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Preface 

The use of computational techniques is increasing day by day in the manufacturing 
sector.  Process modeling and optimization with the help of computers can reduce  
expensive and time consuming experiments for manufacturing good quality 
products. Metal forming and machining are two prominent manufacturing 
processes. Both of these processes involve large deformation of elasto-plastic 
materials due to applied loads. In metal forming, the material is plastically 
deformed without causing fracture. On the other hand, in machining, the material is 
deformed till fracture, in order to remove material in the form of chips. To 
understand the physics of metal forming and machining processes, one needs to 
understand the kinematics of large deformation (dependence of deformation and its 
rate on displacement) as well as the constitutive behavior of elasto-plastic materials 
(dependence of internal forces on deformation and its rate). Once the physics is 
understood, these phenomena have to be converted to mathematical relations in the 
form of differential equations. The interaction of the work-piece with the tools/dies 
and other surroundings also needs to be expressed in a mathematical form (known 
as the boundary and initial conditions).  

In this book, the first four chapters essentially discuss the physics of metal 
forming and machining processes. The physical behavior of the work-piece during 
the processes is modeled in the form of differential equations and boundary and 
initial conditions. One of the well-known mathematical techniques to solve 
differential equations and boundary and initial conditions is the finite element 
method. Chapters 5–7 describe the finite element formulations of metal forming 
processes using Eulerian and updated Lagrangian approaches and that of 
machining process using an Eulerian approach. Instead of physics-based modeling, 
the metal forming and machining processes can also be modeled by another 
approach using only empirical data and soft computing techniques. Chapter 8 
introduces some soft computing techniques like neural networks, fuzzy set theory 
and genetic algorithms. Chapter 9 discusses the application of the soft computing 
techniques to metal forming and machining processes. Chapter 10 deals with 
optimization of metal forming and machining processes. Chapter 11 concludes the 
book. We feel that the physics-based finite element modeling and soft computing-
based modeling are complementary to each other. However, readers interested only 
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in finite element modeling may go through Chapters 1–7. Similarly, the readers 
interested only in soft computing based modeling may read only Chapter 1 and 
Chapters 8–10.  

This book is essentially for graduate students and researchers in the field of 
computational manufacturing. Some background in the areas of solid mechanics, 
finite element method and soft computing is desirable. For the benefit of readers, a 
brief review of these subjects is provided in Chapters 2, 5 and 8. The book can also 
be used as a textbook for a three-semester graduate level course (which can also be 
taken by senior undergraduate students) on modeling of metal forming and 
machining processes: the first course on theory of plasticity covering the first four 
chapters, the second course on finite element modeling of metal forming and 
machining processes covering Chapters 5–7 and the third course on soft computing 
modeling of metal forming and machining processes covering Chapters 8–10. 

The major objective of this book is to stimulate the interest of readers in the 
area of computational manufacturing. We expect the book to be used as a source of 
direction rather than information. In order to provide an optimized treatment of the 
subject, we had to make quite a few simplifying assumptions.  Although we have 
taken the utmost care to avoid errors, we would welcome details of errors and/or 
suggestions (preferably by e-mail) for improving future editions of the book. A 
number of books and papers have been consulted while preparing the draft of the 
book. A list of references has been provided at the end of each chapter. There may 
be some important works that may have been unintentionally omitted. We request 
the readers to bring any omissions to our notice.    

The authors of this book have a long association with each other, since the 
second author (USD) came as a graduate student to the Indian Institute of 
Technology (IIT) Kanpur in 1991. The two authors have worked together in the 
area of finite element modeling for several years. In 1998, the second author 
shifted to IIT Guwahati, about 1500 km from Kanpur, as a faculty member. 
However, e-mails and inexpensive telephonic communications compensated for 
the geographical distance. Both authors have been teaching the courses on Solid 
Mechanics, Plasticity, Metal Forming and Machining at IIT Kanpur and IIT 
Guwahati for the past several years. Further, they have supervised several masters 
and doctoral students in the area of finite element and soft computing applications 
to metal forming and machining processes and other plasticity problems. 
Interaction with these students (whom they taught as well as supervised) has 
certainly helped in preparing the draft of this book. The authors thank all these 
students. The complete list is long. However, the first author (PMD) cannot avoid 
mentioning the names of the following: his past Ph.D. students—Sankar Dhar, N. 
Venkata Reddy (now colleague at IIT Kanpur), Uday S. Dixit (the second author of 
the book), his present Ph.D. students—Ravindra K. Saxena, Anupam Agrawal and 
Sachin S. Gautam and his past M.Tech. student—S.N. Vardhan. The first author 
(PMD) would also like to thank his family for providing the moral support while 
writing the book: his wife Rekha, his daughter Rashmi, his and his wife’s brothers 
and sisters-in-law, his and his wife’s sisters and brothers-in-law and the son-in-law. 

We thank C. Venu Madhav and Sharad Tiwari, past M.Tech. students of the 
Department of Mechanical Engineering at IIT Kanpur, for preparing some figures 
in the first draft of the book. We acknowledge the help of Mr. P.P. Gudur, 
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Research Scholar in the Department of Mechanical Engineering at IIT Guwahati, 
for his help in drawing the figures and formatting the chapters.  We acknowledge 
the cooperation offered by the staff of Springer Verlag during the planning and 
production of the book. Our special thanks are to Mr. Anthony Doyle, Senior 
Editor Engineering at Springer London for his help. We also appreciate the help of 
Mr. Simon Rees of Springer London in going through the proofs and offering 
valuable suggestions.  
 
Prakash M. Dixit                                                                    Uday S. Dixit 
pmd@iitk.ac.in                                                                       uday@iitg.ernet.in 
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1 

Metal Forming and Machining Processes 

1.1 Introduction 

Two prominent methods of converting raw material into a product have been metal 
forming and machining. Metal forming involves changing the shape of the material 
by permanent plastic deformation. After converting non-porous metal into product 
form by metal forming processes, the mass as well as the volume remains 
unchanged. However, in the case of metal forming of porous metal, volume does 
not remain unchanged. The advantages of metal forming processes include no 
wastage of the raw material, better mechanical properties of the product and faster 
production rate.  Machining is the process of removing the material in the form of 
chips by means of a wedge shaped tool. In ductile materials, a significant amount 
of plastic deformation occurs before the material fractures. In brittle materials, very 
little plastic deformation takes place.  Hence, the mechanics of machining is quite 
different for ductile and brittle materials. In machining, the work-piece is subjected 
to shear, bending and compression by the tool. Combined loading effects as well as 
heat generation due to plastic deformation and friction influences the chip 
formation. Removal of metal in the form of chips causes wastage of the material, 
but machining can achieve good surface finish and dimensional accuracy. As a 
result of machining, the material properties are altered only at the surface or just 
below it. Even complex shapes can be produced with economy, thanks to computer 
numerically controlled (CNC) machines.  

The need to manufacture high precision items and to machine difficult-to-cut 
materials led to the development of the newer machining processes. These are 
called non-traditional or non-conventional machining processes, notwithstanding 
that the definition of conventional and traditional changes with time. Unlike 
conventional machining processes, non-conventional machining processes are not 
based on the removing the metal in the form of chips using a wedge shaped tool. 
There are a variety of ways by which the material may be removed in non-
conventional machining processes. Some of them are abrasion by abrasive 
particles, impact of water, thermal action, chemical action etc.   

This book focuses on modeling of metal forming and machining processes. 
Hence, in this chapter, we will introduce some of the basic metal forming and 
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machining processes. The primary aim is to introduce the process and performance 
parameters of interest in various processes. The need to model these processes and 
the difficulties in the modeling will be introduced. This chapter will be useful for 
understanding the terminology one frequently encounters in the modeling of metal 
forming and machining processes.   

1.2 Metal Forming 

Metal forming is the process of plastically deforming the raw material into product 
form. It is broadly classified into two classes—bulk metal forming and sheet metal 
forming. In the bulk metal forming processes, usually the work-piece has a high 
volume to surface area ratio.  Examples of such processes are rolling, wire 
drawing, extrusion, forging etc. In the sheet metal forming processes, usually the 
work-piece sheet has a low volume to surface area ratio. The sheets usually have a 
thickness less than 6 mm. In sheet metal working, the change in thickness during 
plastic deformation is not desirable. Examples of sheet metal forming processes are 
deep drawing, stretch forming, bending, spinning etc.  In the following subsection 
we describe various bulk metal forming processes. 

1.2.1 Bulk Metal Forming  

Bulk metal forming processes are characterized by high volume to surface area 
ratio. These processes can be carried out in hot or cold conditions. If the 
temperature during processing is more than the recrystallization temperature of the 
metal, the process is called hot working. Recrystallization temperature is the 
temperature above which new equiaxed and strain-free grains are formed replacing 
the old grains. For most metals, recrystallization homologous temperature ranges 
approximately between 0.3 and 0.5, where homologous temperature is the absolute 
working temperature (in Kelvin) divided by the absolute melting temperature of 
the work-piece. However, in hot working, the homologus temperature is generally  
more than 0.6.  If the temperature is less than the recrystallization temperature, the 
process is called cold working. In between cold working and hot working falls the 
warm working. In warm working, the heating of the work-piece reduces the flow 
stress; however the  temperature is not high enough to cause recrystallization. The 
relative ease with which metal can be shaped through plastic deformation is called 
workability. It is dependent on strain, strain rate,  temperature and inherent flow 
characteristics of the material.  Some typical bulk metal forming processes are 
described here. 

1.2.1.1 Forging 
Forging is the process of plastically deforming  metal by pressing or hammering. It 
is perhaps the oldest metal forming process. Forging may be performed in cold, 
warm or hot state of the metal. There are mainly two types of forging processes: 
open die forging and closed die forging. Open die forging is carried out between 
flat dies or dies of simple shape. In this process, on certain surfaces, material flows 
in an unconstrained manner. One example of open die forging operation is the 
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upsetting of a cylindrical work-piece between two flat dies, as shown in Figure 1.1. 
In this, the work-piece is kept on a fixed platen and the top surface is pressed by a 
moving platen. Due to friction between the work-piece and platens, the material 
faces a restraint in its flow at the top and bottom surfaces, whilst the middle portion 
flows freely. Because of this, the work-piece adopts a barreled shape. The amount 
of bulging may be used as an indirect measurement of friction at the tool-job 
interface [1]. Open die forging is often employed to pre-form material for 
subsequent metal forming processes.  

In closed die forging, also called impression die forging, the work-piece is 
deformed between two die halves, which carry the impression of the desired final 
shape. The hammering or pressing causes the metal to flow so as to fill completely 
the die cavity. Excess metal is squeezed out around the periphery of the die cavity 
to form a flash. In the die design, the design of a proper flash gap is very crucial. 
Besides providing an outlet for excess metal, it helps in proper filling of the die 
cavity. The flash is trimmed off after the forging operation is complete. This causes 
a significant amount (of the order of 20%) of wastage of material.  Figure 1.2 
illustrates a closed die forging process schematically.  In Figure 1.2b, the dies have 
reached the final position and the deformation is complete. Note the formation of a 
thin ribbon of excess metal called flash. This flash can be removed with a trimming 
die. In flashless forging, the flash is not produced. However, the design of a 
flashless process is difficult. In this process, the work-piece should be of proper 
size. Also, the design of work-piece and die is very important. 

 
Figure 1.1.  Open die forging process. a Before deformation.  b After deformation 

The strain rates in a forging operation can be of the order of 10 3 to 102 per second. 
The coefficient of friction ranges typically from 0.05 to 0.15 for cold forging and 
0.1 to 0.5 for hot forging. However, Coulomb’s law may not be applicable. At 
various locations at the die-work interface, the sticking may take place, i.e., the 
work-piece may not move relative to tool.  Lubrication plays a very important role 
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in forging. Besides affecting friction and die wear, it also acts as a thermal barrier 
between die and job. For hot forging, graphite, molybdenum disulfide and glass are  

 
Figure 1.2. Closed die forging process. a Before deformation.  b After deformation 

used as lubricants. For cold forging, mineral oils, synthetic oils or soap solutions 
can be used.  

Besides determining the loads to carry out forging operation, the determination 
of stress, strain, strain rate and temperature distribution in the material during 
processing as well as the determination of residual stresses after processing is very 
important for producing a good quality product. Typical forging defects are flash 
cracking extending up to the main product during trimming, surface cracking due 
to tensile stress generated and ductile fracture. Ductile fracture occurs due to 
micro-void nucleation, growth and coalescence into micro-cracks. There are many 
criteria for describing the process of void-nucleation.  These are based on critical 
stress, critical strain or critical strain energy in and around an inclusion. After 
nucleation, the void grows to a characteristic volume and shape depending on the 
material properties and process conditions. Stress triaxiality, i.e., the ratio of 
hydrostatic stress to equivalent stress, greatly influences void growth. When voids 
start coalescing, fracture occurs.  Thus, the knowledge of stress-strain distribution 
along with microscopic details of the material is important for predicting the onset 
of ductile fracture. Free surface folding, also called laps, is another defect 
occurring in the forging process due to inappropriate design of die or initial billet.  
To predict this defect, metal flow behavior has to be understood.     

Three-dimensional analysis of the forging process can bring out the detailed 
information about the process. However, sometimes the process may be modeled 
as a plane strain or an axisymmetric process. In a plane strain process, deformation 
is essentially two-dimensional. A simple slab method analysis shows that while 
compressing the plate in plane strain, the forging pressure decreases from the 
center towards the end [2]. This type of pressure distribution is called friction-hill. 
In the absence of friction, there will be no friction-hill and the pressure will be 
uniform. In the presence of friction, the resistance to deformation increases as the 
ratio of contact length to thickness increases [2]. Thus, in closed-die forging, the 
deformation resistance of the flash is very high because of its high length to 
thickness ratio. Therefore, the pressure in the die becomes high enough to ensure 
complete filling of the die cavity. 
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Axisymmetric problems are problems with radial symmetry, such as 
compression of solid or hollow disks. As in the case of plane strain, in the case of 
compression of a solid disk, the friction-hill behavior is present with a pressure 
peak at the center. The role of friction increases for large radius to thickness ratio. 
In forging problems, the excessive pressure may create sticking friction, where 
there is no relative motion between the work-piece and the dies. Actually, the 
frictional behavior of the surface is very complex. The coefficient of friction may 
vary along the surface. Study of friction, lubrication and wear forms the science of 
the tribology. In metal forming, the friction at the die and work-piece interface is 
usually found by a ring compression test, which is basically the open die forging of 
a hollow disk. The test uses a ring, usually with height not exceeding one-third of 
the outer diameter and inner diameter about 50% of the outer diameter. The friction 
is determined by measuring the percentage of change in the inside diameter when 
the disk is compressed. For low friction, the internal diameter increases as the disk 
is compressed. For high friction, the internal diameter of the ring reduces as the 
disk is compressed. Calibration curves are available to show the percentage change 
in inside diameter with the percentage reduction in height for different coefficients 
of friction. With the help of these curves, one can find the coefficient of friction by 
conducting a ring compression test.  This test was originated by Kunogi [3] and 
improved by Male and Cockcroft [4]. Avitzur [5] and Hawkyard and Johnson [6] 
carried out theoretical study of ring-compression. The method needs only the 
measurement of dimensions and does not require the measurement of compression 
load. It is generally assumed that calibration curves do not depend on material 
properties. However, recently Sofuoglu et al. [7] carried out a series of ring 
compression tests on different materials to investigate the effects of material 
properties, strain rate sensitivity and barreling on the behavior of friction 
calibration curves. They also carried out simulations using an elastic-plastic finite 
element code. The results of the experiments and finite element analysis indicated 
that material properties, strain rate and barreling do influence the friction 
calibration curves. Thus, although the ring compression test is an effective method 
for determining friction, its accuracy will be enhanced when material behavior and 
test conditions are taken into account. An accurate modeling of the ring 
compression process will help in the reduction of experiments for generating 
friction calibration curves. 

In three-dimensional open die forging of a block of rectangular cross-section, 
dimensions change along the thickness and length as well as width. When the 
thickness is reduced by compression, increase in length is called “elongation” and 
increase in width is called “spread”. If a solid work-piece of initial thickness ti, 
width wi and length li changes to final thickness tf, width wf and length lf, then a 
coefficient of spread can be defined as [8] 
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Due to volume constancy, 

 i i i f f fl w t l w t .  (1.2) 

Taking  logarithms of both sides and transferring the terms of the right side to left 
side, we get 

 ln( / ) ln( / ) ln( / ) 0f i f i f il l w w t t .  (1.3)  

Expressing the middle term in the above equation in terms of the other two terms 
and substituting it in Equation 1.1, the coefficient of spread can also be expressed 
as 
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The term (1 S) is called coefficient of elongation in the literature.  
Apart from its application in producing parts by metal forming, open die 

forging is often used for finding material behavior. Maximum strain in a tensile test 
is much smaller than that encountered in a metal working application. Therefore, 
compression of a short cylinder between anvils is used for measuring the flow 
stress variation with reduction. In the test, the friction is minimized by using 
smooth and hardened compression platens along with a good lubricant. The ends of 
the specimen are grooved in order to retain the lubricant. Sometimes the test is 
carried out in increments, so that the lubricants can be replaced at intervals. 
Another way to eliminate the effect of friction in the flow stress vs reduction curve 
is to plot the load-deformation curves for a number of different specimens with 
different diameter to height ratios and extrapolating the results to the case when 
diameter to height ratio becomes zero [2]. This is because when the diameter to 
height ratio is zero, friction is not having any influence on the process.   

1.2.1.2 Rolling 
Rolling is a process of metal forming in which raw material is shaped by passing it 
between two counter-rotating cylinders. The process can be used for reducing the 
thickness of slab, plate or sheet. It can also be used to produce products of different 
cross-sections. Both hot and cold rolling can be performed on a mill with one stand 
or several stands, the latter being called a tandem mill. Figure 1.3 shows a tandem 
mill with three stands. In this figure, each stand has two work-rolls, which are in 
contact with the material being rolled. On the other side, the work rolls are in 
contact with the backup rolls. Backup rolls are used to minimize the deflection of 
the work rolls.  
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 Figure 1.3. A four-high, three-stand tandem cold-rolling mill 

Thick ingots are hot rolled into blooms, billets or slabs. A bloom has a square 
or rectangular cross-section with a thickness greater than 150 mm and width less 
than twice the thickness. A further reduction by hot-rolling results in a billet. The 
billet has a square or circular cross-section. A slab refers to a hot rolled ingot 
having width greater than twice the thickness. Slabs can be further rolled into plate, 
sheet and strip. Generally, plate has a thickness greater than 6 mm, whilst the 
thickness of sheet and strip is less than 6 mm. The difference between sheet and 
strip is that the former has a greater width to thickness ratio. Plates, sheets and 
strips are cold rolled to thinner sheets. This process is called cold flat rolling.   

In cold flat rolling, the roll radius is usually more than 50 times the initial strip 
thickness. If the width of the strip is at least five times the length of the arc of 
contact, the material in the elastic zone prevents the lateral spread and deformation 
takes place effectively under plane strain conditions. As the strip enters the roll 
gap, it is first deformed elastically and is pulled by the frictional forces between 
roll and strip. Its thickness keeps on reducing and speed keeps on increasing. After 
certain distance of travel in the roll gap, a point comes where the speed of strip 
becomes equal to the peripheral speed of the roll. This point is the point of “no 
slip” and is called the neutral point. After that the strip speed keeps on increasing 
but the direction of frictional forces changes. Once the strip comes out of the roll, it 
is unloaded elastically. Some residual stresses get set up in the product. 

During the rolling process, only a small fraction of the roll periphery is in 
contact with the strip. This produces significant amounts of contact stresses in the 
roll and causes the roll to flatten. For relatively softer strips and large draft 
(difference of inlet and exit thicknesses), the deformation in the roll is small and 
the deformed surface is circular with increased radius of curvature. Hitchcock [9] 
has provided a formula to compute the radius of curvature of the deformed surface. 
It is based on the assumption that the roll pressure distribution is elliptical. 
According to this formula, the ratio of the radius of the deformed arc of contact R'  
to roll radius R  is given by 

 1 rFR'
R C

,                                           (1.5) 
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where Fr is the roll force per unit width of the rolled strip and 1 2h h is the 
draft. The constant C depends on the material of the rolls and is given by 
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,                                            (1.6) 

where Er is the Young’s modulus of elasticity and r is the Poisson’s ratio of the 
material of the roll. For getting less roll deflection, the material of the roll should 
have high Er. However, this is not the only consideration in choosing a roll 
material. The work roll material should have good thermal, mechanical and 
tribological properties. Common roll materials are alloy steel and high chromium 
cast iron. The roll force itself is dependent on the radius of deformed arc of 
contact; it increases with increasing roll flattening. Thus, the deformed roll radius 
has to be found iteratively using Equation 1.5. As is clear from Equation 1.5, roll 
flattening increases with reduction in the value of draft.   

Besides getting flattened, rolls also get deflected due to bending and shear. 
Rolls supported on bearings may be regarded as beams. If the strip is passed 
between the rolls symmetrically between two bearings, the maximum roll 
deflection will be encountered in the middle of two bearings. Therefore, after exit 
from the roll gap, the strip will be thicker in the middle with gradually decreasing 
thickness towards the end. Thus, the strip will adopt a convex profile. To 
compensate for this effect, rolls are ground so that their diameters at the center are 
slightly more than the edges and keep on decreasing towards edges. Thus, the roll 
adopts a convex profile, which is called camber. With proper camber during the 
rolling process, the rolls get deflected in a manner such that a uniform gap exists 
between the rolls across their widths and a flat sheet is produced. However, roll 
deflection is dependent on the process parameters. Thus, rolls with a particular 
camber are suitable for operation at particular process parameters. For precise 
control of flatness at various process parameters, the best method is to apply the 
load through backup rolls to counteract the roll pressure.    

Besides flattening and deflection of rolls, temperature also influences the work 
roll profile. The part of the roll in contact with the work-piece is hotter than the 
part outside the width of the work-piece. This causes differential radial expansion 
across the length of the roll and the roll profile gets distorted. The difference in roll 
diameter across the length of the roll due to temperature is called thermal camber. 
It can be controlled by providing a proper arrangement for cooling of the rolls. For 
this purpose, modeling of heat transfer phenomena plays an important role.    

Apart from the above roll deformation, additional roll displacement takes place 
due to elastic deformation of the structure under heavy loads acting on it. The 
combined effect causes the actual roll gap to be increased. The ratio of roll force to 
increase in roll gap is called mill modulus. Its value can be determined 
experimentally. Once the mill modulus is known, the roll gap can be set properly to 
obtain accurate final thickness. The following example illustrates the procedure of 
obtaining the mill modulus and using it to obtain the actual roll gap. In the 
example, the mill modulus of a laboratory mill is calculated [10]. 
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Example 1.1: Aluminum strips of width 38 mm and different thickness values 
were cold rolled in a laboratory rolling mill. First, material testing in a universal 
testing machine was carried out and the following equation for the flow stress was 
obtained: 

 
0.121

67 1
0.0016

. 

The data obtained in the rolling mill is given in Table 1.1. The work-roll diameter 
is 200 mm. 

Table 1.1. Data obtained in the laboratory rolling mill 

Experiment  
number 

Thickness of  
strip (mm) 

Roll gap setting  
(mm) 

Size of strip after 
rolling (mm) 

1 3 1.7 2.2 
2 3 1.4 2.0 
3 2.3 1.4 1.8 
4 3 1.95 2.38 
5 3 2.10 2.5 
6 3 2.25 2.58 
7 3 2.40 2.7 

 
From this data, determine the mill modulus of the rolling mill and develop an 

equation to set the roll gap for obtaining a prescribed thickness after rolling. 
 

Solution: The mill modulus of a rolling mill can be found from the relation 

 0
r

a
F wG G
M

,                                         (1.7) 

where Ga is the actual roll gap in mm during the rolling (equal to final strip 
thickness neglecting elastic recovery), G0 is the roll gap setting in mm, done before 
the rolling of the strip, w is the width of the strip in mm, Fr is the roll force per unit 
width in MN/mm and M is the mill modulus in MN/mm. The total load Frw  may 
be calculated from a rigid-plastic finite element method (FEM) code. As there are 
some inherent assumptions in the calculation of the load, it is better to replace Frw 
by a bF , where F is the total load in MN computed by FEM code. Thus, 
Equation 1.7 may be written as 

 0
( )

a
a bFG G

M
,                                   (1.8) 
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or  

 0aG G A BF ,                   (1.9) 

where A is defined as a/M and B is defined as b/M. This equation provides a linear 
relationship between the (Ga G0) and F. In the range of Coulomb coefficient of 
friction between 0.1 to 0.2 (usual range for dry rolling), the friction coefficient 0.16 
provided the best linear relation. For this coefficient of friction, the computed 
forces are  shown in Table 1.2. 

Table 1.2.  Forces computed by plane strain FEM code 

Experiment number F (MN) 
              1 0.05984 
              2 0.07277 
              3 0.04815 
              4 0.04901 
              5 0.04669 
              6 0.04182 
              7 0.03270 

 
Calculating the constants A and B with the data of first two experiments, we 

get, A=0.0372 and B=7.73395. With these, the gap is calculated for the other 
experiments and it is given in Table 1.3. It is seen that these values are very close 
to the exit thicknesses obtained. 

Table 1.3. Calculated actual roll gap 

Experiment number Ga (mm) 
3 1.81 
4 2.37 
5 2.50 
6 2.61 
7 2.69 

  
It is to be noted that, although this method provides an accurate estimate of the 

exit thickness, the actual roll forces need not be same as shown in Table 1.2. 
Mainly, the variation of friction across the roll-strip contact and exact values are 
not known. However, if we assume that the values of the roll force calculated by 
FEM are sufficiently accurate, i.e., a = 0 and b = 1, then B = 1/M, which provides 
M = 0.129 MN/m. This may be treated as an approximate estimate of mill 
modulus.   

One interesting feature of the rolling process is that in this process, the presence 
of friction is a must, notwithstanding that it also causes wastage of energy by 
generating heat. If the strip has to be drawn by the rolls themselves, the minimum 
coefficient of friction should be 



 Metal Forming and Machining Processes 11 

 1
min

h r
R

,                                                  (1.10) 

where r is the fractional reduction given by 

 1 2

1

h hr
h

.                                                                   (1.11) 

Once the rolling process has sustained, the minimum coefficient of friction is given 
by [11] 

 1
min

1
2 2

h r
R

.                                                    (1.12) 

This equation has been derived by considering the equilibrium of forces acting on 
the strip and taking the roll diameter as twice the actual roll diameter to take into 
account the roll flattening effect. If the coefficient of friction is less than the value 
given by Equation 1.12, the rolls will skid over the strip surface and the strip will 
not be drawn.                                                                               

The common defects in the sheet rolling are alligatoring, central burst, tearing 
and buckling of the strip. Alligatoring is also called split end defect. Split end 
defect initiates as a crack, forming along the central plane of the deformed 
material. As the rolling proceeds, the two halves of the material separate from each 
other and split end defect (alligatoring) occurs. The central burst defect is caused 
by internal void formation. This defect is promoted by small roll radius, large 
initial thickness of the sheet, small percentage reduction and front/back tension 
[12]. More or less the same conditions promote alligatoring [13]. If the front and 
back tensions are more than about one-third of the yield stress, the strip may tear 
[14]. On the other hand, if the tension is less than the maximum longitudinal 
compressive residual stress, the strip may buckle.   

The rolling process has many variants. Sheet or strip rolling is the basic 
process. Foil rolling is the process of rolling of sheets less than about 0.2 mm. The 
thickness of the rolled foil may be as low as 0.01 mm. Under these circumstances, 
there is no definite neutral point. Instead a zone exists in which there is no slip 
between the strip and the rolls. The thickness of the strip in this no-slip zone is 
effectively uniform. Roll deformation in such cases cannot be calculated by 
Hitchcock’s formula. 

Temper rolling or skin-pass rolling is the process of giving very light 
reductions (0.5–4%) to sheet. The process is used to improve surface finish, impart 
a degree of hardness, improve flatness and eliminate stretcher strains (Lueder’s 
bands). A brief description of Lueder’s bands is provided in Section 1.2.2.1. 
Another type of rolling process is asymmetric rolling, which is often undesirable 
and can occur if the friction conditions are different at the upper and lower rolls. 
However, sometimes it is employed for obtaining the desired curvature in the 
sheet. Rod rolling is used to produce rods of different diameters either from a 
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round or a rectangular cross-section. Pack rolling is a process in which two or more 
layers of metal are rolled together for improving the productivity. For producing 
various structural shapes, like channel, T and L sections, shape rolling is used. 

1.2.1.3 Wire Drawing 
Wire drawing is a process of pulling wires through tapered dies resulting in the 
reduction of its cross-section and increase in its length. The diameter of a wire may 
range from 0.025 mm to 15 mm, with research going on for producing the wires of 
even smaller diameter.  A similar process is rod drawing in which, instead of wires, 
rods are pulled through dies for reducing the cross-sectional area. The drawing 
operation is accomplished with or without a back tension applied to the wire at its 
entrance. The back tension increases the requirement of drawing force, but lowers 
the die pressure. The normal force per unit area exerted by the wire on the die is 
called the die pressure. Reduction in die pressure increases the die-life. The back 
tension also tries to keep the input work-piece straight. Drawing is normally a cold 
working process in which good tolerances and surface finish can be obtained. 
Usually, the die angles vary from 4  to 30 . The reduction in wire drawing is 
defined as  

 i f

i

A A
r

A
,                                                          (1.13) 

where Ai is the initial cross-sectional area and Af is the final cross-section area. 
Larger reduction may be obtained by passing the wire through a series of dies, the 
maximum reduction in one pass being limited to about 0.45. Sometimes 
intermediate annealing may also be required between two passes of wire drawing. 
For most wire drawing operations, the drawing speed (the speed of the wire at the 
exit of the die) ranges from 10 m/min to 3000 m/min. 

A very important component of wire drawing process is the die.  Dies are made 
of hardened steel, tungsten carbide or diamond. The die pressure is a major factor 
in deciding the selection of die material. Generally, a die has the shape of a 
truncated cone followed by a cylindrical zone. Sufficient relief is provided at entry 
and exit. Figure 1.4 shows the schematic diagram of a wire drawing process 
through a conical die.  In the figure,  is the semi-die angle, Ez is the entry zone, Lc 
is the conical zone, Lb is the straight bearing length and Dr is the die relief. Dies 
other than simple conical dies are also very common. 

Lubrication is employed in the process to reduce the wear of the die, drawing 
force and interface temperature. Wet and dry methods are two methods for 
applying the lubricants. In wet drawing, the entire drawing zone is submerged in a 
liquid bath. In dry drawing, the soaps placed ahead of the die are employed as 
lubricants. The average coefficient of friction ranges from 0.01 to 0.10 in a 
practical wire drawing operation. Though wire drawing is a cold working process, 
sometimes the temperature rise in the process is very significant, requiring the 
incorporation of thermal effects in the process modeling. 
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Figure 1.4. A wire drawing process 

 For a successful design of drawing equipment, sufficiently accurate estimation 
of drawing force, maximum die pressure and interfacial stresses etc. is required. 
For improving the quality of product, the knowledge of stress-strain distribution in 
the material during the process is very useful. Common defects in the wire drawing 
process are central bursting, surface cracking and residual stresses. Central bursting 
defects occur at large cone angles and small reduction, when the plastic 
deformation is mostly confined away from the central portion. In such a case, the 
fracture may take place at the center portion leading to chevron cracking. Many 
times chevron cracks may remain undetected and may cause failure of the wire 
during its service period. Surface cracking may occur due to improper selection of 
process parameters and insufficient lubrication. Compressive surface residual 
stresses are beneficial from the point of view of improving fatigue life; however 
tensile surface residual stresses are undesirable. Sometimes residual stresses lead to 
stress-corrosion cracking and warping of the wire/rod during the subsequent 
machining process. 

A variant of the wire drawing process is tube drawing. In this process, the 
thickness and/or diameter of the tube are reduced by pulling through a die. In the 
process, conventionally called sinking, the tube is drawn through a die without 
supporting the inside surface of the tube. As the inside surface of the tube is not 
supported in tube sinking, wall thickness and internal surface becomes uneven. For 
controlling the thickness, the plug or mandrel can be used as shown in Figure 1.5.  

A relatively new process in wire/rod/tube drawing is dieless drawing [15, 16]. 
In this process the cross-section of wire, rod or tube is reduced by pulling it 
without a die. The zone in which the reduction in cross-section takes place is 
located between a heating and a cooling zone. The drawing force is created by 
making use of two pairs of rollers rotating at different speeds. The slow rotating 
pair is located on the entry side and the faster one towards exit side. The main 
advantage of the process is that friction and the need for lubricants are eliminated.  
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Figure 1.5. A tube drawing process 

1.2.1.4 Extrusion 
Extrusion is the process in which the work-piece (billet) is placed in a chamber and 
is forced through an opening by means of a moving ram. Figure 1.6 shows a direct 
extrusion process through a square die, in which the work-piece and ram move in 
the same direction. There is a lot of friction force generated at the work-piece and 
container interface. To reduce the friction, vegetable and petroleum oils are 
generally used as lubricant. Extrusion can be performed in the hot or cold state of 
the material. In hot extrusion, a dummy block is kept between the ram and the 
material. The purpose of the dummy block is to avoid sticking of the ram with the 
work material. The material flow in the process is shown by arrows. In the square 
die, a portion of the material near the entry to the wall does not move. This is 
called the dead metal zone.  

In indirect extrusion, shown in Figure 1.7, instead of the movement of the 
work-piece, the die moves. Unlike direct extrusion, in this process ram and 
extruded product move in different directions. This causes less friction compared 
to direct extrusion. There is no friction between the container walls and the work-
piece. Friction is present at the interface of die and work-piece, which is a small 
region.  In the hydrostatic extrusion, shown in Figure 1.8, the chamber is filled 
with hydraulic fluid. There is no friction between the work-piece and container. 
The impact extrusion (Figure 1.9) is the process of producing hollow products, 
such as toothpaste tubes. As the name implies, in this process the ram makes an 
impact on the work-piece.  

The extrusion ratio R is the ratio of initial cross-sectional area of the billet, Ai to 
the final cross-section area after extrusion, Af. The extrusion ratio can also be 
expressed in terms of the fractional reduction as follows: 
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Figure 1.6. Direct extrusion process 

 
Figure 1.7. Indirect extrusion process  

 
Figure 1.8. Hydrostatic extrusion process 
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Figure 1.9. Impact extrusion process 

The extrusion ratio reaches about 40:1 for hot extrusion of steel and may be as high 
as 400:1 for aluminum. The extrusion ratio provides a better physical feel 
compared to fractional reduction, as is clear from the following example: 

Example 1.2: Find  the extrusion ratios corresponding to the fractional reduction 
of 0.9 and 0.95. 

Solution: For r = 0.9, using Equation 1.14, 

 1 10
1 0.9

R .  

Similarly, for r = 0.95, 

 1 20
1 0.95

R .   

We see that even though there is only a slight change in the fractional reduction 
from 0.9 to 0.95, the extrusion ratio doubled. If the final blank area is same, in the 
first case the initial area is 10 times, while in the second case it is 20 times.                                   

Similar to other bulk metal forming processes, in this process a number of 
defects might also occur. Prominent defects are surface cracking, pipe and central 
burst. Surface cracking occurs due to longitudinal tensile stresses. This defect is 
promoted by high temperature, high speed and friction. Surface defects occurring 
due to high speed is known as speed cracking. These defects may occur due to hot 
shortness. Hot shortness is due to local melting of some of the constituents along 
the grain boundaries. This causes weakening of that region and produces a crack 
during hot extrusion. A type of surface defect known as bamboo cracking may 
occur due to high friction. An extrusion defect (also known as extrusion defect, 
pipe, tailpipe, and fishtailing defect) occurs due to the typical flow pattern in 
extrusion [17]. The particular flow pattern tends to draw surface oxide and 
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impurities towards the center of the billet. This defect can be reduced by modifying 
the flow pattern. Central burst or chevron cracking can occur at low extrusion 
ratios. This defect is promoted whenever the material encounters more resistance to 
flow at the center rather than at the surface. In this case, high frictional resistance 
at the die-work-piece interface produces a sound product while center burst occurs 
when friction is low. 

Many shapes that are not possible by rolling can be produced by extrusion. 
Since the deformation is compressive, the amount of reduction is limited only by 
the capacity of the equipment. Tolerances of 0.05 mm/mm can easily be obtained. 

1.2.2 Sheet Metal Forming Processes 

Sheets are produced by a rolling operation. They have high ratio of surface area to 
thickness. Unlike bulk metal forming, in sheet metal forming, thickness is not 
generally reduced. It does, however, change due to Poisson’s effect. Too much 
decrease in the thickness may lead to necking. 

The number of sheet metal forming processes is quite large. It is not possible to 
cover every process in this chapter. Here, we first describe the deep drawing 
process, which is one of the most popular and widely investigated sheet metal 
forming process. The description will highlight many modeling issues. Then we 
describe sheet/tube bending processes. Afterwards, we describe punching and 
blanking. They are considered sheet metal forming processes, although they are 
unique in the sense that material removal takes place in these processes. Finally, 
we describe a number of other processes very briefly. 

1.2.2.1 Deep Drawing  
In the deep drawing process, a flat sheet metal blank is formed into a cylindrical or 
box-shaped part by means of a punch, which presses the blank into a die cavity 
(Figure 1.10). The blank is held in place with a blank-holder or a hold-down ring 
with a certain force. When the punch moves down, the portion beneath the blank 
holder is subjected to radial tensile stresses. Radial tensile stresses lead to 
compressive hoop stresses in that portion. Thus, the portion beneath the blank 
holder elongates in the radial direction and compresses in the hoop direction. 
Compression in the hoop direction may cause wrinkling of the flange during 
drawing. To avoid this, the blank-holder should apply sufficient amount of holding 
pressure. However, if the blank holding is excessive, the fracture of the sheet may 
occur at the end of the punch stroke. Thus, the optimization of blank holding 
pressure by the finite element method is becoming popular [18]. The cup wall is 
subjected to tensile stresses, which may cause thinning of the walls. 

If precise control of the thickness is desired, the clearance between the punch 
and die should be less than the thickness. This causes some reduction in thickness. 
This process is known as ironing. Because of the volume constancy, the length of 
the cup produced by ironing will be more than that produced by deep drawing with 
large clearance. 

The workability in the deep drawing process is assessed by limiting drawing 
ratio. The limiting drawing ratio is the maximum ratio of blank diameter to punch 
diameter that can be drawn without failure. Failure occurs by thinning of the cup 
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wall. It can be shown that the theoretical limiting drawing ratio is 2.718 [17]. The 
limiting drawing ratio increases with normal anisotropy. 

 
Figure 1.10. Deep drawing process. a Before deformation. b After deformation 

Anisotropy plays an important role in the performance of deep drawing 
processes. The anisotropy is of two types. In normal anisotropy the properties 
differ in the thickness direction. In planar anisotropy, the properties vary with the 
orientation in the plane of the sheet. Whereas deep drawability of sheets increases 
with normal anisotropy, planar anisotropy leads to the formation of ears in cup 
drawing [19]. Ears cause the wavy edge of a drawn cup. A sketch of earing defect 
is shown in Figure 1.11. 

 
Figure 1.11. An earing defect showing the formation of four ears 

In sheet metal working, yield point elongation is undesirable. Annealed mild 
steel exhibits this type of behavior, in which the region between upper and lower 
yield point is called yield point elongation. Because of this, material stretches in 
certain regions, with no yielding at the other regions. After the material has been 
strained enough to cross the yield point elongation, the entire specimen gets 
deformed uniformly. A sheet with yield point elongation produces Lueder’s band 
or stretcher strains. These bands are elongated depressions on the surface of the 
sheet and are also called worms. To avoid this problem, sheet is subjected to 
temper rolling.   

Another common defect in deep drawn product is orange peeling. This defect 
occurs when the grain size is large and individual grains deform independent of 
each other. Because of this, surface roughness increases. 
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1.2.2.2 Bending 
Bending is the process by which a straight length is transformed to a curved length. 
Bending of sheets is called sheet bending, whereas bending of tubes is called tube 
bending. Figure 1.12 shows the bent sheet. In the figure,  is the bend angle, R is 
the bend radius, a is the bend allowance and L is the length of the bend. The length 
of the bend is the width of the sheet perpendicular to the plane of bending. Figure 
1.13 shows two of the various possible methods of bending: air bending and roll 
bending. During bending the inner fibers are subjected to compressive strain and 
the outer fibers are subjected to tensile strain. In between, there are fibers, which 
have zero strain. The fibers of zero strain in the plane of bending are called the 
neutral axis. Its location is more towards the inner radius. The radial position of the 
neutral axis depends on the bend radius and bend angle. Knowing the correct 
location of the bend radius, one can find the bend allowance. 

 
Figure 1.12. A bent sheet 

 
Figure 1.13. Bending processes. a Air bending.  b Roll bending 
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As the bending radius to thickness ratio decreases, the tensile stress at the outer 
fibers increases. The limiting bend radius below which the cracking starts is called 
the minimum bend radius. It is usually expressed in terms of the thickness. For 
example, a bend radius of 4t  means that the smallest radius to which the sheet can 
be bent without cracking is four times its thickness. The bendability of a sheet can 
be improved by heating, applying hydrostatic pressure or by applying compressive 
forces in the plane of bending. In bending, proper allowance must be given to the 
elastic recovery, which follows plastic deformation. This recovery is called 
springback.  

Tube bending is similar to sheet bending, although there are procedural 
differences. One of the oldest methods of tube bending is to pack the tube with 
sand particles and then bend around a fixed block or die. This avoids inward 
buckling of the tube.  In conventional tube bending, different dies are required for 
bending to different radii. In die-less bending of U-bent tube, bending to different 
radii can be accomplished without a die [20]. The machine consists of feeding 
rolls, a bending roller and a rotating arm with a clamp which pulls the tube. The 
bending radius after springback is controlled by the position of the bending lever 
and the velocity ratio of tube feeding to the rotating arm.  

1.2.2.3 Punching and Blanking 
Both punching and blanking are shearing processes. In these processes, a portion of 
the sheet is removed from the rest of the part by shear. In punching, the objective is 
to make a hole; therefore, the material which is removed from the sheet is scrap. In 
blanking, the portion which is removed from the sheet is the desired product. 
Strictly speaking, the shearing  process is not a metal forming process, but is a 
metal removing process. However, it is different from a dominant class of metal 
removing processes, i.e., machining, in the sense that the material is not removed 
in the form of chips. 

Figure 1.14 illustrates a shearing process. In analytical models of the shearing 
process, the process is often assumed to be pure shearing, which does not represent 
the real situation. During the start of the process, the sheet is pushed into the die 
and the blank material is deformed elastically. The material between the punch and 
the die can be considered as a plate subjected to load. Thus, in the blank material, 
the stresses due to combined bending and shear are generated. The blank material 
is also subjected to thinning. Near the edges of the punch and die, the stresses 
concentrate in the blank material. Damage initiation followed by its growth takes 
place from the edges of the punch and die. With proper clearance, the cracks that 
initiate at the two edges will propagate through the metal and meet near the center 
of the thickness to provide a clean fracture surface. Insufficient clearance produces 
a ragged fracture and requires more energy to shear. Too large a clearance 
produces burrs. In the shearing of hard and brittle material, the clearance should be 
kept small, as there is much less plastic deformation. In the shearing of ductile 
material, the clearance should be kept greater to provide enough zone for plastic 
deformation.  

Two recent models of the shearing process are the pure shear model of Atkin 
[21] and the tension model of Zhou and Wierzbicki [22].  The former assumes that 
the pure shear model is responsible for fracture, while the latter considers the 
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tension to be responsible for it. Klingenberg and Singh [23] improved the shear 
model by allowing for additional stretching due to bending of the fibers 
surrounding the sheared edge of the hole. The main points of interest in the 
shearing process are the design of die and punch, the clearance between die and 
punch and the force required.      

 
Figure 1.14. Shearing process 

If the perimeter of the hole and the thickness of the sheet are large, a huge 
amount of force acts during the shearing operation. This requires more power and 
rigidity from the machine. To reduce the force on the punch, the blade is tapered, 
so that the entire punch does not come in contact with the sheet metal all at once. 
This taper is called shear. With this, the sheet can be cut with less force but more 
cutting stroke.    

One of the recent blanking processes is fine blanking, which produces close 
dimensional tolerance and burr-free smooth edges. A rigid machine and tools are 
employed for this process. The punch penetrates the full thickness of the material. 
Sideways flow of the material is prevented by an impingement ring having a V-
projection. Besides preventing the flow of the material, the V-projection provide a 
compressive environment near the shear zone.    

1.2.2.4 Some Other Sheet Metal Working Processes 
There are a number of other popular sheet metal forming techniques.  Flat strips 
can be roll formed into complex sections. The process involves progressive 
bending of metal strips as they pass through a series of rolls. By this process, a flat 
sheet can be converted to tubular or other cross-sections. 

Stretch forming illustrated in Figure 1.15 is used for producing large sheet 
metal parts in limited quantities. In this process, a sheet of metal is gripped by two 
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sets of jaws that stretch it and wrap it around a form block. In this process, most of  
the deformation is induced by the tensile stretching and the forces on the form 
block are lesser than in bending. There is a very little springback and the work-
piece conforms very closely to the shape of the form blank. 

 
Figure 1.15. Stretch forming process 

Spinning (Figure 1.16) is a process of forming axisymmetric sheet metal products. 
The process can be performed on a lathe machine. A form block (mandrel) is 
attached with the lathe spindle and rotated. The work-piece (blank) is clamped 
against it by tailstock. The blank is progressively formed against the form block  
with a tool. 

In explosive forming, the sheet-metal blank is placed over a die cavity and an 
explosive charge is detonated in water at a certain standoff distance from the blank. 
The shock wave propagating from the explosion provides a force to deform the 
blank. Instead of explosives, electric discharge in the form of sparks can also be 
used to generate a shock wave in a fluid. This is the principle of electro-hydraulic 
forming.   

Certain materials exhibit the phenomenon of superplasticity at high temperature 
and low strain rate combination. During the superplastic stage they can be 
stretched to up to about 200% reduction without breakage. Therefore, the 
superplastic sheets can be formed using the conventional sheet metal working 
techniques as well as polymer processing techniques with low force requirement. 
However, the tooling required for superplastic forming must be able to withstand 
high temperature. The strain rates in the process have to be slow; therefore a 
superplastic forming takes longer time. A superplastic material behaves like a non-
Newtonian fluid and its formability is dependent on the strain rate sensitivity.  The 
phenomenon of superplasticity has been observed in alloys of aluminum, titanium, 
ceramics and metallic composites having low grain size. Typical homologous 
temperature is more than 0.5, and strain rate less than 10 3 s 1. 
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Figure 1.16. Metal spinning process on a lathe 

1.3 Machining  

Machining processes are far more difficult to model physically than metal forming 
processes. This is because of the distinct behavior of the machining processes. In 
almost all machining processes, a wedge shaped tool or a number of tools make 
contact with the work-piece and remove the material in the form of chips. The 
process of chip formation is not known properly. In most of the textbooks on 
machining, a single shear plane model is described. This is based on the 
assumption that material removal takes place through shear over a very narrow 
zone. As argued by Astakhov [24], this model suffers from a number of drawbacks 
viz. infinite strain rate, unrealistically high shear strain, unrealistic behavior of the 
work material, improper accounting for the resistance of the work material to cut, 
unrealistic representation of the tool–work-piece contact, inapplicability for cutting 
brittle work materials, incorrect velocity diagram, incorrect force diagram and 
inability to explain chip curling. Actually the machining process is so complex that 
no existing physics-based model seems to describe the process properly. Some of 
the difficulties in the modeling of the machining processes are: 

 The   machining takes place under the condition of high strain rate and 
temperature. The proper constitutive model of the material for these 
conditions should be known. 

 The friction at tool-chip interface is very high and simple Coulomb’s 
model cannot be used. Estimation of the friction as well as the proper 
model for describing it poses a challenge. 
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 Whereas metal forming processes involve plastic deformation in all the 
processes, cutting mechanics varies a lot from material to material. There 
are different methods of fracture for ductile and brittle materials, and they 
are also dependent on the process conditions. 

 In machining processes, the estimation of surface roughness and tool wear 
is of paramount importance. They are highly sensitive to a number of 
factors and are highly statistical in nature. Therefore, prediction of these 
quantities just by physical modeling is a big challenge. 

There are a number of machining processes but in all of them there is a relative 
motion between the tool and work-piece, which is called cutting speed. In addition 
to main cutting motion, the tool is traversed perpendicular to cutting motion, which 
is called feed motion. If the cutting edge is perpendicular to the cutting velocity, 
the process is called orthogonal cutting. If the cutting edge is not perpendicular to 
the cutting velocity, the process is called oblique cutting. Most machining 
processes are oblique cutting processes. However, because of their simplicity 
orthogonal machining processes have been studied a lot and findings have been 
extended to oblique cutting. 

In this section we shall describe the salient points related to the modeling of the 
machining process under two headings—turning and milling.  These are two 
widely used machining processes. Turning is used mainly for producing 
axisymmetric components, whilst milling is mainly used for producing flat 
surfaces or prismatic shapes. The discussion here is mainly intended to provide a 
background for modeling of machining processes by finite element methods and 
soft computing techniques. For technological details of the processes, the reader 
can refer to a number of textbooks on this subject [17, 25–27].  

1.3.1 Turning  

Turning is a process of removing excess material from the work-piece to produce 
an axisymmetric surface, in which the work-piece (job) rotates in a spindle and the 
tool moves in a plane perpendicular to the surface velocity of the job at the tool-job 
contact point. Turning operations are performed on a machine tool called a lathe. 
Modern computer numerically controlled (CNC) lathes with a tool magazine for 
mounting a number of tools are called turning centers. In straight turning, the tool 
moves parallel to the job axis to machine the rotating job for producing a 
cylindrical surface. In taper turning, a conical surface is produced. With the 
exception of taper turning by a form tool, in this process the tool moves 
simultaneously along the axis of the job and a radial direction to produce a conical 
surface. In taper turning by a form tool, a tool having the form of the taper is fed in 
a radial direction. The method is limited to turning short lengths of taper only. 
Form turning is used to produce axisymmetric surfaces of various types. It may be 
accomplished by using a form tool, by tracing a template or by providing 
simultaneous motion to the tool along longitudinal and radial directions, the latter 
being more common in CNC turning centers. 

The process parameters of interest in turning are cutting speed, feed and depth 
of cut.  The cutting speed can be defined as the relative surface speed of the work-
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piece with respect to the tool, which is responsible for material removal. Thus, in 
turning it is the surface speed of the job. If D is the outer diameter of the job in mm 
and N is the revolution per minute (RPM) of the spindle, then the cutting speed v in 
m/minute is given by 

 
1000

DNv .                                                       (1.15)     

Usually the cutting speed is expressed in m/min and not in m/s. It is important 
to know commonly used units of various variables in metal cutting and be careful 
in converting them to other units, particularly when empirical relations are 
involved. The cutting speed at the tool nose is slightly less than this conventionally 
accepted definition of cutting speed. The relative motion of the tool with respect to 
the job in a direction perpendicular to the direction of cutting speed for the purpose 
of reaching unmachined surface is called feed, f. In straight turning, it is the 
distance moved in one revolution along the longitudinal axis of the work-piece and 
is expressed in mm/revolution. The tool travel speed in mm/min is the feed 
multiplied by the spindle RPM. The depth of cut (d) is the penetration of the tool 
into the job beneath the job surface. In turning, it is the radial distance from the 
unmachined surface of the job to the tool tip. In one pass of the tool across the 
longitudinal axis of the job, the job diameter will be reduced by twice the depth of 
cut. 

The main objectives in the optimization of a turning process are minimization 
of the cost of production, maximization of the production rate, maximization of the 
profit rate, minimization of the surface roughness of the machined surface, and 
minimization of the dimensional deviation. The material removal rate (MRR) in 
mm3/min in a turning process is given by 

   MRR= 1000 f v d.                                                     (1.16) 

The above equation shows that to increase the material removal rate, one has to 
increase feed, cutting speed and depth of cut. However, increasing these quantities 
beyond a limit has an adverse effect on the tool life, surface finish and dimensional 
deviation, thus affecting productivity and quality. Hence, deciding the proper 
values of the process parameters in a given context forms an interesting 
optimization problem.  

The cutting tool has great influence on the performance parameters. In turning, 
usually a single point cutting tool (Figure 1.17) is employed. Figure 1.17 shows the 
tool angles according to American Standard Association (ASA). According to this 
system, the seven elements that comprise the signature of a single point cutting tool 
are stated in the following order: back rake angle, side rake angle, end relief angle, 
side relief angle, end cutting edge angle, side cutting edge angle and nose radius. 
The angles are expressed in degrees and nose radius in mm. Relations have been 
developed, which transform tool angles from one system to the other [27].  The 
tool signature has a great influence on the machining performance.    
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Figure 1.17. Tool angles of a single point cutting tool 

Figure 1.18 shows a schematic representation of the straight turning process. In 
general, it is an oblique cutting process. The portions of the tool drawn in solid and 
dotted lines represent the positions of the tool before and after one revolution of the 
job, respectively. It is seen that the tool side cutting edge digs into the job 
perpendicular to the edge by an amount t, which may be called uncut chip 
thickness, as this is the thickness of the material that forms the chip. If  is the side 
cutting edge angle, the uncut chip thickness can be expressed as 

    cost f .                                       (1.17) 

Similarly, the width of the uncut chip is 

 / cosw d .                                                 (1.18) 

Thus, it is seen that the width of the uncut chip is related to depth of cut and the 
uncut chip thickness is related to feed. (Undergraduate students often make the 
mistake of relating uncut chip thickness to depth of cut.) If the chip thickness is tc, 
the cutting ratio, r, is defined as 

 
c

tr
t

.                                                                     (1.19) 

This ratio is always less than unity and its reciprocal is called chip compression 
ratio.  
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Figure 1.18. A straight turning process 

Cutting tool material affects the performance of the process to a great extent. A 
good tool material must have toughness (ability to withstand shocks) as well as hot 
hardness (ability to retain its hardness at high temperature). The common tool 
materials are high-speed steel (HSS), cemented carbide, coated carbide, cermets, 
ceramics and polycrystalline materials. In high-speed steel, the major constituents 
are iron, carbon, tungsten, chromium, vanadium and cobalt. The common 18-4-1 
high-speed steel means a high-speed steel with 18% tungsten, 4% chromium and 
1% vanadium. The addition of cobalt with an amount of 5–10%, increases tool life 
at high speed. Such a high speed is called super high speed. Cemented carbide is 
produced by a powder metallurgy process and consists of hard particles in a binder 
metal. Earlier a tool with 94% tungsten carbide and 6% cobalt was very common. 
Now there are many grades of carbide material with tungsten carbide, titanium 
carbide, tantalum carbide and niobium carbide in cobalt binder. A cemented 
carbide tool can perform turning at a speed of 2–3 times the speed used by HSS 
tools. However, their toughness is lower. Coating the cemented carbide tools with 
6–12- m coating of titanium carbide, titanium nitride, titanium carbonitride, 
aluminum oxide and aluminum oxynitride further improves its wear resistance. 
Alumina-based ceramic cutting tools are attractive alternatives to carbide tools for 
the machining of steels and cast irons because of their higher hot hardness. Two 
main types of these ceramics are pure/white oxide ceramic and mixed/black oxide 
ceramic. White oxide ceramic containing Al2O3 with sintered additives and without 
a metallic binder phase is relatively brittle.  Its toughness can be improved by 
embedding fine zirconia (ZrO2) particles by an amount of 3–5% into the aluminum 
oxide matrix. Such a ceramic is called a dispersion ceramic. White oxide ceramic 
is used in rough machining of gray cast iron, nodular cast iron and chilled cast iron. 
The black oxide ceramic contains, besides aluminum oxide, titanium oxide and/or 
titanium carbonitride in the order of about 30% by weight. It is generally used for 
machining of hard materials and finish machining of cast iron. Polycrystalline 
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diamonds are the hardest among modern tool materials. Two main types are 
polycrystalline diamond (PCD) and cubic boron nitride (CBN). CBN has been a 
popular tool material in hard turning, i.e., the machining of material having 
hardness between 45–70 HRC. One interesting phenomenon in the hard turning of 
ferrous materials is the formation of about 10 m deep white layer, which 
generally consists of a hard phase and leads to the surface becoming brittle [28]. 

The cutting fluids or coolants play an important role in the turning process. 
They are used to reduce friction, wear and temperature. Common cutting fluids are 
soap solution and mineral oils. Soap solution is used in the machining of soft steel, 
kerosene in the turning of aluminum and mineral lard oil in the turning of brass. 
Cast iron is machined dry. In recent years, dry turning or turning with minimum 
lubrication is gaining popularity due to environmental hazards posed by coolants.  

1.3.2 Milling  

Milling is the process of producing flat surfaces and prismatic shapes. Unlike 
turning, it employs a multipoint cutting tool called a cutter and having many teeth. 
The main cutting motion is imparted to the cutter and linear feed motion to the 
work-piece. Two popular types of milling machines are horizontal and vertical 
milling machines. In horizontal milling machine the spindle is horizontal and in the 
vertical milling machine it is vertical. Two main classifications of milling 
processes are peripheral milling and face milling. In peripheral milling the cutting 
edges are primarily on the periphery of the cutter. There are various types of  
peripheral milling processes. Slab milling is used to produce flat surfaces, slot 
milling is used to produce slots and form milling is used to produce a form.  
Peripheral milling is performed on horizontal milling machines. It can be further 
divided into two types—up (conventional) milling and down (climb) milling. In  
up milling, job feed motion is opposite to cutter motion, whilst in down milling the 
cutter motion and job motion are in the same direction (Figure 1.19). In up milling, 
the chip varies in thickness from a minimum at tooth entrance to a maximum at 
tooth exit, whilst the reverse is the case in down milling.  

 
  Figure 1.19. Peripheral milling. a Up milling.  b Down milling 

In down milling, the net force is directed downward and its vertical component 
keeps pressing the job against the table. Thus, it requires a simplified fixture. It 
requires less power in feed motion as the horizontal component of the net cutter 
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force assists in feed motion. The cutting operation is smoother as the tooth starts 
from maximum thickness and uncut chip thickness keeps reducing till the tooth 
leaves the machined surface at zero uncut chip thickness. Due to smoother 
operation, the process has a lesser tendency to chatter. In up milling, when the 
cutter starts from zero thickness, it rubs with the work-piece for sometime before 
biting into the material. This rubbing action reduces tool life. This disadvantage is 
not present in down milling, although if the surface is sandy or scaly, down milling 
may reduce the tool life than up milling in which the cut starts from the machined 
neat surface. In spite of all the advantages of the down milling, it is not used in a 
machine without a backlash eliminator in the lead screw-nut drive of the table. 
Without this, the table has a tendency to encounter jerky motion whenever there is 
a fluctuation in the cutting force.    

Most of the discussion pertaining to turning is also applicable to milling. 
However, the milling process is more complex than turning as it is not a 
continuous cutting process. The number of teeth in a cutter is an important tool 
variable as well as the geometry of an individual tooth.  The higher the number of 
teeth the smoother the operation; however, reducing the tooth width beyond a limit 
weakens the individual tooth and provides less space for the chip. Wider cutters in 
peripheral milling are helical instead of straight in order to reduce the cutting force 
and provide smoother cutting action, although at the expense of increased axial 
thrust. 

Face milling is performed on vertical milling machines. As illustrated in Figure 
1.20, in this process part of the material is subjected to up milling and another part 
is subjected to down milling. Besides the geometry of an individual tool, the 
number of teeth and the diameter of the cutter are important tool parameters. Some 
tool manufacturers recommend that the cutter’s diameter to width of cut ratio 
should be approximately 3:2 for steel, 5:4 for cast iron and 5:3 for light alloys [29]. 
The surface generated by face milling has circular marks.  End milling, a process 
used to machine slots, is a combination of peripheral and face milling. 

 
Figure 1.20. Plan view of the face milling process 
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1.3.3 Some Other Machining Processes 

Turning and milling are two popular and typical machining processes. There are a 
number of other machining processes. Here a few of them are described very 
briefly. Drilling is a process of making a hole. The hole is generated by the edges 
of a cutting tool known as the drill. In drilling machines, the drill rotates, whereas 
if drilling is performed on a lathe, the work-piece rotates and the drill advances in 
the axial direction. The most common type of drill is the twist drill with two spiral 
flutes or grooves that run lengthwise around the body of the drill. The flutes help to 
remove the chips from inside the hole. The determination of the torque and thrust 
in drilling has been an interesting research topic. However, the surface finish 
prediction of machined holes was not paid much attention, perhaps because drilling 
is followed by reaming for generating a better surface finish or boring for enlarging 
the size of the hole. 

In the broaching process, a long tapered tool called the broach is passed across 
the stationary work-piece. There are a number of teeth on the broach, each of 
successively greater height. Linear cutting speed is provided to the broach. The 
feed per tooth is the difference between the heights of the tooth doing cutting and 
the preceding tooth. The cutting speed in broaching lies between 1 m/min and 25 
m/min. The feed per tooth is kept small (less than 0.1 mm/tooth), hence the length 
of the broach is high. Broaching is classified into internal broaching for machining  
holes (finishing the hole or making splines and internal gears) and external 
(surface) broaching for machining an external surface. The broach may be pushed 
or pulled over the job. The pull type is more common as it places the broach in 
tension and avoids buckling of the broach. The typical load in broaching ranges 
from about 50 kN to 250 kN. 

Grinding is an abrasive finishing process. A number of grains participate in 
removing the chips, each removing only a small portion. Silicon carbide and 
alumina are two abrasive materials. The rake angles of individual abrasive grains 
may range from –60  to +45 . Sometimes the shape of the grains is spherical.  
Grains that participate in machining are called active grains. The size and distance 
from the center of different active grains are different. During grinding, the grains 
keep breaking and forming new cutting edges. Thus, grinding is a self-sharpening 
process. A grinding wheel is called hard or soft depending on the bond strength of 
the grinding wheel and not on the abrasive grains. For grinding of the hard material 
a soft wheel is used and vice versa. In grinding, cutting speeds are very high 
(1500–2000 m/min) and feed per abrasive grain is very small. Hence, due to the 
size effect, power requirement is high. Cylindrical objects are ground on 
cylindrical grinding machine, in which the job rotates at a slower speed and the 
grinding wheel at a higher speed. In surface grinding the job moves linearly and 
grinding wheel rotates. Prediction of surface roughness in the grinding process is 
an interesting topic. Another parameter of interest is wear ratio, the ratio of volume 
of material removed and volume of wheel wear.      
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1.4 Summary 

In this chapter, a number of metal forming and machining processes have been 
introduced in order to provide a background for understanding the chapters on the 
modeling of these processes. Metal forming processes may be divided into bulk 
metal forming and sheet metal forming processes. Forging, rolling, extrusion and 
wire drawing are the bulk metal forming processes described in this chapter. The 
important process and performance parameters of these processes have been 
highlighted. The parameters in other metal forming processes are also similar. For 
sheet metal forming processes we have provided a relatively detailed discussion on 
deep drawing, bending and shearing processes, because of their popularity and 
distinct nature. Some other sheet metal forming processes have been discussed 
briefly and illustrated with the help of figures. In machining, the turning process 
has been described in detail followed by milling. Many concepts discussed for 
these two processes are common to almost all machining processes. We have also 
discussed drilling, broaching and grinding. A number of references have been 
provided, to which the reader can refer for more details.  
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2 

Review of Stress, Linear Strain and Elastic           
Stress-Strain Relations 

2.1 Introduction 

In metal forming and machining processes, the work-piece is subjected to external 
forces in order to achieve a certain desired shape. Under the action of these forces, 
the work-piece undergoes displacements and deformation and develops internal 
forces. A measure of deformation is defined as strain. The intensity of internal 
forces is called stress. The displacements, strains and stresses in a deformable body 
are interlinked. Additionally, they all depend on the geometry and material of the 
work-piece, external forces and supports. Therefore, to estimate the external forces 
required for achieving the desired shape, one needs to determine the displacements, 
strains and stresses in the work-piece. This involves solving the following set of 
governing equations: (i) strain-displacement relations, (ii) stress-strain relations 
and (iii) equations of motion. 

In this chapter, we develop the governing equations for the case of small 
deformation of linearly elastic materials. While developing these equations, we 
disregard the molecular structure of the material and assume the body to be a 
continuum. This enables us to define the displacements, strains and stresses at 
every point of the body. 

We begin our discussion on governing equations with the concept of stress at a 
point. Then we carry out the analysis of stress at a point to develop the ideas of 
stress invariants, principal stresses, maximum shear stress, octahedral stresses and 
the hydrostatic and deviatoric parts of stress. These ideas will be used in the next 
chapter to develop the theory of plasticity. Next we discuss the conditions which 
the principle of balance of linear momentum places on the derivatives of the stress 
components. These conditions lead to equations of motion. The concept of linear 
strain, which is a measure of small deformation, is discussed next. For linear 
strain, the strain-displacement relations are linear. The linear strain measure is not 
directly useful in the analysis of plastic deformation, but it does provide a 
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qualitative understanding of deformation in solid bodies. We can draw upon it to 
develop a measure for large deformation which is to be used in the theory of 
plasticity. The analysis of linear strain at a point, similar to the analysis of stress at 
a point, is also carried out to develop the ideas of strain invariants, principal 
strains, maximum shear, volumetric strain and the hydrostatic and deviatoric parts 
of strain. Finally, the stress-strain relations for small deformation of linearly 
elastic materials are developed. Even though these relations are not directly useful 
for analyzing plastic behavior, their development provides a methodology of 
expressing qualitative material behavior into quantitative form. This will be useful 
for developing the plastic stress-strain relations in the next chapter. 

Since the stress and strain at a point are tensor quantities, a simple definition of 
tensors involving transformation of components with respect to two Cartesian 
coordinate systems is provided. Essential elements of tensor algebra and calculus 
needed to develop the governing equations are discussed. For more elaborate 
definitions of tensor and for more details of tensor algebra and calculus, the reader 
is advised to refer to other books. There are quite a few well-written books on these 
topics like those by Jaunzemis [1], Malvern [2], Fung [3], Sokolnikoff [4] etc. 

Both tensor and vector quantities are denoted by bold-face letters. Whether the 
quantity is a tensor or a vector can be understood from the context. Some tensor 
quantities, like the displacement gradient tensor, involve the use of symbol like the 
capital Greek letter delta. Most tensors used in the book are of second order. 
However, for brevity, the adjective “second order” is dropped. Thus, the word 
tensor without any qualifier means second order tensor. Higher order tensors are 
referred to by their order. For example, the tensor relating stress and strain tensors 
in the stress-strain relations is of fourth order and is referred to as such. The 
governing equations and some intermediate equations are expressed in tensor 
notation. This is done to emphasize the fact that these equations have a form which 
is independent of the coordinate system. However, while doing calculations, one 
needs a form of these equations which depends on the coordinate system being 
used. Index notation and the associated summation convention are useful for 
writing the component form of these equations in a condensed fashion. Since the 
reader is not expected to be familiar with the index notation and summation 
convention, both are discussed at length right from the beginning. Sometimes, for 
calculation purposes, an array notation is useful for writing the component form of 
these equations. This involves knowledge of matrix algebra. It is expected that the 
reader will have sufficient background in matrix algebra and the associated array 
notation. Wherever possible, the equations are expressed in all three notations: 
tensor, index and array notations. The calculations are carried out either in index 
notation or in array notation depending on the convenience of the situation. 

The organization of this chapter is as follows. In Section 2.2, we introduce 
index notation and summation convention. The idea of stress at a point is 
developed in Section 2.3. Further, the analysis of stress at a point is also carried 
out. Equations of motion involving the derivatives of stress components are also 
presented in this section. The concept of linear strain tensor and associated strain-
displacement relations are developed in Section 2.4. Additionally, analysis of the 
linear strain tensor and compatibility conditions for the strain components are also 
discussed in Section 2.4. Section 2.5 is devoted to the development of stress-strain 



  Review of Stress, Linear Strain and Elastic Stress-Strain Relations 35 

relations for small deformation of linearly elastic materials. Finally, the whole 
chapter is summarized in Section 2.6. Worked out examples are provided at the 
end of Sections 2.2–2.5 to elaborate the concepts discussed in that section. 

2.2 Index Notation and Summation Convention  

In the modeling of manufacturing processes, we encounter physical quantities in 
the form of scalars, vectors and tensors. Definition of a tensor is provided in 
Section 2.3. (In this book, a tensor means the tensor of order two unless stated 
otherwise). In three-dimensional space, a vector has three components and tensor 
has nine components. The index notation can be employed to represent these 
components as well as expressions and equations involving scalars, vectors and 
tensors. In the index notation, the coordinate axes (x,y,z) are labeled as (1,2,3). 
Thus, to represent a velocity vector ( , , )x y zv v v , we use the notation iv , where it is 
implied that the index i takes the values 1, 2 and 3 in three-dimensional space. In  
two-dimensional space, it will take the values 1 and 2. Similarly, the notation ijI  
with the indices i  and j  is used to represent the following nine components of an 
inertia tensor: zzzyzxyzyyyxxzxyxx IIIIIIIII ,,,,,,,, . 

Einstein’s summation convention is employed for writing the sum of various 
terms in a condensed form. In this convention, if an index occurs twice in a term, 
then the term represents the sum of all the terms involving all possible values of 
the index. For example, iiba  means 332211 bababa  in three-dimensional space. 
Similarly, iiI  means 332211 III . The repeated index is called a dummy index, 
while the non-repeated index is called a free index. Thus, in the term jijbc , i  is a 
free index and j  is a dummy index. Any symbol can be used for a dummy index. 
Therefore, the expression jijbc  can also be written as kik bc . When there are two 
dummy indices, it means the sum over both. Thus in three-dimensions, it will 
contain nine terms. As an example, the term ijij qp  means 

11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33p q p q p q p q p q p q p q p q p q . 
If an index is repeated more than twice, then it is an invalid expression. An 
expression or equation containing no free index represents a scalar expression or 
scalar equation. Similarly, an expression or equation containing one free index 
denotes a vector expression or equation. An expression or equation containing two 
free indices represents a tensor expression or equation. As an example, the term iiI  
represents a scalar, the term jijbc  containing the free index i  represents a vector 

while the term ij jkp q  containing the free indices i  and k  represents a tensor. 
Similarly, the equation 

 i ia b d  (2.1) 
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represents a scalar equation. Further, the equations 

 ijij tn ,     (free index i , dummy index j ), (2.2) 

 kjikij rqp ,     (free indices i and j , dummy index k ) (2.3) 

denote vector and tensor equations respectively. In an equation, all the terms 
should have the same number of free indices. Further, the notation for free indices 
should be the same in all the terms.  Thus, the equations  

 jii aI ,    (no free index on left side) (2.4) 

and 

 klij qp , (the two free indices have different notation on two sides) (2.5) 

are invalid expressions. 
 
Example 2.1: Expand the following expression:  

 jiji nt . (2.6) 

Solution: This is a vector equation as there is only one free index, namely i , on 
each side of the equation. Dummy index j  on the left side indicates that it is a sum 
of three terms. Expanding this sum, the equation becomes 

 1 1 2 2 3 3i i i it n n n . (2.7) 

Now, since i  is a free index and takes the values 1, 2 and 3, the above vector 
equation actually represents the following three scalar equations: 

 
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

,
,
.

t n n n
t n n n
t n n n

 (2.8) 

Example 2.2: Write in index notation the following expression: 

 
2 2 2

11 1 22 2 33 3 12 21 1 2 23 32 2 3

31 13 3 1

( ) ( )
( ) .

n n n n n n n n
n n

 (2.9) 

Solution: Note that there are nine terms. Therefore, the index notation must 
involve two dummy indices. In order to write the above equation in terms of the 
dummy indices, we rearrange the right side as follows: 



  Review of Stress, Linear Strain and Elastic Stress-Strain Relations 37 

 11 1 1 12 1 2 13 1 3 21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

( ) ( )

( ).
n n n n n n n n n n n n n

n n n n n n
 (2.10) 

Note that in each parenthesis, there is a sum over the second index of  and the 
index of second n . This sum can be expressed using a dummy index which we 
denote by j . Then,  the above expression becomes 

 1 1 2 2 3 3n j j j j j jn n n n n n . (2.11) 

Now, there is a sum over the first index of  and the index of first n . We express 
this sum using another dummy index which we denote by i . Thus, the final 
expression in terms of the index notation can be written as 

 jiijn nn . (2.12) 

Note that, as stated earlier, the symbols for the dummy indices can be other than i  
and j . 

Two symbols often used to simplify and shorten expressions in index notation 
are Kronecker’s delta and permutation symbol. The Kronecker’s delta is defined by  

 
1 if ,

0 if .
ij i j

i j
 (2.13) 

The permutation symbol is defined by  

0  if two or more indices are equal,

 1 if  , ,  are even permutations of 1,2,3 ,

1 if  , ,  are odd permutations of 1,2,3 .

ijk

i j k

i j k

       (2.14) 

The symbols  and  satisfy the following identities: 

, ,i ij j ij jk ik ij jk ika a A A ,                                         (2.15) 

ijk pqr ip jq kr jr kq iq jr kp jp kr ir jp kq jq kp .

          (2.16) 

Example 2.3:  Expand the following expressions: 

 (a) .i j ijc a b  (2.17) 

 (b) ˆ .ijk j ka bid i  (2.18) 
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Solution: (a) This is a scalar equation involving two dummy indices i  and j . 
Thus, it involves a sum of nine terms. First expanding the sum over i , we get the 
following three terms on the left side of Equation 2.17:  

 1 1 2 2 3 3 .j j j j j jc a b a b a b  (2.19) 

Now, while expanding the sum over j  in each of the three terms, we use Equation 
2.13 to substitute the values of . Since the value of  is zero when its two 
indices are different, we get only one non-zero term in each expansion over j . 
Thus, the final expanded expression becomes 

 1 1 2 2 3 3.c a b a b a b  (2.20) 

Note that the expression on the right side of Equation 2.20 is the expansion of iiba  
Thus, we get an identity 

 .i j ij i ia b a b  (2.21) 

(b) This is a vector equation involving three dummy indices. Therefore, it is a sum 
of 27 terms. However, the value of the permutation symbol  is zero when two of 
its indices are equal. Therefore, 21 terms are zero. The expansion with the 
remaining six non-zero terms is  

 123 2 3 132 3 2 231 3 1 213 1 3

312 1 2 321 2 1

ˆ ˆ ˆ ˆ

ˆ ˆ .

a b a b a b a b

a b a b
1 1 2 2

3 3

d i i i i

i i
 (2.22) 

Now, we use Equation 2.14 to substitute the values of the permutation symbol. 
Then we get 

 2 3 3 2 3 1 1 3 1 2 2 1
ˆ ˆ ˆ( ) ( ) ( ).a b a b a b a b a b a b1 2 3d i i i  (2.23) 

Note that the expression on the right side is the cross product of the vectors a  and 
b . Thus, we can write 

 ˆ .ijk j ka bia b i  (2.24) 

Example 2.4: Determinant of a matrix [ ]A  is defined by 

1det[ ]
6 lmn xyz lx my nzA A A A .     (2.25) 
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There are the following constraints on the components of [ ]A . 
(i) The matrix [ ]A  is symmetric, that is, its non-diagonal components satisfy the 
relation: 

.ij jiA A         (2.26) 

(ii) Further, the sum of the diagonal components is zero: 

0kkA .        (2.27) 

Using the above constraints, show that the expression for the determinant 
(Equation 2.25) reduces to 

1det[ ]
3 lm mn nlA A A A .      (2.28) 

Solution: Using the identity at Equation 2.16, the determinant of [ ]A  (Equation 
2.25) can be expressed in terms of : 

1det[ ] [ ( ) ( )
6

( )] .

lx my nz mz ny ly mz nx mx nz

lz mx ny my nx lx my nz

A

A A A
  (2.29) 

The above expression can be modified using the identity at Equation 2.15 in each 
of the six terms:  

1det[ ] (
6

).

ll mm nn ll mn nm ln ml nm lm ml nn

lm mn nl ln mm nl

A A A A A A A A A A A A A

A A A A A A
  (2.30) 

Further modification in the second, fourth and sixth terms arises because of the 
symmetry of [ ]A  (Equation 2.26): 

 
2 2

2

1det[ ] (
6

).

ll mm nn ll mn ln ml nm lm nn

lm mn nl ln mm

A A A A A A A A A A A

A A A A A
  (2.31) 

Next we use the constraint on the diagonal terms (Equation 2.27) to simplify the 
above equation. Note that the index k in Equation 2.27 is a dummy index, and thus 
can be replaced by any other index. Therefore, the first, second, fourth and sixth 
terms become zero. Then, Equation 2.31 becomes 
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1det[ ] ( )
6 ln ml nm lm mn nlA A A A A A A .    (2.32) 

Next we modify the first term using the symmetry of [A]: 

1det[ ] ( )
6 nl lm mn lm mn nlA A A A A A A .    (2.33) 

Finally, shuffling the order in the first term, we find that both the terms are 
identical. Combining the two terms, we get the desired expression: 

 1 1det[ ] ( )
6 3lm mn nl lm mn nl lm mn nlA A A A A A A A A A .  (2.34) 

Example 2.5: Express the derivative of ijA  with respect to pqA  in index notation. 

Solution: Note that the derivate of ijA  with respect to pqA  is 1 only if both the 
indices p and q are exactly equal to i and j. If any one index is different, then the 
derivative is zero. For example, choose i = 2 and j = 3. Then, if both p = 2 and q = 
3, then the derivative of 23A  with respect to 23A  is one. However, the derivative of 

23A with respect to 3pA  for p = 1,3 or with respect to qA2 for q = 1, 2  is zero. 
Thus, we get 

.ij
ip jq

pq

A
A

       (2.35) 

The first partial derivative of a component with respect to 
j

x  is indicated by a 

comma followed by j . For example, jiu ,  means /i ju x , which in turn represents 
nine expressions, because both i  and j  vary from 1 to 3. 
 
Example 2.6: Expand the following expression: 

 , 0.ij j  (2.36) 

Solution: This is a vector equation as there is one free index, namely i . Dummy 
index j  represents a sum over three terms. Further, the comma before j  indicates 
differentiation with respect to jx . Hence, after expanding the sum over j , the 
above vector equation takes the form 
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 1 2 3

1 2 3
0.i i i

x x x
 (2.37) 

Since i  is a free index and takes the values 1, 2 and 3, the above vector equation 
represents the following three scalar equations: 

 

1311 12

1 2 3

2321 22

1 2 3

31 32 33

1 2 3

0,

0,

0.

x x x

x x x

x x x

 (2.38) 

2.3 Stress  

As stated in the introduction, the stresses in a body vary from point to point. In this 
section, we first discuss the concept of stress at a point. Then we carry out the 
analysis of stress at a point to develop the ideas of stress invariants, principal 
stresses, maximum shear stress, octahedral stresses and the hydrostatic and 
deviatoric parts of stress. Finally, we discuss the equations of motion which 
involve the derivatives of stress components. These equations arise as a 
consequence of the balance of linear momentum.  

2.3.1 Stress at a Point 

In this subsection, we first define the stress vector at a point. Then the ideas of 
stress tensor and its relation with stress vector are developed. Definition of a tensor 
(or a second order tensor to be precise) is provided involving the transformation of 
components with a change in Cartesian coordinate system. 

2.3.1.1 Stress Vector 
Stress is a measure of the intensity of internal forces generated in a body. In 
general, stresses in a body vary from point to point. To understand the concept of 
stress at a point, consider a body subjected to external forces and supported in a 
suitable fashion, as shown in Figure 2.1. Note that, as soon as the forces are 
applied, the body gets deformed and sometimes displaced if the supports do not 
restrain the rigid body motion of the body. Thus, Figure 2.1 shows the deformed 
configuration. In fact, throughout this section, the configuration considered will be 
the deformed configuration. First, we define the stress vector (on a plane) at point 
P of the body. For this, pass a plane (called cutting plane) through point P having a 
unit normal n̂ . On each half of the body there are distributed internal forces acting 
on the cutting plane and exerted by the other half. On the left half, consider a small 
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area A  around point P  of the cutting plane. Let F  be the resultant of the 
distributed internal forces (acting on A ) exerted by the right half. Then the stress 
vector (or traction) at point P  (on the plane with normal n̂ ) is defined as  

 
Figure 2.1. Stress vector at a point on a plane. a Cutting plane passing through point P of 
the deformed configuration. b Stress vector nt , normal stress component n  and shear 

stress component s  acting at point P on the cutting plane 

 Lim
0

.n
A A

Ft  (2.39)            

The component of nt  normal to the plane is called  the normal stress component. It 

is denoted by n  and given by 

 ( ) .n n i int  (2.40)      
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The component of nt  along the plane is called the shear stress component. It is 
denoted by s  and given by  

 
1/ 22 2( ) .s nnt  (2.41) 

Note that, on the right half, the normal to the cutting plane will be n- ˆ  and the 
stress vector at P will be  n-t as per the Newton’s third law. 

2.3.1.2 State of Stress at a Point, Stress Tensor 
One can pass an infinite number of planes through point P to obtain an infinite 
number of stress vectors at point P. The set of stress vectors acting on every plane 
passing through a point describes the state of stress at that point.  

It can be shown that a stress vector on any arbitrary plane can be uniquely 
represented in terms of the stress vectors on three mutually orthogonal planes. To 
show this, we consider x, y and z planes as the three planes, having normal vectors 
along the three Cartesian directions x, y and z respectively. Let the stress vectors on 
x, y and z planes be denoted by xt , yt  and zt  respectively. Further, we denote 
their components along x, y and z directions as follows: 

 kjit x
ˆˆˆ

xzxyxx , (2.42) 

 kjit y
ˆˆˆ

yzyyyx , (2.43) 

 kjit z
ˆˆˆ

zzzyzx , (2.44) 

where ( ˆ ˆ ˆi , j , k ) are the unit vectors along ( , , )x y z  axes. The stress vectors and 
their components are shown in Figure 2.2. To derive the above result, we consider 
a small element at point P  whose shape is that of a tetrahedron. The three sides of 
the tetrahedron are chosen perpendicular to x, y and z axes and the slant face is 
chosen normal to vector n̂ . Then, equilibrium of the tetrahedron in the limit as its 
size goes to zero leads to the following result [1–5]: 

 zyx nnn zyxn tttt , (2.45) 

where xn , yn  and zn  are the components of the normal vector n̂ . This result is 
true for every stress vector at point P no matter what the orientation of the normal 
vector n̂  is. Further, this result remains valid even if the body forces are not zero 
or the body is accelerating. 
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Figure 2.2. Stress vectors and their components on x, y and z planes.  a Stress vector and its 
components on x plane. b Stress vector and its components on  y plane. c Stress vector and 
its components on z plane 

Let the components of the stress vector nt  be 

 ˆ ˆ ˆ
n n nx y zt t tnt i j k . (2.46) 

Substituting Equations 2.42–2.44 and 2.46, we get the component form of 
Equation 2.45 as follows: 

 

z

y

x

zzyzxz

zyyyxy

zxyxxx

zn

yn

xn

n
n
n

)t(
)t(
)t(

.  (2.47) 

In array notation, this can be written as  

 T{ } [ ] { }nt n , (2.48) 
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where the matrix [ ]  is 

 [ ] .
xx xy xz

yx yy yz

zx zy zz

 (2.49) 

In index notation, it can be expressed as  

 T( ) .n i ij jt n  (2.50) 

Equation 2.47 or 2.48 or 2.50 is called the Cauchy’s relation. Equations 2.45 and 
2.47 indicate that the stress at a point can be completely described by means of just 
three stress vectors , andx y zt t t  acting on mutually orthogonal planes or by their 

nine components: , , , , , , , and .xx xy xz yx yy yz zx zy zz   Thus, the stress at 
a point is conceptually different to a scalar which has only one component or a 
vector which has three components (in three dimensions). In the next paragraph, 
we shall discuss a characteristic of the stress at a point which will indicate that it is 
a tensor (of order two). 

2.3.1.3 Transformation Relations 
Note that we can represent the stress vector nt  (at a point) as a combination of the 
stress vectors on any three mutually orthogonal planes. These planes can be x , y  
and z (Figure 2.3) instead of x, y and z.  Then, following the earlier procedure, the 
stress vector nt  in the component form can be written as 

 
'( )

( ) ,

( )

x x y x z xn x x

n y x y y y z y y

n z x z y z z z z

t n
t n

t n

 (2.51) 

or 
 T{ } [ ] { }.nt n              (2.52) 
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Figure 2.3. Stress vectors and their components on x , y  and z  planes. (Forces acting 

on the body and supports not shown). a Stress vector and its components on x  plane. b 
Stress vector and its components on y  plane. c Stress vector and its components on z  
plane 

Obviously, the components of the matrices [ ]  and [ ]  must be related as 
the stress vector nt  (at point P) has a unique magnitude and direction. To get this 
relation, we consider equilibrium of three tetrahedra (at point P) whose three faces 
are perpendicular to x, y and z directions. The fourth face is normal to x  direction 
for the first tetrahedron, normal to y  direction for the second tetrahedron and 
normal to z  direction for the third tetrahedron. Three equilibrium equations for 
each of the three tetrahedra lead to the following result: 

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

.
x x x y x z xx xy xz

y x y y y z yx yy yz

z x z y z z zx zy zz

m n
m n m m m
m n n n n

        

        (2.53) 
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Here, if ( k,j,i ˆˆˆ ) are the unit vectors along ( , , )x y z axes, then 1 1 1( , , )m n  denote 

the direction cosines of î  with respect to ( , , )x y z axes. Similarly, 2 2 2( , , )m n  

denote the direction cosines of ĵ  with respect to ( , , )x y z  axes and 3 3 3( , , )m n  

denote the direction cosines of k̂  with respect to ( , , )x y z  axes. Define the matrix 
][Q  as  

 
1 1 1

2 2 2

3 3 3

[ ]
m n

Q m n
m n

. (2.54) 

Then, the relation at Equation 2.53 can be written as  

 T[ '] [ ][ ][ ]Q Q , (2.55) 

or, in index notation, it can be expressed as 

 T
ij ik kl ljQ Q . (2.56) 

The result of Equation 2.53 or 2.55 or 2.56 remains valid even if the body forces 
are not zero or the body is accelerating. 

Any quantity whose components with respect to two Cartesian coordinate 
systems transform according to the relation at Equation 2.53 or 2.55 or 2.56 is 
called a tensor (or tensor of second order). Thus, the stress at a point is a tensor, 
known as stress tensor. We denote it by the symbol . It is related to the stress 
vector on plane with normal n̂  by the relation at Equation 2.47 or 2.48 or 2.50. In 
tensor notation, this relation can be written as  

 T ˆnt n . (2.57) 

The relation at Equation 2.53 or 2.55 or 2.56 is called as the tensor transformation 
relation. The stress tensor   is called the Cauchy stress tensor. In the next chapter 
we shall discuss other types of stress tensors.  

 There is a difference between a tensor and its matrix. A tensor represents a 
physical quantity which has an existence independent of the coordinate system 
being used. On the other hand, a matrix of a tensor contains its components with 
respect to some coordinate system. If the coordinate system is changed, the 
components change giving a different matrix. Matrices with respect to two 
different coordinate systems are related by the tensor transformation relation. 

Let ( , , )x y za a a be the components of a vector a  with respect to the coordinate 

system ( , , )x y z . Further, denote the components of a  with respect to the 
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coordinate system ( , , )x y z as ( , , )x y za a a . Then these two sets of components 
are related by the following transformation law: 

 
1 1 1

2 2 2

3 3 3

x x

y y

z z

a m n a
a m n a

m na a

, (2.58) 

or 

 { } [ ]{ }a Q a , (2.59) 

or, in index notation 

 i ij ja Q a . (2.60) 

The relation at Equation 2.58 or 2.59 or 2.60 is called as the vector transformation 
relation. The matrix [ ]Q , which appears in vector and tensor transformation 
relations, is called the transformation matrix. It can easily be verified that [ ]Q  is 
an orthogonal matrix, that is, it satisfies the relation 

 T T
ik kj ik kj ijQ Q Q Q . (2.61) 

There are two types of orthogonal matrices. The first type represents the rotation of 
the coordinate axes and its determinant is +1. The second type represents the 
reflection of the coordinate axes and its determinant is -1.  It can be shown that the 
matrix T[ ]Q  represents the rotation of the ( , , )x y z coordinate axes to 
( , , )x y z axes and therefore it is known as the rotation matrix. Its determinant is 
+1. 

2.3.1.4 Stress Components 
A tensor component is always represented by two subscript indices. In the case of a 
component of the stress tensor, the meaning of the indices is as follows. The first 
index describes the direction of the normal to the plane on which the stress 
component acts while the second index represents the direction of the stress 
component itself. Thus, xy indicates a stress component acting in the y -direction 
on the x -plane. When both the indices are same, it means the stress component is 
along the normal to the plane on which it acts. It is called the normal stress 
component. Thus, xx , yy  and zz  are the normal stress components. When the 
two indices are different, it means the direction of the component is within the 
plane. Such a component is called the shear stress component. Thus, ij  where 
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ji  are the shear stress components. We adopt the following sign convention for 
the stress components. We first define positive and negative planes. A plane i  is 
considered positive if the outward normal to it points in the positive i  direction, 
otherwise it is considered as negative. A stress component is considered positive if 
it acts in a positive direction on a positive plane or in negative direction on a 
negative plane. Otherwise, it is considered as negative. Figure 2.4 illustrates 
positive and negative normal and shear stress components. 

 
Figure 2.4. Sign convention for normal and shear stress components. a Small element at 
point  ‘P’ in  the deformed configuration. Forces on the body and supports are not shown.   
b Positive and negative  ‘ xx’. c Positive and negative  ‘ xy’ 

2.3.1.5 Symmetry of Stress Tensor 
By considering the moment equilibrium of a small element (of parallelepiped 
shape) at point P in the limit as the size of the element tends to zero, it can be 
shown that [2] 

 ij ji . (2.62) 

Thus, the stress tensor is symmetric. Now, the Cauchy relation (Equation 2.48 or 
2.50) may be written as 

 { } [ ]{ }nt n  (2.63) 

or 

 jijin nt )( . (2.64) 
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In tensor notation, it can be expressed as 

 ntn ˆ . (2.65) 

The result of Equation 2.62 is valid even if the body forces are not zero or the body 
is accelerating. 
 
Example 2.7: Components of the stress tensor at point P of the beam of Figure 
2.5, with respect to ),,( zyx coordinate system, are given as 

 
35 25 0

[ ] 25 15 0
0 0 0

 (MPa). (2.66) 

(a) Find the stress vector nt  on the plane whose normal is given by  

 ˆ ˆ ˆˆ (1/ 3)( )n i j k . (2.67) 

Find the normal ( )n and shear )( s components of nt . 
(b) Find the components of with respect to the rotated coordinate system 
( , , )x y z . The unit vectors  ˆ ˆ ˆ( )i , j ,k  along the ( , , )x y z  axes are given as 

 

ˆ ˆ ˆ0.6 0.8
ˆ ˆ

ˆ ˆ ˆ0.8 0.6 .

i i k,

j j,

k i k

 (2.68) 

 
Figure 2.5. A cantilever beam subjected to uniformly distributed load on top surface 
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Solution: (a) We use the Cauchy’s relation in array form to evaluate the stress 
vector nt . As per Equation 2.46, we denote its components with respect to 
( , , )x y z coordinate system by ( )n xt , ( )n yt  and ( )n zt . Further, the given 

components of the unit normal vector n̂  are  

 3/1zyx nnn . (2.69) 

Writing the components of nt and n̂  in the array form and using Equation 2.63, we 
get  

 

1 10
3 3( ) 35 25 0

1 40( ) 25 15 0
3 30 0 0( ) 1 0
3

n x

n y

n z

t
t

t

. (2.70) 

Thus, the stress vector is  

 10 40ˆ ˆ-
3 3nt i j  (MPa). (2.71) 

Then, using Equation 2.40, we get the normal component of the stress vector: 

 10 1 40 1 1( ) (0) 10
3 3 3 3 3n n i it n  (MPa). 

  (2.72) 

Further, using Equation 2.41, we get the magnitude of the shear component of the 
stress vector: 

 
1/ 22 21/ 22 2 210 40 10 14( ) ( 10)

3 3 3s n nt  (MPa).    

  (2.73) 

(b) To find the components of  with respect to ( , , )x y z  coordinate system, we 
first evaluate the transformation matrix [ ]Q . We get the direction cosines of the 

unit vectors ( k,j,i ˆˆˆ ) from Equation 2.68. Substituting them in Equation 2.54, we 
get the following expression for [ ]Q : 
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0.6 0 0.8

[ ] 0 1 0
0.8 0 0.6

Q . (2.74) 

Using the tensor transformation relation (Equation 2.55), we get the following 
matrix of the components of the stress tensor with respect to ( , , )x y z  coordinate 
system: 

 

T
0.6 0 0.8 35 25 0 0.6 0 0.8

[ ] [ ][ ][ ] 0 1 0 25 15 0 0 1 0 ,
0.8 0 0.6 0 0 0 0.8 0 0.6

12.6 15 16.8
15 15 20 (MPa).

16.8 20 22.4

Q Q

                         

  (2.75) 
Equation 2.75 shows that the matrix of is symmetric with respect to the 
coordinate system ( , , )x y z  as well.  

Note that the stress components xz , yz  and zz  are zero at point P of the 
beam (Equation 2.66). Such a state is called as the state of plane stress (at a point) 
in yx  plane. When these stress components are zero at every point of the body 
and if, additionally, the remaining stress components xx , yy  and xy  are 
independent of z coordinate, it is called as the state of plane stress (in a body) in 

yx  plane. It can be shown that the state of stress in the beam of Figure 2.5 is of 
this type. 

2.3.2 Analysis of Stress at a Point 

As stated earlier, in this subsection we carry out the analysis of stress at a point to 
discuss the concepts of principal stresses and principal directions, principal 
invariants, maximum shear stress, octahedral stresses and the hydrostatic and 
deviatoric parts of stress. 

2.3.2.1 Principal Stresses, Principal Planes and Principal Directions 
There exist at least three mutually perpendicular planes (in the deformed 
configuration) such that there are no shear stress components on them, i.e., the 
stress vector is normal to these planes. These planes are known as the principal 
planes and normals to these planes are called the principal directions (of stress). 
The values of the normal stress components are called the principal stresses.  We 
denote the principal stresses as 1 , 2  and 3 . The unit vectors along the 
principal directions are normally denoted as ˆ1e , ˆ2e  and ˆ3e . We arrange the 
principal stresses as  
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 1 2 3.  (2.76) 

The senses of the unit vectors are so chosen that they always form a right-sided 
system. Thus, 

 ˆ ˆ ˆ. 1.1 2 3e e e  (2.77) 

Since the stress vector on a principal plane i  (i.e., the plane perpendicular to the 
principal direction i ) has only the normal component equal to i , the components 
of the stress tensor, with respect to the principal directions as the coordinate 
system, become 

 
1

2

3

0 0
[ ] 0 0 .

0 0

p  (2.78) 

It can easily be verified that, at a point, maximum value of the normal stress 
component ( )n with respect to the orientation of the normal vector n̂  is 1 . 
Further, the minimum value is 3 .  

It can be shown that the principal stresses are the eigenvalues or principal 
values and the unit vectors along the principal directions are the normalized 
eigenvectors of the stress tensor [2–4]. Before we write the equation which the 
eigen values and eigenvectors of a tensor satisfy, we define a unit tensor. It is 
denoted by the symbol1 . A unit tensor is defined as a tensor whose components 
with respect to every coordinate system are given by the following array: 

 
1 0 0
0 1 0 .
0 0 1

 (2.79) 

Thus, in index notation, the components of the unit tensor are represented as ij . If 
 is an eigenvalue of the stress tensor  and if x  is the corresponding 

eigenvector,  and x  satisfy the following equation: 

 [ ] [1] { } {0}.x       (2.80) 

Here, the arrays [ ] , [1]  and { }x  contain the components of respectively , 1  
and x  with respect to the given coordinate system ( , , )x y z . For x  to be an eigen 
vector of , Equation 2.80 should have a non-trivial solution. For this to happen, 
the determinant of the coefficient matrix [ ] [1] must be zero. This condition 
leads to the following cubic equation in : 
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 3 2 0,I II III  (2.81) 

where 

 iiI , (2.82) 

 1 ( )
2 ij ij ii jjII , (2.83) 

 1 2 3ijk i j kIII .    (2.84) 

Thus, the principal stresses i  are found as the roots of the above equation. Once 

i  are determined, the unit vectors iê  along the principal directions are found 
from the following equation: 

 [ ] [1] { } {0}i ie ,      (no sum over i ). (2.85) 

where the array }{ ie  contains the components of iê  with respect to the given 
coordinate system ( , , ).x y z    

2.3.2.2 Principal Invariants 
Trace of tensor  (denoted by tr ) is a scalar function of  which is defined as  

 iitr . (2.86) 

Thus, using Equation 2.82, we get 

 trI .  (2.87) 

Note that, in Equation 2.86, the scalar function tr  is evaluated using the 
components of  with respect to the given coordinate system ( , , )x y z . Let ij  be 
the components of  in a rotated coordinate system ( , , )x y z . If we use the 
rotated coordinate system to evaluate the scalar function tr , then it would be  

 iitr .  (2.88) 

Using the tensor transformation relation (Equation 2.56), and the orthogonality of 
[ ]Q  (Equation 2.61), it can be shown that  

 iiii .  (2.89) 

Thus, Equations 2.86, 2.88 and 2.89 show that the value of tr  is independent of 
the coordinate system. A scalar function of a tensor whose value is independent of 
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the coordinate system is called an invariant of the tensor. Thus, I is an invariant 
of the tensor . Similarly, it can be shown that II and III are also the invariants 
of the tensor . Using the definition of the trace and the symmetry of , it can be 
shown that 

 2 21 ( ) ( )
2

II tr tr .  (2.90) 

Further, it can be shown that  

 detIII ,   (2.91) 

where det  means the determinant of the matrix of  in any coordinate system. 
Every other invariant of can be expressed in terms of these three invariants 

[1]. Therefore, I , II  and III  are called as the principal invariants of the 
tensor . 

2.3.2.3 Maximum Shear Stress 
It can be shown that, at a point, maximum value of the shear stress component with 
respect to the orientation of the normal vector n̂  is [4] 

 1 3
max

( )
2s .  (2.92) 

Further, the normals to the planes on which maxs acts are given by [4] 

 1ˆ ˆ ˆ( )
2 1 3n e e .  (2.93) 

This result will be useful when we discuss yield criteria later. 

2.3.2.4 Octahedral Stresses 
A plane whose normal is equally inclined to the three principal directions is called  
octahedral plane. Let n̂  be the unit normal to an octahedral plane. Further, let in  
be its components with respect to the principal directions iê . Since in  are equal in 
magnitude and 

 1i in n    (2.94) 

we get 
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 1
3in .  (2.95) 

From Equation 2.95, we get eight different normal vectors: (1 3 ,1 3 ,1 3) , 

(1 3 ,1 3 , 1 3) ,………, ( 1 3 , 1 3 , 1 3) . Thus there are eight 
octahedral planes. 

Let nt  be the stress vector on an octahedral plane. Further, let int )(  be its 
components with respect to the principal directions iê . Substituting the 
components of  and n̂  with respect to the principal directions (Equations 2.78 
and 2.95) in Equation 2.64, we get the following expression for int )( : 

 1( )
3n i it . (2.96) 

Substituting  Equations 2.95 and 2.96 for in  and int )(  in Equation 2.40, we get the 
following expression for the normal stress component (denoted by oct ) on the 
octahedral planes: 

 1 2 3
1 ( )
3 3oct

I
. (2.97) 

Similarly, substituting Equations 2.96 and 2.97 for int )(  and oct  in Equation 
2.41, we get the following expression for the magnitude of the shear stress 
component on the octahedral planes (denoted by oct ): 

1/ 2 1/ 2
22 2 2 2

1 2 3 1 2 3
1 1 2 3
3 9 9oct I II . 

          (2.98)                     

Note that when the stress tensor at a point has only the deviatoric part, then the 
octahedral planes are free of the normal stress component. The expression for the 
shear stress on the octahedral planes will be useful when we discuss the yield 
criteria in Chapter 3. 

2.3.2.5 Decomposition into the Hydrostatic and Deviatoric Parts  
Every tensor can be decomposed into a sum of a scalar multiple of a unit tensor 1  
and a traceless tensor. Thus, for the stress tensor , we can write 
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 1
3

tr '1 ,       ( 0tr ). (2.99) 

In index notation, this can be written as  

 1
3ij kk ij ij' , ( 0)kk' . (2.100) 

Note that, since  is a symmetric tensor, '  is also a symmetric tensor. The unit 
tensor 1 is of course symmetric. The stress vector corresponding to the first part is 
always normal to the plane and has the same magnitude on every plane, namely 
(1/ 3)tr . Thus, this part of the stress tensor is similar to the state of stress in water 
at rest, except that whereas (1/ 3)tr  may be tensile or compressive, the state of 
stress in water is always compressive. Therefore, this part of the stress tensor is 
known as the hydrostatic part of . The second part is called the deviatoric part 
of  and represents a pure shear state.  

In isotropic materials, the deformation caused by the hydrostatic part consists 
of only a change in volume (or size) but no change in shape. On the other hand, the 
deformation caused by the deviatoric part consists of no change in volume but only 
the change in shape. We shall see in Chapter 3 that, in an isotropic ductile material, 
yielding is caused only by the deviatoric part of the stress tensor. 

2.3.2.6 Principal Invariants of the Deviatoric Part 
The principal invariants of ' are denoted by 1J , 2J  and 3J . Like the principal 
invariants of  (Equations 2.82–2.84, 2.87, 2.90, 2.91), they are defined as  

 1 iiJ tr '' , (2.101) 

 2 2
2

1 1( ) ( ) ( )
2 2 ij ij ii jjJ tr tr ' ' ' '' ' , (2.102) 

 3 1 2 3det ijk i j kJ ' ' '' .  (2.103) 

Since 0tr '  (Equation 2.99), 1J  has the value zero. Further, 2J  also gets 
simplified. Thus, 

 01J ,  (2.104) 

 2
2

1 1
2 2 ij ijJ tr ' '' .  (2.105) 

The expressions for these invariants will be useful while discussing the yield 
criteria of isotropic materials in Chapter 3. 
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Example 2.8: Components of the stress tensor  at a point, with respect to the 
( , , )x y z coordinate system, are given as  

 
18 24 0

[ ] 24 32 0
0 0 20

 (MPa).  (2.106) 

(a) Find the principal invariants of . 
(b) Find the principal stresses i  and the unit vectors iê  along the principal 
directions. Arrange i  such that 1 2 3 . Further, choose the senses of 

iê  such that ˆ ˆ ˆ 11 2 3e e e . 
(c) Find the maximum shear stress maxs  and the normals to the planes on 

which maxs  acts. Express the normals in terms of the unit vectors ˆ ˆ ˆ( , , )i j k . 

(d) Find the octahedral normal ( )oct and shear ( )oct stresses . 
(e) Find the hydrostatic and deviatoric parts of . 

 
Solution: (a) Substituting the values of ij  from Equation 2.106 and the values of 

permutation symbol ijk  from Equation 2.14, we get 

 18 32 20 30iiI  (MPa);  (2.107) 

22 2 2 2 2

1 ( ),
2
1 (18) 2(24) (32) ( 20) 4(0) (30)(30) 1000 MPa ;
2

ij ij ii jjII

 (2.108)                    
1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

3

,

( ) ( ) ( ),
18[32 ( 20) 0 0] 24[0 0 24 ( 20)] 0[24 0 32 0],

0 MPa .

III ijk i j k

  

 (2.109) 
 (b) Substituting the values of I , II  and III  from part (a), the cubic equation 
for  (Equation 2.81)  becomes 

 3 230 1000 0 0 .  (2.110) 
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The roots of this equation are 0, 20, 50 . Arranging them in decreasing order, 
we get the following values of the principal stresses: 

 1 50  MPa, 2 0  MPa, 3 20 MPa.  (2.111) 

To find the unit vectors iê  along the principal directions, we use Equation 2.85. 
Let the unit vector along the first principal direction be 

 1 1 1
ˆ ˆ ˆˆ x y ze e e .1e i j k   (2.112) 

Then for 1i , Equation 2.85 becomes 

 
11 1 12 13 1

21 22 1 23 1

31 32 33 1 1

0
0 .
0

x

y

z

e
e

e

   (2.113) 

Substituting 1 50  and the values of ij  from Equation 2.106 and expanding the 
above equation, we get 

 
1 1 1

1 1 1

1 1 1

(18 50) 24 0 0,

24 (32 50) 0 0,

0 0 ( 20 50) 0.

x y z

x y z

x y z

e e e

e e e

e e e

           (2.114) 

From the third equation we obtain 1 0ze . Note that the first two equations are 
linearly dependent. Each of them gives 1 1(4 / 3)y xe e . Since ˆ1e  is a unit vector, 
we have 

 2 2 2
1 1 1 1.x y ze e e  (2.115) 

Substituting 1 0ze  and 1 1(4 / 3)y xe e  in the above equation, we obtain 

1 (3 / 5)xe . Choosing the positive sign, we get the following expression for the 
unit vector along the first principal direction: 

 3 4ˆ ˆˆ
5 51e i j .  (2.116) 

Similarly, we get the following expressions for the unit vectors along the other two 
principal directions: 
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 4 3ˆ ˆˆ
5 52e i j ,  (2.117) 

 ˆˆ3e k .  (2.118) 

Note that whereas the sense of the second unit vector has been chosen to be 
arbitrary, that of the third one has been selected so as to satisfy the condition 
ˆ ˆ ˆ 11 2 3e e e . 

(c) Maximum shear stress is given by Equation 2.92. Substituting the values of 1  
and 3  from part (b) in this equation, we get 

 1 3
max

50 ( 20) 35
2 2s  (MPa).  (2.119a) 

The normals n̂  to the planes on which maxs acts are given by Equation 2.93. 

Substituting the expressions for ˆ1e  and ˆ3e  from part (b) in this equation, we obtain 
the following expressions for n̂ : 

 1 1 3 4ˆ ˆ ˆˆ ˆ ˆ( )
5 52 21 3n e e i j k .  (2.119b)  

(d) Octahedral normal )( oct  and shear )( oct  stresses are calculated using 
Equations 2.97 and 2.98. Substituting the values of I  and II from part (a), we 
get  

 30 10
3 3oct
I

 (MPa),  (2.120a) 

1/ 2 1/ 2
2 22 2 10 78( 3 ) [(30) 3(1000)] (MPa).

9 9 3oct I II   

 (2.120b) 

(e) As per Equation 2.100, components of the hydrostatic part are given by 
[(1/ 3) ]kk ij . Since 30kk  from part (a), the matrix of the hydrostatic part of 

becomes  

 
10 0 0
0 10 0
0 0 10

 (MPa).  (2.121) 
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Using 30kk  and Equation 2.100, components of the deviatoric part can be 
expressed as 

 10 .ij ij ij'    (2.122a) 

Using the values of ij  from Equation 2.106, we get the following expression for 
the matrix of the deviatoric part:  

 
18 24 0 10 0 0 8 24 0

[ ] 24 32 0 0 10 0 24 22 0 MPa .
0 0 20 0 0 10 0 0 30

'  (2.122b)  

In the state of stress given by Equation 2.106, zz  is not zero. Therefore, it is 
not a state of plane stress (at a point) in yx  plane. However, since the principal 
stress 2  is zero, it is a state of plane stress (at a point) in the plane perpendicular 
to ˆ2e . 

2.3.3 Equations of Motion 

Let  

 ˆ ˆ ˆ
x y za a aa i j k  (2.123) 

be the acceleration vector at a point of the deformed configuration. The 
acceleration vector is related to the time derivatives of the displacement vector and 
velocity vector. But, that relation will be discussed later. Further, let 

 ˆ ˆ ˆ
x y zb b bb i j k   (2.124) 

be the body force vector per unit mass acting on the body. We shall denote the 
density in the deformed configuration by the symbol . Note that, in general, a , 
b  and  vary from point to point. Thus, they are functions of the coordinates 
( z,y,x ). 

Now, we apply the principle of balance of linear momentum in x , y  and 
z directions to a small element (of parallelepiped shape) at a point of the deformed 
configuration. In the limit as the size of the element tends to zero, it leads to the 
following three equations of motion: 
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,

,

.

yxxx zx
x x

xy yy zy
y y

yzxz zz
z z

a b
x y z

a b
x y z

a b
x y z

 (2.125) 

When the acceleration vector is zero, we get the equilibrium equations.  
As stated in the introduction, there are three sets of equations which govern the 

displacements, strains and stresses in a body. Equations 2.125 represent the first set 
of governing equations. The other two sets will be discussed in the remaining 
sections. 

Divergence of the stress tensor  is denoted by . It is a vector and 
defined by  

 

ˆ ˆ

ˆ

xy yx yy yzxx xz

zyzx zz

x y z x y z

.
x y z

i j

k

  (2.126) 

In index notation, the component i  of  can be written as 

 ,( ) .i ij j   (2.127) 

Using the definition of , the equations of motion (Equation 2.125) become 

 Ta b .  (2.128) 

In index notation, they can be expressed as 

 ,i i ji ja b .  (2.129) 

But, since is a symmetric tensor, the above equations can be written as  

 ,a b   (2.130) 

or  

 , .i i ij ja b   (2.131) 
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Example 2.9: For the beam of Figure 2.5, expressions of the stress components 
with respect to ),,( zyx  coordinate system are 

 

2

2 3 3

2 2

3 ( ) ,
6

3 2
6
3 ( )
6

0.

zz

yy
zz

xy
zz

xz yz zz

wb x y
I
wb= h y y + h ,
I
wb= l x h y ,
I

= = =

xx

 (2.132) 

Here, w  is the uniform stress acting on the top surface of the beam in negative y  
direction and b ,  and h  are the geometric dimensions of the beam (Figure 2.5). 
Further, zzI  is the moment of inertia of the cross-section of the beam about z -
axis. Assuming the body force vector b  to be zero, verify that the above stress 
expressions satisfy the equations of motion (Equation 2.125). 
 
Solution: Since the beam is in equilibrium, the acceleration vector is zero. 
Therefore, 

 0.x y za a a   (2.133) 

Further, since the body force vector is given as zero, 

 0.x y zb b b   (2.134) 

Then, the equations of motion (Equation 2.125) reduce to  
  

 0
zyx
zxyxxx , 

 0
zyx
zyyyxy , 

 0.yzxz zz
x y z

 (2.135) 

They are known as the equilibrium equations since the acceleration vector is zero. 
Differentiating the expressions for ij  (Equation 2.132) and substituting the 
derivatives in the first two equilibrium equations, we get  
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 3 [ 2( ) ( )( 2 )] 0 0
6

yxxx zx

zz

wb x y x y
x y z I

, (2.136a) 

 2 2 2 2( 3)( 1) 3 3 0 0.
6

xy yy zy

zz

wb h y h y
x y z I

  

(2.136b) 

Because xz , yz  and zz  are zero (Equation 2.132), the third equilibrium 
equation is identically satisfied. 

2.4 Deformation 

While discussing stresses in a body, we considered only the deformed 
configuration. However, for describing the deformation of a body, one must 
consider both the initial (undeformed) and the deformed configurations of the 
body. Those are shown in Figure 2.6. However, the forces acting on the deformed 
configuration and the supports are not shown as they are not necessary to discuss 
the deformation. For the sake of clarity, overlapping of the undeformed and 
deformed configurations is avoided by assuming the translation of the body to be 
very large as shown in the figure. Deformation in a body varies from point to point. 
Deformation at a point has two aspects. When the body is deformed, a small line 
element 0 0P Q  at a point undergoes a change in its initial length (Figure 2.6). In 
general, this happens for the line elements in all directions at that point. Similarly, 
a pair of line elements 0 0P R  and 0 0P S  undergo a change in their initial angle 
(Figure 2.6). Again, generally, this happens for every pair of line elements at that 
point. Strain at a point is a measure of the deformation at that point. Thus, strain at 
a point consists of the following two infinite sets: 

 A measure of change in linear dimension in every direction at that 
point 

 A measure of change in angular dimension for every pair of directions 
at that point 

One can choose various measures to define the strain at a point. For example, one 
can choose either the change in length per unit length or the change in square 
length per unit square length or the logarithm of the ratio of new length to the 
initial length as measures of the change in linear dimension. Further, one can 
choose the change in angle, the sine function of the change in angle etc. as the 
measures of the change in angle. For specifying the measure of change in angle, 
usually, the initial angle is chosen to be / 2  radians. 
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Figure 2.6. Deformation at a point. The length 00QP  changes to PQ  in the deformed 

configuration. The angle 000 RPS  changes to SPR  in the deformed configuration. a 
Undeformed configuration. b Deformed configuration 

Deformation at a point is related to the displacement of the neighborhood of 
that point. The neighborhood of a point is defined as a set of points in the close 
vicinity of that point.  The displacement consists of three parts: (i) displacement 
due to translation of the neighborhood of that point, (ii) displacement due to 
rotation of the neighborhood of that point and (iii) displacement due to deformation 
of the neighborhood of that point. If we consider only the relative displacement of 
a point with respect to the center of its neighborhood, then it contains the 
displacement only due to rotation and deformation of the neighborhood. We start 
our discussion on linear strain tensor at a point with displacement gradient tensor 
which is a measure of the relative displacement.  

2.4.1 Linear Strain Tensor 

In this section we first define the displacement gradient tensor at a point. Then we 
decompose it into symmetric and antisymmetric parts. It is shown that the 
symmetric part can completely describe the deformation at a point when the 
deformation is small. It is called the linear strain tensor. The antisymmetric part 
represents the rotation when the rotation is small.  

2.4.1.1 Displacement Gradient Tensor 
Let  

 ˆ ˆ ˆ
x y zu u uu i j k   (2.137) 
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be the displacement vector at point 0P  whose position vector in the initial 
configuration is given by 

 0 0 0
ˆ ˆ ˆx y z0x i j k   (2.138) 

(Figure 2.6). Consider the following array: 

 

0 0 0

0
0 0 0

0 0 0

[ ]

x x x

y y y

z z z

u u u
x y z
u u u

u
x y z
u u u
x y z

.  (2.139) 

The subscript zero is used with the symbol  to emphasize the fact that the 
derivatives are to be taken with respect to the coordinates in the initial 
configuration. Consider a rotated coordinate system ( , , )x y z with unit vectors 

( k,j,i ˆˆˆ ) along them (not shown in Figure 2.6). Further, let the components of the 
displacement vector u  and the position vector 0x  with respect to the rotated 
coordinates be  

 ˆ ˆ ˆ ,x y zu u uu i j k   (2.140) 

 0 0 0
ˆ ˆ ˆ .x y z0x i j k   (2.141) 

In ( , , )x y z  coordinate system, the array of the displacement derivatives can be 
written as 

 

0 0 0

0
0 0 0

0 0 0

[ ]

x x x

y y y

z z z

u u u
x y z
u u u

u
x y z
u u u
x y z

.  (2.142) 

Using the vector transformation relation (Equation 2.58) for the components of u  
and 0x , and the chain rule for the derivatives, it can be shown that  

 T
0 0[ ] [ ][ ][ ]u Q u Q ,  (2.143) 
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where the matrix [ ]Q  (Equation 2.54) represents the transformation from ( , , )x y z  
coordinate system to ( , , )x y z system. Thus, the components of the array 0[ ]u  
are the components of a tensor. It is denoted by 0u  and is called the 
displacement gradient tensor at the point. 

2.4.1.2 Linear Strain Tensor 
Every tensor can be decomposed into a sum of symmetric and antisymmetric parts. 
Thus, 

 T T1 1( ) ( )
2 20 0 0 0 0u u u u u .  (2.144) 

Here, the first part is the symmetric part of the tensor 0u  while the second part is 
the antisymmetric part. At a point, define tensor  as the symmetric part of 0u : 

 T1 ( )
2 0 0u u .  (2.145) 

In matrix notation, this can be written as 

 T
0 0

1[ ] [ ] [ ]
2

u u  , (2.146) 

while in index notation, it can be expressed as 

 , ,
1
2ij i j j iu u  ,  (2.147) 

where it is understood that the comma indicates the derivatives with respect to the 
coordinates in the initial configuration. 

Assume that the components of the tensor 0u  are small compared to 1  
everywhere in the body. In many aerospace, civil and mechanical engineering 
applications, the components of 0u  are of the order of 4 610  to 10 . Therefore, 
this assumption is not very restrictive. Let n  denote the unit extension along the 
direction ˆ0n  at point 0P  of the initial configuration (Figure 2.6), i.e., the change in 
length per unit length at 0P  along the direction ˆ0n . Further, let 1 2n n  denote the 
shear associated with the directions ˆ01n  and ˆ02n  at point 0P  of the initial 
configuration (Figure 2.6), i.e., the change in angle between the two perpendicular 
directions ˆ01n  and ˆ02n  at 0P . We denote the arrays of the components of ˆ0n , ˆ01n  
and ˆ02n  with respect to ( , , )x y z  coordinates by 0{ }n , 01{ }n  and 02{ }n . Then, 
under the above assumption, it can be shown that [5] 
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 T
0 0{ } [ ]{ }n n n ,  (2.148) 

 T
1 2 01 022{ } [ ]{ }n n n n .  (2.149) 

Therefore, under the above assumption, if the tensor  is given at a point, we can 
find the change in length per unit length along any direction at that point. Further, 
we can find the change in angle between any pair of perpendicular directions at 
that point. Thus, under the above assumption, the tensor  can completely describe 
the deformation at a point and, therefore, can be used as a strain tensor. It is known 
as linear or infinitesimal strain tensor. Note that the assumption of the components 
of the tensor 0u  being small implies that the components of the tensor  are also 
small. Therefore, this assumption is called as the small deformation assumption. 
Thus,  can be used as a strain tensor, only when the deformation is small. The 
plastic deformation is often not small. Therefore, to describe the plastic 
deformation, we shall have to look for some other tensor. Such tensors are 
discussed in Chapter 3. 

Note that, by definition (Equation 2.145), the tensor  is symmetric. Therefore, 
its components with respect to ( , , )x y z  coordinate system can be expressed as 

 [ ]
xx xy zx

xy yy yz

zx yz zz

.  (2.150) 

Substituting Equations 2.150 and 2.139 into Equation 2.146, we get the following 
expressions for the strain components: 

 

0 0 0

0 0

0 0

0 0

, , .

1 ,
2

1 ,
2

1 .
2

yx z
xx yy zz

yx
xy

y z
yz

xz
zx

uu u
x y z

uu
y x

u u
z y

uu
x z

 (2.151) 

These are known as the strain-displacement relations. The tensor, array and index 
forms of these equations are given by Equations 2.145–2.147. Note that the strain-
displacement relations are linear when the deformation is small. For plastic 
deformation, the strain-displacement relations may be non-linear. They are 
discussed in Chapter 3.  
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As stated in the introduction, there are three sets of equations which govern the 
displacements, strains and stresses in a body. This is the second set of governing 
equations when the deformation is small. 

By substituting ˆˆ0n i  in Equation 2.148, we find that the component 

xx represents the unit extension (i.e., the change in length per unit length) along 
the direction which was initially along x -axis. Similarly, the components yy  and 

zz  denote the unit extensions along the directions which were respectively along 
y  and z  axes in the initial configuration. These three components, which 

represent the deformation in linear dimension along three mutually perpendicular 
directions, are called normal strain components. By substituting ˆˆ01n i  and 

ˆˆ02n j  in Equation 2.149, we find that the component xy  represents half the 
shear (i.e., half the change in angle) associated with the directions which were 
along x  and y  axes in the initial configuration. Similarly, the component yz  
denotes half the shear associated with the directions which were initially along y  
and z axes. Further, the component zx  represents half the change in angle 
between the directions which were originally along z  and x  axes. These three 
components, which represent the deformation in angular dimension associated 
with the same three mutually perpendicular directions, are called shear strain 
components. The sign convention for the strain components is as follows. A 
normal strain component is considered positive if there is elongation in that 
direction and negative if there is compression. A shear strain component is 
considered positive if the angle decreases and negative if the angle increases. Note 
that the sign convention for the shear strain components is different than what you 
might expect. However, it is chosen to ensure that a positive shear stress would 
cause a positive shear strain and vice versa. 

2.4.1.3 Infinitesimal Rotation Tensor 
At a point, define tensor  as the antisymmetric part of the displacement gradient 
tensor 0u : 

 T1 ( )
2 0 0u u . (2.152) 

In matrix notation, this can be written as  

 T
0 0

1[ ] [ ] [ ]
2

u u , (2.153) 

whilst in index notation, it can be expressed as 
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 , , ,
1 ( )
2i j i j j iu u ,  (2.154) 

where it is understood that the comma indicates the derivatives with respect to the 
coordinates in the initial configuration. It can be shown that when components of 
the tensor 0u  are small compared to 1, the tensor  represents rotation of a 
neighborhood of the point. Note that when the components of 0u  are small, the 
components of  are also small. Thus,  represents the rotation only when it is 
small. We call   the infinitesimal rotation tensor. 

The diagonal components of , namely xx , yy  and zz  are zero. The 
expressions for the non-diagonal components of  are as follows: 

 

 

0 0

0 0

0 0

1 ,
2

1 ,
2

1 .
2

yz
zy yz

x z
xz zx

y x
yx xy

uu
y z

u u
z x

u u
x y

 (2.155) 

The components zy , xz  and yx  represent the angle of rotation respectively 
about x , y  and z axes. They are considered positive if they are counterclockwise 
and negative if clockwise. Since an antisymmetric tensor has only three non-zero 
components, one can always associate a vector with it. The vector which can be 
associated with  is given by  

 

0 0 0 0 0 0

0

1ˆ ˆ ˆ ˆ ˆ ˆ ,
2

1 ˆ ,
2

1
2

y yx xz z
zy xz yx

k
ijk

j

u uu uu u
y z z x x y

u
x

0

i

i j k i j k

i

u.

 

                                                               (2.156) 
This is consistent with the fact that only small rotation can be expressed as a 
vector. 
 
Example 2.10: For the beam of Figure 2.7, components of the displacement vector 
u  at a point 0 0 0( , , )x y z , with respect to ( , , )x y z  coordinate system, are given as  
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 2 2 3 2
0 0 0 0 0 0 0

1 1 1
2 2 4xu A a y x x y y y z , (2.157a) 

 2 2 3 2 2
0 0 0 0 0 0

1 1 1 1 ( )( )
2 2 6 4yu A a x x x x y z , (2.157b) 

 0 0 0
1 ( )
2zu A x y z  , (2.157c) 

where 

 4

4 yF
A

Ea
. (2.157d) 

Here, a ,  and yF  are as shown in Figure 2.7. Further, E  is a material constant 
which is defined in Section 2.5.1  

 
Figure 2.7. A beam of circular cross-section subjected to shear forces and bending moment. 
The point O is fixed against the translation and rotation. Further, since the deformation is 
small, the deformed and undeformed configurations almost overlap 

(a) Find the components of the displacement gradient tensor 0u . 
(b) Find the components of the linear strain tensor  and the infinitesimal 

rotation tensor . 
(c) Evaluate the strain components at point 0P  (Figure 2.7) whose coordinates 

are 0 0 0( , , ) ( / 2, / 2, / 2)x y z a a . Further, at 0P , find the unit extension 
along the direction   

        ˆ ˆ ˆˆ (1/ 3)( )0n i j k . (2.158) 

             and the shear associated with the directions 

       ˆ ˆ ˆ ˆˆ ˆ(1/ 5)(3 - 4 ), (1/ 5)(4 3 )01 02n i j n i j . (2.159) 

(d) Evaluate the non-diagonal components of  at 0P . 
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Solution: (a) Differentiating Equations 2.157a–2.157c, we get the components of 
the displacement gradient tensor 0u : 

 

0 0
0

2 2 2 2
0 0 0 0

0

0 0
0

2 2 2 2
0 0 0 0

0

0 0
0

0 0
0

0 0
0

[( ) ],

1 1 1 3 ,
2 2 4

1 ,
2

1 1 1 ,
2 2 4

1 ( ) ,
2

1 ( ) ,
2

1 ,
2

x

x

x

y

y

y

z

u
A x y

x

u
A a x x y z

y
u

A y z
z
u

A a x x y z
x
u

A x y
y
u

A x z
z
u

A y z
x

0 0
0

0 0
0

1 ( ) ,
2

1 ( ) .
2

z

z

u A x z
y
u A x y
z    (2.160) 

(b) Substituting the expressions of the displacement derivatives of part (a) into 
the strain-displacement relations (Equation 2.151), we get the components 
of the linear strain tensor :  

0 0 0 0 0 0
0 0 0

2 2
0

0 0 0 0

0 0
0 0

( ) , ( ) , ( ) ,
2 2

1 1, 0,
2 2 2

1 .
2 2

yx z
xx yy zz

y yx z
xy yz

xz
zx

uu uA AA x y x y x y
x y z

u uu uA a y
y x z y

uu A y z
x z

                     

   (2.161)   

Again, substituting the expressions of the displacement derivatives of part (a) into 
the rotation-displacement relations (Equation 2.155), we get the non-diagonal 
components of the infinitesimal rotation tensor : 
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0 0
0 0

0 0

2 2
0 0 0 0

0 0

1 ( ) ,
2 2

1 0,
2

1 1(2 ) .
2 2 2

yz
zy yz

x z
xz zx

y x
yx xy

uu A x z
y z

u u
z x

u u A x x y z
x y

 (2.162) 

The diagonal components of , namely xx , yy  and zz , are of course zero. 

(c) We obtain values of the strain components at point 0P  by substituting 

0 0 0( , , ) ( / 2, / 2, / 2)x y z a a  in the expressions of the strain components 
of part (b). Then, the strain matrix at point 0P  becomes 

 
2 3

[ ] 3 0
8

0

xx xy zx

xy yy yz

zx yz zz

a a
Aa a

a
. (2.163) 

To get the unit extension along the direction ˆ0n  at point 0P , we substitute the 
above equation  along with the components of ˆ0n  (Equation 2.158) in Equation 
2.148:  

 

T 2
0 0

1
32 3

1 1 1 1 1{ } [ ]{ } 3 0 .
8 63 3 3 30

1
3

n

a a
Aan n a Aa

a
 

  (2.164a) 

To get the shear associated with the directions ˆ01n  and ˆ02n  at point 0P , we 
substitute Equation 2.163 along with the components of ˆ01n  and ˆ02n  (Equation 
2.159) in Equation 2.149: 
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T
1 2 01 02

4
52 3

3 4 32{ } [ ]{ } 2 0 3 0 ,
5 5 8 5

0 0

1 (36 21 ).
100

n n

a a
Aan n a

a

Aa a

 

  (2.164b) 

(d) We obtain values of the non-diagonal rotation components at point 0P , by 
substituting 0 0 0( , , ) ( / 2, / 2, / 2)x y z a a  in the rotation-displacement 
equations of part (b). We get  

 

0 0

2 2 2 2
0 0 0 0

1( ) ,
2 8
0,

1 1(2 ) 3 .
2 2 8

zy

xz

yx

A x z A a

A x x y z A a

 (2.165) 

For the following values of geometric, force and material parameters: 

 200 mm , 10 mma , 100 NyF , 5 22 10 N / mmE  (2.166a) 

we get 

 8
4

4
6.34 10yF

A
Ea

. (2.166b) 

Then we obtain  

 2 6 6
1 2

1 11.06 10 , (36 21 ) 47.17 10 rad
6 100n n nAa Aa a ,      

  (2.167a) 

 5 2 2 411.59 10 rad, 3 9.51 10 rad
8 8zy yx

A a A a ,       

  (2.167b) 

Thus, for a typical situation, the deformation and rotation are quite small.  
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2.4.2 Analysis of Strain at a Point 

As stated earlier, in this section we carry out the analysis of strain at a point to 
discuss the concepts of principal strains and principal directions, principal 
invariants, maximum shear, volumetric strain and the hydrostatic and deviatoric 
parts of strain. 

2.4.2.1 Principal Strains, Principal Directions and Principal Invariants 
There exist at least three mutually perpendicular directions (in the initial 
configuration) such that the shear 1 2( )n n associated with these directions is zero. It 
means these directions also remain perpendicular in the deformed configuration. 
These directions are called as the principal directions (of strain). The unit 
extensions ( )n  along these directions are called  the principal strains. We denote 
the principal strains as 1 , 2  and 3  and the unit vectors along the principal 
directions (of strain) as ˆ1e , ˆ2e  and ˆ3e . Recall that the same notation has been used 
for the unit vectors along the principal directions (of stress). However, whether we 
are referring to the principal directions of stress or strain will be clear from the 
context. Further, the principal directions of stress exist in the deformed 
configuration whereas the principal directions of strain exist in the initial 
configuration. We arrange the principal strains as  

 1 2 3 . (2.168) 

The senses of the unit vectors along the principal directions are so chosen that they 
always form a right-sided system. Thus, 

 ˆ ˆ ˆ 11 2 3e e e . (2.169) 

Since the unit extension along a principal direction i  ( 1,2,3)i  is i  and the 
shear associated with these principal directions is zero, the components of the 
linear strain tensor, with respect to the principal directions as the coordinate 
system, become  

 
1

2

3

0 0
[ ] 0 0

0 0

p . (2.170) 

It can easily be verified that, at a point, maximum value of the unit extension ( )n  
with respect to the orientation of the direction ˆ0n  is 1 . Further, the minimum 
value is 3 .  

It can be shown that the principal strains are the eigenvalues or the principal 
values and the unit vectors along the principal directions are the eigenvectors of the 
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linear strain tensor. The principal strains are determined as the roots of the 
following equation: 

 3 2 0,I II III  (2.171) 

where 

 ,iiI  (2.172) 

 1 ( ),
2 ij ij ii jjII  (2.173) 

 1 2 3 .ijk i j kIII  (2.174) 

Here, I , II  and III are the three principal invariants of the linear strain tensor. 
After finding the principal strains, the unit vectors iê  along the principal directions 
are found from an equation similar to Equation 2.85:  

 [ ] [1] { } {0}i ie  (no sum over i ). (2.175) 

2.4.2.2 Maximum Shear 
It can be shown that, at a point, maximum value of the shear 1 2( )n n  with respect 
to the orientation of the directions ˆ01n  and ˆ02n  is  

 1 2 1 3max .n n  (2.176) 

Further, the directions associated with the maximum shear are given by  

 1 1ˆ ˆ ˆ ˆ ˆ ˆ( ), ( )
2 201 1 3 02 1 3n e e n e e .       (2.177) 

2.4.2.3 Volumetric Strain, Decomposition into Hydrostatic and Deviatoric Parts  
The change in volume per unit volume of a small element around a point is known 
as the volumetric strain and is denoted by v . It can be shown that when the 
deformation is small (i.e., when the components of the tensor 0u  are small 
compared to 1), v  is given by [2,4] 

 .v iitr  (2.178) 

Similar to the decomposition of the stress tensor  (Equation 2.99), the linear 
strain tensor  also can be decomposed as   
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 1 0
3

tr tr1 , . (2.179) 

In index notation, this can be written as  

 1 , ( 0).
3ij kk ij ij ii  (2.180) 

Note that, since  is a symmetric tensor, is also a symmetric tensor. The first 
part of Equations 2.179 and 2.180 is called the hydrostatic part of  while the 
second part is called the deviatoric part of . Since, tr  is volumetric strain, the 
hydrostatic part of  represents a deformation in which there is only change in 
volume (or size) but no change in shape. Such a deformation is known as 
dilatation. Since tr  is zero, the deviatoric part of  represents a deformation in 
which there is no change in volume but only change in shape. Such deformation is 
called distortion.  

 As stated earlier, in isotropic materials, the hydrostatic part of stress tensor 
causes only dilatation type of deformation while the deviatoric part causes only the 
distortion type of deformation. The yielding consists of only the distortion type of 
deformation. Therefore, as we shall see in Chapter 3, in isotropic ductile materials 
yielding is caused only by the deviatoric part of stress tensor. 
 
Example 2.11: Components of the linear strain tensor  at a point with respect to 
the ( , , )x y z coordinate system are given by 

        4
0 2 2

[ ] 2 0 2 10
2 2 0

. (2.181) 

(a) Find the principal invariants of . 
(b) Find the principal strains i  and the unit vectors iê  along the principal 

directions. Arrange i  such that 1 2 3 . Further, choose the senses of 

iê  such that ˆ ˆ ˆ 11 2 3e e e . 
(c) Find the maximum shear 1 2( )n n  and the directions ˆ01n  and ˆ02n  

associated with maximum shear. 
(d) Using the tensor transformation relation, find the components of  with 

respect to the principal directions as the coordinate system. 

Solution: (a) Substituting the values of ij  from Equation 2.181 and the values of 

ijk  from Equation 2.14 in Equations 2.172–2.174, we get 
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 4(0 0 0) 10 0iiI , (2.182a) 

 2 2 8 81 1( ) 3(0) 6(2) (0)(0) 10 12 10
2 2ij ij ii jjII ,  

  (2.182b) 

 

1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31
12

12

,

( ) ( ) ( )

0(0 0 2 2) 2(2 2 2 0) 2(2 2 0 2) 10

16 10 .

ijk i j kIII

    

  
  (2.182c) 

(b) Substituting the values of I , II  and III  from part (a), the cubic 
equation for (Equation 2.171) becomes  

 3 2 8 120 12 10 16 10 0 . (2.183) 

The roots of this equation are 4 4 44 10 , 2 10 , 2 10 . Thus, we have a 
double eigenvalue. Arranging the roots in decreasing order, we get the following 
values of the principal strains: 

 4 4 4
2 34 10 , 2 10 , 2 101 . (2.184) 

To find the unit vectors iê  along the principal directions, we follow the procedure 

of Example 2.8(b). Thus, corresponding to the first eigenvalue 4
1 4 10 , we 

get the following expression for the first unit vector:  

 1 ˆ ˆ ˆˆ ( )
31e i j k . (2.185a) 

While finding the eigenvector corresponding to the eigenvalue 4
2 2 10 , it is 

observed that only one scalar equation out of the three equations (Equation 2.175) 
satisfied by the components of ˆ2e  is linearly independent. This means the 
eigenvector has no unique direction. In fact, it can be shown that every vector in 
the plane perpendicular to ˆ1e  is an eigenvector of 4

2 2 10 . This happens 
because it is a double eigenvalue. Therefore, we choose any pair of orthonormal 
vectors (i.e., any two unit vectors perpendicular to each other) in the plane 
perpendicular to ˆ1e  as the vectors ˆ2e  and ˆ3e . We make the following choice: 
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 1 ˆ ˆˆ ( )
22e i j , (2.185b) 

 1 ˆ ˆ ˆˆ ( 2 )
63e i j k . (2.185c) 

 

Figure 2.8. Conical surface on which the directions 01n̂  and 02n̂  associated with maximum 

shear lie when the second and third principal stresses are equal. The vector 1ê represents the 
first principal direction 

 (c) Maximum shear is given by Equation 2.176. Substituting the values of 1  and 

3  from part (b) in this equation, we get  

 4 4
1 2 1 3max

[4 ( 2)] 10 6 10n n . (2.186) 

The directions ˆ01n  and ˆ02n  associated with 1 2 maxn n  are given by Equation 

2.177. So we can obtain them by substituting the expressions for ˆ1e   and ˆ3e  from 
part (b) into this equation. However, the vector ˆ3e  has no unique direction. As 
stated earlier, it can have any direction in the plane perpendicular to ˆ1e . Equation 
2.185c is just one such direction. Therefore, the directions ˆ01n  and ˆ02n  associated 
with 1 2 maxn n  are also not unique. Equation 2.177 shows that whereas ˆ01n  (with 

 sign) makes an angle of 45  with both ˆ1e   and ˆ3e  directions, ˆ02n  (with  
sign) makes an angle of  45  with ˆ1e  direction but 135  with ˆ3e  direction. Thus, 
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the directions ˆ01n  and ˆ02n  lie on the surface of a cone whose axis is along ˆ1e  and 
semi-cone angle is 45  (Figure 2.8). 
 (d) To find the components of  with respect to the principal directions, we first 
evaluate the transformation matrix [ ]Q . For that purpose, we substitute the 
direction cosines of the principal directions as given by Equations 2.185a c into 
the expression (Equation 2.54) for [ ]Q . Thus, we get 

 

1 1 1
3 3 3

1 1[ ] 0
2 2

1 1 2
6 6 6

Q . (2.187) 

Using the tensor transformation relation (Equation 2.55), we get the following 
matrix of the components of the strain tensor with respect to the principal 
directions: 

 

T

4

4

[ ] [ ][ ][ ] ,

1 1 1 1 1 1
3 3 3 3 2 60 2 2

1 1 1 1 10 2 0 2 10 ,
2 2 3 2 62 2 0

1 1 2 1 20
6 6 6 3 6

4 0 0
0 2 0 10 .
0 0 2

p Q Q

 

  (2.188) 

Note that even if we choose any other pair of orthonormal vectors (in the plane 
perpendicular to ˆ1e ) as the second and third principal directions, then also the 

tensor transformation relations will  lead to the same expression for  [ ]p . 
 
Example 2.12:  Components of the linear strain tensor  at point O  of the thin 
plate of Figure 2.9, with respect to ( , , )x y z coordinate system, are given as 
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 0
1 0 0

[ ] 0 1 0
0 0 2

E
. (2.189) 

Here, 0  is the maximum value of the parabolically varying tensile stresses acting 
on the edges of the plate (Figure 2.9). Further, E  and  are the material constants  
which are defined in Section 2.5.1.  
(a) Find the volumetric strain v  at point O . 
(b) Find the hydrostatic and deviatoric parts of  at point O . 

 
Figure 2.9. A thin square plate subjected to in-plane stresses. Since the deformation is 
small, the initial and deformed configurations almost overlap 

Solution: (a) Using the values of ij  from Equation 2.189, we get  

 0 0[(1 ) (1 ) ( 2 )] 2(1 2 )ii E E
. (2.190) 

Substituting this expression into Equation 2.178 for the volumetric strain, we get 

 0 2(1 2 )v ii E
. (2.191) 

(b) As per Equation 2.180, components of the hydrostatic part are given by 

[(1/ 3) ]kk ij . Since 0 2(1 2 )kk E
 from part (a), the matrix of the hydrostatic 

part of becomes 
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 0

2 (1 2 ) 0 0
3

20 (1 2 ) 0
3

20 0 (1 2 )
3

E
. (2.192) 

Using 0 2(1 2 )kk E
 and Equation 2.180, components of the deviatoric part 

can be expressed as 

 0 2 (1 2 )
3ij ij ijE

.  (2.193) 

Using the values of ij  from Equation 2.189, we get the following expression for 
the matrix of the deviatoric part:  

 

0 0

0

2 (1 2 ) 0 0
31 0 0

2[ ] 0 1 0 0 (1 2 ) 0 ,
3

0 0 2 20 0 (1 2 )
3

1 0 0
3

10 0 .
3

2(1 )0 0
3

E E

E

         (2.194)    

2.4.3 Compatibility Conditions 

Suppose the linear strain tensor at a point is known as a function of initial 
coordinates 0 0 0( , , )x y z  of the point and we wish to find the displacement vector 
u  at that point by integrating the strain-displacement relations (Equation 2.151). 
Then, we have six scalar equations to solve but only three scalar unknowns to be 
determined. These unknowns are the components ( , , )x y zu u u  of the displacement 
vector. Is it possible to get a single-valued solution in this case? The necessary 
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condition to get the single-valued displacements, in this case, is that the strain 
components should satisfy the following constraints [2 4]:  

 

2 22

1 2 2
0 00 0

2 22

2 2 2
0 00 0

2 22

3 2 2
0 00 0

2

4
0 0 0 0 0 0

2

5
0 0 0 0

2 0,

2 0,

2 0,

0,

yy xyxx

yy yzzz

zz zxxx

yz xyzxxx

yy yz zx

E
x yy x

E
y zz y

E
z xx z

E
y z x x y z

E
z x y x 0 0
2

6
0 0 0 0 0 0

0,

0.

xy

yz xyzz zx

y z

E
x y z x y z

 (2.195) 

These conditions are known as the strain compatibility conditions or integrability 
conditions. 

While finding three unknowns from six equations, it would seem that only three 
constraints are needed. But we have six conditions. However, it can be shown that 
only three out of the six compatibility conditions are independent [2].  

It can be shown that conditions (Equation 2.195) are also sufficient for getting 
the single-valued displacements, but only for simply-connected regions [2 4]. For 
multiply-connected regions, additional compatibility conditions are required. 
Further, when the conditions at Equation 2.195 are satisfied in a simply-connected 
region, only the non-rigid part of the displacement vector becomes single-valued. 
Uniqueness of the rigid part of the displacement vector depends on the 
displacement boundary conditions of the problem. 
 
Example 2.13: Components of the linear strain tensor  at a point 0 0 0( , , )x y z , 
with respect to ( , , )x y z  coordinate system, are given as 

 

2 2
0 0

2 2
0 0

0 0

,

,

,

0,

xx

yy

xy

xz yz zz

a x y

b x y

cx y
 (2.196) 

where a , b  and c are constants. Check whether this state of strain is compatible. 
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Solution: Note that the strain components xz , yz  and zz  are zero. Further, the 

components xx , yy  and xy  are independent of 0z . Therefore, the last five 
compatibility conditions (Equation 2.195) are identically satisfied. Substituting the 
expressions (Equation 2.196) for xx , yy  and xy  in the first compatibility 
condition we get  

 
2 22

1 2 2
0 00 0

2 2 2 2yy xyxxE a b c
x yy x

. (2.197) 

Therefore, the given state of strain is compatible if  

 cba . (2.198) 

Note that when the strain components xz , yz  and zz  are zero at a point, the 
state of deformation is called as the state of plane strain (at a point) in yx  
plane. When these strain components are zero at every point of the body and if, 
additionally, the remaining strain components xx , yy  and xy  are independent 

of 0z , it is known as the state of plane strain (in a body) in yx  plane. It is seen 
that the state of strain described by Equation 2.196 is of this type. 

2.5 Material Behavior  

Relations which characterize various responses (like mechanical, thermal, 
electrical etc.) of a material are called the constitutive equations. It is these 
relations which differentiate one material from another. These relations are based 
on experimental observation. 

In this section, we shall consider only mechanical response. It is possible that a 
mechanical response may be caused by non-mechanical stimuli like a change in 
temperature or an application of an electromagnetic field. But we shall consider 
only purely mechanical response, that is, a mechanical response caused by a 
mechanical stimulus. Constitutive equation for such a response is usually 
expressed as a relation between the applied forces and the resulting deformation. In 
order to eliminate effects of the shape and size of the body and the nature and point 
of application of the loading, normally the constitutive equation is formulated for a 
material particle rather than for the whole body. For a purely mechanical response, 
such an equation is expressed as a relation between the stress and a measure of 
deformation (strain) and/or a measure of rate of deformation (strain rate).  

There are various types of mechanical responses. The basic responses are (i) 
elastic response, (ii) plastic response and (iii) viscous response. Sometimes the 
response consists of a combination of the basic responses. Further, a material may 
exhibit different types of responses over different ranges of deformation. For 
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example, metals behave elastically at small deformation but exhibit plastic 
behavior at large deformation. As a result, it is quite difficult to express the 
complete mechanical behavior of a material over the entire range of deformation 
through just one single equation. Therefore, we simplify the constitutive equation 
by restricting ourselves to only small deformation. As stated earlier, metals behave 
elastically at small deformation. Therefore, in this section we shall develop 
constitutive equation for elastic behavior of metals at small deformation. In elastic 
response, the stress depends on the instantaneous value of strain. Further, this 
relation is one-to-one. It means if the external forces acting on the body are 
removed (i.e., if the stress is reduced to the value zero), the strain will also attain 
the value zero, thereby bringing the body to the original undeformed configuration. 

2.5.1 Elastic Stress-Strain Relations for Small Deformation  

For small deformation, the linear strain tensor  can be used as a measure of the 
deformation. Therefore, for small deformation, the constitutive equation becomes a 
relation between  and .  

2.5.1.1 One-Dimensional Experimental Observations 
As stated earlier, constitutive equations are based on experimental observation. 
Therefore, let us first see what the experimental observation is about the relation 
between  and . The simplest experiment is the tension test. In tension test, a 
rod of uniform cross-section is subjected to an (axial) tensile force xF  as shown in 
Figure 2.10. The geometry and loading are such that it is reasonable to assume that 
the state of stress is one-dimensional and homogeneous in the region away from 
the ends. That is, the only non-zero stress component is xx  and it is constant. 
Further, the state of strain also can be assumed to be homogeneous in the region 
away from the ends. But, the number of non-zero strain components is not one. 
Only the shear strain components can be assumed to be zero. Thus, there are three 
non-zero strain components, namely xx , yy  and zz  and all are constant. 

 
Figure 2.10. Rod subjected to axial tensile forces. The dashed lines indicate the undeformed 
configuration 
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For the rod of Figure 2.10, we define the following: 

 0
0

xF
A

, (2.199) 

 
0

e , (2.200) 

where 0A  is the initial area of the cross-section of the rod, 0  is the initial length 
of the rod and  is the change in length corresponding to the (axial) tensile force 

xF . Note that, when the deformation is small (i.e., when the area 0A  does not 
change much), 0  is almost equal to xx  component of the stress tensor. 
However, when the change in area is large, 0  does not represent the true stress.  

 
Figure 2.11. Variation of engineering stress with engineering strain for a ductile material in 
tension test 

Therefore, we call 0  engineering or nominal stress. Again, when the 
deformation is small (i.e., when the change in length  is small), e  is equal to 

xu  and thus represents xx  component of the linear or infinitesimal strain 

tensor. But when the change in length is large, xx  or xu  does not become 
equal to e . Therefore, we call e  the engineering strain.  

Figure 2.11 shows the variation of 0  with e  up to fracture for a typical metal 
(mild steel). The figure shows that 0  varies linearly with e  when the 
deformation is small. But, for small deformation, 0  is same as xx  and e is equal 
to xx . Therefore, for small deformation, xx  varies linearly with xx . 
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It should be noted that the stress-strain relations need not be linear for all elastic 
materials. For a material like rubber, which is elastic in nature, the stress-strain 
relations are non-linear. 

2.5.1.2 Generalization to Three-Dimensional Case 
One can generalize the one-dimensional experimental observation of Figure 2.11 
(for small deformation) as follows. For small deformation, one can assume that 
each stress component depends linearly on all the components of the linear strain 
tensor. Thus,  

 

xx xxxx xx xxxy xy xxxz xz xxyx yx xxzz zz

xy xyxx xx xyxy xy xyxz xz xyyx yx xyzz zz

= C +C +C +C +..............+C ,

= C +C +C +C +..............+C ,

........................................................................

zz zzxx xx zzxy xy zzxz xz zzyx yx zzzz z

..............................,
......................................................................................................,

= C +C +C +C +..................+C .z

  

  (2.201) 

The stress-strain relations given by Equation 2.201 have 81 material constants. 
These constants characterize the elastic response of the metal at small deformation. 
These constants need to be determined by experiments.  

In index notation, Equation 2.201 can be written as 

 klijklij C . (2.202) 

Note that ijklC  are the components of a fourth order tensor C  which is called the 
elasticity tensor. In three dimensions, a fourth order tensor has  34 = 81 
components. 

2.5.1.3 Restrictions on Elasticity Tensor C 
One can reduce the number of constants in the stress-strain relations as follows. 
Since ij  and kl  are symmetric tensors, that is, 

 ,ij ji kl lk ,      (2.203) 

the components ijklC  must satisfy the following relations: 

 ,ijkl jikl ijkl ijlkC C C C .    (2.204) 

These relations imply that the tensor C  has only 36 independent components.  
Further simplification can be achieved by using the conservative nature of the 

internal forces generated by elastic response. For a certain class of elastic 
materials, work done by the internal forces, during deformation, is path-
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independent. As a result, the work of deformation (per unit volume) during an 
infinitesimal deformation can be expressed as an exact differential of a scalar 
quantity which has the dimensions of energy per unit volume (called the strain 
energy density). The work of deformation (per unit volume) during an infinitesimal 
deformation is ijklijklijij dCd . For this expression to be an exact differential, 
the tensor C  must be symmetric in the first two and the last two indices: 

 .ijkl klijC C  (2.205) 

Equations 2.204 and 2.205 imply that the tensor C  has only 21 independent 
components. 

For isotropic materials, the number of independent components of C  can be 
reduced further. For isotropic material, the response of the material is the same in 
every direction. Mathematically it means the constants in the stress-strain relations 
remain invariant with a change in the coordinate system. Equation 2.202 represents 
the stress-strain relations in ( , , )x y z  coordination system. Let ij  and kl  
represent respectively the stress and strain components in ( , , )x y z  coordinate 
system. Then, for isotropic materials, the stress-strain relations in ( , , )x y z  
coordinate system can be written as  

  klijklij C . (2.206) 

Note that, since the material is isotropic, the constants ijklC  appearing in the stress-
strain relations are the same both in ( , , )x y z  and ( , , )x y z  coordinate systems. 
Note that, since  is a second order tensor, its components ij  and mn  with 
respect to two coordinate systems are related by the tensor transformation relation 
(Equation 2.56). Rewriting this relation with the change of indices, we get 

 T
ij im mn njQ Q , (2.207) 

where the matrix [ ]Q (Equation 2.54) represents the transformation from ( , , )x y z  
coordinate system to ( , , )x y z system. Since  is also a second order tensor, its 

components kl  and pq  are also related by a similar relation: 

 T
kl kp pq qlQ Q . (2.208) 

Substituting Equations 2.207 and 2.208 in Equation 2.206 and using the 
orthogonality of  matrix [ ]Q  (Equation 2.61), we get  
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 T T
mn mi jn ijkl kp ql pqQ Q C Q Q . (2.209) 

In changed indices, Equation 2.202 can be rewritten as 

 .mn mnpq pqC  (2.210)  

Comparing Equations 2.209 and 2.210, we get the following restriction on the 
components of C  due to isotropy: 

 mnpq im jn ijkl kp lqC Q Q C Q Q . (2.211) 

Equation 2.211 must hold for all rotations of a coordinate system, i.e., for all 
orthogonal matrices whose determinant is 1 .  

Equations 2.204, 2.205 and 2.211 imply that the six components 1122C , 1133C , 

2211C , 2233C , 3311C  and 3322C  are equal. Further, these equations imply that the 
twelve components 1212C , 1221C , 2112C , 2121C , 2323C , 2332C , 3223C , 3232C , 

3131C , 3113C , 1331C  and 1313C  are also equal but their value is different to the 
value of the first set of components. Additionally, these equations imply that the 
three components 1111C , 2222C  and 3333C  are also equal and their value is related 
to the values of the first and second sets of components. If the value of the first set 
is  and that of the second set is , then the value of the third set is 2 . 
Thus, we have the following relations between the 21 components of the tensor C : 

 

1122 1133 2211 2233 3311 3322

1212 1221 2112 2121 2323 2332 3223 3232

3131 3113 1331 1313

1111 2222 3333

,

,
2 .

C C C C C C
C C C C C C C C

C C C C
C C C

 (2.212) 

Finally, these equations imply that the remaining 60 components of the tensor C  
are zero. Thus, for isotropic materials, there are only two independent components 
of the tensor C [2,4].  

2.5.1.4 Stress-Strain Relations for Isotropic Materials 
Substituting the values of 21 components of C  from Equation 2.212 in Equation 
2.202 and setting the remaining components of C  to zero, the stress-strain 
relations for isotropic materials become 

 2ij kk ij ij . (2.213) 
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In tensor notation, they can be expressed as 

 ( ) 2tr 1 . (2.214) 

Further, in component forms, they can be written as 

 

( ) 2 ,

( ) 2 ,

( ) 2 ,

2 ,

2 ,

2 .

xx xx yy zz xx

yy xx yy zz yy

zz xx yy zz zz

xy xy

yz yz

zx zx

 (2.215) 

Expressions for the remaining three shear stress components are not needed 
because of the symmetry of the stress tensor. The constants  and  are known 
as the Lame’s constants.  

As stated in the introduction, there are three sets of equations which govern the 
displacements, strains and stresses in a body. This is the third set of governing 
equations when the deformation is small and the material is isotropic linearly 
elastic. 

Sometimes, we need inverse relations. That is, we need expressions for the 
strain components in terms of the stress components. They can be obtained by 
inverting Equation 2.215. When we do that, we get the following relations: 

 

1 ( ) (1 ) ,

1 ( ) (1 ) ,

1 ( ) (1 ) ,

(1 ) ,

(1 ) ,

(1 ) ,

xx xx yy zz xx

yy xx yy zz yy

zz xx yy zz zz

xy xy

yz yz

zx zx

E

E

E

E

E

E

 (2.216) 

where 

 (3 2 ) , .
2( )

E  (2.217) 
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In index notation, Equation 2.216 can be expressed as 

 1 (1 )ij kk ij ijE
, (2.218) 

and, in tensor notation, it can be written as 

 1 [ ( ) (1 ) ]tr
E

1 . (2.219) 

It can be shown that the constant E  is the slope of the straight portion of the one-
dimensional stress-strain curve (Figure 2.11): 

 .xx

xx
E  (2.220) 

It is called the Young’s modulus. Further, the constant  can be shown to be 
negative of the ratio of the transverse normal strain to the axial or longitudinal 
normal strain in tension test. Thus, 

 
xx

zz

xx

yy . (2.221)  

It is known as the Poisson’s ratio. Equations 2.215 or 2.216 are called the 
generalized Hooke’s law. 

Elimination of  from both parts of Equation 2.217 gives the following 
expression for : 

 
2(1 )

E . (2.222) 

Similarly, elimination of  from both parts of Equation 2.217 gives the following 
expression for : 

 
(1 )(1 2 )

E . (2.223) 

2.5.1.5 Alternate Form of Stress-Strain Relations for Isotropic Materials 
If we substitute the decompositions of stress and strain tensors (Equations 2.100 
and 2.180) in the stress-strain relations (Equation 2.213) and equate the hydrostatic 
and deviatoric parts on each side, we get the following relations: 
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 1 1(3 2 ) ,
3 3kk kk  (2.224) 

 ' 2 .ij ij  (2.225) 

In tensor notation, they become 

 1 1(3 2 )
3 3

tr tr . (2.226) 

 ' 2 . (2.227) 

This is the third form of the stress-strain relations. It relates the hydrostatic and 
deviatoric parts of stress and strain tensors separately. This is possible only in 
isotropic materials. Equation 2.226 is a scalar equation. Because of the symmetry 
of '  and , the tensor equation (Equation 2.227) represents six scalar equations. 
So, it appears that this form of the stress-strain relations consists of seven scalar 
relations. However, it is not so. Because of the constraints 0tr '  (Equation 2.99) 
and 0tr  (Equation 2.179), only five out of six equations from the set (Equation 
2.227) are independent. 

Equation 2.225 or 2.227 shows that, in isotropic materials, the elastic constant 
 relates the deviatoric parts of stress and strain tensors. Therefore, it is called the 

shear modulus. These equations imply that, in isotropic materials, the change in 
shape (without change in volume) is caused only by the deviatoric part of stress 
tensor. It also means, in isotropic materials, the hydrostatic part of stress tensor 
causes only the change in volume (without change in shape). 

Besides the four elastic constants , , E  and , there is one more elastic 
constant that is often used. It is called the bulk modulus and is denoted by K . It is 
defined as the ratio of the hydrostatic part of stress to the volumetric strain. In 
small deformation, the volumetric strain is given by lltr  (Equation 2.178). 
Thus, for small deformation, K  is defined as 

 
(1/ 3) (1/ 3)kk

ll

trK
tr

. (2.228) 

This shows that, when the deformation is small, the bulk modulus K  relates the 
hydrostatic parts of stress and strain tensors. Combining Equations 2.224 and 2.228 
we get the following expression for the bulk modulus in terms of  and : 

 (3 2 )
3

K . (2.229) 

By taking the trace of Equation 2.219 and using  Equation 2.228 for K , we get 
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3(1 2 )

EK . (2.230) 

Using the sign conventions for stress and strain components described in 
Sections 2.3.1.4 and 2.4.1.2, experimental observations in real materials show that 
the signs of E , , ,  and K  are all positive. Equation 2.230 shows that, for 
compressible materials (finite K ),  has to be less that (1/2). For incompressible 
materials ( K ),  must be (1/2). 
 
Example 2.14: Using the stress-strain relations at Equation 2.215, find the 
expressions for the stress components corresponding to the strain expressions of 
Example 2.10 (Equation 2.161). 

Solution: Using the strain expressions of Example 2.10 (Equation 2.161), we get 

 0 0
1 1( ) 1 0
2 2xx yy zz A x y . (2.231) 

Note that Equation 2.231 implies that the volumetric strain v  is zero. This is 
expected, since the material is incompressible. Further, it implies that the 
hydrostatic part of the strain tensor is zero. Thus, the whole strain tensor is 
identical to its deviatoric part.  

Substituting the strain expressions of Example 2.10 (Equation 2.161) along 
with Equation 2.231 in the stress-strain relations at Equation 2.215, we get  

 

0 0

0 0

0 0

2 2
0

0 0

( ) 2 0 2 ( ) ,

( ) 2 0 ( ) ,

( ) 2 0 ( ) ,

2 ,

2 0,

2 .

xx xx yy zz xx

yy xx yy zz yy

zz xx yy zz zz

xy xy

yz yz

zx zx

A x y

A x y

A x y

A a y

Ay z

 (2.232) 

2.6 Summary 

In this chapter, first the index notation and the associated summation convention 
which have been used throughout the book have been explained. Then the 
equations which govern the displacements, strains and stresses in a deformable 
body have been developed for the case of small deformation of linearly elastic 
materials. These equations have been developed in the following stages. First, the 
concept of stress at a point has been discussed. Since the stress at a point is a tensor 
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(a second order tensor to be precise), a simple definition of tensor has been 
provided. The analysis of stress at a point has been carried out to provide a 
background material for developing the theory of plasticity in Chapter 3. The 
equations of motion which the stress components satisfy have also been discussed. 
Next, the linear strain tensor at a point, which is a measure of small deformation, 
has been developed. The associated strain-displacement relations have been 
presented. The linear strain tensor is not applicable to the analysis of plastic 
deformation. However, it does provide an insight into the deformation of solids 
which would be useful while developing a measure of plastic deformation in the 
next chapter. Analysis of the linear strain at a point has also been carried out 
similar to the analysis of stress at a point. Finally, the stress-strain relations, for the 
case of small deformation of linearly elastic solids, have been developed. These 
relations provide an introduction to the material behavior and therefore provide a 
useful foundation for developing the plastic stress-strain relations of Chapter 3. 
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Classical Theory of Plasticity  

3.1 Introduction 

In metal forming processes, the material is deformed plastically to obtain the 
desired shape. On the other hand, in machining processes, the desired shape is 
achieved by removing the material in the form of chips. In machining of ductile 
materials, a significant amount of plastic deformation takes place before the chips 
fracture. To estimate the external forces required for achieving the desired shape, it 
is necessary to determine the plastic deformation and the stresses developed due to 
this deformation. 

In the last chapter, we developed three governing equations for determining the 
displacements, deformation (strains) and stresses for the case of small deformation 
of linearly elastic materials: (i) strain-displacement relations, (ii) stress-strain 
relations and (ii) equations of motion. The equations of motion remain the same for 
the case of plastic deformation. But, the first two equations need modification, as 
the plastic deformation involved in the metal forming and machining processes 
differs from the small deformation of linearly elastic materials in two respects. The 
first difference is that this plastic deformation is quite large. Therefore, we cannot 
use the measure of small deformation, namely linear strain tensor, developed in the 
last chapter. A new measure of deformation, applicable for large deformation, 
needs to be developed. This leads to a different set of strain-displacement relations. 
It needs to be emphasized that, if the elastic deformation is large as happens in 
rubber like materials, a measure of large deformation is required for the analysis of 
elastic deformation as well. A second difference is that the material behavior 
responsible for the plastic deformation differs significantly from the elastic 
behavior. When a body is deformed plastically, then it does not return to the 
original undeformed configuration after the external forces are removed. This 
behavior is described by a set of stress-strain relations which are not one-to-one 
like the elastic stress-strain relations. It also means, in plastic deformation, that the 
material behaviors in loading and unloading are different. In fact, in unloading the 
behavior is elastic. In this chapter, we plan to develop: (i) measures of plastic 
deformation and corresponding strain-displacement relations and (ii) plastic stress-
strain relations. 
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Besides the measure of plastic deformation and the plastic stress-strain 
relations, we need four more things for the analysis of plastic deformation. These 
four things are as follows. The first is that, in metal forming and machining 
processes, the metal first behaves elastically for small deformation and then 
behaves plastically as the deformation grows. Therefore, we need a criterion which 
tells us when the elastic behavior ends and the plastic behavior begins. Such a 
criterion is called the yield criterion. It is usually represented as a scalar function of 
the stress components. So we need to develop the (initial) yield criterion of metals. 
Second, for achieving continued or subsequent plastic deformation beyond initial 
yielding, additional stress needs to be applied. It means, in subsequent yielding, the 
(initial) yield criterion keeps changing with the level of plastic deformation. This 
phenomenon is called hardening. To model the hardening behavior, we need to 
develop the criterion for subsequent yielding. Third, when a combination of the 
stress components decreases, the material again behaves elastically. This is called 
unloading phenomenon. To model this phenomenon, we need to develop the 
unloading criterion. Fourth, the constitutive equation for plastic behavior is usually 
expressed either in the rate form or in the increment form. The stress tensors which 
appear in these constitutive equations have to be objective, i.e., they have to be 
invariant under a change of reference frame. Whereas the Cauchy stress tensor 
(introduced in the last chapter) is objective, its rate or increment is not objective. 
Therefore, we need to develop the objective stress rate and objective incremental 
stress measures. Constitutive equation for large elastic deformation is also 
sometimes expressed in the rate or incremental form. In that case, the stress 
measures appearing in these constitutive equations also have to be objective. 

Organization of this chapter is as follows. First, we describe the one-
dimensional experimental observations on plasticity based on tension test. This is 
done in Section 3.2. These observations provide a valuable insight into the 
phenomenon of plasticity. Further, they provide a useful basis for the development 
of three-dimensional yield criterion, hardening relations, unloading criterion etc. In 
Section 3.3, we discuss two (initial) yield criteria for isotropic materials: (i) Mises 
yield criterion and (ii) Tresca yield criterion. We also discuss their experimental 
validation. The Mises yield criterion is found to have better agreement with 
experimental predictions on yielding. Two common measures of plastic 
deformation, namely the incremental linear strain tensor and strain rate tensor are 
developed in Section 3.4. The first is valid only for small incremental deformation. 
A relation between the two measures is also discussed. The incremental linear 
strain tensor is useful in the analysis of processes like forging, deep drawing, and 
sheet bending etc. which are amenable to incremental formulation, called the 
updated Lagrangian formulation. The strain rate measure is employed in the 
analysis of rolling, drawing, extrusion etc. where the analysis is carried out by 
fixing a region in space (called the control volume) and observing the deformation 
of the material particles as they pass through the control volume. This formulation 
is known as the Eulerian formulation. In Section 3.5, hardening behavior is 
modeled by developing a criterion for subsequent yielding. While doing so, it is 
assumed that the hardening is isotropic. This assumption does not have much 
experimental support. However, in the absence of required experimental data, it is 
difficult to develop a better hardening model. 
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Section 3.6 is devoted to the development of plastic stress-strain relations for 
isotropic materials. The first approach for developing the plastic stress-strain 
relations is based on Drucker’s postulate for stable plastic material. The second 
approach is based on the postulate of plastic potential. In this book, we follow the 
second approach because it is less mathematical. Starting from the postulate of 
plastic potential, we first discuss the associated flow rule and then develop the 
following two constitutive equations: (i) elastic-plastic incremental stress-strain 
relation for the updated Lagrangian formulation and (ii) elastic-plastic stress-strain 
rate relations for the Eulerian formulation. While developing these relations, it is 
assumed that the elastic and plastic parts of the deformation are additive. This is 
true for the incremental linear strain tensor only when the incremental deformation 
is small. For the strain rate tensor, it is true if the rotation is small. Unloading 
criterion is presented in Section 3.7. The concept of objective stress rate and 
objective incremental stress measures is discussed in Section 3.8. A commonly 
used objective stress rate measure, namely the Jaumann stress rate tensor, is also 
presented. The objective incremental stress tensor is taken to be the product of the 
Jaumann stress rate and the time increment. This measure is objective only when 
the incremental rotation is small. Section 3.9 describes the Eulerian and updated 
Lagrangian formulations for the metal forming processes. These formulations are 
illustrated through the examples of wire drawing and forging of cylindrical block 
respectively. The boundary and initial conditions for these two problems are also 
described.  The Eulerian formulation for the simplest machining process, namely 
orthogonal cutting, is presented in Section 3.10. The discussion includes the 
boundary and initial conditions as well. The last section, namely Section 3.11, 
summarizes the chapter. Worked out examples are provided at the end of Sections 
3.3, 3.4, 3.5 and 3.6. 

All the above material falls under the domain of classical plasticity [1 4] as the 
discussion is confined to small incremental deformation and isotropic materials 
only. In the next chapter, we shall discuss the plasticity of finite incremental 
deformation and anisotropic behavior. The tensor, array and index notations used 
in this chapter have already been introduced in the previous chapter. 

3.2 One-Dimensional Experimental Observations on Plasticity 

Consider a rod of uniform cross-section subjected to an axial tensile force xF  as 
shown in Figure 2.10. Let 0A  be its initial area of cross-section, 0  its initial 
length and  the change in length corresponding to xF . The engineering (or 
nominal) stress 0  and the engineering strain e  are defined by Equations 2.199 
and 2.200. Further, the variation of 0  with e  is plotted in Figure 2.11. Note that, 
after certain deformation, the value of xF  and along with that the value of 0  
decreases. However, the true stress does not decrease with the deformation. 
Further, it is observed that the value of e  at fracture, for most metals, is more than 
0.5. Therefore, plastic deformation is usually quite large. It is more appropriate 
then to use a measure of deformation which can represent large deformation. One 
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such measure is the logarithmic strain. The stress-strain diagram involving the true 
stress and logarithmic strain is more useful for studying the phenomenon of 
plasticity. Therefore, we construct such a diagram. 

In the one-dimensional case, we denote the logarithmic strain by  and define 
it as 

 
0

ln ,                             (3.1)   

where  is the current length (i.e., the length in the deformed configuration). It is 
also called the natural strain. Since 

 0 ,                                                     (3.2)   

using Equations 3.1, 3.2 and 2.200, we get the following relationship between  
and e : 

 )1ln( e .                   (3.3)   

Note that, when the deformation is small (i.e., when )05.0e ,  is approximately 
equal to e . The expression for true stress  is given by  

 
A

Fx , (3.4) 

where A  is the current area of cross-section. It is observed that the volume 
remains constant during plastic deformation. This condition implies that A  is 
related to 0A  by  

 0
0 AA . (3.5) 

Substituting Equations 3.5, 3.2, 2.199 and 2.200 in Equation 3.4, we get the 
following relationship between and 0 :  

 0)1( e . (3.6) 

Note that, when the deformation is small (i.e., when )05.0e ,  is 
approximately equal to 0 . Using Equations 3.3 and 3.6, we convert the variation 
of 0  with e  (Figure 2.11) into the graph of   vs  which is shown in Figure 
3.1. From this figure, we can make the following observations about the plasticity. 
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 Elastic region 
We denote the value of stress at point  Y (end of the straight portion of Figure 3.1) 
as Y . If the rod is stressed up to any level less than Y  (say up to point A), then 
it attains the original undeformed configuration on unloading. Therefore, the 
straight portion  OY corresponds to the elastic behavior. 

 Yield stress  
We observe that when the stress reaches the value Y  (Figure 3.1), the material 
yields, that is, it starts flowing suddenly, leading to large deformation. The value 

Y  is called the yield stress. It marks the transition from elastic to plastic behavior.  
Thus, in one-dimensional state of stress, initial yielding occurs when the 

condition  

 0Y  (3.7) 

is satisfied. Generalization of this initial yield condition to three-dimensional state 
of stress is discussed in next section. 

 

 
Figure 3.1. Variation of true stress with logarithmic strain in tension test 
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In some materials, in the neighborhood of Y , the actual stress-strain curve 
[1,2] differs a little from the curve of Figure 3.1. For example, the end of elastic 
behavior does not coincide with the end of the straight portion of the curve. 
Further, there is a drop in the stress after initial yielding leading to upper and lower 
yield points. However, for ease of mathematical modeling, we neglect these finer 
aspects of yielding and assume the existence of a sharp yield point at the end of the 
straight portion. For materials like aluminum where there is a continuous change of 
slope at the end of the straight portion, the yield stress is defined as the stress 
corresponding to 0.2% permanent strain. The concept of permanent strain is 
defined later. 

It is observed that the value of Y  is more if the tension test is conducted at 
higher rate of loading. Further, the value of  Y  is less if the test is conducted at 
elevated temperature. Thus, Y  increases with strain rate but decreases with 
temperature. 

 Plastic region 
The curved portion of Figure 3.1 beyond point Y corresponds to the plastic 
behavior. Some of the characteristics of plastic behavior are as follows.  

Imagine that the rod has been stressed beyond yielding up to point B. If we 
continue to increase the load, then the stress-strain curve will follow the path BF 
leading to fracture at point F. The portion YF is called the loading path. However, 
if we unload from point B to zero stress level, then the stress-strain curve will 
follow the straight path BC leaving a permanent strain C  in the rod. Thus, if the 
rod is stressed beyond the level Y , then it does not attain the initial undeformed 
configuration on unloading. Instead, it acquires some permanent strain, also called 
the plastic strain. Now imagine that the rod has an initial plastic strain D . If we 
load this rod, then the stress-strain curve will be a straight line from point D to 
point E and then it will follow the curved portion EF. It means the rod will behave 
elastically up to point E and will yield at the stress level corresponding to point E, 
which is greater than Y . Thus, a rod which has some initial plastic strain yields at 
a higher stress level than the undeformed rod. This is called subsequent or 
continued yielding. Condition for this yielding is developed later.   

The stress-strain relationship corresponding to plastic behavior is not one-to-
one. To see this, assume that the rod has been strained up to the strain level P  and 
let us find the corresponding value of stress. It will be equal to P  if we are on the 
loading path. However, it will be equal to Q  if we stress the rod up to point Q 

and then unload it to the strain level P . Further, it will be equal to R  if we 
stress the rod up to point R and then unload it to the strain level P . Thus, the 
stress corresponding to the strain level P  is not unique but depends on the history 
of deformation. Further, there is one type of stress-strain relationship if we are on 
the loading path and a different one when we are on the unloading path. 
Generalization to three-dimensional plastic stress-strain relations is discussed in 
Section 3.6 
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To avoid the mathematical complexity in the analysis of plastic behavior, 
plastic stress-strain relations are sometimes simplified by approximating or 
idealizing the actual stress-strain behavior. With reference to the stress-strain curve 
of Figure 3.1, these idealizations can be stated as follows. In metals, elastic strain is 
very small compared to the plastic strain. First simplification arises by neglecting 
the elastic strain. Then, the stress-strain curve of Figure 3.1 starts from point Y and 
has only the plastic portion YF. Such a material is called rigid-plastic. Otherwise, 
the material is called elastic-plastic. In the second simplification, we assume that 
the portion YF is straight. Such a material is called linearly hardening. (The 
phenomenon of hardening is discussed in the next paragraph.) In the third 
simplification, the portion YF is assumed to be straight as well as parallel to the 
strain axis. Such a material is called ideal or perfectly plastic. Various 
combinations of these simplifications result in the following four idealizations: (i) 
rigid perfectly plastic material, (ii) rigid-plastic material with linear hardening, (iii) 
elastic perfectly plastic material and (iv) elastic-plastic material with linear 
hardening. 

 Strain hardening 
It is observed that, beyond point Y of Figure 3.1, stress increases with strain. It 
means, beyond initial yielding, the stress required to cause subsequent yielding or 
continued material flow increases with the strain. This phenomenon is called strain 
hardening. The yield stress in subsequent yielding depends on the plastic part of 
deformation. Therefore, to develop a mathematical expression for subsequent 
yielding, we need a graph which gives the variation of stress with the plastic part of 
strain. We construct such a graph from Figure 3.1 as follows. To find the plastic 
part of strain corresponding to S  (i.e., the stress at point S of Figure 3.1), we 
unload from point S to the zero stress level (i.e., to point T). Then OT is the plastic 
part of strain corresponding to S . The remaining part is the elastic part of strain. 
In this way, we find the plastic part of strain corresponding to all values of stress 
greater than Y . We denote the plastic part by p and the elastic part by e . The 

graph of vs p  is shown in Figure 3.2. 
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Figure 3.2. Variation of true stress with plastic part of logarithmic strain in tension test 

The curve of Figure 3.2 can be represented mathematically as  

 ( ) 0ph , (3.8) 

where the function h is called hardening function. This equation represents the 
criterion for subsequent or continued yielding for one-dimensional state of stress. 
When p  is zero, the value of h is equal to Y . Thus, for initial yielding 

)0( p , Equation 3.8 reduces to the criterion for initial yielding (Equation 3.7). 
Generalization of Equation 3.8 to the three-dimensional case is discussed in 
Section 3.5. 

Several forms of function h have been proposed to fit the experimental stress-
strain curves. Some commonly used forms are listed below [3, 4]. The original 
expressions for these functions are in terms of the total strain. Here, they have been 
appropriately modified to express them in terms of the plastic part of strain. 
Further, the symbols for the material constants also have been changed. 

1. Ludwik’s expression: 

 np
Y K )( .  (3.9)   

This expression does not give a good fit at large strains as the experimental stress-
strain curves of most metals have a constant slope at large strain. 

2. Swift’s expression: 

 np
Y K ]1[ . (3.10) 
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This expression gives a better fit of experimental stress-strain curves at large 
strains than the Ludwik’s expression. 

3. Voce’s expression: 

 ]1[ )( pn
Y eK . (3.11) 

This expression gives a good fit of experimental stress-strain curves at moderate 
values of strain.  

In all the three expressions above, K and n are the material constants known as  
hardening parameters, which are to be determined by fitting the above equations 
with the experimental curves of true stress vs the plastic part of logarithmic strain 
(Figure 3.2). Note that, when p  is zero (i.e., at initial yielding), reduces to Y  
(i.e., to the initial yield stress) in all the three equations above. When n is equal to 
1, Equations 3.9 and 3.10 represent a linear hardening curve.  

Here, we have not presented the mathematical expressions proposed by Prager 
and Ramberg and Osgood [3]. Prager’s expression is essentially for non-hardening 
material. Expression due to Ramberg and Osgood represents a continuous 
transition from elastic to plastic behavior, and therefore not suitable for modeling 
subsequent yielding. 

 Temperature softening 
If we conduct the tension test at elevated temperature, we observe that, beyond 
initial yielding, the stress required to cause further material flow decreases with 
temperature rise. This phenomenon is called temperature softening. In this case, 
the function h of Equation 3.8 depends on temperature also. This effect needs to be 
included in the plastic stress-strain relations while analyzing hot forming processes 
or machining processes or if the temperature rise in cold processes is quite large. 

 Viscoplasticity 
If we conduct the tension test at higher rate of loading, we observe that, beyond 
initial yielding, the stress required to cause further material flow increases with 
strain rate or the rate of deformation. This phenomenon is called viscoplasticity. 
This increase in the stress is due to the viscous resistance of the material to further 
yielding. In this case, the function h of Equation 3.8 also depends on some measure 
of the rate of deformation. This effect needs to be incorporated in the plastic stress-
strain relations while analyzing hot or high speed metal forming processes or 
machining processes as the material becomes viscoplastic at elevated temperature 
and high strain rate. 

 Isochoric deformation 
As stated earlier, it is observed that the volume remains constant during plastic 
deformation. Thus, the plastic deformation is isochoric. This imposes a constraint 
on plastic deformation. 

 Large deformation 
As stated earlier, the deformation in plastic region is quite large. As a result, we 
cannot use the linear or infinitesimal strain tensor  as the measure of 



104 Modeling of Metal Forming and Machining Processes 

deformation. We have to look for some other measure of deformation to represent 
the plastic deformation. One such measure is the logarithmic strain, whose 
definition for the one-dimensional case has been given earlier. Measures used for 
describing plastic deformation are discussed in Section 3.4. 

 Hysteresis 
Suppose the rod, which has been stressed upto point B (Figure 3.3), is unloaded up 
to zero stress level. Then it will follow the straight path BC leaving a plastic strain 

C  in the rod. If we load it now, then the initial straight path CD, which the stress-
strain curve follows, has a slightly different slope to the unloading path BC. This 
phenomenon is called hysteresis and the loop BCD is called the hysteresis loop.  

 
Figure 3.3. Hysteresis loop 

In Figure 3.3, the hysteresis loop has been exaggerated. The actual hysteresis 
loop is quite small and thus its effect on the plastic stress-strain relationship can be 
neglected. Therefore, we assume that the slopes of both the straight line portions 
BC as well as CD are identical and are equal to the Young’s modulus. 

 Bauschinger effect 
If the rod is subjected to axial compressive force instead of tensile force, then the 
numerical value of the yield stress in compression is found to be exactly equal to 

Y . However, this numerical equality of yield stress in tension and compression 
does not hold in reversed loading after the yielding. 
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Figure 3.4. Bauschinger effect 

Suppose the rod, which has been stressed up to point B (Figure 3.4), is 
unloaded to the zero stress level (i.e., to point C) leaving a plastic strain C  in the 
rod. Next, it is loaded in compression. Then it will follow the path CD, where the 
new yield stress D  (in compression) is smaller in magnitude than the stress B  
(the yield stress in tension corresponding to the initial strain of C ). This 
phenomenon is called the Bauschinger effect. This lowering of the yield stress in 
reversed loading is caused by the residual stresses (at the microscopic scale) left in 
the rod after unloading. The Bauschinger effect can be removed after mild 
annealing. In our analysis, we shall neglect the Bauschinger effect and assume that 
the yield stress in tension and compression are numerically equal. We shall discuss 
modeling of Bauschinger effect and kinematic hardening in next chapter. 

 Necking or one-dimensional plastic instability 
At a certain value of the force xF , necking of the rod starts. Then, the deformation 
of the rod will not be as shown in Figure 2.10. This happens due to instability of 
the one-dimensional state of stress existing in the rod. Disturbance for the 
instability is provided by the nucleation of voids which starts at that value of xF . 
The one-dimensional state of stress, after the disturbance, gives rise to a three-
dimensional (or triaxial) state of stress which manifests itself in the form of 
necking. Necking initiates when the value of xF  starts decreasing, or when xF  
attains the maximum value.  
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To determine the values of  and  at the onset of necking, we differentiate 
Equations 3.4, 3.5 and 3.1: 

 d d dxF A A ,  (3.12a) 
 d d 0A A , (3.12b) 

 dd . (3.12c)   

Eliminating dA  and d  from these three equations, we get  

 d ( d d )xF A . (3.13) 

Since d xF  becomes zero when the necking starts, we get the following relationship 
at the onset of necking: 

 d
d

. (3.14) 

Thus, the point on the graph of  vs  at which the necking starts is characterized 
by the condition that the slope of the tangent at that point is equal to the ordinate of 
the point. This point (labeled as A) is shown in Figure 3.5. 

 
Figure 3.5. True stress vs logarithmic strain diagram in tension test showing the onset of 
necking 
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In this book, we shall not consider any more cases of plastic instability. The 
purpose of the above discussion is to give a brief idea about the phenomenon of 
plastic instability. 

The above experimental observations are based on the tension (and 
compression) test. Some additional observations on plasticity which are based on 
experiments other than the tension (and compression) test are as follows. 

 Effect of hydrostatic stress 
It is observed that the yield stress is unaffected by the hydrostatic part of the stress 
tensor. See [4] for the original references on this observation. Thus, yielding is 
essentially caused by the deviatoric part of the stress tensor. This observation has 
been used in developing the yield criteria in next section. 

 Anisotropy 
Microstructure of metals is crystalline in nature. In an annealed metal, the 
crystallographic directions are randomly oriented. At macroscopic level, this 
means, there is no preferred direction. Thus, an annealed metal is isotropic at the  
macroscopic level. However, when it is subjected to cold forming processes like 
drawing, extrusion, rolling etc., the crystallographic directions gradually rotate 
towards a common axis thus creating a preferred direction. Therefore, after cold 
forming, the metal usually becomes anisotropic in nature. When this metal is 
subjected to further forming processes without annealing, the yield criteria and the 
plastic stress-strain relations used for the analysis of these processes should 
incorporate the anisotropy. Anisotropic yield criteria and the corresponding plastic 
stress-strain relations are discussed in next chapter. 

3.3 Criteria for Initial Yielding of Isotropic Materials 

A law defining the limit of elastic behavior is known as the yield condition or yield 
criterion. Equation 3.7 is the criterion for initial yielding for the one-dimensional 
state of stress, where only one stress component is non-zero. In a three-dimensional 
state of stress, where normally all the stress components are non-zero, this 
condition can be generalized as  

 0)( ijf , (3.15) 

where ij  are the components of stress tensor  with respect to a coordinate 

system ),,( zyx . The function f is called the yield function. 
As stated earlier, yielding depends only on the deviatoric part of stress tensor. 

Let ij  be the components of the deviatoric part of  with respect to the 

coordinate system ),,( zyx . Then, in Equation 3.15, f should be a function of ij . 
Thus, the yield criterion becomes 

 0)( ijf . (3.16) 
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For isotropic materials, the yield function should remain unaffected by a change of 
the coordinate system. It means the function f should be an invariant of . Since 
every invariant of a tensor can be expressed in terms of the three principal 
invariants, f  should be a function of the three principal invariants 1J , 2J  and 3J  
of . But, since 0tr , the first invariant 1J  is zero (Equation 2.104). 
Therefore, the yield criterion becomes  

 0),( 32 JJf . (3.17) 

At the initial yielding, the yield stress in compression is found to be numerically 
equal to  Y . When we generalise this observation to the 3D case, we expect f to 
be unaffected if ij  is replaced by ij . It implies that f should be an even 

function of ij . Note that 2J  is an even function of  ij  (Equation 2.105), but 3J  

is an odd function of ij  (Equation 2.103). Therefore, in Equation 3.17, f should 

be an even function of 3J , but can be any function of 2J . 
To determine the specific dependence of f on 2J  and 3J , one has to make a 

hypothesis and test it against the experimental results. We discuss here two such 
hypotheses and their experimental validation: (i) von Mises yield criterion and (ii) 
Tresca yield criterion. 

3.3.1  von Mises Yield Criterion  

In von Mises yield criterion, the yield function f is assumed to be a linear function 
of 2J  and independent of 3J . Therefore, the von Mises yield criterion (henceforth 
simply called the Mises criterion) can be stated as 

 0),( 232 kJJJf . (3.18) 

This criterion was proposed by von Mises in 1913, but was anticipated by Huber in 
1904. Its physical interpretation was provided by Hencky in 1924 and Nadai in 
1933. Hencky showed that 2J  is related to the distortion strain energy density. As 
stated in Section 2.5.1, the strain energy density is the work done (per unit volume) 
by ij  during the deformation and is given by dij ij . The distortion strain 

energy density is the work done (per unit volume) by the deviatoric part ij . As 
per Hencky’s interpretation, Equation 3.18 states that yielding occurs whenever the 
distortion strain energy density reaches a critical value. Nadai related 2J  to the 

octahedral shear stress oct  (Equation 2.98). Therefore, as per Nadai’s 
interpretation, Equation 3.18 states that yielding occurs if the octahedral shear 
stress reaches a critical value. 
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The material constant k  can be determined easily from the one-dimensional 
experimental results of Section 3.2. In tension test, matrix of the stress components 
with respect to ),,( zyx coordinate system is given by 

 
000
000
00

][ , (3.19) 

where  is given by Equation 3.4. From the above equation, we get tr . 
Then, using Equation 2.100, the matrix of the deviatoric part can be written as  

 

3
100

0
3
10

00
3
2

][ . (3.20) 

From this, 2J  is calculated as (Equation 2.105) 

 2
2 3

1
2
1

ijijJ . (3.21) 

At the initial yielding,  is equal to Y , and therefore, 2J  becomes 2)3/1( Y . 
Substituting the value of 2J  at the initial yielding in Equation 3.18, we get 

2)3/1( Y  as the value of k . Then, the Mises criterion can be stated as 

 0
3
1 2

2 YJ . (3.22) 

There are alternative expressions of the Mises criterion. To develop the first 
alternative expression, we define the following invariant of  : 

 
1/ 2

1/ 2
2

3(3 )
2eq ij ijJ . (3.23) 

It can easily be shown from Equation 3.20 that, in tension test, eq  is equal to . 

Therefore, eq  is called the equivalent stress. It is also called the effective or 
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generalized stress. Since, at the initial yielding,  is equal to Y , the Mises 
criterion in terms of eq  becomes  

 0Yeq . (3.24) 

Next, we develop an expression for the Mises criterion in terms of the principal 
stresses i . In the coordinate system of principal directions, we decompose the 
matrix of (Equation 2.78) into the hydrostatic and deviatoric parts. The matrix of 
the deviatoric part becomes  

)(
3
100

0)(
3
10

00)(
3
1

][

3213

3212

3211

. 

                     (3.25) 

Then, 2J  can be calculated as 

 

2 2
2 1 1 2 3 2 1 2 3

2 2 2 2
3 1 2 3 1 2 2 3 3 1

1 1 1 1[ ( )] [ ( )]
2 2 3 3

1 1[ ( )] [( ) ( ) ( ) ].
3 6

ij ijJ
   

                                                                                                                           (3.26) 
Substituting this value of 2J  in Equation 3.22, we get the following expression for 
the Mises criterion: 

 02])()()[( 22
13

2
32

2
21 Y . (3.27) 

The principal stresses are invariants of the stress tensor as they are the roots of an 
equation involving the invariants (Equation 2.81). Therefore, one can express the 
yield criterion in terms of the principal stresses only for isotropic materials.  

3.3.2 Tresca Yield Criterion 

The Tresca yield criterion (henceforth simply called Tresca criterion) was proposed 
in 1864. However, it was not developed on the basis of Equation 3.17. It was 
proposed on the basis of experimental observations on extrusion of metals through 
dies of various shapes. The Tresca criterion states that, whenever the maximum 
shear stress at a point reaches the critical value, yielding occurs at that point. The 
maximum shear stress at a point is given by Equation 2.92 when the principal 
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stresses are ordered. However, when the principal stresses are not ordered, the 
maximum shear stress at a point can be expressed as  

 1 2 2 3 3 1max
1 max , ,
2s . (3.28) 

If the critical value of the maximum shear stress (i.e., its value at yielding) is 1k , 
then the Tresca criterion can be written as 

 0]4)][(4)][(4)[( 2
1

2
13

2
1

2
32

2
1

2
21 kkk . (3.29)  

The value of 1k  can be evaluated from the one-dimensional experimental results of 
Section 3.2. From Equation 3.19, we get the following values of the principal 
stresses in tension test: 

 1 , 02 , 03 , (3.30) 

where  is given by Equation 3.4. Further, at the initial yielding,  

 Y . (3.31) 

Substituting Equations 3.30 and 3.31 into Equation 3.29, we get 2/Y  as the 
value of 1k . Then the Tresca criterion (Equation 3.29) becomes  

 0])][()][()[( 22
13

22
32

22
21 YYY . (3.32) 

In terms of the invariants 2J  and 3J , the above expression becomes [3] 

 
2

2 2 2
2 3 2 2 3( , ) 4 ( ) 27 0

4
Y

Yf J J J J J . (3.33) 

But the yield function of Tresca criterion in terms of 2J  and 3J  is complicated for 
application purpose. 

3.3.3 Geometric Representation of Yield Criteria 

Using Equations 3.27 and 3.32, one can represent the Mises and Tresca  criteria 
geometrically as surfaces in a three-dimensional stress space of ),,( 321 . 
Figure 3.6 shows these surfaces. The Mises surface is a right circular cylinder of 
radius ( 2 / 3) Y , while the Tresca surface is a right (regular) hexagonal prism 
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completely inscribed in the Mises cylinder [1,3]. The axis of the cylinder and prism 
is along the line 321 . When all the principal stresses are equal, the state 
of stress is purely hydrostatic. Therefore, this line is known as the hydrostatic line. 
Further, this axis is perpendicular to the plane 0321 . Since tr  is zero 
in a purely deviatoric state of stress, this plane is known as the deviatoric or  
plane. 

 
Figure 3.6. Geometric representation of the yield criteria in the stress space of  

),,( 321  

One can use the yield surfaces of Figure 3.6 to find out graphically when the 
state of stress at a material particle will reach the yield level. For this purpose, 
express the state of stress at the material particle in terms of the principal 
stresses ),,( 321 . Then locate the point in the stress space with the 
coordinates ),,( 321 . Let the stress level at the material particle be such that its 
behavior is still elastic. Then, the point will be inside the yield surfaces. Let us 
denote this point by A. Then, the vector OA  represents the state of stress at the 
material particle. This vector can be decomposed into two components: (i) the 
component OB along the hydrostatic line and (ii) the component OC along the 
deviatoric plane. The component OB represents the hydrostatic part of the stress 
while the component OC represents the deviatoric part. Now, let there be an 
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increase in the stress level at the material particle. Further, let the increase be such 
that only the hydrostatic component OB increases. Then the point A can never 
reach the yield surfaces and hence there can never be any yielding. This is because 
the hydrostatic part of stress has no effect on yielding. On the other hand, if the 
increase in the stress level is such that the deviatoric component OC or both the 
components increase sufficiently, then the point A can reach the yield surfaces. 
When that happens, there will be yielding at the material particle. Note that the 
Tresca prism is completely inside the Mises cylinder except at the six edges. 
Therefore, if the point A reaches any one of these six edges, then the yielding will 
occur according to both the Tresca and Mises criteria. Otherwise, the point A will 
reach the Tresca prism first indicating yielding according to the Tresca criterion. 

When the state of stress at a particle is such that its hydrostatic part is zero, then 
the geometrical representation of the yield criteria reduces to curves: (i) circle of 
radius ( 2 / 3) Y  for the Mises criterion and (ii) a regular hexagon for the Tresca 
criterion which is completely inscribed in the Mises circle. These curves are the 
intersections of the yield surfaces with the deviatoric plane. They are called yield 
loci on the deviatoric plane and are shown separately in Figure 3.7. 

 
Figure 3.7. Loci of the Mises and Tresca yield surfaces on the deviatoric plane. The axes 
( 1, 2, 3) are not in the deviatoric plane 

On the other hand, if the state of stress at a particle is of plane stress type (i.e., if 
one of the three principal stresses is zero at the particle), then the geometrical 
representation of the yield criteria reduces to different curves. We can obtain the 
equations of these curves as follows. If we assume that the principal stresses are 
not ordered and 3  is zero, then Equations 3.27 and 3.32 reduce to  
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 022
221

2
1 Y       (Mises criterion), (3.34) 

 0]][][)[( 22
1

22
2

22
21 YYY    (Tresca criterion). (3.35)  

Equation 3.34 of the Mises criterion represents an ellipse in two-dimensional stress 
plane of 1 2( , ) . On the other hand, Equation 3.35 for the Tresca criterion 
represents a hexagon (but not regular). Both these curves are shown in Figure. 3.8.  

 

Figure 3.8. Loci of the Mises and Tresca yield surfaces on the plane 03  

Here also, the Tresca hexagon is completely inscribed in the Mises ellipse. These 
curves are the intersections of the yield surfaces with the plane 03 . Therefore, 
they are known as the  yield loci on the plane 03 . 

3.3.4 Convexity of Yield Surfaces 

It is observed that the regions bounded by the yield surfaces of both the Mises and 
Tresca criteria (Figure 3.6) are convex. A region is defined as convex if a straight 
line segment joining any two points of the region lies completely inside the region. 
Note that the regions bounded by the yield loci of Figures 3.7 and 3.8 are also 
convex. When anisotropic yield criteria are formulated, one of the requirements of 
these criteria is that their geometric representations must lead to convex yield 
surfaces. 
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3.3.5 Experimental Validation 

There have been quite a few attempts to compare the predictions of the Mises and 
Tresca criteria with experimental results on yielding. Notable amongst these are the 
experiments of Lode [5] and Taylor and Quinney [6]. 

3.3.5.1 Lode’s Experiments 
Lode [5], in 1925, conducted experiments on thin tubes subjected to internal 
pressure as well as axial force (Figure 3.9). The tube material was iron, copper and 
nickel. Besides comparing his experimental results on yielding with the predictions 
of the yield criteria, he also studied the influence of the intermediate principal 
stress on yielding.  

 
Figure 3.9. Thin tube subjected to internal pressure p and axial force Fz (tensile or 
compressive) in Lode’s experiment 

It is convenient to use the cylindrical polar coordinates ),,( zr shown in 
Figure 3.9. With respect to this coordinate system, the matrix of stress components 
can be expressed as 

 

zzzzr

zr

zrrrr

][ . (3.36) 

The geometry and loading are such that, the stress components in the tube are the 
same at every point. The normal stress components are given by 

 0, ,i z
rr zz

p r F
t A

, (3.37) 

where p  is the internal pressure in the tube, ir  is the inner radius of the tube, t  is 
the wall thickness of the tube, zF  is the axial force (tensile or compressive) acting 
on the tube and A  is the area of the cross-section of the tube. Further, the shear 
stress components in the tube are zero. Therefore, rr ,  and zz  are the 
principal stresses. Note that whereas  is always tensile, zz  may be tensile or 
compressive. Let us order these principal stresses and use the usual notation for 
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them: 321 . Lode [5] introduced a parameter denoted by  (not to be 
confused with the shear modulus) and defined by 

 
31

1322
. (3.38) 

It is called the Lode parameter. Using the definition of Lode parameter (Equation 
3.38), Equation 3.27 for the Mises criterion becomes 

 
2

31

3

2

Y
. (3.39) 

Further, since the principal stresses are ordered, the Tresca criterion can be 
expressed as 

 1 3 1
Y

. (3.40) 

 
Figure 3.10.  Mises and Tresca curves in Lode’s experiments (experimental points are 
excluded) 

The plots of both the Mises and Tresca criteria are shown in Figure 3.10. The 
axes used are Y/)( 31  and . Lode [5] found the experimental values of  

Y/)( 31  and  at yielding by varying the internal pressure p  and the axial 
force zF . The experimental points are not shown in the figure. However they fall 
between the Mises and Tresca curves and are closer to the Mises curve. 
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3.3.5.2 Experiments of Taylor and Quinney 
Taylor and Quinney [6], in 1931, also conducted experiments on thin tubes 
subjected to axial force. But the other loading was twisting moment instead of the 
internal pressure. The tube material was mild steel, copper and aluminum. 

Again, it is convenient to use the cylindrical polar coordinates. Here, the 
normal stress due to axial force is constant, but the shear stress due to twisting 
moment increases in the radial direction and attains the maximum value at the 
outer tube surface. Therefore, yielding will take place at the outer surface. The 
non-zero stress components at the outer surface are 

 ,
2

z z
z zz

zz

M d F
I A

, (3.41) 

where zM  is the twisting moment acting on the tube, d is the outer diameter of 
the tube and zzI  is the moment of inertia of the tube cross-section about the z-axis 
(also called the polar moment of inertia). The symbols zF and A have been defined 
earlier. The principal stresses in the tube are given by  

 
1/ 22

2
1 3 2, , 0

2 2
zz zz

z . (3.42) 

Substituting Equation 3.42, Equation 3.27 for the Mises criteria becomes  

 
22 3

1zzz

Y Y
. (3.43) 

Since the principal stresses are ordered, the Tresca criterion is given by Equation 
3.40. Substituting Equation 3.42 in Equation 3.40, the Tresca criterion can be 
written as  

 
2 22

1zzz

Y Y
. (3.44) 
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Figure 3.11. Mises and Tresca curves in the experiments of Taylor and Quinney 
(experimental points are excluded) 

The plots of both the Mises and Tresca criteria are shown in Figure 3.11. The 
axes used are Yz / and Yzz / . Taylor and Quinney [6] found the 
experimental values of  Yz /  and Yzz /  at yielding by varying the twisting 
moment zM  and the axial force zF . The experimental points are not shown in the 
figure. But they lie closer to the Mises curve. 

So both the experiments indicate that the Mises criterion is in better agreement 
with experimental results. Henceforth, we shall use only the Mises criterion. The 
experiments further indicate that the Tresca criterion is conservative as far as 
prediction of yielding is concerned. Therefore, it is preferred in the design of 
structures and machine elements where the objective is to avoid yielding. The 
Tresca yield surface is not smooth like the Mises yield surface (Figure 3.6). 
Normal to the Tresca yield surface does not exist along the six edges of the 
hexagonal prism. This creates difficulties in applying the plastic stress-strain 
relations along the edges as these relations depend on the normal. This is another 
reason why we use only the Mises criterion hereafter. 

Example 3.1: Figure 3.12 shows axisymmetric drawing of steel wire. The yield 

stress of the material is 360Y MPa. Matrices of the stress tensor at points A 

and B, with respect to ),,( zr  coordinate system, are given by 

 
80 0 160 100 0 180

[ ] 0 80 0 MPa, [ ] 0 100 0 MPa.
160 0 70 180 0 80

A B  (3.45) 
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Figure 3.12. Typical plastic boundary in axisymmetric drawing 

 (a) Find the matrices of the deviatoric part at points A and B with respect to 
),,( zr coordinate system. 

(b) Find the equivalent stress eq at points A and B. Further, using the Mises 
criterion, show that point A lies in the elastic zone whereas point B lies on the  
plastic boundary.  
(c) Find the invariants 2J  and 3J  of the deviatoric part at point B. Using the 
Tresca criterion in terms of the invariants (Equation 3.33), check whether yielding 
occurs at point B. 

Solution: (a) From Equation 2.100, we get the matrix of with respect to any 

coordinate system as 

 1[ ] [ ] [1]
3 ii . (3.46) 

Substituting the values of ij  at points A and B from Equation 3.45, we get  

 
50 0 160 60 0 180

[ ] 0 50 0 MPa, [ ] 0 60 0 MPa.
160 0 100 180 0 120

A B   (3.47) 

(b) Substituting the values of ij  from part (a) in Equation 3.23, we get the 
following values of the equivalent stress at points  A and B: 
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At point A,  

1/ 2 1/ 2
2 2 2 23 3 [2( 50) 2(160) (100) 4(0) ] 315.2 MPa.

2 2eq ij ij  

(3.48a) 

At point B, 

          
1/ 2 1/ 2

2 2 2 23 3 [2( 60) 2(180) (120) 4(0) ] 360MPa
2 2eq ij ij . 

                            (3.48b) 

For the given material, 360Y MPa. Since, Yeq  at point A, yielding has 
not taken place at this point according to the Mises criterion. Therefore, point A 
lies in the elastic zone. But Yeq  at point B. Therefore, yielding has taken 
place at this point according to the Mises criterion. Therefore, point B lies on the 
plastic boundary. 
(c) Substituting the values of ij  at point B from part (a) in Equations 2.105 and 
2.103, we get the following values of the invariants at point B: 

 
2 2 2 2

2

4 2

1 1 [2( 60) 2(180) (120) 4(0) ],
2 2

4.32 10 (MPa) .

ij ijJ
    (3.49a) 

3 1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

6 3

,

( ) ( ) ( ),
( 60)[( 60) (120) 0 0] 0[0 180 0 120] 180[0 0 ( 60) 180],

2.376 10 (MPa) .

ijk i j kJ

          

   (3.49b) 
Substituting  the above values of 2J  and 3J  at point B and 360Y MPa in the 
left side of Equation 3.33, we get  

2
2 2 2

2 2 3

4 2 4 4 2 4 2 2 12

14

4 ( ) 27 ,
4

14 4.32 10 (3.6) 10 [4.32 10 (3.6) 10 ] 27 (2.376) 10 ,
4

1.7006 10 .

Y
YJ J J

  

(3.50) 
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Since, at point B, the left side of Equation 3.33 is more than zero, yielding has 
already taken place at this point according to the Tresca criterion. 

Therefore, if the plastic boundary is constructed in Figure 3.12 according to the 
Tresca criterion, it will lie to the left of the Mises plastic boundary. 

If we find the principal stresses of using the matrices given by Equation 3.45 
and then use the Mises and Tresca criteria in terms of the principal stresses 
(Equations 3.27 and 3.32), we will get exactly the same results. 

3.4 Incremental Strain and Strain Rate Measures 

As indicated in Section 3.2, the plastic deformation is usually large. Therefore, we 
cannot use the linear or infinitesimal strain tensor  as the measure of plastic 
deformation. While developing a measure of plastic deformation, we need to take 
into account the fact that, in plastic behavior,  the stress depends on the history of  
deformation. To express this behavior mathematically, it would be convenient to 
have a measure of plastic deformation either in the incremental form or in the rate 
form. Normally, the following two measures are used to represent the incremental 
plastic deformation.  

3.4.1 Incremental Linear Strain Tensor 

Figure 3.13 shows three configurations in a forging process: (i) initial 
configuration, (ii) deformed configuration at current time t (known as the current 
configuration) and (iii) deformed configuration at time t+dt where dt is the time 
increment (known as the incremental configuration).  A material particle occupies 
position 0P  in the initial configuration,  position P in the current configuration and 
position P  in the incremental configuration. Let 

 kjix ˆˆˆ zyx  (3.51) 

be the current position vector of the particle (i.e., the position vector of point P) 
and  

 ˆ ˆ ˆd d dx y zu u udu i j k  (3.52) 

be the incremental displacement vector (of point P) in time dt. Here, )ˆ,ˆ,ˆ( kji are 
the unit vectors along the (x,  y,  z) axes.  
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Figure 3.13. Incremental deformation in the time interval dt in forging process 

We have seen in Subsection 2.4.1.1 that gradient of a vector is a tensor. Therefore, 
the quantity ( )du , which is a gradient of the vector du with respect to the current 
position vector x, is a tensor. Since the gradient is not with respect to the initial 
configuration, the operator  here does not have the subscript zero like the 
gradient symbol of  Subsection 2.4.1.1. The components of ( )du  with respect to 
(x, y, z) coordinate system are given by 

 

(d ) (d ) (d )

(d ) (d ) (d )
[ (d )]

(d ) (d ) (d )

x x x

y y y

z z z

u u u
x y z
u u u

u
x y z
u u u
x y z

. (3.53) 

We have seen in Subsection 2.4.1.1 that if u is the displacement from the initial 
configuration to a deformed configuration, then the symmetric part of the gradient 
of u (with respect to the position vector in the initial configuration) can be chosen 
as a measure of that deformation, provided the deformation is small.  Now, assume 
that the incremental deformation from the current configuration is small. (Note 
that, mathematically, this assumption means the components of the tensor ( )du  
are small compared to 1.) Since du is the incremental displacement from the 
current configuration, the symmetric part of the tensor ( )du can be selected as a 
measure of the incremental deformation. Thus, our measure of incremental 
deformation is the tensor d , which is the symmetric part of ( )du .  We call it 
the incremental linear strain tensor.   
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We can write the relation between d and du, in tensor notation, as 

 T1 ( ) ( ( ))
2

d d du u , (3.54) 

and in index notation as 

 , ,
(d )(d )1 1d (d d )

2 2
ji

ij i j j i
j i

uu
u u

x x
, (3.55) 

where it is understood that the comma indicates differentiation with respect to the 
current coordinates. Let the components of d with respect to (x,y,z) coordinate 
system be  

 

d d d

[d ] d d d

d d d

xx xy zx

xy yy yz

zx yz zz

. (3.56) 

Then using Equation 3.53, the component form of Equation 3.54 can be written as 

 

(d )(d ) (d )
d , d , d ,

(d )(d )1d ,
2

(d ) (d )1d ,
2

(d )(d )1d .
2

yx z
xx yy zz

yx
xy

y z
yz

xz
zx

uu u
x y z

uu
y x

u u
z y

uu
x z

 (3.57) 

Equations 3.54 or 3.55 or 3.57 are called the incremental strain-displacement 
relations. 

To find the incremental displacements, incremental strains and incremental 
stresses in a deformable body, one needs to solve three sets of incremental 
equations in the current configuration. Such a formulation is called the updated 
Lagrangian formulation, which is described in more detail later. The above 
equation is a first set of governing equations for this formulation when the 
incremental deformation is small. We shall discuss in the next chapter the 
modifications required for the large incremental deformation. 

The physical interpretation of the components of d is similar to that of the 
components of the linear strain tensor. The component d xx  represents the change 
in current length per unit current length along the direction which is currently 
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along x-direction. The components d yy  and d zz  have similar interpretation. The 

component d xy  represents half the change in angle between the directions which 

are currently along x and y directions. The components d yz  and d zx  have similar 
interpretation. The sign convention for the components of d is the same as that of 
the components of the linear strain tensor. 

Just like the linear strain tensor, the tensor d  has the principal values, 
principal directions, principal invariants and the hydrostatic and deviatoric parts. 
They are defined similarly. The incremental volumetric strain d v , when the 
incremental deformation is small, is defined by an equation similar to Equation 
2.178: 

 d dv ii . (3.58) 

Define the tensor d as the antisymmetric part of ( )du : 

 T1 ( ) ( ( ))
2

d d du - u . (3.59) 

It can be shown that, the tensor d  represents the incremental rotation of a 
neighborhood of the particle in time dt, if the rotation is small (i.e., if the 
components of the tensor ( )du  are small compared to 1). It is called the 
incremental infinitesimal rotation tensor. In index notation, Equation 3.59 can be 
written as 

 , ,
(d )(d )1 1d d d

2 2
ji

ij i j j i
j i

uu
u u

x x
,    (3.60) 

where it is understood that the comma indicates the differentiation with respect to 
the current coordinates. Let the components of d with respect to (x, y, z) 
coordinate system be 

 

d d d

[d ] d d d

d d d

xx xy xz

yx yy yz

zx zy zz

. (3.61) 

Then using Equation 3.53, the component form of Equation 3.59 can be written as 
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d d d 0,

(d )(d )1d d ,
2

(d ) (d )1d d ,
2

(d ) (d )1d d .
2

xx yy zz

yz
zy yz

x z
xz zx

y x
yx xy

uu
y z

u u
z x
u u
x y

 (3.62) 

The components d , d and dzy xz yx  represent the angle of incremental rotation 
respectively about x, y and z axes. Their sign convention is similar to that for the 
components of the infinitesimal rotation tensor. 

3.4.2 Strain Rate Tensor 

While analyzing the forming processes like rolling, drawing, extrusion etc., the 
domain used is usually a region fixed in space (called the control volume) rather 
than a fixed set of material particles. Such a formulation is called the Eulerian 
formulation, which is described in more detail later. In this formulation, it is not 
convenient to analyze the deformation increment by increment. Instead, it is easy 
to study the deformation of the whole control volume simultaneously. This 
becomes possible by choosing the velocity as a primary variable (instead of the 
incremental displacement). Further, in this case, it is the rate of deformation which 
is a more relevant secondary variable than the deformation itself. 

To develop a measure of the rate of deformation, we consider the control 
volume for a drawing process shown in Figure 3.14. Here, point P is a location of 
some material particle at time t. Typical path line of the material particle is also 
shown in the figure. Let x be the position vector of point P and 

 kjiv ˆˆˆ
zyx vvv  (3.63) 

be its velocity. The expression for x in terms of )ˆ,ˆ,ˆ( kji is given by Equation 3.51. 
We define the tensor v (at point P) as the gradient of v with respect to the 
position vector x. It is called the velocity gradient tensor. Its components with 
respect to (x, y, z) coordinate system are given by 
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Figure 3.14. Control volume for drawing process 
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In books on continuum mechanics, the velocity gradient tensor is denoted by L. 
We decompose the tensor v  into a sum of symmetric and antisymmetric 

parts. Define the tensor  as the symmetric part of v : 

 T1 ( )
2

v v . (3.65) 

It can be shown that the tensor  completely describes the rate of deformation at a 
point. That is, given the tensor  at a point, we can find the rate of change of 
length per unit length in any direction at that point. Further, we can also find the 
rate of change of angle between any pair of perpendicular directions at that point 
[2,3,7]. The tensor  is called the strain rate tensor. Note that the tensor  
represents the rate of deformation at a point irrespective of whether the rate of 
deformation at that point is small or large. Further, even though we use the symbol 

, commonly employed in metal forming literature for this tensor, it is to be noted 
that this tensor is not the time derivative of the linear strain tensor . In books on 
continuum mechanics, this tensor is usually denoted by D and is called the rate of 
deformation tensor.  
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In index notation, Equation 3.65 can be written as  

 , ,
1 1 ( )
2 2

ji
ij i j j i

j i

vv
v v

x x
, (3.66) 

where it is understood that the comma indicates differentiation with respect to the 
components of x. Let the components of  with respect to (x, y, z) coordinate 
system be 

 

zzyzzx

yzyyxy

zxxyxx

][ . (3.67) 

Then using Equation 3.64, the component form of Equation 3.65 can be written as 
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yx z
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yx
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vv v
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vv
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v v
z y

vv
x z

                                                 (3.68) 

Equations 3.65 or 3.66 or 3.68 are called the strain rate– velocity relations. 
To find the velocities, strain rates and stresses in a control volume, one needs to 

solve three sets of governing equations for the Eulerian formulation. The above 
equation is a first set of governing equations for this formulation. 

The physical interpretation of the components of  is similar to that of the 
components of the linear strain tensor. The component xx  represents the rate of 
change of current length per unit current length along the direction which is 
currently along x-direction. The components yy  and zz  have similar 
interpretation. These components are called the normal strain rate components. The 
component xy  represents half the rate of change of angle between the directions 

which are currently along x and y directions. The components yz  and zx  have 
similar interpretation. These components are called the shear strain rate 
components. The sign convention for the components of is similar to that of the 
components of the linear strain tensor. 
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Analysis of the tensor  at a point can be carried out in a manner similar to the 
analysis of linear strain tensor. Let i  be the eigenvalues and iê  be the 
orthonormal eigenvectors of the tensor . Further, assume that i  have been 
arranged in decreasing order and the senses of iê  have been chosen so as form a 
right-handed system. It can be shown that the rates of change of angles associated 
with the directions iê  are zero. Therefore, these directions are called the principal 
directions. Further, i  are called the principal values of . The matrix of  with 
respect to the principal directions becomes a diagonal matrix with i  as the 
diagonal components. It is observed that 1  represents the maximum rate of 
change of length per unit length which occurs in the direction ˆ1e . Similarly, 3  
represents the minimum rate of change of length per unit length which occurs in 
the direction ˆ3e . Further, the maximum rate of change of angle is given by 

31 . The directions which undergo this maximum rate of change of angle are 

given by ˆ ˆ( 1 2)( )1 3e e . The coefficients in the eigenvalue equation are the 
three principal invariants of the tensor  which are defined by equations similar to 
Equations 2.172–2.174. Just like the linear strain tensor, the tensor  can also be 
decomposed into a sum of hydrostatic and deviatoric parts. The hydrostatic part 
represents the rate of change of current volume (without change of current shape) 
and the deviatoric part represents the rate of change of current shape (without 
change of current volume). The rate of change of current volume per unit current 
volume ( v ) is defined by 

 ,v ii i iv . (3.69) 

It is called volumetric strain rate. 
Define the tensor as the antisymmetric part of v : 

 T1 ( )
2

v - v . (3.70) 

It can be shown that the tensor  represents the angular velocity of a 
neighborhood of the point. This result is valid irrespective of whether the angular 
velocity at that point is small or large. The tensor  is called the spin or vorticity 
tensor. In index notation, Equation 3.70 can be written as  

 , ,
1 1 ( )
2 2

ji
ij i j j i

j i

vv
v v

x x
, (3.71) 
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where it is understood that the comma indicates the differentiation with respect to 
the components of x. Let the components of  with respect to (x,y,z) coordinate 
system be 

 

zzzyzx

yzyyyx

xzxyxx

][ . (3.72) 

Then using Equation 3.64, the component form of Equation 3.70 can be written as 
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 (3.73) 

The quantities zy , xz  and yx  represent the components of angular velocity 
respectively about x, y and z axes. Their sign convention is similar to that for the 
components of the infinitesimal rotation tensor. Since,  is an antisymmetric 
tensor, we can associate the following vector with it: 
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2
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2

1
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.

i

i j k i j k

i

v

 

  (3.74) 

The vector v)21( is indeed the angular velocity of a neighborhood of the point. 
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3.4.3 Relation Between Incremental Linear Strain Tensor and Strain Rate 
Tensor 

Note that the symbol du in Section 3.4.1 does not represent the relative 
displacement of a particle with respect to its neighboring particle. Instead, it is an 
infinitesimal change in the displacement of  a single particle in time dt (Figure 
3.13). Then, the velocity v of the particle would be / dtdu . In view of this relation 
between du and v, comparison of Equations 3.54 and 3.65 gives the following 
relation between the incremental linear strain tensor d  and the strain rate tensor 

: 

 dtd , (3.75) 

or in index notation 

 d dij ij t . (3.76) 

Further, we get a similar relation between the incremental infinitesimal rotation 
tensor d and the spin tensor :  

 d dt , (3.77) 

or 

 d dij ij t . (3.78) 

We use Equation 3.76 to find out what happens when we integrate the strain 
rate tensor . For this purpose, we consider a very simple deformation. The 
deformation in the control volume of Figure 3.15 is such that the particle paths are 
straight lines parallel to x-axis. It means that the particles do not rotate, and 
therefore both  and d are zero at every point of the control volume. Consider a 
typical particle path where the length of the particle is 0  when it enters the 
control volume (i.e., at time 0tt ) and f  when it leaves the control volume (i.e., 

at time ftt ).  
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Figure 3.15. Simple deformation in which particle path-lines are parallel to x-axis  

Further, let the length at time t be  and the length increment in time dt be d . 
Then, from Equation 3.76 and the definition of d xx , we get 

 dd dxx xxt . (3.79) 

Integration of  xx  from 0tt  to ftt  gives 

 
0 0 0 0

dd d ln
f f ft t

f
xx xx f xx

t t
t . (3.80) 

Here, f  is the value of logarithmic strain  (defined by Equation 3.1) at ftt . 
Thus, when we integrate a normal strain rate component, we get the logarithmic 
strain in that direction, and not the corresponding component of the linear strain 
tensor. This result is based on the assumption that there is no rotation of particles. 
When the rotation of particles is present, no physically meaningful quantity 
emerges from the  integration of a strain rate component [7]. Generalizing this 
result to the three-dimensional case, we can state that integration of the strain rate 
tensor   gives the logarithmic strain tensor when there is no rotation of the 
particles. When  rotation of the particles is present, the integration of  does not 
give any physically meaningful tensor. 
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Figure 3.16. Extrusion of a steel sheet 

Example 3.2: Figure 3.16 shows extrusion of a sheet. Components of the 
incremental displacement vector du with respect to (x, y, z) coordinate system are 
given by  

 d d , d d , d dx x y y z zu v t u v t u v t ,  (3.81) 

where dt is the time increment and the components ),,( zyx vvv  of the velocity 
vector v are  

 0 0 2 1
2

2 1 2 1

[1 ( / )]
, , 0

[( ) ( / ) ] [( ) ( / ) ]
x y z

V V h h
v v y v

x h h x x h h x
. (3.82) 

Here, 0V  is the ram speed and , 1h  and 2h  are the geometric dimensions shown 
in the figure. 
(a) Find the components of the strain rate tensor  and the incremental linear strain 

tensor d . 

(b) Find the volumetric strain rate v . 

Solution: (a) Substituting the values of iv  from Equation 3.82 in the strain rate– 
velocity relations (Equation 3.68), we get  
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 (3.83) 

Substituting the values of d iu from Equations 3.81 and 3.82 in the incremental 
strain-displacement relations (Equation 3.57), we get  

 

0 2 1
2

2 1

0 2 1
2

2 1

2
0 2 1

3
2 1

(d ) [1 ( / )]
d d ,

[( ) ( / ) ]
(d ) [1 ( / )]

d d ,
[( ) ( / ) ]

(d )
d 0,

(d )(d ) [1 ( / )]1d d ,
2 [( ) ( / ) ]

(d )1d
2

x
xx

y
yy

z
zz

yx
xy

y
yz

u V h h
t

x x h h x
u V h h

t
y x h h x
u
z

uu V h h
y t

y x x h h x
u
z

(d )
0,

(d )(d )1d 0.
2

z

xz
zx

u
y

uu
x z

 (3.84) 

(b) Substituting the values of ij  from part (a) in Equation 3.69, we get the 
following expression for the volumetric strain rate:  

 0)011(
])/()[(

)]/(1[
2

12

120

xhhx
hhV

iiv . (3.85) 
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Note that when the strain rate components xz , yz  and zz  are zero at a point, 
the state of deformation is called the state of plane strain (at a point) in yx  
plane. When these strain rate components are zero at every point of the control 
volume and if, additionally, the remaining strain rate components xx , yy  and 

xy  are independent of z , it is called  the state of plane strain (in a body) in yx  
plane. It can be shown that the state of deformation described by Equation 3.83 is 
of this type. 

3.5 Modeling of Isotropic Hardening or Criterion for Subsequent 
Isotropic Yielding   

Figure 3.2 represents one-dimensional experimental result for subsequent yielding. 
It shows the variation of yield stress with the level of plastic deformation. 
Mathematical expression of this variation is given by Equation 3.8, where a 
specific form of hardening function h could be Equation 3.9 or 3.10 or 3.11. To 
generalize Equation 3.8 to three-dimensional state of stress, we follow a somewhat 
different approach to that adopted for the generalization of initial yielding. To gain 
some insight into the phenomenon of subsequent yielding, we consider graphical 
representation of the initial yield criteria, rather than its mathematical expression. 
Figure 3.6 shows yield surfaces corresponding to the initial yield criteria. However, 
since yielding does not depend on the hydrostatic part of stress, it is simpler to 
consider a two-dimensional curve called yield locus (Figure 3.7), which is the 
intersection of the yield surface and the deviatoric plane. We expect that, in 
general, both the size and shape of the initial yield locus would change with the 
complete history of plastic deformation since the last annealing. Further, due to the 
Bauschinger effect, the center of the yield locus would move away from the origin. 
However, if the Bauschinger effect is to be neglected, the center of the yield locus 
must coincide with the origin. 

To simplify the development of criterion for subsequent yielding, we assume 
that the material remains isotropic during hardening. We shall discuss the validity 
of this assumption at the end of this section. Note that the assumption of isotropy 
automatically excludes the Bauschinger effect. Further, the assumption of isotropy 
means the following: 

 During subsequent yielding, only the size of the initial yield locus changes, 
but its shape remains unchanged.  

 The change in size depends on the invariants of a tensor describing the  
history of plastic deformation. 

The first step in the development of criterion for subsequent yielding is the 
evaluation of the invariants. The measure of deformation  developed in Section 3.4, 
namely the incremental linear strain tensor, is only for an incremental deformation. 
Further, because of the rotation of the particles, its integration up to current time 
does not give a physically meaningful measure of the history of deformation. 
Therefore, we first find the invariants of the incremental linear strain tensor and 
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then integrate them, along the path of deformation, to get scalar measures of the 
history of deformation. Since invariants are coordinate-independent functions, 
rotation of the particles does not affect their values during the integration process.  

Another thing to be noted is that the measure of incremental deformation 
developed in Section 3.4 contains both the elastic and plastic parts. Change in the 
size of yield locus depends only on the plastic part of history of deformation. 
Therefore, we need to separate the plastic part from the incremental linear strain 
tensor. For this purpose, we assume that the elastic and plastic parts (of the 
incremental linear strain tensor) are additive. The elastic and plastic parts were 
found to be additive for the one-dimensional case (Figure 3.1), not just for 
incremental deformation but also for total deformation. Therefore, we expect them 
to be additive for the three-dimensional case, at least for the case of small 
incremental deformation. Thus, we assume that 

 d d d pe
ij ij ij , (3.86) 

where d e
ij  and d p

ij  are respectively the elastic and plastic parts of the incremental 
linear strain tensor. We shall discuss the validity of this assumption later when we  
discuss the measures of finite incremental deformation in the next chapter. We can 
now define the principal invariants pdI , pdII  and pdIII of the tensor d p

ij  by  
equations similar to Equations 2.172–2.174: 

 dp
p

iid
I , (3.87) 

 1 (d d d d )
2p

p p p p
ij ij ii jjd

II , (3.88) 

 1 2 3d d dp
p p p

ijk i j kd
III . (3.89) 

Incremental volumetric strain corresponding to d p
ij  is defined by an equation 

similar to Equation 3.58:  

  d d pp
v ii . (3.90) 

Since, there is no change in volume during plastic deformation, d p
v  is zero. 

Therefore, d p
ii  is zero. Because of this, Equations 3.87 and 3.88 for the first two 

invariants get modified as follows:  

 0pdI , (3.91) 

 1 d d
2p

p p
ij ijd

II . (3.92) 
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Note that Equations 3.87 and 3.91 show that the hydrostatic part of d p
ij  is zero 

and therefore its deviatoric part is equal to itself. Since pdI  is zero, the size of the 

yield locus (for isotropic hardening) should depend only on pdII  and pdIII  or 
rather on their integrals along the path of deformation.  

Regarding the dependence of the size of the yield locus on the integrals of 
pdII  and pdIII , there are two hypotheses: (i) strain hardening hypothesis and 

(ii) work hardening hypothesis. We consider both of these one by one. Regarding 
the choice of the initial yield locus, we do not choose the most general yield locus. 
Instead, we choose the Mises yield locus, because we have decided to use the 
Mises criterion for initial yielding in the rest of the book. 

3.5.1 Strain Hardening Hypothesis  

In strain hardening hypothesis, the size of the yield locus is assumed to be 
independent of the third invariant pdIII . Further, it is assumed to be a function 

not of the integral of the second invariant pdII  but of the  following invariant:  

 
1/ 2 1/ 24 2d d d

3 3p
p pp

eq ij ijd
II .  (3.93) 

The choice of this invariant makes it convenient to evaluate the hardening function 
of three-dimensional criterion from the results of tension test. It is so because, in 
tension test, this invariant is equal to the plastic part of the incremental axial strain. 
To see this, note that, the shear strain components are zero in tension test as stated 
in Subsection 2.5.1.1. Therefore, 

 d d d 0p p p
xy yz zx . (3.94) 

Further, the condition of no volume change in plastic deformation and Equation 
3.90 imply that  

 d d d 0p p p
xx yy zz . (3.95) 

Additionally, because of transverse symmetry of the rod, we get  

 d dp p
yy zz . (3.96) 

In view of Equations 3.94–3.96, the quantity d p
eq , in tension test, reduces to d p

xx . 

Therefore, d p
eq  is called the equivalent plastic strain increment. It is also called 
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the effective or generalized plastic strain increment. Integration of d p
eq  along the 

path of deformation gives  

 dp p
eq eq . (3.97) 

We call the quantity p
eq  the equivalent (or effective or generalized) plastic strain. 

Now we apply the strain-hardening hypothesis to the Mises yield locus on the 
deviatoric plane. Radius of the Mises yield locus, in initial yielding, is Y)3/2( . 

Using Equation 3.24, the expression for the radius can be written as eq)3/2( . If 

we take eq  as a measure of the size of the Mises yield locus, the strain hardening 
hypothesis can be expressed mathematically as  

 )( p
eqeq H , (3.98) 

where H, known as the hardening function, depends on the material. This equation 
states that the amount of hardening depends on the sum of all infinitesimal plastic 
increments leading to the final deformation of the particle since last annealing and 
not just on the difference between the final and initial deformations of the particle. 

The function H is evaluated from the one-dimensional stress-strain curve in 
tension test. For this purpose, we show that the equivalent plastic strain p

eq , in 

tension test, is equal to p  (the plastic part of the logarithmic strain). To show 
this, we proceed as follows. Earlier in this section, we have shown that the 
equivalent plastic strain increment d p

eq  is equal to d p
xx  (plastic part of the 

incremental axial strain) in tension test. Further, Equation 3.80 shows that the 
integral of d xx  is the logarithmic strain  in x-direction provided there is no 
rotation of the particle. The condition of no rotation holds good for tension test. 
Therefore, the integral of d xx  will be . Further, in tension test, the elastic and 
plastic parts of the strain are additive. Therefore, the integral of the plastic part of 
d xx  will be equal to the plastic part of . Thus, in tension test, we get  

 d dp p p p
eq eq xx . (3.99) 

Further, as already shown in Subsection 3.3.1, the equivalent stress eq  is equal to 
the axial stress in tension test. Therefore, in tension test, the three-dimensional 
hardening function H reduces to a function between  and p . In other words, 
for isotropic hardening, the function H is the same as the one-dimensional 
hardening function h describing the stress-strain curve of Figure 3.2. As stated 
earlier, this curve is commonly represented by Equation 3.9 or 3.10 or 3.11.  
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3.5.2 Work Hardening Hypothesis  

In work hardening hypothesis, the size of the yield locus is assumed to depend on 
the total plastic work done (per unit volume) to achieve the present state of plastic 
deformation since last annealing. This quantity is the integral of the incremental 
plastic work (per unit volume) along the path of deformation: 

 d d pp p
ij ijW W . (3.100) 

Note that d dp p
ij ijW  is an invariant of the tensor d p

ij  as the work is a 
coordinate-independent quantity. Now we apply the work hardening hypothesis to 
the Mises yield locus on the deviatoric plane. Since eq  is a measure of the size of 
the Mises yield locus, the work hardening hypothesis can be expressed 
mathematically as  

 )( p
eq WF , (3.101) 

where the function F depends on the material.  
The function F is evaluated from the one-dimensional stress-strain curve in 

tension test. As stated earlier, the equivalent stress eq  is equal to the axial stress 
in tension test. Further, the only non-zero stress component in tension test is the 

axial stress . Therefore, the expression for pW  in tension test reduces to 

 dp p
tension testW . (3.102) 

Thus, for isotropic hardening, the function F reduces to a function between  and 
p

testtensionW  in tension test. We construct this function as follows. First, using 

Equation 3.102, we find p
testtensionW  corresponding to all values of greater than 

Y  from Figure 3.2. Then we plot a graph of vs p
testtensionW .  Finally, we fit a 

mathematical equation similar to Equations 3.9–3.11 to this graph. 
It can be shown that the work hardening hypothesis is equivalent to the strain 

hardening hypothesis for the materials whose plastic potential is the same as the 
Mises yield function. The plastic potential is defined in the next section. 

3.5.3 Experimental Validation 

There have been very few attempts to study the change in yield locus or yield 
surface due to hardening. Naghdi et al. [8] studied the subsequent yield loci 
through tension-torsion tests on thin aluminum tubes. (Their experiments may be 
considered as extensions of experiments carried out by Taylor and Quinney [6].) 
Naghdi et al. [8] plotted the initial and subsequent yield loci using the normal and 
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shear stress components as the axes. Their results show that the initial yield locus, 
which is symmetric about the normal stress axis, becomes unsymmetric by getting 
shifted along the shear stress axis. This is due to the Bauschinger effect. 
Experiments of Philips and Das [9] show that, during subsequent yielding, the 
yield surfaces expand, distort and translate. (They also studied the effect of 
temperature on yield surfaces.) Thus, the assumption of isotropic hardening does 
not seem to have  experimental support. However, the predictions of strain 
hardening hypothesis do agree with experimental results when the loading is 
proportional [10].  

To express the change of shape of yield locus in a mathematical form, more 
experimental data than presently available is needed. In the absence of such data, 
we shall use the strain hardening hypothesis for the purpose of our analysis. 
Further, we shall use the power law similar to Equation 3.9 to represent the stress-
strain curve of Figure 3.2. With these choices, the three-dimensional hardening 
function H can be written as 

 np
eqY

p
eqeq KH )()( . (3.103) 

Further, using Equations 3.22, 3.24 and 3.98, the criterion for subsequent 
yielding for the Mises material can now be expressed as 

 0)(
3
1);,( 2

232
p
eq

p
eq HJJJf . (3.104) 

The function f is called the yield function.  For subsequent yielding, the yield 
function, besides being a function of the invariants 2J  and 3J , also depends on the 
equivalent plastic strain (called the hardening parameter). For initial yielding, the 
value of H reduces to Y  and thus, Equation 3.104 reduces to Equation 3.22.  

Example 3.3:  Consider the sheet extrusion of Figure 3.16. 
(a) Assume that the elastic part of the incremental linear strain tensor is zero (i.e., 
d dp

ij ij ). Then, using the expressions of d ij  from Example 3.2 (Equation 

3.84), find the equivalent plastic strain increment d p
eq along the path 0y . 

(b) Using the expression of d p
eq  from part (a), calculate the values of equivalent 

plastic strain p
eq  at points 2/x  and x along the path 0y . Use the 

following values of the geometric parameters: 

 101h mm, 52h mm, 20 mm. (3.105) 

(c) Use the values of p
eq  at 2/x  and x  from part (b) to determine the 

material constants K and n of the hardening relation given by Equation 3.103.  
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Use the following values:  

 360Y  MPa, 400eq  MPa at 2/x , 450eq  at x . (3.106) 

Solution: (a) It is given that d dp
ij ij . Then, the expression for the equivalent 

plastic strain increment d p
eq  (Equation 3.93) becomes  

 
1/ 22d d d

3
p
eq ij ij  . (3.107) 

The expressions for d ij  given in Example 3.2 (Equation 3.84) are such that the 

components d zz , d yz  and d zx  are zero everywhere. Further, along the path 

0y , the component d xy  becomes zero. Substituting the expressions for the 

components d xx and d yy in Equation 3.107, we get the following expression for 

d p
eq  along the path 0y :  
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(b) The equivalent plastic strain p
eq  is given by Equation 3.97. To carry out the 

integration of Equation 3.97, we change the variable of integration from t to x 
using the following definition of the velocity component xv : 

 d / dxv x t . (3.109) 

Substituting the above equation along with Equation 3.82 for xv , the expression 

for d p
eq along the path 0y  (Equation 3.108) becomes 

 2 1

2 1

[1 ( / )]2d d
[( ) ( / ) ]3

p
eq

h h
x

x h h x
. (3.110) 

Before integration, we simplify this expression by substituting the values of 
geometric parameters from Equation 3.105. Then, we get  

 1d d
3 (20 0.5 )

p
eq x

x
. (3.111) 
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Now, substituting the above expression in Equation 3.97, we get the following 
expression for p

eq : 

 
0

d 2 20d ln
(20 0.5 )3 (20 0.5 ) 3

xp p
eq eq

x
xx

. (3.112) 

Evaluating the above expression at 2/x  and x , we get the following 
values of p

eq : 

 

2 4ln 0.332, at 10mm,
3 23

2 ln 2 0.800, at 20mm.
3

p
eq

p
eq

x

x
          (3.113) 

(c) Taking the natural logarithm of Equation 3.103 and substituting the value of 
Y  from Equation 3.106, we get  

 p
eqeq nK lnln)360ln( .  (3.114) 

Substituting the values of ),( p
eqeq  at 2/x  and x  from Equations 3.106 

and 3.113, we get the following two equations for the unknowns K and n:  

 
ln (40) ln ln (0.332),
ln (90) ln ln (0.800).

K n
K n

 (3.115) 

Solving these two equations, we get the following values of the hardening 
parameters:  

 110.565 MPa,     0.922K n . (3.116) 

3.6 Plastic Stress-Strain and Stress-Strain Rate Relations for 
Isotropic Materials 

In Chapter 2, we obtained three-dimensional stress-strain relations for linearly 
elastic material by generalizing one-dimensional experimental observations. Such 
an approach is not feasible for developing three-dimensional plastic stress-strain 
relations. Earlier attempts at developing three-dimensional plastic stress-strain 
relations were based on the Saint-Venant’s proposal that, for isotropic materials, 
the principal directions of the plastic part of the incremental linear strain tensor 
coincide with the principal directions of the stress tensor [4]. Based on this 
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proposal, Levy and Mises independently proposed three-dimensional stress-strain 
relations for rigid perfectly plastic material whereas Prandtl and Reuss 
independently developed them for elastic perfectly plastic material. But, these 
relations are not applicable to hardening materials.  

Two approaches have emerged for developing the three-dimensional stress 
strain relations for hardening materials: (i) approach based on Drucker’s postulate 
for stable plastic material [7] and (ii) approach based on the postulate of plastic 
potential. In this book, we follow the second approach because it is less 
mathematical. But the first approach is discussed very briefly in the next 
paragraph.  

In tension testing, beyond initial yielding, the stress increases monotonically 
with the strain (Figure 3.1). Drucker calls this type of hardening material stable 
plastic material. To generalize this concept, Drucker introduces an external agency 
(distinct from the agency which causes the existing state of stress) which slowly 
applies a set of self-equilibrating forces on the body in a state of equilibrium and 
then slowly removes them. The original configuration may or may not be restored 
at the end of the cycle, but the state of stress is returned to the original equilibrium 
state. As a generalization of the hardening behavior in tension test, Drucker makes 
the following postulate for stable plastic material in three-dimensional state of 
stress. In a stable plastic material, (i) the plastic work done by the external agency 
during the application of the additional stresses is positive and (ii) the net plastic 
work performed by the external energy during the cycle of application and removal 
of the forces is non-negative. One of the consequences of the Drucker’s stability 
postulate is that the direction of the geometrical vector representation of the plastic 
part of incremental linear strain tensor is along the normal to the yield surface [2, 
7]. The plastic stress strain relations are then just a mathematical expression of this 
statement.  

In the second approach, we postulate the existence of a scalar function of the 
stress tensor called plastic potential. We denote it by )( ijg . We define it as a 

function whose derivatives with respect to ij  specify the ratios of the components 
of the plastic part of incremental linear strain tensor. However, they do not define 
the magnitude of this tensor. Thus, we have  

 d dp
ij

ij

g , (3.117) 

where d  is a positive scalar whose value depends on the stress increment, the 
hardening relation of the material and possibly the state of stress. The concept of 
plastic potential was proposed by Mises in 1928. Its existence has been justified by 
Hill [4]. Note that, here, the word potential is used in a mathematical sense. 
Mathematically, if a vector or a tensor valued function is expressed as a vector or a 
tensor derivative of a scalar function, then that scalar function is known as the 
potential. However, the plastic potential does not have any physical meaning in the 
sense of gravitational or electromagnetic potential. Equation 3.117 is called the 
flow rule.   
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The plastic potential has the following properties: 
 Since yielding depends only on the deviatoric part of stress tensor, we 

expect that d p
ij should depend only on the deviatoric part of ij . 

Therefore, the function g should depend only on ij , the deviatoric part of 

ij . 

 For isotropic materials, g should be a coordinate-independent function, i.e., 
it should be an invariant of ij . Since every invariant of ij  can be 

expressed in terms of the principal invariants 2J  and 3J  (as 1J  is zero), g 
should be a function of 2J  and 3J . 

 We have decided to neglect the Bauschinger effect. Therefore, if d p
ij is the 

plastic part of the incremental linear strain tensor corresponding to ij , 

then corresponding to ij , it should be d p
ij . This means g should be an 

even function of 3J . 
Thus, we see that the plastic potential g and the yield function f (defined in 
Sections 3.3 and 3.5) have similar properties. Even though it may be possible to 
relate g and f on the basis of microstructural observations, the form of potential 
function is not known for any material [4]. Therefore, based on the above 
observations, we assume that the plastic potential g is identical to the yield function 
f. Note that, if we start from the Drucker’s stability postulate, then one of its 
consequences is that the plastic part of incremental linear strain tensor is 
proportional to the derivative of the yield function with respect to the stress tensor. 
Thus, the first approach of developing the plastic stress strain relations seems to be 
better, as we need to have only one postulate, namely the Drucker’s postulate, 
whereas in the second approach, besides postulating the existence of the plastic 
potential, we also need to assume that it is identical to the yield function. 

3.6.1 Associated Flow Rule 

When we assume that fg , Equation 3.117 becomes  

 d dp
ij

ij

f . (3.118) 

This flow rule is called the associated flow rule. The yield function f depends on 
the stress tensor ij through the invariants 2J  and 3J  of its deviatoric part. Using 
the chain rule,  we can write the associated flow rule (Equation 3.118) as 

 32

2 3
d dp

ij
ij ij

JJf f
J J

. (3.119) 
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To evaluate the derivatives of the invariants 2J  and 3J  with respect to ij , we 
again use the chain rule: 

 
ij

pq

pqij

JJ 22 , (3.120) 

 
ij

pq

pqij

JJ 33 . (3.121) 

First, we determine the derivate of pq  with respect to ij . For this, we use 
Equation 2.100 after changing the indices i and j to p and q. Then, we use Equation 
2.35 to express the derivatives of pq  and kk  with respect to ij  in terms of . 
Then, we simplify the resulting expression using the identity at Equation 2.15. 
Thus, we get  

 

1
3 ,

1 ,
3

1 ,
3
1 .
3

pq kk pq
pq

ij ij

pq kk
pq

ij ij

pi qj ki kj pq

pi qj ij pq

 (3.122) 

Next, we estimate the derivative of 2J  with respect to pq . For this, we use 
Equation 2.105 after changing the dummy indices from i and j to m and n. Then, 
we use Equation 2.35 to express the derivative of mn  with respect to pq  in 
terms of .  Then, as before, we simplify the resulting expression using the 
identity at Equation 2.15. Thus, we obtain  

 

2 ( )1 1 2 ,
2 2

1 (2 ) .
2

mn mn mn
mn

pq pq pq

mn mp nq pq

J

 (3.123) 

Finally, we evaluate the derivative of 3J  with respect to pq . For this, instead of 
using Equation 2.103, we use an alternate expression for the determinant of a 
tensor given by Equation 2.25. Further, since the tensor is symmetric and the 
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sum of its diagonal terms is zero, the result of Example 2.4 implies that this 
expression reduces to 

 3
1det
3 lm mn nlJ . (3.124) 

We use this expression to determine the derivative of 3J  with respect to pq . We 

use Equation 2.35 to express the derivatives of lm , mn  and nl  with respect to 

pq  in terms of . Then, as before, we simplify the resulting expression using the 
identity at Equation 2.15. Then, we reshuffle the terms, interchange the indices 
using the symmetry of  and change the dummy indices to m to make all the 
three terms identical. Finally, we combine the three terms. Thus, we get  

 

3 1 ( ),
3

1 ( ),
3
1 ( ),
3
1 ( ),
3

.

lm mn nl
pq pq

lp mq mn nl lm mp nq nl lm mn np lq

qn np lp ql qm mp

pn nq pl lq pm mq

pm mq

J

 (3.125)   

   
Now, to get the derivative of 2J  with respect to ij , we substitute Equations 3.123 
and 3.122 in Equation 3.120. We simplify the resulting expression using the 
identity at Equation 2.15 and the condition that pp  is zero (Equation 2.100). 
Thus, we obtain  

 2 1 1( )
3 3pq pi qj ij pq ij pp ij ij

ij

J
. (3.126) 

Further, to get the derivative of 3J  with respect to ij , we substitute Equations 
3.125 and 3.122 in Equation 3.121. As before, we simplify the resulting expression 
using the identity at equation 2.15. Thus, we get  

 3 1 1( )
3 3pm mq pi qj ij pq im mj pm mp ij

ij

J
. (3.127) 
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Let  p be the deviatoric part of 2  (i.e., square of ). Then, similar to Equation 
2.100, we can write  

 2 21 ( )
3

tr 1p , (3.128a) 

or in index notation  

 ijmppmmjimijp )(
3
1 . (3.128b) 

Comparing Equations 3.127 and 3.128b, we get  

 ij
ij

pJ3 . (3.129) 

Substituting Equations 3.126 and 3.129 in Equation 3.119, the associated flow 
rule becomes 

 
2 3

d dp
ij ijij

f f p
J J

, (3.130) 

where the tensor p is defined by Equation 3.128. For a specific yield function (for 
example the Mises or the Tresca yield function), we can evaluate the derivatives of 
f with respect to 2J  and 3J  and then simplify the expression (Equation 3.130) of 
the associated flow rule. But, before that, we shall discuss some consequences of 
Equation 3.130. This is done in the next few paragraphs. 

The first consequence of Equation 3.130 is that the principal directions of the 
plastic part d p of the incremental linear strain tensor are the same as those of the 
stress tensor . To show this, we use the following two results. 
Result 1: Principal directions of the deviatoric part of a tensor are the same as those 
of the tensor itself. This can be shown by combining the equation governing the 
eigenvalues and eigenvectors of a tensor (Equation 2.80) with the one which 
defines the deviatoric part of a tensor (Equation 2.100).  
Result 2: Principal directions of the square of a tensor are the same as those of the 
tensor itself. This again can be shown using Equation 2.80. 
Let iê  be the principal directions of the stress tensor . Then, result 1 implies that 

iê  would be the principal directions of also. Further, using result 2, we can show 

that the principal directions of 2  also would be iê . Again,  using result 1, we can 

show that the principal directions of p (i.e., the deviatoric part of 2 ) would also 
be iê . As per Equation 3.130, the tensor d p is a linear combination of the tensors 
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 and p. Since the principal directions of  and p are identical and equal to iê , 

the principal directions of d p  also would be equal to iê . Thus, we get the result 

that the principal directions of d p  coincide with that of . This was proposed by 
Saint-Venant in 1870–1871. 

To discuss the second consequence of the associated flow rule, we look at its 
geometric interpretation. We assume that iê  (i.e., the principal directions of and 

d p ) form a right-handed triad. When we use iê  as the coordinate axes, the 

matrices of and d p  become 

 
11

2 2

3 3

d 0 00 0
[ ] 0 0 , [d ] 0 d 0

0 0 0 0 d

p

pp

p

,       (3.131) 

where i and d p
i are the principal values of the tensors and d p  respectively. 

(The i  are also called as the principal stresses). Since, these matrices have only 

three non-zero components, the tensors and d p  can be represented as vectors 
in the combined three-dimensional space of ),,( 321  and 1 2 3(d ,d ,d )p p p . 
Further, by evaluating 2J  and 3J  in terms of i , we can express the yield function 

f as a function of i  and the hardening parameter p
eq : );,,( 321

p
eqf . (For 

initial yielding, it would be a function of only i .) Then, the yield criterion 0f  
can be represented as a surface, called the yield surface, in the three-dimensional 
stress space of ),,( 321 . (We have seen this in Section 3.3 for the special cases 
of Mises and Tresca criteria for initial yielding.) Now, consider the gradient of the 
yield function with respect to i . The array of its components with respect to iê  is 
given by   

 T

1 2 3
{ } , ,f f ff . (3.132) 

Note that this vector is normal to the yield surface. Now, we define another vector 

whose array of the components is  

 T
1 2 3{d } {d ,d ,d }p p pp . (3.133) 

To see the relation between these two vectors, we write the associated flow rule 
(Equation 3.118) in the component form:  
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 1 2 3
1 2 3

d d , d d , d dp p pf f f , (3.134a) 

or 

 {d } d { }.p f  (3.134b) 

This equation states that, in the combined three-dimensional space of ),,( 321  

and 1 2 3(d ,d ,d )p p p , the vectors {d }p  and }{ f  have the same direction. Since,  

}{ f  is normal to the yield surface, the vector {d }p  is also along the normal to 
the yield surface. This is shown in Figure 3.17 for the Mises and Tresca yield loci 
on the deviatoric plane. Since the vector {d }p  is parallel to the deviatoric plane, 
three-dimensional graphical representation is not necessary. Therefore, the 
graphical representation of Figure 3.17 is confined to the deviatoric plane only. 

 
Figure 3.17. Normality rule or the graphical representation of the associated flow rule for 
the Mises and Tresca yield functions. a Mises yield locus on the deviatoric plane. b Tresca 
yield locus on the deviatoric plane 

As stated in Section 3.3, the vector OP in Figure 3.17 represents the deviatoric 
part of the stress tensor. Thus, the components of the vector OP  
are 1 2 3( , , ) where i are the principal values of . This vector is denoted as 

}{  in Figure 3.17. Note that the vector {d }p  is parallel to the vector }{  for 

the Mises material but not for the Tresca material. As a result, the tensor d p
ij  is a 

scalar multiple of ij for the Mises material but not for the Tresca material. This is 

also expected from Equation 3.130, where the derivative 3/ Jf  is zero for the 
Mises material but not for the Tresca material. There is another difference between 
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the Mises and Tresca yield criterion as far as the evaluation of d p
ij is concerned. 

For the Mises surface, the normal is defined at every point of the yield surface.  
But for the Tresca surface, it is not defined along the six edges of the prism (i.e., at 
the corners of the yield loci of Figure 3.17). Therefore, the vector {d }p is not 
uniquely determined at the edges of the Tresca surface. This is one of the reasons 
for not using the Tresca yield criterion in our analysis. 

The statement that the vector {d }p  is normal to the yield surface is known as 
the normality rule. In our approach, it follows from the assumption that the plastic 
potential and the yield function are identical. But, in the other approach, it follows 
from the Drucker’s stability postulate without any additional assumptions.  

Now, we illustrate the procedure for determining the scalar d  appearing in 
the associated flow rule for the case of materials which obey the strain hardening 
hypothesis. For this case, the yield function can be expressed as  

 ( ; ) 0p
ij eqf . (3.135) 

Setting the differential of  f  to zero, we get 

 d d d 0p
ij eqp

ij eq

f ff . (3.136) 

This is called the consistency condition. It means the state d , dp p
ij ij eq eq  

also lies on the yield surface. Combining the definition of d p
eq  (Equation 3.93) 

and the associated flow rule (Equation 3.118), we get 

 
1/ 21/ 22 2d d d d

3 3
p pp

eq ij ij
ij ij

f f . (3.137) 

Substituting the above expression in Equation 3.136, we get the following 
expression for d : 

 1/ 2

d
3d
2

ij
ij

p
ij ijeq

f

f f f
. (3.138) 
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Since we have decided to use the Mises yield criterion in the remainder of the 
book, it is imperative to use the corresponding yield function in the associated flow 
rule. The Mises yield function is given by Equation 3.104. Differentiating Equation 
3.104 with respect to ij and p

eq  and substituting the expression for the derivative 

of 2J  (Equation 3.126), we get 

 2
ij

ij ij

Jf , (3.139) 

 1 ( 2 )
3p

eq

f HH . (3.140) 

Here, H  is the derivative of the hardening function (Equation 3.103) with respect 
to the equivalent plastic strain. We substitute the above expressions in Equation 
3.138 along with the expression for eq  (Equation 3.23) and the equality eqH . 
This leads to  

 2

d9d
4

ij ij

eqH
. (3.141) 

This is the expression for d  for the Mises material.  
Now, we obtain the associated follow rule for the Mises material. The Mises 

yield function (Equation 3.104) is linear in 2J  and independent of 3J . Therefore, 
the associated flow rule (Equation 3.130) becomes 

 d dp
ijij . (3.142) 

Thus, as stated earlier, the tensor d p
ij  is a scalar multiple of ij  for the Mises 

material. This is also expressed graphically in Figure 3.17a. Substituting the 
expression for d  (Equation 3.141) and changing the dummy indices from i and j 
to k and l, we get the following expression for the associated flow rule of the Mises 
material: 

 2
9d d
4

ij klp
klij

eqH
. (3.143) 

Note that, in the above expression, the differential is not of the deviatoric part but 
of the whole stress tensor.  

We modify the above expression so as to bring in the term d p
eq  on the right 

hand side. This needs to be done to make it useful for the Eulerian formulation. 
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First, we decompose d kl  into the hydrostatic and deviatoric parts. Then we 
simplify the product dkl kl  by using the identity at Equation 2.15 and the 
condition  0kk . Thus, we get 

 
1 1d d d d d ,
3 3

d .

kl kl kl mm kl kl kk mm kl kl

kl kl

  (3.144)   

Next, we square both sides of Equation 3.23 and differentiate them. We also 
change the dummy indices from i and j to k and l. Then we obtain  

 32 d (2 d )
2eq eq kl kl .                  (3.145)   

Further, by differentiating the hardening function (Equation 3.103), we get 

 d d p
eq eqH .                       (3.146)   

Eliminating dkl kl  and d eq  from the above three equations, we get  

 2d d
3

p
kl kl eq eqH . (3.147) 

Finally, we substitute the above expression for dkl kl  in Equation 3.143 and 
cancel the factor eqH  from the numerator and the denominator. Then, we obtain  

 
d3d

2

p
eqp

ijij
eq

. (3.148) 

Starting from Equations 3.143 and 3.148, we now derive the following two 
constitutive relations for the Mises material in the next two subsections: (i) elastic-
plastic incremental stress-strain relation to be used for the updated Lagrangian 
formulation and (ii) elastic-plastic stress–strain rate relation for the Eulerian 
formulation. 

3.6.2 Elastic-Plastic Incremental Stress-Strain Relation for Mises Material 

The constitutive equation (Equation 3.143) is a relationship between the 
incremental stress tensor d kl  and only the plastic part of incremental linear strain 
tensor d ij . However, we need a relationship between d kl  and the whole of d ij . 
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To develop this relationship, we first need to relate d kl  with the elastic part of 
d ij  and then combine this relationship with Equation 3.143.  

To relate d kl  with d e
ij , we proceed as follows. Note that we have decided to 

neglect the hysteresis in tension test. Then, the slope of the unloading path 
becomes equal to the slope of the elastic path (line OY of Figure 3.1). This means, 
in a three-dimensional elastic-plastic state of deformation, the relation between 
d kl  and d e

ij  is the same as the constitutive equation of the linearly elastic 

material (Equations 2.213 or 2.218 or 2.224 and 2.225). To relate d e
ij  with d kl , 

we use the inverse stress-strain relationship (Equation 2.218):   

 1d [ d (1 )d ]e
ij kk ij ijE

. (3.149) 

Using the identity at Equation 2.15, we can rewrite the above equation as  

 1d [ (1 ) ]de
ij kl ij ik jl klE

. (3.150) 

Next, we combine the elastic and plastic parts of the constitutive equation. For 
this, as before, we assume that the elastic and plastic parts of the incremental linear 
strain tensor are additive (Equation 3.86). It seems justified for the case of small 
incremental deformation. As stated earlier, we shall discuss the validity of this 
assumption in the next chapter. By combining Equations 3.143 and 3.150, we 
obtain 

 
2

d d d ,

1 9[ (1 ) ] d .
4

pe
ij ij ij

ij kl
kl ij ik jl kl

eqE H

 (3.151) 

Inverting this relationship [3], we get 

 d dEP
ij ijkl klC , (3.152) 

where the fourth order elastic- plastic tensor EP
ijklC  is given by  

 2
92

1 2 2 ( 3 )
ij klEP

ijkl ij kl ik jl
eq

C
H

. (3.153) 
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Note that, the tensor EP
ijklC  depends on (i) the elastic material constants and  

(ii)  the material hardening curve through )( p
eqeq H  and its slope H  and (iii) 

the current stress through . Equations 3.152 and 3.153 are a second set of 
governing equations for the updated Lagrangian formulation when the incremental 
deformation is small. We shall discuss the modifications required for the large 
incremental deformation in the next chapter. 

The incremental stress in Equation 3.152 has to be objective. The definition of 
objectivity and an objective incremental stress tensor is discussed in the next 
section. 

3.6.3 Elastic-Plastic Stress-Strain Rate Relation for Mises Material 

As stated in Subsection 3.4.2, in Eulerian formulation, we use the strain rate tensor 
ij  as the measure of deformation. Therefore, for Eulerian formulation, we need to 

develop the constitutive relation in terms of ij  rather than the incremental linear 

strain tensor. We begin by separating ij  into the elastic and plastic parts. For this 
purpose, like in the case of incremental linear strain tensor, we assume that it is 
possible to decompose ij  additively into the elastic and plastic parts. (We shall 
show in the next chapter that this is only approximately true when the rotation is 
small.)  Therefore, we write 

 p
ij

e
ijij . (3.154) 

Next, we obtain the constitutive equation for p
ij  from the associated flow rule. 

For this purpose, we develop a relationship between p
ij  and d p

ij . We substitute 

the decompositions of d ij  and ij  (Equations 3.86 and 3.154) in the equation 
relating these two quantities (Equation 3.76) and equate the plastic parts of both 
sides. Then, we get  

 d dp p
ij ij t . (3.155) 

Note that the associated flow rule (Equation 3.148) also involves the equivalent 
plastic strain increment d p

eq . To express it in terms of p
ij , we define the 

equivalent, or effective or generalized plastic strain rate as  

 
1/ 22

3
p pp

eq ij ij . (3.156) 
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It is an invariant of the tensor p
ij . Further, it can be shown to be equal to the 

plastic part of the axial strain rate in tension test. Substituting Equation 3.155 in the 
expression for d p

eq  (Equation 3.93) and using the definition of p
eq  (Equation 

3.156), we obtain d p
eq  in terms of p

eq : 

 d dp p
eq eq t . (3.157) 

Before we proceed further, we express the equivalent plastic strain p
eq  (the 

argument of the hardening function H) in terms of p
eq  by substituting the above 

expression in Equation 3.97:  

 dp p
eq eq t . (3.158) 

Here, the integration is to be carried out along the path line of the material particle.  
To express the associated flow rule (Equation 3.148) in terms of p

ij , we 

substitute the expressions for d p
ij  and d p

eq  (Equations 3.155 and 3.157) in the 
above equation and cancel the factor dt from both the sides. This leads to 

 ij
eq

p
eqp

ij 2
3 . (3.159) 

Taking the trace of both sides, and using the condition that the trace of is zero 
(Equation 2.99), we get  

 0p
kk . (3.160a) 

Note that, similar to Equation 3.69, p
kk  represents the volumetric strain rate 

corresponding to the plastic part of the strain rate tensor. Thus, Equation 3.160a is 
consistent with the observation that there is no change in volume corresponding to 
the plastic part of the deformation. Equation 3.160a also states that the hydrostatic 
part of p

ij is zero. Therefore, the whole of p
ij  is equal to its deviatoric part. Thus, 

 ij
eq

p
eqp

ij 2
3 . (3.160b) 
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Next, we get the constitutive equation for e
ij . For this purpose, as before, we 

assume that the elastic part of strain is related to the stress by the constitutive 
equation of the linearly elastic material (Equations 2.213 or 2.218 or 2.224 and 
2.225). To relate e

ij  with ij , we first relate d e
ij  with  d ij  using the third form 

of the stress strain relationship (Equations 2.224 and 2.225). We interchange the 
sides so as to write the incremental strain in terms of the incremental stress. 
Further, using Equation 2.229, we replace )23( with 3K. Then, we get 

 
d

d
3

e kk
kk K

, (3.161a) 

 
d

d
2

ije
ij . (3.161b) 

Now, we express the strain increments in terms of the strain rates (using Equation 
3.76) and the stress increments in terms of the stress rates: 

 d d ,
3

e kk
kk t t

K
                                                                                (3.162a) 

 d d .
2

ije
ij t t                                                                                 (3.162b) 

Here, kk is the time rate of kk  and ij is the time rate of ij . Finally, we add the 
elastic as well as the plastic contributions of the hydrostatic and the deviatoric parts 
of ij  separately. Thus, adding (a) as well as (b) parts of Equations 3.160 and 
3.162, we obtain 

 
KK
kkkkp

kk
e
kkkk 3

0
3

, (3.163a) 

 ij
eq

p
eq

ij
p

ij
e

ijij 2
3

2
1 . (3.163b) 

This is the constitutive relation for the Eulerian formulation. Note that, in this 
relation, ij depends on (i) the elastic material constants K and , (ii) the material 

hardening curve through ( d )p
eq eqH t , (iii) the current stress through and 

(iv) the current stress rate through . Equations 3.163a, b are a second set of 
governing equations for the Eulerian formulation when the rotation is small. 
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Modifications required when this assumption is not valid are discussed in the next 
chapter. 

The stress rates in Equations 3.163a,b have to be objective. The definition of 
objectivity and an objective stress rate tensor, namely the Jaumann stress rate 
tensor, are discussed in the next subsection. 

Now, we consider two special cases of the constitutive relation (Equations 
3.163a,b). First case arises if we neglect hardening. For non-hardening materials, 
the size of the initial yield surface does not change with the plastic deformation. 
Therefore, as per Equation 3.103, the equivalent stress eq   remains constant at 

the value of yield stress Y . When we substitute Yeq  in Equations 3.163a, b, 
the resulting equations for non-hardening materials are called the Prandtl-Reuss 
equations. They were proposed by Prandtl in 1924 for plane problems and by 
Reuss in 1930 for general case based on Saint Venant’s proposal. The second case 
arises if we also neglect the elastic deformation. Note that, Equations 3.163a, b 
involve both the stress and stress rate, and therefore the resulting problem becomes 
quite difficult to solve. This difficulty can be circumvented if we neglect e

ij  

compared to p
ij . This is justified as the elastic deformation in metals is normally 

quite small. Note that, when we neglect the elastic deformation, we are assuming 
the material to be rigid-plastic material. When we neglect e

ij , Equation 3.163a 
becomes meaningless and we are left with only the following modified version of 
Equation 3.163b:  

 
3
2

eq
ij ij

eq
. (3.164) 

As stated before, for non-hardening materials, the equivalent stress eq  is equal to 

the yield stress Y . When we substitute Yeq  in Equation 3.164, the resulting 
equation for rigid-plastic non-hardening materials is called the Levy-Mises 
equation. It was proposed independently by Levy in 1871 and by Mises in 1913 
based on Saint Venant’s proposal.  

Equation 3.164 is usually written in the transposed form:  

 
2

3
eq

ij ij
eq

 . (3.165) 

This equation states that, for the rigid-plastic materials, we can determine only the 
deviatoric part of stress from the (plastic) deformation, and the hydrostatic part of 
stress remains constitutively indeterminate. In elastic plastic materials, there is a 
small change in volume due to the elastic part of the deformation. But the rigid 
plastic materials are incompressible as the plastic deformation cannot produce any 



 Classical Theory of Plasticity 157 

change in volume. The hydrostatic part of stress, in rigid plastic materials, arises as 
a reaction to this incompressibility constraint. Therefore, it can be determined from 
the condition that the volumetric strain rate is zero:  

 0kk . (3.166) 

3.6.4 Viscoplasticity and Temperature Softening 

Suppose the material exhibits viscoplasticity as well as strain hardening. Then, as 
in the case of the strain hardening postulate, we assume that:  

 During subsequent yielding, only the size of the yield locus changes with 
the strain rate tensor. The shape or the center of the yield locus remains 
unchanged.  

 The change in size depends on the equivalent plastic strain rate p
eq , an 

invariant of the plastic part of the strain rate tensor. 

For the Mises material, eq  represents the size of the yield locus. Therefore, for 
the material which exhibits both strain hardening and viscoplasticity, we can 
express eq  as a function of p

eq  and p
eq : 

 ( , )p p
eq eq eqH . (3.167) 

Like the dependence of function H on p
eq , the dependence on p

eq  is also 

determined from the tension test. In tension test, eq  is equal to the axial stress and 
p
eq  is equal to the plastic part of the axial strain rate. Therefore, the dependence of 

H on p
eq  is found from the graph of axial stress vs the plastic part of the axial 

strain rate.  
Suppose the material exhibits temperature softening and strain hardening. Then 

we assume that, during subsequent yielding, the shape or the center of the yield 
locus remains unchanged. Further, the size of the yield locus depends on the 
temperature T. Therefore, for the material which exhibits both strain hardening and  
temperature softening, we can express eq  as a function of p

eq  and T:  

 ),( TH p
eqeq . (3.168) 

We determine the dependence of H on T from the graph of axial stress vs 
temperature in tension testing.  
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If the material exhibits strain hardening and viscoplasticity as well as 
temperature softening, then we can express eq  as a function of p

eq , p
eq  and T: 

  ( , , )p p
eq eq eqH T . (3.169) 

For the materials which exhibit viscoplasticity or/and temperature softening 
besides strain hardening, the equivalent stress ( eq ) in the constitutive equations 
(Equations 3.152, 3.153 and 3.163) should be evaluated from Equations 3.167 or 
3.168 or 3.169 as the case may be. Similar to Equation 3.103, the function H in 
these expressions (Equations 3.167–3.169) can be approximated as a power law in 
( p

eq , p
eq ) or ( p

eq , T) or ( , ,p p
eq eq T ). Further, H  in Equation 3.153 should be 

interpreted as p
eqH / . 

Example 3.4: In plane strain rolling of a sheet, matrix of the stress tensor with 
respect to (x, y, z) coordinate system, at point A, is given by  

 
06.000
009.00
0021.0

][ GPa.  (3.170) 

(a) The state of stress at point A lies on the initial Tresca yield surface (i.e., the 
Tresca yield surface corresponding to zero equivalent plastic strain). On which side 
of the yield surface does it lie ? 
(b) Find the matrices of the tensors , 2  and p at point A. 
(c) Find d p  in terms of d , at point A, from the associated flow rule. Use the 
Tresca yield function as the plastic potential. 

Solution: (a) The stress matrix of Equation 3.170 is already in the diagonal form. 
Therefore, )ˆ,ˆ,ˆ( kji , the unit vectors along (x, y, z) axes, are the principal directions 
at point A. Let the labeling of the principal directions be as follows:  

 ˆ ˆ ˆˆ ˆ ˆ1 2 3e i, e j, e k .     (3.171) 

Then the principal stresses at point A are  

 1 2 30.21GPa, 0.09GPa, 0.06GPa .  (3.172) 

Note that these principal stresses are not ordered. The maximum principal stress 
difference at point A is  

 1 2 2 3 3 1 1 2max[ , , ] ( ) . (3.173) 
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Therefore, the state of stress at point A lies on the side Y21 . Further, the 
value of the yield stress of the material becomes  

 1 2 0.21 ( 0.09) 0.3GPaY . (3.174) 

Note that, if the labeling of the principal directions at point A is changed, the side 
on which the state of stress lies will also be changed.  
(b) From Equation 2.100, we get the matrix of with respect to any coordinate 
system as  

 1[ ] [ ] [1]
3 ii . (3.175) 

Substituting the values of ij  from Equation 3.170, we get the matrix of at 
point A  as  

 
0.15 0 0

[ ] 0 0.15 0 GPa
0 0 0

. (3.176) 

Multiplication of the matrix of Equation 3.176 with itself gives the matrix of 2  at 

point A. Thus, we get  

2

2

0.15 0 0 0.15 0 0
[ ] 0 0.15 0 0 0.15 0 ,

0 0 0 0 0 0

0.0225 0 0
0 0.0225 0 (GPa) .
0 0 0

          (3.177) 

The tensor p  is the deviatoric part of 2 . Therefore, the matrix of p is given by  

 2 1[ ] [ ] [1]
3

p tr 2 . (3.178) 

Substituting the values of 2
ij  from Equation 3.177, we get the matrix of p at point 

A as  
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 2
0.0225 0 0

1[ ] 0 0.0225 0 (GPa)
3

0 0 0.0450
p . (3.179) 

(c) The Tresca yield function, for initial yielding, is given by Equation 3.33. 

Expanding this expression, we get  

 2
3

6
2

42
2

23
232 )27()6()9()4(),( JJJJJJf YYY . (3.180) 

Differentiating the above expression partially with respect to 2J  and 3J , we 
obtain   

 

2 2 4
2 2

2

3
3

(12) (18 ) (6 ),

(54) .

Y Y
f J J

J
f J
J

   (3.181) 

To evaluate these derivatives at point A, we first calculate 2J  and 3J  at point 
A. This is done by substituting the values of ij  from Equation 3.176 into 
Equations 2.105 and 2.103. Thus, we get  

 2 2 2 2
2

1 1 [(0.15) ( 0.15) 7(0) ] 0.0225(GPa) ;
2 2ij ijJ    (3.182a) 

3 1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

3

,

( ) ( ) ( ),
(0.15)[( 0.15) 0 0 0] 0[0 0 0 0] 0[0 0 ( 0.15) 0],

0(GPa) .

ijk i j kJ

 

  (3.182b) 

Substituting the values of Y , 2J  and 3J  from Equations 3.174, 3.182a and 
3.182b into Equation 3.181, we obtain the following values of the derivatives at 
point A:  

 

2 2 4
2 2

2
2 2 4

(12) (18 ) (6 ),

12(0.0225) 18 (0.3) (0.0225) 6(0.3) ,
0.018225;

Y Y
f J J

J

         (3.183a) 

 3
3

(54) 0f J
J

. (3.183b) 
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Next, we get the expression for d p
ij  (at point A) in terms of ij  by 

substituting the above values in the associated flow rule (Equation 3.130):  

2 3
d d d [(0.018225) (0) ] (0.018225d )p

ij ij ij ij ijij
f f p p

J J
. 

(3.184) 
Finally, we evaluate d p

ij  at point A (in terms of d ); by substituting the values of 

ij  from Equation 3.176, we obtain 

 

d (0.018225d )(0.15) (0.00273375)d ,

d (0.018225d )( 0.15) (0.00273375)d ,

d 0 for other values of ( , ).

p
xx
p
yy

p
ij i j

     (3.185) 

3.7 Objective Stress Rate and Objective Incremental Stress 
Tensors 

The stress rate tensor in Equations 3.163a, b and the incremental stress tensor in 
Equation 3.152 have to be objective tensors. It means these tensors have to be 
frame-invariant or invariant under a change of reference frame. 

We explain the concept of frame-invariance as follows. A position vector of 
point P, when described with respect to a moving frame, has a different 
mathematical representation than when it is described with respect to a fixed 
frame. Let x and *x be the mathematical representations of the position vector with 
respect to fixed and moving frames respectively. The quantities x and *x are 
related as follows. The distance between two arbitrary points in space is 
represented as a magnitude of the difference of the position vectors of these two 
points. The requirement that this distance should be invariant under a change of 
frame leads to the following relation between x and *x [11]: 

 * ( ) ( )t tx c Q x , (3.186) 

where the vector c(t) represents the translation and the tensor )(tQ  represents the 

rotation of the moving frame at time t with respect to the fixed frame. Here, the 

tensor ( )tQ  is an orthogonal tensor. That is, 

 T T( ) ( ) ( ) ( )t t t t 1Q Q Q Q . (3.187) 
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Further, the determinant of )(tQ  is +1. Therefore ( )tQ  is called the proper 

orthogonal tensor. In Subsection 2.3.1.3 we talked about an orthogonal matrix. It is 

related to the orthogonal tensor as follows. The matrix of an orthogonal tensor is  

orthogonal matrix in every coordinate system.  In the next paragraph, we shall use 

Equation 3.186 to derive the frame-invariance of vector and tensor quantities. 

Now, we postulate that the direction of the stress vector (at every point on 
every plane) should be invariant under a change of frame. This requirement leads 
to a relation between their mathematical representations with respect to fixed and 
moving frames. To work out this relation, let us denote the mathematical 
representations of the stress vector as nt  and *

nt . Since the direction of a vector is  
related to the difference of the position vectors of its end points, it can easily be 
shown, using Equation 3.186, that 

 * ( )tn nt Q t . (3.188) 

Vectors which satisfy this relation are called objective vectors. Note that all vectors 
are not objective. It is well known that vectors like velocity and acceleration 
change with the frame. Next, we discus the frame-invariance of the Cauchy stress 
tensor. Let and n̂  be the mathematical representations of the stress tensor and 
the normal vector (to the plane on which the stress vector acts) respectively with 
respect to the fixed frame. Further, let * and *n̂  be the  representations with 
respect to the moving frame. Note that and n̂  are related by Equation 2.65. 
Therefore, in the moving frame, * and *n̂  will be related by  

 * * *ˆnt n . (3.189) 

Note that the normal vector also has to be objective. Therefore, 

 *ˆ ˆ( )tn Q n . (3.190) 

Combining Equations 2.65 and 3.188–3.190 and using the orthogonality of )(tQ , 

we get the following relation between and * :  

 T* ( ) ( )t tQ Q . (3.191) 

The tensors which satisfy the above relation are known as the objective tensors. 
Thus, the Cauchy stress tensor is objective. But its rate is not objective as can be 
seen by taking the time derivative of Equation 3.191:  

 * T T T( ) ( ) ( ) ( ) ( ) ( )t t t t t tQ Q Q Q Q Q . (3.192) 
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3.7.1 Jaumann Stress Rate and Associated Objective Incremental Stress 
Tensor 

To develop an objective stress rate tensor, we proceed as follows. In general, in a 
time increment, a material particle gets both deformed and rotated. Assume that, in 
a current time increment, the particle does not deform, but only rotates. Then, the 
strain rate tensor  will be zero at the present time t but not the spin tensor . In 
this case, we expect the objective stress rate tensor also to be zero as we do not 
expect it to depend on the  rotation. However, the Cauchy stress rate does depend 
on the  rotation. If we define a rate of the Cauchy stress tensor which consists of 
the total rate minus the rate only due to  rotation, then we expect this stress rate 
tensor to be objective. As a first step in the development of such an objective stress 
rate tensor, we begin with the calculation of the Cauchy stress rate only due to  
rotation. 

To find the change in the Cauchy stress tensor in the time interval dt due to 
rotation, consider two deformed configurations as shown in Figure 3.18: (i) 
deformed configuration at time t and (ii) deformed configuration at time t+dt. 
Further, consider a parallelepiped shaped element around point P of the first 
configuration. Now, choose two frames: (i) a fixed frame and (ii) a moving frame 
which rotates with the particle but coincides with the fixed frame at time t. Such a 
frame is called the co-rotational or material frame. Coordinate axes of the fixed 
frame as well as the moving frame (both at time t and t+dt) are shown in the figure.  

 
Figure 3.18. Small rotation of the particle in time interval dt. The meaning of the 
superscripts on the coordinate axes is as follows. The left superscript refers to the frame: F 
for fixed frame and M for material frame. For the material frame, the right superscript 
denotes the time. a Deformed configuration at time t. b Deformed configuration at time  
t+dt 

Let ][ tF  be the matrix of (the Cauchy) stress components at time t with 
respect to the fixed frame. Since at time t the material frame coincides with the 
fixed frame, matrix ][ tM  of the stress components with respect to the material 
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frame at time t will also be equal to ][ tF . We are assuming that the element only 
rotates and does not deform during the time interval dt. Therefore, there is no 
change in the stress components during the interval dt with respect to the material 
frame. Then, the matrix d[ ]M t t of the stress components with respect to the 

material frame at time t+dt will also be equal to ][ tM  and hence equal to ][ tF . 

To get the matrix d[ ]F t t of the stress components at time t+dt with respect to 

the fixed frame, we carry out the component transformation from dM t t
ix  to i

F x , 
the corresponding transformation matrix being ][Q . Note that, even though this  

][Q  is related to the rotation of the moving frame with respect to the fixed frame, 
it does not directly represent the matrix form of the tensor )(tQ  of Equation 3.186 
and the related equations. 

To find ][Q , we proceed as follows. If the particle rotation in the interval dt is 
small, then it is described by the incremental infinitesimal rotation tensor 
d (Equation 3.59) which, by Equation 3.77, is equal to dt . Further, the angles 
(d ,d ,d )x y z  through which the material axes d d d( , , )M t t M t t M t tx y z  

rotate about the fixed axes ),,( zyx FFF  during dt are given by 

 d d dF F
x zy yzt t , (3.l93a) 

 d d dF F
y xz zxt t , (3.l93b) 

 d d dF F
z yx xyt t , (3.l93c) 

where the left superscript F means the components of  are taken with respect to 
the fixed frame. The angle d z  is shown in Figure 3.18. Since small rotation is a 

vector, we can consider the total rotation of the d d d( , , )M t t M t t M t tx y z axes in 
time dt as the sum of three rotations: (i) rotation in which only d x  is non-zero, (ii) 
rotation in which only d y  is non-zero, and (iii) rotation in which only d z  is 

non-zero. Since the angles (d ,d ,d )x y z  are small, while obtaining the 
transformation matrix, we make the simplification that cosines of these angles are 
1 while the sines are equal to the angles themselves. Corresponding to the third 
rotation, the transformation matrix 3][Q  obtained from Figure 3.18 and Equation 
2.54 is given by  
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 3
1 d 0

[ ] d 1 0
0 0 1

z

zQ . (3.194) 

Here, the i-th row of 3][Q  contains the direction cosines of the fixed axes i
F x  with 

respect to the material axes d d d( , , )M t t M t t M t tx y z axes. The negative sign in 

second column of the first row is because the axis xF is clockwise from the 
dttM x axis. Similarly, we obtain the transformation matrices 1][Q and 

2][Q corresponding to the first and second rotations. Adding the three 
transformation matrices and using Equation 3.193, the net transformation matrix 
becomes 

 

1 2 3[ ] [ ] [ ] [ ] ,
1 d d

d 1 d ,
d d 1

z y

z x

y x

Q Q Q Q

                                                       (3.195a)

 

or 
 [ ] [1] [ ]dFQ t , (3.195b) 

where ][F  is the matrix of the spin tensor  with respect to the fixed frame. 

Now, using the tensor transformation relation (Equation 2.55), we get the 
matrix d[ ]F t t  of the stress components at time t+dt with respect to the fixed 
frame as  

d d T d T T[ ] [ ][ ][ ] [1] [ ]d [ ] [1] [ ] dF t t M t t F M t t FQ Q t t .      

  (3.196) 

Since the matrix d[ ]M t t  is equal to ][ tF , the above equation becomes  

 

d T T

T

T T 2

[ ] [1] [ ]d [ ] [1] [ ] d ,

[1] [ ]d [ ] [ ][ ] d ,

[ ] [ ][ ]d [ ][ ] d [ ][ ][ ] (d ) .

F t t F F t F

F F t F t F

F t F F t F t F F F t F

t t

t t

t t t

  

(3.197)  
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From this, we get the following expression for the rate of change of ][ tF : 

 
d

T
d 0

[ ] [ ][ ] Lim [ ][ ] [ ][ ]
d

F t t F t
F t F F t F t F

t t
. (3.198) 

Since the unit vectors of the fixed frame do not change the directions with time, the 
above equation can be written in a tensor form. While writing the tensor form, we 
omit the right superscript t for the stress matrix. Then, we get  

 T . (3.199) 

Note that the above expression of the Cauchy stress rate tensor is based on the 
assumption that the time increment consists of pure rotation and no deformation. 
When, the time increment consists of both the deformation and rotation, we define 
a rate of Cauchy stress tensor which consists of the total rate minus the above 

rate due to rotation. We denote it by 
o

. Thus, 
o

 is given by 

 
o T( ) . (3.200) 

The stress rate 
o

 is called the Jaumann stress rate.  It can be shown that 
o

 is an 
objective tensor. To show it, we need the expression for the spin tensor in a 
moving frame. To obtain this expression, we proceed as follows. 

Let v, v  and  be the mathematical representations of the velocity vector, 
the velocity gradient tensor and the spin tensor respectively with respect to a fixed 
frame. Further, let * * * *, andv v  be the representations with respect to a 
moving frame. Note that the velocity vector is the rate of change of the position 
vector with time. Differentiating Equation 3.186 with time, we get the expression 
for *v :  

 * ( ) ( ) ( )t t tv c Q x Q v . (3.201) 

Next, we obtain the expression for * *v  using the chain rule and differentiating 
Equation 3.201 with x and Equation 3.186 with *x . We modify this expression by 
decomposing  v  into the symmetric and antisymmetric parts. Thus, we get 
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*
* *

*

T

T T T

,

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ).

t t t

t t t t t t

v xv
x x

Q Q v Q

Q Q Q Q Q Q

                (3.202) 

Finally,  we obtain *  as the antisymmetric part of * *v : 
 

 

* * * * * T

T T T

T T T T T

1 ( ) ,
2
1 ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( ) .

t t t t t t

t t t t t t

v v

Q Q Q Q Q Q

Q Q Q Q Q Q

          (3.203) 

 
This expression can be simplified by using the orthogonality of ( )tQ . 
Differentiating Equation 3.187 with time, we get 

 T T( ) ( ) ( ) ( )t t t tQ Q Q Q . (3.204) 

Substituting Equation 3.204 into Equation 3.203 and using the symmetry of  and 
antisymmetry of , we get the following expression for * : 

 T T( ) ( ) ( ) ( )t t t tQ Q Q Q . (3.205) 

Using Equation 3.200, the mathematical representation of the Jaumann stress rate 
with respect to the moving frame can be written as  

 * * * * * *T ,  (3.206) 

where * , *  and *  are given by Equations 3.192, 3.205 and 3.191 respectively. 

Using the orthogonality of ( )tQ , it can be shown that * satisfies the following 
relation [7, 12]: 

 * T( ) ( )t tQ Q . (3.207) 

This shows that the Jaumann stress rate is objective. 
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Quite a few other objective stress rate measures like the Truesdell rate, Green-
Naghdi rate (also called as Green-McInnis rate), Metzger-Dubey rate etc. have 
been proposed. The Jaumman stress rate is based on the spin tensor as the rate of 
rotation. The rates of rotation used in developing other objective stress measures 
are related to the quantities associated with the kinematics of finite deformation. 
Therefore, these measures will be described in the next chapter. Compared to other 
objective stress rates, the Jaumann stress rate is simpler to implement in a 
numerical scheme. Therefore, we use the Jaumann stress rate in our analysis. 

Thus, in the constitutive equation for the Eulerian formulation (Equations 

3.163a, b), we replace  by the Jaumann stress rate 
o

. Further, in the constitutive 
equations for the updated Lagrangian formulation (Equation 3.152), we replace 

d  by 
o

d :  
 

 dtd , (3.208) 

the product of the Jaumann stress rate and the time increment dt. This is equivalent 
to assuming that the incremental rotation is small and is given by dt . Other 
objective incremental stress measures will be discussed in the next chapter.  

3.8 Unloading Criterion  

Stress-strain curve (Figure 3.1) of tension test shows that, in a one-dimensional 
state of stress, unloading (at a point on the curve YF ) occurs if the stress decreases, 
i.e., if d 0 . However, this is not true for the compression test, where itself is 
negative and therefore, unloading occurs if d 0 . Thus, the unloading criterion 
which is valid for both tension and compression tests can be stated as  

 d 0.  (3.209) 

To extend this criterion to a three-dimensional state of stress, we turn to the 
graphical representation of the yield criteria. In a one-dimensional state of stress, 
graphical representation of the yield criterion is just a pair of points ( )ph on 
the -axis. Equation 3.209 means, during unloading, direction of the stress 
increment d is inward from the yield points (i.e., towards the origin of the -
axis). In a three-dimensional state of stress, graphical representation of the yield 
criterion is a surface in the stress space of the principal stresses 1 2 3( , , ) . 
However, for convenience, we consider its locus on the deviatoric plane. 
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Figure 3.19. Unloading criteria. The vector {d } points inward from the yield locus and 
makes an obtuse angle with the outward normal. a Mises yield locus on the deviatoric plane. 
b. Tresca yield locus on the deviatoric plane  

 Let {d } be the array of the principal values of the stress increment d ij . 
Then, it can be represented as a vector in the stress space. We expect that, during 
unloading, the vector {d }  will be pointing inward from the yield locus as shown 
in Figure 3.19. Then, it will make an obtuse angle with the vector }{ f which is 
normal to the yield locus. This condition can be stated as  

 T{ } {d } 0f . (3.210) 

In index notation, this condition can be expressed as [3] 

 d 0.ij
ij

f  (3.211) 

For the Mises material, the derivative of the yield function f with respect ij is 
given by Equation 3.139. Using this result, the unloading criterion (Equation 
3.211) becomes  

 d 0ij ij . (3.212) 
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3.9 Eulerian and Updated Lagrangian Formulations for Metal 
Forming Processes 

Now, we put together all the three governing equations to make a mathematical 
model of the metal forming processes. As stated in the introduction, Eulerian 
formulation is convenient for processes like rolling, drawing, extrusion etc. 
whereas the updated Lagrangian formulation is convenient for the processes like 
forging, deep drawing, sheet bending etc. In this section, we develop these two 
formulations. Since, some of the governing equations are differential equations in 
space and time variables, we need the boundary and initial conditions. They are 
also discussed in this section. One of the governing equations, namely the equation 
of motion (Equation 2.129), is in terms of the acceleration vector a. Since the 
primary variable is the velocity vector for the Eulerian formulation, we need to 
express a in terms of the velocity vector. Further, for the updated Lagrangian 
formulation, we need to put the equation of motion in the incremental form. These 
things are discussed first before developing the two formulations. 

3.9.1 Equation of Motion in Terms of Velocity Derivatives 

As stated earlier, in Eulerian formulation, the primary variable of the problem is 
the velocity vector v . The acceleration vector a is the time rate of the velocity 
vector. Note that the velocity vector v of a particle, besides depending explicitly on 
time t,  also depends implicitly on t through its position vector x. Therefore, using 
the chain rule, the acceleration vector a can be expressed as  

 ,
dd

( )
d d

ji i i i
i i j j

j

xv v v v
a v v

t t x t t
. (3.213) 

Here, the last equality follows from the definition of the velocity vector v, that it is 
the rate of change of the position vector x of the particle. The comma in the second 
term of the last equality indicates the derivative with respect to the components of 
the position vector x. 

In tensor notation, the above equation can be written as 

 d ( )
d t t

v va v v ,              (3.214) 

where the velocity gradient tensor v has been defined in Subsection 3.4.2. The 
derivative d / dtv  is called the material time derivative of the velocity vector. The 
physical interpretation of the two parts of d / dtv  is as follows. The first part 
consists of the partial derivative of v with respect to time. It represents the change 
in velocity vector of the point of the control volume which the particle occupies at 
time t. It is called the unsteady term of the material time derivative. Since the 
particle continues to change its position with time, the second part consists of the 
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partial derivative of v with respect to x. It represents the change in velocity vector 
due to the change in its position. This term is called the convective term of the 
material time derivative. Equation 3.214 shows that the acceleration vector a is a 
non-linear function of the velocity vector v. Because of this, in Eulerian 
formulation, the equation of motion becomes a non-linear equation.  

Substituting the expression for the acceleration vector (Equation 3.213), the 
equation of motion (Equation 2.131) now becomes 

 , ,
i

i j j i ij j
v

v v b
t

. (3.215) 

For a steady process, the first part of the acceleration vector, namely tvi / , is 
zero.  

For a rigid-plastic material, it is convenient to decompose the last term of the 
equation of motion into the hydrostatic and deviatoric parts. In metal forming and 
machining literature, the negative of the hydrostatic part is often called pressure 
and is denoted by the letter p: 

 kkp
3
1 . (3.216) 

Note that, unlike in fluids, the hydrostatic part in solids is sometimes tensile (i.e., p 
is sometimes negative). However, whenever the hydrostatic part becomes tensile at 
a point, there is likelihood of material separation at that point. This aspect will be 
dealt with in the next chapter, when we discuss the theories of fracture. 
Substituting Equation 3.216 in the expression for decomposition of the stress 
tensor (Equation 2.100), we get  

 ijijij p . (3.217) 

Now, we evaluate the divergence of the first term on the right side. Using the 
product rule and the identity at Equation 2.15 and noting that  is a constant, we 
obtain  

 , , , , ,( ) 0ij j j ij ij j i ip p p p p . (3.218) 

Taking the divergence of each side of Equation 3.217 and using Equation 3.218, 
we obtain 

 jijijij p ,,, . (3.219) 
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Substituting Equation 3.219, the equation of motion (Equation 3.215) now 
becomes  

 , , ,
i

i j j i i ij j
v

v v b p
t

. (3.220) 

3.9.2 Incremental Equation of Motion  

For updated Lagrangian formulation, we need to express the equation of motion in 
an incremental form. This can be done as follows. Let ia  and ij  be the 
components of the acceleration vector and the stress tensor respectively at a 
particle at time t. Then, ia  and ij  will satisfy the equation of motion given by 
Equation 2.131 in the deformed configuration at time t (called the current 
configuration). Let d ia  and d ij  be the increments in the acceleration vector and 

the stress tensor at the particle during the time increment dt. Then, di ia a  and 
dij ij  will satisfy the equation of motion in the deformed configuration at time 

t+dt. This equation will be similar to Equation 2.131 except that the derivatives 
will now be with respect to the position vector of the particle at time t+dt. 
However, the deformed configuration at time t+dt is not known and, therefore, the 
position vector of the particle at time t+dt is also unknown. Note that while 
developing a measure of incremental deformation, we have assumed that the 
incremental deformation during the time interval dt is small. It means the 
deformed configuration at time t does not change much geometrically during the 
time interval dt. Therefore, the derivative with respect to the position vector (of a 
particle) at time t+dt will be approximately equal to the derivative with respect to 
the position vector at time t. Then, the approximate equation of motion at time t+dt 
will be  

 ,( d ) ( d ) ( d )i i i i ij ij ja a b b , (3.221) 

where d ib  is the body force increment (per unit mass) in the time interval dt and 
the comma denotes the derivative with respect to components of the position vector 
at time t. Subtracting Equation 2.131 from the above equation, we get the 
following form of the incremental equation of motion:  

 ,d d di i ij ja b . (3.222) 

Hill [4] has derived the incremental equilibrium equation taking into account 
the change in the position vector during the time interval dt. One can extend this 
derivation to obtain the incremental equation of motion. The incremental equation 
of motion is not really convenient for the finite element formulation of the 
problem. Therefore, Hill’s incremental equilibrium equation or the corresponding 
incremental equations of motion are not presented here. 
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3.9.3 Eulerian Formulation for Metal Forming Problems  

As stated earlier, the Eulerian formulation is convenient for the analysis of metal 
forming processes like rolling, drawing, extrusion etc. In this formulation, a region 
fixed in space (called the control volume) is chosen as the domain for the analysis. 
A possible control volume for wire drawing is shown in Figure 3.20. Because of 
symmetry, only half the wire is considered. While choosing the control volume, the 
boundaries AB and EF are placed sufficiently away from the die interface CD so as 
to simplify the boundary conditions on these boundaries by taking  advantage of 
the uniform velocity fields existing there. The figure also shows the possible 
plastic boundaries. These boundaries are not known a priori but have to be 
determined as a part of the solution. 

In any metal forming process, there is always some temperature change due to 
the dissipation of mechanical energy into heat. However, for slow processes, the 
temperature change is small and therefore, these processes can be approximated as 
isothermal.  For an isothermal process, the velocity field iv , the strain rate field ij  

and the stress field ij  in the control volume are governed by the following 
equations. For the sake of completeness, these equations have been reproduced 
below. 

Governing Equations 
(i) Strain rate – velocity relations (Equation 3.66), six scalar equations:  

 , ,
1 ( ).
2ij i j j iv v  (3.223) 

(ii) Elastic-plastic stress-strain rate relations (Equations 3.163a, b, 3.103 and 
3.162), six scalar equations: 
In Plastic Zone: 

 

o
o 31,

3 2 2

p
eqkk

kk ij ij ij
eqK

,             (3.224a) 

where 

 ( ) .p n
eq Y eqK  (3.224b) 
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Figure 3.20. Domain for the Eulerian  formulation of  wire drawing. It is the control volume consisting of half the wire 
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In elastic zone: 

 
o

o1,
3 2

kk
kk ij ijK

.          (3.224c) 

Here, the superscript denotes that it is the Jaumann stress rate. The Jaumann 
stress rate is related to the Cauchy stress rate through spin tensor by Equation 
3.200. The spin tensor is given by Equation 3.71. Thus 

 
o T( )kk kk kl lk kl lk , (3.224d) 

and 

 
o T( ),ij ij il lj il lj  (3.224e) 

where 

 )(
2
1

,, ijjiij vv . (3.224f) 

Note that the time derivative of the Cauchy stress in Equations 3.224d, e has to be 
the material time derivative. 
(iii) Equations of motion (Equation 3.215), three scalar equations:  

 , ,
i

i j j i ij j
v

v v b
t

. (3.225) 

We need the equation of conservation of mass (also known as the continuity 
equation) if the density is treated as unknown. However, for isothermal processes, 
the change in density is very small and  can be treated as a constant.  Thus, we 
have 15 scalar equations for 15 unknowns: (i) 3 velocity components iv , (ii) 6 
strain rate components ij  and (iii) 6 stress components ij . To solve these 
equations for the given material, the material properties have to be supplied: (i) 
density , (ii) elastic properties K and  and (iii) the yield stress Y  and the 
hardening parameters K and n. Further, the body force ib  (per unit mass) also has 
to be specified. 

All these 15 equations are differential equations in spatial variables jx  and 
time t. Therefore, boundary and initial conditions are required for solving these 
equations. 
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Boundary Conditions 
Typical boundary conditions are as follows. Let the boundary of the domain be 
denoted by S.  
(i) On a part of the boundary )( vS , a velocity vector v is specified. Thus, 

 *
i iv v          on vS , (3.226) 

where iv represents the specified value. This is called the kinematic or velocity 
boundary condition. 
(ii) On the remaining part of the boundary )( tS , a stress vector ntn ˆ  is 
specified,. Thus,  

 *( ) ( )n i ij j n it n t         on tS , (3.227) 

where int )( represents the specified value. This is called the stress or traction 
boundary condition. Note that the parts vS  and tS  have to be disjoint. Further, 
their union has to be equal to the total boundary S. Thus,   

 ,v t v tS S S S S .     (3.228) 

The individual parts vS  and tS  may consist of several disjoint segments.  
In practice, the boundary conditions differ from those specified by Equations 

3.226 and 3.227. Sometimes at a point, all the three components of the velocity 
vector v or the stress vector nt  may not be known. Instead, only one velocity 
component and two stress components or two velocity components and one stress 
component may be known. Such boundary conditions are called mixed boundary 
conditions. Further, on a boundary inclined to coordinate axes or on a boundary 
where friction is present, individual components of v or nt  may not be known. 
Instead, a combination of their components is known. 

As an illustration of the boundary conditions for a practical problem, now, we 
write the boundary conditions for the problem of Figure 3.20. Note that the 
boundaries AB and EF are plane surfaces of semi-circular shape. Further, the 
boundaries BC and DE represent semi-cylindrical surfaces whereas the boundary 
CD represents a semi-conical surface. Finally, the boundary AF is again a plane 
surface consisting of a rectangle joined by a trapezoid followed again by a 
rectangle. It would be convenient to use the cylindrical polar coordinates ),,( zr  
to write the boundary conditions. 

Entry and exit boundaries AB and EF: 

As stated earlier, the boundaries AB and EF are chosen sufficiently away from the 
die interface CD. Therefore, we can assume that, at these boundaries, the velocity 
vector has only z-component and it is uniform over the whole cross-section of the 
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wire. Let 2U  be the specified drawing velocity. Then, the boundary conditions at 
the exit boundary EF become 

 0rv ,    0v ,    2Uvz , (3.229) 

where rv , v  and zv  are the components of the velocity vector v in cylindrical 
polar coordinates. Let 1U  be the velocity (along z-axis) at the entry boundary AB. 
It can be expressed in terms of 2U  and the reduction rd  using the conservation of 
mass equation. Since the density is treated as constant, the conservation of mass 
implies 

 2211 AUAU , (3.230) 

where 1A  and 2A  are the areas of cross-section of the wire at the entry and exit 
boundaries respectively. The definition of the reduction  dr  is (Equation 1.13):  

 2

1
1 .d

A
r

A
 (3.231) 

Eliminating 12 / AA  from Equations 3.230 and 3.231, we get 

 )1(21 drUU . (3.232) 

Now, the boundary conditions at the entry boundary AB can be written as 

 20, 0, (1 )r z dv v v U r .       (3.233) 

Stress free boundaries BC and DE: 

The boundary BC is a stress-free surface. We assume that the die does not have the 
land portion. Then, the whole of the boundary DE is also a stress-free surface. On 
the stress-free surfaces, the stress vector is zero at every point. Therefore, the 
boundary conditions at the boundaries BC and DE can be expressed as  

 0, 0, 0,r zt t t  (3.234) 

where rt , t  and zt  are the components of the stress vector nt  in cylindrical polar 
coordinates. Sometimes an alternate set of boundary conditions is used on these 
boundaries. This set is as follows. Since the direction of the velocity vector at the 
boundaries BC and DE is always along z-axis, the boundary condition (Equation 
3.234) may be modified to specify rv  and v  to be zero instead of rt  and t  
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being zero. The modified boundary condition is expected to give a more accurate 
velocity field. 

Plane of symmetry AF: 

On the plane of symmetry, the normal component of the velocity vector and both 
the shear components of the stress vector are zero at every point. Therefore, the 
boundary conditions at the boundary AF can be written as 

 0, 0, 0r zt v t .         (3.235) 

Note that these are  mixed type of boundary conditions. 

Die interface CD: 

Let n be the direction normal to the die interface and s be the direction along the 
interface. At the interface, there cannot be any material flow along the normal 
direction n. Therefore, component of the velocity vector along the direction n must 
be zero. Using the die semi-angle , the normal component of the velocity vector 
can be expressed as  

 sincos zrn vvv . (3.236) 

We assume that the die does not exert any frictional (or shear) stress in the -
direction. Further, the frictional (or shear) stress exerted by the die in s-direction is 
assumed to be governed by the Coulomb’s law: 

 s nt f t , (3.237) 

where f is the coefficient of friction and st  and nt  are the components of the stress 
vector nt  along the directions s and n respectively. Since the material flow at the 
interface is in the positive s-direction, the frictional stress will be in the opposite 
direction, i.e., in the negative s-direction. Further, the normal stress exerted by the 
die is always compressive, i.e., in the negative n-direction. Therefore, both st  and 

nt  are negative. Then, Equation 3.237 becomes 

 s nt f t . (3.238) 

Using the die semi-angle , we can express st  and nt  in terms of rt and zt : 

 sin cos , cos sins r z n r zt t t t t t .   (3.239) 

Eliminating st  and nt  from Equations 3.238 and 3.239, the Coulomb’s law can be 
written as  
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 (sin cos ) (cos sin ) 0.r zf t f t  (3.240) 

Now, the boundary conditions at the boundary CD become 

 
cos sin 0,

0,
(sin cos ) (cos sin ) 0 .

r z

r z

v v
t

f t f t
 (3.241) 

These boundary conditions involve combinations of rv  and zv  and rt and zt .  
The shear stress at the die interface is subject to a constraint that it cannot 

exceed its maximum value. The maximum value for the Mises material can be 
found as follows. Maximum value of the shear component of the stress vector at a 
point with respect to the orientation of the plane on which it acts is given by 
(Equation 2.92) 

 1 3
max

( )
,

2s  (3.242) 

where 1  and 3 are respectively the largest and smallest principal stresses at the 
point. Note that, the values of 1  and 3  change from point to point. However, 
they have to satisfy the Mises yield criterion during the plastic deformation. Using 
Equations 3.27, 3.24 and 3.98, the Mises criterion for subsequent yielding, in terms 
of the principal stresses, can be written as 

 
2 2 2 2

1 2 2 3 3 1[( ) ( ) ( ) ] 2 0,

( ).

eq
p

eq eqH
 (3.243) 

Maximizing  of Equation 3.242 with respect to 1  and 3  subject to the 
constraint of Equation 3.243, we get 

 max , ( ).
3
eq p

eq eqH  (3.244) 

Thus, the maximum value of the shear stress on the die interface can not exceed  
3/eq  for the Mises material. More details on modeling of friction at the 

interface are discussed in the next chapter. 

Initial Conditions 
Note that the governing equations (Equations 3.224d, e and 3.225) involve the first  
(partial) time derivative of the velocity vector as well as of the hydrostatic and 
deviatoric parts of the stress tensor. Therefore, we need to specify the initial values 
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of iv , kk  and ij at every point of the control volume. Thus, the initial conditions 
are  

 0 0 0
0, , ati i kk kk ij ijv v t t ,        (3.245) 

where 0
iv , 0

kk  and 0
ij are the specified values at the initial time 0t . For a steady 

process, the partial time derivative (i.e., the unsteady part of the material time 
derivative) of the velocity vector as well as of the stress tensor is zero. Therefore, 
we do not need the initial conditions. 

Governing Equations for Rigid-Plastic Material 
Two governing equations (Equations 3.224 and 3.225) are non-linear differential 
equations which need to be solved by iteration. Many times, the iterative scheme 
does not converge. In that case, one can still obtain a reasonably accurate solution 
by simplifying these equations by neglecting the elastic part of the deformation. 
This amounts to assuming the material to be rigid-plastic. The governing equations 
(Equations 3.223 and 3.225) are applicable for the rigid-plastic material too. 
However, we replace the equation of motion (Equation 3.225) by an alternate 
expression (Equation 3.220) which involves the separation of the stress tensor into 
the hydrostatic and deviatoric parts. Further, the constitutive equation (Equation 
3.224) needs to be replaced by the one for the rigid-plastic material (Eq. 3.165). 
Thus, the governing equations of the rigid-plastic material are 
(i) Strain rate — velocity relations (Equation 3.66), six scalar equations: 

 , ,
1 ( ).
2ij i j j iv v  (3.246) 

(ii) Rigid-plastic stress-strain rate relations (Equations 3.165 and 3.103), six scalar 

equations:  

 
2

3
eq

ij ij
eq

, (3.247a) 

where 

 ( ) .n
eq Y eqK   (3.247b) 

Note that, now the constitutive equation does not contain the time derivative of the 
stress tensor. 
(iii) Equations of motion (Equation 3.220), three scalar equations: 
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 , , ,
i

i j j i i ij j
v

v v b p
t

. (3.248) 

As stated earlier, the hydrostatic part of stress is constitutively indeterminate for 
the rigid-plastic materials. Therefore, we need an additional equation for its 
determination. This equation is provided by the constraint that the rate of volume 
change is zero as the hydrostatic part arises as a reaction to this constraint. Thus, 
for rigid-plastic materials, we have an additional governing equation. 
(iv) Incompressibility constraint (Equation 3.166), one scalar equation: 

 0kk . (3.249) 

In isothermal and isochoric (i.e., no volume change) process, the density  can 
still depend on the hydrostatic part of stress. However, as before, we assume the 
change in density to be small and treat  as a constant. Thus, now, we have 16 
scalar equations for 16 unknowns: (i) 3 velocity components iv , (ii) 6 strain rate 
components ij , (iii) 6 deviatoric stress components ij  and (iv) 1 hydrostatic 
stress component p. Since the elastic deformation has been neglected, we do not 
need the elastic material properties to solve these equations. The boundary 
conditions for this problem are as before. However, now, the constitutive equation 
does not contain the time derivative of the stress tensor. Therefore, we need only 
one initial condition, namely on the velocity vector. 

These governing equations are also non-linear and therefore need to be solved 
by an iterative scheme. But, they are easier to solve than the governing equations 
of the elastic-plastic materials.  

Location of Plastic Boundaries 
The first plastic boundary corresponds to the process of initial yielding at the 
material particles. The second plastic boundary corresponds to the process of 
unloading at these particles. In Eulerian formulation,  the velocity, strain rate and 
stress at every point of the control volume are determined in a single step. Thus, it 
is not an incremental procedure. Therefore, there is no scope for carrying out the 
elastic analysis first, then applying the initial yield criterion, then carrying out the 
plastic analysis and finally checking for the unloading. Thus, in Eulerian 
formulation, it is not possible to locate the plastic boundaries on the basis of initial 
yielding and unloading criteria.  

Instead, in the solution procedure of the Eulerian formulation, we treat the 
whole control volume as the plastic zone and use only the plastic stress- strain rate 
relations (for the elastic-plastic as well as for the rigid-plastic materials) without 
using the initial yield criterion or the unloading criterion. After the analysis, it is 
observed that the strain rates are very small in the entry and exit regions compared 
to their values in the middle region. Therefore, the entry and exit regions can be 
interpreted as either elastic (for the elastic-plastic materials) or rigid (for the rigid-
plastic materials). A sufficiently small value of the equivalent plastic strain rate 
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p
eq  ( eq  for the rigid-plastic materials) can be used as a cut-off to demarcate the 

plastic zone from the rest of the control volume. The cut-off can be a small percent 
of the maximum value of the equivalent plastic strain rate over the control volume. 
Accuracy of the plastic boundaries depends on the cut-off value. 

Another drawback of this formulation is that the stresses in the entry and exit 
regions are highly inaccurate since they are determined not by the elastic (or rigid) 
constitutive equations but by the plastic stress-strain rate relations. Value of the 
equivalent stress eq  which we get in the entry region is equal to Y  while in the 

exit region, it is )( p
eqH . Thus, we do not get any reasonable estimates of the 

residual stresses. 
However, accuracy of the solution (i.e., of the deformation and stress fields) in 

the plastic region is quite good. Further, estimate of the power required to carry out 
the process is also reasonably accurate. 

3.9.4 Updated Lagrangian Formulation for Metal Forming Problems  

Processes like forging, deep drawing, sheet bending etc. can be analyzed increment 
by increment. Therefore, updated Lagrangian formulation is convenient for their 
analysis. We illustrate this formulation through an example of forging of a 
cylindrical block. We assume that both the platens move with the same velocity but 
in the opposite direction. Further, because of symmetry, only a quarter of the block 
is considered. The final configuration is assumed to be achieved by moving the 
platens in an incremental fashion through several increments. Figure 3.21 shows 
the deformed configuration of the quarter block at the present time t (called the 
current configuration) obtained after a certain number of increments. The 
deformation and the stress at time t are completely known through the analysis of 
earlier increments up to the previous increment. We treat the current configuration 
as the reference configuration for analyzing the incremental displacement, 
incremental deformation and incremental stress. Let d iu , d ij and d ij be the 
components of the incremental displacement vector, the incremental linear strain 
tensor and the incremental Cauchy stress tensor respectively. As before, we assume 
that the process is isothermal. For an isothermal process, the increments d iu , d ij  

and d ij  are governed by the following equations. For the sake of completeness, 
these equations have been reproduced below. 

Governing Equations: 
(i) Incremental strain — displacement relations (Equation 3.55), six scalar 
equations: 

 , ,
1d (d d )
2ij i j j iu u . (3.250) 

(ii) Incremental elastic–plastic stress-strain relations (Equations 3.152, 3.153, 
3.103 and 2.217), six scalar equations: 
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After Yielding: 

 
o

d dEP
ij ijkl klC ,  (3.251a) 

where 
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eq
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H

, (3.251b) 

 ( ) ,p n
eq Y eqK  (3.251c) 

 ;
2( )

 (3.251d) 

Before yielding and after unloading: 

 
o

d dE
ij ijkl klC , (3.251e) 

where 

 2 .E
ijkl kl ij ik jlC  (3.251f) 

Here, the superscript ° on the stress increment in Equations 3.251a, e means it is the 
product of the Jaumann stress rate and the time increment (Equation 3.208). The 
Jaumann stress rate is related to the Cauchy stress rate through spin tensor by 
Equation 3.200. As per Equation 3.78, the product of spin tensor and the time 
increment is equal to the incremental infinitesimal rotation tensor which is given 
by Equation (3.60). Thus, we have  

 
o o

d dij ij t , (3.251g) 

where 

 
o

T Td d d d d d d ,ij ij il lj il lj ij il lj il ljt t t t  (3.251h) 

 , ,
1d (d d ).
2ij i j j iu u  (3.251i) 
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(iii) Incremental equations of motion (Equation 3.222), three scalar equations:  

 ,d d di i ij ja b . (3.252) 

As decided earlier, we treat  as a constant. Therefore, we do not need the 
equation of conservation of mass. Thus, we have 15 scalar equations for 15 
unknowns: (i) 3 incremental displacement components d iu , (ii) 6 incremental 
linear strain components d ij and (iii) 6 incremental Cauchy stress components 

d ij . To solve these equations for the given material, the material properties have 
to be supplied: (i) density , (ii) elastic properties and  and (iii) the yield 
stress Y  and the hardening parameters K and n. Further, the incremental body 
force d ib  (per unit mass) also has to be specified. 

Equations 3.250–3.252 are differential equations in spatial variables jx and 
time t. Therefore, boundary and initial conditions are required for solving these 
equations. 

 
Figure 3.21. Domain for the updated Lagrangian formulation of forging of cylindrical 
block. It is the deformed configuration of quarter block at time t 
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Boundary Conditions 
Typical boundary conditions are as follows. As before, we denote the boundary of 
the domain by S.  
(i) On a part of the boundary )( uS , an incremental displacement vector du is 
specified.  Thus, 

 d di iu u       on uS , (3.253) 

where *d iu  represents the specified value. This is called the kinematic or 
displacement boundary condition. 
(ii) On the remaining part of the boundary )( tS , an incremental stress vector 

ˆd dnt n  is specified,. Thus,  

 (d ) d (d ) on  n i ij j n i tt n t S , (3.254) 

where (d )n it  represents the specified value. This is called the stress or traction 
boundary condition.  

Note that the parts uS  and tS  have to satisfy the relations similar to the one 
given by Equation 3.228. Further, each of uS  and tS  may consist of several 
disjoint segments. In practice, the boundary conditions differ from those specified 
by Equations 3.253 and 3.254. Sometimes there are mixed boundary conditions. 
Further, on a boundary inclined to coordinate axes or on a boundary where friction 
is present, a combination of the components of  du or d nt  is known. 

As an illustration of the boundary conditions for a practical problem, now, we 
write the boundary conditions for the problem of Figure 3.21. Note that the 
boundaries AB and DC are plane surfaces of semi-circular shape. Further, the 
boundary BC represents a semi-cylindrical surface. Finally, the boundary AD is a 
rectangular plane surface. It would be convenient to use the cylindrical polar 
coordinates ),,( zr  to write the boundary conditions. 

Stress free boundary BC: 

The boundary BC is a stress-free surface. On the stress-free surface, the 
incremental stress vector is zero at every point. Therefore, the boundary conditions 
at the boundary BC can be expressed as  

 d 0, d 0, d 0r zt t t ,  (3.255) 

where d rt , dt and d zt  are the components of the incremental stress vector d nt  in 
cylindrical polar coordinates.  
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Plane of symmetry DC: 

On the plane of symmetry, the normal component of the incremental displacement 
vector and both the shear components of the incremental stress vector are zero at 
every point. Therefore, the boundary conditions at the boundary DC can be written 
as  

 d 0, d 0, d 0r zt t u ,     (3.256) 

where d zu  is the z-component of the incremental displacement vector. Note that 
these are  mixed type of boundary conditions. 

Plane of symmetry AD: 

On the plane of symmetry, the normal component of the incremental displacement 
vector and both the shear components of the incremental stress vector are zero at 
every point. Therefore, the boundary conditions at the boundary AD can be written 
as  

 d 0, d 0, d 0,r zt u t   (3.257) 

where du  is the -component of the incremental displacement vector. Note that 
these are  mixed type of boundary conditions. 

Platen interface AB: 

At the interface, z-component of the incremental displacement vector must be 
equal to the incremental platen displacement.  

As far as other two boundary conditions are concerned, we observe the 
following. Nearer to point A (center of the platen), the block material sticks to the 
platen while nearer to the free edge (point B), the block material slips relative to 
the platen in outward direction. We first discuss the boundary condition 
corresponding to the slipping case. Here, we assume that the platen does not exert 
any frictional (or shear) stress in -direction. Further, the frictional (or shear) 
stress exerted by the platen in r-direction is assumed to be governed by the 
Coulomb’s law: 

 d d if d dr r z z r r z zt t f t t t t f t t ,  (3.258) 

where f is the coefficient of friction and dr rt t  and dz zt t  are the components of 
the stress vector dn nt t  along the directions r and z respectively. Note that the 
friction boundary condition has to be in terms of the total stress vector at time t+dt 
and not in terms of the incremental stress vector d nt . The material flow at the 
interface is in the positive r-direction. Therefore, the frictional stress will be in the 
opposite direction, i.e., in the negative r-direction. Further, the normal stress 
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exerted by the platen is always compressive, i.e., in the negative z-direction. 
Therefore, both dr rt t  and dz zt t  are negative. Then, Equation 3.258 becomes 

 d ( d ) if d dr r z z r r z zt t f t t t t f t t .  (3.259) 

Next, we discuss the boundary condition corresponding to the sticking case. In this 
case, r and  components of the incremental displacement vector must be zero. 

Now, the boundary conditions at the boundary AB become 

 

d ( d ) 0, d 0,
if d d (Slipping),

d 0, d 0 if d d (Sticking),

d d ,

r r z z

r r z z

r r r z z

z z

t t f t t t
t t f t t

u u t t f t t

u u

 (3.260) 

where *d zu  is the prescribed incremental displacement of the platen. Note that 
these boundary conditions involve a combination of dr rt t  and dz zt t . Here 
also, the shear stress at the platen interface is subject to a constraint that it can not 
exceed its maximum value. 

Initial Conditions 
The governing equation (Equation 3.252) contains incremental acceleration vector, 
which involves two time derivatives of the incremental displacement vector. 
Therefore, we need to specify the values of the incremental displacement vector 
d iu  and the incremental velocity vector d iv  at the beginning of the increment, (i.e., 
at the current time t) at every point of the current configuration. Thus, the initial 
conditions are  

 d d , d d at time ,  t t
i i i iu u v v t    (3.261) 

where d t
iu  and d t

iv  are the specified values at time t. For a slow forming process, 
the incremental acceleration term can be neglected from Equation 3.252. Then, we 
do not need the initial conditions. 

Updating Scheme 
After solving the incremental equations (Equations 3.250–3.252) along with the 
boundary and initial conditions, we get the incremental displacement vector d iu , 
the incremental linear strain tensor d ij  and the incremental Cauchy stress tensor 

d ij . Using d iu , we update the geometry to get the deformed configuration at 

time t+dt. Further, by adding d iu  and d ij  to iu  and ij , we get the displacement 
vector and the Cauchy stress tensor at time of t+dt. This completes the analysis of 
the current increment. After this, we go for the next increment. For this increment, 
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the deformed configuration at time t+dt is used as the reference configuration. 
Therefore, we solve the incremental equations (Equations 3.250–3.252) over the 
deformed configuration at time t+dt  along with the boundary and initial conditions 
for this configuration. We continue this process till we achieve the desired 
deformation. 

3.10 Eulerian Formulation for Machining Processes 

As stated in Chapter 1, machining processes are difficult to model. Here, we 
present Eulerian formulation for the simplest machining process, namely 
orthogonal cutting. We choose a small region of the work-piece around the cutting 
edge as the domain of the problem, since the deformation is confined to this region 
only. This region is called the cutting zone. With this choice of control volume, it 
is possible to analyze the process using Eulerian formulation. To make the problem 
two-dimensional, we assume that the width of cut is large compared to the 
dimensions of the cutting zone.  

 
Figure 3.22. Domain for the Eulerian formulation of orthogonal cutting 

Figure 3.22 shows the domain selected for the Eulerian formulation. It is a 
region in the cross-sectional plane of the work-piece perpendicular to the cutting 
edge. Point E is the projection of the cutting edge. The z-axis is along the cutting 
edge or the width of cut. The boundaries AB and EF are actually circular. But, 
since the cutting zone dimensions are small compared to the work-piece radius, 
they are taken to be straight. The angle is equal to the rake angle of the cutting 
tool. The distance h is called the tool-chip contact length. It is given by [13] 
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 sin
sin cos ( )

fh , (3.262) 

where  is the shear angle (i.e., the inclination of shear plane with the direction of 
cutting velocity),  is the angle between the shear force and the resultant force and 
f is the feed. The boundaries AH, HG, FG and CD are placed sufficiently away 
from the cutting edge projection E so as to simplify the boundary conditions on 
these boundaries by taking advantage of the uniform velocity fields existing there. 
The figure also shows the possible plastic boundaries. These boundaries are not 
known a priori but have to be determined as a part of the solution. 

Temperature rise in the cutting process is substantial. To incorporate the 
temperature rise in the analysis, one needs to solve the heat transfer equation 
governing the temperature field in conjunction with the usual three equations 
governing the deformation field: strain rate-velocity relations, stress-strain 
relations and equations of motion. For plastic deformation, these equations are 
coupled, and hence, difficult to solve. We can decouple this problem as follows. 
We first estimate the average temperature in the cutting zone either experimentally 
or by simple analytical methods. Then, we solve the governing equations of the 
deformation field by evaluating the material properties at the estimated average 
temperature of the cutting zone.  

In the present formulation, it is assumed that the problem has been decoupled. 
We further assume that the elastic deformation is small. Therefore, we use the 
governing equations of the rigid-plastic materials. For the decoupled problem of 
the rigid-plastic materials, the velocity field iv , the strain rate field ij , the 

deviatoric stress field ij  and the hydrostatic stress field p in the control volume 
are governed by the following equations. For the sake of completeness, these 
equations have been reproduced below. 

Governing Equations for Decoupled Problem of Rigid-Plastic Materials 
(i) Strain rate-velocity relations (Equation 3.66), six scalar equations:  

 , ,
1 ( ).
2ij i j j iv v  (3.263) 

(ii) Rigid–plastic stress-strain rate relations (Equation 3.165), six scalar equations:  

 
2

.
3

eq
ij ij

eq
 (3.264a) 

Since the strain rates are very high in the cutting process, the phenomenon of 
viscoplasticity must be accounted for. In viscoplastic behavior, equivalent stress 

eq  also depends on p
eq  besides being a function of p

eq . Thus,  
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 ( , ).p p
eq eq eqH  (3.264b) 

  
 
(iii) Equations of motion (Equation 3.220), three scalar equations:  

 , , ,
i

i j j i i ij j
v

v v b p
t

. (3.265) 

(iv) Incompressibility constraint (Equation 3.166), one scalar equation:  

 0kk . (3.266) 

Thus, we have 16 scalar equations for 16 unknowns: (i) 3 velocity components 
iv , (ii) 6 strain rate components ij , (iii) 6 deviatoric stress components ij  and 

(iv) 1 hydrostatic stress component p. To solve these equations for the given 
material, the material properties have to be supplied: (i) density (which is treated 

as constant) and (ii) the hardening function H (a function of p
eq  as well as p

eq ).  
These material properties are evaluated at the estimated average temperature of the 
cutting zone. Further, the body force ib  (per unit mass) also needs to be specified. 

Equations 3.263, 3.265 and 3.266 are differential equations in spatial variables 
jx and time t. Therefore, boundary and initial conditions are required for solving 

these equations. Further, like the governing equations of metal forming processes, 
these equations are also non-linear and therefore need to be solved by an iterative 
scheme.  

Boundary Conditions 
Typical boundary conditions for the Eulerian formulation have been described 
earlier. Now, we discuss the boundary conditions for the problem of Figure 3.22. 
We use the Cartesian coordinates to write the boundary conditions. Note that, since 
the problem is two-dimensional, only two boundary conditions are needed on each 
boundary instead of three. 

Boundaries AH, HG and FG: 

As stated earlier, the boundaries AH, HG and FG are chosen sufficiently away 
from the cutting edge projection E. Therefore, we can assume that the velocity 
vector has only x-component at these boundaries. Further, the velocity actually 
varies linearly from point H to point A and from point G to point F. But, since the 
distances AH and FG are very small compared to the work-piece radius, we 
assume the velocity to be uniform over these boundaries. Let cv be the specified 
cutting velocity. Then, the boundary conditions at the boundaries AH, HG and FG 
become  
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 , 0,x c yv v v  (3.267) 

where xv  and yv  are the Cartesian components of the velocity vector.  

Boundary CD: 

The boundary CD is also chosen sufficiently away from the cutting edge projection 
E. Therefore, we can assume that, at this boundary, the velocity vector is normal to 
the boundary and it is uniform over the whole boundary. Let chv  be the chip 
velocity. The chip velocity can be calculated from the cutting velocity using the 
conservation of mass equation over the uncut depth and the chip thickness: 

 
 ch cv v r , (3.268) 

where the cutting ratio r is given by Equation 1.19. Note that normal to the 
boundary CD makes an angle  with y-axis. Then the boundary conditions at the 
boundary CD become 

 sin , cosx ch y chv v v v .   (3.269) 

Stress free boundaries AB, BC and EF: 

The boundaries AB, BC and EF are stress-free surfaces. On the stress-free 
surfaces, the stress vector is zero at every point. Therefore, the boundary 
conditions at the boundaries AB, BC and EF can be expressed as  

 0, 0x yt t ,    (3.270) 

where xt  and yt  are the Cartesian components of the stress vector nt . Sometimes 
an alternate set of boundary conditions is used on these boundaries. This set is as 
follows. Since the direction of the velocity vector at the boundaries AB and EF is 
always along x-axis, the boundary conditions (Equation 3.270) may be modified to 
specify yv  to be zero instead of yt  being zero. The boundary BC is inclined at an 
angle of to y-axis. Normal component of the velocity vector and shear 
component of the stress vector on the boundary BC are 

 cos sin , sin cosn x y s x yv v v t t t .     (3.271) 

Therefore, on the boundary BC, we can specify nv  and st  to be zero instead of xt  
and yt  being zero. The modified boundary conditions are expected to give more 
accurate velocity field. 
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Tool-chip interface ED: 

Velocity along the tool-chip interface ED can be approximated by the following 
relation [13]: 

 
1/ 2(1 8 ) , for ,

3
, for ,

ch

ch

v
v h

h
v h

                                 (3.272) 

where  is the distance measured along the boundary from point E. Thus, the 
value of v  varies from 3/chv  at point E to chv when  is equal to h. Note that the 
boundary ED makes an angle  with y-axis. Then the boundary conditions at 
boundary ED become 

 sin , cosx yv v v v .     (3.273) 

Initial Conditions 
Note that the governing equation (Equation 3.265) involves the first (partial) time 
derivative of the velocity vector. Therefore, we need to specify the initial value of 

iv  at every point of the control volume. Thus, the initial condition is 

 0
0, at ,i iv v t t                        (3.274) 

where 0
iv  is the specified value at the initial time 0t . For a steady process, the 

partial time derivative (i.e., the unsteady part of the material time derivative) of the 
velocity vector is zero. Therefore, we do not need the initial condition. 

Location of Plastic Boundaries 
As in the case of Eulerian formulation of the metal forming processes, the plastic 
boundaries are located using a sufficiently small value of the cut-off on the 
equivalent plastic strain rate p

eq . Accuracy of the plastic boundaries depends on 
the choice of the cut-off value. 

3.11 Summary 

In this chapter, the classical theory of plasticity has been presented. First, the one-
dimensional experimental observations on plasticity based on tension tests have 
been described. Then, two criteria for initial yielding of isotropic materials have 
been discussed : (i) Mises yield criterion and (ii) Tresca yield criterion. The Mises 
yield criterion is found to be in better agreement with experimental predictions on 
yielding, and therefore adopted in the rest of the book. Anisotropic yield criteria 
will be presented in the next chapter. Two common measures of plastic 
deformation, namely the incremental linear strain tensor and the strain rate tensor, 
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have been developed next. The incremental linear strain tensor is used in the 
analysis of processes like forging, deep drawing, sheet bending etc. which are 
amenable to incremental formulation, called the updated Lagrangian formulation. 
On the other hand, strain rate measure is employed in the processes of rolling, 
drawing, extrusion etc. which are analyzed by the Eulerian formulation where the 
domain is a fixed region in space, known as the control volume. The incremental 
linear strain tensor is a valid measure of deformation only for small incremental 
deformation. Measures of deformation applicable for finite increment size will be 
discussed in the next chapter. Next, hardening behavior has been modeled by 
assuming that the hardening is isotropic. This assumption does not have much 
experimental support. However, in the absence of required experimental data, it is 
difficult to develop a better hardening model. Kinematic hardening will be 
discussed in the next chapter. 

The plastic stress-strain relations, for isotropic materials, have been developed 
using the approach based on the postulate of plastic potential. Starting with the 
associated flow rule, the following two constitutive equations have been 
developed: (i) elastic-plastic incremental stress-strain relation for the updated 
Lagrangian formulation and (ii) elastic-plastic stress-strain rate relation for the 
Eulerian formulation. It has been assumed that the elastic and plastic parts of the 
deformation are additive. The validity of this assumption will be discussed in the 
next chapter. An unloading criterion has been presented next. Then, the concepts of 
objective stress rate and objective incremental stress measures have been 
discussed. A commonly used objective stress rate measure, namely the Jaumann 
stress rate tensor, has also been presented. The objective incremental stress tensor 
is taken to be the product of the Jaumann stress rate and the time increment. Other 
objective stress rate measures and objective incremental stress measures will be 
discussed in the next chapter. Next, the Eulerian and updated Lagrangian 
formulations for the metal forming processes have been presented. These 
formulations, along with the boundary and initial conditions, have been illustrated 
through the examples of wire drawing and forging of cylindrical block 
respectively. In the end, Eulerian formulation, along with the boundary and initial 
conditions, has been presented for the simplest machining process, namely 
orthogonal cutting. 
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4 

Plasticity of Finite Deformation and Anisotropic 
Materials, and Modeling of Fracture and Friction 

4.1 Introduction 

In Chapter 3, we developed the Eulerian formulation of metal forming problems. 
In deriving the constitutive equation of this formulation, it is assumed that the 
elastic and plastic parts of the rate of deformation tensor are additive. This 
assumption is usually true for small rotation. Further, the objective stress rate 
measure used in the constitutive equation, namely the Jaumann stress rate tensor, 
also remains objective only for small rotation. Therefore, we need to modify this 
constitutive equation for the case of finite deformation and rotation. In Sections 4.2 
and 4.3 of this chapter, we first discuss the kinematics of finite deformation, and 
then the constitutive equation for the case of finite deformation and rotation. Since, 
in this case, the elastic and plastic parts of the rate of deformation tensor are not 
additive, the elastic and plastic parts of the constitutive equation are expressed 
separately. The elastic constitutive equation is expressed in terms of the stress and 
logarithmic strain tensors and the plastic constitutive equation in terms of the 
deviatoric stress and the plastic part of the rate of deformation tensors. Since no 
stress rates are involved, an objective stress rate measure is not needed in this 
constitutive equation. Next, we discuss the iterative solution procedure to be 
adopted while using this constitutive equation.  

In the last chapter, we also developed the updated Lagrangian  formulation of 
metal forming problems. The formulation uses a measure of incremental plastic 
deformation that is valid only for small incremental deformation. Further, the 
incremental constitutive relation is derived on the basis of the assumption that the 
elastic and plastic parts of the incremental measure of deformation are additive. 
(Such an assumption is usually true for the case of small increment size only.) 
Additionally, the incremental objective stress measure used in the constitutive 
equation is obtained from the Jaumann stress rate tensor, which remains objective 
only for a small incremental rotation. Therefore, we need to develop a measure of 
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finite incremental deformation and then modify the constitutive equation 
accordingly. In Section 4.4, starting from the kinematics of finite incremental 
deformation, we first develop some commonly used measures of finite incremental 
deformation like the incremental Green-Lagrange strain tensor and the incremental 
logarithmic strain tensor. It is shown that, for the case of incremental logarithmic 
strain tensor, the additive decomposition into the elastic and plastic parts still 
remains valid. Then, in Section 4.5, we derive the constitutive equation for finite 
incremental deformation that involves integration over the increment size. We also 
discuss a stress updating procedure that makes the incremental stress objective. 
Sometimes, for finite incremental deformation, the constitutive equation of the 
updated Lagrangian formulation is expressed in terms of the stress rate and rate of 
deformation tensors. The objective stress rate measures to be used in this 
constitutive relation must remain objective even for finite incremental rotation. We 
discuss some commonly used such measures like the Truesdell rate and the Green-
Naghdi rate. 

The Eulerian and updated Lagrangian formulations of Chapter 3 use the Mises 
criterion of initial yielding in developing the hardening relationship and the 
associated flow rule. However, after cold forming, the crystallographic directions 
of a metal gradually rotate towards a common axis thus creating anisotropy in the 
metal. When this metal is subjected to further forming processes without 
annealing, the hardening relationship and the associated flow rule need to be based 
on an anisotropic yield criterion. In Section 4.6, we discuss some criteria for initial 
yielding of anisotropic materials. Various approaches have emerged for developing 
anisotropic yield criteria. We follow the approach based on phenomenological 
observations. We first discuss the 1948 and 1979 anisotropic yield criteria of Hill. 
These criteria have certain drawbacks. Lately, anisotropic yield criteria are being 
developed by applying a tensor transformation (mostly linear) to isotropic yield 
criteria. We discuss two such criteria developed by Barlat and his co-workers: (i) a 
plane stress anisotropic yield criterion based on a single linear transformation and 
(ii) a three-dimensional anisotropic yield criterion based on two linear 
transformations. These transformations are applied to Hosford’s isotropic yield 
criterion. A plane strain anisotropic yield criterion based on a modification of 
Hill’s 1979 criterion is also presented. 

Section 4.7 discusses the development of the constitutive equations 
corresponding to two of the anisotropic yield criteria: (i) the three-dimensional 
anisotropic yield criterion of Barlat and his co-workers and (ii) the plane strain 
anisotropic yield criterion based on a modification of Hill’s 1979 criterion. 

The Bauschinger effect is normally modeled by a rigid translation of the initial 
yield surface away from its center but without incorporating the change in its size 
or shape. This change in the yield surface is called kinematic hardening. In Section 
4.8, two kinematics hardening models due to Prager and Ziegler are presented. 

Section 4.9 is devoted to modeling of ductile fracture. It is, now, well 
established that the ductile fracture occurs mainly due to micro-void nucleation, 
growth and finally coalescence into a micro-crack. If the extent of void growth up 
to fracture is small, it is possible to ignore its effect on the constitutive equation. 
However, a realistic model for ductile fracture prediction must include void 
nucleation, void growth and a condition for void coalescence. We discuss three 
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broad approaches which predict ductile fracture on the basis of void nucleation, 
growth and coalescence: (i) porous plasticity model of Berg and Gurson, (ii) void 
nucleation, growth and coalescence model (of Goods and Brown, Rice and Trace 
and Thomason) and (iii) continuum damage mechanics models of Lemaitre and 
Rousselier. In the absence of reliable quantitative models for incorporating the 
phenomena of void nucleation, growth and coalescence, many phenomenological 
fracture criteria have been used in metal forming processes. A few such criteria 
are presented at the end of this section. 

In both the formulations of Chapter 3, the friction at the die-work interface has 
been modeled using the Coulomb’s law or sticking friction model. However, 
sometimes other friction models like the friction factor model, Wanheim and Bay 
model etc. are also used. The Wanheim and Bay model is more general in the sense 
that it indicates a smooth transition from the Coulomb’s law (applicable at lower 
forming loads) to the friction factor model (applicable at higher forming loads). 
Both these models are presented in Section 4.10. The last section, namely Section 
4.11, summarizes the chapter. 

4.2 Kinematics of Finite Deformation and Rotation 

In Chapter 2, we discussed the kinematics of small deformation and rotation. 
Further, we assumed the deformation to be only elastic. In this section, we shall 
discuss the kinematics of finite as well as elastic-plastic deformation and rotation. 
Figure 4.1 shows the initial (undeformed) configuration of a body and its deformed 
configuration at time t. A material particle occupies the position 0P  in the initial 
configuration and the position P in the deformed configuration. The position vector 
x of the particle in the deformed configuration depends on its position 0x  in the 
initial configuration and time t. This functional dependence is called the motion of 
the particle and is represented mathematically as  

 0( , )tx x x .  (4.1) 

Consider a small line element 00QP  at point 0P  of the initial configuration which 
occupies the position PQ at point P of the deformed configuration. We denote the 
line segments 00QP  and PQ by 0dx  and dx respectively. The relation between dx 
and 0dx  is obtained by taking the differential of Equation 4.1 while holding t 
constant. Thus, we get 

 0d dx F x ,  (4.2) 

where  

 
0

xF
x

.  (4.3) 
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The tensor F is called the deformation gradient tensor. For real motions, the 
neighborhood of point P0 never deforms into a point. Thus, F is non-singular, i.e., 
its determinant is non-zero. In index notation, Equation 4.3 can be written as 

 ji
j

i
ij x

x
xF ,
0 )(

,  (4.4) 

where the comma indicates the derivatives with respect to the components of 0x . 
The displacement vector u of the particle also depends on its position vector 

0x   in the initial configuration and time t: 

 0( , )tu u x .  (4.5) 

Taking the differential of above equation while holding t constant, we get the 
following expression for the relative displacement vector of point 0Q  with respect 
to point 0P : 

 ( )0 0d du u x ,  (4.6) 

where 

 0
0

uu
x

, (4.7) 

is the displacement gradient tensor introduced earlier in Section 2.4. The subscript 
zero used for the symbol 0  emphasizes the fact that the derivative is to be taken 
with respect to 0x .  

From the geometry of Figure 4.1, we get the following relation between u, x 
and 0x :  

 0u x x .  (4.8) 

Taking the differential of the above equation while holding t constant, we obtain 

 0d d du x x .  (4.9) 

This is consistent with the geometry of Figure 4.1. Substituting Equations 4.2 and 
4.6 in the above equation, we get the following relationship between F and 0u : 

 01F u , (4.10) 
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where 1 is the unit tensor. In index notation, the above equation can be written as 

 jiij
j

i
ijij u

x
uF ,
0 )(

, (4.11) 

where the comma indicates the derivatives with respect to the components of x0 . 
Using Equation 4.10, the expression for the relative displacement vector (Equation 
4.6) becomes 

 ( ) 0d 1 du F x .  (4.12) 

 
Figure 4.1. Kinematics of finite deformation. a Undeformed configuration. b Deformed 
configuration 

As stated in Section 2.4, the displacement at a point consists of three parts: (i) 
displacement due to translation of a neighborhood of the point, (ii) displacement 
due to rotation of the neighborhood of the point and (iii) displacement due to 
deformation of the neighborhood of the point. However, if we consider only the 
relative displacement of a point with respect to the center of its neighborhood, then 
it contains only two parts: displacement due to the rotation and displacement due to 
the deformation. Equations 4.6 and 4.12 suggest that, we can consider either the 
displacement gradient tensor 0u  or the deformation gradient tensor F as a 
measure of the deformation and rotation at a point. In Chapter 2, we considered 

0u  as the measure of the deformation and rotation at a point. Further, when both 
the deformation and rotation are small, we showed that the symmetric part of 0u  
represents the deformation and the antisymmetric part represents the rotation. 
Thus, for the case of small deformation and rotation, the decomposition of 0u  
into the deformation and rotation is additive. For the case of finite deformation and 
rotation, however, it is convenient to consider F as the measure of deformation and 
rotation at a point. The decomposition of F into the deformation and rotation is 
governed by the polar decomposition theorem, which states that a non-singular 
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tensor can be decomposed into the product of a symmetric positive definite tensor 
and an orthogonal tensor. The proof of the theorem is given in standard books on 
continuum mechanics like Malvern [1], Jaunzemis [2] etc. We have defined 
symmetric as well as orthogonal tensors earlier. Now, we shall define a positive 
definite tensor. A positive definite tensor A is defined by the condition that 

 
( ) 0 for all non-zero vectors ,
( ) 0 only if  is a zero vector.

  
   

Aa a a
Aa a a

                                       (4.13) 

From the polar decomposition theorem, we get 

 VRRUF ,  (4.14) 

where U and V are the symmetric positive definite tensors, called as right and left 
stretch tensors respectively and R is the orthogonal tensor called the rotation 
tensor. The tensor U (or V) represents the deformation of a neighborhood of the 
point while the tensor R represents its rotation about the point. Thus, the 
decomposition of F into the deformation and rotation is multiplicative and not 
additive. To show that U (or V) and R represent respectively the deformation and 
rotation, we consider the principal values i  and the principal directions iê  of the 
tensor U. Note that iê  are the directions in the undeformed configuration. It can be 
shown [1, 2] that i  represents the ratio of the deformed length to the initial length 

of a small line element along the direction iê . Further, let d
iê  be the positions of 

the directions iê  in the deformed configuration. (It can be shown [1, 2] that d
iê  are 

the principal directions of V, its principal values being the same as i ). Then, 

 i
d
i eRe ˆˆ . (4.15) 

To obtain U from F, we use the symmetry of U, the orthogonality of R and the 
polar decomposition of F (Equation 4.14). Note that the operation of taking the 
transpose changes the order of tensors in the product. Thus, we get U as the square-
root of the following tensor: 

 

2 T

T T

T

T

,

,

( ) ( ),

.

U U U

U R RU

RU RU

F F

       (4.16) 

In index notation, it can be written as 

 2 T
ij ik kjU F F . (4.17) 
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Velocity v is the rate of change of the position vector with time. Using this 
definition and differentiating Equation 4.3 with respect to time, we get the time 
derivative of F: 

 
0

vF
x

. (4.18) 

Consider v as a function of x and t, i.e., v = v(x, t). Using the chain rule, the 
definition of the velocity gradient tensor v  (given in Section 3.4) and the 
definition of F (Equation 4.3), we obtain the following relation between F and 

v : 

 ( )
0

v xF v F
x x

      (holding t constant) (4.19) 

or 

 1v FF .  (4.20) 

The symbol  in Equations 4.19 and 4.20 does not have the subscript zero as it 
involves the derivative with respect to x. 

Now, we decompose F into the elastic and plastic parts. For this purpose, we 
assume that the forces acting on the deformed configuration of Figure 4.1 have 
been removed and the body has been brought to the state of zero stress. In the 
process, the elastic deformation becomes zero and only the plastic deformation is 
left in the body. This configuration of zero stress and only the plastic deformation 
is shown in Figure 4.2c. Let the position of the particle in this configuration be pP  

and the position of the small line element be ppQP . Let the vector representation 
of this line element be dp. Note that we can obtain the elastic-plastic deformed 
configuration of Figure 4.2 b in two stages (i) We first obtain the intermediate 
configuration of Figure 4.2 c from the initial configuration (Figure 4.2a) by purely 
plastic deformation. We write the relationship between dp and 0dx  as 

 0d dpp F x , (4.21) 

where 

 
0

p pF
x

. (4.22) 

The superscript p in the symbol emphasizes the fact that the deformation up to this 
intermediate configuration is purely plastic. (ii) Next, we deform the intermediate 
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configuration elastically to obtain the final elastic-plastic configuration. We write 
the relationship between dx and dp as 

 d dex F p , (4.23) 

where 

 
p
xF e . (4.24) 

The superscript e in the symbol emphasizes the fact that this deformation is only 
elastic. Eliminating dp from Equations 4.21 and 4.23 and comparing the result with 
Equation 4.2, we get the following multiplicative decomposition of the deformation 
gradient tensor into the elastic and plastic parts: 

 peFFF . (4.25) 

 
Figure 4.2. Multiplicative decomposition of deformation gradient F. a Undeformed 
configuration. b Deformed configuration. c Configuration after unloading (zero stress, only 
plastic deformation) 

Often the plastic deformation is non-homogeneous. In that case, the body 
develops the self-equilibrating residual stresses after unloading, and does not 
return to the state of zero stress. Then, a non-continuous mapping is required to 
obtain the intermediate configuration of Figure 4.2c that makes the deformation 
gradient tensors eF  and pF  as point functions of the particle position vectors. 
However, this causes no difficulty in the analysis [3]. Another point to be noted 
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about this decomposition is that the intermediate configuration cannot be uniquely 
determined since the superposition of an arbitrary rotation or spin tensor leaves the 
state of stress unchanged. There are quite a few ways of removing this non-
uniqueness. Here, we assume that the plastic part of spin tensor is zero [4]. To 
emphasize this fact, the plastic part of the deformation gradient tensor and all the 
related tensors are denoted by an overbar. Thus,  

 peFFF . (4.26) 

Now, we use the decomposition of F (Equation 4.26) to obtain the expression 
for the strain rate tensor  in terms of its elastic and plastic parts. As a first step, 
we substitute Equation 4.26 into the expression for the velocity gradient tensor 
(Equation 4.20) and use the product rule for the differentiation. Note that the 
operation of taking the inverse changes the order of tensors in the product. Further, 
we use the identity that the product of a tensor with its inverse is the unit tensor. 
Thus, we get 
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 (4.27) 

Next, we use Equation 4.20 to write the expressions for the velocity gradient 
tensors corresponding to the elastic and plastic parts: 

 
1

1

( ) ( ) ,

( ) ( ) .

e e e

p p p

v F F

v F F
 (4.28) 

Note that we have assumed the plastic part of spin tensor to be zero. Therefore, 
( ) pv  is equal to p . Further,  using Equations 3.65 and 3.70, the elastic part of 

the velocity gradient tensor ( )ev  can be decomposed into the symmetric ( e ) 

and antisymmetric ( e ) parts. Then,  Equation 4.28 becomes 

 
1

1

( ) ,

( ) .

e e e e

p p p

F F

F F
 (4.29) 

Next, we substitute Equation 4.29 into Equation 4.27 for the velocity gradient 
tensor to obtain 

 1( ) ( )e e e p ev F F . (4.30) 
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Note that, using the polar decomposition theorem, the elastic part of the 
deformation gradient tensor can be decomposed as 

 eee URF . (4.31)   

We substitute the above decomposition to simplify Equations 4.30. Note that the 
operation of taking the inverse changes the order of tensors in the product. Further, 
we use the identity that the inverse of an orthogonal tensor is the same as its 
transpose. Then Equation 4.30 becomes 

 1 T( ) ( ) ( )e e e e p e ev R U U R . (4.32) 

It can be shown that the tensors eU and p  commute [5]. Using this commutative 
property and the identity that the product of a tensor with its inverse is the unit 
tensor, the above equation simplifies to  

 T( ) ( )e e e p ev R R . (4.33) 

Finally, we take the symmetric part of the above equation. Note that the symmetric 
parts of v , e  and e  are respectively, , e  and zero. Further, the third term 
on the right side is already symmetric. Thus, we get 

 T( )e e p eR R .  (4.34) 

The above equation shows that  

 pe . (4.35) 

It means the elastic and plastic parts of the strain rate tensor  are not additive as 
assumed earlier (Equation 3.154) while developing the elastic-plastic stress-strain 
rate relation for the Eulerian formulation. 

Now, assume that the rotation is very small. Note that the plastic part of the 
deformation gradient has no rotation part since the plastic part of the spin tensor 
has been assumed to be zero. So, the above assumption means that the tensor eR  
is small compared to the unit tensor. Thus,  

 1eR . (4.36) 

Substituting the above approximation into Equation 4.34, we get 

 pe . (4.37) 



 Plasticity of Finite Deformation 205 

Then, the elastic and plastic parts of the strain rate tensor  are additive.  
Now we shall discuss two measures of finite deformation. They would be useful 

in developing the elastic part of the constitutive equation for Eulerian formulation 
for the case of finite deformation and rotation. Both these measures are related to 
the right stretch tensor U, the part of F which represents the deformation of a 
neighborhood of the point. The first measure, called the Green-Lagrange strain 
tensor, is defined by the following relation: 

 21 ( )
2

1e U . (4.38) 

Using Equation 4.16, it can be expressed in terms of the deformation gradient 
tensor F: 

 T1 ( )
2

1e F F . (4.39) 

It can be expressed in terms of the displacement gradient tensor 0u  using 
Equation 4.10: 

 

T

T T

1 ( ) ( ) ,
2

1 ( ) ( ) ( ) .
2

0 0

0 0 0 0

1 1 1e u u

u u u u
     (4.40) 

In terms of the index notation, the above expression can be written as 

 )(
2
1

,,,, jkikijjiij uuuue , (4.41) 

where the comma indicates the derivatives with respect to the components of 0x .  
The above equations represent the strain-displacement relations, when we choose 
the Green-Lagrange strain tensor as the measure of finite deformation. These 
relations are non-linear unlike that for the linear strain tensor (Equation 2.147). 
Now, assume that the deformation is small. Mathematically, it means the tensor 

0u  is small compared to the unit tensor or the components jiu , are small 
compared to unity. Therefore, when the deformation is small, the non-linear term 
in Equations 4.40 and 4.41 becomes negligible and the expression for e  reduces to 
that of . Thus, when the deformation is small, the Green-Lagrange strain tensor 
reduces to the linear strain tensor. 

The physical interpretation of the components of e  is as follows. The 
component xxe  represents half the change in square length per unit square length 
along the direction which was initially along the x-direction. The other two normal 
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components yye  and zze  have similar interpretation. The component xye  

represents the product of x , y  and half the value of the sine function of change 
in angle between the directions which were initially along the x and y directions. 
The quantity x  represents the ratio of the deformed length to the initial length of 
a small line element which was initially along the x-direction. The quantity y  has 
a similar interpretation. The physical interpretation of other two shear components 

yze  and zxe  is similar. The sign convention for the components of e  is similar to 
that of the components of the linear strain tensor. Just like the linear strain tensor, 
the tensor e  has the principal values, principal directions, principal invariants and 
the hydrostatic and deviatoric parts. They are defined similarly. 

The second measure of finite deformation is the logarithmic strain tensor. It is 
denoted by L  and is defined as follows. Note that the principal directions iê  of  
U remain orthogonal in the deformed configuration. Therefore, if we choose the 
coordinate directions along the iê , the shear associated with these directions is 
zero. To define the normal strains associated with these directions, we use the 
result that the principal values i  of U represent the ratio of the deformed length to 
the initial length of a small line element along iê . Then, the logarithm of i  can be 
used as a measure of the normal strain. Thus, with respect to the coordinate system 
of iê , we define the components of the logarithmic strain tensor L as 

 
ln if ,

0 if  .                 

L
ij i i j

i j
      (4.42) 

In the above equation, the symbol ln represents the natural logarithm, i.e., the 
logarithm with respect to the base e. Note that the tensor U is a positive definite 
tensor. Therefore, all i  are positive and hence the components L

ij  are well-
defined. 

In tensor notation, Equation 4.42 is expressed as 

 lnL U . (4.43) 

The symbol ln in the above equation means first the matrix of U is to be obtained 
in the coordinate system of its principal directions iê  so as to make its non-
diagonal components zero and then the operation of taking the natural logarithm is 
to be carried out only on the diagonal components i  (which are positive). We can 
use the tensor transformation relation (Equation 2.56) to find the components 
of L with respect to any other coordinate system. 

The strain-displacement relations for the logarithmic strain tensor cannot be 
expressed by a single equation like that for the Green-Lagrange strain tensor 
(Equation 4.41). They are given by Equations 4.42, 4.17 and 4.11 along with the 
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fact that i  are the principal values of the tensor U. These relations are also non-

linear. It can be shown that when the deformation is small, the tensor L  reduces 
to the linear strain tensor . 

The physical interpretation of the components of L  with respect to iê  as the 
coordinate system is obvious from Equation 4.42. The sign convention for the 
components of L  is similar to that of the components of the linear strain tensor. 
Just like the linear strain tensor, the logarithmic strain tensor has the principal 
directions (which are the same as those of U), the principal values (which are the 
natural logarithm of the principal values of U), the principal invariants and the 
hydrostatic and deviatoric parts. 

We next discuss the elastic-plastic constitutive equation for Eulerian 
formulation for the case of finite deformation and rotation. This is done in the next 
subsection. 

4.3 Constitutive Equation for Eulerian Formulation When the 
Rotation Is Not Small 

First, we shall develop the elastic part of the constitutive equation. In the last 
chapter, we used the rate form of the elastic constitutive equation as it is found to 
be convenient for the Eulerian formulation. However, even in Eulerian 
formulation, it is possible to use the other form of the constitutive equation in 
which the stress is expressed in terms of the deformation, rather than the rate of 
deformation. But, if the elastic deformation is not small, we cannot use the linear 
strain tensor as a measure of the deformation. We have to use one of the two 
measures of finite deformation developed in the last section.  

For the case of large deformation and rotation, the constitutive equation of 
elastic behavior is usually expressed as a relation between the Cauchy stress tensor 

and the deformation gradient tensor F: 

 )(Ff . (4.44) 

As stated earlier, the Cauchy stress is an objective tensor. But the tensor F is not 
objective, as its mathematical representation *F with respect to a moving frame is 

FQ )(t  and not ( ) ( )t tTQ FQ  [1]. The requirement that the response function f 
should be objective leads to the following form of Equation 4.44: 

 T( )R f U R , (4.45) 

where the tensors R and U are related to the tensor F through the polar 
decomposition theorem (Equation 4.14). Thus, for the case of large deformation 
and rotation, the stress depends on both the deformation (through U) as well as 
rotation (through R). 



208 Modeling of Metal Forming and Machining Processes 

Now, we assume that 
 The dependence of f on U is through the logarithmic strain 

tensor lnL U . Further, this dependence is linear. 
  The material is isotropic.  

Then, the constitutive equation (Equation 4.45) becomes 

 T( 2tr 1 )L LR R , (4.46) 

where the material constants  and  are the same as the Lame’s constants of the 
linear constitutive relation for the case of small deformation (Equation 2.214). If 
we choose the Green-Lagrange strain tensor as the measure of large deformation, 
then the material constants in the constitutive equation (Equation 4.46) would be 
different. 

In the above discussion, we have assumed the deformation to be purely elastic. 
For elasto-plastic deformation, we use the above constitutive equation only for the 
elastic part of the deformation. Let eL  be the logarithmic strain tensor and eR be 
the rotation tensor corresponding to the elastic part of the deformation gradient 

eF . Then, the constitutive equation for the elastic part can be stated as 

 T( 2 ( )tr 1 )e eL eL eR R . (4.47) 

Even for the elastic part, the change in volume is quite small. To simplify the 
solution methodology, we assume that the elastic deformation is also 
incompressible. Then, the hydrostatic part of stress –p remains constitutively 
indeterminate. Further, the relation between the deviatoric part and the elastic 
deformation becomes 

 T(2 ( ))e eL eR R . (4.48) 

This is the constitutive equation we use for the elastic part. Next, we develop the 
constitutive equation for the plastic part. 

The tensor p  is the actual strain rate tensor corresponding to the plastic part 
of the deformation gradient tensor (Equation 4.29). However, for developing the 
plastic part of the constitutive equation, we do not choose it as the deformation rate 
measure. Instead, we choose the modified strain rate tensor 

 T( )p e p eR R  (4.49) 

as the deformation rate measure. Objectivity of this measure can be verified from 
Equation 4.34:  

 ep - , (4.50) 



 Plasticity of Finite Deformation 209 

Since the tensors  and e  are objective, the tensor p , which is their difference, 
also becomes objective. Now we write the constitutive equation for the plastic part 
using the following version of the associated flow rule (Equation 3.159): 

 p
p
eq

eq

3
2

, (4.51) 

where the equivalent stress eq  is given by Equation 3.103: 

 np
eqY

p
eqeq KH )()( . (4.52) 

Here, Y  is the yield stress and K and n are the hardening parameters of the 

material. Note that the equivalent plastic strain rate p
eq  in Equation 4.51 is to be 

calculated from the modified strain rate tensor p  (Equation 4.49) and not the 
actual strain rate tensor p . However, the argument of the hardening function H 
should be related to the actual strain rate tensor as this function is obtained from 
the results of tension test on the basis of equivalence between p

eq (equivalent 
plastic strain rate related to the actual strain rate tensor) and the plastic part of the 
axial strain rate in the tension test. This inconsistency can be resolved very easily 
by showing that p

eq  and p
eq  are equal. To show it, we substitute the relation 

between p  not p  (Equation 4.49) in the definition of p
eq  (Equation 3.156). 

Then we simplify the resulting equation by using the orthogonality of rotation 
tensor eR and the identity at Equation 2.15 in . Thus we get 
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Using Equation 4.50, the above constitutive equation (Equation 4.51) can be 
expressed in terms of the total strain rate tensor and its elastic part: 

 
2

( )
3

eq
p
eq

e- . (4.54) 

This is the constitutive equation we use for the plastic part. 
No stress rate is involved in these two parts of the constitutive equation 

(Equations 4.48 and 4.54). Therefore, we do not need objective stress rate tensor. 
Further, we do not combine these two parts of the constitutive equation (Equations 
4.48 and 4.54) into a single equation as was done earlier. Earlier they were 
combined on the basis of the assumption that the elastic and plastic parts of the 
strain rate tensor were additive. But this assumption is not true for the case of large 
rotation. Further, the elastic constitutive equation (Equation 4.48) is in terms of the 
deformation while the plastic part (Equation 4.54) involves the rate of deformation. 
Hence, they cannot be combined. How these equations are to be used in the 
solution procedure is described in the next subsection. 

4.3.1 Solution Procedure 

When the rotation is not small, the Eulerian formulation for the metal forming 
problems is similar to that of Subsection 3.9.3 (Equations 3.223–3.225) except that 
now the constitutive equation (Equation 3.224) is replaced by Equations 4.48 and 
4.54. Since the deformation has been assumed to be incompressible, an additional 
equation, in the form of incompressibility constraint (Equation 3.249), is needed 
for determining the hydrostatic part. Further, it is convenient to express the 
equation of motion in the form of Equation 3.248 which separates the hydrostatic 
and deviatoric parts.  

These equations need to be solved by iteration. In every iteration, the velocity, 
strain rate, hydrostatic stress and deviatoric stress fields are found by solving these 
equations without the elastic constitutive equation. Note that the plastic 
constitutive equation involves the elastic part ( e ) of the strain rate tensor. In the 
first iteration, an initial guess is used for it. Then, in subsequent iterations, it is 
estimated from the solution of the previous iteration. The procedure for estimating 

e  from the solution of the previous iteration is given below. The quantity e  is 
determined at certain discrete points along all the stream lines. 

 First, using the velocity gradient tensor of the previous iteration, the 
deformation gradient tensor F is obtained by integrating, along the stream 
lines, the following differential equation (Equation 4.20): 

 ( )F v F     (4.55) 

This is done by using a suitable finite difference scheme for the time 
variable. 
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 Next, at a point on the stream line, the elastic part of the deformation 
gradient tensor is determined from Equation 4.26 using the F of the 
above step and the plastic part ( pF ) of the deformation gradient tensor at 
the point which the particle occupies at a previous time instant (on the 
stream line). This is called a trial elastic deformation gradient tensor and 
is denoted by *eF . The trial right stretch tensor *eU  and the trial 
rotation tensor *eR  are found from the polar decomposition of 

*eF (Equation 4.14). Further, the trial logarithmic strain tensor is found 
from *eU  using Equation 4.43.  

 Next, at that point, the trial deviatoric stress tensor * is determined 
from the elastic constitutive equation (Equation 4.48). Then, the trial 
equivalent stress *

eq  is found. The actual value of the equivalent stress  

eq  at the point is calculated from the hardening relation of the previous 

iteration. If *
eq  is less than eq , then the state of stress is elastic, 

otherwise it is plastic.  
 If the state of stress is elastic at the point, then the plastic part of the 

strain rate tensor is zero and e  is equal to  of the previous iteration.  
 If the state of stress is plastic at that point, then the plastic part ( p ) of 

the strain rate tensor is determined using the procedure given by Weber 
and Anand [6]. In this procedure, p  is assumed to be constant over the 
time step. Then, a relationship is obtained between the values of pF  at 
the points which the particle is occupying now and at the previous time 
instant (on the stream line). This is done by integrating Equation 4.29. 
Combining this relationship with the trial elastic deformation gradient 
tensor *eF , the polar decomposition theorem and the elastic constitutive 
equation, a relationship is developed between p , * , eq , the shear 

modulus  and the time increment. The plastic part ( p ) of the strain 
rate tensor is determined from this relation. 

 It can be shown that the trial rotation tensor *eR is exactly equal to the 
actual rotation tensor eR .  

 Finally, at that point, the elastic part ( e ) of the strain rate tensor is 
obtained from Equation 4.34 by substituting the above values of eR  and 

p .  
 This procedure also gives the value of pF  at that point. It will be needed 

in determining e  at the point which the particle will occupy at the next 
time instant.  
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4.4 Kinematics of Finite Incremental Deformation and Rotation 

In Section 4.2, we discussed the kinematics of finite elastic-plastic deformation and 
rotation required for the Eulerian formulation. In this section, we shall discuss the 
kinematics of finite elastic-plastic incremental deformation and rotation which is 
needed in the updated Lagrangian formulation. Figure 4.3 shows two deformed 
configurations of a body: (i) one at the current time t (called as the current 
configuration) and (ii) the other at time tt , i.e., after the finite time increment 

t  (called the incremental configuration). A material particle occupies the position 
Pt  in the current configuration and the position Ptt  in the incremental 

configuration. The position vectors of the particle in the current and the 
incremental configurations are respectively xt  and xtt . Consider a small line 
element QPtt  at point Pt  of the current configuration which occupies the position 

QP tttt  at point Ptt  of the incremental configuration. We denote the line 

segments QPtt  and QP tttt  by d t x  and d t t x  respectively. Similar  to 

Equations 4.2 and 4.3, the relation between d t x  and d t t x is given by 

 ( )d dt t t
tx F x , (4.56) 

where  

 
t t

t t
xF

x
. (4.57) 

The partial derivative in Equation 4.57 is to be taken by holding the time constant. 
The tensor t F is called the incremental deformation gradient tensor. The left 
subscript  t on the symbol denotes that the increment is to be taken at time t. For 
real incremental deformation, t F is non-singular, i.e., its determinant is non-zero. 
In index notation, Equation 4.57 can be written as  

 
j

t
i

tt

ijt x
xF . (4.58) 
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Figure 4.3. Kinematics of finite incremental deformation. a Deformed configuration at time 
t (current configuration). b Deformed configuration at time t + t (incremental 
configuration) 

Let the incremental displacement vector of the particle in the time increment 
t  be t u . From the geometry of Figure 4.3, we get the following relation 

between t u , xt  and t t x : 

 t t t
tx x u . (4.59) 

Substituting the above expression in Equation 4.57, we get the following 
relationship between t F  and the derivative of t u  with respect to xt : 
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. (4.60) 

In index notation, the above equation can be written as 

 jitij
j

t
it

ijijt u
x
uF ,

)( . (4.61) 

Here, the comma indicates the derivatives with respect to the components of xt .  
Similar to the decomposition of F into the rotation and deformation parts (Eq. 

4.14), the tensor t F  can also be decomposed using the polar decomposition 
theorem: 

 ( ( ) ( )( ))t t t t tF R U V R . (4.62) 



214 Modeling of Metal Forming and Machining Processes 

Here, t U  and t V are the symmetric positive definite tensors, called the 
incremental right and left stretch tensors respectively and t R  is the orthogonal 
tensor called the incremental rotation tensor. The tensor t U  (or t V ) 
represents the incremental deformation of a neighborhood of the point while the 
tensor t R  represents its incremental rotation about the point. Let it  be the 

principal values and i
t ê  be the principal directions of t U . (Note that i

t ê  are the 
directions in the current configuration.) Then it  represents the ratio of the 
deformed length at time tt  to the deformed length at time t of a small line 
element along the direction i

t ê . Further, let i
tt ê  be the positions of the 

directions i
t ê  in the incremental configuration. (It can be shown that, i

tt ê  are 
the principal directions of t V , its principal values being the same as it .) Then 

 ˆ ˆ( ) tt t
i t ie R e . (4.63) 

Similar to Equations 4.16 and 4.17, we get the following relation between t U  
and t F : 

 2 T( )( )t t tU F F , (4.64) 

 2 T( ) ( )t ij t ik t kjU F F . (4.65) 

Similar to the decomposition of F into the elastic and plastic parts (Equation 
4.25), the tensor t F  can also be decomposed as 

 ( )( )e p
t t tF F F . (4.66) 

Like Equation 4.25, the above decomposition of t F is also not unique. To 
remove this non-uniqueness, we assume that the incremental rotation tensor has no 
plastic part. To emphasize this fact, the plastic part of the incremental deformation 
gradient and all the related tensors are denoted by an overbar. Thus,  

 ( )( )e p
t t tF F F . (4.67) 

Now, we decompose the elastic part of t F into the rotation and deformation parts 
using the polar decomposition theorem (Equation 4.62). Further, we have assumed 
that t R  has no plastic part. Thus, we obtain  
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Substituting the decompositions (Equation 4.62 and 4.68) in Equation 4.67 and 
equating the symmetric positive definite and orthogonal parts separately, we get 
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Thus, if we assume that the plastic part of the incremental rotation tensor is zero, it 
means the incremental right stretch tensor can be decomposed multiplicatively into 
the elastic and plastic parts.  

In the last chapter, we discussed a measure of incremental deformation called 
the incremental linear strain tensor. It is not a valid deformation measure when the 
incremental deformation is large. Now, we present two commonly used measures 
of finite incremental deformation.  

The first measure, called the incremental Green-Lagrange strain tensor, is 
defined by a relation similar to Equations 4.38 and 4.39:  
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 (4.70) 

Using the index expression for the components of t F (Equation 4.61), we get the 
following expression for the components of t e  in terms of the derivatives of the 
incremental displacement: 

 , , , ,
1 ( ) ( )
2t ij t i j t j i t k i t k je u u u u , (4.71) 

where the comma indicates the derivatives with respect to the components of xt . 
The above equations represent the incremental strain-displacement relations, when 
we choose the incremental Green-Lagrange strain tensor as the measure of finite 
incremental deformation. These relations are non-linear unlike that of the 
incremental linear strain tensor (Equation 3.55). Now, assume that the incremental 
deformation is small. Mathematically, it means the components jit u ,  are small 
compared to unity. Therefore, when the incremental deformation is small, the non-
linear term in Equation 4.71 becomes negligible and the expression for t e  
reduces to that of d . We, of course, need to change the notation for the 
incremental displacement vector from t u  to du. Thus, when the incremental 
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deformation is small, the incremental Green-Lagrange strain tensor reduces to the 
incremental linear strain tensor. 

The physical interpretation of the components of t e  is similar to that of the 
components of e. The sign convention for the components of t e  is similar to that 
of the components of the linear strain tensor. Just like the linear strain tensor, the 
tensor t e  has the principal values, principal directions, principal invariants and 
the hydrostatic and deviatoric parts. They are defined similarly.  

The elastic and plastic parts of t e  would be 
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Now, we use the decomposition of t F  (Equation 4.67) to obtain the expression 
for t e  in terms of its elastic and plastic parts. First, we substitute Equation 4.67 
into the definition of t e  (Equation 4.70). Note that the operation of taking the 
transpose changes the order of tensors in the product. Then, we substitute for 

T( ) ( )e e
t tF F  and T( ) ( )p p

t tF F  using Equation 4.72. Thus, we get  
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 (4.73) 

The above equation shows that  

 e p
t t te e e . (4.74) 

It means the elastic and plastic parts of the incremental Green-Lagrange strain 
tensor t e  are not additive. 

From Equation 4.60, we can express t F as 
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Now, assume that the incremental deformation is small. As stated earlier, it means 
the components jit u ,  are small compared to unity. Then, Equation 4.75 implies 
that the tensor  is small compared to the unit tensor. We can write similar 
equations for the elastic and plastic parts of t F : 
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 (4.76) 

Here, the tensors e  and p  are small compared to the unit tensor. Substituting 
Equation 4.76 in Equation 4.72 for e

t e  and neglecting higher order terms in e , 

we find that the tensor e
t e  is of the order of e . Similarly, we find that the 

tensor p
t e  is of the order of p . Now, we substitute Equation 4.76 in  Equation 

4.73 for t e  and neglect the higher order terms in p . Then we get  
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 (4.77) 

As stated earlier, the tensor t e  reduces to the incremental linear strain tensor d  

when the deformation is small. Therefore, the elastic ( e
t e ) and plastic ( p

t e ) 

parts of t e  will also reduce to the elastic ( d e ) and plastic ( d p ) parts of d . 
Thus, for the case of small deformation, Equation 4.77 reduces to 

 d d de p . (4.78) 

Equation 4.78 shows that the assumption used in developing the elastic-plastic  
incremental stress-strain relation for the case of updated Lagrangian formulation is 
valid for the case of small incremental deformation. 

The second measure of finite incremental deformation is the incremental 
logarithmic strain tensor. It is denoted by L

t  and defined by an equation similar 
to Equation 4.43: 

 ln( )L
t t U . (4.79) 
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The symbol ln in the above equation means first the matrix of t U  is to be 

obtained in the coordinate system of its principal directions i
t ê  so as to make its 

non-diagonal components zero and then the operation of taking the natural 
logarithm is to be carried out only on the diagonal components (which are the 
principal values of t U ). Note that the tensor t U is a positive definite 
symmetric tensor. Therefore, all its principal values are positive and hence the 
tensor L

t  is well-defined. The components of L
t  in the coordinate system of 

i
t ê  are given by  

 
ln ) if ,

0 if .

L
t ij t i( i j

i j
   (4.80) 

The strain-displacement relations for the incremental logarithmic strain tensor 
cannot be expressed by a single equation like that for the incremental Green-
Lagrange strain tensor (Equation 4.71). They are given by Equations 4.80, 4.65 and 
4.61 along with the fact that it  are the principal values of the tensor t U . 
These relations are also non-linear. It can be shown that when the deformation is 
small, the tensor L

t  reduces to the incremental linear strain tensor. 

The physical interpretation of the components of L
t  with respect to i

t ê  as 
the coordinate system is obvious from Equation 4.80. The sign convention for the 
components of L

t  is similar to that of the components of the linear strain tensor. 
Just like the linear strain tensor, the logarithmic strain tensor has the principal 
directions (which are the same as those of t U ), the principal values (which are 
the natural logarithm of the principal values of t U ), the principal invariants and 
the hydrostatic and deviatoric parts. 

The elastic and plastic parts of L
t  can be defined as 

 
ln( ),

ln( ).

eL e
t t

pL p
t t

U

U
 (4.81) 

Now, we use the decomposition of t U  (Equation 4.69) to obtain the expression 

for L
t  in terms of its elastic and plastic parts. First, we substitute Equation 4.69 

into the definition of L
t  (Equation 4.79). Then we use a property of the 

logarithmic function. Finally, we substitute for ln ( )e
t U  and ln ( )p

t U  using 
Equations 4.81. Thus, we get  
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This shows that the elastic and plastic parts of the incremental logarithmic strain 
tensor L

t  are additive. 

4.5 Constitutive Equation for Updated Lagrangian Formulation 
for Finite Incremental Deformation and Rotation  

In the last chapter, we derived the elastic-plastic incremental stress-strain relation 
needed for the updated Lagrangian formulation using a measure of small 
incremental deformation. In this section, we develop this relationship for the case 
of finite incremental deformation. We use the incremental logarithmic strain tensor 

L
t  as the measure of finite incremental deformation. This allows us to use the 
elastic constants and the hardening function determined from the results of tension 
test on the variation of  true stress vs logarithmic strain. If we choose the 
incremental Green-Lagrange strain tensor as the measure of finite incremental 
deformation, then the results of  tension test need to be modified appropriately. 

We assume that the elastic behavior remains linear even for the case of large 
incremental deformation. Then, the elastic incremental stress-strain relation 
developed for the case of small incremental deformation (Equation 3.150) remains 
valid for the finite deformation also. But, we need to change the measure of 
incremental deformation in Equation 3.150 from d e

ij  to eL
ijt . We also need to 

change the notation of the incremental stress tensor from d kl  to klt . We 
further assume that the associated flow rule derived for the case of small 
incremental deformation remains valid when we replace the measure of 
incremental deformation from d p

ij  to pL
ijt . As in the case of small incremental 

deformation, we use the Mises yield function as the plastic potential. Then, the 
plastic incremental stress-strain relation is given by Equation 3.143 where the 
measure of incremental deformation needs to be changed from d p

ij  to pL
ijt  and 

the notation of incremental stress needs to be changed from d kl  to klt .  Now, 

as shown in the last section, the tensor L
ijt  consists of the addition of its elastic 

( eL
ijt ) and plastic ( pL

ijt ) parts. Therefore, as in the case of small incremental 
deformation, we add the elastic and plastic incremental stress-strain relations to get 
a single elastic-plastic constitutive equation in terms of L

ijt . Next, we invert this 
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equation to express it in terms of klt . Then, similar to the elastic-plastic 
incremental stress-strain relation of small incremental deformation (Equations 
3.152 and 3.153), we get 

 )( L
klt

EP
ijkl

t
ijt C , (4.83) 

where the fourth order elastic-plastic tensor EP
ijkl

tC  is given by 

 2
92

1 2 2 ( 3 )

t t
ij klt EP

ijkl ij kl ik jl t t
eq

C
H

. (4.84) 

Here, the left superscript t is added to the symbols EP
ijkl

tC , ij
t , eq

t  and Ht  to 
emphasize the fact that these quantities are to be evaluated at time t. Note that, 
when the increment size is large, these quantities vary continuously from time t to 

tt . To take care of this variation, we assume that the above constitutive 
equation (Equation 4.83) can be modified as  

 d( )
t t t EP L

t ij ijkl t kl
t

C . (4.85) 

The integration in the above equation is usually performed using the forward Euler 
integration scheme. Details of this scheme are discussed in Chapter 6. Further, it is 
convenient to use the coordinate system of i

t ê  (the principal directions of t U ) to 
determine the incremental logarithmic strain. Therefore, the evaluation of the 
incremental stress using the above constitutive equation is also done in this 
coordinate system only.   

In the constitutive equation (Equation 4.85), the response function must be 
objective. We can make the response function objective using the method of 
Section 4.3. However, a simpler method exists [7]. In this method, incremental 
rotation is incorporated while updating the stress tensor. Employing this method, 
we make the response function objective by using the following updating relation: 

 T( )( )( )t t t
t t tR R . (4.86) 

Thus, the updating procedure can be described as follows: 

 Evaluate the incremental rotation tensor t R . 

 Determine the rotated stress tensor: T( )( )( )t
t tR R . This is 

equivalent      
    to rotating the element through t R  so as to rotate the stress components   
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acting on the element. This quantity should be evaluated in coordinate 
system of  i

t ê  as t  is also to be evaluated in the same coordinate 
system. Then the addition becomes easy. For evaluating 

T( )( )( )t
t tR R  in the coordinate system of i

t ê , the stress components 
must be transformed from the reference coordinate system to this 
coordinate system. Further, the components of t R  should be obtained in 
this coordinate system. 

 Evaluate the incremental stress tensor t  from the elastic-plastic 
incremental constitutive equation (Equation 4.85). This should be done in 
the coordinate system of i

t ê . 
 Update the stresses by adding the incremental stress t  to the rotated 

stress at time t: T( )( )( )t
t tR R . The addition should be done in the 

coordinate system of i
t ê . 

 Transform the components of the updated stress t t  to the reference 
coordinate system. 

There are other ways of making the response function objective. One such 
method [8] is the use of the increment of the second Piola-Kirchhoff stress tensor 
t t

t S in the incremental elastic-plastic stress-strain relation. The tensor t t
t S  is 

defined by the relation 

 1 Tdet( ) ( ) ( )( )t t t t
t t t tS F F F . (4.87) 

Since the tensor t t
t S  is work-conjugate to the incremental Green-Lagrange 

strain tensor t e , in this case, t e  is used as the measure of finite incremental 
deformation. Thus, the elastic-plastic incremental stress-strain relation is expressed 
as 

 )( klt
EP
ijkl

t
ijt eLS , (4.88) 

where t S  is an increment of the second Piola-Kirchhoff stress tensor t t
t S . 

Note that, in the above equation, the expression for the fourth order elastic-plastic 
tensor EP

ijkl
t L  cannot be the same as in Equation 4.84. To obtain the elastic constants 

and the hardening function appearing in EP
ijkl

t L , appropriate modifications need to 

be made on the results of tension test. The expression for EP
ijkl

t L  is given in [8] and 
its derivation is given in [9]. 

Another way of making the response function (of the elastic-plastic incremental 
stress-strain relation) objective is to write it in the rate form: 
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 EP
ij ijkl klC , (4.89) 

where 
o

 is an objective stress tensor,  is the strain rate tensor and EPC  is the 
fourth order tensor appearing in the elastic-plastic incremental stress-strain relation 
for the case of small deformation (Equation 3.153). Then, the incremental stress 
tensor t  is obtained by integrating Equation 4.89: 

 
o

d d d
t t t tEP EP

ijt ij ijkl kl ijkl kl
t t

t C t C . (4.90) 

Here, d kl  is the incremental linear strain tensor. The integration is usually carried 
out by the  Euler forward integration scheme. 

Quite a few choices are available for the objective stress rate tensor to be used 
in the constitutive equation (Equation 4.89). One choice is the Jaumann stress rate 
tensor (Equation 3.200), which uses the spin tensor  as the rate of rotation. 
However, in incremental formulation, use of the Jaumann stress rate is equivalent 
to assuming that the incremental rotation is small and is given by the product of  
and the time increment. Thus, when the incremental rotation is large, the Jaumann 
stress rate is not a good choice. The other two commonly used objective stress rate 
measures are: (i) Truesdell Rate and (ii) Green-Naghdi Rate (also called the Green-
McInnis Rate). These rates are defined by the following expressions: 
 

(i) Truesdell Rate: 

 T( ) ( ) ( )trT v v v . (4.91) 

(ii) Green-Naghdi Rate: 

 T T T( ) ( )GN RR RR . (4.92) 

In the above equations, v  is the velocity gradient tensor,  is the Cauchy stress 
tensor, R  is the rotation tensor,  is the rate of Cauchy stress tensor and R  is the 
rate of rotation tensor. 

For finite deformation problems, use of different objective stress measures 
leads to different solutions, unless the constitutive equation is properly adjusted. 
To obtain physically meaningful solution, the choice of the objective stress 
measure should be based on the underlying physics of the finite elastic-plastic 
deformation. Unfortunately, the comparison of various objective stress measures is 
limited to just two cases: finite simple shear deformation problem of (i) linear 
hypoelastic materials and (ii) linear kinematically hardening materials. In both the 
cases, use of the Jaumann stress rate gives an oscillatory solution. In the case of 
hypoelastic materials, Prager [10] and Dienes [11] attributed the oscillations to 
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improper use of the Jaumann stress rate tensor. Further, Prager obtained a non-
oscillatory solution by adding some non-linear terms to the constitutive equation 
whereas Dienes obtained it by using the Green-Naghdi rate. In the case of 
kinematically hardening materials also, the oscillations were due to improper use 
of the Jaumann stress rate tensor [12]. Further, Lee et al. [12] and Dafalias [13] 
proposed new objective stress rate measures to obtain a non-oscillatory solution.  

At present, the research on objective stress rate measures is still in progress. 
Therefore, there is no agreement about which is the best objective stress rate tensor 
to be used in elastic-plastic analysis. However, as far as elastic-plastic analysis is 
concerned, the Truesdell rate has a certain inconsistency. Note that, when the stress 
rate is zero, there is no plastic flow, and therefore no change in the yield surface. 
Since the yield surface depends on the invariants of , it means there is also no 
change in the invariants. However, when the Truesdell rate becomes zero, the 
invariants of  do not necessarily remain constant [14].  

4.6 Anisotropic Initial Yield Criteria 

Microstructure of metals is polycrystalline in nature. In an annealed metal, the 
crystallographic directions are randomly oriented. At macroscopic level, this 
means there is no preferred direction. Thus, an annealed metal is isotropic at 
macroscopic level. However, when it is subjected to cold forming processes like 
drawing, extrusion, rolling etc., the crystallographic directions gradually rotate 
towards a common axis, thus creating a preferred direction. Therefore, after cold 
forming, the metal usually becomes anisotropic in nature. When this metal is 
subjected to further forming processes without annealing, the yield criteria and the 
plastic stress-strain relations to be used for the analysis of these processes should 
incorporate the anisotropy. In this section, we shall discuss various anisotropic 
yield criteria. The corresponding plastic stress-strain relations will be discussed in 
next section. In this book, we shall consider the anisotropy of cold-rolled sheets 
only. These sheets possess a symmetry called orthotropy. It means there exist three 
mutually orthogonal planes of symmetry at every point, the intersections of which 
are called the principal axes of anisotropy. These axes are the rolling direction, the 
transeverse direction (in the plane of sheet) and the direction normal to the sheet 
(i.e., the thickness direction).  

In cold-rolled sheets, plastic properties differ along the thickness direction 
(known as normal anisotropy) as well as vary with the orientation in the plane of 
the sheet (known as planar anisotropy). Both types of anisotropy play an important 
role in metal forming processes. For example, the planar anisotropy leads to 
formation of ears in cup drawing while the deep drawability of sheets depends 
strongly on the normal anisotropy.  

A measure of anisotropy of sheets is the strain rate ratio, which can be defined 
as follows. In a rolled sheet, let x be the rolling direction, y be the transverse 
direction and z be the normal (or thickness) direction (Figure 4.4). Now, suppose a 
tensile test specimen is cut from this sheet such that its longitudinal axis x  makes 
an angle  with the rolling direction. Let y  be the transverse axis of the specimen 
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and z  be its normal axis (which of course coincides with z). Then, the strain rate 
ratio r  is defined as 

 
p
y y
p
z z

r , (4.93) 

where p
y y  and p

z z  are the normal components of the plastic parts of  the strain 

rate tensor along y’ and z’ directions respectively. In planar anisotropy, r  varies 
with . In many metals, r  decreases from 0  to 45  and then increases up to 90  
and this pattern repeats in the other three quadrants. An average strain rate ratio 
r is defined as follows: 

 )2(
4
1

90450 rrrr , (4.94) 

where 0r  and 90r  are the strain rate ratios measured by cutting the specimens 
along the rolling and transverse directions respectively and 45r along the direction 
at 45  to these axes. When the planar anisotropy is negligible, r  is considered as a 
measure of the normal anisotropy. 

 
Figure 4.4. Sheet from which a tensile specimen is cut for finding strain rate ratio 

Determination of the material constants appearing in various anisotropic yield 
criteria needs measurement of yield stresses along various directions using tension 
tests. In case of thin sheets, it is difficult to conduct a tension test along the 
thickness direction. Instead, a compression test along the thickness direction or 
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balanced bi-axial test is conducted. In the balanced biaxial test, tensile stresses of 
equal magnitude ( b ) are applied along the rolling and transverse directions on a 
square-shaped specimen. This state of stress is equal to the sum of tensile 
hydrostatic stress b  and the compressive stress of magnitude b  along the 
thickness direction. But the hydrostatic stress does not affect yielding. Thus, the 
balanced biaxial test is equivalent to the compression test in the thickness 
direction. 

Various approaches have emerged for incorporating anisotropy in metal 
forming analysis. In the first approach, crystal plasticity models are used to 
simulate the anisotropy [15, 16]. The advantage of these models is that they can 
incorporate the crystallographic texture. However, use of such models in metal 
forming analysis is computationally time-consuming. In the second approach, 
strain rate potentials have been proposed to incorporate anisotropy in metal 
forming analysis [17, 18]. In the third approach, anisotropic yield criteria have 
been developed based on phenomenological observations. These criteria can 
describe complete anisotropy, unlike the crystal plasticity models which only 
account for the crystallographic texture. Further, these criteria can be easily 
adapted to different materials by changing the values of certain parameters. In this 
book, we shall discuss only the third approach. 

Quite a few anisotropic yield functions have been proposed by Hill [19, 20], 
Hosford [21, 22] and others for orthotropic materials. These anisotropic yield 
functions do not completely represent the general state of anisotropy, even in plane 
stress conditions. Hill’s 1948 criterion is simple to implement, but possesses a 
certain anomaly. Hill’s 1979 criterion is free of this defect but does not contain the 
shear stress term. It is possible to develop an anisotropic yield criterion by applying 
an appropriate tensor transformation (corresponding to the symmetry group of 
materials) to an isotropic yield criterion. However, for a general transformation, it 
is usually difficult to satisfy the convexity condition. Therefore, mostly linear 
transformations have been used. Barlat and Lian [23] applied a linear 
transformation to modified Hosford [21] criterion to develop an anisotropic yield 
function for the plane stress conditions. Their yield surface matches with the yield 
surface calculated from the Bishop and Hill’s [24] model for textured 
polycrystalline sheets. Later on Barlat et al. [25] and Karafillis and Boyce [26] 
extended this technique to the three-dimensional state of stress. These three-
dimensional anisotropic yield functions were not able to capture the full anisotropy 
of aluminum sheets. Therefore, Barlat and his co-workers introduced two linear 
transformations first for the plane stress case [27] and then later for the three-
dimensional case [28]. Further, Bron and Besson [29] incorporated two linear 
transformations in the Karafillis and Boyce criterion. In this book, we shall 
describe only the following criteria: (i) Hill’s 1948 and 1979 criteria [19, 20], (ii) 
plane stress [23] and three-dimensional criteria [28] of Barlat and co-workers and 
(iii) a plane strain yield criterion based on a modification of Hill’s 1979 yield 
criterion [20]. 



226 Modeling of Metal Forming and Machining Processes 

4.6.1 Hill’s Anisotropic Yield Criteria 

We choose the Cartesian coordinate system such that x-axis is along the rolling 
direction, y-axis along the transverse direction and z-axis along the normal 
direction. Thus, (x,y,z) are the principal axes of anisotropy. With respect to this 
coordinate system, Hill’s 1948 criterion [19] can be stated as 
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 ,            (4.95) 

where ij are the stress components with respect to the chosen coordinate system 

and 0  is a scaling factor. Note that this criterion contains six material constants: f, 
g, h, l, m and n. These parameters are determined by measuring the three uni-axial 
yield stresses and three shear yield stresses associated with the principal axes of 
anisotropy. If )2/()31()31()31( 22

0 Ynmlhgf , then the above 
criterion reduces to the von Mises yield criterion. 

Using the associated flow rule, one can find the strain rate ratio 0r  in terms of  
g and h. If we assume that there is no planar anisotropy, then 0r , 45r and 90r  are all 
equal to the average strain rate ratio r . This gives an expression for r  in terms of  
g and h. By applying Equation 4.95 to the tension test along the rolling direction, 
we get an expression for Y  (uni-axial yield stress along the rolling direction) in 
terms of 0 , g and h. Since, the biaxial test is equivalent to the compression test 
along the thickness direction, by applying Equation 4.95 to the compression test, 
we get an expression for b  (yield stress in balanced biaxial test) in terms of 0 , f 
and g. Note that no planar anisotropy means f and g  are equal. Eliminating  f , g 
and h from the three expressions for r , Y  and b  with the help of equality f = g, 
we get the following relation: 

 
1/ 21

2
b

Y

r . (4.96) 

The detailed derivation of this equation (which was first presented by Hosford and 
Backofen) is given in Woodthorpe and Pearce [30]. According to Equation 4.96,  

b  should be less than Y  whenever r  is less than unity. However, Woodthorp 
and Pearce [30] observed that b  was greater than Y  in some commercial 
aluminum alloy and steel sheets even when r  was less than unity. This is the 
anomaly exhibited by Hill’s 1948 criterion.  

In 1979, Hill [20] proposed another anisotropic criterion for initial yielding 
which does not exhibit the above-mentioned anomaly. This criterion can be stated 
as 
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where i  are the principal stresses, 0  is a scaling factor and the material 
constants f, g, h, a, b and c are determined through experiments. The parameter m 
is assumed to be known depending on the crystal structure. Thus, m=6 for BCC 
(body-centered cubic) metals and m=8 for FCC (face-centered cubic) metals. Here, 
it is assumed that the principal directions of the stress tensor coincide with the 
principal axes of anisotropy. Thus, this criterion does not contain the shear stress 
terms. As a result, it is restricted to loading along the principal axes of orthotropy 
only. Further, this criterion does not always satisfy the convexity condition which 
is a requirement for every yield function.  

4.6.2 Plane Stress Anisotropic Yield Criterion of Barlat and Lian 

The starting point of the development of plane stress anisotropic yield criterion of 
Barlat and Lian [23] is the following isotropic yield criterion due to Hosford [21]: 

 02)( 211332
m
Y

mmm
ijf , (4.98) 

where i are the principal stresses and Y  is the uni-axial yield stress. This 
criterion closely approximates the isotropic yield surface calculated from the 
Bishop and Hill’s crystal plasticity model [24] for BCC metals for m = 6 and FCC 
metals for m = 8. (Further, this criterion reduces to von Mises criterion for m = 2.) 
For the plane stress condition, the above criterion can be expressed in terms of the 
stress components ij  with respect to a Cartesian coordinate system (x,y,z) as 
follows: 

 022)( 22121
m
Y

mmm
ij KKKKKf , (4.99) 

where 
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are the stress invariants.  
Barlat and Lian [23] extended the above criterion to the case of planar isotropy 

by multiplying the first three terms by the coefficients a, b and c which 
characterize the normal anisotropy: 
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 022)( 022121
mmmm

ij KcKKbKKaf , (4.101) 

where 0  is a scaling factor. However, it can be shown that only one of the three 
coefficients is independent. The requirement that the derivatives of f with ij at 

xx yy  and 0xy  in balanced bi-axial test be finite leads to the equality of 
the first two coefficients, i.e., a = b. Further, the choice of the in-plane yield stress 
as the scaling factor 0  gives the following relation: a = 2 – c. Therefore, we get 

 cba 2 . (4.102) 

As stated earlier, this criterion does not describe the planar anisotropy of the plane 
stress case. To include the planar anisotropy, Barlat and Lian [23] made use of the 
observation that the tri-component plane stress yield surfaces of FCC sheet metals, 
for various textures, can be approximated by a dilatation of the normalised 
isotropic yield surfaces [31]. Based on this observation, they extended the above 
yield criterion to the case of planar anisotropy (of plane stress problems) by using 
the following linear transformation of the Cauchy stress components: 

 , ,xx xx yy yy xy xyh p ,    (4.103) 

where the constants h and p, like a, characterize the material anisotropy. Then, in 
the criterion (Equation 4.101), the expressions for 1K  and 2K  become 
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The primed notation used here of stress components should not be confused with 
the components of the deviatoric part of the stress tensor.   For m = 2, the yield 
criterion given by Equations 4.101–4.104 reduces to Hill’s 1948 criterion. 

In this criterion, there are three parameters which characterize the material 
anisotropy: a, h and p. These parameters are evaluated using the following 
expressions: 
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Here, 90  is the (uni-axial) yield stress in the transverse direction and 1s  and 2s  
are the yield stresses corresponding to the following two situations respectively: (i) 

1,0 sxyyyxx  and (ii) 2 , 0yy xx s xy . The scaling factor is  
chosen to be the (uni-axial) yield stress in the rolling direction. The material 
parameters a, h and p can also be determined from the measurements of the strain 
rate ratio r. The relations between (a, h) and ( 900 , rr ) are given by 
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However, there is no analytical expression for p in terms of r. Therefore, the 
variation of p with r needs to be determined either numerically or graphically using 
the variations of a and h with r. Since the graphical (or numerical) method gives 
only an approximate variation of p with r, the two methods of calculating the 
parameters a, h and p do not give the identical set of values. The parameter m is 
chosen so as to match the predictions of this criterion with experimental results.   

Barlat and Lian [23] have also shown that the yield function f given by 
Equations 4.101–4.104 is convex. Further, the yield locus predicted by the above 
criterion, for an FCC material containing 50% of grains having Gaussian 
distribution around the {110} 112  ideal orientation (brass texture) and 50% of 
randomly distributed grains, matches well with the one obtained from Bishop and 
Hill’s model [24]. 

4.6.3 A Three-Dimensional Anisotropic Yield Criterion of Barlat                  
and Co-workers 

As stated earlier, Barlat et al. [25] extended the method of linear transformation to 
obtain a three-dimensional anisotropic yield criterion. However, this yield criterion 
was not able to capture the full anisotropy of aluminum sheets. Therefore, later, 
Barlat et al. [28] used two linear transformations for this purpose. In this 
subsection, first, we introduce briefly the three-dimensional anisotropic yield 
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criterion with one linear transformation [25] and, later, we discuss in detail the 
criterion with two linear transformations [28]. 

The development of the plane stress anisotropic yield criterion (Equations 
4.101–4.104) starts with the isotropic yield criterion of Hosford [21]. The 
anisotropy is introduced, first, through the three coefficients a, b and c (Equation 
4.101) and later through the linear transformation (Equation 4.103) of the Cauchy 
stress components. In the three-dimensional case [25] also, the starting point is 
Hosford’s [21] isotropic yield criterion but expressed in terms of the principal 
values i  of the stress deviator  (i.e., the deviatoric part of the Cauchy stress 
tensor):  

 02)( 211332
m
Y

mmm
ijf . (4.107) 

Barlat et al. [25] introduced anisotropy in the above criterion by expressing it in 
terms of the principal values iS  of the modified stress deviator S : 

 02)( 0211332
mmmm

ij SSSSSSf ,  (4.108) 

where S  is obtained from the stress deviator  by the following linear 
transformation:  

 CS . (4.109) 

Here, as before, 0  is a scaling factor. Further, the parameter m is chosen so as to 
match the predictions of this criterion with experimental results. By using the 
transformation 

 T , (4.110) 

the tensor S  can be expressed in terms of the Cauchy stress tensor  by the 
following relation: 

 ,S L L CT .                 (4.111) 

The tensors C, T and L are all fourth order tensors. Since, the tensors S , and  
 are all symmetric tensors, the tensors C, T and L can have at the most 36 

independent components.  
We express the components of the tensors S ,  and  with respect to a 

Cartesian coordinate system (x,y,z) as the following one-dimensional arrays: 
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 { } , { } , { }

xx xx xx

yy yy yy

zz zz zz

xy xy xy

yz yz yz

zx zx zx

S
S

S
S S

S

S

,      (4.112) 

Then the array form of the linear transformation (Equations 4.109–4.111) can be 
expressed as  

 { } [ ]{ } [ ][ ]{ } [ ]{ }S C C T L , (4.113) 

where [C], [T] and [L] denote respectively the matrices of C, T and L containing 
the 36 independent components. The matrix [T] is given by 

 

300000
030000
003000
000211
000121
000112

3
1][T . (4.114) 

Barlat et al. [25] assumed that only the following nine components of the 
matrix [C] are non-zero: 

 

12 13

21 23

31 32

44

55

66

0 0 0 0
0 0 0 0

0 0 0 0
[ ]

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c
c c
c c

C
c

c
c

, (4.115) 

(The corresponding [L] matrix can be obtained by multiplying the matrices [C] and 
[T]). Further, they assumed that the matrix [C] is symmetric: 

 12 21 23 32 31 13, ,c c c c c c .     (4.116) 

Thus, in this anisotropic yield criterion, besides the parameter m, there are six more 
parameters 12 23 31 44 55 66, , , , ,c c c c c c  which characterize the material 
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anisotropy. This anisotropic yield criterion has been labeled as Yld91 by Barlat et 
al. [25].  

When all the anisotropic parameters are equal to 1, and m is equal to 2, Yld91 
reduces to the von Mises yield criterion. However, for the plane stress problems, 
this criterion does not reduce to the 3-parameter anisotropic criterion of Barlat and 
Lian (Equations 4.101–4.104). Barlat et al. [25] determined the six anisotropic 
parameters of Yld91 for the aluminum alloys 2008-T4 and 2024-T3 using the three 
uni-axial yield stresses and three shear yield stresses associated with the three axes 
of anisotropy. As stated earlier, the parameter m is determined so as to match the 
predictions of this criterion with experimental results. The yield locus of 2008-T4 
material predicted by this anisotropic yield criterion (with m = 11) matches well 
with the one obtained from Bishop and Hill’s model [24]. Further, the predictions 
of the yield stress variation are also in good agreement with the experimental 
results for both the materials. But this criterion underpredicts the values of the 
strain rate ratio r. 

To represent the anisotropy of aluminum sheets to a better degree of accuracy, 
Barlat et al. [28] used two linear transformations by introducing two modified 
stress deviators: 

 ,S C S C .      (4.117) 

The yield criterion is expressed as 

1 1 1 2 1 3 2 1 2 2 2 3

3 1 3 2 3 3 0

( )

4 0

m mm m m m
ij

m m m m

f S S S S S S S S S S S S

S S S S S S
, 

  (4.118) 

where iS  and iS  are the principal values of the modified stress deviators S and 
S . As before, 0  is a scaling factor, but m is taken to be 6 for BCC metals and 8 
for FCC metals. Here also, out of the 36 independent components of C  and C , 
only the following 9 components each are assumed to be non-zero. 

 

12 13

21 23

31 32

44

55

66

0 0 0 0
0 0 0 0

0 0 0 0
[ ]

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c
c c
c c

C
c

c
c

’ (4.119) 
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55
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0 0 0 0
0 0 0 0

0 0 0 0
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c
c c
c c

C
c

c
c

. (4.120) 

(The corresponding ][L and ][L  matrices can be obtained by multiplying the 
matrices ][C  and ][C  with [T]). However, the matrices ][C  and ][C  are not 
assumed to be symmetric. Thus, in this anisotropic yield criterion, there are 18 
parameters which characterize the material anisotropy. This anisotropic yield 
criterion has been labeled as Yld2004-18p by Barlat et al. [28]. When the matrices 

][C  and ][C  are identical and symmetric, this criterion reduces to Yld91. 
Further, when all the anisotropic parameters are equal to 1, and m is equal to 2, 
Yld2004-18p reduces to the von Mises yield criterion. Barlat et al. [28] have also 
shown that the yield function given by Equation 4.118 is convex. 

Barlat et al. [28] determined the 18 anisotropic parameters of Yld2004-18p for 
the aluminum alloys 2090-T3 and 6111-T4 (mildly anisotropic) by minimising the 
following weighted error function: 

 

2 2

( , ) 1 1
pr qr
p q

ij ij p qex exp qp q
E c c w w , (4.121) 

where pw  and qw  are the weight functions. The indices p and q denote 
respectively the number of experimental uni-axial, bi-axial or shear yield stresses  
and experimental strain rate ratios (r). Further, the superscripts pr and ex indicate 
whether it is a predicted value or an experimental value. The experimental data in 
the error function consists of the seven (uni-axial) yield stresses and seven strain 
rate ratios in the plane of sheet at every 15 angular increment: 0, 15, 30, 45, 60, 75 
and 90. Further, it  includes the yield stress and the strain rate ratio in the biaxial 
test. It also includes the following four out-of-plane properties : shear yield stresses 
in y-z and z-x planes and the (uni-axial) yield stresses along 45  direction in y-z and 
z-x planes. Polycrystalline simulations were performed to obtain the out-of-plane 
material properties. 

Variations of the uni-axial yield stress and the strain rate ratio (with the angular 
position from the rolling direction) predicted by the Yld2004-18p anisotropic yield 
criterion match well with the experimental results for both the materials. 
(However, note that, the same experimental data was used in minimising the error 
function.) Further, the cup height profile (i.e., the earing profile) for 2090-T3 
material with six ears predicted by this criterion is in good agreement with the 
experimental cup height profile [32]. 



234 Modeling of Metal Forming and Machining Processes 

Before ending this section, we shall briefly describe the other three-dimensional 
anisotropic yield criteria which are based on the method of linear transformation 
but are different from the criteria of Barlat et al. [25, 28]. Karafillis and Boyce [26] 
also used only a single linear transformation but used two functions (rather, a linear 
combination of them) of the principal values of the modified stress deviator. Bron 
and Benson [29] extended this criterion by using two linear transformations. Their 
criterion can be expressed as 

 
1 21 / 2 / 1/

0( ) [ ( ) (1 )( ) ] 0m b m b m
ijf , (4.122) 

where 

 
1 1 11

2 3 3 1 1 2
1
2

b b bS S S S S S , (4.123) 

and 

 
2

22 2

2
2

1 2 3
3

2 2

b bb b

b
S S S . (4.124) 

Here, 0  is a scaling factor. Further, iS  and iS  are the principal values of the 
modified stress deviators S and S  defined by Equation 4.117. Like Barlat et al. 
[28], Bron and Benson [29] also assumed that the matrices ][C  and ][C  have 
only nine non-zero components each (Equations 4.119 and 4.120), But, they 
further assumed that these matrices are symmetric and therefore have only six 
independent components. Thus, the anisotropic yield criterion of Bron and Benson 
[29] have 16 material parameters: m, 1b , 2b , , 6 components of ][C  and 6 

components of ][C . The first four parameters (m, 1b , 2b  and ) do not 
influence the anisotropy but only cause the change of shape of the yield surface. 
Only the remaining 12 parameters represent the material anisotropy. When the 
matrices ][C  and ][C  are identical and m = 1b  = 2b , this criterion reduces to 
that of Karafillis and Boyce [26].  Additionally, if 1 , it reduces to the Yld91 
criterion of Barlat et al. [25]. Further, when all the non-zero elements of ][C  and 

][C  are unity, 1  and 21bm , it reduces to the Mises criterion. Bron and 
Benson [29] determined the 16 material parameters, for various aluminum alloys 
by minimising the error between the simulated and experimental results for the 
variation of load with the opening displacement for smooth and notched specimens 
in tension tests. They found that the criterion is accurate in describing the 
anisotropy of various aluminum alloys. They have also shown that this criterion 
satisfies the convexity condition.  
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Hu [33] also used the method of linear transformation to propose the following 
anisotropic yield criterion: 

 (1) (2)2 2 2
2 2 2 2

1( ) ( ) ( ) ( ) 0ijf J J J
C

, (4.125) 

where 2J , )1(
2J  and )2(

2J  are the second invariants of the deviatoric parts of the 

tensors  , (1)  and (2)  and C is a constant. The tensors (1)  and (2)  are 
obtained from  by the following linear transformations: 

 

(1) (1) (1) (1) (1) (1)

11 22 33

(1) (1) (1)

12 23 31

, , ,

, , .

xx yy yy zz zz xx

xx yy yy zz zz xx

xy yz zx

xy yz zx

a a a

a a a

 (4.126) 

 

(2) (2) (2) (2) (2) (2)

11 22 33

(2) (2) (2)

12 23 31

, , ,

, , .

xx yy yy zz zz xx

xx yy yy zz zz xx

xy yz zx

xy yz zx

b b b

b b b

              (4.127) 

where ija  and ijb  are the anisotropic coefficients to be determined from 
experiments.  

If we assume that the two principal axes are in the two diagonal directions to 
the rolling axis, then the expansion of Equation 4.125 leads to the following 
expression: 

4 3 2 2
1 2 3

3 4 2 2 2
4 5 6

2 2

2 2 2
7

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

[( ) ( ) ( )( )]

( ) 1 0,

ij xx zz xx zz yy zz xx zz yy zz

xx zz yy zz yy zz xy yz zx

xx zz yy zz xx zz yy zz

xy yz zx

f X X X

X X X

X

 

  (4.128) 

where the seven parameters iX  (depending on aij  and bij) can be expressed in 
terms of the following seven measurable quantities: uni-axial yield stresses along 
the rolling direction ( 0 ), at 45 to the rolling direction ( 45 ) and at 90  to the 
rolling direction ( 90 ), the yield stress in balanced bi-axial test ( b ), strain rate 
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ratios in tension tests along the rolling direction ( 0R ), at 45  to the rolling 
direction ( 45R ) and at 90  to the rolling direction ( 90R ): 

            

0
1 24 4

0 0 0

0 90 90
3 44 4 4 4 4 4

0 90 0 0 90 90 90 90

45
5 6 74 4 4 4 4

90 45 45 45 45

41 , ,
(1 )

4 4 41 1 1 , ,
(1 ) (1 ) (1 )

161 16 2 1, , .
(1 ) (1 )

b

b b

R
X X

R
R R R

X X
R R R

R
X X X

R R

        

   (4.129) 

Hu [33] has shown that the above anisotropic yield criterion satisfies the convexity 
requirement. 

Hu [33] validated this criterion by comparing its predictions about the variation 
of the yield stress and strain rate ratio (with the angular position from the rolling 
direction) with experimental results for Y350 MPa high strength steel with two 
different coatings: (i) cold-rolled and (ii) hot dip galvanized. He also compared the 
yield surfaces predicted by his criterion with experimentally predicted yield 
surfaces for high strength steel and aluminum alloys. The agreement in all cases is 
reported to be good. 

 4.6.4 A Plane Strain Anisotropic Yield Criterion  

When the width of the sheet is sufficiently large compared to the length of the arc 
of contact, the rolling process can be modeled as a plane strain problem in the x-z 
plane where x is the rolling direction and z is the thickness direction. In this 
section, we describe an anisotropic yield criterion for the plane strain rolling 
problem proposed by Dixit and Dixit [34]. The description here differs from the 
one in [34] in the following respect: whereas the y axis is taken as the thickness 
direction in [34], here it is assumed that z is the thickness direction. For plane 
strain problems in the x-z plane, the anisotropy is restricted to the x-z plane only 
and therefore, there is planar isotropy in the plane of the sheet, i.e., in the x-y plane. 
For this case, the coefficients f, g, a and b in the Hill’s 1979 anisotropic criterion 
(Equation 4.97) satisfy the relation f = g and  a = b. We further assume that  f = 0 
and a = 0. Then, the criterion reduces to 

 02)( 021321
mmm

ij hcf . (4.130) 

Note that in Equation 4.97, it is assumed that the loading is along the principal axes 
of the anisotropy and therefore, the principal directions of the stress tensor coincide 
with the principal axes of anisotropy (x,y,z). Thus, the principal stresses 
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( 1 , 2 , 3 ) are equal to ( ),, zzyyxx . Rewriting Equation 4.130 in terms of 

( ),, zzyyxx , we get 

 02)( 0
mm

yyxx
m

zzyyxxij hcf . (4.131) 

When the loading is not along the principal axes of anisotropy, one needs to 
include the shear stress terms in the above criterion. For the plane strain problems 
in the x-z plane, the only non-zero shear stress component is xz . Thus, to get an 
anisotropic yield criterion for plane strain problems in the x-z plane, we add an 
extra term containing xz  to Equation 4.131. Thus, we get 

          0)(2)( 0
mm

zx
m

xz
m

yyxx
m

zzyyxxij Nhcf . 

(4.132) 
Here, the scaling factor 0  is taken to be equal to the uni-axial yield stress in the 
rolling direction and the coefficient N accounts for the presence of in-plane shear 
stress component xz . Thus, there are four parameters which characterize the 
material anisotropy: c, h, N and m.  

To determine the material parameters c, h, N and m in terms of measurable 
quantities like the uni-axial yield stresses and the strain rate ratios, we proceed as 
follows. We assume that xx yy  and 2xx yy zz . By applying Equation 
4.132 to the tension test along the rolling direction 
(i.e., 0 , 0xx yy zz xz ), we get 

 1hc . (4.133) 

Further, using the associated flow rule for p
yy  and p

zz  in the tension test, we find 

the strain rate ratio 0r  in terms of c and h. Since we have assumed that there is 
planar isotropy, the ratios 0r , 45r and 90r  are all equal to the average strain rate 
ratio r . Thus, we get  

 1 1
2

hr
c

. (4.134) 

From Equations 4.133 and 4.134, we get the following expressions for the material 
parameters c and h in terms of r : 
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1 ,
2( 1)
2 1 .

2( 1)

c
r
rh
r

 (4.135) 

Thus, the material parameters c and h are positive. Now, consider a coordinate 
system ),,( zyx  such that yy  and the axes ),( zx  are in the x-z plane. 
Further, the x  axis makes a counter-clockwise angle of 45 with the rolling 
direction. In the uni-axial state of stress along x  direction, the stress components 
with respect to ),,( zyx  system at yielding are given by  

 45, 0, 0, 0x x z z x z y y , (4.136) 

where 45  is the uni-axial yield stress along the 45  direction to the rolling 
direction. Transforming these components to the (x,y,z) system, we get 

 

1 ( 2 ),
2
1 ( 2 ),
2
1 ( ),
2

.

xx x x z z x z

zz x x z z x z

xz x x z z

yy y y

 (4.137) 

Using Equation 4.136, the stress components with respect to the (x,y,z) system 
become 

 45 45 45
1 1 1, , , 0
2 2 2xx zz xz yy . (4.138) 

Substituting these values in the anisotropic yield criterion of Equation 4.132 and 
using Equation 4.133, we get the following expression for the material parameter 
N: 

 m

mm
N

)2/(2
)2/(

45

450 . (4.139) 

Finally, the parameter m is evaluated from the bi-axial test using the following 
expression: 
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1
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1
2

m
b

m
r . (4.140) 

Note that for 2m , this expression reduces to Equation 4.96. 
Dixit and Dixit [34] have also shown that this criterion satisfies the convexity 

condition if 1m  and 0N . They have employed this criterion in the analysis of 
anisotropic plane strain rolling [34]. 

4.7 Elastic-Plastic Incremental Stress-Strain and Stress-Strain 
Rate Relations for Anisotropic Materials 

In this section, we discuss the procedure of obtaining the elastic-plastic incremental 
stress-strain and stress-strain rate relations for anisotropic materials. Various 
criteria for initial yielding of these materials have been discussed in the last 
section. However, not much is known about their behavior in subsequent yielding. 
Therefore, in the absence of enough data to model their hardening behavior, we 
assume that their hardening is isotropic. First, we develop the incremental stress-
strain relation for the material which obeys the three-dimensional initial anisotropic 
yield criterion of Barlat et al. [28] (Section 4.6.3) and which hardens according to 
the strain-hardening hypothesis. Later, we develop the stress-strain rate relation for 
the material which obeys the plane strain anisotropic yield criterion of Section 
4.6.4. 

4.7.1 Elastic-Plastic Incremental Stress-Strain Relation for Anisotropic 
Materials 

For this material, using Equation 4.118, the criterion for subsequent yielding can 
be  expressed as 

 0)()(),( p
eqijeq

p
eqij Hf , (4.141) 

where  the equivalent stress eq  is defined by  
 

1/

1 1 1 2 1 3 2 1 2 2 2 3

3 1 3 2 3 3

,
4

.

m
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m mm m m m

m m m

S S S S S S S S S S S S

S S S S S S

  

  (4.142) 
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Further, H is the hardening function (Equation 3.103) to be determined along the 
rolling direction and p

eq  is the equivalent plastic strain which is obtained from the 

integration of d p
eq  along the deformation path: 

 dp p
eq eq . (4.143) 

The equivalent plastic strain increment d p
eq  is defined in such a way that eq  and 

d p
eq  are work-conjugate to each other. Thus,  

 
d

d
p

ij ijp
eq

eq
. (4.144) 

Applying the associated flow rule to the yield function of Equation 4.141, we 
get the following expression for the plastic part of the incremental linear strain 
tensor: 

 d d d eqp
ij

ij ij

f , (4.145) 

where d  is a positive scalar.  
To determine d , we substitute Equation 4.145 for d p

ij  into Equation 4.144 to 
obtain 

 
d

d

eq
ij

ijp
eq

eq
. (4.146) 

Since Equation 4.142 for eq  is a first degree homogeneous function of ij , we get 

 eq
ij eq

ij
. (4.147) 

Then, Equations 4.146 and 4.147 imply 

 d d p
eq . (4.148) 

From the hardening relation (Equation 3.103), we obtain  
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d

d eqp
eq H

, (4.149) 

where H  is the slope of the hardening curve. Eliminating d p
eq  from Equations 

4.148 and 4.149, we get  

 
d

d eq

H
. (4.150) 

After substituting the above equation for d , the associated flow rule 
(Equation 4.145) becomes  

 
d

d eq eqp
ij

ijH
. (4.151) 

To obtain the incremental stress-strain relation from the above equation, we 
express eqd  in terms of d kl  as follows: 

 1d deq eqp
klij

ij klH
. (4.152) 

Now, define a fourth order tensor:  

 klijijkl AA
H

M 1 , (4.153) 

where 

 
ij

eq
ijA . (4.154) 

Then, the incremental plastic strain-stress relationship (Equation 4.152) becomes 

 d dp
ijkl klij M . (4.155) 

To determine the fourth order constitutive tensor ijklM , we need to obtain the 

expression for ijA , i.e., the derivative of eq  with respect to ij . For this purpose, 

first we define the following invariants of the modified stress deviators S and S :  
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2 2
1 2 3

2 2
1 2 3

1 1 1 1, [ ( ) ( ) ] , det ,
3 3 2 2
1 1 1 1, [ ( ) ( ) ] , det ,
3 3 2 2

H tr H tr tr H

H tr H tr tr H

S  S S S

S S S S
.                         

(4.156) 

Then, the principal values of S and S  satisfy the following characteristic 
equations:  
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1 2 3
3 2

1 2 3

3 3 2 0, 1,2,3

3 3 2 0, 1,2,3
i i i

i i i

S H S H S H i

S H S H S H i
             (4.157) 

As per the Cardan’s solution of a cubic equation, iS  and iS  are given by  
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where 
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(4.159) 

Next, the chain rule is used to obtain the expression for ijA , i.e., the derivative 

of  eq  with respect to ij .  Thus, we get 
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ij
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A
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. (4.160) 

In this expression, the derivatives /eq , / pS  and / pS are obtained 

from the definitions of eq  and  (Equation 4.142), the derivatives /p qS H  and 

/p qS H  are evaluated from Equation 4.158, the derivatives /q rsH S  and 

/q rsH S  are calculated from the definitions of the invariants (Equation 4.156), 

whereas the derivatives /rs ijS  and /rs ijS  are determined from the linear 
transformations at Equations 4.117 and 4.110. 

In Section 3.6, while deriving the elastic-plastic incremental stress-strain 
relationship for isotropic materials, it was assumed that the elastic and plastic parts 
of the incremental linear strain tensor were additive. We make the same 
assumption while deriving the elastic-plastic incremental constitutive equation for 
anisotropic materials as well. Then we combine the incremental plastic strain-stress 
relationship (Equation 4.155) with the incremental elastic strain-stress relationship 
(Equation 3.150). Finally, the combined relationship is inverted to express the 
incremental stress in terms of the incremental strain. 

4.7.2 Elastic-Plastic Stress-Strain Rate Relation for Anisotropic Materials 

Now we develop the stress-strain rate relation for the material which obeys the 
plane strain anisotropic criterion (of Section 4.6.4) for initial yielding and which 
hardens according to the strain-hardening hypothesis. For this material, using 
Equation 4.132, the criterion for subsequent yielding can be expressed as 

 
( , ) 2

( ) ( ) 0 .

m mp
ij eq xx yy zz xx yy

m m m p
xz zx eq

f c h

N H
 (4.161) 

where H is the hardening function (Equation 3.103) to be determined along the 
rolling direction. Note that we can define the equivalent stress eq  as  

     
1/

2 ( )
mm m m m

eq xx yy zz xx yy xz zxc h N , (4.162) 

the equivalent plastic strain increment d p
eq  as the work-conjugate to eq  

(Equation 4.144) and then the equivalent plastic strain p
eq  as the integration of 

d p
eq  along the deformation path (Equation 4.143). However,  here we assume that 
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p
eq  is the von Mises equivalent plastic strain defined by Equations 3.158 and 

3.156.  
The associated flow rule (Equation 4.145) can be expressed in terms of the 

plastic part of the strain rate tensor by using the relationship at Equation 3.155 
between d p

ij  and p
ij  and defining 

 d
dt

. (4.163) 

Thus, we get 

 
ij

p
ij

f , (4.164) 

where now f is given by Equation 4.161. (Since d  is a positive scalar,  is also a 
positive scalar.) 

We assume that xx yy  and 2xx yy zz . Then we write the associated 
flow rule (Equation 4.164) in the component form by differentiating the yield 
function f (Equation 4.161) with respect to the non-zero stress components of : 

 1 1[ ( 2 ) ( ) ]p m m
xx xx yy zz xx yycm hm , (4.165a)  

 1 1[ ( 2 ) ( ) ]p m m
yy xx yy zz xx yycm hm , (4.165b)  

 1[ 2 ( 2 ) ]p m
zz xx yy zzcm , (4.165c)  

 1[( ) ]mp
xz xz xzsign Nm . (4.165d)  

These relations need to be expressed only in terms of xx , zz  and xz . To 

eliminate yy  from these relations, the plane strain condition 0p
yy  is used. 

Substitution of this condition in Equation 4.165b leads to 

 1 2
1 1yy xx zz

d d
d d

, (4.166) 

where 

 
1/( 1)mcd

h
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Now, the following relations can be obtained from Equation 4.166:  
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Using these relations, the associated flow rule (Equations 4.165a,c,d) becomes 
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d
, (4.169a)  

 
1
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1

m
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d
, (4.169b)  

 1[( ) ]mp
xz xz xzsign Nm . (4.169c) 

Since d p
eq  is not defined as work-conjugate to eq , d  cannot be equal to 

d p
eq . Therefore, we cannot obtain  by this method. However, we can determine 

 from the consistency condition. But here, we obtain  by a different method. 
To determine , we express the yield criterion (Equation 4.161) only in terms of 

xx , zz  and xz . This is done by substituting Equation 4.168 into the yield 
criterion (Equation 4.161): 

          2 2( ) ( ) 2 ( ) 0
1 1

m m
m m p

xx zz xx zz xz eq
dc h N H

d d
. 

  (4.170) 

Next we express the yield criterion in terms of p
xx and p

xz  by using the associated 
flow rule (Equations 4.169a,c): 

       0)(2
22

)1/()1/()1/(

p
eq

m

mmp
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mmp
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mmp
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Nm

N
hm

h
cm

c . (4.171) 

(While deriving the above equation, c, h, m and N are taken to be positive. 
However, it has been shown in Section 4.6.4 that all the material parameters, i.e., c, 
h, m and N are positive.) From the above relation, the following expression for  
is obtained: 
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  (4.172) 
The associated flow rule (Equations 4.169a–c) needs to be expressed in terms 

of the deviatoric stress components ij . Using Equation 4.166, we obtain the 

following expressions for the two diagonal components xx  and zz : 
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 (4.173a) 

The only non-zero diagonal component xz  is of course equal to xz : 

 xzxz . (4.173b) 

Eliminating xx , zz  and xz  from Equations 4.169 and 4.173, we get 
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where 
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If the material is rigid-plastic (i.e., p
ijij ), then Equation 4.174 is the 

complete constitutive equation. For elastic-plastic material, as before, we assume 
that the decomposition of ij  into the elastic and plastic parts is additive. 
Therefore, to get the complete constitutive equation, we combine the elastic 
constitutive equation (Equation 3.162) with the above plastic constitutive equation 
(Equation 4.174) in an additive way. 

4.8 Kinematic Hardening 

The Bauschinger effect is modeled by a rigid translation of the initial yield surface 
away from its center. Further, the size as well as the shape of the initial yield 
surface also gets changed during subsequent yielding. Prager [35] was the first to 
model the Bauschinger effect by employing a rigid translation of the initial yield 
surface but without incorporating either the change in size or the change in shape. 
He used the word kinematic hardening to describe  this model.  

If the initial yield criterion is expressed by the yield function  f :  

 ( ) 0ijf , (4.176) 

then the criterion for subsequent yielding, corresponding to a kinematic hardening, 
can be expressed as  

 ( d ) 0ij ijf , (4.177) 

where now ij  is the current stress tensor and d ij  is the incremental translation 

of the  yield surface. The tensor d ij  is called the incremental back stress. If the 
material yields according to the Mises criterion (Equations 3.21 and 3.22), then the 
criterion for subsequent yielding, corresponding to the kinematic hardening 
(Equation 4.177) becomes 

 22( d )( d ) 0
3ij ij ij ij Y , (4.178) 

where ij  is the deviatoric part of the current stress tensor and Y  is the yield 
stress in uni-axial tension. 

Prager [35] assumed that the incremental translation of the yield surface takes 
place along the direction of the plastic part of the incremental linear strain tensor 
d p

ij . This assumption can be expressed mathematically as 

 d d p
ij ijc , (4.179) 
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where c is a material parameter representing the kinematic hardening. If c is a 
constant, then it is called linear kinematic hardening model. However, if c is taken 
as a function of the deformation history, then it is called non-linear kinematic 
hardening model.  

Graphical representation of Prager’s [35] model in the stress space (i.e., a nine-
dimensional space of the stress components ij ) is shown in Figure 4.5. Here, the 

point O represents the origin of the stress space and the points 1C  and 2C  denote 
the current and new centers of the yield surface. The vector 1OC  represents the 
translation of the current yield surface from the initial yield surface and the vector 

1OP  represents the current stress tensor. Further, the vector 1 2C C , which 
represents the incremental translation d ij of the current yield surface, is parallel to 

the vector 1P Q  representing d p
ij . The vector 1 2P P  represents the incremental 

stress d ij . For this model, the Mises criterion for subsequent yielding (Equation 
4.178) becomes 

 22( d )( d ) 0
3

p p
ij ij ij ij Yc c . (4.180) 

In uni-axial tension along the x-direction, the shear components of ij , ij  and 

d p
ij  are zero. Further, yy  and zz  are also zero. Then, the non-zero components 

of ij  become 

 2 1 1, ,
3 3 3xx xx yy xx zz xx .        (4.181) 

Since the volume remains constant during plastic deformation, we get the 
following relations between the non-zero normal components of d p

ij :  

 1 1d d , d d
2 2

p p p p
yy xx zz xx ,             (4.182) 

Substituting Equations 4.181 and 4.182 in Equation 4.180, we get the following 
relation between d xx  and d p

xx : 

 3d d
2

p
xx xx Y xx

c . (4.183) 

Thus, for Prager’s [35] kinematic hardening model, the material parameter c is 2/3 
times the slope of the one-dimensional stress-strain curve.  



 Plasticity of Finite Deformation 249 

 
Figure 4.5.  Graphical representation of Prager’s  kinematic hardening model in stress space 

In uni-axial tension, the shear components of d p
ij  are zero. Therefore, the 

shear components of d ij  also become zero. Further, the normal components of 

d p
ij  are related by Equation 4.182. Therefore, from Equation 4.179, we get the 

following expressions for the non-zero components of d ij : 
 

 d ( )d , d d , d d
2 2

p p p
xx xx yy xx zz xx

c cc .           (4.184) 

The above equation shows that whereas in the x direction (i.e., in the axial 
direction), the yield surface moves in the direction of d p

xx , in the y and z 
directions (i.e., in the transverse directions), it moves in the opposite direction of 
d p

xx . Thus, there is (kinematic) hardening in the axial direction, but softening in 
the transverse directions.  

As stated above, Prager’s [35] model exhibits transverse softening in uni-axial 
tension. This transverse softening is not supported by experiments. Another 
drawback of Prager’s [35] model is that the corresponding yield function takes two 
different forms in two- and three-dimensional problems [36, 37]. Ziegler [36] has 
reported that the yield surface of Prager’s [35] model moves along the direction 
normal to the yield surface (i.e., along d p

ij ) for three-dimensional problems as 
expected, but for two-dimensional problems it does not move along the same 
direction.  



250 Modeling of Metal Forming and Machining Processes 

To remove these drawbacks, Ziegler [36] proposed a certain modification in  
Prager’s model [35]. The modification can be represented by the following 
mathematical expression: 

 d ( )dij ij ij , (4.185) 

where d  is a material parameter representing the kinematic hardening. Graphical 
representation of Ziegler’s [36] model in the stress space (i.e., a nine-dimensional 
space of the stress components ij ) is shown in Figure 4.6. Here, the point O 

represents the origin of the stress space and the points 1C  and 2C  denote the 
current and new centers of the yield surface. Further, the vector 1 2C C , which 
represents the incremental translation d ij of the current yield surface is parallel to 

the vector 1P Q . But the vector 1P Q  is not along the vector 1P R  representing 

d p
ij . As before, the vectors 1OC , 1OP  and 1 2P P  represent respectively ij , ij  

and d ij .  

 
Figure 4.6. Graphical representation of  Ziegler’s kinematic hardening model in stress space 

To determine d , we use the condition that the vector 2QP  must be 

perpendicular to the vector 1P R  representing d p
ij [38]. Thus,  

 (d d )d 0p
ij ij ij . (4.186) 
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This condition, called the consistency condition, makes sure that the new stress 
point lies on the new yield surface. Multiplying both sides of Equation 4.185 by 
d p

ij , eliminating d d p
ij ij  by using Equation 4.186 and changing the dummy 

indices of one side of the resulting equation from ),( ji  to ),( lk , we get the 
following expression for d : 

 
d d

d
( )d

p
ij ij

p
kl kl kl

. (4.187) 

Both the Prager’s [35] and Ziegler’s [36] model coincide in tension and 
compression tests as well as in simple and pure shear tests.  

The following non-linear modifications have been proposed to Prager’s [35] 
and Ziegler’s [36] model [39]: 

 2
1d d dp p

ij ij eq ij
Y

cc , (4.188) 

and 

 1 2d d ( ) dp p
ij eq ij ij eq ij

Y Y

c c
. (4.189) 

Here, Y  is the yield stress,  d p
eq  is the equivalent plastic strain increment 

defined by Equation 3.93 and 1c  and 2c are functions of the integrals of the second 

and third invariants of d p
ij . 

For these two models, the constitutive relation for p
ijd  is obtained from the 

associated flow rule: 

 d dp
ij

ij

f , (4.190) 

where the positive scalar d  is determined from the consistency condition. Then 
Equation 4.190 is combined with the constitutive relation for d e

ij  to obtain the 
elastic-plastic incremental stress-strain relation. 
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4.9 Modeling of Ductile Fracture 

Ductile fracture is often a limiting factor in metal forming processes. Recent 
investigations have shown that a ductile fracture occurs mainly due to micro-void 
nucleation, growth and finally coalescence into a micro-crack. The void growth 
can also affect the macroscopic properties of the material. Therefore, the plastic 
stress-strain or stress-strain rate relations need to be changed appropriately to 
include the effect of void growth. However, if the extent of void growth up to 
fracture is small, then one can ignore the effect of void growth on the constitutive 
equations. However, a realistic model for the ductile fracture prediction must 
include void nucleation, void growth and a condition for void coalescence. Three 
broad approaches have emerged which try to predict ductile fracture on the basis of 
void nucleation, growth and coalescence. They are:  

 Porous plasticity model of Berg and Gurson [40, 41] 
 Void nucleation, growth and coalescence model (Goods and Brown, Rice 

and Tracy, and Thomason Model [42–44]) 
 Continuum damage mechanics model of Lemaitre [45] and Rousselier 

[46] 

4.9.1 Porous Plasticity Model of Berg and Gurson 

In this model, the material with voids is idealised as a porous material. Thus, its 
constitutive equation is derived from the plastic potential of a porous material. In a 
porous plastic material, the hydrostatic part of stress also influences yielding. As a 
result, the yield surface does not remain an infinitely long cylinder as shown in 
Figure 3.6, but is capped by elliptical surfaces. Based on Berg’s [40] model of 
dilatational plasticity, Gurson [41] proposed a plastic potential for porous material. 
Starting from a unit spherical cell with a single void, he obtained the following 
expression for the plastic potential function for a porous material with randomly 
distributed voids of volume fraction fv : 

 
2

2 2
1 3

( ) 3 ( )
( , ) 2 cosh 1 ( ) .

2
eq p h p

ij f f f
eq eq

q
g v q v q v  (4.191) 

Here, ( )h p  is the hydrostatic part of stress in the porous aggregate, peq )(  is the 

equivalent stress in the porous aggregate and )( eq  is the equivalent stress in the 
matrix. Gurson [41] assumed that 1321 qqq . (However, Tvergaard [47] 

assigned some other values to these constants ( 5.11q , 12q , 2
13 )(qq ) to 

bring the predictions of the model into closer agreement with numerical analysis of 
a periodic array of voids.) 
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In this model, the rate of change of the void volume fraction fv  is considered 
as the sum of the void nucleation rate nucleationfv )(  and the void growth rate 

growthfv )( . Thus,  

 growthfnucleationff vvv )()( . (4.192) 

In general, the void nucleation rate depends on the hydrostatic part of the plastic 
strain rate tensor p

ij  as well as equivalent plastic strain rate p
eq . Here, it is 

assumed to depend only on the equivalent plastic strain rate: 

 p
eqnucleationf Av )(  , (4.193) 

where  A is a constant. Further, the void growth rate is related to the hydrostatic 
part of p

ij  by the following relation: 

 p
kkfgrowthf vv )1()( . (4.194) 

The above relations can also be expressed in the increment form. 
In this model, ductile fracture is regarded as the result of instability in the weak 

dilatational plastic flow field localised in a band called a shear band. Rudnicki and 
Rice [48] obtained the instability conditions without considering any imperfection 
in the material. Later, Tvergaard [47] and Yamamoto [49] incorporated material 
imperfection in the instability conditions. The fracture criterion is represented as a 
graph of critical localisation strain vs the critical void volume fraction with strain 
hardening exponent as a parameter. 

In this model, the void coalescence by internal necking of inter-void matrix is 
considered as a secondary effect which develops only after the formation of the 
shear band. However, this is in contrast to the next model, which considers the 
internal necking of the inter-void matrix as the primary mechanism of ductile 
fracture.  

Some researchers [50] have used the Berg-Gurson model without the instability 
conditions. They characterized the ductile fracture by a critical value of fv  which 
was determined experimentally. 

4.9.2 Void Nucleation, Growth and Coalescence Model (Goods and Brown, 
Rice and Tracy and Thomason Model) 

In this model, Thomason [44] combined the results of Goods and Brown [42] on 
void nucleation, those of Rice and Tracy [43] on void growth and his own on void 
coalescence to arrive at a fracture criterion in the form of a graph of fracture strain 
vs the hydrostatic part of stress. Thus, in this model, the effects of void nucleation 
and growth are incorporated not in the constitutive equations but in the fracture 
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criterion itself. The void nucleation model of Goods and Brown, void growth 
model of Rice and Tracy and void coalescence model of Thomason are described 
below along with some additional models on void nucleation and void growth. 

 Void nucleation models 
A de-cohesion model of void nucleation is based on the condition that the void 
nucleation by de-cohesion of second phase particles occurs whenever the normal 
stress component on the particle/matrix interface reaches a critical value c . 
Goods and Brown [42] used this condition to derive the following relation for the 
largest principal strain at void nucleation (called the void nucleation strain and 
denoted by n

1 ) in terms of the hydrostatic part of stress h : 

 2
1 )( hc
n Kr . (4.195) 

Here, r is the particle radius and K is a material constant depending on the volume 
fraction of the second phase particles. Experiments on the Fe-Fe3C  system confirm 
the linear relationship between n

1  and r for small spherical particles of radius less 
than 1 µm.  

A cracking model of void nucleation was proposed by Gurland [51] based on 
his experimental observation on 1.05% C spherodised steel. As per this model, 
void nucleation (of cementite particles) takes place continuously at all strain levels 
depending on the size, shape and orientation with the maximum principal stress 
direction. This results in a linear relation between the void nucleation rate 

nucleationfv )( and the equivalent plastic strain rate p
eq  as in Equation 4.193. 

It should be noted that the development of a very general model of void 
nucleation is a difficult task as a typical commercial alloy contains a wide range of 
particle types and particle morphologies which can result in a variety of void 
nucleation mechanisms operating simultaneously. Further, such a model may be 
too complicated to be amenable to analysis for making useful numerical 
predictions. 

 Void growth model 
Once the nucleation of a micro void takes place either by de-cohesion or by 
cracking of a second phase particle, the resulting stress-free surface of the void 
produces localised stress and strain concentrations in the surrounding plastically 
deforming matrix. With continuing plastic flow of the matrix, the void undergoes 
both the change in size and shape. If it is assumed that the inter-void distance is 
sufficiently large to prevent any interaction amongst them, then one can analyse 
the void growth phenomenon by considering a single void in an infinite medium. 

Rice and Tracy [43] considered a single spherical void of initial radius 0R  in a 

remote uniform strain rate field ij  and remote stress field ij  in a rigid-plastic 
material. They derived the following expression for the rate of change of the radii 
of curvature )( kR  in the principal strain rate directions: 
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 meaneqkk RDER ])1[(        (k=1, 2, 3), (4.196)   

where  

3
2E  for linear hardening and for low values of h  for non-hardening, 

    1  for high values of  h  for non-hardening, 

eq

hD 75.0  for linear hardening, 

    
3 3

0.558sinh 0.008 cosh
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h h

eq eq
 for non-hardening, 

eq = equivalent stress, 

)(
3
1

321 RRRRmean , 

eq  equivalent strain rate, 

k  principal strain rates,  (k=1, 2, 3), 

31

23 , Lode variable. 

Note that an initial spherical void grows into an ellipsoidal void of the principal 
radii 1R , 2R  and 3R . Thomason [44] integrated the above equations assuming that 
the principal axes of the strain rate tensor remain fixed in direction throughout the 
deformation path and obtained the following expressions for the principal radii of 
the void: 

 1 02

3(1 )

2 3
R A B R , (4.197) 

 2 02 3
R A B R , (4.198) 

 3 02

( 3)

2 3
R A B R , (4.199) 

where 

 gDA 1

2

)3(
32exp , (4.200) 
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 )1(1 A
D

EB . (4.201) 

Here, g
1  is the integral of the largest principal strain rate. Thomason used these 

expressions (Equations 4.197–4.199) in his derivation of the condition for void 
coalescence. 

For an array of void nucleating particles of diameter pD  and spacing pd , 

setting the initial void radius as 2/pD  and integrating Equation 4.196 up to 

fracture, the fracture strain f  (for a non-hardening material) is obtained as 

 
)/5.1exp(28.0

)/ln(

eqh

pp
f

Dd
. (4.202) 

For a plane strain problem with cylindrical voids, similar analysis by McClintock 
[52] yields the following expression for the fracture strain: 

 
]2/))(1(3sinh[

)1)(/ln(

21 eq

pp
f n

nDd
. (4.203) 

Here, i  are the principal stresses and n is the hardening parameter of Equation 
3.9.  

Some research workers [53, 54] have used the above expressions of fracture 
strain to predict ductile fracture with the help of some experimentally determined 
parameters. A limitation of this approach is that it ignores the effects of void 
nucleation (as these expressions are derived from a pre-existing finite size crack) 
and void coalescence. Thus, usually f  is overestimated. However, these 

expressions do reveal the dependence of  f  on the triaxiality ( eqh / ) of the 

stress state, hardening parameter n of the material and purity ( pp Dd / ) of the 
material. 

 Void coalescence condition 
Thomason [44] modeled the void coalescence phenomenon as plastic instability 
due to necking of the inter-void matrix. According to him, the sufficient condition 
for plastic instability of the inter-void matrix is given by  

 01 nn A , (4.204) 

where nA  is the area fraction of the inter-void matrix perpendicular to the direction 
of the maximum principal stress 1  and n  is the plastic constraint stress. He 
considered a geometrically equivalent square prismatic void with the same 
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principal dimensions as the ellipsoidal void and used the upper bound method to 
obtain the following expression for the plastic constraint stress: 

 2/12 )]/([
2.1

)/(
1.0

pp
eqn dbbda

, (4.205) 

where a and b are the void dimensions. 

 Fracture criterion 
Thomason [44] used Equations 4.197–4.199 for the void dimensions to express the 
void coalescence condition (Equations 4.204 and 4.205) in terms of the void 
growth strain g

1  and the hydrostatic part of stress h . By superposing this 
condition onto the void nucleation relation (Equation 4.195), he obtained the 
fracture criterion as a graph of fracture strain ( gn

f 11 ) vs the hydrostatic part 
of stress h . 

A limitation of this approach is the use of Equations 4.197–4.199 for the void 
growth. These expressions have been derived by assuming that the principal axes 
of the strain rate tensor remain fixed in direction throughout the deformation path. 
This is true only for the case of small deformation and rotation. As a result, this 
approach cannot be used when the deformation and/or rotation are large.  

4.9.3 Continuum Damage Mechanics Models 

Description of constitutive behavior of materials with micro-voids needs an 
additional variable, called the damage variable, which quantifies the intensity of 
micro-voids at a point. This variable can be defined as follows. On a plane with 
normal n̂ , the damage vector D at a point P is defined as  

 ˆDD n , (4.206) 

where D is defined as the area void fraction around the point on that plane: 

 Lim
0

v
A

A
D

A
. (4.207) 

Here, A  is a small area around point P in the plane and vA  is the area of void 
traces contained in A . The set of Ds on all the planes passing through the point 
can be represented as a damage tensor. In this work, we consider the damage 
mechanics of only isotropic materials. In isotropic materials, the area void fraction 
has the same value on every plane passing through the point. Therefore, the 
damage tensor reduces to an isotropic tensor with D (given by Equation 4.207) as 
its diagonal components. As a result, for isotropic materials, the damage variable at 
a point can be considered as a scalar, defined by Equation 4.207, rather than a 
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tensor. For isotropic materials, the damage is sometimes defined as a void volume 
fraction. However, in this work, we use the definition given by Equation 4.207. 

According to the theory of continuum thermodynamics, when the temperature 
change is not significant, the constitutive equations for dissipative phenomenon 
like the plastic deformation with hardening and damage are derived from the 
plastic potential g expressed as a function of ij ,  –R and –Y [45, 55]. Here, ij  is 
the Cauchy stress tensor and –R and –Y are the dissipative parts of the 
thermodynamic forces corresponding respectively to the variables p

eq  and D . 

(Note that, p
eq  is the equivalent plastic strain rate defined by Equation 3.156 and 

D  is the time rate of change of D). Further, Y is interpreted as the rate of release of 
elastic energy with damage growth when the stress is held constant (i.e., Y is the 
work-conjugate variable corresponding to D.) Thus, the expression for Y is 
obtained by taking the derivative of the specific  free energy (or the thermodynamic 
potential) with respect to D while keeping ij  constant. When the temperature 
change is not significant, the expression for Y for the elastic-plastic material is 
given by [55] 

 
2

2

2

)21(3)1(
3
2

)1(2 eq

heq

DE
Y . (4.208) 

Here, E and  are the elastic constants of the material, h  is the hydrostatic part 
of the Cauchy stress tensor and eq  is the equivalent stress defined by Equation 
3.23.  

Additionally, it is assumed that it is possible to decompose the plastic potential 
g of the damaged material as [55] 

 ),,(),,(1
p
eqDij DYgDRgg . (4.209) 

Here, the first part 1g  is the plastic potential associated with yielding and 
hardening of the material whereas the second part Dg  is the plastic potential 
associated with damage of the material such that it reduces to zero whenever D is 
zero.  R is the work-conjugate variable corresponding to p

eq . For the first part, i.e., 
for the plastic potential associated with yielding and hardening, we have chosen 
earlier p

eq  as the independent variable rather than –R. Thus, we can write g as  

 ),,(),,(1
p

eqD
p
eqij DYgDgg . (4.210) 
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When D is zero, for the material yielding according to the von Mises criterion and 
hardening according to the strain hardening hypothesis, 1g  is taken to be the 
following yield function: 

 )(),( p
eqeq

p
eqij Hf , (4.211) 

where H is the hardening function defined by Equation 3.103. When D is not zero, 
1g  is obtained from the principle of strain equivalence, which states that the 

deformation of a damaged material can be represented by the same constitutive 
relation as that of the virgin material if the Cauchy stress tensor  is replaced by 
the effective Cauchy stress tensor * : 

 *
1

ij
ij D

. (4.212) 

Therefore, when D is not zero, 1g  is taken as 

 *
1( , , ) ( )p p

ij eq eq eqg D H , (4.213)   

where *
eq  is the equivalent stress corresponding to the effective stress * . Thus, 

*
eq  is 

 
1/ 2

* * *3
2eq ij ij . (4.214)   

The associated flow rule now becomes  

 1d d d eqp
eq

ij ij

g . (4.215) 

When the derivative of *
eq  with respect to ij is evaluated using Equations 4.214 

and 4.212 and d  is obtained from Equation 3.138 by replacing  f with 1g , we get 

the following expression for d p
ij for the damaged material:  

 2
1 9d d

1 4
ij klp

klij
eqD H

. (4.216) 
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Note that this expression differs from Equation 3.143 for the undamaged material 
by a factor of )1/(1 D . Similarly, the expression for the elastic part d e

ij  of the 
incremental linear strain tensor, for the damaged material, also differs by the same 
factor from the corresponding expression for the undamaged material (Equation 
3.149). As a result, the fourth order elastic-plastic tensor EP

ijklC  in the incremental 
stress-strain relation for the damaged material (for the updated Lagrangian 
formulation) differs from the corresponding relation for the undamaged material 
(Equation 3.153) by the factor of (1–D): 

 2
92 (1 )

1 2 2 ( 3 )
ij klEP

ijkl ij kl ik jl
eq

C D
H

. (4.217) 

For most metals, the value of D up to micro-crack initiation is quite small (of the 
order of 0.05) compared to 1. Therefore, the factor (1–D) can be neglected in the 
expression for EP

ijklC . As far as the elastic-plastic stress-strain rate relation for the 
damaged material (for the Eulerian formulation) is concerned, it also differs from 
the corresponding relation for the undamaged material (Equations 3.163) by a 
factor containing (1 D). Since D is small compared to 1 up to micro-crack 
initiation, we neglect this factor in the elastic-plastic stress-strain rate relation as 
well. Thus, even for the damaged material, we continue to use the constitutive 
equations of the undamaged material. 

The damage growth law is obtained as the derivative of Dg  with respect to –Y. 
Thus, we get 

 d d
( )

DgD
Y

. (4.218) 

Unlike 1g , Dg  is not well established in the literature. Therefore, experimental 
results on void measurement at different deformation levels are used to propose a 
damage growth law. Based on the experimental results of Le Roy et al. [56] on 
AISI 1090 steel, Dhar et al. [57] have proposed the following damage growth law:   

 1 2d d ( )( )dp p
eq eqD c a a D Y . (4.219) 

Here, the material constants c, 1a  and 2a  were determined by Dhar et al. [57] by 
fitting the above equation through the experiments results of Le Roy et al. [56]. 
They obtained the following values: 

 021.898 10c ,  04
1 9.8 10a 1(MPa) ,  84.12a 1(MPa) . (4.220) 
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While getting these constants, they used Bridgeman’s [58] relation to express the 
triaxiality /h eq  as a function of equivalent plastic strain. 

The first term of Equation 4.219, which is independent of –Y, represents the 
damage evolution due to void nucleation. It states that the void nucleation takes 
place continuously at all strain levels. Thus, it is similar to the void nucleation 
model of Gurland [51]. The other terms of Equation 4.219 represent the evolution 
of damage due to void growth as proposed by others [59, 60]. The Lemaitre’s [55] 
damage growth law does not contain the term corresponding to 2a , while in the 
model of Tai and Yang [59], the term corresponding to 1a  is missing. From the 
experimental results of Le Roy et al. [56], it is observed that the graph of area void 
fraction vs the equivalent plastic strain is linear at low strain level but it is highly 
non-linear at higher values of strain. Therefore, it seems to be wise to retain both 
the terms corresponding to void growth. One can add more non-linear terms like 

2
3Da , 3

4Da  etc. if required.  
Note that the constitutive equation of a damaged material contains the effect of 

void growth. The damage growth law contains the effects of both the void 
nucleation and void growth. However, the phenomenon of void coalescence has to 
be incorporated as an additional condition in terms of the continuum parameters. 
This condition, which serves as a fracture criterion, has to be based on an 
appropriate micro model. Thomason’s [44] condition for void coalescence 
(Equations 4.204 and 4.205) is a good candidate for this purpose. However, while 
deriving this condition, Thomason [44] used the Rice and Tracy [43] expressions 
for the void dimensions and inter-void spacing that are valid only for the case of 
small strain and rotation. Dhar et al. [57] modified the Thomason’s condition for 
void coalescence (Equations 4.204 and 4.205) by incorporating the finite strain 
expressions for the void dimensions and inter-void spacing. The modified version 
of Thomason’s void coalescence condition, as proposed by Dhar et al. [57], is 

 .0)exp(
))2/exp(1(

2.11.0 2/11 eq
p
eqp

eq
 (4.221) 

 Critical damage criterion of Dhar et al. [57] 
To find the critical value of damage parameter ( cD ), Dhar et al. [57] applied the 
void coalescence condition (Equation 4.221) to AISI 1090 steel for various 
geometries and loading conditions by performing a large deformation elastic 
plastic finite element analysis. They observed that cD  is independent of geometry 
and loading and hence can be used as a material property for the prediction of 
micro-crack initiation in AISI 1090 steel. They found the value of cD  as 0.05 for 
this material. 

At phenomenological level, ductile fracture is governed by both the equivalent 
plastic strain and the hydrostatic part of stress (or the triaxiality). The critical 
damage criterion incorporates both these parameters.   
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 Rousselier’s model [46] 
Another commonly used continuum damage mechanics model is due to Rousselier 
[46]. In this model, the plastic potential g is expressed as a function of the 
hydrostatic stress h , the thermodynamic force Y (corresponding to the damage 
variable D) and the density , besides the deviatoric stress ij  and the equivalent 

plastic strain p
eq .  Thus, it is given by 

 )(),,,(
2/1

2,
p
eq

hijp
eqhij HYhJYg . (4.222) 

Here, the plastic potential g depends on /ij  through its second invariant 2J , on 

/h  through the function h (which incorporates the dilatational effect of void 

growth) and on p
eq  through the hardening function H. The damage variable D is 

implicitly present in the plastic potential g through the following relation: 

 )(DD . (4.223) 

The mass conservation law is used to derive the expression for the function h, the 
thermodynamic force Y and the damage growth law.   

Zheng et al. [61] used Rousselier’s model to derive a macro damage parameter 
for prediction of crack initiation in metal forming processes.  

4.9.4 Phenomenological Models  

In the absence of reliable quantitative models for incorporating the phenomena of 
void nucleation, growth and coalescence, many empirical fracture criteria based on 
some phenomenological observations have been used in metal forming processes. 
Here, only a few such criteria are discussed. 

 Freudenthal, Cockcroft and Latham and Oh criteria [62, 63, 54] 
Freudenthal [62] postulated that the plastic work done per unit volume is a critical 
parameter in ductile fracture. Therefore, he proposed the following criterion for 
ductile fracture:  

 1
0

d
f

p
eq eq C , a constant. (4.224) 

Here, f  stands for the equivalent plastic strain at fracture. The constant C1 in this 
criterion as well as constants in subsequent criterion of this subsection can be 
determined from a tension test. For a tensile specimen, the change in neck 
geometry influences the fracture process. To take care of this change in geometry, 
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Cockcroft and Latham [63] modified the above criterion by incorporating the 
dimensionless stress concentration factor )/( 1 eq , where 1  is the maximum 
normal stress. Thus, their criterion can be stated as  

 1

0
d

f
p

eq eq
eq

 another constant, (4.225) 

or 

 1 2
0

d
f

p
eq C , a constant. (4.226) 

Oh et al. [54] modified the above criterion by replacing 1  with the dimensionless 
stress concentration factor )/( 1 eq . Thus, their criterion is 

 1
3

0
d

f
p
eq

eq
C , a constant. (4.227) 

The main drawback of all the above three criteria is that the effect of 
hydrostatic stress is not incorporated in this model, even though it is known that 
hydrostatic stress also influences ductile fracture. 

 Oyane’s criterion [64] 
Oyane’s criterion [64] is based on a porous plasticity theory, where it is assumed 
that the dilatational stress-strain relation is given by 

 0
d

d
p
eq h

h
eq

A
A

. (4.228) 

Here, d h  is the hydrostatic part of the incremental linear strain tensor ijd  and A 

and 0A are material constants. Oyane [64] integrated the above equation over the 
total strain path to obtain  

 
0 0 0 0

d 1 d
f f ph

h eq
eq

A
A A

. (4.229) 

The left side of the above equation is assumed as a material constant. Then, 
Oyane’s criterion [64] can be stated as  
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 4
0 0

1 d
f ph

eq
eq

C
A

, a constant. (4.230) 

This criterion apparently incorporates the effect of the hydrostatic stress and 
plastic strain, the two phenomenological parameters which govern the ductile 
fracture process. However, in deriving Equation 4.230, it is assumed that the 
ductile fracture is governed by the hydrostatic part of strain independently of its 
deviatoric part. This is not true for ductile fracture in pure shear. 

 Criteria of Norris et al. [65] and Osakada and Mori [66] 
Norris et al. [65] developed a ductile fracture criterion which incorporates both the 
hydrostatic stress and plastic strain, the two phenomenological parameters 
governing ductile fracture. Their criterion is based on experimental works and  
finite difference analyses of various test geometries. It can be stated as  

 5
0

1 d
(1 )

f p
eq

h
C

c
, a constant. (4.231) 

Here, c is a material constant. Similarly, Osakada and Mori [66] have also 
proposed a criterion involving both the hydrostatic stress and plastic strain. Their 
criterion can be stated as 

 6
0

d
f p

eq h eqa b C , a constant. (4.232) 

Here, a and b are material constants and the value of the diamond bracket is taken 
to be zero if it is negative. 

The above two criteria have had limited success in predicting fracture in 
various metal forming processes, as they are based on observations of certain 
experiments rather than on microscopic observations on nucleation, growth and 
coalescence of micro-voids. 

 Hydrostatic stress criterion of Reddy et al. [67] 
If the die geometry is such that the hydrostatic stress is compressive throughout the 
deformation zone, then the micro-voids either do not nucleate or the existing 
micro-voids remain closed. Thus, there is no scope for the initiation of micro-
voids. The work of Clift et al. [53] shows that the value of hydrostatic stress at 
fracture in extrusion and drawing processes is close to zero. Based on these 
observations, Reddy et al. [67] proposed the following criterion for the prediction 
of central burst in extrusion and drawing: “Whenever the hydrostatic stress at a 
point in the plastic deformation zone becomes zero, fracture initiates at that point 
leading to central burst”. They named this criterion ‘Hydrostatic stress criterion’. 

Predictions of the hydrostatic stress criterion are in good agreement [67, 68] 
with experimental predictions of the central burst in extrusion and drawing. 
However, these predictions are conservative [68] compared with the predictions of 
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the critical damage criterion of Dhar et al. [57]. This happens because the critical 
damage criterion of Dhar et al. [57] predicts the onset of micro-crack whereas the 
hydrostatic stress criterion probably predicts the defect (i.e., the central burst) when 
the micro-crack has grown to a certain measurable size. 

Reddy and his co-workers have applied the hydrostatic stress criterion to 
predict ductile fracture in plane strain rolling [69] and axisymmetric upsetting [70]. 

4.10 Friction Models 

While analysing the metal forming processes, the friction at the die-work interface 
is often modeled either by the Coulomb’s law (as in Equation 3.237 or Equation 
3.258) or by the sticking friction model (as in Equation 3.260) or by the friction 
factor model.  The Coulomb’s law is subjected to the constraint that the maximum 
value of the tangential stress component at the interface can not exceed 3/eq  

for the Mises material where )( p
eqeq H . Thus, the Coulomb’s law can be 

stated as (Equation 3.237) 

              for
3
eq

s n nt f t f t ,                                                           (4.233)  

 for
3 3
eq eq

s nt f t  ,         (4.234) 

where st and nt  are respectively the tangential and normal components of the 
stress vector nt  and f is the coefficient of friction. The tangential (or frictional) 
stress component acting on the work-piece is in the opposite direction to that of its 
motion relative to the die.  

In his upper bound approach to the analysis of metal forming processes, 
Avitzur [71] used a friction factor to model the interface friction. In this model, the 
tangential stress component is expressed as a fraction of its maximum value. Thus,  

 
3
eq

s mt , (4.235) 

where the fraction m is called the friction factor. Further, it is assumed to be 
independent of the normal stress component nt . Thus, in the friction factor model, 
the tangential stress component st  is treated as constant (i.e., independent of the 
normal stress component nt ) . For a frictionless case, the value of st  is zero, while 

for the sticking friction condition, its value is 3/eq . Therefore, the value of m 
ranges from zero for a frictionless case to unity for the sticking friction condition. 
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4.10.1 Wanheim and Bay Friction Model 

A general friction model has been developed by Wanheim and Bay [72]. Wanheim 
[73] used the slip-line field technique (for the plane strain case) to study the 
frictional behavior during metal forming processes and observed that the ratio of 
real contact area to apparent contact area increases with the normal stress 
component and approaches the value of unity asymptotically. This happens 
because very high normal stress is needed in the last phase. This behavior has also 
been confirmed experimentally. Using the slip-line solution for the ratio of real 
contact area to apparent contact area and the adhesion theory of friction, a plot of 
the variation of tangential (or frictional) stress with normal stress has been 
generated for different values of m [74]. This plot is shown in Figure 4.7.  

The curves of Figure 4.7 can be approximated by the following analytical 
expressions [75]: 

 
n

nY
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tmt )11(
3

,     for    nn tt    ,                                       (4.236)    
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where st  and nt  are respectively the values of the tangential and normal stress 
components at the proportional limits. They are given by 
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The above expressions are actually for perfectly plastic materials. To make them 
applicable to strain hardening materials, Y  should be replaced by the equivalent 
stress eq . 

Figure 4.7 shows that the Wanheim and Bay friction model indicates a smooth 
transition from the Coulomb’s law (applicable at lower forming loads) to the 
friction factor model (applicable at higher forming loads) with an additional 
transition range. At low values of forming loads, the slope of the curves in Figure 
4.7 is proportional to the coefficient of friction f whereas, at higher forming loads, 
the tangential stress st  asymptotically approaches a constant value of the friction 
factor m.  
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Figure 4.7. Variation of tangential stress with normal stress according to Wanheim and Bay 
friction model 

Thus, for the Wanheim and Bay friction model, the friction boundary condition 
(Equations 4.233–4.235) is expressed as 

 ns tft         up to proportional limit (i.e., for nn tt ), (4.240a) 

 *
s nt f t      in the transition range, (4.240b) 

 
3
eq

s mt      beyond the transition range, (4.240c)  

Thus, the coefficient of friction f is constant up to the proportional limit. In the 
transition range, the variable coefficient of friction *f is found from Equation 4.237 

by replacing Y  with eq . Note that, *f  is a non-linear function of nt  and 
therefore, needs to be evaluated iteratively. Richelsen [76] has provided the 
following expression for *f :  

 * ( )
exp

3

s n n s

n Y
s n

t t t t
f

t m t t
. (4.241) 
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Beyond the transition range, the friction boundary condition is expressed in terms 
of the friction factor m. The equivalent coefficient of friction eqf  is obtained by 

combining Equations 4.238 and 4.239 as follows: 

 
mm

m
t
tf
n

s
eq 1cos)2/(1 1 . (4.242) 

4.11 Summary 

In the first part of this chapter, the plasticity of finite deformation and anisotropic 
materials has been developed. In the remaining part, some models of ductile 
fracture and interface friction have been presented.  

The kinematics of finite deformation and the corresponding constitutive 
equation for the Eulerian formulation have been discussed first. The elastic and 
plastic parts of the constitutive equation have been expressed separately. Since they 
do not involve stress rate, an objective stress measure is not needed in this 
constitutive equation. Next, starting from the kinematics of finite incremental 
deformation, some commonly used measures of finite incremental deformation 
have been developed. The corresponding constitutive equation, needed in the 
updated Lagrangian formulation, has been derived. This constitutive equation 
involves integration over the increment size. A stress updating procedure that 
makes the incremental stress tensor objective has also been discussed. Some 
criteria for initial yielding of anisotropic materials, based on phenomenological 
observations, have been discussed next. Here, the 1948 and 1979 anisotropic yield 
criteria of Hill have been presented. Since these criteria have certain drawbacks, 
two additional anisotropic yield criteria that do not have these drawbacks have 
been discussed: one for the plane stress case and the other for the three-
dimensional case. These criteria have been developed by Barlat and his co-workers 
by applying linear tensor transformations to Hosford’s isotropic yield criterion. A 
plane strain anisotropic yield criterion based on a modification of Hill’s 1979 
criterion has also been developed. Next, the constitutive equations corresponding 
to two of the above anisotropic yield criteria have been developed. At the end of 
this part of the chapter, two kinematic hardening models due to Prager and Ziegler 
are presented. 

In the second part of this chapter, first, the modeling of ductile fracture has 
been discussed. Microscopic observations have shown that ductile fracture occurs 
mainly due to micro-void nucleation, growth and finally coalescence into a micro-
crack. Three broad approaches which predict the ductile fracture on the basis of the 
above observation have been discussed: (i) porous plasticity model of Berg and 
Gurson, (ii) void nucleation, growth and coalescence model (of Goods and Brown, 
Rice and Tracy, and Thomason) and (iii) continuum damage mechanics models of 
Lemaitre and Rousselier. Some phenomenological fracture criteria have also been 
presented. Finally, the modeling of interface friction has been discussed by 
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presenting some commonly used friction models like the Coulomb’s law, the 
friction factor model and a more general Wanheim and Bay friction model. 

4.12 References  

[1] Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, 
Prentice-Hall Inc., Englewood Cliffs. 

[2] Jaunzemis, W. (1967), Continuum Mechanics, The Macmillan Company, New York. 
[3] Lee, E.H. (1981), Some comments on elastic-plastic analysis, International Journal of  

Solids & Structures, Vol. 17, pp. 859–872. 
[4] Boyce, M.C., Weber, G.G. and Parks, D.M. (1989), On the kinematics of finite strain 

plasticity, Journal of  Mechanics & Physics of  Solids, Vol. 37, pp. 647–665. 
[5] Segal, L.A. (1977), Mathematics Applied to Continuum Mechanics, Macmillan 

Publishing Co. Inc., New York. 
[6] Weber, G. and Anand, L. (1990), Finite deformation constitutive equations and a time 

integration procedure for isotropic, hyperelastic-viscoplastic solids, Computer 
Methods in Applied  Mechanics and  Engineering, Vol. 79, pp. 173–176. 

[7] Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, 
John Wiley and Sons, Chichester, Vol. 2. 

[8] Kobayashi, S., Oh, S.I. and Altan, T. (1989), Metal Forming and the Finite-Element 
Method, Oxford university Press, Oxford. 

[9] Nagtegaal, J.C. and DeJong, J.E. (1981), Some computational aspects of elastic-
plastic large strain analysis, International Journal of Numerical Methods for 
Engineering, Vol. 17, pp. 15–41. 

[10] Prager, W. (1961), Introduction to Mechanics of Continua, Ginn and Co., Boston 
[11] Dienes, J.K. (1979), On the analysis of rotation and stress rate in deforming bodies, 

Acta Mechanica, Vol. 32, pp. 217–232. 
[12] Lee, E.H., Mallet, R.L. and Wertheimer, T.B. (1983), Stress analysis of anisotropic 

hardening in finite-deformation plasticity, Transaction of ASME, Journal of Applied 
Mechanics, Vol. 50, pp. 554–560. 

[13] Dafalias, Y.F. (1983), A missing link in the macroscopic constitutive formulation of 
large plastic deformations: in Plasticity Today, ed. by Sawczuk, A. and Bianchi, G., 
pp. 135–151, International Symposium on Recent Trends and Results in Plasticity, 
Udine, Elsevier Applied Science Publishers, London. 

[14] Khan, A.S. and Huang, S. (1995), Continuum Theory of Plasticity, John Wiley and 
Sons Inc., New York. 

[15] Habraken, A.M. and Duchene, L. (2004), Anisotropic elasto-plastic finite element 
analysis using a stress-strain interpolation method based on a polycrystalline model, 
International  Journal of  Plasticity, Vol. 21, pp. 1525–1560. 

[16] Raabe, D. and Roters, F. (2004), Using texture components in crystal plasticity finite 
element simulations, International Journal of Plasticity, Vol. 21, pp. 339–361. 

[17] Barlat, F., Chung, K. and Richmond, O. (1993), Strain rate potential for metals and its 
application to minimum plastic work path calculations, International  Journal of  
Plasticity,, Vol. 9, pp. 51–63. 

[18] Chung, K., Lee, S.Y., Barlat, F., Keum, Y.T. and Park,  J.M. (1996), Finite element 
simulation of sheet forming based on a planar anisotropic strain-rate potential, 
International  Journal of  Plasticity,, Vol. 12, pp. 93–115. 

[19] Hill, R. (1948), A theory of the yielding and plastic flow of anisotropic metals, 
Proceedings of the Royal Society of London, Vol. A 193, pp. 281–297 



270 Modeling of Metal Forming and Machining Processes 

[20] Hill, R. (1979), Theoretical plasticity of textured aggregates, Mathematical 
Proceedings of the Cambridge Philosophical Society, Vol. 85, pp. 179–191. 

[21] Hosford, W.F. (1972), A generalized isotropic yield function, Transaction of ASME, 
Journal of Applied Mechanics, Vol. E39, pp. 607–609. 

[22] Logan, R.W. and Hosford, W.F. (1980), Upper-bound anisotropic yield locus 
calculations assuming <111>-pencil glide, International Journal of  Mechanical  
Sciences, Vol. 22, pp. 419–430. 

[23] Barlat, F. and Lian, J. (1989), Plastic behavior and stretchability of sheet metals. Part 
I: A yield function for orthotropic sheets under plane stress conditions, International 
Journal of Plasticity, Vol. 5, pp. 51–66. 

[24] Bishop, J.W.F. and Hill, R. (1951), A theory of the plastic distortion of a 
polycrystalline aggregate under combined stresses, Philosophical  Magazine, Vol. 42, 
pp. 414–427 and A theoretical derivation of the plastic properties of a polycrystalline 
face-centered metal, Philosophical  Magazine, Vol. 42, pp. 1298–1307. 

[25] Barlat, F., Lege, D.J. and Brem, J.C. (1991), A six-component yield function for 
anisotropic materials, International  Journal of  Plasticity, Vol. 7, pp. 693–712. 

[26] Karafillis, A.P. and Boyce, M.C. (1993), A general anisotropic yield criterion using 
bounds and a transformation weighting tensor, Journal of  Mechanics &  Physics of  
Solids, Vol. 41, pp. 1859–1886. 

[27] Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J, Pourboghrat, F., 
Choi, S.H. and Chu, E.  (2003), Plane stress yield function for aluminum alloy sheets, 
International  Journal of  Plasticity, Vol. 19, pp. 1297–1319. 

[28] Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C. and Dick, R.E. (2005), 
Linear transformation-based anisotropic yield functions, International  Journal of  
Plasticity, Vol. 21, pp. 1009–1039. 

[29] Bron, F. and Besson, J. (2004), A yield function for anisotropic materials: Application 
to aluminum alloys, International Journal of Plasticity, Vol. 21, pp. 937–963. 

[30] Woodthorpe, J. and Pearce, R. (1970), The anomalous behavior of aluminum sheet 
under balanced biaxial tension, International Journal of Mechanical Sciences, Vol. 12, 
pp. 341–347. 

[31] Barlat, F. and Richmond, O. (1987), Prediction of tricomponent plane stress yield 
surfaces and associated flow and failure behavior of strongly textured FCC 
polycrystalline sheets, Material  Science and  Engineering, Vol. 95, pp. 15–29. 

[32] Yoon, J.W., Barlat, F., Dick, R.E. and Karabin, M.E. (2006), Prediction of six or eight 
ears in a drawn cup based on a new anisotropic yield function, International Journal of  
Plasticity, Vol. 22, pp. 174–193.  

[33] Hu, W. (2005), An orthotropic yield criterion in a 3-D general stress state, 
International Journal of Plasticity, Vol. 21, pp. 1771–1796. 

[34] Dixit, U.S. and Dixit, P.M. (1997), Finite element analysis of flat rolling with 
inclusion of anisotropy, International Journal of Mechanical Sciences, Vol. 39, pp. 
1237–1255. 

[35] Prager, W. (1955), The theory of plasticity: A survey of recent achievements, 
Proceedings for the Institution of Mechanical Engineers, Vol. 169, pp. 41–57. 

[36] Ziegler, H. (1959), A modification of Prager’s hardening rule, Quarterly of Appied 
Mathematics, Vol. 17, pp. 55–65. 

[37] Shield, R. and Ziegler, H. (1958), On Prager’s hardening rule, Zeitschrift für 
Angewandte Mathematik und Physik , Vol. 9a, pp. 260–276. 

[38] Chakrabarty, J. (1987), Theory of Plasticity, McGraw-Hill Book Co., New York. 
[39] Rees, D.W.A. (2006), Basic Engineering Plasticity, Elsevier Ltd, Oxford. 
[40] Berg, C.A. (1970), Plastic dilation and void interaction, Inelastic Behavior of Solids, 

Ed. By Kanninen, Adler, Rosenfield and Jaffe, pp. 171–210. 



 Plasticity of Finite Deformation 271 

[41] Gurson, A.L. (1977), Continuum theory of ductile rapture by void nucleation and 
growth, Part I: Yield criteria and flow rules for porous ductile media, Transaction of 
ASME, Journal of Engineering Materials and Technology, Vol. 99, pp. 2–15. 

[42] Goods S.H. and Brown L.M. (1979), The nucleation of cavities by plastic 
deformation, Acta Metallurgica, Vol 27, pp. 1–15. 

[43] Rice, J.R. and Tracy D.M. (1969), On the ductile enlargement of voids in triaxial 
stress field, Journal of Mechanics & Physics of Solids, Vol. 17, pp. 201–217. 

[44] Thomason, P.F. (1990), Ductile Fracture, Pergamon Press.  
[45] Lemaitre, J. (1985), A continuous damage mechanics model for ductile fracture, 

Transaction of ASME, Journal of  Engineering  Materials and  Technology, Vol. 107, 
pp. 83–89. 

[46] Rousselier, G. (1987), Ductile fracture model and their potential in local approach of 
fracture, Nuclear Engineering and Design, Vol. 105. pp. 97–111. 

[47] Tvergaard, V. (1981), Influence of voids on shear band instabilities under plane strain 
condition, International Journal of Fracture, Vol. 17, pp. 389–406. 

[48] Rudnicki, J.W. and Rice, J.R. (1975), Conditions for the localization of deformation 
in pressure sensitive dilatant materials. Journal of Mechanics & Physics of Solids, 
Vol. 23, pp. 371–394. 

[49] Yamamoto, H. (1978), Conditions for shear localization in the ductile fracture of void 
containing materials, International Journal of Fracture, Vol 14, pp. 347–365. 

[50] Alberti, N., Barcellona, A. Cannizzaro, L. and Micari, F. (1994), Prediction of ductile 
fracture in metal forming processes: an approach based on the damage mechanics, 
Annals of CIRP, Vol. 43, pp. 207–210. 

[51] Gurland, J. (1972), Observations on the fracture of cementite particles in spherodised 
1.05 % C steel deformed at room temperature, Acta Metallurgica, Vol. 20, pp. 735–
741. 

[52] McClintock, F.A. (1968), A criterion for ductile fracture by the growth of holes, 
Transaction of ASME, Journal of  Applied Mechanics, Vol. 90, pp. 363–371. 

[53] Clift, S.E., Hartley, P., Sturgess, C.E.N. and Rowe, G.W. (1990), Fracture prediction 
in plastic deformation processes, International Journal of Mechanical Sciences, Vol. 
32, pp. 1–17. 

[54] Oh, S.I., Chen, C.C. and Kobayashi, S. (1979), Ductile fracture in axisymmetric 
extrusion and drawing, Transaction of ASME, Journal of Engineering for Industry, 
Vol. 101, pp. 36–44. 

[55] Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge 
University Press, Cambridge. 

[56] Le Roy, G., Embury, J.D., Edward, G. and Ashby, M.F. (1981), A model of ductile 
fracture based on the nucleation and growth of voids, Acta Metallurgica, Vol. 29, pp. 
1509–1522. 

[57] Dhar, S., Sethuraman, R. and Dixit, P.M. (1996), A continuum damage mechanics 
model for void growth and micro-crack initiation, Engineering Fracture Mechanics, 
Vol. 53, pp. 917–928. 

[58] Bridgeman, P.W. (1964), Studies in Large Plastic Flow and Fracture, Harvard 
University Press, Harward. 

[59] Tai, W.H. and Yang, B.X. (1986), A new micro-void damage model for ductile 
fracture, Engineering  Fracture  Mechanics, Vol. 25, pp. 377–384. 

[60] Jun, W.T. (1992), Unified CDM model and local criteria for ductile fracture-I, 
Engineering Fracture Mechanics, Vol. 42, pp. 177–183. 

[61] Zheng, M., Luo, Z.J. and Zheng, X. (1992), A new damage model for ductile material, 
Engineering  Fracture  Mechanics, Vol. 41, pp. 103–110.  

[62] Freudenthal, A.M. (1950), The Inelastic Behavior of Solids, John Wiley, New York. 



272 Modeling of Metal Forming and Machining Processes 

[63] Cockcroft, M.G. and Latham, D.J. (1968), Ductility and workability of metals, Journal 
of the Institute of Metals, Vol. 96, pp. 33–39. 

[64] Oyane, M. (1972), Criteria of ductile strain, Bulletin of JSME, Vol. 15, pp. 1507–
1513. 

[65] Norris, D.M., Reaugh, J.E., Moran, B. and Quinones, D.F. (1978), A plastic strain 
mean stress criterion for ductile fracture, Transaction of ASME, Journal of  
Engineering  Materials and  Technology, Vol. 100, pp. 279–286.  

[66] Osakada, K. and Mori, K. (1978),  Prediction of ductile fracture in cold forging,  
Annals of CIRP, Vol. 27, pp. 135–139. 

[67] Reddy, N.V., Dixit, P.M. and Lal, G.K. (1996), Central bursting and optimal die 
profile for axisymmetric extrusion, Transaction of ASME, Journal of  Manufacturing 
Science and Engineering, Vol. 118, pp. 579–584. 

[68] Reddy, N.V., Dixit, P.M. and Lal, G.K. (2000), Ductile fracture criteria and its 
prediction in axisymmetric drawing, International  Journal of  Machine Tools & 
Manufacture, Vol. 40, pp. 495–111. 

[69] Rajak, S.A. and Reddy, N.V. (2005), Prediction of internal defects in plane strain 
rolling, Journal of Materials Processing Technology, Vol. 159, pp. 409–417. 

[70] Gupta, S., Reddy, N.V. and Dixit, P.M. (2003), Ductile fracture prediction in 
axisymmetric upsetting using continuum damage mechanics, Journal of Materials 
Processing Technology, Vol. 143, pp. 256–265. 

[71] Avitzur, B. (1968), Metal Forming: Processes and Analysis, McGraw-Hill Book Co., 
New York. 

[72] Wanheim, T. and Bay, N. (1978), A model for friction in metal forming processes, 
Annals of CIRP, Vol. 27, pp. 189–194.  

[73] Wanheim, W. (1973), Friction at high normal pressure, Wear, Vol. 25, pp. 225–244. 
[74] Wanheim, W., Bay, N. and Petersen, A.S. (1974), A theoretically determined model 

for friction in metal working processes, Wear, Vol. 28, pp. 251–258. 
[75] Christensen, P., Everfelt, K. and Bay, N. (1986), Pressure distribution in plate rolling, 

Annals of CIRP, Vol. 35, pp. 141–146. 
[76] Richelsen, A.B. (1991), Viscoplastic analysis of plane strain rolling using different 

friction models, International Journal of Mechanical Sciences, Vol. 33, pp. 761–774. 
 
 
 



5 

Finite Element Modeling of Metal Forming Processes 
Using Eulerian Formulation 

5.1 Introduction 

In Chapter 3 we discussed two methods of formulating a metal forming process—
updated Lagrangian formualtion and Eulerian formulation. Eulerain formulation is 
convenient for processes like rolling, wire drawing, extrusion etc., where there is a 
continuous flow of material and we can concentrate on a region in space for the 
analysis purposes. The fixed region in the space is called control volume. The 
material can be considered as a fluid passing through the control volume. 
Therefore, this formulation is also called flow formulation. In this formulation, we 
attempt to find the velocity and pressure (negative of hydrostatic stress) field 
throughout the region. 

In this chapter, we will describe flow formulation using the finite element 
method (FEM). In the FEM, a region is discretized into a number of small elements 
called finite elements. The primary variables like displacements in solid mechanics 
problems are approximated using piecewise continuous functions that are 
continuous inside the elements. The parameters of the functions are adjusted to 
minimize the error in the solution. After the solution is obtained, it is post-
processed to compute the desired secondary quantities like strain, stress etc. The 
following section provides a background of finite element method, assuming that 
the reader has not done a course on finite element method. The reader may also 
wish to read a textbook on FEM before going through this chapter [1, 2]. 

Flow formulation has been widely employed for rigid-plastic analysis of metal 
forming processes. It has also been employed for elasto-plastic analysis, 
particularly for finding out the residual stresses in metal forming. However, in 
elasto-plastic flow formulation, the researchers could achieve only limited success 
and the area is still open for research. 
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5.2 Background of Finite Element Method 

The finite element method is a numerical method for solving differential and 
integral equations. In this method, the unknown variables to be determined are 
approximated by  piecewise continuous functions. The coefficients of the functions 
are adjusted in such a manner that the error in the solution is minimized. Usually, 
the coefficients of the functions of a particular element are the values at certain 
points in the element called nodes. During the solution process, the differential 
equations get converted to algebraic equations or ordinary differential equations 
that can be solved by finite difference equations.  The finite element method 
consists of the following steps: (i) Pre-processing; (ii) Developing elemental 
equations; (iii) Assembling equation; (iv) Applying boundary conditions; (v) 
Solving the system of equations; and (v) Post-processing. We shall describe each 
step in the following subsections. 

5.2.1 Pre-processing  

In this step, the domain is discretized into a number of small elements. The 
elements can be of different shapes and sizes. Of course, in one dimensional 
problems, the element has only one shape i.e., a line. Figure 5.1a shows a line 
element with two nodal points at the corners of the element. With this element, one 
can approximate a primary variable u by the following interpolation function: 

 u a bx .                                                                                                (5.1) 

Then, the task of solution is just to find out the constants a and b. However, it is 
better to replace these constants by the unknown values of u at nodes. If the 
coordinates of two nodes are x1 and x2, then the  values at the nodes are 

 1 1u a bx ,                                                                                      (5.2) 
 2 2u a bx .                                                                                     (5.3) 

Solving these two equations for a and b, and substituting these values in Equation 
5.1, u can be written as 

 2 1
1 2 1 1 2 2

2 1 2 1

x x x x
u u u N u N u

x x x x
 ,                                     (5.4) 

where N1 and N2 are called shape functions, because they give an idea of the shape 
of the approximating function u. With this, the task of solution gets transformed 
into finding the nodal values of the primary variable u. We could have directly 
dealt with unknown constants a and b. However, replacing these by nodal variables 
offers two main advantages: 

(1) The nodal variables convey physical meaning, whereas the constants a 
and b do not represent any physical quantity. 
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(2) The continuity of function representing primary variable is ensured (at 
least at nodes) by expressing the interpolation function in terms of nodal 
variables, because from two adjacent elements the values at the nodes will 
be same. By proper choice of the shape of elements in two and three 
dimensions, it can be ensured that; between the two elements, the function 
is continuous not only at the nodes, but also at the entire interfacial 
boundary. If the continuity of derivatives is also required, the derivatives 
can also be included into nodal variables. 

The two-noded element can provide only a linear approximation. If a quadratic 
approximation is required, a three-noded element as shown in Figure 5.1b can be 
used. It can easily be shown that the approximating polynomial u can be expressed 
in terms of the nodal variables as 

 
2 3 1 3 1 2

1 2 3
1 2 1 3 2 1 2 3 3 1 3 2

1 1 2 2 3 3

( )( ) ( )( ) ( )( )
,

( )( ) ( )( ) ( )( )
.

x x x x x x x x x x x x
u u u u

x x x x x x x x x x x x
N u N u N u

       

  (5.5) 

These shape functions are basically Lagrangian interpolation functions and are 
therefore called Lagrangian shape functions. The elements shown in Figures 5.1a, 
b are called one-dimensional Lagrangian elements. They ensure that the function is 
a continuous function of x throughout the domain, but do not guarantee the 
continuity of the first derivative of the function. The continuity of the function but 
not of its derivatives is called the continuity of zero order or C0 continuity. The 
continuity of the function as well as its first derivative is called C1 continuity. It 
can easily be verified that elements shown in Figure 5.1a, b possess C0 continuity 
property but not C1 continuity.  

 
Figure 5.1. a A two-noded Lagrangian element. b A three-noded Lagrangian element.  c  A 
two-noded Hermitian element 

A two noded element having nodal variables as the values of u and du/dx at the 
nodes can ensure C1 continuity. One such element is shown in Figure 5.1c. It can 
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be shown that the approximating function u can be expressed in terms of nodal 
variables as 

 1 1 2 3 2 4
1 2

,du duu N u N N u N
dx dx

                                         (5.6) 

where 

 

2 3 2
1 1 1

1 2 1
2 1 2 1 2 1

2 3 2
1 1 1 1

3 4 1
2 1 2 1 2 1 2 1

1 3 2 , 1 ,

3 2 , .

x x x x x x
N N x x

x x x x x x

x x x x x x x x
N N x x

x x x x x x x x

        (5.7) 

These shape functions are called Hermitian shape function. They all are cubic 
functions; hence the approximating function in Equation 5.6 is a cubic polynomial. 

It is convenient first to transform the physical coordinate in natural coordinate 
varying from 1 to +1 and express the interpolation function in natural coordinate. 
This practice offers the following advantages: 

(1) The expressions for shape function are conveniently written and can be 
stored in the library of FEM software. 

(2) It facilitates numerical integration, as the popular technique of numerical 
integration, the Gaussian-quadrature requires the function to lie in the 
range of 1 to +1. 

(3) The primary variable of the problem can be expressed as one polynomial 
function of the natural coordinates and the physical coordinate can be 
expressed as another polynomial function of the natural coordinates. The 
result may be that the variable u becomes a non-polynomial function of the 
physical coordinate. For example, if u is expressed as a linear function of 
natural corrdinate : 

             u a b ,                                                             (5.8)  

             and x as a quadratic function of , say 2x c , then 

 bu a x
c

.                                                                                     (5.9) 

Usually, a linear relation between the physical and natural coordinates is assumed, 
i.e., 

1 2 2 1
2 2

x x x x
x .                                                                       (5.10) 
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In that case, in natural coordinates, Lagrangian shape functions of two noded 
element used in Equation 5.4 are given by 

1 2
(1 ) (1 ),

2 2
N N .                                                             (5.11) 

It can be clearly seen that the shape function Ni has the value 1 at node i. Also, N1 
is 0 at node 2 and N2 is 0 at node 1. The sum of the shape functions is constant and 
is equal to 1. For three-noded elements, the shape functions in the natural 
coordinates are 

 2
1 2 3

1 1( 1), ( 1), 1 .
2 2

N N N                            (5.12)  

Here, node 1 and node 2 are the corner nodes with natural coordinates 1 and +1 
respectively and node 3 is the middle node with 0 . It can be verified that a 
particular shape function Ni is 1 at the i-th node and 0 at other nodes. Also, the sum 
of the shape functions is 1. The Lagrangian shape functions satisfy the following 
properties: 

Property 1: The shape function Ni   is 1 at the i-th  node. 
Property 2: The shape function Ni is 0 at all other nodes. 
Property 3: The sum of shape functions is 1. 

In natural coordinates, the Hermitian shape functions for two noded elements 
(Equation 5.7) are given by 

3 2 3
1 2

3 2 3
3 4

1 2 3 , 1 ,
4 8
1 2 3 , 1 ,
4 8

hN N

hN N
                         (5.13) 

where h is the length of the element. 
In two dimensions, the simplest shape is a three-noded linear triangle, as shown 

in Figure 5.2a. In this case, the displacement components ux and uy can be 
approximated by first degree complete polynomials: 

 1 1 1 2 2 2,x yu a b x c y u a b x c y .                                         (5.14) 

With this interpolation, planar strains are found as 

 1 2 1 2
1 1, ,
2 2

y yx x
xx yy xy

u uu u
b c c b

x y y x
.      (5.15) 
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We observe that these strains inside the element do not depend on x and y, but are 
constant. Hence, this element is called constant strain triangle (CST). As in the 
case of one-dimensional elements, the constants in the approximating function may 
be replaced by nodal values. Thus, 

1 1 2 2 3 3 1 1 2 2 3 3, ,x yu N u N u N u u N v N v N v                         (5.16) 
where 

2 2 2 3 3 2 3 3
1

1 2 2 1 2 3 3 2 3 1 1 3

( ) ( ) ( )
( ) ( ) ( )

xy x y x y x y x y xy
N

x y x y x y x y x y x y
 ,                       (5.117a)  

 1 1 3 3 3 1 1 3
2

1 2 2 1 2 3 3 2 3 1 1 3

( ) ( ) ( )
( ) ( ) ( )

x y xy xy x y x y x y
N

x y x y x y x y x y x y
,                   (5.117b) 

             1 2 2 1 2 2 1 1
3

1 2 2 1 2 3 3 2 3 1 1 3

( ) ( ) ( )
( ) ( ) ( )

x y x y x y xy xy x y
N

x y x y x y x y x y x y
 .                       (5.117c) 

As in the case of one-dimensional shape functions, the three properties mentioned 
before are also being satisfied by these shape functions. Thus, the shape function Ni 
will be zero at all nodes except at node i (where its value is equal to 1) and sum of 
all the shape functions will be 1. Also, the shape functions are linear functions of x 
and y. Referring to Figure 5.2a, we may define the shape functions at a point P as 

1 2 3
area of  triangle P23 area of  triangle P13 area of  triangle P12, ,
area of  triangle 123 area of  triangle 123 area of  triangle 123

N N N  .       

  (5.18) 

The coordinates of point P in Figure 5.2a are (x, y). We can transform these 
coordinates into natural coordinates so that their values lie between 0 and 1. It is a 
common practice to use three natural coordinates 1, 2  and 3  for a triangle, out 
of which only two are independent as they  satisfy the following relation:  

1 2 3 1 .                                                                                   (5.19) 

The coordinates of the three vertices of the triangle in the natural coordinates are 
taken as (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. The following relation is 
employed to map the natural coordinates into physical coordinates: 

1 1 2 2 3 3 1 1 2 2 3 3,x x x x y y y y  .                              (5.20) 

The natural coordinates of point P can be obtained by inverting Equations 5.19 and 
5.20. Alternatively, they can also be obtained using the following relations:  
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1 2 3
area of  triangle P23 area of  triangle P13 area of  triangle P12, , .
area of  triangle 123 area of  triangle 123 area of  triangle 123

  

      (5.21) 

 
Figure 5.2.  C0 continuity triangular elements. a With three nodes. b With six nodes. c With 
ten nodes 

In terms of natural coordinates, the shape functions of three noded linear triangular 
elements are given as 

1 1 2 2 3 3, , .N N N                                                         (5.22) 

 Figure 5.2b shows a six noded element. In terms of the natural coordinates, the 
shape functions for this element are 

1 1 1 2 2 2 3 3 3

4 2 3 5 2 3 6 1 3

(2 1), (2 1), (2 1),
4 , 4 , 4 ,

N N N
N N N

                (5.23) 

where the mid-side nodes 4, 5 and 6 have the natural coordinates (1/ 2, 1/ 2,0) , 
(0, 1/ 2, 1/ 2)  and (1/ 2, 0, 1/ 2) , respectively. This element interpolates the 
displacement components ux and uy by second degree complete polynomials.   

In general, physical coordinates can be expressed as a polynomial function of 
the natural coordinates. We can make use of the shape functions to express the 
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relation between physical and natural coordinates. Thus, if the shape functions are 
expressed in natural coordinates, then 

 
1 1 1

, , ,
n n n

i i i i i i
i i i

x N x y N y z N z                                        (5.24)  

where n is the number of nodal coordinates to approximate the geometry and xi,  yi 
and zi  are the nodal coordinates. Note that Equation 5.24 is valid not only for 
triangular elements, but in general for any element. If the degrees of polynomials 
approximating the nodal coordinates and physical variable are the same, the FEM 
formulation is called iso-parametric formulation, for example that represented by 
Equations 5.16 and 5.20. If the primary variable is approximated by a higher 
degree polynomial than the geometry, then the FEM formulation is called sub-
parametric formulation. If the primary variable is approximated by a lower degree 
polynomial than the geometry, then the FEM formulation is called a super-
parametric formulation. 

The nodes in a triangle need not be on the sides, they can also be inside. Figure 
5.2c shows a 10 noded element, the 10-th node being the centroid. The 
approximation for this element is a complete cubic polynomial in x and y. 

 A four noded quadrilateral element is shown in Figure 5.3. It can be mapped 
into a square element having the natural coordinates of corner nodes as ( 1, 1) , 
(1, 1) , (1,1)  and ( 1,1) . Choosing bi-linear approximation u a b c d , 
the shape functions in natural coordinates are obtained as  

1 2

3 4

1 1(1 )(1 ), (1 )(1 ),
4 4
1 1(1 )(1 ), (1 )(1 ).
4 4

N N

N N
                                   (5.25)  

With these shape functions, the approximation for the primary variable becomes 

4

1
i i

i
u N u ,                                                                                        (5.26) 

and in iso-parametric formulation, the geometry can be approximated as 

  
4 4

1 1
, .i i i i

i i
x N x y N y                                                                 (5.27) 

Note that u is not necessarily a bilinear function of the physical coordinates.  In the 
special case of rectangular element, where 1 2c x c  and 3 4c y c ,  Equation 
5.26 provides a bilinear relation in the physical coordinates as well. 
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Figure 5.3. A four-noded quadrilateral element in the physical and natural coordinate 
systems 

The above element is called four-noded (bilinear)  Lagrangian element. The  nine-
noded Lagrangian element is shown  in Figure 5.4a, where the approximation of 
primary variable in natural coordinates is biquadratic. The shape functions 
associated with the element are 

2 2 2 2
1 2

2 2 2 2
3 4

2 2 2 2
5 6

2 2 2 2
7 8

2 2
9

1 1, ,
4 4
1 1, ,
4 4
1 11 , 1 ,
4 4
1 11 , 1 ,
4 4

1 1 .

N N

N N

N N

N N

N

                      (5.28) 

A separate family of elements without internal nodes is used in FEM literature and 
has been named Serendipity elements. The eight-noded Serendipity element  
shown in Figure 5.4b  has the following shape functions: 

2 2
5 6

2 2
7 8

5 8 5 6
1 2

6 7 7 8
3 4

1 11 1 , 1 1 ,
2 2
1 11 1 , 1 1 ,
2 2
1 11 1 , 1 1 ,
4 2 2 4 2 2
1 11 1 , 1 1 .
4 2 2 4 2 2

N N

N N

N N N NN N

N N N NN N

  (5.29) 
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Figure 5.4.  a A nine-noded Lagrangian element. b An eight-noded Serendipity element 

 
Figure 5.5. Brick elements. a With 8 nodes. b With 20 nodes 

A three-dimensional brick element shown in Figure 5.5a consists of a cube of 
side 2.  The origin of the natural coordinates system - -   is at the centroid of the 
cube. With tri-linear approximation for primary variables, the shape functions are 
given by 
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1 2

3 4

5 6

7 8

1 11 1 (1 ), 1 1 (1 ),
8 8
1 11 1 (1 ), 1 1 (1 ),
8 8
1 11 1 (1 ), 1 1 (1 ),
8 8
1 11 1 (1 ), 1 1 (1 ).
8 8

N N

N N

N N

N N

                              (5.30) 

A 3-dimensional 20-noded brick element is shown in Figure 5.5b. The shape 
functions of this element are as follows: 

 
 (A) Mid-side nodes: 

2 2

9 10

2 2

11 12

2 2

13 14

2 2

15 16

2

17 18

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ), ,
4 4

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ), ,
4 4

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ), ,
4 4

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ), ,
4 4

(1 ) (1 ) (1 ) ,
4

N N

N N

N N

N N

N N
2

2 2

19 20

(1 ) (1 ) (1 ) ,
4

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ), .
4 4

N N

     (5.31) 

 (B) Corner nodes: 

1 9 12 17

2 9 10 18

3 10 11 19

4 1 1 12 2 0

5 13 16 17

6 13

1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 )
8 2

N N N N

N N N N

N N N N

N N N N

N N N N

N N 14 18

7 14 15 1 9

8 15 16 20

,

1 1(1 )(1 )(1 ) ,
8 2
1 1(1 )(1 )(1 ) .
8 2

N N

N N N N

N N N N

                           (5.32) 
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It can be easily verified that all these shape functions are zero at all nodes except at 
one  node, where they adopt a value 1. Also, the sum of the shape functions is 1. 

Analogous to triangular element in 2-D, we have tetrahedral element (Figure 
5.6a) in 3-D. It is common to use four natural coordinates 1, 2, 3 and 4 for a 
tetrahedron, out of which only three are independent as they also satisfy the 
following relation:  

1 2 3 4 1 ,                                                                          (5.33) 

The coordinates of four  vertices of the tetrahedron in  natural coordinates are taken 
as (1, 0, 0, 0), (0, 1, 0, 0),  (0, 0, 1, 0) and (0, 0, 0, 1) respectively.  We can express 
the coordinates of a point, say P, in terms of natural coordinates 4321 and,,  as 

1 2

3 4

Volumeof tetrahedron P234 Volumeof tetrahedron P134, ,
Volumeof  tetrahedron 1234 Volumeof  tetrahedron 1234 
Volumeof tetrahedron P124 Volumeof tetrahedron P123,
Volumeof  tetrahedron 1234 Volumeof  te

.
trahedron 1234 

 (5.34) 

Recall that the volume V of a tetrahedron is given by 

1 1 1

2 2 2

3 3 3

4 4 4

1
11
16
1

x y z
x y z

V
x y z
x y z

,                                                                             (5.35) 

where the coordinates of vertex i are  (xi, yi, zi). In terms of natural coordinates, the 
shape functions of a four-noded tetrahedral element are 

1 1 2 2 3 3 4 4, , , .N N N N                                  (5.36) 

The shape functions of a 10-noded tetrahedral element (Figure 5.6b) are  

(A) Mid-side nodes: 

5 1 2 6 2 3 7 1 3

8 1 4 9 2 4 10 3 4

4 , 4 , 4 ,
4 , 4 , 4 ;

N N N
N N N

                                         (5.37) 

(B) Corner nodes: 

1 1 1 2 2 2

3 3 3 4 4 4

(2 1), (2 1),
(2 1), (2 1).

N N
N N

                                                  (5.38) 
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Figure 5.6.  The Tetrahedral elements. a With 4 nodes. b With 10 nodes 

Appropriate type of element has to be chosen as per the finite element 
formulation. The reader will get some idea after reading the following subsection. 
Usually, we carry out the analysis first with a coarse mesh. If the desired accuracy 
is not obtained, we either increase the number of elements by reducing the size (h-
refinement) or increase the order of approximating polynomial (p-refinement). A 
combination of these two strategies of refinement called hp-refinement may also be 
employed. 

5.2.2 Developing Elemental Equations  

In this subsection, we discuss the method to convert a differential equation into a 
system of algebraic equations, solution of which provides nodal values of the 
primary variable. There are many ways to do this. In this book, we confine 
ourselves to the Galerkin method, which is one type of weighted residual method. 
In the weighted residual method, the approximating function is substituted in the 
differential equation to obtain the residual. Then to minimize the residual, its 
weighted integral set to zero. For example, consider the differential equation 

0L q ,                                                                                          (5.39) 

where L is  the differential operator,   is the unknown primary variable and q is 
some function. Now, if we approximate  by some function over an element, the 
residual R will be given by 

R L q .                                                                                           (5.40) 

(For the sake of convenience, henceforth, we shall drop symbol over-tilde for 
denoting the approximating function.) After multiplying this residual by a weight 
function w, we integrate it over the elemental domain D and equate it to zero, i.e.,  
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d ( )d 0
D D

wR D w L q D .                                                            (5.41) 

Now, the following question arises. What should be the weight function? If 
interpolating function ue has n unknown parameters to be determined, then we can 
make the residuals zero by taking n different independent weight functions. This 
provides n simultaneous equations, solution of which provides the values of the 
parameters of u. In finite element method, these parameters are usually (not 
always) the nodal values of the primary variables. Note that in Equation 5.41,  
should be chosen such that L  is not zero at all points of the domain. Further,  
must be differentiable inside the element up to the order of differential equation. 
Also, if k is the order of the differential equation, then at the interface of two 
elements (k 1)-th derivative of  should be continuous. Thus, there is a strong 
requirement of continuity of  and its derivatives. Therefore, this type of 
formulation is called strong formulation and is not common in the literature of 
finite element method. 

We can integrate the expression at Equation 5.41 by parts. In doing so, the 
order of derivative of  will reduce and that of w will increase. We try to balance 
the order of derivative of w and  . This way the differentiability requirement gets 
reduced. This type of formulation is called weak formulation. There are a number 
of different types of weak formulations. In the Galerkin method, the weight 
functions are the same as the shape functions of the interpolating functions.  
Instead of n separate weight functions, we can make a single weight function as a 
linear combination of the shape functions. Thus, 

n

i
ii Nww

1

,                                                                                      (5.42) 

where wi are arbitrary constants called the nodal weights.  The weighted residual 
corresponding to this weight function provides an expression, which is the sum of 
n sub-expressions multiplied by nodal weights. As the nodal weights are arbitrary 
and independent, the combined expression will be zero if and only if all sub-
expressions become zero. Thus, we get n equations, the solution of which 
determines the interpolating function . 

Example 5.1: The governing equation for the two-dimensional steady-state 
conduction with heat generation in an orthotropic material is given as 

0Q
y
Tk

yx
Tk

x yx ,                                                    (5.43) 

where T is the temperature, kx and ky are the thermal conductivities in the x and y 
directions respectively and Q  is the rate of heat generation per unit volume. 
Obtain the FEM formulation for this problem. 
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Solution: Let the approximate temperature function in an element be T. Then 
residual in the element is given by 

x y
T TR k k Q

x x y y
.                                                    (5.44) 

We make the weighted integral of this expression over the elemental domain A to 
be zero, i.e.,  

d 0x y
A

T Tw k k Q A
x x y y

.                           (5.45) 

Now, we have to reduce the order of derivative of T at the cost of the order of 
derivative of w. For that, we can make use of the following theorem (which follows 
from the divergence theorem): 

, d dk k
A

A n B ,                                                                        (5.46) 

where  is a scalar field and nk is the component of unit normal on the boundary. 
Thus, making use of Equation 5.46, we can write 

 
d d d d d d ,

d d d .

x x x
A A A

x x x
A

T T w Tw k x y wk x y k x y
x x x x x x

T w Twk n B k x y
x x x

  (5.47) 

Similarly, 

 d d d d dy y y y
A A

T T w Tw k x y wk n B k x y
y y y y y

.              (5.48) 

Thus, the weak form of the weighted integral of the residual becomes 

 d d d .x y x x y y
A

w T w T T Tk k Q x y w k n k n B
x x y y x y

     (5.49) 

Setting the weak form to zero and rearranging the terms, we get 

d d d d d .x y x x y y
A A

w T w T T Tk k x y wQ x y w k n k n B
x x y y x y

      

 (5.50)                   
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Observing the weak form, we notice that the requirement is that the first derivative 
of temperature and weight function should exist inside the element. Also, the 
functions need to be C0 continuous everywhere. Thus, a three-noded triangular or 
four-noded quadrilateral element is sufficient to model this problem. 

Now, let 

T { }eT N T  ,                                                                                  (5.51) 

where TN  is the row vector of the shape functions and eT  is the vector 
containing the nodal temperatures. We approximate, the w in the same way, i.e.,  

T { }ew w N ,                                                                                   (5.52)  

where Tew is the row vector of nodal weights and N is the column vectors of 
the shape functions. Substituting Equations 5.51 and 5.52 in Equation 5.50, the 
following expression is obtained: 

T T T
, , , ,

T T

{ }{ } { }{ } d d

d d d .

e e
x x x y y y

A

e e
x x y y

A

w k N N k N N x y T

T Tw N Q x y w N k n k n B
x y

         (5.53) 

As Tew is an arbitrary row vector of weights, we can eliminate it to obtain 

T T
, , , ,{ }{ } { }{ } d d

d d d .

e
x x x y y y

A

x x y y
A

k N N k N N x y T

T TN Q x y N k n k n B
x y

                (5.54) 

The first term on the left hand side of the equality sign is called the element 
coefficient matrix:  

T T
, , , ,[ ] { }{ } { }{ } d de

x x x y y y
A

k k N N k N N x y .                    (5.55) 

The two terms on the right hand side are together called the element right hand side 
vector. The first term on the right hand side provides the vector due to heat load: 

{ }d de

A
f Q N x y .                                                                        (5.56a) 
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The second term on the right hand side of sign provides the vector due to heat flux 
across the boundaries:  

int d
e

x x y y
T Tf N k n k n B
x y

.                                     (5.56b) 

For a three-noded triangular element, [ ]ek  will be of size 3 3 whereas ef  and 

int
e

f will be of size 3 1. 

In Equation 5.55, the derivatives of the shape function with respect to x and y 
need to be calculated. If the shape functions are expressed in natural coordinates, 
the chain rule of partial differentiation is applied to find out the derivatives. 
Applying the chain rule, 

,

.

i i i

i i i

N N Nx y
x y

N N Nx y
x y

                                                                    (5.57) 

Writing in the matrix form, 

 [ ]

i i i

i ii

N x y N N
x xJ

N NN x y
y y

,                            (5.58) 

where [J] is called the Jacobian. Thus,  

i

i

i

i

N

N

J

y
N
x

N
1][ .                                                                         (5.59) 

If the geometry is approximated by ng shape functions, then knowing the 
coordinates of ng nodes the Jacobian matrix can be found as 
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1 1

1 1

[ ]

g g

g g

g gn n
i i

i i
i i

g gn n
i i

i i
i i

N N
x y

J
N N

x y

,                                               (5.60) 

where symbol g
iN  is used for the i-th shape function corresponding to geometry, 

which may be different than i-th shape function corresponding to the primary 
variable like temperature in the previous example. 

Usually, the coefficient matrix and right hand side vector is evaluated using 
numerical integration. The commonly employed numerical integration procedure is 
Gauss-quadrature. In this procedure, the integration of a function is carried out by 
evaluating the function at certain points called Gauss points, multiplying them by 
suitable weights and adding all the terms. The table containing weights and Gauss-
points is available for the case in which one-dimensional integration limits are 
from 1 to +1. Therefore, it is convenient to transform the element from the 
physical domain to the natural domain. Thus, the one-dimensional Gauss-
quadrature formula is expressed as 

n

i
ii fwf

1

1

1

)(d)( ,                                                                     (5.61) 

where n is the total number of Gauss-points. It can be shown that if we use n 
Gauss-points, then (2n 1) degree polynomial can be integrated exactly. Thus, a 
three Gauss-point formula can integrate up to fifth degree polynomial exactly. 
Table 5.1 provides weights and coordinates of Gauss-points up to three Gauss-
point formulae. The Gauss-points and weights for formulae with more number of 
Gauss-points are available in [3].   

Table 5.1. Gauss-points and weights for one-dimensional integration between 1 and +1 

Total number of  
Gauss-points 

Coordinates of 
Gauss-points 

Weights 

1 0 2 
2 3/1  1 

3 0 

5/3  

      8/9 
5/9 

If the integral 
2

1

( )d
x

x
f x x  is to be evaluated, using Equation 5.10 it can be 

transformed to 
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2

1

1
2 1

1 2
1

1 1( )d (1 ) (1 ) d
2 2 2

x

x

x x
f x x f x x .                  (5.62) 

Usually the shape functions and their derivatives are already expressed in term of 

natural coordinates. In that case, there is a need just to replace dx by 2 1( )
d

2
x x

 

in the integral. 
The one-dimensional Gauss-quadrature can be easily extended to a two-

dimensional square domain in natural coordinates by successive application of one-
dimensional Gauss formula. Thus, 

1 1 1
1 1 1

1 1 1
( , )d d , d ,

n n n

i i j i i j
i j i

f w f w w f ,  (5.63) 

where n  and n  are the Gauss-points in  and  directions respectively. The 
appropriate value of n is decided after treating  as constant and observing the 
degree of polynomial of the function in  -coordinates. If the degree of polynomial 
is m, for exact integration n  should be equal to or more than (m+1)/2. The value 
of n  can be decided similarly. The integration in physical domain has to be 
changed to natural coordinates by transformation of the coordinates. The term dxdy 
in physical coordinates domain is changed to d dJ  in natural coordinates 

domain, where J is the determinant of the Jacobian matrix, called the Jacobian. 
The integration can be carried out similarly on three-dimensional domain. In this 
case, 

1 1 1
1 1 1

1 1 1
( , , )d d d , , .

n n n

k j i i j k
k j i

f w w w f  (5.64)                 

Successive application of one-dimensional Gauss-quadrature may also be 
applied to integrate over triangular domain. However, in this case, the limits of 
inside integration are not fixed, but keep changing as linear functions of the other 
coordinate. Thus, tedious calculations are involved and it is better to use tabulated 
values [1, 2]. The weights and Gauss points for triangular element in which the 
natural coordinates 1 2 3, and  change from 0 to 1 have been tabulated. In this 
case, the formula is 

n

i
iii

A
fJwAf

12
1d ,                                                                     (5.65) 

where fi is the value of the function at  i-th Gauss-point, iJ  is the Jacobian at that 
point and wi is the weight at that point. Table 5.2 provides the Gauss-points and 
weights for one, three and four point formula. 
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Table 5.2. Gauss-points and weights for a triangular domain 

Total number of 
Gauss-points 

Degree of 
polynomial for 

exact 
integration 

Coordinates of 
Gauss-points 

321 ,,  

Weights 

1 1 (1/3, 1/3, 1/3) 1 
3 2 (2/3,1/6, 1/6) 

(1/6, 2/3, 1/6) 
(1/6, 1/6, 2/3) 

1/3 
1/3 
1/3 

4 3 (1/3, 1/3, 1/3) 
(0.6, 0.2, 0.2) 
(0.2, 0.6, 0.2) 
(0.2, 0.2, 0.6) 

0.562500 
0.5208333 
0.5208333 
0.5208333 

5.2.3 Assembly Procedure 

It is not possible to obtain the nodal values of an element by just solving the 
elemental equations, because internal load vectors are undetermined due to 
unknown heat flux at the boundaries of the element. However, if we assemble 
elemental equations of all the elements together, the elements of the vectors given 
by Equation 5.56b will become zero except at the boundary of the domain, where 
boundary conditions are known. The simple way to assemble the equations is to 
express the elemental matrices and vectors in a global form and then add them. 
Supposing the total number of nodal values (degrees of freedom), which equals the 
primary variables per node times the number of node is N, it is possible to write for 
each element N equations in n-unknowns. Of course, some of these equations will 
be of the form zero equals to zero. For example, when a rod subjected to an axial 
load is discretized into three elements (Figure 5.7), the elemental equations of the 
second element are expressed as 

2
3

2
2

3

2

2/
2/

11
11

F

F
qh
qh

u
u

h
AE ,                                                (5.66) 

where A and E are the cross-sectional area and Young’s modulus of the element 
respectively and h is the length of the element.  The degree of freedom at a node i 
is represented as ui, the displacement of the node. The q is load intensity (load per 
unit length) in the element. The internal load at node i of element e is denoted by 

e
iF . Then, the global form of Equation 5.66 is 

0

0

0
2/
2/

0

0000
0110
0110
0000

2
3

2
2

4

3

2

1

F

F
qh
qh

u
u
u
u

h
AE .                                    (5.67) 
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Here, the first and the last equations are actually 0 = 0. In this way, the elemental 
equations for a particular element i, can be expressed as 

{ }ii iK R F ,                                                                       (5.68) 

where  is the  global vector of nodal variables and iK is coefficient matrix of 

the element expressed in the global form and and{ }i iR F together is the 
elemental right hand side vector expressed in the global form. All the elements of 
vector iR are known, whereas in general, the elements of vector{ }iF contain the 
derivatives of primary variables and are unknown. Once the equations for all the 
elements have been expressed in the global form, they can be added to yield 

1 1 1
or [ ]

m m mi i i

i i i
K R F K R F ,   (5.69)                     

where m is the number of elements. In the process of summation, elements of  
{ }iF  will add up to give 0 at all nodes except the boundary nodes. Thus, there is 

no need to calculate the vectors { }iF  for the interior elements. The final assembled 
system of equations is 

RK ,                                                                                       (5.70) 

where [K] is called the global stiffness matrix and {R} is the global right side  
vector that includes {R} of Equation 5.69 as well as the non-zero terms of {F}. 

 
Figure 5.7.  A rod subjected to axial load and discretized into three elements 

Having explained the basic principle of assembly, we present a simple 
procedure of implementation. We need not actually rewrite the elemental equations 
in the global form and add them. All we have to do is to identify the place in the 
global coefficient matrix (and global right side vector) where a typical element of 
elemental coefficient matrix (and elemental right side vector) finds a place. If more 
than one element have a common location in the global coefficient matrix (or right 
side vector), they are simply added.  To carry out the assembly in this manner, it 
must be known that a typical local node number corresponds to which global node 
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number. This is easily found out from a connectivity matrix. Given an element 
number and local node number, the connectivity matrix provides the global node 
number. The row of the connectivity matrix corresponds to element number and 
column to local node number. For   example, connectivity matrix [C] of  the mesh 
shown in Figure 5.8 is given by 

1 2 6 5
2 3 7 6
3 4 8 7
5 6 10 9

[ ] 6 7 11 10
7 8 12 11
9 10 14 13

10 11 15 14
11 12 16 15

C
. 

Thus, i-th local node of element e corresponds to the global node C(e, i). If the 
degree of freedom corresponding to each node is df, then corresponding to this 
node, the global primary variables are (C(e, i)  df –p)¸ where p = df 1, df 2, df 3, 
…….1, 0. The corresponding elemental primary variables are df –p. Thus, the 
assembly can be carried out in the following manner: 

Step1: Initialize global stiffness matrix and right hand side vector. 
Step2: Start from the first element. Put the (df –p, df –p)-th component of the 

elemental coefficient matrix into position (r, s) of  the global coefficient 
matrix and the (df –p)-th component of the elemental right hand side vector 
into the r-th row of right hand side vector, where 

        
( , ) ,
( , ) .

r C e i df p
s C e j df p

                                                                          (5.71) 

Here, p varies from df 1 to 0. The i and j vary from 1 to number of nodes 
in the element. 

Step3: Repeat Step 2 for all the elements. 
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Figure 5.8.  A finite element mesh of four-noded rectangular elements 

5.2.4 Applying Boundary Conditions 

Once the finite element equations have been assembled, they can be solved after 
the application of boundary conditions. There are two types of boundary 
conditions—essential (or geometric) and natural (or force). The essential boundary 
conditions prescribe the values of primary variables at the boundary, whereas the 
natural boundary conditions prescribe the gradients of the primary variables. Thus, 
in a steady-state heat conduction problem, essential boundary conditions prescribe 
the temperature at the boundary and the natural boundary conditions prescribe the 
heat flux on the boundary.  

In the simplest way, an essential boundary condition is applied as follows. If 
the i-th degree of freedom is prescribed, the i-th equation of Equation 5.70 is 
replaced by  

*
i ,                                                                                               (5.72) 

where  *  is the prescribed value. Thus, the i-th row of global coefficient matrix 
[K] is replaced by the row having the diagonal term as 1 and other terms zero. The 
i-th element of column vector {R} is replaced by * . After the application of the 
boundary condition in this way, the coefficient matrix becomes unsymmetrical; 
even if the assembled coefficient matrix is symmetrical. To preserve the symmetry, 
all the elements of the i-th column of [K] except the diagonal terms are made zero 
and the elements of the right hand side column vector are modified as 

*
j j ijR R K ,                                                                            (5.73)  

where 1to butj n,  j n . Of course, this needs a number of arithmetic operations. 
A method that preserves the symmetry without the need of modifying other 

equations is to add a penalty number M to the i-th diagonal element of global 
stiffness matrix and make the right hand side equal to M * , where M is a very 
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large number. All other entries in the i-th  row become insignificant in comparison 
to the diagonal term, which can be considered approximately equal to M. The i-th 
equation then becomes  

*
iM M ,                                                                                       (5.74) 

which enforces the required boundary condition. 
Another method of applying the essential boundary condition is to eliminate the 

row and column of [K] corresponding to prescribed boundary degree of freedom 
and modify the right hand side vector according to Equation 5.73. This reduces the 
size of the coefficient matrix and is advantageous in terms of storage requirement 
and computational time. However, the numbering of degrees of freedom gets 
changed and after the solution, it has to be restored to the original numbering. 

Natural boundary conditions can be applied by evaluating the right hand side 
vector, such as given by Equation 5.56b at the boundary. With the value of 
derivatives known at the boundaries, the integral involved in the right hand side 
vector can be easily evaluated.  

5.2.5 Solving the System of Equations 

Gauss-elimination is the method in which [K] is converted into upper triangular 
form by a number of row operations. At the k-th  step of this method, the elements 
of the k-th column from (k+1)-th  row to the n-th row are made zero  by multiplying 
the elements of the k-th row by Kik/Kkk, i={k+1, k+2, ……..,N) and subtracting 
them from rows k+1, ………, n to produce zeros in position (k+1, k), ………,(n, 
k). The entry Kkk is called the pivot and it should not be very small. Therefore, at 
the k-th step, it is better to interchange the rows to make the magnitude of the pivot 
large. This is called partial pivoting. In complete pivoting, both rows and columns 
are interchanged. 

Gauss-elimination even with pivoting does not provide good results for ill-
conditioned system of equations. Householder method [4] is a better method for 
solving the ill-conditioned system of equations. In this method, the upper triangular 
form is generated by successively multiplying the coefficient matrix by reflector 
matrices. This way, less round-off errors are propagated. There are a number of 
solvers that make use of the banded and sparse structure of the coefficient matrix.  

5.2.6 Post-processing 

Once the nodal values of the solution are found, they can be post-processed to 
provide the derivatives of the primary variables. Usually, the primary variables are 
more accurate at the nodes but not their derivatives. It can be shown that in one-
dimension, if the primary variable is approximated by a linear approximation of 
two-noded element, the derivative of the primary variable is expected to be most 
accurate at the Gauss-point corresponding to one-Gauss point formula. If the 
primary variable is approximated by a quadratic approximation of three-noded 
element,   the derivative of the primary variable is expected to be most accurate at 
Gauss-points corresponding to two-Gauss point formula. Extending this 
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observation to two dimensions, for a four-noded quadrilateral element, the 
derivatives are expected to be accurate at the center of the element, corresponding 
to 1 1 Gauss-points. For eight and nine-noded element, the derivates are expected 
to be accurate at 2 2 Gauss-points i.e. at 3/1,3/1 . The derivatives can be 
extrapolated from Gauss-points to the nodes. If a node is shared between two or 
more elements, the nodal averaging may be employed, in which at a particular 
node, the values of derivatives obtained from various elements are averaged.  

5.3 Formulation of Plane-Strain Metal Forming Processes  

If the deformation takes place predominantly in one plane in a metal forming 
process,  the process is called plane-strain metal forming process. Examples are 
drawing of a strip and flat rolling. Generally, if the width of the sheet is more than 
ten times the intial thickness, the rolling process can be modeled as a  plane-strain 
process. We will explain the formulation of the plane-stain processes taking an 
example of cold flat rolling.   

In the cold flat rolling process, the metal is plastically deformed by passing it 
between two counter rotating cylinders. The strip or sheet is drawn by means of the 
friction between the roll and work-material. Starting from the pioneering work of 
von Karman [5], a number of researchers have analyzed the rolling process. The 
process has been analyzed by slab method [6–10], slip-line method [11–12], 
visioplasticity (combination of experiments and analysis) [13], upper bound 
method [14–16], and finite element method [17–23]. Since rolling is a steady state 
process, Eulerian formulation has been used by many authors. Zienkiwicz et al. 
[17] considered the rolled material to be rigid-visco-plastic and incompressible. 
They simulated the friction at the roll-strip interface by introducing a thin layer of 
elements whose yield strength is assumed to depend on the coefficient of friction 
and mean (hydrostatic) stress. The neutral point is not modeled in this method. 
Mori et al. [18] have assumed that the rolled strip is made of a rigid-plastic, 
slightly compressible material. Using a constant frictional coefficient and rigid 
rolls, they reported a good agreement between the predicted and experimentally 
obtained front end shapes of rolled aluminum strips. In their formulation, the 
neutral point was determined by minimizing a certain functional. Li and Kobayashi 
[19] also considered the existence of rigid-plastic materials and rigid rolls but they 
modeled the neutral point using the velocity dependent frictional stress. The 
authors included a comparison of their predictions with the results of Al-Salehi et 
al. [24] and Shida and Awazuhara [25]. In acknowledging that some discrepancies 
do exist, they attributed them to their use of rigid rolls and some uncertainty in the 
modeling of interfacial friction. The authors also obtained non-steady state solution 
by simulating the deformation of the work piece in a step-by-step manner, updating 
the coordinates of material points and the material property after each step. 

Hwu and Lenard [20] have studied the effects of roll deformation and the 
variation of the coefficient of friction in the roll gap. Prakash et al. [21] presented 
an FEM formulation in which the neutral point is found iteratively from the 
condition that the interfacial shear stress changes its sign at the neutral point. Dixit 
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and Dixit [22] have incorporated roll deformation by using Hitchcock’s formula in 
the mixed pressure-velocity formulation. In their formulation, the neutral point is 
found by minimizing the total rolling power. Chandra and Dixit [23] have carried 
out finite element analysis of temper rolling process in which the roll deformation 
is obtained by using a theory of elasticity solution.   

5.3.1 Governing Equations and Boundary Conditions 

The side view of a rolling process is shown in Figure 5.9, where the x-direction is 
the rolling direction and the y-direction is the thickness direction. Because of the 
symmetry, only the domain ABCDEF need be considered. We assume that the 
material is rigid-plastic. During plastic deformation of materials, there is no change 
in the volume. Thus, the conservation of mass provides, the following 
incompressibility constraint (Equation 3.249): 

 0ii xx yy ,                                                                              (5.75)  

where the strain rate tensor ij  is defined as (Equation 3.246) 

 , ,
1
2ij i j j iv v .                                                                            (5.76) 

 
Figure 5.9.  Plane-strain rolling process 

The equation of motion (Equation 3.248) for the steady-state process, 
neglecting the body force, is 
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0
j

ij

j

i
j xx

vv ,                                                                           (5.77)  

For most of the practical rolling processes, the first term in Equation 5.77 may be 
neglected. Thus, the equation of motion reduce to  equilibrium equation: 

0 or 0,

0 or 0.

xy xyxx xx

xy yy xy yy

p
x y x x y

p
x y y x y

       (5.78)                     

The set of six equations given by Equation 5.75, Equation 5.76 and Equation 5.78 
model the rolling process alongwith the boundary conditions. However, in this 
form, there are nine unknowns vx, vy, , , , , ,xx yy xy xx yy xy , p and and only 
six equations are available. The additional equations are provided by the 
constitutive behavior of the material.  

For an isotropic rigid-plastic metal, the constitutive equation is a relation 
between the deviatoric part 'ij and the strain-rate tensor ij  (Equation 3.247a): 

12ij ij ,                                                                                         (5.79) 

where 

1 3
eq

eq
 .                                                                                   (5.80) 

Here, the invariant eq  is called the equivalent strain-rate, defined by a relation 

similar to Equation 3.156 and the equivalent-stress eq is given by the following 
hardening relation (Equation 3.247b): 
 

( )n
eq Y eqK .                                                                (5.81) 

After substituting the strain rate-velocity relation (Equation 5.76) and the 
material behavior in Equation 5.78, the stress components get eliminated. Instead, 
we get derivatives of v1, v2 and p. The values of three unknowns v1, v2 and p can be 
obtained by solving the set of three equations, Equation 5.75 and Equation 5.78 
expressed in terms of the velocity components and pressure. 

On any one part of the boundary, the boundary condition should be the 
following: either the velocity vector v or the traction vector t is specified, or one 
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velocity and one traction component are specified. The following are the boundary 
conditions in the flat rolling process 

On the entry boundary (AB), we should specify the following boundary 
conditions: 

1either or x x bv U t t ,                                                                  (5.82) 

and 

either 0 or 0y yv t ,                                                                       (5.83) 

where U1 is the inlet velocity of the strip, ti are the components of traction vector 
and tb is the back tension. In each of the Equations 5.82 and 5.83, the first 
boundary condition is the geometric (essential) and the second boundary condition 
is the natural boundary condition. One should not get the impression that on a 
particular boundary the essential boundary condition should be applied essentially. 
It is possible to choose among the essential and natural boundary conditions.  
Overall, some essential boundary conditions must be provided inorder to get a 
unique solution, which means at some places the velocity must be prescribed. Li 
and Kobayashi [19] have applied natural boundary conditions, whilst other 
researchers [21, 22] found it convenient to specify the essential boundary 
conditions. Provided that the surface AB is sufficiently away from the deformation 
zone, it is reasonably accurate to specify the velocity boundary condition on this 
surface. Specifying the essential boundary condition is expected to provide a more 
accurate solution in FEM compared to specifying the natural boundary condition. 
The reason is that, in the latter, the derivatives of primary variables are involved, 
which are less accurate compared to a primary variable. Also, the boundaries fall in 
the elastic zone, where the rigid-plastic analysis cannot determine the stresses and 
tractions accurately. Moreover, by specifying the essential boundary conditions, 
the number of equations to be solved can be reduced by eliminating the rows and 
columns corresponding to the specified boundary conditions. 

In a similar way, the boundary conditions on the exit boundary (EF) can be 
specified:  

2 1either /(1 ) or  x x fv U U r t t                                                 (5.84)                      

and 

either 0 or 0y yv t ,                                                                        (5.85) 

where r is the fractional reduction and tf is the front tension. The same 
considerations as applicable to inlet boundary (AB) are applicable for exit 
boundary (EF).   

At the top free surfaces (BC and DE), one can have the following boundary 
conditions: 

0, 0x yt t .                                                                                      (5.86) 
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These boundary conditions allow vy to adopt suitable values as per the 
deformation. However, it is observed that vy is almost 0 at these surfaces except 
very near to entry point of roll-work interface. Before coming into contact with the 
roll, the sheet may bulge. Hence, vy may not be 0 near the roll. Therefore, in place 
of the boundary conditions given by Equation 5.86, the following boundary 
conditions may be employed:  

0, 0 on BC and DE (except at two nodes near entry to roll-work interface)x yt v ,   
  (5.87) 

0, 0 on the two nodes near entry to roll-work interfacex yt t .                   (5.88) 

The boundary conditions at the axis of symmetry (AF) are 

0, 0x yt v .                                                                                     (5.89) 

Here, because of symmetry, the traction tx and velocity vy must be zero.  
At the roll strip interface (CD), assuming no movement of the work material 

normal to roll surface:  

tan 0 on CD,y xv v                                                                     (5.90) 

where  is the angular position of the point as shown in Figure 5.9 at which the 
boundary condition is applied. The second boundary condition will be 

| | | |s nt c t ,                                                                                         (5.91) 

where  ts  and tn are the tangential and normal components of the stress vector t.  In 
the case of Coulomb model, c is equal to friction coefficient f. In the  case of 
Wanheim and Bay’s model, c is equal to ts/tn where ts  and tn are given by 
Equations 4.236 and 4.237 and thus a non-linear function of tn.  

5.3.2 Non-Dimensionalization 

The non-dimensionalization is carried out using the following relationships: 

2 2 2 2
, , , ,

( / 2) ( / 2) ( / 3)
yx

x y
Y

vvx y px y v v p
h h U U

.          (5.92) 

In the problem, there are only three independent dimensions—length, time and 
mass. Thus, three independent variables can be non-dimensionalized as per the 
convenience. Here, in the non-dimensionalized version, the final semi-thickness of 
the rolled sheet is taken as 1. Therefore, both the coordinates measuring the length 
dimension are non-dimensionalized with respect to h2/2. The velocity components 
are non-dimensionalized with respect to the exit velocity U2, which becomes 1 in 
the non-dimensionalized version. The dimension of velocity contains the 
dimensions of length and time. Thus, by carrying out the non-dimensionalization 
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of coordinates and velocity components, we have non-dimensionalized time as 
well. The pressure is non-dimensionalized with respect to / 3y . As the 

dimension of pressure contains the dimensions of length, time and mass, by non-
dimensionalizing it, we have non-dimensionalized mass also.  

Let us obtain the relationship between the non-dimensional Levy-Mises 
coefficient 1  and dimensional 1 . Equation 5.80 expressed in non-dimensional 
form is 

1
3

eq

eq
.                                                                                        (5.93) 

As per our scheme of non-dimensionalization, the flow stress has to be non-
dimensionalized with respect to / 3Y , and the equivalent strain-rate has to be 
non-dimesionalized with respect U2/(h2/2), which has the dimension of strain-rate. 
Thus, Equation 5.93 can be written as 

2 1
1

2 03 / 3 ( / 2)
eq

Y eq

U
h

,                                                         (5.94) 

where 0 is given by 

0
2 2

/ 3
2 /

Y
U h

.                                                                                 (5.95) 

The governing equations and boundary conditions can be expressed in the non-
dimensional form. The non-dimensional variables have been indicated by an over-
bar. However, for the sake of convenience, henceforth we will show non-
dimensional variables without an over-bar. Reader should treat the variables in the 
subsequent section as non-dimensional.  

5.3.3 Weak Formulation 

In this section, the mixed pressure-velocity formulation is explained. Let vx, vy, p 
be the functions that satisfy the essential boundary conditions exactly. Thus the 
weighted residual will become 

d dy 0xy yx yyxx
xx yy p x y

A
w w w x

x y x y
   

 (5.96) 

where A denotes domain of a typical area element. The above expression can be 
written in index notation as 
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, d d 0ii p ij j i
A

w w x y .                                            (5.97) 

The first part of the integral contains only the first order derivatives in velocity 
components. Therefore, there is no need to weaken this part. However, the second 
part contains second order derivatives of velocity components. This part can be 
reduced to weak form, in which the highest order of derivatives of velocity can be 
1.  Rewriting the second part, Equation 5.97 becomes                    

,,
d d 0ii p ij i ij i jjA A

w A w w A .                                       (5.98) 

The application of the divergence theorem to Equation 5.98 yields 

,d d d 0ii p ij j i ij i j
A A

w A n w w A .                              (5.99) 

where ‘ ’ may be considered only that part of the boundary where the tractions are 
specified. The reason is that, for the parts where the velocity components are 
specified, there cannot be any error and weighted residual for that part need not be 
considered. Substituting Cauchy’s relation ij j in t , Equation 5.99 can be 
expressed as 

,d d d 0ii p i i ij i j
A A

w A t w w A ,                                  (5.100) 

or 

1 2
1 2 ,d d d d 0ii p x x y y ij i j

A A
w A t w t w w A ,                (5.101) 

where 1 2and  are respectively those parts of the boundary where tx and ty are 
specified. 

The last term in Equation 5.101 can be expressed as 

, , , , ,
1d d .
2ij i j ij i j j i i j j i

A A
w A w w w w A                   (5.102) 

Knowing that the scalar product of a symmetric and a skew-symmetric tensor is 
zero, Equation 5.102 simplifies to 

, , ,
1d d .
2ij i j ij i j j i

A A
w A w w A                           (5.103) 
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 Equation 5.103 can be written as 

, d dij i j ij ij
A A

w A w A ,                                            (5.104) 

where analogous to strain rate, ( )ij w can be called strain-rate weight. Thus, the 
weighted residual (Equation 5.101) becomes 

1 2d d d d 0
x y

i i p ij ij x x y y
A A

w A w A t w t w .       (5.105) 

Both the area integrals of Equation 5.105 contain the first order derivatives of 
velocity components. Thus, the weak form has been obtained for FEM modeling. 
The second term of Equation 5.105 can be simplified as 

1

,

2 ,
ij ij ij ij ij

i i ij ij

w p w

p w w
                                            (5.106) 

which can be written in unabridged notation as 

12 2ij ij xx yy xx xx xy xy yy yyw p w w w w w .        

(5.107) 

For convenience, we write the weak form (Equation 5.105) as 

1 2 3 4d d d d 0.
x yA A

I A I A I I                                 (5.108) 

where 

1

2 1

3

4

,

2 2 ,

,
.

xx yy p

xx yy xx xx xy xy yy yy

x x

y y

I w

I p w w w w w

I t w
I t w

           

(5.109) 

5.3.4 Finite Element Formulation 

The weak form of the governing equations (Equation 5.108) contains the first 
derivatives of the velocity and no derivatives of the pressure. Therefore, it is 
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possible to choose C0 continuity element for velocity and a discontinuous pressure 
field. Maniatty [26] has used discontinuous pressure field in his formulation. 
However, we describe the formulation which uses C0 continuity element for both 
pressure and velocity field approximations. It is common to use the lower order 
approximation for pressure and higher order approximation for velocity. There are 
two reasons for doing this. The first reason concerns with the accuracy of 
secondary variables. As the computaion of stress requires  a term with first 
derivative of the velocity and another term containing the pressure, in order to have 
the same order of accuracy in both the terms the velocity needs to be approximated 
by one higher order approximation. The second reason concerns the condition of 
the system of equations to be solved. If the ratio of pressure nodes to velocity 
nodes increases, the resulting system of equations becomes ill-conditioned. Using 
higher noded approximation for the velocities and lower noded for  pressure makes 
the system of equations better-conditioned. We choose four-noded quadrilateral 
element for the pressure approximation and nine-noded quadrilateral element for 
velocity components. Thus there will be nine shape functions for the 
approximation of both components of velocity and four shape functions for 
pressure. Figure 5.10 shows a typical mesh consisting of 56 elements. Note that we 
have shown the local node numbering of element 1 separately for pressure and 
velocity. Actually it is the same element that interpolates pressure and velocity by 
different degrees of polynomials. The connectivity matrices for pressure and 
velocity can be prepared separately. The connectivity matrix for pressure will be a 
56-by-4 matrix and for velocity a 56-by-9 matrix. 

The approximation for vx and vy is 

1

1

1 2 3 9

1 2 3 9

9

9

0 0 0 ........ 0 |
|0 0 0 .......0

e
x

e
y

x ev

y
e

x
e

y

v

v

N N N Nv
N v

v N N N N

v

v

        (5.110) 

where {v}e is the vector containing the nodal velocities. The approximation for 
pressure is  

 

1

T2
1 2 3 4

3

4

e

e
ep p p p p

e

e

p

p
p N N N N N p

p

p

.           (5.111) 
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In Galerkin formulation, weight functions for velocity and pressure are 
approximated using the same shape functions as that of velocity and pressure 
respectively, i.e.,  

 x ev
v v

y

w
w N w

w
.                                                    (5.112)  

 
Te p

p pw w N .                                                                 (5.113) 

In order to model the curved boundary, it is better to approximate the geometry 
by nine noded shape functions. Thus, for geometry approximation, same shape 
functions can be considered as that of velocity variable. Therefore 

T ex N x and T ey N y ,                                (5.114) 

where  

 T
1 2 9{ } ................N N N N .                                                         (5.115) 

 
Figure 5.10. A typical 56 element mesh and nodal structure for pressure and velocity 
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To evaluate the integrals over the boundaries i, an approximation for the 
weight function over these boundaries is needed. The approximation consistent 
with the interior approximations is  

1
T1 2 3

2

3

{ } ,

b

b bb
x x x x x

b

N

w w w w N w N

N

                                (5.116)  

and 

 
1

T1 2 3
2

3

{ } ,

b

b bb
y y y y y

b

N

w w w w N w N

N

                            (5.117) 

where b
iN  are one-dimensional Lagrangian quadratic shape functions and 

b
xw  

and 
b

yw  are the vectors of the nodal values of the velocity weight functions for a 

typical boundary element shown in Figure 5.11. Further, tx and ty on the boundary 
are approximated as 

 
1

T
1 2 3 2

3

,
x

bbb b b
x x x

x

t

t N N N t N t

t

                        (5.118)      

 
1

T
1 2 3 2

3

,

y
bbb b b

y y y

y

t

t N N N t N t

t

                             (5.119)  

where b
xt  and 

b
yt are the vectors of the nodal value of the traction. The 

expressions for b
iN  are given as 

2 2 2
1 2 3

1 1 1, , 1 ,
2 2 2

b b bN N N                        (5.120) 

where  is the natural coordinate on the boundary. 
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Figure 5.11. A typical boundary element. a In a physical coordinate system. b In a natural 
coordinate system 

Equation 5.108 has to be expressed in matrix form to obtain the FEM 
equations. For that purpose, the following vectors are defined: 

,

2 1
2

x

x x
y

y y

x y yx

v
x

v
y

vv
y x

                                (5.121) 

and 

2 1
2

x

xx
y

yy

xy yx

w
xw

w
w w

y
w ww

y x

.                   (5.122)                     

Using the approximation for velocities and weights, the strain rate vectors  and 

w  become 

and ee
vB v w B w ,                           (5.123) 

where  
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91 2

91 2

9 91 1 2 2

0 0 0

0 0 0

1 1 1 1 1 1
2 2 2 2 2 2

NN N
x x x

NN N
B

y y y
N NN N N N

y x y x y x

.  

(5.124)                     

 The trace of the strain-rate vector is expressed as  

 T1 1 0 e
xx yy m B v ,                                   (5.125) 

where 

1
1
0

m .                                                                                   (5.126) 

Similarly, 

TT T[ ]e e
xx yy v vw w m B w w B m .        (5.127) 

Substituting Equations 5.113, 5.116, 5.117, 5.118, 5.119, 5.123, 5.125, and 5.127, 
Equation 5.108 becomes 

TT

TT T

T T
1

TT T T

{ } d d

d d

2 [ ] d d

d d .
x y

ee p
p

A

e ep
v

A
e e

v
A

b bb bb b b b
x x y y

w N m B v x y

w B m N p x y

w B B v x y

w N N t w N N t

 (5.128) 

The above equations can be expressed as 

1 2 TTT

1 1 1

nb nbne b bb bee e
x x y y

e b b
w K w f w f ,  (5.129) 

where ne is the number of area elements and  nb1, nb2 are the number of boundary 
elements on b

x  and b
y .  Further    
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e
pe

e
v

w
w

w
 ,                                                             (5.130) 

 
e

e
e

p

v
,                                                                            (5.131)  

0
e

pve
e e

vp vv

K
K

K K
 ,                                                  (5.132)  

1 2

TT
1 2

T
1 1 2

d d ,

[ ] d d ,

2 B d d ,

e Tp
pv

A
Te p e

vp pv
A

e
vv

A

K N m B x x

K B m N x x K

K B x x

                  (5.133)  

T
1 1

T
2 2

d ,

d .

b
x

b
y

b bb b

b bb b

f N N t

f N N t
                                             (5.134) 

For the purpose of numerical evaluation, the area integrals are transformed to 
the natural coordinates ( , ) using the following transformation: 

1 1
1 1........ d d ....... | | d d

eA
x y J ,                  (5.135) 

where the Jacobian 

| |

x y

J
x y

,                                                                  (5.136) 

is the determinant of the elemental Jacobian matrix. Similarly, the boundary 

integrals are transformed by the relation 
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 1
1........ d .......... | | dbJ ,                                         (5.137) 

where | Jb | is the Jacobian for boundary element  and is given by 

 
2 2d d| |

d db
x yJ .                                                         (5.138) 

Along the boundary, the coordinates (x, y) are approximated using 1-D quadratic 
shape functions. All elemental matrices are evaluated using 3×3 Gauss-quadrature. 
Similarly the elemental vectors are evaluated using three point Gauss-quadrature.  

The assembled finite element equations can be written as  

T TW K W F ,                                                        (5.139) 

where , ,W K are the global vector of nodal values of weight function, 
global coefficient matrix and global vector of nodal values of  pressure and 
velocity. F  is the global right hand side vector. Since weight functions are 
arbitrary, final FEM expression will be   

.K F                                                    (5.140) 
 

5.3.5 Application of Boundary Conditions 

The friction condition at a typical node on the tool work interface (Figure 5.12) is 
given by Equation 5.91. Expressing ts and tn in the form of tx and ty as follows: 

cos sin ,

sin cos .
s x y

n x y

t t t

t t t
                                                             (5.141) 

      
Figure 5.12. Shear and normal components of traction at work-tool interface 
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Thus, substituting above expressions of ts and tn into Equation 5.91, we get 

( cos sin ) ( sin cos )x y s x yt t ck t t ,                 (5.142) 

where  ks  is 1 before the neutral point and 1 after the neutral point. The method to 
determine the neutral point is discussed in the next subsection. Rearranging 
Equation 5.142, we can write 

 (cos sin ) (sin cos ) 0x s y st ck t ck ,                (5.143) 

or 

(1 tan ) (tan ) 0x s y st ck t ck .                                    (5.144) 

The above expression for a boundary element of FEM can be written as 

1 1

2 2

3 3

(1 tan ) (tan ) 0

x y

x s y s

x y

t t

t ck t ck

t t

.         (5.145)  

 After pre-multiplying Equation 5.145 by 

1 T

1
| |b b

bN N J d ,                                                            (5.146) 

we get  

(1 tan ) (tan ) 0
b b

x s y sf ck f ck .             (5.147) 

Equation 5.147 holds good at all nodes of the element. At the middle node say ‘k’ 
(global node number), there is no contribution from the neighboring elements and 
therefore, in terms of the global right hand side vector, Equation 5.147 can be 
expressed as 

( 2 1) ( 2 )(1 tan ) (tan ) 0
p ps sd k d kF ck F ck ,       

 (5.148) 

where dp is the total number of pressure  nodes.  At the end nodes, contributions 
from two elements have to be added and Equation 5.148 holds good for the end 
nodes too. 
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The velocity boundary condition at a node on the roll-strip interface is applied 
by replacing the (dp+2k)-th equation by Equation 5.90. Procedure for applying the 
boundary conditions at the node ‘k’ is as follows: 

 Replace (dp+2k-1)-th row of global coefficient matrix [K] by the following 
linear combination: 
(1 tan )sck  times (dp+2k-1)-th row of (tan )sK ck  times 

(dp+2k)-th row of [K].  
 Make (dp+2k-1)-th row of global right hand vector {F} zero. 
 For applying the velocity boundary condition (Equation 5.90), set 

( 2 , 2 1)-th dp k dp k element of [K] to tan  and 
( 2 , 2 )-th dp k dp k  element of [K] to 1. 

 Make (dp+2k)-th row of {F} zero. 

The essential boundary conditions at the other boundaries are applied following 
a procedure discussed in Section 5.2.4. For applying the natural boundary 
conditions of the form ti= 0, we just have to make the corresponding element of 
global right hand side vector zero. After imposing the boundary conditions, the 
final matrix equation is solved iteratively by the Householder method, because the 
resulting matrix of the mixed formulation is ill-conditioned. Initially, a suitable 
position of neutral point is assumed, which is refined iteratively following the 
procedure discussed in subsequent section. 

5.3.6 Estimation of Neutral Point 

In order to apply the natural boundary condition on the roll-strip interface 
(Equation 5.142), the location of neutral point has to be known. The position of 
neutral point can be found iteratively. For example, Prakash et al. [21] found the 
neutral point iteratively from the condition that at the neutral point, interfacing 
shear stress changes sign. With a coarse mesh, the computation  of shear stress may 
not be accurate. Therefore, in the formulation of Dixit and Dixit [22], the neutral 
point is found by minimizing total power with respect to the position of neutral 
point. The justification for this is as follows. 

A generalized upper bound theorem [27] is expressed by 

* * * *d d d
u F

i i ij ij i i
S V S

t v S V t v S ,                                                   (5.149) 

where SF  is the part of surface where some or all of the traction components are 
specified and Su is the remainder of the surface. Here, Su is the interfacial boundary 
CD, while SF includes all other boundaries. It is assumed that on inlet and outlet, 
instead of the velocity components, it is the traction component tx which is 
specified with values equal to the back tension tb and front tension tf respectively. 
Further, *

iv  is any piecewise continuous velocity field defined over volume V with 

corresponding strain-rate field *
ij , and *

ij  is the plastic stress field related to *
ij  
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through the flow rule. Here, *
iv satisfies the continuity equation, but need not be a 

kinematically admissible field, although in the formulation *
iv  is so chosen that on 

the interface CD, *
nv  also satisfies the velocity boundary conditions.  Further, *

sv  
can be expressed as the sum of roll velocity VR and relative sliding velocity of 
strip *( )s Rv V . Thus, Equation 5.149 becomes 

* * * *
1 1d d d d ( )ds R ij ij b f s R s

CD V AB EF CD
t V S V t v S t v S t V v S .  

 (5.150) 

The integral on the left hand side of the inequality is the actual rolling power and 
the integral on the right side are plastic dissipation power, power due to tensions 
and friction power respectively. The powers on the right hand side of inequality are 
computed based on the assumed velocity field. The computations of plastic 
dissipation power and power due to tensions pose no problem, whilst for the 
computation of friction power, actual shear traction distribution is required which 
is not known beforehand. Avitzur [15] has assumed its magnitude to be / 3Ym  , 
where m is a friction factor. In the model of Dixit and Dixit [22], ts is obtained 
from Equation 5.91, in which tn is obtained from the solution of continuity and 
momentum equations, albeit at assumed location of neutral point. This tn is found 
to be resonably close to the actual tn except near the assumed neutral point. 
However, since the relative velocity between the roll and strip is very small near 
the assumed neutral point, the error in the evaluation of friction power is 
negligible. Thus, all the three components of power are computed for different 
assumed positions of neutral point and the position which minimizes the sum of 
these is treated as the correct position of neutral point. 

The initial estimation of the neutral point is found by using the slab method 
formula [28]: 

1 21 ' 1
2

2 1

(1 / 2 )1 1tan / sin ln
2 4 (1 / 2 )

f
n

b

h t k
R h r

a h t k
.             (5.151) 

In Equation 5.151, '
1 2 1 2, , , , and n h h k k R  are the angular position of neutral point, 

inlet height, exit height, yield shear stress at inlet, yield shear stress at exit and the 
deformed roll radius, respectively.  The deformed roll radius can be obtained from 
Hitchcock’s formula (Equation 1.5). The Hitchcock’s formula provides highly 
inaccurate results for the rolling of thin and hard strips, especially at low 
reductions. Roychoudhari and Lenard [29] used Michell’s [30] two-dimensional 
solution of the biharmonic equation to calculate the shape of deformed roll 
contour. The analysis employs the general expression for the stress function given 
by Michell, the coefficients of which are determined such that the boundary 
conditions on the roll surface and center are satisfied. The method has been seen to 
predict experimentally established stress field in a satisfactory manner. Mori et al. 
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[31] analyzed roll deformation by the boundary element method, while the strip 
was analyzed by FEM. Some authors have used the theory of elasticity solution 
considering the roll as an elastic half space [32–34]. The parameter a is given by 

'

2

Ra f
h

,                                                                                        (5.152) 

where f is the Coulomb coefficient of friction.  The yield shear stress is 1/ 3  
times the yield stress in tension. Considering the deformation to be homogeneous, 

the equivalent strain at the outlet is approximated as )/ln(
3

2
21 hh . Then, from the 

hardening law, the approximated yield shear stress at exit can be found.  
The minimization of power is carried out by an optimization process. Taking 

the assumed neutral point in the middle, an interval in which the neutral point may 
lie is assumed. Using the golden section search method [35], this interval is 
reduced. After the interval has been sufficiently reduced, the exact position of the 
neutral point is found by fitting a quadratic curve through two end points and one 
middle point of the interval. At each of the assumed positions of neutral point, a 
number of iterations are required to find out the corresponding velocity field. In 
order to accelerate the computational process, the methodology of Aitken and 
Steffenson may be employed [36]. According to this, let x1, x2 and x3 denote the 
results of three consecutive iterations. Assume that they approach their limit x as a 
geometrical series i.e.,  

1 2

2 3

x x x x
x x x x

.                                                                              (5.153) 

Then, the limit can be calculated as 

321

2
221

2 xxx
xxxx .                                                                             (5.154) 

Thus, for each assumed position of neutral point, only four to five iterations can be 
carried out. In total 20–25 are sufficient to give the position of neutral point and 
values of roll force and roll torque accurately. In order to compute accurate stress 
distribution, a higher number of iterations can be carried out with correct location 
of neutral point. 

5.3.7 Formulation for Strain Hardening 

The equivalent strain at a point is obtained by the time integration of the equivalent 
strain rate along the particle path. The first step in the determination of the 
equivalent strain field is the construction of particle paths, or flow lines. The slope 
of a flow line is given by 
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d
d

y

x

vy
x v

.                                                                                           (5.155) 

Given a point ( , )i ix y  on a flow line, the coordinates 1 1( , )i ix y  of the adjacent 
point are found by using the relationship: 

1 1( )
i

y
i i i

x

v
y y x x

v
,                                                                 (5.156) 

where the adjacent point is chosen sufficiently small so that the path between two 
points may be approximated by a straight line. In this manner, the flow lines of 
various points on the inlet boundary can be found. 

 Now, along a flow line, 

d dd
x y

x yt
v v

.                                                                                    (5.157) 

Thus, Equation 3.158 can be written as 

0
d

L eq
eq

x
x

v
,                                                                                 (5.158)  

where L is the length of the entire zone along x direction. The equivalent strain is 
zero at the first plastic boundary. However, this boundary is not known a priori; 
therefore, the equivalent strain is taken as zero at the inlet boundary. This is 
acceptable, since the strains it gives rise to at the first plastic boundary are quite 
small. Equation 5.158 can be integrated by Simpson’s rule for obtaining the 
equivalent strain at various points along the flow lines. Three flow lines are taken 
in an element. Nine points in each element are selected and the equivalent strain 
values at these points are interpolated to obtain the equivalent strains at Gauss 
points. These values are then substituted in hardening law to update the flow stress 
for further iterations. 

5.3.8 Modification of Pressure Field at Each Iteration 

The finite element formulation does not require any pressure boundary condition to 
be satisfied. Therefore, the pressure values may be determined up to an additive 
constant. Moreover, the formulation must have provision to incorporate front and 
back tension. The effect of tensions is to reduce the roll pressure at each point 
approximately by the factor 12/ ktb  on the entry side (from inlet to neutral point) 
and by the factor 12/ kt f  on the exit side (from neutral point to outlet). The 
position of the neutral point is moved forward by the application of back tension 
and backward by the application of front tension. 
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When the front and back tensions (tf and tb) are present, it does not seem 
possible to incorporate them through imposition of traction boundary conditions as 
these boundaries fall in the rigid zone.  The following approach may be adopted. It 
is assumed that: 

(1) The velocity field and hence the strain rate field is not affected 
significantly in the presence of tensions. The tensions, therefore, influence 
the pressure (or hydrostatic stress) only. The implication of this assumption 
is that, if we solve a rolling problem without tensions in which the neutral 
point is approximately the same as in the presence of tensions, then 
keeping the same velocity field and modifying the pressure, we may obtain 
a solution in the presence of tensions. Since the hydrostatic stress does not 
participate in the work of deformation, the assumption also implies that the 
work expended per unit volume of the material is practically unaffected by 
the applied tensions [28]. 

(2) The effect of tensions is experienced uniformly across a cross-section of 
strip, so that one-dimensional equations of the slab method become 
applicable. 

According to the slab method [28], the roll pressure with tensions (q) is related to 
one without tensions (q0) by the relation 

 2
0 on exit side.a

fq q t e                                                      (5.159) 

 02 ( )
0 on entry side.a

bq q t e                                                   (5.160)  

The distribution of q0 corresponding to both these equations is assumed to extend 
up to the neutral point with tensions.  Here, 

2

1tan
h
R ,                                                                           (5.161) 

and 0  is the value of  when  is equal to the angle of contact or angle of bite 
( ). Since the deviatoric part is unaffected by the tensions, q q0 will be equal to 
p p0 where p0 is the pressure (negative of hydrostatic stress) without tensions and p 
is its value in their presence. Then, using Equations 5.159 and 5.160, we get the 
following relation between p and p0: 

sideexit on e)( 2
0

a
avof ptpp ,                                           (5.162) 

 sideentry on e)( )(2
0

0a
avib ptpp ,                                   (5.163) 

where pavi and pavo are the average pressures at the inlet and exit, respectively. 
These have been introduced to take care of the spurious pressure distribution. 
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5.3.9 Calculation of Secondary Variables 

Once the solution of the problem is obtained in the form of nodal velocities and 
pressure, the secondary quantities are calculated. We describe the procedure to 
calculate secondary quantities: 
(i) Roll torque (T) 
It is preferable to calculate the roll torque from the relation 

RV
PRT ,                                                                                             (5.164) 

where P is the total power. It consists of the following three parts: 
(a) Power required for plastic deformation (Pp) 

The power dissipated due to plastic deformation is given by 

' d dyp ij ij
A

P x .                                                                           (5.165) 

Substitution of  Equation 5.79 leads to 

 d dyp eqeq
A

P x .                                                                       (5.166) 

(b) Power required for overcoming friction at the roll-strip interface (Pf) 
The power dissipated due to friction is given by 

l

ssf svtP
0

d ,                                                                              (5.167) 

where sv  is the relative velocity with respect to the velocity of neutral point 
along the roll-strip interface and l is the arc of contact. 

(c) Power required due to tensions (Pt) 
The power due to front and back tensions is 

1
1

2
UhttP fbt .                                                                             (5.168) 

The roll torque can also be computed by integrating the stresses along the roll-strip 
interface. However, the stresses are expected to be less accurate, first due to the  
pressure term contained in it and, second, due to errors in the computation of Levy-
Mises coefficient and strain-rates. It would be interesting to compute the torque by 
the Bland and Ford formula [7] given by 
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n nT RR t t ,                                                          (5.169) 

where  is the angle of contact. The value of torque computed by this formula may 
be compared with Equation 5.164. Less difference between two values ensures the 
accuracy of neutral point and tn. A formula that is not dependent on the neutral 
angle is due to Hill used by Alexander [10] in his code. It is given by 

2
1 2

0

1 1d ( )
2 2n b f rT R t R t h t h F R R ,                      (5.170) 

where Fr is the roll force. 

(ii) Roll pressure or interfacial normal stress (tn) 
While calculating tn, first the stresses ij are calculated at 2 2 Gauss points and 
then they are extrapolated to various points on the roll-strip interface after which tn 
is calculated from the expression 

n̂.tnt ,                                                                                             (5.171) 

where t is the traction and n̂  unit outward normal to the interface. 

(iii) Roll force (Fr) 
The roll force is the vertical component of the resultant of interfacial stresses 
(Figure 5.12) which is given by 

0
cos sin d

l
r n sF t t s .                                                           (5.172) 

5.3.10 Some Numerical Aspects 

The resulting system of equations (Equation 5.140) is highly ill-conditioned in this 
formulation. Therefore, it is advisable to use a solver that can handle ill-
conditioning to some extent. The Householder method [4] is one such method. For 
the first iteration, the non-dimensional value of Levy-Mises coefficient 1can be 
taken about 100. For each assumed position of neutral point, five iterations are 
found sufficient for convergence of the  power. Once the correct position of the 
neutral point is found by minimizing the power, the iterations are continued until 
the nodal velocity and pressure values converge within 0.1% between the 
successive iterations. Convergence of the deformed roll profile is attained 
simultaneously. The lengths of the inlet and exit zones are taken about three times 
the semi-exit thickness.  
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It is better to obtain the roll torque by computing the total power, although 
Hill’s formula also provides reasonably accurate results. The interfacial shear 
traction can be found directly from stress values or by first calculating the normal 
traction and using a friction law. The latter procedure seems to be more accurate, 
because the normal traction is larger by an order of 10 in comparison to shear 
traction. Thus, the percentage error in the computation of the normal stress is 
expected to be lower.  

5.3.11 Typical Results and Discussion 

A number of researchers have obtained results for roll force and roll torque using 
the finite element method. Most of the researchers have compared their results with 
the experimental results of Shida and Awazuhara [25] and/or Al-Salehi et al. [24]. 
Shida and Awazuhara [25] have conducted experiments on cold flat rolling of 
steels. Although there is a good agreement between the experimental and FEM 
results of roll force, the roll torques are underestimated [19, 21]. The inclusion of 
roll deformation in the model [22] brings the FEM predicted roll torque values 
closer to experimental values, but the difference is significant. This may be due to 
uncertainties in the estimation of material parameters and friction. The 
experimental data in [24] show a large amount of scatter, indicating the presence of 
statistical variation in the parameters. Al-Salehi et al. [24] have conducted  
experiments on rolling of aluminum and copper. In most of the cases, there is a 
good matching between the experimental and FEM results. Figure 5.13 shows the 
predicted and experimental roll pressure distributions for a typical case. It is seen 
that there is a good qualitative matching between the two results. However, there is 
some difference in the magnitudes. It was reported in [24] that the roll force 
calculated from the normal pressure distribution is 20% higher than that measured 
from load cell. Thus, considering experimental uncertainties, the agreement 
between the predicted and experimental pressure distribution is good. 

Finite element analysis can bring out detailed information about the stress, 
strain and strain-rate distributions. For a typical case of rolling of steel, the 
equivalent strain-rate distribution is shown in Figure 5.14. Corresponding 
equivalent strain distribution is shown in Figure 5.15. It is observed from FEM 
results that equivalent strain-rate and strain distributions do not depend on the 
material. They are mainly a function of initial thickness, roll radius, reduction and 
friction. Figure 5.14 shows that along the roll-strip interface, the equivalent strain-
rate varies with multiple peaks. From Figure 5.15, it is seen that the equivalent 
strain increases continuously from the first plastic boundary (at which yielding 
occurs) at the inlet to the second plastic boundary (where unloading occurs) near to 
the exit. The plastic boundaries have been marked on the basis of 3% of maximum 
equivalent strain-rate, i.e., at the plastic boundaries the equivalent strain-rate is 3% 
of the maximum equivalent strain-rate. 
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Figure 5.13. Comparison of analytical and experimental roll pressure distributions 

 
Figure 5.14. Equivalent strain-rate contours for steel (r=24%, R/h1=65, equivalent Coulomb 
coefficient = 0.08) 

 
Figure 5.15. Equivalent strain contours for steel (r=24%, R/h1=65, equivalent Coulomb 
coefficient = 0.08) 
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In the cold flat rolling process for metals, roll pressure and roll torque increase 
with reduction, R/h1 and friction. The effect of both front and back tension is to 
decrease the roll force. Roll force is decreased more effectively by back tension 
than by front tension.  Roll torque decreases with front tension but increases with 
back tension. When an equal amount of front and back tensions are present, roll 
torque decreases only slightly. The front tension causes the neutral point to move 
towards the inlet while the back tension moves it towards the exit. When the front 
and back tensions are of equal magnitude, the position of neutral point is not 
changed appreciably.  

5.4 Formulation of Axisymmetric Metal Forming Processes  

The examples of axisymmetric forming processes are wire drawing and extrusion. 
Wistreich [37] measured die-pressure in wire drawing by using the split die 
technique. Majors [38] measured the die pressure by measuring the hoop-strain in 
the die. Cook and Wistreich [39] have described the method for measuring the die-
pressure by photo-elastic method. Thomoson et al. [40] employed visioplasticity 
method, which is a combination of experiments and analysis. Hoffman and Sachs 
[41] proposed the slab method for the analysis of the wire drawing process. The 
solution obtained by them is valid only for small die angle, as the redundant work 
is neglected in the formulation. Siebel [42] introduced a theory of wire drawing in 
which he assumed that the effects of homogeneous deformation, friction, and non-
useful deformation were additive and has given an equation for drawing force. 
Avitzur [43] has proposed an extra term to account for redundant power in the 
drawing stress expression of Hoffmann and Sachs [41]. Avitzur [44, 45] has 
applied the upper bound theorem to the problem of wire drawing. He divided the 
wire in three zones in each of which velocity field was assumed to be continuous. 
At the interface, however, the tangential component of velocity was discontinuous. 
Avitzur [46] has also applied upper bound technique to strain hardening material 
considering linear hardening. He also analyzed central burst defects in extruded 
and drawn products [47]. Some researchers have analyzed the wire drawing 
process by using FEM. Chen et al. [48] obtained the steady-state deformation 
characteristics in extrusion and drawing as functions of material properties, die 
work interface friction, die angle and reduction. Using the elasto-plastic FEM 
model, Chevalier [49] studied the influence of geometrical parameters and friction 
condition on the quality of the final wire. Dixit and Dixit [50] employed rigid-
plastic FEM model for the analysis of wire drwaing process. Gifford et al. [51] 
studied micro-hardness distribution in wire drawing by using commercial FEM 
package DEFORM-2DTM.  

When the deformation is axisymmetric, it is convenient to use cylindrical polar 
cordinates. In this case, the velocity v has only two components: 

ˆ ˆ
r zv vr zv i i .                                                                                   (5.173) 
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Further, the velocity components are independent of the coordinate . The 
components of stress tensor  and strain-rate tensor  are also independent of . 
They are given by 

0 0
[ ] 0 0 , [ ] 0 0 ,

0 0

rr rz rr rz

rz zz rz zz

                           (5.174) 

The strain-rate velocity relations for axisymmetric problem are given by 
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r z
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.                                                   (5.175) 

The incompressibility constraint and steady-state equations of motion without body 
force for axisymmetric problems are written as 

 0zzrr ,                                                                              (5.176) 
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                                 (5.178)  

In axisymmetric problems, the boundaries are such that the unit normal vector n 
has only two components, i.e.,  

ˆ ˆ
r zn nr zn i i .                                                                                 (5.179) 
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Figure  5.16.  The domain and boundary conditions for a wire drawing process 

For a wire drawing process (domain for analysis shown in Figure 5.16), the 
boundary conditions are as follows: 

(1) Entry and exit boundaries (AB and EF): 
The control volume is so selected that its entry and exit boundaries are sufficiently 
far away from either side of the deformation zone. If the drawing force Fd and back 
tension Fb are known, then they can be assumed to be uniformly distributed over 
AB and EF. Since the forces are in the z-direction, the r-component of the stress 
vector is zero. On the other hand, if the drawing speed U is specified, we know the 
z-component of the velocity at every point of EF. The r-component of this velocity 
is obviously zero at both EF and AB. The z-component of the velocity at AB can 
be found from the continuity equation: 

EFEFzABABz AvAv )()( .                                                                  (5.180) 

The ratio AEF/AAB is equal to (1 r), where r is the fractional reduction. Thus, 

( ) (1 )( ) .z AB z EFv r v                                                                      (5.181) 

Therefore, the following boundary conditions can be specified: 

 
2

1
, 0 on AB,b

z r
F

t t
r                                                             (5.182) 

  
2
2

, 0 on EF,d
z r

F
t t

r                                                              (5.183) 

or  

 (1 ) , 0 on AB,z rv r U v                                                          (5.184)  
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 , 0 on EF.z rv U v                                                                     (5.185)  

Dixit and Dixit [50] incorporated essential boundary conditions on AB and EF. 
Chen et al. [48] specified vz and tr on these boundaries. By running a computer 
code with different boundary conditions, it was observed that there is no significant 
difference in the results. However, the boundary conditions incorporated by Dixit 
and Dixit provide faster convergence. 

(2) The top free surfaces (BC and DE): 
 Since these boundaries are free surfaces, they will be traction-free. Further, the 
flow of the material is along the boundary. Therefore, the r-component of velocity 
is zero.  Thus, the boundary conditions are 

0or0either  and0 rrz tvt .                                                   (5.186) 

Strictly speaking, before coming into contact with the die, the wire bulges or 
converges; it may even bulge or converge in sequence. Therefore, very near to the 
inlet side of the die, the condition vr = 0 is not valid. However, it is observed that 
even when we modify our program by incorporating the boundary condition tz=0 
and tr=0 on the part of boundary which is close to the die, there is no appreciable 
change in the results. Bulge or convergence noticed is so small that for all practical 
purposes, it may be neglected. 

(3) The axis of symmetry (AF): 
Like in the case of plane-strain problems, here we use the following boundary 
condition: 

0and0 rz vt .                                                                           (5.187) 

(4) The wire-die interface (CD): 
The component of velocity in the direction normal to the die-wire interface at any 
point on the interface is zero. Thus, 

0tanzrn vvv  ,                                                                        (5.188) 

where   is the die semi-angle. The second boundary condition will be 

| ts |  =  c | tn |,                                                                                      (5.189) 

where ts  and tn are the tangential and normal components of the stress vector t  and 
c is a function of tn which can be evaluated from Equations 4.236 and 4.237. 

The finite element formulation does not require any pressure boundary 
condition to be satisfied. However, we may have a spurious pressure distribution in 
the solution. This constant can be determined from the condition that at the inlet 
boundary pressure values should be equal to one-third of back tension. 
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The non-dimensionalization of the governing equations is carried out in a 
manner similar to plane-strain problems. For moderate speed wire drawing, the 
inertial terms are ignored. The weighted residual form is given by      

( ) ( )1 1 2 d d ,rr rz rz zz
rr zz p r z

A

r r
w w w r r z

r r z r r r z
  (5.190) 

where wp, wr and wz are weight functions which satisfy the homogeneous version 
of the essential boundary conditions and ‘A’ represents the area of the domain. 
Substituting the constitutive equation and then integrating the second and third 
parts of Equation 5.190, we get 
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where andr z are the boundaries where tr and tz are  specified.  
The shape functions for velocity and pressure approximations are same as in 

plane-strain problem. The strain-rate vector is defined as 
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Substituting the approximation for velocities, we get  

eB v ,                                                                                   (5.194) 

where 
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Similarly,  

( ) e
vw B w .                                                                           (5.196)  

We note that 
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Similarly, 
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Substitution of Equations 5.194, 5.196, 5.197 and 5.199 into Equation 5.191 leads 
to the following finite element equations in the local variables: 
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where 



328 Modeling of Metal Forming and Machining Processes 

 ,
e

pe

e
v

w
w

w
                                                                             (5.201) 

 ,
{ }

e
e

e

p

v
                                                                                 (5.202) 

 
[0] [ ]

[ ] ,
[ ] [ ]

e
pve

e e
vp vv

k
k

k k
                                                                 (5.203)  

T

T
1

T

[ ] { } [ ]2 d d ,

[ ] 2 [ ] [ ]2 d d ,

[ ] [ ] { }{ }2 d d ,

e

e

e

e p
pv

A
e

vv
A

e p
vp

A

k N m B r r z

k B B r r z

k B m N r r z

                                          (5.204)  

 

T

T

{ } { } { } 2 d ,

{ } { } { } 2 d ,

b
r

b
z

b b b b
r r

b b b b
z z

f N N t r

f N N t r
                                               (5.205)  

The remaining details of finite element formulation are similar to that of plane 
strain problem and will not be repeated here. 

Figure 5.17 compares FEM results with Wistriech’s results [37]. A good 
agreement is obtained between the two results. A look at Figure 5.17 reveals that 
there is an optimum die angle providing minimum drawing stress. The optimum 
die angle is different for different reductions and friction. With too small a cone 
angle, the length of contact between the wire and die is high, causing significantly 
high frictional losses. With too large a cone angle, the redundant work becomes a 
predominant factor. Therefore, there exists an optimum die angle. It is observed 
that, for a given friction coefficient, the optimum die angle increases with 
increasing reduction. The optimum cone angle increases with increasing coefficient 
of friction. It is seen that generally the optimum die angle is not dependent on the 
material. The variation of drawing stress is more significant at small die angle in 
comparison to large die angles. If the coefficient of friction is not known properly, 
it is better to design the die according to maximum expected coefficient of friction.  
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Figure 5.17. Comparison of the relative drawing stress obtained from FEM analysis and 
from Wistriech’s experiments. With permission from Dixit and Dixit [50]. Copyright 1995 
Elsevier 

Figure 5.18 shows equivalent strain-rate contours for a low reduction and high 
die angle. In this case, the plastic region near to the axis of symmetry is very 
narrow and the strain rate near to the die surface becomes very high compared to 
that near to the axis of symmetry. It is observed that as the die angle is increased, at 
a particular angle the plastic zone disappears at the axis of symmetry. In this case, 
near to the axis of symmetry the zone of undeformed material and the zone of fully 
deformed product have a common boundary. Since the zone of fully-deformed 
material moves faster than the zone of undeformed product, both zones separate 
and form a central burst. Thus, using FEM analysis, the central burst defect can be 
studied by studying the strain-rate contours. Figure 5.19 shows the corresponding 
equivalent strain contour. It is observed that equivalent strain across the drawn 
wire cross-section is non-uniform. The non-uniformity is more pronounced near 
the wire-die interface. The strain and strain-rate distribution are also independent 
of the material. The friction mildly influences the strain and strain-rate 
distributions.  
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Figure 5.18. Equivalent strain-rate contours (r=5%, die semi-angle=100, Coulomb’s 
coefficient = 0.03). With permission from Dixit and Dixit [50]. Copyright 1995 Elsevier 

 
Figure 5.19. Equivalent strain contours (r=5%, die semi-angle=100, Coulomb’s coefficient 
= 0.03). With permission from Dixit and Dixit [50]. Copyright 1995 Elsevier 

As a result of parametric study, it is observed that for a fixed coefficient of 
friction and die angle, as the percentage reduction decreases, die pressure 
increases. It is also seen that die pressure is not uniform along the length of the die. 
The separation force increases with increasing reduction in spite of the decrease in 
die pressure. It is observed that friction has very little influence on the die pressure. 
It is observed that back tension decreases the die pressure but increases the 
drawing stress.  
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5.5 Formulation of Three-Dimensional Metal Forming Processes 

The flow formulation procedure for three-dimensional metal forming problem is 
similar to the two-dimensional problem. The equations described in Section 5.3.1 
are valid, except that the range of indices in the tensor equation is 1 to 3 instead of 
1 to 2.  The weak form is  

d d d 0,
i

i i p ij ij i i i
A A

w A w A t w                   (5.206)                     

where indices i and j range from 1 to 3. The second term in Equation 5.206 can be 
simplified as 

1( ) ( ) 2 ( )ij ij ii ij ijw p w w .                                                    (5.207) 

The finite element formulation may be carried out as explained in Section 5.3.4. 
One can choose the brick element with 20 nodes for interpolating the three velocity 
components and eight corner nodes for interpolating the pressure. Compared to 
two-dimensional problems, the total degrees of freedom for a three-dimensional 
problem are enormous, increasing the memory and computational time 
requirement.     

While analyzing the problem of 3-D symmetric rolling, it is enough to consider 
one fourth of the domain. At the surfaces of the symmetry, the normal component 
of velocity and tangential components of traction are zero. At the inlet and outlet 
surfaces, the velocity boundary conditions can be prescribed. At the top free 
surface, the components of traction can be put zero. Alternatively, away from the 
roll surface, one can make two velocity components zero, leaving only the 
longitudinal component of velocity. At the roll work interface, the normal 
component of velocity is zero. The other boundary conditions are provided by 
friction boundary conditions.  For more details, reader can refer to [52, 53]. 

5.6 Incorporation of Anisotropy 

The finite element formulation of anisotropic material is similar to the isotropic 
formulation, as the governing equations and the boundary conditions are the same, 
the only difference being in the constitutive equations. Section 4.7.2 provides the 
constitutive equations for plane strain condition.  For a rigid-plastic anisotropic 
material, Equation 4.174 provides 

1 2 3' ; ' ; 'xx xx yy yy xy xyk k k .                                        (5.208) 
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It can easily be verified that finite element formulation will provide element 
stiffness matrix similar to Equation 5.132, in which only the sub-matrix [ ]e

vvK  is 

different from the isotropic case. The expression for sub-matrix [ ]e
vvK  is 
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There have been few works in the anisotropic modeling of steady-state metal 
forming processes. Dixit and Dixit [54] have modeled the steady-state plane strain 
rolling process for anisotropic material. It was observed by them that, if the 
average of the flow stresses in thickness and longitudinal direction is used, an 
isotropic model provides almost the same results for roll torque and roll force as an 
anisotropic model. It is also observed that the deformation pattern is sensitive to 
exponent m in Equation 4.130. However, for fixed value of exponent m, the 
deformation pattern does not depend on average strain rate ratio r . It is to be noted 
that Dixit and Dixit [54] presented their results for the hypothetical material 
parameters. 

Figures 5.20 and 5.21 show that, for a particular value of m, roll force and roll 
torque increase with increasing value of average strain rate ratio r . For a particular 
r  value, roll torque decreases as m value is increased from 1.5 to 2.0, decrease in 
torque being more pronounced for higher r  values. (For example, for r =2.5, 
torque calculated on the basis of m=1.5 is 29% more than that calculated on the 
basis of m=2, i.e., Hill’s quadratic criterion.) The parameter N, which is associated 
with shear stress term, also influences the results. However, the influence 
diminishes at higher value of R/h1 ratio. Since in the cold flat rolling R/h1 is more 
than 50, the determination of N is not so important for analyzing rolling problem. 
For the isotropic case N is equal to 1.5. 

It is seen that for m=2, roll pressure and shear stress distributions remain the 
same with changing ;r  only their magnitudes increase with increasing r . 
However, change in m changes the distribution pattern. Also, it is seen that for 
m=1.5, the r  does influence the distribution pattern for roll pressure and shear 
stress, although the position of neutral point is not affected significantly. At m=1.5, 
for certain values of ,r  the multiple pressure peaks are obtained. 
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Figure 5.20. Effect of r  and m values on the roll torque. With permission from Dixit and 
Dixit [54]. Copyright 1997 Elsevier 

A study of strain and strain-rate contours indicates that anisotropy does not affect 
the distribution pattern of contours of the equivalent strain and equivalen strain 
rate. No influence of r  is observed on magnitudes of these quantities. However, 
with decrease in m, there is a slight decrease in the values of equivalent strain and 
equivalent strain-rate. In the isotropic case, the deviatoric stresses along thickness 
and longitudinal direction are equal in magnitude (but opposite in sign) in the 
plastic deformation zone. Hence, for the isotropic case, the contours of deviatoric 
strains along the thickness and logitudinal directions look similar in the plastic 
deformation zone. This is not true for the anisotropic case.  

 

 
Figure 5.21. Effect of r  and m values on the roll force. With permission from Dixit and 
Dixit [54]. Copyright 1997 Elsevier 
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5.7 Elasto-Plastic Formulation 

There have been some attempts to solve the elasto-plastic problem in Eulerian 
reference frame. Elasto-plastic formulation is useful for predicting the plastic 
boundaries, accurate stress field and residual stresses. Dixit and Dixit [55] have 
reviewed three different types of formulation. In the mixed formulation, velocity, 
pressure and deviatoric stresses are treated as the primary variables. Neglecting 
hydrostatic part, the following constitutive equation is used (Equation 3.224a–c): 

o

1

1' '
2 2

ijij ij ,                                                                    (5.211) 

where 

0 for elastic region
1 for plastic region

,                                                                 (5.212) 
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ij k ik jk ik kj
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,                                                   (5.213) 
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.                                                                        (5.214)  

Here,  is the shear modulus, 1 is the Levy-Mises coefficient given by Equation 

5.80 and 
o

ij  is the Jaumann rate of deviatoric stress tensor (Equation 3.224e).  
For a plane strain problem, the weighted residual form of the governing 

equations is given by 

1 2 3 4 5 6[ ]d 0
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I I I I I I A ,                                                   (5.215) 
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o
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where ,, , , , and
x y xx yy xyp v vw w w w w w  are the weight functions which satisfy 

the homogeneous versions of the essential boundary conditions and A represents 
the area of the domain. Integrating the second and third parts of Equation 5.215, 
substituting the finite element approximations for velocity, pressure and deviatoric 
stress into it and assembling leads to a matrix equation of the following form: 

0 0 0

{0}'0 ( )

pv

vp vv v

v i

K P

K K K V F

K K v

.                         (5.222) 

Here {P}, {V} and { ' } contain the nodal values of pressure, velocity components 
and deviatoric stress components, respectively. The vector {F} contains the nodal 
forces corresponding to specified tractions on the boundary. These boundary terms 
arise from the integration by parts of the terms I2 and I3.  

The system of equations given by Equation 5.222 is highly ill-conditioned. The 
decoupled system of equation is given by  

00
,

( , ' )

( ) ' .

pv

i ijvp vv

i v

K P

V F vK K

K v K V

 (5.223) 

Here all the submatrices except vvK  are the same as those given by Equation 

5.222. The submatrix vvK  arises when the constitutive equation is substituted in 
the equilibrium equation by treating the whole domain as plastic. The right hand 
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side vector contains the terms from the Jaumann stress rate term of the constitutive 
equation.  

It was observed that this type of formulation does not provide proper values of 
stresses in the inlet and exit zone. This is owing to the assumption of the whole 
zone being plastic and restrictions on the value of Levy-Mises coefficient 1 in the 
inlet and exit zones. 

In rate formulation, the equilibrium equation is represented not in terms of 
Cauchy stress tensor ij, but in terms of the time rate (or material derivative) of the 
first Piola-Kirchoff stress tensor: 

ij i k
ij k kj ij

k k k

v v
T v

x x x
.                                             (5.224) 

The equilibrium equation is 

0ij

j

T
x

.                                                                                  (5.225) 

The rate formulation proposed by Thompson and Yu [56] converges rapidly for 
purely elastic behavior, but its rate of convergence deteriorates as the plastic zone 
increases in size. Therefore, this formulation may be applied only in the exit elastic 
zone to find the residual stresses. The constitutive equation becomes 

o ij
ij k ik jk ik kj ijkl kl

k
v C

x
,                              (5.226) 

where 

2
(1 2 )ijkl ik jl ij klC .                              (5.227) 

Applying finite element procedure, we obtain the following equations: 

( ) ,v ij vK V F                                       (5.228) 

 ( ) ( )i iK v F v .                                   (5.229) 

Here, {V} and { } contain the nodal values of velocity and stress components, 
respectively. The vector {Fv} contains the nodal forces corresponding to the 
boundary terms arising from integration by parts of the equilibrium equation. The 
vector ( )iF v  contains the terms associated with ijkl klC . The accuracy of this 
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method depends upon the accuracy of prescribed velocities and stresses at the end 
of the plastic zone, and the shape of the second plastic boundary.   

Maniatty et al. [57] has developed elasto-plastic Eulerian finite element 
formulation for large deformation and large rotation. The fundamental concepts of 
this formulation are explained in Section 4.2 and 4.3 and will not be repeated here. 
For an elasto-plastic material the flow rule is written as (Equation 4.54) 

1' 2 ( )e
ij ij ij .                                                                           (5.230) 

This is substituted in the equilibrium equation and finite element formulation of 
equilibrium equations and incompressibility constraint is carried out using mixed 
pressure-velocity formulation. The following system of equations is obtained: 

00

(
pv

e
vp vv

K P

V FK K
 ,                                           (5.231) 

where the submatrices , andpv vp vvK K K  are given by Equation 5.133. The 

right side vector ( eF  contains the nodal forces corresponding to the boundary 

terms arising from integration by parts of the equilibrium equation and an 
additional term associated with 1' 2 e

ij ij .  The system of Equation 5.231 is 
solved iteratively to find the pressure and velocity fields. At each iteration, the 
elastic strain rate tensor has to be determined to compute the right side vector. The 
procedure for its determination has been described in Section 4.3.1. Because of 
numerical difficulties, the reliable values of residual stresses could not be obtained 
in [55] using this method.  

In [55], a simplified method is proposed to find out the longitudinal residual 
stress. Let l be the length of an infinitesimal fiber which was along x direction in 
the undeformed configuration and whose undeformed length was unity (Figure 
5.22). Let lp be the part of l which is due to plastic deformation. Then lp is given by 

T ˆ ˆ.p xl p p
x xF F i i ,                                               (5.232) 

where ˆ
xxi  is the unit vector along the x direction and pF is the plastic part of the  

deformation gradient tensor (Equation 4.26) at the point of unloading. Because of 
inhomogeneity of the plastic deformation, lp will be different for different 
flowlines. This implies that, during unloading, the elastic strains will not drop to 
zero, as it will result in incompatible deformation. Therefore, every fiber must 
retain a part of the elastic strain which will ensure that all the fibers have same 
length after unloading. Let lf be the common length. Then assuming the elastic 
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strains to be small, the longitudinal elastic strain retained by fibers can be 
expressed as  

f p
xx

p

l l
l

.                             (5.233)  

 
Figure 5.22. Figure showing non-uniform stretching of two fibers 

In rolled strip, the top and bottom surfaces are stress-free and strip thickness is 
very small. Therefore, it may be assumed that the residual stress in the thickness 
direction is zero. Thus, the elastic stress-strain relations become 

1
xx zz xxE

,                                          (5.234) 

1 0zz xx zzE
.                                            (5.235) 

Eliminating zz from the above two equations and substituting Equation 5.233, the 
following expression for the longitudinal residual stress is obtained: 

2(1 )
f p

xx
p

l lE
l

.                                      (5.236) 

The lf can be determined from the requirement that the net longitudinal force 
should be zero. Using symmetry this condition can be stated as 

2 / 2

0

d 0
h

xx y .                                                          (5.237) 
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This leads to  

2
2

/ 2

0

d2
f h

p

h
l

y
l

.                                                        (5.238) 

Thus, in this approach, we need to calculate lp at unloading for various flowlines 
(varying with y). Then, Equation 5.238 can compute lf and Equation 5.236 
longitudinal residual stresses. 

Figure 5.23 shows that residual stress is greater near the top fiber. Further, the 
stress gradients are also large. This behavior is consistent with the condition of 
high friction.   

 
Figure 5.23. Distribution of longitudinal residual stress across the thickness (simplified 
approach). With permission from Dixit and Dixit [55]. Copyright 1997 Elsevier 
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Figure 5.24. Distribution of longitudinal residual stress across the thickness for low friction. 
With permission from Dixit and Dixit [55]. Copyright 1997 Elsevier 

Figure 5.24 depicts residual stress distribution for a reduced coefficient of friction. 
With reduced friction, deformation becomes more homogeneous thereby reducing 
the value of residual stress in the vicinity of top fibers. Figure 5.25 shows the effect 
of R/h1 on the residual stress distribution. Process parameters are the same as those 
in Figure 5.24 except for R/h1 which is now more. Increasing R/h1 makes 
deformation more homogeneous. Therefore, the residual stress values are less now 
compared to those in Figure 5.24. 
 

 
Figure 5.25. Distribution of longitudinal residual stress across the thickness for high R/h1. 
With permission from Dixit and Dixit [55]. Copyright 1997 Elsevier 
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5.8 Summary   

In this chapter, Eulerian (flow) formulation of metal forming problems is 
presented. First, a background of finite element method is presented.  Then, the 
rigid-plastic plane strain formulation is explained with the example of a rolling 
problem. The formulation is explained in detail along with the mention of 
numerical difficulties. With the example of a wire-drawing process, rigid-plastic 
axisymmetric problem is explained. A brief note has been provided for the 
formulation of 3-D metal forming processes using flow formulation. Then, the 
method to incorporate anisotropy has been explained. The example has been 
provided from a plane-strain rolling problem. Finally, the elasto-plastic 
formulation and method for estimating residual stresses have been explained.   
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6 

Finite Element Modeling of Metal Forming Processes 
Using Updated Lagrangian Formulation 

6.1 Introduction 

In Chapter 5, we discussed the details of finite element method as well as the finite 
element modeling of metal forming processes using Eulerian formulation. In this 
chapter, we extend the finite element technique to the updated Lagrangian 
formulation. In Eulerian formulation, the domain is a fixed region in space (called 
control volume). However, in a Lagrangian formulation, the domain consists of a 
set of material particles that changes its shape continuously with the deformation. 
The updated Lagrangian formulation is an incremental method in which the 
domain is updated incrementally. Further, the measure of deformation used in 
Eulerian formulation is the rate of deformation tensor and the constitutive equation 
is expressed in terms of the stress and rate of deformation tensors. On the other 
hand, in updated Lagrangian formulation, the measure of deformation is an 
incremental strain tensor and the constitutive equation is expressed in terms of the 
incremental stress and incremental strain tensors. We shall discuss how finite 
element modeling needs to be modified in the light of these changes in the 
governing equations. Like that of the Eulerian formulation, the governing 
equations of the updated Lagrangian formulation also are non-linear and need an 
iterative scheme to obtain a solution. But the iterative scheme we adopt here is 
different from that of the previous chapter. However, like in the previous chapter, 
here also we adopt the Galerkin formulation for developing finite element 
equations. 

In Section 6.2 of this chapter, we develop the three-dimensional finite element 
model corresponding to the governing equations of the updated Lagrangian 
formulation. We use the incremental strain-displacement and stress-strain relations 
of Chapter 4. Thus, we use the incremental logarithmic strain tensor as the measure 
of finite incremental deformation and the integral constitutive equation to account 
for the change in the elastic-plastic constitutive tensor during the increment. 
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Further, we use the updating procedure of Section 4.5 to make the incremental 
stress tensor objective. We assume that the process is slow. Then, the acceleration 
term in the equation of motion becomes negligible, reducing it to the equilibrium 
equation. The incremental equilibrium equation is not found to be convenient for 
the finite element model. Instead, the equilibrium equation in the deformed 
configuration at time t t  is used. To develop the finite element model, first, this 
equilibrium equation is converted into an integral form using the weighted residual 
method. Then the Galerkin finite element technique is used to convert this integral 
form into a set of algebraic equations. Since these algebraic equations are non-
linear, an iterative scheme is needed to solve these equations. The Newton-
Raphson iterative scheme, which is used in this book, is described next. Further, 
the Euler forward integration scheme, which is commonly used for the integration 
of constitutive equation, is also discussed. Finally, some divergence handling 
methods like the under-relaxation method, line search method, increment cutting 
method etc. are presented at the end of the section. 

In Section 6.3, the finite element model developed for the updated Lagrangian 
formulation is applied to an axisymmetric problem of open die cold forging of a 
cylindrical block of an isotropic material. First, the boundary conditions are 
described. The platens are assumed rigid. The friction at the interface is modeled 
by sticking friction and Coulomb’s law. The process is controlled by the movement 
of the platens. Since this is a displacement control problem, the Newton-Raphson 
technique does not always converge. An alternate iterative scheme, called arc 
length technique, is used. The model is verified by comparing the predicted forging 
load variation (with reduction) with experimental results available in the literature. 
Then the contact pressure distribution, deformed configuration, equivalent strain 
field, and equivalent stress field are presented for a typical set of process variables. 
Next, residual stresses are obtained after removal of the platens. A parametric 
study of the residual stresses is carried out with respect to the three process 
variables, namely, height-to-diameter ratio, reduction and friction coefficient. 
Finally, some studies on fracture prediction are presented using critical damage and 
hydrostatic stress criteria. 

In the next section (i.e., in Section 6.4), the finite element model of a three-
dimensional problem of deep drawing of a cylindrical cup of an anisotropic 
material is developed. First, the boundary conditions are described. The punch, die 
and blank-holder are assumed rigid. Friction at the punch is assumed to be of the 
sticking type and that at the die is modeled by Coulomb’s law. The blank-holder 
force is assumed to be equally distributed over the area and is applied 
incrementally up to a certain number of increments. Penetration of the cup with the 
punch and die is avoided. The friction and penetration boundary conditions are 
applied iteratively. Some of these boundary conditions vary with the punch 
movement. Because of the variation of the material properties in the 
circumferential direction, the problem cannot be treated as axisymmetric. 
However, because of the orthotropy of the sheet and the symmetry of the geometry 
and boundary conditions about the two axes, only a quarter of the sheet is selected 
as the domain. The model is verified by comparing the prediction of cup height 
variation with experimental results available in the literature. Then, for a typical set 
of process variables, the punch force variation, deformed configuration and 
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thickness strain variation are presented. Because of anisotropy, the cup develops 
ears. However, in isotropic materials there is no earing. A parametric study is 
carried out with respect to the three process variables, namely the die profile 
radius, sheet thickness and material properties. Finally, the optimization of the 
initial shape of the sheet is carried out to minimize the earing. In the end, the whole 
chapter is summarized in Section 6.5. 

6.2 Application of Finite Element Method to Updated 
Lagrangian Formulation  

6.2.1 Governing Equations 

The governing equations of the updated Lagrangian formulation, for the case of 
small incremental deformation, have been presented in Section 3.9 (Equations 
3.250–3.352). However, now, we assume that the incremental deformation is finite 
and we choose the incremental logarithmic strain tensor L

ij  as the measure of 
incremental deformation. Then, the incremental strain displacement relation is 
given not by Equation 3.250, but by the following relation between L

ij  and the 

incremental displacement vector t iu  (Equations 4.61, 4.65 and 4.80): 

 
ln( ) if

0 if

L
t ij t i i j

i j
, (6.1a) 

 2 T( ) ( )t ij t ik t kjU F F , (6.1b) 

 ,t ij ij t i jF u , (6.1c) 

along with the fact that t i  are the principal values of the incremental right 
stretch tensor t U . Here, ln denotes the natural logarithm and the comma in 
Equation 6.1c indicates the derivatives with respect to the components of the 
position vector t x  at time t.  

Further, for the case of finite incremental deformation, the incremental stress-
strain relation before yielding and after unloading remains the same (Equations 
3.251e, f) except that d kl  and d ij  are replaced respectively by L

t kl  and t ij . 
But, the incremental stress-strain relation after yielding (Equations 3.251a, b) gets 
replaced by Equations 4.84 and 4.85: 
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 d( )
t t t EP L

t ij ijkl t kl
t

C , (6.2a) 

 
2

92
1 2 2 ( 3 )

t t
ij klt EP

ijkl ij kl ik jl t t
eq

C
H

. (6.2b) 

Here, t
ij  is the deviatoric part of the stress tensor at time t, t

eq  is the equivalent 

stress (defined by Equation 3.23) at time t and tH  is the derivative (at time t, with 
respect to equivalent plastic strain) of the hardening function H defined by   

 ( ) ( )t t p t p n
eq eq Y eqH K . (6.2c) 

Here, Y  is the yield stress, K and n are the hardening parameters and t p
eq  is the 

equivalent plastic strain (defined by Equations 3.93 and 3.97) at time t. Further,  
is the  Poisson’s ratio which is related to the Lame’s constants  and  by  

 
2( )

. (6.2d) 

For the case of finite incremental deformation, the incremental stress t ij  is not 
expressed as the product of the Jaumann stress rate and the time increment 
(Equations 3.251g–i). Instead, it is made objective by employing the following 
updating procedure:  

               T( )( )( )t t t
t t tR R ,   (6.3) 

where t R  is the (finite) incremental rotation tensor at time t obtained from the 
polar decomposition of the incremental deformation gradient tensor t F . 

The incremental equation of motion (Equation 3.252) is not found to be 
convenient for the finite element model. Instead, the equation of motion in the 
deformed configuration at time t t  is used. As stated earlier, we assume that the 
process is slow. Then, the acceleration term in the equation of motion becomes 
negligible reducing it to the equilibrium equation. We further assume that the body 
forces are also negligible. Then, the equilibrium equation in the deformed 
configuration at time t t  is obtained from Equation 3.215 by removing the 
acceleration and body force terms and placing the left superscript on the notation 
of stress and the position vector. Thus, we get  
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 0
t t

ij
t t

jx
, (6.4) 

where t t
ij  is the stress tensor and  t t

jx  is the position vector both at time 
t t .  

As before, we assume the following boundary conditions: (i) on t t
uS  part of 

the domain boundary, the incremental displacement vector t
iu  is specified and 

(ii) on t t
tS  part of the domain boundary, the incremental stress vector t t

it  is 
specified. (The subscript n of the incremental stress vector is dropped henceforth.) 

6.2.2 Integral Form of Equilibrium Equation 

To convert the above equilibrium equation (Equation 6.4) into an integral form, we  
use the weighted residual method. We choose a vector function t iu  (of the 

coordinates t
jx ) which only satisfies the incremental displacement boundary 

condition on t t
uS  but otherwise is arbitrary. As stated in Chapter 5, this 

boundary condition is called as the essential boundary condition in finite element 
formulation. From this t iu , one can find first the incremental logarithmic strain 

tensor L
ij  using the incremental stress-strain relation (Equation 6.1) and then the 

incremental stress tensor t ij using the incremental stress-strain relation 

(Equation 6.2). Further, one can find the stress tensor t t
ij  at time t t  using 

the updating procedure of Equation 6.3. Since t iu  is an arbitrary function, the 

incremental stress t ij  obtained from it may not satisfy the boundary condition 

on t t
tS  or the updated stress t t

ij  obtained from it may not satisfy the 

equilibrium equation (Equation 6.4). In this case, the quantity /t t t t
ij jx  is 

called as the residue of the differential equation (Equation 6.4) corresponding to 
the given choice of t iu . Thus, the chosen t iu  may not be an exact solution of 

the governing equations of the updated Lagrangian formulation. However, it can be 
made an approximate solution of the governing equations, if the following integral, 
called weighted residual, is made zero: 

 d 0
t t

t t
ij t t

it t
V j

w V
x

, (6.5) 
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where t tV  is the domain volume at time t t  and iw  is a vector function of 

the coordinates t
jx , called the weight function. The weight function is assumed to 

be completely arbitrary except that it is required to be zero on the part t t
uS  of 

the boundary. 
To reduce the continuity requirement of the approximate solution, we carry out 

the following steps. First, we modify Equation 6.5 by using a vector identity: 

 ( )d d 0
t t t t

t t t t t t t ti
ij i ijt t t t

V Vj j

w
w V V

x x
. (6.6) 

Next, we convert the volume integral of the first term to a surface integral using the 
divergence theorem: 

 d dij
ij j

V j S

A
V A n S

x
, (6.7) 

for any tensor function ijA , of the coordinates jx , defined over the domain volume 

V. Here, S is the domain boundary and jn  is the unit outward normal to S. This 

surface integral can be split into two parts: (i) integral over t t
uS  and (ii) integral 

over t t
tS . Note that the integral over t t

uS  is zero as the weight function iw  is 

zero there. The integral over t t
tS  can be expressed in terms of the stress vector 

t t
it  by using the Cauchy’s relation (Equation 2.64). We denote the modified 

surface integral over the boundary t t
tS  as t tR : 

 d
t t

t

t t t t t t
i i

S
R t w S . (6.8) 

We modify the second term of Equation 6.6 by using the symmetry of the stress 
tensor. Then, it can be expressed in terms of the symmetric part of / t t

i jw x : 

 1( )
2

jt t i
ij t t t t

j i

ww
w

x x
. (6.9) 

With these modifications, the weighted residual (Equation 6.5) becomes 

 ( )d
t t

t t t t t t t t
ij ij

V
w V R . (6.10) 

This is called a weak form of the equilibrium equation (Equation 6.4). 
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6.2.3 Finite Element Formulation 

First, we express Equation 6.10 in an array form. For this purpose, we define the 
following column arrays or vectors: 

 

{ } , { } ,

( )

( )

( )
{ } , { ( )}

2 ( )

2 (

t t
x x

t t t t
y y

t t zz

t t t t
xx xx

t t t t
yy yy

t t t t
zz zzt t t t

t t t t
xy xy

t t t t
yz yz

t t
zx

t w
t t w w

wt

w

w

w
w

w
.

)

2 ( )t t
zx

w

w

 (6.11) 

Then, the integral equilibrium equation (Equation 6.10) becomes  

 T T{ ( )} { }d { } { }d
t t t t

t

t t t t t t t t t t

V S
w V w t S , (6.12) 

where the right superscript T denotes the transpose of the array. 
Next, we discretize the domain into a number of n-noded brick elements 

(Figure 5.5). Over a typical element, we choose the following approximation for 
the incremental displacement it u : 

 { } [ ] { }
t x

t e
t t y t

t z

u
u u u

u

, (6.13) 

where the elemental incremental displacement vector { }e
t u  is given by  

 T 1 1 1{ } , , , ..., , ,e n n n
t t x t y t z t x t y t zu u u u u u u .  (6.14) 

Here, the quantities j
t xu , j

t yu  and j
t zu  stand for the unknown incremental 

displacements at node j of element e in x, y and z directions respectively. The 
matrix [ ]t  is defined by  
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T
1

T
2

T
3

{ }

[ ] { }

{ }

t

t t

t

, (6.15) 

where 

 

T
1 1 2 3

T
2 1 2

T
3 1 2

{ } { , 0, 0, , 0, 0, , ......},

{ } { 0, , 0, 0, , 0, 0, ......},

{ } { 0, 0, , 0, 0, , 0, ......}.

t t t t

t t t

t t t

N N N

N N

N N

 (6.16) 

The t
jN , which are functions of ( , , )t t tx y z , are called shape functions and the 

matrix [ ]t  is called the shape function matrix. For the present problem, n is equal 

to 8. Then, t
jN  become the tri-linear shape functions. 

From the chosen approximation for t
iu  (Equation 6.13), one can first 

calculate the incremental logarithmic strain L
ij  using the incremental strain-

displacement relation (Equation 6.1) and then the incremental stress t ij  using 
the incremental stress-strain relation (Equation 6.2). Then, one can determine 
t t

ij  using the updating procedure of Equation 6.3. Note that, because of the 

non-linear strain displacement relation (Equation 6.1),  t t
ij  would be a non-

linear function of t
iu . 

In the Galerkin finite element formulation, the functions chosen to construct the 
weight function are the same as those used in approximating the primary variable. 
Therefore, over a typical element, we express iw  as 

 { } [ ]{ }
x

t t e
y

z

w
w w w

w

, (6.17) 

where the elemental weight vector { }ew  is given by 
 

 T 1 1 1{ } , , , ......., , ,n n n
x y z x y zw w w w w w w . (6.18) 

Here, the quantities j
xw ,  j

yw  and j
zw  denote the known but arbitrary values of the 

weight function components in x, y and z directions at node i of element e. Further, 
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the superscript of the matrix ][tt  is tt , and not t, as the matrix needs to be a 

function of the coordinates at time tt : ),,( zyx tttttt . This is because, the 
expression at Equation 6.17 is to be used in the integral over the domain at time 

tt . 
Differentiating the expression at Equation 6.17 for iw  with respect to the 

coordinates j
tt x , we get the following expression for { ( )}t t w : 

 { ( )} [ ]{ }t t t t e
Lw B w , (6.19) 

where the matrix [ ]t t
LB  is given by  

 

 

T
1 ,

T
2 ,

T
3 ,

T T
1 , 2 ,

T T
2 , 3 ,

T T
3 , 1 ,

{ }

{ }

{ }
[ ]

{ } { }

{ } { }

{ } { }

t t
x

t t
y

t t
zt t

L t t t t
y x

t t t t
z y

t t t t
x z

B .    (6.20) 

Here, the comma denotes the derivatives with respect to the coordinates j
tt x . 

When the domain is discretized into volume elements, the boundary t t
tS  gets 

automatically divided into area elements. In the present discretization, the volume 
element is an eight-noded brick element. Therefore, the area element becomes a 
four-noded square element. The expression for { }w over a typical area element, 
which is consistent with its expression over the volume element (Equation 6.17), is 
given by 

 { } [ ] { }
x

t t b b
y

z

w
w w w

w

, (6.21) 

where the matrix  

 

T
1

T
2

T
3

{ }

[ ] { }

{ }

t b

t b t b

t b

, (6.22) 
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now contains the two-dimensional bi-linear shape functions 

 

T
1 1 2 3

T
2 1 2

T
3 1 2

{ } { , 0, 0, , 0, 0, , ......},

{ } { 0, , 0, 0, , 0, 0, ......},

{ } { 0, 0, , 0, 0, , 0, ......}.

t b t b t b t b

t b t b t b

t b t b t b

N N N

N N

N N

 (6.23) 

The elemental weight vector { }bw for a typical area element is given by 

 T 1 1 1{ } , , , ......., , ,b b bbn bn bnb b b b
x y z x y zw w w w w w w , (6.24) 

where the quantities bj
xw , bj

yw  and bj
zw  stand for the known but arbitrary values of 

the weight function components in x, y and z directions at node j of area element b 
and bn  is the number of nodes per area element. In the present discretization, this 
number is 4. 

Let the total number of volume elements be eN  and the total number of area 

elements on the boundary t t
tS  be bN . Then, substitution of Equations 6.19 and 

6.21 in the integral equilibrium equation (Equation 6.12) leads to  

 T T

1 1
{ } { } { } { }

e bN Ne t t e b t t b
in ex

e b
w f w f , (6.25) 

where 

 T{ } [ ] { }d
t t e

t t e t t t t t t
in L

V
f B V , (6.26) 

and 
  
 T{ } [ ] { }d

t t b
t

t t b t t b t t t t
ex

S
f t S ,    (6.27) 

are respectively the elemental internal force vector and elemental external force 
vector, both at time t t . Here, t t eV  and t t b

tS  are respectively the domains 
of the typical volume element and typical area element. 

Using the assembly procedure of Chapter 5, the elemental discretized 
equilibrium equation (Equation 6.25) becomes 
 
 T T{ } { } { } { }t t t t

in exW F W F .     (6.28) 
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Here, { }t t
inF  and { }t t

exF  are respectively the global internal force vector and 
global external force vector, both at time t t . Further, the vector {W}, called 
the global weight vector, contains the known but arbitrary values of the weight 
function components in x, y and z directions at all the nodes of the domain. 
Equation 6.28 is true for any arbitrary weight function vector {W}. Therefore, we 
get  

 { } { } {0}t t t t
in exF F . (6.29) 

This is a discretized form of equilibrium equation (Equation 6.4). As stated earlier, 
t t

ij  depends non-linearly on t
iu . Therefore, { }t t

inF  becomes a non-linear 
function of  the unknown nodal values of the incremental displacement vector. 
Thus, Equation 6.29 is a set of non-linear algebraic equations. We need an 
iterative scheme to solve Equation 6.29. 

We use the Newton-Raphson iterative scheme for this purpose. To derive the 
iterative equations, we proceed as follows. We denote the global displacement 
vector by the symbol { }t U . Let ( 1){ } i

t U  be the global displacement vector 

obtained in (i–1)-th iteration. Then, to find ( ){ } i
t U  in i-th iteration, we expand 

{ }t t
inF  in Taylor’s series and retain only the first order terms. Thus, we get 

 
( 1)

2( ) ( 1)

{ } { }

{ }
{ } { } ( )

{ } i
t t

t t
i it t t t in

in in
t U U

F
F F O

U
,  

(6.30) 

where  is the norm of the vector }{ : 

 )1()( }{}{}{ i
t

i
t UU  (6.31) 

and ( 1){ }t t i
inF  and ( ){ }t t i

inF  are respectively the global internal force vectors 

obtained from the iterative global displacement vectors ( 1){ } i
t U  and ( ){ } i

t U . 

This means, using ( 1){ } i
t U , we first update the domain to ( 1)t t iV . Then, we 

obtain the corresponding shape function matrix ( 1)[ ]t t i  by considering the 

shape functions ( 1)t t i
jN  as functions of the coordinates ( 1)it t

jx . Let 
( 1){ }e i

t u  be the elemental incremental displacement vector corresponding to the 
typical element e. Then, from the approximation  

 ( 1) ( 1){ } [ ] { }t t i e i
t tu u , (6.32) 
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we calculate the corresponding incremental logarithmic strain using the 
incremental strain-displacement relation (Equation 6.1) and the corresponding 
incremental stress using the incremental stress-strain relation (Equation 6.2). Next, 
we update the stress to ( 1)t t i

ij  using Equation 6.3 and calculate ( 1)[ ]t t i
LB   

using Equation 6.20. Finally, we determine the corresponding  elemental internal 
force vector ( 1){ }t t e i

inf  from the integral  

 
( 1)

( 1) ( 1)T ( 1){ } [ ] { } d
t t e i

e it t t t i t t i t t
Lin

V
f B V ,           (6.33) 

(where ( 1)t t e iV  is the updated domain corresponding to the typical element e) 
for all the elements and assemble them to obtain ( 1){ }t t i

inF . The vector 
( ){ }t t i
inF  corresponding to i-th iteration is obtained similarly from ( ){ } i

t U .  

6.2.4  Evaluation of the Derivative 

It is quite tedious to evaluate the derivative }{/}{ UF tin
tt  when the 

incremental strain-displacement relation is given by Equation 6.1 or the 
incremental stress-strain relation is given by Equation 6.2a or the stress is updated 
by Equation 6.3. Therefore, we illustrate the determination of the derivative for a 
simpler case. Here, we use the following: 
(i) The incremental linear strain tensor (Equation 3.55) 

 , ,
1 ( )
2t ij t i j t j iu u , (6.34) 

as the measure of incremental deformation. The notation d(.) of Equation 3.55 for 
the incremental quantities has been changed to (.)t  for the sake of consistency 
and the comma denotes the derivatives with respect to the components of the 
position vector xt  at time t. 
(ii) An increment ( t ijS ) of the second Piola-Kirchoff stress tensor (Equation 
4.87) 

 1 Tdet( ) ( ) ( )( )t t t t
t ij t t ik kl t ljS F FF , (6.35) 

 
as the measure of objective incremental stress tensor. 
(iii) The tensor t EP

ijklC  (Equations 6.2b–6.2d) as the constitutive tensor in the 
incremental stress-strain relation 

 ( )t EP
t ij ijkl t klS C . (6.36) 
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6.2.4.1 Relation Between Internal Force Vectors at Times t  and t t  
To evaluate the derivative, we first relate the elemental internal force vectors at 
times t and tt . We start with the expression (Equation 6.26) of the elemental 
internal force vector e

in
tt f }{ . Pre-multiplying it with T{ }ew  and using Equation 

6.19, we get  

 T T{ } { } { ( )} { }d
t t e

e t t e t t t t t t
in

V
w f w V . (6.37) 

Using the definition at Equation 6.11 of the arrays { ( )}t t w and { }t t , the 
right side of the above equation is expressed in index notation as  

 T{ } { } ( )d
t t e

e t t e t t t t t t
in ij ij

V
w f w V . (6.38) 

Further, using Equation 6.9 and symmetry of the stress tensor, the above equation 
is modified as 

 T{ } { } d
t t e

e t t e t t t ti
in ij t t

V j

w
w f V

x
. (6.39)  

Adding the weighted equilibrium equation (Equation 6.5) to the above equation, 
we get 

 T{ } { } d
t e

t t
ije t t e t t t ti

in ij it t t tt j jV

w
w f w V

x x
, (6.40) 

which is further modified to  

 T{ } { } d
t e

e t t e t t t t
in ij it tt jV

w f w V
x

. (6.41) 

Using the divergence theorem (Equation 6.7), the volume integral on the right side 
of the above equation is converted to a surface integral 

 T{ } { } ( )d
e

e t t e t t t t t t
in ij i j

t tS
w f w n S , (6.42) 
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where j
tt n  is the unit outward normal to the element boundary ett S . Then, 

the surface integral is expressed in terms of the stress vector i
tt t  using the 

Cauchy’s relation (Equation 2.64)  

 T{ } { } ( )d
e

e t t e t t t t
in i i

t tS
w f t w S . (6.43) 

Note that, the domain boundary Stt  at time tt is not known. Therefore, 
we transform the above integral to the known domain boundary St  at time t. For 
this purpose, we use the transformation [1]  

 Td dt t t t t t t t
i t ij jt S T n S , (6.44) 

where t
t t

ijT  is the first Piola-Kirchoff stress tensor and j
t n  is the unit outward 

normal to St . Eliminating dt t t t
it S  from Equations 6.43 and 6.44, we get 

 T T{ } { } ( )dt
e

e t t e t t t t
in ij i j

tS
w f T w n S , (6.45) 

where et S  is the boundary of the typical element e at time t. Again using the 
divergence theorem (Equation 6.7), we convert this surface integral to the volume 
integral over the known domain at time t 

 T T{ } { } dt
e

e t t e t t t
in ij itt jV

w f T w V
x

. (6.46) 

Here, etV  is the volume of the typical element e at time t. The equilibrium 
equation (Equation 6.4) in terms of the first Piola-Kirchoff stress tensor becomes 
[1]  

 0
t t T
t ij

t
j

T

x
. (6.47) 

Expanding the partial derivative on the right side of Equation 6.46 and using 
Equation 6.47, we get  

 T T T{ } { } d d
e e

e t t e t t t t t ti k
in t ij t kjt tt tj jV V

w w
w f T V T V

x x
. (6.48) 
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Using the relation between the first and second Piola-Kirchoff stress tensors [1]  

 T
,( )

t tt t t t
kj t ki t ij ki t k i ijt

T F S u S , (6.49) 

Equation 6.48 can be expressed in terms of the second Piola-Kirchoff stress tensor 
t t

t ijS : 

 T
,{ } { } d

e

e t t e t t tk
in ki t k i t ij tt jV

w
w f u S V

x
, (6.50) 

where t kiF  is the incremental deformation gradient tensor (Equation 6.1c). 

Equation 6.35 implies that, at time t, t t
t ijS  reduces to t

ij  since ( )t F  
becomes a unit tensor with the value of its determinant being unity. Therefore, we 
decompose t t

t ijS  as  

 t t t
t ij ij t ijS S , (6.51) 

where t ijS  is the increment of t t
t ijS . Further, using the incremental stress-

strain relation (Equation 6.36), the above equation becomes 

 ( )t t t t EP
t ij ij ijmn t mnS C . (6.52) 

Substituting Equation 6.52 in Equation 6.50, we get 

 T
,{ } { } ( ) d

e

e t t e t t EP tk
in ki t k i ij ijmn t mn tt jV

w
w f u C V

x
. 

 (6.53) 

Expanding the parentheses in Equation 6.53, we obtain  

T

, ,

{ } { }

( ) ( ) ( )( ) d .
e

e t t e
in

t t t EP t EP tk
kj ij t k i kjmn t mn ijmn t mn t k i tt jV

w f
w

u C C u V
x

  

(6.54) 

The last term in the parenthesis is of second order in the norm of the incremental 
displacement vector t u . Therefore, we write the above equation as 
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2T
,{ } { } ( ) ( ) d ( )

e

e t t e t t t EP tk
in kj ij t k i kjmn t mn tt jV

w
w f u C V O

x
t u , 

 (6.55) 

where t u  is the norm of t u . Similar to Equation 6.9, we define the 

symmetric part of / t
k jw x  as 

           1( )
2

jt k
kj t t

j k

ww
w

x x
.   (6.56) 

Since t
kj  and ( )t EP

kjmn t mnC  are symmetric in the indices k and j, using the 

above definition of ( )t
kj w , Equation 6.55 becomes 

T

2

{ } { }

( ) ( ) ( ) d ( ).
e

e t t e
in

t t t EP t t tt k k
kj kj kjmn t mn kj ij t tt i jV

w f

u w
w C w V O

x x
t u

 

         (6.57) 

Now, we express the above equation in an array form. For this purpose, we 
define the following vectors: 

 { } , { } ,

t
xx

t xxt
yy t yy

t
zz t zzt

tt t xyxy
t t yz

yz
t zxt

zx

S
S

S
S S

S

S
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T
, , , , ,

( )

( )

( )
{ } , { ( )} ,2 2 ( )

2 2 ( )
2

2 ( )

{ ( )} , , , , , , , , ,

{ }

t
xx

t xx t
yyt yy

t
t zz zzt

t tt xy xy
tt yz

yz
t zx t

zx
t

t x x t x y t x z t y x t z z

t

w

w

w
w

w

w

w

u u u u u u

w T
, , , , ,, , , , , , , , .x x x y x z y x z zw w w w w

   

 (6.58) 

Then, the array form of the incremental stress-strain relation (Equation 6.36) 
becomes 

 }{][}{ t
EPt

t CS , (6.59) 

where ][ EPt C  is the 6 6 array form of the fourthth order tensor EP
ijkl

tC . Using the 
definition of various arrays (Equations 6.58 and 6.59), Equation 6.57 becomes 

T

2T T T

{ } { }

{ ( )} { } { ( )} [ ] { } { } [ ] { ( )} d ( ),
e

e t t e
in

t t t t EP t t t t
t

tV

w f

w w C w u V O t u

 (6.60) 

where the matrix ][t  is given by 

 

[ ] [0] [0]

[ ] [0] [ ] [0] ,

[0] [0] [ ]

[ ] .

t

t t

t

t t t
xx xy zx

t t t t
xy yy yz

t t t
zx yz zz

 (6.61) 
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 Now, we substitute the approximation for the incremental displacement it u  
(Equation 6.13) and the corresponding expression for the weight function iw  
(Equation 6.17). However, now, the superscript of the matrix ][  has to be t, and 
not tt , as the weight function expression is to be used in the integral over the 
domain at time t 

 et ww }]{[}{ . (6.62) 

Differentiating Equation 6.13 for it u  and Equation 6.62 for iw  with respect to 

the coordinates j
t x , we get the following expressions for }{t , )}({ wt , 

)}({ ut  and }{ wt : 

 { } [ ] { } , { ( )} [ ]{ }t e t t e
t L t LB u w B w , (6.63) 

where 

 

T
1 ,

T
2 ,

T
3 ,

T T
1 , 2 ,

T T
2 , 3 ,

T T
3 , 1 ,

{ }

{ }

{ }
[ ]

{ } { }

{ } { }

{ } { }

t
x

t
y

t
zt

L t t
y x

t t
z y

t t
x z

B , (6.64) 

and 

 { ( )} [ ] { } , { } [ ]{ }t t e t t e
NL t NLu B u w B w , (6.65) 

where 

 T
1 , 1 , 1 , 2 , 3 ,[ ] { } , { } , { } , { } , , , , { }t t t t t t

NL x y z x zB . (6.66) 

Substitution of Equations 6.63 and 6.65 into Equation 6.60 leads to 

 
2T T T{ } { } { } { } { } [ ] { } ( )e t t e e t e e t e e e

in in t tw f w f w k u O u , (6.67) 

where 
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T

{ } [ ] { }d
t e

t e t t t
in L

V
f B V , (6.68) 

and 

 T

T

[ ] [ ] [ ] ,

[ ] [ ] [ ] [ ]d ,

[ ] [ ] [ ] [ ]d .

t e

t e

t e t e t e
L NL

t e t t EP t t
L L L

V
t e t t t t

NL NL NL
V

k k k

k B C B V

k B B V

 (6.69) 

Here, e
t u  is the norm of the elemental incremental displacement vector 

e
t u}{ . Further, similar to Equation 6.26, e

in
t f }{  is called the elemental internal 

force vector at time t. 

6.2.4.2 Relation Between Internal Force Vectors of Two Different Iterations 
Instead of starting from e

in
tt f }{  (Equation 6.26), if we start from its estimate 

corresponding to (i–1)-th iteration, i.e., from 

 
( )

( )T( ) ( ) ( ){ } [ ] { } d
t t e i

ie it t t t t t i t t i
Lin

V
f B V , (6.70) 

and then transform its right side to the configuration corresponding to (i-1)th 

iteration, we get the following expression:  
 

( )T

2( 1)T T ( 1) ( ) ( 1)

{ } { }

{ } { } { } [ ] { } { } ( ),

e ie t t
in

e ie t t e t t e i e i e i e
t tin

w f

w f w k u u O

  (6.71) 
where 

 
( 1)

( 1)T( 1) ( 1) ( 1){ } [ ] { } d
t t e i

ie it t t t t t i t t i
Lin

V
f B V , (6.72) 
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( 1)

( 1)

( 1) ( 1) ( 1)

( 1) ( 1)T ( 1) ( 1) ( 1)

( 1) ( 1)T ( 1) ( 1)

[ ] [ ] [ ] ,

[ ] [ ] [ ] [ ] d ,

[ ] [ ] [ ] [ ] d

t t e i

t t e i

t t e i t t e i t t e i
L NL

t t e i t t i t t EP i t t i t t i
L L L

V
t t e i t t i t t i t t i t t

NL NL NL
V

k k k

k B C B V

k B B V ( 1) ,i

 

         (6.73) 
and e  is the norm of the vector e}{ :  

 )1()( }{}{}{ ie
t

ie
t

e uu . (6.74) 

Equation 6.71 involves the difference of )(}{ ie
t u  and )1(}{ ie

t u  as that is the 
displacement vector from the configuration corresponding to (i–1)-th iteration to i-
th iteration. 

Assembling Equation 6.71 over all the elements ( )eN  of the domain, we get  

 
( )T

2( 1)T T ( 1)

{ } { }

{ } { } { } [ ] { } ( ).

it t
in

it t t t i
in

W F

W F W K O
 (6.75) 

where )1(][ itt K  is the global version of )1(][ iett k  and  is the norm of the 
vector }{ : 

 )1()( }{}{}{ i
t

i
t UU . (6.76) 

 Since the global weight vector }{W is arbitrary, Equation 6.75 implies  

 2( ) ( 1) ( 1){ } { } [ ] { } ( )i it t t t t t i
in inF F K O . (6.77) 

6.2.4.3 Determination of the Derivative 
Comparing Equations 6.30 and 6.77, we get  

 
( 1)

( 1)

{ } { }

{ }
[ ]

{ } i
t t

t t
t t iin

t U U

F
K

U
, (6.78) 

and, therefore, Equation 6.30 becomes 

 2( ) ( 1) ( 1) ( ) ( 1){ } { } [ ] ( { } { } ) ( )i it t t t t t i i i
t tin inF F K U U O , 

(6.79) 
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where )1(][ itt K  is the global assembly of the elemental matrices )1(][ iett k  
given by Equation 6.73. 

The matrix )1(][ itt K  is called the tangent stiffness matrix. Note that the 
tangent stiffness matrix depends on the choice of incremental strain, objective 
incremental stress and incremental stress-strain relation. Crisfield [2] and Bathe [3] 
have used the virtual work expression to obtain the same expression for 

)1(][ iett k  as given by Equation 6.73.  

 The expression for the derivative }{/}{ UF tin
tt , as given by Equations 

6.73 and 6.78, has been obtained by choosing klt  as the incremental strain, 

ijt S  as the objective incremental stress and EP
ijkl

tC  as the constitutive tensor 
relating the two. However, we wish to develop the finite element formulation for 
finite increment size for which we plan to use L

ij  as the incremental strain, 
Equation 6.2a as the incremental stress-strain relation and Equation 6.3 as the 
updating scheme to make the incremental stress objective. For this combination, it 
is quite tedious to obtain the expression for the derivative }{/}{ UF tin

tt . 
Therefore, we use the expressions at Equations 6.73 and 6.78 for this derivative. 
Note that in the proposed iterative scheme, the derivative }{/}{ UF tin

tt is to 
be used as the coefficient matrix of the algebraic equations to find the corrections 
to the initial guess. As long as the corrections lead to a converged solution, the 
choice of the coefficient matrix in the algebraic equations does not matter. 
Therefore, using a coefficient matrix different from the exact derivative 

}{/}{ UF tin
tt  does not affect the final solution as long as the iterative 

scheme converges. 

6.2.5 Iterative Scheme 

We now assume that the global external force vector ex
tt F}{  is independent of 

{ }t U . Then, for ( ){ } i
t U  to be the solution of Equation 6.29, the vector 

( ){ }t t i
inF  as given by Equation 6.79 must satisfy Equation 6.29. Therefore, 

substituting Equation 6.79 in Equation 6.29 and neglecting the second order terms, 
we get  

 ( 1) ( ) ( 1) ( 1)[ ] { } { } { } , for =2,3.....t t i i i t t i
t tK U U R i , (6.80) 

where 

 ( 1)( 1){ } { } { } for =2,3....it t i t t t t
ex inR F F i , (6.81) 
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is the difference between the global external force vector and global internal force 
vector in iteration (i–1), and is called the (global) unbalanced force vector.  
Equations 6.80 and 6.81) are the iterative equations to be satisfied by ( ){ } i

t U .  
To start the iterations, we need an initial guess for the incremental displacement 

vector. To find a good initial guess, we use the expression at Equation 6.67 for the 
elemental internal force vector e

in
tt f }{  involving the integrals over the known 

domain at time t. Substituting this expression, after neglecting the second order 
terms, in the elemental discretized equilibrium equation (Equation 6.25), we get  

 T T T

1 1
{ } { } { } [ ] { } { } { }

e bN Ne t e e t e e b t t b
in t ex

e b
w f w k u w f . (6.82) 

Using the assembly procedure of Chapter 5, the above equation becomes  

 T T T{ } { } { } [ ] { } { } { }t t t t
in t exW F W K U W F , (6.83) 

where ][Kt  is the global assembly of the elemental matrices et k][  (Equation 
6.69). Since the global weight vector }{W is arbitrary, Equation 6.83 implies  

 { } [ ] { } { }t t t t
in t exF K U F . (6.84) 

Decomposing the global external force vector ex
tt F}{  as the sum of ex

t F}{ and 
its increment during the time t   

 extex
t

ex
tt FFF }{}{}{ , (6.85) 

Equation (6.84) becomes  

 extex
t

t
t

in
t FFUKF }{}{}{][}{ . (6.86) 

The configuration at time t is an equilibrium configuration. Therefore, using the 
discretized equilibrium equation (Equation 6.29) at time t, Equation 6.86 becomes  

 extt
t FUK }{}{][ . (6.87) 

Solution of this equation is used as the initial guess for the iterative scheme and it 
is denoted by )1(}{ Ut . The corresponding coefficient matrix and the right side 

vector are denoted respectively by )0(][Ktt  and )0(}{Rtt .  
The Newton-Raphson iterative scheme can, now, be expressed as 
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 extt
t FUK }{}{][ )1( , (6.88) 

 ( 1) ( ) ( 1) ( 1)[ ] { } { } { } , for =2,3...t t i i i t t i
t tK U U R i , (6.89) 

 ( 1)( 1){ } { } { } for =2,3...it t i t t t t
ex inR F F i . (6.90) 

 
Here, ][Kt  and )1(][ itt K , called  the global coefficient matrices, are the global 

assemblies of the matrices et k][  and )1(][ iett k  respectively. These matrices are 
called the elemental coefficient matrices and are given by Equations 6.69 and 6.73 
respectively. The global external force vector ex

tt F}{  at time tt  is the 

global assembly of the elemental external force vectors b
ex

tt f }{ , given by 
Equation 6.27. Its increment ext F}{ is obtained as the global assembly of 

b
ext f }{ , which is found from Equation 6.27 by replacing the stress vector array 

}{ttt  at time tt  by the incremental stress vector array }{ tt . The global 

internal force vector )1(}{ i
in

tt F  is obtained as the global assembly of the 

elemental internal force vectors )1(}{ ie
in

tt f , given by Equation 6.72. Integration 

involved in the evaluation of the elemental quantities et k][ , )1(][ iett k , b
ext f }{ , 

b
ex

tt f }{  and )1(}{ ie
in

tt f  is done numerically using Gauss numerical integration 
scheme. 

The iterations are continued untill the right side vector of Equation 6.89, 
namely ( ){ }t t iR , becomes very small compared to the external force vector 

ex
tt F}{ . Thus, the convergence criterion can be stated as 

 
( ){ }

{ }

t t i

ct t
ex

R

F
, (6.91) 

where { }a  represents the norm of the array {a} defined as 
 
 2{ } i

i

a a ,       (6.92) 

where the sum is to be taken over all the components. In Equation 6.91, c is a 
specified small number, called as the convergence tolerance. 

While deriving the iterative equations, it is assumed that the global external 
force vector ex

tt F}{  is independent of the incremental displacement vector 
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{ }t U . However, ex
tt F}{  is the global assembly of b

ex
tt f }{  involving 

integration over the boundary b
t

tt S . Since b
t

tt S  depends on { }t U , ex
tt F}{  

also depends on it. Therefore, it needs to be updated in each iteration. In that case, 
the global unbalanced force vector )1(}{ itt R  becomes  

 ( 1)( 1) ( 1){ } { } { } for =2,3...it t i t t i t t
ex inR F F i . (6.93) 

 
Further, the denominator of Equation 6.91 is to be changed to ( ){ }t t i

exF . 
Updation of coefficient matrix in each iteration takes a lot of computational 

time. Therefore, sometimes, it is kept constant in each iteration. Thus, ][Kt  is used 

as the coefficient matrix instead of )1(][ itt K  in every iteration. This version of 
the iterative scheme is called the modified Newton-Raphson iterative scheme. This 
scheme usually needs more iterations per increment than the full Newton-Raphson 
scheme. However, numerical experiments show that the computational time saved 
in not updating the coefficient matrix is usually larger than the time required for 
carrying out more iterations. Therefore, overall computational time per increment 
is less when the modified version of the Newton-Raphson scheme is used.  

6.2.6 Determination of Stresses 

Evaluation of the stress components (at the Gauss points of the elements) is done 
by the following stepwise procedure: 

 Calculation of the incremental deformation gradient tensor t F  from 
Equation 6.1c. 

 Decomposition of t F  into the incremental rotation tensor t R  and the 
incremental right stretch tensor t U  using the polar decomposition 
theorem (Equation 4.62). 

 Determination of the principal values t i  and principal directions ˆt
ie  of 

the incremental right stretch tensor t U . 

 Calculation of the components of the incremental logarithmic strain L
t  

in the coordinate system of ˆt
ie  using Equation 6.1a. These components 

need to be transformed to the fixed frame using the tensor transformation 
law (Equation 2.56). 

 Determination of the incremental (Cauchy) stress t  using the 
constitutive equation (Equation 6.2). The integration in Equation 6.2 is 
performed using the Euler forward integration scheme which is described 
in the next subsection . 
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 Calculation of the (Cauchy) stress t+ t  at time t t  using the updating 
scheme of Equation 6.3.  This updating procedure makes the constitutive 
equation objective. 

6.2.6.1 Integration of the Constitutive Equation 
Different techniques exist for the integration of the constitutive equation (Equation 
6.2a) [2]. A simple but robust technique is the Euler forward integration scheme 
which is described below. 

Suppose that the incremental logarithmic strain L
t  and the incremental 

rotation tensor t R  at a Gauss point have been calculated and the state of the 
Gauss point at time t (elastic or plastic) is known.  
(A) If the state of the Gauss point at time t is elastic: 

1. First, the stress increment t  is determined assuming elastic behavior: 

 ( )E L
t tC  (6.94) 

where EC  is given by Equation 3.251f. 
2. Next, the (Cauchy) stress t+ t  at time t t  is calculated using the  
updating scheme (Equation 6.3). 
3. Next, the equivalent stresses t

eq  and t t
eq  are determined using 

Equation 3.23. 
4. If t t

eq Y , then the assumption of elastic behavior is correct and 
t+ t  calculated in step 2 is the correct (Cauchy) stress at the Gauss point at 
time t t .  
5. If t t

eq Y , a transition from elastic to plastic has occurred. Therefore, 
the state of the Gauss point is changed from elastic to plastic. Further, the 
elastic part of the increment is calculated as  

 
t

Y eq
t t t

eq eq
fraction . (6.95) 

Thus, the incremental strain corresponding to the elastic part of the increment 
is equal to ( )fraction L

t and that corresponding to the plastic part is  

(1 )( )fraction L
t . 

 First, the (Cauchy) stress corresponding to the elastic part of the increment 
is calculated from  

( ) T( ) ( ) ( ) ( ( ))fraction0t t t E L
t t tR R C . (6.96) 
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 Next, the incremental strain corresponding to the plastic part is divided into 
n sub-increments 

 
(1 )

d
fraction

n

L
L t

t . (6.97) 

 Then, the equivalent plastic strain ( )( )t t p i
eq  at the end of i-th sub-

increment is calculated from Equations 3.93 and 3.97 except that the 
integration in Equation 3.97 is replaced by the sum. Thus, 

             ( )( ) ( d ), for 1,..., 1t t p i pL
eq t eq

i
i n ,                              (6.98a) 

      
1/ 22d ( d )( d )

3
pL pLpL

t eq t tij ij , (6.98b) 

where d pL
t  is the plastic part of the d L

t . 

 Then, the elastic-plastic constitutive matrix ( )t+ t EP iC  for i-th sub-
increment is calculated from Equation 6.2b:  

               
( )

( )( )

( ) ( ) 2

( )( )92 for 1,.., 1,
1 2 2 ( 3 )( )

EP it t
ijkl

it t i t t
ij kl

ij kl ik jl t t i t t i
eq

C

i n
H

 (6.99) 

where ( )it+ t is the deviatoric part of ( )it+ t , i.e., the (Cauchy) stress at 
the end of i-th sub-increment, which is calculated from  

 
1( ) T ( )( )( )( ) ( )( d ) for 1,.., 1

i-i j

j=0
i nt t t t+ t EP L

t t tR R C ,  

(6.100) 

and ( )t t iH is the derivative of the hardening function defined by 
Equation 6.2c: 

 ( ) ( )t t p t t p n
eq Y eqH K , (6.101) 
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evaluated at ( )( )t t p i
eq . Note that ( )0t+ t EPC  is calculated from 

( )0t+ t  given by Equation 6.96 with (0)t tH  being taken as zero. 
 Then, the (Cauchy) stress at the end of increment, i.e., at time t t  is 

calculated from  

 T( )( )( )t t t
t t tR R ,  (6.102a) 

 
1 ( )( )( d )

n-

i=0

t+ t EP i L
t tC . (6.102b) 

(B) If the state of the Gauss point at time t is plastic, the sub-increment method 
described in step 5 above is used to calculate t+ t  with the fraction being set as 
zero. 
(C) If the state of the Gauss point at time t is plastic and the stress increment t  
is such that it satisfies the following unloading criterion (Equation 3.212)  

 ( ) ( ) 0t
ij t ij , (6.103) 

then  
 The stress increment t  is recalculated using the elastic constitutive 

equation (Equation 6.94).  
 The (Cauchy) stress t+ t  at time t t  is recalculated using the 

updating scheme (Equation 6.3). 
 The state of the Gauss point is changed from plastic to elastic. Note that 

the yield stress corresponding to this elastic state would be t
eq  and not 

Y . 

6.2.7 Divergence Handling Techniques 

The Newton-Raphson iterative scheme diverges in some cases. In that case, the 
following simple but fairly effective techniques can be used to overcome the 
divergence. In all these techniques, if the divergence occurs in the iteration number 
i, then that iteration is repeated by reducing the norm of the unbalanced force 
vector ( 1){ }t t iR  corresponding to the solution of the previous iteration, i.e., the 
iteration number ( 1)i . Note that the solution of the ( 1)i -th iteration is the 

iterative correction vector ( 1){ } i
t u  defined by  

 ( 1) ( 1) ( 2){ } { } { }i i i
t t tu U U . (6.104) 
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Thus, in a divergence handling technique, the iterative correction vector ( 1){ } i
t u  

is changed so as to reduce the norm of the unbalanced force vector ( 1){ }t t iR .  
Under-Relaxation 
In this technique, the iterative correction vector is directly scaled down by a  
chosen factor u  (0 1)u . So, for repeating the iteration i, instead of the 

actual iterative correction vector ( 1){ } i
t u  of the ( 1)i -th iteration, its scaled 

version ( 1)( ) { } i
u t u  is used. 

Line Search  
In this technique also, the iterative correction vector is scaled by a factor, but the 
scaling factor l  is determined so as to minimize the norm of the unbalanced force 

vector ( 1){ }t t iR . Full line search technique, in which the norm of ( 1){ }t t iR  
is minimized, is computationally expensive. Therefore, it is modified so as to 
reduce the computational time. In this modified version,  the norm  of ( 1){ }t t iR  
is evaluated at n discrete values of l  lying between min( )l and max( )l . The 

value of l  which leads to the lowest value of the norm of ( 1){ }t t iR  is chosen 
as the scaling factor. Note that l  does not necessarily have to be less than 1.  
Modification of the Coefficient Matrix 
In this technique, the iterative correction vector is scaled down by increasing the 
size of the coefficient matrix ][Kt . This is done by adding a small percent of the 
elastic stiffness matrix to it. 
Increment Cutting 
If all the above techniques fail, then the divergence is overcome by cutting the size 
of the increment. In this case, the whole increment, and not just the iteration, is 
repeated unlike the earlier three techniques. The increment size is cut either by 
cutting the specified force if it is a force control problem or by cutting the specified 
displacement if it is a displacement control problem or by cutting both if both the 
force and displacement are specified at different parts of the boundary. This cut in 
the increment size automatically scales down the iterative displacement vector 
thereby reducing the norm of the unbalanced force vector. This happens in all the 
iterations of the repeated increment. 

6.3 Modeling of Axisymmetric Open Die Forging by Updated 
Lagrangian Finite Element Method  

In forging, the material is deformed plastically between two or more dies so as to 
give it the desired shape and size. In open-die forging, height of a solid work-piece 
is reduced by compressing it between two flat dies, also called platens. In closed 
die forging, the work-piece is given a desired shape by using shaped dies. In this 
book, only the open die cold forging would be considered as it is the simplest of all 
the forging processes. Open die forging problems appear to be similar to those of 
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the  simple compression. However, there are significant differences between the 
states of deformation and stress in the two cases. In the case of open die forging, 
the friction at the die–work-piece interface makes the deformation as well as the 
stress distribution non-uniform.  

The forging process has been analyzed by the slab method [4], the slip-line 
method [5, 6] and the upper bound method [7, 8] mostly for determining the 
forging load and the contact pressure distribution. However, for determining the 
detailed deformation and stress fields, the finite element method (FEM) has been 
used.  

There is a large body of literature on the application of FEM to forging 
problems. The early applications of FEM to forging problems were based on the 
incremental method proposed by Lee and Kobayashi [9]. The method uses the 
elastic-plastic stress-strain matrix based on the Prandtl-Reuss equations. Even 
though the stress-strain matrix and the geometry are updated after every increment, 
only the linearized incremental equations are used. The interfacial friction is 
modeled by the friction factor where the change in the direction of the shear stress 
is incorporated by introducing a velocity-dependent coefficient. This method has 
been applied to solid cylinder upsetting [10], ring compression [11] and for 
predicting defects [12]. Whereas Lee and Kobayashi [9] used the velocity as the 
primary unknown, Hartley et al. [13, 14] proposed an incremental method with the 
incremental displacement as the primary unknown. They also used only the 
linearized incremental equations and updated the stress-strain matrix and geometry 
after every increment. However, in their formulation, the friction factor is 
incorporated by the beta stiffness method [13]. Shima et al. [15] used the rigid-
plastic constitutive equation based on the plasticity theory of porous metals and the 
Coulomb friction model to study the upsetting of a circular cylinder and validated 
their results by conducting experiments. 

The finite element formulations involving the co-rotational strain measures and 
the objective stress measures have been discussed by Kobayashi et al. [16], Rowe 
et al. [17] and Hartley et al. [18]. The finite element formulation proposed by 
Bathe et al. [19], which involves solving non-linear incremental equations by an 
iterative scheme like the Newton-Raphson method, has been applied (with or 
without elastic effects) to axisymmetric forging problems by Dadras and Thomas 
[20] and Carter and Lee [21]. 

Some of the typical latest references on the application of FEM to 
axisymmetric forging process are discussed in this paragraph. All of them employ 
non-linear incremental equations. Further, in most of the references, the interfacial 
friction has been modeled by the friction factor rather than by Coulomb’s law. 
Michel and Boyer [22] have carried out the elasto-viscoplastic finite element 
analysis of a cold upsetting process and validated it by residual stress 
measurements using the hole-drilling method. They have calculated and measured 
the residual stress variations on the flat end of the cylinder. They have used the 
friction factor model to represent the interfacial friction. Zhao et al. [23] have used 
forward and backward finite element simulations to design the preform shapes in 
forging processes. Even though the example considered is that of plane strain 
forging, the method is equally applicable to axisymmetric forging. Joun et al. [24] 
have proposed a finite element simulation technique for the forging process with a 
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spring-attached die. The strategy of spring-attached die controls the metal flow 
lines in such a fashion that it results in the prevention of defects and the 
improvement of product quality. Kim et al. [25] have applied rigid-viscoplastic 
FEM to cold axisymmetric forging of aluminum alloy to study its ductile fracture. 
The Cockcroft and Latham criterion has been used for predicting the fracture. 
Yang et al. [26] have developed an intelligent system for the complete design 
methodology of the forging process by integrating FEM with expert systems and 
computer-aided design (CAD) interface modules. Gupta et al. [27] have predicted 
fractures in axisymmetric forging processes using the hydrostatic stress criterion as 
well as the critical value of the damage parameter. The damage is evaluated using 
the continuum damage mechanics theory. Mungi et al. [28] have carried out the 
parametric study of residual stresses in axisymmetric forging. Both the papers use 
the updated Lagrangian finite element formulation where non-linear incremental 
equations are solved by the Newton-Raphson technique. Incremental logarithmic 
strain has been used as the measure of incremental deformation and the stress is 
updated in a material frame to make the incremental stress objective. 

6.3.1 Domain and Boundary Conditions 

We assume that both the platens move with the same velocity but in the opposite 
direction. Therefore, due to symmetry, only the upper half of the cylindrical work-
piece needs to be considered. Further, because of axisymmetry, only a typical r-z 
plane needs to be analyzed. Figure 6.1 shows the domain of the problem. It is the 
initial configuration of an r-z plane of the upper half of the cylindrical work-piece. 
Note that this domain is two-dimensional and undeformed and therefore looks 
different from the three-dimensional deformed domain of the same problem shown 
in Figure 3.21. The platens are assumed rigid and the friction at the interface is 
modeled by sticking friction and Coulomb’s law.  

 
Figure 6.1. Domain of the problem: the initial configuration of a quarter of the cylindrical 
block 
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Note that an axisymmetric problem is a two-dimensional problem. Therefore, 
only two boundary conditions are needed on each boundary. The boundary 
conditions of the problem are the same as Equations 3.255–3.260 except that the 
prefix of the incremental quantities is changed from d(.) to (.)t  and the notations 

dr rt t  and dz zt t  are changed to t t
rt  and t t

zt . Further, the boundary 
conditions do not involve any conditions on t u  and t t  (i.e., the -
components of the incremental displacement vector and incremental stress vector 
respectively). For axisymmetric problems, both these quantities are identically zero 
everywhere in the domain. Thus, the boundary conditions of the problem are as 
follows. Whether the condition is essential (i.e., on the primary vaiable t u ) or 
natural (i.e., on the secondary variable t t ) is also mentioned against each 
condition. (The subscript n of the incremental stress vector t nt  is dropped 
henceforth.) 
Free boundary BC: 
The boundary BC is a free surface. On a free surface, both r and z components of 
the incremental stress vector t t  are zero at every point. Therefore, the boundary 
conditions on the boundary BC are 

 0, 0 (natural)t r t zt t ,        (6.105) 

Plane of symmetry DC: 
On a plane of symmetry, the normal component of the incremental displacement 
vector t u  and the shear component of the incremental stress vector t t  are zero 
at every point. Since the boundary DC is perpendicular to z-axis, the boundary 
conditions on this boundary are: 

 0, (natural)t rt ,  (6.106a) 

 0, (essential)t zu . (6.106b) 

Note that these are a mixed type of boundary condition. 
Axis of symmetry AD: 
On the axis of symmetry, the component of the incremental displacement vector 
t u  normal to the axis and the component of the incremental stress vector t t  
along the axis are zero at every point. Since the axis AD is along z-axis, the 
boundary conditions on this boundary are 

  0, (essential)t ru , (6.107a) 

 0, (natural)t zt . (6.107b) 
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Note that these are also a mixed type of boundary condition. 
Platen interface AB: 
At the interface, z-component of the incremental displacement vector t u  must be 
equal to the incremental platen displacement.  

As far as the second boundary condition is concerned, we observe the 
following. Nearer to point A (center of the platen), the block material sticks to the 
platen while nearer to the free edge (point B), the block material slips relative to 
the platen in the outward direction. We first discuss the boundary condition 
corresponding to the slipping case. Here, we assume that the frictional (or shear) 
stress exerted by the platen in r-direction is governed by Coulomb’s law: 

  ift t t t t t t t
r z r zt f t t f t , (6.108) 

 
where f is the coefficient of friction and t t

rt  and t t
zt  are the components of 

the stress vector t+ t t  (at time t t ) along the directions r and z respectively. 
Note that the friction boundary condition has to be in terms of the stress vector at 
time t t and not in terms of the incremental stress vector t t . The material flow 
at the interface is in the positive r-direction. Therefore, the frictional stress will be 
in the opposite direction, i.e., in the negative r-direction. Further, the normal stress 
exerted by the platen is always compressive, i.e., in the negative z-direction. 
Therefore, both t t

rt  and t t
zt  are negative. Then Equation 6.108 becomes  

  ( ) ift t t t t t t t
r z r zt f t t f t .         (6.109) 

Next, we discuss the boundary condition corresponding to the sticking case. In this 
case, r component of the incremental displacement vector must be zero. 

Now, the boundary conditions on the boundary AB become 

  
( ) 0 if (slipping)

(natural)

t t t t t t t t
r z r zt f t t f t

,     (6.110a) 

  
0, if (sticking)

(essential)

t t t t
t r r zu t f t

,                               (6.110b) 

  
*

(essential).
t zu            (6.111) 

where *  is the prescribed incremental displacement of the platen. Note that these 
boundary conditions involve a combination of t t

rt  and t t
zt . Here also, the 
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shear stress at the platen interface is subject to the constraint that it can not exceed 
its maximum value. 

Since the nodal forces are proportional to the components of the stress vector 
t+ t t , the two conditions of Equation 6.110 can be expressed in terms of the r and 
z  components of the global force vector at the interface nodes. In fact, this is the 
form which is convenient for the finite element formulation. In terms of the nodal 
forces, Equation 6.110 takes the following form. At node l on the interface,  

 0 if (slipping)t r t t t t t t
lr lz lr lzF f F F F , (6.112a) 

 0 if (sticking)t t t t
t r lr lzu F F , (6.112b) 

where lr
tt F  and t t

lzF  are the components of the global force vector }{Ftt  
indicating the nodal forces in the r and z direction at node l. 

6.3.2 Cylindrical Arc Length Method for Displacement Control Problems 

The boundary condition (Equation 6.111) indicates that the forging problem is a 
displacement control problem. Since there is no specified external force in 
displacement control problems, the denominator in the convergence criterion 
(Equation 6.91) does not exist. For such problems, one can try to achieve the 
convergence by making the unbalanced force vector )(}{ itt R  small in an absolute 
sense. But, this slows down the rate of convergence to a considerable extent. To 
accelerate the rate of convergence, one can use an arc length method in 
conjunction with the modified Newton-Raphson method. In the arc length method, 
in every increment, the unknown nodal reaction vector at the boundary (where the 
incremental displacement vector is specified) is expressed as a linear combination 
of known nodal force vectors and unknown coefficients. Then, the problem is 
solved iteratively as a force control problem using the known nodal force vectors 
as the specified incremental force vectors. In every iteration, the unknown 
coefficients in the linear combination are found from the specified incremental 
displacement vector at the boundary.   

Note that the nodal reaction vector also changes during iterations. We treat 
{ }t t

exF  of Equation 6.90 as the nodal reaction vector at time t t , and define 

the nodal reaction vector of i-th iteration ( ){ }t t i
exF as follows:  

 
(1) (1)

( ) ( 1) ( )

{ } { } { } ,

{ } { } { } for  = 1,2,......,

t t t
ex ex t ex

t t i t t i i
ex ex t ex

F F F

F F F i
 (6.113) 
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where  { }t
exF  is the known nodal reaction vector at the beginning of the 

increment and ( ){ } i
t exF  is the iterative incremental nodal reaction vector of i-th 

iteration. Then, the iterative equations (Equation 6.88–6.90) get modified to  

 (1) (1)[ ] { } { }t
t t exK U F , (6.114)  

 ( ) ( ) ( 1)[ ] { } { } { } for  =2,3,......,t i i t t i
t t exK u F R i  (6.115) 

 ( 1)( 1) ( 1){ } { } { } , for =2,3,.......it t i t t i t t
ex inR F F i  (6.116) 

Here, as stated earlier, )1(}{ Ut  is the initial guess of the incremental displacement 

vector and )(}{ i
t u is the iterative correction vector of the i-th iteration defined by 

Equation 6.104. Further, this being the modified Newton-Raphson iterative 
scheme, the coefficient matrix is kept constant during the iterations at ][Kt , i.e., its 
value at the beginning of the increment.  

For structural analysis problems, the arc length method was first proposed by 
Riks [29]. The general description of the arc length method is given in Crisfield’s 
book [2]. Here, we use the version of the cylindrical arc length method proposed 
by Batoz and Dhatt [30]. This version is for the case of proportional loading. 
However, in the forging problem, the loading is non-proportional. Therefore, the 
original method needs to be appropriately modified to take care of the non-
proportional loading. The modified method is described in this subsection.  

Let m be the number of nodes on the boundary where the incremental 
displacement vector is specified. (In the forging problem, this boundary is the 
platen interface.) Then, the iterative nodal reaction vector ( ){ } i

t exF  is expressed as  

 ( )( )

1
{ } ( ) { }

m ii
t ex t kk

k
F P , (6.117) 

where the vectors kP}{  are known nodal force vectors, called the basic load 

vectors, and ( )( ) i
t k  are the unknown coefficients. Note that whereas the vectors 

kP}{  are the same in every iteration of each increment, the ( )( ) i
t k  change with 

the iteration as well as the increment. The vector kP}{  is chosen such that all but 
one of its components are zero, the non-zero component being unity along the 
direction of the specified displacement at node k. (In the forging problem, this 
direction is the negative z-direction.) 
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Since Equations 6.114 and 6.115 are linear in )1(}{ Ut  and )(}{ i
t u , their 

solutions are decomposed as 

 

(1)(1)

1

( )( ) ( )

1

{ } ( ) { } ,

{ } ( ) { } { } for  = 2,3,....,

m
kI

t t tk
k
m

ii kI i II
t t t tk

k

U U

u U u i

 (6.118) 

where the known vectors { }kI
t U  and IIi

t u )(}{  are obtained as the solutions of 
the problems  

 
( ) ( 1)

[ ] { } { } for   = 1,2,.... ,

[ ] { } { } for   = 2,3,.....

t kI
t k

t i II t t i
t

K U P k m

K u R i
 (6.119) 

Note that the vector { }kI
t U  is the contribution to the incremental displacement 

vector due to the basic load vector kP}{  and it is the same in every increment. On 

the other hand, the vector IIi
t u )(}{  is the contribution to the iterative correction 

vector due to the unbalanced force vector )1(}{ itt R  and it varies with the 
iteration as well as the increment. However, it is zero in the first iteration of every 
increment. 

To obtain the complete solution of Equations 6.114 and 6.115, one needs to 
determine the unknown coefficients ( )( ) i

t k  corresponding to k-th basic load 
vector and i-th iteration for k = 1,2,..,m and i = 1,2,… They are determined from 
the specified incremental displacement vector at the boundary. For concreteness, 
assume that the z-component of the incremental displacement vector at each node 
is specified and the specified value is *

t u . (This is actually the case for the 

forging problem.) We distribute *
t u  in various iterations as follows. Let )1(

lzt U  
denote the component of the initial guess of the incremental displacement vector 

)1(}{ Ut  which represents the z-component at node l of the boundary. Further, let  
( )i

t lzu  denote the component of the iterative correction vector )(}{ i
t u  which also 

represents the z-component at node l of the boundary. We assume that for l = 1, 2, 
..,m, the entire *

t u  is equal to )1(
lzt U , the z-component of the initial guess of the 

incremental displacement vector at node l. Then, in subsequent iterations, ( )i
t lzu , 

i.e., the z-component of the iterative correction at node l, is zero for l = 1, 2, ..,m. 
Thus, 
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(1) *

( )

,

0 for  = 2,3,........

t tlz
i

t lz

U u

u i
 (6.120) 

Substituting these values in Equation 6.118, we get the following equations for 
( )( ) i

t k : 

 

(1) *

1

( ) ( )

1

( ) ,

( ) 0 for  = 2,3,......

m kI
t t lz tk

k
m i i IIkI

t t lz tk lz
k

U u

U u i
 (6.121) 

where kI
t lzU  and ( )i II

t lzu  are the z-components of the vectors { }kI
t U  and 

IIi
t u )(}{  at node l. By solving Equation 6.121, we get the iterative values of 

( )( ) i
t k  for i = 1,2,… Then, the iterative solution is obtained by substituting 

( )( ) i
t k  in Equation 6.118 and the iterative nodal reaction by Equation 6.117. 

6.3.3 Friction Algorithm 

The friction boundary conditions of Equation 6.112 can be applied only in an 
iterative fashion. Thus, besides the Newton-Raphson iterations, there is an 
additional set of iterations in the solution of the forging problem. First, for the 
specified incremental platen displacement, the friction iterations are carried out to 
determine the status (sticking or slipping) of the interface nodes. Then the Newton-
Raphson iterations are carried out to minimize the unbalanced force vector. The 
stepwise algorithm for the friction iterations can be described as follows.  
(i) First Friction Iteration: 

 In the first iteration, all the interface nodes are assumed to be in sticking 
condition. Thus, the sticking boundary condition given by Equation 
6.112b is applied to all the interface nodes. 

 Next, the finite element equation (Equation 6.114) is solved to find 
)1(}{ Ut , i.e., the initial guess to the incremental displacement vector.  

 Next, (1){ }t exF , i.e., the iterative nodal reaction vector of the first iteration, 

is found from Equation 6.117 and the nodal reaction vector (1){ }t t
exF  is 

updated using Equation 6.113. 
 At the end of first friction iteration, the slipping nodes at the interface are 

identified using the following condition. Node l at the interface slips if  

   (1) (1)( ) ( )t t t t
ex lr ex lzF f F , (6.122)  
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where (1)( )t t
ex lrF  and (1)( )t t

ex lzF  are the r and z components of the 

vector (1){ }t t
exF  at node l. 

 (ii) Second Friction Iteration: 
 Now, the slipping boundary condition (Equation 6.112a) is applied to all 

the slipping nodes. Note that this condition is to be applied to the 
components of the nodal reaction vector (1){ }t t

exF .  In terms of r and z 
components at a slipping node l, the condition at Equation 6.112a 
becomes 

 0)()( )1()1(
lzex

tt
lrex

rt FfF . (6.123) 

We assume that similar condition is satisfied by the components of 
)1(}{ ext F , i.e., the iterative nodal reaction vector of the first iteration 

      0)()( )1()1(
lzextlrext FfF .   (6.124)  

Since, r and z components of )1(}{ ext F  at node l occupy respectively the 
(2l 1)-th and (2l)-th rows, Equation 6.124 means that the right sides of  
(2l 1)-th and (2l)-th equations in the set of Equation 6.114 are not known 
but they are related by this condition. To solve the set at Equation 6.114, 
the right sides of both these equations should be known. Equation 6.124 
implies that if we replace either of these equations by an equation 
consisting of (2l 1)-th equation of the set minus f times (2l)-th equation, 
then the right side of that equation is zero and therefore known. Thus, we 
apply the condition at Equation 6.124 by performing the following 
operations on the coefficient matrix ][Kt  and the right side vector 

(1){ }t exF . We replace the (2l 1)-th row of ][Kt  by a combination of 
(2l 1)-th row minus f times (2l)-th row and the corresponding row of  

(1){ }t exF  by zero. We make the right side of (2l)-th equation known by 
replacing it with Equation 6.111. 

 Then, the finite element equation (Equation 6.114) is solved again to find 
the new initial guess to the incremental displacement vector.  

 Next, the new iterative nodal reaction vector of the first iteration is found  
from Equation 6.117 and the nodal reaction vector is updated afresh using 
Equation 6.113. 

 Finally, a check is made to find whether any additional nodes are slipping 
by using Equation 6.122. 
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(iii) Further Friction Iterations: 
 The second friction iteration is repeated until the condition 

 lzex
tt

lrex
tt FfF )()( )1()1( , (6.125) 

is satisfied at all the nodes.  

6.3.4 Convergence Study and Evaluation of Secondary Variables 

Eight-noded isoparametric brick elements are used to discretize the domain. A non-
uniform mesh is used by placing smaller elements in the vicinity of the edge of the 
interface (i.e., point B of Figure 6.1) as this happens to be a high gradient region. 
Convergence studies are carried out to select proper mesh and increment sizes. It is 
observed that good convergence is achieved at 10 10 mesh with an increment size 
of 0.05 mm. 

From the incremental displacement vector, the Cauchy stress tensor (at the 
Gauss points of the elements) is updated using the procedure described in Section 
6.2.6. Then the equivalent stress is calculated using Equation 3.23. The procedure 
for obtaining the contact pressure is as follows. First, the Cauchy stress tensor is 
extrapolated from the Gauss points to the corresponding points on the interface AB 
of Figure 6.1. Then the stress vector at these points is calculated using the 
Cauchy’s relation (Equation 2.64). Finally, the contact pressure at these points is 
obtained as the normal component of the stress vector. The forging load is 
calculated either by integrating the contact pressure or by adding the z-components 
of the reactions at the interface nodes. 

The equivalent plastic strain increment is calculated using Equation 3.93 and 
the equivalent plastic strain is obtained by replacing the integral of Equation 3.97 
by a sum. Thus, the equivalent plastic strain is determined as the sum of the 
equivalent plastic strain increments. The deformed mesh is obtained by updating 
the nodal coordinates. 

After the desired reduction is achieved, the reactions (on the interface AB) are 
reduced to zero to obtain the (equivalent) residual stress distribution. Thus, the 
boundary conditions at the interface, during unloading, are different to those given 
by Equations 6.110 and 6.111. The unloading is carried out in one increment only 
as, now, the material behavior is elastic. 

The results reported in Subsections 6.3.5–6.3.7 are mostly from [28]. 

6.3.5 Validation of the Finite Element Formulation 

A static, large deformation, elastic plastic, finite element (FE) code is developed  
based on the formulation described in Section 6.2. The code is validated by 
comparing the variation of forging load with percentage reduction with 
experimental results of Shima et al. [15]. The material properties of the work-
piece, the friction coefficient at the interface and the blank size (i.e., the initial size 
of the work-piece) used in the experiments of [15] are as follows:  
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Material Properties 
Material : JIS S25C Steel, 
Young’s modulus (E) : 208 GPa, 
Poisson’s ratio ( ): 0.3,  
Yield stress ( Y ): 380.14 MPa,  
Hardening coefficient (K) = 467.44 MPa, 
Hardening exponent (n) =0.6; 
Friction Coefficient 
Friction coefficient (f) = 0.25; 
Blank Size 
Height (H) = 20 mm,  
Diameter (D) = 20 mm. 

Figure 6.2 shows the comparison of forging load variation with percentage 
reduction obtained from the code with the experimental results of [15]. The 
maximum error between the experimental and FE results is observed to be 12.5%. 
The possible reason for the error could be as follows. The FE code uses the power 
law model of the hardening curve. However, for the material of [15], it was not 
possible to model its hardening curve accurately by a power law. Thus, the values 
of the hardening parameters K and n represent only an approximate response of the 
material. For this reason, it was decided to change the material for obtaining other 
results. 

Figure 6.2. Comparison of forging load variation with percentage reduction with 
experimental result [15]. With permission from Mungi et al. [28]. Copyright 2003 Elsevier 
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6.3.6 Typical Results 

Results of this section are obtained by using AISI 1015 steel as the material whose 
properties are given in [20]. The values of the hardening parameters K and n 
mentioned below have been obtained by fitting Equation 3.103 through the 
hardening curve of  [20]. In this section, some results are obtained by assuming 
that the friction at the interface is of sticking type all along the interface. In this 
case, the second boundary condition of the set at Equation 6.112 is applied at all 
the interface nodes. This condition is referred to as complete sticking condition in 
the remaining discussion whereas the other condition is referred to as sticking-
slipping condition. The material properties of the work-piece, the friction condition 
at the interface, the blank size and the percentage reduction used in this section are 
as follows: 
Material Properties [20] 
Material : AISI 1015 Steel, 
Young’s modulus (E) : 208 GPa, 
Poisson’s ratio ( ) : 0.3, 
Yield stress ( Y ) : 275 MPa, 
Hardening coefficient (K) = 515.23 MPa, 
Hardening exponent (n) =0.6; 
Friction Condition 
Friction coefficient (f) = 0, 0.1, 0.2, 0.3, 
Complete sticking condition; 
Blank Size 
Height (H) = 20 mm, 
Diameter (D) = 20 mm; 
Percentage Reduction 
Percentage reduction (%r) : 20, 35. 

Figure 6.3 shows the contact pressure distribution at various values of f as well 
as for the complete sticking condition. The contact pressure for the complete 
sticking condition is minimum at the center of the interface (i.e., at point A of 
Figure 6.1) and attains the maximum value at the edge of the interface (i.e., at point 
B of Figure 6.1) which is due to the complete sticking. For the sticking-slipping 
case, the pressure starts developing a peak at the edge of the interface (i.e., at point 
B of Figure 6.1) with an increase in f. This trend is not predicted by the slab 
method. 
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Figure 6.3. Contact pressure distribution at 20% reduction at various values of f and for 
complete sticking condition 

The deformed configurations for f = 0.2 and the complete sticking condition are 
shown in Figure 6.4a,b respectively. It is observed that the deformation is 
homogeneous at low values of f. As f is increased, the deformation becomes more 
inhomogeneous, resulting in a larger bulge. Further, the phenomenon of fold over 
appears at the edge of the interface (i.e., at point B of Figure 6.1) at high values of f 
and for the complete sticking condition. Figure 6.5a,b shows the equivalent strain 
distributions respectively for f = 0.2 and the complete sticking condition. The 
distributions are presented without showing the bulge of the domain. It is seen 
from these figures that the distribution pattern does not change with f. However, 
the equivalent strain values increase with f everywhere except near the center of 
the interface (i.e., near point A of Figure 6.1) where they decrease with f. With an 
increase in f, the equivalent strain levels approach to that of the complete sticking 
condition. Figure 6.5a indicates that the deformation is more or less homogeneous 
in the middle of the domain. Further, the figure indicates that it is severe near the 
edge of the interface (i.e., near point B of Figure 6.1) but much less at the center of 
the interface (i.e., at point A of Figure 6.1) 
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Figure 6.4. Deformed configuration at 20% reduction a. f = 0.2; b. Complete sticking 
condition 
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Figure 6.5. Equivalent strain distribution at 20% reduction. a f = 0.2. b Complete sticking 
condition 

The equivalent stress distribution at f = 0.1 and %r = 35 is shown in Figure 6.6. 
Like the equivalent strain distribution, this distribution is also presented without 
showing the bulge of the domain. Since the equivalent stress and equivalent strain 
are related by the hardening relation (Equation 3.103), the equivalent stress 
distribution is similar to that of the equivalent strain. Further, since the deformation 
is more or less homogeneous in the middle of the domain, the equivalent stress also 
does not vary much in the middle of the domain. Additionally, since the 
deformation is severe near the edge of the interface but much less at the center of 
the interface, the equivalent stress  possesses high gradients near the edge of the 
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interface (near point B of Figure 6.1) and much lower values at the center of the 
interface (at point A of Figure 6.1). In fact, it is observed that, at lesser reduction, 
the equivalent stress level at the center of the top surface does not reach the yield 
stress of the material. The maximum values of equivalent strain and equivalent 
stress occur near point B of Figure 6.1 while their minimum values occur at point 
A of Figure 6.1. 

 
Figure 6.6. Equivalent stress distribution at 35% reduction and  f = 0.1. With permission 
from Mungi et al. [28]. Copyright 2003 Elsevier 

Since the process has been analyzed incrementally, one can observe where the 
plastic zone originates and how it spreads. As the platen moves down (or as the 
reduction increases), yielding (equivalent stress = 275 MPa) first occurs at the edge 
of the interface (i.e., at point B of Figure 6.1). With further movement of the 
platen, yielding occurs at the center of the work-piece (i.e., at point D of Figure 
6.1). With more increase in reduction, the plastic zone spreads both in the radial as 
well as in the axial direction from these two points.  

6.3.7 Residual Stress Distribution 

Figure 6.7 shows the equivalent residual stress distribution for AISI 1015 steel, up 
to 35% reduction, for H/D = 1 (i.e., height = diameter = 20 mm) and for f = 0.1.  
Like the equivalent strain distribution, this distribution is also presented without 
showing the bulge of the domain. It is observed that the values of equivalent 
residual stress are quite small (in fact, much smaller than the yield stress value of 
275 MPa) almost everywhere except in a small region near the edge of the 
interface (i.e., near point B of Figure 6.1). This is because the deformation is 
almost homogeneous everywhere except near point B of Figure 6.1. 
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Figure 6.7. Equivalent residual stress distribution at 35% reduction, H/D = 1 and  f = 0.1  
With permission from Mungi et al. [28]. Copyright 2003 Elsevier 

Parametric study of the residual stress distribution is carried out by varying the 
following four input variables: (i) height to diameter ratio (i.e., H/D ratio), (ii) 
percentage reduction (%r), (iii) friction coefficient (f) and (iv) the material 
properties ( Y , K, n; E, ). The materials chosen are AISI 1015 steel (whose 
properties are given in Subsection 6.3.6) and AI 1100 aluminum (whose properties 
are given later). The blank size is chosen such that its volume is equal to that of the 
blank of height (H) and diameter (D) equal to 20 mm each. To avoid confusion, the 
equivalent stress during loading is called the equivalent loading stress.  
Effect of height to diameter ratio (H/D): 
The pattern of equivalent loading stress distribution does not change much with 
H/D ratio, but the values change differently in different regions. As the H/D ratio is 
increased, the stress values at the center of the interface (i.e., at point A of Figure 
6.1) decrease leading to the formation of an elastic zone there. But, the stress 
values at the center of the work-piece (i.e., near point D of Figure 6.1) increase. 
Thus, the equivalent loading stress distribution becomes more inhomogeneous in 
the axial direction but only at the core of the work piece. Therefore, the pattern of 
the equivalent residual stress distribution changes in this region. But, since the 
equivalent residual stress values are so low in this region, this observation is not of 
much significance. However, neither the pattern of the equivalent loading stress 
distribution nor the stress values change at the edge of the interface (i.e., near point 
B of Figure 6.1). As a result, the maximum value of the equivalent loading stress 
does not change with the H/D ratio. But the maximum value of the equivalent 
residual stress decreases with the H/D ratio. 
Effect of percentage reduction (%r): 
At low reduction, during loading, an elastic zone is observed near the center of the 
interface (i.e., near point A of Figure 6.1). With increase in reduction, this elastic 
zone gets contracted and eventually vanishes at higher reduction. Because of this, 
the residual stress pattern gets changed at the core of the work-piece only. Again, 
this result is not of any significance as the residual stress values in this region are 



390 Modeling of Metal Forming and Machining Processes 

quite low. Further, as expected, both the equivalent stress values (loading as well 
as residual) increase with reduction everywhere in the domain. 
Effect of Friction Coefficient (f): 
To study the effect of f, the analysis is carried out for AISI steel and for H/D = 1 
(i.e., height = diameter = 20 mm). Further, the analysis is carried out only up to 
20% reduction, as beyond 20% reduction the reactions at the edge of interface 
become positive at higher values of f. The equivalent loading stress distributions 
for f = 0.2 and the complete sticking condition are shown in Figure 6.8a,b 
respectively. The corresponding equivalent residual stress distributions are shown 
in Figure 6.9a,b.  

 
Figure 6.8. Equivalent (loading) stress distribution at 20% reduction and H/D = 1. a  f = 0.2; 
b Complete sticking condition. With permission from Mungi et al. [28]. Copyright 2003 
Elsevier 
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Figure 6.9. Equivalent residual stress distribution at 20% reduction and H/D = 1. a  f = 0.2. 
b Complete sticking condition.With permission from Mungi et al. [28]. Copyright [2003] 
Elsevier 

As f is increased, the equivalent loading stress values increase everywhere 
except near the center of the interface (i.e., near point A of Figure 6.1) where the 
values actually decrease. As a result, an elastic zone is formed there. Further, the 
location of the maximum equivalent loading stress starts shifting away from the 
edge of the interface (i.e., from point B of Figure 6.1). Because of this and the 
increase in the value of maximum equivalent loading stress, the high stress 
gradient region near the edge of the interface becomes more intense. Thus, the 
equivalent loading stress distribution becomes more inhomogeneous and 
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approaches to the pattern corresponding to the complete sticking condition as f is 
increased. 

Since the equivalent loading stress distribution becomes more inhomogeneous 
with f, the equivalent residual stress values increase everywhere in the domain. 
This increase is more severe in the high stress gradient region near the edge of the 
interface (i.e., near point B of Figure 6.1). In fact, the maximum equivalent 
residual stress becomes even larger than the maximum equivalent loading stress. 
This could be the consequence of the reactions at the edge of interface becoming 
tensile at this level of friction. To make a realistic prediction of the residual 
stresses at this level of friction, the analysis needs to be repeated after deleting such 
nodes from the possible contact zone. This analysis will involve an additional set 
of iterations to determine the possible contact zone. Finally, at higher f, the 
equivalent residual stress distribution approaches to the pattern corresponding to 
the complete sticking condition. 
Effect of Material Parameters: 
The effect of material properties is studied by carrying out the analysis for one 
more material, namely, AI 1100 aluminum. The analysis is carried out up to 35% 
reduction, for H/D = 1 (i.e., height = diameter = 20 mm) and for f = 0.1. The 
material properties of AI 1100 aluminum are taken from [31]. The values of the 
hardening parameters K and n mentioned below have been obtained by fitting 
Equation 3.103 through the hardening curve of  [31]. 
Material Properties 
Material : AI 1100 Aluminum, 
Young’s modulus (E) : 69 GPa, 
Poisson’s ratio ( ) : 0.3, 
Yield stress ( Y ) : 62.74 MPa, 
Hardening coefficient (K) = 110.1 MPa, 
Hardening exponent (n) =0.68. 

 
Figure 6.10. Equivalent residual stress distribution in AI 1100 aluminum at 35% reduction, 
H/D = 1 and  f = 0.1. With permission from Mungi et al. [28]. Copyright 2003 Elsevier 
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Figure 6.10 shows the equivalent residual stress distribution for AI1100 
aluminum. Comparison of this figure with Figure 6.7 indicates that the distribution 
pattern is the same for both materials. Thus, the material properties have no effect 
on the pattern of equivalent residual stress distribution. However, as expected, the 
equivalent residual stress values are less for aluminum than for steel. Similar trend 
is observed for the equivalent loading stress as well. 

6.3.8 Damage Distribution, Hydrostatic Stress Distribution and Fracture 

To study fracture in the forging problem, two approaches are followed. In the first 
approach, the continuum damage mechanics model of Lemaitre and Chaboche [32] 
is used. Since for most metals, the value of damage D up to micro-crack initiation 
is quite small, we assume that the damage does not affect the constitutive equation 
of the material. Hence, the deformation and stress fields are determined using the 
constitutive equation (Equation 6.2) of the undamaged material. The damage 
increment is calculated using the damage evolution law (Equation 4.219) proposed 
by Dhar et al. [33]:  

 1 2( ) ( )( )( )p t t p
t t eq t eqD c a a D Y . (6.126) 

Here, 1 2( , , )c a a  are the material parameters, tD  is the damage at time t, t D  is 

the damage increment at time t, p
t eq  is the equivalent plastic strain increment  

(Equation 3.93) at time t and ( )tY  is the dissipative part of the thermodynamic 
force corresponding to the time rate of change of damage (at time t) given by 
(Equation 4.208): 
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Here, E and   are the elastic constants of the material, t
h  is the hydrostatic part 

of the stress tensor at time t and t
eq  is the equivalent stress at time t (Equation 

3.23). The fracture criterion used is that whenever the damage reaches the critical 
value cD  at a point, a micro-crack initiates at that point.  

In the second approach, the hydrostatic stress criterion proposed by Reddy et 
al. [34] is used. As per this criterion, whenever the hydrostatic stress at a point 
reaches the value zero, fracture initiates at that point. Note that the critical damage 
criterion predicts the initiation of a micro-crack while the hydrostatic stress 
criterion predicts fracture at a macro scale. 

Results of this section are obtained for AISI 1090 steel as the material constants 
needed in the damage evolution law are available for this material [33]. The other 
material properties are given in [35]. The material properties of the work piece, the 
friction condition at the interface, the blank size and the percentage reduction used 
in this section are as follows: 
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Material Properties [35, 33] 
Material: AISI 1090 Steel, 
Young’s modulus (E): 210 GPa, 
Poisson’s ratio ( ): 0.3, 
Yield stress ( Y ): 464 MPa, 

Hardening relation: 19.0)(1115 p
eqeq , 

 Parameters in damage evolution law and micro-crack initiation criterion: 
2 4 1 1

1 21.898 10 , 9.8 10 (MPa) , 1.84(MPa) , 0.05cc a a D ; 
Friction Condition 
Friction coefficient (f) = 0.05; 
Blank Size 
Height to diameter ratio (H/D) = 0.5, 1, 2; 
Percentage Reduction 
Percentage reduction (%r): 25–35. 
The results reported in this subsection are mostly from [27]. 

 
Figure 6.11. Damage distribution. a 25% reduction. b 35% reduction. With permission from 
Gupta et al. [27]. Copyright 2003 Elsevier 
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 The damage distributions at 25% and 35% reductions are shown in Figure 
6.11a,b respectively. This figure shows that the maximum damage occurs at the 
edge of the interface (i.e., at point B of Figure 6.1). This is because of the severe 
deformation and high stress gradients present there. The micro-crack initiation first 
occurs at the edge of the interface at 25% reduction, then at the center of the work-
piece (i.e., at point D of Figure 6.1) at 29% reduction and finally at the meridian 
surface (i.e., at point C of Figure 6.1). At 35% reduction, the damage is above cD  
everywhere except near the center of the interface (i.e., near point A of Figure 6.1). 
The above observation shows that the micro-crack first occurs at the edge of the 
interface, then at the center of the work-piece and finally at the meridian surface. 
This observation is in agreement with that of Predeleanu et al. [36]. But 
experimental results [25, 37–39] show that the fracture occurs at the meridian 
surface where the damage reaches the critical value much later. To understand this 
phenomenonon, the distribution of the hydrostatic ( h ) stress is considered. 

 
Figure 6.12. Hydrostatic stress distribution at 35% reduction.With permission from Gupta et 
al. [27]. Copyright 2003 Elsevier 

Figure 6.12 shows the distribution of hydrostatic stress )( h at 35% reduction. 
It is observed, from this figure, that the hydrostatic stress is negative everywhere. 
However, amongst the three locations, namely, the edge of the interface, the center 
of the work-piece and the meridian surface, it is less negative at the meridian 
surface. Further, as the reduction is increased, the hydrostatic stress becomes less 
negative at the meridian surface and more negative at the other two locations. 
Thus, the possibility of a fracture is higher at the meridian surface compared to the 
other two locations. Note that the fracture at the meridian surface can be caused 
either by the axial stress )( zz  or by the circumferential stress )( . However, it 
is observed that the axial stress is compressive everywhere in the domain [27] and 
continues to become more compressive with the increase in reduction. Thus, it 
cannot cause any fracture at the meridian surface. 

The circumferential stress distribution )(  at 35% reduction is shown in 
Figure 6.13. It is observed that  is tensile at the meridian surface but 
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compressive at the other two locations (namely, the center of the block and the 
edge of the interface). Further,  becomes more tensile at the meridian surface 
and more compressive at the other two locations as the reduction is increased. 
Thus, the micro-cracks originated at the meridian surface grow with the reduction 
leading to a fracture.  

 
Figure 6.13. Circumferential stress distribution at 35% reduction. With permission from 
Gupta et al.[27]. Copyright [2003] Elsevier 

It is observed that, at higher values of f (friction coefficient), the damage D 
reaches the critical value )( cD  at lesser reduction everywhere in the domain. This 
happens, because the deformation becomes more inhomogeneous with an increase 
in f. Further, at higher values of f, the hydrostatic stress )( h becomes less 
compressive (reaching almost the zero value) and the circumferential stress )(  
becomes more tensile at the meridian surface. Thus, the fracture occurs at lesser 
reduction at higher friction. 

When the height to diameter ratio (i.e., H/D ratio) is either increased or 
decreased from the value 1, the damage D reaches the critical value at lesser 
reduction everywhere. Thus, the fracture (at the meridian surface) occurs at lesser 
reduction when the H/D ratio is either increased or decreased from the value 1. 
However, at higher values of H/D ratio, the hydrostatic stress )( h becomes less 
compressive and the circumferential stress )(  becomes more tensile at the 
center of the work piece, thereby creating a possibility of fracture at that location 
also (i.e., a central cavity).  

6.4 Modeling of Deep Drawing of Cylindrical Cups by Updated 
Lagrangian Finite Element Method  

In deep drawing, the work-piece in the form of a flat sheet (called blank) is forced 
into a die by means of a punch to form a hollow component (Figure 6.14). Usually, 
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a blank-holder is used to prevent any wrinkling taking place in the flange. The 
process is carried out without the blank-holder only if there is no possibility of 
wrinkling, i.e., either the sheet is thick or the deformation is small. In this process, 
the material bends over the punch and die radii, stretches between the punch 
contact to die contact and is drawn over the die surface. In the flange region (i.e., 
over the die surface), the material gets compressed in the tangential direction and 
stretched in the radial direction. Thus, the deformation and stress distributions are 
quite complex. In this book, only cylindrical cup drawing will be discussed as it is 
the simplest deep drawing process. 

 
Figure 6.14. Deep drawing process 

Since the deep drawing process involves complex deformation and stress 
distributions, the complete process has not been analysed by simple techniques like 
the slab method, the upper bound method or the slip line method. Only the analysis 
of the flange region has been carried out using the simpler techniques [40, 41]. 

In the simulation of sheet metal forming processes, several finite element 
models such as membrane, shell and solid (3-D) models have been proposed. The 
membrane model is the simplest one. Toh and Kobayashi [42] used the membrane 
elements to determine the optimal blank shape in the square cup drawing process. 
They used a finite strain formulation with zero blank-holder force. Saran and 
Samuelsson [43] modeled the behavior of sheet materials by triangular constant 
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strain membrane elements. They used hypoelastic viscoplastic material model with 
Hill’s anisotropic criterion, power law hardening and strain rate sensitivity. 
Majlessi and Lee [44] also used the membrane elements for the analysis of non-
axisymmetric deep drawing problem. The membrane model neglects the stress 
variation in the thickness direction. As a result, it is not appropriate in problems 
like deep drawing where the bending deformation is significant. 

Onate and Saracibar [45] used viscous voided shell elements to propose a finite 
element formulation for sheet metal forming. Chou et al. [46] simulated sheet 
metal forming using plane strain shell elements. Their formulation uses a stress 
resultant constitutive law based on a quadratic yield function, a hardening rule and 
the associated flow rule. Shi et al. [47] used the DKT (discrete Kirchoff triangular) 
shell elements to predict the desired blank shape based on one step simulation 
algorithm. Since their formulation involves integration in the thickness direction, it 
takes almost as much computational time and memory as the formulation with 
solid elements. Chou et al. [48] employed shell elements for the analysis of 
forming of sheets with planar isotropy. A stress resultant constitutive law based on 
Hill’s anisotropic yield function is used in their formulation. In the shell model, 
only the middle surface of the sheet is considered as the domain. In that case, it 
becomes difficult to consider the contact conditions at the sheet-punch or sheet-die 
interfaces as these conditions apply at the outer surfaces of the sheet. The contact 
conditions can be easily handled in the solid model. 

Menezes and Teodosiu [49] used eight-noded solid elements to simulate deep 
drawing. Their formulation uses augmented Lagrangian method, Jaumann stress 
rate tensor and Green-Lagarnge strain tensor. They have reported that the 
deformation obtained using solid elements is more realistic. Further, the number of 
elements required to obtain a realistic result is lesser with the 3-D model than the 
shell model. Colgan and Monaghan [50] used the FEA program AutoForm (which 
employs solid elements) to model a cup formation. They tried to determine the 
most important factors influencing the drawing process utilizing the design of 
experiments and statistical analysis.    

The predominant failure modes in the deep drawing process are wrinkling of 
flanges and thinning and fracture of walls. In many cases, it is possible to eliminate 
these defects by an appropriate choice of the blank-holder force as this force 
controls the material flow in the die cavity. Osakada et al. [51] proposed a control 
algorithm in the FEM program to determine the optimum blank-holder force so as 
to avoid wrinkling and thinning. Lorenzo et al. [52] suggested a closed loop 
control sustem based on fuzzy logic which is interfaced with an FEM code. The 
control system continuously monitors some relevant process parameters and 
suggests the most effective adjustment of the blank-holder force so as to obtain 
maximum height without wrinkling or tearing. 

When the material of the sheet (also called the blank) is anisotropic, the final 
cup does not possess the uniform height. This phenomenon is called as earing. The 
initial shape of the blank which minimizes the earing is called the optimum blank 
shape. Determination of the optimum blank shape is an important part of the blank 
design. Various techniques exist to obtain the optimum blank shape. Among them, 
the inverse approach is a name given to the method which locates the positions of 
the material points on the intial blank from their corresponding positions on the 



 Finite Element Modeling Using Updated Lagrangian Formulation 399 

final product. Guo et al. [53] proposed this method to evaluate the (large) plastic 
strains in the deep drawing process. They used triangular membrane elements and 
the deformation theory of plasticity. Kim and Huh [54] applied the inverse 
approach method to the multi-stage deep drawing process to determine the 
optimum blank shape from the desired final shape. The backward tracing algorithm 
is another method for obtaining the optimum blank shape. In this method, the final 
desired configuration is traced backward either to an intermediate pre-form or to 
the initial blank. Ku et al. [55] applied the backward tracing algorithm to blank 
design in three-dimensional forming. Pegada et al. [56] used the LS-DYNA 
package to apply the backward tracing algorithm to obtain the optimum blank 
shape. They used Barlat’s planar anisotropic yield criterion and Belytschko-Lin-
Tsay elements. 

6.4.1 Domain and Boundary Conditions 

For anisotropic materials, the problem of circular cup drawing is not an 
axisymmetric problem. Therefore, it is analyzed as a three-dimensional problem. 
However, because of the orthotropy of the sheet and the symmetry of the geometry 
and boundary conditions about the two axes, only a quarter of the sheet is selected 
as the domain. The domain at time 0t , along with the coordinate system, is 
shown in Figure 6.15. The punch, die and blank-holder are assumed rigid. Sticking 
friction condition is assumed at the punch-sheet interface while the friction at the 
die-sheet interface is modeled by the Coulomb’s law. Again, it is assumed that the 
friction coefficient is such that all the nodes at the die-sheet interface slip. Since a 
loss of contact at the punch-sheet interface is possible, it is incorporated in the 
boundary conditions. It is assumed that enough blank-holder force is applied to 
maintain the contact at the die-sheet interface. Further, the blank-holder force is 
assumed to be unifomly distributed and applied in incremental fashion. 

 
Figure 6.15. Domain of the problem. It is the initial configuration of a quarter sheet.  

The boundary conditions at the start of the analysis are as follows. Whether the 
condition is essential or natural is also mentioned against each condition. 
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Boundary conditions at the start of analysis: 
Sheet-punch interface (surface OAB): 
As stated earlier, a node at the interface may be in contact with the punch or may 
lose the contact. It depends on the nature (compressive or tensile) of the z-
component of the punch reaction vector at the node. The algorithm to determine 
the contact status of the node is described in the next subsection. When a node is in  
contact, the sticking friction condition is assumed as stated earlier, i.e., x and y 
components of the incremental displacement vector t u  at the node become zero. 
Further, the z-component of t u  must be equal to the incremental punch 

displacement *u . If a node loses contact, the free surface boundary condition 
applies, i.e., all the three components of the incremental stress vector t t  become 
zero at the node. Thus, the boundary conditions on the surface OAB become: 
At contacting node: 

 *0, 0, , (essential)t x t y t zu u u u . (6.128a) 

At non-contacing node: 

 0, 0, 0, (natural)t x t y t zt t t . (6.128b) 

Free surfaces ABDCA, EFMLE and GJKG: 
At a free surface, all three components of the incremental stress vector t t  are 
zero at the node. Thus, the boundary conditions on the surfaces ABDCA, EFMLE 
and GJKG are given by 

 0, 0, 0, (natural)t x t y t zt t t . (6.129) 

Plane of symmetry OACELJHGO (in x-z plane): 
At a plane of symmetry, the normal component of the incremental displacement 
vector t u  and both the shear components of the incremental stress vector t t  
are zero. Since the plane OACELJHGO lies in x-z plane, the boundary conditions 
on this surface become 

 0, 0, (natural)t x t zt t , (6.130a) 

 0, (essential).t yu  (6.130b) 

Plane of symmetry OBDFMKIGO (in y-z plane): 
As stated above, at a plane of symmetry, the normal component of the incremental 
displacement vector t u  and both the shear components of the incremental stress 
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vector t t  are zero. Since the plane OBDFMKIGO lies in y-z plane, the boundary 
conditions on this surface are given by 

 0, (essential),t xu  (6.131a) 

 0, 0, (natural)t y t zt t . (6.131b) 

Sheet-die interface (surface JKMLJ): 
As stated earlier, the die-sheet interface friction is modeled by the Coulomb’s law. 
Again, it is assumed that the friction coefficient f is such that all the nodes at the 
interface slip. Then, the magnitude of the frictional stress (i.e., the resultant of xt t  
and yt t ) at the interface becomes )( zt tf , where zt t  is the normal 

component of the incremental stress vector t t . Let  be the angle made by the 
frictional stress with positive x-axis, then the magnitudes of xt t  and yt t  
become    

 cos , sint x t z t y t zt f t t f t . (6.132) 

Note that zt t  is positive at the interface. Further, since the relative movement of 
the contact node is in the negative x and y directions, the x and y components of the 
frictional stress would be in the positive x and y directions. Thus, xt t  and yt t  
also would be positive. Therefore, the boundary conditions in x and y directions, on 
the surface JKMLJ, become 

 ( )cos , ( )sin , (natural)t x t z t y t zt f t t f t .  (6.133a) 

The third boundary condition is provided by the assumption that enough blank-
holder force is applied to maintain the contact of the sheet with the die. Then the 
normal component (i.e., the z-component) of the incremental displacement vector 
t u  must be zero at the interface. Thus, the boundary condition in z-direction, on 
the surface JKMLJ, is given by  

 0, (essential)t zu . (6.133b) 

Surface with blank-holder force (surface CDFEC): 
The blank-holder force is applied on the portion CDFEC of the top surface of the 
sheet. As stated earlier, it is assumed that the blank-holder force is unifomly 
distributed and applied in incremental fashion. Therefore, the boundary conditions 
on the surface CDFEC become 
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 *0, 0, (natural)t x t y t zt t t t , (6.134) 

where *t is the specified value of the incremental blank holding force per unit 
area. 
Change in boundary conditions with punch movement: 
As the punch keeps moving down, some nodes under the blank-holder surface 
move out of the blank-holder and become free. Also, some nodes on the (flat) die 
surface move on to the die profile radius region. Further, some nodes on the free 
surface ABDCA move on to the punch profile radius region. Therefore, the 
boundary conditions of such nodes need to be changed at the end of the increment, 
whenever necessary. To facilitate the incremental updation of these boundary 
conditions, the top and bottom surfaces of the sheet are divided into the regions 
having the same boundary condition as shown in Figure 6.16. The nodes on the top 
and bottom surfaces are assigned a code depending on the region in which they lie. 
If, at the end of a particular increment, a node crosses from one region to the 
neighboring region, its code is changed appropriately.  

 
Figure 6.16. Division of the top and bottom surfaces of the sheet as per the boundary 
conditions 

Node penetration into punch profile radius region, punch wall, die profile radius 
region or die wall 
As the punch keeps moving down, some nodes on the free surfaces ABDCA 
penetrate either the punch profile radius region or the punch wall region. Similarly, 
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some nodes on the free surface GJKG penetrate either the die wall or the die 
profile radius region. Therefore, the penetration of these nodes is checked at the 
end of each increment. If a node on these surfaces is found to penetrate, the whole 
increment is repeated after assigning the required incremental displacement to the 
node so as to bring it back to the punch or the die profile as the case may be.  

The procedure to calculate the required displacement for the case of penetration 
into the punch profile radius region is explained below. Suppose a node P, at the 
end of some increment, penetrates to the position 1P  as shown in Figure 6.17. To 

avoid the penetration, the actual location of the node should be at *
1P  (which is 

obtained by extending the position vector r of the point 1P  to the punch profile). 
So, at the end of the increment, first the penetration is checked by comparing r  

(i.e., the magnitude of the position vector r) with the punch profile radius. If  r  is 
found to be less than the punch profile radius, it means the node has penetrated the 
punch profile radius region. Then the increment is repeated by specifying the 
vector *

1PP  as the incremental displacement vector of the node. Similar procedure 
is followed if a node penetrates either the punch wall or the die profile radius 
region or the die wall. 

 
Figure 6.17. Penetration of a node into punch profile radius region 

Boundary conditions at die and punch profile radius regions: 
When a node on the (flat) die surface moves to the die profile radius region, the 
boundary conditions (Equations 6.133a,b) get modified because of the change in 
the normal and tangential directions. Of course, we still assume that the die-sheet 
interface friction is modeled by the Coulomb’s law and the friction coefficient f is 
such that all the nodes at the die-sheet interface slip. Let n̂  be the direction normal 
to the die profile and ŝ  and t̂  be the two directions tangential to the die profile 
(Figure 6.18). Further, let nt t , st t  and tt t  be the components of the 

incremental stress vector t t  along n̂ , ŝ  and t̂  directions. Since the relative 
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movement of a contact node is along negative ŝ  direction, the friction force acts 
along the positive ŝ  direction. Therefore, the component of the incremental stress 
vector t t  along t̂  must be zero. Further, the components st t  and nt t  should 
be related by the Coulomb’s law. Thus, the friction boundary condition at a node 
on the die profile radius leads to the following two conditions: 

 ( ) 0, 0, (natural)t s t n t tt f t t . (6.135a) 

The sign in the first part of Equation 6.135a is based on the fact that both the 
frictional stress st t  and the normal stress nt t  are positive. The third boundary 
condition is provided by the assumption that the node remains in contact with the 
die. Then, the component of the incremental displacement vector t u  along the 
normal direction n̂  must be zero. Then, the third boundary condition becomes 

 0, (essential).t nu  (6.135b) 

In (x, y, z) coordinate system, Equations 6.135a,b can be expressed as 

 

(cos cos cos sin ) (sin cos sin sin )

(sin cos ) 0
sin cos 0

(natural)

t x t y

t z

t x t y

t f t f

t f
t t

, (6.136a) 

 (cos sin ) (sin sin ) (cos ) 0, (essential)t x t y t zu u u , 
(6.136b) 

where the angles  and  are defined in Figure 6.18. 

 
Figure 6.18. Normal and two tangential directions at the die profile radius region 

At the interface between the sheet and punch profile radius region, a node may 
be in contact with the punch or may lose the contact. It depends on the nature 
(compressive or tensile) of the normal component of the punch reaction vector at 
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the node. The algorithm to determine the contact status of the node is described in 
the next subsection. When a node is in contact, the sticking friction condition is 
assumed as stated earlier. Therefore, the boundary conditions at the punch profile 
radius region remain the same as given by Equations 6.128a, b.  

6.4.2 Contact Algorithm 

The contact boundary conditions (Equation 6.128) can be applied only in an 
iterative fashion. Thus, besides the Newton-Raphson iterations, there is an 
additional set of iterations in the solution of the deep drawing problem. First, for 
the specified incremental punch displacement and incremental blank-holder force, 
the contact iterations are carried out to determine the status (contact or non-
contact) of the sheet-punch interface nodes. Then the Newton-Raphson iterations 
are carried out to minimize the unbalanced force vector. The stepwise algorithm 
for the contact iterations can be described as follows.  
(i) First Contact Iteration: 

 In the first iteration, it is assumed that all the punch-sheet interface nodes 
are in contact. Thus, the contact boundary condition given by Equation 
6.128a is applied to all the interface nodes. 

 Next, the finite element equation (Equation 6.88) is solved to find 
)1(}{ Ut , i.e., the initial guess to the incremental displacement vector.  

 Next, the incremental nodal reaction vector is found by multiplying the 
original coefficient matrix (i.e., ][Kt  without the modifications which are 

done while applying the essential boundary conditions) by )1(}{ Ut . 
Then, the nodal reaction vector is updated. This vector is nothing but the 
global external force vector ex

tt F}{ . 
 At the end of first contact iteration, the non-contact nodes are identified 

using the following condition. A node at the interface goes out of contact 
if the normal component of the nodal reaction vector at that node becomes 
tensile. For a node l on the flat portion of the punch bottom, the normal 
component of the nodal reaction vector becomes tensile if  0)( lzex

tt F  

where lzex
tt F )(  is the  z component of the vector ex

tt F}{  at node l. 
For nodes on the punch profile radius region, the normal component 
would be a linear combination of lzex

tt F )(  and lrex
tt F )( , the r 

component of the vector ex
tt F}{  at node l. 

(ii) Second Contact Iteration: 
 Now, the non-contact boundary condition (Equation 6.128b) is applied to 

all the non-contact nodes.  
 Then, the finite element equation (Equation 6.88) is solved again to find 

the new initial guess to the incremental displacement vector.  
 Next, the new ex

tt F}{ is found by the method described above. 
 Finally, a check is made to find whether any additional nodes are losing 

contact using the condition mentioned above. 
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(iii) Further Contact Iterations: 
 The second contact iteration is repeated until there is no change in the 

contact status between the two successive contact iterations. 

6.4.3 Typical Results 

The results presented in this and next subsections are from [57–58] for the 
aluminum alloy AA2090-T3, which is actually an anisotropic material. However, 
in this section, only the isotropic analysis is carried out. The material properties of 
the sheet, the geometric properties of the sheet and set-up and the other process 
parameters (friction coefficient and blank-holder force) of the problem are as 
follows [59].  
Material Properties 
Material : AA2090-T3, 
Young’s modulus (E): 69 GPa, 
Poisson’s ratio ( ): 0.33, 
Yield stress ( Y ): 280 MPa, 

Hardening relation: 227.0)025.0(646 p
eqeq ; 

Geometric Properties of Sheet and Set-up 
Sheet diameter (D) = 158.76 mm, 
Sheet thickness (t) = 1.6 mm, 
Punch diameter ( pD ) = 97.46 mm, 

Punch profile radius ( pr ) = 12.7 mm, 

Die opening diameter ( dD ) = 101.48 mm, 
Die profile radius ( dr ) = 12.7 mm; 
Other Process Parameters 
Friction coefficient (f) = 0.1; 
Blank-holder force = 5500 N. 

Figure 6.19 shows the variation of punch force with punch displacement. The 
punch force is simply obtained by adding the z-components of the nodal reactions 
at the punch contact nodes. (Since the domain is only a quarter of the sheet, this 
sum has to be multiplied by four to make it the punch force for the whole sheet). It 
is observed that the punch force increases steadily even after the blank completely 
comes out of the blank-holder. This may be due to the plastic deformation of the 
sheet (due to bending) at the die profile radius region and the frictional dissipation 
at the sheet-die interface.   
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Figure 6.19. Variation of punch force with punch displacement (isotropic case) 

Figure 6.20 shows the deformed configuration. Since, only the isotropic 
analysis is carried out in this section, there is no ear formation. The deformed 
configuration of the next section, which is based on anisotropic analysis, shows the 
formation of ears.  

 
Figure 6.20. Deformed configuration (isotropic case) 
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Figure 6.21. Thickness strain distribution (isotropic case) 

Figure 6.21 shows the thickness strain distribution along a radial direction. The 
thickness strain is calculated as the ratio of the change in the distance between the 
corresponding nodes along the thickness direction to the original thickness. Since 
the nodes also move along the surface of the sheet, the distance between them does 
not exactly represents the final thickness of the sheet. 

The figure shows that the final thickness of the cup varies considerably from 
the initial sheet thickness. The thickness of the sheet under the punch is found to be 
more or less equal to the initial sheet thickness. However, the thickness of the 
sheet, which was above the flat portion of the die, is observed to be slightly larger 
than the initial thickness. The minimum thickness (i.e., the maximum thickness 
strain) usually occurs in the portion of the sheet which is closer to the punch profile 
radius region. In the final configuration (i.e., in the cup), it occurs in the portion of 
the wall which is closer to the cup bottom. The minimum thickness is almost 70% 
of the initial thickness. Because of this thinning, the fracture usually occurs in this 
region of the cup.  

Because of the assumption of isotropy, the thickness strain variation is found to 
be the same along every radial direction. However, in anisotropic materials, the 
thickness strain variation is different in different directions. This is shown in next 
subsection. 

6.4.4 Anisotropic Analysis, Ear Formation and Parametric Studies 

In this section, the analysis is carried out by treating the sheet material AA2090-T3 
as an orthotropic material. The anisotropy is modeled by Barlat’s Yld2004-18p 
yield criterion (Equation 4.118). The components of the matrices ][C  and ][C  
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(Equations 4.119 and 4.120) which appear in the linear transformation (Equation 
4.117) are as follows [59, 60] 

 

0690.100000
00237.10000
009543.0000
00003631.15247.0
0000030.100791.0
0009364.00698.00

][C ,(6.137a) 

 

1471.100000
00516.10000
004046.1000
00000792.01450.1
0008668.005753.0
0004767.09811.00

][C ,(6.137b) 

 
The other parameters (i.e., other material properties of the sheet, the geometric 
properties of the sheet and set-up, the friction coefficient and the blank-holder 
force) are the same as in Subsection 6.4.3.  

 
Figure 6.22. Comparison of cup height variation with circumferential angle with 
experimental result [58] 
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The finite element code is validated by comparing the cup height variation 
(with circumferential angle ) with experimental results of [58]. Figure 6.22 shows 
the comparison of the predicted cup height variation with the experimental one. It 
shows a good agreement between the two results except near 0 . It is expected 
that, with a refinement of the mesh, the agreement would be better near this point 
also. 

Figure 6.23 shows the variation of punch force with punch displacement for the 
anisotropic case. Here, the variation is similar to the isotropic case up to 40 mm of 
punch displacement, beyond which the punch force remains almost constant. 
Further, the punch force is smaller for the given punch displacement for the 
anisotropic case. The reason for this is as follows. Actually, the yield stress of the 
sheet material is different in different directions with the maximum value being in 
the rolling direction. However, in the isotropic analysis, it is assumed to be the 
same in every direction with its value being equal to the yield stress in the rolling 
direction. Thus, in the isotropic analysis, the sheet is assumed to be stiffer and 
therefore, a larger value of the punch force is predicted. 

 
Figure 6.23. Variation of punch force with punch displacement (anisotropic case) 

Figure 6.24 shows the deformed configuration for the isotropic case. The ear 
formation can be clearly observed from this figure. The ear is formed at 
45 direction to the rolling direction. This earing can be reduced by optimizing the 
initial shape of the sheet (i.e., blank shape) as explained in the next subsection.  
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Figure 6.24. Deformed configuration (anisotropic case) 

 
Figure 6.25. Thickness strain distribution (anisotropic case) 
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Figure 6.25 shows the thickness strain distributions along 0 , 45  and 90  
directions (to the rolling direction). As expected, the thickness strain distributions 
are different along these directions. The maximum magnitude of the thickness 
strain (i.e., the minimum thickness) is observed along 45 . Further, it is less than 
the corresponding value for the isotropic case. 

Various process parameters affect the final states of the deformation and stress 
in the drawn cup. These parameters include the geometric parameters (sheet 
thickness, punch profile radius, die profile radius), material properties, blank-
holder force, lubrication at the interface etc. The effects of some of these 
parameters are analyzed in this subsection.  

6.4.4.1 Effect of Die Profile Radius 
The material properties, the other process parameters and the remaining geometric 
properties are kept the same as before. Three cases ( dr  = 10, 12.7, 16 mm) are 
analyzed to study the effect of the die profile radius dr . Figure 6.26 shows the 
variation of punch force with punch displacement for these three cases. It is 
observed that the punch force decreases with an increase in the die profile radius. 
The explanation for this could be as follows. As the die profile radius increases, the 
material flows easily at the die corner, which in turn leads to a decrease in the 
punch force. However, the die profile radius should not be too large as it increases 
the punch travel. 

 
Figure 6.26. Variation of punch force with punch displacement for different die profile radii 

Figure 6.27 shows the thickness strain distributions along 45  direction for 
different die radii. The maximum magnitude of the thickness strain decreases with 
the die radius.  
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Figure 6.27. Thickness strain distribution along 45 direction for different die profile radii 

 
Figure 6.28. Variation of punch force with punch displacement for different sheet 
thicknesses 

6.4.4.2 Effect of Sheet Thickness 
The material properties, the other process parameters and the remaining geometric 
properties are kept the same as before. Three cases (t = 0.8, 1.2, 1.6 mm) are 
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analyzed to study the effect of the sheet thickness t. Figure 6.28 shows the 
variation of punch force with punch displacement for these three cases. Increase in 
sheet thickness implies an increase in the sheet volume. Therefore, a larger force is 
required to achieve the same punch displacement. Thus, the punch force increases 
with the punch displacement as shown in Figure 6.28. 

Figure 6.29 shows the thickness strain distributions along 0  direction for 
different sheet thicknesses. The maximum magnitude of the thickness strain 
increases with the sheet thickness. 

 

Figure 6.29. Thickness strain distribution along 0  direction for different sheet thicknesses 

6.4.4.3 Effect of Material Properties 
The punch force variation (with the punch displacement) and the thickness strain 
distribution (along the rolling direction) are studied for one more aluminum alloy 
(AA6022-T4), the material properties of which are given below [61]. 
Material Properties 
Material: AA6022-T4, 
Young’s modulus (E): 70 GPa, 
Poisson’s ratio ( ): 0.33, 
Yield stress ( Y ): 162 MPa, 

Hardening relation: 396 234exp( 6.745 )p
eq eq , 

The matrices ][C  and ][C  appearing in the linear transformation (Equation 
4.117) are as follows [61]: 
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0 0.755194 0.799378 0 0 0
0.773630 0 0.865580 0 0 0
1.04756 1.088160 0 0 0 0

[ ]
0 0 0 1.016290 0 0
0 0 0 0 0.993625 0
0 0 0 0 0 0.624258

C ,  

(6.138a) 

 

208880.100000
0994796.00000
00009770.1000
0000954688.0763656.0
000132990.10146560.1
000056340.1120720.10

][C , 

  (6.138b) 

 
Figure 6.30. Variation of punch force with punch displacement for two different aluminum 
alloys 

Figure 6.30 shows the variation of punch force with punch displacement for 
two different aluminum alloys: AA2090-T3 and AA6022-T4. Since the yield stress 
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of AA6022-T4 is lower than that of AA2090-T3, the required punch force is less 
for AA6022-T4. However, the punch force for AA6022-T4 does not seem to 
remain constant after 40 mm of punch travel. 

Figure 6.31 shows the thickness strain distributions along 45  direction for two 
different aluminum alloys: AA2090-T3 and AA6022-T4. It is observed that, for the 
material AA6022-T4, the magnitude of the negative thickness strain is slightly 
more but that of the positive thickness strain is less. 

 

Figure 6.31. Thickness strain distribution along 45  direction for two different aluminum 
alloys 

6.4.5 Optimum Blank Shape 

The method proposed by Pegada et al. [56] is used to optimize the blank shape so 
as to minimize the earing. This method can be briefly explained as follows. Figure 
6.32a shows a typical cup height variation with the circumferential angle , when a 
circular blank is used. In this method, the circular shape is modified by adding 
some material where the cup height is less and removing some material where the 
cup height is more while maintaining the constant volume. So, the stepwise 
optimization algorithm can be described as follows. 
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Figure 6.32. Typical ear profile and modification of blank shape. a Typical ear profile. b 
Shape modification 

First Optimization Iteration: 
 First, the cup height variation is obtained by choosing the circular blank 

shape. 
 Next, a target height is established by making the areas above and below 

the target height to be equal (Figure 6.32a). 
 Next, the shape deviation ie  at circumferential node i is determined as the 

difference between the cup height at the node and the target height (Figure 
6.32a). This is done for all the circumferential nodes: i = 1, 2,.., n where n 
is the number of circumferential nodes.   

 Finally, the maximum shape deviation )( minmax ee  is calculated where 

maxe  is the maximum value and mine is the minimum value of the shape 
deviations over all the circumferential nodes. 

Second Optimization Iteration: 
 The circular shape is modified by changing the radius at circumferential 

node i by the amount iKe  where K, the shape correction factor, is chosen 
suitably (Figure 6.32b). This is done for all the circumferential nodes: i = 
1,2,..,n.  

 Again, the cup height variation is obtained corresponding to the modified 
blank shape and the difference )( minmax ee  is calculated as explained 
above. 

Further Optimization Iterations: 
 The second optimization iteration is repeated until the difference 

)( minmax ee  is less than some specified percentage (say x%) of the 
maximum height.  
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Figure 6.33. Cup height variation with circumferential angle  in different iterations 

Figure 6.33 shows the cup height variations with the circumferential angle  in 
different iterations. As the number of iterations increases, the maximum shape 
deviation decreases from 9.8 to 0.4 mm. Sometimes, the value of the shape 
correction factor K needs to be changed during the iterations, otherwise the 
maximum shape deviation does not decrease with the iterations. Figure 6.34 shows 
the initial blank shape and the optimum blank shape obtained after the third 
iteration. 

 
Figure 6.34. Initial and optimum blank shapes 
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6.5 Summary 

In this chapter, first the finite element modeling of metal forming processes using 
the updated Lagrangian formulation is presented. The formulation is based on the 
incremental strain-displacement and stress-strain relations developed in Chapter 4. 
Incremental logarithmic strain tensor is used as a measure of finite incremental 
deformation. Further, a special updating scheme is employed to make the 
incremental stress tensor objective. Equilibrium equation at time tt  is 
converted first into an integral form and then into a set of non-linear algebraic 
equations using the Galerkin version of the finite element method. Like that of the 
Eulerian formulation, the finite element equations of the updated Lagrangian 
formulation also are non-linear and need an iterative scheme to obtain the solution. 
The Newton-Raphson iterative scheme, employed to solve the non-linear 
incremental equations, is explained in detail. Since, the constitutive relation is in 
the integral form, the Euler forward integration scheme for its integration is 
presented. Some divergence handling techniques like the under-relaxation method, 
line search method and increment cutting method are presented. 

Next, the finite element model developed for the updated Lagrangian 
formulation is applied to an axisymmetric problem of open die cold forging of a 
cylindrical block of an isotropic material. The friction at the platen-block interface 
is modeled by sticking friction and Coulomb’s law. Since this is a displacement 
control problem, an arc length technique is used to accelerate the convergence. 
Because of axisymmetry, only a typical r-z plane of the upper half of the 
cylindrical block is selected as the domain. The finite element model is verified by 
comparing the predicted forging load variation (with reduction) with experimental 
results available in the literature. The contact pressure distribution, deformed 
configuration, equivalent strain field, equivalent stress field and equivalent residual 
stress field are presented for a typical set of process variables. A parametric study 
of the residual stresses is carried out with respect to the four process variables, 
namely height-to-diameter ratio, reduction, friction coefficient and material 
properties. Finally, some studies on fracture prediction are presented using the 
critical damage and hydrostatic stress criteria. 

In the end, the finite element model of a three-dimensional problem of deep 
drawing of a cylindrical cup of an anisotropic material is developed. Friction at the 
punch is assumed to be of sticking type and that at the die is modeled by 
Coulomb’s law. The blank-holder force is assumed to be equally distributed over 
the area and is applied incrementally. Because of the orthotropy of the sheet and 
the symmetry of the geometry and boundary conditions about the two axes, only a 
quarter of the sheet is selected as the domain. The finite element model is verified 
by comparing the predicted cup height variation with experimental results available 
in the literature. Then, for a typical set of process variables, the punch force 
variation, deformed configuration and thickness strain variation are presented. A 
parametric study is carried out with respect to the three process variables, namely, 
the die profile radius, sheet thickness and material properties. Finally, the 
optimization of the initial shape of the sheet is carried out to minimize the earing.  
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7 

Finite Element Modeling of Orthogonal Machining 
Process  

7.1 Introduction 

Machining processes are difficult to model for various reasons. Unlike metal 
forming processes, where almost the whole work-piece gets plastically deformed, 
in machining processes, the plastic deformation is localized near the cutting edge. 
Therefore, we need to analyze only a small region of the work-piece around the 
cutting edge (called the cutting zone). As a result, the selection of the domain 
dimensions and the appropriate boundary conditions becomes a difficult task. 
Further, even at a moderate cutting speed, the strain rates are quite high, almost of 
the order of 410  per second. Further, the temperature rise is also quite large. As a 
result, the viscoplasticity and temperature-sofening effects become more important 
compared to strain-hardening. Therefore, the material properties associated with 
these two effects should be known for a range of strain rates and temperatures 
occurring in typical machining processes. These properties are not readily 
available. Additionally, to incorporate the temperature rise in the analysis, one 
needs to solve the heat transfer equation governing the temperature field in 
conjunction with the usual three equations governing the deformation field. For 
plastic deformation, these equations are coupled, and hence difficult to solve. We 
can decouple this problem as follows. We first estimate the average temperature in 
the cutting zone either experimentally or by simple analytical methods. Then we 
solve the governing equations of the deformation field by evaluating the material 
properties at the estimated average temperature of the cutting zone.  

Two methods exist for analyzing the machining process. In the first method, it 
is assumed that the chip formation is continuous and the shape of the chip is known 
in advance. Thus, the process is analyzed as a steady-state process. This method is 
called the Eulerian method. In this method, a chip separation criterion is not 
required. In the second method, the process is analyzed from the beginning to the 
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steady state chip formation. This is called the updated Lagrangian formulation. In 
this method, a chip separation criterion is required to predict the chip geometry. 

Early applications of finite element method [1–4] to the machining process 
were mainly Eulerian. The main objective of many of these studies was to predict 
the temperature distribution and therefore, the determination of deformation and 
stress fields was only an intermediate step. These studies considered the machined 
material as rigid-plastic. But, later applications of Eulerian formulation to 
machining process [5, 6] also included viscoplastic effects. All of these 
applications have considered only orthogonal machining. The first finite element 
study of the machining process using an updated Lagrangian formulation was 
made by Strenkowski and Carrol [7]. This was for orthogonal machining. A critical 
value of the equivalent plastic strain was used to model the separation of a chip. 
Later on, several researchers [8–10] used the updated Lagrangian formulation for 
analyzing two- and three-dimensional machining processes. Most of these studies 
have used an FEM package: ABAQUS [8], MARC [9] or DEFORM [10]. The 
criterion used for chip separation has been based on controlled crack propagation 
[8] or some geometrical considerations [9]. Remeshing technique has been used to 
simulate the chip formation in [10]. 

In this chapter, we consider only the Eulerian formulation of orthogonal steady-
state machining process.  

7.2 Domain, Governing Equations and Boundary Conditions for 
Eulerian Formulation 

7.2.1 Domain 

In the present formulation, it is assumed that the problem is decoupled. We further 
assume that the elastic deformation is small. As stated above, the visco-plasticity 
and temperature effects are more dominant compared to the strain-hardening 
effects. To keep things simple, we assume that the material exhibites no hardening 
but only visco-plasticity. Thus, we assume the material to be rigid-viscoplastic. 
Further, the temperature softening is accounted for by evaluating the material 
properties at an average temperature occuring in the cutting zone. Additionally, we 
analyse the process when it has reached a steady state. Then the transient term in 
the equation of motion vanishes. We further assume that the body forces are 
negligible. 

We choose a small region of the work-piece around the cutting edge (called the 
cutting zone) as the control volume, i.e., the domain of the problem. To make the 
problem two-dimensional, we assume that the width of cut is large compared to the 
dimensions of the cutting zone. The domain, along with the coordinate system, is 
shown in Figure 7.1. It is a region in the cross-sectional plane of the work-piece 
perpendicular to the cutting edge. Point E is the projection of the cutting edge. The 
z-axis is along the cutting edge or the width of cut. The boundaries AB and EF are 
actually circular. But, since the cutting zone dimensions are small compared to the 
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work-piece radius, they are taken to be straight. The angle is equal to the rake 
angle of the cutting tool. The distance h is called the tool-chip contact length. It is 
given by Equation 3.162 [2]: 

 

 sin
sin cos( )

fh ,      (7.1) 

 
where  is the shear angle (i.e., the inclination of the shear plane with the direction 
of the cutting velocity),   is the angle between the shear force and the resultant 
force and f is the feed. In orthogonal machining, the shear angle can be estimated 
by measuring the cutting ratio r and using the following relation: 

 sin
cos( )

r .                  (7.2) 

The angle   can be computed by measuring the cutting force Fc and thrust force Ft 
by a dynamometer and using the following relation: 

 
2 2

cos sin
cos c t

c t

F F

F F
.         (7.3) 

The boundaries AH, HG, FG and CD are placed sufficiently away from the cutting 
edge projection E so as to simplify the boundary conditions on these boundaries by 
taking the advantage of the uniform velocity fields existing there. Further, the 
boundaries AH, FG and CD are chosen parallel to the shear plane so as to facilitate 
the mesh generation. So, the domain shape is different to that of Figure 3.22. 

 
Figure 7.1. Domain of the problem  
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7.2.2 Governing Equations 

For the decoupled problem of the rigid-viscoplastic material with zero body force, 
the velocity field v, the strain rate field , the hydrostatic stress (or pressure) field 
p and the deviatoric stress field  in the control volume are governed by the 
following equations: strain rate-velocity relations, stress-strain rate relations, 
equations of motion and incompressibility constraint. For the purpose of finite 
element formulation, these equations need to be expressed in the component form. 
Since the problem is two-dimensional, the velocity vector has two non-zero 
components and the strain rate and the deviatoric stress tensors have three non-zero 
independent components each. In terms of the components with respect to the 
coordinate system of Figure 7.1, The governing equations are as follows: 
(i) Strain rate - velocity relations: 
Let ( , )x yv v  be the non-zero components of the velocity vector v and 

( , , )xx yy xy  be the non-zero independent components of the strain rate tensor 

. Then, the strain rate-velocity relations (Equation 3.66) become  

 
, ,

1 .
2

yx
xx yy

yx
xy

x y
v

y x

 (7.4) 

(ii) Rigid – viscoplastic deviatoric stress - strain rate relations: 
As stated above, we neglect the hardening and consider only the visco-

plasticity. For, non-hardening visco-plastic materials, the relation (Equation 3.165) 
between the deviatoric stress and the strain rate tensors gets modified as [5] 
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 (7.5) 

where ( , , )xx yy xy  are the non-zero independent components of the deviatoric 

stress tensor . Here, the proportionality factor 2 , for non-linear visco-plastic 
behavior, is given by  

 2 ( )
3

m Y
eq

eq
a  , (7.6) 
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where Y  is the yield stress of the material, eq  is the equivalent strain rate 
(defined by a relation similar to Equation 3.156) and a and m are the material 
constants representing the material visco-plasticity. To account for the temperature 
softening, the material constants Y , a and m are evaluated at the estimated 
average temperature of the cutting zone.  
(iii) Equations of motion: 

As stated earlier, we neglect the body forces. Further, we analyse the process 
when it has reached a steady-state. Therefore, the transient term ( /iv t ) 
vanishes. Then, the equations of motion (Equation 3.220), in the component form, 
take the form  

  

,

.

xyx x xx
x y

y y xy yy
x y

v p
x y x x y

v p
x y y x y

 (7.7) 

In the rolling problem (Section 5.3 of Chapter 5), we neglected the first term of 
the equation of motion as the acceleration was small. But, in the machining 
process, the acceleration is not negligible. Hence, we retain this term. 
(iv) Incompressibility constraint: 

The incompressibility constraint (Equation 3.166), in the component form, 
becomes  

 0.xx yy  (7.8) 

7.2.3 Boundary Conditions 

The boundary conditions of the problem are the same as mentioned in Section 
3.10. Note that, since the problem is two-dimensional, only two boundary 
conditions are needed on each boundary instead of three. Whether a boundary 
condition is essential or natural is also indicated against each boundary condition. 
Boundaries AH, HG and FG: 
As stated earlier, the boundaries AH, HG and FG are chosen sufficiently away 
from the cutting edge projection E. Therefore, we can assume that the velocity 
vector has only x-component at these boundaries. Further, the velocity actually 
varies linearly from point H to point A and from point G to point F. But, since the 
distances AH and FG are very small compared to the work-piece radius, we 
assume the velocity to be uniform over these boundaries. Let cv be the specified 
cutting velocity. Then, the boundary conditions at the boundaries AH, HG and FG 
become (Equation 3.267) 

 , 0, (essential)x c yv v v .                 (7.9) 
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Boundary CD: 
The boundary CD is also chosen sufficiently away from the cutting edge projection 
E. Therefore, we assume that, at this boundary also, the velocity vector is uniform 
over the whole boundary. Let chv  be the chip velocity. The chip velocity can be 
calculated from the cutting velocity using the conservation of mass equation over 
the uncut depth and the chip thickness (Equation 3.268):  

 ,ch cv v r  (7.10) 

where r is the cutting ratio given by Equation 7.2. Note that the chip velocity 
makes an angle  with y-axis. Then, the boundary conditions at the boundary CD 
become (Equation 3.269) 

 sin , cos , (essential).x ch y chv v v v  (7.11) 

Stress free boundaries AB, BC and EF: 
The boundaries AB, BC and EF are stress-free surfaces. On the stress-free 
surfaces, the stress vector is zero at every point. Therefore, the boundary 
conditions at the boundaries AB, BC and EF can be expressed as (Equation 3.270)  

 0, 0, (natural),x yt t  (7.12) 

where xt  and yt  are the Cartesian components of the stress vector nt . Sometimes 
an alternate set of boundary conditions is used on these boundaries. This set is as 
follows. Since the direction of the velocity vector at the boundaries AB and EF is 
always along x-axis, the boundary condition (Equation 7.12) may be modified to 
specify yv  to be zero instead of yt  being zero. Thus, on the boundaries AB and 
EF, we can use the following boundary conditions:  

 0, (essential),yv  (7.13a) 

 0, (natural).xt  (7.13b) 

Unlike the boundaries AB and EF, the boundary BC is inclined to x-axis. 
Therefore, on this boundary, we can specify the normal velocity component nv  
and the shear stress component st  to be zero instead of xt  and yt  being zero. 
Since, the inclination of the boundary BC with y-axis is , these boundary 
conditions become   

 cos sin 0, (essential),n x yv v v  (7.13c)    

 sin cos 0, (natural).s x yt t t  (7.13d) 
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The modified boundary conditions are expected to give a more accurate velocity 
field. 
Tool-chip interface ED: 
Velocity along the tool-chip interface ED can be approximated by the following 
relation (Equation 3.272):  

 

1/ 2
1 8 , for ,

3
, for ,

ch

ch

v
v h

h
v h

 (7.14) 

where  is the distance measured along the boundary from point E. Thus, the 
value of v  varies from 3/chv  at point E to chv when  is equal to h. Note that, 
the boundary ED makes an angle  with y-axis. Then, the boundary conditions at 
boundary ED become (Equation 3.273)  

 sin , cos , (essential).x yv v v v  (7.15) 

7.3 Finite Element Formulation 

As a first step towards the finite element formulation, we develop the integral form 
of the equations of motion (Equation 7.7) and the incompressibility constraint 
(Equation 7.8). This is called the mixed pressure-velocity formulation. We use the 
weighted residual method, described in Chapter 5, for this purpose. Normally, 
these equations are first made non-dimensional and then they are converted into an 
integral form. The procedure for making them non-dimensional is similar to the 
one described in Section 5.3.2 of Chapter 5. Here, we skip this step. 

7.3.1 Integral Form 

Let xv , yv  and p be the functions of (x,y) which satisfy the essential boundary 
conditions exactly. Then, as stated in Chapter 5, these functions constitute an 
approximate solution to the problem consisting of the governing equations 
(Equations 7.4, 7.5, 7.7 and 7.8) and the boundary conditions (Equations 7.9, 7.11, 
7.12 or 7.13, 7.15) if the following integral of the weighted residue is made zero: 

( )

d d 0.

xyx x xx
xx yy p x y x

y y xy yy
x y y

v v pw v v w
x y x x y

v v pv v w x y
x y y x y

  
       (7.16) 
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Here, pw , xw  and yw  are functions of (x ,y), called the weight functions, which 
are arbitrary except that they satisfy the homogeneous version of the essential 
boundary conditions. The functions xv , yv  and p are called the approximation to 
the solution. In order to weaken the continuity requirements on the approximation, 
we simplify the second and third terms of the integrand of Equation 7.16 using a 
procedure similar to that of Section 5.3.3 of Chapter 5. Then, we get  

          2( ) ( ) 2 ( ) ( ) 2 ( ) d d

d d 0.
x y

y yx x
xx yy p x y x x y y

xx yy xx xx yy yy xy xy

x x y y

v vv v
w v v w v v w

x y x y

p w w w w w x y

w t l w t l

   

   (7.17) 

Here, the quantities ( )xx w , ( )yy w  and ( )xy w  are given by relations similar to 
Equation 7.4: 
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2
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xx yy

yx
xy

ww
w w

x y
ww

w
y x

    (7.18) 

and x  and y  are respectively the boundaries on which the components of the 

stress vectors xt  and yt  are specified. Further, the deviatoric stress–strain rate 

relations (Equation 7.5) have been used to eliminate ij  from the area integral and 
the decomposition of the stress tensor (Equation 2.100) and the Cauchy’s relation 
(Equation 2.64) have been used to express the boundary integrals in terms of the 
components xt  and yt of the stress vector:    

 
( ) ,

( ) .
xx x xy y xx x xy y x

xy x yy y xy x yy y y

p n n n n t

n p n n n t
 (7.19) 

Here, xn  and yn  are the components of a unit vector normal to the parts of the 

boundares on which xt  and yt are specified. 
For the convenience of finite element formulation, it is desirable to express the 

integral form (Equation 7.17) in an array notation. For this purpose, we define the 
following arrays:  
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xy xy

xx
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x y

 (7.20) 

Then, the integral form (Equation 7.17) becomes  

 

T T T T

T
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{ } { } { } { } { } { } { ( )}{ }

2 { ( )}{ } d d d d 0.
x y

p x x y y

x x y y

w m v w v v w v w m p

w x y w t l w t l
 

        (7.21) 

7.3.2 Approximations for Velocity Components and Pressure 

The integral form is similar to that for the rolling problem (Equation 5.108) except 
for the second term which involves the acceration. Equation 7.21 contains the first 
derivatives of the velocity components but no derivatives of the pressure. Thus, a 

0C -continuity approximation for the velocity components and a discontinuous 
approximation for the pressure can be chosen. However, for the reasons mentioned 
in Section 5.3.4 of Chapter 5, we choose a bi-linear approximation (i.e., a 0C  
continuity approximation) for the pressure and a higher order 0C  continuity 
approximation (i.e., a second order serendipity approximation) for the velocity 
components. The corresponding element is shown in Figure 5.4b where the four 
corner nodes have three degrees of freedom ( xv , yv ,  p) and the remaining four 

nodes have only two degrees of freedom ( xv , yv ). The domain is discretized into 

en  number of such elements.  
The approximation for the velocity components over a typical element e is 

given by  

 { } [ ]{ }v ev N v , (7.22) 

where 
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 { } ,x

y

v
v

v
 (7.23) 
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N
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  (7.24) 

is the velocity shape function matrix containing the two-dimensional second order 
serendipity shape functions iN  (i = 1, 8) and  

 T
1 1 8 8{ } ( ) ( ) ( ) ( )e e e e e

x y x yv v v v v  (7.25) 

is the elemental velocity vector containing the nodal values of the velocity 
components at all eight nodes of the element e. The approximation for the pressure 
is given by  

 T{ } { } ,p ep N p  (7.26) 

where the pressure shape function vector  

 T
1 2 3 4{ } p p p ppN N N N N  (7.27) 

contains the two-dimensional bi-linear Lagrangian shape functions p
iN  (i = 1, 4) 

and the elemental pressure vector  

 T
1 2 3 4{ }e e e e ep p p p p  (7.28) 

contains the nodal values of the pressure at the four corner nodes of the element e. 
As in the case of finite element formulations of Chapters 5 and 6, here also we 

use the Galerkin version of the finite element formulation. Then, the weight 
functions ( xw , yw ) for the velocity components and the weight function pw  for 
the pressure are constructed by choosing the same shape functions as those used in 
approximating the velocity components and the pressure respectively. Thus, 

 { } [ ]{ } ,v e
vw N w  (7.29) 

 T{ } { },e p
p pw w N  (7.30) 

where the elemental weight vectors  
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T

1 1 8 8{ } ( ) ( ) ( ) ( ) ,e e e e e
v x y x yw w w w w

 (7.31) 
 T

1 2 3 4{ } ( ) ( ) ( ) ( )e e e e e
p p p p pw w w w w , (7.32) 

contain respectively the nodal values of xw  and yw  at all eight nodes and the 

nodal values of pw  at the four corner nodes of the element e. These nodal values 
are known but arbitrary. 

As the domain is discretized into area elements, the boundaries x  and y  get 

automatically discretized into three-noded line elements. Let bxn  and byn  be the 

number of line elements on x  and y  respectively. For the evaluation of the 
boundary integrals of Equation 7.21, we need expressions for the weight functions 

xw  and yw  over a typical line element b which would be consistent with their 
expressions (Equation 7.29) over the area elements. Such expressions are 

 T{ } { } ,b b
x xw w N  (7.33) 

 T{ } { } ,b b
y yw w N  (7.34) 

where the boundary shape function vector  
 
 T

1 2 3{ } ,b b b bN N N N       (7.35) 

contains the one-dimensional quadratic Lagrangian shape functions and the 
boundary elemental weight vectors 

 T
1 2 3{ } ( ) ( ) ( ) ,b b b b

x x x xw w w w  (7.36) 

  T
1 2 3{ } ( ) ( ) ( ) ,b b b b

y y y yw w w w                                       (7.37)   

contain respectively the nodal values of xw  and yw  at all three nodes of the line 
element b. These nodal values are known but arbitrary. We also approximate the 
variations of xt  and yt along a typical line element b of the boundaries x  and y  
by the following expressions:  

 T ,bb
x xt N t  (7.38)  

 T ,
bb

y yt N t                                                (7.39)   

where the vectors  
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 T
1 2 3{ } ( ) ( ) ( ) ,b b b b

x x x xt t t t  (7.40) 

 T
1 2 3{ } ( ) ( ) ( )b b b b

y y y yt t t t  (7.41) 

contain respectively the nodal values of xt  and yt  at all three nodes of the line 
element b. 

7.3.3 Finite Element Equations 

Differentiating the approximations for the velocity components (Equation 7.22)  
and the expressions for the weight functions (Equation 7.29), we obtain the 
following expressions for various arrays appearing in the integral form: 

 { } [ ]{ } ,eB v  (7.42) 

 { ( )} [ ]{ } ,e
vw B w  (7.43) 

 { } [ ]{ } ,e
x xv B v  (7.44) 
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Substituting Equations 7.26, 7.29, 7.30 and 7.42–7.45 for p, { }w , pw , { } , 

{ ( )}w , { }xv , { }yv  over a typical area element e and Equations 7.33, 7.34, 

7.38 and 7.39 for xw , yw , xt  and yt over a typical line element b into the integral 
form (Equation 7.21), we get 
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w k v w k p w k v

w f w f
  (7.49) 

Here, the elemental coefficient matrices [ ]e
pvk , [ ]e

vpk  and [ ]e
vvk  are given by  

 

T[ ] { }{ } [ ]d d ,
e

e p
pv

A
k N m B x y

 (7.50) 

 
T[ ] [ ] ,e e

vp pvk k
 (7.51) 

 T T T
2[ ] [ ] [ ] [ ] [ ] 2 [ ] [ ] d d

e

e v v
vv x x y y

A
k v N B v N B B B x y , (7.52) 

where eA  is the domain of a typical area element e and the elemental right side 
vectors are given by 
 

 T{ } { }{ } d { }
b
x

b b b b
x xf N N l t ,           (7.53)   

 T{ } { }{ } d { } ,
b
y

b b b b
y yf N N l t  (7.54) 

where b
x  and b

x  are the domains of a typical line element b on the boundaries 

x  and y  respectively. Note that, we have not substituted the approximations for 

xv  and yv  in the expression for [ ]e
vvk . The reason for this is as follows. In the 

present  case, the resulting finite element equations become non-linear and, hence, 
need to be solved iteratively. In an iterative scheme which we adopt, the xv  and 

yv  in the expression for [ ]e
vvk  are evaluated from the previous iteration.   

Now, define the following elemental matrix and the elemental vectors: 
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Then, Equation 7.49 becomes 

 T T T

1 1 1
{ } [ ] { } { } { } { } { }

bye bx nn ne e e b b b b
x x y y

e b b
w k w f w f . (7.56) 

The area integrals in Equations 7.50 and 7.52 are evaluated numerically by 3 3 
Gauss quadrature, described in Section 5.2.2 of Chapter 5. For this purpose, the 
integrals are transformed to the natural coordinates ),(  using the following 
transformation:  

 
1 1

1 1
(.....)d d ........ d d ,

eA
x y J  (7.57) 

where  J is the determinant of the Jacobian matrix:  

 [ ] .

x x

J
y y

 (7.58) 

The Jacobian is evaluated from the geometric approximation of the area element. 
In order to model the curved boundaries of the elements properly, we use the 
second order serendipity approximation for the element geometry, the same as that 
used for the velocity components. Thus, 
 
 T T{ } { } , { } { } ,e ex N x y N y       (7.59) 
 
where  

 T
1 2 8{ }N N N N  (7.60) 

contains the two-dimensional second order serendipity shape functions and  
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contain the nodal values of the coordinates (x,y) at all eight nodes of the element e. 
The line integrals in Equations 7.53 and 7.54 are evaluated numerically using 3 
point Gauss quadrature. For this purpose, the integrals are transformed to the 
natural coordinate  by the following transformation: 

 1
1(.....)d (.....) d ,

b
bl J  (7.62) 

where bJ  is the Jacobian for the line element: 

 

1/ 22 2d d .
d db

x yJ  (7.63) 

To evaluate the Jacobian, we need the geometric approximation of the line 
element. The approximation, which would be consistent with the geometric 
approxomination of the area element (Equation 7.59), is given by 
 
 T T{ } { } , { } { }b b b bx N x y N y ,     (7.64) 
 
where the vector T}{ bN (defined by Equation 7.35) contains the one-dimensional 
quadratic Lagrangian shape functions and  
 
 T T

1 2 3 1 2 3{ } , { }b b b b b b b bx x x x y y y y ,   (7.65) 

contain the nodal values of the coordinates (x, y) at all the three nodes of the line 
element b. 

After using the assembly procedure of Section 5.2.3 of Chapter 5, the finite 
element equations (Equation 7.56) become  
 
 }{}{}]{[}{ TT FWKW       (7.66) 

where {W}, [K] and {F} are respectively the global weight vector, the global 
coefficient matrix and the global right side vector. The vector }{  contains the 
unknowns of the problem, namely, the nodal values of  the velocity components 
and the pressure. It may be called as the global unkown vector. Since the nodal 
values of weight functions are arbitrary, the finite element equations (Equation 
7.66) take the form  

 [ ]{ } { }.K F  (7.67) 
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7.3.4 Application of Boundary Conditions, Solution Procedure and Evaluation 
of Secondary Quantities 

Boundary conditions need to be applied to Equation 7.67 before it is solved. The 
essential boundary conditions (Equations 7.9, 7.11, 7.13a and 7.15) are applied 
using the procedure described in Section 5.2.4 of Chapter 5. The natural boundary 
condition (Equation 7.13b) is applied simply by making the corresponding 
elements of the right side vector zero. The boundary conditions (Equations 7.13c, 
d) are special boundary conditions. They are applied using the procedure similar to 
that of the friction boundary condition of Section 5.3.5 of Chapter 5. 

Equation 7.52 indicates that the coefficient matrix [K] is not constant but 
depends on the unknown nodal values of the velocity components. Therefore, the 
finite element equations (Equation 7.67) are non-linear algebraic equations and 
need to be solved by an iterative scheme. In the present case, we use the following 
iterative scheme. In this scheme, we linearize the expression for [K] by evaluating 

xv , yv  and 2  in Equation 7.52  from the previous iteration. To start the 

iterations, suitable guess values are used for xv , yv  and 2 . In the first few 

iterations, the value of 2  tends to become very large. This leads to some 
computations difficulties. These difficulties are overcome by prescribing a suitable 
cut-off for 2 . In the present work, this cut-off is chosen to be 1400. The iterations 
are continued until the nodal variables converge within 1% between the two 
successive iterations.  

Once the nodal values of velocity components are obtained by solving Equation 
7.67, one can proceed to determine the secondary quantities like the boundaries of 
the primary shear deformation zone (PSDZ), the average shear strain rate )(  and 
the average shear stress )( .  

First, the components of the strain rate tensor )( ij  are calculated from the 
nodal values of the velocity components using Equation 7.42. These components 
are obtained at the Gauss points as they are observed to be accurate at these points. 
Then, the equivalent strain rate )( eq  is calculated at the Gauss points from the 
following relation (relation similar to Equation 3.156):  

 
1/ 22 .

3eq ij ij  (7.68) 

A certain fraction of the maximum value of eq over the whole domain is used 
as a cut-off value in determining the boundaries of the PSDZ. All the Gauss points 
at which eq  is higher than the cut-off value are considered to lie inside the PSDZ. 
The boundaries of the PSDZ so determined are not, in general, either straight or 
parallel to the shear plane. However, in machining literature, the PSDZ is assumed 
to be a rectangle with sides parallel to the shear plane. The width of this rectangle 
is considered as an important secondary variable. For our PSDZ, we evaluate its 
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mean width ds by dividing the area of the PSDZ by the dimension of the shear 
plane (i.e., length BE of Figure 7.1). 

If we choose a coordinate system in which one axis (i.e., axis 1) is along the 
shear plane (i.e., line BE of Figure 7.1) and the other axis (i.e., axis 2) 
perpendicular to it, then the state of deformation in the PSDZ can be approximated 
as that of a pure shear. It means, out of the three independent components of the 
strain rate tensor )( ij  and the deviatoric stress tensor )( ij , only the shear 
components become non-zero. Thus, 

 11 22 12

11 22 12

0, 0, 0,
0, 0, 0.

 (7.69) 

In general, these components vary from point to point in the PSDZ. However, in 
machining literature, usually only one value of the shear strain rate and only one 
value of the shear stress is associated with the deformation in the PSDZ. We can 
interpret these values as the values of 12  and 12  averaged over the PSDZ. The 
value of the shear strain rate reported in the machining literature is normally 
denoted by  and represents the rate of change of angle between small line 
elements that were originally along the axes 1 and 2. On the other hand, 12  
represents only half the rate of change of this angle. Thus,  

 12
PSDZ

2( ) | .av  (7.70) 

Although,  is simply called the shear strain rate in the machining literature, we 
shall refere to it as the average shear strain rate. The symbol  is usually used in 
the machining literature to denote the shear stress. Thus,  

 12
PSDZ

( ) | .av  (7.71) 

In the machining literature,  is called the shear flow stress. However, we shall 
refer to it as the average shear stress. We now express 12  and 12  in terms of the 
equivalent strain rate eq . Substituting 02211  (Equation 7.69) in the 

expression for eq (Equation 7.68), we get 

 12
3 .

2 eq  (7.72) 

Similarly, since 02211  (Equation 7.69), the expression (Equation 3.23)  
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1/ 23

2eq ij ij  (7.73) 

 for the equivalent stress becomes  

 123 .eq         (7.74) 

When the deviatoric stress–strain rate relations (Equation 7.5) are combined with 
the definitions of the equivalent strain rate (Equation 7.68) and equivalent stress 
(Equation 7.73), we get the following relationship between eq  and eq :  

 2(3 ) .eq eq  (7.75) 

Eliminating eq  from Equations 7.74 and 7.75, we get  

 12 2( 3 ) .eq  (7.76) 

Substituting Equations 7.72 and 7.76 for 12  and 12 ,  Equations 7.70 and 7.71 for 
the average shear strain rate  and the average shear stress  become 

 PSDZ

2
PSDZ

3( ) | ,

3 ( ) | .

eq av

eq av
 (7.77) 

The equivalent strain rate ( eq ) values at the Gauss points of the PSDZ are used to 

calculate the average shear strain rate  and the average shear stress . The 
equivalent strain rate eq  is averaged over the PSDZ to obtain  whereas  is 

determined by taking the average of the product of 2  and eq  where 2  is 
calculated from Equation  7.6. 

7.4 Results and Discussion 

The finite element equations developed in the previous section have been solved 
for mild steel material for various sets of machining conditions. First, the 
formulation is validated by comparing the mean width (ds) of the PSDZ , the 
average shear strain rate ( ) and the average shear stress ( ) with the 
experimental results of Kececioglu [11]. Next, the effects of two important 
machining parameters, namely the cutting velocity ( cv ) and feed (f), on the mean 
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width (ds) of the PSDZ, the average shear strain rate ( ) and the average shear 
stress ( ) are studied. Finally, for a typical set of machining conditions, the 
primary shear deformation zone (PSDZ), the contours of equivalent strain rate 
( eq ) and the contours of equivalent stress ( eq ) are presented.  

The values of material constants (for mild steel) used in the present work are as 
follows: 

 Density ( ): 7860 kg/ 3m ; 
 Viscoplastic material constants: 

MPa350Y , 8106246.0a ,   884.0m   41031eq , 

MPa450Y ,  8108845.0a ,  867.0m  41031eq . 

The values of a and m have been obtained by fitting Equation 7.6 through the 
experimental results of Jain and Gupta [12]. The above values of a are different 
from those of Joshi et. al. [5] because, their definition of equivalent strain rate 

eq differs from Equation 7.68 by a factor of 3 .  
The finite element mesh with 44 eight-noded elements and 165 nodes, used in 

the present study, is shown in Figure 7.2. 

 
Figure 7.2. Finite element mesh with 44 eight-noded elements and 165 nodes  
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7.4.1 Validation of the Formulation 

The validation is carried out for the following two sets of machining conditions 
(the same as used in  [11])  

 Set 1: Cutting velocity ( cv ) = 3.73 m/s, Feed (f) = 0.3 mm/rev, Rake 
angle ( ) in degrees = 19.5; 

 Set 2: Cutting velocity ( cv ) = 3.73 m/s, Feed (f) = 0.1 mm/rev, Rake 
angle ( ) in degrees = 33. 

First, the boundaries of the PSDZ are determined for the two sets of machining 
conditions using 3% cut-off. However, only the width of the PSDZ is reported in 
the machining literature by assuming it to be a rectangle with sides parallel to the 
shear plane. Therefore, for the comparison purpose, the mean width ds of our 
PSDZ is calculated by dividing its area by the dimension of the shear plane (i.e., 
length BE of Figure 7.1). Further, the average shear strain rate  and the average 
shear stress  are calculated for the two sets of machining conditions by averaging 
respectively eq  and 2 eq  over the PSDZ. The values of ds,  and  obtained 
from the present formulation for the two sets of machining conditions are 
compared with the corresponding experimental values from [11] in Table 7.1. 
There seems to be  good agreement with the experimental results.  

Table 7.1. Comparison of ds,  and with experimental values of Kececioglu [11] 

Set 1 Set 2 
Quantity Present Expt. [11] %  

Error 
Present Expt. [11] %  

Error 
ds ( m ) 84.52 90.50 - 6.6 18.59 18.00 3.2 

)/10( 4 s
 

3.83 3.90 - 1.7 15.14 17.60 - 13.9 

(MPa) 474.90 494.70 - 4.1 540.50 562.40 - 3.2 

7.4.2 Parametric Studies 

In this section, the effects of two important machining parameters, namely the 
cutting velocity ( cv ) and feed (f), on the mean width (ds) of the PSDZ, the average 
shear strain rate ( ) and the average shear stress ( ) are studied. 

 Mean width of the PSDZ (ds) 
The mean width of the PSDZ (ds) decreases slightly with the cutting velocity ( cv ) 
when the feed is kept constant. On the other hand, ds increases with the feed when 
the cutting velocity is kept constant. This result is in agreement with experimental 
results of  [11]. 
 
 



 Finite Element Modeling of Orthogonal Machining Process 445 

 Average shear strain rate ( ): 
With an increase in cutting velocity, the average shear strain rate increases. 
However, it decreases with the feed. 

 Average shear stress ( ): 
When the feed is kept constant, the average shear stress increases with the cutting 
velocity, which is in agreement with the experimental results of  [12]. However, 
when the cutting velocity is kept constant, the average shear stress decreases 
almost linearly, with the feed. Kececioglu’s [11] experimental results support the 
decreasing trend of  with feed. 

7.4.3 Primary Shear Deformation Zone, Contours of Equivalent Strain Rate 
and Contours of Equivalent Stress 

Figures 7.3–7.5 show respectively the primary shear deformation zone (PSDZ), the 
contours of equivalent strain rate ( eq ) and the contours of equivalent stress ( eq ) 
for a typical set of machining conditions. A cut-off value of 3% has been used in 
obtaining the boundaries of the PSDZ.  

 
Figure 7.3. Primary shear deformation zone. From Joshi et al. [5].  Copyright [1994] 
Elsevier 
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Figures 7.4 and 7.5 are the same as Figure 10a, b of Joshi et al. [5] except for 
the following modification. As stated earlier, the definition of eq  of Joshi et al. 

[5] differs from Equation 7.68 by a factor of 3 . Further, the definition of eq  of 

Joshi et al. [5] differs from Equation 7.73 by a factor of1 3 . Therefore, the 
numerical values of eq and eq  in Figures 7.4 and 7.5 are obtained by multiplying 

the corresponding values of Figure 10a, b of Joshi et al. [5] by the factors of 1 3  

and 3  respectively. 
It is observed that the maximum values of eq  and eq  occur near the cutting 

edge and are of the order of 42.31 10  s 1 and 866 MPa. 

 

Figure 7.4. Contours of equivalent strain rate (s 1). From Joshi et al. [5]. Copyright [1994] 
Elsevier 
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Figure 7.5. Contours of equivalent stress (MPa). From Joshi et al. [5]. Copyright [1994] 
Elsevier 

7.5 Summary 

In this chapter, first the Eulerian formulation of an orthogonal steady-state 
machining process is described. Unlike the updated Lagrangian formulation, where 
the chip formation is predicted using a chip seperation criterion, this formulation 
assumes the existence of the chip. Further, this formulation is different to that of 
the Eulerian formultion of the plane-strain rolling problem of Chapter 5 in several 
aspects. The first difference is that the plastic deformation is not spread over a 
large part of the work-piece, but is localized near the cutting edge. Therefore, the 
domain selected is a small region around the shear plane. While selecting the 
domain, it is assumed that the shear angle and the angle between the shear force 
and the resultant force have been determined experimentally. Further, the width of 
cut is assumed large enough to make the problem two-dimensional. The second 
difference is that, unlike in the rolling pocess, the strain rates and the temperature 
rise are quite significant. Therefore, one needs to determine the temperature rise 
and incorporate visco-plasticity and temperature softening in the constitutive 
equation. To estimate the temperature rise, one needs to solve the heat transfer 
equation in conjuction with the equations govering the plastic deformation. In the 
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present work, the problem is decoupled by assuming that the average temperature 
rise in the cutting zone for typical machining conditions can be estimated 
experimentally or analytically. Then, the temperature softening is incorporated by 
evaluating the viscoelastic properties of the material at the average temperature of 
the cutting zone. The friction at the tool-chip contact is very complex and is not 
fully understood. Therefore, it is taken care of by using simple estimates of the 
tool-chip contact length and the contact velocity based on empirical knowledge. 

The development of the finite element equations is similar to that of the plane-
strain rolling problem of Chapter 5. The Eulerian finite element model is verified 
by comparing the predictions of the mean width of the primary shear deformation 
zone (PSDZ), the average shear strain rate and the average shear stress with 
experimental results. Then the parametric study of these three quantities is carried 
out with respect to two machining variables, namely the cutting velocity and the 
feed. Finally, for a typical set of machining conditions, the shape of the PSDZ and 
the contours of the equivalent strain rate and the equivalent stress are presented. 
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Background on Soft Computing 

8.1  Introduction 

There are many situations where imprecise or incomplete information is available 
about a problem until an approximate solution of the problem is obtained. To give 
a simple example, in most of the mechanics problem, one has to use a coefficient 
of friction whose value is not known precisely. While one can measure the mass of 
the body quite easily and values of applied forces may be known, the coefficient of 
friction may not be known precisely. For example Merium and Kraige [1] give a 
table of friction for various contacting surfaces, but mention that a variation of 25–
100% or more from those values could be expected in an actual application, 
depending on prevailing conditions of cleanliness, surface finish, pressure, 
lubrication, and velocity. Notwithstanding the prevalent imprecision in the values 
of coefficient of friction, most of the time one does carry out precise (hard) 
computations with the most likely value of the coefficient of friction. However, 
such hard computations without a mention of imprecision in the solution have 
limited practical utility. 

Coming to the areas of machining and metal forming, we encounter many 
imprecise (and often uncertain) parameters. It should not be surprising to see a 
large variation in the estimated and experimental cutting forces in orthogonal 
machining when Merchant’s single shear plane model is used for estimating the 
forces. This variation may be due to imprecise knowledge of coefficient of friction 
at the tool-chip interface and shear flow stress of the work-material and 
approximation in the Merchant’s model. Similarly, in the metal forming problems, 
the material properties and coefficient of friction may be known imprecisely. At 
the same time, there are approximations in the mathematical models. 

Soft computing-based methods acknowledge the presence of imprecision and 
uncertainty, while attempting to find reasonably useful solutions. Soft computing 
became recognized through the efforts of Lotfi Zadeh, the father of “fuzzy sets”. In 
1991, he established the Berkely Initiative in Soft Computing (BISC). Soft 
computing exploits the tolerance for uncertainty and imprecision to achieve greater 
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tractability and robustness, and lower cost of solution [2]. The three popular 
constituents of soft computing are fuzzy sets, neural networks and genetic 
algorithms.   

Fuzzy set theory helps to carry out computations with imprecisely defined 
parameters. Sometimes the parameters may be defined in a language form. For 
example, someone may just say a very good surface finish. In his language a 
surface roughness of 0.8  or less may mean definitely a very good surface finish 
and as the surface roughness increases beyond 0.8 , it gradually (not abruptly) 
deviates from the meaning of a very good surface finish. With the help of fuzzy set 
theory, one may predict somewhat less precise but usable values of surface 
roughness. Fuzzy set theory has been used in traditional hard computing by taking 
the variables in fuzzy form as well as modeling in its own right. The latter use of 
fuzzy set theory has been both admired and condemned [3]. 

Neural networks are motivated by the working of the human brain and are good 
in learning the behavior of a system. For example, when one observes that with 
increasing percentage reduction of strip thickness, the roll force increases, one can 
immediately conclude that the roll force increases with the percentage reduction 
and an approximate relation between them can be found. This type of model 
estimation has been carried out with techniques like multiple regressions. 
However, neural networks can understand the behavior with a reasonable accuracy 
in the presence of a number of input and output parameters. 

The genetic algorithms are used for finding out the maxima and minima of a 
function in a heuristic manner. The obtained global maxima and minima may not 
be exact but are expected to be very close to exact ones.  Moreover, the objective 
and constraint functions need not be continuous and may even be expressed in the 
form of language. This makes it very suitable to be used with fuzzy set theory. 

These are three very popular techniques, though there are many similar 
techniques.  Usually the various techniques of soft computing do not compete with 
each other, but are complementary. In this chapter, we will provide a background 
on neural networks, fuzzy sets and genetic algorithms.   

8.2 Neural Networks 

There are a number of textbooks available on neural networks [4–7]. The 
description of this section is intended just to provide a background for 
understanding the chapters ahead. Neural networks are motivated by the 
functioning of brain, which consists of a number of neurons. The network in the 
brain is called biological neural network, whereas we build artificial neural 
networks for solving physical problems. The artificial neural network (ANN) may 
be very different from a biological neural network. From now onwards we will use 
the terms ANN or neural networks to mean artificial neural networks. Neural 
networks are systems which can acquire, store and utilize knowledge gained from 
experience. Neural network techniques have been found capable of learning from a 
dataset to describe the non-linear and interaction effects with great success. 
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As a very simple example of how a neural network can be used, consider a 
dependent variable z related to independent variables x and y in the following 
manner: 

 2 2z x y ,                                                              (8.1) 

If just provided a few datasets in the form of triplet (x, y, z), the neural network 
must be able to understand that the function is of the form given in Equation 8.1. 
The important point is that too many exemplars should not be required. The total 
data by which the neural network understands the relation between the variables is 
called training data. After the network has been trained based on the training data, 
it has to be tested with a few data called testing data. We will discuss ANNs in 
detail in subsequent subsections. In the following subsection, we provide a very 
brief description of biological neural networks. 

8.2.1 Biological Neural Networks 

The brain consists of a densely interconnected set of nerve cells, or basic 
information processing units, called neurons. The human brain incorporates nearly 
1011 neurons and 1014 connections through synapses between them. Although each 
neuron has a very simple structure, a combination of such elements constitutes a 
tremendous processing power. As shown in Figure 8.1, a neuron consists of a cell 
body, soma, a number of fibers called dendrites, and a single long fiber called the 
axon. Dendrites form a very fine bush of thin fibers around the neuron’s body. 
Dendrites receive information from neurons through axons (long fibers) that serve 
as transmission lines. An axon is a long cylindrical connection that carries 
impulses from the neuron. At the end part of an axon, various branches terminate at 
the surface of other neurons or on the dendrites. The axon-dendrite contact organ is 
called a synapse, through which the neuron introduces its signal to the neighboring 
neuron. Signals are propagated from one neuron to another by complex 
electrochemical reactions. Signals travel in the axon in the form of electrical 
impulses. Synapses convert the electrical signals into chemical ones. Chemical 
substances released from the synapses cause a change in the electrical potential of 
the cell body. When the potential of the cell body reaches its threshold, an 
electrical pulse, action potential, is generated. This pulse is transmitted through the 
axon to reach the other synapses, causing them to increase or decrease the potential 
of cell bodies. Usually, each neuron has one axon to transmit the signal and 
thousands of synapses to receive the signals from the other neurons. Generation of 
electrical impulse by the cell body is called firing of the neuron. If the incoming 
impulses help in firing of a neuron, they are called excitatory impulses. If they 
hinder the process of firing, they are called inhibitory.  

In response to the stimulation pattern, neurons demonstrate long-term changes 
in the strength of their connections. Neurons can also form new connections with 
other neurons. Even entire collections of neurons may sometimes migrate from one 
place to another. These mechanisms form the basis for learning in the brain. This 
phenomenon is called plasticity. The plasticity diminishes with age. It has also 
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been found that a typical human brain loses about 2–5% of its total neurons by the 
time it reaches 50 years of age.  

A human brain can be considered as a highly complex, non-linear and parallel 
information-processing system. Information is stored and processed in a neural 
network simultaneously throughout the whole network, rather than at specific 
locations. In other words, in neural networks, both data and its processing are 
global rather than local. Owing to the plasticity of the network, connections 
between neurons leading to the ‘right judgment’ are strengthened while those 
leading to the ‘wrong judgment’ become weak. As a result, neural networks have 
the ability to learn through the experience. Learning is a fundamental and essential 
characteristic of biological neural networks. The ease and naturalness with which 
they can learn motivated us to emulate a biological neural network in a computer. 
However, the types of artificial neural networks, which are described in this 
chapter, are highly simplified versions of actual biological networks. 

 
Figure 8.1.  A typical biological neuron 

8.2.2 Artificial Neurons  

The first model of an artificial neuron was proposed by McCulloch and Pitts in 
their 1943 paper [8] and is called Threshold Logic Unit (TLU) or a Linear 
Threshold Gate. Figure 8.2 provides a graphical representation of such a unit with 
n real-valued input xi, each input being associated with a parameter wi. Parameter 
wi is also known as a “synaptic weight” or simply “weight”, in analogy with 
biological synapses. A TLU performs a weighted sum operation followed by a 
threshold operation such that if the value of the sum is greater or equal than a 
threshold , then the output y of the unit is 1, otherwise it is 1. Stated 
mathematically, 

 1

1

1 if 0,
( )

1 if 0.

n
i ii

n
i ii

w x
y

w x
x                                        (8.2) 

Thus, the neuron will “fire”, that is, it will emit an instantaneous “1” signal if the 
threshold is exceeded; otherwise, it will emit 1. (One can also have a neuron, 
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which will emit 0, when it is not fired.) The weighted sum in Equation 8.2 is called 
the neuron activation. The function y(x) is called activation function. In Equation 
8.2, activation function is called a sign function, because it provides +1 or –1 
depending on the sign of  1

n
i i iw x . If the activation function emits 0 in the 

unfired state, it is called a step function. 
If the inputs are binary then a TLU becomes a Boolean function. However, all 

Boolean functions cannot be realized by it. For example, AND and OR can be 
realized by it, but a single unit cannot realize XOR (exclusive or) gate. It is 
interesting to mention here that NAND and NOR gates can be realized by a single 
TLU. Since NAND and NOR are universal logic gates, i.e., any logic gate can be 
obtained by using some NAND (or NOR) gates, TLU is also universal. Any 
Boolean function can be realized by a suitable network of TLUs. 

 

Figure 8.2. An artificial neuron model proposed by McCulloch and Pitts 

Example 8.1:  How can you realize AND and  OR gate using a TLU? 

Solution: Truth table of an AND gate is shown in Table 8.1. Observing this truth 
table, we notice that if the sum of inputs is 2, the output is 1, otherwise it is zero. 
Hence, we can realize an AND gate with a TLU with the following activation 
function: 

 
2

1
2

1

1 if 2 0,
( )

0 if 2 0.
ii

ii

x
y

x
x                                        (8.3) 

Note that all weights are 1. 

Table 8.1. Truth table of an AND gate 

 
    
 
    
 
             
             

Inputs Output 
x1 x2 y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 
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Similarly, the truth table for an OR gate is shown in Table 8.2. Here, we 
observe that if the sum of the inputs is less than 0, the output is 0, otherwise it is 1.  
Hence, we can realize an OR gate with a TLU with the following activation 
function: 

 
2

1
2

1

1 if 1 0,
( )

0 if 1 0.
ii

ii

x
y

x
x                                        (8.4) 

Table 8.2. Truth table of an OR gate 

Inputs Output 
x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
Example 8.2:  Show that a TLU can realize a NAND gate. Also show that the 
combination of TLUs can realize an XOR gate. 

Solution: NAND gate is basically an AND gate followed by a NOT gate. A NOT 
gate changes 1 to 0 and vice versa. The truth table for NAND gate is shown in 
Table 8.3. This can be realized by a TLU having the following processing function: 
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1

1 if 1 0,
( )

0 if 1 0.
ii

ii

x
y

x
x                                             (8.5) 

It can be easily shown that NAND gate is a universal gate, which means that AND, 
OR and NOT gates can easily be realized using this gate [9]. 

Table 8.3. Truth table of a NAND gate 

Inputs Output 
x1 x2 y 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

Table 8.4 is the truth table of XOR or exclusive OR. The output can be written 
as a function of input using Boolean algebra. For this purpose, inputs which 
provide output as 1 are combined by AND operator and these combinations are 
added using OR operation. Thus, in the present case,  

 1 2 2 1. .y x x x x ,                                                          (8.6) 
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where dot, plus and bar over a variable denote, respectively, AND, OR and NOT 
operators. Thus, using AND, OR and NOT operators, we can realize XOR.  Using 
NAND gates alone AND, OR and NOT can be obtained as shown in Figure 8.3. 

In the previous examples, the activation function provided discrete output.  A 
number of different activation functions can be used with neurons. One common 
function has the form 

                 2( ) 1
1 exp( )

f net
net

 ,                                            (8.7) 

where net = bxw
n

i
ii

1
. In this b is called bias.  Equation 8.7 is called sigmoidal 

function. This function is also called hyperbolic tangent activation function [5]. For 
any input, this function is bounded between –1 and +1. In this, the parameter  > 0 
determines the steepness of the continuous function   f(net) near net=0. This can be 
seen by differentiating Equation 8.7 and putting net = 0. Rate of change of the 
function with respect to net is given by 

 2
d ( ) 2 exp( )( )

d (1 exp( ))
f net netf ' net

net net
 .                                    (8.8) 

Its value at net = 0 is /2. Thus, the rate of change of the function at the origin is 
proportional to . When  becomes very large, ( )f net  becomes very large. In 
the limit , the continuous function becomes sign function defined by 
Equation 8.2. At  = 0, the function becomes constant function.  Similar type of 
function is   

 
)exp(1

1)(
net

netf   ,                                         (8.9)                     

which is bounded between 0 and 1. This function is also called log sigmoidal 
function. A unipolar ramp activation function is given by 

 f (net) = net .                                           (8.10) 

Usually the activation functions having continuous derivatives are preferred, so 
that they can be conveniently used in network training algorithms involving 
gradient-based optimization methods. Figure 8.4 shows the model of a neuron with 
a continuous activation function. 



458 Modeling of Metal Forming and Machining Processes 

 
Figure 8.3.  Obtaining NOT, OR and AND gates using combinations of NAND gates 

Table 8.4. Truth table of a XOR gate 

Inputs Output 
x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
Figure 8.4.  Model of a neuron with continuous activation function 

8.2.3 Perceptron: The Learning Machine  

In the previous subsection, a model of a single neuron has been presented. The 
neuron can behave in a particular way depending on its weights and bias. However, 
it must have the ability to learn through exemplar in order to emulate the behavior 
of a biological system. In 1958, Rosenblatt introduced the first learning machine, 
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discrete (binary) perceptron [10]. The perceptron will be as shown in Figure 8.2 
with the ability to adjust its weights and bias with supplied training data. The 
learning method in which the data in the form of input and output is supplied and 
the network is trained to minimize the error between predicted and desired (target) 
output is called supervised learning. The error is reduced by making small 
adjustments in the weights to reduce the difference between the predicted and the 
desired output of the perceptron. The initial weights are randomly assigned and 
then updated to obtain the output consistent with the training examples. For a 
perceptron, the process of weight updating is  simple. If at iteration p, the predicted 
output is o(p) and the desired output (target) is ( )d p , then the error is given by  

   e( )  = ( )  o( )    where  = 1, 2, 3......p d p p p   (8.11) 

At each iteration a fresh training data is presented to the perceptron. If the error 
e(p), is positive, we need to increase the perceptron’s output  o(p), but if it is 
negative, we need to decrease o(p). Taking into account that each perceptron input 
contributes ( ) ( )i ix p w p  to the total input X(p), we find that if input value 

( )ix p is positive, an increase in its weight ( )iw p tends to increase perceptron 
output o(p). On the other hand, if ( )ix p is negative, an increase in ( )iw p tends to 
decrease o(p). Thus, the following perceptron learning rule can be established: 

 ( 1) ( ) ( ) ( )i i iw p w p x p e p ,                                (8.12) 

where is the learning rate. 

Example 8.3: Taking  = 1 and guess values of the weights as [0  0]T, train a  
perceptron to learn the operation of an OR gate. Take learning rate as 1. 

Solution: Truth table of an OR gate is shown in Table 8.2. The perceptron’s 
predicted output at any iteration is given by  

 1 1 2 2

1 1 2 2

1 if 1 0
( )

0 if 1 0
w x w x

o p
w x w x

,     (8.13) 

and weights are updated in the following manner: 

 1 1 1

2 2 2

( 1) ( )
( ) ( )

( 1) ( )
w p w p x

d p o p
w p w p x

.                       (8.14)  

Here p refers to iteration number. Now, let us start the training process. 
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Iteration 1 (p=1)  
1

2

(1) 0
(1) 0

w
w

,     1

2

0
0

x
x

,  d(1) = 0 and o(1)=0 

Thus,      1

2

(2) 0
(2) 0

w
w

 

Iteration 2 (p=2) 
1

2

0
1

x
x

,    d(2) = 1 and o(2) = 0 

Hence, 
1

2

(3) 0 0 0
(3) 0 1 1

w
w

 

Iteration 3 (p = 3) 
1

2

1
0

x
x

,    d(3) = 1  and o(3) =0 

Hence,  
1

2

(4) 0 1 1
(4) 1 0 1

w
w

 

Iteration 4 (p=4)  
1

2

1
1

x
x

,   d(4) = 1  and o(4) =1 

Hence, no change in the weights will be observed. Further iterations will show that 
now errors are zero and all the four conditions of OR gate are satisfied. Hence, the 
weights are w1= w2=1.  

In the same way, we can train to make an AND gate. However XOR gate can 
be realized by this perceptron. The decision function of this perceptron is 

1 1 2 2w x w x . Neuron emits output 0 or 1 depending on the sign of this 
function. This means that line 1 1 2 2w x w x = 0 separates the points giving 
output 0 and 1; points falling on one side of the decision function correspond to 
output 1 and points falling on the other side correspond to output 0. The dataset 
which can be separated like this is called linearly separable. AND and OR gates are 
linearly separable, whereas the XOR is not. This can be seen very easily. For   x1= 
0 and x2 = 0, XOR gate provides output 0, suggesting  <0. Therefore, threshold 
has to be positive. For   x1 = 1 and x2 = 0, XOR gate provides output 1. This gives 

 
11 0 or  w w . 

 Similarly, for x1 = 0 and x2 = 1, the output is 1. This gives 

 2 20 or  w w , 
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For x1 = 1 and x2 = 1, the values of decision function is 1 2w w . Since both w1 
and w2 are greater or equal to , this value becomes greater or equal to , a positive 
quantity. Thus, the output has to be 1. However, for this combination of input 
values, XOR gate should give 0, which cannot be achieved by this type of 
perceptron. 

For neurons with continuous activation function, a popular learning rule is delta 
( ) learning rule introduced by McClelland and Rumelhart in 1986 [11]. This is 
based on the steepest descent method. In this method, for minimizing the function, 
we move towards the direction of steepest descent, which is the negative of the 
gradient vector. For a particular pattern, the error is given by 

 21 ( )
2

e d o .                                                              (8.15) 

For input vector with n variables, the predicted output o is given by 

 1 1 2 2
1

( ....... ) ( )
n

n n i i
i

o f w x w x w x f w x .                       (8.16) 

Note that here we have not included the threshold or bias. If we keep xn always 
equal to 1, then wn can play the role of threshold. Hence, threshold or bias is a 
special type of weight associated with a fixed input.  With this the error becomes a 
function of weights as given below: 

 
2

2

1

1 1( ) ( )
2 2

n
i i

i
e d f w x d f net .                                (8.17) 

The i-th   component of the gradient vector of the above error function with respect 
to weights is given by 

 ( ) ( ) ( )i ie d f net f net x ,                                    (8.18) 

where ( )f net  is the first derivative of the activation function with respect to the 
net input to the neuron. For minimizing the error, we move towards negative 
direction of the gradient vector. Hence, the weights are updated in the following 
manner: 

 new old( ) ( ) ( ) ( )i i iw w d f net f net x ,                     (8.19) 

where  is a constant called learning rate. For closeness to true steepest descent the 
learning rate should be very small; however, one may get stuck in local minima. 
Large value of learning rate makes the training process faster and may help in 
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reaching global minima, but the algorithm may sometimes become unstable. 
Hence, the selection of proper value of learning rate is crucial.  

If the weights are updated after every presentation of an input pattern, it is 
called incremental learning. If the weight updating is performed after all the 
patterns have been presented, it is called batch learning. The incremental learning 
is preferred due to requirement of less storage and suitability for online application 

Single-layer perceptrons make decisions in the same way, regardless of the 
activation function used by the perceptron [12]. It means that a single-layer 
perceptron can classify only linearly separable patterns, regardless of whether we 
use a hard-limit (discrete) or soft-limit (continuous) activation function. Advanced 
forms of neural networks, for example, multi-layer perceptrons trained with back-
propagation algorithm, can overcome the limitation of Rosenblatt’s perceptron. 

8.2.4 Multi-Layer Perceptron Neural Networks 

A multi-layer perceptron (MLP) is a feedforward neural network with one or more 
hidden layers. A feedforward network has a sequence of layers consisting of a 
number of neurons in each layer. The output of neurons of one layer becomes input 
to neurons in the succeeding layer. Typically a network consists of an input layer 
consisting of neurons corresponding to input variables, at least one middle or 
hidden layer of computational neurons, and an output layer of computational 
neurons. The input signals are propagated in a forward direction on a layer-by-
layer basis. A multi-layer perceptron with one hidden layer is shown in Figure 8.5. 

The first layer, called an input layer, receives data from the outside world. The 
last layer is the output layer, which sends information out to users. Layers that lie 
between the input and output layers are called hidden layers and have no direct 
contact with the environment. Their presence is needed in order to provide 
complexity to network architecture for modeling non-linear functional relationship. 
After choosing the network architecture, the network is trained by providing data 
in the form of several input-output pairs. During the training process, the network 
adjusts its weights to minimize the error between the predicted and desired outputs. 

The most common algorithm for adjusting the weights is the back propagation 
algorithm. Here, the training process involves two passes. In the forward pass, the 
input signals propagate from the network input to output. In the reverse pass, the 
calculated error signals propagate backwards through the network where they are 
used to adjust the weights. The error signal is the mean squared error given by  

 2

1

1 ( )
2

K
k k

k
E d o ,                                              (8.20) 

where kd is the desired k -th output and ko is the predicted k -th output of the 
network. K is the number of neurons in the output layer. 

Any efficient optimization method can be used for minimizing the error 
through weight adjustment. The calculation of the output is carried out layer by 
layer in the forward direction. The output of one layer is the input to the next layer. 
In the reverse pass, the weights of the output neurons are adjusted first, since the 
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target value of each output neuron is available to guide the adjustment of the 
associated weights. Next, the weights of the middle layers are adjusted. Since the 
middle layers have no target values, errors of the succeeding layers, after proper 
transformations, are propagated back through the network, layer by layer. Hence, 
this algorithm is termed as back propagation algorithm. The trained neural network 
has to be tested by supplying testing data. If the testing error is much more 
compared to the training error, the network is said to over-fit the data. A properly 
fitted network will give nearly equal training and testing error. 

 
Figure 8.5. A multi-layer perceptron with one hidden layer 

Let the input vector be T
1 2[ ]Ix x x  where Ix  = 1 to account for bias. Let 

the output vector for hidden layer be T
1 2[ ......... ]Jy y y . Here also 1Jy  to 

account for bias. Lastly, the desired (target) output vector is T
1 2[ ........ ]Kd d d . 

Weight matrix corresponding to the hidden and output layer is 

11 12 1

21 22 2

1 2

J

J

K K KJ

w w w
w w w

w w w

W , 
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where ijw is the weight associated between  i-th  neuron of the output layer and j-

th neuron of the hidden layer. Activation vector net of the output layer is 

 net = Wy .                                               (8.21) 

 For a specific pattern p: 

 2

1

1 ( )
2

K
p pk pk

k
E d o .                                  (8.22) 

This error can be minimized using steepest descent method. Thus, incremental 
change in the weight will be 

 , for 1,2,......, , 1,2,.....,p
kj

kj

E
w k K j J

w
              (8.23)                     

The net input signal going to k-th output neuron is  

 
1

J
pk kj j

j
net w y ,                               (8.24) 

and the output of that neuron is  

 ( )pk k pko f net ,                                        (8.25) 

where f is the activation function of the neuron. Using chain rule, we can write 

 p p pk p p pk
j j

kj pk kj pk pk pk

E E net E E o
y y

w net w net o net
.       (8.26) 

Now from Equation 8.22, 

 p
pk pk

pk

E
d o

o
,                                             (8.27) 

and from Equation 8.25,  

 ' ( )pk
k pk

pk

o
f net

net
.                                   (8.28) 
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Thus, from Equations 8.23 and 8.26–8.28, 

 '( ) ( )kj pk pk k k jw d o f net y .                                   (8.29) 

This way, the weights can be updated until the error becomes less than the 
prescribed value.  

For updating the weights ijv of the previous layer, we apply the steepest 

descent procedure again. Thus, 

 for 1, 2,...., and 1, 2,... .p
ji

ji

E
v j J i I

v
          (8.30)                   

Proceeding in the similar way, 

       1
( )( )

( ) ( ) ( )

I
ji i

p p pj p pi
i

ji pj ji pj ji pj

v xE E net E E
x

v net v net v net
.        (8.31)         

Further, since ( )j j pjy f net , 

         ' ( )
( )

p p j p
j pj

pj j pj j

E E y E
f net

net y net y
.                               (8.32) 

Now, 

 

2

1

1

'

1

'

1
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2

( ) ( )
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( ) ( )

( ) ( ) .

Kp
pk k pk

kj j
K

pk pk pk
k j

K pk
pk pk k pk

k j
K

pk pk k pk kj
k

E
d f net

y y

d o f net
y

net
d o f net

y

d o f net w

 

 
Hence, Equation 8.30 becomes 

 ' '

1
( ) ( ) ( )

K
ji j j i pk pk k pk kj

k
v f net x d o f net w .           (8.33)                     
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This is called the generalized delta rule. We observe that error has been propagated 
back by means of the weights between the last and hidden layer. 

The algorithm of back-propagation training is given below for a network 
having (I-1) input neuron and K output neurons (See Figure 8.5). 
Step1:  First a learning rate   > 0 and the maximum value of error maxE is chosen. 
Weights W (connection strengths between hidden and output layers) and V 
(connection strengths between input and hidden layers) are initialized at small 
random values, W being of size (K J) and V of size (J I). Biases are included in 
the weights. Begin with iteration count ITR = 1, pattern number p = 1 and error 

( 1) 0pE . 
Step 2: Training steps start here. Input is presented and the outputs of all the 
neurons in the hidden layer are computed, which is fed as input to the output layer. 
Then, the outputs of the neurons of the output layer are computed.  
Step 3:  Error value is computed using the formula 

 2
( 1)

1

1 ( )
2

K
p p k k

k
E E d o .                    (8.34)                     

Step 4:  Weights of the output layer are adjusted using 

 new( ) for 1,2,3,.....  and   = 1, 2,3....kj kj kjw w w   k = K j J       

where wkj is computed from Equation 8.29. 

 Step 5: Hidden layer weights are adjusted using 

                 
new

for 1, 2,3.....  and   = 1,2,3....ji ji jiv v v    j = J i I                    

where vji is computed from Equation 8.33. 

 Step 6: If p < P then p and ITR are incremented by 1 each and we go to Step 2. 
Else we go to Step 7. 
 Step 7: The training cycle is completed. The program is terminated if 
Ep< maxE and weights are stored. If  pE > maxE , then we set  E(p-1) = 0 and  p = 1 
and initiate the new training cycle by going to Step 2. 

The effectiveness and convergence of back propagation algorithm depend 
significantly on the value of the learning rate . In general, however, the optimum 
value of  depends on the problem being solved, and there is no single learning 
constant value suitable for different training cases. While gradient descent can be 
an efficient method for obtaining the weight values that minimize an error, error 
surfaces frequently possess properties that make the procedure slow to converge. 
When broad minima yield small gradient values, then a larger value of  will result 
in a more rapid convergence. However, for problems with steep and narrow 
minima, a small value of  must be chosen to avoid overshooting the solution. 
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Thus, it is better to choose  experimentally for each problem. It is to be noted that 
only small learning constants guarantee a true gradient descent.  

Some methods, like the momentum method, can be used for increasing the rate 
of convergence. The method involves supplementing the current weight 
adjustments with a fraction of the most recent weight adjustment. This is usually 
done according to the formula 

 ( ) ( ) ( 1)w t E t w t ,                                                 (8.35) 

where the arguments t and t–1 are used to indicate the current and the most recent 
training step, respectively, and  is a positive momentum constant. The second 
term, indicating a scaled most recent adjustment of weights, is called the 
momentum term.  

The back propagation algorithm discussed above is based on the steepest 
descent method. Other optimization methods may also be used to develop the 
training algorithm. The Levenberg-Marquardt algorithm has been used with 
considerable success [6].  This method is a modified version of Newton’s method. 
In the classical Newton’s method, the error signal E is approximated by a quadratic 
form: 

 T T1( ) ( ) + ( ) ( ) ( )
2

E E 0 0 0 0g Hz z z z z z z z            (8.36) 

In the above expression, z denotes the vector containing all the weights and biases 
of the network, z0 denotes the vector containing current weights and biases, g is the 
gradient vector computed as  

 
T

( ) ( ) ( ) ( ).............E E E E
z z z z

z z z zg
3 N1 2

 ,                          (8.37) 

evaluated at the current value of the weights and H is the Hessian matrix given by  
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,                      (8.38) 
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evaluated at the current values of the weights. The minimum of  Equation 8.36 is 
found by differentiating it with respect to z and equating it to 0. Thus, the new 
vector can be found from 

 ( )new 0g H 0z z .                                               (8.39) 

Hence,  

 1
new 0 H gz z .                                                     (8.40) 

The direction of  H 1g is called the Newton’s direction. If the Hessian matrix is not 
positive definite, the Newton’s direction may point toward a local maximum or a 
saddle point.  

In the Levenberg-Marquardt algorithm, the term I is added to the Hessian 
matrix to make it positive definite, where I is the identity matrix and  is positive 
constant. Thus, using Levenberg-Marquardt method, the weights and biases are 
updated as 

 1( )new 0 H + I gz z .                                       (8.41) 

As 0 , the above expression reduces to that used in Newton’s method. 
Similarly, if , the expression corresponds to steepest descent method. 
      If we take, the error function given by Equation 8.22 and denote (dpk opk) by ek, 
then 

 2

1

1( )
2

K
k

k
E ez .                                                  (8.42) 

The (i, j) component of the Hessian matrix can be written as 

 
22

2

1
( )

K k k k
kij ki j i j i j

e e eEE z e
z z z z z z

.      (8.43)                     

In the above expression, the second term will be very small near the minimum. 
Hence,  

 2

1
( )

K k k
ij k i j

e e
E z

z z
.               (8.44) 

This approximation avoids the need for carrying out double differentiation. The 
parameter  can be updated during the iterations. To begin with, a high value of the 
parameter may be taken, which will keep on reducing as the iterations proceed. 
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8.2.5 Radial Basis Function Neural Network 

The supervised training of the neural networks can be viewed as a curve fitting 
process. The network is presented with training pairs, each consisting of a vector 
from an input space and a vector from the output space. Through a defined learning 
algorithm, the network performs the adjustments of its weights so that the error 
between the actual and desired outputs is minimized relative to some optimization 
criterion. The trained network performs the interpolation in the output vector 
space, which is referred to as the generalization property. In this subsection, we 
describe a radial basis function neural network as an alternative to multi-layer 
perceptron neural network to carry out this task.     

The radial basis function (RBF) network consists of three layers: an input layer, 
a single layer of non-linear processing neurons, and an output layer. Figure 8.6 
shows a typical network. For a network having K neurons in the output layers and J 
neurons in the hidden layer, the output of RBF is calculated according to 

21 1
( ) ( , ) ( ) where  = 1,2...  

J J
i i ij j ij j

j j
o f w w i Kc c

j jx x x x x , (8.45)     

where x is the input vector, j (.) is function from set of all positive real number to 
set of real numbers, 2. denotes the Euclidean norm, wij are the weights in the 

output layer, and c
jx  are the RBF centers  in the input vector space. For brevity, 

we will use .  to mean Euclidean norm, omitting subscript 2. For each neuron in 
the hidden layer, Euclidean distances between its associated center and the input to 
the network are computed. The output of the neuron in a hidden layer is a non-
linear function of the distance. The most common function is Gaussian function 
given by 

 

2

2( ) exp
2

j
j

c
jx x

x ,                                            (8.46) 

where 2
j  is called the variance, which controls the spread of the distribution 

about the center. Some other functions are: 

 
1/ 22 2Multiquadrics: ( )j jcc

jx x x ,              (8.47)                     

              
1/ 22 2Inverse multiquadrics: ( )j jcc

jx x x   ,       (8.48)   
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2

Thin plate splines : ( ) logj
c c
j jx x - x x - x ,               (8.49) 

where cj is called the spread parameter. In the Gaussian function, j can be called 
the spread parameter. The output of the network is computed as a weighted sum of 
hidden layer outputs. Once the centers are chosen, the output of the i-th neuron in 
the output layer for q-th  training data can be computed as 

                   
1

( ) ( ( ), ) where  = 1, 2, .....
J

i ij j j
j

o q w q c q Qx ,       (8.50) 

where Q is the total number of the training pairs. Arranging in the vector and 
matrix form, we have 
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or                  

 io w ,                                                          (8.51) 

where oi is the predicted network output vector for the i-th neuron of the output 
layer, w  is the vector of the weights associating the hidden layer neurons to the i-th 
neuron of the output layers and  is the matrix of RBF non-linear mapping 
performed by the hidden layer. Because the centers are fixed, the mapping 
performed by the hidden layer is fixed as well. Therefore, the network-training task 
is to determine the appropriate settings of the weights in the network output layer 
so that the performance of the network mapping is optimized in some sense. A 
common optimization criterion to use is the mean-squared error between the actual 
and desired network outputs. 

Let di be a vector of size Q containing the desired outputs for the training 
pattern. Then, the error as a function of network weights is given by  

 T1( ) ( ) ( )
2

E i iw d w d w                                   (8.52) 

In order to minimize the error, the weights are found by differentiating the above 
expression with respect to w and setting it to zero. Thus, 
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 0id w = .                                                     (8.53) 

Solving for w, we get 

 T T( iw d .                                                       (8.54) 

Thus, the problem of network training is reduced to matrix inversion and product 
and the training process becomes faster. 

 
Figure 8.6.  A radial basis function neural network 

8.2.6 Unsupervised Learning 

The neural networks discussed in the previous sections used supervised learning 
algorithms, which are based on error corrections rules. In these algorithms, an error 
value is generated from the actual response of the network and the desired 
response. After that, the weights are modified such that the error is gradually 
reduced. In unsupervised learning, there is no feedback from the environment for 
assessing the correctness of the mapping. In other words, there is no “teacher”. 
Instead the network must be able to discover by itself any categories, patterns, or 
features possibly present in the data. Networks that are able to infer pattern 
relationship without being supervised are also called self-organizing. 

There are many unsupervised learning rules. One rule was proposed by Hebb in 
his seminal work, “The organization of Behavior” [13]. This is called the Hebbian 
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learning rule. It makes the weight strength proportional to the product of the firing 
rates of the two interconnected neurons. That is, when two connected neurons fire 
at the same time and repeatedly, the synapse’s strength is increased.   

Competitive learning [14] is an unsupervised learning procedure in which the 
neurons of a network learn to recognize clusters of similar input vectors. The 
network detects regularities and corrections among the input vectors and adapts the 
future response of the units to similar inputs. In competitive networks, output units 
compete among themselves for activation. The simplest competitive learning 
network consists of a single layer of output neurons to which all inputs are 
connected. All the units are presented with given input vectors but only one output 
neuron is activated at any given time: the so-called winner neuron.     

In this book, we will mostly discuss the application of supervised neural 
networks. Hence, we are not discussing unsupervised networks in any further 
detail. Interested readers may refer to the books on neural networks for this topic.  

 8.3 Fuzzy Sets 

Most students become familiar with the set theory in their pre-engineering classes. 
A set is a collection of elements. The elements of the universe are either a member 
or non-member of a set. Such types of sets are called classical or crisp sets. On the 
other hand, there are sets whose boundaries are imprecisely or vaguely defined. 
These sets were named Fuzzy Sets by  Zadeh in his classic paper [15]. A certain 
element of the universe may be the member of a fuzzy set to varying degrees. If it 
is certain that the element is the member of the set, its membership grade in the set 
will be 1. Similarly, if an element surely does not belong to the set, its membership 
grade will be zero.  There may also be elements whose membership grades will be 
between 0 and 1.  Examples of fuzzy sets are quite common in nature. For 
example, the set of tall persons is a fuzzy set. One will be able to see a number of 
tall persons, whom he will surely consider a member of this set. Similarly, short 
persons will also be found, who will surely not form the part of the set. However, 
one will come across persons who can neither be called tall nor  short. They can 
form part of the fuzzy set of tall persons with varying degrees. 

An example where a classical or crisp set models the real word poorly is as 
follows.  A production manger wants to purchase a high-speed machine. Suppose, 
his preference is for a machine that can give him a production rate of 50 
components per hour. Now if he gets a machine producing 49 components per 
hour, his satisfaction level will not drop abruptly.  He may even be willing to 
procure a machine producing only 48 components per hour, provided the price is 
less. Of course, he may not accept a machine producing only 25 components per 
hour. Thus, it is clear that his satisfaction level will gradually decrease from 1 to 0. 
This type of behavior can be captured by fuzzy sets only. In this section, we will 
review the basic concepts of fuzzy set theory. There are a number of books 
available on this subject [16–18]. 



 Background on Soft Computing 473 

8.3.1 Mathematical Definition of Fuzzy Set 

In order to define a fuzzy set, it is useful to introduce the concept of ‘characteristic’ 
or ‘discrimination’ function. Let X denote the universal set (a set containing all the 
possible elements of concern in some particular context). The process by which 
individuals from X are determined to be either members or nonmembers of a set 
can be defined by a characteristic (discrimination) function. For a given set A, this 
function assigns a value ( )A x  to every x X such that 

 
1 if and only if ,

( )
0 if and only if  ,A

x A
x

x A
                   (8.55)                     

Thus, the function maps elements of the universal set to the set containing 0 and 1. 
This can be indicated by 

 : {0, 1}A X  .                                                               (8.56) 

The characteristic function of a crisp set assigns a value of either 1 or 0 to each 
individual in the universal set. This function can be generalized such that the 
values assigned to the elements of the universal set fall within a specified range 
and indicate the membership grade of these elements in the set in question. Thus, 
larger values denote higher degrees of membership and viceversa. Such a function 
is called a membership function and the set defined by it a fuzzy set. The 
membership function A , by which a fuzzy set A is usually defined has the form 

 : [0, 1]A X ,                                                        (8.57) 

where [0, 1] denotes the interval of real numbers from 0 to 1 inclusive of the end 
points. 

If xi is an element of the universal set and i is its grade of membership in A, 
then A is written as 

 1 1 2 2/ / .................... /n nA x x x ,                         (8.58) 

where the slash is employed to link the elements of A with their grades of 
membership in A and the ‘+’ sign indicates that the listed pair of elements and 
membership grades collectively form the definition of the set A. For the case in 
which a fuzzy set A is defined on a universal set that is finite and countable, we 
may write 

 
1

/
n

i i
i

A x .                                                            (8.59) 
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Here,  ‘ ’ does not mean summation but a collection only. Similarly, when X is an 
interval of real numbers, a fuzzy set A is often written in the form 

 ( ) /AXA x x .                                                  (8.60) 

In the above expression, ‘ 
X

’ does not mean integration, but means collection. 

Here, ( )A x is the membership function, which assigns a membership grade to 
every real number. 

8.3.2 Some Basic Definitions and Operations 

In this subsection, we review some basic definitions and operations defined on 
fuzzy sets. These may be considered as the generalization of the  definitions and 
operations on crisp set.  
Empty fuzzy set: A fuzzy set is empty if and only if its membership function is 
zero on X. 
Equality of fuzzy sets: Two fuzzy sets A and B are equal, written as A=B, if and 
only if ( ) ( )A Bx x for all x in X. In other words, two fuzzy sets are equal if and 
only their membership functions are equal. 
Complement: The complement of a fuzzy set A is defined by the membership 
function 

 ' ( ) 1 ( )A Ax x .                                                           (8.61) 

To give an example, if a temperature of 40 C has a membership of 0.8 in a set of 
‘high temperature’, it will have a membership of 0.2 in the complementary set of 
‘cold temperature’. 
Containment: A is said to be contained in B if and only if A B  . 
Fuzzy union: The union of fuzzy sets A and B, denoted by A B , results in the 
maximum membership grades 

 max[ ( ), ( )] /A BA B x x x .                                     (8.62) 

Fuzzy intersection: The intersection of fuzzy sets A and B denoted by A B results 
in the minimum membership grades 

 A B =  min [ ,A Bx x ]/x.                                      (8.63) 

Fuzzy product: The product of A and B, denoted by AB, results in the ordinary 
product of two membership grades 

 AB =  A Bx x /x .                                   (8.64) 
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Fuzzy sum: The algebraic sum of A and B is denoted by A+B and is defined by 

 A+B = ( )A Bx x /x .                                  (8.65) 

One can put the limit on A Bx x  such that, if this quantity is more than 
one, the membership grade of algebraic sum is 1.  
Absolute difference: The absolute difference of A and B is denoted by A B  and 
is defined by 

 A B  =  A Bx x /x .                                    (8.66) 

Height of a fuzzy set: The height of a fuzzy set is the largest membership grade 
obtained by any element in that set. 
Normality: The fuzzy set A is called normal if the upper bound of its membership 
grades over X is unity, i.e., 

 1x ASup x  .                                             (8.67) 

The height of a normalized fuzzy set is 1. Figure 8.7 shows the membership 
function of a normal set. 
The -cut  of a fuzzy set: An -cut  of a fuzzy set A is a crisp set A that contains 
all the elements of the universal set X that have the membership grade in A greater 
than or equal to the specific value of . This definition can be written as 

 | AA x X x .                                               (8.68)                  

In Figure 8.7 all x values contained within A and B constitute -cut . 
Convexity: A fuzzy set is convex if and only if each of its -cuts  is a convex set. 
Equivalently, we may say that a fuzzy set is convex if and only if 

           ]1,0[alland,allfor)](),(min[))1(( Xsrsrsr AAA .  (8.69)   

Figure 8.7 depicts the membership of a convex set whereas Figure 8.8 shows the 
membership function of a non-convex set. 



476 Modeling of Metal Forming and Machining Processes 

 
Figure 8.7.  Membership function of a normal set 

 
Figure 8.8.  Membership function of a non-convex set 

8.3.3 Determination of Membership Function 

Membership functions are subjective but not arbitrary. For example, in the set of 
tall men, a 170 cm high person may get a membership grade of 0.8 or 0.9, but 
whatever may be the choice, a man of 172 cm height will always get a higher 
membership grade than a man of 170 cm height. Compared to the literature on 
mathematical aspects of fuzzy set theory, there are only a few papers devoted to 
the determination of membership function. 

 As fuzzy sets are usually intended to model people's cognitive states, the 
membership functions can be determined from either simple or sophisticated 
elicitation procedures.  Various persons simply draw or otherwise specify different 
membership curves appropriate to a given problem. These persons are typically 
experts in the problem area. Sometimes they are given a more constrained set of 
possible curves from which they choose. Under more complex methods, persons 
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can be tested using psychological methods. For example, if we show two machined 
surfaces to a customer and ask if the surface finish is good, his response may be 
quicker for the smoother machined surface. Thus, the response time may form a 
basis for deciding the proper membership grades.  

While there is a vast (infinite) array of possible membership function forms, 
most actual fuzzy control operations draw from a very small set of different curves, 
for example triangular form of fuzzy members. This simplifies the problem to 
choosing just the central value and the extreme values on either side. If an expert 
provides low (l), most likely (m) and high (h) estimate of a parameter, the 
triangular membership function may be constructed by taking the membership 
grade as 1.0 at m and 0.5 at l and h. The triangular membership constructed in such 
a manner is shown in Figure 8.9. The triangle in this figure has vertices at l'  and 
m' , which may be called extreme low and extreme high estimates of the 
parameter. It is interesting to observe at this stage that the low and high estimates 
of the expert are assigned a membership grade of 0.5 and not zero, because in the 
scale of 0–1, the membership grade of 0.5 and above indicate the possibility of the 
element belonging to the set. An element having a membership grade lower than 
0.5 is more likely to be a non-member. Sometimes construction of membership 
function in such a manner may make the extreme low value negative, which may 
be prohibited by physics. In such a case, the extreme low value may be 0 and the 
left side of the triangle may be constructed by joining the origin with vertex 
representing the membership grade at the most likely estimate, as shown in Figure 
8.10.  The triangular membership function is expressed mathematically as 

 

0 '
' '
'( )

' '
'

0 '

x l
x l l x m
m lx
h x m x h
h m

x h

,                                                        (8.70) 

where 

 
2( ) for 2( ),

'
0 for 2( ),
m m l m m l

l
m m l

                                           (8.71) 

and 

 ' 2( )h m h m                                                                                  (8.72)  
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 Figure 8.9.  A triangular membership function ( 2( )m m l ) 

Similar to triangular membership function, a trapezoidal membership may also 
be constructed if the most likely estimate lies between m1 and m2 instead of at 
single value m. Such a membership function is shown in Figure 8.11 and can be 
expressed mathematically as 

 

1
1

1 2

2
2

0 '
' '
'

( ) 1
' '

'
0 '

x l
x l l x m

m l
x m x m

h x m x h
h m

x h

,                                                 (8.73) 

where the expressions for 'andl h are given by Equations 8.71–8.72. 

 

Figure 8.10.  A triangular membership function ( 2( )m m l ) 
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Because of ease of computation, linear membership functions are preferred; 
however non-linear membership functions are also used in order to mimic real-life 
situations closely. Zadeh’s  function [19] allows a more gradual drop from  = 1 
down to    = 0.5 (the crossover point) and the more rapid drop from the crossover 
point to   = 0. Some processes in nature follow normal distribution, for example 
surface roughness produced in a machining process or the yield strength value of a 
material. In such a case, taking a Gaussian membership function may be more 
appropriate. A Gaussian membership function may be expressed as 

 
2

2
( )( ) exp
2
x cx  ,                                                                   (8.74) 

where c represents the most likely estimate and   controls the spread. If the 
probability distribution is Gaussian, then approximately 99.73% values lie within 
3  on either side of the c. Using this fact,   may be calculated from the low and 
high estimates of the parameter as follows: 

 
6

h l ,                                                                              (8.75)   

Various other membership functions have been proposed by the researchers.  

 
Figure 8.11. A trapezoidal membership function 

Sometimes information taken in the form of frequency histograms or other 
probability curves is used as the basis to construct a membership function. There 
are a variety of possible conversion methods, each with its own mathematical and 
methodological strengths and weaknesses. For example, Civanlar and Trussell [20] 
base the membership function on probability density function p(x) in the following 
way: 
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( ) if ( ) 1,

( )
1 if ( ) 1,

p x p x
x

p x
                                    (8.76) 

where  is a constant. However, it should always be remembered that membership 
functions are not (necessarily) probabilities.  

Optimal membership function can be estimated by means of a machine learning 
or optimization method. In particular, neural networks and evolutionary algorithms 
have been employed with success in this aim. First application of genetic algorithm 
for determination of membership function seems to be made by Karr [21]. He 
applied genetic algorithm to the design of fuzzy logic controller of the cart-pole 
problem. He chose Gaussian membership functions and obtained the parameters of 
the function by minimizing the squared difference between the cart and center of 
the track keeping the pole balanced. For other works on the determination of 
membership function, one can refer to [22–25].  

8.3.4 Fuzzy Relations 

Fuzzy relations relate elements of a number of universes to one another through the 
Cartesian product of the universes. The “strength” of the relation among the 
elements of an ordered n-tuple is a matter of degree and can vary with continuity 
between 0 and 1. An n-ary fuzzy relation R over universes U1, U2,……………… 
Un is a fuzzy set over their product space, 1 2 3 ......... nR U U U U . The 
membership function R is of the form 1 2( , ,......., ),R nu u u  with i iu U  for 

1,2,........,i n . 
One simple example of a binary fuzzy relation may be ‘x is close to y’ where 
( {1,2,3})x X  and ( {1, 2,10})y Y . The binary relation can be expressed in 

the form of a relation matrix as follows: 

 
1 0.5 0
0.5 1 0
0 0 0

R .                                             (8.77)       

In the above matrix, the rows represent the elements of X, columns the elements 
of Y and the elements represent the membership grades of the relation. For 
example, pairs (1, 1) and (2, 2) have the membership grade of 1, the pair (1, 2)has a 
membership grade 0.5 and pair (1, 10) has a membership grade of 0. The decision 
of how close is ‘close’ might have been taken by an expert. 

A common relation used in the fuzzy logic systems is “If x is A, then y is B”. 
For example, in turning “If feed is high, surface roughness is high” may have a 
membership grade of 1. The statement “If depth of cut is low, surface roughness is 
low” may have a membership grade of 0.5 or 0.6. These types of relations will be 
discussed later.  
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8.3.5 Extension Principle  

One of the most basic concepts of fuzzy set theory, which can be used to generalize 
crisp mathematical concepts to fuzzy sets, is the extension principle.  Suppose the 
function f(x) maps the elements of the crisp set X to the crisp set Y; then using 
extension principle the definition of function f may be extended to a fuzzy set A. 
Just like we have the function y = f(x), we will have the function B = f(A), where A 
and B are the fuzzy sets.   

 Let X be a Cartesian product of universes X = X1 . . . . ..  Xr, and A1, …., Ar  be 
r fuzzy sets in X1, ……..,Xr, respectively. If f is a mapping from X to a universe Y 
i.e., y=f(x1,x2,,…………,xr), then the extension principle allows us to define a fuzzy set 
B in Y by 

 1 1( , ( ))| ( ,......, ), ( ,....., )B r rB y y y f x x x x X ,     (8.78) 

where 

11( ,....... ) ( )1

1
1max min{ ( ),......, ( )} if ( )

( )
0 otherwise

r
x x f yr

A A r
B

x x f y
y  ,    (8.79)        

where 1f is the inverse of f. For r = 1, the extension principle reduces to 

 ( ) {( , ( ))| ( ), }BB f A y y y f x x X  

where 

 1( )

1max ( ) if ( )
( )

0 otherwise
x f y

A
B

x f y
y .       (8.80) 

An example illustrates this. Let A be a set of fuzzy numbers close to 3 and is 
defined as follows: 

 A=0/–1+0.1/0+ 0.2/1 +0.5/2+1/3+0.5/4+0.1/6. 

Let the function be f(x)=x2. Then by applying the extension principle, B becomes 

 B=f(A)=0.2/1+0.1/0+0.5/4+1/9+0.5/16+0.1/36. 

This has been obtained as follows. Corresponding to an element 1 in B, there 
are two images in A i.e. –1 and 1. Among them, the membership grade 
corresponding to –1 is 0 and that corresponding to 1 is 0.2. Hence, the maximum 
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membership grade of 0.2 corresponds to 1 in B. Corresponding to elements 0, 4, 9, 
16, 36 there is one image for each in A. Hence, the membership grade will 
correspond to their images in A. 

8.3.6 Fuzzy Arithmetic 

A convex and normalized fuzzy set defined on R (set of real numbers) whose 
membership function is piecewise continuous is called a fuzzy number.  A fuzzy 
number can be thought of as a generalization of an interval number. It can be 
represented by an infinite number of interval numbers with varying degrees of 
membership grades. Fuzzy arithmetic deals with fuzzy numbers. Mathematical 
operations of fuzzy set are defined at an -cut. Thus, the mathematical operations 
are similar to interval arithmetic operations. However, with each interval arithmetic 
operation, a membership grade is associated.  Thus, a typical fuzzy number A may 
be represented by  

 1 2[ , ]A a a  ,                                                            (8.81) 

where A  is the interval corresponding to the membership grade of , 1a and 

2a are the lower and upper limits of the interval. 
Some of the operations of fuzzy arithmetic are as follows: 

(a) Fuzzy addition: Addition of two fuzzy numbers at an -cut  in R is 
defined by 

   1 2 1 2 1 1 2 2( ) [ , ]( )[ , ] [ , ]A B a a b b a b a b .           (8.82) 

Addition of two triangular fuzzy numbers is a triangular fuzzy number. Figure 8.12 
depicts the addition of two triangular fuzzy numbers. In this case, the addition can 
be performed by adding the intervals of two numbers corresponding to 
membership grade of 0 and 1. Thus, the x-coordinates of three vertices of resultant 
number are the sum of the x-coordinates of the corresponding vertices of the two 
numbers. 

 
Figure 8.12. Addition of two triangular fuzzy numbers                     
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(b)  Fuzzy subtraction: Subtraction of two fuzzy numbers at an -cut  in R 
is defined by 

     1 2 1 2 1 2 2 1( ) [ , ]( )[ , ] [ , ]A B a a b b a b a b .           (8.83) 

  Subtraction of two triangular fuzzy numbers is also a triangular fuzzy number. 
(c)  Fuzzy multiplication: Multiplication of two fuzzy numbers at an -cut  

in R is defined by 

  1 2 1 2 1 1 2 2( ) [ , ]( )[ , ] [ , ]A B a a b b a b a b .           (8.84) 

Multiplication of two triangular fuzzy numbers is not a triangular fuzzy  number. 
However, as an approximation, we can obtain only three vertices by performing the 
multiplication of the interval numbers at the membership grade of 0 and 1.   

(d)  Fuzzy division- Division of two fuzzy numbers at an - cut in R is 
defined by 

 1 2 1 2 1 2 2 1( ) [ , ]( )[ , ] [ , ]A B a a b b a b a b .           (8.85)                     

Like multiplication, division of two triangular fuzzy numbers is not a triangular 
fuzzy number.  

8.3.7 Fuzzy Sets vs Probability  

Fuzzy sets are often incorrectly assumed to indicate some form of probability. 
Following differences exist between fuzzy set and probability theory: 

1. Membership grades are not probabilities. The summation of probabilities 
on a finite universal set must be equal to 1, while there is no such 
requirement for membership grades. 

2. Probability is an objective characteristic, whilst the membership grade is 
subjective, although it is natural to assign a lower membership grade to 
that event, which considered from the aspect of probability has a lower 
probability of occurrence.  

3. When imprecision and indeterminacy have statistical and random 
characteristics, probability theory is employed, whilst fuzzy set theory is 
used to deal with vague information and subjectivity of the judgment. 

4. Probability theory generally requires that an event must be precisely 
defined and adequate statistical data should be available, which is not the 
case with fuzzy set theory. 

An example is often provided for differentiating fuzziness from probability. 
Suppose two types of water bottle marked A and B are on the market. On the 
sticker of bottle A is written “Probability that this water contains poison is 0.1”. On 
the other bottle is written “The membership grade of this water in the set of 
poisonous substances is 0.1”. The first statement means that there is a good chance 
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that out of 10 bottles purchased, 1 bottle will contain poison leading to death. 
Hence, a sensible person will not drink the water from the bottle A, no matter how 
thirsty he is.   The second statement means that in general, there is very little harm 
caused by drinking the water. The degree of similarly between a poisonous 
substance and water is very less, i.e., 0.1. Hence, this water can be consumed if no 
better water is available. 

8.3.8 Fuzzy Logic 

The basic objects of logic are propositions, which have a truth-value, like, for 
instance, “Maximum temperature of New Delhi in summer is 48 oC”. In classical 
logic, this statement can be either true or false; the truth-value often being 
indicated by 1 and the false value by 0. Classical logic fails in many situations. For 
example, consider the following classical paradoxes of logic: 

1. A barber of a village makes a statement: “I give a haircut to those persons 
who do not cut their hair themselves.” The question is that who gives a 
haircut to the barber if this statement is true. If the barber does not cut his 
own hair, then by this statement he should cut his own hair. Thus there is a 
contradiction.  

2. On a piece of paper is written “Statement on the other side of the paper is 
false”. The other side contains “Statement on the other side is true”. Now, 
what truth-value should be assigned to the first statement? If we consider it 
to be true, in order to make the second statement false, it should be false. It 
can also not be considered false, because in that case, the other statement 
will be true making the first statement true. Thus, we can neither assign a 
value ‘1’ nor ‘0’ to this statement.   

Fuzzy logic solves this problem by accepting values between 0 and 1. For 
example, in both paradoxes, the truth-value of 0.5 may be assigned to the 
statement. Fuzzy logic provides the theoretical foundation for reasoning about 
imprecise propositions. Engineering applications of fuzzy logic are mostly in 
controls and decision support systems. 

8.3.9 Linguistic Variables and Hedges 

Fuzzy set theory is often called a method of computing with language. Here, we 
often deal with linguistic variables. A linguistic variable is a fuzzy variable. For 
example, the statement ‘Product is beautiful’ implies that the linguistic variable 
product takes the linguistic value beautiful. A linguistic variable is often associated 
with fuzzy set quantifiers called hedges. Hedges are terms that modify the meaning 
of fuzzy variables. Hence, some people call them linguistic modifiers. They 
include terms such as very, usually, somewhat, likely, quite, more or less, slightly 
etc.   

Hedges act as unary operators on fuzzy sets. If we have a fuzzy set for a 
linguistic value, then the fuzzy set for the modified linguistic value can be obtained 
by operating the original fuzzy set by the operation corresponding to the hedge that 
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modified the original meaning.  For example, very performs concentration by 
reducing the membership values of all members and creates a new subset.  From 
the set of ‘beautiful product’, it derives the subset of ‘very beautiful product’. 
Suppose a product is rated as 0.9 in the set of ‘beautiful product’.  Then, in the set 
of ‘very beautiful product’, its membership grade will be 0.81, which is obtained 
by the following operation: 

 2( ) [ ( )]very
AA x x .                                              (8.86) 

Extremely serves the same purpose as very, but does it to a greater extent. This 
operation can be performed by raising the power of ( )A x  to 3: 

 3( ) [ ( )]extremly
AA x x  .                                     (8.87) 

Thus, the product will have a membership grade of 0.729 in the set of extremely 
beautiful products. Very very is just applying hedge ‘very’ twice. Thus, It is given 
as a square of the operation of ‘very’: 

 2 4( ) [ ( )] [ ( )] .very very very
AA Ax x x                              (8.88) 

Thus, the product will have a membership grade of 0.6561 in the set of very very 
beautiful products.  

More or less is the operation of dilation that expands a set and thus increases 
the degree of membership of fuzzy elements. This operation is presented as 

 ( )more or less
AA x .                                                  (8.89) 

Thus, the product which has a membership grade of 0.9 in the set of beautiful 
products will have membership grade of 0.9487 in the set of more or less beautiful 
products. To provide more dilation, one can take the cube root of the membership 
values instead of square roots. 

Indeed is the operation of intensification that intensifies the meaning of the 
whole sentence. It can be done by increasing the degree of membership grades 
above 0.5 and decreasing those below 0.5. The hedge indeed may be given by 

 
2

2

( ) 2 [ ( )] if 0 ( ) 0.5,

( ) 1 2 [1 ( )] if 0.5 ( ) 1.

indeed
A A A
indeed
A A A

x x x

x x x
           (8.90)                  

It may be noted that the procedure described in this subsection is just an 
attempt to convert language into mathematics. The meaning of ‘language’ differs 
with place and culture.  The expressions for hedges should be decided after careful 
consideration. 
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8.3.10 Fuzzy Rules 

In 1973, Zadeh published his revolutionary paper [26]. This paper outlined a new 
approach to the analysis of complex systems, in which he suggested capturing 
human knowledge in fuzzy rules. A fuzzy rule can be defined as a conditional 
statement in the form: 

IF x is A 
THEN y is B 

where x and y are linguistic variables and A and B are linguistic values determined 
by fuzzy sets on the universes of discourse X and Y respectively. For example, 
consider these two fuzzy rules in the context of machining: 
Rule 1: IF material is hard 

       THEN cutting speed should be low. 
Rule 2: IF material is soft  

       THEN cutting speed should be high. 
Here, ‘hard’, ‘soft’, ‘low’ and ‘high’ are fuzzy sets. These sets have to be designed 
carefully using the available knowledge. 

An expert’s knowledge or the knowledge obtained from the analysis can be put 
in the form of various fuzzy rules. These rules are used in fuzzy reasoning. Fuzzy 
reasoning includes two distinct parts: evaluating the rule antecedent (the IF part of 
the rule) and applying the result to the consequent (the THEN part of the rule). In a 
classical rule base system, if the rule antecedent is true, then the consequent is also 
true. In fuzzy systems, where the antecedent is a fuzzy statement, rules may be 
applicable to some extent, or in other words partial firing of the rules is allowed. If 
the antecedent is true to some degree of membership, then the consequent is also 
true to the same degree. 

8.3.11 Fuzzy Inference 

Fuzzy inference can be defined as a process of mapping from a given input to an 
output using the theory of fuzzy sets. The most commonly used fuzzy inference 
technique is the so-called Mamdani method. In 1975, Professor Ebrahim Mamdani 
of London University built one of the first fuzzy systems to control a steam engine 
and boiler combination [27]. He applied a set of fuzzy rules supplied by 
experienced human operators. The Mamdani-style fuzzy inference process is 
performed in four steps: fuzzification of the input variables, rule evaluation, 
aggregation of the rule outputs and finally defuzzification. To see how things fit 
together, we examine a simple two-input one-output problem that includes three 
rules. The problem is of deciding the cutting force in machining based on the 
work-material and depth of cut, assuming that other parameters including the feed 
remain fixed. This example is just for illustrating the concepts. In practice, there 
will be more rules. 
Rule 1: 

IF work-material is hard 
AND depth of cut is high. 
THEN cutting speed should be low. 
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Rule 2: 
IF work-material is hard 
AND depth of cut is low. 
THEN cutting speed should be medium.  

Rule 3:  
IF work-material is soft 
AND depth of cut is high. 
THEN cutting speed should be medium. 

Rule 4: 
IF work-material is soft  
AND depth of cut is low. 
THEN cutting speed should be high. 

The basic steps for Mamdani-style fuzzy inference for our problem are described 
below. 

Step 1: Fuzzification 
The first step is to take the crisp inputs of material hardness and depth of cut and 
determine the degree to which these inputs belong to each of the appropriate fuzzy 
sets. Let us assume that the range of material hardness is 100 to 200 BHN and the 
range of depth of cut is 1 to 5 mm. For material hardness, two fuzzy sets are 
defined—‘hard’ and ‘soft’. For depth of cut, two fuzzy sets are defined—‘high’ 
and ‘low’. The membership functions for these sets are assumed to be linear and 
are shown in Figure 8.13. Assume that the work-piece material has a hardness of 
125 BHN and a membership grade of 0.75 and 0.25 in the sets of ‘soft’ and ‘hard’ 
materials respectively. Also assume a depth of cut of 3 mm, which has a 
membership grade of 0.5 in both ‘low’ and ‘high’ depth of cut. 

 
Figure. 8.13.  Fuzzification of hardness and depth of cut 

Step 2:  Rule Evaluation  
The second step is to take the fuzzified inputs and apply them to the antecedents of 
the fuzzy rules. If a given fuzzy rule has multiple antecedents, the fuzzy operator 
(AND or OR) is used to obtain a single number that represents the result of 
antecedent evaluation. This number (the truth-value) is then applied to the 
consequent membership functions. If either one of the two rule antecedents is 
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applicable, the OR operator is used. The classical fuzzy operation union can be 
used for this purpose. If both of the two rule antecedents are compulsory, the AND 
operator is applicable and the fuzzy operation intersection is used. The same 
method is extended to the case of multiple antecedents.   

In our problem, the strength of the four rules is 0.25, 0.25, 0.5 and 0.5 
respectively. This has been obtained by applying intersection operation on the 
AND parts of the rule. In the first rule, the material is hard with a membership 
grade of 0.25 and depth of cut is high with a membership grade of 0.5. Hence, the 
strength of the rule is minimum (because of AND operator) of two i.e. 0.25. Thus, 
the truth-value of the statement “Cutting speed is low.” is 0.25.  Similarly, the 
truth-value of the other three rules is 0.25, 0.5 and 0.5 respectively.     

Let us assume that, based on the expert’s information, the cutting speed is 
represented as shown in Figure 8.14. Here, the range of cutting speed has been 
taken between 60 m/min and 100 m/min.  Three sets– slow speed, medium speed 
and high speed– have been created. The most common method of correlating the 
rule consequent with the truth-value of the rule antecedent is simply to cut the 
consequent membership function at the level of antecedent truth. The method is 
called clipping or correlation minimum.  Since the top of the membership function 
is sliced, the clipped fuzzy set loses some information. However, clipping is 
preferred because it involves less complex and faster mathematics, and generates 
an aggregate output surface that is easier to defuzzify. The other method may be to 
scale down the membership function, so that its highest membership function is 
equal to rule strength. Figure 8.15 shows the clipped membership function (by 
thick lines) as result of applying various rules.  

 
Figure 8.14.  Representation of cutting speed in the form of fuzzy sets 
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Figure 8.15.  Clipping of membership functions due to application of rules 

Step 3: Aggregation of the Rule Outputs    
Aggregation is the process of unification of the outputs of all rules. In other words, 
we take the membership function of all rule consequents previously clipped and 
combine them into a single fuzzy set by applying fuzzy union operation. Thus, the 
input of the aggregation process is the list of clipped consequent membership 
functions, and output is one fuzzy set. Figure 8.16 shows the aggregated output. 
Note that the strengths of the four rules are 0.25, 0.25, 0.5 and 0.5 respectively. As 
a result of applying fuzzy union operation, one will get the output as shown in  
Figure 8.16.    

  
Figure 8.16. Aggregated output 
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Step 4: Defuzzification  
As the decision-maker requires a crisp value of cutting speed, the output obtained 
in the third step has to be defuzzified. Defuzzification is the conversion of a fuzzy 
quantity into a precise output. There are various popular defuzzification methods. 
They are described below: 

Height Method 
This method is also known as the maximum membership principle. In the height 
method, the number with maximum degree of membership is chosen. However, 
this can be applied only if output contains a maximum peak. In the problem 
chosen, there is no peak. Hence, the method cannot be applied for this problem.  

Centroid Method 
This method is the most prominent and physically appealing of all the 
defuzzification methods. The method is also known as center of area or center of 
gravity method. The crisp value is obtained by taking the position of center of 
gravity in x-axis. Thus, the crisp value  is given by   

 * ( )d
( ) d

x x xx
x x

.                                          (8.91) 

Weighted Average Method 
In this method the output is obtained by the weighted average of each maximum 
output of the set of rules stored in the knowledge base of the system. The weighted 
average defuzzification technique can be expressed as  
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x  ,                                                 (8.92) 

where *x  is the defuzzified output, max( )ix  is the maximum  output of each rule, 
and i  is  the strength associated with each rule. This method is computationally 
faster and easier and gives fairly accurate result.  

Mean-max Method 
This method, also called middle of maxima, is a slight generalization of the height 
method to the case where there is more than one value of maximum degree of 
membership. It takes as *x  the midpoint between the smallest and the largest 
number having maximum degree of membership. 

Center of Largest Area 
If the output fuzzy set has at least two convex sub-regions, then the center of 
gravity of the convex sub-region with the largest area is used as crisp value.   
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First (or Last) of Maxima 
This method is generalization of the height method for the case in which the output 
membership function has more than one maximum. Then either the first or the last 
of the maxima is used as defuzzified value. 

In our problem, applying the Mean-max method, the crisp value of cutting 
speed comes out at 87.5 m/min. Hence, for given values of hardness and depth of 
cut, the cutting speed should be 87.5 m/min. 

In the Mamdani inference model, described above, fuzzy sets are used in rule 
antecedents and consequents. The Sugeno model proposed by Sugeno and co-
workers [28–29] uses crisp value in consequent. The format of Sugeno type fuzzy 
rule is, 

 If x is A and y is B, then z is f(x, y), 

where A and B are fuzzy sets and f(x, y) is a crisp function. When f(x, y)  is a first-
degree polynomial, the resulting fuzzy inference system is called a first-degree 
Sugeno fuzzy model. When f is a constant, we get a zero-degree Sugeno fuzzy 
model. The Sugeno-type models are computationally more efficient compared to 
Mamdani-type models. 

8.4 Genetic Algorithms 

There are a number of evolutionary algorithms, which mimic natural evolutionary 
principles for optimizing. Among them, genetic algorithms are very powerful 
evolutionary optimization techniques, which do not require the derivatives of the 
objective and constraint functions. These are so named because they follow the 
principles of natural genetics. Professor John Holland of the University of 
Michigan, Ann Arbor, first envisaged the concept of these algorithms [30]. Now, 
there are many variants of these algorithms. We will briefly describe two of them 
i.e., binary-coded and real-coded genetic algorithms. For details, one can refer 
standard textbooks [31, 32].  

There are a number of advantages of using genetic algorithms (GAs): 

 GAs are parallel-search procedures that can be implemented on parallel-
processing machines for very fast computations. 

 GAs are applicable to both continuous and discrete design variable 
optimization problems.  

 They are suitable for combinatorial optimization problems, where the 
solution space contains finite set of points. 

 GAs are stochastic and are less likely to get trapped in local minima, which 
inevitably are present in most of the practical applications. 

 GAs  are very suitable for solving multi-objective problems. 
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 8.4.1 Binary Coded Genetic Algorithms 

These are the original genetic algorithms. In this book, we will refer a binary coded 
genetic algorithm as BGA and a real coded genetic algorithm as RGA. The term 
GA will be used as a general term to mean both types of genetic algorithms. In 
BGA, the design variables of the optimization problem are coded in binary form. 
Thus, instead of operating on real values of design variables, we operate on the 
binary values. Thus, a solution point is represented by a string (chromosome) 
consisting of ‘0’s and ‘1’s. Each ‘0’ and ‘1’ value is called a bit and is analogous to 
a gene. The mapping between the binary and real form can be easily established.  
Suppose the i-th  variable is represented by a sub-string Si, then its real value is 
given by 

 (decoded (decimal) value of  )
2 1i

U L
L i i

i i il
x x

x x S ,           (8.93) 

where L
ix  and U

ix  are the lower and upper bounds of the variable and li is the 
length of the string. The higher is the length of the string, the higher is the 
precision. 

Example 8.4: The optimized thickness and width of a beam of rectangular cross-
section are represented by 10101100, the sub-string lengths of both variables being 
4. Lower and upper bounds of thickness are 4 cm and 8 cm respectively, whereas 
the corresponding values for the width are 8 cm to 16 cm. Find out the solution 
values in real form. What is the precision of the design variables? 

Solution: There are two design variables- thickness and width. Let us denote their 
optimized values as x1  and x2. Using Equation 8.93, 

 3 1 3 2
1 24 4

8 4 2 16 8 24 (2 2 ) 6 cm  and 8 (2 2 ) 14 cm
3 52 1 2 1

x x .   

In this problem, each variable is represented by 4 bits, hence it can take total 16 
values. In other words, 15 divisions of the given ranges are possible. Range 
(difference between upper and lower bounds) of thickness is 4 cm and that of width 
is 8 cm. As the precision of a variable is equal to the length of one division of the 
range, the precision of thickness is 4/15 cm and that of width is 8/15 cm. 

In GA, we start from a population of solution points and find out the fitness 
value for each point. The closer the function value at a point to the desired 
objective, the higher will be the fitness function. Thus, in a maximization problem, 
the fitness function may be taken as equal to the objective function. In order to 
carry out GA operations, often a positive value of fitness is desired. In that case, 
fitness function may be taken as the addition of a positive constant and objective 
function. Positive constant should be taken just more than the maximum possible 
negative value of the function, based on our rough estimate. Too high a positive 
constant will make the fitness values of all points almost equal and may create 
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difficulty in some cases. For the minimization problems, the fitness function 
should be such that it gives higher value for lower objective function. For non-
negative objective function f(x), one such function can be 

 1( )
1 ( )

F x
f x

 ,                                                            (8.94) 

where a value of 1 has been added in the denominator to avoid division by 0, in 
case the function becomes negative. 

The optimization process using BGA is as follows. Initially a population 
consisting of various combinations of design (or decision) variables is chosen. 
Each combination is coded in the form of a binary string, each string being called a 
chromosome. This population is operated by three genetic operators viz.,   
reproduction, crossover and mutation and a new generation consisting of 
chromosomes with better fitness is formed. The procedure is repeated until 
convergence is obtained. In the following subsections, we describe the three 
genetic operators. 

8.4.1.1 Reproduction 
 This is the first operator applied on a population. In reproduction, good strings in a 
population are assigned a large number of copies. The reproduction can be carried 
out in a number of ways [31]. In the tournament selection, tournaments are played 
between two solutions and the winning solution is taken. By tournament playing 
we mean that two solutions are compared and the solution having the better fitness 
is chosen. Each solution participates in exactly two tournaments in a random 
manner. Thus, the best solution gets two copies in the population and the worst 
having lost both the tournaments gets eliminated. Other solution may get zero, one 
or two copies in the population. Figure 8.17 illustrates the procedure pictorially. 
The population consists of four members. It is assumed that the fitness value of 
each member is proportional to his height. Four tournaments are played and the 
taller member wins. In this way, we get two copies each of the tallest and second 
tallest. Note that other possibilities also exist depending on how the teams are 
formed. Thus, probability plays a role here.  

In proportionate selection, copies proportional to fitness values are taken. 
Supposing the fitness values of a 4-member population are 25, 50, 10 and 40.  Sum 
of the fitness values is 125. Dividing the fitness values by this number, we get the 
probabilities of survival of different members. In this case, the probabilities are 0.2, 
0.4, 0.08 and 0.32.  Expected numbers of copies are found by multiplying these 
probabilities with the size of the population, in this case 4. Thus, the members are 
expected to have 0.8, 1.6, 0.32 and 1.28 copies. This means that if the reproduction 
operator is carried out a large number of times, on an average these will be the 
number of copies. However, in any single operation a particular member may get 
0, 1, 2, 3 or 4 copies.  For achieving this operation in a computer, the following 
procedure may be adopted: 
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Figure 8.17. Reproduction using tournament selection 

 We make ranges proportional to the probabilities between 0 and 1. In our 
case, the ranges are 0–0.2, 0.2–0.6, 0.6–0.68 and 0.68–1.0.  

 Generate random numbers equal to the number of members in the 
population. In whatever range a particular number falls, the corresponding 
chromosome is selected. 

This method of selection is called roulette wheel selection (RWS), because the 
same operation can be achieved mechanically by spinning a wheel a number of 
times. The wheel (shown in Figure 8.18) is divided into divisions equal to 
population size, where the size of each division is proportional to the fitness of the 
corresponding member.  The wheel is spun and is allowed to stop. Then the 
member whose division stops before a fixed pointer is selected. 
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Figure 8.18. A roulette wheel 

The proportionate selection operator has scaling problem. If the fitness value of 
one member is more, the member gets selected quite often. Similarly, if the fitness 
values of all members are more or less the same, all members have equal 
probability of getting selected. The tournament selection does not have this ranking 
problem. The scaling difficulty can be eliminated by using a ranking selection 
operator. In this method, solutions are sorted according to their fitness values and 
the ranks are assigned, the worst member getting the rank 1. The proportionate 
selection is then applied based on these ranks.   

8.4.1.2 Crossover 
 In crossover operation, new chromosomes are created by exchanging the 
information between two chromosomes.  To accomplish this, the following 
procedure is adopted. If the population size is N, N/2   pairs are formed at random. 
Two chromosomes (strings) in each pair are called parents. Taking each pair at a 
time, a random crossover site is selected. Then, two offspring (children) are 
produced by exchanging all the bits on the right side of the cross-over site. More 
specifically, this is called a single point cross-over operator. In double cross-over, 
two different crossover sites are chosen at random. This divides the strings into 
three substrings. The crossover operation is completed by exchanging the bits lying 
between the two crossover sites. This can be generalized to n-point crossover. 
Figure 8.19 illustrates the single and double point crossover operations. The single 
point crossover preserves the structure of the parent structure to the maximum 
extent. The extent of string preservation reduces with increase of crossover sites. 
However, it is difficult to say which type of crossover is better. 
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Figure 8.19. Single and double point crossover operations 

Crossover operation is carried out with some probability. This is because, some 
good strings have to be preserved.  If a crossover probability of pc is chosen, then 
100 pc % of the strings are used for cross-over and the  remaining strings are 
copied as they are to the next population. A common practice is to choose about ¾-
th strings for the crossover. 

8.4.1.3 Mutation  
Mutation changes the bits of the chromosomes with some low probability 
(typically 0.01) of mutation. It is needed to provide some diversity in the 
population. It serves the crucial role of preventing the system from getting stuck to 
the local optimum. Only reproduction and mutation operations do not guarantee 
true optimum points. Mutation can randomly create a very good chromosome. It 
may also create a very bad chromosome, but it will hopefully not get transferred in 
the next generation. Figure 8.20 illustrates the operation of mutation. One way to 
carry out the mutation operation is to generate a random number between 0 and 1 
for each bit. If the random number is less than the mutation probability  (say 0.01), 
the bit is changed. For example, in Figure 8.20, the third bit from the right gets 
changed from 0 to 1.      

Sequential application of reproduction, crossover and mutation completes one 
generation. The population keeps on evolving through a number of generations, 
until it is observed that average fitness of the population has been steady since past 
4–5 generations. After that the GA process is stopped and one run is said to be 
completed. The best string in that run represents the optimum solution. As GA is 
probabilistic, several runs may be carried out with different initial population for 
finding out the global optima. 
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Figure 8.20.  A mutation operation  

8.4.2 Real Coded Genetic Algorithms 

Instead of operating on strings by converting the real variables into binary 
numbers, one can perform the operations of genetic algorithm on real numbers 
themselves. This procedure is called real coded genetic algorithm (RGA). RGA is 
of recent origin. RGA uses real numbers instead of binary and is more suitable for 
continuous search space. In binary coded genetic algorithms, for achieving 
sufficient precision, a variable has to be represented by a number of bits. Also, the 
more bits in the chromosome, the greater the needed population size [33].   Binary 
coded genetic algorithms (BCA) suffer from the problem of Hamming cliffs, i.e., 
often in order to make a very small change in real parameter, a number of bits need 
to be changed. For example, 1000 and 0111 are very close to each other in real 
space, the first being 8 and the second 7. However, 4 bits have to be changed for 
going from 7 to 8.  This reduces the efficiency of GA. RGAs do not face this 
problem, though in GAs this problem can also be avoided by using gray codes 
instead of binary [34]. The procedure of the real coded genetic algorithm is same 
as that of the binary coded genetic algorithm. Initial population is random and 
population keeps on evolving towards betterment in successive generations. In 
each generation, the population is operated by three main operators— 
reproduction, crossover and mutation—to create a new population. If no 
significant improvement in the average fitness value of the population is observed 
for a few successive generations, convergence is assumed. The reproduction 
operator is the same as in BGA. However, crossover and mutation have to be 
carried out in a different way.  

In the crossover operation, new members are created by exchanging the 
information between two parent members. In RGA, the term crossover is really a 
misnomer. A simulated binary crossover operator (SBX) [31] can be used, which 
has a similar search power to that in a single-point crossover in BGA. This works 
as follows. Choose a random number [0, 1]iu . Calculate  
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where c is a crossover index which is a non-negative real number. A large value 
of c gives a higher probability for creating a ‘near-parent’ solution and a small 
value of c allows distant solutions to be selected as offspring.  Offspring are given 
by 
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1 22
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                                            (8.96) 

where 1 2,c c
i ix x  denote the i-th variables of the chromosomes of two child-

members and 1 2,p p
i ix x  the i-th variables the chromosomes of two parent-members. 

The crossover operation is performed with a crossover probability pc. 
Mutation provides a local perturbation in order to provide diversity to 

population and reduce the possibility of getting trapped in local optimum. In   
BGA, mutation is carried out by altering one or more bits in the chromosome 
string. In RGA, a mutation operator based on polynomial mutation [31] can be 
used. Accordingly, the mutated value yi of xi is given by 

 ( )u l
i i i i iy x x x .                                                          (8.97) 

Here, andu l
i ix x  are the upper and lower bound values of the i-th variable. The 

parameter i  is given by 
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where m is mutation operator and  ri is a random number in [0, 1]. We shall 
discuss the implementation details of RGA later.     

8.5 Soft Computing vs FEM 

After giving a background of soft computing in this chapter and FEM in Chapter 5 
of the book, it is appropriate to compare the applicability of soft computing 
techniques in comparison to FEM. FEM is a well established technique for solving 
differential equations. The success of this method depends on how well the 
physical problem has been represented in the form of  differential equations and 
how accurately the model parameters can be determined. The model parameters 
have to be obtained from the experiments, and many  times their determination is 
very difficult, time consuming and expensive. In physics, as we model a problem at 
a more fundamental level, the more insight may be obtained about the problem. 
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However, the complexity in obtaining the model parameter increases. For example, 
for determining the cutting forces in the machining of steel, a continuum model 
will require the data on flow stress of the material and friction. If the same thing is 
modeled at molecular level, the determination of the model parameters will require 
expensive experiments. 

If we use neural network models to obtain the cutting forces, we can directly 
obtain the data containing the values of cutting forces for different feed, depth of 
cut and cutting speed combinations. In this procedure, we even do not need the 
information of flow stress and friction. However, even this type of modeling can be 
called physics-based modeling but not at a fundamental level. This does not mean 
that the neural network approach discourages the modeling at a fundamental level. 
In fact, if the reliable finite element model is available, the training data may be 
obtained from simulations instead of real experiments. Finite element simulations 
may require large computational time, but the trained neural network will provided 
the results in much less time.  

Fuzzy logic can provide the approximate results by means of expert rules. In 
this form it may be an alternative to FEM or neural network. In the other form, it 
helps us to carry out computation with fuzzy numbers. Thus, it can be incorporated 
in FEM for carrying out the computations with fuzzy parameters. 

Genetic algorithms and other evolutionary schemes can be used for 
optimization. The objective and constraint functions required by genetic algorithms 
may be obtained by FEM. Thus, this constituent of soft computing can also be used 
along with FEM to extract useful information.       

To conclude, soft computing and FEM techniques can be complementary to 
one another. At the same time, any of these techniques can also be applied 
independently depending on the nature of the problem. The subsequent chapter will 
provide various examples of their applications.   

8.6  Summary 

Soft computing differs from conventional (hard) computing in that it is somewhat 
tolerant of imprecision, uncertainty, partial truth and approximation. In this 
chapter, we have introduced three constituents of soft computing, viz. neural 
networks, fuzzy sets and genetic algorithms. In neural networks, multi-layer 
perceptron networks based on back propagation algorithm and radial basis function 
networks have been discussed in more detail. These can be used for function 
approximation. A very brief description of some other types of networks has also 
been provided. In the section on fuzzy sets, the concepts of fuzzy sets, fuzzy 
arithmetic and fuzzy logic have been introduced. An example has been provided to 
show the decision-making process using fuzzy logic.  Genetic algorithms fall in the 
category of evolutionary optimization techniques. Other similar techniques are 
simulated annealing, ant colony optimization, particle swarm technique etc. In 
view of the success and popularity of genetic algorithms, we have focused our 
discussion on genetic algorithms. Binary coded and real coded genetic algorithms 
have been discussed.  The subsequent chapters will discuss the application of soft 
computing to metal forming and metal removing processes. 
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9 

Predictive Modeling of Metal Forming and Machining 
Processes Using Soft Computing  

9.1 Introduction 

The finite element method has been a very effective tool in the modeling of metal 
forming and machining processes as it provides detailed information regarding the 
product during and after the processes. Analysis of the process often requires non-
linear elasto-plastic finite element formulation. The finite element  method can also 
be used for finding out the stress distribution in the tool and stress/vibration 
analysis of the machines. Unlike the work material, the tools and machines 
undergo only elastic deformations. In spite of this, a non-linear analysis is often 
needed. The major drawback of  the finite element method is that it requires a large 
computational time.  

This chapter describes the application of soft computing methods that can 
predict important variables of the processes. Soft computing methods rely more on 
the data than the physics of the process, although knowledge of the physics of the 
process may augment the effectiveness of the soft computing methods. For 
example, in fuzzy-based systems, the rule base may be prepared from the physical 
laws of the process. Also, in many cases, data can be obtained from computer 
simulations based on the physics of the process. Such data may be supplemented 
with experimental data. Before applying a soft computing technique, it is very 
useful to carry out a statistical analysis of the data.  Such an analysis may provide a 
valuable insight about the process and help in the design of soft computing tools. 
Also, in order to extract maximum information from limited datasets, data should 
preferably be collected in a planned manner. In view of this, in this chapter the 
design of experiments and some useful statistical techniques have been described 
first. After that the application of neural networks for the modeling of metal 
forming and machining processes has been discussed. This is followed by a 
description of the modeling using fuzzy sets. Section 9.6 describes a neuro-fuzzy 
inference system for carrying out the same task. Finally, a section has been devoted 
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to describing the method of computing the important process variables considering 
the fuzziness in input variables.     

9.2 Design of Experiments and Preliminary Study of the Data 

Assume that a certain parameter depends on several independent variables. In order 
to study the effect of the variables on the parameter, one has to generate data either 
from experiments or from numerical simulation. A systematic way of studying this 
effect is through a proper design of experiments. Proper design of experiments 
brings out a large amount of information with the limited number of experiments. 
The traditional method of experimentation is the ‘one factor at a time’ method. In 
this, only one out of several variables (also called factors) is changed at a time, 
keeping all other independent variables constant at some values. Although this 
approach is simple  and one gets inference before all experiments are over, it does 
not uncover the effect of interaction among variables. Moreover, this approach is 
inefficient and costly. Most of the time, the effect of one variable on the dependent 
parameter may be strongly influenced by the value of other independent variables. 
This is called the interaction effect, which cannot be estimated properly in the ‘one 
factor at a time’ method. 

In the full factorial method of experimentation, each variable is divided into 
different levels. In some cases the variables take only discrete values and they need 
not be numbers e.g., presence or absence of a lubricant in  metal forming. Here, the 
presence of the lubricant may be designated as level 1 and absence of lubricant as 
level 2. In other cases, the variables take analogue values. For example, the 
percentage reduction in rolling, which may vary between a certain range, say 8% to 
24%. In that case, the whole range can be divided into levels. For example, in a 
two-level design, one can assign level 1 to percentage reduction of 8–16% and 
level 2 to 16–24%. One can decide to divide the range into three or more levels if 
more number of experiments can be conducted. Once all the factors have been 
divided into a number of levels, all possible combinations of levels are considered. 
Total number of combinations of factors is dependent on the number of variables 
(factors) and the levels. For example, if there are 7 factors at 2 levels, total 
combinations would be 27, i.e., 128. Thus, in full factorial method, one would need 
to do 128 experiments. If the variables are divided into 3 levels, total combinations 
will be 37, i.e., 2187, an enormously high number. Thus, many times, full factorial 
design is not feasible and the fractional factorial method is to be used.  

In the fractional factorial method as suggested by Fisher [1] and Plackett and 
Burman [2], out of various possible combinations, some are selected for study. The 
selection of the combinations is done in a systematic way so as to bring out the 
main and interaction effects of the variables. The orthogonal arrays are constructed 
with a limited number of experiments as a subset of the full factorial layout. An 
equal number of each level of each factor is represented in the array. For each pair 
of factors, every combination of factor levels exists and occurs equally often. The 
technique of orthogonal arrays reduces the size of the experiments to a practicable 
level. However, some information is lost in this process. Therefore, while adopting 
this method, technical knowledge of the persons involved in the experiment is very 
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important to ensure that the loss of information is relatively insignificant. To give  
an example, first consider the full factorial design for three factors at two levels. 
The first level is represented by –1 and the second level by +1. The 23 factorial 
design is as per Table 9.1. In this table, column A B indicates the interaction effect 
of factor A B. The level +1 indicates that both A and B are at the same level and –
1 indicates that both are at different levels.  Similarly, A B C is the column of 
interaction of three factors. If this interaction is not important, then experiments 
corresponding to any one level of A B C can be chosen. For example, we can 
make an array consisting of only four experiments corresponding to +1 level of 
A B C, thus preparing Table 9.2. Table 9.2 is called the fractional factorial table 
denoted by OA4(23). The OA indicates orthogonal array. The subscripts 4 indicates 
the number of experiments in the array. The quantity 2 in the bracket indicates the 
number of level and superscript 3 indicates the number of factors. Note that one 
could have made the orthogonal arrays with the rows corresponding to level –1 of 
A B C. Thus, the OA4(23) table may not be unique, but it is a balanced table as 
each factor is equally represented and it is also orthogonal, as for each pair of 
factors, every combination of factor level exists and occurs equally often. This will 
allow one to extract and separate out the effects of different factors and their two-
way interaction. 

For different types of orthogonal arrays, one can refer to [3]. In orthogonal 
arrays, the columns correspond to factors and the rows correspond to experiments. 
One can also choose an array having more columns than the variables and delete 
extra columns. The resulting table will also be an orthogonal array.   

Table 9.1.  A 23 full factorial array 

Experiment A B C A B B C C A A B C 
1 1 1 1 +1 +1 +1 1 
2 1 1 +1 +1 1 1 +1 
3 1 +1 1 1 1 +1 +1 
4 1 +1 +1 1 +1 1 1 
5 +1 1 1 1 +1 1 +1 
6 +1 1 +1 1 1 +1 1 
7 +1 +1 1 +1 1 1 1 
8 +1 +1 +1 +1 +1 +1 +1 

With the designed experiments, one can find the main and interaction effects of 
a factor. The main effect indicates the individual contribution of the factors to the 
total variability inherent in the experimental results. For a two level factor, the 
main effect is obtained as 

responses at level 2 of the factor - responses at level 1 of the factor Effect of a factor =
half the number of experiments

,      

(9.1)  

where ‘ ’ denotes the summation. 
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If the experiments have been conducted at three levels of each factor, level 1 
indicating the low level, level 2 indicating the high level and level 3 indicating the 
middle level, then one can find the linear as well as quadratic effect for a factor. 
The linear effect will be given by Equation 9.1. The quadratic effect will be given 
by, 

responses at level 2 2 responses at level 3+ responses at level 1Quadratic effect=
one third the number of experiments 

.   

(9.2)   

If the effect of a factor is purely linear, its quadratic effect will be zero. 

Table 9.2.  An OA4 (23) fractional factorial array 

Experiment A B C A B B C C A A B C 
2 -1 -1 +1 +1 -1 -1 +1 
3 -1 +1 -1 -1 -1 +1 +1 
5 +1 -1 -1 -1 +1 -1 +1 
8 +1 +1 +1 +1 +1 +1 +1 

Apart from the main effects, one might need to know the effect of interaction. 
This effect is found in a similar manner. In the orthogonal array, we can make the 
columns corresponding to interaction of two variables and then treat that column as 
corresponding to a separate factor.  For example, in Table 9.2, A B is treated like a 
factor with levels +1 and –1 for finding out its effect. 

Example 9.1: For knowing the tool life in the machining of medium carbon steel 
with a TiN coated carbide tool, an experimental study was carried out. Initially, 
cutting speed v, feed f and depth of cut d were taken at two levels and full factorial 
experiments were conducted as per Table 9.3. Find out the main effect of the 
parameters v, f and d and the interaction effect of f and v. Also make an OA4(23) 
fractional factorial array and find the main effects of the parameter from that array. 

Table 9.3.  A 23 array for studying the dependence of tool life on cutting parameters 

S. No. v (m/min) f (mm/rev) d (mm) T (min) 
1 135 0.04 0.3 160 
2 135 0.04 1.2 120 
3 135 0.32 0.3 110 
4 135 0.32 1.2 20 
5 270 0.04 0.3 60 
6 270 0.04 1.2 50 
7 270 0.32 0.3 7 
8 270 0.32 1.2 2 

Solution: Here, for each variable, one level corresponds to low values and the 
other level corresponds to high value. Using Equation 9.1, the main effects of v, f 
and d on tool life are as follows: 
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(60 50 7 2) (160 120 110 20)Effect of  97.75,
4

(110 20 7 2) (160 120 60 50)Effect of  62.75,
4

(120 20 50 2) (160 110 60 7)Effect of  36.25.
4

v =

f  =

d =

 

Thus, it is seen that in the given ranges of the process parameters, the cutting 
speed has the maximum effect on the tool life followed by the feed and depth of 
cut. The negative value of the parameters indicates that increasing these parameters 
decreases the tool life. 

For finding out the interaction effect of f and v, it will be helpful to make Table 
9.4. Designating the levels of f and v by ‘+1’ and ‘ 1’, we easily obtain two levels 
‘+1’ and ‘ 1’ for f v. From this table, we find the interaction effect of f and v as 
follows: 

 

tool life at level ' +1'  tool life at level ' 1' Effect of  ,
4

(160 120 7 2) (110 20 60 50) 12.25.
4

f v
  

Thus, it is seen that compared to the main effect, the interaction effect is smaller. 

Table 9.4.  Table for interaction effect of f and v, the values in bracket indicating the level 

S. No. v (m/min) f (mm/rev) f v T (min) 
1 135 (-1) 0.04  (-1) (+1) 160 
2 135 (-1) 0.04   (-1) (+1) 120 
3 135 (-1) 0.32   (+1) (-1) 110 
4 135 (-1) 0.32   (+1) (-1) 20 
5 270 (+1) 0.04   (-1) (-1) 60 
6 270 (+1) 0.04   (-1) (-1) 50 
7 270 (+1) 0.32   (+1) (+1) 7 
8 270 (+1) 0.32  (+1) (+1) 2 

Table 9.5 is an OA4(23) prepared on the basis of Table 9.2. From this table, main 
effect of v, f and d is calculated as 

 

(60 2) (120 110)Effect of  84,
2

(110 2) (120 60)Effect of  34,
2

(120 2) (110 60)Effect of 24.
2

v =

f  =

 d =
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The effects calculated from the fractional factorial array are different to those 
calculated from full fractional array, but give the same qualitative picture showing 
that the tool life is influenced most by the cutting speed followed by the feed and 
the depth of cut. Thus, the calculation of the effects may provide valuable 
information about the process. However, this information must be used with 
caution. It is possible to see a very small main effect of a parameter, when the 
parameter contributes almost same amount to response at low and high level, but 
contributes very differently at middle values.      

Table 9.5.  An OA4(23) fractional factorial array 

S.No. v (m/min) f (mm/rev) d (mm) T (min) 
1 135 0.04 1.2 120 
2 135 0.32 0.3 110 
3 270 0.04 0.3 60 
4 270 0.32 1.2 2 

9.3 Preliminary Statistical Analysis 

Before neural network or fuzzy set modeling, it is advisable to carry out the 
preliminary statistical analysis for finding  the significance of various parameters. 
Parameters that do not have a significant effect on the response can be eliminated 
from the model. In this section, we shall review a few useful statistical methods, 
which are helpful in modeling using soft computing.  

9.3.1 Correlation Analysis 

We can find out the correlation between a variable and its response or between two 
variables. Let xi and yi denote i-th data of variables X ad Y respectively, then 
estimate of correlation coefficient is given by 

 1

2 2

1 1

( )( )
(X,Y)

( ) ( )

n
i i

i
n n

i i
i i

x x y y
r

x x y y
,       (9.3)   

where n is the number of data, x  is the average value of X and y  is the average 
value of Y. It can be shown that 1 1r . The value of –1 indicates perfect 
negative linear relation and the value of +1 indicates perfect positive linear 
relation. If r=0, there is no linear association between X and Y. However, this does 
not mean that there is no association between X and Y. There may be a non-linear 
association between X and Y. Also, it is to be noted that  r  value being close to   
1 is a necessary condition for strong linear association, but is not sufficient. The 
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value can also be high due to outliers. Moreover,  the r value close to 1 may not 
be a cause-effect relation,  but rather a coincidence.  

In the case of a multi-variable problem, a correlation matrix may be constructed 
whose elements provide the correlation coefficient between two pairs of variables. 
For example, if the variables are X, Y and Z, the correlation matrix will be as 
shown in Table 9.6. Note that this matrix is symmetric as r(X, Y) = r(Y, X) etc and 
the elements in the leading diagonal are always 1 as a variable has a strong positive 
linear relation with itself. If two independent variables have a strong linear 
relationship, only one should be used to model the behavior of dependent variable 
on the independent variable.  

Table 9.6.  A correlation matrix for three variables 

 X Y Z 
X 1 r(X, Y) r(X, Z) 
Y r(Y, X) 1 r(Y, Z) 
Z r(Z,X) r(Y, Z) 1 

 
To know whether the particular value of r really indicates a correlation is 
dependent on how many data were used for calculating the correlation coefficient. 
A high value of correlation coefficient calculated based on a large number data has 
high reliability for linear association. The statistical way of ascertening this is 
through hypothesis testing, which is described in the following subsection. 

Example 9.2: For the example of Equation 9.1, find out the correlation matrix 
showing the dependence of the variables. 

Solution: We construct the correlation matrix using the software SPSS version 
12.0. The reader may verify it by hand calculations. The matrix is given as 

 v f d T 
v 1 0 0 0.669 
f 0 1 0 0.577 
d 0 0 1 0.333 
T 0.669 0.577 0.333 1 

It is seen that the cutting speed has the highest negative correlation with the tool 
life, followed by the feed and the depth of cut. Correlation of each variable with 
itself is 1. Hence, the diagonal terms are one. Also, v, f and d are the independent 
variables whose values have been chosen based on an orthogonal array; hence the 
correlation coefficient for any pair of these variables is zero.  

9.3.2 Hypothesis Testing 

In many scientific processes we make assumptions and test them for validity. 
Suppose after taking a sample, we notice that data of the sample does not support 
our hypothesis. This difference with our hypothesis may be due to the hypothesis 
being wrong or due to the random process of the sample being biased. Therefore, 
the tests are carried out to find out whether or not the difference between sample 
results and hypothesis is due to chance. If the difference is not due to chance, it is 
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called a significant difference. The techniques that find out whether a difference is 
significant or not are  called the test of significance. The whole procedure is known 
as the testing of a hypothesis. 

A hypothesis is a statement supposed to be true till it is proved false. There are 
two types of hypotheses. The null hypothesis (H0) is a statement about a single 
population characteristic usually having a specific value. For example, 

 H0: The mean flow stress of the material is 300 MPa,         (9.4) 

is a null hypothesis. The null hypothesis can also be a statement concerning two or 
more population parameters, specifying the difference between them. For example, 
for the wire drawing of two different metals through similar dies, one hypothesis 
can be 

    H0: The friction coefficient in both the cases is the same.         (9.5) 

The alternative hypothesis (H1) is a statement about population characteristics 
usually being larger (or smaller) than a specific value. This is called a one-sided or 
one-tailed test. More generally, it may be population characteristics being different 
to a specific value, which is called a two-sided or two-tailed test. For example, 

 H1: The mean flow stress of the material is larger than 300 MPa,     (9.6) 

and  

 H1: The mean flow stress of the material is smaller than 300 MPa     (9.7) 

are one-sided alternative hypotheses, whereas   

 H1: The mean flow stress of the material is not 300 MPa     (9.8) 

is a two-sided alternative hypothesis. Once the null and alternative hypotheses have 
been set up, the next job is to test these hypotheses. There are different tests of 
significance, and some of them are described here. 

First, we describe the test of significance for the mean of large samples. This 
test can be applied to find out whether the difference between sample mean and 
population mean is significant or not. We illustrate this with an example. Suppose 
the mean flow stress of a material has been quoted in a handbook as 300 MPa with 
a standard deviation of 20 MPa. If 500 test pieces were tested and the mean flow 
stress of these test pieces was 290 MPa, can we say that there is insignificant 
difference between mean flow stress tested and that quoted in the handbook? To 
answer this question, the following steps are executed. 

  Set the null hypothesis: 

 H0: The sample of 500 test-pieces has been drawn from a population with 
mean flow stress of 300 MPa.                                   (9.9) 
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 Calculate a test statistic: 

 
/

x Mz
n

 ,                            (9.10) 

where x is the sample mean, M is the population mean,   is the standard deviation 
and n is the sample size. Thus, in the present case, 

 290 300 11.18
20 / 500

z .         (9.11) 

 Select the appropriate confidence level, say 95%. This means if we keep 
testing different samples of the population (with mean 300 MPa and 
standard deviation 20 MPa) for a large number of times, 95% samples 
should tally with the results of our test. We expect 5% samples to defy the 
test results. In other words, with 95% confidence level, the probability of 
incorrectly rejecting the hypothesis is 0.05. This is called type I error. 
When we fail to reject a null hypothesis in spite of it being wrong, we make 
type II error. Obviously, an attempt to minimize type I error increases type 
II error. Thus, a trade-off has to be made between these two types of errors. 
We denote the probability of making type I error by , which is called 
significance level. We compare the test statistics with a statistic z  ,  which 
corresponds to a significance level of .  The table providing the values of 
statistic z   is available in the books on statistics. You may remember that 
in a normal distribution, 95% values fall within 1.96 . Hence, the 
statistic z  with which the test-statistic will be compared for level of 
significance of 0.05 (or 95% confidence level) is 1.96. Here, we expect that 
the null hypothesis will be incorrectly rejected with a probability of 0.05. 
The  value of 0.05 is the most commonly used level of significance for 
practical problems. In the problems where the cost of making type I error is 
very high, we choose a lower value of , typically 0.01. In the problems, 
where the cost of making type I error is much less compared to the cost of 
making type II error, we can use the higher value of  , say 0.1. 

 In the last step, we check whether z z . If z  is less than z , we 
conclude that the difference is not significant for rejecting the null 
hypothesis. In the present case z z , therefore, the difference is 
significant and the null hypothesis is rejected. Thus, we reject the 
hypothesis at 0.05 significance level that the test pieces have been drawn 
from a population with a mean flow stress of 300 MPa. 

Many times the population standard deviation   may not be known. In that case,    
can be replaced by the sample standard deviation s. 

The test of significance can also be carried out for the difference of the means 
of two large samples. Let x be the mean of a sample of size n1 from a population 
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having the mean M1 and the variance 2
1 . Similarly, let y be the mean of a sample 

of size n2 drawn from a population having the mean M2 and the variance 2
2 .  If the 

null hypothesis to be tested is 

 H0: M1=M2 ,                                    (9.12) 

the test-statistic is given by 

 
2 2
1 1 2 2/ /

x yz
n n

.                                        (9.13) 

If  2
1 and 2

2 are unknown, then  

 
2 2
1 1 2 2/ /

x yz
s n s n

,                              (9.14) 

where s1 and s2 are the sample standard deviations. 
When the sample size is small, then the test of significance is based on 

Student’s t-test. Here, the t-statistic for the test of significance for the mean is 

 
/

xt
s n

.                                                    (9.15) 

where  is the population mean. Tables of t-distribution are available in books on 
statistics. For  level of significance (confidence level (1 ) 100), one can obtain 
t , if the degree of freedom is known. For one parameter sample of size n, the 
degree of freedom is equal to (n 1). If t t , the difference between sample 

mean and population mean is not significant. If t t , the difference is 
significant.  

The test of significance for the difference of two means of two small samples is 
carried out when it is necessary to ascertain that samples come from the 
populations having the same mean. For this purpose, the following steps are 
executed: 

 State the null hypothesis: 

 H0: x and y  do not differ significantly.                    (9.16) 

 Compute the test statistic:  

 
1 21/ 1/

x yt
s n n

,                                      (9.17) 
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where 

 
2 2

2 1 1 2 2

1 2

( 1) ( 1)
2

n s n s
s

n n
.                   (9.18) 

In this case, the degree of freedom is  n1+n2 2. 
 Compare the t value with t . If t t , accept H0 at  level of 

significance. 

In hypothesis testing, often the p-value is estimated. It is the maximum 
probability that the observed hypothesis will be rejected on the basis of a given 
sample even though it is true (type-I error). Thus, the smaller the p-value, the more 
unlikely is the rejection of the hypothesis. The p-value can also be understood as 
the value of  at which the test statistic becomes critical. For smaller p-values, the 
procedure may fail to reject a false null hypothesis, thus making type-II error. One 
has to make a balance between the two types of errors.    

For finding out if a particular value of r  is significant or not, the test of 
significance may be employed. Here, we make the following null hypothesis: 

 H0: There is no linear relationship between data.      (9.19) 

The alternative hypothesis is 

 H1: There is a positive linear relationship (one-tailed) between the two 
variables.                                            (9.20) 

To test the hypothesis, r  is compared with critical values of the correlation 
coefficient r [3]. For a given , r  will be dependent on the degrees of freedom, 
which is 2 less than the number of observations. If r r  we reject H0 at a level of 
significance of ; otherwise we do not reject the hypothesis. 

In many cases, a hypothesized value for the parameter may not be available; 
instead parameters of a population are estimated based on the sample. Suppose the 
mean of a sample is 60. This does not mean that population mean will also be 60. 
One might have obtained sample mean of 60 by chance. In the next sample, one 
may get the value other than 60. The probability that the population mean is 
exactly 60 is 0. However, if we say that the population mean is between 59 and 61, 
then there is some probability of its being true. If we increase the interval size, the 
probability that the interval encompasses the population mean will increase. This 
probability is called confidence level and is often expressed as a percentage. 
Commonly used confidence levels are 95% and 99%. If the confidence level is 
95%, it means that a certain assumption (such as the population mean lies in a 
prescribed interval) will be true in 95% of the cases. It is obvious that for the 
estimation of mean with higher confidence level, the interval of the estimation has 
to be increased. 
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There is a direct relationship between hypothesis and confidence interval 
estimation. A hypothesis test for H0: M=M0 against H1: M=M0 will be rejected at a 
significance level of  if M0 is not in (1 ) 100% confidence limit for M. 

Example 9.3: A material is machined by two different milling cutters. After the 
machining is over, the surface roughness is measured using a stylus type surface 
measuring instrument. Surface roughness is measured at 12 places. One cutter 
provided the surface roughness values: 2.96, 2.31, 3.43, 2.74, 3.21, 3.31, 3.44, 
2.14, 2.86, 2.04, 2.88, 3.19 m, whilst the other cutter provided the surface 
roughness values: 3.25, 2.21, 1.97, 2.52, 2.43, 3.03, 2.06, 2.12, 1.67, 2.53, 2.86, 
2.65 m. Can we say that both cutters produce significantly different surface 
roughness values? 

Solution: The first cutter produces a surface roughness with a mean of 2.88 m 
and standard deviation of 0.49 m, whilst the second cutter produces surface 
roughness with a mean of 2.44 m and standard deviation of 0.46 m. Just by 
comparing the means, it appears that the surface roughness generated by the 
second cutter is lower than that generated by the first cutter. Now, we state the null 
hypothesis: 
H0: Surface roughness values generated by the cutters do not differ significantly.  
We compute the test statistic, using Equation 9.17. Here, n1=n2=12. Hence, from 
Equation 9.18, 

 
2 2

2 0.49 0.46 0.2259 or = 0.475.
2

s s   

Then, from Equation 9.17,  

 2.88 2.44 2.269
0.475 (1/12) (1/12)

t . 

The degree of freedom of the data is 1 2 2 22n n . For 95% confidence level 
and 22 degrees of freedom, the t  value read from statistical table is 2.074. Since 
here t  is greater than this value, we reject the hypothesis. For 99% confidence 

level and 22 degrees of freedom,  the t  value is 2.819. Since t  is less than this 
value, we cannot reject the hypothesis at 99% confidence level. Thus, the 
hypothesis can be rejected at 95% confidence level but not at 99% confidence 
level. At 95% confidence level, the probability that the algorithm is incorrectly 
rejected is 0.05, whereas it is 0.01 at 99% confidence level. The smaller  the 
probability of incorrectly rejecting the hypothesis,  the greater is the reluctance to 
reject the hypothesis. That’s why in the present case, although the hypothesis is 
rejected at 95% confidence level, it could not be rejected at 99% confidence level. 

Example 9.4: Observe the correlation matrix of Example 9.2. Find if there is a 
significant correlation between the process parameters and tool life. 
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Solution: For six degrees of freedom and 95% confidence level, the critical value 
of correlation coefficient is 0.707 [3]. Thus, at 95% confidence level, there is no 
significant correlation. 

9.3.3 Analysis of Variance 

Suppose a certain response, say roll torque in a rolling process, is dependent on a 
number of variables (also called factors). The variation in the response is due to 
variation in the factors as well as random effects. In analysis of variance 
(ANOVA), we determine the effect of various factors in a systematic manner. For 
this purpose, experiments must be properly designed and should have been 
completed. Then the significance of various components associated with factor 
effects is assessed by comparison with the residual. For this purpose, an F-test is 
employed. The F-test is employed for comparing the variances. Suppose we are 
required to compare the variances of two samples  of size n1 and n2, then the test  
statistic will be 

 Larger sample variance
Smaller sample variance

F .                                (9.21) 

The critical value is found from the F-tables.  The critical values of F are given as 
a function of degrees of freedom of two samples and .  

Consider an experimental design in which m experiments are performed at each 
level. First, we find the total sum of squares (TSS) as per the following formula: 
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,                               (9.22) 

where n is the total number of experiments and jy  is the response for the j-th 

experiment. Total degrees of freedom is equal to n 1. Then we find the main 
effects for each factor. For a k-level factor with m observations corresponding to 
each level, the sum of squares for a factor A is given by 
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where k is the number of levels for factor A and Ai denotes the sum of responses at 
level i. The degree of freedom for factor A, dfA is equal to k 1. The similar type of 
formula can be used for finding out the interaction effects. If A is an a-level factor 
and B is a b-level factor, then  
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where m is the number of observations corresponding to each combination of 
factor levels. The degree of freedom A Bdf  is (a 1)(b 1). For three-way 
interaction, 
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 with the degree of freedom ( 1)( 1)( 1)A B Cdf a b c . If the number of 
observations are different for different combinations, the formulae for sum of 
squares for the interaction of two factors become  
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where m11, m12 etc. are the respective numbers of observations. For three factor A, 
B, C, interaction effect of three factors is given by 
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Residual (error) sum of squares (SSe) is the TSS minus the total of the SS of all 
effects. The residual degree of freedom can be obtained as 

 otale t A B C A B A C B C A B Cdf df df df df df df df df .  (9.28) 
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Note that when there is only one observation per experiment, error sum of squares 
will become 0 and we cannot compare the sum of squares of factors or interactions 
with the error sum of squares in the form of ratios. In such cases, a higher order 
interaction is usually considered to be non-existent, and its sum of squares is 
attributed to the error sum of squares. 

Table 9.7.  ANOVA table 

Source df SS MSS=SS/df F-ratio p-value 
A dfA SSA MSSA=SSA/dfA MSSA/MSSe ……… 
B dfB SSB MSSB=SSB/dfB MSSB/MSSe ……… 

……. ……… ……… ………… ………. ……… 
A B dfA B SSA B MSSA B=SSA B/dfA B MSSA B/MSSe ……… 
…… ……. ……… ……………… ……………. ……… 
Error dfe SSe MSSe=SSe/dfe 1 ……… 
Total dftotal TSS    

 
After finding the sums of squares for various effects and error, we find the 

corresponding mean sums of squares (MSS) by dividing by the corresponding 
degrees of freedom. Then we divide the mean sums of squares of each effect by the 
error sum of squares and call these ratios F-ratios. The F-ratio compares the 
variance attributed to a particular (main or interaction) factor effect with the 
variance attributed to randomness in order to assess the significance of the effect. If 
the F-ratio is large (more than 4), we say the effect is significant. Normally, the 
critical values from the one-sided F-tables are utilized for some prescribed level of 
significance. Table 9.7 shows a typical ANOVA table.  

Example 9.5: The feed forces obtained during the machining of gray cast iron with 
ceramic cutting tool are given in Table 9.8. Prepare an ANOVA table for this. 

Table 9.8.  Feed force for different cutting conditions 

Feed force (N) f 
(mm/rev) 

v 
(m/min) 

d 
(mm) Replicate  

1 
Replicate  

2 
Replicate 

 3 
0.04 100 1 118 121 130 
0.04 100 1.5 225 240 260 
0.16 100 1 173 168 160 
0.16 100 1.5 100 110 108 
0.04 400 1 63 61 67 
0.04 400 1.5 85 91 98 
0.16 400 1 172 141 141 
0.16 400 1.5 226 217 221 

Solution: ANOVA table is shown in Table 9.9. It has been obtained through SPSS 
version 12.0. In this table, the p-values up to three decimals have been shown. As 
the p-value is less than 0.05 for the factors f, v and d and their interactions, the 
factors and their interactions are significant at 95% confidence level. 
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Table 9.9. ANOVA table 

Source df SS MSS=SS/df F-ratio p-value 
f 1 5953.500 5953.500 58.752 0.000 
v 1 4537.500 4537.500 44.778 0.000 
d 1 9048.167 9048.167 89.291 0.000 

f v 1 35882.667 35882.667 354.105 0.000 
f d 1 7072.667 7072.667 69.796 0.000 
v d 1 600.00 600.00 5.921 0.027 

f  v d 1 18481.500 18481.500 182.383 0.000 
Residual 16 1621.333 101.333   

Total 23 83197.333    

9.3.4 Multiple Regression 

If a dependent variable y is the function of m independent variables, viz., x1, 
x2,…….,xm , then the multiple linear regression model may be written as 

 0 1 1 2 2 ..................... m my c c x c x c x e ,                 (9.29) 

where e is the error term. In the case where, there are n observations, one can write 
the following n equations: 
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where yi indicates the i-th observed value of  y and xij indicates i-th observed value 
of xj. In the matrix form, we can write the above set of equations as 
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 ,        (9.31) 

or 

 Y=XC + E .                                          (9.32) 
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Our attempt should be to minimize the error vector E. If all the terms in the vector 
E are zero, the model is perfect. Usually we minimize E in least square sense. The 
sum squared error is given by 

 T T T T T T T(TE E = (Y XC) Y XC)= Y Y Y XC C X Y+C X XC.         (9.33) 

By making use of the property that the transpose of a scalar is equal to the scalar 
itself, we can write 

 T T T Y XC = C X Y .                                                              (9.34) 

Hence, 

 T T T T TTE E = Y Y 2C X Y + C X XC .   (9.35) 

Minimizing this with respect to C, we get 

 T T2 2
T(E E)  = X Y + X XC  = 0
C

.      (9.36) 

Thus, the error will be minimized, if 

 T T X XC  = X Y  ,      (9.37) 

or  

 T 1 TC  = (X X) X Y .                  (9.38) 

The coefficient vector can be found either by solving for C, from Equation 9.37 
using any equation solver routine or  from Equation 9.38. The matrix T 1 T(X X) X is 
called the pseudo-inverse of  X. 

The procedure described above for multiple linear regression can also be 
applied for non-linear regression, when y can be expressed as a polynomial 
function of the dependent variables. It should be noted that the fitted multiple 
regression model should also be tested for some data which have not participated 
in the fitting of the model. For knowing the performance of the fitting, coefficient 
of determination (R2) can be calculated, which is given by 
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where y  indicates the mean and ŷ  is the predicted value. The  R2 lies between 0 
and 1. The closer the value to 1, the better the fitting. 

A regression model can also be developed for predicting the lower and upper 
bounds of the dependent variable. With this, y can be represented as a triangular 
fuzzy number by assigning a membership grade of 0.5 to the lower and upper 
bound estimates and a membership grade of 1 to the most likely estimate  obtained 
by a standard multiple regression procedure. The detailed procedure for fuzzy 
linear regression has been developed by Tanaka [4]. Based on this reference, a 
simple method for finding the lower and upper estimate is described here. 

The lower and upper estimates of the variable can be expressed as  

    0 1 1

0 1 1

( ) ............... ,

( ) ............... ,

l l l
l m m

u u u
u m m

y x c c x c x

y x c c x c x
   (9.40) 

where 0 1, ,............l l l
mc c c  are the coefficients for predicting the lower estimate and 

0 1, ,............u u u
mc c c  are the coefficients for predicting the upper estimate of y. 

Assume that n observations are available. The coefficients can be obtained by 
solving the following optimization problem: 

 0 0 1 1 1
=1

Minimize ( ) ( ) .......... ( )
n u l u l u l

i m m im
i

c c c c x c c x ,       (9.41) 

subject to 
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c c x c x y
i n

c c x c x y
.        (9.42)     

This ensures that the sum of the differences between the upper and  lower estimates 
is minimized.  

Example 9.6: In a rolling process, the roll radius is 65 mm and the inlet thickness 
of the strip is 1mm. Material is steel with yield strength 324 MPa and b and n equal 
to 0.052 and 0.295 respectively. In this rolling process, the variations of roll force 
and roll torque (for unit width of the strip) with percentage reduction r and friction 
coefficient f are as per Table 9.10. This data has been obtained by running an FEM 
code. Assuming that the roll force and roll torque vary linearly with r and f, fit the 
multiple linear regression models. 
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Table 9.10.  Variation of roll force and roll torque with r and f 

S.  
No. 

R f Roll torque per unit strip 
width  (kN-m/m) 

Roll force per unit 
strip width  (MN/m) 

1 10 0.06 1.7169 1.5768 
2 10 0.09 1.8032 1.6606 
3 10 0.1 1.8319 1.6943 
4 11 0.06 1.9164 1.6795 
5 11 0.1 2.0532 1.8024 
6 12 0.06 2.1223 1.7962 
7 12 0.08 2.2047 1.8830 
8 12 0.1 2.2822 1.9227 
9 13 0.06 2.3305 1.8981 

10 13 0.1 2.5158 2.0405 
11 14 0.06 2.5403 1.9981 
12 14 0.1 2.7564 2.1616 

Solution: Following the procedure discussed in this section, a multiple linear 
regression model is fitted. The equations for roll torque and roll force per unit 
width are obtained as follows: 

 Tr = 0.7478 + 0.2191 r + 4.052917 f ,  

 Fr = 0.2424 + 0.1124 r + 3.3468 f. 

Table 9.11 shows the predicted roll force and roll torque data for a unit strip 
width. We observed that the predicted values are very close to the FEM values of 
Table 9.10. Thus, for small ranges of r and f, a linear approximation may be 
employed. The coefficient of determination for the fitting can be determined using 
Equation 9.39. It is 0.997 for Tr and 0.996 for Fr, indicating an excellent fitting. 

Table 9.11.  Predicted roll force and roll torque for a strip width of unity 

S. No. Tr (kN-m/m) Fr (MN/m) 
1 1.6864 1.5672 
2 1.8080 1.6676 
3 1.8485 1.7011 
4 1.9055 1.6796 
5 2.0676 1.8135 
6 2.1246 1.7920 
7 2.2056 1.8589 
8 2.2867 1.9259 
9 2.3437 1.9044 

10 2.5058 2.0383 

11 2.5628 2.0168 
12 2.7249 2.1507 
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The regression equations predicting the lower and upper bound of roll torque 
and roll force are also obtained following the procedure outlined in this subsection. 
These expressions are given by 

0.5931 0.2098 3.27 , 0.7667 0.2311 2.8767l u
r rT r f T r f ; 

0.2754 0.1089 3.2814 , 0.1633 0.1237 2.9375 .l u
r rF r f F r f  

Table 9.12 shows the upper and lower bound estimates of roll torque and roll force. 
A comparison of this table with Table 9.10 shows that, in all cases, the FEM data 
falls in the closed interval of  lower and upper bound estimates. Reader should 
verify these results by writing their own code. 

Table 9.12. Upper bound and lower bound estimates of roll torque and roll force 

Roll torque/width (kN-m/m) Roll force/width (MN/m) S. No. 
Lower bound Upper bound Lower bound Upper bound 

1 1.7011 1.7169 1.5621 1.5768 
2 1.7992 1.8032 1.6606 1.6649 
3 1.8319 1.8320 1.6934 1.6943 
4 1.9109 1.9480 1.6711 1.7005 
5 2.0417 2.0630 1.8024 1.8180 
6 2.1207 2.1791 1.7801 1.8242 
7 2.1861 2.2366 1.8457 1.8830 
8 2.2515 2.2942 1.9113 1.9417 
9 2.3305 2.4102 1.8891 1.9479 
10 2.4613 2.5253 2.0203 2.0652 
11 2.5403 2.6413 1.9981 2.0717 
12 2.6711 2.7564 2.1293 2.1892 

9.4 Neural Network Modeling 

Let us consider the problem of predicting roll force and roll torque in plain strain 
rolling as a function of process variables.  The roll force Fr and roll torque, Tr per 
unit width are dependent on the yield strength of the material 0( )Y , hardening 
parameters b and n, coefficient of friction f, roll radius R,  initial thickness of the 
sheet h1 and percentage reduction r. Then the roll force and roll torque can be 
expressed as  

 0 1 1( ) / , , , ,r YF h F R h r b n f ,                              (9.43) 

 2
0 1 1( ) / , , , ,YT h G R h r b n f ,          (9.44) 
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where F and G are functions of five non-dimensional parameters. A block diagram 
of a neural network is as shown in Figure 9.1, where the black box is dependent on 
the type of the network used and its design. A background on neural networks is 
provided in Chapter 8. In this section, we describe the procedure for neural 
network modeling. The following subsection describes the procedure in the context 
of modeling a neural network for the roll force and roll torque prediction, but the 
procedure can be applied to modeling of any dependent variable in metal forming 
or machining processes. 

 
Figure 9.1.  Neural network as a black box 

9.4.1 Selection of Training and Testing Data 

Selection of training and testing data is very crucial. Training data are supplied to a 
neural network and the network adjusts its weights and/or any other parameter in 
order to minimize the error between predicted and actual known values of roll 
force and roll torque. It is possible to reduce the error in prediction for training data 
as much as we want by increasing the number of network parameters like weights. 
However, such a network may cause over-fitting problem. An over-fitted network 
memorizes the data for which it has been trained, but predicts very poorly for 
unseen data. This is called a poor generalization capability. In order to have a good 
generalization capability, the training error is not reduced indefinitely. Instead, for 
each designed network, apart from training error, testing error is also found. 
Testing error is the error in the prediction for testing data. In the literature many 
researchers use the term ‘cross-validation’ for ‘testing’. Design of the network is 
finalized based on the training as well as the testing error. Once the design has 
been finalized, the performance of the network can be studied by supplying some 
validation data to it.  Researchers using the term ‘cross-validation’ for ‘testing’ use 
the term ‘testing’ for ‘validation’. 

The number of training and testing data and type of data are very crucial to the 
design of a network. There is no well-established formula for finding out the 
number of training and testing data. A number of suggestions have been offered. 
One simple way is to divide the total data as two thirds training and one third 
testing data. One can also keep about 10% of the available data for validation and 
divide the remaining data into the training and testing sets. Some researchers have 
provided empirical expressions relating the total number of neurons and training 
data. For example, Lawrence and Petterson [5] have suggested having the training 
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data between 2 and 10 times the total (input + hidden + output) neurons. Training 
data is selected randomly or by using the design of experiments. Full or fractional 
factorial experiments can be used. Dixit and Chandra [6] have suggested a simple 
way for choosing the training data. Considering that neural networks are poorer in 
extrapolation than in interpolation, they suggest that for n inputs, the minimum 
number of training data should be such that it encompasses the corners of n-
dimensional hypercube. For example, in the case of a three input problem, there is 
a total of eight combinations of high and low values of the input parameter, all of 
which should be taken in the training set. In addition, the parameter having high 
influence on the dependent output variable should find more representation in the 
training set compared to an independent parameter having less influence. 
Equations 9.1 and 9.2 can form a basis for judging the influence of the parameter.  

Kohli and Dixit [7] have used a simple method for assessing the number of 
testing data. The method is based on the simple theory of probability. We assess 
the performance of the fitted network based on the testing data. If the error of 
prediction is below a specified value for all testing data, the network is passed. If 
the testing data shows more error, the neural network is modified. Let us assume 
that we are passing a network based on m testing data and also that, for the passed 
neural network, the ratio of incorrect predictions to total predictions is p. Thus, the 
probability that the network makes correct prediction for a random input dataset is 
(1 p). The total probability P of making m correct predictions is given by 

 (1 )mP p .                                              (9.45) 

For a highly reliable testing procedure, this probability should be quite low unless 
there is an ideal neural network model for which p = 0. The network designer can 
specify the values of  p as well as P. For a highly reliable network, P and p should 
be small. However, the smaller is P and/or p, the larger is the value of m. It is to be 
noted that for practical problems, one should not expect a very low value of p, 
because there may be inherent errors in the experimental data also. 

Example 9.7: A neural network is tested based on 10 testing data and predictions 
for all the data are found satisfactory. What is the probability that the neural 
network model that provides correct predictions only 90% of time, will get selected 
based on the testing? 

Solution: Here, p = 0.1 and m = 10. From Equation 9.41, P = (0.9)10 = 0.35. Thus, 
we see that there is a significant probability that the neural network model will 
provide correct predictions only 90% of the time. If we increase the number of 
testing data to 20, P will be 0.12. It means that if a network is selected based on the 
testing by 20 random data, the probability that the neural network provides the 
correct prediction only 90% of the time  will be only 0.12, a significantly lower 
value.  

All the data used in the network has to be normalized to lie between a common 
range, say between 0.1 and 0.9. A linear mapping can do this.  If xmax and xmin are 
the maximum and minimum values of a parameter and xnmax and xnmin are the 
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normalized maximum and minimum values, then the normalized value of the 
parameter is given by 

 ( )nmax nmin
n nmin min

max min

x x
x x x x

x x
,       (9.46) 

where x is the actual value of the parameter. 

9.4.2 Deciding the Processing Functions 

In Chapter 8 we introduced hyperbolic tangent, log sigmoidal and unipolar ramp 
functions. In multilayer perceptron networks (MLP), hyperbolic tangent and log 
sigmoidal functions are usually used in the hidden layer neurons. Output neurons 
often use pure linear functions, which provide the weighted sum of the inputs 
obtained from the neurons in the previous layers. One can use other different types 
of processing functions. However, there is no solid evidence to show that one 
particular type of processing function is better than the others. We suggest the use 
of either log sigmoidal or hyperbolic tangent functions for hidden layer neurons 
and pure linear for the output neurons. In the case of radial basis function (RBF) 
neural networks, a wide choice of processing functions is available. Among these 
Gaussian and multiquadrics have been widely used. Some authors have observed 
multiquadrics to perform better for data interpolation; however again there is no 
solid evidence for it. One argument in favor of multiquadrics can be that they 
represent a global response, because their values increase with increasing distance 
from the center, whereas the Gaussian functions monotonically decrease with 
increasing distance from the center and hence have local response characteristics. 
However, spread parameters have a large influence on the characteristics of a 
radial basis function. 

9.4.3 Effect of  Number of Hidden Layers 

In radial basis function neural networks, only one hidden layer is used. In multi-
layer perceptron neural networks, more than one hidden layer may be used. 
Sometimes, the networks with a large number of layers and fewer units in each 
layer may generalize better than shallow networks with many units in each layer. 
However, introducing more hidden layers increases the complexity of the training 
process. In principle, it is possible to model any continuous function with one 
hidden layer alone. 

9.4.4 Effect of Number of  Neurons in the Hidden Layers 

The most critical parameter affecting the accuracy of prediction in a neural 
network model is the number of neurons in the hidden layers. One can keep on 
reducing the training error by increasing the number of neurons. However, the 
testing error may increase. Therefore, for the best performance one needs to have 
the optimum number of neurons in the hidden layer. Although some guidelines are 
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available for deciding the number of neurons in the hidden layers, most researchers 
prefer to employ a trial and error procedure. One can start with some minimum 
number of neurons and keep on increasing the neurons till the overall error 
(maximum of training and testing error) increases. Conversely, one can start with a 
very high number of neurons in the hidden layer and keep on reducing the neurons 
till the performance starts deteriorating. However, it is to be noted that often the 
increase or decrease in the performance may not be monotonic with the number of 
hidden neurons. Therefore, it may be necessary to test the performance of network 
for all possible numbers of hidden neurons in a range. Previous experience may 
serve as a good guideline in deciding the range. 

In RBF neural networks,  the centers (neurons) in the hidden layer are increased 
progressively till the error starts increasing. The strategy adopted in the toolbox of 
the MATLAB  package is as follows. Initially, the hidden layer has no neurons. 
The network is simulated and the input vector with the greatest error is made the 
new center. The network is again trained and the input vector with greatest error is 
included as center. This procedure keeps on repeating till the mean squared error 
falls below the goal. 

9.4.5 Effect of  Spread Parameter in Radial Basis Function Neural Network 

In radial basis function neural networks, the performance is highly sensitive to 
spread parameter. To illustrate this, we make an attempt to fit the function  

(10 ) 0 10y x x x  with six training data at x = 0, 2, 4, 6, 8 and 10. We use 
the radial basis function given by Equation 8.46, reproduced for one input case as 
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Here, the spread parameter is the square root of the varaiance 2
j . Figure 9.2 shows 

a function fitted by radial basis function neural networks with two different spread 
parameters. The actual function has also been plotted. It is observed  that the 
smaller value of spread parameter fits a non-smooth function with many peaks and 
valleys. The larger value of spread parameter provides a smooth curve; however, 
increasing the spread parameter beyond a limit makes the resulting simultaneous 
equations highly ill-conditioned and may pose difficulty in solving. Figure 9.3 fits 
the following function based on 10 uniformly spaced data: 

 
1 0 5,

11 5 10.
x x

y
x x

 

This function has a slope discontinuity at x = 5. It is seen in the figure that the 
actual curve is well approximated by a Gaussian radial basis function with a 
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variance of 18.1622. This shows the importance of selecting proper spread 
parameters.  

When a Gaussian function is used, the variance 2
j  is commonly set according 

to the following simple heuristic relationship [8]: 

 
2

2 max
j

d
K

,                                                                        (9.47) 

where dmax is the maximum Euclidean distance between the selected centers and K 
is the number of the centers. As this is only a heuristic relationship, the optimum 
spread parameter should be searched in the vicinity of the value obtained by 
Equation 9.47.  

 
Figure 9.2.  The fitted curves with two different RBF neural networks  

 
Figure 9.3. The fitted curves with three different RBF neural networks   
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9.4.6 Data Filtration 

Data filtration is the process of removing spurious data that might have come by 
the error in data collection. When replicates are collected, one can ignore the 
values out of 2  or 3  limits. Also, once the network has been properly fitted 
and the error in prediction for some data is more than twice the root mean squared 
error, those data should be examined. It is possible that  some of these are spurious 
data. Those data that have been confirmed to be correct should be retained in the 
training set and the network should be modeled again. 

9.4.7 Lower and Upper Estimates 

Many times, lower and upper estimates of the parameter are required along with 
the most likely estimate. With lower, upper and most likely estimates known, the 
parameter can be represented as a fuzzy number. A methodology to predict the 
lower and upper bounds of any non-linear function has been proposed by Ishibuchi 
and Tanaka [9]. This requires a simple modification of the back propagation 
algorithm. It is based on the concept that, during the training of a neural network 
for the prediction of an upper estimate, if the predicted value is more than the 
actual (target) value, a reduced value of the error has to be used by the back 
propagation algorithm. On the other hand, if the predicted value is less than the 
target value, the full error is to be considered. However, in the early iterations of 
the algorithm, even if the predicted value is more than the actual value, nearly full 
error has to be used to ensure that predictions are not too far away from the target 
values. As the iterations of the back propagation algorithm proceed, the weightage 
of the error keeps on reducing for the predictions which are more than the actual 
one. Thus, the error for a particular data (pattern) p is 
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where pd  is the actual (target) output, po  is the predicted output and w(i) is the 
weight factor. The weight factor keeps on decreasing with iterations. It should have 
the following two properties: 
Property 1: The weight factor lies between 0 and 1, i.e., 0 < w(i)   1. 
Property 2: As , ( ) 0i w i . 

Different types of decreasing functions can be used for the weight factor. If the 
weight factor decreases rapidly as the iterations proceed, the upper bound estimate 
will be far from the target values, although convergence rate will be faster. If the 
weight factor decreases slowly, the upper bound estimate will be nearer to the 
actual values. However, first the convergence will be slow and second for some 
data, the predictions may not be true upper bound estimates. Thus, there is no 
unique function w(i), which can be recommended. For the prediction of roll force 
and roll torque in cold flat rolling process, Dixit and Chandra [6] used 
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whereas for the prediction of surface roughness in a turning process, Kohli and 
Dixit [7] used 

 3
1( )

1 ( / 500)
w i

i
.       (9.50) 

Numerical experiments help one to arrive at a proper decision regarding the weight 
factor. The procedure for finding  the lower estimate is the exactly reverse. In this 
case, the error function is given by 
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Here, as the iterations proceed, the weightage of the error is reduced for the cases 
where the predicted value is lower than the target value. 

For predicting the upper and lower bounds using a radial basis function neural 
network, the weights can be obtained as interval numbers as explained in the 
section on multiple regression. Then, one set of weights predicts the lower bound 
estimate, whilst the other set predicts the upper bound. This procedure was used by 
Sonar et al. [10] for predicting the surface roughness in a turning process. 

Example 9.8: We present one example of predicting the surface roughness in the 
turning process, as reported in [7, 10]. For predicting the surface finish, the cutting 
speed (v), feed (f), depth of cut (d) and acceleration of radial vibration (a) are used. 
Table 9.13 shows the training data and Table 9.14 shows the testing data. Initially 
16 training and 8 testing data were taken and the best possible network was fitted 
with this data. The testing data for which the error in prediction was more than a 
prescribed value were transferred to the training set and new data were added in 
lieu of that. In this way, finally there were 19 training and 11 testing data.    
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Table 9.13. Training dataset in wet turning by HSS tool  

S. No. v (m/s) d (mm) f (mm/rev) a (m/s2) Ra ( m) 

1 107.80 0.3 0.04 0.55 1.74 
2 105.12 0.3 0.16 0.97 3.23 
3 104.80 0.6 0.04 2.92 2.74 
4 106.02 0.6 0.16 2.66 2.91 
5 27.71 0.3 0.04 0.95 2.06 
6 26.99 0.3 0.16 0.88 5.20 
7 27.71 0.6 0.04 0.59 2.87 
8 26.99 0.6 0.16 1.42 6.20 
9 46.55 0.3 0.08 0.73 3.21 

10 64.56 0.4 0.04 0.66 2.13 
11 78.10 0.6 0.12 2.10 4.57 
12 73.95 0.3 0.05 0.76 2.52 
13 38.50 0.3 0.06 0.47 3.37 
14 34.71 0.6 0.08 0.63 3.67 
15 74.13 0.4 0.10 2.48 4.80 
16 36.87 0.5 0.12 1.07 4.55 
17 48.14 0.6 0.08 0.58 4.52 
18 106.47 0.3 0.08 0.65 2.26 
19 23.45 0.3 0.04 0.42 1.99 

     Table  from Kohli and Dixit [7]. Copyright [2005] Springer 

Table 9.14. Testing dataset in wet turning by HSS tool  

Ra S. 
No

v d  f a  

Exp. L.E. M.L. U.E.

*(%) 

1 42.98 0.4 0.10 0.67 4.24 3.62 4.05 5.22 4.54 
2 35.96 0.3 0.12 0.95 5.21 4.01 4.71 6.08 9.56 
3 76.43 0.6 0.05 1.23 2.91 2.45 3.24 3.66 11.39 
4 72.92 0.6 0.04 0.79 2.81 2.40 2.95 3.43 4.96 
5 32.87 0.3 0.12 0.48 4.29 4.00 4.59 5.92 6.89 
6 48.75 0.6 0.04 0.65 3.18 2.56 3.19 3.83 0.15 
7 103.55 0.6 0.08 3.66 3.59 2.45 3.46 3.71 3.52 
8 47.52 0.6 0.16 1.73 5.43 5.42 5.80 6.18 6.72 
9 47.17 0.3 0.04 0.90 2.31 2.11 2.49 3.00 7.93 

10 27.35 0.6 0.08 0.72 4.00 3.41 3.82 5.28 4.53 
11 54.28 0.6 0.04 0.55 2.78 2.65 3.17 3.67 14.04 

 * - Deviation of most likely value from experimental value 
Units of variables in Table 9.14 are same as in Table 9.13. 
L.E. – Predicted lower estimate of surface roughness 
M.L. – Predicted most likely estimate of surface roughness 
U.E. – Predicted upper estimate of surface roughness 
Exp. – Experimental Values 
Table from Kohli and Dixit [7]. Copyright [2005] Springer 

The fitted network was tested with 29 validation data (Table 9.15). These data 
were different from training and testing data. Figure 9.4 shows the lower, upper 
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and most likely estimates using MLP network and compares them with the 
experimental values. It is seen that in most cases, the most likely estimates are 
close to the experimental values. Moreover, the experimental values fall in 
between the lower and upper estimates. Figure 9.5 shows the results using RBF 
network. Here also a good agreement is found between predictions and 
experiments. 

Table 9.15. Validation dataset in wet turning by HSS tool 

S.  
No. 

v  
(m/s) 

d  
(mm) 

f  
(mm/rev) 

a  
(m/s2) 

Ra  
( m) 

1 34.71 0.6 0.08 0.63 3.67 
2 64.56 0.4 0.04 0.66 2.13 
3 29.39 0.6 0.16 1.12 5.22 
4 20.88 0.4 0.12 0.67 4.79 
5 54.91 0.4 0.08 2.80 3.53 
6 38.50 0.3 0.06 0.47 3.37 
7 34.71 0.6 0.08 0.57 3.73 
8 48.14 0.6 0.08 0.58 4.52 
9 64.56 0.4 0.04 0.54 2.84 

10 32.87 0.3 0.12 0.55 5.26 
11 54.28 0.6 0.04 0.71 3.76 
12 29.39 0.6 0.16 0.98 5.44 
13 20.88 0.4 0.12 0.73 3.76 
14 54.91 0.4 0.08 0.73 3.48 
15 38.50 0.3 0.06 0.56 3.77 
16 48.70 0.4 0.04 0.54 2.39 
17 61.88 0.5 0.08 0.98 4.68 
18 60.56 0.5 0.08 0.77 3.14 
19 100.85 0.5 0.16 1.49 3.11 
20 26.48 0.4 0.04 0.37 2.03 
21 49.25 0.3 0.06 0.86 3.13 
22 106.34 0.3 0.04 0.94 2.65 
23 45.95 0.6 0.06 1.16 3.70 
24 101.80 0.6 0.06 2.70 2.51 
25 45.99 0.3 0.16 1.15 5.87 
26 104.20 0.3 0.16 2.23 3.36 
27 45.95 0.6 0.16 2.28 5.06 
28 46.97 0.6 0.16 2.43 6.35 
29 103.10 0.6 0.16 3.32 4.72 

         Table from Kohli and Dixit.[7]. Copyright [2005] Springer 
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Figure 9.4. Predicted values vs experimental values of surface roughness in wet turning of 
steel with HSS tool using MPL network. From Kohli and Dixit [7]. Copyright [2005] 
Springer 

 
Figure 9.5. Predicted values vs experimental values of surface roughness in wet turning of 
steel with HSS tool using RBF network. From Sonar et al. [10]. Copyright [2006] Springer 
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9.5 Prediction of Dependent Variables Using Fuzzy Sets 

The fuzzy set theory can be used to predict the dependent variables in a process.  In 
Chapter 8, it was discussed how a fuzzy inference system works. Based on a rule 
base and the values of input variables, output variables can be predicted. Chen and 
Black [11] proposed a procedure for generating the rule base as well as predicting 
the dependent variable. They employed the procedure for tool breakage monitoring 
and named it the Fuzzy-Nets In-Process (FNIP) system. Chen and Savage [12] 
employed it for the prediction of surface roughness in milling operations. The 
procedure basically consists of five steps, which are briefly described for a general 
problem of predictive modeling of a dependent variable. 

Step 1: Fuzzification of the Data 
In this step, the input-output datasets are fuzzified. This means that the data is 
divided into a number of fuzzy sets. One particular element of the dataset can be a 
member of more than one fuzzy sets with different membership grades. Figure 9.6 
shows the fuzzified input and output variables for a machining process. It is seen 
that the cutting speed of 90 m/min has a membership grade of 0.37 in H2 and 0.63 
in H1. Similarly, the depth of cut of 0.48 mm has a membership grade of 0.4 in the 
fuzzy set L1 and 0.6 in H1.   

Step 2: Rule Generation 
In this step, we generate the rules of the form: “If  u is U1 and v is V1, then o is O2,” 
where u and v are the two independent variables and o is a dependent variable. The 
U1 and the V1 are the fuzzy sets. The total number of possible fuzzy rules is equal 
to the product of fuzzy divisions of each input variable. Thus, for a two input 
problem, if u is divided into 4 fuzzy sets and v is divided into 7 fuzzy sets, the total 
rules will be 28. Rules are generated from available datasets, which may be 
obtained from experiments. Each set consisting of the input variables and the 
dependent variable can contribute to a rule. For generating the rules, each variable 
is assigned to a fuzzy set in which it has the maximum membership grade. For each 
input-output dataset, one rule will be formed. In the rule generation, basically we 
convert the numerical values of the variable into fuzzy sets. As an example, 
consider that it is known that for a comfortable condition in the room, a fan has to 
run at 2500 RPM, when the temperature was 35 C and relative humidity was 70%. 
In this case, temperature and humidity are the independent variables and fan speed 
required to maintain comfortable condition is a dependent variable. Now suppose 
that 35 C has the highest membership grade of 0.7 in fuzzy set ‘high’. We shall 
then consider this temperature as ‘high’ for generating a rule, irrespective of the 
fact that this temperature may also be called a ‘medium’ temperature with a lower 
membership grade, say 0.35. Similarly, suppose that 70% relative humidity has the 
highest membership grade in the fuzzy set ‘medium’ and the fan speed of 2500 
RPM has the highest membership grade in the fuzzy set ‘high’. In that case, this 
dataset generates the rule: If temperature is high and relative humidity is medium, 
then the fan speed is high. In this way, each dataset is used for generating the rules. 
There is a possibility of occurrence of repeated and conflicting rules. Conflicting 
rules have to be tackled in step 3. 
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Step 3: Conflict Resolution 
Two or more rules conflict when they have the same IF condition, but different 
THEN consequent. Suppose there are the following two rules: 
Rule 1: If u is U1 and v is V1, then o is O2. 
Rule 2: If u is U1 and v is V1, then o is O3. 
These rules conflict, because one cannot decide whether the output has to be O2 or 
O3. The following strategy may be adopted to resolve the conflict: 

 The rule occurring more frequently is chosen over the less frequent rule. 
 If each rule occurs as frequently as the other, the degree of each rule is 

calculated. The degree of a rule is defined as the product of membership 
grades of input and output variables. In Chapter 8 we defined the strength of 
a rule as the product of membership grades of input variable. Thus, the 
degree of a rule is strength of a rule multiplied by the membership grade of 
output variable. For example, based on data, if u has the highest 
membership grade of 0.7 in U1,  v has the highest membership grade of 0.8 
in V1 and o has the highest membership grade of 0.6 in O2, then we generate 
the following rule: 
If u is U1 and v is V1, then o is O2. 
The degree of this rule is 0.7 0.8 0.6=0.336. In the case of two conflicting 
rules, the rule with the higher degree is chosen. A criterion can be made 
that, if the difference in the degrees of the two rules is more than a 
prescribed value , the rule with the higher degree is chosen. 

 If the degrees of the two rules are nearly equal, i.e., the difference in the 
degrees of the two rules is less than , then the resolution of input 
parameters need to be increased by increasing the fuzzy set divisions that 
represent the variable.  

Step 4:  Combination of Rules 
All the rules are combined. Usually, a large number of rules are generated. These 
rules can be reduced by using Boolean operations. The reduced set of rules are 
easier to interpret. As a simple example, consider the following two rules: 

If temperature is high and humidity is medium, then the fan speed is high. 
If temperature is high and humidity is high, then the fan speed is high. 
Then, one can combine these into one rule: 
If temperature is high and humidity is (medium or high), then the fan speed is 
high. 

Further, if the humidity has been divided into three fuzzy sets, low, medium and 
high, then the above rule may also be written as 

If temperature is high and humidity is (not low), then the fan speed is high.  

Step 5: Making Out the Inference 
Once the rule base is ready, for a particular combination of input variables, output 
can be computed following the procedure described in Section 8.3.11. One can also 
solve the inverse problems by use of rule base. Some extrapolation is also possible. 

Abburi and Dixit [13] have used this method for predicting the surface 
roughness in a turning process. They first fitted an MLP neural network by training 
it with the experimental data. The fitted network was used to generate a large 
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database. This database was used to generate the rule base. The Fuzzification of the 
data was done as per Figure 9.6. With the 29 validation data of Table 9.15, the root 
mean squared fractional error was 16.79% and 76% data had error less than 20%. 

 
Figure 9.6. Fuzzification of input and output variables for wet turning by HSS tools. From 
Abburi and Dixit[13]. Copyright [2006] Elsevier 

9.6 Prediction Using ANFIS  

In this section, we describe a procedure which is a combination of artificial neural 
network and fuzzy set theory. It is called the adaptive-network-based fuzzy 
inference system (ANFIS) [14]. It consists of five layers; a typical architecture for 
two input and one output problem is shown in Figure 9.7. For simplicity, each 
input x and y is divided into two fuzzy sets only: A1, A2 and B1, B2.  



536 Modeling of Metal Forming and Machining Processes 

 
Figure 9.7. An ANFIS architecture 

Layer 1: Every neuron i in this layer is an adaptive neuron, with a known output 
function: 
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where ' '  indicates membership function. It can be any suitable function, for 
example a generalized-bell-shaped function, given by 

 2
1( )

1 ( ) /i iA b
i i

x
x c a

,                                            (9.53) 

or a Gaussian function given by 
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Parameters in this (ai, bi, ci and i) are known as premise parameters and are 
determined during the training of the network. 
Layer 2: In this layer each neuron corresponds to one particular rule. The 
membership grades corresponding to each IF part of the rule reach the neuron and 
are multiplied. Thus, the output of the neuron corresponds to the firing strength of 
the rule. Thus, 
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Layer 3: The outputs from layer 2 reach layer 3. Each neuron in this layer, finds the 
normalized firing strength. Thus, 
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Layer 4: Each neuron i in this layer is an adaptive neuron with a neuron function: 

  4, ( )ij ij ij ij ij ij ijO w f w p x q y r .       (9.57) 

Parameters ,ij ijp q  and ijr  in this layer are called consequent parameters. 
Layer 5: The single neuron in this layer is a fixed neuron computing the overall 
outputs as the summation of all incoming signals. Thus, 

 5,ij ij ij
j i

O w f .                   (9.58) 

Consequent parameters are found in forward pass by least square estimator. The 
premise parameters in the backwards pass are found by gradient descent method. 

Example 9.9: It is desired to develop a model for the prediction of roll torque in 
the rolling operation. The range of parameters is 

 1% 4 24, / 50 100, 0.06 0.14r R h f .   

 The material properties are fixed at 0( )Y =324 MPa, b=0.052, n=0.295. A total of 
16 training data are generated by an FEM code. Out of these eight are generated 
according to full factorial design and the remaining eight in a random manner. A 
total eight data are generated for testing of the network. The training and testing 
datasets are shown in Tables 9.16 and 9.17. The MATLAB  package is used for 
modeling and the ANFIS architecture (screen print out of MATLAB ) for this 
problem is shown in Figure 9.8. Each input variable is divided into ‘high’ and 
‘low’ and the generalized bell-shaped membership functions are used. Table 9.18 
compares ANFIS results with the FEM results. In all the cases the error is less than 
10%. 
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Table 9.16. Training dataset for roll torque prediction 

S. No. R/h1 f  % r T (kN-m/m) 
1 50 0.06 4 0.4795 
2 100 0.06 4 0.9615 
3 50 0.14 4 0.5012 
4 100 0.06 24 7.7913 
5 100 0.14 24 10.8048 
6 71 0.09 7 1.3097 
7 73 0.1 9 1.8393 
8 87 0.12 20 6.4451 
9 78 0.11 14 3.4730 
10 100 0.14 4 1.0610 
11 50 0.06 24 3.6475 
12 50 0.14 24 4.4904 
13 63 0.08 13 2.3525 
14 60 0.08 15 2.6496 
15 61 0.07 11 1.8310 
16 88 0.065 19 5.1582 

 

Table 9.17. Testing dataset for roll torque prediction 

S. No. R/h1 f  % r T (kN-m/m) 
1 93 0.07 23 7.0693 
2 79 0.12 18 4.9906 
3 67 0.13 21 5.1809 
4 79 0.11 15 3.8437 
5 74 0.09 8 1.5996 
6 65 0.11 20 3.9972 
7 60 0.08 10 1.6358 
8 52 0.07 20 3.1482 
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Figure 9.8. ANFIS model for the roll torque prediction 

Table 9.18. Result of roll torque prediction for testing dataset  

Roll torque (kN-m/m) S. No. 

FEM Results ANFIS  Results 

% 

Deviation 

1 7.0693 6.8744 2.7575 
2 4.9906 5.0694 1.5786 
3 5.1809 5.1551 0.4979 
4 3.8437 3.6946 3.8796 
5 1.5996 1.4919 6.7326 
6 3.9972 3.7641 5.8309 
7 1.6358 1.7000 3.9230 
8 3.1480 3.1736 0.8129 

9.7 Computation with Fuzzy Variables 

In the previous sections, the application of neural networks, fuzzy sets and the 
neuro-fuzzy systems for the prediction of process parameters has been described. It 
is assumed that a precise value of independent process variables is known. In 
practice some process variables may be known imprecisely, for example friction in 
a metal forming process. Imprecise variables can be considered as fuzzy variables. 
Then fuzzy arithmetic may be employed to compute the output as a fuzzy 
parameter.  The fuzzy arithmetic has been described in Section 8.3.5. 

An interesting observation about fuzzy arithmetic is that it provides 
unnecessary wider intervals at each -cut when a variable occurs more than once 
in an expression. For example, consider the expression 
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 1Y X
X

,                          (9.59) 

where X and Y are fuzzy numbers. Assume that at a certain -cut, 2, 4a =  X . The 
fuzzy arithmetic computations will provide 

 [2, 4] [1, 1] [2, 4] [2, 4] [1/ 4, 1/ 2] [2.25, 4.5]Y .     (9.60) 

However, if we consider the fact that the lower limit of X  is 2, providing 
corresponding Y as 2.5 and the upper limit of X  is 4, providing Y as 4.5, the 
reasonable value of Y seems to be [2.5, 4.5]. This is because, in the same 
experiment, the actual value of X is one quantity and taking different values of X 
for different terms of the expression is not justified. The number [2.5, 4.5] has a 
narrower range compared to [2.25, 4.5] computed in Equation 9.60. Similarly, 
consider the expression  

 Y X X .                                                          (9.61) 

For 2, 4a =  X , the arithmetic computation provides 

 [2, 4] [2, 4] [2, 4] [ 2, 2]Y ,        (9.62) 

which is clearly wrong because the answer should be [0, 0]. To alleviate this 
problem, Dong and Shah [5] have provided the vertex method for computing the 
functions of the fuzzy variables.  

In the vertex method, at each -cut, the function is evaluated at all possible 
combinations of lower and upper limits of the variables. Each variable has one 
lower and one upper limit. Thus, the n variables form 2n such combinations. These 
can be thought as the vertices of the n-dimensional hypercube. The lower limit of 
the function, at the particular -cut is the lowest among the values calculated from 
all possible combinations. Similarly, the upper limit of the function is the highest 
among the values calculated from all possible combinations. This is valid if there 
are no maxima and minima in the domain of input variables. If there are maxima 
and minima, maximum and minimum limits of the function should be chosen 
amongst the possible combinations of lower and upper limits as well as the 
maxima and minima points. One difficulty with the vertex method is the curse of 
dimensionality. As the number of independent variables increases, the number of 
vertices becomes too high. For a function of 5 independent fuzzy variables, there 
are a total of 32 vertices. Thus, at each -cut, one needs to carry out 32 function 
evaluations. Fortunately, in most of the cases of metal forming and metal cutting, 
behavior of the dependent variable as a function of independent variable is known 
qualitatively. One can easily get the idea of which two out of all possible vertices 
will provide maximum and minimum value of the function respectively. Thus, the 
computations can be carried out only at two vertices. For example, in Equation 
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9.43, if material properties and coefficient of friction are considered as fuzzy 
variables, it can be seen that at an -cut, the maximum value of roll force will be 
obtained for a combination, in which 0( )Y ,  f and n are kept at the maximum and 
b at the minimum. Similarly, the minimum value of roll force will be obtained for 
the lowest values of 0( )Y , f and n and the highest value of b at the particular -
cut. 

For finding the fuzzy dependent variable as a function of fuzzy independent 
variables, the computations are needed at different -cuts. If the fuzzy independent 
variables are triangular or trapezoidal numbers and the function involves only 
addition and subtraction operations, the computations at two -cuts are good 
enough, because the dependent variable will be a triangular/trapezoidal number for 
which the information at two -cuts is enough to construct the fuzzy number. 
However, if the function involves the multiplication and/or divisions, in general, 
the resulting independent variable will not be a triangular/trapezoidal number and 
computations at many -cuts are required in order to construct smooth curves 
representing fuzzy dependent variable. However, in many cases, the fuzzy 
dependent variable may be approximated by a triangular/trapezoidal membership 
function to a reasonable degree of accuracy. We can estimate the order of error in 
making such an approximation. Let us say the lower limit of a fuzzy independent 
variable is 1 2 1( )a a a where a1 and a2 are the lower limits at -cuts of 0 and 
1 respectively. In the same way, the lower limit of the other fuzzy independent 
variable is 1 2 1( )b b b . The product of these two variables results in a fuzzy 
variable with a lower limit of 

 2
1 1 1 1 1 1a a b b a b a b b a a b ,      (9.63) 

where a and b denote (a2 a1) and (b2 b1) respectively. This expression is a 
quadratic function of , requiring computations at three -cuts. However,  
considering that a and b are small quantities, the product 2a b may be 
neglected. In that case, the expression given by Equation 9.63 becomes a linear 
expression. For  = 1, the percentage error considering this approximation is given 
by 

 
2

percentage error = 100
2

a b
a b

.                                        (9.64) 

Thus, assuming that there is a total 10% uncertainty in the estimation of the two 
variables, i.e., 2 2/ / 0.1a a b b , the percentage error in making a linear 
approximation turns out to be only 1%. Here, the maximum error is at an -cut of 
1. If we construct the fuzzy dependent variable based on the computations at -cuts 
of 0 and 1, the maximum error will be at some intermediate -cut, the order of 
error being the same. Similar estimates of error can be made for fuzzy division and 
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other derived operations. One of the reasons for choosing triangular/trapezoidal 
fuzzy numbers is the reduced computational requirement with these numbers. 

Example 9.10: A solid cylinder of radius a and height h is axially compressed by a 
pair of rough platens. The approximate load P required to bring the cylinder to the 
yield point is given by [16] 

 2
21
3Y

P fa
ha

,                                                 (9.65) 

where f is the coefficient of friction and Y  is the yield strength. Assume that Y   
is 300 MPa within 5% accuracy and, most likely, lower and upper estimates of 
friction are 0.08, 0.06 and 0.12. For a = 5 mm and h = 15 mm, estimate the load 
required for yielding. 

Solution: With the given data, Y and f are constructed as linear triangular fuzzy 
numbers. For this purpose, most likely values are assigned membership values 1 
and lower and upper estimates are assigned membership grades of 0.5. The fuzzy 
numbers Y and f are shown in Figure 9.9. Since P is dependent on two fuzzy 
numbers, vertex method requires four computations at each -cut. However, it is 
clear that the high f and high Y combination will give the highest P and low f and 
low Y will give the lowest P. Hence, at each -cut, two computations are needed to 
find the lower and upper limits of P. The dependent variable plotted as a fuzzy 
number starting from the membership grade of 0.5 is called the possibility 
distribution of the number. The values having less than 0.5 membership are rarely 
possible and are therefore not included in the possibility distribution. Figure 9.10 
shows the possibility distribution of the forging load. It can be seen that it is almost 
linear.  Thus, it is possible to make a linear approximation for  possibility 
distribution in many situations.   

 We can obtain the fuzzy dependent variable as a fuzzy number, but how do we 
use this information? One use is that it provides a good qualitative feel about the 
dependent variable. We can observe the spread in the variable, i.e., how fuzzy that 
variable is. We can also use this information for a reliability-based design. A fuzzy 
reliability measure has been introduced [17]. The method is based on the concept 
of entropy. Therefore, before describing the method, it is essential to describe the 
concept of entropy. 

The term ‘entropy’ is normally used to describe the degree of uncertainty about 
an event. For an event consisting of the discrete random variable Si (i = 1, 2,…., q) 
with Pi as the associated probabilities, the Shannon entropy is defined as [18] 

 
1

( ) ln (1/ )
q

i i
i

H S P P .                                                    (9.66) 

As an example, consider that in a bag there are four white, four black and four red 
balls. If a ball is drawn randomly, the probability that a ball of a particular color 
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will come is 1/3. Now, the three events are: (1) The ball is red. (2) The ball is 
black. (3) The ball is white. The entropy of the system is  

 1 1 1( ) ln 3 ln 3 ln 3 1.0986
3 3 3

H S . 

Now consider a bag in which there are 1 white, 1 black and 10 red balls. The 
probabilities of the three events will be  1/12, 1/12 and 5/6. The Shannon entropy 
for this system will be 

 1 1 5( ) ln12 ln12 ln(6 / 5) 0.5661
12 12 6

H S . 

We observe that the second system has lesser entropy than the first one, because 
the second system is less random. (We know that it is dominated by the red balls.) 
Thus, entropy is a measure of randomness. It is natural that the entropy of a fuzzy 
set should be a measure of the uncertainty rather than randomness. Analogous to 
the definition of Shannon entropy, the entropy with a particular membership grade 
may be defined as [19] 

 2 2[ log (1 ) log (1 )] for 0 1,
( )

0 for 0,1.
d      (9.67) 

In this form, the value of entropy is maximum (and equal to 1) at  =0.5, i.e., when 
the uncertainty is maximum. It is to be noted that De Luca and Termini [19] used 
the natural logarithm in the entropy expression. Here, the base of the logarithm has 
been taken as 2 to bound the entropy value between 0 and 1. The entropy given by  
Equation 9.67 satisfies the following property: 

  * *( *) ( ) given ( for 0.5 and for 0.5)d d . (9.68) 

This is because *  is less (or equal) uncertain than . 
After having defined the entropy of a fuzzy set, we are now in a position to 

propose a measure of the reliability of a design involving fuzzy parameters. 
Conventionally, the definition of reliability is based on the probability theory. But 
when a process is controlled by fuzzy parameters instead of random parameters, 
the definition of reliability should be based on the uncertainty associated with the 
subjective information, i.e., on the membership grade of fuzzy parameters. In order 
to avoid any conflict of terminology, we call this reliability “fuzzy reliability”. 

For deriving an expression of fuzzy reliability, we introduce one more measure 
called possibility index, PI. The possibility index quantifies the possibility of the 
success of a design. Considering Example 9.10, let ( )RP  and ( )LP denote the 
right (upper) and left (lower) limits of the forging power (to cause yielding) at a 
membership grade of . Note that for the particular membership grade , the 
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yielding is surely possible when the power P is greater than ( )RP . Thus, PI 
should be chosen to be 1 when P is greater than ( )RP . Further, yielding is 
impossible when P is less than ( )LP , which means PI should be zero for this 
case. For the intermediate values ( ( ) ( )L RP P P ), PI varies from 0 to 1. If it 
is assumed that it varies linearly, then PI can be defined as  

 

0 if ( ) ,
( )

( , ) if ( ) ( ),
( ) ( )

1 if ( ).

L

L
L R

R L

R

P P
P P

PI P P P P
P P

P P

      (9.69) 

Note that for a power P, PI is a function of . Thus, there is a degree of uncertainty 
associated with the possibility index. This is the other uncertainty, which affects 
the reliability. A measure of this uncertainty is the non-probabilistic entropy 
d defined by Equation 9.67. Then, the quantity 1 d can be considered 
as a measure of certainty. Therefore, a reliability index can be defined as 

 ( , ) ( , ) 1 ( )P PI P d .              (9.70) 

Now, the area under the  curve is taken as the measure of reliability. The 
maximum value of area corresponds to the case when PI=1 for all . Therefore, it 
is taken as 100% reliability. Thus, the reliability can be defined as  

 

1 *

0.5
1

0.5

( , ) d
(%) 100

1 ( ) d
e

P
R

d
.                                  (9.71) 

For Example 9.10, the variation of fuzzy reliability with load is shown in Figure 
9.11. 

 
Figure 9.9. Membership functions. a Of yield strength. b Of coefficient of friction 
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Figure 9.10. Possibilty distribution of forging load 

 
Figure 9.11. Fuzzy reliability of design for different forging loads 

9.8 Summary 

In this chapter, we have described the application of neural networks and fuzzy set 
theory in the estimation of the output variables of  metal forming or machining 
processes. This approach becomes highly useful when physics-based modeling is 
difficult and/or necessary physical parameters needed in the physical model are 
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difficult to determine. The chapter starts with the discussion of the statistical tools. 
Before applying the soft computing-based methods, it is advisable to carry out 
statistical analysis including modeling using multiple-regression. 

Two most common neural networks are MLP and RBF. Among these, the MLP 
network requires less data, but needs more time in training, whereas RBF network 
can be trained in a faster manner, but will need more data. The procedure of 
training of these networks has a profound effect on the performance of the 
networks. The discussion pertaining to this aspect has been included, but this area 
is still open to research. The fuzzy set-based system can also be used for 
prediction. The main advantage is that it provides better physical feel of the 
problem and is easy to implement. The combination of neural network and fuzzy 
set theory has also been discussed. Finally, there is a section on computation using 
fuzzy parameters.  
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10 

Optimization of Metal Forming and Machining   
Processes 

10.1 Introduction  

The aim of every engineer is to carry out optimization. We keep on optimizing 
many things even without using  any optimization techniques. One can find endless 
number of problems in metal forming and machining where optimization can play 
a major role. The task of the optimization can be divided into three main subtasks:  

(1) Formulation of the statement of the optimization problem in terms of the 
objective function and constraints. 

(2)  Developing the mathematical model for obtaining the objective function 
and constraints as a function of the design (decision) variables whose value 
one needs to determine in the process of obtaining the optimal solution. 

(3)  Solving the optimization problem using a suitable optimization algorithm. 

The first subtask is very important and requires a lot of experience, intuitive 
knowledge and understanding of the physics. No mathematical technique can be a 
substitute for the knowledge of the expert. The expert’s knowledge has to be 
formulated in the form of the optimization problem of the following form: 

 

1 2Minimize ( ), ( ),............, ( ),
subject to
               ( ) 0 1, 2,.........., ,

( ) 0 1, 2,.........., ,

1, 2,.........., .i

l

i

i
l u
i i

f f f

g i m
h i n

x x x i k

x x x

x
x

                                        (10.1) 
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where ( )if x  is the i-th objective function out of the total l objective functions, 
( )ig x  is the i-th inequality constraint out of the total m inequality constraints, 

( )ih x  is the i-th equality constraint out of the total n equality constraints, and l
ix  

and u
ix  are the lower and upper bounds of the i-th design variable  ix , total design 

variables being k. This problem is a multi-objective optimization problem. Note 
that if some objective function needs to be maximized, it can be converted into a 
minimization form by multiplying with 1. Similarly, an inequality constraint of 
the form greater than or equal to can be converted into an inequality constraint of 
the form less than or equal to by multiplying it with 1. 

In most of the optimization problems of metal forming and machining, it is not 
possible to obtain the closed form expression for the objective function and 
constraints. Sometimes the value of the objective function and/or the constraint 
functions can be obtained by an FEM routine. In that case, the FEM routine acts as 
a black box function. However,  it is often better to train a neural network based on 
FEM data or prepare a rule base for fuzzy inference system, and use a trained 
neural network or fuzzy inference system as a black box function in an 
optimization code. This will be a computationally efficient procedure as a well-
trained neural network and/or fuzzy inference system will provide much quicker 
prediction than an FEM routine. Moreover, in some cases, it may not be possible to 
predict a parameter using the FEM and one has to rely on the neural network 
model or fuzzy-inference system based on the experimental/experiential 
knowledge.  

The aim of this chapter is to show how finite element method and/or soft 
computing techniques can help in optimizing metal forming and machining 
processes. There is a plethora of optimization problems. Only a few representative 
problems have been discussed. Also, sometimes the traditional optimization 
algorithms can also be quite effective in solving some optimization problems. 
However, the discussion about the traditional optimization algorithm is beyond the 
scope of this book. The readers interested in learning various traditional 
optimization algorithms may refer to [1–3].     

10.2 Optimization Problems in Metal Forming  

In metal forming optimization problems, the interest is to produce quality products 
with minimum energy. In almost all metal forming processes, the optimization can 
play a major role. Some examples are as follows. In the steady state problem of 
wire drawing and rolling, the optimal scheduling of passes is an inportant task. In 
the forging processes, the optimal design of dies and pre-form shape is important. 
In deep drawing processes, the decision about the proper blank-holder force in 
order to avoid tearing and wrinkling forms an optimization problem. In Section 
6.4.5, a procedure to obtain optimal blank shape to avoid earing in cylindrical cup 
deep drawing has been described. In the following subsections, we choose some 
other typical processes to discuss the formulation of optimization problems and 
procedures for solving it.  
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10.2.1 Optimization of Roll Pass Scheduling  

In Chapter 1 we introduced the tandem rolling mill. In the tandem rolling mill, a 
strip is successively reduced in thickness at each stand as it passes through the mill. 
It can also be employed to change the cross-sectional shape of the product, such as 
in rod rolling. However, here we will discuss the optimization of cold plane-strain 
rolling. Designing of an optimum reduction schedule that will give a correct output 
gauge and satisfactory shape and surface finish with minimum energy is of 
paramount importance. Rolling mill industries have been carrying out scheduling 
based on past experience and using rules of thumb. It is a good idea to combine 
analytical information gained using FEM and expert knowledge in the form of 
neural network and/or fuzzy set-based models.  

In an early paper Avitzur [4] developed a procedure to optimize tandem mill 
operation by maximizing the production rate subject to certain constraints. He 
illustrated the procedure by a numerical example for a hypothetical six-stand 
tandem hot rolling mill. The effects of changes in some of the process variables on 
productivity and other factors were studied. Brayant and Spooner [5] described a 
simple approach to schedule design and discussed the on-line correction of shape 
and related aspects of mill design. Brayant et al. [6] presented a methodology for 
optimum schedule design, which considers the flatness of the strip and the general 
mill operating conditions. Dixit and Dixit [7] minimized the total specific power 
considering the constraint of avoiding central burst and alligatoring. They have 
also tackled the uncertainty in the process and material parameters using fuzzy set 
theory. Wang et al. [8] have applied genetic algorithms to the tandem cold mill 
scheduling problem. 

Some typical constraints in the rolling problem are as follows: 
Constraint on the front and back tensions:  
In tandem rolling with intermediate stands, the front tension of one stand becomes 
the back tension of the other stand and is called interstand strip tension. The upper 
tension limit is usually fixed by the tearing consideration. It has been estimated that 
the maximum safe level of strip tension to reduce the possibility of tearing is about 
one-third of the yield stress [6]. The lower limit of the tension may be to have the 
tension more than the maximum longitudinal compressive residual stress produced 
in the strip, in order to avoid the buckling of the strip. Anyhow, it should be well 
above zero, otherwise the strip may loop between the stands. 
Constraint on the residual stresses:  
One can also put the constraint on the residual stresses. It is believed that a heavy 
reduction will cause tensile residual stresses on the surface, which will cause crack 
propagation on the surface. However, the residual stresses also depend on the other 
process parameters. For implementing this constraint, a sound mathematical model 
or huge amount of practical data should be available. 
Constraint on roll force:  
The roll force at any stand should be limited to some value. This value depends on 
the considerations of mill modulus and roll supporting bearings. The last stand 
force is critical due to imposed quality requirement like roughness and flatness.  
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Constraint on roll power:  
The roll power should be limited not to cause excessive torque. The roll torque has 
to be kept below a limit based on work roll neck stress and drive spindle capacity. 
If the horsepower of the motors is be specified, the roll power at any stand should 
be limited so as not to cause excessive overloading of the motors. Often it is better 
to have the same power for all stands. Sometimes the heat transfer consideration 
plays a role in the maximum allowable roll power. If it is assumed that the entire 
rolling power is dissipated as convective heat, a simple equation can be written as 
follows: 

 02 ( )RP RLh ,                                     (10.2) 

where L is the length of the roll, R is the radius of the roll, h is the convective heat 
transfer coefficient, and R  and 0 are the temperatures of the roll surface and 
surroundings, respectively. 
Constraint on rolling speed:  
The production rate depends on the exit speed of the roll. It is desirable to have the 
maximum exit speed. The speeds of the other rolls should be adjusted depending 
on the need of interstand tension. A theoretical discussion on this aspect is 
available in [9]. 
Constraints on reduction: 
 Based on the upper bound analysis, Avitzur et al. [10] has shown that the central 
burst defect tends to be promoted by the small percentage reduction. The same 
thing is true about alligatoring or split end defects. At a very low reduction, the 
material near to the roll surface flows properly, but the central portion of the strip 
does not. This causes the central burst and/or alligatoring defects. Using the 
relation provided in [11], it can be shown that for avoiding the central burst and 
split end defects, 

 
R

hr
81.1
exit ,                               (10.3) 

where r is the fractional reduction and hexit is the exit thickness.  
The simple equation for the maximum possible reduction without causing the 

skidding of the rolls is [12] 

 
entry

28
h

Rfr ,                                (10.4) 

where hentry is the inlet thickness and f is the coefficient of friction. This equation 
has been derived by considering the equilibrium of the forces acting at the strip and 
taking the roll diameter as double the actual roll diameter to take into account the 
roll flattening effect. The finite element analysis can also find the maximum 
possible reduction based on the location of the neutral point. If the neutral point 
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reaches the exit, a limit on the maximum possible reduction has been obtained. For 
unaided entry of the strip in the roll gap, 

 
entry

2

h
Rfr .                               (10.5) 

This equation is important during the threading operation in the rolling mill. The 
threading operation starts from the entry of raw material into the first stand and 
continues up to the acceleration of the mill. 

In the last stand, the maximum possible reduction may be limited by the 
flatness and surface roughness requirement of the strip. It is expected that with 
increasing reduction, the quality of the strip including the surface finish will 
deteriorate. Not much work has been done to assess the surface roughness of the 
rolled strip using mathematical modeling. Neural network modeling can play a 
vital role in this. 

Having discussed the constraints in the tandem mill scheduling, let us discuss 
the typical objectives in the schedule optimization problem. The common 
objectives are the minimization of total power and maximization of production 
rate. Sometimes the constraints can also be incorporated into the objective 
function. For example, if it is known that the inter-stand tension it  should lie 
between two limits min( )it  and max( )it , one can convert this constraint into an 
objective function: 
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min max( ) ( )
Minimize

2
i i

i
t t

f t ,                             (10.6) 

thus trying to keep the inter-stand tension near the mean of the given range. Once 
there are multiple objective functions, the problem can be solved by multi-
objective genetic algorithms. Here, all the solutions which provide a good value at 
least with respect to one objective function are preserved. Thus, one can generate a 
Pareto-optimal solution-set. In this set, no solution dominates another solution. It 
means that in the Pareto-optimal set there is no solution which is worse than any 
other solution from the viewpoints of all the objectives. For example, if two 
objective functions f1 and f2 are to be maximized and there are three solutions viz., 
(i) f1=10, f2=5, (ii) f1=9, f2=4 and (iii) f1=1, f2=11, then (i) and (iii) are Pareto-
optimal solutions. The solution (ii) is not a Pareto-optimal solution, because the 
first solution dominates it in all respects. (In the first solution, both the objective 
functions are more than in the second solution.) 

Once the Pareto-optimal solutions are obtained, a higher order decision can be 
taken to choose the best solution. Fuzzy set theory can be employed here. In this, 
based on the expert’s opinion, the membership functions for each objective are 
constructed. If i  is the membership function for i-th objective if , then the overall 
membership grade of a solution may be written as [13] 
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 0 1 2 1 2..... (1 ) min[ , ,......., ]n n n .                  (10.7) 

For 1 , Equation 10.7 reduces to a compensating trade-off, where the high 
membership grade in one objective function can compensate for a low membership 
grade in the other. For 0 , Equation 10.7 reduces to non-compensating trade-
off, where the performance of a solution is decided by the most poorly performing 
objective. Putting 0.5  provides equal weightage to both compensating and 
non-compensating trade-off. 

10.2.2 Optimization of Rolls            

The selection of roll diameter is an important decision for rolling mill design. The 
advantages associated with small and large roll diameters are listed in Table 10.1. 
It is seen that there are positive points associated with small as well as large 
diameter rolls. 

Table 10.1. Advantages associated with the small and large rolls 

Small Rolls Large Rolls 

Less rolling force, less rolling 
torque and power, less spread 

More rigidity (backup rolls may not be 
needed in some cases), better cooling, less 

tendency for split edge and alligatoring 
defects,  better roll life 

The finite element modeling, empirical relations and experience can provide the 
quantitative values of the attributes listed in Table 1.1. The membership function 
can be assigned to various attributes for a particular roll diameter. The roll 
diameter that maximizes the overall membership grade is chosen. 

The roll profile can also be optimized to provide a good quality product. The 
strip profile, strip shape and edge cracking are influenced by work roll deflections, 
backup roll deflection, work roll flattening and work thermal expansion. These are 
compensated by providing crown on work-rolls, backup rolls, or both the rolls. The 
elastic deformation of the rolls can be analyzed by using the finite element method. 
For finding the thermal expansion, the temperature analysis needs to be carried out, 
and then the roll deformation can be found by thermo-elastic analysis. In general, 
the required crown on the roll will be dependent on the reduction, type of material 
and other process conditions. Thus, one particular roll profile is not appropriate for 
all situations. Therefore, there is a role of the optimization in finding the most 
suitable roll profile.  

10.2.3 Optimization of Wire Drawing and Extrusion  

The optimization problem in wire drawing and extrusion concerns deciding the 
number of passes in multi-stage processes and optimization of die profiles. Joun 
and Hwang [14] optimized wire drawing and extrusion to minimize the total 
forming energy. The process modeling is carried out using the finite element 
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method. However, the authors fixed the total number of passes a priori. Their 
design variables are die geometry and process conditions. Celano et al. [15] have 
optimized the multi-stage wire drawing process by using simulated annealing. In 
this work, the number of passes was not fixed a priori, although the die angles 
were fixed. The objective chosen by these authors was to have more or less 
uniform stress in all the passes. 

For optimizing the multipass wire drawing and extrusion process, the major 
objective can be the minimization of the total forming power. The constraints can 
be based on the following considerations: 

(1) The product should be defect free. For this purpose, the constraints based 
on critera for defect prevention have to be applied. According to simple 
hydrostatic stress criteria for defect prevention, the hydrostatic stress 
should not become tensile in the deformation zone. 

(2) The strain distribution in the product should be as uniform as possible. 

(3) Die pressure should be sufficiently small to prevent excessive die wear. 

(4) Die pressure should be as uniform as possible in order to avoid the 
tendency of pitting. 

(5) The power needed at any stand should be below the capacity at the stand. 

The die shape can be optimized by approximating the inner surface of the die by 
piecewise continuous polynomials. The coefficients of the polynomial can be 
obtained by solving the optimization problem. There are some papers using this 
approach. For example, Balaji et al. [16] have optimized die profile of extrusion 
dies. Reddy et al. [17] have also carried out die shape optimization. A third degree 
polynomial die is used and its coefficients are adjusted for minimizing the power.  

Lee et al. [18] have optimized the die profile for obtaining uniform 
microstructure in hot extruded product. The die profile is approximated by the 
Bezier curve and the parameters of the curve are obtained as a result of the 
optimization. The thermo-coupled rigid-viscoplastic FEM is employed to find the 
quantities needed for microstructure evolution model. For microstructure 
evolution, Yada and Senuma’s empirical model [19] is employed. This model 
requires temperature, strain and strain rate which are found by FEM. The objective 
function is to determine the optimal die profile which provides the least square 
deviation between the average grain size and the actual grain size. Thus, the 
objective is 
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,                        (10.8)   

where Vtotal is the control volume of the extruded portion of the product, id is the 
grain size of the i-th finite element and Vi is the volume of the i-th finite element. 
The average grain size avgd is found as 
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Lin et al. [20] has optimized the die profile for improving the die life in the hot 
extrusion process. For improving the die life, an optimization scheme coupled with 
a rigid-viscoplastic finite element analysis has been employed to obtain a die 
profile providing more uniform surface load distribution. The die profile is 
represented by a cubic-spline curve. The objective function of the problem is to 
provide uniform axial normal and shear stress at the interface. The total extrusion 
load is kept as a constraint.   

Ulysse [21] has carried out extrusion die design for flat faced dies. The concept 
employed by the author is that an optimized die will extrude a profile with uniform 
exit velocity. Uniform exit flow through a flat faced die can be achieved through 
the use of bearings and/or pockets (cavities placed at the entrance of the die 
orifice). By decreasing the bearing length at a particular location of a die opening, 
the resistance to flow rate is decreased. Similarly, by increasing the bearing length, 
the resistance to flow rate can be increased. The resistance to flow rate can also be 
decreased by increasing the local width of pocket around the die orifice. Thus, by 
varying bearing lengths and pocket widths, one can obtain uniform die exit 
velocity. The author has developed a numerical model using FEM and optimized 
the bearing and pocket sizes to minimize the variation in the exit velocities of 
different sections. 

Yan and Xia [22] have optimized the parameters of the profile extrusion 
process. The die hole layout for a non-symmetric angle profile was obtained. The 
objective function is the standard deviation of the velocity field to ensure the 
uniform flow velocity. First, the FEM simulations were performed using an 
orthogonal array to minimize the number of simulations. The simulations were 
used to train a neural network module. The fitted neural network module was used 
as a black box for optimization of the problem using genetic algorithms.  

10.2.4 A Brief Review of Other Optimization Studies in Metal Forming  

The literature on the optimization problem in metal forming is quite sparse. In this 
subsection, a brief review of the optimization studies in metal forming is presented. 
Kleinermann and Ponthot [23] first used optimization for solving the inverse 
problem of metal forming for identifying the parameters, particularly the material 
behavior. The updated model was used for the optimization of initial shape and 
tool shape. The authors presented application examples of initial shape design for 
superplastic forming of a cup and deep-drawing of a fastener component. 

Zhao et al. [24] have presented a methodology of optimizing perform shape in 
the net-shaped forging process. The method approximates the perform shape by B-
splines, the control points of which are optimized so as to give the final shape very 
close to the desired shape. The final shape is predicted by finite element analysis.  

Antonio et al. [25] have optimized the shape of the first-stage forming tool and 
the initial work-piece temperature that minimizes the total forming energy and the 
gap between the final forged shape and the desired one, bounding the maximum 
temperature reached in a two-stage hot forging process. In this work a genetic 
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algorithm with elitist strategy has been used. In elitist strategy, a core of best 
individuals is always preserved and is transferred as it is to the new generation. 
The new population is generated from the old one using four operations: selection, 
crossover, elimination/substitution and mutation. In the selection operation, the 
members of the population are ranked according to their fitness. Some highly 
ranked members form the elite group leaving another group of ordinary members. 
One parent is selected from the elite group and another from the ordinary group for 
carrying out crossover operation. The crossover operator transforms two parent-
chromosomes into new chromosomes having genes from both the parents. The new 
members generated from the crossover operation join the original population. At 
this stage, the population size gets enlarged due to the addition of new members 
following the crossover operation. The enlarged population is ranked. The 
solutions with similar genetic properties are eliminated and new randomly 
generated members are added in lieu of it. Further ranking is carried out and a few 
worst individuals are eliminated, simulating the death of the old members. After 
this operation, the size of the population is less than the original size. This is 
brought to the original size by generating some individuals by mutation. After the 
new population is obtained, the steps of the genetic algorithm are repeated till a 
suitable convergence criterion is obtained. 

Khoury et al. [26] have listed a few criteria and constraints on the forging 
process that industry requires. The first criterion is to obtain a good forged part 
(with proper die filling and absence of defects). The second criterion is to use the 
just necessary effort for decreasing the wear. The press load capacity and press 
speed can be taken as constraints. The challenge in the optimization task is to 
satisfy various conflicting goals simultaneously and to have accurate models of the 
process.    

In sheet metal forming processes such as deep drawing, the blank-holder force 
(BHF) is a critical parameter. If the blank-holder force is higher, there are chances 
of tearing the sheet. With a too low blank-holder force, wrinkling occurs. Thus, the 
blank-holder force has to be kept at an optimum value. Chengzhi et al. [27] have 
used an adaptive response surface methodology to obtain the optimum variable 
blank-holder force. The optimization is carried out to avoid wrinkling and fracture. 
By manipulating the blank-holder force, it is possible to eliminate wrinkling and 
fracture. Wrinkling may occur at the start of the stroke if BHF is too low and 
fracture may occur if the BHF is higher. Therefore the authors have adopted the 
strategy of applying a variable blank-holder force. 

The finite element modeling of sheet metal forming is complicated, especially 
when a thorough defect analysis is required. Liu et al. [28] have carried out the 
optimization of blank holding force and draw beads restraining force based on the 
existing FEM software. Draw beads control the flow of the blank into the die 
cavity. Beads restrict the flow of sheet metal by bending and unbending it during 
the drawing. Tang et al. [29] have optimized draw bead design in sheet metal 
forming. Hu et al. [30] have carried out the optimization of forging-extrusion 
problems using a fuzzy and rough set-based knowledge base. Jansson and Nilsson 
[31] have optimized sheet metal forming processes using the response surface 
methodology. The response surface methodology is an optimization method that 
approximates the function and constrains by simple polynomials, often linear ones. 
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If there are n design variables to fit a linear function, only (n+1) functions are 
required, although for more accuracy some more functions can be evaluated. 
Initially, the function is fitted on a larger domain and the optimum solution is 
found. Then the domain is shifted to have the optimum solution at the center. At 
the same time, the domain is reduced and the linear approximations are employed 
in this region. The new optimum solution is found. This process is repeated till a 
convergence is obtained. The authors have used a finite element program and 
optimized the blank holding force, draw beads, die radius etc. Sattari et al. [32] 
optimized the deep drawing process for minimizing the thickness variation.  

Shi et al. [33] have optimized die shape for sheet metal forming processes. The 
objective function used by them is 

 wr fff .                            (10.10) 

The first part rf , called the rupture criterion, is given by the ratio of thickness 
strain to the critical allowable thickness strain calculated from the Forming Limit 
Diagram (FLD). A higher value of rf indicates a higher possibility of splitting the 
material. The second part wf , called the wrinkling criterion,  is the absolute value 
of the ratio of minor and major principal strains. The larger the value of wf , the 
greater the possibility of wrinkling occurring.  

There have been some attempts to optimize the superplastic forming process 
[34]. The superplasticity is characterized by a high sensitivity of stress to strain 
rate. One measure of superplasticity is the rate sensitivity index m given by 

 
,

ln
ln p

T

m ,                                 (10.11) 

where  is the stress,  p  is the plastic strain and the partial derivative is defined at 
constant temperature T and microstructural state . During superplasticity, m is 
usually more than 0.4. In most of the optimization work, the forming load is 
adjusted to ensure that the maximum strain rate coincides with that giving 
maximum m. Bate et al. [34] have shown that the maximization of m need not be 
the proper goal. The authors have carried out the optimization for maximising the 
minimum thickness or minimizing the cavitations level. 

Parsa and Pournia [35] have optimized initial blank shape using the inverse 
finite element method. Sosnowski et al. [36] have optimized the sheet metal 
forming tool based on sensitivity analysis. Based on their study, Ganter et al. [37] 
have concluded that prediction of surface defects, residual stresses and springback 
is still unreliable using numerical methods.  
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10.3 Optimization Problems in Machining  

The economics of machining has been an important area of research in machining 
starting with the early work of Gilbert [38]. The main objectives are minimization 
of cost of machining, maximization of the production rate and maximization of 
profit rate. The major constraints are the constraint on surface roughness, forces 
coming on the tool and machine power. In general, optimization of machining is a 
multi-objective problem. The major difficulty in the optimzation is the knowledge 
about the metal cutting behavior. There should be a model to predict the tool life, a 
model to predict the job quality and a model to predict the forces and temperature 
of the tool. Figure 10.1 shows the block diagram of the optimization procedure. 
This diagram shows that for obtaining the optimal process parameters, one requires 
models of machining performance, machining cost and machining time. For 
determining the machining cost and time, one needs the tool life as a function of 
process parameters. We shall first review the research work in the area of 
machining processes, mainly confining to two important processes, turning and 
milling. Compared to studies on turning, milling has been less investigated. 
However, the optimization methodology of the turning process can also be 
extended to the milling process. Therefore, after presenting a brief review on the 
optimization of machining processes, we shall discuss, in some detail, the 
formulation of a multipass turning process.  

 
     Figure 10.1.  Block diagram of the optimization procedure in Machining 

10.3.1 A Brief Review of Optimization of Machining Processes  

Optimization of process parameters in machining processes has been an area of 
prime importance for researchers and engineers. In an early work, Gilbert [38] 
presented an analytical procedure for determining the optimum cutting speed in a 
single pass turning process. In this work feed and depth of cut were kept fixed. The 
problem was solved for two objective functions: maximization of the production 
rate and minimization of cost. This was a preliminary work. It is well known that 
tool life depends on feed and depth of cut apart from the cutting speed. Also, the 
consideration of surface roughness has to be an integral part of the machining 
optimization problem.  
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Later on most of the researchers have taken either the empirical relations for 
surface roughness or the ideal surface roughness formula (based on geometric 
consideration) given by 

 
2

32a
fR

R
,                                                                  (10.12) 

where aR  is the center line average (CLA) surface roughness value in mm,  f is the 
feed in mm/rev and R is the tool nose radius in mm. It is to be noted that this 
formula is derived on the basis that only the nose portion of the tool is making 
contact with the work-piece, a situation typical for turning with low depth of cut. 
However, a number of researchers have employed this relation even when the 
depth of cut was more than the nose radius. For large depth of cut other relations 
based on geometric consideration are available in the literature. For tool life 
determination, most of the researchers have used extended Taylor’s tool life 
formula: 

 p q rTv f d C ,                                                      (10.13) 

where v is the cutting speed in m/min, T is the tool life in minutes, d is the depth of 
cut in mm and  p, q, r and C are the constants for a particular tool and work 
material combination.  

Ermer [39], Petopoulos [40] and Lambert and Walvekar [41] used geometric 
programming for the optimization of the constrained machining economics. In a 
geometric programming problem, the constraints and the objective function are 
expressed as posynomials. A function is called posynomial if it can be expressed as 
the sum of real power terms each of the form 1 2

1 2 ........i i ini nc x x x  with ic  > 0 and 

ix >0 and i range from 1 to the number of terms N. The geometric programming 
approach could not become popular for two reasons. First, the constraints and 
objective functions must be expressible in the form of a posynomial and second, as 
the number of constraints increase, the degree of difficulty in solving a geometric 
programming problem increases.   

Shin and Joo [42] presented a model for the optimization of machining 
conditions in a multipass turning process consisting of rough and finish passes. 
They used a dynamic programming method. Gupta et al. [43] used integer 
programming for optimization. They used two steps for the minimization of total 
production cost. In the first step, minimization of costs for rough and finish passes 
for various fixed depths of cut is obtained. The values of depths of cut are selected 
from a series of allowable depths. In the second step, an optimal combination of 
depths of cut for rough and the finish passes, the optimal number of passes and the 
minimum total costs are obtained. The second step is solved using integer 
programming.  In this method, as the number of allowable depths of cut called 
“optimal sub-divisions” increase, the computation time increases. It is to be noted 
that there are multiple solutions of the problem in many cases, which Gupta et al. 
did not report. 
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Al-Ahmari [44] has prepared a direct non-linear mathematical model that 
solves the multipass turning optimization problem. The decision variables are: 
cutting speed in each pass, feed rate in each pass, depth of cut in each pass and 
number of passes. The model was solved using LINGO software. Kee [45] has 
carried out optimization for conventional as well as CNC lathes. In conventional 
lathes, the speeds and feeds have to be provided in steps, whereas in CNC lathes, 
speeds and feeds are continuous. This changes the optimization strategy for both 
types of lathes. Yeo [46] has provided methodology for an effective optimization 
of machining parameters for multipass turning operation. Using an equal depth of 
cut strategy, he solved the problem using sequential quadratic programming.  

Yang and Tarng [47] have used the Taguchi method to find the optimal cutting 
parameters for turning operations. Lee and Tarng [48] have obtained the optimal 
cutting parameters for multipass turning operation using polynomial network and 
sequential quadratic programming. The polynomial network can learn the 
relationship between cutting parameters (cutting speed, feed and depth of cut) and 
cutting performance (surface roughness, cutting force and tool life) through a self-
organizing adaptive modeling technique.  

An interesting observation is that some researchers have employed an unequal 
depths of cut strategy for multipass rough turning process, considering it to be 
superior to an equal depth of cut strategy.  However, in most cases, it seems 
reasonable to take equal cutting depth in the roughing passes and reduced depth of 
cut in finishing pass in order to have a better surface finish. This is the usual shop 
floor practice. Attainment of an optimum solution with unequal depths of cut in 
roughing passes may be due to the presence of multiple optimal solutions, which 
the traditional methods fail to capture.  

Recently, there has been a trend of applying non-traditional optimization 
techniques for optimizing turning operations. Chen and Tsai [49] applied simulated 
annealing to the problem of turning process optimization. In their work, an 
optimization algorithm based on simulated annealing and Hooke-Jeeves pattern 
search is developed for optimization of multipass turning operations. Baykaso lu 
and Dereli [50] also made use of simulated annealing. However, they have not 
taken into consideration the surface roughness constraint. Genetic algorithm (GA) 
has also been applied for solving the multipass-turning operation. Alberti and 
Perrone [51] and Onwubolu and Kumalo [52] have used genetic algorithm for 
solving multipass turning process. By comparing their results with the results of 
Chen and Tsai [49], Onwubolu and Kumalo concluded that GA significantly 
outperforms simulated annealing. However, Chen and Chen [53] have shown that 
Onwubolu and Kumalo have incorrectly handled the machining model. The 
solutions obtained by them did not satisfy the total depth constraint. As a result, in 
their solution the stock removal of turning was less than the requirement. Further, 
by running a code based on genetic algorithm, Chen and Chen [53] showed that 
genetic algorithm provides no better solution than simulated annealing solution 
presented in Chen and Tsai [49]. 

Wang et al. [54] have presented a methodology using GA for the selection of 
cutting conditions and tool inserts in multipass turning operations. Their objective 
function incorporated the surface roughness, cutting force, toollife, material 
removal rate and chip-breakability. The weightage of these performance measures 
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can be controlled by the user. The performance measures are predicted by a hybrid 
model based on metal cutting theories and interpolation from an experimental 
database. Saravanan et al. [55] have applied genetic algorithm and simulated 
annealing for the optimization of turning of cylindrical stock into a continuous 
finished profile consisting of straight turning, facing, taper-turning and circular 
machining. They found that the simulated annealing produced marginally better 
results than the genetic algorithm. Using GA, Wang and Jawahir [56] have 
optimized multipass turning operations, incorporating the effect of progressive tool 
wear. Satishkumar et al. [57] have optimized multipass turning using three non-
traditional optimization techniques—genetic algorithm, simulated annealing and 
ant colony algorithm. Among these, the performance of the ant colony algorithm 
was found to the best. Abburi and Dixit [58] applied real coded genetic algorithm 
for the multi-objective optimization of a multipass turning process. The objectives 
considered by them are the minimization of the cost of machining and 
maximization of the production rate.  

Compared to turning process optimization, there is a lower number of 
publications on milling process optimization. A few of the papers are being 
reviewed here. Armarego et al. [59] carried out optimization for single pass 
peripheral milling. The authors considered the constraint on power, torque and feed 
force. The variable bounds on feed and cutting speed were also considered. The 
authors concluded that computer-based optimization can help in increasing 
production rate and reducing production cost. Also, there is a need to reduce 
loading time and cost for obtaining the maximum benefit. The same authors [60] 
have also carried out optimization for peripheral and end-milling operations for 
maximizing the production rate. Multipass milling is found to be superior to single 
pass milling from the point of view of machining economics. Tolouei-Rad and 
Bhidendi [61] have carried out optimization of the milling process for maximum 
production rate, minimum production cost and maximum profit rate. The following 
constraints were considered: 

(1) Maximum machine power,    

(2) Maximum allowed surface roughness, 

(3) Maximum cutting force permitted by the rigidity of the machine, 

(4) Maximum heat generated by cutting, 

(5) Available feed rates and spindle speeds on the machine tool. 

Sönmez et al. [62] have carried out the optimization of multipass slab milling and 
face milling for maximum production rate. In their method, the optimum number 
of passes is found via dynamic programming and the optimum variables in each 
pass are found via geometric programming. Tandon et al. [63] have carried out 
optimization of the milling process using an evolutionary computing method called 
Particle Swarm Optimization (PSO). In their work, artificial neural networks are 
used to model the cutting forces in pocket milling operation. The optimized values 
of cutting force and feed could reduce the cutting time up to 35%. Wang et al. [64] 
optimized the multipass milling process using genetic algorithms and a 
combination of genetic and simulated annealing processes. Reddy and Rao [65] 
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developed a response surface model of surface roughness in end milling 
considering radial rake angle, nose radius, cutting speed and feed rate. Later on, 
they optimized for surface roughness using a genetic algorithm. The material was 
medium carbon steel and the operation was carried out at a constant depth of cut. 
The same authors [66] have used a genetic algorithm to optimize the dry milling 
process. Ozcelik et al. [67] have optimized the end milling of Inconel 718 using a 
genetic algorithm. The process was modeled using neural networks. Palanisamy et 
al. [68] optimized the end milling process using a genetic algorithm. Wang et al. 
[69] have carried out the multi-objective optimization of the milling process using 
a combination of genetic algorithm and simulated annealing. In [70], an expert 
system, incorporating fuzzy reasoning mechanism, has been presented for the 
purpose of optimizing parameters and predicting performance measures in high-
speed milling of hardened AISI D2. This expert system can optimize the 
parameters in accordance with the objectives of ‘maximizing tool life’, 
‘minimizing surface roughness’, and also the attainment of both of these 
simultaneously. 

10.3.2 Optimization of Multipass Turning Process  

In this section, we shall describe the optimization of multipass turning process.  
The same procedure can be extended to the machining of other processes, although 
mathematical models for the prediction of performance parameters will be different 
in different processes. 

10.3.2.1 Objective Function 
Consider the multipass turning of a cylindrical work-piece of length L and initial 
diameter of 0D , the final diameter being fD . Maximizing the production rate is 

equivalent to minimizing the total production time per component PT , which is 
expressed as   
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where tRT  is the total cutting time of rough machining, ct the time required for 
changing a tool, rT  the tool life for rough machining, tFT   the total cutting time of 
finish machining, fT  the tool life for finish machining, LT the loading and 

unloading time and tst the tool setting time. Total cutting time for rough machining 
is obtained as the summation of cutting times for m roughing passes, i.e.,  
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where 
iRv and 

iRf are the cutting speed and feed respectively at the i-th roughing 

pass and 1iD the work-piece diameter at the beginning of that pass. The cutting 
time for finish machining is obtained as  

  m
tF

F F

LD
T

v f
,                                                   (10.16) 

where Fv  and Ff  are the cutting speed and feed respectively at the finish pass and 

mD  is the diameter after m roughing passes.  
A rearrangement of Equation 10.14 provides  
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In the above expression, the first two terms are independent of the process 
parameters and thus may be eliminated from the objective function of the 
optimization problem for single pass machining. In multipass machining, total tool 
setting time is given as  

  ( 1)ts st m t ,                                                                                                                   (10.18) 

where st  is the setting time for each pass. Therefore, if the number of passes is a 
design variable, this term should be considered in the optimization problem. The 
attempt should be made to reduce the job loading, job unloading and the tool 
setting time. The third and fourth terms in the expression for total production time 
are dependent on the cutting speed, feed and depths of cut. However, they are 
known functions and are independent of tool-job combination. No modeling of the 
machining process is required for the estimation of these two terms. They simply 
state that cutting speed and feed should be as high as possible and number of 
passes should be kept at a minimum. The last terms associated with tool change 
time require the expression for tool life as a function of process parameters, i.e., 
cutting speed, feed and depth of cut. The tool life is dependent on the tool-job 
combination, machine rigidity and type of coolant. It also matters how one defines 
a tool life. From the job-quality point of view, a tool is considered failed when it 
fails to provide the desired surface roughness and dimensional tolerance. The other 
criterion of tool failure may be based on the cutting forces encountered. However, 
the most popular criterion of tool life is the amount of maximum allowed flank 
wear. Excessive flank wear causes increase in cutting force, needs adjustment in 
tool setting for obtaining an accurate part, weakens the tool and sometimes spoils 
the surface finish. There is no unique figure for the amount of permissible 
maximum flank wear. For finish turning by carbide tools, the maximum flank wear 
should be limited to 0.4 mm. For rough turning, it may go up to 0.6 mm. Even if 
the process planner knows the tool failure criterion accurately, it is not easy to 
obtain the mathematical model for tool life. Recourse may be then made to soft 
computing methods like neural network and fuzzy set theory as outlined in the 
previous chapter. 
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The cost of machining per piece is given as 

 0
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,                       (10.19)  

where 0C  is the operating cost per minute and tC is the tool cost. The operating 
cost consists of overhead, labor, coolant and electricity costs. Substituting the value 
of pT from Equation 10.16, the cost of machining per piece can be written as 
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From Equation 10.17 and Equation 10.20, it is clear that we can write a single 
expression for the objective functions of minimization of the production time and 
minimization of the cost of machining as was realized by the previous researchers 
too [71]. The objective function to be minimized for both the goals is 

 * tR tF
ts tR tF c

r f

T T
f t T T t

T T
,                    (10.21) 

where  
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If the ratio 0/tC C  is small in comparison to tool change time ct , one can optimize 
only for minimum production time. However, if the tool is a expensive tool, e.g., 
CBN or diamond, both optimization goals will yield different solution. One can 
obtain a number of solutions by solving the optimization problem for different *

ct  
in between ct  and 0/c tt C C . All these solutions will be Pareto-optimal 
solutions. A higher level decision can be taken to choose the best solution among 
them.  

Abburi and Dixit [58] have obtained Pareto-optimal solutions in a different 
way. The method is described here. The authors observed that, in Equation 10.19, 
the term associated with tC  is basically the fraction of tool getting consumed in 
the production of one piece. Denoting it by tF , the production cost can be 
expressed as  

 0c p t tF C T C F .                                                (10.23) 

From the above expression, it is observed that for minimizing cF both pT  and tF  
have to be minimized. Thus, the minimization of cost problem can be converted 
into the following multi-objective problem: 
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 Minimize (  and ), subject  to the applicable constraintsp tT F .    (10.24)                     

The above problem does not require the values of 0C  and tC . As the 
minimizations of pT  and tF  are two conflicting objectives, one can obtain various 
Pareto-optimal solutions. The best amongst the Pareto-optimal solutions can be 
chosen at a later stage with known cost data. 

The theoretical minimum possible value of tF  is zero corresponding to an 
infinite tool life. Thus, Pareto-optimal solutions will cover a range of tF  from 0 to 
that corresponding to the minimum possible pT . However, depending on the value 

of 0C  and tC , some of these solutions will increase pT and cF simultaneously, 

which is undesirable. A condition when the increase in pT  would reduce cost can 
be derived as follows. 

Writing Equation 10.23 in differential form: 

 0d d dc p t tF C T C F ,                                                                   (10.25) 

the requirement d  < 0cF  along with the fact that d  < 0tF  leads to  
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The left hand side of the above inequality is the Lagrange multiplier  associated 
with an equality constraint ( a prescribed value)tF  corresponding to the 
optimization problem of minimizing pT with the applicable constraints along with 
this equality constraint. The prescribed value in the equality constraint is the value 
of tF at which the condition is being checked. Note that the Lagrange multiplier  
is a negative quantity. Therefore, the tF  should be lowered only till the magnitude 
of  is less than 0/tC C . With the rough estimate of the costs known at lower level, 
only those Pareto-optimal solutions need to be generated that do not violate this 
condition. Equation 10.25 can also be written as  
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The expression in the parenthesis should be negative in order to reduce production 
cost at the expense of some increase in the production time. With this expression, 
one can assess the difference between the minimum cost and the cost 
corresponding to minimum production time. If the ratio of tool cost to operating 
cost is very small, the difference between the two costs will also be small.  
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10.3.2.2 Machining Constraints 
Minimization of total production time per component is carried out by imposing 
the following constraints: 
Tool life constraint: Tool life should not be less than a prescribed length of time. 
Otherwise frequent tool change will be required. The minimum value of tool life 
should be at least more than the time required to machine one component. Most 
likely, when we put this constraint, the constraint will become active. Similarly, 
one can put the constraint on the maximum value of tool life. If the process 
parameters are such that they produce very high tool life, there are chances that the 
tool can be thrown away not fully utilized.   
Surface roughness constraint: A constraint that surface roughness should not be 
more than the prescribed value can be put. Sometimes, excessive better surface 
finish is not desired. For example, for proper convective or pool boiling heat 
transfer, a certain minimum amount of surface roughness is desired. Therefore, the 
surface roughness value may be restricted to lie in a zone. For proper 
implementation of this constraint, a surface roughness prediction model should be 
available.  
Cutting force constraints: The components of cutting forces should be limited to 
avoid excessive job and tool deflection and breakage of the tool. The tool and job 
deflection and the stresses in the job can be found by finite element analysis. 
Machine power constraint: The machine power can be calculated using the 
following formula: 

 main cutting force cutting speedMachine power
efficiency of the machine

.                    (10.28) 

The machine power should be limited to avoid excessive overloading of the spindle 
motor. At the same time, if machine power is much lesser than the power of the 
spindle motor, the machine is underutilized.    
Geometric constraint: The final diameter should be equal to initial diameter of the 
job minus twice the sum of depths of cut, i.e.,  
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where rid  is the depth of cut in the i-th roughing pass, fd is the depth of cut in  
the finishing pass and m is the number of passes. This is a geometric relation and 
should be satisfied. 
Variable bounds: Cutting speed, feed and depth of cut should lie within certain 
ranges. These ranges are dependent on the type of machine, type of tool and type 
of material.  
In addition to these constraints, there is a constraint that the number of passes m is 
an integer quantity. 
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10.3.2.3 A  Note on the Solution of the Optimization Problem  
The machining optimization problem is highly non-linear and possesses multiple 
solutions. For example, consider the results from the paper of Gupta et al. [43] in 
Table 10.2. For each roughing depth of cut, the optimum cost is shown in Table 
10.2. If 12 mm diameter is reduced, one can take two roughing passes of depths of 
cutting 2.1mm and 2.9mm. The combined optimum cost for two passes is 
(0.555+0.667)= $1.222. One can also have two roughing passes each of 2.5 mm. 
Then the combined optimum cost will be equal to 2 0.611= $1.222, i.e., the same 
as before. In this case, equal depth of cut strategy is appropriate. Clearly there are 
two solutions providing the same cost. In general, there are a number of such 
solutions.  

For the problems having multiple optimum solutions, the genetic algorithms are 
highly suitable. When the cutting speed and feed can be varied in a continuous 
manner like in a Computer Numerically Controlled (CNC) machine, the real-coded 
genetic algorithm can be used. When the cutting speed and feed can have only 
discrete variation like in a conventional machine tool having a gearbox for 
changing the speed and feed, one can employ a binary-coded genetic algorithm. 

Table 10.2.  A part of the results of Gupta et al. [43] 

Roughing depth of Cut Cost/piece in $ 
1.9 0.549 
2.0 0.551 
2.1 0.555 
2.2 0.569 
2.3 0.583 
2.4 0.597 
2.5 0.611 
2.6 0.625 
2.7 0.639 
2.8 0.653 
2.9 0.667 
3.0 0.681 

Genetic algorithms often provide only near optimum solutions. Also, near the 
optimum solution, these algorithms have a tendency to get slowed down. 
Therefore, it is better to combine the traditional optimization method with a genetic 
algorithm. Genetic algorithms  can provide various near optimum solutions. Taking 
a near optimum solution as an initial guess, the final optimum solution can be 
obtained using a traditional optimization method. The traditional optimization 
routine can be run with various near optimum solutions as initial guesses, 
providing different solutions. Abburi and Dixit [58] have combined a sequential 
quadratic programming method with a real-coded genetic algorithm. A sequential 
quadratic programming method uses a quadratic model for objective function and a 
linear model for the constraint. A non-linear programming problem in which the 



 Optimization of  Metal Forming and Machining Processes 569 

objective function is quadratic and constraints are linear is called a quadratic 
programming problem. A sequential quadratic programming method solves a 
quadratic programming problem at each iteration. At each iteration, the objective 
function is the quadratic approximation  and the constraints are the linear 
approximation of the constraints. In the objective function, instead of putting the 
Hessian matrix, a positive definite matrix is put which gradually changes to 
Hessian matrix as the iterations proceed. The quadratic programming problem may 
be solved efficiently by a simplex method. The solution of a quadratic 
programming problem provides a search direction. Then a line search method is 
used to minimize a merit function that incorporates the objective and constraint 
functions and the optimum point is found. The whole procedure is repeated from 
this new point till the convergence is achieved.   

Sometimes it is better to solve the optimization problem using an equal depth of 
cut strategy. This reduces the number of variables to six only, i.e., the cutting 
speed, feed and depth of cut for roughing passes, number of passes and cutting 
speed and feed for finishing pass. In order to see the sensitivity of the solution with 
respect to roughing depth of cut, the following procedure may be employed [58]. 
We first find the optimum cost or production time in a rough pass corresponding to 
an equal depth of cut rd . Let this solution be called x1. Then we find the optimum 
solutions for (1 ) rd and (1+ ) rd depths of cut, where is a small number, say 
0.9. Let these solutions be called 2x  and 3x . Now, the following quantity is 
calculated: 

 2 3 1
max

3

2
0.2 r

r

x x x
d d

d x
.                                           (10.30)   

If this quantity is very small, say 0.01, we need not go for unequal depth of cut 
strategy, as only about 1% change is expected in the solution in that case. If the 
quantity is large, we can go for unequal depth of cut strategy and solve the 
optimization problem by taking the solution for equal depth of cut strategy as an 
initial guess.  

Availability of a knowledge base in the form of fuzzy “if…, then….” rules can 
be very helpful in the optimization task. One can immediately reach into the zone 
where the optima is expected to lie with the help of rules. Further, optimization can 
be carried out using traditional or non-traditional optimization methods. 

The higher level decision for selecting the process parameters can be taken as 
follows. For each criterion specified by the manufacturer, we can assign 
membership grades for each criterion. Then we can find the overall membership 
grade using Equation 10.7. The solution providing the maximum overall 
membership grade is taken as the best solution.  

10.3.3 Online Determination of Equations for Machining Performance 
Parameters   

Optimization methodology can be employed for online determination of machining 
performance parameters. With modern CNC machines, it is possible to collect 
machining data in real time. This data can be used to find the relation between 
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process and performance parameters. Ojha and Dixit [72] have suggested a method 
for obtaining or updating Taylor’s tool life exponent based on shop floor data. For 
the optimization of process parameters, a reliable tool life equation is needed. On 
the shop floor, the cutting tools are often used in an inefficient manner due to lack 
of information about tool life. According to a CIRP working paper [73], “….in 
USA, the correct cutting tool is selected 50% of the time, the tool is used at the 
rated cutting speed only 58% of the time and the tools are used up to their full tool 
life capability …..”. Non-availability of reliable tool data on tool life for various 
tool-job combinations is one of the major causes for this. Obtaining the constants 
in the extended Taylor’s tool life relation given by Equation 10.13 requires a 
considerable number of tests for obtaining reliable results. This is more so because 
there is a lot of statistical variation in tool life. Carrying out a large number of tests 
is not only time consuming, but is also expensive. This becomes a major concern 
when the job material and tools are expensive. It has been reported that 
constructing tool life curves at two different cutting speeds using ISO turning tests 
often requires roughly 40 hrs of machining time [74]. Hegginbotham and Pandey 
[75] proposed a “variable rate running” method in which 20 kg of material was 
consumed to estimate the dependency of tool life on cutting speed. 

Suppose in its full life a tool operates for time 1t  at a particular operating 
condition providing a tool life of 1T and for time 2t at another operating condition 
providing the tool life of 2T . Then assuming that there is a linear relationship 
between the tool wear and time, the following relationship holds good: 

 1 2

1 2
1

t t
T T

.                                                         (10.31) 

If the data of m tools is available from beginning till failure, then for the j-th tool, 
the following relationship is valid: 

 
1

1
j jn i

ji i

t

T
,                                               (10.32) 

where superscript indicates tool number, subscript the operating condition and nj is 
the number of  cutting conditions at which the j-th tool operates. Using Equation 
10.13, we can write 

 
( ) ( ) ( )

j
i j j jp q r

i i i

CT
v f d

.                                  (10.33) 

For finding the exponents p, q and r, the following objective function may be 
minimized: 
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For minimization of the function f, one may use an evolutionary algorithm like 
GA, which may provide multiple solutions. The best solution can be chosen based 
on the physical consideration.  

The expressions for the estimation of upper and lower estimates of tool life may 
also be developed based on the shop floor data. For estimating the lower and upper 
bounds of the tool life, the following method is proposed in this book. Let the 
upper bound of the tool life be predicted by 

 
1 1 1

1u
p q r
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,                                 (10.35) 

and the lower bound by  

 
2 2 2
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,                                         (10.36) 

where 1 2 1 2 1 2 1 2, , , , , , andC C p p q q r r are the constants dependent on tool-job 
combination. If the j-th tool operates at nj different operating conditions, then 
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where j
it  is the time j-th tool operates at i-th cutting condition and uj

iT  is the upper 
bound of the tool life at that condition. Similarly, we can write  

 
1
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j jn i

lji i

t

T
,                                              (10.38) 

where lj
iT  is the lower bound of the tool life for j-th tool operating at i-th cutting 

condition. The constants 1 2 1 2 1 2 1 2, , , , , , andC C p p q q r r  should be such that 
the inequalities in Equations 10.35 and 10.36 are satisfied and the difference in 
upper and lower estimates of the tool life is kept at a minimum. Thus, treating 

1 2 1 2 1 2 1 2, , , , , , andC C p p q q r r  as design variables, the following 
optimization problem can be solved: 

 1 1
Minimize ,

subject to constraints of Equations 10.37 and 10.38 

j j jm n i i
lj ujj i i i

t t

T T                                    (10.39) 
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For most of the commonly used tools and work-materials 
1 2 1 2 1 2 1 2, , , , , , andC C p p q q r r  are positive. Therefore, this constraint can 

also be imposed. 

Example 10.1: Table 10.3 shows the history of eight tools of the same type, which 
operated at two cutting conditions, before they failed. Find the expression for the 
lower, upper and most likely estimates of the tool life with this data. 

Solution: For finding the most likely estimate, objective function of Equation 
10.34 is minimized using FMINCON routine of MATLAB . In this case m=8 and 
nj=2. The following tool life equation is obtained: 

 2732.015.02.0 dfvT .                        (10.40) 

For finding the upper and lower estimates of tool life, Equation 10.39 was taken as 
the objective function and Equations 10.37 and 10.38 as the constraints. 
MATLAB  routine FMINCON was used for minimization. The lower estimate is 
given by 

 26019.013.017.0 dfvT .                                      (10.41) 

The upper estimate is given by 

 28516.015.02.0 dfvT .                                                        (10.42) 

Table 10.3. Machining history of eight cutting tools 

Tool  
No. 

Cutting speed 
(m/min) 

Feed 
(mm/rev) 

Depth of 
Cut (mm) 

Machining 
time (min) 

180 0.14 0.6 43.60 1 225 0.14 0.9 3.80 
190 0.20 0.6 18.38 2 200 0.16 0.9 9.80 
185 0.20 0.7 18.33 3 195 0.14 0.8 15.19 
210 0.16 0.6 14.87 4 220 0.14 0.9 4.99 
200 0.16 0.6 20.22 5 180 0.20 0.7 14.82 
190 0.14 0.7 24.55 6 185 0.16 0.8 13.61 
210 0.20 0.7 9.76 7 220 0.16 0.6 9.99 
225 0.20 0.6 10.29 8 195 0.14 0.9 6.38 
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 The similar type of strategy can be used for finding the empirical expressions for 
cutting forces and surface roughness in a given range. The form of the function for 
cutting force and surface roughness is 

 f kf v d .                                     (10.43) 

If the experimental data is available, constants k , ,  and  can be obtained 
by solving an optimization problem. In this case, we can take the logarithmic of the 
function and also solve the problem by multiple linear regression.  

10.4 Summary 

In this chapter we have discussed the optimization problems in metal forming and 
metal cutting. For solving optimization problems, one can employ the neural 
network, fuzzy set and genetic algorithm. Some optimization problems of metal 
forming have been discussed. To give a glimpse of many other optimization 
problems, a brief review of the literature has been presented. In machining 
optimization, the most common optimization problem is finding the feed, depth of 
cut, cutting speed and number of machining passes for maximizing the production 
time and/or minimizing the cost of machining. A brief review of the optimization 
of turning and milling processes has been presented. Finally, the optimization of 
multipass turning has been discussed in detail. The reader can easily extend the 
optimization procedure to other machining processes.  
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11  

Epilogue  

The objective of this book is to describe basic fundamentals in the modeling of 
metal forming and machining processes. The techniques described in the book will 
also be useful for the modeling of other manufacturing processes. In the last 10 
chapters we have discussed physics-based finite element modeling as well as soft 
computing-based modeling.  

Chapter 1 provides the introduction of metal forming and machining processes, 
and issues and challenges involved in modeling these processes. In machining, the 
major concern is to choose the process variables (like cutting speed, feed, depth of 
cut, tool geometry etc.) so as to obtain the desired shape and surface finish with 
minimum cost and/or maximum production rate. On the other hand, in metal 
forming processes, the process variables (die geometry, pass scheduling, initial 
blank shape etc.) need to be chosen so as to obtain a defect-free product at 
minimum power consumption.  

The metal forming and machining processes involve plastic deformation of the 
work-piece due to stresses applied by some form of tools or dies. In view of this, 
first, the review of the concept of the stress at a point has been provided in Chapter 
2. The stress vector (i.e., traction vector), the stress tensor and the relation between 
them (i.e., the Cauchy’s relation) have been described. Concepts like the principal 
invariants of the stress tensor, the decomposition of the stress tensor into the 
hydrostatic and deviatoric parts etc., which are useful for Chapter 3, have also been 
discussed. Next, the equations of motion have been presented. Even though metal 
forming and machining processes involve large deformation and are governed by 
the plastic constitutive equations (i.e., the stress-strain relations), it is instructive to 
discuss, first, a measure of small deformation (i.e., infinitesimal or linear strain 
tensor) and linear elastic stress-strain relations for isotropic materials. This material 
has been provided at the end of the chapter. This chapter also introduces tensors 
and index notation.  

Chapter 3 describes the classical theory of plasticity. Before describing the 
mathematical relations of plasticity, it discusses experimental observations on 
plasticity that provide the basis for these relations. Then it covers two yield criteria 
for isotropic materials: von Mises and Tresca criteria. Next it discusses two 
measures of plastic deformation: incremental linear strain tensor and the strain rate 
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tensor. The concept of isotropic hardening, i.e., the change in the size of the yield 
surface due to deformation, has been described next. Two models of isotropic 
hardening, namely strain hardening and work hardening, have been presented. One 
way to develop the plastic constitutive equation is to postulate the existence of a 
plastic potential. Then the flow rule gives the plastic part of the constitutive 
equation. Assuming that the elastic and plastic parts of the deformation are 
additive, the incremental stress-strain and the stress-strain rate relations for 
isotropic materials have been developed. An unloading criterion has been 
presented. The deformation in metal forming and machining processes is usually 
accompanied by a large rotation. Therefore, the constitutive equation must be 
objective, i.e., it must be independent of the rotation. A commonly used measure of 
objective stress rate, namely the Jaumann stress rate, has been described. Two 
commonly used formulations of metal forming and machining processes are: 
updated Lagrangian formulation and Eulerian formulation. Examples of updated 
Lagrangian formulation and Eulerian formulation in metal forming and Eulerian 
formulation in machining have been provided. The initial and boundary conditions 
for these examples are also discussed. 

Chapter 4 describes the plasticity of finite deformation.  Incremental strain and 
strain-rate measures for finite deformation have been introduced. The 
decomposition of these measures into elastic and plastic parts, which are not 
additive as in the case of small deformations, is described. The modifications in the 
constitutive equations (both the incremental as well as the rate forms) due to finite 
deformation have been presented. The chapter also discusses anisotropic yield 
criteria and the corresponding anisotropic constitutive equations. Some commonly 
used anisotropic yield criteria like those of Hill and Barlat and his co-workers have 
been discussed. An anisotropic plane strain criterion has been presented. Then two 
simple models of kinematic hardening (i.e., the translation of the yield surface 
without change in shape or size) have also been discussed. It is now well-
established that ductile fracture is caused by micro-void nucleation, growth and 
coalescence. Some ductile fracture models based on this observation, namely the 
Berg-Gurson model, Goods and Brown void nucleation model, Rice and Tracy 
void growth model, Thomason void coalescence model and Lemaitre’s continuum 
damage mechanics model have been presented. Some empirical fracture criteria, 
which are not necessarily based on the above observation but are simple to use, are 
also described. Finally, some friction models like the friction factor model, the 
Coulomb’s law model and a more general model of Wanheim and Bay have been 
discussed. Thus the first four chapters provide the background for physics based 
modeling of the metal forming and machining processes. 

Chapter 5 provides examples of finite element modeling of metal forming 
processes using Eulerian formulation. The background to finite element method is 
provided in this chapter. As an example of plane strain problems, cold flat rolling 
is chosen. Similarly, the wire drawing process is chosen as an example of 
axisymmetric processes. In both of these problems, the constitutive equation of a 
rigid-plastic isotropic material is used. (Thus, the elastic and anisotropic effects are 
neglected.) An iterative scheme to solve the non-linear finite element equations is 
presented. First, the finite element models are validated by comparing the predicted 
roll force, roll torque and drawing stress with well-known experimental results. 
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Then the deformation fields and parametric studies with respect to important 
process variables have been presented for both the examples. The chapter also 
discusses three-dimensional modeling of metal forming processes. The 
incorporation of anisotropic effects is also described.  Further, some techniques of 
including the elastic effects and estimating the residual stresses are also discussed. 
This chapter makes use of the background of Chapter 3. 

Chapter 6 provides the examples of finite element modeling using updated 
Lagrangian procedure. First, using the background material of Chapter 4, the 
incremental elasto-plastic finite element equations corresponding to a finite 
increment size are developed. Since these are non-linear equations, the Newton-
Raphson iterative scheme for solving them is presented. The forging of a 
cylindrical block and deep drawing of a cylindrical cup have been taken as an 
examples of axisymmetric and three-dimensional problems. For the forging 
problem, the material is assumed to be isotropic. First the finite element model is 
validated by comparing the predicted forging load variation with experimental 
results. Then, for typical process conditions, the contact pressure distribution, the 
deformed shape and the deformation and stress fields are presented. The residual 
stresses at the end of a forging process are determined and their parametric study 
with respect to important process variables is carried out. For the deep drawing 
problem, the material is assumed to be anisotropic. As a result, the process is 
considered as three-dimensional. First the finite element model is validated by 
comparing the cup height variation with experimental results. Then, for typical 
process variables, the deformed shape, the punch load variation and thickness 
strain variation are presented. Their parametric study with respect to important 
process variables is carried out. For anisotropic materials, the height of the drawn 
cup becomes non-uniform, i.e., the cup develops ears. A technique to optimize the 
initial blank shape, so as to reduce the earing, is described.  

Chapter 7 discusses the finite element modeling of machining processes. Only 
orthogonal machining is considered. The depth of cut is assumed large so as to 
make the problem two-dimensional. The temperature rise in the machining process 
is quite significant. The thermo-mechanical problem is decoupled by assuming that 
the average temperature in the cutting zone is to be estimated either experimentally 
or by simple analytical techniques. Temperature softening is incorporated by 
estimating the material properties at this temperature. To account for high strain 
rates, visco-plasticity effects are included in the constitutive equation. Eulerian 
formulation is used by assuming that the shear angle, the cutting ratio and the angle 
between the shear force and the resultant force are determined experimentally. 
Using the background material of Chapter 3, first the finite element equations are 
developed. These equations are non-linear. The iterative technique to solve them is 
similar to that of Chapter 5. Then the finite element model is validated by 
comparing the predicted average width of the primary shear deformation zone 
(PSDZ), the average shear strain rate and the average shear stress with 
experimental results. Next the PSDZ and the deformation and stress fields are 
presented for typical process conditions. Finally the parametric study of the 
average shear strain rate and average shear stress is carried out with respect to two 
important machining variables, namely, the cutting speed and feed. 
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Chapter 8 provides the background of neural networks, fuzzy set theory and 
genetic algorithms. Two types of neural networks are described in detail—multi-
layer perceptron neural network and radial basis function neural network. The 
advantage of radial basis function neural network is its faster training time, 
although in general it requires more training data compared to a multi-layer 
perceptron neural network. It is also possible to predict the range of the dependent 
variables using neural networks. Neural networks are useful tools for learning from 
data. However, they function like a black box and are poor in extrapolation. Fuzzy 
set theory can be employed to deal with uncertainty and imprecision in data. Fuzzy 
set theory makes use of linguistic variables. Thus, it is often called “computing 
with language”.  Prediction of a variable can be done having a fuzzy rule base. As 
there are rules showing the dependence of a variable on independent variables, the 
fuzzy set-based prediction is transparent unlike the black box prediction of neural 
networks. The prediction by fuzzy set is very convenient when the rule base is 
available. Some extrapolation may also be tolerated. However, when the rule base 
is not available, one has to generate rules from the data. Generating the rules 
requires an enormous amount of data. One strategy is to use neural networks for 
learning from the data and fuzzy sets for making an expert system for prediction. A 
number of researchers have used the combination of fuzzy sets and neural 
networks in a number of different ways. 

Genetic algorithms fall into the category of evolutionary optimization methods. 
The evolutionary optimization methods are heuristic-based techniques, in which 
optimal solution evolves from iteration to iteration. There are a number of 
evolutionary optimization techniques such as Ant Colony Optimization, Particle 
Swarm Optimization, Scatter Search etc. It is to be mentioned that some 
researchers consider only genetic algorithms as the evolutionary optimization 
procedures, whilst others treat genetic algorithms as a type of evolutionary 
optimization procedure. Hertz and Kobler [1] define evolutionary optimization 
procedures as iterative solution techniques that handle a population of individuals 
and make them evolve according to rules that have to be clearly specified. At each 
iteration, individuals evolve independently and also due to exchange of 
information among individuals. This definition includes a gamut of optimization 
methods in the category of evolutionary optimization methods.  However, in this 
book, we have discussed only genetic algorithms to provide a more focused 
treatment for application of soft computing techniques to the modeling and 
optimization of metal forming and machining processes.  

Chapter 9 presents examples of application of soft computing methods in 
machining and metal forming. An introduction to design of experiments and 
certain statistical techniques has been provided. It is always useful to find 
statistical properties of data and use this information in further processing of data 
using soft computing techniques. We have emphasized the need to have a good 
dataset as well as a well-designed model. Without providing a rigorous 
mathematical analysis, this chapter mentions the key points to be considered during 
the process-modeling using soft computing techniques. We have covered neural 
networks, fuzzy sets and neuro-fuzzy modeling of machining and metal forming 
processes. A section on computation with fuzzy variables is included with a 
discussion on a fuzzy reliability measure.    
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Chapter 10 describes the optimization of metal forming and machining 
processes. A brief review of research work in this area is presented. The emphasis 
in this chapter is on formulating the optimization problems for different processes. 
The issues involved in the solution algorithms have been discussed very briefly. 
This chapter also discusses multi-objective problems and the associated concept of 
the Pareto-optimality. The use of fuzzy set theory and neural networks for 
optimization has been highlighted.  

It is expected that this book will serve as a foundation for taking up further 
computational work in metal forming and machining areas. This could be in the 
form of finite element and soft computing modeling of other metal forming and 
machining processes not covered in this book. Apart from this, the book can 
provide a direction for computational research in other areas of manufacturing 
processes including non-traditional ones.  
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