

LECTURE NOTES ON
Algebraic Structure of Lattice-Ordered Rings

Jingjing Ma

LECTURE NOTES ON
Algebraic Structure of
Lattice-Ordered Rings

This page intentionally left blank

LECTURE NOTES ON

Algebraic Structure of Lattice-Ordered Rings

Jingjing Ma
University of Houston-Clear Lake, USA

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data Ma, Jingjing.
 Lecture notes on algebraic structure of lattice-ordered rings / Jingjing Ma (University of HoustonClear Lake, USA). pages cm
 Includes bibliographical references and index.
 ISBN 978-981-4571-42-5 (hardcover : alk. paper)
 1. Lattice ordered rings. 2. Algebra. I. Title.
 QA247.M24 2014
 511.3'3--dc23

2013051147

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Image credit: "Forma Perfecta" designed by Ekaterina Lukasheva.
Folded and photographed by Inna Lupanova.

Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

To Li, Cheng, and Elisa

This page intentionally left blank

Preface

This book is an introduction to the theory of lattice-ordered rings. It is suitable for graduate and advanced undergraduate students who have finished an abstract algebra class. It can also be used as a self-study book for one who is interested in the area of lattice-ordered rings.

The book mainly presents some foundations and topics in lattice-ordered rings. Since we concentrate on lattice orders, most results are stated and proved for such structures, although some of results are true for partially ordered structures. This book considers general lattice-ordered rings. However I have tried to compare results in general lattice-ordered rings with results in f-rings. Actually a lot of research work in general lattice-ordered rings is to generalize the results of f-rings. I have also tried to make the book self-contained and to give more details in the proofs of the results. Because of elementary nature of the book, some results are given without proofs. Certainly references are given for those results.

Chapter 1 consists of background information on lattice-ordered groups, vector lattices, and lattice-ordered rings and algebras. Those results are basic and fundamental. An important structure theory on lattice-ordered groups and vector lattices presented in Chapter 1 is the structure theory of lattice-ordered groups and vector lattices with a basis. Chapter 2 presents algebraic structure of lattice-ordered algebras with a distributive basis, which is a basis in which each element is a distributive element. Chapter 3 concentrates on positive derivations of lattice-ordered rings. This topic hasn't been systematically presented before and I have tried to present most of the important results in this area. In Chapter 4, some topics of general lattice-ordered rings are considered. Section 4.1 consists of some characterizations of lattice-ordered matrix rings with the entrywise order over lattice-ordered rings with positive identity element. Section 4.2 gives
the algebraic structure of lattice-ordered rings with positive cycles. In general lattice-ordered rings, f-elements often play important roles on their structures. In Section 4.3 we present some result along this line. Section 4.4 is about extending lattice orders in an Ore domain to its quotient ring. In Section 4.5 we consider how to generalize results on lattice-ordered matrix algebras over totally ordered fields to lattice-ordered matrix algebras over totally ordered integral domains. Section 4.6 consists of some results on lattice-ordered rings in which the identity element may not be positive. In Section 4.7, all lattice orders on 2×2 upper triangular matrix algebras over a totally ordered field are constructed, and some results are given for higher dimension triangular matrix algebras. Finally in Chapter 5, properties and structure of ℓ-ideals of lattice-ordered rings with a positive identity elements are presented.

I would like to thank Dr. K.K. Phua, the Chairman and Editor-in-Chief of World Scientific Publishing, for inviting me to write this lecture notes volume. I also want to express my thanks to my colleague Ms. Judy Bergman, University of Houston-Clear Lake, who has kindly checked English usage and grammar of the book. I will certainly have full responsibility for mistakes in the book, and hopefully they wouldn't give the reader too much trouble to understand its mathematical contents.

Jingjing Ma
Houston, Texas, USA
December 2013

Contents

Preface vii

1. Introduction to ordered algebraic systems 1
1.1 Lattices 1
1.2 Lattice-ordered groups and vector lattices 3
1.2.1 Definitions, examples, and basic properties 3
1.2.2 Structure theorems of ℓ-groups and vector lattices 15
1.3 Lattice-ordered rings and algebras 20
1.3.1 Definitions, examples, and basic properties 20
1.3.2 Some special ℓ-rings 25
1.3.3 ℓ-radical and ℓ-prime ℓ-ideals 33
2. Lattice-ordered algebras with a d-basis 49
2.1 Examples and basic properties 49
2.2 Structure theorems 58
2.2.1 Twisted group ℓ-algebras 58
2.2.2 $\quad \ell$-simple case 60
2.2.3 General case 68
3. Positive derivations on ℓ-rings 77
3.1 Examples and basic properties 77
$3.2 \quad f$-ring and its generalizations 81
3.3 Matrix ℓ-rings 90
3.4 Kernel of a positive derivation 96
4. Some topics on lattice-ordered rings 105
4.1 Recognition of matrix ℓ-rings with the entrywise order 105
4.2 Positive cycles 117
4.3 Nonzero f-elements in ℓ-rings 125
4.4 Quotient rings of lattice-ordered Ore domains 141
4.5 Matrix ℓ-algebras over totally ordered integral domains 152
$4.6 d$-elements that are not positive 170
4.7 Lattice-ordered triangular matrix algebras 178
4.7.1 Lattice orders on $T_{2}(F)$ with $1>0$ 178
4.7.2 Lattice orders on $T_{2}(F)$ with $1 \ngtr 0$ 187
4.7.3 Some lattice orders on $T_{n}(F)$ with $n \geq 3$ 197
5. ℓ-ideals of ℓ-unital lattice-ordered rings 207
5.1 Maximal ℓ-ideals 207
$5.2 \quad \ell$-ideals in commutative ℓ-unital ℓ-rings 219
List of Symbols 237
Bibliography 241
Index 245

Chapter 1

Introduction to ordered algebraic systems

In this chapter, we introduce various ordered algebraic systems and present some basic and important properties of these systems.

1.1 Lattices

For a nonempty set A, a binary relation \leq on A is called a partial order on A if the following properties are satisfied.
(1) (reflexivity) $a \leq a$ for all $a \in A$,
(2) (antisymmetry) $a \leq b, b \leq a$ implies $a=b$ for all $a, b \in A$,
(3) (transitivity) $a \leq b, b \leq c$ implies $a \leq c$, for all $a, b, c \in A$.

The set A under a partial order \leq is called a partially ordered set. One may write $b \geq a$ to denote $a \leq b$, and $a<b$ (or $b>a$) to mean that $a \leq b$ and $a \neq b$. If either $a \leq b$ or $b \leq a$, then a and b are called comparable, otherwise a and b are called incomparable. A partial order \leq on a set A is called a total order if any two elements in A are comparable. In the case that \leq is a total order, A is called a totally ordered set or a chain. Suppose that two partial orders, \leq and \leq^{\prime}, are defined on the same set A. Then we say that \leq^{\prime} is an extension of \leq if, for all $a, b \in A, a \leq b$ implies $a \leq^{\prime} b$.

A partial order \leq on A induces a partial order on any nonempty subset B of A, that is, for any $a, b \in B$, define $a \leq b$ in B if $a \leq b$ with respect to the original partial order of A. The induced partial order on B is denoted by the same symbol \leq.

For a subset B of a partially ordered set A an upper bound (lower bound) of B in A is an element $x \in A(y \in A)$ such that $b \leq x(b \geq y)$ for each $b \in B$. We may simply denote that $x \in A(y \in A)$ is an upper (lower) bound of B by $B \leq x(B \geq y)$. B is called bounded in A if B has both an upper
bound and a lower bound in A. The set of all upper (lower) bounds of B in A is denoted by $U_{A}(B)\left(L_{A}(B)\right)$. If $B=\emptyset$, where \emptyset denotes empty set, then $U_{A}(B)=L_{A}(B)=A$. An element $u \in B(v \in B)$ is called the least element (greatest element) of B if $u \leq b(v \geq b)$ for each $b \in B$. A subset B of a partially ordered set may not have a least (greatest) element, but if there exists one, then it is unique since partial orders are antisymmetric. An element $w \in B(z \in B)$ is called a minimal element (maximal element) in B if for any $b \in B, b \leq w(b \geq z)$ implies $b=w(b=z)$, that is, no element in B is strictly less (greater) than $w(z)$. A subset of a partially ordered set may contain more than one minimal or maximal element.

Suppose that L is a partially ordered set with a partial order \leq. The \leq is called a lattice order and L is called a lattice under \leq if for any $a, b \in L$, the set $U_{L}(\{a, b\})$ has the least element and the set $L_{L}(\{a, b\})$ has the greatest element, namely, for any $a, b \in L$, the subset $\{a, b\}$ has the least upper bound and greatest lower bound that are denoted respectively by

$$
a \vee b \text { and } a \wedge b
$$

$a \vee b$ is also called the sup of a and b, and $a \wedge b$ is also called the inf of a and b. A nonempty subset B of a lattice L is called a sublattice of L if for any $a, b \in B, a \vee b, a \wedge b \in B$. A lattice L is called distributive if for all $a, b, c \in L$,

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \text { and } a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
$$

and L is called complete if each subset of L has both an inf and a sup in L. In a lattice L, for any $a, b, c \in L$, by the definition of least upper bound and greatest lower bound, we have

$$
a \vee(b \vee c)=(a \vee b) \vee c \text { and } a \wedge(b \wedge c)=(a \wedge b) \wedge c
$$

This is true for any finitely many elements in L, and hence we just use $a_{1} \vee \cdots \vee a_{n}$ and $a_{1} \wedge \cdots \wedge a_{n}$ to denote the sup and inf of a_{1}, \cdots, a_{n}, respectively.

The following is an example that illustrates some concepts defined above. More examples may be found in the exercises of this chapter.

Example 1.1. For a given set A, let $P_{A}=\{B \mid B$ is a subset of $A\}$ be the power set of A. For two subsets B, C of A, define $B \leq C$ if $B \subseteq C$, where " $B \subseteq C$ " means that B is a subset of C. Then \leq is actually a lattice order and for any $B, C \in P_{A}, B \vee C=B \cup C$ and $B \wedge C=B \cap C$. Clearly \emptyset is the least element of P_{A} and A is the greatest element of P_{A}. Moreover, P_{A} is a distributive and complete lattice (Exercise 3).

If A contains more than one element, then P_{A} is not a totally ordered set since for two different elements $a, b \in A$, the sets $\{a\}$ and $\{b\}$ are not comparable. Also the subset $B=\{\{a\},\{b\}\}$ of P_{A} has no least and greatest element, and each element in B is a minimal element and a maximal element since $\{a\}$ and $\{b\}$ are not comparable.

This is a suitable place to state Zorn's lemma, which is equivalent to Axiom of Choice. For the proof and other equivalent forms of the lemma, see [Steinberg (2010)].

Theorem 1.1 (Zorn's Lemma). Let A be a nonempty partially ordered set. If each subset of A which is a chain has an upper bound in A, then A contains a maximal element.

1.2 Lattice-ordered groups and vector lattices

In this section we introduce partially ordered groups, lattice-ordered groups, vector lattices, and consider some basic properties of those ordered algebraic systems. We will always use addition to denote group operation although it may not be commutative. Certainly for a vector lattice, the addition on it is commutative.

1.2.1 Definitions, examples, and basic properties

Definition 1.1. A partially ordered group G is a group and a partially ordered set under a partial order \leq such that G satisfies the following monotony law: for any $a, b \in G$,

$$
a \leq b \Rightarrow c+a \leq c+b \text { and } a+c \leq b+c \text { for all } c \in G .
$$

A partially ordered group G is a lattice-ordered group (ℓ-group) if the partial order is a lattice order, and G is a totally ordered group (o-group) if the partial order is a total order.

In a partially ordered group G, an element g is called positive if $g \geq 0$, where 0 is the identity element of G, and g is called strictly positive if $g>0$. The set $G^{+}=\{g \in G \mid g \geq 0\}$ is called the positive cone of G, and define $-G^{+}=\left\{g \in G \mid-g \in G^{+}\right\}=\{g \in G \mid g \leq 0\}$, which is called negative cone of $G . G^{+}$is a normal subsemigroup of G containing 0 , but no other element
along with its inverse, as shown in the following result. From the following two theorems, positive cones characterize partially ordered groups.

Theorem 1.2. For a partially ordered group G, the positive cone G^{+}satisfies the following three conditions:
(1) $G^{+}+G^{+} \subseteq G^{+}$,
(2) $g+G^{+}+(-g) \subseteq G^{+}$, for all $g \in G$,
(3) $G^{+} \cap-G^{+}=\{0\}$.

Proof. (1) Let $g, f \in G^{+}$. Then $0 \leq f \leq g+f$, so $0 \leq g+f$. Thus $g+f \in G^{+}$.
(2) Let $f \in G^{+}$. Then $0=g+(-g) \leq g+f+(-g)$, so $g+f+(-g) \in G^{+}$.
(3) Clearly $0 \in G^{+} \cap-G^{+}$. Suppose that $g \in G^{+} \cap-G^{+}$. Then $g \geq 0$ and $-g \geq 0$, so $g \geq 0$ and $g \leq 0$, and hence $g=0$.

Theorem 1.3. Let G be a group and P be a subset of G which satisfies the following three conditions:
(1) $P+P \subseteq P$,
(2) $g+P+(-g) \subseteq P$ for all $g \in G$,
(3) $P \cap-P=\{0\}$, where $-P=\{g \in G \mid-g \in P\}$.

For any $a, b \in G$, define $a \leq b$ if $b-a \in P$. Then \leq is a partial order on G and G becomes a partially ordered group with the positive cone P.

Proof. For any $a \in G, a-a=0 \in P$ implies $a \leq a$, so \leq is reflexive. Suppose that for $a, b \in G, a \leq b$ and $b \leq a$, then $b-a, a-b \in P$, so $b-a \in P$ and $b-a=-(a-b) \in-P$. Thus $b-a=0$ by (3), and hence $a=b$, so \leq is antisymmetric. Now assume that $a \leq b$ and $b \leq c$ for $a, b, c \in G$. Then $b-a, c-b \in P$, so by (1) $c-a=(c-b)+(b-a) \in P$. Thus $a \leq c$, so \leq is transitive. Suppose that $a \leq b$ for $a, b \in G$ and $g \in G$. Then from $b-a \in P$ and (2),

$$
(g+b)-(g+a)=g+(b-a)+(-g) \in P
$$

so $g+a \leq g+b$. Also

$$
(b+g)-(a+g)=b+g-g-a=b-a \in P
$$

so $a+g \leq b+g$. Therefore G is a partially ordered group with respect to the partial order \leq. Clearly $G^{+}=\{g \in G \mid g \geq 0\}=P$.

Theorem 1.4. Suppose that G is a partially ordered group with the positive cone P.
(1) G is an ℓ-group if and only if $G=\{a-b \mid a, b \in P\}$ and P is a lattice under the induced partial order from G.
(2) G is a totally ordered group if and only if $G=P \cup-P$.

Proof. (1) Suppose that G is an ℓ-group. For $g \in G$, let $f=g \wedge 0$. Then $-f \in P$ and $g-f \in P$. Since $g=(g-f)-(-f), G=\{a-b \mid a, b \in P\}$. It is clear that for any $a, b \in P, a \vee b, a \wedge b \in P$. Conversely, suppose that $G=\{a-b \mid a, b \in P\}$ and P is a lattice with respect to the induced partial order from G. For any $g \in G$, let $g=x-y, x, y \in P$. Suppose that $z=x \vee y \in P$. We claim that $g \vee 0=z-y$ in G. It is clear that $z-y \geq 0, g$. Suppose that $u \in G$ and $u \geq g, 0$. Then $u+y \geq x, y$ and $u+y \in P$, so $u+y \geq z$. Then it follows that $u \geq z-y$, and hence $g \vee 0=z-y$ in G. Similarly to show that $g \wedge 0$ exists in G. Generally for any $g, f \in G$, it is straightforward to check that

$$
g \vee f=[(g-f) \vee 0]+f \text { and } g \wedge f=[(g-f) \wedge 0]+f
$$

(Exercise 5). Therefore G is a lattice, so G is an ℓ-group.
(2) If $G=P \cup-P$, then for any $g, f \in G$, either $g-f \in P$ or $-P$, and hence $g \geq f$ or $g \leq f$. Thus G is a total order. The converse is clear.

A partially ordered group is called directed if each element is a difference of two positive elements. An ℓ-group is directed by Theorem 1.4(1). However a partially ordered group which is directed may not be an ℓ-group as shown in Example 1.2(3). A partially ordered group G is said to be Archimedean if for any $a, b \in G^{+}, n a \leq b$ for all $n \in \mathbb{Z}^{+}$implies $a=0$, where \mathbb{Z}^{+}is the set of all positive integers.

In this book we often use notation (G, P) to denote a partially ordered group or an ℓ-group with the positive cone P.

We illustrate partially ordered groups and ℓ-groups by a few examples. P will always denote the positive cone of a partially ordered group.

Example 1.2.

(1) Let G be the additive group of \mathbb{Z} or \mathbb{Q}, or \mathbb{R} with the usual order between real numbers. Then G is an Archimedean totally ordered group.
(2) Consider the group direct product $\mathbb{R} \times \mathbb{R}$. Let (x, y) belong to P if either $y>0$ or $y=0$ and $x \geq 0$. Then $\mathbb{R} \times \mathbb{R}$ is a totally ordered group which is not Archimedean since for any $n \in \mathbb{Z}^{+}, n(1,0) \leq(0,1)$.
(3) Consider $\mathbb{R} \times \mathbb{R}$ again. Define $(x, y) \in P$ if $x>0$ and $y>0$, or $(x, y)=(0,0)$. Then $\mathbb{R} \times \mathbb{R}$ is an Archimedean partially ordered group but not an ℓ-group. For instance, $(1,0)$ and $(0,0)$ have no least upper
bound. We leave the verification of this fact as an exercise to the reader (Exercise 6). We note that for any $(x, y) \in \mathbb{R} \times \mathbb{R},(x, y)=(x, 0)+(0, y)$, and $(x, 0),(0, y)$ are either positive or negative, so (x, y) can be written as a difference of two positive elements. Thus this partially ordered group is directed.

Since in this book, we concentrate on lattice orders, in the following we only prove some basic properties of ℓ-groups.

Theorem 1.5. Let G be an ℓ-group.
(1) For all $a, b, c, d \in G, c+(a \vee b)+d=(c+a+d) \vee(c+b+d)$, $c+(a \wedge b)+d=(c+a+d) \wedge(c+b+d)$.
(2) For all $a, b \in G,-(a \vee b)=(-a) \wedge(-b),-(a \wedge b)=(-a) \vee(-b)$.
(3) As a lattice, G is distributive.
(4) For all $a, b \in G, a-(a \wedge b)+b=a \vee b$. If G is commutative, then $a+b=(a \wedge b)+(a \vee b)$, for all $a, b \in G$.
(5) If $n a \geq 0$ for some positive integer n, then $a \geq 0$.
(6) If x, y_{1}, \cdots, y_{n} are positive elements such that $x \leq y_{1}+\cdots+y_{n}$, then $x=x_{1}+\cdots+x_{n}$ for some positive elements x_{1}, \cdots, x_{n} with $x_{i} \leq y_{i}, i=$ $1, \cdots, n$.
(7) If x, y_{1}, \cdots, y_{n} are positive elements, then $x \wedge\left(y_{1}+\cdots+y_{n}\right) \leq(x \wedge$ $\left.y_{1}\right)+\cdots+\left(x \wedge y_{n}\right)$.

Proof. (1) From $a \vee b \geq a, b$, we have $c+(a \vee b)+d \geq(c+a+d),(c+b+d)$, so

$$
c+(a \vee b)+d \geq(c+a+d) \vee(c+b+d)
$$

On the other hand, $(c+a+d),(c+b+d) \leq(c+a+d) \vee(c+b+d)$ implies

$$
a, b \leq-c+(c+a+d) \vee(c+b+d)+(-d)
$$

and hence

$$
a \vee b \leq-c+(c+a+d) \vee(c+b+d)+(-d)
$$

Therefore $c+(a \vee b)+d \leq(c+a+d) \vee(c+b+d)$. We conclude that $c+(a \vee b)+d=(c+a+d) \vee(c+b+d)$. Similarly we have $c+(a \wedge b)+d=$ $(c+a+d) \wedge(c+b+d)$.
(2) We have

$$
a, b \leq a \vee b \Rightarrow-(a \vee b) \leq-a,-b \Rightarrow-(a \vee b) \leq-a \wedge-b
$$

and

$$
-a \wedge-b \leq-a,-b \Rightarrow a, b \leq-(-a \wedge-b) \Rightarrow a \vee b \leq-(-a \wedge-b)
$$

so $-a \wedge-b \leq-(a \vee b)$. Therefore $-(a \vee b)=-a \wedge-b$. Similarly $-(a \wedge b)=$ $-a \vee-b$.
(3) For $a, b, c \in G$, we show that $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$. Let $d=b \vee c$. Then $a \wedge b \leq a \wedge d$ implies $0 \leq(a \wedge d)-(a \wedge b)$. Since

$$
-d+(a \wedge d)=(-d+a) \wedge 0 \leq(-b+a) \wedge 0=-b+(a \wedge b)
$$

we have $0 \leq(a \wedge d)-(a \wedge b) \leq d-b$. Similarly, $0 \leq(a \wedge d)-(a \wedge c) \leq d-c$. Thus

$$
\begin{aligned}
0 & \leq[(a \wedge d)-(a \wedge b)] \wedge[(a \wedge d)-(a \wedge c)] \\
& \leq(d-b) \wedge(d-c) \\
& =d+(-b \wedge-c) \\
& =d-d \\
& =0
\end{aligned}
$$

so $[(a \wedge d)-(a \wedge b)] \wedge[(a \wedge d)-(a \wedge c)]=0$. Hence $(a \wedge d)-[(a \wedge b) \vee(a \wedge c)]=0$, that is, $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.

The distributive property $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ can be proved by replacing each element in $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ with its additive inverse.
(4) From (1) and (2),

$$
a-(a \wedge b)+b=a+(-a \vee-b)+b=b \vee a=a \vee b
$$

and if G is commutative, it is clear that $a+b=(a \vee b)+(a \wedge b)$.
(5) By (1) and mathematical induction,

$$
n(a \wedge 0)=n a \wedge(n-1) a \wedge \cdots \wedge a \wedge 0
$$

Since $n a \geq 0$, we have $n a \wedge 0=0$, so

$$
n(a \wedge 0)=(n-1) a \wedge \cdots \wedge a \wedge 0=(n-1)(a \wedge 0)
$$

Adding the inverse of $(n-1)(a \wedge 0)$ to both sides, we get $a \wedge 0=0$ and hence $a \geq 0$.
(6) Suppose that $x \leq y_{1}+y_{2}$. Let $x_{1}=x \wedge y_{1}$ and $x_{2}=-x_{1}+x$. Then $x=x_{1}+x_{2}, 0 \leq x_{1} \leq y_{1}$, and

$$
0 \leq x_{2}=-x_{1}+x=\left(-x \vee-y_{1}\right)+x=0 \vee\left(-y_{1}+x\right) \leq y_{2}
$$

Generally, $x \leq y_{1}+\cdots+y_{n}$ implies $x=x_{1}+x_{1}^{\prime}$ with $0 \leq x_{1} \leq y_{1}$ and $0 \leq x_{1}^{\prime} \leq y_{2}+\cdots+y_{n}$ by previous argument. Continuing this process or using mathematical induction, we will arrive at $x=x_{1}+\cdots+x_{n}$ with $0 \leq x_{i} \leq y_{i}$ for $i=1, \cdots, n$.
(7) By (6) $x \wedge\left(y_{1}+\cdots+y_{n}\right)=z_{1}+\cdots+z_{n}$, where $0 \leq z_{i} \leq y_{i}$ for $i=1, \cdots, n$. Then each $z_{i} \leq z_{1}+\cdots+z_{n} \leq x$, so $z_{i} \leq x \wedge y_{i}$, and hence $x \wedge\left(y_{1}+\cdots+y_{n}\right) \leq\left(x \wedge y_{1}\right)+\cdots+\left(x \wedge y_{n}\right)$.

Two strictly positive elements a, b of an ℓ-group G are called disjoint if $a \wedge b=0$. A subset $\left\{a_{1}, \cdots, a_{n}\right\}$ of G is called disjoint if each element in it is strictly positive and $a_{i} \wedge a_{j}=0$ for any $i \neq j$.

Theorem 1.6. Let G be an ℓ-group and $a, b, c, a_{1}, \cdots, a_{n} \in G$.
(1) If a and b are disjoint, and $c \geq 0$, then $a \wedge(b+c)=a \wedge c$.
(2) If $a \wedge b=a \wedge c=0$, then $a \wedge(b+c)=0$.
(3) If $\left\{a_{1}, \cdots, a_{n}\right\}$ is a disjoint set, then $a_{1} \vee \cdots \vee a_{n}=a_{1}+\cdots+a_{n}$. In particular, if $a \wedge b=0$, then $a+b=a \vee b=b \vee a=b+a$, that is, disjoint elements commute.

Proof. (1) Since $a+c \geq a$,

$$
a \wedge c=a \wedge((a \wedge b)+c)=a \wedge[(a+c) \wedge(b+c)]=a \wedge(b+c)
$$

(2) follows from (1).
(3) $\operatorname{By}(2),\left(a_{1}+\cdots+a_{n-1}\right) \wedge a_{n}=0$, so

$$
\left(a_{1}+\cdots+a_{n-1}\right) \vee a_{n}=a_{1}+\cdots+a_{n-1}+a_{n}
$$

by Theorem 1.5(4). Continuing this process or using mathematical induction, we arrive at $a_{1} \vee \cdots \vee a_{n-1} \vee a_{n}=a_{1}+\cdots+a_{n-1}+a_{n}$.

Let G be an ℓ-group. For $g \in G$, the positive part g^{+}, the negative part g^{-}and the absolute value $|g|$ are defined as follows.

$$
g^{+}=g \vee 0, g^{-}=(-g) \vee 0,|g|=g \vee(-g)
$$

Since $g+g^{-}=g+(-g \vee 0)=0 \vee g=g^{+}, g=g^{+}-g^{-}$.
Theorem 1.7. Let G be an ℓ-group and $f, g \in G$.
(1) $|g|=g^{+}+g^{-}$.
(2) $g^{+} \wedge g^{-}=0$.
(3) If $f \wedge g=0$, then $f=(f-g)^{+}$and $g=(f-g)^{-}$.
(4) $n g^{+}=(n g)^{+}, n g^{-}=(n g)^{-}$, and $n|g|=|n g|$ for any positive integer n.
(5) $|f+g| \leq|f|+|g|+|f|$. If G is commutative, then $|f+g| \leq|f|+|g|$.

Proof. (1) $|g| \geq g,-g$ implies $2|g| \geq 0$. By Theorem $1.5(5),|g| \geq 0$. Then by Theorem 1.5(1), we have

$$
\begin{aligned}
g^{+}+g^{-} & =(g \vee 0)+(-g \vee 0) \\
& =[(g \vee 0)+(-g)] \vee(g \vee 0) \\
& =0 \vee(-g) \vee g \vee 0 \\
& =0 \vee|g| \\
& =|g|
\end{aligned}
$$

(2) Since G is a distributive lattice,

$$
g^{+} \wedge g^{-}=(g \vee 0) \wedge(-g \vee 0)=(g \wedge-g) \vee 0=-|g| \vee 0=0
$$

by Theorem $1.5(2)$ and (3).
(3) If $f \wedge g=0$, then $-f \vee-g=0$, and

$$
f=f+0=f+(-f \vee-g)=0 \vee(f-g)=(f-g)^{+}
$$

and $g=(g-f)^{+}=(f-g)^{-}$.
(4) By (2) and Theorem 1.6(2), $n g^{+} \wedge n g^{-}=0$ (Exercise 7). Since disjoint elements commute, $-g^{-}+g^{+}=g^{+}-g^{-}$, so

$$
(n g)^{+}=\left(n\left(g^{+}-g^{-}\right)\right)^{+}=\left(n g^{+}-n g^{-}\right)^{+}=n g^{+}
$$

by (3). Then $n g^{-}=n(-g)^{+}=(-n g)^{+}=(n g)^{-}$, and

$$
n|g|=n\left(g^{+}+g^{-}\right)=n g^{+}+n g^{-}=(n g)^{+}+(n g)^{-}=|n g|
$$

(5) Since $|f|,|g| \geq 0, f+g \leq|f|+|g| \leq|f|+|g|+|f|$ and

$$
-(f+g)=(-g)+(-f) \leq|g|+|f| \leq|f|+|g|+|f|
$$

so

$$
|f+g|=(f+g) \vee-(f+g) \leq|f|+|g|+|f|
$$

From the above argument, if G is commutative, then $|f+g| \leq|f|+|g|$.
A subset C of an ℓ-group G is called convex if for all $g \in G$ and $c, d \in C$, $c \leq g \leq d$ implies $g \in C$. A convex ℓ-subgroup of G is a subgroup of G which is convex and a sublattice of G. Clearly G and $\{0\}$ are convex ℓ subgroups of G, and the intersection of a family of convex ℓ-subgroups of G is a convex ℓ-subgroup of G. For a subset X of G, the intersection of all convex ℓ-subgroups containing X is the smallest convex ℓ-subgroup that contains X, which is called the convex ℓ-subgroup generated by X and denoted by $C_{G}(X)$ or just $C(X)$.

One method of constructing convex ℓ-subgroups is by using a polar that is defined as follows. For a subset X of an ℓ-group G, the polar of X is

$$
X^{\perp}=\{a \in G| | a|\wedge| x \mid=0, \forall x \in X\}
$$

and the double polar of X is $X^{\perp \perp}=\left(X^{\perp}\right)^{\perp}$. Clearly $X \subseteq X^{\perp \perp}$ and $X^{\perp \perp \perp}=X^{\perp}$ (Exercise 8). If $X=\{x\}$, then X^{\perp} and $X^{\perp \perp}$ are denoted by x^{\perp} and $x^{\perp \perp}$.

Theorem 1.8. Let G be an ℓ-group.
(1) A subgroup H of G is a convex ℓ-subgroup of G if and only if for any $a \in H, x \in G,|x| \leq|a|$ implies $x \in H$.
(2) For each subset X of G, X^{\perp} is a convex ℓ-subgroup of G.
(3) $C(X)=\left\{g \in G| | g\left|\leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right.\right.$ for some $\left.x_{1}, \cdots, x_{n} \in X\right\}$.
(4) The subgroup of G generated by a family of convex ℓ-subgroups is a convex ℓ-subgroup of G.

Proof. (1) Suppose that H is a convex ℓ-subgroup of G and $|x| \leq|a|$ for some $a \in H$ and $x \in G$. Since H is a sublattice of $G, a \in H$ implies $a^{+}, a^{-} \in H$, and hence $|a|=a^{+}+a^{-} \in H$. Then that H is convex implies $|x| \in H$, so $x^{+}, x^{-} \in H$ by the convexity of H again. Hence $x=x^{+}-x^{-} \in H$.

Conversely, let H be a subgroup with the given property. Let $a, b \in H$ and $x \in G$ such that $a \leq x \leq b$. Then $0 \leq x-a \leq b-a \in H$, so $x-a \in H$, and $x=(x-a)+a \in H$. Thus H is convex. Let $a, b \in H$. Then $(b-a)^{+} \leq|b-a|$ implies $(b-a)^{+} \in H$, so $a \vee b=(b-a)^{+}+a \in H$. Similarly $a \wedge b \in H$. Therefore H is a sublattice of G, and hence H is a convex ℓ-subgroup of G.
(2) Let $a, b \in X^{\perp}$. By Theorem 1.7(5) and Theorem 1.6(2), for any $x \in X$,

$$
|a-b| \wedge|x| \leq(|a|+|-b|+|a|) \wedge|x|=(|a|+|b|+|a|) \wedge|x|=0
$$

so $|a-b| \wedge|x|=0$. Thus $a-b \in X^{\perp}$, that is, X^{\perp} is a subgroup of G. Then it is clear that X^{\perp} is a convex ℓ-subgroup by (1).
(3) Let

$$
H=\left\{g \in G| | g\left|\leq\left|x_{1}\right|+\cdots+\left|x_{n}\right| \text { for some } x_{1}, \cdots, x_{n} \in X\right\}\right.
$$

and $a, b \in H$. By Theorem 1.7(5) again, $|a-b| \leq|a|+|b|+|a|$, so $a-b \in H$, that is, H is a subgroup of G. Then by (1), H is a convex ℓ-subgroup of G. Clearly $X \subseteq H$ and any convex ℓ-subgroup of G containing X contains H. Hence $C(X)=H$.
(4) Let $\left\{C_{i} \mid i \in I\right\}$ be a family of convex ℓ-subgroups of G and C be the subgroup of G generated by $\left\{C_{i} \mid i \in I\right\}$. Suppose that $|g| \leq|c|$ for some $g \in G$ and $c \in C$. Let $c=\sum_{j=1}^{n} c_{j}$ with $c_{j} \in \cup\left\{C_{i} \mid i \in I\right\}$. Then by Theorem $1.7(5),|g|$ is less than or equal to a sum of elements from $\cup\left\{C_{i}^{+} \mid i \in I\right\}$, so since $g^{+}, g^{-} \leq|g|$, by Theorems $1.5(6), g^{+}, g^{-}$can be written as a sum of elements from $\cup\left\{C_{i}^{+} \mid i \in I\right\}$, so $g=g^{+}-g^{-} \in C$. Thus by (1), C is a convex ℓ-subgroup of G.

For an ℓ-group G, we use $\mathcal{C}(G)$ to denote the set of all convex ℓ-subgroups of G and partially order $\mathcal{C}(G)$ by set inclusion. It is well known and not
hard to show that the set of all subgroups of a group is a lattice under set inclusion. For any two subgroups A and $B, A \wedge B=A \cap B$ and $A \vee B$ is the subgroup generated by $A \cup B$.

Theorem 1.9. Let G be an ℓ-group. $\mathcal{C}(G)$ is a complete distributive sublattice of the lattice of subgroups of G. Moreover, if $A,\left\{A_{i} \mid i \in I\right\}$ are convex ℓ-subgroups of G, then $A \cap\left(\vee_{i \in I} A_{i}\right)=\vee_{i \in I}\left(A \cap A_{i}\right)$.

Proof. The intersection of a family of convex ℓ-subgroups is a convex ℓ-subgroup, and by Theorem $1.8(4)$, the subgroup generated by a family of convex ℓ-subgroups is also a convex ℓ-subgroup, so $\mathcal{C}(G)$ is a complete sublattice of the lattice consisting of all subgroups of G.

Suppose that $A, A_{1}, A_{2} \in \mathcal{C}(G)$. We show that

$$
A \vee\left(A_{1} \cap A_{2}\right)=\left(A \vee A_{1}\right) \cap\left(A \vee A_{2}\right)
$$

Let C, C_{1}, and C_{2} be the subgroup generated by $A \cup\left(A_{1} \cap A_{2}\right), A \cup A_{1}$, and $A \cup A_{2}$ respectively. Since

$$
A \cup\left(A_{1} \cap A_{2}\right)=\left(A \cup A_{1}\right) \cap\left(A \cup A_{2}\right)
$$

$C \subseteq C_{1} \cap C_{2}$. Let $g \in C_{1} \cap C_{2}$. By Theorem 1.8(3), we have

$$
|g| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right| \text { and }|g| \leq\left|y_{1}\right|+\cdots+\left|y_{m}\right|
$$

for some $x_{i} \in A \cup A_{1}$ and $y_{j} \in A \cup A_{2}$. Then
$|g| \leq\left(\left|x_{1}\right| \wedge\left|y_{1}\right|+\cdots+\left|x_{1}\right| \wedge\left|y_{m}\right|\right)+\cdots+\left(\left|x_{n}\right| \wedge\left|y_{1}\right|+\cdots+\left|x_{n}\right| \wedge\left|y_{m}\right|\right)$
by Theorem 1.5(7). If $x_{i} \in A$ or $y_{j} \in A$, then $\left|x_{i}\right| \wedge\left|y_{j}\right| \in A$. Otherwise $x_{i} \in A_{1}$ and $y_{j} \in A_{2}$ implies $\left|x_{i}\right| \wedge\left|y_{j}\right| \in A_{1} \cap A_{2}$. Thus each term $\left|x_{i}\right| \wedge\left|y_{j}\right| \in A \cup\left(A_{1} \cap A_{2}\right)$, so $g \in C$ by Theorem 1.8(3). Hence $C_{1} \cap C_{2} \subseteq C$. Therefore $C=C_{1} \cap C_{2}$, that is, $A \vee\left(A_{1} \cap A_{2}\right)=\left(A \vee A_{1}\right) \cap\left(A \vee A_{2}\right)$.

Finally it is clear that $\vee_{i \in I}\left(A \cap A_{i}\right) \subseteq A \cap\left(\vee_{i \in I} A_{i}\right)$. If $g \in A \cap\left(\vee_{i \in I} A_{i}\right)$, then $|g| \leq\left|c_{1}\right|+\cdots+\left|c_{n}\right|$ with $c_{k} \in \cup_{i \in I} A_{i}$. By Theorem 1.5(6), $|g|=$ $g_{1}+\cdots+g_{n}$ with $0 \leq g_{k} \leq\left|c_{k}\right|$ for $k=1, \cdots, n$. Then each $g_{k} \leq|g|$, so $g_{k} \leq|g| \wedge\left|c_{k}\right| \in A \cap A_{i_{k}}$ for some $A_{i_{k}}$ implies $g_{k} \in A \cap A_{i_{k}}$. It follows that $g \in \vee_{i \in I}\left(A \cap A_{i}\right)$, and hence we also have $A \cap\left(\vee_{i \in I} A_{i}\right) \subseteq \vee_{i \in I}\left(A \cap A_{i}\right)$. Therefore $A \cap\left(\vee_{i \in I} A_{i}\right)=\vee_{i \in I}\left(A \cap A_{i}\right)$.

Let G be an ℓ-group and $\left\{C_{i} \mid i \in I\right\}$ be a family of convex ℓ-subgroups of G. G is call a direct sum of $\left\{C_{i} \mid i \in I\right\}$, denoted by $G=\oplus_{i \in I} C_{i}$, if G is generated by $\left\{C_{i} \mid i \in I\right\}$ and $C_{i} \cap C_{j}=\{0\}$ for any $i, j \in I$ with $i \neq j$.

Theorem 1.10. Let G be an ℓ-group. Suppose that G is a direct sum of a family of convex ℓ-subgroups $\left\{C_{i} \mid i \in I\right\}$.
(1) If $c_{1}+\cdots+c_{n}=0$, where $c_{i} \in C_{k_{i}}$ and k_{1}, \cdots, k_{n} are distinct, then each $c_{i}=0$.
(2) Each element $0 \neq a \in G$ can be uniquely written as $a=c_{1}+\cdots+c_{n}$ with $0 \neq c_{i} \in C_{k_{i}}$ and k_{1}, \cdots, k_{n} are distinct. Moreover $a \geq 0$ if and only if each $c_{i} \geq 0$.

Proof. (1) If $c_{1}+\cdots+c_{n}=0$, then $c_{1}=-c_{n}-\cdots-c_{2}$ implies that

$$
c_{1} \in C_{k_{1}} \cap\left(C_{k_{2}} \vee \cdots \vee C_{k_{n}}\right)
$$

By Theorem 1.9,

$$
c_{1} \in\left(C_{k_{1}} \cap C_{k_{2}}\right) \vee \cdots \vee\left(C_{k_{1}} \cap C_{k_{n}}\right)=\{0\}
$$

Thus $c_{1}=0$. Similarly $c_{2}=\cdots=c_{n}=0$.
(2) For $0 \leq a \in C_{i}$ and $0 \leq b \in C_{j}$ with $i \neq j$, since $C_{i} \cap C_{j}=\{0\}$, $a \wedge b=0$, so $a+b=b+a$ by Theorem 1.6(3). Thus elements in C_{i} and C_{j} commute (Exercise 9). It follows then that each $a \in G$ with $a \neq 0$ can be written as $a=c_{1}+\cdots+c_{n}$ with $0 \neq c_{i} \in C_{k_{i}}$ and k_{1}, \cdots, k_{n} are distinct. The uniqueness follows from (1).

Clearly if each $c_{i} \geq 0$, then $a \geq 0$. Suppose that $a=c_{1}+\cdots+c_{n} \geq 0$. Then $-c_{1} \leq c_{2}+\cdots+c_{n} \in C_{k_{2}} \vee \cdots \vee C_{k_{n}}$ implies $\left(-c_{1}\right)^{+} \leq\left(c_{2}+\cdots+c_{n}\right)^{+} \in$ $C_{k_{2}} \vee \cdots \vee C_{k_{n}}$, so $\left(-c_{1}\right)^{+} \in C_{k_{2}} \vee \cdots \vee C_{k_{n}}$. Then by Theorem 1.9, we have

$$
\left(-c_{1}\right)^{+} \in\left(C_{k_{1}} \cap C_{k_{2}}\right) \vee \cdots \vee\left(C_{k_{1}} \cap C_{k_{n}}\right)=\{0\}
$$

so $\left(-c_{1}\right)^{+}=0$, and hence $c_{1} \geq 0$. Similarly $c_{2} \geq 0, \cdots, c_{n} \geq 0$.
Let G be an ℓ-group and N be a normal convex ℓ-subgroup of G. Define the relation on the quotient group G / N by

$$
x+N \leq y+N \text { if } x \leq y+z \text { for some } z \in N
$$

The relation is well-defined since if $x_{1}+N=x+N$ and $y_{1}+N=y+N$, then $x=x_{1}+c$ and $y=y_{1}+d$ for some $c, d \in N$, so $x=x_{1}+c \leq y+z=y_{1}+(d+z)$ implies $x_{1} \leq y_{1}+(d+z-c)$ with $d+z-c \in N$. Thus $x_{1}+N \leq y_{1}+N$.

It is clear that the relation defined above is reflexive and transitive. Suppose that $x+N \leq y+N$ and $y+N \leq x+N$ for some $x, y \in G$. Then $x \leq y+z$ and $y \leq x+w$ for some $z, w \in N$, so $-y+x \leq z \in N$ and $-x+y \leq w$ implies that

$$
|-y+x|=(-y+x) \vee(-x+y) \leq z \vee w \in N
$$

It follows that $-y+x \in N$, and hence $x+N=y+N$, that is, the relation is also antisymmetric. Therefore it is a partial order on G / N.

Theorem 1.11. G / N is an ℓ-group with respect to the partial order defined above.

Proof. Suppose that $x+N \leq y+N$ and $z+N \in G / N$. Then $x \leq y+a$ for some $a \in N$. Since $z+x \leq(z+y)+a$,

$$
(z+N)+(x+N) \leq(z+N)+(y+N)
$$

and since

$$
x+z \leq y+a+z=(y+z)+(-z+a+z)
$$

with $-z+a+z \in N$,

$$
(x+N)+(z+N) \leq(y+N)+(z+N) .
$$

Hence G / N is a partially ordered group.
We show next that

$$
(x+N) \vee(y+N)=(x \vee y)+N \text { and }(x+N) \wedge(y+N)=(x \wedge y)+N
$$

for any $x, y \in G$. Clearly $x+N, y+N \leq(x \vee y)+N$. Let $x+N, y+N \leq z+N$ for some $z \in G$. Then $x \leq z+a$ and $y \leq z+b$ for some $a, b \in N$, so $-z+x \leq a$ and $-z+y \leq b$ and $(-z+x) \vee(-z+y) \leq a \vee b \in N$. Then it follows that $x \vee y \leq z+(a \vee b)$, and hence $(x \vee y)+N \leq z+N$. Therefore $(x+N) \vee(y+N)=(x \vee y)+N$. Similarly $(x+N) \wedge(y+N)=(x \wedge y)+N$. Hence G / N is an ℓ-group.

The ℓ-group G / N with the lattice order defined above is called the quotient ℓ-group of G by N.

Let G and H be ℓ-groups. A group homomorphism $f: G \rightarrow H$ is called an ℓ-homomorphism if f also preserves sup and inf, namely, for any $a, b \in G$,

$$
f(a \vee b)=f(a) \vee f(b) \text { and } f(a \wedge b)=f(a) \wedge f(b)
$$

For example, for an ℓ-group G and a normal convex ℓ-subgroup N, it is easy to check that the group homomorphism $\varphi: G \rightarrow G / N$ defined by $\varphi(a)=a+N$ is an ℓ-homomorphism called the projection (Exercise 11). An ℓ-isomorphism is a group isomorphism that preserves sup and inf. If there exists an ℓ-isomorphism between two ℓ-groups G and H, then they are called ℓ-isomorphic and denoted by $G \cong H$.

Theorem 1.12. Let G and H be ℓ-groups and $f: G \rightarrow H$ be a group homomorphism. Then f is an ℓ-homomorphism if and only if $x \wedge y=0$ $(x \vee y=0) \Rightarrow f(x) \wedge f(y)=0(f(x) \vee f(y)=0)$ for all $x, y \in G$.

Proof. Suppose that $x \wedge y=0$ implies $f(x) \wedge f(y)=0$ for all $x, y \in G$. Let $a, b \in G$ and $a \wedge b=c$. Then $(a-c) \wedge(b-c)=0$ implies

$$
f(a-c) \wedge f(b-c)=(f(a)-f(c)) \wedge(f(b)-f(c))=0,
$$

so $f(a) \wedge f(b)=f(c)$. We also have that

$$
\begin{aligned}
f(a \vee b) & =f(-(-a \wedge-b)) \\
& =-(f(-a \wedge-b)) \\
& =-(-f(a) \wedge-f(b)) \\
& =f(a) \vee f(b) .
\end{aligned}
$$

A totally ordered field is a field whose additive group is a totally ordered group and product of two positive elements is still positive. For instance, the field \mathbb{Q} of all rational numbers and the field \mathbb{R} of all real numbers are both totally ordered fields with respect to usual order between real numbers. Let F be a totally ordered field and $a \in F$. Then either $a \geq 0$ or $a<0$, so $a^{2} \geq 0$ in either case. Thus the identity element 1 is positive since $1=1^{2}$. A consequence of this simple fact is that the field \mathbb{C} of all complex numbers cannot be made into a totally ordered field since $i^{2}=-1$, where $i=\sqrt{-1}$ is the imaginary unit.

Let F be a totally ordered field and V be a left (right) vector space over $F . V$ is called a vector lattice over F if V is an ℓ-group and for all $\alpha \in F^{+}$and $v \in V^{+}, \alpha v \in V^{+}\left(v \alpha \in V^{+}\right)$. We note that the addition on V is commutative. In case that $F=\mathbb{R}$, a vector lattice is usually called a Rieze space. A convex vector sublattice W of V is a subspace of V and a convex ℓ-subgroup of V. An element $\alpha \in F^{+}$is called an f-element on V if $v \wedge u=0 \Rightarrow \alpha v \wedge u=0$ for all $v, u \in V$. More generally, for a unital totally ordered ring T and a left (right) module M over T, M is called an ℓ-module if its additive group is an ℓ-group and for any $\alpha \in T^{+}, x \in M^{+}$, $\alpha x \in M^{+}\left(x \alpha \in M^{+}\right)$. An ℓ-module is called an f-module if each element in T^{+}is an f-element on M.

Theorem 1.13. Let V be a vector lattice over a totally ordered field F.
(1) Each positive element of F is an f-element on V, that is, V is an f-module over F. Thus any polar is a convex vector sublattice.
(2) Suppose that $v_{1}, \cdots, v_{k} \in V$ are disjoint. Then for any $\alpha_{1}, \cdots, \alpha_{k} \in F$, $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \geq 0$ if and only if each $\alpha_{i} \geq 0$.
(3) Any disjoint subset of V is linear independent over F.

Proof. (1) For any $\beta \in F$ with $\beta>0$, since F is totally ordered and $1>0, \beta^{-1}>0$. Suppose that $0<\alpha \in F$. If $v \wedge u=0$, for $v, u \in V$, then

$$
0 \leq(\alpha+1)^{-1}(\alpha v \wedge u) \leq(\alpha+1)^{-1}((\alpha+1) v \wedge(\alpha+1) u) \leq v \wedge u=0
$$

and hence $(\alpha+1)^{-1}(\alpha v \wedge u)=0$ and $\alpha v \wedge u=0$. Therefore each positive element of F is an f-element on V. For $X \subseteq V$, we already know that X^{\perp} is a convex ℓ-subgroup. X^{\perp} is also a subspace of V over F since $\forall \alpha \in F, v \in V,|\alpha v|=|\alpha||v|$ (Exercise 17) and V is an f-module over F.
(2) If each $\alpha_{j} \geq 0$, then $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \geq 0$. Conversely suppose that $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \geq 0$ and suppose that $\alpha_{1}<0, \ldots, \alpha_{n}<0$, and $\alpha_{n+1} \geq 0, \ldots, \alpha_{k} \geq 0$, where $1 \leq n<k$. Then $-\alpha_{1} v_{1}-\ldots-\alpha_{n} v_{n} \leq$ $\alpha_{n+1} v_{n+1}+\ldots+\alpha_{k} v_{k}$, and hence by Theorem 1.5(7), we have

$$
\begin{aligned}
-\alpha_{1} v_{1} & =\left(-\alpha_{1} v_{1}\right) \wedge\left(-\alpha_{1} v_{1}-\ldots-\alpha_{n} v_{n}\right) \\
& \leq\left(-\alpha_{1} v_{1}\right) \wedge\left(\alpha_{n+1} v_{n+1}+\ldots+\alpha_{k} v_{k}\right) \\
& \leq\left(-\alpha_{1} v_{1} \wedge \alpha_{n+1} v_{n+1}\right)+\ldots+\left(-\alpha_{1} v_{1} \wedge \alpha_{k} v_{k}\right) \\
& =0
\end{aligned}
$$

by (1) since $v_{1} \wedge v_{n+1}=\ldots=v_{1} \wedge v_{k}=0$. Thus $-\alpha_{1} v_{1}=0$, so $\alpha_{1}=0$, which is a contradiction. Thus each $\alpha_{j} \geq 0$.
(3) This is a direct consequence of (2).

1.2.2 Structure theorems of ℓ-groups and vector lattices

In this section, we prove some algebraic structure theorems for ℓ-groups and vector lattices that contain basic elements. This theory was initially developed by P. Conrad and it plays important roles in study of ℓ-groups.

Let G be an ℓ-group. An element $0<a \in G$ is called a basic element if for any $c, d \in G^{+}, c, d \leq a$ implies c and d are comparable, that is, either $c \geq d$ or $c \leq d$. A nonzero polar is called a minimal polar if it does not contain any nonzero polar.

Theorem 1.14. Let G be an ℓ-group.
(1) For $0<a \in G, a$ is basic if and only if $a^{\perp \perp}$ is totally ordered.
(2) Let a, b be basic elements. Then either $a \wedge b=0$ or $a^{\perp \perp}=b^{\perp \perp}$, and $a^{\perp \perp}=b^{\perp \perp}$ if and only if a and b are comparable.
(3) For $0<a \in G$, a is a basic element if and only if for any $0<b \leq a$, $b^{\perp \perp}=a^{\perp \perp}$.
(4) For $0<a \in G$, a is a basic element if and only if $a^{\perp \perp}$ is a minimal polar.

Proof. We first note that for any $x \in G, x^{\perp \perp}$ is a convex ℓ-subgroup by Theorem 1.8(2).
(1) Suppose that a is basic. Let $x, y \in a^{\perp \perp}$ and $x \wedge y=0$. Then $(a \wedge x) \wedge(a \wedge y)=0$ implies that $a \wedge x=0$ or $a \wedge y=0$ since $a \wedge x$ and $a \wedge y$ are comparable. Thus $x \in a^{\perp}$ or $y \in a^{\perp}$, so $x=x \wedge x=0$ or $y=y \wedge y=0$. Hence $a^{\perp \perp}$ is totally ordered (Exercise 12). Conversely, suppose that $a^{\perp \perp}$ is totally ordered and let $0 \leq x, y \leq a$. Then $x, y \in a^{\perp \perp}$ implies that x and y are comparable, so a is basic.
(2) Suppose that $a \wedge b \neq 0$. Let $0 \leq x \in a^{\perp \perp}$. Take $0<y \in b^{\perp}$. Then $y \wedge b=0$ implies that $(x \wedge y) \wedge(a \wedge b)=0$. Since $x \wedge y$ and $a \wedge b$ are both in $a^{\perp \perp}$ that is totally ordered by (1), we must have $x \wedge y=0$ or $a \wedge b=0$. Since $a \wedge b \neq 0, x \wedge y=0$, so $x \in b^{\perp \perp}$ and $a^{\perp \perp} \subseteq b^{\perp \perp}$. Similarly $b^{\perp \perp} \subseteq a^{\perp \perp}$. Therefore, $a^{\perp \perp}=b^{\perp \perp}$.

If $a^{\perp \perp}=b^{\perp \perp}$, then $a, b \in a^{\perp \perp}$ implies that a and b are comparable by (1). Conversely, if a and b are comparable, then $a \wedge b \neq 0$, so $a^{\perp \perp}=b^{\perp \perp}$.
(3) If a is basic and $0<b \leq a$, then b is also basic, so $b^{\perp \perp}=a^{\perp \perp}$. Conversely, suppose that the condition is true and $0<x, y \leq a$. Let $z=x-x \wedge y$ and $w=y-x \wedge y$. Then $z \wedge w=0$ and $z, w \in a^{\perp \perp}$. Suppose that $z \neq 0$. Then $0<z \leq a$ implies that $z^{\perp \perp}=a^{\perp \perp}$, so $w \in z^{\perp \perp}$. On the other hand, $z \wedge w=0$ implies that $w \in z^{\perp}$, and hence $w \wedge w=0$, so $w=0$. Thus $y \leq x$. Similarly, if $w \neq 0$, then $x \leq y$. Therefore a is basic.
(4) Suppose that $a^{\perp \perp}$ is a minimal polar and $0<b \leq a$. Then $0 \neq$ $b^{\perp \perp} \subseteq a^{\perp \perp}$, so $b^{\perp \perp}=a^{\perp \perp}$. Therefore a is basic by (3). Now suppose that a is basic and $\{0\} \neq X^{\perp} \subseteq a^{\perp \perp}$ for some $X \subseteq G$. Take $0<x \in X^{\perp}$. Then $x \in a^{\perp \perp}$ implies that x is also basic. Thus $x^{\perp \perp}=a^{\perp \perp}$ by (2). Hence $a^{\perp \perp}=x^{\perp \perp} \subseteq X^{\perp \perp \perp}=X^{\perp}$, so $X^{\perp}=a^{\perp \perp}$. Therefore $a^{\perp \perp}$ is a minimal polar.

Corollary 1.1. Let G be an ℓ-group and $a \in G$. If a is a basic element, then $a^{\perp \perp}$ is a maximal convex totally ordered subgroup in the sense that for any convex totally ordered subgroup M of G if $a^{\perp \perp} \subseteq M$, then $M=a^{\perp \perp}$.

Proof. Suppose that M is a convex totally ordered subgroup containing $a^{\perp \perp}$ and $0<g \in M$. Since M is convex and totally ordered, g is basic and hence $a, g \in M$ implies that $a^{\perp \perp}=g^{\perp \perp}$ by Theorem 1.14(2). Thus $g \in a^{\perp \perp}, \forall g \in M^{+}$, so $M=a^{\perp \perp}$.

Let G be an ℓ-group. A subset S of G is called a basis if
(i) each element in S is basic, and
(ii) S is a maximal disjoint set of G.

Equivalently a subset S of G is a basis if S is a disjoint set of basic elements with $S^{\perp}=\{0\}$ (Exercise 13). In this book, terminology basis means the basis defined above. For the basis of a vector space we always call it a vector space basis.

Theorem 1.15. Let G be an ℓ-group.
(1) G has a basis if and only if G satisfies
$(*)$ each $0<g \in G$ is greater than or equal to at least one basic element.
(2) If G satisfies the following condition (C), then G has a basis.
(C) Each $0<g \in G$ is greater than at most a finite number of disjoint elements.

Proof. (1) If $G=\{0\}$, then the result is trivially true. Let $G \neq\{0\}$. Suppose that S is a basis for G. Then $S \neq \emptyset$. For $0<g \in G \backslash S$, there is an $a \in S$ such that $a \wedge g>0$ since $S^{\perp}=\{0\}$. Then $a \wedge g$ is basic since a is basic, and $a \wedge g \leq g$. Conversely suppose that G satisfies (*). Let

$$
\mathcal{M}=\{A \mid A \text { is a disjoint set of basic elements of } G\}
$$

Clearly $\mathcal{M} \neq \emptyset$ since if a is a basic element of G, then $\{a\} \in \mathcal{M}$. \mathcal{M} is a partially ordered set with respect to set inclusion. Let $\left\{A_{i} \mid i \in I\right\}$ be a chain in \mathcal{M}, then it is easy to check that $\cup_{i \in I} A_{i} \in \mathcal{M}$. So by Zorn's Lemma, \mathcal{M} has a maximal element, say S. We show that S is a basis. To this end, we just need to show that $S^{\perp}=\{0\}$. Suppose that $0<g \in S^{\perp}$ and $g \geq b$ for some basic element b. Then $b \in S^{\perp}$, so $S \subsetneq S \cup\{b\}$ and $S \cup\{b\}$ is disjoint, which contradicts with the fact that S is maximal in \mathcal{M}. Hence $S^{\perp}=\{0\}$ and S is a basis of G.
(2) We show that $(*)$ in (1) is satisfied, so G has a basis. For $0<g \in G$, consider $T=\{x \in G \mid 0<x \leq g\}$. If T contains no disjoint elements, then T is totally ordered (Exercise 14), so g is basic. Suppose that T contains n disjoint elements x_{1}, \cdots, x_{n} and any $n+1$ elements in T are not disjoint for some positive integer n. We claim that each x_{i} is a basic element for $i=1, \cdots, n$. Suppose that $0 \leq y, z \leq x_{i}$ and y, z are not comparable. Let $y \wedge z=w$. Then $(y-w) \wedge(z-w)=0$ with $(y-w)>0$ and $(z-w)>0$, and hence the set $\left\{(y-w),(z-w), x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right\} \subseteq T$ is disjoint since $(y-w),(z-w) \leq x_{i}$, which is a contradiction. Thus y, z must be comparable, so x_{i} is basic. Therefore each $0<g \in G$ is greater than or equal to a basic element.

For finite-dimensional vector lattices, condition (C) in Theorem 1.15 is satisfied.

Corollary 1.2. Let V be a vector lattice over a totally ordered field F. If V is finite-dimensional over F as a vector space, then V satisfies (C) in Theorem 1.15, and hence V has a basis.

Proof. By Theorem 1.13(3), any disjoint subset of V is linearly independent over F, then that V is finite-dimensional over F implies that V contains at most a finite number of disjoint elements, so condition (C) in Theorem 1.15 is satisfied.

A vector lattice V over a totally ordered field F is called Archimedean over F if for $a, b \in V^{+}, \alpha a \leq b$ for all $\alpha \in F^{+}$implies that $a=0$. Certainly if V is Archimedean, then V is Archimedean over F (Exercise 15). However if F is not a totally ordered Archimedean field, then the fact that V is Archimedean over F may not imply that V is Archimedean. For instance, any totally ordered field that is not Archimedean is an Archimedean vector lattice over itself.

Theorem 1.16. Let G be an ℓ-group.
(1) If A and B are convex totally ordered subgroups of G, then $A \subseteq B$ or $A \supseteq B$ or $A \cap B=\{0\}$.
(2) If A and B are maximal convex totally ordered subgroups of G, then either $A=B$ or $A \cap B=\{0\}$.

Proof. (1) Suppose $A \nsubseteq B$ and $A \nsupseteq B$. Then there exist $0<a \in A \backslash B$ and $0<b \in B \backslash A$. Since A and B are convex, $a \wedge b \in A \cap B$. Let $0 \leq c \in A \cap B$. Since $c, a \in A, c$ and a are comparable, so it follows from $a \notin B$ that $c \leq a$. Similarly, $c \leq b$. Thus $c \leq a \wedge b$ for any $0 \leq c \in A \cap B$. Take $c=2(a \wedge b) \in A \cap B$. Then $2(a \wedge b) \leq(a \wedge b)$ implies that $a \wedge b=0$, so for any $0 \leq c \in A \cap B, c=0$. Therefore $A \cap B=\{0\}$.
(2) If A and B are maximal convex totally ordered subgroups, then $A \subseteq B$ or $A \supseteq B$ implies that $A=B$. Thus by (1), we have either $A=B$ or $A \cap B=\{0\}$.

We note that Theorem 1.16 is true for convex totally ordered subspaces of a vector lattice over a totally ordered field.

The following Theorem 1.17 is the structure theorem of vector lattices we need when we consider the structure of a class of ℓ-algebras in chapter 2 , and the result is actually true for ℓ-groups.

For a vector lattice V over a totally ordered field F, let $\left\{V_{i} \mid i \in I\right\}$ be a family of convex vector sublattices of V over F. Define

$$
\sum_{i \in I} V_{i}=\left\{v_{1}+\cdots+v_{k} \mid v_{j} \in V_{k_{j}}\right\}
$$

We leave it as an exercise to verify that $\sum_{i \in I} V_{i}$ is the convex vector sublattice of V over F generated by $\left\{V_{i} \mid i \in I\right\}$ (Exercise 18). The sum $\sum_{i \in I} V_{i}$ is called a direct sum, denoted by $\oplus_{i \in I} V_{i}$, if $V_{i} \cap V_{j}=\{0\}, \forall i \neq j$.

We have used the same symbol $\oplus_{i \in I}$ to denote the direct sum of convex ℓ-subgroups of an ℓ-group before. Later we will also use it to denote the direct sum of ℓ-ideals of an ℓ-ring. The reader should be able to tell the meaning of the symbol from context without confusion.

Theorem 1.17. Let V be a vector lattice over a totally ordered field F. If V satisfies condition (C) in Theorem 1.15 and no maximal convex totally ordered subspace of V is bounded above, then V is a direct sum of maximal convex totally ordered subspaces over F.

Proof. By Theorem 1.15(2), V has a basis S. For each $s \in S, s^{\perp \perp}$ is a maximal convex totally ordered subspace of V by Theorem 1.14(1) and Corollary 1.1. We show that V is a direct sum of $s^{\perp \perp}, s \in S$. Since for $s, t \in S$, if $s \neq t$, then $s^{\perp \perp} \cap t^{\perp \perp}=\{0\}$ by Theorems 1.14(2) and 1.16(2), we just need to show that V is a sum of $s^{\perp \perp}, s \in S$.

Let $0<a \in V$. By condition (C), we may assume that there are k disjoint basic elements v_{1}, \cdots, v_{k} less than or equal to a for some positive integer k, and a is not greater than or equal to $k+1$ disjoint basic elements. Since $S^{\perp}=\{0\}$, for each $i=1, \cdots, k$, there exists an $s_{i} \in S$ such that $v_{i} \wedge s_{i} \neq 0$. We show that $a \in s_{1}^{\perp \perp}+\cdots+s_{k}^{\perp \perp}$. For $i=1, \cdots, k$, each $s_{i}^{\perp \perp}$ is a maximal convex totally ordered subspace of V, and hence there exists $0<x \in s_{1}^{\perp \perp}$ such that $x \not \leq a$ since $s_{1}^{\perp \perp}$ is not bounded above. Let $a \wedge x=a_{1}$. Then $\left(a-a_{1}\right) \wedge\left(x-a_{1}\right)=0$ and $0<x-a_{1} \in s_{1}^{\perp \perp}$, so $\left(\left(a-a_{1}\right) \wedge s_{1}\right) \wedge\left(x-a_{1}\right)=0$ implies $\left(a-a_{1}\right) \wedge s_{1}=0$ since $\left(a-a_{1}\right) \wedge s_{1} \in s_{1}^{\perp \perp}$ that is totally ordered. Let $a-a_{1}=a_{1}^{\prime}$. Then $a=a_{1}+a_{1}^{\prime}$ with $a_{1} \in s_{1}^{\perp \perp}$ and $a_{1}^{\prime} \wedge s_{1}=0$. Again there exists $0<y \in s_{2}^{\perp \perp}$ such that $y \not \leq a_{1}^{\prime}$. Suppose that $a_{1}^{\prime} \wedge y=a_{2}$. Then $\left(a_{1}^{\prime}-a_{2}\right) \wedge\left(y-a_{2}\right)=0$ with $y-a_{2}>0$, so similarly $\left(a_{1}^{\prime}-a_{2}\right) \wedge s_{2}=0$. Let $a_{1}^{\prime}-a_{2}=a_{2}^{\prime}$. We have $a_{1}^{\prime}=a_{2}+a_{2}^{\prime}$ with $a_{2} \in s_{2}^{\perp \perp}$ and $a_{2}^{\prime} \wedge s_{2}=0$. Hence $a=a_{1}+a_{2}+a_{2}^{\prime}$ with $a_{2}^{\prime} \wedge s_{1}=0$ and $a_{2}^{\prime} \wedge s_{2}=0$ since $a_{2}^{\prime} \leq a_{1}^{\prime}$. Continuing this progress, we have $a=a_{1}+a_{2}+\cdots+a_{k}+a_{k}^{\prime}$ with $a_{k}^{\prime} \wedge s_{1}=\cdots=a_{k}^{\prime} \wedge s_{k}=0$. If $a_{k}^{\prime}>0$, then there exists an element $t \in S$ such that $a_{k}^{\prime} \wedge t \neq 0$, so $a_{k}^{\prime} \wedge t \leq a$ is a basic element. Thus $\left(a_{k}^{\prime} \wedge t\right) \wedge v_{j} \neq 0$
for some $1 \leq j \leq k$. By Thoerem 1.14, $\left(a_{k}^{\prime} \wedge t\right)^{\perp \perp}=v_{j}^{\perp \perp}=s_{j}^{\perp \perp}$, and hence $a_{k}^{\prime} \wedge t$ and s_{j} are comparable, which is a contradiction since $a_{k}^{\prime} \wedge s_{j}=0$. Hence $a_{k}^{\prime}=0$ and $a=a_{1}+a_{2}+\cdots+a_{k} \in s_{1}^{\perp \perp}+\cdots+s_{k}^{\perp \perp}$. This completes the proof.

1.3 Lattice-ordered rings and algebras

In this section, we introduce lattice-ordered rings, provide examples, and prove basic properties of them. All rings are associative, and a ring may not have the identity element with respect to its multiplication.

1.3.1 Definitions, examples, and basic properties

A partially ordered ring is a ring R whose additive group is a partially ordered group and for any $a, b \in R$, if $a \geq 0$ and $b \geq 0$ then $a b \geq 0$. The positive cone of a partially ordered ring R is the positive cone of its additive partially ordered group: $R^{+}=\{r \in R \mid r \geq 0\}$. The following result is the ring analogue of Theorems 1.2 and 1.3. We leave the proof as an exercise (Exercise 19).

Theorem 1.18. Let R be a partially ordered ring with positive cone $P=$ R^{+}. Then
(1) $P+P \subseteq P$,
(2) $P P \subseteq P$,
(3) $P \cap-P=\{0\}$.

Conversely, if R is a ring and P is a subset that satisfies the above three conditions, then the relation defined by for all $x, y \in R, x \leq y$ if $y-x \in P$ makes R into a partially ordered ring with positive cone P.

A partially ordered ring R is called a lattice-ordered ring (ℓ-ring), or a totally ordered ring (o-ring) if the partial order on R is a lattice order, or a total order. Certainly an o-ring is an ℓ-ring. A ring is called unital if it has the multiplicative identity element, denoted by 1 , and an ℓ-ring is called ℓ-unital if it is unital and $1>0$. We will see later that a unital ℓ-ring may not be ℓ-unital. A lattice-ordered field (ℓ-field) or a totally ordered field (o-field) is a field, and an ℓ-ring or an o-ring. Similarly a lattice-ordered division ring or a totally ordered division ring is a division ring, and an ℓ-ring or o-ring. Let F be a totally ordered field. A lattice-ordered algebra
(ℓ-algebra) A over F is an algebra and an ℓ-ring such that for all $\alpha \in F$, $a \in A, \alpha \geq 0$ and $a \geq 0$ implies $\alpha a \geq 0$. So with respect to the addition and scalar multiplication, A is a vector lattice over F. An ℓ-ideal of an ℓ-ring is an ideal and a convex ℓ-subgroup. By Theorem 1.8(1), an ideal I of an ℓ-ring R is an ℓ-ideal of R if and only if $|r| \leq|x|$, for any $x \in I$ and $r \in R$, implies $r \in I$. Similarly define left ℓ-ideal and right ℓ-ideal for an ℓ-ring. It is clear that an ℓ-ring itself and $\{0\}$ are (left, right) ℓ-ideals. An ℓ-ring R is called ℓ-simple if it contains no other ℓ-ideals except $R,\{0\}$, and $R^{2} \neq\{0\}$. An (left, right) ℓ-ideal of an ℓ-algebra A is an (left, right) ℓ-ideal of the ℓ-ring A and also a subspace of A over F. Clearly the intersection of any family of (left, right) ℓ-ideals is an (left, right) ℓ-ideal. Let X be a subset of an ℓ-ring $R,\langle X\rangle$ denotes the intersection of all ℓ-ideals of R containing X and $\langle X\rangle$ is called the ℓ-ideal generated by X. If $X=\{x\}$, then $\langle x\rangle$ is used for $\langle X\rangle$.

For ℓ-rings R and S, an ℓ-homomorphism from R to S is a ring homomorphism and a lattice homomorphism from R to S. For an ℓ homomorphism $\varphi: R \rightarrow S$ of two ℓ-rings, define the kernel of φ as $\operatorname{Ker}(\varphi)=\{r \in R \mid \varphi(r)=0\}$. Then $\operatorname{Ker}(\varphi)$ is an ℓ-ideal of R. An ℓ isomorphism between two ℓ-rings is a one-to-one and onto ℓ-homomorphism, and two ℓ-rings R and S are called ℓ-isomorphic, denoted by $R \cong S$, if there exists an ℓ-isomorphism between them. Let I be an ℓ-ideal of an ℓ-ring R. Then R / I becomes an ℓ-ring and the elements in R / I are denoted by $a+I$, $a \in R$ (Exercise 20). The projection $\pi: R \rightarrow R / I$ is an ℓ-homomorphism between two ℓ-rings. An ℓ-ring R is called Archimedean if its additive ℓ group is Archimedean, and an ℓ-algebra A over a totally ordered field F is called Archimedean over F if A is Archimedean over F as a vector lattice over F.

For a family of ℓ-rings $\left\{R_{i} \mid i \in I\right\}$, the cartesian product $\Pi_{i \in I} R_{i}=$ $\left\{\left\{a_{i}\right\} \mid a_{i} \in R_{i}\right\}$, where $\left\{a_{i}\right\}$ denotes a function from I to $\cup R_{i}$ that maps each i to a_{i}, becomes an ℓ-ring with respect to the addition:

$$
\left\{a_{i}\right\}+\left\{b_{i}\right\}=\left\{a_{i}+b_{i}\right\}
$$

the multiplication:

$$
\left\{a_{i}\right\}\left\{b_{i}\right\}=\left\{a_{i} b_{i}\right\}
$$

and the order:

$$
\left\{a_{i}\right\} \geq 0 \text { if each } a_{i} \geq 0 \text { in } R_{i}
$$

Then $\Pi_{i \in I} R_{i}$, together with those operations, is called the direct product of the family $\left\{R_{i} \mid i \in I\right\}$. The direct sum of $\left\{R_{i} \mid i \in I\right\}$ is $\oplus_{i \in I} R_{i}=\left\{\left\{a_{i}\right\} \in\right.$ $\Pi_{i \in I} R_{i} \mid$ only finitely many $\left.a_{i} \neq 0\right\}$.

The following result gives us simple methods to construct lattice orders on rings to make them into ℓ-rings and to construct new lattice orders from existing lattice orders. For a unital ring R, an element u is called a unit if u has an inverse with respect to the multiplication of R.

Theorem 1.19.

(1) Let A be an algebra over a totally ordered field F and let B be a vector space basis of A over F. If for all $a, b \in B$, ab is a linear combination of elements in B with positive scalars in F, then A can be made into an ℓ-algebra by defining an element of A is positive if each scalar in its unique linear combination of distinct elements in B is positive.
(2) Suppose that R is a unital ℓ-ring (ℓ-algebra) with positive cone P and $u>0$ is a unit. Then $u P$ is the positive cone of a lattice order on R to make it into an ℓ-ring (ℓ-algebra).

Proof. (1) A linear combination of vectors over F is called a positive linear combination if each scalar in the combination belongs to F^{+}. Let P consist of all positive linear combinations of vectors in B. Then three conditions in Theorem 1.18 are satisfied, and $F^{+} P \subseteq P$. For $a \in A, a$ can be uniquely written as $a=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ for distinct $v_{i} \in B$, and scalars $\alpha_{i} \in F$. Then it is straightforward to verify that

$$
a \wedge 0=\left(\alpha_{1} \wedge 0\right) v_{1}+\cdots+\left(\alpha_{k} \wedge 0\right) v_{k}
$$

and

$$
a \vee 0=\left(\alpha_{1} \vee 0\right) v_{1}+\cdots+\left(\alpha_{k} \vee 0\right) v_{k}
$$

(Exercise 21). Thus the order is a lattice order and A is an ℓ-algebra over F.
(2) Obviously $u P$ is closed under the addition of R, and since $u \in P, u P$ is also closed under the multiplication of R. Finally that $u P \subseteq P$ implies $(u P) \cap-(u P)=\{0\}$. Thus R is a partially ordered ring with the positive cone $u P$. To see that $u P$ is the positive cone of a lattice order, we consider the mapping $f: R \rightarrow R$ defined by for all $a \in R, f(a)=u a$. Since u is a unit, f is a group isomorphism of the additive group of R. For any $a, b \in R$,

$$
a \wedge_{(u P)} b=f\left(f^{-1}(a) \wedge_{P} f^{-1}(b)\right)=u\left(u^{-1} a \wedge_{P} u^{-1} b\right)
$$

where $a \wedge_{(u P)} b$ is the greatest lower bound of a and b with respect to $u P$, and $u^{-1} a \wedge_{P} u^{-1} b$ is the greatest lower bound of $u^{-1} a$ and $u^{-1} b$ with respect to P (Exercise 22). Similarly,

$$
a \vee_{(u P)} b=f\left(f^{-1}(a) \vee_{P} f^{-1}(b)\right)=u\left(u^{-1} a \vee_{P} u^{-1} b\right)
$$

Finally it is clear that if P is the positive cone of an ℓ-algebra, then $u P$ is also closed under positive scalar multiplication.

A vector space basis B of an algebra is called a multiplicative basis if for any $a, b \in B, a b \in B$ or $a b=0$. By Theorem $1.19(1)$, if an algebra A has a multiplicative basis, then A can be made into an ℓ-algebra in which B is a basis, that is, B is a disjoint set of basic elements with $B^{\perp}=\{0\}$. For instance, standard matrix units $e_{i j}, 1 \leq i, j \leq n$ is a multiplicative basis for matrix algebra $M_{n}(F)$ over a totally ordered field F.

More generally, for an algebra A over a totally ordered field F, a vector space basis B is called a multiplicative basis over F^{+}if for any $a, b \in B$, $a b=\alpha c$ for some $\alpha \in F^{+}$and $c \in B$. Similarly by Theorem 1.19(1) again, if A has a multiplicative basis over F^{+}, A can be made into an ℓ-algebra over F with B as a basis. For instance, in the field $A=\mathbb{Q}[\sqrt{2}], B=\{1, \sqrt{2}\}$ is a multiplicative basis over \mathbb{Q}^{+}.

An important application of Theorem $1.19(2)$ is constructing lattice orders on an ℓ-unital ℓ-ring such that 1 is not positive. For an ℓ-unital ℓ-ring R, take a positive unit u such that u^{-1} is not positive. Then R is an ℓ-ring with the positive cone $u R^{+}$and since $u^{-1} \notin R^{+}, 1 \notin u R^{+}$, so R is not ℓ-unital with respect to this lattice order.

Now we present some examples of ℓ-rings.

Example 1.3.

(1) Suppose that R is an ℓ-ring and $M_{n}(R)$ is the $n \times n$ matrix ring over R with $n \geq 2$. Define a matrix $\left(a_{i j}\right) \geq 0$ if each $a_{i j} \geq 0$ in R. Clearly three conditions in Theorem 1.18 are satisfied and the product of a positive scalar and a positive matrix is still positive. It is easily verified that for any two matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$,

$$
\left(a_{i j}\right) \wedge\left(b_{i j}\right)=\left(a_{i j} \wedge b_{i j}\right) \text { and }\left(a_{i j}\right) \vee\left(b_{i j}\right)=\left(a_{i j} \vee b_{i j}\right)
$$

Hence $M_{n}(R)$ is an ℓ-ring with positive cone $M_{n}\left(R^{+}\right)$. This lattice order on $M_{n}(R)$ is called the entrywise order. Clearly if R is ℓ-unital, then identity matrix is positive with respect to the entrywise order. For a totally ordered field $F, M_{n}(F)$ is an ℓ-algebra over F with respect to the entrywise order.
Let $e_{i j}$ be the standard matrix units in matrix rings, namely, the $(i, j)^{t h}$ entry in $e_{i j}$ is 1 and other entries in $e_{i j}$ are zero. As we mentioned before, $\left\{e_{i j} \mid i, j=1, \cdots, n\right\}$ is multiplicative and hence it is a basis of $M_{n}(F)$ over F with respect to the entrywise order.

Let f be the matrix $f=e_{11}+e_{12}+e_{21}+e_{33}+\cdots+e_{n n}$. Then $f \in M_{n}\left(F^{+}\right)$and $f^{-1}=e_{12}+e_{21}-e_{22}+e_{33}+\cdots+e_{n n} \notin M_{n}\left(F^{+}\right)$. Thus by Theorem 1.19(2), $f M_{n}\left(F^{+}\right)$is the positive cone of an ℓ-algebra $M_{n}(F)$ over F in which $1 \ngtr 0$.
(2) Suppose that G is a group (semigroup) and F is a totally ordered field. Let $F[G]=\left\{\sum \alpha_{i} g_{i} \mid \alpha_{i} \in F, g_{i} \in G\right\}$ be the group (semigroup) algebra over F. In this case the operation on G is written as multiplication. Define $\sum \alpha_{i} g_{i} \geq 0$ if each $\alpha_{i} \geq 0$, that is, the positive cone is $F^{+}[G]$. Then $F[G]$ is an ℓ-algebra over F, and the lattice order is called the coordinatewise order. Clearly $1 G=\{1 g \mid g \in G\}$, where 1 is the identity element of F, is a basis and also a vector space basis of $F[G]$ over F.
A difference between examples (1) and (2) is that the identity matrix in $M_{n}(F)$ is not a basic element but the identity element in $F[G]$ is basic.
(3) Let F be a totally ordered field and $R=F[x]$ be the polynomial ring over F. Except the lattice order on R defined in (2), we consider some other lattice orders on R. Let $p(x)=a_{n} x^{n}+\cdots+a_{k} x^{k} \in R$ with $a_{i} \in F$, $0 \leq k \leq n$, and $a_{k}, a_{n} \neq 0$. If we define $p(x)>0$ by $a_{n}>0$, then R is a totally ordered algebra and the ordering is called lexicographic ordering. If we define $p(x)>0$ by $a_{k}>0$, then R is also a totally ordered algebra and the ordering is called antilexicographic ordering. Both total orders are not Archimedean over F (Exercise 23).
Let's construct more lattice orders on $R=F[x]$. Fix a positive integer n, define the positive cone P_{n} on R as follows. For a polynomial $p(x)=$ $a_{k} x^{k}+\cdots+a_{0}$ of degree k. If $k \leq n$, define $p(x) \geq 0$ if $a_{k}>0$ and $a_{0} \geq 0$, and if $k>n$, then define $p(x) \geq 0$ if $a_{k}>0$. Then three conditions in Theorem 1.18 are satisfied and $F^{+} P_{n} \subseteq P_{n}$, so R is a partially ordered algebra over F. Moreover, for a polynomial $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ of degree k,

$$
p(x) \vee 0=\left\{\begin{array}{l}
p(x), \quad \text { if } k>n, a_{k}>0 \\
0, \quad \text { if } k>n, a_{k}<0 \\
p(x), \quad \text { if } k \leq n, a_{k}>0, a_{0} \geq 0 \\
0, \quad \text { if } k \leq n, a_{k}<0, a_{0} \leq 0 \\
p(x)-a_{0}, \quad \text { if } k \leq n, a_{k}>0, a_{0}<0 \\
a_{0}, \quad \text { if } k \leq n, a_{k}<0, a_{0}>0
\end{array}\right.
$$

We leave the verification of these facts to the reader (Exercise 24).

Then R becomes an ℓ-algebra over F that has squares positive in the sense that for each $r \in R, r^{2} \geq 0$.

1.3.2 Some special ℓ-rings

Let R be an ℓ-ring. An element $a \in R^{+}$is called a d-element if

$$
\text { for all } x, y \in R, x \wedge y=0 \Rightarrow a x \wedge a y=x a \wedge y a=0
$$

and a is called an f-element if

$$
\text { for all } x, y \in R, x \wedge y=0 \Rightarrow a x \wedge y=x a \wedge y=0
$$

Each f-element is clearly a d-element. An ℓ-ring R is called a d-ring (f-ring) if each element in R^{+}is a d-element (f-element). Define

$$
d(R)=\left\{a \in R^{+} \mid a \text { is a } d \text {-element }\right\}
$$

and

$$
f(R)=\{a \in R| | a \mid \text { is an } f \text {-element }\}
$$

We may also define left and right d-element. An element $a \in R^{+}$is called a left d-element (right d-element) if

$$
\text { for all } x, y \in R, x \wedge y=0 \Rightarrow a x \wedge a y=0(x a \wedge y a=0)
$$

Example 5.1 shows that generally a left d-element may not be a right d element. Left and right f-element may be defined similarly.

Theorem 1.20. Let R be an ℓ-ring.
(1) An element $a \in R^{+}$is a d-element if and only if for all $x, y \in R$, $a(x \wedge y)=a x \wedge a y$ and $(x \wedge y) a=x a \wedge y a$.
(2) Suppose that $a \in R^{+}$is invertible, then a is a d-element if and only if $a^{-1} \in R^{+}$.
(3) For all $x, y \in R,|x y| \leq|x||y|$, and the equality holds if and only if R is a d-ring.
(4) The $d(R)$ is a convex subset of R that is closed under the multiplication of R, but generally $d(R)$ is not closed under the addition of R.
(5) $f(R)$ is a convex ℓ-subring of R and an f-ring.
(6) R is an f-ring if and only if for each $a \in R$, a^{\perp} is an ℓ-ideal of R.
(7) If R is a d-ring (f-ring) and I is an ℓ-ideal of R, then R / I is a d-ring (f-ring).

Proof. (1) Suppose that a is a d-element. Let $x, y \in R$. Then $(x-(x \wedge$ $y)) \wedge(y-(x \wedge y))=0$ implies

$$
a(x-(x \wedge y)) \wedge a(y-(x \wedge y))=(x-(x \wedge y)) a \wedge(y-(x \wedge y)) a=0
$$

so $a x \wedge a y=a(x \wedge y)$ and $x a \wedge y a=(x \wedge y) a$ by Theorem 1.5(1). The converse is trivial.
(2) Let 1 be the identity element of R. Suppose that a is a d-element. We have $a((-1) \vee 0)=(-a) \vee 0=0$ implies that $(-1) \vee 0=0$, so $1=$ $1^{+}-1^{-}=1^{+} \geq 0$. Then $a\left(a^{-1} \wedge 0\right)=1 \wedge 0=0$ implies that $a^{-1} \wedge 0=0$, that is, $a^{-1} \geq 0$. Conversely, suppose a and a^{-1} are both positive. If $x \wedge y=0$ for $x, y \in R$, then

$$
0 \leq a^{-1}(a x \wedge a y) \leq\left(a^{-1} a x \wedge a^{-1} a y\right)=x \wedge y=0
$$

so $a x \wedge a y=0$. Similarly $x a \wedge y a=0$. Thus a is a d-element.

$$
\begin{align*}
|x y| & =\left|\left(x^{+}-x^{-}\right)\left(y^{+}-y^{-}\right)\right| \tag{3}\\
& =\left|x^{+} y^{+}-x^{-} y^{+}-x^{+} y^{-}+x^{-} y^{-}\right| \\
& \leq x^{+} y^{+}+x^{-} y^{+}+x^{+} y^{-}+x^{-} y^{-} \\
& =|x||y| .
\end{align*}
$$

Suppose that R is a d-ring. For $x, y \in R$, since

$$
\begin{aligned}
0 & \leq\left(x^{+} y^{+}+x^{-} y^{-}\right) \wedge\left(x^{-} y^{+}+x^{+} y^{-}\right) \\
& \leq\left(x^{+} y^{+} \wedge x^{-} y^{+}\right)+\left(x^{+} y^{+} \wedge x^{+} y^{-}\right)+\left(x^{-} y^{-} \wedge x^{-} y^{+}\right)+\left(x^{-} y^{-} \wedge x^{+} y^{-}\right) \\
& =\left(x^{+} \wedge x^{-}\right) y^{+}+x^{+}\left(y^{+} \wedge y^{-}\right)+x^{-}\left(y^{-} \wedge y^{+}\right)+\left(x^{-} \wedge x^{+}\right) y^{-} \\
& =0
\end{aligned}
$$

we have

$$
\begin{aligned}
|x y| & =\left|\left(x^{+} y^{+}+x^{-} y^{-}\right)-\left(x^{-} y^{+}+x^{+} y^{-}\right)\right| \\
& =\left(x^{+} y^{+}+x^{-} y^{-}\right)+\left(x^{-} y^{+}+x^{+} y^{-}\right) \\
& =|x||y|
\end{aligned}
$$

by Theorem 1.7(1) and (3).
Conversely suppose that $|x y|=|x||y|$ for all $x, y \in R$. If $z \wedge w=0$ for some $z, w \in R$, then $|z-w|=z+w$ by Theorem 1.7(1) and (3), so for any $a \in R^{+},|a(z-w)|=|a||z-w|=a(z+w)=a z+a w$ implies $a z \wedge a w=0$ (Exercise 25). Similarly $z \wedge w=0$ implies $z a \wedge w a=0$. Thus R is a d-ring.
(4) Suppose that $a, b \in d(R)$ and $c \in R$ with $a \leq c \leq b$. If $x \wedge y=0$ for $x, y \in R$, then $0 \leq a x \wedge a y \leq c x \wedge c y \leq a x \wedge a y=0$ implies $c x \wedge c y=0$.

Similarly $x c \wedge y c=0$. Thus $c \in d(R)$. It is clear that $d(R)$ is closed under the multiplication in R by the definition of d-element. In the Example 1.3(1), each standard matrix unit $e_{i j}$ is a d-element, but the sum of two d elements may not be a d-element. For example, $e_{12}+e_{11}$ is not a d-element since $e_{12} \wedge e_{22}=0$, but

$$
\left(e_{12}+e_{11}\right) e_{12} \wedge\left(e_{12}+e_{11}\right) e_{22}=e_{12} \wedge e_{12} \neq 0
$$

(5) Let $a, b \in f(R)$ and $x \wedge y=0$ for $x, y \in R$. Then by Theorems $1.7(5)$ and 1.5(7),

$$
0 \leq|a-b| x \wedge y \leq(|a|+|b|) x \wedge y \leq(|a| x \wedge y)+(|b| x \wedge y)=0
$$

so $|a-b| x \wedge y=0$. Similarly, $x|a-b| \wedge y=0$. Thus $|a-b|$ is an f-element and hence $a-b \in f(R)$. We also have

$$
0 \leq|a b| x \wedge y \leq(|a||b|) x \wedge y=0
$$

so $|a b| x \wedge y=0$. Similarly, $x|a b| \wedge y=0$. Thus $|a b|$ is an f-element and hence $a b \in f(R)$. Finally if $|x| \leq|a|$ for some $a \in f(R), x \in R$, then clearly $|x|$ is an f-element, so $x \in f(R)$. Hence $f(R)$ is a convex ℓ-subring of R and an f-ring.
(6) Suppose that R is an f-ring and $a \in R$. We already know that a^{\perp} is a convex ℓ-subgroup of the additive ℓ-group of R. Let $b \in a^{\perp}$ and $r \in R$, then $|b| \wedge|a|=0$ implies $|r||b| \wedge|a|=|b||r| \wedge|a|=0$, and hence $|r b| \wedge|a|=|r b| \wedge|a|=0$ by (3). Thus $r b, b r \in a^{\perp}$ and a^{\perp} is an ℓ-ideal of R. Conversely suppose that for each $a \in R, a^{\perp}$ is an ℓ-ideal of R. Let $x \wedge y=0$ for $x, y \in R$ and $r \in R^{+}$. Then $x \in y^{\perp}$ implies $r x, x r \in y^{\perp}$, so $r x \wedge y=x r \wedge y=0$, namely r is an f-element of R for each $r \in R^{+}$.
(7) Let R be a d-ring and I be an ℓ-ideal of R. Suppose that $(x+I) \wedge$ $(y+I)=0$ and $z+I \geq 0$. We may assume that $z \geq 0$. Then $x \wedge y=w \in I$ implies that $(x-w) \wedge(y-w)=0$, and hence

$$
z(x-w) \wedge z(y-w)=0 \text { and }(x-w) z \wedge(y-w) z=0
$$

Thus

$$
(z+I)(x+I) \wedge(z+I)(y+I)=0,(x+I)(z+I) \wedge(y+I)(z+I)=0
$$

in R / I, that is, R / I is a d-ring. Similarly to show that if R is an f-ring, then R / I is an f-ring.

Some fundamental properties of f-rings are summarized in the following results. An ℓ-ring R is said to be a subdirect product of the family of ℓ-rings $\left\{R_{i} \mid i \in I\right\}$ if R is an ℓ-subring of the direct product $\Pi_{i \in I} R_{i}$ such that
$\pi_{k}(R)=R_{k}$ for every $k \in I$, where $\pi_{k}: \Pi_{i \in I} R_{i} \rightarrow R_{k}$ is the canonical ℓ-epimorphism, that is, for $\left\{a_{i}\right\} \in \Pi_{i \in I} R_{i}, \pi_{k}\left(\left\{a_{i}\right\}\right)=a_{k}$. An ℓ-ring R is called subdirectly irreducible if R contains a smallest nonzero ℓ-ideal, that is, the intersection of all nonzero ℓ-ideals is a nonzero ℓ-ideal. For instance, ℓ-simple ℓ-rings are subdirectly irreducible.

Lemma 1.1. Let R be an $\ell-r i n g$ and $a \in R$.
(1) $\langle a\rangle=\left\{x \in R| | x|\leq n| a|+r| a|+|a| s+t| a \mid u, n \in \mathbb{Z}^{+}, r, s, t, u \in R^{+}\right\}$.
(2) If R is commutative, then $\langle a\rangle=\left\{x \in R| | x|\leq n| a|+r| a \mid, n \in \mathbb{Z}^{+}, r \in\right.$ $\left.R^{+}\right\}$.
(3) If R is ℓ-unital, then $\langle a\rangle=\left\{x \in R| | x|\leq t| a \mid u, t, u \in R^{+}\right\}$.
(4) Suppose that R is an f-ring. If $x \wedge y=0$ for any $x, y \in R$, then $\langle x\rangle \cap\langle y\rangle=\{0\}$.

Proof. (1) Let

$$
I=\left\{x \in R| | x|\leq n| a|+r| a|+|a| s+t| a \mid u, n \in \mathbb{Z}^{+}, r, s, t, u \in R^{+}\right\}
$$

Suppose that $x, y \in I$. Then

$$
|x| \leq n|a|+r|a|+|a| s+t|a| u \text { and }|y| \leq n_{1}|a|+r_{1}|a|+|a| s_{1}+t_{1}|a| u_{1}
$$

where $n, n_{1} \in \mathbb{Z}^{+}, r, r_{1}, s, s_{1}, t, t_{1}, u, u_{1} \in R^{+}$. Thus
$|x-y| \leq|x|+|y| \leq\left(n+n_{1}\right)|a|+\left(r+r_{1}\right)|a|+|a|\left(s+s_{1}\right)+\left(t+t_{1}\right)|a|\left(u+u_{1}\right)$, so $x-y \in I$. Hence I is a subgroup of R. It is clear that for any $x \in I$ and $r \in R, r x, x r \in I$. It follows that I is an ideal. If $|r| \leq|x|$ for some $r \in R$ and $x \in I$, then clearly $r \in I$ by the definition of I. Hence I is an ℓ-ideal. Since $a \in I$ and every ℓ-ideal containing a contains I, we have $\langle a\rangle=I$.
(2) and (3) are direct consequences of (1).
(4) Let $0 \leq a \in\langle x\rangle \cap\langle y\rangle$. Then

$$
a \leq n x+r x+x s+u x v \text { and } a \leq n_{1} y+r_{1} y+y s_{1}+u_{1} y v_{1}
$$

for some $r, r_{1}, s, s_{1}, u, u_{1}, v, v_{1} \in R^{+}$and positive integers n, n_{1}. Since R is an f-ring, $x \wedge y=0$ implies

$$
(r x+x s+u x v+n x) \wedge\left(r_{1} y+y s_{1}+u_{1} y v_{1}+n_{1} y\right)=0
$$

by Theorem $1.5(7)$, so $a=0$. Thus $\langle x\rangle \cap\langle y\rangle=\{0\}$.

Theorem 1.21.

(1) An ℓ-ring R is ℓ-isomorphic to a subdirect product of a family of ℓ-rings $\left\{R_{i} \mid i \in I\right\}$ if and only if there is a family of ℓ-ideals $\left\{J_{i} \mid i \in I\right\}$ such that $R \cong R_{k} / J_{k}$ for each $k \in I$ and the intersection of $\left\{J_{i} \mid i \in I\right\}$ is zero.
(2) A subdirectly irreducible f-ring is totally ordered.
(3) An ℓ-ring is an f-ring if and only if it is a subdirect product of totally ordered rings.

Proof. (1) We may assume that R is a subdirect product of a family of ℓ-rings $\left\{R_{i} \mid i \in I\right\}$. Define $J_{i}=\operatorname{Ker}\left(\pi_{i}\right) \cap R$. Then J_{i} is an ℓ-ideal of R and $R / J_{i} \cong R_{i}$ for each $i \in I$. Suppose that $\left\{a_{i}\right\} \in \cap_{i \in I} J_{i}$. Then $\pi_{k}\left(\left\{a_{i}\right\}\right)=$ $a_{k}=0$ for all $k \in I$, so $\left\{a_{i}\right\}=0$, that is, $\cap_{i \in I} J_{i}=\{0\}$. Conversely suppose there is a family of ℓ-ideals $\left\{J_{i} \mid i \in I\right\}$ of R such that $\cap_{i \in I} J_{i}=\{0\}$ and $R / J_{i} \cong R_{i}$. Then the ℓ-ring $\left\{\left\{a+J_{i}\right\}_{i \in I} \mid a \in R\right\}$ is a subdirect product of the family of ℓ-rings $\left\{R / J_{i} \mid i \in I\right\}$ and $R \cong\left\{\left\{a+J_{i}\right\}_{i \in I} \mid a \in R\right\}$ (Exercise 27).
(2) Let R be a subdirectly irreducible f-ring. Suppose that $x \wedge y=0$, for $x, y \in R$. By Lemma $1.1\langle x\rangle \cap\langle y\rangle=\{0\}$, and hence either $\langle x\rangle=\{0\}$ or $\langle y\rangle=\{0\}$, so either $x=0$ or $y=0$. Hence for any $x \in R$, either $x^{-}=0$ or $x^{+}=0$ since $x^{+} \wedge x^{-}=0$, that is, R is totally ordered.
(3) Let R be an f-ring. For each element $a \in R, a \neq 0$, define

$$
\mathcal{M}_{a}=\{I \mid I \text { is an } \ell \text {-ideal and } a \notin I\}
$$

Then $\mathcal{M}_{a} \neq \emptyset$ since $\{0\}$ is in $\mathcal{M}_{a} . \mathcal{M}_{a}$ is a partially ordered set by set inclusion. For a subset $\left\{I_{k}\right\}$ of \mathcal{M}_{a} that is totally ordered, the union $\cup_{k} I_{k}$ is an ℓ-ideal of R with $a \notin \cup_{k} I_{k}$. Thus by Zorn's Lemma, \mathcal{M}_{a} has a maximal element, denoted by I_{a}. The quotient ℓ-ring R / I_{a} is subdirectly irreducible with the smallest nonzero ℓ-ideal $\left\langle a+I_{a}\right\rangle$, so by Theorem $1.20(7)$ and (2), R / I_{a} is totally ordered. Consider

$$
x \in J=\bigcap_{0 \neq a \in R} I_{a}
$$

If $x \neq 0$, then $J \subseteq I_{x}$ implies $x \in I_{x}$, which is a contradiction. Thus $J=\{0\}$, and hence by (1), R is a subdirect product of totally ordered rings $\left\{R / I_{a} \mid a \in R, a \neq 0\right\}$. The converse is trivial (Exercise 29).

An important method of proving properties of f-rings is first to consider totally ordered rings and then use the fact that an f-ring is a subdirect product of totally ordered rings.

Theorem 1.22. Let R be an f-ring.
(1) If $a \wedge b=0$ for $a, b \in R$, then $a b=0$. Thus R has squares positive.
(2) If R is Archimedean, then R is commutative.
(3) If R is unital, then each idempotent element of R is in the center of R.
(4) If R is unital and $a^{n}=1$ for some $a \in R^{+}$and some positive integer n, then $a=1$.

Proof. (1) If $a \wedge b=0$, then $a b \wedge b=0$, and $a b \wedge a b=0$, so $a b=0$. For any $x \in R$,

$$
x^{2}=\left(x^{+}-x^{-}\right)^{2}=\left(x^{+}\right)^{2}-x^{+} x^{-}-x^{-} x^{+}+\left(x^{-}\right)^{2}=\left(x^{+}\right)^{2}+\left(x^{-}\right)^{2} \geq 0
$$

since $x^{+} \wedge x^{-}=0$ implies $x^{+} x^{-}=x^{-} x^{+}=0$.
(2) We show that given $a, b \geq 0$, for any positive integer $n, n|a b-b a| \leq$ $a^{2}+b^{2}$. We first assume that R is totally ordered with $a>b$. Since R is Archimedean, there exists an integer k such that $k a \leq n b<(k+1) a$. Let $n b=k a+r$ with $0 \leq r<a$. We have

$$
n|a b-b a|=|a(k a+r)-(k a+r) a|=|a r-r a| \leq a^{2} \leq a^{2}+b^{2}
$$

If R is an f-ring, then R is ℓ-isomorphic to a subdirect product of totally ordered rings, so by Theorem $1.21(1)$, there exist ℓ-ideals I_{k} such that each R / I_{k} is a totally ordered ring and intersection of I_{k} is equal to zero. Given $0 \leq a, b \in R$ and a positive integer n, by previous argument we have

$$
n\left|\left(a+I_{k}\right)\left(b+I_{k}\right)-\left(b+I_{k}\right)\left(a+I_{k}\right)\right| \leq\left(a+I_{k}\right)^{2}+\left(b+I_{k}\right)^{2}
$$

in R / I_{k} for each k. Then

$$
n|a b-b a|+I_{k}=\left(n|a b-b a|+I_{k}\right) \wedge\left(a^{2}+b^{2}+I_{k}\right)
$$

in R / I_{k} for each k, so

$$
n|a b-b a|-\left(n|a b-b a| \wedge\left(a^{2}+b^{2}\right)\right) \in I_{k}
$$

for each k. Thus $n|a b-b a|-\left(n|a b-b a| \wedge\left(a^{2}+b^{2}\right)\right)=0$, and hence $n|a b-b a| \leq a^{2}+b^{2}$ in R for any positive integer n. It follows that $a b-b a=0$ since R is Archimedean, so $a b=b a$ for $a, b \geq 0$. Since each element in an ℓ-ring is a difference of two positive elements, R is commutative.
(3) We notice that a unital f-ring must be ℓ-unital by (1). First suppose that R is totally ordered and $e \in R$ is an idempotent element. Since e is idempotent, $1-e$ is also idempotent. By (1) each idempotent element is positive, so $e, 1-e \geq 0$. If $e \leq 1-e$, then $e=e^{2} \leq(1-e) e=0$, so $e=0$. If $1-e \leq e$, then $1-e=0$, so $e=1$. Therefore we have proved that in a unital totally ordered ring, there exist only two idempotent elements, that is, 1 and 0 .

Suppose now that R is an f-ring. Then there are ℓ-ideals $\left\{I_{k}\right\}$ of R such that $\cap_{k} I_{k}=\{0\}$ and each R / I_{k} is a totally ordered ring. Let e be
an idempotent of R, by the above argument, since R / I_{k} is a unital totally ordered ring, $e+I_{k}=0+I_{k}$ or $1+I_{k}$ in R / I_{k}, so for any $a \in R$,

$$
\left(e+I_{k}\right)\left(a+I_{k}\right)=\left(a+I_{k}\right)\left(e+I_{k}\right)
$$

in R / I_{k}, that is, $(e a-a e) \in I_{k}$ for each k. Hence $e a-a e=0$, and $e a=a e$ for each $a \in R$. Therefore e is in the center of R.
(4) As we have done before, we first assume that R is totally ordered. If $1<a$, then $1<a \leq a^{2} \leq \cdots \leq a^{n}=1$, which is a contradiction. Similarly, $a \nless 1$. Thus $a=1$. So the result is true in a unital totally ordered ring. For an f-ring R, there are ℓ-ideals $\left\{J_{k}\right\}$ of R such that $\cap_{k} J_{k}=\{0\}$ and each R / J_{k} is a totally ordered ring. Let $a \in R^{+}$with $a^{n}=1$. Then for each k, $\left(a+J_{k}\right)^{n}=1+J_{k}$ in R / J_{k} and $a+J_{k} \in\left(R / J_{k}\right)^{+}$, so $a+J_{k}=1+J_{k}$ in R / J_{k} for each k. Thus $a-1 \in J_{k}$ for each k, so $a-1=0, a=1$.

An ℓ-ring R is called an almost f-ring if for all $a, b \in R, a \wedge b=0 \Rightarrow$ $a b=0$, or equivalently $x^{+} x^{-}=0$ for all $x \in R$. By Theorem $1.22(1)$, each f-ring is an almost f-ring and each almost f-ring has squares positive.

The following are two immediate consequences of Theorem 1.22. (1) Any $n \times n$ matrix ring over any unital ring cannot be made into an f-ring if $n \geq 2$ since it contains idempotent elements that are not in the center. (2) Any nontrivial finite group algebra $F[G]$ over a totally ordered field F cannot be made into an f-ring such that $(G \backslash\{e\}) \cap F[G]^{+} \neq \emptyset$ since for any element g in G there exists a positive integer n such that $g^{n}=e$, where e is the identity element of group G. In particular $F[G]$ cannot be made into a totally ordered ring with the exception when G is a trivial group. However, a finite group algebra $F[G]$ may be made into an f-ring with $(G \backslash\{e\}) \cap F[G]^{+}=\emptyset$ as shown in the following example.

Example 1.4. Consider $R=\mathbb{Q}[G]$ with $G=\{e, a\}$ and $a^{2}=e$. Define $u=\frac{1}{2}(e+a)$ and $v=\frac{1}{2}(e-a)$. Then $u^{2}=u, v^{2}=v, u v=0$, and $\{u, v\}$ is linearly independent over \mathbb{Q}. Thus $P=\mathbb{Q}^{+} u+\mathbb{Q}^{+} v$ is the positive cone of a lattice order. Clearly u and v are both f-elements, so R is an f-ring. We note that $1=u+v$ and $a=u-v \ngtr 0$.

A group ring of an infinite group may be made into a totally ordered ring. The simplest example will be the group ring $F[G]$ of an infinite cyclic group $G=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$. Define an element $\sum_{i=-m}^{n} \alpha_{i} g^{i} \geq 0$ if $\alpha_{n}>0$. Then $F[G]$ is a totally ordered ring with

$$
\cdots<g^{-2}<g^{-1}<1<g<g^{2}<\cdots
$$

By Theorem 1.22, an Archimedean f-ring is commutative. But an f algebra over a totally ordered field F that is Archimedean over F may not be commutative. For instance, any totally ordered division algebra that is Archimedean over its center is such an example. However if a totally ordered division ring is algebraic over its center, then it is commutative by Albert's Theorem. We refer the reader to [Steinberg (2010)] for the proof of Albert's Theorem.

Theorem 1.23 (Albert's Theorem). Let D be a totally ordered division ring. If $a \in D$ is algebraic over the center of D, then a is in the center.

In the following we consider some properties of ℓ-ideals of an ℓ-ring. Suppose that R is an ℓ-ring and I_{1}, \cdots, I_{n} be ℓ-ideals of R. Define

$$
I_{1}+\cdots+I_{n}=\left\{a \in R \mid a=a_{1}+\cdots+a_{n}, a_{i} \in I_{i}\right\} .
$$

Theorem 1.24. Let R be an ℓ-ring and I_{1}, \cdots, I_{n}, I be ℓ-ideals of R.
(1) $I_{1}+\cdots+I_{n}$ is an ℓ-ideal of R which is the ℓ-ideal generated by $\left\{I_{1}, \cdots, I_{n}\right\}$.
(2) $\left(I_{1}+\cdots+I_{n}\right) \cap I=\left(I_{1} \cap I\right)+\cdots+\left(I_{n} \cap I\right)$.
(3) Each ℓ-ideal of R / I is of the form J / I, where J is an ℓ-ideal of R containing I, and the mapping $J \rightarrow J / I$ is a one-to-one correspondence between the set of all ℓ-ideals of R which contain I and the set of all ℓ-ideals of R / I.

Proof. (1) It is clear that $I_{1}+\cdots+I_{n}$ is an ideal of R. Suppose that $|x| \leq\left|a_{1}+\cdots+a_{n}\right|$ for some $x \in R$ and $a_{i} \in I_{i}$. Then $|x| \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|$ implies that $|x|=x_{1}+\cdots+x_{n}$ with $0 \leq x_{i} \leq\left|a_{i}\right|$, and hence $|x| \in I$ since each $x_{i} \in I_{i}$. Then similarly $0 \leq x^{+}, x^{-} \leq|x|$ implies that $x^{+}, x^{-} \in I$. Thus $x=x^{+}-x^{-} \in I$ and I is an ℓ-ideal.
(2) This follows from Theorem 1.9. It can be proved directly as follows. Clearly

$$
\left(I_{1}+\cdots+I_{n}\right) \cap I \supseteq\left(I_{1} \cap I\right)+\cdots+\left(I_{n} \cap I\right)
$$

Take $0 \leq a \in\left(I_{1}+\cdots+I_{n}\right) \cap I$. Then $a=a_{1}+\cdots+a_{n}$, where each $a_{i} \in I_{i}$. Then $a=|a| \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|$ implies that $a=x_{1}+\cdots+x_{n}$, where $0 \leq x_{i} \leq\left|a_{i}\right|$. Since $x_{i} \leq a \in I$, each $x_{i} \in I$. Hence each $x_{i} \in I_{i} \cap I$ and $a \in$ $\left(I_{1} \cap I\right)+\cdots+\left(I_{n} \cap I\right)$. Since each element in $\left(I_{1}+\cdots+I_{n}\right) \cap I$ is a difference of two positive elements, we have $\left(I_{1}+\cdots+I_{n}\right) \cap I \subseteq\left(I_{1} \cap I\right)+\cdots+\left(I_{n} \cap I\right)$. Therefore $\left(I_{1}+\cdots+I_{n}\right) \cap I=\left(I_{1} \cap I\right)+\cdots+\left(I_{n} \cap I\right)$.
(3) The proof of these facts is the same to the similar results in general ring theory, so we omit the proof.

There are some other properties on ℓ-ideals that are similar to the properties on ideals in general ring theory. For example, if I, J are ℓ-ideals of an ℓ-ring R, then

$$
I /(I \cap J) \cong(I+J) / J \text { and }(R / I) /(J / I) \cong R / J \text { if } I \subseteq J .
$$

We leave the verification to the reader.

1.3.3 ℓ-radical and ℓ-prime ℓ-ideals

Suppose that R is an ℓ-ring and I, J are ℓ-ideals of R. The ring theoretical product $I J$ is not an ℓ-ideal of R in general. We use $\langle I J\rangle$ to denote the ℓ-ideal generated by $I J$. An ℓ-ideal I is called nilpotent if $I^{n}=\{0\}$ for some positive integer n, and if $I^{n}=\{0\}$ and $I^{k} \neq\{0\}$ for any positive integer $k<n$, then n is called nilpotent of index. If I, J are both nilpotent ℓ-ideals, then $I+J$ is also a nilpotent ℓ-ideal by $(I+J) / I \cong J / I \cap J$ (Exercise 30).

Definition 1.2. The ℓ-radical of an ℓ-ring R is the set

$$
\begin{aligned}
\ell-N(R)= & \left\{a \in R\left|x_{0}\right| a\left|x_{1}\right| a\left|\cdots x_{n-1}\right| a \mid x_{n}=0 \text { for some } n=n(a)\right. \text { and } \\
& \text { for all } \left.x_{0}, \cdots, x_{n} \in R\right\} .
\end{aligned}
$$

Theorem 1.25. Suppose that R is an ℓ-ring.
(1) $\ell-N(R)$ is an ℓ-ideal, which is the union of all of the nilpotent ℓ-ideals of R. Each element in $\ell-N(R)$ is nilpotent.
(2) If R is commutative, then $\ell-N(R)=\{a \in R| | a \mid$ is nilpotent $\}$.
(3) If R is an ℓ-ring which satisfies the ascending or descending chain condition on ℓ-ideals, then $\ell-N(R)$ is nilpotent.

Proof. (1) If I is an nilpotent ℓ-ideal, then evidently each element in I is contained in $\ell-N(R)$. Conversely suppose $a \in R$ and there exists a positive integer n such that $x_{0}|a| x_{1}|a| \cdots x_{n-1}|a| x_{n}=0$ for all $x_{0}, \cdots, x_{n} \in R$. Then

$$
(|a| R)^{n+1}=(R|a|)^{n+1}=(R|a| R)^{n}=(|a|+|a| R+R|a|+R|a| R)^{2 n+1}=0
$$

implies the ℓ-ideal generated by a is nilpotent. Thus $\ell-N(R)$ is the union of all of the nilpotent ℓ-ideals. $\ell-N(R)$ is closed under the addition of R since the sum of two nilpotent ℓ-ideals is still nilpotent. Clearly $a^{2 n(a)+1}=0$, for each element a in $\ell-N(R)$.
(2) Let $x \in R$ and $|x|$ is nilpotent. Then by Lemma 1.1,

$$
\langle x\rangle=\left\{u \in R| | u|\leq n| x|+r| x \mid, \text { for some } n \geq 1 \text { and } r \in R^{+}\right\} .
$$

Since R is commutative and $|x|$ is nilpotent, $\langle x\rangle$ is nilpotent, so $x \in \ell-N(R)$ (Exercise 31).
(3) If R satisfies the ascending chain condition on ℓ-ideals, then it contains a maximal nilpotent ℓ-ideal M. For any nilpotent ℓ-ideal $I, M+I$ is nilpotent and $M \subseteq M+I$ implies $M=M+I$, so $I \subseteq M$. Thus $\ell-N(R)=M$ is nilpotent.

Suppose that R satisfies the descending chain condition on ℓ-ideals. We denote $\ell-N(R)$ just by N. For an ℓ-ideal H of R, define $H^{(2)}=\left\langle H^{2}\right\rangle$, $H^{(3)}=\left\langle H H^{(2)}\right\rangle$, and $H^{(n)}=\left\langle H H^{(n-1)}\right\rangle$ for any $n \geq 2$. Then $N^{(n)}$ are ℓ ideals and $N \supseteq N^{(2)} \supseteq \cdots \supseteq N^{(n)} \supseteq \cdots$, so by descending chain condition on ℓ-ideals, we have $N^{(k)}=N^{(k+1)}=N^{(k+2)}=\cdots$ for some positive integer k. Let $M=N^{(k)}$. Then $M=M^{(2)}=M^{(3)}=\cdots$. Assume that $M \neq\{0\}$. Then the set

$$
\mathcal{N}=\{I \in R \mid I \text { is an } \ell \text {-ideal of } R, I \subseteq M, M I M \neq\{0\}\}
$$

is not empty since $M^{(3)}=M$, so there exists a minimal element K in \mathcal{N}. Take $0<a \in K$ with $M a M \neq\{0\}$ and define

$$
J=\left\{c \in R| | c \mid \leq u a v, u, v \in M^{+}\right\}
$$

Then J is an ℓ-ideal of R with $\{0\} \neq J \subseteq K$ and $M J M \neq\{0\}$ (Exercise 32). So $J \in \mathcal{N}$, and hence $J=K$. Thus $a \leq u a v$ for some $u, v \in M^{+}$. Therefore $a \leq u a v \leq u^{2} a v^{2} \leq \cdots \leq u^{n} a v^{n}=0$ for some positive integer n since $M \subseteq \ell-N(R)$ and each element in $\ell-N(R)$ is nilpotent, so $a=0$, which is a contradiction. Hence we must have $M=\{0\}$, so $N^{(k)}=\{0\}$ implies that $(\ell-N(R))^{k}=\{0\}$.

Let R be an ℓ-ring. An ℓ-ideal I is called proper if $I \neq R$. An ℓ-ideal P is called an ℓ-prime ℓ-ideal of R if P is proper and for any two ℓ-ideals I, J of $R, I J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. For ℓ-ideals I, J, it is clear that $I J \subseteq P$ if and only if $\langle I J\rangle \subseteq P$, so the definition of ℓ-prime ℓ-ideal is independent of the choice of $I J \subseteq P$ or $\langle I J\rangle \subseteq P$.

An ℓ-ring R is called ℓ-prime if $\{0\}$ is an ℓ-prime ℓ-ideal. It is clear that a proper ℓ-ideal I of R is ℓ-prime if and only if R / I is an ℓ-prime ℓ-ring. A ring R is called a domain if $a, b \in R, a \neq 0$ and $b \neq 0$ implies $a b \neq 0$, and an ℓ-ring R is called an ℓ-domain if for any $a, b \in R, a>0$ and $b>0$ implies $a b>0$. Certainly if an ℓ-ring is a domain then it is an ℓ-domain, but an ℓ-domain may not be a domain as shown by the following example. However, an f-ring is a domain if and only if it is an ℓ-domain by Theorem 1.20(3).

Example 1.5. Let $S=\{a, b\}$ be the semigroup with the multiplication $a b=b a=a^{2}=b^{2}=a$, and $\mathbb{R}[S]$ be the semigroup ℓ-algebra with real coefficients defined in example $1.3(2)$. Then $\mathbb{R}[G]$ is an ℓ-domain (Exercise 33). Since $(a-b)^{2}=0, \mathbb{R}[G]$ is not a domain. We notice that $\mathbb{R}[G]$ is an Archimedean and commutative ℓ-ring in which the square of each element is positive since $(\alpha a+\beta b)^{2}=(\alpha+\beta)^{2} a \geq 0$.

A nonempty subset M of an ℓ-ring R is called an m-system if $M \subseteq R^{+}$ and for any $a, b \in M$ there is an $x \in R^{+}$such that $a x b \in M$. A nonempty subset S of R is called multiplicative closed if for any $a, b \in S, a b \in S$. It is clear that if $S \subseteq R^{+}$is a multiplicative closed subset of R, then S is an m-system.

Theorem 1.26. Let R be an ℓ-ring.
(1) Suppose that P is an ℓ-prime ℓ-ideal and I is an ℓ-ideal of R. If $I^{n} \subseteq P$ for some positive integer n, then $I \subseteq P$.
(2) A proper ℓ-ideal P of R is ℓ-prime if and only if $a, b \in R^{+}$and $a R^{+} b \subseteq$ $P \Rightarrow a \in P$ or $b \in P$. In particular, if R is commutative, then a proper ℓ-ideal is ℓ-prime if and only if $a, b \in R^{+}, a b \in P \Rightarrow a \in P$ or $b \in P$.
(3) A proper ℓ-ideal of R is ℓ-prime if and only if $R^{+} \backslash P$ is an m-system.
(4) Suppose that M is an m-system of R and I is an ℓ-ideal of R with $I \cap M=\emptyset$. Then I is contained in an ℓ-prime ℓ-ideal P with $P \cap M=\emptyset$.

Proof. (1) Since $I^{n} \subseteq P, I\left\langle I^{n-1}\right\rangle \subseteq P$ (Exercise 34), and hence $I \subseteq P$ or $I^{n-1} \subseteq P$. If $I^{n-1} \subseteq P$, by continuing the above procedure, we will eventually have $I \subseteq P$.
(2) Suppose that P is ℓ-prime and $a R^{+} b \subseteq P$, for some $a, b \in R^{+}$. Then $\left\langle R^{+} a R^{+}\right\rangle\left\langle R^{+} b R^{+}\right\rangle \subseteq P$, so $\left\langle R^{+} a R^{+}\right\rangle \subseteq P$ or $\left\langle R^{+} b R^{+}\right\rangle \subseteq P$. If $\left\langle R^{+} a R^{+}\right\rangle \subseteq P$, then $\langle a\rangle^{3} \subseteq P$, and hence $\langle a\rangle \subseteq P$ by (1). Hence $a \in P$. Similarly if $\left\langle R^{+} b R^{+}\right\rangle \subseteq P$, then $b \in P$. Conversely suppose that the given condition is true, and suppose that I, J are ℓ-ideals of R with $I J \subseteq P$ and $I \nsubseteq P$. Then there is $0 \leq a \in I \backslash P$. For any $0 \leq b \in J, a R^{+} b \subseteq I J \subseteq P$ implies $b \in P$. Thus $J \subseteq P$, so P is ℓ-prime.

Suppose that R is commutative. Let P be an ℓ-prime ℓ-ideal of R and $a b \in P$ for some $a, b \in R^{+}$. Then $a R^{+} b=R^{+}(a b) \subseteq P$ implies that $a \in P$ or $b \in P$. Conversely let P be a proper ℓ-ideal of R and for any $a, b \in R^{+}$, $a b \in P$ implies that $a \in P$ or $b \in P$. Let I, J be ℓ-ideals of R with $I J \subseteq P$. If $I \nsubseteq P$, then there exists $0 \leq a \in I \backslash P$, so for any $0 \leq b \in J, a b \in P$ implies that $b \in P$. Thus $J \subseteq P$ and P is ℓ-prime.
(3) follows immediately from (2).
(4) Let

$$
\mathcal{N}=\{J \mid J \text { is an } \ell \text {-ideal, } I \subseteq J, \text { and } J \cap M=\emptyset\}
$$

Then $I \in \mathcal{N}$. If $\left\{J_{i}\right\}$ is a chain in \mathcal{N}, then $\cup J_{i}$ is an ℓ-ideal and $\left(\cup J_{i}\right) \cap M=$ \emptyset. By Zorn's Lemma, \mathcal{N} has a maximal element P. We show that P is ℓ-prime. Let $a, b \in R^{+}, a R^{+} b \subseteq P$, and $a, b \notin P$. Then $\langle P, a\rangle \cap M \neq \emptyset$. Let $z_{1} \in\langle P, a\rangle \cap M$. Then

$$
z_{1} \leq n_{1} a+r_{1} a+a s_{1}+u_{1} a v_{1}+p_{1}, n_{1} \geq 0, r_{1}, s_{1}, u_{1}, v_{1} \in R^{+}, p_{1} \in P^{+}
$$

Similarly there exists $z_{2} \in\langle P, b\rangle \cap M$. Then

$$
z_{2} \leq n_{2} b+r_{2} b+b s_{2}+u_{2} b v_{2}+p_{2}, n_{2} \geq 0, r_{2}, s_{2}, u_{2}, v_{2} \in R^{+}, p_{2} \in P^{+}
$$

Since M is an m-system, there is $x \in R^{+}$such that $z_{1} x z_{2} \in M$. On the other hand,

$$
z_{1} x z_{2} \leq\left(n_{1} a+r_{1} a+a s_{1}+u_{1} a v_{1}+p_{1}\right) x\left(n_{2} b+r_{2} b+b s_{2}+u_{2} b v_{2}+p_{2}\right)
$$

implies $z_{1} x z_{2} \in P$ since $a R^{+} b \subseteq P$, which contradicts with $P \cap M=\emptyset$. Thus $a R^{+} b \subseteq P$ implies $a \in P$ or $b \in P$, so P is ℓ-prime by (2).

Theorem 1.27. Let R be an f-ring.
(1) For each $k \geq 1, N_{k}=\left\{a \in R \mid a^{k}=0\right\}$ is a nilpotent ℓ-ideal of R. Thus $\ell-N(R)=\{a \in R \mid a$ is nilpotent $\}$.
(2) If R is ℓ-prime, then R is a totally ordered domain.
(3) A proper ℓ-ideal P of R is ℓ-prime if and only if for any $a, b \in R$, $a b \in P$ implies that $a \in P$ or $b \in P$.
(4) A proper ℓ-ideal P of R is ℓ-prime if and only if for any $a, b \in R$, $a \wedge b \in P$ implies that $a \in P$ or $b \in P$ and for any $c \in R, c^{2} \in P$ implies that $c \in P$.

Proof. (1) We first assume that R is totally ordered. Let $a, b \in N_{k}$. Then $|a-b| \leq|a|+|b| \leq 2|a|$ or $2|b|$, and hence $|a-b|^{k}=0,(a-b)^{k}=0$, that is, $(a-b) \in N_{k}$. If $|x| \leq|a|$ for some $a \in N_{k}$ and $x \in R$, then $\left|x^{k}\right|=|x|^{k} \leq|a|^{k}=\left|a^{k}\right|=0$, so $x^{k}=0$ and $x \in N_{k}$. Take $0 \leq a \in N_{k}$ and $0 \leq x \in R$. Without loss of generality, suppose $a x \leq x a$. Then

$$
0 \leq(a x)^{k} \leq(x a)^{k}=x(a x)^{k-1} a \leq x(x a)^{k-1} a \leq \cdots \leq x^{k} a^{k}=0
$$

and similarly

$$
0 \leq(x a)^{k}=x(a x)^{k-1} a \leq x(x a)^{k-1} a=x^{2}(a x)^{k-2} a^{2} \leq \cdots \leq x^{k} a^{k}=0
$$

so $(a x)^{k}=(x a)^{k}=0$. Thus N_{k} is an ℓ-ideal, and it is clear that $\left(N_{k}\right)^{k}=0$.

Since an f-ring is a subdirect product of totally ordered rings, N_{k} is also an nilpotent ℓ-ideal of it. We leave the verification of this fact as an exercise (Exercise 35).
(2) Suppose that T is an ℓ-prime f-ring and $x \in T$. Since $x^{+} x^{-}=0$ and T contains no nonzero nilpotent element, $\left(x^{-} R^{+} x^{+}\right)^{2}=\{0\}$ implies $x^{-} R^{+} x^{+}=\{0\}$. Then T is ℓ-prime implies that $x^{-}=0$ or $x^{+}=0$, that is, R is totally ordered. Let $a b=0$ for some $a, b \in R$. Then $|a||b|=0$, so $|a|^{2}=0$ or $|b|^{2}=0$ since $|a| \leq|b|$ or $|b| \leq|a|$. Therefore $a=0$ or $b=0$ and R is a domain.
(3) Suppose that P is an ℓ-prime ℓ-ideal of R. Then R / P is an ℓ-prime f-ring, and hence by (2) $a b \in P$ implies that $a \in P$ or $b \in P$. The converse is clearly true.
(4) If P is ℓ-prime, then R / P is totally ordered by (2). Since $a \wedge b=0$ in R implies that $(a+P) \wedge(b+P)=0$ in $R / P, a+P=0$ or $b+P=0$, so $a \in P$ or $b \in P$. Conversely suppose that $a \wedge b \in P$ implies that $a \in P$ or $b \in P$ and $c^{2} \in P$ implies that $c \in P$, for $a, b, c \in R$. Assume that $x y \in P$ for some $x, y \in R$. Then since $(|x| \wedge|y|)^{2} \leq|x||y|=|x y| \in P$, $(|x| \wedge|y|)^{2} \in P$, so $|x| \wedge|y| \in P$ and hence $|x| \in P$ or $|y| \in P$. Hence $x \in P$ or $y \in P$, that is, P is ℓ-prime.

For an ℓ-ring R, its p-radical, denoted by $\ell-P(R)$, is the intersection of all of the ℓ-prime ℓ-ideals of R. A ring is called reduced if it contains no nonzero nilpotent element, and an ℓ-ring is called ℓ-reduced if it contains no nonzero positive nilpotent element.

Theorem 1.28. Let R be an ℓ-ring.
(1) $\ell-N(R) \subseteq \ell-P(R)$ and each element of $\ell-P(R)$ is nilpotent. If R is commutative or an f-ring, then $\ell-N(R)=\ell-N(P)$.
(2) The p-radical of $R / \ell-P(R)$ is zero.
(3) $\ell-N(R)=\{0\}$ if and only if $\ell-P(R)=\{0\}$.
(4) Suppose that $\ell-N(R)=\{0\}$. If R is a d-ring or an almost f-ring, then R is a reduced f-ring.

Proof. (1) Since every nilpotent ℓ-ideal is contained in each ℓ-prime ℓ ideal by Theorem 1.26, $\ell-N(R) \subseteq \ell-P(R)$. Suppose that $a \in R$ is not nilpotent. Then $|a|$ is not nilpotent and $\left\{|a|^{n} \mid n \geq 1\right\}$ is an m-system not containing zero, so Theorem 1.26(4) implies that there exists an ℓ-prime ℓ-ideal I such that $\left\{|a|^{n} \mid n \geq 1\right\} \cap I=\emptyset$, and hence $a \notin I$, so $a \notin \ell-P(R)$. Thus each element in $\ell-P(R)$ is nilpotent.

If R is commutative or an f-ring, then $\ell-N(R)=\{x \in R| | x \mid$ is nilpotent $\}$, so $\ell-P(R) \subseteq \ell-N(R)$.
(2) Each ℓ-ideal of R / I can be expressed as J / I, where J is an ℓ-ideal of R containing I. Also J / I is ℓ-prime in R / I if and only if J is ℓ-prime in R (Exercise 36). Hence $\ell-P(R / \ell-P(R))=\{0\}$.
(3) Suppose that $\ell-N(R)=\{0\}$. If $\ell-P(R) \neq\{0\}$, take $0<a_{0} \in \ell-P(R)$. Then $\left\langle a_{0}\right\rangle^{n} \neq\{0\}$ for any positive integer n, so $\left\langle R^{+} a_{0} R^{+}\right\rangle^{2} \neq\{0\}$ since $\left\langle a_{0}\right\rangle^{3} \subseteq\left\langle R^{+} a_{0} R^{+}\right\rangle$, and hence there is $b_{0} \in R^{+}$such that $a_{1}=a_{0} b_{0} a_{0} \neq$ 0 . Similarly, there is $b_{1} \in R^{+}$such that $a_{2}=a_{1} b_{1} a_{1} \neq 0$. Continuing inductively, we obtain $a_{n}=a_{n-1} b_{n-1} a_{n-1} \neq 0$ for all $n \geq 1$. It follows that $\left\{a_{i} \mid i \geq 0\right\}$ is an m-system not containing 0 (Exercise 37), so by Theorem $1.26(4)$ there is an ℓ-prime ℓ-ideal P such that $P \cap\left\{a_{i} \mid i \geq 0\right\}=\emptyset$. Thus $a_{0} \notin P$, which is a contradiction, and hence $\ell-P(R)=\{0\}$.
(4) Suppose first that R is a d-ring. Since $\ell-N(R)=\{0\}$, by (3) R is a subdirect product of ℓ-prime ℓ-rings which are d-rings (Exercise 38). We show that an ℓ-prime d-ring D is a totally ordered domain. Let $a \in D^{+}$ with $a D^{+}=\{0\}$ or $D^{+} a=\{0\}$. Then $a D^{+} a=\{0\}$, so D is ℓ-prime implies $a=0$. Let $x \wedge y=0$ for $x, y \in D$ and $c, d \in D^{+}$. Then

$$
0 \leq d(c x \wedge y)=(d c x \wedge d y) \leq(d c+d) x \wedge(d c+d) y=0
$$

implies $d(c x \wedge y)$ for all $d \in D^{+}$, and hence $c x \wedge y=0$. Similarly, $x c \wedge y=0$. Hence D is an f-ring. Thus by Theorem $1.27(4), D$ is totally ordered and a domain. Therefore, R is a reduced f-ring.

Now suppose that R is an ℓ-prime almost f-ring. We first show that if $a \in R^{+}$and $a^{2}=0$, then $a=0$. Let $z \in R^{+}$. We claim that $a z a=0$. Suppose that $x=a z-z a$. If $x^{+}=0$, then $a z \leq z a$ implies $a z a \leq z a^{2}=0$, so $a z a=0$. Similarly $x^{-}=0$ implies $a z a=0$. In the following we assume that $x^{+} \neq 0$ and $x^{-} \neq 0$. Then $x^{+} x^{-}=x^{-} x^{+}=0$ implies for any $y, w \in R^{+},\left(x^{-} y x^{+}\right)^{2}=\left(x^{+} w x^{-}\right)^{2}=0$. By Theorem $1.22(1)$, for each element $u \in R, u^{2} \geq 0$, so $\left(x^{-} y x^{+}-a\right)^{2} \geq 0$ implies that

$$
0 \leq a x^{-} y x^{+}+x^{-} y x^{+} a \leq\left(x^{-} y x^{+}\right)^{2}+a^{2}=0
$$

Thus $a x^{-} y x^{+}=0$ for all $y \in R^{+}$. It follows that $a x^{-}=0$ since $x^{+} \neq 0$ and R is ℓ-prime. Similarly, $\left(x^{+} w x^{-}\right)^{2}=0$ and $a^{2}=0$ for all $w \in R^{+}$implies $a x^{+}=0$. Thus $a x=a x^{+}-a x^{-}=0$, so $a(a z-z a)=0$, and hence $a z a=0$.

Therefore in any case we have $a z a=0$ for any $z \in R^{+}$, that is, $a R^{+} a=$ $\{0\}$. It follows that $a=0$ since R is ℓ-prime. Hence R contains no nonzero positive nilpotent element, that is, R is ℓ-reduced. Now let $a, b \in R^{+}$with $a b=0$. Then for any $z \in R^{+},(b z a)^{2}=0$, so $b z a=0$, that is, $b R^{+} a=\{0\}$.

Thus $a=0$ or $b=0$, and R is an ℓ-domain. Therefore $x^{+}=0$ or $x^{-}=0$ for any $x \in R$ since $x^{+} x^{-}=0$. Hence R is totally ordered and a domain.

If R is an almost f-ring with $\ell-N(R)=\{0\}$, then R is a subdirect product of ℓ-prime almost f-rings, and hence it is a subdirect product of totally ordered domains. Therefore R is a reduced f-ring.

By Theorem 1.28(4), a reduced almost f-ring is an f-ring. Interestingly a reduced partially ordered ring satisfying a similar relation to almost f rings is also an f-ring.

Theorem 1.29. For a reduced partially ordered ring R, if for any $a \in R$, there exist $a_{1}, a_{2} \in R^{+}$such that $a=a_{1}-a_{2}$ and $a_{1} a_{2}=a_{2} a_{1}=0$, then R is an f-ring.

Proof. We fist show that zero is the greatest lower bound of a_{1}, a_{2}. Suppose that $c \leq a_{1}, a_{2}$ and $c=c_{1}-c_{2}$ with $c_{1}, c_{2} \in R^{+}$and $c_{1} c_{2}=c_{2} c_{1}=0$. Then $0 \leq c_{1}^{2}=c_{1}\left(c_{1}+c_{2}\right)=c_{1} c \leq c_{1} a_{1}$ and $0 \leq c_{1}^{2} \leq a_{2} c_{1}$ implies that $0 \leq c_{1}^{4} \leq c_{1} a_{1} a_{2} c_{1}=0$, and hence $c_{1}^{4}=0$ and $c_{1}=0$ since R is reduced. Thus $c=-c_{2} \leq 0$.

Next we show that $a_{1}=a \vee 0$. Clearly $a_{1} \geq a, 0$. Suppose that $b \geq a, 0$ for some $b \in R$. Then

$$
a_{1}-b \leq a_{1}, a_{2} \Rightarrow a_{1}-b \leq 0
$$

so $a_{1} \leq b$. Thus $a_{1}=a \vee 0$. It is straightforward to check that for any $a, b \in R, a \vee b=[(a-b) \vee 0]+b$, and hence the partial order is a lattice order.

Now it is easy to check that R is an almost f-ring, so it is an f-ring. \square
An ℓ-prime ℓ-ideal P of an ℓ-ring R is called minimal if any ℓ-ideal of R properly contained in P is not an ℓ-prime ℓ-ideal of R. For instance, in an ℓ-domain, $\{0\}$ is the unique minimal ℓ-prime ℓ-ideal.

Theorem 1.30. Let R be an ℓ-ring.
(1) Each ℓ-prime ℓ-ideal of R contains a minimal ℓ-prime ℓ-ideal.
(2) An ℓ-prime ℓ-ideal P is minimal if and only if any m-system properly containing $R^{+} \backslash P$ contains 0 .
(3) If R is ℓ-reduced, then an ℓ-prime ℓ-ideal P is minimal if and only if for each $x \in P$ with $x \geq 0$, there exists $y \notin P$ with $y \geq 0$ such that $x y=0$.
(4) If R is ℓ-reduced, then for each minimal ℓ-prime ℓ-ideal $P, R / P$ is an ℓ-domain. Thus an ℓ-ring is ℓ-reduced if and only if it is a subdirect product of ℓ-domains.

Proof. (1) Let P be an ℓ-prime ℓ-ideal. Consider

$$
\mathcal{M}=\{N \mid N \subseteq P \text { and } N \text { is an } \ell \text {-prime } \ell \text {-ideal }\}
$$

Then $P \in \mathcal{M}$. Partially order \mathcal{M} by set inclusion. For a chain $\left\{P_{i} \mid i \in\right.$ $I\} \subseteq \mathcal{M}$, By Theorem $1.26(3), J=\cap_{i \in I} P_{i}$ is an ℓ-prime ℓ-ideal since $R^{+} \backslash J=\cup_{i \in I}\left(R^{+} \backslash P_{i}\right)$ is an m-system. By Zorn's Lemma (or Exercise 4), \mathcal{M} has a minimal element, which is a minimal ℓ-prime ℓ-ideal contained in P.
(2) Suppose that P is a minimal ℓ-prime ℓ-ideal and $\left(R^{+} \backslash P\right) \subsetneq M$ for some m-system M. If $0 \notin M$, then by Theorem $1.26(4)$ there exists an ℓ prime ℓ-ideal I such that $M \cap I=\emptyset$. It follows that $I \subseteq P$, and hence $I=P$. Then $M \subseteq R^{+} \backslash P$, which is a contradiction. Thus $0 \in M$. Conversely, suppose that I is an ℓ-prime ℓ-ideal and $I \subseteq P$. Then $\left(R^{+} \backslash P\right) \subseteq\left(R^{+} \backslash I\right)$, and if this inclusion is proper, then $0 \in R^{+} \backslash I$, which is a contradiction. Hence we must have $R^{+} \backslash P=R^{+} \backslash I$, and hence $I=P$. Therefore P is a minimal ℓ-prime ℓ-ideal.
(3) " \Leftarrow " Let P be an ℓ-prime ℓ-ideal. By (1), there is a minimal ℓ-prime ℓ-ideal Q such that $Q \subseteq P$. If $Q \neq P$, then take $0<x \in P \backslash Q$. By the assumption, we can find $y \notin P$ and $y \geq 0$ such that $x y=0$. Then $\left(y R^{+} x\right)^{2}=0$ and R is ℓ-reduced implies $y R^{+} x=0$, and hence $y \in Q \subseteq P$, which is a contradiction. Therefore we must have $Q=P$, so P is minimal.
$" \Rightarrow$ " Let P be a minimal ℓ-prime ℓ-ideal of R and $0 \leq a \in P$. Define

$$
S=\left\{a_{1} a a_{2} a \cdots a_{n} a a_{n+1} \mid n \geq 1, a_{i} \in R^{+} \backslash P\right\} \cup\left(R^{+} \backslash P\right)
$$

Then $\left(R^{+} \backslash P\right) \subsetneq S$ since, for instance, $a_{1} a a_{2} \in P \cap S$, and S is an m-system, so by $(2), 0 \in S$. Thus $a_{1} a a_{2} a \cdots a_{n} a a_{n+1}=0$ for some $n \geq 1$.

We observe that if $u v=0$ for $u, v \in R^{+}$, then $(v u)^{2}=0$ implies $v u=0$ since R is ℓ-reduced, and hence $(u x v)^{2}=0$ for any $x \in R^{+}$. Thus $u x v=0$. This observation tells us that if $u v=0$, then we may insert any $x \geq 0$ between them to get $u x v=0$. We use this basic fact to show that if $x_{1} \cdots x_{i} x_{i+1} \cdots x_{k}=0$, for some $k \geq 2$ and each $x_{j} \in R^{+}$, then $x_{1} \cdots x_{i+1} x_{i} \cdots x_{k}=0$. In fact, by inserting the terms $x_{i+1},\left(x_{i+2} \cdots x_{k}\right)\left(x_{1} \cdots x_{i-1}\right), x_{i}$ into $x_{1} \cdots x_{i} x_{i+1} \cdots x_{k}=0$, we get

$$
x_{1} \cdots x_{i-1}\left(x_{i+1}\right) x_{i}\left(x_{i+2} \cdots x_{k}\right)\left(x_{1} \cdots x_{i-1}\right) x_{i+1}\left(x_{i}\right) x_{i+2} \cdots x_{k}=0
$$

so R is ℓ-reduced and $\left[\left(x_{1} \cdots x_{i-1}\left(x_{i+1}\right) x_{i}\left(x_{i+2} \cdots x_{k}\right)\right]^{2}=0\right.$ imply $x_{1} \cdots x_{i-1} x_{i+1} x_{i} \cdots x_{k}=0$. This analysis shows that in a zero product of positive elements, we may interchange the order of two elements and the product is still zero. Using this idea, from $a_{1} a a_{2} a \cdots a_{n} a a_{n+1}=0$, we
have $a_{1} \cdots a_{n+1} a^{n}=0$. Since $a_{1}, a_{2} \in R^{+} \backslash P, a_{1} x_{1} a_{2} \in R^{+} \backslash P$ for some $x_{1} \in R^{+}$, and hence $a_{1} x_{1} a_{2} x_{2} a_{3} \in R^{+} \backslash P$ for some $x_{2} \in R^{+}$. Continuing this process, we have

$$
a_{1} x_{1} a_{2} x_{2} a_{3} x_{3} \cdots a_{n} x_{n} a_{n+1} \in R^{+} \backslash P
$$

for some $x_{1}, \cdots, x_{n} \in R^{+}$. Now $a_{1} a a_{2} a \cdots a_{n} a a_{n+1}=0$ implies

$$
a_{1} a_{2} \cdots a_{n} a_{n+1} a^{n}=0 \Rightarrow a_{1} x_{1} a_{2} x_{2} a_{3} x_{3} \cdots a_{n} x_{n} a_{n+1} a^{n}=0 .
$$

Let $y=a_{1} x_{1} a_{2} x_{2} \cdots a_{n} x_{n} a_{n+1}$. Then $0 \leq y \notin P$ and $y a^{n}=0$, so $(a y)^{n}=0$. Therefore $a y=0$.
(4) Suppose that P is a minimal ℓ-prime ℓ-ideal of R and suppose that $a+P \in R / P$ with $a \in R^{+} \backslash P$. We assume that $a^{2} \in P$. Then there exists $0 \leq y \notin P$ such that $a^{2} y=0$, and hence $(\text { aya })^{2}=($ aya $)($ aya $)=0$, so $a y a=0$. It follows that $(a y)^{2}=0$, so $a y=0$. Then $\left(y R^{+} a\right)^{2}=0$, and hence $y R^{+} a=0$. Now P is ℓ-prime implies $a \in P$ or $y \in P$, which is a contradiction. Therefore $a^{2} \notin P$ and hence R / P is ℓ-reduced. Since R / P is ℓ-prime and ℓ-reduced, R / P is an ℓ-domain (Exercise 39).

If R is ℓ-reduced, then the intersection of all minimal ℓ-prime ℓ-ideals of R is zero by Theorem 1.28(3), and hence R is isomorphic to a subdirect product of ℓ-domains by previous argument. It is clear that the subdirect product of ℓ-domains is ℓ-reduced.

In the following we consider the ℓ-radical of an ℓ-algebra over a totally ordered field F. The main result is to show that if the ℓ-radical is zero, then a finite-dimensional ℓ-algebra is Archimedean over F. Clearly, for an ℓ-algebra A over a totally ordered field $F, \ell-N(A)$ is closed under the scalar multiplication, that is, $\ell-N(A)$ is an ℓ-ideal of ℓ-algebra A. Let V be a vector lattice over a totally ordered field F. An element $a \in V^{+}$is called a strong unit of V over F if for every $x \in V$, there is an $\alpha_{x} \in F$ such that $x \leq \alpha_{x} a$.

Theorem 1.31.

(1) Every finite-dimensional vector lattice V has a strong unit.
(2) Let A be an ℓ-algebra over a totally ordered field F with strong unit. The set

$$
i(A)=\left\{a \in A|\alpha| a \mid \leq u \text { for every strong unit } u \text { and every } \alpha \in F^{+}\right\}
$$

is an ℓ-ideal of A, called i-ideal, and $i(A)$ contains no strong unit of A over F. A is Archimedean over F if and only if $i(A)=\{0\}$.
(3) If A is finite-dimensional, then ℓ-ideal $i(A)$ is nilpotent. Thus if ℓ $N(A)=\{0\}$, then A is Archimedean over F.

Proof. (1) Let v_{1}, \cdots, v_{n} be a vector space basis of V over F for some positive integer n. Then $u=\left|v_{1}\right|+\cdots+\left|v_{n}\right|$ is a strong unit. In fact, for any $v \in V, v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}, \alpha_{i} \in F$, implies

$$
v \leq|v| \leq\left|\alpha_{1}\right|\left|v_{1}\right|+\cdots+\left|\alpha_{n}\right|\left|v_{n}\right| \leq\left(\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|\right) u
$$

(2) Let $x, y \in i(A)$. For $\alpha \in F^{+}$and a strong unit u,

$$
2 \alpha|x-y| \leq 2 \alpha|x|+2 \alpha|y| \leq u+u=2 u
$$

implies $\alpha|x-y| \leq u$, so $x-y \in i(A)$. Clearly for any $a \in i(A)$ and $\alpha \in F$, $\alpha a \in i(A)$, and $|y| \leq|x|$ with $y \in A$ and $x \in i(A)$ implies that $y \in i(A)$. Thus $i(A)$ is a convex vector sublattice of A. Suppose $x \in i(A)$ and $a \in A$. For a strong unit $u,|a| u \leq \beta u$ for some $0<\beta \in F$. Hence for any $\alpha \in F^{+}$, $\alpha \beta|a x| \leq \alpha \beta|a||x| \leq|a| u \leq \beta u$, so $\alpha|a x| \leq u$. Thus $a x \in i(A)$. Similarly $x a \in i(A)$. Thus $i(A)$ is an ℓ-ideal of A. Finally for a strong unit u of A, $2 u \not \leq u$ implies $u \notin i(A)$.

If A is Archimedean over F, then clearly $i(A)=\{0\}$. Suppose $i(A)=$ $\{0\}$ and $\alpha x \leq y$ for some $x, y \in A^{+}$and all $\alpha \in F^{+}$. For any strong unit u, there is $\beta \in F^{+}$such that $y \leq \beta u$, so $\alpha x \leq u$ for all $\alpha \in F^{+}$. Thus $x \in i(A)$, and hence $x=0$. Therefore A is Archimedean over F.
(3) Let $I=i(A)$. As we have done before, define $I^{(2)}=\left\langle I^{2}\right\rangle, I^{(3)}=$ $\left\langle I I^{(2)}\right\rangle, \cdots, I^{(n)}=\left\langle I I^{(n-1)}\right\rangle$ for any $n \geq 2$. Clearly $I^{n} \subseteq I^{(n)}$ for any $n \geq 2$. We show that if $I^{(k)} \neq 0$, then $I^{(k+1)}$ is properly contained in $I^{(k)}$ for $k \geq 2$. Since $I^{(k)}$ is finite-dimensional as a vector lattice over F, by (1) $I^{(k)}$ will have a strong unit u_{k}. Let u be a strong unit of A. If $a \in I^{(k+1)}$, then $|a| \leq \sum\left|x_{i} y_{i}\right|$, where $x_{i} \in I$ and $y_{i} \in I^{(k)}$. Then for some $\beta, \gamma \in F^{+}$ we have $\left|x_{i}\right| \leq \beta u_{1}$ and $\left|y_{i}\right| \leq \gamma u_{k}$, so $\left|x_{i} y_{i}\right| \leq\left|x_{i}\right|\left|y_{i}\right| \leq \beta \gamma u_{1} u_{k}$. Since $I^{(k)}$ is an ℓ-ideal of $A, u u_{k} \in I^{(k)}$, so $u u_{k} \leq \delta u_{k}$ for some $\delta \in F^{+}$. Hence for all $\alpha \in F^{+}$,

$$
\beta \gamma \delta \alpha\left|x_{i} y_{i}\right| \leq \beta \gamma \delta \alpha\left|x_{i}\right|\left|y_{i}\right| \leq \alpha \beta^{2} \gamma^{2} \delta u_{1} u_{k} \leq \beta \gamma u u_{k} \leq \beta \gamma \delta u_{k}
$$

so $\alpha\left|x_{i} y_{i}\right| \leq u_{k}$ for all $\alpha \in F^{+}$. Let v_{k} be an arbitrary strong unit of $I^{(k)}$. Then $u_{k} \leq \lambda v_{k}$ for some $0<\lambda \in F^{+}$. Thus for all $\alpha \in F^{+}$, $\lambda \alpha\left|x_{i} y_{i}\right| \leq u_{k} \leq \lambda v_{k}$, and hence $\alpha\left|x_{i} y_{i}\right| \leq v_{k}$. Thus $\left|x_{i} y_{i}\right| \in i\left(I^{(k)}\right)$, so $\sum\left|x_{i} y_{i}\right| \in i\left(I^{(k)}\right)$. Therefore $a \in i\left(I^{(k)}\right)$ and $I^{(k+1)} \subseteq i\left(I^{(k)}\right) \subsetneq I^{(k)}$ by (2).

Now since A is finite-dimensional over F, there must be a positive integer k such that $I^{(k)}=\{0\}$, so $I^{k}=0$. It follows that $I=i(A) \subseteq \ell-N(A)$, and hence if $\ell-N(A)=\{0\}$, then $i(A)=\{0\}$, so by (2) A is Archimedean over F.

The following result is a direct consequence of Theorems 1.31 and 1.17.
Corollary 1.3. Suppose that A is a finite-dimensional ℓ-algebra over a totally ordered field F. If A is Archimedean over F, then as a vector lattice over F, A is a finite direct sum of maximal convex totally ordered subspaces of A over F. In particular, if $\ell-N(A)=\{0\}$, then A is a finite direct sum of maximal convex totally ordered subspaces of A over F.

Proof. If A is Archimedean over F, then A has no maximal convex totally ordered subspace that is bounded above. Since that A is finite-dimensional implies that condition (C) in Theorem 1.15 is satisfied, Theorem 1.17 applies.

The following result gives the further relation between f-elements and d-elements in an ℓ-unital ℓ-domain.

Theorem 1.32. Let R be an ℓ-unital ℓ-domain.
(1) If a is a d-element, then either a is an f-element or $a \wedge 1=0$.
(2) If a is a d-element, then either the set $\left\{a^{n} \mid n \geq 0\right\}$, where $a^{0}=1$, is disjoint or a^{k} is an f-element for some $k \geq 1$.
(3) If for $0<a \in R, a^{k}$ is an f-element, then a is a d-element and a basic element.

Proof. We first notice that since R is an ℓ-domain, $f(R)$ is a totally ordered domain.
(1) Suppose that $a \wedge 1=b>0$. Then b is an f-element since $b \leq 1$. Let $x, y \in R$ such that $x \wedge y=0$. Then $0 \leq a x \wedge b y \leq a x \wedge a y=0$ since $b \leq a$ and a is a d-element. Then $a x \wedge b y=0$ implies bax $\wedge b y=0$, so $b(a x \wedge y)=0$. Hence $a x \wedge y=0$ since R is an ℓ-domain and $b>0$. Similarly, $x a \wedge y=0$. Therefore a is an f-element.
(2) Suppose that for any $n \geq 1, a^{n}$ is not an f-element. Then by (1), $a^{n} \wedge 1=0$ for any $n \geq 1$. Thus for any positive integer i, j with $1 \leq i<j$, $a^{j} \wedge a^{i}=a^{i}\left(a^{j-i} \wedge 1\right)=0$, so the set $\left\{a^{n} \mid n \geq 0\right\}$ is disjoint.
(3) If $x \wedge y=0$, then $a^{k-1}(a x \wedge a y) \leq a^{k} x \wedge a^{k} y=0$, so $a x \wedge a y=0$. Similarly $x a \wedge y a=0$. Thus a is a d-element. Let $0 \leq b, c \leq a$. Then $0 \leq a^{k-1} b, a^{k-1} c \leq a^{k} \in f(R)$ which is totally ordered, so $a^{k-1} b$ and $a^{k-1} c$ are comparable. Thus b, c are comparable, that is, a is a basic element.

As an application of Theorem 1.32, we determine all the lattice orders on polynomial ring $F[x]$, where F is a totally ordered field, such that x is a d-element.

Corollary 1.4. Let $R=F[x]$ be an ℓ-algebra over F in which x is a delement. Then either $R^{+}=F^{+}[x]$ or $f[R]=F\left[x^{k}\right]$ for some $k \geq 1$, and $R=f(R)+f(R) x+\cdots+f(R) x^{k-1}$ with $R^{+}=f(R)^{+}+f(R)^{+} x+\cdots+$ $f(R)^{+} x^{k-1}$.

Proof. Since x is a d-element, $(-1 \vee 0) x=-x \vee 0=0$ implies $1^{-}=0$, so $1>0$. By Theorem $1.32(2)$, either $\left\{x^{n} \mid n \geq 0\right\}$ is disjoint or there exists positive integer k such that $x^{k} \in f(R)$. In the first case, it is clear that $R^{+}=F^{+}[x]$. In the second case, suppose that k is the smallest positive integer such that $x^{k} \in f(R)$. Then by Theorem $1.32(1),\left\{1, x, \cdots, x^{k-1}\right\}$ is a disjoint set. Let $E=F\left[x^{k}\right]$. Then $R=E+E x+\cdots+E x^{k-1}$ and $R^{+}=E^{+}+E^{+} x+\cdots+E^{+} x^{k-1}$ since E^{+}consists of f-elements. Then $E=f(R)$.

Exercises

(1) Let (A, \leq) be a partially ordered set with the partial order \leq. Using Zorn's Lemma to show that \leq can be extended to a total order on A, that is, there exists a total order on A which is an extension of \leq.
(2) Let A be a nonempty set. Define \leq on A by $\forall a, b \in A, a \leq b$ if $a=b$. Show that \leq is a partial order on A and if A has more than one element, then it is not a lattice order.
(3) Prove that the power set P_{A} of a set A is a complete distributive lattice under the partial order of set inclusion defined in Example 1.1.
(4) Let (A, \leq) be a nonempty partially ordered set. Prove, by Zorn's Lemma, that if each subset of A that is a chain has a lower bound in A, then A contains a minimal element.
(5) Let G be a partially ordered group. Suppose that $g \vee 0$ exists for any $g \in G$. Prove that G is an ℓ-group and for any $f, g \in G$,

$$
f \vee g=[(f-g) \vee 0]+g \quad \text { and } f \wedge g=g-[(-f+g) \vee 0] .
$$

(6) Verify Example $1.2(2)$ and (3).
(7) Let G be an ℓ-group and $a \wedge b=0$ for $a, b \in G$. Prove that $n a \wedge m b=0$ for any positive integers n and m.
(8) Let G be an ℓ-group and $X \subseteq G$. Prove that $X \subseteq X^{\perp \perp}$ and $X^{\perp \perp \perp}=$ X^{\perp}.
(9) Let G be an ℓ-group and G_{1}, G_{2} be distinct convex ℓ-subgroups of G. Prove that if for any $a \in G_{1}^{+}, b \in G_{2}^{+}, a+b=b+a$, then for any $x \in G_{1}, y \in G_{2}, x+y=y+x$.
(10) For an ℓ-group G and a normal convex ℓ-subgroup N of G, prove that if $x+N=x_{1}+N$ and $y+N=y_{1}+N$, then

$$
(x \vee y)+N=\left(x_{1} \vee y_{1}\right)+N \text { and }(x \wedge y)+N=\left(x_{1} \wedge y_{1}\right)+N
$$

(11) Prove that the projection $\pi: G \rightarrow G / N$, where G is an ℓ-group and N is a normal convex ℓ-subgroup of G, preserves sup and inf.
(12) Let G be an ℓ-group. Prove that if $\forall x, y \in G, x \wedge y=0 \Rightarrow x=0$ or $y=0$, then G is totally ordered.
(13) Let G be an ℓ-group and S be a subset of G. Then S is a basis of G if and only if S is a disjoint set of basic elements and $S^{\perp}=\{0\}$.
(14) Let G be an ℓ-group and $0<g \in G$. Define $T=\{x \in G \mid 0<x \leq g\}$. Suppose that for any $x, y \in T, x \wedge y \neq 0$. Prove that any two elements in T are comparable.
(15) Let V be a vector lattice over a totally ordered field F. Prove that if V is Archimedean, then V is Archimedean over F.
(16) Let V be a vector lattice over a totally ordered Archimedean field F. Prove that if V is Archimedean over F, then V is Archimedean.
(17) Let V be a vector lattice over a totally ordered field F. Prove that $\forall \alpha \in F, v \in V,|\alpha v|=|\alpha||v|$.
(18) Let V be a vector lattice over a totally ordered field F and $\left\{V_{i} \mid i \in I\right\}$ be a collection of convex vector sublattices of V. Prove

$$
\sum_{i \in I} V_{i}=\left\{v \in V \mid v=v_{1}+\cdots+v_{k}, v_{j} \in V_{k_{j}}\right\}
$$

is a convex vector sublattice of V and $\sum_{i \in I} V_{i}$ is the convex vector sublattice generated by the family $\left\{V_{i} \mid i \in I\right\}$.
(19) Prove Theorem 1.18.
(20) Let R be an ℓ-ring and I be an ℓ-ideal. Prove that R / I is an ℓ-ring with respect to the partial order $a+I \leq b+I$ if $a \leq b+c$ for some $c \in I$.
(21) Verify $a \wedge 0$ and $a \vee 0$ in Theorem 1.19(1).
(22) Suppose that R is an ℓ-ring with the positive cone P and $u \in P$ is a unit. Prove that $u P$ is the positive cone of an ℓ-ring R.
(23) Prove both total orders defined in Example 1.3(3) are not Archimedean over F.
(24) For the polynomial algebra $R=F[x]$ over a totally ordered field F, fix a positive integer $n \geq 2$. Define $p(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0} \geq 0$ if $k>n$ and $a_{k}>0$, or if $k \leq n$ and $a_{k}>0, a_{0} \geq 0$. Prove that R is an ℓ-ring with squares positive.
(25) Let R be an ℓ-ring and $x, y \in R^{+}$. Prove that $|x-y|=x+y$ if and only if $x \wedge y=0$.
(26) Let $\varphi: R \rightarrow S$ be an ℓ-homomorphism of the two ℓ-rings R and S. Show that $\operatorname{Ker}(\varphi)$ is an ℓ-ideal of R.
(27) Let R be an ℓ-ring and $\left\{J_{i} \mid i \in I\right\}$ be a family of ℓ-ideals of R with $\cap_{i \in I} J_{i}=\{0\}$. Prove that $\left\{\left\{a+J_{i}\right\}_{i \in I} \mid a \in R\right\}$ is an ℓ-subring of the direct product $\Pi_{i \in I} R / J_{i}$, and $R \cong\left\{\left\{a+J_{i}\right\}_{i \in I} \mid a \in R\right\}$.
(28) Let $\pi: R \rightarrow R / I$ be the projection. Prove that if N is an ℓ-ideal of R / I, then there exists an ℓ-ideal $J \supseteq I$ such that $\pi(J)=N$. Thus each ℓ-ideal of R / I can be written as J / I for some ℓ-ideal $J \supseteq I$ in R.
(29) Prove that if an ℓ-ring R is a subdirect product of totally ordered rings, then R is an f-ring.
(30) Let R be an ℓ-ring and I, J nilpotent ℓ-ideals of R. Show that $I+J$ is also nilpotent.
(31) For a commutative ℓ-ring R and a nilpotent element x, prove $\langle x\rangle$ is a nilpotent ℓ-ideal of R.
(32) Prove that the J defined in Theorem $1.25(3)$ is an ℓ-ideal.
(33) Verify that the semigroup ℓ-ring in Example 1.5 is an ℓ-domain.
(34) Let I and P be ℓ-ideals of an ℓ-ring R. Prove if $I^{n} \subseteq P$ for some positive integer n, then $I\left\langle I^{n-1}\right\rangle \subseteq P$.
(35) For an f-ring R, prove that $N_{k}=\left\{a \in R \mid a^{k}=0\right\}$ is an ℓ-ideal of R.
(36) For an ℓ-ring R and a proper ℓ-ideal I, if J is an ℓ-ideal containing I, then J / I is ℓ-prime in R / I if and only if J is ℓ-prime in R.
(37) Verify that $\left\{a_{i} \mid i \geq 0\right\}$ in Theorem $1.28(3)$ is an m-system.
(38) Let R be a d-ring or an almost f-ring. Prove that for any ℓ-ideal I of $R, R / I$ is also a d-ring or an almost f-ring.
(39) Prove that an ℓ-prime and ℓ-reduced ℓ-ring is an ℓ-domain, and an ℓ-reduced o-ring is a domain.
(40) Consider the polynomial ring $R=\mathbb{R}[x]$. Prove that if R is an ℓ-ring with squares positive, $x \in R^{+}$, and $1 \wedge x^{n}=0$, for a fixed positive integer n, then the lattice order on R is P_{n} defined in Example 1.3(3).
(41) Consider the field $\mathbb{Q}[\sqrt{2}]=\{\alpha+\beta \sqrt{2} \mid \alpha, \beta \in \mathbb{Q}\}$. Prove that the positive cone of an ℓ-field $\mathbb{Q}[\sqrt{2}]$ in which $1 \ngtr 0$ is equal to $u P$, where P is the positive cone of an ℓ-field $\mathbb{Q}[\sqrt{2}]$ with $1>0$ and $u \in P$ is invertible with $u^{-1} \notin P$.
(42) Describe all the lattice orders on group algebra $\mathbb{R}[G]$, where G is a group of order 2 .
(43) Consider ring $R=\mathbb{R} \times \mathbb{R}$. Define the positive cone on R by $P=$ $\{(a, b) \mid b>0\} \cup\{(0,0)\}$. Prove that (R, P) is a partially ordered ring,
but not an ℓ-ring.
(44) Consider $n \times n$ matrix algebra $M_{n}(\mathbb{R})(n \geq 2)$. Define the positive cone

$$
P=\left\{\left(a_{i j}\right) \mid a_{n j}=0, j=1, \cdots, n-1 \text { and } a_{n n}>0\right\} \cup\{(0,0)\}
$$

Prove that $\left(M_{n}(\mathbb{R}), P\right)$ is a partially ordered ring, however it is not an ℓ-ring.
(45) Consider polynomial ring $\mathbb{R}[x]$. Define the positive cone

$$
P=\{f(x) \mid \text { each coefficient of } f(x) \text { is strictly positive }\} \cup\{0\}
$$

Prove that $(\mathbb{R}[x], P)$ is a partially ordered ring, but not an ℓ-ring.
(46) Prove that a unital d-ring must be an f-ring.
(47) Let $R=x \mathbb{R}[x]$ be the ring of polynomials with zero constant over \mathbb{R}. Or$\operatorname{der} R$ lexicographically by defining $a_{n} x^{n}+\cdots+a_{1} x>0$ if $a_{n}>0$. Then R is a totally ordered ring. Define $A=\{(x, a, y, z) \mid a \in \mathbb{R}, x, y, z \in R\}$ with the coordinatewise addition and following multiplication

$$
\begin{aligned}
& (x, a, y, z)\left(x^{\prime}, a^{\prime}, y^{\prime}, z^{\prime}\right)= \\
& \left(2 x x^{\prime}+a x^{\prime}+a^{\prime} x, a a^{\prime}, x\left(y^{\prime}+z^{\prime}\right)+x^{\prime}(y+z)+a^{\prime} y+a y^{\prime}\right. \\
& \left.x\left(y^{\prime}+z^{\prime}\right)+x^{\prime}(y+z)+a^{\prime} z+a z^{\prime}\right)
\end{aligned}
$$

Then A becomes a ring with identity $(0,1,0,0)$. Define the positive cone as $(x, a, y, z) \geq 0$ if

$$
x>0, \text { or } x=0 \text { and } a>0, \text { or } x=a=0, \text { and } y \geq 0 \text { and } z \geq 0 .
$$

Prove that A is a commutative ℓ-ring in which the identity element is a weak unit in the sense that $1 \wedge a=0$ implies that $a=0$ for any $a \in A$, however A is not an f-ring.
(48) Prove that an ℓ-ring R is an almost f-ring if and only if for any $a \in R$, $|a|^{2}=a^{2}$.
(49) Prove that an ℓ-ring is an f-ring if and only if for any $a, b \in R^{+}$, $\langle a \wedge b\rangle=\langle a\rangle \cap\langle b\rangle$.
(50) Let R be an ℓ-ring and I be an ℓ-ideal of R. I is called ℓ-semiprime if for any ℓ-ideal H of $R, H^{k} \subseteq I$ for some positive integer implies that $H \subseteq I$. Prove that an ℓ-ideal I is ℓ-semiprime if and only if for any $a \in R^{+}, a R^{+} a \subseteq I$ implies that $a \in I$.

This page intentionally left blank

Chapter 2

Lattice-ordered algebras with a d-basis

In this chapter we present the structure theory of unital finite-dimensional Archimedean ℓ-algebras over a totally ordered field with a d-basis. The structure theory on this class of ℓ-algebras is similar to Wedderburn's structure theory of finite-dimensional algebras in general ring theory.

2.1 Examples and basic properties

G. Birkhoff and R. S. Pierce started a systematic study of ℓ-rings in their paper "Lattice-ordered Rings" published in 1956. Based on their study of various examples of ℓ-rings, they observed that since "in general, latticeordered algebras can be quite pathological", general structure theorems are very difficult to find. Therefore, they suggested studying special classes of ℓ-rings. One class in particular has been studied intensively is that of f-rings, whose general structure is much better understood today.

However, M. Henriksen pointed out that the class of f-rings excludes many important examples of ℓ-rings and ℓ-algebras [Henriksen (1995)]. For instance, neither matrix and triangular matrix ℓ-algebras with the entrywise order nor group ℓ-algebras and polynomial ℓ-rings with the coordinatewise order are f-rings. Henriksen's observations prompted researchers to look beyond f-rings, for new classes of ℓ-rings and ℓ-algebras that contain these important examples and, at the same time, maintain good structure theory. In particular, Henriksen suggested the following problem as a place to start (Problem 4, [Henriksen (1995)]):

Develop a structure theory for a class of lattice-ordered rings that include semigroup algebras over \mathbb{R}. If S is a multiplicative semigroup, $s_{1}, s_{2}, \ldots, s_{n} \in S$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$, let $\sum a_{i} s_{i} \geq 0$
if $a_{i} \geq 0$ for $1 \leq i \leq n$. Do this at least for a class of semigroups large enough to include $\left\{1, x, \ldots, x^{n}, \ldots\right\}$ and the semigroup of unit matrices $\left\{E_{i j}\right\}$ (where $E_{i j}$ has a 1 in row i and column j, and zeros elsewhere for $1 \leq i \leq n$ and $1 \leq j \leq n)$.

For general ℓ-rings there is no good structure theory because the defining condition $(a, b \geq 0 \Rightarrow a b \geq 0)$ that relates the order and the multiplication is pretty loose. The challenge is then to find appropriate stronger conditions. One way of keeping some of the advantages of f-rings and d-rings while at the same time broadening the class of ℓ-rings and ℓ-algebras under consideration is the following thoughts. We know that a d-ring is an ℓ-ring whose positive cone consists entirely of d-elements. We may broaden the condition by requiring only that the positive cone be generated by d elements. This modification motivates the following definition.

Definition 2.1. Let R be an ℓ-ring. A subset S of R is called a d-basis if S is a basis of the additive ℓ-group of R, defined in Chapter 1, and each element in S is a d-element of R.

In this chapter we will study algebraic structure of unital finitedimensional Archimedean ℓ-algebra over a totally ordered field with a d basis. This class of ℓ-rings contains rich examples. Before we provide some examples, we prove that the identity element in such ℓ-algebras must be positive. Throughout this chapter F always denotes a totally ordered field and all ℓ-rings and ℓ-algebras are nontrivial. Recall the condition (C) for an ℓ-group G from Theorem 1.15.
(C) Each $0<g \in G$ is greater than at most a finite number of disjoint elements.

Theorem 2.1. Let A be a unital Archimedean ℓ-algebra over F with a d-basis and satisfy condition (C).
(1) Each basic element of A is a d-element.
(2) The identity element $1>0$.

Proof. Let S be a d-basis of A. By Theorem 1.17, A is the direct sum of $s^{\perp \perp}, s \in S$, considered as a vector lattice over F.
(1) Let x be a basic element. Then $x \in s_{j}^{\perp \perp}$ for some $s_{j} \in S$. Since A is Archimedean over F, there exists $\alpha \in F^{+}$such that $\alpha s_{j} \not \leq x$, so $x \leq \alpha s_{j}$ since $s_{j}^{\perp \perp}$ is totally ordered. Thus x is a d-element, so each basic element of A is a d-element.
(2) Suppose that $1=x_{1}+\ldots+x_{k}$, where $x_{1} \in s_{i_{1}}^{\perp \perp}, \ldots, x_{k} \in s_{i_{k}}^{\perp}$ and $s_{i_{1}}, \cdots, s_{i_{k}}$ are distinct basic elements. If $x_{j}>0$, since x_{j} is basic, x_{j} is a d-element, then $\left(1^{-}\right) x_{j}=(-1 \vee 0) x_{j}=-x_{j} \vee 0=0$, and if $x_{j}<0$, then $\left(1^{-}\right)\left(-x_{j}\right)=0$ by the above argument. Thus in both cases, $\left(1^{-}\right) x_{j}=0$, for $j=1, \ldots, k$, so

$$
1^{-}=\left(1^{-}\right) 1=\left(1^{-}\right)\left(x_{1}+\ldots+x_{k}\right)=\left(1^{-}\right) x_{1}+\ldots+\left(1^{-}\right) x_{k}=0
$$

Thus $1=1^{+}-1^{-}=1^{+}>0$.
For a unital finite-dimensional Archimedean ℓ-algebra A over F with a d-basis, since a disjoint subset of A must be linearly independent by Theorem 1.13, a d-basis must be finite. We also notice that a d-basis of an ℓ-algebra may not be a vector space basis since it may not span the whole space.

Now we provide some examples of ℓ-rings and ℓ-algebras that have a d-basis.

Example 2.1.

(1) Any totally ordered ring has a d-basis with one element, and any f-ring or d-ring has a d-basis if and only if their additive ℓ-group has a basis.
(2) The matrix ℓ-algebra $M_{n}(F)$ with the entrywise order has a d-basis $\left\{e_{i j} \mid 1 \leq i, j \leq n\right\}$, where $e_{i j}$ are standard matrix units. Similarly, let $T_{n}(F)$ be the $n \times n$ upper triangular matrix ℓ-algebra over F with the entrywise order. Then $T_{n}(F)$ also has a d-basis consisting of standard matrix units $\left\{e_{i j}: 1 \leq i \leq j \leq n\right\}$.
(3) Let $F[G]$ be the group ℓ-algebra of a group G with the coordinatewise order. Then $1 G=\{1 g \mid g \in G\}$, where 1 is the identity element of F, is a d-basis. Moreover, let S be a semigroup satisfying cancellation $l a w$, namely, for any $r, s, t \in S, r s=r t$ or $s r=t r$ implies $s=t$. Then, using the coordinatewise order, the semigroup algebra $F[S]$ becomes an ℓ-algebra over F with $1 S$ as a d-basis. Especially, polynomial rings over F in one or more variables are ℓ-algebras with a d-basis with respect to the coordinatewise order.

It is easily seen that the d-bases in the previous examples are also vector space bases over F. This is not always the case, as example (4) illustrates.
(4) Let $F[[x]]=\left\{\sum_{i \geq 0} \alpha_{i} x^{i} \mid \alpha_{i} \in F\right\}$ be the ring of formal power series over F. Then it is an ℓ-algebra over F with respect to the coordinatewise order. The set $\left\{x^{n} \mid n \geq 0\right\}$ is a d-basis, but not a vector
space basis over F since the set does not span $F[[x]]$ as a vector space over F. Similarly consider the field $F((x))$ of all formal Laurent series $f(x)=\sum_{-\infty}^{\infty} \alpha_{i} x^{i}$, where among the coefficients $\alpha_{i} \in F$ with $i<0$, only finitely many can be nonzero. Again, with respect to the coordinatewise order, $F((x))$ becomes an ℓ-field with the d-basis $\left\{x^{n}: n \in \mathbb{Z}\right\}$ which is not a vector space basis over F.
(5) Let $K=\mathbb{Q}(b)$ be the finite extension field of \mathbb{Q}, where $0<b \in \mathbb{R}$ satisfies an irreducible polynomial $x^{n}-\alpha$ over \mathbb{Q} with $0<\alpha \in \mathbb{Q}$. Then $K=\left\{\alpha_{0}+\alpha_{1} b+\ldots+\alpha_{n-1} b^{n-1} \mid \alpha_{i} \in \mathbb{Q}\right\}$ with respect to the coordinatewise order, is an ℓ-field since $b^{n}=\alpha>0$. Since b is a d element by Theorem $1.32(3),\left\{1, b, \cdots, b^{n-1}\right\}$ is a d-basis of K as well as a vector space basis over \mathbb{Q}.

Next we list all 2-dimensional and 3-dimensional unital ℓ-algebras with a d-basis which is also a vector space basis. For simplicity, F is assumed to be a totally ordered subfield of \mathbb{R}.

Example 2.2. Let A be a unital ℓ-algebra over F with a d-basis D containing two elements that is also a vector space basis of A over F.
(1) If 1 is not basic, then A is a 2 -dimensional f-algebra. Therefore $A \cong$ $F \oplus F$.
(2) If 1 is basic, then we may assume that $1 \in D$. Let 1 and $0<a \in A$ form a d-basis for A . Then $a^{2}=\alpha 1+\beta a$ for some $\alpha, \beta \in F^{+}$. Since $1 \wedge a=0, a \wedge a^{2}=0$. We must have $\beta=0$. Thus $a^{2}=\alpha 1$ with $\alpha \geq 0$.
(a) If $\alpha=0$, then $A=1 F \oplus a F$ as a vector lattice over F with $a^{2}=0$.

Now suppose $\alpha>0$.
(b) If $\sqrt{\alpha} \in F$, let $b=(\sqrt{\alpha})^{-1} a$. Then $b^{2}=1$ and $A=1 F \oplus b F \cong F(G)$, where G is a cyclic group of order 2 .
(c) If $\sqrt{\alpha} \notin F$, let $\sqrt{\alpha}=b \in \mathbb{R}$. Then $A=1 F \oplus a F \cong F(b)$, where $F(b)$ is the quadratic extension field of F with the coordinatewise order defined in Example 2.1(5).

Example 2.3. Let A be a unital ℓ-algebra over F with a d-basis D containing three elements that is also a vector space basis. Then A is isomorphic to one of the following ℓ-algebras over F. The verification of this fact is left to the reader (Exercise 1).
(1) $F \oplus F \oplus F$, a direct sum of three copies of F, so it is an f-algebra.
(2) $T_{2}(F)$, where $T_{2}(F)$ is the 2×2 upper triangular matrix ℓ-algebra.
(3) $F e \oplus F f \oplus F a$, as a vector lattice with $1=e+f, f a=a f=a$ and $a^{2}=0$.
(4) $F \oplus F[G]$, where G is a cyclic group of order 2 .
(5) $F \oplus F(b)$, where $0<b \in \mathbb{R} \backslash F, b^{2} \in F$, and $F(b)$ is the ℓ-field in Example 2.1(5).
(6) $F 1 \oplus F a \oplus F b$, as a vector lattice where $a^{2}=b^{2}=a b=b a=0$.
(7) $F 1 \oplus F a \oplus F a^{2}$, as a vector lattice with $a^{3}=0$.
(8) $F[G]$, where G is a cyclic group of order 3 .
(9) $F(b)$, where $0<b \in \mathbb{R} \backslash F$ and $b^{3} \in F, F(b)$ is the ℓ-field in Example 2.1(5).

In all of above examples, each d-basis, joint with 0 , forms a semigroup with 0 , that is, the product of two basic elements is either zero or again a basic element. However this observation is not true in general, as shown in the following example.

Example 2.4. Let A be the 4 -dimensional vector space over F with the vector space basis $\{1, a, b, c\}$. With the coordinatewise order, A is a vector lattice over F. The multiplication table of the basis is defined as follows.

	1	a	b	c
1	1	a	b	c
a	a	$b+c$	0	0
b	b	0	0	0
c	c	0	0	0

Then A is an ℓ-algebra over F with $\{1, a, b, c\}$ as a d-basis, and $a^{2}=b+c$ is not basic (Exercise 2). We note that $M=F a+F b+F c$ is the unique maximal ℓ-ideal of A, so A is not ℓ-simple. If A is ℓ-simple, then, by Lemma 2.3 , the product of two basic elements is either zero or a basic element.

We next present some properties of a unital Archimedean ℓ-algebra A over F with a d-basis that satisfies condition (C). By Theorem 1.17 as a vector lattice, A is a direct sum of maximal convex totally ordered subspaces of A over F. Since $1>0,1=c_{1}+\cdots+c_{n}$, where $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements for some positive integer n. Since $c_{i} \leq 1$ for $i=1, \cdots, n$, each c_{i} is an f-element, so $c_{i} \wedge c_{j}=0$ implies $c_{i} c_{j}=c_{i} c_{j} \wedge c_{i} c_{j}=0$ for $i \neq j$. Then for each $i=1, \cdots, n, c_{i}=1 c_{i}=\left(c_{1}+\cdots+c_{n}\right) c_{i}=c_{i}^{2}$. That is, each c_{i} is idempotent.

Theorem 2.2. Let A be a unital Archimedean ℓ-algebra over F with a dbasis and let A satisfy condition (C). Suppose $1=c_{1}+\cdots+c_{n}$ where $n \geq 1$
and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements.
(1) For each basic element $a \in A$, there exists c_{i} such that $c_{i} a=a$ and $c_{k} a=0$ for $k \neq i$. Similarly, there exists c_{j} such that $a c_{j}=a$ and $a c_{k}=0$ for $k \neq j$.
(2) For each basic element $a \in A$,
(i) a is nilpotent; or
(ii) there exists a positive integer n_{a} such that $0 \neq a^{n_{a}} \in c_{i}^{\perp \perp}$ for some c_{i}; or
(iii) the set $\left\{a^{m} \mid m \geq 1\right\}$ is disjoint and $a^{m} \wedge 1=0$ for each $m \geq 1$.
(3) For each $i=1, \cdots, n, c_{i}^{\perp \perp}$ is a convex totally ordered subalgebra and a domain with identity element c_{i}, and $f(A)=c_{1}^{\perp \perp}+\cdots+c_{n}^{\perp \perp}$. If $x \in A$ is a basic element and an idempotent f-element, then $x=c_{i}$ for some $i=1, \cdots, n$.
(4) Let I be a right (left) ℓ-ideal of A. Then $c_{i} I\left(I c_{i}\right)$ is a right (left) ℓ-ideal of A and $c_{i} I\left(I c_{i}\right) \subseteq I$.

Proof. (1) Since $a=1 a=c_{1} a+\cdots+c_{n} a$ and a is a basic element, $c_{i} a$ and $c_{k} a$ are comparable. On the other hand, since a is a d-element by Theorem 2.1(1), $c_{i} \wedge c_{k}=0$ implies $c_{i} a \wedge c_{k} a=0$ for $i \neq k$. Thus if $c_{i} a \neq 0$, then $c_{k} a=0$ for any $k \neq i$, and hence $a=c_{i} a$. The other conclusion can be proved similarly.
(2) We do some analysis first. Suppose that $a^{m} \neq 0$ for some positive integer m. Then $a^{m}=\sum_{t=1}^{r} a_{t}$, where $\left\{a_{1}, \cdots, a_{r}\right\}$ is a disjoint set of basic elements. Suppose that $c_{i} a=a$ for some $i=1, \cdots, n$. Then $c_{i} a^{m}=a^{m}$, so $c_{i} a_{t}=a_{t}$ for each $t=1, \cdots, r$ since $a_{t} \leq a^{m}$. Take $c_{j} \neq c_{i}$. If $a_{t} \wedge c_{j} \neq 0$, then a_{t} and c_{j} are comparable by Theorem 1.14(2) since they are both basic elements. If $a_{t} \leq c_{j}$ then $a_{t}=c_{i} a_{t} \leq c_{i} c_{j}=0$, which is a contradiction. If $c_{j} \leq a_{t}$, then $c_{j}=c_{j}^{2} \leq c_{j} a_{t}=c_{j} c_{i} a=0$, which is again a contradiction. Thus $a_{t} \wedge c_{j}=0$ for any $t=1, \cdots, r$ and $j \neq i$.

If for each $t=1, \cdots, r$, we also have $a_{t} \wedge c_{i}=0$, then $a_{t} \wedge 1=0$ for each t, and hence $a^{m} \wedge 1=0$. On the other hand, suppose that for some $s=1, \cdots, r, a_{s} \wedge c_{i} \neq 0$, then $a_{s} \in c_{i}^{\perp \perp}$ by Theorem 1.14. We claim that $a^{m}=a_{s}$. We first notice that $a_{s} \in c_{i}^{\perp \perp}$ implies $a_{s} c_{i}=a_{s}$ by an argument similar to that in the previous paragraph. For any $t \neq s, a_{t} \wedge a_{s}=0$ implies

$$
0 \leq a_{t} a_{s} \wedge a_{s} a_{t} \leq a_{t} a^{m} \wedge a_{s} a^{m}=0
$$

since a is a d-element implies a^{m} is a d-element, so $a_{t} a_{s} \wedge a_{s} a_{t}=0$. Then $a_{s} \in c_{i}^{\perp \perp}$ and A is Archimedean over F imply $c_{i} \leq \alpha a_{s}$ for some $0<\alpha \in F$,
and hence $a_{t} c_{i} \wedge c_{i} a_{t}=0$. It follows from $c_{i} a_{t}=a_{t}$ that $a_{t} c_{i} \wedge a_{t}=0$, so $a_{t} c_{i} \wedge a_{t} c_{i}=0$ since c_{i} is an f-element. Thus $a_{t} c_{i}=0$ for $t \neq s$, and hence $a^{m}=a^{m} c_{i}=\left(a_{1}+\cdots+a_{r}\right) c_{i}=a_{s} c_{i}=a_{s}$.

So far we have proved that for a positive integer m, if $a^{m} \neq 0$, then either $a^{m} \wedge 1=0$ or $a^{m} \in c_{i}^{\perp \perp}$ for some c_{i}.

Hence if (i) and (ii) are not true, that is, if a is not nilpotent and $a^{m} \notin c_{i}^{\perp \perp}$ for any $m \geq 1$ and any c_{i}, then by above argument, $a^{m} \wedge 1=0$ for any positive integer, so a is a d-element implies for $r<s, a^{s} \wedge a^{r}=$ $a^{r}\left(a^{s-r}\right) \wedge 1=0$, and hence the set $\left\{a^{m} \mid m \geq 1\right\}$ is disjoint and $a^{m} \wedge 1=0$ for all $m \geq 1$. That is, (iii) is true. We leave it as an exercise for the reader to show that any two statements of $(i),(i i),(i i i)$ cannot be both true.
(3) We know that $c_{i}^{\perp \perp}$ is a convex totally ordered subspace for each $i=1, \cdots, n$. Let $0 \leq x, y \in c_{i}^{\perp \perp}$. Since A is Archimedean over F and $c_{i}^{\perp \perp}$ is totally ordered, there exists $0<\alpha \in F$ such that $x \leq \alpha c_{i}$. It follows that x is an f-element and hence $x y \in c_{i}^{\perp \perp}$. Therefore each $c_{i}^{\perp \perp}$ is a convex totally ordered subalgebra. Suppose $a^{2}=0$ for some $0<a \in c_{i}^{\perp \perp}$. Again A is Archimedean implies $c_{i} \leq \beta a$ for some $0<\beta \in F$, so $c_{i}=c_{i}^{2} \leq \beta^{2} a^{2}=0$, which is impossible. Thus $c_{i}^{\perp \perp}$ contains no nonzero nilpotent element and hence it is a domain (Exercise 39, Chapter 1).

Let $0<x \in c_{i}^{\perp \perp}, i=1, \ldots, n$. Since $c_{i}^{\perp \perp}$ is totally ordered and A is Archimedean, there exists $0<\alpha \in F$ such that $0<x \leq \alpha c_{i}$, so x is an f-element. Thus each $c_{i}^{\perp \perp} \subseteq f(A)$, and hence $c_{1}^{\perp \perp}+\ldots+c_{n}^{\perp \perp} \subseteq f(A)$. Let $0<x \in f(A)$. Then $x=x 1=x c_{1}+\ldots+x c_{n}$. Since x is an f element, $x c_{i} \in c_{i}^{\perp \perp}, i=1, \ldots, n$. Thus $x \in c_{1}^{\perp \perp}+\ldots+c_{n}^{\perp \perp}$, and hence $f(A) \subseteq c_{1}^{\perp \perp}+\ldots+c_{n}^{\perp \perp}$. Therefore $f(A)=c_{1}^{\perp \perp}+\ldots+c_{n}^{\perp \perp}$.

Let $x \in A$ be a basic element and an idempotent f-element. Then $x \in c_{i}^{\perp \perp}$ for some i. It follows from $x^{2}=x$ that $x=c_{i}$ since $c_{i}^{\perp \perp}$ is a domain.
(4) Clearly $c_{i} I$ is a right ideal of A and a sublattice of A since c_{i} is an f-element. Let $a \in A^{+}$and $b \in I^{+}$with $a \leq c_{i} b$. We show that $a \in c_{i} I$. First we assume that b is a basic element. From (1), we have $c_{i} b=0$ or $c_{i} b=b$, and hence $a \in I$ in either case. For any $j \neq i, c_{j} a \leq c_{j} c_{i} b=0$ implies $c_{j} a=0$, so $a=1 a=\left(c_{1}+\cdots+c_{n}\right) a=c_{i} a \in c_{i} I$. In general case, let $b=b_{1}+\cdots+b_{k}$, where $b_{1}, \cdots, b_{k} \in I$ are basic elements, and $a \leq c_{i} b_{1}+\cdots+c_{i} b_{k}$. Thus $a=a_{1}+\cdots+a_{k}$ with $0 \leq a_{t} \leq c_{i} b_{t}$ for some $a_{1}, \cdots, a_{k} \in A^{+}$by Theorem 1.5. From the previous argument, each $a_{t} \in c_{i} I$, so $a \in c_{i} I$. Therefore $c_{i} I$ is a right ℓ-ideal of A. Finally $c_{i} I \subseteq I$ because of $c_{i} x=0$ or x for each basic element x in I by (1).

Theorem 2.3. Let A be a unital Archimedean ℓ-algebra over F with a d basis and let A satisfy condition (C). For a convex ℓ-subalgebra H and an ℓ-ideal I, H and R / I are Archimedean ℓ-algebras with a d-basis satisfying condition (C).

Proof. Suppose that S is a d-basis of A. Then $H \cap S$ is a d-basis and H is Archimedean over F and satisfies condition (C) (Exercise 3).

Let I be an ℓ-ideal of A. For each $a \in A$, write $\bar{a}=a+I \in A / I$. Let S be a d-basis for A. We show that $V=\{\bar{s} \mid s \in S \backslash I\}$ is a d-basis for A / I. Let $0 \leq \bar{a}, \bar{b} \leq \bar{s} \in V$. Since \bar{a}, \bar{b} are positive, we may assume that $a \geq 0$, and $b \geq 0$. Then we have $\bar{a}=\bar{a} \wedge \bar{s}=\overline{a \wedge s}$, so $a-(a \wedge s)=a_{1} \in I$. Similarly, $b-(b \wedge s)=b_{1} \in I$. Hence $a-a_{1}=(a \wedge s) \leq s$ and $b-b_{1}=(b \wedge s) \leq s$, so s is basic implies that $a-a_{1}$ and $b-b_{1}$ are comparable. If $a-a_{1} \leq b-b_{1}$, then $\bar{a}=\overline{a-a_{1}} \leq \overline{b-b_{1}}=\bar{b}$. Similarly $b-b_{1} \leq a-a_{1}$ implies that $\bar{b} \leq \bar{a}$. Thus \bar{s} is basic in A / I. Now let $\bar{a} \wedge \bar{b}=0$. Then $a \wedge b=c \in I$, and hence $(a-c) \wedge(b-c)=0$. It follows that

$$
s(a-c) \wedge s(b-c)=0 \Rightarrow s a \wedge s b=s c \in I
$$

Thus $\bar{s} \bar{a} \wedge \bar{s} \bar{b}=0$ in R / I. Similarly, $\bar{a} \bar{s} \wedge \bar{b} \bar{s}=0$, that is, \bar{s} is a d-element in A / I. Since A is a direct sum of $s^{\perp \perp}, s \in S, A / I$ is a direct sum of $\bar{s}_{i}^{\perp \perp}$, where $\overline{s_{i}} \in V$, which implies that V is a d-basis of A / I and A / I satisfies condition (C).

Finally we show that A / I is Archimedean over F. To this end we just need to show that each $\overline{s_{i}}{ }^{\perp \perp}$ is Archimedean over F for $\overline{s_{i}} \in V$ (Exercise 4). Let $0<\bar{a}, \bar{b} \in{\overline{s_{i}}}^{\perp \perp}$ with $0<a, b \in A$. Then $a=a_{1}+\cdots+a_{m}$, where a_{1}, \cdots, a_{m} are disjoint basic elements, and $b=b_{1}+\cdots+b_{\ell}$, where b_{1}, \cdots, b_{ℓ} are disjoint basic elements. Since $a, b \notin I$, we may assume that $a_{1}, b_{1} \notin I$. For any $a_{t}, 1<t \leq m, a_{t} \wedge a_{1}=0$ implies that $\overline{a_{t}} \wedge \overline{a_{1}}=0$. It follows that $\overline{a_{t}}=0$ since \bar{a} is basic and $\bar{a}=\overline{a_{1}}+\cdots+\overline{a_{m}}$. Thus $\bar{a}=\overline{a_{1}}$ and a_{1}, s_{i} are comparable. Similarly $\bar{b}=\overline{b_{1}}$ and b_{1}, s_{i} are comparable. Now $0<a_{1}, b_{1} \in s_{i}^{\perp \perp}$ and $s_{i}^{\perp \perp}$ is totally ordered and Archimedean over F implies that there exist $0<\alpha, \beta \in F$ such that $a_{1} \leq \alpha b_{1}$ and $b_{1} \leq \beta a_{1}$. Hence $\bar{a}=\overline{a_{1}} \leq \alpha \overline{b_{1}}=\alpha \bar{b}$ and $\bar{b}=\overline{b_{1}} \leq \beta \overline{a_{1}}=\beta \bar{a}$. Therefore ${\overline{s_{i}}}^{\perp \perp}$ is Archimedean over F.

A nonzero left (right) ℓ-ideal I is called minimal if for any nonzero left (right) ℓ-ideal $J, J \subseteq I$ implies that $J=I$.

Theorem 2.4. Let A be a unital finite-dimensional Archimedean ℓ-algebra over F with a d-basis and $1=c_{1}+\cdots+c_{n}$, where $n \geq 1$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements.
(1) For $i=1, \cdots, n, c_{i}^{\perp \perp}$ is a totally ordered field.
(2) If a, b are basic elements such that $a b \neq 0$ and one of them is not nilpotent, then $a b$ is basic.
(3) Let I be a minimal right (left) ℓ-ideal of A. Then either $I^{2}=\{0\}$ or $I=c_{i} A\left(A c_{i}\right)$ for some $i=1, \cdots, n$.

Proof. (1) From Theorem $2.2(3)$ we know that $c_{i}^{\perp \perp}$ is a convex totally ordered subalgebra and a domain. If A is finite-dimensional over F, then $c_{i}^{\perp \perp}$ is also finite-dimensional over F, which implies $c_{i}^{\perp \perp}$ is a totally ordered division algebra over F. Now by Theorem $1.23, c_{i}^{\perp \perp}$ is commutative and hence it is a totally ordered field.
(2) We first notice that since A is finite-dimensional and a disjoint set of A must be linearly independent over F by Theorem $1.13(3)$, the case (iii) in Theorem 2.2(2) cannot happen. Without loss of generality, we may assume that a is not nilpotent. Then, by Theorem $2.2(2)$, there exists a positive integer n_{a} such that $0 \neq a^{n_{a}} \in c_{i}^{\perp \perp}$ for some c_{i}, so $c_{i} a=a c_{i}=a$. Because of $a b \neq 0, c_{i} b=b$. Otherwise $c_{j} b=b$ for some $c_{j} \neq c_{i}$ and $a b=a c_{i} c_{j} b=0$. Assume that $a b=a_{1}+\cdots+a_{r}$, where $\left\{a_{1}, \cdots, a_{r}\right\}$ is a disjoint set of basic elements and $r \geq 1$. We claim that $r=1$. Suppose $r>1$. We have

$$
a^{n_{a}} b=a^{n_{a}-1} a_{1}+\cdots+a^{n_{a}-1} a_{r}
$$

and $a^{n_{a}} \in c_{i}^{\perp \perp}$ is an f-element. Thus $a^{n_{a}} b \in b^{\perp \perp}$ and $a^{n_{a}} b$ is a basic element, so $a^{n_{a}-1} a_{1}$ and $a^{n_{a}-1} a_{2}$ are comparable. On the other hand, $a_{1} \wedge a_{2}=0$ and a is a d-element implies $a^{n_{a}-1} a_{1} \wedge a^{n_{a}-1} a_{2}=0$. Therefore we must have $a^{n_{a}-1} a_{1}=0$ or $a^{n_{a}-1} a_{2}=0$. It follows that $a_{1}=0$ or $a_{2}=0$ (Exercise 5), which is a contradiction. Hence $r=1$ and $a b=a_{1}$ is basic.
(3) We first notice that since A is finite-dimensional over F, each nonzero right ℓ-ideal contains a minimal right ℓ-ideal. Suppose that $I^{2} \neq 0$. Then there exists a basic element $x \in I$ such that $x I \neq 0$. Define

$$
J=\{a \in A| | a \mid \leq x r \text { for some } 0<r \in I\}
$$

Then J is a right ℓ-ideal (Exercise 6) and $J \subseteq I$. It follows from $x I \neq 0$ that $J \neq 0$. Thus by minimality of $I, J=I$, so $x \leq x r$ for some $0<r \in I$. Let $r=r_{1}+\ldots+r_{m}$, where $m \geq 1$ and r_{1}, \ldots, r_{m} are disjoint basic elements. Since $r \in I$, each $r_{j} \in I$, and since x is a d-element, $x r_{i} \wedge x r_{j}=0$ for $i \neq j$. Then $x \leq x r_{1}+\ldots+x r_{m}$ and x is basic imply that $x \leq x r_{j}$ for some $j=1, \ldots, m$ (Exercise 7). It follows from the fact that A is finitedimensional over F that either r_{j} is nilpotent or $0 \neq r_{j}^{n_{j}}=w \in c_{i}^{\perp \perp}$ for some $c_{i}, n_{j} \geq 1$. If $r_{j}^{u}=0$ for some positive integer u, then

$$
x \leq x r_{j} \leq x r_{j}^{2} \leq \ldots \leq x r_{j}^{u}=0
$$

implies that $x=0$, which is a contradiction. Thus r_{j} is not nilpotent. Consequently $r_{j}^{n_{j}}=w \in I$ and $c_{i} \in I$ by $c_{i} \leq \alpha w$ for some $0<\alpha \in F$. Hence $c_{i} A \subseteq I$, then $I=c_{i} A$ from the minimality of I and that $c_{i} A$ is a right ℓ-ideal implies $I=c_{i} A$.

Corollary 2.1. Let A be a unital finite-dimensional ℓ-algebra over F with a d-basis and $\ell-N(A)=\{0\}$. Suppose $1=c_{1}+\cdots+c_{n}$, where $n \geq 1$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements. Then each $c_{i} A\left(A c_{i}\right)$ is a minimal right (left) ℓ-ideal of A.

Proof. By Theorem 1.31(3), A is Archimedean over F. Let $I \subseteq c_{i} A$ be a minimal right ℓ-ideal of A. Since $\ell-N(A)=\{0\}, I^{2} \neq\{0\}$ (Exercise 8), and hence $I=c_{j} A$ for some c_{j} by Theorem 2.4(3). Then $c_{j} A \subseteq c_{i} A$ implies $i=j$, that is, $c_{i} A$ is a minimal right ℓ-ideal of A.

2.2 Structure theorems

In this section, we consider the structure of a unital finite-dimensional Archimedean ℓ-algebra over F with a d-basis.

2.2.1 Twisted group ℓ-algebras

Definition 2.2. Let G be a group. A function $t: G \times G \rightarrow F \backslash\{0\}$ is called a positive twisting function if t satisfies the following conditions,
(1) $t(g, h)>0$, for all $g, h \in G$,
(2) $t(g h, f) t(g, h)=t(g, h f) t(h, f)$, for all $f, g, h \in G$,
(3) $t(g, e)=t(e, g)=1$, where e is the identity element of G, for all $g \in G$. In the case that G is an abelian group, t is also commutative, that is, (4) $t(g, h)=t(h, g)$, for all $g, h \in G$.

Define

$$
F^{t}[G]=\left\{\sum_{i=1}^{n} \alpha_{i} g_{i} \mid \alpha_{i} \in F, g_{i} \in G\right\}
$$

With respect to the following operations, $F^{t}[G]$ becomes a vector lattice over F (Exercise 9). For $\sum_{i=1}^{n} \alpha_{i} g_{i}, \sum_{i=1}^{n} \beta_{i} g_{i} \in F^{t}[G], \alpha \in F$,

$$
\begin{align*}
& \sum_{i=1}^{n} \alpha_{i} g_{i}+\sum_{i=1}^{n} \beta_{i} g_{i}=\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right) g_{i}, \tag{2.1}\\
& \alpha \sum_{i=1}^{n} \alpha_{i} g_{i}=\sum_{i=1}^{n}\left(\alpha \alpha_{i}\right) g_{i}, \tag{2.2}\\
& \sum_{i=1}^{n} \alpha_{i} g_{i} \geq 0 \text { if each } \alpha_{i} \in F^{+} . \tag{2.3}
\end{align*}
$$

Define multiplication in $F^{t}[G]$ by

$$
\left(\sum_{i=1}^{n} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{m} \beta_{j} h_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i} \beta_{j}\right) t\left(g_{i}, h_{j}\right)\left(g_{i} h_{j}\right),
$$

where $\left(g_{i} h_{j}\right)$ is the product of g_{i}, h_{j} in the group G. The multiplication defined above is associative by Definition 2.2(2) and multiplication is distributive over the addition in $F^{t}[G]$ is clear by the definition. Thus $F^{t}[G]$ is an algebra over F. The condition (1) in Definition 2.2 implies the product of two positive elements is also positive, so $F^{t}[G]$ is an ℓ-algebra over F, called twisted group ℓ-algebra of G over F. In this book, $F^{t}[G]$ always denotes the ℓ-algebra with the coordinatewise order defined above. If G is abelian, then $F^{t}[G]$ is commutative by Definition 2.2(4). It is clear that $1 G=\{1 g \mid g \in G\}$ is a d-basis of the ℓ-algebra $F^{t}[G]$ over F. The identity element of $F^{t}[G]$ is $1 e$, where 1 is the identity element of F. Sometimes we just identify $1 G$ with G, so e is the identity element of $F^{t}[G]$ under this assumption.

Certainly if $t(g, h)=1$ for all $g, h \in G$, then $F^{t}[G]=F[G]$ is the group ℓ-algebra. As an example, the ℓ-field $\mathbb{Q}[\sqrt{2}]$ with the coordinatewise order may be considered as a twisted group ℓ-algebra with $G=\{e, g\}$ being a cyclic group of order 2 , and the twisting function t defined by

$$
t(e, e)=t(e, g)=t(g, e)=1 \text { and } t(g, g)=2 .
$$

We leave the verification of it as an exercise (Exercise 10).
Theorem 2.5. $F^{t}[G]$ is an ℓ-simple ℓ-algebra over F.
Proof. Let I be a nonzero ℓ-ideal of $F^{t}[G]$ and $0<a=\sum_{i=1}^{n} \alpha_{i} g_{i} \in I$ with $\alpha_{i} \neq 0$. Then each $\alpha_{i}>0$, so $0<\alpha_{1} g_{1} \leq a$ implies $\alpha_{1} g_{1} \in I$. Suppose that $g \in G$ such that $g_{1} g=e$ in G. Then $e=\left(\alpha_{1} g_{1}\right)\left(\alpha_{1}^{-1} t\left(g_{1}, g\right)^{-1} g\right) \in I$. Therefore $I=F^{t}[G]$.

Some other properties of $F^{t}[G]$ include that the identity element is basic and it is an ℓ-domain (Exercise 11).

In the following section, we prove that a unital finite-dimensional ℓ simple ℓ-algebra over F with a d-basis is ℓ-isomorphic to a matrix ℓ-algebra with the entrywise order over a twisted group ℓ-algebra of a finite group.

For more information on general twisted group rings, the reader is refereed to [Passman (2011)].

2.2.2 ℓ-simple case

Theorem 2.6. Let A be a unital finite-dimensional ℓ-algebra over a totally ordered field F with a d-basis. If A is ℓ-simple, then A is ℓ-isomorphic to the matrix ℓ-algebra $M_{n}\left(K^{t}[G]\right)$ with the entrywise order, where $n \geq 1, K$ is a totally ordered field and a finite-dimensional ℓ-algebra over F, G is a finite group, t is a positive twisting function on G, and $K^{t}[G]$ is the twisted group ℓ-algebra of G over K.

We prove the result by a series of steps. Since A is ℓ-simple, $\ell-N(A)=$ $\{0\}$, so A is Archimedean over F by Theorem $1.31(3)$ and A is a finite direct sum of maximal convex totally ordered subspaces of A over F by Corollary 1.3. Let S be a d-basis of A over F. Then S is finite. Suppose that $1=c_{1}+\ldots+c_{n}$ with $n \geq 1$ and c_{1}, \ldots, c_{n} are disjoint basic elements. For each $i=1, \ldots, n$, define $K_{i}=c_{i}^{\perp \perp}$ and $H_{i}=c_{i} A c_{i}$. Then each K_{i} is a totally ordered field and finite-dimensional ℓ-algebra over F by Theorem 2.4(1), and each H_{i} is a convex ℓ-subalgebra of A over F (Exercise 12) with $K_{i} \subseteq H_{i}, i=1, \cdots, n$.

Lemma 2.1. For $i=1, \cdots, n, H_{i}=c_{i} A c_{i}$ is ℓ-reduced.
Proof. Suppose that there exists $0<x \in H_{i}=c_{i} A c_{i}$ with $x^{k}=0$ for some positive integer k. Consider

$$
I=\left\{a \in A|\quad| a \mid \leq x r \text { for some } r \in A^{+}\right\}
$$

Then I is the right ℓ-ideal generated by x. Since $x \in c_{i} A c_{i} \subseteq c_{i} A, I \subseteq c_{i} A$, and since $x \in I, I \neq 0$. Thus $I=c_{i} A$ because $c_{i} A$ is a minimal right ℓ-ideal by Corollary 2.1. So there exists $r \in A^{+}$such that $c_{i} \leq x r$. It follows from $x \in c_{i} A c_{i}$ that $x c_{i}=x$, so $c_{i} \leq x r$ implies that $x=x c_{i} \leq x^{2} r$. Then multiplying x from the left and r from the right of the inequality, we have

$$
x \leq x^{2} r \leq x^{3} r^{2} \leq \ldots \leq x^{k} r^{k-1}=0
$$

which is a contradiction. Thus $H_{i}=c_{i} A c_{i}$ is ℓ-reduced.

Lemma 2.2. For each $i=1, \ldots, n, K_{i}$ is contained in the center of H_{i}.
Proof. Let $0<z \in K_{i}$. To show that z is in the center of H_{i}, we just need to verify that $a z=z a$ for each basic element $a \in H_{i}$. By Lemma 2.1, a is not nilpotent, so by Theorem 2.2, there exists a positive integer $n_{a} \geq 1$ such that $a^{n_{a}}=w \in K_{i}$ with $w \neq 0$. If $a z=0$ or $z a=0$, then $w z=0$ or $z w=0$, which contradicts with the fact that K_{i} is a field. Thus $a z \neq 0$ and $z a \neq 0$. By Theorem 2.4(2), $a z$ and $z a$ are both basic elements. If $a z \wedge z a=0$, then z is an f-element implies that $z a z \wedge z a z=0$, and hence $z a z=0$, which is a contradiction. Thus $a z$ and $z a$ are comparable. If $a z<z a$, then $a<z a z^{-1}$, where z^{-1} is the inverse of z in K_{i}. Hence

$$
w=a^{n_{a}} \leq a^{n_{a}-1}\left(z a z^{-1}\right) \leq\left(z a z^{-1}\right)^{n_{a}-1}\left(z a z^{-1}\right)=z a^{n_{a}} z^{-1}=w
$$

From $w=a^{n_{a}-1}\left(z a z^{-1}\right)$, we have $w a=a w=w\left(z a z^{-1}\right)$, and hence $w(a z)=w(z a)$, so $a z=z a$, which contradicts with the fact that $a z<z a$. Similarly, $z a<a z$ is not possible. Thus $a z=z a$ for each basic element $a \in H_{i}$. Since each positive element in H_{i} is a sum of disjoint basic elements in H_{i} and each element in H_{i} is a difference of two positive elements in H_{i}, z commutes with each element of H_{i}, that is, z is in the center of H_{i}. Therefore K_{i} is contained in the center of H_{i}.

For two basic elements $a, b \in H_{i}$, define $a \sim b$ if $a=z b$ for some $z \in K_{i}$. Then \sim is an equivalence relation on H_{i} (Exercise 13). For a basic element $a \in H_{i}, a^{\prime}$ denotes its equivalence class and define

$$
G_{i}=\left\{a^{\prime} \mid a \in H_{i} \text { is a basic element }\right\}
$$

with the operation $a^{\prime} b^{\prime}=(a b)^{\prime}$. Since H_{i} is ℓ-reduced, if $a, b \in H_{i}$ are basic elements, then $a b$ is still a basic element by Theorem 2.4. It is clear that the operation is well-defined and associative with c_{i}^{\prime} as the identity element (Exercise 14). For $a^{\prime} \in G_{i}$, by Theorem $2.2(2)$, there exists a positive integer n_{a} such that $a^{n_{a}} \in K_{i}$. Thus $\left(a^{\prime}\right)^{n_{a}}=c_{i}^{\prime}$. It follows that G_{i} is a group for $i=1, \cdots, n$.

Let S_{i} be a d-basis for H_{i}. For a basic element $a \in H_{i}, a$ is comparable with some $s \in S_{i}$. We claim that $a^{\prime}=s^{\prime}$. Since A is Archimedean over F, there exists $0<\alpha \in F$ such that $a \leq \alpha s$. By Theorem 2.2, there exists a positive integer n_{s} such that $0<s^{n_{s}}=u \in K_{i}$, and hence $a s^{n_{s}-1} \leq \alpha s^{n_{s}}=$ αu implies that $a s^{n_{s}-1}=v \in K_{i}$. Thus $a u=v s$. By Lemma 2.2, u is in the center of H_{i}, so we have

$$
a=u^{-1}(u a)=u^{-1}(a u)=u^{-1}(v s)=\left(u^{-1} v\right) s
$$

and $u^{-1} v \in K_{i}$. Therefore $a \sim s$, that is, $a^{\prime}=s^{\prime}$. This shows that $G_{i}=\left\{s^{\prime} \mid s \in S_{i}\right\}$. Hence G_{i} is a finite group with the order $\left|S_{i}\right|$.

Let $G=G_{1}=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$, where $\left\{s_{1}, \cdots, s_{k}\right\}$ is a d-basis of H_{1}, and let $K=K_{1}$. For s_{i}^{\prime} and s_{j}^{\prime}, let $s_{i}^{\prime} s_{j}^{\prime}=s_{u}^{\prime}$. Then $s_{i} s_{j}=z_{i j} s_{u}$ for some $0<z_{i j} \in K$. Define $t: G \times G \rightarrow K \backslash\{0\}$ by $t\left(s_{i}^{\prime}, s_{j}^{\prime}\right)=z_{i j}$. It is routine to verify that t is a positive twisting function (Exercise 15). Now we first form the twisted group ℓ-algebra $K^{t}[G]$, and then form matrix ℓ-algebra $M_{n}\left(K^{t}[G]\right)$ with the entrywise order. Then $M_{n}\left(K^{t}[G]\right)$ is an ℓ-algebra over F and we show that A and $M_{n}\left(K^{t}[G]\right)$ are ℓ-isomorphic as ℓ-algebras over F.

Lemma 2.3. For a basic element $a \in c_{i} A c_{j}, 1 \leq i, j \leq n$, there exists a basic element $b \in c_{j} A c_{i}$ such that $a b=c_{i}$ and $b a=c_{j}$. As a consequence, the product of two basic elements is either zero or a basic element.

Proof. Since A is ℓ-simple, $A=\langle a\rangle$, and hence there exist $r, s \in A^{+}$such that $c_{i} \leq$ ras. Suppose that $r=r_{1}+\cdots+r_{k}$, where r_{1}, \cdots, r_{k} are disjoint basic elements, and $s=s_{1}+\cdots+s_{\ell}$, where s_{1}, \cdots, s_{ℓ} are disjoint basic elements. Then

$$
c_{i} \leq \sum_{1 \leq u \leq k, 1 \leq v \leq \ell} r_{u} a s_{v} \Rightarrow c_{i}=\sum_{1 \leq u \leq k, 1 \leq v \leq \ell} b_{u v}
$$

with $0 \leq b_{u v} \leq r_{u} a s_{v}$. Since c_{i} is basic, any two of $b_{u v}, 1 \leq u \leq k, 1 \leq$ $v \leq \ell$, are comparable. We may assume $b_{u_{1} v_{1}}$ is the largest one among $b_{u v}$, $1 \leq u \leq k, 1 \leq v \leq \ell$, so $c_{i} \leq(k+\ell) b_{u_{1} v_{1}} \leq(k+\ell) r_{u_{1}} a s_{v_{1}}$. Thus we have that $c_{i} \leq w a z$ for some basic elements w and z. Then $c_{i} w=w$ and $z c_{i}=z$ by Theorem 2.2. Suppose that x is a basic element with $x \leq w a z$ and $x \wedge c_{i}=0$. Then $c_{i} x=x c_{i}=x$, and $w a z$ is a d-element implies that

$$
x=x c_{i} \wedge c_{i} x \leq x(w a z) \wedge c_{i}(w a z)=0,
$$

which is a contradiction. Thus, since each positive element in A is a sum of disjoint basic elements, waz must be basic, and hence $c_{i} \leq(w a z)$ implies that $w a z=y \in K_{i}=c_{i}^{\perp \perp}$ by Theorem 1.14(2). From $w a z \neq 0$ and $c_{i} a=a$, we have $w c_{i}=w$, so $w \in H_{i}$. By Lemma 2.1, w is not nilpotent, and hence there exists a positive integer n_{w} such that $w^{n_{w}}=q \in K_{i}$. Then

$$
w a z=y \Rightarrow q(a z)=w^{n_{w}}(a z)=w^{n_{w}-1} y=y w^{n_{w}-1}
$$

since K_{i} is contained in the center of H_{i}, so $q(a z w)=y w^{n_{w}}=y q=q y$. Thus $a z w=y$, and $a\left(z w y^{-1}\right)=c_{i}$, where y^{-1} is the inverse of y in K_{i}. Let $b=z w y^{-1}$. Then $a b=c_{i}$ and b is a basic element by Theorem 2.4 since w is not nilpotent.

It is clear that $b \in c_{j} A c_{i}$. Then by a similar argument, there exists a basic element c such that $b c=c_{j}$. Thus $c \in c_{i} A c_{j}$, and

$$
a=a c_{j}=a(b c)=(a b) c=c_{i} c=c
$$

Therefore $a b=c_{i}$ and $b a=c_{j}$.
Let x and y both be basic elements, and $x y \neq 0$. Suppose that $0 \leq$ $u, v \leq x y$. Let $x \in c_{i} A c_{j}$. Then there exists a basic element $x_{1} \in c_{j} A c_{i}$ such that $x x_{1}=c_{i}$ and $x_{1} x=c_{j}$, so $0 \leq x_{1} u, x_{1} v \leq x_{1}(x y)=y$. Thus $x_{1} u$ and $x_{1} v$ are comparable, and hence $u=x\left(x_{1} u\right)$ and $v=x\left(x_{1} v\right)$ are comparable. Therefore, $x y$ is basic.

Since A is ℓ-simple, $A=\left\langle c_{i}\right\rangle$ for each $i=1, \ldots, n$. Using the same argument as in the proof of Lemma 2.3, $c_{1} \leq a_{i} c_{i} f_{i}$ for some basic element a_{i} and f_{i}. Since each $a_{i} \in c_{1} A c_{i}$ is basic, by Lemma 2.3, there exist basic elements $b_{i} \in c_{i} A c_{1}$ such that

$$
\begin{gathered}
a_{1} b_{1}=c_{1}, \quad b_{1} a_{1}=c_{1} \\
a_{2} b_{2}=c_{1}, \quad b_{2} a_{2}=c_{2} \\
\vdots \\
a_{n} b_{n}=c_{1}, \quad b_{n} a_{n}=c_{n}
\end{gathered}
$$

Recall that $S=S_{1}$ is a d-basis for the convex ℓ-subalgebra $H_{1}=c_{1} A c_{1}$, and $K=K_{1}=c_{1}^{\perp \perp}$.

Lemma 2.4. For each basic element x of $A, x=b_{i}(z s) a_{j}$ for some $1 \leq$ $i, j \leq n, z \in K$ and $s \in S$. Moreover if $x=b_{u}(w t) a_{v}$, where $w \in K$ and $t \in S$, then $u=i, v=j, w=z$ and $t=s$.

Proof. We may assume that $x \in c_{i} A c_{j}$ for some i and j. Then $a_{i} x b_{j} \in$ $c_{1} A c_{1}$ is basic and $a_{i} x b_{j} \sim s$ for some $s \in S$, that is, $a_{i} x b_{j}=z s$ for some $0<z \in K$. Hence $x=b_{i}(z s) a_{j}$.

If $x=b_{u}(w t) a_{v}$ for some $w \in K$ and $t \in S$. Then clearly $u=i$ and $v=j$, so $z s=w t$. If $s \neq t$, then $s \wedge t=0$, and hence $z s \wedge w t=0$ since z, w both are f-elements. This is a contradiction. Thus $s=t$, and we have $(z-w) s=0$, so $z=w$.

Now we show that a unital finite-dimensional ℓ-simple ℓ-algebra with a d-basis is ℓ-isomorphic to $M_{n}\left(K^{t}[G]\right)$. For $z \in K$ and $s^{\prime} \in G, e_{i j}\left(z s^{\prime}\right)=$ $\left(z s^{\prime}\right) e_{i j}$ denotes the matrix with $i j^{t h}$ entry equal to $z s^{\prime}$ and other entries equal to zero, $1 \leq i, j \leq n$.

Define the mapping $\varphi: A \rightarrow M_{n}\left(K^{t}[G]\right)$ as follows. Define $\varphi(0)=0$. For a basic element x of A, by Lemma 2.4, we may uniquely express x as
$x=b_{i}(z s) a_{j}$, where $z \in K$ and $s \in S, 1 \leq i, j \leq n$. Define $\varphi(x)=e_{i j}\left(z s^{\prime}\right)$. For $0<a \in A, a$ can be uniquely expressed as a sum of disjoint basic elements, that is, $a=a_{1}+\ldots+a_{m}$, where a_{1}, \ldots, a_{m} are disjoint basic elements. Then define $\varphi(a)=\varphi\left(a_{1}\right)+\ldots+\varphi\left(a_{m}\right)$. Finally for each $0 \neq$ $a \in A, \varphi(a)=\varphi\left(a^{+}\right)-\varphi\left(a^{-}\right)$.

If x and y in A are comparable basic elements. Then we must have $x=b_{i}\left(z_{1} s\right) a_{j}$ and $y=b_{i}\left(z_{2} s\right) a_{j}$ and z_{1}, z_{2} are comparable. Then $x \pm y=$ $b_{i}\left(\left(z_{1} \pm z_{2}\right) s\right) a_{j}$ implies that

$$
\varphi(x \pm y)=e_{i j}\left(\left(z_{1} \pm z_{2}\right) s^{\prime}\right)=e_{i j}\left(z_{1} s^{\prime}\right) \pm e_{i j}\left(z_{2} s^{\prime}\right)=\varphi(x) \pm \varphi(y)
$$

Thus it follows that φ preserves addition on A (Exercise 16).
Now consider the multiplication. Let $x=b_{i}\left(z s_{1}\right) a_{j}$ and $y=b_{u}\left(w s_{2}\right) a_{v}$ be two basic elements in A. If $u \neq j$, then $a_{j} b_{u}=0$ implies that $x y=0$, so $\varphi(x y)=0$. On the other hand, $\varphi(x) \varphi(y)=e_{i j}\left(z s_{1}\right) e_{u v}\left(w s_{2}\right)=0$. If $u=j$, then $x y=b_{i}\left((z w) s_{1} s_{2}\right) a_{v}$, where $s_{1} s_{2}=t\left(s_{1}, s_{2}\right)\left(s_{1} s_{2}\right)$ with $t\left(s_{1}, s_{2}\right) \in K$ and $\left(s_{1} s_{2}\right) \in S$, and hence

$$
\begin{aligned}
\varphi(x y) & =e_{i v}\left(z w t\left(s_{1}, s_{2}\right)\left(s_{1} s_{2}\right)^{\prime}\right) \\
& =e_{i v}\left(\left(z s_{1}^{\prime}\right)\left(w s_{2}^{\prime}\right)\right) \\
& =e_{i j}\left(z s_{1}^{\prime}\right) e_{u v}\left(w s_{2}^{\prime}\right) \\
& =\varphi(x) \varphi(y)
\end{aligned}
$$

where the product $\left(z s_{1}^{\prime}\right)\left(w s_{2}^{\prime}\right)$ is in the twisted group ℓ-algebra $K^{t}[G]$. Thus it follows that φ preserves multiplication on A (Exercise 17). It is clear that φ is one-to-one and onto, and for any $a \in A, \alpha \in F, \varphi(\alpha a)=\alpha \varphi(a)$, and hence φ is an isomorphism between algebras A and $M_{n}\left(K^{t}[G]\right)$ over F. Finally, for any $a \in A, \varphi(a) \geq 0$ if and only if $a \geq 0$ (Exercise 18), therefore φ is an ℓ-isomorphism between ℓ-algebras A and $M_{n}\left(K^{t}[G]\right)$ over F. This completes the proof of Theorem 2.6.

In Corollaries 2.2 and 2.3 we consider some special cases of Theorem 2.6.

Corollary 2.2. Let A be a unital finite-dimensional ℓ-simple ℓ-algebra over F. Then A is ℓ-isomorphic to the matrix ℓ-algebra $M_{n}\left(F^{t}[G]\right)$ with the entrywise order, where $n \geq 1, G$ is a finite group, t is a positive twisting function on G, and $F^{t}[G]$ is the twisted group ℓ-algebra of G over F, if and only if A contains a d-basis that is also a vector space basis of A over F.

Proof. " \Rightarrow " It is clear that $\left\{e_{i j}(s) \mid 1 \leq i, j \leq n, s \in G\right\}$ is a d-basis and a vector space basis of A over F (Exercise 19).
" \Leftarrow " By Theorem 2.6, A is ℓ-isomorphic to the ℓ-algebra $M_{n}\left(K^{t}[G]\right)$, where K is a totally ordered field and a finite-dimensional ℓ-algebra over F. Let S be a d-basis of A that is also a basis of A as a vector space over F, and let $0<x, y \in K$. Since x, y are basic, there exist $s, t \in S$ such that $x=\alpha s$ and $y=\beta t$ for some $0<\alpha, \beta \in F$. Then the fact that x and y are comparable implies that $s=t$. Therefore $K=F s$, for some $s \in S$, is one-dimensional over F, and hence $M_{n}\left(K^{t}[G]\right) \cong M_{n}\left(F^{t}[G]\right)$.

Corollary 2.3. Let A be a unital finite-dimensional ℓ-simple ℓ-algebra over F with a d-basis.
(1) If 1 is basic or A is ℓ-reduced, then A is ℓ-isomorphic to the twisted group ℓ-algebra $K^{t}[G]$, where K is a totally ordered field and a finitedimensional ℓ-algebra over F, G is a finite group, and t is a positive twisting function.
(2) If A is an f-algebra, then A is ℓ-isomorphic to a finite-dimensional totally ordered extension field of F.
(3) If A is commutative, then A is ℓ-isomorphic to $K^{t}[G]$ as in (1) with G being a finite commutative group.

Proof. From Theorem 2.6, A is ℓ-isomorphic to the ℓ-algebra $M_{n}\left(K^{t}[G]\right)$.
(1) If 1 is basic or A is ℓ-reduced, then $n=1$.
(2) If A is an f-algebra, then $n=1$ and $G=\{e\}$.
(3) If A is commutative, then $n=1$ and G is commutative.

We next consider Theorem 2.6 when $F=\mathbb{R}$. First we state a wellknown result that each unital finite-dimensional algebra can be considered as a subalgebra of a full matrix algebra.

Lemma 2.5. Let B be a unital n-dimensional algebra over a field L. Then B can be considered as a subalgebra of $M_{n}(L)$ with the identity matrix as the identity element of B.

Proof. Let $\left\{v_{1}, \cdots, v_{n}\right\}$ be a basis of B over L. For each $b \in B, b v_{i}$ is a unique linear combination of $\left\{v_{1}, \cdots, v_{n}\right\}$, so there exists a unique $n \times n$ matrix $f_{b} \in M_{n}(L)$ such that

$$
\left(\begin{array}{c}
b v_{1} \\
\vdots \\
b v_{n}
\end{array}\right)=f_{b}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

Define $\phi: B \rightarrow M_{n}(L)$ by $\phi(b)=f_{b}^{T}$, where f_{b}^{T} is the transpose of the matrix f_{b}. It is straightforward to check that ϕ is one-to-one and an algebra
homomorphism (Exercise 20). Clearly ϕ maps the identity element of B to the identity matrix.

Corollary 2.4. Let A be a unital finite-dimensional ℓ-simple ℓ-algebra over \mathbb{R} with a d-basis, then A is ℓ-isomorphic to the ℓ-algebra $M_{n}(\mathbb{R}[H])$ where $n \geq 1, H$ is a finite group, and $\mathbb{R}[H]$ is the group ℓ-algebra of H over \mathbb{R}.

Proof. By Theorem 2.6, A is ℓ-isomorphic to the ℓ-algebra $M_{n}\left(K^{t}[G]\right)$ over \mathbb{R}, where K is a totally ordered field and finite-dimensional ℓ-algebra over \mathbb{R}. If $\operatorname{dim}_{\mathbb{R}} K>1$, then K is isomorphic to the field \mathbb{C} of complex numbers, which is impossible since \mathbb{C} cannot be a totally ordered field. Thus $\operatorname{dim}_{\mathbb{R}} K=1$ and A is ℓ-isomorphic to the ℓ-algebra $M_{n}\left(\mathbb{R}^{t}[G]\right)$.

We show that ℓ-algebra $\mathbb{R}^{t}[G]$ is actually a group ℓ-algebra $\mathbb{R}[H]$. Suppose that G contains k elements. Since G is a vector space basis of $\mathbb{R}^{t}[G]$ over \mathbb{R}, we may consider $\mathbb{R}^{t}[G]$ as a subalgebra of $M_{k}(\mathbb{R})$ containing the identity matrix by Lemma 2.5. For $a \in G$, since a is not nilpotent, by Theorem 2.2 there exists a positive integer n_{a} such that $a^{n_{a}}=\alpha_{a} e$ for some $0<\alpha_{a} \in \mathbb{R}$, where e is the identity element of G. Then $\alpha_{a}=\left(\beta_{a}\right)^{n_{a}}$ for some $0<\beta_{a} \in \mathbb{R}$. It follows that $\left(\beta_{a}^{-1} a\right)^{n_{a}}=e$. Let $\bar{a}=\beta_{a}^{-1} a$ and define $H=\{\bar{a} \mid a \in G\}$. We check that H is a group. For $g_{i}, g_{j} \in H, g_{i} g_{j}=\alpha g_{k}$ for some $0<\alpha \in \mathbb{R}$ and $g_{k} \in H$, so $\operatorname{det}\left(g_{i}\right) \operatorname{det}\left(g_{j}\right)=\alpha^{k} \operatorname{det}\left(g_{k}\right)$, where $\operatorname{det}(g)$ denotes the determinant of a matrix g. For $g \in H$, since $g^{m}=e$ for some $m \geq 1$, $(\operatorname{det}(g))^{m}=1$. It follows from $\operatorname{det}(g) \in \mathbb{R}$ that $\operatorname{det}(g)= \pm 1$. Hence $\operatorname{det}\left(g_{i}\right) \operatorname{det}\left(g_{j}\right)=\alpha^{k} \operatorname{det}\left(g_{k}\right)$ implies that $\alpha^{k}=1$, so $\alpha=1$ since $\alpha>0$. Therefore $g_{i} g_{j}=g_{k} \in H$, so H is a finite group. Clearly H is also a d-basis for $\mathbb{R}^{t}[G]$, and hence $\mathbb{R}^{t}[G]=\mathbb{R}[H]$. Therefore the ℓ-algebra $M_{k}\left(\mathbb{R}^{t}[G]\right)$ is equal to the ℓ-algebra $M_{k}(\mathbb{R}[H])$.

A totally ordered field F is called real closed if any proper algebraic extension field of F cannot be made into a totally ordered field. For instance, \mathbb{R} is a real closed field. Corollary 2.4 is actually true for any real closed field.

Now we consider the uniqueness of the ℓ-isomorphism in Theorem 2.6.
Theorem 2.7. Suppose that ℓ-algebras $M_{n_{1}}\left(K_{1}^{t_{1}}\left[G_{1}\right]\right)$ and $M_{n_{2}}\left(K_{2}^{t_{2}}\left[G_{2}\right]\right)$ are ℓ-isomorphic ℓ-algebras over F, where n_{1}, n_{2} are positive integers, K_{1}, K_{2} are totally ordered fields and finite-dimensional ℓ-algebras over F, G_{1}, G_{2} are finite groups, and $t_{1}: G_{1} \times G_{1} \rightarrow K_{1} \backslash\{0\}, t_{2}: G_{2} \times G_{2} \rightarrow$ $K_{2} \backslash\{0\}$ are positive twisting functions. Then $n_{1}=n_{2}$ and ℓ-algebras $K_{1}^{t_{1}}\left[G_{1}\right]$ and $K_{2}^{t_{2}}\left[G_{2}\right]$ are ℓ-isomorphic. Moreover, K_{1}, K_{2} are ℓ-isomorphic ℓ-algebras over F, and G_{1}, G_{2} are isomorphic groups.

Proof. For simplicity of notation, let $B=M_{n_{1}}\left(K_{1}^{t_{1}}\left[G_{1}\right]\right)$ and $C=$ $M_{n_{2}}\left(K_{2}^{t_{2}}\left[G_{2}\right]\right)$. In B,

$$
1_{B}=e_{11}\left(e_{1}\right)+\cdots+e_{n_{1} n_{1}}\left(e_{1}\right)
$$

where 1_{B} is the identity matrix in $B, e_{i i}\left(e_{1}\right)$ is the $n_{1} \times n_{1}$ matrices with the $i i^{t h}$ entry equal to the identity element e_{1} of G_{1} and other entries equal to zero, $i=1, \ldots, n_{1}$. By Theorem $2.2(3), B$ has at most n_{1} basic elements that are also idempotent f-elements. Similarly, C has at most n_{2} basic elements that are also idempotent f-elements. Therefore, that B and C are ℓ-isomorphic implies that $n_{1}=n_{2}$.

Let $n=n_{1}=n_{2}$ and $\varphi: B \rightarrow C$ be an ℓ-isomorphism between ℓ algebras B and C. Since $1_{B}=e_{11}\left(e_{1}\right)+\cdots+e_{n n}\left(e_{1}\right)$, we have

$$
\begin{aligned}
1_{C} & =\varphi\left(1_{B}\right) \\
& =\varphi\left(e_{11}\left(e_{1}\right)\right)+\cdots+\varphi\left(e_{n n}\left(e_{1}\right)\right) \\
& =e_{11}\left(e_{2}\right)+\cdots+e_{n n}\left(e_{2}\right)
\end{aligned}
$$

where 1_{C} is the identity matrix of C and e_{2} is the identity element of G_{2}. Then, since $\left\{e_{11}\left(e_{2}\right), \ldots, e_{n n}\left(e_{2}\right)\right\}$ and $\left\{\varphi\left(e_{11}\left(e_{1}\right)\right), \ldots, \varphi\left(e_{n n}\left(e_{1}\right)\right)\right\}$ both are disjoint sets of basic elements that are also idempotent f-elements of C, we must have

$$
\varphi\left(e_{11}\left(e_{1}\right)\right)=e_{i_{1} i_{1}}\left(e_{2}\right), \ldots, \varphi\left(e_{n n}\left(e_{1}\right)\right)=e_{i_{n} i_{n}}\left(e_{2}\right),
$$

where $\left\{i_{1}, \ldots, i_{n}\right\}$ is a permutation of $\{1, \ldots, n\}$. Let

$$
E_{1}=e_{11}\left(e_{1}\right) B e_{11}\left(e_{1}\right), E_{2}=e_{i_{1} i_{1}}\left(e_{2}\right) C e_{i_{1} i_{1}}\left(e_{2}\right)
$$

It is clear that $\left.\varphi\right|_{E_{1}}: E_{1} \rightarrow E_{2}$ is an ℓ-isomorphism of the two ℓ-algebras (Exercise 21). Define $f: K_{1}^{t_{1}}\left[G_{1}\right] \rightarrow E_{1}$ by $f(x)=e_{11}(x)$ for all $x \in$ $K_{1}^{t_{1}}\left[G_{1}\right]$. Then it is straightforward to verify that f is an ℓ-isomorphism of two ℓ-algebras (Exercise 22). Similarly $K_{2}^{t_{2}}\left[G_{2}\right]$ is ℓ-isomorphic to E_{2}. Therefore $K_{1}^{t_{1}}\left[G_{1}\right]$ and $K_{2}^{t_{2}}\left[G_{2}\right]$ are ℓ-isomorphic ℓ-algebras.

We also use φ to denote the ℓ-isomorphism from $K_{1}^{t_{1}}\left[G_{1}\right]$ to $K_{2}^{t_{2}}\left[G_{2}\right]$. By a direct calculation, we have $K_{2}=e_{2}^{\perp \perp}=\varphi\left(e_{1}^{\perp \perp}\right)=\varphi\left(K_{1}\right)$ (Exercise 23), so $K_{1} \cong K_{2}$. Moreover G_{1} and G_{2} have the same number of elements. Suppose that $G_{1}=\left\{g_{1}, \cdots, g_{k}\right\}$ and $G_{2}=\left\{h_{1}, \cdots, h_{k}\right\}$. Since $\varphi\left(g_{j}\right)$ is a basic element, $\varphi\left(g_{j}\right)=u_{j} h_{i_{j}}$ for unique $0<u_{j} \in K_{2}$ and $h_{i_{j}} \in G_{2}$. Define $\theta: G_{1} \rightarrow G_{2}$ by $\theta\left(g_{j}\right)=h_{i_{j}}$. For $g_{r}, g_{s} \in G_{1}$, suppose that $g_{r} g_{s}=g_{t}$ and $\varphi\left(g_{r}\right)=\alpha_{r} h_{i_{r}}, \varphi\left(g_{s}\right)=\alpha_{s} h_{i_{s}}$. Then $\varphi\left(g_{r} g_{s}\right)=\varphi\left(g_{r}\right) \varphi\left(g_{s}\right)$ implies that $\alpha_{t} h_{i_{t}}=\left(\alpha_{r} h_{i_{r}}\right)\left(\alpha_{s} h_{i_{s}}\right)$, and hence $h_{i_{r}} h_{i_{s}}=h_{i_{t}}$ in G_{2}. Hence $\theta\left(g_{r} g_{s}\right)=$ $\theta\left(g_{r}\right) \theta\left(g_{s}\right)$, so θ is an isomorphism from G_{1} to G_{2}.

2.2.3 General case

In this section we consider unital finite-dimensional Archimedean ℓ-algebras A with a d-basis over F that may not be ℓ-simple. We first consider the case that $\ell-N(A)=\{0\}$. We notice that the results in Theorem 1.28 are true for ℓ-algebras.

Theorem 2.8. Let A be a unital finite-dimensional ℓ-algebra over F with a d-basis. If $\ell-N(A)=\{0\}$, then A is ℓ-isomorphic to a finite direct sum of unital finite-dimensional ℓ-simple ℓ-algebras over F with a d-basis. Thus A is ℓ-isomorphic to a direct sum of matrix ℓ-algebras with the entrywise order over twisted group ℓ-algebras of finite groups over F.

Proof. If $\ell-N(A)=\{0\}$, then A is Archimedean over F, and hence A is a direct sum of maximal convex totally ordered subspaces of A over F. Also by Theorem 1.28, the intersection of ℓ-prime ℓ-ideals is zero. Since A is finite-dimensional, we may choose a finite number of ℓ-prime ℓ-ideals P_{1}, \cdots, P_{k} such that $P_{1} \cap \cdots \cap P_{k}=\{0\}$ (Exercise 24). We may also assume that the family $\left\{P_{1}, \cdots, P_{k}\right\}$ is minimal in the sense that no proper sub-family of it has intersection $\{0\}$.

We show that each ℓ-prime ℓ-ideal P is a maximal ℓ-ideal. Suppose that $P \subseteq I$ and $P \neq I$ for some ℓ-ideal I of A. Define $J=\{a \in A \mid a I \subseteq P\}$. Clearly J is an ideal of A. Suppose that $|b| \leq|a|$ for some $a \in J$ and $b \in A$. Let $x \in I$ be a basic element. Since x is a d-element, $|b x|=|b| x \leq|a| x=$ $|a x| \in P$ implies $b x \in P$. Then since each strictly positive element in I is a sum of disjoint basic elements in I, we have $b I \subseteq P$, that is, $b \in J$. Hence J is an ℓ-ideal of A. By the definition of $J, J I \subseteq P$, so $J \subseteq P$ since P is ℓ-prime and $I \nsubseteq P$.

Suppose that $1=c_{1}+\cdots+c_{n}$, where $n \geq 1$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements. If $c_{i} I=\{0\}$, then $c_{i} \in J \subseteq P \subseteq I$ implies that $c_{i}=c_{i}^{2}=0$, which is a contradiction. Thus for any $c_{i},\{0\} \neq c_{i} I \subseteq c_{i} A$. From Theorem 2.2 and Corollary 2.1, $c_{i} I$ is a right ℓ-ideal and $c_{i} A$ is a minimal right ℓ-ideal, and hence $c_{i} I=c_{i} A \subseteq I$ for each $i=1, \cdots, n$. Then $A=c_{1} A+\cdots+c_{n} A$ implies $A \subseteq I$. Hence $I=A$ and P is a maximal ℓ-ideal of A.

Since each P_{i} is a maximal ℓ-ideal of $A, P_{i}+\left(\cap_{j \neq i} P_{j}\right)=A$. Construct the direct sum $A / P_{1} \oplus \cdots \oplus A / P_{k}$, each A / P_{i} is an ℓ-simple ℓ-algebra, and define the mapping $\varphi: a \rightarrow\left(a+P_{1}, \cdots, a+P_{k}\right)$. Clearly φ is one-to-one and an ℓ-homomorphism between two ℓ-algebras. For $a_{i} \in A, a_{i}=x_{i}+y_{i}$, where $x_{i} \in P_{i}, y_{i} \in \cap_{j \neq i} P_{j}, 1 \leq i \leq k$. Let $a=y_{1}+\cdots+y_{k}$. Then
$\varphi(a)=\left(a_{1}+P_{1}, \cdots, a_{k}+P_{k}\right)$, that is, φ is also onto. Therefore φ is an ℓ-isomorphism between the two ℓ-algebras.

We would like to present another proof of the result in Theorem 2.8 and further characterize those ℓ-simple components in the direct sum of Theorem 2.8.

Let R be an ℓ-ring and M be an ℓ-group that is also a right (left) R-module. Then M is called a right (left) ℓ-module over R if $x r \in M^{+}$ $\left(r x \in M^{+}\right)$whenever $x \in M^{+}, r \in R^{+}$. For ℓ-modules M and N, an ℓ isomorphism φ is a module isomorphism from M to N such that for any $x, y \in M, \varphi(x \vee y)=\varphi(x) \vee \varphi(y)$ and $\varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$.

Let A be a unital finite-dimensional ℓ-algebra with a d-basis. Suppose that $\ell-N(A)=0$ and $1=c_{1}+\ldots+c_{n}$, where $n \geq 1$, and c_{1}, \ldots, c_{n} are disjoint basic elements. By Corollary 2.1, $\left\{c_{1} A, \ldots, c_{n} A\right\}$ consists of all the minimal right ℓ-ideals of A. For $i=1, \ldots, n$, define A_{i} as the sum of all minimal right ℓ-ideals of A which are ℓ-isomorphic to $c_{i} A$ as right ℓ-modules over A.

Theorem 2.9. Let A be a unital finite-dimensional ℓ-algebra with a d-basis. Suppose that $\ell-N(A)=0$ and $1=c_{1}+\ldots+c_{n}$, where $n \geq 1$, and c_{1}, \ldots, c_{n} are disjoint basic elements.
(1) For a minimal right ℓ-ideal I of A and a basic element x, if $x I \neq 0$, then $x I$ is also a minimal right ℓ-ideal of A.
(2) For each $i=1, \ldots, n, A_{i}$ is an ℓ-ideal of A.
(3) For $1 \leq i, j \leq n$, if $c_{i} A$ and $c_{j} A$ are not ℓ-isomorphic as right ℓ-modules over A, then $A_{i} A_{j}=0$.
(4) Each A_{i} is ℓ-simple and $A=A_{1} \oplus \cdots \oplus A_{k}$ for some positive integer $k \leq n$.

Proof. (1) Since $A=c_{1} A+\cdots+c_{n} A$ and $x I$ is a right ℓ-ideal by Theorem 2.2,

$$
x I=A \cap x I=\left(c_{1} A \cap x I\right)+\cdots+\left(c_{n} A \cap x I\right)
$$

by Theorem 1.9. Then since each $c_{i} A$ is a minimal right ℓ-ideal, we have either $c_{i} A \cap x I=\{0\}$ or $c_{i} A \cap x I=c_{i} A$. It follows that $x I$ is a direct sum of some right ℓ-ideals in $\left\{c_{1} A, \cdots, c_{n} A\right\}$. Since there exists a unique c_{j} such that $c_{j} x=x$, we must have that $x I=c_{j} A$, so $x I$ is a minimal right ℓ-ideal of A.
(2) Since A_{i} is a right ℓ-ideal of A, it is sufficient to show that if I is a minimal right ℓ-ideal of A with $I \cong c_{i} A$ as right ℓ-modules of A, then
$x I \subseteq A_{i}$ for each basic element x of A. Suppose that $x I \neq 0$. Then by (1) $x I$ is a minimal right ℓ-ideal of A. Define $\varphi: I \rightarrow x I$ by $\varphi(a)=x a, \forall a \in I$. Then φ is a homomorphism between right A-modules I and $x I$. Since x is a d-element, for any $a, b \in I$,

$$
\varphi(a \wedge b)=x(a \wedge b)=(x a) \wedge(x b)=\varphi(a) \wedge \varphi(b)
$$

Similarly $\varphi(a \vee b)=\varphi(a) \vee \varphi(b)$. Thus φ is an ℓ-homomorphism between ℓ-modules I and $x I$ over A. Let H be the kernel of φ, that is, $H=\{a \in$ $I \mid x a=0\}$. Clearly H is a right ideal of A. Now let $b \in A$ and $a \in H$ with $|b| \leq|a|$. Then $b \in I$ and

$$
|x b|=x|b| \leq x|a|=|x a|=0
$$

so $x b=0$ and hence $b \in H$. Therefore H is a right ℓ-ideal of A. It follows from the fact that I is a minimal right ℓ-ideal that either $H=I$ or $H=0$. If $H=I$, then $x I=0$, which is a contradiction. Hence $H=0$, so φ is one-to-one. It is clear that φ is onto. Therefore $x I \cong I \cong c_{i} A$ as right ℓ-modules over A, so $x I \subseteq A_{i}$. Hence A_{i} is also a left ideal of A. This completes the proof of (2).
(3) Suppose that $I=c_{i} A$ and $J=c_{j} A$ are not ℓ-isomorphic. To show that $A_{i} A_{j}=0$, it is enough to show that $I J=0$ (Exercise 25). If $I J \neq 0$, then there exists a basic element $x \in I$ such that $x J \neq 0$. By (1), $x J$ is a minimal right ℓ-ideal and by the proof of $(2), J \cong x J$ as right ℓ-modules over A. On the other hand, $x J \subseteq I$ since $x \in I$ and I is a right ℓ-ideal. Then $x J=I$, so $J \cong x J=I$, which is a contradiction. Hence $I J=0$.
(4) We may assume that $c_{1} A, \cdots, c_{k} A$ are pairwise nonisomorphic ℓ modules over A for some $1 \leq k \leq n$, and for each $j=1, \cdots, n, c_{j} A$ is ℓ-isomorphic to one of $c_{1} A, \cdots, c_{k} A$ as ℓ-modules over A. Then $A=$ $A_{1} \oplus \cdots \oplus A_{k}$ as the direct sum of ℓ-ideals A_{1}, \cdots, A_{k} (Exercise 26).

Finally we show that each $A_{i}, i=1, \ldots, k$, is an ℓ-simple ℓ-algebra. In fact, let $H \neq 0$ be an ℓ-ideal of A_{i}. Then H is an ℓ-ideal of A, so H contains a minimal right ℓ-ideal I of A, and hence $I \subseteq A_{i}$. Thus $I \cong c_{i} A$. Let J be a minimal right ℓ-ideal of A and $J \cong c_{i} A$. Then $J \cong I$. Suppose that $I=c_{v} A$ for some $v=1, \ldots, n$ and $\varphi: I \rightarrow J$ be an ℓ-isomorphism of ℓ-modules over A. Then $c_{v} I=I$, so

$$
J=\varphi(I)=\varphi\left(c_{v} I\right)=\varphi\left(c_{v}\right) I \subseteq \varphi\left(c_{v}\right) H \subseteq H
$$

since H is an ℓ-ideal of A. Hence $A_{i} \subseteq H$ by the definition of A_{i}, so $H=A_{i}$. Therefore A_{i} has no other ℓ-ideal except $\{0\}$ and A_{i}, that is, each A_{i} is ℓ-simple.

Finally consider a unital finite-dimensional Archimedean ℓ-algebra A over F with a d-basis. We show that $A=\ell-N(A)+H$, where H is a convex ℓ-subalgebra of A over F and $\ell-N(A) \cap H=\{0\}$. The proof of this result is based on the following characterization for basic elements that are not in $\ell-N(A)$.

Lemma 2.6. Let A be a unital finite-dimensional Archimedean ℓ-algebra over F with a d-basis, and $1=c_{1}+\cdots+c_{n}$, where $n \geq 1$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements. Suppose that $x \notin \ell-N(A)$ is a basic element. Then there exists a basic element y such that $x y=c_{s}$ and $y x=c_{t}$ for some c_{s}, c_{t}.

Proof. We first assume that $\ell-N(A)=\{0\}$. By Theorem 2.8, A is ℓ isomorphic to the ℓ-algebra $B=M_{n_{1}}\left(K_{1}^{t_{1}}\left[G_{1}\right]\right) \oplus \cdots \oplus M_{n_{k}}\left(K_{k}^{t_{k}}\left[G_{k}\right]\right)$ for some positive integer k, where each $K_{i}^{t_{i}}\left[G_{i}\right]$ is a twisted group ℓ-algebra with the coordinatewise order and $M_{n_{i}}\left(K_{i}^{t_{i}}\left[G_{i}\right]\right)$ is the matrix ℓ-algebra with entrywise order. For a basic element x in B, x is in some direct summand $M_{n_{i}}\left(K_{i}^{t_{i}}\left[G_{i}\right]\right)$ with the form $e_{s t}(\alpha g)$, where $0<\alpha \in K_{i}, g \in G_{i}$, and $e_{s t}(\alpha g)$ is the matrix with $s t^{t h}$ entry equal to αg and other entries equal to zero. Take $y=e_{t s}\left(\alpha^{-1} t_{i}\left(g^{-1}, g\right)^{-1} g^{-1}\right)$. Then we have $x y=e_{s s}\left(e_{i}\right)$ and $y x=e_{t t}\left(e_{i}\right)$ are both basic elements and idempotent f-elements in B, where e_{i} is the identity element of G_{i}. By Theorem 2.2(3), $e_{s s}\left(e_{i}\right)=c_{s}$ and $e_{t t}\left(e_{i}\right)=c_{t}$ for some $1 \leq s, t \leq n$.

For the general case, let $\bar{A}=A / \ell-N(A)$. We have $\ell-N(\bar{A})=\{0\}$. For any element $a \in A$, denote $\bar{a}=a+\ell-N(A) \in \bar{A}$. Then $\overline{1}=\overline{c_{1}}+\ldots+\overline{c_{n}}$. For a basic element $x \notin \ell-N(A), 0<\bar{x}$ is basic in \bar{A} (Exercise 27), and hence by the previous paragraph there exists a basic element $\bar{y} \in \bar{A}$ such that $\overline{x y}=\overline{c_{s}}$ and $\bar{y} \bar{x}=\overline{c_{t}}$. We may assume that y is basic in A.

From $x y-c_{s} \in \ell-N(A)$, we have that $x y-c_{s}$ is nilpotent. Suppose that $\left(x y-c_{s}\right)^{\ell}=0$ and ℓ is an odd positive integer. Then $c_{s}(x y)=(x y) c_{s}=x y$ implies that $0=\left(x y-c_{s}\right)^{\ell}=x d-c_{s}$ for some $d \in A$, and hence $c_{s}=\left|c_{s}\right|=$ $|x d|=x|d|$ since x is a d-element. Let $|d|=d_{1}+\cdots+d_{t}$, where d_{1}, \cdots, d_{t} are disjoint basic elements. It follows from c_{s} is basic that $c_{s}=x d_{m}$ for some basic element d_{m}. Take $z=d_{m}$, then $x z=c_{s}$, and $z \notin \ell-N(A)$. Since $x c_{t}=x, x z \neq 0$ implies $c_{t} z=z$. By the same argument used above, there is a basic element w such that $z w=c_{t}$. Then we have

$$
x=x c_{t}=x(z w)=(x z) w=c_{s} w=w
$$

since $c_{s} w \neq 0$. Hence $x z=c_{s}$ and $z x=c_{t}$.

Theorem 2.10. Let A be a unital finite-dimensional Archimedean ℓ-algebra over F with a d-basis. Then $A=\ell-N(A)+H$, where H is a convex ℓ subalgebra of A and $\ell-N(A) \cap H=\{0\}$.

Proof. As before assume that $1=c_{1}+\cdots+c_{n}$, where $n \geq 1$ and $\left\{c_{1}, \cdots, c_{n}\right\}$ is a disjoint set of basic elements. Define

$$
H=\left\{a \in A| | a \mid \leq \sum_{i=1}^{k} a_{i}, a_{1}, \cdots, a_{k} \notin \ell-N(A)\right\}
$$

and $\left\{a_{1}, \cdots, a_{k}\right\}$ is a disjoint set of basic elements. If two basic elements x and y are comparable, then $x^{\perp \perp}=y^{\perp \perp}$ implies that $x+y$ is also basic. Based on this fact, it is straightforward to check that H is a convex vector sublattice of A (Exercise 28). We show that $\ell-N(A) \cap H=\{0\}$. Suppose not, then $\ell-N(A) \cap H$ contains a basic element x. Since $x \in H, x \leq y$ for some basic element $y \notin \ell-N(A)$. By Lemma 2.6, there exists a basic element z such that $y z=c_{i}$ and $z y=c_{j}$ for some c_{i}, c_{j}, and hence $x \leq y$ implies $x z \leq c_{i}$. Let $x z=c$. We have $0 \neq c \in c_{i}^{\perp \perp}$ which is a field by Theorem 2.4, and $x=x c_{j}=x z y=c y$. Hence $c^{-1} x=c^{-1} c y=c_{i} y=y$, which implies that $y \in \ell-N(A)$ since $x \in \ell-N(A)$. This is a contradiction. Therefore $\ell-N(A) \cap H=\{0\}$.

Finally we show that H is closed under the multiplication of A. To this end, we show that for basic elements $x, y \notin \ell-N(A)$ with $x y \neq 0, x y$ is also a basic element not in $\ell-N(A)$. By Lemma 2.6, there exists a basic element w such that $x w=c_{s}$ and $w x=c_{t}$ for some c_{s}, c_{t}, and hence $c_{s} x=x$ and $x c_{t}=x$. Since $x y \neq 0, c_{t} y=y$. Suppose that $x y=b_{1}+\cdots+b_{k}$, where $k \geq 1$ and b_{1}, \cdots, b_{k} are disjoint basic elements. We have

$$
y=c_{t} y=(w x) y=w b_{1}+\cdots+w b_{k} \text { and } w b_{i} \wedge w b_{j}=0, i \neq j
$$

since w is a d-element. It follows that $y=w b_{u}$ and $w b_{v}=0$ for any $v \neq u$, so $c_{s} b_{v}=(x w) b_{v}=0$. Since

$$
c_{s}(x y)=c_{s} b_{1}+\cdots+c_{s} b_{k}=x y=b_{1}+\cdots+b_{k}
$$

$c_{s} b_{v}=b_{v}$ (Exercise 29), and hence $b_{v}=0$ for any $v \neq u$. Hence $x y=b_{u}$ is a basic element. If $x y \in \ell-N(A)$, then $w(x y)=c_{t} y=y \in \ell-N(A)$, which is a contradiction. Hence $x y \notin \ell-N(A)$. Therefore H is a convex ℓ-subalgebra of A.

The following special cases are immediate consequence of Theorem 2.10. The verification is left to the reader (Exercise 35).

Theorem 2.11. Let A be a unital finite-dimensional ℓ-algebra over F with a d-basis.
(1) If A is Archimedean over F and commutative, then $A=\ell-N(A)+H$, where H is ℓ-isomorphic to a direct sum of twisted group ℓ-algebras of finite abelian groups.
(2) If A is ℓ-reduced, then A is ℓ-isomorphic to a direct sum of twisted group ℓ-algebras of finite groups.

Exercises

(1) Verify Example 2.3 .
(2) Verify that the ℓ-algebra A in Example 2.4 has a d-basis $\{1, a, b, c\}$.
(3) Let A be a unital Archimedean ℓ-algebra over F with a d-basis S and satisfies condition (C). Prove that if H is a convex ℓ-subalgebra of A, then $H \cap S$ is a d-basis for H.
(4) Let V be a vector lattice over F which is a direct sum of maximal convex totally ordered subspaces over F. Prove that V is Archimedean over F if and only if each direct summand is Archimedean over F.
(5) Prove that in Theorem 2.4(2), $a^{n_{a}-1} a_{1}=0$ or $a^{n_{a}-1} a_{2}=0$ implies that $a_{1}=0$ or $a_{2}=0$.
(6) Let A be an ℓ-algebra over F and I be a right ℓ-ideal of A. Take $0<x \in I$. Prove $J=\{a \in A| | a \mid \leq x r$ for some $0<r \in I\}$ is a right ℓ-ideal of A.
(7) Let G be an ℓ-group and x be a basic element. If $x \leq x_{1}+\cdots+x_{m}$, where $\left\{x_{1}, \cdots, x_{m}\right\}$ is a disjoint subset of G, then $x \leq x_{i}$ for some $i=1, \cdots, m$.
(8) Let R be an ℓ-ring and I be a nilpotent right (left) ℓ-ideal of R. Then $I \subseteq \ell-N(R)$.
(9) Verify $F^{t}[G]$ as defined after Definition 2.2 is a vector lattice over F.
(10) Prove that ℓ-field $\mathbb{Q}[\sqrt{2}]$ with the entrywise order may be considered as a twisted group ℓ-algebra over \mathbb{Q}.
(11) Prove $F^{t}[G]$ is an ℓ-domain and its identity element is basic.
(12) Let A be an ℓ-unital ℓ-algebra over F and $1=a+b$, where $a \wedge b=0$. Prove that $a A a$ is a convex ℓ-subalgebra of A.
(13) Prove that the relation \sim defined in the proof of Theorem 2.6 is an equivalence relation.
(14) Prove that the operation $(a b)^{\prime}=a^{\prime} b^{\prime}$ defined on G_{i} in Theorem 2.6 is well-defined, associative, and c_{i} is the identity element.
(15) Check that t as defined in Theorem 2.6 is a positive twisting function.
(16) Prove that the map φ defined in Theorem 2.6 preserves the addition
on A, that is, for any $a, b \in A, \varphi(a+b)=\varphi(a)+\varphi(b)$.
(17) Prove that the map φ defined in Theorem 2.6 preserves the multiplication on A, that is, for any $a, b \in A, \varphi(a b)=\varphi(a) \varphi(b)$.
(18) Prove that the φ defined in Theorem 2.6 preserves order, that is, for any $a \in A, \varphi(a) \geq 0$ if and only if $a \geq 0$.
(19) Verify that $\left\{e_{i j}(s) \mid 1 \leq i, j \leq n, s \in H\right\}$ is a d-basis for the ℓ-algebra $M_{n}\left(F^{t}[H]\right)$.
(20) Prove that the mapping $\phi: B \rightarrow M_{n}(L)$ in Lemma 2.5 is one-to-one and preserves addition and multiplication on B.
(21) Prove that $\left.\varphi\right|_{E_{1}}: E_{1} \rightarrow E_{2}$ defined in Theorem 2.7 is an ℓ-isomorphism between ℓ-algebras E_{1} and E_{2}.
(22) Verify that $f: K_{1}^{t_{1}}\left[G_{1}\right] \rightarrow E_{1}$ is an ℓ-isomorphism between the two ℓ-algebras in Theorem 2.7.
(23) Prove that $K_{2}=e_{2}^{\perp \perp}=\varphi\left(e_{1}^{\perp \perp}\right)=\varphi\left(K_{1}\right)$ in Theorem 2.7.
(24) Suppose that A is a finite-dimensional ℓ-algebra over F. Prove that if the intersection of all the ℓ-prime ℓ-ideals is zero, then there exists a finite number of ℓ-prime ℓ-ideals such that the intersection of them is also zero.
(25) Prove that in Theorem 2.9(3) if $\left(c_{i} A\right)\left(c_{j} A\right)=\{0\}$, then $A_{i} A_{j}=\{0\}$.
(26) Let A be an ℓ-algebra over a totally ordered field F and A_{1}, \cdots, A_{k} be ℓ-ideals of A. A is the direct sum of A_{1}, \cdots, A_{k}, denoted by $A=$ $A_{1} \oplus \cdots \oplus A_{k}$, if $A=A_{1}+\cdots+A_{k}$ and $A_{i} \cap A_{j}=\{0\}, 1 \leq i, j \leq n$ and $i \neq j$. Prove Theorem 2.9(4).
(27) Let R be an ℓ-ring and $0<x \notin \ell-N(R)$. Prove that if x is basic in R, then $\bar{x}=x+\ell-N(R)$ is basic in $R / \ell-N(R)$.
(28) Prove that the H as define in Theorem 2.10 is a convex vector sublattice.
(29) Suppose that R is an ℓ-ring and $a>0$ is an f-element of R. Prove that if x_{1}, \cdots, x_{k} are disjoint elements and

$$
a x_{1}+\cdots+a x_{k}=x_{1}+\cdots+x_{k}
$$

then $a x_{i}=x_{i}$ for $i=1, \cdots, k$.
(30) Prove Theorem 2.11.
(31) An ℓ-ring is called a quasi d-ring if each nonzero positive element can be written as a sum of disjoint basic elements that are also d-element. Prove that a unital quasi d-ring is ℓ-unital.
(32) Let R be an ℓ-unital ℓ-ring and M, N be ℓ-modules over R. Prove that a module isomorphism from M to N is an ℓ-isomorphism if and only if for any $x, y \in M, \varphi(x \vee y)=\varphi(x) \vee \varphi(y)$ or $\varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$.
(33) Let G be a group and $t: G \times G \rightarrow F \backslash\{0\}$ be a positive twisting function. Prove that for any $g \in G, t\left(g, g^{-1}\right)=t\left(g^{-1}, g\right)$.
(34) Prove that any two statements of $(i),(i i),(i i i)$ in Theorem 2.2(2) cannot be true at the same time.
(35) Prove Theorem 2.11.

This page intentionally left blank

Chapter 3

Positive derivations on ℓ-rings

In this chapter, we study positive derivations for various ℓ-rings. In section 1 some examples and basic properties are presented. Section 2 is devoted to f-ring and its generalizations. We study positive derivations on matrix ℓ-rings in section 3, and section 4 consists of some results on the kernel of positive derivations of ℓ-rings.

For a ring B, a function $D: B \rightarrow B$ is called a derivation on B if for any $a, b \in B$

$$
D(a+b)=D(a)+D(b) \text { and } D(a b)=a D(b)+D(a) b
$$

If L is an algebra over a field T, then a derivation on L is called a T derivation if T is also a linear transformation, that is, $D(\alpha a)=\alpha D(a)$ for all $\alpha \in T$ and all $a \in L$.

Now let R be a partially ordered ring. A derivation on R is called positive if for all $x \in R^{+}, D(x) \geq 0$, and similarly an F-derivation on a partially ordered algebra A over a totally ordered field F is called positive if for all $x \in A^{+}, D(x) \geq 0$.

3.1 Examples and basic properties

The following are some examples of positive derivations. Clearly the map that sends each element to zero is a positive derivation which is called trivial derivation. Throughout this chapter F denotes a totally ordered field.

Example 3.1.

(1) Let $R=F[x]$ be the polynomial ℓ-algebra over F with the coordinatewise order. For $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0$, the usual derivative of $f(x)$ is defined as $f^{\prime}(x)=n a_{n} x^{n-1}+\cdots+a_{1}$. Fix
a polynomial $0<g(x) \in R$. Define $D: R \rightarrow R$ by for any $f(x) \in R$, $D(f(x))=f^{\prime}(x) g(x)$. It is clear that D is a positive F-derivation on R. On the other hand, if D is a positive F-derivation on R, then it is easily checked that $D\left(x^{n}\right)=n x^{n-1} D(x)$. Hence for any $f(x) \in R$, $D(f(x))=f^{\prime}(x) D(x)$ and $D(x)$ is a positive polynomial (Exercise 1).

From Example 1.3(3), $R=F[x]$ can be made into a totally ordered algebra over F in two ways. One total order on R is to define a polynomial positive if the coefficient of the highest power is positive. With respect to this total order, the derivation introduced above is still a positive derivation. Another total order on R is to define a polynomial positive if the coefficient of the lowest power is positive. In this case, for any positive polynomial $f(x), f(x) \leq \alpha 1$, for some $0<$ $\alpha \in F$, implies that for any positive F-derivation $D, 0 \leq D(f(x)) \leq$ $\alpha D(1)=0$, so $D(f(x))=0$. Therefore $D(R)=\{0\}$. Namely the trivial derivation is the only positive F-derivation in this case. In Lemma 3.6, it is shown that for an ℓ-unital ℓ-algebra A over F, each positive derivation on A is an F-derivation. Thus with respect to this total order on R, the trivial derivation is the only positive derivation on R.
(2) For a ring B and $b \in B$, define mapping $D_{b}: B \rightarrow B$ by for any $x \in B$, $D_{b}(x)=x b-b x$. Then D_{b} is a derivation on B (Exercise 2) and D_{b} is called the inner derivation determined by b.

Consider 2×2 upper triangular matrix ℓ-algebra $T_{2}(F)$ over F with the entrywise order. Take $a=\left(a_{i j}\right) \in T_{2}(F)$ with $a_{11} \leq a_{22}$ and $a_{12}=0$. Then it is easy to see that for each $0 \leq x \in T_{2}(F), D_{a}(x)=x a-a x \geq 0$ (Exercise 3). For instance, if $a=e_{22}$, then D_{a} is a positive derivation.
(3) Let R be an ℓ-ring and $a \in R^{+}$with $a R=0$. Then inner derivation $D_{a}(x)=x a-a x=x a$ is a positive derivation. Similarly if $R a=0$, then $x \rightarrow a x$ is a positive derivation on R.

We first show that a positive derivation will map positive nilpotent elements and positive idempotent elements to nilpotent elements.

Lemma 3.1. Suppose that R is a partially ordered ring and D is a positive derivation on R.
(1) For $a \in R^{+}$, if $a^{m}=0$ for some positive integer m, then $(D(a))^{m}=0$.
(2) For $a \in R^{+}$, if $a^{2}=k a$ for some positive integer k, then $(D(a))^{3}=0$.

Proof. (1) From $a^{m}=0$, we have

$$
0=D(0)=D\left(a^{m}\right)=D(a) a^{m-1}+a D\left(a^{m-1}\right)
$$

and hence $D(a) a^{m-1}=0$ since $D(a) a^{m-1} \geq 0$ and $a D\left(a^{m-1}\right) \geq 0$. It follows that

$$
0=D(0)=D\left(D(a) a^{m-1}\right)=D(D(a)) a^{m-1}+D(a) D\left(a^{m-1}\right)
$$

so

$$
0=D(a) D\left(a^{m-1}\right)=D(a)\left(D(a) a^{m-2}+a D\left(a^{m-2}\right)\right)
$$

Therefore we have $(D(a))^{2} a^{m-2}=0$. Continuing this process we obtain $(D(a))^{m}=0$.
(2) From $a^{2}=k a$, we have

$$
a D(a)+D(a) a-k D(a)=D\left(a^{2}\right)-k D(a)=D\left(a^{2}-k a\right)=0
$$

By multiplying the equation on the left by a, we obtain $a^{2} D(a)+a D(a) a-$ $k a D(a)=0$. It follows that $a D(a) a=0$ since $a^{2}=k a$. Then

$$
0=D(a D(a) a)=a D(D(a) a)+D(a) D(a) a
$$

implies $(D(a))^{2} a=0$, and hence

$$
0=D\left((D(a))^{2} a\right)=D(a)^{3}+D\left((D(a))^{2}\right) a
$$

so $D(a)^{3}=0$.
The following result, which will be used later, characterizes minimal ℓ-prime ℓ-ideals for commutative ℓ-rings.

Lemma 3.2. Let R be a commutative ℓ-ring and P be an ℓ-prime ℓ-ideal of R. Then P is a minimal ℓ-prime ℓ-ideal if and only if for each $0 \leq x \in P$ there exists $0 \leq y \notin P$ such that $x y$ is a nilpotent element.

Proof. Suppose that $P \neq\{0\}$ is a minimal ℓ-prime ℓ-ideal. Let $0<x \in P$ and consider the set

$$
S=\left\{x^{n} a \mid n \geq 1, a \in R^{+} \backslash P\right\} \cup\left(R^{+} \backslash P\right)
$$

Then S is an m-system properly containing $R^{+} \backslash P$ (Exercise 4). By Theorem $1.30(2), 0 \in S$, and hence $x^{n} y=0$ for some $y \in R^{+} \backslash P$ and positive integer n. Hence $(x y)^{n}=0$. Conversely suppose that P is an ℓ-prime ℓ ideal which satisfies the given condition and Q is a minimal ℓ-prime ℓ-ideal contained in P. If $Q \neq P$, then there exists $0 \leq x \in P \backslash Q$, and hence $x y$ is nilpotent for some $0 \leq y \notin P$. Then $x y \in Q$ implies that $x \in Q$ or $y \in Q$ by Theorem 1.26, which is a contradiction. Thus $P=Q$ and hence P is a minimal ℓ-prime ℓ-ideal.

Lemma 3.3. Let R be an Archimedean ℓ-ring in which the square of each element is positive.
(1) If $x \in R^{+}$and $x^{2}=0$, then $x R=R x=\{0\}$.
(2) $\ell-N(R)=\{x \in R| | x \mid$ is nilpotent $\}$ and $R^{2}(\ell-N(R))=(\ell-N(R)) R^{2}=$ $R(\ell-N(R)) R=\{0\}$.
(3) If R is an f-ring, then $R(\ell-N(R))=(\ell-N(R)) R=0$.

Proof. (1) For any $y \in R^{+}$and positive integer $n,(n x-y)^{2} \geq 0$ implies

$$
n(x y) \leq n(x y)+n(y x) \leq(n x)^{2}+y^{2}=y^{2}
$$

and hence $x y=0$ since R is Archimedean. Similarly $y x=0$. Thus $x R=$ $R x=\{0\}$.
(2) We first show that if $x \in R^{+}$is nilpotent, then $x^{3}=0$. Suppose that $x^{n}=0$ with $n \geq 4$. Then $2 n-4 \geq n$, so $\left(x^{n-2}\right)^{2}=0$, and hence by (1) $x^{n-1}=x x^{n-2}=0$. Continuing this process we eventually get $x^{3}=0$.

Now suppose $|x|$ is a nilpotent element and $y \in R^{+}$. For any positive integer $n, 0 \leq(n|x|-y)^{2}$ implies that $n|x| y \leq n^{2}|x|^{2}+y^{2}$, and hence

$$
n z|x| y \leq n^{2} z|x|^{2}+z y^{2} \text { and } n|x| y z \leq n^{2}|x|^{2} z+y^{2} z
$$

for any $z \in R^{+}$. But $\left(|x|^{2}\right)^{2}=0$ implies $z|x|^{2}=|x|^{2} z=0$ by (1), so that R is Archimedean implies $z|x| y=|x| y z=0$ for all $y, z \in R^{+}$. By the definition of $\ell-N(R)$ and $R^{+}|x| R^{+}=\{0\}$, we have $x \in \ell-N(R)$, and hence $\ell-N(R)=\{x \in R| | x \mid$ is nilpotent $\}$. And then $|x| y z=0$ and $z|x| y=0$ for any $x \in \ell-N(R)$ and $y, z \in R^{+}$imply that $(\ell-N(R)) R^{2}=\{0\}$ and $R(\ell-N(R)) R=\{0\}$. Similarly, $R^{2}(\ell-N(R))=\{0\}$.
(3) Suppose that R is an f-ring and $0 \leq x \in \ell-N(R)$. By (2), $x^{3}=0$. For a positive integer n, consider $n x^{2}$ and x. If R is totally ordered, then $n x^{2} \leq x$ (Exercise 5). Then $n x^{2} \leq x$ is true in an f-ring since it is a subdirect product of totally ordered rings, and hence $x^{2}=0$. Therefore by (1), $x R=R x=\{0\}$, that is, $R(\ell-N(R))=(\ell-N(R)) R=\{0\}$.

Corollary 3.1. Let R be an Archimedean ℓ-ring in which the square of each element is positive.
(1) For a positive derivation D on $R, D(\ell-N(R)) \subseteq \ell-N(R)$.
(2) $R / \ell-N(R)$ is also Archimedean.

Proof. (1) Let $x \in \ell-N(R)$. Then $|x|$ is nilpotent by Lemma 3.3, so $D(|x|)$ is also nilpotent by Lemma 3.1. It follows that $D(|x|) \in \ell-N(R)$ by Lemma 3.3 again, and since $|D(x)| \leq D(|x|)$ (Exercise 6), $D(x) \in \ell-N(R)$. Therefore $D(\ell-N(R)) \subseteq \ell-N(R)$.
(2) Take $0 \leq a+\ell-N(R), 0 \leq b+\ell-N(R) \in R / \ell-N(R)$ and suppose that $n(a+\ell-N(R)) \leq(b+\ell-N(R))$ for all positive integer n. We may assume $a, b \in R^{+}$. Then

$$
n a+\ell-N(R)=(n a+\ell-N(R)) \wedge(b+\ell-N(R))
$$

implies that $n a-n a \wedge b=a_{n} \in \ell-N(R)$, and hence $n a \leq b+a_{n}$. It follows that $n a^{3} \leq a^{2} b$ since $a^{2} a_{n} \in R^{2}(\ell-N(R))=\{0\}$ by Lemma 3.3. Then R is Archimedean implies that $a^{3}=0$, and hence $a \in \ell-N(R)$ by Lemma 3.3 again, that is, $a+\ell-N(R)=0$. Hence $R / \ell-N(R)$ is Archimedean.

$3.2 \quad f$-ring and its generalizations

Positive derivations on ℓ-rings were first studied for f-rings. We will present the results for f-rings first below.

Lemma 3.4. Let T be a totally ordered domain and D be a positive derivation on T. Given $a \in T^{+}$, for any positive integer n,

$$
n D\left(a^{2}\right) \leq a^{2} D(a)+D(a) a^{2}+D(a) .
$$

Proof. If $D(a)=0$, then the inequality is clearly true since $D\left(a^{2}\right)=$ $D(a) a+a D(a)=0$. Suppose that $D(a)>0$ and n is a positive integer. If $n a \leq a^{2}$, then

$$
n D\left(a^{2}\right)=n a D(a)+n D(a) a \leq a^{2} D(a)+D(a) a^{2} .
$$

In the following, we consider the case $a^{2}<n a$. First we show that $2^{m} a^{2} \leq n a$ for any positive integer m by mathematical induction. If $a D(a) \leq D(a) a$, then

$$
2 a D(a) \leq D(a) a+a D(a)=D\left(a^{2}\right) \leq n D(a),
$$

and hence $2 a^{2} D(a) \leq(n a) D(a)$. Thus $2 a^{2} \leq n a$ since T is a totally ordered domain. Similarly if $D(a) a \leq a D(a)$, then

$$
2 D(a) a \leq D(a) a+a D(a)=D\left(a^{2}\right) \leq n D(a)
$$

implies $2 a^{2} \leq n a$. Thus $2^{m} a^{2} \leq n a$ is true when $m=1$. Now suppose that $2^{k} a^{2} \leq n a$ and we show that $a^{k+1} a^{2} \leq n a, k \geq 1$. If $a D(a) \leq D(a) a$, then

$$
2^{k+1} a D(a) \leq 2^{k}(D(a) a+a D(a))=2^{k} D\left(a^{2}\right) \leq n D(a)
$$

implies $2^{k+1} a^{2} D(a) \leq(n a) D(a)$, so $2^{k+1} a^{2} \leq n a$. Similarly if $D(a) a \leq$ $a D(a)$, then

$$
2^{k+1} D(a) a \leq 2^{k}(D(a) a+a D(a))=2^{k} D\left(a^{2}\right) \leq n D(a)
$$

implies $2^{k+1} D(a) a^{2} \leq n D(a) a$, so $2^{k+1} a^{2} \leq n a$. In any case, $2^{k+1} a^{2} \leq n a$, and hence by the induction, $2^{m} a^{2} \leq n a$ for all positive integer m. Choose m such that $n^{2} \leq 2^{m}$, we get $n a^{2} \leq a$, and hence $n D\left(a^{2}\right) \leq D(a)$.

Therefore for any case we have proved that $n D\left(a^{2}\right) \leq a^{2} D(a)+D(a) a^{2}+$ $D(a)$ for $a \in T^{+}$.

We note that Lemma 3.4 is also true for a reduced f-ring since it is a subdirect product of totally ordered domains. We leave the verification of this fact to the reader (Exercise 7).

Theorem 3.1. Let R be an Archimedean f-ring and D be a positive derivation on R. Then $D(R) \subseteq \ell-N(R)$ and $D\left(R^{2}\right)=\{0\}$. Thus if $\ell-N(R)=\{0\}$, then the only positive derivation on R is the trivial derivation.

Proof. We note that R is commutative by Theorem 1.22. Let P be a minimal ℓ-prime ℓ-ideal of R and $0 \leq x \in P$. From Lemma 3.2, there exists $0 \leq y \notin P$ such that $(x y)^{k}=0$ for some positive integer k. Then by Lemma 3.1, $(D(x y))^{k}=0$, and hence $D(x y)=x D(y)+D(x) y$ implies that $(D(x) y)^{k}=0$. Thus $D(x) y \in P$ and $y \notin P$ imply $D(x) \in P$ by Theorem 1.27. We have proved that $D(P) \subseteq P$ for each minimal ℓ-prime ℓ-ideal P.

Then D induces a positive derivation D_{P} on $R / P=\{\bar{a}=a+P \mid a \in R\}$ by defining $D_{P}(\bar{a})=\overline{D(a)}$ (Exercise 8). Since R / P is a totally ordered domain by Theorem 1.27, using Lemma 3.4, for $a \in R^{+}$and any positive integer n,

$$
n D_{P}\left(\bar{a}^{2}\right) \leq \bar{a}^{2} D_{P}(\bar{a})+D_{P}(\bar{a}) \bar{a}^{2}+D_{P}(\bar{a})
$$

that is, for each minimal ℓ-prime ℓ-ideal P,

$$
n D\left(a^{2}\right)+P \leq\left(a^{2} D(a)+D(a) a^{2}+D(a)\right)+P
$$

in R / P. Hence

$$
n D\left(a^{2}\right)+\ell-N(R) \leq\left(a^{2} D(a)+D(a) a^{2}+D(a)\right)+\ell-N(R)
$$

in $R / \ell-N(R)$ since $\ell-N(R)$ is the intersection of all minimal ℓ-prime ℓ-ideals by Theorem 1.28.

By Corollary 3.1, $R / \ell-N(R)$ is Archimedean. Then

$$
n\left(D\left(a^{2}\right)+\ell-N(R)\right) \leq\left(a^{2} D(a)+D(a) a^{2}+D(a)\right)+\ell-N(R)
$$

implies $D\left(a^{2}\right)+\ell-N(R)=\{0\}$, that is, $D\left(a^{2}\right) \in \ell-N(R)$. By Corollary 3.1, $D\left(D\left(a^{2}\right)\right) \in \ell-N(R)$. Hence

$$
(D(a))^{2} \leq(D(a))^{2}+a D(D(a))=D(a D(a)) \leq D\left(D\left(a^{2}\right)\right)
$$

further implies $(D(a))^{2} \in \ell-N(R)$. Thus $D(a) \in \ell-N(R)$ for each $a \in R^{+}$ by Lemma 3.3. It follows that $D(R) \subseteq \ell-N(R)$.

Finally for all $x, y \in R, D(x y)=x D(y)+D(x) y \in R(\ell-N(R))+(\ell-$ $N(R)) R=\{0\}$ by Lemma 3.3. Hence $D\left(R^{2}\right)=\{0\}$.

Theorem 3.1 was originally proved by P. Colville, G. Davis and K. Keimel [Colville, Davis and Keimel (1977)]. The proof presented here was due to M. Henriksen and F. A. Smith [Henriksen and Smith (1982)] because of elementary and general nature in their proof. We would like to present the proof in [Colville, Davis and Keimel (1977)] based on Theorem 3.2 for Archimedean f-rings whose proof will be omitted, and the reader is referred to [Bigard and Keimel (1969)] for more details. Let R be an f-ring. A positive orthomorphism φ of R is an endomorphism of the additive group of R such that for any $x, y \in R, x \wedge y=0 \Rightarrow x \wedge \varphi(y)=0$. Define
$\operatorname{Orth}(R)=\{\varphi-\psi \mid \varphi, \psi$ are positive orthomorphisms of $R\}$.
Then $\operatorname{Orth}(R)$ is a partially ordered ring with respect to the positive cone

$$
\operatorname{Orth}(R)^{+}=\{\varphi \mid \varphi \text { is a positive orthomorphism of } R\}
$$

(Exercise 9).
Theorem 3.2. Let R be an Archimedean and reduced f-ring. Then $\operatorname{Orth}(R)$ is a unital Archimedean f-ring.

Another proof of Theorem 3.1 First suppose that $\ell-N(R)=\{0\}$, that is, R contains no nonzero nilpotent element. Let D be a positive derivation on A and $x \wedge y=0$ for some $x, y \in R$. Then $x y=0$ implies that $x D(y)+D(x) y=0$, and hence $x D(y)=0=D(x) y$. Therefore $(x \wedge D(y))^{2}=0$, so $x \wedge D(y)=0$. Hence D is a positive orthomorphism of R.

For any $a \in R^{+}$, define $\varphi_{a}: R \rightarrow R$ by $\varphi_{a}(x)=a x$. Since R is an f-ring, $x \wedge y=0 \Rightarrow x \wedge \varphi_{a}(y)=x \wedge a y=0$. Thus φ_{a} is a positive orthomorphism. Then D and φ_{a} commute since $\operatorname{Orth}(R)$ is an Archimedean f-ring implies that it is commutative. For $a, b \in R^{+}$,

$$
D(a b)=D\left(\varphi_{a}(b)\right)=\left(D \varphi_{a}\right)(b)=\left(\varphi_{a} D\right)(b)=\varphi_{a}(D(b))=a D(b)
$$

and $D(a b)=a D(b)+D(a) b$ imply that $D(a) b=0$, especially $(D(a))^{2}=0$ when set $b=D(a)$. Thus $D(a)=0$ for all $a \in R^{+}$since R is reduced. Therefore $D(R)=0$.

For the general case, we consider $\bar{R}=R / \ell-N(R)$. Then \bar{R} is an Archimedean f-ring with $\ell-N(\bar{R})=\{0\}$. By Corollary 3.1, $D(\ell-N(R)) \subseteq \ell-$ $N(R)$, so we can define a positive derivation \bar{D} of \bar{R} by $\bar{D}(x+\ell-N(R))=$
$D(x)+\ell-N(R)$. From the above argument, we have $\bar{D}=0$. Therefore, $D(R) \subseteq \ell-N(R)$. Since $R(\ell-N(R))=(\ell-N(R)) R=\{0\}$ by Lemma 3.3, for any $a, b \in R, D(a b)=a D(b)+D(a) b=0$, so $D\left(R^{2}\right)=\{0\}$. This completes the proof.

A ring B is called von Neumann regular if for each $a \in B$ there is an $x \in B$ for which $a x a=a$ and B is called strongly regular if for each $a \in B$ there is an $x \in B$ for which $a^{2} x=a$.

Theorem 3.3.

(1) A ring B is strongly regular if and only if B is regular and reduced.
(2) Every regular f-ring is strongly regular.
(3) If D is a positive derivation on a regular f-ring, then $D=0$.

Proof. (1) Suppose that B is strongly regular. For $a \in B$, if $a^{2}=0$, then there is an $x \in B$ for which $a^{2} x=a$, so $a=0$. Thus B is reduced. For $a \in B$, there is an $x \in B$ such that $a^{2} x=a$. Then $(a x a-a)^{2}=0$, so $a x a=a$. Conversely if B is regular and reduced, then for each $a \in B$, there is an $x \in B$ for which $a x a=a$. Thus $\left(a^{2} x-a\right)^{2}=0$, so $a^{2} x=a$.
(2) By (1), it is sufficient to show that R is reduced. Let $a \in R$ with $a^{2}=0$. Then there is an $x \in R$ for which $a x a=a$, and hence $(a x)^{2}=a x$. Since $a \in \ell-N(R)$ by Theorem 1.27, $a x \in \ell-N(R)$, so $a x$ is nilpotent. Hence $a x=0$, so $a=a x a=0$.
(3) We first notice that if L is a totally ordered division ring and D is a positive derivation on L, then for $0<a \in L, a^{-1}>0$ and $1=a a^{-1}$ imply that $0=D(1)=a D\left(a^{-1}\right)+D(a) a^{-1}$. Thus $D(a) a^{-1}=0$ and $D(a)=0$, so $D=0$.

Suppose that R is a regular f-ring and D is a positive derivation of R. By (2) R is strongly regular and reduced. Let P be a minimal ℓ-prime ℓ-ideal and $0 \leq x \in P$. By Theorem 1.30(3), there is a $0 \leq y \notin P$ such that $x y=0$. Then $x D(y)+D(x) y=0$, so $D(x) y=0$. It follows that $D(x) \in P$. Thus $D(P) \subseteq P$ for each minimal ℓ-prime ℓ-ideal P, so D induces a positive derivation D_{P} on R / P defined by $D_{P}(x+P)=D(x)+P$. Since R / P is a totally ordered domain by Theorem $1.27(2)$ and strongly regular, R / P is a totally ordered division ring (Exercise 10). It follows that $D_{P}=0$ for each minimal ℓ-prime ℓ-ideal of R, and hence for any $x \in R, D(x)$ is contained in each minimal ℓ-prime ℓ-ideal. Therefore $D(x)=0$ for any $x \in R$ since R is reduced, so $D(R)=0$.

In the following, we consider generalization of Theorem 3.1 to various classes of ℓ-rings. First consider almost f-rings.

Theorem 3.4. Let R be an Archimedean almost f-ring and D be a positive derivation of R. Then $D(R) \subseteq \ell-N(R)$ and $D\left(R^{3}\right)=\{0\}$.

Proof. Since R is an Archimedean almost f-ring, $R / \ell-N(R)$ is also Archimedean by Corollary 3.1 and $R / \ell-N(R)$ is an almost f-ring (Exercise 11). From Theorem $1.28, R / \ell-N(R)$ is an Archimedean f-ring and reduced, so $\ell-N(R)$ consists of all the nilpotent elements of R. By Corollary 3.1, $D(\ell-N(R)) \subseteq \ell-N(R)$. Thus D induces a positive derivation \bar{D} on $R / \ell-N(R)$ defined by $\bar{D}(x+\ell-N(R))=D(x)+\ell-N(R)$. It follows from Theorem 3.1 that $\bar{D}=0$, so $D(R) \subseteq \ell-N(R)$. Let $x, y, z \in R$, since the square of each element in R is positive, using Lemma 3.3, we have

$$
D(x y z)=x D(y z)=x(y D(z)+D(y) z)=x y D(z)+x D(y) z=0
$$

Hence $D\left(R^{3}\right)=\{0\}$.
The following example shows that in Theorem 3.4, $D\left(R^{3}\right)=\{0\}$ cannot be replaced by $D\left(R^{2}\right)=\{0\}$ for an Archimedean almost f-ring.

Example 3.2. Let $R=\mathbb{Z} \times \mathbb{Z}$ with the coordinatewise addition and ordering. Define the multiplication by $(a, b)(c, d)=(0, a c)$. Then R is an ℓ-ring (Exercise 12). Since $(a, b) \wedge(c, d)=0$ implies that $a c=0$, $(a, b)(c, d)=0$, and hence R is an almost f-ring. Define $D: R \rightarrow R$ by $D(a, b)=(a, 2 b)$. Then D is a positive derivation on R (Exercise 12) and $D((1,0)(1,0))=D(0,1)=(0,2) \neq 0$, so $D\left(R^{2}\right) \neq\{0\}$.

Next we consider positive derivations on Archimedean d-rings.
Lemma 3.5. Let R be an Archimedean d-ring. Then $\ell-N(R)=\{a \in$ $\left.R \mid a^{3}=0\right\}$.

Proof. We show that for any nilpotent element $a \in R, a^{3}=0$. Since $|x y|=|x||y|$ for any $x, y \in R$, we may assume that $a \geq 0$. Suppose that $a^{k}=0$ for some positive integer $k \geq 4$, we derive that $a^{k-1}=0$. Let n be a positive integer and let $(n a)^{k-2} \wedge(n a)^{k-3}=z_{n}$. Since $\left((n a)^{k-2}-z_{n}\right) \wedge$ $\left((n a)^{k-3}-z_{n}\right)=0, a+a^{2}$ is a d-element implies that

$$
\left(a+a^{2}\right)\left((n a)^{k-2}-z_{n}\right) \wedge\left(a+a^{2}\right)\left((n a)^{k-3}-z_{n}\right)=0
$$

Thus

$$
a\left((n a)^{k-2}-(n a)^{k-2} \wedge(n a)^{k-3}\right) \wedge a^{2}\left((n a)^{k-3}-(n a)^{k-2} \wedge(n a)^{k-3}\right)=0
$$

that is,
$\left(n^{k-2} a^{k-1}-n^{k-2} a^{k-1} \wedge n^{k-3} a^{k-2}\right) \wedge\left(n^{k-3} a^{k-1}-n^{k-2} a^{k} \wedge n^{k-3} a^{k-1}\right)=0$.
Hence $a^{k}=0$ implies that

$$
\left(n^{k-2} a^{k-1}-n^{k-2} a^{k-1} \wedge n^{k-3} a^{k-2}\right) \wedge n^{k-3} a^{k-1}=0
$$

It follows that

$$
\left(n^{k-2} a^{k-1}-n^{k-2} a^{k-1} \wedge n^{k-3} a^{k-2}\right) \wedge n^{k-2} a^{k-1}=0
$$

so $n^{k-2} a^{k-1}-n^{k-2} a^{k-1} \wedge n^{k-3} a^{k-2}=0$, and $n^{k-2} a^{k-1} \leq n^{k-3} a^{k-2}$. Consequently $n a^{k-1} \leq a^{k-2}$, and hence $a^{k-1}=0$ since R is Archimedean.

By Theorem 1.25 , each element in $\ell-N(R)$ is nilpotent. By Theorems 1.27 and 1.28, $\ell-P(R)=\{a \in R \mid a$ is a nilpotent $\}$ (Exercise 13). Let $0 \leq a, b, c \in \ell-P(R)$. From the above argument, $a b c \leq(a+b+c)^{3}=0$ since $a+b+c \in \ell-P(R)$, that is, $(\ell-P(R))^{3}=0$. Thus $\ell-P(R) \subseteq \ell-N(R)$. It then follows that $\ell-N(R)=\ell-P(R)=\left\{a \in R \mid a^{3}=0\right\}$.

Theorem 3.5. Let R be an Archimedean d-ring. Then $R / \ell-N(R)$ is a reduced Archimedean f-ring.

Proof. We only need to show that $R / \ell-N(R)$ is Archimedean. Suppose that $0 \leq a+\ell-N(R), b+\ell-N(R) \in R / \ell-N(R)$ with $n(a+\ell-N(R)) \leq(b+\ell$ $N(R)$) for all positive integer n. We may assume that $a, b \in R^{+}$. Then

$$
n(a+\ell-N(R))=n(a+\ell-N(R)) \wedge(b+\ell-N(R))
$$

implies that $n a-n a \wedge b \in \ell-N(R)$. By Lemma $3.5,(n a-n a \wedge b)^{3}=0$, and by a direct calculation we have

$$
\begin{aligned}
0= & n^{3} a^{3}-n^{2}(n a \wedge b) a^{2}-n^{2} a(n a \wedge b) a+n(n a \wedge b)^{2} a-n^{2} a^{2}(n a \wedge b)+ \\
& n(n a \wedge b) a(n a \wedge b)+n a(n a \wedge b)^{2}-(n a \wedge b)^{3} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
n^{3} a^{3} & \leq n^{2}(n a \wedge b) a^{2}+n^{2} a(n a \wedge b) a+n^{2} a^{2}(n a \wedge b)+(n a \wedge b)^{3} \\
& \leq n^{2} b a^{2}+n^{2} a b a+n^{2} a^{2} b+b^{3} \\
& \leq n^{2}\left(b a^{2}+a b a+a^{2} b+b^{3}\right),
\end{aligned}
$$

and hence $n a^{3} \leq\left(b a^{2}+a b a+a^{2} b+b^{3}\right)$ for all positive integer n. Therefore $a^{3}=0$ since R is Archimedean, so $a \in \ell-N(R)$ and $a+\ell-N(R)=0$.

Theorem 3.6. Let R be an Archimedean d-ring and D be a positive derivation on R. Then $D(R) \subseteq \ell-N(R)$.

Proof. By Lemma 3.1, for any positive nilpotent element $a, D(a)$ is also nilpotent. Thus $D(\ell-N(R)) \subseteq \ell-N(R)$, so D induces a positive derivation \bar{D} on $R / \ell-N(R)$ defined by $\bar{D}(x+\ell-N(R))=D(x)+\ell-N(R)$ for any $x \in R$. By Theorem 3.5 $R / \ell-N(R)$ is an Archimedean f-ring and reduced, which implies that $\bar{D}=0$, so $D(R) \subseteq \ell-N(R)$.

The following is an example of an Archimedean d-ring with a positive derivation D such that $D\left(R^{n}\right) \neq\{0\}$ for any positive integer n.

Example 3.3. Let $A=\mathbb{R}^{4}$ be the column vector lattice over \mathbb{R} with the coordinatewise addition and ordering, and the multiplication is defined as follows.

$$
\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{1} \beta_{1} \\
\alpha_{1} \beta_{2} \\
\alpha_{3} \beta_{1} \\
\alpha_{3} \beta_{2}
\end{array}\right) .
$$

Then A is an Archimedean d-algebra over \mathbb{R} (Exercise 14) with

$$
\ell-N(A)=\left\{\left.\left(\begin{array}{c}
0 \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right) \right\rvert\, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{R}\right\} .
$$

Define $D: A \rightarrow A$ by

$$
D\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\alpha_{2} \\
0 \\
0
\end{array}\right) .
$$

It is straightforward to check that D is a positive derivation on A. For

$$
a=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), D(a)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) .
$$

Since a is an idempotent element, $D\left(a^{n}\right)=D(a) \neq 0$ for any $n \geq 1$. Thus $D\left(A^{n}\right) \neq\{0\}$ for any positive integer n.

The above example also shows that there are nilpotent elements x in an Archimedean d-ring such that $x^{2} \neq 0$. Certainly $x^{3}=0$ by Lemma 3.5.

Now we consider Archimedean ℓ-rings with squares positive. For an ℓ-ring R and $a \in R$,

$$
r(a)=\{x \in R| | a| | x \mid=0\} \text { and } \ell(a)=\{x \in R| | x| | a \mid=0\}
$$

are right and left ℓ-annihilator of a, respectively. Clearly $r(a)$ is a right ℓ-ideal and $\ell(a)$ is a left ℓ-ideal of R.

Theorem 3.7. Let R be an Archimedean ℓ-ring with squares positive and D be a positive derivation on R. If R contains an idempotent element e with $r(e) \subseteq \ell-N(R)$ or $\ell(e) \subseteq \ell-N(R)$, then $D(R) \subseteq \ell-N(R)$ and $D\left(R^{3}\right)=\{0\}$.

Proof. First assume that $\ell-N(R)=\{0\}$. Without loss of generality, we may also assume that $r(e)=\{0\}$. By Lemma 3.3, R is ℓ-reduced. Since $e^{2}=e,(D(e))^{3}=0$ by Lemma 3.1, so $D(e)=0$ since R is ℓ-reduced. For $a \in R^{+}$and a positive integer $n, 0 \leq(n e-a)^{2}$ implies that nea $\leq n^{2} e^{2}+a^{2}$, and hence

$$
n D(e a) \leq n^{2} D\left(e^{2}\right)+D\left(a^{2}\right)=n^{2}(e D(e)+D(e) e)+D\left(a^{2}\right)=D\left(a^{2}\right)
$$

Then R is Archimedean implies $D(e a)=0$. Thus $e D(a)+D(e) a=0$, so $e D(a)=0$. It follows from $r(e)=\{0\}$ that $D(a)=0$ for each $a \in R^{+}$. Therefore $D=0$.

For the general case, by Corollary 3.1, $D(\ell-N(R)) \subseteq \ell-N(R)$. Thus D induces a positive derivation \bar{D} on $\bar{R}=R / \ell-N(R)$ defined by $\bar{D}(x+\ell$ -$N(R))=D(x)+\ell-N(R) . \bar{R}$ is also Archimedean by Corollary 3.1. From $r(e) \subseteq \ell-N(R)$ or $\ell(e) \subseteq \ell-N(R)$, we have $r(e+\ell-N(R))=0$ or $\ell(e+\ell$ $N(R))=0$ in \bar{R} (Exercise 15). By the above argument, $\bar{D}=0$ and hence $D(R) \subseteq \ell-N(R)$. Using Lemma 3.3 again, we have $D\left(R^{3}\right)=\{0\}$.

We notice that the ℓ-ring in Example 1.5 satisfies the conditions in Theorem 3.7. Next we show that Theorem $3.3(3)$ can be generalized to partially ordered rings with squares positive.

Theorem 3.8. Suppose that R is a partially ordered strongly regular ring in which for each $x \in R, x^{2} \geq 0$. Then trivial derivation is the only positive derivation on R.

Proof. Suppose that D is a positive derivation on R. We first show that for each $x \in R^{+}, D(x)=0$. Since R is strongly regular, there exists a $y \in R$ such that $x^{2} y=x$, and hence $x y x=x$ by Theorem 3.3(1). Thus $x y$ is an idempotent and hence $D(x y)=0$ by Lemma 3.1 and that R is reduced.

Similarly $D(y x)=0$, so $D(y) x+y D(x)=0$ and $x D(y) x=-(x y) D(x) \leq 0$ since $x y=(x y)^{2} \geq 0$. From $x y^{2} \geq 0$, we have

$$
D\left(x y^{2}\right)=(x y) D(y)+D(x y) y=(x y) D(y) \geq 0
$$

Multiplying on both sides of the above inequality by x, we obtain $x^{2} y D(y) x \geq 0$, so $x D(y) x \geq 0$. Hence $x D(y) x=0$ and $(x y) D(x)=0$. Then $x=x y x$ implies that $D(x)=(x y) D(x)+D(x y) x=0$.

Now for any $z \in R, z^{2} \geq 0$ implies that $D\left(z^{2}\right)=0$. Suppose $z^{2} w=z$ for some $w \in R$. Thus, $D(z)=z^{2} D(w)+D\left(z^{2}\right) w=z^{2} D(w)$. As in the previous paragraph, $w z$ is idempotent implies that $0=D(w z)=w D(z)+D(w) z$. Consequently,

$$
D(z) z=z^{2} D(w) z=-z^{2} w D(z)=-z D(z)
$$

Hence

$$
0 \leq(z D(z))^{2}=z(D(z) z) D(z)=-z^{2} D(z)^{2} \leq 0
$$

so $(z D(z))^{2}=0$ and $z D(z)=0$ since R is reduced. Since $z w$ is also idempotent, $0=D(z w)=z D(w)+D(z) w$, so $z D(w)=-D(z) w$. Therefore

$$
D(z)=z^{2} D(w)=z(z D(w))=-z D(z) w=0
$$

Therefore $D(z)=0$ for all $z \in R$.
For the ℓ-field $F((x))$ of Laurent series with the coordinatewise order in Example 2.1, the usual derivative defined by $D\left(\sum_{i=n}^{\infty} a_{i} x^{i}\right)=\sum_{i=n}^{\infty} i a_{i} x^{i-1}$ is a nontrivial positive derivation. Therefore the condition that R is a partially ordered ring with squares positive cannot be omitted in Theorem 3.8.

In the following we show that for a unital finite-dimensional Archimedean ℓ-algebra A over a totally ordered field F with a d-basis, if D is a positive derivation on A, then $D(A) \subseteq \ell-N(A)$. First we show that for any ℓ-unital ℓ-algebra over F, positive derivation and positive F-derivation coincide.

Lemma 3.6. Suppose that A is an ℓ-unital ℓ-algebra over F. If D is a positive derivation on A, then D is an F-derivation.

Proof. Suppose that 1 is the identity element of A. Let $0<r \in F$. Then $0<r^{-1} \in F$, and hence $r 1>0$ and $r^{-1} 1>0$. Then

$$
0=D(1)=D\left(r 1 r^{-1} 1\right)=D(r 1)\left(r^{-1} 1\right)+(r 1) D\left(r^{-1} 1\right)
$$

implies $D(r 1) r^{-1} 1=0$ and $D(r 1)=0$. If $r<0$, then $-r>0$ and since D is a group-homomorphism, $D(r 1)=-D(-r 1)=0$ by above argument. Therefore for any $r \in F, D(r 1)=0$, and hence for any $a \in A, r \in F$,

$$
D(r a)=D((r 1) a)=(r 1) D(a)+D(r 1) a=r D(a)
$$

that is, D is an F-derivation.
Theorem 3.9. Let A be a unital finite-dimensional Archimedean ℓ-algebra over F with a d-basis and D be a positive derivation on A. Then $D(A) \subseteq \ell$ $N(A)$.

Proof. From Theorem 2.10, $A=\ell-N(A)+H$, where H is a convex ℓ subalgebra of A, and $\ell-N(A) \cap H=\{0\}$. Suppose that $1=c_{1}+\cdots+c_{n}$, where $\left\{c_{1}, \cdots, c_{n}\right\}$ are disjoint basic elements, $n \geq 1$. Then $0=D(1)=$ $D\left(c_{1}\right)+\cdots+D\left(c_{n}\right)$ implies that $D\left(c_{i}\right)=0$ for each $i=1, \cdots, n$. For a basic element $x \in H$, by Lemma 2.6, there exists a basic element y such that $x y=c_{i}$ and $y x=c_{j}$ for some i, j. Then $0=D\left(c_{i}\right)=D(x y)=$ $x D(y)+D(x) y$ implies that $D(x) y=0$, so $D(x)(y x)=D(x) c_{j}=0$. From $y x=c_{j}$, we have $x=x c_{j}$. Thus

$$
D(x)=D\left(x c_{j}\right)=x D\left(c_{j}\right)+D(x) c_{j}=0
$$

Since each strictly positive element in H is a sum of disjoint basic elements in H, we have $D(H)=\{0\}$.

Take a basic element a in $\ell-N(A)$ and suppose that $D(a)>0$. Then $D(a)=x_{1}+\cdots+x_{k}$, where $k \geq 1$ and x_{1}, \cdots, x_{k} are disjoint basic elements. If some $x_{j} \notin \ell-N(A)$, then by Lemma 2.6 again, there exists a basic element z such that $x_{j} z=c_{t}$ for some t. Thus $c_{t} \leq D(a) z \leq D(a z)$. Then $a z \in \ell$ $N(A)$ implies that $a z$ is nilpotent, so $D(a z)$ is nilpotent by Lemma 3.1. Therefore c_{t} is nilpotent, which is a contradiction. Then each x_{i} in $D(a)=$ $x_{1}+\cdots+x_{k}$ belongs to $\ell-N(A)$, and hence $D(a) \in \ell-N(A)$. Thus $D(\ell-$ $N(A)) \subseteq \ell-N(A)$. Therefore $D(A) \subseteq \ell-N(A)$.

3.3 Matrix ℓ-rings

In this section, we consider positive derivations on matrix ℓ-rings and upper triangular matrix ℓ-rings with the entrywise order. For an ℓ-algebra A over a totally ordered field F, an element $u \in A^{+}$is called a strong unit if for any $x \in A$, there exists $\alpha \in F$ such that $x \leq \alpha u$.

Theorem 3.10. Let A be a unital ℓ-algebra over a totally ordered field F and D be a positive F-derivation.
(1) If A contains a strong order u such that $u \leq u^{2} \leq \alpha u$ with $1 \leq \alpha<2$, then D must be the trivial derivation.
(2) If A contains a strong order u such that $u \leq u^{2} \leq 2 u$, then $(D(x))^{2}=0$ for each $x \in A$.

Proof. (1) We show that $D(x)=0$ for all $x \in A^{+}$. Since $u \leq u^{2} \leq \alpha u$, we have $0 \leq D(u) \leq u D(u)+D(u) u \leq \alpha D(u)$, so $u^{2} D(u) u+u D(u) u^{2} \leq$ $\alpha(u D(u) u)$. It follows from $u \leq u^{2}$ that

$$
2 u D(u) u \leq u^{2} D(u) u+u D(u) u^{2} \leq \alpha(u D(u) u)
$$

and hence $(\alpha-2)(u D(u) u) \geq 0$. Thus $u D(u) u \leq 0$ since $\alpha-2<0$. Hence $u D(u) u=0$.

Suppose that $1 \leq \beta u$ for some $\beta \in F^{+}$. Then

$$
D(u) \leq \beta(u D(u)) \leq \beta^{2}(u D(u) u)=0
$$

implies that $D(u)=0$. Hence for each $x \in A^{+}, x \leq \alpha u$ for some $\alpha \in F^{+}$ implies $D(x) \leq \alpha D(u)=0$. Thus $D(x)=0$ for $x \in A^{+}$and $D(A)=\{0\}$.
(2) We first show that $(D(u))^{2}=0$. By a similar calculation as in (1), we have

$$
2 u D(u) u \leq u^{2} D(u) u+u D(u) u^{2} \leq 2 u D(u) u
$$

so $2 u D(u) u=u^{2} D(u) u+u D(u) u^{2}$. Thus

$$
0 \leq\left(u^{2}-u\right) D(u) u=u D(u)\left(u-u^{2}\right) \leq 0
$$

implies that $\left(u^{2}-u\right) D(u) u=0$. Since $\left(u^{2}-u\right) D(u) \geq 0$ and $\beta u \geq 1$ for some $\beta>0$ in $F,\left(u^{2}-u\right) D(u)=0$. It follows that

$$
0=D\left(\left(u^{2}-u\right) D(u)\right)=\left(u^{2}-u\right) D(D(u))+D\left(u^{2}-u\right) D(u)
$$

and hence $\left(u^{2}-u\right) D(D(u))=D\left(u^{2}-u\right) D(u)=0$. So $\left(D\left(u^{2}\right)-D(u)\right) D(u)=$ 0 implies that

$$
(u D(u)+D(u) u) D(u)=u(D(u))^{2}+D(u) u D(u)=(D(u))^{2}
$$

Multiplying the above equation by u from the left, we obtain

$$
u^{2}(D(u))^{2}+(u D(u))^{2}=u(D(u))^{2} \leq u^{2}(D(u))^{2}
$$

Consequently, $(u D(u))^{2}=0$ and hence $(D(u))^{2}=0$ since $u \geq \beta 1$.
For an arbitrary $x \in A,|x| \leq \alpha u$ for some $0<\alpha \in F$, so

$$
\left|(D(x))^{2}\right| \leq|D(x)|^{2} \leq(D(|x|))^{2} \leq \alpha^{2}(D(u))^{2}=0
$$

implies that $(D(x))^{2}=0$.

Let's consider some applications of Theorem 3.10. For the $n \times n$ matrix algebra $M_{n}(F)$ over a totally ordered field $F, M_{n}\left(F^{+}\right)$is the positive cone of the entrywise order on $M_{n}(F)$. By Theorem 1.19, for an invertible matrix $f \in M_{n}\left(F^{+}\right), f M_{n}\left(F^{+}\right)$is the positive cone of a lattice order on $M_{n}(F)$ to make it into an ℓ-algebra over F.

Theorem 3.11. For any invertible matrix $f \in M_{n}\left(F^{+}\right)$, the only positive F-derivation on the ℓ-algebra $\left(M_{n}(F), f M_{n}\left(F^{+}\right)\right)$is the trivial derivation.

Proof. Suppose that $f=\left(f_{i j}\right)$. Define $\alpha=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}, g=\left(g_{i j}\right) \in$ $M_{n}(F)$ with each $g_{i j}=\alpha^{-1}$, and $u=f g$. For $x \in M_{n}(F)$, let $0<\alpha_{x} \in F$ be greater than each entry in the matrix $f^{-1} x$. Then since $\left(\alpha \alpha_{x}\right) g-f^{-1} x \in$ $M_{n}\left(F^{+}\right)$,

$$
\left(\alpha \alpha_{x}\right) u-x=f\left(\left(\alpha \alpha_{x}\right) g-f^{-1} x\right) \geq 0
$$

with respect to the lattice order $f M_{n}\left(F^{+}\right)$. Thus $x \leq\left(\alpha \alpha_{x}\right) u$ for each $x \in M_{n}\left(F^{+}\right)$, so u is a strong unit. As well, a direct calculation shows that $g f g=g$ (Exercise 16) and hence $u^{2}=u$. By Theorem 3.10(1), the ℓ-algebra $\left(M_{n}(F), f M_{n}\left(F^{+}\right)\right)$has no nontrivial positive F-derivation.

For a totally ordered subfield F of \mathbb{R}, each ℓ-algebra $M_{n}(F)$ over F is ℓ isomorphic to the ℓ-algebra $\left(M_{n}(F), f M_{n}\left(F^{+}\right)\right)$for some invertible matrix $f \in M_{n}\left(F^{+}\right)$[Steinberg (2010)]. As a direct consequence of this fact and Theorem 3.11, any ℓ-algebra $M_{n}(F)$ over F has no nontrivial positive F derivation.

The following example is related to Theorem 3.10(2).
Example 3.4. Consider the following set of upper triangular matrices

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}
$$

We leave it to the reader to check that A is an ℓ-algebra over \mathbb{R} with the entrywise order and $u=e_{11}+e_{12}+e_{22}$ is a strong order with $u \leq u^{2} \leq 2 u$. Clearly D defined by

$$
D\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
$$

is a positive derivation on A. Since $D \neq 0$, the condition that $u \leq u^{2} \leq \alpha u$ for some $1 \leq \alpha<2$ in Theorem $3.10(1)$ is not satisfied by A. Clearly $(D(x))^{2}=0$ for any $x \in A$.

For an ℓ-unital ℓ-ring R and the matrix ℓ-ring $M_{n}(R)$ over R with the entrywise order, we show that positive derivations on R and positive derivations on $M_{n}(R)$ are in one-to-one correspondence.

For a ring B and the matrix ring $M_{n}(B)$, if D is a derivation on B, then we may use D to define a derivation D_{n} on $M_{n}(B)$ by $D_{n}(a)=\left(D\left(a_{i j}\right)\right)$, for any $a=\left(a_{i j}\right) \in M_{n}(B)$.

For $a=\left(a_{i j}\right), b=\left(b_{i j}\right) \in M_{n}(R)$, clearly $D_{n}(a+b)=D_{n}(a)+D_{n}(b)$. Let $a b=\left(c_{i j}\right)$, where $c_{i j}=\sum_{1 \leq k \leq n} a_{i k} b_{k j}$. Then

$$
\begin{aligned}
D_{n}(a b) & =\left(D\left(c_{i j}\right)\right) \\
& =\left(\sum_{1 \leq k \leq n}\left(a_{i k} D\left(b_{k j}\right)+D\left(a_{i k}\right) b_{k j}\right)\right) \\
& =\left(a_{i j}\right)\left(D\left(b_{k j}\right)\right)+\left(D\left(a_{i k}\right)\right)\left(b_{k j}\right) \\
& =a D_{n}(b)+D_{n}(a) b
\end{aligned}
$$

Thus D_{n} is indeed a derivation on $M_{n}(B)$ and D_{n} is called the induced derivation on $M_{n}(B)$ by D.

Theorem 3.12. Suppose that R is an ℓ-unital ℓ-ring and $M_{n}(R)$ is the matrix ℓ-ring over R with the entrywise order.
(1) D is a positive derivation on R if and only if D_{n} is a positive derivation on $M_{n}(R)$.
(2) If D^{\prime} is a positive derivation on $M_{n}(R)$, then there exists a positive derivation D on R such that $D^{\prime}=D_{n}$.

Thus positive derivations on $M_{n}(R)$ and positive derivations on R are in one-to-one correspondence.

Proof. (1) is clear.
(2) Let 1 denote the identity matrix and $e_{i j}$ be the standard matrix units of $M_{n}(R)$. Since $0=D^{\prime}(1)=D^{\prime}\left(e_{11}\right)+\cdots+D^{\prime}\left(e_{n n}\right)$ and each $D^{\prime}\left(e_{i i}\right) \geq 0$, we have each $D^{\prime}\left(e_{i i}\right)=0$. For any $a \in R$,

$$
D^{\prime}\left(a e_{11}\right)=D^{\prime}\left(a e_{11} e_{11}\right)=D^{\prime}\left(a e_{11}\right) e_{11}+\left(a e_{11}\right) D^{\prime}\left(e_{11}\right)=D^{\prime}\left(a e_{11}\right) e_{11}
$$

and similarly $D^{\prime}\left(a e_{11}\right)=e_{11} D^{\prime}\left(a e_{11}\right)$. Consequently $D^{\prime}\left(a e_{11}\right)=b e_{11}$ for some $b \in R$. Define $D: R \rightarrow R$ for any $a \in R, D(a)=b$, where $D^{\prime}\left(a e_{11}\right)=$ $b e_{11}$. Then D is a positive derivation on R (Exercise 17).

We show that $D_{n}=D^{\prime}$. First we notice that for any $1 \leq i \leq n$, $e_{i i}=e_{i 1} e_{1 i}$ implies that

$$
0=D^{\prime}\left(e_{i i}\right)=e_{i 1} D^{\prime}\left(e_{1 i}\right)+D^{\prime}\left(e_{i 1}\right) e_{1 i}
$$

so $e_{i 1} D^{\prime}\left(e_{1 i}\right)=0$ and $D^{\prime}\left(e_{i 1}\right) e_{1 i}=0$. Hence $e_{11} D^{\prime}\left(e_{1 i}\right)=0$ and $D^{\prime}\left(e_{i 1}\right) e_{11}=0$. Now for $a=\left(a_{i j}\right) \in M_{n}(R)$, suppose that $D\left(a_{i j}\right)=b_{i j}$. Then by the definition for $D, D^{\prime}\left(a_{i j} e_{11}\right)=b_{i j} e_{11}$, and $D_{n}(a)=\left(D\left(a_{i j}\right)\right)=$ $\left(b_{i j}\right)$. On the other hand,

$$
D^{\prime}(a)=D^{\prime}\left(\sum_{1 \leq i, j \leq n} a_{i j} e_{i j}\right)=\sum_{1 \leq i, j \leq n} D^{\prime}\left(a_{i j} e_{i j}\right)
$$

and

$$
\begin{aligned}
D^{\prime}\left(a_{i j} e_{i j}\right) & =D^{\prime}\left(e_{i 1}\left(a_{i j} e_{11}\right) e_{1 j}\right) \\
& =D^{\prime}\left(e_{i 1}\right)\left(\left(a_{i j} e_{11}\right) e_{1 j}\right)+e_{i 1} D^{\prime}\left(\left(a_{i j} e_{11}\right) e_{1 j}\right) \\
& =e_{i 1} D^{\prime}\left(\left(a_{i j} e_{11}\right) e_{1 j}\right) \quad\left(\text { since } D^{\prime}\left(e_{i 1}\right) e_{11}=0\right) \\
& =e_{i 1} D^{\prime}\left(a_{i j} e_{11}\right) e_{1 j}+e_{i 1}\left(a_{i j} e_{11}\right) D^{\prime}\left(e_{1 j}\right) \\
& =e_{i 1} D^{\prime}\left(a_{i j} e_{11}\right) e_{1 j} \\
& =e_{i 1}\left(b_{i j} e_{11}\right) e_{1 j} \quad\left(\text { since } e_{11} D^{\prime}\left(e_{1 j}\right)=0\right) \\
& =b_{i j} e_{i j} .
\end{aligned}
$$

Therefore $D^{\prime}(a)=\left(b_{i j}\right)=D_{n}(a)$ for all $a \in M_{n}(R)$, and hence $D^{\prime}=D_{n}$.
Thus the mapping $D \rightarrow D_{n}$ from positive derivations of R to positive derivations of $M_{n}(R)$ is subjective. It is also injective (Exercise 18). This completes the proof.

Next we consider upper triangular matrix ℓ-ring $T_{n}(R)$ with the entrywise order over an ℓ-unital commutative ℓ-ring R. In this case each positive derivation on $T_{n}(R)$ is a sum of an induced positive derivation by a positive derivation on R and a positive inner derivation.

Theorem 3.13. Let R be an ℓ-unital commutative ℓ-ring and $T_{n}(R)$ be the upper triangular matrix ℓ-ring with the entrywise order. Suppose that D^{\prime} is a positive derivation on $T_{n}(R)$.
(1) $D^{\prime}=D_{n}+D_{z}$, where D_{n} is the induced derivation by a positive derivation D on R and D_{z} is the positive inner derivation determined by $z \in T_{n}(R)$, where $z \in T_{n}(R)$ is a diagonal matrix with $z_{11} \leq z_{22} \leq \cdots \leq z_{n n}$.
(2) If $D^{\prime}=E_{n}+D_{w}$, where E_{n} is the induced derivation by a positive derivation E on R and D_{w} is the positive inner derivation determined by $w \in T_{n}(R)$, then $D=E$ and $D_{z}=D_{w}$.

Proof. (1) As in Theorem 3.12, $D^{\prime}(1)=0$ implies that $D^{\prime}\left(e_{i i}\right)=0$ for $i=1, \cdots, n$. For $1 \leq i<j \leq n$,

$$
D^{\prime}\left(e_{i j}\right)=D^{\prime}\left(e_{i i} e_{i j}\right)=D^{\prime}\left(e_{i i}\right) e_{i j}+e_{i i} D^{\prime}\left(e_{i j}\right)=e_{i i} D^{\prime}\left(e_{i j}\right),
$$

and similarly $D^{\prime}\left(e_{i j}\right)=D^{\prime}\left(e_{i j}\right) e_{j j}$. Thus for $1 \leq i<j \leq n, D^{\prime}\left(e_{i j}\right)=$ $a_{i j} e_{i j}$, where $a_{i j} \in R^{+}$since D^{\prime} is positive.

Suppose that $1<r<s \leq n$, we claim that $a_{1 r} \leq a_{1 s}$. In fact, $e_{1 s}=$ $e_{1 r} e_{r s}$ implies that

$$
D^{\prime}\left(e_{1 s}\right)=D^{\prime}\left(e_{1 r} e_{r s}\right)=e_{1 r} D^{\prime}\left(e_{r s}\right)+D^{\prime}\left(e_{1 r}\right) e_{r s}
$$

and hence

$$
a_{1 s} e_{1 s}=e_{1 r}\left(a_{r s} e_{r s}\right)+\left(a_{1 r} e_{1 r}\right) e_{r s}
$$

Hence $a_{1 s}=a_{r s}+a_{1 r} \geq a_{1 r}$.
Define $z=\left(z_{i j}\right) \in M_{n}(R)$ with $z_{i j}=0$ if $i \neq j$ and $z_{i i}=a_{1 i}$ for $i=1, \cdots, n$. It is straightforward to check that the inner derivation D_{z}, defined by $D_{z}(x)=x z-z x$ for any $x \in T_{n}(R)$, is positive.

Now define $H=D^{\prime}-D_{z}$. Then H is also a derivation of $T_{n}(R)$ (Exercise 19). For $1<r \leq n$,

$$
H\left(e_{1 r}\right)=D^{\prime}\left(e_{1 r}\right)-\left(e_{1 r} z-z e_{1 r}\right)=a_{1 r} e_{1 r}-a_{1 r} e_{1 r}+a_{11} e_{1 r}=0
$$

since $a_{11}=D^{\prime}\left(e_{11}\right)=0$. For $1<i<j \leq n$,

$$
\begin{aligned}
H\left(e_{i j}\right) & =e_{i i} H\left(e_{i j}\right) e_{j j} \\
& =e_{i i} D^{\prime}\left(e_{i j}\right) e_{j j}-e_{i i}\left(e_{i j} z\right) e_{j j}+e_{i i}\left(z e_{i j}\right) e_{j j} \\
& =a_{i j} e_{i j}-a_{1 j} e_{i j}+a_{1 i} e_{i j} \\
& =0
\end{aligned}
$$

since $a_{1 j}=a_{i j}+a_{1 i}$, for any $1<i<j \leq n$. Consequently $H\left(e_{i j}\right)=0$ for $1 \leq i \leq j \leq n$.

Let $r \in R$. For $i=1, \cdots, n, H\left(r e_{i i}\right)=H(r 1) e_{i i}=e_{i i} H(r 1)$ implies that $H(r 1)$ is a diagonal matrix, and for $1 \leq i \leq j \leq n, H\left(r e_{i j}\right)=H(r 1) e_{i j}=$ $e_{i j} H(r 1)$ implies that $H(r 1)$ is a scalar matrix (Exercise 20). Hence for any $r \in R, H(r 1)=\bar{r} 1$ for some $\bar{r} \in R$. Since $H=D^{\prime}-D_{z}$,

$$
H(r 1)=D^{\prime}(r 1)-((r 1) z-z(r 1))=D^{\prime}(r 1) \geq 0, \text { whenever } r \geq 0
$$

Therefore if $r \in R^{+}$, then $\bar{r} \in R^{+}$.
If we define $D: R \rightarrow R$ by for any $r \in R, D(r)=\bar{r}$, whenever $H(r 1)=$ $\bar{r} 1$, then D is a positive derivation on R (Exercise 21). And for any $x=$

$$
\left.\begin{array}{l}
\left(x_{i j}\right) \in M_{n}(R), \\
\qquad\left(D^{\prime}-D_{z}\right)(x)
\end{array}\right)=H(x) \quad \begin{aligned}
& =H\left(\sum_{1 \leq i \leq j \leq n}\left(x_{i j} 1\right) e_{i j}\right) \\
& =\sum_{1 \leq i \leq j \leq n} H\left(x_{i j} 1\right) e_{i j} \text { since } H\left(e_{i j}\right)=0 \\
& =\sum_{1 \leq i \leq j \leq n}\left(\bar{x}_{i j} 1\right) e_{i j} \\
& =\left(\bar{x}_{i j}\right) \\
& =\left(D\left(x_{i j}\right)\right) \\
& =D_{n}(x) .
\end{aligned}
$$

Therefore we have $D^{\prime}-D_{z}=D_{n}$, that is, $D^{\prime}=D_{n}+D_{z}$.
(2) From $D_{n}+D_{z}=E_{n}+D_{w}$ and $D_{n}\left(e_{i j}\right)=E_{n}\left(e_{i j}\right)=0$ for $1 \leq i \leq$ $j \leq n$, we have $D_{z}\left(e_{i j}\right)=D_{w}\left(e_{i j}\right)$ for any $1 \leq i \leq j \leq n$, that is,

$$
e_{i j} z-z e_{i j}=e_{i j} w-w e_{i j} \text { and hence } e_{i j}(z-w)=(z-w) e_{i j}
$$

Thus $z-w$ is a scalar matrix, so $D_{z}=D_{w}$ (Exercise 22). Consequently $D_{n}=E_{n}$ and $D=E$.

Since an Archimedean f-ring is commutative, we have the following consequence of Theorems 3.13 and 3.1.

Corollary 3.2. Let R be a unital reduced Archimedean f-ring and $T_{n}(R)$ be the ℓ-ring with the entrywise order. Then each positive derivation on $T_{n}(R)$ is an inner derivation.

3.4 Kernel of a positive derivation

Let R be an ℓ-ring and D, E positive derivations on R. The composition of D and E is defined as $D E(x)=D(E(x))$ for any $x \in R$. Generally $D E$ is not a derivation (Exercise 23) although $D E$ is still a positive endomorphism of the additive ℓ-group of R. When $D=E$, we use D^{2} to denote $D D$, and $D^{n}=D^{n-1} D$ for any $n \geq 2$.

Theorem 3.14. Let R be an ℓ-reduced ℓ-ring and D be a positive derivation.
(1) If $D^{n}=0$ for some positive integer n, then $D=0$.
(2) For $x \in R^{+}$, if $D\left(x^{n}\right)=0$ for some positive integer n, then $D(x)=0$.

Proof. (1) For $x \in R^{+}$,

$$
\begin{aligned}
D^{n}\left(x^{n}\right)=0 & \Rightarrow D^{n-1}\left(x^{n-1} D(x)+D\left(x^{n-1}\right) x\right)=0 \\
& \Rightarrow D^{n-1}\left(x^{n-1} D(x)\right)=0 \\
& \Rightarrow D^{n-2}\left(D\left(x^{n-1}\right) D(x)+x^{n-1} D^{2}(x)\right)=0 \\
& \Rightarrow D^{n-2}\left(D\left(x^{n-1}\right) D(x)\right)=0 \\
& \Rightarrow D^{n-2}\left(x^{n-2}(D(x))^{2}\right)=0
\end{aligned}
$$

$$
\vdots
$$

$$
\Rightarrow D\left(x(D(x))^{n-1}\right)=0
$$

$$
\Rightarrow(D(x))^{n}=0
$$

Thus $D(x)=0$ for each $x \in R^{+}$since R is ℓ-reduced. Therefore $D=0$.
(2) The proof of this fact is similar to (1) and Lemma 3.1(1). We leave it as an exercise (Exercise 24).

For an ℓ-group G, a convex ℓ-subgroup H of G is called a band whenever for any subset X of H if X has the least upper bound in G, then the least upper bound of X belongs to H. Clearly G itself and trivial subgroup $\{0\}$ are band. If S is a subset of G, the intersection of all the bands in G containing S is also a band (Exercise 25), which is the smallest band containing S. To construct more bands we prove a general property for ℓ-groups. For a unital f-ring $R, u(R)$ denotes the smallest band containing the units of R.

Theorem 3.15. Let G be an ℓ-group. For any subset $\left\{x_{i}\right\}$ of G, if $\vee x_{i}$ exists, then for each $y \in G, \vee\left(y \wedge x_{i}\right)$ exists and

$$
y \wedge\left(\vee x_{i}\right)=\vee\left(y \wedge x_{i}\right)
$$

Proof. Let $x=\vee x_{i}$. Then $\vee\left(x_{i}-x\right)=0$. For any $y \in G$ and any i, $y \wedge x_{i} \leq y \wedge x$, so $y \wedge x$ is an upper bound of $\left\{y \wedge x_{i}\right\}$. Let $z \in G$ with $z \geq y \wedge x_{i}$, for any i. Since $y \wedge x_{i} \geq\left(x_{i}-x\right)+y \wedge x$, we have

$$
z \geq y \wedge x_{i} \geq\left(x_{i}-x\right)+y \wedge x
$$

and hence $z-(y \wedge x) \geq x_{i}-x$ for each i. Therefore $z-(y \wedge x) \geq \vee\left(x_{i}-x\right)=0$ and $z \geq y \wedge x$. Hence $y \wedge x=\vee\left(y \wedge x_{i}\right)$.

An immediate corollary of Theorem 3.15 is that x^{\perp} is a band for each x in an ℓ-group.

Lemma 3.7. Suppose R is a reduced f-ring and D is a positive derivation on R.
(1) If $a \wedge b=0$, for $a, b \in R^{+}$, then $D(a) \wedge D(b)=0$.
(2) For any $a \in R, D(|a|)=|D(a)|$.

Proof. (1) We first notice that in a reduced f-ring, for any $a, b \in R^{+}$, $a \wedge b=0$ if and only if $a b=0$ (Exercise 26). If $a \wedge b=0$, then $a b=0$ implies that $a D(b)+D(a) b=0$, so $a D(b)=0$. It follows that $D(a) D(b)+$ $a D(D(b))=0$, and hence $D(a) D(b)=0$. Therefore $D(a) \wedge D(b)=0$.
(2) Let $a \in R$ and $a=a^{+}-a^{-}$. Then $D(a)=D\left(a^{+}\right)-D\left(a^{-}\right)$and $D\left(a^{+}\right) \wedge D\left(a^{-}\right)=0$ by (1). Therefore

$$
|D(a)|=D\left(a^{+}\right)+D\left(a^{-}\right)=D\left(a^{+}+a^{-}\right)=D(|a|)
$$

For a derivation D on R, the kernel of D is defined as $\operatorname{Ker} D=\{a \in$ $R \mid D(a)=0\}$.

Theorem 3.16. Suppose R is a totally ordered domain and D is a positive derivation on R. Then KerD is a band and $u(R) \subseteq \operatorname{KerD}$ if R contains the identity element.

Proof. Suppose that X is a nonempty subset of $\operatorname{Ker} D$ and $x=\sup X$ in R. For any $a \in X, x \geq a$ and D is a positive derivation imply that $D(x) \geq D(a)=0$. Take an element $0 \neq z \in X$. Then $x-|z|<x$ implies that $x-|z|$ is not an upper bound for X, and hence there exists an element $w \in X$ such that $x-|z|<w$ since R is totally ordered. It follows that $D(x)-D(|z|) \leq D(w)$ and $D(x) \leq 0$. Therefore we must have $D(x)=0$, that is, $x \in \operatorname{Ker} D$.

Suppose $a \in R$ is a unit. Then $a a^{-1}=1$ implies that $|a|\left|a^{-1}\right|=1$, and $D\left(|a|\left|a^{-1}\right|\right)=D(1)=0$ implies that $D(|a|)\left|a^{-1}\right|+|a| D\left(\left|a^{-1}\right|\right)=0$. So $D(|a|)\left|a^{-1}\right|=0$, and hence $D(|a|)=0$. Therefore $D(a)=0$, that is, $a \in$ $\operatorname{Ker} D$. Since each unit of R is in $\operatorname{Ker} D$ and $\operatorname{Ker} D$ is a band, we conclude that $u(R) \subseteq \operatorname{Ker} D$.

An element $b \in R$ is called almost bounded if $|b|=\vee(|b| \wedge n 1)$, where n runs through all positive integers and 1 is the identity element of R. Let $a b(R)$ denotes the set of almost bounded elements of R.

Theorem 3.17. Let R be a reduced unital f-ring and D be a positive derivation on R. Then $a b(R) \subseteq \operatorname{KerD}$.

Proof. For a reduced unital f-ring, there exist minimal ℓ-prime ℓ-ideals P_{i} such that $\cap P_{i}=\{0\}$ by Theorem 1.28. Suppose that $|b|=\vee(|b| \wedge n 1)$, where n runs through all positive integers. Consider the following collection of minimal ℓ-prime ℓ-ideals.

$$
\mathcal{M}=\left\{P_{j}| | b \mid+P_{j} \leq k 1+P_{j} \text { in } R / P_{j} \text { for some } k \geq 1\right\}
$$

We show that $I=\cap P_{j}=\{0\}$ for $P_{j} \in \mathcal{M}$. Suppose $I \neq\{0\}$ and take $0<x \in I$. Then $0<y=x \wedge 1 \leq 1$ and $y \in I$. For any $P \in \mathcal{M}$,

$$
(|b|-y)+P=|b|+P \geq(|b| \wedge n 1)+P \text { in } R / P
$$

For any minimal ℓ-prime ℓ-ideal $Q \notin \mathcal{M},(|b|-y)+Q \geq n 1+Q$ in R / Q for all positive integer n. Otherwise R / Q is a totally ordered domain implies that $(|b|-y)+Q \leq k 1+Q$ for some positive integer k, and hence

$$
|b|+Q \leq(y+Q)+(k 1+Q) \leq(k+1) 1+Q
$$

which is a contradiction. Thus $(|b|-y)+J \geq(|b| \wedge n 1)+J$ for all positive integer n, and all minimal ℓ-prime ℓ-ideals J. Hence $|b|-y \geq|b| \wedge n 1$ in R for all positive integers n, which contradicts with the fact that $|b|=\vee(|b| \wedge n 1)$. Therefore we must have $I=\{0\}$.

For each minimal ℓ-prime ℓ-ideal P, if $0 \leq x \in P$, then there exists $0 \leq y \notin P$ such that $x y=0$, and hence $D(x) y=0$, so $D(x) \in P$. Thus, as we did before, D induces a positive derivation D_{P} on R / P by $D_{P}(a+P)=$ $D(a)+P$ for any $a \in R$. If $P \in \mathcal{M}$, then $|b|+P \leq k 1+P$ in R / P for some positive integer k. It follows that $D_{P}(|b|+P)=0$ in R / P, and hence $D(|b|)+P=0$, that is, $D(|b|) \in P$ for each $P \in \mathcal{M}$. Consequently $D(|b|)=0$ since $I=\{0\}$, and hence $|b| \in \operatorname{Ker} D$. Therefore $b \in \operatorname{Ker} D$ and $a b(R) \subseteq \operatorname{Ker} D$.

In a unital f-ring R, an element $a \in R$ is called bounded if $|a| \leq n 1$ for some positive integer n. It is clear that each bounded element is almost bounded. A unital f-ring is said to have bounded inversion property if each element $x \geq 1$ is a unit.

Theorem 3.18. Let R be a unital f-ring with bounded inversion property. Then the trivial derivation is the only positive derivation on R.

Proof. Suppose that D is a positive derivation on R. Take $x \in R$ with $x \geq 1$. Then x has the inverse x^{-1}. From $x x^{-1}=1$, we have $x\left|x^{-1}\right|=1$, so $x^{-1}=\left|x^{-1}\right| \geq 0$. Thus $x \geq 1$ implies $1 \geq x^{-1}$, and hence $D\left(x^{-1}\right)=0$. Therefore

$$
0=D(1)=D\left(x x^{-1}\right)=x D\left(x^{-1}\right)+D(x) x^{-1}=D(x) x^{-1}
$$

implies that $D(x) x^{-1}=0$ and $D(x)=0$ for any $x \geq 1$. Now for $y \in R^{+}$, $0 \leq y \leq(1+y)$, so $0 \leq D(y) \leq D(1+y)=0$. Hence $D(y)=0$ for all $y \in R^{+}$, so $D=0$.

Theorem 3.19. Let R be an ℓ-ring and D be a positive derivation. Suppose that for $z \in R, z D(a)=D(a) z$ for any $a \in R$.
(1) If R is a domain and $D \neq 0$, then z is contained in the center of R.
(2) If R is a reduced f-ring, then $(a z-z a) \in \operatorname{KerD}$ for every $a \in R$.

Proof. (1) Suppose that z is not in the center of R. We derive a contradiction. For any $u, v \in R,[u, v]=u v-v u$ is the commutator of u, v. For all $x, y \in R$, we have $[z, D(x y)]=0$ by the hypothesis. Since $D(x y)=D(x) y+x D(y)$, we have

$$
[z, x] D(y)+D(x)[z, y]=0
$$

Since z is not in the center, $\left[z, x_{0}\right] \neq 0$ for some $x_{0} \in R$, and hence for any $a \in R,[z, D(a)]=0$ implies that $\left[z, x_{0}\right] D(D(a))=0$ from the above equation with $x=x_{0}, y=D(a)$. Thus $D(D(a))=0$ for all $a \in R$ since R is a domain. Therefore $D^{2}=0$, which is a contradiction by Theorem 3.14. Hence z must be in the center of R.
(2) Since R is reduced, the intersection of minimal ℓ-prime ℓ-ideals is zero. Let P be a minimal ℓ-prime ℓ-ideal. As we did before, D induces a positive derivation D_{P} on R / P by $D_{P}(x+P)=D(x)+P$ for any $x \in R$.

Since $z D(a)=D(a) z$ for any $a \in R$,

$$
(z+P) D_{P}(a+P)=D_{P}(a+P)(z+P)
$$

for all $a+P$. If $D_{P} \neq 0$, then R / P is a totally ordered domain implies that $z+P$ is in the center of R / P by (1), so $z a-a z \in P$ for all $a \in R$. Then $D(z a-a z) \in P$. If $D_{P}=0$, then $D(w) \in P$ for all $w \in R$. Then $D(z a-a z) \in P$. Therefore for any $a, D(z a-a z)$ is in every minimal ℓ-prime ℓ-ideal, so we must have $D(z a-a z)=0$ for all $a \in R$, and hence $z a-a z \in \operatorname{Ker} D$ for all $a \in R$.

For an ℓ-ring R, let

$$
I_{0}(R)=\left\{r \in R|n| r \mid \leq x \text { for some } x \in R^{+} \text {and } n=1,2, \cdots\right\} .
$$

Then $I_{0}(R)$ is an ℓ-ideal of R and R is Archimedean if and only if $I_{0}(R)=$ $\{0\}$ (Exercise 27).

Theorem 3.20. Let R be a reduced f-ring and D be a positive derivation on R.
(1) $D\left(R^{2}\right) \subseteq I_{0}(R)$.
(2) If R is unital, then $D(R) \subseteq I_{0}$.
(3) If R is unital with $I_{0}(R) \subseteq \operatorname{Ker} D$, then $D=0$.

Proof. (1) For any $x, y \in R,|x y|=|x||y| \leq(|x| \vee|y|)^{2}$ implies that for any positive integer n,

$$
\begin{aligned}
n|D(x y)| & \leq n D(|x y|) \\
& \leq n D\left((|x| \vee|y|)^{2}\right) \\
& \leq(|x| \vee|y|)^{2} D(|x| \vee|y|)+D(|x| \vee|y|)(|x| \vee|y|)^{2}+D(|x| \vee|y|),
\end{aligned}
$$

by Lemma 3.4 and Exercise 7, and hence $D(x y) \in I_{0}(R)$. Therefore $D\left(R^{2}\right) \subseteq I_{0}(R)$.
(2) We first claim that for any $x \in R, x D(x) \geq 0$. This fact is clearly true when R is totally ordered, and we leave general case as an exercise (Exercise 28). Then for any positive integer $n,(y-n 1) D(y-n 1) \geq 0$ implies that $n D(y) \leq y D(y)$ for any $y \in R^{+}$. Thus $D(y) \in I_{0}(R)$ for any $y \in R^{+}$. Therefore $D(R) \subseteq I_{0}(R)$.
(3) By $(2), D^{2}(R)=D(D(R)) \subseteq D\left(I_{0}(R)\right)=\{0\}$ implies that $D^{2}=0$. Hence $D=0$ by Theorem 3.14.

Exercises

(1) Let $R=F[x]$ be the polynomial ℓ-ring with the coordinatewise order.
(a) Prove that usual derivative $f^{\prime}(x)$ is a positive F-derivation on R over the totally ordered field F.
(b) Prove that if D is a positive F-derivation on R, then for any $f(x) \in$ $R, D(f(x))=f^{\prime}(x) D(x)$ and $D(x)$ is a positive polynomial in R.
(2) For a ring B and an element $b \in B$, prove the mapping $D_{b}: B \rightarrow B$ defined by $D_{b}(x)=x b-b x$ is a derivation on B.
(3) Prove that D_{a} defined in Example 3.1(2) is a positive derivation.
(4) Let R be a commutative ℓ-ring and P be an ℓ-prime ℓ-ideal of R. Define $S=\left\{x^{n} a \mid n \geq 0, a \in R^{+} \backslash P\right\}$ with $0<x \in P$. Prove that S is an m-system properly containing $R^{+} \backslash P$.
(5) Let R be a totally ordered ring and $x \in R$ with $x^{3}=0$. Then for any positive integer $n, n x^{2} \leq x$.
(6) Let R be an ℓ-ring and D be a positive derivation on R. Show $|D(x)| \leq$ $D(|x|)$ for any $x \in R$.
(7) Let R be a reduced f-ring and D be a positive derivation on R. Prove

```
that for \(a \in R^{+}\)and \(n \geq 1\),
\[
n D\left(a^{2}\right) \leq a^{2} D(a)+D(a) a^{2}+D(a)
\]
```

(8) Let R be an ℓ-ring and D be a positive derivation on R. Suppose that I is an ℓ-ideal of R such that $D(I) \subseteq I$. Define $D_{I}: R / I \rightarrow R / I$ by $D_{I}(\bar{a})=\overline{D(a)}$, where $\bar{a}=a+I \in R / I$. Prove that D_{I} is a positive derivation on R / I.
(9) For an ℓ-ring R, prove $\operatorname{Orth}(R)$ is a partially ordered ring with the positive cone $\operatorname{Orth}(R)^{+}=\{\varphi \mid \varphi$ is a positive orthomorphism of $R\}$.
(10) Prove that a strongly regular totally ordered domain is a totally ordered division ring.
(11) Let R be an Archimedean almost f-algebra. Prove that $R / \ell-N(R)$ is an Archimedean f-algebra and reduced.
(12) Verify that R as defined in Example 3.2 is an ℓ-ring and D is a positive derivation.
(13) Prove that in a d-ring $R, \ell-P(R)=\{a \in R \mid a$ is nilpotent $\}$.
(14) Verify the ℓ-ring A in Example 3.3 is an Archimedean d-ring.
(15) Let R be an Archimedean ℓ-ring with squares positive and $e \in R^{+}$be an idempotent element. Prove that if $r(e) \subseteq \ell-N(R)$, then $r(e+\ell$ $N(R))=\{0\}$ in $R / \ell-N(R)$.
(16) Verify $g f g=g$ in Theorem 3.11.
(17) Prove that $D: R \rightarrow R$ defined in Theorem 3.12(2) is a positive derivation.
(18) Prove that the mapping $D \rightarrow D_{n}$ from positive derivations of R to positive derivations of $M_{n}(R)$ in Theorem 3.12 is injective.
(19) For two positive derivations on an ℓ-ring, prove that the sum of them is also a positive derivation.
(20) Prove that for H defined in Theorem 3.13(1), $H(r 1)$ is a scalar matrix, for any $r \in R$.
(21) Prove that the function $D: R \rightarrow R$ defined in Theorem 3.13(1) by $D(r)=\bar{r} 1$, for any $r \in R$, is a positive derivation on R.
(22) Prove that $D_{z}=D_{w}$ in Theorem 3.13(2).
(23) Provide an example in which the composition of two positive derivations is not a derivation.
(24) For an ℓ-reduced ℓ-ring R and a positive derivation D on R, prove that if $D\left(x^{n}\right)=0$ for some $x \in R^{+}$and positive integer n, then $D(x)=0$.
(25) Let G be an ℓ-group. Prove the intersection of a family of bands is also a band.
(26) Let R be a reduced f-ring. Prove that for any $a, b \in R^{+}, a \wedge b=0$ if and only if $a b=0$.
(27) Let R be an ℓ-ring. Prove that R is Archimedean if and only if $I_{0}(R)=$ $\{0\}$.
(28) Let R be a reduced f-ring. Prove that for any $x \in R, x D(x) \geq 0$.
(29) Let R be an ℓ-unital ℓ-ring (R may not be commutative) and $T_{2}(R)$ be the 2×2 upper triangular matrix ℓ-ring with the entrywise order over R. Prove that each positive derivation on $T_{2}(R)$ is the sum of a derivation induced by a positive derivation on R and an inner derivation on $T_{2}(R)$.
(30) Let R be an ℓ-unital ℓ-ring (R may not be commutative). Prove that if the trivial derivation is the only positive derivation on R, then each positive derivation on the ℓ-ring $T_{n}(R)$ with the entrywise order is an inner derivation.

This page intentionally left blank

Chapter 4

Some topics on lattice-ordered rings

In this chapter we present some topics of lattice-ordered rings. In section 1 , some characterizations of matrix ℓ-rings over ℓ-unital ℓ-rings with the entrywise order are given. In section 2 we study matrix ℓ-rings containing positive cycles. Nonzero f-elements in ℓ-rings could play an important role for the structure of the ℓ-rings. Some topics along this line are presented in section 3. Section 4 is about extending lattice orders on a lattice-ordered Ore domain to its quotient ring. Section 5 contains results on matrix ℓ algebras over totally ordered integral domains. They generalize results for matrix ℓ-algebras over totally ordered fields. For a unital ℓ-ring in which $1 \ngtr 0,1$ still satisfies the definition of f-element given in chapter 1 . In section 6 , we study d-elements that are not positive. Finally in section 7 , we consider lattice-ordered triangular matrices. All lattice orders on 2×2 triangular matrix algebras over totally ordered fields are determined.

4.1 Recognition of matrix ℓ-rings with the entrywise order

In this section, we present some recognition theorems for matrix ℓ-rings with the entrywise order. For an ℓ-unital ℓ-ring R, two right ℓ-ideals I and J are called ℓ-isomorphic if I and J are ℓ-isomorphic right ℓ-modules over R. R is a direct sum of right ℓ-ideals I_{1}, \cdots, I_{k}, denoted by $R=I_{1} \oplus \cdots \oplus I_{k}$, if $R=I_{1}+\cdots+I_{k}$ and $I_{i} \cap I_{j}=\{0\}$ for $1 \leq i, j \leq n, i \neq j$.

For a unital ring B, the elements in $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\} \subseteq B$ are called matrix units if

$$
a_{i j} a_{k \ell}=\delta_{j k} a_{i \ell}, \quad \text { and } \quad a_{11}+\cdots+a_{n n}=1
$$

where $\delta_{j k}$ is called Kronecker delta which is defined as

$$
\delta_{j k}= \begin{cases}1, & \text { if } j=k \\ 0, & \text { if } j \neq k\end{cases}
$$

Lemma 4.1. Let R be an ℓ-unital ℓ-ring and $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\} \subseteq R^{+}$be a set of matrix units. Then each $a_{i j}$ is a d-elements of R.

Proof. From $a_{11}+\cdots+a_{n n}=1$ and $0 \leq a_{i i} \leq 1, i=1, \cdots, n$, we have that each $a_{i i}$ is an f-element of R. To see that $a_{i j}$ is a d-element, we just need to show $a_{i j} x \vee 0=a_{i j}(x \vee 0)$ and $x a_{i j} \vee 0=(x \vee 0) a_{i j}$, for any $x \in R$. Clearly $a_{i j} x \vee 0 \leq a_{i j}(x \vee 0)$. We show that $a_{i j}(x \vee 0)$ is the sup of $a_{i j} x, 0$. Let $z \geq a_{i j} x, 0$. Then

$$
\begin{aligned}
a_{j i} z \geq a_{j i} a_{i j} x, 0 & \Rightarrow a_{j i} z \geq a_{j j} x, 0 \\
& \Rightarrow a_{j i} z \geq a_{j j} x \vee 0 \\
& \Rightarrow a_{j i} z \geq a_{j j}(x \vee 0)\left(\text { since } a_{j j} \text { is an } f \text {-element }\right) \\
& \Rightarrow a_{i j} a_{j i} z \geq a_{i j} a_{j j}(x \vee 0) \\
& \Rightarrow a_{i i} z \geq a_{i j}(x \vee 0)
\end{aligned}
$$

so $z \geq a_{i i} z \geq a_{i j}(x \vee 0)$ since $1 \geq a_{i i}$. Thus $a_{i j} x \vee 0=a_{i j}(x \vee 0)$. Similarly $x a_{i j} \vee 0=(x \vee 0) a_{i j}$. Thus each $a_{i j}$ is a d-element of R.

The following result is fundamental.
Theorem 4.1. Let R be an ℓ-unital ℓ-ring and $n \geq 2$ be a fixed integer. The following statements are equivalent.
(1) R is ℓ-isomorphic to a matrix ℓ-ring $M_{n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring.
(2) R contains a subset of matrix units $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ in which each $a_{i j}$ is a d-element of R.
(3) $R_{R}=I_{1} \oplus \ldots \oplus I_{n}$, where I_{1}, \ldots, I_{n} are mutually ℓ-isomorphic right ℓ-ideals of R.

Proof. (1) $\Rightarrow(3)$ Let $\left\{e_{i j} \mid 1 \leq i, j \leq n\right\}$ be the standard matrix units in $M_{n}(T)$, that is, $i j^{t h}$ entry in $e_{i j}$ is 1 and other entries in $e_{i j}$ are zero. Define $I_{i}=e_{i i} M_{n}(T), i=1, \ldots, n$. Then I_{1}, \ldots, I_{n} are right ℓ-ideals of $M_{n}(T)$, $M_{n}(T)=I_{1} \oplus \ldots \oplus I_{n}$ as the direct sum of right ℓ-ideals, and I_{1}, \ldots, I_{n} are mutually ℓ-isomorphic right ℓ-modules over $M_{n}(T)$ (Exercise 1). Since ℓ-rings R and $M_{n}(T)$ are ℓ-isomorphic, (3) is true.
(3) $\Rightarrow(2)$ Let $1=a_{1}+\ldots+a_{n}$, where $0<a_{i} \in I_{i}$. Then $a_{i}<1$ and $a_{i} \wedge a_{j}=0$ with $i \neq j$ implies that each a_{i} is an idempotent f element, and $a_{i} a_{j}=0$ with $i \neq j$. Thus each $a_{i} R \subseteq I_{i}$ is a right ℓ ideal and $R_{R}=a_{1} R \oplus \ldots \oplus a_{n} R$, so $a_{i} R=I_{i}$ for $i=1, \ldots, n$ (Exercise 2). For any $1 \leq i \leq n$, let $\theta_{i}: a_{1} R \rightarrow a_{i} R$ be an ℓ-isomorphism of the right ℓ-modules over R. Then $0<b_{i 1}=\theta_{i}\left(a_{1}\right) \in a_{i} R a_{1}$. Similarly, $0<b_{1 i}=\theta_{i}^{-1}\left(a_{i}\right) \in a_{1} R a_{i}$. Hence

$$
a_{1}=\theta_{i}^{-1} \theta_{i}\left(a_{1}\right)=\theta_{i}^{-1}\left(b_{i 1}\right)=\theta_{i}^{-1}\left(a_{i} b_{i 1}\right)=\theta_{i}^{-1}\left(a_{i}\right) b_{i 1}=b_{1 i} b_{i 1},
$$

and similarly $b_{i 1} b_{1 i}=a_{i}$ for $i=1, \cdots, n$. Define $a_{i j}=b_{i 1} b_{1 j}, 1 \leq i, j \leq n$. Clearly $a_{i j} a_{k \ell}=\delta_{j k} a_{i \ell}$ (Exercise 3), and $a_{i i}=a_{i}$ implies that $a_{11}+\ldots+$ $a_{n n}=1$.

Thus $0 \leq a_{i j}, 1 \leq i, j \leq n$, are matrix units, and hence by Lemma 4.1, each $a_{i j}$ is a d-element.
$(2) \Rightarrow(1)$ Define

$$
T=\left\{x \in R \mid a_{i j} x=x a_{i j}, 1 \leq i, j \leq n\right\}
$$

which is called the centralizer of $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$. Since each $a_{i j}$ is a d-element, $x \in T$ implies that $a_{i j}|x|=\left|a_{i j} x\right|=\left|x a_{i j}\right|=|x| a_{i j}$, so $|x| \in T$. Thus T is an ℓ-unital ℓ-subring of R. For an element $x \in R$, define $\alpha_{i j}=\sum_{u=1}^{n} a_{u i} x a_{j u}$ for $i, j=1, \cdots, n$. For any $a_{r s}$,

$$
a_{r s} \alpha_{i j}=a_{r s} a_{s i} x a_{j s}=a_{r i} x a_{j s} \text { and } \alpha_{i j} a_{r s}=a_{r i} x a_{j r} a_{r s}=a_{r i} x a_{j s}
$$

so each $\alpha_{i j} \in T, 1 \leq i, j \leq n$. Also

$$
\begin{aligned}
\sum_{i, j=1}^{n} \alpha_{i j} a_{i j} & =\sum_{i, j=1}^{n}\left(\sum_{u=1}^{n} a_{u i} x a_{j u}\right) a_{i j} \\
& =\sum_{i, j=1}^{n} a_{i i} x a_{j j} \\
& =\left(a_{11}+\cdots+a_{n n}\right) x\left(a_{11}+\cdots+a_{n n}\right) \\
& =x
\end{aligned}
$$

that is, $x=\sum_{i, j=1}^{n} \alpha_{i j} a_{i j}$ with $\alpha_{i j} \in T$. Suppose that $x=\sum_{i, j=1}^{n} \beta_{i j} a_{i j}$, where $\beta_{i j} \in T$. Then it is straightforward to check that $\beta_{i j}=\alpha_{i j}, i, j=$ $1, \cdots, n$ (Exercise 4).

Define $\varphi: R \rightarrow M_{n}(T)$ by $\varphi(x)=\sum_{i, j=1}^{n} \alpha_{i j} e_{i j}$, for $x=\sum_{i, j=1}^{n} \alpha_{i j} a_{i j} \in$ R. We leave it as an exercise for the reader to verify that φ is one-toone, onto, and preserves addition (Exercise 5). In the following, we check
that φ preserves the multiplication and order. For $x, y \in R$, suppose that $\alpha_{i j}=\sum_{u=1}^{n} a_{u i} x a_{j u}$ and $\alpha_{i j}^{\prime}=\sum_{u=1}^{n} a_{u i} y a_{j u}$. Then

$$
\begin{aligned}
\varphi(x) \varphi(y) & =\left(\sum_{i, j=1}^{n} \alpha_{i j} e_{i j}\right)\left(\sum_{i, j=1}^{n} \alpha_{i j}^{\prime} e_{i j}\right) \\
& =\sum_{i, j=1}^{n}\left(\sum_{v=1}^{n} \alpha_{i v} \alpha_{v j}^{\prime}\right) e_{i j}
\end{aligned}
$$

where

$$
\begin{aligned}
\sum_{v=1}^{n} \alpha_{i v} \alpha_{v j}^{\prime} & =\sum_{v=1}^{n}\left(a_{1 i} x a_{v v} y a_{j 1}+\cdots+a_{n i} x a_{v v} y a_{j n}\right) \\
& =a_{1 i}(x y) a_{j 1}+\cdots+a_{n i}(x y) a_{j n} \\
& =\sum_{u=1}^{n} a_{u i}(x y) a_{j u}
\end{aligned}
$$

Thus $\varphi(x) \varphi(y)=\varphi(x y)$. For $x=\sum_{i, j=1}^{n} \alpha_{i j} a_{i j} \in R$, where $\alpha_{i j}=$ $\sum_{u=1}^{n} a_{u i} x a_{j u}$, if $\varphi(x) \geq 0$, then each $\alpha_{i j} \geq 0$, so $x \geq 0$. Conversely if $x=\sum \alpha_{i j} a_{i j} \geq 0$, then each $\alpha_{i j} \geq 0$, and hence $\varphi(x)=\sum \alpha_{i j} e_{i j} \geq 0$. Therefore φ is an ℓ-isomorphism between two ℓ-rings.

Corollary 4.1. Let A, B be ℓ-unital ℓ-rings and $f: A \rightarrow B$ be an ℓ homomorphism with $f\left(1_{A}\right)=1_{B}$. If A is ℓ-isomorphic to an $n \times n(n \geq 2)$ matrix ℓ-ring with the entrywise order over an ℓ-unital ℓ-ring, then B is also ℓ-isomorphic to an $n \times n$ matrix ℓ-ring with the entrywise order over an ℓ-unital ℓ-ring.

In particular, if an ℓ-unital ℓ-ring A contains an ℓ-unital ℓ-subring with the same identity which is ℓ-isomorphic to $M_{n}(S)$ with the entrywise order, where S is an ℓ-unital ℓ-ring, then $A \cong M_{n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring and $T \supseteq S$.

Proof. Let $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ be a set of $n \times n$ matrix units in A. Then $\left\{f\left(a_{i j}\right) \mid 1 \leq i, j \leq n\right\}$ is a set of $n \times n$ matrix units in B contained in B^{+}. By Lemma 4.1, each $f\left(a_{i j}\right)$ is a d-element. Now Theorem 4.1(2) applies. \square

We characterize a bit more the centralizer of those matrix units in Theorem 4.1. Suppose that R is an ℓ-unital ℓ-ring and $a \in R^{+}$is an f-element and an idempotent. Then $a R$ is an ℓ-subring of R since for any $r \in R$, $|a r|=a|r|$. Define
$\operatorname{End}_{R}(a R, a R)=\{\varphi \mid \varphi$ is an endomorphism of right R-module $a R\}$.

Then $\operatorname{End}_{R}(a R, a R)$ is a ring with respect to the usual addition and composition of two functions (Exercise 6). For $\theta \in \operatorname{End}_{R}(a R, a R)$, define $\theta \geq 0$ if $\theta(x) \geq 0$ for each $0 \leq x \in a R$. It is straightforward to check that $\operatorname{End}_{R}(a R, a R)$ is a partially ordered ring with respect to this order (Exercise 7).

Theorem 4.2. Let R be an ℓ-unital ℓ-ring and $0<a \in R$ be an f-element and idempotent.
(1) $\operatorname{End}_{R}(a R, a R)$ is an ℓ-ring with respect to the partial order defined above, and $\operatorname{End}_{R}(a R, a R) \cong a R a$ as ℓ-rings.
(2) Let $0 \leq a_{i j}, 1 \leq i, j \leq n$, be $n \times n$ matrix units and T be the centralizer of $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$. Then T and $a_{i i} R a_{i i}$ are ℓ-isomorphic ℓ-rings.

Proof. (1) We first note that, for $\theta \in \operatorname{End}_{R}(a R, a R), \theta \geq 0$ if and only if $\theta(a) \geq 0$. In fact, suppose that $\theta(a) \geq 0$. Then for any $0 \leq x \in a R$, $\theta(x)=\theta(a x)=\theta(a) x \geq 0$, so $\theta \geq 0$.

For $\theta \in \operatorname{End}_{R}(a R, a R)$, define $\theta^{\prime}(x)=(\theta(a) \vee 0) x$, for $x \in a R$. Clearly $\theta^{\prime} \in \operatorname{End}_{R}(a R, a R)$ and $\theta^{\prime} \geq 0$. Since

$$
\begin{aligned}
\left(\theta^{\prime}-\theta\right)(a) & =(\theta(a) \vee 0) a-\theta(a) \\
& =(\theta(a) a \vee 0)-\theta(a) \\
& =\left(\theta\left(a^{2}\right) \vee 0\right)-\theta(a) \\
& =(\theta(a) \vee 0)-\theta(a) \\
& \geq 0
\end{aligned}
$$

$\theta^{\prime} \geq \theta$. Let $\tau \in \operatorname{End}_{R}(a R, a R)$ with $\tau \geq \theta, 0$. Then $\tau(a) \geq \theta(a), 0$, and hence $\tau(a) \geq \theta(a) \vee 0$. Thus for $0 \leq x \in a R^{+}$,

$$
\left(\tau-\theta^{\prime}\right)(x)=\left(\tau(a)-\theta^{\prime}(a)\right) x=(\tau(a)-(\theta(a) \vee 0)) x \geq 0
$$

so $\tau \geq \theta^{\prime}$. Therefore $\theta^{\prime}=\theta \vee 0$ for each $\theta \in \operatorname{End}_{R}(a R, a R)$. Hence $\operatorname{End}_{R}(a R, a R)$ is an ℓ-ring.

Now map $\varphi: a R a \rightarrow \operatorname{End}_{R}(a R, a R)$ by $\varphi(x)=\ell_{x}$, where $\ell_{x}: a R \rightarrow a R$ is the left multiplication by x, that is, for any $z \in R, \ell_{x}(z)=x z$. Then φ is a ring isomorphism. For $x \in a R a$,

$$
x \geq 0 \Leftrightarrow \ell_{x}(a) \geq 0 \Leftrightarrow \ell_{x} \geq 0
$$

and hence φ is an ℓ-isomorphism between two ℓ-rings.
(2) Define $\varphi: a_{i i} R a_{i i} \rightarrow T$ by for any $x \in a_{i i} R a_{i i}, \varphi(x)=\sum_{u=1}^{n} a_{u i} x a_{i u}$. Then similar to the argument in the proof of Theorem 4.1, φ is an ℓ isomorphism between two ℓ-rings (Exercise 8).

Remark 4.1. In the proof of Theorem 4.2(1), it seems we only need to assume that a is a d-element. However the following result shows that each idempotent d-element in an ℓ-unital ℓ-ring must be an f-element.

Lemma 4.2. Let R be an ℓ-unital ℓ-ring and $a \in R^{+}$be a d-element with $a^{2}=a$. Then $a \leq 1$ and hence a is an f-element.

Proof. Consider $1 \wedge a=b$. We show that $a=b$. Since $a^{2}=a$ is a d-element,

$$
a=a \wedge a^{2}=a(1 \wedge a)=a b=(1 \wedge a) a=b a
$$

From $0 \leq b \leq 1, b$ is an f-element, so $1 \wedge a=b$ implies that $b \wedge b a=b^{2}$, and $b \leq a=b a$ implies that $b=b^{2}$. Then a direct calculation shows that $(a-b)^{2}=-(a-b)$, so $a-b=0$ and $a=b$.

Theorem 4.3. Let R be an ℓ-unital ℓ-ring and $n \geq 2$ be a fixed integer. Then the following statements are equivalent:
(1) R is ℓ-isomorphic to a matrix ℓ-ring $M_{n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring.
(2) There exist positive elements $b, f, g \in R$ such that $f^{n}=g^{n}=0$ and $b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\ldots+f^{n-1} b$ is a unit and a d-element.
(3) There exist positive elements $a, f \in R$ such that $f^{n}=0$ and $a f^{n-1}+$ $f a f^{n-2}+f^{2} a f^{n-3}+\ldots+f^{n-1} a=1$.
(4) There exist positive elements $a, f \in R$ such that $f^{n}=0$ and af $f^{n-1}+$ fa $f^{n-2}+f^{2} a f^{n-3}+\ldots+f^{n-1} a$ is a unit and a d-element.
(5) For any unit and d-element u, there exist positive elements $b, f, g \in R$ such that $f^{n}=g^{n}=0$ and $u=b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\ldots+f^{n-1} b$.

Proof. $\quad(1) \Rightarrow(2)$ Let $f=g=e_{21}+\ldots+e_{n, n-1}$ and $b=e_{1 n}$ be in $M_{n}(T)$. Then a direct calculation shows that $f^{n}=g^{n}=0$ and

$$
b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\cdots+f^{n-1} b=1
$$

$(2) \Rightarrow(3)$ Let $u=b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\ldots+f^{n-1} b$ and let $v=u^{-1}$. Then

$$
f u=f b g^{n-1}+f^{2} b g^{n-2}+\cdots+f^{n-1} b g=u g
$$

implies that $v f=g v$. It follows that $v f^{k}=g^{k} v, k=1, \cdots, n-1$, and hence $u=b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\ldots+f^{n-1} b$ implies that

$$
\begin{aligned}
1 & =u v \\
& =b g^{n-1} v+f b g^{n-2} v+f^{2} b g^{n-3} v+\ldots+f^{n-1} b v \\
& =(b v) f^{n-1}+f(b v) f^{n-2}+f^{2}(b v) f^{n-3}+\ldots+f^{n-1}(b v)
\end{aligned}
$$

Since $b \geq 0, b=|b|=|(b v) u|=|b v| u$ since u is a d-element, so $b v=|b v| \geq 0$. Let $a=b v$. Then a is positive and $1=a f^{n-1}+f a f^{n-2}+f^{2} a f^{n-3}+\ldots+$ $f^{n-1} a$.
$(3) \Rightarrow(1)$ We show that Theorem $4.1(3)$ is true. For each $t=1, \ldots, n$, let $g_{t}=f^{t-1} a f^{n-1}$. We first claim that $R=g_{1} R+g_{2} R+\ldots+g_{n} R$ is a direct sum of right ideals of R and $g_{1} R \cong g_{t} R$ as right R-modules. Since

$$
f^{n-1}=f^{n-1}\left(a f^{n-1}+f a f^{n-2}+f^{2} a f^{n-3}+\ldots+f^{n-1} a\right)=f^{n-1} a f^{n-1}
$$

$a f^{n-1}$ is idempotent. Thus the map $g_{1} R \rightarrow g_{t} R$ given by left multiplication by f^{t-1} has an inverse map $g_{t} R \rightarrow g_{1} R$ given by left multiplication by af ${ }^{n-t}$. Therefore $g_{1} R \cong g_{t} R$ as right R-modules.

Suppose that $I=g_{1} R+\cdots+g_{n} R$. If $g_{1} x_{1}+\cdots+g_{n} x_{n}=0$ for some $x_{i} \in R$, then by multiplying the equality from the left by $f^{i-1} a f^{n-i}$ in turn, $i=1, \cdots, n-1$, we have each $g_{j} x_{j}=0$ for $j=1, \cdots, n$. Thus the sum $g_{1} R+g_{2} R+\ldots+g_{n} R$ is a direct sum. We verify that $I=R$. To this end, we show that $1 \in I$ by showing $f^{k} \in I$ for each positive integer k. Note $f^{n-1}=g_{n} \in I$. Suppose that $f^{s} \in I$ for all positive integers $s>r$. We show $f^{r} \in I$. In fact, since $f^{r} a f^{n-1}=g_{r+1} \in I$ and $f^{r+1}, \cdots, f^{n-1} \in I$,

$$
f^{r}=f^{r} a f^{n-1}+f^{r+1} a f^{n-2}+\cdots+f^{n-1} a f^{r} \in I
$$

Hence $f, \cdots, f^{n-1} \in I$ by the induction, so

$$
1=a f^{n-1}+f a f^{n-2}+f^{2} a f^{n-3}+\ldots+f^{n-1} a \in I
$$

since $a f^{n-1}=g_{1} \in I$. Therefore $R=g_{1} R+\cdots+g_{n} R$.
We next show that for any $x \in R$, if $x=x_{1}+x_{2}+\ldots+x_{n}$, where $x_{t} \in g_{t} R$, then $x \geq 0$ if and only if each $x_{t} \geq 0, t=1, \ldots, n$. It is clear that if each $x_{t} \geq 0$, then $x \geq 0$. To show if $x \geq 0$, then $x_{i} \geq 0$, we first consider the identity element 1 .

Let $S(a, f)$ be the semigroup generated by a and f with respect to the multiplication of R and let $d_{t}=f^{t-1} a f^{n-t}, t=1, \ldots, n$. We show that for $t=1, \ldots, n, d_{t}=g_{1} a_{t 1}+g_{2} a_{t 2}+\ldots+g_{n} a_{t n}$, where each of $a_{t 1}, a_{t 2}, \ldots, a_{t n}$ is a sum of elements from $S(a, f)$. Since $f^{n-1}=f^{n-1} a f^{n-1}, d_{n}=f^{n-1} a=$ $g_{n} a$. Suppose that it is true for all d_{s} with $n \geq s>t \geq 1$. We claim that it is also true for d_{t}. From $1=a f^{n-1}+f a f^{n-2}+f^{2} a f^{n-3}+\ldots+f^{n-1} a$, we have

$$
f^{t-1}=f^{t-1} a f^{n-1}+f^{t} a f^{n-2}+\ldots+f^{n-1} a f^{t-1}
$$

so

$$
\begin{aligned}
d_{t} & =f^{t-1} a f^{n-t} \\
& =\left(f^{t-1} a f^{n-1}+f^{t} a f^{n-2}+\ldots+f^{n-1} a f^{t-1}\right) a f^{n-t} \\
& =g_{t}\left(a f^{n-t}\right)+d_{t+1}\left(f^{t-1} a f^{n-t}\right)+\ldots+d_{n}\left(f^{t-1} a f^{n-t}\right) .
\end{aligned}
$$

Thus $d_{t}=g_{1} a_{t 1}+g_{2} a_{t 2}+\ldots+g_{n} a_{t n}$, where each of $a_{t 1}, a_{t 2}, \ldots, a_{t n}$ is a sum of elements from $S(a, f)$. Since $1=d_{1}+d_{2}+\ldots+d_{n}, 1=g_{1} \alpha_{1}+g_{2} \alpha_{2}+$ $\ldots+g_{n} \alpha_{n}$, where each of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is a sum of elements in $S(a, f)$, and hence each of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is positive in R. Now for $0 \leq x \in R$,

$$
x=g_{1} \alpha_{1} x+g_{2} \alpha_{2} x+\ldots+g_{n} \alpha_{n} x \text { with } x_{t}=g_{t} \alpha_{t} x \geq 0, t=1, \ldots, n
$$

We finally show that each $g_{t}=f^{t-1} a f^{n-1}$ is a d-element, $t=1, \ldots, n$. Let $x \in R$, and let $g_{t} x, 0 \leq z$ for some $z \in R$. Then

$$
\begin{aligned}
a f^{n-t} g_{t} x, 0 \leq a f^{n-t} z & \Rightarrow a f^{n-1} x, 0 \leq a f^{n-t} z\left(a f^{n-1} \text { is idempotent }\right) \\
& \Rightarrow a f^{n-1}(x \vee 0) \leq a f^{n-t} z\left(a f^{n-1} \text { is an } f \text {-element }\right) \\
& \Rightarrow f^{t-1} a f^{n-1}(x \vee 0) \leq f^{t-1} a f^{n-t} z \\
& \Rightarrow g_{t}(x \vee 0) \leq f^{t-1} a f^{n-t} z \\
& \Rightarrow g_{t}(x \vee 0) \leq z\left(f^{t-1} a f^{n-t} \leq 1\right)
\end{aligned}
$$

Therefore $\left(g_{t} x\right) \vee 0=g_{t}(x \vee 0)$. Similarly we also have $\left(x g_{t} \vee 0\right)=(x \vee 0) g_{t}$ and we leave the verification as an exercise (Exercise 9). Hence each g_{t} is a d-element, $t=1, \ldots, n$.

Let $x \in R$ and $|x| \leq|y|$ for some $y \in g_{t} R$. Then $y=g_{t} r$ for some $r \in R$, so $|x| \leq g_{t}|r|$. Let $|x|=x_{1}+\ldots+x_{n}$ with $x_{i} \in g_{i} R$. Then each $x_{i} \geq 0$ and $0 \leq\left(-x_{1}\right)+\ldots+\left(g_{t}|r|-x_{t}\right)+\ldots+\left(-x_{n}\right)$ implies that $x_{i}=0$ for $i \neq t$. Hence $|x|=x_{t} \in g_{t} R$. Since $0 \leq x^{+}, x^{-} \leq|x|$, similar argument gives that $x^{+}, x^{-} \in g_{t} R$, and hence $x=x^{+}-x^{-} \in g_{t} R$. Therefore $g_{t} R$ is a right $\ell-$ ideal of $R, t=1, \ldots, n$. Since $f^{t-1} \geq 0$ and $a f^{n-t} \geq 0$, the R-isomorphisms defined before for $g_{1} R$ and $g_{t} R$ are actually now ℓ-isomorphisms over R. Thus Theorem $4.1(3)$ is true, so (1) is true.
$(3) \Rightarrow(4)$ is clear.
(4) \Rightarrow (5) Given u, let

$$
a f^{n-1}+f a f^{n-2}+f^{2} a f^{n-3}+\cdots+f^{n-1} a=v
$$

Define $b=a v^{-1} u$ and $g=\left(v^{-1} u\right)^{-1} f\left(v^{-1} u\right)$. Then $g \geq 0$ by Theorem 1.20, $g^{n}=0$ and $u=b g^{n-1}+f b g^{n-2}+f^{2} b g^{n-3}+\ldots+f^{n-1} b$. Thus (5) is true. $(5) \Rightarrow(2)$ is clear.
This completes the proof.
By using three elements with an additional condition, the equation in Theorem 4.3(3) can be shortened.

Lemma 4.3. Let R be an ℓ-unital ℓ-ring and $n \geq 2$. Then R is ℓ isomorphic to $M_{n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ ring, if and only if R contains positive elements a, b and $a d$-element f such that $f^{n}=0$ and $a f^{n-1}+f b=1$.

Proof. " \Rightarrow " Let $\left\{e_{i j} \mid 1 \leq i, j \leq n\right\}$ be the standard $n \times n$ matrix units of R. Take $a=e_{1 n}$,

$$
b=e_{12}+e_{23}+\cdots+e_{n-1, n} \text { and } f=e_{21}+e_{32}+\cdots+e_{n, n-1}
$$

We leave it as an exercise to verify $f^{n}=0$ and $a f^{n-1}+f b=1$ (Exercise 10). Since $\left(e_{1 n}+f\right)^{n}=1, e_{1 n}+f$ is a d-element by Theorem 1.20, and hence f is a d-element.
" \Leftarrow " For $r=1, \ldots, n$, define $g_{r}=f^{r-1} a f^{n-1}$. Then right ideals $g_{1} R, \cdots, g_{n} R$ are mutually isomorphic, and their sum is a direct sum and equals R. The verification of these facts is similar to the proof of (3) $\Rightarrow(1)$ in Theorem 4.2, so we leave it as an exercise (Exercise 11).

Similar to the proof of Theorem 4.2, we show that Theorem 4.1(3) is true under the given conditions. Let $x=x_{1}+\ldots+x_{n}$, where $x_{r} \in g_{r} R$, $r=1, \ldots, n$. We claim that $x \geq 0$ if and only if each $x_{r} \geq 0$. As before, we just need to show that 1 is a sum of positive elements. Since $1=$ $a f^{n-1}+f b=g_{1}+f b$, we only need to show that f is a sum of positive elements. First, $f^{n-1}=g_{n}$. Now suppose that for any $n \geq s>r \geq 1, f^{s}$ is a sum of positive elements from $g_{1} R, \ldots, g_{n} R$. Then $f^{r}=g_{r+1}+f^{r+1} b$ implies that $f^{r}=y_{1}+\ldots+y_{n}$, where $0 \leq y_{r} \in g_{r} R$. Thus it is true that f is a sum of positive elements in $g_{1} R, \cdots, g_{n} R$, and hence 1 is a sum of positive elements of $g_{1} R, \ldots, g_{n} R$.

Since f is a d-element and $a f^{n-1}$ is an f-element, each $g_{r}=f^{r-1} a f^{n-1}$ is a d-element, $r=1, \ldots, n$. Thus each $g_{r} R$ is a right ℓ-ideal and $R=$ $g_{1} R+\cdots+g_{n} R$ is a direct sum of right ℓ-ideals of R with $g_{i} R \cong g_{j} R$, for any i and j.

Theorem 4.4. For an ℓ-unital ℓ-ring R and positive integers m and n, the following conditions are equivalent:
(1) R is ℓ-isomorphic to a matrix ℓ-ring $M_{m+n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring.
(2) R contains positive elements a, b, and a d-element f such that $f^{m+n}=$ 0 , and $a f^{m}+f^{n} b=1$.

Proof. $\quad(1) \Rightarrow(2)$. Consider the following elements

$$
\begin{aligned}
a & =e_{1, m+1}+e_{2, m+2}+\ldots+e_{n, m+n} \\
b & =e_{1, n+1}+e_{2, n+2}+\ldots+e_{m, m+n} \\
f & =e_{21}+e_{32}+\ldots+e_{m+n, m+n-1}
\end{aligned}
$$

in $M_{m+n}(T)$ with the entrywise order. Then a, b, f are all positive, $f^{m+n}=$ 0 , and $a f^{m}+f^{n} b=1$ (Exercise 12). Let $e=f+e_{1, m+n}$. Then that $e \geq 0$
and $e^{m+n}=1$, where 1 is the identity matrix, implies that e is a d-element by Theorem 1.20 , so f is also a d-element since $0 \leq f \leq e$.
$(2) \Rightarrow(1)$. Suppose that there exist positive elements a, b, f such that $f^{m+n}=0,1=a f^{m}+f^{n} b$, and f is a d-element. Then

$$
\begin{aligned}
1 & =a f^{m-1}\left(1-f^{n} b\right) f+f^{n} b+f^{n-1} b f-\left(1-a f^{m}\right) f^{n-1} b f \\
& =\left(a f^{m-1} a\right) f^{m+1}+f^{n-1}\left(f b+b f-(f b) f^{n-1}(b f)\right) \\
& =a^{\prime} f^{m+1}+f^{n-1} b^{\prime}
\end{aligned}
$$

where $a^{\prime}=a f^{m-1} a \geq 0$ and $b^{\prime}=f b+b f-(f b) f^{n-1}(b f)$. Now we use the condition that f is a d-element. Since

$$
1=|1|=\left|a^{\prime} f^{m+1}+f^{n-1} b^{\prime}\right| \leq a^{\prime} f^{m+1}+\left|f^{n-1} b^{\prime}\right|=a^{\prime} f^{m+1}+f^{n-1}\left|b^{\prime}\right|
$$

we have $1=x+y$, where $0 \leq x \leq a^{\prime} f^{m+1}$ and $0 \leq y \leq f^{n-1}\left|b^{\prime}\right|$. Then $x f^{n-1}=0$ and $f^{m+1} y=0$, and hence $1=a^{\prime} f^{m+1}+f^{n-1} b^{\prime}$ implies that $x=x a^{\prime} f^{m+1}$ and $y=f^{n-1} b^{\prime} y$. Let $a_{1}=x a^{\prime}$ and $b_{1}=\left|b^{\prime} y\right|$. Then $y=|y|=f^{n-1}\left|b^{\prime} y\right|=f^{n-1} b_{1}$, so $1=x+y=a_{1} f^{m+1}+f^{n-1} b_{1}$ with $a_{1} \geq 0, b_{1} \geq 0$. Continuing the above procedure, we have

$$
\begin{aligned}
1 & =a_{1} f^{m}\left(1-f^{n-1} b_{1}\right) f+f^{n-1} b_{1}+f^{n-2} b_{1} f-\left(1-a_{1} f^{m+1}\right) f^{n-2} b_{1} f \\
& =\left(a_{1} f^{m} a_{1}\right) f^{m+2}+f^{n-2}\left(f b_{1}+b_{1} f-\left(f b_{1}\right) f^{n-2}\left(b_{1} f\right)\right) \\
& =a^{\prime \prime} f^{m+2}+f^{n-2} b^{\prime \prime}
\end{aligned}
$$

where $a^{\prime \prime}=a_{1} f^{m} a_{1} \geq 0$ and $b^{\prime \prime}=f b_{1}+b_{1} f-\left(f b_{1}\right) f^{n-2}\left(b_{1} f\right)$. Similar to the argument before, $1=a_{2} f^{m+2}+f^{n-2} b_{2}$ with $a_{1} \geq 0$ and $b_{2} \geq 0$. Repeating this process, we will eventually arrive at $1=a_{n-1} f^{m+n-1}+f b_{n-1}$ with $a_{n-1} \geq 0$ and $b_{n-1} \geq 0$. Now by Lemma $4.3, R$ is ℓ-isomorphic to the ℓ-ring $M_{m+n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring. \square

Another characterization of matrix ℓ-rings with entrywise order is given below.

Theorem 4.5. For an ℓ-unital ℓ-ring R and $n \geq 2$, the following are equivalent:
(1) $R \cong M_{n}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring.
(2) There exist positive elements $x, y \in R$ such that $x^{n-1} \neq 0, x^{n}=y^{2}=0$, $x+y$ has the positive inverse and $\ell\left(x^{n-1}\right) \cap R y=\{0\}$, where $\ell\left(x^{n-1}\right)=$ $\left\{a \in R\left||a| x^{n-1}=0\right\}\right.$.

Proof. (1) $\Rightarrow(2)$ Let $x=e_{12}+\ldots+e_{n-1, n}$ and $y=e_{n 1}$. Then $x^{n-1} \neq 0$, $x^{n}=y^{2}=0$. Since $(x+y)^{n}=1,(x+y)^{-1}=(x+y)^{n-1}>0$. Since $x^{n-1}=e_{1 n}$, it is clear that $\ell\left(x^{n-1}\right) \cap R y=\{0\}$.
$(2) \Rightarrow(1)$ Let r be the inverse of $x+y$. We note that since $x+y$ and r are both positive, they are d-elements by Theorem 1.20 , and hence x, y are also d-elements. Since x is a d-element, $\ell\left(x^{n-1}\right)=\left\{a \in R \mid a x^{n-1}=0\right\}$.

Define $a_{i j}=r^{n-i}(r y) x^{n-j}, i, j=1, \cdots, n$. We show that $\left\{a_{i j} \mid 1 \leq\right.$ $i, j \leq n\}$ is a set of $n \times n$ matrix units of R by two steps.
(i) $y r^{k} y=0$ and $y r^{k} x^{j}=0$ for $2 \leq k \leq n, k \leq j \leq n$.

First we show that it is true for $k=2$. From that r is an inverse of $x+y$, we have $1=r x+r y$, so $y=y r x+y r y$ and $(1-y r) y=y r x \in R x \cap R y$. Since $x^{n}=0, R x \subseteq \ell\left(x^{n-1}\right)$. Thus $R x \cap R y \subseteq \ell\left(x^{n-1}\right) \cap R y=\{0\}$ implies that $y r x=0$. By $1=r x+r y$ and $x^{n}=0$, we have $x^{n-1}=r y x^{n-1}$, and hence

$$
y r^{2} y x^{n-1}=(y r)\left(r y x^{n-1}\right)=y r x^{n-1}=0
$$

since $n \geq 2$. Therefore $y r^{2} y \in \ell\left(x^{n-1}\right) \cap R y=\{0\}$ implies that $y r^{2} y=0$. Then $y r=y r^{2} x+y r^{2} y=y r^{2} x$ implies that $y r^{2} x^{2}=y r x=0$, and hence for any $j \geq 2, y r^{2} x^{j}=0$. Hence (i) is true when $k=2$.

Now suppose that $y r^{i} y=0, y r^{i} x^{j}=0$ for $2 \leq i<k, i \leq j$. We prove that $y r^{k} y=0, y r^{k} x^{j}=0$ for $k \leq j$. From $x^{n-1}=r x^{n}+r y x^{n-1}=r y x^{n-1}$ and the inductive assumption, we have

$$
y r^{k} y x^{n-1}=y r^{k-1}\left(r y x^{n-1}\right)=y r^{k-1} x^{n-1}=0
$$

so $y r^{k} y \in \ell\left(x^{n-1}\right) \cap R y=\{0\}$ implies that $y r^{k} y=0$. Finally from $y r^{k-1}=$ $y r^{k} x+y r^{k} y=y r^{k} x$ and $y r^{k-1} x^{j}=0$, we have $y r^{k} x^{j+1}=0$. Thus $y r^{k} x^{j}=$ $y r^{k} x^{j+1}+y r^{k} y x^{j}=0$ for any $k \leq j$. Therefore (i) is true.
(ii) $r y x^{i} r^{j} r y=\delta_{i j} r y$ for all $0 \leq i, j \leq n-1$, where $\delta_{i j}$ is the Kroneker delta.

From $y r y=y$ and $y r^{k} y=0$ for $k \geq 2$ by (i), the equation is true when $i=0$. Now

$$
\begin{aligned}
1=x r+y r & \Rightarrow x^{i-1} r^{i-1}=x^{i} r^{i}+x^{i-1} y r^{i}, 1 \leq i \leq n-1 \\
& \Rightarrow x^{i-1} r^{i} y=x^{i} r^{i+1} y+x^{i-1} y r^{i+1} y=x^{i} r^{i+1} y
\end{aligned}
$$

since $y r^{i+1} y=0$ by (i). Thus $x^{i-1} r^{i-1}(r y)=x^{i} r^{i}(r y)$, for any $i=$ $1, \cdots, n-1$. Then

$$
x^{n-1} r^{n-1}(r y)=x^{n-2} r^{n-2}(r y)=\cdots=x r(r y)=r y \quad(\star),
$$

and hence $(r y) x^{i} r^{i}(r y)=(r y)^{2}=r y$ for $1 \leq i \leq n-1$. So the equation (ii) is true when $1 \leq i=j \leq n-1$.

For $i>j$,

$$
x^{i} r^{j} r y=x^{i-j} x^{j} r^{j}(r y)=x^{i-j}(r y) \text { by }(\star),
$$

so $x^{i-j} r y=0$ since $x r y=(1-x r) x \in R x \cap R y=\{0\}$. Hence the equation (ii) is true for this case.

For $1 \leq i<j$ and $0<t \leq i, 1=x r+y r$ implies

$$
\begin{aligned}
x^{i-t} r^{i-t} r^{j-i} r y & =x^{i-t+1} r^{i-t+1} r^{j-i} r y+x^{i-t} y r^{j-t+1} y \\
& =x^{i-t+1} r^{i-t+1} r^{j-i} r y
\end{aligned}
$$

since $2 \leq j-t+1 \leq n$ implies $y r^{j-t+1} y=0$ by (i). Let $t=1, \cdots, i$ in the above equation, we have

$$
x^{i} r^{i} r^{j-i} r y=x^{i-1} r^{i-1} r^{j-i} r y=\cdots=r^{j-i} r y,
$$

and hence $r y x^{i} r^{j} r y=r y r^{j-i} r y=0$ since $2 \leq j-i+1 \leq n$. Thus the equation (ii) is true also for this case.

By (ii), $a_{i j} a_{r s}=r^{n-i}(r y) x^{n-j} r^{n-r}(r y) x^{n-s}=\delta_{j r} a_{i s}$. Since $1=r x+r y$, $r^{n-i} x^{n-i}=r^{n-i+1} x^{n-i+1}+r^{n-i}(r y) x^{n-i}$ implies

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i i} & =\sum_{i=1}^{n-1} a_{i i}+r y \\
& =\sum_{i=1}^{n-1} r^{n-i}(r y) x^{n-i}+r y \\
& =\sum_{i=1}^{n-1}\left(r^{n-i} x^{n-i}-r^{n-i+1} x^{n-i+1}\right)+r y \\
& =-r^{n} x^{n}+r x+r y \\
& =1 .
\end{aligned}
$$

Hence $a_{i j}, 1 \leq i, j \leq n$, are $n \times n$ matrix units.
Finally since x, y and r are all d-elements, each $a_{i j}=r^{n-i}(r y) x^{n-j}$ is a d-element, so Theorem 4.1 applies.

We also note that since $R y=R(r y)$ and $a_{n n}=r y, R y$ is a left ℓ-ideal of R.

The following result is an immediate consequence of Theorem 4.5.
Corollary 4.2. Let R be an ℓ-unital ℓ-ring. If there exist positive elements $x, y \in R$ such that $x^{2}=y^{2}=0$ and $x+y$ has the positive inverse, then $R \cong M_{2}(T)$ with the entrywise order, where T is an ℓ-unital ℓ-ring.

Proof. We just need to show that $\ell(x) \cap R y=\{0\}$. If $a \in \ell(x) \cap R y$, then $a=b y$ for some $b \in R$, so $|a|=|b| y$ since y is a d-element. It follows from $y^{2}=0$ that $|a|(x+y)=0$. Thus $|a|=0$, so $\ell(x) \cap R y=\{0\}$.

Let F be a totally ordered field and $M_{n}(F)(n \geq 2)$ be an $n \times n$ matrix ℓ-ring. Using previous results, various conditions may be obtained such that $M_{n}(F)$ is ℓ-isomorphic to $M_{n}(F)$ with the entrywise order. We state one such result below.

Theorem 4.6. Let F be a totally ordered field and let $M_{n}(F)(n \geq 2)$ be an ℓ-algebra. If there are positive elements a, f such that

$$
f^{n}=0 \text { and } 1=a f^{n-1}+f a f^{n-2}+\cdots+f^{n-1} a,
$$

then $M_{n}(F)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(F)$ with the entrywise order.

Proof. By Theorem 4.3(3), $M_{n}(F)$ contains a set of $n \times n$ matrix units $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ and each $a_{i j}$ is a d-element. Let S be the centralizer of $a_{i j}$. Then $F 1 \subseteq S$. Since $a_{i j}, 1 \leq i, j \leq n$, are linearly independent, they form a basis for $M_{n}(F)$ as a vector space over F, so each standard matrix unit $e_{r s}$ is a linear combination of $a_{i j}$ over F. Thus each matrix in S is in the centralizer of $e_{r s}, 1 \leq r, s \leq n$, and hence each matrix in S must be scalar matrix. Therefore $S=F 1$ and $M_{n}(F)$ is ℓ-isomorphic to $M_{n}(F)$ with the entrywise order by the proof of Theorem 4.3.

4.2 Positive cycles

In this section, we consider the structure of ℓ-unital ℓ-rings with positive elements of finite order. For a unital ring R, an element e is said to have finite order if $e^{m}=1$ for some positive integer m. For an element e with finite order, the order of e is the smallest positive integer n such that $e^{n}=1$.

Lemma 4.4. Let R be a unital ℓ-ring with a positive element e of order $n \geq 2$ and M be a maximal convex totally ordered subgroup of its additive ℓ-group. Then $e^{i} M e^{j}$ is a maximal convex totally ordered subgroup for $1 \leq i, j \leq n$.

Proof. Clearly $e^{i} M e^{j}$ is a totally ordered subgroup. Suppose that $0<b \leq e^{i} a e^{j}$ for some $0 \leq a \in M$. Then $0 \leq e^{n-i} b e^{n-j} \leq a$ implies that $e^{n-i} b e^{n-j} \in M$, so $b \in e^{i} M e^{j}$. Therefore $e^{i} M e^{j}$ is convex. Assume that $e^{i} M e^{j} \subseteq N$ for some convex totally ordered subgroup N. Then from $M \subseteq e^{n-i} N e^{n-j}$ and $e^{n-i} N e^{n-j}$ is convex totally ordered, we have $M=e^{n-i} N e^{n-j}$, and hence $e^{i} M e^{j}=N$.

Theorem 4.7. Let R be a unital ℓ-ring with a positive element e of order $n \geq 2$. Suppose that R satisfies the following conditions.
(1) R contains a basic element $a \leq 1$ such that $a \wedge(1-a)=0$.
(2) $1 \in \sum_{i, j=1}^{n} e^{i} M e^{j}$, where $M=a^{\perp \perp}$.

Let $k \geq 2$ be the smallest positive integer with $e^{k} a=a e^{k}$. Then $B=$ $\left\{e^{i} a e^{n-j} \mid 1 \leq i, j \leq k\right\}$ is a disjoint set of basic d-elements and also a set of matrix units. Therefore R is ℓ-isomorphic to the matrix ℓ-ring $M_{k}(T)$ with the entrywise order, where T is the centralizer of B in R.

Proof. We first note that $e^{n}=1$ implies that e is a d-element by Theorem 1.20 and $a \wedge(1-a)=0$ implies that $a(1-a)=0$, since $a, 1-a$ are f-element, so $a=a^{2}$.

Since a is basic, M is a maximal convex totally ordered subgroup by Corollary 1.1. We claim that the sum

$$
\left(e M e+\cdots+e M e^{n}\right)+\cdots+\left(e^{k} M e+\cdots+e^{k} M e^{n}\right)
$$

is a direct sum. Since each $e^{i} M e^{j}$ is a maximal convex totally ordered subgroup by Lemma 4.4, by Theorem 1.16, any two terms in the sum are either disjoint or equal. Consider the following array and we claim that any two different terms cannot be equal.

$$
\begin{array}{cccc}
e M e & e M e^{2} & \cdots & e M e^{n} \\
e^{2} M e & e^{2} M e^{2} & \cdots & e^{2} M e^{n} \\
\vdots & \vdots & \cdots & \vdots \\
e^{k} M e & e^{k} M e^{2} & \cdots & e^{k} M e^{n}
\end{array}
$$

Suppose that for some positive integer m with $1 \leq m<n, e^{m} M=M$. Then for any $0 \leq x \in M, e^{m} x$ and x are comparable. If $x<e^{m} x$, then $x<e^{m} x<e^{2 m} x<\cdots<e^{n m} x=x$, which is a contradiction. Similarly $e^{m} x \not \leq x$. Thus we must have $e^{m} x=x$, and hence for each $z \in M, e^{m} z=z$. From $1 \in \sum_{i, j=1}^{n} e^{i} M e^{j}, 1=\sum_{i, j} e^{i} x_{i j} e^{j}$, where $x_{i j} \in M$, and hence

$$
e^{m}=e^{m} \sum_{i, j} e^{i} x_{i j} e^{j}=\sum_{i, j} e^{i}\left(e^{m} x_{i j}\right) e^{j}=\sum_{i, j} e^{i} x_{i j} e^{j}=1
$$

which is a contradiction. Hence n is the smallest positive integer such that $e^{n} M=M$, and similarly n is the smallest positive integer such that $M e^{n}=M$. Therefore any two terms in the same row or column of the above array are different. Suppose that for $1 \leq s<k, 1 \leq t<n, e^{s} M e^{t}=M$, then $e^{s} M=M e^{n-t}$. Similar to the above proof, $e^{s} a=a e^{n-t}$. We show that $M e^{s}=M e^{n-t}$. If $M e^{s} \neq M e^{n-t}$, then $M e^{s} \cap M e^{n-t}=\{0\}$, and hence
$a e^{s} \wedge a e^{n-t}=0$. Thus a is an f-element implies that $a e^{s} a \wedge a e^{n-t}=0$, so since e is a d-element, we have

$$
\left(a^{2} \wedge a\right) e^{n-t}=a^{2} e^{n-t} \wedge a e^{n-t}=a e^{s} a \wedge a e^{n-t}=0
$$

It follows that $a^{2} \wedge a=0$, and hence $a=0$ since $a^{2}=a$, which is a contradiction. Thus $M e^{s}=M e^{n-t}$, then $M e^{s+t}=M$ implies $n \mid(s+t)$, and hence $s+t=n$ since $s+t<2 n$. Hence $e^{s} M=M e^{s}$, which contradicts the fact that $1 \leq s<k$ and k is the smallest positive integer satisfying $e^{k} M=M e^{k}$. This proves that $e^{s} M e^{t} \neq M$ for $1 \leq s<k, 1 \leq t<n$. Therefore the sum

$$
\sum_{1 \leq i \leq k, 1 \leq j \leq n} e^{i} M e^{j}
$$

is a direct sum (Exercise 13).
We next show that $1=a+e a e^{n-1}+\ldots+e^{k-1} a e^{n-k+1}$. Since 1 is a sum of disjoint basic elements and $1=a+(1-a)$ implies that $1=e^{i} e^{n-i}=$ $e^{i} a e^{n-i}+e^{i}(1-a) e^{n-i}, 1 \leq i<k$, we have $a, e a e^{n-1}, \ldots, e^{k-1} a e^{n-k+1}$ are all in the sum for 1 (Exercise 14). By condition (2), each basic element in the sum for 1 is equal to $c=e^{s} x e^{t} \leq 1$ for some $0<x \in M$ and $1 \leq s \leq k, 1 \leq t \leq n$. Then $e^{s} x e^{t} e^{s} x e^{t}=e^{s} x e^{t}$ implies that $x e^{s+t} x=x$. Suppose $x e^{v} x=x$ with $0<v<n$. Since $M \cap M e^{v}=\{0\}, x \wedge x e^{v}=0$. If $x \leq a$, then x is an f-element, so $x \wedge x e^{v} x=0$ implies that $x=0$, which is impossible. Hence $a<x$. Since $x=e^{n-s} c e^{n-t}$ is a d-element, $x \wedge x e^{v}=0$ implies that $x^{2} \wedge x e^{v} x=0$, so $x^{2} \wedge x=0$. Then $a=a^{2} \wedge a \leq x^{2} \wedge x=0$, which is a contradiction. Therefore there is no positive integer $v<n$ such that $x e^{v} x=x$. It follows from $x e^{s+t} x=x$ that we must have $s+t=n$, and hence $c=e^{s} x e^{n-s}, 1 \leq s \leq k$ and x is idempotent. From

$$
1=c+(1-c)=e^{s} x e^{n-s}+\left(1-e^{s} x e^{n-s}\right)
$$

and

$$
c \wedge(1-c)=e^{s} x e^{n-s} \wedge\left(1-e^{s} x e^{n-s}\right)=0
$$

we have $1=x+(1-x)$ and $x \wedge(1-x)=0$. Since we also have $1=$ $a+(1-a)$ with $a \wedge(1-a)=0$, we must have $x=a$ since $a, x \in M$. Therefore $c=e^{s} a e^{n-s}, 1 \leq s \leq k$, and hence $1=a+e a e^{n-1}+\ldots+$ $e^{k-1} a e^{n-k+1}$. Then $\left\{a, e a e^{n-1}, \ldots, e^{k-1} a e^{n-k+1}\right\}$ is a disjoint set implies that $e^{i} a e^{n-i} e^{j} a e^{n-j}=0$ for $i \neq j$.

For $1 \leq i \leq k, 1 \leq j \leq k$, define $c_{i j}=e^{i} a e^{n-j}$. It is clear that each $c_{i j}$ is d-element since a is an f-element and e is a d-element, and $\left\{c_{i j} \mid 1 \leq i, j \leq k\right\}$ is a set of $k \times k$ matrix units, that is, $c_{i j} c_{r s}=\delta_{j r} c_{i s}$,
where $\delta_{j r}$ is the Kronecker delta, and $c_{11}+\ldots+c_{k k}=1$ (Exercise 15). Let $T=\left\{x \in R \mid x c_{i j}=c_{i j} x, 1 \leq i, j \leq k\right\}$ be the centralizer of $\left\{c_{i j} \mid 1 \leq i, j \leq\right.$ $k\}$ in R. By Theorem 4.1, R is ℓ-isomorphic to the matrix ℓ-ring $M_{k}(T)$ with the entrywise order. This completes the proof.

For a ring R and $x \in R$, we define $i(x)=\{a \in R \mid a x=x a=a\}$. Clearly $i(x)$ is a subring of R and if R is an algebra over F then $i(x)$ is a subalgebra of R over F.

Theorem 4.8. Let A be a unital finite-dimensional Archimedean ℓ-algebra over a totally ordered field F. Suppose that A contains a positive element e with order $n \geq 2$ and $\operatorname{dim}_{F} i(e)=1$. Then A is ℓ-isomorphic to $M_{k}(F[G])$ as the ℓ-algebra over F with the entrywise order, where $k \mid n, G$ is a finite cyclic group of order n / k, and $F[G]$ is the group ℓ-algebra of G over F with the coordinatewise order.

Proof. We first show conditions in Theorem 4.7 are satisfied and then we determine the ℓ-unital ℓ-ring T in Theorem 4.7. Since A is finitedimensional and Archimedean over F, by Corollary 1.3, A is a finite direct sum of maximal convex totally ordered subspaces over F. Then 1 is a sum of disjoint basic elements, and hence there exists a basic element a such that $a \leq 1$ and $a \wedge(1-a)=0$, that is, condition (1) in Theorem 4.7 is satisfied.

Let $M=a^{\perp \perp}$ and $x=\sum_{i, j=1}^{n} e^{i} a e^{j}$. Then $e x=x e=x$ implies that $x \in$ $i(e)$, so $x=\alpha\left(1+e+\cdots+e^{n-1}\right)$ for some $0<\alpha \in F$ since $\operatorname{dim}_{F} i(e)=1$ and $1+e+\cdots+e^{n-1} \in i(e)$. It follows that $1 \leq \alpha^{-1} x \in \sum_{i, j=1}^{n} e^{i} M e^{j}$, and hence $1 \in \sum_{i, j=1}^{n} e^{i} M e^{j}$, that is, condition (2) in Theorem 4.7 is also satisfied. We note that above arguments have actually proved $A=\sum_{i, j=1}^{n} e^{i} M e^{j}$. Otherwise there is a maximal convex totally ordered subspace N that is not contained in $H=\sum_{i, j=1}^{n} e^{i} M e^{j}$, then $H \cap J=\{0\}$, where $J=\sum_{i, j=1}^{n} e^{i} N e^{j}$ (Exercise 16). On the other hand, by a similar argument we have $1 \in J$, which is a contradiction. Therefore $A=\sum_{i, j=1}^{n} e^{i} M e^{j}$.

Suppose that k is the smallest positive integer with $e^{k} a=a e^{k}$ and $k \geq 2$. By Theorem 4.7, $\left\{c_{i j}=e^{i} a e^{n-j} \mid 1 \leq i, j \leq k\right\}$ is a disjoint set of basic d-elements and a set of $k \times k$ matrix units, and $A \cong M_{k}(T)$ with the entrywise order, where

$$
T=\left\{x \in A \mid x c_{i j}=c_{i j} x, 1 \leq i, j \leq k\right\}
$$

is an ℓ-unital ℓ-ring. Also from the proof of Theorem 4.7, $A=$ $\sum_{1 \leq i \leq k, 1 \leq j \leq n} e^{i} M e^{j}$ is a direct sum as a vector lattice.

We prove that $\operatorname{dim}_{F} M=1$. Let $u, v \in M$ be linearly independent over F. Define $x=\sum_{1 \leq i \leq k, 1 \leq j \leq n} e^{i} u e^{j}$ and $y=\sum_{1 \leq i \leq k, 1 \leq j \leq n}^{n} e^{i} v e^{j}$. If $\alpha x+\beta y=0$ for some $\alpha, \beta \in F$, then

$$
\sum_{1 \leq i \leq k, 1 \leq j \leq n} e^{i}(\alpha u+\beta v) e^{j}=0
$$

and hence $\alpha u+\beta v=0$, so $\alpha=\beta=0$. It follows that x and y are linearly independent. On the other hand, $x, y \in i(e)$ implies that they are linearly dependent since $\operatorname{dim}_{F} i(e)=1$. This contradiction shows that $\operatorname{dim}_{F} M=1$, and hence $M=F a$.

Since $e^{k} a=a e^{k}, e^{k}, e^{2 k}, \cdots, e^{\ell k} \in T$, where $n=\ell k$. We prove that

$$
T=\left\{\alpha_{0}+\alpha_{1} e^{k}+\cdots+\alpha_{\ell-1} e^{(\ell-1) k} \mid \alpha_{i} \in F, 0 \leq i \leq \ell-1\right\}
$$

Suppose that $x \in T$. Since A is a direct sum of $e^{i}(F a) e^{j}, 1 \leq i \leq k, 1 \leq$ $j \leq n$, a direct calculation shows that $x=\sum_{1 \leq i, j \leq k} v_{i j} c_{i j}$, where $v_{i j} \in$ $F+F e^{k}+\cdots+F e^{(\ell-1) k}$, then $\left\{c_{i j}\right\}$ is a set of $k \times k$ matrix units implies that $v_{i j}=0$ if $i \neq j$ and $v_{11}=\cdots=v_{k k}$. Hence

$$
x=v_{11}\left(c_{11}+\cdots+c_{k k}\right)=v_{11} 1=v_{11}
$$

(Exercise 17), so $T=F+F e^{k}+\cdots+F e^{(\ell-1) k}$. For an element $x=$ $\alpha_{0}+\alpha_{1} e^{k}+\cdots+\alpha_{\ell-1} e^{(\ell-1) k}$ in T, it is clear that $x \geq 0$ if and only if each $\alpha_{i} \geq 0$, and hence T is a group ℓ-algebra of a finite cyclic group of order $\ell=n / k$ over F with the coordinatewise order.

If $k=1$, that is, $e a=a e$, then A is ℓ-isomorphic to the group ℓ-algebra $F[G]$ of a cyclic group of order n over F. The verification of this fact is left to the reader (Exercise 78). This completes the proof of Theorem 4.8.

An n-cycle $\left(i_{1} i_{2} \cdots i_{n}\right)$ on the set $\{1, \cdots, n\}$ is a permutation which sends $i_{1} \rightarrow i_{2}, \cdots, i_{n-1} \rightarrow i_{n}$, and $i_{n} \rightarrow i_{1}$. The permutation matrix $e_{i_{1} i_{2}}+\cdots+e_{i_{n-1} i_{n}}+e_{i_{n} i_{1}}$, where $\left(i_{1} i_{2} \cdots i_{n}\right)$ is an n-cycle, is called an n-cycle in matrix ring $M_{n}(R)$ over a unital ring R.

Lemma 4.5. Let T be a unital ring and e be an n-cycle in $M_{n}(T)$. For $x \in M_{n}(T)$, if ex $=x e$, then $x=\alpha_{0} 1+\alpha_{1} e+\cdots+\alpha_{n-1} e^{n-1}$ for some $\alpha_{i} \in T$, where 1 is the identity matrix.

Proof. First we assume that $e=e_{12}+e_{23}+\cdots+e_{n 1}$. Let $x=\left(x_{i j}\right)$. For $1 \leq k \leq n$, a direct calculation shows that

$$
e^{k}=e_{1, k+1}+e_{2, k+2}+\cdots+e_{n-k, n}+\cdots+e_{n, k}
$$

and

$$
x_{1, k}=x_{2, k+1}=\cdots=x_{n-k, n-1}=x_{n-k+1, n}=\cdots=x_{n, k-1}
$$

(Exercise 18), and hence $x=x_{11} 1+x_{12} e+x_{13} e^{2}+\cdots+x_{1 n} e^{n-1}$.
Now suppose that $e^{\prime}=e_{i_{1} i_{2}}+e_{i_{2} i_{3}}+\cdots+e_{i_{n} i_{1}}$. Define $d=e_{1 i_{1}}+$ $e_{2 i_{2}}+\cdots+e_{n i_{n}}$. Then $d^{-1}=e_{i_{1} 1}+e_{i_{2} 2}+\cdots+e_{i_{n} n}$ and $d e^{\prime} d^{-1}=e$. If $x e^{\prime}=e^{\prime} x$, then $\left(d x d^{-1}\right)\left(d e^{\prime} d^{-1}\right)=\left(d e^{\prime} d^{-1}\right)\left(d x d^{-1}\right)$, and hence, by previous argument, there exist $\alpha_{0}, \cdots, \alpha_{n-1} \in T$ such that

$$
\begin{aligned}
d x d^{-1} & =\alpha_{0} 1+\alpha_{1} e+\cdots+\alpha_{n-1} e^{n-1} \\
& =\alpha_{0} 1+\alpha_{1}\left(d e^{\prime} d^{-1}\right)+\cdots+\alpha_{n-1}\left(d e^{\prime} d^{-1}\right)^{n-1} \\
& =d\left(\alpha_{0} 1+\alpha_{1} e^{\prime}+\cdots+\alpha_{n-1}\left(e^{\prime}\right)^{n-1}\right) d^{-1}
\end{aligned}
$$

since each entry in d is either 0 or 1 implies $\alpha d=d \alpha$ for $\alpha \in T$. Therefore $x=\alpha_{0}+\alpha_{1} e^{\prime}+\cdots+\alpha_{n-1}\left(e^{\prime}\right)^{n-1}$.

Theorem 4.9. Let T be a unital totally ordered ring, and $R=M_{n}(T)(n \geq$ 2) be an ℓ-ring and f-bimodule over T with respect to left and right scalar multiplication. Assume that R is a direct sum of convex totally ordered subgroups and contains a positive n-cycle. Then R is ℓ-isomorphic to the ℓ-ring $M_{n}(T)$ with the entrywise order.

Proof. Let e be a positive n-cycle. Since each entry in e is either 1 or 0 , for any $\alpha \in T, \alpha e=e \alpha$. From $1=e^{n}>0,1$ is a sum of disjoint basic elements, so there is a basic element a such that $a \leq 1$ and $a \wedge(1-a)=0$. Hence the condition (1) in Theorem 4.7 is satisfied.

Let $M=a^{\perp \perp}$ and $H=\sum_{i, j=1}^{n} e^{i} M e^{j}$. We claim that $R=H$. If $R \neq H$, then there exists a maximal convex totally ordered subgroup N that is not in the sum of H, and hence $H \cap J=\{0\}$, where $J=\sum_{i, j=1}^{n} e^{i} N e^{j}$. Take $0<x \in N$ and consider $z=\sum_{i, j=1}^{n} e^{i} x e^{j}$. Then $e z=z e=z$, so $z=\alpha\left(1+e+\ldots+e^{n-1}\right)$ for some $0<\alpha \in T$ by Lemma 4.5. On the other hand, if $w=\sum_{i, j=1}^{n} e^{i} a e^{j}$, then $e w=w e=w$, so $w=\beta\left(1+e+\ldots+e^{n-1}\right)$ for some $0<\beta \in T$. Thus $\beta 1 \in H$ and $\alpha 1 \in J$, which implies that $0<\min \{\beta, \alpha\} 1 \in H \cap J$, which is a contradiction. Therefore we must have $R=H=\sum_{i, j=1}^{n} e^{i} M e^{j}$, so $1 \in \sum_{i, j=1}^{n} e^{i} M e^{j}$, and condition (2) in Theorem 4.7 is satisfied.

Suppose that $e^{i} a=a e^{i}$ for some $1 \leq i \leq n-1$, then $R=\sum_{i, j=1}^{n} e^{i} M e^{j}$ implies that e^{i} is in the center of R, which is a contradiction (Exercise 19). Hence n is the smallest positive integer with $e^{n} a=a e^{n}$, then by Theorem 4.7, R is ℓ-isomorphic to the ℓ-ring $M_{n}(S)$ with the entrywise order, where S is the centralizer of $\left\{c_{i j}=e^{i} a e^{n-j} \mid 1 \leq i, j \leq n\right\}$ in R. We show that S consists of all scalar matrices over T.

Let $0<\alpha \in T$. To show that $\alpha 1 \in S$, it is sufficient to show that $(\alpha 1) a=a(\alpha 1)$ since $\alpha 1$ commutes with e. From $1=a+e a e^{n-1}+\ldots+e^{n-1} a e$
and $\alpha 1=1 \alpha$, we have

$$
\alpha a+\alpha e a e^{n-1}+\ldots+\alpha e^{n-1} a e=a \alpha+e a e^{n-1} \alpha+\ldots+e^{n-1} a e \alpha
$$

Since $M_{n}(T)$ is an f-bimodule over $T, a \wedge e^{i} a e^{n-i}=0$ for any $i=1, \ldots, n-1$ implies that $\alpha a \wedge e^{i} a e^{n-i} \alpha=0$, so

$$
\begin{aligned}
\alpha a & =\alpha a \wedge\left(\alpha a+\alpha e a e^{n-1}+\ldots+\alpha e^{n-1} a e\right) \\
& =\alpha a \wedge\left(a \alpha+e a e^{n-1} \alpha+\ldots+e^{n-1} a e \alpha\right) \\
& \leq(\alpha a \wedge a \alpha)+\left(\alpha a \wedge e a e^{n-1} \alpha\right)+\ldots+\left(\alpha a \wedge e^{n-1} a e \alpha\right) \\
& =\alpha a \wedge a \alpha \\
& \leq a \alpha
\end{aligned}
$$

Similarly, $a \alpha \leq \alpha a$, so $\alpha a=a \alpha$. Thus $T 1 \subseteq S$.
Now let $0<x \in S$. Then x commutes with e since

$$
e=e 1=e a+e^{2} a e^{n-1}+\ldots+a e=c_{1 n}+c_{21}+c_{32}+\ldots+c_{n, n-1}
$$

and hence $x=\alpha_{0} 1+\alpha_{1} e+\ldots+\alpha_{n-1} e^{n-1}$ for some $\alpha_{i} \in T, i=0, \ldots, n-1$ by Lemma 4.5. Since $a=c_{n n}, x a=a x$, and hence

$$
\alpha_{0} a+\alpha_{1} e a+\ldots+\alpha_{n-1} e^{n-1} a=\alpha_{0} a+\alpha_{1} a e+\ldots+\alpha_{n-1} a e^{n-1}
$$

implies that $\alpha_{i} e^{i} a=0$ for any $i=1, \cdots, n-1$. Hence $\alpha_{i} a=0$ for $i=$ $1, \cdots, n$ since $e^{n}=1$. We claim that each $\alpha_{i}=0, i=1, \cdots, n$. Suppose that $\alpha_{k} \neq 0$ for some k. We may assume that $\alpha_{k}>0$. Since $a \wedge(1-a)=0$ and $M_{n}(T)$ is an f-bimodule over T, we have $a \wedge \alpha_{k}(1-a)=a \wedge \alpha_{k} 1=0$, and hence $a \wedge 1=0$, which is a contradiction. Thus $\alpha_{i}=0$ for $i=1, \cdots, n$.

Therefore $x=\alpha_{0} 1 \in T 1$. This proves that $S=T 1$, that is, S consists of all the scalar matrices over T. Since for any $\alpha \in T, \alpha \geq 0$ in T if and only if $\alpha 1 \geq 0$ in S, S and T are ℓ-isomorphic ℓ-rings. Therefore $M_{n}(T)$ is ℓ-isomorphic to the ℓ-ring $M_{n}(T)$ with the entrywise order. This completes the proof.

A unital domain R is called a left (right) Ore domain if R can be embedded in a division ring Q such that

$$
Q=\left\{a^{-1} x \mid a, x \in R, a \neq 0\right\}\left(Q=\left\{x a^{-1} \mid a, x \in R, a \neq 0\right\}\right)
$$

The Q is called the classical left (right) quotient ring of R. Theorem 4.9 is true when R is a unital ℓ-simple totally ordered left (right) Ore domain. We will first prove the following result.

Lemma 4.6. Suppose that R is a unital totally ordered ring.
(1) R contains a unique maximal (left, right) ℓ-ideal.
(2) If R is a domain, then the unique maximal left (right) ℓ-ideal of R is a maximal ℓ-ideal.
(3) If R is ℓ-simple, then R is a domain and R and $\{0\}$ are the only left (right) ℓ-ideals of R.

Proof. (1) Since R is unital, by Zorn's Lemma R contains a maximal ℓ-ideal. Suppose that M, N are maximal ideals and $M \neq N$. Then $R=$ $M+N$ implies that $1=x+y$ for some $x \in M$ and $y \in N$. It follows from $1>0$ that $1=|1|=|x+y| \leq|x|+|y|$, and hence $1=a+b$ for some $0 \leq a \leq|x|$ and $0 \leq b \leq|y|$. Hence we have $a \in M$ and $b \in N$. Now that R is totally ordered implies that $a \leq b$ or $b \leq a$, so $1 \leq 2 b$ or $2 a$ implies that $1 \in N$ or $1 \in M$, which is a contradiction. Similarly there is a unique maximal left ℓ-ideal and a unique maximal right ℓ-ideal.
(2) Let I be the unique maximal left ℓ-ideal. Consider the ℓ-ideal $\langle I\rangle$ generated by I. Then

$$
\langle I\rangle=\left\{x \in R| | x \mid \leq a r, a \in I^{+}, r \in R^{+}\right\}
$$

If $\langle I\rangle=R$, then $1 \leq a r$ for some $a \in I^{+}$and $r \in R^{+}$, and hence $r a \leq(r a)^{2}$. Then that R is a totally ordered domain implies $1 \leq r a \in I$, so $1 \in I$, which is a contradiction. Therefore $\langle I\rangle \neq R$, so $\langle I\rangle$ is contained in a maximal left ℓ-ideal by a standard argument using Zorn's Lemma, and hence $\langle I\rangle \subseteq I$. Thus $I=\langle I\rangle$ is an ℓ-ideal.
(3) If R is ℓ-simple, then $\ell-N(R)=\{0\}$, and R is reduced by Theorem 1.28. It follows that R is a domain since R is totally ordered. Let $I \neq\{0\}$ be a left ℓ-ideal of R. Then $\langle I\rangle=R$. By a similar argument in (2), we must have $1 \in I$, so $I=R$.

Corollary 4.3. Let R be a unital ℓ-simple totally ordered left (right) Ore domain and $M_{n}(R)(n \geq 2)$ be an ℓ-ring and f-bimodule over R with respect to left and right scalar multiplication. If $\ell-\operatorname{ring} M_{n}(R)$ contains a positive n-cycle, then it is ℓ-isomorphic to the ℓ-ring $M_{n}(R)$ with the entrywise order.

Proof. Let Q be the classical left quotient ring of R. Then $M_{n}(R) \subseteq$ $M_{n}(Q)$. Consider $M_{n}(R)\left(M_{n}(Q)\right)$ as a left module over $R(Q)$ by left scalar multiplication. Since $M_{n}(Q)$ is an n^{2}-dimensional vector space over the division ring Q and matrices in $M_{n}(R)$ that are linearly independent over R are also linearly independent over Q (Exercise 20), $M_{n}(R)$ has at most n^{2} linearly independent matrices over R. Suppose that $\left\{f_{i} \mid i \in I\right\} \subseteq M_{n}(R)$
is a disjoint set. Then it is linearly independent over R by a similar proof of Theorem 1.13 since R is a domain and $M_{n}(R)$ is a left f-module over R (Exercise 21). Therefore R does not contain any infinite set of disjoint elements, so condition (C) in Theorem 1.15 is satisfied.

We next show that $M_{n}(R)$ contains no maximal convex totally ordered subgroup that is bounded above. Suppose that M is a maximal convex totally ordered subgroup of $M_{n}(R)$ and $0<a \in M_{n}(R)$ such that $x \leq a$ for all $x \in M$. For $0<y \in M, y^{\perp \perp}=M$. Since $M_{n}(R)$ is a left f-module over R, for any $0<\alpha \in R, \alpha y \in y^{\perp \perp}$ implies that $\alpha y \leq a$ for all $0 \leq \alpha \in R$. Thus for all $0<\alpha \in R$,
$\alpha \sum_{i, j=1}^{n} e^{i} y e^{j}=\alpha \beta\left(1+e+\ldots+e^{n-1}\right) \leq \sum_{i, j=1}^{n} e^{i} a e^{j}=\gamma\left(1+e+\ldots+e^{n-1}\right)$, for some $0<\beta, \gamma \in R$. Therefore $\alpha \beta \leq \gamma$ for all $\alpha \in R$. Let I be the left ℓ-ideal generated by β in R. By Lemma 4.6, $I=R$, so $\gamma \leq$ $\delta \beta$ for some $\delta \in R^{+}$, which contradicts with $\alpha \beta \leq \gamma$ for all $\alpha \in R^{+}$. Hence $M_{n}(R)$ has no maximal convex totally ordered subgroup bounded above. By Theorem 1.17, $M_{n}(R)$ is a direct sum of convex totally ordered subgroups, so Theorem 4.9 applies. This completes the proof.

Let's consider two important cases that Corollary 4.3 applies. For a totally ordered subring R of \mathbb{R}, each $0<\alpha \in R$ is less than $k 1$ for some positive integer k. Thus an ℓ-algebra $M_{n}(R)$ over R is an f-bimodule over R, so if $M_{n}(R)$ contains a positive n-cycle, then it is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ with the entrywise order. If R is a totally ordered division ring, then each ℓ-module over R is an f-module, so if $M_{n}(R)$ is an ℓ-ring and ℓ-bimodule over R and contains a positive n-cycle, then $M_{n}(R)$ is ℓ isomorphic to the ℓ-ring $M_{n}(R)$ with the entrywise order.

4.3 Nonzero f-elements in ℓ-rings

For an ℓ-ring R with nonzero f-elements, for instance, an ℓ-unital ℓ-ring, properties of R are affected by $f(R)$. In this section we present some results in this direction. Recall that $f(R)=\{a \in R| | a \mid$ is an f-element of $R\}$. For an ℓ-ring R, let $U_{f}=U_{f}(R)$ be the upper bound of $f(R)$, that is, $U_{f}=\{x \in R| | x \mid \geq a$, for each $a \in f(R)\}$.

Lemma 4.7. Let R be an ℓ-ring and $f(R) \neq 0$ be totally ordered. Then $R=U_{f} \cup\left(f(R) \oplus f(R)^{\perp}\right)$, where the direct sum is regarded as the direct sum of convex ℓ-subgroups, and $U_{f} \cap\left(f(R) \oplus f(R)^{\perp}\right)=\emptyset$.

Proof. Suppose that $a \in R$ and $a \notin U_{f}$. Then there exists an f-element $b>0$ such that $|a| \nsupseteq b$, and hence $|a| \wedge b<b$. Consider $a_{1}=|a|-|a| \wedge b$ and $b_{1}=b-|a| \wedge b$. We have $a_{1} \wedge b_{1}=0$, so $\left(a_{1} \wedge e\right) \wedge b_{1}=0$, where $0<e \in f(R)$. Since $0<b_{1}, a_{1} \wedge e \in f(R)$ and $f(R)$ is totally ordered, we must have $a_{1} \wedge e=0$, that is, $a_{1} \in f(R)^{\perp}$. Thus $|a|=(|a| \wedge b)+a_{1} \in f(R)+f(R)^{\perp}$. It follows from $0 \leq a^{+}, a^{-} \leq|a|$ that $a^{+}, a^{-} \in f(R)+f(R)^{\perp}$, and hence $a=a^{+}-a^{-} \in f(R)+f(R)^{\perp}$. It is clear that $f(R) \cap f(R)^{\perp}=\{0\}$.

Suppose that $x \in U_{f} \cap\left(f(R) \oplus f(R)^{\perp}\right)$. Then $x=x_{1}+y_{1}, x_{1} \in$ $f(R), y_{1} \in f(R)^{\perp}$. Thus $2\left|x_{1}\right| \leq|x| \leq\left|x_{1}\right|+\left|y_{1}\right|$, and hence $x_{1}=0$. Therefore $x \in f(R)^{\perp}$ which implies $f(R)=\{0\}$, which is a contradiction. Therefore we have $U_{f} \cap\left(f(R) \oplus f(R)^{\perp}\right)=\emptyset$.

We provide an application of the decomposition in Lemma 4.7. For an ℓ-ring R, an element e is called f-superunit if e is an f-element and for any $x \in R^{+}, e x \geq x$ and $x e \geq x$.

For a ring B and an element $a \in B$, if $a b=b a=n b$ for some integer n and all $b \in B$, then a is called an n-fier and n is said to have an n-fier a in B. Define $K=\{n \in \mathbb{Z} \mid n$ has an n-fier in $B\}$. Then K is an ideal of \mathbb{Z} (Exercise 22). The ideal K is called the modal ideal of B and its nonnegative generator is called the mode of B.

Lemma 4.8.

(1) If R is an f-ring with mode $k>0$, then R has a unique k-fier $x \geq 0$.
(2) Let R be an ℓ-ring with an f-superunit and $f(R)$ is totally ordered. Then mode of R and the mode of $f(R)$ are the same, and if k is the mode of R, then the k-fier of R is equal to the k-fier of $f(R)$.

Proof. (1) If x, y both are k-fier, then $k x=x y=k y$ implies that $x=y$. Thus there is only one k-fier x. From $x b=b x=k b$ for any $b \in R$ and R is an f-ring, we have $|x| a=a|x|=k a$ for each $a \in R^{+}$, and hence $|x| b=b|x|=k b$ for each $b \in R$. Therefore the uniqueness of x implies that $x=|x| \geq 0$.
(2) Let e be an f-superunit of R, n be the mode of R, and m be the mode of $f(R)$. If x is an m-fier of $f(R)$, then $x a=a x=m a$ for each $a \in f(R)$, especially $x e=e x=m e$. Thus for each $b \in R,(b x) e=(m b) e$, so $b x=m b$ since e is an f-superunit. Similarly $x b=m b$. Therefore $n \mid m$. Now let y be an n-fier in R. We show that $y \in f(R)$. By Lemma 4.7, $R=U_{f} \cup\left(f(R) \oplus f(R)^{\perp}\right)$. If $y \in U_{f}$, then we have $n e=|e y|=e|y| \geq$ $|y| \geq(n+1) e$, which is a contradiction. Thus $y=z+w$ with $z \in f(R)$ and
$w \in f(R)^{\perp}$ implies that $n e=e y=e z+e w$, and hence $e w=0$. Therefore $w=0$ and $y \in f(R)$. Hence $m \mid n$, so $n=m$.

Suppose that k is the mode of R, by the above argument, a k-fier of R is also a k-fier of $f(R)$, so by (1) R has a unique k-fier $x \geq 0$.

Let $\bar{R}=\{(n, r) \mid n \in \mathbb{Z}, r \in R\}$. Then \bar{R} becomes a ring having identity element $(1,0)$ with respect to the coordinatewise addition and the multiplication

$$
(n, r)(m, s)=(n m, n s+m r+r s)
$$

It is well known that $a \rightarrow(0, a)$ is a one-to-one ring homomorphism from R to \bar{R}. So R may be considered as a subring of \bar{R}.

Suppose that $k>0$ is the mode of R and x is the unique k-fier of R. Let $I(k, x)=\{n(k,-x) \mid n \in \mathbb{Z}\}$. Then $I(k, x)$ is an ideal of \bar{R} (Exercise 24). Define $R_{1}=\bar{R} / I(k, x)$ as the quotient ring with identity $\overline{(1,0)}$ and $a \rightarrow \overline{(0, a)}$ from R to R_{1} which is a one-to-one ring homomorphism from R to R_{1}. Hence R can be considered as a subring of R_{1}.

We need the following result in the proof of Theorem 4.10.
Lemma 4.9. Let R be an ℓ-ring with $a \in R$ and $0 \leq e \in f(R)$. Then $|a e+e a|=|a| e+e|a|$.

Proof. \quad Since $a^{+} \wedge a^{-}=0$,

$$
e a^{+} \wedge e a^{-}=e a^{+} \wedge a^{-} e=a^{+} e \wedge a^{-} e=a^{+} e \wedge e a^{-}=0
$$

so $\left(a^{+} e+e a^{+}\right) \wedge\left(a^{-} e+e a^{-}\right)=0$. Thus

$$
\begin{aligned}
|a e+e a| & =\left|a^{+} e-a^{-} e+e a^{+}-e a^{-}\right| \\
& =\left|\left(a^{+} e+e a^{+}\right)-\left(a^{-} e+e a^{-}\right)\right| \\
& =\left(a^{+} e+e a^{+}\right)+\left(a^{-} e+e a^{-}\right) \\
& =|a| e+e|a|
\end{aligned}
$$

Theorem 4.10. Let R be an ℓ-ring with an f-superunit and $f(R)$ be totally ordered. Suppose that R_{1} is defined as above. Then R can be embedded in an ℓ-unital ℓ-rings R_{1} such that $f(R) \subseteq f\left(R_{1}\right)$ and $f\left(R_{1}\right)$ is totally ordered. Moreover if R is ℓ-simple or R is squares positive, so is R_{1}.

Proof. Before we proceed with the proof, we comment that the following proof works for \bar{R} and we leave the verification of it to the reader.

By Lemma 4.7, $R=U_{f} \cup\left(f(R) \oplus f(R)^{\perp}\right)$. Let e be an f-superunit and $A=\{n e+a e \mid n \in \mathbb{Z}, a \in R\}$ be the subring generated by e and $R e$. We
first show that A is an ℓ-subring of R. Let $n e+a e \in A$, where $n \in \mathbb{Z}$ and $a \in R$. We consider two cases.
(1) $a \in f(R) \oplus f(R)^{\perp}$. Suppose that $a=b+c$ with $b \in f(R), c \in f(R)^{\perp}$. Then

$$
(n e+a e)^{+}=(n e+b e+c e)^{+}=(n e+b e)^{+}+(c e)^{+}=(n e+b e)^{+}+c^{+} e
$$

and $(n e+b e)^{+}=n e+b e$ or 0 since $f(R)$ is totally ordered. Therefore $(n e+a e)^{+}=n e+b e+c^{+} e$ or $c^{+} e$, so $(n e+a e)^{+} \in A$.
(2) $a \in U_{f}$. Since $a=a^{+}-a^{-}$and $a^{+} \wedge a^{-}=0$, we must have one of $a^{+}, a^{-} \in U_{f}$, but not both of them (Exercise 23). Suppose that $a^{+} \in U_{f}$. Then $a^{+} \wedge a^{-}=0$ implies that $a^{-} \in f(R)^{\perp}$. Since e is an f-superunit, $n e+a^{+} e \geq n e+a^{+} \geq 0$, and hence
$0 \leq\left(n e+a^{+} e\right) \wedge a^{-} e \leq\left(|n| e+a^{+} e\right) \wedge a^{-} e \leq\left(|n| e \wedge a^{-} e\right)+\left(a^{+} e \wedge a^{-} e\right)=0$, since $a^{-} e \in f(R)^{\perp}$ and $|n| e \in f(R)$. Hence $\left(n e+a^{+} e\right) \wedge a^{-} e=0$ and

$$
(n e+a e)^{+}=\left(n e+a^{+} e-a^{-} e\right)^{+}=n e+a^{+} e \in A
$$

If $a^{-} \in U_{f}$, then $a^{+} \in f(R)^{\perp}$. Since $-n e+a^{-} e \geq-n e+a^{-} \geq 0$,
$0 \leq\left(-n e+a^{-} e\right) \wedge a^{+} e \leq\left(|n| e+a^{-} e\right) \wedge a^{+} e \leq\left(|n| e \wedge a^{+} e\right)+\left(a^{-} e \wedge a^{+} e\right)=0$, so $\left(-n e+a^{-} e\right) \wedge a^{+} e=0$ and

$$
(n e+a e)^{+}=\left(n e+a^{+} e-a^{-} e\right)^{+}=\left(a^{+} e-\left(-n e+a^{-} e\right)\right)^{+}=a^{+} e \in A
$$

Thus in any case, $(n e+a e)^{+} \in A$, and hence A is an ℓ-subring of R.
Define $\varphi: R_{1} \rightarrow A$ by $\varphi(\overline{(n, a)})=n e+a e$. It is left to the reader to check that φ is a well-defined isomorphism between two additive groups of R_{1} and A (Exercise 25). Now we define an element $\overline{(n, a)} \geq 0$ if $\varphi(\overline{(n, a)})=$ $n e+a e \geq 0$ in A. Since A is an ℓ-ring, R_{1} becomes an ℓ-group with respect to its addition, and φ becomes an ℓ-isomorphism of two additive ℓ-groups.

We show that the product of two positive elements of R_{1} is also positive. Suppose that $\overline{(n, a)}, \overline{(m, b)} \geq 0$. Then $n e+a e, m e+b e \geq 0$ in A, and hence e is an f-superunit implies that $n e+e a, m e+e b \geq 0$. Thus

$$
(n e+e a)(m e+b e)=e(n m e+m a e+n b e+a b e) \geq 0
$$

implies that

$$
\varphi(\overline{(n, a)(m, b)})=\varphi(\overline{(n m, m a+n b+a b)})=n m e+(m a+n b+a b) e \geq 0
$$

Hence the product of $\overline{(n, a)}$ and $\overline{(m, b)}$ is positive in R_{1}. Therefore R_{1} is an ℓ-unital ℓ-ring.

We may directly check that an element $\overline{(n, a)} \in R_{1}$ is in $f\left(R_{1}\right)$ if and only if $n e+a e \in f(R)$. Suppose that $\overline{(n, a)} \in R_{1}$ is an f-element, and $x, y \in R$ with $x \wedge y=0$. Then $x e \wedge y e=0$ implies that $\overline{(0, x)} \wedge \overline{(0, y)}=0 \in R_{1}$. Then

$$
\begin{aligned}
\overline{(0, x)(n, a)} \wedge \overline{(0, y)}=0 & \Rightarrow \overline{(0, n x+x a)} \wedge \overline{(0, y)}=0 \\
& \Rightarrow(n x+x a) e \wedge y e=0 \\
& \Rightarrow x(n e+a e) \wedge y=0(e \text { is an } f \text {-superunit })
\end{aligned}
$$

Now we show that $(n e+a e) x \wedge y=0$. From $x \wedge y=0$ and e is an f-element, we have ex $\wedge y=0$, so $\overline{(0, e x)} \wedge \overline{(0, y)}=0$ implies

$$
\begin{aligned}
\overline{(n, a) \overline{(0, e x)} \wedge \overline{(0, y)}=0} & \Rightarrow \overline{(0, n e x+a e x)} \wedge \overline{(0, y)}=0 \\
& \Rightarrow(n e x+a e x) e \wedge y e=0 \\
& \Rightarrow(n e x+a e x) \wedge y=0(e \text { is an } f \text {-superunit }) \\
& \Rightarrow(n e+a e) x \wedge y=0
\end{aligned}
$$

Thus $n e+a e \in f(R)$. Similarly to show that if $n e+a e \in f(R)$, then $\overline{(n, a)} \in f\left(R_{1}\right)$. We leave the verification of it to the reader (Exercise 26).

Now $a \rightarrow \overline{(0, a)}$ is a one-to-one ring homomorphism with $a \geq 0$ in R if and only if $\overline{(0, a)} \geq 0$ in R_{1}. Thus we may consider R as an ℓ-subring of R_{1} and write $R_{1}=\mathbb{Z}+R$. Then $f(R) \subseteq f\left(R_{1}\right)$ and $f\left(R_{1}\right)=\{n+a \mid a \in f(R)\}$ is totally ordered.

Suppose that R is ℓ-simple. For an ℓ-ideal I of R_{1}. That $I \cap R$ is an ℓ-ideal of R implies that $I \cap R=R$ or $I \cap R=\{0\}$. If $I \cap R=R$, then $e \in I$ and $1 \leq e$ implies that $1 \in I$, and hence $I=R_{1}$. If $I \cap R=\{0\}$, then $I R=\{0\}$, and hence $I=\{0\}$ since $e \in R$ is an f-superunit of R. Therefore R_{1} is ℓ-simple.

Finally we suppose that R has squares positive. For $n+a \in R_{1}=\mathbb{Z}+R$, first assume that $a \in U_{f}$. For any $0 \leq m \in \mathbb{Z}, 0 \leq(m e \pm a)^{2}$ and Lemma 4.9 yield

$$
m e|a|+m|a| e=|m e a+m a e| \leq m^{2} e^{2}+a^{2} \leq m|a| e+a^{2}
$$

since $m e \leq|a|$. Hence $m|a| \leq m e|a| \leq a^{2}$. Therefore, for any $n \in \mathbb{Z}$, $(n+a)^{2}=n^{2}+2 n a+a^{2} \geq 0$ in R_{1}. Now suppose that $a=x+y$ with $x \in f(R)$ and $y \in f(R)^{\perp}$. Then

$$
(n+a)^{2}=n^{2}+2 n a+a^{2}=n^{2}+2 n x+2 n y+x^{2}+x y+y x+y^{2}
$$

Since $n+x \in f\left(R_{1}\right), n^{2}+2 n x+x^{2}=(n+x)^{2} \geq 0$. For any $0 \leq d \in f(R)$,

$$
|y| d \leq|y| d+d|y|=|y d+d y| \leq y^{2}+d^{2}
$$

implies that

$$
\begin{aligned}
|y| d & =|y| d \wedge\left(y^{2}+d^{2}\right) \\
& \leq\left(|y| d \wedge y^{2}\right)+\left(|y| d \wedge d^{2}\right) \\
& =\left(|y| d \wedge y^{2}\right)+(|y| \wedge d) d \\
& =|y| d \wedge y^{2} \quad(|y| \wedge d=0) \\
& \leq y^{2}
\end{aligned}
$$

Similarly $d|y| \leq y^{2}$. Hence we have

$$
-6 n y \leq(6 n y) e \leq y^{2},-3 x y \leq y^{2}, \text { and }-3 y x \leq y^{2}
$$

so $-(6 n y+3 x y+3 y x) \leq 3 y^{2}$. Therefore $-(2 n y+x y+y x) \leq y^{2}$. It then follows that

$$
(n+a)^{2}=\left(n^{2}+2 n x+x^{2}\right)+\left(2 n y+x y+y x+y^{2}\right) \geq 0
$$

This completes the proof that R_{1} is squares positive.

Lemma 4.10.

(1) For an ℓ-ring R with $\ell-N(R)=\{0\}$, if $a \in f(R)$ and $a^{2}=0$, then $a=0$.
(2) Let R be an ℓ-unital ℓ-reduced ℓ-ring. For an ℓ-prime ℓ-ideal $P, f(R / P)$ is a totally ordered domain.
(3) For a totally ordered ring, any two (right, left) ℓ-ideals are comparable. For an f-ring and an ℓ-prime ℓ-ideal P, if I, J are ℓ-ideals containing P, then $I \subseteq J$ or $J \subseteq I$.
(4) For an ℓ-ring R with an f-superunit, if $f(R)$ is totally ordered, then R has a unique maximal (right, left) ℓ-ideal.

Proof. (1) Since $f(R)$ is an f-ring, we have $|a|^{2}=\left|a^{2}\right|=0$, so we may assume that $a \geq 0$. For $x \in R^{+},(a x-x a)^{+} \wedge(a x-x a)^{-}=0$ implies that

$$
a x a=a x a \wedge a x a=(a x-x a)^{+} a \wedge a(a x-x a)^{-}=0
$$

since a is an f-element of R. Thus $a R^{+} a=\{0\}$, and hence $a=0$ since $\ell-N(R)=\{0\}$.
(2) Let $\bar{R}=R / P$, and for each $x \in R$ write $\bar{x}=x+P \in R / P$. Suppose that $\bar{a} \wedge \bar{b}=0$ for some $\bar{a}, \bar{b} \in f(\bar{R})$. Then $a \wedge b=c \in P$, and hence $(a-c) \wedge(b-c)=0$. It follows that

$$
((a-c) \wedge 1) \wedge((b-c) \wedge 1)=0
$$

However $(a-c) \wedge 1,(b-c) \wedge 1 \in f(R)$ implies that $((b-c) \wedge 1)((a-c) \wedge 1)=0$, so

$$
[((a-c) \wedge 1) x((b-c) \wedge 1)]^{2}=0 \text { for each } x \in R^{+}
$$

Then that R is ℓ-reduced implies $((a-c) \wedge 1) x((b-c) \wedge 1)=0$ for each $x \in R^{+}$. Therefore in \bar{R}, we have $(\bar{a} \wedge \overline{1}) \bar{x}(\bar{b} \wedge \overline{1})=0$ for each $\bar{x} \in(\bar{R})^{+}$, and hence $\bar{a} \wedge \overline{1}=0$ or $\bar{b} \wedge \overline{1}=0$ since \bar{R} is ℓ-prime. Consequently $\bar{a}=0$ or $\bar{b}=0$ since $\bar{a}, \bar{b} \in f(\bar{R})$. Thus $f(\bar{R})$ is totally ordered (Exercise 1.12). By (1) $f(\bar{R})$ contains no nonzero nilpotent element, then $f(\bar{R})$ is totally ordered implies that it is a domain.
(3) Suppose that R is totally ordered and I, J are ℓ-ideals. If $I \nsubseteq J$, then there exists $0<a \in I \backslash J$, so for any $0 \leq b \in J, b \leq a$. Thus $b \in I$ for each $b \in J^{+}$, and hence $J \subseteq I$.

For an f-ring R, by Theorem $1.27, R / P$ is totally ordered, and hence $I / P \subseteq J / P$ or $J / P \subseteq I / P$. Thus $I \subseteq J$ or $J \subseteq I$.
(4) Let e be an f-superunit of R. By Zorn's Lemma, R has a maximal ℓ-ideal. Suppose that M, N are maximal ℓ-ideals. If $M+N=R=U_{f} \cup$ $\left(f(R) \oplus f(R)^{\perp}\right)$, then $e=x+y$ for some $0 \leq x \in M$ and $0 \leq y \in N$, and hence $x, y \in f(R) \oplus f(R)^{\perp}$ since $M \cap U_{f}=N \cap U_{f}=\emptyset$. Suppose that $x=a+b, y=c+d$ with $a, c \in f(R), b, d \in f(R)^{\perp}$. Then $e=a+c$ and $b+d=0$. Since $M \cap f(R)$ and $N \cap f(R)$ are ℓ-deals of $f(R)$, by (3) they are comparable. Thus $e \in M \cap f(R)$ or $N \cap f(R)$, and hence $M=R$ or $N=R$, which is a contradiction. Consequently $M+N \neq R$, and hence $M=M+N=N$.

Similar argument shows that there exists a unique maximal left ℓ-ideal and a unique maximal right ℓ-ideal.

For a general ℓ-ring, Lemma $4.10(3)$ is not true. For instance, let $R=\mathbb{R}[x, y]$ be the polynomial ℓ-ring in two variables over \mathbb{R} with the coordinatewise order. Then R is a domain and $x R, y R$ are ℓ-ideals that are not comparable.

For an ℓ-ring $R, f(R)$ is called dense if for any nonzero ℓ-ideal $I, I \cap$ $f(R) \neq\{0\}$.

Theorem 4.11. Let R be an ℓ-reduced Archimedean ℓ-ring such that $f(R)$ is dense. Then R is ℓ-isomorphic to a subdirect product of ℓ-simple ℓ-rings with f-superunits.

Proof. By Theorem 1.30, R is a subdirect product of ℓ-domains, and hence R contains ℓ-ideals I_{α} such that $\cap I_{\alpha}=\{0\}$ and each $R_{\alpha}=R / I_{\alpha}$ is
an ℓ-domain. Take $0<a \in f(R)$. Since R is Archimedean, there exists positive integer n such that $n a^{2} \not \leq a$, and hence either $n a^{2} \geq a$ or $n a^{2}$ and a are not comparable. Now $0<a \in f(R)$ implies that $a_{\alpha}=a+I_{\alpha} \in f\left(R_{\alpha}\right)$ for each α (Exercise 27). Since $f\left(R_{\alpha}\right)$ is totally ordered, there is at least one α such that $n a_{\alpha}^{2}>a_{\alpha}$. Then that R_{α} is an ℓ-domain implies that $n a_{\alpha}$ is an f-superunit of R_{α}. Define $\Gamma=\left\{\alpha \mid R_{\alpha}\right.$ has an f-superunit $\}$. The above argument shows $\Gamma \neq \emptyset$. Let $I=\cap I_{\alpha}, \alpha \in \Gamma$. We show that $I=\{0\}$ by showing $I \cap f(R)=\{0\}$. Let $0 \leq e \in I \cap f(R)$ and $b=\left(k e^{2}-e\right)^{+}$, where k is a positive integer. For each $\alpha \in \Gamma, e \in I$ implies that $e_{\alpha}=0$, so $b_{\alpha}=0$. If $b_{\beta} \neq 0$ for some $\beta \notin \Gamma$, then $b_{\beta}=\left(k e_{\beta}^{2}-e_{\beta}\right)^{+}>0$ and $k e_{\beta}^{2}-e_{\beta} \in f\left(R_{\beta}\right)$, which is totally ordered, implies that $k e_{\beta}^{2}-e_{\beta}>0$. It follows that $k e_{\beta}$ is an f-superunit of R_{β}, which contradicts with $\beta \notin \Gamma$. Therefore $b_{\alpha}=0$ for all α, and hence $b=\left(k e^{2}-e\right)^{+}=0$. Consequently $k e^{2} \leq e$ for all positive integer k and $e^{2}=0$ since R is Archimedean, so $e=0$ and $I \cap f(R)=\{0\}$. Hence $I=\{0\}$.

By Lemma 4.10(4), for each $\alpha \in \Gamma, R_{\alpha}$ contains a unique maximal ℓ ideal denoted by M_{α} / I_{α}, where M_{α} is a maximal ℓ-ideal of R. Now R / M_{α} is an ℓ-simple ℓ-ring with f-superunits. Suppose that $M=\cap M_{\alpha}, \alpha \in \Gamma$. We claim that $M=\{0\}$. Let $0 \leq a \in M \cap f(R)$. Suppose that e_{α} is an f-superunit of R_{α} for each $\alpha \in \Gamma$. We have $n e_{\alpha} a_{\alpha} \leq e_{\alpha}$ for any positive integer n since $n e_{\alpha} a_{\alpha} \in M_{\alpha}$ and $n e_{\alpha} a_{\alpha}, e_{\alpha}$ are comparable. Hence $n e_{\alpha} a_{\alpha}^{2} \leq e_{\alpha} a_{\alpha}$, and hence $n a_{\alpha}^{2} \leq a_{\alpha}$ for each $\alpha \in \Gamma$. Therefore $n a^{2} \leq a$ for all positive integer n. Then R is Archimedean implies that $a=0$, and hence $M \cap f(R)=\{0\}$. Thus $M=\{0\}$ and R is a subdirect product of $R / M_{\alpha}, \alpha \in \Gamma$.

The condition that $f(R)$ is dense in Theorem 4.11 cannot be omitted. For instance, in the polynomial ℓ-ring $R=\mathbb{R}[x]$ with the coordinatewise order, $f(R)$ is not dense and $x R$ is the unique maximal ℓ-ideal of R. The following is a direct consequence of Theorem 4.11.

Corollary 4.4. Let R be an ℓ-reduced Archimedean ℓ-ring such that $f(R)$ is dense. If R satisfies descending chain condition on ℓ-ideals, then R is ℓ-isomorphic to a finite direct sum of ℓ-simple ℓ-rings with f-superunits.

Proof. By Theorem 4.11, there are maximal ℓ-ideals M_{α} such that $\cap_{\alpha} M_{\alpha}=\{0\}$. Since R satisfies descending chain condition on ℓ-ideals, similar to Exercise 2.24 , there are finitely many maximal ℓ-ideals M_{1}, \cdots, M_{k} such that $M_{1} \cap \cdots \cap M_{k}=\{0\}$. By the same argument used in the proof of Theorem 2.8, R is ℓ-isomorphic to $R / M_{1} \oplus \cdots \oplus R / M_{k}$.

For an ℓ-reduced f-ring, Corollary 4.4 is true without assuming it is Archimedean, the reader is referred to [Birkhoff and Pierce (1956)] for more details.

Let R be an ℓ-ring. An ℓ-ideal I of R is called an ℓ-annihilator ℓ-ideal if $I=\ell(X)$ and $I=r(Y)$ for some $X, Y \subseteq R$, where

$$
\ell(X)=\{r \in R| | r| | x \mid=0, \forall x \in X\}
$$

and

$$
r(Y)=\{r \in R| | y| | r \mid=0, \forall y \in Y\}
$$

Lemma 4.11. Suppose that R is an ℓ-ring with $\ell-N(R)=\{0\}$. If R satisfies ascending chain condition on ℓ-annihilator ℓ-ideals, then there are a finite number of ℓ-prime ℓ-ideals with zero intersection.

Proof. We first note that for an ℓ-ideal $I, \ell(I)$ and $r(I)$ are ℓ-ideals, and since $\ell-N(R)=\{0\}, \ell(I)=r(I)$ (Exercise 28). We show that each ℓ-annihilator ℓ-ideal contains the product of a finite number of ℓ-prime ℓ ideals. Suppose not, then, by ascending chain condition on ℓ-annihilator ℓ-ideals, there exists a maximal ℓ-annihilator ℓ-ideal I such that I does not contain any product of a finite number of ℓ-prime ℓ-ideals. In particular, I is not ℓ-prime, and hence there are ℓ-ideals J and K such that $J K \subseteq I$ with $J \nsubseteq I$ and $K \nsubseteq I$. Let $A=I+J$ and $B=I+K$ and let $B^{\prime}=r(\ell(I) A)$ and $A^{\prime}=\ell\left(B^{\prime} r(I)\right)$. Then A^{\prime} and B^{\prime} are ℓ-annihilator ℓ-ideal (Exercise 29) properly containing I, and hence A^{\prime} and B^{\prime} contain the product of ℓ prime ℓ-ideals. Since $A^{\prime} B^{\prime} r(I)=\{0\}, A^{\prime} B^{\prime} \subseteq \ell(r(I))=I$, so I contains the product of ℓ-prime ℓ-ideals, which is a contradiction. Then each ℓ annihilator ℓ-ideal contains a product of a finite number of ℓ-prime ℓ-ideals. Since $\ell(R)=\{0\}$ is an ℓ-annihilator ℓ-ideal, there exist ℓ-prime ℓ-ideals $P_{1} \cdots P_{k}=\{0\}$. Then $P_{1} \cap \cdots \cap P_{k}=\{0\}$ since $\ell-N(R)=\{0\}$.

Corollary 4.5. Let R be an ℓ-unital ℓ-reduced Archimedean ℓ-ring such that $f(R)$ is dense. If R satisfies ascending chain condition on ℓ-annihilator ℓ ideals, then R is ℓ-isomorphic to a finite direct sum of ℓ-unital ℓ-simple ℓ-rings.

Proof. By Theorem 4.11, there are maximal ℓ-ideals M_{α} such that $\cap_{\alpha} M_{\alpha}=\{0\}$. By Lemma 4.11, there are ℓ-prime ℓ-ideals P_{1}, \cdots, P_{k} such that $P_{1} \cdots P_{k}=\{0\}$. Each P_{i} is contained in a maximal ℓ-ideal M_{i}, $i=1, \cdots, k$. Let M be a maximal ℓ-ideal of R. Then $P_{j} \subseteq M$ for some j. By Lemma $4.10(2) f\left(R / P_{j}\right)$ is totally ordered, and hence by Lemma
4.10(4), R / P_{j} contains a unique maximal ℓ-ideal, so $M / P_{j}=M_{j} / P_{j}$. Thus we have $M=M_{j}$, that is, R contains only a finite number of maximal ℓ-ideals. Thus there exist maximal ℓ-ideals M_{1}, \cdots, M_{n} such that $M_{1} \cap \cdots \cap M_{n}=\{0\}$, so R is ℓ-isomorphic to a direct sum of ℓ-unital ℓ-simple ℓ-rings $R / M_{1}, \cdots, R / M_{n}$.

Similarly to Corollary 4.4, for an f-ring, Archimedean condition is not necessary in Corollary 4.5 [Anderson (1962)].

An open question on ℓ-rings with squares positive posted by J. Diem asks whether or not an ℓ-prime ℓ-ring with squares positive is an ℓ-domain. The question seems simple, however it is still unsolved. In the following we present some conditions that ensure the assertion true. It is easy to verify that if $R \neq\{0\}$ is an ℓ-ring, then R is an ℓ-domain if and only if R is ℓ-prime and ℓ-reduced (Exercise 30).

Theorem 4.12. Suppose that R is an ℓ-prime ℓ-ring with squares positive.
(1) If R is Archimedean, then R is an ℓ-domain.
(2) If disjoint elements of R commute, then R is an ℓ-domain.
(3) If $f(R) \neq\{0\}$, then R is a domain.
(4) If R contains a nonzero idempotent element that is in the center of R, then R is an ℓ-domain.

Proof. (1) Suppose that $x \in R^{+}$with $x^{2}=0$. By Lemma 3.3, $x R=\{0\}$, so $x=0$ by Lemma 1.26(2). Therefore R is an ℓ-domain.
(2) Suppose that $a \in R^{+}$with $a^{2}=0$. We show that for any $z \in R^{+}$, $a z a=0$, so $a R^{+} a=\{0\}$. Then R is ℓ-prime implies that $a=0$.

If $(a z-z a)^{+}=0$, then $a z \leq z a$, and hence $a z a \leq z a^{2}=0$ implies that $a z a=0$. If $(a z-z a)^{-}=0$, then $a z \geq z a$ implies that $a^{2} z \geq a z a$, so $a z a=0$. In the following we assume that $(a z-z a)^{+} \neq 0$ and $(a z-z a)^{-} \neq 0$.

Since $(a z-z a)^{+} \wedge(a z-z a)^{-}=0$,

$$
(a z-z a)^{+}(a z-z a)^{-}=(a z-z a)^{-}(a z-z a)^{+} \leq(z a)(a z)=0
$$

so $(a z-z a)^{+}(a z-z a)^{-}=0$. Thus for any $y \in R^{+}$,

$$
\left[(a z-z a)^{-} y(a z-z a)^{+}\right]^{2}=0
$$

Then R has squares positive and $a^{2}=0$ imply that $a(a z-z a)^{-} y(a z-z a)^{+}=$ 0 . Since R is ℓ-prime and $(a z-z a)^{+} \neq 0, a(a z-z a)^{-}=0$. We also have $a(a z-z a)^{+} \leq a^{2} z=0$. Therefore

$$
a z a=-a(a z-z a)=a(a z-z a)^{-}-a(a z-z a)^{+}=0 .
$$

Therefore, $a z a=0$ for any $z \in R^{+}$.
(3) By Lemma $4.10(1)$, for any $0<z \in f(R), z^{2} \neq 0$. Let $0<e \in f(R)$ and $x \in R^{+}$with $x^{2}=0$. We show that $x=0$. Suppose that $x \neq 0$. We derive a contradiction. From $(e-x)^{2} \geq 0$, we have $e x+x e \leq e^{2}$. It follows that $x e x \leq x e^{2} \leq e^{3}$, and hence $x e x \in f(R)$. Thus $x e x=0$ by Lemma 4.10 since $(x e x)^{2}=0$, so $(x e)^{2}=0$ and $x e \in f(R)$ further imply that $x e=0$. Similarly $e x=0$.

For any $y, z \in R^{+},(e y x)^{2}=(x z e)^{2}=0$ and R has squares positive, and hence $x z e^{2} y x=0$. Fix z first, since R is ℓ-prime and $x \neq 0, x z e^{2}=0$. Now since $z \in R^{+}$is arbitrary and $x \neq 0$, we must have $e^{2}=0$, which is a contradiction. Therefore for any $x \in R^{+}, x^{2}=0$ implies $x=0$, and hence R is ℓ-reduced. Thus R is an ℓ-domain.

Take $w \in R$ with $w^{2}=0$ and $0<e \in f(R)$. Then $(e \pm w)^{2} \geq 0$ implies that $|w e+e w| \leq e^{2}$. By Lemma 4.9,

$$
|w| e \leq(|w| e+e|w|)=|w e+e w| \leq e^{2}
$$

and hence $|w| e=|w| e \wedge e^{2}=(|w| \wedge e) e$, so $(|w|-|w| \wedge e) e=0$. It follows from that R is an ℓ-domain that $|w|=|w| \wedge e \leq e$. Hence $w \in f(R)$. Consequently $|w|^{2}=\left|w^{2}\right|=0$ since $f(R)$ is an f-ring. Therefore $|w|=0$ and $w=0$, that is, R is reduced. Finally suppose that $a, b \in R$ with $a b=0$. Then $a^{2} b^{2}=0$ implies that $a^{2}=0$ or $b^{2}=0$, and hence $a=0$ or $b=0$. Therefore R is a domain.
(4) Let $e=e^{2} \neq 0$ be in the center of R. We first show that $R e$ is an ℓ-subring of R. Suppose $x \in R^{+}$and $x e=0$. Since $x R e=(x e) R=\{0\}$ and R is ℓ-prime, $x=0$. For $a, b \in R$,

$$
(a e \vee b e) e \geq(a e \vee b e) \text { and }[(a e \vee b e) e-(a e \vee b e)] e=0
$$

By the above argument, $(a e \vee b e) e-(a e \vee b e)=0$, and hence $a e \vee b e \in R e$. Similarly $a e \wedge b e \in R e$. Thus $R e$ is an ℓ-ring with squares positive. We leave it to the reader to check that $R e$ is also an ℓ-prime ℓ-ring (Exercise 31). Since e is the identity element in $R e$, by (3) $R e$ is a domain. Let $x \in R^{+}$with $x^{2}=0$. Then $(x e)^{2}=0$ implies that $x e=0$, and hence $x=0$ by previous argument. Therefore R is ℓ-reduced, so R is an ℓ-domain.

The ℓ-ring in Example 1.5 is a commutative ℓ-ring with squares positive. It contains a nonzero idempotent and contains no nonzero f-element.

Consider polynomial $p(x)=x^{2}$. An ℓ-ring R with squares positive is an ℓ-ring that satisfies $p(a) \geq 0$ for all $a \in R$. We may just call that R is an ℓ-ring with polynomial constraint $p(x) \geq 0$ or $p(x)^{-}=0$. We may also
use polynomials with two variables. For instance, an ℓ-ring with squares positive is an ℓ-ring with the polynomial constraint

$$
f(x, y)=-(x y+y x)+x^{2}+y^{2} \geq 0
$$

That means for any $a, b \in R, f(a, b) \geq 0$.
ℓ-rings and ℓ-algebras with polynomial constraints were first systematically studied by S. Steinberg. Because of introductory nature of the book, we are not going to present general topic on ℓ-rings with polynomial constraints, and the reader is refereed to [Steinberg (2010)] for more detail. The interested reader may begin by reading [Steinberg (1983)] first.

In the following, we present a few examples to show some ideas of generalizing results on ℓ-rings with squares positive to ℓ-rings with more general polynomial constraints.

The key ingredient in the proof of Theorem $4.12(3)$ is stated in the following result.

Lemma 4.12. Let R be an ℓ-prime ℓ-ring with $f(R) \neq\{0\}$. If there exists $0<e \in f(R)$ such that for any $a \in R^{+}$with $a^{2}=0$, ae, ea $\in f(R)$, then R is an ℓ-domain.

Proof. We just need to show that R is ℓ-reduced. Suppose that $a \in R^{+}$ with $a^{2}=0$. Then $(a \wedge a e)^{2}=0$ and $a \wedge a e \in f(R)$ imply that $a \wedge a e=0$ by Lemma $4.10(1)$. Since $e \in f(R)$, $a e \wedge a e=0$, so $a e=0$. Similarly $e a=0$. Take $x \in R^{+}$, then $(e x a)^{2}=(e x a)(e x a)=0$, and hence by previous argument, we have $e^{2} x a=0$. Therefore $e^{2} R^{+} a=\{0\}$. Since R is ℓ-prime and $e^{2} \neq 0$ by Theorem 4.10(1), we must have $a=0$. Hence R is ℓ-reduced, so R is an ℓ-domain.

Let's look at some examples.

Example 4.1.

(1) Let R be an ℓ-prime ℓ-ring with $f(R) \neq\{0\}$. If R satisfies the polynomial constraint

$$
f(x, y)=-(x y+y x)+\left(x^{2 n}+y^{2 n}\right) \geq 0, n \geq 1
$$

then R is an ℓ-domain.
In fact, take $0<e \in f(R)$, and let $a \in R^{+}$and $a^{2}=0$. Then $f(a, e) \geq 0$ implies that $a e+e a \leq e^{2 n}$. Thus $a e, e a \in f(R)$, so R is an ℓ-domain by Lemma 4.12. There are ℓ-rings that satisfy the above polynomial constraint (Exercise 81).
(2) Let R be an ℓ-prime ℓ-ring with $0<e \in f(R)$ in the center of R. If R satisfies $x^{2 n} \geq 0$ for some fixed positive integer n, then R is an ℓ-domain.
Let $a \in R^{+}, a^{2}=0$. Since $e a=a e$, we have

$$
(e-a)^{2 n}=e^{2 n}-(2 n) e^{2 n-1} a \geq 0
$$

so $(2 n) e^{2 n-1} a \leq e^{2 n} \in f(R)$. Thus $(2 n) e^{2 n-1} a \in f(R)$, so by Lemma 4.12, R is an ℓ-domain.
(3) Let R be an ℓ-prime ℓ-ring with $f(R) \neq\{0\}$. If R satisfies $x^{3} \geq 0$ or $x^{3} \leq 0$, that is, for any $a \in R, a^{3} \geq 0$ or $a^{3} \leq 0$, then R is an ℓ-domain. Take $0<e \in f(R)$. Let $a \in R^{+}$with $a^{2}=0$. First we claim that $(e-a)^{3} \leq 0$ is not possible. If $(e-a)^{3} \leq 0$, then

$$
(e-a)^{3}=e^{3}-a e^{2}-e a e-e^{2} a+a e a \leq 0
$$

implies that $e^{3}+a e a \leq a e^{2}+e a e+e^{2} a$. Since $(a \wedge e)^{2}=0$ and $a \wedge e \in f(R), a \wedge e=0$ by Lemma 4.10, so

$$
a e^{2} \wedge e^{3}=0, e a e \wedge e^{3}=0, e^{2} a \wedge e^{3}=0
$$

we must have $e^{3}=0$, which is a contradiction.
Thus we must have $(e-a)^{3} \geq 0$. Then

$$
(e-a)^{3}=e^{3}-a e^{2}-e a e-e^{2} a+a e a \geq 0
$$

implies that $a e^{2}+e a e+e^{2} a \leq e^{3}+a e a$. Similarly

$$
a e^{2} \wedge e^{3}=0, e a e \wedge e^{3}=0, e a \wedge e^{3}=0
$$

so $a e^{2}+e a e+e^{2} a \leq e^{3}+a e a$ implies $a e^{2}+e a e+e^{2} a \leq a e a$. Thus $e a e a \leq a e a^{2}=0$ and aeae $\leq a^{2} e a=0$. Hence $a e^{2}+e a e+e^{2} a \leq e^{3}+a e a$ implies that $a e^{3}, e^{3} a \leq e^{4}$. Therefore $e^{3} a$ and $a e^{3}$ are f-elements, so R must be an ℓ-domain by Lemma 4.12 .

Let R be a unital ℓ-ring with squares positive. An important property of R is that the inverse a^{-1} of a positive invertible element a is also positive since $a^{-1}=a\left(a^{-1}\right)^{2}$. Thus each positive invertible element of R is a d element by Theorem $1.20(2)$. As a direct consequence of this fact, in a lattice-ordered division ring R with squares positive, each positive element is a d-element, that is, R is a d-ring, and hence R is a totally ordered division ring.

For reader's convenience, we present a direct proof for the fact that a lattice-ordered division ring with squares positive must be totally ordered. Let $x \in R$ and $a=x^{+}+1, b=x^{-}+1$. Since $a^{-1}>0$ and $b^{-1}>0$,

$$
0 \leq a^{-1}\left(a x^{+} b \wedge a x^{-} b\right) b^{-1} \leq a^{-1} a x^{+} b b^{-1} \wedge a^{-1} a x^{-} b b^{-1}=x^{+} \wedge x^{-}=0
$$

so $a^{-1}\left(a x^{+} b \wedge a x^{-} b\right) b^{-1}=0$ and $a x^{+} b \wedge a x^{-} b=0$. It follows that

$$
x^{+} x^{-}=x^{+} x^{-} \wedge x^{+} x^{-} \leq a x^{+} b \wedge a x^{-} b=0,
$$

and hence $x^{+} x^{-}=0$. Therefore $x^{+}=0$ or $x^{-}=0$, that is, R is totally ordered.

In 1956, G. Birkhoff and R. Pierce proved that an ℓ-field with squares positive must be totally ordered [Birkhoff and Pierce (1956)]. Their elementary proof didn't use the commutative condition for multiplication. Therefore, as pointed out by S. Steinberg in 1970, G. Birkhoff and R. Pierce have proved that a lattice-ordered division ring with squares positive is totally ordered [Steinberg (1970)], although they didn't precisely state the result. S. Steinberg also generalized this result to ℓ-rings satisfying minimal condition on right (left) ideals as stated in Theorem 4.13. The reader is referred to [Steinberg (1970)] for more details.

Theorem 4.13. Let R be an ℓ-ring with squares positive and an identity element. If R has the minimal condition on right ideals, then R is an f-ring.

As a direct consequence of Theorem 4.13, for an ℓ-prime ℓ-ring R with squares positive and an identity element, if R has the minimal condition on right ideals, then R is totally ordered since R is a domain by Theorem 4.12.

The following result gives the conditions for ℓ-rings with zero ℓ-radical to become an f-ring.

Theorem 4.14. Let R be a nonzero ℓ-ring with $\ell-N(R)=\{0\}$. Then R is an f-ring if and only if $f(R) \neq\{0\}$ and $f(R)^{\perp}=\{0\}$.

Proof. We just need to show if $f(R) \neq\{0\}$ and $f(R)^{\perp}=\{0\}$, then R is an f-ring. We first show that R is ℓ-reduced. Suppose that $x^{2}=0$ for some $x \in R^{+}$. Take $0<e \in f(R)$. Then $(x \wedge e)^{2}=0$ implies $x \wedge e=0$ by Lemma 4.10. Thus $x \in f(R)^{\perp}$, so $x=0$.

Next we claim that R is an almost f-ring. Suppose first that $a \wedge b=0$ with $b \in f(R)$. Since b is an f-element, $a b \wedge b=0$. Thus for any $0<e \in$ $f(R),(a b \wedge e) \wedge b=0$ implies that $b(a b \wedge e)=0$, and hence

$$
0 \leq(a b \wedge e)^{2} \leq a b(a b \wedge e)=0
$$

Thus $(a b \wedge e)^{2}=0$. It follows from Lemma 4.10 that $a b \wedge e=0$, so $a b \in f(R)^{\perp}$. Therefore $a b=0$.

Now consider $x \wedge y=0$ for some $x, y \in R$. Take $0<e \in f(R)$. Let $x_{1}=x-x \wedge e$ and $e_{1}=e-x \wedge e$. Then $y \wedge(x \wedge e)=0$ and previous argument implies that $y(x \wedge e)=0$, so $y e=y e_{1}$. Similarly we have $y e(x \wedge e)=0$, $x_{1} e_{1}=0$ and $e_{1} x_{1}=0$ (Exercise 32). Thus

$$
y e x=y e x_{1}=y e_{1} x_{1}=0
$$

and hence $(x y e)^{2}=0$ implies that $x y e=0$ since R is ℓ-reduced. It follows that $(x y \wedge e)^{2}=0$, so $x y \wedge e=0$, that is, $x y \in f(R)^{\perp}$. Therefore $x y=0$ and R is an almost f-ring. By Theorem $1.28, R$ is an f-ring because of $\ell-N(R)=\{0\}$.

For an ℓ-ring R. An element $a \in R^{+}$is called a weak unit if for any $b \in R^{+}, a \wedge b=0 \Rightarrow b=0$. If a nonzero ℓ-ring R with $\ell-N(R)=\{0\}$ contains a weak unit which is an f-element, then R is an f-ring by Theorem 4.14. However, if $\ell-N(R) \neq\{0\}$, this is not true as shown in Exercise 1.47.

Corollary 4.6. Suppose that R is an Archimedean ℓ-ring. If R contains a weak unit $e \in f(R)$ with $\ell(e)=\{0\}$ or $r(e)=\{0\}$, then R is an f-ring.

Proof. Let $x \in R^{+}$with $x^{2}=0$. Then $(x \wedge e), e \in f(R)$ implies that $(e-n(x \wedge e))^{2} \geq 0$ for any positive integer n. Since $(x \wedge e)^{2}=0$,

$$
n(x \wedge e) e \leq(n(x \wedge e))^{2}+e^{2}=e^{2}
$$

and hence $(x \wedge e) e=0$ since R is Archimedean. It follows from $\ell(e)=\{0\}$ that $x \wedge e=0$, so $x=0$ since e is a weak unit. Therefore R is ℓ-reduced and by Theorem 4.14, R is an f-ring. The proof is similar if $r(e)=\{0\}$.

We study the relation between weak units and equation $x^{+} x^{-}=0$ in ℓ-rings.

Lemma 4.13. Let R be an ℓ-ring.
(1) Suppose there exists a weak unit $e \in f(R)$ with $\ell(e)=\{0\}$ or $r(e)=$ $\{0\}$. If $a \in R^{+}$and $(a \wedge e)^{2}=0$, then $a \leq e$.
(2) Suppose there exists an element $e \in f(R)$ with $\ell(e)=\{0\}$ (or $r(e)=$ $\{0\})$, and for any $a \in R^{+},(a \wedge e)^{2}=0$ implies $a \in f(R)$. Then for any $x \in R, y \in f(R), x \wedge y=0$ implies $x y=0($ or $y x=0)$.

Proof. (1) Since $a \wedge e \leq a \wedge 2 e \leq 2(a \wedge e)$, we have $(a \wedge 2 e)^{2}=0$, and since $a \wedge 2 e, e \in f(R)$ that is an f-ring, we have

$$
(a \wedge 2 e) e \leq(a \wedge 2 e)^{2}+e^{2}=e^{2}
$$

Thus $((a \wedge 2 e) \vee e-e) e=0$. It follows from $\ell(e)=\{0\}$ that $(a \wedge 2 e) \vee e=e$, and hence

$$
((a-e) \wedge e) \vee 0=0 \text { and }((a-e) \vee 0) \wedge e=0
$$

Then e is a weak unit implies that $(a-e) \vee 0=0$. Therefore $a \leq e$.
(2) From $x \wedge y=0$, we have $(x \wedge e) \wedge y=0$, so $(x \wedge e) y=y(x \wedge e)=0$ since they both belong to $f(R)$. Let $x_{1}=x-(x \wedge e)$ and $e_{1}=e-(x \wedge e)$. Then

$$
\begin{aligned}
x_{1} \wedge e_{1}=0 & \Rightarrow e_{1} x_{1} \wedge e_{1}=0 \\
& \Rightarrow\left(e_{1} x_{1} \wedge e\right) \wedge e_{1}=0 \\
& \Rightarrow\left(e_{1} x_{1} \wedge e\right) e_{1}=0 \\
& \Rightarrow\left(e_{1} x_{1} \wedge e\right)^{2}=0 .
\end{aligned}
$$

By the assumption, $e_{1} x_{1} \in f(R)$, and hence $e_{1} x_{1} \wedge y=0$ implies that $y e_{1} x_{1}=0$ and yex $=0$ (Exercise 33). Consequently $x_{1} y e \in f(R)$ since $\left(x_{1} y e\right)^{2}=0$. From that $x_{1} \wedge e_{1}=0$ and $e, y \in f(R)$, we have $x_{1} y e \wedge e_{1}=0$, so x_{1} yee $_{1}=0$ and $x y e^{2}=0$. Therefore $x y=0$ since $\ell(e)=\{0\}$. Similarly if $r(e)=\{0\}$, then $y x=0$.

Theorem 4.15. Suppose that R is an ℓ-ring and $e>0$ is an f-element with $\ell(e)=\{0\}$ or $r(e)=\{0\}$. Then the following statements are equivalent.
(1) For any $x \in R, x^{+} e x^{-}=0$.
(2) e is a weak unit.
(3) For any $a \in R^{+}$, if $(a \wedge e)^{2}=0$, then $a \in f(R)$.

Proof. (1) \Rightarrow (2) Assume that $\ell(e)=\{0\}$. Suppose that $a \wedge e=0$ for some $a \in R$. Let $x=a-e$. Then $x^{+}=a$ and $x^{-}=e$. Thus we have $a e^{2}=0$, so $a=0$ since $\ell(e)=\{0\}$. Therefore e is a weak unit. A similar argument works for $r(e)=\{0\}$.
$(2) \Rightarrow(3)$ By Lemma 4.13(1).
(3) \Rightarrow (1) Suppose $x \wedge y=0$ for some $x, y \in R$ and $r(e)=\{0\}$. Let $x_{1}=x-(x \wedge e)$ and $e_{1}=e-(x \wedge e)$. Then $x_{1} \wedge e_{1}=0$. By Lemma 4.13(2) $e_{1} x_{1}=0$, and hence $\left(x_{1} e_{1}\right)^{2}=0$ and $x_{1} e_{1} \in f(R)$ by the assumption. Since $x_{1} \wedge y=0, x_{1} e_{1} \wedge y=0$ and $x_{1} e_{1} y=0$ by Lemma 4.13(2) again. Thus $x e y=x_{1} e y=x_{1} e_{1} y=0$. We leave it to the reader to verify that it is also true when $\ell(e)=\{0\}$.

Corollary 4.7. Let R be an ℓ-ring and $0<e \in f(R)$ with $\ell(e)=r(e)=$ $\{0\}$. The following statements are equivalent.
(1) $x^{+} x^{-}=0$ for all $x \in R$.
(2) e is a weak unit.
(3) For any $a \in R^{+}$, if $(a \wedge e)^{2}=0$, then $a \in f(R)$.

Proof. (1) $\Rightarrow(2)$ If $x \wedge e=0$, then $x e=0$ and $x=0$ by $\ell(e)=\{0\}$. Hence e is a weak unit.
$(2) \Rightarrow(3)$ By Theorem 4.15.
$(3) \Rightarrow$ (1) Suppose that $x \wedge y=0$. Then $x e y=0$ by Theorem 4.15 , so $(e y x)^{2}=0$ implies that eyx $\in f(R)$ by the assumption. Since $f(R)$ has squares positive, $e^{2}(e y x) \leq e^{4}+(e y x)^{2}=e^{4}$, and hence $e^{3} y x=e^{3} y x \wedge e^{4}=$ $e^{3}(y x \wedge e)$. It follows from $r(e)=\{0\}$ that $y x=y x \wedge e \leq e$. Similarly $y e x=0$ implies that $x y \leq e$. Suppose

$$
x_{1}=x-x \wedge e, e_{1}=e-x \wedge e, y_{1}=y-y \wedge e, e_{2}=e-y \wedge e
$$

Then $x_{1} \wedge e_{1}=y_{1} \wedge e_{2}=0$. By Lemma 4.13, $x_{1} e_{1}=e_{1} x_{1}=y_{1} e_{2}=e_{2} y_{1}=0$. Since $(x \wedge e) y=0, e_{1} x y=e_{1} x_{1} y=0$ and exy $=(x \wedge e) x y \leq x^{2} y$. From $x y \leq e$ and $x e y=0$, we have $x^{2} y^{2}=0$, and hence $e x y^{2} \leq x^{2} y^{2}=0$ and $x y^{2}=0$ by $r(e)=0$. Since $x \wedge(y \wedge e)=0$ implies that $x(y \wedge e)=0$, we have

$$
x y_{1}=x y, x y e_{2}=x y_{1} e_{2}=0, \text { and } x y e=x y(y \wedge e) \leq x y^{2}=0
$$

Hence $x y e=0$ and $x y=0$ by $\ell(e)=0$. This completes the proof.

4.4 Quotient rings of lattice-ordered Ore domains

Let R be a lattice-ordered integral domain and Q be its quotient field. It is still an open question whether or not the lattice order on R can be extended to Q. As an example, consider polynomial ℓ-ring $\mathbb{R}[x]$ with the coordinatewise order. We still don't know if this lattice order can be extended to the field of rational functions over \mathbb{R}. In this section, we provide some conditions to extend lattice orders on R to Q, and more generally we work on lattice-ordered Ore domains.

An arbitrary domain R is called a left (right) Ore domain if for given nonzero elements $x, a \in R, R x \cap R a \neq\{0\}(x R \cap a R \neq\{0\})$. A classical left (right) quotient ring of a domain R is a ring Q which contains R as a subring such that every nonzero element of R is invertible in Q and

$$
Q=\left\{a^{-1} x \mid x, a \in R, a \neq 0\right\} \quad\left(Q=\left\{x a^{-1} \mid x, a \in R, a \neq 0\right\}\right)
$$

Theorem 4.16. For a domain R, R has a classical left (right) quotient ring if and only if R is a left (right) Ore domain.

Proof. " \Rightarrow " Let $x, a \in R$ and $a \neq 0, x \neq 0$. Then $x a^{-1} \in Q$ implies that there exist $y, b \in R$ with $b \neq 0$ such that $b^{-1} y=x a^{-1}$. Then $y \neq 0$. It follows that $b x=y a \neq 0$, that is, $R x \cap R a \neq\{0\}$, so R is a left Ore domain.
" \Leftarrow " Suppose $S=\{a \in R \mid a \neq 0\}$ and consider $R \times S$. Define the relation on the set $R \times S$ by

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \text { if } s_{1} r=s_{2} r^{\prime}, s_{1} s=s_{2} s^{\prime} \text { for some } s_{1}, s_{2} \in S
$$

We show that \sim is an equivalence relation on $R \times S$. Clearly \sim is reflexive and symmetric. Suppose $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ and $\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$. Then there exist $s_{1}, s_{2}, s_{3}, s_{4} \in S$ such that $s_{1} r=s_{2} r^{\prime}, s_{1} s=s_{2} s^{\prime}$ and $s_{3} r^{\prime}=s_{4} r^{\prime \prime}$, $s_{3} s^{\prime}=s_{4} s^{\prime \prime}$. Since R is a left Ore domain, there exist $z_{1}, z_{2} \in S$ such that $z_{1} s_{2}=z_{2} s_{3}$, and hence

$$
z_{1} s_{1} r=z_{1} s_{2} r^{\prime}=z_{2} s_{3} r^{\prime}=z_{2} s_{4} r^{\prime \prime} \text { and } z_{1} s_{1} s=z_{1} s_{2} s^{\prime}=z_{2} s_{3} s^{\prime}=z_{2} s_{4} s^{\prime \prime}
$$

and $z_{1} s_{1} \neq 0, z_{2} s_{4} \neq 0$. Hence $(r, s) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$. Therefore \sim is an equivalence relation on $R \times S$. Let r / s be the equivalence class of (r, s) and $Q=\{r / s \mid r \in R, s \in S\}$.

Define the addition and multiplication in Q as follows.

$$
\begin{aligned}
& r / s+r^{\prime} / s^{\prime}=\left(s_{1} r+s_{2} r^{\prime}\right) / s_{2} s^{\prime}, \text { where } s_{1} s=s_{2} s^{\prime} \text { and } s_{1}, s_{2} \in S \\
& (r / s)\left(r^{\prime} / s^{\prime}\right)=\left(r_{1} r^{\prime}\right) /\left(s_{1} s\right), \text { where } s_{1} r=r_{1} s^{\prime} \text { and } r_{1} \in R, s_{1} \in S
\end{aligned}
$$

We first notice that the definition of the addition is independent of choice of $s_{1}, s_{2} \in S$. Suppose we also have $t_{1} s=t_{2} s^{\prime}$ for some $t_{1}, t_{2} \in S$. By left Ore condition and $s_{1} s, t_{1} s \in S$, we have $w, w^{\prime} \in S$ such that $w\left(s_{1} s\right)=w^{\prime}\left(t_{1} s\right)$, and hence $w\left(s_{2} s^{\prime}\right)=w^{\prime}\left(t_{2} s^{\prime}\right)$. Thus we have $w s_{1}=w^{\prime} t_{1}$ and $w s_{2}=w^{\prime} t_{2}$, so $w\left(s_{1} r+s_{2} r^{\prime}\right)=w^{\prime}\left(t_{1} r+t_{2} r^{\prime}\right)$. It follows that

$$
\left(s_{1} r+s_{2} r^{\prime}, s_{2} s^{\prime}\right) \sim\left(t_{1} r+t_{2} r^{\prime}, t_{2} s^{\prime}\right)
$$

that is,

$$
\left(s_{1} r+s_{2} r^{\prime}\right) / s_{2} s^{\prime}=\left(t_{1} r+t_{2} r^{\prime}\right) / t_{2} s^{\prime}
$$

Similarly the definition of the multiplication is independent of the choice of $r_{1} \in R$ and $s_{1} \in S$. In fact, if $t_{1} r=u_{1} s^{\prime}$ for some $u_{1} \in R, t_{1} \in S$, then, by left Ore condition, $z s_{1}=z^{\prime} t_{1}$ for some $z, z^{\prime} \in S$, and hence $z^{\prime} u_{1} s^{\prime}=$ $z^{\prime} t_{1} r=z s_{1} r=z r_{1} s^{\prime}$. It follows that $z^{\prime} u_{1}=z r_{1}$ and $\left(r_{1} r^{\prime}, s_{1} s\right) \sim\left(u_{1} r^{\prime}, t_{1} s\right)$. Therefore $\left(r_{1} r^{\prime}\right) /\left(s_{1} s\right)=\left(u_{1} r^{\prime}\right) /\left(t_{1} s\right)$.

To see that the addition is well defined, suppose that $r / s=a / b$ and $r^{\prime} / s^{\prime}=c / d$. Then there exist $t_{1}, t_{2}, t_{3}, t_{4} \in S$ such that $t_{1} r=t_{2} a, t_{1} s=t_{2} b$,
and $t_{3} r^{\prime}=t_{4} c, t_{3} s^{\prime}=t_{4} d$. By left Ore condition, there exist $z, z^{\prime} \in S$ such that $z\left(t_{1} s\right)=z^{\prime}\left(t_{3} s^{\prime}\right)$, and hence $z t_{2} b=z^{\prime} t_{4} d$. Hence we have

$$
r / s+r^{\prime} / s^{\prime}=\left(z t_{1} r+z^{\prime} t_{3} r^{\prime}\right) / z^{\prime} t_{3} s^{\prime}=\left(z t_{2} a+z^{\prime} t_{4} c\right) / z^{\prime} t_{4} d=a / b+c / d
$$

We leave it to the reader to verify that the multiplication is also well defined and Q becomes a ring with respect to the operations (Exercise 35). Clearly $0 / s$ is the zero element in Q for any $s \in S$, and s / s is the identity element in Q for any $s \in S$. For any $0 \neq r / s \in Q, r \neq 0$, so s / r is the inverse of r / s, and hence Q is a division ring.

Define $\varphi: R \rightarrow Q$ for any $r \in R, \varphi(r)=(s r) / s$ for any $s \in S$. Clearly φ is a homomorphism between two rings (Exercise 36). Suppose that $\varphi(r)=0 / s$. Then $(s r) / s=0 / s$, so $r=0$, namely, φ is one-to-one. Hence we may identify R with $\varphi(R)$ and consider R as a subring of Q. For any $r / s \in Q, r / s=(s / s s)(s r / s)=\varphi(s)^{-1} \varphi(r)=s^{-1} r$, that is, Q is the classical left quotient ring of R.

Let R be a left Ore domain and an ℓ-ring. We say that its classical left quotient ring Q is an ℓ-ring extension of R if Q can be made into an ℓ-ring such that R is an ℓ-subring of Q.

Theorem 4.17. Let R be a left Ore domain and an ℓ-ring with $f(R) \neq\{0\}$. If for each nonzero element a of $R, R a \cap f(R) \neq\{0\}$, then its classical left quotient ring Q can be made into an ℓ-ring extension of R, and Q is certainly a lattice-ordered division ring. Moreover, if R is Archimedean, then Q is also Archimedean.

Proof. Since R is a domain, $f(R)=\{a \in R| | a \mid$ is an f-element $\}$ is totally ordered. We also notice that for any $x, y \in R, x \neq 0$, there exist z, w with $0<w \in f(R)$ such that $z x=w y$. In fact, by left Ore condition, there exist $z_{1}, z_{2}, z_{2} \neq 0$, such that $z_{1} x=z_{2} y$. Then $z_{2} \neq 0$ implies that $R z_{2} \cap f(R) \neq\{0\}$, and hence there exists z_{3} such that $z_{3} z_{2}=w>0$ and $w \in f(R)$. Let $z=z_{3} z_{1}$. Then we have $z x=w y$.

Suppose that $Q=\left\{a^{-1} b \mid a, b \in R, a \neq 0\right\}$ is the classical left quotient ring of R. For $a \neq 0, R a \cap f(R) \neq\{0\}$ implies that there exists a_{1} such that $a_{1} a=c_{1}>0$ and $c_{1} \in f(R)$. Then $a^{-1} b$ can be written as $a^{-1} b=c_{1}^{-1}\left(a_{1} b\right)$. Thus each element q of Q can be expressed as $q=c^{-1} b$ with $0<c \in f(R)$, $b \in R$. Then we define $q \geq 0$ in Q if $b \geq 0$ in R, that is, define the positive cone of Q as follows:

$$
P=\left\{q \in Q \mid q=c^{-1} b, \text { where } 0<c \in f(R), b \in R^{+}\right\}
$$

We first show that this definition is independent of the representations of elements in Q. Suppose that $c^{-1} b=c_{1}^{-1} b_{1}$ with $b \in R^{+}, 0<c, c_{1} \in f(R)$. We will derive that $b_{1} \in R^{+}$. By the fact proved in the previous paragraph, $w c_{1}=z c$ for some $0<w \in f(R)$ and $0 \neq z \in R$, and hence $w c_{1}=\left|w c_{1}\right|=$ $|z c|=|z| c$ since c is an f-element. It follows that $w b_{1}=|z| c c_{1}^{-1} b_{1}=|z| b \in$ R^{+}, so $w\left(b_{1} \wedge 0\right)=w b_{1} \wedge 0=0$ since w is an f-element. Thus $b_{1} \wedge 0=0$, that is, $b_{1} \geq 0$ in R.

It is routine to check that $P+P \subseteq P, P P \subseteq P$, and $P \cap-P=\{0\}$. We leave the verification of these facts as an exercise (Exercise 37). For $r \in R^{+}, r=c^{-1}(c r)$ for $0<c \in f(R)$, so $r \in P$. Hence $R^{+} \subseteq P$. Now let $q=s^{-1} r \in P \cap R$ with $0<s \in f(R)$. Then $r \in R^{+}$, and hence $s q \in R^{+}$. Since s is an f-element, we must have $q \in R^{+}$. Therefore $R^{+}=P \cap R$.

We show that P is a lattice order on Q. Let $q=c^{-1} b \in Q$ with $0<c \in f(R)$. We claim that $q^{*}=c^{-1} b^{+}=c^{-1}(b \vee 0)$ is the least upper bound of q and 0 in Q. First we show that q^{*} is well-defined.

Suppose we also have $q=d^{-1} e$ with $0<d \in f(R)$ and $e \in R$. Then $w c=z d$ for some $0<w \in f(R)$ and $z \neq 0$, and hence $z>0$ since $z d=|z d|=|z| d$ implies that $z=|z|$. In Q, let $z^{-1}=d(w c)^{-1}=x^{-1} y$ for some $0<x \in f(R)$ and $y \in R$. Then similarly we have $y>0$ in R since $x d=y(w c)$ and $0<x d, 0<w c$ are in $f(R)$, and hence $z^{-1}>0$ in Q. Suppose that $f=e \vee 0$ in R. We show that f is also the least upper bound of e and 0 in Q. Let $q \in Q$ with $q \geq e, 0$. Suppose that $q=r^{-1} s$ with $0<r \in f(R)$ and $s \in R^{+}$. We have

$$
s=r q \geq r e, 0 \Rightarrow s \geq r e \vee 0=r(e \vee 0)=r f
$$

since $r \in f(R)$, and hence $q=r^{-1} s \geq f$ in Q since $r^{-1} \geq 0$ in Q. Therefore $f=e \vee 0$ in Q. We claim that $z f=z e \vee 0$ in R. Clearly $z f \geq z e, 0$. Let $u \in R$ and $u \geq z e, 0$. We have $z^{-1} u \geq e, 0$ since $z^{-1}>0$ in Q, so $z^{-1} u \geq f$ since $f=e \vee 0$ in Q. It follows that $u \geq z f$, and hence $z f=z e \vee 0$. From $q=c^{-1} b=d^{-1} e$, we have $q=(w c)^{-1}(w b)=(z d)^{-1}(z e)$, so $w b=z e$ implies that $w(b \vee 0)=(w b) \vee 0=(z e) \vee 0=z(e \vee 0)$. Hence

$$
c^{-1}(b \vee 0)=(w c)^{-1}(w(b \vee 0))=(z d)^{-1}(z(e \vee 0))=d^{-1}(e \vee 0)
$$

so q^{*} is well defined.
Now let $p=g^{-1} t \in Q$, where $0<g \in f(R), t \in R$, with $p \geq q, 0$ in Q. Then $t \in R^{+}$, and $p-q=g^{-1} t-c^{-1} b \in P$. Thus there exist $z \in R$, $0<w \in f(R)$ such that $z g=w c=e$, so $|z| g=|z g|=w c=e$ since c, g, w are all f-elements. Then $e \in f(R)$ and

$$
p-q=g^{-1} t-c^{-1} b=e^{-1}(|z| t-w b) \in P
$$

implies $|z| t-w b \in R^{+}$. Since $|z| t \geq w b$ and $|z| t \geq 0$ in $R,|z| t \geq w b \vee 0=$ $w(b \vee 0)=w b^{+}$since again w is an f-element of R. Therefore $p-q^{*}=$ $g^{-1} t-c^{-1} b^{+}=e^{-1}\left(|z| t-w b^{+}\right) \in P$, that is, $p \geq q^{*}$ in Q. Hence in Q, $q^{*}=q \vee 0$, and hence P defines a lattice order on Q and (Q, P) becomes an ℓ-ring. For an element $x \in R, x=a^{-1}(a x)$, where $0<a \in f(R)$. Then $x^{*}=a^{-1}(a x)^{+}=a^{-1}\left(a x^{+}\right)=x^{+}$. Therefore Q is an ℓ-ring extension of R.

It is clear that if R is Archimedean, then Q is also Archimedean. We omit the proof and leave the verification to the reader.

Let B be a unital ring and M be a left B-module. Then ${ }_{B} M$ is said to be finite-dimensional over B provided M does not contain the direct sum of an infinite number of nonzero B-submodules of M. Certainly for a vector space over a division ring, this definition coincides with the usual meaning of finite-dimensional vector space.

Theorem 4.18. Let R be an ℓ-unital ℓ-ring and a domain. If ${ }_{f(R)} R$ is finite-dimensional, then R is a left Ore domain and its classical left quotient ring can be made into an ℓ-ring extension of R.

Proof. Since ${ }_{f(R)} R$ is finite-dimensional, ${ }_{R} R$ is also finite-dimensional, that is, R does not contain the direct sum of an infinite number of nonzero left ideals of R. We show that R is a left Ore domain by verifying $R a \cap R b \neq$ $\{0\}$ for any $a, b \in R \backslash\{0\}$.

Suppose that \mathcal{M} is the family of nonzero left ideals I which contains two nonzero left ideals J and H such that $J \cap H=\{0\}$. We claim that not every nonzero left ideal belongs to \mathcal{M}. Suppose not. R is a direct sum of two nonzero left ideals I_{1}, I_{1}^{\prime}, then $I_{1}^{\prime} \in \mathcal{M}$ implies that I_{1}^{\prime} is a direct sum of two nonzero left ideals I_{2}, I_{2}^{\prime}, so R is a direct sum of $I_{1}, I_{2}, I_{2}^{\prime}$. Continuing this process, we get a family of nonzero left ideals $\left\{I_{k}\right\}_{k=1}^{\infty}$ such that R is a direct sum of them, which is a contradiction. Thus there exists at least a nonzero left ideal $J \notin \mathcal{M}$. Take $0 \neq z \in J$. Then $R a z, R b z$ are nonzero left ideals contained in J, and hence $R a z \cap R b z \neq\{0\}$ since $J \notin \mathcal{M}$. Hence there exist $c, d \in R$ such that $c a z=d b z \neq 0$, so $c a=d b \neq 0$. Therefore $R a \cap R b \neq\{0\}$.

Let $0 \neq a \in R$. Since $\sum_{i=1}^{\infty} f(R) a^{i}$ is not a direct sum over $f(R)$, there exist positive integers i_{1}, \cdots, i_{n} and $f_{i_{1}}, \cdots, f_{i_{n}} \in f(R)$ such that

$$
0 \neq f_{i_{1}} a^{i_{1}}+\cdots+f_{i_{n}} a^{i_{n}} \in f(R)
$$

Thus $R a \cap f(R) \neq\{0\}$. Now Theorem 4.17 applies.
The following result gives a sufficient condition such that the quotient field Q of a lattice-ordered integral domain R can be made into an ℓ-ring
extension of R. For an ℓ-unital lattice-ordered integral domain R, R is called algebraic over $f(R)$ if for any $a \in R$, there exists a nonzero polynomial $g(x) \in f(R)[x]$ such that $g(a)=0$.

Theorem 4.19. Let R be an ℓ-unital lattice-ordered integral domain. If R is algebraic over $f(R)$, then the quotient field of R can be made into an ℓ-ring extension of R.

Proof. For $0 \neq a \in R$, there exists a nonzero polynomial $g(x) \in f(R)[x]$ such that $g(a)=0$. Suppose that $g(x)=\alpha_{n} x^{n}+\cdots+\alpha_{1} x+\alpha_{0}$ with $\alpha_{i} \in f(R)$. Then $g(a)=\alpha_{n} a^{n}+\cdots+\alpha_{1} a+\alpha_{0}=0$. We may assume $\alpha_{0} \neq 0$. Then $\alpha_{n} a^{n}+\cdots+\alpha_{1} a=-\alpha_{0} \in R a \cap f(R)$ implies that $R a \cap f(R) \neq\{0\}$. By Theorem 4.17, the quotient field of R can be made into an ℓ-ring extension of R.

Lattice-ordered division rings were first constructed around 1989 by J. Dauns [Dauns (1989)] and R. Redfield [Redfield (1989)] independently. Theorem 4.17 provides us a method to construct lattice-ordered division rings. Let's consider an example. For general construction of Ore domains, the reader is referred to [Lam (1999)].

Example 4.2. Let F be a totally ordered field, and let σ be an orderpreserving injective ring endomorphism of F, that is, σ is an injective endomorphism of F with $\sigma\left(F^{+}\right) \subseteq F^{+}$. Certainly σ is not the identity mapping. Let $R=F[x ; \sigma]$ be the skew polynomial ring over F in one variable x. The elements of R are left polynomials of the form $\sum_{i=0}^{n} a_{i} x^{i}$, where $a_{i} \in F$, with the usual addition, and the multiplication defined by

$$
\left(\sum a_{i} x^{i}\right)\left(\sum b_{j} x^{j}\right)=\sum a_{i} \sigma^{i}\left(b_{j}\right) x^{i+j}
$$

Then R is a noncommutative domain.
We claim that R is a left Ore domain. We begin by noting that Euclidean Division Algorithm is valid in R for one-sided division, that is, if $f(x), g(x)$ are left polynomials in R with $f(x) \neq 0$, then there are unique $q(x)$ and $r(x)$ in R such that

$$
g(x)=q(x) f(x)+r(x), \text { with } r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} f(x)
$$

The verification of this fact is left as an exercise (Exercise 38). Then any left ideal of R is a principle left ideal generated by any polynomial in it with the least degree. Now take $f, g \in R \backslash\{0\}$. If $R f \cap R g=\{0\}$, we get a contradiction. Since $R f+R g$ is a left ideal, $R f+R g=R h$ for some $h \in R$, and hence $h=t f+s g$ and $g=r h$ for some $r, s, t \in R$. It follows that

$$
g=r h=r t f+r s g \Rightarrow(r t) f=(1-r s) g \in R f \cap R g
$$

so $r t f=0$. Thus $t f=0$ and $h=s g \in R g$, and hence $R f \subseteq R h \subseteq R g$. Therefore $R f=\{0\}$, which is contradiction. Hence for any $f, g \in R \backslash\{0\}$, $R f \cap R g \neq\{0\}$, that is, R is a left Ore domain.

Consider the subring $F\left[x^{2} ; \sigma\right]=\left\{\sum_{i=0}^{n} a_{i} x^{2 i} \mid a_{i} \in F\right\}$ of R. Totally order $F\left[x^{2} ; \sigma\right]$ by saying a left polynomial positive if the coefficient of the lowest term is positive in F. Then $F\left[x^{2} ; \sigma\right]$ is a totally ordered domain. Since each element in R can be uniquely expressed as $f+g x$, where f and $g \in F\left[x^{2} ; \sigma\right]$, we may order R by $f+g x \geq 0$ if $f \geq 0$ and $g \geq 0$ in $F\left[x^{2} ; \sigma\right]$. Then it is easily checked that R becomes an ℓ-ring with $f(R)=F\left[x^{2} ; \sigma\right]$ (Exercise 39). Given an element $\sum_{i=0}^{n} a_{i} x^{i} \in R$, we denote $\sum_{i=0}^{n} \sigma\left(a_{i}\right) x^{i}$ by $\sigma\left(\sum_{i=0}^{n} a_{i} x^{i}\right)$. Let $0 \neq a \in R$. We show that $R a \cap F\left[x^{2} ; \sigma\right] \neq\{0\}$. Suppose $a=f+g x$, where f and $g \in F\left[x^{2} ; \sigma\right]$. If $g=0$, then $a=f \in F\left[x^{2} ; \sigma\right]$. If $f=0$, then $x a=x(g x)=\sigma(g) x^{2} \in F\left[x^{2} ; \sigma\right]$. Now suppose that $f \neq 0$ and $g \neq 0$. Then $\sigma(f) \neq 0$. Since $F\left[x^{2} ; \sigma\right]$ is also a left Ore domain, there exist $h \neq 0$ and $k \neq 0$ in $F\left[x^{2} ; \sigma\right]$ such that $h \sigma(f)=k g$. Let $b=-k+h x \in$ $F[x ; \sigma]$. Then

$$
\begin{aligned}
0 & \neq b a \\
& =(-k+h x)(f+g x) \\
& =-k f+h x f-k g x+h x g x \\
& =\left(-k f+h \sigma(g) x^{2}\right)+(h \sigma(f)-k g) x \\
& =\left(-k f+h \sigma(g) x^{2}\right) \in F\left[x^{2} ; \sigma\right] .
\end{aligned}
$$

Thus, $R a \cap f(R) \neq\{0\}$, for any $0 \neq a \in R$, so by Theorem 4.17, the classical left quotient ring of R can be made into an ℓ-ring extension of R.

For the polynomial ℓ-ring $R=\mathbb{R}[x]$ with the entrywise order, $f(R)=$ \mathbb{R} and R is not algebraic over \mathbb{R}, so Theorem 4.19 cannot apply to this situation. In the following we present some thoughts that may be useful in further study of this problem. We notice that ℓ-ring $R=\mathbb{R}[x]$ with the entrywise order is an Archimedean ℓ-ring in which x is a d-element and satisfies condition (C) in Theorem 1.15.

Theorem 4.20. The entrywise order on $R=\mathbb{R}[x]$ cannot be extended to an Archimedean lattice order on its quotient field Q such that x is a d-element of Q and Q satisfies condition (C) in Theorem 1.15.

Proof. Suppose that the lattice order on R can be extended to a lattice order on Q that satisfies all three conditions. We derive a contradiction. We first show that $S=\left\{x^{i} \mid i \in \mathbb{Z}\right\}$ is a basis. Since x is a d-element in
$Q, x^{-1}>0$ by Theorem $1.20(2)$, and hence x^{-1} is also a d-element. It follows that for any $i, j \in \mathbb{Z}, i<j, x^{i} \wedge x^{j}=x^{i}\left(1 \wedge x^{j-i}\right)=0$. Hence S is disjoint. Let $0 \leq a, b \leq x^{i}$ for some $i \in \mathbb{Z}$. By multiplying x^{-i} to each side, we get $0 \leq a x^{-i}, b x^{-i} \leq 1$, so $a x^{-i}, b x^{-i} \in f(Q)$ which is totally ordered. Therefore $a x^{-i}, b x^{-i}$ are comparable and hence a, b are comparable. This proves that x^{i} is a basic element for any $i \in \mathbb{Z}$. Now we show that $S^{\perp}=\{0\}$. Suppose that $0<z \in S^{\perp}$. Since $z \in Q$, there exists $0 \neq w \in R$ such that $z|w|>0$. Let $|w|=\alpha_{n} x^{n}+\cdots+\alpha_{1} x+\alpha_{0} \in R$ with $\alpha_{n} \neq 0$, and $z|w|=\beta_{m} x^{m}+\cdots+\beta_{1} x+\beta_{0} \in R$ with $\beta_{m} \neq 0$. Then $\alpha_{i} \geq 0, i=1, \cdots, n$, and $\beta_{j} \geq 0, j=1, \cdots, m$. It follows from $z \in S^{\perp}$ that $z \wedge x^{m-k}=0$ for $k=0, \cdots, n$, and then that each element in S is a d-element implies $z x^{k} \wedge x^{m}=0, k=0, \cdots, n$. Thus $z\left(\alpha_{k} x^{k}\right) \wedge x^{m}=0$ since R is an f-module over \mathbb{R}. From Theorem 1.5(7),

$$
\begin{aligned}
0 & \leq z|w| \wedge x^{m} \\
& =\left[z\left(\alpha_{n} x^{n}\right)+\cdots+z\left(\alpha_{1} x\right)+z\left(\alpha_{0} 1\right)\right] \wedge x^{m} \\
& \leq z\left(\alpha_{n} x^{n}\right) \wedge x^{m}+\cdots+z\left(\alpha_{1} x\right) \wedge x^{m}+z\left(\alpha_{0} 1\right) \wedge x^{m} \\
& =0 .
\end{aligned}
$$

Hence $z|w| \geq \beta_{m} x^{m}$ and $z|w| \wedge x^{m}=0$ imply that $\beta_{m} x^{m}=0$, which is a contradiction. Therefore $S^{\perp}=\{0\}$, and hence S is a basis, actually S is a d-basis defined in chapter 2 .

We prove that $f(Q)=\mathbb{R}$. Certainly $\mathbb{R} \subseteq f(Q)$. Suppose that $0<q \in$ $f(Q)$. We show that $q \in \mathbb{R}$. Let $q=f(x) / g(x)$ with $g(x) \neq 0$. Then $f(x)=q g(x)$ and $|f(x)|=q|g(x)|$ since q is an f-element. Suppose that

$$
|f(x)|=\alpha_{n} x^{k_{n}}+\cdots+\alpha_{1} x^{k_{1}}, k_{n}>\cdots>k_{1} \geq 0 \text { and } \alpha_{i}>0, i=1, \cdots, n,
$$

and

$$
|g(x)|=\beta_{m} x^{j_{m}}+\cdots+\beta_{1} x^{j_{1}}, j_{m}>\cdots>j_{1} \geq 0 \text { and } \beta_{i}>0, i=1, \cdots, m .
$$

If some $x^{k_{i}}$ is not in the sum for $|g(x)|$, then $x^{k_{i}} \wedge|g(x)|=0$ implies that $x^{k_{i}} \wedge q|g(x)|=0$, so $x^{k_{i}} \wedge|f(x)|$ and $x^{k_{i}}=0$, which is a contradiction. On the other hand, if some $x^{j_{t}}$ is not in the sum for $|f(x)|$, then $x^{j_{t}} \wedge|f(x)|=0$ implies that $x^{j_{t}} \wedge q|g(x)|=0$, and hence $x^{j_{t}} \wedge q \beta_{t} x^{j_{t}}=0$. Hence $q \beta_{t} x^{j_{t}}=0$, which is a contradiction. Therefore we have $k_{n}=j_{m}, \cdots, k_{1}=j_{1}$, so $|g(x)|=\beta_{m} x^{k_{n}}+\cdots+\beta_{1} x^{k_{1}}$ and we have

$$
|f(x)|=\alpha_{n} x^{k_{n}}+\cdots+\alpha_{1} x^{k_{1}}=q|g(x)|=q \beta_{m} x^{k_{n}}+\cdots+q \beta_{1} x^{k_{1}} .
$$

By Exercise 2.7, we must have $\alpha_{n} x^{k_{n}}=q \beta_{m} x^{k_{n}}$ and it follows that $\alpha_{n}=$ $q \beta_{m}$, and hence $q=\left(\beta_{m}^{-1} \alpha_{n}\right) \in \mathbb{R}$. Therefore $f(Q)=\mathbb{R}$.

Since Q is Archimedean, for $0<q \in\left(x^{i}\right)^{\perp \perp}$ there exists positive integer n such that $0<q \leq n x^{i}$, and hence $0<q x^{-i} \leq n$. It follows that $q x^{-i} \in f(Q)=\mathbb{R}$, so $q \in \mathbb{R} x^{i}$. Hence $\left(x^{i}\right)^{\perp \perp}=\mathbb{R} x^{i}$ for each $i \in \mathbb{Z}$.

If Q satisfies condition (C), then Q is a direct sum of $\left(x^{i}\right)^{\perp \perp}=\mathbb{R} x^{i}$ by Theorem 1.17, $i \in \mathbb{Z}$. Then

$$
\frac{1}{1+x}=\alpha_{k_{1}} x^{k_{1}}+\alpha_{k_{2}} x^{k_{2}}+\cdots+\alpha_{k_{n}} x^{k_{n}}, k_{1}<k_{2}<\ldots<k_{n}
$$

so

$$
\begin{aligned}
1 & =(1+x)\left(\alpha_{k_{1}} x^{k_{1}}+\cdots+\alpha_{k_{n}} x^{k_{n}}\right) \\
& =\alpha_{k_{1}} x^{k_{1}}+\cdots+\alpha_{k_{n}} x^{k_{n}}+\alpha_{k_{1}} x^{k_{1}+1}+\cdots+\alpha_{k_{n}} x^{k_{n}+1}
\end{aligned}
$$

Multiplying both sides of the above equation by $x^{-k_{1}}$, we get

$$
\begin{aligned}
x^{-k_{1}}= & \alpha_{k_{1}}+\alpha_{k_{2}} x^{k_{2}-k_{1}}+\cdots+\alpha_{k_{n}} x^{k_{n}-k_{1}} \\
& +\alpha_{k_{1}} x+\alpha_{k_{2}} x^{k_{2}-k_{1}+1}+\cdots+\alpha_{k_{n}} x^{k_{n}-k_{1}+1} \in R=\mathbb{R}[x] .
\end{aligned}
$$

Hence $-k_{1} \geq 0$, so $k_{1} \leq 0$. From

$$
1=\alpha_{k_{1}} x^{k_{1}}+\cdots+\alpha_{k_{n}} x^{k_{n}}+\alpha_{k_{1}} x^{k_{1}+1}+\cdots+\alpha_{k_{n}} x^{k_{n}+1}
$$

we must have $k_{1}=0$. Then the term $x^{k_{n}+1}$ has the exponent $k_{n}+1>0$, which is a contradiction. This completes the proof.

If instead of considering extension of a lattice order, we want to extend a partial order or a total order from an integral domain to its quotient field, the situation becomes relatively easy. For a partially ordered ring R with the positive cone R^{+}and any ring S containing R, we say that the partial order on R can be extended to S if S is a partially ordered ring with the positive cone P such that $R^{+}=R \cap P$. We may also say that $\left(R, R^{+}\right)$can be embedded into (S, P) for this situation. It is clear that for any ring S containing R, S becomes a partially ordered ring with the same positive cone $P=R^{+}$, and $R^{+}=R \cap P$, that is, a partial order on a partially ordered ring R can be extended to any ring containing R. However clearly this extension is not interesting.

The partial order \geq of a partially ordered ring R is called division-closed if $a b>0$ and one of $a, b>0$, then so is the other, for any $a, b \in R$. Clearly a total order is division-closed. For a partially ordered ring R with a division closed partial order, we will just call R as division-closed.

Lemma 4.14. Let R be a partially ordered ring.
(1) Suppose that R is division-closed. If R is unital and $R^{+} \neq\{0\}$, then identity element $1>0$ and inverse of each positive invertible element is positive.
(2) If R is a partially ordered division ring with $R^{+} \neq\{0\}$, then R is division-closed if and only if the inverse of each nonzero positive element is positive.
(3) If R is a lattice-ordered division ring, then R is division-closed if and only if R is a totally ordered division ring.

Proof. (1) Take $0<a \in R$. Then $a=1 a>0$ and $a>0$ implies that $1>0$. Suppose that $0<u \in R$ and u is invertible. Then $u u^{-1}=1>0$ and $u>0$ implies that $u^{-1}>0$.
(2) Suppose that the inverse of each nonzero positive element is positive. If $a b>0$ and $a>0$, for $a, b \in R$, then $b=a^{-1}(a b)>0$ since $a^{-1}>0$. Similarly, $b a>0$ and $a>0$ implies that $b>0$.
(3) If R is a lattice-ordered division ring and division-closed, then each $u>0$ is a d-element by (2) and Theorem $1.20(2)$, that is, R is a d-ring. Then by Theorem $1.28(4), R$ is totally ordered.

Let's look at some examples of partially ordered rings that are divisionclosed.

Example 4.3.

(1) (Exercise 1.43) Let $R=\mathbb{R} \times \mathbb{R}$ be the direct sum of two copies of \mathbb{R}. Define the positive cone $P=\{(a, b) \mid b>0\} \cup\{(0,0)\}$. Then R is a commutative partially ordered ring. If $(a, b)(x, y)=(a x, b y)>0$ and $(a, b)>0$, then $b y>0$ and $b>0$. Thus $y>0$, so $(x, y)>0$. Hence R is division-closed.
(2) Let $R=\mathbb{R}[x]$ be the polynomial ring over \mathbb{R}. For $f(x)=a_{n} x^{n}+\cdots+$ $a_{1} x+a_{0} \in R$ with leading coefficient $a_{n} \neq 0$ and $n \geq 0$. Define the positive cone

$$
P=\left\{f(x) \mid n=4 k, a_{n}>0 \text { or } n=4 k+2, a_{n}<0\right\} \cup\{0\}
$$

Then R is a partially ordered integral domain that is division-closed (Exercise 79). We note that for a nonzero polynomial $f(x)$, if $f(x)$ has an even degree, then $(f(x))^{2}>0$ and if $f(x)$ has an odd degree, then $(f(x))^{2}<0$.

Let R be a partially ordered integral domain and Q be its quotient field. Define the subset P of Q as follows. If $R^{+}=\{0\}, P=\{0\}$. If $R^{+} \neq\{0\}$, then

$$
P=\left\{q \in Q \mid \text { there exist } a, b \in R, a \geq 0, b>0 \text { such that } q=a b^{-1}\right\}
$$

Theorem 4.21. Let R be a partially ordered integral domain and Q be its quotient field, and P be defined as above.
(1) (Q, P) is a partially ordered field which is division-closed and $R^{+} \subseteq$ $R \cap P$.
(2) $\left(R, R^{+}\right)$can be embedded into (Q, P) if and only if $\left(R, R^{+}\right)$is divisionclosed.

Proof. (1) It is clear that $P+P \subseteq P, P P \subseteq P$, and $P \cap-P=\{0\}$. Thus (Q, P) is a partially ordered field. For $0<a \in R$, then $a=a^{2} a^{-1}$ implies that $a \in P$. Thus $R^{+} \subseteq R \cap P$. Let $p, q \in Q$ with $p q>0$ and $p>0$. Then $q p=a b^{-1}, p=a_{1} b_{1}^{-1}$ with $a>0, b>0, a_{1}>0$, and $b_{1}>0$ in R. Hence $q=\left(a b_{1}\right)\left(a_{1} b\right)^{-1}$ with $a b_{1}>0$ and $a_{1} b>0$. Therefore $q>0$ in Q and Q is division-closed.
(2) If $R^{+}=\{0\}$, then $P=\{0\}$ and $R^{+}=R \cap P$. Suppose that $R^{+} \neq\{0\}$ and R is division-closed. If $a \in R \cap P$. Then $a=x y^{-1}$ for some $x, y \in R$ with $x>0, y>0$, so $a y=x>0$ and $y>0$ implies that $a>0$ in R. Thus $R^{+}=R \cap P$. Conversely suppose that $R^{+}=R \cap P$. If $a b>0$ and $a>0$ for some $a, b \in R$. Then $b \in P$, and hence $b \in R^{+}=R \cap P$. Therefore R is division-closed.

Theorem 4.22. Let R be a division-closed ℓ-ring.
(1) If R is unital, then 1 is a weak unit, and hence R is an almost f-ring.
(2) If R is ℓ-reduced, then R is an ℓ-domain.

Proof. (1) We notice that the identity element 1 must be positive since $R^{+} \neq\{0\}$. Suppose that $a>0$ and $1 \wedge a=0$. Then

$$
\left(a^{2}-a+1\right)(a+1)=a^{3}-a^{2}+a+a^{2}-a+1=a^{3}+1>0
$$

and $a+1>0$ implies that $a^{2}-a+1>0$. Thus $a<a^{2}+1$. Since $1 \wedge a=0$,

$$
a=\left(a^{2}+1\right) \wedge a \leq a^{2} \wedge a+1 \wedge a=a^{2} \wedge a \leq a^{2}
$$

So $2 a^{2}>a$ and $a(2 a-1)>0$. By division-closed property, we have $2 a>1$, which is a contradiction. Therefore for any $a \in R^{+}, 1 \wedge a=0$ implies $a=0$, that is, 1 is a weak unit, and hence R is an almost f-ring by Corollary 4.7.
(2) Suppose that R is not an ℓ-domain. Then there exist $a>0, b>0$ such that $a b=0$. Hence $a(a-b)=a^{2}>0$ and $a>0$ implies that $a>b$, so $a b \geq b^{2}=0$, which is a contradiction. Thus R is an ℓ-domain.

As a direct consequence of Theorem 4.22, a unital division-closed latticeordered domain must be a totally ordered domain.

Consider complex field \mathbb{C} with the positive cone $\mathbb{R}^{+}=\{r \in \mathbb{R} \mid r \geq 0\}$. Clearly $\left(\mathbb{C}, \mathbb{R}^{+}\right)$is a division-closed partially ordered field. We show that no division-closed partial order on \mathbb{C} properly contains \mathbb{R}^{+}.

Lemma 4.15. Suppose (\mathbb{C}, P) is a partially ordered ring with the positive cone P that is division-closed and contains \mathbb{R}^{+}. Then $P=\mathbb{R}^{+}$.

Proof. We show that for any $0 \neq z=x+i y \in P, x \geq 0$ in \mathbb{R}. In fact, (\mathbb{C}, P) is division-closed implies that $z^{-1}=\left(x^{2}+y^{2}\right)^{-1}(x-i y) \in P$, and hence $x-i y \in P$. So $2 x \in P$. If $x<0$ in \mathbb{R}, then since $R^{+} \subseteq P$, we will have $-2 x \in P \cap-P$, which is a contradiction. Thus we must have $x \geq 0$ in \mathbb{R}. Therefore, for each $z=x+i y \in P, x \geq 0$ in \mathbb{R}, so $P \subseteq \mathbb{R}$ (Exercise 86). Hence $P=\mathbb{R}^{+}$.

Now let's consider extending total orders. Let R be a totally ordered integral domain and Q be its quotient field. Define the positive cone P as follows:

$$
P=\left\{q \in Q \left\lvert\, q=\frac{a}{b}\right. \text { with } a, 0 \neq b \in R \text { and } a b \in R^{+}\right\}
$$

It is easy to check that P is a well-defined total order to make Q into a totally ordered field and R becomes a totally ordered subring of Q. We leave the verification of these facts as an exercise (Exercise 40).

4.5 Matrix ℓ-algebras over totally ordered integral domains

In this section R denotes a totally ordered integral domain, that is, R is a unital commutative totally ordered domain, and F denotes the totally ordered quotient field of R. Then

$$
F=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R, b \neq 0\right\} \text { and } \frac{a}{b} \geq 0 \text { if } a b \geq 0 \text { in } R .
$$

We establish connection between ℓ-algebras $M_{n}(R)$ over R and the ℓ algebras $M_{n}(F)$ over F so that we are able to generalize results on matrix ℓ-algebras over totally ordered fields to matrix ℓ-algebras over totally ordered integral domains.

Suppose that $M_{n}(R)$ is an ℓ-algebra and an f-module over R. We first extend the lattice order on $M_{n}(R)$ to $M_{n}(F)$. Define

$$
P=\left\{x \in M_{n}(F) \mid \alpha x \in M_{n}(R)^{+} \text {for some } 0<\alpha \in R\right\}
$$

where $M_{n}(R)^{+}=\left\{z \in M_{n}(R) \mid z \geq 0\right\}$.
Theorem 4.23. The P defined above is the positive cone of a lattice order on $M_{n}(F)$ to make it into an ℓ-algebra over F such that $M_{2}(R)^{+}=M_{2}(R) \cap$ P.

Proof. We first notice that the definition of P is actually not depending on α. Suppose that $x \in P$. For any $0<\beta \in R$, if $\beta x \in M_{n}(R)$, then $\beta x \in M_{n}(R)^{+}$. In fact, suppose that $\alpha x \in M_{n}(R)^{+}$for some $0<\alpha \in R$. Then $\alpha(\beta x)=\beta(\alpha x) \in M_{n}(R)^{+}$implies that $\alpha(\beta x \wedge 0)=\alpha(\beta x) \wedge 0=0$ since $M_{n}(R)$ is an f-module over R. Thus $\beta x \wedge 0=0$ since R is a domain, that is, $\beta x \in M_{n}(R)^{+}$.

It is clear that $P+P \subseteq P, P P \subseteq P, P \cap-P=\{0\}$, and $F^{+} P \subseteq P$, so $M_{n}(F)$ becomes a partially ordered algebra over F with the positive cone P (Exercise 41). From Theorem 1.18 the partial order is defined by $x \leq y$ for any $x, y \in M_{n}(F)$ if $y-x \in P$. We show that the partial order " \leq " is a lattice order. Given $x \in M_{n}(F)$, there exists $0<k \in R$ such that $k x \in M_{n}(R)$. Let $k x \vee 0=y$ in $M_{n}(R)$. We show $x \vee 0=k^{-1} y$ in $M_{n}(F)$. Since $k\left(k^{-1} y\right)=y \in M_{n}(R)^{+},\left(k^{-1}\right) y \geq 0$ in $M_{n}(F)$, and since $k\left(k^{-1} y-x\right)=y-k x \in M_{n}(R)^{+}, k^{-1} y \geq x$ in $M_{n}(F)$. So $k^{-1} y$ is an upper bound for x and 0 in $M_{n}(F)$. Let $z \in M_{n}(F)$ and $z \geq x, 0$. Then there exist $0<k_{1} \in R$ and $0<k_{2} \in R$ such that $k_{1} z \in M_{n}(R)^{+}$and $k_{2}(z-x) \in M_{n}(R)^{+}$. So

$$
\begin{aligned}
k_{2}(z-x) \in M_{n}(R)^{+} & \Rightarrow k k_{1} k_{2}(z-x) \in M_{n}(R)^{+} \\
& \Rightarrow k k_{2}\left(k_{1} z\right)-k_{1} k_{2}(k x) \in M_{n}(R)^{+} \\
& \Rightarrow k k_{2}\left(k_{1} z\right) \geq k_{1} k_{2}(k x) \text { in } M_{n}(R)
\end{aligned}
$$

Also $k k_{2}\left(k_{1} z\right) \in M_{n}(R)^{+}$. Hence $k k_{2}\left(k_{1} z\right)$ is an upper bound of $k_{1} k_{2}(k x), 0$ in $M_{n}(R)$. From $k x \vee 0=y$ and that $M_{n}(R)$ is an f-module over R, we have $k_{1} k_{2}(k x) \vee 0=k_{1} k_{2} y$. Thus $k k_{2}\left(k_{1} z\right) \geq k_{1} k_{2} y$ in $M_{n}(R)$, that is, $k_{1} k_{2}(k z-y) \in M_{n}(R)^{+}$. Thus $k z-y \in P$, so $z-k^{-1} y \in P$. Hence $z \geq k^{-1} y$ in $M_{n}(F)$. Therefore $k^{-1} y$ is the least upper bound of x and 0 in $M_{n}(F)$, so $M_{n}(F)$ is an ℓ-algebra over F.

For any $f, g \in M_{n}(R), f \geq g$ in $M_{n}(R)$ if and only if $f \geq g$ in $M_{n}(F)$, so $M_{n}(R)^{+}=M_{n}(R) \cap P$.

In the following, the ℓ-algebra $M_{n}(F)$ defined above is called the order extension of the given ℓ-algebra $M_{n}(R)$. We collect some basic relations between $M_{n}(R)$ and its order extension $M_{n}(F)$ in the following result and leave the proof as an exercise to the reader (Exercise 42).

Lemma 4.16. Let $M_{n}(R)$ be an ℓ-algebra and f-module over R, and let $M_{n}(F)$ be its order extension.
(1) $x \in M_{n}(R)$ is basic in $M_{n}(R)$ if and only if x is basic in $M_{n}(F)$.
(2) A set $S \subseteq M_{n}(R)$ is disjoint in $M_{n}(R)$ if and only if S is disjoint in $M_{n}(F)$.
(3) $x \in M_{n}(R)$ is an f-element (d-element) in $M_{n}(R)$ if and only if x is an f-element (d-element) in $M_{n}(F)$.

We need a well-known result in general ring theory which states that every automorphism of the matrix algebra over a field is inner. This result is generally stated as a consequence of Skolem-Noether theorem (see [Jacobson (1980)]). We present a nice direct proof due to P. Semrl [Semrl (2005)].

Theorem 4.24. Let K be a field. If φ is an automorphism of matrix algebra $M_{n}(K)$, then there exists an invertible matrix $f \in M_{n}(K)$ such that $\varphi(x)=f x f^{-1}$ for every $x \in M_{n}(K)$.

Proof. Let K^{n} denote the n-dimensional column space over K. For any vector $w \in K^{n}, w^{t}$ denotes the transpose of w. Choose and fix $u, v \in K^{n}$ with $u \neq 0, v \neq 0$. Then $0 \neq u v^{t} \in M_{n}(K)$, and hence $\varphi\left(u v^{t}\right) \neq 0$ implies that $\varphi\left(u v^{t}\right) z \neq 0$ for some $z \in K^{n}$. Define $f: K^{n} \rightarrow K^{n}$ by $f(w)=$ $\varphi\left(w v^{t}\right) z, w \in K^{n}$. Clearly the linearity of f follows from the linearity of φ. Hence we may identify f as a matrix in $M_{n}(K)$ with $f w=f(w)$ for any $w \in K^{n}$. For any $x \in M_{n}(K)$ and $w \in K^{n}$ we have

$$
(f x) w=f(x w)=\varphi\left((x w) v^{t}\right) z=\varphi\left(x\left(w v^{t}\right)\right) z=\varphi(x) \varphi\left(w v^{t}\right) z=\varphi(x) f w
$$

so $f x=\varphi(x) f$. For $w \in K^{n}$, since $f u=\varphi\left(u v^{t}\right) z \neq 0$ and φ is subjective, there exists $y \in M_{n}(K)$ such that $w=\varphi(y)(f u)=f(y u)$, that is, f is surjective. Therefore f is invertible and $\varphi(x)=f x f^{-1}$ for every $x \in$ $M_{n}(K)$.

For a square matrix $a, \operatorname{det} a$ denotes the determinant of a.
Theorem 4.25. Given an ℓ-algebra $M_{n}(R)$ which is an f-module over R, let $M_{n}(F)$ be its order extension. Then $M_{n}(R)$ is ℓ-isomorphic to the ℓ algebra $M_{n}(R)$ with the entrywise order if and only if the following two conditions are satisfied.
(1) $M_{n}(F)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(F)$ with the entrywise order,
(2) $M_{n}(R)$ has a basis that spans $M_{n}(R)$ as a module over R.

Proof. " \Rightarrow " Suppose that φ is an ℓ-isomorphism from the ℓ-algebra $M_{n}(R)$ with the entrywise order to $M_{n}(R)$. Then clearly $S=\left\{\varphi\left(e_{i j}\right) \mid 1 \leq\right.$ $i, j \leq n\}$ satisfies condition (2). Since S is a disjoint set of basic elements in $M_{n}(R), S$ is also a disjoint set of basic elements in $M_{n}(F)$ by Lemma
4.16, so S is also a basis for $M_{n}(F)$, and hence S is a vector space basis of the vector space $M_{n}(F)$ over F. Define the mapping from $M_{n}(F)$ with the entrywise order to $M_{n}(F)$ by

$$
\sum_{1 \leq i, j \leq n} q_{i j} e_{i j} \rightarrow \sum_{1 \leq i, j \leq n} q_{i j} \varphi\left(e_{i j}\right), q_{i j} \in F
$$

Then it is clear that $M_{n}(F)$ is ℓ-isomorphic to $M_{n}(F)$ with the entrywise order, so (1) is also true.
" \Leftarrow " Suppose that conditions (1) and (2) are true. We show that $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ with the entrywise order. Recall that $e_{i j}, 1 \leq i, j \leq n$, denote standard matrix units. Since $\left\{e_{i j} \mid 1 \leq\right.$ $i, j \leq n\}$ is a basis for the ℓ-algebra $M_{n}(F)$ with the entrywise order, and a vector space basis of $M_{n}(F)$ over F, by (1) and Theorem 4.24 there exists an invertible matrix $h \in M_{n}(F)$ such that $\left\{h e_{i j} h^{-1} \mid 1 \leq i, j \leq n\right\}$ is a basis for $M_{n}(F)$ over F. By $(2) M_{n}(R)$ has a basis $S=\left\{b_{i j} \mid 1 \leq i, j \leq n\right\}$ and S spans $M_{n}(R)$ over R. Since S is also a disjoint set of basic elements in $M_{n}(F)$ by Lemma $4.16(2)$, each element in S is a scalar product of a positive scalar in F and an element in $\left\{h e_{i j} h^{-1} \mid 1 \leq i, j \leq n\right\}$. Thus without loss of generality, we may just assume that

$$
b_{i j}=t_{i j}\left(h e_{i j} h^{-1}\right), \quad \text { where } 0<t_{i j} \in F, 1 \leq i, j \leq n
$$

Thus $b_{i j} b_{r s}=0$ if $j \neq r$, and $b_{i j} b_{j s}=t_{i j} t_{j s} t_{i s}^{-1} b_{i s}$. Therefore $t_{i j} t_{j s} t_{i s}^{-1} \in R$, $1 \leq i, j, s \leq n$ since S spans $M_{n}(R)$ over R (Exercise 43).

We claim that $\prod_{1 \leq i, j \leq n} t_{i j}$ is a positive unit of R. Form an $n^{2} \times n^{2}$ matrix B in the following fashion. For each $b_{i j}$, form a column vector with n^{2} elements by arranging the second column in $b_{i j}$ under the first column, the third column under the second column, and so forth. Then use the resulting column vector to form the $((i-1) n+j)^{t h}$ column in B. Since $\left\{b_{i j}\right\}$ spans $M_{n}(R)$ over R, each $e_{r s}(1 \leq r, s \leq n)$ in $M_{n}(R)$ can be written as a linear combination of the $b_{i j}$ and hence the identity matrix of $M_{n^{2}}(R)$ can be written as a product $B C$ for some $C \in M_{n^{2}}(R)$. Thus $\operatorname{det} B \in R$ is a unit of R. Now since $b_{i j}=t_{i j} h e_{i j} h^{-1}$, we can also create B by applying a similar process to $t_{i j} h e_{i j} h^{-1}$. For this construction, let $h^{-1}=\left(r_{i j}\right)$ and define column vectors $v_{i j}^{1}, v_{i j}^{2}, \ldots, v_{i j}^{n}$, each with n coordinates, by letting the $k^{t h}$ component in $v_{i j}^{k}$ be $r_{i j}$ and the other components in $v_{i j}^{k}$ be zero. For each $i=1, \ldots, n$, let f_{i} be the $n \times n$ matrix

$$
f_{i}=\left(t_{i 1}\left(\begin{array}{c}
r_{11} \\
\vdots \\
r_{1 n}
\end{array}\right) \cdots t_{i n}\left(\begin{array}{c}
r_{n 1} \\
\vdots \\
r_{n n}
\end{array}\right)\right)
$$

let A and F be the $n^{2} \times n^{2}$ matrices

$$
A=\left(\begin{array}{ccc}
f_{1} & & \\
& \ddots & \\
& & f_{n}
\end{array}\right) \text { and } F=\left(\begin{array}{ccc}
h & & \\
& \ddots & \\
& & \\
& &
\end{array}\right)
$$

and let J be the $n^{2} \times n^{2}$ matrix

$$
J=\left(\begin{array}{ccccccc}
t_{11} v_{11}^{1} & \cdots & t_{1 n} v_{n 1}^{1} & \cdots & t_{n 1} v_{11}^{n} & \cdots & t_{n n} v_{n 1}^{n} \\
t_{11} v_{12}^{1} & \cdots & t_{1 n} v_{n 2}^{1} & \cdots & t_{n 1} v_{12}^{n} & \cdots & t_{n n} v_{n 2}^{n} \\
\vdots & & \vdots & & \vdots & & \vdots \\
t_{11} v_{1 n}^{1} & \cdots & t_{1 n} v_{n n}^{1} & \cdots & t_{n 1} v_{1 n}^{n} & \cdots & t_{n n} v_{n n}^{n}
\end{array}\right)
$$

We leave it to the reader to check that (Exercise 44)

$$
\begin{aligned}
& B=\left(\begin{array}{ccccccc}
t_{11} h v_{11}^{1} & \cdots & t_{1 n} h v_{n 1}^{1} & \cdots & t_{n 1} h v_{11}^{n} & \cdots & t_{n n} h v_{n 1}^{n} \\
t_{11} h v_{12}^{1} & \cdots & t_{1 n} h v_{n 2}^{1} & \cdots & t_{n 1} h v_{12}^{n} & \cdots & t_{n n} h v_{n 2}^{n} \\
\vdots & & \vdots & & \vdots & & \vdots \\
t_{11} h v_{1 n}^{1} & \cdots & t_{1 n} h v_{n n}^{1} & \cdots & t_{n 1} h v_{1 n}^{n} & \cdots & t_{n n} h v_{n n}^{n}
\end{array}\right) \\
& =F J \text {. }
\end{aligned}
$$

Also a series of elementary row operations converts J to A. Then $\operatorname{det}(B)=$ $\operatorname{det}(F J)=\operatorname{det}(F)(\pm \operatorname{det}(A))$. However, for each $1 \leq i \leq n, \operatorname{det}\left(f_{i}\right)=$ $t_{i 1} \cdots t_{i n} \operatorname{det}\left(h^{-1}\right)$ and hence $\operatorname{det}(A)=\left(\prod_{1 \leq i, j \leq n} t_{i j}\right) \operatorname{det}\left(h^{-1}\right)^{n}$. So, since $\operatorname{det}(F)=\operatorname{det}(h)^{n}$,

$$
\operatorname{det}(B)=\operatorname{det}(h)^{n}\left(\prod_{1 \leq i, j \leq n} t_{i j}\right) \operatorname{det}\left(h^{-1}\right)^{n}=\prod_{1 \leq i, j \leq n} t_{i j}
$$

and hence $\prod_{1 \leq i, j \leq n} t_{i j}=\gamma \in R$ is a positive unit. Then we have

$$
\begin{aligned}
\prod_{1 \leq i, j, s \leq n} t_{i j} t_{j s}\left(t_{i s}\right)^{-1} & =\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{s=1}^{n} \frac{t_{i j} t_{j s}}{t_{i s}} \\
& =\prod_{i=1}^{n}\left[\left(\frac{t_{i 1} t_{11}}{t_{i 1}} \ldots \frac{t_{i 1} t_{1 n}}{t_{i n}}\right) \ldots\left(\frac{t_{i n} t_{n 1}}{t_{i 1}} \ldots \frac{t_{i n} t_{n n}}{t_{i n}}\right)\right] \\
& =\prod_{i=1}^{n}\left(\prod_{1 \leq u, v \leq n} t_{u v}\right)=\gamma^{n}
\end{aligned}
$$

Therefore, since each $0<t_{i j} t_{j s}\left(t_{i s}\right)^{-1} \in R$ and γ^{n} is a unit in R, each $t_{i j} t_{j s}\left(t_{i s}\right)^{-1}$ must be a positive unit in R.

For simplicity, let $t_{i j} t_{j s}\left(t_{i s}\right)^{-1}=v_{i j s}, 1 \leq i, j, s \leq n$. We show that there exist positive units $\alpha_{i j}$ in $R, 1 \leq i, j \leq n$, such that $\alpha_{i j} \alpha_{j s}\left(\alpha_{i s}\right)^{-1}=$ $v_{i j s}$. To this end, define

$$
\alpha_{i j}= \begin{cases}t_{i i}\left(=v_{i i s}\right), & \text { if } i=j=1, \ldots, n \\ 1, & \text { if } i=1 \text { and } j=2, \ldots, n \\ v_{1 i j}, & \text { if } 2 \leq i<j \leq n \\ \alpha_{j i}^{-1} t_{i i} v_{i j i}, & \text { if } 1 \leq j<i \leq n\end{cases}
$$

It is clear that each $\alpha_{i j}$ defined above is a positive unit in R. All we need to do is to check that

$$
(*) \alpha_{i j} \alpha_{j s} \alpha_{i s}^{-1}=v_{i j s}, \quad \text { for } 1 \leq i, j, s \leq n
$$

We first note that if $j=i$ or $j=s$, then $\alpha_{i j} \alpha_{j s} \alpha_{i s}^{-1}=\alpha_{j j}=t_{j j}$, so (*) is true. Let's, for instance, check the case $1 \leq s<i<j \leq n$.

If $s=1$, then

$$
\begin{aligned}
\alpha_{i j} \alpha_{j s} \alpha_{i s}^{-1} & =v_{1 i j} \alpha_{s j}^{-1} t_{j j} v_{j s j}\left(\alpha_{s i}^{-1} t_{i i} v_{i s i}\right)^{-1} \\
& =\left(t_{1 i} t_{i j} t_{1 j}^{-1}\right) t_{j j}\left(t_{j s} t_{s j} t_{j j}^{-1}\right) t_{i i}^{-1}\left(t_{i s} t_{s i} t_{i i}^{-1}\right)^{-1} \\
& =t_{i j} t_{j s} t_{i s}^{-1} \\
& =v_{i j s}
\end{aligned}
$$

If $s \geq 2$, then

$$
\begin{aligned}
\alpha_{i j} \alpha_{j s} \alpha_{i s}^{-1}= & v_{1 i j} \alpha_{s j}^{-1} t_{j j} v_{j s j}\left(\alpha_{s i}^{-1} t_{i i} v_{i s i}\right)^{-1} \\
= & \left(t_{1 i} t_{i j} t_{1 j}^{-1}\right)\left(t_{1 s} t_{s j} t_{1 j}^{-1}\right)^{-1} t_{j j}\left(t_{j s} t_{s j} t_{j j}^{-1}\right)\left(t_{1 s} t_{s i} t_{1 i}^{-1}\right) \\
& t_{i i}^{-1}\left(t_{i s} t_{s i} t_{i i}^{-1}\right)^{-1} \\
= & t_{i j} t_{j s} t_{i s}^{-1} \\
= & v_{i j s}
\end{aligned}
$$

The verification of other possible values of i, j, and s is similar. We omit the detail and leave them to the reader.

Now define $\varphi: M_{n}(R) \rightarrow M_{n}(R)$ by

$$
\sum_{1 \leq i, j \leq n} \beta_{i j} b_{i j} \rightarrow \sum_{1 \leq i, j \leq n} \beta_{i j}\left(\alpha_{i j} e_{i j}\right), \beta_{i j} \in R
$$

Since $\varphi\left(b_{i j} b_{r s}\right)=0$ if $j \neq r$, and

$$
\varphi\left(b_{i j} b_{j s}\right)=\varphi\left(v_{i j s} b_{i s}\right)=v_{i j s}\left(\alpha_{i s} e_{i s}\right)=\alpha_{i j} \alpha_{j s} e_{i s}=\varphi\left(b_{i j}\right) \varphi\left(b_{j s}\right)
$$

φ is an ℓ-isomorphism from $M_{n}(R)$ to the ℓ-algebra $M_{n}(R)$ with the entrywise order. This completes the proof.

Here is a brief history on research of matrix ℓ-rings. It seems that matrix ring over totally ordered field with the entrywise order first appeared in [Birkhoff and Pierce (1956)]. In 1966, E. Weinberg studied $M_{2}(\mathbb{Q})$. He claimed that he found all the lattice orders of $M_{2}(\mathbb{Q})$ to make it into an ℓ-ring and only for the entrywise order (up to ℓ-isomorphism), the identity matrix is positive [Weinberg (1966)]. E. Weinberg conjectured that for any ℓ-ring $M_{n}(\mathbb{Q})(n \geq 2)$, if the identity matrix is positive, then it is ℓ-isomorphic to the $M_{n}(\mathbb{Q})$ with the entrywise order. This is so-called Weinberg's conjecture. In 2000, S. Steinberg found and corrected a mistake in E. Weinberg's proof on lattice orders of $M_{2}(\mathbb{Q})$ and showed that the proof is true for 2×2 matrix algebra over any totally ordered field. In 2002, Weinberg's conjecture was solved by P. Wojciechowski and present author not only for \mathbb{Q} but also for any totally ordered subfield of $\mathbb{R}[\mathrm{Ma}$, Wojciechowski (2002)]. Then in 2007, the result was proved to be true for ℓ-ring $M_{n}(\mathbb{Z})$, where \mathbb{Z} is the totally ordered ring of integers. These results and their proofs are presented in [Steinberg (2010)]. In 2013, the result was further proved to be true for any greatest common divisor domain which is a totally ordered subring of \mathbb{R} [Li, Bai and Qiu (2013)]. Using Theorem 4.25 , we are able to show that Weinberg's conjecture is true for certain totally ordered integral domains.

For some totally ordered integral domains, the condition (1) in Theorem 4.25 implies the condition (2). An integral domain R is called a greatest common divisor (GCD) domain if for any $a, b \in R, a$ and b have a greatest common divisor, denoted by $\operatorname{gcd}(a, b)$. We review a few definitions and properties on GCD domains. An element d in an arbitrary integral domain is called a greatest common divisor (gcd) of two elements a, b if $d \mid a$ and $d \mid b$, and for all element e if $e \mid a$ and $e \mid b$, then $e \mid d$. A GCD domain is an integral domain in which any two elements have at least one gcd. We note that if $a=b=0$, then 0 is the gcd. Also two elements a and b may have more than one gcd. In fact, if d is a gcd of a, b, then for any unit $u, d u$ is also a gcd of a, b, and if d, d^{\prime} both are gcd of a, b, then there exists a unit v such that $d=d^{\prime} v$. We use $\operatorname{gcd}(a, b)$ to denote any greatest common divisor of a and b. The following result collects some basic properties of GCD domains that will be used later. The verification of them is left to the reader (Exercise 45).

Lemma 4.17. Let R be a GCD domain and $a, b, c \in R$.
(1) $g c d(a b, a c)=a(g c d(b, c))$.
(2) If $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
(3) If $\operatorname{gcd}(a, b)=1, \operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(4) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Theorem 4.26. Let R be an ℓ-simple totally ordered greatest common divisor domain. Suppose that $M_{n}(R)$ is an ℓ-algebra and an f-module over R. If its order extension $M_{n}(F)$ is ℓ-isomorphic to $M_{n}(F)$ with the entrywise order, then $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ over R with the entrywise order.

Proof. As in the proof of Theorem 4.25, since $M_{n}(F)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(F)$ with the entrywise order, there exists an invertible matrix $h \in M_{n}(F)$ such that $T=\left\{h e_{i j} h^{-1} \mid 1 \leq i, j \leq n\right\}$ is a basis for $M_{n}(F)$ and also a vector space basis of $M_{n}(F)$ over F. By the definition of the order on its order extension $M_{n}(F)$, there exist $0<\alpha_{i j} \in R$ such that $b_{i j}=\alpha_{i j}\left(h e_{i j} h^{-1}\right) \in M_{n}(R)^{+}$. Then the set $\left\{b_{i j} \mid 1 \leq i, j \leq n\right\}$ is a maximal disjoint set of basic elements in $M_{n}(R)$.

We show that $M_{n}(R)$ is Archimedean over R. Suppose that $x, y \in$ $M_{n}(R)^{+}$, and $\alpha x \leq y$ for all $\alpha \in R^{+}$. We claim that $x=0$. Take $0<\frac{a}{b} \in F$. We may assume that $a, b \in R^{+}$. The ℓ-ideal generated by b is equal to R, and hence $a \leq \alpha b$ for some $0<\alpha \in R$. Thus $\frac{a}{b} x \leq \alpha x \leq y$, so for any $0<f \in F, f x \leq y$. It follows from Theorem 1.31 that $M_{n}(F)$ is Archimedean over F since it is well known in general ring theory that $M_{n}(F)$ is simple, and hence $x=0$. Therefore $M_{n}(R)$ is Archimedean over R, then by Theorem 1.17 we have the direct sum

$$
M_{n}(R)=\sum_{1 \leq i, j \leq n} b_{i j}^{\perp \perp} .
$$

Since R is a greatest common divisor domain, we may assume that $0<\beta_{i j} \in R$ is the greatest common divisor of the entries in each matrix $b_{i j}$. Let $a_{i j}=\frac{1}{\beta_{i j}} b_{i j}, 1 \leq i, j \leq n$. We show each $b_{i j}^{\perp \perp}=R a_{i j}, 1 \leq i, j \leq n$. Clearly $R a_{i j} \subseteq b_{i j}^{\perp \perp}$. On the other hand, we know that $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ is a basis in $M_{n}(F)$ that also spans $M_{n}(F)$ as a vector space over F since $M_{n}(F)$ is an n^{2}-dimensional over F and the disjoint set $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ is linearly independent over F by Theorem 1.13. Let $0 \neq x \in b_{i j}^{\perp \perp}$. Then in $M_{n}(F), x=q_{i j} a_{i j}$ for some $0 \neq q_{i j} \in F$. Since x and $a_{i j}$ are both in $M_{n}(R)$, and the greatest common divisor of the entries in matrix $a_{i j}$ is a unit in R, we must have $q_{i j} \in R$, so $b_{i j}^{\perp \perp}=R a_{i j}$ for each $i, j=1, \ldots, n$. Then $M_{n}(R)=\sum_{1 \leq i, j \leq n} R a_{i j}$, so $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}$ is a basis for $M_{n}(R)$ that spans $M_{n}(R)$ as a module over R.

Therefore, condition (2) in Theorem 4.25 is satisfied, and hence $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ with the entrywise order.

Corollary 4.8. Let R be a totally ordered GCD domain that is a subring of \mathbb{R}. If $M_{n}(R)$ is an ℓ-algebra over R such that identity matrix is positive, then $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ with the entrywise order.

Proof. Let $F \subseteq \mathbb{R}$ be the totally ordered quotient field of R and $M_{n}(F)$ be the order extension of $M_{n}(R)$. Then the identity matrix is also positive in $M_{n}(F)$, so $M_{n}(F)$ is ℓ-isomorphic to the ℓ-algebra over F with the entrywise order [Ma, Wojciechowski (2002)]. By Theorem 4.26, we just need to show that R is ℓ-simple and $M_{n}(R)$ is an f-module over R. Since R is Archimedean, R is ℓ-simple. For any $0<\alpha \in R$, if $x \wedge y=0$ for some $x, y \in M_{n}(R)$, then $\alpha x \wedge y \leq n x \wedge y$ for some positive integer n implies that $\alpha x \wedge y=0$. Thus $M_{n}(R)$ is an f-module over R.

An integral domain is called a local domain if it contains a unique maximal ideal. For examples of local domains, we refer the reader to [Lam (2001)]. We show that the result in Corollary 4.8 is true for matrix ℓ algebras over local domains. First we review a few definitions and results from general ring theory whose proofs are omitted.

Let R be a unital ring and M be a left R-module. A subset X of M is called linearly independent provided that for any distinct elements $x_{1}, \cdots, x_{n} \in X$ and $r_{1}, \cdots, r_{n} \in R$,

$$
r_{1} x_{1}+\cdots+r_{n} x_{n}=0 \Rightarrow r_{i}=0, i=1, \cdots, n
$$

A nonempty subset X of left R-module M is called a module basis of M over R if X is linearly independent and each element in M is a linear combination of elements in X, that is, for any $a \in M, a=s_{1} u_{1}+\cdots+s_{t} u_{t}$, where $u_{i} \in M$ and $s_{i} \in R$. A left R-module M is called a free R-module if it contains a nonempty module basis. Generally two module bases of a free R-module may have different cardinality. However if R is commutative, then any two module bases of a free R-module have the same cardinality [Hungerford (1974)]. In this case the cardinal number of any module basis of a free R-module is called the rank or dimension.

An R-module P over a unital ring is called projective if it is a direct summand of a free R-module, that is, there is a free R-module F and an R-module M such that $F \cong P \oplus M$. For a unital ring R, each free R-module over R is projective, however a projective R-module may not be a free R module [Hungerford (1974)]. I. Kaplansky proved that a projective module
over a unital local ring R (even R is not commutative) is free [Kaplansky (1958)].

Theorem 4.27. Let R be an ℓ-simple totally ordered local domain. Suppose that $M_{n}(R)$ is an ℓ-algebra and an f-module over R. If its order extension $M_{n}(F)$ is ℓ-isomorphic to $M_{n}(F)$ with the entrywise order, then $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ over R with the entrywise order.

Proof. Similar to the proof of Theorem 4.26, we have the direct sum

$$
M_{n}(R)=\sum_{1 \leq i, j \leq n} b_{i j}^{\perp \perp}
$$

where $\left\{b_{i j} \mid 1 \leq i, j \leq n\right\}$ is a basis of $M_{n}(R)$. Since $M_{n}(R)$ is a free R-module, each R-module $b_{i j}^{\perp \perp}$ is projective, so that R is local implies that each $b_{i j}^{\perp \perp}$ is a free R-module. Since $M_{n}(R)$ has rank n^{2} over R, each of its n^{2} summands must have rank 1 , and hence each $b_{i j}^{\perp \perp}=R s_{i j}$ for some $0<s_{i j} \in M_{n}(R)$. Hence $\left\{s_{i j} \mid 1 \leq i, j \leq n\right\}$ is a basis which spans $M_{n}(R)$ as an R-module. Therefore condition (2) in Theorem 4.25 is satisfied, and hence $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ over R with the entrywise order.

The proof of the following result is similar to that of Corollary 4.9, and hence is omitted.

Corollary 4.9. Let R be a totally ordered local domain that is a subring of \mathbb{R}. If $M_{n}(R)$ is an ℓ-algebra over R such that identity matrix is positive, then $M_{n}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{n}(R)$ with the entrywise order.

For the remainder of this section, we determine lattice orders on $M_{2}(R)$ to make it into an ℓ-algebra over R, where R is a GCD domain. We first consider lattice orders on $M_{2}(F)$, where F is a totally ordered field, by using the idea of invariant cones. We need some preparations on invariant cones first.

Let $F^{2}=F \oplus F$ be the 2 -dimensional vector space over F. Each vector in F^{2} is written as a column vector. A cone in F^{2} is the positive cone of a partially ordered vector space F^{2} over F. Let P be the positive cone of an ℓ-algebra $M_{2}(F)$ over F. A cone O in F^{2} is said to be a P-invariant cone if for every $f \in P, f O \subseteq O$, where $f O=\{f v \mid v \in O\}$. If $O \neq\{0\}$, then O is called a nontrivial P-invariant cone. As an example, for the coordinatewise order on F^{2}, the cone $F^{+}+F^{+}$is $M_{2}\left(F^{+}\right)$-invariant, where $M_{2}\left(F^{+}\right)$is the positive cone of the entrywise order on $M_{2}(F)$.

For a subset K of F^{2}, define

$$
\operatorname{cone}_{F}(K)=\left\{\sum \alpha_{i} v_{i} \mid \alpha_{i} \in F^{+}, v_{i} \in K\right\}
$$

where the sum is certainly a finite sum. It is easily verified that cone $F_{F}(K)$ is closed under the addition of F^{2} and positive scalar multiplication (Exercise 46). If a cone $O=\operatorname{cone}_{F}(K)$ for some finite subset K of F^{2} and K is a minimal finite set generating the cone, then vectors in K are called the edges of O. That K is a minimal set generating the cone means that any proper subset of K cannot generate the cone.

Theorem 4.28. Let F be a totally ordered field and $M_{2}(F)$ be an ℓ-algebra over F with the positive cone P. Then $M_{2}(F)$ is ℓ-isomorphic to an ℓ algebra $M_{2}(F)$ with the positive cone $P_{1} \subseteq M_{2}\left(F^{+}\right)$.

Proof. Since $M_{2}(F)$ is Archimedean and finite-dimensional over F, $M_{2}(F)$ is a direct sum of totally ordered subspaces over F by Corollary 1.3. $M_{2}(F)$ must be a direct sum of four totally ordered subspaces, that is, $M_{2}(F)=T_{1} \oplus T_{2} \oplus T_{3} \oplus T_{4}$, where each T_{i} is a totally ordered subspace over F, so each T_{i} is 1-dimensional over F. We may assume that $T_{i}=F f_{i}$ for some $0<f_{i} \in T_{i}$. Then $T_{i}^{+}=F^{+} f_{i}, i=1,2,3,4$. We omit the proof of this fact and refer the reader to [Steinberg (2010)].

We divide the proof of Theorem 4.28 into several lemmas.
Lemma 4.18. There is a nontrivial P-invariant cone in F^{2}.
Proof. Let $\mathcal{M}=\left\{N \subseteq F^{2} \mid N\right.$ is a null space of some nonzero $\left.f \in P\right\}$. Take $N \in \mathcal{M}$ with largest dimension and $u \notin N$. Define

$$
O=\{g u \mid g \in P \text { and } g N=0\}
$$

Then $O \neq\{0\}$ since $f u \neq 0, O+O \subseteq O$ and $F^{+} O \subseteq O$. If $v \in O \cap-O$, then $v=f u=-g u$ for some $f, g \in P$ and $f N=g N=\{0\}$. Thus $(f+g) u=0$ and $(f+g) N=\{0\}$ implies that $f+g=0$, and hence $f=g=0$. Therefore $v=0$ and $O \cap-O=\{0\}$. Hence O is a cone of F^{2} and it is clear that O is a P-invariant cone.

Lemma 4.19. Each nontrivial P-invariant cone of F^{2} contains two linearly independent vectors over F.

Proof. Let O be a P-invariant cone of F^{2}. Consider the subspace M spanned by O. Then $f M \subseteq M$ for each $f \in P$. Then since each matrix in $M_{2}(F)$ is a difference of two matrices in $P, g M \subseteq M$ for each matrix $g \in M_{2}(F)$. Hence $M=F^{2}$ (Exercise 47), so O contains two linearly independent vectors since O spans M.

Lemma 4.20. Suppose that $O=$ cone $_{F}(K)$ is a cone with a minimal finite set K, that is, for any proper subset K_{1} of $K, O \neq$ cone $_{F}\left(K_{1}\right)$. If $0<w$ $<k$ for some $w \in F^{2}, k \in K$, then $w=\alpha k$ for some $\alpha \in F^{+}$.

Proof. Suppose that $K=\left\{k, k_{1}, \cdots, k_{n}\right\}$. Then $w \in O$ implies that $w=\alpha k+\alpha_{1} k_{1}+\cdots+\alpha_{n} k_{n}$ and $k-w \in O$ implies that $k-w=\beta k+$ $\beta_{1} k_{1}+\cdots+\beta_{n} k_{n}$ with $\alpha, \beta, \alpha_{i}, \beta_{i} \in F^{+}$, so

$$
k=(\alpha+\beta) k+\left(\alpha_{1}+\beta_{1}\right) k_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) k_{n}
$$

Since K is minimal, $\alpha+\beta=1$ and $\alpha_{i}+\beta_{i}=0, i=1, \cdots, n$, and hence $\alpha_{i}=\beta_{i}=0, i=1, \cdots, n$. Hence $w=\alpha k$ with $0<\alpha \in F$.

Lemma 4.21. Let O be a nontrivial P-invariant cone. For any $0 \neq v \in O$, $P v \subseteq O$ is a nontrivial P-invariant cone. Moreover $P v=\operatorname{cone}_{F}\left(\left\{k_{1}, k_{2}\right\}\right)$ is a lattice order of F^{2}, where k_{1}, k_{2} are disjoint basic elements.

Proof. Since $P v \subseteq O, P v \cap-P v \subseteq O \cap-O=\{0\}$, and hence $P v$ is a P-invariant cone of F^{2}. Since

$$
\begin{gathered}
M_{2}(F)=F f_{1} \oplus F f_{2} \oplus F f_{3} \oplus F f_{4} \\
P v=F^{+}\left(f_{1} v\right)+F^{+}\left(f_{2} v\right)+F^{+}\left(f_{3} v\right)+F^{+}\left(f_{4} v\right)
\end{gathered}
$$

Let $k_{i}=f_{i} v, i=1, \cdots, 4$. Then each $k_{i} \in P v$ and $P v=\operatorname{cone}_{F}(K)$ with $K=\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$. Certainly some k_{j} may be zero. Since $P v$ is a nontrivial P-invariant cone, $P v$ contains two linearly independent vectors by Lemma 4.19 , so among nonzero vectors in K, there are at least two of them that are linearly independent since if any two different nonzero vectors in K are linearly dependent, then it is not possible for $P v$ to contain two linearly independent vectors. We may assume k_{1} and k_{2} are linearly independent over F. Suppose that $k_{1}, k_{2} \in K^{\prime} \subseteq K$ and K^{\prime} is minimal with the property that $P v=\operatorname{cone}_{F}\left(K^{\prime}\right)$. We claim that $K^{\prime}=\left\{k_{1}, k_{2}\right\}$.

Suppose that, for instance, $k_{3} \neq 0$ and $k_{3} \in K^{\prime}$. Since k_{1}, k_{2}, k_{3} are linearly dependent, $k_{3}=\gamma_{1} k_{1}+\gamma_{2} k_{2}$ for some $\gamma_{1}, \gamma_{2} \in F$. We claim that $\gamma_{1}=0$ or $\gamma_{2}=0$. The key to show this is using Lemma 4.20. Suppose that $\gamma_{1}>0$ and $\gamma_{2}>0$. By Lemma 4.20, $\gamma_{1} k_{1}=\alpha_{1} k_{3}$ and $\gamma_{2} k_{2}=\alpha_{2} k_{3}$ for some $\alpha_{1}, \alpha_{2} \in F^{+}$since $\gamma_{1} k_{1}<k_{3}$ and $\gamma_{2} k_{2}<k_{3}$, which is a contradiction. Certainly γ_{1}, γ_{2} cannot be both negative. Suppose that $\gamma_{1}>0$ and $\gamma_{2}<0$. Then $k_{3}+\left(-\gamma_{2}\right) k_{2}=\gamma_{1} k_{1}$, and similarly since k_{1} is an edge of $P v, k_{3}=$ $\beta_{1}\left(\gamma_{1} k_{1}\right)$ and $-\gamma_{2} k_{2}=\beta_{2}\left(\gamma_{1} k_{1}\right)$, which is a contradiction again. Similarly $\gamma_{1}<0$ and $\gamma_{2}>0$ are not possible. Thus we must have $\gamma_{1}=0$ or $\gamma_{2}=0$,
and hence $k_{3}=\gamma_{2} k_{2}$ or $k_{3}=\gamma_{1} k_{1}$, which contradicts with the minilarity of K^{\prime}. Therefore $K^{\prime}=\left\{k_{1}, k_{2}\right\}$ and $P v=\operatorname{cone}_{F}\left(\left\{k_{1}, k_{2}\right\}\right)$.

Now we show that $P v$ is actually a lattice order in F^{2}. To this end, we show that for any $\alpha, \beta \in F, \alpha k_{1}+\beta k_{2} \geq 0$ if and only if $\alpha, \beta \in F^{+}$. Certainly if $\alpha, \beta \in F^{+}$, then $\alpha k_{1}+\beta k_{2} \geq 0$. Conversely suppose that $\alpha k_{1}+\beta k_{2} \geq 0$. Then clearly α, β cannot be both less than zero. Assume that $\alpha>0$ and $\beta<0$. Then we have $\alpha k_{1} \geq-\beta k_{2}>0$ and by Lemma 4.20, $-\beta k_{2}=\gamma \alpha k_{1}$ for some $0<\gamma \in F$, which contradicts with the fact that k_{1}, k_{2} are linearly independent over F. Similarly that $\alpha<0$ and $\beta>0$ is impossible. Therefore we must have $\alpha, \beta \in F^{+}$. Therefore $P v$ is a lattice order and F^{2} is a vector lattice over F with the positive cone $P v$.

We are ready to complete the proof of Theorem 4.28. Let O be a nontrivial P-invariant cone and $0 \neq v \in O$. Then $P v=\operatorname{cone}_{F}\left(\left\{k_{1}, k_{2}\right\}\right)$ by Lemma 4.21. Define matrix $h=\left(k_{1}, k_{2}\right) \in M_{2}(F)$. h is invertible since k_{1}, k_{2} are linearly independent, and hence h defines the inner isomorphism $x \rightarrow h^{-1} x h$ from $M_{2}(F)$ to $M_{2}(F)$. Let $P_{1}=h^{-1} P h$ and $O_{1}=h^{-1}(P v)$. Then P_{1} is a lattice order on $M_{2}(F)$ and O_{1} is a P_{1}-invariant cone. Since $P v=F^{+} k_{1}+F^{+} k_{2}$,

$$
O_{1}=h^{-1}(P v)=h^{-1}\left(F^{+} k_{1}+F^{+} k_{2}\right)=h^{-1} h\left(F^{+}\right)^{2}=\left(F^{+}\right)^{2}
$$

and hence for any $f \in P_{1}, f O_{1} \subseteq O_{1}$ implies that $P_{1} \subseteq M_{2}\left(F^{+}\right)$. This completes the proof of Theorem 4.28.

The above nice idea of using P-invariant cones to connect ℓ-algebras $M_{n}(F)$ with vector lattices F^{n} was due to P. Wojciechowski when we spent some pleasant time working on Weinberg's conjecture around year 2000. It provides us a useful method in studying ℓ-rings. We are going to use this method again next section.

In the following we give a more concrete description of lattice orders on $M_{2}(F)$ to make it into an ℓ-algebra over F. By Theorem 4.28, an ℓ-algebra $M_{2}(F)$ is ℓ-isomorphic to the ℓ-algebra with the positive cone that is contained in $M_{2}\left(F^{+}\right)$. Thus we just need to consider $M_{2}(F)$ with the positive cone $P \subseteq M_{2}\left(F^{+}\right)$. Working on $P \subseteq M_{2}\left(F^{+}\right)$will simplify calculation, for instance, if $0 \neq f \in P$ is nilpotent, since each entry of f is in F^{+}, then either $f=a e_{12}$ or $f=b e_{21}$ for some $0<a, 0<b \in F$.

As we mentioned before, $M_{2}(F)$ is a direct sum of four totally ordered subspaces over F, and hence

$$
M_{2}(F)=F f_{1}+F f_{2}+F f_{3}+F f_{4}
$$

with the positive cone

$$
P=F^{+} f_{1}+F^{+} f_{2}+F^{+} f_{3}+F^{+} f_{4}
$$

where $f_{i} \in M_{2}\left(F^{+}\right), i=1,2,3,4$.
Since $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly independent, they contain at most two nilpotent elements. We consider the number of nilpotent elements among $f_{1}, f_{2}, f_{3}, f_{4}$.
(I) There are two nilpotents in $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. In this case $\left(M_{2}(F), P\right)$ is ℓ-isomorphic to the ℓ-algebra $M_{2}(F)$ with the entrywise order.

Suppose $f_{1}=a e_{12}$ and $f_{2}=b e_{21}$ with $0<a, b \in F$. Multiplying f_{1}, f_{2} by $\frac{1}{a}, \frac{1}{b}$ respectively, we may assume that $f_{1}=e_{12}$ and $f_{2}=e_{21}$. Then $f_{1} f_{2}=e_{11}$ and $f_{2} f_{1}=e_{22}$ are both in P, so we may assume that $e_{11}=c f_{3}$ and $e_{22}=d f_{4}$ for some $0<c, 0<d \in F$. Thus we may replace f_{3}, f_{4} by e_{11}, e_{22}. Therefore $P=F^{+} e_{11}+F^{+} e_{12}+F^{+} e_{21}+F^{+} e_{22}=M_{2}\left(F^{+}\right)$.
(II) There is one nilpotent element in $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. We may assume that $f_{1}=e_{12}$. Suppose that

$$
f_{2}=\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right), f_{3}=\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right), f_{4}=\left(\begin{array}{ll}
a_{4} & b_{4} \\
c_{4} & d_{4}
\end{array}\right)
$$

Since $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly independent, one of c_{2}, c_{3}, c_{4} is not zero. We may assume that $c_{2}>0$. Then

$$
f_{1} f_{2}=\left(\begin{array}{cc}
c_{2} & d_{2} \\
0 & 0
\end{array}\right), f_{2} f_{1}=\left(\begin{array}{cc}
0 & a_{2} \\
0 & c_{2}
\end{array}\right)
$$

imply that one of f_{3}, f_{4} has zero second row and one of f_{3}, f_{4} has zero first column. Since $c_{2}>0$, we may assume that

$$
f_{3}=\left(\begin{array}{ll}
1 & a \\
0 & 0
\end{array}\right), f_{4}=\left(\begin{array}{ll}
0 & b \\
0 & 1
\end{array}\right)
$$

Then $1=-(a+b) f_{1}+f_{3}+f_{4}$ with $a+b>0$.
By Cayley-Hamilton equation or a direct calculation, for any $f \in$ $M_{2}(F), f^{2}=(\operatorname{tr} f) f-(\operatorname{det} f) 1$, where 1 is the identity matrix and $\operatorname{tr} f$ is the trace of f. Thus

$$
\begin{aligned}
f_{2}^{2} & =\left(\operatorname{tr} f_{2}\right) f_{2}-\left(\operatorname{det} f_{2}\right) 1 \\
& =\left(\operatorname{tr} f_{2}\right) f_{2}-\left(\operatorname{det} f_{2}\right)\left(-(a+b) f_{1}+f_{3}+f_{4}\right)
\end{aligned}
$$

Then $f_{2}^{2} \geq 0$ implies that $\left(\operatorname{det} f_{2}\right)(a+b) \geq 0$ and $-\left(\operatorname{det} f_{2}\right) \geq 0$, so $\operatorname{det} f_{2}=0$, and hence $f_{2}^{2}=\left(\operatorname{tr} f_{2}\right) f_{2}$. Since f_{1} is the only nilpotent element, $\operatorname{tr} f_{2} \neq 0$, so we may assume that f_{2} is idempotent by changing f_{2} to $\left(\operatorname{tr} f_{2}\right)^{-1} f_{2}$. That is, we may assume that $a_{2}+d_{2}=1$.

Since

$$
\begin{aligned}
\left(f_{2}+f_{3}\right)^{2} & =\left(\operatorname{tr}\left(f_{2}+f_{3}\right)\right)\left(f_{2}+f_{3}\right)-\operatorname{det}\left(f_{2}+f_{3}\right) 1 \\
& =\left(\operatorname{tr}\left(f_{2}+f_{3}\right)\right)\left(f_{2}+f_{3}\right)-\operatorname{det}\left(f_{2}+f_{3}\right)\left(-(a+b) f_{1}+f_{3}+f_{4}\right) \\
& \geq 0
\end{aligned}
$$

we have $\operatorname{det}\left(f_{2}+f_{3}\right)=0$. Thus

$$
\left(f_{2}+f_{3}\right)^{2}=\left(\operatorname{tr}\left(f_{2}+f_{3}\right)\right)\left(f_{2}+f_{3}\right)=2\left(f_{2}+f_{3}\right),
$$

and hence $f_{2} f_{3}+f_{3} f_{2}=f_{2}+f_{3}$ from $f_{2}^{2}=f_{2}$ and $f_{3}^{2}=f_{3}$. Since

$$
f_{2} f_{3}=\left(\begin{array}{ll}
a_{2} & a_{2} a \\
c_{2} & c_{2} a
\end{array}\right)=f_{2}+\alpha f_{1}+\beta f_{4},
$$

with $\alpha, \beta \in F^{+}$(Exercise 87), we must have $\alpha f_{1}+\beta f_{4}=0$. Therefore $f_{2} f_{3}=f_{2}, f_{3} f_{2}=f_{3}$. Similarly $f_{4} f_{2}=f_{2}$ and $f_{2} f_{4}=f_{4}$ (Exercise 88).

Since $\operatorname{tr}\left(f_{1}+f_{2}\right)=1$ and $\operatorname{det}\left(f_{1}+f_{2}\right)=-c_{2}$, by Cayley-Hamilton equation

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)^{2} & =f_{1}+f_{2}-c_{2}(a+b) f_{1}+c_{2} f_{3}+c_{2} f_{4} \\
& =f_{1} f_{2}+f_{2} f_{1}+f_{2}
\end{aligned}
$$

and hence $1=c_{2}(a+b)$ and $f_{1} f_{2}+f_{2} f_{1}=c_{2} f_{3}+c_{2} f_{4}$ (Exercies 89). Multiplying the equation from the left by f_{4}, we get $f_{2} f_{1}=c_{2} f_{4}$, and it follows that $f_{1} f_{2}=c_{2} f_{3}$.

By changing f_{1} to $(a+b) f_{1}$, we have $1=-f_{1}+f_{2}+f_{3}$ and following multiplication table for $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$,

	f_{1}	f_{2}	f_{3}	f_{4}
f_{1}	0	f_{3}	0	f_{1}
f_{2}	f_{4}	f_{2}	f_{2}	f_{4}
f_{3}	f_{1}	f_{3}	f_{3}	f_{1}
f_{4}	0	f_{2}	0	f_{4}

and $P=F^{+} f_{1}+F^{+} f_{2}+F^{+} f_{3}+F^{+} f_{4}$.
(III) $M_{2}(F)$ is ℓ-reduced.

Take $a, b \in F$ with $a>b>0$ and define the following matrices.

$$
f_{1}=\left(\begin{array}{ll}
1 & a \\
0 & 0
\end{array}\right), f_{2}=\left(\begin{array}{cc}
0 & 0 \\
b^{-1} & 1
\end{array}\right), f_{3}=\left(\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right), f_{4}=\left(\begin{array}{cc}
0 & 0 \\
a^{-1} & 1
\end{array}\right) .
$$

Then

$$
1=-\frac{b}{a-b} f_{1}+\frac{a}{a-b} f_{2}+\frac{a}{a-b} f_{3}-\frac{b}{a-b} f_{4}
$$

and we have the following multiplication table.

	f_{1}	f_{2}	f_{3}	f_{4}
f_{1}	f_{1}	$-\alpha^{-1} \beta f_{3}$	f_{3}	f_{1}
f_{2}	$-\alpha^{-1} \beta f_{4}$	f_{2}	f_{2}	f_{4}
f_{3}	f_{1}	f_{3}	f_{3}	$-\beta^{-1} \alpha f_{1}$
f_{4}	f_{4}	f_{2}	$-\beta^{-1} \alpha f_{2}$	f_{4}

where $\alpha=-b /(a-b)$ and $\beta=a /(a+b)$. Then $P=F^{+} f_{1}+F^{+} f_{2}+F^{+} f_{3}+$ $F^{+} f_{4}$. We omit the proof of this case and refer the reader to [Steinberg (2010)].

We notice that the identity matrix with respect to the lattice orders in (II) and (III) is not positive. The lattice orders in (II) and (III) could be obtained by using the method in Theorem 1.19(2) from the entrywise order $M_{2}\left(F^{+}\right)$. In fact, using the following matrices

$$
f=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), g=\left(\begin{array}{cc}
1 & 1 \\
a & b
\end{array}\right), a>b>0
$$

the lattice order in (II) is ℓ-isomorphic to $f M_{2}\left(F^{+}\right)$and the lattice order in (III) is ℓ-isomorphic to $g M_{2}\left(F^{+}\right)$. For instance, for the positive cone $f M_{2}\left(F^{+}\right)$, the following matrices are disjoint and a vector space basis over F.

$$
h_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), h_{2}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), h_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), h_{4}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) .
$$

The multiplication table of $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$ is exactly the same as the table in (II), and hence the lattice order in (II) is ℓ-isomorphic to $f M_{2}\left(F^{+}\right)$. We leave the verification of these facts as an exercise (Exercise 48).

Now for an ℓ-simple totally ordered greatest common divisor domain R, suppose that $M_{2}(R)$ is an ℓ-algebra and an f-module over R. We describe lattice orders on $M_{2}(R)$ using the results on its order extension $M_{2}(F)$. By Theorem 4.23, the lattice order on $M_{2}(R)$ is extended to a lattice order on $M_{2}(F)$, where F is the totally ordered quotient field of R. By the above results, the lattice order on $M_{2}(F)$ is ℓ-isomorphic to $u M_{2}\left(F^{+}\right)$for some invertible matrix $u \in M_{2}\left(F^{+}\right)$. Similar to the proof of Theorem 4.26,

$$
M_{2}(R)=\sum_{1 \leq i, j \leq 2} R a_{i j}
$$

where $a_{i j}=q_{i j}\left(h u e_{i j} h^{-1}\right)$ are disjoint with $0<q_{i j} \in F$ and $h \in M_{2}\left(F^{+}\right)$ invertible. Let $u=\left(u_{i j}\right)$. A direct calculation shows that for $1 \leq i, j \leq 2$,

$$
a_{i j} a_{r s}=u_{j r} q_{i j} q_{r s} q_{i s}^{-1} a_{i s}
$$

and hence each $u_{j r} q_{i j} q_{r s} q_{i s}^{-1} \in R$. By a calculation similar to that in Theorem 4.25, we have $\left(\Pi_{1 \leq i, j \leq 2} q_{i j}\right)(\operatorname{det} u)^{2}$ is a unit in R (Exercise 49).

We know that positive cone $u M_{2}\left(F^{+}\right)$has three nonisomorphic cases and if u is identity matrix, then it is the entrywise order and by Corollary 4.8, $M_{2}(R)$ is ℓ-siomorphic to $M_{2}(R)$ with the entrywise order. We consider below the other two cases.

In the second case (II), $u=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Since $\operatorname{det} u=-1,\left(\Pi_{1 \leq i, j \leq 2} q_{i j}\right)$ is a unit in R, and since $a_{11}^{2}=q_{11} a_{11}, a_{12}^{2}=q_{12} a_{12}$, and $a_{21}^{2}=q_{21} a_{21}$, we have $q_{11}, q_{12}, q_{21} \in R$. Suppose that

$$
1=k_{11} a_{11}+k_{12} a_{12}+k_{21} a_{21}+k_{22} a_{22},
$$

for some $k_{11}, k_{12}, k_{21}, k_{22} \in R$, where 1 is the identity matrix. Then

$$
1=k_{11} q_{11}\left(u e_{11}\right)+k_{12} q_{12}\left(u e_{12}\right)+k_{21} q_{21}\left(u e_{21}\right)+k_{22} q_{22}\left(u e_{22}\right)
$$

However we know that $1=-u e_{22}+u e_{12}+u e_{21}$, and hence $k_{12} q_{12}=1$ and $k_{21} q_{21}=1$. Hence q_{12}, q_{21} are unit in R. Then since $q_{11} q_{12} q_{21} q_{22} \in R$ is a unit, $q_{11} q_{22} \in R$ is a unit. Define

$$
c_{11}=a_{11}, c_{12}=q_{12}^{-1} a_{12}, c_{21}=q_{21}^{-1} a_{21}, c_{22}=\left(q_{11} q_{22}\right)^{-1} a_{22}
$$

Since $q_{12}, q_{21}, q_{11} q_{22}$ are positive unit in $R,\left\{c_{11}, c_{12}, c_{21}, c_{22}\right\}$ is also a basis that spans $M_{2}(R)$ as an R-module. It is straightforward to verify the following multiplication table (Exercise 50).

	c_{11}	c_{12}	c_{21}	c_{22}
c_{11}	$q_{11} c_{11}$	$q_{11} c_{12}$	c_{11}	c_{12}
c_{12}	c_{11}	c_{12}	0	0
c_{21}	$q_{11} c_{21}$	$q_{11} c_{22}$	c_{21}	c_{22}
c_{22}	c_{21}	c_{22}	0	0

Define

$$
w=\left(\begin{array}{cc}
q_{11} & 1 \\
1 & 0
\end{array}\right) \in M_{2}\left(R^{+}\right)
$$

From $\operatorname{det} w=-1, w$ is invertible in $M_{2}(R)$, and hence $w M_{2}\left(R^{+}\right)$is the positive cone of a lattice order on $M_{2}(R)$ by Theorem 1.19(2). Define

$$
h_{11}=w e_{11}, h_{12}=w e_{12}, h_{21}=w e_{21}, h_{22}=w e_{22}
$$

The multiplication table for $\left\{h_{11}, h_{12}, h_{21}, h_{22}\right\}$ is exactly the same as the table for $\left\{c_{11}, c_{12}, c_{21}, c_{22}\right\}$. Therefore the ℓ-algebra $M_{2}(R)$ is ℓ-isomorphic to the ℓ-algebra $M_{2}(R)$ with the positive cone $w M_{2}\left(R^{+}\right)$.

In the third case (III), $u=\left(\begin{array}{ll}1 & 1 \\ a & b\end{array}\right)$ with $a, b \in F$ and $a>b>0$. Since

$$
a_{11}^{2}=q_{11} a_{11}, a_{12}^{2}=a q_{12} a_{12}, a_{21}^{2}=q_{21} a_{21}, a_{22}^{2}=b q_{22} a_{22}
$$

$q_{11}, a q_{12}, q_{21}, b q_{22} \in R$. Similar to case (II), for some $k_{11}, k_{12}, k_{21}, k_{22} \in R$

$$
\begin{aligned}
1 & =k_{11} q_{11}\left(u e_{11}\right)+k_{12} q_{12}\left(u e_{12}\right)+k_{21} q_{21}\left(u e_{21}\right)+k_{22} q_{22}\left(u e_{22}\right) \\
& =-\frac{b}{a-b}\left(u e_{11}\right)+\frac{1}{a-b}\left(u e_{12}\right)+\frac{a}{a-b}\left(u e_{21}\right)-\frac{1}{a-b}\left(u e_{22}\right)
\end{aligned}
$$

and hence

$$
-\frac{b}{a-b}=k_{11} q_{11}, \frac{1}{a-b}=k_{12} q_{12}, \frac{a}{a-b}=k_{21} q_{21},-\frac{1}{a-b}=k_{22} q_{22}
$$

So if we set $m=\frac{a}{a-b}$, then $m \in R^{+}$, and $m-1=\frac{b}{a-b} \in R^{+}$,

$$
k_{12} a q_{12}=k_{21} q_{21}=m \text { and } k_{22} b q_{22}=k_{11} q_{11}=1-m
$$

We know that $q_{11} q_{12} q_{21} a_{22}(a-b)^{2}$ is a unit in R, and it follows that

$$
q_{11}\left(a q_{12}\right) q_{21}\left(b q_{22}\right)=m(m-1) q_{11} q_{12} q_{21} a_{22}(a-b)^{2}
$$

Then $\operatorname{gcd}(m, m-1)=1$ implies that $\left(a q_{12}\right) q_{21}=m r$ and $q_{11}\left(b q_{22}\right)=(m-$ 1) s, where $r, s \in R^{+}$are unit, and hence $q_{11} q_{22}=q_{12} q_{21} v$ and $v=r^{-1} s \in$ R^{+}is a unit. Define $d_{11}=a_{11}, d_{12}=a_{12}, d_{21}=a_{21}$, and $d_{22}=v^{-1} a_{22}$. Then $\left\{d_{11}, d_{12}, d_{21}, d_{22}\right\}$ is a disjoint set that spans $M_{2}(R)$ and has the following multiplication table.

	d_{11}	d_{12}	d_{21}	d_{22}
d_{11}	$q_{11} d_{11}$	$q_{11} d_{12}$	$q_{21} d_{11}$	$q_{21} d_{12}$
d_{12}	$a q_{12} d_{11}$	$a q_{12} d_{12}$	$v^{-1}\left(b q_{22}\right) d_{11}$	$v^{-1}\left(b q_{22}\right) d_{12}$
d_{21}	$q_{11} d_{21}$	$q_{11} d_{22}$	$q_{21} d_{21}$	$q_{21} d_{22}$
d_{22}	$a q_{12} d_{21}$	$a q_{12} d_{22}$	$v^{-1}\left(b q_{22}\right) d_{21}$	$v^{-1}\left(b q_{22}\right) d_{22}$

Define the matrix

$$
y=\left(\begin{array}{cc}
q_{11} & q_{21} \\
a q_{12} & v^{-1}\left(b q_{22}\right)
\end{array}\right) \in M_{2}\left(R^{+}\right)
$$

Since

$$
\operatorname{det} y=v^{-1} q_{11}\left(b q_{22}\right)-q_{21}\left(a q_{12}\right)=v^{-1}(m-1) s-m r=-r
$$

is a unit in R, y is invertible in $M_{2}(R)$ and $y M_{2}(R)$ defines the positive cone of a lattice ordered on $M_{2}(R)$ by Theorem 1.19(2). Let $m_{i j}=y e_{i j}, 1 \leq$ $i, j \leq 2$. It is easily verified that $m_{i j}$ and $d_{i j}$ have the same multiplication
table, so the ℓ-algebra $M_{2}(R)$ is ℓ-isomorphic to $M_{2}(R)$ with the positive cone $y M_{2}\left(R^{+}\right)$.

Therefore we have described all the lattice orders on $M_{2}(R)$. An interesting fact is that for a totally ordered subfield F of \mathbb{R}, any ℓ-algebra $M_{n}(F)$ is ℓ-isomorphic to an ℓ-algebra $M_{n}(F)$ with the positive cone $f M_{n}\left(F^{+}\right)$, where $f \in M_{n}\left(F^{+}\right)$is an invertible matrix. The reader is referred to [Steinberg (2010)] for more details. However it is still an open question if this fact is true for matrix ℓ-algebras over non-Archimedean totally ordered fields and totally ordered Archimedean GCD (UFD, PID) domains.

$4.6 d$-elements that are not positive

When we define d-elements in chapter 1 , we assume that they are positive. In this section we consider d-elements that are not positive. Those elements arise when considering unital ℓ-rings in which $1 \ngtr 0$.

Let R be a unital ℓ-ring. An element $a \in R$ is called an f-element (d-element) if for any $x, y \in R$,

$$
x \wedge y=0 \Rightarrow a x \wedge y=x a \wedge y=0(a x \wedge a y=x a \wedge y a=0)
$$

We may call f-element and d-element defined in chapter 1 as positive f element and d-element. Define

$$
\bar{f}(R)=\{a \in R \mid a \text { is an } f \text {-element of } R\}
$$

and

$$
\bar{d}(R)=\{a \in R \mid a \text { is a } d \text {-element of } R\}
$$

So $f(R)^{+}=\bar{f}(R) \cap R^{+}$and $d(R)=\bar{d}(R) \cap R^{+}$. Clearly $1 \in \bar{f}(R) \subseteq \bar{d}(R)$. It is also clear that $\bar{f}(R)$ is closed under the addition and multiplication of R and $\bar{d}(R)$ is closed under the multiplication. If a is a d-element of R, then $a R^{+} \subseteq R^{+}$and $R^{+} a \subseteq R^{+}$. For a unital ℓ-ring, if $1 \geq 0$, then any d-element e is positive since $e \wedge 0=e(1 \wedge 0)=e 0=0$. Thus a unital ℓ ring has a d-element that is not positive if and only if $1 \ngtr 0$. The following example shows that there are unital ℓ-rings with $1 \ngtr 0$ that contain positive f-element.

Example 4.4. Consider $R=M_{3}(\mathbb{Q})$ and matrix

$$
f=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \in M_{3}\left(\mathbb{Q}^{+}\right)
$$

By Theorem 1.19, $P=f M_{3}\left(\mathbb{Q}^{+}\right)$is the positive cone of a lattice order on $M_{3}(\mathbb{Q})$ to make it into an ℓ-ring. Since

$$
f^{-1}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \notin M_{3}\left(\mathbb{Q}^{+}\right)
$$

identity matrix 1 is not positive with respect to P. Now $e_{11}=f e_{11} \in P$ and it is straightforward to check that e_{11} is an f-element with respect to P (Exercise 51).

The ℓ-ring in Example 4.4 is not ℓ-reduced. For an ℓ-reduced unital ℓ-ring, the situation is different.

Theorem 4.29. Let R be a unital ℓ-ring
(1) If R is ℓ-reduced and 1 is not positive, then each nonzero d-element is not positive.
(2) Let $u \in R$ be an invertible element. Then u is ad-element if and only if $u R^{+} \subseteq R^{+}, R^{+} u \subseteq R^{+}$, and $u^{-1} R^{+} \subseteq R^{+}, R^{+} u^{-1} \subseteq R^{+}$.
(3) Let u be an invertible d-element. If $a \in R$ is a basic element, then au and ua are both basic elements.

Proof. (1) We first assume that R is an ℓ-domain. Suppose that $a>0$ is a d-element of R. Then $a\left(1^{-}\right)=(-a) \vee 0=0$ implies that $1^{-}=0$, so $1>0$, which is a contradiction. Then R has no nonzero positive d-element. Now suppose that R is ℓ-reduced. By Theorem $1.30 R$ is a subdirect product of ℓ-domains, that is, there are ℓ-ideals I_{k} such that $\cap I_{k}=\{0\}$ and each R / I_{k} is an ℓ-domain. Let a be a d-element of R and $\bar{x}=x+I_{k}, \bar{y}=y+I_{k} \in R / I_{k}$ with $\bar{x} \wedge \bar{y}=0$ in R / I_{k}. Then $(x-z) \wedge(y-z)=0$ for some $z \in I_{k}$ and $(a x-a z) \wedge(a y-a z)=0$, so $\bar{a} \bar{x} \wedge \bar{a} \bar{y}=0$ in R / I_{k}. Similarly $\bar{x} \bar{a} \wedge \bar{y} \bar{a}=0$. Thus $\bar{a}=a+I_{k}$ is a d-element of R / I_{k}. Since 1 is not positive in R, there is at least one k such that $\overline{1}$ is not positive in R / I_{k}, and hence \bar{a} is not positive in R / I_{k} by the above argument. It follows that a is not positive in R.
(2) Suppose that u is a d-element. Then $u R^{+} \subseteq R^{+}$and $R^{+} u \subseteq R^{+}$. For $x \in R^{+}, u\left(u^{-1} x \wedge 0\right)=x \wedge 0=0$ implies $u^{-1} x \wedge 0=0$, so $u^{-1} x \geq 0$, and hence $u^{-1} R^{+} \subseteq R^{+}$. Similarly $R^{+} u^{-1} \subseteq R^{+}$.

Conversely, suppose that $u R^{+} \subseteq R^{+}$and $u^{-1} R^{+} \subseteq R^{+}$. If $x \wedge y=0$ for $x, y \in R$, then

$$
0 \leq u^{-1}(u x \wedge u y) \leq u^{-1} u x \wedge u^{-1} u y=x \wedge y=0
$$

and hence $u x \wedge u y=0$. Similarly $x u \wedge y u=0$. Hence u is a d-element.
(3) Clearly $a u>0$ and $u a>0$. Let $0 \leq x, y \leq a u$. Then $0 \leq x u^{-1}, y u^{-1} \leq a$ implies that $x u^{-1}$ and $y u^{-1}$ are comparable, so x, y are comparable. Thus $a u$ is basic. Similarly $u a$ is also basic.

In Chapter 1, we give a general method to construct lattice orders with $1 \ngtr 0$ on an ℓ-unital ℓ-ring. R. Redfield discovered another method to produce lattice orders with $1 \ngtr 0$ by changing multiplication of ℓ-unital ℓ-rings.

Let R be an ℓ-unital ℓ-ring with the identity element 1 and u in the center of R. Define a new multiplication $*$ on R for any $x, y \in R$,

$$
x * y=x y u^{-1} .
$$

Then $(R,+, *)$ is a ring with u as an identity element (Exercise 52). Now suppose that $u \ngtr 0$ and $u^{-1}>0$. If $x \geq 0$ and $y \geq 0$, then $x * y=x y u^{-1} \geq 0$. Thus $(R,+, *)$ is an ℓ-ring with the identity element $u \ngtr 0$.

The ℓ-ring $(R,+, *)$ may be obtained by using Theorem 1.19(2).
Theorem 4.30. Let ℓ-ring $(R,+, *)$ be defined as above. Then there exists a lattice order on $(R,+, *)$ with the positive cone P such that $u \in P$ and $R^{+}=1 * P$ with $1 \in P$.

Proof. Define $P=u R^{+}$. Clearly $P+P \subseteq P$, and $P \cap-P=\{0\}$. For $u a, u b$ with $a, b \in R^{+}$,

$$
(u a) *(u b)=(u a)(u b) u^{-1}=u(a b) \in u R^{+} .
$$

Thus $P * P \subseteq P$. So P is a partial order on $(R,+, *)$. For $x \in R$, with respect to $P, x \vee 0=u\left(u^{-1} x \vee 0\right)$, where $u^{-1} x \vee 0$ is the sup of $u^{-1} x, 0$ with respect to R^{+}. Therefore $(R,+, *)$ is an ℓ-ring with the positive cone P and $u=u 1 \in P$. For any $a \in R^{+}, a=1 *(u a)$, so $R^{+}=1 * P$. We also have $1=u u^{-1} \in u R^{+}=P$.

Theorem 4.31. Let L be an ℓ-field with $1 \ngtr 0$ and an ℓ-algebra over a totally ordered field F. Suppose that L satisfies the following conditions.
(1) There is a vector space basis B of L over F with $B \subseteq \bar{d}(L)$.
(2) L has a basic element a such that $a^{\perp \perp}=F a$.

Then there exists a lattice order \succeq on L to make it into an ℓ-field with $1 \succ 0$ such that $L^{+}=a P$, where P is the positive cone of \succeq.

Proof. Define $P=\left\{x \in L \mid x L^{+} \subseteq L^{+}\right\}$. It is straightforward to check that $P+P \subseteq P, P P \subseteq P$, and $P \cap-P=\{0\}$ (Exercise 53). For any $x, y \in L$, define $x \succeq y$ if $x-y \in P$. Then L is a partially ordered field with respect to \succeq.

We show that \succeq is actually a lattice order. First of all, for any $u \in B$, by Theorem 4.29, $u a$ is basic, and $(u a)^{\perp \perp}=F(u a)$ (Exercise 54). Next if $u, v \in B$ and $u \neq v$, then $u a \wedge v a=0$. In fact, since $u a$ and $v a$ are both basic elements, if $u a \wedge v a \neq 0$, then $(u a)^{\perp \perp}=(v a)^{\perp \perp}$ by Theorem 1.14, and hence $F(u a)=F(v a)$. Hence u and v are linearly dependent over F, which is a contradiction. Therefore $u a \wedge v a=0$. Suppose that $z \succeq 0$ and $z=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}$, where $b_{1}, \cdots, b_{n} \in B$ are distinct and $\alpha_{1}, \cdots, \alpha_{n} \in F$. We show that each $\alpha_{i} \in F^{+}$. Suppose that $\alpha_{1}<0, \cdots, \alpha_{k}<0$ in F and $\alpha_{k+1}>0, \cdots, \alpha_{n}>0,1 \leq k<n$. Then

$$
0 \preceq-\alpha_{1} b_{1} \preceq \alpha_{k+1} b_{k+1}+\cdots+\alpha_{n} b_{n}
$$

implies that

$$
0 \leq-\alpha_{1} b_{1} a \leq \alpha_{k+1} b_{k+1} a+\cdots+\alpha_{n} b_{n} a
$$

Since $u a \wedge v a=0$ for any $u, v \in B$ and $u \neq v$, and $F^{+} 1 \subseteq \bar{f}(L)$,

$$
\begin{aligned}
0 & \leq-\alpha_{1} b_{1} a \\
& =-\alpha_{1} b_{1} a \wedge\left(\alpha_{k+1} b_{k+1} a+\cdots+\alpha_{n} b_{n} a\right) \\
& \leq\left(-\alpha_{1} b_{1} a \wedge \alpha_{k+1} b_{k+1} a\right)+\cdots+\left(-\alpha_{1} b_{1} a \wedge \alpha_{n} b_{n} a\right) \\
& =0
\end{aligned}
$$

Thus $-\alpha_{1} b_{1} a=0$, which is a contradiction. Hence each $\alpha_{i} \geq 0$ in F.
Now for $x \in L$, if $x=\beta_{1} c_{1}+\cdots+\beta_{m} c_{m}$ for some $\beta_{1}, \cdots, \beta_{m} \in F$ and $c_{1}, \cdots, c_{m} \in B$ are distinct. The least upper bound of x and 0 with respect to \succeq is

$$
x \vee_{\succeq} 0=\beta_{1}^{+} c_{1}+\cdots+\beta_{m}^{+} c_{m}
$$

We leave the verification of this fact as an exercise (Exercise 55). Therefore \succeq is a lattice order on L. Clearly $1 \in P$ and $\{a u \mid u \in B\}$ is disjoint and a vector space basis of L over F. Therefore $L^{+}=a P$.

Let's look at an example that Theorem 4.31 may apply.
Example 4.5. Consider the field

$$
L=\mathbb{Q}[\sqrt{2}, \sqrt{3}]=\{\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{6} \mid \alpha, \beta, \gamma, \delta \in \mathbb{Q}\}
$$

With respect to the coordinatewise order, L is an ℓ-field in which identity element 1 is positive. Suppose now that L is an arbitrary ℓ-field with
the positive cone L^{+}. Since L is finite-dimensional over \mathbb{Q}, L has basic elements. If $\sqrt{2} L^{+} \subseteq L^{+}, \sqrt{3} L^{+} \subseteq L^{+}$, and there is a basic element a such that $a^{\perp \perp}=\mathbb{Q} a$, then by Theorem $4.31, L^{+}=a P$, where P is the positive cone of the coordinatewise order.

There are rings and algebras that cannot be made into an ℓ-ring and ℓ algebra. In the following, we use idea of P-invariant cones to show complex field \mathbb{C} and division algebra \mathbb{H} of real quaternions cannot be an ℓ-algebra over \mathbb{R}. We prove that only finite-dimensional ℓ-algebra over \mathbb{R} is \mathbb{R} itself. We first review a few definitions and results on n-dimensional Euclidean space \mathbb{R}^{n}.

Let S be a subset of \mathbb{R}^{n}. A cover of S is a collection $\left\{U_{i} \mid i \in I\right\}$ of sets in \mathbb{R}^{n} such that

$$
S \subseteq \bigcup_{i \in I} U_{i}
$$

A cover of S is called an open cover if each U_{i} is an open set and a finite cover if index set I is fine. A subcover of the cover $\left\{U_{i} \mid i \in I\right\}$ is a collection $\left\{U_{j} \mid j \in J\right\}$ with $J \subseteq I$ such that

$$
S \subseteq \bigcup_{j \in J} U_{j}
$$

A subset S of \mathbb{R}^{n} is called compact if every open cover of S has a finite subcover. It is well-known that a subset S of \mathbb{R}^{n} is compact if and only if it is closed and bounded in \mathbb{R}^{n}. Let S be a compact set and $\left\{K_{i} \mid i \in I\right\}$ be a collection of closed subsets of S. As a direct consequence of compactness of S, if for each finite set of indices $i_{1}, \cdots, i_{n}, K_{i_{1}} \cap \cdots \cap K_{i_{n}} \neq \emptyset$, then

$$
\bigcap_{i \in I} K_{i} \neq \emptyset
$$

For a subset B of \mathbb{R}^{n}, \bar{B} denotes the closure of B, which is the intersection of all closed sets containing B, and hence \bar{B} is the smallest closed subset containing B. We first prove a basic result which will be used later in the proof.

Lemma 4.22. Suppose that N is a subspace of \mathbb{R}^{n} over \mathbb{R} which is totally ordered. If $\overline{N^{+}} \cap \overline{-N^{+}}=\{0\}$, then N is 1-dimensional over \mathbb{R}.

Proof. Since N is a subspace of \mathbb{R}^{n}, N must be closed (Exercise 56). Since $N=N^{+} \cup-N^{+}$,

$$
N=\bar{N} \Rightarrow N^{+} \cup-N^{+}=\overline{N^{+}} \cup \overline{-N^{+}}
$$

Then $\overline{N^{+}} \cap \overline{-N^{+}}=\{0\}$ implies that $N^{+}=\overline{N^{+}}$and $-N^{+}=\overline{-N^{+}}$, so $N^{+},-N^{+}$are closed. Therefore N must be 1-dimensional over \mathbb{R} (Exercise 57).

Theorem 4.32. Suppose that A is a finite-dimensional division ℓ-algebra over \mathbb{R}. Then A must be totally ordered.

Proof. If A is 1 -dimensional over \mathbb{R}, then $A=\mathbb{R} 1$ is totally ordered. Suppose that $\operatorname{dim}_{\mathbb{R}} A=n \geq 2$. We use P to denote the positive cone of ℓ-algebra A. By Lemma 2.5 , we may consider A as a subalgebra of $M_{n}(\mathbb{R})$. As before, \mathbb{R}^{n} denotes the n-dimensional Euclidean column space over \mathbb{R}.

For each $0 \neq v \in \mathbb{R}^{n}, P v$ is a nontrivial P-invariant cone. It is clear that $P v+P v \subseteq P v, \mathbb{R}^{+}(P v) \subseteq P v$, and $P v$ is P-invariant. We show that $P v \cap-P v=\{0\}$. Suppose that $u \in P v \cap-P v$. Then $u=f v=-g v$ for some $f, g \in P$, so $(f+g) v=0$. If $f+g \neq 0$, then A is a division algebra implies that $v=0$, which is a contradiction. Thus $f+g=0$, and hence $f=g=0$ and $u=0$. Therefore $P v$ is a P-invariant cone.

Let M be the subspace spanned by $P v$. Then $f M \subseteq M$ for each $f \in A$ since $P v$ is P-invariant. Let g_{1}, \cdots, g_{n} be a vector space basis of A over \mathbb{R} and $0 \neq w \in M$. Then $g_{1} w, \cdots, g_{n} w \in M$ are linearly independent, so M is an n-dimensional subspace. It follows that $P v$ contains n linearly independent vectors since $P v$ spans M. Let $f_{1} v, \cdots, f_{n} v \in P v$ be linearly independent over \mathbb{R}, where $f_{1}, \cdots, f_{n} \in P$. Then f_{1}, \cdots, f_{n} are linearly independent, and cone $\mathbb{R}_{\mathbb{R}}\left(K_{v}\right) \subseteq P v$, where $K_{v}=\left\{f_{1} v, \cdots, f_{n} v\right\}$. We note that $\operatorname{cone}_{\mathbb{R}}\left(K_{v}\right)$ is a closed subset of \mathbb{R}^{n} (Exercise 58).

Since A is finite-dimensional, by Corollary 1.3, A is a finite direct sum of maximal convex totally ordered subspaces of A over \mathbb{R}. We show that each direct summand is 1 -dimensional. Let T be a direct summand in the direct sum of A. For some $0 \neq v \in \mathbb{R}^{n}, T v$ is a totally ordered subspace of \mathbb{R}^{n} with the positive cone $T^{+} v$. Since $T^{+} v \subseteq P v$ and $\overline{P v} \cap \overline{-P v}=\{0\}$ (Exercise 59), we have $\overline{T^{+} v} \cap \overline{-T^{+} v}=\{0\}$. Thus by Lemma 4.22, Tv is 1 -dimensional. Take $0 \neq f \in T$. Then $f v \in T v$ is a basis over \mathbb{R}. For any $g \in T, g v=\alpha(f v)$ implies that $(g-\alpha f) v=0$, so $g-\alpha f=0$ and $g=\alpha f$. Thus T is 1 -dimensional. It follows that A is a direct sum of n direct summands, and hence A contains n disjoint elements f_{1}, \cdots, f_{n}. As a direct consequence of this fact, we have for any $0 \neq v \in \mathbb{R}^{n}, P v=$ $\operatorname{cone}_{\mathbb{R}}\left(f_{1} v, \cdots, f_{n} v\right)$ is closed.

Consider partially ordered set $\mathcal{M}=\left\{P v \mid 0 \neq v \in \mathbb{R}^{n}\right\}$ under set inclusion. We show that \mathcal{M} has a minimal element by Zorn's Lemma. Let
$\left\{P v_{\alpha} \mid \alpha \in \Gamma\right\}$ be a chain in \mathcal{M} and $S=\left\{v \in \mathbb{R}^{n}| | v \mid=1\right\}$ be the unit sphere, where $|v|$ denotes the length of the vector v. Then the collection $\left\{P v_{\alpha} \cap S \mid \alpha \in \Gamma\right\}$ is a chain of closed sets of S and each $P v_{\alpha} \cap S \neq \emptyset$. Since S is closed and bounded in \mathbb{R}^{n}, S is compact, and hence

$$
\bigcap_{\alpha \in \Gamma}\left(P v_{\alpha} \cap S\right) \neq \emptyset
$$

Take $v \in \cap_{\alpha \in \Gamma}\left(P v_{\alpha} \cap S\right)$. Then $v \neq 0$ since $0 \notin S$. $P v$ is a P-invariant cone contained in each $P v_{\alpha}$, that is, $P v$ is a lower bound of the chain $\left\{P v_{\alpha} \mid \alpha \in \Gamma\right\}$ in \mathcal{M}. Therefore by Zorn's Lemma, \mathcal{M} has a minimal element.

Suppose $P u \in \mathcal{M}$ is a minimal element for some $0 \neq u \in \mathbb{R}^{n}$. Take $0<f \in P$. Then $0 \neq f u \in P u$ implies that $P(f u) \subseteq P u$, and hence $P(f u)=P u$. It follows that there is a $g \in P$ such that $g f u=f u$, so $g f=f$ and $g=1$. Hence $1 \in P$ and for any $0<h \in P, P(h u)=P u$ implies that $j h=1$ for some $j \in P$. Therefore we have proved that $1>0$ and for each nonzero positive element in A, its inverse is also positive. Then by Theorem $1.20(2), A$ is a d-ring, and hence A is totally ordered by Theorems 1.27 and 1.28.

Let \mathbb{H} be the 4 -dimensional vector space over \mathbb{R} with the vector space basis $\{1, i, j, k\}$ having the following multiplication table.

	1	i	j	k
1	1	i	j	k
i	i	-1	k	$-j$
j	j	$-k$	-1	i
k	k	j	$-i$	-1

Then \mathbb{H} is a 4-dimensional algebra over \mathbb{R}. For an element $x=a+b i+$ $c j+d k \in \mathbb{H}$, where $a, b, c, d \in \mathbb{R}$, define $\bar{x}=a-b i-c j-d k$. Then $x \bar{x}=\bar{x} x=a^{2}+b^{2}+c^{2}+d^{2} \in \mathbb{R}$. Thus if $x \neq 0$, then x has the inverse $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{-1} \bar{x}$. Therefore \mathbb{H} is a division ring, and hence \mathbb{H} is actually a division algebra over \mathbb{R}, which is called division algebra of real quaternions.

Frobenius's Theorem in general ring theory states that a finitedimensional division algebra over \mathbb{R} is isomorphic to \mathbb{R}, \mathbb{C}, or \mathbb{H} [Lam (2001)]. Since \mathbb{C} and \mathbb{H} cannot be a totally ordered algebra over \mathbb{R} because of $i^{2}=-1$, they cannot be ℓ-algebra over \mathbb{R} by Theorem 4.32 , so \mathbb{R} is the only finite-dimensional division ℓ-algebra over \mathbb{R}.

Complex field \mathbb{C} cannot be an ℓ-algebra over \mathbb{R} was first proved by G. Birkhoff and R. S. Pierce [Birkhoff and Pierce (1956)]. Then R. McHaffey
noticed that \mathbb{H} cannot be an ℓ-algebra over $\mathbb{R}[\mathrm{McHaffey}$ (1962)]. Their proofs are much simpler than the proof presented in Theorem 4.32. However P-invariant cone method may be used to prove more examples that cannot be an ℓ-algebra, for instance, matrix algebras $M_{n}(\mathbb{C})$ and $M_{n}(\mathbb{H})$ cannot be made into an ℓ-algebra over \mathbb{R} [Steinberg (2010)].

Let F be a totally ordered subfield of \mathbb{R}. Define

$$
C_{F}=\{a+b i \mid a, b \in F\},
$$

and

$$
H_{F}=\{a+b i+c j+d k \mid a, b, c, d \in F\}
$$

Then C_{F} is called the complex field over F and H_{F} is called the division algebra of quaternions over F. By using the same argument as in Theorem 4.32 with some modification, it can be shown that C_{F}, H_{F} cannot be made into an ℓ-algebra over F.

Also by using Theorem 4.33 below, for any integral domain R which is a totally ordered subring of \mathbb{R}, complex numbers and quaternions over R cannot be an ℓ-ring. In particular, for $R=\mathbb{Z}$, it means that complex integers and quaternion integers cannot be an ℓ-ring.

In section 4.4, we have considered extending lattice order on a latticeordered integral domain with positive identity to its quotient field. The results can be generalized to lattice-ordered integral domains with $1 \nsupseteq 0$.

Theorem 4.33. Let R be a lattice-ordered integral domain. If for any nonzero element a of $R, \operatorname{Ra} \cap \bar{f}(R) \neq\{0\}$, then its quotient field F can be made into an ℓ-ring extension of R.

Proof. For $q \in F$, we have $q=\frac{a}{b}, a, b \in R$ with $b \neq 0$. Since $b \neq 0$, $R b \cap \bar{f}(R) \neq\{0\}$, so there is $c \in R$ such that $0 \neq c b=d \in \bar{f}(R)$. Thus each element $q \in F$ can be written as $q=\frac{a}{d}$ with $0 \neq d \in \bar{f}(R)$.

Define the positive cone P on F as follows:

$$
P=\left\{q \in F \left\lvert\, q=\frac{a}{d}\right., 0 \leq a \in R, 0 \neq d \in \bar{f}(R)\right\}
$$

If $\frac{a}{d}=\frac{c}{e}$ with $a, c \in R, 0 \leq a, 0 \neq d, 0 \neq e \in \bar{f}(R)$, then $a e=c d$. Since $a \geq 0$ and $e \in \bar{f}(R), a e \geq 0$, and hence $c d=|c d|=|c| d$. Thus $c=|c| \geq 0$ and P is well-defined.

It is clear that $P+P \subseteq P, P P \subseteq P$, and $P \cap-P=\{0\}$. For $q=\frac{a}{b}$ with $a \in R, 0 \neq b \in \bar{f}(R), q \vee 0=\frac{a \vee 0}{b}$. These proofs are similar to that given in section 4.4 and we leave it as an exercise.

We note that Theorem 4.33 is also true for left (or right) Ore domains and we omit the proof which is similar to the proof of Theorem 4.17.

4.7 Lattice-ordered triangular matrix algebras

In this section we study lattice-ordered triangular matrix algebras. We use $T_{n}(F)$ to denote the $n \times n(n \geq 2)$ upper triangular matrix algebras over a totally ordered field F. We construct all the lattice orders on $T_{2}(F)$ to make it into an ℓ-algebra over F. In section 1 , we first construct all the lattice orders in which the identity matrix is positive, and then in section 2 we show each lattice order on $T_{2}(F)$ in which the identity matrix is not positive can be obtained from a lattice order in which the identity matrix is positive by using Theorem $1.19(2)$. In section 3, some conditions are provided for $T_{n}(F)$ to be ℓ-isomorphic to the ℓ-algebra $T_{n}(F)$ with the entrywise order.

4.7.1 Lattice orders on $T_{2}(F)$ with $1>0$

In this section we describe all the lattice orders on $T_{2}(F)$ to make it into an ℓ-algebra over F with identity matrix $1>0$. First we construct three Archimedean lattice orders over F.

We use P_{0} to denote the positive cone of the entrywise order on $T_{2}(F)$, that is, $P_{0}=T_{2}\left(F^{+}\right)$.

Recall that $e_{11}, e_{22}, e_{12} \in T_{2}(F)$ denote the standard matrix units. It is clear that $\left\{1, e_{22}, e_{12}\right\}$ is a vector space basis of vector space $T_{2}(F)$ over F and we have the following multiplication table for $\left\{1, e_{22}, e_{12}\right\}$.

	1	e_{22}	e_{12}
1	1	e_{22}	e_{12}
e_{22}	e_{22}	e_{22}	0
e_{12}	e_{12}	e_{12}	0

By Theorem 1.19(1), $T_{2}(F)$ becomes an Archimedean ℓ-unital ℓ-algebra over F with the positive cone

$$
P_{1}=F^{+} 1+F^{+} e_{22}+F^{+} e_{12}
$$

Since $e_{12}^{2}=0,\left(T_{2}(F), P_{1}\right)$ is not ℓ-reduced.
Let $k=e_{12}+e_{22}$. It is also clear that $\left\{1, e_{22}, k\right\}$ is a vector space basis for vector space $T_{2}(F)$ over F and we have the following multiplication table.

	1	e_{22}	k
1	1	e_{22}	k
e_{22}	e_{22}	e_{22}	e_{22}
k	k	k	k

By Theorem 1.19(1) again, $T_{2}(F)$ becomes an Archimedean ℓ-unital ℓ algebra over F with the positive cone

$$
P_{2}=F^{+} 1+F^{+} e_{22}+F^{+} k
$$

Clearly, $\left(T_{2}(F), P_{2}\right)$ is ℓ-reduced. We also notice that $P_{2} \subsetneq P_{1} \subsetneq P_{0}$. We show that an Archimedean ℓ-unital ℓ-algebra $T_{2}(F)$ is ℓ-isomorphic or anti-ℓ-isomorphic to the ℓ-algebra $T_{2}(F)$ with the positive cone P_{1}, P_{2}, or P_{3}.

We first state a lemma that will be used in proofs. Recall that $f\left(T_{2}(F)\right)=\left\{a \in T_{2}(F)| | a \mid\right.$ is an f-element of $\left.T_{2}(F)\right\}$.

Lemma 4.23. Let $T_{2}(F)$ be an ℓ-algebra over F.
(1) If $T_{2}(F)$ is ℓ-reduced, then $T_{2}(F)$ is an ℓ-domain. Moreover if $T_{2}(F)$ is ℓ-unital, then $f\left(T_{2}(F)\right)$ is totally ordered.
(2) Suppose that $T_{2}(F)$ is ℓ-unital. If $f\left(T_{2}(F)\right)$ is totally ordered and $f\left(T_{2}(F)\right)^{\perp}$ contains nonzero positive nilpotent elements, then $f\left(T_{2}(F)\right)=F 1$.

Proof. (1) Let $0 \leq u, v \in T_{2}(F)$ with $u v=0$. Then $(v u)^{2}=0$, and hence $v u=0$ since $T_{2}(F)$ is ℓ-reduced. Thus $(v z u)^{2}=(u z v)^{2}=0$, for any $z \in T_{2}(F)^{+}$. Hence $v z u=u z v=0$, for any $z \in T_{2}(F)^{+}$since $T_{2}(F)$ is ℓ-reduced. Therefore

$$
v T_{2}(F) u=u T_{2}(F) v=\{0\}
$$

By a direct calculation, we have that u is nilpotent or v is nilpotent (Exercise 60), and hence $u=0$ or $v=0$. If $T_{2}(F)$ is ℓ-unital, then by Theorem 1.27, $f\left(T_{2}(F)\right)$ is also a totally ordered domain.
(2) Let $0<a \in f\left(T_{2}(F)\right)^{\perp}$ with $a^{2}=0$. Then $a=\alpha e_{12}$ for some $0 \neq \alpha \in F$. We notice that $T_{2}(F)$ cannot be an f-ring by Theorem 1.22(3) since it contains idempotent elements which are not central. We claim that $f\left(T_{2}(F)\right)$ cannot be two-dimensional over F. In fact, if $f\left(T_{2}(F)\right)$ is two-dimensional, then $T_{2}(K)=f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}$ as a vector lattice and $f\left(T_{2}(F)\right)^{\perp}=F a$. Let $e_{11}=b+c$, where $b \in f\left(T_{2}(F)\right)$ and $c \in$ $f\left(T_{2}(F)\right)^{\perp}=F a$. Then $b=e_{11}-c$ is an idempotent element, so $b=1$ or $b=0$ by Theorem 1.22 , which is a contradiction. Thus $f\left(T_{2}(F)\right)$ cannot be two-dimensional over F, and hence $f\left(T_{2}(F)\right)=F 1$.

We also notice that if $T_{2}(F)$ is an ℓ-unital ℓ-algebra over F and $a \geq 0$ is a nilpotent element in $T_{2}(F)$, then $F a$ is an ℓ-ideal of $T_{2}(F)$ (Exercise 61).

An anti-isomorphism φ between two rings R and S is a group isomorphism between underlying additive groups of R and S, and for any $a, b \in R$, $\varphi(a b)=\varphi(b) \varphi(a)$. For instance, $\varphi: T_{2}(F) \rightarrow T_{2}(F)$ defined by

$$
\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) \rightarrow\left(\begin{array}{ll}
z & y \\
0 & x
\end{array}\right)
$$

is an anti-isomorphism. An anti- ℓ-isomorphism between two ℓ-rings is a ring anti-isomorphism which preserves the lattice orders.

Theorem 4.34. Let $T_{2}(F)$ be an Archimedean ℓ-unital ℓ-algebra over F. If $T_{2}(F)$ is not ℓ-reduced, then
(1) $T_{2}(F)$ is ℓ-isomorphic to $\left(T_{2}(F), P_{0}\right)$ provided 1 is not a basic element;
(2) $T_{2}(F)$ is ℓ-isomorphic or anti- ℓ-isomorphic to $\left(T_{2}(F), P_{1}\right)$ provided 1 is a basic element.

Proof. Let

$$
I=\left\{\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right): x \in F\right\} .
$$

Since $T_{2}(F)$ is not ℓ-reduced, there exists $a>0$ which is nilpotent, so $a \in I$, and hence $I=F a$ and I is an ℓ-ideal of $T_{2}(F)$.

Since $f\left(T_{2}(F)\right)$ is an Archimedean f-algebra over F with identity element, it contains no nilpotent element by Lemma 3.3(1), and hence $f\left(T_{2}(F)\right)$ is a finite direct sum of unital totally ordered algebras over F by Corollary 4.5. Let $0 \leq b \in f\left(T_{2}(F)\right)$. Then $a \wedge b$ is a positive nilpotent f-element implies $a \wedge b=0$. Thus we have the direct sum $f\left(T_{2}(F)\right) \oplus F a$ as vector lattices. We consider the following two cases.
(1) Suppose 1 is not basic in $T_{2}(F)$. Since 1 is not basic in $T_{2}(F)$, $f\left(T_{2}(F)\right)$ is a finite direct sum of at least two totally ordered algebras, and since $T_{2}(F)$ is three-dimensional, $f\left(T_{2}(F)\right)$ is a direct sum of exactly two totally ordered algebras. Thus $f\left(T_{2}(F)\right)$ is two-dimensional and $T_{2}(K)=$ $f\left(T_{2}(F)\right) \oplus F a$ as a vector lattice.

Now let $1=e+f$, where $e>0, f>0$, and $e \wedge f=0$. Then we have $e^{2}=e, f^{2}=f$, and $e f=f e=0$ since $0 \leq e, f \leq 1$ implies that e and f are f-elements. Thus $T_{2}(F)=F f \oplus F e \oplus F a$ as a vector lattice. Without loss of generality, we may assume that

$$
f=\left(\begin{array}{ll}
1 & u \\
0 & 0
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & v \\
0 & 1
\end{array}\right)
$$

with $v=-u \in F$ (Exercise 62). Also, suppose that

$$
a=\left(\begin{array}{cc}
0 & r \\
0 & 0
\end{array}\right), \quad \text { where } 0 \neq r \in F
$$

and define

$$
q=\left(\begin{array}{ll}
1 & u \\
0 & r
\end{array}\right)
$$

Consider the inner automorphism $i_{q}: T_{2}(F) \rightarrow T_{2}(F)$. Then

$$
i_{q}\left(e_{11}\right)=q^{-1} e_{11} q=f, i_{q}\left(e_{22}\right)=q^{-1} e_{22} q=e, i_{q}\left(e_{12}\right)=q^{-1} e_{12} q=a
$$

Thus i_{q} defines an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P_{0}\right)$ to ℓ-algebra $T_{2}(F)=F f \oplus F e \oplus F a$.
(2) Suppose 1 is basic in $T_{2}(F)$. Since 1 is basic, $f\left(T_{2}(F)\right)$ is totally ordered since if $x, y \in f\left(T_{2}(F)\right)$ with $x \wedge y=0$, then $(1 \wedge x) \wedge(1 \wedge y)=0$ implies $1 \wedge x=0$ or $1 \wedge y=0$, and hence $x=0$ or $y=0$. Hence

$$
T_{2}(F)=f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}
$$

by Lemma 4.7 since $T_{2}(F)$ is Archimedean over F. Thus $F a \subseteq f\left(T_{2}(F)\right)^{\perp}$. By Lemma 4.23, $f\left(T_{2}(F)\right)=F 1$, and hence $f\left(T_{2}(F)\right)^{\perp}$ is two-dimensional. Let $0<a_{1} \in f\left(T_{2}(F)\right)^{\perp} \backslash F a$. Since $T_{2}(F)$ is Archimedean over F, there exists $0<a_{2} \in F a$ such that $a_{2} \not \leq a_{1}$. Let $a_{1} \wedge a_{2}=a_{3}$. Then $\left(a_{1}-a_{3}\right) \wedge$ $\left(a_{2}-a_{3}\right)=0$, and

$$
0<\left(a_{1}-a_{3}\right) \in f\left(T_{2}(F)\right)^{\perp} \backslash F a, 0<\left(a_{2}-a_{3}\right) \in F a
$$

Let $e_{1}=a_{1}-a_{3}$ and $f_{1}=a_{2}-a_{3}$. Then $0<e_{1} \in f\left(T_{2}(F)\right)^{\perp} \backslash F a$, $0<f_{1} \in F a$, and $e_{1} \wedge f_{1}=0$, so

$$
f\left(T_{2}(F)\right)^{\perp}=F e_{1} \oplus F f_{1}
$$

as a vector lattice, and hence

$$
T_{2}(F)=F 1 \oplus F e_{1} \oplus F f_{1},
$$

as a vector lattice. Now we determine e_{1}. Let

$$
e_{1}=\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right), \text { where } x, y, z \in F
$$

Since $e_{1} f_{1}=x f_{1}$ and $f_{1} e_{1}=z f_{1}, x \geq 0$ and $z \geq 0$. Since $\left\{1, e_{1}, f_{1}\right\}$ is linearly independent, $x \neq z$. Otherwise e_{1} is a linear combination of 1 and f_{1}. Let

$$
e_{1}^{2}=\left(\begin{array}{cc}
x^{2} & (x+z) y \\
0 & z^{2}
\end{array}\right)=\alpha+\beta e_{1}+\gamma f_{1}
$$

for some $\alpha, \beta, \gamma \in F^{+}$. Then we have

$$
x^{2}-\beta x-\alpha=0 \text { and } z^{2}-\beta z-\alpha=0
$$

and hence $x+z=\beta$ and $x z=-\alpha$.
If x and z are both not zero, then one of them must be negative since $x z=-\alpha \leq 0$, which is a contradiction. Thus we have $x=0$ or $z=0$.

Suppose $x=0$. Then $z>0$ since e_{1} is not nilpotent, $\alpha=0$, and

$$
e_{1}^{2}=\left(\begin{array}{ll}
0 & z y \\
0 & z^{2}
\end{array}\right)=z e_{1}
$$

Let

$$
i=z^{-1} e_{1}=\left(\begin{array}{ll}
0 & z^{-1} y \\
0 & 1
\end{array}\right)
$$

Then $T_{2}(F)=F 1 \oplus F i \oplus F f_{1}$ as a vector lattice. Now let

$$
f_{1}=\left(\begin{array}{cc}
0 & r_{1} \\
0 & 0
\end{array}\right), \quad \text { where } 0 \neq r_{1} \in F
$$

and define

$$
q=\left(\begin{array}{cc}
1-z^{-1} y \\
0 & r_{1}
\end{array}\right)
$$

Then

$$
i_{q}\left(e_{22}\right)=q^{-1} e_{22} q=i, i_{q}\left(e_{12}\right)=q^{-1} e_{12} q=f_{1}
$$

Thus i_{q} is an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P_{1}\right)$ to ℓ-algebra $T_{2}(F)=$ $F 1 \oplus F i \oplus F f_{1}$.

Suppose $z=0$. Then $x>0, \alpha=0$, and

$$
e_{1}^{2}=\left(\begin{array}{cc}
x^{2} & x y \\
0 & 0
\end{array}\right)=x e_{1}
$$

Let

$$
j=x^{-1} e_{1}=\left(\begin{array}{ll}
1 & x^{-1} y \\
0 & 0
\end{array}\right)
$$

Then $T_{2}(F)=F 1 \oplus F j \oplus F f_{1}$, a direct sum as vector lattices. Define

$$
q=\left(\begin{array}{cc}
1-x^{-1} y \\
0 & r_{1}
\end{array}\right)
$$

Then

$$
\varphi i_{q}\left(e_{22}\right)=\varphi\left(q^{-1} e_{22} q\right)=j, \varphi i_{q}\left(e_{12}\right)=\varphi\left(q^{-1} e_{12} q\right)=f_{1}
$$

where $\varphi: T_{2}(F) \rightarrow T_{2}(F)$ is defined by

$$
\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) \rightarrow\left(\begin{array}{ll}
z & y \\
0 & x
\end{array}\right)
$$

Thus φi_{q} is an anti- ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P_{1}\right)$ to ℓ-algebra $T_{2}(F)=F 1 \oplus F j \oplus F f_{1}$ (Exercise 63).

Theorem 4.35. Let $T_{2}(F)$ be an Archimedean ℓ-unital ℓ-algebra over F. If $T_{2}(F)$ is ℓ-reduced, then $T_{2}(F)$ is ℓ-isomorphic or anti- ℓ-isomorphic to $\left(T_{2}(F), P_{2}\right)$.

Proof. Since $T_{2}(F)$ is ℓ-reduced, by Lemma 4.23, $f\left(T_{2}(F)\right)$ is totally ordered, and hence 1 is basic. Since $f\left(T_{2}(F)\right)$ is totally ordered, $T_{2}(F)=$ $f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}$ as a vector lattice by Lemma 4.7.

Let $a_{1}=\left(e_{12}\right)^{+}$and $b_{1}=\left(e_{12}\right)^{-}$. Since $T_{2}(F)$ is ℓ-reduced, $a_{1}>0$ and $b_{1}>0$. It follows from $a_{1} \wedge b_{1}=0$ that $\left(a_{1} \wedge 1\right) \wedge\left(b_{1} \wedge 1\right)=0$, and hence $a_{1} \wedge 1=0$ or $b_{1} \wedge 1=0$ since 1 is basic. In the following we suppose $a_{1} \wedge 1=0$. A similar argument may be used to prove the case that $b_{1} \wedge 1=0$ and we leave the verification of this fact as an exercise. Let

$$
a_{1}=\left(\begin{array}{cc}
x_{1} & x_{2} \\
0 & x_{3}
\end{array}\right)
$$

Then $a_{1}^{2}=\left(x_{1}+x_{3}\right) a_{1}+\left(-x_{1} x_{3}\right) 1 \geq 0$ implies $x_{1}+x_{3} \geq 0$ and $-x_{1} x_{3} \geq 0$ since $a_{1} \wedge 1=0$.

First we claim that b_{1} is not an f-element. Suppose b_{1} is an f-element. From

$$
\left(a_{1}-b_{1}\right)^{2}=a_{1}^{2}-a_{1} b_{1}-b_{1} a_{1}+b_{1}^{2}=0
$$

we have

$$
\left(x_{1}+x_{3}\right) a_{1}+\left(-x_{1} x_{3}\right) 1-a_{1} b_{1}-b_{1} a_{1}+b_{1}^{2}=0
$$

and hence

$$
\left(-x_{1} x_{3}\right) 1+b_{1}^{2}=0 \text { and }\left(x_{1}+x_{3}\right) a_{1}-a_{1} b_{1}-b_{1} a_{1}=0
$$

since $\left(-x_{1} x_{3}\right) 1+b_{1}^{2} \in f\left(T_{2}(F)\right)$ and $\left(x_{1}+x_{3}\right) a_{1}-a_{1} b_{1}-b_{1} a_{1} \in f\left(T_{2}(F)\right)^{\perp}$. It follows from $\left(-x_{1} x_{3}\right) 1+b_{1}^{2}=0$ that $b_{1}^{2}=0$, and hence $b_{1}=0$, which is a contradiction. Thus b_{1} is not an f-element.

Since $T_{2}(F)$ is Archimedean over F, there exists $0<\alpha \in F$ such that $\alpha 1 \not \leq b_{1}$. Let $b_{1} \wedge \alpha 1=c$. Then $c<\alpha 1$, and $c<b_{1}$ since b_{1} is not an f-element. Thus

$$
\left(b_{1}-c\right) \wedge(\alpha 1-c)=0, \text { with } b_{1}-c>0 \text { and } \alpha 1-c>0
$$

so $b_{1}-c \in f\left(T_{2}(F)\right)^{\perp}$ since $0<(\alpha 1-c) \in f\left(T_{2}(F)\right)$. Let $d=b_{1}-c$. Then $0<a_{1}, d \in f\left(T_{2}(F)\right)^{\perp}$ and $a_{1} \wedge d=0$ since $d \leq b_{1}$. Thus $T_{2}(F)=$ $F 1 \oplus F a_{1} \oplus F d$ as a vector lattice.

Now we determine a_{1} and d. Recall that $e_{12}=a_{1}-b_{1}=a_{1}-d-c$.

Since $a_{1}^{2}=\left(x_{1}+x_{3}\right) a_{1}+\left(-x_{1} x_{3}\right) 1$, we have $-x_{1} x_{3} \geq 0$, and hence $x_{1} \leq 0$ or $x_{3} \leq 0$. Suppose $x_{1} \leq 0$. From $e_{12} \leq a_{1}$, we have $a_{1} e_{12} \leq a_{1}^{2}$, and hence

$$
x_{1} a_{1}-x_{1} d-x_{1} c \leq\left(x_{1}+x_{3}\right) a_{1}+\left(-x_{1} x_{3}\right) 1,
$$

so

$$
-x_{1} d-x_{1} c \leq x_{3} a_{1}+\left(-x_{1} x_{3}\right) 1 .
$$

Since $\left\{1, a_{1}, d\right\}$ is a disjoint set, we have $-x_{1} d=0$ and hence $x_{1}=0$. By a similar argument, if $x_{3} \leq 0$ then $x_{3}=0$ (Exercise 64). Thus we have $x_{1}=0$ or $x_{3}=0$ but not both of them are zero since a_{1} is not nilpotent.

Let

$$
d=\left(\begin{array}{cc}
y_{1} & y_{2} \\
0 & y_{3}
\end{array}\right), \text { where } y_{1}, y_{2}, y_{3} \in F .
$$

Then $d^{2}=\left(y_{1}+y_{3}\right) d+\left(-y_{1} y_{3}\right) 1 \geq 0$ implies that $\left(y_{1}+y_{3}\right) \geq 0$ and $-y_{1} y_{3} \geq 0$, so $y_{1} \leq 0$ or $y_{3} \leq 0$. Suppose $y_{1} \leq 0$. From $-e_{12} \leq b_{1}=d+c$, we have $-d e_{12} \leq d^{2}+d c$, and hence

$$
-y_{1}\left(a_{1}-d-c\right) \leq\left(y_{1}+y_{3}\right) d+\left(-y_{1} y_{3}\right) 1+d c
$$

so

$$
-y_{1} a_{1} \leq y_{3} d+\left(-y_{1} y_{3}\right) 1+d c-y_{1} c .
$$

Since c is an f-element, a_{1} is disjoint with $d, 1, d c$, and c, so we have $-y_{1} a_{1}=0$, and hence $y_{1}=0$. Similarly, if $y_{3} \leq 0$, then $y_{3}=0$. Therefore, we have $y_{1}=0$ or $y_{3}=0$ but not both of them are zero.

If $x_{1}=0$ and $y_{3}=0$, then $a_{1} d=0$, which is a contradiction by Lemma 4.23. Similarly, x_{3} and y_{1} cannot be both zero. Thus we have the following two cases.
(i) $x_{1}=0$ and $y_{1}=0$. Let

$$
u=x_{3}^{-1} a_{1}=\left(\begin{array}{c}
0 \\
0
\end{array} x_{3}^{-1} x_{2}, \quad v=y_{3}^{-1} d=\left(\begin{array}{cc}
0 & y_{3}^{-1} y_{2} \\
0 & 1
\end{array}\right) .\right.
$$

Then $T_{2}(F)=F 1 \oplus F u \oplus F v$ as a vector lattice. Define

$$
q=\left(\begin{array}{cc}
1 & -x_{3}^{-1} x_{2} \\
0 & y_{3}^{-1} y_{2}-x_{3}^{-1} x_{2}
\end{array}\right) .
$$

Then q is invertible, and

$$
i_{q}\left(e_{22}\right)=q^{-1} e_{22} q=u, i_{q}(k)=q^{-1} k q=v,
$$

where $k=e_{12}+e_{22}$. Thus i_{q} is an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P_{2}\right)$ to ℓ-algebra $T_{2}(F)=F 1 \oplus F u \oplus F v$.
(ii) $x_{3}=0$ and $y_{3}=0$. Now let

$$
u=x_{1}^{-1} a_{1}=\left(\begin{array}{cc}
1 & x_{1}^{-1} x_{2} \\
0 & 0
\end{array}\right), \quad v=y_{1}^{-1} d=\left(\begin{array}{c}
1 \\
y_{1}^{-1} y_{2} \\
0
\end{array}\right)
$$

Then we have $T_{2}(K)=K 1 \oplus K u \oplus K v$ as a vector lattice. Define

$$
q=\left(\begin{array}{ll}
1 & -x_{1}^{-1} x_{2} \\
0 & y_{1}^{-1} y_{2}-x_{1}^{-1} x_{2}
\end{array}\right)
$$

Then

$$
\varphi i_{q}\left(e_{22}\right)=\varphi\left(q^{-1} e_{22} q\right)=u, \varphi i_{q}(k)=\varphi\left(q^{-1} k q\right)=v
$$

where φ is defined in Theorem 4.34. Therefore, φi_{q} is an anti- ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P_{2}\right)$ to ℓ-algebra $T_{2}(F)=F 1 \oplus F u \oplus F v$.

Finally we determine non-Archimedean lattice orders on $T_{2}(F)$ in which 1 is positive. $T_{2}(F)$ can be made into a vector lattice as follows:

$$
T_{2}(F)=F 1 \oplus\left(F e_{22} \underset{\rightarrow}{\oplus} F e_{12}\right)
$$

where $F e_{22} \xrightarrow[\rightarrow]{\oplus} F e_{12}$ is the lexicographic order, that is, $\alpha e_{22}+\beta e_{12} \geq 0$ if and only if $\alpha>0$ or $\alpha=0$ and $\beta \geq 0$. We denote the positive cone of this lattice order on $T_{2}(F)$ by P_{3}. Then
$P_{3}=\left\{\alpha 1+\beta e_{22}+\gamma e_{12}: \alpha \geq 0, \beta>0\right.$, or $\left.\alpha \geq 0, \beta=0, \gamma \geq 0, \forall \alpha, \beta, \gamma \in F\right\}$.
We leave the routine checking that P_{3} is closed under the multiplication in $T_{2}(F)$ as an exercise (Exercise 66). Thus $\left(T_{2}(F), P_{3}\right)$ becomes an ℓ-unital ℓ-algebra which is not Archimedean over F.

Theorem 4.36. Let $T_{2}(F)$ be an ℓ-unital ℓ-algebra which is not Archimedean over F. Then $T_{2}(F)$ is ℓ-isomorphic or anti- ℓ-isomorphic to $\left(T_{2}(F), P_{3}\right)$.

Proof. Since $T_{2}(F)$ is non-Archimedean over $F, T_{2}(F)$ is not ℓ-reduced by Theorem 1.31. Let $a>0$ and $a^{2}=0$.

We first claim that a cannot be an f-element. Suppose that a is an f element. Then $a, 1 \in f\left(T_{2}(F)\right)$ and the square of each element in $f\left(T_{2}(F)\right)$ is positive implies for any $0 \leq \alpha \in F, 0 \leq(1-\alpha a)^{2}$, so $\alpha a<1$ for each $\alpha \in F^{+}$. Hence a and 1 are linearly independent over F. Then that $T_{2}(F)$ cannot be an f-ring implies that $f\left(T_{2}(F)\right)$ is two-dimensional and totally ordered. Thus $T_{2}(F)=f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}$ as a vector lattice
and $f\left(T_{2}(F)\right)^{\perp}$ is one-dimensional over F. Let $0<b \in f\left(T_{2}(F)\right)^{\perp}$. Then $f\left(T_{2}(F)\right)^{\perp}=F b$. Since a is an f-element, $a b, b a \in f\left(T_{2}(F)\right)^{\perp}$, then we have $a b=\gamma b$ and $b a=\beta b$, for some $\gamma, \beta \in F^{+}$. On the other hand, $a b, b a \in F a$ since $F a$ is an ℓ-ideal of $T_{2}(F)$. Then we have $b^{2}=0$ (Exercise $67)$, so $b \in F a \subseteq f\left(T_{2}(F)\right)$, which is a contradiction. Therefore a is not an f-element.

Since $a \wedge 1 \in F a$ and a is not an f-element, $a \wedge 1=0$, so $a \in f\left(T_{2}(F)\right)^{\perp}$. If $f\left(T_{2}(F)\right)$ is not totally ordered, then there are $0<u, v \in f\left(T_{2}(F)\right)$ with $u \wedge v=0$, and hence

$$
T_{2}(F)=F u \oplus F v \oplus F a
$$

as a direct sum of vector lattices. Thus $T_{2}(F)$ is Archimedean over F, which is a contradiction. Therefore, $\left(T_{2}(F)\right)$ is totally ordered. By Lemma $4.23, f\left(T_{2}(F)\right)=F 1$, and hence by Lemma 4.7

$$
T_{2}(F)=\left(f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}\right) \cup U_{f}
$$

where

$$
U_{f}=\left\{w \in T_{2}(F):|w| \geq \alpha 1, \forall \alpha \in F\right\}
$$

If $0<w \in U_{f}$, then $\alpha 1 \leq w$ for all $\alpha \in F$, so $\alpha a \leq w a$ for all $\alpha \in F$, which is a contradiction since $w a \in F a$. Thus $U_{f}=\emptyset$, and $T_{2}(F)=$ $f\left(T_{2}(F)\right) \oplus f\left(T_{2}(F)\right)^{\perp}$, so $f\left(T_{2}(F)\right)^{\perp}$ is two-dimensional over F.

Next we claim that $f\left(T_{2}(F)\right)^{\perp}$ is totally ordered. If $f\left(T_{2}(F)\right)^{\perp}$ is not totally ordered, then there exist $0<s, t \in f\left(T_{2}(F)\right)^{\perp}$ such that $s \wedge t=0$, so

$$
f\left(T_{2}(F)\right)^{\perp}=F s \oplus F t, \text { and } T_{2}(F)=F 1 \oplus F s \oplus F t
$$

as vector lattices. Thus, again, $T_{2}(F)$ is Archimedean over F, which is a contradiction. Therefore, $f\left(T_{2}(F)\right)^{\perp}$ is totally ordered. Let $0<c \in$ $f\left(T_{2}(F)\right)^{\perp}$ such that a and c are linearly independent over F. If $c \leq \alpha a$ for some $\alpha \in F$, then $c \in F a$ since $F a$ is an ℓ-ideal, so a and c are linearly dependent, which is a contradiction. Thus for all $\alpha \in F$, we have $\alpha a<c$. Let

$$
c=\left(\begin{array}{cc}
z_{1} & z_{2} \\
0 & z_{3}
\end{array}\right) \quad \text { and } \quad a=\left(\begin{array}{cc}
0 & x \\
0 & 0
\end{array}\right)
$$

Then $a c=z_{3} a \geq 0$ and $c a=z_{1} a \geq 0$ implies that $z_{1} \geq 0$ and $z_{3} \geq 0$. Since

$$
c^{2}=\left(z_{1}+z_{3}\right) c+\left(-z_{1} z_{3}\right) 1 \geq 0
$$

we have $-z_{1} z_{3} \geq 0$, and hence $z_{1} z_{3}=0$, so $z_{1}=0$ or $z_{3}=0$.

Suppose $z_{1}=0$. Then $z_{3}>0$. Let

$$
d=z_{3}^{-1} c=\left(\begin{array}{lc}
0 & z_{3}^{-1} z_{2} \\
0 & 1
\end{array}\right)
$$

Then $T_{2}(F)=F 1 \oplus(F d \underset{\rightarrow}{\oplus} F a)$ as a vector lattice. Define

$$
q=\left(\begin{array}{cc}
1-z_{3}^{-1} z_{2} \\
0 & x
\end{array}\right)
$$

Then

$$
i_{q}\left(e_{22}\right)=q^{-1} e_{22} q=d, i_{q}\left(e_{12}\right)=q^{-1} e_{12} q=a
$$

Thus i_{q} is an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(K), P_{3}\right)$ to ℓ-algebra $T_{2}(K)=K 1 \oplus(K d \underset{\rightarrow}{\oplus} K a)$.

Suppose $z_{3}=0$. Then $z_{1}>0$. Let

$$
e=z_{1}^{-1} c=\left(\begin{array}{lc}
1 & z_{1}^{-1} z_{2} \\
0 & 0
\end{array}\right)
$$

Then $T_{2}(F)=F 1 \oplus(F e \underset{\rightarrow}{\oplus} F a)$ as a vector lattice. Define

$$
q=\left(\begin{array}{cc}
1-z_{1}^{-1} z_{2} \\
0 & x
\end{array}\right)
$$

Then

$$
\varphi i_{q}\left(e_{22}\right)=\varphi\left(q^{-1} e_{22} q\right)=e, \varphi i_{q}\left(e_{12}\right)=\varphi\left(q^{-1} e_{12} q\right)=a
$$

and hence φi_{q} is an anti- ℓ-isomorphism from ℓ-algebra $\left(T_{2}(K), P_{3}\right)$ to ℓ algebra $T_{2}(F)=F 1 \oplus(F e \underset{\rightarrow}{\oplus} F a)$.

4.7.2 Lattice orders on $T_{2}(F)$ with $1 \ngtr 0$

In this section, we suppose that $T_{2}(F)$ is an ℓ-algebra over F in which the identity matrix $1 \ngtr 0$. In this case each lattice order can be obtained from a lattice order with $1>0$ using Theorem 1.19. As in the last section, we consider two cases in which $T_{2}(F)$ is not ℓ-reduced and ℓ-reduced respectively.

Suppose that $T_{2}(F)$ is not ℓ-reduced. Let $w=w_{1} e_{12}$ be a positive nilpotent element, where $0 \neq w_{1} \in F$. Then $I=F w$ is an ℓ-ideal of $T_{2}(F)$ (Exercise 61). Suppose $u=1^{+}, v=1^{-}$. Then $u>0, v>0,1=u-v$ and $u \wedge v=0$. Let

$$
u=\left(\begin{array}{cc}
u_{1} & u_{2} \\
0 & u_{3}
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{cc}
v_{1} & u_{2} \\
0 & v_{3}
\end{array}\right)
$$

where $u_{1}-v_{1}=1$ and $u_{3}-v_{3}=1$.
We first notice that for any $x=\left(\begin{array}{cc}x_{1} & x_{2} \\ 0 & x_{3}\end{array}\right) \in T_{2}(F), x w=x_{1} w$ and $w x=x_{3} w$. So if $x \geq 0$, then $x_{1}, x_{3} \in F^{+}$. This fact will often be used later.

Since

$$
\begin{aligned}
v^{2} & =\left(v_{1}+v_{3}\right) v-\left(v_{1} v_{3}\right) 1 \\
& =\left(v_{1}+v_{3}\right) v-v_{1} v_{3}(u-v) \\
& =-\left(v_{1} v_{3}\right) u+\left(v_{1}+v_{3}+v_{1} v_{3}\right) v \\
& \geq 0
\end{aligned}
$$

and $u \wedge v=0$, we have $-\left(v_{1} v_{3}\right) \geq 0$. Thus $v_{1} v_{3}=0$, so either $v_{1}=0$ or $v_{3}=0$. Without loss of generality, we may assume that $v_{1}=0$. (If $v_{3}=0$, we may use the anti-isomorphism $\varphi:\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \rightarrow\left(\begin{array}{cc}z & y \\ 0 & x\end{array}\right)$ to reduce to the case that $v_{1}=0$.) Then we have

$$
u=\left(\begin{array}{ll}
1 & u_{2} \\
0 & u_{3}
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{ll}
0 & u_{2} \\
0 & v_{3}
\end{array}\right)
$$

Since $v_{3} \geq 0$, we have $u_{3}=1+v_{3} \geq 1$ and hence u is invertible. The element v_{3} may be zero. In the following, we consider $v_{3}>0$ and $v_{3}=0$, respectively.

Theorem 4.37. Let $T_{2}(F)$ be an ℓ-algebra over F with $1 \ngtr 0$. Suppose that $T_{2}(F)$ is not ℓ-reduced and u, v, w are defined as above. If $v_{3}>0$, then ℓ-algebra $T_{2}(F)$ is ℓ-isomorphic to ℓ-algebras $\left(T_{2}(F), r P_{1}\right)$, or $\left(T_{2}(F), r P_{3}\right)$, where $r \in P_{1}$ or P_{3} is invertible, respectively.

Proof. We first claim that for any $0<\alpha \in F, u \wedge \alpha w=0$. Suppose that $u \wedge \alpha w=p$. Then $p=\beta w$ for some $\beta \in F, 0 \leq \beta \leq \alpha$, since $I=F w$ is an ℓ-ideal. Then $\beta w \leq u$ implies $\beta(w v) \leq(u v)$. Since $w v=v_{3} w$ and $u v=u_{3} v$, we have $\left(\beta v_{3}\right) w \leq u_{3} v$, so $\beta w \leq \frac{u_{3}}{v_{3}} v$. Since $u \wedge v=0$ implies that $u \wedge \frac{u_{3}}{v_{3}} v=0$, we have $p=\beta w=0$.

We consider the following two cases.
(1) $\alpha w \leq v$ for each $0 \leq \alpha \in F$.

Since $v_{3}>0$, clearly $\{u, v, w\}$ is linearly independent over F, so $\{u, v, w\}$ is a vector space basis for $T_{2}(F)$ over F. Thus for each $f \in T_{2}(F), f=$ $\alpha u+\beta v+\gamma w$, where $\alpha, \beta, \gamma \in F$. It is straightforward to check that $f \geq 0$ if and only if $\alpha \geq 0, \beta>0$ or $\alpha \geq 0, \beta=0, \gamma \geq 0$ (Exercise 68).

Let $x=u^{-1}\left(\frac{u_{3}}{v_{3}} v\right)$ and $y=u^{-1} w$. Then $y=w$ and $\{1, x, y\}$ is linearly independent. The multiplication table for $\{1, x, y\}$ is given below.

	1	x	y
1	1	x	y
x	x	x	0
y	y	y	0

Now we define a positive cone

$$
P=\{\alpha+\beta x+\gamma y \mid \alpha \geq 0, \beta>0, \text { or } \alpha \geq 0, \beta=0, \gamma \geq 0\}
$$

Then $\left(T_{2}(F), P\right)$ is an ℓ-algebra in which $1>0$. Clearly $T_{2}(F)^{+}=u P$ and since $u=1+v=1+v_{3} x, u \in P$.

Define the mapping $\phi: T_{2}(F) \rightarrow T_{2}(F)$ by

$$
\phi(\alpha+\beta x+\gamma y)=\alpha+\beta e_{22}+\gamma e_{12}
$$

Then ϕ is an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(K), P\right)$ to ℓ-algebra $\left(T_{2}(F), P_{3}\right)$. Let $r=\phi(u)$. We have that $r \in P_{3}$ and ℓ-algebra $T_{2}(K)$ is ℓ-isomorphic to ℓ-algebra $\left(T_{2}(F), r P_{3}\right)$.
(2) $\beta w \not \leq v$ for some $0<\beta \in F$.

Let $g=v \wedge \beta w$. Then $g=\delta w$ for some $\delta \in F^{+}$since $I=F w$ is an ℓ-ideal. Since $\beta w \not \leq v, \beta>\delta$, so $\beta w-g=(\beta-\delta) w>0$. Now $(v-g) \wedge(\beta-\delta) w=0$ implies that $(v-g) \wedge w=0$ since $T_{2}(F)$ is an f-module over F and $\beta-\delta>0$. Let $v^{\prime}=v-g$. Then $v^{\prime}=\left(\begin{array}{cc}0 & v_{2} \\ 0 & v_{3}\end{array}\right)$, where $v_{2}=u_{2}-\delta w_{1}$; since $v_{3}>0$, we have $v^{\prime}>0$, and it is clear that the set $\left\{u, v^{\prime}, w\right\}$ is disjoint. Then for each $f \in T_{2}(F), f=\alpha u+\beta v^{\prime}+\gamma w$, where $\alpha, \beta, \gamma \in K$, we have that $f \geq 0$ if and only if $\alpha \geq 0, \beta \geq 0$, and $\gamma \geq 0$ by Theorem 1.13(2).

Let $x^{\prime}=u^{-1}\left(\frac{u_{3}}{v_{3}} v^{\prime}\right)$ and $y=u^{-1} w$. The multiplication table for $\left\{1, x^{\prime}, y\right\}$ is given below (Exercise 69).

	1	x^{\prime}	y
1	1	x^{\prime}	y
x^{\prime}	x^{\prime}	x^{\prime}	0
y	y	y	0

Now we define the positive cone $P=\left\{\alpha+\beta x^{\prime}+\gamma y \mid \alpha, \beta, \gamma \in F^{+}\right\}$. Then $\left(T_{2}(F), P\right)$ is an ℓ-algebra in which $1>0$ and $T_{2}(F)^{+}=u P$. Since

$$
u=1+v^{\prime}+\delta w=1+v_{3} x^{\prime}+\left(v_{3} \delta+\delta\right) y
$$

and $v_{3}, \delta \in F^{+}$, we have $u \in P$.
By the same mapping as in (1), ℓ-algebra $T_{2}(F)$ is ℓ-isomorphic to ℓ algebra $\left(T_{2}(F), r P_{1}\right)$ with $r=\phi(u) \in P_{1}$.

Next we consider the case that $v_{3}=0$.
Theorem 4.38. Let $T_{2}(F)$ be an ℓ-algebra over F with $1 \ngtr 0$. Suppose that $T_{2}(F)$ is not ℓ-reduced and u, v, w are defined as above. If $v_{3}=0$, then ℓ-algebra $T_{2}(F)$ is ℓ-isomorphic or anti- ℓ-isomorphic to ℓ-algebras $\left(T_{2}(F), r P_{0}\right),\left(T_{2}(F), r P_{1}\right)$, or $\left(T_{2}(F), r P_{3}\right)$, where $r \in P_{0}, P_{1}$, or P_{3}, respectively, is an invertible matrix.

Proof. Since $v_{3}=0, v \in I=F w$. Consider the quotient ℓ-algebra $T_{2}(F) / I$. Then $\overline{1}=1+I=\bar{u}=u+I>0$ in $T_{2}(F) / I$. Since $T_{2}(F) / I$ has other idempotent elements except $\overline{1}$ and $0, T_{2}(F) / I$ cannot be totally ordered, and since $T_{2}(F) / I$ contains no nilpotent element, $T_{2}(F) / I$ is Archimedean over F by Corollary 1.3. Thus $T_{2}(F) / I$ is a direct sum of two totally ordered subspaces over F. We need to consider two cases.
(i) $\overline{1}=\bar{u}$ is a basic element in $T_{2}(F) / I$.

Let $d \in T_{2}(F)^{+}$such that $\bar{d}>0$ and $\bar{u} \wedge \bar{d}=0$. Then $u \wedge d \in I$, so $u \wedge d=\epsilon w$ for some $\epsilon \in F^{+}$. Since $u \wedge v=0, \epsilon w \wedge v=0$. But ϵw and v are both in $I=F w$ and $v \neq 0$, so $\epsilon w=0$. Thus $u \wedge d=0$. Clearly $\{u, d, w\}$ is linearly independent. Let $d=\left(\begin{array}{ll}d_{1} & d_{2} \\ 0 & d_{3}\end{array}\right)$. Then $d_{1} \geq 0$ and $d_{3} \geq 0$ since $d w=d_{1} w$ and $w d=d_{3} w$. Since

$$
d^{2}=\left(d_{1}+d_{3}\right) d-\left(d_{1} d_{3}\right) u+\left(d_{1} d_{3}\right) v \geq 0
$$

$u \wedge d=0$, and $u \wedge v=0$, we have $-\left(d_{1} d_{3}\right) \geq 0$, so either $d_{1}=0$ or $d_{3}=0$. We may assume that $d_{1}=0$. If $d_{3}=0$, then, by using the anti-isomorphism φ, we may reduce to the above situation. Then $d_{3}>0$ since $\bar{d}>0$. There are two different lattice orders in this case.
$\left(i_{a}\right) \alpha w \leq d$ for all $\alpha \in F^{+}$.
In this case $\alpha u+\beta d+\gamma w \geq 0$ if and only if $\alpha \geq 0, \beta>0$, or $\alpha \geq 0$, $\beta=0, \gamma \geq 0$. Let $x=u^{-1}\left(\frac{1}{d_{3}} d\right)$ and $y=u^{-1} w$. The set $\{1, x, y\}$ is linearly independent with the following multiplication table.

	1	x	y
1	1	x	y
x	x	x	0
y	y	y	0

Now we define the positive cone

$$
P=\{\alpha+\beta x+\gamma y \mid \alpha \geq 0, \beta>0 \text { or } \alpha \geq 0, \beta=0, \gamma \geq 0\}
$$

Then $\left(T_{2}(F), P\right)$ is an ℓ-algebra in which $1>0$. Clearly $T_{2}(F)^{\geq}=u P$ and since $u=1+v=1+\theta w=1+\theta y$ for some $\theta \in F^{+}, u \in P$.

Define the mapping $\phi: T_{2}(F) \rightarrow T_{2}(F)$ by

$$
\phi(\alpha+\beta x+\gamma y)=\alpha+\beta e_{22}+\gamma e_{12}
$$

Then ϕ is an ℓ-isomorphism from ℓ-algebra $\left(T_{2}(F), P\right)$ to ℓ-algebra $\left(T_{2}(F), P_{3}\right)$. Let $r=\phi(u)$. We have that $r \in P_{3}$ and ℓ-algebra $T_{2}(F)$ is ℓ-isomorphic to ℓ-algebra $\left(T_{2}(F), r P_{3}\right)$.
$\left(i_{b}\right) \beta w \not \leq d$ for some $0<\beta \in F$.
Let $d \wedge \beta w=\delta w$. Then $0 \leq \delta<\beta$, and $(d-\delta w) \wedge(\beta-\delta) w=0$. Let $d^{\prime}=d-\delta w$. Then $d^{\prime}>0$, and since $\beta-\delta>0, d^{\prime} \wedge w=0$. Thus $\left\{u, d^{\prime}, w\right\}$ is disjoint, so $\alpha u+\beta d^{\prime}+\gamma w \geq 0$ if and only if $\alpha, \beta, \gamma \in F^{+}$ by Theorem $1.13(2)$. Let $x^{\prime}=u^{-1}\left(\frac{1}{d_{3}} d^{\prime}\right), y=u^{-1} w$. The set $\left\{1, x^{\prime}, y\right\}$ is linearly independent with the following multiplication table.

	1	x^{\prime}	y
1	1	x^{\prime}	y
x^{\prime}	x^{\prime}	x^{\prime}	0
y	y	y	0

Now if we define a positive cone $P=\left\{\alpha 1+\beta x^{\prime}+\gamma y \mid \alpha, \beta, \gamma \in F^{+}\right\}$. Then $1 \in P, T_{2}(F)^{+}=u P$ with $u \in P$, and $\left(T_{2}(F), P\right)$ is ℓ-isomorphic to $\left(T_{2}(F), P_{1}\right)$.
(ii) $\overline{1}=\bar{u}$ is not basic in $T_{2}(F) / I$.

Then there exist $f^{\prime}, g^{\prime} \in T_{2}(F)$ such that $\bar{u}=\bar{f}^{\prime}+\bar{g}^{\prime}, \bar{f}^{\prime}>0, \bar{g}^{\prime}>0$, and $\bar{f}^{\prime} \wedge \bar{g}^{\prime}=0$. Since $\bar{f}^{\prime} \wedge \bar{g}^{\prime}=0, f^{\prime} \wedge g^{\prime} \in I=F w$. Let $f^{\prime} \wedge g^{\prime}=p$, and let $f=f^{\prime}-p, g=g^{\prime}-p$. Then $f>0, g>0$, and $f \wedge g=0$. Since $\bar{u}=\bar{f}^{\prime}+\bar{g}^{\prime}=\bar{f}+\bar{g}, u=f+g+\delta w$ for some $\delta \in F$. Since $f \wedge g=0$, $(f \wedge w) \wedge(g \wedge w)=0$, so either $f \wedge w=0$ or $g \wedge w=0$ since $(f \wedge w)$ and $(g \wedge w)$ are both in $I=F w$. Without loss of generality, we may assume that $f \wedge w=0$.

If $\alpha w \leq g$ for all $\alpha \in F^{+}$, then $1=u-v=f+g+\delta w-v \geq 0$ since $v \in I=F w$, which is a contradiction. Thus there exists $0<\beta \in F$ such that $\beta w \not \leq g$. Let $g \wedge \beta w=q, h=g-q$. Then $h \wedge(\beta w-q)=0$ and $h>0$, $\beta w-q>0$. So $h \wedge w=0$ since $\beta w-q=\sigma w$ for some $0<\sigma \in F$. Now $\{f, h, w\}$ is disjoint and also a vector space basis for $T_{2}(F)$ over F.

Let

$$
f=\left(\begin{array}{cc}
f_{1} & f_{2} \\
0 & f_{3}
\end{array}\right) \text { and } h=\left(\begin{array}{cc}
h_{1} & h_{2} \\
0 & h_{3}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
f^{2} & =\left(f_{1}+f_{3}\right) f-\left(f_{1} f_{3}\right) 1 \\
& =\left(f_{1}+f_{3}\right) f-\left(f_{1} f_{3}\right)(u-v) \\
& =\left(f_{1}+f_{3}\right) f-\left(f_{1} f_{3}\right)(f+h+\delta w+q-v) \\
& =\left(f_{1}+f_{3}-f_{1} f_{3}\right) f-\left(f_{1} f_{3}\right) h-\left(f_{1} f_{3}\right)(\delta w+q-v) \geq 0
\end{aligned}
$$

implies that $-\left(f_{1} f_{3}\right) \geq 0$. Since $f \geq 0$, we also have $f_{1}, f_{3} \geq 0$. Thus $f_{1} f_{3}=0$, so either $f_{1}=0$ or $f_{3}=0$. By a similar argument, we have either $h_{1}=0$ or $h_{3}=0$.

Since $u=f+h+\delta w+q \geq 0$ and $\delta w+q \in I=F w, \delta w+q \geq 0$, so $\delta w+q=(\delta w+q) \wedge u=0$ since $u \wedge v=0$ and $\delta w+q, v \in I=F w$. Thus $u=f+h$. Then $f_{2}+h_{2}=u_{2}$, and f_{1}, h_{1} cannot be both zero. Also f_{3}, h_{3} cannot be both zero. We may assume that $f_{3}=h_{1}=0$ and leave the verification for $f_{1}=h_{3}=0$ to the reader (Exercise 70). Then $f_{1}=1$ and $h_{3}=1$. Then $f^{2}=f, h^{2}=h, h f=0$ and $f h=v$. Now let $x=u^{-1} f$ and $y=u^{-1} h$. Then $\{x, y, w\}$ is linearly independent with the following multiplication table.

	x	y	w
x	x	0	w
y	0	y	0
w	0	w	0

If we define the positive cone $P=\left\{\alpha x+\beta y+\gamma w \mid \alpha, \beta, \gamma \in F^{+}\right\}$, then $1=x+y \in P, T_{2}(F)^{+}=u P$, and $\left(T_{2}(F), P\right)$ is ℓ-isomorphic to $\left(T_{2}(F), P_{0}\right)$. Since $u=f+h=x+y+v, u \in P$. This completes the proof of $(i i)$.

Now we suppose that $T_{2}(F)$ is an ℓ-algebra over F in which the identity matrix $1 \ngtr 0$ and $T_{2}(F)$ is ℓ-reduced. Then $T_{2}(F)$ is an ℓ-domain by Lemma 4.23. Lattice orders on $T_{2}(F)$ for this case are characterized in the following result.

Theorem 4.39. Suppose that $T_{2}(F)$ is an ℓ-reduced ℓ-algebra over F in which $1 \ngtr 0$. Then $T_{2}(F)$ is ℓ-isomorphic or anti- ℓ-isomorphic to ℓ-algebra $\left(T_{2}(F), r P_{2}\right)$, where $r \in P_{2}$ is an invertible matrix.

Proof. Let $u=1^{+}, v=1^{-}$. Then $u>0, v>0,1=u-v$ and $u \wedge v=0$. As before, assume that

$$
u=\left(\begin{array}{cc}
u_{1} & u_{2} \\
0 & u_{3}
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{cc}
v_{1} & u_{2} \\
0 & v_{3}
\end{array}\right)
$$

where $u_{1}, v_{1}, u_{2}, u_{3}, v_{3} \in F, u_{1}-v_{1}=1$, and $u_{3}-v_{3}=1$.
Since $T_{2}(F)$ is ℓ-reduced, $T_{2}(F)$ is Archimedean over F by Theorem 1.31(3) and hence $T_{2}(F)$ is a direct sum of totally ordered subspaces over F by Corollary 1.3. We claim that $T_{2}(F)$ cannot be a direct sum of two totally ordered subspaces over F.

Suppose that $T_{2}(F)=W_{1} \oplus W_{2}$, where W_{1} and W_{2} are totally ordered subspaces over F. Then $T_{2}(F)$ has a basis with two elements, so if $s \wedge t=0$ and $s>0, t>0$, then s and t will be basic elements. Since $u \wedge v=0$, we may assume that $u \in W_{1}$ and $v \in W_{2}$. Let

$$
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)^{+} \quad \text { and } \quad y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)^{-}
$$

Then $x>0, y>0$ since $T_{2}(F)$ is ℓ-reduced, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=x-y$ and $x \wedge y=0$. Let

$$
x=\left(\begin{array}{ll}
x_{1} & x_{2} \\
0 & x_{3}
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{cc}
x_{1} & y_{2} \\
0 & x_{3}
\end{array}\right)
$$

where $x_{1}, x_{2}, y_{2}, x_{3} \in F$ and $x_{2}-y_{2}=1$. Since $x \wedge y=0, x$ and y are not in the same totally ordered direct summand of $T_{2}(F)$. We may assume that $x \in W_{1}$ and $y \in W_{2}$. Since

$$
x^{2}=\left(x_{1}+x_{3}\right) x-\left(x_{1} x_{3}\right) 1=\left(x_{1}+x_{3}\right) x-\left(x_{1} x_{3}\right) u+\left(x_{1} x_{3}\right) v \geq 0
$$

and $u \wedge v=x \wedge v=0$, we have $x_{1} x_{3} \geq 0$. Since

$$
y^{2}=\left(x_{1}+x_{3}\right) y-\left(x_{1} x_{3}\right) 1=\left(x_{1}+x_{3}\right) y-\left(x_{1} x_{3}\right) u+\left(x_{1} x_{3}\right) v \geq 0
$$

and $u \wedge v=u \wedge y=0$, we have $-\left(x_{1} x_{3}\right) \geq 0$. Thus $x_{1} x_{3}=0$. So either $x_{1}=0$ or $x_{3}=0$.

We first consider the case that $x_{1}=0$.
Since $x^{2}=x_{3} x, x_{3} \geq 0$, and since $T_{2}(F)$ contains no nonzero positive nilpotent element, $x_{3} \neq 0$. So $x_{3}>0$. Since

$$
u^{2}=\left(u_{1}+u_{3}\right) u-\left(u_{1} u_{3}\right) 1=\left(u_{1}+u_{3}-u_{1} u_{3}\right) u+\left(u_{1} u_{3}\right) v \geq 0
$$

and $u \wedge v=0$, we have $u_{1} u_{3} \geq 0$. Since $x v=v_{3} x \geq 0, v_{3} \geq 0$, and hence $u_{3}=1+v_{3} \geq 1$. Thus $u_{1} \geq 0$. If $u_{1}=0$, then $v_{1}=-1$. So $v y=x_{3} u-y \geq 0$ and $u \wedge y=0$ implies that $y=0$, which is a contradiction. Thus $u_{1}>0$.

Let $0<\alpha \in F$. If $u \leq \alpha x$, then $u^{2} \leq \alpha x u$. Since

$$
u^{2}=\left(u_{1}+u_{3}-u_{1} u_{3}\right) u+\left(u_{1} u_{3}\right) v \text { and } x u=u_{3} x
$$

we have

$$
\left(u_{1}+u_{3}-u_{1} u_{3}\right) u+\left(u_{1} u_{3}\right) v \leq\left(\alpha u_{3}\right) x
$$

Since $u \wedge v=x \wedge v=0$, we have $u_{1} u_{3} \leq 0$, which is a contradiction since $u_{3} \geq 1$ and $u_{1}>0$. Therefore $u \not \leq \alpha x$. Since αx and u are both in W_{1}, which is totally ordered, $\alpha x \leq u$ for any $\alpha \in F^{+}$, which contradicts with the fact that $T_{2}(F)$ is Archimedean over F.

By a similar argument, the case $x_{3}=0$ will also cause a contradiction. Therefore, $T_{2}(F)$ cannot be a direct sum of two totally ordered subspaces over F.

Then $T_{2}(F)=W_{1} \oplus W_{2} \oplus W_{3}$, where each W_{i} is a totally ordered subspace over F, and $T_{2}(F)$ has a basis with three elements. Since $u \wedge v=0$, u is a sum of at most two disjoint basic elements. Similarly v is a sum of at most two disjoint basic elements. We consider the following cases.
(I) $u=h+g$, where h and g are basic elements and $h \wedge g=0$.

Then $\{h, g, v\}$ is disjoint and a vector space basis over F. Let

$$
h=\left(\begin{array}{cc}
h_{1} & h_{2} \\
0 & h_{3}
\end{array}\right) \text { and } g=\left(\begin{array}{cc}
g_{1} & g_{2} \\
0 & g_{3}
\end{array}\right)
$$

where $h_{i}, g_{i} \in F, i=1,2,3$. Then

$$
\begin{aligned}
h^{2} & =\left(h_{1}+h_{3}\right) h-\left(h_{1} h_{3}\right) 1 \\
& =\left(h_{1}+h_{3}\right) h-\left(h_{1} h_{3}\right)(h+g-v) \\
& =\left(h_{1}+h_{3}-h_{1} h_{3}\right) h-\left(h_{1} h_{3}\right) g+\left(h_{1} h_{3}\right) v \geq 0
\end{aligned}
$$

implies that $-h_{1} h_{3} \geq 0$ and $h_{1} h_{3} \geq 0$. Thus $h_{1} h_{3}=0$, so either $h_{1}=0$ or $h_{3}=0$. By a similar argument, we have either $g_{1}=0$ or $g_{3}=0$.

If $h_{3}=g_{1}=0$, then $g h=0$, which contradicts with the fact that $T_{2}(F)$ is an ℓ-domain. Similarly it is not possible that $h_{1}=g_{3}=0$.

If $h_{1}=g_{1}=0$, then since $u=h+g$, we have $u_{1}=0$, so $v_{1}=-1$. Thus

$$
v^{2}=\left(\begin{array}{cc}
1-u_{2}+u_{2} v_{3} \\
0 & v_{3}^{2}
\end{array}\right)=\left(\begin{array}{cc}
1-u_{2}+u_{2} v_{3} \\
0 & \left(u_{3}-1\right) v_{3}
\end{array}\right)=-v+v_{3} u \geq 0
$$

implies that $v=0$, which is a contradiction.
If $h_{3}=g_{3}=0$, then $u_{3}=0$, so $v_{3}=-1$. Thus $v^{2}=-v+v_{1} u \geq 0$, and hence $v=0$, which is a contradiction.

Therefore, u cannot be a sum of two disjoint basic elements.
(II) $v=i+j$, where i and j are basic elements and $i \wedge j=0$.

Then $\{u, i, j\}$ is disjoint. Let

$$
i=\left(\begin{array}{cc}
i_{1} & i_{2} \\
0 & i_{3}
\end{array}\right) \text { and } j=\left(\begin{array}{cc}
j_{1} & j_{2} \\
0 & j_{3}
\end{array}\right)
$$

where $i_{k}, j_{k} \in F, k=1,2,3$. Then, by an argument similar to that in (I), we have $i_{1} i_{3}=0$ and $j_{1} j_{3}=0$. Since $T_{2}(F)$ is an ℓ-domain, $i_{1}=j_{3}=0$ and $i_{3}=j_{1}=0$ cannot happen.

Suppose that $i_{1}=j_{1}=0$. Then $i_{3}>0$ and $j_{3}>0$. Since $v=i+j$, $v_{1}=0$, so $u_{1}=1$. Since $i u=u_{3} i, u_{3}>0$. Thus u is invertible. Let $s=u^{-1}\left(\frac{u_{3}}{i_{3}} i\right)$ and $t=u^{-1}\left(\frac{u_{3}}{j_{3}} j\right)$. Then $\{1, s, t\}$ is linearly independent with the following multiplication table:

	1	s	t
1	1	s	t
s	s	s	s
t	t	t	t

Now we define the positive cone $P=\left\{\alpha+\beta s+\gamma t \mid \alpha, \beta, \gamma \in F^{+}\right\}$. Then $\left(T_{2}(F), P\right)$ is an ℓ-algebra in which $1>0, T_{2}(F)^{+}=u P$, and $\left(T_{2}(F), P\right)$ is ℓ-isomorphic to $\left(T_{2}(F), P_{2}\right)$. Since $u=1+i_{3} s+j_{3} t, u \in P$.

In the case that $i_{3}=j_{3}=0$, by a similar argument as above, there is a lattice order with the positive cone P on $T_{2}(F)$ such that $1 \in P$, $T_{2}(F)^{+}=u P$ for some invertible matrix $u \in P$, and $\left(T_{2}(F), P\right)$ is anti- ℓ isomorphic to $\left(T_{2}(F), P_{2}\right)$.
(III) u and v are both basic elements.

Then there is a basic element z such that $\{u, v, z\}$ is disjoint and a vector space basis of $T_{2}(F)$ over F. Let $z=\left(\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{3}\end{array}\right)$. Then

$$
z^{2}=\left(z_{1}+z_{3}\right) z-\left(z_{1} z_{3}\right) 1=\left(z_{1}+z_{3}\right) z-\left(z_{1} z_{3}\right) u+\left(z_{1} z_{3}\right) v \geq 0
$$

implies that $-\left(z_{1} z_{3}\right) \geq 0$ and $\left(z_{1} z_{3}\right) \geq 0$. Thus $z_{1} z_{3}=0$, so either $z_{1}=0$ or $z_{3}=0$.

We first consider the case $z_{1}=0$.
Since $u^{2}=\left(u_{1}+u_{3}-u_{1} u_{3}\right) u+\left(u_{1} u_{3}\right) v \geq 0$, we have $u_{1} u_{3} \geq 0$. Since $z v=v_{3} z, v_{3} \geq 0$, and since $T_{2}(F)$ is an ℓ-domain, $v_{3}>0$. So $u_{3}=v_{3}+1>1$ and $u_{1} \geq 0$. If $u_{1}=0$, then $v_{1}=-1$, so $v^{2}=-v+v_{3} u \geq 0$, which is a contradiction. Thus $u_{1}>0$. Similarly from $v^{2}=\left(v_{1}+v_{3}+v_{1} v_{3}\right) v-$ $\left(v_{1} v_{3}\right) u \geq 0$, we have $-\left(v_{1} v_{3}\right) \geq 0$. Thus $v_{1} \leq 0$. We claim that v_{1} cannot be less than 0 .

Suppose that $v_{1}<0$. Consider $u z$ and $v z$. Since $u z-v z=(u-v) z=z$, we have that

$$
u z=\alpha u+\beta v+\gamma_{1} z \text { and } v z=\alpha u+\beta v+\gamma_{2} z
$$

where $\alpha, \beta, \gamma_{1}, \gamma_{2} \in F^{+}$and $\gamma_{1}-\gamma_{2}=1$. Since $z_{1}=0, z^{2}=z_{3} z$. Now multiplying the above equation for $u z$ by z from the right, we get

$$
z_{3}(u z)=\alpha(u z)+\beta(v z)+\left(\gamma_{1} z_{3}\right) z
$$

Further substitutions of $u z$ and $v z$ result in:

$$
\begin{aligned}
\left(z_{3} \alpha\right) u+\left(z_{3} \beta\right) v+\left(z_{3} \gamma_{1}\right) z= & \left(\alpha^{2}\right) u+(\alpha \beta) v+\left(\alpha \gamma_{1}\right) z+(\beta \alpha) u+ \\
& \left(\beta^{2}\right) v+\left(\beta \gamma_{2}\right) z+\left(\gamma_{1} z_{3}\right) z
\end{aligned}
$$

Comparing the coefficients of z, we have $z_{3} \gamma_{1}=\alpha \gamma_{1}+\beta \gamma_{2}+\gamma_{1} z_{3}$, so $\alpha \gamma_{1}+\beta \gamma_{2}=0$. Thus $\alpha \gamma_{1}=\beta \gamma_{2}=0$ since $\alpha, \beta, \gamma_{1}, \gamma_{2} \in F^{+}$.

If $\alpha \neq 0$ and $\beta \neq 0$, then $\gamma_{1}=\gamma_{2}=0$, which contradicts with the fact that $\gamma_{1}-\gamma_{2}=1$. If $\alpha=0$ and $\beta \neq 0$, then $\gamma_{2}=0$ and $\gamma_{1}=1$, so $u z=\beta v+z$, that is,

$$
\left(\begin{array}{cc}
0 & u_{1} z_{2}+u_{2} z_{3} \\
0 & u_{3} z_{3}
\end{array}\right)=\left(\begin{array}{cc}
\beta v_{1} & \beta u_{2} \\
0 & \beta v_{3}
\end{array}\right)+\left(\begin{array}{cc}
0 & z_{2} \\
0 & z_{3}
\end{array}\right)
$$

which is a contradiction since $\beta v_{1} \neq 0$. Similarly the situation that $\alpha \neq 0$ and $\beta=0$ cannot happen.

Finally we consider the case $\alpha=\beta=0$. Then $u z=\gamma_{1} z$ and $v z=\gamma_{2} z$ implies

$$
u_{1} z_{2}+u_{2} z_{3}=\gamma_{1} z_{2}, \quad u_{3} z_{3}=\gamma_{1} z_{3}, \quad v_{1} z_{2}+u_{2} z_{3}=\gamma_{2} z_{2}, \quad v_{3} z_{3}=\gamma_{2} z_{3}
$$

Thus $\gamma_{1}=u_{3}, \gamma_{2}=v_{3}$, and $\left(u_{3}-u_{1}\right) z_{2}=u_{2} z_{3}=\left(v_{3}-v_{1}\right) z_{2}$. It is now straightforward to check that

$$
\left(-v_{1} z_{2}\right) u+\left(u_{1} z_{2}\right) v+\left(-u_{2}\right) z=0
$$

Thus $v_{1} z_{2}=0, u_{2}=0$, so $z_{2}=0$ since $v_{1} \neq 0$, but then $\{u, v, z\}$ will be linearly dependent, which is a contradiction.

Thus we must have $v_{1}=0$, and hence $u_{1}=1$. Let $s=u^{-1}\left(\frac{u_{3}}{v_{3}}\right) v$ and $t=u^{-1}\left(\frac{u_{3}}{z_{3}} z\right)$. Then $\{1, s, t\}$ is linearly independent with the following multiplication table.

	1	s	t
1	1	s	t
s	s	s	s
t	t	t	t

Now if we define $P=\left\{\alpha+\beta s+\gamma t \mid \alpha, \beta, \gamma \in F^{+}\right\}$, then $\left(T_{2}(F), P\right)$ is an ℓ-algebra in which $1>0$ and $T_{2}(F)^{+}=u P$. Since $u=1+v_{3} s$, we have $u \in P$. By using the similar mapping as before, $\left(T_{2}(F), P\right)$ is ℓ-isomorphic to ℓ-algebra $\left(T_{2}(F), P_{2}\right)$.

If $z_{3}=0$, then by a similar argument, $T_{2}(F)^{+}=u P$ for a lattice order on $T_{2}(F)$ with the positive cone P and an invertible matrix $u \in P$ such that $1 \in P$, and $\left(T_{2}(F), P\right)$ is anti- ℓ-isomorphic to the ℓ-algebra $\left(T_{2}(F), P_{2}\right)$. We leave the verification of this fact to the reader. This completes the proof of the theorem.

Thus we have proved that if $T_{2}(F)$ is ℓ-algebra in which $1 \ngtr 0$, then there exists an ℓ-algebra $T_{2}(F)$ with the positive cone P such that $1 \in P$ and $\left(T_{2}(F), T_{2}(F)^{+}\right)$is ℓ-isomorphic or anti- ℓ-isomorphic to $\left(T_{2}(F), u P\right)$, where $u \in P$ is invertible. However we don't know if this fact is true or not for $T_{n}(F)$ with $n>2$.

4.7.3 Some lattice orders on $T_{n}(F)$ with $n \geq 3$

Although we have successfully described all the lattice orders on triangular matrix algebra $T_{2}(F)$ over a totally ordered field F. It seems very hard to do this for $T_{n}(F)$ when $n \geq 3$. By using Mathematica, Mike Bradley found over one hundred lattice orders on $M_{3}(F)$ to make it into an Archimedean ℓ-algebra over F in which $1>0$. Actually lattice orders P_{1}, P_{2} on $T_{2}(F)$ in section 4.7 .1 were first found by Mike using Mathematica. Since he couldn't produce more lattice orders when using different inputs, we were convinced that there are only three Archimedean lattice orders with $1>0$ on $T_{2}(F)$, and figured out a proof as shown in the last two sections.

We would like to present some lattice orders on $T_{n}(F)$ with $n \geq 3$ that are not the entrywise order on $T_{n}(F)$.

Example 4.6. For a positive integer $k=1, \cdots, n-1$, define the positive cone on $T_{n}(F)$ as follows.

$$
\begin{aligned}
P_{k}=\left\{\left(a_{i j}\right) \mid\right. & a_{i j} \geq 0, \text { if } 1 \leq i<j \leq n, \text { and } \\
& \left.a_{11} \geq a_{n n}, \cdots, a_{k k} \geq a_{n n}, a_{k+1, k+1} \geq 0, \cdots, a_{n n} \geq 0\right\}
\end{aligned}
$$

We leave it to the reader to verify that $\left(T_{n}(F), P_{k}\right)$ is an ℓ-algebra over F with the following disjoint set (Exercise 71).

$$
\begin{gathered}
\left\{e_{i j}, 1 \leq i<j \leq n\right\} \cup\left\{e_{11}, \cdots, e_{n-1, n-1}, e_{11}+\cdots+e_{k k}+e_{n n}\right\} \\
\operatorname{In}\left(T_{n}(F), P_{k}\right), 1=e_{k+1, k+1}+\cdots+e_{n-1, n-1}+\left(e_{11}+\cdots+e_{k k}+e_{n n}\right)
\end{gathered}
$$ is a sum of $n-k$ basic elements, $k=1, \cdots, n-1$.

We give a characterization of ℓ-algebra $T_{3}(F)$ with the entrywise order.

Theorem 4.40. Let R be an ℓ-algebra over a totally ordered field $F . R$ is ℓ-isomorphic to ℓ-algebra $T_{3}(F)$ with the entrywise order if and only if the following conditions are satisfied.
(1) $\operatorname{dim}_{F} R=6$ and R is Archimedean over F,
(2) 1 is a sum of 3 disjoint basic elements,
(3) R contains a nilpotent ℓ-ideal I with $I^{2} \neq\{0\}$,
(4) if e is a basic element and an idempotent element, then eRe contains no nilpotent element.

Proof. Since R is finite dimensional and Archimedean over F, R is a finite direct sum of totally ordered subspaces of R over F by Theorem 1.17. Then each strictly positive element is a sum of disjoint basic elements. From $I^{2} \neq\{0\}$, there exist two basic elements $x_{1}, x_{2} \in I$ such that $x_{1} x_{2} \neq 0$. Let $a_{12}=x_{1}, a_{23}=x_{2}$, and $a_{13}=x_{1} x_{2}$. Suppose that $1=a+b+c$, where $\{a, b, c\}$ are disjoint basic elements. Then a, b, c are idempotent f-elements with $a b=b a=a c=c a=b c=c b=0$.

From $1=a+b+c, a_{12}=a a_{12}+b a_{12}+c a_{12}$. Since a_{12} is basic, any two of $a a_{12}, b a_{12}, c a_{12}$ are comparable. Suppose that $a a_{12} \neq 0$. If $a a_{12} \leq b a_{12}$, then $a a_{12}=a^{2} a_{12} \leq a b a_{12}=0$, which is a contradiction. Thus $b a_{12} \leq a a_{12}$, and hence $b a_{12}=0$. Similarly $c a_{12}=0$, so $a_{12}=$ $a a_{12}$. Let $a_{11}=a$. Similarly $a_{12} a=a_{12}$ or $a_{12} a=0$. In the first case, $a_{12}=a_{11} a_{12} a_{11} \in a_{11} R a_{11}$ implies that a_{12} is not nilpotent, which is a contradiction with the fact that a_{12} is in the nilpotent ℓ-ideal I. Thus $a_{12} a_{11}=0$. Suppose that $a_{12} b=a_{12}$. Let $a_{22}=b$. Since $a_{12} a_{23} \neq 0$, we must have $a_{22} a_{23}=a_{23}$. Then by condition (4) again, $a_{23} a_{11}=a_{23} a_{22}=0$ since a_{23}, a_{13} are nilpotent, so $a_{23} c=a_{23}$. Let $a_{33}=c$. Then for the elements in set $\left\{a_{i j} \mid 1 \leq i \leq j \leq 3\right\}, a_{i j} a_{r s}=\delta_{j r} a_{i s}$, where $\delta_{j r}$ is Kronecker delta.

Then it is straightforward to check that $\left\{a_{i j} \mid 1 \leq i \leq j \leq 3\right\}$ is a linearly independent set, so it is a vector space basis of R over F since $\operatorname{dim}_{F} R=6$. Moreover for a matrix $f \in T_{3}(F)$ with

$$
f=\sum_{1 \leq i \leq j \leq 3} \alpha_{i j} a_{i j}, \alpha_{i j} \in F
$$

$f \geq 0$ if and only if each $\alpha_{i j} \geq 0$. Therefore R is ℓ-isomorphic to ℓ-algebra $T_{3}(F)$ with the entrywise order.

Theorem 4.40 is actually true for any positive integer $n \geq 3$ after some modifications. We state the result below and omit the proof.

Theorem 4.41. Let R be an ℓ-algebra over a totally ordered field F. R is ℓ-isomorphic to ℓ-algebra $T_{n}(F)(n \geq 3)$ with the entrywise order if and only if the following conditions are satisfied.
(1) $\operatorname{dim}_{F} R=\frac{n(n+1)}{2}$ and R is Archimedean over F,
(2) 1 is a sum of n disjoint basic elements,
(3) R contains a nilpotent ℓ-ideal I with $I^{n-1} \neq\{0\}$,
(4) if e is a basic element and an idempotent element, then eRe contains no nilpotent element.

At the end of this section, we provide a couple of examples to show that some conditions in Theorem 4.40 are necessary.

Example 4.7. This example shows condition (4) in Theorem 4.40 cannot be omitted. Let $S=\left\{a, b, c, d, d^{2}, e\right\}$ with the following multiplication table.

	a	b	c	d	d^{2}	e
a	a	0	0	d	d^{2}	0
b	0	b	0	0	0	e
c	0	0	c	0	0	0
d	d	0	0	d^{2}	0	0
d^{2}	d^{2}	0	0	0	0	0
e	0	0	e	0	0	0

It is straightforward to check that $S \cup\{0\}$ satisfies the associative law, so $S \cup\{0\}$ becomes a semigroup with zero (Exercise 80). Form the semigroup ℓ-algebra $F[S]$ with the coordinatewise order. Then $\operatorname{Dim}_{F} F[S]=6$, and the identity element is $1=a+b+c$. Let

$$
J=\left\{\alpha d+\beta d^{2}+\gamma e \mid \alpha, \beta, \gamma \in F\right\}
$$

Then J is an ℓ-ideal of $F[S]$ such that $J^{3}=0$ and $J^{2} \neq 0$ since $d^{2} \neq 0$. But $a F[S] a=F a+F d+F d^{2}$ contains nilpotent elements, since d^{2} is a nilpotent element. Thus condition (4) in Theorem 4.40 is not satisfied. Therefore, $F[S]$ is not ℓ-isomorphic to the ℓ-algebra $T_{3}(F)$ with the entrywise order.

Example 4.8. This example presents an ℓ-algebra which does not satisfy condition (3) in Theorem 4.40. Let $S=\{a, b, c, d, e, f\}$ with the following multiplication table.

	a	b	c	d	e	f
a	a	0	0	d	e	0
b	0	b	0	0	0	f
c	0	0	c	0	0	0
d	0	0	d	0	0	0
e	0	0	e	0	0	0
f	f	0	0	0	0	0

Similarly it is straightforward to check that $S \cup\{0\}$ satisfies the associative law. Then $S \cup\{0\}$ becomes a semigroup with zero (Exercise 80). In the semigroup ℓ-algebra $F[S]$ with the coordinatewise order, $\operatorname{Dim}_{F} F[S]=6$ and the identity element is $1=a+b+c$. From the multiplication table, it is clear that for each $x \in\{a, b, c\}, x F[S] x=F x$. Thus condition (4) in Theorem 4.40 is satisfied. Let $J=F d+F e+F f$. Then J is an ℓ-ideal of $F[S]$ from the table. Clearly $J^{2}=0$. Let I be an ℓ-ideal of $F[S]$ with $I^{m}=0$ for some $m \geq 1$. Since a, b, c are idempotent elements, they are not in I, so $I \subseteq J$. Thus $I^{2}=0$ for any ℓ-ideal I, so condition (3) in Theorem 4.40 is not satisfied. Clearly $F[S]$ is not ℓ-isomorphic to the ℓ-algebra $T_{3}(F)$ with the entrywise order.

Exercises

(1) Let T be an ℓ-unital ℓ-ring and $M_{n}(T)$ be the ℓ-ring with the entrywise order. Prove that for each $i=1, \cdots, n, e_{i i} M_{n}(T)$ is a right ℓ-ideal and $e_{i i} M_{n}(T) \cong e_{j j} M_{n}(T)$ as right ℓ-modules over $M_{n}(T)$.
(2) Prove $a_{i} R=I_{i}$ in the proof of (3) $\Rightarrow(2)$ in Theorem 4.1.
(3) Show that $a_{i j} a_{k \ell}=\delta_{j k} a_{i \ell}$ in the proof of (3) \Rightarrow (2) in Theorem 4.1.
(4) Prove $\beta_{i j}=\alpha_{i j}, 1 \leq i, j \leq n$, in the proof of (2) \Rightarrow (1) in Theorem 4.1.
(5) Prove that the φ defined in the proof of $(2) \Rightarrow(1)$ in Theorem 4.1 is one-to-one, onto, and for any $a, b \in R, \varphi(a+b)=\varphi(a)+\varphi(b)$.
(6) Let R be a unital ring and $e \in R$ be an idempotent. Prove that $\operatorname{End}_{R}(e R, e R)$ is a ring and $e R e \cong \operatorname{End}_{R}(e R, e R)$ as rings.
(7) Prove that for an ℓ-unital ℓ-ring with $e \in R^{+}$, the $\operatorname{ring} \operatorname{End}_{R}(e R, e R)$ in problem (6) is a partially ordered ring with respect to the partial order defined by $\theta \geq 0$ if $\theta\left(e R^{+}\right) \subseteq e R^{+}$.
(8) Prove Theorem 4.2(2).
(9) Prove that for any $x \in R,\left(x g_{t}\right) \vee 0=(x \vee 0) g_{t}$ in the proof of $(3) \Rightarrow$ (1) of Theorem 4.3.
(10) Verify that a, b, f defined in the proof of Lemma 4.3 satisfy $f^{n}=0$ and $a f^{n-1}+f b=1$.
(11) Prove that in Lemma $4.3 R=g_{1} R+\cdots+g_{n} R$ is a direct sum and any two summands are isomorphic right R-module.
(12) Prove that $f^{m+n}=0$ and $a f^{m}+f^{n} b=1$ in the proof of $(1) \Rightarrow(2)$ of Theorem 4.4.
(13) Prove that $\sum_{1 \leq i \leq k, 1 \leq j \leq n} e^{i} M e^{j}$ in Theorem 4.7 is a direct sum.
(14) Prove that in Theorem 4.7, each $a, e a e^{n-1}, \cdots, e^{k-1} a e^{n-k+1}$ is in the sum for 1.
(15) Prove that $c_{i j}=e^{i} a e^{n-j}, 1 \leq i, j \leq k$ in Theorem 4.7 are $k \times k$ matrix units.
(16) Prove that in Theorem 4.8, $H \cap J=\{0\}$.
(17) Prove that in Theorem 4.8, if x is in the centralizer of matrix units $\left\{c_{i j} \mid 1 \leq i, j \leq k\right\}$, then $x \in F+F e^{k}+\cdots+F e^{(\ell-1) k}$, where $\ell=n / k$.
(18) Suppose that T is a unital ring and $e=e_{12}+e_{23}+\cdots+e_{n-1, n} \in M_{n}(T)$. Prove the following.
(a) For $k=1, \cdots, n-1, e^{k}=e_{1, k+1}+e_{2, k+2}+\cdots+e_{n-k, n}+\cdots+e_{n, k}$.
(b) If $x \in M_{n}(T)$ with $e x=x e$, then

$$
x_{1, k}=x_{2, k+1}=\cdots=x_{n-k, n-1}=\cdots=x_{n, k-1}
$$

(19) Prove that in Theorem 4.9 for $i=1, \cdots, n-1, e^{i}$ is not in the center of R.
(20) Let R be a left Ore domain and Q be its classical left quotient ring. Prove that matrices in $M_{n}(R)$ that are linearly independent over R are also linearly independent over Q.
(21) Suppose that R is a totally ordered domain and $M_{n}(R)$ be a left f module over R. Prove that a disjoint subset of M must be linearly independent over R.
(22) For a ring B, prove that $K=\{n \in \mathbb{Z} \mid n$ has an n-fier in $B\}$ is an ideal of \mathbb{Z}.
(23) Prove that in Theorem $4.10(2)$, for any $a \in R$, if $a \in U_{f}$, then one of $a^{+}, a^{-} \in U_{f}$, but not both of them.
(24) Prove that $I(k, x)$ defined before Lemma 4.9 is an ideal of \bar{R}.
(25) Prove that φ in Theorem 4.10 is an isomorphism between two additive groups of R_{1} and A. Thus R_{1} can be made into an ℓ-group such that R_{1} and A are ℓ-isomorphic ℓ-groups.
(26) Prove that in Theorem 4.10 if $n e+a e \in f(R)$, then $\overline{(n, a)} \in f\left(R_{1}\right)$.
(27) Let R be an ℓ-ring and I be an ℓ-ideal of R. Prove that for each $a \in f(R), a+I \in f(R / I)$.
(28) Let R be an ℓ-ring and I be an ℓ-ideal. Prove that $\ell(I)$ and $r(I)$ are ℓ-ideal. Moreover if $\ell-N(R)=\{0\}$, then $\ell(I)=r(I)$.
(29) Prove that A^{\prime} and B^{\prime} in Lemma 4.11 are ℓ-annihilator ℓ-ideal.
(30) Let $R \neq\{0\}$ be an ℓ-ring. Prove that R is an ℓ-domain if and only if R is ℓ-prime and ℓ-reduced.
(31) Prove that $R e$ in Theorem $4.12(4)$ is an ℓ-prime ℓ-ring.
(32) Prove that in the proof of Theorem 4.14, ye $(x \wedge e)=0, x_{1} e_{1}=e_{1} x_{1}=0$.
(33) Prove that in Lemma 4.13, $x_{1} e_{1} \wedge y=0$ implies that $y x_{1} e_{1}=0$ and $y e x_{1}=0$.
(34) An element e in a ring R is called regular if for any $a \in R$, $a e=0$ or $e a=0$ implies that $a=0$. Let R be a partially ordered ring. R is called regular division-closed if $a b>0$, and one of a, b is a positive regular element, then another is positive. Prove that a d-ring is regular division-closed.
(35) Prove that in Theorem 4.16 the definition of the multiplication on Q is well-defined and Q becomes a ring.
(36) Show that $\varphi: R \rightarrow Q$ in Theorem 4.16 is a ring homomorphism.
(37) Show that P defined in Theorem 4.17 is a partial order on Q.
(38) Prove that in the skew polynomial ring $F[x ; \sigma]$, for any left polynomials f, g with $f \neq 0$, there exist unique left polynomials q, r such that $g=$ $q f+r$ with $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$.
(39) Show that $R=F[x ; \sigma]$ is an ℓ-ring with respect to the order defined in Example 4.2 and $f(R)=F\left[x^{2} ; \sigma\right]$.
(40) Let R be a totally ordered integral domain and Q be its quotient field. For $\frac{a}{b} \in Q$, define $\frac{a}{b} \geq 0$ if $a b \geq 0$ in R. Prove that F is a totally ordered field and $R^{+}=R \cap Q^{+}$.
(41) Prove that the P defined in Theorem 4.23 is a partial order on $M_{n}(F)$.
(42) Prove Lemma 4.16.
(43) In Theorem $4.25, b_{i j} b_{j s}=t_{i j} t_{j s} t_{i s}^{-1} b_{i s}$. Prove that $t_{i j} t_{j s} t_{i s}^{-1} \in R$.
(44) Check $B=F J$ in Theorem 4.25 .
(45) Prove Lemma 4.17.
(46) Let F be a totally ordered field and $K \subseteq F^{n}$. Prove that cone ${ }_{F}(K)=$ $\left\{\sum \alpha_{i} v_{i} \mid \alpha_{i} \in F^{+}, v_{i} \in K\right\}$ is closed under the addition of F^{n} and positive scalar multiplication.
(47) Let F be a field and M be a nonzero subspace of F^{n}. Prove that if for any $g \in M_{n}(F), g M \subseteq M$, then $M=F^{n}$.
(48) For the following matrices

$$
h_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), h_{2}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), h_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), h_{4}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

construct the multiplication table of $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$.
(49) Prove that $\left(\Pi_{1 \leq i, j \leq 2} q_{i j}\right)(\operatorname{det} u)^{2}$ is a unit in R on p. 168 .
(50) Verify the multiplication table for $\left\{c_{11}, c_{12}, c_{21}, c_{22}\right\}$ on p. 168.
(51) Show that f in Example 4.4 is a positive f-element.
(52) For a unital ring R and an element u in its center, define a new multiplication $*$ for any $x, y \in R, x * y=x y u^{-1}$. Show that $(R,+, *)$ is a ring and if R is division ring then $(R,+, *)$ is also a division ring.
(53) Prove that P defined in Theorem 4.31 is the positive cone of a partial order on L.
(54) Verify that in Theorem 4.31, $(u a)^{\perp \perp}=F(u a)$.
(55) In Theorem 4.31, prove that if $x=\beta_{1} c_{1}+\cdots+\beta_{m} c_{m}$ for some $\beta_{1}, \cdots, \beta_{m} \in F$ and $c_{1}, \cdots, c_{m} \in B$ are distinct. Then

$$
x \vee_{\succeq} 0=\beta_{1}^{+} c_{1}+\cdots+\beta_{m}^{+} c_{m}
$$

(56) Suppose that T is a subspace of \mathbb{R}^{n}. Prove that T is a closed set.
(57) Suppose that T is a totally ordered subspace of \mathbb{R}^{n} such that T^{+}and $-T^{+}$are closed sets. Then T must be 1-dimensional.
(58) For n linearly independent vectors v_{1}, \cdots, v_{n} of \mathbb{R}^{n}, prove that $\operatorname{cone}_{\mathbb{R}}\left(v_{1}, \cdots, v_{n}\right)$ is a closed set.
(59) Prove that in the proof of Theorem 4.32, $\overline{P v} \cap \overline{-P v}=\{0\}$.
(60) Suppose that $T_{2}(K)$ is the 2×2 upper triangular matrix algebra over a field K. Prove that if $u T_{2}(K) v=v T_{2}(K) u=\{0\}$ for some $u, v \in$ $T_{2}(K)$, then $u^{2}=0$ or $v^{2}=0$.
(61) Suppose that $T_{2}(F)$ is an ℓ-unital ℓ-algebra over a totally ordered field F and $0<a \in T_{2}(F)$ is a nilpotent element. Prove that $F a$ is an ℓ-ideal.
(62) Suppose that $f, e \in T_{2}(F)$ are idempotent elements with $1=f+e$ and $e f=f e=0$. Prove that

$$
f=\left(\begin{array}{ll}
1 & u \\
0 & 0
\end{array}\right), e=\left(\begin{array}{ll}
0 & v \\
0 & 1
\end{array}\right)
$$

and $v=-u \in F$.
(63) Prove that φi_{q} in Theorem 4.34 is an anti- ℓ-isomorphism.
(64) Verify that in Theorem 4.35 , if $x_{3} \leq 0$, then $x_{3}=0$.
(65) Verify that in Theorem 4.35, if $y_{3} \leq 0$, then $y_{3}=0$.
(66) Check that $\left(T_{2}(F), P_{3}\right)$ in Theorem 4.36 is an non-Archimedean ℓ-unital ℓ-algebra over F.
(67) Prove that in Theorem $4.36, b^{2}=0$.
(68) Prove that in Theorem 4.37(1), for $f=\alpha u+\beta v+\gamma w, f \geq 0$ if and only if $\alpha \geq 0, \beta>0$ or $\alpha \geq 0, \beta=0, \gamma \geq 0$.
(69) Verify the multiplication table for $\left\{1, x^{\prime}, y\right\}$ in Theorem $4.37(2)$.
(70) Prove that Theorem 4.38 is true when $f_{1}=h_{3}=0$ in (ii).
(71) Verify that P_{k} in Example 4.6 is a lattice order on $T_{n}(F)$.
(72) Prove that the direct sum of two totally ordered domains is regular division-closed, but not division-closed.
(73) Consider the field $L=\mathbb{Q}[\sqrt{2}]$.
(a) Describe all the lattice orders on L to make it into an ℓ-field in which $1>0$.
(b) Prove that each lattice order on L in which $1 \ngtr 0$ can be obtained from a lattice ordered with $1>0$ by using Theorem 1.19.
(74) Consider group algebra $R=\mathbb{R}[G]$, where G is a cyclic group of order 2.
(a) Describe all the lattice orders on R to make it into an ℓ-algebra over \mathbb{R} in which $1>0$.
(b) Prove that each lattice order on R in which $1 \ngtr 0$ can be obtained from a lattice ordered with $1>0$ by using Theorem 1.19.
(75) Let R be an ℓ-prime ℓ-ring with squares positive. Prove that for any $a \in R, r(a) \cap \ell(a) \neq\{0\}$ if and only if $|a|^{2}=0$.
(76) An ℓ-ring is called a left d-ring if for any $a \in R^{+}, x \wedge y=0$ implies that $a x \wedge a y=0$ for any $x, y \in R$. Prove that if R is an ℓ-prime left d-ring with squares positive, then R is an ℓ-domain.
(77) Let R be an ℓ-ring and $0<e \in f(R)$. Prove that if $r(e)=\{0\}$ and e is a weak unit, then $(x e x)^{-}=0$ for any $x \in R$ and $a e a=0$ for any $a \in R^{+}, a^{2}=0$.
(78) Let A be a unital finite-dimensional Archimedean ℓ-algebra over a totally ordered field F. Suppose that A contains a positive element e with order $n \geq 2$ and $\operatorname{dim}_{F} i(e)=1$, where $i(e)=\{a \in R \mid a e=e a=a\}$. Prove that if 1 is a basic element of A, then A is ℓ-siomorphic to the group ℓ-algebra $F[G]$ of a cyclic group G.
(79) Prove that the $R=\mathbb{R}[x]$ defined in Example 4.3(2) is a partially ordered ring.
(80) Prove that $S \cup\{0\}$ in Examples 4.7 and 4.8 is a semigroup with zero, that is, the multiplication on $S \cup\{0\}$ is associative.
(81) Find an ℓ-ring satisfying the polynomial constraint

$$
f(x, y)=-(x y+y x)+\left(x^{2 n}+y^{2 n}\right) \geq 0, \text { for a fixed } n \geq 1
$$

(82) Prove that a lattice-ordered division ring satisfying $x^{2 n} \geq 0$ for some positive integer n must be a totally ordered field.
(83) Prove that an ℓ-semiprime ℓ-ring with squares positive and an f superunit can be embedded in a unital ℓ-semiprime ℓ-ring with squares positive.
(84) Let R be a unital f-ring which is division-closed. Prove that $R / \ell-N(R)$ is a totally ordered domain.
(85) Let R be an ℓ-unital ℓ-ring. If I is an ℓ-ideal of R with $I \cap f(R)=\{0\}$, then I is contained in each maximal ℓ-ideal of R.
(86) Let \mathbb{C} be a partially ordered field with the positive cone P. Prove that if for any $z \in P$, the real part of z is in \mathbb{R}^{+}, then $P \subseteq \mathbb{R}$.
(87) Prove that $f_{2} f_{3}=f_{2}+\alpha f_{1}+\beta f_{4}$ with $\alpha, \beta \in F^{+}$on page 166 .
(88) Show that $f_{4} f_{2}=f_{2}$ and $f_{2} f_{4}=f_{4}$ on page 166.
(89) Prove that $1=c_{2}(a+b)$ and $f_{1} f_{2}+f_{2} f_{1}=c_{2} f_{3}+c_{2} f_{4}$ on page 166.
(90) This problem is actually a conjecture. For a totally ordered field F and the $n \times n(n \geq 3)$ upper triangular matrix algebra $T_{n}(F)$ over F, we conjecture that each lattice order on $T_{n}(F)$ in which $1 \nsupseteq 0$ can be obtained by using Theorem 1.19(2) from a lattice order on $T_{n}(F)$ in which $1>0$.

This page intentionally left blank

Chapter 5

ℓ-ideals of ℓ-unital lattice-ordered rings

In this chapter we always assume that R is an ℓ-unital ℓ-ring. We study properties of ℓ-ideals of R.

5.1 Maximal ℓ-ideals

For an ℓ-unital ℓ-ring R, let $\operatorname{Max}_{\ell}(R)$ denote the set of all maximal ℓ-ideals of R. For a subset X of R, define

$$
s(X)=\left\{M \in \operatorname{Max}_{\ell}(R) \mid X \nsubseteq M\right\},
$$

and

$$
h(X)=\left\{M \in \operatorname{Max}_{\ell}(R) \mid X \subseteq M\right\}
$$

If $X=\{x\}$, we will write $s(x)$ and $h(x)$ instead of $s(\{x\})$ and $h(\{x\})$. It is clear that $s(X)=s(\langle X\rangle)$ and $h(X)=h(\langle X\rangle)$, where $\langle X\rangle$ denote the ℓ-ideal generated by X. The sets $s(X), X \subseteq R$, form open sets of a topology as shown in the following result.

Theorem 5.1. Let R be an ℓ-unital ℓ-ring.
(1) $s(0)=\emptyset, s(1)=\operatorname{Max}_{\ell}(R)$.
(2) $s(I) \cap s(J)=s(I \cap J)$, for any ℓ-ideals I and J.
(3) $\cup_{\alpha} s\left(I_{\alpha}\right)=s\left(\cup_{\alpha} I_{\alpha}\right)$, for any family $\left\{I_{\alpha}\right\}$ of ℓ-ideals of R.

Proof. (1) and (3) are clearly true. Let M be a maximal ℓ-ideal. Then M is ℓ-prime. If $I \cap J \subseteq M$, then $I J \subseteq M$, and hence $I \subseteq M$ or $J \subseteq M$. Thus (2) is true.

By Theorem 5.1, the sets in $\{s(X) \mid X$ is a subset of $R\}$ constitute the open sets of a topology on $\operatorname{Max}_{\ell}(R)$ which is called the hull-kernel topology.

We always endow $\operatorname{Max}_{\ell}(R)$ with this topology. A topological space basis for a topological space is a collection of open sets such that each open set is a union of open sets in the collection. Clearly $s(a), a \in R^{+}$form a topological space basis for the open sets (Exercise 1). A subset of a topological space is closed if its complement is open. Each $h(X)$ is closed in $\operatorname{Max}_{\ell}(R)$ since $h(X)=\operatorname{Max}_{\ell}(R) \backslash s(X)$. Recall that the closure of a subset \mathcal{K} of $\operatorname{Max}_{\ell}(R)$ is the smallest closed set containing \mathcal{K}.

Theorem 5.2. Let R be an ℓ-unital ℓ-ring.
(1) $\operatorname{Max}_{\ell}(R)$ is compact.
(2) The closure of a subset \mathcal{K} of $\operatorname{Max}_{\ell}(R)$ is $h(\cap\{M \mid M \in \mathcal{K}\})$.

Proof. (1) Let $\operatorname{Max}_{\ell}(R) \subseteq \cup_{\alpha} s\left(I_{\alpha}\right)$ for some ℓ-ideals I_{α} of R. Then $h\left(\sum_{\alpha} I_{\alpha}\right)=\emptyset$. Thus $\sum_{\alpha} I_{\alpha}=R$ implies $1 \in I_{\alpha_{1}}+\cdots+I_{\alpha_{n}}$, for some $I_{\alpha_{1}}, \cdots, I_{\alpha_{n}}$, and hence $\operatorname{Max}_{\ell}(R)=\cup_{k=1}^{n} s\left(I_{\alpha_{k}}\right)$. Therefore $\operatorname{Max}_{\ell}(R)$ is compact.
(2) It is clear that $\mathcal{K} \subseteq h(\cap\{M \mid M \in \mathcal{K}\})$ and $h(\cap\{M \mid M \in \mathcal{K}\})$ is closed. Suppose that $\mathcal{K} \subseteq \mathcal{J}$ and \mathcal{J} is closed. Then $\mathcal{J}=\operatorname{Max}_{\ell}(R) \backslash s(I)$ for some ℓ-ideal I of R. For any $M \in \mathcal{K}, \mathcal{K} \subseteq \mathcal{J}$ implies that $I \subseteq M$, and hence $I \subseteq \cap\{M \mid M \in \mathcal{K}\}$. Therefore $h(\cap\{M \mid M \in \mathcal{K}\}) \subseteq \mathcal{J}$, that is, $h(\cap\{M \mid M \in \mathcal{K}\})$ is the smallest closed set containing \mathcal{K}.

For an ℓ-unital ℓ-reduced ℓ-ring R, we show that $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(f(R))$ are homeomorphic.

Lemma 5.1. Let R be an ℓ-unital ℓ-reduced ℓ-ring.
(1) If P be an ℓ-prime ℓ-ideal of R, then for any $x, y \in f(R), x y \in P$ or $x \wedge y \in P$ implies $x \in P$ or $y \in P$.
(2) If $R=I+J$ for some left (right) ℓ-ideals I, J of R, then
(a) $1=x+y$ for some $0 \leq x \in f(R) \cap I, 0 \leq y \in f(R) \cap J$, and
(b) $1=a+b+c$ for some $0 \leq a \in f(R) \cap I, 0 \leq b \in f(R) \cap J$, $c \in f(R) \cap I \cap J$, and $a b=0$.

Proof. (1) By Lemma 4.10, $f(R / P)$ is a totally ordered domain. For $x \in f(R), \bar{x}=x+P \in f(R / P)$. Thus if $x, y \in f(R)$ with $x y \in P$ or $x \wedge y \in P$, then $(\bar{x})(\bar{y})=0$ or $\bar{x} \wedge \bar{y}=0$ in R / P, and hence $\bar{x}=0$ or $\bar{y}=0$, that is, $x \in P$ or $y \in P$.
(2) Let $1=w+z$ for some $w \in I$ and $z \in J$. Since $1>0$,

$$
1=|1|=|w+z| \leq|w|+|z|
$$

and hence $1=x+y$ for some $0 \leq x \leq|w|$ and $0 \leq y \leq|z|$. Thus $x \in f(R) \cap I$ and $y \in f(R) \cap J$.

Let $t=x \wedge y$ and $a=x-t, b=y-t$. We have $a \wedge b=0$, so $a b=0$ since a, b are f-element. Hence $1=a+b+c$ with $a \in f(R) \cap I, b \in f(R) \cap J$, $c=2 t \in f(R) \cap I \cap J$.

For a left ℓ-ideal I of R, define

$$
(I: R)=\{a \in R| | a| | x \mid \in I, \text { for all } x \in R\} .
$$

Lemma 5.2. Let R be an ℓ-unital ℓ-ring and I be a left ℓ-ideal of R.
(1) $(I: R)$ is the maximal ℓ-ideal contained in I.
(2) If I is a maximal left ℓ-ideal, then $(I: R)$ is an ℓ-prime ℓ-ideal.

Proof. (1) It is clear that $(I: R)$ is an ℓ-ideal. If $a \in(I: R)$, then $|a|=|a| 1 \in I$, so $(I: R) \subseteq I$. Let J be an ℓ-ideal of R with $J \subseteq I$. Then clearly $J \subseteq(I: R)$.
(2) Suppose that I is a left maximal ℓ-ideal and H, K are ℓ-ideals of R such that $H K \subseteq(I: R)$. Assume that $K \nsubseteq(I: R)$, then $K \nsubseteq I$ by (1), and hence $R=K+I$. Thus $H=H R=H K+H I \subseteq I$, so $H \subseteq(I: R)$ by (1) again. Therefore $(I: R)$ is an ℓ-prime ℓ-ideal of R.

Lemma 5.3. Let R be a unital f-ring. Then maximal ℓ-ideals and maximal left (right) ℓ-ideals of R coincide.

Proof. First assume that R is ℓ-simple. Then R is a totally ordered domain by Theorem 1.27, so R has no left and right ℓ-ideal except R and $\{0\}$ by Lemma 4.6.

Now let R be a unital f-ring and M be a maximal ℓ-ideal. Then $M \subseteq L$ for some maximal left ℓ-ideal L of R. Since R / M is ℓ-simple, by the above argument, $L / M=\{0\}$ in R / M, so $M=L$, that is, M is a maximal left ℓ-ideal of R. Let I be a maximal left ℓ-ideal. Then $(I: R)$ is an ℓ-prime ℓ-ideal contained in I by Lemma 5.2. By Theorem 1.27, $R /(I: R)$ is a totally ordered domain, so $I /(I: R)$ is an ℓ-ideal of $R /(I: R)$ by Lemma 4.6. Therefore I is an ℓ-ideal of R, so it must be a maximal ℓ-ideal.

The above result is not true for general ℓ-rings. For example, in the matrix ℓ-algebra $M_{n}(\mathbb{R})(n \geq 2)$ with the entrywise order, $M_{n}(\mathbb{R})$ is simple, but it contains more than one maximal left (right) ℓ-ideals.

Two topological spaces are called homeomorphic if there is a one-toone and onto function between them that sends open (closed) sets to open (closed) sets.

Theorem 5.3. Let R be an ℓ-unital ℓ-reduced ℓ-ring. Then $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(f(R))$ are homeomorphic topological spaces.

Proof. Let M be a maximal ℓ-ideal of R. If $x y \in M \cap f(R)$, then $x \in M \cap f(R)$ or $y \in M \cap f(R)$ by Lemma 5.1. Thus $M \cap f(R)$ is an ℓ prime ℓ-ideal of $f(R)$. By Lemma 4.10, the ℓ-ideals in an f-ring that contain an ℓ-prime ℓ-ideal form a chain, so there exists a unique maximal ℓ-ideal of $f(R)$ that contains $M \cap f(R)$. We denote this unique maximal ℓ-ideal of $f(R)$ by M_{f} and define $\varphi: \operatorname{Max}_{\ell}(R) \rightarrow \operatorname{Max}_{\ell}(f(R))$ by $\varphi(M)=M_{f}$.

Let $M, N \in \operatorname{Max}_{\ell}(R)$ and $\varphi(M)=\varphi(N)$. If $M \neq N$, then $R=M+N$, and hence, by Lemma 5.1, there exist $0 \leq i \in M \cap f(R)$ and $0 \leq j \in$ $N \cap f(R)$ such that $1=i+j$, so $1=i+j \in \varphi(M)=\varphi(N)$, which is a contradiction. Thus $\varphi(M)=\varphi(N)$ implies $M=N$, so φ is one-to-one.

Now let I be a maximal ℓ-ideal of $f(R)$. Then I is ℓ-prime in $f(R)$, so by Theorem 1.27, $f(R)^{+} \backslash I$ is closed under multiplication, and hence it is an m-system. By Theorem 1.26 , there is an ℓ-prime ℓ-ideal K of R such that $\left(f(R)^{+} \backslash I\right) \cap K=\emptyset$. Then $(K \cap f(R)) \subseteq I$. Let M be a maximal ℓ-ideal of R containing K. Then $M \cap f(R)$ and I must be comparable since $K \cap f(R)$ is ℓ-prime in $f(R)$, and hence $M \cap f(R) \subseteq I$. Thus $I=M_{f}$, so φ is onto.

Let $\mathcal{K}=\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ be a closed set in $\operatorname{Max}_{\ell}(R)$. We show that $\varphi(\mathcal{K})=\left\{\left(M_{\alpha}\right)_{f} \mid \alpha \in \Gamma\right\}$ is closed in $\operatorname{Max}_{\ell}(f(R))$. Let I be a maximal ℓ-ideal of $f(R)$ such that

$$
I \supseteq \cap_{\alpha \in \Gamma}\left(M_{\alpha}\right)_{f} \supseteq \cap_{\alpha \in \Gamma}\left(M_{\alpha} \cap f(R)\right)
$$

If $I \notin \varphi(\mathcal{K})$, then $M_{\alpha} \cap f(R) \nsubseteq I$ for each $\alpha \in \Gamma$, and hence $\left(M_{\alpha} \cap f(R)\right)+I=$ $f(R)$ for each $\alpha \in \Gamma$ since I is maximal. Thus by Lemma 5.1 for each $\alpha \in \Gamma$, there exist $x_{\alpha}, y_{\alpha} \in f(R)$,

$$
0 \leq x_{\alpha} \in\left(M_{\alpha} \cap f(R)\right) \backslash I \text { and } 0 \leq y_{\alpha} \in I \backslash\left(M_{\alpha} \cap f(R)\right)
$$

such that $1=x_{\alpha}+y_{\alpha}$. Let $x_{\alpha} \wedge y_{\alpha}=z_{\alpha}$. Then $0 \leq z_{\alpha} \in\left(M_{\alpha} \cap f(R)\right) \cap I$ for each $\alpha \in \Gamma$. Since $y_{\alpha} \notin M_{\alpha}$ and $z_{\alpha} \in M_{\alpha}, y_{\alpha}-z_{\alpha} \notin M_{\alpha}$, for each $\alpha \in \Gamma$. Then $\left\{s\left(y_{\alpha}-z_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ is an open cover for \mathcal{K}, and hence a finite subcover $s\left(y_{i}-z_{i}\right), i=1, \ldots, n$, can be extracted out of this cover because $\operatorname{Max}_{\ell}(R)$ is compact and \mathcal{K} is closed. Then for every $M_{\alpha} \in \mathcal{K}$, there exists $y_{j}-z_{j} \notin M_{\alpha}$, for some $1 \leq j \leq n$. Since $\left(x_{j}-z_{j}\right) \wedge\left(y_{j}-z_{j}\right)=0$ implies that $\left(x_{j}-z_{j}\right) \in M_{\alpha}$ by Lemma 5.1, $\wedge_{i=1}^{n}\left(x_{i}-z_{i}\right) \in M_{\alpha}$ for each $\alpha \in \Gamma$. Thus

$$
\wedge_{i=1}^{n}\left(x_{i}-z_{i}\right) \in \cap_{\alpha \in \Gamma}\left(M_{\alpha} \cap f(R)\right) \subseteq \cap_{\alpha \in \Gamma}\left(M_{\alpha}\right)_{f} \subseteq I
$$

so $x_{k}-z_{k} \in I$ for some $1 \leq k \leq n$ by Theorem 1.27, and hence $x_{k} \in I$, which is a contradiction. Therefore, $I \in \varphi(\mathcal{K})$. We have shown that $\varphi(\mathcal{K})$ is equal to its closure $h\left(\cap_{\alpha \in \Gamma}\left(M_{\alpha}\right)_{f}\right)$, so it is closed.

Now let $\mathcal{J}=\left\{I_{\alpha} \mid \alpha \in \Gamma\right\} \subseteq \operatorname{Max}_{\ell}(f(R))$ be closed. We verify that $\varphi^{-1}(\mathcal{J})$ is closed in $\operatorname{Max}_{\ell}(R)$. Let $M \in \operatorname{Max}_{\ell}(R)$ be in the closure of $\varphi^{-1}(\mathcal{J})$. If $\cap_{\alpha \in \Gamma} I_{\alpha} \nsubseteq M_{f}$. Then $\left(\cap_{\alpha \in \Gamma} I_{\alpha}\right)+M_{f}=f(R)$, so $1=x+y$, where $0 \leq x \in\left(\cap_{\alpha \in \Gamma} I_{\alpha}\right) \backslash M_{f}$ and $0 \leq y \in M_{f} \backslash\left(\cap_{\alpha \in \Gamma} I_{\alpha}\right)$. Since $x \in I_{\alpha}$ for each $\alpha \in \Gamma$, we have $y \notin I_{\alpha}$ for each $\alpha \in \Gamma$. Let $x \wedge y=z$. Then $(x-z) \wedge(y-z)=0$. Let $I_{\alpha}=\left(M_{\alpha}\right)_{f} \supseteq M_{\alpha} \cap f(R)$, where M_{α} is a maximal ℓ-ideal of R for each $\alpha \in \Gamma$. Then $(y-z) \notin I_{\alpha}$ for each $\alpha \in \Gamma$ implies $(y-z) \notin M_{\alpha}$ for each $\alpha \in \Gamma$ since $y-z$ is an f-element, so $(x-z) \in M_{\alpha}$ for each $\alpha \in \Gamma$ by Lemma 5.1. However $\cap_{\alpha \in \Gamma} M_{\alpha} \subseteq M$ since $\varphi^{-1}(\mathcal{J})=\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$, and hence $x-z \in M \cap f(R) \subseteq M_{f}$. It follows that $x \in M_{f}$, which is a contradiction. Hence $\cap_{\alpha \in \Gamma} I_{\alpha} \subseteq M_{f}$ and $M_{f} \in \mathcal{J}$ since \mathcal{J} is closed. Then it follows that $M \in \varphi^{-1}(\mathcal{J})$. Therefore $\varphi^{-1}(\mathcal{J})$ is closed in $\operatorname{Max}_{\ell}(R)$.

Corollary 5.1. Suppose that R is an ℓ-unital ℓ-reduced ℓ-ring.
(1) Each ℓ-prime ℓ-ideal of R is contained in a unique maximal ℓ-ideal.
(2) Every maximal ℓ-ideal of R is contained in a unique maximal left (right) ℓ-ideal of A, and each maximal left (right) ℓ-ideal of A contains a maximal ℓ-ideal of A.

Proof. (1) Let I be an ℓ-prime ℓ-ideal of R. Then I is contained in a maximal ℓ-ideal of R. Suppose that M and N are maximal ℓ-ideals both containing I. Then $I \cap f(R)$ is contained in $M \cap f(R)$ and $N \cap f(R)$. Let M_{f} and N_{f} be defined as in Theorem 5.3. Then M_{f} and N_{f} are comparable since they both contain $I \cap f(R)$ which is ℓ-prime in $f(R)$, and hence $M_{f}=N_{f}$. Therefore, $M=N$ by Theorem 5.3. Thus I is contained in a unique maximal ℓ-ideal.
(2) Let M be a maximal ℓ-ideal of R. Then M is contained in a maximal left ℓ-ideal by Zorn's lemma. Now suppose that M is contained in two different maximal left ℓ-ideals L_{1} and L_{2}. Then we have $M \cap f(R) \subseteq$ $L_{1} \cap f(R)$ and $L_{2} \cap f(R)$. Since $L_{1} \cap f(R)$ and $L_{2} \cap f(R)$ are left ℓ-ideals of $f(R)$, they are contained in some maximal left ℓ-ideals of $f(R)$, and since every maximal left (right) ℓ-ideal in $f(R)$ is a maximal ℓ-ideal by Lemma 5.3 , there exist maximal ℓ-ideals I_{1} and I_{2} of $f(R)$ such that $L_{1} \cap f(R) \subseteq I_{1}$ and $L_{2} \cap f(R) \subseteq I_{2}$. Since $M \cap f(R)$ is contained in I_{1} and $I_{2}, I_{1}=I_{2}$. Now $R=L_{1}+L_{2}$ implies $1=i+j$, where $0 \leq i \in L_{1}$ and $0 \leq j \in L_{2}$
by Lemma 5.1. Since i and j are f-elements, $i \in L_{1} \cap f(R) \subseteq I_{1}$ and $j \in L_{2} \cap f(R) \subseteq I_{2}$, and hence $1=i+j \in I_{1}=I_{2}$, which is a contradiction. Thus each maximal ℓ-ideal M of R is contained in a unique maximal left ℓ-ideal.

Now let L be a maximal left ℓ-ideal of R. Then, by the same argument as above, $L \cap f(R) \subseteq M_{f}$ for some maximal ℓ-ideal M of R, where M_{f} is defined as in Theorem 5.3. If $M \nsubseteq L$, then $R=M+L$, and hence $1=i+j$, where $0 \leq i \in M$ and $0 \leq j \in L$, so $1 \in M_{f}$, which is a contradiction. Thus $M \subseteq L$.

For a unital f-ring, by Lemma 5.3, maximal ℓ-ideals and maximal left (right) ℓ-ideals coincide. By Corollary 5.1, in an ℓ-unital ℓ-reduced ℓ-ring, maximal ℓ-ideals and maximal left (right) ℓ-ideals are in one-to-one correspondence. However maximal ℓ-ideals and maximal left (right) ℓ-ideals are generally different in ℓ-unital ℓ-reduced ℓ-rings. We provide an example using differential polynomial rings.

Example 5.1. Let R be a ring and δ be a derivation on R. Define $R[x ; \delta]$ to be the set consisting of all left polynomials $f(x)=\sum a_{i} x^{i}$. With coordinatewise addition, $R[x ; \delta]$ becomes a group. Introduce the multiplication by repeatedly using $x a=a x+\delta(a)$ for $a \in R$. Then $R[x ; \delta]$ is a ring (Exercise 3), called a differential polynomial ring. If R is a domain, then so is $R[x ; \delta]$.

For an ℓ-ring R and a positive derivation δ on R. If we order $R[x ; \delta]$ coordinatewisely, then $R[x ; \delta]$ becomes an ℓ-ring. For instance, let $R=\mathbb{R}[y]$ be the polynomial ring in y with the total order in which a polynomial is positive if the coefficient of highest power is positive. Then R is a totally ordered domain. Take δ as the usual derivative on R. Then δ is a positive derivation on R. In the following, we assume $R=\mathbb{R}[y]$ and δ defined above and show that $R[x ; \delta]$ is ℓ-simple, however it contains nonzero maximal left ℓ-ideal.

Let I be a nonzero ℓ-ideal of $R[x ; \delta]$. Take a nonzero positive left polynomial $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in I$ with the smallest degree n. We claim that $n=0$. Suppose that $n \geq 1$. Since R is ℓ-simple, there is $b \in R^{+}$ such that $1<b a_{n}$ (Exercise 4). Thus $x^{n} \leq b f(x)$ implies that $x^{n} \in I$. Then

$$
x^{n} y=x^{n-1}(y x+1)=x^{n-2}\left(y x^{2}+2 x\right)=\cdots=y x^{n}+n x^{n-1} \in I
$$

implies that $n x^{n-1} \in I$, so $x^{n-1} \in I$, which is a contradiction with the fact that $f(x)$ has the smallest degree in I. Hence we must have $n=0$, so
$0 \neq a_{0} \in I$ implies that the identity element $1 \in I$. Therefore $I=R$, that is, R is ℓ-simple.

It is clear that x is a right d-element of $R[x ; \delta]$ in the sense that if $u \wedge v=0$ for some $u, v \in R[x ; \delta]$, then $u x \wedge v x=0$. Thus it is straightforward to check that $R[x ; \delta] x$ is a maximal left ℓ-ideal of $R[x ; \delta]$ (Exercise 5). We also note that x is not a d-element since $1 \wedge y x=0$, however

$$
x \wedge x(y x)=x \wedge(y x+1) x=x \wedge\left(y x^{2}+x\right)=x
$$

A topological space is called Hausdorff if for any two distinct points x, y, there exist disjoint open sets containing x and y respectively. Let X be a compact Hausdorff space and $C(X)$ be the ring of real-valued continuous functions on X. With respect to the coordinatewise order, $C(X)$ is an f ring (Exercise 2). In 1947, I. Kaplansky proved that if $C(X)$ and $C(Y)$ are isomorphic as lattices for two compact Hausdorff spaces X and Y, then X and Y are homeomorphic topological spaces [Kaplansky (1947)]. In 1968, H. Subramanian extended Kaplansky's argument to f-rings and proved that if two unital commutative ℓ-semisimple f-rings A and B are isomorphic as lattices, then $\operatorname{Max}_{\ell}(A)$ and $\operatorname{Max}_{\ell}(B)$ are homeomorphic [Subramanian (1968)]. Actually H. Subramanian's proof works for f-rings that are not commutative. In the following we present H . Subramanian's proof for f rings and then consider how to generalize it to more general ℓ-rings.

We need some preparations to carry out the proof. Let L be a lattice. A lattice-prime ideal P of L is a nonempty proper subset of L satisfying the following properties.
(1) for all $a, b \in P, a \vee b \in P$,
(2) $b \leq a, a \in P$ and $b \in L \Rightarrow b \in P$,
(3) for all $a, b \in L, a \wedge b \in P \Rightarrow a \in P$ or $b \in P$.

Let A be a unital ℓ-semisimple f-ring. Recall that ℓ-semisimple means that the intersection of all maximal ℓ-ideals of A is zero. Then A must be reduced by Theorem $1.27(1)$. For a lattice-prime ideal P and a maximal ℓ-ideal M of A, we say that P is associated with M if for any $x \in P, y \in A$, $(y-x)^{-} \notin M \Rightarrow y \in P$.

Theorem 5.4. Let R and S be unital ℓ-semisimple f-rings. If they are isomorphic as lattices, then $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(S)$ are homeomorphic.

Proof. We achieve the proof by a series of steps.
(I) Each lattice-prime ideal is associated with exactly one maximal ℓ ideal.

Suppose that P is a lattice-prime ideal. If P is not associated with any maximal ℓ-ideal, then for each maximal ℓ-ideal M_{α} there exist x_{α}, y_{α} such that $x_{\alpha} \in P, y_{\alpha} \notin P$ and yet $\left(y_{\alpha}-x_{\alpha}\right)^{-} \notin M_{\alpha}$. Define

$$
s_{\alpha}=s\left(\left(y_{\alpha}-x_{\alpha}\right)^{-}\right)=\left\{M \in \operatorname{Max}_{\ell}(R) \mid\left(y_{\alpha}-x_{\alpha}\right)^{-} \notin M\right\}
$$

Then $\left\{s_{\alpha}\right\}$ is an open cover for $\operatorname{Max}_{\ell}(R)$. Since $\operatorname{Max}_{\ell}(R)$ is compact, there exists a finite subcover $\left\{s_{i}\right\}, i=1, \cdots, n$ for some positive integer n. Let $x=\vee_{i=1}^{n} x_{i}, y=\wedge_{i=1}^{n} y_{i}$. Since

$$
(y-x)^{-}=(x-y) \vee 0 \geq\left(x_{i}-y_{i}\right) \vee 0=\left(y_{i}-x_{i}\right)^{-}
$$

for each $i=1, \cdots, n,(y-x)^{-} \notin M_{\alpha}$ for each maximal ℓ-ideal M_{α}, and hence $(y-x)^{+} \in M_{\alpha}$ since $(y-x)^{+}(y-x)^{-}=0$. Thus A is ℓ-semisimple implies that $(y-x)^{+}=0$, so $y \leq x=\vee_{i=1}^{n} x_{i} \in P$. Then $y=\wedge_{i=1}^{n} y_{i} \in P$ and P is prime implies that $y_{j} \in P$ for some $1 \leq j \leq n$, which is a contradiction. Therefore P must be associated with at least one maximal ℓ-ideal.

Suppose that P is associated with two different maximal ℓ-ideals, say M and N. Then $R=N+M$. By Lemma 5.1, $1=a+b+c$ with $a \in N, b \in M$, $c \in M \cap N$, and $a b=0$. Take $x \in P$ and $y \notin P$. Let

$$
z=a(x-1)+b(y+1)
$$

In R / M,

$$
z+M=(a+M)((x-1)+M)+(b+M)((y+1)+M)=(x-1)+M
$$

since $a+M=1+M$ and $b+M=0$. Similarly in $R / N, z+N=(y+1)+N$. Thus $(z-x)^{-}+M=1+M$ implies that $(z-x)^{-} \notin M$, so $z \in P$. Then $(y-z)^{-}+N=1+N$ implies that $(y-z)^{-} \notin N$, so $y \in P$, which is a contradiction. Thus P is associated with at most one maximal ℓ-ideal.
(II) Two lattice-prime ideals P_{1}, P_{2} are associated with the same maximal ℓ-ideal if and only if $P_{1} \cap P_{2}$ contains a lattice-prime ideal.

Suppose that P_{1} and P_{2} are associated with the same maximal ℓ-ideal M. Choose $x \in P_{1}$ and $y \in P_{2}$. Write $a=(x \wedge y)-1$ and define

$$
P=\left\{w \in R \mid(w-a)^{+} \in M\right\}
$$

We leave it to the reader to check that P is a lattice-prime ideal associated with M (Exercise 6). Let $r \in P$. Since

$$
(r-a)^{+}=(r-(x \wedge y)+1)^{+}=(r-x+1)^{+} \vee(r-y+1)^{+}
$$

$(r-x+1)^{+},(r-y+1)^{+} \in M$. Hence we must have $(r-x)^{-} \notin M$ and $(r-y)^{-} \notin M$ (Exercise 7). Therefore $r \in P_{1} \cap P_{2}$, and hence $P \subseteq P_{1} \cap P_{2}$.

Conversely suppose that P, P_{1}, P_{2} are lattice-prime ideals associated with M, M_{1}, M_{2}, respectively, and $P \subseteq P_{1} \cap P_{2}$. We show that $M=$ $M_{1}=M_{2}$. If $M \neq M_{1}$, then similar to the proof in (I), for $a \in P$ and $b \notin P_{1}$, there exists c such that

$$
c+M=(a-1)+M \text { and } c+M_{1}=(b+1)+M_{1} .
$$

Thus $c \in P \subseteq P_{1}$ and then $b \in P_{1}$, which is a contradiction. Therefore $M=M_{1}$. Similarly $M=M_{2}$.
(III) Let a be fixed element in R, and let $\mathcal{K}=\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ be any nonempty set in $\operatorname{Max}_{\ell}(R)$. Then a maximal ℓ-ideal M belongs to the closure of \mathcal{K} if and only if there exists a lattice-prime ideal P associated with M such that P contains $A(\mathcal{K})$, which is the intersection of all lattice-prime ideals which contain a and are also associated with any member in \mathcal{K}.

Suppose that M is in the closure of \mathcal{K}. Then

$$
P=\left\{x \in R \mid(x-a)^{+} \in M\right\} \text { and } P_{\alpha}=\left\{x \in R \mid(x-a)^{+} \in M_{\alpha}\right\}
$$

are lattice-prime ideals associated with M and M_{α}, respectively (Exercise 6). Clearly $a \in P_{\alpha}$ for each $\alpha \in \Gamma$. Let $r \in A(\mathcal{K})$, then $r \in P_{\alpha}$ for each $\alpha \in \Gamma$. Thus $(r-a)^{+} \in M_{\alpha}$ for each $M_{\alpha} \in \mathcal{K}$, so $(r-a)^{+} \in M$ since M is in the closure of \mathcal{K}. Therefore $r \in P$, that is, $A(\mathcal{K}) \subseteq P$.

Conversely, suppose that M is not in the closure of \mathcal{K}. Then

$$
I=\bigcap_{\alpha \in \Gamma} M_{\alpha} \nsubseteq M,
$$

so $R=I+M$. Let P be any lattice-prime ideal associated with M. Take $b \notin P$. By Lemma 5.1 and a similar argument as in (I), there exists $c \in R$ such that

$$
c+M_{\alpha}=(a-1)+M_{\alpha}, \forall \alpha \in \Gamma \text { and } c+M=(b+1)+M .
$$

Thus $(c-a)^{-} \notin M_{\alpha}$ for any $\alpha \in \Gamma$, so $c \in A(\mathcal{K})$ by the definition of $A(\mathcal{K})$. Then $(b-c)^{-} \notin M$ and $b \notin P$ imply that $c \notin P$, so $A(\mathcal{K})$ is not contained in any lattice-prime ideal associated with M.

We are ready to give the final proof of Theorem 5.4. Suppose that φ is a lattice isomorphism from R to S. Then clearly a subset P of R is a latticeprime ideal of R if and only if $\varphi(P)$ is a lattice-prime ideal of S (Exercise 8). Two lattice-prime ideals are called equivalent if they are associated with the same maximal ℓ-ideal. Then this is an equivalence relation on the set of all lattice-prime ideals (Exercise 9). For a lattice-prime ideal P, we use $[P]$ to denote the equivalence class containing P. Define $\psi: \operatorname{Max}_{\ell}(R) \rightarrow$ $\operatorname{Max}_{\ell}(S)$ by

$$
M \mapsto[P] \mapsto[\varphi(P)] \mapsto N,
$$

where M is a maximal ℓ-ideal of R, P is a lattice-prime ideal of R associated with M, and $\varphi(P)$ is the lattice-prime ideal of S associated with the maximal ℓ-ideal N of S. By (I) and (II), ψ is well-defined, one-to-one and onto (Exercise 10).

Let $b \in S$ and $b=\varphi(a)$ for some $a \in R$. For a nonempty subset \mathcal{K} in $\operatorname{Max}_{\ell}(R), A(\mathcal{K})$ is the intersection of all the lattice-prime ideals of R that contain a and are associated with any member in \mathcal{K}, and $A(\psi(\mathcal{K}))$ is the intersection of all the lattice-prime ideals of S that contain b and are associated with any member in $\psi(\mathcal{K})$. We claim that

$$
\varphi(A(\mathcal{K}))=A(\psi(\mathcal{K}))
$$

Let $y \in \varphi(A(\mathcal{K}))$. Then $y=\varphi(x)$, where $x \in A(\mathcal{K})$. Let I be a latticeprime ideal of S which contains b and is associated with some $N \in \psi(\mathcal{K})$. Let $I=\varphi(P)$ and $N=\psi(M)$. Then $a \in P, P$ is a lattice-prime ideal of R and $\psi(M)=N$ imply that P is associated with M. Thus $A(\mathcal{K}) \subseteq P$, so $x \in P$ and $y=\varphi(x) \in I=\varphi(P)$. Therefore $y \in A(\psi(\mathcal{K}))$, that is, $\varphi(A(\mathcal{K})) \subseteq A(\psi(\mathcal{K}))$. Similarly we can show that $A(\psi(\mathcal{K})) \subseteq \varphi(A(\mathcal{K}))$ (Exercise 11).

Now let \mathcal{K} be a closed set in $\operatorname{Max}_{\ell}(R)$. We show that $\psi(\mathcal{K})$ is closed in $\operatorname{Max}_{\ell}(S)$. Let N be in the closure of $\psi(\mathcal{K})$. By (III), there exists a latticeprime ideal I of S associated with N such that I contains $A(\psi(\mathcal{K}))=$ $\varphi(A(\mathcal{K}))$. Let $I=\varphi(P)$ and $N=\psi(M)$. Then P is a lattice-prime ideal of R associated with M and P contains $A(\mathcal{K})$. Thus by (III), M is in \mathcal{K} since it is closed, and hence $N \in \psi(\mathcal{K})$. So $\psi(\mathcal{K})$ is closed. By a similar argument, it can be shown that if \mathcal{J} is a closed subset of $\operatorname{Max}_{\ell}(S)$ and $\mathcal{J}=\psi(\mathcal{K})$ for some $\mathcal{K} \subseteq \operatorname{Max}_{\ell}(R)$, then \mathcal{K} is also closed. Therefore ψ is a homeomorphism between $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(S)$. This completes the proof.

In the following, we consider how to generalize Theorem 5.4 to ℓ-unital ℓ-reduced ℓ-semisimple ℓ-rings. Suppose that R is an ℓ-unital ℓ-reduced ℓ-semisimple ℓ-ring. A lattice-prime ideal P of R is called dominated, if for any $x, y \in R, x \in P$ and $(y-x)^{+} \wedge 1=0$ imply $y \in P$. Another way to say it is that if $x \in P$ and $y \leq x+z$ with $z \wedge 1=0$, then $y \in P$. A lattice-prime ideal P of R is called associated with a maximal ℓ-ideal M of R if $x \in P$ and $(y-x)^{+} \wedge 1 \notin M$ imply $y \in P$.

We notice that if R is an f-ring, then the identity element 1 is a weak unit, and hence $(y-x)^{+} \wedge 1=0$ if and only if $(y-x)^{+}=0$, that is, $y \leq x$. Thus dominated lattice-prime ideals are just lattice-prime ideals when R is an f-ring.

By similar proofs used in Theorem 5.4, we have the following facts whose proofs are omitted and the reader is referred to [Ma, Wojciechowski (2002)] for more details.
(I') Each dominated lattice-prime ideal is associated with exactly one maximal ℓ-ideal.
(II') Two dominated lattice-prime ideals P_{1}, P_{2} are associated with the same maximal ℓ-ideal if and only if $P_{1} \cap P_{2}$ contains a dominated latticeprime ideal.
(III') Let a be fixed element in R, and let $\mathcal{K}=\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ be any nonempty set in $\operatorname{Max}_{\ell}(R)$. Then a maximal ℓ-ideal M belongs to the closure of \mathcal{K} if and only if there exists a dominated lattice-prime ideal P associated with M such that P contains $A(\mathcal{K})$, which is the intersection of all dominated lattice-prime ideals which contain a and are also associated with any member in \mathcal{K}.

Theorem 5.5. Let R and S be two ℓ-unital ℓ-reduced ℓ-semisimple ℓ-rings. If there exists an ℓ-isomorphism between two additive ℓ-groups of R and S which preserves identity element, then $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(S)$ are homeomorphic.

Proof. Suppose that $\varphi: R \rightarrow S$ is an ℓ-isomorphism between the additive ℓ-group of R and the additive ℓ-group of S with $\varphi(1)=1$.

We first show that for a subset P of R, P is a dominated lattice-prime ideal of R if and only if $\varphi(P)$ is a dominated lattice-prime ideal of S. Suppose that P is a dominated lattice-prime ideal of R. Then $\varphi(P)$ is a lattice-prime ideal of S. Suppose $x, y \in S$ such that $x \in \varphi(P)$ and $(y-x)^{+} \wedge 1=0$. Let $x=\varphi(a)$ and $y=\varphi(b)$, where $a \in P$ and $b \in R$. Since

$$
\varphi\left[(b-a)^{+} \wedge 1\right]=\varphi\left[(b-a)^{+}\right] \wedge \varphi(1)=(y-x)^{+} \wedge 1=0
$$

$(b-a)^{+} \wedge 1=0$, so $b \in P$ and $y=\varphi(b) \in \varphi(P)$. Thus $\varphi(P)$ is dominated. Similarly, if $\varphi(P)$ is a dominated lattice-prime ideal of S, then P is also a dominated lattice-prime ideal of R. Therefore φ induces a one-to-one correspondence $P \rightarrow \varphi(P)$ between the set of all dominated lattice-prime ideals of R and the set of all dominated lattice-prime ideals of S.

Similarly to the proof of Theorem 5.4, two dominated lattice-prime ideals are called equivalent if they are associated with the same maximal ℓ ideal. Let $[P]$ denote the equivalence class containing the dominated latticeprime ideal P. Define $\operatorname{Max}_{\ell}(R) \rightarrow \operatorname{Max}_{\ell}(S)$ by

$$
M \mapsto[P] \mapsto[\varphi(P)] \mapsto N
$$

where $M \in \operatorname{Max}_{\ell}(R), P$ is a dominated lattice-prime ideal of R associated with M, and φP is associated with $N \in \operatorname{Max}_{\ell}(S)$. Then by the same argument in Theorem 5.4, $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(S)$ are homeomorphic.

The conditions that R, S are ℓ-reduced and $\varphi(1)=1$ in Theorem 5.5 cannot be dropped as shown in the following examples.

Example 5.2.

(1) Let R be the direct sum of two copies of the ℓ-field $\mathbb{Q}[\sqrt{2}]$ with the entrywise order. Then R is ℓ-unital ℓ-reduced ℓ-semisimple ℓ-ring. Clearly $\operatorname{Max}_{\ell}(R)$ has two elements. Let S be the ℓ-ring $M_{2}(\mathbb{Q})$ with the entrywise order. Then S is an ℓ-unital ℓ-ring, however S is not ℓ-reduced. Since S is a simple ring, $\operatorname{Max}_{\ell}(S)$ contains one element. Thus $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(S)$ cannot be homeomorphic.
Define $\varphi: R \rightarrow S$ by

$$
\varphi(a+b \sqrt{2}, d+c \sqrt{2})=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then φ is an ℓ-isomorphism between additive ℓ-groups of R, S and $\varphi(1)=1$ (Exercise 12).
(2) Let R be the direct sum of two copies of \mathbb{Q} and $S=\mathbb{Q}[\sqrt{2}]$ be the ℓ-field with the coordinatewise order. Define $f: R \rightarrow S$ by $f((a, b))=$ $a+b \sqrt{2}$. Then f is an ℓ-isomorphism of the additive ℓ-groups, however $f((1,1))=1+\sqrt{2}$ is not the identity element in S.

A subset in a topological space is called a clopen set if it is closed and also open. We characterize clopen sets in $\operatorname{Max}_{\ell}(R)$. Firs we consider f-rings.

Lemma 5.4. Let A be a unital f-ring. $\mathcal{K} \subseteq \operatorname{Max}_{\ell}(A)$ is clopen if and only if $\mathcal{K}=s(x)$, where $x \in A$ is an idempotent element.

Proof. " \Leftarrow " Since $\mathcal{K}=s(x), \mathcal{K}$ is open. Now as $x(1-x)=0$, for each $M \in \operatorname{Max}_{\ell}(A), x \in M$ or $(1-x) \in M$, but not both. Thus $x \notin M$ if and only if $(1-x) \in M$, so $\mathcal{K}=h(1-x)$ is also closed.
" \Rightarrow " Since \mathcal{K} is open, $\mathcal{K}=\cup_{x \in B} s(x)$ for some $B \subseteq A^{+}$. Since \mathcal{K} is also closed, it is compact, so $\mathcal{K}=\cup_{i=1}^{n} s\left(x_{i}\right)=s(x)$, where $x=\vee_{i=1}^{n} x_{i} \geq 0$. Similarly $\operatorname{Max}_{\ell}(A) \backslash \mathcal{K}=s(y)$, for some $0 \leq y \in A$. Thus $s(x) \cup s(y)=$ $\operatorname{Max}_{\ell}(A)$ and $s(x) \cap s(y)=\emptyset$. Thus $x \wedge y$ is contained in every maximal ℓ-ideal of A. Let $u=x-x \wedge y$ and $v=y-x \wedge y$. Then $u \wedge v=0$, and $s(x)=s(u)$ and $s(y)=s(v)$. Let $\langle u+v\rangle$ be the ℓ-ideal of A generated by $u+v$. Since $u+v$ is not contained in any maximal ℓ-ideal of A,

$$
A=\langle u+v\rangle=\left\{x| | x \mid \leq r(u+v) s, \text { where } r, s \in A^{+}\right\}
$$

and hence $1 \leq r(u+v) s=r u s+r v s$ for some $r, s \in A^{+}$. Hence $1=a+b$, where $0 \leq a \leq r u s$ and $0 \leq b \leq r v s$. Since $u \wedge v=0$, rus $\wedge r v s=0$, so $a \wedge b=0$. However because A is an f-ring, $a \wedge b=0$ implies $a b=0$. Hence $a^{2}=a$, and $b^{2}=b$. Finally we show that $s(u)=s(a)$. It is clear that if $M \in$ $\operatorname{Max}_{\ell}(A)$ and $a \notin M$, then $u \notin M$, so $s(a) \subseteq s(u)$. Similarly, $s(b) \subseteq s(v)$. If $M \in s(u) \backslash s(a)$, then $b \notin M$ since $1=a+b$, and hence $M \in s(b) \subseteq s(v)$, which contradicts with that $s(u) \cap s(v)=\emptyset$. Thus $s(u)=s(a)$. Therefore, $\mathcal{K}=s(a)$, where $a \in A$ is an idempotent.

Corollary 5.2. Let R be an ℓ-unital ℓ-reduced ℓ-ring. A set $\mathcal{K} \subseteq \operatorname{Max}_{\ell}(R)$ is clopen if and only if $\mathcal{K}=s(x)$, where $x \in f(R)$ is an idempotent.

Proof. " \Leftarrow " Since $\mathcal{K}=s(x), \mathcal{K}$ is open. Since $x(1-x)=0$, and $x,(1-$ $x) \in f(R)$, by Lemma 5.1, for each $M \in \operatorname{Max}_{\ell}(R), x \in M$ or $(1-x) \in M$, but not both. Thus $x \in M$ if and only if $(1-x) \notin M$, and hence $\mathcal{K}=$ $h(1-x)$. Hence \mathcal{K} is closed.
$" \Rightarrow$ " By Theorem 5.3, $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(f(R))$ are homeomorphic under the mapping $\varphi: M \rightarrow M_{f}$, where M_{f} is the unique maximal ℓ-ideal of $f(R)$ that contains $M \cap f(R)$. Let \mathcal{K} be a clopen set in $\operatorname{Max}_{\ell}(R)$. Then $\varphi(\mathcal{K})$ is clopen in $\operatorname{Max}_{\ell}(f(R))$. By Lemma 5.4, there exists an idempotent element $x \in f(R)$ such that

$$
\varphi(\mathcal{K})=\left\{I \in \operatorname{Max}_{\ell}(f(R)) \mid x \notin I\right\}
$$

We show that $\mathcal{K}=s(x)$. Let $M \in \mathcal{K}$. Then $\varphi(M) \in \varphi(\mathcal{K})$, so $x \notin \varphi(M)$. Since $M \cap f(R) \subseteq \varphi(M), x \notin M$, and hence $M \in s(x)$. Thus $\mathcal{K} \subseteq s(x)$. Now let $N \in s(x)$. Then $1-x \in N \cap f(R) \subseteq \varphi(N)$, and hence $x \notin \varphi(N)$. Thus $\varphi(N) \in \varphi(\mathcal{K})$, so $N \in \mathcal{K}$. Therefore $s(x) \subseteq \mathcal{K}$. This completes the proof.

5.2ℓ-ideals in commutative ℓ-unital ℓ-rings

In this section, R denotes a commutative ℓ-unital ℓ-reduced ℓ-ring. Recall that an ℓ-prime ℓ-ideal is called a minimal ℓ-prime ℓ-ideal if it contains no smaller ℓ-prime ℓ-ideal. Let $\operatorname{Min}_{\ell}(R)$ denote the set of all minimal ℓ-prime ℓ-ideals of R endowed with the hull-kernel topology, that is, open sets in $\operatorname{Min}_{\ell}(R)$ are

$$
S(X)=\left\{P \in \operatorname{Min}_{\ell}(R) \mid X \nsubseteq P\right\}
$$

and closed sets in $\operatorname{Min}_{\ell}(R)$ are

$$
H(X)=\left\{P \in \operatorname{Min}_{\ell}(R) \mid X \subseteq P\right\}
$$

where $X \subseteq R$. To reduce possible confusion to the reader, for a subset X of R, we use $S(X)(H(X))$ to denote the open (closed) sets in $\operatorname{Min}_{\ell}(R)$ and use $s(X)(h(X))$ to denote the open (closed) sets in $\operatorname{Max}_{\ell}(R)$.

Recall that for $x \in R, \ell(x)=\{a \in R| | a| | x \mid=0\}$ is called the ℓ annihilator of x, which is an ℓ-ideal of R. As a direct consequence of Theorem 1.30, we have the following result. We leave the proof as an exercise (Exercise 13).

Lemma 5.5. For each element $a \in R, H(\ell(a))=S(a)$ and $S(\ell(a))=$ $H(a)$.

Theorem 5.6. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring. Then $\operatorname{Min}_{\ell}(R)$ is a Hausdorff space with a topological space basis consisting of clopen sets.

Proof. For $P_{1} \neq P_{2}$ in $\operatorname{Min}_{\ell}(R)$, take $x \in P_{1} \backslash P_{2}$. Then $P_{1} \in H(x)$ and $P_{2} \in H(\ell(x))$. By Lemma 5.5, $H(x)$ and $H(\ell(x))$ are both open, and $H(x) \cap H(\ell(x))=\emptyset$. Therefore $\operatorname{Min}_{\ell}(R)$ is a Hausdorff space. We know that $\{S(a) \mid a \in R\}$ is a base for the open sets and each $S(a)$ is clopen.

Theorem 5.7. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring. Then $\operatorname{Min}_{\ell}(R)$ is compact if and only if for each $x \in R^{+}$there exists $y \in R^{+}$such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$.

Proof. First assume that $\operatorname{Min}_{\ell}(R)$ is compact. For $x \in R^{+}$, if $P \in$ $\operatorname{Min}_{\ell}(R) \backslash S(x)$, then by Theorem $1.30,|x| \in P$ implies that there is $0 \leq$ $z \in R$ such that $|x| z=0$ and $z \notin P$, and hence $P \in S(z)$. It follows that

$$
\operatorname{Min}_{\ell}(R)=S(x) \bigcup\left(\cup_{0 \leq z \in \ell(x)} S(z)\right)
$$

Then $\operatorname{Min}_{\ell}(R)$ is compact implies that

$$
\operatorname{Min}_{\ell}(R)=S(x) \cup S\left(y_{1}\right) \cup \cdots \cup S\left(y_{n}\right)
$$

for some $0 \leq y_{1}, \cdots, y_{n} \in \ell(x)$. Let $y=y_{1}+\cdots+y_{n}$. Then $S(y)=$ $S\left(y_{1}\right) \cup \cdots \cup S\left(y_{n}\right)$ and $y \in \ell(x)$ (Exercise 14), so $x y=0$ and $S(y) \cup S(x)$ $=\operatorname{Min}_{\ell}(R)$. Hence $\ell(x) \cap \ell(y)$ is contained in each minimal ℓ-prime ℓ-ideal of R, and hence $\ell(x) \cap \ell(y)=\{0\}$ since R is ℓ-reduced.

Conversely suppose that the given conditions are satisfied, we show that $\operatorname{Min}_{\ell}(R)$ is compact. Let $\operatorname{Min}_{\ell}(R)=\cup_{\alpha} S\left(I_{\alpha}\right)$ for some ℓ-ideals I_{α} of R. Let $I=\sum_{\alpha} I_{\alpha}$. We have $S(I)=\operatorname{Min}_{\ell}(R)$, so for each $P \in \operatorname{Min}_{\ell}(R), I \nsubseteq P$. We claim that there exists $0 \leq x \in I$ such that $\ell(x)=\{0\}$. Suppose for each $0 \leq x \in I, \ell(x) \neq\{0\}$. We derive a contradiction. Let

$$
M=\left\{a \in R^{+} \mid \ell(a)=0\right\}
$$

Then M is closed under the multiplication of R and $I \cap M=\emptyset$. Thus M is an m-system. By Theorem $1.26, I \subseteq P$ for some ℓ-prime ℓ-ideal P and $P \cap M=\emptyset$. We shall prove that P is minimal. Given $0 \leq z \in P$, there exists $w \in R^{+}$such that $z w=0$ and $\ell(z) \cap \ell(w)=\{0\}$. Since $\ell(z+w) \subseteq \ell(z) \cap \ell(w), \ell(z+w)=\{0\}$, and hence $z+w \in M$. It follows that $z+w \notin P$, so $w \notin P$. By Theorem 1.30, P is a minimal ℓ-prime ℓ-ideal of R. This contradicts with the fact that I is not contained in any minimal ℓ-prime ℓ-ideal. Therefore there exists $0 \leq x \in I$ such that $\ell(x)=\{0\}$.

Suppose that $x \in I_{\alpha_{1}}+\cdots+I_{\alpha_{k}}$. For $P \in \operatorname{Min}_{\ell}(R)$, if $I_{\alpha_{1}}, \cdots, I_{\alpha_{k}} \subseteq P$, then $x \in P$ implies that $x y=0$ for some $0 \leq y \notin P$ by Theorem 1.30, so $\ell(x) \neq\{0\}$, which is a contradiction. Hence $\operatorname{Min}_{\ell}(R)=S\left(I_{\alpha_{1}}\right) \cup \cdots \cup S\left(I_{\alpha_{k}}\right)$. Therefore $\operatorname{Min}_{\ell}(R)$ is compact.

For an ℓ-prime ℓ-ideal P, we define $O_{P}=\{a \in R \mid \ell(a) \nsubseteq P\}$. Clearly O_{P} is an ℓ-ideal and $O_{P} \subseteq P$ (Exercises 15). By Theorem 1.30, an ℓ-prime ℓ-ideal P is minimal if and only if $O_{P}=P$.

Theorem 5.8. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring and M be a maximal ℓ-ideal of R.
(1) For $x \in R, x \in O_{M}$ if and only if there exists $0 \leq e \in M \cap f(R)$ such that $x e=x$.
(2) For $x \in R$, if $x \in O_{M}$, then $h(x)$ is a neighborhood of M in $\operatorname{Max}_{\ell}(R)$. If R is ℓ-semisimple, then the converse is also true.
(3) M is the only maximal ℓ-ideal containing O_{M}.
(4) Every ℓ-prime ℓ-ideal of R lies between O_{N} and N for a unique maximal ℓ-ideal N of R.

Proof. (1) Suppose that $x e=x$ for an element $e \in M \cap f(R)$. Then $x(e-$ 1) $=0$, and hence $x(e-1)^{+}=x(e-1)^{-}$. So we have $\left|x(e-1)^{+}\right|=\left|x(e-1)^{-}\right|$. Because $(e-1)^{+}$and $(e-1)^{-}$are both f-elements, $|x|(e-1)^{+}=|x|(e-1)^{-}$. Since $(e-1)^{+} \wedge(e-1)^{-}=0$ implies that

$$
(e-1)^{+}(e-1)^{-}=(e-1)^{-}(e-1)^{+}=0
$$

we have

$$
|x|\left[(e-1)^{+}\right]^{2}=|x|\left[(e-1)^{-}\right]^{2}=0
$$

that is, $\left[(e-1)^{+}\right]^{2} \in \ell(x)$ and $\left[(e-1)^{-}\right]^{2} \in \ell(x)$. Now since $e \in M$, $(e-1) \notin M$, so

$$
(e-1)^{+} \notin M \text { or }(e-1)^{-} \notin M
$$

and hence by Lemma 5.1

$$
\left[(e-1)^{+}\right]^{2} \notin M \text { or }\left[(e-1)^{-}\right]^{2} \notin M .
$$

Thus $\ell(x) \nsubseteq M$, and hence $x \in O_{M}$.
Now let $x \in O_{M}$. Then there exists $y \in R \backslash M$ such that $|x||y|=0$ since $\ell(x) \nsubseteq M$. Let $\langle y\rangle$ be the ℓ-ideal of R generated by y. Since $y \notin M$, $R=M+\langle y\rangle$, and hence $1=e+z$, where $0 \leq e \in M$ and $0 \leq z \leq r|y|$ for some $r \in R^{+}$. Thus $|x| z=0$, and hence $|x|=|x| e$. Since $0 \leq e \leq 1, e$ is an f-element, and $|x|=|x| e$ implies that $x=x e$ (Exercise 29).
(2) Let $x \in O_{M}$. So there exists $y \notin M$ such that $|x||y|=0$. Then $M \in s(y) \subseteq h(x)$. Thus $h(x)$ is a neighborhood of M. Suppose that R is ℓ-semisimple and $M \in s(y) \subseteq h(x)$ for some $y \in R$. Since $s(y)=s(|y|)$ and $h(x)=h(|x|), M \in s(|y|) \subseteq h(|x|)$. Let $N \in \operatorname{Max}_{\ell}(R)$. If $|y| \notin N$, then $N \in s(|y|) \subseteq h(|x|)$, so $|x| \in N$. Thus $|x||y| \in N$ for each $N \in \operatorname{Max}_{\ell}(R)$. Since R is ℓ-semisimple, $|x||y|=0$ and $0<|y| \notin M$. Thus $\ell(x) \nsubseteq M$, and so $x \in O_{M}$.
(3) Let L be a maximal ℓ-ideal of R such that $O_{M} \subseteq L$ and $L \neq M$. Then $R=L+M$. By Lemma 5.1, there exist $0 \leq a \in M \backslash L$ and $0 \leq b \in$ $L \backslash M$ such that $a b=0$. Since $a \notin L, a \notin O_{M}$, so $\ell(a) \subseteq M$. Hence $b \in M$, which is a contradiction. Thus $L=M$.
(4) Let P be an ℓ-prime ℓ-ideal of R. By Corollary 5.1, P is contained in a unique maximal ℓ-ideal N of R. Let $x \in O_{N}$. Then $\ell(x) \nsubseteq N$, so $\ell(x) \nsubseteq P$, and hence $x \in P$. Thus $O_{N} \subseteq P$.

The following example shows that the condition that R is ℓ-semisimple cannot be dropped in Theorem 5.8(2).

Example 5.3. Let $A=\mathbb{R}[x]$ be the polynomial ring in one variable over \mathbb{R} with the coordinatewise order. Then A is a commutative ℓ-unital ℓ ring with the unique maximal ℓ-ideal $M=x A$. Consider the direct sum $A \oplus A$ of two copies of A. Then $M \oplus A$ is a maximal ℓ-ideal of $A \oplus A$ and $O_{M \oplus A}=0 \oplus A$. Clearly $M \oplus A \in s((1,0)) \subseteq h((x, 1))$, but $(x, 1) \notin O_{M \oplus A}$.

An ℓ-ideal I is called a pure ℓ-ideal if $R=I+\ell(x)$ for each $x \in I$. For an ℓ-ideal I, define $m(I)=\{a \in R \mid R=I+\ell(a)\}$. Then $m(I)$ is an ℓ-ideal and I is pure if and only if $m(I)=I$ (Exercise 16).

Theorem 5.9. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring and I, J be ℓ-ideals.
(1) For each maximal ℓ-ideal M of R, O_{M} is a pure ℓ-ideal.
(2) $m(I)$ is a pure ℓ-ideal, and

$$
m(I)=\bigcup_{g \in I} \ell(1-g)
$$

(3) $m(I)=\{x \in R \mid x=$ ax for some $0 \leq a \in I \cap f(R)\}$. In particular, $m(I) \subseteq I$.
(4) $h(I)=h(m(I))$.

$$
\begin{equation*}
m(I)=\bigcap O_{M}, \text { where } M \in h(I) \tag{5}
\end{equation*}
$$

(6) $m(I)+m(J)=m(I+J)$.
(7) For an ℓ-prime ℓ-ideal $P, m(P)=O_{M}$ for some maximal ℓ-ideal M and O_{P} is a pure ℓ-ideal if and only if $O_{P}=O_{M}$.

Proof.

(1) Let $x \in O_{M}$. Then $\ell(x) \nsubseteq M$, so $R=M+\ell(x)$. By Lemma 5.1, $1=a+b+c$, where $0 \leq a \in f(R) \cap M, 0 \leq b \in f(R) \cap \ell(x)$, $c \in f(R) \cap M \cap \ell(x)$, and $a b=0$. We have $b \in \ell(a) \backslash M$, and hence $a \in O_{M}$. Thus $1 \in O_{M}+\ell(x)$, so $R=O_{M}+\ell(x)$.
(2) First we show that

$$
m(I)=\bigcup_{g \in I} \ell(1-g)
$$

Let

$$
x \in \bigcup_{g \in I} \ell(1-g)
$$

Then $|x||1-g|=0$ for some $g \in I$. So $1-g \in \ell(x)$, and hence $R=I+\ell(x)$. Thus $x \in m(I)$. Conversely, if $x \in m(I)$, then $R=I+\ell(x)$, and hence $1=c+d$, where $0 \leq c \in I, 0 \leq d \in \ell(x)$. Therefore, $|x|=c|x|$, and hence $x \in \ell(1-c)$ with $c \in I$. So

$$
x \in \bigcup_{g \in I} \ell(1-g)
$$

To see that $m(I)$ is an ℓ-ideal we just have to show that $m(I)$ is closed under the addition of R. Let $x, y \in m(I)$. Then

$$
R=I+\ell(x)=I+\ell(y)
$$

Let

$$
1=a+b=a^{\prime}+b^{\prime}
$$

where $0 \leq a, a^{\prime} \in I, 0 \leq b \in \ell(x)$, and $0 \leq b^{\prime} \in \ell(y)$. Then

$$
1=(a+b)\left(a^{\prime}+b^{\prime}\right)=a a^{\prime}+a b^{\prime}+b a^{\prime}+b b^{\prime} \in I+\ell(x+y)
$$

so $R=I+\ell(x+y)$. Thus $x+y \in m(I)$.
Finally, to see that $m(I)$ is a pure ℓ-ideal, let $a \in m(I)$. Then $R=$ $I+\ell(a)$, and hence, by Lemma $5.1,1=x+y+z$, where $0 \leq x \in I$, $0 \leq y \in \ell(a), 0 \leq z \in I \cap \ell(a)$, and $x y=0$. Since $y \in \ell(x)$, we have $1 \in I+\ell(x)$, and hence $R=I+\ell(x)$. Thus $x \in m(I)$. This implies $1=x+y+z \in m(I)+\ell(a)$, and hence $R=m(I)+\ell(a)$. Hence $m(I)$ is a pure ℓ-ideal.
(3) Let $x \in m(I)$. Then $R=I+\ell(x)$, and hence $1=a+b$ for some $0 \leq a \in I, 0 \leq b \in \ell(x)$. Thus $x=a x$ and $0 \leq a \in I \cap f(R)$. Conversely, let $x=a x$ for some $0 \leq a \in I \cap f(R)$. Then $x(1-a)=0$. Since $1-a \in$ $f(R),(1-a)^{2} \geq 0$ is an f-element, and hence $x(1-a)^{2}=0$ implies that $|x|(1-a)^{2}=0$. Hence

$$
(1-a)^{2}=1-2 a+a^{2} \in \ell(x)
$$

Since $a \in I$, we have $R=I+\ell(x)$. Thus $x \in m(I)$.
(4) Since $m(I) \subseteq I, h(I) \subseteq h(m(I))$. Now let M be a maximal ℓ ideal of R and $m(I) \subseteq M$. If $I \nsubseteq M$, then $R=I+M$. By Lemma 5.1, $1=a+b+c$, where $0 \leq a \in I, 0 \leq b \in M, 0 \leq c \in I \cap M$, and $a b=0$. Thus $b \in \ell(a)$, so $R=I+\ell(a)$, and hence $a \in m(I)$. So $a \in M$, which implies $1=a+b+c \in M$, which is a contradiction. Thus $I \subseteq M$.
(5) If $x \in m(I)$, then $R=I+\ell(x)$, so $\ell(x) \nsubseteq M$ for each $M \in h(I)$, and hence $x \in O_{M}$ for each $M \in h(I)$. Conversely, suppose $x \in O_{M}$ for each $M \in h(I)$. If $I+\ell(x) \neq R$, then there exists a maximal ℓ-ideal N such that $I+\ell(x) \subseteq N$. Since $I \subseteq N$ and $x \in O_{N}, \ell(x) \nsubseteq N$, which contradicts with that $\ell(x) \subseteq N$. Thus $I+\ell(x)=R$, so $x \in m(I)$.
(6) From (4), we have

$$
\begin{aligned}
h(m(I)+m(J)) & =h(m(I)) \bigcap h(m(J)) \\
& =h(I) \bigcap h(J) \\
& =h(I+J)
\end{aligned}
$$

Then from (5), we have

$$
\begin{aligned}
m(m(I)+m(J)) & =\bigcap O_{N}, \text { where } N \in h(m(I)+m(J)) \\
& =\bigcap O_{N}, \text { where } N \in h(I+J) \\
& =m(I+J)
\end{aligned}
$$

Thus $m(I+J) \subseteq m(I)+m(J)$ by (3). Since clearly $m(I)+m(J) \subseteq m(I+J)$, we have $m(I+J)=m(I)+m(J)$.
(7) Let $P \subseteq M$, where M is the unique maximal ℓ-ideal of R containing P. By (5), $m(P)=O_{M}$. Since O_{M} is the largest pure ℓ-ideal contained in M by (5), if O_{P} is a pure ℓ-ideal, then $O_{P} \subseteq O_{M}$. Clearly $O_{M} \subseteq O_{P} \subseteq M$ is always true. Thus $O_{P}=O_{M}$.

The following result characterizes those ℓ-rings R for which each principal ℓ-ideal is a pure ℓ-ideal. An ℓ-ideal I of R is called a direct summand if there exists an ℓ-ideal J such that R is a direct sum of I and J as ℓ-ideals, that is, $R=I \oplus J$.

Theorem 5.10. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring. Then the following statements are equivalent.
(1) Every ℓ-prime ℓ-ideal of R is maximal.
(2) Every principal ℓ-ideal of R is a pure ℓ-ideal.
(3) Every principal ℓ-ideal of R is a direct summand.

Proof. (1) $\Rightarrow(2)$. First we notice that (1) implies that every ℓ-prime ℓ-ideal of R is minimal (Exercise 17). Let $a \in R$ and $b \in\langle a\rangle$. If $R \neq$ $\langle a\rangle+\ell(b)$, then $\langle a\rangle+\ell(b) \subseteq M$ for some maximal ℓ-ideal M. Since M is a minimal ℓ-prime ℓ-ideal and $b \in M, \ell(b) \nsubseteq M$ by Theorem 1.30, which is a contradiction. Therefore, $R=\langle a\rangle+\ell(b)$, so $\langle a\rangle$ is a pure ℓ-ideal.
$(2) \Rightarrow(3)$. Let $a \in R$. From (2), we have $R=\langle a\rangle+\ell(a)$. Let $b \in$ $\langle a\rangle \cap \ell(a)$. Then $|b| \leq r|a|$ for some $r \in R^{+}$and $|b||a|=0$, so $|b|^{2}=0$, and hence $|b|=0$ since R is ℓ-reduced. Thus $b=0$, so $\langle a\rangle \cap \ell(a)=\{0\}$, and hence $R=\langle a\rangle \oplus \ell(a)$.
(3) \Rightarrow (1). Suppose that P is an ℓ-prime ℓ-ideal. Let $P \subseteq I$ for some ℓ-ideal I of R. If $P \neq I$, then there exists an element $a \in I \backslash P$. Since $R=\langle a\rangle \oplus J$ for some ℓ-ideal J of $R, J \subseteq \ell(a) \subseteq P \subseteq I$, and hence $R=\langle a\rangle+J \subseteq I$. Thus P is a maximal ℓ-ideal of R.

An ℓ-ideal $I \neq R$ is called ℓ-pseudoprime if $a b=0$ for $a, b \in R^{+}$implies $a \in I$ or $b \in I$. An ℓ-prime ℓ-ideal is certainly ℓ-pseudoprime. However the converse is not true. For instance, let $R=\mathbb{R}[x, y]$ be the polynomial ℓ-ring in two variables over \mathbb{R} with the coordinatewise order. Since R is a domain, $x R \cap y R$ is an ℓ-pseudoprime ℓ-ideal, however $x R \cap y R$ is not ℓ-prime. An ℓ-ideal $I \neq R$ is called ℓ-semiprime if for any $a \in R^{+}, a^{2} \in I$ implies that $a \in I$. We leave it as an exercise to the reader to check that an ℓ-ideal is ℓ-semiprime if and only if it is the intersection of ℓ-prime ℓ-ideals containing it (Exercise 18).

Theorem 5.11. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring. Let I and J be pure ℓ-ideals of R.
(1) I is ℓ-semiprime.
(2) If I is ℓ-pseudoprime, then I is ℓ-prime.
(3) If I and J are ℓ-prime, then either $I+J=R$ or $I=J$.
(4) For an ℓ-prime ℓ-ideal P, O_{P} is ℓ-prime if and only if O_{P} is ℓ pseudoprime.

Proof. (1) Let $x^{2} \in I$ for some $x \in R^{+}$. Then $R=I+\ell\left(x^{2}\right)$, and hence $x=a+b$, where $0 \leq a \in I$ and $0 \leq b \in \ell\left(x^{2}\right)$. Since $b \leq x$, and $b x^{2}=0$, we have $b^{3} \leq b x^{2}=0$. Hence $b^{3}=0$, and so $b=0$ since R is ℓ-reduced. Thus $x=a \in I$.
(2) Let $a b \in I$ for some $a, b \in R^{+}$and $a \notin I$. Since $R=I+\ell(a b)$, $1=u+v$, where $0 \leq u \in I, 0 \leq v \in \ell(a b)$. Since $a b v=0$ and I is ℓ-pseudoprime, we have $b v \in I$. Thus $b=b u+b v \in I$.
(3) Since I and J are ℓ-prime, by Theorem 5.9 , there exist maximal ℓ-ideals M and N such that $I=O_{M}$ and $J=O_{N}$. If $I+J \neq R$, then $I+J$ is contained in some maximal ℓ-ideal, so by Theorem 5.8 $M=N$, and hence $I=J$.
(4) Suppose that O_{P} is ℓ-pseudoprime, and let $a b \in O_{P}$ for some $a, b \in$ R^{+}. Suppose that $a \notin O_{P}$ and $b \notin O_{P}$. We get a contradiction as follows. Since $a b \in O_{P}, \ell(a b) \nsubseteq P$, and so there exists $0 \leq c \notin P$ such that $a b c=0$. Since O_{P} is ℓ-pseudoprime and $a \notin O_{P}, b c \in O_{P}$. Hence there exists $0 \leq d \notin P$ such that $b c d=0$, so $c d \in O_{P} \subseteq P$ since $b \notin O_{P}$. Now $c d \in P$ implies $c \in P$ or $d \in P$, which is a contradiction.

For a commutative ℓ-unital ℓ-reduced ℓ-ring R if $R=\ell(a)+\ell(b)$ whenever $a b=0$ for some $a, b \in R^{+}$, then R is called normal. Clearly if R is an ℓ-domain, then R is normal.

Theorem 5.12. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring. The following are equivalent.
(1) R is normal.
(2) O_{P} is ℓ-prime for each ℓ-prime ℓ-ideal P.
(3) O_{M} is ℓ-prime for each maximal ℓ-ideal M.
(4) O_{M} is minimal ℓ-prime for each maximal ℓ-ideal M.
(5) $R=P+Q$ for any two distinct minimal ℓ-prime ℓ-ideals P and Q.
(6) Each maximal ℓ-ideal contains a unique minimal ℓ-prime ℓ-ideal.

Proof. (1) $\Rightarrow(2)$. Since O_{P} is ℓ-prime if and only if O_{P} is ℓ-pseudoprime by Theorem 5.11, we just need to show that O_{P} is ℓ-pseudoprime. Let $a b=0$ for some $a, b \in R^{+}$. Then $R=\ell(a)+\ell(b)$. If $a \notin O_{P}$ and $b \notin O_{P}$, then $\ell(a) \subseteq P$ and $\ell(b) \subseteq P$, and hence $R=\ell(a)+\ell(b) \subseteq P$, which is a contradiction.
(2) implies (3) is clear.
$(3) \Rightarrow(4)$. Let P be an ℓ-prime ℓ-ideal and $P \subseteq O_{M}$. Then $P \subseteq M$ implies $O_{M} \subseteq O_{P} \subseteq P$, so $P=O_{M}$. Thus O_{M} is a minimal ℓ-prime ℓ-ideal.
(4) $\Rightarrow(5)$. Given a minimal ℓ-prime ℓ-ideal J of R, let M be the unique maximal ℓ-ideal containing J. Then $O_{M} \subseteq J \subseteq M$ by Theorem 5.8(4). Since O_{M} is ℓ-prime, $J=O_{M}$. Thus, minimal ℓ-prime ℓ-ideals of R are O_{M}, where $M \in \operatorname{Max}_{\ell}(R)$. By Theorem 5.11(3), $R=O_{M}+O_{N}$ if $O_{M} \neq O_{N}$, where M, N are maximal ℓ-ideals.
$(5) \Rightarrow(6)$. Obvious.
$(6) \Rightarrow(1)$. Let $a b=0$ for some $a, b \in R^{+}$. If $R \neq \ell(a)+\ell(b)$, then there exists a maximal ℓ-ideal M such that $\ell(a)+\ell(b) \subseteq M$, so $a \notin O_{M}$ and $b \notin O_{M}$. Now let P be the unique minimal ℓ-prime ℓ-ideal contained in M. Then $O_{M} \subseteq P$. Since O_{M} is ℓ-semiprime by Theorem 5.11, O_{M} is an intersection of ℓ-prime ℓ-ideals. Since each ℓ-prime ℓ-ideal containing O_{M} is contained in M by Theorem 5.8, each ℓ-prime ℓ-ideal containing O_{M} contains P. Thus $O_{M}=P$, so O_{M} is ℓ-prime, and hence $a \in O_{M}$ or $b \in O_{M}$, which is a contradiction. Thus we have $R=\ell(a)+\ell(b)$.

For a commutative ℓ-unital ℓ-reduced ℓ-ring R, if R is normal, from Theorem 5.12, we have

$$
\operatorname{Min}_{\ell}(R)=\left\{O_{M} \mid M \in \operatorname{Max}_{\ell}(R)\right\}
$$

Thus maximal ℓ-ideals of R and minimal ℓ-ideals of R are in one-to-one correspondence. This is not true if R is not normal as shown in the following example.

Example 5.4. Let $A=\mathbb{R}[x]$ be the polynomial ring over \mathbb{R} with the coordinatewise order. Let R be the ℓ-subring of $A \times A$ defined as follows.

$$
R=\{(f, g) \in A \times A \mid f(0)=g(0)\}
$$

Then R is commutative without any nilpotent element (Exercise 19). Since $(x, 0)(0, x)=(0,0)$ and $R \neq \ell((x, 0))+\ell((0, x)), R$ is not normal. R has only one maximal ℓ-ideal $M=\{(f, g) \mid f(0)=g(0)=0\}$ with $O_{M}=\{0\}$. Clearly, $\ell((x, 0))$ and $\ell((0, x))$ are minimal ℓ-prime ℓ-ideals with $O_{\ell((x, 0))}=$ $\ell((x, 0))$ and $O_{\ell((0, x))}=\ell((0, x))$. We leave it to the reader to verify this fact (Exercise 20).

Theorem 5.13. Let R be normal. Then $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Min}_{\ell}(R)$ are homeomorphic if and only if for each $x \in R^{+}$there exists $y \in R^{+}$such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$ (or equivalently, $\operatorname{Min}_{\ell}(R)$ is compact).

Proof. Since $\operatorname{Max}_{\ell}(R)$ is compact, if $\operatorname{Min}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(R)$ are homeomorphic then $\operatorname{Min}_{\ell}(R)$ is compact, so R has the desired property by Theorem 5.7.

Conversely, suppose that $\operatorname{Min}_{\ell}(R)$ is compact. We show that $\operatorname{Min}_{\ell}(R)$ and $\operatorname{Max}_{\ell}(R)$ are homeomorphic. Since R is normal, we have

$$
\operatorname{Min}_{\ell}(R)=\left\{O_{M} \mid M \in \operatorname{Max}_{\ell}(R)\right\}
$$

The mapping $M \mapsto O_{M}$ is clearly a one-to-one and onto mapping from $\operatorname{Max}_{\ell}(R)$ to $\operatorname{Min}_{\ell}(R)$.

Let $\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ be a closed set in $\operatorname{Max}_{\ell}(R)$. We show that $\left\{O_{M_{\alpha}} \mid \alpha \in\right.$ $\Gamma\}$ is closed in $\operatorname{Min}_{\ell}(R)$. Let P be a minimal ℓ-prime ℓ-ideal of R and

$$
\bigcap_{\alpha \in \Gamma} O_{M_{\alpha}} \subseteq P .
$$

Let M be the unique maximal ℓ-ideal of R containing P. If $\cap_{\alpha \in \Gamma} M_{\alpha} \nsubseteq M$, then

$$
R=\left(\bigcap_{\alpha \in \Gamma} M_{\alpha}\right)+M .
$$

By Lemma 5.1, $1=a+b+c$, where $0 \leq a \in \cap_{\alpha \in \Gamma} M_{\alpha}, 0 \leq b \in M$, $0 \leq c \in\left(\cap_{\alpha \in \Gamma} M_{\alpha}\right) \cap M$, and $a b=0$. Since $b \notin M_{\alpha}$ for each $\alpha \in \Gamma$, $a \in O_{M_{\alpha}}$ for each $\alpha \in \Gamma$. Thus

$$
a \in \bigcap_{\alpha \in \Gamma} O_{M_{\alpha}} \subseteq P \subseteq M,
$$

so $1 \in M$, which is a contradiction. Therefore, $\cap_{\alpha \in \Gamma} M_{\alpha} \subseteq M$, and hence $M \in\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ since $\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ is closed. So $P=O_{M} \in\left\{O_{M_{\alpha}} \mid \alpha \in\right.$ $\Gamma\}$. Hence $\left\{O_{M_{\alpha}} \mid \alpha \in \Gamma\right\}$ is closed.

Now, suppose that $\left\{O_{M_{\alpha}} \mid \alpha \in \Gamma\right\}$ is a closed set in $\operatorname{Min}_{\ell}(R)$. We show that $\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ is closed in $\operatorname{Max}_{\ell}(R)$. Let $M \in \operatorname{Max}_{\ell}(R)$ and

$$
\bigcap_{\alpha \in \Gamma} M_{\alpha} \subseteq M .
$$

If $M \notin\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$, then $R=M_{\alpha}+M$ for each $\alpha \in \Gamma$. Hence, by Lemma 5.1, $1=x_{\alpha}+y_{\alpha}+z_{\alpha}$, where $0 \leq x_{\alpha} \in M_{\alpha}, 0 \leq y_{\alpha} \in M, 0 \leq z_{\alpha} \in M_{\alpha} \cap M$, and $x_{\alpha} y_{\alpha}=0$ for each $\alpha \in \Gamma$. Since $x_{\alpha} \notin M, y_{\alpha} \in O_{M}$ for each $\alpha \in \Gamma$, and since $y_{\alpha} \notin M_{\alpha}, x_{\alpha} \in O_{M_{\alpha}}$. But then $y_{\alpha} \notin O_{M_{\alpha}}$ for each $\alpha \in \Gamma$. For each α

$$
S\left(y_{\alpha}\right)=\left\{P \in \operatorname{Min}_{\ell}(R) \mid y_{\alpha} \notin P\right\}
$$

is open and $\left\{S\left(y_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ is an open cover for the set $\left\{O_{M_{\alpha}} \mid \alpha \in \Gamma\right\}$, and hence a finite subcover $S\left(y_{i}\right), i=1, \ldots, n$, can be extracted out of this cover because of the compactness of $\operatorname{Min}_{\ell}(R)$ implies that any closed set of it is compact. Now for each $O_{M_{\alpha}}$, there exists $y_{j} \notin O_{M_{\alpha}}$ for some $1 \leq j \leq n$, so $x_{j} \in O_{M_{\alpha}}$. Therefore

$$
x_{1} \cdots x_{n} \in \bigcap_{\alpha \in \Gamma} O_{M_{\alpha}} \subseteq \bigcap_{\alpha \in \Gamma} M_{\alpha} \subseteq M
$$

Thus $x_{k} \in M$ for some $k \in \Gamma$, and so $1=x_{k}+y_{k}+z_{k} \in M$, which is a contradiction. Therefore $M \in\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$, and hence $\left\{M_{\alpha} \mid \alpha \in \Gamma\right\}$ is closed.

Corollary 5.3. Suppose R is normal and for each $x \in R^{+}$there exists $y \in$ R^{+}such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$. Then $\operatorname{Max}_{\ell}(R), \operatorname{Max}_{\ell}(f(R))$, $\operatorname{Min}_{\ell}(R)$, and $\operatorname{Min}_{\ell}(f(R))$ are all homeomorphic.

Proof. If R is normal with the property that for each $x \in R^{+}$there exists $y \in R^{+}$such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$, then it is easy to check that $f(R)$ is normal with the same property. Now the conclusion follows from Theorems 5.3 and 5.13.

We provide a characterization for normal ℓ-rings under certain conditions.

Lemma 5.6. Suppose R is normal with the property that for each $x \in R^{+}$ there exists $y \in R^{+}$such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$. If R is not an ℓ-domain, then there exists an idempotent element $a \in f(R), 0<a<1$, such that $R=R a \oplus R(1-a)$ as ℓ-ideals.

Proof. Let $w z=0$ and $0<w \in R, 0<z \in R$. Then there exists $u \in R^{+}$such that $w u=0$ and $\ell(w) \cap \ell(u)=\{0\}$. Now $u \neq 0$, as otherwise $0<z \in \ell(w)=\ell(w) \cap \ell(u)=\{0\}$, contradicting with $z>0$. So $u>0$. Consider the following sets in $\operatorname{Min}_{\ell}(R)$.

$$
\begin{aligned}
\mathcal{K} & =\left\{P \in \operatorname{Min}_{\ell}(R) \mid \ell(w) \subseteq P\right\} \\
\mathcal{J} & =\left\{P \in \operatorname{Min}_{\ell}(R) \mid \ell(u) \subseteq P\right\}
\end{aligned}
$$

For each $P \in \operatorname{Min}_{\ell}(R), w \in P$ or $u \in P$ implies that $\ell(w) \nsubseteq P$ or $\ell(u) \nsubseteq P$, and hence $\mathcal{K} \cap \mathcal{J}=\emptyset$. Since $\ell(w) \cap \ell(u)=\{0\}$, for each $P \in \operatorname{Min}_{\ell}(R)$, $\ell(w) \subseteq P$ or $\ell(u) \subseteq P$, and hence $\operatorname{Min}_{\ell}(R)=\mathcal{K} \cup \mathcal{J}$. Since R is ℓ-reduced and $\ell(w) \neq\{0\}$ and $\ell(u) \neq\{0\}, \mathcal{K} \neq \emptyset$ and $\mathcal{J} \neq \emptyset$. Clearly \mathcal{K}, \mathcal{J} are closed sets. Since P is a minimal ℓ-prime ℓ-ideal, we have

$$
\begin{aligned}
\mathcal{K} & =\operatorname{Min}_{\ell}(R) \backslash\left\{P \in \operatorname{Min}_{\ell}(R) \mid w \in P\right\} \\
\mathcal{J} & =\operatorname{Min}_{\ell}(R) \backslash\left\{P \in \operatorname{Min}_{\ell}(R) \mid u \in P\right\}
\end{aligned}
$$

They are thus both open.
Now since $\operatorname{Max}_{\ell}(R)$ and $\operatorname{Min}_{\ell}(R)$ are homeomorphic by Theorem 5.13, there exist clopen sets $\mathcal{N} \neq \emptyset, \mathcal{M} \neq \emptyset$ in $\operatorname{Max}_{\ell}(R)$ such that

$$
\operatorname{Max}_{\ell}(R)=\mathcal{N} \cup \mathcal{M} \text { and } \mathcal{N} \cap \mathcal{M}=\emptyset
$$

By Corollary 5.2, $\mathcal{N}=s(e)$ and $\mathcal{M}=s(f)$, where $e, f \in f(R)$ are idempotent elements. Let $a=1-e$ and $b=1-f$, we have $\mathcal{N}=h(a), \mathcal{M}=h(b)$, and $a, b \in f(R)$ are idempotent elements. Since $1=a+(1-a)$, we have $R=R a+R(1-a)$, and since \mathcal{N} and \mathcal{M} are not empty, $0<a<1$. From $(a \wedge(1-a))^{2} \leq a(1-a)=0, a \wedge(1-a)=0$ since R is ℓ-reduced. Then $R a$ and $R(1-a)$ are ℓ-ideals of R with $R a \cap R(1-a)=\{0\}$. Therefore, we have $R=R a \oplus R(1-a)$ as ℓ-ideals of R.

Theorem 5.14. Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring R. Suppose that the identity element 1 is greater than only a finite number of disjoint elements. Then R is normal and satisfies that
$(\star) \forall x \in R^{+}, \exists y \in R^{+}$such that $x y=0, \ell(x) \cap \ell(y)=\{0\}$
if and only if R is a finite direct sum of commutative ℓ-unital ℓ-domains.
Proof. If R is a direct sum of commutative ℓ-unital ℓ-domains, then R is normal and has the given condition (Exercise 21).

Now suppose that R is normal and for each $x \in R^{+}$there exists $y \in R^{+}$ such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$. By Lemma 5.6, if R is not a domain, then $R=R a \oplus R(1-a)$ as ℓ-ideals and $0<a<1$ is an idempotent element. Then $R a$ and $R(1-a)$ are both commutative ℓ-unital ℓ-reduced normal ℓ-ring satisfying the given condition (\star). Thus if $R a$ or $R(1-a)$ is not an ℓ-domain, we may repeat using Lemma 5.6 to direct summand $R a$ or $R(1-a)$. Since 1 is greater than only a finite number of disjoint elements, R is a direct sum of commutative ℓ-unital ℓ-domains.

An ℓ-pseudoprime ℓ-ideal in a commutative ℓ-unital ℓ-reduced normal ℓ-ring may be contained in two ℓ-prime ℓ-ideals which are not comparable. For example, let $R=\mathbb{R}[x, y]$ be the polynomial ring in two variables over \mathbb{R} with the coordinatewise order. Then $x R$ and $y R$ are ℓ-prime ℓ-ideals of R. Since R is a domain, $\{0\}$ is ℓ-pseudoprime, but $x R \nsubseteq y R$ and $y R \nsubseteq x R$.

However if an ℓ-ideal I is contained in a unique maximal ℓ-ideal, then I must be ℓ-pseudoprime. Thus if any two ℓ-prime ℓ-ideals containing I are comparable, then I is ℓ-pseudoprime.

Theorem 5.15. Let R be a commutative ℓ-unital ℓ-reduced normal ℓ-ring. For an ℓ-ideal I of R, if I is contained in a unique maximal ℓ-ideal, then I is ℓ-pseudoprime.

Proof. Since I is contained in a unique maximal ℓ-ideal M, by Theorem $5.9(5), m(I)=O_{M} \subseteq I$. Since O_{M} is ℓ-prime by Theorem 5.12, I is ℓ-pseudoprime.

If R is an f-ring, then the situation is different.
Theorem 5.16. Let R be a commutative unital ℓ-reduced normal f-ring and I be an ℓ-ideal of R. Then I is ℓ-pseudoprime if and only if the ℓ prime ℓ-ideals containing I form a chain.

Proof. Suppose that I is an ℓ-pseudoprime ℓ-ideal and P, Q are ℓ-prime ℓ-ideals containing I. If $0 \leq a \in O_{P}$, then there exists $b \in R^{+}$such that $a b=0$ and $b \notin P$. Since I is ℓ-pseudoprime, $a \in I$. Thus $O_{P} \subseteq I$. By Lemma 5.12, O_{P} is ℓ-prime. Since R is an f-ring, by Theorem 4.10, P and Q are comparable since they both contain ℓ-prime ℓ-ideal O_{P}.

For an ℓ-ideal I of R, define

$$
\sqrt{I}=\left\{\left.a \in R| | a\right|^{n} \in I \text { for some positive integer } n\right\} .
$$

Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring and I be an ℓ-ideal of R. Then \sqrt{I} is the smallest ℓ-semiprime ℓ-ideal containing I. We leave the verification of this fact to the reader (Exercise 22).

Theorem 5.17. Let R be a commutative ℓ-unital ℓ-reduced normal ℓ-ring and I be an ℓ-ideal of R. If \sqrt{I} is ℓ-prime, then I is ℓ-pseudoprime.

Proof. By Corollary 5.1, there exists a unique maximal ℓ-ideal M such that $\sqrt{I} \subseteq M$. So $I \subseteq M$. Let N be a maximal ℓ-ideal of R and $I \subseteq N$. Then $\sqrt{I} \subseteq N$, and hence $N=M$. Thus M is the unique maximal ℓ-ideal containing I. By Theorem 5.9(5), $m(I)=O_{M} \subseteq I$. Since R is normal, O_{M} is ℓ-prime, and hence I is ℓ-pseudoprime.

In the ℓ-ring $R=\mathbb{R}[x, y]$ with the entrywise order, if $I=x R \cap y R$, then $\sqrt{I}=I$. It is clear that I is ℓ-pseudoprime and \sqrt{I} is not ℓ-prime. However for f-rings, the situation is changed.

Theorem 5.18. Let R be a commutative unital ℓ-reduced normal f-ring and I be a proper ℓ-ideal of R. Then I is ℓ-pseudoprime if and only if \sqrt{I} is ℓ-prime.

Proof. Suppose that I is ℓ-pseudoprime. Let M be a maximal ℓ-ideal and $I \subseteq M$. If $a \in O_{M}$, then there exists $b \in R$ such that $|a||b|=0$ and $b \notin M$. Since I is ℓ-pseudoprime, $a \in I$. Thus $O_{M} \subseteq I$. By Theorem
5.12, O_{M} is ℓ-prime, and hence R is an f-ring implies that any two ℓ-ideals containing I are comparable. Thus \sqrt{I} is ℓ-prime (Exercise 23).

We refer the reader to [Larson (1988)] for an example showing the hypothesis of normality in Theorem 5.18 cannot be dropped.

We notice that in a commutative ring R, an ideal I is called prime (semiprime) if for any $a, b \in R, a b \in I$ implies that $a \in I$ or $b \in I$ (for any $a \in R, a^{2} \in I$ implies that $a \in I$), and I is called pseudoprime if for any $a, b \in R, a b=0$ implies that $a \in I$ or $b \in I$. In general ℓ-rings, an ℓ prime (ℓ-semiprime, ℓ-pseudoprime) ℓ-ideal may not be prime (semiprime, pseudoprime). However in an f-ring, since for any two elements a and b, $|a b|=|a||b|$, an ℓ-prime (ℓ-semiprime, ℓ-pseudoprime) ℓ-ideal must be prime (semiprime, pseudoprime).

At the end of this section, we consider some properties of commutative ℓ-unital ℓ-rings in which each maximal ideal is an ℓ-ideal. For an f-ring, a prime ideal P must be a sublattice. In fact, for any $a \in P, a^{+} a^{-}=0$ implies that $a^{+} \in P$ or $a^{-} \in P$. Therefore for a maximal ideal M of a commutative unital f-ring to be an ℓ-ideal, it just needs to be a convex set.

A commutative ℓ-unital ℓ-ring R is said to have bounded inversion property if whenever $a \geq 1$ for $a \in R$, then a is a unit.

Theorem 5.19. Let R be a commutative ℓ-unital ℓ-ring. Each maximal ideal of R is convex if and only if R has bounded inversion property.

Proof. " \Rightarrow " Suppose that $a \in R$ and $a \geq 1$. If $R a$ is contained in a maximal ideal M, then M is convex and $1 \leq a$ implies that $1 \in M$, which is a contradiction. Thus $R a=R$ and a is invertible.
" \Leftarrow " Let M be a maximal ideal and $0 \leq a \leq b \in M$ and $a \in R$. If $a \notin M$, then $R=R a+M$ and $1=r a+m$ for some $r \in R$ and $m \in M$. Then

$$
1=r a+m \leq|r| a+m \leq|r| b+m
$$

implies that $1=(|r| b+m) s$ for some $s \in R$, so $1 \in M$, which is a contradiction. Thus we must have $a \in M$ and M is convex.

As a direct consequence of Theorem 5.19, in a commutative unital f-ring R each maximal ideal is an ℓ-ideal if and only if R has bounded inversion property.

By Theorem 5.19, for a general commutative ℓ-unital ℓ-ring, if each maximal ideal is an ℓ-ideal, then it has bounded inversion property.

Theorem 5.20. Let R be an ℓ-unital commutative ℓ-ring. If R has bounded inversion property, then $f(R)$ also has bounded inversion property.

Proof. Let $a \in f(R)$ and $a \geq 1$. Then a^{-1} exists in R. Since a is an invertible f-element, by Theorem $1.20(2), a^{-1}>0$, so by Theorem $1.20(2)$ again, a^{-1} is a d-element. For $x, y \in R$ with $x \wedge y=0$,

$$
a^{-1} x \wedge a^{-1} y=0 \Rightarrow a a^{-1} x \wedge a^{-1} y=0 \Rightarrow x \wedge a^{-1} y=0
$$

Thus $a^{-1} \in f(R)$. Hence $f(R)$ has bounded inversion property.
For a ring $R, \operatorname{Max}(R)$ denotes the set of all maximal ideals equipped with the hull-kernel topology. For any subset $X \subseteq R$, define

$$
U(X)=\{M \in \operatorname{Max}(R) \mid X \nsubseteq M\}
$$

and

$$
V(X)=\{M \in \operatorname{Max}(R) \mid X \subseteq M\}
$$

Then $U(X)$ are open sets in $\operatorname{Max}(R)$ and $\{U(a), a \in R\}$ forms a basis for open sets.

A topological space is called zero-dimensional if it contains a topological space basis consisting of clopen sets. A ring is called clean if each element in it is a sum of a unit and an idempotent.

Theorem 5.21. Let A be a commutative ℓ-unital ℓ-reduced ℓ-ring in which each maximal ideal is an ℓ-ideal, that is, $\operatorname{Max}(A)=\operatorname{Max}_{\ell}(A)$. Then $\operatorname{Max}(A)$ is zero-dimensional if and only if each element in A is a sum of a unit and an idempotent element in $f(R)$.

Proof. " \Rightarrow " Take $a \in A$, if $V(a-1)=\emptyset$, then $(a-1) R=R$ implies that $a-1$ is a unite and $a=(a-1)+1$.

For the following, assume that $V(a-1) \neq \emptyset$. Then $V(a-1)$ and $V(a)$ are disjoint closed sets. Since $\operatorname{Max}(A)$ is compact and zero-dimensional, there is clopen set \mathcal{K} such that $V(a) \subseteq \mathcal{K}$ and $V(a-1) \cap \mathcal{K}=\emptyset$ (Exercise 30). Since $\operatorname{Max}(A)=\operatorname{Max}_{\ell}(A)$, by Corollary $5.2, \mathcal{K}=U(e)$ for some idempotent element $e \in f(A)$.

Define $g=e(a-1)$ and $f=(1-e) a$. Then

$$
(g+f)+e=e a-e+a-e a+e=a
$$

We show that $g+f$ is not contained in any maximal ideal of A, so $g+f$ is a unit of A. Suppose that $g+f \in M$ for some $M \in \operatorname{Max}(A)$. If $e \in M$, then $a \in M$. On the other hand, $M \notin \mathcal{K}=U(e)$, and $V(a) \subseteq U(e)$ implies
$M \notin V(a)$, that is, $a \notin M$, which is a contradiction. If $1-e \in M$, then $f \in M$, and hence $g \in M$. On the other hand, $e \notin M$ implies that $M \in \mathcal{K}$, so $M \notin V(a-1)$. Thus $a-1 \notin M$ and $e \notin M$ imply that $g=e(a-1) \notin M$, which is a contradiction. Therefore $g+f$ is not contained in any maximal ideal of A, so $g+f$ is a unit.
" \Leftarrow " We show that clopen sets consist of a topological space basis for open sets of $\operatorname{Max}(R)$. Let $a \in A$ and $M \in U(a)$. Then A / M is an ℓ-field implies that there is an element $b \in A$ such that $a b+M=1+M$ in A / M. By assumption, $a b=u+e$, where u is a unit of A and $e \in f(A)$ is an idempotent. If $e \notin M$, then $(e+M)^{2}=e+M$ implies that $e+M=1+M$, and hence

$$
1+M=a b+M=(u+e)+M=(u+M)+(1+M)
$$

implies that $u+M=0$, that is, $u \in M$, which is a contradiction. Thus we must have $e \in M$, so $1-e \notin M$, that is, $M \in U(1-e)$. Suppose that $N \in U(1-e)$. Then $e \in N$, so $a b \notin N$ since $u \notin N$. Thus $N \in U(a b)$. Therefore $U(1-e) \subseteq U(a b) \subseteq U(a)$ and $U(1-e)$ is clopen by Corollary 5.2.

For a commutative unital semiprime f-ring A, each maximal ideal of A is an ℓ-ideal if and only if A has bounded inversion property. Thus we have the following consequence of Theorem 5.12.

Corollary 5.4. For a commutative unital semiprime f-ring A with bounded inversion property, $\operatorname{Max}(A)$ is zero-dimensional if and only if A is clean.

Exercises

(1) Prove that $s(a), a \in R^{+}$, form a basis for the open sets of $\operatorname{Max}_{\ell}(R)$.
(2) Prove that the ring $C(X)$ of real-valued continuous functions on X is an f-ring.
(3) Check $R[x ; \delta]$ defined in Example 5.1 is a ring, that is, the multiplication is associative and distributive over the addition.
(4) Let R be a totally ordered integral domain. Prove that if R is ℓ-simple, then for any $0<a \in R$, there exists $b \in R^{+}$such that $1 \leq b a$.
(5) Show that $R[x ; \delta] x$ defined in Example 5.1 is a maximal left ℓ-ideal of $R[x ; \delta]$.
In Exercises 6-11, R is assumed to be a unital ℓ-semisimple f-ring.
(6) Let M be a maximal ℓ-ideal of R and $a \in R$. Define $P=\{w \in$ $\left.R \mid(w-a)^{+} \in M\right\}$. Prove that P is a lattice-prime ideal of R associated with M.
(7) Let M be a maximal ℓ-ideal of R and $x, y, r \in R$. Prove that if $(r-$ $x+1)^{+},(r-y+1)^{+} \in M$, then $(r-x)^{-},(r-y)^{-} \notin M$.
(8) Let φ be a lattice isomorphism between lattices L_{1} and L_{2}. Prove that a subset P of L_{1} is a lattice-prime ideal if and only if $\varphi(P)$ is a lattice-prime ideal of L_{2}.
(9) Two lattice-prime ideals are called equivalent if they are associated with the same maximal ℓ-ideal. Prove the relation is an equivalence relation.
(10) Prove the ψ defined in Theorem 5.4 is well-defined, one-to-one and onto.
(11) Prove that $A(\psi(\mathcal{K})) \subseteq \varphi(A(\mathcal{K}))$ in Theorem 5.4.
(12) Verify that φ in Example $5.2(1)$ is an ℓ-isomorphism between additive ℓ-groups of R and S.
(13) Prove Lemma 5.5.
(14) Prove that in Theorem 5.6, if $y=y_{1}+\cdots+y_{n}$, then $S(y)=S\left(y_{1}\right) \cup$ $\cdots \cup S\left(y_{n}\right)$.
(15) Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring and P be an ℓ-prime ℓ-ideal. Prove that $O_{P}=\{a \in R \mid \ell(a) \nsubseteq P\}$ is an ℓ-ideal and $O_{P} \subseteq P$.
(16) Suppose that R is a commutative ℓ-unital ℓ-reduced ℓ-ring and I is an ℓ-ideal of R. Prove that $m(I)=\{a \in R \mid R=I+\ell(a)\}$ is an ℓ-ideal of R and I is a pure ℓ-ideal if and only if $m(I)=I$.
(17) Suppose that R is a commutative ℓ-unital ℓ-reduced ℓ-ring in which every ℓ-prime ℓ-ideal is maximal. Prove that every ℓ-prime ℓ-ideal of R is a minimal ℓ-prime ℓ-ideal.
(18) Prove that an ℓ-ideal I is ℓ-semiprime if and only if I is the intersection of ℓ-prime ℓ-ideals containing I.
(19) Verify that R defined in Example 5.4 is a commutative ℓ-unital reduced ℓ-subring of $A \times A$, where A is the polynomial ℓ-ring $\mathbb{R}[x]$ with the entrywise order.
(20) Verify that $\ell((x, 0))$ in Example 5.4 is a minimal ℓ-prime ℓ-ideal with $\ell((x, 0))=O_{\ell((x, 0))}$.
(21) Suppose that an ℓ-ring R is a direct sum of commutative ℓ-unital ℓ domains. Prove that R is normal and for each $x \in R^{+}$there exists $y \in R^{+}$such that $x y=0$ and $\ell(x) \cap \ell(y)=\{0\}$.
(22) Let R be a commutative ℓ-unital ℓ-reduced ℓ-ring and I be an ℓ-ideal of R. Prove that \sqrt{I} is the smallest ℓ-semiprime ℓ-ideal containing I.
(23) Let R be a commutative ℓ-unital ℓ-reduced normal ℓ-ring and I be a proper ℓ-ideal of R. Prove that if any two ℓ-prime ℓ-ideals containing I are comparable, then \sqrt{I} is ℓ-prime.
(24) Let $A=\mathbb{R}[x]$ be the totally ordered domain in which a polynomial is positive if the coefficient of its lowest power is positive. Define

$$
R=\{(a, b) \in A \times A \mid a-b \in x A\}
$$

With respect to the coordinatewise operations and order, R is a commutative unital ℓ-reduced f-ring. Prove that R is not normal.
(25) Let R be a commutative ℓ-semisimple ℓ-unital ℓ-ring. Prove that if I is a minimal nonzero ℓ-ideal, then

$$
I=\bigcap\left\{M \in \operatorname{Max}_{\ell}(R) \mid I \subseteq M\right\}
$$

(26) Let R be a unital commutative ℓ-ring with squares positive. Prove that if R has bounded inversion property, then R is an almost f-ring.
(27) Suppose that R is an ℓ-unital Archimedean ℓ-domain in which $f(R)$ is a totally ordered field and $f(R)^{\perp}$ is a subring of R. Prove that each maximal ideal of R is an ℓ-ideal if and only if for any $0 \neq a \in f(R)$ and $b \in f(R)^{\perp}, a+b$ is a unit.
(28) Find a commutative ℓ-unital ℓ-ring with bounded inversion property that contains a maximal ideal which is not an ℓ-ideal.
(29) Let R be an ℓ-ring and $0 \leq e$ be an f-element. Prove that for any $x \in R$, if $|x|=|x| e$, then $x=x e$.
(30) Prove that in Theorem 5.21, $V(a) \subseteq \mathcal{K}$ and $V(a-1) \cap \mathcal{K}=\emptyset$ for some clopen set \mathcal{K}.

List of Symbols

\subseteq, \supseteq set inclusion
\subsetneq, \supsetneq proper set inclusion
$a \vee b$ least upper bound of $\{a, b\}$
$a \vee \geq b$ least upper bound of $\{a, b\}$ with respect to \geq
$a \wedge b$ greatest lower bound of $\{a, b\}$
$a \wedge \geq b$ greatest lower bound of $\{a, b\}$ with respect to \geq
$a \leq b, b \geq a \quad a$ is less than or equal to b
$a<b, b>a \quad a$ is strictly less than b
$U_{A}(B)$ set of upper bounds of B in A
$L_{A}(B)$ set of lower bounds of B in A
P_{A} power set of a set A
\emptyset empty set
G^{+}positive cone
$-G^{+}$negative cone
\in belongs to
\cup set union
\cap set intersection
\mathbb{Z} ring of integers
\mathbb{Z}^{+}set of positive integers
\mathbb{Q} field of rational numbers
\mathbb{R} totally ordered field of real numbers
\mathbb{C} field of complex numbers
$\mathbb{R} \times \mathbb{R}$ direct product of two \mathbb{R}
g^{+}positive part of g
g^{-}negative part of g
$|g| \quad$ absolute value of g
$C_{G}(X)$ convex ℓ-subgroup generated by X in G
X^{\perp} polar of X
$X^{\perp \perp}$ double polar of X
$\mathcal{C}(G)$ lattice of all convex ℓ-subgroups of G
$\oplus_{i \in I} C_{i}$ direct sum of convex ℓ-subgroups C_{i}
$\oplus_{i \in I} V_{i}$ direct sum of convex vector sublattices V_{i}
$\oplus_{i \in I} R_{i}$ direct sum of ℓ-rings R_{i}
G / N quotient ℓ-group
$G \cong H \quad \ell$-isomorphic ℓ-groups
$\varphi: G \rightarrow G / N$ projection
$i=\sqrt{-1}$ imaginary unit
$\operatorname{Ker}(\varphi)$ kernel of φ
$R \cong S \quad \ell$-isomorphic ℓ-rings R and S
$M_{n}(R) \quad n \times n$ matrix ring over an ℓ-ring R
$T_{n}(R) \quad n \times n$ upper triangular matrix ring over an ℓ-ring R
$e_{i j}$ standard matrix units
$F[G]$ group (semigroup) ℓ-algebra
$F[x]$ polynomial ring
$d(R)$ set of positive d-elements of R
$\bar{d}(R)$ set of d-elements of R
$f(R)$ set of all elements whose absolute value is an f-element of R
$\bar{f}(R)$ set of all f-elements of R
π_{k} canonical epimorphism
$\langle X\rangle \quad \ell$-ideal generated by X
$\langle a\rangle \ell$-ideal generated by a
$I_{1}+\cdots+I_{n}$ sum of ℓ-ideals
ℓ - $N(R) \quad \ell$-radical of an ℓ-ring R
$\ell-P(R) \quad p$-radical of an ℓ-ring R
$i(A) \quad i$-ideal of an ℓ-algebra A
$F[[x]] \quad$ ring of formal power series
$F((x))$ formal Laurent series field
$G \times G$ Cartesian product
$F \backslash\{0\}$ the set of nonzero elements in F
$F^{t}[G]$ twisted group ℓ-algebra
$|S|$ cardinality of a set S
$\operatorname{Orth}(R)$ orthomorphism of R
$u(R)$ band generated by units in an ℓ-ring R
$a b(R)$ set of almost bounded elements in an ℓ-ring R
$\vee x_{i} \quad$ sup of x_{i}
$r(a)$ right ℓ-annihilator of a
$\ell(a)$ left ℓ-annihilator of a
$f^{\prime}(x)$ derivative of $f(x)$
$A \backslash B$ different of sets A and B
R / I quotient ℓ-ring of R to an ℓ-ideal I
I_{0} set of element r in an f-ring such that $\mathbb{Z} r$ is bounded
D_{a} inner derivation induced by a
(G, P) partially ordered group G with positive cone P
(R, P) partially ordered ring R with positive cone
$[u, v]$ commutator $u v-v u$
$\delta_{j k}$ Kronecker delta
$R_{R} \quad \ell$-ring R as right ℓ-module over R
$\operatorname{End}_{R}(a R, a R) \quad$ ring of endmorphisms of right R-module $a R$
ℓ_{x} mapping by left multiplication of x
$S(a, f)$ semigroup generated by a and f
$i(x)$ set $\{a \in R \mid a x=x a=a\}$ in an ℓ-ring R
$\operatorname{dim}_{F} V$ dimension of vector space V over F
$\left(i_{1} i_{2} \cdots i_{n}\right) \quad n$-cycle
$U_{f}(R)$ set of upper bounds of $f(R)$ in R
$F[x ; \sigma]$ skew polynomial ring
$\operatorname{tr} f$ trace of a matrix f
$\operatorname{det}(a)$ determinant of a
$\operatorname{gcd}(a, b)$ greatest common divisor of a and b
$F^{n} \quad n$-dimensional column space over F
cone $_{F}(K)$ the cone generated by a subset K over F
$|v|$ the length of vector v in \mathbb{R}^{n}
$G \underset{\rightarrow}{\oplus} H \quad$ lexicographic order of two totally ordered groups
$\operatorname{Max}_{\ell}(R)$ space of maximal ℓ-ideals of an ℓ-ring R
$\operatorname{Min}_{\ell}(R)$ space of minimal ℓ-prime ℓ-ideals of an ℓ-ring R
$\operatorname{Max}(R) \quad$ space of maximal ideals of R
$s(X)$ set of maximal ℓ-ideals not containing $X \subseteq R$
$S(X)$ set of minimal ℓ-prime ℓ-ideals not containing $X \subseteq R$
$h(X)$ set of maximal ℓ-ideals containing $X \subseteq R$
$H(X)$ set of minimal ℓ-prime ℓ-ideals containing $X \subseteq R$
$C(X)$ ring of real-valued continuous functions on X
\forall for all, for any
\exists there exists
$A(\mathcal{K})$ intersection of lattice-prime ideals that contain a fixed point and are associated with some maximal ℓ-ideal in \mathcal{K}
\sqrt{I} intersection of all ℓ-prime ℓ-ideals containing ℓ-ideal I
$a \mid b \quad a$ divides b
$(I: R)$ largest ℓ-ideal contained a left ℓ-ideal I of R
$U(X)$ set of maximal ideals not containing $X \subseteq R$
$V(X)$ set of maximal ideals containing $X \subseteq R$
$O_{P} \quad$ set $\{a \in R \mid \ell(a) \nsubseteq P\}$
$m(I)$ set $\{a \in R \mid R=I+\ell(a)\}$
\Rightarrow implication

Bibliography

Agnarsson, G., Amitsur, S. A., and Robson, J. C. (1996). Recognition of matrix rings II, Isreal J. Math., 96, pp. 1-13.
Anderson, F. W. (1962). On f-rings with the ascending chain condition, Proc. Amer. Math. Soc., 13, pp. 715-721.
Anderson, F. W. (1965). Lattice-ordered rings of quotients, Canad. J. Math., 17, pp. 434-448.
Bernau, S. J. and Huijsmans, C. B. (1990). Almost f-algebras and d-algebras, Math. Proc. Camb. Phil. Soc., 107, pp. 287-308.
Bigard, A. and Keimel, K. (1969). Sur les endomorphismes conservant les polaires d'un groupe reticule archimedean, Bull. Soc. Math. France, 97, pp. 381398.

Birkhoff, G. and Pierce, R. S. (1956) Lattice-ordered rings, An. Acad. Brasil. Cienc., 28, pp. 41-69.
Coelho, S. and Milies, C. (1993) Derivations of upper triangular matrix rings, Linear Algebra Appl., 187, pp. 263-267
Colville, P., (1975). Characterizing f-rings, Glasgow Math. J., 16, pp. 88-90.
Colville, P., Davis, G. and Keimel, K. (1977). Positive derivations on f-rings, J. Austral. Math. Soc., 23, pp. 371-375.
Conrad, P. (1961). Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99, pp. 212-240.
Dai, T. Y. and Demarr, R. (1978). Positive derivations on partially ordered linear algebra with an order unit, Proc. Amer. Math. Soc., 72, pp. 21-26.
Dauns, J. (1989). Lattice-ordered division rings exist, Ordered Algebraic Structures, Kluwer Acad. Publ., 229-234.
Diem, J. E. (1968). A radical for lattice-ordered rings, Pacific J. Math., 25, 71-82.
Eowen, L. (1988). Ring theory, Vol. 1, Academic Press.
Fuchs, L. (1963). Partially ordered algebraic systems, Pergamon Press.
Fuchs, R. (1991). A characterization result for matrix rings, Bull. Austral. Math. Soc., 43, 265-267.
Hansen, D. J. (1984). Positive derivations on partially ordered strongly regular rings, J. Austral. Math. Soc., 37, pp. 178-180.
Hayes, A. (1964). A characterization of f-rings without non-zero nilpotent, Jour-
nal London Math. Soc., 39, pp. 706-707.
Henriksen, M. (1977). Semiprime ideals of f-rings, Symposia Mathematica, 21, pp. 401-409.
Henriksen, M. (1995). A survey of f-rings and some of their generalizations, Ordered algebraic structures (Curaçao, 1995), 1-26, Kluwer Acad. Publ., Dordrecht, 1997.
Henriksen, M. (2002). Old and new unsolved problems in lattice-ordered rings that need not be f-rings, Ordered algebraic structures, 183-815, Kluwer Acad. Publ., Dordrecht, 2002.
Henriksen, M. and Isrell, J (1962). Lattice-ordered rings and function rings, Pacific J. Math., 12, pp. 533-565.
Henriksen, M., Isrell, J and Johnson, D., (1961). Residue class fields of latticeordered algebras, Fund. Math., 50, pp. 107-117.
Henriksen, M. and Jerison, M (1965). The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc., 115, pp. 110-130.
Henriksen, M. and Smith, F. A. (1982). Some properties of positive derivations on f-rings, Contemporary Math., 8, pp. 175-184.
Herstein, I. N. (1978). A note on derivations, Canad. Math. Bull., 21, pp. 369370.

Herstein, I. N. (1979). A note on derivations II, Canad. Math. Bull., 22, pp. 509-511.
Hungerford, T. W. (1974). Algebra, Springer.
Jacobson, N. (1980). Basic Algebra II, Freeman, San Francisco.
Johnson, D. G. (1960). A structure theory for a class of lattice-ordered rings, Acta Math., 104, pp. 533-565.
Kaplansky, I. (1947). Lattices of continuous functions, Bull. Amer. Math. Soc., 53, pp. 617-623.
Kaplansky, I. (1958). Projective modules, Math. Ann., 68, pp. 372-377.
Keimel, K. (1973). Radicals in lattice-ordered rings, Rings, modules and radicals (Proc. Colloq., Keszthely, 1971), 237-253. Colloq. Math. Janos Bolyai, Vol. 6, North-Holland, Amsterdam.
Kreinovich, V. and Wojciechowski, P. (1997). On lattice extensions of partial orders of rings, Communications in Algebra, 25, pp. 935-941.
Lam, T. Y. (1999) Modules with isomorphic multiples, and rings with isomorphic matrix rings, a survey, L'Enseignement Mathematique, No. 35.
Lam, T. Y. (1999) Lectures on modules and rings, Graduate Texas in Mathematics, No. 189, Springer.
Lam, T. Y. (2001). A first course in noncommutative rings, Graduate Texas in Mathematics, No. 131, Second Edition, Springer.
Lam, T. Y. and Leroy, A. (1996). Recognition and computations of matrix rings, Isbel J. of Math., 96, pp. 379-397.
Larson, S. (1988). Pseudoprime ℓ-ideals in a class of f-rings, Proc. Amer. Math. Soc., 104, pp. 685-692.
Larson, S. (1997). Quasi-normal f-rings, Ordered Algebraic Structures, pp. 261275, Kluwer Academic Publishers.
Li, F., Bai, X. and Qiu, D. (2013). Lattice-ordered matrix algebras over real
gcd-domains, Comm. Algebra, 41, pp. 2109-2113.
Ma, J. (2011). Finite-dimensional ℓ-simple ℓ-algebras with a d-basis, Algebra Univers., 65, pp. 341-351.
Ma, J. (2013). Recognition of lattice-ordered matrix rings, Order, 30, pp. 617623.

Ma, J., Wojciechowski, P. (2002). A proof of Weinberg's conjecture on latticeordered matrix algebras, Proc. Amer. Math. Soc., 130, pp. 2845-2851.
Ma, J., Wojciechowski, P. (2002). Structure spaces of maximal l-ideals of latticeordered rings, Ord. Alg. Struct. (Gainesville, 2001), J. Martinez (Ed), Kluwer Acad. Publ., (2002), 261-274.
Ma, J., Zhang, Y. (2013). Lattice-ordered matrix algebras over totally ordered integral domains, Order (9 March 2013 online first).
Mason, G. (1973). z-ideals and prime ideals, J. Algebra, 26, pp. 280-297.
McGovern, W. (2003). Clean semiprime f-rings with bounded inversion, Comm. Algebra, 31, pp. 3295-3304.
McHaffey, R. (1962). A proof that the quaternions do not form a lattice-ordered algebra, Proc. of Iraqi Scientific Societies, 5, pp. 70-71.
Pajoohesh, H. (2007). Positive derivations on lattice ordered rings of matrices, Quaestiones Mathematicae, 30, pp. 275-284.
Passman, D. S. (2011). The algebraic structure of group rings, Dover.
Robson, J. C. (1991). Recognition of matrix rings, Communications in Algebra, 19, pp. 2113-2124.
Redfield, R. (1989). Constructing lattice-ordered power series fields and division rings, Bull. Austral. Math. Soc., 40, 365-369.
Schwartz, N. (1986). Lattice-ordered fields, Order, 3, pp. 179-194.
Schwartz, N. and Yang, Y. (2011). Field with directed partial orders, J. Algebra, 336, pp. 342-348.
Semrl, P. (2006). Maps on matrix spaces, Linear Algebra Appl., 413, pp. 364-393.
Steinberg, A. S. (1970). Lattice-ordered rings and modules, Ph.D. Thesis, University of Illinois at Urbana-Champaign.
Steinberg, A. S. (1983). Unital ℓ-prime lattice-ordered rings with polynomial constraints, Trans. Amer. Math. Soc. 276, pp. 145-164.
Steinberg, A. S. (2010). Lattice-ordered rings and modules, Springer.
Subramanian, H. (1967). ℓ-prime ideals in f-rings, Bull. Soc. Math. France, 95, pp. 193-203.
Subramanian, H. (1968). Kaplansky's Theorem for f-rings, Math. Ann., 179, pp. 70-73.
Weinberg, E. C. (1966). On the scarcity of lattice-ordered matrix rings, Pacific J. Math., 19, pp. 561-571.

Woodward, S. (1993). A characterization of local-global f-rings, Ordered Algebraic Structures (Gainesville, FL, 1991); Kluwer Acad. Publ. ; Dordrecht; pp. 235-249.

This page intentionally left blank

Index

absolute value, 8
algebraic over $f(R), 146$
almost f-ring, 31
almost bounded, 98
anti-isomorphism, 180
antilexicographic order, 24
Archimedean, 5
Archimedean ℓ-algebra, 21
Archimedean ℓ-ring, 21
Archimedean over $F, 18$
associated, 216
band, 97
basic element, 15
basis, 16, 208
bounded, 99
bounded inversion property, 99, 232
bounded subset, 1
cancellation law, 51
canonical ℓ-epimorphism, 28
Cayley-Hamilton equation, 165
centralizer, 107
chain, 1
classical left quotient ring, classical
right quotient ring, 123, 141
clean, 233
closed, 208
closure, 174
commutator, 100
compact, 174
comparable elements, 1
complete lattice, 2, 11
composition of positive derivations, 96
cone, 161
convex, 9
convex ℓ-subgroup generated by a set, 9
convex vector sublattice, 14
cover, 174
d-basis, 50
d-element, 25
d-ring, 25
dense, 131
derivation, 77
determinant, 154
differential polynomial rings, 212
dimension, 160
direct product of ℓ-rings, 21
direct sum of ℓ-groups, 11
direct sum of ℓ-rings, 21
direct sum of right ℓ-ideals, 105
direct sum of vector lattices, 19
direct summand, 225
directed, 5
disjoint elements, 8
distributive lattice, 2, 11
division-closed, 149
domain, 34
dominated, 216
double polar, 9
edges, 162
entrywise order, 23
equivalent, 215
extension of a partial order, 1
f-element, 14, 25
f-module, 14
f-ring, 25
f-superunit, 126
finite cover, 174
finite order, 117
formal Laurent series field, 52
free R-module, 160
Frobenius's Theorem, 176
greatest common divisor domain, 158
Hausdorff space, 213
homeomorphic, 208, 209
hull-kernel topology, 207
i-ideal, 41
induced derivation, 93
inf, 2
inner automorphism, 181
inner derivation, 78
invariant cones, 161
isomorphic ℓ-rings, 21
kernel, 21
Kronecker delta, 106
ℓ-algebra, 21
ℓ-annihilator ℓ-ideal, 133
ℓ-domain, 34
ℓ-field, 20
ℓ-group, 3
ℓ-homomorphism of ℓ-groups, 13
ℓ-homomorphism of ℓ-rings, 21
८-ideal, 21
ℓ-ideal generated by a subset, 21
ℓ-isomorphic ℓ-groups, 13
ℓ-isomorphic right ℓ-ideals, 105
ℓ-isomorphism of ℓ-groups, 13
ℓ-isomorphism of ℓ-rings, 21
ℓ-module, 14
ℓ-module over $R, 69$
ℓ-prime ℓ-ideal, 34
ℓ-prime ℓ-ring, 34
ℓ-pseudoprime, 225
ℓ-reduced, 37
ℓ-ring, 20
ℓ-ring extension, 143
ℓ-semiprime, 47, 225
ℓ-semisimple, 213
ℓ-simple, 21
ℓ-unital, 20
lattice, 2
lattice order, 2
lattice-ordered algebra, 20
lattice-ordered division ring, 20
lattice-ordered field, 20
lattice-ordered ring, 20
lattice-prime ideal, 213
lattice-prime ideal associated with a maximal ℓ-ideal, 213
least element, greatest element, 2
left annihilator, 88
left Ore domain, right Ore domain, 123, 141
left d-element, 25
left d-ring, 204
left ℓ-ideal, 21
lexicographic order, 24,185
linearly independent, 160
local domain, 160
m-system, 35
matrix units, 105
minimal ℓ-prime ℓ-ideal, 39
minimal element, maximal element, 2
minimal left ℓ-ideal, 56
minimal polar, 15
modal ideal, 126
mode, 126
module basis, 160
multiplicative basis, 23
multiplicative basis over $F^{+}, 23$
multiplicative closed, 35
n-cycle, 121
n-fier, 126
negative part, 8
nilpotent ℓ-ideal, 33
nilpotent of index, 33
nontrivial P-invariant cone, 161
normal, 226
o-field, 20
o-group, 3
o-ring, 20
open cover, 174
order, 117
order extension, 153
P-invariant cone, 161
p-radical, 37
partial order, 1
partially ordered group, 3
partially ordered ring, 20
partially ordered set, 1
polar, 9
polynomial constraints, 135
positive cone, 3
positive derivation, 77
positive element, 3
positive linear combination, 22
positive orthomorphism, 83
positive part, 8
positive twisting function, 58
prime, 232
principle ℓ-ideal, 225
projection, 13
projective, 160
proper ℓ-ideal, 34
pseudoprime, 232
pure ℓ-ideal, 222
quasi d-ring, 74
quotient ℓ-group, 13
rank, 160
real closed, 66
reduced, 37
regular, 202
regular division-closed, 202
Rieze space, 14
right annihilator, 88
right d-element, 25
right ℓ-ideal, 21
ring of formal power series, 51
semiprime, 232
simple, 159
skew polynomial ring, 146
squares positive, 25
standard matrix units, 23, 106
strictly positive element, 3
strong regular ring, 84
strong unit, 41
subcover, 174
subdirect product of ℓ-rings, 27
subdirectly irreducible, 28
sublattice, 2
summand, 73
sup, 2
topological space, 208
total order, 1
totally ordered division ring, 20
totally ordered field, 14, 20
totally ordered ring, 20
totally ordered set, 1
trivial derivation, 77
twisted group ℓ-algebra of G over F, 59
unique factorization domain,
principle idea domain, 170
unit, 22, 232
unital, 20
upper bound, lower bound, 1
upper triangular matrix, 51
van Neumann regular ring, 84
vector lattice, 14
weak unit, 139
zero-dimensional, 233
Zorn's lemma, 3

