently amenable
mathematical properties. Our requirement that the change in / is O(a2)
can thus be expressed as

d/
— = 0 foral l^x) . (12.2)
da a = o

Putting the new form into (12.1) explicitly gives

I(y , a) =
Ja

F(y + arj, / + a^', x) dx,

and expanding in a Taylor series in a, this becomes

Cb/dF dF
', /, x) dx + I I — arj H ay'

Jo \ &y dy'
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With this form for I(y, a\ (12.2) implies that for all

r*/dF dF

I
dF dF \
dy ' dy'1)

Integrating the second term by parts, yields

dF d /dF\] f 3F~\b

dx \dy'/) L dy Ja

If we restrict ourselves to cases with fixed end-points, i.e. not only a
and b are given but also y(a) and y(b), this result can be simplified. Such a
restriction means that only r](x) such that rj(a) = r](b) = 0 are to be
considered, in which case the last term on the left-hand side of (12.3)
vanishes since it equals zero at both end-points. It is then easy to see that,
since rj is arbitrary (12.3) requires

dF d /df

i.e. a differential equation for y = y(x) since the form of Fis known. This
equation is known as the Euler or Euler-Lagrange equation.

12.2 Special cases and simple examples

In certain cases a first integral of the Euler equation can be obtained for
a general form of F.

(i) F does not contain y explicitly. In this case dF/dy = 0, and (12.4) can
be integrated immediately giving

dF
— = constant. (12.5)
3y

(ii) F does not contain x explicitly. Multiplying both sides of (12.4) by y'
and using

d I /dF\ 'd (dF\ "dF

we obtain
dF ndF d / dF\

y"W = dx'Ydyj' dy

But since Fis a function of y and y' only, and not of JC, the left-hand side
of this is the total derivative of F9 namely dF/dx. Hence

dF
F - / — - = constant. (12.6)

dy
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With these two special cases many results of physical and geometrical
interest can be obtained [and of course (12.4) may often be solved on an
ad hoc basis once F is given]. We begin with two very simple examples
for which the answers are obvious before the calculation is done, so that
the working of the method will be transparent at all points.

Example 12.1. Show that the shortest path between two points is a straight
line.

Let the two points be A and B (fig. 12.2).

A Aa, y{a))

Fig. 12.2 The shortest-path problem of example 12.1.

The length of an element of path ds is given by

As = [(dx)2 + (d>02]1/2 = (1 4- / 2 ) 1 / 2 dx,

and hence the total path length along a curve joining A to B is given by

\l + / 2 ) 1 / 2 dx . (12.7)-i
This is the case whatever path is chosen, and we are now going to apply
our previous results to select a path which makes L stationary [clearly a
minimum].

Since the integral contains neither y nor x explicitly, we may use either
(12.5) or (12.6). We will use (12.5) and obtain

dF V
constant = k = — = TZTTJZ-

dy (1 + y'2)112

This is easily rearranged and integrated to give

k
•2. y = r* T ^ x + c> 02-8)

i.e. the expected straight line in the form y = mx -f c.
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• 3 . Use (12.7) and (12.8) to show that, as expected, the minimum value
of L is given by

L2 = {y(b)-y{a)Y + {b-a)\

•4. Use (12.6) to obtain the result (12.8).

Example 12.2. Find the closed convex curve of given circumference which
encloses the greatest area.

dy

Fig. 12.3 The largest enclosed area problem of example 12.2.

Let the curve pass through the origin and suppose it is symmetric with
respect to the x-axis [this assumption is not essential]. We will use s the
distance along the curve (measured from the origin) as the independent
variable and y as the dependent one. Then y = y{s) is such that y(0) =
y(l/2) = 0. The element of area dA (shaded in fig. 12.3) is given by

dA = y dx = y[(ds)2 - (dy)2]112 = y(\ - y'2)112 dy,

and the total area by

pi)
= 2

Jo

- y'2)ll2ds. (12.9)

This is an example of case (ii) and so using (12.6) we obtain as a first
integral of the differential equation for y,

• 5 . x i - / 2 ) 1 / 2 + yyf2(\ - y'2y112 = Jfc,

giving, on rearrangement,

•6. ky' = ±(k2 - y2)112.
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On integration and use of y(0) = 0, this gives

y/k = sin (s/k),

and the other end-point condition, y(l/2) = 0, fixes the value of k as
//2TT to yield

/ 2ns
y = —sin—. (12.10)

From this dy = cos (2TTS/1) ds and since (ds)2 = (dx)2 + (dy)2 we ob-
tain also that dx = ± sin (27rs/I) ds. This in turn can be integrated and,
using x(0) = 0, gives x in terms of s as,

/ / ITTS

x - — = - — cos—•
2TT 2TT I

We thus obtain the expected result that x and y lie on the circle

of radius I/2TT.

•7. Verify directly from (12.9) and (12.10) that A = 12/4TT.

These two examples have been carried through at some length even
though the answers are more easily obtainable in other ways, expressly
so that the method is apparent and so that the way it works can be filled
in mentally in terms of the known answer at almost every step. Our next
example does not have such an intuitively obvious answer.

Example 12.3. Two rings, each of radius a, are placed parallel with their
centres 2b apart and on a common normal. An axially symmetric soap
film is formed between them but does not cover the ends of the rings. Find
the shape assumed by the film.

Creating a soap film surface requires an energy y per unit area [numeric-
ally equal to the surface tension of the soap solution], and so the stable
shape of a soap film, being the one which minimizes the energy, is also the
one minimizing the surface area [neglecting gravitational effects]. It is
obvious that any surface shape such as the one shown dashed in fig.
12.4 (a) cannot be a minimum, but it is not clear that some shape inter-
mediate between the solid curve in (a) [with area 4-rrab - or twice this for
the double surface of the film] and the form shown in (b) [area - 2TTCI2]
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2b

(a) (b) (c)

Fig. 12.4 Possible soap films between two parallel circular rings. See text for explana-
tion.

will produce a lower total area than both of these extremes.t If there is
such a shape (fig. 12.4 (c)), it will be that which best compromises between
the criteria of the minimum ring-to-ring distance on the film surface of
(a), and the minimum waist measurement of the surface in (b).

Fig. 12.5 Coordinate system for the minimization of the soap film area.

We take cylindrical polar coordinates as in fig. 12.5, and, with no azi-
muthal dependence of p, let the radius at height z be p(z) with p(±b) = a.

Counting only one side of the film, the element of surface area between
z and z + dz is

t With no pressure difference between the inside and outside of the film,
such shapes are not in fact possible, but are used here to illustrate the kind
of reasoning involved.
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and so the total surface

5 = ; (12.11)

This expression does not contain z explicitly, so to obtain an equation
for p which minimizes 5 we apply (12.6), obtaining

which on rearrangement gives an explicit form for p and hence for />,

P z

• 8 arcosh - = —\- c.
k k

Using the boundary conditions p(±b) = a, requires that c = 0 and that
k is such that a/k = cosh b/k. [If b/a is too large, no such k can be found.]
Thus we see that a minimizing curve is possible,

p/k = cosh z/k, (12.12)

and in profile the soap film is a catenary with the minimum distance from
the axis equal to k. This analysis is taken a little further in example 3 of
section 12.7.

12.3 Fermat's principle

Fermat's principle of geometrical optics states that a ray of light travelling
in a region of variable refractive index follows a path such that the total
optical path length [physical length x refractive index] is a minimum.

n2

Fig. 12.6 Path of light ray at the plane interface between media of refractive indices
/?i and n2
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From this, Snell's law concerning refraction at an interface can be de-
duced. Let the interface be y = constant (fig. 12.6) and let it separate two
regions of refractive indices nx and n2. For a ray which passes through
A and B, its element of physical path length is ds = (1 + y'2)112 dx and
its total optical path length

p = fB n
JA

Applying (12.6) we obtain, after some rearrangement,

n(y)(\ + y'2y112 = k, (12.13)

where A: is a constant. Recalling that y' is the tangent of the angle <j> be-
tween the instantaneous direction of the ray and the jc-axis, this general
result [not dependent on the configuration presently under consideration]
can be put in the form,

n cos </> = constant (12.14)

along a ray, even though n and <f> individually vary.
For our particular configuration n is constant in each medium and

therefore by (12.13) so is /. Thus the rays travel in straight lines in each
medium [as we have anticipated in fig. 12.6, but not assumed in our work-
ing], and since k is the same along the whole path we have nx cos <f>± =
n2 cos <j>2, or, in terms of the conventional angles in the figure,

»! sin 0! = n2 sin 02. (12.15)

A more complicated example is given in section 12.7.

12.4 Some extensions

It is quite possible to relax many of the restrictions we have imposed
hitherto, for example, not to use fixed end-points but merely end-points
constrained to lie on given curves. We will not pursue this particular
aspect, but will list briefly some other extensions:

(i) More than one dependent variable. Here F = F(y±, y[, y2, y2,. . .,
yn>y'm x) where each y{ = yt(x). The analysis proceeds as before leading
to n separate and simultaneous equations,

dF d (dF\
— = — ( — } • i = l , . . . , / i . (12.16)
dyx dx\dyj
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(ii) Higher derivatives involved.

•9. Show by the original method and repeated integration by parts, that,
if F = F(y, y\ y\..., y(n\ x), then the required minimizing function
y = y(x) satisfiesf

3F ±(W\ J*l/£^\ dn / dF\

(12.17)

(iii) Several independent variables. For cases in which the integral is
multiple

n f / dy dy dy \

the same kind of analysis as used before leads to an equation for y,

dy ^dxAdyJ

Here yXi stands for dy/dxt.

12.5 Hamilton's principle and Lagrange's equations

The mechanics of systems whose configuration can be uniquely specified
by a number of coordinates q{ [usually distances and angles] together with
time, is a subject which can be approached from different directions. Much
of the original work and many of the equations and definitions in this
field are associated with the names of Hamilton and Lagrange. The choice
of a postulatory starting point is not unique, but in order to illustrate the
use of the calculus of variations we will take as a postulate Hamilton's
principle and restrict our attention to cases where the forces involved are
derivable from a potential V.

Hamilton's principle states that if a system moves from one configura-
tion at time t0 to another at time t1 then the path of the motion (in con-
figuration space q{, q^) is such as to make

<£ = Ldt (12.19)

stationary. The Lagrangian L is defined in terms of the kinetic energy T
and the potential energy V by L = T - V. Here V is a function of the
qt only, not of the q{.

t Equation (12.17) holds only if the end-point conditions are such that the
contribution from the definite integrals vanishes - otherwise it appears on
the right-hand side.
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In this spirit we apply the Euler equation to & and obtain as in (12.16)

d (dL\ dL

or more explicitly

M0- sfer ar dv
dq-

i = ! , . . . , « , (12.21)

These equations, one for each qu are called Lagrange's equations. A proof
that they lead to the conservation of energy, T + V = constant, at least
in the case of T being a homogeneous quadratic in the qt is constructed
in example 6 of section 12.7.

As a specific illustration, we will derive the velocity of small wave mo-
tions on a string, using this approach. We are in fact here considering
an extension of the above to a case involving one isolated independent
coordinate t, together with a continuum [the q{ become the continuous
variable x]9 the expressions for T and V becoming integrals over x rather
than sums over /. Specifically (referring to fig. 12.7), we have

r= - —

where p and P are the local density and tension of the string - both may
depend on x.

O
dx

Fig. 12.7 Transverse displacement of a string of length /.

Expression (12.19) then becomes

and since y does not appear explicitly, by following (12.18) we obtain

a
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If, in addition, p and P do not depend on x or t then

d2y 1 d2y P
^ " ^ wither-- (12.23)

Other examples for solution will be found at the end of the chapter
and Lagrange's equations are mentioned again in other chapters.

12.6 Conditional variation

Just as the problem of finding stationary values of f(x, y), where x, y
are not independent but constrained by g(x, y) = 0, is solved by means
of Lagrange's undetermined multipliers, so the corresponding problem
in the variational calculus is solved by analogous methods. Use of the
multipliers is discussed more fully in section 1.14, but in outline is as
follows.

Suppose that we require to find stationary values of

'bF(y,y',x)dx, (12.24)
Ja

but subject to the constraint that the value of

J=[" G{y,y',x)6x (12.25)

is given. The method of attack is to take a new variable K = I + XJ and
find the stationary values of that. [We know SJ = 0, and if 8K = 0 then
we will have SI = 0, where 8X stands for the first-order 'variation' in
X when a first-order change is made in the function y = y(x).]

This process will yield

dF d (dF\ \dG d /dGY]
— + A 1— = 0, (12.26)

dy dx\dy'J [dy dx\d/J\

and this, together with constraint (12.25), will, in principle, yield the re-
quired solution y(x).

We will not carry the discussion of this general approach very far, but
rather illustrate it with a full example. The reader should identify for
himself the quantities and conditions in this particular example corres-
ponding to those just mentioned in connection with the more general
problem.

Example 12.4. To find the shape assumed by a uniform rope when sus-
pended by its ends from two points at equal heights.

This is a problem which can be solved straightforwardly using pre-
viously described methods, by taking the distance from one end of the
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rope as the independent variable. It is also one for which the solution -
a catenary - is widely known even among students unfamiliar with the
calculus of variations. For these two reasons we choose it to illustrate
the method of conditional variation, using x (see fig. 12.8) as the indepen-
dent variable.

O

Fig. 12.8 Coordinate system for a uniform rope with fixed ends suspended under
gravity.

Let the rope of length 2L be suspended between the points x = ± a,
y = 0 (L > a), and have uniformity density p per unit length. Then we
require to find a stationary value of its gravitational potential energy

/ = - ds = - y(\ + / 2 ) 1 / 2 dx,

for small changes in the form of the rope, but subject to its total length

jds remaining constant,

= 2L. (12.27)

As we have already indicated, we take K = I + XJ (omitting the con-
stant — pg from / for brevity) and apply the Euler equation to that. With

K = (y + A)(l + /*)•2 ) 1 / 2

the independent variable is not present and so by (12.6) a first integral is

(y + A)( i + y ' 2 ) 1 1 2 -(y + A ) / 2 ( i + y ' 2 y 1 1 2 = k,

which reduces to

•11 . y'2 = [(y
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Making the substitution (y + A) = k cosh z, this can be integrated im-
mediately to

k arcosh ^ J — = x + c, (12.28)
k

c being the constant of integration.
We now have three unknown constants A, k, c, and they must be evalu-

ated using the two end conditions y(±a) = 0, and the constraint (12.27).
The end conditions give

a + c A —a -f c
cosh—•— = T = cosh » (12.29)

k k k

and since a j=- 0, these imply c = 0 and A/A: = cosh
Putting c = 0, the constraint, in which y' = sinh(x/A:), takes the form

2L = fa [1 4- sinh2 (x/£)]1/2 dx
J-a

/fc). (12.30)

Collecting together (12.28), (12.29) and (12.30), the form adopted by
the free hanging rope is thus

/x\ (a\
y(x) = k cosh I— I - k cosh I - h [a catenary]

\k j \kj

where k is the solution of sinh (a/k) = L/k.

12.7 Examples for solution

1. A surface of revolution, whose equation in cylindrical polar co-
ordinates is p = p(z) (p = (x2 + y2)112), is bounded by the circles
p = #, z — ±c (a > c). The function p(z) is chosen so that the
surface integral / = J p~112 dA is stationary for small variations,
dA being the element of area. Show that p(z) = K + z2/4K, where
K = i[a ± (a2 - c2)112].

2. Show that the least value of the integral

JP

where Px is ( - 1 , 1) and P2 is (1, 1), is 2 In (1 + A/2). Assume that
the Euler equation gives a minimizing curve.

3. Reference example 12.3 and fig. 12.4 (page 338).
(a) Putting b = kx and a = A6, show that the necessary condition
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a/k — cosh b/k only has a solution if A is greater than a certain
value Am, and that when A = Am, x satisfies x = coth x.
(b) From tables verify that x « 1.20 and Am x 1.51 and hence that
the minimum radius of the film is 0.836.
(c) Show that the stationary value of the surface area S — 2TT X
[kb + a(a2 - k2)1'2].
(d) For b < a find an approximate expression for k, and show that
the corresponding value of S is less than that (Airab) of fig. 12.4 (a)
[i.e. that a curve like fig. 12.4 (c) does reduce the total surface area].
[Comparison with fig. 12.4 (Z?) involves detailed physics considera-
tions outside the scope of this book. See also the footnote to example
12.3.]

4. The refractive index n of a medium is a function of the distance
r from a fixed point O only. Prove that the equation of a light ray
(assumed to lie in a plane through O) travelling in the medium
satisfies (in polar coordinates)

1 /dry _ r2 n2(r)

T2 \dd) ~ V2 «V) ~ '

where a is the distance of the ray from O at the point at which
dr/dd = 0.

If n = [1 + (a2/r2)]112 and the ray starts and ends far from 0,
find the angle through which the ray is turned if its minimum dis-
tance from O is a.

5. The Lagrangian L(x, t) for a pi-meson is given by \{<f>2 — | V</>|2 -
/x2c/>2), where /x is the meson mass and <f>(x, t) its wave function.
Assuming Hamilton's principle find the equation satisfied by </>.

6. (a) For a system described in terms of coordinates qt and /,
show that if t does not appear explicitly in the expressions for
x, y, z (x = x(qu t), etc.), then the kinetic energy T is a homo-
geneous quadratic function of the qt (it may also involve the qt).
Deduce that qt (dT/dqt) = IT.
(b) By multiplying (12.21) by q{ and summing, and expressing
dT/dt in terms of q{ and -qi9 show that d(T + V)/dt = 0.

7. For a system specified by a coordinate # and t, show that the
equation of motion is unchanged if the Lagrangian L(q, q, t) is
replaced by

U= L
dt

<f> being an arbitrary function. Deduce that the equation of motion
of a particle, which moves in one dimension x subject to a force
= — d V(x)ldx (x being measured from a point 0), is unchanged if O
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is forced to move with constant velocity v (x still being measured
from O).

8. Derive the differential equations for the polar coordinates r, 9
of a particle of unit mass moving in a field of potential V{r). Find
the form of V if the path of the particle is given by r = a sin 6.

9. You are provided with a light line of length 7ra/2 and some lead
shot of total mass M. Use a variational method to determine how
the lead shot must be distributed along the line if the loaded line is
to hang in an arc of a circle of radius a when its ends are attached to
two points at the same height. [Measure the distance s along the
line from its centre.]



13
General eigenvalue problem

We have seen in chapter 12 that the problem of finding a curve which
makes the value of a given integral stationary when the integral is taken
along the curve, results in each case in a differential equation for the curve.
It is not a great extension to ask whether this may be used to solve differen-
tial equations, by setting up a suitable variational problem and then
seeking ways other than the Euler equation of finding or estimating
stationary solutions.

13.1 Laplace's equation

Let us consider again probably the most familiar of all equations in
physical mathematics, Laplace's equation

V2<£ = 0,

and ask if this can be related to a variational problem. With x, y, z as
independent variables it can be written

3 /3<f>\ 8 /dcf>\ 3 /dcf>\

Jx~ \dx) + ay lav/ + Jz \dz) = °*\dy

Reference to chapter 12 shows that Laplace's equation has the same
form as (12.18), provided Fis chosen so that dF/d<f> = 0 and dF/d</>x = <f>x,
where </>x stands for d$\dx, and similarly for y and z. It follows immediately
that the required form for F is F = \(<f>x + <f>y H- <f>l), or, as an integral,

1= ]:[[[(W2dxdydz.

Interpreted physically, the solutions of Laplace's equation are thus the
ones which make the mean squared gradient of the potential stationary
[a minimum].

This is an example resulting in an unconstrained variation problem.
Our next example will be based on restricted variation.
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13.2 Sturm-Liouville equation

This equation has already been discussed in chapter 7, equation (7.10),
and the same notation will be used here.

Suppose we search for stationary values of the integral

Ja
(13.1)

with y(a) = y{b) = 0 and p and q any sufficiently smooth and differen-
tiable functions of x. However, in addition we impose a normalization
condition

-i •2,
P(x)y2(x)dx = constant. (13.2)

Here p(x) is a positive weight function defined in a ^ x ^ b, but which
may in particular cases be a constant.

Then, as in section 12.6, we use undetermined Lagrange multipliers,f
and consider K = / — XJ given by

On application of the Euler equation this yields

^P\-qy + *py = 09 (13.3)
dxj

which is exactly the Sturm-Liouville equation (7.10), with eigenvalue A.
Now since both / and / are quadratic in y and its derivative, finding
stationary values of K is equivalent to finding stationary values of I/J.
Thus we have the important result that 'finding functions y which mini-
mize / / / is equivalent to finding functions y which are solutions of the
Sturm-Liouville equation'.

Of course this does not tell us how to find such functions y, and to have
to do it by solving (13.3) directly, naturally defeats the purpose of the
exercise. We will see in the next section how some progress can be made.
It is worth recalling that the functions p(x), q(x) and p(x) can have many
different forms, and so (13.3) represents quite a wide variety of equations.

Finally in this section we recall some properties of the solutions of the
Sturm-Liouville equation and deduce one further result concerning the
value of / / / .

t We use —A, rather than A, so that final equation (13.3) appears in the con-
ventional Sturm-Liouville form.
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The eigenvalues A{ are real and will be assumed non-degenerate (for
simplicity). If the corresponding normalized eigenfunctions are yi9 then
((7.18) and (7.19))

f
Ja

(13.4)
J a

and
fb

x = Xt 8i}-. (13.5)f
Ja

In obtaining these results it was assumed that

dyt

dx

x = b

= 0, (13.6)
x = a

which can be satisfied by y(a) = y{b) = 0, but also by many other sets
of boundary conditions (see example 13.1).

We see at once that, if the function y(x) minimizes 7/7, i.e. satisfies
the Sturm-Liouville (S-L) equation, putting y{ = y5 = y in (13.4) and
(13.5) yields J and / respectively on the left-hand sides, and thus that
the minimized value of I/J is just the eigenvalue A - introduced originally
as the undetermined multiplier.

• 1 . For a function y satisfying the S-L equation, show directly by multi-
plying (13.3) through by y and integrating by parts, that provided (13.6)
is satisfied, A = I/J.

13.3 Estimation of eigenvalues and eigenfunctions

With the eigenvalues Af of the S-L equation being the stationary values of
/ / / , it follows that the absolute minimum of I/J is equal to the lowest
eigenvalue Ao. Thus any evaluation A of I/J gives an upper bound for
Ao. Notice that here we have left the minimizing problem directly and
made a statement about a calculation in which no actual minimization
is necessary.

Further we will now show that the estimate A obtained is a better esti-
mate of Ao than the estimating [guessed] function y is of y0 (the true eigen-
function corresponding to Ao). The sense in which 'better' is used here
will be clearer from the final result.

We first expand the estimate or trial function y in terms of the complete

y = yo + c1y1 + c2y2 +
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where if a good trial function has been guessed, the c{ will be small. Using
(13.4) we have immediately that / = 1 + 2i \c\\2- The other required
integral is

•r cty',)2 + q(y0 + ciyi)
2] dx.

On multiplying out the squared terms, all the cross terms vanish because
of (13.5) to leave

A _ I _ Ao + L N2A,
J i + 2, \Ci\2

= A0 + 2 k i | 2 ( A « - A0) + O(c*).

Hence A differs from Ao by the second order in the c{ even though y dif-
fered from y0 by the first order in c{. We notice incidentally that, since
Ao < At (all /), A is shown to be necessarily ^ Ao with equality only if all
Ci = 0, i.e. if y = y0.

The method can be extended to the second (and higher) eigenvalues
by imposing, in addition to the original constraints and boundary condi-
tions, a restriction of the trial functions to only those which are ortho-
gonal to the eigenfunctions corresponding to lower eigenvalues. [This of
course then requires complete or nearly complete knowledge of these
latter eigenfunctions.] An example is given at the end of the chapter
(section 13.6, example 6).

We now illustrate the method we have discussed by considering a simple
example, and as on previous occasions, one for which the answer is
obvious.

Example 13.1. Suppose we are required to solve

! Z + A y = 0, O ^ x ^ l , (13.7)
dx2

with boundary conditions

X0) = 0, / ( I ) = 0. (13.8)

In particular we wish to find the lowest value (Ao) of A for which (13.7)
has a solution satisfying (13.8). The exact answer is of course y =
A sin (XTT/2) and Ao = TT2/4 = 2.47.

We first note that the Sturm-Liouville equation reduces to (13.7) if
we take p(x) = 1, #(JC) = 0 and p(x) = 1, and that the boundary condi-
tions satisfy (13.6). Thus we are able to apply the previous theory.

We will use three trial functions so that the effect on the estimate of
Ao of making better or worse 'guesses' can be seen. One further prelimin-
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ary remark is relevant, namely that the estimate is independent of any
constant multiplying factor in the functions used. This is easily verified
by looking at the form of / / J. We normalize each trial function so that
y{\) = 1, but purely in order to facilitate comparison of the various func-
tion shapes.

Figure 13.1 illustrates the trial functions used, curve (a) being the exact
solution y — sin (TTX/2). The other curves are:
(b) y(x) = 2x-x2,
(c) y(x) = X3 - 3x2 + 3x,
(d) y(x) = sm2(nxl2).

Fig. 13.1 Trial wave functions used to estimate the lowest eigenvalue A of y" +
Â  = 0 with ^(0) = / G ) = 0. They are: (a) y = sin (nx/I), the exact
result; (b) y = 2x - x2; (c) y = x3 - 3x2 + 3x; (d) y = sin2 (TTJC/2).

The choice of trial wave functions is governed by the following considera-
tions :

(i) The boundary conditions (13.8) must be satisfied.
(ii) A 'good' trial function ought to mimic the correct solution as well
as possible, but it may not be easy to guess even the general shape of the
correct solution in some cases.
(iii) The evaluation of / / / should be as simple as possible.
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It is easily verified that functions (6), (c) and (d) all satisfy (13.8), but so
far as mimicking the correct solution is concerned, we would expect from
the figure that (b) would be superior to the other two. All three evaluations
are straightforward.

jx
o(2x

Jo (3*
f>3

Jo ^

- x2)2

:2 - 6A:

- 3x2

/4) sin2

dx

+ 3)2

+ 3x)2

8/15

dx

dx

( « ) dx

£ (3* 6x + 3) dx 9/5
c ~ £ (x3 3x2 + 3x)2 dx 9/14 ' '

L (^/4) sin (we) d* TT2/8
• 4. Ad =

 Jo ' ' — = — ^ - = 3 . 2 9 .
f1 sin4 (nx/2) dx 3/8
Jo

We expected all evaluations to yield estimates greater than the true
lowest eigenvalue, 2.47, and this is indeed so. From these three trials
alone we are (only) able to say that Ao ^ 2.50. As expected it is the best
approximation (b) to the true eigenfunction which yields the lowest and
therefore the best upper bound for Ao.

•5 . Verify directly that Aa = TT2/4, the true value of Ao.

13.4 Adjustment of parameters

Instead of trying to estimate Ao by selecting a large number of different
trial functions, we may also use trial functions which include one or more
parameters which themselves may be adjusted to give the lowest value to
A = IjJ and hence the best estimate of Ao. The justification for this method
comes from the knowledge that no matter what form of function is chosen
nor what values are assigned to the parameters, so long as the boundary
conditions are satisfied, A can never be less than the required Ao.

To illustrate this method, an example from quantum mechanics will
be used. The Schrodinger equation is formally written Hifj = Ei/f, where
H is a linear operator, \jj the wave function describing a quantum mechan-
ical system and E the energy of the system. The operator H is called the
Hamiltonian and, for a particle of mass m moving in a one-dimensional
harmonic oscillator potential, is given by

„ * * + * , . <•,,)
2m dx2 2

where h is Planck's constant divided by 2TT.
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Example 13.2. To estimate the ground state energy of a quantum mechan-
ical harmonic oscillator.

Using (13.9) in Hip = Etp, the Schrodinger equation is

h2 dV *
- — — + - x 2 0 = E$, -oo < x < oo. (13.10)

1m (Xx 2

The boundary conditions are that ip should vanish a s x - > ±oo. Equation
(13.10) is a form of the Sturm-Liouville equation in which, after changing
signs throughout, p = h2/2m, q = kx2/2, p = 1 and X = E, and can be
solved as previously.

As a trial wave function we take ip = exp ( — ax2), where a is a positive
parameter whose value we will choose later. This function certainly -> 0
as x-> ±oo and is convenient for calculations. Whether it approximates
the true wave function is unknown, but if it doesn't our estimate will
still be valid [though the upper bound will be a poor one].

With y = exp (— ax2) and therefore y' = — lax exp (— ax2), the re-
quired estimate is

I*00 P2/2m)4«2x2 +(A:/2)x2]e"2a*2dx h2a k
• 6 . A = j - ° o L V — - y i J i = — — ( 1 3 U )

f* e"2a*2dx 2m 8a

This evaluation is easily performed using the reduction formula

•7 . In = ^—— /n_2> where In = f xn e~2ax2 dx. (13.12)
4« J-co

So we have obtained an estimate, given by (13.11) for the ground state
energy [lowest eigenvalue of H] of the oscillator, the estimate involving
the parameter a. In line with our previous discussion we now minimize
A with respect to a. Putting dA/da = 0 [clearly a minimum], gives a =
(km)ll2/2h which in turn gives as the minimum value for A

= T , (13.13)

where we have put (k/m)112 equal to the classical angular frequency a>.
The method thus leads to the conclusion that the ground state energy

Eo is ^ihw. In fact, as is well known, the equality sign holds, \ho> being
just the zero-point energy of a quantum mechanical oscillator. Our esti-
mate gives the exact value because exp ( — ax2) is exactly the ground state
wave function if a is as we have determined.

An alternative but equivalent approach to this and similar problems
is developed in the examples at the end of this chapter, as is an extension
of this particular problem to estimating the second lowest eigenvalue.
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13.5 Rayleigh's method

We conclude this chapter on estimation of eigenvalues with a brief account
of the related question of the eigenvalues of matrices. These topics are
more fully discussed in the next chapter which is specifically concerned
with matrices. Here we will develop Rayleigh's method of treating small
vibrations of a stable system.

Suppose a system is described by a set of n coordinates 04 [not neces-
sarily angles], which are all zero at the equilibrium point. Then for small
displacements the potential energy and kinetic energy are given by

v = bik0A s ei?e,
T= aJA = 6U6,

where the coefficients aik and bik depend upon the geometry of the system
and, since the equilibrium is stable, both expressions are positive definite
(or zero). The matrices A and B can be chosen real and symmetric.

Applying Lagrange's equations of motion (12.21) yields

aiA + bik0k = 0, i = 1,...,«. (13.14)

We seek solutions of this equation which are truly periodic (normal modes)
and in which the ratios of the coordinates 6k are independent of time for
a particular mode, i.e.

In this case (13.14) becomes

aiktkg + bik(f>kg = 0,

or, since g/g = -w2,

(bik - A , ) ^ = 0. (13.15)

The problem then becomes one of finding the possible eigenvalues uyf
and the corresponding eigenfunctions (eigenvectors) cj>;.

As is shown in chapter 14,

$M4>' = 0, (13.16)

if k ^ j \ and this can be used to establish an estimation procedure as
follows.

The eigenfunctions <f>' form a complete set, and so any coordinate vec-
tor <j> can be written as <|> = c^j. Consider the value of
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A(«>) s -^

L k I" • , (13.17)

where we have used successively (13.15) and (13.16). Now if co2 is the

lowest eigenfrequency then to? ^ wl for all z, and further, since ^U<f>f ^ 0

for all /, the numerator of (13.17) is ^a>2 2i ICil^UcJ)'. Hence,

4
A(4>) = ~ — > oi» (13.18)

4^(
for any<|> whatsoever [eigenfunction or not]. Thus we are able to estimate
the lowest eigenfrequency of the system by evaluating A for a variety of
vectors <}> [the components of which, it will be recalled, give the ratios of
the coordinate amplitudes]. This is sometimes a useful approach if many
coordinates are involved and direct solution for the eigenvalues is intract-
able.

An additional result for finite matrices, not available for the Sturm-
Liouville equation, is that the maximum eigenvalue to^ may also be esti-
mated. It is obvious that if we replace the statement 'to2 ^ to2 for all V
by 'to2 ^ to^ for all i\ then A(<}>) ^ to^ for any<|>.

The formal similarity between our general result and that for S-L
differential equations may be noted. If we replace integration by sum-
mation over subscripts, q(x) by B, p(x) by A, and A by to2, then (13.15)
replaces the S-L equation with p(x) = 0, whilst / takes the form $>B$
a n d / is <$>A<$>.

As an example consider a uniform rod of mass M and length /, attached
by a light string of the same length to a point P, executing small oscil-
lations in a vertical plane.

Choose as coordinates the angles 6X and 02 in fig. 13.2 (a), in which
the magnitudes of the angles have been exaggerated. In terms of these,
the centre of gravity of the rod has, to first order in the 0(, a velocity in
the x-direction of l6x + il62, and in the ^-direction of zero. Adding in
the rotational kinetic energy of the rod about its centre of gravity we
obtain

T =

and

Ml2 r6 31

"IT 3 i\
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(b) (c)

Fig. 13.2 A uniform rod of length / attached to the fixed point P by a light string of
the same length: (a) the general coordinate system; (b) approximation
to the normal mode with the lower eigenfrequency; (c), (d) approximations
to the higher eigenfrequency mode.

The potential energy

V = Mlgftl - cos

and therefore

+ | (1 - cos 02)]
+ O(04),

We now use (13.18) to first estimate the frequency of the slower of the
two normal modes. Physical intuition suggests that the slower mode will
have a configuration approximating that of a simple pendulum, fig. 13.2
(b), in which 6X = 62 and so we use this as a trial function [vector].
Taking $ = (0,0),

iMlgS2
9 g g

and we conclude that the lower (angular) frequency is ^(0.643g//)1/2.
The true value is (0.641g//)1/2 and so we have come very close to it.

Next we turn to the higher frequency. Here it is not so obvious what a
typical configuration looks like but we may try those shown in fig. 13.2 (c)
and (d). In (c) the angles are equal and opposite (Bl = — 02) and in
(d) 62 = —20! [and keeps the centre of gravity of the rod under P for
small values of the 0(]. With these two forms we obtain

• 8 .

• 9 .

(c) A = 4.5*//,

(rf) A = 9g/l.
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We thus conclude that the higher eigenfrequency ^ (9g/l)112 and that the
motion looks more like fig. 13.2 (d) than like (c). [The exact value is

For this problem it is not difficult to obtain the exact eigenvalues and
eigenvectors (61, d2) by the methods of the next chapter, but it neverthe-
less serves to illustrate that reasonable estimates and useful information
can sometimes be obtained using a minimum amount of calculation and
some physical insight.

13.6 Examples for solution

1. Show that y" — xy + Xx2y = 0 has a solution for which >>(0) =
y(\) = 0 and A ^ 36J.

2. A drumskin is stretched across a fixed circular rim of radius a.
Small transverse vibrations of the skin have an amplitude z(r, </>, /),
which satisfies

1 d2z

c2 dt2

in two-dimensional polars. For a normal mode independent of
azimuth z = Z(r) cos a>t, find the differential equation satisfied by
Z(r). Using a trial function of the form av — rv, obtain an estimate
for the lowest normal mode frequency [the exact answer is (5.78)1/2

3. Alternative approach to example 13.2 (page 355). Using the
notation of section 13.4, Hip = EI/J and the (expectation of the)
energy of the state is given by J tf/*Etf/ dv = J I/J*HI/J dv. Denote the
eigenfunctions of H by 0t so that Hipt = E1^ and since H is Hermitian
[self-adjoint] J i/**ipi dv = Bti.

(i) By writing any function 0 as 2 O0; and following an argument
similar to (13.17), show that

JH dv
A = — ^ Eo,

the energy of the lowest state. [This is the Rayleigh-Ritz principle.]
(ii) Using the same trial function as in example 13.2 show that the
same result is obtained.

4. Using a trial wave function of the form exp(—jSr) and the
Rayleigh-Ritz principle, find an upper limit for the ground state
energy of the hydrogen atom. Assuming that the given form is
actually the correct one [which it is], find the normalized ground
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state wave function and its energy in terms of the fundamental
constants.

5. The vibrations of a trampoline 4 units long and 1 unit wide satisfy
the equation V2u + k2u = 0. By taking the simplest possible per-
missible polynomial as a trial function, show that the lowest mode
of vibration has k2 ^ 10.63 and by direct solution that the actual
value is 10.49.

6. Extension to example 13.2 (page 355). With the ground state
wave function as exp ( — ax2), take as a trial function the orthogonal
wave function x2n + 1 exp (-ax2), using the integer n as a variable
parameter. Show using Sturm-Liouville theory or the Rayleigh-Ritz
principle that the energy of the second lowest state of a quantum
harmonic oscillator has an energy of ^f/zoj.

7. Three particles of mass m are attached to a light string having
fixed ends, the string being divided into four equal portions each of
length a and being under a tension T. Show that for small transverse
vibrations the amplitudes JC( of normal modes satisfy Bx = (maw2/T)x,
where B is the matrix

2 - 1 0

- 1 2 - 1

0 - 1 2J

Estimate the lowest and highest eigenvalues using trial vectors
(3, 4, 3) and (3, - 4 , 3). Use also the exact vectors (1, y2 , 1) and
(1, — \/2, 1) and compare.

8. Use Rayleigh's method to estimate the lowest oscillation frequency
of a heavy chain of n links, each of length a ( = //«), which hangs
freely from one end. [Try simple calculable configurations such as
all links but one vertical, or all links collinear, or . . ..]



14
Matrices

At the end of the previous chapter we touched briefly on the notion of a
matrix as an entity consisting of a set of quantities which are arranged in
an ordered way. The ordering is usually described by the use of subscripts,
the number of these being equal to the dimension of the array. Thus #253
stands for the element of an array which is [to use an undefined but readily
visualizable description] simultaneously in the second row, in the fifth
column, and in the third layer of the array. A general element of this
array would be denoted by aijk.

The properties of ordered arrays of elements [usually numbers or alge-
braic expressions, but sometimes more complicated objects] are a large
and intensively studied field and any reader who is interested in this for
its own sake should consult some of the numerous books available on the
subject. Our attention will be focussed on two-dimensional arrays [with
elements like #i;], or, as a special case, the one-dimensional vector array
[with elements at].

Such an array is called a matrix A, and if / runs from 1 to M and j
from 1 to TV, A is called an M x TV matrix. Written out in array form it is

A =
#22

aM2

Cl1N

a2N

(14.1)

and has M rows and TV columns. The special case of a column (or row)
vector arises when TV (or M) has the value 1. In keeping with the notation
used throughout the rest of this book (for 'physical' vectors) we will
denote a matrix which is known to be either M x 1 or 1 x TV by (respec-
tively) a vector u or a transposed! vector v in bold type.

t Transposed vectors are introduced later when matrix manipulation is
discussed.
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In the present chapter we will rather narrowly pursue a path which is
aimed at deriving those properties of matrices which are useful in physical
applications such as the solution of simultaneous linear equations or the
study of small oscillations of a mechanical system. In doing this we will
have to by-pass many interesting mathematical properties of the arrays
and in some cases quote results without a full proof. This will be par-
ticularly true in our treatment of determinants which will virtually con-
sist of only those results needed to establish inverse matrices and the
compatibility conditions on simultaneous equations.

14.1 Some notations

Before proceeding further, we remind the reader of the summation con-
vention (section 1.9) for subscripts, since its use looms large in the work
of this and the next chapter. The convention is that any lower-case alpha-
betic subscript which appears exactly twice in any term of an expression
is to be summed over all the values that a subscript in that position can
take (unless the contrary is specifically stated). This naturally implies that
any such pair of repeated subscripts must only occur in subscript posi-
tions which have the same range of values. Sometimes the ranges of values
have to be specified but usually they are apparent from the context.

The following simple examples illustrate what is meant:

a{x{ stands for a1x1 + a2x2 + . . . + aMxM,

a{jbjk stands for anblk + ai2b2k + . . . + aiNbNk9

N

aijbjkck stands for ]£ 2 (*")
; = 1 k = 1

where of course on the right-hand side of the third example (ai3) is the
element in the ith row andyth column of the matrix A, etc.

Subscripts which are summed over are called dummy subscripts and the
others free subscripts. It is worth remarking that when introducing a
dummy subscript into an expression care should be taken not to use one
that is already present, either as a free or as a dummy subscript. For
example, a{jbjkckl cannot and must not be replaced by a^b^Cji or by
aubikCki, but could be replaced by aimbmkckl or by aimbmncnl. [Naturally
free subscripts should not be changed at all unless the working calls for it.]

In the study to be made of the properties of matrices we shall often
have reason to consider multiple products of elements drawn from an
array such as (14.1). A particular product-type of interest is one which
arises from a matrix for which M = TV (a square matrix), and which con-
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tains TV factors, the factors being such that there is present one and only
one from each row and one and only one from each column.

Such products can be characterized as being of the general form

alha2J2a3J3...aNJN, (14.2 a)

where 7*1,72,73,. • -,7N is some ordering of the numbers 1, 2, 3 , . . . , N.
As an alternative, the same expression may be written so that its column
subscripts occur in their natural order i.e.

^ 1 ^ 2 2 ^ 3 3 . . ^ ^ . (14.2 b)

Again il9 /2, / 3 , . . . , iN is an ordering of the numbers 1, 2 , . . . , N (but in
general not the same as the previous ordering of the/s) .

It is a well-known result from the theory of permutations that the
number of interchanges of pairs of numbers needed to obtain a specific
ordering 7*1,72,.. .,7V starting from the natural ordering 1, 2 , . . . , N is
either definitely odd or definitely even. That is to say that although the
actual number of interchanges needed will depend on the sequence in
which the changes are made, if it is odd by one method it is odd by every
method (and similarly for even).

To express and use this result we define a symbol €hJ2..,JN which
takes only the three values ± 1 or 0, and takes these as follows,

€JV2--JN
 = + 1 if7i>7*2,. "JN is an even permutation of

1,2,...,7V,
= — 1 if7i,7*2,. • -,JN is an odd permutation of

1,2,...,7V,
= 0 if7*i,7*2,. • .,JN is not a permutation of

1,2,..., TV. (14.3)

• 1 . Verify that, with these definitions:

0 ) *3412 = 1> 0 0 e321 = " I , Oii) e2412 = 0 .

•2 . Using the e notation and the summation convention show that

€ijkdibj = a2b3 — a3b2 for k = 1,

= a3bx — a\b3 for k = 2,
= Q\b2 — tf2^1 for fc = 3 .

Notice the connection between this and the &th component of a A b.

14.2 Determinants

In order to prepare the way for some of our subsequent work on the proper-
ties of matrices, we will in this section explain and establish those results
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from the theory of determinants, which will be required. The motivation
for this development work will therefore not become apparent until we
come to the physical applications of later sections, but so as not to break
up that work too much it will be carried out here.

The matrix A appearing in (14.1) is purely an array of numbers (ele-
ments) and as such has no particular numerical value. [One could argue,
quite rightly, that it has in fact MN numerical values.] However, for a
square matrix [M = N] it is possible to deduce a single numerical (or
algebraic) expression, which it will be found later has an important role
to play in the theory of matrices. This expression is known as the deter-
minant of A or det A and is denoted symbolically by \A\. For an explicit
matrix such as (14.1) with M = N it is written

det ,4 =
a2N

aNN

(14.4)

[Notice that in our notation a determinant appears enclosed in vertical
bars, whereas the corresponding matrix is enclosed in square brackets.]

The value of the determinant is given by

I A I (14.5)

where the implied summation runs over all values of each ik from 1 to N
and € is as defined in (14.3). Since the e-factor is only non-zero when
il9 i2,- . . , iN is some permutation of 1, 2 , . . . , N, it is apparent that the
only non-zero contributions to \A\ in (14.5) come from terms in which
the factors aikk are drawn one and only one from each row and one and
only one from each column. This is just as discussed in connection with
(14.2 b). Since there are TV numbers (1 ,2 , . . . , TV) to fill in the values
/*!, i2,. •., iN and all must be different, it is clear that there will be TV!
contributing terms. [There would be TV̂  terms in (14.5) if e did not have
its special meaning.]

Let us illustrate this immediately with a simple example by evaluating
det A when A is the 3 x 3 matrix

A =

2 1 - 3

3 4 0

1 - 2 1

(14.6)
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To show where each factor arises we write below it the corresponding
values of / l5 i2, 13 in (14.5)

\A\ = 2.4.1 - 2-(-2).O - 3-1-1 + 3 - ( - 2 ) . ( - 3 )
ili2i3 123 132 213 231

+ 1-1-0 - 1-4-(-3) = 35. (14.7)
312 321

As an alternative to the definition (14.5), det A can also be expressed
as

This definition will now be shown to be equivalent to (14.5).
It is readily apparent that the only non-zero terms in (14.8) are again

those containing factors drawn one and only one from each row and
column, and all that remains to be shown is that for any particular product
of elements so constituted, the signs obtained from the e factors are the
same in (14.5) and (14.8).

To show this consider a particular term

Their occurrence in this term associates with each ^-subscript a particular
/-subscript, lq with kq. The sequence kl9 k2,..., kN is necessarily either
an even or an odd permutation of /l5 / 2 , . . . , lN, and both are orderings
of the numbers 1 to N. Whichever it is, it is not affected by reordering the
pairs (&!, /0, (k2, /2),. ..,&*> W so as to read

(l,A),(2,y2),...,(7V,jN), (14.9 a)

nor by reordering them so as to read

(/i,l),(»a, 2 ) , . . . , ( / „ , # ) . (14.9 b)

Thus all three sets of pairs have the same even or odd permutation charac-
ter; in particular (14.9 a) and (14.9 b) have the same character. But this
is just the statement that €hJ2...JN = eili2...ijv, when / and 7 have those values
which pick out exactly the same combination of factors in (14.5) and
(14.8) respectively. This completes the proof that (14.5) and (14.8) are
equivalent to each other.

• 3 . Use (14.8) to evaluate \A\, with A given in (14.6). Set out the evalua-
tion in an analogous way to (14.7) and show that it again yields 35.

When the size of the matrix becomes much beyond 3 x 3 , evaluation
of its determinant by writing out all permitted products as in (14.5) or
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(14.8) becomes very laborious and error-prone and an alternative method
is preferable. This can be obtained as follows.

In the expression (14.8) for det A we group together all those terms
which contain the factor aI}I for some particular value of /. There will
be N such groups corresponding to the TV different values of jj. In carry-
ing out the development, / will be left unspecified, but it may be helpful
to think of it as having a particular value (say 1). In what follows a bar
over the top of a symbol, e.g. JJ or alh will denote that that symbol is
missing from an otherwise natural sequence.

Carrying out the grouping we can write (14.8) as

a'h 2
in

[Despite our preference for the summation convention, the summation
signs have been explicitly written in here, to help to elucidate the order
in which things are done.] In the second (multiple) summation, j l 9 j 2 ,
etc. range over all values from 1 to N except the value /7.

As an intermediate aid let us denote by

the quantity analogous to €hJ2...JN but taking the value +1 or — 1 accord-
ing to whether j\,j2,'. • » J7>- • ->JN is a n even or odd permutation of 1
to N excluding jIm Now consider the sequence

1, 2, 3 , . . . , / , , . . .,7V.

In \jj — I\ successive interchanges of jj with its successive left- (or right-)
hand neighbours, y7 can be brought to the /th position with the rest of
the numbers in their natural order [omitting jj of course]. If these inter-
changes are then followed by those necessary to get the remaining numbers
into the order j\,j2,..., J7, • • -,JN, then the total number of changes will
be even or odd according to whether

is 4-1 or — 1. But this is exactly the same as €J1J2...Jr..JN, since it produces
the same final ordering, viz. ji,j2,- - -ijn- • ->JN> of the numbers 1 to N
starting from their natural order.

Returning now to (14.10) and inserting this result, we obtain as an
alternative for \A\,
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N

\A\ = 2 aij^~ l ) ; /~ ;

X I 2 €hJ2-U:.iN aiJia2j2- • - ^ - • - f l ^ | . (14.11)

Now the term in the curly brackets is exactly the determinant of the
(N — 1) x (N — 1) matrix obtained by striking out the 7th row and the
7/th column of the original matrix A, i.e. by striking out the row and
column containing aljr This quantity is called the minor of aljl and is
denoted by Mljr Taken together with the sign factor (— I)7''"7, it is
called the cofactor

CW/ = ( - iy / - 7 M W l , (14.12)

and (14.11) can be rewritten as

\A\ = 2 aUi(-\yi-lMlJ! = anCj^ , any /in 1 ^ / ^ N.

(14.13 a)

By a similar argument starting from (14.5) det A can also be written as

\A\ = ^aijA-lY'-'M^j = OijjQjj, any Jin 1 ^ J ^ N.

(14.13 b)

These new expressions for det A enable it to be expressed as a weighted
sum of N determinants, each with one less row and column than the
original. Clearly this process can be repeated until the matrices are
reduced in size to 1 x 1. Their values are then those of the single elements
left. [When a matrix B contains only a single element, \B\ must not be
confused with a simple modulus sign, e.g. | — 3| is —3 not +3.]

As stated earlier / was left as a fixed but arbitrary integer in the range
1 to N. But since equations (14.13) have been shown equivalent to (14.5)
and (14.8), it follows that the values given by (14.13) are quite independent
of which value / takes. For practical calculations, / is usually determined
on the basis of which row or column has most zero entries, or is taken
as / = 1 since this aids the visualization of the cofactor determinants.

This proof, in order to be general, has been somewhat complicated
and involved subscripts to subscripts. When the form of result is applied
to particular cases it is much less forbidding. To illustrate this we will
again evaluate \A\ for A given by (14.6). In doing this we will pedantically
follow out the procedure to the last single step, although in practice the
evaluation of 2 x 2 matrices is usually carried out mentally. [In addition
some properties of determinants mentioned later can greatly simplify
their evaluation.]

We use (14.13 a) with / = 1 (and j) running from 1 to 3) at the first
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stage and also evaluate the subsequent determinants by expanding in
terms of the first row.

\A\ =

2 1 - 3

3 4 0

1 - 2 1

= 2
4 0

- 2 1
- 1

3 0

1 1
+ (-3)

1 - 2

= 2[4 |1 | - 0 | - 2 | ] - 1 [3111 - 0|l |] - 3 [3 | -2 | - 4|1|]

= 2 [4-1 - 0-(-2)] - 1[31 - 0 1 ] - 3 [ 3 ( - 2 ) - 4 1 ]

= 8 - 3 + 30 = 35.

•4. For some verification of the general results derived in this section,
again evaluate the same determinant,

(i) using (14.13 a) with another value of / (say / = 2),
(ii) using (14.13 b) with some value of / (say / = 3).

Of course all methods should lead to the same value of 35.

•5 . Evaluate the determinants

(i)

a

h

g

h

b

f

g

f
c

' (ii)

1

0

3

- 2

0

1

" - 3

1

2

- 2

4

- 2

3

1

- 2

- 1

14.3 Some properties of determinants

We will now establish a series of properties of determinants which will
be needed later and in addition can often be used to reduce the labour of
evaluating them.

(i) The matrix B obtained from A by interchanging the rows and columns
of A, i.e.

ba = an (14.14)

has the same determinant as A.
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This follows immediately from the equivalence of the definitions (14.5)
and (14.8). Det B evaluated using (14.5) is identical to det A evaluated
using (14.8), and vice-versa.

The matrix B is known as the transpose of A and will be denoted by
A. A matrix which is equal to its transpose, A = A, is called symmetric.

It also follows from the present result that any theorem established for
the rows of A will apply to the columns as well, and vice-versa.

(ii) If two rows (columns) of A are interchanged, its determinant changes
sign but is unaltered in magnitude.

Suppose the rth and sth (s > r) rows of A are interchanged to produce
a new matrix A''. Then using (14.8) to evaluate det A' we have

Now exchanging the dummy subscripts jr and ;s, the original products of
elements which appeared in \A\ are recovered but the e-factor is now
€hJ2---h-'-u---JN instead of €J1J2...Jr...Js...JN. However, this reordering of the e
subscripts corresponds to a single interchange and so one e-factor is
equal to minus the other. All other factors depending on rows other
than the rth and sth are unaltered and so

\A'\ = - M l -

(iii) If two rows (columns) of det A are identical, then det A = 0.
Interchanging the two rows clearly leaves \A\ unaltered. But by (ii) it

changes it to —\A\. Thus \A\ must =0.

(iv) (a) Multiplying each element of any one row (column) of A by a
constant k multiplies \A\ by k.
(b) Multiplying every element of A by k multiplies \A\ by kN.
(c) Any matrix which contains a complete row (column) of zeros has zero
determinant.

(v) If two matrices A and B are identical except for the elements of one
particular row (column), say the /th, then the matrix D, having the same
common elements as A and B and having its /th row (column) construc-
ted from the sums of the corresponding elements in A and B, has the
property

\D\ = \A\ + \B\.

In symbols we have

da = a{j = bu, (i =£ I), j = 1,2,..., N,
da = au + bIj9 j = 1, 2 , . . . , N.
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The result is immediate if we write
.. .d

ljr
.d

NJN . aIJI... d
NJN >b

ljr
and replace all the remaining d{j in the first term by the corresponding
an, and those in the second by the corresponding b{j.

(vi) The determinant of a matrix is unchanged in value by the addition
to the elements of one row (column) of any fixed multiple of the elements
of another row (column).

This result can be obtained from the previous one by taking the /th
row of B as the fixed multiple (A say) of the row (the Rth say) to be added,
i.e.

(14.15)

Xa
Rj,

However, by result (iv), part (a), det B = A x {the determinant of a
matrix in which the 7th and Rth rows are identical}; thus by result (iv),
part (c), this must =0. Putting this into result (v) gives that \D\ = \A\,
which equations (14.15) show is the stated result.

Example 14.1. Use properties (ii) to (vi) to evaluate the matrix (ii) of •5 .
There is no explicit procedure for using the results (ii)-(vi), and judging

the quickest method is a matter of experience. A general guide is to try
to reduce all terms but one in a row or column to zero and hence effec-
tively obtain a determinant of smaller size. The steps taken below are
certainly not the fastest series but have been chosen in order to illustrate
the use of most of the properties. To save space the various stages are
written sequentially and the commentary given afterwards.

1 0 2 3 (a) 1 0 1 3

= 2

= 2

0

3

2

1

0

3

2

1

- 3

1

0

1

- 3

1

- 2

4

- 2

1

0

- 1

0

1

- 2

- 1

3

1

- 2

- 1

(c)

= 2

0

3

- 2

1

0

3

- 2

1

- 3

1

0

1

- 3

1

- 1

2

- 1

1

0

- 1

0

1

- 2

- 1

3

0

1

- 2
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(d)

= 2 - 1 - C — l ) a

1

3

- 2

(

1

- 1

0

/ )

=

3

1

- 2

2 ( -2)

(*)

= 2

- 2

3

- 2

4

3

- 2

0

- 1

0

0

- 1

0

- 2

1

- 2

4

1

- 2

(S)

= 0

(a) property (iv), part (a).
(b) add column 2 to column 3.
(c) add (— 1) x column 2 to column 4.
(d) e x p a n d u s i n g (14 .13 a ) w i t h 7 = 2 .
(e) add row 2 to row 1.
(/) property (iv), part (a),
(g) property (iii).

•6. Evaluate

gc ge a + ge gb + ge

0 fe 6 b

c e e b + e

a b b + / 6 + </

Before leaving determinants we may note one further property which
will be useful later.

Consider the matrix A' obtained from an original matrix A by replacing
the 7th row by one of the other rows (say the Ttth) of A. Then A' is a matrix
with two identical rows and thus has zero determinant. However replacing
the 7th row by something else does not change the cofactors C/; of the
elements in the 7th row which are therefore the same in A and A'. Thus
applying (14.13 a) to the new matrix Af we obtain

0 = \A'\ = duCls = aRiClj9 / # R,

and we may now combine this result more compactly with (14.13 a) to
read

tfjyC/y = hi\A\. (14.16 a)

An analogous argument applies to column expansions to enable (14.13 b)
to be generalized to

j = BSJ\A\. (14.16 b)
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These two results show that there is a special relationship between the
elements of a matrix and their cofactors. That such a relationship exists is
not surprising since each element itself appears in the cofactors of other
elements. In vector language, equations (14.16) state that any row (column)
vector in the matrix is orthogonal to the vector formed by the cofactors
of any other row (column).

14.4 Simultaneous homogeneous linear equations

If we consider the N simultaneous homogeneous linear equations

0ii*i + «i2*2 + • • • + a1NxN = 0, "j

021*1 + 022*2 + ' ' * + 02*** = 0,

0*1*1 + 0*2*2 + • • • + aNNxN = 0,

in N unknowns xl9 x2,..., **, we would expect, in view of every right-
hand side being zero, that in general the only solution is that all x, are
themselves zero.

However, this is clearly not necessarily so, since, for example, the three
simultaneous equations

3*! - x2 + 2x3 = 0, ]
Xl - 2x2 + 2x3 = 0, V (14.18)
Xi + 3x2 - 2x3 = 0, J

have the non-zero solution xx = — 2, x2 = 4, x3 = 5 [and also any
multiple of this set]. We may thus consider what conditions are necessary
for the general equations (14.17) to have a non-zero solution.

The general question of whether M simultaneous homogeneous linear
equations in N unknowns have no solution, a unique solution, or infinities
of solutions, is lengthy to consider in full generality, and if pursued would
take us well beyond what is usually required for physical problems. We
will restrict our attention to the case M = N (as in (14.17)) and derive
only a necessary condition that at least one non-zero solution exists.

Consider the constants a{j (i,j= 1,2,..., TV), in (14.17) as the elements
of a matrix A and suppose there exists a non-zero solution to the equations,
i.e. a solution with at least one xt i=- 0. For definiteness suppose xx ^ 0.

Next consider det A. In view of the results of the previous section the
following operation can be carried out on A without changing the value of
det A. To the first column of A add

— x (2nd column of A) H x (3rd column of A) +
*i *i

* *
H x (Mh column of A).

*i
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Now every element of the first column of the new matrix has the form

an + ^ ^ - 4- ^ ^ + ••• + 2lH^L9 i = l , 2 , . . . , # . (14.19)

But because the x, have been selected to be solutions of (14.17), each of
these elements is individually zero. Hence the new matrix contains a
column of zeros and so its determinant is zero. Thus necessarily det A is
zero also.

This result (which will later form an important step in the discussion of
eigenvalues of matrices) may be stated as:

If equations (14.17) have a non-zero solution, then
\A\ = 0 where A is the matrix whose elements are the
constants in (14.17).

In the matrix and vector notation of later sections, this reads:

The equation Ax = 0, can have a solution with x / 0
only if |^ | = 0. (14.20)

•7. Verify that the matrix appropriate to equations (14.18) has zero
determinant.

•8 . Do the following sets of equations have non-zero solutions? If so find
them.

(i) 3x + 2y + z = 0, x - ly 4- 2z = 0, 2x + y 4- 3z = 0;
(ii) 2x = b(y + z), x = 2a(y - z), x = (6a - b)y - (6a 4- b)z.

14.5 Matrix algebra

So far in our development, matrices have been nothing more than arrays
of numbers (or algebraic expressions), and it is natural to enquire as to
whether it is possible or useful to define operations by means of which two
or more matrices may be combined to give further (related) matrices or
other quantities. The kind of operations on ordinary numbers, for which
analogues may be sought for matrices, are addition, subtraction, multi-
plication and division.

1. Addition and subtraction. At one point in the derivation of property (v)
of section 14.3 an equation appears which has something of the appearance
of the addition of two matrices. The actual context there is one of deter-
minants of matrices rather than the matrices themselves. However, it
seems natural to define the sum D = A 4- B of two matrices A and B
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[we avoid the symbol C which we employ in connection with cofactors] as
that matrix whose elements are given by

d» = au + bti (14.21)

for every pair of subscripts (/,y), with i = 1, 2 , . . . , M andy = 1, 2 , . . . , N.
For this to have any meaning, the matrices A and B must both be M x TV
and their sum D will be the same.

From definition (14.21) it follows that A + B = B + A and that the sum
of a number of matrices can be written unambiguously without bracketing,
i.e. the commutative and associative laws hold.

It is clear that for consistency the matrix E = A — B must be defined
by

<?t, = *t, - 6,,, i = 1 ,2 , . . . ,M, y = 1,2,...,7V. (14.22)

2. Multiplication, A useful definition of multiplication of matrices is less
obvious, but one is suggested by a study of linear transformations. For dis-
cussion purposes and to save space, we will limit ourselves to matrices of
small size until the general formalism has been established. The results to
be obtained will be applicable to matrices of arbitrary size and in general
can be compactly stated using the summation convention.

Consider a transformation from one set of variables x1, x2 to a new set
of variables y1, y2, y3 [we suppose there are a different number of them so
that the matrix properties can be developed for general matrices]. If the
transformation is linear it will take the form

(14.23)

These equations can be written more compactly using the summation
convention as

*f = «& (1 = 1, 2), (j = 1, 2, 3). (14.24)

Alternatively if we view the entities

X s and 7 = y* (14.25)

as a 2 x 1 matrix and a 3 x 1 matrix respectively, we see that we could
conveniently define multiplication of matrices by saying that

X = AY (14.26)

means that each element of the product matrix X is given by (14.24) for a
particular value of the subscript 1. For this to be a meaningful definition it
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is clearly necessary that the number of columns in A equals the number of
rows in Y [in this case both = 3].

As mentioned earlier, it is usual when a matrix has only a single column
(row) to call it a column (row) vector and, to be in line with the vector
notation of chapters 2-4, to write it in bold type, e.g. x(x). Thus (14.26)
would normally be written

x = Ay, (14.27)

and we will follow this practice for column or row vectors.
Consideration of a further transformation, say

}'k = bklz1 + bk2z2 + bk3z3 = bklzl9 for / = 1, 2, 3 , (14.28)

will show how the definition of multiplication of matrices can be extended
from (14.24) and (14.26) to more general cases. Substituting (14.28) into
(14.24) [withy = k] gives

* t = OiibflZi (14.29)

and so gives the connection between the variables (xx, x2) and the variables
(z1? z2, z3) directly. Written as a single transformation it would have the
form

JC, = diXzu (14.30)

and comparison between this and (14.29) shows that we should define the
product of the matrices A and B as

D = AB (14.31)

with each component dn of D defined by

(14.32)

Again the number of columns in A must match the number of rows in B.
Multiplication of more than two matrices follows naturally and we

simply state the defining relationship for the individual elements

(H% = (ABC.. . G ) i ; = AikBklCln. . . < / „ . (14.33)

The expression (14.33) is independent of the order in which the sums over
k, l,m9.. .,q are carried out and so the associative law holds in multi-
plication.

Returning to (14.32), it is apparent that if A is M x TV and B is an
TV x M matrix, then two product matrices are possible, given by

(i) dn = axibjU and (ii) eu = b{jan.
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They are clearly not the same since D is an M x M matrix whilst E is
an N x N matrix. Care must thus be taken to write matrix products in the
intended order; D = AB but E = BA.

Even if both A and B were square (i.e. both N x N) the product AB is
not in general the same as the product BA. If they are the same the two
matrices are said to commute.

For the rest of this chapter we will consider only square matrices. These
will be of arbitrary size TV x N unless otherwise stated although most
specific examples will be 2 x 2 or 3 x 3. All summations over dummy
subscripts must be understood to run from 1 to N.

To give a concrete example of the multiplication procedure and also to
illustrate the points of the last paragraph but one, we now carry out the
following example.

Example 14.2. Evaluate AB and BA when A and B are the 3 x 3 matrices
given by

A =

The layout to be used for the working is that usually found most con-
venient. The elements (d{j say) of the resultant matrices are (for simple
elements) found by mentally taking the 'scalar product' of the /th row of
the first matrix with the y'th column of the second one. For example,
dxl = 3-2 + 2-1 + ( - l ) - 3 = 5,d12 = 3-( -2) + 2-1 + ( - l ) - 2 = - 6 ,
etc.

D = AB =

3

0

1

2

3

- 3

-r
2

4

, B =

"2

1

3

- 2

1

2

3

0

1

"3

0

1

"2

1

.3

2

3

- 3

- 2

1

2

—

3"

0

1

r
2

4

"3

0

1

"2

1

3

2

3

3

-2

1

2

—

3-

0

1_

r
2

4

=

" 5

9

11

" 9

3

10

- 6

7

3

- 1 1

5

9

8~

2

7_

6

1

5

E = BA =

It is apparent from these results that AB ^ BA.

•9 . Check the remainder of the evaluation of D and E in the above
example.
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Further properties of matrix multiplication which can be deduced
directly from its definition include the distributive laws

(A + B)F = AF + BF,
F(A + B) = FA + FB. (14.34)

Although AB / BA in general, it is the case for any square matrices A
and B that

det {AB) = det ,4-det B = det (BA). (14.35)

A proof of this can be found in any textbook on matrix algebra and will
not be given here.

•10. Show that this is true for the particular matrices of example 14.2.

•11. (i) By considering matrices

ri oi

• l o o ] '
show that AB = O, where O is the zero matrix with all entries equal to
zero, does not imply that either A or B is the zero matrix,
(ii) Verify that result (14.35) is still true however.

3. Division. If we were dealing with ordinary numbers we would consider
equation (14.31), D = AB, as equivalent to B = DjA provided that
A ^ 0. However, if A, B, and D are matrices this notation does not have an
obvious meaning, since we have elected to define multiplication by

du = aijbn (14.32 bis)

rather than, say, diX = aiX x bu (no summation), and we would wish
division to be in some way the inverse of multiplication. The question
becomes: 'Can an explicit formula for B be obtained in terms of A and
DV

It will be shown that this is possible for those cases where det A ^ 0.
A square matrix whose determinant = 0 is called a singular matrix, other-
wise it is described as non-singular. What will be shown is that if A is non-
singular, we can define a matrix, denoted by A "1 and called the inverse of
A, which has the property that,

if AB = D,
then B = A^D. (14.36 a)

In words, B can be obtained by multiplying D 'on the left' by A'1.
Analogously, if B is non-singular, then by multiplication 'on the right'

A = DB~\ (14.36 b)
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The construction of the inverse of A is based upon the results (14.16)
involving the cofactors Ci; of the elements of A, namely

= 8RI\A\, (14.16 a bis)

(14.16 b bis)

From these equations it is clear that if we take as the (i,j) elements of
A ~x the Cji (note the inversion of the order of the subscripts) divided by the
non-zero number \A\, then the k, I element of A'1 A will be

c &
(A-'A)kl = (A-%m(A)ml = - ^ aml = -j- \A\ = hkl. (14.37)

In the next to last step, (14.16 b) was used.
Thus, with this definition of A ~ \ the matrix A'1 A has elements = 1 on

the leading diagonal (i.e. when k = I) and = 0 elsewhere. Such a matrix
is called a unit matrix and denoted by / [it too is TV x N];

(14.38)

1

0

0

0

0

1

0

0

0

1

. . .

' 1

. 0

0"

0

1.

In this notation (14.37) can be written as

A-1 A = L (14.39)

•12. Show by a similar argument to (14.37) that A A'1 = /, i.e. A and its
inverse commute.

•13. Verify formally the following intuitively obvious properties of the
unit matrix.

(i) For any matrix A, AI = A.
(ii) / commutes with any other matrix.
(iii) / is its own inverse.

We may now return to our original equation AB = D and solve it for B as
follows.

Because A is non-singular (\A\ # 0) we can define the matrix A'1.
Multiply both sides of AB = D on the left by A ~x to obtain

AXAB =
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Using (14.39) and the results of M3, this becomes

A~1D = A~XAB = IB = BI = B,

which is the stated result (14.36 a).
It is clear that A~l cannot be singular [e.g. by using (14.39) and (14.35)

and noticing that det / = 1] and so it too has an inverse. Applying the
result (14.36) to (14.39) shows that its inverse is A itself; in symbols,

A~XA = / ,

thus A = (A-1)-1! = (A-1)-1. (14.40)

By similar arguments, other properties of the inverse may be found;
these are left as exercises for the student.

•14. Show that for non-singular matrices A, B,...,

(ii) (AB)-1 = B^A'1,
(iii) (AB...G)-1 = G~1...B-1A-\

14.6 Simultaneous linear equations

As a particular case of matrix division we may consider a matrix equation

Ax = b, (14.41)

where A is N x N and non-singular and x and b are N x 1 column
vectors. Written out in full this represents the TV simultaneous linear
equations

• • • + a1NxN = bl9

021*1 + 022*2 H + ci2NxN = b2,

0*1*1 + 0*2*2 + ' ' ' + 0**** = bN.

Consideration has already been given in section 14.4 to the case where
b = 0 and so we will not consider that case further.

A solution for the unknowns xl9x29.. .,xN can be immediately ob-
tained in terms of the elements of A and b by using (14.36 a), namely

x = Alb. (14.43)

To illustrate this method and demonstrate the construction of an inverse
matrix we will solve the following.
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Example 14.3. Solve the simultaneous equations

2x1 + 4x2 + 3x3 = 4,
*! - 2x2 - 2x3 = 0,

— 3*! + 3x2 + 2x3 = — 7.

Referring to the equations as Ax = b, we first determine \A\ and find
it = 11, This is non-zero and so an inverse matrix A'1 can be constructed.

To do this we need the cofactors of all the elements of A. The cofactor
of a21, for example, is ( - l ) 2 " 1 ^ x 2) - (3 x 3)] = 1 and this is to be
placed as the 1, 2 [note the order] element of A'1. The matrix A'1 is in
this way built up as

2 1 - 2 "

• 15.
1

13

_ - 3 - 1 8 - 8 .

The solution of the equations is then easily obtained as

" 4"

0

- 7

=

" 2"

- 3

4_

2 1 - 2

4 13 7

- 3 - 1 8 - 8

Thus the solution is x1 = 2, Jt2 = — 3, x3 = 4.

The solution of an equation of the form (14.41) can also be considered
as inverting a transformation of variables such as is described by

x = Ay. (14.27 bis)

The solution

y = A (14.44)

gives the equations which express the yx in terms of the xi9 whereas the
original equation (14.27) expressed the xx in terms of the yx. [It should
again be noted that for a unique inverse transformation to exist there must
be equal numbers of xx and yx-Ais square - and A must be non-singular.]

14.7 Derived matrices and their properties

In addition to the inverse matrix A'1, there are a number of other matrices
which can be derived from an N x N matrix A. In describing them we will
begin by assuming all quantities involved are real.

The transposed matrix A has already been defined in equation (14.14) of
section 14.3, where it was stated that if A = A then A is said to be sym-
metric. A matrix which has a transpose equal to minus itself, i.e.
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(hi = -an, (14.45)

is called skew- (or anti-) symmetric. Its diagonal elements fln,fl22,..., aNN,
are necessarily zero.

The transpose of a product of two matrices AB is given by the product
of their transposes taken in reverse order,

AB = BA. (14.46)

This is easily shown by the following chain of equalities,

(AB)if = (AB)n = AjkBki = (A)kj(S)ik = (B)ik(A)kj = (BA){j.

• 16. Extend this to a proof that

= G...CM.

A matrix with the particular property that its transpose is also its inverse,

A = A~\ (14.47)

is called an orthogonal matrix. This clearly requires that A is non-singular;
but further, since

AA = I (14.48)

for such a matrix, \A\2 = \A\ \A\ = | / | = 1 and \A\ = ± 1.
If an orthogonal matrix describes a change of variable, as in (14.27)

x = Ay, (14.27 bis)

then, using (14.46), the row vector x is given by x = y ^ " 1 and the scalar
product [ l x l matrix] xx, when expressed in terms of the new variables
yi9 becomes

xx = fA~1Ay = y/y = yy. (14.49)

Thus a transformation described by an orthogonal matrix (an orthogonal
transformation) is one which preserves the lengths of vectors.

As an alternative to the matrix equation (14.48), we may write a relation-
ship between the elements themselves of an orthogonal matrix,

akiakj = (A)ik{A)kj = 8,,. (14.50)

As a simple example of an orthogonal matrix we may consider

~cos0 - s i n 0 0"

A = sin 6 cos 6 0

0 0 1
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The transpose of A is also its inverse as is shown by

AA =

cos 6

- ;

1

0

0

sin 6

0

0

1

0

sin

cos

0

0""

0

1

e
e

= /.

0"

0

I

cos

sin

0

6

e
— sin

cos

0

e
e

0"

0

1

This particular matrix A represents the transformation obtained by a
rotation of the axes through an angle 6 about the x3-axis.

• 17. Calculate A'1 directly as in section 14.5 and show that it is the same
as A.

When the elements of matrices are allowed to be complex, and not
restricted to real values, correspondingly more general derived matrices
can be suitably defined. Roughly speaking the additional operation of
complex conjugation is added to each of those defined for real quantities.

Thus the Hermitian conjugate of the matrix A is given by (A)* (clearly
identical with (A*)), where * indicates the operation of taking the complex
conjugate of each element of the array. Some authors use AH or Af instead
of A*. A matrix for which A* = A is said to be Hermitian, a real symmetric
matrix being a special case of this when all the elements of the matrix are
real. Similarly if A* = — A, then A is called anti-Hermitian.

The 'complex analogue' of an orthogonal matrix is a unitary one, which
is defined as a matrix A for which

A* = A-1 (14.51)

A unitary transformation maintains the value of the modulus of a (com-
plex) vector x, which is given by (x*x)1/2. On transforming, x*x becomes

x*x = {Ay)* Ay = y*A*Ay = y*A~1Ay = y*y,

which is the modulus squared of the vector in the new coordinates.

•18. Show that a Hermitian matrix H can be written as H = R + iS,
where R is a real symmetric matrix and S is real and skew-symmetric.
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•19. Consider the matrices

(i) B =

Are they (a) real, (b) symmetric, (c) skew-symmetric, (d) singular, (e) ortho-
gonal, ( /) Hermitian, (g) anti-Hermitian, (h) unitary ?

14.8 Eigenvalues and eigenvectors

We have seen that a non-singular transformation x = Ay and its inverse
y = A'1* describe a 'one-to-one' correspondence between the vectors
with components xt and those with components y{. Putting it another way,
we may say that given one vector x, say, it determines a second one y
through the matrix A. The vectors x and y may describe different types of
quantities [such as voltage gradient and current] if A has physical dimen-
sions [such as those of electrical resistivity], or they may both be purely
mathematical entities and to all intents and purposes dimensionless.

However, particularly interesting cases arise when the two vectors x and
y are 'parallel' to each other, i.e. expressed in their own units if necessary,
one is just a multiple of the other. As a formula, x = Ay and

Ay = x = Ay. (14.52)

A non-zero vector y which satisfies (14.52) for some value of A is called an
eigenvector of A, and A is called the corresponding eigenvalue.

As will be seen in the remaining sections of this chapter and much of the
next, eigenvectors and eigenvalues of matrices play an important role in many
physical situations. The term eigenvalue has already been used extensively
in earlier chapters in connection with the solution of differential equations,
and maintains a corresponding position here. The eigenvector is the dis-
crete analogue, appropriate to a matrix, of the continuous eigenfunction of
a differential operator.

In the remainder of this section we will prove some general results con-
cerning eigenvectors and eigenvalues in preparation for their use in later
sections. The results will be established for matrices whose elements may
be complex, the corresponding properties for real matrices being obtained
as special cases.

The ith eigenvector will be noted by y* and the corresponding eigenvalue
by Ai5 for i = 1,2,... [for an N x N matrix we will find that there are in
general N distinct eigenvalues], so that

Ay1 = A^ (no summation). (14.53)
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1. The eigenvalues of a Hermitian matrix A are real.

For any particular value of / take the Hermitian conjugate (complex
conjugate transposed) of (14.53),

fA* = A*y<\ (14.54)

Using A* = A, since A is Hermitian, and multiplying on the right by y\
we obtain

y '^y1 = Afy'y. (14.55)

But multiplying (14.53) through on the left by y'* gives

f*Af = A^y.
Subtracting this from (14.55) yields

0 = (A* - AOfy.

But y*y is the modulus squared of the non-zero vector y{ and is thus non-
zero. Hence Xf must equal Xt and thus be real.

2. The eigenvectors corresponding to different eigenvalues of a Hermitian
matrix are orthogonal.

Consider two unequal eigenvalues At and A; (/Aj). Multiply (14.54)
through on the right by y; to obtain

y ,
and (14.53), for the eigenvalue Ay, through on the left by y** to obtain

Then using the fact that A* = A, the two left-hand sides are equal and,
since the X{ are real, on subtraction we obtain

0 = (A, - A,)f y .

Finally Ay ^ At and so we must have yl*yj = 0, which is the stated result.

3. The eigenvectors of a Hermitian matrix are mutually orthogonal or can
be chosen to be so.

This follows immediately from result 2 if all the eigenvalues are unequal.
However if some are the same, further justification is needed. An eigen-
value corresponding to two (or more) different eigenvectors (one not
simply a multiple of the other) is said to be degenerate.
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Suppose, for the sake of our proof, Xx is K-fo\d degenerate, i.e.

Af = Xiy
l foTi=l,29...,K, (14.56)

but that A2 is different from any of XK + l9 XK + 2, etc. Then any linear com-
bination of these y1 is also an eigenvector with eigenvalue Xx since

Az = A 2 ctf = 2 My< = 2 c'Aiy* = AlZ' (14'57)

1 1 1

for arbitrary values of the coefficients ct.
If the yf defined in (14.56) are not already mutually orthogonal, con-

sider the new eigenvectors z{ constructed by the following procedure, in
which each of the new vectors is to be normalized before proceeding to the
construction of the next one. [The normalization can be carried out by
dividing each element of the vector zf by (z'V)1'2.]

(0 z^y1,
(ii) z2 = y2 - (z^yV,
(iii) z3 = y3 - (z2*y3)z2 - ( z ^ z 1 ,

(K) z* = y* - ( F - ^ z * - 1 (z^VOz1. (14.58)

Each of the factors in brackets, (zm*yn)> is a scalar product and thus only a
number; hence each new vector z* is, as shown in (14.57), an eigenvector of
A with eigenvalue Ax, and will remain so on normalization. It is straight-
forward to check that, provided the previous new eigenfunctions have
been normalized as prescribed, each t is orthogonal to all of its pre-
decessors.

Thus, by this explicit construction procedure, the truth of result 3 is
established.

As special cases of these three results, applicable when the matrices
under consideration contain only real elements, we may conclude that the
eigenvalues of a real symmetric matrix are real and that its eigenfunctions
are (or can be made) mutually orthogonal.

14.9 Determination of eigenvalues and eigenvectors

The next step is to show how the eigenvalues and eigenvectors of a given
matrix are found. To do this we refer to the definition (14.52) and rewrite
it as

Ay - A/y = (A - A/)y = 0. (14.59)
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The slight rearrangement used here is to write 7y instead of y where / is the
unit matrix of the same dimension (size) as A. The point of doing this is
immediate since (14.59) now has the form developed in (14.20) of section
14.4. What was proved there was that the equation Bx = 0 only has a non-
trivial solution x if |B | = 0 . Correspondingly, therefore, we must have in
the present case that

\A - A/| = 0, (14.60)

if there are to be non-zero solutions y to (14.59).
Equation (14.60) is known as the characteristic equation for A and its

left-hand side as the characteristic or secular determinant of A. The equation
is a polynomial one (of degree N) in the quantity A. The roots of this
equation X{ (i = 1, 2 , . . . , N) give the possible eigenvalues of A; there will
be TV of them. Corresponding to each Xt there will be a vector yf which is
the /th eigenvector of A.

Before proceeding further with the use of the eigenvectors and values so
found, we will work through a specific example.

Example 14.4. Verify the preceding results using the particular real sym-
metric matrix

A =

"2

0

1

0

1

0

1

0

0

(14.61)

We are seeking non-zero solutions y* of the equation Ay1 = Xty\ and
(14.60) shows that the possible values of Af are given by \A — A/| = 0,
i.e.

2 - A

0

1

0

1 - A

0

1

0

- A

= 0. (14.62)

Expanding out this determinant gives

(2 - A)(-A + A2) - (l - A) = 0,
(A - 1)(A2 - 2A - 1) = 0,

which has the roots Ax = 1, A2 = 1 + \ /2 , A3 = I — -\J2.
For the first root, Xx = I, a suitable eigenvector with elements yl9y2,

must satisfy

(14.63)



14.9 Determination of eigenvalues and eigenvectors 387

These three equations are consistent [that was the purpose in finding the
particular values of A] and yield y1 = y3 = 0, y2 = anything non-zero. A
suitable (normalized) vector would thus be

(14.64)

Repeating the last paragraph, but with the 1 on the right-hand side of
(14.63) replaced successively by A2 = 1 4- \/2 and A3 = 1 — y 2 , gives
two further (normalized) eigenvectors

• 20. y2 = (4 - 23/2)~

y3 = ( 4 + 23 / 2)~1 / 2

1

0

1

0

- V 2 - 1

The three values of A are all different and A is a real symmetric matrix. We
thus expect that the three eigenvectors are mutually orthogonal. This is
easily checked,

•21 . V • V = V V ^̂  0 = • V = V • V

The *, which must be present in general, here has no effect since the eigen-
vectors are real. It will also be apparent that the normalization of the
vectors has no effect on their orthogonality, which is as would be expected.

•22. Find the eigenvalues and a set of eigenvectors of the symmetric
matrix

1 3 - 1 "

3 4 - 2

- 1 - 2 2_

Verify that its eigenvectors are mutually orthogonal.

It will be observed that when (14.60) is written out as a polynomial
equation in A, the coefficient of - A " " 1 in the equation will be simply
flu + 022 + • • • + aNN relative to the coefficient of XN being unity. The
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quantity 2f= 1 % is called the trace or spur of A and from the ordinary
theory of polynomial equations the sum of the roots of (14.60), ][f=i Ai?

must therefore be equal to the trace of the original matrix A. This can be
used as some check that a computation of the eigenvalues has been done
correctly. In example 14.4 the trace of A = 2 + 1 + 0 = 3, and the sum of
the computed eigenvalues is 1 + (1 + \/2) + (1 - V2) = 3; this is thus
consistent with the general property.

14.10 Diagonalization of matrices

Having gained a little practical experience of dealing with eigenvalues and
vectors, we now turn to the rather more complex question oi'diagonalizing'
a real symmetric matrix.!

We may illustrate what is meant by considering a homogeneous expres-
sion such as

Q = x? + x | - 3x§ - 6x2X3. (14.65)

Q is called a quadratic form and can be represented as a product of matrices
by

xAx = x2 x3]

1 1 3"

1 - 3

3 - 3 - :

(14.66)

It may now be asked whether a transformation of variables x = C/y, along
the lines of (14.27), can be found which changes this form to one in the
new variables yx, y2, J3 containing no cross-terms. In other words Q takes
the form /x^f + p2y\ + /*3<y§ = y^y> where A is a diagonal matrix i.e.
one with all elements not on the principal diagonal equal to zero. [The
diagonal elements are fil9 p29 /A3.]

If such a transformation were made xAx would be transformed as
follows,

xAx = (Uy)AUy = yfiUt/y. (14.67)

t To keep the principles of the method as clear as possible, we will work only
with real symmetric matrices, which have been shown to have real eigen-
values and whose eigenvectors can be chosen real. The same ideas apply
to the more general Hermitian matrix, but 'Hermitian conjugate' and
* unitary' must be used instead of'transpose' and' orthogonal' respectively.
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So, what is required is to find a matrix U such that CAU is a diagonal
matrix A. We will now find such a matrix.

Consider the matrix U, whose columns are the normalized eigenvectors
of A, i.e.

Uij = (f)i = y{. (14.68 a)

Its transposed matrix U will then have elements

#„= U^y). (14.68 b)

Now, bearing in mind that the y; are normalized and are (or can be made)
orthogonal to each other, we may examine the matrix VU\

(UU)tj= OnVu-yM = ?.?> = *„,
or UU = / . (14.69)

Thus U is the inverse of U, and U is therefore an orthogonal matrix.
Using this result, we now examine the form of OAU appearing in

(14.67)

(UAU)tj =

= ^jU^Ujcj (not summed overy)
= Xjlij (not summed over j)
= A,,. (14.70)

In this sequence, successive use has been made of the orthogonality and
construction of U, and then of the eigenvalue property of A. It is seen that
the matrix A = UAU is diagonal and has as its elements /A4 = At (/ = 1,
2, 3).

To summarize these results, the orthogonal (and thus non-singular)
matrix U constructed according to equations (14.68) has the property that
a change of variables x = Uy transforms the quadratic form xAx into the
'diagonal' form yAy, with the diagonal elements of A being the eigen-
values of A.

Example 14.5. Find an orthogonal transformation (i.e. one for which the
matrix is orthogonal) which takes the quadratic form (14.66) into the form

A + /^ l +
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We first find the eigenvalues of the matrix A of (14.66) by means of its
characteristic determinant

1 - A 1 3

1 1 - A - 3

3 - 3 - 3 - A

= 0,

of which the solutions are

•23. Xx = 2, A2 = 3, A3 = - 6 .

Corresponding normalized eigenvectors are

• 24. x 1

Following

u

= 2

the

= 6

-1 /2

" l "

1

- 0 -

x2 = 3-1/2

previous construction we

-1/2

V3
V3

0

V2

- V 2

V2

1 "

- 1

- 2 _

1 "

— 1

. l .

>

now form

X 3

the

= 6"1 '2

matrix

1 "

- 1

. - 2 .

(14.

The general result already proved now shows that the transformation
x = Uy will carry the form (14.66) into the form 2y\ -f 3y2 — 6>'§.

This may be verified most easily by writing out the inverse transform
y = U " *x = Ox and substituting. The inverse equations will be

yx = 2-ll2(Xl + * 2 ) ,
y2 = 3- 1 / 2(^ - x2 + x3),
y3 = 6 " 1 / 2 ( ^ - X2 -2X3).

If these are now substituted into the form Q = 2j>2 + 3>>2 — 6yl the
original expression

•25. Q =

is recovered.

+ xl - 3*1 + 2xxx2 + 6x±x3 - 6x2x3

•26. (i) Verify directly that U given by (14.71) is orthogonal,
(ii) Verify directly that OAU has the appropriate diagonal form.

•27. Find an orthogonal transformation which takes the quadratic form
Q s -x\ - 2x1 - xl + 8*2*3 4- 6*ijc3 + 8*1*2 into the form ^yf +
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— 4y§, where /xx and /x2 are to be determined. Express the y{ in terms
of the xt.

The change of variables by an orthogonal transformation is a special
case of a similarity transformation on the matrix A. In a similarity trans-
formation the matrix A is transformed to the matrix B given by

B = S~1AS, (14.72)

where S is a non-singular matrix.
Under a similarity transformation by an orthogonal matrix U several

properties of A (if it has them originally) are preserved. Without explana-
tion of the individual steps (all of which are simple, but the reader should
justify each one to himself) we will prove some of them.

(a) A is the zero (obvious) or unit matrix, A = I.

B = U-XIU = U'W = / .

(b) The determinant of A.

= \A\\U-W\ = \A\.

(c) Symmetry or antisymmetry of A, A = ±A.

B = {U-XAU) = UAU = ± U~XAU = ±B.

(d) Orthogonality of A, A A = I.

BB = (iF^AUXU^AU) = UAUU-iAU = U^AAU

(e) Trace A.

tr B = bu = Ui^ajkuki = ukiu^ajk = hkjajk = akk = tr A.

(/) Eigenvalues of A.

\B - A/| = {U^AU- A/1 = \U~\A - XI)U\

thus A and B have the same characteristic determinant and hence the same
eigenvalues.

•28. Which of the above properties would be preserved in a general
similarity transformation, in which S is non-singular but not necessarily
orthogonal ?
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14.11 Quadratic and Hermitian forms

The notion of a quadratic form was introduced in the previous section
(equations (14.65) and (14.66)). The example given there involved a real
symmetric 3 x 3 matrix. For the purposes of illustration we will continue
to work in a system with three components for which the column (vector)
matrices have a ready interpretation; however, all our results will apply to
general N x N matrices.

It is clear that if the components x1, x2, *3 are real, then the quadratic
form

"1 1 3

Q = x2 x3] 1 1 - 3

3 - 3 - 3

(14.66 bis)

is real also.
Another, rather more general, expression which is also real is a

Hermitian form

H = Z*Ax, (14.73)

where A is Hermitian, A* = A, but the components of x may now be
complex. It is straightforward to show that H is real, since

H* = H* = x*l*x = x*,4x = H.

With suitable generalization, the properties of quadratic forms apply
also to Hermitian forms, but to keep the presentation simple we will
restrict ourselves to the former, which is a special case of the latter.

The stationary property of the eigenvectors. Consider a quadratic form such
as (14.66). As the vector x is varied, through its three components xl9 x2

and x3, the value of the quantity Q also varies, so that Q = Q(x). Because
of the homogeneous form of Q we may restrict any investigation of these
variations to vectors of unit length [since multiplying any vector x by any
scalar k simply multiplies the value of Q by a factor &2].f

Of particular interest are any vectors x which make the value of the
quadratic form a maximum or minimum. A necessary (but not sufficient)
condition for this is that Q is stationary with respect to small variations in
x, whilst xx is maintained at a constant value (unity).

Using Lagrange undetermined multipliers to deal with the conditional
variations, we are led to seek solutions of

8[5L4x - A(xx - 1)] = 0. (14.74)

t An equivalent alternative is to consider variations in the quantity (xAx)l(%x)
with no restrictions placed on x.
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This may be used directly, together with the fact that (8x)Ax = xA(Sx)
(since A is symmetric), to obtain the necessary condition

Ax = Ax, (14.75 a)

that x must satisfy.
However, the use of variations of a vector may be avoided by expressing

Q in its subscript form Q = Xia^Xj and employing differentiation with
respect to xk (k = 1, 2 , . . . , N), subject to xtxi = 1. It is then required
that

a
0 = —(xiOijX, - Ax,x, + A)

cxk

+ XiOijSfr - X8klxl - Xxfinc

aikxt - 2\xk

= 2akjXj - 2Xxk, since aik = aki.

Thus

akjXj = \xk, (14.75 b)

which is just the eigenvalue equation (14.75 a) in its subscript form.
Furthermore if equations (14.75) are satisfied for some eigenvector x,

the value of Q(x) is then just

Q = xAx = xAx = A. (14.76 a)

On the other hand if x and y are eigenvectors corresponding to different
eigenvalues they are (or can be chosen) orthogonal. Consequently the
expression y^4x is necessarily zero, since

y^x = yAx = Ayx = 0. (14.76 b)

Summarizing, those vectors x of given magnitude which make the
quadratic form Q stationary are eigenvalues of A, and the stationary value
of Q is then equal to the corresponding eigenvalue. It is straightforward to
see from the proofs of (14.75) that conversely any eigenvector of A makes
Q stationary.

The eigenvectors of A thus lie along those directions in space for which
the quadratic form Q has stationary values, given a fixed magnitude for
the vector x. This last sentence may be turned round to state that the sur-
face given by

xAx = constant = 1 (say) (14.77)

has stationary values of its radius (origin-surface distance) in those direc-
tions which are along the eigenvectors of A. More specifically in three
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dimensions the quadric xAx = 1 has its principal axes along the three
mutually perpendicular eigenvectors of A, and the squares of the corres-
ponding principal radii are given by A"1 (i = 1, 2, 3). If any of the eigen-
values are degenerate, then the quadric has rotational symmetry about
some axis and the choice of a pair of axes perpendicular to that axis is not
uniquely defined.

•29. Obtain this last result by taking the surface as (/> = x^x^ determin-
ing the direction of its normal V^, and then expressing the condition that
the normal at a point on the surface be parallel to the radius vector there
if the point lies on a principal axis.

As an illustration [involving no further calculation] we may interpret
the result of example 14.5 geometrically. The quadric to which the result
refers is

3x1 — + 4- 2xxx2 = 1. (14.78)

Fig. 14.1 The three mutually perpendicular eigenvector directions of the quadric
given by equation (14.78). Referred to the (xu x2, jc3)-axes they are
(1, 1,0), (1, - 1 , 1) and(l , - 1 , - 2 ) .

If, instead of expressing the quadric in terms of xl9 x2, x3, we were to
use new variables jFi, J2 > J3 > with axes along the three mutually perpen-
dicular eigenvector directions (1, 1,0), (1, - 1 , 1) and (1, - 1 , - 2 )
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[referred to the xraxes] as in fig. 14.1, then the quadric would take the
form

V2 v 2 v 2

y± + ^ ^ 1. (14.79)
(2-i/2)2 ( 3 - 1 / 2 ) 2 (6"1 / 2 ) 2

Thus, for example, a section of the quadric in the plane yz = 0, i.e.
x± — x2 — 2x3 = 0 is an ellipse with semi-axes 2~1/2 and 3~1/2. Similarly
a section in the plane yx = xx + x2 = 0 is a hyperbola.

Clearly the simplest situation to visualize is that in which all the eigen-
values are positive, since then the quadric is an ellipsoid.

Several examples of the use of quadratic forms and quadric surfaces in
physics and engineering problems appear in the next chapter in connection
with Cartesian tensors and so further consideration will not be given to
them here.

14.12 Mechanical oscillations and normal modes

The subject of oscillations and normal modes was discussed briefly in the
previous chapter. There, the equations for the normal modes (motions which
are truly periodic) were derived using Lagrange's equations which were in
turn derived from Euler's variational equations. As an alternative, simpler,
but less rigorous approach, we will here derive them [or at least make them
plausible] from the more physical consideration of energy conservation.

So far as mechanical systems are concerned we consider only those for
which a potential exists. That is the potential energy of the system in any
particular configuration depends upon the coordinates of the configuration
[which need not be restricted to spatial positions] but must not depend
upon the time derivative (general velocity) of these coordinates. A further
restriction which we place is that the potential has a strict (local) minimum
at the equilibrium point; this is a physically-obvious necessary and suffi-
cient condition for stable equilibrium. By suitably defining the origin of the
potential, we may take its value at the equilibrium point as zero and we will
do this.

We denote the coordinates chosen to describe a configuration of the
system by q{ (i = 1, 2 , . . . , N). [In chapter 13 coordinates 0{ were used to
avoid confusion with the function q(x) also appearing in that chapter.]
The qx need not be distances; some could be angles, for example, as in the
swinging rod on a string of section 13.5. For convenience we can define the
q{ so that they are all zero at the equilibrium point.

The instantaneous velocities of various parts of the system will depend
on the time derivatives of the q{, denoted by q{. For small oscillations the
velocities will be linear in the qt and consequently the total kinetic energy
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T will be quadratic in them - including cross terms of the form
/ 7̂  j . The general expression can be written as a quadratic form

with

(14.80)

The matrix A can be taken as symmetric, since if it is not so already, it may
be replaced by another A' whose elements are given by a'{j = a'n =
\(a{j + ajt) and is therefore symmetric, without affecting the value of T.
The coefficients a{j depend upon the geometry of the system and are there-
fore real. Thus A is a real symmetric N x N matrix.

Fig. 14.2 The relationship between the coordinates 0t of section 13.5 and the co-
ordinates qt of section 14.12.

As an example, the kinetic energy of the rod of section 13.5 (resketched
in fig. 14.2) was found in that section to be given to second order in q{

(= 6t in that problem) by

T = \Ml\q\

and therefore represented by the real symmetric matrix

Ml2 I 6 3
A =

12 3 2
(14.81)

This, like any matrix corresponding to a kinetic energy, is positive definite
(more strictly non-negative definite); that is, whatever real values the q{

take, the quadratic form (14.80) has a value ^ 0 .
Turning now to the potential energy, we may write its value for a

configuration q = qx, q2,..., q^ by means of a Taylor expansion about
the origin q = 0,

= K(0)
1 a2K(0)
- —
2 dqidqj

O(gf). (14.82)
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However we have chosen F(0) = 0 and, since the origin is an equilibrium
point, there is no force there and so ^F(0)/% = 0. Consequently, to
second order in the qx we also have a quadratic form for the potential
energy - although this time a quadratic in the coordinates rather than in
their time derivatives,

V=bijqiqj. (14.83)

In the example already mentioned, V was shown to be the quadratic form

to second order in the qu with corresponding real symmetric matrix

Mlg [6 0]

In this case and in general, the requirement that the potential is a strict
minimum means that the potential matrix, like the kinetic energy one, is
real and positive definite. It too may be made symmetric if not initially
so.

The development via (14.82) is not intended to imply that the matrix B
is in general to be calculated as \ d2 V(0)ldqt dqj [which would automatically
make it symmetric]; in practice it is usually found by direct calculation
of V to second order in the small coordinates.

With these expressions for T and V we now proceed with our simplified
approach to obtaining the normal mode equations, based upon the fact
that

l ( r + K) = 0, (14.85)
at

i.e. there are no external forces.
Substituting from (14.80) and (14.83) into (14.85) and recalling that

matrices A and B are symmetric we obtain

2(aijq) + bXjqMi = 0. (14.86)

Now it is not clear from this that it is the only solution possible, but we
will assume that this implies that the coefficient of each q{ in this summation
is separately zero, i.e.

+ bijqj = 0, i= 1,2,...,JV. (14.87)

For a rigorous derivation Lagrange's equations should be used as in
chapter 13. The present treatment cannot hope to produce this result of N
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separate equations in a rigorous way, since the starting equation (14.85)
expresses only a single overall conservation condition.

Now we search for sets of coordinates qt which all go through their
oscillations with the same period, i.e. the total motion repeats itself
exactly after a definite finite interval.! We do this by seeking solutions of
the form

q{ = Xi cos tot, (14.88)

where a> does not depend on /, but of course the xt do, and the relative
values of the xt [assuming we can find such a solution] will indicate how
each coordinate is involved in this special motion.

Putting (14.88) into (14.87) yields directly

-co2aijxj + bijXj = 0, / = 1, 2 , . . . , TV,

which may be written as the simultaneous homogeneous linear equations

(btj - w2
aiJ)Xj = 0 . (14.89)

Our previous work of section 14.4 shows that this can only have non-trivial
solutions if

\B - to2A\ = 0. (14.90)

This is a form of characteristic equation for B except that A has replaced
the unit matrix /. It has the more familiar form if a choice of coordinates
is made in which the kinetic energy T is a simple sum of squared terms in
t h e ^ , i.e. T= ^q2.

However even in the present case, (14.90) is an Mh degree polynomial
equation in o>2 whose roots (which can all be shown to be positive since A
and B are positive definite) may be labelled as a>l (k = 1, 2 , . . . , N). Sub-
stituting each in turn into (14.89) will enable the corresponding set of
values xk to be established and the initial (stationary) physical configura-
tion, which on release will execute motion with period 27r/o>fc, to be found.

To illustrate this we complete the solution of the problem of the sus-
pended rod of length / swinging in one plane at the end of a light string also
of length /.

Equations (14.81), (14.84) and (14.90) show that we have to solve

Mlg [6 0] a>2M!2 \ 6 3\

12 L0 3J 12 L3 2

t From this point on, the analysis applies equally well to many coupled
electrical circuit problems with no resistive damping, since they may
often be stated in the form of coupled differential equations like those in
(14.87).



14.12 Mechanical oscillations and normal modes 399

Writing co2lfg = A, this becomes

6 - 6A -3A
= 0,

-3A 3 - 2A

A2 - 10A + 6 = 0,

A = 5 ± V19.

Thus the two frequencies, known as normal frequencies or eigenfrequencies,
of the system are w1 = (0.641g//)1/2 and a>2 = (9.359g//)1/2 [the two values
quoted in section 13.5].

Putting the lower of the two values for w2, namely (5 — \/\9)g/l into
(14.89) shows that for this mode

•30. x1:x2 = 3(5 - V19):6(V19 - 4) = 1.923:2.154.

This is close to, but not exactly the same as, the 'straight-out' position
used in section 13.5 to estimate the lowest frequency. [Hence the good
estimate obtained there.]

•31. Find the ratio of the initial inclinations of the string and rod if,
when released from rest, they are to execute simple harmonic motion at the
higher of the two normal frequencies.

In connection with quadratic forms it has been shown how to make a
change of coordinates so that the matrix for a particular form becomes
diagonal. In example 17 at the end of this chapter a method is developed
for simultaneously diagonalizing two quadratic forms (but not with an
orthogonal transformation in general). If this process is carried out for A
and B of a general system undergoing stable oscillations, the kinetic and
potential energies in the new variables ^ take the forms

r = 2iW??, (14.91a)
V=Iivir}f, (14.91b)

and the equations of motion are uncoupled equations

faVi + *V?i = 0 ( n o summation), / = 1, 2 , . . . , N. (14.92)

Clearly a simple renormalization of the rjt can be made to reduce all the
/xf in (14.91 a) to unity. When this is done the variables so formed are
called normal coordinates, and equations (14.92) the normal equations.

When a system is executing one of these truly periodic motions it is said
to be in a normal mode, and once started in such a mode it will repeat its
motion exactly after each interval of 2 ^ / ^ . Any arbitrary motion may be
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written as a superposition of the normal modes and each component will
execute harmonic motion with the corresponding eigenfrequency; however,
unless by chance the eigenfrequencies are integrally related, the system
will never return to its initial configuration after any finite time interval.

As a second example we will consider a number of masses coupled
together by springs. For this type of situation the potential and kinetic
energies are automatically quadratic functions of the coordinates and their
derivatives (provided the elastic limits of the springs are not exceeded), and
the oscillations do not have to be vanishingly small for the analysis to be
valid.

Example 14.6. Find the normal frequencies and modes of oscillation of
three particles of masses m, /xm, m connected in that order in a straight
line to two equal light springs of force constant k. (This arrangement could
serve as a model for some linear molecules.)

Fig. 14.3 The coordinate system of example 14.6. The three masses m, \im and m
are connected by two equal light springs of force constant k.

The situation is shown in fig. 14.3 in which the coordinates of the
particles xx, x2, x3, are measured from their equilibrium positions at
which the springs are neither extended nor compressed.

The kinetic energy of the system is simply

T=im(x2
1 + /uc| + *§),

whilst the potential energy stored in the springs is

V = ik[(x2 ~ *i)2 + (*3 - *2>2].

The kinetic and potential energy symmetric matrices are thus

m
1

0

0

0

H>

0

0

0

1

, B
I-
K

1

- 1

0

- 1

2

- 1

0

- 1

1
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To find the normal frequencies we have, following (14.90), to solve
\B — OJ2A\ = 0. Thus writing ma>2/k = A we have

1 - A - 1 0

- 1 2 - /xA - 1

0 - 1 1 - A

= 0,

which leads to

•32. A = 0, 1, or 1 + (2//x).

The corresponding eigenvectors are (respectively)

• 33. x1 = 31 _ -J-l/2 x2 = 2 " 1 / 2

x3 = [2 + (4//x2)]"1/2

1

-2//x

1

. (14.93)

The physical motions associated with these solutions are illustrated in
fig. 14.4. The first, A = w = 0 and all the xt equal, merely describes the
bodily translation of the whole system, with no (i.e. zero frequency)
internal oscillations.

In the second solution the central particle remains stationary, x\ = 0,
whilst the other two oscillate with equal amplitudes in antiphase with
each other. This motion of frequency w = (k/m)112 is illustrated in the
middle of fig. 14.4.

= 0

Fig. 14.4 The normal modes of the masses and springs of example 14.6.
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The final and most complicated of the three normal modes has a
frequency a> = (k(ji + 2)/w/x)1/2, and involves a motion of the central
particles which is in antiphase with that of the two outer ones and has an
amplitude which is 2//x times as great. In this motion the two springs are
compressed and extended in turn.

The eigenvectors xk obtained by solving (B — w2A)x = 0 are not
mutually orthogonal unless A is a multiple of the unit matrix [/x = 1],
but it is shown in example 17 of section 14.13 that they do satisfy

xlAxj = 0 and x}Bxj = 0 for i # j . (14.94)

•34. Verify that this is so for the particular case of solutions (14.93).

The general property (14.94) can be used [as in the development of
(13.17) and (13.18)] to justify the general result that no matter what trial
vector x may be used, the quantity Q = [(xBx)/(xAx)]112 always lies
between the lowest and the highest eigenfrequencies of the system,
for which upper and lower bounds respectively may thus be found.
Furthermore, as with the quadratic forms considered earlier, Q has a
stationary value of wk when x is the kth eigenvector.

14.13 Examples for solution

1. Evaluate the following: (a) €5321i9 (b) €ijkeijk, (c) eijk€jik, (d)
in, where atj are the elements of a symmetric matrix.

2. In the following suppose all subscripts run from 1 to 3 and that the
at are the components of a vector a etc.

(a) Verify that S^Oibj = a b [8tj = 1 if /' = j and equals zero other-
wise].
(b) Verify that eijkaibj = (a A b)k.
(c) Express €ijk€kimaibjCidm in vector form, then use result (a) to show
that, since a, b, c and d are arbitrary vectors, €ijk€klm = SuSjm -

3. Find the characteristic equation [det (A - XI) = 0] of the matrix
A and prove that the matrices B and C have the same characteristic
equation.

A =

Show that, if BC = CB9 then two of the roots of the characteristic
equation are zero.

'b

c

_a

c

a

b

a~

b

c

B =

~c

a

b

a

b

c

b~

c

a_

, c =
a

b

_c

b

c

a

c

a

b_
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4. Use the properties of determinants to solve the following for x
with a minimum of actual calculation.

(i)

x a a 1

a x b 1

a b x 1

a b c 1

= 0; (ii)

x + 2 x + 4 x - 3

+ 3 + 5

x - 2 x - 1 A: 4- 1

= 0.

5. Show that the following equations have solutions only if rj — 1 or

2,

x + y + z = 1, JC 4- 2>> + Az = 77, * + Ay + lOz = T?2,

and find them in these cases.

6. Solve the following equations for *i , x2, x3 using matrix methods:
x-i + 2x2 + 3x3 = 1,
3*i + Ax2 + 5x3 = 2,
#1 + 3x2 + 4x3 = 3.

7. Solve the simultaneous equations:

2x + 3>> + z = 11,
x + y + z = 6,
5x - y + lOz = 34.

8. (i) Show that if A is Hermitian and U is unitary, then U~1AU
is Hermitian.
(ii) Show that if A is anti-Hermitian, then \A is Hermitian.
(iii) Prove that the product of two Hermitian matrices A and B is
Hermitian if and only if A and B commute.
(iv) Prove that if 5 is a real skew matrix, then the matrix A =
(I — S)(I + S)'1 is orthogonal and express the matrix

A =
cos 0 sin 01

A =

where a and j8 are non-zero complex numbers, find the eigenvalues
and eigenvectors. Find the respective conditions (a) for the eigen-
values to be real, (b) for the eigenvectors to be orthogonal. Show that
the conditions are jointly satisfied only if A is Hermitian.
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10. Following the procedure of (14.58) construct an orthonormal set
of vectors from the following x1 = (0, 0, 1, 1), x2 = (1, 0, - 1 , 0),
x3 = (1,2, 0,2), x4 = (2, 1, 1, 1).

11. Find three real orthogonal vectors each of which is a simul-
taneous eigenvector of

A =

0

0

1

0
1

0

1-
0

0.

and

0
1

.1

1

0

1

r
l

0.

12. What are the maximum and minimum values taken by the
expression

Q = 4y2 + 4z2 + 2x2 + 2xy

on the unit sphere x2 + y2 + z2 = 1 ? For what values of (x, y, z)
do they occur?

13. [The following problem is effectively the inverse of the preceding
question. It uses the properties of eigenvectors and eigenvalues to
construct a matrix with given eigenvectors and values. The required
answer is the given data of the previous question, but an understand-
ing of the method of procedure is the purpose of the problem.]

Find a quadratic form in x = (JC, y, z) on the unit sphere x2 +
y2 + z2 = 1, which takes a maximum value of 6 at the points
±6"1 / 2 (2, 1, 1), a minimum value of 3 at ± 3 ~ 1 2 (1, - 1 , - 1 ) and
the value 4 at its other pair of stationary points. Proceed as follows:

(i) Find the other pair of stationary points.
(ii) Consider the expression Q = 2t? = i A^x) 2 relating the terms
in it to the components of U~1x, where U is the orthogonal matrix
whose columns are the given eigenvectors x\

14. Find the lengths of the semi-axes of the ellipse

73x2 + 72xy + 52y2 =100,

and determine its orientation.

15. (i) Show that the quadric

5*2 + lly2 + 5z2 - \0yz 2xz - \0xy = 4

is an ellipsoid and has semi-axes of 2, 1, and i. Find the direction of
the longest axis.
(ii) Find the direction of the axis of symmetry of the quadric

lx2 + ly2 + 7z2 - 20>>z - 20*z = 3.

16. [The following problem is constructed directly through Newton's
laws and not by the methods of section 14.12.]
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A system of three coupled pendulums satisfies the following
equations of motion:

— mx-i = cmxx + d(x± — x2),

— Mx2 = cMx2 4- d(x2 — JCI) + d(x2 — JC3),

— mx3 = cmx3 + d(x3 — x2),

where x1, x2 and x3 are measured from the equilibrium point, m and
M are masses, and c and d are positive constants. Find the normal
frequencies of the system and sketch the patterns of oscillation.

What happens as d—> 0, or d —> oo ?

17. Simultaneous reduction to diagonal form of two real, symmetric
quadratic forms. [This is a more advanced piece of development,
based upon the methods used in the body of the chapter. Its results
have previously been referred to in section 14.12.]

Consider two real symmetric forms uAu and u5u, where u stands
for (x, y, z), and denote by un those vectors which satisfy

Bun = XnAun (no summation), (a)

in which n is a label and the An are real, non-zero and all different.

(i) By multiplying equation (a) on the left by um and the transpose of
the corresponding equation for um on the right by un, show that
umAun = 0 for n ^ m.

(ii) By noting Aun = (Xn)~1Bun, deduce umBun = 0 for m ^ n.

It can be shown that the un are linearly independent and the next step
is to construct a matrix P whose columns are the vectors un, i.e.
Pjn = w?, e.g. P23 is the y element of u3.

(iii) Make a change of variable u = P\ so that u^u becomes vCv, and
ui?u becomes \D\. Show that C and D are diagonal by showing
dj = 0 if i ^ j and similarly for d{].

Thus u = Py or v = P~xu reduces both quadratics to diagonal form.
To summarize, the method is:

(A) find the An which allow i?u = A^u a non-zero solution, by
solving \B - \A\ = 0,
(B) for each An construct un,
(C) construct the non-singular matrix P whose columns are the
vectors un,
(D) make the change of variable u = P\.

Notes: (a) the method can be extended to the case of equal roots of
\B - XA\ = 0,
(b) if A is taken as /, the analysis is that of the main text and P is
orthogonal.
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18. [Do not attempt this question until question 17 has been studied.]
Find a real linear transformation which simultaneously reduces

the quadratic forms

6xyx2 + 4y2 •

and

2x2 + y2 -

to the forms ai

f 2z2 -

f 2zx,

£2 + a.

- 4yz

m2 +

- 2zx

a-iv2 a ^2 + b2rj2 + b3X
2.

19. Find a real linear transformation which simultaneously reduces
the quadratic forms

3x2 + 5y2 + 5z2 + 2>;Z + 6zx - 2xy

and

5x2 + \2y2 + Syz + 4zx

to diagonal form. [Take the first quadratic as uAu in example 17.]

20. This problem is an alternative [and, as it happens, more com-
plicated] solution to the situation analysed in example 7 of section
13.6.

Three particles of mass m are attached to a light string with fixed
ends so that they divide it into four equal portions of length a. Find
the normal frequencies and modes of the system by calculating the
matrices A and B in T = Xia^x, and V — XibijXj. Calculate the co-
efficients b{j as follows, starting from the equilibrium configuration:

(i) Calculate the work done in moving particle 1 to positionxi(< a)
showing it is equal to 2Sx2/3a, where S is the tension in the string,
(ii) Keeping x± fixed, calculate the work done in moving particle 2
from its present position [2*i/3] to its final position x2. [(I*! — *i*2
+ ixfiS/a]
(Hi) Do the same for particle 3. [(x2 — x2x3 4- ix2)S/a]

21. (i) The base vectors of the unit cell of a crystal, with O at one
corner, are denoted by ei, e2, e3. G is the matrix with elements gtJ

where

ga = e,-ey,

and hi] are the elements of a matrix H = G'1. Show that the vectors
fi = hijtj are the reciprocal vectors and that hu = ft • f,.
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(ii) If the vectors u and v are given by

U = U&i, V = Vfi,

obtain expressions for |u|, |v|, and u v .

(iii) If the base vectors are each of length a and the angle between
each pair is TT/3, write down G and hence obtain H.
(iv) Calculate (a) the length of the normal from O onto the plane
containing the points p~ 1tli q~ 1e 2 , r~1e3, and (b) the angle between
this normal and e±.



15
Cartesian tensors

It is often said by physicists and engineers when approaching the quanti-
tative description of a physical process that ' of course it doesn't matter
how I choose my axes, the physical result must always be the same'.
Having thus justified doing so they proceed quite naturally to choose a
coordinate system in the way that seems the most convenient for the
particular investigation. However, we may turn the argument around and
ask, 'As the physical results are independent of the choice of coordinate
axes, what must this imply about the nature of the quantities involved in
the description of the physical processes?' The study of these implications
and classification of physical quantities by means of them, for a particular
type of coordinate change - namely rotations - form the content of the
present chapter.

Some attention was given to rotations of coordinate axes in chapter 14,
where it was shown that under such changes different types of quantities
behaved in different ways. For example, a real vector x was transformed
into the vector y = A ~ *x, or more specifically for rotations, into y = Ax
since A was then an orthogonal matrix. On the other hand a scalar product
x(1)x(2) was transformed into a scalar product y(1)y(2) which had the same
numerical value as x(1)x(2) since

y(iya) = X
( 1 ) ( ^ M " xx(2) = i^AA^x™ = x(1)x(2). (15.1)

Different again was the behaviour of a matrix B, since it transformed into
a new matrix given by ABA.

In this chapter we develop a general formulation to describe and classify
these transformations. In the development, the generic name tensor is
introduced, and certain scalars, vectors and matrices are described respec-
tively as tensors of zeroth, first and second order. [The order - or rankf -
corresponding to the number of subscripts needed to specify a particular
element of the tensor.] Tensors of third and fourth order will also occupy
some of our attention.

t * Order' and 'rank' are used equivalently in respect of general tensors. For
matrices 'rank' has a particular meaning, and may have values other
than 2.
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The general study of tensors of arbitrary order, in many dimensions,
and allowing oblique axes, is a difficult one and is far beyond the scope
of this book. We will confine our attention strictly to orthogonal coordinate
systems in two or three dimensions, but allow tensors of any finite order
(in principle). But even this restricted area is too wide for a reasonably
concise treatment and a further restriction to Cartesian coordinates will
be assumed.

Our object then is to study the properties of various types of mathe-
matical quantities and their associated physical interpretations, when they
are described in terms of Cartesian coordinates and the axes of coordi-
nates are rigidly rotated whilst keeping the origin fixed. Naturally our
ultimate interest is in physical quantities and their interrelationships, but
as an introduction we will develop mathematical properties and illustrate
them with physical examples, rather than the other way round. The mathe-
matical quantities are called Cartesian tensors.

Before the presentation of the main development it should be pointed
out that, as in the previous chapter, the summation convention is assumed
except where the contrary is specifically stated. On the other hand, it is
perhaps also worth remarking again that, in the belief that excessively
condensed notations hinder rather than help many students, many equa-
tions which could be written more compactly (e.g. by suppressing sub-
scripts or using a suffix notation for partial differentiation) have been left
in their lengthier forms so as to reduce the 'mental unpacking' required.

15.1 First- and zeroth-order Cartesian tensors

The whole concept of a tensor is dependent upon the behaviour of Car-
tesian coordinates xt (i = 1, 2, 3) when the axes are rotated about the
origin, and so we examine this first. If we denote coordinates with respect
to the new rotated axes by x\ (i = 1, 2, 3), then the connecting relation-
ships are

xt = aijx'j, (15.2 a)

x\ = ajiXj, (15.2 b)

the second equation following because the matrix A, of which a{j is an
element, is orthogonal (A'1 = A). The orthogonality also implies rela-
tionships among the elements of A9 expressing the fact that A A = A A = /,
and given in subscript notation by

dikCijk = 8iy, (15.3 a)

and akiakj = 8(y. (15.3 b)

These results have been obtained previously in section 14.7.
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It is natural to think of the coordinates x{ as the components of a
(position) vector [the most obvious vector], and taking this as a guide,
to consider any set of (three) quantities ut which are directly or indirectly
functions of the xt together with possible constants, and ask how their
values are changed by any rotation of the Cartesian axes. The specific
question to be answered is whether or not the values of the specific forms
ul, in terms of the new variables, can or cannot be obtained from the
old ones u{, in terms of the old variables, simply by replacing x by u in
equations (15.2). If they can, the u{ are said to form the components of
a vector or first-order Cartesian tensor. By definition the position co-
ordinates themselves are the components of such a tensor.

Thus our definition is that the expressions u{ form the components of a
first-order Cartesian tensor if, for all rotations of the axes of coordinates,
given by (15.2 a, b), subject to (15.3 a, b), the same expressions using the
new coordinate variables are u't, and these are the same as the u\ given by

^ = a{juu (15.4 a)

and u\ = cijiUj. (15.4 b)

The two conditions (15.4 a) and (15.4 b) are not independent, the second
being obtainable from the first by multiplying through by aik and using
(15.3). Equally the second implies the first.

That the question is not a redundant one and really does pick out sets
of two or three quantities which have particular properties under rota-
tions will now be shown by considering explicit examples. In order to
keep the equations to reasonable proportions the examples will be re-
stricted to two-dimensional ones. Three-dimensional cases are no different
in principle - only much longer to write out.

In two dimensions the most general rotation of coordinates from the
original set Oxxx2 to the new set Ox\x2 through an angle 6 (fig. 15.1) is
given by

*i = *i cos 0 — x2 sin 0,
x2 = x[ sin 0 + x2 cos 0. (15.5 a)

Comparing this with (15.2 a) gives for the orthogonal matrix

["cos 0 —sin 01
A(6)= \ . (15.5 b)

|_sin 0 cos 0J

The inverse equations are

x[ = *! cos 0 + x2 sin 6,
x2 = —x1 sin 6 + x2 cos 6, (15.6)

in line with (15.2 b).
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Fig. 15.1 Rotation of Cartesian axes by an angle 0 about the x3-direction.

Example 15.1. Which of the following pairs of quantities (ux, u2) are the
components of a first-order Cartesian tensor in two dimensions;

(i) (x2, -xx)9 (ii) O2,Xi), (iii) (xf,x|)?

To save space we denote cos 6 by c and sin 6 by s in the working.

(i) Here ux = x2 and u2 = — x1 referred to the old axes. In terms of the
new coordinates they will be u[ = x2 and u2 = — x[, i.e.

= x2 = —sx± + cx2,
= -x'x = - c x x - sx2. (15.7)

Now if we start again and evaluate u\ and u2 as given by (15.4 b) we find
that

u[ = tfllWl + a21u2 = cx2 + s
u2 = a12ux + a22u2 = (-s)x2 (15.8)

Expressions (15.7) and (15.8) for u[ and u2 are the same whatever the
values of 6 [i.e. for all rotations] and thus by definition (15.4) the pair
(x2, — JCX) are components of a first-order tensor.

(ii) Here ux = x2 and u2 = xx. Following the same procedure,

u[ = x2 = —sx1 + cx2,
n'2 = x[ = cx1 + sx2.

But by (15.4 b), for a Cartesian tensor we must have,

u[ = cwx + sw2 = cx2 + sxl9

"2 = (-s)wi + cu2 = -sx2 4- cxi.

These two sets of expressions do not agree and thus the pair (x2, x±) do
not form the components of a first-order tensor.
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(iii) ux = xf and u2 = x\. The first component alone [as in (ii)] is suffi-
cient to show that these do not form a first-order tensor, since directly

u[ = x'i = c2x2 + 2csXiA:2 4- S2A'|,

whilst (15.4 b) requires that

u[ = ci/x + sw2 = ex? -f sx2,

which is quite different.

• 1. (i) Show for any general (but fixed) <f> that (ul9 u2) = (x± cos <j> —
x2 sin cf>, x± sin <f> + x2 cos <£) are the components of a first-order Cartesian
tensor in two dimensions.
(ii) Identify example 15.1 (i) as a particular case of this and show that
(ul9 u2) of example 15.1 (ii) cannot be so represented.

There are many physical examples of first-order tensors which will be
familiar to the reader. As a straightforward one, we may take the Car-
tesian components of momentum for a particle, (mxl9 mx2, mx3). These
transform in all essentials as do (x1, x2, x3) themselves since the other
operations involved, multiplication by a number and differentiation with
respect to time, are quite unaffected by any orthogonal transformation of
axes. Similarly acceleration and force are represented by the components
of first-order tensors.

Other more complicated vectors involving the position coordinates
'more than once', such as angular momentum J = r A p = m(r A f),
are also first-order tensors. That this is so is less obvious than for the
above examples, but it may be verified by writing out the components of
J explicitly or by appealing to the quotient law of section 15.4 and the
use of €ijk from section 15.5.

Having considered the effects of rotations on 'vector-like' sets of
quantities we may consider quantities which are unchanged by a rotation
of axes. In our previous nomenclature these have been called scalars but
we may also describe them as tensors of zero order. They contain only
one element [formally they need zero subscripts to identify a particular
element] and the most obvious non-trivial example associated with a
rotation of the axes is the square of the distance of a point from the
origin, u = xf -f x\ + x§. In the new coordinate system it will have the
form u' — x'i + x2 4- x'3

2, which for any rotation has the same value
as x\ + x\ 4- x§, as is shown by (15.1) in the particular case when
X ( D = x ( 2 ) >

Any 'scalar-product' of two first-order tensors (vectors) is in fact a
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zero-order tensor (scalar), since in the original system it is w^ (summed
over /) and in the rotated system is given by

u{v\ = ajiUjdjciVjc = afiOjaUjVjc = 8jku3vk = up,, (15.9)

which is exactly the same.
This result leads directly to the identification of many physically im-

portant quantities as zero-order tensors. Perhaps the most immediate
of these is energy, either as a potential, or as an energy density (e.g.
F-dr, eE-dr, D E , B H , piB), but others, such as the angle between two
directed quantities, are important.

It is the fact that in most analyses of physical situations it is a scalar
quantity (such as energy) that is required to be found, that leads to the
situation described in the first paragraph of this chapter. Such quantities
are invariant under a rotation of the axes and so it is possible to work with
the most convenient set of axes and still have confidence in the result.

Complementing the way in which a zero-order tensor was obtained
from two first-order tensors, so a first-order tensor can be obtained from
a scalar. We show this by taking a specific example, that of the electric
field E derived from an electrostatic scalar potential <f> by

36
Et = ~ ~ (15.10)

Under a rotation of the axes (equation (15.2)), <f> is invariant (</>' = <j>)
but the components of the electric field E\ are given by

/ d<j>V d<\>' dXj d<j>

\ dxJ dx\ dx\ dXj
(15.11)

where (15.2 a) has been used to evaluate dxj/dx'i. Now (15.11) is in the
form (15.4 b) thus showing that the components of the electric field do
behave as the components of a first-order tensor.

•2. If u ( = Wi) is a first-order Cartesian tensor, show that V u =
is a zero-order tensor. [Model the argument on (15.11) and use (15.3).]

15.2 Second- and higher-order Cartesian tensors

Following on from scalars with no subscripts and vectors with one sub-
script, we turn next to sets of quantities which require two subscripts to
identify a particular element of the set. Let these quantities be denoted
by wi;.

Taking (15.4) as a guide we define a second-order Cartesian tensor by
saying that the u{j form the components of such a tensor if, under the
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same conditions as for (15.4),

Wiy = ciikajiu'ki, (15.12 a)

u'u = akiauukl. (15.12 b)

We may at the same time define a Cartesian tensor of general order as
follows. The set of expressions utj...k form the components of a Cartesian
tensor if, for all rotations of the axes of coordinates given by (15.2 a, b)
subject to (15.3 a, b), the expressions using the new coordinates are
MiV..fc, and these are the same as the uijmtmk given by

Uij...k = aipajq.. .akrupq.mmr, (15.13 a)

..r. (15.13 b)

It is apparent that in three dimensions, an Mh-order Cartesian tensor
has 3^ components.

Although a second-order tensor has two subscripts and it is natural
to display its components in matrix form, a tensor and a matrix are not
identical. A matrix may in a particular case be a representation of a
tensor with respect to a particular coordinate system, but equally the
elements of a matrix may have no connection at all with any set of axes.
Indeed the algebra of matrices can be developed purely by defining the
basic operations (addition, multiplication, etc.) and proceeding from
there. Under orthogonal transformations, A->U~1AU9 the elements of
matrices do behave like the components of a second-order tensor, but
their behaviour under these particular transformations is only one of
many properties, whilst for tensors it is almost the only one that matters.
[We may consider, for example, the behaviour of matrices under general
similarity transformations as mentioned at the end of section 14.10. It
may also be noted that although the elements a{j of the transformation
are written with two subscripts, they cannot be the components of a
tensor since the two subscripts refer one each to two different coordinate
systems.]

As examples of sets of quantities which are readily shown to be second-
order tensors we consider the following.
1. The outer-product of two vectors. Let ut and v{ be two vectors (/ =
1, 2, 3) and consider the set of quantities w{j defined by

w^ = titVj. (15.14)

The set w{j is called the outer product of u{ and v{. Under rotation it be-
comes

= akiukaXjvx = aMauwkl9 (15.15)
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which shows that it does transform as the components of a second-order
tensor. Use has been made in (15.15) of the fact that u{ and vx are first-
order tensors.
2. The gradient of the components of a vector. Suppose u{ is a vector and
consider the quantities generated by forming the derivatives of each u{

{i = 1, 2, 3) with respect to each x, (j = 1, 2, 3), i.e.

du{
wif = — • (15.16)

dXj

These nine quantities form a second-order tensor as can be seen from
the following argument:

du't 8(akiuk) dxx

w{. = — =
dx) dxi dx'j

duk
= aki-—ax

dxt

(15.17)

as required by (15.13 b).

A test as to whether any given set of quantities form a second-order
tensor can always be made by direct substitution for the x- into the trans-
formed set and comparison of this with the right-hand side of (15.12 b).
This procedure is extremely laborious and it is almost always better to
try to recognize the set as being of one of the forms just developed, or
to make alternative tests based on the quotient law of section 15.4.

However, one example of direct substitution will now be carried out,
but, as in example 15.1, we will work only in two dimensions and again
abbreviate cos 6 and sin 0 of matrix (15.5 b) to c and s respectively.

Example 15.2. Show that the wi; given by

U = [ ^ " ^ 1 (15.18)

are components of a second-order tensor - or, more briefly, that U is a
second-order tensor.

Carrying out first the direct evaluation we obtain (see (15.6))

i J
c2x|,

1 2 u'12 = —x'xx'z = sex? + (s2 — c2)x1x2 — sex2 ,
2 1 II21 = - * i * 2 = SCX? + (S2 - C2)X!X2 - SCX|,

2 2 w22 = xi2 = c2x? + 2scx!X2 + s 2x| .
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Now evaluating the right-hand side of (15.12 b)

Wn U12 U21 U22

ulx = ccxl + cs(-XiX2) + sc(-Xi*2) + ssx?,
W __ r\( c^v^ —L- oc( v v ^ —I- c^ SL\( — v v ^ -4- ^ P v

"21 = (-s)cx| + (~s)s(-x1x2) + cc(-XiX2) + csxf,
W22 — \̂  — Sy^ — SJX2 ~r v — ̂ )^\ — XiX2) T" v̂ v — ̂ A X\X2) T" t t A i .

The corresponding expressions are seen to be the same, showing (as
required) that U is a second-order tensor.

The same result could be inferred much more easily by noting that U
in (15.18) is in fact the outer product of the vector (x2, - x x ) with itself,
and using results (15.14) and (15.15). That (x2, -xx) is a vector was
established in example 15.1 (i).

• 3 . Show that

C =

is not a Cartesian tensor of order 2. [To establish a single element that
does not transform correctly is sufficient.]

Physical examples involving second-order tensors will be discussed in
the later sections of this chapter, but we might for example note here that
the susceptibility and conductivity of materials are given by second-order
tensors and that the form (15.16) has close connections with the theory of
elastic strain and fluid flow.

15.3 The algebra of tensors

Because of the similarities between first- and second-order tensors, and
vectors and matrices, it would be expected that similar types of algebraic
operations can be carried out with them.

The addition and subtraction of tensors follows an obvious definition;
namely that if wi;...fc and ri;...fc are tensors (of the same order) then their
sum and difference, wi}K^k and yiS..,k respectively, are given by

HV..fc = uu...k + Vij...k, (15.19 a)

yu...k = wl7.../c - vtjm..k9 (15.19 b)

for each set of values i,j,..., k. That w and v are tensors follows immedi-
ately from the linearity of a rotation of coordinates.

It is equally straightforward to show that if wi; #fc is a tensor, then so is
the set of quantities formed by interchanging the order of (a pair of)
indices, e.g. ujimmmk.
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•4. Write out the formal demonstration of this last property.

If w;i...fc is found to be identical with wi;...fc, then wiy...fc is said to be a
symmetric tensor with respect to its first two subscripts [or simply ' sym-
metric' for second-order tensors]. If ujU,,k = — wi;...fc (every element) then
u is an antisymmetric tensor. An arbitrary tensor is neither symmetric
nor antisymmetric but can always be written as the sum of a symmetric
and an antisymmetric tensor :f

= %..fc + *</...*. (15.20)

Of course these properties are valid for any pair of subscripts.
In equation (15.14) of the previous section we had an example of a

kind of 'multiplication' of two tensors, thereby producing a tensor of
higher order - in that case two first-order tensors multiplied to give a
second-order tensor. Inspection of line (15.15) shows that there is nothing
particular about the actual orders involved and thus in general that the
outer product of an Mh-order tensor with an Mth-order one will produce
an (M + 7V)th-order tensor.

An operation which produces the opposite effect - namely generates
a tensor of smaller order, rather than larger - is known as contraction
and consists of making two of the subscripts equal and summing over
all values of the equalized subscripts. That this produces another tensor,
but with order reduced by 2, is shown by the following argument. Let
w</...j...m...fc be an Mh-order tensor, then

uij...l...m...k = aPiaqj' - -arl- • Gsm- • • ^nk upq...r...s...n-

* v ' (15.21)
N factors

Thus

= apiapiaqj.

= apiaqj. . .0nfcWM...r...r...n> (15.22)

N - 2 factors

showing that uijm,Am,mUm,k is a Cartesian tensor of order N — 2.
For a second-rank tensor, the process of contraction is the same as

taking the trace of the corresponding matrix (section 14.9). The trace uH

t The connection between an antisymmetric second-order tensor and a vec-
tor is considered in example 3 of section 15.10. This work requires results
from sections 15.4 and 15.5.
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itself is thus a zero-order tensor or scalar and hence invariant under rota-
tions, as has been noted in the previous chapter.

The process of taking the scalar product of two vectors can be recast
into tensor language as forming the outer product w{j = u{Vj of two
first-order tensors u and v and then contracting the second-order tensor
W so formed, to give wH = u{vu a. scalar (invariant under a rotational
change of axes).

As yet another example of a familiar operation which is a particular case
of a contraction, we may note that the multiplication of a vector u{ by a
matrix B (with elements btj) to produce another vector v{,

bijUj = vi9 (15.23)

can be looked on as the contraction w{jj of the third-order tensor wijk

formed from the outer product of bu and uk.

15.4 The quotient law

The previous paragraph appears to be a heavy-handed way of describing
a familiar operation, but it leads us to ask whether it has a converse. To
put the question in more general terms - if we know that u and v are
tensors and also that

wpq...k...muij...k...n ~ vpq,..mij...n->

does this imply that w is also a tensor ? Here w, u and v are respectively of
Afth, Mh, and (M + N - 2)th order and it should be noted that the sub-
script k which has been contracted may be any of the indices in w and u
independently.

The answer to the question is 'yes' provided that the components of u
can be varied independently [the components of v are then not arbitrary
but depend upon u]. This result is called the quotient law for tensors. To
prove it for general M and N is no more difficult in the ideas involved
than to show it for specific M and N, but does involve the introduction
of a large number of subscript symbols. We will therefore take the case
M = N = 2, but it will be readily apparent that the principle of the proof
holds for general M and N.

We thus start with (say)

WpkUik = vpi, (15.24)

with uik an arbitrary second-order tensor. Under a rotation of the co-
ordinates the set wpk (tensor or not) transforms into a new set of quantities
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which we will denote by wpk. We thus obtain in succession the following
steps

w'pku'ik = v'pi (transforming (15.24))
(v is a tensor)

Ujx (from (15.24))
= aqpajxwqlajmalnumn (u is a tensor)
= aqpalnwqlu'in. (a3iajm = 8iTO)

Now k on the left and n on the right are dummy subscripts and thus
this is equivalent to

(wi*: - aqpalkwql)uik = 0. (15.25)

Since uik and hence uik is an arbitrary tensor, we must have

w'pk = aqpalkwql,

showing that the w'pk are given by the general formula (15.13 b) and hence
that the set wpk are the components of a second-order tensor.

•5 . (i) Show, by following an analogous argument, that the same result
(15.25) and deduction could be obtained if (15.24) were

WpkUki = Vpi,

i.e. with the contraction with respect to a different pair of indices.
(ii) Verify directly that wkkupi = vpi implies (as given by the quotient law)
that wkk is a scalar.

Use of the quotient law to test whether or not a given set of quantities
is a tensor is generally much more convenient than making a direct sub-
stitution along the lines of example 15.2. A particular way in which it is
applied is to contract the given set of quantities (with N subscripts) with
an arbitrary (independently variable components) Mh-order tensor and
determine whether the result is a scalar.

•6. Use the quotient law to show that, (a) the coefficients of a quadratic
form in the position coordinates, and (b) U of equation (15.18), are
second-order tensors, but that (c) C in >-3 is not.

15.5 The tensors 8iy and e
m

Throughout this book and particularly in chapter 14 we have made fre-
quent use of the two quantities Si}- and eijk defined by

S i y= 1 if i = 7 ,
= 0 otherwise, (15.26)
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and

€ijk = +1 if i, j , k is an even permutation of 1, 2, 3,
= — 1 if i, j , k is an odd permutation of 1, 2, 3,
= 0 otherwise. (15.27)

We will now show that these are respectively second- and third-order
Cartesian tensors. Notice that the coordinates xt do not appear explicitly
in the components of these tensors, their components consisting entirely
of 0 and 1.

Treating first 8ty, the proof is straightforward, since if we consider the
quantities given by aikanh{j they are

= Skl9 from (15.3 b), (15.28)

which is exactly the same expression in the new coordinates. Thus 8tj

is a second-order tensor.
Turning now to em, we have to consider the quantity ejmn given by

auajmakn€ijk. For any particular set of values /, ra, n, this is just the deter-
minant of a matrix. If any two or more of /, m, n are equal, then two col-
umns of the matrix are equal and the determinant is zero. Thus we need
to consider further only the case of /, m, n, all different. For / = 1, m = 2
and n = 3, or any even permutation of this, the determinant is simply
that of the matrix A describing the rotation. Since A is orthogonal this
has value l.t If/, m, n, is an odd permutation of 1, 2, 3 [the only remain-
ing possibility], then the matrix has determinant — 1.

Collecting together the various cases, we see that cjmn has exactly the
properties of (15.27) but with i9j9 k replaced by /, m, «, i.e. it is the same
as the expression eijk written using the new coordinates. This shows that
eijk is a third-order Cartesian tensor.

Many of the familiar expressions of vector algebra and calculus studied
in chapters 2-4 can be written as contracted tensors involving Siy and
€ijk9 e.g. the vector product b A c has as its /th component €ijkbjCk.
Others may be found by the reader in the following exercise.

•7 . Write the following as contracted Cartesian tensors (i) a-b; (ii) V2<£;
(iii) curl u; (iv) grad (div u); (v) curl (curl u); (vi) (a A b)-c.

An important relationship between the e- and S-tensors is expressed
by the identity

= 8««y« " *imhi- (15.29)

t But see section 15.7 later.
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To establish the validity of this identity between two fourth-order tensors
[the left-hand side is a once-contracted sixth-order tensor] we consider
the various possibilities which arise.

The right-hand side has the values

+1 if i = / andy = m ^ i, (15.30 a)

- 1 if i = m and ; = / ¥= i, (15.30 b)

0 for any other set of subscript values i, j , /, m. (15.30 c)

In each product on the left-hand side, k has the same value in both e
factors and for a non-zero contribution none of /, /, j , m, can have the
same value as k. Since there are only three values [1, 2 and 3] that any
of the subscripts may take, the only non-zero possibilities are / = / and
j = m or vice versa, but not with all four subscripts equal [since then
each e factor is zero, as it would be if / = j or / = m].

This reproduces (15.30 c) for the left-hand side of (15.29) and also the
conditions of (15.30 a) and (15.30 b). The values in (15.30 a and b) are
also reproduced in the left-hand side of (15.29) since,

(a) if i = / and j = m, eijk = €lmk = €klm, and whether ei;7c is +1 or - 1 ,
the product of the two factors is + 1 , and,
(b) if i = m and j = /, eijk = emlk = -eklm, and thus the product
€ijk€klm (no summation) has value —1.

This concludes the establishment of identity (15.29).
A useful application of (15.29) is to obtain an alternative expression

for curl curl of a vector. As in ^7 (v), curl curl u expressed in tensor form
is

(curl curl u)( = eijkeklm-—j-> (15.31)

Using identity (15.29) this becomes

(Curl CUrl U\ = (SuSjm ~ &im$,l) ~ ^~

d2
Ui

= [grad (div u)]f - V2
Wi. (15.32)

This result has already been mentioned in section 4.5 and the reader is
referred there for a discussion of its applicability.
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•8 . By examining the various possibilities satisfy yourself that

eijk€pqr —

*«,

8*

Equation (15.29) is a special case of this more general result.

15.6 Isotropic tensors

It will have been noticed that, unlike most of the tensors discussed [except
for scalars], Stj and eijk have the property that all their components have
values [as opposed to expressions] which are the same whatever rotation
of axes is made, i.e. the component values are independent of the au of
the transformation. Specifically S n has the value 1 in all coordinate frames,
whereas for a general second-order tensor U all we know is that if wn =
fn(xl9 x2, x3) then u'lx = fn(x'1, x2, x3). Tensors with this particular
property are called isotropic (or invariant) tensors.

It is important to know how general a tensor can be and still be iso-
tropic, since the description of the physical properties (e.g. conductivity,
magnetic susceptibility or tensile strength) of an isotropic medium [i.e.
one which has the same properties whichever way it is orientated] will
involve an isotropic tensor. In the previous section it was shown that
8tj and €ijk are second- and third-order isotropic tensors; we will now
show that, to within a scalar multiple, they are the only such isotropic
tensors.

X&u is the only isotropic second-order tensor. Suppose u{j is an isotropic
tensor; then for any rotation of the axes we must, by definition, have that

Ua = u{j = akiaXjukl (15.33)

for each of the 9 components.
First consider a rotation of the axes about the (1, 1, 1) direction

taking Oxl9 Ox2, Ox3 into Ox2, Ox3, Ox[ respectively. This requires
that MU = wix = w33. Similarly u12 = u'12 = w31. Continuing in this way,

•9 . (a) « n = u22 = M33,

(b) u12 = u23 = w31,
(c) M21 = M32 = w13. (15.34)

Next consider a rotation of the axes (from their original position) by
TT/2 about the Ox3-ax\s. For this rotation a12 = 1, a21 = — 1, a33 = 1
and all other aiy = 0. Amongst other relationships, we must have from
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(15.33), that

W13 = ( - l ) - l - w 2 3 ,

and w23 = l-l-w13.

Hence u13 = w23 equals 0 and so therefore, by parts (b) and (c) of (15.34)
do all elements except wn , w22 and w33, which are all the same. This shows
that Uu = ASiy.

Xeijk is the only isotropic third-order tensor. The general line of attack is as
in the previous example and so only a minimum of explanation will be
given.

uijk = uijk = aHamjankulmn (all 27 elements).

Rotate about the (1, 1, 1) direction; 1 ^ 2 - ^ 3 - ^ 1 .

(a) Mm = W222 = w 3 3 3 .

(b) u112 = w223 = w331 (and 2 similar sets involving repeated subscripts).
(c) wi23 = w23i = w3i2 (and a set involving odd permutations of 1, 2, 3).

Rotate by W2 about the Ox3-axis; a12 = 1, a21 = —1, a33 = 1,
others = 0.

(d) Min = (-l)-(-l)-(-l)-w2 2 2 = -w222.
(e) Wii2 = ( - l ) - ( - l ) - l - w 2 2 1 .
( / ) « 2 2 1 = l l ( l )

(g)

(a) and (d) show that elements with all subscripts the same are zero.
(e), ( / ) and (b) show that all elements with repeated subscripts are zero.
(g) and (c) show that M123 = w23i = W312 = -"213 = -"321 = -"132-

In total, um is at most a multiple of eijk, but since eijk (and hence
Aei;fc) has already been explicitly shown to be an isotropic tensor, it must
be the most general third-order one.

•10. Show that the only isotropic first-order tensor is the trivial one with
all its elements zero.

15.7 Polar and axial vectors

It is something of an aside in the context of the rest of this chapter, but
sufficiently important from a physical point of view that the behaviour
of mathematical entities (and the physical quantities they represent)
under a different kind of axis change, namely reflection in the origin,
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should receive some mention. This kind of transformation is represented
in all its essentials by the equation

x t — — (15.35)

but may in practice also involve a 'rigid axes' rotation and hence appear
more complicated. The change may alternatively be looked upon as one
which changes from an initial right-handed coordinate system to a left-
handed one; any prior or subsequent rotation will not change this state
of affairs.

It is obvious that a reflection plus rotation preserves the length of the
position vector and is thus represented by an orthogonal matrix A as
in (15.2) and (15.3). However, in this case det A is equal to —1 and
not 4-1 [the matrix corresponding to (15.35) itself being the most obvious
example].

Vectors (first-order tensors) which, like the position coordinates x{, re-
verse sign on a change to a new coordinate system, obtained from the
original by a reflection in the origin, are called polar vectors. Vectors
whose sign remains unaltered under such a change are called axial vec-
tors.

Fig. 15.2 (a) The behaviour of polar (p) and axial (a) vectors under reflection in the
origin of the coordinate system (#i, x2, x3) giving the new system
(JCI, JC2', *3'). (b) In practice the axes are drawn unchanged and the vectors
reversed (pO or not (aO-

For drawing purposes it is, in practice, usually much more convenient
to imagine that the axes are unchanged, but that the vectors are reversed
(or not), i.e. to use fig. 15.2 (b) rather than the two diagrams of fig. 15.2 (a)
which show the behaviour of a polar vector p and an axial vector a.
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Since the position vector of a particle r (= xt) is a polar vector, so is its
momentum mi, but its angular momentum J (as can be seen from fig.
15.3) does not change sign on a reflection of the coordinate system and
is therefore an axial vector.

Fig. 15.3 Angular momentum J = r A mi is an axial vector. Vector J is perpen-
dicular to the plane containing r and mi.

Vectors which are obtained as the gradient of scalars, such as the com-
ponents E{ of an electrostatic field, will also be polar vectors since

/ d<f>\' d6' 36

\dxj dx\ dxt

(15.36)

if x\ is given by (15.35) and <f> is a scalar, but vectors obtained as the curl
of another vector may be polar or axial depending upon the character of
this second vector.

Corresponding to polar and axial vectors for first-order tensors, zeroth-
order tensors may be divided into scalars and pseudo-scalars - the latter
being invariant under rotations but changing sign on reflection. As an
example of a pseudo-scalar we may consider the triple scalar product of
three polar vectors such as the component of angular momentum about a
particular axis given by (r A mi)'ik (see fig. 15.3).

This last expression also provides an example of a form of quotient
law relevant in this connection, which can be used to test the characteristic
of an unknown vector.

The contraction of two vectors with each other yields a scalar
or pseudo-scalar according as the vectors are both of the same
kind or one is polar and the other axial.
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From the physics point of view the importance of the distinction be-
tween polar and axial vectors is principally that:

(i) Any physically possible equation must have all its terms with the
same characteristics,! i.e. all terms vector, or all pseudo-scalar, etc.
(ii) Any system which is symmetric (antisymmetric) with respect to reflec-
tion in the origin cannot have quantities describing it which are pseudo-
scalar (scalar).

• 11. Determine the behaviour of the following under reflection.

(a) Electrical current I, (b) magnetic field H [consider that due to a current-
carrying wire], (c) magnetic flux B, (d) magnetic moment [L, (e) the
couple on a magnetic dipole in magnetic flux B.

• 12. Verify that the following physical equations and expressions are
invariant under reflection:

(a) the force on a current-carrying wire in a magnetic field: F = I A B,
(b) Poynting vector for energy flow in an electromagnetic wave: S =
E A H,
(c) r a t e o f o h m i c h e a t i n g p e r u n i t v o l u m e : w = E j ,
(d) acceleration in rotating coordinate systems:

R = H w A r + 2w A f + w A (w A r).

[This may alternatively be looked on as a proof that 10 must be axial.]

15.8 Physical tensors

In this section some physical applications of tensors will be illustrated.
First-order tensors are fairly familiar as vectors, and so attention will
be concentrated on second-order tensors, starting with a mechanical
example.

Consider a collection of rigidly connected point particles J of which the
ath with mass m(a) is a typical one, positioned at r(a) with respect to an
origin O. Suppose that the rigid assembly is rotating about an axis through
O with angular velocity to (fig. 15.4).

t Ignoring here the non-conservation of parity which appears in some nuclear
physics reactions.

% In this paragraph and all that follow on this topic, a more realistic situa-
tion obtains if a continuous rigid body is considered. In this case m(c)

must be replaced everywhere by p(r) 6x dy dz, and all summations by
integrations over the volume of the body.
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Fig. 15.4 The velocity r(a) of the ath particle is to A r(or) and is perpendicular to the
plane containing to and r(a).

The angular momentum J about O of the assembly is given by

j = 2 (r(a) A p(a))- (15.37)
a

But p(a) = m(a)r(a) and f(a) itself is given by to A r(a) [for any a] and so
in subscript form,

€klmO)lxm

2* v xi xi

a

'•• Ii[OJi ,

(by (15.29))

(15.38)

where /^ is a symmetric second-order Cartesian tensor [by the quotient
rule, since J and to are vectors] which depends only on the distribution
of masses in the assembly and not upon the direction or magnitude of to.
The tensor is called the inertia tensor at O of the assembly.

Written out in full (in ordinary Cartesians) for (say) a continuous body
(see footnote) it would be

I (y2 + z2)p dr — I xyp dr — j xzp &T

- I xyp dr I (z2 + x2)p dr - I yzp dr

- I xzp dr -I yzp dr I (x2 + y2)p dr

(15.39)

/ =
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where p = p(x,y, z) is the mass distribution and dr stands for dx dy dz,
the integrals being over the whole body. The diagonal elements of this
tensor are called the moments of inertia and the off-diagonal elements
without the minus signs are known as the products of inertia.

•13. Verify that, for any one a, both terms in the (15.38) definition of
Itl are separately tensors, and hence that Itl must be.

By a parallel argument to that already made, the kinetic energy of the
rotating system is given by

• 14. T = i 2 ™(a)(*(a)-*(a)) = ±//i«/«i = Vi<»i* (15.40)
a

and so can be expressed as the scalar obtained by twice contracting to
with the inertia tensor. This also shows that the moment of inertia of the
body about any line given by unit vector n is

IjfiA (15.41)

(or S/A in matrix and vector form).
Since / ( = Iu) is a real symmetric second-order tensor, it has associated

with it three mutually perpendicular directions which are its principal
axes and have the properties [proofs in the previous chapter]:

(i) with each axis is associated a principal moment of inertia AM (fi =
1, 2, 3),
(ii) when the rotation of the body is about one of these axes, the angular
velocity and the angular momentum are parallel and given by

Atfto = 7 =/u>, (15.42)

i.e. to is an eigenvector of / with eigenvalue Aw,
(iii) referred to these axes as coordinate axes, the inertia tensor is diagonal
with diagonal entries Ax, A2, A3.

Two further examples of physical quantities represented by second-
order tensors are magnetic susceptibility and electrical conductivity. In
the first case we have (in standard notation)

M{ = * , # / , (15.43)

and in the second

J\ = oxfo. (15.44)

M is the magnetic moment per unit volume and j the current density (per
unit area). In both cases we have on the left-hand side a vector and on
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the right-hand side the contraction of a set of quantities with another
vector. The sets of quantities must therefore form the components of a
second-order tensor.

For isotropic media M oc H and j oc E, but for anisotropic materials
such as crystals the susceptibility and conductivity may be different along
different crystal axes, making xu a n d ^u general second-order tensors,
although they are usually symmetric.

The susceptibility and conductivity tensors have analogous properties
to those of the inertia tensor. They can be deduced from the analogies
between (15.38) and equations (15.43) and (15.44) and by noting that the
expressions for energy are

— i/x0M-H per unit volume (15.45)

in the magnetic case, and

E-j per unit volume per sec (15.46)

in the electrical one.

15.9 Stress and strain tensors

The theory of small elastic deformations of solid bodies provides further
examples of tensors. We consider first the description of strain, i.e. the
displacement of particles of the body from the positions they occupied
before the body was deformed. It will be found that in the neighbourhood
of a point P the displacement vector for the strained body of any other
point £>, relative to that of P, is given in terms of the position vector of
Q relative to P for the unstrained body by a second-order tensor.

Fig. 15.5 An element at PoQo when the body is unstrained, moves to PQ under the
strain. For an explanation of the other symbols see the text.
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As illustrated in fig. 15.5, consider a particle at PQ ( = xt) which is dis-
placed under the strain to P ( = xf 4- ut) and another one in its neighbour-
hood which is initially at QQ ( = xt 4- y{) and under the strain moves to Q
( = Xi 4- ut 4- y{ + vt). All of yi9 ut and i\ (i = 1, 2, 3 in all cases) are
taken as small, so that a first-order theory may be developed. Now,
assuming that ut(xl9 x2, x3) is differentiable up to any needed order, we
note that the total displacement at Q is both u{ 4- vt and also ut(xk 4- yk)
and thus write

Ui + vt = ut(xk + yk)

= Ui(xk) 4- yj I —-1 4- second order.
\ QXi J D

Hence
/duA

"•-(^),/- ( i 5 4 7 >

which is the symbolic form of the statement made in the first paragraph
of this section.

That (dUi/dXj) is a Cartesian tensor of second order is apparent either
from the quotient law (section 15.4) since v{ and y3- are vectors, or by direct
demonstration as follows.

Under a rotation of axes

Xi = aijXj, xi = cijiXj, (15.2 bis)

) becomes

/ dux \ ' du\ d(anUj) dxk dUj

\dxj dxm dxk dxm
 Jl km dxk

showing that (dujdxj) is indeed a second-order tensor.
As has been shown previously for a general second-order tensor,

xj) can be written as the sum of a symmetric tensor

1 ( * + !*) (,5.48)
2 \dXj dXi J

and an antisymmetric one

<*>„ = - ( — i i ) . (15.49)
ij 2\dXj dxj }

Also, as proved in example 3 of section 15.10, the contribution
to vt represents a small rotation —£l A y with SI = (o>23, co31, w12).

The symmetric tensor e{j is called the strain tensor and describes the
local deformation eijyj at the point Q which had [when Qo] initial co-
ordinates y{ with respect to Po.
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Fig. 15.6 The total displacement of P0Q0 consists of a rigid translation to PQU a
rotation to PQ2 and a deformation to PQ.

The full displacement of the point Q (still confined to be in the neigh-
bourhood of P) from its unstrained position is thus made up of three
parts (see fig. 15.6),

(i) a rigid body translation, u{

(ii) a local rigid body rotation,
(iii) a local distortion, e{jyj PQ2 -> PQ.

The main interest from the point of view of the present chapter is in the
symmetric strain tensor ei}- describing a pure deformation.

The simplest deformation is a uniform stretching of the material of the
body in one direction, say the Oxx direction,

(Ki,«a,«3) = (**i, 0,0).

In this case exl — k and all other elements of the tensor are zero.

(15.50)

o Z
Fig. 15.7 A simple shear parallel to the jciJC3-plane.

A simple shear (see fig. 15.7) in the JCx-direction and parallel to the
Jdjc3-plane is described by

(ul9u29u3) = (fc*2,0, 0).
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This displacement is not a pure deformation but consists partially of a
rotation, as is confirmed by the fact that only dujdxz is non-zero and
thus dujdxj is not symmetric.

•15. A pure shear is described by a tensor in which w{j — 0, e12 = e2i = k,
and all other elements of e{j are zero. Show that this corresponds to the
superposition of two simple shears.

Associated with the strain tensor we may define a strain quadric such
that the direction of the displacement at any point Q on a radius vector
PP' is parallel to the normal to the quadric at the point where the radius
vector meets the quadric (fig. 15.8). In addition, the fractional extension
of an element in any direction from P is inversely proportional to the
square of the quadric radius (r in fig. 15.8) in that direction.

direction of
displacement at Q

Fig. 15.8 The strain quadric at P.

To derive the quadric suppose that, although we are working to first
order in both y{ and vi9 \v\ is small compared with \y\. Then the fractional
extension e due to the deformation described by etJ is

PQ - PoQo = \y% + Pil - M

PoQo M

= (\y\2 + 2 ^ + M2)1/2 - bl

^V4 /V2\- rS + ° (^) ' (1551)

bl2 V/
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Now replacing vt by e^y^ gives for e the expression

e =

433

(15.52)

Thus if we take a quadric with centre P and given by

= c, (15.53)

where c is chosen to make the quadric real, it will have the properties
stated.

•16. Verify that this is so.

In addition, just like the quadrics discussed in section 14.11, it will
possess three mutually perpendicular principal axes. An element of the
body in any of these directions is extended in the direction of its own
radius vector (X).

• 17. Show that the strain quadric for a simple extension along the direc-
tion /, m, n, is a pair of parallel planes.

Fig. 15.9 Definition of the stress tensor p{j at the point P for the case i — 1. The
plane across which the components of stress give plt has its normal parallel
to the positive Xi-axis.

As well as the tensor describing the strain of a deformed solid a stress
tensor at a point P may be specified; this is denoted by pXj. The quantity
Pij is the Xy-component of the stress vector acting across a plane through
P whose normal lies in the xrdirection. The sense of the stress vector is
that of the action of the region of greater xt on that of lesser xt. Fig. 15.9
illustrates the case in which i = 1 andy has the values 1, 2 and 3; the other
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six components correspond [in threes] to two other planes through P
parallel to the xxx3- and x1x2-p\anQs.

If an element of area containing P (inside or on the surface of the body)
has unit normal n then the stress p(n) across it can be shown to be given by

PT'=Pijni9 (15.54)

where pi} = pj{. That p{j is a second-order Cartesian tensor follows either
from the quotient law or by direct verification.

Just as for strain, a stress quadric

Payxy,' = c, wi th j i = r«i (15.55)

and analogous properties, can be defined. The normal to the quadric at
the point where any radius vector meets it gives the direction of stress
across any plane to which the radius vector is a normal.

Example 15.3. A generalization of Hooke's Law relates the stress and
strain tensors by

Pu = cimekl, (15.56)

where cijkl is a fourth-order Cartesian tensor. Assuming that the most
general fourth-order isotropic tensor i s |

^ifiki + V&ik$ji + v&u&jk* (15.57)

find the form of (15.56) for an isotropic medium of Young's modulus E
and Poisson's ratio a.

For an isotropic medium we must have an isotropic tensor for cijkl

and so assume the form (15.57). Substituting this into (15.56) yields

Pa = A8tJefcfc + t\exi + vejt.

But e{j is symmetric, and if we write 77 + v = 2/x this takes the form

Pu = Aefcfc8w + 2/u?fy. (15.58)

[A and /x are called Lame constants. It will be noted that if e{j = 0 for
/ ^ j , then so does/?i;, i.e. the principal axes of stress and strain coincide.]

Now consider a simple tension in the Xx-direction, i.e. p±1 = S, all
other pij- = 0. Then denoting ekk [summed over k] by 6 we have (in addition
to ei} = 0 for i / j) the three equations

S = A0 + 2/tf?n,
0 = X6 + 2fi£229

o = xe + 2/x£>33.

t This may be shown by methods similar to, but lengthier than, those of
section 15.6.
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Adding them gives

S = 0(3A + 2fi).

Substituting for 6 from this into the first of the three, and recalling
that Young's modulus is defined by S = Eell9 gives E as

/x(3A + 2/tx)
•18. E= ^ ~ . (15.59 a)

A + /x

Further Poisson's ratio is defined as a = — 2̂2/̂ 11 which is thus

1 X6 1 A Eelx A
a =

2/x elx 2fi 3A + 2/x 2(A

Solving (15.59) for A and /x gives finally

(15.59 b)

(1 + a)(l - 2a)

15.10 Examples for solution

1. Show how to decompose the tensor T{j into three tensors

Ttj = Ua + VtJ + Sij9

where U^ is symmetric and traceless (Uu = 0), VXj is isotropic, and
Sij has only three independent components.

2. Use the quotient law to show that

[y2 + z2 - x2 -2xy -2xz

- 2yx x2 + z2 - y2 - 2yz

-2xz -2yz x2 + y2 - z2\

is a second-order tensor.

3. Antisymmetric tensor. Suppose H>{; is an antisymmetric second-
order Cartesian tensor in three-dimensions.

(i) Show it has only three independent components,
(ii) By writing the tensor in terms of w23, w31, and w12 and consider-
ing Vi = i€mwik9 show that the three independent components of
W form the components of a vector v.
(iii) Verify wtj = eijkvk.
(iv) For a general vector b evaluate (v A b)f and hence show that
vector multiplication by v is equivalent to tensor contraction with
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4. Use tensor methods to establish the following vector identities.

(i) (u A v) A w = (u-w)v — (v-w)u.
(ii) curl (<f>u) = $ curl u + (grad <j>) A u.
(iii) div (u A v) = v • curl u — u • curl v.
(iv) curl (u A v) = (v • grad)u — (u • grad)v + u div v — v div u.
(v) grad (|u • u) = u A curl u + (u • grad)u.

5. In four dimensions define second-order antisymmetric tensors
F{j and Qtj and a vector St as follows:

(a) F23 = Hu Q23 = B1 and their cyclic permutations,
(b) Ff4 = - A , Gi4 = Et fori = 1,2,3,
(c) St = A for/ = 1,2,3; S4 = p.

Then taking x4 as t and the other symbols to have their usual meaning
in electromagnetic theory show that the equations d(Fij)/dxj = Siy

and d(Qjk)/dXi + d(Qki)ldXj + d(Qij)jdxk = 0, where i, j , k are any
set chosen from 1, 2, 3, 4 (all different), reproduce Maxwell's equa-
tions.

6. (i) Evaluate (A A curl A)* for any vector function A.
(ii) Assuming that the divergence theorem holds for any tensor field

I dxk

show that

f [A(A-dS) - \A2 dS] = f [A div A - A A curl A] dV.
Js Jv

(iii) How does this general result simplify (a) if A is the electric
field E in a time-independent situation, and (b) if A is the magnetic
fluxB?

7. Ohm's law says that the current density j is linearly related to the
electric field E in a conductor. Show that

j \ = sikEk + (E A a)i,

where sik is a symmetric tensor and a is an axial vector.

8. A rigid body consists of four particles of masses m, 2m, 3m, 4m
respectively situated at the points (a, #, a), (a, —a, — a), (— a, a, — a),
( - a, —a, a) and connected together by a light framework.

(i) Find the inertia tensor at the origin and show that the principal
moments of inertia are 20ma2, (20 + 2V5)ma2, and (20 - 2 \/5)ma2.
(ii) Find the principal axes and verify that they are mutually ortho-
gonal.



15.10 Examples for solution 437

9. A rigid body comprises 8 particles each of mass m, held together
by light rods. In a certain coordinate frame the particles are at

±a(3, 1, - 1 ) , ±0(1 , -1 ,3) , ±a(l ,3, - 1 ) , ±f l ( - l , 1,3).

Show that when the body rotates about an axis through the origin,
if the angular velocity and angular momentum vectors are parallel
then they are in one of the ratios 40ma2, 64ma2 or lima2.

10. The paramagnetic tensor xu of a body placed in a magnetic field
is

'2k 0 0 ]
0 3k k\.

. 0 k 3k\

Assuming depolarizing effects are negligible, find how the body will
orientate itself if the field is horizontal and the body (i) can rotate
freely, (ii) is suspended with the axis (1, 0, 0) vertical, (iii) is sus-
pended with the axis (0, 1, 0) vertical.

11. A block of wood contains a number of thin soft iron nails. A
unit magnetic field directed eastwards induces a magnetic moment
with components (3, 1, —2) in the block, and fields of unit strength
directed northwards and vertically upwards induce moments
(1,3, -2 ) and ( -2 ,2 ,2) respectively. Show that the nails all lie
parallel to a certain plane. [Assume soft iron has a constant per-
meability.]

12. For tin the conductivity tensor has the form

a 0 0"
a = 0 a 0

.0 0 b.

when referred to its crystal axes. A single crystal is grown in the
shape of a long wire of length / and radius r, the axis of the wire
making polar angle 6 with respect to the crystal third axis. Show that
the resistance of the wire is

— — (a cos2 6 + bs'm2d).
77-r2 ab

13. By considering an isotropic body subjected to a uniform 'hydro-
static' pressure (no shearing stress) show that the bulk modulus,
defined by

pressure

fractional decrease in volume

is given by k = E/[3(l - 2a)].
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14. In a certain isotropic elastic medium the displacement vector ut

is given by

Wi = K(xx + x3), u2 = K(xi + x2), u3 = K(x2 + * 3 ) .

Find the magnitudes of the principal stresses in terms of Young's
modulus and Poisson's ratio.

15. An elastic cylinder of finite length and initially unstressed, fits
accurately into a rigid smooth cylindrical tube open at both ends.
Equal and opposite compressive normal stresses are applied uni-
formly over the ends of the cylinder. Show that the modulus of
elasticity is

E(\ - o)

(1 +• o-Xl - 2a)'

16. (More difficult vector analysis.) For an isotropic elastic medium
under stress, the displacement u{ satisfies

CXj Ot

is the stress tensor] where cim is the isotropic tensor

and p is a constant. Show that div u and curl u both satisfy wave
equations.



16
Complex variables

Throughout this book references have been made to results 'which are
derived from the theory of complex variables'. This theory thus becomes
an integral part of the mathematics appropriate to physical applications.
The difficulty with it, from the point of view of a book such as the present
one, is that, although the applications for which it is needed are very real
and applied, the underlying basis of complex variable theory has a dis-
tinctly pure mathematics flavour.

To adopt this more rigorous approach correctly would involve develop-
ing a large amount of groundwork in analysis, for example, precise
definitions of continuity and differentiability, the theory of sets and a
detailed study of boundedness. It has been decided not to do so here,
but rather to pursue only those parts of the formal theory which are
needed to establish the results used elsewhere in this book and some others
of general utility. Specifically, the subjects treated are,

(i) complex potentials for two-dimensional potential problems,
(ii) location of zeros of a function, in particular a polynomial,
(iii) summation of series and evaluation of integrals,
(iv) the inverse Laplace transform integral.

In this spirit, the proofs that are adopted for some of the standard
results of complex variable theory have been chosen with an eye to
simplicity rather than sophistication. This means that in some cases the
imposed conditions are more stringent than would be strictly necessary
if more sophisticated proofs were used; where this happens the less
restrictive results are usually stated as well. Some proofs have been
omitted altogether or merely sketched in exercises for the student to do.
The reader who is interested in a fuller treatment of the fascinating sub-
ject of complex variable theory should consult one of the many excellent
textbooks on the subject.f

t For example, Knopp, Theory of functions, Part I (Dover, 1945); Phillips,
Functions of a complex variable (Oliver & Boyd, 1954); Titchmarsh, The
theory of functions (Oxford, 1952).
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One further concession to 'hand-waving' has been made in the interests
of keeping the treatment to a moderate length. In several places phrases
such as \ . . can be made as small as we like . . .' are used, rather than a
careful treatment in terms of '. . . given e > 0, there exists a & > 0 such
that. . .'. In the author's experience, some students are more at ease with
the former type of statement despite its lack of precision, whilst others,
who would only contemplate the latter, are usually well able to supply it
for themselves.

16.1 Functions of a complex variable

The quantity /(z) is said to be a function of the complex variable z if to
every value of z in a certain domain (region of the Argand diagram)
there corresponds one or more values of/(z). Stated like this/(z) could
be any function consisting of a real and an imaginary part, each of which
is itself a function of x and y. However, we will only be concerned ulti-
mately with functions which are differentiable in a particular sense, and
so we proceed immediately to this restricted class of functions.

A function f(z) which is single-valued in a domain is
differentiable at the point z0 if the derivative

f'(z0) = hm (16.1)
2-20 Z ~ Z0

exists and is unique (in that it does not depend upon the
direction in the Argand diagram from which z tends to

To illustrate that this notion is restrictive, consider the following two
examples which are both complex functions of a complex variable; one
is differentiable, the other is not. We denote the real and imaginary parts
off(z) by u and v respectively; for a general function both will depend
on x and y,

f(z) = u(x,y) + iv(x9y). (16.2)

(i) Take/(z) = x2 - y2 + i 2xy.
Consider the definition (16.1) when z = z0 + Az = x0 + Ax +

i(y0 + Ay); then

(x0 + Ax)2 - (y0 + Ay)2

f(z) -f(z0) + i2(x0 + AXX^Q + Ay) - x2 + y2 - i2xoyo

z - z0 Ax + i Ay



= 2x0 + i2y0

16.1 Functions of a complex variable 441

2x0 Ax + (Ax)2 - 2y0 Ay - (Ay)2

+ i2(x0 Ay + >>o Ax + Ax Ay)

Ax + i Ay

(Ax)2 - (Ay)2 + i2 Ax Ay

Ax + i Ay

(using - 1 = i2).

Now, in whatever way Ax and Ay are allowed to tend to zero, the last
term on the right will tend to zero and the unique limit 2x0 + i 2y0 will
be obtained. Thus/(z) with u = x2 — y2 and v = 2xy is differentiable at

(ii) Take f(z) = 2y + ix. Following the same procedure we have

f(z) - f(z0) _ 2y0 + 2 Ay + ix0 + i Ax - 2y0 - ix0

z - z0 Ax + i A^

2 Ay + i Ax

Ax + i A>>

Now suppose z-> z0 along a line through z0 of slope m, so that Ay = m Ax.
Then

/(z)/(z0)
hm = limlim

z — z0 AX,AI/-O Ax H- i Ay 1 + iw

This limit is dependent on m and hence on the direction from which z
tends to z0. Thus f(z) = 2y + ix is not a differentiable function at
x0 + i>V

A function which is one-valued and differentiable at all points of a
domain D is said to be analytic (or regular) in D. A function may be
analytic in a domain except at a finite (or infinite if the domain is infinite)
number of points; in this case it is said to be analytic except at these
points, which are called the singularities of /(z). [In our treatment we will
not consider cases in which an infinite number of singularities occur in a
finite domain.]

From examining the two previous examples, it is apparent that for a
function f(z) to be differentiable and hence analytic there must be some
particular connection between its real and imaginary parts u and v. We
next establish what this connection must be by repeating the procedures
of the two examples, but for a general function.

If the limit
/(z)/(z0)

hm (16.3)
2-20 Z — ZQ
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is to exist and be unique, in the way required for differentiability, then
two particular ways of letting z tend to z0 (any point in D), parallel to
the real axis and parallel to the imaginary axis, must produce the same
limit. This is certainly a necessary result although it may not be sufficient.

So first suppose z — z0 is purely real and equal to Ax, then L of (16.3)
is given by

w(x0 + Ax, y0) + iv(x0 + Ax, y0)
- u(x09 y0) - iv(x0, y0)

L = hm
AJC-^O A X

w(x0 + Ax, jo) ~
= hm

AX-O L Ax.

. v(x0 + Ax, jo) - v(xo,yo)

For this limit to exist we must have that du/dx and dv/dx exist at x0 + iy0

and that L has the value

du dv
— + i—• 06.4 a)
dx dx

Similarly if z — zQ is purely imaginary and equal to i Ay, then the partial
derivatives du/dy and dv/dy must exist at x0 + \y0 and L must have the
value

dv du
• 1. i —• (16.4 b)

dy dy
F o r / t o be differentiate, expressions (16.4 a) and (16.4 b) for L must

be identical, and thus equating real and imaginary parts we must have,
as a necessary condition, that

du dv dv du
— = —' ^ = - ^ ~ ' atz = xo + ijv (16.5)
dx dy dx dy

The two equations are known as the Cauchy-Riemann equations.
We can now see why example (i) f(z) = x2 — y2 + i 2xy was differen-

t ia te , or at least why example (ii) /(z) = 2y 4- ix was not.
(i) u = x2 - y2, v = 2xy:

du dv dv du
— = 2x = — and — = 2y = »
dx dy dx dy

(ii) u = 2y, v = x:

du dv dv du
— = 0 = — but — = 1 ^ - 2 =
dx dy dx dy
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It is apparent that for/(z) to be analytic something more than the existence
of the partial derivatives of u and v with respect to x and y is required;
this something is that they satisfy the Cauchy-Riemann equations.

We may also enquire as to the sufficient conditions for/(z) to be analytic
in D. It can be shownf that a sufficient condition is that the four partial
derivatives exist, are continuous and satisfy the Cauchy-Riemann equa-
tions. It is the additional requirement of continuity which makes the
difference between the necessary conditions and the sufficient conditions.

•2 . Which of the following complex functions are analytic ?

(a) 3x + 2y + i(3y - 2x),

(b) sin x cosh y + i cos x sinh y9

(c) x2 + y\

• 3 . In which domain(s) of the Argand diagram is

f=\x\-i\y\

an analytic function ?

Since

- ( z + z*) and y = -(z-z*), (16.6)

we may formally regard any function / = u + iv as a function of z and
its conjugate z*, rather than x and y. If we do this and examine df/dz*
we obtain

df df dx df cy

~3z~* ~ dxdz* ~ty~dz~*

du dv\ 1 Idu dv

1 (du dv\ i (dv 8u\
= T ( ~ ~7T + o(J" + Tl' (16-7>

2 \dx dy) 2\dx dyf
Now i f / i s analytic, the Cauchy-Riemann equations (16.5) must be satis-
fied, and these immediately give that df/dz* is identically zero. Thus we
conclude that if/ is analytic, then/cannot be a function of z* and any
expression representing an analytic function of z can contain x and y
only in the combination x + \y [not in the combination x - iy].

t See for example any of the references given earlier.
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•4. Write the functions in vl in terms of z and z* and hence verify the
results obtained there.

One further result of great practical importance in the theoretical physics
can be obtained simply from the satisfying of the Cauchy-Riemann
equations by the real and imaginary parts of an analytic function. Dif-
ferentiating one equation again with respect to one independent variable,
and the other with respect to the other, we obtain

d fdu\ d /8v\ d (dv\ d idu

Jx\dxj ~ JxXdy) ~ ~dy\dx) ~ ~~ ~dy\dy

and !p) = __i« = . l p | = _L
dx\dxJ dx\dyj dyXdxJ dy\dy

Thus both u and v are separately solutions of Laplace's equation in two
dimensions

d2d> 326
V ¥ = ~2 + ^ = 0. (16.8)

Further use of this will be made in section 16.4.

16.2 Power series in a complex variable

The theory of power series in a real variable was discussed in section 3 of
chapter 1. A natural extension of this in the present context is to consider
a series such as

f(z)=2anz\ (16.9)
n = 0

where z is the complex variable and the an are in general complex. Ex-
pression (16.9) is a power series about the origin and may be used for
general discussion; a power series about any other point z0 is obtained
by a change of variable from z to z — z0.

If z were written in its modulus and argument form z = r exp (i#),
expression (16.9) would be

n = 0

This series is absolutely convergent if the same can be said of

2\an\r\ (16.11)
n = 0

which is a series of positive real terms. Tests for the absolute convergence
of real series can thus be used, and of these the most appropriate form is
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based on the Cauchy root test. A radius of convergence R is defined by

l/R =hm\an\
lln. (16.12)

n-» oo

The series (16.9) is absolutely convergent if \z\ < R and divergent if
\z\ > R; if \z\ = R no particular conclusion may be drawn, [lim is not
strictly identical with lim, but for our purposes the distinction may be
ignored.]

A circle of radius R and centred on the origin is called the circle of
convergence of the series 2 cinz

n. R = 0 and R = oo correspond respectively
to convergence at the origin only, and convergence everywhere. For R
finite the convergence occurs in a restricted part of the z-plane (Argand
diagram). For a power series about a general point z0, the circle of con-
vergence is of course centred on that point.

Example 16.1. Find the parts of the z-plane for which the following series
are convergent

o* n\ V i n

(i) (n\)lln behaves like n as TZ-> oo. Thus lim (l/«!)1/n = 0. Hence R = oo
and the series is convergent for all z.
(ii) Correspondingly, lim(«!)1/n = oo. Thus R = 0 and the series con-
verges only at z = 0.
(iii) As «-> oo, (ft)1/n has a lower limit of 1 and hence lim (l/n)lln =1/1 = 1.
Thus the series is absolutely convergent if |z| < 1.

•5 . By taking z = 1 and z = — 1 in case (iii) above, demonstrate that a
power series may or may not converge on its circle of convergence.

The ratio test may also be employed to investigate the absolute con-
vergence of a complex power series. The series is absolutely convergent if

|0n + 1 | | z n + 1 \an + A\z\
1 > lim1 , = lim' ' '• (16.13)

Wn\ \z\n \an\

For example in case (i) of example 16.1,

k , + illz| n\z\ \z\

J (n 4- 1)! n + l

which is < 1 for all n > n0 if n0 is sufficiently large [n0 will depend upon
|z|]. Thus the series is absolutely convergent for all (finite) z, confirming
the previous result.
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•6. Apply the ratio test to cases (ii) and (iii) of example 16.1.

Before turning to particular power series, we next prove the following
important theorem.

The power series 2o ^nzU has a sum which is an analytic
function of z inside its circle of convergence. (16.14)

To prove this write/(z) for 2 cinz
n with \z\ = r < R and consider

/(z + h) - f(z) « r(z + hy - z*i

where p = \h\ is small enough that r + p is also <R. [This is always pos-
sible since z is inside the circle.] Now

(z + h)n - zn

- nza

n -2\

(•>• - '

The inequality used here is justified by the observation that

/n\ n\

\m) = m\(n - m)\

n\

2\(m - 2)!(w - m)\

Thus

h)-f(z) at)

-2 nanz
n

(16.15)

Now since ^anz
n has radius of convergence 7?, lim (an)

lln = R"1.
Thus, since «1/n-> 1 as n-*oo, lim (!«(« — l)#n)1/n must also = R'1.
Therefore the series in brackets on the right-hand side of (16.15) converges
and consequently is bounded, < M say, where M does not depend on p.
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So finally in the limit h^ 0, the right-hand side of (16.15) tends to zero
and shows that

/ (z + h) - f(z) »
!™ 7 = 2 7 l f l» z t l" 1 . (16.16)

~* n o
This establishes statement (16.14) and also shows (by repeated applica-
tion) that any power series can be differentiated any number of times
inside its circle of convergence.

16.3 Some elementary functions

In example 16.1 it was shown that the function exp (z) defined by

exp(z) = ]T — (16.17)
o n%

is convergent for all z of finite modulus and is thus by the previous section
an analytic function over the whole z-plane.| Like its real variable counter-
part it is called the exponential function; also like its real counterpart it
is equal to its own derivative.

The multiplication of two exponential functions results in a further
exponential function, in accordance with the corresponding result for
real variables.

•7. By considering the coefficients of z{z2 in exp (z2) • exp (z2) and
exp (zx 4- z2), and noting that all series involved are absolutely convergent
for all z, show that

exp (Zi)-exp (z2) = exp (zx + z2). (16.18)

As an extension of (16.17) we may also define the complex exponent
of a real number a > 0 by the equation

a2 = exp (z In a), (16.19)

where In a is the natural logarithm of a. The particular case a = e and
the fact that lne = 1, enables us to write exp(z) interchangeably with
e2. If z is real, the definition agrees with the familiar one.

The result that when z = iy,

exp (iy) = cos y + i sin y, (16.20)

has already been met in equation (1.15 a) of chapter 1. Its immediate
extension is that

exp (z) = exp (;c)(cos y + i sin y). (16.21)

t Functions which are analytic in the whole z-plane are usually called integral
functions.
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As z varies over the complex plane the modulus of exp (z) takes all
real positive values, except that of 0. However, two values of z which differ
by l-nm, for any integral «, produce the same value of exp (z), as given
by (16.21), and so exp (z) is periodic with period 2?ri. If we denote exp (z)
by t, then the strip in the z-plane, — TT < y ^ TT corresponds to the whole
of the J-plane, except for the point t = 0.

•8 . To which regions of the /-plane do the following in the z-plane corre-
spond? (i) —oo < x < 0, — TT < y < 7r, (ii) 0 < x < oo, — TT < y ^ TT,
(iii) the half-ray arg z = 6 with 0 < 6 < TT/2, (iv) the half-ray arg z = 6
with TT/2 < 6 < TT.

The sine, cosine, sinh and cosh functions of a complex variable are
defined from the exponential function exactly as are those for real vari-
ables. The functions derived from them (e.g. tan and tanh), the identities
they satisfy, and their derivative properties, are also just as for real vari-
ables. In view of this we will not give them further attention here.

The 'inverse function' of exp (z) is given by w the solution of

exp(w) = z. (16.22)

By virtue of the discussion following (16.21), w is not uniquely defined,
since it is indeterminate to the extent of any integral multiple of 2?ri. If
we denote w by

w = Logz = log \z\ + i argz, (16.23)

where log \z\ = In \z\ is the natural logarithm (to base e) of the real posi-
tive quantity |z|, then Logz is an infinitely many-valued function of z.
Its principal value is obtained by giving arg z its principal value
( — TT < arg z ^ TT), and is denoted by log z. Thus

logz = log \z\ + i#, with -TT < 6 = SiTgz ^ TT. (16.24)

Now that a logarithm of a complex variable has been defined, definition
(16.19) of a general power can be extended to cases other than those in
which a is real and positive. If t ( / 0 ) and z are both complex, the zth
power of / is defined by

tz = exp (z Log 0 . (16.25)

Since Log t is multiple valued, so is this definition. Its principal value is
obtained by giving Log t its principal value, log t.

If t (7*0) is complex but z is real and equal to l//i, then (16.25) provides
a definition of the nth root of t. Because of the multiple-valuedness of
Log t, there will be more than one nth root of any given t.
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•9. Show that there are exactly n distinct nth roots of t.

In the definition of an analytic function, one of the conditions imposed
was that the function was single valued. Now the logarithmic function,
a complex power and a root, are all multiple valued. However it happens
that the properties of analytic functions can still be applied to these and
other multiple-valued functions of a complex variable provided suitable
care is taken. This care amounts to recognizing that if z is varied in such
a way that its path in the Argand diagram forms a closed curve enclosing
particular points (dependent upon the function in question) of the dia-
gram, then the function will not return to its original value. A general
discussion of how this is done, using a 'cut' plane, is beyond the scope
of this book and is not needed in a general form for the particular applica-
tions of later sections. Again the reader is referred to more complete
texts, e.g. the references given at the beginning of this chapter.

•10. Evaluate the following, (a) Re exp (2iz), (b) Imcosh2z, (c) ( - 1 +
V3i)1/2, (d) |exp (i"% (e) exp (i3), ( /) Im 2i + 3, (g) i\ (h) Log [ (^3 + i)3].

•11. Verify that d (exp (z))/dz = exp (z) and deduce that

d 1
— (Logz) = - -
dz z

16.4 Complex potentials and conformal transformations

At the end of section 16.1 it was shown that both the real and the imaginary
parts of an analytic function of z are separately solutions of Laplace's
equation in two dimensions. Analytic functions thus offer a possible way
of solving some two-dimensional physical problems describable by a
potential satisfying v2^ = 0- The general method is known as that of
complex potentials. As preliminaries to showing that they can be so used,
some further properties of functions of a complex variable and their be-
haviour under 'transformations' will be established.

If, as previously, we denote an analytic function/(z) by u + iv, then:

The contours of constant u and constant v are orthogonal.

On a curve u = constant in the z-plane

dw du du Ay
0 = — = — H x —

dx dx dy dx
(16.26)
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and similarly on a curve v = constant,

„ \dx)/ \dyj

Thus

dx

dj

dx

(16.27)

dj

dx - [-
But, because / is analytic, the Cauchy-Riemann equations imply that
du/dx = d^/dy and dw/dy = — dv/dx, and hence that the right-hand side of
(16.28) is equal to — 1. However, this is just the condition that the tan-
gents to the two curves u = constant and v = constant [whose slopes are
given by dy/dx] meet at right angles. This establishes the result.

In the context of solutions of Laplace's equation, this result implies
that the real and imaginary parts of /(z) have an additional connection
between them, for if the set of contours on which one of them is a constant
represents the equipotentials of a system, the contours on which the other
is constant, being orthogonal to each of the first set, must represent the
corresponding field lines [or stream lines, depending on the context].

field lines
v = constant

equipotentials
u = constant

Fig. 16.1 The equipotentials and field lines for a line charge perpendicular to the
plane of the paper.

As an example consider the function

logz, (16.29)

in connection with the physical situation of a line charge of strength q
per unit length passing through the origin, perpendicular to the z-plane
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(fig. 16.1). Its real and imaginary parts are
q q

u = - — log |z|, v = - — argz . (16.30)
Z7T€0 l7T€0

The contours in the z-plane of u = constant are concentric circles and of
v = constant are radial lines. As expected these are orthogonal sets, but
also they are respectively the equipotentials and field lines appropriate to
the field produced by the line charge.

Suppose we make the choice that the real part u of the analytic function
/ shall give the conventional potential function [v could equally well be
selected]. Then we may consider how the field direction and magnitude
is related to / .

Because u = constant is an equipotential, the field has components
[we use the electrostatic case for definiteness]

du du
Ex= -— and Ey= - — > (16.31)

dx dy
Since / is analytic, (i) we may use the Cauchy-Riemann equations to
change the second of these

du dv
Ex= -— and Ey= —, (16.32)

dx dx

and (ii) the direction of differentiation at a point is immaterial and so

df df du dv
— = — = — + i — = -Ex + iEy. (16.33)
dz dx dx dx

From these it can be seen that the field at a point is given in magnitude
by

<V 9 (16.34 a)
dz

E =

and that it makes an angle with the x-axis given by

d/
T r - a r g - - - (16.34 b)

dz
It is apparent that much of physical interest can be calculated by working
in terms of/and z directly.

Next, we turn our attention to the subject of 'transformations' by which
we mean a change of coordinates from the complex variable z to another
one t = r + is by means of a prescribed formula

z = g(t). (16.35)

Under such a transformation, or mapping, the Argand diagram for the
z-variable is transformed into one for the /-variable, although the complete
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z-plane may be ' mapped' onto only a part of the /-plane, or onto the
whole of the /-plane, or onto some or all of the /-plane covered more
than once. An example appropriate to the particular transformation
/ = exp (z) was discussed briefly in section 16.3 and •S.

We consider only those mappings for which z and / are related by an
analytic function g; such mappings are called conformal. The important
points about them are that, except at points at which g\t) = 0 or is
infinite:

1. Continuous lines in the z-plane transform into continuous lines in the
/-plane.
2. Any analytic function of z transforms to an analytic function of /.
3. The magnification, as between the z- and /-plane, of a small line ele-
ment in the neighbourhood of any particular point is independent of the
direction of the element.
4. The angle between two intersecting curves in the z-plane equals the
angle between the corresponding curves in the /-plane.

Result 1 is immediate and result 2 is almost self-evident, since if /(z)
is analytic in z (i.e. an analytic function of z) and z = g(t) is analytic in /,
then F(t) = f(g(t)) is analytic in /. Its importance lies in the fact that the
real and imaginary parts of F(t) are, since Fis analytic, necessarily solu-
tions of

326 d26
7 7 + T7 = 0. (16.36)
dr2 ds

Further, suppose (say) Re/(z) is constant over a boundary B in the
z-plane. Then Re F(t) is constant over B in the z-plane. But this is the
same as saying that Re F(t) is constant over the boundary Br in the /-
plane, B' being the curve into which B is transformed by (16.35).

Taking these results together shows that if a solution of Laplace's
equation, constant over a particular boundary, can be found as the real
or imaginary part of an analytic functionf of z in the xy-plane, then the
same expression put in terms of r and s will be a solution of Laplace's
equation in the rs-plane and in addition will be constant over the corre-
sponding boundary curve expressed in terms of r and s. Thus from any
two-dimensional solution of Laplace's equation derived from an analytic
function, for a particular geometry, further solutions for some other
geometries can be obtained by making conformal transformations.
Naturally the initial geometry is usually simple and the final one more

t In fact the original potential function need not be explicitly given as the
real or imaginary part of an analytic function. Any solution of y2^ = 0
is carried over into another solution of V2^ = 0 in the new variables by a
conformal transformation. A lengthier proof is needed in this case.
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complicated. From the physical point of view the problem is the converse,
since the geometry is usually given and the solution sought. However,
experience working from simpler to more complicated situations is neces-
sary before the reverse procedure can be successfully tackled.

T- ^ -
Fig. 16.2 Under the transformation z = g(t) two curves d and C2 passing through

t0 become two curves passing through z0 = g(t0)- The angle between the
curves is unchanged by the transformation.

The final two results, 3 and 4, can be justified by the following argu-
ment. Let fig. 16.2 show two curves Cx and C2 passing through the point
t0 in the /-plane and t1 and t2 be two points on their respective tangents
at /0, each distance p from tQ. The same prescription with z replacing /
describes the transformed situation; however, the transformed tangents
may not be straight lines and the distances of zx and z2 from z0 have not
yet been shown to be equal.

In the /-plane tx and t2 are given by

t1 — t0 = p exp (i0x) and t2 — t0 = p exp (id2).

The corresponding descriptions in the z-plane are

Z\ - ZQ = P! exp ( i^) and z2 - z0 = p2 exp (i<£2).

The angles 6{ and <f>t are clear from fig. 16.2.
Now since z = g(t) and is analytic

z2 - z0 _ dg

t2 - tQ ~ dt '
lim = = lim

i.e.
Pl

l im — exp [i((f>1 —
0-0 p

lim
0-0

P2
exp[i(<£2- «2)]=J ? '(0. (16.37)

Comparing magnitudes and phases (arguments) in the equalities (16.37)
gives the stated results 3 and 4 and adds quantitative information to them.
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Namely that for small line elements

(pjp) ~ (p2/p) ~ \g'(t)\, (16.38 a)

(pi — "l — $2 — "2 — ^ft& g \t) * vlO.Jo Dj

For strict comparison with result 4, (16.38 b) must be written as 0± — 62 =
<t>1 — (f>2, with an ordinary equality sign, since the angles are only defined
in the limit p-> 0 when (16.38 b) becomes a true identity.

Since in the neighbourhoods of corresponding points in a transforma-
tion, angles are preserved and magnifications are independent of direction,
it follows that small plane figures are transformed into figures of the
same shape, but in general with magnification and rotation [but no dis-
tortion].

16.5 Examples of complex potentials

Since one of the best ways of explaining a mathematical method is to
use it, this section consists of worked examples and exercises using com-
plex potentials in electrostatics.

Example 16.2. Find (i) the complex electrostatic potential associated with
an infinite charged conducting plate (s = 0), and thus obtain those associ-
ated with:
(ii) a semi-infinite charged conducting plate (x > 0, y = 0),
(iii) the inside of a right-angled charged conducting wedge (x > 0, y = 0
and x = 0, y > 0).

I
1
1
1
1
1

s
i

/-plane
(a)

z-plane z-plane
(c)

Fig. 16.3 (a) The equipotentials (solid lines) and field lines (broken) for an infinite
charged conducting plane at s = 0, where t = r + is; (b) after the trans-
formation z = t2; (c) after the transformation z — t112 of the situation
shown in (a).
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(i) Figure 16.3 (a) shows the equipotentials (solid lines) and field lines
(broken) for an infinite charged conducting plane s = 0. Suppose we elect
to make the real part of the complex potential coincide with the conven-
tional electrostatic potential. This latter is clearly

<Kr,s)= V-ks, (16.39)

where k is related to the charge density o- by k = ^/e0, since physically
E = (0, a/€0)andE = -V<£.

Thus what is needed is an analytic function of / of which the real part
is V — ks. This can be obtained by inspection, but we may proceed
formally and use the Cauchy-Riemann equations to obtain the imaginary
part iff(r, s) thus:

dxfj d(f> di/j d<f>

ds ~ dr ~ dr ~ ~ds ~

Hence $ = kr + c, and, absorbing c into V,

f(t) = V - ks + \kr = V 4- ikt. (16.40)

This is the required complex potential,
(ii) Now consider the transformation

z = g(t) = t2. (16.41)

This satisfies the criteria for a conformal mapping (except at t = 0) and
carries the upper half of the r-plane into the entire z-plane, with the equi-
potential line (plane) s = 0 going into the half line x > 0, y = 0.

By the general results proved, fit) when expressed in terms of x and y
will give a complex potential of which the real part will be constant on
the half line in question;

F(z) = / ( / ) = V + ikt = V + ikz112 (16.42)

is thus the required potential. Expressed in terms of x, y and p =
(JC2 + J2)1/2, Z112 is

and so, for example, the electrostatic potential is given by

k
Re F(z) = V [(x2 + y2)112 - x]112. (16.44)

The corresponding equipotentials and field lines are roughly sketched in
fig. 16.3 (b).
(iii) A 'converse' transformation to that used in (ii),
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has the effect of mapping the upper half f-plane into the first quadrant of
the z-plane and the conducting plane s = 0 into the wedge x > 0, y = 0
and x = 0, y > 0.

The complex potential now becomes

F(z) = V + \kz2

= V + ik[(x2 - y2) + i2xy\, (16.45)

showing that the electrostatic potential is

V - 2kxy, (16.46)

and the electric field has components

E = (2ky92kx). (16.47)
Fig. 16.3 (c) indicates the approximate equipotentials and field lines.
[Note that in both transformations no violation at the origin of result 4
of the previous section occurs, since g\t) is either 0 or oo there and so
the conditions for result 4 are not satisfied.]

• 13. Use the results expressed in (16.34 a, b) to show directly

(a) in (iii) that |E| = 2k(x2 + y2)112,
(b) in (ii) that the charge density on the plate oc x~112,
(c) in (ii) that |E| = \k(x2 +J 2)" 1 / 4 ,
(d) in (iii) that the direction of E is at any point complementary to that
of the radius vector to that point. [Their sum is TT/2.]

•14. Carry out (a), (b) and (c) of • B in terms of x and y.

• 15. (i) Verify tha t / (O = E{t — a2^1) is the complex potential appro-
priate to a conducting circular cylinder of radius a placed perpendicular
to a uniform electric field E.
(ii) Show that the transformation z = t + \a2t~x transforms the circular
cylinder into an elliptical one of semi-axes \a and \a.
(iii) Show that the only 'singular' (non-conformal) points of the trans-
formation are located inside the cylinder,
(iv) Deduce that the potential appropriate to the elliptic cylinder is

F(z) = \E(z2 - 2a2)1'2 - \Ez.

(v) Verify that on the elliptic cylinder, Re F(z) = 0, as it should be.

16.6 Complex integrals

Corresponding to the integral of a real variable, the integral of a complex
variable between two (complex) limits can be defined. Since the z-plane is
two dimensional there is clearly greater freedom and hence ambiguity in
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what is meant by a complex integral. For example, in fig. 16.4, we might
ask, 'Does the integral of some function/(z) between A and B mean one
involving the values o f / a t points along the straight line C l5 or along the
curved lines C2 or C3, or does it not make any difference anyway?'
What will be found is that in general they will have different values, i.e.
in general, the value of the integral depends upon the path adopted in

C3

Fig. 16.4 Alternative paths for an integral of a function /(z) between A and B.

the complex plane. However, it will also be found that for different paths
bearing a particular relationship to each other the value of the integral
does not depend upon which of the paths is adopted.

Let a particular path C be described by a continuous parameter q
(a ^ q ^ P) which gives successive positions on C by means of the equa-
tions

(16.48)

with q = a and q = j8 corresponding to the points A and B respectively.
Then the integral along path C of a continuous function f(z) is written

f f(z)dz, (16.49)
Jc

and is given more explicitly as the sum of the four real integrals obtained
as follows:

f f(z) dz = r (u + ii?Xd* + i dy)
Jc Jc

= I udx - t vdy + i / udy + i / v dx
Jc Jc Jc Jc

r* dx r0 dy ft dy
= u— dq- i v— dq + i \ u — dq

Ja dq Ja dq Ja dq

i: dx
v— dq. (16.50)

dq
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The question of when such an integral exists will not be gone into, ex-
cept to state that a sufficient condition is that dxjdq and dy/dq are con-
tinuous.

To illustrate this definition and also the final sentences of the first
paragraph, we will now consider some simple examples.

Example 16.3. (i) f(z) — z'1 and Cx is the circle \z\ = R, starting and
finishing at z = R.

p = 0, q = 1
\R \R \R \R

(a) (b) (c) (d)

Fig. 16.5 The paths and parameterizations of example 16.3. See text for details.

The path Cx is parameterized as (fig. 16.5 (a))

z(q) = R cos q + iR sin q, 0 < q ^ 2TT,

whilst/(z) is given by

1 x — iy

Thus

and

u =

v =

X2

X2

X

X

+

-y
+

+ iy

y2

v2

x2 +y2

Rcosq

R2

R sinq

R2

Hence using expression (16.50),

r 1 f2K cosq r2n—sinq
I - d z = I (-Rsinq)dq - I Rcosqdq

Jc± z Jo R JQ R

r2n cosq
4- i / R cos q dq

Jo R

r2n —sinq
+ i I — - ^ ( - R s i n q ) d q (16.51)

Jo X
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= O + O+i7r + i7r = 27ri. (16.52)

This very important result will be used many times later, and the follow-
ing should be carefully noted,

(a) its value,
(b) that its value is independent of R.

With a bit of experience, integrals like this one can sometimes be
evaluated directly without writing them as four separate real integrals
(see also •16). In the present case:

f dz f 2« - R sin q + iR cos q r2n

— = — . n . dq =\ idq= 2m. (16.53)
JCi z Jo R cos q + iR sin q * Jo

(ii) /(z) = z"1 and C2 is the semicircle \z\ = R in the half plane >> ^ 0,
joining z = JR to z = —R.

This is just as in (i) except that now 0 ^ q ^ n. With this change we
have from line (16.51) or line (16.53) that

dz
= 7 7 1 .

(iii) Yet again take/(z) = z"1, but this time with a contour C3 made up
of the two straight lines C3a and C3b (fig. 16.5 (c)). These may be para-
meterized as

C3a: z = (l -q)R + iqR (0 ^ q ^ 1),
C3b: z= -pR + i(l - p)J? ( 0 ^ / 7 ^ 1).

With these parameterizations the required integrals may be written

r dz fi -R + LR ri -R-iR
— = dq + d/7.

)c*z JQR + q(-R + iR) Jo iR+p(-R-iR)

(16.54)

If we could accept from real variable theory that, for real q,
J (a + frtf)"1 dq = b'1 log (a + bq)9 even if a and b are complex, then
these integrals could be evaluated immediately. However to do this would
be presuming to some extent what we wish to show, and so the evalua-
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tion must be made in terms of entirely real integrals. For example, the
first is

r1 -R + iR _ r1 ( - 1 + i)(l - g - ig)

}0R(l-q) + iqR * J o (l-q)2 + q2 q

-i'r1
Jo l

2q

= | [In (1 - 2? + 2?
2)]J

-l/2\-|i

The second integral on the right of (16.54) can also be shown to have
value %TT\. Thus

f dz .
— = 7rt.

(iv) Take/(z) = Re (z) and the same contour as in (i). Then

I Re (z) dz = R cos q( — R sin q + ii? cos #) d^ = ITT/?2 .

Jcx Jo

(v) As (iv) but using C2 as the contour.

I R e ( z ) d z = I R cos q{-R sm q + \R cos q)<\q =\\TTR2.
Jc2 Jo

(vi) As (iv) but using C3 = C3a + C3b as the contour.

f Re (z) dz = f (1 - q)R(-R + i*) d^
Jc3 Jo

+ C(-pRX-R-iR)dp
Jo

= iR2(- 1 + i) 4- iR2(l + i) = LR2.
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Considering results (i)-(vi) together and recalling that (i)-(iii) and
(iv)-(vi) have common integrands, some interesting observations are
possible. Firstly the two integrals (ii) and (iii) from z = R to z = —R
have the same value even though the paths taken (C2 and C3) are different,
but this is not true for (v) and (vi). It also follows that if we took a closed
path C4 (fig. 16.5 (d)) given by C2 from Rto —R and C3 traversed back-
wards from — R to R, then the integral round C4 of z"1 would be zero
[both parts contributing equal and opposite amounts]. This is to be com-
pared with result (i), in which closed path C1, beginning and ending at the
same place as C4, yields a value 27ri.

These results demonstrate that the value of an integral between the
same two points may depend upon the path that is taken between, but
at the same time suggests that in some circumstances it is independent of
the path. The general result is embodied in the results of the next section -
namely Cauchy's theorem which is the corner-stone of the integral cal-
culus of complex variables.

•16. Relate line (16.53) to Ml and the multivalued nature of Log z.

16.7 Cauchy's theorem and integral

Cauchy's theorem. If/(z) is an analytic function, and/ '(z) is continuous
at each point within and on a closed contour C, then

/ (z)dz = 0. (16.55)

To prove this we will need a two-dimensional form of the divergence
theorem (section 4.2) (also known as Green's lemma). This says that if
u and v are two functions with continuous first derivatives within and on
a closed contour C (bounding a domain D) in the xj-plane, then

m— + — |d;c dy = f (lu + mv) ds = \ (u dy - v dx).
dx dy) Jc Jc

(16.56)

Here /, m are the direction cosines of the outward normal to C at the
point (x, y).

If the three-dimensional divergence theorem is applied to a 'vector'
whose three components are (u, v, 0) over a volume which is a uniform
cylinder with axis perpendicular to the xy-plane and whose intersection
with that plane is the contour C, then the first equality of (16.56) is
apparent. The first expression is the volume integral and the second the
surface integral, both being in terms of 'per unit length of the cylinder'.
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Fig. 16.6 The relationship used in Green's lemma between the outward normal to
domain D and an element of its enclosing contour C. The two marked
angles are equal.

The second equality follows from the geometric relationship between
the outward normal to the cylinder (or C) and the line element in travers-
ing C in the positive sense, the tangent to C at (x, y) having direction
cosines ( —m, /) if the outward normal is (/, m). [See fig. 16.6.]

This can now be applied to

= I / (z) dz = I
Jc Jc

(u dx - v dy) + i I (v dx + u dy)
c Jc

to give
d(-v)

dy

d(-v)

Tx\
dxdy-

(16.57)

Now recalling that f(z) is analytic and therefore the Cauchy-Riemann
equations (16.5) apply, we see that each integrand is identically zero and
therefore / is also. This proves the theorem.

In actual fact the conditions of the above proof are more stringent
than are needed. The continuity of f\z) is not necessary for the proof of
Cauchy's theorem, analyticity of/(z) within and on C being sufficient.
However, the proof then becomes more complicated and is too long to
be given here.f

A sort of converse of Cauchy's theorem is known as Morera's theorem.
We state it without proof.

If/(z) is a continuous function of z in a closed domain D bounded
by a curve C and further \cf(z) dz = 0, then/(z) is analytic in D.

t The reader may refer to almost any book devoted to complex variables and
the theory of functions.
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•17. The function /(z) = z2 is analytic in any region of the z-plane.
Verify by a direct evaluation that |\ z2 dz around a closed contour C
has zero value,

(i) when C is the circle \z\ = R starting at z = R,
(ii) when C is the square whose four corners are x = ±L, y = ±L
starting at any corner.

The connection between Cauchy's theorem and the zero value of the
integral of z'1 around the composite path C4 discussed towards the end
of the previous section, is apparent - the function z"1 being analytic in
the two regions of the z-plane enclosed by contours (C2 and C3a) and
(C2 and C3b).

Cauchy's integral. If /(z) is analytic within and on a
closed contour C and £ is a point within C, then

z-( 06.58)

This is saying that for an analytic function its value anywhere inside a
closed contour is uniquely determined by its values on the contourf
and that the specific expression (16.58) can be given for the value at
the interior point.

Fig. 16.7 The contour used to prove Cauchy's integral formula.

To prove the validity of Cauchy's integral consider a contour as shown
in fig. 16.7. In this y is a circle centred on the point z = £ and of small
enough radius p that it all lies inside C. The two close parallel lines Cx

and C2 join y and C, which are 'cut' to accommodate them. The new
contour F so formed consists of C, Cx, y and C2.

t The similarity between this and the Uniqueness theorem for Dirichlet
boundary conditions of chapter 10 will be noticed.
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Within the area bounded by T [which does not include the point
z = £] the function f(z)/(z — f) is analytic and therefore by Cauchy's
theorem (16.55),

1z ~~
= 0. (16.59)

Now the parts Cx and C2 of T are traversed in opposite directions and
lie (in the limit) on top of each other and so their contributions to (16.59)
cancel. Thus

f / ( Z ) A ± f / ( Z ) A n ,i**m* d z + rdz = 0. (16.60)
Jc Z - £ Jy Z - £

The sense of the integral round y is opposite to the conventional (anti-
clockwise) one and its value is given by the following argument, which
uses the fact that any point z on y is given by z = £ + p exp (i0),

Jo

pi exp

P exp (

= - 2 ^ / ( 0 + /!. (16.61)

But 17x1 cannot be greater than

-max{\f(z)-f(i)\}2nP.
p zony

Since/(z) is continuous the maximum of |/(z) — f(£)\ on y can be made as
small as we wish by taking p small enough. Hence Ix = 0 and (16.61) can
be rearranged in the form (16.58) thus establishing that result.

An extension to Cauchy's integral formula can be made to yield an
integral expression for /'(£) as

/'(0=^r f 7 ^ 5 dz, (16.62)
2TTI J C (Z - f)a

under the same conditions as previously.
To show this, the definition of a derivative and (16.58) itself are used

to evaluate

= ±[MI 1 L \ d z .
2wi Jc h \z - £ - h z - £/ft

(16.63)
t Compare with example 16.3 (i) after a change of origin to z — £.
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The right-hand side of (16.63) can be rearranged as the right-hand side of
(16.62) together with an integral I2 given by

hf(z)dz

2TTI J C (Z -

All that remains to be shown is that |/2| -> 0 as \h\ -> 0. But since £ is in-
side C and z is on C, for sufficiently small h the denominator of (16.64)
will be finite [perhaps small - but definitely non-zero]. However, since/is
analytic and therefore bounded in the domain, the numerator -> 0 as
\h\ -> 0. Thus in the limit \h\ -> 0, I2 must tend to 0 and (16.62) is estab-
lished.

•18. Prove by induction that the nth derivative of/(z) is given by a Cauchy
integral,

n \ r f(z\ dz
— • (16.65)

Following on from (16.65), Taylor's theorem may be established al-
though we will only indicate how.

If/(z) is analytic in the region \z — a\ ^ R and z is a point inside
that region, then

/(z) = 2 an(z - a)\ (16.66)
n = 0

where an is given by f(n)(a)/n!

It can be proved by expanding (£ — z)"1 as a geometric series in
(z — a)/(£ — a), multiplying through by /(£), integrating d£ around a
contour of radius p < R centred on a, and using Cauchy's formula and
result (16.65).

•19. Carry through these procedures.

The Taylor expansion is valid inside the region of analyticity and, for any
particular a, can be shown to be unique.

16.8 Zeros and singularities

So far we have considered functions only in domains where they are
analytic. We now examine their behaviour at points where they cease to be
so.

Suppose z = a is a point in the z-plane and that a power series expansion
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of a function about that point can be made for all z inside some region
0 < \z - a\ < R,

f(z)= 2 <tn(z-a)\ (16.67)
n = - oo

This series, which is an extension of the Taylor expansion, is called a
Laurent expansion. The previously stated Taylor's theorem indicates that
if /(z) is analytic at z = a, then all an for n < 0 must be zero.

It may happen that not only are all an zero for n < 0, but that a0,
«!,. . . , flm_!, are all zero as well. In this case the first non-vanishing term
in (16.67) is am(z — a)m with m > 0, and/(z) is then said to have a zero of
order m at z = a.

If f(z) is not analytic at z = a then two cases arise (m is here taken as
positive):

(i) it is possible to find an integer m such that a.m # 0 but a_(m + 7c) = 0 for
all integral k > 0,
(ii) it is not possible to find such a lowest value of —m.

In case (i), /(z) has the form

(z - a)m {z - a)™'1 z - a
oo

+ 2"n(z -a ) n
! a-» / 0, (16.68)

0

and is described as having a pole of order m at z = a; the value of «_x [not
a_m] is called the residue of/(z) at the pole z = a, and will play an impor-
tant part in later applications.

It can be shown that:

(a) zeros of/(z) are isolated, i.e. around each one there exists a neighbour-
hood which contains no other zero of /(z),
(b) poles are isolated,
(c) if/(z) has a pole at z = a then |/(z)| - > o o a s z ^ a , from whatever
direction.

These three results are perhaps intuitively reasonable although they really
require formal demonstration by analysis.

For case (ii) in which the negatively decreasing powers of (z — a) do not
terminate,/(z) is said to have an essential singularity. Such cases and other
more complicated singularities, whilst interesting in their own right, will
not be of importance to the physical applications considered and will not
be pursued.

An expression common in mathematics and which we have so far
avoided using explicitly, is 'z tends to infinity'. For a real variable such as
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\z\ or R, 'tending to infinity' has a reasonably well-defined meaning. For a
complex variable needing a two-dimensional plane to represent it, the
meaning is not well defined. However, it is convenient to have a unique
meaning and this is provided by the following definition.

The behaviour of /(z) at infinity is given by that of
at ( = 0. (16.69)

Different functions have different behaviours at z = oo; as examples:

(a) f(z) = a + bz~2; on putting z = 1/f, /(I/O = a + H2 which is
analytic at £ = 0; thus/is analytic at z = oo.
(b) f(z) = z(l + z2):/(l/£) = l/i + 1/f3, thus/has a pole of order 3 at
Z = 00.

(c) /(z) = exp (z):/(l/f) = 2S ("O"1^"n, thus/has an essential singula-
rity at z = oo.

16.9 Residue theorem

Having seen that the value of an integral round a closed contour C is zero
if the integrand is analytic inside the contour, the next question is 'what is
the value when it is not analytic inside CT The answer to this is contained
in the residue theorem which will now be proved in a number of stages.

1. Suppose the point z = a is a pole of/(z) of order m, then/(z) can be
written as

/(z) = #z) + 2 - ^ V (16.70)
n = l l Z a)

where <f>(z) is analytic within some neighbourhood surrounding a. Now
consider the integral / of/(z) along an arc C of a circle

\z - a\ = P, 61 ^ arg (z - a) ^ 62, (16.71)

where p is chosen small enough so that no singularity of/, other than
z = a, lies within the circle.

a_ndz

Jc

= f «£(z)dz + ij^a.tf1-* f2 exp [(1 - n)i«\ Ad. (16.72)
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Two particular cases now arise.

2. C is a complete circle, i.e. d2 = d1 + 2TT.
In this case all the angular integrals in the sum, except that for which

l—/i = 0, vanish. In addition, by Cauchy's theorem, so does the first
integral. Hence for a closed circular contour C

f f(z)dz = I = ia.lP° (6l+2n dd = 2ir\a^. (16.73)

Notice that this result does not depend on the value of p and compare it
with that of example 16.3(i) (p. 459).

3. m = 1 (z = a is then called a simple pole) and p -> 0.
As p -> 0 the first integral tends to zero, since the path becomes of zero

length and <j> is analytic and therefore continuous along it. The only term in
the sum, and hence the value of /, is thus given by

lim f{z) dz = I = lim ia.lP° \ dd = \a.1(d2 - dj.p~*° Jc p^° Jex
(16.74)

A similar, but slightly more useful result than this can be obtained by
replacing a.x in (16.74) by

lim [(z - a)f(z)]9 (16.75)

if such a limit exists.

Residue theorem. If f(z) is continuous within and on a closed con-
tour C and analytic, except for a finite number of poles, within C,
then

f
Jc

f(z)dz = 2TT\ 2 * , , (16.76)

where 2 ^j is the sum of the residues of /(z) at its poles within C.

The method of proof is indicated by fig. 16.8 in which (a) shows the
original contour C referred to in (16.76), and (b) shows a contour C giving
the same value to the integral - because/is analytic between C and C .
Now the contribution to the C integral from the polygon (a triangle for
the case illustrated) joining the small circles is nothing, since/is also analytic
inside C". Hence the whole value of the integral comes from the circles and,
by result (16.73), each of these contributes 2TT\ {residue at the pole it
encloses}. All the circles are traversed in their positive sense if C is and so
the residue theorem follows.

Formally Cauchy's theorem (16.55) is a particular case of this in which C
encloses no poles.
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(a) (b)

Fig. 16.8 The contours to prove the residue theorem: (a) the original contour;
(b) the contracted one encircling each of the poles.

•20. Obtain results (i)-(iii) of example 16.3 (p. 458) by inspection and
use of the residue theorem.

•21. What is the value of the integral of/(z) = z~2(2 — z)"1 around the
contours (a) the unit circle, (b) a square of unit side centred on the origin,
and (c) a square of side 6 centred on the origin?

16.10 Location of zeros

As the basis of a method of locating the zeros of functions of a complex
variable we next prove three theorems.

1. If/(z) has poles as its only singularities inside a contour C and
is not zero at any point on C, then

f
Jc J\z)

(16.77)

Here 7Vy(P;) is the order of the zero (pole) of/(z) at theyth of the points
a3 enclosed by C at which/has a zero or pole. [Obviously only one case at
each point.]

To prove this we note that at each position a ; , /(z) can be written as

/(z) = (z - ay) (16.78)

where <f>(z) is analytic and non-zero at z = <z; and ntj- is positive for a zero
and negative for a pole. Then the integrand f'(z)/f(z) takes the form

f{z)
• +

z -
(16.79)

Since <£(%) # 0, the second term on the right is analytic; thus the integrand
has a simple pole at z = a5 with residue m;. For zeros m5 = JVy, and for
poles nij = —Pj, and thus by the residue theorem (16.77) follows.
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2. If/(z) is analytic inside C and not zero at any point on it, then

2n%Ns = Ac[arg/(z)], (16.80)
j

where Ac[x] denotes the variation in x around the contour C.

Since / is analytic there are no Pj, and further since

— = — [Log/(z)]f (16.81)

equation (16.77) can be written

Ac[Log /(z)] = f ^ dz = 2^i ^ N,. (16.82)

But

Ac[Log/(z)] = Ac[log |/(z)|] + iAc[arg/(z)], (16.83)

and since C is a closed contour, log \f(z)\ cannot change around it and
the real term on the right is zero. Comparison of (16.82) and (16.83) then
establishes (16.80), which is known as the principle of the argument.

3. (Rouche's theorem.) If /(z) and g(z) are analytic within and
on a closed contour C and \g(z)\ < \f(z)\ on C, then/(z) and
f(z) + g(z) have the same number of zeros inside C.

With the conditions given, neither/(z) nor/(z) 4- g(z) can have a zero
on C. So applying theorem 2 with an obvious notation,

2TT]T NJJ + *) = Ac[arg

= Ac [arg/1 + Ac[arg (1 + g//)]

= 2TT2 Nk{f) + Ac[arg (1 + g/f)]. (16.84)

Further since \g\ < \f\ on C, 1 + g//always lies within a unit circle
centred on z = 1, thus its argument always lies in the range — TT/2 <
arg (1 + g/f) < n/2 and cannot change by any multiple of 2TT. It must
therefore return to its original value when z returns to its starting point
having traversed C. Hence the second term on the right of (16.84) is zero
and the theorem is established.

These three theorems are of value in locating the zeros of functions of a
complex variable. The location of such zeros has particular application in
electrical network and general oscillations theory, since the complex zeros
of certain functions give the system parameters (usually frequencies) at
which system instabilities occur.



16.10 Location of zeros 471

The importance of Rouche's theorem is that for some functions, in
particular, polynomials, only the behaviour of a single term in the function
need be considered if the contour is chosen appropriately. For example, for
a polynomial [treated as /(z) + g(z)] only the properties of its leading
(smallest) power [treated as/(z)] need be investigated, if a circular contour
of large (small) enough radius R is chosen so that | leading (smallest) power
term | > 2 laU other terms | on the contour. Further if the zeros of/(z) +
g(z) = 2o bnz

n are considered as the roots of/(z) + g(z) = 0 written in the
form

1 + ^ - 0 , (16-85)

then it is apparent that no roots can lie outside (inside) \z\ = R and also
that/(z) = bNzN (or b0) has TV (or 0) zeros inside \z\ = R; f + g conse-
quently has the same number of zeros inside the same circle.

A weak form of the maximum-modulus theorem may also be deduced.
This states that

If/(z) is analytic within and on a simple closed contour
C, then | /(z) | attains its maximum value on the
boundary of C. (16.86 a)

Let | /(z) | ^ M on C with equality at at least one point of C Now sup-
pose there is a point z = a inside C such that \f(a)\ > M. Then the func-
tion h(z) = f(a) is such that \h(z)\ > |— /(z) | on C, and thus h{z) and
h{z) — f(z) have the same number of zeros inside C But h{z) (=f(a)) has
no zeros inside C and by Rouche's theorem this would imply f(a) — f{z)
has no zeros in C. However f(a) — f(z) clearly has a zero at z = a, and so
we have a contradiction; the assumption of a point z = a inside C such
that \f(a)\ > M must be invalid. This establishes the theorem.

The stronger form of the theorem, which we do not prove, allows the
following to be added to (16.86 a).

The maximum value is not attained at any interior point
except in the case in which/(z) is a constant. (16.86 b)

To illustrate some uses of the theorems, some information about the
zeros of h(z) = z4 + z + 1 is now deduced.

(a) Putting z = x and z = iy shows that no zeros occur on the real or
imaginary axes. They must therefore occur in conjugate pairs [as taking the
complex conjugate of h(z) = 0 shows].
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o
Fig. 16.9 A contour for locating zeros of a polynomial occurring in the first quad-

rant.

(b) Take C as the contour OXYO as shown in fig. 16.9 and consider the
change in the argument of h(z).

OX: along OX, arg h is everywhere zero (since h is real) and thus
Aox[arg h] = 0.

XY.z = jRexp(i0).

AXy[arg/z] = Axy[argz4] + Axy[arg (1 + z
= Axy[argi?4e4i»] + Axy[arg(l
= 2TT + O(R " 3) .

"3 ~4
)]

0(R-*))]
(16.87)

YO: arg /z = J>/(J>4 + 1), which starts at O(R~3) and finishes at 0 as y
goes from R (large) to 0. It never reaches TT/2 because >>4 + 1 = 0 has no
real positive root. Thus Ayo[arg h] = 0. Hence for the complete contour
Ac[arg h] = 0 + In + 0 4- O(R~3) and if JR is allowed to tend to infinity
we deduce from (16.80) that h(z) has one zero in the first quadrant.

Since the roots occur in conjugate pairs, a second root must be in the
fourth quadrant and the other pair in the second and third quadrants.
(c) Apply Rouche's theorem,

(i) with C as \z\ = 3 /2 , / = z4, g = z + 1.
Now | / | = 81/16 on C and \g\ ^ 1 + \z\ < 5/2 < 81/16. Thus since

z4 = 0 has four roots inside \z\ = 3/2, so also does z4 + z + 1 = 0.
(ii) with C as \z\ = 2 / 3 , / = 1, g = z4 + z.

Now / = 1 on C and |g| ^ |z4| + \z\ = 16/81 + 2/3 = 70/81 < 1.
Thus since 1 = 0 has no roots inside \z\ = 2/3, neither does 1 + z + z4 =
0.

Hence to summarize at this point, the four zeros of h(z) = z4 + z + 1
occur one in each quadrant and all lie between the circles \z\ = 2/3 and
\A = 3/2.

•22. Use a quadrant contour 0 -> 1 -> i -> 0 to show that the zero in the
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first quadrant has \z\ > 1. [Use de Moivre's theorem to obtain an expres-
sion for the argument.]

A further technique useful in locating function zeros is explained in
example 11 of section 16.16.

16.11 Integrals of sinusoidal functions

The remainder of this chapter is devoted to methods of applying contour
integration and the residue theorem to various types of definite integrals.
In each case not much preamble is given since, for this material, the sim-
plest explanation is felt to be a series of worked examples which can be
used as models.

Suppose an integral of the form

f
Jo

F(cos 0, sin 0) dd (16.88)

is to be evaluated. It can be made into a contour integral around the unit
circle C by writing z = exp (i0) and hence

cos 0 = \(z + z"1), sin 0 = -l- (z - z"1),

d0 = - i z - 1 d z . (16.89)

This contour integral can then be evaluated using the residue theorem,
provided the transformed integrand has only a finite number of poles
inside the unit circle and none on it.

Example 16.4. Evaluate

f 2» COS 2 0
/ = d0, b > a > 0. (16.90)

Jo a2 + b2 - lab cos 0

By de Moivre's theorem

cos«0 = \{zn + z"n). (16.91)

Using n = 2 in (16.91) and straightforward substitution for the other
functions of 0 in (16.90) gives

if z4 + 1
/ = —2abjcz

2[z-(a/b)}[z- (b/a)]

There are 2 poles inside C,

(i) at z = 0,
(ii) at z = a/b [recall b > a].

dz.
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(i) Rearrange the integrand as

and expand. The coefficient of z"1, i.e. the residue, is

a b
• 23. T + - -

b a

(ii) The residue at z = a/b (a simple pole) is

r 17 *A 1 (albY + 1
•"L I z 1 x integrand =

*-<•'» IA b) J (a/b)\alb - b/a)
a* + b*

= " ab(b2 - a2) 'And so by the residue theorem

i (a2 + b2 a* +
= 2TT1 X I -

2-na2

-a2)

16.12 Some infinite integrals

-R O R
Fig. 16.10 A semicircular contour in the upper half-plane.

If (i) f(z) is analytic in the upper half-plane, Im z ^ 0 except for a finite
number of singularities, but with none on the real axis,
(ii) on the semicircle F (fig. 16.10) of radius R, {R x maximum of | / | on
F} tends to zero as R-> oo,
(iii) j°_ ^ f(x) dx and J^ f(x) dx both exist, then

r
I f(x) dx = 27r/{sum of the residues at poles with 1m z ^ 0}.

J — oo

(16.92)

Condition (ii) ensures that

II 2w/J{maximum of | / | on T},
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which tends to 0 as R -> oo, after which (16.92) is obvious from the residue
theorem.

Example 16.5. Evaluate

dx-f
Jo

a real.
Jo (x2 + a2Y

The complex function (z2 + a2)"4 has poles only at z = ±ai of which
only z = aiis in the upper half-plane. Conditions (ii) and (iii) are clearly
satisfied. If we put z = d\ + £ and expand for small f we obtain

(z2 + a2)4 (2ai£ + P) 4 (2ai041 2a/

The coefficient of I " 1 is

3! \2a) 32a7

Hence
IOTT

, ix2 + a2y 32a7

and / = 57T-/3207.

Condition (i) of the previous method required no poles of the integrand
on the real axis, but simple poles on the real axis can be accommodated by
indenting the contour as shown in fig. 16.11. The indentation at the pole
z = a is in the form of a semicircle y of radius p in the upper half-plane,
thus excluding the pole from the interior of the contour.

-R O R
Fig. 16.11 An indented semicircular contour used when the integrand has a simple

pole on the real axis.

What is then obtained from a contour integration is, apart from the
contributions for T and y,

P f * f{x) cbc EE f P f{x) dx + f /(*) dx, (16.93)
J-R J-R Ja+p

and is called the principal value of the integral as p -> 0.
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The remainder of the calculation goes through as before, but the con-
tribution from the semicircle y must be included. Result 3 of section 16.9
shows that, since only a simple pole is involved, its contribution is

-ia-iTT, (16.94)

where a-1 is the residue at the pole and the minus sign arises because y is
traversed in the clockwise (negative) sense.

We defer giving an example of an indented contour until we have estab-
lished Jordan's lemma and then work through an example illustrating both.
Jordan's lemma enables infinite integrals involving sinusoidal functions to
be evaluated. It states that if,

(i) f{z) is analytic in the upper half-plane except for a finite number of
poles in Im z > 0,
(ii) the maximum of | / | -> 0 as |z| -> oo in the upper half-plane,
(iii) m > 0, then

/ r = \ emzf(z) dz -> 0 as R-*oo, (16.95)
Jr

where T is the same semicircular contour as in fig. 16.10. Notice that con-
dition (ii) is less stringent than the earlier condition (ii), since we now only
require M(R)->0 and not RM(R)^0, where M is the maximumf of
|/(z)| on \z\ = R.

The proof of the lemma is straightforward, once it has been observed
that for 0 ^ 6 ^ \JT

sin 6 2
1 ^ — - ^ - ' (16.96)

It then proceeds as follows

I r ^ f | e l m * / ( * ) l | d 2 | ^ f M e m » R d d
Jr Jo

= 2MR I e-mRsin9 dd.
Jo

f
Jo

TTM ITM
= (1 - e~m*) < >

m m

and hence tends to zero since M does, as R-> oo.

f More strictly the least upper bound.

Thus

/ r < 2MR I ^
Jo
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Example 16.6. Find the principal value of

cos mx
dx, a real, m > 0.

x - a
Consider the function (z — a)'1 exp (imz); it has no poles in the upper

half-plane and a simple pole at z = a, and further \{z — a)'1] ->0 as
\z\ -> oo. We use a contour like that shown in fig. 16.11 and apply the
residue theorem. Symbolically,

•Rf + r + f=°-
y Ja + p Jp

Now as R -> oo and p -> 0, J r -> 0 by Jordan's lemma and as in (16.93)
and (16.94) we obtain

J - c

djc - i7ra.1 = 0, (16.98)
x — a

where fl_2 is the residue of (z — a) x exp (imz) at z = a, which is exp (ima).
Then taking real and imaginary parts of (16.98) gives

•f
J - c

% / - 0

cos mx
dx = — 77 sin ma, as required,

x - a
sin mx

dx = 77 cos ma, as a bonus.
JC — a

16.13 Integrals of many-valued functions

We have discussed briefly some of the properties and difficulties associated
with several many-valued functions such as z1/2 or Log z. It was men-
tioned, but not discussed, that one method of managing such functions
is by means of a ' cut plane'. A similar technique can be used with advantage
to evaluate some kinds of infinite integrals involving real functions for
which the corresponding complex functions are many-valued. A typical
contour employed is shown in fig. 16.12. Here F is a large circle of radius R
and y a small one of radius p, both centred on the origin. Eventually we
will let R -> oo and p -> 0.

The value of the method comes from the fact that because the integrand
is multivalued, its value along the two lines AB and CD joining z = p to
z = R are not equal and opposite although both are related to the cor-
responding real integral. Again an example is the best explanation.
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Fig. 16.12 A cut-plane contour for use with multivalued integrands.

Example 16.7. Evaluate

dx
I =

(x + afx112 a > 0.

We consider the integrand/(z) = (z + aY3z~112 and note that |z/(z)| ->
0 on the two circles as p-> 0 and R^co. Thus the two circles make no
contributions to the contour integral.

The only pole of the integrand inside the contour is at z = —a. To deter-
mine its residue put z = — a + £ and expand [note z1/2 is a112 exp QITT) =

1 1

(z + afz112

1

The residue is thus — 3i/Sa512.
The residue theorem now gives

L •/,•/»•/-(£)•
We have seen that J and J vanish, and if we denote z by x along the line
AB then it has the value z = x exp (2m) along the line DC [note exp (2m)
must not be set equal to 1, until after the substitution for z has been made
in JDC]. Putting in these forms,

dxf (x + afx1'2

dx

[x exp (2wi) + a]3*1 '2 exp (i2iri) 4a5'2
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Thus

- -L -1 r —±.
exp (TTI) J J O (X + a)3 4a512

and
1 3TT

/ = - x
2 4a512

•24. Use the same contour and technique to evaluate
dx

a > 0, 0 < j8 < 1.
•/o a)2x*

16.14 Summation of series

Sometimes a real infinite series may be summed if a suitable complex
function can be found which has poles on the real axis at the positions
corresponding to the values of the dummy variable in the summation,
and whose residues at these poles are equal to the values of the terms of the
series there.

Example 16.8. By considering

77 COt 7TZ

Jc (a + zf
dz, a non-integral,

where C is a circle of large radius evaluate

nloo (a + nf

The integrand has (i) simple poles at z = integral n, — 00 < n < 00,
(ii) a double pole at z = —a.

(i) To find the residue of cot TTZ, put z = n + f for small £;
COS (A2TT + $TT) COS (A?TT) 1

cot nz = ~ = — •
sin {mr + |TT) COS {mr)^ gn

The residue of the integrand is thus 7r(tf + w)"2-^"1 .
(ii) Putting z = — a + £ for small f and determining the coefficient of

77 COt 77Z 77

_ ^ = F cot (-,.+ *,)

} (t)
f This illustrates a useful technique for determining residues.
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Thus the residue is

7T[ — 7T c o s e c 2 7TZ]2= -a {)

Collecting together these results to express the residue theorem gives

/ = dz = 27T\\ y IT2 cosec2 (ira)

(16.99)

with N = integral part of R. But as the radius R of C tends to oo, |cot TTZ\ ->
+ 1 (depending on whether Imz ^ 0). Thus

I < k J (a + zf
which tends to 0 as R-> oo. Thus / - > 0 as R-> oo and (16.99) establishes
the result

« 1 7T2

n£in (a + n)2 sin2(7T0)

Series with alternating signs in the terms, i.e. (— l)n, can also be
attempted this way, but using cosec nz instead of cot nz since this has
residue (— X)UTT~Y at z — n. See section 16.16 for an example.

16.15 Inverse Laplace transform

As a final example of contour integration we mention a method whereby
the process of Laplace transformation, discussed in section 5.11, can be
inverted.

It will be recalled (equation (5.60)) that the Laplace transform F(s) of a
function/(x), x ^ 0, is given by

• iF(s)=\ e~sxf(x)dx, Re5>0. (16.100)
Jo

In chapter 5, functions were deduced from the transforms by means of a
prepared dictionary. However, an explicit formula for an unknown inverse
may be written in the form of an integral. It is known as the Bromwich
integral, and is given by

= _
ZTTl J A - I

I
/(*) = _ e'*F(s)ds, A > 0, (16.101)

ZTTl J A - I O O
where s is treated as a complex variable and the integration is along the
line L indicated in fig. 16.13. The position of the line is dictated by the
requirements that A is positive and that all singularities of F(s) lie to the
left of the line.
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Im s1

481

Re s

Fig. 16.13 The integration path of the inverse Laplace transform is along the infinite
line L. The quantity A must be positive and large enough for all poles of
the integrand to lie to the left of L.

That (16.101) really is the unique inverse of (16.100) is difficult to show
for general functions and transforms, but the following verification at
least makes it plausible,

= ;TT- dsesx \ e-s*f(x')dx',

1 r°° fA +i<

2TTI JO J A - I O

1 f00 f00

= — dx'fix')
2TTI JO J_OC

= _LfV(x')e—2.
2TT Jo

= 0, x < 0.

Re (s) > 0, i.e. A > 0,

dy

putting 5 = A + ip,

- x')dxr

(16.102)

Our main interest here is in the use of contour integration. To employ it
to evaluate the line integral in (16.101), the path L must be made into a
closed contour in such a way that the contribution from the completion
either vanishes or is simply calculable.

A typical completion is shown in fig. \6A4(a) and would be appropriate
if F(s) had a finite number of poles. For more complicated cases in which
.Fhas an infinite sequence of poles (but all to the left of L, as in fig. 16.14(b))
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(a) (b) (c)

Fig. 16.14 Some contour completions of the integration path L of the inverse Laplace
transform. For details of when each is appropriate see the main text.

a sequence of circular arc completions which pass between the poles must
be used and/(x) is obtained as a series. If F(s) is a multivalued function, a
cut plane is needed and a contour such as that shown in fig. 16.14(c) may be
appropriate.

We consider here only one simple example [for which the answer is
already given in chapter 5] and refer the reader to the examples of section
16.16 for others.

Example 16.9. Find the function f(x) whose Laplace transform is

F(s) = s'^l - e~s*),

where X is fixed and positive.
From (16.101) we have the integral

/ ( * ) = TTT - ds (16.103)

whose integrand has a singularity only at the origin. Thus any positive
value of A will suffice.

Using the general result (16.102),

f(x) = 0 f o r x < 0 . (16.104 a)

[This could be obtained formally by closing L with a circular arc V in the
right half-plane, thus enclosing no poles, and observing that the integrand
-> 0 everywhere on F since Re s > 0 and x < 0. With no poles enclosed
and no contribution from F, the integral along L must also be zero.] So we
have to consider x > 0, and here two cases arise.
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(i) x > X > 0. Close L as in fig. \6A4(a). On T, Re s < 0 [A can be as
small as desired] and s-s'1 {exp (sx) — exp [s(x — X)]} tends to zero
everywhere on F as i ? ^ o o . As in section 16.12 the integral round F
vanishes for infinite R and so by the residue theorem,

- (
2TT\

ds = — : {residue at s = 0} = 0.
2TT1

Thus

f(x) = 0 for* > X > 0. (16.104 b)

(ii) X > x > 0. Here the two parts of the integrand behave in different
ways and have to be treated separately,

r QSX C e s U

2 ~ )L S JL J
d j .

The integrand of Ix then vanishes in the far left-hand half-plane and I±

is evaluated as in (i) to yield

7-i/! = 27ri{residue of s'1 esx at s = 0} = 2TH. (16.104 c)

The integrand of 72 vanishes in the far right-hand half-plane and is
evaluated by a circular arc completion in that half-plane. Such a contour
encloses no poles and, as explained immediately following result (16.104 a),
leads to 72 = 0.

Thus collecting together results (16.104 a-c) we obtain:

fix) = 0,
= 1,
= 0,

x < 0,
0 < x < X,
x > X,

as shown in fig. 16.15. This is the same result as given by entries 1 and 13
of table 5.1.

0 X x
Fig. 16.15 The result of the Laplace inversion carried out in example 16.9.
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16.16 Examples for solution

1. Find an analytic function of z = x + \y whose imaginary part is
(y cos y 4- x sin y) exp (x).

2. Find a function /(z), analytic in a suitable part of the Argand
diagram, for which

sin 2x
R e / =

cosh 1y — cos 2x
Where are the singularities of/(z)?
3. Find the radii of convergence of the following series

(d) f znnln n; (e) £ (^-—-V z" (p real in (<?)).
i i \ n I

4. For the function

where c is real, show that the real part u of/is constant on a circle of
radius c cosech u centred on the point z — c coth u.

Use this result to show that the (electrical) capacity/unit length of
two parallel cylinders of radii a, placed with their axes Id apart, is
proportional to (arcosh (d/a))'1.

5. Find a complex potential in the r-plane appropriate to the physical
situation in which the half-plate r > 0, s — 0 has zero potential and
the half-plate r < 0, s — 0 has potential V.

By making the transformation z = \a(t + t'1) with a real and
positive, find the electrostatic potential associated with the two half-
plates x > a, y = 0 and x < —a, y = 0 at potentials 0 and V
respectively.

6. By considering in turn the transformations
zlc — i(w + w"1)* w = exp I,

where z = x + ij>, w = r exp (i#), f = f + i^, and c is a real positive
constant, show that z/c = cosh £ maps the strip £ ^ 0, 0 < r\ < 2?r
onto the whoie z-plane. What curves in the z-plane correspond to the
lines £ = constant, 77 = constant? Identify those corresponding to
f = 0 , 7] = 0 , 7] = 27T.

The electric potential <f> of a charged conducting strip — c ^ x ^
c, y — 0 satisfies

<£ /c ln (x2 + y2)112 for large (x2 + y2)112,

with </> constant on the strip. Show that <j> = Ke( — k arcosh (z/c)) and
that the magnitude of the electric field near the strip is k(c2 — x2)~112.
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7. Find the Taylor series expansion about the origin for the function
/(z) defined by

/ ( z ) = I ( - l ) - i si

where p is a constant. Hence verify formally that the definition of
/(z) is a convergent series for all z.

8. Identify the zeros, poles and essential singularities of the function
w = tan z.

9. For the equation 8z3 + z + 1 = 0,

(i) show that all three roots lie between the circles \z\ = f and

(ii) approximately locate the real root, and hence deduce that the
complex ones lie in the first and fourth quadrants and have moduli
greater than 0.5.

10. (i) Prove that z8 + 3z3 + 7z + 5 has two zeros in the first
quadrant.
(ii) Find in which quadrants the zeros of 2z3 + 7z2 + lOz + 6 lie.
Try to locate them.

11. Zeros inside \z\ = R. The following is a method of determining
the number of zeros of an nth degree polynomial f(z) inside the
contour C given by \z\ = R;

R(l + if)
(i) put z = with t (= tan 0/2) in -oo ^ t ^ oo,

(1 - if)

,.., u . , , , A(t) + iB(t)(ii) obtain /(z) as
- if)n (1 + \t)n

(iii) arg/(z) = arctan (B/A) + n arctan /,

(iv) Ac[arg/(z)] = Ac[arctan (B/A)] + mr.

(v) By inspection or sketch graph, determine Ac[arctan (B/A)],
by finding the discontinuities in B/A and evaluating arctan (B/A)
at / = ± oo.

Use this method, together with K22 (page 472) to show that the
zeros of z4 + z + 1 in the second and third quadrants have \z\ < 1.

12. By considering the real part of

dz

1 - a(z + z"1) + a2

where z = exp (iO), evaluate

cos nd d0

1 — 2a cos 0 4- a2

n integral and

a real and > 1.
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rn sin 0
13. Evaluate d#, where a is real and >1.

J-n a - sin 8
[Prove first that if/(z) has a simple zero at z0, then l//(z) has residue
l//'(z0) there.]

Cx t sin at
14. Evaluate

Jo

/"* cos mx dx 77
15. Prove = - (4e"m/2 - e~m), m > 0.

Jo 4x4 + 5x2 + 1 6

16. Show that the principal value of the integral

cos (x/a)
• dx

is - (n/a) sin 1.

17. [Harder problem] (i) Evaluate the integral of exp OTTZ2) cosec (?7z)
around the parallelogram with corners ± \ ± R exp (i77/4).
(ii) Show that the parts of the contour parallel to the real axis give
no contribution when R—>oo.
(iii) Evaluate the integrals along the other two sides by putting
z = r exp O77/4) and working in terms of z' + \ and z — \. Hence by
letting R -> GO show

18.

19.

e-*radr
J - 00

Evaluate

Show I
Jo

/ ;

•X

x3>

= 1.

A

X + 1

In x
4(1 + x)

r x dx
dx = - V2772 and ——

Jo x (1 + x)

20. Prove that V (W2 + in +

[It may prove instructive to carry out the summation numerically,
say between - 4 and 4, and note how much of the sum comes from
values near the poles of the contour integration.]

21. By considering the integral of
/ sin za \ 2 rr

\ za / sin TTZ

around a circle of large radius, evaluate, for a < n/2, the sum
* sin2 (ma)

m = i (ma)2
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22. Use the Bromwich inversion and contours like fig. 16.14(a) to
find the functions of which the following are the Laplace transforms,

(i) s(s2 + b2)'1.
(ii) n\(s — a)~(n + 1\ n integral and >0, s > a [change variable to
t = s - a].

(iii) a(s2 — a2)'1, s > \a\ [change to t = s — \a\].

Compare your answers with table 5.1.

23. Use the contour in fig. 16.14(c) to show that the function whose
Laplace transform is F(s) = s~112, is (TTX)~112. [For an integrand of
the form r~112 exp ( — rx) change to a variable t = r112.]

24. In example 18(iii) of section 9.14 an expression was given for the
transform of a function v(x, t),

V(x,s) = s-^xpi-kxs112).

Show that its Bromwich integral inversion can be converted into a
real integral as follows:

(i) Consider a completion such as shown in fig. 16.14(c) and verify
that it encloses no poles of the integrand,
(ii) on the upper (side of the) cut take s as r exp (XTT) and on the lower
as r exp (— m). Write k2r = u2 and show that the contributions from
the two cuts are together

2 r00 / u2t\ sin ux
— exp I 1 dw,
TTJO \ k2) u

(iii) show that, in the limit of its radius p tending to zero, the small
circle y contributes — 1 to the integral to give for the complete
expression for v(x, t) the real integral

2 /*co / U2f, s j n ux

v(x,t) = 1 exp - — - dw.
IT Jo \ k2/ uJo

[Assume, as can be shown, that the contribution from T vanishes as



Solutions and hints for exercises
and examples

CHAPTER 1

•4. Square each of the equations (1.23) and subtract.
•5. Use (1.16).
•7. a(\ — ^)~x(l — xN + 1), convergent for |x| < 1, divergent for x > 1,

oscillates finitely for x = — 1, oscillates infinitely for x < — 1.
•8. (a) Na + \dN(N - 1), divergent; (6) In (AT + 1), divergent; (c)

Kl - (-2)N), oscillates infinitely; (d) 1 - (N + I)"1, convergent to
5 = 1; (e) add 5V/3 to the SN series,

(3/16)(l - ( -3)-") + (3A74)(-3)-(Ar + 1 \
convergent to 3/16.

•9. (i) Convergent, compare with >S(d); (ii) divergent, compare with 2 w""1;
(iii) convergent, compare with •8(d); (iv) divergent, an -*> 0; (v) conver-
gent, ratio test; (vi) convergent, root test; (vii) divergent, ratio—> e, or

•10. (a) Absolutely convergent, compare with ^(i); (b) oscillates finitely;
(c) convergent, alternate signs; (d) absolutely convergent for all x; (e)
absolutely convergent, use partial fractions; (/) oscillates infinitely.

•11. (a) 3; (b) 2x + 1, use the binomial expansion of (A + B)2; (c) 2; (d) 0;
(e) cos xy use the formula for sin (A + B) and that sin B ^ 5 and cos B ~
1 in the limit B->0.

•12. (a) Sx7; (b) - 3 / x 4 ; (c) x(l + x2)~112; (d) - 2 s i n ( 2 x ) ; (e) a sec2 (ax);
(/) a(l + a2x2Yx\ (g) exp(x); (/z) sinh (*), see definition (1.23 a) and
result (g); (/) (1 + X2)"1'2; (y) ^c"1; (A:) 6 sin 3x cos 3x = 3 sin 6x.

1 / 1 1 \
•13. Write — ( 1

Ax \f(x + Ax) f{x)J

1 f(x + Ax) - f(x)

f{x + Ax)/(x) Ax

(a) - 6(2* + 3)~ 4; (b) - 2 exp (- 2x); (c) 2 sec2 x tan x; (d) - 9 cosech3

(3x) coth (3x).

•15. (a) (x2 + 2x)exp(x);
(b) cos A: cosh x + sin x sinh x;
(c) \nx;
(d) 3x2 tan2 x(tan x + x sec2 x);
(̂ ) [sin (ax) + ax cos (ax) + Ax sin (ax)] exp (Ax);
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(/ ) 2x cos (1 - x2) + 2x3 sin (1 - x2);
(g) -2x(a2 + x 2 )" 1 ^ 2 + x2)~2(c2 + x2)~3[(a2 + x2)"1 + 2{b2 + x2)'1

4- 3(c2 + x 2 ) - 1 ] .

a — x 1 — -J-JC
•16. ( a ) — — - ; (/>)•(a + x)3 (1 - x)3/2

1 - 7 x 2 - x + 2
(c) — = sec2x; (d) 2{Ax2 - 2x + I)

•19. (a) (2 sec2 x - 4) tan x sin 2x + 4 sec2 x cos 2x;
(6) sinx(2x~3 - 3X'1) - cosx (3x ' 2 + In*) ;
(c) 8(4x3 + 30x2 + 62x + 38) exp (2x).

•20. Show xya) = (x + 2)y and then use Leibniz.

* ( - l ) n (2x) 2 n + 1 x3 2x5

•21. (a) S 1— ; (b) x + — + ;
„% (2n + 1 ) ! 3 15

^ (1 - x)n x3 x5

(c) - 2 ; (d)x + x2 + T~™'
n = l ^ 3 30

•22. (a) x = - 2 , max., x = 3, min.; (Z?) x = O + T)(W«), max./min. for «

even/odd; (c) no real max. or min., inflection at x = 0; (d) max. at x =
-(3/5)1 / 2 , min. at x = (3/5)1/2, inflection at x = 0.

•23. —26 at x = —2, other stationary values are 6 at x = 0 and 1 at x = 1.

• 24. (i) (a) (b) (c) (d) (e)

- cos (-)
y \yj X 2

X 2

-y

+ y2

X

+ y>

X

r

y
r

df X /X\
— x2 2y — - c o s -
dy y2 \y/

for (e) df/dz = z/r;
(ii) (a) 2y, 0, 2x, (b) 2, 2, 0, (c) (y2 + z2)r~3, (x2 + Z2)A--3, - ;

(iii) both = (y2 - x2)(x2 + y2)'2.
•26. 3x + (2x + 3^)(1 - x2)1/2 = 3 sin y + (2 sin y + 3>>) cos y.

df 1 / y cos2 y cot y z3 + 2xz \
>21' ~dx ~ (x2 + y2 + z2)1/2 \ + 2 + 1 - 2xz / '

•28. 2"1/2[1 + x - TT/4 + J - iix - TT/4)2 - i 7 2 - (x - 7r/4)y + y(z - 1)],

0//0z = d2f/dz2 = d2//dx ^z = 0, but all the other partial derivatives con-
tribute.

dr St3 + sin 4* - e~2t

•29. — =
df ( 4 / 4 + s in 22r + e" 2 0 1 / 2

f l ^ / l a / \ , f / i z2f i
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d2f df
•32. 4 — — + 2 — = 0.

•33. Use (1.89) twice on (1.91), or once on (1.90).

x — y z
•34. (i) - x — x - = - 1;

z z y

V X I V2 \
(ii) - ^ — x -x(-x) 1 + ^ = - 1 .

y2 + x2 y \ x2 /

•35. Take x, y as (i) S, p; (ii) T, p; (iii) T, V, in (1.95).
•37. The second partial derivatives are (apart from a common factor of

exp (-x2 - y2)), 4x5 - Ux3 + 6x, y(4x* - 6x2), x3(4y2 - 2).
•38. Min. at (2, 3,1). In this example all second derivatives are independent of

x, y, z which is not the case in general.
•39. Max. value of 15 at ± 5 " 1 / 2 (2, 1), min. value of 5 at ±5~ 1 / 2 (1 , - 2 ) .
•40. (i) Yes, for A > 0, value A"1; (ii) yes, value 0; (iii) no, In (1 + R) -> oo as

R —> oo; (iv) no, e~1 -> oo as e —> 0; (v) no, In (sin 6) —> —oo as 6 —> 0;
(vi) yes, value 1.

•41. (i) (2 - y2) cos >> + 2y sin j - 2;
(ii)iy2lny + i(l - 7

2);
(iii) JF arcsin y + (1 — y2)112;
(iv) - j " 1 In (a2 + j 2 ) + (2/a) arctan (y/a);
(v) and (vi) 3/5.

•42. nl
• 4 3 . / n = i(n - l ) / n _ 2 .
•44. (i) 1/60.
•45. (a2b/6)(ab + 3).
•46. iabc(a2 + b2 + c2).
•47. If e.g. the order of integration used is z, y, x, the corresponding limits are

[0, 1 - x - yl [0, 1 - JC], and [0, 1]; 1/360.
•48. 2TT(1 + A2)"1.

fa [b C2n

• 5 1 . p(r2 4- z 2 ) r d < £ d z d r .
Jo J-5 Jo

Section 1.20

1. x = xr cosh </> + ct' sinh >̂, cr = x' sinh (/> + c/r cosh (/>, use (1.24).
2. (a) (i) 1 for Â  ̂  1,2 for TV = 1, (ii) 2 for TV = 1,3 for N = 2, 1 otherwise,

(iii) 2 for x = 1 and TV = 1, (1 - exp (2T7I/N)XN + 1 ) / ( 1 - exp (27ri/7V)jt)

otherwise;
(b) (i) - 2 for TV = 2, 0 otherwise, (ii) - V(3), consider Im 2 ojm2m.
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3. To sum numerator, subtract exp (-x) times the series from the original
series, E = hv[exp (hv/kT) - I ] " 1 .

4. r = 0 divergent, an •* 0; r = 1 divergent, see (1.33); r = 2 convergent,
resolve into partial fractions; r > 2 convergent, by comparison with
r = 2 case.

5. x < e2 by the root test (1.36).

6. Divide the series into two series n odd and n even. For r = 2 both are
absolutely convergent by comparison with 2 n~2. For r = 1 neither series
is convergent by comparison with J w 1 . However, the sum of the two
is by the alternating sign test, or by showing that the terms cancel in pairs.

7. Use Leibniz; x = 2a, x = 6a, x = oo; / ( 8 ) has values 28a~6e~2,
- 4 a - 6 e - 6 , 0.

8. Use Leibniz; (i) and (ii) differentiate the definition of gn and substitute;
(iii) multiply the y{n) recurrence relation through by exp (I*2); use the gn

r e c u r r e n c e r e l a t i o n , g 0 = 1, g i = — x , g 2 = x 2 — \ , g 3 = 3 x — x 3 .

Q x3 ^ 9x5

10. (a) 3; (b) —4, repeat the procedure until 0/0 is not obtained; (c) 0.
11. (i) 0; (ii) t(s2 + t2); (iii) - s in It.

12. Stationary points at (a) x = 0, y = 0; (b) x = 0, y = ± 1; (c) x = ± 1 ,
y = 0. The second-order determinants are

(a)
2 0
0 - 2

0
0

(c)
-4c-1 0

0 - 4 e - i

showing saddle point in case (a), minima in cases (b), maxima in cases (c).

13. Minimize yx + y2 + \a[{xx — 2a)2 + (y± — y2)
2] subject to x± =

-(a2 + y\r2.
14. Consider the real and imaginary parts, / = a/(a2 + a>2), J = aj/(a2 + a>2).

15. (i) Draw a sketch or investigate the monotonic behaviour of sin x in the
range to give (2/TT)X < sin x ^ x. This leads to

J[(l + TT/2)3/2 - 1] > / > (TT/3)(23/2 - 1),

i.e. 2.08 > / > 1.91; (ii) / = 2.

16. Form dl/dy showing that it equals

sech2>> [ . / COSJC \ l n / 2

arsinh J
tanhj> L \ cosech >> / J o

K = TT2/4.

17. fr
18. (i) Use integration by parts, \v In (1 + /x2/v2) + /x arctan (V/JJL);

(ii) 4[(v + /x)1/2 - v112 - /x1'2].

19. Jacobian = (u/v)112 + (v/u)112. Area in wr-plane is triangle bounded by
v = o, u = v, u = a. Integral has value a2.
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CHAPTER 2

•2. Note n a = a cos AOP = p, since OP A is a right angle.
•4. (a A b) A c = [{azbx — axbz)cz — (axby — aybx)cy]i + cyclic

= [(axcx + aycy + tf2cs)6* - (bxcx + 6ycy + bzcz)ax]\ +

cyclic
= (ac)b — (b-c)a.

•5. (a A b) A c lies in the plane containing a and b; a A (b A c) lies in that
containing b and c.

•7. Use (2.26) to evaluate a' A b' and then (2.28) to simplify the result and to
evaluate X' = (a' A b ' ) c ' . Hence conclude that c" = (A/)~1(a/ A b') = c.

Section 2.10
1. (a) False; (b) false, see ^5; (c) true, note a A (b A c) = — (b A c) A a =

(c A b) A a and then use (2.26); (d) true; (e) true, c is parallel to a — b;
( / ) false, left side = - r igh t side, from (2.26).

2. R arccos (cos 6X cos 92 + sin #i sin 02 cos (</>2 — </>i)).
3. Note (a A b)-(c A d) = d-((a A b) A c).
4. Common perpendicular is parallel to b' A b. Required distance is the

projection of a' — a in this direction, leading to

|(a' - a)-(br A b)|/ |b' A b|.

5. Note that the plane contains the vectors /i"1a — A:-1b and /z~1a — /~ 1c.
6. (a) ±2tf2(l,0, - I ) m 2 ; ( 6 ) arccos (2/3)1/2;(c) -x + z = 2a;(d)(i)a/V2m,

(ii) a3/3 m3; (e) (i) M = (20\/6)a(l, - 1 , 0) N m, using AP A force, (ii)
moment about line = F x sin (angle between directions HJ and AF) x
length of common perpendicular (see example 4), which can be mani-
pulated to give M - X F = -(10/\/3)tf N m, (iii) 5\/6a Joules; ( / ) total
to = (1, 1, 3) rad s~ \ (i) \/2tf/3 m, (ii) V(24)a m s"1.

CHAPTER 3

(x denotes dx/d/.)

•1 . Note a A b = d(a A b)/d/ - a A b.

•3. -jl c{c3/t3 i + 2/r2 j + c/t k} dt is the required value.

•4. J f (ix(3c - x)2 - 1 + 0) dx is the required value.

/
•5 . dH = (ds A r);

477T3

= f f
Jci J c2

where r = Si — s2.

•6. Ht = o>i J r2p d V - J XiXjtOjp d V.
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Section 3.8
1. (a) F = mr + mr; (b) mr + kv = 0; (c) E = r A B; (d) mi = e(r A B)

+ eE; (e) 2t rt A F, = d (L /M,(rt A rO

2. = I — ((b a)a - a2b) d/ = a A ( a A b) + h.
J a/

3. Proceed as in example 3.3 and M. This is an example of the type of
function discussed there.

4. M = / J r A (dr A B); consider integrals along the four sides separately,
B = (B, 0, 0) and, e.g. on one vertical side r = (a cos </>, a sin </>, z),
dr = (0, 0, dz), the first integral contributes (0, 0, labBI cos </>) and the
second (0, 0, 0).

5. Equation (3.17) leads to §j c(x2 + y2 + c2) ~3/2 dx dy, then put x =
(ya + c2)i/2 t a n ̂ ^

6. Note that for a band element of surface of width d/, d/n-fi2 = — dr, and
that 2zr dr can be integrated by parts as z d(r2).

7. (a) z = u1u2, p
2 = u2 + u2 — u2u2 - 1;

(b) «i(l - «|) cos W3//9, «i(l - «i) sin «3/p, w2; w2(l - «?) cos
u2(l — u2) sin w3/p, ii\\ — p sin w3, p cos w3, 0;

/«? - «|\1/2 /«! - «?\1/2

W \—2—^ ' -^—-M • p;

\ u\ - 1 / \ u\ - 1 /

(cf) confocal ellipsoids, hyperboloids, planes containing the z-axis.

CHAPTER 4

•2. Use the chain rule of differentiation. d<f>/du is common.
•6. Use dr/dx = x/r etc.
•8. V A a = (i A j) day/dx + (j A i) dajdy + similar terms.
•9. a = (0, ra>, 0).
•10. The terms of a A b are products and so V produces 2 terms from each.

• 11. Faraday, E-dl = j B - d S .

d (dbz dby\
•12. V a = — I — + cyclic.

dx \ dy 'dz I

The six terms on the right cancel in pairs.
•13. V A a = (0, - 1 , -2xy).
•15-18. Substitute for hlt h2, h3 from table 3.1.

Section 4.8
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( d<p d(p

dy dz

< ^ IA dQ* d(/> A dGy W \
(c) = \<f> + az <p — ay — » • • •» • • I ;

\ dy dy dz dz I

(e) = layl- - fl2—> . . . . •
\ dz dy

2. H = -(1/4TT)V[(M- r)r~3] and use (4.6); HA = (l/47r)2Mr~3 along direc-
tion of M, HB — (l/47r)Mr~3 opposed to direction of M.

3. (a) The surface element is a2 sin 6 dd d(/>(sin 6 cos <f> i 4- sin 6 sin </> j 4-
cos 0 k);
(ft) div F = 0. Close volume with plane surface x2 + y2 ^ a2, z — 0; com-
mon answer 7ra*/4.

4. See ^6, V-(rnr) = (3 + n)rn\ a = f(r)t for some/, and use 6̂ again.
5. </>(x, y, z) = zr'1 + constant.
6. (a) Yes, show V A F = 0; (x - y) exp ( - r 2 ) ;

(ft) Yes; -i(x2 + y2) exp ( - r 2 ) ; (c) No, V A F ^ 0.
7. ( -cr- 2 , 0, 0) ^ (0,0,0).
8. d//diii = Ch1l(h2h3) = C(u\ - l ) ~ 1 ; / = 51n[(«! - l)/(wi + 1)], B and

C constants.

CHAPTER 5

•1. Equation is 2^ i(i - l ) ^ - 2 + 2o ^x1 = 0implying a0 = (-\)n(2n)\a2n

and ax = (-\)n(2n + l)la2n + 1.
•2. x + B = arcsin (>>M1/2).
•3. (a) 4 cos x — sin x; (ft) 4 cos x + 2 sin x;

(c) tfi cos x + (\/8 — tfi) sin x; (c/) cos x 4- a2 sin x;
(e) 2 cos x + sin x; (/) no solution.

•4. (a) ±(c - x2)"1/2; (ft) c arctan x; (c) (In x + 4X"1 - c)"1.
•5. (a) exact, x V + x2 + y2 = c; (ft) IF = x"1/2, x1/2(x + y) = c; (c) IF =

cos"2 x, y2 tan x + y = c.
•6. (a) IF = (1 - x2)-2, y = (1 - x2) arcsin x; (ft) IF = cosec x, y =

/: sin x + cosx; (c) exact equation is y~1(dxjdy) — y~2x = y2, x —
ky 4- i>>4.

•8. (iii) (z2 - z)(dy\dz) + 2y = z, leading to (v) (1 - z)2>> = z2(ln z + c') +
z; (vi) same form for y with c — 2 = c'.

•10. (i) 2x + 3; (ii) try a cos 2x 4- ft sin 2x finding a = 2, ft = 1; (iii) try
a exp (2x) finding a = 1.

•14. IF = sin x, z = In (sin x) — x cot x — c' cot x + k'.
•15. Repeated integration by parts.
•16. Integrate by parts twice and rearrange.
•18. Replace/(x) in (5.65) by #(x) = j*f(z) dz9 clearly ^(0) = 0.
•19. Write sinh (ax) = l[exp (ax) - exp (-ax)].
•22. Use a2 - ft2 = (a - ft)(a + ft).
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Section 5.12
1. (a) y = ix tan (In kx112); (b) y = 2x arctan (ex).
2. IF = (x + I)2, y = i(x + I)2 + c(x + I)"2.
3. Put (dx/dy) = z'1 to obtain y = 2z + In (z - 1) + c; x = 0 when

z(z - 1) = 1, i.e. z = 1.618, giving c = -2.755; x = In z(z - 1).
4. (a) (A + £x) exp (2x) + C exp ( - Ax) + 2x + 1;

(6) ^ cos x + B sin x + (C cos x + Z> sin x) exp (3x) + iV
5. As in example 5.5 (iv), giving y(x) = | exp (2x) + f exp(-x) —

3 cos x — sin x.
6. Use equation (5.43) with A(D) = D + 1 + \/2\. Solution,

y = exp (-x)[A cos W2x) + 5 sin (\/2JC) + 8~1/2x sin (y/2x)].

7. A2 is negative, since L is physically necessarily larger than M. Hence A is
purely imaginary, i2 = w3ME cos (a)t)[(L2 - M2)w4 - 2LGa>2 + G2]"1.

8. mx = Ee + Bey, my = —Bex, x = A(l — cos cot), y — A{s\x\ cot — cot),
where A = Ee/mto2 and w = Be/m.

9. (a) z = *3(exp (*) + ^) ,
y = ix4 exp (x) + B exp (A:) - A(x3 + 3x2 + 6x + 6);

(b) z = A exp (2x) - 8x - 10 for form (D - 2)(D - 4)^ = 16* + 12,
= £exp (Ax) - Ax - A for form (D - 4)(D - 2)y = 16x + 12.

y = C exp (2x) + D exp (Ax) + 2x + 3 for both forms.
10. j = A(x) exp (4JC) + B(x) exp (2x) with ^(x) = •& (sin x - 3 cos JC)

x exp( — 3x) and JB(X) = i(cos x — sin x) exp ( —x). General solution
a exp (4x) + Z? exp (2x) + iV(cos x — 2 sin x) exp (x).

11. ^ = [(m - n)(n + m + l)]-1xm.
12. (i) y = x is a CF solution; putting y = zx leads to y = Ax + Bx sin x —

x2 — ix sin 2x;
(ii) y = exp (x)(A + Bx - iBx3);
(iii) >> = exp (x) is a CF solution;

y = exp (x)[£ J* exp (-w - \u3) du + ^ ] .
13. (i) put >>' = z, jv = a"1 artanh (x/a);

(ii) put ^' = z, z = •£>> + Ay1, y2 = J?exp (x) — 2A.
14. Use d /dx = exp (~0(d /d/). Equation reduces to y 4- y + \y =

exp(-//2). General solution is exp (-t/2)(A + £f + i/2). Including
boundary conditions, y(x) = ^x~1/2(ln x) In (x/e).

15. Make successive substitutions y = zx and x = exp (f) as in section 5.10.
This yields an equation in z = z(t) which is solved by putting dz/dt = u.
y = Ax tan (\A In x + AB).

16. Y(s) = (s - 2)-1C? - 3)~2(3s2 - 155 + 19) giving

y(x) = (2 + x) exp (3x) + exp (2x).

17. Transients C,t Ds,o, persistent A
o
 + Bs

0, where b = R/2L and k2 =
(s + b)2 + k2 s2 + to2

(GIL) - b2.
(b) damped oscillatory, exponential decay, oc exp (-bt)(F + Ht);
(c) A = L(G - Lco2)X-\ B = -RLX~\ where X = (G - Leo2)2 +

tan<^ = -A/(Bco).
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18. L (amount z of C present) = xo(s + S)s~1(s + 2)~10 + 4)"1, yielding
z = xoV + i e x p ( - 4 0 - f exp(-2r)L

19. Write s(s + «)"4 as (s + n)~3 - n(s + «)~4.

CHAPTER 6

• 1 . Bessel x2y" + xy' + (x2 - m2)y = 0; Legendre X2y" + [2(X + 1)/
(2 + X)]Xy' - [1(1 + l)X/(2 + X)]y = 0, where X = x - 1; similarly
at x = - 1 .
Recall /?0 = <7o = 0 and hence a(a — 1) = 0.
po — -f, q0 = qx = 1, all others and qt are zero.
(i) a2 - for + 1 = 0; (ii) an = -n~\n + D ' ^ n - i ; (iii) the first term of
the quoted final answer; (iv) an = — n'^n — ^)~1an-1\ (v) by the
ratio test, or since tn -> 0 and the signs alternate.
Differentiate as a product of n factors like (cr + 2r)~2.
a2n = -a2n-2[2n(2n + I ) ] " 1 .
a2n = -a2n-2[2n(2n - I ) ] " 1 .
a2n = -a2n.2[2n(2n + 2)]"1 .
Differentiate as a product of n — 1 factors like (a + 2r + 1)~2 and one
other (cr + 2n + I)"1.

•10. Multiplier = -k/(2a0).

• 2 .
• 3 .

• 4 .
• 5 .
• 7 .
• 8 .
• 9 .

• 1 1 . y =
f (2«+ 1)!!

• 13. (C7 + 2)(a + \)a2 = -[1(1 + 1) - 2cr]tf0,
((7 + 3)(<7 + 4 K = - [ / ( / + 1)

•14 .

2)]d2

- 1 [ l _ l

Fig. S.I The Legendre polynomials Pi(x) plotted against x for / = 0 to 3.
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•17. Write 2lx2 as -2/(1 - x2) + 21.
•19. (a) Take the coefficient of hl in

(x - h) 2 Pih1 = (1 - 2JCA + F ) 2 lPlh
l~1.

Section 6.10

2. Only the larger root series, u = m, is needed because of the finiteness
requirement:

( l ) m ! a 0
a2n = and Jm

22n\( + ) \

^ ( - l ) n (x\2n +

x) = > I —
nf0 /f!(ifi + «)! \ 2 /

3. |x2 + 5AT| < 4; range including x = 0, - 2 < 2x < ^(41) - 5.
4. Repeated root of the indicial equation, a = 2. Following section 6.3 the

solution is

}fl + /) ( l n x +
L \ n + \ n n - \

5. Putting y(x) = f(x) exp (x2) gives f(x) = A J* exp ( - u2) du + B.

6. Transformed equation is £y" + 2./ + >> = 0, where 7 = >>(£). on

{-\)n(n + l ) " 1 ^ ! ) " 2 ^ . Convergent for all ^ 0 . y\x) (d//dx) = A
constant, giving

df A I 1 a

7. For even «,

r n'2 (-2y/K« - 2). . .(« + 2 - 2r) 2 T1
1 + y JC2T

L r f i (2r)! J
For odd /i, ^ = I

L

i<n"1)(-2)r(/i - \){n - 3). . .(« + 1 - 2r)

(2r + 1 ) ! J
8. Equate coefficients of hn in the partial differential equation; (i) use

; (ii) use
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9. O = exp (x2) exp [ - (* - h)2]. This gives #n(x) = exp (x 2 ) ( - l ) n x
an[exp ( - ( x - h)2)]/dxn, which at /z = 0 yields the quoted result.

10.
1 1 + h " f *

At step (iv) - In = 2 h2n \ K(x) dx.
h 1 — h n = o J - i

11. The distances from the two charges — e to the' point (r, 0, </>) are
r(l ± 2hx + /*2)1/2, where x = cos 0 and /r = (a/r). Use also Pi(-x) =

CHAPTER 7

•2. a, = [(2/ + 1)/2]1/2.
•3. 21(1 + l)/(2/ + 1).
•5. (7.26) F = exp ( - x 2 ) ; /? = p = exp ( -x 2 ) , <? = 0, A = 2a.

(7.27) F = exp(-x) ; /? = xcxp(-x), q = 0, p = exp( -x ) , A = a.
•6. F = (1 - JC2)"1 / 2 ; /? = (1 - x2)1/2, q = 0, p = (1 - x2)"1/2, A = «2.
•7. JQ/2 sin («z) dz - j ^ / 2 sin (/iz) dz.
•8. Show L(G) = 2y yj(x)yf(z\ using G from (7.33).
•9. y = ^.^ cos (x/2) — \B sin (x/2), hence ^ , and substitute in original

equation.
•11. Make the indefinite integrals for A and B start from TT and 0 respectively.
•12. A = (p+ ~ p-Y1 exp (-/> + z), £ = -(/>+ - /7-)-1 exp (-/?_z),

P+ -p- = 2(p2 -w2y2.
•13. Substitute >> given by (7.52) and (7.53) into the left-hand side of (7.50)

and use (7.51 a) and (7.51 c) in turn.

Section 7.7
1. (a) All u{ are linear combinations of yt; (b) assume all u{ are normalized

and mutually orthogonal for / = l , . . . ,w , and consider Jw*pwn + i d x

for any k, 1 ^ k ^ n.

2. Integrating factor = exp {§x [(a + j8 - l)z + (1 - y)]/[z(z - 1)]} dz =
x ' - H l - x)a + l3-\ p = +xy(l - x)a + /?-y + 1, A = ±a]3, ^ = 0, p =
xy-Hi - x)a+0~y.

3. If multiplied through by x, equation is of Sturm-Liouville form with
weight function x.

4. yn = (2/Tr)1'2 sin [(n + i)x];f(x) = -(S/TTY'2 2» (n + i ) " 3 ^ ;
y(x) = (4/TT) 2O" («2 + w - i)"H« + i ) " 3 sin [(/i + ±)*].

5. (a) lfy(x) = 2o°° flnP»W, fln = (« + i)[b - n(n + I ) ]" 1 J1^ /(z)Pn(z) dz.
(ft) Note 5x3 = 2P3W + 3/Mx); ^ = i , «3 = 1 all other an = 0;
Kx) = (5/4)(2JC3 - JC).

6. Putting * = exp (r), (d /dx) = exp ( - / ) (d /d/) gives d2j>/d.>2 + dy/dt +
(i -f X)y = 0 with solution >>(f) = [^ exp (iA1/2/) + £exp (-iA1/2/)] x
e x p ( - ^ 0 - Boundary conditions give yn(x) = Bnx~112 sin (mr In x) with
An = /z2772. Normalization gives Bn = V2.
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an = -inn)-2 jJlVZx'1 sin (mr In x)dx = - V8(/m)-3 [n odd], =0
[n even].

7. G(r,rO = (47r|r - r'l)"1.
8. The main steps are:

where

/ = iJ(p + n, -n) - iJ(p - n, n),

where

/(A, fji)(p2 + A2) = {p cos [(A + fi)t] + A sin [(A + /x)/]}
x exp (/?/) - {£ cos (>/) + A sin ([it)}.

Transients:

FX^pexpi-pOln-^p2 - n2) sin (nt) + 2p cos (nt)].

Steady state:

FX-^iw2 - p2) sin (pt) - 2pp cos (pt)],

where

fexp(ikT)exp(-ikTQ

J
as in section 7.6. Here the 'index' k replaces the i of that section.

^ , ,x 1 P Jf f* ,„ f2* , , exp (i/cp cos 6>)/:2 sin 6>f00 Cn n t2n ,I dk I dd \ d<f>
T) 3 JO JO JO(2TT)3J0 JO JO k2 - K2

which, when integrated successively with respect to <f> and 0, gives the
required form. Here p = |r — r'|.

CHAPTER 8

•1. Consider an even function, like sin2 (cot) for example.
•4. Use (8.11 a-b) in (8.9).
•5. Equations (8.11 a-b) show Am and Bm are real, then use (8.9).
•7. (i) AQ and odd cosines; (ii) all, there is no symmetry about T/4 for the

periodic function; (iii) odd cosines.
•8. The coefficient of the 1/n term vanishes;

an = (32y0/3n2k2l2)[cos (mr/2) - 1] for n * 0.
•9. See >S;bn = (32yo/3n2k2l2) sin (/wr/2).
•10. See 8̂ concerning the 1/n term.
•11. See 8̂ concerning the 1/n term.
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•13. Evaluate 2 (cos (2m + l)x/(2m + I)2) at the suggested values; true
values ±(1.221, 0.823, 0.411, 0), values after 3 terms ±(1.151, 0.831,
0.409, 0).

•14. Differentiate (8.24) and put x = IT.

•15. (i) y(S) = (TT/4)(77/2 - \0\), see (8.23);
(ii) y(0) = (7r0/4)(7r/2 - |0|/2), use integration result on (i);
(iii) put x = 0 in (8.23) to obtain So = TT2/8.

If Se = 2m = i (2m)~2, then Se = i(Se + So), giving (Se + So) = TT2/6
and (So - Se) = TT2/12. Function y(x) is even, y(0) = 0, y(l) = /2 ;
compare derivative with (8.24); y(x) = x2( — l ^ x ̂  I).

2A sin (fia/2)
•16. Intermediate value /(/x) =

X

exp (i3fia/2)

exp (2i7V

1 — exp ( - 2i/

•17. Integrate by parts.

•18. Integrate by parts.

•22. Use (8.8) and its complex conjugate, and jn_n exp [i(n - m)6]dO = 27rSnm.

•23. Write sin (toot) = — [exp (iajot) — exp ( — io>00]-

•24. Change variable of integration to u = z — x.

•26. F7[exp (iwct)] = (2TT)112 S(OJ - wc).

Section 8.11

1. An = (2F/7T77)sin(mr/3),

V \ /2TTA 1 /4TTA 1 /8TTA
[cos(-)+-cos(-)--cos(-)

1 /107T/\ 1 /147r/\ I
cos + - cos ) + • • • •

5 \ T / 1 \ T I J

2. Show that

f (f(t) - fN(t))2 &t = - [
o O) L n = 0

- 2ANnAn - 2BNnBn) + constant,

and then minimize with respect to ANn and BNn.



Solutions and hints: Chapter 9 501

3.

r\
0 1

V
0 1

\

0 1
V
0 1

(fl) (b) (c) (d)

Fig. S.2 Continuations of exp( — x2) in 0 < x ^ 1 to give: (a) cosines only; (b)
sines only; (c) period 1; (d) period 2.

(a) (iii) + ), (iv)

1 1 2
4. /(/) = - + -cos(a>/) - -

7T 2 7T

+ e"4); (b) (iii)

- ( - l ) n

2

+ e"1), (iv) e"1.

cos(2/ia>/).

5.

Approximate fluctuation amplitude = (TT/20).

\ r 2 » r2n

u(r, 6) = - + - sin 0 - - 2 — r cc
7T 2 77 n = 1 Anz — 1

6. C±(2m + i) = +i2/[7r(2m + 1)]; 2 |Cn |2 = (4/TT2) • 2 • (TT2/8), the values n =

± 1, ± 3 contributing more than 90 per cent of the total.
7. The t integral is

J ^ e x p t K ^ i + £ £ - £ ! - E2)]dt

yielding S(E{ + E'2 - E± - E2). Similarly the R integral yields
8(Pi + P2 - (pi + P2»-

8. With k as the polar axis,

F(k) oc 2rr J* dr r exp (-fir) J* exp ( - \ k r cos 6>) sin ̂  d(9

= {-lirl'ik) J^3 exp (-/xr)[exp (iA:r) - exp ( —iArr)] dr

9. Overshoot has limiting value of 0.562.

C H A P T E R 9

•2. Substitute p - 2y for x2 everywhere.

(a) ii)p2 - 4/? - 4, yes, (ii) (p - y)2, no, (iii) {p2 + 4)(2p2 + p)~\ yes;
(b) necessarily as in (a).

•4. (i) (a)p - 1, (b) 4/7 - 4, (c) 0; (ii) (a) 3 + p - p2, (b) Ap - p2, (c) 4 - p2.
•5. (i) ^ = x2 + j>2, « = sin(/71/2) + 1; (ii) p = 3x + iy, u = \p2\ (iii)

p = sin x cos 7, « = 2/7 - 1; (iv) /? = ^ - x2, w = /7 + 2; (v) /? =
x2 + >>2, PI is u = - 3y, (a) x2 + y2 - 3y, (b) 2x2 + 2y2 - 3y +
g(x2 + y2) where *(1) = 0; (vi) g(x3 - y3) + i^3^3 .
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• 6 .

G
c_o
o

I

Chapter 9: Solutions and hints

C = Cauchy D = Dirichlet

ydx

for all,
(N)

N = Neumann

u = Vb (D)

Initial displacement u 0 Given L 0 / I 2n
and velocity du/dt (C) distribution (D) Single-valuedness

requires du/dd = 0 (N)

Fig. S.3 Boundary conditions for the situations of ^6.

•7. u(x, y) = /(/?) = + by) + /c.

•8. Suppose A has a dependence x°yv, and then consider the implications
of Ax + A2 and X± — A2 not being functions of x and y; X± = —2,
A2 = 3x[y + (3/2 W 1 .

c*w fig du d%
•10. — = « / • ; + 7V2, — = A^/2 + —/ a with A = -(tf/C);

similarly the required second derivatives are obtained.

•11. yf(x + Xy) = X'^x + Xy)f(x + Xy) - X^xftx + Xy)
= G(x + Xy) + xF(x + Xy).

•13. Recall that X± + A2 = -(2B/C) and AXA2 = A/C.

•14. Recall that A + 2BX + CA2 = 0 and B2 = /4C.

•15. In the notation of (9.61) the boundary conditions are /(/?) + g(p) = 1,
/'(/>) + T^XP) = 1, for all p; these lead to u(x, y) = 2(x + y) -
2(x + i^) + 1 = y + 1 and «(0, 1) = 2.

•16. Parabolic equation with A = — 1; general solution u(x, y) = fix — y) +
xg(x — y); boundary conditions yield f(p) = 0, g(p) — p + 1; u(x, y) =
x2 — xy + x.

•17. Writing g = x + iy and 17 = JC - iy, y3 - 3yx2 = i'i(i3 - rj3); g{p) =
iip\h(p)= -Up3.

•18. Multiply through by / and write 77 for x2/Kt.
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temperature u(x, t)
(arbitrary units)

u = 1

u = 0.9
u = 0

Fig. S.4 Sketch of the (three-dimensional) contours of equal temperature u given
by equation (9.85). The height of the surface containing all the contours
at any particular pair of values (x, t) gives the value of the temperature
at point x after time t (relative to the value unity everywhere at time
t — 0). Projections of the contours onto the u = 0 plane would be para-
bolas t = ex2.

•20. (i) After differentiation and substitution, both sides contain a factor

a(r2/2pt3 - l / f 2)exp(-r 2 /2£0.

•24. See the footnote to section 9.9.

•25. Substitute from (9.91).

•28. R^ QL"1, C^= TO"1!,-1, (RC)-1 =±= L^T"1.

•29. The terms of (9.98) are sums and differences of terms such as exp (± Xx)
and exp (± \Xx).

Section 9.14
1. (i) u(x, y) = (y2 - x2)112; (ii) u(x, y) = 1 + fix2 - y2) where /(0) = 0.

2. PI M = J , CF « = f(y - In sin x), (i) u = In sin x; (ii) u = (y -
In sin*)2 + y.

3. u = / ( 3 * - 2y) + 2(x + y)J(p) = 3 + 2/?, u = Sx - 2y + 3, «(2, 4) =
11.
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d2u d

) +

a£\ /drj\ d2^ /drA

dx)\dx) dr)2\dx)

d2£ du d2r> du
+ + — —' etc.,

a * 2 eg dx2 d-q

\4x

d£ at- / a A 2

25 — — + C — .
dx dy \dy I

H dv (d£ dr) d€ dri\ d% drJ
B' — A — — -\- B \ — 1 1 + C

dx dx \dx dy dy dx J dy dy
/dr)\* dr> dri (drj \ 2

C=AI — \ + IB — — + C I— •
\dx dx dy \dyldy

5. Similar triangles by a common angle and corresponding sides in propor-
tion.

0)
e2ab e2ab 1 1

(b2 - a2)2

Obtain (ii) from (i) by adding a further image charge + ea/b at O, to give
zero net electrostatic flux from the sphere but maintain its equipotential
property.

d d d d d d
6 . — = — +—' — = i i—•

dx d£ dr\ dy d£ drj

7.

(-i, 1)

Fig. S.5 Region in which the solution to M5 is valid, under the conditions of
example 7, is shown shaded.
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Solution u = 2(x + y) - 2(x + iy) + 1 is only valid if x + y > 0
and x + \y > 0, i.e. in the shaded area of fig. S.5.

8. u(x, y) = f{x + 2y) + g(x + 3y) + x2 + y2 leading to f(p) = 2p + 1,
g(p) = -p* and u = 1 + 2x + Ay - 6xy - $y2.

9. Either A = —3, 0, or integrate with respect to y and obtain first-order
equation; u(x, y) = f(y — 3x) + Fix) + \x2y2.

10. c = v ± a where a2 = T/pA; u(x, 0) = a cos A:*, du(x, 0)1 dt = 0;
«(x, t) = a cos [/:(x — ttf)] cos (kat) — (va/a) sin [k(x — vt)] sin (kat).

11. CF = f(x + iy) + ^(x - iy), PI are (i) (x4 + / ) / 12 ; (ii) i ^ V ; for
these two functions, their difference = [ix + ij>)4 + ix — i>>)4]/24.

12. u(x,y) = fix + iy) + #(x - iy) + (x4/12)[>;2 - (1/15)JC2]. In the last
term x and y may be interchanged with equal validity.

id i d\i 8 l a \
13. — + )u = 0,

\ ax c dt/\dx c 8t /

\dt il \dxi

dx
then use that, at constant w, —

a/
4d2u

14. — —
af a

15. -/c dui0)/8x = Jl9 k 8uiw)/8x = J2 determine g and a in (9.79).
16. Vo[\ - i2/Vrr) px(CRIt)112 exp i~v2) dv]; consider as Ko applied at r = 0

and continued and — Vo at t = T and continued.

2Vn fi
t, /) = — -

V71" J i
exp(-v2)dv.

*(C«/o1 / a

For r > T, maximum at x = i2t/CR)112 with value [F0Texp (-1)] /
( 2 T T ) 1 / 2 / .

17. A = — /x = ico/2k)112, where /: is the diffusion constant; ratio of depths,
xY = (365)1 / 2JCD ; only yearly variation significant, phase is fxYxY behind
surface, this is In 20; coldest at 25 January 4- (In 20)J2TT years # 1 6 July.

19. Using form (9.98),

A = - C, B = -D,
A sin A/ + B cos XI + C sinh XI + D cosh A/ = 0,
A cos A/ - B sin A/ + C cosh XI + D sinh A/ = 0,

consistency yields the given condition.

20. Uix, s) = Fis) exp i-sx/c), where Fis) is the transform offit); uix, t) =
/(f - ix/c))Uit - ix/c)); uix9 t) = 0 for x ^ cf, =t;f - t?x/c for x ^
cf ^ x + /ic/u, = A for x ^ ct — hc/v.

21. i82V/8x2) - LCs2V = 0, F(0, s) = £•/*, K(/, 5) = 0, leading to

Vix, s) = £{exp isx/c) - exp [(2/ - x)s/c]}l{s[l - exp (2s//c)]}.
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Writing denominator as
-5exp(2.s//c)[l - exp(-2s//c)]

and expanding gives

- exp [(x - 2l)s/c] + exp [-(2/4- x)s/c] - • • •}.

CHAPTER 10

•1. u(0, y, t) = u(a, y9 t) = u(x, 0, t) = u(x, b, t) = 0 are the required boun-
dary conditions leading to

u(x, y, t) = sin (mrx/a) sin (mny\b)(A sin wt + B cos a>t)

where n, m, are integers.

•2. -z— — = ^p - etc., -=- = E.
2 w o X 2rriQ T

• 3 . As in >2, but with solutions X = A sin (pxx/h), etc. where /?*<z/# = «*"*.

• 5 . w(^ , >̂ ) = ^ C e x p (/xx + i/x^).
• 6 . a /#r = exp ( - 0 d /dt, and the equation becomes d2i?/df2 - n2R = 0.

• 8 . See>6.

(1 - ft2) d f d M l
•9. - ~ — - ( 1 - fi2) — - + /(/ + 1X1 - /x2) = m2 .

M d/x L d/Lt J

•10. (i) 6«/r2, -6u/r2, 0, / = 2, m = 0; (ii) 2w/r2, (cot2 0 - l)w/r2,
- w/(r2 sin2 0), / = 1, m = 1.

•13. yg = (477)-1'2,

yo = (3/4^)1/2 c o s ^

y ± i = + (3/8T7)1/2 sin 6 exp (± i^),

yg = (5/16T7)1 /2(3 COS2 6 - 1),

y f i = +(15/877)1/2sin0cos0exp(±i<i>),
Yi2 = (15/3277)1/2sin20exp(±2i^).

J J Yl*Yld<t>d(cos6)

Cn C2n 15
— sin2 0 cos 2 0 e"1* c1* d<f> sin 0 d0 = 1.

Jo Jo 877

- ( — j sin0cos0e-i*sin0ei*d^sin0d0 = 0.



Solutions and hints: Chapter 10 507

• 1 4 .

Fig. S.6 Sections of polar plots of the squared modulus of the spherical harmonics
Yf(d, <f>) up to / = 2. There is no <j> dependence and the three-dimensional
plots would be obtained by rotating the curves shown about the lines 0 = 0.

5. r2(ir~5l2S - r- r~ll2S") + 2r(-ir~3l2S + r~ll2S')

+ [k2r2 - 1(1 + 1) - i](r-ll2S) = 0.

1 r d
•16. ( — sin A:r -h kr cos kr) = -k2.

r2 sin kr dr

•17. Use equations (8.11 b) and (8.19).
•19. (i) ~GMr~\ GMa-1.

Section 10.8
1. (i) u(x, y) = Cexp [iX(x2 + 2y)]; (ii) u(x, y) = C(x2yY'2.
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2.

Temperature Heat flow

Fig. S.7 The temperature and heat flow distributions in the cube of example 2.
There is no variation of either with y.

3. u(x, t) = (A cos mx + 2? sin mx + Ccosh mx + D sinh mx) cos (cot + e)
where m4#4 = o>2.

5. The angular part of the wave function for an electron in an unpolarized
atom has the form I/J — 2m = -i <*m Yim(&9 </0, where the am all have the same
magnitude and random phases; |0 | 2 is thus proportional to the given
expression when averaged over many atoms.

6. First term can only contain Yf1, Y%1, the second only yg, FJ, yg ;
/(<9,</>) = (7r)1/2[yg - 3~1 /2y? - (2/3)1/2yj - (2/i5)1 /2y2-1].

7. u — \AQ + 2£=i rn(An cos n<\> + Bn sin n(f>) to give the stated function
when r = 1, leading to

1 r
- + -
77 2

2 cos

8. u = A\nr + B + 2n = i (Anr
n + Bnr

 n) cos «</>;

at r = b: Bn = — b2nAn, B = — 4̂ In />,

at r = a: c\<f>\ = A In (alb) + 2iAn(a
2n - b2n)a~n cos «</>, giving on

Fourier analysis that

C77 In (6/r)

2 In

9. En =
\6pA2c2

I (In + 1)27T2'

mtdd m2(b*

r, IP?

/ / ) 2 m \
I r m I COS m<f> .

- a2m) \ rm )

.2y42 ^ r

7 J.
2Tvdv

o (1/2)



Solutions and hints: Chapter 11 509

10. (i) jl L.H.S. d/x = *-i[(l + t2)1'2 - (1 - OL then equate powers of u

2f A sin (mrxlL)fn(t) with /„(/)-> 0 as f-> oo;
Initial condition C(x, 0) = 0 determines An;

- } yz.n -i- i

] exp [-x sin

•n Bf0 (2/1 + 1)

+ I)2

13. Since there is no heat flow at x = ±a, use a series with period 4a,
u(x, 0) = 100 for 0 < x ^ 2a, =0 for -2a ^ x < 0.

200 * 1
u(x, t) = 50 + — 2 TTTT;

77 n f o (2/f + 1)
+ l)27r2r

x sin ' '
r (2/7 + \)TTX i r

exp
L 2fl J L 4a2sP

-A 0Heat = 1 dt k — = SOsp per unit cross-sectional area.
Jo dx

Take n = 0 term only giving / « 2300 s.
14. (i) w(z, 0, c/>) = 27rGp[(a2 + z2)1 / 2 - z]; M = 7ra2p;

(ii) for z < 0, the factor in [ ] is (a2 + z2)1/2 + z;
(iii) field is du/dr at 9 = 0 for r < a, then let a—>co giving 2GM/a2 =
2irGp.

CHAPTER 11

•2. Equation (11.16) is the N-R formula for/(*) = x2 - X = 0.
•3. There are 7V/2 pairs of intervals to be added.
•4. Second difference must be constant ( = 2). This leads to/(3) = 4,/(9) =

58, and /(8) should be 44.
•5. y = (l - x)~2.

Section 11.12
1. 5.370.
2. 6.951 after two iterations.
3. (l/5)(2x2 + 3)-4/5 9* 0 at the root.
4. f(N) = (N - 3A:2)-1 a - I N " 1 , 2.645 741 1, accurate value 2.645 751 3.
5. Use differences, the third difference should be the same everywhere;

/?(0.5) = 0.175, p(1.0) = 0.200, p(l.l) = 0.121,^(1.2) = 0.000.
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6. y(x) = 1 - \x2 + i*4 . Actual solution, y{x) = exp (-*2/2).
x 0.0 0.1 0.2 0.3 0.4 0.5
y(approx.) 1 0.9950 0.9802 0.9560 0.9232 0.8828
Htrue) 1 0.9950 0.9802 0.9560 0.9231 0.8825

CHAPTER 12

•3. L = (b - a)(l - k2)'112; k is found from (12.8) at the end-points.
•4. *!(1 + / 2 ) 1 / 2 = 1.

/ fi/a 2ns
•7. A = — I sin2 d*.

7T JO /

• 8 . * p ' = (P
2 - £ 2 ) ^

Section 12.7
1. Same steps as example 12.3.
2. Minimizing curve is x2 + y2 = 2.
3. (a) A: is a double root of Ax = cosh x;

(c) from (12.11), S = 2TTA: f_b cosh2 (z/k) dz;

{d) k = a - b2l2a - lb*/24a3.

4. / = J w(r)[r2 + (dr/d6>)2]1/2 d0.

Take axes so that 6 — 0 when r = oo.If^> = ^(7r — deviation), >̂ = 0 at
r — a. Equation reduces to

<£ p dr
+ « 2 ) 1 / 2 " Joe r(r2 - a2)1

which can be evaluated by putting r = %a(y + y -1), or successively
r — a cosh «/s 7 = exp «A, to yield a deviation TT[(CI2 + a2)112 — a]/a.

5. Apply (12.18) to obtain V2</> -
6. (a) a^/a/ = 0 and so x =

d /ar\ d ar
(b) use * — I — = —(270 - Qi —

d/ V ^ / d/ a^

7. <f>(x, t) = m(li;2/ + we).
8. r20 = k,r - rd2 4- dF/dr = 0; K = -k2a2/2r*.
9. - A / ( l - / 2 ) - i / 2 = 2gP(sX w h e r e ^ = >,(5) and P(s) = f0

>> = — a cos {sja) and 2P(7ra/4) = Mgive A = —gM\
p(s) - (Af/2fl) sec2 (j/fl).

CHAPTER 13

•6. Reduce the numerator until it contains the same integral as the deno-
minator. There is no need to evaluate Jo.

•7. Integrate by parts.
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Section 13.6
1. In S-L equation p = 1, q = x, p = x2. Try y = x(l - x); I = fJ,

J = A o-

2. -3—5 + — T " + —oZ — 0, with Z(a) = 0 and Z'(0) = 0;drz r dr c^
S-L equation with p = r, q — 0, p = r/c2, A = to2;

estimate A = (c2v/2a2)[-z — ^ ~ + 1 7) ' which minimizes to

c2(2 + x/2)2/2a2 = 5.83c2/a2, when v = V 2 .

3. (ii) As in example 13.2, estimate is h2a/2m + k/%a [kinetic energy +
potential energy] and minimum occurs at that a which makes the two
terms equal.

4. H = -(/*2/2m)V2 - e2/r; writing Jn for Jo°° rne~2Prdr, J 0*//0 dy =

47T(ft2ft/m — e2)/i — (4Trft2f32/2m)J2, j* «A*0 dr = 47r/2; minimum estimate,

when j8 = me2/h2, or — me^/2h2. Wave function is

(m3e6/7Th6)112 exp ( - me2r/h2).

In SI units <?2 is replaced by e2/47re0.

5. In S-L equation extended to two independent variables, p = 1, q = 0,
P = 1, and

f ( [1 x (Vw)2 + 0 x u2] dx dy

f f 1 x u2 dx dy

Use as the trial function u(x, y) — x{4 — x)y{\ — y). Numerator =
(64 x 17)/90. Denominator = 512/450; direct solution k2 = 17TT2/16.

h (k\1!2(\4n2 + In - 3) u . , , . . . ^h Ik
6. Ex ^ — — I which has a minimum value of —- —

2 \w/ (4n - 1) 2 \w
when integer n = 0.

7. -w> ;i = r o " 1 ! ^ ! - ( j 2 - ^i)] and similarly for the other masses.
Putting yt = xt cos tot gives required equation; estimates for mato2/T,
TT, f t ; true values 2 - \/2, 2 + \f2.

8. Take angles of links with vertical as 9t;

Trial (i) 61 = 1, 0(9tl = 0; w2 ^ (6/1 - 3)^/(6w - 4)a ~ ng/l for n > 1;
(ii) 0n = 1, 0 ^ n = 0;a,2 ^ 3^ /2 / ;
(iii) ^ = 1 all /; w2 ^ 6n2g/4n3a - 3^/2/, for n > 1.
Trial (iii) is, as expected, the best guess and can be compared with a solid
rod.
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CHAPTER 14

•1. (i) 3412 -> 1432 -> 1234, i.e. even number (two) of changes;
(ii) 321 -> 123, odd; (iii) not permutation of 1234.

•3. 2-4-1 - 2-0-(-2) - 1-3-1 + 1-0-1 + (-3)-3-(-2) - (-3)-4-l = 35-
123 132 213 231 312 321

1 - 3

- 2 1
+ (4)

2 - 3
1 1 - (0 )

1

1 - 2

= - 3 ( - 5 ) + 4(5) - 0 = 35;

•4. (i) -(3)

(ii) ( -3)

= -3 ( -10) - 0 4- 1(5) = 35.

•5. (i) abc + 2fgh - af2 - bg2 - ch2; (ii) 0.
•6. ab(ab - cd).

3
1

4
- 2 - (0 )

2
1

1
- 2 + (1)

2
3

1
4

•8. (i) \A\ = - 2 4 , no;(ii)
2 -b -b

\ -2a 2a
1 —6a -V b 6a + b

= o,

yes, 4ab 4a + b 4a - b

•10. \A\ = 61, \B\ = 1, \D\ = \E\ = 61.

>U.(i)AB= O;BA=

• 1 2 .
C 8

ml = fllcm 7 ^ = T^T M l = hi-

Ml \A\
•13. (i) (AI){j = aik(I)kj =

(ii)
(iii)

•14. (i) consider (^4"^ i) = / ;
(ii) start from AB(AB)'1 = I and apply (14.36 a) twice;
(iii) build up from (ii).

•16. Replace B by BC in (14.46) then ABC = BCA = CSA9 then replace C by
CD etc.

•18. rfc; + iskj = r;7c — is;7c since H = / /* , where rkj and 5fc; are the real and
imaginary parts of hkj.

•19. (i) i? is (c), (</), ( / ) ; (ii) C is (a), W, (A).
•22. A3 - 7A2 + 6 = 0; A = 1, 3 ± V15; (1, 1, 3),

(5 + V15, 7 + 2V15, - 4 - V15), (5 - V15, 7 - 2V15, - 4 + V15).
•26. (i) Show UU = I.
•27. Eigenvalues are —4, /xi = 6, /x2 = — 6; >>i = 3~1/2(Afi 4- x2 + x3),

y2 = 6-1/2(*! - 2x2 + A:3), >>3 = 2 " 1 / 2 ( - A : 1 + JC3).
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• 2 9 .
• 3 1 .

= (2altxt, 2a2jxj9 2a3kxk) =
= 5 + V19: - 2 ( 4 +

, x2, x3).

2.
3.

4.

5.

8.

Section 14.13
(a) - 1 ; (A) (3!)(±1)2 = 6; (c) eiJk€jik = -
i(€wcaa + €ijk^jd = i(€ijk + ejifc)«i; = 0.
(a A b)-(c A d) = (a-cXb-d) - (d-a)(b-c).
A3 - X2(a + b + c) - X(b2 + c2 + a2 - ab

= - 6 ; (</) write as

ac - be) - 3abc + a3 +
b3 + c3 = 0; invariant under cyclic interchange of a, b, c; BC = CB
implies cb + ac + ab = a2 + b2 + c2 and 3#/>c = a3 + b3 + c3, equa-
tion becomes A3 — X2(a + b + c) = 0.
(i) x only appears on the leading diagonal, so equation must be a cubic;
x = a or b or c each make two rows or columns identical or simple multiples
of each other and therefore must be the 3 required solutions;
(ii) the equation is linear in x as can be seen by imagining the subtraction
of one row from each of the other two and then one column from each of
the other two, leaving x in only one element. Adding all rows of the original
matrix together gives 3x + 3 as a common factor. Thus the solution is
x = - 1 .
Determinant of left-hand side coefficients equals zero. Eliminate x, y and
z to obtain rj2 - 3T? + 2 = 0; for rj = 1, x = 1 + 2z, y = -3z; for
7] = 2, x = 2z, y = 1 - 3z.

6.

7.

Inverse

Inverse

matrix = -

matrix =

1

2

r

-

-

11
e

-6

1
7
5

_

1
1

- 1

31
15
17

- 2
4

- 2

2"
- 1
- 1

;

X

; y
z

X\ —

x2
 ==

= 3,
= 1,
= 2.

- 3 / 2
7/2,
- 3 / 2

(i) (U~1AU)* = ^
(ii) (iA)* = -L4* = L4 = (IA); ^
(iii) If AB = 5,4, 04£)* = A*B* = AB = BA = AB;
if (AB)* = (35), BA = B*A* = (3S)* = ^ 5 . ^
(iv) ( /±~S) = 1+ S,A = [(f^is)-1]^ - 5) = (/ +
(/ - S)-1^ + S), it then follows that A A = / ;

5) =

5 =
0

tan (612)
- tan (612)

0

9. 1 ,1+ (a£)1/2, 1 - (a£)1/2; (0, 0, 1), (a1/2 ', jS1'2, 0), (a1/2, -]81 / 2 , 0); a£ real
and > 0, |a| = |]8|; express a and j8 as |a| exp (i0a) and |j8| exp (ifl^).

10. 2"1/2(0, 0, 1, 1), 6-1 / 2(2,0, - 1 , 1), (39 )" 1 / 2 ( - l , 6, - 1 , 1 ) ,
(13)~1/2(2, 1,2, - 2 ) .
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11. For A: (1, 0 - 1), (1, al9 1), (1, a2, 1); for B: (1, 1, 1), (ft, y l f - f t - yO,
(ft, Y2, —ft — y2); simultaneous and orthogonal (1,0, —1), (1, 1, 1),
(1, -2 ,1) .

12. Max. = 6 at ±6~1/2 (2, 1, 1); min. = 3 at ±3" 1 / 2 (1, - 1 , - 1 ) ; [other
eigenvalue = 4].

13. (i) Use the mutual orthogonality of eigenvectors, ±2"1 / 2 (0, 1, —1);
(ii) Q = y A y, where x = C/y, and is the required expression; explicitly

- y - z \ 2

H
which is as in question 12.

14. Divide through by 100, then eigenvalues are ± and 1, thus semi-axes are
2 and 1; major axis makes arctan (-4/3) with the positive *-axis.

15. (i) Longest axis corresponds to smallest eigenvalue whose eigenvector
is (1,1,1);
(ii) divide through by 3, then eigenvalues are - 1 , - 1 , 9 ; eigenvector of
the non-repeated root is the axis of symmetry and is (1, 1, -1 ) .

16.

(a) *>* = c + £

- (b) a>2 = c

kM kM

2km

Fig. S.8 The normal modes of the coupled pendulums in example 16.

As d->0 all swing independently with frequency c1/2; as d-+ oo only
mode (b) can be excited and pendulums swing as a rigid body with fre-
quency c1/2.

17. (i) obtain (A- - Xm)umAun = 0; (iii) cis = (PAP^ = C?MfclP,,=
ul

kAklu{ = uMû  = 0 for i * j .
18. Values of A are 2, - 1 , and - 3 ; required vectors (0, 1, 1), ( - 1 , 1 , 1),

( - 1 , 1 , 2 ) ; * = -7? - x, y = £ + v + x, * = $ + ^ + 2X; 2f2 - T?2 +
3*2 and £2 + ^2 — x2 [or any scaling of these]. If the roles of the quad-
ratics are reversed the values of A are —•$-, — 1, and | .
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19. A = - 1 , 2, and 4; x = 2$ - Irj + 2X, y = $ + rj + x , z = - 3 £ + rj - x.

1 1 0 0
20. A = -m 0 1 0 , 5 = -

2 l o 0 1

1 -i 0

-1 1 ~
0 -

= 2 or 2 + V2 or 2 - V2,

with corresponding ampli tudes (1 , 0, - 1 ) , (1 , - V 2 , 1), (1 , A / 2 , 1).

21 . (i) Show f f e y = 8tj; show fffy = • • • = hikgklhn = • • • - hiU using

that i / is symmetr ic ;

(ii) (uigijUj)112, (VihijVj)112, utvt;

1 3/2 - 1 / 2 - 1 / 2
- 1 / 2 3/2 - 1 / 2
- 1 / 2 - 1 / 2 3/21

(iv) Normal to the plane is n = V& where vx = p, v2 = q, and v3 = r.
Length of this is (VAJVJ)112 = a-^Hp2 + q2 + r2) - qr - pr - pq]112 =
M (say).
(a) p~1e1n = M"1 , (Z>) arccos (p/Ma).

C H A P T E R 15

• 1 . (i) Follow example 15.1, u[ = x1 cos (^ - 6) - x2sin(<f> - 6),
xx sin (^ - 0) + x2 cos ((£ - 0); (ii) ^ = -TT/2.

/^«iV ŵ< d(akiuk) dxi duk duk duk

• 2 . 1 — = —- = — —- = flfci —- flH = 5lfc — - = - — .
fat d d d d

cxx dxk

•3. u'u = s2Ar? — 2scxiJt2 + C2JC1 T̂  C 2*! + cs^ijc2 + scxiAr2 + S2JC2.

•4. Start with (15.13 b), interchange i and y, interchange dummy subscripts
/? and ^.

• 5 . (ii) WfcfcM^ = aqvanvqj = a^a^WnU^ = H>n«pi.
•6. (a) ;tiX, is a second-order tensor and the value of the form at any par-

ticular point in space is fixed; contraction with x{Xj gives (b) 0, (c) Ax\x\
which is not invariant.

32<f> duk

•7. (i) SifOtbi; (ii) 8tj -—— ; (iii) €ijk — ;
dx dx dx

(vi)

(v)

= €iklc{akbi.

•10. Use exactly the procedures employed for 8fi and eijk.
•11. Polar, I; axial, H, B, n, C. Consider (a) ev; (Z>) /xol A r; (c) /x0H;

- y . . B ; ( e ) n A B.
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•12. Using p for polar, a for axial, and s for scalar; (a) p = p A a; (b)p =
p A a; (c) s = p-p; (d) p — p + a A p + a A p + a A (a A p).

•13. (Scalar x isotropic tensor) — (outer product of two vectors).
•14. T = i 2a m^^co^U^^x™.
•15. dux\dx2 = du2ldx! = k, u = (Arx2, £ x i , 0).
• 1 6 . N o r m a l t o q u a d r i c i s (2eljyh 2e2jyh 2e3jyj) = 2(vlf v2i v3); e = c\y\~2 =

cr~2.
•17. /*i 4- wx2 + nx3 = ±(c/^)1/2; consider quadric referred to its principal

axes as eX\ = c with Xx axis having direction /, m, n, with respect to
original axes.

Section 15.10
1. Writing Tti = To, U» = K7W + Tn) - }T08iJ9 Vtj = iT0SiJ9 Stj =

¥Tu - TJt).
2. Contract with the outer product of (x, y, z) with itself to obtain

— (x2 + y2 + z2)2, i.e. an invariant.

3. ( i)W =
0

- w12 0
0

(ii) vx = w23, v2 = w31, v3 = w12;

(iv) (v A b)f = €iJkVjbk = i€ijk€nmwlmbk =

4. (i) *wcejimUivmwk and use (15.29);
(ii) <
(iii)
(iv) €ijk€klm d(uivm)ldxj and use (15.29);
(v) start with u A curl u, €iJkUj€klm dum/dxi —

5. curl H = J + D; div D = p; curl E + B = 0; div B = 0.
6. (ii) arrange the answer to (i) as \d(A*)\dxx - d^A^dXj 4- A^dAf/dx,);

(iii) (a) curl A = 0; (b) div B = 0; see previous question.
7. ay = icjikcrik, sik = i(crik 4- <Jki) where aik is the conductivity tensor;

j , E and ^E are all polar vectors, thus so is (E A a), showing a is axial.

8. / = ma2

1
2

-V5

20
0
2

0
20

4

2"
4

20
. Xx =

2"
- 1

0_

9. / =
8

- 1
1

- 1
8
1

1
1
6

with principal moments 40 ma2, 64ma2 and
12ma2.



Solutions and hints: Chapter 16 517

10. Principal susceptibilities and axes are

A = 4, ±(0, 2 - 1 / 2 , 2"1 / 2 ) ,
A = 2, ±(2 + cf)-ll2(Ci, 1, - 1 ) with Clc2 = - 2 .

(i) Lowest value of energy - equation (15.45) - when (0, 1, 1) axis along
field;
(ii) permitted settings are (0, n2, n3), hence as in (i);
(iii) permitted settings are (nx, 0, n3) giving energy = - ifjL0kH2 V x
(2/z? + 3«§), which, subject to n\ + n% = 1, minimizes with (0, 0, 1)
direction along field.

11. The principal permeability (in direction (1 ,1 , 2)) has value 0. Thus all
nails lie in the plane to which this is the normal.

12. j \ = aikEk gives / s in 6 cos <f> = a-nr2Ex, / s in 6 sin <j> = airr2E2, / co s 6 =
bnr2E3 and then V/l = Ex sin 6 cos <j> + E2 sin 6 sin <j> + E3 cos 6; the
current must flow along the wire; E is not along the wire.

13. Take plx = p22 = P33 = -p, Pa = etj = 0 for i ^ j leading to -p =
(A + ifji)ekk. Fractional volume change = ekk. A and \x as in example
15.3.

KE(2 - a) KE(\ + 4a)
14. — » (twice), use (15.60).

(1 + <r)(l - 2a) 2(1 + a)(l - 2a)
15. All wall forces normal, p{j = etj = 0 for / ^ j , u2 = u3 = 0, — S =

Xe±1 + 2/x^n, modulus = A + 2\x. A and /x as in example 15.3.

( diii flu, \
— + — ;

form 2y (^ ld*i) of this equation, substitute for dpi}/dxj and then form
of the result; wave velocity for V -u is [(2a + 46)/p]1/2;

a2 d (dPil\
P —2 (curl u)fc = €fcyt — — h

S/2 ^ ; \ ^ /
then use above equation and €kji d

2 /dxj dxt = 0; wave velocity for
V A u is [2b/P]112.

CHAPTER 16

•2. (a), (Z>), (d) are analytic since everywhere they satisfy (16.5) and the par-
tial derivatives are continuous; (c) is analytic only at the point z = 0.

•3. Second and fourth quadrants, du/dx = ± 1 for x ^ 0, dv/dy = ± 1 for
y $ 0,

•4. (a) (3 - 2i)z; (b) sin (z); (c) zz*; (rf) z + z"1.
•5. At z = 1 series diverges; at z — — 1 series converges to —In 2.
•6. (ii) Ratio = (n + l) |z | , which is > 1 for all z ^ 0 and sufficiently large
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n\ (iii) ratio = n\z\/(n + 1), which is < 1 if \z\ < 1, but is > 1 for suffi-
ciently large n if \z\ > 1.

1 / r + s\ 1

(r + s)\

•8. (i) |/| < 1, except / = 0; (ii) \t\ > 1; (iii) a positive increasing spiral
starting at t = 1; (iv) a positive decreasing spiral starting at t = 1.

/I lirk \
•9 . tlln = exp - l o g / + i , A: = 0, 1,. . ., n - 1.

\/i n J
•10. (a) exp (-2y) cos (2JC);

(6) i sin 2y sinh 2x;
(c) V2 exp (m/3) and V2 exp (47ri/3);
W)exp(2"1/2) or exp(-2"1 / 2) ;
(e) cos 1 - i sin 1 = 0.540 - i 0.841;
(/) 8 sin (In 2) = 5.11;
(g) exp ( — ̂ 77 — 2TT«), n integral, n = 0 gives principal value;
(/*) In (8) + i(2/i + i)7r.

•11. Use (16.22) and dw/dz = (dz/dw)-\
•12. Write in modulus and argument form and use the formulae for cos a

and sin a in terms of cos 2a.
•13. In (ii) dF/dz = iikz~112, in (iii) dF/dz = 2i&z; (a) |E| = 2/c|z|; (Z>) at

y = 0, dF/dz = l i ^ - 1 / 2 , hence F* = 0, Fy = ikx~112 and cr oc Fy;
(c) |E| = |iikz~1/21 ;(</) if 0 is angle of radius vector, arg dF/dz = 0 + TT/2,
direction of E = TT - (0 + TT/2) by (16.34 b), hence result.

•14. (a) See (16.47); differentiate (16.44) w.r.t. x and y and then (b) let >>-• 0
with x > 0, and (c) square results and add.

•15. (i) f(t) is analytic except at t — 0, —•£* as r ^ oo, and has no real part
on t = a exp (i0); (ii) put t = a exp (i0) giving z = \a cos 0 + \\a sin 0;
(iii) dz/d/ = 0 at t = ±2~1/2a and =oo at f = 0; (iv) express / in terms
of z and substitute; (v) put z = fa cos 0 + \\a sin 0 into F(z).

•16. § z'1 dz = Logz.

•17. (i) ft" iR3 exp (3i0) d0 = 0; (ii) J [(x2 - y2) + 2ixy](dx + idy) for each
of 4 sides; of the 16 integrals, 8 are trivially zero, 4 have value zero, and
the other 4 cancel in pairs.

•21. (a) f(z) = (2z2)-Hl + iz + • • •), integral = 2m x i = \TT\\ (b) the
same; (c) by expansion or lim [(z — 2)/(z)] as z—> 2, residue at z = 2
is — i, total integral = 0.

•22. AO1 = 0, An = arctan (|), Alo = — arctan (£), thus no root included.
•24. Residue at z = -a is jSa"^"1 exp (-i/hr); / = TT^Q-^-1 cosec (TTJS).



Solutions and hints: Chapter 16 519

Section 16.16

1. du/dy = - exp (x)(y cos y + x sin y + sin y), z exp (z).

sin 2x - i sinh 2y .
2. / = c o s h 2>, - cos 2JC' S P e c i a l c a s e o f z r e a 1 ' =* ' s h o w s /(z> = c o t W;

poles at z = TOT.

3. (a) o o ; ( 6 ) l ; ( c ) l ; (*/) 1; (e) lim (1 + p/n)n = ep, i? = e"p .

4. |[(x -f c) + iy]/[(x - c) + iy]\ = exp (w), which can be arranged as
(x - c coth u)2 4- jr2 = c2 cosech2 u; c coth ux = -d, c coth «2 = */,
c cosech Wj| = #, cosh u{ = d/a with wx = — w2, capacity oc («2 — wi)"1.

5. FT(r) = (-iK/7r) log t; W\z) = (-IK/TT) log [(z/a) + ((z2/a2) - 1)1/2],
potential = (K/TT) X arg [ . . . ] .

JC2 v2 c2 x2 y2

6. Ellipses T — — r r o + 7 TTO = i -9~ hype rbo lae — 5 — - ^ T ~ = c 2 ;
(a + I ) 2 (<z — I ) 2 4 a 2 ; ^K cos 2 a sin2 a '

slit — c ^ x ^ c, y = 0; slits ±c t o ±00 for b o t h cases ; <̂> = 0 on s t r ip ;
if p = ̂  + i0 = -k arcosh (z/c), dP/dz = -£/(c sinh (-P/A:)).

7. /(z) = f flnz"
( - i ) n + y n + i * ( - i r

W l t h ^ + 1 = (2, + 1)! f 2 7^77^ - = 0;

i?-i = ihJJ [p.\.(2n + I)"1] = 0 by the root test.

8. Zeros at z = /?TT, simple poles at z = (n + |)TT, essential singularity at
z = oc.

9. (i) |z| = I , |8z3 + z| ^ U < 1; |z| = I , |8z3| = W > W > \z + 1|;
(ii) write as 8(z - y){z - a - ij8)(z - a + i/2) = 0, y is < 0, and then
zero coefficient of z2 shows a > 0. Show — f > y > — \ and use
-8y(a2 + i82) = 1.

10. (i) j 8 + 5 = 0 has no real roots; (ii) one negative real zero and a con-
jugate pair in the second and third quadrants; zeros at — f, - 1 — i,
- 1 + i.

11. A = 3 - 12/2 + t \ B = -It - 2t3; Ac[arctan (B/A)] = 0,
Ac[arg/(z)] = 4?r, hence 2 zeros inside \z\ = 1.

12. Pole at z = I/a, na-n(a2 - I )" 1 .
13. Only pole inside unit circle at z = \a — \(a2 — 1)1/2, residue

-\\{a2 - 1)"1/2; 2>n\a(a2 - 1)-1 /2 - 1].

14. Follow example 16.5 and use Jordan's lemma, pole at z = i; TT\ exp ( — a).
15. Factorize denominator as (2x + i)(2x - i)(x + i)(x - i), simple poles

at i i and i.
16. Use Jordan's lemma and a semicircular contour indented at z = ±a.

17. (i) Only pole at origin with residue 77"1; integral = 2i;
(ii) each is O(exp (-TTR2 - TTR2-112));

(iii) sum of integrals is 2i JfB exp { — -nr2) dr.

18. Follow example 16.7 (page 478); rr cosec (ira).
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19. See example 16.7 (page 478).

TT COt TTZ

(i + zXi + z)
around a very large circle; residue at z = — \ is 0, and at z = — £ is
477 COt ( — \TT).

21. Behaviour of integrand for large \z\ is |z|~2 exp [(2a — TT)|Z|]. Residue
at z = m is sin2 (ma)(— l)m/(ma)2 for m= — oo,. . ., — 1, 0, 1,. . ., oo.
Even function, so 2 " = M2"«> —{m = 0 term)]. No contribution from
contour, leading to value \ for required summation.

22. Poles at (i) \b and -ib9 (ii) t = s - a = 0, of order « + 1, (iii) r = 0
and t = -2\a\.

23. J r and Jy tend to 0 as i?-^oo and p—> 0. Put ^ = r exp (i7r) and 5 =
rexp( — \TT) on the two sides of the cut and use J^ exp ( — t2x) dt =
UTT/X)112. No poles inside contour.

24. y is traversed negatively, residue is 1.
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Where a topic is discussed on two consecutive pages, reference is made only to the
more appropriate of these. For discussions spread over several pages the first and
last page numbers are given; these references are usually to the major treatment of
the corresponding topic.

Where a reference is made to an exercise or example, the information may be in
the corresponding solution, rather than in the question itself.

absolute convergence of series
of real terms, 12; of complex terms,
444

acceleration vector, 84
Adams method, 323
adjustment of parameters, 354
algebra

of Cartesian tensors, 416-18; of com-
plex numbers, 3; of matrices, 373-9;
of vectors, 69-81

algebraic equations, numerical methods
for, see numerical methods for alge-
braic equations

alternating signs test, 11
Ampere's rule (law), 88, 105
amplitude modulation, 213, 222
analytic function, 441
angular momentum

quantum numbers, 280; of a solid
body, 92, 427; of a system of particles,
94, 427; as a vector, 69

angular velocity, as vector, 69, 101-3
anti-Hermitian matrix, 382
antisymmetric

Cartesian tensor, 417, 430; matrix, 381
arbitrary parameters, for ordinary dif-

ferential equations, 117
arbitrary functions, for partial differen-

tial equations, 225-8
area, maximal enclosure of, 337
area, as vector, 69, 86, 90
Archimedean upthrust, as surface inte-

gral, 92, 95
arg see argument
Argand diagram, 3, 6, 451
argument

of complex number, 3; principal
value of, 3; principle of the, 470, 485

associated Legendre equation, 179, 276,
290

associated Legendre function P"l(x), 276,
279, 290

associative law
for complex number algebra, 3; for
matrix addition and subtraction, 374;
for matrix multiplication, 375; for
vector addition and subtraction, 71;
for vector multiplication by a scalar, 72

asymptotic equality symbol, ~ , 2
auxiliary equation, 128

equal roots of, 129
axes principal

of inertia tensor, 428; of quadric, 394,
433

axes, rotation of, 382, 408, 409-11
axial vector, 423-6

backward difference, 317
base vectors, 73
Bessel's equation, 151, 180, 279, 281

second solution Y}(x), 281
Bessel functions, series for

/oW, 157; J±ll2(x), 160; /„(*), for
integer w, 170

Bessel functions, spherical, j\(x) and n^x),
282

binary chopping, 300
binomial coefficient, 18, see also table of

symbols opposite page 1
Biot-Savart law, 90
Boltzmann's constant, 45
Boltzmann distribution, 43
Born approximation, 189
boundary conditions

use in expansion method, 286; for
ordinary differential equations, 118;
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boundary conditions (contd.)
for partial differential equation types,
233-5; for Sturm-Liouville equation,
176, 351; met by superposition, 283-6;
types of, 233; for wave equation, 245

boundary curve, of a double integral, 55
Bromwich integral, 480
bulk modulus, 437

Ci), see co-factor, in matrix
calculus, preliminary, 1-65, see also

under individual topics
calculus of residues, see zeros of a func-

tion of a complex variable and con-
tour integration

calculus of variations, 332-46
conditional variation, 344-6; as alter-
native to differential equations, 349;
Fermat's principle, 340; general idea
of, 332; Hamilton's principle, 342;
higher derivatives, 342; Lagrange's
equations, 343; several dependent
variables, 341; several independent
variables, 342; soap films, 338-40,
346; special cases, 335

calculus of vectors, 83-94, see also
vectors

Cartesian tensors, 408-35
algebra of, 416-18; contraction, 417;
definition, 414; divergence theorem for,
436; first-order, 409-12; isotropic,
422, 434; order of, 408; outer product
of, 417; quotient law, 418, 427;
under reflections, 423-6; second-
order, 413-16; symmetry and anti-
symmetry of, 417, 430; and vector
algebra, 420-2; zeroth-order, 412

Cartesian tensors, particular
conductivity, 429, 437; Sif and €<,fc, 419-
422; inertia, 93,427; permeability, 437;
strain, 429-35, quadric, 432; stress,
433-5, quadric, 434; susceptibility, 429

catenary, 340, 345
Cauchy's

integrals, 463-5; root test, for con-
vergence, 11, 445; theorem, 461-4, 468

Cauchy boundary conditions, 233
Cauchy-Riemann equations, 442-4, 450,

462
central difference, 316
CF, see complementary function
chain rule, 31, 85
change of variables, 29-33

chain rule, 31, 85; in multiple integrals,
57-65; under orthogonal transforma-
tions, 389, 414; in partial differential
equations, 242-4; under similarity
transformations, 391; in single integ-
rals, substitution, 50

characteristic determinant, 386, 390
characteristic equation, 386, 398
characteristic vector (eigenvector) see

matrices, eigenvalues and eigenvectors
of

charged conductors, see complex poten-
tials

charged particle, in electric and magnetic
fields, 94, 147

Chebyshev equation, 180
circle of convergence, 445
circuits, electrical

coupled, 134, 146; transients in, 135,
148

closure property, 184
co-factor, in matrix, 367, 371, 378
columns, of matrix, 361
combination of variables, 250
commutative law

for complex number algebra, 3; for
convolution, 220; for matrix addition
and subtraction, 374; for multiplica-
tion of vectors by scalars, 72; and
scalar product of vectors, 74, 76

comparison test, for infinite series, 10
complementary function (CF)

for ordinary differential equations, 126
see also, ordinary differential equa-
tions, methods for

completeness requirement, 191, 283, 356
of Y?9 280

complex conjugate, 7
complex integrals, 456-63

Cauchy's integrals, 463-5; Cauchy's
theorem, 461-4, 468; definition, 457;
Morera's theorem, 462; principal
value of, 475; residue theorem, 467-9;
of z"1, 458-60, 463; see also zeros of
a function of a complex variable and
contour integration

complex numbers, 2
algebra of, 2-4; Argand diagram for,
3; argument and modulus of, 3;
conjugate of, 7, 443; de Moivre's
theorem, 6; real and imaginary parts
of, 2

complex potentials, 449-56
for circular and elliptic cylinders,
456; for conducting plates, 454-6,
484; under conformal transforma-
tions, 451-4; and electrostatic field,
451; equipotentials and field lines,
450; orthogonal contours, 449; for
parallel cylinders, 484; for strip, 484

complex variables, 439-83; see also
functions of a complex variable and
power series, in a complex variable,
and complex integrals

components
of a vector 70, complex, 76; of the
gradient vector, 97; of linear operator
V, 97

conditional variation, 41-3, 344-6
conductivity tensor, 429, 437
conformal transformations, 451-4
conjugate, see complex conjugate and

Hermitian conjugate, of a matrix
conservative fields, 108
constant coefficients, in differential equa-

tions
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in ordinary differential equations, 127;
in partial differential equations, 238-
245

constraints
integral, 344; stationary values under,
41-5; among variables, 26; on varia-
tions, 41-3

continuation, for Fourier series repre-
sentation, 200-4

contour, on map, 96
contour, path of complex integral,

456-8
contour integration

for infinite integrals, 474-9; for in-
verse Laplace transforms, 480-3;
and residue theorem, 467-9; of sinu-
soidal functions, 473; for summing
series, 479; see also zeros of a function
of a complex variable

contours, orthogonal, 449
contraction, of Cartesian tensors, 417
convergence of infinite series, 8-13

absolute, 12, 444; alternating signs
test, 11; circle and radius of, 445;
comparison test, 10; crucial considera-
tion, 10; necessary conditions, 9;
ratio test, 10, 445; root test, 11, 445

convergence of numerical iteration
schemes, 303-5
order of, 304

convergence of series solution of differen-
tial equations, 162

convolution, 219-22
definition, 220; of resolution curves,
219-22; theorem, for Fourier trans-
forms, 220

coordinate system, change of, 29-33,
see also change of variables and ortho-
gonal systems of coordinates

coordinates, see spherical polar coordi-
nates and cylindrical polar coordinates

coplanar points, vanishing of triple
scalar product, 79

cosh, hyperbolic cosine, 7, 448
cosine, in terms of exponential func-

tions, 5, 448
cross product, see vector product, of

two vectors
curl of a vector field, 96, 101-6

of conservative vectors, 108; curl curl,
106; definition, 103; determinantal
form, 104; in non-Cartesian systems,
114; in spherical and cylindrical
polars, 114; Stokes' theorem, 105

current-carrying wire
in magnetic field, 94, 426; magnetic
field due to, 426; magnetic potential
due to, 110,276

cut plane, 449, 477
cylinders, conducting, electrostatic po-

tential of
circular and elliptic, 456; parallel
circular, 484

cylindrical polar coordinates
differentials of length, area, volume,

94; Laplace's equation in, 278; vec-
tor operators in, 110-14

D operator
for coupled equations, 134; D" 1 as
integration symbol, 131; distributive
and index laws, 130; for ordinary
differential equations, 130-5; for
partial differential equations, 248;
polynomials in D, 130; properties, 130

S-function (Dirac), 214-17, 253
approximation to physical situations,
215; and Fourier transforms, 213;
and Green's functions, 183; proper-
ties, 215; representations, 216

hu, Cartesian tensor, 419-23
identity involving, 420; as isotropic
tensor, 422

8ij9 Kronecker delta, 178n
D'Alembert ratio test, 10, 445
d.e., see ordinary differential equations
de Broglie relation, 209, 260
de Moivre's theorem, 6
deconvolution, see convolution
definite integral, 45, see also integrals
degenerate eigenvalues

for linear operator, 177; for matrix,
384

degree, of differential equation, 116
del, V, 97, 100, 104
del squared, V2, 101

in cylindrical polar coordinates, 113,
115, 272; as Laplacian, 107; in non-
Cartesian systems, 113; in spherical
polars, 113, 272; in two-dimensional
polars, 272

delta, Kronecker, 178n
dependent functions, 33
derivative

under change of variables, 29-33; of a
function of a complex variable, 440,
Cauchy integrals for, 464; first, 13;
of a function of a function, 31; of an
indefinite integral, 48; Leibniz
theorem, 17-19; of a function of one
variable, 13; partial, 23, see also par-
tial derivatives; of product, 15-19, 50;
of quotient, 16; second, 14; total, 26;
of a vector, 83-5

det, see determinant of a matrix
determinant of a matrix

characteristic, 386, 390; definition
and notation, 364; evaluation of, 364,
367, 370; expansion by rows and
columns, 366-8; and Jacobians, 36;
minors and co-factors of, 367, 371,
378; of a matrix product, 377; proper-
ties, 368-70; and simultaneous homo-
geneous linear equations, 372, in-
homogeneous, 379

determinantal form
of curl of a vector, 104; of Jacobian,
36; of stationary value criteria, 41;
of tensor identity, 422; of triple
scalar and vector products, 78
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diagonal matrix, 388
diagonalization of matrices, 388-91, 405
difference

finite, see finite differences; schemes
for differential equations, 317-21,327-9

differentiable, of a function of a complex
variable, 440

differential
of length, area, and volume, 94;
total, 26; of a vector, 85

differential coefficient, see derivative
differential equations, see ordinary dif-

ferential equations and partial differen-
tial equations

differential equations, particular
associated Legendre, 179, 276, 290;
Bessel's, 151, 180, 279, 281, with
m = 0, 156, with m = +, 159, with
m = 1, 159; Cauchy-Riemann, 442-4,
450, 462; Chebyshev, 180; diffusion,
232, 234, 238, 249-53, 254, 258, 269,
284-6, 329; Euler (-Lagrange), 333-5,
350; Gauss, 188; Lagrange's, 343;
Laguerre, 180; Laplace, 234, 236, 238,
241, 271-9, 328, 349, 444, 449;
Legendre, 151, 163, 179; Poisson, 189,
235-7; Schrodinger, 232, 259, 270,
282, 354; Sturm-Liouville, 175-80,
350; telegraphy, 256-8; for transverse
vibrations of a rod, 259, 289; wave,
231, 234, 238, 240, 245-7, 257, 264,
267-9, 280; see also under the indi-
vidual equation names

differential operator, see linear differen-
tial operator

differentiation
and Fourier transforms, 213; of a
function of a complex variable, 440-4;
Leibniz theorem, 17-19; partial, 22-7,
see also partial derivatives; of pro-
ducts, 15-19, 50; of quotients, 16;
term by term, of Fourier series, 204

diffraction grating, 209-12
diffusion equation, 232, 234, 238, 249-

253, 254, 258
by combination of variables, 250;
numerical methods, 329; separation
of variables, 269; simple solution, 249;
by superposition, 284-6

dimension, of an integral, 54
dimensionally homogeneous differential

equation, 122, 139, 147, 148
Dirac S-function, see S-function (Dirac)
direction cosines, 75
Dirichlet boundary conditions, 233, 463n
discontinuity, behaviour of Fourier

series at, 195-7
distortionless line, 263
distributive law

for complex number algebra, 3; for
D operator, 130; for differentiation,
84; for matrix multiplication, 377;
for multiplication of a vector by a
scalar, 72; for scalar product of vec-
tors, 74

div, 96, 98-101
divergence of infinite series, 8-13
divergence theorem for tensor field,

436
divergence theorem for vectors, 100
divergence of a vector field, 96, 98-101

in cylindrical and spherical polars,
112; in non-Cartesian systems, 111

double factorial, (2/i + 1)!!, 154
double integral, 54
drumskin, see membrane
dummy subscripts, 362

€, permutation symbol, 363
cm

as Cartesian tensor, 419-23; identity
involving, 420; as isotropic tensor,
422

eigen-frequencies, see normal frequencies
eigenfunctions, of a linear differential

operator, 175, 178, 183
eigenvalues of a linear differential

operator, 175
by adjustment of parameters, 354;
degenerate, 177; error, in estimate of,
352; estimation of, 351-4; higher
eigenvalues, 352, 360

eigenvalues of a matrix, 383-5
degenerate, 384; determination of,
385-8; estimation of, by Rayleigh's
method, 356-9, 402; see also matrices,
eigenvalues and eigenvectors of

eigenvector, see matrices, eigenvalues
and eigenvectors of

Einstein relation, 209, 260
elastic deformations, 429-35
electromagnetic field

flux, 91; Poynting vector, 78, 426
electrostatic field

from complex potential, 451; as
first-order tensor, 413; of a point
charge near a conducting plane, 236;
polar character, 425; for conducting
sphere placed in uniform field, 277;
as vector field, 86

electrostatic potential
of an array of point charges, 171;
of line charge, 451; Poisson equation
for, 189; as scalar field, 86, 413; as
tangential line integral, 88

elements, of a matrix, 361
elliptic partial differential equations,

234, 242
equipotentials, 450
Erf, error function, 251, 264
error, estimation of for a dependent

variable, 25
essential singularity, 466
estimation of eigenvalues

for a linear differential operator,
351-4; for a matrix, 356-9, 402

Euler method, numerical, 319
Euler (-Lagrange) equation, 333-5, 350
even part, of a function, 192
exact equation, 120
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expansion methods
use of boundary conditions in, 286;
for partial differential equations, 286-
289

exponent, complex, 447
exponential function

on Argand diagram, 6; of a complex
variable, 447; Fourier transform of,
208; relation with hyperbolic sine
and cosine, 7; of an imaginary vari-
able, 5; series for, 5; relation with
sine and cosine, 5

extension (fractional), 432

factorial, see symbols
double, (2/i + 1)!!, 154

Faraday's law of electromagnetic induc-
tion, 94, 106

Fermat's principle, 340
fields

conservative, 108; electrostatic, see
electrostatic field; scalar, 86; vector,
86, see also vectors, derived quantities
from

field lines, 450
finite differences, 316

backward and forward differences,
317; central difference, 316; schemes
for differential equations, 317-21,
327-30; from Taylor series, 316, 325

finite polynomials, as solutions of dif-
ferential equations, 162
general method, 163; recurrence rela-
tion, 164

finite rotations, not vectors, 70
first law of thermodynamics, 35
Fleming's left-hand rule, 90
fluids

Archimedean upthrust, 92, 95; and
scalar fields, 86, 92; and vector fields,
86, 90, 92, 98, 102

flux, of a vector field, 90, 98, 100
for electromagnetic field, 91; for
fluid, 90; Gauss's theorem, 91

forward difference, 317
Fourier integral, see Fourier transforms
Fourier methods, 190-222

completeness and mutual ortho-
gonality requirement, 191; exponen-
tial, sine and cosine sets, 192; har-
monic waves, 190

Fourier series, 190-205
behaviour at discontinuity, 195-7;
coefficients in expansion, 193; con-
tinuation considerations, 200-4; dif-
ferentiation and integration of, 204;
Gibbs phenomenon, 197, 204, 224;
Parseval's theorem, 218; period of,
191; plucked string, 200-3, 218, 291;
square-wave function, 194-7, 199;
symmetry considerations, 197-9; vali-
dity of, 195

Fourier transforms (integrals), 205-14
convolution theorem, 221; derivation
of, from Fourier series, 205-7; dif-

ferentiation and integration of, 213;
and diffraction grating, 209-12; of
exponential decay function, 208; of
Gaussian distribution, 208; Parseval's
theorem, 217; of a product, 220; and
translation, 213; and uncertainty
principle, 209

free subscript, 362
functions arbitrary, and partial differen-

tial equations, 225-8
functions of a complex variable, 440-9

analyticity of, 441-4; behaviour at
infinity, 467; Cauchy's integrals, 463-
465; Cauchy-Riemann equations, 442-
444, 450,462; complex exponent, 447;
complex power, 448; under conformal
transformations, 451-4; derivative of,
440; differentiation of, 440-4; integ-
ral of, 456-63; Laurent expansion of,
466; and Laplace's equation, 444, 449;
many-valued, 448; poles of, 466;
power series for, 444-7; principal
value of, 448; real and imaginary
parts of, 440; singularities of, 441,
466; Taylor's expansion for, 465;
zeros of, 466

functions of a complex variable, par-
ticular
cos, cosh, sin, sinh, tan, tanh, 448;
exp, 447; log, Log, 448

functions of one real variable
derivative (differential coefficient) of,
13; even and odd parts of, 192;
maxima and minima of, 20-2; sta-
tionary values of, 20

functions of several real variables, 22
dependent, 33; integrals of, 54-7;
pictorial representation of, 22, 24, 38;
stationary values of, 38-45

functional, 333
fundamental frequency, 193

Gauss A and B positions, 115
Gauss equation, 188
Gauss's theorem of electrostatics, 91
Gauss-Seidel iteration, 307-9
Gaussian distribution, and its Fourier

transform, 208
Gaussian elimination (with interchange),

306
Gaussian integration, 314-16
generating function, 167

for Hermite polynomials, 171; for
Legendre polynomials, 168

geometric series, 9
Gibbs phenomenon, 197, 204, 224
grad, 96-8

in cylindrical and spherical polars, 111
gradient of a scalar, 96-8, 106, 108, 110
gradient of a vector component, 415
Gram-Schmidt process, see orthogonal-

ization process for vectors
gravitational potential, 286-9, 292
Green's functions, 182-8, 253

dependence of form on interval, 185;
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Green's functions {contd.)
general approach, 182-4; general
expressions for, 183, 188; impulse
interpretation, 184; integral form of
solution, 183; particular examples,
184-6

Green's lemma, 461
Green's theorems, 101
ground-state energy

of oscillator, 354; of hydrogen atom,
359

Hn(x), see Hermite polynomials
Hamilton's principle, 342
Hamiltonian, 354
harmonics, 193
harmonic oscillator, see oscillators
harmonic waves, 190
heat flow

in a bar, 254, 284-6, 292; in a cube,
289; in a thin sheet, 252

Hermite polynomials, //„(*), 171, 180
Hermitian adjoint, of a linear differential

operator, 176n
Hermitian conjugate, of a matrix, 382
Hermitian forms

and matrices, 392; reality of eigen-
values, 384; see also quadratic forms

Hermitian matrix, 382
homogeneous differential equations,

139n, 230,273,275
Hooke's law, 434
hydrogen atom

ground-state energy, 359; Schrodinger
equation for, 282

hyperbolic partial differential equations,
234, 242

hyperbolic sine and cosine, 7, 448

/, unit matrix, 378
i, square root of — 1, 2-4
identity (unit) matrix, 378
IF, see integrating factor*
images, method of, 236, 261
imaginary part of complex number, 2
improper integrals, 49, 57
impulses, as 8-functions, 215
indefinite integral, 46-8; derivative of,

48
indeterminate quotients of form 0/0, 66
index law, satisfied by D operator, 130
indicial equation, see series solution, of

differential equations
induction, method of, 19
inertia

moments and products of, 65, 93,
428; tensor, 93, 427

infinite integrals
by contour integration, 474-9; defi-
nition, 49, 57

infinite series, see convergence of infinite
series

infinity, behaviour at, of a function of a
complex variable, 467

inflection, point of, 21

inner product, see scalar product, of
two vectors

integrals
as an area, 45, 311; change of vari-
ables in, substitution, 50, in multiple
integrals, 57-65; of complex variables,
see complex integrals; as converse of
differentiation, 46-8; definite, 45;
double, 54; elementary properties of,
46; Fourier, see Fourier transforms;
of functions of several variables, see
multiple integrals; improper, 49, 57;
indefinite, 46-8; infinite, 49, 57,
474-9; limits of, 45, 48; as limit of a
summation, 45, 206; line, 87, see also
tangential line integral; triple, 57

integral constraints, 344, 350
integral functions, 447n
integral transforms, see Fourier trans-

forms and Laplace transforms
integrand, 45
integrating factor (IF), 121-3
integration, 45-54

using contour integration, 473-9; as
D"1 , 131; and Fourier transforms,
213; Gaussian, 314-16; by numerical
methods, 311-16; by parts, 50-4,
formula for, 51; of sinusoidal func-
tions, 473; term by term, for Fourier
series, 204

invariance
of scalar product, 76, 413, 418; of
triple scalar product, 79

invariance under rotation, 413
invariant tensor, see isotropic tensor
inverse, of a matrix, 377-9
inverse Laplace transform, 141, 480-3
irregular singular point, 152
irrotational, of a vector, 106
isoclines, method of, 318
isotope decay, 149
isotropic tensors and media, 422, 434
iteration schemes

for algebraic equations, 295, 307;
convergence of, 303-5; for differential
equations, 324; Gauss-Seidel method,
307-9; order of convergence, 304

Jm(x), see Bessel functions, series for
ji(x), spherical Bessel function, 282
Jacobians, 36-8

and magnification under a change of
variables, 61, 64

Jordan's lemma, 476

Kronecker delta, Sih 178n

Lagrange's equations, 343
and energy conservation, 347; used in
small oscillation analysis, 356

Lagrange's form of remainder, for Tay-
lor series, 20

Lagrange's identity, 81
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Lagrange's undetermined multipliers
for a function of several variables, 42;
for integral constraints, 344, 350; for
quadratic forms, 392

Lagrangian, 342
Laguerre equation and polynomials, 180
Lam6 constants, 434
Laplace equation, 234, 238, 272

in cylindrical polars, 278; and func-
tions of a complex variable, 444, 449;
general solution in two dimensions,
241; numerical method for, 328;
separated variables in two dimensions,
271; in spherical polars, 274-8; in
two-dimensional polars, 235, 272-4;
uniqueness of solution, 236; as varia-
tional problem, 349

Laplace transforms, 140-6
definition, 140; of derivatives, 141;
of integrals, 142; inverse, 141, 480-3;
notation, 144; for ordinary differential
equations, 144-6; for partial differen-
tial equations, 254-6, 258, 263;
substitution and translation property,
144; table of common transforms, 143

Laplacian, 107
Laurent expansion, 466
Legendre's equation, 151, 163, 179

associated Legendre equation, 179,
276, 290; condition for polynomial
solution, 164

Legendre polynomials, Pi(x), 164-9
and associated Legendre function,
276; and axially symmetric situations,
179; degree of, 164; explicit construc-
tion of first few, 165; in Gaussian
integration, 315; generating function
for, 168; integral of />?, 167, 171;
mutual orthogonality of, 165; normal-
ization of, 165; parity of, 164; recur-
rence and other relations, 168; Rod-
rigue's formula, 166

Leibniz theorem, 17-19
lim, see symbols
limits, of integrals, 45, 48, 54
line, vector equation of, 72
line charge, electrostatic potential of, 451
line integral, 87

of a scalar, 87; of a vector, 87, 90
linear differential operator, L or L(D)

closure property of eigenfunctions,
184; effect on certain functions, 130;
eigenfunctions and eigenvalues, 175;
to express a general linear equation,
173; factorization of the operator,
147; meaning of [L(D)]-\ 131;
orthogonality of eigenfunctions, 178;
polynomial form, 130; repeated fac-
tors of £(D), 132; self-adjoint, 176

linear equations, 117
differential, see ordinary differential
equations; and matrices, 305, 379;
simultaneous algebraic, homogeneous,
372, condition for non-zero solution,
373

linear independence, of base vectors, 73
linear interpolation, 298-300
loaded string, 360, 406
Log, of complex variable, 448

derivative of, 449
log, of complex variable, 448
lossless line, 257, 263

Maclaurin's series, 20
for two variables, 26

magnetic dipole
couple on, 426; magnetostatic poten-
tial of, 115; potential energy of, 75

magnification, local, under change of
variables, 59, 61, 64

magnitude, see modulus
many-valued functions, 448

integration of, 477-9, 482
mapping, see transformations
masses, coupled by springs, 400-2
matrices, 361-402

co-factors of, 367, 371; column or
row vectors, 361; diagonalization of,
388-91, 405; determinant of, 363-8,
377; elements of, 361; general and
notations, 361; for a quadratic or
Hermitian form, 388, 392, see also
quadratic forms; and simultaneous
linear equations, 379; and summation
convention, 362; trace (spur) of, 388,
391, 417; tridiagonal, 309-11, 328;
unit matrix, /, 378, 391; zero matrix,
0, 377

matrices, algebra of
addition and subtraction, 373; divi-
sion, 377-9; multiplication, 374-7,
non-commutative, 376

matrices, derived
Hermitian conjugate, 382; inverse,
377-9; minor, 367; transpose, 369,
381

matrices, eigenvalues and eigenvectors of
characteristic (secular) determinant,
386, 390; characteristic equation, 386,
398; construction of (orthogonal)
matrix from eigenvectors, 389; defini-
tions, 383; orthogonality properties
of eigenvectors, 384, 387, 402; reality
of eigenvalues, 384; under a similarity
transformation, 391; stationary
property, 392-5

matrices, properties of
diagonal, 388; Hermitian and anti-
Hermitian, 382; orthogonal, 381, 391;
real, 382; singular and non-singular,
377; skewsymmetric (anti-symmetric),
381; square, 362; symmetric, 369;
unitary, 382

maxima and minima (local) of a function
of constrained variables, 41-5, of one
real variable, 20-2, sufficient condi-
tions, 22; of several variables, 38-41,
sufficient conditions, 40

maxima from a diffraction grating, 212
maximum-modulus theorem, 471
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Maxwell's
electromagnetic equations, 105, 436;
thermodynamic relations, 35

membrane (drumskin)
on deformed rim, 273, 290; transverse
vibrations of, 232, 270, 359

Milne method, numerical, 320
minimization

to find normal mode frequencies,
357-9; of quotients of integrals, 350

minor, of matrix, 367
mod, see modulus
modulus

of complex number, 3; maximum-
modulus theorem, 471; of a vector, 70

moment of a force, as a vector product, 77
moment of inertia, 65, 93, 428
Morera's theorem, 462
multiple integrals, 54-65

dimension of, 54; double integral, 54;
independent of order of integrations,
55-7; limits for, 54; notation, 55;
surface and volume, 90-2; triple, 57

multiple-valued, see many-valued func-
tions

multiple integrals, change of variables
in, 57-65
Cartesian to plane polar, 62; Cartesian
to spherical polar, 58; Jacobian for,
60, 64; local magnification, 59

multiplication of vectors, 72, 74-80
by a scalar, 72

nt(x), spherical Bessel function, 282
nabla, see del, V
Neumann boundary conditions, 233
Newton-Raphson (N-R) method, 301

order of convergence of, 304
Newton's second law, 94
nodes, 241
non-Cartesian systems

vectors in, 93; vector operators in,
110-14

non-orthogonal system of coordinates,
93n

non-parallel lines, 81
non-singular matrix, 377
normal

to a plane, 81; to a surface, 86
normal coordinates, 399
normal (mode) equations, 399

from energy conservation, 397; from
Lagrange's equations, 356

normal frequencies, 399
normal modes

of a circular drumskin, 359; estima-
tion of frequencies of, 356-9; of
masses coupled by springs, 400-2; by
matrix methods, 395-402; of a rod on
a string, 357-9, 397-9

normalization, of a vector, 70
numerical methods, 293-330
numerical methods for algebraic equa-

tions, 295-301
binary chopping, 300; convergence of

iteration schemes, 303-5; linear inter-
polation, 298-300; Newton-Raph-
son, 301; rearrangement method, 297

numerical methods for integration, 311-
316
Gaussian integration, 314; nomen-
clature, 312; Simpson's rule, 313;
trapezium rule, 312

numerical methods for ordinary differen-
tial equations, 317-28
accuracy and convergence, 320;
Adams method, 323; difference
schemes, 317-21; Euler method, 319;
for first-order equations, 317-26; for
higher-order equations, 326-8; iso-
clines, 318; Milne method, 320;
prediction and correction, 323; re-
duction to matrix form, 327; Runge-
Kutta methods, 324-6; Taylor series
method, 321-3

numerical methods for partial differen-
tial equations, 328-30
diffusion equation, 329; Laplace equa-
tion, 328; minimizing error, 329

numerical methods for simultaneous
linear equations, 305-11
Gauss-Seidel iteration, 307-9; Gaus-
sian elimination, with interchange, 306;
matrix form, 305; tridiagonal matrices,
309-11

<9, zero matrix, 377
O and o notation, 2
odd part, of a function, 192
Ohm's law, 436
operators, see linear differential opera-

tors and vector operators
order

of a Cartesian tensor, 408; of con-
vergence of iteration schemes, 304;
of differential equation, 116; of a
pole or a zero, 466

ordinary differential equations (d.e.),
116-88
arbitrary parameters in, 117; boundary
conditions for, 118; complementary
function (CF) for, 126; degree and
order of, 116; dimensionally-homo-
geneous, 122, 139, 147, 148; exact,
120; first-order, 119-25; general form
of solution of, 117, 126; linear, 117;
linear first-order, 122; linear second-
order, 125-9; notation, xv, 116;
ordinary points of, 152; particular
integral (PI) for, 126; second-order,
125-9, 139; singular points of, 152

ordinary differential equations, methods
for
D operator, 130-5, see also D operator
and linear differential operator; inte-
grating factor (IF), 121-3; Laplace
transform, 144-6; numerical, 317-28;
one variable absent, 140; parametric
solution, 124; from partially-known
complementary function, 138; separ-
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ated variables, 119; trial functions, for
equations with constant coefficients,
127-9; variation of parameters, 135-8,
184; see also series solution, of diff-
erential equations and superposition
methods for ordinary differential
equations

ordinary point, of a differential equa-
tion, 152

orthogonal contours, 449
orthogonal matrix, 381, 389, 409, 424
orthogonal (mutually) set of functions,

191
orthogonal systems of coordinates, 93,

95
orthogonal transformation, 389, 414
orthogonality (Hermitian), 175
orthogonality (mutual)

of the eigenfunctions of a self-adjoint
operator, 178; of the eigenvectors of
an Hermitian matrix, 384; of Legendre
polynomials, 165

orthogonalization process for vectors,
385

orthonormal set, 279
oscillations, small

normal modes, 356, 395-402; by
Rayleigh's method, 356-9

oscillators
damped, 125, 173, 218, Green's func-
tion for, 185; quantum mechanical,
65, 171n, 354; simple harmonic, 94

outer product
of two tensors, 417; of two vectors,
414, 416

Pi(x), see Legendre polynomials
/*?(*), see associated Legendre function
p.d.e., see partial differential equations
parabolic partial differential equations,

234, 242, 244
parallelepiped, volume of, 79
parameters

adjustment of, 354; arbitrary, for
ordinary differential equations, 117;
variation of, 135-8, 184

parametric solutions, of first-order equa-
tions, 124

parity, of Legendre polynomials, 164
Parseval's theorem, 217
parts, integration by, 50-4
parts, odd and even, of function, 192
partial derivatives, 23

chain rule, 31, 85; general definition,
24; notation, xiv, 23, 225; relations
between, 34

partial differential equations (p.d.e.),
225-89
arbitrary functions, of a particular
variable, 225-8; boundary conditions,
228, 234, homogeneous, 230; bound-
ary condition types, 233; change of
variables method, 242-4; with con-
stant coefficients, 238-45, general
solution, 240; use of D operator, 248;

equation types, 234, 261, solution
types, 242; expansion methods, 286-9;
general solution, 227, 228-31; homo-
geneous equation and problem, 230;
Laplace transform methods, 254-6,
258, 263; notation, xiv, 225; numerical
methods, 328-30; particular solution
(integral), 230, 247-9; superposition
methods, 253, 283-6; trial functions,
259; see also separation of variables,
method of, for partial differential
equations

partial differentiation, 22-7
partially-known complementary func-

tion, 138
particular integral (PI)

for ordinary differential equations,
126; for partial differential equations,
230, 247-9; see also ordinary differen-
tial equations, methods for

path of complex integral, 457
period, of Fourier series, 191
permeability tensor, 437
permutation

even or odd, 363; symbol, e, 363
perpendicular, from a point to a plane,

75
PI, see particular integral
Planck's constant, 209, 232, 354
plane, upper half-, 475
plane, vector equation of, 73, 75, nor-

mal to, 81
plane wave, 260, 268, see also harmonic

waves
plate, conducting, electrostatic poten-

tial of
infinite and semi-infinite, 454; point
charge near, 236; right-angled wedge,
454-6; two semi-infinite, 484

plucked string, 200-3, 218, 291
point of inflection, 21
Poisson equation, 189

uniqueness of solution, 235-7
Poisson's ratio, 434
polar coordinates, see cylindrical polar

coordinates and spherical polar co-
ordinates

polar vector, 423-6
pole, of a function of a complex vari-

able, 466
contours containing, 469; order of,
466; residue at, 466, 479n, 486;
simple, 468, 475

polynomials
in the D operator, 130; finite, as
solutions of a differential equation,
162; Legendre, see Legendre poly-
nomials; representation, Taylor series,
20

potential (function), 109
complex, 449-56, see also complex
potentials; and conservative fields,
108-10; construction of, 109; gravi-
tational, 286-9, 292; magnetic, 276

power, complex, 448
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power series,
of a complex variable, see power
series, in a complex variable; for sine
and cosine, 5; as solution of differen-
tial equation, see series solution, of
differential equations; Taylor series, 20

power series, in a complex variable, 444-7
analyticity of, 446; form of, 444;
radius and circle of convergence, 445;
tests for convergence, 445

Poynting vector, 78, 426
prediction and correction methods, 323
principal axes

of inertia tensor, 428; of quadric, 395,
433

principal value
of argument, 3; of a complex integral,
475; of many-valued function, 448

principle of the argument, 470, 485
products

differentiation of, 15-19, 50; Fourier
transform of, 220; Leibniz theorem
for, 17-19

product of inertia, 93, 428
products of vectors

outer, 414, 416; scalar, 74-6; triple
scalar, 78; triple vector, 79; vector, 76-8

pseudo-scalars, 425

quadratic forms, 388
for kinetic and potential energy, 396;
as a matrix, 388; reduction of, to sum
of squares, 388-91; simultaneous
reduction of two forms, 405; sta-
tionary property of eigenvectors of,
392-5

quadric
principal axes of, 394, 433; strain, 432;
stress, 434

quotient
differentiation of, 16; indeterminate,
of the form 0/0, 66

quotient law for tensors, 418, 427
quotient of integrals, minimization of, 350

radius of convergence, 445
rank (order), of tensor, 408
ratio test (D'Alembert), 10, 445
Rayleigh's method, 356-9, 402
Rayleigh-Ritz principle, 359
real part, of a complex number, 2
rearrangement method, for algebraic

equations, 297
reciprocal vectors, 80, 406
rectifier output, 223
recurrence relations

for coefficients, 153, 164, 310; for
functions, 168, 171

reflections
and orthogonal matrices, 424; vec-
tors, behaviour under, 423-6

refractive index, 340
regula falsi, see linear interpolation
regular function, see analytic function
regular singular point, 152

residue, at a pole, 466, 479n, 486
residue theorem, 467-9
residues, calculus of, applications, see

contour integration
resolution, and deconvolution, 219-22
resolution function, of apparatus, 219
right-handed set, of vectors or axes, 74
rod

longitudinal vibrations of, 232; on
string, as pendulum, 357-9, 396-9;
transverse vibrations of, 259, 264, 289

Rodrigue's formula, for Legendre poly-
nomials, 166

root, of algebraic equation, see numerical
methods for algebraic equations

root, of a complex variable, 448
root test (Cauchy), for convergence, 11,

445
rope, suspended at its ends, 332, 344-6
rotation

of axes, and orthogonal matrices, 381,
408-10; continuous, of a body, 426;
under elastic strain, 431; invariance
under, 413

rotation, of a vector, see curl of a vector
field

Rouche's theorem, 470
rows, of a matrix, 361
Runge-Kutta methods, 324-6

saddle point, 38
conditions for, 40

scalar, 69, 83
field, 86; gradient of, 96, 106, 108,
110; integrals of, 87, 90, 92; as zeroth-
order tensor, 412

scalar product, of two vectors, 74-6
derivative of, 84; invariance of, 76,
413, 418

scattering, quantum mechanical, 189, 223
Schrodinger equation, 232, 259, 270

for harmonic oscillator, 354; for hy-
drogen atom, 282

second difference, 317
secular determinant, 386
self-adjoint operator, 176
separated variables, in ordinary differen-

tial equations, 119
separation constants, 268
separation of variables, method of, for

partial differential equations, 259,
266-89
for diffusion equation, 269; expansion
methods, 286-9; general method, 267-
269; for Laplace's equation, 271-80;
role of separation constants in, 268;
superposition methods, 283-6; for
the wave equation, 280-2

series, Fourier, see Fourier series
series, infinite

convergence of, see convergence of
infinite series; Maclaurin's, see Mac-
laurin's series; summation of by con-
tour integration, 479; Taylor, see
Taylor series
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series, particular
arsinh, 66; exponential, 5; 2(1/n), 9;
2(1 In2) and related series, 205; sine
and cosine, 5, 150; tan, 20

series solution, of differential equations,
150-70
condition for solution, 152; converg-
ence of, 162; finite series, see finite
polynomials; general method, 153;
indiciarequation for, 153, equal roots
of, 155-7, roots of differing by an
integer, 157-62; ordinary and singular
points, 152; power series expansion of
the equation, 152; regular and irregular
singular points, 152; recurrence rela-
tion for, 153

shortest path, between two points, 336
similarity transformation, 391
simple harmonic oscillator, see oscil-

lators
simple pole, 468, 475
Simpson's rule, 313
simultaneous diagonalization, of mat-

rices, 405
simultaneous linear equations

homogeneous, 372; inhomogeneous,
379; and matrices, 305; numerical
methods for, 305-11

sine function
bound on, 67; in terms of exponential
functions, 5, 448; series for, 5

singular matrix. 377
singular points (singularities)

of a differential equation, 152; essen-
tial, 466; of a function of a complex
variable, 441

sinh, hyperbolic sine, 7, 448
sinusoidal functions, integrals of, 473
skew lines, 81
skew-symmetric matrix, 381
small oscillations, see oscillations, small
Snell's law, 341
soap films, 338-40, 346
solenoidal vector, 106
solid angle, as a surface integral, 91, 95
solute, diffusion of, 254-6
special relativity, 65
spherical Bessel function, j\(x) and «,(x),

282
spherical harmonics, y?(0, <£), 279, 290

completeness of, 280; definition of,
279; mutual orthogonality of, 279

spherical polar coordinates
differentials of length, area, volume in,
94; Laplace's equation in, 274-8;
as an orthogonal system, 93; vector
operators in, 110-14

spur, of a matrix, see trace, of a matrix
square matrix, 362
square root of — 1, i, 2-4
square-wave function, 194-7, 199
standing waves, 241
stationary property, of eigenvalues and

eigenvectors, 392-5
stationary values

under constraints, 41-5; of functions
of a single variable, 20; of functions
of several variables, 38-41; of inte-
grals, 333-5; under constraints, 344-6;
see also maxima and minima (local) of
a function

Stirling's approximation to In (n!), 44
Stokes' theorem, 105
strain tensor, 429-35, quadric, 432
streamline, 87, 450
stress tensor, 433-5, quadric, 434
string

loaded with point masses, 360, 406;
plucked, 200-3, 218, 291; transverse
vibrations of, 232; and wave equation,
245-7

strip, conducting, electrostatic potential
of, 484

Sturm-Liouville (S-L) equation, 175-80
boundary conditions for, 176, 351;
closure property of eigenfunctions of,
184; conversion to S-L form, 179;
examples of, 178-80; general form of,
176; Green's functions for, 183, 188;
mutual orthogonality of eigenfunc-
tions of, 178, 187; real eigenfunctions
for, 177; reality of eigenvalues of, 177;
self-adjoint operator in, 176; varia-
tional approach to, 350; weight func-
tion in, 176, 350

submarine cable, 258, 264
subscripts, 361

contraction of, for Cartesian tensors,
417

substitution, method of, 50
substitution property, of Laplace trans-

forms, 144
subtraction, of vectors, 71
sum of an infinite series, 8

by contour integration, 479
summation convention, 27-9, 362
superposition methods for ordinary

differential equations, 173-88
detailed examples of, 181; general
approach, 174; Green's functions for,
182-8

superposition methods for partial dif-
ferential equations, 253, 283-6
to meet boundary conditions, 283-6

superposition of amplitudes, 193
surface, normal to, 86
surface integrals, of scalars and vectors,

90-2
susceptibility tensor, 429
symbols, 1

table of, opposite p. 1
symmetric matrix, 369
symmetric tensor, 417, 430

tangential line integral, of a vector, 88
in definition of curl, 103; path depen-
dence, value for a closed loop, 89,
108; and potential, 110

Taylor series (expansion)
for a complex variable, 465; for



532 Index

Taylor series (contd.)
estimating errors (in numerical meth-
ods), 303, 312; to evaluate an indeter-
minate quotient of the form 0/0, 66;
and finite differences, 316, 325;
Lagrange's form of remainder, 20;
for a real variable, 20; for several
variables, 28; as a solution of a dif-
ferential equation, 321-3; about a
stationary point, 22n; for two vari-
ables, 26

Tchebyshev equation, see Chebyshev
equation

telegraphy equation, 256-8
tensors, see Cartesian tensors and

Cartesian tensors, particular
term by term, differentiation of Fourier

series, 204
thermodynamic relations, Maxwell's,

35
total derivative, 26
total differential, 26
trace, of a matrix, 388, 391, 417
transcendental equations, 295
transform, see Fourier transforms and

Laplace transforms
transformations

conformal, 452-4; linear, of variables
and the multiplication of matrices,
374; orthogonal, 389, 414; similarity,
391; unitary, 382

transients, see circuits electrical
translation property

of Fourier transforms, 213; of La-
place transforms, 144

transmission line, 256, 263
distortionless, 263; lossless, 257,
263; submarine cable, 258, 264

transpose, of a matrix, 369
transpose, of a vector, 361, 381
transverse vibrations

of rod, 259, 289; of string, 232
trapezium rule, 312
trial functions, for differential equations,

127-9, 259
trial functions, for estimating eigen-

values, 353
tridiagonal matrices, 309-11, 328
triple integral, 57
triple scalar product, 78

the invariance of, the vanishing of,
and as a volume, 79

triple vector product, 79
not associative, 80; in terms of scalar
products, 79

uncertainty principle, 209
undetermined multipliers, see Lagrange's

undetermined multipliers
uniqueness theorem, 235-7, 286
unit circle, 473
unit matrix, /, 378
unit vector, 70, 247
unitary matrix and transformation, 382
upper half-plane, 475

variables
change of, see change of variables;
change of in multiple integrals, 57-65;
complex, see complex variables; func-
tions of several, 22; separation of, see
separation of variables

variation
calculus of, 332-46; see also calculus
of variations; conditional (con-
strained), 41-3, 344-6; of parameters,
135-8, 184

vectors
base vectors, 73; calculus of, 83-94;
components of, 70, complex, 76;
definitions, 69; linear independence of,
73; modulus of, 70; in non-Cartesian
systems, 93; notation for, 70; with
several arguments, 85; surface element
as, 69, 86

vectors, algebra of, 69-81
addition and subtraction of, 71;
equal vectors, 70; orthogonalization
process for, 385; products, outer,
414, 416, scalar, 74-6, triple scalar,
78, triple vector, 79, vector, 76-8;
zero vector, 72

vectors, derived quantities from
curl of, 96, 101-6; derivatives of,
83-5; differential of, 85; divergence
of, 96, 98-101, 111-13; flux of, 90;
integration of, with respect to a scalar,
84; line integral of, 87, 90; reciprocal
vectors, 80, 406; rotation of, see curl
of; surface integral of, 90; tangential
line integral of, 88; transposed vector,
361, 381; vector fields, 86; volume
integral of, 92

vectors, properties of
axial and polar, 423-6; characteristic,
see matrices, eigenvalues and eigen-
vectors of; irrotational, 106; reflec-
tions, behaviour under, 423-6; sole-
noidal, 106; unit, 70

vector equation
of a line, 72; of a plane, 73, 75

vector product, of two vectors, 76-8
components of, 78; definition of, 76;
derivative of, 84; determinantal form
of, 78; linear velocity in a rotating
body as, 77; moment of a force as, 77

vector operators, 96-114
curl, 96, 101-6; del, V, 97, 100, 104;
del squared, V2, 101; div, 96, 98-101;
grad, 96-8; identities involving, 106,
421; Laplacian, V2, 107; in non-
Cartesian coordinates, 110-14; rot
see curl; as tensor relations, 420;
see also under individual operators

velocity vector, 83
vibrations

longitudinal, on a rod, 232; trans-
verse, on a membrane (drumskin),
232, 270, 359; transverse, on a rod,
259, 264, 289; transverse, on a string,
232
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volume, elements of in various coordinate
systems, 94

volume integrals, of scalars and vectors,
92

waves, harmonic, 190
wave equation, 234, 238

boundary conditions for, 245; from
Lagrange's equations, 343,; in one
dimension, 231, 240, 245-7, 257, 264;
standing waves, 241; in three dimen-
sions, 247, 267-9, 280-2

weight function, 176
work, done by a force, 75, 88

Yi(x), see Bessel's equation

Y™(9, <f>), see spherical harmonics
Young's modulus, 232, 434

z, as complex number, 2
z*, complex conjugate, 7
z-plane, see Argand diagram
zeros of a function of a complex vari-

able, 466
contours containing, 469; location of,
469-73, 485; order of, 466; principle
of the argument, 470, 485; Rouche's
theorem, 470

zero matrix, 0, 377
zero-point energy, 355
zero vector, 0, 72
zeroth-order tensor, see scalar
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