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Preface

Why another book on probability?

This book has two titles. The subtitle, ‘Fundamentals for the Empirical Sciences’, reflects the
intentions and the motivation of the first author for writing this book. He received his academic
training in psychology but considers himself a methodologist. His scientific interest is in expli-
cating fundamental concepts of empirical research (such as causal effects and latent variables)
in terms of a language that is precise and at the same time compatible with the statistical mod-
els used in the analysis of empirical data. Applying statistical models aims at estimating and
testing hypotheses about parameters such as expectations, variances, covariances, and so on
(or of functions of these parameters, such as differences between expectations, ratios of vari-
ances, regression coefficients, etc.), all of which are terms of probability theory. Precision is
necessary for securing logical consistency of theories, whereas compatibility of theories about
real-world phenomena with statistical models is crucial for probing the empirical validity of
theoretical propositions via statistical inference.

Much empirical research uses some kind of regression in order to investigate how the
expectation of one random variable depends on the values of one or more other random vari-
ables. This is true for analysis of variance, regression analysis, applications of the general linear
model and the generalized linear model, factor analysis, structural equation modeling, hierar-
chical linear modeling, and the analysis of qualitative data. Using these methods, we aim at
learning about specific regressions. A regression is a synonym for what, in probability theory,
is called a factorization of a conditional expectation, provided that the regressor is numerical.
This explains the main title of this book, ‘Probability and Conditional Expectation’.

What is it about?

Since the seminal book of Kolmogoroff (1933–1977), the fundamental concepts of probabil-
ity theory are considered to be special concepts of measure theory. A probability measure is
a special finite measure, random variables are special measurable mappings, and expectations
of random variables are integrals of measurable mappings with respect to a probability mea-
sure. This motivates Part I of this book with three chapters on the measure-theoretical founda-
tions of probability theory. Although at first sight this part seems to be far off from practical
applications, the contrary is true. This part is indispensable for probability theory and for its
applications in empirical sciences. This applies not only to the concepts of a measure and an
integral but also, in particular, to the concept of a measurable mapping, although we concede
that the full relevance of this concept will become apparent only in the chapters on conditional
expectations. The relevance of measurable mappings is also the reason why chapter 2 is more
detailed than the corresponding chapters in other books on measure theory.

Part II of the book is fairly conventional. The material covered – probability, random vari-
able, expectation, variance, covariance, and some distributions – is found in many books on
probability and statistics.
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Part III is not only the longest; it is also the core of the book that distinguishes it from other
books on probability or on probability and statistics. Only a few of these other books contain
detailed chapters on conditional expectations. Exceptions are Billingsley (1995), Fristedt
and Gray (1997), and Hoffmann-Jørgensen (1994). Our book does not cover any statistical
model. However, we treat in much detail what we are estimating and which the hypotheses
are that we test or evaluate in statistical modeling. How we are estimating is important, but
what we are estimating is of most interest from the empirical scientist point of view, and this
point is typically neglected in books on statistics and in books on probability theory such as
Bauer (1996) or Klenke (2013). A simple example is the meaning of the coefficient β1 in the
equation E(Y | X, Z) = β0 + β1X + β2Z + β3ZX. Oftentimes, this coefficient is misinterpreted
as the ‘main effect’ of X. However, sometimes β1 has no autonomous meaning at all, for
example if P(Z = 0) = 0. In general, this coefficient is just a component of the function
g1(Z) = β1 + β3Z that can be used to compute the conditional effects of X on Y for various
values z of Z (see chapter 15 for more details). The crucial point is that such concepts can be
treated most clearly within probability theory, without referring to a statistical model, sample,
estimation, or testing.

This also includes exemplifying the limitations of conditional expectations. Simple exam-
ples show that conditional expectations do not necessarily serve the purpose of the empirical
researcher, which often is to evaluate the effects of an intervention on an outcome variable.
But even in these situations, conditional expectations are indispensable for the definition of
parameters and other terms of substantive interest (see, e.g., chapter 14).

There is much overlap of Parts II and III with Steyer (2003). However, that book is written
in German, and the mathematics is considerably less rigorous. Aside from mathematical pre-
cision, the two books also differ in the definition of an important concept: In Steyer (2003),
the term regression is used as a synonym of a conditional expectation, whereas in this book
we use it as a synonym for the factorization of a conditional expectation E(Y | X), provided
that the codomain of X is R

n.
In chapter 9, the first chapter of Part III, we gently introduce conditional expectation values

and discrete conditional expectations. In chapter 10, we then present the general theory of
conditional expectations that has been introduced by Kolmogoroff (1933–1977) and since that
time has been treated in many books on probability theory – although much too briefly in order
to be intelligible to researchers in empirical sciences. Our chapter on conditional expectations
contains many more details and is supplemented by a number of other chapters on important
special aspects and special cases.

Such a special aspect is the concept of a residual with respect to a conditional expectation
(see chapter 11). Residuals have many interesting properties, and they are used in order to
introduce the concepts of conditional variance and covariance, as well as the notion of a partial
correlation. We then turn to specific parameterizations of a conditional expectation, including
the concepts of a linear regression (chapter 12) and a linear logistic regression (chapter 13).
Note that these concepts are introduced as probabilistic concepts. As mentioned, they are what
we aim at estimating in applying the corresponding statistical models.

Chapters 14 to 16 provide the probabilistic foundations of the analysis of conditional and
average effects of treatments, interventions, or expositions to potentially harmful or benefi-
cial environments. To our knowledge, this material is not found in any other textbook. Note,
however, that although these two chapters provide important concepts, they do not cover the
theory of causal effects, which is another book project of the first author.

Part IV uses conditional expectations in order to introduce conditional independence (chap-
ter 16) and conditional distributions (chapter 17). Although these two chapters are more
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extensive than comparable chapters or sections in other books, the material is found in other
books on probability theory as well.

For whom is it?

This book has been written for two kinds of readers. The first are applied statisticians and
empirical researchers who want to understand in a proper language (i.e., in terms of probabil-
ity theory) what they estimate and test in their empirical studies. The second kind of readers
are mathematicians who want to understand in terms of probability theory what applied statis-
ticians and empirical researchers estimate and test in their research. Both kinds of readers are
potential contributors to the methodology of empirical sciences.

Many exercises and their solutions provide extensive material for assignments in courses,
but they also facilitate independent learning. At the same time, these exercises and their solu-
tions help streamline the main text.

Note that we do not provide all proofs, in particular in the chapters on measure, integral, and
distributions. In these cases, we refer to other textbooks instead. We decided to include only
those proofs that may help to increase understanding of the background and to learn important
mathematical procedures. Of course, we provide proofs of all propositions for which we did
not find an appropriate reference.

Prerequisites

We assume that the reader is familiar with the elementary concepts of logic, sets, functions,
sequences, and matrices, as presented for example in chapters 1 and 2 of Rosen (2012). We
try to stick to his notation as closely as possible.

One of the exceptions is the symbol for the implication, for which we use ⇒ instead of →.
Another exception is the symbol for the equivalence, for which we use ⇔ instead of ↔.

Box 0.1 summarizes the most important notation to start with. The concepts referred to by
these symbols are defined, for example, in Rosen (2012) or in Ellis and Gulick (2006). For a
rich collection of mathematical formulas, we recommend the handbooks of Harris and Stocker
(1998) and Bronshtein et al. (2015).



Box 0.1 A first list of symbols.

¬ not

∧ and

∨ or

⇒ implies

⇔ equivalent to

∃ there is (there exists)

∀ for all

a ∈ A a is an element of the set A

Ø empty set

I nonempty finite, countable, or uncountable index set

(Ai, i ∈ I) family of sets Ai, i ∈ I

A ∪ B union of the sets A and B
⋃

i∈ I Ai union of the sets Ai, i ∈ I

A ∩ B intersection of the sets A and B
⋂

i∈ I Ai intersection of the sets Ai, i ∈ I

A ∖ B set difference of the set A and the set B

Ac := Ω ∖ A complement of a set A ⊂ Ω with respect to a set Ω
A ⊂ B A is a subset of the set B; A ⊂ B includes A = B

A × B Cartesian product (product set) of A and B

×n
i=1 Ai family of sets Ai, i = 1, … , n

f: A → B mapping f assigning to each a ∈ A (the domain) one and only one
element b ∈ B (the codomain)

∑n
i=1 ai sum of the real numbers a1, … , an∏n
i=1 ai product of the real numbers a1, … , an

lim
n→∞

an limit of a sequence a1, a2, … of real numbers
∑∞

i=1 ai lim
n→∞

∑n
i=1 ai where a1, a2, … as well as

∑1
i=1 ai,

∑2
i=1 ai, … are

sequences of real numbers
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Part I

MEASURE-THEORETICAL
FOUNDATIONS OF
PROBABILITY THEORY



1

Measure

In this chapter, we introduce the concept of a measure and other closely related notions. We
start with some examples and then introduce the concept of a σ-algebra, which is crucial in
measure theory and probability theory. At first glance this concept seems to be a pure technical
construction, which is usually not dealt with in textbooks on ‘Probability and Statistics’ for
empirical sciences. However, a σ-algebra turned out to be the natural domain for a measure,
including probability measures. Moreover, in probability theory, a σ-algebra is not only the
domain of probability measures. The σ-algebra generated by a random variable can be inter-
preted as the set of events that is represented by this random variable. This is treated in more
detail in chapter 2 on measurable mappings, which provides the general theory of random
variables because random variables are measurable mappings. The virtues of σ-algebras will
become fully apparent in chapter 10 on conditional expectations and its subsequent chapters.
The pair (Ω, 𝒜 ) consisting of a nonempty set Ω and a σ-algebra 𝒜on Ω is called a measurable
space. Such a measurable space is crucial for the definition of a measure. Next, we treat some
important examples of measures, including the counting measure, the Dirac measure, and the
Lebesgue measure. Finally, we turn to continuity and uniqueness properties of a measure.

1.1 Introductory examples

Consider Figure 1.1 showing the set Ω of all points (x, y) inside the rectangle and the sets A
and B of all points (x, y) inside the two ellipses, respectively. These three sets are subsets of the
plane R

2 := R × R, where R denotes the set of all real numbers, and R × R := {(a, b): a, b ∈
R} is the set of all ordered pairs (a, b) with a, b ∈ R, called the Cartesian product or product set
of R with itself. In Figure 1.1, the sets A and B have a nonempty intersection. Now let area (A)
and area (B) denote their areas and area (A ∩ B) the area of their intersection. Inspecting this
figure reveals:

area (A ∪ B) = area (A) + area (B) − area (A ∩ B).

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de

http://www.probability-and-conditional-expectation.de


4 PROBABILITY AND CONDITIONAL EXPECTATION

Ω

A BA ∩ B

Figure 1.1 A Venn diagram of two sets and their intersection.

This example illustrates three important points:

(a) A measure such as area is a function on a set system on Ω, (i.e., on a set of subsets of
a set Ω such as A, B, and A ∩ B).

(b) If area is defined for the subsets A, B ⊂ Ω, then it is also defined for their intersection
A ∩ B and for their union A ∪ B.

(c) Measures are additive. In other words, if A and B are disjoint subsets of Ω (i.e., if
A ∩ B = Ø), then area (A ∪ B) = area (A) + area (B).

Note that, in the example presented in Figure 1.1, the sets A and B are not disjoint, and this is
why area (A ∩ B) has to be subtracted in the equation displayed above. Points (a) to (c) also
apply to other measures such as length and volume as well as to probability measures. There-
fore, we adopt a more general language and talk about subsets A, B of a set Ω (or measurable
sets A, B) and their measure 𝜇 instead of lines and their lengths, rectangles and their areas,
cubes and their volume, or events and their probabilities.

For example, if Ω = {1, … , 6} denotes the set of possible outcomes of tossing a fair dice,
A = {1, 6} and B = {2, 4, 6} denote the events of tossing a 1 or a 6 and tossing an even number,
respectively. Furthermore, A ∩ B = {6} and the probability of tossing a 1 or a 6 or an even
number – the event A ∪ B – is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 2
6
+ 3

6
− 1

6
= 4

6
.

In the first example, the measure area assigns a real number to a subset of R
2. In the second

example, the measure P assigns a real number to a subset of Ω = {1, … , 6}. This suggests that
a measure should be defined such that it assigns a real number to all subsets of a set (i.e., to all
elements of the power set). Unfortunately, this may lead to contradictions (see, e.g., Georgii,
2008). In contrast, when defining a measure on a σ-algebra, such contradictions can be avoided.

1.2 𝛔-Algebra and measurable space

In Definition 1.1, we consider a set system 𝒜on Ω, a sequence A1, A2, … of subsets of Ω, and
their countable union. Remember, a set system on a setΩ is a set of subsets ofΩ presuming that
Ω is not empty. A sequence of subsets of a set Ω is a function from the set N0 = {0, 1, 2, …}
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or N = {1, 2, …} or a subset of these sets to 𝒫(Ω), the power set of Ω. Furthermore, the finite
union of the sets A1, … , An and the countable union of the sets A1, A2, … are defined by

n⋃

i=1
Ai := {a ∈ Ω: ∃ i ∈ {1, … , n}: a ∈ Ai} (1.1)

and

∞⋃

i=1
Ai := {a ∈ Ω: ∃ i ∈ N: a ∈ Ai}, (1.2)

respectively. Hence, by definition,
⋃n

i=1 Ai is the set of all elements that are an element of at
least one of the sets Ai, i = 1, … , n, and

⋃ ∞
i=1 Ai is the set of all elements that are an element

of at least one of the sets Ai, i ∈ N. Finally, Ac := Ω ∖ A denotes the complement of A (with
respect to Ω).

Definition 1.1 [σ-Algebra]
A set 𝒜 of subsets of a nonempty set Ω is called a σ-algebra (or σ-field) on Ω, if the
following three conditions hold:

(a) Ω ∈ 𝒜.

(b) If A ∈ 𝒜, then Ac ∈ 𝒜.

(c) If A1, A2, … ∈ 𝒜, then
⋃ ∞

i=1 Ai ∈ 𝒜.

An element of a σ-algebra is called a measurable set.

Remark 1.2 [Closure with respect to set operations] Condition (c) postulates that σ-
algebras are closed with respect to countable unions of sets A1, A2, … ∈ 𝒜. However, in con-
junction with (a) and (b), this implies that a σ-algebra is also closed with respect to finite unions
of sets A1, … , An ∈ 𝒜, because every finite union of sets A1, … , An ∈ 𝒜 can be represented
as a countable union of the sets that are elements of 𝒜, for example:

n⋃

i=1
Ai = A1 ∪… ∪ An ∪ Ø ∪ Ø ∪… . (1.3)

Note that (a) and (b) imply Ø ∈ 𝒜, because Ωc = Ø.
Furthermore, although condition (c) only requires explicitly that σ-algebras are closed with

respect to countable unions, Definition 1.1 implies that a σ-algebra is closed also with respect
to intersections such as A1 ∩ A2 and set differences A1 ∖ A2. In other words, if A1 and A2 are
elements of 𝒜, then A1 ∪ A2, A1 ∩ A2, and A1 ∖ A2 are elements of 𝒜 as well, provided that 𝒜
is a σ-algebra. The same is true for countable intersections A1 ∩ A2 ∩… of elements of 𝒜. In
more formal terms: If 𝒜 is a σ-algebra, then,

A1, A2, … ∈ 𝒜 ⇒
∞⋂

i=1
Ai ∈ 𝒜 (1.4)
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(see Exercise 1.1), where
⋂ ∞

i=1 Ai = A1 ∩ A2 ∩… is defined by

∞⋂

i=1
Ai := {a ∈ Ω: ∀ i ∈ N: a ∈ Ai}. (1.5)

Because

n⋂

i=1
Ai = A1 ∩… ∩ An ∩ Ω ∩ Ω ∩… , (1.6)

we can also conclude

A1, … , An ∈ 𝒜 ⇒
n⋂

i=1
Ai ∈ 𝒜, (1.7)

where
⋂ n

i=1 Ai, the finite intersection of the sets A1, … , An, is defined by

n⋂

i=1
Ai := {a ∈ Ω: ∀ i ∈ {1, … , n}: a ∈ Ai}. (1.8)

⊲

Remark 1.3 [Countable and uncountable unions] Defining a σ-algebra, we use the sym-
bol σ in order to emphasize that unions of finitely or countably many sets are considered, but
not other unions of sets. For example, the closed interval [a, b] := {x ∈ R: a ≤ x ≤ b, a, b ∈
R} on the real axis is identical to the union of singletons {x} that contain only one single
element x ∈ R, that is,

[a, b] =
⋃

a≤x≤b
{x}. (1.9)

This union is neither finite nor countable. Hence, condition (c) of Definition 1.1 does not imply
that this union is necessarily an element of a σ-algebra𝒜on R, even if all singletons {x}, x ∈ R,
are elements of 𝒜. ⊲

The following notion of a measurable space proves to be convenient in measure theory.

Definition 1.4 [Measurable space]
If Ω is a nonempty set and 𝒜a σ-algebra on Ω, then the pair (Ω, 𝒜 ) is called a measur-
able space.

Example 1.5 [The smallest σ-algebra] The smallest σ-algebra on a nonempty set Ω is 𝒜=
{Ω, Ø}. It contains only the elements Ω and the empty set Ø. As is easily seen, Ω ∪ Ø = Ω,
Ωc = Ø, and Øc = Ω are elements of 𝒜. This shows that 𝒜= {Ω, Ø} is closed with respect to
union and complement. ⊲
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Example 1.6 [Power set] The power set 𝒫(Ω) of a nonempty setΩ (i.e., the set of all subsets
of Ω) is a σ-algebra on Ω. It is the largest σ-algebra on a nonempty set Ω. All other σ-algebras
on Ω are subsets of 𝒫(Ω). ⊲

Example 1.7 [A small σ-algebra] If A is a subset of a nonempty set Ω, then 𝒜=
{Ω, Ø, A, Ac} is always a σ-algebra on Ω (see Exercise 1.2). Again, it is easily seen that this
set system is closed with respect to union and complement. ⊲

Remark 1.8 [Motivation for σ-algebras] These examples show that there can be many dif-
ferent σ-algebras on a nonempty set Ω. Why not simply always use the largest one, the power
set 𝒫(Ω)? In fact, this would be possible as long as Ω is finite or countable. There are at least
three reasons for using σ-algebras. First, there are important sets Ω (e.g., Ω = R) such that
measures of interest (e.g., length — which is the Lebesgue measure pertaining to Ω = R) can-
not be defined on 𝒫(Ω) (see e.g., Wise and Hall, 1993, counterexample 1.25). These measures
can be defined, however, on other σ-algebras, such as the Borel-σ-algebra [see Eq. (1.18)]. (For
an example in which the power set is ‘too large’, see Georgii, 2008.) Second, in some sense,
σ-algebras contain those elements of a larger set system that are relevant for a particular ques-
tion. In probability theory, together with Ω and a probability measure, each σ-algebra on Ω
represents a random experiment that is in some sense contained in an (often larger) random
experiment. For example, if we consider the random experiment of tossing a dice, then we
may focus on whether or not the number of points is even. Together with Ω and the probability
measure, the corresponding σ-algebra represents a ‘new’ random experiment contained in the
random experiment of tossing a dice (see Exercise 1.3). Third, using different σ-algebras is
indispensable for introducing conditional expectations, conditional independence, and condi-
tional distributions (see chs. 9 to 17). ⊲

Example 1.9 [Joe and Ann] Consider the following random experiment: First, we sample a
unit u from the set ΩU := {Joe, Ann}. Second, each unit receives (yes) or does not receive a
treatment (no). Third, it is observed whether (+) or not (−) a success criterion is reached (see
Fig. 1.2). Defining ΩX := {yes, no} and ΩY := {+, −}, the Cartesian product

Ω := ΩU × ΩX × ΩY = {(Joe, no, −), (Joe, no, +), … , (Ann, yes, +)}

is the set of possible outcomes ω of this random experiment. It has eight elements, namely
the triples (Joe, no, −), (Joe, no, +), …, (Ann, yes, +) (see all eight leaves of Fig. 1.2 for a
complete list of these elements).

Joe
no −

+
yes −

+

Ann
no −

+
yes −

+

Figure 1.2 Example of a tree representation of a Cartesian product.
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In this example, a first σ-algebra 𝒜 we may consider is the set of all subsets of Ω, the
power set 𝒫(Ω). This set has 28 = 256 elements, where 8 is the number of elements, that is,
the cardinality of Ω (see Kheyfits, 2010, Th. 1.1.37). Among these elements is the set

A := {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)} = {Joe} × ΩX × ΩY.

In the context of probability theory, it is also called the event that Joe is drawn. Other elements
of 𝒜 are the events

B := {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)} = ΩU × {yes} × ΩY

that the drawn person is treated, and

C := {(Joe, no, +), (Joe, yes, +), (Ann, no, +), (Ann, yes, +)} = ΩU × ΩX × {+}

that success (+) occurs, irrespective of which person is drawn and whether or not the person
is treated.

Aside from the power set of Ω, we could also consider the σ-algebras 𝒜1 := {Ω, Ø, A, Ac},
𝒜2 := {Ω, Ø, B, Bc}, and 𝒜3 := {Ω, Ø, C, Cc}, to name just three. (For another one, see Exer-
cise 1.4.) In a sense, 𝒜1 represents the information regarding which person is drawn. In con-
trast, 𝒜2 contains the information regarding whether or not the drawn person is treated, and
𝒜3 whether or not the drawn person is successful. Of course, all these σ-algebras are subsets
of 𝒫(Ω), the power set of Ω. ⊲

Example 1.10 [Trace of a set system and trace σ-algebra] Let Ω and Ω0 be nonempty
sets. If ℰ is a set system on Ω and Ω0 ⊂ Ω, then

ℰ |Ω0
:= {Ω0 ∩ A: A ∈ ℰ}

is a set system on Ω0. It is called the trace of ℰ in Ω0. Furthermore, if 𝒜 is a σ-algebra on Ω
and Ω0 ⊂ Ω, then the set system

𝒜 |Ω0
:= {Ω0 ∩ A: A ∈ 𝒜}

is a σ-algebra on Ω0 (see Exercise 1.5). If Ω ≠ Ω0, then the trace 𝒜 |Ω0
is a σ-algebra on Ω0,

but not on Ω, because Ω ∉ 𝒜 |Ω0
. ⊲

Example 1.11 [Joe and Ann – continued] In Example 1.9, we defined the event A that Joe
is drawn, the event B that the drawn person is treated, and the σ-algebra 𝒜2 = {Ω, Ø, B, Bc}.
The trace of 𝒜2 in A is

𝒜2|A = {A, Ø, A ∩ B, A ∩ Bc}.

Obviously, just like all elements of 𝒜2 are subsets of Ω, all elements of 𝒜2|A are subsets of A.
From an application point of view, considering 𝒜2|A means to presume that Joe is drawn and
consider the events that he is treated or not treated, respectively. ⊲
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1.2.1 𝛔-Algebra generated by a set system

The concept of a σ-algebra generated by a set system is useful in order to define important
σ-algebras. It is also useful for specifying certain measures (see section 1.6). Theorem 1.12
prepares Definition 1.13. Reading this theorem, remember that a σ-algebra on a set Ω is itself
a set (of subsets of Ω), so that we can consider the intersection of σ-algebras.

Theorem 1.12 [Intersection of σ-algebras is a σ-algebra]
Let I be a nonempty (finite, countable, or uncountable) index set, and let all 𝒜i, i ∈ I, be
σ-algebras on Ω. Then,

⋂
i ∈ I 𝒜i is also a σ-algebra on Ω.

(Proof p. 28)

This theorem allows us to define the σ-algebra generated by a set system on Ω.

Definition 1.13 [σ-Algebra generated by a set system]
Let ℰ be a set system on a nonempty set Ω, and let (𝒜i, i ∈ I) be the family of all σ-
algebras on Ω that contain ℰ as a subset. Then, we define

σ(ℰ ) :=
⋂

i ∈ I
𝒜i (1.10)

and call it the σ-algebra generated by ℰ . The set ℰ is also called a generating
system of σ(ℰ ).

Remark 1.14 [Smallest σ-algebra containing ℰ as a subset] According to Theorem 1.12,
every set system ℰ on Ω generates a uniquely defined σ-algebra σ(ℰ ) on Ω. Note that the
σ-algebra σ(ℰ ) is the smallest σ-algebra on Ω containing ℰ as a subset, that is,

𝒞 is a σ-algebra on Ω and ℰ ⊂ 𝒞 ⇒ σ(ℰ ) ⊂ 𝒞. (1.11)

Furthermore,

σ[σ(ℰ )] = σ(ℰ ). (1.12)
⊲

Lemma 1.15 immediately follows from (1.11). It can be used in proofs of the identity of
two σ-algebras.

Lemma 1.15 [Smallest σ-algebra containing ℰ as a subset]
Let (Ω, 𝒜 ) be a measurable space and ℰ a set system on Ω with σ(ℰ ) = 𝒜. If 𝒞 is a
σ-algebra on Ω with ℰ ⊂ 𝒞 ⊂ 𝒜, then 𝒞 = 𝒜.

(Proof p. 29)
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Remark 1.16 [σ-Algebra generated by unions of set systems] Let 𝒟 , ℰ , ℱ be set systems
on a nonempty set Ω. Then,

σ(𝒟 ∪ℰ ∪ℱ ) = σ[𝒟 ∪ σ(ℰ ∪ℱ )] (1.13)

(see Exercise 1.6). ⊲

Example 1.17 [Several set systems may generate the same σ-algebra] If A is a subset of
a nonempty set Ω, then the set system {A} generates the σ-algebra {Ω, Ø, A, Ac}. Note that
{Ω, Ø, A, Ac} is also generated by the set systems {Ac} and {A, Ac}, for instance. Hence,

σ({A}) = σ({Ac}) = σ({A, Ac}) = σ({Ω, Ø, A, Ac}) = {Ω, Ø, A, Ac}.

In contrast, if Ø ≠ A ≠ Ω, then the σ-algebra {Ω, Ø, A, Ac} is neither generated by the set
system {Ω} nor by {Ω, Ø}. Instead,

σ({Ø}) = σ({Ω}) = σ({Ω, Ø}) = {Ω, Ø},

that is, {Ω}, {Ø}, and {Ω, Ø} generate the σ-algebra {Ω, Ø}. ⊲

Example 1.18 [A generator of the power set] Let Ω ≠ Ø be finite or countable, and let
ℰ := {{ω}: ω ∈ Ω}. Then, σ(ℰ ) = 𝒫(Ω) (see Exercise 1.7). ⊲

This example is generalized in Lemma 1.20.

Remark 1.19 [Partition] Reading Lemma 1.20, remember that a set system ℰ on a
nonempty set Ω is called a partition of Ω if

(a) ∀ B ∈ ℰ: B ≠ Ø.

(b) ∀ B, C ∈ ℰ: B ≠ C ⇒ B ∩ C = Ø.

(c)
⋃

B∈ℰ B = Ω.
⊲

Lemma 1.20 [An element of a σ-algebra generated by a partition]
Let ℰ := {B1, … , Bn} or ℰ := {B1, B2, …} be a finite or countable partition of Ω,
respectively. Then, for all C ∈ σ(ℰ ), there is an I(C) ⊂ N such that

C =
⋃

i∈ I(C)
Bi =

⋃

Bi ⊂C
Bi, (1.14)

where, by convention,
⋃

i∈Ø Bi := Ø.
(Proof p. 29)

Remark 1.21 [Constructing a σ-algebra] If ℰ = {A1, … , Am} is a finite set of subsets of
Ω, then there is a finite partition ℱ = {B1, … , Bn} of Ω with σ(ℰ ) = σ(ℱ). Furthermore, if
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ℰ is a finite set of subsets of Ω, then each element of σ(ℰ ) is obtained by finitely many unions,
intersections, or complements of elements of ℰ (see Exercise 1.8). ⊲

Example 1.22 [Joe and Ann – continued] In Example 1.11, we already considered the event
A that Joe is drawn and noted that the trace of the σ-algebra 𝒜2 = {Ω, Ø, B, Bc} in A is 𝒜2|A =
{A, Ø, A ∩ B, A ∩ Bc}. In contrast, the σ-algebra on Ω generated by the trace 𝒜2|A is

σ(𝒜2|A) = {Ω, Ø, A, Ac, A ∩ B, A ∩ Bc, (A ∩ B) ∪ Ac, (A ∩ Bc) ∪ Ac},

where (A ∩ B) ∪ Ac = Ac ∪ B and (A ∩ Bc) ∪ Ac = Ac ∪ Bc. ⊲

Remark 1.23 [Monotonicity of generated σ-algebras] Let ℰ1, ℰ2 be set systems on a
nonempty set Ω with ℰ1 ⊂ ℰ2. Then, σ(ℰ1) ⊂ σ(ℰ2) (see Exercise 1.9). ⊲

An important kind of σ-algebras are those for which there is a countable set system that
generates them.

Definition 1.24 [Countably generated σ-algebra]
Let (Ω, 𝒜 ) be a measurable space. Then, 𝒜 is called countably generated if there is
a finite or countable set ℰ ⊂ 𝒜 such that σ(ℰ ) = 𝒜.

Example 1.25 [Some countably generated σ-algebras] Examples of countably generated
σ-algebras are:

(a) All σ-algebras on a finite nonempty set Ω.

(b) 𝒫(Nn
0), n ∈ N.

(For a proof, see Exercise 1.10. For another example, see Remark 1.28.) ⊲

Remark 1.26 [A caveat] Note that there are countably generated σ-algebras for which not all
of their elements can be constructed by countably many unions, intersections, or complements
of elements of the generating system. An example in case are Borel σ-algebras on R or R

n (see
Rem. 1.28 and Michel, 1978, sect. I.4). ⊲

Lemma 1.27 [σ-Algebra generated by the trace of a set system]
Let A ⊂ Ω be nonempty, ℰ ⊂ 𝒫(Ω), and ℰ |A := {C ∩ A: C ∈ ℰ}. Then,

σ(ℰ |A) = σ(ℰ )|A, (1.15)

where σ(ℰ |A) denotes the σ-algebra generated on A, whereas σ(ℰ ) is a σ-algebra on Ω.
Furthermore, if 𝒞 is a σ-algebra on Ω and A ∈ ℰ such that

∀ C ∈ ℰ: C ≠ A ⇒ A ∩ C = Ø, (1.16)
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(i.e., A does not intersect with any other element of ℰ ), then

σ(𝒞 ∪ℰ )|A = 𝒞 |A. (1.17)

(Proof p. 30)

Hence, according to Equation (1.15), the σ-algebra generated by the trace of a set system
ℰ is the trace of the σ-algebra generated by ℰ ; and, according to Equation (1.17), the trace of
the σ-algebra σ(𝒞 ∪ℰ ) in the set A is identical to the trace of the σ-algebra 𝒞 in A, if (1.16)
holds.

1.2.2 𝛔-Algebra of Borel sets on R
n

For a, b ∈ R with a < b, let us consider a half-open interval ]a, b] in R, which is defined by

]a, b] := {x ∈ R: a < x ≤ b},

and the set system

ℐ1 := {]a, b]: a, b ∈ R and a < b}

of all half-open intervals in R. The σ-algebra generated by this set system is called the Borel
σ-algebra on R. It is denoted by ℬ or ℬ1. The elements of ℬ are called the Borel sets of R.
In formal terms,

ℬ := ℬ1 := σ(ℐ1). (1.18)

Note that there are several sets systems generating the Borel σ-algebra (see, e.g., Klenke, 2013,
Th. 1.23). In particular,

ℬ1 = σ({]−∞, b]: b ∈ R}) (1.19)

(see Georgii, 2008). Similarly, we define the Borel σ-algebra on R
2 = R × R to be the σ-

algebra generated by the set system ℐ2 of all half-open rectangles in R
2, whose sides are

parallel to the axes (see Fig. 1.3). These rectangles are defined by

]a1, b1] × ]a2, b2] = {(x1, x2) ∈ R
2: a1 < x1 ≤ b1, a2 < x2 ≤ b2}.

The σ-algebra σ(ℐ2) is denoted by ℬ2, that is, ℬ2 := σ(ℐ2), and its elements are called the
Borel sets of R

2.
This definition is easily generalized: The Borel σ-algebra on R

n is defined byℬn := σ(ℐn),
n ∈ N, where ℐn is the system of all half-open cuboids in R

n, whose sides are parallel to the
axes. Such a cuboid is a set

]a1, b1] ×… × ]an, bn] = {(x1, … , xn) ∈ R
n : a1 < x1 ≤ b1, … , an < xn ≤ bn}, (1.20)
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b1

b2

a1

a2

Figure 1.3 A half-open rectangle in the plane R
2 .

where a1, … , an, b1, … , bn ∈ R. Just like ℬ1, the σ-algebra ℬn has several generating sys-
tems, one of which is used in the equation

ℬn = σ({]−∞, b1] ×… × ]−∞, bn]: b1, … , bn ∈ R}) (1.21)

(see Exercise 1.11).
Note that not every subset of R

n is a Borel set. In other words, ℬn is not the power set of
R

n (see Rem. 1.60). However, for each x = (x1, … , xn) ∈ R
n, the singleton {x} is a Borel set

of R
n, that is,

{x} ∈ ℬn, ∀ x ∈ R
n (1.22)

(see Exercise 1.12).
Furthermore, if R = R ∪ {−∞, +∞} denotes the extended set of real numbers, then

ℬ := σ(ℬ ∪ {{−∞}, {+∞}})

is a σ-algebra on R, and it is called the Borel σ-algebra on R. Similarly,ℬn is called the Borel
σ-algebra on R

n. It is defined as the product σ-algebra ofℬ with itself (n times) (see Def.
1.31). Finally, we may sometimes considerℬn|Ω0

, the trace of the Borel σ-algebra on R
n in

Ω0 ⊂ R
n.

Remark 1.28 [The Borel σ-algebra is countably generated] Note that

ℬ = σ({]a, b]: a, b ∈ Q, a < b}),

where Q denotes the set of rational numbers. Because Q is countable, the set of intervals
{]a, b]: a, b ∈ Q, a < b} is countable as well. Therefore, the Borel σ-algebra ℬ is countably
generated. This also holds for ℬn, n ∈ N (see Klenke, 2013, Th. 1.23). ⊲

Remark 1.29 [Trace of the Borel σ-algebra in a countable subset of R] Let ℬ denote the
Borel σ-algebra on R. If Ω0 ⊂ R is finite or countable, then ℬ|Ω0

= 𝒫(Ω0), where ℬ|Ω0
is

the trace of the Borel σ-algebra on R in Ω0 ⊂ R (see Exercise 1.13). ⊲
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1.2.3 𝛔-Algebra on a Cartesian product

In section 1.2.2, we defined a σ-algebra on R
n = R ×… × R (n-times). Now we consider σ-

algebras on general Cartesian products. We start with an example.

Example 1.30 [Joe and Ann – continued] In Example 1.9, we already considered the Carte-
sian product

Ω := ΩU × ΩX × ΩY,

which consists of the eight triples (Joe, no, −), (Joe, no, +), … , (Ann, yes, +) (see again Fig.
1.2). Now consider the σ-algebras 𝒜1 := 𝒫(ΩU), 𝒜2 := 𝒫(ΩX), and 𝒜3 := 𝒫(ΩY), as well as
the set

ℰ := {A1 × A2 × A3: A1 ∈ 𝒜1, A2 ∈ 𝒜2, A3 ∈ 𝒜3},

which is a set system on Ω consisting of 4 ⋅ 4 ⋅ 4 = 64 elements. For example, the set system
ℰ contains the elements

A := {Joe} × {no} × {−} = {(Joe, no, −)}

and

B := {Ann} × {yes} × {+} = {(Ann, yes, +)}.

However, ℰ does not contain

A ∪ B = {(Joe, no, −), (Ann, yes, +)}

as an element. The only product set A1 × A2 × A3 with A1 ∈ 𝒜1, A2 ∈ 𝒜2, A3 ∈ 𝒜3 that con-
tains A ∪ B as a subset is ΩU × ΩX × ΩY = Ω. However, A ∪ B ≠ Ω. Therefore, ℰ is not a
σ-algebra [cf. condition (c) of Rem. 1.2]. In this example, the σ-algebra generated by ℰ is
the power set of Ω, that is, σ(ℰ ) = 𝒫(Ω). It consists of 28 = 256 elements. According to the
following definition, σ(ℰ ) is denoted by 𝒜1 ⊗ 𝒜2 ⊗ 𝒜3 and called the product σ-algebra of
𝒜1, 𝒜2, and 𝒜3. ⊲

Definition 1.31 [Product σ-algebra]
Let (Ω1, 𝒜1), … , (Ωn, 𝒜n) be measurable spaces and Ω := Ω1 ×… × Ωn. Then

𝒜1 ⊗ … ⊗ 𝒜n :=
n⨂

i=1
𝒜i := σ

({
n

×
i=1

Ai: Ai ∈ 𝒜i, i = 1, … , n

})
(1.23)

is called the product σ-algebra of the σ-algebras 𝒜i, i = 1, … , n.

Note that the product σ-algebra 𝒜1 ⊗ … ⊗ 𝒜n is not the Cartesian product 𝒜1 ×… ×
𝒜n. Instead, the product σ-algebra is generated by the set system of all Cartesian products of
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elements of the σ-algebras 𝒜1, … , 𝒜n. In Lemma 2.42, we give an equivalent specification of
a product σ-algebra, using projection mappings.

Lemma 1.32 provides a relationship between the generating systems of the σ-algebras 𝒜i,
i = 1, … , n, and the generating system of the product σ-algebra.

Lemma 1.32 [Generating system of a product σ-algebra]
For i = 1, … , n, let (Ωi, 𝒜i) be measurable spaces and ℰi ⊂ 𝒜i with σ(ℰi) = 𝒜i. Then,

n⨂

i=1
𝒜i = σ

({
n

×
i=1

Ai: Ai ∈ ℰi, i = 1, … , n

})
. (1.24)

For a proof, see Klenke [2013, Th. 14.12 (i)].
This lemma implies

ℬn =
n⨂

i=1
ℬ = ℬ ⊗ … ⊗ ℬ (n-times)

for the Borel σ-algebra on R
n. This lemma also implies the following corollary:

Corollary 1.33 [Countable generating system of a product σ-algebra]
Let (Ωi, 𝒜i), i = 1, … , n, be measurable spaces, where all 𝒜i are countably generated.
Then

⨂n
i=1 𝒜i is countably generated as well.

Example 1.34 [Countable sets and product σ-algebra] Let Ω1, … , Ωn be finite or count-
able nonempty sets and 𝒜1, … , 𝒜n be their power sets. Then,

n⨂

i=1
𝒜i = 𝒫

(
n

×
i=1

Ωi

)
,

that is,
⨂n

i=1 𝒜i is the power set of Ω := Ω1 ×… × Ωn (see Exercise 1.14). ⊲

Remark 1.35 [Complement of a Cartesian product] Let (Ω1 × Ω2, 𝒜1 ⊗ 𝒜2) be a measur-
able space, A ∈ 𝒜1, and B ∈ 𝒜2. Then (A × B)c ∈ 𝒜1 ⊗ 𝒜2, and this set can be written as:

(A × B)c = (Ac × B) ∪ (Ω1 × Bc), (1.25)

which is a union of disjoint sets (see Exercise 1.15). ⊲

1.2.4 ∩-Stable set systems that generate a 𝛔-algebra

For many proofs, generating set systems are useful, which are ∩-stable.
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Definition 1.36 [∩-Stability]
Let Ω denote a nonempty set. A set ℰ of subsets of Ω is called ∩-stable (or ∩-closed)
if A ∩ B ∈ ℰ for all A, B ∈ ℰ .

Example 1.37 [Set system with one single element] A set system {A} that has only a single
element A ⊂ Ω ≠ Ø is ∩-stable (cf. Example 1.17). ⊲

Example 1.38 [Partition and ∩-stability] Ifℰ is a partition of the setΩ, then𝒟 := ℰ ∪ {Ø}
is ∩-stable. ⊲

Example 1.39 [A ∩-stable generating system of a product σ-algebra] Consider the mea-
surable spaces (Ωi, 𝒜i), i = 1, … , n. The set

{A1 ×… × An: Ai ∈ 𝒜i, i = 1, … , n},

is a ∩-stable generating system of
⨂n

i=1 𝒜i (see Exercise 1.16). ⊲

Another type of a set system is a Dynkin system. It can be used to show that a specific set
system is a σ-algebra.

Definition 1.40 [Dynkin system]
A set 𝒟 of subsets of a set Ω is called a Dynkin system on Ω, if the following three
conditions hold:

(a) Ω ∈ 𝒟 .

(b) If A ∈ 𝒟 , then Ac ∈ 𝒟 .

(c) If A1, A2, … ∈ 𝒟 and they are pairwise disjoint, then
⋃ ∞

i=1 Ai ∈ 𝒟 .

In the definition of a σ-algebra𝒜, we require
⋃ ∞

i=1 Ai ∈ 𝒜for all sequences A1, A2, … ∈ 𝒜,
whereas for a Dynkin system the corresponding requirement is only made for all sequences
A1, A2, … ∈ 𝒟 of pairwise disjoint sets. Analogously to Definition 1.13, for a set system ℰ
on Ω, 𝛿(ℰ ) is defined as the Dynkin system generated by ℰ , that is, as the intersection of
all Dynkin systems containing ℰ . According to Theorem 1.41, a Dynkin system is also a
σ-algebra if and only if it is ∩-stable.

Theorem 1.41 [Dynkin system and σ-algebra]
Let Ω be a nonempty set.

(i) A Dynkin system 𝒟 on Ω is a σ-algebra if and only if it is ∩-stable.

(ii) If ℰ is a ∩-stable set of subsets of Ω, then 𝛿(ℰ ) = σ(ℰ ).
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For a proof, see Bauer (2001, Ths. 2.3 and 2.4). According to proposition (i) of this theorem,
we can prove that a set system is a σ-algebra by showing that it is a ∩-stable Dynkin system,
and proposition (ii) can be applied to show that the Dynkin system generated by a ∩-stable set
system is a σ-algebra.

1.3 Measure and measure space

A measure assigns to all elements of a σ-algebra an element of the closed interval

[0, ∞] := {x ∈ R: 0 ≤ x} ∪ {∞},

that is, a nonnegative real number or the element ∞.

Example 1.42 [A first example] Let Ω = R, and assume that the closed interval [3, 9] =
{x ∈ R: 3 ≤ x ≤ 9} as well as the union [3, 9] ∪ [10, 12] are elements of a σ-algebra on Ω. If
the measure is length, then

length ([3, 9]) = 9 − 3 = 6

and

length ([3, 9] ∪ [10, 12]) = length ([3, 9]) + length ([10, 12])

= (9 − 3) + (12 − 10) = 6 + 2 = 8,

because the two intervals are disjoint (i.e., their intersection is the empty set Ø). In this case, the
lengths of the intervals [3, 9] and [10, 12] add up to the length of their union [3, 9] ∪ [10, 12].
In Definition 1.43 (c), we require not only additivity but also σ-additivity. ⊲

Reading Definition 1.43, remember that, for a sequence a1, a2, … of nonnegative real num-
bers,

∑∞
i=1 ai is defined by

∞∑

i=1
ai := lim

n→∞

n∑

i=1
ai.

Definition 1.43 [Measure and measure space]
Let (Ω, 𝒜 ) be a measurable space. A function 𝜇: 𝒜→ R is called a measure and the
triple (Ω, 𝒜, 𝜇) is called a measure space, if

(a) 𝜇(Ø) = 0.

(b) 𝜇(A) ≥ 0, ∀ A ∈ 𝒜. (nonnegativity)

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then 𝜇
(⋃∞

i=1 Ai

)
= ∑∞

i=1 𝜇(Ai).
(σ-additivity)
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1.3.1 𝛔-Additivity and related properties

Remark 1.44 [σ-Additivity implies finite additivity] Note that σ-additivity of a measure
implies finite additivity, that is, it implies

𝜇

(
n⋃

i=1
Ai

)
=

n∑

i=1
𝜇(Ai), if A1, … , An ∈ 𝒜 are pairwise disjoint (1.26)

[see Rule (ii) of Box 1.1 and its proof in Exercise 1.18]. ⊲

Remark 1.45 [σ-Additivity] Using the term σ-additivity signals that unions of finitely or
countably many sets are considered, but not other unions of sets. If, instead of σ-additivity,
we would require additivity for any kind of unions, including uncountable unions, then the
Lebesgue measure 𝜆 on (R, ℬ) – the measure representing length – could not be constructed
anymore. This is explained in more detail in Remark 1.71. ⊲

Remark 1.46 [Representation of a union as a union of pairwise disjoint sets] Let (Ω, 𝒜 )
be a measurable space. If A1, A2, … ∈ 𝒜 is a sequence of subsets of Ω, then there is a sequence
B1, B2, … ∈ 𝒜 of pairwise disjoint sets with

∞⋃

i=1
Ai =

∞⋃

i=1
Bi. (1.27)

One way to construct B1, B2, … is to define B1 := A1 and

Bi := Ai ∖

(
i−1⋃

j=1
Aj

)
, for i > 1, (1.28)

(see Exercise 1.17). ⊲

Remark 1.47 [Additivity of measures for partitions] Let (Ω, 𝒜, 𝜇) be a measure space,
B ∈ 𝒜, and assume

(a) A1, … , An ∈ 𝒜 are pairwise disjoint,

(b) B ⊂
⋃ n

i=1 Ai.

Then,

𝜇(B) =
n∑

i=1
𝜇(B ∩ Ai). (1.29)

Analogously, if

(c) A1, A2, … ∈ 𝒜 are pairwise disjoint,

(d) B ⊂
⋃ ∞

i=1 Ai,
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then

𝜇(B) =
∞∑

i=1
𝜇(B ∩ Ai) (1.30)

(see Exercise 1.19). ⊲

1.3.2 Other properties

Other important properties of a measure are displayed in Box 1.1. Some of these properties
can intuitively be understood by inspecting the Venn diagram presented in Figure 1.1. These

Box 1.1 Rules of computation for measures.

Let (Ω, 𝒜, 𝜇) be a measure space.
If A1, A2, … ∈ 𝒜 are pairwise disjoint, then,

𝜇

(
∞⋃

i=1
Ai

)
=

∞∑

i=1
𝜇(Ai). (σ-additivity) (i)

𝜇

(
n⋃

i=1
Ai

)
=

n∑

i=1
𝜇(Ai), ∀ n ∈ N. (finite additivity) (ii)

If A, B ∈ 𝒜, then,

𝜇(A) = 𝜇(A ∩ B) + 𝜇(A ∖ B). (iii)

𝜇(Ω) = 𝜇(B) + 𝜇(Bc). (iv)

𝜇(A) ≤ 𝜇(B), if A ⊂ B. (monotonicity) (v)

𝜇(A ∖ B) = 𝜇(A) − 𝜇(A ∩ B), if 𝜇(A ∩ B) < ∞. (vi)

𝜇(A ∪ B) = 𝜇(A) + 𝜇(B) − 𝜇(A ∩ B), if 𝜇(A ∩ B) < ∞. (vii)

𝜇(A) = 𝜇(Ω) < ∞ ⇒ 𝜇(A ∩ B) = 𝜇(B). (viii)

𝜇(A) = 0 ⇒ 𝜇(A ∪ B) = 𝜇(B). (ix)

Let A ∈ 𝒜 and let Ω0 ⊂ Ω and be finite or countable with 𝜇(Ω ∖ Ω0) = 0.
If, for all ω ∈ Ω0, {ω} ∈ 𝒜, then

𝜇(A) =
∑

ω∈A∩Ω0

𝜇({ω}). (x)

If A1, A2, … ∈ 𝒜, then

𝜇

(
∞⋃

i=1
Ai

)
≤

∞∑

i=1
𝜇(Ai). (σ-subadditivity) (xi)
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properties always hold with the conventions +∞+∞ = +∞ and α +∞ = +∞, for α ∈ R.
However, note that the term +∞+ (−∞) or +∞− (+∞) cannot meaningfully be defined.
Therefore, properties (vi) and (vii) only hold if we assume 𝜇(A ∩ B) < ∞. For proofs of all
these properties, see Exercise 1.18.

Remark 1.48 [Finite additivity and σ-additivity applied to singletons] If Ω is finite or
countable, then each A ⊂ Ω is finite or countable as well. Hence, for any measure 𝜇 on the
measurable space (Ω, 𝒫(Ω)),

𝜇(A) = 𝜇

(
⋃

ω∈A
{ω}

)
=

∑

ω∈A
𝜇({ω}), ∀ A ⊂ Ω. (1.31)

This means that a measure on (Ω, 𝒫(Ω)) is already uniquely defined if its values 𝜇({ω}) are
uniquely defined for all ω ∈ Ω, provided that Ω is finite or countable. Rule (x) of Box 1.1
extends this result to a more general measure space (Ω, 𝒜, 𝜇). This rule shows that a measure
on (Ω, 𝒜 ) is already uniquely defined if its values 𝜇({ω}) are uniquely defined for all ω ∈ Ω0,
provided that Ω0 is finite or countable with 𝜇(Ω ∖ Ω0) = 0 and {ω} ∈ 𝒜 for all ω ∈ Ω0. ⊲

1.4 Specific measures

Now we consider some examples of measures, all of which are used later on in this volume in
order to introduce still other measures. For some of these examples, we use the indicator of a
set A.

Definition 1.49 [Indicator]
Let Ω be a set and A ⊂ Ω. Then, the function 1A: Ω → R defined by

1A(ω) =
{

1, if ω ∈ A
0, if ω ∉ A,

(1.32)

is called the indicator of A.

Remark 1.50 [Sums and products of indicators] If 1A, 1B: Ω → R are the indicators of two
sets A, B ⊂ Ω, then,

1A ⋅ 1B = 1A∩B (1.33)

and

1A + 1B − 1A∩B = 1A + 1B − 1A ⋅ 1B = 1A∪B. (1.34)
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Equation (1.33) immediately implies

1A + 1B = 1A∪B, if A ∩ B = Ø. (1.35)

More generally, if A1, … , An is a finite sequence of pairwise disjoint subsets of Ω, then,

n∑

i=1
1Ai

= 1⋃ n
i=1 Ai

, (1.36)

that is, then the sum of the indicators of the sets A1, … , An is the indicator of the union
⋃ n

i=1 Ai.
Finally, if A1, A2, … is a sequence of pairwise disjoint subsets of Ω, then,

∞∑

i=1
1Ai

= 1⋃ ∞
i=1 Ai

. (1.37)
⊲

Remark 1.51 [Indicators of products sets] Let Ω1, Ω2 be nonempty sets, A ⊂ Ω1 and B ⊂

Ω2. Then,

1A(ω1) ⋅ 1B(ω2) = 1A×B(ω1, ω2), ∀ (ω1, ω2) ∈ Ω1 × Ω2. (1.38)

This equation follows from the definitions of the product set and the indicator. ⊲

1.4.1 Dirac measure and counting measure

Example 1.52 [Dirac measure] Let (Ω, 𝒜 ) be a measurable space, let ω ∈ Ω, and consider
the function 𝛿ω: 𝒜→ {0, 1} defined by

𝛿ω(A) := 1A(ω), ∀ A ∈ 𝒜. (1.39)

Then 𝛿ω is a measure on (Ω, 𝒜 ) (see Exercise 1.20). ⊲

Definition 1.53 [Dirac measure]
The function 𝛿ω defined by Equation (1.39) is called the Dirac measure at (point) ω.

Example 1.54 [Counting measure] Let (Ω, 𝒜 ) be a measurable space, and define the func-
tion 𝜇#: 𝒜→ R by

𝜇#(A) :=
⎧
⎪
⎨
⎪⎩

∑

ω ∈Ω
1A(ω), if A is finite

∞, if A is infinite,
∀ A ∈ 𝒜. (1.40)

Then 𝜇# is a measure on (Ω, 𝒜 ) (see Exercise 1.21). ⊲
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Definition 1.55 [Counting measure]
The function 𝜇# defined by Equation (1.40) is called the counting measure on (Ω, 𝒜 ).

Remark 1.56 [Cardinality of a set] If A is finite, then 𝜇#(A) is called the cardinality of A,
that is, 𝜇#(A) simply counts the number of elements ω of the set A. Furthermore, for finite or
countable Ω and A ⊂ Ω,

𝜇#(A) =
∑

ω ∈Ω
1A(ω) =

∑

ω ∈Ω
𝛿ω(A). (1.41)

⊲

Example 1.57 [Sum of Dirac measures] Let (Ω, 𝒜 ) be a measurable space. If B ⊂ Ω is finite
or countable and 𝛿ω is the Dirac measure on (Ω, 𝒜 ) at point ω, then

∑
ω∈B 𝛿ω: 𝒜→ [0, ∞]

defined by
(

∑

ω∈B
𝛿ω

)
(A) :=

∑

ω∈B
𝛿ω(A), ∀ A ∈ 𝒜, (1.42)

is a measure on (Ω, 𝒜 ) (see Exercise 1.22). Hence, if Ω itself is finite or countable, then∑
ω ∈Ω 𝛿ω is a measure on (Ω, 𝒜 ), and it is identical to the counting measure defined in Exam-

ple 1.54, because, for A ∈ 𝒜,
(

∑

ω ∈Ω
𝛿ω

)
(A) =

∑

ω ∈Ω
𝛿ω(A) [(1.42)]

=
∑

ω ∈Ω
1A(ω) [(1.39)]

= 𝜇#(A). [(1.41)]

(1.43)

⊲

1.4.2 Lebesgue measure

Consider the half-open interval ]a, b]. Then,

𝜆1(]a, b]) = b − a (1.44)

is the length of the interval ]a, b]. Next consider a rectangle ]a1, b1] × ]a2, b2] in R
2 with

a1 < b1 and a2 < b2. This set can be visualized by the set of all points inside the rectangle
presented in Figure 1.3 (excluding the lower and left boundary). Obviously,

𝜆2(]a1, b1] × ]a2, b2]) = (b1 − a1) ⋅ (b2 − a2) (1.45)

is the area of this rectangle.
According to Theorem 1.58, there is one and only one measure on (R, ℬ) satisfying (1.44)

for all such intervals. This measure is called the Lebesgue measure on (R, ℬ) and is denoted
by 𝜆 or 𝜆1. Similarly, there is one and only one measure on (R2, ℬ2) satisfying (1.45) for all
such rectangles. It is called the Lebesgue measure on (R2, ℬ2) and is denoted by 𝜆2. Theorem
1.58 deals with the general case.
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Theorem 1.58 [Existence and uniqueness of the Lebesgue measure]
For all n ∈ N, there is a uniquely defined measure 𝜆n on (Rn, ℬn) satisfying

𝜆n(]a1, b1] ×… × ]an, bn]) =
n∏

i=1
(bi − ai),

∀ ai, bi ∈ R with ai < bi, i = 1, … , n.
(1.46)

For a proof, see Klenke (2013, Th. 1.55).

Definition 1.59 [Lebesgue measure]
The measure 𝜆n satisfying Equation (1.46) is called the Lebesgue measure on
(Rn, ℬn).

Remark 1.60 [Sets of real numbers that are not Lebesgue measurable] Hence, the
Lebesgue measure 𝜆n is defined on (Rn, ℬn). Note, however, that this measure space
(Rn, ℬn, 𝜆n) can be completed by additionally including all subsets of sets A ∈ ℬn with
𝜆n(A) = 0. In Wise and Hall (1993, counterexample 1.25), it is shown for n = 1 that there
are subsets B ⊂ R that are not elements of the completed σ-algebra. Therefore, B ∉ ℬ, and
this implies ℬ ≠ 𝒫(R). ⊲

1.4.3 Other examples of a measure

Example 1.61 [Restriction of a measure to a sub-σ-algebra] Suppose (Ω, 𝒜, 𝜇) is a mea-
sure space and 𝒞 ⊂ 𝒜 a σ-algebra. Then the function ν: 𝒞 → R defined by

ν(A) := 𝜇(A), ∀ A ∈ 𝒞, (1.47)

is a measure on (Ω, 𝒞) (see Exercise 1.23). ⊲

Example 1.62 [Weighted sum of measures] If 𝜇1, 𝜇2, … are measures on (Ω, 𝒜 ) and 0 ≤

α1, α2, … ∈ R, then
∑ ∞

i=1 αi𝜇i: 𝒜→ [0, ∞] defined by

(
∞∑

i=1
αi𝜇i

)
(A) :=

∞∑

i=1
αi𝜇i(A), ∀ A ∈ 𝒜, (1.48)

is again a measure on (Ω, 𝒜 ) (see Exercise 1.24). For 0 = αn+1 = αn+2 = … this implies: If
𝜇1, … , 𝜇n are measures on (Ω, 𝒜 ) and α1, … , αn are nonnegative, then the function

∑n
i=1 αi𝜇i

defined by
(

n∑

i=1
αi𝜇i

)
(A) :=

n∑

i=1
αi𝜇i(A), ∀ A ∈ 𝒜, (1.49)

is also a measure on (Ω, 𝒜 ). ⊲
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1.4.4 Finite and 𝛔-finite measures

A measure 𝜇 on a measurable space (Ω, 𝒜 ) is called finite if 𝜇(Ω) < ∞. Otherwise, it is called
infinite. Within the class of infinite measures, there is a subclass with an important property,
called σ-finiteness. Many fundamental propositions of measure and integration theory only
hold for measures that are σ-finite.

Definition 1.63 [σ-Finite measure]
Let 𝜇 be a measure on a measurable space (Ω, 𝒜 ). Then 𝜇 is called σ-finite if there is a
sequence A1, A2, … ∈ 𝒜with

⋃∞
i=1 Ai = Ω and, for all i = 1, 2, …, 𝜇(Ai) < ∞.

To emphasize, even if 𝜇(Ω) = ∞, the measure 𝜇 can be σ-finite (see Examples 1.64 and
1.65). Note that any finite measure is also σ-finite.

Example 1.64 [σ-Finiteness of the Lebesgue measure] The Lebesgue measure 𝜆 on (R, ℬ)
is σ-finite, because R = ⋃∞

i=1[−i, i] and 𝜆([−i, i]) = 2 ⋅ i < ∞, for all i ∈ N. ⊲

Example 1.65 [A σ-finite counting measure] Consider the measurable space (R, ℬ) and
the measure 𝜇: ℬ → [0, ∞], where 𝜇 = ∑ ∞

i=0 𝛿i and 𝛿i denotes the Dirac measure at i on
(R, ℬ) with 𝛿i(A) = 1A(i), A ∈ ℬ, i ∈ N0 (see Example 1.57). Then 𝜇 is σ-finite because R =⋃ ∞

n=1[−n, n] and 𝜇([−n, n]) = n + 1, for all n ∈ N0. This measure simply counts the number
of elements i ∈ N0 in a Borel set A. In other words, for all finite A ∈ ℬ, 𝜇(A) is the cardinality
of the set A ∩ N0. ⊲

1.4.5 Product measure

In section 1.4.2, we considered the Lebesgue measure on (Rn, ℬn) that is specified for n-
dimensional cuboids by Equation (1.46) using the product of one-dimensional Lebesgue mea-
sures on (R, ℬ). Now we introduce the general concept of a product measure. Lemma 1.66
shows that σ-finiteness of measures is sufficient for the existence and uniqueness of such a
measure. Hence, this lemma shows that presuming finite measures is sufficient but not neces-
sary for the definition of the product measure.

Lemma 1.66 [Existence and uniqueness]
Let (Ωi, 𝒜i, 𝜇i) be measure spaces with σ-finite measures 𝜇i, i = 1, … , n. Then there is a
uniquely defined measure, denoted 𝜇1 ⊗ … ⊗ 𝜇n, on the product space

(
n

×
i=1

Ωi,
n⨂

i=1
𝒜i

)
,

satisfying

∀ (A1, … , An) ∈ 𝒜1 ×… ×𝒜n:

𝜇1 ⊗ … ⊗ 𝜇n(A1 ×… × An) = 𝜇1(A1) ⋅… ⋅ 𝜇n(An).
(1.50)

This measure is σ-finite as well.
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For a proof, see Bauer (2001, Th. 23.9). Hence, 𝜇 := 𝜇1 ⊗ … ⊗ 𝜇n is a measure on the product
space

(
×n

i=1 Ωi,
⨂n

i=1 𝒜i

)
with

𝜇(A1 ×… × An) := 𝜇1(A1) ⋅… ⋅ 𝜇n(An), ∀ (A1, … , An) ∈ (𝒜1 ×… ×𝒜n). (1.51)

Definition 1.67 [Product measure]
The measure 𝜇1 ⊗ … ⊗ 𝜇n defined by Equation (1.50) is called the product measure
of 𝜇1, … , 𝜇n.

1.5 Continuity of a measure

The term σ-additivity refers to countable unions of pairwise disjoint sets and it implies finite
additivity, which involves finite unions of pairwise disjoint sets. Furthermore, σ-additivity
implies the following continuity properties of a measure, which are essential for the defini-
tion of the integral (see ch. 3).

Theorem 1.68 [Continuity of a measure]
Let (Ω, 𝒜, 𝜇) be a measure space, and let A1, A2, … ∈ 𝒜.

(i) If A1 ⊂ A2 ⊂ …, then,

lim
i→∞

𝜇(Ai) = 𝜇

(
∞⋃

i=1
Ai

)
. (continuity from below)

(ii) If A1 ⊃ A2 ⊃ … and there is an n ∈ N with 𝜇(An) < ∞, then,

lim
i→∞

𝜇(Ai) = 𝜇

(
∞⋂

i=1
Ai

)
. (continuity from above)

For a proof, see Klenke (2013, Theorem 1.36).

Remark 1.69 [Finite case] If A1, … , An ∈ 𝒜 is a finite sequence with A1 ⊂ … ⊂ An, then⋃n
i=1 Ai = An and

𝜇

(
n⋃

i=1
Ai

)
= 𝜇(An). (1.52)

This is a trivial case of Theorem 1.68 (i) (with An = An+1 = An+2 = …). ⊲

Example 1.70 [Geometric examples] Figures 1.4 and 1.5 illustrate this theorem for the
Lebesgue measure 𝜆2 on (R2, ℬ2), the area of a set O and the sets Ai, i ∈ N. In this exam-
ple, A1 is the open rectangle in the open (i.e., the set without its boundary) egg-shaped
set O displayed in Figure 1.4, A2 the union of A1 with two other rectangles in the middle



26 PROBABILITY AND CONDITIONAL EXPECTATION

A1 A2 A3

Figure 1.4 Approximation of an open egg-shaped set O from below.

figure, and A3 the union of A2 with two additional rectangles in the right figure. Adding
more and more rectangles, it is plausible that A1 ⊂ A2 ⊂ … ⊂ O and that their union approx-
imates O (i.e.,

⋃ ∞
i=1 Ai = O). Under these premises, Theorem 1.68 (i) yields the conclusion

limi→∞ 𝜆2(Ai) = 𝜆2

(⋃ ∞
i=1 Ai

)
= 𝜆2(O). Figure 1.5 illustrates the same principle. However,

now the area of the egg-shaped set O is approximated from above by subtracting the areas of
appropriate rectangles.

As a second example, consider the Lebesgue measure 𝜆 on (R, ℬ) and the intervals Ai =
]x − 1

i
, x], i ∈ N. Obviously, A1 ⊃ A2 ⊃ … and 𝜆(Ai) =

1
i
< ∞, for all i ∈ N (see also Exercise

1.12). Hence, for all x ∈ R,

𝜆({x}) = 𝜆

(
∞⋂

i=1
]x − 1

i
, x]

)
= lim

i→∞
𝜆

(
]x − 1

i
, x]

)
= lim

i→∞
1
i
= 0. (1.53)

This is an implication of continuity from above, and it implies

∀ a, b ∈ R: a < b ⇒ 𝜆(]a, b]) = 𝜆([a, b]) = 𝜆([a, b[) = 𝜆(]a, b[)
= b − a. (1.54)

⊲

Remark 1.71 [A motivation for σ-additivity] As already mentioned in Remark 1.45, σ-
additivity refers to unions of finitely or countably many sets. Now consider

⋃
1≤x≤2{x} =

[1, 2] ∈ ℬ [see Eq. (1.9)]. According to Equation (1.53), 𝜆({x}) = 0, for all x ∈ [1, 2], and
hence 𝜆({x ∈ [1, 2]: x ∈ Q}) = 0, because the set of rational numbers is countable. In other
words, the Lebesgue measure 𝜆 of the set of all rational numbers in the closed interval [1, 2]
is zero, and this is not a contradiction to

𝜆

(
⋃

1≤x≤2
{x}

)
= 𝜆([1, 2]) = 2 − 1 = 1,

A1 A2 A3

Figure 1.5 Approximation of an open egg-shaped set O from above.
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because
⋃

1≤x≤2{x} is an uncountable union. This illustrates that additivity for uncountable
unions can be meaningless. ⊲

1.6 Specifying a measure via a generating system

Given a measurable space (Ω, 𝒜 ), a measure is a function that is defined on 𝒜. In many situ-
ations, such as when 𝒜= σ(ℰ ) can only be described by a generating set system ℰ (e.g., the
set system ℐ1 generating the Borel σ-algebra on R), it is important to answer the following
questions:

(a) Existence: If there is a set function �̃�: ℰ → R, is there also a measure 𝜇: σ(ℰ ) → R

such that 𝜇(A) = �̃�(A), ∀ A ∈ ℰ?

(b) Uniqueness: Is a measure 𝜇 on (Ω, σ(ℰ )) already uniquely defined by its values 𝜇(A),
A ∈ ℰ?

(Sufficient conditions for the existence of such a measure 𝜇 are formulated in Klenke, 2013,
Theorem 1.53.)

The following uniqueness theorem for finite measures provides an answer to these ques-
tions, which suffices for our purposes. (A more general formulation for σ-finite measures with
additional assumptions and a proof of Theorem 1.72 is found in Klenke, 2013, Lemma 1.42.)

Theorem 1.72 [Generating system and uniqueness of a measure]
Let (Ω, 𝒜 ) be a measurable space and let ℰ ⊂ 𝒜, where ℰ is ∩-stable and σ(ℰ ) = 𝒜. If
𝜇1 and 𝜇2 are finite measures on (Ω, 𝒜 ) (i.e., measures with 𝜇1(Ω), 𝜇2(Ω) < ∞), then,

∀ A ∈ ℰ : 𝜇1(A) = 𝜇2(A) ⇒ ∀ A ∈ 𝒜: 𝜇1(A) = 𝜇2(A).

Example 1.73 [CountableΩ] LetΩ be a nonempty finite or countable set, and let𝒜= 𝒫(Ω).
Then the set system

ℰ1 = {Ø} ∪ {{ω}: ω ∈ Ω}

is ∩-stable and σ(ℰ1) = 𝒜. As already noted in Remark 1.48, a finite measure 𝜇 on (Ω, 𝒜 ) is
uniquely defined by its values 𝜇({ω}), ω ∈ Ω. ⊲

Example 1.74 [Measures on (R, ℬ)] The set system

ℰ2 = {]a, b]: a < b, a, b ∈ R} ∪ {Ø}

is ∩-stable and σ(ℰ2) = ℬ [see Eq. (1.18) and section 1.2.4]. Another ∩-stable set system ℰ3
with σ(ℰ3) = ℬ is

ℰ3 = {]−∞, b]: b ∈ R}

(cf. Klenke, 2013). This set system is crucial for the definition of a cumulative distribution
function (see section 5.7.1). ⊲
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1.7 𝛔-Algebra that is trivial with respect to a measure

All σ-algebras treated in section 1.2 have been defined without reference to a measure. Now
we define the concept of a trivial σ-algebra, which is defined referring to a measure. We start
with a lemma about the set of all subsets of a set Ω with 𝜇(A) = 0 or 𝜇(A) = 𝜇(Ω) (i.e., the set
of all sets that are trivial with respect to the measure 𝜇). Hence, the set of 𝜇-trivial sets includes
all null sets that is, all sets A ∈ 𝒜 with 𝜇(A) = 0, and all sets A ∈ 𝒜 with 𝜇(A) = 𝜇(Ω).

Lemma 1.75 [The set of all trivial sets is a σ-algebra]
Let (Ω, 𝒜, 𝜇) be a measure space, and assume that 𝜇 is finite. Then,

𝒯𝜇 := {A ∈ 𝒜: 𝜇(A) = 0 or 𝜇(A) = 𝜇(Ω)} (1.55)

is a σ-algebra.
(Proof p. 30)

This lemma allows for Definition 1.76:

Definition 1.76 [Trivial σ-algebra with respect to a measure]
Let (Ω, 𝒜, 𝜇) be a measure space, assume that 𝜇 is finite, and let 𝒯𝜇 be defined by (1.55).
Then each σ-algebra 𝒞 ⊂ 𝒯𝜇 is called a 𝜇 -trivial σ-algebra and its elements 𝜇 -triv-
ial sets.

Obviously, {Ω, Ø} is a trivial σ-algebra with respect to all measures on (Ω, 𝒜 ). Hence, we
can call it a trivial σ-algebra without reference to a specified measure.

1.8 Proofs

Proof of Theorem 1.12

(a)

∀ i ∈ I: 𝒜i is a σ-algebra on Ω ⇒ ∀ i ∈ I: Ω ∈ 𝒜i [Def. 1.1 (a)]
⇒ Ω ∈

⋂

i ∈ I
𝒜i.

(b)

A ∈
⋂

i ∈ I
𝒜i ⇒ ∀ i ∈ I: A ∈ 𝒜i

⇒ ∀ i ∈ I: Ac ∈ 𝒜i [Def. 1.1 (b)]
⇒ Ac ∈

⋂

i ∈ I
𝒜i.
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(c)
A1, A2, … ∈

⋂

i ∈ I
𝒜i ⇒ ∀ i ∈ I: A1, A2, … ∈ 𝒜i

⇒ ∀ i ∈ I:
∞⋃

j=1
Aj ∈ 𝒜i [Def. 1.1 (c)]

⇒
∞⋃

j=1
Aj ∈

⋂

i ∈ I
𝒜i.

Proof of Lemma 1.15

If 𝒞 is a σ-algebra with ℰ ⊂ 𝒞 and 𝒜= σ(ℰ ), then (1.11) and the assumption 𝒞 ⊂ 𝒜 imply
𝒜= σ(ℰ ) ⊂ 𝒞 ⊂ 𝒜. Hence, 𝒞 = 𝒜.

Proof of Lemma 1.20

Define 𝒟 :=
{

C = ⋃
i ∈ I(C) Bi: I(C) ⊂ N

}
.

ℰ ⊂ 𝒟: For Bj ∈ ℰ , choose I(Bj) = {j}. Then, Bj =
⋃

i ∈ I(Bj)
Bi.

𝒟 ⊂ σ(ℰ ): Because N is countable, any I(C) ⊂ N is finite or countable, and this implies
that C = ⋃

i∈C Bi is an element of σ(ℰ ) [see Def. 1.1 (c), (1.3)].
Checking the three conditions defining a σ-algebra (see Def. 1.1), we show that 𝒟 is a

σ-algebra.
(a)

Ω =

{⋃n
i=1 Bi, if ℰ = {B1, … , Bn}

⋃∞
i=1 Bi, if ℰ = {B1, B2, …},

because ℰ is assumed to be a partition. This shows that Ω ∈ 𝒟 .
(b) The equation for Ω in (a) also implies I(Cc) = I(C)c. Therefore, Cc ∈ 𝒟 if C ∈ 𝒟 .
(c) If C1, C2, … ∈ 𝒟 , then,

∞⋃

j=1
Cj =

∞⋃

j=1

⋃

i∈I(Cj)
Bi =

⋃

i∈
⋃∞

j=1I(Cj)

Bi ∈ 𝒟 ,

because
⋃∞

j=1 I(Cj) ⊂ N.
Finally, we prove the second equation in (1.14). If j ∈ I(C) and C = ⋃

i ∈ I(C) Bi, then
Bj ⊂ C, which implies

⋃

i ∈ I(C)
Bi ⊂

⋃

Bi ⊂C
Bi.

Vice versa, if Bj ⊂ C, then j ∈ I(C), because for any ω ∈ Bj, there is no i ≠ j such that ω ∈ Bi
[see condition (b) of Rem. 1.19]. Hence,

⋃

Bi ⊂C
Bi ⊂

⋃

i ∈ I(C)
Bi,

which proves the second equation in (1.14).
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Proof of Lemma 1.27

In this proof, we use σΩ(ℰ ) to denote the σ-algebra on Ω generated by ℰ ⊂ 𝒫(Ω). Similarly,
σA(𝒟 ) denotes the σ-algebra on A generated by 𝒟 ⊂ 𝒫(A).

(1.15) σΩ(ℰ ) is a σ-algebra on Ω and ℰ ⊂ σΩ(ℰ ), by definition of σΩ(ℰ ). Hence, ℰ |A ⊂

σΩ(ℰ )|A, and σΩ(ℰ )|A is a σ-algebra on A (see Exercise 1.5). Therefore, the definition (1.10)
yields

σA(ℰ |A) ⊂ σΩ(ℰ )|A.

Furthermore, ℰ ⊂ σΩ(ℰ |A ∪ℰ |Ac ), which implies

σΩ(ℰ ) ⊂ σΩ(ℰ |A ∪ℰ |Ac ) [Rem. 1.23]
⊂ σΩ(σA(ℰ |A) ∪ σAc (ℰ |Ac )) [Rem. 1.23]
= {C ∪ D: C ∈ σA(ℰ |A), D ∈ σAc(ℰ |Ac )}. [This set system is a σ-algebra]

Therefore,

σΩ(ℰ )|A ⊂ {C ∪ D: C ∈ σA(ℰ |A), D ∈ σAc(ℰ |Ac )}|A
= {(C ∪ D) ∩ A: C ∈ σA(ℰ |A), D ∈ σAc (ℰ |Ac )}
= {C ∩ A: C ∈ σA(ℰ |A)} [D ⊂ Ac]
= σA(ℰ |A). [C ⊂ A]

Hence, we have shown σA(ℰ |A) ⊂ σΩ(ℰ )|A and σΩ(ℰ )|A ⊂ σA(ℰ |A), which is equivalent to
σA(ℰ |A) = σΩ(ℰ )|A.

(1.17)

σΩ(𝒞 ∪ℰ )|A = σA(𝒞 ∪ℰ |A) [(1.15)]
= σA(𝒞 |A ∪ℰ |A) [See def. of the trace in Example 1.10]
= σA(𝒞 |A ∪ {Ø, A}) [(1.16)]
= σA(𝒞 |A) [{Ø, A} ⊂ 𝒞 |A]
= 𝒞 |A. [Exercise 1.5, (1.12)]

Proof of Lemma 1.75

(a) Ω ∈ 𝒯𝜇 by definition of 𝒯𝜇.

(b) If A ∈ 𝒯𝜇, then Rules (iv), (v) of Box 1.1 and finiteness of 𝜇 yield

𝜇(Ac) = 𝜇(Ω) − 𝜇(A) =
{
𝜇(Ω), if 𝜇(A) = 0
0, if 𝜇(A) = 𝜇(Ω),

which implies Ac ∈ 𝒯𝜇.
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(c) Let A1, A2, … ∈ 𝒜. We consider two cases. First, if 𝜇(Ai) = 0, for all Ai, i ∈ N, then
Rule (xi) of Box 1.1 yields

(⋃∞
i=1 Ai

)
≤

∑∞
i=1 𝜇(Ai) = 0 (i.e.,

⋃∞
i=1 Ai ∈ 𝒯𝜇). Second,

if there is a j ∈ N such that 𝜇(Aj) = 𝜇(Ω), then Rule (v) of Box 1.1 yields

𝜇(Ω) = 𝜇(Aj) ≤ 𝜇

(
∞⋃

i=1
Ai

)
≤ 𝜇(Ω),

which implies 𝜇
(⋃∞

i=1 Ai

)
= 𝜇(Ω). Therefore,

⋃∞
i=1 Ai ∈ 𝒯𝜇.

Exercises

1.1 Let 𝒜be a σ-algebra of subsets of a nonempty set Ω, and let A1, A2, … ∈ 𝒜. Show: (a)
A1 ∩ A2 ∩… ∈ 𝒜, (b) A1 ∩ A2 ∈ 𝒜, and (c) A1 ∖ A2 ∈ 𝒜.

1.2 Show that the set system 𝒜= {Ω, Ø, A, Ac} is stable (closed) with respect to union of
elements of 𝒜.

1.3 Consider the set Ω = {ω1, … , ω6} representing the set of all possible outcomes of toss-
ing a dice and the power set 𝒫(Ω), which, in probability theory, represents the set of all
possible events (including the ‘impossible’ event Ø) in this random experiment. Specify
the σ-algebra on Ω that represents all possible events if we only distinguish between
even and uneven number of points.

1.4 Consider the random experiment that has been described in Example 1.9. Aside from
the power set of Ω, we already considered the σ-algebras 𝒜1 = {Ω, Ø, A, Ac}, 𝒜2 =
{Ω, Ø, B, Bc}, and 𝒜3 = {Ω, Ø, C, Cc}. Define another σ-algebra not yet mentioned.

1.5 Prove: If 𝒜 is a σ-algebra on Ω and Ω0 ⊂ Ω, then 𝒜 |Ω0
= {Ω0 ∩ A: A ∈ 𝒜} is a σ-

algebra on Ω0.

1.6 Prove the proposition of Remark 1.16.

1.7 Show that σ(ℰ ) = 𝒫(Ω) if Ω is finite or countable and ℰ := {{ω}: ω ∈ Ω}.

1.8 Prove the proposition of Remark 1.21.

1.9 Let ℰ1, ℰ2 be set systems on Ω with ℰ1 ⊂ ℰ2. Show that σ(ℰ1) ⊂ σ(ℰ2).

1.10 Prove propositions (a) and (b) of Example 1.25.

1.11 Prove Equation (1.21).

1.12 Show that {x} ∈ ℬn for all x ∈ R
n, where ℬn is the Borel σ-algebra on R

n.

1.13 Let ℬ be the Borel σ-algebra on R, and let Ω0 ⊂ R be finite or countable. Show that
ℬ|Ω0

= 𝒫(Ω0).

1.14 Prove the proposition of Example 1.34.

1.15 Prove the proposition of Remark 1.35.

1.16 Let (Ωi, 𝒜i), i = 1, … , n, be measurable spaces. Show that the set system ℰ := {A1 ×
… × An: Ai ∈ 𝒜i, i = 1, … , n} is ∩-stable.
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1.17 Prove the proposition of Remark 1.46.

1.18 Prove the rules of Box 1.1.

1.19 Prove the propositions of Remark 1.47.

1.20 Show that 𝛿ω: 𝒜→ {0, 1} in Example 1.52 is a measure.

1.21 Prove that the function defined by Equation (1.40) is a measure on (Ω, 𝒜 ).

1.22 Show that
∑

ω∈B 𝛿ω in Example 1.57 is a measure.

1.23 Show that ν: 𝒞 → R defined in Example 1.61 is a measure on (Ω, 𝒞).

1.24 Prove that the function
∑∞

i=1 αi𝜇i defined in Example 1.62 is a measure on (Ω, 𝒜 ).

Solutions

1.1 (a) If A1, A2, … ∈ 𝒜, then Ac
1, Ac

2, … ∈ 𝒜 [see Def. 1.1 (b)]. Hence,

∞⋂

i=1
Ai =

[(
∞⋂

i=1
Ai

)c ]c

=

[
∞⋃

i=1
Ac

i

]c

[de Morgan]

∈ 𝒜. [Def. 1.1 (c), (b)]

(b) Let A1, A2 ∈ 𝒜 and choose A3, A4, … such that Ω = Ai, for all i ≥ 3, i ∈ N. Then,
according to Definition 1.1 (a),

A1 ∩ A2 = A1 ∩ A2 ∩ Ω =
∞⋂

i=1
Ai ∈ 𝒜.

(c) A1 ∖ A2 = A1 ∩ Ac
2 ∈ 𝒜 [see (b) and Def. 1.1 (b)].

1.2 The unions Ω ∪ A = Ω, Ω ∪ Ac = Ω, and Ω ∪ Ø = Ω are all elements of 𝒜, and the
same is true for Ø ∪ A = A, Ø ∪ Ac = Ac, and A ∪ Ac = Ω. Furthermore, B ∪ B = B for
all B ∈ 𝒜.

1.3 The σ-algebra on Ω that only distinguishes between an even and uneven number of
points is 𝒜1 := {{ω1, ω3, ω5}, {ω2, ω4, ω6}, Ω, Ø}. This is a sub-σ-algebra of 𝒫(Ω).
Therefore, 𝒜1 represents the set of all possible events of a random experiment that is,
in a sense, contained in the original random experiment.

1.4 Consider the set system that contains as elements A, Ac, B, Bc, Ω, Ø, all unions and all
intersections of these sets as well as the unions and intersections of the resulting sets
such as (Ac ∪ Bc) ∩ (A ∪ B) and (Ac ∪ Bc) ∪ (A ∪ B). Altogether, these are 16 sets. This is
σ(𝒜1 ∪𝒜2), the σ-algebra generated by 𝒜1 ∪𝒜2 = {A, Ac, B, Bc, Ω, Ø} (see Def. 1.13
and Rem. 1.21).

1.5 (a) Ω0 ∩ Ω = Ω0. This implies Ω0 ∈ 𝒜 |Ω0
.

(b)

A∗ ∈ 𝒜 |Ω0
⇒ ∃ A ∈ 𝒜: A∗ = Ω0 ∩ A.
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With this set A and using Bc for the complement of a set B with respect to Ω,

Ω0 ∖ A∗ = Ω0 ∖ (Ω0 ∩ A)

= Ω0 ∩ (Ω0 ∩ A)c

= Ω0 ∩ (Ωc
0 ∪ Ac)

= (Ω0 ∩ Ωc
0) ∪ (Ω0 ∩ Ac)

= Ω0 ∩ Ac ∈ 𝒜 |Ω0
.

(c)

A∗
1, A∗

2, … ∈ 𝒜 |Ω0
⇒ ∃ A1, A2, … ∈ 𝒜: A∗

i = Ω0 ∩ Ai, i ∈ N .

Hence,

A∗
1 ∪ A∗

2 ∪… = (Ω0 ∩ A1) ∪ (Ω0 ∩ A2) ∪… = Ω0 ∩ (A1 ∪ A2 ∪… ) ∈ 𝒜 |Ω0
.

1.6 If 𝒢 is a σ-algebra on Ω, then

ℰ ∪ℱ ⊂ 𝒢 ⇔ σ(ℰ ∪ℱ ) ⊂ 𝒢 . [(1.11)] (1.56)

Furthermore, for three sets A, B, C,

A ∪ B ⊂ C ⇔ A ⊂ C ∧ B ⊂ C. (1.57)

Hence,

𝒟 ∪ℰ ∪ℱ ⊂ 𝒢 ⇔ (𝒟 ⊂ 𝒢 ) ∧ (ℰ ∪ℱ ⊂ 𝒢 ) [(1.57)]
⇔ (𝒟 ⊂ 𝒢 ) ∧ (σ(ℰ ∪ℱ) ⊂ 𝒢 ) [(1.56)]
⇔ 𝒟 ∪ σ(ℰ ∪ℱ ) ⊂ 𝒢 . [(1.57)]

Now Definition 1.13 yields the proposition.

1.7 If Ω is finite or countable, then each of its subsets A is finite or countable as well.
Therefore,

∀ A ⊂ Ω: A =
⋃

ω∈A
{ω} ∈ σ(ℰ ) . [Def. 1.1 (c), Rem. 1.2]

Because each element A of 𝒫(Ω) is a union
⋃

ω∈A{ω} of singletons {ω}, ω ∈ A,
this implies 𝒫(Ω) ⊂ σ(ℰ ). Hence, ℰ ⊂ 𝒫(Ω) ⊂ σ(ℰ ). Therefore, Lemma 1.15 implies
σ(ℰ ) = 𝒫(Ω).

1.8 Suppose that ℰ = {A1, … , Am} and A1
j := Aj and let Ac

j denote the complement of Aj.
Then, for all (k1, … , km) ∈ {1, c}m define

B(k1,…,km) :=
m⋂

j=1
A

kj
j .
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Then

ℱ := {B(k1,…,km): (k1, … , km) ∈ {1, c}m, B(k1,…,km) ≠ Ø}

is a finite partition of Ω. Note that ℱ contains all nonempty intersections of sets Aj
or their complements, respectively, where j = 1, … , m. Now Lemma 1.20 implies the
proposition.

1.9 If ℰ1 ⊂ ℰ2 ⊂ 𝒫(Ω), then for any σ-algebra 𝒜on Ω with ℰ2 ⊂ 𝒜also ℰ1 ⊂ 𝒜. Remem-
ber, if J ⊂ I, then

⋂
i ∈ I Bi ⊂

⋂
i∈J Bi, for any sets Bi, i ∈ I. Therefore, σ(ℰ1), which is

the intersection of all σ-algebras containing ℰ1, is a subset of the intersection of all
σ-algebras containing ℰ2, which is σ(ℰ2).

1.10 (a) If Ω is finite, then 𝒫(Ω) is a finite set system. Therefore, each σ-algebra 𝒜 on Ω
is a finite set system. Because 𝒜= σ(𝒜 ), this σ-algebra is countably generated.

(b) The set N0 is countable and therefore also N
n
0 for n ∈ N. Example 1.18 then implies

that 𝒫(Nn
0) is countably generated.

1.11 Let ℋn = {]−∞, b1] ×… × ]−∞, bn]: b1, … , bn ∈ R}.
(i) For all (b1, … , bn) ∈ R

n and all m ∈ N with m < bi, i = 1, … , n,

Bm := ]−m, b1] ×… × ]−m, bn] ∈ ℐn.

According to Definition 1.1 (c) this implies

⋃

m∈N

m < bi, i = 1, … , n

Bm = ]−∞, b1] ×… × ]−∞, bn] ∈ σ(ℐn).

Hence, ℋn ⊂ σ(ℐn), which, according to (1.11) and (1.12), implies

σ(ℋn) ⊂ σ(ℐn) = ℬn.

(ii) For all a1, … , an, b1, … , bn ∈ R, with ai < bi, i = 1, … , n,

]a1, b1] ×… × ]an, bn] = ]−∞, b1] ×… × ]−∞, bn] ∖

(
n⋃

j=1
Hj

)
,

where Hj := ]−∞, b1] ×… × ]−∞, bj−1] × ]−∞, aj] × ]−∞, bj+1] ×… ×
]−∞, bn]. Hence, according to Remark 1.2, ]a1, b1] ×… × ]an, bn] ∈ σ(ℋn) and
ℐn ⊂ σ(ℋn), which, according to (1.11) and (1.12), implies

ℬn = σ(ℐn) ⊂ σ(ℋn).

1.12 If x ∈ R, then {x} = ⋂ ∞
i=1]x − 1∕i, x]. According to Equation (1.18), the intervals

]x − 1∕i, x] are elements of the generating set system of ℬ, the Borel σ-algebra on
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R. Therefore, their countable intersection is an element of ℬ. If x = (x1, … , xn) ∈ R
n,

then

{x} =
∞⋂

i=1

(
n

×
j=1

]xj −
1
i

, xj]

)
.

According to Equation (1.20), the cuboids
n

×
j=1

]xj −
1
i

, xj] are elements of the set system
ℐn and σ(ℐn) = ℬn.

1.13 Because {x} ∈ ℬ for all x ∈ R (see Exercise 1.12), we can conclude: {x} ∈ ℬ|Ω0
for

all x ∈ Ω0. Hence, if Ω0 is finite or countable, Example 1.18 implies ℬ|Ω0
= 𝒫(Ω0).

1.14 Let Ω1, … , Ωn be finite or countable sets, and let 𝒜1, … , 𝒜n be their power sets. Then
ω1 ∈ Ω1, … , ωn ∈ Ωn implies {ω1} ∈ 𝒜1, … , {ωn} ∈ 𝒜n. Therefore,

{(ω1, … , ωn)} = {ω1} ×… × {ωn} ∈
{

n

×
i=1

Ai: Ai ∈ 𝒜i, i ∈ {1, … , n}

}
.

Hence,

σ({(ω1, … , ωn)}: ω1 ∈ Ω1, … , ωn ∈ Ωn) ⊂

n⨂

i=1
𝒜i.

With Ωi being finite or countable, Ω = Ω1 ×… × Ωn is finite or countable. Therefore,

σ({(ω1, … , ωn)}: ω1 ∈ Ω1, … , ωn ∈ Ωn) = 𝒫(Ω)

(see Example 1.18). Because
n⨂

i=1
𝒜i ⊂ 𝒫(Ω), we can conclude

n⨂

i=1
𝒜i = 𝒫(Ω1 ×… × Ωn) = 𝒫

(
n

×
i=1

Ωi

)
.

1.15

(A × B)c = {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A or ω2 ∉ B}

= {(ω1, ω2) ∈ Ω1 × Ω2: (ω1 ∉ A, ω2 ∈ B) or ω2 ∉ B}

= (Ac × B) ∪ (Ω1 × Bc)

and

(Ac × B) ∩ (Ω1 × Bc)

= {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A, ω2 ∈ B, ω2 ∉ B}

= {(ω1, ω2) ∈ Ω1 × Ω2: ω1 ∉ A, ω2 ∈ B ∩ Bc = Ø}

= Ø.

1.16 Remember that (a ∈ A, b ∈ B) means (a ∈ A and b ∈ B) and that (a ∈ A and b ∈ B) and
(b ∈ B and a ∈ A) are equivalent. Let A1, B1 ∈ 𝒜1, … , An, Bn ∈ 𝒜n. Then A1 ∩ B1 ∈
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𝒜1, … , An ∩ Bn ∈ 𝒜n. Hence, A1 ×… × An ∈ ℰ , B1 ×… × Bn ∈ ℰ and (A1 ∩ B1) ×
… × (An ∩ Bn) ∈ ℰ . Furthermore,

(A1 ×… × An) ∩ (B1 ×… × Bn)

= {(ω1, … , ωn): ω1 ∈ A1, … , ωn ∈ An, ω1 ∈ B1, … , ωn ∈ Bn}

= {(ω1, … , ωn): ω1 ∈ (A1 ∩ B1), … , ωn ∈ (An ∩ Bn)}

= (A1 ∩ B1) ×… × (An ∩ Bn) ∈ ℰ .

1.17 Let Bi denote the sets defined in Remark 1.46.
(i) B1 = A1 ∈ 𝒜. For all i ∈ N, i > 1, Bi ∈ 𝒜:

Bi = Ai ∖

(
i−1⋃

j=1
Aj

)
= Ai ∩

(
i−1⋃

j=1
Aj

)c

∈ 𝒜. [Def. 1.1 (b), Rem. 1.2]

(ii) For any sequence C1, C2, … ⊂ Ω, define

n⋃

j=m
Cj := Ø, if m > n, and

n⋂

j=m
Cj := Ω, if m > n.

Then, using associativity and commutativity of the intersection, for 1 ≤ k < l,

Bk ∩ Bl =

[
Ak ∖

(
k−1⋃

j=1
Aj

)]
∩

[
Al ∖

(
l−1⋃

j=1
Aj

)]

= Ak ∩

(
k−1⋃

j=1
Aj

)c

∩ Al ∩

(
l−1⋃

j=1
Aj

)c

[A ∖ B = A ∩ Bc]

= Ak ∩

(
k−1⋂

j=1
Ac

j

)
∩ Al ∩

(
l−1⋂

j=1
Ac

j

)
[de Morgan]

= Ak ∩ Al ∩

(
k−1⋂

j=1
Ac

j

)
∩

(
k−1⋂

j=1
Ac

j

)
∩ Ac

k ∩

(
l−1⋂

j=k+1
Ac

j

)

= Ø. [Ak ∩ Ac
k = Ø]

(iii) The sets Bi are defined such that Bi ⊂ Ai, for all i ∈ I. Therefore,
⋃∞

i=1 Bi ⊂⋃∞
i=1 Ai. Furthermore, for all ω ∈ Ω,

ω ∈
∞⋃

i=1
Ai ⇒ ∃ i ∈ N: ω ∈ Ai ∧ (∀ j < i: ω ∉ Aj)

⇒ ∃ i ∈ N: ω ∈ Ac
1 ∩… ∩ Ac

i−1 ∩ Ai = Bi

⇒ ω ∈
∞⋃

i=1
Bi.

Hence,
⋃∞

i=1 Ai ⊂
⋃∞

i=1 Bi, and this implies
⋃∞

i=1 Bi =
⋃∞

i=1 Ai.
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1.18 (i) This is condition (c) of Definition 1.43.

(ii) If A1, … , An ∈ 𝒜are pairwise disjoint, then A1, A2, … with Ø = An+1 = An+2 =
… is a sequence of pairwise disjoint measurable sets. Therefore, conditions (a)
and (c) of Def. 1.43 imply

𝜇

(
n⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Ai

)
=

∞∑

i=1
𝜇(Ai) =

n∑

i=1
𝜇(Ai) +

∞∑

i=n+1
𝜇(Ø) =

n∑

i=1
𝜇(Ai).

(iii) For A, B ⊂ Ω,

A = (A ∩ B) ∪ (A ∩ Bc) = (A ∩ B) ∪ (A ∖ B)

and

(A ∩ B) ∩ (A ∩ Bc) = A ∩ B ∩ Bc = Ø.

Hence, for sets A, B ∈ 𝒜, Rule (ii) (finite additivity of 𝜇) implies proposition (iii).

(iv) This proposition is a special case of (iii) with A = Ω.

(v) Exchanging the roles of A and B in (iii), we obtain

𝜇(B) = 𝜇(A ∩ B) + 𝜇(B ∖ A).

If A ⊂ B, then A ∩ B = A; and, because 𝜇(B ∖ A) ≥ 0,

𝜇(A) = 𝜇(A ∩ B) ≤ 𝜇(A ∩ B) + 𝜇(B ∖ A) = 𝜇(B).

(vi) This rule immediately follows from proposition (iv) for 𝜇(A ∩ B) < ∞. [Note that
𝜇(A) − 𝜇(A ∩ B) is not defined if 𝜇(A) = 𝜇(A ∩ B) = ∞.]

(vii) For A, B ⊂ Ω,

A ∪ B = (A ∖ B) ∪ (A ∩ B) ∪ (B ∖ A).

Because the right-hand side is a union of pairwise disjoint sets, finite additivity
of 𝜇 yields

𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇(A ∖ B) + 𝜇(A ∩ B) + 𝜇(B ∖ A) + 𝜇(A ∩ B)
= 𝜇(A) + 𝜇(B). [Box 1.1 (iii)]

(viii) 𝜇(Ω) = 𝜇(A ∪ Ac) = 𝜇(A) + 𝜇(Ac). Hence, if 𝜇(Ω) = 𝜇(A) < ∞, then 𝜇(Ac) = 0.
Therefore, for all B ∈ 𝒜 , (v) implies 𝜇(Ac ∩ B) = 0. Furthermore, B = (A ∩ B) ∪
(Ac ∩ B) and (A ∩ B) ∩ (Ac ∩ B) = Ø. Hence, 𝜇(B) = 𝜇(A ∩ B) + 𝜇(Ac ∩ B) =
𝜇(A ∩ B). Note that, in general, 𝜇(A) = 𝜇(Ω) does not imply A = Ω.
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(ix) 𝜇(A) = 0 implies

𝜇(B) = 𝜇(A) + 𝜇(B)
≥ 𝜇(A ∪ B) [(xi)]
≥ 𝜇(B). [(v)]

Note that, in general, 𝜇(A) = 0 does not imply A = Ø.

(x) Let B := Ω ∖ Ω0. Then 𝜇(B) = 0 as well as 𝜇(A ∩ B) = 0 for all A ∈ 𝒜 [see Box
1.1 (v)]. Furthermore, for A ∈ 𝒜: A = (A ∩ Ω0) ∪ (A ∩ B), where A ∩ Ω0 and
A ∩ B are disjoint. Now, the sets A ∩ Ω0, A ∈ 𝒜, are the elements of the trace
σ-algebra and (Ω0, 𝒜 |Ω0

) = [Ω0, 𝒫(Ω0)]. Therefore, we can apply Equation
(1.31). Hence, for all A ∈ 𝒜,

𝜇(A) = 𝜇(A ∩ Ω0) + 𝜇(A ∩ B) [Box 1.1 (ii)]

=
∑

ω∈A∩Ω0

𝜇({ω}) + 𝜇(A ∩ B) [(1.31)]

=
∑

ω∈A∩Ω0

𝜇({ω}). [𝜇(A ∩ B) = 0]

(xi) Let A1, A2, … ∈ 𝒜and define B1, B2, … ∈ 𝒜by B1 = A1, and Bi = Ai ∖
⋃i−1

j=1 Bj
for i > 1 (see Rem. 1.46). Then B1, B2, … is a sequence of pairwise disjoint sets
with Bi ⊂ Ai for all i ∈ N and

⋃∞
i=1 Bi =

⋃∞
i=1 Ai. Hence,

𝜇

(
∞⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Bi

)

=
∞∑

i=1
𝜇(Bi) [Def. 1.43 (c)]

≤

∞∑

i=1
𝜇(Ai). [Box 1.1 (v)]

1.19 If the A1, … , An ∈ 𝒜 are pairwise disjoint and B ∈ 𝒜, then, for i ≠ j, i, j = 1, … , n,

(B ∩ Ai) ∩ (B ∩ Aj) = B ∩ (Ai ∩ Aj) = B ∩ Ø = Ø.

Hence, the sets B ∩ A1, … , B ∩ An are pairwise disjoint. Furthermore, condition (b) of
Remark 1.47 implies

n⋃

i=1
(B ∩ Ai) = B ∩

n⋃

i=1
Ai = B.

Therefore, additivity of 𝜇 yields

𝜇(B) = 𝜇

(
n⋃

i=1
(B ∩ Ai)

)
=

n∑

i=1
𝜇(B ∩ Ai),
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which is Equation (1.29). The proof of Equation (1.30) is literally the same except for
replacing

⋃n
i=1 by

⋃∞
i=1,

∑n
i=1 by

∑∞
i=1, and additivity of 𝜇 by σ-additivity.

1.20 Let ω ∈ Ω.
(a) According to Equation (1.32), 𝛿ω(Ø) = 1Ø(ω) = 0.

(b) According to Equation (1.32), 𝛿ω(A) = 1A(ω) ∈ {0, 1}, for all A ∈ 𝒜, and this
implies 𝛿ω(A) ≥ 0, for all A ∈ 𝒜.

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then

𝛿ω

(
∞⋃

i=1
Ai

)
= 1⋃ ∞

i=1 Ai
(ω) [(1.32)]

=
∞∑

i=1
1Ai

(ω) [(1.37)]

=
∞∑

i=1
𝛿ω(Ai). [(1.32)]

1.21 (a) According to Equation (1.40), 𝜇#(Ø) = ∑
ω ∈Ω 1Ø(ω) = 0.

(b) According to Equation (1.40), 𝜇#(A) = ∑
ω ∈Ω 1A(ω), for all finite A ∈ 𝒜 , and

𝜇#(A) = ∞, if A is infinite. This implies 𝜇#(A) ≥ 0, for all A ∈ 𝒜 .

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint and all Ai are finite, then

𝜇#

(
∞⋃

i=1
Ai

)
=

∑

ω ∈Ω
1⋃ ∞

i=1 Ai
(ω) [(1.40)]

=
∑

ω ∈Ω

∞∑

i=1
1Ai

(ω) [(1.37)]

=
∞∑

i=1

∑

ω ∈Ω
1Ai

(ω)

=
∞∑

i=1
𝜇#(Ai). [(1.40)]

Note that the set
⋃∞

i=1 Ai can be countably infinite, even if all Ai are finite. In this
case, 𝜇#

(⋃∞
i=1 Ai

)
= ∞ = ∑∞

i=1 𝜇#(Ai). If at least one of the Ai is infinite, then
⋃∞

j=1 Aj ⊃ Ai is an infinite set and 𝜇#
(⋃∞

j=1 Aj

)
≥ 𝜇#(Ai) is infinite as well.

1.22 (a) Using Equations (1.42) and (1.39),

(
∑

ω∈B
𝛿ω

)
(Ø) =

∑

ω∈B
𝛿ω(Ø) =

∑

ω∈B
1Ø(ω) =

∑

ω∈B
0 = 0.
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(b) Using Equations (1.42) and (1.39),

∀ A ∈ 𝒜 :

(
∑

ω∈B
𝛿ω

)
(A) =

∑

ω∈B
𝛿ω(A) =

∑

ω∈B
1A(ω) ≥ 0.

(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then

(
∑

ω∈B
𝛿ω

)(
∞⋃

i=1
Ai

)
=

∑

ω∈B
𝛿ω

(
∞⋃

i=1
Ai

)
[(1.42)]

=
∑

ω∈B
1⋃ ∞

i=1 Ai
(ω) [(1.39)]

=
∑

ω∈B

∞∑

i=1
1Ai

(ω) [(1.37)]

=
∑

ω∈B

∞∑

i=1
𝛿ω(Ai) [(1.39)]

=
∞∑

i=1

((
∑

ω∈B
𝛿ω

)
(Ai)

)
. [(1.42)]

1.23 (a) Equation (1.47) yields: ν(Ø) = 𝜇(Ø) = 0.

(b) Equation (1.47) also yields: ν(A) = 𝜇(A) ≥ 0, for all A ∈ 𝒞 .

(c) If A1, A2, … ∈ 𝒞 are pairwise disjoint, then

ν

(
∞⋃

i=1
Ai

)
= 𝜇

(
∞⋃

i=1
Ai

)
[Def. 1.1 (c), (1.47)]

=
∞∑

i=1
𝜇(Ai) [Def. 1.43 (c)]

=
∞∑

i=1
ν(Ai). [(1.47)]

1.24 (a) Using Equation (1.48) and Definition 1.43 (a) yields

(
∞∑

i=1
αi𝜇i

)
(Ø) =

∞∑

i=1
αi𝜇i(Ø) =

∞∑

i=1
0 = 0.

(b) Similarly, using Equation (1.48) yields, for all A ∈ 𝒜,

(
∞∑

i=1
αi𝜇i

)
(A) =

∞∑

i=1
αi𝜇i(A) = lim

n→∞

n∑

i=1
αi𝜇i(A) ≥ 0,

because 𝜇i(A) ≥ 0, and we assume αi ≥ 0.
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(c) If A1, A2, … ∈ 𝒜 are pairwise disjoint, then

(
∞∑

i=1
αi𝜇i

)(
∞⋃

j=1
Aj

)
=

∞∑

i=1
αi𝜇i

(
∞⋃

j=1
Aj

)
[(1.48)]

=
∞∑

i=1
αi

∞∑

j=1
𝜇i(Aj) [Def. 1.43 (c)]

=
∞∑

j=1

∞∑

i=1
αi𝜇i(Aj)

=
∞∑

j=1

((
∞∑

i=1
αi𝜇i

)
(Aj)

)
. [(1.48)]

Note that the last but one equation holds, because rearranging summands does not
change the sum if the terms αi and 𝜇i(Aj) are nonnegative.



2

Measurable mapping

In chapter 1, we treated the concepts of a σ-algebra and a σ-algebra generated by a set system
on a set Ω. An element A of a σ-algebra 𝒜 has been called a measurable set. We also intro-
duced the concept of a measure, which assigns a nonnegative real number or ∞ to all elements
of a σ-algebra. This chapter is devoted to the concept of a measurable mapping, related con-
cepts such as the σ-algebra generated by a mapping, and the image measure of 𝜇 under f , the
measure induced by a measurable mapping f on its codomain space. All these concepts play
an important role in integration and probability theory. In probability theory, a measurable set
is called an event, a measurable mapping f is called a random variable, and the image measure
of the probability measure P under f is called the distribution of f .

2.1 Image and inverse image

Two key concepts of this chapter are the image of a set A ⊂ Ω and the inverse image of a set
A′

⊂ Ω′ under a mapping f : Ω → Ω′. We start with the formal definitions and then illustrate
these concepts in section 2.2.

Definition 2.1 [Image and inverse image]
Let Ω, Ω′ denote two nonempty sets and f : Ω → Ω′ a mapping. Then we call

f (A) := {f (ω): ω ∈ A}, A ⊂ Ω, (2.1)

the image of A under f , and

f−1(A′) := {ω ∈ Ω: f (ω) ∈ A′}, A′
⊂ Ω′, (2.2)

the inverse image of A′ under f .

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Whereas the image f (A) is a subset of Ω′, the inverse image f−1(A′) is the set of all ele-
ments of the domain Ω for which f takes on a value in the subset A′ of its codomain Ω′. For
convenience, we also use the notation

{ f ∈ A′} := f−1(A′) and { f = ω′} := f−1({ω′}). (2.3)

Remark 2.2 [Properties of inverse images] Let f : Ω → Ω′ be a mapping, I be an index set,
A′

⊂ Ω′, and (A′
i , i ∈ I) a family of subsets A′

i of Ω′. Then

f−1[(A′)c] = [ f−1(A′)]c, (2.4)

f−1

(
⋂

i∈ I
A′

i

)
=

⋂

i∈ I
f−1(A′

i), (2.5)

f−1

(
⋃

i∈ I
A′

i

)
=

⋃

i∈ I
f−1(A′

i) (2.6)

(see Exercise 2.1). Note that, in general, the corresponding properties do not necessarily hold
for the image f (A), A ⊂ Ω. ⊲

2.2 Introductory examples

2.2.1 Example 1: Rectangles

Our first example deals with rectangles, their images, and their inverse images under a
mapping f .

The measurable space

Let [a, b], a, b ∈ R, denote the closed-interval between a and b, inclusively, and consider the
two rectangles

Ω = [0, 10] × [0, 6] and A = [2, 7] × [2, 5]

depicted on the left-hand side of Figure 2.1. The elements of Ω and A are points x = (x1, x2)
in these rectangles with coordinates x1 on the horizontal axis and x2 on the vertical axis. Fur-
thermore, let us consider a σ-algebra on Ω,

𝒜 = {Ω, Ø, A, Ac}.

The mapping and the image

Consider the set Ω′= Ω and the function f : Ω → Ω′ defined by

f (x) = 3
4
⋅ x =

(3
4
⋅ x1,

3
4
⋅ x2

)
, ∀ x ∈ Ω. (2.7)
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0
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6

1086420

Ω

A

1086420

f (Ω)

f (A)

Ω

•
•

f (x) = 3
4 · x

Figure 2.1 Rectangles and their images under a function.

Hence, f maps all points x = (x1, x2) ∈ Ω to the points f (x1, x2) ∈ Ω′. This is illustrated by
Figure 2.1 for the point x = (4, 4), which is mapped to f (x) = (3, 3). The right-hand side of
Figure 2.1 also depicts the image of A under f (i.e., f (A) = { f (x): x ∈ A}), as well as the image
f (Ω) of Ω under f .

The inverse images

We specify the σ-algebra

𝒜 ′= {Ω′, Ø, B′, (B′)c}

on Ω′, where

B′= ]4.5, 7.5] × [0, 4.5]

is the rectangle depicted on the right-hand side of Figure 2.2, and (B′)c = Ω′ ∖ B′ is its com-
plement.

Now we consider the inverse image of B′ under f [see Eq. (2.7)], that is,

f−1(B′) = ]6, 10] × [0, 6]

(see Fig. 2.2). It is the rectangle on the right side of Ω. For further examples, see Exercises 2.2
and 2.3.

0

2

4

6

1086420

Ω

f −1(B )
=  f −1(C )

1086420

B

C

Ω

Figure 2.2 Rectangles and their inverse images under a function.
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Also consider the inverse image of the rectangle

C′= ]4.5, 10] × [0, 6]

(see Fig. 2.2). Its inverse image under f is identical to the inverse image f−1(B′), that is,

f−1(C′) = f−1(B′),

which follows from

f−1(C′) = f−1[B′ ∪ (C′ ∖ B′)] [B′
⊂ C′, Fig. 2.2]

= f−1(B′) ∪ f−1(C′ ∖ B′) [(2.6)]
= f−1(B′) ∪ Ø = f−1(B′).

Note that f−1(C′ ∖ B′) = Ø, because f has been defined on Ω = [0, 10] × [0, 6]. If we would
define f on Ω = R

2, then the set f−1(C′ ∖ B′) would not be empty. (See also Exercise 2.4.)

2.2.2 Example 2: Flipping two coins

Now we consider the random experiment of flipping two coins.

The measurable space

In this random experiment, the set of possible outcomes is

Ω = {(h, h), (h, t), (t, h), (t, t)}.

This set consists of four elements (pairs). For example, the first component of the pair (h, t)
represents the outcome of flipping h = heads with the first coin, and the second component
represents the outcome of flipping t = tails with the second coin. As a σ-algebra on Ω, we
consider the power set 𝒜 = 𝒫(Ω).

The mapping

Consider the function X: Ω → Ω′ = {0, 1, 2} defined by

X[(t, t)] = 0, X[(t, h)] = 1, X[(h, t)] = 1, and X[(h, h)] = 2.

Looking at this assignment rule shows that this function may be called number of flipping
heads. Again, we consider the image of a set A ⊂ Ω under X, that is, X(A) = {X(ω): ω ∈
A}, A ⊂ Ω. For example, for A = {(h, h), (h, t)}, the image under X is X(A) = {1, 2} (see
Fig. 2.3).
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Ω Ω
X

(t, t) 0
(t, h)

1
(h, t)
(h, h) 2A

X (A)

Figure 2.3 A set and its image under a function.

The inverse images

Suppose 𝒜 ′= 𝒫(Ω′) is the power set of Ω′= {0, 1, 2}. In this example, there are 23 = 8
inverse images X−1(A′) = {ω ∈ Ω: X(ω) ∈ A′}, A′∈ 𝒜 ′. Three of these eight inverse images
are:

X−1({0}) = {(t, t)}, X−1({1}) = {(h, t), (t, h)}, X−1({2}) = {(h, h)}.

These are the events that X takes on the values 0, 1, and 2, respectively. (In order to identify the
inverse images listed above, trace back the arrows from right to left in Figure 2.4.) Furthermore,
consider the inverse images

X−1({0, 1}) = {(t, t), (h, t), (t, h)},

X−1({0, 2}) = {(t, t), (h, h)},

X−1({1, 2}) = {(h, t), (t, h), (h, h)}.

These are the events that X takes on a value in the sets {0, 1}, {0, 2}, and {1, 2}, respectively.
One of these inverse images, namely X−1(B′), with B′ := {1, 2}, is represented in Figure 2.4.
Finally,

X−1(Ω′) = Ω and X−1(Ø) = Ø.

Hence, we listed all eight inverse images X−1(A′), A′∈ 𝒜 ′. They are the eight measurable
sets that can be represented by the mapping X and the σ-algebra 𝒜 ′= 𝒫(Ω′). These sets are
listed in Table 2.1, using the notation {X ∈ A′} := X−1(A′), A′∈ 𝒜 ′, and {X = x} := X−1({x}),
{x} ∈ 𝒜 ′ [see Eq. (2.3)].

Ω Ω
X

(t, t) 0
(t, h)

1
(h, t)
(h, h) 2

X −1(B ) B

Figure 2.4 A set and its inverse image under a function.
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Table 2.1 Example of measurable sets represented by a mapping X.

{X ∈ Ω′} = X−1(Ω′) = Ω 0, 1, or 2 heads are flipped.
{X ∈ Ø} = X−1(Ø) = Ø Neither 0, 1, nor 2 heads are

flipped.
{X = 0} = X−1({0}) = {(t, t)} No heads are flipped.
{X = 1} = X−1({1}) = {(h, t), (t, h)} Heads are flipped exactly

once.
{X = 2} = X−1({2}) = {(h, h)} Two heads are flipped.
{X ∈ {0, 1}} = X−1({0, 1}) = {(h, t), (t, h), (t, t)} Not more than one heads are

flipped.
{X ∈ {0, 2}} = X−1({0, 2}) = {(h, h), (t, t)} Either two heads or no heads

at all are flipped.
{X ∈ {1, 2}} = X−1({1, 2}) = {(h, h), (h, t), (t, h)} At least one heads is flipped.

2.3 Measurable mapping

Now we define the concept of a measurable mapping and related concepts such as the σ-
algebra generated by a mapping and measurability of a mapping with respect to a mapping.

Remark 2.3 [Mapping] Remember, a mapping f : Ω → Ω′ assigns to all ω ∈ Ω a unique
f (ω) ∈ Ω′. Hence, f is, by definition, a subset of the Cartesian product Ω × Ω′, (i.e., f =
{(ω, f (ω)): ω ∈ Ω}). This implies that, instead of f : Ω → Ω′, we can also write f : Ω → Ω′′

for the same mapping, provided that f (Ω) ⊂ Ω′′. ⊲

Remark 2.4 [Identical mappings] If f , g: Ω → Ω′ are two mappings, then,

f = g ⇔ {(ω, f (ω)): ω ∈ Ω} = {(ω, g(ω)): ω ∈ Ω}. (2.8)

If f = g, we say that the two mappings are identical. Hence, even if f :Ω → Ω′ and g:Ω → Ω′′

are mappings with Ω′≠ Ω′′, it is still possible that f and g are identical. Note that (2.8) also
implies: If, for f : Ω → Ω′ and g: Ω → Ω′′, we write f , g: Ω → Ω′′′ with Ω′′′ := Ω′∪ Ω′′, then
f and g remain unchanged. ⊲

2.3.1 Measurable mapping

Now the core concept of this chapter is defined as follows:

Definition 2.5 [Measurable mapping]
Let (Ω, 𝒜 ), (Ω′, 𝒜 ′) be measurable spaces, and let f : Ω → Ω′ be a mapping. Then f is
called (𝒜, 𝒜 ′)-measurable if

f−1(A′) ∈ 𝒜, ∀ A′∈ 𝒜 ′
.
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Remark 2.6 [Notation] We use the notation

f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′)

to express that the mapping f : Ω → Ω′ is (𝒜, 𝒜 ′)-measurable. If there is no ambiguity about
𝒜 ′, then we also say that f is 𝒜 -measurable or measurable with respect to 𝒜. ⊲

Examples

Example 2.7 [Rectangles – continued] In Example 2.2.1, we considered the mapping
f : Ω → Ω′= Ω defined by f (x) = 3

4
x. Furthermore, we considered the rectangle B′ =

]4.5, 7.5] × [0, 4.5] and the inverse image

f−1(B′) = ]6, 10] × [0, 6].

If A = [2, 7] × [2, 5], then the inverse image f−1(B′) is not an element of the σ-algebra 𝒜 =
{Ω, Ø, A, Ac}. In this example, we also specified the σ-algebra𝒜 ′ = {Ω′, Ø, B′, (B′)c}. Hence,
f is not (𝒜, 𝒜 ′)-measurable. However, if we specify a σ-algebra𝒞 such that f−1(B′) ∈ 𝒞, then
f is (𝒞, 𝒜 ′)-measurable. As we see later on in this chapter, f−1(B′) ∈ 𝒞 is sufficient for f to
be (𝒞, 𝒜 ′)-measurable (see Th. 2.20). ⊲

Example 2.8 [Flipping two coins – continued] In Example 2.2.2, we considered the map-
ping X = number of flipping heads, and in Table 2.1 we listed all inverse images X−1(A′), A′∈
𝒜 ′= 𝒫({0, 1, 2}). Of course, 𝒜 = 𝒫(Ω) ensures that all inverse images X−1(A′), A′∈ 𝒜 ′,
are elements of 𝒜.

However, instead of 𝒜 = 𝒫(Ω), we might consider the σ-algebra

𝒜0 = {Ω, Ø, {(h, h), (h, t)}, {(t, h), (t, t)}}.

The element {(h, h), (h, t)} represents the event that heads are flipped in the first flip, and
{(t, h), (t, t)} is the event that tails are flipped in the first flip. Hence, the σ-algebra 𝒜0 con-
tains the events that refer to the outcome of the first flip only, whereas X represents the number
of heads in both coin flips. If we choose 𝒜 ′ to be the power set of Ω′= {0, 1, 2}, then it is
not true that all eight inverse images X−1(A′), A′∈ 𝒜 ′, are elements of 𝒜0. The inverse image
X−1({2}) = {(h, h)}, for example, is not an element of 𝒜0. Hence, if we consider the mea-
surable spaces (Ω, 𝒜0) and (Ω′, 𝒫(Ω′)), then the mapping X is not (𝒜0, 𝒫(Ω′))-measurable.
Hence, in some sense, 𝒜0 is ‘not well-adapted’ to X. ⊲

Example 2.9 [Two trivial cases] If (a) 𝒜 = 𝒫(Ω) is the power set of Ω or if (b) 𝒜 ′=
{Ω′, Ø}, then every mapping f : Ω → Ω′ is (𝒜, 𝒜 ′)-measurable. This is easily seen as follows:
(a) If 𝒜 = 𝒫(Ω) is the power set of Ω, then all inverse images f−1(A′), A′

⊂ Ω′, are elements
in 𝒜 = 𝒫(Ω), because it is the set of all subsets of Ω. (b) If 𝒜 ′= {Ω′, Ø}, then every mapping
f : Ω → Ω′ is (𝒜, 𝒜 ′)-measurable, because f−1(Ω′) = Ω and f−1(Ø) = Ø. Again, the inverse
images Ω and Ø are both elements in every σ-algebra on Ω. Hence, in both cases, (a) and (b),
every mapping f : Ω → Ω′ is (𝒜, 𝒜 ′)-measurable. ⊲
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Example 2.10 [Constant mapping] A constant mapping f : Ω → Ω′ is defined by

f (ω) = ω′, ∀ ω ∈ Ω,

where ω′ is a fixed element of Ω′. Such a constant mapping is (𝒜, 𝒜 ′)-measurable for any
σ-algebra 𝒜 on Ω and any σ-algebra 𝒜 ′ on Ω′. This is true, because for all subsets A′ of Ω′:
If ω′∈ A′, then f−1(A′) = Ω. If, in contrast, ω′∉ A′, then f−1(A′) = Ø. However, Ω and Ø are
elements of all σ-algebras on Ω. ⊲

Example 2.11 [Identity mapping] The identity mapping id: Ω → Ω defined by

id(ω) = ω, ∀ ω ∈ Ω,

is (𝒜, 𝒜0)-measurable for any pair of σ-algebras on Ω with 𝒜0 ⊂ 𝒜. This is easily seen as
follows:

id−1(A) = A, ∀ A ∈ 𝒜0.

Because we assume 𝒜0 ⊂ 𝒜 , we can conclude that id is (𝒜, 𝒜0)-measurable. ⊲

Example 2.12 [Indicator of a measurable set] Let (Ω, 𝒜 ), (Ω′, 𝒜 ′) be two measurable
spaces, where 𝒜 ′ is any σ-algebra on Ω′

⊂ R with {0}, {1} ∈ 𝒜 ′. Then the indicator 1A: Ω →
Ω′ is (𝒜, 𝒜 ′)-measurable if and only if A ∈ 𝒜. Note that the requirement {0}, {1} ∈ 𝒜 ′ is
satisfied not only by (Ω′, 𝒜 ′) := ({0, 1}, 𝒫({0, 1})), but also by (Ω′, 𝒜 ′) = (R, ℬ) and by
(Ω′, 𝒜 ′) = (R,ℬ), where ℬ denotes the Borel σ-algebra on R and ℬ the Borel σ-algebra
on R. ⊲

Example 2.13 [Indicators of unions and intersections] If (Ω, 𝒜 ) is a measurable space
and A, B ∈ 𝒜 , then 1A∩B and 1A∪B are (𝒜, ℬ)-measurable. This follows from the fact that
A ∩ B ∈ 𝒜 and A ∪ B ∈ 𝒜. For the same reason, A1, A2, … ∈ 𝒜 implies that 1⋃ ∞

i=1 Ai
is (𝒜, ℬ)-

measurable. ⊲

Example 2.14 [Constant mapping] Assume that (Ω, 𝒜 ) and (Ω′, 𝒜 ′) are measurable spaces
such that {ω′} ∈ 𝒜 ′, for all ω′∈ Ω′. Furthermore, let f : Ω → Ω′. If 𝒜 = {Ω, Ø}, then f is
(𝒜, 𝒜 ′)-measurable if and only if f is a constant mapping, that is, if and only if there is an
ω′∈ Ω′ such that f (ω) = ω′, for all ω ∈ Ω (see Exercise 2.5). Note that for (Ω′, 𝒜 ′) = (R,ℬ),
{x} ∈ℬ, for all x ∈ R. ⊲

Example 2.15 [Dichotomous function] If 𝒜 = {Ω, Ø, A, Ac} with A ⊂ Ω, then f : Ω → R

is (𝒜, ℬ)-measurable if and only if f = α11A + α21Ac for α1, α2 ∈ R (see Exercise 2.6). ⊲

Step function

Another important example of a measurable function is a step function, which is defined as
follows:



50 PROBABILITY AND CONDITIONAL EXPECTATION

Definition 2.16 [Step function]
Let A1, … , An, n ∈ N, be a finite sequence of subsets of a set Ω. Then a finite linear
combination

f =
n∑

i=1
αi1Ai

, α1, … , αn ∈ R, (2.9)

is called a step function.

Remark 2.17 [Step function and a partition of Ω] Assume that the sets A1, … , An are pair-
wise disjoint, and define An+1 := Ω ∖ (

⋃n
i=1 Ai), then {A1, … , An, An+1} is a finite partition

of Ω. If f satisfies (2.9) and αn+1 := 0, then, for all A′
⊂ R,

f−1(A′) =
⋃

i=1, … , n+1
αi ∈ A′

Ai (2.10)

(see Exercise 2.7). ⊲

Remark 2.18 [Measurability of a step function] If (Ω, 𝒜 ) is a measurable space and
A1, … , An ∈ 𝒜 , then the step function f : Ω → R defined by Equation (2.9) is (𝒜, ℬ)-
measurable (see Exercise 2.8). ⊲

Lemma 2.19 [Measurability if 𝒜 is countably generated]
Let (Ω, 𝒜 ) be a measurable space and let 𝒜 = σ(ℰ ), where ℰ is a finite (i.e., ℰ =
{A1, … , An}) or countable (i.e., ℰ = {A1, A2, …}) partition of Ω. Then f : Ω → R is
(𝒜,ℬ)-measurable if and only if there are α1, α2, … ∈ R such that f = ∑

i αi1Ai
, where

i ∈ {1, … , n} if ℰ is finite, and i ∈ N if ℰ is countable.
(Proof p. 72)

A necessary and sufficient condition of measurability

Let (Ω′, 𝒜 ′) be a measurable space and ℰ ′
⊂ 𝒜 ′. Then we denote

f−1(ℰ ′) := { f−1(A′): A′∈ ℰ ′}. (2.11)

This notation is used in the following theorem, which can be utilized for proving (𝒜, 𝒜 ′)-
measurability of a mapping f : Ω → Ω′.
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Theorem 2.20 [Measurable mapping and generating systems]
Let (Ω, 𝒜 ), (Ω′, 𝒜 ′) denote measurable spaces, let ℰ ′

⊂ 𝒜 ′, and f : Ω → Ω′. Then

σ[ f−1(ℰ ′)] = f−1[σ(ℰ ′)]. (2.12)

Furthermore, if σ(ℰ ′) = 𝒜 ′, then f is (𝒜, 𝒜 ′)-measurable if and only if f−1(A′) ∈ 𝒜, for
all A′∈ ℰ ′.

For a proof, see Klenke (2013, Theorem 1.81).
Now consider a finite or countable set Ω′. Then Theorem 2.20 and Example 1.18 immedi-

ately imply the following corollary:

Corollary 2.21 [Finite or countable generating systems]
Let (Ω, 𝒜 ), (Ω′, 𝒫(Ω′)) be measurable spaces, where Ω′ is finite or countable, and let
ℰ ′ =

{
{ω′}: ω′∈ Ω′}. Then a mapping f : Ω → Ω′ is (𝒜, 𝒫(Ω′))-measurable if and only

if f−1({ω′}) ∈ 𝒜, for all ω′ ∈ Ω′.

Example 2.22 [Rectangles – continued] In Example 2.2.1, we considered the map-
ping f : Ω → Ω′= Ω defined by f (x) = 3

4
x. Furthermore, we considered the rectangle B′ =

]4.5, 7.5] × [0, 4.5]. The set system

ℰ ′= {B′},

which contains B′ as the only element, generates the σ-algebra

𝒜 ′= {Ω′, Ø, B′, (B′)c}.

Hence according to Theorem 2.20, the mapping f is (𝒜, 𝒜 ′)-measurable provided that
f−1(B′) ∈ 𝒜. ⊲

Example 2.23 [Flipping two coins – continued] In Example 2.2.2, we defined the mapping
X = number of flipping heads with codomain Ω′= {0, 1, 2}. Now consider the system

ℰ ′= {{0}, {1}}

of subsets of Ω′. First, note that σ(ℰ ′) = 𝒫(Ω′). Therefore, Theorem 2.20 implies that X is
(𝒜, 𝒫(Ω′))-measurable for each σ-algebra 𝒜 on

Ω = {(h, h), (h, t), (t, h), (t, t)}

for which

X−1({0}) = {(t, t)} ∈ 𝒜 and X−1({1}) = {(h, t), (t, h)} ∈ 𝒜.
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This holds not only for 𝒜1 = 𝒫(Ω), but also for the σ-algebra

𝒜2 = {Ω, Ø, {(t, t)}, {(h, t), (t, h)}, {(h, h)},

{(h, h), (h, t), (t, h)}, {(h, h), (t, t)}, {(h, t), (t, h), (t, t)}}.

As mentioned before, 𝒜2 contains all events that can be represented by X (see Table 2.1). In
contrast, this does not hold for the σ-algebra

𝒜0 = {Ω, Ø, {(h, h), (h, t)}, {(t, h), (t, t)}}

(see Example 2.8). Hence, X is measurable with respect to 𝒜1 and 𝒜2, but it is not mea-
surable with respect to 𝒜0. In this application, this means that the events {(h, h), (h, t)} and
{(t, h), (t, t)} cannot be formulated in terms of X. Furthermore, some of the events that can be
formulated in terms of X are not elements of 𝒜0. For example, X−1({0}) = {(t, t)} is not an
element of 𝒜0. ⊲

2.3.2 𝛔-Algebra generated by a mapping

Let us consider again Example 2.2.2 and the mapping X = number of flipping heads. The
set that consists of the eight inverse images X−1(A′), A′∈ 𝒜 ′, is again a σ-algebra on Ω. In
a sense, this σ-algebra carries the information associated with the mapping X; it contains all
events that can be represented by X (see Table 2.1). In Theorem 2.24, we formulate the general
proposition.

Theorem 2.24 [σ-Algebra generated by a mapping]
Let f : Ω → Ω′ be a mapping, and let (Ω′, 𝒜 ′) be a measurable space. Then

f−1(𝒜 ′) := { f−1(A′): A′ ∈ 𝒜 ′} (2.13)

is a σ-algebra on Ω.

For a proof, see Klenke (2013, Theorem 1.81).

Remark 2.25 [Smallest σ-algebra] Note that f−1(𝒜 ′) is the smallest σ-algebra 𝒞 on Ω
such that f is (𝒞, 𝒜 ′)-measurable, that is,

𝒞 is a σ-algebra on Ω and f is (𝒞, 𝒜 ′)-measurable ⇒ f−1(𝒜 ′) ⊂ 𝒞 .

⊲

The set f−1(𝒜 ′) contains all sets in 𝒜 that can be represented by f and elements of 𝒜 ′.
Because f−1(𝒜 ′) is important, it has its own name and an alternative notation, which is some-
times more convenient.
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Definition 2.26 [σ-Algebra generated by a mapping]
The set f−1(𝒜 ′) defined by Equation (2.13) is called the σ-algebra generated by f
and 𝒜 ′. If there is no ambiguity about 𝒜 ′, then we also say that f−1(𝒜 ′) is generated
by f and use the notation

σ( f ) := f−1(𝒜 ′). (2.14)

Remark 2.27 [Monotonicity] Note that, for two set systems 𝒞 ′
⊂ 𝒜 ′,

f−1(𝒞 ′) ⊂ f−1(𝒜 ′), (2.15)

because f−1(𝒞 ′) = { f−1(A′): A′∈ 𝒞 ′} ⊂ { f−1(A′): A′∈ 𝒜 ′} = f−1(𝒜 ′). ⊲

Corollary 2.28 immediately follows from Definition 2.26 and the definition of (𝒜, 𝒜 ′)-
measurability (see Def. 2.5).

Corollary 2.28 [A condition equivalent to measurability]
Let f : Ω → Ω′ be a mapping, and let (Ω′, 𝒜 ′) be a measurable space. Then f is (𝒜, 𝒜 ′)-
measurable if and only if σ( f ) ⊂ 𝒜.

In the following lemma and the subsequent remark, we treat a ∩-stable generating system
(see Def. 1.36). For a σ-algebra 𝒞 and a measurable mapping f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′), we use
the notation σ(𝒞, f ) := σ(𝒞 ∪ f−1(𝒜 ′)).

Lemma 2.29 [∩-Stable generating system]
Let (Ω, 𝒜 ) be a measurable space, and let 𝒞 ⊂ 𝒜 be a σ-algebra. Furthermore, assume
that Ω′ is finite or countable and let f : (Ω, 𝒜 ) → (Ω′, 𝒫(Ω′)) be a measurable mapping.
Then the set

𝒟 := {C ∩ f−1({ω′}): ω′∈ Ω′ and C ∈ 𝒞 }

is a ∩-stable generating system of σ(𝒞, f ) := σ(𝒞 ∪ f−1[𝒫(Ω′)]).
(Proof p. 72)

Remark 2.30 [A special case] Let us consider the special case in which 𝒞 = {Ω, Ø}.
In this case, Lemma 2.29 simplifies as follows: Let (Ω, 𝒜 ) be a measurable space and
let f : (Ω, 𝒜 ) → (Ω′, 𝒫(Ω′)) be a measurable mapping, where Ω′ is finite or count-
able. Then the set { f−1({ω′}): ω′∈ Ω′} ∪ {Ø} is a ∩-stable generating system of σ( f ) :=
f−1[𝒫(Ω′)]. ⊲

Example 2.31 [σ-Algebra generated by an indicator] Let 1A: (Ω, 𝒜 ) → (R, ℬ) be the indi-
cator of A ∈ 𝒜. Then σ(1A) = {Ω, Ø, A, Ac}. The same σ-algebra is generated by 1A: (Ω, 𝒜 ) →
({0, 1}, 𝒫({0, 1})) (see Remark 2.33 for the general proposition). ⊲



54 PROBABILITY AND CONDITIONAL EXPECTATION

Example 2.32 [Flipping two coins – continued] In Example 2.2.2, we considered flipping
two coins and the measurable mapping X = number of flipping heads with codomain Ω′=
{0, 1, 2}. In this example, all elements of X−1[𝒫(Ω′)] have been listed in Table 2.1 as the
inverse images X−1(A′) of the eight sets A′ ∈ 𝒫(Ω′). Furthermore, X−1[𝒫(Ω′)] = 𝒜2, where
𝒜2 is the σ-algebra defined in Example 2.23.

Instead of choosing Ω′= {0, 1, 2} as the codomain of X, we may also choose the set R

of real numbers, (i.e., X: Ω → R is then considered to be a function into R). In this case, we
use the Borel σ-algebra ℬ on R. However, according to the following remark, the σ-algebra
X−1(ℬ) generated by X and ℬ is the same as the σ-algebra X−1[𝒫(Ω′)] generated by X and
the power set of Ω′= {0, 1, 2}. ⊲

Remark 2.33 [σ-Algebra generated by a function into a countable set] Let us consider a
function f :Ω → Ω′

⊂ R, and letℬ denote the Borel σ-algebra on R. IfΩ′ is finite or countable,
then f−1[𝒫(Ω′)] = f−1(ℬ) (see Exercise 2.9). ⊲

Example 2.34 [Joe and Ann – continued] Table 2.2 displays mappings on (Ω, 𝒜 ), all com-
ponents of which have already been specified in Example 1.9. The first mapping displayed in
Table 2.2 is the person variable U that assigns to each possible outcome ω ∈ Ω the value Joe
if ω ∈ {Joe} × ΩX × ΩY and the value Ann if ω ∈ {Ann} × ΩX × ΩY. Hence, U: Ω → ΩU is a
mapping with domain Ω = ΩU × ΩX × ΩY and codomain ΩU. It projects the first component
u of ω = (u, ωX, ωY) onto the set ΩU. Therefore, it is also called the first projection mapping.

The second mapping in this table is the treatment variable X. It assigns to each possible
outcome ω ∈ Ω the value 0 if ω ∈ ΩU × {no} × ΩY and the value 1 if ω ∈ ΩU × {yes} × ΩY.
Hence, X: Ω → Ω′ is a function with domain Ω and codomain Ω′= {0, 1}.

The third mapping is the outcome variable Y . It assigns to each ω ∈ Ω the value 0 if ω ∈
ΩU × ΩX × {−} and the value 1 if ω ∈ ΩU × ΩX × {+}. Therefore, Y: Ω → Ω′ is a function
with domain Ω and codomain Ω′ = {0, 1}. Hence, all three mappings U, X, and Y have the
same domain Ω.

Table 2.2 Joe and Ann with randomized
assignment and measurable mappings.

Elements of Ω Measurable mappings
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(Joe, no, −) .09 Joe 0 0
(Joe, no, +) .21 Joe 0 1
(Joe, yes, −) .04 Joe 1 0
(Joe, yes, +) .16 Joe 1 1
(Ann, no, −) .24 Ann 0 0
(Ann, no, +) .06 Ann 0 1
(Ann, yes, −) .12 Ann 1 0
(Ann, yes, +) .08 Ann 1 1
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Considering U: Ω → ΩU and the σ-algebra 𝒜U := {ΩU, Ø, {Joe}, {Ann}}, the σ-algebra
U−1(𝒜U) consists of the following four inverse images: the event

U−1({Joe}) = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}

that Joe is drawn, the event

U−1({Ann}) = {(Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +)}

that Ann is drawn, the sure event U−1(ΩU) = Ω that Joe or Ann are drawn, and the impossible
event U−1(Ø) = Ø that neither Joe nor Ann are drawn. ⊲

2.3.3 Final σ-algebra

Consider the mapping f : Ω → Ω′. As noted in Remark 2.25, for a σ-algebra 𝒜 ′ on Ω′,
σ( f ) = f−1(𝒜 ′) is the smallest σ-algebra on Ω for which f is measurable. In contrast, now
we consider a σ-algebra 𝒞 on Ω and look for the largest σ-algebra 𝒞 ′ on Ω′ such that f is
(𝒞, 𝒞 ′)-measurable. This σ-algebra is specified in the following lemma. It is called the final
σ-algebra.

Lemma 2.35 [Final σ-algebra]
Let f : Ω → Ω′ be a mapping and 𝒞 a σ-algebra on Ω.

(i) Then

𝒞 ′
f := {A′

⊂ Ω′: f−1(A′) ∈ 𝒞} (2.16)

is a σ-algebra on Ω′.

(ii) Furthermore, if f : (Ω, 𝒞) → (Ω′, 𝒜 ′) is a measurable mapping, then 𝒜 ′
⊂ 𝒞 ′

f .

(Proof p. 73)

Note that (ii) is a formal way of saying that 𝒞 ′
f is the largest σ-algebra on Ω′ such that f

is 𝒞 -measurable.

Definition 2.36 [Final σ-algebra]
The σ-algebra 𝒞 ′

f defined by Equation (2.16) is called the final σ-algebra of 𝒞
under f .

2.3.4 Multivariate mapping

Now consider the measurable space (×n
i=1 Ω

′
i ,
⨂n

i=1 𝒜
′
i ), and note that the definitions of

measurable mappings and of the σ-algebra generated by a mapping also apply to n-vari-
ate mappings f : Ω → Ω′

1 ×… × Ω′
n and in particular to functions for which Ω′

1 ×… × Ω′
n =

R
n.
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Lemma 2.37 [σ-Algebra generated by a multivariate mapping]
Let Ω be a nonempty set, let (Ω′

i , 𝒜
′
i ) , i = 1, … , n, n ∈ N, be measurable spaces,

and f = ( f1, … , fn) be a multivariate mapping with fi: Ω → Ω′
i , i = 1, … , n, that is,

f : Ω → ×n
i=1 Ω

′
i . Then,

σ( f1, … , fn) := σ( f ) = f−1

(
n⨂

i=1
𝒜 ′

i

)
= σ

(
n⋃

i=1
σ( fi)

)
. (2.17)

(Proof p. 74)

According to the following theorem, a multivariate mapping is measurable if and only if
all its components are measurable.

Theorem 2.38 [Measurability of multivariate mappings]
Under the assumptions of Lemma 2.37, the following two propositions are equivalent to
each other:

(a) f : (Ω, 𝒜 ) →
(
×n

i=1 Ω
′
i ,
⨂n

i=1 𝒜
′
i

)
is a measurable mapping.

(b) ∀ i = 1, … , n: fi: (Ω, 𝒜 ) → (Ω′
i , 𝒜

′
i ) is a measurable mapping.

(Proof p. 75)

Remark 2.39 [σ-Algebra generated by a family of mappings] Let I be a nonempty (finite,
countable, or uncountable) index set and let ( fi, i ∈ I) be a family of mappings fi: (Ω, 𝒜 ) →
(Ω′

i , 𝒜
′
i ). The σ-algebra generated by this family is defined as

σ( fi, i ∈ I) := σ

(
⋃

i∈ I
σ( fi)

)
. (2.18)

Equation (2.17) implies

σ( f ) = σ( fi, i ∈ I), where I = {i = 1, … , n}. (2.19)
⊲

Example 2.40 [Joe and Ann – continued] In Example 2.34, we already considered the func-
tion X: Ω → R indicating with its values 1 and 0 whether or not the drawn person is treated and
the function Y:Ω → R indicating with its values 1 and 0 whether or not the drawn person is suc-
cessful. If we specify the σ-algebra𝒜 onΩ such that X and Y are both (𝒜, ℬ)-measurable, then
the bivariate function (X, Y): Ω → R

2 is (𝒜, ℬ2)-measurable. And vice versa, if we specify
the σ-algebra 𝒜 on Ω such that the bivariate function (X, Y): Ω → R

2 is (𝒜, ℬ2)-measurable,
then X and Y are both (𝒜, ℬ)-measurable. In this example X, Y , and (X, Y) are measurable
with respect to 𝒜 whenever the two inverse images X−1({1}) and Y−1({1}) are elements of
𝒜 (see Exercise 2.10). ⊲
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Remark 2.41 [Lower dimensional multivariate mappings] Lemma 2.37 and Remark 1.23
imply

σ( fi, i ∈ J) ⊂ f−1

(
n⨂

i=1
𝒜 ′

i

)
, ∀ J ⊂ {1, … , n}.

Furthermore, Theorem 2.38 implies: If

f = ( f1, … , fn): (Ω, 𝒜 ) →

(
n

×
i=1

Ω′
i ,

n⨂

i=1
𝒜 ′

i

)

is a measurable mapping and J = {i1, … , ik} ⊂ {1, … , n}, k ≤ n, then

fJ := ( fi1 , … , fik ): (Ω, 𝒜 ) →

(
k

×
j=1

Ω′
ij
,

k⨂

j=1
𝒜 ′

ij

)

is measurable as well. ⊲

2.3.5 Projection mapping

In Definition 1.31, we introduced the product σ-algebra
⨂n

i=1 𝒜i for a finite number of mea-
surable spaces (Ωi, 𝒜i). Now we give an equivalent characterization. Let (Ωi, 𝒜i), i = 1, … , n,
be measurable spaces. Then, for j = 1, … , n, the jth projection mapping 𝜋j: ×n

i=1 Ωi → Ωj is
defined by

𝜋j(ω1, … , ωn) = ωj, ∀ (ω1, … , ωn) ∈
n

×
i=1

Ωi. (2.20)

The inverse images are

𝜋
−1
j (Aj) = Ω1 ×… × Ωj−1 × Aj × Ωj+1 ×… × Ωn, for Aj ⊂ Ωj. (2.21)

Lemma 2.42 [Product σ-algebra]
If (Ωi, 𝒜i), i = 1, … , n, are measurable spaces, then

n⨂

i=1
𝒜i = σ(𝜋1, … , 𝜋n). (2.22)

(Proof p. 75)
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2.3.6 Measurability with respect to a mapping

In Definition 2.43, we consider two mappings and the concept of a mapping being measurable
with respect to another mapping.

Definition 2.43 [Measurability with respect to a mapping]
Let f : Ω → Ω′ and h: Ω → Ω′′ be mappings, and let (Ω′, 𝒜 ′) and (Ω′′, 𝒜 ′′) be measurable
spaces. Then h is called measurable with respect to f (or f -measurable) if

h−1(𝒜 ′′) ⊂ f−1(𝒜 ′). (2.23)

If Ω′ is finite or countable, then the following corollary provides a representation for all
functions that are measurable with respect to f .

Corollary 2.44 [Measurability with respect to a discrete function]
Let f : Ω → Ω′ be a mapping; let (Ω′, 𝒫(Ω′)) be a measurable space, where Ω′ is finite
or countable; and let h: Ω → R be a function. Then h is measurable with respect to f if
and only if for all ω′∈ Ω′ there are αω′ ∈ R such that

h =
∑

ω′∈Ω′
αω′ ⋅ 1f −1({ω′}). (2.24)

(Proof p. 75)

Example 2.45 [Flipping two coins – continued] Consider the mapping X = number of
flipping heads with codomainΩ′= {0, 1, 2}, let H := {(h, t), (h, h), (t, h)}, and let 1H :Ω → Ω′′

denote the indicator of H, withΩ′′= {0, 1}. Hence, 1H indicates with its values 1 and 0 whether
or not at least one heads is flipped. If we consider the σ-algebra 𝒜 ′= 𝒫(Ω′) on Ω′ and the
σ-algebra 𝒜 ′′= 𝒫(Ω′′) on Ω′′, then

X−1(𝒜 ′) = {Ω, Ø, {(h, h)}, {(h, t), (t, h)}, {(t, t)},

{(h, h), (h, t), (t, h)}, {(h, h), (t, t)}, {(h, t), (t, h), (t, t)}}

and

1−1
H (𝒜 ′′) = {Ω, Ø, {(h, h), (h, t), (t, h)}, {(t, t)}}.

Obviously, 1−1
H (𝒜 ′′) ⊂ X−1(𝒜 ′). Therefore, 1H is measurable with respect to X, but not vice

versa. That is, X represents a more detailed information about the outcome of the random
experiment than 1H . Hence, if the value of X is known, then we can compute the value of 1H ,
but not vice versa. In our example, Figure 2.5 shows: if X(ω) = 1, then 1H(ω) = 1. However, if
1H(ω) = 1, then X(ω) = 1 or X(ω) = 2. (For a more general presentation of this property, see
Lemma 2.52.) ⊲
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1H = g ◦ X
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(t, h)

1
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0

1

Figure 2.5 A composition of two mappings.

2.4 Theorems on measurable mappings

In this section, we consider compositions of mappings, which are defined as follows: LetΩ, Ω′,
and Ω′′ be nonempty sets and let f : Ω → Ω′ and g: Ω′→ Ω′′ be mappings. Then the compo-
sition of f and g is the mapping g ◦ f : Ω → Ω′′ defined by:

g ◦ f (ω) := g[ f (ω)], ∀ ω ∈ Ω, (2.25)

(see Fig. 2.5), where g ◦ f (ω) denotes the value of the mapping g ◦ f for the argumentω. Instead
of g ◦ f , we often use the notation g( f ) and say that g( f ) is a function of f . Using this notation,
Equation (2.25) can be written as:

g( f )(ω) = g[ f (ω)], ∀ ω ∈ Ω. (2.26)

Lemma 2.46 [Compositions with a finite or countable number of values]
Let f : Ω → Ω′ be a mapping, where Ω′ is finite or countable, and let g: Ω′→ R be a
function. Furthermore, for ω′∈ Ω′, define 1f =ω′ := 1f−1({ω′}). Then,

g ◦ f = g( f ) =
∑

ω′∈Ω′
g(ω′) ⋅ 1f −1({ω′}) =

∑

ω′∈Ω′
g(ω′) ⋅ 1f =ω′ . (2.27)

(Proof p. 76)

Hence, under the assumptions of Lemma 2.46, for all ω ∈ Ω,

g ◦ f (ω) = g[ f (ω)] =
∑

ω′∈Ω′
g(ω′) ⋅ 1f −1({ω′})(ω) =

∑

ω′∈Ω′
g(ω′) ⋅ 1f =ω′(ω). (2.28)
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Example 2.47 [Flipping two coins – continued] Let us consider X = number of flip-
ping heads and the mapping g: Ω′→ Ω′′ defined by g(x) := 1{1,2}(x), for all x ∈ Ω′ (see
Fig. 2.5). Then the composition g ◦ X defines a new mapping g ◦ X: Ω → Ω′′, where Ω′′=
{0, 1}. In this example, the composition g ◦ X is identical to the indicator 1H of the event
H = {(h, h), (t, h), (h, t)} that heads are flipped at least once. ⊲

Example 2.48 [Joe and Ann – continued] In Example 2.34, we already considered the
mapping U: Ω → ΩU = {Joe, Ann} showing which person is drawn and the mapping X: Ω →
Ω′ = {0, 1} indicating whether or not the drawn person is treated. Now we can consider the
bivariate mapping (U, X): Ω → ΩU × Ω′ and we can write

X = g ◦ (U, X) = g(U, X)

as the composition of (U, X) and a (projection) mapping g,

g[(u, x)] = x, ∀ (u, x) ∈ ΩU × Ω′
.

⊲

2.4.1 Measurability of a composition

Theorem 2.49 shows that measurability is preserved by the composition of mappings.

Theorem 2.49 [Measurability of a composition]
If f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′) and g: (Ω′, 𝒜 ′) → (Ω′′, 𝒜 ′′) are measurable mappings, then the
composition g ◦ f is (𝒜, 𝒜 ′′)-measurable.

(Proof p. 76)

Remark 2.50 [σ-Algebra generated by a composition] Note that

(g ◦ f )−1(𝒜 ′′) = f−1[g−1(𝒜 ′′)] (2.29)

(see the proof of Theorem 2.49). ⊲

Example 2.51 [Flipping two coins – continued] Figure 2.5 illustrates Theorem 2.49. If
(a) X is (𝒜, 𝒜 ′)-measurable and (b) g is (𝒜 ′, 𝒜 ′′)-measurable, then 1H = g ◦ X is (𝒜, 𝒜 ′′)-
measurable. Suppose 𝒜 ′= 𝒫(Ω′) and 𝒜 ′′= 𝒫(Ω′′), where Ω′= {0, 1, 2} and Ω′′= {0, 1}.
Then the premise ‘(a) and (b)’ is satisfied if 𝒜 is such that X−1(𝒜 ′) ⊂ 𝒜. If the premise ‘(a)
and (b)’ is not satisfied, then we cannot conclude that 1H is (𝒜, 𝒜 ′′)-measurable. Note that
in this example 1H can be (𝒜, 𝒜 ′′)-measurable even if (a) and (b) do not hold. A sufficient
requirement is that {(t, t)} and {(t, h), (h, t), (h, h)}, the inverse images of {0} and {1} under
1H , respectively, are elements of 𝒜 (see Cor. 2.21). ⊲

If a mapping h is measurable with respect to a mapping f , then each element in the σ-
algebra generated by h is an element in the σ-algebra generated by f . If h is measurable with
respect to f , then, in a sense, the information represented by h is already contained in f (cf.
section 2.3.2). This is expressed in more formal terms in the following lemma, which is crucial,
such as in the general definition of conditional expectation values E(Y | X=x) (see ch. 10).
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Figure 2.6 The two step functions f and h in Example 2.55.

Lemma 2.52 [Factorization lemma of measurable functions]
Let f : Ω → Ω′ be a mapping, let (Ω′, 𝒜 ′) be a measurable space, and let h: Ω → R be a
function. Then h is measurable with respect to f , that is, h−1(ℬ) ⊂ f−1(𝒜 ′), if and only if
there is a measurable function g: (Ω′, 𝒜 ′) → (R,ℬ) such that

h = g ◦ f (2.30)

is the composition of f and g. We call g a factorization of h with respect to f .

For a proof, see Klenke (2013, Corollary 1.97).
If, instead of (R,ℬ) we consider a measurable space (Ω′′, 𝒫(Ω′′)), where Ω′′ is finite or

countable, then the elements ω′′∈ Ω′′ can be renamed by real numbers such as 1, 2, and so on.
Renaming is a one-to-one measurable function, because the σ-algebra on Ω′′ is the power set
of Ω′′ (see Example 2.9). Hence, Lemma 2.52 implies the following corollary.

Corollary 2.53 [Factorization of a mapping into a finite or countable set]
Let f : Ω → Ω′ be a mapping, (Ω′, 𝒜 ′) a measurable space, and h: Ω → Ω′′ a map-
ping, where Ω′′ is finite or countable. Then h is measurable with relation to f , that
is, h−1[𝒫(Ω′′)] ⊂ f−1(𝒜 ′), if and only if there is a measurable mapping g: (Ω′, 𝒜 ′) →
(Ω′′, 𝒫(Ω′′)) such that h = g ◦ f .

Example 2.54 [Flipping two coins – continued] If we specify Ω′= {0, 1, 2}, the σ-algebra
𝒜 ′= 𝒫(Ω′), the set Ω′′= {0, 1}, the σ-algebra 𝒜 ′′= 𝒫(Ω′′), and the function h = 1H , then
the example depicted in Figure 2.5 can be used to illustrate this corollary. The mapping g in
this figure is such that 1H = g ◦ X. ⊲

Example 2.55 [Two step functions] Figure 2.6 presents an example in which Ω = [0, 4],
A1 = [0, 1], A2 = ]1, 2], A3 = ]2, 3], and A4 = ]3, 4]. Note that the sets A1, … , A4 are pairwise
disjoint. The measurable function f : (Ω, 𝒜 ) → (R, ℬ) is defined by

f =
4∑

i=1
αi1Ai

,



62 PROBABILITY AND CONDITIONAL EXPECTATION

where α1 = 1, α2 = 2.5, α3 = 2, and α4 = 0.5. Furthermore, the function h: Ω → R is
defined by

h =
∑

j∈{1,3}
βj1Aj∪Aj+1

with β1 = 1.5 and β3 = 3. Note that σ(h) = σ({Aj ∪ Aj+1: j ∈ {1, 3}}), whereas σ( f ) =
σ({Ai: i = 1, … , 4}) (see Exercise 2.11). Therefore, h is measurable with respect to f , that
is, σ(h) ⊂ σ( f ).

According to Lemma 2.52, there is a function g: R → R such that h = g ◦ f . In fact, if we
define g by

g(x) =
∑

j∈{1,3}
βj1{αj,αj+1}(x), ∀ x ∈ R,

then h = g ◦ f . The function g takes on the value 1.5 if x = α1 = 1 or x = α2 = 2.5 and the
value 3 if x = α3 = 2 or x = α4 = 0.5. For all other x ∈ R, the value of g is 0. ⊲

Example 2.56 [Square of a real-valued function] Suppose f : (Ω, 𝒜 ) → (R, ℬ) is a real-
valued measurable function and f 2(ω) := f (ω)2, for all ω ∈ Ω.

(i) If f is nonnegative, that is, if f (ω) ≥ 0, for all ω ∈ Ω, then f and f 2 are measurable
with respect to each other, that is, σ( f ) = σ( f 2).

(ii) If there are ω1, ω2 ∈ Ω with f (ω1) < 0 < f (ω2) and f 2(ω1) = f 2(ω2), then σ( f 2) ⊂

σ( f ), but σ( f ) ≠ σ( f 2).

(See Exercise 2.13.) In a sense, σ( f ) = σ( f 2) means that f and f 2 contain the same infor-
mation, whereas σ( f 2) ⊂ σ( f ), σ( f ) ≠ σ( f 2) means that f 2 contains less information than f .
If, for example, f 2(ω) = 4, then f (ω) = 2 or f (ω) = −2. ⊲

2.4.2 Theorems on measurable functions

In the first theorem, we consider sums and differences as well as products and ratios of measur-
able functions. The sum of two functions f , h: Ω → R

n is again a function ( f + h): Ω → R
n

defined by

( f + h)(ω) :=
⎛
⎜
⎜⎝

f1 + h1...
fn + hn

⎞
⎟
⎟⎠
(ω) :=

⎛
⎜
⎜⎝

f1(ω) + h1(ω)
...

fn(ω) + hn(ω)

⎞
⎟
⎟⎠
, ∀ ω ∈ Ω.

The first parentheses in the term ( f + h)(ω) are used to make clear that f + h is a symbol of a
new function onΩ. Of course, the difference f − h is defined in the same way as f + h replacing
+ by −.

Similarly, the product f ⋅ h of two functions f , h: Ω → R is again a function ( f ⋅ h): Ω → R

defined by

( f ⋅ h)(ω) := f (ω) ⋅ h(ω), ∀ ω ∈ Ω.
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Correspondingly, f∕h: Ω → R is defined by

( f∕h)(ω) := f (ω)∕h(ω), ∀ ω ∈ Ω,

provided that h(ω) ≠ 0 for all ω ∈ Ω.

Theorem 2.57 [Sums and products of measurable functions]
If f , h: (Ω, 𝒜 ) → (Rn, ℬn) are measurable functions, then f + h and f − h are (𝒜, ℬn)-
measurable as well. Furthermore, if f , h: (Ω, 𝒜 ) → (R, ℬ) are measurable functions,
then f ⋅ h and f∕h (with h(ω) ≠ 0, for all ω ∈ Ω) are also (𝒜, ℬ)-measurable.

For a proof, see Klenke (2013, Theorem 1.91).

Remark 2.58 [Squared function] If f : (Ω, 𝒜 ) → (R, ℬ) is a measurable function, then f 2 =
f ⋅ f is also (𝒜, ℬ)-measurable. Obviously, this also applies to f n, n ∈ N. Hence, if f is (𝒜, ℬ)-
measurable, then f n is also (𝒜, ℬ)-measurable. ⊲

Example 2.59 [Scaling transformations and translations] Remember that a constant real
number can always be interpreted as a measurable function (see Example 2.10). Therefore,
Theorem 2.57 implies that, for all α ∈ R, the functions f + α, f − α, and α ⋅ f are (R, ℬ)-
measurable if f : (Ω, 𝒜 ) → (R, ℬ) is a measurable function. ⊲

Example 2.60 [Number of flipping heads] Consider flipping a coin n times, let Ω = {h, t}n,
and let 1Ai

: Ω → R denote the indicators of flipping heads at the ith flip of the coin. Then,

X =
n∑

i=1
1Ai

is the number of flipping heads. If𝒜 = 𝒫(Ω), then (Ω, 𝒜 ) is a measurable space and X is mea-
surable for any σ-algebra on R (see Example 2.9). In the case 𝒜 = 𝒫(Ω), it is not necessary
to apply Theorem 2.57. ⊲

Example 2.61 [Linear combination of two functions] Let f , h: (Ω, 𝒜 ) → (R, ℬ) be mea-
surable functions and α, β ∈ R. Then, according to Theorem 2.57, the function (α ⋅ f + β ⋅ g):
(Ω, 𝒜 ) → (R, ℬ) defined by

(α ⋅ f + β ⋅ h)(ω) = α ⋅ f (ω) + β ⋅ h(ω), ∀ ω ∈ Ω. (2.31)

is (𝒜, ℬ)-measurable. ⊲

Remark 2.62 [Positive and negative parts of a function] In Theorem 2.66, we consider
the positive and the negative parts of a function f : Ω → R. The positive part f+: Ω → R is
defined by

f+(ω) := max( f (ω), 0), ∀ ω ∈ Ω,
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Figure 2.7 Positive and negative parts of a function, and its sign function.

and the negative part f−: Ω → R by

f−(ω) := − min( f (ω), 0), ∀ ω ∈ Ω.

Hence, the value f+(ω) of the positive part of f is defined to be the greater one of the two
numbers f (ω) and 0 if they differ and f+(ω) = 0 if f (ω) = 0. In contrast, the value f−(ω) of the
negative part of f is defined to be the smaller one of the two numbers f (ω) and 0 multiplied
by −1 if they differ and f−(ω) = 0 if f (ω) = 0. Note that f+ and f− are both nonnegative
functions and that

f = f+ − f−.

⊲

Example 2.63 [Positive and negative parts of a function] The positive and negative parts of
a function are illustrated by Figure 2.7 showing the graph of the function f : R → R defined by

f (x) =
⎧
⎪
⎨
⎪⎩

x3

3
− x2

2
− 2x, if −1.81 < x < 3.315

0, otherwise.

The positive part f+ takes on the value 0 if x ≤ 0 (see the dashed line on the horizontal axis),
whereas negative part f− takes on the value 0 if x ≥ 0 (see the dotted line on the horizontal
axis). ⊲

Remark 2.64 [Absolute value function] Furthermore, we consider the absolute value func-
tion | f |: Ω → R defined by

| f |(ω) := | f (ω)| :=
{

f (ω), if f (ω) ≥ 0
−f (ω), if f (ω) < 0.
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Note that | f | = f+ + f− = max( f+, f−). Hence, in Figure 2.7, the absolute value function is
represented by the dashed and dotted lines above (if −1.81 < x < 3.315) or on (if x < −1.81
or x > 3.315) the horizontal axis. ⊲

Remark 2.65 [Sign function] In Theorem 2.66, we also refer to sgn( f ): Ω → R, called the
sign function, which is defined by

sgn( f )(ω) =
⎧
⎪
⎨
⎪⎩

1, if f (ω) > 0
0, if f (ω) = 0

−1, if f (ω) < 0.

In Figure 2.7, the graph of this function is represented by the four solid lines above, below and
on the horizontal axis, and by the big point with coordinates (0, 0). ⊲

Theorem 2.66 [Positive and negative parts of a function]
Let (Ω, 𝒜 ) be a measurable space. If f : Ω → R is (𝒜,ℬ)-measurable, then the functions
f+, f−, | f |, and sgn( f ) are (𝒜,ℬ)-measurable as well.

For a proof, see Klenke (2013, Corollary 1.89). The positive part f+, the negative part f−,
and the absolute value function | f | of a function f play important roles in integration theory
(see ch. 3).

Another implication of Theorem 2.57 on the measurability of some sets that are often used
is formulated in the following remark.

Remark 2.67 [Some important measurable sets] Let (Ω, 𝒜 ) be a measurable space, and
let f , g: (Ω, 𝒜 ) → (R,ℬ) be measurable functions. Then,

(a) {ω ∈ Ω: f (ω ≥ g(ω)} ∈ 𝒜.

(b) {ω ∈ Ω: f (ω > g(ω)} ∈ 𝒜.

(c) {ω ∈ Ω: f (ω = g(ω)} ∈ 𝒜.

(See Exercise 2.12.) ⊲

2.5 Equivalence of two mappings with respect to a measure

Now we study some properties of mappings f : Ω → Ω′ involving a measure space (Ω, 𝒜, 𝜇).
In this case, we use the notation

f : (Ω, 𝒜, 𝜇) → Ω′

to express that f : Ω → Ω′ is a mapping and that 𝜇 is a measure on the measurable space
(Ω, 𝒜 ). If there is also a σ-algebra 𝒜 ′ on Ω′, then we use the notation

f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′)
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to express that the mapping f : Ω → Ω′ is (𝒜, 𝒜 ′)-measurable and that 𝜇 is a measure on the
measurable space (Ω, 𝒜 ).

Remember, two mappings f and g are identical, that is, f = g, if and only if

{ω ∈ Ω: f (ω) ≠ g(ω)} = Ø.

A less restrictive concept is their equivalence with respect to a measure.

Definition 2.68 [Equivalence of two mappings with respect to a measure]
Let f , g: (Ω, 𝒜, 𝜇) → Ω′ be mappings. Then f and g are called 𝜇-equivalent, denoted by

f =
𝜇

g,

if there is an A ∈ 𝒜with 𝜇(A) = 0 and, for all ω ∈ Ω ∖ A, f (ω) = g(ω).

Because 𝜇(Ø) = 0, f = g implies f =
𝜇

g.

Remark 2.69 [A note on notation] If f : (Ω, 𝒜, 𝜇) → Ω′
f and g: (Ω, 𝒜, 𝜇) → Ω′

g are map-
pings, then we can choose Ω′ = Ω′

f ∪ Ω′
g and write f , g: (Ω, 𝒜, 𝜇) → Ω′ (see Rem. 2.4). ⊲

Remark 2.70 [An alternative notation] If f =
𝜇

g, we also say that f = g, 𝜇-almost every-
where (𝜇-a.e.). Furthermore, we also write

f (ω) = g(ω), for 𝜇-almost all ω ∈ Ω, (2.32)

and use f (ω) =
𝜇-a.a.

g(ω) as a shortcut. ⊲

Remark 2.71 [Singleton with a positive value of a measure] If f =
𝜇

g or, equivalently,
f (ω) =

𝜇-a.a.
g(ω), and {ω∗} ∈ 𝒜 with 𝜇({ω∗}) > 0, then

f (ω∗) = g(ω∗). ⊲

Remark 2.72 [𝜇-Equivalence, restricted functions, and compositions] Let f , g: (Ω, 𝒜, 𝜇)
→ Ω′ be mappings.

(i) If Ω′= R, then

f =
𝜇

g ⇒ 1A ⋅ f =
𝜇

1A ⋅ g, ∀ A ∈ 𝒜. (2.33)

(ii) If h: Ω′→ Ω′′ is also a mapping, then

f =
𝜇

g ⇒ h ◦ f =
𝜇

h ◦ g (2.34)

(see Exercise 2.14). ⊲
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Remark 2.73 [Equivalence relation] If ℳ is a set of mappings (Ω, 𝒜, 𝜇) → Ω′, then =
𝜇

is
an equivalence relation on ℳ (see Exercise 2.15). In other words, if f , g, h ∈ ℳ, then

(i) f =
𝜇

f (reflexivity).

(ii) g =
𝜇

f if and only if f =
𝜇

g (symmetry).

(iii) If f =
𝜇

g and g =
𝜇

h, then f =
𝜇

h (transitivity).
⊲

Definition 2.74 [Equivalence class with respect to a measure]
Let ℳ be a set of mappings (Ω, 𝒜, 𝜇) → Ω′ and let f ∈ ℳ. Then,

C( f ) := {g ∈ ℳ: g =
𝜇

f }

is called the 𝜇-equivalence class of f in ℳ and f a representative of the class C( f ).

Remark 2.75 [A partition of the set ℳ] If ℳ is a set of mappings (Ω, 𝒜, 𝜇) → Ω′, then
the set {C( f ): f ∈ ℳ} is a partition of ℳ, that is,

(a) ∀ f ∈ ℳ: C( f ) ≠ Ø.

(b) ∀ f , g ∈ ℳ: C( f ) = C(g) or C( f ) ∩ C(g) = Ø.

(c)
⋃

f ∈ℳ
C( f ) = ℳ.

(See Exercise 2.16.) ⊲

Remark 2.76 [Other properties of 𝜇-equivalence]

(i) Let f , g: (Ω, 𝒜, 𝜇) → Ω′. If 𝜇(Ω) > 0, then

∀ α ∈ Ω′, ∀ β ∈ Ω′ : f =
𝜇
α ∧ g =

𝜇
β ∧ f =

𝜇
g ⇒ α = β. (2.35)

(ii) If f , g, f ∗, g∗: (Ω, 𝒜, 𝜇) → R, then

f =
𝜇

f ∗ ∧ g =
𝜇

g∗ ⇒ f + g =
𝜇

f ∗ + g∗,

f − g =
𝜇

f ∗ − g∗,

f ⋅ g =
𝜇

f ∗ ⋅ g∗.

(2.36)
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Furthermore, suppose 𝜇({ω ∈ Ω:g(ω) = 0}) = 0, and define
f
g

: Ω → R by

f
g

(ω) :=
⎧
⎪
⎨
⎪⎩

f (ω)
g(ω)

, if g(ω) ≠ 0,

0, otherwise,
∀ ω ∈ Ω,

and let
f ∗

g∗
be defined analogously. Then

f =
𝜇

f ∗ ∧ g =
𝜇

g∗ ⇒
f
g
=
𝜇

f ∗

g∗
. (2.37)

(iii) If fi, f ∗i : (Ω, 𝒜, 𝜇) → R and αi ∈ R, i = 1, … , n, then

(∀ i = 1, … , n: fi =𝜇 f ∗i ) ⇒
n∑

i=1
αi fi =𝜇

n∑

i=1
αi f ∗i . (2.38)

(iv) If f1, f2, … , f ∗1, f ∗2, … : (Ω, 𝒜, 𝜇) → R and α1, α2, … ∈ R, then

(∀ i = 1, 2, … : fi =𝜇 f ∗i ) ⇒
∞∑

i=1
αi fi =𝜇

∞∑

i=1
αi f ∗i , (2.39)

provided that the limits denoted by the infinite sums (see Box 0.1) exist.

For proofs, see Exercise 2.17. ⊲

Remark 2.77 [Order relations for real-valued functions] For two mappings f , g: Ω → R,
we write f < g, if and only if

{ω ∈ Ω: f (ω) ≥ g(ω)} = Ø.

The notation f > g, f ≤ g, and f ≥ g is used correspondingly. ⊲

Remark 2.78 [Order relations with respect to a measure 𝜇] For functions f , g, h:
(Ω, 𝒜, 𝜇) → R, we also use the notation

f <
𝜇

g,

if there is an A ∈ 𝒜 with f (ω) < g(ω) for allω ∈ Ω ∖ A and 𝜇(A) = 0. The notation f >
𝜇

g, f ≤
𝜇

g,

and f ≥
𝜇

g is used correspondingly. Furthermore,

f <
𝜇

g and g =
𝜇

h ⇒ f <
𝜇

h. (2.40)

The analog propositions hold for >
𝜇

, ≤
𝜇

, and ≥
𝜇

(see Exercise 2.18). ⊲
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2.6 Image measure

In the definition of a measurable mapping f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′) we required f−1(A′) ∈ 𝒜, for
all A′∈ 𝒜 ′. Because a measure 𝜇 assigns a value to all elements A ∈ 𝒜, the measure 𝜇 also
assigns a value to each f−1(A′) := {ω ∈ Ω: f (ω) ∈ A′}. This is the reason for choosing the term
measurable mapping: If 𝜇 is a measure on 𝒜 and f is (𝒜, 𝒜 ′)-measurable, then there is a value
𝜇[ f−1(A′)] for all inverse images f−1(A′), A′∈ 𝒜 ′.

According to the following theorem, a measurable mapping f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′)
induces a measure on the codomain space (Ω′, 𝒜 ′).

Theorem 2.79 [Image measure]
Let f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) be a measurable mapping. Then the function 𝜇f : 𝒜 ′→ R

defined by

𝜇f (A′) := 𝜇[ f−1(A′)], ∀ A′∈ 𝒜 ′, (2.41)

is a measure on the measurable space (Ω′, 𝒜 ′).
(Proof p. 76)

Definition 2.80 [Image measure]
If f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) is a measurable mapping, then 𝜇f :𝒜 ′→ R defined by Equation
(2.41) is called the image measure of 𝜇 under f .

Example 2.81 [Rectangles – continued] Now we consider a measure 𝜇: 𝒜 → R, which is
specified by

𝜇(A) = (7 − 2) ⋅ (5 − 2) = 15

and

𝜇(Ω) = (10 − 0) ⋅ (6 − 0) = 60.

This specification determines the areas of all four sets in 𝒜 , because 𝜇(Ac) = 𝜇(Ω) − 𝜇(A) =
60 − 15 = 45 and 𝜇(Ø) = 0. Hence, the measure space (Ω, 𝒜, 𝜇) is completely determined.
Note that 𝜇 is the restriction of the Lebesgue measure 𝜆2 to the σ-algebra𝒜 (i.e., 𝜇(A) = 𝜆2(A),
for all A ∈ 𝒜 ).

In Example 2.2.1, we considered the mapping f : Ω → Ω′= Ω defined by f (x) = 3
4
x.

Furthermore, we considered the rectangle B′ = ]4.5, 7.5] × [0, 4.5] and the σ-algebra 𝒜 ′ =
{Ω′, Ø, B′, (B′)c}. If we specify 𝒜 such that f−1(B′) ∈ 𝒜 , then f is (𝒜, 𝒜 ′)-measurable.
In this case, all inverse images f−1(A′) of sets A′∈ 𝒜 ′ are elements of the σ-algebra 𝒜.
Therefore, the areas 𝜆2[ f−1(A′)] of these inverse images are defined by the measure 𝜆2 on
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𝒜 that assigns the area to all elements of 𝒜. If we specify 𝒜 = {Ω, Ø, f−1(B′), f−1[(B′)c]},
then

𝜆2f
(B′) = 𝜆2[ f−1(B′)] = 𝜆2(]6, 10] × [0, 6]) = (10 − 6) ⋅ (6 − 0) = 24,

𝜆2f
((B′)c) = 𝜆2( f−1[(B′)c]) = 𝜆2([0, 6] × [0, 6]) = (6 − 0) ⋅ (6 − 0) = 36,

𝜆2f
(Ω′) = 60, and 𝜆2f

(Ø) = 0. Then the function 𝜆2f
: 𝒜 ′ → R defined by

𝜆2f
(B′) = 𝜆2[ f−1(B′)], ∀ B′ ∈ 𝒜 ′,

is again a measure, the image measure of 𝜆2 under f . Therefore, (Ω′, 𝒜 ′, 𝜆2f
) is a measure

space.
Note that the image measure 𝜆2f

on the σ-algebra 𝒜 ′ differs from the area measure on 𝒜 ′.

In fact, the area of B′ is (7.5 − 4.5) ⋅ 4.5 = 13.5, and the area of (B′)c is 60 − 13.5 = 46.5. ⊲

Remark 2.82 [Cumulation of the values 𝜇({ω})] If {ω} ∈ 𝒜 , for all ω ∈ Ω, then

𝜇f ({ω′}) =
∑

ω: f (ω)=ω′
𝜇({ω}), if {ω′} ∈ 𝒜 ′ (2.42)

provided that the sum is over a finite or countable number of summands. The measure 𝜇 assigns
to the singletons and other elements A ∈ 𝒜 a nonnegative number 𝜇(A), and f maps each
element ω ∈ Ω to an element ω′ in Ω′. Thereby, it translates the values 𝜇(A) of the measure 𝜇
to their images f (A). In particular, this applies to the singletons {ω}. This is illustrated in the
following example. ⊲

Example 2.83 [Flipping two coins – continued] In this example,

P({ω}) = 1
4

, ∀ ω ∈ Ω, (2.43)

uniquely defines a measure P: 𝒫(Ω) → R and the measure space
(
Ω, 𝒫(Ω), P

)
. The reason

is that the singletons {ω} are pairwise disjoint and Rule (x) of Box 1.1 implies

P(A) = P

(
⋃

ω∈A
{ω}

)
=

∑

ω∈A
P({ω}), ∀ A ∈ 𝒜 .

For instance, the set A = flipping one and only one head is the union A = {(h, t)} ∪ {(t, h)} =
{(h, t), (t, h)}. Hence,

P(A) =
∑

ω∈A
P({ω}) = P({(h, t)}) + P({(t, h)}) = 1

4
+ 1

4
= 1

2
.
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Now consider Figure 2.4 and realize that each arrow translates the value 𝜇({ω}) = 1
4

from
left to right. According to Equation (2.42), this yields

PX({0}) = P[X −1({0})] = P[{(t, t)}] = 1
4

,

PX({1}) = P[X −1({1})] = P[{(t, h), (h, t)}] = 2
4

,

and

PX({2}) = P[X −1({2})] = P[{(h, h)}] = 1
4
.

⊲

Example 2.84 [Image measure under a step function] If f : (Ω, 𝒜, 𝜇) → (R, ℬ) is mea-
surable such that f = ∑n

i=1 αi1Ai
with pairwise different α1, … , αn ∈ R, αi ≠ 0, and pairwise

disjoint Ai ∈ 𝒜 , i = 1, … , n, and if we define An+1 := Ω ∖ (
⋃n

i=1 Ai) and αn+1 := 0, then the
image measure is

𝜇f =
n+1∑

i=1
𝜇(Ai) ⋅ 𝛿αi

(2.44)

(see Exercise 2.19). Equation (2.44) generalizes Equation (2.42): For all ω ∈ Ai

f (ω) = αi ⋅ 1Ai
(ω) = αi.

Hence, f translates the value 𝜇(Ai) to αi ∈ R and 𝜇f assigns the value 𝜇(Ai) to the singleton
{αi}, i = 1, … , n + 1. ⊲

Our next theorem deals with the image measures of 𝜇-equivalent measurable mappings.
As a random variable is a particular measurable mapping and the distribution of a random
variable a particular image measure (see section 5.1), this theorem has important implications
on all concepts that in some sense describe properties of distributions of random variables such
as expectations, variances, covariances, and so on.

Theorem 2.85 [𝜇-Equivalence implies equality of image measures]
If f , g: (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) are measurable mappings, then

f =
𝜇

g ⇒ 𝜇f = 𝜇g. (2.45)

(Proof p. 77)

In Theorem 2.86, we present a necessary and sufficient condition for 𝜇-equivalence of two
compositions g ◦ f and g∗◦ f .
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Theorem 2.86 [𝜇-Equivalence of compositions]
If f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) and g, g∗: (Ω′, 𝒜 ′) → (R,ℬ) are measurable mappings, then

g =
𝜇f

g∗ ⇔ g ◦ f =
𝜇

g∗◦ f . (2.46)

(Proof p. 77)

2.7 Proofs

Proof of Lemma 2.19

(a) If f = ∑
i αi1Ai

, then for all B ∈ℬ,

f−1(B) =
⋃

i: αi ∈B
Ai ∈ 𝒜,

because 𝒜 is closed with respect to finite and countable unions.

(b) Assume that there are no α1, α2, … ∈ R such that f = ∑
i αi1Ai

. Then there are an i and
elements ω1, ω2 ∈ Ai with f (ω1) ≠ f (ω2). Applying Equation (2.5) yields

f−1({f (ω1)}) ∩ f−1({f (ω2)}) = Ø.

Furthermore, because ωj ∈ f−1({f (ωj)}), j = 1, 2,

f−1({f (ω1)}) ∩ Ai ≠ Ø, and f−1({f (ω2)}) ∩ Ai ≠ Ø.

Therefore, we conclude: f−1({f (ω1)}) ∉ 𝒜 and f−1({f (ω2)}) ∉ 𝒜 . Because {f (ω1)},
{f (ω2)} ∈ℬ, it follows that f is not (𝒜,ℬ)-measurable.

Proof of Lemma 2.29

(i) ∩-stability of 𝒟 . If C1, C2 ∈ 𝒞 and ω′
1, ω′

2 ∈ Ω′, then

[C1 ∩ f−1({ω′
1})] ∩ [C2 ∩ f−1({ω′

2})]

= (C1 ∩ C2) ∩ [ f−1({ω′
1}) ∩ f−1({ω′

2})] [∩ is associative and commutative]

=

{
(C1 ∩ C2) ∩ f−1({ω′

1}), if ω′
1 = ω′

2

Ø, if ω′
1 ≠ ω′

2

[(2.5)]

is an element of 𝒟 , because C1 ∩ C2 ∈ 𝒞 and Ø ∈ 𝒞 , which follows from the defini-
tion of a σ-algebra.
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(ii) Denote 𝒜 ′= 𝒫(Ω′), and define σ(𝒞, f ) := σ[𝒞∪ f−1(𝒜 ′)].
(a) σ(𝒟) ⊂ σ[𝒞∪ f−1(𝒜 ′)]. Obviously, { f−1({ω′}): ω′∈ Ω′} ⊂ f−1(𝒜 ′). Therefore,

𝒟 = {C ∩ f−1({ω′}): ω′∈ Ω′, C ∈ 𝒞}

⊂ {C ∩ f−1(A′): A′∈ 𝒜 ′, C ∈ 𝒞}

⊂ σ[𝒞∪ f−1(𝒜 ′)]. [Rem. 1.2]

Hence, according to Remark 1.23, σ(𝒟) ⊂ σ[𝒞∪ f−1(𝒜 ′)].

(b) σ[𝒞∪ f−1(𝒜 ′)] ⊂ σ(𝒟). Because Ω ∈ 𝒞 and Ω ∈ f−1(𝒜 ′), all C ∈ 𝒞 and all
f−1(A′) are elements of σ(𝒟) (see Def. 1.1, Ω′ is finite or countable). Therefore,
𝒞∪ f−1(𝒜 ′) ⊂ σ(𝒟). Proposition (1.11) then implies σ[𝒞∪ f−1(𝒜 ′)] ⊂ σ(𝒟).

Proof of Lemma 2.35

(i) We have to show that 𝒞 ′
f satisfies conditions (a) to (c) of Definition 1.1.

(a)

Ω = f−1(Ω′) ∈ 𝒞 ⇒ Ω′∈ 𝒞 ′
f . [(2.16)]

(b)

A′∈ 𝒞 ′
f ⇒ f−1(A′) ∈ 𝒞 [(2.16)]

⇒ f−1(A′)c = f−1[(A′)c] ∈ 𝒞 [Def. 1.1(b), (2.4)]

⇒ (A′)c ∈ 𝒞 ′
f . [(2.16)]

(c)

A′
1, A′

2, … ∈ 𝒞 ′
f ⇒ f−1(A′

1), f−1(A′
2), … ∈ 𝒞 [(2.16)]

⇒
∞⋃

i=1
f−1(A′

i) = f−1

(
∞⋃

i=1
A′

i

)
∈ 𝒞 [Def. 1.1(c), (2.6)]

⇒
∞⋃

i=1
A′

i ∈ 𝒞 ′
f . [(2.16)]

(ii) For all A′∈ 𝒜 ′,

A′∈ 𝒜 ′ ⇒ f−1(A′) ∈ 𝒞 [(𝒞, 𝒜 ′)-measurability of f ]

⇒ A′∈ 𝒞 ′
f . [(2.16)]

Hence, (𝒞, 𝒜 ′)-measurability of f implies 𝒜 ′
⊂ 𝒞 ′

f .
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Proof of Lemma 2.37

First, note that, for A′
i ∈ 𝒜 ′

i , i = 1, … , n,

f−1(A′
1 ×… × A′

n) = {ω ∈ Ω: f (ω) ∈ A′
1 ×… × A′

n}

= {ω ∈ Ω: ( f1(ω), … , fn(ω)) ∈ A′
1 ×… × A′

n}

= {ω ∈ Ω: f1(ω) ∈ A′
1, … , fn(ω) ∈ A′

n}

=
n⋂

i=1
{ω ∈ Ω: fi(ω) ∈ A′

i}

=
n⋂

i=1
f−1
i (A′

i).

(2.47)

Hence,

σ( f ) =

{
f−1(A′): A′ ∈

n⨂

i=1
𝒜 ′

i

}
[Def. 2.26]

= σ({ f−1(A′
1 ×… × A′

n): A′
i ∈ 𝒜 ′

i , i = 1, … , n}) [Th. 2.20, Defs. 1.13, 1.31]

= σ({f−1
1 (A′

1) ∩… ∩ f−1
n (A′

n): A′
i ∈ 𝒜 ′

i , i = 1, … , n}) [(2.47)]

⊃ σ

(
n⋃

i=1

{
f−1
i (A′

i) ∩
n⋂

j=1, j≠ i
f−1
j (Ω′

j): A′
i ∈ 𝒜 ′

i , i = 1, … , n

})
[Rem. 1.23]

= σ

(
n⋃

i=1

{
f−1
i (A′

i): A′
i ∈ 𝒜 ′

i , i = 1, … , n
}
)

[ f−1
j (Ω′

j) = Ω]

= σ

(
n⋃

i=1
σ( fi)

)
. [Def. 2.26]

Furthermore,

{f−1
1 (A′

1) ∩… ∩ f−1
n (A′

n): A′
i ∈ 𝒜 ′

i , i = 1, … , n}

⊂ σ

(
n⋃

i=1
{f−1

i (A′
i): A′

i ∈ 𝒜 ′
i , i = 1, … , n}

)
. [Rem. 1.2, finite intersections]

Therefore,

σ

(
n⋃

i=1
σ( fi)

)
= σ

(
n⋃

i=1
{ f−1

i (A′
i): A′

i ∈ 𝒜 ′
i , i = 1, … , n}

)
[Def. 2.26]

⊃ σ({f−1
1 (A′

1) ∩… ∩ f−1
n (A′

n): A′
i ∈ 𝒜 ′

i , i = 1, … , n}) [Rem. 1.23]

= σ( f ).

Hence, σ( f ) = σ
(⋃n

i=1 σ( fi)
)
.
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Proof of Theorem 2.38

(b) ⇒ (a) For all i = 1, … , n: Let A′
i ∈ 𝒜 ′

i . If fi is measurable, then f−1
i (A′

i) ∈ 𝒜. Hence,

f−1(A′
1 ×… × A′

n) = {ω ∈ Ω: f (ω) ∈ A′
1 ×… × A′

n}

=
n⋂

i=1
f−1
i (A′

i) ∈ 𝒜.

Because {A′
1 ×… × A′

n : A′
i ∈ 𝒜 ′

i , i = 1, … , n} is a generating system of
⨂n

i=1 𝒜
′
i , Theorem

2.20 implies that f is measurable.
(a) ⇒ (b) If f is measurable, then for all i = 1, … , n,

f−1
i (𝒜 ′

i ) = { f−1
i (A′

i): A′
i ∈ 𝒜 ′

i }

=

{
f−1
i (A′

i) ∩
n⋂

j=1, j≠ i
f−1
j (Ω′

j): A′
i ∈ 𝒜 ′

i

}

= { f−1(Ω′
1 ×… × Ω′

i−1 × A′
i × Ω′

i+1 ×… × Ω′
n): A′

i ∈ 𝒜 ′
i } [(2.47)]

⊂ f−1

(
n⨂

i=1
𝒜 ′

i

)
⊂ 𝒜.

Proof of Lemma 2.42

Consider the projection mappings 𝜋1, … , 𝜋n defined by Equation (2.20) and the mapping

𝜋 = (𝜋1, … , 𝜋n):

(
n

×
i=1

Ωi,
n⨂

i=1
𝒜i

)
→

(
n

×
i=1

Ωi,
n⨂

i=1
𝒜i

)
.

Analogously to the proof of Lemma 2.37 and using Definition 1.31,

n⨂

i=1
𝒜i = σ({A1 ×… × An: Ai ∈ 𝒜i, i = 1, … , n})

= σ({𝜋−1(A1 ×… × An): Ai ∈ 𝒜i, i = 1, … , n}) [(2.20), (2.21)]

= σ(𝜋) [Th. 2.20, (2.12)]

= σ(𝜋i, i = 1, … , n). [Lem. 2.37, (2.18)]

Proof of Corollary 2.44

If Ω′ is finite or countable and we consider the measurable space (Ω′, 𝒫(Ω′)), then σ( f ) =
σ[{ f−1({ω′}): ω′∈ Ω′}] [see Lemma 2.29 with 𝒞 = {Ω, Ø}]. Because { f−1({ω′}): ω′∈ Ω′}
is a finite or countable partition ofΩ, this corollary is an immediate implication of Lemma 2.19.



76 PROBABILITY AND CONDITIONAL EXPECTATION

Proof of Lemma 2.46

For all ω ∈ Ω and all ω′∈ Ω′,

g[ f (ω)] ⋅ 1f =ω′ (ω) = g(ω′) ⋅ 1f =ω′(ω) =
{

0, if f (ω) ≠ ω′

g(ω′), if f (ω) = ω′.
(2.48)

This equation is equivalent to

g( f ) ⋅ 1f =ω′ = g(ω′) ⋅ 1f =ω′ . (2.49)

Because the set { f−1({ω′}): ω′∈ Ω′} is a finite or countable partition of Ω we can conclude:
1Ω =

∑

ω′∈Ω′
1f =ω′ . Therefore,

g( f ) = g( f ) ⋅ 1Ω =
∑

ω′∈Ω′
g( f ) ⋅ 1f =ω′ =

∑

ω′∈Ω′
g(ω′) ⋅ 1f =ω′ ,

and this implies Equation (2.27).

Proof of Theorem 2.49

If f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′), g: (Ω′, 𝒜 ′) → (Ω′′ 𝒜 ′′) are measurable mappings, then, according
to Corollary 2.28, f−1(𝒜 ′) ⊂ 𝒜 and g−1(𝒜 ′′) ⊂ 𝒜 ′. Hence, for all A′′∈ 𝒜 ′′,

(g ◦ f )−1(A′′) = {ω ∈ Ω: g[ f (ω)] ∈ A′′}

= {ω ∈ Ω: f (ω) ∈ g−1(A′′)}

= f−1[g−1(A′′)].

Furthermore,

f−1[g−1(𝒜 ′′)] ⊂ f−1(𝒜 ′) [(2.15)]

⊂ 𝒜. [Def. 2.5]

Proof of Theorem 2.79

We show that 𝜇f has the properties (a) to (c) required in Definition 1.43. For each property of
𝜇f we use the corresponding property of 𝜇.

(a) 𝜇f (Ø) = 𝜇[ f−1(Ø)] = 𝜇(Ø) = 0.

(b) For all A′∈ 𝒜 ′: 𝜇f (A′) = 𝜇[ f−1(A′)] ≥ 0.

(c) If A′
1, A′

2, … ∈ 𝒜 ′ are pairwise disjoint, then, according to Equation (2.5), for i ≠ j,

f−1(A′
i) ∩ f−1(A′

j) = f−1(A′
i ∩ A′

j) = f−1(Ø) = Ø,
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that is, the inverse images f−1(A′
1), f−1(A′

2), … are pairwise disjoint as well. There-
fore,

𝜇f

(
∞⋃

i=1
A′

i

)
= 𝜇

(
f−1

(
∞⋃

i=1
A′

i

))
[(2.41)]

= 𝜇

(
∞⋃

i=1
f−1(A′

i)

)
[(2.6)]

=
∞∑

i=1
𝜇( f−1(A′

i)) [Def. 1.43(c)]

=
∞∑

i=1
𝜇f (A′

i). [(2.41)]

Proof of Theorem 2.85

If f =
𝜇

g, then there is a set A ∈ 𝒜 satisfying

f (ω) = g(ω), ∀ ω ∈ Ω ∖ A and 𝜇(A) = 0.

Monotonicity of 𝜇 implies 𝜇({ω ∈ A: f (ω) ∈ A′}) = 0 = 𝜇({ω ∈ A: g(ω) ∈ A′}) for all A′ ∈
𝒜 ′. Hence, using additivity of 𝜇,

𝜇f (A′) = 𝜇[ f−1(A′)]

= 𝜇({ω ∈ Ω ∖ A: f (ω) ∈ A′}) + 𝜇({ω ∈ A: f (ω) ∈ A′})

= 𝜇({ω ∈ Ω ∖ A: g(ω) ∈ A′}) + 𝜇({ω ∈ A: g(ω) ∈ A′})

= 𝜇[g−1(A′)] = 𝜇g(A′).

Proof of Theorem 2.86

For measurable functions g, g∗: (Ω′, 𝒜 ′) → (R,ℬ) define A′ := {ω′∈ Ω′: g(ω′) ≠ g∗(ω′)}.
Note that A′∈ 𝒜 ′ [see Rem. 2.67 (c)]. Then

f−1(A′) = {ω ∈ Ω: f (ω) ∈ A′}

= {ω ∈ Ω: g[ f (ω)] ≠ g∗[ f (ω)]}

= {ω ∈ Ω: (g ◦ f )(ω) ≠ (g∗◦ f )(ω)}.

Hence, g =
𝜇f

g∗ ⇔ 𝜇f (A′) = 0 ⇔ 𝜇[ f−1(A′)] = 0 ⇔ g ◦ f =
𝜇

g∗◦ f .



78 PROBABILITY AND CONDITIONAL EXPECTATION

Exercises

2.1 Prove Equations (2.4) to (2.6).

2.2 Consider Example 2.2.1 and compute the inverse images of the sets {(4.5, 0)},
{(7.5, 0)}, {(7.5, 4.5)}, and {(4.5, 4.5)} under the function

f (x1, x2) = 3
4
⋅ (x1, x2) =

(3
4
⋅ x1,

3
4
⋅ x2

)
.

2.3 Consider Example 2.2.1 and specify the inverse images of the rectangles [8, 10] × [0, 2]
and [3, 7.5] × [0, 3] under the function f : Ω → Ω′ defined by f (x1, x2) = 3

4
⋅ (x1, x2).

2.4 Consider Example 2.2.1 and use Equation (2.4) to determine the inverse image
f−1[(C′)c].

2.5 Prove the proposition of Example 2.14.

2.6 Prove the proposition of Example 2.15.

2.7 Prove the proposition of Example 2.17.

2.8 Prove the proposition of Remark 2.18.

2.9 Prove the proposition formulated in Remark 2.33.

2.10 Consider Example 2.40 and show that X, Y , and (X, Y) are measurable with respect to
𝒜 whenever the two inverse images X−1({1}) and Y−1({1}) are elements of 𝒜.

2.11 In Example 2.55, we considered Ω = [0, 4], A1 = [0, 1], A2 = ]1, 2], A3 = ]2, 3], and
A4 = ]3, 4]. There, we also defined the functions f and h. Show that σ(h) = σ({Aj ∪
Aj+1: j ∈ J}) and σ( f ) = σ({Ai: i = 1, … , 4}). Furthermore, show σ(h) ⊂ σ( f ).

2.12 Prove the propositions of Remark 2.12.

2.13 Prove the proposition of Example 2.56.

2.14 Prove the propositions of Remark 2.72.

2.15 Consider Remark 2.73 and show: If ℳ is a set of mappings (Ω, 𝒜, 𝜇) → Ω′, then =
𝜇

is
an equivalence relation on ℳ.

2.16 Show that {C( f ): f ∈ ℳ} is a partition of ℳ (see Remark 2.75).

2.17 Prove the propositions of Remark 2.76.

2.18 Prove proposition (2.40).

2.19 Prove the proposition of Example 2.84.

Solutions

2.1 Equation (2.4):

f−1[(A′)c] = {ω ∈ Ω: f (ω) ∈ (A′)c} = {ω ∈ Ω: f (ω) ∉ A′} = [ f−1(A′)]c
.
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Equation (2.5):

f−1

(
⋂

i∈ I
A′

i

)
=

{
ω ∈ Ω: f (ω) ∈

⋂

i∈ I
A′

i

}
= {ω ∈ Ω: f (ω) ∈ A′

i , ∀ i ∈ I}

=
⋂

i∈ I
{ω ∈ Ω: f (ω) ∈ A′

i} =
⋂

i∈ I
f−1(A′

i).

Equation (2.6):

f−1

(
⋃

i∈ I
A′

i

)
=

{
ω ∈ Ω: f (ω) ∈

⋃

i∈ I
A′

i

}
= {ω ∈ Ω: ∃ i ∈ I: f (ω) ∈ A′

i}

=
⋃

i∈ I
{ω ∈ Ω: f (ω) ∈ A′

i} =
⋃

i∈ I
f−1(A′

i).

2.2 The inverse images are the sets f−1[{(4.5, 0)}] = {(6, 0)}, f−1[{(7.5, 0)}] = {(10, 0)},
f−1[{(7.5, 4.5)}] = {(10, 6)}, and f−1[{(4.5, 4.5)}] = {(6, 6)}.

2.3 f−1([8, 10] × [0, 2]) = Ø and f−1([3, 7.5] × [0, 3]) = [4, 10] × [0, 4].

2.4 According to Equation (2.4), the inverse image of (C′)c under f is

f−1[(C′)c] = [ f−1(C′)]c

= Ω ∖ (]6, 10] × [0, 6])

= ([0, 10] × [0, 6]) ∖ (]6, 10] × [0, 6])

= [0, 6] × [0, 6].

2.5 If f : Ω → Ω′ is constant, then, according to Example 2.10, it is (𝒜, 𝒜 ′)-measurable for
𝒜 = {Ω, Ø}. Now, assume that f is not constant, that is, ∃ ω1, ω2 ∈ Ω: f (ω1) ≠ f (ω2).
According to our assumptions,

{f (ω1)}, {f (ω2)} ∈ 𝒜 ′
.

Furthermore, ωi ∈ f−1[ f {(ωi)}], for i = 1, 2, that is, the inverse images are nonempty
sets. Now, f (ω1) ≠ f (ω2) implies

{f (ω1)} ∩ {f (ω2)} = Ø,

and, using Equation (2.5),

f−1({f (ω1)}) ∩ f−1({f (ω2)}) = f−1({f (ω1)} ∩ {f (ω2)}) = f−1(Ø) = Ø.

Hence, the inverse images are nonempty disjoint sets, and therefore none of them is in
𝒜 = {Ω, Ø}. This implies that f is not (𝒜, 𝒜 ′)-measurable if it is not constant.
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2.6 We consider {A, Ac, Ω, Ø}. If f = α11A + α21Ac , then for all A′ ∈ ℬ,

f−1(A′) =
⎧
⎪
⎨
⎪⎩

Ø, if α1 ∉ A′, α2 ∉ A′

A, if α1 ∈ A′, α2 ∉ A′

Ac, if α1 ∉ A′, α2 ∈ A′

Ω, if α1 ∈ A′, α2 ∈ A′.

Hence, f is (𝒜, ℬ)-measurable. (Note that this also holds if A = Ø or A = Ω, and also
if α1 = α2.)

Now assume that f is an (𝒜, ℬ)-measurable function.
(a) If f takes on only one single value, say α, then

f = α1Ω = α11A + α21Ac , with α1 = α2 = α.

(b) If f takes on exactly two different values β1 ≠ β2, then f−1({β1, β2}) = f−1({β1}) ∪
f−1({β2}) = Ω, and according to Equation (2.5), f−1({β1}) ∩ f−1({β2}) = Ø, and
f−1({βi}) ≠ Ø, for i = 1, 2. Hence, f is (𝒜, ℬ)-measurable if and only if

f−1({β1}) = A or f−1({β1}) = Ac and A, Ac ≠ Ø.

This implies

f = β11A + β21Ac or f = β21A + β11Ac ,

respectively.

(c) If f takes on three or more pairwise different values, then, using the same kind of
argument as in (a), we can conclude that there are at least three pairwise disjoint
and nonempty inverse images under f , say A1, A2, A3 ⊂ Ω. Hence, in this case f is
not (𝒜, ℬ)-measurable.

2.7 If A1, … , An ∈ 𝒜 are pairwise disjoint, we define An+1 := Ω ∖ (
⋃n

i=1 Ai), and αn+1 :=
0, then

f =
n∑

i=1
αi1Ai

=
n+1∑

i=1
αi1Ai

.

Because A1, … , An+1 are pairwise disjoint and
⋃n+1

i=1 Ai = Ω, there is, for all ω ∈ Ω,
exactly one i ∈ {1, … , n + 1} such that ω ∈ Ai, and therefore f (ω) = αi. Hence, the
codomain of f is {α1, … , αn+1}. Vice versa, for all αi, i = 1, … , n + 1, we obtain the
inverse image

f−1({αi}) = {ω ∈ Ω: f (ω) = αi} =
⋃

j: αi =αj

Aj (2.50)
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(If the α1, … , αn+1 are pairwise different, then f−1({αi}) = Ai.) Now, for all A′
⊂ R,

f−1(A′) = {ω ∈ Ω: f (ω) ∈ A′} [Def. 2.1]

=

{
ω ∈ Ω: f (ω) ∈

⋃

i: αi ∈A′
{αi}

}
[codomain of f is {α1, … , αn+1}]

= f−1

(
⋃

i: αi ∈A′
{αi}

)
[Def. 2.1]

=
⋃

i: αi ∈A′
f−1({αi}) [(2.6)]

=
⋃

i: αi ∈A′
Ai. [(2.50)]

2.8 If A1, … , An ∈ 𝒜 are pairwise disjoint, we define An+1 := Ω ∖ (
⋃n

i=1 Ai), and
αn+1 := 0, then

∀ A′ ∈ ℬ: f−1(A′) =
⋃

i=1, … , n+1
αi ∈ A′

Ai ∈ 𝒜,

[see Eq. (2.10)].
If A1, … , An ∈ 𝒜 are not pairwise disjoint, define the 2n sets

Bj := Ac1( j)
1 ∩… ∩ Acn( j)

n ∈ 𝒜, j = 1, … , 2n,

with (c1( j), … , cn( j)) ∈ {0, 1}n and

A0
i := Ai, A1

i := Ac
i .

Note that some of the sets Bj can be empty. Then

f =
n∑

i=1
αi1Ai

=
2n∑

j=1
βj1Bj

,

with βj =
∑

i: ci( j)=0αi. Because B1, … , B2n are pairwise disjoint and
⋃2n

j=1 Bj = Ω, the
function f is (𝒜, ℬ)-measurable (see the first part of this solution).

2.9 If all values of f are elements of Ω′, then

f−1(B) = f−1(Ω′ ∩ B), ∀ B ∈ ℬ.

Therefore, f−1(ℬ) = f−1(ℬ|Ω′), where ℬ|Ω′ denotes the trace of ℬ in Ω′ (see Exam-
ple 1.10). Note thatℬ|Ω′ = 𝒫(Ω′) (see Exercise 1.13). Hence, f−1(ℬ) = f−1(ℬ|Ω′) =
f−1[𝒫(Ω′)].
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2.10 First of all, note that X, Y are measurable with respect to 𝒜 if and only if and (X, Y)
is measurable with respect to 𝒜 (see Th. 2.38). Hence, it suffices to show that X is
measurable with respect to 𝒜 if X−1({1}) ∈ 𝒜. Because X: Ω → R is an indicator,
X −1({0}) = X −1({1}c) = (X −1({1}))c [see Eq. (2.5)]. Hence, if X −1({1}) ∈ 𝒜 , then
(X −1({1}))c = X −1({0}) ∈ 𝒜. Furthermore, for all B ∈ ℬ,

X −1(B) =
⎧
⎪
⎨
⎪⎩

Ø, if 0 ∉ B, 1 ∉ B
X −1({1}), if 0 ∉ B, 1 ∈ B
Ω ∖ X −1({1}), if 0 ∈ B, 1 ∉ B
Ω, if {0, 1} ⊂ B.

(The proof for Y is analog.)

2.11 Because the codomain of f is R,

σ( f ) = σ
(

f−1(𝒫({1, 2.5, 2, 0.5}))
)

[Rem. 2.33]

= σ
(
{ f−1({1}), f−1({2.5}), f−1({2}), f−1({0.5})}

)
[(2.12)]

= σ({A1, A2, A3, A4}).

Analogously,

σ(h) = σ
(
h−1(𝒫({1.5, 3}))

)
[Rem. 2.33]

= σ
(
{h−1({1.5}), h−1({3})}

)
[(2.12)]

= σ({A1 ∪ A2, A3 ∪ A4}).

Because

{A1 ∪ A2, A3 ∪ A4} ⊂ σ({A1, A2, A3, A4}), [Rem. 1.2]

monotonicity of the generated σ-algebras (see Remark 1.23) implies σ(h) ⊂ σ( f ).

2.12 Denote A∞ := {ω ∈ Ω: f (ω) = ∞}, A−∞ := {ω ∈ Ω: f (ω) = −∞}, B∞ := {ω ∈ Ω:

g(ω) = ∞}, and B−∞ := {ω ∈ Ω: g(ω) = −∞}. Because {∞}, {−∞} ∈ℬ, all four sets
defined above are elements of 𝒜. Furthermore,

A := {ω ∈ Ω: −∞ < f (ω) < ∞} = f−1(R) ∈ 𝒜

and

B := {ω ∈ Ω: −∞ < g(ω) < ∞} = g−1(R) ∈ 𝒜.
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(a) Now

{ω ∈ Ω: f (ω ≥ g(ω)}

= A∞ ∪ {ω ∈ A ∩ B: f (ω) ≥ g(ω)} ∪ B−∞
= A∞ ∪ {ω ∈ A ∩ B: f (ω) − g(ω) ≥ 0} ∪ B−∞

= A∞ ∪
(
1−1

A∩B({1}) ∩ [1A∩B ⋅ ( f − g)]−1([0, ∞[)
)
∪ B−∞ [Def. 2.1]

∈𝒜. [Th. 2.57]

(b) Analogously,

{ω ∈ Ω: f (ω > g(ω)}

= (A∞ ∩ (B ∪ B−∞) ∪ {ω ∈ A ∩ B: f (ω > g(ω)}

= (A∞ ∩ (B ∪ B−∞) ∪ [1A∩B ⋅ ( f − g)]−1(]0, ∞[) [Def. 2.1]

∈𝒜. [Th. 2.57]

(c) Finally,

{ω ∈ Ω: f (ω = g(ω)} = {ω ∈ Ω: f (ω ≥ g(ω)} ∖{ω ∈ Ω: f (ω > g(ω)}

∈ 𝒜. [Rem. 1.2]

2.13 For any real-valued measurable function f : (Ω, 𝒜 ) → (R, ℬ), Lemma 2.52 yields
σ( f 2) ⊂ σ( f ), because f 2 = g( f ) for the measurable function g: (R, ℬ) → (R, ℬ) with
g(x) = x2, for all x ∈ R. [Note that g is a continuous function that is ℬ-measurable (see
Klenke, 2013, Th. 1.88).]
(i) We assume that f is nonnegative and measurable. Then f 2(ω) = x if and only if

f (ω) =
√

x, for all x ≥ 0. Hence, for all A ∈ 𝒜,

A ∈ σ( f ) ⇒ ∃ B1 ∈ ℬ: A = f−1(B1)

⇒ ∃ B2 ∈ ℬ: A = ( f 2)−1(B2) [choose B2 := g−1(B1)]

⇒ A ∈ σ( f 2).

This implies σ( f ) ⊂ σ( f 2).

(ii) Assume that there are ω1, ω2 ∈ Ω with f (ω1) < 0 < f (ω2) and f 2(ω1) = f 2(ω2).
Then A := f−1(]−∞, 0[) implies A ∈ f−1(ℬ), and ω1 ∈ A and ω2 ∉ A. Further-
more, for all B ∈ ℬ:

{ω1, ω2} ∩ ( f 2)−1(B), if f 2(ω1) ∈ B

and

{ω1, ω2} ∩ ( f 2)−1(B) = Ø, if f 2(ω1) ∉ B.

Hence, A ∉ ( f 2)−1(ℬ).

2.14 (i) If f =
𝜇

g, then there is a set B ∈ 𝒜 with 𝜇(B) = 0 and f (ω) = g(ω) for all ω ∈ Ω ∖ B.
Hence, 1A(ω) ⋅ f (ω) = 1A(ω) ⋅ g(ω) for all ω ∈ Ω ∖ B. According to Definition 2.68,
1A f =

𝜇
1Ag.



84 PROBABILITY AND CONDITIONAL EXPECTATION

(ii) Note that Ah := {ω ∈ Ω: h[ f (ω)] ≠ h[g(ω)]} ⊂ {ω ∈ Ω: f (ω) ≠ g(ω)} =: A. There-
fore, 𝜇(A) = 0 implies 𝜇(Ah) = 0 [see Box 1.1 (v)].

2.15 Reflexivity. 𝜇({ω ∈ Ω: f (ω) ≠ f (ω)}) = 𝜇(Ø) = 0. Hence, f =
𝜇

f .

Symmetry. Assume that f , g ∈ ℳ and f =
𝜇

g. Then

𝜇({ω ∈ Ω: g(ω) ≠ f (ω)}) = 𝜇({ω ∈ Ω: f (ω) ≠ g(ω)}) = 0.

Hence, g =
𝜇

f .

Transitivity. Assume that f , g, h ∈ ℳ, f =
𝜇

g, and g =
𝜇

h. Then transitivity of = and
subadditivity of 𝜇 yield

𝜇({ω ∈ Ω: f (ω) ≠ h(ω)}) ≤ 𝜇({ω ∈ Ω: f (ω) ≠ g(ω)} ∪ {ω ∈ Ω: g(ω) ≠ h(ω)})

≤ 𝜇({ω ∈ Ω: f (ω) ≠ g(ω)}) + 𝜇({ω ∈ Ω: g(ω) ≠ h(ω)})

= 0 + 0 [f =
𝜇

g, g =
𝜇

h]

= 0.

Therefore, f =
𝜇

h.

2.16 (a) ∀ f ∈ ℳ: f =
𝜇

f (reflexivity). This implies: ∀ f ∈ ℳ: f ∈ C( f ) and therefore ∀ f ∈

ℳ: C( f ) ≠ Ø.

(b) Let f , g ∈ ℳ. We consider two cases, f =
𝜇

g and ¬( f =
𝜇

g).

f =
𝜇

g. Transitivity implies: ∀ h ∈ ℳ: f =
𝜇

h if and only if g =
𝜇

h. Hence, ∀ h ∈
ℳ: h ∈ C( f ) if and only if h ∈ C(g). This means that C( f ) = C(g).

¬( f =
𝜇

g). We show C( f ) ∩ C(g) = Ø by contraposition. Assume: ∃ h ∈ ℳ: h ∈
C( f ) ∩ C(g).

Then f =
𝜇

h, h =
𝜇

g, and transitivity implies: f =
𝜇

g, which is a contradiction to

¬( f =
𝜇

g).

(c) In part (a) we showed: ∀ f ∈ ℳ: f ∈ C( f ). Therefore, ∀ f ∈ ℳ: f ∈
⋃

f ∗ ∈ℳ C( f ∗).

2.17 (i) Suppose that 𝜇 ≠ 0, α, β ∈ Ω′ and that f =
𝜇
α, g =

𝜇
β, f =

𝜇
g. If α ≠ β, then subaddi-

tivity and monotonicity of 𝜇 yield

0 < 𝜇(Ω)
= 𝜇({ω ∈ Ω: f (ω) = α ∧ g(ω) = β})
+ 𝜇({ω ∈ Ω: f (ω) ≠ α ∨ g(ω) ≠ β}) [Box 1.1 (iv)]

= 𝜇({ω ∈ Ω: f (ω) = α ∧ g(ω) = β}) [ f =
𝜇
α, g =

𝜇
β]

≤ 𝜇({ω ∈ Ω: f (ω) ≠ g(ω)}) [α ≠ β]
= 0, [ f =

𝜇
g]

which proves (i) by contraposition.
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(ii) If f =
𝜇

f ∗ and g =
𝜇

g∗ and A0 := {ω ∈ Ω: f (ω) ≠ f ∗(ω) ∨ g(ω) ≠ g∗(ω)}, then

𝜇(A0)
= 𝜇({ω ∈ Ω: f (ω) ≠ f ∗(ω)} ∪ {ω ∈ Ω: g(ω) ≠ g∗(ω)})
≤ 𝜇({ω ∈ Ω: f (ω) ≠ f ∗(ω)}) + 𝜇({ω ∈ Ω: g(ω) ≠ g∗(ω)}) [Box 1.1 (vii), (v)]
= 0. [ f =

𝜇
f ∗, g =

𝜇
g∗ ]

Note that {ω ∈ Ω: f (ω) + g(ω) ≠ f ∗(ω) + g∗(ω)} ⊂ A0, which also holds for the
corresponding sets for the difference, product, and ratio. This implies Equations
(2.36) and (2.37).

(iii), (iv) Define I := {1, … , n} for (iii) and I := N for (iv), respectively. Furthermore,
define

A0 :=
⋃

i∈I
{ω ∈ Ω: fi(ω) ≠ f ∗i (ω)} = {ω ∈ Ω: ∃ i ∈ I: fi(ω) ≠ f ∗i (ω)}.

Then

𝜇(A0) ≤
∑

i∈I
{ω ∈ Ω: fi(ω) ≠ f ∗i (ω)} [Box 1.1 (xi)]

= 0, if fi =𝜇 f ∗i , ∀ i ∈ I.

Hence,

𝜇

({
ω ∈ Ω:

∑

i∈I
αi fi(ω) ≠

∑

i∈I
αi f ∗i (ω)

})
≤ 𝜇(A0) [Box 1.1 (v)]

= 0, if fi =𝜇 f ∗i , ∀ i ∈ I.

2.18

∀ ω ∈ Ω: ( f (ω) < g(ω) ∧ g(ω) = h(ω)) ⇒ f (ω) < h(ω),

which, by contraposition, is equivalent to

∀ ω ∈ Ω: f (ω) ≥ h(ω) ⇒ ( f (ω) ≥ g(ω) ∨ g(ω) ≠ h(ω)).

Therefore,

{ω ∈ Ω: f (ω) ≥ h(ω)} ⊂ {ω ∈ Ω: f (ω) ≥ g(ω)} ∪ {ω ∈ Ω: g(ω) ≠ h(ω)}.
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Now ( f <
𝜇

g ∧ g =
𝜇

h) implies

𝜇({ω ∈ Ω: f (ω) ≥ h(ω)})

≤ 𝜇({ω ∈ Ω: f (ω) ≥ g(ω)}) + 𝜇({ω ∈ Ω: g(ω) ≠ h(ω)}) [Box 1.1 (vii)]

= 0 + 0 = 0. [ f ≤
𝜇

g, g =
𝜇

h]

Because a measure is nonnegative, this implies 𝜇({ω ∈ Ω: f (ω) ≥ h(ω)}) = 0, which is
equivalent to f <

𝜇
h.

2.19 For all A′∈ 𝒜 ′,

𝜇f (A′) = 𝜇[ f−1(A′)] [(2.41)]

= 𝜇

⎛
⎜
⎜
⎜⎝

⋃

i=1, … , n+1
αi ∈ A′

Ai

⎞
⎟
⎟
⎟⎠

[Def. 2.16]

=
∑

i=1, … , n+1
αi ∈ A′

𝜇(Ai) [Def. 1.43 (c)]

=
n+1∑

i=1
𝜇(Ai) ⋅ 𝛿αi

(A′). [(1.39)]



3

Integral

In the preceding chapters, we introduced the most important concepts of measure theory related
to the concepts of a measure and a measurable mapping. In this chapter, we introduce the inte-
gral of measurable functions. This concept is fundamental also for probability theory, because
the expectation of a numerical random variable with respect to a probability measure is the
integral of a measurable function with respect to a probability measure. In chapters 6 and 7,
we shall see that this also applies to variances, covariances, and correlations. We start defining
the integral of a measurable function with respect to a measure 𝜇. Then we study the most
important rules of computation and other properties of integrals, introduce the concept of a
measure with density, and treat the relationship between the Riemann integral and the inte-
gral with respect to the Lebesgue measure. The next section is on absolute continuity and the
Radon-Nikodym theorem. Both issues are crucial for conditional expectations (see ch. 10). A
section on the integral with respect to a product measure concludes this chapter.

3.1 Definition

At first we define the integral for nonnegative step functions, then we extend the integral to
nonnegative measurable functions, and finally we introduce the integral for measurable func-
tions that may take on negative or nonnegative values.

3.1.1 Integral of a nonnegative step function

In this subsection, we introduce the integral of a nonnegative step function, also called a non-
negative simple function or elementary function.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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Nonnegative step function

Definition 3.1 [Nonnegative step function and normal representation]
Let (Ω, 𝒜 ) be a measurable space. Then f : Ω → R is called a nonnegative step
function, if there is a finite sequence A1, … , An ∈ 𝒜 and a finite sequence α1, … , αn ∈
R, αi ≥ 0, i = 1, … , n, such that

f =
n∑

i=1
αi 1Ai

. (3.1)

If A1, … , An ∈ 𝒜 are pairwise disjoint, then f = ∑n
i=1 αi 1Ai

is called a normal repre-
sentation of f .

Remark 3.2 [Step functions take on finitely many values] A nonnegative step function
f = ∑n

i=1 αi 1Ai
is a measurable function f : (Ω, 𝒜 ) → (R, ℬ) taking on only a finite number

of nonnegative values. These values are not necessarily α1, … , αn. However, note:

(i) If ℰ = {A1, … , An} is a partition of Ω, then α1, … , αn are the values of f .

(ii) If A1, … , An are pairwise disjoint but ℰ is not a partition of Ω, that is, An+1 :=
Ω ∖ ⋃n

i=1 Ai ≠ Ø, then

f =
n∑

i=1
αi 1Ai

+ 0 ⋅ 1An+1
.

This implies: f (ω) = 0, for all ω ∈ An+1.

(iii) If A1, … , An are pairwise disjoint and additionally α1, … , αn are pairwise different
and not 0, then Ai = f−1({αi}), i = 1, … , n.

(iv) If A1, … , An are pairwise disjoint, then, for all αi ≠ 0,

f−1({αi}) =
⋃

j : αj =αi

Aj.

Hence in this case, the inverse image of the set {αi} under f is the union of all sets Aj,
j ∈ {1, … , n}, for which αj = αi. ⊲

Remark 3.3 [Different representations of a nonnegative step function] Note that nonneg-
ative step functions can have different representations and also different normal representations
(see Example 3.7). ⊲

Example 3.4 [Indicator function] Let (Ω, 𝒜 ) be a measurable space and A ∈ 𝒜. The indi-
cator function 1A, which has already been introduced in Example 2.12, can also be written as
1 ⋅ 1A + 0 ⋅ 1Ac . Hence, because A ∈ 𝒜and 1 is a real number, 1A is a nonnegative step function.
Note that 1 ⋅ 1A is also a normal representation of a nonnegative step function. ⊲
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Example 3.5 [Two nonnegative step functions] In Example 2.55, we already presented two
nonnegative step functions f and h and an illustrating figure (see Fig. 2.6). The representations
of both functions are normal. ⊲

Example 3.6 [Tossing a dice] Consider the set Ω = {ω1, … , ω6} of possible outcomes of
tossing a dice. Furthermore, let 𝒜= 𝒫(Ω) be the power set of Ω, and define X: Ω → R by

X(ωi) = i, ∀ ωi ∈ Ω,

where i, and therefore X(ωi) is the number of dots. Considering the elements {ω1}, … , {ω6}
of 𝒜, and

X =
6∑

i=1
i ⋅ 1{ωi}

shows that X has a normal representation of a nonnegative step function. (For a related
example, see Exercise 3.1.) ⊲

Example 3.7 [Several representations of nonnegative step functions] Consider the mea-
surable space (R, ℬ) and the nonnegative function f : R → R defined by

f (x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

2, if x ∈ [0, 1[

5, if x ∈ [1, 2]

4, if x ∈ ]2, 3]

1, if x ∈ ]3, 4]

0, otherwise.

This function can also be represented by

f = 2 ⋅ 1[0,1[ + 5 ⋅ 1[1,2] + 4 ⋅ 1]2,3] + 1 ⋅ 1]3,4]

= 2 ⋅ 1[0,.5] + 2 ⋅ 1].5,1] + 5 ⋅ 1[1,2] + 4 ⋅ 1]2,3] + 1 ⋅ 1]3,4]

= 2 ⋅ 1[0,2] + 3 ⋅ 1[1,3] + 1 ⋅ 1[2,4]

= 1 ⋅ 1[0,4] + 1 ⋅ 1[0,3] + 2 ⋅ 1[1,3] + 1 ⋅ 1[1,2].

(3.2)

The first two representations are normal, and the latter two are nonnormal representations
of f . ⊲

Remark 3.8 [Existence of a normal representation] For every nonnegative step function,
there exists a normal representation (see Exercise 3.2).

If f = ∑n
i=1 αi 1Ai

is a normal representation of a nonnegative step function, then there
may be another sequence C1, … , Cm of pairwise disjoint elements of 𝒜and another sequence
γ1, … , γm of nonnegative real numbers such that

f =
n∑

i=1
αi 1Ai

=
m∑

i=1
γi 1Ci

.
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Both sum terms are normal representations. The first two representations of f in Equation (3.2)
provide an example. ⊲

Integral of a nonnegative step function

The following uniqueness property holds for two normal representations of a nonnegative step
function:

Lemma 3.9 [A uniqueness property]
Let (Ω, 𝒜, 𝜇) be a measure space. If f : Ω → R is a nonnegative step function and f =∑n

i=1 αi 1Ai
= ∑m

i=1 γi 1Ci
are two normal representations, then

n∑

i=1
αi 𝜇(Ai) =

m∑

i=1
γi 𝜇(Ci). (3.3)

For a proof, see Klenke (2013, Lemma 4.1). Note, by convention, 0 ⋅∞ = 0.
According to this lemma, the number

∑n
i=1 αi 𝜇(Ai) assigned to a nonnegative step func-

tion f does not depend on the specific normal representation of f (for an illustration, see Exer-
cise 3.3). This property allows us to define the integral of a nonnegative step function with
respect to a measure 𝜇 as follows:

Definition 3.10 [Integral of a nonnegative step function]
Let (Ω, 𝒜, 𝜇) be a measure space and let f = ∑n

i=1 αi 1Ai
be a normal representation of a

nonnegative step function f : Ω → R. Then the number

∫
f d𝜇 =

n∑

i=1
αi 𝜇(Ai) (3.4)

is called the integral of f (over Ω) with respect to 𝜇.

Remark 3.11 [Integral of a constant] Let (Ω, 𝒜, 𝜇) be a measure space. If f = α, α ∈ R,
then Equation (3.4) immediately implies

∫
α d𝜇 = α ⋅ 𝜇(Ω). (3.5)

⊲

Remark 3.12 [Integral over a subset of Ω] Let A ∈ 𝒜. If f = ∑n
i=1 αi1Ai

is a normal repre-
sentation of a nonnegative step function, then the product 1A⋅ f is a nonnegative step function
as well and can be written as:

1A⋅ f =
n∑

i=1
αi 1A ∩Ai

, (3.6)
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Ω

A

A1 A2 A3

Figure 3.1 A partition and a subset of Ω.

which is a normal representation of 1A⋅ f (see Fig. 3.1 and Exercise 3.4). Hence, we may also
consider the integral ∫ 1A⋅ f d𝜇 and define the integral of f over a subset A of Ω by

∫A
f d𝜇 =

∫
1A⋅ f d𝜇. (3.7)

⊲

The following corollary is a special case of Equation (3.7) if f = α, α ∈ R. (For a proof,
see Exercise 3.5.)

Corollary 3.13 [Constants]
Let (Ω, 𝒜, 𝜇) be a measure space and α ∈ R. If A ∈ 𝒜, then

∫A
α d𝜇 = α 𝜇(A). (3.8)

Examples

Example 3.14 [Indicator function] Consider a measure space (Ω, 𝒜, 𝜇) and the indicator
1A of A ∈ 𝒜. Then 1A = 1 ⋅ 1A is a normal representation of 1A. Therefore,

∫A
d𝜇 =

∫
1A d𝜇 = 1 ⋅ 𝜇(A) = 𝜇(A). (3.9)

⊲

Example 3.15 [Nonnegative step function and Dirac measure] Let (Ω, 𝒜 ) be a measurable
space, and for ω ∈ Ω let 𝛿ω denote the Dirac measure at ω (see Example 1.52). Furthermore,
consider a normal representation f = ∑m

i=1 αi 1Ai
of a nonnegative step function. Its integral

with respect to the Dirac measure is

∫
f d𝛿ω =

m∑

i=1
αi 𝛿ω(Ai) =

m∑

i=1
αi 1Ai

(ω) = f (ω). (3.10)
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According to this equation, the integral of a nonnegative step function f with respect to the
Dirac measure at ω is the value of f for the argument ω. Furthermore, if f = 1A is the indicator
of A ∈ 𝒜, then

∫
1A d𝛿ω = 1A(ω). (3.11)

Hence, in this special case, the integral is the value of the indicator 1A for the argu-
ment ω. ⊲

Example 3.16 [Nonnegative step function and counting measure] Suppose Ω =
{1, … , n}, n ∈ N. For the measurable space (Ω, 𝒫(Ω)), the counting measure 𝜇# on the power
set 𝒫(Ω) is defined by

𝜇#(A) =
n∑

ω=1
1A(ω), ∀ A ⊂ Ω, (3.12)

(see Example 1.54). Hence, 𝜇#(A) is simply the number of elements (i.e., the cardinality of A).
Now consider a nonnegative step function with normal representation f = ∑m

i=1 αi 1Ai
. Accord-

ing to Equations (3.4) and (3.12), its integral with respect to the counting measure is

∫
f d𝜇# =

m∑

i=1
αi 𝜇#(Ai) =

m∑

i=1
αi

n∑

ω=1
1Ai

(ω) =
n∑

ω=1

m∑

i=1
αi1Ai

(ω)

=
n∑

ω=1
f (ω).

(3.13)

Hence, the integral of a nonnegative step function f with respect to the counting measure 𝜇#
is the sum over all values of f (see also Exercise 3.6). Using Equations (1.41) and (3.10), this
integral can also be written as:

∫
f d𝜇# = ∫

f d

(
n∑

ω=1
𝛿ω

)
=

n∑

ω=1 ∫
f d𝛿ω. (3.14)

⊲

3.1.2 Integral of a nonnegative measurable function

In this section, we extend the concept of an integral to nonnegative measurable functions.
Before introducing the definition, we consider a theorem according to which every nonnegative
measurable function can be represented as a limit of an increasing sequence of nonnegative
step functions. We begin with an example.

Example 3.17 [Increasing sequence of nonnegative step functions] Consider the measur-
able space (R, ℬ) and the function f : R → R defined by

f (x) =
{

1 − x2, ∀ x ∈ [0, 1]
0, otherwise.

(3.15)
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Figure 3.2 Increasing nonnegative step functions.

Now we construct three functions fi: R → R, i = 1, 2, 3, with f1 ≤ f2 ≤ f3 ≤ f that approxi-
mate f (see Fig. 3.2). Let us start with f1 defined by

f1(x) =
{
α1 = .50, if x ∈ A1 := [0, (1 − .50)1∕2]

α2 = 0, if x ∈ Ac
1,

where [0, (1 − .50)1∕2] denotes the closed interval between 0 and (1 − .50)1∕2 ≈ .707. Because
A1 is an element of ℬ and .50 is a nonnegative real number, f1 = α1 1A1

is a nonnegative step
function. Next consider f2 defined by

f2(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

β1 = .75, if x ∈ B1 := [0, (1 − .75)1∕2]

β2 = .50, if x ∈ B2 := ] (1 − .75)1∕2, (1 − .50)1∕2]

β3 = .25, if x ∈ B3 := ] (1 − .50)1∕2, (1 − .25)1∕2]

β4 = 0, if x ∈ (B1 ∪ B2 ∪ B3)c.

Because B1, B2, B3 are elements of ℬ and .75, .50, .25 are nonnegative real numbers, f2 =∑3
i=1 βi 1Bi

is a nonnegative step function. Finally, let f3 be defined by

f3(x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

γ1 = .875, if x ∈ C1 := [0, (1 − .875)1∕2]

γ2 = .750, if x ∈ C2 := ] (1 − .875)1∕2, (1 − .750)1∕2]

γ3 = .625, if x ∈ C3 := ] (1 − .750)1∕2, (1 − .625)1∕2]

γ4 = .500, if x ∈ C4 := ] (1 − .625)1∕2, (1 − .500)1∕2]

γ5 = .375, if x ∈ C5 := ] (1 − .500)1∕2, (1 − .375)1∕2]

γ6 = .250, if x ∈ C6 := ] (1 − .375)1∕2, (1 − .250)1∕2]

γ7 = .125, if x ∈ C7 := ] (1 − .250)1∕2, (1 − .125)1∕2]

γ8 = 0, if x ∈ (C1 ∪… ∪ C7)c.

Again, C1, … , C7 is a sequence of elements of ℬ and .875, .750, .625, .500, .375, .250,
.125 is a sequence of nonnegative real numbers. Therefore, f3 = ∑7

i=1 γi 1Ci
is a nonnegative

step function. The integrals of the functions f1 and f2 are computed in Exercise 3.7. ⊲
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Convergence of an increasing sequence of nonnegative step functions

Example 3.18 [Convergence] Figure 3.2 shows that f1(ω) ≤ f2(ω) ≤ f3(ω) ≤ f (ω) for all
ω ∈ Ω. Hence, f1, f2, f3 is a finite increasing sequence of nonnegative step functions. The inter-
val [0, 1] on the vertical axis is partitioned, and these partitions are refined step by step. In our
example, we started with the partition {[0, .50[, [.50, 1]}. Then we partitioned

[0, .50[ to {[0, .25[, [.25, .50[} and [.50, 1] to {[.50, .75[, [.75, 1]}, etc.

Following this idea, we can define functions f4, f5, … such that f1, f2, … is an infinite
sequence of nonnegative step functions with f1(ω) ≤ f2(ω) ≤ … ≤ f (ω), for all ω ∈ Ω, and
limn→∞ fn(ω) = f (ω), for all ω ∈ Ω. According to Theorem 3.19, this holds for all nonnega-
tive measurable functions f : (Ω, 𝒜 ) → (R,ℬ). ⊲

Theorem 3.19 [Approximation of nonnegative functions]
Let (Ω, 𝒜 ) be a measurable space and f : (Ω, 𝒜 ) → (R,ℬ) a nonnegative measurable
function. Then,

(i) There is a sequence f1, f2, … of nonnegative step functions such that

f1(ω) ≤ f2(ω) ≤ … , ∀ ω ∈ Ω (3.16)

and

lim
n→∞

fn(ω) = f (ω), ∀ ω ∈ Ω. (3.17)

(ii) There is a sequence of sets A1, A2, … ∈ 𝒜 and a sequence of nonnegative real
numbers α1, α2, … such that

f =
∞∑

i=1
αi 1Ai

. (3.18)

For a proof, see Klenke (2013, Theorem 1.96).

Remark 3.20 [Infinite sums] Equation (3.18) can be visualized by Figure 3.2. The function
f3 on the right-hand side of this figure is already close to f . Partitioning the intervals on the
vertical axis again and again leads to better approximations of f . Note that the horizontal axis
does not have to be a subset of R; instead, it can be any nonempty set Ω.

Remember, the right-hand side of Equation (3.18) is just a symbol for the corresponding
limit, that is,

∞∑

i=1
αi 1Ai

= lim
n→∞

n∑

i=1
αi 1Ai

. (3.19)

Note that, for αi ≥ 0, this limit always exists. ⊲



INTEGRAL 95

Before turning to the definition of the integral of a nonnegative measurable function let us
use the properties (3.16) and (3.17) to define the concepts increasing sequence of nonnegative
step functions and pointwise convergence.

Definition 3.21 [Increasing sequence of nonnegative step functions]
Let (Ω, 𝒜 ) be a measurable space and f : (Ω, 𝒜 ) → (R,ℬ) a nonnegative measur-
able function. A sequence f1, f2, … of nonnegative step functions satisfying (3.16) is
called increasing. If it also satisfies (3.17), then we say that f1, f2, … converges
pointwise to f and denote it by fn ↑ f .

Uniqueness of the limits of an integral

In Theorem 3.19 we have seen that every nonnegative measurable function f can be represented
by the limit limn→∞ fn of an increasing sequence f1, f2, … of nonnegative step functions,
that is,

f = lim
n→∞

fn. (3.20)

The definition of the integral of nonnegative step functions implies that the integrals of the
functions fn are increasing as well, that is,

fn ≤ fn+1 ⇒
∫

fn d𝜇 ≤
∫

fn+1 d𝜇, ∀ n ∈ N

[see Bauer, 2001, proposition (10.7)]. Hence, the sequence of the integrals either converges to
a (finite) real number or diverges to +∞.

In Figure 3.2, we presented the first three nonnegative step functions f1, f2, and f3 of such
an increasing sequence f1, f2, … that approximates the function f : R → R defined by Equa-
tion (3.15). Figure 3.3 visualizes the convergence of the integrals ∫ fn d𝜆 with respect to the
Lebesgue measure 𝜆 on (R, ℬ) (see the shaded areas in Fig. 3.3).
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Figure 3.3 Integral of nonnegative step functions with respect to the Lebesgue measure.
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It should be noted, however, that there is not only one single increasing sequence of non-
negative step functions whose limit is f . This is illustrated in the following example.

Example 3.22 [Uniqueness] For an example, construct a sequence g1, g2, … analogously
to the sequence f1, f2, … in Example 3.17, using other partitions of the interval [0, 1] on the
vertical axis, such as

{[0, .40[, [.40, 1]} and {[0, .20[, [.20, .40[, [.40, .80[, [.80, 1]}, and so on.

Then g1, g2, … is a second increasing sequence that also approximates f . Figure 3.3 suggests
that the specific choice of an increasing sequence of nonnegative step functions is irrelevant
for the limit of their integrals. And in fact, according to the following theorem, this applies not
only to our example and to the Lebesgue measure 𝜆 on ℬ, but to any nonnegative measurable
function and any measure 𝜇. ⊲

Theorem 3.23 [Uniqueness of the limits of integrals]
If f1, f2, … and g1, g2, … are two increasing sequences of nonnegative step functions
fn, gn: (Ω, 𝒜, 𝜇) → (R,ℬ), then limn→∞ fn = limn→∞ gn implies

lim
n→∞ ∫

fn d𝜇 = lim
n→∞ ∫

gn d𝜇. (3.21)

For a proof, see Bauer (2001, Corollary 11.2).
According to this theorem, if we consider two increasing sequences of nonnegative step

functions with identical limits, then we know that the limits of their integrals are identical.

Definition of the integral of a nonnegative measurable function

Based on the result of Theorem 3.23, we define the integral of any nonnegative measurable
function.

Definition 3.24 [Integral of a nonnegative measurable function]
Assume that f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a nonnegative measurable function and let f =
limn→∞ fn be a representation of f as the limit of an increasing sequence f1, f2, … of non-
negative step functions. Then

∫
f d𝜇 := lim

n→∞ ∫
fn d𝜇 (3.22)

is called the integral of f (over Ω) with respect to 𝜇.

Note that the integral of a nonnegative measurable function is either a nonnegative real
number or +∞.
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Example 3.25 [Integral with respect to a Dirac measure] Suppose the assumptions of Def-
inition 3.24 hold. Then, for ω ∈ Ω,

∫
f d𝛿ω = lim

n→∞ ∫
fn d𝛿ω [(3.22)]

= lim
n→∞

fn(ω) [(3.10)]

= f (ω). [(3.20)]

(3.23)

Hence, the integral of a nonnegative measurable function f with respect to the Dirac measure
at ω is the value of f for ω. ⊲

We conclude this section by the following lemma on monotonicity of the integrals of non-
negative measurable functions.

Lemma 3.26 [Monotonicity]
If f , g: (Ω, 𝒜 ) → (R,ℬ) are nonnegative and measurable, then

f ≤ g ⇒
∫

f d𝜇 ≤
∫

g d𝜇. (3.24)

For a proof, see Bauer [2001, Eq. (11.8)].

Remark 3.27 [Bounds of the Integral of a bounded function] Let f : (Ω, 𝒜 ) → (R,ℬ) be
nonnegative and measurable and α ∈ R. Then, for g = α, Equations (3.24) and (3.5) imply

f ≤ α ⇒
∫

f d𝜇 ≤ α ⋅ 𝜇(Ω), (3.25)

and

f ≥ α ⇒
∫

f d𝜇 ≥ α ⋅ 𝜇(Ω). (3.26)

⊲

3.1.3 Integral of a measurable function

Now we define the integral of a measurable function f : (Ω, 𝒜 ) → (R,ℬ) using the positive
part f+ and the negative part f− of f that have been introduced in section 2.4.2. According
to Theorem 2.66, f+ and f− are both nonnegative measurable functions. Reading the follow-
ing definition, remember the conventions: ∞+∞ = ∞, −∞−∞ = −∞, x +∞ = ∞, for all
x ∈ R, x −∞ = −∞, for all x ∈ R. Also note that ∞−∞ is not defined, which has to be
observed whenever integrals are not necessarily finite.
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Definition 3.28 [Integral of a measurable function]
Let f : (Ω, 𝒜, 𝜇) → (R,ℬ) be a measurable function. If ∫ f+ d𝜇 or ∫ f− d𝜇 are finite, then
f is called quasi-integrable with respect to 𝜇, or simply quasi-𝜇 -integrable, and

∫
f d𝜇 =

∫
f+ d𝜇 −

∫
f− d𝜇 (3.27)

is called the integral of f (over Ω) with respect to 𝜇. If ∫ f+ d𝜇 and ∫ f− d𝜇 are both
finite, then f is called integrable with respect to 𝜇, or simply 𝜇 -integrable.

Remark 3.29 [Integrability and quasi-integrability] Of course, every integrable measur-
able function is quasi-integrable and each nonnegative function is also quasi-integrable. Fur-
thermore, assuming that a function f : (Ω, 𝒜, 𝜇) → (R,ℬ) is integrable or quasi-integrable
includes the assumption that f is measurable. Finally, if f is 𝜇-integrable, then

−∞ <
∫

f d𝜇 < +∞,

that is, the integral is finite, taking a value in R. If f is quasi-𝜇-integrable, then the integral
may also be infinite (i.e., it may also take on the values +∞ or −∞). ⊲

Remark 3.30 [A standard method for proofs] The integral of a quasi-integrable function
has been defined in three steps, for nonnegative measurable step functions, for nonnegative
measurable functions, and for quasi-integrable functions. Oftentimes, these steps are also fol-
lowed in proofs of propositions involving integrals. That is, in a first step, it is shown that the
proposition holds for nonnegative measurable step functions. In a second step, using Equa-
tion (3.22), it is proven for nonnegative measurable functions, and finally, Equation (3.27) is
applied to complete the proof for all quasi-integrable functions. An example is the proof of
Theorem 3.36. Oftentimes, we only detail the first step, in particular if the remaining two steps
are straightforward. ⊲

Example 3.31 [Integral with respect to the Lebesgue measure 𝜆] Figure 3.4 displays the
integral of a function f : (R, ℬ, 𝜆) → (R,ℬ) with respect to the Lebesgue measure 𝜆. Because
f+ and f− are both nonnegative (see Rem. 2.62), the integrals ∫ f+ d𝜇 and ∫ f− d𝜇 are positive
and identical to the areas marked + and − in Figure 3.4. According to Equation (3.27), the
integral of f is the difference between the area ∫ f+ d𝜇 and the area ∫ f− d𝜇. ⊲

Remark 3.32 [An alternative notation] An alternative notation for the integral of f is

∫
f d𝜇 =

∫
f (ω) 𝜇(dω) =

∫Ω
f (ω) 𝜇(dω), (3.28)

which explicitly uses the values f (ω) of f . This notation conveys the idea that the values
f (ω) of f are weighted by the measure of dω. If Ω = R, then dω symbolizes the length of
an infinitesimal interval between two elements in R. If Ω is finite or countable, then 𝜇(dω)
symbolizes the value of 𝜇 for the singleton {ω}, and the integral can be written as a sum (see
Example 3.16). ⊲
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Figure 3.4 Lebesgue integral of a function from −5 to 5.

Lemma 3.33 [Integrability carries over to restrictions of functions]

(i) If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is quasi-𝜇-integrable and A ∈ 𝒜, then 1A f is quasi-𝜇-
integrable.

(ii) If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is 𝜇-integrable and A ∈ 𝒜, then 1A f is 𝜇-integrable.

(Proof p. 115)

Remark 3.34 [Integral of 1A f ] Lemma 3.33 (ii) means: If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is
quasi-𝜇-integrable and A ∈ 𝒜, then

∫
f d𝜇 is finite ⇒

∫
1A f d𝜇 is finite. (3.29)

⊲

If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is quasi-𝜇-integrable and A ∈ 𝒜, then Lemma 3.33 implies that
the integral ∫ 1A f d𝜇 is well-defined. Hence, we can now introduce the integral of f over a
subset A of Ω as follows:

Definition 3.35 [Integral over a subset A of Ω]
If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is quasi-𝜇-integrable and A ∈ 𝒜, then

∫A
f d𝜇 :=

∫
1A f d𝜇 (3.30)

is called the integral of f over A with respect to 𝜇.
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Because 1Ω f = f , a special case of Equation (3.30) is

∫Ω
f d𝜇 =

∫
1Ω f d𝜇 =

∫
f d𝜇. (3.31)

3.2 Properties

In this section, we consider some important properties and rules of computation for the integral
of a measurable function f : (Ω, 𝒜, 𝜇) → (R,ℬ).

Theorem 3.36 [Linearity]
Consider the functions f : (Ω, 𝒜, 𝜇) → (R,ℬ) and g: (Ω, 𝒜, 𝜇) → (R, ℬ).

(i) If f is quasi-𝜇-integrable and α ∈ R, then α f is quasi-𝜇-integrable and

∫
α f d𝜇 = α

∫
f d𝜇. (3.32)

(ii) If f is quasi-𝜇-integrable and g is 𝜇-integrable, then f + g is quasi-𝜇-integrable,
and

∫
( f + g) d𝜇 =

∫
f d𝜇 +

∫
g d𝜇. (3.33)

(Proof p. 115)

Combining propositions (i) and (ii) of Theorem 3.36 immediately yields Corollary 3.37.

Corollary 3.37 [Linearity]
Consider the functions f : (Ω, 𝒜, 𝜇) → (R,ℬ), g: (Ω, 𝒜, 𝜇) → (R, ℬ) and let α, β ∈ R. If
f is quasi-𝜇-integrable and g is 𝜇-integrable, then α f + β g is quasi-𝜇-integrable, and

∫
(α f + β g) d𝜇 = α

∫
f d𝜇 + β

∫
g d𝜇. (3.34)

Linearity can also be used to prove the following corollary on the equivalence of inte-
grability of a measurable function f and finiteness of the integral of the absolute value
function | f |.

Corollary 3.38 [Integrability and absolute value function]
The function f : (Ω, 𝒜, 𝜇) → (R,ℬ) is 𝜇-integrable if and only if

∫
| f | d𝜇 < ∞.

(Proof p. 119)
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Example 3.39 [Integral over the union of two sets] If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is 𝜇-integrable
and A, B ∈ 𝒜, then 1A ∪ B f is 𝜇-integrable and

∫A ∪ B
f d𝜇 =

∫
1A ∪ B f d𝜇 =

∫A
f d𝜇 +

∫B
f d𝜇 −

∫A ∩ B
f d𝜇. (3.35)

If A ∩ B = Ø and f is quasi-𝜇-integrable, then

∫A ∪ B
f d𝜇 =

∫
1A ∪ B f d𝜇 =

∫A
f d𝜇 +

∫B
f d𝜇. (3.36)

(see Exercise 3.8). ⊲

Lemma 3.40 [Measures that are identical on a sub-σ-algebra]
Assume that f : (Ω, 𝒜, 𝜇) → (R,ℬ) is nonnegative or 𝜇-integrable. Furthermore, let
𝒞 ⊂ 𝒜be a σ-algebra, let f be𝒞-measurable, and suppose that ν(A) = 𝜇(A), for all A ∈ 𝒞.
Then, (Ω, 𝒞, ν) is a measure space and

∫
f dν =

∫
f d𝜇. (3.37)

(Proof p. 119)

Hence, the integral ∫ f d𝜇 only depends on the values of 𝜇 on the σ-algebra σ( f ), the
σ-algebra generated by f .

Lemma 3.41 [Integrable functions are 𝜇-almost everywhere real-valued]
Let f : (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable. If f is 𝜇-integrable, then f is real-valued 𝜇-
almost everywhere. If f is quasi-𝜇-integrable, then

𝜇({ω ∈ Ω: f (ω) = ∞}) > 0 ⇒
∫

f d𝜇 = ∞, (3.38)

𝜇({ω ∈ Ω: f (ω) = −∞}) > 0 ⇒
∫

f d𝜇 = −∞. (3.39)

(Proof p. 120)

Remark 3.42 [Integrable functions are assumed to be real-valued] Contraposition of
(3.38) and (3.39) yields: If ∫ f d𝜇 is finite, then f (ω) ∈ R (i.e., −∞ < f (ω) < ∞), for 𝜇-almost
allω ∈ Ω (see Def. 2.68 and Remark 2.70). In this case, there is a real-valued measurable func-
tion f ∗: (Ω, 𝒜, 𝜇) → (R, ℬ) with f ∗ =

𝜇
f . (For example, define f ∗ := 1A⋅ f + 1Ac ⋅ 0 = 1A⋅ f

for A := {ω ∈ Ω: f (ω) ∈ R}.) Therefore, without substantial loss of generality, for simplicity,
we often assume that a function is real-valued if it has a finite integral. ⊲
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3.2.1 Integral of 𝜇-equivalent functions

The concept of equivalence of two measurable functions with respect to a measure has already
been introduced in section 2.5. Now we treat the relationship of this concept to the integrals
of two numerical functions, that is functions with codomain R.

Theorem 3.43 [A condition equivalent to f =
𝜇

0]

If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a nonnegative measurable function, then

∫
f d𝜇 = 0 ⇔ f =

𝜇
0. (3.40)

For a proof, see Bauer (2001, Theorem 13.2).

Lemma 3.44 [Integral of a positive function]
If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is quasi-𝜇-integrable, and there is an A ∈ 𝒜such that 𝜇(A) > 0
and f (ω) > 0, for all ω ∈ A, then

∫
1A⋅ f d𝜇 > 0. (3.41)

(Proof p. 120)

If (Ω, 𝒜, 𝜇) is a measure space, then a set A ∈ 𝒜 with 𝜇(A) = 0 is called a null set
with respect to 𝜇. In Lemma 3.45, we consider the integral over such a null set (see
Exercise 3.9).

Lemma 3.45 [Integral over a null set]
Let f : (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable. If A ∈ 𝒜, with 𝜇(A) = 0, then 1A⋅ f is 𝜇-inte-
grable and

∫A
f d𝜇 =

∫
1A⋅ f d𝜇 = 0. (3.42)

(Proof p. 120)

Remark 3.46 [Integration over null sets can be neglected] The conjunction of Equa-
tions (3.36) and (3.42) implies: If f is quasi-𝜇-integrable and A ∈ 𝒜with 𝜇(A) = 0, then

∫
f d𝜇 =

∫Ω
f d𝜇 =

∫Ω∖A
f d𝜇 +

∫A
f d𝜇 =

∫Ω∖A
f d𝜇. (3.43)

⊲
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Lemma 3.47 [Integrals of 𝜇-equivalent functions]
Let f , g: (Ω, 𝒜, 𝜇) → (R,ℬ) be quasi-𝜇-integrable. Then

f =
𝜇

g ⇒
∫

f d𝜇 =
∫

g d𝜇. (3.44)

(Proof p. 121)

Theorem 3.48, presents a condition that is necessary and sufficient for 𝜇-equivalence of f
and g.

Theorem 3.48 [Identity of integrals of 𝜇-equivalent functions]
If f , g: (Ω, 𝒜, 𝜇) → (R,ℬ) are 𝜇-integrable, then

f =
𝜇

g ⇔
∫A

f d𝜇 =
∫A

g d𝜇, ∀ A ∈ 𝒜. (3.45)

(Proof p. 121)

In section 3.4, we shall see that, if f and g are 𝜇-integrable and nonnegative, then it is
sufficient to consider the integrals over all sets A in a ∩-stable generating system of 𝒜 in order
to show 𝜇-equivalence of f and g (see Th. 3.68).

Remark 3.49 [A counter-example] Note that Equation (3.45) does not hold if f , g are non-
negative but not 𝜇-integrable measurable functions. This is exemplified as follows: Consider
f , g: (R, 𝒜, 𝜇) → (R,ℬ), where 𝒜= {R, Ø}, 𝜇(R) = ∞, f = 1, and g = 2. Then ∫

R
f d𝜇 =

∫
R

g d𝜇 = ∞ and ∫Ø f d𝜇 = ∫Ø g d𝜇 = 0. Hence, ∫A f d𝜇 = ∫A g d𝜇, for all A ∈ 𝒜, but f and
g are not equivalent with respect to 𝜇. ⊲

Remark 3.50 [Some special cases] Theorem 3.48 implies: If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a
measurable function, then f =

𝜇
α, α ∈ R, is equivalent to

∫A
f d𝜇 =

∫A
α d𝜇 =

∫
1A α d𝜇 = α ⋅

∫
1A d𝜇 = α ⋅ 𝜇(A), ∀ A ∈ 𝒜. (3.46)

Furthermore, f =
𝜇

0 is equivalent to

∫A
f d𝜇 = 0, ∀ A ∈ 𝒜, (3.47)

using the convention 0 ⋅∞ = 0, if necessary.
An immediate implication of Equation (3.46) for A = Ω is

f =
𝜇
α, α ∈ R ⇒

∫
f d𝜇 = α 𝜇(Ω). (3.48)
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For α = 0, this yields

f =
𝜇

0 ⇒
∫

f d𝜇 = 0. (3.49)

⊲

Remark 3.51 [Almost everywhere] The notion of 𝜇-equivalence of f and g is an example
of a property that holds for all ω ∈ Ω ∖ A with 𝜇(A) = 0. We also say that such a property holds
𝜇-almost everywhere (𝜇-a.e.) (see Rem. 2.70). Another example is the property

f (ω) ≤ g(ω), ∀ ω ∈ Ω ∖ A and 𝜇(A) = 0,

which is denoted by f ≤
𝜇

g. The proposition of Lemma 3.47 analogously holds for the relations

≤
𝜇

and <
𝜇
. ⊲

The following theorem generalizes Lemma 3.26.

Theorem 3.52 [Monotonicity]
Let f , g: (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable functions.

(i) If f and g are quasi-𝜇-integrable, then

f ≤
𝜇

g ⇒
∫

f d𝜇 ≤
∫

g d𝜇. (monotonicity) (3.50)

(ii) If 𝜇(Ω) > 0 and f , g are 𝜇-integrable, then

f <
𝜇

g ⇒
∫

f d𝜇 <
∫

g d𝜇. (strict monotonicity) (3.51)

(Proof p. 122)

3.2.2 Integral with respect to a weighted sum of measures

In Example 1.62, we already noted that a weighted sum of measures with nonnegative weights
is again a measure. As a special case, if 𝜇 is a measure on (Ω, 𝒜 ) and α is a nonnegative
number, then α ⋅ 𝜇 is a measure on (Ω, 𝒜 ) as well. Furthermore, if f is 𝜇-integrable, then

∫
f d(α 𝜇) =

∫
α f d𝜇 = α

∫
f d𝜇 (3.52)

(see Exercise 3.10). This is generalized in the following theorem.
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Theorem 3.53 [Integral with respect to a weighted sum of measures]
If f : (Ω, 𝒜 ) → (R,ℬ) is measurable and nonnegative, 𝜇1, 𝜇2, … are measures on (Ω, 𝒜 ),
and α1, α2, … ∈ R are nonnegative, then

∫
f d

(
∞∑

i=1
αi 𝜇i

)
=

∞∑

i=1
αi ∫

f d𝜇i. (3.53)

For a proof, see Equation (3.52) and Bauer (2001, Example 3).
If we consider a finite weighted sum of measures, the assumption that f is nonnegative

can be replaced by integrability of f . In Theorem 3.54, we consider a weighted sum of two
measures. In Remark 3.55, we extend the result to a finite weighted sum of measures.

Theorem 3.54 [Integral with respect to a weighted sum of two measures]
Let 𝜇1, 𝜇2 be measures on (Ω, 𝒜 ). If f : (Ω, 𝒜 ) → (R,ℬ) is integrable with respect to 𝜇1
and 𝜇2, and 0 ≤ α1, α2 ∈ R, then f is integrable with respect to α1 𝜇1 + α2 𝜇2, and

∫
f d(α1 𝜇1 + α2 𝜇2) = α1 ∫

f d𝜇1 + α2 ∫
f d𝜇2. (3.54)

For a proof, see Equation (3.52) and Bauer (2001, Example 5).

Remark 3.55 [Integral with respect to a finite weighted sum of measures] By induction,
Theorem 3.54 yields, for nonnegative α1, … , αn ∈ R,

∫
f d

(
n∑

i=1
αi 𝜇i

)
=

n∑

i=1
αi ∫

f d𝜇i, (3.55)

provided that f is integrable with respect to all measures 𝜇1, … , 𝜇n. ⊲

Example 3.56 [Integral with respect to the weighted sum of Dirac measures] Let (Ω, 𝒜 )
be a measurable space and, for i ∈ N, let ωi ∈ Ω, αi ∈ R, αi ≥ 0, and 𝛿ωi

denote the Dirac
measure at ωi. Then

𝜇 =
∞∑

i=1
αi 𝛿ωi

(3.56)
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defined by 𝜇(A) = ∑ ∞
i=1 αi 𝛿ωi

(A), for all A ∈ 𝒜, is a measure on (Ω, 𝒜 ) (see Example 1.62).
For any nonnegative measurable function f : Ω → R, we obtain

∫
f d𝜇 =

∫
f d

(
∞∑

i=1
αi 𝛿ωi

)
[(3.56)]

=
∞∑

i=1
αi ∫

f d𝛿ωi
[(3.53)]

=
∞∑

i=1
αi f (ωi). [(3.23)]

(3.57)

For 𝜇(A) = ∑ n
i=1 αi 𝛿ωi

(A), for all A ∈ 𝒜, Equation (3.57) with αi = 0 for i > n yields

∫
f d𝜇 =

n∑

i=1
αi f (ωi). (3.58)

Hence, the integral of a nonnegative measurable function f with respect to a finite or
countable weighted sum of Dirac measures with nonnegative weights is a weighted sum of
values of f . ⊲

3.2.3 Integral with respect to an image measure

The next theorem is relevant whenever we consider the integral of a composition g ◦ f of a
mapping f with a numerical function g [see Eq. (2.25)] or the integral with respect to the
image measure 𝜇f of 𝜇 under f [see Def. 2.80].

Theorem 3.57 [Transformation theorem]
Let f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) and g: (Ω′, 𝒜 ′) → (R,ℬ) be measurable.

(i) If g is nonnegative or integrable with respect to 𝜇f , then

∫
g d𝜇f = ∫

g ◦ f d𝜇. (3.59)

(ii) g is integrable with respect to 𝜇f if and only if g ◦ f is 𝜇-integrable.

For a proof, see Bauer (2001, Corollary 19.2.1).
If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a numerical measurable function and we replace g by the iden-

tity function id: (R,ℬ) → (R,ℬ), then Theorem 3.57 implies Corollary 3.58.

Corollary 3.58 [An implication of the transformation theorem]
If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is nonnegative or 𝜇-integrable, then

∫
id d𝜇f = ∫

R

id d𝜇f = ∫
f d𝜇 =

∫Ω
f d𝜇. (3.60)
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Using the alternative notation of an integral introduced in Remark 3.32, Equation (3.59)
can also be written as:

∫
R

g(x) 𝜇f (dx) =
∫Ω

g[ f (ω)] 𝜇(dω). (3.61)

Correspondingly, Equation (3.60) can also be written as:

∫
R

x 𝜇f (dx) =
∫Ω

f (ω) 𝜇(dω). (3.62)

In Definition 3.10, we considered the case in which f = ∑n
i=1 αi 1Ai

is a nonnegative step
function and defined its integral by ∫ f d𝜇 = ∑n

i=1 αi 𝜇(Ai), presuming that A1, … , An are
pairwise disjoint. Now we consider a measurable function f with a finite number of values,
which can be 0, positive, or negative.

Corollary 3.59 [Integral of a function with a finite number of values]
If (Ω, 𝒜, 𝜇) is a measure space and f = ∑n

i=1 αi 1Ai
with pairwise different α1, … , αn ∈ R,

αi ≠ 0, and pairwise disjoint A1, … , An ∈ 𝒜, then f is 𝜇-integrable if and only if
𝜇(Ai) < ∞ for all i = 1, … , n. If f is 𝜇-integrable, then

∫
f d𝜇 =

n∑

i=1
αi 𝜇(Ai) =

n∑

i=1
αi 𝜇f ({αi}). (3.63)

(Proof p. 123)

3.2.4 Convergence theorems

The next two theorems deal with convergence of integrals. In the first one, we assume that
f1, f2, … is an increasing sequence of measurable functions that converge to f .

Theorem 3.60 [Monotone convergence; B. Levi]
Let the functions fn: (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable, for all n ∈ N.

(i) If the sequence f1, f2, … is increasing with limn→∞ fn = f and the functions fn
are nonnegative for all n ∈ N or 𝜇-integrable for all n ∈ N, then

∫
f d𝜇 = lim

i→∞ ∫
fn d𝜇. (3.64)

(ii) If the functions fi are nonnegative for all i ∈ N, then

∫

(
∞∑

i=1
fi

)
d𝜇 =

∞∑

i=1 ∫
fi d𝜇. (3.65)

The integrals on both sides are finite or +∞.
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For a proof of (i), assuming nonnegativity, see Bauer (2001, Theorem 11.4). For a proof
of (i), assuming integrability, see Klenke (2013, Theorem 4.20). For a proof of (ii), see Bauer
(2001, Corollary 11.5).

Note that, by definition of an ‘infinite sum’ (see Box 0.1), Equation (3.65) is equivalent to

∫

(
lim

n→∞

n∑

i=1
fi

)
d𝜇 = lim

n→∞

n∑

i=1 ∫
fi d𝜇. (3.66)

In Theorem 3.61, we replace the assumption that f1, f2, … is increasing by the assumption
that there is a 𝜇-integrable function g dominating the absolute value functions of all fn.

Theorem 3.61 [Dominated convergence; Lebesgue convergence theorem]
If g, fn: (Ω, 𝒜, 𝜇) → (R,ℬ), n ∈ N, are 𝜇-integrable and there is a measurable function
f : (Ω, 𝒜, 𝜇) → (R,ℬ) with lim

n→∞
fn = f , and | fn| ≤ g for all n ∈ N, then

∫
f d𝜇 = lim

n→∞ ∫
fn d𝜇, (3.67)

and this integral is finite.

For a proof, see Bauer (2001, Theorem 15.6).

3.3 Lebesgue and Riemann integral

The Lebesgue measures 𝜆n on (Rn, ℬn), n = 1, 2, 3, represent length, area, and volume,
respectively. As the examples illustrated by Figure 3.4 show, the integral of the (ℬ, ℬ)-
measurable function f : R → R with respect to the Lebesgue measure 𝜆 = 𝜆1 (i.e., the Lebesgue
integral) yields the difference between the areas marked by + and the areas marked by −,
respectively.

It is useful to know conditions under which the Lebesgue integral and the Riemann integral
are identical, because a lot of tools are available for Riemann integration (see, e.g., Ellis &
Gulick, 2006). The following theorem is proved in Klenke (2013, Theorem 4.23), who also
provides a brief definition of the Riemann integral and Riemann integrability.

Theorem 3.62 [Lebesgue integral and Riemann integral]
Let 𝜆 denote the Lebesgue measure on (R, ℬ) and let [a, b], a, b ∈ R, a < b, be a closed
interval. If f : [a, b] → R is Riemann integrable on [a, b], then f is 𝜆-integrable, and

∫

b

a
f (x) dx =

∫[a,b]
f d𝜆 =

∫[a,b]
f (x) 𝜆(dx) =

∫
1[a,b] ⋅ f d𝜆, (3.68)

where
∫

b

a
f (x) dx denotes the Riemann integral from a to b.
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Figure 3.5 Illustrating the construction of the Riemann integral.

Note that

∫

b

a
f (x) dx = F(x)|||

b

a
:= F(b) − F(a), (3.69)

where F is an antiderivative of f .

Remark 3.63 [Lebesgue vs. Riemann integral] If we want to define the integral of a mea-
surable function f : (Ω, 𝒜 ) → (R, ℬ), where the set Ω is not necessarily a subset of R, then
this means that the traditional Riemann integral cannot be used. The Riemann integral is con-
structed by partitioning the domain of f , the set R of real numbers, into small intervals and
adding the area of the rectangles on these intervals in order to approximate the area under the
function f : R → R (see Fig. 3.5). If Ω ⊄ R, then this idea does not work any more. Instead, the
Lebesgue integral is constructed by partitioning the codomain of f , which is the set R of real
numbers, into small intervals (see Fig. 3.3). This is also possible if Ω ⊄ R, and in this aspect,
the Lebesgue integral is more general than the Riemann integral. ⊲

Note, however, that even if the domain of f is a subset of the set of real numbers, there
are functions for which the Lebesgue integral exists and the Riemann integral does not exist
(see, e.g., Klenke, 2013, Example 4.24). Also note that there are functions that are Riemann
integrable on a half-open or unbounded interval but not Lebesgue integrable (see, e.g., Klenke,
2013, Remark 4.25).

Example 3.64 [Using the Riemann integral] As a simple application of Theorem 3.62,
consider the function f defined by f (x) = 10 − x 2 on a closed interval [a, b]. Because f is
a continuous function, it is Riemann integrable. Hence, we can apply Equation (3.68). For
a = −5 and b = 5, this equation yields

∫[−5, 5]
f d𝜆 =

∫

5

−5
f (x) dx = 16.6̄

(see Exercise 3.11). This integral is the difference between the areas marked by + and the areas
marked by − in Figure 3.4. ⊲
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3.4 Density

A density f can be interpreted as a weighting function of the values of the original measure 𝜇.
If we consider a measure 𝜇 on a measurable space (Ω, 𝒜 ) with 𝜇({x}) > 0 for all x ∈ Ω, then
this means that the values 𝜇({x}) of the singletons {x} are multiplied by a nonnegative number
f (x). If we consider the Lebesgue measure 𝜆 on R, then, intuitively speaking, any infinitesimal
interval dx gets a weight f (x). Using such a density, a new measure ν on 𝒜 is introduced, where
ν(A) is the integral of f over A with respect to 𝜇. The most important examples are densities
with respect to the Lebesgue measure (see Example 3.69).

Theorem 3.65 [Measure with density]
Let f : (Ω, 𝒜, 𝜇) → (R,ℬ) be a nonnegative measurable function. Then the function
ν: 𝒜→ R defined by

ν(A) =
∫A

f d𝜇, ∀ A ∈ 𝒜, (3.70)

is a measure, called the measure with density f with respect to 𝜇. It is denoted by
f ⊙𝜇, that is, f ⊙𝜇 := ν.

For a proof, see Bauer (2001, Theorem 17.1).
The notation f ⊙𝜇 has been adopted from Elstrodt (2007). Using this notation, Equa-

tion (3.70) can also be written as:

f ⊙𝜇(A) =
∫A

f d𝜇, ∀ A ∈ 𝒜. (3.71)

Definition 3.66 [Density]
Let ν be a measure on (Ω, 𝒜 ). If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a nonnegative measurable func-
tion satisfying Equation (3.70), then it is called a density of ν with respect to 𝜇.

The following theorem generalizes Equation (3.52).

Theorem 3.67 [Integral with respect to a measure with density]
Let (Ω, 𝒜, 𝜇) be a measure space and f : (Ω, 𝒜 ) → (R,ℬ) a nonnegative measurable func-
tion. Furthermore, let f ⊙𝜇: 𝒜→ R be the measure with density f with respect to 𝜇 and
let g: (Ω, 𝒜 ) → (R, ℬ) be measurable.

(i) If g is nonnegative, then

∫
g d f ⊙𝜇 =

∫
g ⋅ f d𝜇. (3.72)

(ii) g is integrable with respect to f ⊙𝜇 if and only if g ⋅ f is 𝜇-integrable.

(iii) If g is integrable with respect to f ⊙𝜇, then Equation (3.72) holds.
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For a proof, see Bauer (2001, Theorem 17.3).
In Theorem 3.68, we summarize some necessary and sufficient conditions for 𝜇-

equivalence of measurable functions on a measure space.

Theorem 3.68 [Necessary and sufficient conditions of 𝜇-equivalence]
Let f , g: (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable functions, let ℰ ⊂ 𝒜, and consider:

(a) f =
𝜇

g.

(b)
∫A

f d𝜇 =
∫A

g d𝜇, ∀ A ∈ 𝒜.

(c) f ⊙𝜇 = g⊙𝜇.

(d)
∫A

f d𝜇 =
∫A

g d𝜇, ∀ A ∈ ℰ .

Then,

(i) (a) ⇒ (b), if f and g are quasi-𝜇-integrable.

(ii) (a) ⇔ (b), if f , g are 𝜇-integrable.

(iii) (a) ⇔ (c), if f , g are 𝜇-integrable and nonnegative.

(iv) (a) ⇔ (b)⇔ (c)⇔ (d), if f , g are 𝜇-integrable, nonnegative, andℰ ⊂ 𝒜 is ∩-stable
with σ(ℰ ) = 𝒜.

(Proof p. 123)

Example 3.69 [A density of the normal distribution] As a special case of Equation (3.70),
consider

ν(A) =
∫A

f d𝜆, ∀ A ∈ 𝒜, (3.73)

with

f (x) = 1√
2π

⋅ exp

(
−x 2

2

)
, ∀ x ∈ R. (3.74)

In this case, the measure ν = f ⊙𝜆 is a probability measure, and it is called the standard normal
distribution. For an interval [a, b], Theorem 3.67 yields

ν([a, b]) =
∫

1[a,b] dν =
∫

1[a,b] d f ⊙𝜆 =
∫

1[a,b] f d𝜆 =
∫

b

a
f (x) dx, (3.75)

because f is Riemann-integrable (see Th. 3.62). According to this equation, the value ν([a, b])
of the interval [a, b] can be represented as the area between the density and the x-axis above
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Figure 3.6 Integral of a density for two intervals.

[a, b]. Figure 3.6 illustrates this fact for the interval [0, 1]. In this figure,

F(α) =
∫

α

−∞
f (x) dx, ∀ α ∈ R, (3.76)

denotes the corresponding distribution function (see Def. 5.81), which is a special antideriva-
tive of f [see Eq. (3.69)]. ⊲

3.5 Absolute continuity and the Radon-Nikodym theorem

Let 𝜇 and ν be measures on a measurable space (Ω, 𝒜 ). A necessary and sufficient condition
for the existence of a density of ν with respect to 𝜇 is formulated in the Radon-Nikodym
theorem (see Th. 3.72), which is used not only for densities but also for introducing conditional
expectations (see ch. 10). The following definition prepares this theorem.

Definition 3.70 [Absolute continuity]
Let 𝜇 and ν be measures on a measurable space (Ω, 𝒜 ).

(i) The measure ν is called absolutely continuous with respect to 𝜇, denoted
ν≪

𝒜
𝜇, if

∀ A ∈ 𝒜: 𝜇(A) = 0 ⇒ ν(A) = 0. (3.77)

(ii) The measures 𝜇 and ν are called null-set equivalent, denoted ν ≈
𝒜
𝜇, if ν≪

𝒜
𝜇

and 𝜇 ≪
𝒜

ν, that is, if

∀ A ∈ 𝒜: 𝜇(A) = 0 ⇔ ν(A) = 0. (3.78)

If there is ambiguity about the measurable space, we use the terms absolutely con-
tinuous on (Ω, 𝒜 ) and null-set equivalent on (Ω, 𝒜 ).
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Remark 3.71 [An implication] If there is a density f of ν with respect to 𝜇, then ν≪
𝒜

𝜇. This

is a straightforward implication of Lemma 3.45 and (3.72) (see Exercise 3.12). ⊲

Vice versa, if ν≪
𝒜

𝜇, then, according to the following theorem, there is a density f of ν with

respect to 𝜇, provided that 𝜇 and ν are σ-finite (see Definition 1.63).

Theorem 3.72 [Radon-Nikodym]
Let 𝜇 and ν be σ-finite measures on a measurable space (Ω, 𝒜 ).

(i) Then ν has a measurable density with respect to 𝜇 if and only if ν≪
𝒜

𝜇. This density

is denoted by dν
d𝜇

and called a Radon-Nikodym derivative.

(ii) If ν≪
𝒜

𝜇, then dν
d𝜇

is real-valued 𝜇-almost everywhere.

For a proof, see Klenke (2013, Corollary 7.34) or Bauer (2001, Theorem 17.10 and Theo-
rem 17.11).

Remark 3.73 [𝜇-Equivalence of densities] Note that, for σ-finite measures, all densities of ν
with respect to 𝜇 are pairwise 𝜇-equivalent (for a proof, see Bauer, 2001, Theorem 17.11). If ν
is a finite measure, which is equivalent to 𝜇-integrability of the density dν

d𝜇
, then Theorem 3.68

(iii) implies 𝜇-equivalence of all densities of ν with respect to 𝜇. The premise that ν is finite
holds in particular if ν is a probability measure. ⊲

Remark 3.74 [An implication of the Radon-Nikodym theorem] Theorem 3.72 implies for
σ-finite measures ν and 𝜇: If ν and 𝜇 are null-set equivalent, then dν

d𝜇
and d𝜇

dν both exist. ⊲

The Radon-Nikodym theorem is used to prove the existence of the conditional expectation
[see the proof of Theorem 10.9 (Bauer, 1996, Theorem 15.1)]. Corollary 3.75 immediately
follows from Theorem 3.67 and 3.72.

Corollary 3.75 [An implication of the Radon-Nikodym theorem]
Let 𝜇 and ν be σ-finite measures on a measurable space (Ω, 𝒜 ), and suppose ν≪

𝒜
𝜇.

Furthermore, let g: (Ω, 𝒜 ) → (R,ℬ) be a measurable function.

(i) If g is nonnegative or ν-integrable, then

∫
g dν =

∫
g ⋅

dν
d𝜇

d𝜇. (3.79)

(ii) g is ν-integrable if and only if g ⋅ dν
d𝜇

is 𝜇-integrable.
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3.6 Integral with respect to a product measure

Theorem 3.76 shows that integration with respect to a product measure can be decomposed
into a twofold iterated integration where the order of integration is arbitrary.

Theorem 3.76 [Fubini]
Assume that (Ωi, 𝒜i, 𝜇i), i = 1, 2, are σ-finite measure spaces and let f : Ω1 × Ω2 → R be
(𝒜1⊗𝒜2,ℬ)-measurable. Furthermore, let fi: Ωi → R, i = 1, 2, be defined by

f1(ω1) :=
∫

f (ω1, ω2) 𝜇2(dω2) and f2(ω2) :=
∫

f (ω1, ω2) 𝜇1(dω1).

If f is nonnegative or integrable with respect to the product measure 𝜇1⊗𝜇2, then the
functions fi are (𝒜i,ℬ)-measurable, i = 1, 2. Furthermore,

∫Ω1×Ω2

f d(𝜇1⊗𝜇2) =
∫Ω1×Ω2

f (ω1, ω2) 𝜇1⊗𝜇2 [d(ω1, ω2)]

=
∫Ω1

(
∫Ω2

f (ω1, ω2) 𝜇2(dω2)

)
𝜇1(dω1)

=
∫Ω2

(
∫Ω1

f (ω1, ω2) 𝜇1(dω1)

)
𝜇2(dω2).

(3.80)

For a proof, see Klenke (2013, Th. 14.16). If f = 1C for C ∈ 𝒜1⊗𝒜2, then this theorem and
(3.9) immediately yield the following corollary:

Corollary 3.77 [Indicators]
Let (Ωi, 𝒜i, 𝜇i), i = 1, 2, be σ-finite measure spaces, let C ∈ 𝒜1⊗𝒜2, and define

∀ ω1 ∈ Ω1: Cω1
:= {ω2 ∈ Ω2: (ω1, ω2) ∈ C}

and

∀ ω2 ∈ Ω2: Cω2
:= {ω1 ∈ Ω1: (ω1, ω2) ∈ C}.

Then

𝜇1⊗𝜇2(C) =
∫

𝜇2(Cω1
) 𝜇1(dω1) =

∫
𝜇1(Cω2

) 𝜇2(dω2). (3.81)

(Proof p. 124)
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Remark 3.78 [A special case] Choosing C = A1 × A2, Equation (3.81) yields

𝜇1⊗𝜇2(A1 × A2) =
∫

𝜇2(A2) ⋅ 1A1
(ω1) 𝜇1(dω1) = 𝜇2(A2) ⋅

∫
1A1

(ω1) 𝜇1(dω1)

= 𝜇1(A1) ⋅ 𝜇2(A2),

which is consistent with Equation (1.50). ⊲

3.7 Proofs

Proof of Lemma 3.33

(i) If f is measurable and A ∈ 𝒜, then 1A is measurable as well (see Th. 2.57 and Exam-
ple 2.12). Suppose that f is quasi-𝜇-integrable, that is, suppose that ∫ f+d𝜇 or ∫ f−d𝜇
are finite. Because

(1A f )+ = 1A f+ and (1A f )− = 1A f−

as well as

0 ≤ 1A f+ ≤ f+ and 0 ≤ 1A f− ≤ f−,

monotonicity of the integral of nonnegative measurable functions (Lemma 3.26) yields

0 ≤
∫

(1A f )+ d𝜇 =
∫

1A f+d𝜇 ≤
∫

f+d𝜇

and

0 ≤
∫

(1A f )− d𝜇 =
∫

1A f−d𝜇 ≤
∫

f−d𝜇,

which implies that ∫ (1A f )+ d𝜇 or ∫ (1A f )− d𝜇 is finite. Hence, 1A f is quasi-𝜇-
integrable.

(ii) If f is 𝜇-integrable, then ∫ f+d𝜇 < ∞ and ∫ f−d𝜇 < ∞. Just like in the proof of (i),
this implies ∫ (1A f )+ d𝜇 < ∞ and ∫ (1A f )− d𝜇 < ∞. Hence, 1A f is 𝜇-integrable.

Proof of Theorem 3.36

(i) Step 1: Let α ≥ 0, let f be a nonnegative step function, and f = ∑n
i=1 αi1Ai

a normal
representation (see Rem. 3.8). Then, according to (3.4),

∫
α f d𝜇 =

∫
α

n∑

i=1
αi1Ai

d𝜇 [Rem. 3.8]

=
∫

n∑

i=1
(α αi) 1Ai

d𝜇



116 PROBABILITY AND CONDITIONAL EXPECTATION

=
n∑

i=1
(α αi) 𝜇(Ai) [(3.4)]

= α
n∑

i=1
αi 𝜇(Ai)

= α
∫

f d𝜇. [(3.4)]

Step 2: Let α ≥ 0, f be a nonnegative measurable function, and f1 ≤ f2 ≤ … an
increasing sequence of nonnegative step functions with limn→∞ fn = f (see Th. 3.19).
Then, according to Equation (3.22),

∫
α f d𝜇 =

∫
α lim

n→∞
fn d𝜇

=
∫

lim
n→∞

(α fn) d𝜇

= lim
n→∞ ∫

α fn d𝜇 [(3.22)]

= lim
n→∞

α
∫

fn d𝜇 [Step 1]

= α lim
n→∞ ∫

fn d𝜇

= α
∫

f d𝜇. [(3.22)]

Step 3: Assume that α ≥ 0 and that f is quasi-𝜇-integrable. Because α f = α ( f+ −
f−) = α f+ − α f−,

∫
α f d𝜇 =

∫
α f+ d𝜇 −

∫
α f− d𝜇 [(3.27)]

= α
∫

f+ d𝜇 − α
∫

f− d𝜇 [Step 2]

= α
(
∫

f+ d𝜇 −
∫

f− d𝜇

)

= α
∫

f d𝜇. [(3.27)]

This proves Equation (3.32) for α ≥ 0. For α < 0, note that

(α f )+ = −α f− and (α f )− = −α f+. (3.82)
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Therefore,

∫
α f d𝜇 =

∫
(α f )+ d𝜇 −

∫
(α f )− d𝜇 [(3.27)]

=
∫

(−α) f− d𝜇 −
∫

(−α) f+ d𝜇 [(3.82)]

= −α
∫

f− d𝜇 − (−α)
∫

f+ d𝜇 [−α > 0, first part of Step 3]

= α
(
∫

f+ d𝜇 −
∫

f− d𝜇

)

= α
∫

f d𝜇. [(3.27)]

This shows that ∫ α f d𝜇 = α ∫ f d𝜇 holds for all α ∈ R, all quasi-𝜇-integrable f , and
therefore also all integrable f . This also implies that α f is quasi-𝜇-integrable or 𝜇-
integrable if f is quasi-𝜇-integrable or 𝜇-integrable, respectively.

(ii) Step 1: Let f and g be nonnegative step functions and let f = ∑n
i=1 αi1Ai

,
g = ∑m

j=1 βj1Bj
be normal representations (see Rem. 3.8) with

⋃ n
i=1 Ai = Ω and

⋃ m
j=1 Bj = Ω. (Note that these latter requirements can always be fulfilled using An :=

Ω ∖ ⋃n−1
i=1 Ai and αn := 0, if f = ∑n−1

i=1 αi1Ai
is already a normal representation.) Then

f + g = ∑n
i=1 αi1Ai

+∑m
j=1 βj1Bj

is again a nonnegative step function (see Def. 3.10)
and

f + g =
n∑

i=1

m∑

j=1
γij1Cij

is a normal representation, where Cij := Ai ∩ Bj and γij := αi + βj. Note that some of
these sets Cij may be empty. Now,

∫
f + g d𝜇 =

n∑

i=1

m∑

j=1
γij 𝜇(Cij) [(3.4)]

=
n∑

i=1

m∑

j=1
(αi + βj) 𝜇(Ai ∩ Bj)

=
n∑

i=1

m∑

j=1
αi 𝜇(Ai ∩ Bj) +

n∑

i=1

m∑

j=1
βj 𝜇(Ai ∩ Bj)

=
n∑

i=1
αi

m∑

j=1
𝜇(Ai ∩ Bj) +

m∑

j=1
βj

n∑

i=1
𝜇(Ai ∩ Bj)

=
n∑

i=1
αi 𝜇(Ai) +

m∑

j=1
βj 𝜇(Bj) [Rem. 1.47]

=
∫

f d𝜇 +
∫

g d𝜇. [(3.4)]
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Step 2: Let f , g be nonnegative measurable functions and f1 ≤ f2 ≤ …, g1 ≤

g2 ≤ … increasing sequences of nonnegative step functions with limn→∞ fn = f
and limn→∞ gn = g, respectively (see Th. 3.19). Then f1 + g1 ≤ f2 + g2 ≤ … is
an increasing sequence of nonnegative step functions with limn→∞( fn + gn) =
limn→∞ fn + limn→∞ gn = f + g. Then

∫
f + g d𝜇 =

∫
lim

n→∞
( fn + gn) d𝜇

= lim
n→∞ ∫

( fn + gn) d𝜇 [(3.22)]

= lim
n→∞

(
∫

fn d𝜇 +
∫

gn d𝜇

)
[Step 1]

= lim
n→∞ ∫

fn d𝜇 + lim
n→∞ ∫

gn d𝜇

=
∫

f d𝜇 +
∫

g d𝜇. [(3.22)]

Step 3: Assume that f is quasi-𝜇-integrable and g is 𝜇-integrable. Then

f + g = f+− f− + g+− g−,

f + g = ( f + g)+ − ( f + g)−.

This implies

( f + g)+ − ( f + g)− = f+− f− + g+− g−,

which is equivalent to

( f + g)+ + f−+ g− = ( f + g)− + f++ g+.

Applying the result of Step 2 yields

∫
( f + g)+ d𝜇 +

∫
f− d𝜇 +

∫
g−d𝜇 =

∫
( f + g)− d𝜇 +

∫
f+d𝜇 +

∫
g+d𝜇.

(3.83)

If g is 𝜇-integrable, then ∫ g+ d𝜇 and ∫ g− d𝜇 are finite, and if f is quasi-𝜇-integrable,
then at most one of ∫ f+d𝜇 and ∫ f−d𝜇 is infinite, and the other one is finite. Further-
more, ( f + g)+ ≤ f+ + g+ and ( f + g)− ≤ f− + g−. Hence, Lemma 3.26 implies

∫
( f + g)+ d𝜇 ≤

∫
f+ + g+ d𝜇 =

∫
f+ d𝜇 +

∫
g+ d𝜇 (3.84)
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and

∫
( f + g)− d𝜇 ≤

∫
f− + g− d𝜇 =

∫
f− d𝜇 +

∫
g− d𝜇.

Therefore, at most one of the integrals ∫ ( f + g)+ d𝜇 and ∫ ( f + g)− d𝜇 is infinite,
and this implies that f + g is quasi-𝜇-integrable. If ∫ ( f + g)+ d𝜇 = ∞, then

∫
( f + g) d𝜇 =

∫
( f + g)+ d𝜇 −

∫
( f + g)− d𝜇 = ∞,

and, according to (3.84), ∫ f+ d𝜇 = ∞. This implies

∫
f d𝜇 +

∫
g d𝜇 =

∫
f+d𝜇 −

∫
f−d𝜇 +

∫
g d𝜇 = ∞.

Analogously, if ∫ ( f + g)− d𝜇 = ∞, then

∫
( f + g) d𝜇 = −∞ =

∫
f d𝜇 +

∫
g d𝜇.

If both, ∫ ( f + g)+ d𝜇 and ∫ ( f + g)− d𝜇 are finite, then (3.83) is equivalent to

∫
( f + g)+ d𝜇 −

∫
( f + g)− d𝜇 =

∫
f+ d𝜇 −

∫
f− d𝜇 +

∫
g+ d𝜇 −

∫
g− d𝜇,

which in turn is equivalent to

∫
( f + g) d𝜇 =

∫
f d𝜇 +

∫
g d𝜇.

Proof of Corollary 3.38

Because | f | = f+ + f−, this proposition immediately follows from the definition of integra-
bility (see Def. 3.28) and linearity of the integral [see Eq. (3.34)].

Proof of Lemma 3.40

If f is 𝒞-measurable, then f+ and f− are 𝒞-measurable as well (see Th. 2.66). Furthermore,
f+ and f− can be represented as limits of increasing sequences of nonnegative step functions
on (Ω, 𝒞) [see Th. 3.19 (i)]. Hence, according to Equations (3.22) and (3.4), the values of the
integrals ∫ f+ d𝜇 and ∫ f− d𝜇 only depend on the values 𝜇(A), A ∈ 𝒞. Therefore, if 𝜇 and ν
are identical on 𝒞, then ∫ f d𝜇 = ∫ f dν, for all 𝒞-measurable functions that are nonnegative
or 𝜇-integrable.
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Proof of Lemma 3.41

Define

A+ := {ω ∈ Ω: f (ω) = ∞} ∈ 𝒜 and A− := {ω ∈ Ω: f (ω) = −∞} ∈ 𝒜.

If 𝜇(A+) > 0, then define the increasing sequence gn: Ω → [0, ∞), n ∈ N, by gn = n ⋅ 1A+
.

Because 1A+
⋅ f+ = limn→∞ gn,

∫
f+ d𝜇 =

∫
1A+

⋅ f+ d𝜇 +
∫

1Ω∖A+
⋅ f+ d𝜇 [(3.36)]

= lim
n→∞ ∫

gn d𝜇 +
∫

1Ω∖A+
⋅ f+ d𝜇 [Def. 3.24]

= lim
n→∞ ∫

n ⋅ 1A+
d𝜇 +

∫
1Ω∖A+

⋅ f+ d𝜇

= lim
n→∞

n ⋅ 𝜇(A+) +
∫

1Ω∖A+
⋅ f+ d𝜇 [(3.4)]

= ∞.

Analogously we can prove that ∫ f− d𝜇 = ∞, if 𝜇(A−) > 0 replacing f+ by f− and A+ by A−.
Therefore, if f is quasi-𝜇-integrable and ∫ f+ d𝜇 = ∞, then ∫ f− d𝜇 is finite (see Def. 3.28)
and ∫ f d𝜇 = ∫ f+ d𝜇 − ∫ f− d𝜇 = ∞. This proves (3.38). Analogously, if f is quasi-𝜇-
integrable and ∫ f− d𝜇 = ∞, then ∫ f+ d𝜇 is finite (see Def. 3.28) and ∫ f d𝜇 = ∫ f+ d𝜇 −
∫ f− d𝜇 = −∞, which proves (3.39). Finally, if 𝜇(A+ ∪ A−) > 0 and hence 𝜇(A+) > 0 or
𝜇(A−) > 0, then, according to (3.38) and (3.39), ∫ f d𝜇 is not defined or not finite. Thus,
by contraposition, if f is 𝜇-integrable, then 𝜇(A+ ∪ A−) = 0, that is, f is real-valued, 𝜇-almost
everywhere.

Proof of Lemma 3.44

If f (ω) > 0, for all ω ∈ A, then 1A⋅ f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a nonnegative measurable
function (see Th. 2.57). Hence, ∫ 1A⋅ f d𝜇 ≥ 0 (see Defs. 3.24 and 3.10). Because

𝜇({ω ∈ Ω: (1A⋅ f (ω) > 0}) = 𝜇(A), the assumption 𝜇(A) > 0 implies that 1A⋅ f =
𝜇

0 does not

hold. Therefore, according to Equation (3.40), ∫ 1A⋅ f d𝜇 ≠ 0, and we can conclude:
∫ 1A⋅ f d𝜇 > 0.

Proof of Lemma 3.45

If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is measurable and A ∈ 𝒜 with 𝜇(A) = 0, then 1A⋅ f is measurable
(see Th. 2.57) and 1A⋅ f =

𝜇
0 (see Exercise 3.9). This implies (1A⋅ f )+ =

𝜇
0 and (1A⋅ f )− =

𝜇
0. Now

Equation (3.40) yields ∫ (1A⋅ f )+ d𝜇 = 0 and ∫ (1A⋅ f )− d𝜇 = 0. Hence, ∫ 1A⋅ f d𝜇 exists (see
Def. 3.28) and Equation (3.27) implies

∫
1A⋅ f d𝜇 =

∫
(1A⋅ f )+d𝜇 −

∫
(1A⋅ f )−d𝜇 = 0.
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Proof of Lemma 3.47

Define A := {ω ∈ Ω: f (ω) ≠ g(ω)} and note that A ∈ 𝒜 [see Rem. 2.67 (c)]. Therefore, f =
𝜇

g
implies 𝜇(A) = 0. Hence,

∫
f d𝜇 =

∫Ω∖A
f d𝜇 [(3.43)]

=
∫Ω∖A

g d𝜇 [Def. of A]

=
∫

g d𝜇. [(3.43)]

Proof of Theorem 3.48

(a) f , g are 𝜇-integrable and f =
𝜇

g

⇒ ∀ A ∈ 𝒜 : 1A⋅ f =
𝜇

1A⋅g and 1A⋅ f , 1A⋅g are 𝜇-integrable [(2.33), (3.29)]

⇒ ∀ A ∈ 𝒜 :
∫A

f d𝜇 =
∫A

g d𝜇. [(3.44)]

(b) If f , g are 𝜇-integrable, then f , g are real-valued 𝜇-a.e. (see Lemma 3.41). Hence, for

B := {ω ∈ Ω: f (ω) ∈ {−∞, ∞}} ∪ {ω ∈ Ω: g(ω) ∈ {−∞, ∞}},

B ∈ 𝒜 and 𝜇(B) = 0. Now define

A > := {ω ∈ Ω: f (ω) > g(ω)} and A < := {ω ∈ Ω: f (ω) < g(ω)}.

According to Remark 2.67 (b) and (a), A > ∈ 𝒜 and A < ∈ 𝒜. Then

∀ A ∈ 𝒜 :
∫A

f d𝜇 =
∫A

g d𝜇

⇒ ∀ A ∈ 𝒜 :
∫A ∩ Bc

f d𝜇 =
∫A ∩ Bc

g d𝜇 [(3.43)]

⇒ ∀ A ∈ 𝒜 :
∫A ∩ Bc

( f − g) d𝜇 = 0 [ f , g 𝜇-integrable, (3.34)]

⇒
∫A >

∩ Bc
( f − g) d𝜇 = 0 and

∫A <
∩ Bc

( f − g) d𝜇 = 0 [A >, A < ∈ 𝒜 ]

⇒ 𝜇(A >
∩ Bc) = 0 and 𝜇(A <

∩ Bc) = 0 [(3.41)]

⇒ 𝜇(A > ∪ A <)

= 𝜇((A >
∩ Bc) ∪ (A >

∩ B) ∪ (A <
∩ Bc) ∪ (A <

∩ B)) = 0 [Box 1.1 (ii)]

⇒ f =
𝜇

g. [Def. 2.68]
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Proof of Theorem 3.52

(i) Define A := {ω ∈ Ω: f (ω) > g(ω)}. According to Remark 2.67 (b), A ∈ 𝒜. Therefore,

f ≤
𝜇

g implies 𝜇(A) = 0. Furthermore, define

A−∞ := {ω ∈ Ω ∖ A: f (ω) = −∞} and A∞ := {ω ∈ Ω ∖ A: g(ω) = ∞}.

If 𝜇(A−∞) > 0, then ∫ f d𝜇 = −∞ [see (3.39)]. Therefore, ∫ f d𝜇 ≤ ∫ g d𝜇. If
𝜇(A∞) > 0, then ∫ g d𝜇 = ∞ [see (3.38)], and therefore ∫ f d𝜇 ≤ ∫ g d𝜇.

Now define B := (Ω ∖ A) ∖ (A∞ ∪ A−∞), which implies 𝜇(Ω ∖ B) = 0, and

∀ ω ∈ B: f (ω), g(ω) are finite, f (ω) ≤ g(ω).

If ∫ (1B f )− d𝜇 = ∞, then ∫B f d𝜇 = −∞. Hence, ∫ f d𝜇 ≤ ∫ g d𝜇. If ∫ (1B f )+ d𝜇 =
∞, then 1B f ≤ 1B g implies (1B f )+ ≤ (1B g)+ and ∫ (1B g)+ d𝜇 = ∞ [see Eq. (3.24)].
Therefore, ∫ f d𝜇 = ∫ g d𝜇 = ∞, which implies ∫ f d𝜇 ≤ ∫ g d𝜇.

Now, if all (1B f )+, (1B f )−, (1B g)+, (1B g)− are 𝜇-integrable, then

∫
g d𝜇 =

∫B
g d𝜇 [(3.43)]

=
∫B

( f + g − f ) d𝜇 [1B f , 1B g are real-valued]

=
∫B

f d𝜇 +
∫B

(g − f ) d𝜇 [(3.34)]

≥
∫B

f d𝜇 [1B(g − f ) ≥ 0, (3.24)]

=
∫

f d𝜇. [(3.43)]

(ii) Define

B := {ω ∈ Ω: f (ω) ∈ {−∞, ∞}} ∪ {ω ∈ Ω: g(ω) ∈ {−∞, ∞}}.

If f , g are 𝜇-integrable, then Lemma 3.41 implies 𝜇(B) = 0. Furthermore, define
A := {ω ∈ Ω ∖ B: f (ω) ≥ g(ω)}. Then f <

𝜇
g implies 𝜇(A) = 0. Hence, 𝜇(A ∪ B) = 0

[see Box 1.1 (xi)]. Now,

∫
g d𝜇 =

∫Ω∖(A ∪ B)
g d𝜇 [(3.43)]

=
∫Ω∖(A ∪ B)

( f + g − f ) d𝜇 [1Ω∖(A ∪ B) f , 1Ω∖(A ∪ B) g are real-valued]

=
∫Ω∖(A ∪ B)

f d𝜇 +
∫Ω∖(A ∪ B)

(g − f ) d𝜇 [(3.34)]

>
∫Ω∖(A ∪ B)

f d𝜇. [1Ω∖(A ∪ B)(g − f ) > 0, 𝜇(Ω ∖ (A ∪ B)) > 0, Lem. 3.44]



INTEGRAL 123

Proof of Corollary 3.59

Assume that f : (Ω, 𝒜 ) → (R,ℬ) is measurable with a finite number of positive values
α1, … , αm > 0 and a finite number of negative values αm+1, … , αn < 0. By convention, if
m = n, then

∑n
i=m+1 αi1Ai

= 0, and if m = 0, then
∑m

i=1 αi1Ai
= 0. Then

f =
n∑

i=1
αi1Ai

=
m∑

i=1
αi1Ai

+
n∑

i=m+1
αi1Ai

and f+ = ∑m
i=1 αi1Ai

as well as f− = −∑n
i=m+1 αi1Ai

= ∑n
i=m+1 −αi1Ai

. Therefore,

∫
f+ d𝜇 =

m∑

i=1
αi 𝜇(Ai) and

∫
f− d𝜇 =

n∑

i=m+1
−αi𝜇(Ai),

and ∫ f+ d𝜇 as well as ∫ f− d𝜇 are finite if and only if 𝜇(Ai) < ∞, for all i = 1, … , n. Now,
𝜇(Ai) < ∞, for all i = 1, … , n, implies

∫
f d𝜇 =

∫
f+ d𝜇 −

∫
f− d𝜇 [Def. 3.28]

=
m∑

i=1
αi 𝜇(Ai) +

n∑

i=m+1
αi 𝜇(Ai)

=
n∑

i=1
αi 𝜇(Ai)

=
n∑

i=1
αi 𝜇f ({αi}). [Def. 2.80, (2.10)]

Note that, in the last equation, we used the assumption that the α1, … , αn are pairwise different.

Proof of Theorem 3.68

(i) This is the proposition of Lemma 3.47.

(ii) This proposition is Theorem 3.48.

(iii) If f , g are 𝜇-integrable and nonnegative, then it suffices to show: (b) ⇔ (c) [see (ii)].
Now

∫A
f d𝜇 =

∫A
g d𝜇, ∀ A ∈ 𝒜

⇔
∫

1A f d𝜇 =
∫

1A g d𝜇, ∀ A ∈ 𝒜 [Def. 3.35]

⇔
∫

1A d f⊙𝜇 =
∫

1A dg⊙𝜇, ∀ A ∈ 𝒜 [Th. 3.67 (i)]

⇔ f⊙𝜇(A) = g⊙𝜇(A), ∀ A ∈ 𝒜 [(3.9)]

⇔ f⊙𝜇 = g⊙𝜇.
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(iv) If f , g are𝜇-integrable and nonnegative, then the equivalence of (a), (b), and (c) follows
from (ii) and (iii). Hence, it suffices to show: (c) ⇔ (d). Because 𝜇-integrability of f
and g implies that f⊙𝜇 and g⊙𝜇 are finite measures, applying Theorem 1.72 completes
the proof.

Proof of Corollary 3.77

Note that

∀ (ω1, ω2) ∈ Ω1 × Ω2: 1C(ω1, ω2) = 1Cω1
(ω2) = 1Cω2

(ω1). (3.85)

Now,

𝜇1⊗𝜇2(C) =
∫

1C d(𝜇1⊗𝜇2) [(3.9)]

=
∫ ∫

1C(ω1, ω2) 𝜇2(dω2) 𝜇1(dω1) [(3.80)]

=
∫ ∫

1Cω1
(ω2) 𝜇2(dω2) 𝜇1(dω1) [(3.85)]

=
∫

𝜇2(Cω1
) 𝜇1(dω1). [(3.9)]

The proof of the second equation is analog.

Exercises

3.1 Construct a representation of the identity function on Ω = {1, … , n} as a weighted sum
of indicators of elements of 𝒜, where n ∈ N and (Ω, 𝒜 ) with 𝒜= 𝒫(Ω).

3.2 Prove that, for every nonnegative step function, there exists a normal representation
(see Rem. 3.8).

3.3 Consider the measure space (R, ℬ, 𝜆), where 𝜆 is the Lebesgue measure. Show that
the number

∑n
i=1 αi 𝜆(Ai) assigned to the nonnegative step function f defined in Exam-

ple 3.7 is identical for the four specified representations of f , two of which are nonnor-
mal representations.

3.4 Let (Ω, 𝒜 ) be a measurable space and let A ∈ 𝒜. Show that if f = ∑n
i=1 αi1Ai

is a normal
representation of a nonnegative step function, then the product 1A f of the indicator
1A and f is also a normal representation of a nonnegative step function, and 1A f =∑n

i=1 αi1A ∩ Ai
.

3.5 Prove Equation (3.8).

3.6 Compute the integral of the identity mapping id: Ω → Ω with respect to the counting
measure 𝜇# on 𝒫(Ω), where Ω = {1, … , n}. Then look at it for n = 5.

3.7 Compute the integrals ∫ f1 d𝜆 and ∫ f2 d𝜆 of the functions f1 and f2 defined in Exam-
ple 3.17.
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3.8 Prove the propositions of Example 3.39.

3.9 Let f : (Ω, 𝒜, 𝜇) → (R,ℬ) be measurable and A ∈ 𝒜. Show that 1A f =
𝜇

0 if 𝜇(A) = 0.

3.10 Prove Equation (3.52).

3.11 Compute the integral of the function f (x) = 10 − x2 considered in Example 3.64.

3.12 Prove the proposition of Remark 3.71.

Solutions

3.1 The identity function id: Ω → Ω on Ω = {1, … , n} is defined by

id(i) = i, ∀ i ∈ Ω.

According to Example 2.9, it is (𝒜, 𝒜0)-measurable for all σ-algebras 𝒜0 ⊂ 𝒜. Now
consider the set {1, … , n} of values of id and the partition {{1}, … , {n}} of Ω.
Then

id =
n∑

i=1
i ⋅ 1{i} = 1 ⋅ 1{1} +⋯ + n ⋅ 1{n}.

3.2 Let f : (Ω, 𝒜 ) → (R, ℬ) be a nonnegative step function, with f = ∑n
i=1 αi1Ai

. Define,
for all nonempty J ⊂ {1, … , n},

BJ :=

(
⋂

i∈J
Ai

)
∩

(
⋂

i∉J
Ac

i

)
.

These are 2n − 1 sets, where several of them may be empty, and all are pairwise disjoint.
Then

f =
∑

J: BJ ≠Ø

(
∑

i∈J
αi

)
⋅ 1BJ

is a normal representation of f .

3.3 We compute the sum for all four representations of f . The first one is:

4∑

i=1
αi 𝜆(Ai) = 2 ⋅ (1 − 0) + 5 ⋅ (2 − 1) + 4 ⋅ (3 − 2) + 1 ⋅ (4 − 3)

= 2 ⋅ 1 + 5 ⋅ 1 + 4 ⋅ 1 + 1 ⋅ 1 = 12.

The sum for the second representation of f is:

5∑

i=1
γi 𝜆(Ci) = 2 ⋅ (.5 − 0) + 2 ⋅ (1 − .5) + 5 ⋅ (2 − 1) + 4 ⋅ (3 − 2) + 1 ⋅ (4 − 3)

= 2 ⋅ .5 + 2 ⋅ .5 + 5 ⋅ 1 + 4 ⋅ 1 + 1 ⋅ 1 = 12.
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The sum for the third representation of f , which is nonnormal, is:

3∑

i=1
βi 𝜆(Bi) = 2 ⋅ (2 − 0) + 3 ⋅ (3 − 1) + 1 ⋅ (4 − 2)

= 2 ⋅ 2 + 3 ⋅ 2 + 1 ⋅ 2 = 12.

The sum for the fourth representation of f , which is also nonnormal, is:

4∑

i=1
𝛿i 𝜆(Di) = 1 ⋅ (4 − 0) + 1 ⋅ (3 − 0) + 2 ⋅ (3 − 1) + 1 ⋅ (2 − 1)

= 1 ⋅ 4 + 1 ⋅ 3 + 2 ⋅ 2 + 1 ⋅ 1 = 12.

Obviously, all four sums are identical.

3.4 Let f = ∑n
i=1 αi1Ai

, where A1, … , An ∈ 𝒜. This implies A ∩ A1, … , A ∩ An ∈ 𝒜, for
A ∈ 𝒜. Therefore, and because of 1A⋅ f = ∑n

i=1 αi1A ∩ Ai
, the function 1A⋅ f is a nonneg-

ative step function. If f = ∑n
i=1 αi1Ai

is a normal representation, then Ai ∩ Aj = Ø for
i ≠ j, which implies (A ∩ Ai) ∩ (A ∩ Aj) = A ∩ (Ai ∩ Aj) = A ∩ Ø = Ø, for i ≠ j. There-
fore, 1A⋅ f = ∑n

i=1 αi1A ∩ Ai
is a normal representation as well.

3.5 ∫A α d𝜇 = ∫ α 1A d𝜇 = α 𝜇(A) [see Eq. (3.4)].

3.6 Consider the elements {1}, … , {n} of 𝒜= 𝒫(Ω) and id = ∑n
ω=1 ω ⋅ 1{ ω }. According

to Definition 3.10,

∫
id d𝜇# =

n∑

ω=1
ω ⋅ 𝜇#({ ω })

= 1 ⋅ 𝜇#({1}) + 2 ⋅ 𝜇#({2}) +⋯ + n ⋅ 𝜇#({n})

=
n∑

i=1
i = n(n + 1)

2

(3.86)

is the integral of id over Ω with respect to the measure 𝜇#. Hence, in this example,
the integral ∫ id d𝜇# is the sum over all elements in Ω. For n = 5, this formula yields
∫ id d𝜇# = 15.

3.7 In Example 3.17, we considered the measure space (R, ℬ, 𝜆), where 𝜆 is the Lebesgue
(or length) measure on ℬ. Remember, the Lebesgue measure satisfies

𝜆(]a, b]) = 𝜆([a, b]) = b − a,

for a < b [see Eq. (1.54)]. We also considered f1 = α11A1
with A1 = [0, (1 − .50)1∕2]

and α1 = .50. Hence, f1 = .50 ⋅ 1A1
. Therefore,

∫
f1 d𝜆 = α1 ⋅ 𝜆(A1) = .50 ⋅ 𝜆(A1) = .50 ⋅ (1 − .50)1∕2 = .50 ⋅ .501∕2 ≈ .3536.

This is the area shaded in the left part of Figure 3.3.
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Similarly, in Example 3.17, we also considered f2 = ∑3
i=1 βi1Bi

with the three
intervals

B1 = [0, (1 − .75)1∕2], B2 = ](1 − .75)1∕2, (1 − .50)1∕2],

B3 = ](1 − .50)1∕2, (1 − .25)1∕2].

Again note that B1, B2, B3 is a sequence of elements of 𝒜. Furthermore, f2 =∑ 3
i=1 βi 1Bi

with β1 = .75, β2 = .50, and β3 = .25. Hence, the integral of f2 =
∑ 3

i=1 βi1Bi
with respect to 𝜆 is

∫
f2 d𝜆 =

3∑

i=1
βi ⋅ 𝜆(Bi) = .75 ⋅ 𝜆(B1) + .50 ⋅ 𝜆(B2) + .25 ⋅ 𝜆(B3)

= .75 ⋅ [(1 − .75)1∕2] + .50 ⋅ [(1 − .50)1∕2 − (1 − .75)1∕2]

+ .25 ⋅ [(1 − .25)1∕2 − (1 − .50)1∕2]

≈ .75 ⋅ .50 + .50 ⋅ .2071 + .25 ⋅ .1589 ≈ 0.3750 + .1036 + .0397 = .5183.

This is the area shaded in the middle part of Figure 3.3. The integral of f3 = ∑7
i=1 γi1Ci

can be computed correspondingly. It is the area shaded in the right part of Figure 3.3.

3.8 If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is 𝜇-integrable and A, B ⊂ 𝒜, then 1A ∪ B f is 𝜇-integrable (see
Lemma 3.33) and

∫A ∪ B
f d𝜇 =

∫
1A ∪ B f d𝜇 [(3.30)]

=
∫

(1A + 1B − 1A ∩ B) f d𝜇 [(1.34)]

=
∫

(1A f + 1B f − 1A ∩ B f ) d𝜇

=
∫

1A f d𝜇 +
∫

1B f d𝜇 −
∫

1A ∩ B f d𝜇 [(3.34)]

=
∫A

f d𝜇 +
∫B

f d𝜇 −
∫A ∩ B

f d𝜇. [(3.30)]

If A ∩ B = Ø and f : (Ω, 𝒜, 𝜇) → (R,ℬ) is quasi-𝜇-integrable, then 1A ∪ B⋅ f =
1A⋅ f + 1B⋅ f , and the functions 1A ∪ B f , 1A f , 1B f are quasi-𝜇-integrable (see Lem. 3.33).
If ∫ f+ d𝜇 is finite, then ∫ 1A ∪ B⋅ f+ d𝜇, ∫ 1A⋅ f+ d𝜇, and ∫ 1B⋅ f+ d𝜇 are finite as
well (see Lem. 3.33). If ∫ f+ d𝜇 is infinite, then quasi-𝜇-integrability of f implies
that ∫ f− d𝜇 is finite and, according to Lemma 3.33, also the integrals ∫ 1A ∪ B⋅ f− d𝜇,
∫ 1A⋅ f− d𝜇, and ∫ 1B⋅ f− d𝜇. Hence, in both cases,

∫
1A ∪ B⋅ f d𝜇 =

∫
1A ∪ B⋅ f+ d𝜇 −

∫
1A ∪ B⋅ f− d𝜇 [(3.27)]

=
∫

1A⋅ f+ d𝜇 +
∫

1B⋅ f+ d𝜇

−
(
∫

1A⋅ f− d𝜇 +
∫

1B⋅ f− d𝜇

)
[(3.34)]
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=
(
∫

1A⋅ f+ d𝜇 −
∫

1A⋅ f− d𝜇

)

+
(
∫

1B⋅ f+ d𝜇 −
∫

1B⋅ f− d𝜇

)

=
∫

1A⋅ f d𝜇 +
∫

1B⋅ f d𝜇. [(3.27)]

3.9 1A(ω) ⋅ f (ω) =
{

0, if ω ∉ A

f (ω), if ω ∈ A.

Therefore, {ω ∈ Ω: 1A(ω) ⋅ f (ω) ≠ 0} ⊂ A. Hence, 𝜇({ω ∈ Ω: 1A(ω) ⋅ f (ω) ≠ 0}) ≤
𝜇(A) = 0.

3.10 Let α ≥ 0 and remember that the measure α 𝜇 on (Ω, 𝒜 ) is defined by (α 𝜇)(A)) =
α 𝜇(A), for all A ∈ 𝒜. The proof is conducted in three steps: (a) for a nonnegative
step function, (b) for a nonnegative numerical measurable function, and (c) for a
𝜇-integrable numerical function (see Rem. 3.30).
(a) If f is a nonnegative step function and f = ∑n

i=1 αi1Ai
a normal representation,

then

∫
f d(α 𝜇) =

n∑

i=1
αi (α 𝜇)(Ai) = α

n∑

i=1
αi 𝜇(Ai) = α

∫
f d𝜇.

(b) If f is a nonnegative numerical measurable function and fi, i ∈ N, is an increasing
sequence of nonnegative step functions with limi→∞ fi = f , then

∫
f d(α 𝜇) = lim

i→∞ ∫
fi d(α 𝜇)

= lim
i→∞

α
∫

fi d𝜇 [(a)]

= α lim
i→∞ ∫

fi d𝜇 = α
∫

f d𝜇.

(c) If f is a 𝜇-integrable numerical function, then

∫
f d(α 𝜇) =

∫
f+ d(α 𝜇) −

∫
f− d(α 𝜇)

= α
∫

f+ d𝜇 − α
∫

f− d𝜇 [(b)]

= α
∫

f d𝜇.

3.11 Because the derivative g′(x) of a function g(x) = α + β x + γ x n, α, β, γ ∈ R, n ∈ N, is
g′(x) = β + γ n x n−1, the indefinite integral of f (x) is

∫
f (x) dx = F(x) = 10 x − x 3

3
+ c, c ∈ R,
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and therefore,

∫

b

a
f (x) dx = F(x)

|||||

b

a

:= F(b) − F(a) =
(

10 x − x 3

3

)|||||

b

a

.

For a = −5 and b = 5, this equation yields

∫

5

−5
f (x) dx =

(
10 x − x 3

3

)|||||

5

−5

=
(
50 − 125

3

)
−
(
−50 + 125

3

)
= 100 − 250

3
= 16.6̄.

Hence,

∫[−5, 5]
f d𝜆 =

∫

5

−5
f (x) dx = 16.6̄.

3.12 Let A ∈ 𝒜with 𝜇(A) = 0 and let f be a density f of ν with respect to 𝜇 (i.e., ν = f ⊙𝜇).
Then

ν(A) =
∫

1A dν =
∫

1A df ⊙𝜇 [(3.8), ν = f ⊙𝜇]

=
∫

1A⋅ f d𝜇 = 0. [(3.72), (3.42)]

Hence, ν≪
𝒜

𝜇.
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Probability measure

In chapter 1, we introduced the concept of a measure, and we treated various examples of
measures and some of their properties. In this chapter, we turn to a special class of examples
called probability measures. We start with the definition of a probability measure, then turn to
conditional probabilities and the most important theorems related to conditional probability:
the multiplication rule, the theorem of total probability, and Bayes’ theorem. Furthermore, we
introduce the concept of a conditional-probability measure. Next, we define independence of
events and independence of sets of events with respect to a probability measure. A section on
conditional independence given an event concludes this chapter.

4.1 Probability measure and probability space

Now we introduce the concept of a probability measure as defined by Kolmogorov (?/1977)
(for the English version of this book, see Kolmogorov, 1956). As we shall see, a probability
measure is a special finite measure that is standardized.

4.1.1 Definition

Definition 4.1 [Probability measure]
Let (Ω, 𝒜 ) be a measurable space. Then the function P: 𝒜→ [0, 1] is called a proba-
bil i ty measure on (Ω, 𝒜 ), if the following conditions hold:

(a) P(Ω) = 1 (standardization).

(b) P(A) ≥ 0, ∀ A ∈ 𝒜(nonnegativity).

(c) A1, A2, … ∈ 𝒜 are pairwise disjoint ⇒ P

(
∞⋃

i=1
Ai

)
=

∞∑

i=1
P(Ai) (σ-additivity).

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Remark 4.2 [Probability and probability space] Let P be a probability measure on (Ω, 𝒜 ).
Then the triple (Ω, 𝒜, P) is called a probability space and the value P(A) of P is called the
probability of A. ⊲

Remark 4.3 [Elementary event and event] Let (Ω, 𝒜, P) be a probability space. Then A ∈ 𝒜
is called an event, and a singleton {ω}, ω ∈ Ω, is called an elementary event, if {ω} ∈ 𝒜. Note
the distinction between an outcome ω ∈ Ω and an elementary event {ω} ∈ 𝒜 (see Exercise
4.1). Also note that the term event is only used in the context of a probability space (Ω, 𝒜, P).
Otherwise, A ∈ 𝒜 is called a measurable set. ⊲

4.1.2 Formal and substantive meaning of probabilistic terms

We distinguish between the mathematical or formal meaning of probabilistic terms and the
meaning of these terms if used in an application of probability theory to a concrete real-world
phenomenon. Often, such a real-world phenomenon is a random experiment such as flipping a
coin. In such a case, the setΩ represents the set of possible outcomes of the random experiment
considered; and, in this sense,Ω has a real-world interpretation. In other words, in this caseΩ is
not only an abstract set anymore. This real-world meaning or substantive meaning is additional
to their mathematical or formal meaning, namely being elements of the (abstract) set Ω.

The terms probability measure, probability of an event, and so on hint at an important area
of application of probability theory: real-world phenomena called random experiments. How-
ever, formally speaking, a probability measure is simply a label for a measure on a measurable
space (Ω, 𝒜 ) satisfying P(Ω) = 1. If Ω is not just an abstract set but represents a concrete ran-
dom experiment, then the probability of an event A ∈ 𝒜 corresponds to the common language
meaning of the term probability.

Remark 4.4 [No time order between events] The intuitive concept of an event often implies
that events are ordered with respect to time. That is, in common language an ‘event’ is prior,
simultaneous, or posterior to another ‘event’. In contrast, events as defined in probability the-
ory are not necessarily ordered with respect to time. However, time order between events
and sets of events can be introduced with respect to a filtration (see Def. 4.17, Fig. 4.1, and
Example 4.19). ⊲

Remark 4.5 [A priori perspective] If we apply probability theory to real-world phenom-
ena, then we consider random experiments from the a priori perspective. Hence, the possible
outcomes of a random experiment and events are considered before they happen. Even if an
event already happened, we do as if it did not happen when we talk about its probability (see
also Rem. 4.13). ⊲

4.1.3 Properties of a probability measure

Comparing conditions (a) to (c) of the definition of a probability measure to the conditions
defining a measure (see Def. 1.43) shows that (b) and (c) are identical; only condition (a)
differs. However, P(Ω) = 1 implies P(Ø) = 0, because σ-additivity of P yields

P(Ω) = P(Ω ∪ Ø ∪ Ø ∪…) = P(Ω) +
∞∑

i=1
P(Ø).
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Hence,
∑∞

i=1 P(Ø) = P(Ω) − P(Ω) = 0, and this yields P(Ø) = 0. This proves Corollary 4.6:

Corollary 4.6 [A probability measure is a measure]
A measure P on (Ω, 𝒜 ) is a probability measure on 𝒜 if and only if P(Ω) = 1.

A direct implication of this corollary is that all rules of computation for a measure
(see Box 1.1) also hold for a probability measure. For convenience, these rules are explicitly
formulated for probability measures in Box 4.1 using the additional property P(Ω) = 1.

Remark 4.7 [Distribution vs. probability measure] A probability measure on (Ω, 𝒜 ) is
also called a distribution on (Ω, 𝒜 ). Although this term is preferably used in the context of
a random variable (see Def. 5.3), the term distribution is well defined without referring to a
random variable. ⊲

4.1.4 Examples

Example 4.8 [Continuous uniform distribution] Let ℬ2 denote the Borel σ-algebra on R
2,

and consider a probability space (Ω, 𝒜, P), where Ω ∈ ℬ2, 𝒜= ℬ2|Ω := {Ω ∩ A: A ∈ ℬ2} is
the trace of ℬ2 in Ω (see Example 1.10). Furthermore, let 𝜆2 denote the Lebesgue measure on
(R2, ℬ2), assume 0 < 𝜆2(Ω) < ∞, and define

P(A) =
𝜆2(A)

𝜆2(Ω)
, ∀ A ∈ 𝒜 . (4.1)

Then P is the continuous uniform distribution over Ω. The relative size of the set A ∈ 𝒜
represents the probability P(A), and Figure 1.1 can be used to illustrate some of its
properties, for example, Rules (iii) to (ix) of Box 4.1. This example is generalized in
section 8.2.1. ⊲

Example 4.9 [Joe and Ann with randomized assignment – continued] In Example 1.9,
we specified the set

Ω = {(Joe, no, −), (Joe, no, +), … , (Ann, yes, +)},

which is also presented in the first column of Table 4.1. In this table, we also specify the prob-
ability measure P on 𝒜= 𝒫(Ω) by the probabilities of the eight elementary events {ω} ∈ Ω.
Except for the empty set, which has probability P(Ø) = 0, all 28 = 256 elements of 𝒜 are
either one of the eight elementary events {(Joe, no, −)}, {(Joe, no, +)}, … , {(Ann, yes, +)}
or a union of some of these elementary events. Note that elementary events are always pair-
wise disjoint (i.e., {ωi} ∩ {ωj} = Ø, if ωi ≠ ωj). Therefore, the probabilities of their unions can



136 PROBABILITY AND CONDITIONAL EXPECTATION

Box 4.1 Rules of computation for probabilities.

Let (Ω, 𝒜, P) be a probability space.
If A1, A2, … ∈ 𝒜 are pairwise disjoint, then

P

(
∞⋃

i=1
Ai

)
=

∞∑

i=1
P(Ai) (σ-additivity) (i)

P

(
n⋃

i=1
Ai

)
=

n∑

i=1
P(Ai), ∀ n ∈ N. (finite additivity) (ii)

If A, B ∈ 𝒜, then,

P(A) = P(A ∩ B) + P(A ∖ B) (iii)

P(Ac) = 1 − P(A) (iv)

P(A) ≤ P(B), if A ⊂ B (monotonicity) (v)

P(A ∖ B) = P(A) − P(A ∩ B) (vi)

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (vii)

P(A) = 1 ⇒ P(A ∩ B) = P(B) (viii)

P(A) = 0 ⇒ P(A ∪ B) = P(B). (ix)

Let A ∈ 𝒜 and let Ω0 ⊂ Ω be finite or countable with P(Ω0) = 1.
If, for all ω ∈ Ω0, {ω} ∈ 𝒜, then

P(A) =
∑

ω∈A∩Ω0

P({ω}). (x)

If A1, A2, … ∈ 𝒜, then

P

(
∞⋃

i=1
Ai

)
≤

∞∑

i=1
P(Ai). (σ-subadditivity) (xi)

easily be computed using finite additivity of the probability measure [see Rule (ii) of Box 4.1].
In order to illustrate this point, consider the event that Joe is drawn,

A = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)},

and the event that the drawn person is successful,

C = {(Joe, no, +), (Joe, yes, +)}, (Ann, no, +), (Ann, yes, +)}.

The event A has the probability

P(A) = P[{(Joe, no, −)}] + P[{(Joe, no, +)}] + P[{(Joe, yes, −)}] + P[{(Joe, yes, +)}]

= .09 + .21 + .04 + .16 = .5.
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Table 4.1 Joe and Ann with randomized
assignment: probability measures.

Elements of Ω Probability measures

U
ni

t
T

re
at

m
en

t
Su

cc
es

s

P
({
ω}

)

P
B

({
ω}

)

P
A

({
ω}

)

P
A

c
({
ω}

)

(Joe, no, −) .09 0 .18 0
(Joe, no, +) .21 0 .42 0
(Joe, yes, −) .04 .1 .08 0
(Joe, yes, +) .16 .4 .32 0
(Ann, no, −) .24 0 0 .48
(Ann, no, +) .06 0 0 .12
(Ann, yes, −) .12 .3 0 .24
(Ann, yes, +) .08 .2 0 .16

Note: P, PB, PA, and PAc
are probability mea-

sures on (Ω, 𝒜 ).

Similarly, the event C has the probability

P(C) = P[{(Joe, no, +)}] + P[{(Joe, yes, +)}] + P[{(Ann, no, +)}] + P[{(Ann, yes, +)}]

= .21 + .16 + .06 + .08 = .51,

and the event Joe is drawn and is successful, A ∩ C = {(Joe, no, +), (Joe, yes, +)}, has the
probability

P(A ∩ C) = P[{(Joe, no, +)}] + P[{(Joe, yes, +)}] = .21 + .16 = .37.

The probability measures specified in the last three columns of Table 4.1 are treated in Exam-
ples 4.34 and 4.35. ⊲

Remark 4.10 [Other examples] In section 8.1, probability measures on the measurable
space (N0, 𝒫(N0)) are considered, such as the binomial distribution (see Def. 8.7), the Pois-
son distribution (see Def. 8.14), and the geometric distribution (see Def. 8.20). In all these
examples, a probability measure on (N0, 𝒫(N0)) is uniquely defined, if the probabilities of the
elementary events {x} are determined for all x ∈ N0 [see Box 4.1 (x) for Ω0 = N0].

The example of the Poisson distribution shows that, even for the countably infinite set N0,
there are probability measures  λ on (N0, 𝒫(N0)) with  λ({x}) > 0, for all x ∈ N0, and

 λ(N0) =
∑

x∈N0

 λ({x}) =
∞∑

x=0
 λ({x}) = 1.

For another example, see Exercise 4.2. ⊲
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Example 4.11 [Finite mixture of probability measures] In Example 1.62 we already noted
that the weighted sum of measures on a measurable space (Ω, 𝒜 ) is again a measure on
(Ω, 𝒜 ). With an additional assumption, this also applies to probability measures. More pre-
cisely, if P1, … , Pn are probability measures on (Ω, 𝒜 ), αi ≥ 0, i = 1, … , n, and we addition-
ally assume

∑n
i=1 αi = 1, then

∑n
i=1 αi Pi is again a probability measure on (Ω, 𝒜 ). It is called

a finite mixture of P1, … , Pn. Such a finite mixture of probability measures is illustrated by
Example 4.35 using conditional-probability measures. ⊲

4.2 Conditional probability

Conditional probabilities can be used to describe dependencies between two events A, B ∈ 𝒜
with respect to a probability measure P on 𝒜. In section 4.2.7, we also use this concept in order
to introduce the concept of a conditional-probability measure.

4.2.1 Definition

Definition 4.12 [Conditional probability]
Let (Ω, 𝒜, P) be a probability space, let A, B ∈ 𝒜, and let P(B) > 0. Then,

P(A | B) := P(A ∩ B)
P(B)

(4.2)

is called the conditional probabili ty of A given B with respect to P.

Remark 4.13 [A priori perspective] The conditional probability P(A | B) is the probability
of the event A if it is known that the event B occurred. In order to compute P(A | B) according
to Equation (4.2), we need the (unconditional) probability P(B). The fact that B occurred is
reflected by P(B | B) = 1. ⊲

Remark 4.14 [Continuous uniform distribution – continued] In Example 4.8, we defined
the continuous uniform distribution on (Ω, 𝒜 ) by Equation (4.1). Using the area of the ellipses
presented in Figure 1.1, the conditional probability P(A | B) corresponds to the area of the
intersection A ∩ B divided by the area of B. ⊲

Example 4.15 [Flipping a coin two times] Consider the random experiment of flipping a
coin two times, the measurable space (Ω, 𝒜 ) of which is the same as in subsection 2.2.2;
the probability measure has been specified by Equation (2.43). The conditional probability
P(B | A) that we flip heads in the second flip (B) given that we flip heads in the first flip (A)
is 1∕2, which is equal to the unconditional probability P(B) of flipping heads in the second
flip. In such a case, the two events A and B are independent (see section 4.3). Note that the
conditional probability P(A | B) that we flip heads in the first flip (A) given that we flip heads
in the second flip (B) is also equal to the unconditional probability P(A) of flipping heads in
the first flip. This example shows that we may condition on events that occur later in time
and that a conditional probability does not necessarily describe a causal dependence. Note,
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however, that conditional probabilities can be used to describe causal dependencies, provided
that additional assumptions hold (see Examples 4.16 and 4.36).

As another example, consider the event flipping at least one heads (A) and the event no
heads are flipped in the first flip (B). In this case,

P(A | B) = 1
2
≠ P(A) = 3

4
,

and the two events are not independent (see section 4.3). ⊲

Example 4.16 [Joe and Ann with randomized assignment – continued] Consider again
Table 4.1, define ΩU = {Joe, Ann} and ΩX = {yes, no}, and let

C = ΩU × ΩX × {+} = {(Joe, no, +), (Joe, yes, +), (Ann, no, +), (Ann, yes, +)}

be the event that the drawn person is successful. Furthermore, let

B = ΩU × {yes} × ΩY = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)}

denote the event that the drawn person is treated. Then, Equation (4.2) yields:

P(C | B) = P(C ∩ B)
P(B)

=
P(ΩU × {yes } × {+})

P(ΩU × {yes} × ΩY)
= .16 + .08

.04 + .16 + .12 + .08
= .6.

Conditioning on the event Bc that the drawn person is not treated yields

P(C | Bc) = P(C ∩ Bc)
P(Bc)

=
P(ΩU × {no} × {+})

P(ΩU × {no} × ΩY)
= .21 + .06

.09 + .21 + .24 + .06
= .45.

In this example, the difference P(C | B) − P(C | Bc) = .6 − .45 can be used to evaluate the
average effect of the treatment. This is substantiated in more detail in Example 4.36. ⊲

4.2.2 Filtration and time order between events and sets of events

As mentioned in Remark 4.4, the definition of an event in probability theory does not presume
that there is a time order between events and sets of events. However, in many applications of
probability theory, such a time order is important. In Example 4.16, for instance, it is crucial
that the event C is posterior to the event B. Such a time order is formalized in the theory of
stochastic processes (see, e.g., Bauer, 1996; Klenke, 2013) and in the theory of causal effects
(see, e.g., Steyer et al., 2014; Mayer et al., 2014).

Definition 4.17 [Filtration]
Let (Ω, 𝒜 ) be a measurable space and T ⊂ R. A family (ℱt, t ∈ T) of sub-σ-algebras ℱt
of 𝒜 is called a fil tration in 𝒜, if ℱs ⊂ ℱt for all s, t ∈ T with s ≤ t.

Referring to such a filtration, time order between events can be introduced as follows.
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Remark 4.18 [Event A is prior, simultaneous, and posterior to event B] Let (Ω, 𝒜, P) be
a probability space, (ℱt, t ∈ T) a filtration in 𝒜, and A, B ∈ 𝒜.

(i) The event A is called prior to B (and B is called posterior to A) in (ℱt, t ∈ T), if there
is an s ∈ T such that A ∈ ℱs, B ∉ ℱs, and a t ∈ T , t > s, such that B ∈ ℱt.

(ii) Assume that T is finite. Then the event A is called simultaneous to B in (ℱt, t ∈ T), if
there is a t ∈ T such that A, B ∈ ℱt and no s ∈ T , s < t, such that A ∈ ℱs or B ∈ ℱs.

Note that the concept of simultaneity of events can also be extended to cases in which T is not
finite. For simplicity, we confine ourselves to the finite case. ⊲

Example 4.19 [Joe and Ann with randomized assignment – continued] In the random
experiment described by Table 4.1, the event A that Joe is drawn (see Example 4.9) is prior to
the event

B = {(Joe, yes, +), (Joe, yes, −), (Ann, yes, +), (Ann, yes, −)}

that the drawn person is treated, which itself is prior to the event C that the drawn person is
successful. This time order in the real-world can be represented formally by the following
filtration:

ℱ1 := σ({A}), ℱ2 := σ({A, B}), ℱ3 := σ({A, B, C}) = 𝒫(Ω),

using the concept of a σ-algebra generated by a set system (see Def. 1.13). With respect to
the filtration (ℱt, t ∈ T), T = {1, 2, 3}, the event A is prior to B, because A ∈ ℱ1, B ∉ ℱ1, but
B ∈ ℱ2 (see Fig. 4.1, Rem. 4.18, and Exercise 4.3). ⊲

Remark 4.20 [Formal and substantive meaning of time order] As noted in section 4.2.1,
we distinguish between the mathematical or formal meaning of a probabilistic term on one side
and the meaning of these terms if used in an application of probability theory to a concrete
real-world phenomenon on the other side. This also applies to the terms prior, simultaneous,
and posterior with respect to a filtration. In applications in which the elements of the set T
represent time points, these terms not only have a formal meaning that is specified by their

A ∈ ℱ1

B ∈ ℱ2

C ∈ ℱ3

Figure 4.1 A filtration with T = {1, 2, 3}.
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mathematical definition, but also a substantive meaning: In the real world, an event A that is
prior to B with respect to (ℱt, t ∈ T) occurs or does not occur before the event B. In other
applications, the term prior may not express the actual real-world meaning. Of course, this
applies to the terms simultaneous and posterior as well. ⊲

4.2.3 Multiplication rule

Now we treat some theorems involving conditional probabilities. The first one shows how the
probability P(A1 ∩… ∩ An) can be factorized into a product of an unconditional probability
and conditional probabilities.

Remark 4.21 [Multiplication rule for two and for three events] For two events A1 and A2,
the multiplication rule is

P(A1 ∩ A2) = P(A1) ⋅ P(A2 | A1), (4.3)

provided that P(A1) > 0. This equation directly follows from the definition of the conditional
probability P(A2 | A1) [see Eq. (4.2)]. For three events A1, A2, and A3, the multiplication
rule is

P(A1 ∩ A2 ∩ A3) = P(A1) ⋅ P(A2 | A1) ⋅ P(A3 | A1 ∩ A2), (4.4)

provided that P(A1 ∩ A2) > 0. This equation follows from the definition of the conditional
probability

P(A3 | A1 ∩ A2) =
P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
, (4.5)

inserting Equation (4.3) for P(A1 ∩ A2), and solving the resulting equation for
P(A1 ∩ A2 ∩ A3). ⊲

For n events A1, … , An, the multiplication rule is formulated in Theorem 4.22.

Theorem 4.22 [Multiplication rule]
Let (Ω, 𝒜, P) be a probability space and A1, … , An ∈ 𝒜, where 2 ≤ n ∈ N. If
P(

⋂n−1
i=1 Ai) > 0, then,

P

(
n⋂

i=1
Ai

)
= P(A1) ⋅

n∏
j=2

P

(
Aj

|||||

j−1⋂

i=1
Ai

)
. (4.6)

(Proof p. 154)
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4.2.4 Examples

Example 4.23 [Joe and Ann with randomized assignment – continued] Consider again
the example presented in Table 4.1, and let

A = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}

denote the event that Joe is drawn,

B = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)}

denote the event that the drawn person is treated, and

C = {(Joe, no, +), (Joe, yes, +), (Ann, no, +), (Ann, yes, +)}

denote the event that there is success, irrespective of the drawn person and treatment received.
Then,

A ∩ B ∩ C = {(Joe, yes, +)}

is the event that Joe is drawn, receives the treatment, and is successful. According to Equation
(4.4), the probability of this event can be computed by

P(A ∩ B ∩ C) = P(A) ⋅ P(B | A) ⋅ P(C | A ∩ B)

= (.09 + .21 + .04 + .16) ⋅
.04 + .16

.09 + .21 + .04 + .16
⋅

.16
.04 + .16

= .5 ⋅ .4 ⋅ .8 = .16

(see Exercise 4.4). Of course, Equation (4.4) can also be applied to the other seven sets A ∩ B ∩
Cc to Ac ∩ Bc ∩ Cc in Figure 4.2. In this example, P(A ∩ B ∩ C) = P

(
{(Joe, yes, +)}

)
= .16 is

the probability of an elementary event (see Table 4.1). ⊲

A

Ac

B c

B

B c

B

C c

C

C c

C

C c

C

C c

C

Ω

.5

.5

.6

.4

.6

.4

.8

.2

.7

.3

.4

.6

.2

.8

Figure 4.2 Probability tree illustrating the multiplication rule.
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Example 4.24 [Drawing three balls] Consider drawing three balls without replacement
from an urn containing two white balls and four black balls. Furthermore, let us consider the
three events Ai to draw a black ball at time i, where i = 1, 2, 3. According to Theorem 4.22,
the probability of drawing three black balls is

P(A1 ∩ A2 ∩ A3) = P(A1) ⋅ P(A2 | A1) ⋅ P(A3 | A1 ∩ A2),

where P(A1) = 4∕6, P(A2 | A1) = 3∕5, and P(A3 | A1 ∩ A2) = 2∕4. Hence,

P(A1 ∩ A2 ∩ A3) = 4
6
⋅

3
5
⋅

2
4
= 24

120
= 1

5
.

⊲

4.2.5 Theorem of total probability

In Theorem 4.25, called the theorem of total probability, we show how the probability of
an event B ⊂ A1 ∪… ∪ An can additively be decomposed into the products P(B | Ai) ⋅ P(Ai)
of conditional and unconditional probabilities. In this theorem, we assume that the
events A1, … , An are pairwise disjoint (i.e., we assume Ai ∩ Aj = Ø, for all i, j = 1, … , n,
with i ≠ j).

Theorem 4.25 [Theorem of total probability]
Let (Ω, 𝒜, P) be a probability space and B ∈ 𝒜.

(i) If

(a) A1, … , An ∈ 𝒜 are pairwise disjoint, and
(b) B ⊂

⋃n
i=1 Ai,

then

P(B) =
n∑

i=1
P(B ∩ Ai). (4.7)

(ii) If (a) and (b) of (i) hold as well as

(c) P(Ai) > 0, ∀ i = 1, … , n,

then

P(B) =
n∑

i=1
P(B | Ai) ⋅ P(Ai). (4.8)

(iii) If

(a) A1, A2, … ∈ 𝒜 are pairwise disjoint, and
(b) B ⊂

⋃∞
i=1 Ai,



144 PROBABILITY AND CONDITIONAL EXPECTATION

then

P(B) =
∞∑

i=1
P(B ∩ Ai). (4.9)

(iv) If (a) and (b) of (iii) hold as well as

(c) P(Ai) > 0, ∀ i = 1, 2, …,

then

P(B) =
∞∑

i=1
P(B | Ai) ⋅ P(Ai). (4.10)

(Proof p. 154)

Equation (4.7) can be illustrated by Figure 4.3. If we assume that (Ω, 𝒜, P) is the pro-
bability space specified in Example 4.8, then the figure visualizes that P(B) = P(B ∩ A1) +
P(B ∩ A2) + P(B ∩ A3). The crucial points are:

(a) If the events A1, … , An are pairwise disjoint, then B ∩ A1, … , B ∩ An are pairwise
disjoint as well.

(b) The probability measure P is additive.

4.2.6 Bayes’ theorem

Our next theorem, called Bayes’ theorem, reveals how the conditional probabilities P(B | Ai)
are related to the conditional probabilities P(Ai | B). Using the definitions of the conditional
probabilities P(Ai | B) and P(B | Ai) yields

P(Ai | B) =
P(B | Ai) ⋅ P(Ai)

P(B)
. (4.11)

Inserting Equation (4.8) for P(B) then proves Theorem 4.26.

Ω

A1 A3

A2

B

Figure 4.3 Venn diagram illustrating a partition of a set.
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Theorem 4.26 [Bayes’ theorem]
Let (Ω, 𝒜, P) be a probability space, B ∈ 𝒜, and P(B) > 0. Under the assumptions (a) to
(c) of Theorem 4.25 (i) and (ii),

P(Ai | B) =
P(B | Ai) ⋅ P(Ai)

∑n
j=1 P(B | Aj) ⋅ P(Aj)

, ∀ i = 1, … , n . (4.12)

Analogously, under the assumptions (a) to (c) of Theorem 4.25 (iii) and (iv),

P(Ai | B) =
P(B | Ai) ⋅ P(Ai)∑∞

j=1 P(B | Aj) ⋅ P(Aj)
, ∀ i ∈ N . (4.13)

Example 4.27 [Joe and Ann with randomized assignment – continued] Let

A = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}

denote the event that Joe is drawn,

Ac = {(Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +)}

denote the event that Ann is drawn, and

B = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)}

denote the event that the drawn person is treated. Then,

P(A | B) = P(B | A) ⋅ P(A)
P(B | A) ⋅ P(A) + P(B | Ac) ⋅ P(Ac)

= .4 ⋅ .5
.4 ⋅ .5 + .4 ⋅ .5

= .5

is the conditional probability that Joe is drawn given that the drawn person is treated (see
Table 4.1). The corresponding probability that Ann is drawn given that the drawn person
is treated is identical in this example, that is, P(Ac | B) = .5. Hence, given treatment, each
person has the same probability to be drawn. This is the sampling perspective of a random-
ized experiment supplementing the assignment perspective, according to which the treat-
ment probability is the same for each person, that is, P(B | A) = P(B | Ac) = .4 (see again
Table 4.1). ⊲

4.2.7 Conditional-probability measure

Just like probabilities, conditional probabilities of events A ∈ 𝒜given B are values of a prob-
ability measure.
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Theorem 4.28 [Conditional-probability measure]
Let (Ω, 𝒜, P) be a probability space. If B ∈ 𝒜 and P(B) > 0, then the function PB: 𝒜→
[0, 1] defined by

PB(A) = P(A | B), ∀ A ∈ 𝒜, (4.14)

is a probability measure on (Ω, 𝒜 ).
(Proof p. 155)

According to this theorem, for each B ∈ 𝒜with P(B) > 0, the triple (Ω, 𝒜, PB) is a prob-
ability space.

Definition 4.29 [Conditional-probability measure]
Let (Ω, 𝒜, P) be a probability space, let B ∈ 𝒜, and let P(B) > 0. Then the function PB

defined by (4.14) is called the B-conditional-probabili ty measure on (Ω, 𝒜 ).

In the Lemma 4.30, we consider the relationship between conditional probabilities with
respect to the measures PB and P.

Lemma 4.30 [Conditional probabilities with respect to PB]
Let (Ω, 𝒜, P) be a probability space. If A, B, C ∈ 𝒜 and P(B ∩ C) > 0, then,

PB(A | C) = P(A | B ∩ C). (4.15)

(Proof p. 155)

Remark 4.31 [Total conditional probability] Suppose A, B, C ∈ 𝒜, P(B ∩ C) > 0, and
P(B ∩ Cc) > 0. This implies P(B) > 0 and PB(C) = P(C | B) = P(C ∩ B)∕P(B) > 0. Applying
Equation (4.8) to the measure PB then yields

PB(A) = PB(A | C) ⋅ PB(C) + PB(A | Cc) ⋅ PB(Cc), (4.16)

and Equations (4.14) and (4.15) imply

P(A | B) = P(A | B ∩ C) ⋅ P(C | B) + P(A | B ∩ Cc) ⋅ P(Cc | B). (4.17)
⊲

According to Lemma 4.32, PB is absolutely continuous with respect to P, that is.

∀ A ∈ 𝒜: P(A) = 0 ⇒ PB(A) = 0. (4.18)

This is denoted by PB ≪
𝒜

P [see Def. 3.70 (i)]. In contrast, P ≪
𝒜

PB does not always hold.
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Lemma 4.32 [Absolute continuity of the conditional-probability measure]
Let (Ω, 𝒜, P) be a probability space, B ∈ 𝒜, and P(B) > 0. Then,

(i) PB ≪
𝒜

P.

(ii) PB =
(

1
P(B)

⋅ 1B

)
⊙P.

(Proof p. 156)

Remark 4.33 [PB is a measure with density] Proposition (ii) of Lemma 4.32 implies that
PB is a measure with density 1B∕P(B) with respect to P. The following equations show how
PB(A) can be written as an integral in various ways:

∀ A ∈ 𝒜: PB(A) =
∫A

dPB [(3.8)]

=
∫

1A d

(
1

P(B)
⋅ 1B⊙P

)
[(3.30), Lem. 4.32 (ii)]

=
∫

1A ⋅ 1B
1

P(B)
dP [(3.72)]

= 1
P(B)

⋅
∫

1A∩B dP. [(1.33), (3.32)]

(4.19)

Note that, according to Theorem 3.72 (i), the density 1B∕P(B) can be written as a Radon-
Nikodym derivate of PB with respect to P, that is,

1
P(B)

⋅ 1B = dPB

dP
. (4.20)

⊲

Example 4.34 [Joe and Ann with randomized assignment – continued] Consider the
example presented in Table 4.1. We specify the B-conditional-probability measure PB: 𝒜→
[0, 1] for the event that the drawn person is treated, that is, for

B = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)}.

For the first two elementary events, PB({(Joe, no, +)}) = PB({(Joe, no, −)}) = 0, because
the intersections {(Joe, no, −)} ∩ B and {(Joe, no, +)} ∩ B are empty. For the next two elemen-
tary events, the B-conditional probabilities are

PB({(Joe, yes, −)}) =
P({(Joe, yes, −)} ∩ B)

P(B)
= .04

.4
= .1
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and

PB({(Joe, yes, +)}) =
P({(Joe, yes, +)} ∩ B)

P(B)
= .16

.4
= .4.

For the next two elementary events, PB({(Ann, no, −)}) = PB
(
{(Ann, no, +)}

)
= 0, because

the intersections {(Ann, no, −)} ∩ B and {(Ann, no, +)} ∩ B are again empty. Finally, for the
last two elementary events, the B-conditional probabilities are

PB({(Ann, yes, −)}) =
P({(Ann, yes, −)} ∩ B)

P(B)
= .12

.4
= .3

and

PB({(Ann, yes, +)}) =
P({(Ann, yes, +)} ∩ B)

P(B)
= .08

.4
= .2.

These probabilities are summarized in the third column of Table 4.1. Except for Ø, all other
events are unions of these elementary events. Because the elementary events are disjoint, the
probabilities of their unions can easily be computed using finite additivity of the probability
measure [see Rule (ii) of Box 4.1 and Exercise 4.5]. ⊲

Example 4.35 [Joe and Ann with randomized assignment – continued] Two other condi-
tional-probability measures on (Ω, 𝒜 ) are PA and PAc

, where A is the event

A = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}

that Joe is sampled and Ac the event

Ac = {(Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +)}

that Ann is sampled. The values of these conditional-probability measures are presented in the
last two columns of Table 4.1. These measures can also be used to illustrate a mixture of two
probability measures. As is easily seen,

P = .5 ⋅ PA + .5 ⋅ PAc
,

that is, the measure P is a mixture of the two conditional-probability measures PA and PAc

(see Examples 4.11 and 1.62). ⊲

Example 4.36 [Joe and Ann with randomized assignment – continued] In Example 4.16,
we computed the two conditional probabilities P(C | B) = .6 and P(C | Bc) = .45 of success
given treatment and no treatment, respectively. These are conditional probabilities with respect
to the measure P. Let us now consider the individual treatment effects of Joe and of Ann. These



PROBABILITY MEASURE 149

individual effects can be computed using the PA- and PAc
-conditional-probability measures,

respectively. For Joe, the individual treatment effect is

PA(C | B) − PA(C | Bc) =
PA(ΩU × {yes} × {+})

PA(ΩU × {yes} × ΩY)
−

PA(ΩU × {no} × {+})

PA(ΩU × {no} × ΩY)

= .32 + 0
.08 + .32 + 0 + 0

− .32 + 0
.18 + .42 + 0 + 0

= .8 − .7 = .1,

and for Ann it is

PAc
(C | B) − PAc

(C | Bc) =
PAc

(ΩU × {yes} × {+})

PAc(ΩU × {yes} × ΩY)
−

PAc
(ΩU × {no} × {+})

PAc(ΩU × {no} × ΩY)

= .16 + 0
.24 + .16 + 0 + 0

− .12 + 0
.48 + .12 + 0 + 0

= .4 − .2 = .2.

Hence, the treatment effect P(C | B) − P(C | Bc) = .15 (see Example 4.16) is just the weighted
average .5 ⋅ .1 + .5 ⋅ .2 = .15 of the two individual treatment effects, where the weights are .5
for Joe and for Ann (see Example 4.35). Note that this property does not always hold [see
Table 11.2 and Example 11.28]. ⊲

4.3 Independence

4.3.1 Independence of events

Independence of two events A and B means that the conditional and unconditional probabili-
ties are the same (i.e., P(A | B) = P(A) and P(B | A) = P(B)). This definition presupposes that
P(A), P(B) > 0, because otherwise the two conditional probabilities are not defined. The fol-
lowing definition does not rest on this requirement and extends the concept of independence
to more than two events.

Definition 4.37 [Independence of events]
Let (Ω, 𝒜, P) be a probability space.

(i) Two events A, B ∈ 𝒜 are called P-independent, denoted by A ⟂⟂
P

B, if

P(A ∩ B) = P(A) ⋅ P(B). (4.21)
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(ii) Let I be a nonempty set and let Ai ∈ 𝒜, i ∈ I. Then (Ai, i ∈ I) is called a family
of P-independent events, denoted by ⟂⟂

P
(Ai, i ∈ I), if

P

(
⋂

i∈ I0

Ai

)
=
∏
i∈ I0

P(Ai), ∀ finite I0 ⊂ I. (4.22)

Remark 4.38 [Pairwise and triple-wise independence] For n events A1, … , An, P-indepen-
dence will also be denoted by

⟂⟂
P

A1, … , An.

For three events, for instance, it means that

P(Ai ∩ Aj) = P(Ai) ⋅ P(Aj), i ≠ j, i, j = 1, 2, 3, (4.23)

(pairwise P-independence) and

P(A1 ∩ A2 ∩ A3) = P(A1) ⋅ P(A2) ⋅ P(A3) (4.24)

(triple-wise P-independence) hold.
Note that pairwise P-independence of more than two events does not imply P-

independence of these events. Furthermore, triple-wise P-independence, for instance, does
not imply pairwise P-independence. For more propositions on independence of events, see
Box 4.2. ⊲

Remark 4.39 [Independence of any event A with Ω and Ø] For any probability space
(Ω, 𝒜, P),

∀ A ∈ 𝒜 : A ⟂⟂
P
Ω and A ⟂⟂

P
Ø. (4.25)

(see Exercise 4.7). ⊲

4.3.2 Independence of set systems

Now we extend the concept of P-independence to set systems (i.e., to sets of events), and
illustrate independence by an example.

Definition 4.40 [Family of independent set systems]
Let (Ω, 𝒜, P) be a probability space and ℰi ⊂ 𝒜, i ∈ I ≠ Ø. Then, (ℰi, i ∈ I) is called
a family of P-independent set systems, denoted by ⟂⟂

P
(ℰi, i ∈ I), if ⟂⟂

P
(Ai, i ∈ I)

holds for all families (Ai, i ∈ I) with Ai ∈ ℰi, i ∈ I. If I = {1, 2}, we also use the notation
ℰ1 ⟂⟂

P
ℰ2 instead of ⟂⟂

P
(ℰi, i ∈ I).
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Remark 4.41 [Independence of an event and a set system] Let (Ω, 𝒜, P) be a probability
space. An event A ∈ 𝒜 and a set system ℰ ⊂ 𝒜are called P-independent, denoted by A ⟂⟂

P
ℰ ,

if {A} ⟂⟂
P
ℰ . ⊲

Remark 4.42 [Independence of σ-algebras] Note that σ-algebras are special set systems
referred to in Definition 4.40. Hence, a family (𝒜i, i ∈ I) of sub-σ-algebras of 𝒜 can be P-
independent as well. This fact will be used when introducing the concept of P-independence
of random variables (see section 5.4). ⊲

Example 4.43 [Joe and Ann with randomized assignment – continued] Suppose A =
{Joe} × ΩX × ΩY denotes the event that Joe is sampled and B = ΩU × {yes} × ΩY the event
that the person sampled is treated. Then A and B are independent, because

P(A ∩ B) = P({Joe} × {yes} × ΩY) = .04 + .16 = .2

and

P(A) ⋅ P(B) = P({Joe} × ΩX × ΩY) ⋅ P(ΩU × {yes} × ΩY)

= (.09 + .21 + .04 + .16) ⋅ (.04 + .16 + .12 + .08)

= .5 ⋅ .4 = .2.

Hence, P(A ∩ B) = P(A) ⋅ P(B). This implies that the σ-algebras {A, Ac, Ω, Ø} and
{B, Bc, Ω, Ø} are independent as well [see Box 4.2 (iii)]. In fact, this is a special case
of the following theorem, because the set systems ℰ1 := {A} and ℰ2 := {B} are ∩-stable (see
Def. 1.36) and σ(ℰ1) = {A, Ac, Ω, Ø} and σ(ℰ2) = {B, Bc, Ω, Ø} are the σ-algebras generated
by ℰ1 and ℰ2, respectively (see Def. 1.13 and Example 1.17). ⊲

According to Theorem 4.44, it is sufficient to check P-independence of a family of ∩-
stable generating systems in order to check P-independence of a family of σ-algebras. In
this theorem, (σ(ℰi), i ∈ I) denotes the family of σ-algebras generated by the set systems
ℰi, i ∈ I.

Theorem 4.44 [∩-Stable set systems and independence]
If (Ω, 𝒜, P) is a probability space and ℰi ⊂ 𝒜, i ∈ I, are ∩-stable, then,

⟂⟂
P

(ℰi, i ∈ I) ⇒ ⟂⟂
P

(σ(ℰi), i ∈ I) . (4.26)

For a proof, see Georgii (2008, Theorem 3.19).

4.4 Conditional independence given an event

Now we extend the concept of independence of events and of sets of events by introducing
conditional independence of events and of sets of events given an event.
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4.4.1 Conditional independence of events given an event

Definition 4.45 [Conditional independence of two events]
Let (Ω, 𝒜, P) be a probability space, A, B, C ∈ 𝒜, and P(B) > 0. Then the events A and C
are called B-conditionally P-independent, denoted by A ⟂⟂

P
C | B, if

P(A ∩ C | B) = P(A | B) ⋅ P(C | B). (4.27)

Remark 4.46 [A condition equivalent to conditional independence] Suppose P(B ∩ C)
> 0. Then Equation (4.27) is equivalent to

P(A | B ∩ C) = P(A | B) (4.28)

[see Box 4.2 (xii)]. Exchanging A and C immediately yields: If P(A ∩ B) > 0, then Equation
(4.27) is equivalent to

P(C | A ∩ B) = P(C | B). (4.29)
⊲

Remark 4.47 [Independence of events with respect to PB] Using the conditional-proba-
bility measure PB defined by (4.14), we can rewrite Equation (4.27) as:

PB(A ∩ C) = PB(A) ⋅ PB(C). (4.30)

This equation shows that B-conditional P-independence of A and C is equivalent to PB-
independence of A and C, which will also be denoted by A ⟂⟂

PB
C. ⊲

Remark 4.48 [Independence and conditional independence] Assume that B ∈ 𝒜 with
P(B) > 0. Then P-independence of A and C neither implies nor is implied by B-conditional
P-independence of A and C (see Exercise 4.8). However, P-independence of A, B, and C does
imply B-conditional P-independence of A and C [see Box 4.2 (x)]. For more propositions on
conditional independence of events, see Box 4.2, which is proved in Exercise 4.9. ⊲

4.4.2 Conditional independence of set systems given an event

Now we extend the concept of conditional P-independence to set systems. In Remark 4.47,
we already noted that B-conditional P-independence of two events A and C is equivalent to
PB-independence of A and C. Correspondingly, B-conditional P-independence of a family
(ℰi, i ∈ I) of events is defined as PB-independence of (ℰi, i ∈ I).

Definition 4.49 [Family of conditionally independent set systems]
Let (Ω, 𝒜, P) be a probability space, B ∈ 𝒜 with P(B) > 0, and ℰi ⊂ 𝒜, i ∈ I. Then
(ℰi, i ∈ I) is called a family of B-conditionally P-independent set systems, denoted
by ⟂⟂

P
(ℰi, i ∈ I) | B, if ⟂⟂

PB
(ℰi, i ∈ I).
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Box 4.2 Independence and conditional independence of events.

Let (Ω, 𝒜, P) be a probability space and A, B, C ∈ 𝒜. Then,

A ⟂⟂
P

B ⇔ P(A ∩ B) = P(A) ⋅ P(B) (i)

A ⟂⟂
P

B ⇔ Ac⟂⟂
P

B (ii)

A ⟂⟂
P

B ⇔ σ({A}) ⟂⟂
P
σ({B}) . (iii)

⟂⟂
P

A, B, C ⇔ P(A ∩ B) = P(A) ⋅ P(B), (iv)

P(A ∩ C) = P(A) ⋅ P(C),

P(B ∩ C) = P(B) ⋅ P(C),

P(A ∩ B ∩ C) = P(A) ⋅ P(B) ⋅ P(C).

⟂⟂
P

A, B, C ⇒ A ⟂⟂
P

B, A ⟂⟂
P

C, B ⟂⟂
P

C. (v)

If P(B) > 0, then,

A ⟂⟂
P

B ⇔ P(A | B) = P(A) (vi)

A ⟂⟂
P

C | B ⇔ P(A ∩ C | B) = P(A | B) ⋅ P(C | B) (vii)

A ⟂⟂
P

C | B ⇔ A ⟂⟂
PB

C (viii)

A ⟂⟂
P

C | B ⇔ A ⟂⟂
P

Cc | B (ix)

⟂⟂
P

A, B, C ⇒ A ⟂⟂
P

C | B. (x)

If P(B), P(Bc) > 0, then,

A ⟂⟂
P

B ⇔ P(A | B) = P(A | Bc). (xi)

If P(B ∩ C) > 0, then,

A ⟂⟂
P

C | B ⇔ P(A | B ∩ C) = P(A | B). (xii)

If P(B ∩ Cc) > 0, then,

A ⟂⟂
P

C | B ⇔ P(A | B ∩ Cc) = P(A | B). (xiii)

If P(B ∩ C), P(B ∩ Cc) > 0, then,

A ⟂⟂
P

C | B ⇔ P(A | B ∩ C) = P(A | B ∩ Cc) (xiv)

B ⟂⟂
P

C ⇒ P(A | B) = P(A | B ∩ C) ⋅ P(C) + P(A | B ∩ Cc) ⋅ P(Cc) (xv)

A ⟂⟂
P

C | B ⇒ P(A | B) = P(A | B ∩ C) ⋅ P(C) + P(A | B ∩ Cc) ⋅ P(Cc). (xvi)
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Remark 4.50 [Conditional independence of σ-algebras] Again, σ-algebras can be such
set systems referred to in Definition 4.49. Hence, a family (𝒜i, i ∈ I) of sub-σ-algebras of 𝒜
can be B-conditionally P-independent as well. ⊲

Remark 4.51 [Independence of set systems with respect to PB] According to Theorem
4.44, under the assumptions of Definition 4.49, ∩-stability of the set systems ℰi, i ∈ I, implies

⟂⟂
PB

(ℰi, i ∈ I) ⇒ ⟂⟂
PB

(σ(ℰi), i ∈ I) . (4.31)
⊲

Together with Definition 4.49, this remark immediately implies Corollary 4.52.

Corollary 4.52 [∩-Stable set systems and conditional independence]
If (Ω, 𝒜, P) is a probability space, B ∈ 𝒜 with P(B) > 0, and (ℰi, i ∈ I) is a family of
∩-stable set systems ℰi ⊂ 𝒜, then,

⟂⟂
P

(ℰi, i ∈ I) | B ⇒ ⟂⟂
P

(σ(ℰi), i ∈ I) | B. (4.32)

4.5 Proofs

Proof of Theorem 4.22

In Remark 4.21, we have already shown that Equation (4.6) holds for n = 2 [see Box 4.1 (v)].
Hence, for an induction over n, it suffices to show that (4.6) holds for A1, … , An if it holds for
A1, … , An−1. Note that P(

⋂n−1
i=1 Ai) > 0 implies P(

⋂ j−1
i=1 Ai) > 0 for 2 ≤ j ≤ n. Hence,

P

(
n⋂

i=1
Ai

)
= P

(
n−1⋂

i=1
Ai ∩ An

)

= P

(
n−1⋂

i=1
Ai

)
⋅ P

(
An

|||||

n−1⋂

i=1
Ai

)
[(4.6)]

= P(A1) ⋅

[
n−1∏
j=2

P

(
Aj

|||||

j−1⋂

i=1
Ai

)]
⋅ P

(
An

|||||

n−1⋂

i=1
Ai

)
[(4.6), ass. of induction]

= P(A1) ⋅
n∏

j=2
P

(
Aj

|||||

j−1⋂

i=1
Ai

)
.

Proof of Theorem 4.25

(i) This equation immediately follows from (1.29).

(ii) If P(Ai) > 0, then P(B ∩ Ai) = P(B | Ai) ⋅ P(Ai) [see Eq. (4.2)]. Hence, (4.7) immediately
implies

P(B) =
n∑

i=1
P(B | Ai) ⋅ P(Ai).
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(iii) This proposition immediately follows from (1.30).

(iv) This proposition immediately follows from (iii) inserting P(B ∩ Ai) = P(B | Ai) ⋅ P(Ai)
[see Eq. (4.2)].

Proof of Theorem 4.28

We show that the conditions (a) to (c) of Definition 4.1 hold for PB.

(a)

PB(Ω) = P(B ∩ Ω)
P(B)

[(4.2)]

= P(B)
P(B)

[B ⊂ Ω]

= 1.

(b) We assume P(B) > 0. Therefore, P(A ∩ B) ≥ 0, for all A ∈ 𝒜, implies that PB(A) =
P(A ∩ B)∕P(B) ≥ 0, for all A ∈ 𝒜.

(c) If A1, A2, … are pairwise disjoint, then A1 ∩ B, A2 ∩ B, … are pairwise disjoint. Therefore,

PB

(
∞⋃

i=1
Ai

)
=

P
[(⋃∞

i=1 Ai

)
∩ B

]

P(B)
[(4.2)]

=
P
[⋃∞

i=1

(
Ai ∩ B

)]

P(B)

=
∑∞

i=1 P(Ai ∩ B)

P(B)
[Def. 4.1 (c)]

=
∞∑

i=1
PB(Ai). [(4.2)]

Proof of Lemma 4.30

P(A | B ∩ C) = P(A ∩ B ∩ C)
P(B ∩ C)

[(4.2)]

= P(A ∩ C | B) ⋅ P(B)
P(C | B) ⋅ P(B)

[(4.2)]

= PB(A ∩ C)

PB(C)
[(4.14)]

= PB(A | C). [(4.2)]
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Proof of Lemma 4.32

(i) For all A ∈ 𝒜,

P(A) = 0 ⇒ P(A ∩ B) = 0 [Box 4.1 (v)]

⇒
P(A ∩ B)

P(B)
= 0 [P(B) > 0]

⇒ P(A | B) = 0 [(4.2)]

⇒ PB(A) = 0. [(4.14)]

Hence, PB ≪
𝒜

P (see Def. 3.70).

(ii) For all A ∈ 𝒜,

PB(A) = P(A ∩ B)
P(B)

[(4.14), (4.2)]

= 1
P(B) ∫

1A ∩ B dP [(3.9)]

= 1
P(B) ∫

1A ⋅ 1B dP [(1.33)]

=
∫A

1
P(B)

⋅ 1B dP. [(3.30), (3.32)]

According to Theorem 3.65, this means PB =
(

1
P(B)

⋅ 1B

)
⊙P.

Exercises

4.1 Consider flipping a coin n times and the event A1 = flipping heads at the first flip. Specify
the set Ω of possible outcomes of this random experiment and the set A1 as a subset of
Ω. How many elements has Ω? How many elements has the event A1?

4.2 Draw the interval [0, 1], cut it in two halves, cut the right-hand piece in two halves, cut
the remaining rightmost part in two halves, and so on. In this way, you can visualize the
sequence 1∕2, 1∕4, 1∕8, … by lengths of intervals. This sequence can also be written as:
1∕2i, i ∈ N. Note that all terms 1∕2i of this sequence are positive (i.e., 1∕2i > 0 for all
i ∈ N). Determine

∞∑

i=1

1
2i

= lim
n→∞

n∑

i=1

1
2i
.

4.3 Consider Example 4.19, and list all elements of the σ-algebras ℱ1 and ℱ2 referring
explicitly to the elements of Ω.

4.4 Compute the probabilities P(A) and P(C | A ∩ B) of the events defined in Example 4.23.
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4.5 Compute the B-conditional probability of the event {(Ann, yes, −), (Ann, yes, +)}, that
is, the event that Ann is sampled and treated. Use the results already obtained in Exam-
ple 4.34.

4.6 In Example 4.16, we computed the conditional probabilities P(C | B) = .6 and P(C |
Bc) = .45, where C is the event that the drawn person is successful and B is the event that
the drawn person is treated. What is the conclusion regarding the effect of the treatment
if we compare these two conditional probabilities to each other?

4.7 Prove the proposition of Remark 4.39.

4.8 Show by examples that, for B ∈ 𝒜 with P(B) > 0, P-independence of A and C neither
implies nor is implied by B-conditional P-independence of A and C.

4.9 Prove the propositions of Box 4.2.

Solutions

4.1 The set of possible outcomes is Ω = {h, t}n = {h, t} ×… × {h, t} (n-times). The event
flipping heads at time 1 is A1 = {h} × {h, t}n−1. The set Ω has 2n elements, and A1 has
2n∕2 = 2n−1 elements.

4.2 The picture of this interval is

1/81/41/2 . . .

0 1

and this illustrates that
∞∑

i=1

1
2i

= lim
n→∞

n∑

i=1

1
2i

= 1 .

4.3 ℱ1 = σ({A}) = {A, Ac, Ω, Ø}

= {{(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)},

{(Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +)}, Ω, Ø}.

ℱ2 = σ({A, B})

= {A, Ac, B, Bc, (A ∩ B) ∪ (Ac ∩ Bc), (A ∩ Bc) ∪ (Ac ∩ B),

A ∩ B, Ac ∩ B, A ∩ Bc, Ac ∩ Bc,

A ∪ B, Ac ∪ B, A ∪ Bc, Ac ∪ Bc, Ω, Ø}

where

A = {(Joe, yes, −), (Joe, yes, +), (Joe, no, −), (Joe, no, +)},

Ac = {(Ann, yes, −), (Ann, yes, +), (Ann, no, −), (Ann, no, +)},

B = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)},

Bc = {(Joe, no, −), (Joe, no, +), (Ann, no, −), (Ann, no, +)},

(A ∩ B) ∪ (Ac ∩ Bc) = {(Joe, yes, −), (Joe, yes, +), (Ann, no, −), (Ann, no, +)},

(A ∩ Bc) ∪ (Ac ∩ B) = {(Joe, no, −), (Joe, no, +), (Ann, yes, −), (Ann, yes, +)},
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A ∩ B = {(Joe, yes, −), (Joe, yes, +)},

Ac ∩ B = {(Ann, yes, −), (Ann, yes, +)},

A ∩ Bc = {(Joe, no, −), (Joe, no, +)},

Ac ∩ Bc = {(Ann, no, −), (Ann, no, +)},

A ∪ B = {(Joe, yes, −), (Joe, yes, +), (Joe, no, −), (Joe, no, +), (Ann, yes, −), (Ann, yes, +)},

Ac ∪ B = {(Ann, yes, −), (Ann, yes, +), (Ann, no, −), (Ann, no, +), (Joe, yes, −),

(Joe, yes, +)},

A ∪ Bc = {(Joe, yes, −), (Joe, yes, +), (Joe, no, −), (Joe, no, +), (Ann, no, −), (Ann, no, +)},

Ac∪ Bc = {(Ann, yes, −), (Ann, yes, +), (Ann, no, −), (Ann, no, +), (Joe, no, −),

(Joe, no, +)}.

4.4 Because the four events {(Joe, no, −)}, … , {(Joe, yes, +)} are pairwise disjoint, we
can simply add their probabilities. Hence, P(A) = .09 + .21 + .04 + .16 = .5 (see the
second column of Table 4.1). In order to compute P(C | A ∩ B), note that A ∩ B =
{(Joe, yes, −), (Joe, yes, +)} is the event that Joe is drawn and treated. Again, because
the two elementary events involved are disjoint, P(A ∩ B) = .04 + .16 = 0.2. Further-
more, A ∩ B ∩ C = {(Joe, yes, +)} is the event that Joe is drawn, treated, and successful.
Its probability is P(A ∩ B ∩ C) = P({(Joe, yes, +)}) = .16. Hence,

P(C | A ∩ B) = P(A ∩ B ∩ C)
P(A ∩ B)

= .16
.04 + .16

= .8.

4.5 In Example 4.34, we already computed the two B-conditional probabilities
PB({(Ann, yes, −)}) = .3 and PB({(Ann, yes, +)}) = .2. Because these elementary
events are disjoint, the probabilities of their union can be computed easily using
the additivity property of the probability measure PB. Hence, PB({(Ann, yes, −),
(Ann, yes, +)}) = .3 + .2 = .5.

4.6 Although this question and the concepts needed for an answer are beyond the scope
of this book, the difference P(C | B) − P(C | Bc) = .6 − .45 = .15 is the average total
treatment effect (see Steyer et al., 2014). It is the average of the two individual total
treatment effects of Joe and of Ann. For Joe, this individual treatment effect is .8 − .7 = .1
(probability of success given Joe and treatment minus probability of success given Joe
and no treatment), whereas it is .4 − .2 = .2 for Ann.

4.7 Let (Ω, 𝒜, P) be a probability space. Then, for all A ∈ 𝒜: P(Ω ∩ A) = P(A) = 1 ⋅ P(A) =
P(Ω) ⋅ P(A) and P(Ø ∩ A) = P(Ø) = 0 = 0 ⋅ P(A) = P(Ø) ⋅ P(A).

4.8 Consider the example in subsection 2.2.2, and let A = {(h, t), (h, h)} denote the event to
flip heads with the first coin, B = {(t, t), (h, h)} the event to flip tails or to flip heads with
both coins, and C = {(t, h), (h, h)} the event to flip heads with the second coin. All three
events have the same probability P(A) = P(B) = P(C) = .5. Now,

P(A ∩ C) = P({(h, h)}) = .25 = .5 ⋅ .5 = P(A) ⋅ P(C)
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and

P(B ∩ C) = P({(h, h)}) = .25 = .5 ⋅ .5 = P(B) ⋅ P(C).

Hence, A and C as well as B and C are P-independent, which implies P(A | B) = .5 and
P(C | B) = .5. However,

P(A ∩ C | B) = P(A ∩ C ∩ B)
P(B)

= .25
.5

= .5

≠ .25 = .5 ⋅ .5 = P(A | B) ⋅ P(C | B),

which shows that A and C are not B-conditionally P-independent.
Now we present an example in which A and C are B-conditionally P-independent

but not (unconditionally) P-independent. Consider flipping three coins. This random
experiment is represented by the probability space (Ω, 𝒜, P), where Ω = {h, t}3,
𝒜= 𝒫(Ω), and P: 𝒜→ [0, 1], satisfying P({ω}) = .125 for all ω ∈ Ω. Further-
more, let A = {(t, t, t), (t, t, h)} denote the event to flip tails with the first two coins,
B = {(t, t, t), (t, t, h), (t, h, t), (t, h, h)} the event to flip tails with the first coin, and
C = {(t, t, h), (t, h, h)} the event to flip tails with the first coin and heads with the
third coin. The two events A and C have the same probability P(A) = P(C) = .25 and
P(B) = .5. Because

P(A ∩ C) = P({(t, t, h)}) = .125 ≠ .25 ⋅ .25 = P(A) ⋅ P(C),

A and C are not P-independent. Furthermore, P(A ∩ B) = P({(t, t, t), (t, t, h)}) = .25,
P(C ∩ B) = P({(t, t, h), (t, h, h)}) = .25, and

P(A ∩ C | B) = P(A ∩ B ∩ C)
P(B)

= .125
.5

= .25

= .5 ⋅ .5 = P(A ∩ B)
P(B)

⋅
P(B ∩ C)

P(B)
= P(A | B) ⋅ P(C | B) .

This shows that A and C are B-conditionally P-independent.

4.9 (i) This is the definition of A ⟂⟂
P

B.

(ii) P(Ac∩ B) = P
(
B ∖ A

)
= P(B) − P(A ∩ B) [Box 4.1 (vi)]
= P(B) − P(A) ⋅ P(B) [A ⟂⟂

P
B]

= [1 − P(A)] ⋅ P(B)
= P(Ac) ⋅ P(B) [Box 4.1 (iv)],

which is Ac ⟂⟂
P

B.

(iii) We have to show that A ⟂⟂
P

B implies

P(Ai ∩ Bj) = P(Ai) ⋅ P(Bj), ∀ Ai ∈ {A, Ac, Ω, Ø} and ∀ Bj ∈ {B, Bc, Ω, Ø}.

Whenever Ai or Bj is Ω or Ø, this equation holds [see (4.25)]. Furthermore,
P(A ∩ B) = P(A) ⋅ P(B) is equivalent to our premise A ⟂⟂

P
B, and P(Ac∩ B) =
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P(Ac) ⋅ P(B) is proposition (ii). The corresponding argument holds for P(A ∩ Bc) =
P(A) ⋅ P(Bc) and P(Ac ∩ Bc) = P(Ac) ⋅ P(Bc), exchanging the roles of A and B.

(iv) This is the definition of ⟂⟂
P

A, B, C.

(v) This proposition immediately follows from (iv) and (i).

(vi) We assume P(B) > 0. Then,

A ⟂⟂
P

B ⇔ P(A ∩ B) = P(A) ⋅ P(B) [(i)]

⇔
P(A ∩ B)

P(B)
= P(A)

⇔ P(A | B) = P(A). [(4.2)]

(vii) This is the definition of A ⟂⟂
P

C | B.

(viii) We assume P(B) > 0. Therefore,

A ⟂⟂
P

C | B ⇔ P(A ∩ C | B) = P(A | B) ⋅ P(C | B) [(vii)]

⇔ PB(A ∩ C) = PB(A) ⋅ PB(C) [(4.14)]
⇔ A ⟂⟂

PB
C. [(i)]

(ix) We assume P(B) > 0. Therefore,

A ⟂⟂
P

C | B ⇔ A ⟂⟂
PB

C [(viii)]

⇔ A ⟂⟂
PB

Cc. [(ii)]

(x) We assume P(B) > 0. Then,

P(A ∩ C | B) = P(A ∩ B ∩ C)
P(B)

[(4.2)]

= P(A) ⋅ P(B) ⋅ P(C)
P(B)

[⟂⟂
P

A, B, C, (iv)]

= P(A | B) ⋅ P(C | B). [(v), (vi)]

(xi) We assume P(B), P(Bc) > 0. Then,

P(A | B) = P(A | Bc) ⇔
P(A ∩ B)

P(B)
= P(A ∩ Bc)

1 − P(B)
[(4.2), Box 4.1 (iv)]

⇔ P(A ∩ B) ⋅ [1 − P(B)] = P(A ∩ Bc) ⋅ P(B)
⇔ P(A ∩ B) = [P(A ∩ B) + P(A ∩ Bc)] ⋅ P(B)
⇔ P(A ∩ B) = P(A) ⋅ P(B) [(4.7)]
⇔ A ⟂⟂

P
B. [(i)]
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(xii) We assume P(B ∩ C) > 0. This implies P(B) > 0 and

A ⟂⟂
P

C | B ⇔ P(A ∩ C | B) = P(A | B) ⋅ P(C | B) [(vii)]

⇔
P(A ∩ B ∩ C)

P(B)
= P(A ∩ B)

P(B)
⋅

P(B ∩ C)
P(B)

[(4.2)]

⇔
P(A ∩ B ∩ C)

P(B ∩ C)
= P(A ∩ B)

P(B)

⇔ P(A | B ∩ C) = P(A | B). [(4.2)]

(xiii) We assume P(B ∩ Cc) > 0. This implies P(B) > 0 and

A ⟂⟂
P

C | B ⇔ A ⟂⟂
PB

C [(viii)]

⇔ A ⟂⟂
PB

Cc [(ii)]

⇔ PB(A | Cc) = PB(A) [(vi)]

⇔ P(A | B ∩ Cc) = P(A | B) [(4.15), (4.14)]

(xiv) We assume P(B ∩ C), P(B ∩ Cc) > 0.

P(A | B ∩ C) = P(A | B ∩ Cc) ⇔ PB(A | C) = PB(A | Cc) [(4.15)]
⇔ A ⟂⟂

PB
C [(xi)]

⇔ A ⟂⟂
P

C | B. [(viii)]

(xv) We assume P(B ∩ C), P(B ∩ Cc) > 0.

B ⟂⟂
P

C ⇒ P(C | B) = P(C), P(Cc | B) = P(Cc) [(vi), (ii)]

⇒ P(A | B) = P(A | B ∩ C) ⋅ P(C) + P(A | B ∩ Cc) ⋅ P(Cc). [(4.17)]

(xvi) We assume P(B ∩ C), P(B ∩ Cc) > 0, and A ⟂⟂
P

C | B.

P(A | B) = P(A | B ∩ C) [A ⟂⟂
P

C | B, (xii)]

= P(A | B ∩ C) ⋅ [P(C) + P(Cc)] [Box 4.1 (iv)]
= P(A | B ∩ C) ⋅ P(C) + P(A | B ∩ C) ⋅ P(Cc)
= P(A | B ∩ C) ⋅ P(C) + P(A | B ∩ Cc) ⋅ P(Cc). [(xiv)]
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Random variable, distribution,
density, and distribution function

In chapter 4, we translated the concepts measure and measure space to probability theory,
introducing the notions probability measure and probability space. In this chapter, we define a
random variable as a measurable mapping and its distribution as the image measure of a mea-
surable mapping with respect to a probability measure (see ch. 2). The distribution of a random
variable contains the comprehensive information about its properties. It informs us about the
probability of each event that can be represented by this random variable. Expectation, vari-
ance, and other moments of a random variable are determined by its distribution (see ch. 6).
For a multivariate random variable, the (joint) distribution also contains the information about
the dependencies between its components. It also determines the conditional expectations (see
ch. 10). In this chapter, we apply the concept of independence of families of events in order
to introduce independence of random variables and families of random variables. Finally, the
last sections of this chapter are devoted to the concept of a probability function and, for a real-
valued random variable, the notions of a distribution function and a probability density, which
are very useful for describing a distribution, for calculations (see, e.g., ch. 6), and for providing
instructive illustrations of the underlying distributions (see ch. 8).

5.1 Random variable and its distribution

In section 2.6, we introduced the notation

f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′),

which expresses that f : Ω → Ω′ is an (𝒜, 𝒜 ′)-measurable mapping and that 𝜇 is a measure on
the measurable space (Ω, 𝒜 ). If 𝜇 is a probability measure, then a measurable mapping is also
called a random variable, and its image measure 𝜇f is also called its distribution. This change
of terms goes along with a change in notation. Instead of f , g, and h, we preferably use letters
such as X, Y, and Z.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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Definition 5.1 [Random variable]
If (Ω, 𝒜, P) is a probability space and X: (Ω, 𝒜 ) → (Ω′

X , 𝒜 ′
X) a measurable mapping,

that is, if X: Ω → Ω′
X satisfies

X−1(A′) ∈ 𝒜, ∀ A′∈ 𝒜 ′
X , (5.1)

then X is called a random variable on (Ω, 𝒜, P) with values in (Ω′
X , 𝒜 ′

X). If (Ω′
X , 𝒜 ′

X) =
(R, ℬ), then X is called real-valued, and if (Ω′

X , 𝒜 ′
X) = (R,ℬ), then X is called

numerical.

Remark 5.2 [Measurability of inverse images] Equation (5.1) implies that all inverse
images

X−1(A′) := {ω ∈ Ω: X(ω) ∈ A′}, A′∈ 𝒜 ′
X ,

are elements of the σ-algebra 𝒜on Ω. Because the measure P: 𝒜→ [0, 1] assigns a probability
to all elements of 𝒜, the probabilities P[X−1(A′)] of these inverse images are determined by P
(see Exercises 5.1 and 5.2). ⊲

Definition 5.3 [Distribution of a random variable]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable. Then the function PX : 𝒜 ′

X → [0, 1]
defined by

PX(A′) = P[X−1(A′)], ∀ A′∈ 𝒜 ′
X , (5.2)

is called the distribution of X (with respect to P).

Remark 5.4 [Notation P(X ∈ A′) and P(X=x)] If A′∈ 𝒜 ′
X , we use the notation

P(X ∈ A′) := P[X−1(A′)] (5.3)

for the probability of the event {X ∈ A′} = X−1(A′), that is, the event that X takes on a value
in the subset A′ of Ω′

X . If {x} ∈ 𝒜 ′
X ,

P(X=x) := P[X−1({x})] (5.4)

for the probability of the event {X=x} := X−1({x}) = {ω ∈ Ω: X(ω) = x}. If we write
P(X=x), then we always assume {x} ∈ 𝒜 ′

X , even if not mentioned explicitly. ⊲

Remark 5.5 [A new probability space] Definition 5.1 implies that every random variable
X on a probability space (Ω, 𝒜, P) has a distribution PX . Furthermore, PX : 𝒜 ′

X → [0, 1] is
also a measure, the image measure of P under X (see Th. 2.79 and Def. 2.80). Because
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PX(Ω′
X) = P(Ω) = 1, we can conclude that PX is a probability measure, and (Ω′

X , 𝒜 ′
X , PX) is

also a probability space. Therefore, we use the notation

X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X , PX)

expressing:

(a) X: Ω → Ω′
X is a random variable on the probability space (Ω, 𝒜, P).

(b) 𝒜 ′
X is a σ-algebra on Ω′

X .

(c) PX is the distribution of X.
⊲

Definition 5.6 [Identically distributed random variables]
Let X: (Ω(1), 𝒜 (1), P(1)) → (Ω′, 𝒜 ′) and Y: (Ω(2), 𝒜 (2), P(2)) → (Ω′, 𝒜 ′) be random vari-
ables. If PX = PY, then we say that X and Y are identically distributed.

Note that, Definition 5.6 does not preclude, (Ω(1), 𝒜 (1), P(1)) = (Ω(2), 𝒜 (2), P(2)). Now we
consider the distribution of a composition g(X) of a random variable X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X)

and a measurable function g: (Ω′
X , 𝒜 ′

X) → (Ω′, 𝒜 ′). According to Remark 5.5, the mapping
g is a random variable on the probability space (Ω′

X , 𝒜 ′
X , PX). Furthermore, according to

Lemma 5.7, g(X) is a random variable on (Ω, 𝒜, P) and the distribution of g(X) is the image
measure of PX under g. The notation of this image measure is (PX)g.

Lemma 5.7 [Distribution of a composition]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and g: (Ω′

X , 𝒜 ′
X) → (Ω′, 𝒜 ′) a

measurable function. Then the composition g(X) is a random variable on (Ω, 𝒜, P) with
values in (Ω′, 𝒜 ′) and

(PX)g = Pg(X) . (5.5)

(Proof p. 196)

Example 5.8 [Indicator (variable) of an event] If (Ω, 𝒜, P) is a probability space and
A ∈ 𝒜 , then the mapping 1A: (Ω, 𝒜, P) → ({0, 1}, 𝒫({0, 1})) is a random variable. It is called
the indicator (variable) of A. The distribution of 1A is

P1A
({0}) = P(Ac), P1A

({1}) = P(A), P1A
({0, 1}) = P(Ω) = 1, P1A

(Ø) = P(Ø) = 0.

If we consider the same event A and the measurable space (R, ℬ), then we can also write
1A: (Ω, 𝒜, P) → (R, ℬ) in order to express that 1A is also (𝒜, ℬ)-measurable. Note, however,
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that now the distribution of 1A is a probability measure on (R, ℬ), and for all B ∈ ℬ,

P1A
(B) = P[1−1

A (B)] = P[{ω ∈ Ω: 1A(ω) ∈ B}] [(5.2), (2.2)]

=

⎧
⎪
⎪
⎨
⎪
⎪⎩

P(Ø) = 0, if 0 ∉ B, 1 ∉ B

P(A), if 0 ∉ B, 1 ∈ B

P(Ac), if 0 ∈ B, 1 ∉ B

P(Ω) = 1, if {0, 1} ⊂ B. ⊲

Example 5.9 [Indicator of an inverse image] If (Ω, 𝒜, P) is a probability space,
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) a random variable, and A′∈ 𝒜 ′

X , then 1X−1(A′): (Ω, 𝒜, P) →
({0, 1}, 𝒫({0, 1})) is a random variable on (Ω, 𝒜, P) and

1X∈ A′ := 1X−1(A′) = 1A′ (X) = 1A′◦X (5.6)

(see Exercise 5.3). The distribution of 1X∈ A′ is

P1X∈A′ ({0}) = P(X ∉ A′), P1X∈A′ ({1}) = P(X ∈ A′),

P1X∈A′ ({0, 1}) = P(Ω) = 1, P1X∈A′ (Ø) = P(Ø) = 0.
⊲

Example 5.10 [Dichotomous random variable] Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random
variable on (Ω, 𝒜, P). Then X is called dichotomous with values x1 and x2 if {x1}, {x2} ∈ 𝒜 ′

X ,
P(X ∈ {x1, x2}) = 1 and 0 < P(X=x1) < 1. If X is dichotomous with values 0 and 1, then
X =

P
1X=1. ⊲

Example 5.11 [Flipping two coins – continued] In the example of section 2.2.2 and in
Example 2.83, we considered flipping two coins and defined X: (Ω, 𝒜, P) →

(
Ω′

X , 𝒫(Ω′
X)
)
, a

random variable representing with its values the number of flipping heads. Its possible values
are 0, 1, or 2. Hence, we can choose Ω′

X := {0, 1, 2}, and

P(X=0) = PX({0}) = P[X−1({0})] = P[{(t, t)}] = 1
4

,

P(X=1) = PX({1}) = P[X−1({1})] = P[{(h, t), (t, h)}] = 1
2

,

P(X=2) = PX({2}) = P[X−1({2})] = P[{(h, h)}] = 1
4

are the probabilities assigned to the singletons {0}, {1}, and {2}, whereas

P(X ∈ {0, 1}) = PX({0, 1}) = P[X−1({0, 1})] = P[{(t, t), (h, t), (t, h)}] = 3
4

,

P(X ∈ {0, 2}) = PX({0, 2}) = P[X−1({0, 2})] = P[{(t, t), (h, h)}] = 2
4

,

P(X ∈ {1, 2}) = PX({1, 2}) = P[X−1({1, 2})] = P[{(h, t), (t, h)(h, h)}] = 3
4

are the probabilities assigned to the sets {0, 1}, {0, 2}, and {1, 2}, which consist of
two elements of Ω′

X . Finally, PX(Ω′
X) = P[X−1(Ω′

X)] = P(Ω) = 1 and PX(Ø) = P[X−1(Ø)] =
P(Ø) = 0. ⊲
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Example 5.12 [Tom, Jim, and Kate] Now we consider an example that is similar to the
experiment with Joe and Ann. However, the set of persons is now ΩU := {Tom, Jim, Kate},
and we consider three treatments, the elements of the set ΩX := {Con, BTh, PTh}, where Con
could be no treatment. The random experiment consists of: drawing a unit u from the set ΩU,
assigning it to one of the three treatment conditions Con, BTh, or PTh, and observing whether
(+) or not (−) a success criterion is reached. Hence, the set of possible outcomes of this random
experiment is

Ω := ΩU × ΩX × ΩY = {(Tom, Con, −), (Tom, Con, +), … , (Kate, PTh, +)}.

It consists of the 3 ⋅ 3 ⋅ 2 = 18 triples (u, ωX , ωY ) listed in the first column of Table 5.1. As
the set of possible events 𝒜, we consider the power set 𝒫(Ω). This set has 218 = 262,144
elements, where 18 is the number of elements of Ω. The probabilities of the 18 elementary
events {ω}, ω ∈ Ω, are displayed in the second column of the table. With these specifications,
the probabilities P(A) of all 218 elements A ∈ 𝒜 are determined [see Rule (x) of Box 4.1].
Hence, the probability space (Ω, 𝒜, P) is completely specified.

Table 5.1 Tom, Jim, and Kate.

Elements of Ω Random variables
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(Tom, Con, −) 10∕99 Tom 0 0
(Tom, Con, +) 10∕99 Tom 0 1
(Tom, BTh, −) 2∕99 Tom 1 0
(Tom, BTh, +) 6∕99 Tom 1 1
(Tom, PTh, −) 1∕99 Tom 2 0
(Tom, PTh, +) 4∕99 Tom 2 1

(Jim, Con, −) 5∕99 Jim 0 0
(Jim, Con, +) 15∕99 Jim 0 1
(Jim, BTh, −) 3∕99 Jim 1 0
(Jim, BTh, +) 5∕99 Jim 1 1
(Jim, PTh, −) 2∕99 Jim 2 0
(Jim, PTh, +) 3∕99 Jim 2 1

(Kate, Con, −) 12∕99 Kate 0 0
(Kate, Con, +) 8∕99 Kate 0 1
(Kate, BTh, −) 5∕99 Kate 1 0
(Kate, BTh, +) 3∕99 Kate 1 1
(Kate, PTh, −) 4∕99 Kate 2 0
(Kate, PTh, +) 1∕99 Kate 2 1



RANDOM VARIABLE, DISTRIBUTION, DENSITY, AND DISTRIBUTION FUNCTION 167

Table 5.1 also displays the values of the three random variables U: (Ω, 𝒜, P) →
[ΩU, 𝒫(ΩU)], X: (Ω, 𝒜, P) → [Ω′

X , 𝒫(Ω′
X)], and Y: (Ω, 𝒜, P) → [Ω′

Y , 𝒫(Ω′
Y )], where Ω′

X :=
{0, 1, 2} and Ω′

Y := {0, 1}. For the singletons {x}, x ∈ Ω′
X , the values PX({x}) = P[X−1({x})]

of the distribution of X are

PX({0}) = 60∕99, PX({1}) = 24∕99, PX({2}) = 15∕99,

for the sets that consist of two elements of Ω′
X , they are

PX({0, 1}) = 84∕99, PX({0, 2}) = 75∕99, PX({1, 2}) = 39∕99,

and for Ω′
X and Ø, they are PX(Ω′

X) = 1 and PX(Ø) = 0.
For the singletons {u}, u ∈ ΩU, the values PU({u}) = P[U−1({u})] of the distribution of

U are

PU({Tom}) = PU({Jim}) = PU({Kate}) = 1∕3,

for the sets that consist of two elements of ΩU, they are

PU({Tom, Jim}) = PU({Tom, Kate}) = PU({Jim, Kate}) = 2∕3,

and for ΩU and Ø, they are PU(ΩU) = 1 and PU(Ø) = 0. ⊲

Time order between random variables

In Example 5.12 and also in the examples with Joe and Ann, there is a time order between the
random variables involved. Obviously, the person variable U represents events that are prior to
the events represented by the treatment variable X and to the events represented by the outcome
variable Y. In Definition 5.13, we extend the definitions introduced in section 4.2.2 to random
variables.

Definition 5.13 [X is prior, simultaneous, posterior to Y]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables and

(ℱt, t ∈ T) a filtration in 𝒜. Then,

(i) X is called prior to Y (and Y posterior to X) in (ℱt, t ∈ T), if there is an s ∈ T
such that σ(X) ⊂ ℱs, σ(Y) ⊄ ℱs, and a t ∈ T, t >s, such that σ(Y) ∈ ℱt.

(ii) Assume that T is finite. Then X is called simultaneous to Y in (ℱt, t ∈ T), if there
is a t ∈ T such that σ(X), σ(Y) ⊂ ℱt and no s ∈ T, s < t, such that σ(X) ⊂ ℱs or
σ(Y) ⊂ ℱs.

Note that the concept of simultaneity of random variables can also be extended to cases in
which T is not finite. For simplicity, we confine ourselves to the finite case.
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Remark 5.14 [Filtration generated by a family of random variables] Definition 5.13 does
not presume that all pairs of random variables can be ordered and compared to each other with
respect to a filtration (ℱt, t ∈ T). However, given a family (Xi, i ∈ I) of random variables where
I ⊂ R, we can define a filtration (ℱi, i ∈ I) by ℱi := σ(Xj, j ≤ i) for all i ∈ I. This filtration is
called the filtration generated by (Xi, i ∈ I) (see Klenke, 2013). In this filtration, Xi is prior to
Xj if and only if i < j, where i, j ∈ I. ⊲

Example 5.15 [Flipping a coin twice] If we consider the random experiment of flipping the
same coin twice, the probability space (Ω, 𝒜, P) is identical to the one specified in section 2.2.2
and Example 2.83, where we considered the random experiment of flipping two coins. Hence,
the set of possible outcomes is

Ω = {(h, h), (h, t), (t, h), (t, t)}.

The possible outcome (t, h) represents obtaining tails in the first flip and heads in the second
flip. Now, for i = 1, 2, define the random variables Xi: Ω → {0, 1} by

Xi[(a1, a2)] :=

{
1, if ai = h

0, if ai = t,
∀ (a1, a2) ∈ Ω. (5.7)

Hence, the value 1 of Xi indicates that the outcome of the ith flip is heads. If we define the
filtration (ℱ1, ℱ2) by ℱ1 := σ(X1) and ℱ2 := σ(X1, X2), then X1 is prior to X2 in the filtration
(ℱ1, ℱ2). Hence, this filtration serves to introduce time order between the first and the second
flips of the coin. It can be shown, for example, that X1 is also prior to X1 ⋅ X2 in (ℱ1, ℱ2) (see
Exercise 5.4). ⊲

Example 5.16 [Joe and Ann with randomized assignment – continued] In Example 5.37,
the random variable U is prior to X in the filtration (ℱt, t ∈ {1, 2, 3}) specified in Example 4.19,
because σ(U) ⊂ ℱ1, σ(X) ⊄ ℱ1, and σ(X) ⊂ ℱ2. Analogously, it can be shown that, in this
example, X is prior to Y. ⊲

5.2 Equivalence of two random variables with respect to a
probability measure

5.2.1 Identical and P-equivalent random variables

Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be two random variables. Then X and Y are called identical if

∀ ω ∈ Ω: X(ω) = Y(ω). (5.8)

Remark 5.17 [P-equivalent random variables] Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be two ran-
dom variables. Then X and Y are almost surely identical with respect to P or P-equivalent,
denoted by X =

P
Y , if

∃ A ∈ 𝒜: (∀ ω ∈ Ω ∖ A: X(ω) = Y(ω) and P(A) = 0) (5.9)
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(see Def. 2.68). Another notation for X =
P

Y is X(ω) =
P-a.a.

Y(ω), which is a shortcut for

X(ω) = Y(ω), for P-a.a. ω ∈ Ω, (5.10)

meaning that the values of X and Y are identical for P-almost all ω ∈ Ω (see Rem. 2.70). ⊲

Remark 5.18 [Singleton with a positive probability] If X =
P

Y or, equivalently, if

X(ω) =
P-a.a.

Y(ω), and {ω∗} ∈ 𝒜, with P({ω∗}) > 0, then X(ω∗) = Y(ω∗) [see Rem. 2.71]. ⊲

Example 5.19 [Indicator of a null set] Let (Ω, 𝒜, P) be a probability space and A ∈ 𝒜. If
P(A) = 0, then,

1A =
P

0 and 1Ac = 1 − 1A =
P

1 (5.11)

(see Example 5.8). ⊲

Remark 5.20 [Q-equivalence] Note that the definition of equivalence of two random vari-
ables X and Y with respect to a probability measure only presumes that X and Y are measurable
with respect to a σ-algebra on Ω and that the measure considered is a probability measure on
this σ-algebra. Hence, we can consider the equivalence of X and Y with respect to different
probability measures, say P and Q, and study their relationship. ⊲

In Lemma 5.21, we consider the relationship between P-equivalence and Q-equivalence,
presuming Q ≪

𝒞
P (absolute continuity), that is, presuming

∀ C ∈ 𝒞: P(C) = 0 ⇒ Q(C) = 0

(see Def. 3.70).

Lemma 5.21 [P-equivalence and Q-equivalence]
Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be random variables. If Q is a probability measure on
(Ω, 𝒜 ) such that Q ≪

𝒜
P, then X =

P
Y implies X =

Q
Y.

(Proof p. 196)

According to Lemma 4.32 (i), PB ≪
𝒜

P, provided that B ∈ 𝒜 is an event for which

P(B) > 0. Hence, Lemma 5.21 immediately implies Corollary 5.22.

Corollary 5.22 [P-equivalence implies PB-equivalence]
Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be two random variables, and let B ∈ 𝒜 with P(B) > 0.
Then, X =

P
Y implies X =

PB
Y.



170 PROBABILITY AND CONDITIONAL EXPECTATION

Ω Ω

X
Y

ω1 a

ω2 b

ω3

ω4

c

d

B

Figure 5.1 Two random variables that are PB-equivalent if P({ω3}) = 0.

Example 5.23 [PB-equivalence does not imply P-equivalence] Consider the set Ω =
{ω1, ω2, ω3, ω4} with the σ-algebra 𝒜= 𝒫(Ω), and the set Ω′ = {a, b, c, d} with the σ-
algebra 𝒜 ′= 𝒫(Ω′). Furthermore, let P: 𝒜→ [0, 1] satisfy P({ω1}) = .25, P({ω2}) = .25,
P({ω3}) = 0, and P({ω4}) = .50. Finally, define X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) by

X(ω) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

a, if ω = ω1

b, if ω = ω2

c, if ω = ω3

d, if ω = ω4

Y(ω) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

a, if ω = ω1

b, if ω = ω2

d, if ω = ω3

c, if ω = ω4

(see Fig. 5.1). If B = {ω1, ω2, ω3}, then X =
PB

Y , but neither X = Y nor X =
P

Y (see Exer-

cise 5.5). Therefore, equivalence with respect to PB does not imply equivalence with respect
to P. ⊲

Theorem 2.85 on the equivalence of image measures immediately implies Corollary 5.24
on the identity of the distributions of two P-equivalent random variables:

Corollary 5.24 [P-equivalence implies identical distributions]
Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be random variables with distributions PX and PY, respec-
tively. If X =

P
Y, then PX = PY.

In other words, if X and Y are P-equivalent, then they are identically distributed. Note,
however, that identical distributions of X and Y do not imply that X and Y are P-equivalent.

In chapter 6, we shall see that Corollary 5.24 also implies that the expectations, variances,
and other moments of X and Y are identical if X, Y: (Ω, 𝒜, P) → (R,ℬ) are P-equivalent numer-
ical random variables, provided that the expectations, variances, and other moments of X and
Y exist.

Corollary 5.25 is an immediate implication of Theorem 2.86.
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Corollary 5.25 [P-equivalence of compositions]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable with distribution PX, and let

g, g∗: (Ω′
X , 𝒜 ′

X) → (R,ℬ) be measurable functions. Then,

(i) g(X) =
P

g∗(X) ⇔ g =
PX

g∗.

(ii) g(X) <
P

g∗(X) ⇔ g <
PX

g∗.

(iii) g(X) ≤
P

g∗(X) ⇔ g ≤
PX

g∗.

(Proof p. 196)

Remark 5.26 [Alternative notation] Note that:

g =
PX

g∗ ⇔ g(x) = g∗(x), for PX-a.a. x ∈ Ω′
X , (5.12)

g <
PX

g∗ ⇔ g(x) < g∗(x), for PX-a.a. x ∈ Ω′
X , (5.13)

g ≤
PX

g∗ ⇔ g(x) ≤ g∗(x), for PX-a.a. x ∈ Ω′
X . (5.14)

⊲

5.2.2 P-equivalence, PB-equivalence, and absolute continuity

Now we consider the relationship between equivalence of two random variables
X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) with respect to P and PB, and absolute continuity of PX with respect
to PB

X , the distribution of X with respect to the conditional-probability measure PB. Remember,
for B ∈ 𝒜and P(B) > 0, we defined the B-conditional probability measure PB (see Def. 4.29).
Referring to such a measure, X =

PB
Y means

∃ A ∈ 𝒜: (∀ ω ∈ Ω ∖ A: X(ω) = Y(ω) and PB(A) = 0) (5.15)

[see (5.9)]. If B denotes the event {X=x} = {ω ∈ Ω: X(ω) = x}, then we define PX=x := PB

and call it the (X=x)-conditional probability measure on (Ω, 𝒜 ).

Lemma 5.27 [An implication of absolute continuity]
Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be random variables that are measurable with respect to
the σ-algebra 𝒞 ⊂ 𝒜, and assume {X ≠ Y} ∈ 𝒞. Furthermore, let B ∈ 𝒜with P(B) > 0.
If X =

PB
Y and P ≪

𝒞
PB, then X =

P
Y.

(Proof p. 196)

Example 5.28 [No treatment for Joe] Consider Table 5.2. In this example, we define the set
ΩU = {Joe, Jim, Ann} and

𝒜U = 𝒫(ΩU) = {{Joe}, {Jim}, {Ann}, {Joe, Jim}, {Joe, Ann}, {Jim, Ann}, ΩU, Ø}.
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Table 5.2 No treatment for Joe.

Outcomes ω Observables

U
ni

t

T
re

at
m

en
t

Su
cc

es
s

P
({
ω}

)

Pe
rs

on
va

ri
ab

le
U

Pe
rs

on
va

ri
ab

le
U

∗

T
re

at
m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

P
X
=

0
({
ω}

)
(r

ou
nd

ed
)

P
X
=

1
({
ω}

)

(Joe, no, −) .152 Joe Joe 0 0 .245 0
(Joe, no, +) .348 Joe Joe 0 1 .561 0
(Joe, yes, −) 0 Joe Jim 1 0 0 0
(Joe, yes, +) 0 Joe Jim 1 1 0 0
(Ann, no, −) .096 Ann Ann 0 0 .155 0
(Ann, no, +) .024 Ann Ann 0 1 .039 0
(Ann, yes, −) .228 Ann Ann 1 0 0 .60
(Ann, yes, +) .152 Ann Ann 1 1 0 .40

Using these sets, not only U: (Ω, 𝒜, P) → (ΩU, 𝒜U) is a random variable, but also
U∗: (Ω, 𝒜, P) → (ΩU, 𝒜U) defined in Table 5.2. Now the distribution of U is specified by
PU({Joe}) = .5, PU({Jim}) = 0, and PU({Ann}) = .5. The probabilities of the other five ele-
ments of 𝒜U are obtained using Rule (x) of Box 4.1. Furthermore, PU∗ = PU .

Considering the measure PX=0, we find U =
P X=0

U∗, because

PX=0({U ≠ U∗}) = PX=0({(Joe, yes, +), (Joe, yes, −)}) = 0.

Furthermore, there are only two sets A ∈ σ(U) with PX=0(A) = 0. These are the sets
U−1({Jim}) = {(Joe, yes, +), (Joe, yes, −)} and Ø, and for these sets we find P(U−1({Jim})) =
P(Ø) = 0. Hence, P ≪

σ(U)
PX=0, and according to Lemma 5.27 this implies U =

P
U∗. In fact, we

find

P({U ≠ U∗}) = P({(Joe, yes, +), (Joe, yes, −)}) = 0.
⊲

Lemma 5.29 [Absolute continuity]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and B ∈ 𝒜with P(B) > 0. Then,

P ≪
σ(X)

PB ⇔ PX ≪
𝒜

′
X

PB
X . (5.16)

(Proof p. 196)
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Example 5.30 [No treatment for Joe – continued] In Example 5.28, we already found

P ≪
σ(U)

PX=0
.

There are only two sets A′∈ 𝒜U with PX=0
U (A′) = 0, the sets {Jim} and Ø, and for these sets

we find PU({Jim}) = PU(Ø) = 0. Hence, in this example,

PU ≪
𝒜U

PX=0
U

holds as well. ⊲

Lemmas 5.29 and 4.32 immediately imply Corollary 5.31.

Corollary 5.31 [Null-set equivalence]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and B ∈ 𝒜with P(B) > 0. Then P and

PB are null-set equivalent on (Ω, σ(X)) if and only if PX and PB
X are null-set equivalent

on (Ω′
X , 𝒜 ′

X).

According to Lemma 4.32, absolute continuity of PB
X with respect to PX always holds. In

other words, PB
X ≪

𝒜
′
X

PX , which is equivalent to

∀ A′∈ 𝒜 ′
X: PX(A′) = 0 ⇒ PB

X (A′) = 0, (5.17)

always holds. In contrast, PX ≪
𝒜

′
X

PB
X is not necessarily true.

Example 5.32 [No treatment for Joe – continued] Table 5.2 displays an example illustrating
absolute continuity of PU with respect to PB

U for a discrete random variable U. Consider the
event B = {X=1} = {ω ∈ Ω: X(ω) = 1}. Using this notation, PU is not absolutely continuous
with respect to PX=1

U , (i.e., PU ≪
𝒜U

PX=1
U does not hold). In contrast, PU ≪

𝒜U

PX=0
U does hold.

In this example, the eight elements of Ω are listed in the first column of the table. Fur-
thermore, we choose 𝒜= 𝒫(Ω), and the probability measure on (Ω, 𝒜 ) is specified by the
probabilities of the singletons {ω} specified in the second column of the table [see Box 4.1
(x)]. The random variables U: (Ω, 𝒜, P) → (ΩU, 𝒜U), with ΩU = {Joe, Ann}, 𝒜U = 𝒫(ΩU),
and X, Y: (Ω, 𝒜, P) → (Ω′, 𝒫(Ω′)) with Ω′ = {0, 1}, are specified in columns 3, 5, and 6 of
Table 5.2. (The random variable U∗ has been used in Example 5.28.) Note that the distribution
of U is:

PU({Joe}) = P({(Joe, no, −), (Joe, no, +), (Joe, yes, +), (Joe, yes, −)}) = .5,

PU({Ann}) = P({(Ann, no, −), (Ann, no, +), (Ann, yes, +), (Ann, yes, −)}) = .5,

PU(ΩU) = 1, PU(Ø) = 0.
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Now, we compute the (X=1)-conditional probabilities of the elementary events:

PX=1({ω1}) = PX=1({(Joe, no, −)}) = P({(Joe, no, −)} ∩ {X=1})
P(X=1)

= 0∕(.228 + .152) = 0,

and the same result is obtained for ω2 to ω6. In contrast,

PX=1({ω7}) = PX=1({(Ann, yes, −)}) = P({(Ann, yes, −)} ∩ {X=1})
P(X=1)

= .228∕(.228 + .152) = .6,

and

PX=1({ω8}) = PX=1({(Ann, yes, +)}) = P({(Ann, yes, +)} ∩ {X=1})
P(X=1)

= .152∕(.228 + .152) = .4.

These results are displayed in the last column of Table 5.2, and the last but one column shows
the probabilities PX=0({ω}) of the singletons with respect to PX=0.

Now consider the set {Joe} ∈ 𝒜U. Inspecting the last and the second columns of Table 5.2
shows that

PX=1
U ({Joe}) = 0 and PU({Joe}) = .5.

According to Definition 3.70 (i), this implies that PU ≪
𝒜U

PX=1
U does not hold. In contrast, none

of the four elements A′∈ 𝒜U satisfies

PX=0
U (A′) = 0 and PU(A′) ≠ 0.

Therefore, in this example, PU ≪
𝒜U

PX=0
U does hold. ⊲

5.3 Multivariate random variable

Univariate random variables take on their values in sets such as Ω′
⊂ R, Ω′= {male, female},

or Ω′= {low, medium, high}, whereas bivariate random variables take on their values in sets

such as Ω′
⊂ R

2
or

Ω′ = {male, female} × {low, medium, high}.

The values of bivariate random variables are pairs such as (5, 8) or (male, low). The values of
n-variate random variables are n-tuples. If X takes on values such as male or (male, low), then
we call X qualitative. If X takes on values in R

n, n ∈ N, we call it n-variate real-valued. If X
takes on values in R

n
, n ∈ N, we call it n-variate numerical.
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Remark 5.33 [Joint and marginal distributions] Definition 5.1 also applies to an n-variate
random variable X, that is, to a random variable

X = (X1, … , Xn): (Ω, 𝒜, P) →
( n

×
i=1

Ω′
i ,

n⨂

i=1
𝒜 ′

i

)
(5.18)

that consists of n random variables Xi: (Ω, 𝒜, P) → (Ω′
i , 𝒜

′
i ). Hence,

X(ω) = [X1(ω), … , Xn(ω)], ∀ ω ∈ Ω . (5.19)

The distribution PX = PX1,…, Xn
of X is also called the joint distribution of the random variables

Xi, i = 1, … , n.
Because 𝜋i(X1, … , Xn) = Xi,

PXi
= P𝜋i(X1,…, Xn), i = 1, … , n, (5.20)

[see Eq. (2.20) defining the projection 𝜋i]. In this context, PXi
is called the (one-dimensional)

marginal distribution of Xi. Equation (5.20) shows that the joint distribution uniquely deter-
mines all marginal distributions, but not vice versa! More specifically, for i = 1, … , n,

PXi
(A′

i) = PX1,…, Xn
(Ω′

1 ×… × Ω′
i−1 × A′

i × Ω′
i+1 ×… × Ω′

n), ∀ A′
i ∈ 𝒜 ′

i . (5.21)

Analogously, we may also describe the marginal distribution of (Xi1
, … , Xim

), where
{i1, … , im} ⊂ {1, … , n}. ⊲

Remark 5.34 [Joint distribution vs. other quantities] The joint distribution of a multivari-
ate random variable contains the essential information about the random variables X1, … , Xn.
All other quantities such as expectations E(Xi), variances Var(Xi), covariances Cov(Xi, Xj),
or conditional expectations such as E(X1 | X2, … , Xn), which are introduced in succeeding
chapters, are determined by the joint distribution, and usually they contain less information.
Nevertheless, these other quantities often reveal certain properties of a multivariate random
variable more clearly than the joint distribution. ⊲

Example 5.35 [Flipping two coins – continued] In the example of section 2.2.2 and in
Example 2.83, we considered the random experiment of flipping two coins and defined the
random variable X representing with its values the number of flipping heads. Additional to X,
we may also define the random variables X1, X2: (Ω, 𝒜, P) → ({0, 1}, 𝒫({0, 1})) by

X1(ω) =

{
1, if ω ∈ {(h, t), (h, h)}

0, if ω ∈ {(t, h), (t, t)}
(5.22)

and

X2(ω) =

{
1, if ω ∈ {(t, h), (h, h)}

0, if ω ∈ {(h, t), (t, t)} .
(5.23)
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They indicate with their value 1 if heads are flipped at the first and second flip, respectively.
Obviously, X = X1 + X2. Furthermore,

(X1, X2): (Ω, 𝒜, P) → ({0, 1} × {0, 1}, 𝒫({0, 1}) ⊗𝒫({0, 1}))

is a two-dimensional random variable with values (0, 0), (0, 1), (1, 0), and (1, 1). The joint
distribution PX1, X2

is uniquely defined by

PX1, X2
({(i, j)}) = 1

4
, ∀ i, j = 0, 1.

The marginal distribution of X1 is

PX1
({i}) = PX1, X2

({(i, 0)}) + PX1, X2
({(i, 1)}) = 1

4
+ 1

4
= 1

2
, i = 0, 1,

PX1
({0, 1}) = 1, and PX1

(Ø) = 0. Obviously, PX1
is completely determined by the joint distri-

bution PX1, X2
, and the same applies to the marginal distribution PX2

. ⊲

Example 5.36 [Tom, Jim, and Kate – continued] The second column of Table 5.1 also dis-
plays the probabilities PU,X,Y ({(u, x, y)}) = P({ω}) of the three-dimensional random variable
(U, X, Y) that maps the elements ω ∈ Ω onto the set

Ω′ = {Tom, Jim, Kate} × {0, 1, 2} × {0, 1}

on which we consider the σ-algebra

𝒜 ′ = 𝒫(Ω′) = 𝒫({Tom, Jim, Kate}) ⊗𝒫({0, 1, 2}) ⊗𝒫({0, 1}).

The probabilities PU,X,Y ({(u, x, y)}), (u, x, y) ∈ Ω′, uniquely determine the joint distribution
PU,X,Y as well as the one-dimensional marginal distributions PU , PX , and PY , and the two-
dimensional marginal distributions PU,X , PU,Y , and PX,Y . ⊲

For another example of a joint distribution, which refers to Example 2.34, see Exercise 5.6.

5.4 Independence of random variables

The concepts of independence of events and of set systems (i.e., of sets of events), which have
been introduced in Definition 4.40, can be used to define stochastic independence of random
variables. Remember that

σ(X) := X−1(𝒜 ′) := {X−1(A′): A′∈ 𝒜 ′}

is a σ-algebra on Ω, called the σ-algebra generated by X (see Def. 2.26). Hence, we can
define the random variables X1: (Ω, 𝒜, P) → (Ω′

1, 𝒜 ′
1) and X2: (Ω, 𝒜, P) → (Ω′

2, 𝒜 ′
2) to be
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P-independent if X−1
1 (𝒜 ′

1) and X−1
2 (𝒜 ′

2) are P-independent. In other words, X1 and X2 are
defined to be P-independent, if and only if

P(A ∩ B) = P(A) ⋅ P(B), ∀ (A, B) ∈ X−1
1

(
𝒜 ′

1

)
× X−1

2

(
𝒜 ′

2

)
. (5.24)

Using the notation introduced in Remark 5.4 and

P(X1 ∈ A′, X2 ∈ B′) := P({X1 ∈ A′} ∩ {X2 ∈ B′}), (5.25)

this equation is equivalent to

P(X1 ∈ A′, X2 ∈ B′) = P(X1 ∈ A′) ⋅ P(X2 ∈ B′), ∀ (A′, B′) ∈ 𝒜 ′
1 ×𝒜 ′

2. (5.26)

Independence of the random variables X1 and X2 with respect to P is denoted by X1 ⟂⟂
P

X2.

Example 5.37 [Joe and Ann with randomized assignment – continued] In Table 2.2, we
presented the random experiment of drawing a person from a set of persons, ΩU = {Joe, Ann},
performing a randomized assignment of the drawn person to one of two treatment conditions
represented by the elements of the set ΩX = {yes, no}, and observing success or failure, rep-
resented by the elements of the set ΩY = {−, +}. Hence, the set of possible outcomes of this
random experiment is

Ω = ΩU × ΩX × ΩY,

which consists of the eight triples listed in the first column of Table 2.2. In that table, we
considered the random variables

U: (Ω, 𝒫(Ω)) →
(
ΩU, 𝒫(ΩU)

)
and X, Y: (Ω, 𝒫(Ω)) → (Ω′, 𝒜 ′),

where Ω′ = {0, 1} and 𝒜 ′ = {{0}, {1}, Ω′, Ø}. In order to check if Equation (5.26) actually
holds, we choose the two sets {Joe} ∈ 𝒫(ΩU) and {0} ∈ 𝒜 ′ and compare the probability

P(X=0, U=Joe) = P({(Joe, no, −), (Joe, no, +)}) = .3

(see the first two rows of Table 2.2) to the product of the two probabilities

P(X=0) = P({(Joe, no, −), (Joe, no, +), (Ann, no, −), (Ann, no, +)}) = .6

and

P(U=Joe) = P({(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}) = .5.

Obviously, Equation (5.26) holds for the pair ({0}, {Joe}) ∈ 𝒜 ′×𝒫(ΩU). Repeating the cor-
responding comparisons for all elements (pairs) of 𝒜 ′×𝒫(ΩU) shows that Equation (5.26)
actually holds in this example (see also Exercise 5.7). ⊲
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Remark 5.38 [A methodological note on randomized assignment] In random experiments
such as the one presented in Example 5.37, with a randomized assignment of the drawn per-
son to one of several treatment conditions, we create independence of X and the person vari-
able U. According to Equation (5.26), this implies that we create independence of X and all
U-measurable mappings f (U), because σ[ f (U)] ⊂ σ(U) (see Cor. 2.53). More generally, ran-
domized assignment of an observational unit (e.g., a person) creates independence of X and
all pretreatment variables. ⊲

Using Definition 4.40, Definition 5.39 extends the concept of independence of two random
variables to a family of random variables. This includes a finite sequence of random variables
Xi, i ∈ I = {1, … , n}, an infinite sequence of random variables Xi, i ∈ I = {1, 2, …}, and a
family (Xi, i ∈ I) of random variables in which the index set I may be any set, including, for
example, I ⊂ R.

Definition 5.39 [Family of independent random variables]
A family (Xi, i ∈ I) of random variables Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ) is called P-inde-

pendent, denoted by ⟂⟂
P

(Xi, i ∈ I), if (X−1
i (𝒜i

′), i ∈ I) is a family of P-independent σ-

algebras.

Remark 5.40 [Independence of three random variables] Hence, three random variables
X1, X2, and X3 are independent with respect to P, denoted by ⟂⟂

P
X1, X2, X3, if and only if

P(X1 ∈ A′, X2 ∈ B′, X3 ∈ C′) = P(X1 ∈ A′) ⋅ P(X2 ∈ B′) ⋅ P(X3 ∈ C′),

∀ (A′, B′, C′) ∈ 𝒜 ′
1 ×𝒜 ′

2 ×𝒜 ′
3

(5.27)

(see Rem. 4.38). Note that pairwise independence of X1, X2, and X3 follows from choosing
A′= Ω′

1, B′ = Ω′
2, or C′ = Ω′

3, respectively. ⊲

Remark 5.41 [Independence of n random variables] Correspondingly, the random vari-
ables X1, … , Xn are independent, denoted by ⟂⟂

P
X1, … , Xn, if and only if

P(X1 ∈ A′
1, … , Xn ∈ A′

n) = P(X1 ∈ A′
1) ⋅… ⋅ P(Xn ∈ A′

n),

∀ (A′
1, … , A′

n) ∈ 𝒜 ′
1 ×… ×𝒜 ′

n.
(5.28)

⊲

Remark 5.42 [Random sample] Oftentimes, we assume that X1, … , Xn is a sequence of
independent and identically distributed (abbreviated i.i.d.) random variables (see, e.g., chs. 6
and 8). In statistics, a sequence X1, … , Xn of i.i.d. random variables is called a random sample.
An important example of i.i.d. random variables is treated in the section on Bernoulli trials (see
section 8.1.2). ⊲

Remark 5.43 [Independence with respect to a probability measure] If there is no ambi-
guity, we also use the term independence of events, sets of events, random variables, and
sets of random variables. Note that, if Q is another probability measure on (Ω, 𝒜 ), then
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events, sets of events, and random variables can be P-independent, although they are not
Q-independent. ⊲

Remark 5.44 [A random variable and a set system] Independence of a set system and
a random variable is defined in the same way. A set system ℰ ⊂ 𝒜 and a random variable
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) are called independent, denoted by ℰ ⟂⟂

P
X, if ℰ and σ(X) are inde-

pendent. Of course, ℰ can also be a sub-σ-algebra of 𝒜. ⊲

Remark 5.45 [A random variable and a family of random variables] Independence of a
random variable X and a family (Yi, i ∈ I) of random variables, denoted by X ⟂⟂

P
(Yi, i ∈ I), is

defined by X ⟂⟂
P
σ(Yi, i ∈ I) [see Eq. (2.18)]. Note that X ⟂⟂

P
(Yi, i ∈ I) implies X ⟂⟂

P
σ(Yi), for

all i ∈ I. ⊲

Remark 5.46 [Equivalent propositions] Let (Ω, 𝒜, P) be a probability space, B ∈ 𝒜 , and
𝒞 ⊂ 𝒜. Then the following propositions are equivalent to each other:

1B ⟂⟂
P
𝒞, σ({B}) ⟂⟂

P
𝒞, {B} ⟂⟂

P
𝒞, B ⟂⟂

P
𝒞

(see Rem. 4.41 and Exercise 5.8). ⊲

In Corollary 5.24, we noted that P-equivalent random variables have identical distributions.
According to Lemma 5.47, this also has implications for independence of random variables.

Lemma 5.47 [P-equivalence and independence]
Let Xi: (Ω, 𝒜, P) → (Ω′, 𝒜 ′), i = 1, 2, and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables.

Then,

(
X1 =P X2 ∧ X1 ⟂⟂

P
Y
)

⇒ X2 ⟂⟂
P

Y . (5.29)

(Proof p. 197)

Now we consider the probability measure P and the B-conditional-probability measure PB

on (Ω, 𝒜 ) (see Def. 4.29). In Lemma 4.32, we have shown that PB is absolutely continuous
(see Def. 3.70) with respect to P on (Ω, 𝒜 ). In Lemma 5.48, we show that P is absolutely
continuous with respect to PB on (Ω, 𝒞), 𝒞 ⊂ 𝒜, provided that B and 𝒞 are independent.

Lemma 5.48 [Independence and absolute continuity]
Let (Ω, 𝒜, P) be a probability space, let 𝒞 ⊂ 𝒜be a σ-algebra, and B ∈ 𝒜with P(B) > 0.
Then 1B ⟂⟂

P
𝒞 implies P ≪

𝒞
PB.

(Proof p. 197)
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In Lemma 5.49, PX1
⊗…⊗PXn

denotes the product measure of the marginal distributions
(see Def. 1.67 and Rem. 5.33).

Lemma 5.49 [Independence and product measure]
Let X = (X1, … , Xn) be an n-variate random variable as specified in (5.18). Then,

⟂⟂
P

X1, … , Xn ⇔ PX1,…, Xn
= PX1

⊗…⊗PXn
. (5.30)

(Proof p. 197)

Example 5.50 [Tom, Jim, and Kate – continued] In example 5.12, we considered the ran-
dom variables X and U, which have been constructed such that they are independent. All 8 ⋅ 8 =
64 pairs (A, B) of elements A ∈ X−1(𝒜 ′

X) and B ∈ U−1(𝒜U) satisfy P(A ∩ B) = P(A) ⋅ P(B).
Let us consider, for example, A1 = X−1({0}) and B1 = U−1({Tom)}, B2 = U−1({Jim)}, and
B3 = U−1({Kate)}. Then,

P(A1 ∩ Bj) =
20
99

, j = 1, 2, 3

and

P(A1) ⋅ P(Bj) =
60
99

⋅
1
3
= 20

99
, j = 1, 2, 3.

Similarly, considering the events A2 = X−1({1}) and Bj,

P(A2 ∩ Bj) =
8
99

, j = 1, 2, 3

and

P(A2) ⋅ P(Bj) =
24
99

⋅
1
3
= 8

99
, j = 1, 2, 3.

Finally, considering the events A3 = X−1({2}) and Bj yields

P(A3 ∩ Bj) =
5
99

, j = 1, 2, 3

and

P(A3) ⋅ P(Bj) =
15
99

⋅
1
3
= 5

99
, j = 1, 2, 3.

Because Ø and all sets A ∈ 𝒜 are independent, this implies that independence holds for all
pairs (A, B) ∈ {A1, A2, A3, Ø} × {B1, B2, B3, Ø}. Furthermore, because

(a) ℰ1 = {A1, A2, A3, Ø} and ℰ2 = {B1, B2, B3, Ø} are ∩-stable set systems with ℰ1,
ℰ2 ⊂ 𝒜, and

(b) σ(ℰ1) = X−1(𝒜 ′
X) and σ(ℰ2) = U−1(𝒜U),
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we can conclude that P(A ∩ B) = P(A) ⋅ P(B) holds for all elements A ∈ X−1(𝒜 ′
X) and

B ∈ U−1(𝒜U) (see Th. 4.44). Therefore, according to Equation (5.24), X and U are
independent. ⊲

Lemma 5.51 [Independence of a constant and a set of events]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and 𝒞 ⊂ 𝒜. If X =

P
α and {α} ∈ 𝒜 ′

X,

then X and 𝒞 are independent.
(Proof p. 198)

Now we consider mappings of independent random variables. If two random variables
Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ), i = 1, 2, are independent and fi: (Ω′

i , 𝒜
′
i ) → (Ω′′

i , 𝒜 ′′
i ), i = 1, 2, are

measurable mappings, then the two random variables f1(X1) and f2(X2) are independent as
well. More generally, if fi: (Ω′

i , 𝒜
′
i ) → (Ω′′

i , 𝒜 ′′
i ), i = 1, … , n, is a sequence of measurable

mappings, then,

⟂⟂
P

f1(X1), … , fn(Xn),

that is, then f1(X1), … , fn(Xn) is a sequence of independent random variables on (Ω, 𝒜, P),
provided that X1, … , Xn are independent. In Theorem 5.5.2, we generalize this proposition.

Theorem 5.52 [Mappings of families of independent random variables]
Let Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ), i = 1, … , n, be random variables and, for m ∈ N, let

I1 = {1, … , i1}, I2 = {i1+1, … , i2}, … , Im = {im−1+1, … , n}. Furthermore, let

fj:
(
×
i∈ Ij

Ω′
i ,
⨂

i∈ Ij

𝒜 ′
i

)
→ (Ω′′

j , 𝒜 ′′
j ), j = 1, … , m,

be measurable mappings. If X1, … , Xn are independent, then

f1(X1, … , Xi1
), f2(Xi1+1, … , Xi2

), … , fm(Xim−1+1, … , Xn)

are independent.

For a generalization and a proof, see Bauer (1996, Theorem 9.6).

Example 5.53 [Sums of independent random variables] Let X1, … , X2n, n ∈ N, be inde-
pendent real-valued random variables. Then the n random variables

X1 + X2, X3 + X4, … , X2n−1 + X2n

are independent as well (see Th. 2.57). ⊲
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Example 5.54 [Tom, Jim, and Kate – continued] In Example 5.50, we showed that the
random variables X and U are independent. Now we consider the mappings f : {0, 1, 2} →
{0, 1} and g: ΩU → {male, female} defined by

f (x) =

{
0, if x = 0

1, if x = 1 or x = 2

and

g(u) =

{
male, if u = Tom or u = Jim

female, if u = Kate,

respectively. According to Theorem 5.52, the mappings f (X) (control vs. any of the two treat-
ments) and g(U) (sex) are independent as well (see Exercise 5.9). ⊲

Remark 5.55 [Conditional independence of random variables given an event] In chap-
ter 4, we also considered conditional independence of events and families of events given an
event B. If, for random variables X1, … , Xn (or, more generally, families of random variables),
we consider the set systems σ(X1), … , σ(Xn), then we can use Definition 4.49 in order to define
conditional independence of X1, … , Xn given an event B, presuming P(B) > 0. According to
Definitions 4.49 and 5.39, conditional independence given B is equivalent to independence
with respect to the probability measure PB. In chapter 16, we generalize this concept and
study it in more detail. ⊲

5.5 Probability function of a discrete random variable

The distribution of a discrete random variable can be described by its probability function
that is now introduced. Remember, if X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is a random variable, then the

distribution PX of X is a probability measure on (Ω′
X , 𝒜 ′

X).

Definition 5.56 [Discrete random variable and its probability function]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and assume that Ω′

0 ⊂ Ω′
X is finite or

countable with PX(Ω′
0) = 1 and {x} ∈ 𝒜 ′

X for all x ∈ Ω′
0. Then X and its distribution PX

are called discrete, and the function pX: Ω′
X → [0, 1] defined by

pX(x) =

{
PX({x}), if x ∈ Ω′

0,

0, if x ∈ Ω′
X
∖ Ω′

0,
(5.31)

is called the probabili ty function of X.

Remark 5.57 [Notation] Note that P(X=x) = pX(x), using the notation introduced in
Remark 5.4. ⊲
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Remark 5.58 [Probability function vs. distribution] The distribution PX is defined for
every random variable, whereas the probability function pX only applies to discrete random
variables. While PX assigns probabilities to subsets of the codomain Ω′

X of X, the probability
function pX assigns a probability to each element x in Ω′

X . Note that pX is a real-valued random
variable on the probability space (Ω′

X , 𝒜 ′
X , PX). ⊲

Remark 5.59 [The probability function uniquely determines the distribution] Note that
σ-additivity of the probability measure PX implies that PX is uniquely determined by the prob-
ability function pX [see Rule (x) in Box 4.1]. Vice versa, according to Definition 5.56, PX
defines pX . Hence, if X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) are discrete random variables, then,

pX = pY ⇔ PX = PY . (5.32)
⊲

Remark 5.60 [Probability function of a discrete distribution] Note that (5.32) allows us
to use the term probability function of a discrete distribution instead of probability function of
a discrete random variable. ⊲

Lemma 5.61 [Characterizations of a discrete random variable]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable.

(i) Then X is discrete if and only if there is a finite or countable Ω′
0 ⊂ Ω′

X such that
{x} ∈ 𝒜 ′

X for all x ∈ Ω′
0, PX(Ω′

0) = 1, and

1X=x0
=
P

1 −
∑

x∈Ω′
0
∖{x0}

1X=x, ∀ x0 ∈ Ω′
0 . (5.33)

(ii) Now assume that X: (Ω, 𝒜, P) → (R, ℬ) is real-valued. Then X is discrete if and
only if there is a finite or countable Ω′

⊂ R such that

X =
P

∑

x∈Ω′
x ⋅ 1X=x . (5.34)

(Proof p. 198)

Remark 5.62 [A caveat] Note that Equation (5.33) is equivalent to PX(Ω′
0) = 1. In propo-

sition (ii), we can choose Ω′ such that 0 ∉ Ω′ even if P(X=0) > 0. In this case, the set Ω′
0

referred to in (i) can be chosen such that Ω′
0 := Ω′∪ {0}. ⊲

Corollary 5.63 [Discrete real-valued random variable]
Assume that X: (Ω, 𝒜, P) → (R, ℬ) is a real-valued random variable. Then X is discrete
if and only if the following two conditions hold:

(a) Ω′
>

:= {x ∈ R: P (X=x) > 0} is finite or countable.

(b) X =
P

∑

x∈Ω′
>

x ⋅ 1X=x .

(Proof p. 199)
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Condition (b) may equivalently be written as:

X =
P

∑

x∈R

P(X=x)>0

x ⋅ 1X=x . (5.35)

Example 5.64 [Flipping two coins – continued] Consider again Example 5.35, and let
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) denote the number of flipping heads. If we assume that P({ω}) = 1

4
for all ω ∈ Ω, then,

pX(0) = PX({0}) = 1
4

, pX(1) = PX({1}) = 1
2

, pX(2) = PX({2}) = 1
4

are the values of the probability function pX of X. They are the probabilities of the events that X
takes on the values 0, 1, and 2, respectively. For simplicity, we also denote these probabilities by
P(X=0), P(X=1), and P(X=2). In this example, we may choose different measurable spaces
(Ω′

X , 𝒜 ′
X). If we choose (Ω′

X , 𝒜 ′
X) = ({0, 1, 2}, 𝒫({0, 1, 2})), then Ω′

0 = Ω′
X (see Def. 5.56).

If we choose (Ω′
X , 𝒜 ′

X) = (R, ℬ), then Ω′
0 = {0, 1, 2} and 𝒜 ′

X|Ω′
0
= ℬ |Ω′

0
= 𝒫(Ω′

0) (see
Remark 1.29). According to Equation (5.34),

X = 0 ⋅ 1X=0 + 1 ⋅ 1X=1 + 2 ⋅ 1X=2.

This example is a special case of a random variable with a binomial distribution. The
general case is treated in Definition 8.7. Other examples of a discrete random variable and
their probability function are random variables that have a Poisson distribution or a geometric
distribution. In both cases, the random variable considered takes on an infinite and countable
number of values, each of which has a probability greater than 0. These examples are treated
in chapter 8 (see Defs. 8.14 and 8.20). ⊲

Example 5.65 [Flipping two coins – continued] In Example 5.35, we introduced the random
variables X1 and X2, which indicate if we flip heads in the first and second trial, respectively.
The probability function of the bivariate random variable X = (X1, X2) is

pX1, X2
(x1, x2) = 1

4
, ∀ (x1, x2) ∈ {0, 1}2

.

⊲

Lemma 5.66 [Probability function of a marginal distribution]
Consider a multivariate random variable X = (X1, … , Xn) as specified in (5.18), and
assume that there is a finite or countable set Ω′

0 ⊂ × n
i=1 Ω

′
i with P(Ω′

0) = 1 and {x} ∈⨂ n
i=1 𝒜 ′

i for all x ∈ Ω′
0. Furthermore, for all xi ∈ Ω′

i , define

Ω′
0, xi

:=
{

(x1, … , xi−1, xi+1, … , xn): (x1, … , xn) ∈ Ω′
0

}
.
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Then, for all xi ∈ Ω′
i ,

pXi
(xi) =

∑

(x1, … , xi−1, xi+1, … , xn)∈Ω′
0, xi

pX(x1, … , xn), (5.36)

where pXi
denotes the probability function of Xi, i = 1, … , n, which is also called the

marginal probabili ty function of Xi.
(Proof p. 200)

Now we turn to a condition that is equivalent to independence of discrete random variables.

Remark 5.67 [Support sets of discrete random variables] Under the assumptions of
Lemma 5.66, we define the support sets of the distributions PXi

, that is, the sets

Ω′
0,i := {xi ∈ Ω′

i : pXi
(xi) > 0}, i = 1, … , n . (5.37)

Obviously, Ω′
0,i is finite or countable for all i = 1, … , n. Hence, Ω′

sn = × n
i=1 Ω

′
0,i is finite

or countable as well. Furthermore, P(X ∈ Ω′
sn) = 1, because, for (x1, … , xn) ∈ Ω′

0
∖ Ω′

sn,
there is at least one i such that Xi ∉ Ω′

0,i and therefore pXi
= P(Xi=xi) = 0, which implies

P(X1=x1, … , Xi=xi, … , Xn=xn) = 0. ⊲

Lemma 5.68 [A condition equivalent to independence]
Let X be a multivariate random variable as specified in (5.18), and assume that there is
a finite or countable set Ω′

0 ⊂ × n
i=1 Ω

′
i with PX(Ω′

0) = 1 and {x} ∈ 𝒜 ′
X, for all x ∈ Ω′

0.
Furthermore, let pX , pX1

, … , pXn
denote the probability functions of X, X1, … , Xn,

respectively, and let Ω′
0,1, … , Ω′

0,n be the sets defined in (5.37). Then, X1, … , Xn are
independent if and only if

pX(x1, … , xn) = pX1
(x1) ⋅… ⋅ pXn

(xn), ∀ (x1, … , xn) ∈
n

×
i=1

Ω′
0,i . (5.38)

(Proof p. 200)

Note that, in Lemmas 5.66 and 5.68, the set Ω′
0 is not necessarily a Cartesian product. We

only require that it is a subset of a Cartesian product.
In section 5.6, we shall see that a probability function is a special probability density (see

Th. 5.77).

5.6 Probability density with respect to a measure

Some probability measures can also be described by a density with respect to the Lebesgue
measure on (R, ℬ) or the counting measure on (Ω, 𝒫(Ω)), where Ω is a finite or countable
set (see Th. 3.65). Such a density is useful for explicit numerical calculations and comparing
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distributions to each other. We start by translating some concepts and results of chapter 3 to
probability measures.

5.6.1 General concepts and properties

According to Theorem 3.65 and Definition 3.66, a nonnegative measurable function
f : (Ω, 𝒜, 𝜇) → (R,ℬ) is called a density of ν with respect to 𝜇, if

ν(A) =
∫A

f d𝜇, ∀ A ∈ 𝒜. (5.39)

The function ν: 𝒜→ R defined by (5.39) is a measure, which is also denoted by f ⊙𝜇. Hence,
f ⊙𝜇(A) = ∫A f d𝜇, ∀ A ∈ 𝒜. Theorem 3.65 implies Corollary 5.69.

Corollary 5.69 [Probability measure with density]
Let (Ω, 𝒜, 𝜇) be a measure space. If f : (Ω, 𝒜, 𝜇) → (R,ℬ) is a nonnegative 𝜇-integrable
function with ∫ f d𝜇 = 1, then P = f ⊙𝜇 is a probability measure on (Ω, 𝒜 ).

Corollary 5.69 justifies Definition 5.70.

Definition 5.70 [Probability density]
Let (Ω, 𝒜, P) be a probability space and 𝜇 a measure on (Ω, 𝒜 ). If P = f ⊙𝜇, then f is
called a probabili ty density of P with respect to 𝜇.

Remark 5.71 [Probability density of a random variable] Consider the random variable
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), and let 𝜇 be a measure on (Ω′

X , 𝒜 ′
X). If PX = fX ⊙𝜇, then fX is also

referred to as a probability density of X with respect to 𝜇. ⊲

Applying Equation (5.39) yields the following corollary.

Corollary 5.72 [Characterizing the probability measure by a density]
Let f : (Ω, 𝒜, 𝜇) → (R, ℬ) be 𝜇-integrable and nonnegative, and P a probability mea-
sure on (Ω, 𝒜 ). Then, f is a (probability) density of P with respect to 𝜇 if and only if it
satisfies

P(A) =
∫A

f d𝜇, ∀ A ∈ 𝒜. (5.40)
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Theorem 3.68 (a) and (c) imply Corollary 5.73:

Corollary 5.73 [Probability densities are 𝜇-equivalent]
Let 𝜇 and P be measures on the measurable space (Ω, 𝒜 ), where P is a probability mea-
sure. If f , f ∗: (Ω, 𝒜, 𝜇) → (R,ℬ) are probability densities of P with respect to 𝜇, then
f =

𝜇
f ∗.

Now we translate the Radon-Nikodym theorem (see Th. 3.72), which yields Corollary 5.74.

Corollary 5.74 [An implication of the Radon-Nikodym theorem]
Let (Ω, 𝒜, 𝜇) be a measure space. If 𝜇 is σ-finite, P is a probability measure on (Ω, 𝒜 ),
and P ≪

𝒜
𝜇, then there is a probability density f of P with respect to 𝜇 (also called a

Radon-Nikodym derivative), that is,

f = dP
d𝜇

. (5.41)

Example 5.75 [Conditional-probability measure] In Lemma 4.32 (ii), we showed that
1B∕P(B) is a density of PB with respect to P, and according to Remark 5.71, it is a proba-
bility density of PB. ⊲

5.6.2 Density of a discrete random variable

As a special case, we consider a discrete random variable (see section 5.5).

Remark 5.76 [A sum of Dirac measures] Let the assumptions of Definition 5.56 hold, that
is, let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable and suppose Ω′

0 ⊂ Ω′
X is finite or count-

able with PX(Ω′
0) = 1 and {x} ∈ 𝒜 ′

X for all x ∈ Ω′
0. Furthermore, define

𝜇 :=
∑

x∈Ω′
0

𝛿x, (5.42)

the sum of Dirac measures at x, x ∈ Ω′
0. According to Example 1.57, 𝜇 is a measure on

(Ω′
X , 𝒜 ′

X), which is σ-finite. ⊲

Theorem 5.77 asserts that the probability function pX is a density of PX with respect to 𝜇.

Theorem 5.77 [The probability function is a density]
Let the assumptions of Definition 5.56 be satisfied, and let 𝜇 be defined by Equation (5.42).
Then,

(i) PX ≪
𝒜

′
X

𝜇.
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(ii) The probability function pX is a density of PX with respect to 𝜇, that is,

pX = dPX

d𝜇
(5.43)

and, for all A′∈ 𝒜 ′
X,

PX(A′) =
∫A′

pX d𝜇 (5.44)

=
∑

x∈Ω′
0

1A′ (x) ⋅ pX(x) (5.45)

=
∑

x∈A′
pX(x). (5.46)

(Proof p. 201)

Hence, each probability PX(A′), A′∈ 𝒜 ′
X , can be computed from the probability function

pX .

5.6.3 Density of a bivariate random variable

Now we consider bivariate random variables. However, extending the following notation and
propositions to general multivariate random variables is straightforward.

Lemma 5.78 [Absolute continuity of marginal distributions]
Let (X, Y): (Ω, 𝒜, P) → (Ω′

X × Ω′
Y , 𝒜 ′

X ⊗𝒜 ′
Y ) be a random variable, and suppose that

(Ω′
X , 𝒜 ′

X , 𝜇) and (Ω′
Y , 𝒜 ′

Y , ν) are σ-finite measure spaces. Then,

PX,Y ≪
𝒜

′
X⊗𝒜

′
Y

𝜇⊗ν ⇒ PX ≪
𝒜

′
X

𝜇 and PY ≪
𝒜

′
Y

ν.

(Proof p. 201)

Let

fX,Y :=
dPX,Y

d𝜇⊗ν
, fX := dPX

d𝜇
, fY := dPY

dν

denote Radon-Nikodym derivatives (see Th. 3.72). In Lemma 5.79, we use the notation ‘ =
𝜇-a.a.

’

introduced in Remark 2.70.
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Lemma 5.79 [Marginal densities]
Let (X, Y): (Ω, 𝒜, P) → (Ω′

X × Ω′
Y , 𝒜 ′

X ⊗ 𝒜 ′
Y ) be a random variable, (Ω′

X , 𝒜 ′
X , 𝜇),

(Ω′
Y , 𝒜 ′

Y , ν) be measure spaces, 𝜇, ν be σ-finite, and assume PX,Y ≪
𝒜

′
X⊗𝒜

′
Y

𝜇⊗ν. Then,

fX(x) =
𝜇-a.a. ∫

fX,Y (x, y) ν(dy), (5.47)

and

fY (y) =
ν-a.a. ∫

fX,Y (x, y) 𝜇(dx). (5.48)

The functions fX and fY are also called marginal densit ies of X and Y, respectively.
(Proof p. 202)

Remark 5.80 [Marginal and joint density] Suppose that X and Y are real-valued. Then,
for the Lebesgue measure 𝜇 = ν = 𝜆 and a Riemann integrable density fX,Y , Equations (5.47)
and (5.48) yield

fX(x) =
𝜆-a.a. ∫

∞

−∞
fX,Y (x, y) dy (5.49)

and

fY (y) =
𝜆-a.a. ∫

∞

−∞
fX,Y (x, y) dx, (5.50)

respectively (see Th. 3.62). ⊲

Note that, for a discrete random variable X = (X1, … , Xn), the probability function pX is
a density of PX with respect to the measure 𝜇 specified in Equation (5.42), and the marginal
probability functions pXi

, i = 1, … , n, are marginal densities. In section 5.7.4, we consider
multivariate densities with respect to the Lebesgue measure 𝜇 = ν = 𝜆.

5.7 Uni- or multivariate real-valued random variable

The remaining sections of this chapter show how to describe distributions of real-valued uni-
and multivariate random variables.

5.7.1 Distribution function of a univariate real-valued random
variable

If we consider a univariate real-valued random variable X, then the distribution function FX
assigns to each x ∈ R the probability P(X ≤ x) of the event {X ≤ x} = {ω ∈ Ω: X(ω) ≤ x} that
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X takes on a value smaller than or equal to x. As we shall see, the distribution function uniquely
determines the distribution PX .

Definition 5.81 [Distribution function]
Let X: (Ω, 𝒜, P) → (R, ℬ, PX) denote a real-valued random variable. Then the (cumu-
lative) distribution function FX : R → [0, 1] of X is defined by:

FX(x) := PX(]−∞, x]) = P(X ≤ x), ∀ x ∈ R. (5.51)

Remark 5.82 [Probabilities of intervals] This definition implies that we can compute the
probability P(a < X ≤ b) of X taking a value in the interval ]a, b] by

P(a < X ≤ b) = FX(b) − FX(a), if a < b, (5.52)

because

P(a < X ≤ b) = PX(]−∞, b] ∖ ]−∞, a]) = PX(]−∞, b]) − PX(]−∞, a])

[see Rule (vi), Box 4.1]. ⊲

Remark 5.83 [The distribution function determines the distribution] Every random vari-
able X has a distribution PX . Therefore, the distribution function FX exists for all real-valued
random variables. The distribution function uniquely determines the distribution PX of a real-
valued random variable, because a finite measure on (Ω, 𝒜 ) is already uniquely specified by its
values on a ∩-stable generating system of𝒜(see Th. 1.72), and the set system {]−∞, x]: x ∈ R}
is a ∩-stable generating system of ℬ, the Borel σ-algebra on R [see Eq. (1.19)]. Hence, FX
uniquely determines PX , which implies Theorem 5.84. ⊲

Theorem 5.84 [Uniqueness]
Let PX, PY denote the distributions and FX, FY the distribution functions of two real-
valued random variables X, Y: (Ω, 𝒜, P) → (R, ℬ). Then,

FX = FY ⇔ PX = PY . (5.53)

This theorem facilitates describing distributions and calculations involving distributions
considerably, because the distribution function is defined on the set R of real numbers, whereas
PX is defined on a much more complex domain, the Borel σ-algebra ℬ.

Example 5.85 [Flipping two coins – continued] In Example 5.11, we considered flipping
two coins and specified the distribution PX of X: (Ω, 𝒜, P) →

(
Ω′

X , 𝒫(Ω′
X)
)
, representing

with its values x the number of flipping heads. The distribution PX assigns a probability to
all 23 = 8 subsets of Ω′

X := {0, 1, 2}. Because {0, 1, 2} ⊂ R, the random variable X is also a



RANDOM VARIABLE, DISTRIBUTION, DENSITY, AND DISTRIBUTION FUNCTION 191

random variable X: (Ω, 𝒜, P) → (R, ℬ) with values in R. In this case, FX is a step function
defined by

FX(x) = PX(]−∞, x]) = P(X ≤ x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0, if x < 0

1∕4, if 0 ≤ x < 1

3∕4, if 1 ≤ x < 2

1, if x ≥ 2 .

According to Theorem 5.84, the distribution PX is uniquely defined by these four values. In
other words, if we know these four values, then we know the probabilities PX(A′) for all ele-
ments A′ of the Borel σ-algebra ℬ (see Exercise 5.10). ⊲

Now we turn to the quantile function, which, in some cases, is the inverse of the distribution
function. Sometimes this function is also called the pseudo-inverse of FX . It assigns to each
p ∈ [0, 1] the smallest real number x for which P(X ≤ x) = FX(x) ≥ p.

Definition 5.86 [Quantile function]
Let X: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with distribution function
FX. Then the quantile function QX : [0, 1] → R of X is defined by:

QX(p) = inf{x ∈ R: FX(x) ≥ p}, ∀ p ∈ ]0, 1[,

QX(0) =

{
inf{x ∈ R: FX(x) > 0}, if ∃ x ∈ R with FX(x) = 0

−∞, if FX(x) > 0, ∀ x ∈ R,

QX(1) =

{
inf{x ∈ R: FX(x) = 1}, if ∃ x ∈ R with FX(x) = 1

∞, if FX(x) < 1, ∀ x ∈ R.

(5.54)

A value QX(p), p ∈ [0, 1], is called the quantile of p with respect to FX.

Remark 5.87 [Inverse function of FX] If FX is continuous and strictly monotone (i.e., if
x1 < x2 implies FX(x1) < FX(x2)), then,

QX(p) = F−1
X (p), ∀ p ∈ ]0, 1[. (5.55)

where F−1
X denotes the inverse function of FX . ⊲

Example 5.88 [Flipping two coins – continued] In Example 5.85, we specified the distri-
bution function of X = number of flipping heads for the random experiment of flipping two
coins. The corresponding quantile function takes on the following three values:

QX(p) =
⎧
⎪
⎨
⎪⎩

0, if 0 ≤ p ≤ 1∕4

1, if 1∕4 < p ≤ 3∕4

2, if 3∕4 < p ≤ 1. ⊲
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5.7.2 Distribution function of a multivariate real-valued
random variable

Now we extend the concept of a distribution function to the multivariate case. In Defini-
tion 5.89, we use the notation introduced in Equation (5.25).

Definition 5.89 [Joint distribution function]
Let (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn) be a random variable. Its distribution func-
tion FX1,…, Xn

: R
n → [0, 1] is defined by

FX1,…, Xn
(x1, … , xn) := P(X1 ≤ x1, … , Xn ≤ xn), ∀ (x1, … , xn) ∈ R

n
. (5.56)

It is also called the joint distribution function of X1, … , Xn.

Example 5.90 [Flipping two coins – continued] In example 5.35, we considered flipping
two coins and defined the random variables X1 and X2 indicating whether or not we flip heads
at first and second flip, respectively. In this example, the bivariate distribution function FX1, X2
takes on the values

FX1, X2
(x1, x2) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0, if x1 < 0 or x2 < 0

1∕4, if 0 ≤ x1 < 1, 0 ≤ x2 < 1

2∕4, if x1 ≥ 1, 0 ≤ x2 < 1

2∕4, if 0 ≤ x1 < 1, x2 ≥ 1

1, if x1 ≥ 1, x2 ≥ 1.
⊲

Just like in Theorem 5.84, we can prove uniqueness, using a ∩-stable generating system
for ℬn, now referring to Equation (1.21).

Theorem 5.91 [Uniqueness]
Let PX, PY denote the distributions and FX, FY the distribution functions of two n-variate
real-valued random variables X, Y: (Ω, 𝒜, P) → (Rn, ℬn). Then,

FX = FY ⇔ PX = PY . (5.57)

As an implication of Equation (5.21) with A′
i = ]−∞, xi] and Ω′

j = R, i ≠ j, we obtain the
Corollary 5.92. In the special case of a bivariate real-valued random variable (X1, X2), this
corollary asserts the value of the marginal distribution function of X1 for the argument x1 (i.e.,
limx2 →∞ FX1, X2

(x1, x2) = FX1
(x1)). In this corollary,

lim
xj →∞

j≠ i

FX1,…, Xn
(x1, … , xn), (5.58)

denotes the limit of the distribution function of (X1, … , Xn) for xj → ∞, for all j = 1, … , i − 1,
i + 1, … , n. This limit is the value of the marginal distribution function of Xi for the
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argument xi, and Corollary 5.92 asserts that this limit is identical to the value FXi
(xi) of the

distribution function of Xi for the argument xi.

Corollary 5.92 [Joint and marginal distribution function]
Let (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn) be a random variable. Then,

FXi
(xi) = lim

xj →∞
j≠ i

FX1,…, Xn
(x1, … , xn), ∀ xi ∈ R. (5.59)

(Proof p. 202)

Corollary 5.93 shows how independence of the random variables X1, … , Xn can be for-
mulated in terms of their distribution functions.

Corollary 5.93 [Independence and joint distribution function]
Let (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn) be a random variable. Then the following two
propositions are equivalent to each other:

(a) X1, … , Xn are independent.

(b) FX1,…, Xn
(x1, … , xn) = FX1

(x1) ⋅ … ⋅ FXn
(xn), ∀ (x1, … , xn) ∈ R

n.

(Proof p. 203)

5.7.3 Density of a continuous univariate real-valued random variable

As a special case, we consider a random variable X: (Ω, 𝒜, P) → (R, ℬ) for which there is a
nonnegative measurable function fX: (R, ℬ, PX) → (R, ℬ) such that

PX(B) =
∫B

fX d𝜆, ∀ B ∈ ℬ, (5.60)

where 𝜆 denotes the Lebesgue measure on (R, ℬ). According to Theorem 3.68 (ii), this equa-
tion is equivalent to PX = fX⊙𝜆.

Definition 5.94 is a special case of Definition 5.70.

Definition 5.94 [Continuous random variable and its density]
Let X: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with distribution PX. We
call X continuous if there is a nonnegative function fX: R → R that is integrable with
respect to the Lebesgue measure 𝜆 and

PX = fX⊙𝜆. (5.61)

A function fX satisfying (5.61) is called a (probabili ty) density of X.
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Note that Equation (5.61) is equivalent to

FX(x) =
∫]−∞, x]

fX d𝜆, ∀ x ∈ R, (5.62)

because

FX(x) = PX(]−∞, x]) =
∫

1]−∞, x] dPX =
∫]−∞, x]

fX d𝜆, ∀ x ∈ R, (5.63)

(see Th. 3.67). Furthermore, Theorem 3.62 immediately implies Corollary 5.95:

Corollary 5.95 [Riemann integral of the density]
If fX is a density of the random variable X: (Ω, 𝒜, P) → (R, ℬ) and fX is Riemann inte-
grable, then,

FX(x) =
∫

x

−∞
fX(t) dt, ∀ x ∈ R. (5.64)

Remark 5.96 [Interpretation of densities] Note that the term fX(t) in Equation (5.64) is not
a probability; instead, it is a value of the density for t ∈ R. However, the probability P(a <

X ≤ b) that X takes on a value in the interval ]a, b] can be computed using Equation (5.52) and
the density fX , provided that it exists and is Riemann integrable:

P(a < X ≤ b) = FX(b) − FX(a) =
∫

b

a
fX(x) dx, if a < b. (5.65)

This probability can be represented as the area between the density and the x-axis above the
interval [a, b] (see Fig. 3.6). ⊲

Remark 5.97 [Continuity of X implies P(X=x) = 0] Consider a continuous random vari-
able X: (Ω, 𝒜, P) → (R, ℬ). Definition 5.94 and Remark 3.71 imply PX ≪

ℬ
𝜆. Because

𝜆({x}) = 0 [see Eq. (1.53)], we can conclude P (X=x) = 0, for all x ∈ R. Hence, additivity
of P yields, for all a, b ∈ R, a < b,

P(a < X ≤ b) = P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X < b), (5.66)

provided that X is continuous. ⊲

Example 5.98 [Continuous random variables and their densities] In section 8.2, we
present some examples of continuous random variables and their densities, such as the den-
sities of normal distributions, central 𝜒2-distributions, central t-distributions, and central
F-distributions. ⊲
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5.7.4 Density of a continuous multivariate real-valued random
variable

Remark 5.99 [Multivariate case] Let X: (Ω, 𝒜, P) → (Rn, ℬn) be a multivariate random
variable with distribution PX . If fX: R

n → R is nonnegative and integrable with respect to the
Lebesgue measure 𝜆n on (Rn, ℬn), and PX = fX ⊙𝜆n, then X is continuous with probability
density fX , and

FX(x1, … , xn) =
∫B

fX d𝜆n, ∀ (x1, … , xn) ∈ R
n, (5.67)

where B := × n
i=1 ]−∞, xi]. If fX is Riemann integrable, then,

FX(x1, … , xn) =
∫

xn

−∞
…

∫

x1

−∞
fX(t1, … , tn) dt1 … dtn, ∀ (x1, … , xn) ∈ R

n
. (5.68)

More generally, for any B ∈ ℬn,

PX(B) = P(X ∈ B) =
∫

1B ⋅ fX d𝜆n. (5.69)

The probability PX(B) can be represented as the (n + 1)-dimensional volume between the joint
density and the (x1, … , xn)-hyperplane above B (see Fig. 8.8). ⊲

In analogy to Corollary 5.93, independence of continuous real-valued random variables can
also be formulated in terms of probability densities, using the marginal densities fX1

, … , fXn
(see Lemma 5.79).

Corollary 5.100 [Independence and probability densities]
Let (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn), n > 1, be a random variable, and suppose that all
random variables Xi, i = 1, … , n, have a density fXi

with respect to the Lebesgue measure
𝜆 on (R, ℬ). Then, X1, … , Xn are independent if and only if

fX1,…, Xn
(x1, … , xn) := fX1

(x1) ⋅… ⋅ fXn
(xn), ∀ (x1, … , xn) ∈ R

n, (5.70)

is a joint density of (X1, … , Xn) with respect to 𝜆n.
(Proof p. 203)

Remark 5.101 [Independence, densities, and Riemann integrals] If all densities fXi
,

i = 1, … , n, are Riemann integrable, then fX1,…, Xn
in (5.70) is Riemann integrable as well

(see, e.g., Ellis & Gulick, 2006). ⊲

Remark 5.102 [Other random variables] In this section, we considered univariate and mul-
tivariate real-valued random variables X. All these random variables have a distribution PX
and also a (cumulative) distribution function FX . If X is discrete, then its distribution can be
described by the probability function, and the distribution function FX is a step function (see
Example 5.90 and Fig. 8.1). If X is continuous, then its distribution can be specified by a density
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with respect to the Lebesgue measure. The distribution functions of continuous random vari-
ables do not have jumps (see Rem. 5.97 and Fig. 8.7 for an example). Note, however, that there
are random variables that are neither discrete nor continuous. Their distribution functions have
jumps but are not step functions. ⊲

5.8 Proofs

Proof of Lemma 5.7

According to Theorem 2.49, the composition g(X) of X and g is (𝒜, 𝒜 ′)-measurable. There-
fore, it is a random variable on (Ω, 𝒜, P). For all A ∈ 𝒜 ,

Pg(X)(A) = P([g(X)]−1(A)) [(5.2)]

= P({ω ∈ Ω: g[X(ω)] ∈ A}) [Def. 2.1]

= P({ω ∈ Ω: X(ω) ∈ g−1(A)}) [Def. 2.1]

= P(X −1[g−1(A)]) [Def. 2.1]

= PX[g−1(A)] [(5.2)]

= (PX)g(A). [(5.2)]

Proof of Lemma 5.21

X =
P

Y ⇒ ∃ A ∈ 𝒜 : (∀ ω ∈ Ω ∖ A: X(ω) = Y(ω) and P(A) = 0) [(5.9)]

⇒ ∃ A ∈ 𝒜 : (∀ ω ∈ Ω ∖ A: X(ω) = Y(ω) and Q(A) = 0) [Q ≪
𝒜

P]

⇒ X =
Q

Y . [(5.9)]

Proof of Corollary 5.25

Proposition (i) is a special case of Theorem 2.86. Analogously to the proof of Theorem 2.86,
we can prove Propositions (ii) and (iii) using Remark 2.67.

Proof of Lemma 5.27

Let A := {ω ∈ Ω: X(ω) ≠ Y(ω)} ∈ 𝒞. Hence, if X =
PB

Y , then the conjunction of PB(A) = 0

and P ≪
𝒞

PB implies P(A) = 0.

Proof of Lemma 5.29

P ≪
σ(X)

PB ⇒ PX ≪
𝒜

′
X

PB
X If P ≪

σ(X)
PB, then, for all C′∈ 𝒜 ′

X ,

PB
X(C′) = 0 ⇒ PB[X −1(C′)] = 0 [(5.2)]

⇒ P[X −1(C′)] = 0 [P ≪
σ(X)

PB]

⇒ PX(C′) = 0. [(5.2)]
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PX ≪
𝒜

′
X

PB
X ⇒ P ≪

σ(X)
PB If PX ≪

𝒜
′
X

PB
X and C ∈ σ(X), then there is a C′∈ 𝒜 ′

X such that

C = X −1(C′).

Hence,

PB(C) = 0 ⇒ PB[X −1(C′)] = 0

⇒ PB
X (C′) = 0 [(5.2)]

⇒ PX(C′) = 0 [PX ≪
𝒜

′
X

PB
X]

⇒ P[X −1(C′)] = 0 [(5.2)]

⇒ P(C) = 0.

Proof of Lemma 5.47

If X1 =P X2, then,

X1 ⟂⟂
P

Y

⇒ ∀ (A′, B′) ∈ 𝒜 ′×𝒜 ′
Y :

P[X −1
1 (A′) ∩ Y−1(B′)] = P[X −1

1 (A′)] ⋅ P[Y−1(B′)] [(5.24)]

⇒ ∀ (A′, B′) ∈ 𝒜 ′×𝒜 ′
Y :

P[X −1
2 (A′) ∩ Y−1(B′)] = P[X −1

2 (A′)] ⋅ P[Y−1(B′)] [X1 =P X2, Def. 5.3, Cor. 5.24]

⇒ X2 ⟂⟂
P

Y . [(5.24)]

Proof of Lemma 5.48

According to Remark 5.46, 1B ⟂⟂
P
𝒞 ⇔ B ⟂⟂

P
𝒞. Hence, for all C ∈ 𝒞,

PB(C) = 0 ⇒ P(B ∩ C) = 0

⇒ P(B) ⋅ P(C) = 0 [B ⟂⟂
P

C]

⇒ P(C) = 0. [P(B) > 0]

Proof of Lemma 5.49

⇒ If X1, … , Xn are independent, then, for all A′
i ∈ 𝒜 ′

i , i = 1, … , n,

PX1,…, Xn
(A′

1 ×… × A′
n) = P[X−1

1 (A′
1) ∩… ∩ X−1

n (A′
n)]

= P[X−1
1 (A′

1)] ⋅ … ⋅ P[X−1
n (A′

n)]

= PX1
(A′

1) ⋅ … ⋅ PXn
(A′

n)

= (PX1
⊗…⊗PXn

)(A′
1 ×… × A′

n).
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Hence, according to the definition of the product measure (see Def. 1.67),

PX1,…, Xn
= PX1

⊗…⊗PXn
.

⇐ If the right-hand side of (5.30) holds, then, for all A′
i ∈ 𝒜 ′

i , i = 1, … , n,

P[X−1
1 (A′

1) ∩… ∩ X−1
n (A′

n)] = PX1,…, Xn
(A′

1 ×… × A′
n)

= PX1
(A′

1) ⋅ … ⋅ PXn
(A′

n)

= P[X−1
1 (A′

1)] ⋅ … ⋅ P[X−1
n (A′

n)].

According to Equation (5.28), this implies independence of X1, … , Xn.

Proof of Lemma 5.51

Assume that X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is a random variable and that there is an α ∈ Ω′
X and

{α} ∈ 𝒜 ′
X such that X =

P
α. If A = {ω ∈ Ω: X(ω) ≠ α}, then A = Ω ∖ X −1({α}) ∈ 𝒜, P(A) = 0

and P(Ac) = 1. This implies, for all A′∈ 𝒜 ′
X ,

P[X −1(A′)] = P[X −1(A′) ∩ Ac] [Box 4.1 (viii)]

= P[{ω ∈ Ω: X(ω) ∈ A′, X(ω) = α}]

=

{
P(Ø), if α ∉ A′

P(Ac), if α ∈ A′

=

{
0, if α ∉ A′

1, if α ∈ A′.
(5.71)

This implies, for all A′∈ 𝒜 ′
X and all C ∈ 𝒞,

P[X −1(A′) ∩ C] =

{
0, if α ∉ A′

P(C), if α ∈ A′ [Box 4.1 (v), (viii)]

= P[X −1(A′)] ⋅ P(C). [(5.71)]

Proof of Lemma 5.61

(i) ⇒ If X is discrete, then there is a finite or countable Ω′
0 ⊂ Ω′

X with {x} ∈ 𝒜 ′
X for all x ∈ Ω′

0
and PX(Ω′

0) = 1. This implies

P

(
1 ≠

∑

x∈Ω′
0

1X=x

)
= P(X ∉ Ω′

0) = 0,

and therefore

1 =
P

∑

x∈Ω′
0

1X=x .
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⇐ If Equation (5.33) holds and Ω′
0 ⊂ Ω′

X is finite or countable with {x} ∈ 𝒜 ′
X for all x ∈ Ω′

0,
then 1 =

P

∑
x∈Ω′

0
1X=x and therefore

1 = P

(
1 =

∑

x∈Ω′
0

1X=x

)
= P(X ∈ Ω′

0) = PX(Ω′
0).

(ii) If X is real-valued, then X is discrete if and only if there is a finite or countable Ω′
⊂ R

such that

X = X ⋅ 1

=
P

X ⋅
∑

x∈Ω′
1X=x [(i)]

=
∑

x∈Ω′
X ⋅ 1X=x

=
∑

x∈Ω′
x ⋅ 1X=x . [1X=x(ω) = 0 if X(ω) ≠ x, (5.6)]

Proof of Corollary 5.63

⇒ If X is discrete and Ω′
0 ⊂ Ω′

X (see Def. 5.56), that is, if Ω′
0 is finite or countable and PX(Ω′

0) =
1, then Ω′

>
⊂ Ω′

0, because PX(Ω′
X
∖ Ω′

0) = 0. Hence, Ω′
>

is finite or countable as well, which
proves (a). Furthermore, for finite or countable sets Ω′

0, Ω′
>

:

PX(Ω′
0
∖ Ω′

>
) =

∑

x∈Ω′
0
∖Ω′

>

P (X=x) = 0. [Def. of Ω′
>

]

Hence,

PX(Ω′
X
∖ Ω′

>
) = PX(Ω′

X
∖ Ω′

0) + PX(Ω′
0
∖ Ω′

>
) = 0

and, according to (5.11),

1X∈ (Ω′
X
∖Ω′

>
) =P 0. (5.72)

Therefore,

X = 1X∈Ω′
>
⋅X + 1X∈ (Ω′

X
∖Ω′

>
) ⋅X [1 = 1X∈Ω′

>
+ 1X∈ (Ω′

X
∖Ω′

>
)]

=
P

X ⋅
∑

x∈Ω′
>

1X=x [(5.72), Ω′
>

is finite or countable]

=
∑

x∈Ω′
>

X ⋅ 1X=x

=
∑

x∈Ω′
>

x ⋅ 1X=x . [X ⋅ 1X=x = x ⋅ 1X=x]

⇐ This is an immediate implication of Lemma 5.61 (ii).
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Proof of Lemma 5.66

If xi ∈ Ω′
i and Ω′

0, xi
= Ø, then pXi

(xi) = P(Xi=xi) = 0. If Ω′
0, xi

≠ Ø, then it is finite or count-

able, because Ω′
0 is finite or countable. Then, using PX(Ω′

0) = 1,

pXi
(xi)

= P(Xi=xi)

= P(X1 ∈ Ω′
1, … , Xi−1∈ Ω′

i−1, Xi=xi, Xi+1∈ Ω′
i+1, … , Xn ∈ Ω′

n) [Box 4.1 (viii)]

= P
(
(X1, … , Xn) ∈ (Ω′

1 ×… × Ω′
i−1 × {xi} × Ω′

i+1 ×… × Ω′
n)
)

= P
(
(X1, … , Xn) ∈

(
(Ω′

1 ×… × Ω′
i−1 × {xi} × Ω′

i+1 ×… × Ω′
n) ∩ Ω′

0

))
[Box 4.1 (viii)]

=
∑

(x1,…, xi−1, xi+1,…, xn) ∈ Ω′
0, xi

P(X1=x1, … , Xi−1=xi−1, Xi=xi, Xi+1=xi+1, … , Xn=xn) [Box 4.1 (x)]

=
∑

(x1,…, xi−1, xi+1,…, xn) ∈ Ω′
0, xi

pX(x1, … , xi−1, xi, xi+1, … , xn). [(5.31)]

Proof of Lemma 5.68

If X1, … , Xn are independent and X = (X1, … , Xn), then, for all (x1, … , xn) ∈ × n
i=1 Ω

′
0,i,

pX(x1, … , xn) = P((X1, … , Xn) = (x1, … , xn)) [(5.31)]

= P(X1=x1, … , Xn=xn)

= P(X1=x1) ⋅… ⋅ P(Xn=xn) [(5.28)]

= pX1
(x1) ⋅… ⋅ pXn

(xn). [(5.31)]

For all A′
1 ∈ 𝒜 ′

1, … , A′
n ∈ 𝒜 ′

n,

(A′
1 ×… × A′

n) ∩ (Ω′
0,1 ×… × Ω′

0,n) = (A′
1 ∩ Ω′

0,1) ×… × (A′
n ∩ Ω′

0,n). (5.73)

Now assume that Equation (5.38) holds and define Ω′
sn := × n

i=1 Ω
′
0,i. Then,

P(X1 ∈ A′
1, … , Xn ∈ A′

n)

= P[(X1, … , Xn) ∈ (A′
1 ×… × A′

n)]

= P[(X1, … , Xn) ∈ (A′
1 ×… × A′

n) ∩ Ω′
sn] [PX(Ω′

sn) = 1, Box 4.1, (viii)]

=
∑

(x1,…, xn) ∈ (A′
1×…× A′

n) ∩ Ω′
sn

P[(X1, … , Xn) = (x1, … , xn)] [Box 4.1 (x)]

=
∑

(x1,…, xn) ∈ (A′
1×…× A′

n) ∩ Ω′
sn

pX(x1, … , xn) [(5.36)]

=
∑

(x1,…, xn) ∈ (A′
1×…× A′

n) ∩ Ω′
sn

pX1
(x1) ⋅… ⋅ pXn

(xn) [(5.38)]
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=
⎛
⎜
⎜⎝

∑

x1 ∈A′
1
∩ Ω′

0,1

pX1
(x1)

⎞
⎟
⎟⎠
⋅… ⋅

⎛
⎜
⎜⎝

∑

xn ∈A′
n
∩ Ω′

0,n

pXn
(xn)

⎞
⎟
⎟⎠

[(5.73)]

= P(X1 ∈ A′
1) ⋅… ⋅ P(Xn ∈ A′

n), [PXi
(Ω′

0,i) = 1, Box 4.1 (viii), (x)]

which implies independence of X1, … , Xn [see (5.28)].

Proof of Theorem 5.77

For A′∈ 𝒜 ′
X ,

PX(A′) =
∑

x∈A′∩Ω′
0

PX({x}) [PX(Ω′
0) = 1, Box 4.1 (viii), (x)]

=
∑

x∈A′∩Ω′
0

pX(x) [(5.31)]

=
∑

x∈Ω′
0

pX(x) ⋅ 1A′ (x)

=
∑

x∈Ω′
0

∫
pX ⋅ 1A′ d𝛿x [(3.23)]

=
∫

1A′ ⋅ pX d

(
∑

x∈Ω′
0

𝛿x

)
[(3.53)]

=
∫A′

pX d

(
∑

x∈Ω′
0

𝛿x

)
[(3.30)]

=
∫A′

pX d𝜇. [(5.42)]

Hence, according to Definition 5.70, the probability function pX is a density of PX with respect
to the measure 𝜇 on the measurable space (Ω′

X , 𝒜 ′
X) and pX = dP

d𝜇
(see Th. 3.72).

Proof of Lemma 5.78

Let A′∈ 𝒜 ′
X with 𝜇(A′) = 0. Then,

𝜇⊗ν(A′× Ω′
Y ) = 𝜇(A′) ⋅ ν(Ω′

Y ) = 0 ⋅ ν(Ω′
Y ) = 0,

and this holds even if ν(Ω′
Y ) = ∞. Together with PX,Y ≪

𝒜
′
X⊗𝒜

′
Y

𝜇⊗ν, this implies

PX(A′) = P(X ∈ A′, Y ∈ Ω′
Y ) = PX,Y (A′× Ω′

Y ) = 0.

Therefore, PX ≪
𝒜

′
X

𝜇. The proof for PY is analogous.
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Proof of Lemma 5.79

For all A′∈ 𝒜 ′
X:

∫
1A′ (x)

(
∫

fX,Y (x, y) ν(dy)

)
𝜇(dx)

=
∫

1A′ (x) fX,Y (x, y) 𝜇⊗ν[d(x, y)] [Th. 3.76]

=
∫

1A′ (x) PX,Y [d(x, y)] [Th. 3.67]

= PX,Y (A′× Ω′
Y ) [(3.30), (3.8)]

= PX(A′). [(5.21)]

Theorem 3.65 then implies the lemma. The proof for fY is analogous.

Proof of Corollary 5.92

Note that

R
n−1 =

∞⋃

m=1
]−∞, m]n−1

. (5.74)

For all xi ∈ R,

FXi
(xi) = P(Xi ≤ xi)

= PX1,…, Xn
(R ×… × R × ]−∞, xi] × R ×… × R) [(5.21)]

= P(X1 ∈ R, … , Xi−1 ∈ R, Xi ∈ ]−∞, xi], Xi+1 ∈ R, … , Xn ∈ R) [(5.2)]

= P((X1, … , Xi−1, Xi+1, … , Xn) ∈ R
n−1, Xi ∈ ]−∞, xi])

= P(Xj ∈
∞⋃

mj =1
]−∞, mj], j ∈ {1, … , i − 1, i + 1, … , n}, Xi ∈ ]−∞, xi]) [(5.74)]

= lim
mj →∞, j≠ i

P(Xj ∈ ]−∞, mj], j ∈ {1, … , i − 1, i + 1, … , n}, Xi ∈ ]−∞, xi])

[Th. 1.68 (i)]

= lim
mj →∞, j≠ i

FX1,…, Xn
(m1, … , mi−1, xi, mi+1, … , mn) [(5.56)]

= lim
xj →∞, j≠ i

FX1,…, Xn
(x1, … , xn).

The limits exist, because FX1,…, Xn
is monotone in all coordinates.
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Proof of Corollary 5.93

(a) ⇒ (b) For all (x1, … , xn) ∈ R
n,

FX1,…, Xn
(x1, … , xn) = PX1,…, Xn

(]−∞, x1] ×… × ]−∞, xn]) [(5.56)]

= PX1
⊗…⊗PXn

(]−∞, x1] ×… × ]−∞, xn]) [Lemma 5.49 and (a)]

= PX1
(]−∞, x1]) ⋅… ⋅ PXn

(]−∞, xn]) [(1.50)]

= FX1
(x1) ⋅… ⋅ FXn

(xn). [Def. 5.81]

(b) ⇒ (a) For all (x1, … , xn) ∈ R
n,

PX1,…, Xn
(]−∞, x1] ×… × ]−∞, xn])

= FX1,…, Xn
(x1, … , xn) [(5.56)]

= FX1
(x1) ⋅… ⋅ FXn

(xn) [(b)]

= PX1
(]−∞, x1]) ⋅… ⋅ PXn

(]−∞, xn]) [Def. 5.81]

= PX1
⊗…⊗PXn

(]−∞, x1] ×… × ]−∞, xn]). [(1.50)]

Because {]−∞, x1] ×… × ]−∞, xn]: (x1, … , xn) ∈ R
n} is a ∩-stable generating system of ℬn

[see (1.21)], Theorem 1.72 yields PX1,…, Xn
= PX1

⊗…⊗PXn
. Applying Lemma 5.49 then com-

pletes the proof.

Proof of Corollary 5.100

(i) We prove: (X1, … , Xn) are independent ⇒ fX1,…, Xn
in (5.70) is a joint density.

Because fX1,…, Xn
defined in (5.70) is nonnegative and integrable with respect to 𝜆n, we

can conclude that fX1,…, Xn
⊙𝜆n defines a finite measure on (Rn, ℬn) (see Th. 3.65). Further-

more, if X1, … , Xn are independent and fXi
is a density of Xi for all i = 1, … , n, then, for all

(x1, … , xn) ∈ R
n and B = × n

i=1 ]−∞, xi],

∫B
fX1,…, Xn

(t1, … , tn) 𝜆n[d(t1, … , tn)]

=
∫B

fX1
(t1) ⋅… ⋅ fXn

(tn) 𝜆n[d(t1, … , tn)] [(5.70)]

=
n∏

i=1 ∫]−∞, xi]
fXi

(ti) 𝜆(dti) [Th. 3.76]

=
n∏

i=1
FXi

(xi) [(5.62)]

= FX1,…, Xn
(x1, … , xn) [Cor. 5.93]

= PX1,…, Xn
(B).

This shows that fX1,…, Xn
⊙𝜆n(B) = PX1,…, Xn

(B), and this implies that fX1,…, Xn
defined in (5.70)

is a density of (X1, … , Xn) with respect to 𝜆n (see Def. 5.70).



204 PROBABILITY AND CONDITIONAL EXPECTATION

(ii) We prove: fX1,…, Xn
in (5.70) is a density of (X1, … , Xn) ⇒ X1, … , Xn are independent.

If Equation (5.70) holds and B = × n
i=1 ]−∞, xi], then for all (x1, … , xn) ∈ R

n

FX1,…, Xn
(x1, … , xn)

=
∫B

fX1,…, Xn
(t1, … , tn) 𝜆n[d(t1, … , tn)] [(5.67)]

=
∫]−∞, xn]

…
∫]−∞, x1]

fX1
(t1) ⋅… ⋅ fXn

(tn) 𝜆(dt1) … 𝜆(dtn) [Th. 3.76]

=
n∏

i=1 ∫]−∞, xi]
fXi

(ti) 𝜆(dti)

=
n∏

i=1
FXi

(xi). [(5.62)]

Now, Corollary 5.93 implies that X1, … , Xn are independent.

Exercises

5.1 Consider the random variable X defined in Example 2.34. Which are the elements ω in
the inverse image X−1({1}), and which are the probabilities of the events {ω}?

5.2 Consider again the random variable X defined in Example 2.34. What are the values of
the distribution of X and the distribution of U?

5.3 Consider Example 5.9. Show that 1X∈ A′ is a random variable on (Ω, 𝒜, P) and that
1X∈ A′ = 1A′ (X) = 1A′◦X.

5.4 Consider Example 5.15, and show that X1 is prior to X1 ⋅ X2 in (ℱ1, ℱ2).

5.5 Show that X =
PB

Y for B = {ω1, ω2, ω3} and that X =
P

Y does not hold in Example 5.23.

5.6 Consider the random variable (U, X): Ω → ΩU × {0, 1} defined in Example 2.34.
Which are the elements ω in the inverse image (U, X)−1({(Joe, 1)}), and which are
the probabilities of the events {ω}?

5.7 Show that the random variables U and X presented in Table 2.2 are independent.

5.8 Let (Ω, 𝒜, P) be a probability space, B ∈ ℬ, and 𝒞 ⊂ 𝒜 a σ-algebra. Prove that the
following propositions are equivalent to each other: 1B ⟂⟂

P
𝒞, σ({B}) ⟂⟂

P
𝒞, {B} ⟂⟂

P
𝒞,

and B ⟂⟂
P
𝒞.

5.9 In Example 5.50 we showed that X and U are independent, and in Example 5.54 we
defined the mappings f : {0, 1, 2} → {0, 1} and g: ΩU → {male, female}. Use Equation
(5.24) to show that the mappings f (X) (control vs. any of the two treatments) and g(U)
(sex) are independent as well.

5.10 In Example 5.85, we specified the values of the distribution function FX for the random
variable number of flipping heads. Use these values to compute all eight values of the
distribution PX .
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Solutions

5.1 The inverse image of the set {1} under X is

X−1({1}) = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −) (Ann, yes, +)}.

The events {ω}, ω ∈ X−1({1}) have the probabilities P[{(Joe, yes, −)}] = .04,
P[{(Joe, yes, +)}] = .16, P[{(Ann, yes, −)}] = .12, and P[{(Ann, yes, +)}] = .08.

5.2 The random variable X (the treatment variable) has the following distribution:

PX({1}) = P[X−1({1})] = .40, PX({0}) = P[X−1( {0})] = .60,

PX(Ω′) = P[X−1(Ω′)] = 1, PX(Ø) = P[X−1(Ø)] = 0,

whereas the distribution of the random variable U (the observational-unit variable) is:

PU({Joe}) = P[U−1({Joe})] = .50, PU({Ann}) = P[U−1({Ann})] = .50,

PU(ΩU) = P[U−1(ΩU)] = 1, PU(Ø) = P[U−1(Ø)] = 0.

5.3 Let A′∈ 𝒜 ′
X , and consider the indicator function 1X∈ A′ : (Ω, 𝒜, P) → (R, ℬ). Measur-

ability: For all B ∈ ℬ,

(1X∈ A′ )−1(B) = (1X−1(A′))
−1(B) [(5.6)]

= {ω ∈ Ω: 1X−1(A′)(ω) ∈ B} [(2.2)]

=

⎧
⎪
⎪
⎨
⎪
⎪⎩

Ø, if 0 ∉ B, 1 ∉ B

X −1(A′), if 0 ∉ B, 1 ∈ B

Ω ∖ X −1(A′), if 0 ∈ B, 1 ∉ B

Ω, if {0, 1} ⊂ B,

and all these sets are elements of 𝒜, because X is assumed to be a random variable.
Furthermore, for all ω ∈ Ω,

1X∈ A′ (ω) = 1X−1(A′)(ω) [(5.6)]

=

{
1, if ω ∈ X −1(A′)

0, if ω ∉ X −1(A′)

=

{
1, if X(ω) ∈ A′

0, if X(ω) ∉ A′ [(2.2)]

= 1A′ [X(ω)]

= 1A′◦X(ω). [(2.25)]

5.4 The filtration (ℱ1, ℱ2) is defined by ℱ1 := σ(X1) and ℱ2 := σ(X1, X2). Hence,

σ(X1) ⊂ ℱ1 = {Ω, Ø, {(h, h), (h, t)}, {(t, h), (t, t)}}.
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In contrast,

σ(X1 ⋅ X2) = {Ω, Ø, {(h, h)}, {(h, t), (t, h), (t, t)}} ⊄ ℱ1.

However, σ(X1 ⋅ X2) ⊂ ℱ2, because ℱ2 = 𝒫(Ω). Hence, according to Definition 5.13
(i), X1 is prior to X1 ⋅ X2 in the filtration (ℱ1, ℱ2).

5.5 In order to prove X =
PB

Y for B = {ω1, ω2, ω3}, it is sufficient to show PB(A) = 0,

where A := {ω ∈ Ω: X(ω) ≠ Y(ω)} ∈ 𝒜= 𝒫(Ω). In this example, A := {ω3, ω4}. Now
P({ω3}) = 0, which implies

PB({ω3}) = P(B ∩ {ω3})
P(B)

= P({ω3})
P(B)

= 0
P(B)

= 0.

Furthermore,

PB({ω4}) = P(B ∩ {ω4})
P(B)

= P(Ø)
P(B)

= 0
P(B)

= 0.

Additivity of the measure PB then implies PB(A) = 0.
In order to prove that X =

P
Y does not hold, it suffices to show P(A) ≠ 0. Now

P({ω3}) = 0 and P({ω4}) = .50. Therefore, P(A) = P({ω4}) = .50 > 0.

5.6 The elements of the inverse image of (U, X)−1({Joe, 1}) are (Joe, yes, −) and
(Joe, yes, +). The probabilities of the corresponding elementary events are
P({(Joe, yes, −)}) = .04 and P({(Joe, yes, +)}) = .16.

5.7 In Example 4.43, we already showed that the events A = {Joe} × ΩX × ΩY (that Joe
is sampled) and B = ΩU × {yes} × ΩY (that the person sampled is treated) are inde-
pendent. According to Box 4.2 (iii), this implies that the σ-algebras {A, Ac, Ω, Ø} and
{B, Bc, Ω, Ø} are independent as well. If X: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) and U: (Ω, 𝒜, P) →
(ΩU, 𝒜U) are the random variables defined in Table 2.2, then X−1(𝒜 ′) = {A, Ac, Ω, Ø}
and U−1(𝒜U) = {B, Bc, Ω, Ø} are the σ-algebras generated by U and X, respectively.
Hence, in this example, X and U are independent.

5.8 First of all,

{B} ⟂⟂
P
𝒞 ⇔ B ⟂⟂

P
𝒞. [Rem. 4.41]

Furthermore, σ(1B) = {Ω, Ø, B, Bc} (see Example 2.31) and σ({B}) = {Ω, Ø, B, Bc}.
Hence, σ(1B) = σ({B}), and this implies

1B ⟂⟂
P
𝒞 ⇔ σ({B}) ⟂⟂

P
𝒞. [Rem. 5.44]

Finally,

σ({B}) ⟂⟂
P
𝒞 ⇔ {B} ⟂⟂

P
𝒞. [Box 4.2 (ii)]
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5.9 Consider the two events A := f (X)−1({0}) and B := g(U)−1({male}).

P(A ∩ B) = 40
99

and

P(A) ⋅ P(B) = 60
99

⋅
2
3
= 40

99
.

Because f (X)−1(𝒫({0, 1})) = {A, Ac, Ω, Ø} and g(U)−1(𝒫({male, female)}) =
{B, Bc, Ω, Ø}, this proves that f (X) and g(U) are independent (see Exercise 5.8).

5.10 We consider all elements B ∈ ℬ of the Borel σ-algebra on R and assign the following
values:

PX(B) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

FX(−1) = 0, if 0, 1, 2 ∉ B

FX(0) = 1
4
, if 0 ∈ B, 1, 2 ∉ B

FX(1) = 3
4
, if 0, 1 ∈ B, 2 ∉ B

FX(2) = 1, if 0, 1, 2 ∈ B

FX(1) − FX(0) = 2
4
, if 1 ∈ B, 0, 2 ∉ B

FX(2) − FX(0) = 3
4
, if 1, 2 ∈ B, 0 ∉ B

FX(2) − FX(1) = 1
4
, if 2 ∈ B, 0, 1 ∉ B

FX(2) − FX(1) + FX(0) = 1
2
, if 0, 2 ∈ B, 1 ∉ B.
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Expectation, variance, and
other moments

In chapter 4 we introduced a probability measure as a special finite measure, and in chapter 5
we defined a random variable as a measurable mapping on a probability space. In this chapter,
we will translate integration theory (see ch. 3) to probability theory introducing expectations
of numerical random variables and other important concepts that are special expectations:
central and noncentral moments, and variances. Even covariances and correlations are special
expectations (see ch. 7). All these quantities describe important properties of random variables,
although, in general, they do not determine the complete distribution.

6.1 Expectation

6.1.1 Definition

Reading the Definition 6.1, remember that a random variable Y is called quasi-integrable with
respect to P if ∫ Y+dP or ∫ Y−dP are finite, where Y+ and Y− denote the positive and negative
parts of Y , respectively (see Rem. 2.62 and Def. 3.28).

Definition 6.1 [Expectation]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable that is quasi-integrable with
respect to P. Then we define

E(Y) :=
∫

Y dP, (6.1)

call it the expectation of Y (with respect to P), and say that it exists. Instead of expec-
tation with respect to P, we also use the term P-expectation.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de

http://www.probability-and-conditional-expectation.de
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Remark 6.2 [Existence of the expectation] Note that E(Y) can be infinite. Furthermore, if
E(Y) exists, we also say that Y is a random variable with expectation E(Y). If Y is not quasi-
integrable with respect to P and therefore also not P-integrable, then we say that the expectation
of Y with respect to P does not exist. ⊲

Remark 6.3 [Notation and synonymous terms] A synonym for expectation is expectation
value. The reference to the measure P is usually omitted if the context is unambiguous. If
we consider the expectation with respect to another probability measure on (Ω, 𝒜 ), such
as, the conditional-probability measure PB (see Def. 4.29), then we adapt the notation
correspondingly:

EB(Y) :=
∫

Y dPB
. (6.2)

Expectation with respect to PB is used synonymously with PB-expectation. ⊲

Remark 6.4 [Random variables with finite expectations] Without substantial loss of gen-
erality, we often assume that a random variable Y is real-valued if its expectation is finite.
According to Remark 3.42, if the random variable Y: (Ω, 𝒜, P) → (R,ℬ) has a finite expecta-
tion, then there is random variable Y∗: (Ω, 𝒜, P) → (R, ℬ) such that Y =

P
Y∗. ⊲

6.1.2 Expectation of a discrete random variable

In this section, we use the notation P(Y=yi) := P[Y−1({yi})] introduced in Remark 5.4.

Remark 6.5 [Random variable with a finite number of real values] Suppose y1, … , yn
∈ R, n ∈ N, denote all (negative, 0, or positive) values of a real-valued random variable
Y: (Ω, 𝒜, P) → (R, ℬ), and let PY denote the distribution, and pY the probability function of
Y . Then the expectation E(Y) exists, and

E(Y) =
n∑

i=1
yi ⋅ P(Y =yi) =

n∑

i=1
yi ⋅ PY ({yi}) =

n∑

i=1
yi ⋅ pY(yi) (6.3)

[see Cor. 3.59, (3.45), Eq. (5.34), and Def. 5.56]. Hence, if Y has only a finite number n of
values, then its expectation is simply the sum of its values, each one weighted by its probability
P(Y =yi) = PY ({yi}) = pY(yi). ⊲

Example 6.6 [Expectation of an indicator] If (Ω, 𝒜, P) is a probability space and 1A is the
indicator of A ∈ 𝒜 , then

E(1A) = 0 ⋅ P(1A=0) + 1 ⋅ P(1A=1) = P(1A=1) = P(A) (6.4)

is the expectation of 1A (see also Example 3.14). Considering the event {Y =y} and using the
notation 1Y =y := 1{Y =y}, this yields

E(1Y =y) = P(Y =y). (6.5)
⊲
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Example 6.7 [Joe and Ann with randomized assignment – continued] In Example 1.9,
we defined the set

B = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)} = ΩU × {yes} × ΩY,

the event that the drawn person is treated, and the set

C = {(Joe, no, +), (Joe, yes, +), (Ann, no, +), (Ann, yes, +)} = ΩU × ΩX × {+},

the event that success (+) occurs, irrespective of which person is drawn and whether or not the
person is treated. In Table 2.2, we assigned probabilities to each elementary event {ω}, ω ∈ Ω
and defined X = 1B, the treatment variable, as well as Y = 1C, the outcome variable. Applying
Equation (6.4) to the indicator 1B yields:

E(X) = E(1B) = P(B)

= P[{(Joe, yes, −)}] + P[{(Joe, yes, +)}] + P[{(Ann, yes, −)}] + P[{(Ann, yes, +)}]

= .04 + .16 + .12 + .08 = .4.

Similarly, for the indicator 1C, we obtain

E(Y) = E(1C) = P(C)

= P[{(Joe, no, +)}] + P[{(Joe, yes, +)}] + P[{(Ann, no, +)}] + P[{(Ann, yes, +)}]

= .21 + .16 + .06 + .08 = .51. ⊲

Example 6.8 [Tossing a dice – continued] In Example 3.6, we considered the random
variable X = number of dots. In this example we specified the probability space (Ω, 𝒜, P)
by Ω = {ω1, … , ω6}, 𝒜 = 𝒫(Ω), and P({ω1}) = … = P({ω6}) = 1∕6. Because P(X=xi) =
PX({i}) = P({ωi}), i = 1, … , 6, Equation (6.3) yields

E(X) =
6∑

i=1
i ⋅ P(X = i) = 1 ⋅

1
6
+ 2 ⋅

1
6
+…+ 6 ⋅

1
6
= 3.5.

⊲

Remark 6.9 [Random variable with a countable number of real values] Let y1, y2, …
∈ R denote the values of a real-valued random variable Y: (Ω, 𝒜, P) → (R, ℬ) and suppose
that the expectation of Y exists. Then

E(Y) =
∞∑

i=1
yi ⋅ P(Y =yi) = lim

n →∞

n∑

i=1
yi ⋅ P(Y =yi) (6.6)

[see (3.45), Eq. (5.34), and Th. 3.60]. Examples in which the expectation of a random variable
is the ‘infinite sum’ of its values weighted by their probabilities are random variables with a
Poisson distribution and with a geometric distribution (see Theorems 8.16 and 8.22). ⊲

Example 6.10 [A discrete random variable without expectation] Suppose that Ω = N0 =
{0, 1, 2, … }, and consider the random variable Y: (Ω, 𝒫(Ω), P) → (R, ℬ) defined by

Y(i) = yi = (−1)i i! e, ∀ i ∈ N0, (6.7)
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with

P(Y =yi) =
1
e
⋅

1
i!

, ∀ i ∈ N0. (6.8)

Note that e = ∑∞
i=0

1
i! . Dividing both sides by e yields

∑∞
i=0

1
i! e

= 1. Therefore, Equation (6.8)
specifies a probability distribution. Now consider

n∑

i=0
yi ⋅ P(Y =yi) =

n∑

i=0
(−1)i =

{
1, if n is even
0, if n is odd.

(6.9)

Obviously, in this example, the limit

lim
n→∞

n∑

i=0
yi ⋅ P(Y =yi)

occurring in Equation (6.6) does not exist. Therefore, according to Definitions 6.1 and 3.28,
E(Y) is not defined. ⊲

6.1.3 Computing the expectation using a density

According to the Theorem 6.11, the expectation of a continuous real-valued random vari-
able can also be computed using its density fY with respect to the Lebesgue measure (see
Def. 5.94) and the Riemann integral.

Theorem 6.11 [Expectation of a continuous random variable]
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a continuous random variable with expectation E(Y) and
a density fY that is Riemann integrable. Then,

E(Y) =
∫

∞

−∞
y ⋅ fY (y) dy. (6.10)

(Proof p. 221)

Examples of continuous random variables and their expectations are treated in chapter 8,
section 8.2.

Example 6.12 [A continuous random variable without expectation] Consider the contin-
uous random variable Y: (Ω, 𝒜, P) → (R, ℬ) with density

fY (y) = 1
𝜋
⋅

1
1 + y2

, ∀ y ∈ R, (6.11)

and distribution function

FY (y) = 1
2
+ 1

𝜋
⋅ arctan y, ∀ y ∈ R. (6.12)

A distribution PY with density (6.11) is called a standard Cauchy distribution or central
t-distribution with one degree of freedom.
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The integral of the positive part of y ⋅ fY (y) is

∫

∞

−∞
[y ⋅ fY (y)]+ dy =

∫

∞

0
y ⋅

1
𝜋
⋅

1
1 + y2

dy = 1
2𝜋

ln(1 + y2)
||||
∞

0
= ∞,

and the integral of the negative part is

∫

∞

−∞
[y ⋅ fY (y)]− dy =

∫

0

−∞
−y ⋅

1
𝜋
⋅

1
1 + y2

dy = − 1
2𝜋

ln(1 + y2)
||||
0

−∞
= ∞

[for the notation cf. Eq. (3.69)]. Hence, y ⋅ fY (y) is not quasi-P-integrable on R (see Def. 3.28),
and E(Y) does not exist. ⊲

6.1.4 Transformation theorem

Let Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y ) and g:(Ω′
Y , 𝒜 ′

Y , PY ) → (R,ℬ) be random variables. Then we
denote the expectation of g with respect to the distribution PY by EY (g). Theorem 6.13 imme-
diately follows from Theorem 3.57, translating the measure theory terms to probability theory.
Theorem 6.13 is relevant whenever we consider the expectation of a composition g ◦ Y = g(Y)
of a random variable Y and a function g [see Eq. (2.25)] or the expectation of g with respect
to the distribution PY [see Eq. (5.2)].

Theorem 6.13 [Transformation theorem]
Let Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be a random variable and g: (Ω′

Y , 𝒜 ′
Y ) → (R,ℬ) be mea-

surable.

(i) If g is nonnegative or has a finite expectation EY (g), then

EY (g) =
∫

g dPY =
∫

g(y) PY (dy) =
∫

g(Y) dP = E[g(Y)]. (6.13)

(ii) EY (g) is finite if and only if E[g(Y)] is finite.

The virtue of Equation (6.13) is that we do not have to know the distribution of g(Y).
Instead, the distribution of Y suffices.

Remark 6.14 [A special case] If we consider the special case in which g is the identity
function id: R → R, defined by id(y) = y, for all y ∈ R, then id(Y) = Y and Equations (6.13)
yield

E(Y) =
∫

Y dP =
∫

y PY (dy). (6.14)

⊲
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Remark 6.15 [Finite number of values] If Y takes on only a finite number of different values
y1, … , yn ∈ R, then Equation (6.13) simplifies to

E[g(Y)] = EY (g) =
∫

g dPY =
n∑

i=1
g(yi) ⋅ P(Y =yi), (6.15)

where P(Y =yi) = PY ({yi}) = pY(yi), i = 1, … , n, and pY denotes the probability function of
Y (see Def. 5.56). ⊲

Remark 6.16 [Countable number of values] If Y takes on a countable number of dif-
ferent values y1, y2, … ∈ R and

∑∞
i=1 g+(yi) ⋅ P(Y=yi) < ∞ or

∑∞
i=1 g−(yi) ⋅ P(Y =yi) < ∞,

then

E[g(Y)] = EY (g) =
∫

g dPY =
∞∑

i=1
g(yi) ⋅ P(Y =yi). (6.16)

Note that (6.16) also applies if g is nonnegative, because in this case g− = 0 holds for the
negative part of g, which implies

∑∞
i=1 g−(yi) = 0 < ∞. ⊲

Equation (6.13) immediately implies the Corollary 6.17 according to which the expecta-
tions of two random variables X and Y are identical if they have identical distributions, provided
that the expectations exist (see also Remark 6.27).

Corollary 6.17 [Identical distributions imply identical expectations]
Let X, Y: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be random variables and g: (Ω′, 𝒜 ′) → (R,ℬ) a measur-
able function that is nonnegative or with expectation EX(g). If PX = PY, then E[g(X)] =
E[g(Y)].

This property allows us to use the term expectation of a distribution instead of expectation
of a random variable.

In the Lemma 6.18, we consider a bivariate random variable (X, Y) and a numerical func-
tion g(X), that is, a function that only depends on X. According to Lemma 6.18, the expectation
of g with respect to the joint distribution PX,Y is identical to the expectation of g with respect
to the marginal distribution PX .

Lemma 6.18 [Expectation with respect to joint and marginal distributions]
Let (X, Y): (Ω, 𝒜, P) → (Ω′

X × Ω′
Y , 𝒜 ′

X ⊗ 𝒜 ′
Y ) be a bivariate random variable with joint

distribution PX,Y , and let g: (Ω′
X , 𝒜 ′

X) → (R,ℬ) be a measurable function that is nonneg-
ative or with expectation EX(g). Then,

EX,Y (g) = EX(g), (6.17)
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which is equivalent to

∫
g(x) PX,Y [d(x, y)] =

∫
g(x) PX(dx). (6.18)

(Proof p. 221)

Example 6.19 [Flipping two coins – continued] Consider again the random variable X =
number of flipping heads and the indicator 1H : Ω → R of the event that at least one heads is
flipped. In Example 2.47 we showed that 1H = g ◦ X, where g: R → R is defined by

g(x) =
{

1 if x ∈ {1, 2}
0, otherwise

for all x ∈ R.

According to (6.15),

E(1H) = E[g(X)] = EX(g) = 0 ⋅ P({X=0}) + 1 ⋅ P(X ∈ {1, 2}) = P(X ∈ {1, 2}) = 3
4
.

⊲

Example 6.20 [Expectation of Y 2] Let Y: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random vari-
able, let g: (R, ℬ) → (R, ℬ) be measurable, and let g(Y) := Y 2. Then, according to Equa-
tion (6.13),

E(Y 2) = E[g(Y)] = EY (g) =
∫

g dPY =
∫

y 2 PY (dy).

[Note that Y 2 is nonnegative and E(Y 2) can be infinite.] This equation shows that the expecta-
tion of Y 2 solely depends on the distribution PY of Y , which illustrates Corollary 6.17. Using
the integral ∫ g dPY is often the most convenient way of computing the expectation E(Y 2). If
Y takes on only a finite number of values y1, … , yn ∈ R, then this equation simplifies to

E(Y 2) =
n∑

i=1
y 2

i ⋅ PY ({yi}) =
n∑

i=1
y 2

i ⋅ P(Y =yi). (6.19)

These equations only involve the probabilities P(Y =yi) = PY ({yi}), not the probabilities
P(Y 2=y 2). ⊲

Example 6.21 [Multiplication with indicators] Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical
random variable with expectation E(Y). If A ∈ 𝒜 and P(A) = 0, then (1A Y) =

P
0, and Rule (i)

of Box 6.1 implies

E(1A Y) = 0. (6.20)

If C = A ∪ B, A ∩ B = Ø, and A, B ∈ 𝒜 , then 1C Y = 1A Y + 1B Y and Rule (vi) of Box 6.1
implies

E(1C Y) = E(1A Y) + E(1B Y). (6.21)
⊲
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Box 6.1 Rules of computation for expectations.

Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable with expectation E(Y) and let α ∈ R.
Then,

Y =
P
α ⇒ E(Y) = α. (i)

E(α + Y) = α + E(Y). (ii)

E(α ⋅ Y) = α ⋅ E(Y). (iii)

Let A, B ∈ 𝒜 . Then,

E(1A ⋅ 1B) = P(A ∩ B). (iv)

E(1A ⋅ Y) = 0, if P(A) = 0. (v)

If Y1, Y2 are nonnegative or real-valued with finite expectations E(Y1) and E(Y2), then,

E(Y1 + Y2) = E(Y1) + E(Y2). (vi)

For i = 1, … , n, let Yi: (Ω, 𝒜, P) → (R, ℬ) be random variables with finite expectations
E(Yi) and αi ∈ R. Then,

E

(
n∑

i=1
αi ⋅ Yi

)
=

n∑

i=1
αi ⋅ E(Yi). (vii)

Let X, Y: (Ω, 𝒜, P) → (R,ℬ) be random variables that are nonnegative or with finite
expectations E(X) and E(Y). Then,

X =
P

Y ⇒ E(X) = E(Y). (viii)

X =
P

Y ⇔ ∀ A ∈ 𝒜 : E(1A X) = E(1AY). (ix)

X ⟂⟂
P

Y ⇒ E(X ⋅ Y) = E(X) ⋅ E(Y). (x)

The Corollary 6.22 shows how to compute the expectation of the composition g(Y) using
the density of Y . As mentioned, the virtue of Equation (6.22) is that we do not have to know the
density of g(Y); the density of Y suffices.

Corollary 6.22 [Transformation theorem, continuous random variable]
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a continuous random variable with a Riemann integrable
density fY . If g: (R, ℬ) → (R,ℬ) is a measurable function that is nonnegative or numer-
ical with finite expectation EY (g) = ∫ g dPY, then,

E[g(Y)] = EY (g) =
∫

∞

−∞
g(y) ⋅ fY (y) dy. (6.22)

(Proof p. 221)
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6.1.5 Rules of computation

Some rules of computation for expectations are gathered in Box 6.1 (for proofs, see
Exercise 6.1).

Example 6.23 [Expectation of a sample mean] Let Y1, … , Yn be a random sample. This
means that the random variables Y1, … , Yn are i.i.d. (see Rem. 5.42). Furthermore, if the
Y1, … , Yn are real-valued, define

Y = 1
n
⋅

n∑

i=1
Yi, (6.23)

the arithmetic mean, which in statistics is also called the sample mean. If Y1 is nonnegative or
with finite expectation and

μY = E(Y1) (6.24)

denotes the identical expectations of the variables Y1, … , Yn, then

E(Y) = μY (6.25)

(see Exercise 6.4). ⊲

Now we turn to a generalization of Rule (x) of Box 6.1.

Theorem 6.24 [Expectation of the product of random variables]
Let Yi: (Ω, 𝒜, P) → (R, ℬ), i = 1, … , n, be real-valued random variables that are non-
negative or with finite expectations, and assume that the Y1, … , Yn are independent.
Then,

E

( n∏
i=1

Yi

)
=

n∏
i=1

E(Yi). (6.26)

If the expectations E(Yi), i = 1, … , n, are finite, then E
(∏n

i=1 Yi

)
is finite, too.

For a proof, see, for example, Bauer (1996, Theorem 8.1). Later we will weaken the inde-
pendence assumption [see Rem. 7.10 and Box 7.1 (1)]. However, if the variables Yi are not
independent, then Equation (6.26) does not necessarily hold (see Remark 7.10).

6.2 Moments, variance, and standard deviation

The expectation E(Y) of a numerical random variable Y is also called the first moment of
Y , provided that this expectation exists, whereas the expectation E(Y 2) is called the second
moment of Y (see Example 6.20). For second and higher moments, we distinguish between
moments and central moments.
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Remark 6.25 [Higher moments of Y] Analogously to Example 6.20, we may consider
g(Y) = |Yn| or g(Y) = Yn with n ≥ 1. Note that

(i) E(|Yn|) = E(|Y| n) always exists, because |Yn| is nonnegative (see Def. 6.1).

(ii) If, for n ∈ N, the expectation E(|Yn|) is finite, then E(Yn) exists and is finite (see
Cor. 3.38).

(iii) If, for n ∈ N, the expectation E(|Yn|) is finite, then E(Ym) exists and is finite as well
for all m with 1 ≤ m ≤ n (see Exercise 6.2).

(iv) If n is even, then the random variable Yn is nonnegative and E(Yn) exists. In contrast,
if n is odd, then the expectation E(Yn) does not necessarily exist. ⊲

Definition 6.26 [Moments]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable and let n ∈ N.

(i) The expectation E(|Y| n) is called the nth absolute moment of Y.

(ii) If Y is nonnegative or such that E(Y n) is finite, then E(Y n) is called the nth
moment of Y.

(iii) If E(Y n) is finite or if Y is nonnegative and the expectation E(Y) is finite, then
we call E([Y − E(Y)] n) the nth central moment of Y.

Remark 6.27 [Moments under P-equivalence] If the expectations of Yn and therefore also
of [Y − E(Y)] n are finite, then they can be represented as expectations of functions g(Y) of Y ,
where g: (R,ℬ) → (R,ℬ) is a measurable function with finite expectation EY (g) [see Proposi-
tion (ii) of Th. 6.13]. Therefore, according to Corollary 6.17, all moments (central or non-
central) of a numerical random variable Y solely depend on its distribution PY . Hence, if
two random variables Y1 and Y2 have the same distribution PY1

= PY2
, then they have the

same moments. For instance, if Y1 =P Y2 and the expectations E(Y1
2) and E(Y2

2) are finite, then

E(Y1) = E(Y2) and E(Y1
2) = E(Y2

2). This allows us to use the term (central) moments of a
distribution instead of (central) moments of a random variable. ⊲

Variance and standard deviation are the most important parameters describing the vari-
ability of a random variable. They are defined as follows:

Definition 6.28 [Variance and standard deviation]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable and assume that E(Y 2) < ∞.
Then the variance of Y is defined by

Var(Y) := E([Y − E(Y)] 2), (6.27)

and the standard deviation of Y by the positive square root of the variance, that is,

SD(Y) :=
√

Var(Y). (6.28)
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Box 6.2 Rules of computation for variances.

Let X, Y: (Ω, 𝒜, P) → (R,ℬ) be random variables with finite second moments and let α ∈
R. Then,

Var (Y) = E(Y 2) − E(Y) 2
. (i)

Var (α + Y) = Var (Y). (ii)

Var (α ⋅ Y) = α 2 ⋅ Var (Y). (iii)

∃ α ∈ R : Y =
P
α ⇔ Var (Y) = 0. (iv)

X =
P

Y ⇒ Var (X) = Var (Y). (v)

For i = 1, … , n, let the random variables Yi: (Ω, 𝒜, P) → (R, ℬ) be independent with
finite second moments and αi ∈ R. Then,

Var

(
n∑

i=1
αi ⋅ Yi

)
=

n∑

i=1
α2

i ⋅ Var (Yi). (vi)

According to this definition, Var (Y) is the expectation of the squared mean centered ran-
dom variable Y − E(Y). Hence, the variance of Y is the second central moment of Y . Note that
variances and standard deviations are nonnegative. The variance of Y is also denoted by σ 2

Y
and the standard deviation by σY . Box 6.2 summarizes some important properties of variances
(see Exercise 6.3).

Example 6.29 [Location versus variability] Consider two random variables X, Y:
(Ω, 𝒜 , P) → (R, ℬ) with P(X=−1) = P(X=1) = .5 and P(Y =−10) = P(Y =10) = .5. Then
E(X) = E(Y) = 0 but Var (X) = 1 ≠ Var (Y) = 100. In contrast, if P(X=−1) = P(X=1) = .5
and P(Y =9) = P(Y=11) = .5, then E(X) = 0 ≠ E(Y) = 10 but Var (X) = Var (Y) = 1. This
illustrates that the expectation describes the ‘location’ of a random variable [see Rule (ii) of
Box 6.1], while the variance is invariant with respect to translations [see Rule (ii) of Box 6.2].
In contrast, the variance describes the ‘variability’ of a random variable, whereas, in general,
the expectation does not. ⊲

Example 6.30 [Variance of an indicator] Let (Ω, 𝒜, P) be a probability space and let 1A
denote the indicator of A ∈ 𝒜 . Then,

Var (1A) = E
(
1A

2) − [E(1A)] 2 [Box 6.2, (i)]
= E(1A) − [E(1A)] 2 [1A

2 = 1A]
= E(1A) ⋅ [1 − E(1A)]
= P(A) ⋅ [1 − P(A)]. [(6.4)]

(6.29)

According to Equation (6.4), the expectation of the indicator 1A is P(A), and Equation (6.29)
shows that its variance is P(A) ⋅ [1 − P(A)]. Obviously, the variance of an indicator variable
does not contain any information additional to the expectation E(1A) = P(A). In fact, in this
case, E(1A) contains the full information about the distribution of 1A. This is not surprising
because the distribution of 1A is completely determined by the single parameter P(A). Unlike
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0

0.1

0.2

0.3

1.00.80.60.40.20 P(A)

Var (1A)

Figure 6.1 Variance of an indicator of an event as a function of its probability.

the expectation, the variance of 1A does not comprise the full information about the distribution
of 1A. For example, Var (1A) = .1 ⋅ .9 = .09 if P(A) = .1 or P(A) = .9. The variance of 1A has
its maximum for P(A) = 1∕2 and goes to 0 if P(A) approaches 0 or 1 (see Fig. 6.1). ⊲

Example 6.31 [Joe and Ann with randomized assignment – continued] In the example
presented in Table 2.2, X is an indicator variable. Hence, its variance is most easily computed
as follows:

Var (X) = P(X=1) ⋅ [1 − P(X=1)] = .4 ⋅ .6 = .24.

Similarly, the variance of Y is obtained by

Var (Y) = P(Y =1) ⋅ [1 − P(Y =1)] = .51 ⋅ (1 − .51) = 0.2499.
⊲

Example 6.32 [Variance and standard error of the sample mean] Let Y1, … , Yn be a
sample (see Example 6.23), and Y the sample mean [see Eq. (6.23)]. If E(Y1

2) < ∞, and

σ2 := Var (Y1) (6.30)

denotes the identical variances of the Y1, … , Yn, then,

σ2
Y

:= Var (Y) = σ2

n
(6.31)

(see Exercise 6.4). Hence,

σY :=
√

σ2
Y
= SD(Y) = σ√

n
. (6.32)

In statistics, SD(Y) is also denoted SE(Y) and called the standard error of the sample
mean. ⊲

Remark 6.33 [Z-transformation] Every real-valued random variable Y: (Ω, 𝒜, P) →
(R, ℬ) with finite and positive variance Var (Y) can be transformed by

ZY := Y − E(Y)
SD(Y)

. (6.33)
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Note that E(ZY ) = 0 and Var (ZY ) = 1 (see Exercise 6.5). This transformation is called the
Z-transformation.

As a special case, consider the mean Y of a sample Y1, … , Yn with expectation
μ := E(Y1) and finite standard deviation σ := SD(Y1) > 0 (see Example 6.32). Then the
Z-transformation of Y is

ZY =
√

n ⋅
Y − μ
σ

(6.34)

(see Exercise 6.6). The random variable ZY will be used in the Central Limit Theorem (see
Th. 8.34). ⊲

Remark 6.34 [The expectation minimizes the mean squared error] If E(Y2) < ∞, then
the function MSE(a) := E[(Y − a)2], a ∈ R, is minimized at a = E(Y). Hence, the expectation
E(Y) minimizes the mean squared error (see Exercise 6.7). ⊲

Definition 6.35 [Coefficient of variation]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a nonnegative numerical random variable. If E(Y 2) is finite
and E(Y) ≠ 0, then,

CV(Y) := SD(Y)
|E(Y)| (6.35)

is called the coefficient of variation of Y.

Remark 6.36 [Properties of the coefficient of variation] This coefficient is a nonnega-
tive dimensionless quantity that expresses the variability of Y in units of its expectation.
Note that sometimes the coefficient of variation is defined as SD(Y)∕E(Y). If α ≠ 0, then
CV(αY) = CV(Y) [see Box 6.2 (iii), (6.28), and Box 6.1 (iii)], that is, CV(Y) is invariant under
multiplication with (nonzero) constant. In contrast, if β ≠ −E(Y), then CV(Y + β) = SD(Y)∕
|E(Y) + β| [see Box 6.2 (ii), (6.28), and Box 6.1 (ii)], that is, CV(Y) is not invariant under
translations. ⊲

The following parameter quantifies, in a sense, the deviation of a distribution from sym-
metry around its expectation.

Definition 6.37 [Skewness]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable. If E(Y 3) is finite and Var(Y) >
0, then,

E

(
[Y − E(Y)]3

SD(Y)3

)
(6.36)

is called the skewness of Y.
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6.3 Proofs

Proof of Theorem 6.11

E(Y) =
∫

Y dP [(6.1)]

=
∫

y PY (dy) [(3.62)]

=
∫

y ⋅ fY (y) 𝜆(dy) [(3.72), (5.61)]

=
∫

∞

−∞
y ⋅ fY (y) dy. [Riemann integrability of fY , (3.68)]

Proof of Lemma 6.18

For all A′ ∈ 𝒜 ′
X and g = 1A′ ,

∫
1A′ (x) PX(dx) = PX(A′) [(3.9)]

= PX,Y (A′× Ω′
Y ) [(5.21)]

=
∫

1A′ (x) ⋅ 1Ω′
Y
(y) PX,Y [d(x, y)] [(3.9), (1.38)]

=
∫

1A′ (x) PX,Y [d(x, y)]. [1Ω′
Y
(y) = 1]

Now the proposition follows, applying the standard methods of proofs described in
Remark 3.30.

Proof of Corollary 6.22

E[g(Y)] = EY (g) =
∫

g(y) PY (dy) [(6.13)]

=
∫

g(y) ⋅ fY (y) 𝜆(dy) [(3.27), (5.61)]

=
∫

∞

−∞
y ⋅ fY (y) dy. [Riemann integrability of y ⋅ fY (y), (3.68)]

Exercises

6.1 Prove the rules of computation of Box 6.1.

6.2 Show: If, for n ∈ N, the expectation E(Yn) exists and is finite, then E(Ym) exists and is
finite as well for all 1 ≤ m ≤ n.
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6.3 Prove the rules of Box 6.2.

6.4 Prove Equations (6.25) and (6.31).

6.5 Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable with finite second moment
E(Y 2) and Var (Y) > 0. Show that the expectation of Z := [Y − E(Y)]∕SD(Y) is 0 and its
variance is 1.

6.6 Let Yi: (Ω, 𝒜, P) → (R, ℬ), i = 1, 2, … , n, be a sample with expectations E(Yi) = μ and
finite and positive variances Var (Yi) = σ 2, i = 1, … , n. Furthermore, let Y := S∕n be the
arithmetic mean, where S := ∑ n

i=1 Yi, and

Z :=
(Y − 𝜇) ⋅

√
n

σ
.

Show that E( Z) = 0 and Var ( Z) = 1.

6.7 Assume E(Y 2) < ∞ and show that the function MSE(a) := E[(Y − a)2], a ∈ R, is mini-
mized at a = E(Y).

Solutions

6.1 Because the expectation of a numerical random variable is defined as an integral, we
simply can refer to the corresponding propositions of chapter 3.

(i) This is Equation (3.8) with A = Ω and 𝜇(A) = P(Ω) = 1.

(ii) This is a special case of Equation (3.34).

(iii) This is a special case of Equation (3.32).

(iv) Note that 1A ⋅ 1B = 1A∩B. Hence, this rule follows from Equation (3.8),
with α = 1.

(v) This is a special case of Lemma 3.45.

(vi) If Y1, Y2 are nonnegative, then this equation is a special case of Equation (3.65).
If Y1 or Y2 has a finite expectation, then this equation is a special case of
Equation (3.33).

(vii) This rule follows from Equation (3.34) and complete induction.

(viii) This is a special case of Lemma 3.47.

(ix) This is a special case of Theorem 3.48.

(x) This is a special case of Theorem 6.24.

6.2 Assume that, for n ∈ N, the expectation E(Yn) exists and is finite. Furthermore, let
A := {ω ∈ Ω: |Y(ω)| > 1}. Now, for all m with 1 ≤ m ≤ n,

|Y(ω)m| ≤ |Y(ω)n|, ∀ ω ∈ A and |Y(ω)m| ≤ 1, ∀ ω ∈ Ac
.
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Therefore, applying Corollary 3.38, for 1 ≤ m ≤ n:

E(|Ym|) =
∫

|Ym| dP [(6.1)]

=
∫A

|Ym| dP +
∫Ac

|Ym| dP [(3.36)]

≤
∫A

|Yn| dP +
∫Ac

1 dP [Lemma 3.26]

≤
∫A

|Yn| dP + 1 [(3.30), 1Ac ≤ 1, Lemma 3.26]

< ∞.

6.3 Rules (i), (ii), and (iii) are special cases of rules (i), (ii), and (iii) of Box 7.1, which are
proved in Exercise 7.3.

(iv) ⇒ This proposition follows from (vii) of Box 7.1.
⇐

Var (Y) = 0
⇒ [Y − E(Y)]2 =

P
0 [(6.27), Th. 3.43]

⇒ Y − E(Y) =
P

0 [[Y − E(Y)]2 = 0 ⇔ Y − E(Y) = 0]

⇒ Y =
P

E(Y) ∈ R. [E(Y)2 < ∞ ⇒ E(Y) ∈ R, Rem. 6.25 (iii)]

(v) X =
P

Y ⇒ X2 =
P

Y2 [see (2.34)]. Hence, X =
P

Y implies E(X) = E(Y) and E(X2) =

E(Y2) (see Cor. 6.17). Therefore, rule (i) of Box 6.2 yields Var (X) = Var (Y).
(vi) This proposition follows from rules (ix) and (vi) of Box 7.1.

6.4 Equation (6.25) can be derived as follows:

E(Y) = E

(
1
n
⋅

n∑

i=1
Yi

)
[(6.23)]

= 1
n
⋅

n∑

i=1
E(Yi) [Box 6.1 (vii)]

= 1
n
⋅ n ⋅ μ = μ. [Y1, … , Yn are identically distributed, (6.24)]

Equation (6.31) can be derived as follows:

Var (Y) = Var

(
1
n
⋅

n∑

i=1
Yi

)
[(6.23)]

= 1
n2

⋅
n∑

i=1
Var (Yi) [⟂⟂

P
Y1, … , Yn, Box 6.2 (vi)]

= 1
n2

⋅ n ⋅ σ2 = σ2

n
. [Y1, … , Yn are identically distributed, (6.30)]
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6.5 Let μ := E(Y) and σ := SD(Y). Then,

E(Z) = E

(
Y − μ
σ

)
= E

(1
σ
⋅ (Y − μ)

)
= 1

σ
⋅ E(Y − μ) [Box 6.1 (iii)]

= 1
σ
⋅ [E(Y) − E(μ)] = 1

σ
⋅ (μ − μ) = 0. [Box 6.1 (vi), (i)]

Var (Z) = Var

(
Y − μ
σ

)
= Var

(1
σ
⋅ (Y − μ)

)

= 1
σ 2

⋅ Var (Y) = 1
σ 2

⋅ σ 2 = 1. [Box 6.2 (iii), (ii)]

6.6 Using Equations (6.25) and (6.32), E(ZY ) = 0, and Var (ZY ) = 1 (see Exercise 6.5) yields

E(Z) = E

(
X − 𝜇

σ ∕
√

n

)
= 0 and Var (Z) = Var

(
X − μ
σ ∕

√
n

)
= 1.

6.7 For all a ∈ R, using Box 6.1 (iii) and (ii)

E[(Y − a)2] = E([Y − E(Y) + E(Y) − a]2)

= E([Y − E(Y)] 2) + [E(Y) − a]2 + 2 ⋅ E([Y − E(Y)] ⋅ [E(Y) − a])

= E([Y − E(Y)] 2) + [E(Y) − a]2

≥ E([Y − E(Y)] 2),

and ‘=’ holds if and only if E(Y) = a.



7

Linear quasi-regression,
covariance, and correlation

Expectation and variance are parameters that describe important properties of a univariate
numerical random variable and its distribution. Now we consider two numerical random vari-
ables, say X and Y , and their joint distribution. In other words, we consider the distribution
of the bivariate real-valued random variable (X, Y): (Ω, 𝒜, P) → (R2, ℬ2). We also introduce
a new random variable that can be used to describe a specific kind of dependence of Y on
X. It is the kind of dependence of Y on X that is represented by the best fitting linear function
α0 + α1X, ‘best fitting’ in terms of the minimal mean squared error. This function is the compo-
sition of X and the linear quasi-regression or the linear least-squares regression. Covariance
and correlation are important parameters quantifying the strength of the kind of dependence
that can be described by a linear quasi-regression.

7.1 Linear quasi-regression

Remark 7.1 [Implications of finite second moments] Reading the following definition,
note that E(X 2), E(Y 2) < ∞ implies that E(X), E(Y), and E(X ⋅ Y) are finite (see Klenke,
2013, Remark 5.2). Hence, according to Remark 3.42, there is no substantial loss of generality
if we additionally assume that X and Y are real-valued. ⊲

Definition 7.2 [Linear quasi-regression]
Let X, Y: (Ω, 𝒜, P) → (R, ℬ) be two real-valued random variables, and assume E(X 2),
E(Y 2) < ∞, and Var(X) > 0. Then the function f : R → R defined by

f (x) = α0 + α1x, ∀ x ∈ R, (7.1)

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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where the pair (α0, α1) minimizes the function MSE: R
2 → R with

MSE (a0, a1) = E([Y − (a0 + a1X)]2), ∀ a0, a1 ∈ R, (7.2)

is called the linear quasi-regression of Y on X. The composition of X and f is
denoted by Qlin(Y | X), that is,

Qlin(Y | X) = f (X) = α0 + α1X. (7.3)

Remark 7.3 [Distinguishing between f and f (X)] To emphasize, the function f : R → R is
called a linear quasi-regression. In this context, the random variable X is called the regressor
and Y the regressand. Note that f is a function assigning a real number to all real numbers. This
applies even if X only takes on two different real values. In contrast, the number of different
values of the composition Qlin(Y | X) = f (X): Ω → R is smaller than or equal to the number
of values of X, provided that X takes on a finite number of values only. ⊲

Remark 7.4 [Coefficient of determination] Under the assumptions of Definition 7.2 and
Var (Y) > 0, we define

Q 2
Y|X :=

Var [Qlin(Y | X)]

Var (Y)
(7.4)

and call it the coefficient of determination of the linear quasi-regression Qlin(Y | X). In Remark
7.29, this definition is extended to the case in which X is an n-dimensional real-valued random
variable. ⊲

Example 7.5 [Discrete regressor with three different values] Let X and Y be real-valued
random variables on (Ω, 𝒜, P) with values 1, 2, 3 and 1, 2, respectively. Furthermore, assume
that their distribution is specified by

P(X=1, Y =1) = .25, P(X=2, Y =2) = .5, P(X=3, Y =1) = .25.

Then the linear quasi-regression f : R → R is specified by

f (x) = α0 + α1 ⋅ x = 1.5 + 0 ⋅ x = 1.5, ∀ x ∈ R,

and the composition of X and f is

Qlin(Y | X) = α0 + α1 ⋅ X = 1.5 + 0 ⋅ X = 1.5

(see Exercise 7.1). The black points in Figure 7.1 represent the three pairs of values of X and
Y . All values of the linear quasi-regression are on the horizontal line, which, in this example, is
parallel to the x-axis because its slope is 0. The circles on this line represent the values f (x) for
x = 1, 2, 3, that is, for those values of X with a nonzero probability PX({x}) > 0. In contrast,
in this example, PX({x}) = 0, for all x ∈ R ∖ {1, 2, 3}. Nevertheless, as mentioned, a linear
quasi-regression f is a function assigning a real number to all real numbers. ⊲
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21 3 x

1

2

Y

f (x)

Figure 7.1 Linear quasi-regression.

Remark 7.6 [Linear quasi-regression versus regression] As the term ‘linear quasi-
regression’ suggests, there is also a ‘genuine’ regression of Y on X (see Def. 10.25), and the two
terms are not necessarily identical. As will be explained in more detail in Remark 10.27, the
‘genuine’ regression is a function g: R → R such that the composition g(X) is X-measurable
and minimizes the mean squared error E([Y − g(X)]2). In contrast to the conditional expecta-
tion E(Y | X) [see Eq. (10.1)], the composition Qlin(Y | X) = f (X) minimizes the function MSE
specified in Equation (7.2). Hence, f has to be a linear function even in those cases in which
there are no a0, a1 ∈ R, such that E(Y | X) =

P
a0 + a1X (see Example 7.5). ⊲

Remark 7.7 [Intercept and slope] Note that the composition Qlin(Y | X) = f (X) = α0 + α1X
is a random variable on (Ω, 𝒜, P) (see Fig. 7.2). The coefficient α0 is called the intercept, and
α1 the slope of (the linear quasi-regression) f (see Fig. 7.3). Obviously,

f (0) = α0 + α1 ⋅ 0 = α0. (7.5)

Furthermore, if x1, x2 ∈ R and x2 > x1, then,

α1 = 1
x2 − x1

⋅ [ f (x2) − f (x1)] (7.6)

(see Exercise 7.2). Equation (7.6) yields

α1 = f (x2) − f (x1), if x2 − x1 = 1. (7.7)

Ω

X

Qlin (Y | X ) = f (X)

f

Figure 7.2 The regressor X, the linear quasi-regression f , and their composition Qlin(Y | X) =
f (X).
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1

2

3

3210
x

f (x)

α0

α1

Figure 7.3 Intercept and slope of a linear function f : R → R.

These equations justify calling α0 the intercept and α1 the slope of the linear quasi-regression
f (see Fig. 7.3). Note that these equations also apply if P(X=0) = P(X=x1) = P(X=x2) = 0.
They even apply if 0, x1, x2 ∉ X(Ω), because, by definition, f is a function on R.

Figure 7.3 illustrates the intercept and the slope of a linear function such as the linear
quasi-regression f . In this figure, α0 = .5 and α1 = .85. If X is discrete, then Qlin(Y | X) = f (X)
is discrete as well. More precisely, the number of different values of Qlin(Y | X) is always
smaller than or equal to the number of different values of X. In contrast, the linear quasi-
regression f : R → R takes on uncountably many values unless its slope is 0. In this case, its
sole value is α0. ⊲

7.2 Covariance

While the variance quantifies the variability of a numerical random variable, the covariance
quantifies the degree of covariation of two numerical random variables, that is, the degree to
which the two variables vary together in the following sense: If one variable takes on a large
value (i.e., large positive deviation from its expectation), then the other one tends to take on
a large value as well. Furthermore, if one variable takes on a small value (i.e., large negative
deviation from its expectation), then the other one tends to take on a small value, too. In this
case, the covariance will be positive. However, the covariance may also be a negative real
number. In this case, the two random variables covary in the following sense: If one variable
takes on a large value, then the other one tends to take on a small value. Furthermore, if one
variable takes on a small value, then the other one tends to take on a large value.

Definition 7.8 [Covariance]
Let X, Y: (Ω, 𝒜, P) → (R,ℬ) be two numerical random variables with E(X 2), E(Y 2) <
∞. Then the covariance of X and Y is defined by

Cov (X, Y) := E([X − E(X)] ⋅ [Y − E(Y)]). (7.8)

Comparing Equations (7.8) and (6.27) to each other shows that the variance is the covariance
of a numerical random variable with itself.
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Remark 7.9 [Correlated numerical random variables] According to this definition, the
covariance of X and Y is the expectation of the product of the centered variables X − E(X)
and Y − E(Y). Hence, a covariance can be negative, zero, or positive. If the covariance is dif-
ferent from zero, then we say that X and Y are correlated; otherwise, we say that they are
uncorrelated. ⊲

Remark 7.10 [Rules of computation] The most important rules of computation for covari-
ances are summarized in Box 7.1. Proofs are provided in Exercise 7.3. Rule (i) immediately
implies

E(X ⋅ Y) = E(X) ⋅ E(Y) + Cov (X, Y). (7.9)

Hence, X and Y are uncorrelated if and only if E(X ⋅ Y) = E(X) ⋅ E(Y) [see Rule (vi)]. Fur-
thermore, this equation and Theorem 6.24 imply that X and Y are uncorrelated if X and Y are
independent.

Symmetry of the covariance [see Box 7.1 (v)] yields an alternative way to write Rule (viii)
of Box 7.1:

Var

(
n∑

i=1
αi Yi

)
=

n∑

i=1
α 2

i Var (Yi) + 2 ⋅
n−1∑

i=1

n∑

j= i+1
αi αj Cov (Yi, Yj). (7.10)

This equation simplifies to

Var

(
n∑

i=1
αi Yi

)
=

n∑

i=1
α 2

i Var (Yi), (7.11)

if Y1, … , Yn is a sequence of pairwise uncorrelated random variables. Note that independence
of Y1, … , Yn implies Cov (Yi, Yj) = 0, for i ≠ j [see Rule (vi)].

For n = 2, Rule (viii) simplifies to

Var (α1Y1 + α2Y2) = α2
1 Var (Y1) + α2

2 Var (Y2) + 2 α1 α2 Cov (Y1, Y2). (7.12)

Similarly, for n = m = 2, Rule (ix) simplifies to

Cov (α1X1 + α2X2, β1Y1 + β2Y2)

= α1β1Cov (X1, Y1) + α1β2Cov (X1, Y2) + α2β1Cov (X2, Y1) + α2β2Cov (X2, Y2).
(7.13)

⊲

Remark 7.11 [Covariance of indicators] For A, B ∈ 𝒜 , Rule (i) of Box 7.1 and Equations
(1.33) and (6.4) yield

Cov (1A, 1B) = E(1A ⋅ 1B) − E(1A) ⋅ E(1B) (7.14)

= P(A ∩ B) − P(A) ⋅ P(B). (7.15)
⊲

The following theorem helps to clarify the relationship between the covariance and the
variances of two numerical random variables X and Y .
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Box 7.1 Rules of computation for covariances.

Let X, Y be numerical random variables on the probability space (Ω, 𝒜, P) with E(X 2),
E(Y 2) < ∞. Furthermore, let α, β ∈ R. Then,

Cov (X, Y) = E(X ⋅ Y) − E(X) ⋅ E(Y). (i)

Cov (α + X, β + Y) = Cov (X, Y). (ii)

Cov (α X, β Y) = α β Cov (X, Y). (iii)

Cov (X, X) = Var (X). (iv)

Cov (X, Y) = Cov (Y , X). (v)

X ⟂⟂
P

Y ⇒ Cov (X, Y) = 0. (vi)

∃ α ∈ R: X =
P

α ⇒ Cov (X, Y) = 0. (vii)

If Yi are real-valued random variables on the probability space (Ω, 𝒜, P) with E(Y 2
i ) < ∞

and αi ∈ R, i = 1, … , n, then,

Var

(
n∑

i=1
αi Yi

)
=

n∑

i=1
α 2

i Var (Yi) +
n∑

i=1

n∑

j=1, i≠ j
αi αj Cov (Yi, Yj). (viii)

If Xi, Yj are real-valued random variables on the probability space (Ω, 𝒜, P) with E(X 2
i ),

E(Y 2
j ) < ∞, and αi, βj ∈ R, for all i = 1, … , n and j = 1, … , m, then,

Cov

(
n∑

i=1
αi Xi,

m∑

j=1
βj Yj

)
=

n∑

i=1

m∑

j=1
αi βj Cov (Xi, Yj). (ix)

If X1 =
P

X2 and E(Y 2), E(X 2
1 ), E(X 2

2 ) < ∞, then,

Cov (Y , X1) = Cov (Y , X2). (x)

Theorem 7.12 [Cauchy-Schwarz inequality]
If X, Y: (Ω, 𝒜, P) → (R,ℬ) are random variables with E(X 2), E(Y 2) <∞, then,

Cov (X, Y) 2 ≤ Var(X) ⋅ Var(Y). (7.16)

Furthermore, if Cov (X, Y) ≠ 0, then,

Cov (X, Y) 2 = Var(X) ⋅ Var(Y) ⇔ ∃ a, b ∈ R: Y =
P

a + bX. (7.17)

(Proof p. 240)
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Remark 7.13 [Squared weighted sum of random variables] If X, Y: (Ω, 𝒜, P) → (R, ℬ)
are random variables with E(X 2), E(Y 2) < ∞ and α, β ∈ R, then E[(α X + βY)2] < ∞ (see
Exercise 7.4). ⊲

In Theorem 7.14, we revisit the linear quasi-regression, studying three equivalent propo-
sitions. The first of these propositions deals with the residual variable 𝜖 := Y − f (X), where f
is the linear quasi-regression of Y on X. Note that this residual is not necessarily identical to
the residual with respect to a conditional expectation that will be treated in chapters 9 to 11.

Theorem 7.14 [Three characterizations of the linear quasi-regression]
Let X, Y: (Ω, 𝒜, P) → (R, ℬ) be two real-valued random variables with E(X 2), E(Y 2) <
∞, and Var(X) > 0. Furthermore, let α0, α1 ∈ R, f (X) = α0 + α1 X be the composition
of X and f : R → R, and define 𝜖 := Y − f (X). Then the following three propositions are
equivalent to each other:

(i) E(𝜖) = Cov (X, 𝜖) = 0.

(ii) α0 = E(Y) − α1 E(X) and α1 = Cov (X, Y)
Var(X)

.

(iii) f (X) = Qlin(Y | X), that is, α0, α1 minimize the function MSE (a0, a1) defined by
Equation (7.2).

(Proof p. 241)

Remark 7.15 [Uniqueness] Suppose that the assumptions of Theorem 7.14 hold and f (X) =
Qlin(Y | X). Then proposition (ii) of this theorem implies that the coefficients α0 and α1 are
uniquely defined. Because Qlin(Y | X) = α0 + α1X, the linear quasi-regression f : R → R is
uniquely defined as well. ⊲

Remark 7.16 [Relationship between slope and covariance] According to proposition (ii),
a zero covariance between X and Y implies that the slopes of the linear quasi-regressions of
Y on X and of X on Y are zero, provided that Var (Y) > 0. A negative covariance implies that
the slopes of the linear quasi-regressions of Y on X and of X on Y are negative, and a positive
covariance implies that the slopes of the linear quasi-regressions of Y on X and of X on Y are
positive. ⊲

Example 7.17 [Discrete regressor with three different values – continued] In Example
7.5, we specified the distribution of (X, Y). Now we use the equations in Theorem 7.14 (ii)
in order to compute the coefficients α0 and α1. For this purpose, we have to compute the
expectations of X and Y , the variance of X, and the covariance of X and Y . Hence, with n = 3,
m = 2, x1 = 1, x2 = 2, x3 = 3, and y1 = 1, y2 = 2,

E(X) =
n∑

i=1
xi ⋅ P(X=xi) = 1 ⋅

1
4
+ 2 ⋅

1
2
+ 3 ⋅

1
4
= 2,

E(Y) =
m∑

i=1
yi ⋅ P(Y =yi) = 1 ⋅

1
2
+ 2 ⋅

1
2
= 3

2
,
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Var (X) = E(X 2) − E(X)2 =
n∑

i=1
x 2

i ⋅ P(X=xi) − E(X)2 [Box 6.2 (i), (6.19)]

= 12 ⋅
1
4
+ 22 ⋅

1
2
+ 32 ⋅

1
4
− 22 = 1

2
,

Cov (X, Y) = E(X ⋅ Y) − E(X) ⋅ E(Y) [Box 7.1 (i)]

=
n∑

i=1

m∑

j=1
xi ⋅ yj ⋅ P

(
(X, Y)= (xi, yj)

)
− E(X) ⋅ E(Y) [(6.3)]

= 1 ⋅ 1 ⋅
1
4
+ 2 ⋅ 2 ⋅

1
2
+ 3 ⋅ 1 ⋅

1
4
− 2 ⋅

3
2

= 1
4
+ 8

4
+ 3

4
− 12

4
= 0.

Using the equations in Theorem 7.14 (ii) yields α1 = Cov(X, Y)∕Var (X) = 0
1∕2

= 0 and α0 =

E(Y) − α1E(X) = 3
2
− 0 ⋅ 2 = 1.5, the same result as obtained in Exercise 7.1, in which we

minimize the function MSE (a0, a1). ⊲

7.3 Correlation

As mentioned, the covariance between two numerical random variables quantifies the strength
of the dependence that can be described by a linear quasi-regression. However, the covariance
is not invariant under multiplication with constants [scale transformations; see Box 7.1 (iii)]
of the random variables involved. In contrast, the correlation, which quantifies the strength of
the same kind of dependence, is invariant under scale transformations (see Rem. 7.22).

Definition 7.18 [Correlation]
Let X, Y: (Ω, 𝒜, P) → (R,ℬ) be two numerical random variables with E(X 2), E(Y 2) <
∞. Then the correlation of X and Y is defined by

Corr (X, Y) :=
⎧
⎪
⎨
⎪⎩

Cov (X, Y)
SD(X) ⋅ SD(Y)

, if SD(X), SD(Y) > 0

0, otherwise.

(7.18)

Remark 7.19 [Correlation of a random variable with itself] Assume Var (X) > 0.
Because Cov (X, X) = Var (X) = SD(X) ⋅ SD(X), Equation (7.18) implies that Corr (X, X) = 1.
Similarly, because Cov (X, −X) = −Var (X) = −SD(X) ⋅ SD(X), Equation (7.18) implies that
Corr (X, −X) = −1. ⊲

Remark 7.20 [Range of the correlation] An implication of (7.16) is

−1 ≤ Corr (X, Y) ≤ 1, (7.19)
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provided that Corr (X, Y) exists, that is, provided that the assumptions hold under which the
correlation is defined (see Exercise 7.5). ⊲

Remark 7.21 [Correlation and Z-transformed variables] If the standard deviations of
X and Y are positive, then the correlation is also the expectation of the product of the Z-
transformed variables [see Eq. (6.33)], that is,

Corr (X, Y) = E

(
X − E(X)

SD(X)
⋅

Y − E(Y)
SD(Y)

)
(7.20)

(see Exercise 7.6). ⊲

Remark 7.22 [An invariance property of the correlation] The correlation of linear trans-
formations of X and Y is

Corr (a0 + a1X, b0 + b1Y) =
⎧
⎪
⎨
⎪⎩

Corr (X, Y), if a1 ⋅ b1 > 0
−Corr (X, Y), if a1 ⋅ b1 < 0

0, if a1 ⋅ b1 = 0,
(7.21)

where a0, a1, b0, b1 ∈ R (see Exercise 7.7). This equation implies that the correlation is invari-
ant (up to change of signs) under linear transformations, which include translations (a1 = 1
and b1 = 1) and scale transformations (a0 = b0 = 0 and a1, b1 ≠ 0). ⊲

Theorem 7.12 implies the following corollary about the cases Corr (X, Y) = 1 or
Corr (X, Y) = −1, that is, the ‘perfect’ correlation.

Corollary 7.23 [Perfect correlation of two random variables]
Let the assumptions of Definition 7.8 be satisfied, and suppose that Var(X), Var(Y) >
0. Then |Corr (X, Y) | = 1 if and only if there are a0, a1 ∈ R, a1 ≠ 0, such that
Y =

P
a0 + a1X. In this case,

Corr (X, Y) =
{

1, if a1 > 0
−1, if a1 < 0.

(7.22)

Remark 7.24 [Covariance and standard deviations] Let Y =
P

a0 + a1X, a0, a1 ∈ R. If

a1 ≥ 0, then Cov (X, Y) = SD(X) ⋅ SD(Y). If a1 < 0, then Cov (X, Y) = −SD(X) ⋅ SD(Y) (see
Exercise 7.8). ⊲

Remark 7.25 [Slope of a linear quasi-regression and correlation] If α1 is the slope of the
linear quasi-regression of Y on X (see Def. 7.2), then,

α1 = Cov (X, Y)
Var (X)

= Corr (X, Y) ⋅
SD(Y)
SD(X)

(7.23)

[see proposition (ii) of Th. 7.14]. This equation shows that the slope α1 of the linear quasi-
regression has the same sign as the covariance and the correlation. The size of the absolute
value of α1 depends on the ratio SD(Y)∕SD(X) of the standard deviations. The smaller the
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standard deviation of X compared to the standard deviation of Y , the larger the absolute value of
α1. Furthermore, given a fixed variance Var (X), this equation also shows that α1 is proportional
to Cov (X, Y) and Corr (X, Y). In this sense, all three parameters α1, Cov (X, Y), and Corr (X, Y)
quantify the strength of the dependence of Y on X described by a linear quasi-regression. Note,
however, that α1 and Cov (X, Y) are not invariant under scale transformations of X and Y . This
can be seen in the following equation for the slope α∗1 of the linear quasi-regression of bY on
aX, a, b ∈ R, a, b ≠ 0:

α∗1 = Cov (aX, bY)
Var (aX)

= Corr (aX, bY) ⋅
SD(bY)
SD(aX)

= b
a
⋅ α1. (7.24)

Hence, the slope of the linear quasi-regression of bY on aX is identical to the slope of the linear
quasi-regression of Y on X multiplied by b

a
. In contrast, the slope of the linear quasi-regression

is invariant under translations c + X, d + Y , c, d ∈ R (see Exercise 7.9). ⊲

Remark 7.26 [Correlation and coefficient of determination] Under the assumptions of
Definition 7.18 and Var (X), Var (Y) > 0,

Q 2
Y|X = Var [Qlin(Y | X)]

Var (Y)
= Var [α0 + α1Var (X)]

Var (Y)
=

α2
1Var (X)

Var (Y)

= Corr (X, Y) 2.

(7.25)

⊲

Example 7.27 [Joe and Ann with randomized assignment – continued] Consider the
example presented in Table 2.2. In this example, the covariance of X and Y is most easily
computed using

Cov (X, Y) = E(X ⋅ Y) − E(X) ⋅ E(Y) [Box 7.1 (i)]

=
∑

(x,y)
(x ⋅ y) ⋅ P(X=x, Y =y) − P(X=1) ⋅ P(Y =1) [(6.15)]

= P(X=1, Y =1) − P(X=1) ⋅ P(Y =1)

= (.16 + .08) − .4 ⋅ .51 = .036,

where P(X=1) = E(X) = .4 and P(Y=1) = E(Y) = .51 have been computed in Example 6.7.
Note that

∑
(x,y) is the sum over all pairs (x, y) of values of X and Y . In this example, there are

four such pairs, only one of which, namely (1, 1), yields a product x ⋅ y ≠ 0. Using the results
of Example 6.31 on the variances of X and Y yields the correlation

Corr (X, Y) = Cov (X, Y)
SD(X) ⋅ SD(Y)

= .036√
.24 ⋅

√
.2499

≈ .147

Hence, treatment and outcome variables have a positive correlation. This is in accordance
with comparing the conditional probability of success given treatment, P(C | B) = .6, to the
conditional probability of success given no treatment, P(C | Bc) = .45 (see Example 4.16).
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In this example,

Qlin(Y | X) = α0 + α1 ⋅ X

=
(

E(Y) − Cov (X, Y)
Var (X)

⋅ E(X)

)
+ Cov (X, Y)

Var (X)
⋅ X [Th. 7.14 (ii)]

=
(
.51 − .036

.24
⋅ .4

)
+ .036

.24
⋅ X

= .45 + .15 ⋅ X,

and the linear quasi-regression f : R → R of Y on X is specified by

f (x) = .45 + .15 ⋅ x, ∀ x ∈ R .
⊲

7.4 Expectation vector and covariance matrix

7.4.1 Random vector and random matrix

Let X = (X1, … , Xn) be an n-variate numerical random variable on a probability space
(Ω, 𝒜, P). In order to utilize matrix algebra, we consider the column random vector

x :=
⎡
⎢
⎢⎣

X1
...

Xn

⎤
⎥
⎥⎦
,

that is, the column vector of the random variables X1, … , Xn. Correspondingly, we consider
the row random vector x′ := [X1, … , Xn], the transpose of x.

In this section, we also consider a random matrix, that is, a matrix

X :=
⎡
⎢
⎢
⎢⎣

X11 X12 … X1m
X21 X22 … X2m

...
... . . . ...

Xn1 Xn2 … Xnm

⎤
⎥
⎥
⎥⎦

(7.26)

of type n × m of numerical random variables Xij on a probability space (Ω, 𝒜, P),
i = 1, … , n, j = 1, … , m. Such a random matrix is an n × m-array of an (n ⋅ m)-variate ran-
dom variable (see section 5.3).

7.4.2 Expectation of a random vector and a random matrix

The expectation of a (row or column) random vector is defined as the (row or column) vector
of the expectations of its components, that is,

E(x′) := [E(X1), … , E(Xn)] (7.27)

and E(x) := [E(X1), … , E(Xn)]′, provided that the expectations exist. Hence,

E(x′) = (E(x))′. (7.28)
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Box 7.2 Rules of computation for expectations of random matrices.

Let X = (X1, … , Xn) be an n-variate and Y = (Y1, … , Ym) be an m-variate real-valued
random variable on a probability space (Ω, 𝒜, P) such that the expectations of Xi and Yj
are finite, for all i = 1, … , n, j = 1, … , m. Furthermore, let x = [X1, … , Xn]′ and y =
[Y1, … , Ym]′ denote column vectors, let a = [a1, … , an]′ denote a column vector of real
numbers, and let A and B be matrices of types k × n and k × m, respectively, each of their
components being a real number. Furthermore, let C and D be matrices of real numbers
of types l × n and r × m, respectively. Then,

x =
P

a ⇒ E(x) = a. (i)

E(a + x) = a + E(x). (ii)

E(a′x) = a′E(x) = E(x)′ a = E(x′a). (iii)

E(A x) = AE(x). (iv)

E(A x + B y) = AE(x) + BE( y). (v)

Let X be an (n × k)-matrix and Y an (m × k)-matrix of real-valued random variables on
(Ω, 𝒜, P), all with finite second moments. Then,

X =
P

A′ ⇒ E(X) = A′
. (vi)

E(A′ + X) = A′ + E(X). (vii)

E(CX) = C E(X). (viii)

E(C XY ′ D′) = C E(XY ′) D′
. (ix)

Analogously to Equation (7.27), the expectation of an n × m-random matrix is defined
as the n × m-matrix of the expectations of its components, that is,

E

⎡
⎢
⎢
⎢⎣

X11 X12 … X1m
X21 X22 … X2m

...
... . . . ...

Xn1 Xn2 … Xnm

⎤
⎥
⎥
⎥⎦

:=
⎡
⎢
⎢
⎢⎣

E(X11) E(X12) … E(X1m)
E(X21) E(X22) … E(X2m)

...
... . . . ...

E(Xn1) E(Xn2) … E(Xnm)

⎤
⎥
⎥
⎥⎦

, (7.29)

provided that the expectations exist. Obviously, if X ′ denotes the transpose of the matrix X,
then,

E(X ′) = (E(X))′. (7.30)

In Box 7.2, we present some rules of computation for the expectations of random vectors
and random matrices (for proofs, see Exercise 7.10). In this box, we use

a′x :=
n∑

i=1
ai ⋅ Xi, (7.31)
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the inner product of an n-vector a = [a1, … , an]′ of real numbers and the random vector x.
Correspondingly,

A x :=
⎡
⎢
⎢⎣

a′
1 x
...

a′
k x

⎤
⎥
⎥⎦

, (7.32)

where a′
l , l = 1, … , k, denotes the lth row of the (k × n)-matrix A of real numbers.

7.4.3 Covariance matrix of two multivariate random variables

Now we consider two multivariate numerical random variables X = (X1, … , Xn) and Y =
(Y1, … , Ym) on a probability space (Ω, 𝒜, P). In particular, we assume that the second
moments of all these random variables are finite and focus on their covariance matrix, again
utilizing the representation of X and Y as row or column vectors that has been introduced at
the beginning of section 7.4.1.

Note that [x − E(x)] [ y − E( y)]′ is an n × m-matrix of the random variables

[Xi − E(Xi)] ⋅ [Yj − E(Yj)], i = 1, … , n, j = 1, … , m.

Therefore, using (7.29), the covariance matrix 𝚺xy is defined by

𝚺xy := E([x − E(x)] [ y − E( y)]′). (7.33)

In other words, the covariance matrix of x and y is the matrix of covariances, that is,

𝚺xy =

⎡
⎢
⎢
⎢
⎢⎣

σX1Y1
σX1Y2

… σX1Ym

σX2Y1
σX2Y2

… σX2Ym...
... . . . ...

σXnY1
σXnY2

… σXnYm

⎤
⎥
⎥
⎥
⎥⎦

, (7.34)

where σXiYj
:= Cov (Xi, Yj) = E([Xi − E(Xi)] ⋅ [Yj − E(Yj)]), i = 1, … , n, j = 1, … , m. If we

assume that the second moments of the random variables Xi and Yj are finite, then all covari-
ances Cov (Xi, Yj) are finite as well, and we say that 𝚺xy exists.

If we consider a univariate random variable Y , then y = [Y] is also a vector consisting of
a single component, the random variable Y . In this special case, 𝚺xy is a matrix of type n × 1,
the column vector

𝚺xy =
⎡
⎢
⎢⎣

σX1Y
...

σXnY

⎤
⎥
⎥⎦
.

Another special case is x = y. The covariance matrix 𝚺xx of x and x is called the variance–
covariance matrix of x (and of X). Hence,

𝚺xx := E([x − E(x)] [x − E(x)]′) (7.35)
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Box 7.3 Rules of computation for covariance matrices.

Let X = (X1, … , Xn) be an n-variate and Y = (Y1, … , Ym) be an m-variate real-valued
random variable on a probability space (Ω, 𝒜, P) such that the second moments of Xi and
Yj are finite, for all i = 1, … , n, j = 1, … , m. Furthermore, let x = [X1, … , Xn]′ and y =
[Y1, … , Ym]′ denote column vectors, let a = [a1, … , an]′ and b = [b1, … , bm]′ denote
column vectors of real numbers, and let A and B be matrices of types k × n and k × m,
respectively, each of their components being a real number. Finally, let O denote the (n ×
m)-null matrix. Then,

𝚺xy = E(x y′) − E(x) E( y′). (i)

Σa+x, b+y = 𝚺xy. (ii)

ΣAx, By = A 𝚺xy B′
. (iii)

𝚺xy = 𝚺′
yx. (iv)

X ⟂⟂
P

Y ⇒ 𝚺xy = O. (v)

x =
P

a ⇒ 𝚺xy = O. (vi)

Additionally, let w = [W1, … , Wr]
′ and z = [Z1, … , Zs]

′ be real-valued random column
vectors on (Ω, 𝒜, P) such that all their components have finite second moments. Further-
more, let C and D be matrices of real numbers of type l × r and l × s. Then,

ΣAx+By, Cw+Dz = A Σxw C′ + A Σxz D′ + B Σyw C′ + B Σyz D′
. (vii)

n = s and x =
P

z ⇒ 𝚺xy = 𝚺zy. (viii)

and

𝚺xx =

⎡
⎢
⎢
⎢
⎢⎣

σ 2
X1

σX1X2
… σX1Xn

σX2X1
σ 2

X2
… σX2Xn...

... . . . ...
σXnX1

σXnX2
… σ 2

Xn

⎤
⎥
⎥
⎥
⎥⎦

. (7.36)

The diagonal components of the matrix 𝚺xx are the variances of the variables X1, … , Xn,
because σXiXi

:= Cov (Xi, Xi) = Var (Xi) = σ 2
Xi

, i = 1, … , n.
In Box 7.3, we present some rules of computation for covariance matrices. They are proved

in Exercise 7.11.

7.5 Multiple linear quasi-regression

In the following definition, we generalize the concept of a linear quasi-regression considering
a multivariate regressor X = (X1, … , Xn). We use the notation x = [X1, … , Xn]′ to denote the
column vector of X, 𝛃′ = [β1, … , βn] for the row vector of the real numbers β1, … , βn, and
b′ = [b1, … , bn] for the row vector of the real numbers b1, … , bn.
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Definition 7.28 [Multiple linear quasi-regression]
Let Xi: (Ω, 𝒜, P) → (R, ℬ), i = 1, … , n, and Y: (Ω, 𝒜, P) → (R, ℬ) be real-valued ran-
dom variables, define X := (X1, … , Xn), and assume E(X 2

i ), E(Y 2) < ∞, i = 1, … , n,
that the inverse 𝚺 −1

xx exists. Finally, define the function f : R
n → R by

f (x) = β0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (7.37)

where β0, 𝛃 = [β1, … , βn]′ minimize the function MSE : R
n+1 → R with

MSE(b0, b) = E([Y − (b0 + b′x)]2), ∀ (b0, b) ∈ R
n+1

. (7.38)

Then f is called the linear quasi-regression of Y on X1, … , Xn. The composition of
X and f is denoted by Qlin(Y | X) or Qlin(Y | X1, … , Xn), that is,

Qlin(Y | X) := f (X) = β0 + 𝛃′x = β0 +
n∑

i=1
βi Xi. (7.39)

Remark 7.29 [Coefficient of determination] Let the assumptions of Definition 7.28 hold,
and assume Var (Y) > 0. Then,

Q 2
Y|X := Var [Qlin(Y | X)]

Var (Y)
(7.40)

is called the coefficient of determination of the linear quasi-regression of Y on X. ⊲

In the following theorem, we generalize Theorem 7.14 considering a multivariate real-
valued regressor X = (X1, … , Xn). In this theorem, 𝚺x𝜖 denotes the covariance vector of x and
𝜖, which is defined by

𝜖 := Y − Qlin(Y | X1, … , Xn) (7.41)

and called the residual of Y with respect to its linear quasi-regression on X.

Theorem 7.30 [Charactizations of the multiple linear quasi-regression]
Let X1,… , Xn, Y: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables, x= [X1,… , Xn]′,
and assume E(X 2

i ), E(Y 2) < ∞ for all i = 1, … , n, and that the inverse 𝚺 −1
xx exists.

Furthermore, let f : R
n → R, with

f (X1, … , Xn) = β0 + 𝛃′x, β0 ∈ R, 𝛃 ∈ R
n, (7.42)
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be the composition of (X1, … , Xn) and f , and define 𝜖 := Y − f (X1, … , Xn). Then the
following three propositions are equivalent to each other:

(i) E(𝜖) = 0 and 𝚺x𝜖 = 0.

(ii) β0 = E(Y) − 𝛃′E(x) and 𝛃 = 𝚺 −1
xx 𝚺xy.

(iii) f (X1, … , Xn) = Qlin(Y | X1, … , Xn).

(Proof p. 243)

Remark 7.31 [Uniqueness] Suppose that the assumptions of Theorem 7.30 hold and
f (X1, … , Xn) = Qlin(Y | X). Then proposition (ii) of this theorem implies that the coefficients
β0, β1, … , βn are uniquely defined. Because f (X1, … , Xn) = β0 + 𝛃′x = Qlin(Y | X), the lin-
ear quasi-regression f and Qlin(Y | X) are uniquely defined as well. ⊲

Corollary 7.32 [No correlation between linear quasi-regression and its residual]
Under the assumptions of Definition 7.28,

Cov [Qlin(Y | X), 𝜖] = 0 (7.43)

and

Var[Qlin(Y | X)] = Cov [Y , Qlin(Y | X)]. (7.44)

(Proof p. 244)

Remark 7.33 [Correlation between linear quasi-regression and its regressand] Under
the assumptions of Definition 7.28 and Var (Y) > 0,

Q 2
Y|X = Corr [Y , Qlin(Y | X)]2 (7.45)

(see Exercise 7.12). ⊲

7.6 Proofs

Proof of Theorem 7.12

Suppose Var (Y) = 0. Then rules (iv) of Box 6.2 and (vii) of Box 7.1 imply that Cov (X, Y) = 0.
This shows that the Inequality (7.16) holds if Var (Y) = 0. Now suppose Var (Y) > 0. Then,

0 ≤ Var

(
X − Cov (X, Y)

Var (Y)
⋅ Y

)
⋅ Var (Y)

=
(

Var (X) − 2 ⋅
Cov (X, Y)

Var (Y)
Cov (X, Y) +Cov (X, Y) 2

Var (Y) 2
Var (Y)

)
⋅ Var (Y) [(7.12)]

= Var (X) ⋅ Var (Y) − Cov (X, Y) 2,
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which is equivalent to (7.16). According to the first part of the proof,

Cov (X, Y) 2 = Var (X) ⋅ Var (Y) ⇔ Var (Y) = 0 or Var

(
X − Cov (X, Y)

Var (Y)
⋅ Y

)
= 0.

Rule (iv) of Box 6.2 implies that this is equivalent to

∃ a ∈ R: Y =
P

a or ∃ c ∈ R: X − Cov (X, Y)
Var (Y)

⋅ Y =
P

c.

If Cov (X, Y) ≠ 0, this is equivalent to

∃ a ∈ R: Y =
P

a + 0 ⋅ X or ∃ c ∈ R: Y =
P

(
− c ⋅ Var (Y)

Cov (X, Y)

)
+
(

Var (Y)
Cov (X, Y)

)
⋅ X.

Obviously, in both cases, there is a linear function of X that is P-equivalent to Y . Furthermore,
if there are a, b ∈ R with Y =

P
a + bX, which implies Var (Y) = b2Var (X) [see Box 6.2 (ii),

(iii)], then,

Cov (X, Y)2 = Cov (X, a + bX)2 [Box 7.1 (x)]

= b2Cov (X, X)2 [Box 7.1 (ii), (iii)]

= b2Var (X)2 [Box 7.1 (iv)]

= Var (X) ⋅ Var (Y). [Box 6.2 (ii), (iii)]

Proof of Theorem 7.14

The proof is organized as follows: (iii) ⇒ (ii) ⇒ (i) ⇒ (iii), which will prove that (i), (ii), and
(iii) are equivalent.

(iii) ⇒ (ii) The first partial derivatives of

MSE (a0, a1)

= E([Y − (a0 + a1 X)]2)

= E(Y 2) + E[(a0 + a1 X)2] − 2E[Y ⋅ (a0 + a1 X)] [Box 6.1 (vi)]

= E(Y 2) + a 2
0 + a 2

1 E(X 2) + 2a0a1E(X) − 2a0E(Y) − 2a1E(X ⋅ Y) [Box 6.1 (iii), (vi)]

with respect to a0 and a1 are

∂MSE(a0, a1)
∂a0

= 2a0 + 2a1E(X) − 2E(Y)

and

∂MSE(a0, a1)
∂a1

= 2a1E(X 2) + 2a0E(X) − 2E(X ⋅ Y).

If f (X) = α0 + α1X = Qlin(Y | X), then

2α0 + 2α1E(X) − 2E(Y) = 0
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and

2α1E(X 2) + 2α0E(X) − 2E(X ⋅ Y) = 0.

Solving the first equation for α0 yields

α0 = E(Y) − α1E(X).

Inserting this result into the second equation yields

α1E(X 2) + E(Y) ⋅ E(X) − α1E(X) 2 − E(X ⋅ Y) = 0.

Using Cov (X, Y) = E(X ⋅ Y) − E(X) ⋅ E(Y) [see Box 7.1 (i)] and Var (X) = E(X 2) − E(X) 2

[see Box 6.2 (i)], we receive

α1 = Cov (X, Y)
Var (X)

.

(ii) ⇒ (i)

E(𝜖) = E[Y − f (X)]

= E[Y − (α0 + α1X)] [def. of f (X)]

= E(Y − [E(Y) − α1 E(X) + α1X]) [(ii)]

= E(Y) − E(Y) + α1 E(X) − α1 ⋅ E(X) [Box 6.1 (vii)]

= 0.

Cov (X, 𝜖) = Cov (X, [Y − (α0 + α1X)]) [def. of 𝜖]

= Cov (X, Y) − α1Var(X) [Box 7.1 (ii), (iii)]

= Cov (X, Y) − Cov (X, Y)
Var (X)

⋅ Var (X) [(ii)]

= 0.

(i) ⇒ (iii) Let f (X) = α0 + α1X, α0, α1 ∈ R, be a linear function of X with E(𝜖) = 0
and Cov (X, 𝜖) = 0, where 𝜖 = Y − f (X). Then, for any linear function h(X) = a0 + a1X, a0,
a1 ∈ R,

E((Y − f (X))[ f (X) − h(X)]) = E(𝜖 ⋅ [ f (X) − h(X)]) [def. of 𝜖]

= E(𝜖 ⋅ [(α0 + α1X) − (a0 + a1X)]) [defs. of f (X), h(X)]

= E(𝜖 ⋅ [(α0 − a0) + (α1 − a1)X])

= (α0 − a0) ⋅ E(𝜖) + (α1 − a1)E(𝜖 ⋅ X) [Box 6.1 (vii)]

= 0. [(i), Box 7.1 (i)]

Using this result and considering

E([Y − h(X)] 2) = E[([Y − f (X)] + [ f (X) − h(X)]) 2]

= E([Y − f (X)] 2) + E([ f (X) − h(X)] 2) + 2 ⋅ E([Y − f (X)][ f (X) − h(X)])

= E([Y − f (X)] 2) + E([ f (X) − h(X)] 2)

≥ E([Y − f (X)] 2).



LINEAR QUASI-REGRESSION, COVARIANCE, AND CORRELATION 243

In this inequality, ‘=’ holds if and only if f (X) =
P

h(X). Because f (X) = α0 + α1X and h(X) =
a0 + a1X, the property f (X) =

P
h(X) is equivalent to f (X) = h(X).

Proof of Theorem 7.30

The proof is organized as follows: (iii) ⇒ (ii) ⇒ (i) ⇒ (iii), which will prove that (i), (ii), and
(iii) are equivalent.

(iii) ⇒ (ii) The first partial derivative of

MSE (b0, b1, … , bn)

= E([Y − (b0 + b′x)]2) [(7.38)]

= E(Y 2) + E((b0 + b′x)2) − 2E(Y ⋅ (b0 + b′x)) [Box 6.1 (vi), (iii)]

= E(Y 2) + b 2
0 + E((b′x) 2) + 2b0 ⋅ E(b′x) − 2b0E(Y) − 2E(b′x ⋅ Y) [Box 6.1 (vi), (i), (iii)]

= E(Y 2) + b 2
0 + E((b′x) 2) + 2b0 ⋅ b′E(x) − 2b0E(Y) − 2b′E(x ⋅ Y) [Box 7.2 (iii)]

with respect to b0 is

∂MSE (b0, b1, … , bn)

∂b0
= 2b0 + 2b′E(x) − 2E(Y).

If f (X1, … , Xn) = β0 + 𝛃′x = Qlin(Y | X1, … , Xn), then,

2β0 + 2𝛃′E(x) − 2E(Y) = 0.

Dividing both sides by 2 and solving for β0 yields

β0 = E(Y) − 𝛃′E(x).

Gathering the first partial derivatives of MSE (b0, b1, … , bn) with respect to b1, … , bn in
a vector yields

[
∂MSE (b0, b1, … , bn)

∂b1
, … ,

∂MSE (b0, b1, … , bn)
∂bn

]′
= 2E(xx′) b + 2b0E(x) − 2E(x ⋅ Y).

If f (X1, … , Xn) = β0 + 𝛃′x = Qlin(Y | X1, … , Xn), then 2E(xx′) 𝛃 + 2β0E(x) − 2E(x ⋅ Y) =
0, and dividing both sides by 2 yields

E(xx′) 𝛃 + β0E(x) − E(x ⋅ Y) = 0.

Inserting our result β0 = E(Y) − 𝛃′E(x), using 𝚺xy = E(x ⋅ Y) − E(x) ⋅ E(Y) and 𝚺xx =
E(xx′) − E(x) E(x′) [see Box 7 (i)], yields

E(xx′) 𝛃 + (E(Y) − 𝛃′E(x))E(x) − E(x ⋅ Y)

= E(xx′) 𝛃 + E(Y) ⋅ E(x) − E(x)E(x′) 𝛃 − E(x ⋅ Y)

= (E(xx′) − E(x)E(x′)) 𝛃 − (E(x ⋅ Y) − E(x) ⋅ E(Y))

= 𝚺xx 𝛃 − 𝚺xy = 0,
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which is a necessary condition for a minimum. (Note: In this proof, we do not have to check
a sufficient condition.) Adding 𝚺xy on both sides yields 𝚺xx 𝛃 = 𝚺xy, and when multiplying

both sides from the left by 𝚺 −1
xx , we receive

𝛃 = 𝚺 −1
xx 𝚺xy.

(ii) ⇒ (i)

E(𝜖) = E(Y − f (X)) [def. of 𝜖]

= E(Y − (β0 + 𝛃′x)) [def. of f (X)]

= E(Y − (E(Y) − 𝛃′E(x) + 𝛃′x)) [(ii)]

= E(Y) − E(Y) + 𝛃′E(x) − 𝛃′E(x) [Box 6.1 (vi), (i), Box 7.2 (iii)]

= 0.

𝚺x𝜖 = Σx,Y−(β0+𝛃′x) [def. of 𝜖]

= 𝚺xy − 𝚺xx 𝛃 [Box 7.3 (ii), (vii)]

= 𝚺xy − 𝚺xx 𝚺 −1
xx 𝚺xy [(ii)]

= 0.

(i) ⇒ (iii) Let f (X) = β0 + 𝛃′x, β0 ∈ R, 𝛃 ∈ R
n such that E(𝜖) = 0 and 𝚺x𝜖 = 0, where

𝜖 = Y − f (X). Then, for any linear function h(X) = b0 + b′x, b0 ∈ R, b ∈ R
n,

E((Y − f (X))[ f (X) − h(X)])

= E(𝜖 ⋅ [ f (X) − h(X)]) [def. of 𝜖]

= E(𝜖 ⋅ [(β0 + 𝛃′x) − (b0 + b′x)]) [defs. of f (X), h(X)]

= E(𝜖 ⋅ [(β0 − b0) + (𝛃 − b)′x])

= (β0 − b0) ⋅ E(𝜖) + (𝛃 − b)′E(𝜖 ⋅ x) [Box 6.1 (vi), Box 7.2 (iii)]

= (𝛃 − b)′ 𝚺x𝜖 [(i), Box 7.3 (i)]

= 0. [(i)]

Using this result and considering

E([Y − h(X)] 2) = E[([Y − f (X)] + [ f (X) − h(X)]) 2]

= E([Y − f (X)] 2) + E([ f (X) − h(X)] 2) + 2 ⋅ E([Y − f (X)][ f (X) − h(X)])

= E([Y − f (X)] 2) + E([ f (X) − h(X)] 2)

≥ E([Y − f (X)] 2).

Hence, f (X) = Qlin(Y | X).

Proof of Corollary 7.32

Cov [Qlin(Y | X), 𝜖] = Cov(β0 + 𝛃′x, 𝜖) [(7.39)]
= 𝛃′Cov (x, 𝜖) [Box 7.3 (ii), (iii)]
= 0. [Cov(x, 𝜖) = 𝚺x𝜖 = 0, Th. 7.30]



LINEAR QUASI-REGRESSION, COVARIANCE, AND CORRELATION 245

Furthermore,

Var [Qlin(Y | X)] = Cov[Qlin(Y | X), Qlin(Y | X)] [Box 7.1 (iv)]

= Cov [Qlin(Y | X), 𝜖] + Cov[Qlin(Y | X), Qlin(Y | X)] [(7.43)]

= Cov [Qlin(Y | X) + 𝜖, Qlin(Y | X)] [Box 7.1 (ix)]

= Cov[Y , Qlin(Y | X)]. [(7.41)]

Exercises

7.1 Use Definition 7.2 in order to determine the coefficients α0 and α1 of the linear quasi-
regression in Example 7.5.

7.2 Consider the linear quasi-regression f with f (x) = α0 + α1x, x ∈ R. Prove: If x1, x2 ∈ R

with x1 ≠ x2, then α0 = f (0) and α1 = 1
x2 − x1

[ f (x2) − f (x1)].

7.3 Prove the propositions of Box 7.1.

7.4 Prove the proposition of Remark 7.13.

7.5 Prove the proposition of Remark 7.20.

7.6 Prove the proposition of Remark 7.21.

7.7 Show that Corr (a0 + a1X, b0 + b1Y) = Corr (X, Y), where a0, a1, b0, b1 ∈ R.

7.8 Show

Cov (X, Y) =
{

SD(X) ⋅ SD(Y), if a1 > 0
−SD(X) ⋅ SD(Y), if a1 < 0,

(7.46)

provided that there are a0, a1 ∈ R with Y =
P

a0 + a1X, a1 ≠ 0.

7.9 Prove Equation (7.24) and that the slope is invariant under translations c + X, d + Y ,
c, d ∈ R.

7.10 Prove the rules of computation of Box 7.2.

7.11 Prove the rules of computation of Box 7.3.

7.12 Under the assumptions of Definition 7.28 and Var (Y) > 0, prove Equation (7.45).

Solutions

7.1

MSE (a0, a1) = E([Y − (a0 + a1x)]2) [(7.2)]

= 1
4
⋅ (1 − a0 − a1)2 + 1

2
⋅ (2 − a0 − 2a1)2 + 1

4
⋅ (1 − a0 − 3a1)2 [(6.3)]

= 1
4
⋅
(
1 + a2

0 + a2
1 − 2a0 − 2a1 + 2a0a1

)
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+ 1
2
⋅
(
4 + a2

0 + 4a2
1 − 4a0 − 8a1 + 4a0a1

)

+ 1
4
⋅
(
1 + a2

0 + 9a2
1 − 2a0 − 6a1 + 6a0a1

)

= 5
2
+ a2

0 +
9
2
⋅ a2

1 − 3a0 − 6a1 + 4a0a1.

The partial derivatives are

∂MSE(a0, a1)
∂a0

= 2a0 − 3 + 4a1 and
∂MSE (a0, a1)

∂a1
= 9a1 − 6 + 4a0.

Fixing the partial derivatives to 0 and denoting the solutions by α0 and α1 yield

2α0 − 3 + 4α1 = 0 and 9α1 − 6 + 4α0 = 0.

The first equation implies α0 = −2α1 +
3
2
. Inserting this result into the second equation

yields 9α1 − 6 − 8α1 + 6 = 0, which implies α1 = 0 and α0 = 3
2
. The values α1 = 0 and

α0 = 3
2

satisfy a necessary condition for a minimum; now we check if they also satisfy

a sufficient condition. The second partial derivatives are

∂ 2MSE(a0, a1)

∂a2
0

= 2 > 0,
∂ 2MSE(a0, a1)

∂a2
1

= 9 > 0, and
∂ 2MSE(a0, a1)

∂a0 ∂a1
= 4,

that is, in this case they are constant for all a0, a1 ∈ R. Because 2 ⋅ 9 − 42 > 0, we can
conclude that MSE(a0, a1) has its minimum for a0 = α0 = 3

2
and a1 = α1 = 0 (see Ellis

& Gulick, 2006, Th. 13.21).

7.2 The equation f (x) = α0 + α1x, x ∈ R, yields f (0) = α0,

f (x1) = α0 + α1x1, and f (x2) = α0 + α1x2.

Hence,

f (x2) − f (x1) = α0 + α1x2 − (α0 + α1x1) = α1(x2 − x1).

Multiplying both sides by 1
x2−x1

yields α1 = 1
x2−x1

[ f (x2) − f (x1)], provided that

x1 ≠ x2.

7.3 (i)

Cov (X, Y) = E([X − E(X)] ⋅ [Y − E(Y)]) [(7.8)]

= E[X ⋅ Y − X ⋅ E(Y) − E(X) ⋅ Y + E(X) ⋅ E(Y)]

= E(X ⋅ Y) − E[X ⋅ E(Y)] − E[E(X) ⋅ Y] + E(X) ⋅ E(Y) [Box 6.1 (vi), (i)]

= E(X ⋅ Y) − 2E(X) ⋅ E(Y) + E(X) ⋅ E(Y) [Box 6.1 (iii)]

= E(X ⋅ Y) − E(X) ⋅ E(Y).
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(ii)

Cov (α + X, β + Y) = E([α + X − E(α + X)] ⋅ [β + Y − E(β + Y)]) [(7.8)]

= E([α + X − α − E(X)] ⋅ [β + Y − β − E(Y)]) [Box 6.1 (ii)]

= E([X − E(X)] ⋅ [Y − E(Y)])

= Cov (X, Y) . [(7.8)]

(iii)

Cov (α X, β Y) = E(α X ⋅ β Y) − E(α X) ⋅ E(β Y) [Box 7.1 (i)]

= α β E(X ⋅ Y) − α β E(X) ⋅ E(Y) [Box 6.1 (iii)]

= α β [E(X ⋅ Y) − E(X) ⋅ E(Y)]

= α β Cov (X, Y) . [Box 7.1 (i)]

(iv) This rule immediately follows from Equations (6.27) and (7.8).

(v) This rule immediately follows from Equation (7.8).

(vi) Independence of X and Y implies E(X ⋅ Y) = E(X) ⋅ E(Y) (see Th. 6.24) and
Cov(X, Y) = 0 [see Rule (i) of Box 7.1].

(vii) According to Lemma 5.51, X and Y are independent if X =
P

α. This implies that

Cov(X, Y) = 0 [see Rule (vi) of Box 7.1].

(viii)

Var

( n∑

i=1

αi Yi

)

= E

([ n∑

i=1

αi Yi − E

( n∑

i=1

αi Yi

)]2
)

[(6.27)]

= E

[( n∑

i=1

αi Yi −
n∑

i=1

αi E(Yi)

)2
]

[Box 6.1 (vii)]

= E

[( n∑

i=1

αi [Yi − E(Yi)]

)2
]

= E

[
n∑

i=1

α2
i (Yi − E(Yi))

2 +
n∑

i=1

n∑

j=1, j≠ i

αi αj (Yi − E(Yi))(Yj − E(Yj))

]

=
n∑

i=1

α2
i E(Yi − E(Yi))

2 +
n∑

i=1

n∑

j=1, j≠ i

αi αj E[(Yi − E(Yi))(Yj − E(Yj))] [Box 6.1 (vii)]

=
n∑

i=1

α 2
i Var (Yi) +

n∑

i=1

n∑

j=1, j≠ i

αi αj Cov (Yi, Yj). [(6.27), (7.8)]
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(ix)

Cov

(
n∑

i=1

αi Xi,
m∑

j=1

βj Yj

)

= E

[( n∑

i=1

αi Xi − E

( n∑

i=1

αi Xi

)) (
m∑

j=1

βj Yj − E

(
m∑

j=1

βj Yj

))]
[(7.8)]

= E

[( n∑

i=1

αi [Xi − E(Xi)]

) (
m∑

j=1

βj [Yj − E(Yj)]

)]
[Box 6.1 (vii)]

= E

[
n∑

i=1

m∑

j=1

αi βj [Xi − E(Xi)] [Yj − E(Yj)]

]

=
n∑

i=1

m∑

j=1

αi βj Cov (Xi, Yj). [Box 6.1 (vii), (7.8)]

(x) If X1 =P X2, then [Y − E(Y)] ⋅ [X1 − E(X1)] =
P

[Y − E(Y)] ⋅ [X2 − E(X2)]. Accord-

ing to Corollary 5.24, these two product variables have the same distribution, and
according to Corollary 6.17, the same expectation. However, the expectations of
these product variables are the covariances. Hence, Cov (Y , X1) = Cov (Y , X2).

7.4 If X, Y: (Ω, 𝒜, P) → (R, ℬ) are random variables, then

(αX + βY)2 = α2X2 + β2Y2 + 2αβX ⋅ Y

is also a random variable on (Ω, 𝒜, P) (see Def. 5.1, Example 2.61, and Th. 2.57), and
this implies

E[(αX + βY)2] = E(α2X2 + β2Y2 + 2αβX ⋅ Y)
= α2E(X2) + β2E(Y2) + 2αβE(X ⋅ Y). [Box 6.1 (vii)]

The terms E(X2) and E(Y2) are finite by assumption and, according to Remark 7.1,
E(X ⋅ Y) is finite as well. This implies E[(αX + βY)2] < ∞.

7.5 Inequality (7.16) implies

−
√

Var (X) ⋅ Var (Y) ≤ Cov (X, Y) ≤
√

Var (X) ⋅ Var (Y).

If
√

Var (X) ⋅ Var (Y) = SD(X) ⋅ SD(Y) > 0, then these inequalities yield −1 ≤

Corr (X, Y) ≤ 1. If
√

Var (X) ⋅ Var (Y) = SD(X) ⋅ SD(Y) = 0, then, by Definition 7.18,
Corr (X, Y) = 0.
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7.6 If SD(X), SD(Y) > 0, then

Corr (X, Y) = Cov (X, Y)
SD(X) ⋅ SD(Y)

[(7.18)]

= E([X − E(X)] ⋅ [Y − E(Y)])
SD(X) ⋅ SD(Y)

[(7.8)]

= E

(
[X − E(X)] ⋅ [Y − E(Y)]

SD(X) ⋅ SD(Y)

)
[Box 6.1 (iii)]

= E

(
X − E(X)

SD(X)
⋅

Y − E(Y)
SD(Y)

)
.

7.7 According to Rules (ii) and (iii) of Box 7.1, Cov(a0+a1X, b0+b1Y)= a1b1Cov(X, Y).
Similarly, according to Rules (ii) and (iii) of Box 6.2, Var (a0 + a1X) = a2

1 Var (X),
which implies

SD(a0 + a1X) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

a1SD(X), if a1 > 0

−a1SD(X), if a1 < 0

0, if a1 = 0.

Hence, for a1, b1 > 0,

Corr (a0 + a1X, b0 + b1Y) = Cov (a0 + a1X, b0 + b1Y)
SD(a0 + a1X) ⋅ SD(b0 + b1Y)

= a1 b1 Cov (X, Y)
a1 SD(X) ⋅ b1 SD(Y)

= Cov (X, Y)
SD(X) ⋅ SD(Y)

= Corr (X, Y) .

The proofs for the other cases of a1, b1 ≠ 0 are analogous. Note that we defined
Corr (X, Y) = 0 if SD(X) = 0 or SD(Y) = 0.

7.8 According to Box 7.1 (x), Cov(X, Y) = Cov (X, α0 + α1X) if Y =
P
α0 + α1X. Box 6.2 (v),

(ii), and (iii) imply Var (Y) = α 2
1 Var (X). Therefore,

Corr (X, Y) = Cov (X, α0 + α1X)

SD(X) ⋅
√

α 2
1 Var (X)

= α1Var (X)
SD(X) ⋅ |α1| ⋅ SD(X)

= α1

|α1|
.

Hence, Corr (X, Y) = 1 if α1 > 0 and Corr (X, Y) = −1 if α1 < 0. Therefore,

Corr (X, Y) := Cov (X, Y)
SD(X) ⋅ SD(Y)

yields (7.46).
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7.9
α∗1 = Cov (aX, bY)

Var (aX)
[Th. 7.14 (ii)]

= ab ⋅ Cov (X, Y)
a2 ⋅ Var (X)

[Box 7.1 (iii), Box 6.2 (iii)]

= b
a
⋅ α1. [Th. 7.14 (ii)]

According to Theorem 7.14 (ii), the slope of the linear quasi-regression of c + Y on
d + X is

Cov (c + X, d + Y)
Var (c + X)

= Cov (X, Y)
Var (X)

[Box 7.1 (ii), Box 6.2 (ii)]

= α1. [Th. 7.14 (ii)]

7.10 (i) Equation (7.27) and Rule (i) of Box 6.1 imply

E(x) = [E(X1), … , E(Xn)]′ = [a1, … , an]′ = a.

(ii) Equation (7.27) and Rule (ii) of Box 6.1 imply

E(a + x) =
⎡
⎢
⎢⎣

E(a1 + X1)
...

E(an + Xn)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

a1 + E(X1)
...

an + E(Xn)

⎤
⎥
⎥⎦
= a + E(x).

(iii) Equation (7.31) and Rule (vii) of Box 6.1 imply

E(a′x) = E

(
n∑

i=1
aiXi

)
=

n∑

i=1
ai ⋅ E(Xi) = a′ E(x).

The other equations summarized in (iii) follow from the fact that a′x is a one-
dimensional random variable (see Example 2.61) and a′x = x′a.

(iv) Let a′
l and b′

l , l = 1, … , k, denote the row vectors of A and B, respectively. Apply-
ing Equation (7.27), Rule (vi) of Box 6.1, and Rule (iii) to the terms a′

l x and b′
l y,

l = 1, 2 … , k, respectively, yields

E(Ax + By) = E
⎡
⎢
⎢⎣

a′
1x + b′

1y
...

a′
kx + b′

ky

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

E
(
a′

1x + b′
1y
)

...
E
(
a′

kx + b′
ky
)
⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

E
(
a′

1x
)
+ E

(
b′

1y
)

...
E
(
a′

kx
)
+ E

(
b′

ky
)
⎤
⎥
⎥⎦

=
⎡
⎢
⎢⎣

a′
1 E(x) + b′

1 E( y)
...

a′
k E(x) + b′

k E( y)

⎤
⎥
⎥⎦
= AE(x) + BE( y).

(v) This rule is a special case of Rule (v) with B = 0.
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(vi) Let al and xl, l = 1, … , k, denote the column vectors of A′ and X, respectively.
Then Equations (7.27), (7.29) and Rule (i) imply

E(X) = [E(x1), … , E(xk)] = [E(a1), … , E(ak)] = [a1, … , ak] = A′
.

(vii) Let al and xl, l = 1, … , k, denote the column vectors of A′ and X, respectively.
Then Equations (7.27), (7.29) and Rule (ii) imply

E(A′ + X) = E(a1 + x1, … , ak + xk) = [E(a1 + x1), … , E(ak + xk)]
= [a1 + E(x1), … , ak + E(xk)] = A′ + E(X).

(viii) Let c′i , i = 1, … , l, denote the row vectors of C. Then Equations (7.27) and (7.29)
imply

E(CX) = E
⎡
⎢
⎢⎣

c′1X
...

c′l X

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

E
(
c′1X

)
...

E
(
c′l X

)
⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

c′1 E(X)
...

c′l E(X)

⎤
⎥
⎥⎦
= CE(X).

(ix) Rule (viii), Equation (7.30), and the rules for the transpose of a matrix yield

E(CX Y ′D′) = CE(X Y ′D′) [(viii)]

= C (E(DY X′))′ [(7.30)]

= C (DE(Y X ′))′ [(viii)]

= CE(Y X ′)′D′ [(7.30)]

= CE(X Y ′) D′. [(7.30)]

7.11 (i)

𝚺xy = E([x − E(x)] [ y − E( y)]′) [(7.33)]
= E(x y′ − x E( y)′ − E(x) y′ + E(x) E( y)′)
= E(x y′) − E(x) E( y)′ − E(x) E( y′) + E(x) E( y)′ [Box 7.2 (iii)]
= E(x y′) − E(x) E( y′).

(ii)
Σa+x, b+y = E([a + x − E(a + x)] [b + y − E(b + y)]′) [(7.33)]

= E([a + x − a − E(x)] [b + y − b − E( y)]′) [Box 7.2 (ii)]
= E([x − E(x)] [ y − E( y)]′)
= 𝚺xy . [(7.33)]

(iii)

ΣAx, By = E([Ax − E(Ax)] [By − E(By)]′) [(7.33)]

= E([Ax − AE(x)][By − BE( y)]′) [Box 7.2 (iv)]

= E[A[x − E(x)](B [ y − E( y)])′]

= E(A[x − E(x)] [ y − E( y)]′ B′)

= AE([x − E(x)] [ y − E( y)]′) B′ [Box 7.2 (ix)]

= A 𝚺xy B′. [(7.33)]
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(iv)

𝚺xy = E([x − E(x)] [ y − E( y)]′) [(7.33)]

= (E([x − E(x)] [ y − E( y)]′)′)′ [(A′)′ = A]

= E([[x − E(x)] [ y − E( y)]′]′)′ [(7.30)]

= E([ y − E( y)] [x − E(x)]′)′ [(ab′)′ = ba′]

= 𝚺′
yx . [(7.33)]

(v) Independence of the multivariate random variables X and Y implies Xi ⟂⟂P Yj,

for all i = 1, … , n and j = 1, … , m. Therefore, Rule (vi) of Box 7.1 implies
Cov (Xi, Yj) = 0, for all i = 1, … , n and j = 1, … , m. Equation (7.34) then implies
𝚺xy = 0.

(vi) If x =
P

a, then Rule (vii) of Box (7.1) yields Cov (Xi, Yj) = 0, for all i = 1, … , n,

j = 1, … , m. Equation (7.34) then implies 𝚺xy = 0.

(vii)

𝚺Ax + By, Cw + Dz

= E([Ax + By − E(Ax + By)] [Cw + Dz − E(Cw + Dz)]′) [(7.33)]

= E([Ax − E(Ax) + By − E(By)] [Cw − E(Cw) + Dz − E(Dz)]′)

= E([Ax − AE(x)] [Cw − CE(w)]′ + [Ax − AE(x)] [Dz − DE(z)]′

+ [By − BE( y)] [Cw − CE(w)]′ + [By − BE( y)] [Dz − DE(z)]′ [Box 7.2 (iv)]

= E(A[x − E(x)] [w − E(w)]′C′) + E(A[x − E(x)] [z − E(z)]′D′)

+ E(B[ y − E( y)] [w − E(w)]′C′) + E(B[ y − E( y)] [z − E(z)]′D′)

= AE([x − E(x)] [w − E(w)]′)C′ + AE([x − E(x)] [z − E(z)]′)D′

+ BE([ y − E( y)] [w − E(w)]′)C′ + BE([y − E( y)] [z − E(z)]′)D′ [Box 7.2 (ix)]

= A𝚺xw C′ + A𝚺xz D′ + B𝚺yw C′ + B𝚺yz D′. [(7.33)]

(viii) If x =
P

z, then Rule (x) of Box 7.1 implies that Cov (Xi, Yj) = Cov (Zi, Yj), for all

i = 1, … , n, j = 1, … , m. Equation (7.34) then implies 𝚺xy = 𝚺zy.

7.12

Q 2
Y|X = Var [Qlin(Y | X)]

Var (Y)
[(7.40)]

= Cov [Y , Qlin(Y | X)]
Var (Y)

[(7.44)]

= Cov [Y , Qlin(Y | X)] ⋅ Var [Qlin(Y | X)]
Var [Qlin(Y | X)] ⋅ Var (Y)



LINEAR QUASI-REGRESSION, COVARIANCE, AND CORRELATION 253

= Cov [Y , Qlin(Y | X)] ⋅ Cov [Y , Qlin(Y | X)]
Var [Qlin(Y | X)] ⋅ Var (Y)

[(7.44)]

= Cov [Y , Qlin(Y | X)]2

SD[Qlin(Y | X)]2 ⋅ SD(Y)2

= Corr [Y , Qlin(Y | X)]2.

Note that Corr [Y , Qlin(Y | X)] = 0 if Var [Qlin(Y | X)] = 0 [see Eq. (7.18)].



8

Some distributions

In chapter 5, we defined random variables as particular measurable mappings and their
distributions as their image measures. There, we also extended the concept of independence of
events and families of events to independence of random variables and independence of fam-
ilies of random variables. Furthermore, we introduced the concepts of a probability function
and a density of real-valued random variables, which are useful for describing distributions. In
chapters 6 and 7, we treated the expectation of a numerical random variable and related con-
cepts such as variance, covariance, and correlation. In this chapter, we provide some examples
illustrating how probability functions and densities describe the distribution of a random vari-
able and how they can be used to compute expectations and variances of real-valued random
variables.

8.1 Some distributions of discrete random variables

In this section, we treat some examples of distributions that are specified by probability func-
tions of discrete random variables: the discrete uniform, binomial, Poisson, and geometric
distributions.

8.1.1 Discrete uniform distribution

Reading the following definition, remember that pX denotes the probability function assigning
to each value xi of a discrete random variable X its probability pX(x) = P(X=xi) = PX({xi})
(see Def. 5.56 and Rem. 5.57). Furthermore, according to Remark 5.59, pX uniquely deter-
mines the distribution PX of X, which follows from σ-additivity of the measure PX .

Definition 8.1 [Discrete uniform distribution on a finite set]
LetΩ′

X = {x1, … , xn}, n ∈ N, and let X: (Ω, 𝒜, P) → (Ω′
X , 𝒫(Ω′

X)) be a random variable,
where Ω′

X = {x1, … , xn}. Then X has a (discrete) uniform distribution on Ω′
X, if

pX(xi) = P(X=xi) =
1
n

, ∀ i = 1, … , n. (8.1)

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Let Ω′
X = {x1, … , xn} and let #A′ denote the number elements of a finite set A′. According

to Equation (5.46),
(
∀ A′

⊂ Ω′
X: PX(A′) = #A′

n

)
⇔ PX is the uniform distribution on Ω′

X . (8.2)

Hence, if X has a discrete uniform distribution, then the probability of an event {X ∈ A′} only
depends on #A′, the number of elements of A′, and not on the particular choice of these ele-
ments from Ω′

X . The uniform distribution on Ω′
X is the only distribution that has this property.

A special case is treated in Example 8.6.

8.1.2 Bernoulli distribution

Now we consider n trials in which we observe whether or not an event Ai occurs at trial i,
where i = 1, … , n. These events Ai will be indicated by independent identically distributed
(i. i. d.) random variables X1, … , Xn with values Xi(ω) = 1 if ω ∈ Ai, and Xi(ω) = 0 otherwise.
Hence, Xi = 1Ai

, and P(Xi=1) = p for all i = 1, … , n.

Definition 8.2 [Finite sequence of Bernoulli variables]
Let X1, … , Xn: (Ω, 𝒜, P) → ({0, 1}, 𝒫({0, 1})) be i. i. d. random variables with

P(Xi=1) = 1 − P(Xi=0) = p, ∀ i = 1, … , n, (8.3)

where 0 ≤ p ≤ 1. Then X1, … , Xn is called a sequence of n Bernoulli variables
with parameter p, and X = (X1, … , Xn) is called an n-variate Bernoulli variable
with parameter p.

Remark 8.3 [Bernoulli distribution] Remember that a1 = a and a1−1 = a0 = 1 for a ∈ R.
Hence, for all i = 1, … , n,

pXi
(x) = px (1 − p)1−x, ∀ x ∈ {0, 1}. (8.4)

The distribution of such a random variable Xi is called the Bernoulli distribution. ⊲

As we will show in Remark 8.5, a multivariate Bernoulli variable has a multivariate
Bernoulli distribution that will now be defined.

Definition 8.4 [Multivariate Bernoulli distribution]
Let X = (X1, … , Xn): (Ω, 𝒜, P) → ({0, 1}n, 𝒫({0, 1}n)) be an n-variate random variable
and let 0 ≤ p ≤ 1. If the probability function of X is

∀ (x1, … , xn) ∈ {0, 1}n: pX(x1, … , xn) =
n∏

i=1
pxi (1 − p)1−xi , (8.5)

then PX is called the multivariate Bernoulli distribution with parameters n and p.
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Because xi ∈ {0, 1} for all i = 1, … , n, the probability pX(x1, … , xn) in (8.5) can also be
written as

pX(x1, … , xn) = p
∑n

i=1xi ⋅ (1 − p)n−∑n
i=1xi , (8.6)

where
∑n

i=1 xi is the number of ones in the sequence x1, … , xn (see Exercise 8.1).

Remark 8.5 [Probability function of a multivariate Bernoulli variable] Let X =
(X1, … , Xn) be an n-variate Bernoulli variable with parameter p. Then its probability func-
tion pX is defined by (8.5) and its distribution, PX , is the multivariate Bernoulli distribu-
tion with parameters n and p, which follows from (8.4), independence of X1, … , Xn, and
Lemma 5.68. ⊲

Example 8.6 [A special case] For p = .5, Equation (8.6) implies pX(x1, … , xn) = .5n, for all
(x1, … , xn) ∈ {0, 1}n. Hence, this multivariate Bernoulli distribution is the discrete uniform
distribution on {0, 1}n; that is, in this case an n-variate Bernoulli variable X = (X1, … , Xn)
with parameter p = .5 is uniformly distributed on {0, 1}n. ⊲

8.1.3 Binomial distribution

In the following definition, we use the binomial coefficient

(
n
x

)
:= n!

x! ⋅ (n − x)!
, n ∈ N0, x = 0, 1, … , n. (8.7)

Furthermore, a! := a ⋅ (a − 1) ⋅… ⋅ 1 denotes the factorial of a ∈ N0, where by convention
0! := 1.

Definition 8.7 [Binomial distribution]
Let X: (Ω, 𝒜, P) → (N0, 𝒫(N0)) be a discrete random variable. If

∀ x ∈ N0: pX(x) = bn, p(x) :=
{(n

x

)
p x(1 − p)n−x, if x = 0, 1, … , n

0, if x > n,
(8.8)

where n ∈ N and 0 ≤ p ≤ 1, then we use the notation X ∼ n, p and say that X has a
binomial distribution with parameters n and p.

Remark 8.8 [Distribution function] If bn, p is the probability function of X, that is, if
X ∼ n, p, then its distribution function is

∀ a ∈ R: FX(a) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0, if a < 0
k∑

x=0
bn, p(x), if k ≤ a < k + 1 and k = 0, 1, … , n − 1

1, if a ≥ n.

(8.9)
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Figure 8.1 Probability function and distribution function of a binomial distribution.

Figure 8.1 shows the probability function and the distribution function of the binomial distri-
bution for parameters n = 10 and p = .5. Figure 8.3 also shows the probability function for
parameters n = 10, p = .2 and n = 20, p = .1. Note that probabilities close to zero may not be
visible in this figure. ⊲

According to the following theorem, the sum of a sequence of n Bernoulli variables with
parameter p has a binomial distribution with parameters n and p.

Theorem 8.9 [Sum of Bernoulli variables]
Let X1, … , Xn be a sequence of n Bernoulli variables with parameter p. Then

X :=
n∑

i=1
Xi ∼ n, p. (8.10)

(Proof p. 276)

Remark 8.10 [A reformulation using events] Explicitly referring to events and their indi-
cators, Theorem 8.9 may also be formulated as follows: If (Ω, 𝒜, P) is a probability space
and, for all i = 1, … , n, Ai ∈ 𝒜 are independent with P(Ai) = p ≥ 0, then X := ∑n

i=1 1Ai
∼

n, p. ⊲

Figure 8.2 illustrates the probability function pX of X = X1 +…+ X4, where Xi indi-
cates ‘success’ in trial i, occurring with probability p = P(Xi=1) (q := 1 − p). We consider
n = 0, 1, … , 4 trials presented in the five ‘rows’ of the figure. The numbers in the circles
and ellipses are the probabilities pX(x) of the number x of successes, which are computed by
Equation (8.8) (see the ‘columns’ of the figure).

Example 8.11 [Flipping a coin n times] A simple example is flipping a coin n times. The
event Ai is flipping heads at trial i, i = 1, … , n. If p = 1∕2, then we say that the coin is
fair. If X is the number of flipping heads, that is, X = ∑n

i=1 1Ai
, then, for n=2, the values
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Figure 8.2 Probability function of the sum of i. i. d. Bernoulli variables.

of the binomial distribution are b2,1∕2(0) = P(X=0) = 1∕4, b2,1∕2(1) = P(X=1) = 1∕2, and
b2,1∕2(2) = P(X=2) = 1∕4, which have already been computed in Example 5.64. For the case
n = 4, see Exercise 8.2. ⊲

Example 8.12 [Tossing n dices] Another example is tossing n dices. The events Ai could
be tossing a six with dice i. If the probabilities are identical for all six possible out-
comes of a single trial, then we say that the dice is fair. In this case, the parameter is
p = 1∕6. If X is the number of tossing a six, then, for n=2, the values of the binomial
distribution are b2,1∕6(0) = P(X=0) = 25∕36, b2,1∕6(1) = P(X=1) = 10∕36, and b2,1∕6(2) =
P(X=2) = 1∕36. ⊲

Corollary 8.13 shows how expectation and variance of a random variable X with a binomial
distribution depend on the parameters n and p.

Corollary 8.13 [Expectation and variance]
If X ∼ n, p, then E(X) = np and Var(X) = np (1 − p).

(Proof p. 277)

8.1.4 Poisson distribution

Another discrete distribution is the Poisson distribution. According to Theorem 8.17, it is
“close” to the binomial distribution if n is large and p small.



SOME DISTRIBUTIONS 259

0

0.2

0.4

876543210

P(X = x)

x

left: binomial probability function with p = .2, n = 10
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Figure 8.3 Probability functions of binomial and Poisson distributions.

Definition 8.14 [Poisson distribution]
Let X: (Ω, 𝒜, P) → (N0, 𝒫(N0)) be a discrete random variable. If

pX(x) = λx

x!
⋅ e−λ, ∀ x ∈ N0, (8.11)

where λ > 0, then we use the notation X ∼ λ and say that X has a Poisson distribu-
tion with parameter λ.

Figure 8.3 displays this probability function for the parameter λ = 2.

Remark 8.15 [Distribution function] If X ∼ λ, then its distribution function is obtained
by sums of the probabilities pX(x) specified in Equation (8.11). More precisely,

∀ a ∈ R: FX(a) =
⎧
⎪
⎨
⎪⎩

0, if a < 0

e −λ ⋅
n∑

x=0

λx

x!
, if n ≤ a < n + 1 and n ∈ N0.

(8.12)

⊲

If X has a Poisson distribution, then, according to the following theorem, its expectation
and variance are identical, and they are equal to the parameter λ.

Theorem 8.16 [Expectation and variance]
If X ∼ λ, then E(X) = Var(X) = λ.

(Proof p. 277)

We can use the Poisson distribution for approximating the binomial distribution for large
n and small p. The following theorem is the theoretical foundation.
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Theorem 8.17 [Poisson limit theorem]
Suppose that pn, n ∈ N, is a sequence of real numbers with 0 ≤ pn ≤ 1 for all n ∈ N. If
limn→∞ n ⋅ pn = λ and 0 < λ < ∞, then,

lim
n→∞

bn, pn
(x) = λx

x!
⋅ e−λ, ∀ x ∈ N0, (8.13)

where bn, pn
denotes the probability function of a binomial distribution with parameters n

and pn.

For a proof, see Bauer (1996).

Remark 8.18 [Poisson distribution as an approximation] Assuming limn→∞ n ⋅ pn =
λ > 0 implies that the sequence p1, p2, … converges to 0. Hence, pn will be small for a large
n. Therefore, Equation (8.13) can be applied to a binomially distributed random variable X
for large n and small p. In this case, p takes the role of pn and λ = n ⋅ p takes the role of
limn→∞ n ⋅ pn in Theorem 8.17. Then,

P(X=x) =
(

n
x

)
p x(1 − p)n−x ≈ λx

x!
⋅ e−λ, ∀ x = 0, 1, … , n,

that is, the Poisson probability function approximates the binomial probability function (see
Fig. 8.3). Obviously, the approximation is better for the parameter n = 20, p = .1 than for
n = 10, p = .2 (i.e., it is better for larger n and smaller p). ⊲

8.1.5 Geometric distribution

Now we turn to an infinite sequence of Bernoulli trials, which is useful if the number of trials
cannot be fixed in advance. An example is the random experiment of flipping a coin until the
first heads occurs (see Example 8.24). In contrast to the last section, in which we considered
a finite sequence of Bernoulli trials, now we will assume p ≠ 0 and p ≠ 1.

Definition 8.19 [Infinite sequence of Bernoulli variables]
Let X1, X2, …: (Ω, 𝒜, P) → ({0, 1}, 𝒫({0, 1})) be i. i. d. random variables with

P(Xi=1) = 1 − P(Xi=0) = p, ∀ i = 1, 2, … , (8.14)

where 0 < p < 1. Then X1, X2, … is called an infinite sequence of Bernoulli
variables with parameter p.

The set Ω occurring in this definition can be specified as the set of all infinite sequences of
elements of {0, 1}. Note that it is not obvious that there is an infinite sequence of independent
random variables Xi satisfying (8.14). A proof that such an infinite sequence actually exists
can be found in Klenke (2013, Th. 2.19 and Example 2.18).



SOME DISTRIBUTIONS 261

According to Theorem 8.23 and Example 8.24, such an infinite sequence of Bernoulli
variables is closely related to the geometric distribution that is defined as follows.

Definition 8.20 [Geometric distribution]
Let X: (Ω, 𝒜, P) → (N, 𝒫(N)) be a discrete random variable. If

pX (x) = (1 − p) x−1 ⋅ p, ∀ x ∈ N, (8.15)

where 0 < p < 1, then we use the notation X ∼ p and say that X has a geometric
distribution with parameter p.

Note that, for 0 < p < 1,

∞∑

x=1
(1 − p) x−1 = 1

1 − (1 − p)
= 1

p
,

which implies
∑∞

x=1 pX (x) = 1.

Remark 8.21 [An alternative definition] Sometimes the geometric distribution is alterna-
tively defined for a random variable Y with values y ∈ N0. In this case, the probability function
is pY(y) = (1 − p) y ⋅ p. ⊲

Theorem 8.22 [Expectation and variance]
If X ∼ p, then E(X) = 1∕p and Var(X) = (1∕p2) − 1∕p.

(Proof p. 278)

In Theorem 8.23, we consider the probability function of the random variable X, the num-
ber of the trial in which the first one occurs in an infinite sequence of Bernoulli trials.

Theorem 8.23 [A class of random variables with geometric distributions]
Let X1, X2, …: (Ω, 𝒜, P) → ({0, 1}, 𝒫({0, 1})) be an infinite sequence of Bernoulli vari-
ables with parameter p. If the random variable X: (Ω, 𝒜, P) → (N, 𝒫(N)) is defined by

X(ω) = min{n ∈ N: Xn(ω) = 1}, ∀ ω ∈ Ω, (8.16)

then X has a geometric distribution with parameter p.
(Proof p. 279)

Example 8.24 [Flipping a coin until heads occurs] Consider repeatedly flipping a coin and
define the sequence of random variables X1, X2, … with Xi(ω) = 1 if heads occurs at the ith
flip and Xi(ω) = 0, otherwise. This specifies an infinite sequence of Bernoulli variables with
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Figure 8.4 Probability functions of three geometric distributions.

parameter p = .5. Now define the random variable X by Equation (8.16). Hence, X is the index
of the first of the variables Xi taking on the value 1, that is,

X(ω) = n, if X1(ω) = … = Xn−1(ω) = 0 and Xn(ω) = 1, ∀ ω ∈ Ω, n ∈ N .

Then X has a geometric distribution with parameter p = .5. ⊲

Remark 8.25 [Distribution function] If X ∼ p, then,

∀ x ∈ R: FX(x) = P(X ≤ x) =
{

0, if x < 1
1 − (1 − p)i, if i ≤ x < i + 1, i ∈ N,

(8.17)

is the distribution function of X (see Exercise 8.3). ⊲

Another discrete distribution based on an infinite sequence X1, X2, … of Bernoulli vari-
ables is the negative binomial (or Pascal) distribution (see, e.g., Johnson et al., 2005).

8.2 Some distributions of continuous random variables

8.2.1 Continuous uniform distribution

We begin with some examples using the densities of various random variables with continuous
uniform distributions.
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Example 8.26 [Uniform distribution on an interval] Let X: (Ω, 𝒜, P) → (R, ℬ) be a real-
valued random variable. Then X has a uniform distribution on the interval [a, b], a < b, a,
b ∈ R, if

fX(x) = 1
b − a

⋅ 1[a,b](x). (8.18)
⊲

Example 8.27 [Uniform distribution on a rectangle] The random variable X =
(X1, X2): (Ω, 𝒜, P) → (R2, ℬ2) has a uniform distribution on the rectangle [a, b] × [c, d], a <

b, c < d, a, b, c, d ∈ R, if

fX(x1, x2) = 1
(b − a) ⋅ (d − c)

⋅ 1[a,b](x1) ⋅ 1[c,d](x2) (8.19)

(see Fig. 8.5). Note that X has a uniform distribution on the rectangle [a, b] × [c, d] if and only
if the following three conditions hold:

(a) X1 and X2 are independent.

(b) X1 has a uniform distribution on [a, b].

(c) X2 has a uniform distribution on [c, d].

(See Cor. 5.100.) ⊲

Example 8.28 [Uniform distribution on a circle] Let X = (X1, X2): (Ω, 𝒜, P) → (R2, ℬ2)
be a random variable. Then X has a uniform distribution on the circle Br = {(x1, x2) ∈ R

2: x2
1 +

x2
2 ≤ r}, 0 < r ∈ R, if

fX(x1, x2) = 1
π ⋅ r2

1Br
(x1, x2). (8.20)

In this case, X1 and X2 are not independent. ⊲

Definition 8.29 [Continuous uniform distribution on a bounded set]
Let X: (Ω, 𝒜, P) → (Rn, ℬn) be a random variable and let B ∈ ℬn such that 0 < 𝜆n(B) <
∞. Then X has a (continuous) uniform distribution on the set B, denoted X ∼ B,
if X has a density satisfying

fX(x) = 1
𝜆n(B)

1B(x), ∀ x ∈ R
n
. (8.21)

Equation (5.40) and Theorem 3.68 imply: For B ∈ ℬn with 0 < 𝜆n(B) < ∞,

(
∀ A′∈ ℬn: P(X ∈ A′) =

𝜆n(A′)

𝜆n(B)

)
⇔ X ∼ B. (8.22)
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fX (x1, x2)

x1

x2

Figure 8.5 Density of a bivariate uniform distribution on a rectangle.

Hence, the probability of an event {X ∈ A′}, A′∈ ℬn|B, only depends on the value 𝜆n(A′) of the
Lebesgue measure 𝜆n. This is an invariance property that characterizes a continuous uniform
distribution, that is, there is no other distribution on a bounded set B ∈ ℬn that shares this
property with the uniform distribution.

In the special case n = 2, the probability P(X ∈ A′) only depends on the area of A′∈ ℬ2;
it does not depend on the location or the shape (triangle, ellipse,…) of the set A′. Figure 8.5
shows the density of a bivariate uniform distribution on a rectangle.

8.2.2 Normal distribution

Definition 8.30 [Normal distribution]
A continuous random variable X: (Ω, 𝒜, P) → (R, ℬ) has a normal distribution with
parameters μ ∈ R and σ2 > 0, denoted X ∼ μ,σ2 , if it has a density satisfying

fX(x) = 1√
2πσ2

⋅ exp

(
−

(x − μ)2

2σ2

)
, ∀ x ∈ R. (8.23)

Figure 8.6 displays the densities of the normal distributions for three different parameter pairs
of μ and σ2. Comparing the three densities to each other illustrates that μ is a location parameter
and σ2 a scale parameter.
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Figure 8.6 Densities of three normal distributions.

Theorem 8.31 [Expectation and variance]
If X ∼ μ,σ2 , then E(X) = μ and Var(X) = σ2.

For a proof, see Georgii (2008, Example 4.28).
The normal distribution with expectation μ = 0 and variance σ2 = 1 is called the standard

normal distribution. In this case, Equation (8.23) simplifies to

fX(x) = 1√
2 π

⋅ exp

(
−x 2

2

)
, ∀ x ∈ R (8.24)

(see Fig. 8.7 and Exercise 8.4).

Remark 8.32 [Distribution function] If X ∼ μ,σ2 , then its distribution function is

FX(x) = 1√
2πσ2

⋅
∫

x

−∞
exp

(
−

(t − μ)2

2σ2

)
dt, ∀ x ∈ R (8.25)

(see Cor. 5.95). If μ = 0 and σ2 = 1, then this distribution function is often denoted by Φ, and
in this case Equation (8.25) simplifies to

Φ(x) = 1√
2π

⋅
∫

x

−∞
exp

(
− t 2

2

)
dt, ∀ x ∈ R. (8.26)

Figure 8.7 displays the graphs of the density and the distribution function of the standard
normal distribution. The shaded area is the Riemann integral of the density from −∞ to .6. Its
value is Φ(.6) ≈ 0.7257, the value of the distribution function. ⊲
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Figure 8.7 Density and distribution function of the standard normal distribution.

Remark 8.33 [Linear functions of X] If X ∼ μ,σ2 , then α + β X ∼ α+βμ, β2σ2 (see Klenke,
2013, Exercise 1.5.3). ⊲

According to the central limit theorem, the limit (for n → ∞) of the sum of n independent
identically distributed (i. i. d.) random variables X1, … , Xn with positive and finite variances
has a normal distribution.

Theorem 8.34 [Central limit theorem]
Let Xi: (Ω, 𝒜, P) → (R, ℬ), i = 1, 2, …, be a sequence of real-valued i. i. d. random vari-
ables with finite expectations E(Xi) = μ and finite variances Var(Xi) = σ2 > 0. Further-
more, let Xn := Sn∕n, where Sn := ∑n

i=1 Xi, and

Zn := Sn − n μ
σ ⋅

√
n

=
(Xn − μ) ⋅

√
n

σ
. (8.27)

Then,

lim
n→∞

P(Zn ≤ z) = Φ(z), ∀ z ∈ R, (8.28)

where Φ(z) denotes the distribution function of the standard normal distribution.

For a proof, see Georgii (2008, section 5.3). The second equation of (8.27) reveals that Zn

is the Z-transformation (see Rem. 6.33) of the sample mean Xn = 1
n

∑n
i=1 Xi, because σ

/√
n

is the standard deviation of Xn (see Exercise 6.6).
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Remark 8.35 [Application of the central limit theorem] The central limit theorem can be
applied for the approximation of the distributions of sums of i. i. d. random variables. For large
n and x ∈ R,

P

(
n∑

i=1
Xi ≤ x

)
≈ Φ

(
x − n μ
σ ⋅

√
n

)
. (8.29)

Note, if the Xi are discrete and integer-valued, then for all integers k,

P

(
n∑

i=1
Xi ≤ k

)
= P

(
n∑

i=1
Xi < k + 1

)
, (8.30)

and therefore one may use the ‘correction’

P

(
n∑

i=1
Xi ≤ k

)
≈ Φ

(
k + 1

2
− n μ

σ ⋅
√

n

)
. (8.31)

Whether or not n is large enough for a good approximation can be dealt with by the
Berry-Esséen bound [see Georgii, 2008, Remark 5.30 (c)]. A rough summary is: The more
symmetric the distribution of the Xi, the faster the convergence of the limit in (8.28), that
is, small n already yield good approximations. For example, for n ≥ 12, good approxima-
tions of the distribution function of Zn are already obtained, for the symmetric distributions of
Xi ∼ [0,1] and Xi ∼ n,1∕2. In contrast, the approximation is still bad for the skewed (asym-
metric) distribution of Xi ∼ n,1∕20 even if n = 50. In the latter case, the approximation of a
binomial distribution by a Poisson distribution (see Remark 8.18) is better than by a normal
distribution. ⊲

8.2.3 Multivariate normal distribution

Now we present a generalization of the univariate normal distribution considering an n-
dimensional real-valued random variable X = (X1, … , Xn). Reading the following definition,
remember that an n × n-matrix A is called symmetric if it is identical to its transpose (i.e.,
if A = A′), and that it is positive definite if x′A x > 0 for all column vectors x ∈ R

n, x ≠ 0.
Furthermore, det 𝚺 denotes the determinant of 𝚺.

Definition 8.36 [Multivariate normal distribution]
Let 𝛍 be an n-dimensional vector of real numbers and 𝚺 a symmetric and positive definite
n × n-matrix of real numbers. Furthermore, let X = (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn)
be an n-dimensional random variable. If the function fX: R

n → R defined by

fX(x) = 1√
(2𝜋)n det 𝚺

⋅ exp
(
−1

2
(x − 𝛍)′𝚺−1(x − 𝛍)

)
, ∀ x ∈ R

n (8.32)

is a density of X, then we say that X has an n-variate (or n-dimensional) normal distri-
bution with parameters 𝛍 and 𝚺, and we denote it by X ∼ 𝛍, 𝚺.
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In section 7.4.2 we introduced the expectation of an n-dimensional random vector, and in
section 7.4.3 the variance-covariance matrix of an n-variate random variable X = (X1, … , Xn).
These concepts are used in the following theorem showing that the parameters 𝛍 and 𝚺 have
a stochastic interpretation.

Theorem 8.37 [Expectation vector and covariance matrix]
Let E(x) denote the expectation of the random vector x = [X1, … , Xn]′ and 𝚺xx the
variance-covariance matrix of the n-variate random variable X = (X1, … , Xn). If X ∼
𝛍, 𝚺, then E(x) = 𝛍 and 𝚺xx = 𝚺.

For a proof, see Georgii (2008, Th. 9.2).

Remark 8.38 [Univariate normal distribution] The univariate normal distribution (see
Def. 8.30) is in fact a special case of Definition 8.36. This can be seen as follows: If n = 1 and

X ∼ μ,σ2 , then 𝛍 = [μ] = [E(X)], 𝚺 = [σ2], det 𝚺 = σ2, and 𝚺−1 =
[

1
σ2

]
. Hence, the density

(8.32) simplifies to (8.23). ⊲

Remark 8.39 [Bivariate normal distribution] If n = 2 and X = (X1, X2) ∼ 𝛍, 𝚺, then,

𝛍 = [μ1, μ2]′ = E([X1, X2]′) = [E(X1), E(X2)]′ (8.33)

and

𝚺 = 𝚺xx =
[
σ2

1 σ12

σ21 σ2
2

]
=

[
σ2

1 𝜌 ⋅ σ1 σ2

𝜌 ⋅ σ1 σ2 σ2
2

]
, (8.34)

where ρ = Corr (X1, X2), and the density (8.32) can also be written as:

fX(x1, x2) = 1

2 π σ1σ2

√
1 − ρ2

⋅ exp

(
−

z2
1 − 2 ρ z1z2 + z2

2

2(1 − ρ2)

)
, (8.35)

where zi := (xi − μi)∕σi and σi =
√

σ2
i , for i = 1, 2 (see Fisz, 1963, section 5.11). Figure 8.8

displays the density function of a bivariate normal distribution. The volume above the rectangle
in the (x1, x2)-plane under the graph of the density is the probability that the bivariate random
variable X = (X1, X2) takes on a value in that rectangle. ⊲
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Figure 8.8 Density of a bivariate normal distribution.

Remark 8.40 [Correlation and independence] If (X1, X2) has a bivariate normal distribu-
tion and ρ = 0, then Equation (8.35) simplifies to

fX(x1, x2) = 1
2 π σ1σ2

⋅ exp
[
− 1

2

(
z2

1 + z2
2

)]

= 1√
2 π σ2

1

⋅ exp

[
−

z2
1

2

]
⋅

1√
2 π σ2

2

⋅ exp

[
−

z2
2

2

]

= fX1
(x1) ⋅ fX2

(x2).

(8.36)

According to this equation, the density of (X1, X2) is the product of the univariate normal
densities of X1 and X2, respectively [see Eq. (8.23)]. As shown in Exercise 8.5, this implies
that X1 and X2 are independent if and only if ρ = 0. Hence, under bivariate normality, X1 and
X2 are independent if and only if they are uncorrelated. ⊲

Theorem 8.41 [Linear combinations]
Let X = (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn) be an n-variate real-valued random variable
and x = [X1, … , Xn]′. Then X ∼ 𝛍, 𝚺 if and only if

∀ a = [a1, … , an]′ ∈ R
n: a′x ∼ a′𝛍, a′𝚺 a. (8.37)

For a proof and other characterizations of the multivariate normal distribution, see Tong
(1990, ch. 3).

Remark 8.42 [Special cases] If X1, … , Xn are independent random variables with Xi ∼
μi,σ2

i
, μi ∈ R and σ2

i > 0, i = 1, … , n, then 𝚺 = 𝚺xx [see Eq. (7.36)] is diagonal, and propo-

sition (8.37) with a = [1, … , 1]′ yields

n∑

i=1
Xi ∼ μS,σ2

S
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with μS = ∑n
i=1 μi and σ2

S = ∑n
i=1 σ

2
i . In particular, if X1, … , Xn is a sample, that is, if

X1, … , Xn is a sequence of i. i. d. random variables with Xi ∼ μ,σ2 , i = 1, … , n, μ ∈ R, and
σ2 > 0, then,

(Xn − μ) ⋅
√

n

σ
∼ 0,1, (8.38)

where Xn is the sample mean [see Eqs. (6.23) and (6.32)]. ⊲

Theorem 8.43 [Linear transformations]
Let X = (X1, … , Xn) ∼ 𝛍, 𝚺 and x = [X1, … , Xn]′. Furthermore, for m ≤ n, let A be an
m × n-matrix of real numbers of rank m and let c be a column m-vector of real numbers.
Then,

Ax + c ∼ A 𝛍+c, A𝚺A′ . (8.39)

For a proof, see Georgii (2008, Th. 9.5).

Example 8.44 [Univariate marginal distribution] For m = 1, A = [1, 0, … , 0], and c =
[0], Theorem 8.43 implies

X1 ∼ μ1,σ2
1
, (8.40)

where μ1 is the first coordinate of 𝛍 and σ2
1 the first diagonal element of 𝚺. ⊲

Example 8.45 [Bivariate marginal distribution] For m = 2,

A =
[

1, 0, 0, … , 0
0, 1, 0, … , 0

]
,

and c = [0, 0]′, Theorem 8.43 implies

Ax = [X1, X2]′ ∼ 𝛍12, 𝚺12
, (8.41)

where

𝛍12 := [μ1, μ2]′ = E([X1, X2]′) = [E(X1), E(X2)]′

and

𝚺12 := 𝚺Ax, Ax =
[
σ2

1 σ12

σ21 σ2
2

]
=

[
σ2

1 𝜌 ⋅ σ1 σ2

𝜌 ⋅ σ1 σ2 σ2
2

]
,

which is the variance-covariance matrix of (X1, X2) [cf. Eqs. (8.33) and (8.34)]. ⊲
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Examples 8.44 and 8.45 show that the appropriate choices of m, A, and c immediately
yield the following corollary:

Corollary 8.46 [Marginal distributions]
If X = (X1, … , Xn) ∼ 𝛍, 𝚺, then all marginal distributions are normal. In particular,
Xi ∼ μi,σ2

i
, i = 1, … , n, where μi is the ith coordinate of 𝛍 and σ2

i the ith diagonal ele-

ment of 𝚺.

8.2.4 Central 𝜒2-distribution

In the following definition, Γ: R → R denotes the gamma function defined by

Γ(a) :=
∫

∞

0
t a−1e−tdt, ∀ a ∈ R, a > 0. (8.42)

Note that

Γ(a) = (a − 1) ⋅ Γ(a − 1), for a > 1. (8.43)

Furthermore,

Γ(a) = (a − 1)! for a ∈ N, and Γ
(1

2

)
=

√
π. (8.44)
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Figure 8.9 Densities of three central 𝜒2-distributions.
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Definition 8.47 [Central 𝜒2-distribution]
Let n ∈ N. A continuous nonnegative random variable X: (Ω, 𝒜, P) → (R, ℬ) has a
central 𝜒2 -distribution with n degrees of freedom, abbreviated X ∼ 𝜒 2

n , if X has
a density satisfying

fX(x) =
⎧
⎪
⎨
⎪⎩

xn∕2−1 ⋅ e−x∕2

2n∕2 ⋅ Γ (n∕2)
, if x ≥ 0

0, if x < 0
∀ x ∈ R. (8.45)

Normal and 𝜒2-distributions are related to each other as follows:

Theorem 8.48 [Relationship between normal and 𝜒2-distributions]
If X1, … , Xn are i. i. d. random variables with standard normal distribution, then,

X :=
n∑

i=1
X2

i (8.46)

has a central 𝜒2-distribution with n degrees of freedom.

For a proof, see Fisz (1963, section 9.4).

Theorem 8.49 [Expectation and variance]
If X ∼ 𝜒 2

n , then E(X) = n and Var(X) = 2n.
(Proof p. 279)

Remark 8.50 [𝜒2-distribution in statistics] Suppose that X1, … , Xn is a sample of inde-
pendent and normally distributed random variables with expectation E(Xi) = μ and variance
Var (Xi) = σ2, for i = 1, … , n. Then,

X := 1
σ2

n∑

i=1
(Xi − 𝜇)2 ∼ 𝜒

2
n , (8.47)

and

Y := 1
σ2

n∑

i=1
(Xi − X)2 ∼ 𝜒

2
n−1, (8.48)

(see Georgii, 2008, Th. 9.17), where X = 1
n

∑n
i=1 Xi is the sample mean. ⊲
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8.2.5 Central t-distribution

In the following definition, we again use the gamma function Γ defined by Equation (8.42).

Definition 8.51 [Central t-distribution]
Let n ∈ N. A continuous random variable X: (Ω, 𝒜, P) → (R, ℬ) has a central t-dis-
tribution with n degrees of freedom, denoted X ∼ tn, if X has a density satisfying

fX(x) = Γ((n + 1)∕2)√
n π ⋅ Γ (n∕2)

(
1 + x2

n

)−(n+1)∕2

, ∀ x ∈ R. (8.49)

Figure 8.10 displays densities of three t-distributions with 1, 5, and 10 degrees of freedom,
respectively.

Theorem 8.52 [Expectation and variance]
If X ∼ tn and n > 1, then E(X) = 0, and if n > 2, then Var(X) = n∕(n − 2).

For a proof, see Johnson et al. (1995).

Remark 8.53 [Cauchy density] If X: (Ω, 𝒜, P) → (R, ℬ) has a t-distribution with n = 1
degree of freedom, then the density fX of X is also called the (standard) Cauchy density. In
this case, the expectation of X does not exist (see Example 6.12). ⊲
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Figure 8.10 Densities of the standard normal and three t-distributions.
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Theorem 8.54 [Relationship between t-, normal, and 𝜒2-distributions]
If Z ∼ 𝒩0,1, Y ∼ 𝜒2

n , and Z and Y are independent, then,

X := Z√
Y
n

(8.50)

has a t-distribution with n degrees of freedom.

For a proof, see Fisz (1963, section 9.6) or Johnson et al. (1995, chapter 28).

Remark 8.55 [Convergence of densities] The sequence fXn
, n = 1, 2, …, of densities of the

t-distributions with n degrees of freedom converges to the density of a standard normal distri-
bution for n → ∞. That is, if fXn

, n = 1, 2, …, satisfy Equation (8.49), then,

lim
n→∞

fXn
(x) = 1√

2π
⋅ exp

(
−x2

2

)
, ∀ x ∈ R (8.51)

(see Fig. 8.10 and Exercise 8.6). ⊲

Remark 8.56 [t-distribution in statistics] Suppose that X1, … , Xn are independent and nor-
mally distributed random variables with expectation E(Xi) = μ and variance Var (Xi) = σ2, for
i = 1, … , n. Then,

X := X − μ
S√
n

=
√

n ⋅
X − μ

S
∼ tn−1, (8.52)

where

X = 1
n

n∑

i=1
Xi, S2 := 1

n − 1

n∑

i=1
(Xi − X)2, and S :=

√
S2. (8.53)

For the proof of independence of X and S, see Georgii (2008, Th. 9.17). Applying Theorem
8.54, (8.48), and (8.38) then yields the result. ⊲

8.2.6 Central F-distribution

In the following definition, we again use the gamma function Γ defined by Equation (8.42).
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Figure 8.11 Densities of three F-distributions and the limit of the density of the F-
distribution for m = 10 and n to ∞.

Definition 8.57 [Central F-distribution]
Let m, n ∈ N and let X: (Ω, 𝒜, P) → (R, ℬ) be a continuous nonnegative random vari-
able. Then X has a central F -distribution with m and n degrees of freedom, abbre-
viated X ∼ Fm,n, if it has a density satisfying

fX(x) =
⎧
⎪
⎨
⎪⎩

Γ((m + n)∕2) ⋅ m m∕2 ⋅ n n∕2 ⋅ xm∕2−1

Γ (m∕2) ⋅ Γ (n∕2) ⋅ (n + mx) (m+n)∕2
, if x ≥ 0

0, if x < 0
∀ x ∈ R. (8.54)

Figure 8.11 displays the densities of three F-distributions and the limit of the density of
the F-distribution for m = 10 and n to ∞.

Theorem 8.58 [Expectation and variance]
If X ∼ Fm,n, then, for n ≥ 3, the expectation of X is E(X) = n∕(n − 2). For n ≤ 2, the expec-
tation of X is ∞. If n ≥ 5, the variance of X is

Var(X) = 2n2 ⋅ (m + n − 2)
m ⋅ (n − 2)2 ⋅ (n − 4)

. (8.55)

For n ≤ 2, the variance does not exist and for 3 ≤ n ≤ 4, the variance of X is infinite.

For a proof, see Johnson et al. (1995, chapter 27).
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Theorem 8.59 [Relationship between F- and 𝜒2-distributions]
If Z ∼ 𝜒 2

m and Y ∼ 𝜒 2
n are independent, then,

X := Z∕m
Y∕n

∼ Fm,n. (8.56)

For a proof, see Fisz (1963, section 9.7).

Remark 8.60 [F-distribution in statistics] Let Z1, … , Zn1
, Y1, … , Yn2

be independent nor-
mally distributed random variables with expectations E(Zi) = μZ , E(Yj) = μY , and variances
Var (Zi) = σ2

Z , Var (Yj) = σ2
Y , i = 1, … , n1, j = 1, … , n2, respectively. If σ2

Z = σ2
Y , then,

X :=
S2

Z

S2
Y

:=

1
n1 − 1

n1∑

i=1
(Zi − Z)2

1
n2 − 1

n2∑

i=1
(Yi − Y)2

∼ Fn1−1,n2−1, (8.57)

where

Z := 1
n1

n1∑

i=1
Zi and Y := 1

n2

n2∑

j=1
Yj (8.58)

are the sample means [see (8.48) and Th. 8.59]. ⊲

8.3 Proofs

Proof of Theorem 8.9

Let x ∈ {0, 1, … , n}. Then, for any subset Ix of {1, … , n} that has x elements, the assumptions
of independence and identical distributions of the X1, … , Xn imply

P(∀ i ∈ Ix : Xi = 1, ∀ i ∈ {1, … , n} ∖ Ix : Xi = 0) =
∏
i∈Ix

P(Xi=1) ⋅
∏

i∈{1,…,n} ∖ Ix

[1 − P(Xi=1)]

= p x(1 − p) n−x
.

Note that different subsets of {1, … , n} represent disjoint events, even if the subsets have
a nonempty intersection. Hence, as there are

(n
x

)
subsets Ix of {1, … , n} with x elements,

additivity of P implies

P(X=x) =
(

n
x

)
p x (1 − p) n−x

.
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Proof of Corollary 8.13

According to Rule (x) of Box 4.1, the distribution PX of X, which is a probability measure on
(Ω′, 𝒜 ′), is uniquely defined by the probability function pX (see Def. 5.56). Furthermore, con-
sidering g(X) := X or g(X) := [X − E(X)]2, Corollary 6.17 shows that the expectation and the
variance of X solely depend on its distribution PX . Therefore, it suffices to derive the expecta-
tion and the variance of the random variable X := ∑n

i=1 Xi on (Ω, 𝒜, P) defined in Theorem 8.9
with independent and identically distributed X1, … , Xn. Hence, the expectation of X is

E(X) = E

(
n∑

i=1
Xi

)
[def. of X]

=
n∑

i=1
E(Xi) [Box 6.1 (vi)]

=
n∑

i=1
P(Xi=1) [(6.4), (6.5)]

=
n∑

i=1
p = np. [P(Xi=1) = p]

Similarly, the variance of X is

Var (X) = Var

(
n∑

i=1
Xi

)
[def. of X]

=
n∑

i=1
Var (Xi) [Box 6.2 (vi), ⟂⟂

P
Xi]

=
n∑

i=1
p (1 − p) = np (1 − p). [Example 6.30, P(Xi=1) = p]

Proof of Theorem 8.16

If X has a Poisson distribution with parameter λ, then,

E(X) =
∞∑

x=0
x ⋅ pX(x) =

∞∑

x=1
x ⋅ pX(x) [(6.6)]

=
∞∑

x=1
x
λx

x!
⋅ e−λ [(8.11)]

= e−λ
∞∑

x=1
x ⋅

λ ⋅ λx−1

x ⋅ (x − 1)!

= e−λ λ ⋅
∞∑

x=1

λx−1

(x − 1)!
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= e−λ λ ⋅
∞∑

x=0

λx

x!

= e−λ λ eλ

[
eλ =

∞∑

x=0

λx

x!

]

= λ. [e−λ ⋅ eλ = eλ−λ]

Because E(X2) = E[X ⋅ (X − 1) + X] = E[X ⋅ (X − 1)] + E(X) and Var (X) = E(X2) − E(X)2

[see Box 6.2 (i)], we consider

E[X ⋅ (X − 1)] =
∞∑

x=0
x (x − 1) ⋅ pX(x) [(6.16)]

=
∞∑

x=0
x (x − 1)

λx

x!
⋅ e−λ [(8.11)]

= e−λ
∞∑

x=2
x (x − 1) ⋅

λ2 ⋅ λx−2

x ⋅ (x − 1) (x − 2)!

= e−λ λ2 ⋅
∞∑

x=2

λx−2

(x − 2)!

= e−λ λ2 ⋅
∞∑

x=0

λx

x!

= e−λ λ2 eλ

[
eλ =

∞∑

x=0

λx

x!

]

= λ2
. [e−λ ⋅ eλ = eλ−λ]

Because E(X) = λ, we receive Var (X) = E(X2) − E(X)2 = λ2 + λ − λ2 = λ.

Proof of Theorem 8.22

If X has a geometric distribution with parameter p and we define q := 1 − p, then,

E(X) =
∞∑

x=1
x pX(x) [(6.6)]

=
∞∑

x=1
x q x−1 ⋅ p [(8.15)]

= p ⋅
∞∑

x=1
x q x−1
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= p ⋅
∞∑

x=1

d
dq

q x
[

d
dq

q x = x q x−1
]

= p ⋅
d
dq

∞∑

x=1
q x

= p ⋅
d
dq

(
1

1 − q
− 1

) [
∞∑

x=1
q x = 1

1 − q
− 1

]

= p ⋅
1

(1 − q)2

= p ⋅
1
p2

= 1
p
. [p = 1 − q]

In the fifth equation, we used the fact that power series can be differentiated term-by-term
within their radius of convergence.

The second moment E(X2) = ∑∞
x=1 x2 pX(x) can be calculated analogously to E(X2),

except for using the second derivative with respect to q. The variance is then obtained by
Var (X) = E(X2) − E(X)2.

Proof of Theorem 8.23

Let X1, X2, … be an infinite sequence of Bernoulli variables and X be defined by Equation
(8.16). Then, for all x ∈ N:

pX(x) = P(X=x) = P(X1=0, X2=0, Xx−1=0, … , Xx=1)

=

[
x−1∏
i=0

P(Xi=0)

]
⋅ P(Xx=1) [⟂⟂

P
Xi, (5.28)]

= (1 − p) x−1 ⋅ p. [(8.14)]

According to Definition 8.20, this is the probability function of the geometric distribution.

Proof of Theorem 8.49

Let X1, … , Xn be i. i. d. and Xi ∼ 0,1, i = 1, … , n, then E(X1) = 0, Var (X1) = E(X2
1) −

E(X1)2 = E(X2
1) = 1. We start calculating:

E
(
X4

1

)
=
∫

∞

−∞
x4 fX1

(x) dx [(6.13)]

= 1√
2 𝜋

∫

∞

−∞
x4e−x2∕2 dx [(8.24)]
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= 1√
2 𝜋

(
−x3e−x2∕2||||

−∞
∞ + 3

∫

−∞

∞
x2e−x2∕2 dx

)
[integration by parts]

= 1√
2 𝜋

⋅
(

0 + 3 ⋅
√

2 𝜋 ⋅ E
(
X2

1

))
[(6.22)]

= 1√
2 𝜋

⋅
(

3 ⋅
√

2 𝜋

)
= 3.

Using this result, we obtain

Var
(
X2

1

)
= E

(
X4

1

)
− E

(
X2

1

)2 = 3 − 1 = 2.

If X ∼ 𝜒2
n , then this equation, PX = P∑n

i=1 X2
i

[see (8.46)], Corollary 6.17, ⟂⟂
P

X1, … , Xn,

Box 6.1 (vii), and Box 6.2 (vi) yield

E(X) = E

(
n∑

i=1
X2

i

)
= n ⋅ E

(
X2

1

)
= n

and

Var (X) = Var

(
n∑

i=1
X2

i

)
= n ⋅ Var

(
X2

1

)
= 2 n.

Exercises

8.1 Consider Definition 8.4 and show that (8.6) holds.

8.2 Consider the random variable X defined in Example 8.11 for n = 4 trials. Determine the
elements of Ω = {h, t}4 that yield the value X = 3. Determine the probabilities for each
{ω}, ω ∈ {X = 3}. Identify the four paths in Figure 8.2 that lead from knot 1 to knot
4 p3q. Also use this figure in order to determine P(X=3).

8.3 Show that Equation (8.17) specifies the distribution function of X if X ∼ p.

8.4 Show that the expectation of a random variable Z that has a standard normal distribution
is 0.

8.5 Use Corollary 5.100 to show that X1 and X2 are independent if and only if ρ = 0, provided
that (X1, X2) has a bivariate normal distribution with density (8.35).

8.6 Prove the proposition of Remark 8.55.
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Solutions

8.1 pX(x1, … , xn) =
n∏

i=1
p xi (1 − p)1−xi

= p
∑n

i=1xi ⋅ (1 − p)
∑n

i=1(1−xi)

= p
∑n

i=1xi ⋅ (1 − p)n−∑n
i=1xi .

8.2 If we consider n = 4 trials, then the value 3 of X is obtained by the
(4

3

)
= 4 out-

comes: ω1 = (h, h, h, t), ω2 = (h, h, t, h), ω3 = (h, t, h, h), and ω4 = (t, h, h, h). The cor-
responding probabilities are P({ω1}) = p3q, P({ω2}) = p2q p, P({ω3}) = p q p2, and
P({ω4}) = q p3. Summing these four probabilities yields P(X=3) = 4 ⋅ p3q. The four
paths from knot 1 to knot 4 p3q are: 1 → p → p2 → p3 → 4 p3q, 1 → p → p2 → 3 q p2

→ 4 p3q, 1 → p → 2 q p → 3 q p2 → 4 p3q, and 1 → q → 2 q p → 3 q p2 → 4 p3q. Using
Figure 8.2 yields P(X=3) = 4 p3q =

(4
3

)
p3q4−3. Because, in this example p = q = .5,

this yields P(X=3) = 4 p3q = 4 ⋅ .53 ⋅ .5 = .25.

8.3 For x ∈ N,

1 − FX(x) = P(X > x) [(5.51)]

= P(min{n ∈ N: Xn(ω) = 1} > x) [Th. 8.23]

= P(X1 = … = Xx = 0)

= P(X1=0) ⋅… ⋅ P(Xx=0) [(5.28)]

= (1 − p) x. [Def. 8.19]

Because X is a discrete random variable with values in N, its distribution function is a
right-continuous step function with jumps at x ∈ N, which yields Equation (8.17).

8.4 According to Theorem 6.11 and Equation (8.26), we have to show that the function

h(z) := z ⋅
1√
2π

⋅ e−z2∕2 (8.59)

is integrable and that its integral is 0. For these purposes, we consider the positive and
the negative parts of this function. The positive part is

h+(z) :=
⎧
⎪
⎨
⎪⎩

0, if z < 0

z ⋅
1√
2π

⋅ e−z2∕2, if z ≥ 0,
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and its integral is

∫

∞

−∞
h+(z) dz = 1√

2π
⋅
∫

∞

0

(
z ⋅ e−z2∕2

)
dz

= 1√
2π

⋅
(
− e−z2∕2|||

∞

0

)

= 1√
2π

⋅ [0 − (−1)] = 1√
2𝜋

.

The negative part is

h−(z) :=
⎧
⎪
⎨
⎪⎩

−z ⋅
1√
2𝜋

⋅ e−z2∕2, if z ≤ 0

0 if z > 0,

and its integral is

∫

∞

−∞
h−(z) dz = 1√

2𝜋
⋅
∫

0

−∞

(
−z ⋅ e−z2∕2

)
dz

= 1√
2𝜋

⋅
(

− e−z2∕2|||
0

−∞

)

= 1√
2𝜋

⋅ (1 − 0) = 1√
2𝜋

.

Hence, according to Definition 3.28, the function h(z) is integrable, and Equations (3.27)
and (3.68) imply

∫

∞

−∞
z ⋅

1√
2π

⋅ e−z2∕2dz = 1√
2π

− 1√
2π

= 0.

8.5 If ρ = 0, then Equation (8.36) and Corollary 5.100 imply that X1 and X2 are indepen-
dent. If ρ ≠ 0, then Cov (X1, X2) ≠ 0 [see (7.18)]. Finally, by contraposition, Rule (vi) of
Box 7.1 implies that X1 and X2 are not independent.

8.6

lim
n→∞

(
1 + x2

n

)− n+1
2

= lim
n→∞

[(
1 + x2

n

)n ]− 1
2
[

1 + x2

n

]− 1
2

=
[

lim
n→∞

(
1 + x2

n

)n ]− 1
2
[

lim
n→∞

(
1 + x2

n

)]− 1
2

=
(

e x2
)−1∕2

⋅ 1−1∕2

= e−x2∕2

(see Harris & Stocker, 1998).
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Using the Stirling formula

lim
n→∞

n!√
2 π n nne−n

= 1

and considering the subsequence of all even n ∈ N (for simplicity writing limn→∞ instead
of limn→∞,n even),

lim
n→∞

Γ
(

n
2
+ 1

2

)

√
π
√

n Γ
(

n
2

)

= lim
n→∞

1 ⋅ 3 ⋅ 5 ⋅… ⋅ (n − 1)
√
π

√
π
√

n
(

n
2
− 1

)
! 2n∕2

[(8.43), (8.44)]

= lim
n→∞

n
2
⋅ n!

√
n
(

n
2

)
! 2n∕22n∕2

(
n
2

)
!

⎡
⎢
⎢⎣
1 ⋅ 3 ⋅ 5 ⋅… ⋅ (n − 1) = n!

2n∕2
(

n
2

)
!

⎤
⎥
⎥⎦

= lim
n→∞

n
√

2 π n nne −n

2
√

n 2n
√
π n

(
n
2

)(n∕2)
e −(n∕2)

√
π n

(
n
2

)(n∕2)
e−(n∕2)

[Stirling for n!, (n∕2)!]

= lim
n→∞

n
√

2 π n nne−n

2
√

n 2n π n nn 2−ne−n

= lim
n→∞

√
2 π

2 π
= 1√

2 π
.

The proof for the subsequence of all odd n ∈ N is analogous. Combining the two limits
yields the proposition.
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Conditional expectation value and
discrete conditional expectation

In chapter 6, we introduced the concepts of covariance and correlation, which quantify the
strength of the kind of dependence that can be described by a linear quasi-regression. In the
next five chapters, we introduce the concept of a conditional expectation and a ‘genuine’
regression. These concepts can be used to describe how the (X=x)-conditional expectation
values of a numerical random variable Y depend on the values of a (numerical, non-numerical,
multivariate) random variable X. In this chapter, we start with the concepts (X=x)-conditional
expectation value and discrete conditional expectation, presuming that X is a discrete random
variable. In this case, the conditional expectation E(Y | X) is easily defined as that random
variable whose values are the conditional expectation values E(Y | X=x). In chapter 10, we
introduce the general concept of a conditional expectation, dropping the assumption that X is
discrete. Chapter 11 is devoted to the concepts of residual with respect to a conditional expec-
tation, conditional variance, conditional covariance, and partial correlation, and chapters 12
and 13 deal with parametrizations of a conditional expectation.

9.1 Conditional expectation value

Remember, the expectation of a numerical random variable Y: (Ω, 𝒜, P) → (R,ℬ) is defined
by E(Y) = ∫ Y dP, using the probability measure P. Now we choose an event B ∈ 𝒜 with
P(B) > 0 and, instead of P, we consider the B-conditional-probability measure PB: 𝒜→ [0, 1]
defined by

PB(A) := P(A | B), ∀ A ∈ 𝒜, (9.1)

(see Def. 4.29). Referring to this measure,

EB(Y) :=
∫

Y d PB, (9.2)

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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defines the PB-expectation of Y , that is, the expectation of Y with respect to the measure PB.
Reading the following definition, also remember that

{X=x} = X−1({x}) = {ω ∈ Ω: X(ω) = x}

denotes the event that the random variable X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) takes on the value x and
that we defined P(X=x) := P({X=x}) (see Rem. 5.4). Assuming P(X=x) > 0 and A ∈ 𝒜, we
denote

P(A | X=x) := P(A | {X=x}), (9.3)

Furthermore, we denote PX=x := P{X=x}. Hence, according to Equation (9.1),

PX=x(A) := P(A | X=x), ∀ A ∈ 𝒜. (9.4)

Remark 9.1 [PX=x-equivalence of f (X) and f (x)] Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random
variable, x ∈ Ω′

X , {x} ∈ 𝒜 ′
X , and P (X=x) > 0. Furthermore, let f : (Ω′

X , 𝒜 ′
X) → (Ω′, 𝒜 ′) be a

measurable mapping, then f (X) =
PX=x

f (x) (see Exercise 9.1). ⊲

The probability measures PB and PX=x are now used to define the conditional expectation
value.

Definition 9.2 [Conditional expectation value]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable.

(i) If B ∈ 𝒜 with P(B) > 0 and Y is quasi-integrable with respect to PB, then we
define

E(Y | B) := EB(Y) =
∫

Y dPB, (9.5)

call it the conditional expectation value of Y given the event B (or the
B-conditional expectation value of Y), and say that it exists.

(ii) If X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is a random variable, x ∈ Ω′
X with {x} ∈ 𝒜 ′

X and
P(X=x) > 0, and Y is quasi-integrable with respect to PX=x, then we define

E(Y | X=x) := E(Y | {X=x}) (9.6)

and call it the conditional expectation value of Y given X=x (or the (X=x)-
conditional expectation value of Y), and say that it exists.

Note that E(Y | B) can be infinite. The only restriction is that B ∈ 𝒜 with P(B) > 0 and
that Y is quasi-integrable with respect to PB. Otherwise the integral ∫ Y dPB is not defined.
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Remark 9.3 [Multivariate numerical or qualitative X] Also note that the random variable
X in Definition 9.2 (ii) can be numerical, that is, Ω′

X ⊂ R, multivariate (see section 5.3), or non-
numerical. If X = (X1, … , Xn) is a multivariate random variable, then we also use the notation
E(Y | X1=x1, … , Xn=xn) instead of E(Y | X=x) for the conditional expectation value of Y
given (X1, … , Xn) = (x1, … , xn) and call it the (X1=x1, … , Xn=xn)-conditional expectation
value of Y or the conditional expectation value of Y given X1=x1, … , Xn=xn. ⊲

The following theorem addresses the relationship between the B-conditional expectation
value of Y and the expectation of 1B ⋅ Y with respect to P.

Theorem 9.4 [B-conditional expectation value and the P-expectation]
Let the assumptions of Definition 9.2 (i) hold. Then,

(i) E(Y) exists ⇒ E(Y | B) exists.

(ii) E(Y) is finite ⇒ E(Y | B) is finite.

(iii) Furthermore, if E(Y2) is finite, then

E(Y | B) = 1
P(B)

⋅
∫

1B ⋅ Y dP = 1
P(B)

⋅ E(1B ⋅ Y) (9.7)

= 1
P(B)

⋅ Cov(Y , 1B) + E(Y). (9.8)

(Proof p. 301)

Recall the following notation:

1X=x := 1{X=x}, P (X=x) := P({X=x}), (9.9)

and

E X=x(Y) := E{X=x}(Y). (9.10)

Using this notation, Equations (9.5), (9.6), and (9.7) yield the following corollary.

Corollary 9.5 [(X=x)-conditional expectation value and P-expectation]
If the assumptions of Definition 9.2 (ii) hold, then,

E(Y | X=x) = E X=x(Y) =
∫

Y dPX=x

= 1
P(X=x)

⋅
∫

1X=x ⋅ Y dP = 1
P(X=x)

⋅ E(1X=x ⋅ Y).
(9.11)
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Remark 9.6 [B-conditional probability] If A ∈ 𝒜and P(B) > 0, then,

E(1A | B) = 1
P(B)

⋅ E(1B ⋅ 1A) [(9.7)]

= 1
P(B)

⋅ P(A ∩ B) [Box 6.1 (iv)]

= P(A | B) = PB(A). [(4.2), (9.1)]

(9.12)

Because PB is a probability measure, these equations imply 0 ≤ E(1A | B) ≤ 1. ⊲

Remark 9.7 [(X=x)-conditional probability] For B = {X=x}, using the notation (9.3) and
(9.4), Equation (9.12) implies

E(1A | X=x) = 1
P(X=x)

⋅ E(1X=x ⋅ 1A)

= 1
P(X=x)

⋅ P(A ∩ {X=x}) (9.13)

= P(A | X=x) = PX=x(A),

provided that A ∈ 𝒜and P(X=x) > 0. Equations (9.13) show that E(1A | X=x) is identical to
the conditional probability P(A | {X=x}) of A given the event {X=x} (see Def. 4.12). The term
P(A | X=x) is also called the conditional probability of A given X=x or the (X=x)-conditional
probability of A. ⊲

Remark 9.8 [(X=x)-conditional probability of {Y =y}] If Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y ) is
a random variable and the assumptions of Definition 9.2 (ii) hold, then we also use the
notation

P(Y =y | X=x) := P({Y =y} | X=x) = P(1Y =y=1 | X=x) = E(1Y =y | X=x), (9.14)

and call it the (X=x)-conditional probability of {Y =y} [see Eqs. (9.9)]. Hence, Equa-
tions (9.3), (9.14), and (4.2) yield

P(Y =y | X=x) = P(Y=y, X=x)
P(X=x)

. (9.15)
⊲

9.2 Transformation theorem

If PX=x
Y : 𝒜 ′

Y → [0, 1] denotes the distribution of Y with respect to the (X=x)-conditional-
probability measure PX=x and E X=x

Y (g) the expectation of g with respect to the distribution
PX=x

Y , then the transformation theorem (cf. Th. 6.13) for the conditional expectation value
E(Y | X=x) can be formulated as follows:
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Theorem 9.9 [Transformation theorem for E(Y | X=x)]
Let Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) and X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be random variables, and

g: (Ω′
Y , 𝒜 ′

Y ) → (R,ℬ) be a measurable function. Furthermore, let x ∈ Ω′
X with {x} ∈ 𝒜 ′

X
and P(X=x) > 0.

(i) If g is nonnegative or with finite expectation E X=x
Y (g), then,

E X=x
Y (g) =

∫
g dPX=x

Y =
∫

g(y) PX=x
Y (dy)

=
∫

g(Y) dPX=x = E X=x[g(Y)] = E[g(Y) | X=x].

(9.16)

(ii) E X=x
Y (g) is finite if and only if E X=x[g(Y)] is finite.

There are two important points in Equations (9.16). First, these equations show the rela-
tionship between integrals of the composition g(Y) with respect to the conditional-probability
measure PX=x on (Ω, 𝒜 ) on one side, and the distribution PX=x

Y of Y with respect to
PX=x on the other side. Second, E[g(Y) | X=x] is identical to the expectation of g with
respect to the distribution PX=x

Y (i.e., the distribution of Y with respect to the probabil-
ity measure PX=x). Thus, using the distribution PX=x

g(Y) of g(Y) with respect to PX=x is not
necessary.

Remark 9.10 [(X=x)-conditional expectation value of g(Y) and P-expectation] Equa-
tions (9.16) and (9.11) imply

E[g(Y) | X=x] = 1
P(X=x)

⋅
∫

1X=x ⋅ g(Y) dP = 1
P(X=x)

⋅ E[1X=x ⋅ g(Y)]. (9.17)

⊲

Remark 9.11 [A special case of the transformation theorem] Let (Ω′
Y , 𝒜 ′

Y ) = (R,ℬ) and g
be the identity function id: R → R, defined by id(y) = y for all y ∈ R, which implies id(Y) = Y .
If we assume that x ∈ Ω′

X with {x} ∈ 𝒜 ′
X and P(X=x) > 0, and that Y is nonnegative or with

finite expectation E X=x(Y), then Equations (9.16) yield

E(Y | X=x) = E X=x(Y) =
∫

Y dPX=x =
∫

y PX=x
Y (dy) =

∫
id dPX=x

Y . (9.18)

⊲

Using the notation introduced in Equations (9.14) and (9.16), Theorem 9.9 (i), and Equa-
tions (6.3) and (6.6) imply the following corollary.
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Corollary 9.12 [Y discrete, g(Y) real-valued]
Let the assumptions of Theorem 9.9 (i) hold.

(i) If Y is discrete and we assume that there is a finite set {y1, … , yn} ⊂ Ω′
Y ,

{y1}, … , {yn} ∈ 𝒜 ′
Y with PY ({y1, … , yn}) = 1, then,

E[g(Y) | X=x] =
n∑

i=1
g(yi) ⋅ P(Y =yi | X=x). (9.19)

(ii) If Y is discrete and we assume that there is a countably infinite set {y1, y2, …} ⊂

Ω′
Y , {yi} ∈ 𝒜 ′

Y , i ∈ N, with PY ({y1, y2, …}) = 1, then,

E[g(Y) | X=x] =
∞∑

i=1
g(yi) ⋅ P(Y =yi | X=x). (9.20)

Note that, in this corollary, Y does not have to be real-valued or numerical. We only assume
that g(Y) is real-valued. In contrast, in the following theorem we have to assume that Y itself
is real-valued. Remember that {y} ∈ℬ if y ∈ R [see (1.22)].

Corollary 9.13 [Discrete and real-valued Y]
Let the assumptions of Definition 9.2 (ii) hold.

(i) If Y is discrete and there is a finite set {y1, … , yn} ⊂ R of real numbers with
PY ({y1, … , yn}) = 1, then,

E(Y | X=x) =
n∑

i=1
yi ⋅ P(Y =yi | X=x). (9.21)

(ii) If Y is discrete and there is a countably infinite set {y1, y2, …} ⊂ R of real num-
bers with PY ({y1, y2, …}) = 1, then,

E(Y | X=x) =
∞∑

i=1
yi ⋅ P(Y =yi | X=x). (9.22)

9.3 Other properties

Because E(Y | B ) is defined as the expectation EB(Y) of Y with respect to the probability
measure PB, all properties of the expectation with respect to P can be translated to E(Y | B ),
simply by replacing P by PB and E(Y) by EB(Y) = E(Y | B ). Box 9.1 is such a translation of
Box 6.1. Note that, according to Theorem 9.4 (i), the conditional expectation value E(Y | B)
exists if E(Y) exists, provided that P(B) > 0. Of course, the rules for E(Y | B) also apply to the
(X=x)-conditional expectation value E(Y | X=x) [see Def. 9.2 (ii)].



DISCRETE CONDITIONAL EXPECTATION 293

Box 9.1 Rules of computation for B-conditional expectation values.

Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable, let A, B, C ∈ 𝒜 with P(B) > 0, let the
conditional expectation value E(Y | B) exist, and let α ∈ R. Then,

Y =
PB

α ⇒ E(Y | B) = α. (i)

E(α + Y | B) = α + E(Y | B) . (ii)

E(α ⋅ Y | B) = α ⋅ E(Y | B) . (iii)

E(1A ⋅ 1C | B) = P(A ∩ C | B). (iv)

For i = 1, … , n, let Yi: (Ω, 𝒜, P) → (R, ℬ) be random variables with finite B-conditional
expectation values E(Yi | B) and αi ∈ R. Then,

E

(
n∑

i=1
αi ⋅ Yi

||||
B

)
=

n∑

i=1
αi ⋅ E(Yi | B). (v)

Let X, Y: (Ω, 𝒜, P) → (R,ℬ) be random variables that are nonnegative or with finite
B-conditional expectation values. Then,

X =
PB

Y ⇒ E(X | B) = E(Y | B) . (vi)

X =
PB

Y ⇔ ∀ A ∈ 𝒜: E(1A X | B) = E(1AY | B). (vii)

X ⟂⟂
PB

Y ⇒ E(X ⋅ Y | B) = E(X | B) ⋅ E(Y | B) . (viii)

However, there are additional properties when dealing with the relationship between the
expectation and the conditional expectation value. Some of these have already been formu-
lated in Theorem 9.4. Other additional properties are summarized in Box 9.2 and proved in
Exercise 9.2.

Rule (ii) shows how the (X=x)-conditional expectation values E(Y | X=x) can be com-
puted from the conditional expectation values E(Y | X=x, Z=zi) and the conditional proba-
bilities P(Z=zi | X=x). Hence, considering Equation (9.21) and Rule (ii) in Box 9.2 shows that
we have two different equations for computing the conditional expectation value E(Y | X=x).
Finally, note that a special case of Rule (ii) is

E(Y) =
m∑

i=1
E(Y | Z=zi) ⋅ P(Z=zi) (9.23)

(see Exercise 9.3). According to this equation, we can also compute the expectation of Y from
the conditional expectations E(Y | Z=zi) and the probabilities P(Z=zi).
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Box 9.2 Rules of computation for (X=x)-conditional expectation values.

Let Y: (Ω, 𝒜, P) → (R,ℬ) and X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be random variables, and let
x ∈ Ω′

X with {x} ∈ 𝒜 ′
X and P(X=x) > 0. If E(Y | X=x) exists, f : (Ω′

X , 𝒜 ′
X) → (R, ℬ) is a

measurable function, and E(Y2), E[ f (X)2] < ∞, then,

E[ f (X) ⋅ Y | X=x] = f (x) ⋅ E(Y | X=x) = E[ f (x) ⋅ Y | X=x]. (i)

If Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) is a random variable and z1, … , zm ∈ Ω′
Z such that

PZ({z1, … , zm}) = 1 and, for all i = 1, … , m, {zi} ∈ 𝒜 ′
Z and P(X=x, Z=zi) > 0,

then,

E(Y | X=x) =
m∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x). (ii)

Correspondingly, if z1, z2, … ∈ Ω′
Z such that PZ({z1, z2, …}) = 1 and, for all i = 1, 2 …,

{zi} ∈ 𝒜 ′
Z and P(X=x, Z=zi) > 0, then,

E(Y | X=x) =
∞∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x). (iii)

9.4 Discrete conditional expectation

The discrete conditional expectation E(Y | X) of a numerical random variable Y: (Ω, 𝒜, P) →
(R,ℬ) given a random variable X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is now defined as that random vari-

able on (Ω, 𝒜, P) whose values are identical to the conditional expectation values E(Y | X=x).
In this definition, we have to assume that X is discrete, that is, we assume that there is a finite or
countable set Ω′

0 ⊂ Ω′
X such that PX(Ω′

0) = 1 and P(X=x) > 0 for all x ∈ Ω′
0 (see Def. 5.56).

In chapter 10, this limitation is dropped.

Definition 9.14 [Discrete conditional expectation]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable that is nonnegative or has a
finite expectation, and let the random variable X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be discrete.

(i) If {x1, … , xm} = Ω′
0 ⊂ Ω′

X such that PX(Ω′
0) = 1 and, for all i = 1, … , m, {xi} ∈

𝒜 ′
X and P(X=xi) > 0, then the discrete conditional expectation of Y given

X is defined by

E(Y | X) :=
m∑

i=1
E(Y | X=xi) ⋅1X=xi

. (9.24)
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(ii) If {x1, x2, …} = Ω′
0 ⊂ Ω′

X such that PX(Ω′
0) = 1 and, for all i = 1, 2, … , {xi} ∈

𝒜 ′
X and P(X=xi) > 0, then the discrete conditional expectation of Y given

X is defined by

E(Y | X) :=
∞∑

i=1
E(Y | X=xi) ⋅1X=xi

. (9.25)

Hence, in contrast to a conditional expectation value E(Y | X=x), which is a real number,
a discrete conditional expectation E(Y | X) is a discrete random variable (see Def. 5.56) on
(Ω, 𝒜, P). Note that E(Y | X) is a random variable taking a numerical value for each ω ∈ Ω.
This means that we might look at its expectation, variance, covariance, and correlation with
other random variables (see, e.g., Box 10.2 and section 11.2).

Remark 9.15 [X-conditional probability] If A ∈ 𝒜, then we use the notation

P(A | X) := E(1A | X) (9.26)

and call it the discrete X-conditional probability of A. If Y is dichotomous with values 0 and 1,
we also use the notation P(Y =1 | X) for the discrete X-conditional probability of the event
{Y =1}. If Y is dichotomous with values 0 and 1, Equations (9.21) and (9.26) then yield

P(Y =1 | X) = E(Y | X). (9.27)
⊲

Remark 9.16 [Uniqueness and values of the conditional expectation] An alternative way
to write Equations (9.24) and (9.25) is

E(Y | X)(ω) =
{

E(Y | X=x), if ω ∈ X −1({x}), ∀ x ∈ Ω′
0

0, otherwise.
(9.28)

Hence, the values of the conditional expectation E(Y | X) are uniquely defined by Equa-
tions (9.24) and (9.25) for allω ∈ Ω (see Example 9.22). Assigning the value E(Y | X)(ω) = 0 if
ω ∈ Ω ∖ X −1(Ω′

0) is arbitrary, but note that P(Ω ∖ X −1(Ω′
0)) = 0. Hence, this arbitrary assign-

ment is innocuous; it only occurs with probability 0. According to Equation (9.28) and Defi-
nition 5.56, this arbitrary assignment does not occur if P(X=x) > 0 for all x ∈ X(Ω), that is, if
Ω′

0 = X(Ω) is the image of Ω under X. ⊲

9.5 Discrete regression

Remark 9.17 [Measurability and factorization] Definition 9.14 implies that the discrete
conditional expectation E(Y | X) is a random variable on (Ω, 𝒜, P) that is measurable with
respect to X. In more formal terms, E(Y | X): (Ω, 𝒜, P) → (R,ℬ) and σ[E(Y | X)] ⊂ σ(X). The
reason is that there is a measurable function g: (Ω′

X , 𝒜 ′
X) → (R,ℬ) that is defined by

g(x) =
{

E(Y | X=x), ∀ x ∈ Ω′
0

0, otherwise.
(9.29)



296 PROBABILITY AND CONDITIONAL EXPECTATION

Ω

ΩX

X g

E(Y X) = g(X)

Figure 9.1 The conditional expectation E(Y | X) as the composition of X and its factoriza-
tion g.

Hence, E(Y | X) = g(X) (see Fig. 9.1), and Lemma 2.52 implies that E(Y | X) is measurable
with respect to X. The function g is called the factorization of E(Y | X) or, if Ω′

X = R
n, the

discrete regression of Y on X. ⊲

Definition 9.18 [Discrete regression]
Under the assumptions specified in Definition 9.14, the function g: Ω′

X → R defined
by Equation (9.29) is called the discrete regression of Y on X, if (Ω′

X , 𝒜 ′
X) =

(Rn, ℬn), n ∈ N.

Remark 9.19 [Regressand and regressor] Considering the conditional expectation
E(Y | X), we call Y the regressand and X the regressor, provided that (Ω′

X , 𝒜 ′
X) = (Rn, ℬn),

n ∈ N. ⊲

Remark 9.20 [Multivariate numerical or qualitative regressors] In general, the codomain
Ω′

X of X can be any set as long as there is a subset Ω′
0 ⊂ Ω′

X such that Ω′
0 is finite, or countable

with P(X ∈ Ω′
0) = 1 and P(X=x) > 0 for all x ∈ Ω′

0. Hence, X can be uni- or multivariate (see
Examples 9.21 and 9.22). If X = (X1, … , Xn) is a discrete multivariate random variable, then
we also use the notation E(Y | X1, … , Xn) instead of E(Y | X) for the conditional expectation
of Y given X. ⊲

9.6 Examples

We treat two examples in some detail. Example 9.21 is straightforward, whereas Example 9.22
exemplifies that the values of a conditional expectation are uniquely defined by Equation (9.24)
for all ω ∈ Ω.

Example 9.21 [Joe and Ann with randomized assignment – continued] Table 9.1 contains
three discrete conditional expectations we may consider in the example already used in Exam-
ple 1.9. All of them are random variables taking a numerical value for each ω ∈ Ω. According
to Remark 9.16, the values of E(Y | X) are the conditional expectation values E(Y | X=x) for
all x ∈ Ω′

0, and they are 0 for all x ∈ Ω′
X
∖ Ω′

0.
We start by illustrating the discrete conditional expectation of Y given X. Both random

variables, X and Y , are specified in Table 9.1. We consider the random variable X: (Ω, 𝒜, P) →
(R, ℬ). In this case, Ω′

X = R and Ω′
0 = {0, 1}. Because X takes on a value in Ω′

0 = {0, 1} for
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Table 9.1 Joe and Ann with randomized assignment: conditional expectations.

Elements of Ω Observable random variables Conditional expectations

U
ni

t

T
re

at
m

en
t

Su
cc

es
s

P
({
ω}

)

Pe
rs

on
va

ri
ab

le
U

T
re

at
m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

E
(Y

|X
,U

)

E
(Y

|X
)

P
(X

=
1
|U

)

(Joe, no, −) .09 Joe 0 0 .7 .45 .4
(Joe, no, +) .21 Joe 0 1 .7 .45 .4
(Joe, yes, −) .04 Joe 1 0 .8 .6 .4
(Joe, yes, +) .16 Joe 1 1 .8 .6 .4
(Ann, no, −) .24 Ann 0 0 .2 .45 .4
(Ann, no, +) .06 Ann 0 1 .2 .45 .4
(Ann, yes, −) .12 Ann 1 0 .4 .6 .4
(Ann, yes, +) .08 Ann 1 1 .4 .6 .4

allω ∈ Ω, the discrete conditional expectation E(Y | X) takes on either the value E(Y | X=0) or
the value E(Y | X=1). It does not take on the value 0, because {X=x} = Ø for all x ∈ R ∖ {0, 1}
[see Eq. (9.28)].

Because Y is an indicator, E(Y | X=x) = P(Y =1 | X=x) [see Eqs. (9.14) and (9.27)].
Hence, if we want to compute the values of E(Y | X) = P(Y =1 | X), then we have to com-
pute the conditional probabilities P(Y =1 | X=x). For x=0, we receive

P(Y=1 | X=0) = P(Y =1, X=0)
P(X=0)

= .21 + .06
.09 + .21 + .24 + .06

= .27
.6

= .45,

and for x=1,

P(Y =1 | X=1) = P(Y=1, X=1)
P(X=1)

= .16 + .08
.04 + .16 + .12 + .08

= .24
.4

= .6.

Now we consider the conditional expectation E(Y | X, U), where we condition on the
random variable (X, U): (Ω, 𝒜, P) → [R × ΩU, ℬ ⊗ 𝒫(ΩU)], where ΩU = {Joe, Ann}, and
Ω′

0 = {0, 1} × ΩU. Note that

∀ (x, u) ∈ (R × ΩU) ∖ ({0, 1} × ΩU): {(X=x, U=u)} = Ø.

Furthermore, because Y is an indicator, E(Y | X, U) = P(Y =1 | X, U), and this conditional
expectation has only four different values: the conditional probabilities P(Y =1 | X=x,
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U=u). For x=0, u=Joe, we receive

P(Y =1 | X=0, U=Joe) = P(Y=1, X=0, U=Joe)
P(X=0, U=Joe)

= .21
.09 + .21

= .7,

for x=1, u = Joe,

P(Y =1 | X=1, U=Joe) = P(Y=1, X=1, U=Joe)
P(X=1, U=Joe)

= .16
.04 + .16

= .8,

for x=0, u=Ann,

P(Y=1 | X=0, U=Ann) = P(Y=1, X=0, U=Ann)
P(X=0, U=Ann)

= .06
.24 + .06

= .2,

and for x=1, u=Ann,

P(Y=1 | X=1, U=Ann) = P(Y=1, X=1, U=Ann)
P(X=1, U=Ann)

= .08
.12 + .08

= .4.

⊲

Example 9.22 [No treatment for Joe] Let us use a second example in order to illustrate
the concepts introduced above. Again the random experiment consists of sampling a person,
observing the value x of the treatment variable X, that is, whether or not the sampled person
receives a treatment (x=1 vs. x=0), and observing whether or not a success criterion is reached
some time after treatment. In this new example, we fixed new probabilities of the elementary
events. For instance, now the probability that Joe receives treatment is zero. This is useful
to illustrate some general properties of discrete conditional expectations. Also note that the
probabilities of the other elementary events have been changed as well. The only restriction
on the probabilities of the elementary events in such a hypothetical example is that they sum
up to one.

Using the probabilities displayed in Table 9.2, Equation (9.21) yields:

E(Y | X=1) = P(Y=1 | X=1) = P(Y =1, X=1)
P(X=1)

= 0 + .152
0 + 0 + .228 + .152

= .4

for the treatment condition x = 1. Applying the corresponding formula to the control condi-
tion x = 0 yields E(Y | X=0) = (.348 + .024)∕(.152 + .348 + .096 + .024) = .6. Note that the
conditional probabilities P(Y=1 | X=1) and P(Y =1 | X=0) do not necessarily add up to 1.
In contrast, the sum of P(Y =1 | X=1) and P(Y =0 | X=1) and the sum of P(Y =1 | X=0)
and P(Y =0 | X=0) are always equal to 1, provided that Y is dichotomous with values 0
and 1.
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Table 9.2 No treatment for Joe with discrete conditional expectations.

Elements of Ω Observable random variables Conditional expectations

U
ni

t

T
re

at
m

en
t

Su
cc

es
s

P
({
ω}

)

Pe
rs

on
va

ri
ab

le
U

T
re

at
m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

E
(Y

|X
,U

)

E
(Y

|X
)

P
(X

=
1
|U

)

(Joe, no, −) .152 Joe 0 0 .696 .6 0
(Joe, no, +) .348 Joe 0 1 .696 .6 0
(Joe, yes, −) 0 Joe 1 0 0 .4 0
(Joe, yes, +) 0 Joe 1 1 0 .4 0
(Ann, no, −) .096 Ann 0 0 .2 .6 .76
(Ann, no, +) .024 Ann 0 1 .2 .6 .76
(Ann, yes, −) .228 Ann 1 0 .4 .4 .76
(Ann, yes, +) .152 Ann 1 1 .4 .4 .76

Table 9.2 also displays the conditional probability P(X=1 | U), whose values are the treat-
ment probabilities of Joe and Ann. For Joe, the treatment probability is P(X=1 | U=Joe) = 0,
and for Ann it is

P(X=1 | U=Ann) = (.228 + .152)∕(.096 + .024 + .228 + .152) = .76.

Finally, we compute the conditional probabilities P(Y =1 | X=x, U=u) [see Eq. (9.14)]:

P(Y =1 | X=0, U=Joe) = P(Y=1, X=0, U=Joe)
P(X=0, U=Joe)

= .348
.152 + .348

= .696,

P(Y =1 | X=0, U=Ann) = P(Y =1, X=0, U=Ann)
P(X=0, U=Ann)

= .024
.096 + .024

= .2,

P(Y =1 | X=1, U=Ann) = P(Y =1, X=1, U=Ann)
P(X=1, U=Ann)

= .152
.228 + .152

= .4.

Note that E(Y | X=1, U=Joe) is not defined, because P(X=1, U=Joe) = 0 (see Def. 9.2).
However, according to Definition 9.14 (i), E(Y | X, U)(ω) = 0 forω ∈ Ω ∖ Ω′

0 = {(Joe, yes, −),
(Joe, yes, +)}. Thus E(Y | X, U) is uniquely defined, that is, the values E(Y | X, U)(ω) are
uniquely defined for all ω ∈ Ω. ⊲
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Example 9.23 [No treatment for Joe – continued] Using the results obtained in Exam-
ple 9.22, Equation (9.24) yields:

E(Y | X) =
1∑

x=0
E(Y | X=x) ⋅1X=x

= E(Y | X=0) ⋅ 1X=0 + E(Y | X=1) ⋅ 1X=1

= .6 ⋅ 1X=0 + .4 ⋅ 1X=1.

Hence, the values E(Y | X)(ω) of the discrete X-conditional expectation of Y are

E(Y | X)(ω) = .6 ⋅ 1X=0(ω) + .4 ⋅ 1X=1(ω) = .6, if X(ω) = 0,

and

E(Y | X)(ω) = .6 ⋅ 1X=0(ω) + .4 ⋅ 1X=1(ω) = .4, if X(ω) = 1.

These are the only two values that E(Y | X) takes on depending on the outcome ω ∈ Ω of the
random experiment considered (see the first column of Table 9.2). This example illustrates
that E(Y | X) is a random variable on (Ω, 𝒜, P) just like X, Y , and U. Note again that the two
values of E(Y | X) = P(Y=1 | X) add up to 1 only by coincidence.

Table 9.2 shows two additional discrete conditional expectations, E(X | U) = P(X=1 | U)
as well as E(Y | X, U) = P(Y =1 | X, U). Again using Equation (9.24) and the results obtained
in Example 9.22, the discrete conditional probability P(X=1 | U) is

P(X=1 | U) =
∑

u
P(X=1 | U=u) ⋅ 1U=u

= P(X=1 | U=Joe) ⋅ 1U=Joe + P(X=1 | U=Ann) ⋅ 1U=Ann

= 0 ⋅ 1U=Joe + .76 ⋅ 1U=Ann = .76 ⋅ 1U=Ann.

Hence, the values P(X=1 | U)(ω) of the discrete U-conditional probability of the event {X=1}
are

P(X=1 | U)(ω) = 0 ⋅ 1U=Joe(ω) + .76 ⋅ 1U=Ann(ω) = 0, if U(ω) = Joe

and

P(X=1 | U)(ω) = 0 ⋅ 1U=Joe(ω) + .76 ⋅ 1U=Ann(ω) = .76, if U(ω) = Ann.

These are the only two values that P(X=1 | U) takes on. Again, Table 9.2 shows how the values
of P(X=1 | U) are assigned to the outcomes ω ∈ Ω.

Finally, let us turn to the discrete conditional expectation E(Y | X, U). Using the results
obtained in Example 9.22, its values are

E(Y | X, U)(ω) = E(Y | X=0, U=Joe) = .696, if X(ω) = 0 and U(ω) = Joe

E(Y | X, U)(ω) = E(Y | X=0, U=Ann) = .2, if X(ω) = 0 and U(ω) = Ann
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and

E(Y | X, U)(ω) = E(Y | X=1, U=Ann) = .4, if X(ω) = 1 and U(ω) = Ann,

whereas

E(Y | X, U)(ω) = 0, if X(ω) = 1 and U(ω) = Joe.

Note that the value E(Y | X, U)(ω) is defined for ω ∈ {X=1, U=Joe}, although the condi-
tional expectation value E(Y | X=1, U=Joe) is not defined. Also note that in this case the
value E(Y | X, U)(ω) = 0 is arbitrarily fixed. However, because P(X=1, U=Joe) = 0, this has
no disadvantageous consequences. [In chapter 10, we show that the values of a conditional
expectation can arbitrarily be fixed for all elements ω of a subset A of Ω for which P(A) = 0.]

According to Equation (9.24), the discrete conditional expectation E(Y | X, U) is

E(Y | X, U) =
∑

(x,u)
E(Y | X=x, U=u) ⋅1X=x, U=u

= .696 ⋅ 1X=0, U=Joe + .2 ⋅ 1X=0, U=Ann + .4 ⋅ 1X=1, U=Ann.

(9.30)

The pair (1, Joe) is not an element of the setΩ′
0 (see Def. 9.14), and therefore the corresponding

indicator 1X=1,U=Joe does not occur in this sum. Hence, if

ω ∈ {X=1, U=Joe} = {(Joe, yes, −), (Joe, yes, +)},

then all three indicators occurring in Equation (9.30) take on the value 0, implying that
E(Y | X, U)(ω) = 0 for these two elements of Ω. ⊲

9.7 Proofs

Proof of Theorem 9.4

E(Y | B) = EB(Y) =
∫

Y dPB [(9.5)]

=
∫

Y d

(
1

P(B)
⋅ 1B

)
⊙ P [Lem. 4.32 (ii)]

= 1
P(B)

⋅
∫

1B ⋅ Y dP [(3.72), (3.32)]

= 1
P(B)

⋅ E(1B ⋅ Y), [(6.1)]

which yields Equation (9.7). Using Lemma 3.33 (i) yields Theorem 9.4 (i), and Lemma 3.33
(ii) implies Theorem 9.4 (ii).
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If E(Y2) is finite, then E(Y) and E(1B ⋅ Y) are finite as well [see Rem. 6.25 (iii) and
Lemma 3.33 (ii)]. Therefore, according to Box 7.1 (i), Cov(1B, Y) = E(1B ⋅ Y) − E(1B) ⋅ E(Y)
is finite. Hence,

E(Y | B) = 1
P(B)

⋅ E(1B ⋅ Y) [(9.7)]

= 1
P(B)

⋅ [Cov(1B, Y) + E(1B) ⋅ E(Y)] [Box 7.1 (i)]

= 1
P(B)

⋅ Cov(1B, Y) + E(Y). [(6.4)]

Exercises

9.1 Prove the proposition of Remark 9.1.

9.2 Prove the rules of computation of conditional expectation values displayed in Box 9.2.

9.3 Show that Equation (9.23) is a special case of Rule (ii) of Box 9.2.

Solutions

9.1 It is sufficient to prove PX=x({f (X) = f (x)}c) = 0, which is equivalent to PX=x({f (X) =
f (x)}) = 1.

PX=x( f (X) = f (x)) = P( f (X) = f (x), X=x)
P (X=x)

[(9.4), (9.15)]

= P(X=x)
P (X=x)

[{X=x} ⊂ { f (X) = f (x)}, (9.9)]

= 1.

9.2 (i) E[ f (X) ⋅ Y | X=x]

= 1
P(X=x)

⋅ E[1X=x ⋅ f (X) ⋅ Y] [(9.11)]

= 1
P(X=x)

⋅ E[1X=x ⋅ f (x) ⋅ Y] [1X=x ⋅ f (X) = 1X=x ⋅ f (x)]

= f (x) ⋅
1

P(X=x)
⋅ E(1X=x ⋅ Y) [Box 6.1 (iii)]

= f (x) ⋅ E(Y | X=x) [(9.7)]

= E[ f (x) ⋅ Y | X=x]. [Box 9.1 (iii)]
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(ii) E(Y | X=x)

= 1
P(X=x)

⋅ E(1X=x ⋅ Y) [(9.11)]

= 1
P(X=x)

⋅ E

(
1X=x ⋅

m∑

i=1
1Z=zi

⋅ Y

) [
1 =

P

m∑

i=1
1Z=zi

, (5.33), Rem. 6.27
]

=
m∑

i=1

1
P(X=x)

⋅ E(1X=x ⋅ 1Z=zi
⋅ Y) [Box 6.1 (vii)]

=
m∑

i=1

P(X=x, Z=zi)
P(X=x)

⋅
1

P(X=x, Z=zi)
⋅ E(1X=x, Z=zi

⋅ Y)

=
m∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x). [(9.11), (9.15)]

(iii)

∞∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x)

=
∞∑

i=1
P(Z=zi | X=x) ⋅

1
P(X=x, Z=zi)

⋅ E(1X=x, Z=zi
⋅ Y) [(9.11)]

=
∞∑

i=1

1
P(X=x)

⋅ E(1X=x, Z=zi
⋅ Y) [(9.15)]

= 1
P(X=x)

∞∑

i=1 ∫
1X=x, Z=zi

⋅ Y dP [Def. 6.1]

= 1
P(X=x)

∞∑

i=1

[
∫

1Z=zi
⋅ 1X=x ⋅ Y+dP −

∫
1Z=zi

⋅ 1X=x ⋅ Y−dP

]
[Def. 3.28]

= 1
P(X=x)

[
∞∑

i=1 ∫
1Z=zi

⋅ 1X=x ⋅ Y+dP −
∞∑

i=1 ∫
1Z=zi

⋅ 1X=x ⋅ Y−dP

]

[1X=x ⋅ Y is quasi-integrable]

= 1
P(X=x)

[
∫

1X=x ⋅ Y+dP −
∫

1X=x ⋅ Y−dP

] [
(3.65), 1 =

P

∞∑

i=1
1Z=zi

, (5.33), (3.44)
]

= 1
P(X=x) ∫

1X=x ⋅ Y dP [Def. 3.28]

= E(Y | X=x) . [(9.11)]
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9.3 This is easily seen considering the special case X=α, α ∈ Ω′
X , that is, the case in which

X is a constant. Then {X=α} = Ω, and Equation (9.11) yields E(Y | X=α) = E(Y), and
E(Y | X=α, Z=zi) = E(Y | Z=zi). Hence, Rule (ii) of Box 9.2 yields

E(Y) =
m∑

i=1
E(Y | Z=zi) ⋅ P(Z=zi).
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Conditional expectation

In chapter 9, we treated the conditional expectation value given an event and the discrete con-
ditional expectation E(Y | X). In this chapter, we introduce the general concept of a conditional
expectation given a σ-algebra 𝒞. The price of this generalization is that a 𝒞-conditional expec-
tation is uniquely defined only up to P-equivalence; in other words, if there are two versions of
such a 𝒞-conditional expectation of a numerical random variable Y , then they are not necessar-
ily identical, but they are P-equivalent. Furthermore, if 𝒞 is generated by a random variable X,
then a 𝒞-conditional expectation is also called an X-conditional expectation of Y . This defini-
tion also applies if X is continuous. Hence, it even applies if P(X=x) = 0 for all values x of X.
In this chapter, we also define the general concept of a regression as a factorization g of a con-
ditional expectation E(Y | X) = g(X), provided that X is real-valued. Furthermore, we define
an (X=x)-conditional expectation value E(Y | X=x) as a value g(x) of the factorization g. This
means that E(Y | X=x) is defined even if P(X=x) = 0. However, E(Y | X=x) is not uniquely
defined. Nevertheless, we can formulate propositions about the conditional expectation val-
ues E(Y | X=x) for PX-almost all values x of X. Finally, we introduce the concept of mean
independence and study its relationship to stochastic independence and uncorrelatedness.

10.1 Assumptions and definitions

Throughout this chapter, we will make the following assumptions and use the following
notation.

Notation and assumptions 10.1
Y: (Ω, 𝒜, P) → (R,ℬ) is a numerical random variable that is nonnegative or has a finite
expectation E(Y). Furthermore, 𝒞 ⊂ 𝒜 is a σ-algebra, and X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is a

random variable.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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The definition of a conditional expectation given a σ-algebra is already found in
Kolmogorov (1933/1977) (see also Kolmogorov, 1956). Reading the following definition,
remember that, for a random variable V: (Ω, 𝒜, P) → (R,ℬ), we use σ(V) = V−1(ℬ) to denote
the σ-algebra generated by V , and σ(V) ⊂ 𝒞 means that V is (𝒞,ℬ)-measurable (see Def. 2.26
and Cor. 2.28).

Definition 10.2 [Conditional expectation given a σ-algebra]
Let the assumptions 10.1 hold. A random variable V: (Ω, 𝒜, P) → (R,ℬ) is called a
(version of the) 𝒞-conditional expectation of Y with respect to P, if the following two
conditions hold:

(a) σ(V) ⊂ 𝒞.

(b) E(1C ⋅ V) = E(1C ⋅ Y), ∀ C ∈ 𝒞.

If V satisfies (a) and (b), then we also use the notation E(Y |𝒞) := V.

Remark 10.3 [X-conditional expectation] If the assumptions 10.1 hold, then we define

E(Y | X) := E[Y | σ(X)] (10.1)

and call it a version of the X-conditional expectation of Y with respect to P. If there is no
ambiguity, we will omit the reference to the measure P. Otherwise, we also use the term X-
conditional P-expectation of Y . ⊲

Remark 10.4 [Conditional probability given a σ-algebra] Let the assumptions 10.1 hold,
and let A ∈ 𝒜. Then we define

P(A |𝒞) := E(1A |𝒞) (10.2)

and call it a version of the 𝒞-conditional probability of A with respect to P. Similarly, we
define

P(A | X) := E[1A | σ(X)] (10.3)

and call it a version of the X-conditional probability of A with respect to P.
Furthermore, considering the event {Y =y}, we also use the notation

P(Y =y | X) := P({Y =y} | X) = E(1Y =y | X). (10.4)
⊲

Remark 10.5 [Conditioning on the smallest σ-algebra] If 𝒞 = {Ω, Ø}, then Definition
10.2 (a) implies that E(Y |𝒞) is a constant (see Example 2.14), and in this case

E(Y |𝒞) = E(Y),

because E[1Ω ⋅ E(Y)] = E(Y) = E(1Ω ⋅ Y) and E[1Ø ⋅ E(Y)] = 0 = E(1Ø ⋅ Y) [see Def.
10.2(b)]. In fact, if 𝒞 = {Ω, Ø}, then E(Y) is the only version of the 𝒞-conditional expec-
tation of Y . Correspondingly, if X is a constant (i.e., if X = α, α ∈ Ω′

X), then

E(Y | X) = E(Y).
⊲
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Remark 10.6 [C-conditional expectation value of a 𝒞-conditional expectation] Consider
an event C ∈ 𝒞 with P(C) > 0 and a version V of the 𝒞-conditional expectation of Y defined
in Definition 10.2. Then the C-conditional expectation value of V (see Def. 9.2) is

E(V | C) = 1
P(C)

⋅ E(1C ⋅ V) [(9.7)]

= 1
P(C)

⋅ E(1C ⋅ Y) [Def. 10.2 (b)]

= E(Y | C) . [(9.7)]

(10.5)

Inserting E(Y |𝒞) = V into this equation shows that with condition (b) of Definition 10.2, we
implicitly require

E[E(Y |𝒞) | C] = E(Y | C), ∀ C ∈ 𝒞 with P(C) > 0. (10.6)

⊲

Remark 10.7 [Multivariate X] If X = (X1, … , Xn) is an n-variate random variable on
(Ω, 𝒜, P) (see section 5.3), then E(Y | X) is also denoted by E(Y | X1, … , Xn). ⊲

Remark 10.8 [𝒞-conditional and X-conditional expectation] If X: (Ω, 𝒜, P) → (R, ℬ) is
a nonnegative real-valued random variable, then σ(X2) = σ(X) [see Example 2.56 (i)]. There-
fore, in this case E(Y | X) and E(Y | X2) are just two different notations of the conditional
expectation E[Y | σ(X)]. If X takes on also negative real numbers, then σ(X2) ⊂ σ(X), but
σ(X2) = σ(X) does not necessarily hold [see Example 2.56 (ii)]. ⊲

10.2 Existence and uniqueness

By its definition, it is not obvious that a conditional expectation exists and that it is well-
defined. These issues are addressed in the following theorem.

Theorem 10.9 [Existence and uniqueness of a 𝒞-conditional expectation]
Let the assumptions 10.1 hold. Then the following two propositions hold:

(i) There is a 𝒞-measurable random variable V: (Ω, 𝒜, P) → (R,ℬ) that is non-
negative (if Y is nonnegative) or has a finite expectation E(V) (if E(Y) is finite)
satisfying

E(1C ⋅ V) = E(1C ⋅ Y), ∀ C ∈ 𝒞. (10.7)

(ii) If V , V∗: (Ω, 𝒜, P) → (R,ℬ) satisfy (10.7) and σ(V), σ(V∗) ⊂ 𝒞, then V =
P

V∗.



308 PROBABILITY AND CONDITIONAL EXPECTATION

For a proof, see Bauer (1996, Theorem 15.1). Using the term version of a conditional
expectation (see Def. 10.2) already hints at the fact that a conditional expectation, even if it
exists, is not necessarily uniquely defined. However, according to Theorem 10.9 (ii), different
versions of a conditional expectation are P-equivalent (see Remark 5.17).

Remark 10.10 [The sets ℰ (Y |𝒞) and ℰ (Y | X)] We define ℰ (Y |𝒞) to be the set of all 𝒞-
measurable random variables satisfying Equation (10.7). Hence, ℰ (Y |𝒞) is the set of all ver-
sions of the 𝒞-conditional expectation of Y with respect to the measure P. Similarly, ℰ (Y | X)
denotes the set of all versions of the X-conditional expectation of Y . The sets 𝒫(A |𝒞) and
𝒫(A | X) are defined correspondingly for conditional probabilities of an event A. ⊲

Remark 10.11 [Consistency of definitions] If X is discrete such that there is a finite or
countable set Ω′

0 ⊂ Ω′
X with PX(Ω′

0) = 1 and P(X=x) > 0 for all x ∈ Ω′
0, then the discrete

conditional expectation introduced in Definition 9.14 is a version of the conditional expectation
of Y given X defined in Remark 10.3 (see Exercises 10.1 and 10.2). Hence, if X is discrete,
then for all versions E(Y | X) ∈ ℰ (Y | X),

E(Y | X) =
P

∑

x∈Ω′
0

E(Y | X=x) ⋅1X=x (10.8)

and

∀ x ∈ Ω′
0: E(Y | X) (ω) = E(Y | X=x), if ω ∈ {X=x}. (10.9)

This equation shows that the conditional expectation E(Y | X) describes how the (X=x)-
conditional expectation values of Y depend on the values x ∈ Ω′

0. ⊲

Remark 10.12 [Uniqueness of E(Y | X)] If we addΩ′
0 = X(Ω) to the assumptions of Remark

10.11, then,

E(Y | X) =
∑

x∈X(Ω)
E(Y | X=x) ⋅1X=x. (10.10)

Hence, under these assumptions, V = V∗ for all V , V∗∈ ℰ (Y | X), that is, under these assump-
tions, there is only one single version of the X-conditional expectation of Y . The uniqueness
properties of E(Y |𝒞) in the general case are formulated in the following section. ⊲

10.2.1 Uniqueness with respect to a probability measure

Remark 10.13 [Uniqueness of E(Y |𝒞) with respect to a probability measure] Let the
assumptions 10.1 hold and let Q be a probability measure on (Ω, 𝒜 ). Then we define

E(Y |𝒞) is Q-unique ⇔ ∀ V , V∗ ∈ ℰ (Y |𝒞): V =
Q

V∗
. (10.11)

This term is convenient not only for Q = P. According to the following remark, E(Y |𝒞) is
P-unique. ⊲
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Remark 10.14 [ℰ (Y |𝒞) is a P-equivalence class] Let V ∈ ℰ (Y |𝒞) and suppose that the
random variable V∗: (Ω, 𝒜, P) → (R,ℬ) is 𝒞-measurable with V =

P
V∗. Then, according to

Theorem 3.68 (i), Equation (10.7) also holds for V∗, and this implies V∗∈ ℰ (Y |𝒞). Hence,
if V ∈ ℰ (Y |𝒞), then Theorem 10.9 (ii) implies

V∗∈ ℰ (Y |𝒞) ⇔ V∗=
P

V and V∗ is 𝒞-measurable. (10.12)

Therefore, ℰ (Y |𝒞) is the P-equivalence class of V in the set of all 𝒞-measurable random
variables (see Def. 2.74). ⊲

Remark 10.15 [P-equivalence and 𝒞-measurability] Suppose that V is a version of the
𝒞-conditional expectation, (i.e., V ∈ ℰ (Y |𝒞)) and that V∗: (Ω, 𝒜, P) → (R,ℬ) is a random
variable. Then (10.12) implies

V∗∈ ℰ (Y |𝒞) ⇒ V∗=
P

V .

However, V∗=
P

E(Y |𝒞) may be true and yet V∗∉ ℰ (Y |𝒞), because V∗=
P

E(Y |𝒞) does not

imply that V∗is 𝒞-measurable. ⊲

Remark 10.16 [Versions of E(Y |𝒞)] For simplicity, we also say that V is a version of
E(Y |𝒞), meaning V ∈ ℰ (Y |𝒞). ⊲

10.2.2 A necessary and sufficient condition of uniqueness

Now we present a necessary and sufficient condition for uniqueness of a conditional expecta-
tion for special σ-algebras 𝒞. We consider a finite or countable partition of Ω, that is, a finite
or countable set ℰ of pairwise disjoint nonempty subsets Ai of Ω with

⋃
Ai∈ℰ Ai = Ω.

Theorem 10.17 [Uniqueness of E(Y |𝒞)]
Let the assumptions 10.1 hold and let 𝒞 = σ(ℰ ), where ℰ = {A1, A2, …} is a finite or
countable partition of Ω. Then, V = V∗ for all V , V∗∈ ℰ (Y |𝒞) if and only if

P(Ai) > 0, ∀ Ai ∈ ℰ. (10.13)

(Proof p. 328)

Remark 10.18 [Values of a 𝒞-conditional expectation] Under the assumptions of Theo-
rem 10.17, the term E(Y |𝒞) is uniquely defined if and only if (10.13) holds, and in this case
we can write

E(Y |𝒞) =
∑

Ai∈ℰ
E(Y | Ai) ⋅1Ai

(10.14)
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and

∀ Ai ∈ ℰ: E(Y |𝒞)(ω) = E(Y | Ai), if ω ∈ Ai. (10.15)

This equation shows that the conditional expectation E(Y |𝒞) describes how the conditional
expectation values E(Y | Ai) depend on the events Ai ∈ ℰ (see Exercise 10.3). ⊲

10.2.3 Examples

Example 10.19 [No treatment for Joe – continued] In Table 9.2, the conditional expectation
E(Y | X) of the outcome variable Y given the treatment variable X has only two different values,
the conditional expectation values

E(Y | X=0) = .6 and E(Y | X=1) = .4.

The last but one column of Table 9.2 shows how these values are assigned to the eight possible
outcomes ω ∈ Ω. These values and E(Y | X) itself are uniquely defined.

In contrast, the conditional expectation E(Y | X, U) of Y given the treatment variable X
and the person variable U has four different values, .696, .2, .4, and 0 (see Example 9.23).
Note that these four values define only one element, say V , of ℰ (Y | X, U). If, instead of
E(Y | X, U)(ω) = 0 for ω ∈ {(Joe , yes , −), (Joe , yes , +)}, we define

E(Y | X, U) (ω) = α, α ≠ 0, α ∈ R, for ω ∈ {(Joe , yes , −), (Joe , yes , +)},

then we have a new element, say V∗, of ℰ (Y | X, U). Because α can be any nonzero real num-
ber, in this example, the set ℰ (Y | X, U) is uncountably infinite. However, because P(X=1,
U=Joe) = 0, two elements V and V∗ of ℰ (Y | X, U) are always identical with probability 1
(i.e., V and V∗ are P-equivalent). Also note that E(Y | X) and E(Y | X, U) are random variables
on the same probability space as the other random variables such as Y , X, and U. ⊲

Example 10.20 [No treatment for Joe – continued] In Example 9.23, we specified the dis-
crete conditional expectations E(Y | X), E(Y | X, U), and P(X=1 | U). Now we check whether
E(Y | X) satisfies conditions (a) and (b) of Definition 10.2. First of all,

𝒞 = {Ω, Ø, {X=0}, {X=1}} = σ(X)

is the σ-algebra generated by X, where, in this example, X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) with Ω′
X =

{0, 1} and 𝒜 ′
X = {Ω′

X , Ø, {0}, {1}}. If V ∈ ℰ (Y | X) and ℬ is the Borel σ-algebra on R,
then,

V−1(B) =
⎧
⎪
⎨
⎪⎩

Ω, if .4 ∈ B and .6 ∈ B
Ø, if .4 ∉ B and .6 ∉ B
{X=0}, if .4 ∉ B and .6 ∈ B
{X=1}, if .4 ∈ B and .6 ∉ B,

∀ B ∈ℬ.
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Hence, in this example, V−1(ℬ) = 𝒞 = σ(X). Therefore, condition (a) of Definition 10.2 is
satisfied for V = E(Y | X) specified in Example 9.23.

Now we check condition (b) of Definition 10.2. For C = Ω, this condition requires
E(1Ω ⋅ V) = E(1Ω ⋅ Y). The expectation of 1Ω ⋅ Y is

E(1Ω ⋅ Y) = E(Y) = P(Y =1) = .348 + 0 + .024 + .152 = .524,

and the expectation of 1Ω ⋅ V is

E(1Ω ⋅ V) = E(V) = .6 ⋅ P(X=0) + .4 ⋅ P(X=1)

= .6 ⋅ (.152 + .348 + .096 + .024) + .4 ⋅ (0 + 0 + .228 + .152) = .524

(see Table 9.2). For C = Ø, condition (b) of Definition 10.2 requires that E(1Ø ⋅ V) =
E(1Ø ⋅ Y), which is always true [see Box 6.1 (v)]. For C = {X=0}, condition (b) of Definition
10.2 requires E(1X=0 ⋅ V) = E(1X=0 ⋅ Y), and the expectations of 1X=0 ⋅ Y and 1X=0 ⋅ V are

E(1X=0 ⋅ Y) = E(1X=0 ⋅ 1Y =1) = P(X=0, Y=1) = .348 + .024 = .372

and

E(1X=0 ⋅ V) = .6 ⋅ P(1X=0=1, X=0) + 0 ⋅ P(1X=0=1, X=1)

= .6 ⋅ P(X=0) = .6 ⋅ (.152 + .348 + .096 + .024) = .372.

Note that the random variable 1X=0 ⋅ E(Y | X) has two values, .6 and 0 (see Table 9.2).
Finally, for C = {X=1}, condition (b) of Definition 10.2 requires that E(1X=1 ⋅ V) =

E(1X=1 ⋅ Y) and the expectations of 1X=1 ⋅ Y and 1X=1 ⋅ V are

E(1X=1 ⋅ Y) = E(1X=1 ⋅ 1Y =1) = P(X=1, Y=1) = 0 + .152 = .152

and

E(1X=1 ⋅ V) = 0 ⋅ P(1X=1=1, X=0) + .4 ⋅ P(1X=1=1, X=1)

= .4 ⋅ P(X=1) = .4 ⋅ (0 + 0 + .228 + .152) = .152

(see Table 9.2). Hence, V = E(Y | X) satisfies conditions (a) and (b) of Definition 10.2. There-
fore, V = E(Y | X) is in fact an element of ℰ (Y | X) = ℰ [Y | σ(X)]. As mentioned before,
in this example, E(Y | X) is uniquely defined. This means that it is the only element of the
set ℰ (Y | X). ⊲

10.3 Rules of computation and other properties

10.3.1 Rules of computation

Some rules of computation for 𝒞-conditional expectations are presented in Box 10.1, some of
which are analog to the rules for expectations (see Box 6.1) and to the rules for B-conditional
expectation values (see Box 9.1). In Rule (iv), the term E[E(Y |𝒞)] denotes the expectation
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Box 10.1 Rules of computation for 𝒞-conditional expectations.

Let Y , Y1, Y2: (Ω, 𝒜, P) → (R,ℬ) be numerical random variables that are nonnegative or
have a finite expectation, 𝒞 ⊂ 𝒜 a σ-algebra, and α ∈ R. Then,

E(α |𝒞) =
P
α. (i)

E(α + Y |𝒞) =
P
α + E(Y |𝒞). (ii)

E(α ⋅ Y |𝒞) =
P
α ⋅ E(Y |𝒞). (iii)

E[E(Y |𝒞)] = E(Y). (iv)

E
[
E(Y |𝒞) ||| 𝒞0

]
=
P

E(Y |𝒞0), if 𝒞0 ⊂ 𝒞 is a σ-algebra. (v)

E(Y |𝒞) =
P

E(Y), if Y ⟂⟂
P
𝒞. (vi)

E(Y |𝒞) =
P

Y , if Y is 𝒞-measurable. (vii)

E(Y |𝒞) =
P

E
[
Y ||| E(Y |𝒞)

]
. (viii)

E(Y1 |𝒞) =
P

E(Y2 |𝒞), if Y1 =P Y2. (ix)

E(Y) is finite ⇒ ∃ V ∈ ℰ (Y |𝒞): V is real-valued. (x)

E(Y2) < ∞ ⇒ E[E(Y |𝒞)2] < ∞. (xi)

Cov [Y , E(Y |𝒞)] = Var [E(Y |𝒞)], if E(Y2) < ∞. (xii)

Cov [Y1, E(Y2 |𝒞)] = Cov (Y1, Y2), if σ(Y1) ⊂ 𝒞, E(Y2
1 ), E(Y2

2 ) < ∞. (xiii)

Let E(Y2
1 ), E(Y2

2 ) < ∞ or Y1, Y2 be nonnegative. Then, σ(Y1) ⊂ 𝒞 implies

E(Y1 ⋅ Y2 |𝒞) =
P

Y1 ⋅ E(Y2 |𝒞). (xiv)

If Y1, Y2 are nonnegative or real-valued with finite expectations, then there is a nonnegative
(if Y1 is nonnegative) or real-valued (if Y1 is real-valued) version E(Y1 |𝒞) ∈ ℰ (Y1 |𝒞)
and a nonnegative (if Y2 is nonnegative) or real-valued (if Y2 is real-valued) version
E(Y2 |𝒞) ∈ ℰ (Y2 |𝒞) such that

E(Y1 + Y2 |𝒞) =
P

E(Y1 |𝒞) + E(Y2 |𝒞). (xv)

If Y1, … , Yn are real-valued with finite expectations and α1, … , αn ∈ R, then,

E

(
n∑

i=1
αi ⋅ Yi

||||
𝒞

)
=
P

n∑

i=1
αi ⋅ E(Yi |𝒞). (xvi)

(with respect to the measure P) of a 𝒞-conditional expectation of Y . Similarly, in Rule (v), the
term E[E(Y |𝒞) |𝒞0] denotes the 𝒞0-conditional expectation of the 𝒞-conditional expecta-
tion of Y , where we presume 𝒞0 ⊂ 𝒞. (For a proof of these rules, see Exercise 10.4).

For convenience, in Box 10.2 we translate these rules to X-conditional expectations, that
is, to the case in which 𝒞 = σ(X). Hence, these properties are special cases of those listed in
Box 10.1, and they do not need proofs of their own.
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Box 10.2 Rules of computation for X-conditional expectations.

Let Y , Y1, Y2: (Ω, 𝒜, P) → (R,ℬ) be numerical random variables that are nonnegative
or have a finite expectation, let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable, let

f : (Ω′
X , 𝒜 ′

X) → (R,ℬ) be measurable, and let α ∈ R. Then,

E(α | X) =
P
α. (i)

E(α + Y | X) =
P
α + E(Y | X). (ii)

E(α ⋅ Y | X) =
P
α ⋅ E(Y | X). (iii)

E[E(Y | X)] = E(Y). (iv)

E
[
E(Y | X) ||| f (X)

]
=
P

E[Y | f (X)]. (v)

E(Y | X) =
P

E(Y), if Y ⟂⟂
P

X. (vi)

E[ f (X) | X] =
P

f (X), if f (X) ≥ 0 or E[ f (X)] < ∞. (vii)

E(Y | X) =
P

E
[
Y ||| E(Y | X)

]
. (viii)

E(Y1 | X) =
P

E(Y2 | X), if Y1 =P Y2. (ix)

E(Y) is finite ⇒ ∃ V ∈ ℰ (Y | X): V is real-valued. (x)

E(Y2) < ∞ ⇒ E[E(Y | X)2] < ∞. (xi)

Cov [Y , E(Y | X)] = Var [E(Y | X)], if E(Y2) < ∞. (xii)

Cov [ f (X), E(Y | X)] = Cov [ f (X), Y], if E[ f (X)2], E(Y2) < ∞. (xiii)

Let E(Y2), E[ f (X)2] < ∞ or Y , f (X) be nonnegative. Then,

E[ f (X) ⋅ Y | X] =
P

f (X) ⋅ E(Y | X). (xiv)

If Y1, Y2 are nonnegative or real-valued with finite expectations, then there is a nonnegative
(if Y1 is nonnegative) or real-valued (if Y1 is real-valued) version E(Y1 | X) ∈ ℰ (Y1 | X) and
a nonnegative (if Y2 is nonnegative) or real-valued (if Y2 is real-valued) version E(Y2 | X) ∈
ℰ (Y2 | X) such that

E(Y1 + Y2 | X) =
P

E(Y1 | X) + E(Y2 | X) . (xv)

If Y1, … ,Yn are real-valued with finite expectations and α1, … , αn ∈ R, then,

E

(
n∑

i=1
αi ⋅ Yi

||||
X

)
=
P

n∑

i=1
αi ⋅ E(Yi | X). (xvi)
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In some of these rules, we refer to the composition f (X) = f◦X, where the function
f : (Ω′

X , 𝒜 ′
X) → (R,ℬ) is assumed to be (𝒜 ′

X ,ℬ)-measurable. Remember, according to Lemma
2.52, the composition f (X) is measurable with respect to the σ-algebra 𝒞 = X −1(𝒜 ′

X) = σ(X)
if f : Ω′

X → R is (𝒜 ′
X ,ℬ)-measurable. Furthermore, according to Corollary 2.53, the composi-

tion f (X) is measurable with respect to the σ-algebra σ(X) if f : Ω′
X → Ω′, where Ω′ is finite

or countable but not necessarily a subset of R and f is (𝒜 ′
X , 𝒫(Ω′))-measurable. According to

Equation (2.29),

σ[ f (X)] = [ f (X)]−1(ℬ) = X −1[ f−1(ℬ)] ⊂ X −1(𝒜 ′
X) = σ(X) .

In other words, we assume that the composition f (X) is measurable with respect to the
σ-algebra 𝒞 = X −1(𝒜 ′

X) = σ(X). Therefore, σ[ f (X)] can take the role of 𝒞0 in Rule (v) of
Box 10.1. Furthermore, f (X) takes the role of Y in Rule (vii) of Box 10.1, and the role of Y1
in Rules (xiii) and (xiv) of Box 10.1.

10.3.2 Monotonicity

Box 10.3 displays some monotonicity properties that are proved in Exercise 10.5. Of course, if
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is a random variable, then these properties also hold for 𝒞 = σ(X)

and E(Y | X) = E[Y | σ(X)]. For example, Rule (ix) can then be written as:

Y ≤
P

Z ⇒ E(Y | X) ≤
P

E(Z | X) (10.16)

and Rule (v) yields

Y ≥
P
α ⇒ ∃ V ∈ ℰ (Y | X): V ≥ α. (10.17)

10.3.3 Convergence theorems

Now we turn to convergence of𝒞-conditional expectations. Theorems 10.21 and 10.22 provide
sufficient conditions that allow one to exchange taking the limit and taking the conditional
expectation, for example,

lim
i→∞

E(Yi |𝒞) =
P

E( lim
i→∞

Yi |𝒞).

This is not only of technical interest for many proofs; it also describes a continuity property
of the conditional expectation: If Yi is a good approximation to Y , then E(Yi |𝒞) is a good
approximation to E(Y |𝒞).

The first theorem deals with monotone convergence, and the second with dominated con-
vergence. Reading these theorems, note that limi→∞ Yi =P Y means

P({ω ∈ Ω: lim
i→∞

Yi(ω) = Y(ω)}) = 1, (10.18)

that is, the sequence (Yi, i ∈ N) converges P-almost surely pointwise to Y .
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Box 10.3 Monotonicity of conditional expectations.

Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable that is nonnegative or with finite
expectation, 𝒞 ⊂ 𝒜 be a σ-algebra, and α ∈ R. Then,

Y ≥
P

0 and E(Y) = 0 ⇒ E(Y |𝒞) =
P

0. (i)

Y ≥
P
α ⇒ E(Y |𝒞) ≥

P
α. (ii)

Y ≤
P
α ⇒ E(Y |𝒞) ≤

P
α. (iii)

Y =
P
α ⇒ E(Y |𝒞) =

P
α. (iv)

Y ≥
P
α ⇒ ∃ V ∈ ℰ (Y |𝒞): V ≥ α. (v)

Y =
P
α ⇒ ∃ V ∈ ℰ (Y |𝒞): V = α. (vi)

Y ≤
P
α ⇒ ∃ V ∈ ℰ (Y |𝒞): V ≤ α. (vii)

Y =
P
α ⇒ E(1Y =α |𝒞) =

P
P(Y =α |𝒞) =

P
1. (viii)

Let Y , Z: (Ω, 𝒜, P) → (R,ℬ) be numerical random variables that are both nonnegative
or such that both are real-valued with finite expectations and let 𝒞 ⊂ 𝒜 be a σ-algebra.
Then,

Y ≤
P

Z ⇒ E(Y |𝒞) ≤
P

E(Z |𝒞). (ix)

If A ∈ 𝒜 with P(A) = 0, then,

E(1A |𝒞) =
P

P(A |𝒞) =
P

0. (x)

E(1Ac |𝒞) =
P

1 − E(1A |𝒞) =
P

P(Ac |𝒞) =
P

1. (xi)

Theorem 10.21 [Monotone convergence]
Let Y , Yi: (Ω, 𝒜, P) → (R,ℬ), i ∈ N, be random variables.

(i) If the sequence (Yi, i ∈ N) is increasing with limi→∞ Yi =P Y, and Yi ≥ 0, ∀ i ∈ N,

then,

lim
i→∞

E(Yi |𝒞) =
P

E(Y |𝒞) . (10.19)

(ii) If Yi ≥ 0, ∀ i ∈ N, then,

E

(
∞∑

i=1
Yi

||||
𝒞

)
=
P

∞∑

i=1
E(Yi |𝒞 ). (10.20)

(Proof p. 329)
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If the sequence (Yi, i ∈ N) is not increasing, then we need an additional assumption in
order to guarantee convergence of the conditional expectations. A sufficient condition is that
all |Yi| are dominated by the same P-integrable function Z.

Theorem 10.22 [Dominated convergence]
Let Yi: (Ω, 𝒜, P) → (R,ℬ), i ∈ N, and Z: (Ω, 𝒜, P) → (R,ℬ) be random variables. If

(a) Z has a finite expectation and |Yi| ≤ Z, ∀ i ∈ N, and

(b) Y: (Ω, 𝒜, P) → (R,ℬ) is a random variable such that limi→∞ Yi =P Y,

then,

lim
i→∞

E(Yi |𝒞) =
P

E(Y |𝒞). (10.21)

For a proof, see Klenke [2013, Theorem 8.14 (viii)].

10.4 Factorization, regression, and conditional expectation
value

As mentioned in the Preface, much empirical research uses some kind of regression in order
to investigate how the expectation of one random variable depends on the values of one or
more other random variables. This applies to analysis of variance, regression analysis, the
general linear model, the generalized linear model, factor analysis, structural equation models,
hierarchical linear models, and analysis of qualitative data. Using these methods, we aim at
learning about specific regressions. A regression is a special case of a factorization of an X-
conditional expectation, in which X is real-valued. The concept of a factorization is also used
for a general definition of a conditional expectation value.

10.4.1 Existence of a factorization

Lemma 2.52 can be applied to E(Y | X), which, by definition, is measurable with respect to X.
This immediately implies the following corollary:

Corollary 10.23 [Existence of a factorization of a conditional expectation]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (R,ℬ) be random variables, where Y is

nonnegative or with finite expectation. If E(Y | X) ∈ ℰ (Y | X), then there is a measurable
function g: (Ω′

X , 𝒜 ′
X) → (R,ℬ) such that

E(Y | X) = g ◦ X. (10.22)

Remark 10.24 [Notation] Instead of g ◦ X, we also use the notation g(X). Figure 9.1 displays
the random variable X, a factorization g, and a version E(Y | X) = g(X) ∈ ℰ (Y | X). ⊲
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Definition 10.25 [Factorization and regression]
Under the assumptions of Corollary 10.23, the function g:Ω′

X → R is called a factoriza-
tion of E(Y | X). If (Ω′

X , 𝒜 ′
X) = (Rn, ℬn), for n ∈ N and g: R

n → R, then g is also called
a regression of Y on X. In this case, Y is called the regressand and X the regressor.

Note that the definition of a regression does not refer to any parametric function. In con-
trast, this requirement is made in the definition of a linear quasi-regression (see section 7.1).
The relationship between the regression and the linear quasi-regression is considered in the
following section.

10.4.2 Conditional expectation and mean squared error

In Definition 7.2, we introduced the linear quasi-regression as that linear function f : R → R

defined by f (x) = α0 + α1x, x ∈ R, that minimizes MSE(a0, a1) = E([Y − (a0 + a1X)]2), where
X is a real-valued random variable. In a sense, the linear quasi-regression is a function f such
that the composition Qlin(Y | X) = f (X) is the best approximation of Y by a linear function of
X. Now consider the approximation (with respect to the mean squared error) of Y by a more
general function that is 𝒞 -measurable or X-measurable, respectively. Intuitively speaking, we
ask for the best approximation of Y based on the information contained in 𝒞 or in X.

Reading the following theorem, note that the right-hand sides of (10.23) and (10.24) do
not depend on the particular choice of a version of E(Y | X) ∈ ℰ (Y | X) [see Th. 10.9 (ii) and
Rule (viii) of Box 6.1].

Theorem 10.26 [Conditional expectation and mean squared error]
Let Y , Z: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables with E(Y2), E(Z2) < ∞,
let 𝒞 ⊂ 𝒜 be a σ-algebra, and suppose that Z is 𝒞-measurable. Then,

E[(Y − Z)2] ≥ E([Y − E(Y |𝒞)]2). (10.23)

and

Z =
P

E(Y |𝒞) ⇔ E[(Y − Z)2] = E([Y − E(Y |𝒞)]2). (10.24)

For a proof, see Klenke (2013, Cor. 8.17).

Remark 10.27 [Regression versus linear quasi-regression] If E(Y2) < ∞, then Theo-
rem 10.26 implies that V ∈ ℰ (Y | X) is an X-measurable random variable with E(V2) < ∞
minimizing the mean squared error E[(Y − Z)2] for all X-measurable random variables Z
with E(Z2) < ∞. Vice versa, if V is an X-measurable random variable with a finite second
moment minimizing E[(Y − Z)2] for all X-measurable random variables Z with E(Z2) < ∞,
then V ∈ ℰ (Y | X), provided that E(Y2) < ∞.

In contrast, Qlin(Y | X) is a linear function of X minimizing E([Y − (a0 + a1X)]2), a0, a1 ∈
R, provided that E(Y2) < ∞. Hence, Qlin(Y | X) is the best (with respect to the mean squared
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error) approximation of Y in the set of all linear functions of X, whereas E(Y | X) is the best
approximation of Y in the set of all X-measurable functions, provided that the second moment
of Y is finite.

According to Definition 7.2, Qlin(Y | X) = f (X), where f : R → R defined by f (x) = α0 +
α1x, x ∈ R, is the linear quasi-regression of Y on X. In contrast, a regression of Y on X is a func-
tion g: R

n → R such that there is a version E(Y | X) ∈ ℰ (Y | X) with E(Y | X) = g(X). Even
if we consider a random variable X with Ω′

X = R
n, then a regression g does not require that

it is a linear function as specified in Equation (7.39). If g is a linear function with domain
Ω′

X = R
n and there is a version E(Y | X) ∈ ℰ (Y | X) with E(Y | X) = g(X), then f = g and

Qlin(Y | X) = E(Y | X). ⊲

10.4.3 Uniqueness of a factorization

A factorization of E(Y | X) is not necessarily uniquely defined. This even applies if we consider
a fixed version E(Y | X) of the conditional expectation.

Remark 10.28 [Uniqueness of a factorization] For two elements V and V∗ of ℰ (Y | X),
there can be different factorizations g and g∗ with V = g(X) and V∗= g∗(X). This is true even
if V = V∗. Hence, there can be different factorizations of a single element V ∈ ℰ (Y | X) (see
Example 10.32). In other words, V = g(X) = g∗(X), with g ≠ g∗, is not necessarily contra-
dictory. In this case g(x) = g∗(x) for all x ∈ X(Ω), whereas g(x) = g∗(x) does not hold for all
x ∈ Ω′

X . However, Theorem 10.9 (ii) and Corollary 5.25 (i) imply the following corollary: ⊲

Corollary 10.29 [PX-equivalence of factorizations]
Let the assumptions 10.1 hold and let g, g∗: (Ω′

X , 𝒜 ′
X) → (R,ℬ) be (𝒜 ′

X,ℬ)-measurable
functions. If g(X), g∗(X) ∈ ℰ (Y | X), then,

g =
PX

g∗. (10.25)

Remark 10.30 [PX-equivalence] Note that, according to (5.12), Equation (10.25) is equiva-
lent to

g(x) = g∗(x), for PX -a.a. x ∈ Ω′
X . (10.26)

⊲

According to Remark 10.12, P(X=x) > 0 for all x ∈ X(Ω) implies that E(Y | X) is uniquely
defined. According to the following corollary, this also applies to the factorization of E(Y | X)
if we additionally assume Ω′

X = X(Ω).

Corollary 10.31 [Uniqueness of the factorization]
Let the assumptions 10.1 hold and assume P(X=x) > 0 for all x ∈ Ω′

X. Then the function
g: Ω′

X → R satisfying E(Y | X) = g(X) is uniquely defined.
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Example 10.32 [No treatment for Joe – continued] In Example 9.23, we specified E(Y | X)
with its two values

E(Y | X)(ω) = E(Y | X=0) = .6, ∀ ω ∈ Ω with X(ω) = 0,

and

E(Y | X)(ω) = E(Y | X=1) = .4, ∀ ω ∈ Ω with X(ω) = 1.

If we consider the treatment variable X: (Ω, 𝒜, P) → (R, ℬ), then g: R → R defined by

g(x) =
⎧
⎪
⎨
⎪⎩

.6, if x = 0

.4, if x = 1
α, otherwise

is a factorization of the conditional expectation of Y given X for any choice of α ∈ R. This
implies that there are different factorizations g, g∗ with g(X), g∗(X) ∈ ℰ (Y | X). However, g
and g∗ are PX-equivalent. In contrast, if we consider X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), with Ω′

X =
X(Ω) = {0, 1} and 𝒜 ′

X = 𝒫(Ω′
X), then P(X=x) > 0 for all x ∈ Ω′

X and there is only one single
factorization g: Ω′

X → R with the two values g(0) = .6 and g(1) = .4 (see Cor. 10.31). ⊲

10.4.4 Conditional expectation value

The concepts of a conditional expectation value E(Y | X=x) and a conditional probability
P(A | X=x) have been introduced in Definition 9.2 and Remark 9.7 only for P(X=x) > 0.
Now we drop this assumption and define these concepts more generally, again using the fac-
torization of a conditional expectation.

Definition 10.33 [(X=x)-conditional expectation value]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable, let Y: (Ω, 𝒜, P) → (R,ℬ) be nonneg-

ative or with finite expectation E(Y), and let g: (Ω′
X , 𝒜 ′

X) → (R,ℬ) be a function satisfying
(10.22). Then the value g(x) of g is called an (X=x)-conditional expectation value
of Y and is denoted by E(Y | X=x), that is,

E(Y | X=x) := g(x). (10.27)

Remark 10.34 [(X=x)-conditional probability] If 1A is the indicator of A ∈ 𝒜, then
E(1A | X=x) is also called an (X=x)-conditional probability of A, and it is denoted by
P(A | X=x), that is,

P(A | X=x) := E(1A | X=x). (10.28)

Furthermore, considering the event {Y =y}, we also use the notation

P(Y =y | X=x) := P({Y =y} | X=x) = E(1Y =y | X=x). (10.29)
⊲
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Remark 10.35 [Uniqueness and consistency of definitions] If P(X=x) > 0, then the
(X=x)-conditional expectation value of Y is uniquely defined, and it is identical to the term
introduced in Definition 9.2, that is,

E(Y | X=x) = E X=x(Y), if P(X=x) > 0 (10.30)

(see Exercise 10.6). In the general case, E(Y | X=x) is not uniquely defined. However, g is
uniquely defined up to PX-equivalence (see Cor. 10.29). ⊲

Remark 10.36 [Versions of a conditional expectation with a discrete X] Let
Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable that is nonnegative or with finite expectation
and suppose that X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is discrete, implying that Ω′

0⊂ Ω′
X is finite or

countable with PX(Ω′
0) = 1 and {x} ∈ 𝒜 ′

X for all x ∈ Ω′
0. Then, for all α ∈ R, the function

E(Y | X): Ω → R defined by

E(Y | X)(ω) :=
{

E(Y | X=x), if X(ω) = x and P(X=x) > 0
α, otherwise.

(10.31)

is a version of E(Y | X) ∈ ℰ (Y | X). This proposition follows from Remark 10.35 and propo-
sition (10.12). ⊲

Remark 10.37 [Values of the conditional expectation] Assume that E(Y | X) = g(X) ∈
ℰ (Y | X). Then,

E(Y | X)(ω) = g(x) = E(Y | X=x), ∀ ω ∈ Ω with X(ω) = x (10.32)

(see Exercise 10.7). This also implies that the value of E(Y | X) is constant on all sets
{X=x} = {ω ∈ Ω: X(ω) = x}. Note that this also holds if Ω is finite or countable and
some ω ∈ {X=x} have probability P({ω}) = 0. As an example, see E(Y | X)(ω) for ω ∈
{( Joe, yes, −), ( Joe, yes, +)} in Table 9.2. These two values are equal to E(Y | X=1) = .4,
although P({( Joe, yes, −)}) = P({( Joe, yes, +)}) = 0. ⊲

Remark 10.38 [Equivalent propositions] Let the assumptions 10.1 hold, and let g(X) ∈
ℰ (Y | X) and g∗: (Ω′

X , 𝒜 ′
X) → (R,ℬ) be an (𝒜 ′

X ,ℬ)-measurable function. Then proposition
(10.12) and Theorem 2.49 yield

g(X) =
P

g∗(X) ⇔ g∗(X) ∈ ℰ (Y | X) . (10.33)

⊲

Definition 10.33, Corollary 5.25, Remark 5.26, Corollary 10.29, and Equation (10.22)
imply the following corollary, according to which we may formulate propositions either in
terms of (X=x)-conditional expectation values or, equivalently, in terms of the corresponding
conditional expectations.
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Corollary 10.39 [Equivalent propositions]
Let Y1, Y2: (Ω, 𝒜, P) → (R,ℬ) be two numerical random variables that are nonnegative
or with finite expectations, and let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable. Then,

(i) E(Y1 | X) =
P

E(Y2 | X) is equivalent to

E(Y1 | X=x) = E(Y2 | X=x), for PX-a.a. x ∈ Ω′
X. (10.34)

(ii) E(Y1 | X) >
P

E(Y2 | X) is equivalent to

E(Y1 | X=x) > E(Y2 | X=x), for PX-a.a. x ∈ Ω′
X. (10.35)

(iii) E(Y1 | X) ≥
P

E(Y2 | X) is equivalent to

E(Y1 | X=x) ≥ E(Y2 | X=x), for PX-a.a. x ∈ Ω′
X. (10.36)

Remark 10.40 [(X=x)-conditional expectation value of E(Y | X)] Suppose that
f : (Ω′

X , 𝒜 ′
X) → (Ω′′, 𝒜 ′′) is a measurable mapping, w ∈ Ω′′, {w} ∈ 𝒜 ′′, and C = { f (X)=w}.

Then Equation (10.6) implies

E[E(Y | X) | f (X)=w] = E[Y | f (X)=w],

if w ∈ Ω′′ and P[ f (X)=w] > 0.
(10.37)

As a special case, this equation yields

E[E(Y | X, Z) | X=x] = E(Y | X=x), if x ∈ Ω′
X with P(X=x) > 0, (10.38)

provided that Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) is a random variable, too. If Z takes on only a finite
number of values z1, … , zm and P(X=x, Z=zi) > 0, for all i = 1, … , m, then Rule (ii) of
Box 9.2 follows from Equations (10.38) and (9.21). Similarly, applying (9.20), Equation
(10.38) yields Rule (iii) of Box 9.2 (see Exercise 10.8). ⊲

Proposition (i) of Corollary 10.39 and Rule (v) of Box 10.2 yield

E[E(Y | X) | f (X)=w] = E[Y | f (X)=w], for Pf (X)-a.a w ∈ Ω′′, (10.39)

which generalizes Equation (10.37). A special case of Equation (10.39) is

E[E(Y | X, Z) | X=x] = E(Y | X=x), for PX-a.a x ∈ Ω′
X . (10.40)

Remark 10.41 [Expectation of a conditional expectation] Applying Definition 10.33 and
Equation (6.13), Rule (iv) of Box 10.2 is equivalent to

E(Y) =
∫

E(Y | X=x) PX(dx). (10.41)
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Furthermore, if X only takes on a finite number of values x1, … , xn, then Equation (10.41) can
be written as:

E(Y) =
n∑

i=1
E(Y | X=xi) ⋅ P(X=xi) (10.42)

[see Eq. (6.3)]. ⊲

10.5 Characterizing a conditional expectation by the joint
distribution

Using the factorization and Equation (3.59) yields two conditions that are equivalent to those
occurring in Definition 10.2. In these conditions, we refer to the joint distribution PX,Y of X
and Y .

Theorem 10.42 [Conditional expectation and the joint distribution]
Let the assumptions 10.1 hold and assume that g: (Ω′

X , 𝒜 ′
X) → (R,ℬ) is measurable.

Then, g(X) ∈ ℰ (Y | X) if and only if

∫
1C′ (x) ⋅ g(x) PX(dx) =

∫
1C′ (x) ⋅ y PX,Y [d(x, y)], ∀ C′∈ 𝒜 ′

X . (10.43)

(Proof p. 329)

Remark 10.43 [Two alternative formulations] According to (3.28) and (3.59), Equation
(10.43) is equivalent to

∫C ′
g dPX =

∫{X∈ C ′}
Y dP, ∀ C′∈ 𝒜 ′

X . (10.44)

If EX(⋅) denotes the expectation with respect to the distribution PX and 1X∈ C ′ denotes the
indicator of {X ∈ C′}, then Equation (10.44) may also be written as:

EX(1C′ ⋅ g) = E(1X∈ C ′ ⋅ Y), ∀ C′∈ 𝒜 ′
X . (10.45)

⊲

Remark 10.44 [Conditional expectation with respect to a joint distribution] Note that
in Equation (10.43), we do not explicitly refer to the measure P. Instead we refer to PX,Y ,
the joint distribution of X and Y . Therefore, g(X) ∈ ℰ (Y | X) may also be called a version of
the conditional expectation of Y on X with respect to PX,Y . This can be used, for example, to
consider a conditional expectation with respect to the (Z=z)-conditional distribution PX,Y|Z=z
(see Def. 17.7). ⊲
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10.6 Conditional mean independence

In section 5.4, we defined independence of two random variables X and Y . Furthermore, in
chapter 7, introducing the covariance Cov (X, Y) and the correlation Corr (X, Y) of two numer-
ical random variables, we also defined uncorrelatedness by Cov (X, Y) = 0. Now we add two
other related concepts: mean independence and conditional mean independence.

Definition 10.45 [𝒞-conditional mean independence]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a numerical random variable that is nonnegative or has a
finite expectation E(Y) and let 𝒟 ⊂ 𝒜 be a σ-algebra.

(i) Then Y is called mean independent from 𝒟 , if

E(Y |𝒟 ) =
P

E(Y). (10.46)

(ii) Let also 𝒞 ⊂ 𝒜be a σ-algebra and let E(Y |𝒞, 𝒟 ) denote the conditional expec-
tation of Y given σ(𝒞 ∪𝒟 ). Then Y is called 𝒞-conditionally mean ind-
ependent from 𝒟 , if

E(Y |𝒞, 𝒟 ) =
P

E(Y |𝒞). (10.47)

Analogously to E(Y |𝒞, 𝒟 ) := E[Y | σ(𝒞 ∪𝒟 )], we use the notation P(A |𝒞, 𝒟 ) :=
P[A | σ(𝒞 ∪𝒟 )] for the σ(𝒞 ∪𝒟 )-conditional probability of A ∈ 𝒜.

Remark 10.46 [X-conditional mean independence] Let Y: (Ω, 𝒜, P) → (R,ℬ) be a
numerical random variable that is nonnegative or has a finite expectation E(Y), and let
Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be a random variable.

(i) Then Y is called mean independent from Z if

E(Y | Z) =
P

E(Y). (10.48)

(ii) Let also X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random variable. Then Y is called X-condi-
tionally mean independent from Z if

E(Y | X, Z) =
P

E(Y | X). (10.49)
⊲

Remark 10.47 [A special case] Of course, if 𝒟 ⊂ 𝒞, then Y is 𝒞-conditionally mean inde-
pendent from 𝒟 . In this case, σ(𝒞 ∪𝒟 ) = σ(𝒞) = 𝒞 and E(Y |𝒞, 𝒟 ) is just a different
notation of E(Y |𝒞). Correspondingly, assume that Z is measurable with respect to X. Then
σ(X, Z) = σ(X) and, therefore,

E(Y | X, Z) =
P

E(Y | X), if σ(Z) ⊂ σ(X) . (10.50)
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Table 10.1 Joe and Ann with no treatment effects.
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P
(X

=
1
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)

(Joe, no, −) .16 Joe 0 0 .2 .2 .56 .6
(Joe, no, +) .04 Joe 0 1 .2 .2 .56 .6
(Joe, yes, −) .24 Joe 1 0 .2 .2 .44 .6
(Joe, yes, +) .06 Joe 1 1 .2 .2 .44 .6
(Ann, no, −) .06 Ann 0 0 .8 .8 .56 .4
(Ann, no, +) .24 Ann 0 1 .8 .8 .56 .4
(Ann, yes, −) .04 Ann 1 0 .8 .8 .44 .4
(Ann, yes,+) .16 Ann 1 1 .8 .8 .44 .4

Hence, Y is X-conditionally mean independent from all random variables Z that are measurable
with respect to X. In these cases, Z does not carry any information additional to X. In more
formal terms, Z does not represent any event that is not already represented by X, that is,
{Z ∈ A′} ∈ σ(X), for all A′∈ 𝒜 ′

Z . ⊲

Example 10.48 [Joe and Ann with no treatment effect] Table 10.1 displays an example
for U-conditional mean independence of Y from X, that is,

E(Y | X, U) =
P

E(Y | U).

The values of the conditional expectations E(Y | X, U) and E(Y | U) can be computed in the
same way as in Example 9.21. This new example shows that E(Y | X, U) =

P
E(Y | U) does

not imply E(Y | X) =
P

E(Y). Hence, although E(Y | X) =
P

E(Y) does not hold and the conditional

expectation values E(Y | X=x) do depend on the values x of X, in a sense, the treatment variable
X is irrelevant once we condition on U. In other words, for Joe, success does not depend on
whether or not he receives treatment, and the same is true for Ann [see the column headed
E(Y | X, U)]. This example shows that the conditional expectation E(Y | X) can be completely
misleading if used for the evaluation of the effect of the treatment variable X on the outcome
variable Y . ⊲

Remark 10.49 [Implication structure among different kinds of independence] Accord-
ing to Rule (vi) of Box 10.1, independence of Y and 𝒞 implies that Y is mean independent
from 𝒞. Analogously, according to Rule (vi) of Box 10.2, independence of Y and X implies
that Y is mean independent from X. Furthermore, mean independence of Y from X implies that
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X and Y are uncorrelated, provided that X and Y are numerical and E(X2), E(Y2) < ∞ (see
Exercise 10.9). Hence, if E(X2), E(Y2) < ∞, then,

Y ⟂⟂
P

X ⇒ E(Y | X) =
P

E(Y) (10.51)

and

E(Y | X) =
P

E(Y) ⇒ Corr (X, Y) = Cov (X, Y) = 0. (10.52)
⊲

Remark 10.50 [Dichotomous Y] If Y is dichotomous with values 0 and 1 (see Example
5.10), then,

Y ⟂⟂
P

X ⇔ E(Y | X) =
P

E(Y), (10.53)

(see Exercise 10.10), which can equivalently be written as:

Y ⟂⟂
P

X ⇔ P(Y =1 | X) =
P

P(Y =1) (10.54)

[see (10.4)].
If Y is dichotomous with values y1 and y2, then,

Y ⟂⟂
P

X ⇔ P(Y =y1 | X) =
P

P(Y =y1), (10.55)

because P(1Y =y1
=1 | X) = P(Y =y1 | X) and P(1Y =y1

=1) = P(Y =y1) [see again (10.4) and
Def. 1.49]. ⊲

Now we turn to conditions that are equivalent to conditional mean independence. We start
with a theorem that only applies to a nonnegative numerical random variable Y that also has
a finite expectation. A second theorem also applies to a numerical random variable Y with a
finite second moment.

Theorem 10.51 [𝒞-conditional mean independence if E(Y) is finite]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a nonnegative random variable that has a finite expectation
E(Y) and let 𝒞, 𝒟 ⊂ 𝒜be σ-algebras. Then the following two propositions are equivalent
to each other:

(a) E(Y |𝒞, 𝒟 ) =
P

E(Y |𝒞).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are nonnegative and 𝒟 -
measurable,

E(W⋅Y |𝒞) =
P

E(W |𝒞) ⋅ E(Y |𝒞). (10.56)

(Proof p. 330)
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Remark 10.52 [Mean independence from a σ-algebra] For 𝒞 = {Ω, Ø}, Theorem 10.51
and Remark 10.5 immediately yield the following proposition: If Y: (Ω, 𝒜, P) → (R,ℬ) is a
nonnegative random variable that has a finite expectation E(Y) and 𝒟 ⊂ 𝒜 is a σ-algebra, then
the following two propositions are equivalent to each other:

(a) E(Y |𝒟 ) =
P

E(Y).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are nonnegative and 𝒟 -
measurable,

E(W⋅Y) = E(W) ⋅ E(Y). (10.57)
⊲

In Theorem 10.51, we required that Y is nonnegative and has a finite expectation. The
implication of conditional mean independence formulated in proposition (i) of the following
theorem is not restricted to nonnegative random variables Y . Instead, we assume that Y has a
finite second moment.

Theorem 10.53 [𝒞-conditional mean independence if E(Y2) is finite]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable that has a finite second moment E(Y2),
let 𝒞, 𝒟 ⊂ 𝒜 be σ-algebras, and consider:

(a) E(Y |𝒞, 𝒟 ) =
P

E(Y |𝒞).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are 𝒟 -measurable and
have a finite second moment E(W2),

E(W⋅Y |𝒞) =
P

E(W |𝒞) ⋅ E(Y |𝒞). (10.58)

Then,

(i) (a) implies (b).

(ii) If, additionally, Y is nonnegative, then (a) and (b) are equivalent to each other.
(Proof p. 330)

Remark 10.54 [Mean independence if E(Y2) is finite] For 𝒞 = {Ω, Ø}, Theorem 10.53
and Remark 10.5 immediately yield the following proposition. Let Y: (Ω, 𝒜, P) → (R,ℬ) be
a random variable that has a finite second moment E(Y2), let 𝒟 ⊂ 𝒜be a σ-algebra, and con-
sider:

(a) E(Y |𝒟 ) =
P

E(Y).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are 𝒟 -measurable and have a
finite second moment E(W2),

E(W⋅Y) = E(W) ⋅ E(Y). (10.59)
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Then,

(i) (a) implies (b).

(ii) If Y is also nonnegative, then (a) and (b) are equivalent to each other. ⊲

For𝒞 = σ(X) and𝒟 = σ(Z), Theorem 10.51 immediately implies the following corollary.

Corollary 10.55 [X-conditional mean independence if E(Y) is finite]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a nonnegative random variable that has a finite expectation
E(Y), and let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random vari-

ables. Then the following two propositions are equivalent to each other:

(a) E(Y | X, Z) =
P

E(Y | X).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are nonnegative and Z-
measurable,

E(W⋅Y | X) =
P

E(W | X) ⋅ E(Y | X). (10.60)

Similarly, for 𝒞 = σ(X) and 𝒟 = σ(Z), Theorem 10.53 immediately implies the following
corollary.

Corollary 10.56 [X-conditional mean independence if E(Y2) is finite]
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable that has a finite second moment E(Y2),
let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables, and con-

sider:

(a) E(Y | X, Z) =
P

E(Y | X).

(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are Z-measurable and have
a finite second moment E(W2),

E(W⋅Y | X) =
P

E(W | X) ⋅ E(Y | X). (10.61)

Then,

(i) (a) implies (b).

(ii) If Y is also nonnegative, then (a) and (b) are equivalent to each other.

Remark 10.57 [Mean independence from a random variable] For X = α, α ∈ Ω′
X , this

corollary and Remark 10.5 immediately yield the following proposition. Let Y: (Ω, 𝒜, P) →
(R,ℬ) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables with E(Y2) < ∞, and consider:

(a) E(Y | Z) =
P

E(Y).
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(b) For all random variables W: (Ω, 𝒜, P) → (R, ℬ) that are Z-measurable and have a
finite second moment E(W2),

E(W⋅Y) = E(W) ⋅ E(Y). (10.62)

Then,

(i) (a) implies (b).

(ii) If Y is also nonnegative, then (a) and (b) are equivalent to each other. ⊲

Remark 10.58 [Mean independence and uncorrelatedness] For Z = W, Proposition (i) of
Remark 10.57 yields

E(Y | Z) =
P

E(Y) ⇒ E(Z⋅Y) = E(Z) ⋅ E(Y), (10.63)

provided that E(Z2), E(Y2) < ∞. Proposition (10.63) is equivalent to (10.52), because
E(Z⋅Y) = E(Z) ⋅ E(Y) is equivalent to Cov (Z, Y) = 0, provided that E(Z2), E(Y2) < ∞ [see
Box 7.1 (i)]. However, Cov (Z, Y) = 0 does not imply E(Y | Z) =

P
E(Y). In other words, uncor-

relatedness does not imply mean independence. ⊲

Remark 10.59 [Dichotomous variables] If Y and Z are dichotomous with values 0 and
1, then Y =

P
1Y =1 (see Example 5.10), and hence Proposition (10.63) can equivalently be

written:

P(Y=1 | Z) =
P

P(Y =1) ⇒ P(Y =1, Z=1) = P(Y =1) ⋅ P(Z=1) (10.64)

[see Eqs. (10.2), (6.5), and (1.33)]. Applying Remark 5.46 yields

P(Y=1 | Z) =
P

P(Y =1) ⇒ Y ⟂⟂
P

Z. (10.65)
⊲

Further properties of conditional mean independence are treated in section 16.3, in partic-
ular the relationship between conditional independence and conditional mean independence.

10.7 Proofs

Proof of Theorem 10.17

Under the assumptions about ℰ = {A1, A2, …} and 𝒞, a function V: (Ω, 𝒜 ) → (R,ℬ) is 𝒞-
measurable if and only if there are αi ∈ R, i = 1, 2, …, such that V = ∑∞

i=1 αi1Ai
(see Lemma

2.19). Hence, if V , V∗ ∈ ℰ (Y |𝒞), then,

V =
∞∑

i=1
αi1Ai

and V∗=
∞∑

i=1
α∗i 1Ai

, αi, α∗i ∈ R. (10.66)
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This implies

P({V ≠ V∗}) =
∑

i: αi≠α∗i

P(Ai).

Because P({V ≠ V∗}) = 0 (see Th. 16 and Def. 2.68), we can conclude

∑

i: αi≠α∗i

P(Ai) = 0. (10.67)

Hence, if (10.13) holds, then Equation (10.67) implies that there is no i with αi ≠ α∗i , which
implies {V ≠ V∗} = Ø.

Now assume that there is an Aj ∈ ℰ with P(Aj) = 0. Then define V ∈ ℰ (Y |𝒞) as in Equa-
tion (10.66) and V∗ = ∑∞

i=1 α
∗
i 1Ai

, with α∗i = αi for i ≠ j and α∗j := αj + 1. This implies V∗=
P

V

and V∗ ∈ ℰ (Y |𝒞), but Ø ≠ Aj ⊂ {V ≠ V∗}. By contraposition, this proves that {V ≠ V∗} = Ø
implies Equation (10.13). For ℰ = {A1, … , An}, the proof is analogous.

Proof of Theorem 10.21

(i) This proof is found in Bauer [1996, (15.13)]. Because the sequence Yi, i ∈ N, is
increasing and the conditional expectation is monotone [see Rule (ix) of Box 10.3],
we can conclude: limi→∞ Yi = supi∈N Yi and limi→∞ E(Yi |𝒞) = supi∈N E(Yi |𝒞).

(ii) If Yi ≥ 0, for all i ∈ N, then Ỹn := ∑n
i=1 Yi, n ∈ N, is increasing and limn→∞ Ỹn =∑∞

i=1 Yi. Hence,

E

(
∞∑

i=1
Yi

||||
𝒞

)
=
P

E

(
lim

n→∞
Ỹn

||||
𝒞
)

=
P

lim
n→∞

E

(
Ỹn

||||
𝒞
)

[(10.19)]

=
P

lim
n→∞

E

(
n∑

i=1
Yi

||||
𝒞

)

=
P

lim
n→∞

n∑

i=1
E(Yi |𝒞) [Box 10.1 (xvi)]

=
P

∞∑

i=1
E(Yi |𝒞).

Proof of Theorem 10.42

According to Lemma 2.52, g(X) is measurable with respect to σ(X). Therefore, according to
Definition 10.2 (b), we only have to show that

E[1C ⋅ g(X)] = E(1C ⋅ Y), ∀ C ∈ σ(X), (10.68)

and Equation (10.43) are equivalent to each other.
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(10.43) ⇔ (10.68) By definition, σ(X) = {X −1(C′): C′∈ 𝒜 ′
X}. Therefore,

∫
1C′ (x) ⋅ g(x) PX(dx) =

∫
1C′ (x) ⋅ y PX,Y [d(x, y)], ∀ C′∈ 𝒜 ′

X ,

⇔
∫

1C ⋅ g(X) dP =
∫

1C ⋅ Y dP, ∀ C = X −1(C′) ∈ σ(X), [(3.59), (3.28)]

⇔ E[1C ⋅ g(X)] = E(1C ⋅ Y), ∀ C ∈ σ(X). [(6.1)]

Proof of Theorem 10.51

(a) ⇒ (b) If Y and W are nonnegative, then Y ⋅ W is nonnegative as well and, for 𝒟 -measur-
able W,

E(W⋅Y |𝒞) =
P

E[E(W⋅Y |𝒞, 𝒟 ) |𝒞] [Box 10.1 (v)]

=
P

E[W⋅E(Y |𝒞, 𝒟 ) |𝒞] [Box 10.1 (xiv)]

=
P

E[W⋅E(Y |𝒞) |𝒞] [(a), Box 10.1 (ix)]

=
P

E(Y |𝒞) ⋅ E(W |𝒞). [Box 10.1 (xiv)]

(10.69)

(b) ⇒ (a)

E[W⋅E(Y |𝒞, 𝒟 ) |𝒞] =
P

E[E(W⋅Y |𝒞, 𝒟 ) |𝒞] [Box 10.1 (xiv)]

=
P

E(W⋅Y |𝒞) [Box 10.1 (v)]

=
P

E(Y |𝒞) ⋅ E(W |𝒞) [(b)]

=
P

E[W⋅E(Y |𝒞) |𝒞]. [Box 10.1 (xiv)]

(10.70)

Choosing in this equation W = 1D, D ∈ 𝒟, Definition 10.2 (b) yields

E[1C ⋅ 1D ⋅ E(Y |𝒞, 𝒟 )] = E[1C ⋅ 1D ⋅ E(Y |𝒞)], ∀ C ∈ 𝒞,

which is equivalent to

∫
1C∩D ⋅ E(Y |𝒞, 𝒟 ) dP =

∫
1C∩D ⋅ E(Y |𝒞) dP, ∀ C ∈ 𝒞. (10.71)

The set {C ∩ D: C ∈ 𝒞, D ∈ 𝒟}is ∩-stable and generates σ(𝒞 ∪𝒟 ). Furthermore, finiteness
of E(Y) = E[E(Y |𝒞, 𝒟 )] = E[E(Y |𝒞 )] [see Box 10.1, (iv)] implies that E(Y |𝒞, 𝒟 ) and
E(Y |𝒞 ) are integrable with respect to P. Hence, according to Theorem 3.68 (iv), we can
conclude E(Y |𝒞, 𝒟 ) =

P
E(Y |𝒞).

Proof of Theorem 10.53

(a) ⇒ (b) If E(Y2), E(W2) < ∞, then E(Y) and E(Y ⋅ W) are finite as well. Then, for 𝒟 -
measurable W, (10.69) also applies to this case.
(b) ⇒ (a) Choosing W = 1D, D ∈ 𝒟 in Equation (10.70), Definition 10.2 (b) yields

E[1C ⋅ 1D ⋅ E(Y |𝒞, 𝒟 )] = E[1C ⋅ 1D ⋅ E(Y |𝒞)], ∀ C ∈ 𝒞,
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which is equivalent to

∫
1C∩D ⋅ E(Y |𝒞, 𝒟 ) dP =

∫
1C∩D ⋅ E(Y |𝒞) dP, ∀ C ∈ 𝒞. (10.72)

The set {C ∩ D: C ∈ 𝒞, D ∈ 𝒟} is ∩-stable and generates σ(𝒞 ∪𝒟 ). Furthermore, finiteness
of E(Y) = E[E(Y |𝒞, 𝒟 )] = E[E(Y |𝒞 )] [see Box 10.1, (iv)] implies that E(Y |𝒞, 𝒟 ) and
E(Y |𝒞 ) are integrable with respect to P. Hence, if additionally Y ≥ 0, then there are versions
of E(Y |𝒞), E(Y |𝒞, 𝒟 ) ≥ 0 [see Box 10.3 (v)] and, according to Theorem 3.68 (iv), we can
conclude E(Y |𝒞, 𝒟 ) =

P
E(Y |𝒞).

Exercises

10.1 Show that, according to Definition 10.2, Equations (9.24) and (9.25) define an element
of ℰ (Y | X) provided that the assumptions of Definition 9.14 hold.

10.2 Table 9.2 presents an element, say V , of ℰ (Y | X, U). Define an alternative element
V∗∈ ℰ (Y | X, U), and show that the two elements are P-equivalent.

10.3 Under the assumptions of Theorem 10.17 and Equation (10.13), prove Equation
(10.14).

10.4 Prove the propositions of Box 10.1.

10.5 Prove the propositions of Box 10.3.

10.6 Show that P(X=x) > 0 implies that the (X=x)-conditional expectation value of Y
defined by Equation (10.27) is uniquely defined and identical to the term introduced
in Definition 9.2.

10.7 Prove Equation (10.32).

10.8 Show that Equation (10.38) implies Rule (iii) of Box 9.2.

10.9 Show that mean independence of Y from X implies that X and Y are uncorrelated,
provided that the second moments of X and Y are finite [see (10.52)].

10.10 Prove: If Y is dichotomous with values 0 and 1, then,

Y ⟂⟂
P

X ⇔ E(Y | X) =
P

E(Y)

(see Rem. 10.50).

Solutions

10.1 Let Ω′
0 ⊂ Ω′

X denote the finite or countable set introduced in Definitions 9.14 (i) or
(ii). Then {X=x} ∈ σ(X) for all x ∈ Ω′

0. This implies:
(a) For all x ∈ Ω′

0, the indicator 1X=x is X-measurable (see Example 2.12), which
implies that

∑
x∈Ω′

0
E(Y | X=x) ⋅ 1X=x is X-measurable as well (see Lemma 2.19).
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(b) For C ∈ σ(X), define C0 := C ∩ X −1(Ω′
0). Because, by definition, P[X −1(Ω′

0)] =
PX(Ω′

0) = 1, this implies P(C ∖ C0) = 0 [see Box 4.1 (v) and (vii)] and

E
⎛
⎜
⎜⎝
1C ⋅

∑

x∈Ω′
0

E(Y | X=x) ⋅1X=x

⎞
⎟
⎟⎠

= E
⎛
⎜
⎜⎝
1C0

⋅
∑

x∈Ω′
0

E(Y | X=x) ⋅1X=x

⎞
⎟
⎟⎠

+ E
⎛
⎜
⎜⎝
1C ∖C0

⋅
∑

x∈Ω′
0

E(Y | X=x) ⋅1X=x

⎞
⎟
⎟⎠

[(6.21)]

= E
⎛
⎜
⎜⎝

∑

x∈Ω′
0

E(Y | X=x) ⋅1C0
⋅ 1X=x

⎞
⎟
⎟⎠
. [Box 6.1 (iii), (v)]

Furthermore, denote C′
0 := X(C0) = {x ∈ Ω′

0: X −1({x}) ⊂ C}. Then,

E
⎛
⎜
⎜⎝
1C ⋅

∑

x∈Ω′
0

E(Y | X=x) ⋅1X=x

⎞
⎟
⎟⎠
= E

⎛
⎜
⎜⎝

∑

x∈Ω′
0

E(Y | X=x) ⋅1C0
⋅ 1X=x

⎞
⎟
⎟⎠

=
∑

x∈Ω′
0

E [E(Y | X=x) ⋅1C0
⋅ 1X=x] [Box 6.1 (vii), (3.65)]

=
∑

x∈C ′
0

E [E(Y | X=x) ⋅1X=x] [def. of C0]

=
∑

x∈C ′
0

E(Y | X=x) ⋅E(1X=x) [Box 6.1 (iii)]

=
∑

x∈C ′
0

E(Y | X=x) ⋅P(X=x) [(6.4)]

=
∑

x∈C ′
0

(
1

P(X=x)
⋅ E(1X=x ⋅ Y)

)
⋅ P(X=x) [(9.11)]

=
∑

x∈C ′
0

E(1X=x ⋅ Y)

= E
⎛
⎜
⎜⎝

∑

x∈C ′
0

1X=x ⋅ Y
⎞
⎟
⎟⎠

[Box 6.1 (vii), (3.65)]

= E(1C0
Y) [1C0

=
∑

x∈C ′
0

1X=x ]

= E(1C0
Y) + E(1C ∖C0

Y) [(6.20)]

= E(1CY). [(6.21)]
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10.2 Another element V∗∈ ℰ (Y | X, U) is obtained by defining

V∗(ω) =
{

9, if ω = ω3 or ω = ω4
V(ω), if ω ∈ Ω, ω ≠ ω3, ω ≠ ω4,

where ω3 = (Joe, yes, −) and ω4 = (Joe, yes, +). For V and V∗, P(A1) = 1, where
A1 = {ω ∈ Ω: V(ω) = V∗(ω)}. The probability P(A1) = 1 is obtained from adding the
probabilities of all six outcomes ω for which P({ω}) > 0 (see the second column of
Table 9.2).

10.3 (a) If ℰ is a finite or countable partition of Ω and σ(ℰ ) = 𝒞, then, for all Ai ∈ ℰ ,
the indicator 1Ai

is 𝒞-measurable. This implies that
∑

Ai∈ℰ E(Y | Ai) ⋅1Ai
is 𝒞-

measurable as well (see Lemma 2.19). Hence, condition (a) of Definition 10.2 is
satisfied.

(b) According to Lemma 1.20 and Equations (1.36) and (1.37), for all C ∈ 𝒞,

1C =
∑

Ai∈ℰ, Ai ⊂C

1Ai
. (10.73)

Hence,

E

(
1C ⋅

∑

Ai∈ℰ
E(Y | Ai) ⋅1Ai

)
= E

(
∑

Ai∈ℰ
E(Y | Ai) ⋅1Ai

⋅1C

)

=
∑

Ai∈ℰ
E [E(Y | Ai) ⋅1Ai

⋅1C] [Box 6.1 (vii), (3.65)]

=
∑

Ai∈ℰ, Ai ⊂C

E [E(Y | Ai) ⋅1Ai
] [(10.73)]

=
∑

Ai∈ℰ, Ai ⊂C

E(Y | Ai) ⋅E(1Ai
) [Box 6.1 (iii)]

=
∑

Ai∈ℰ, Ai ⊂C

1
P(Ai)

⋅ E(1Ai
⋅ Y) ⋅ P(Ai) [(9.7), (6.4)]

=
∑

Ai∈ℰ, Ai ⊂C

E(1Ai
⋅ Y)

= E

(
∑

Ai∈ℰ, Ai ⊂C

1Ai
⋅ Y

)
[Box 6.1 (vii)]

= E(1C ⋅ Y). [(10.73)]

This shows that condition (b) of Definition 10.2 is satisfied and that∑
Ai∈ℰE(Y | Ai) ⋅1Ai

is a version of E(Y |𝒞). Equation (10.14) then follows from
Proposition (10.12) and the assumption that ℰ is a countable partition of Ω and
P(Ai) > 0 for all Ai ∈ ℰ (see Theorem 10.17).
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10.4 (ii) Both sides are 𝒞-measurable. Furthermore, for all C ∈ 𝒞,

E[1C ⋅ (α +Y)] = E(1C α + 1CY) = E(1C α) + E(1CY) [Box 6.1 (vi)]
= E(1C α) + E[1C E(Y |𝒞)] [Def. 10.2 (b)]
= E(1C α + 1C E(Y |𝒞)]) [Box 6.1 (vi)]
= E(1C ⋅ [α + E(Y |𝒞)]).

Hence, according to conditions (a) and (b) of Definition 10.2, α + E(Y |𝒞) ∈
ℰ (α +Y |𝒞), and Proposition (10.12) yields (ii).

(iii) Both sides are 𝒞-measurable. For all C ∈ 𝒞,

E(1C ⋅ αY) = α E(1C ⋅ Y) [Box 6.1 (iii)]
= α E[1C ⋅ E(Y |𝒞)]. [Def. 10.2 (b)]

Hence, according to Definition 10.2, α E(Y |𝒞) ∈ ℰ (αY |𝒞), and Proposition
(10.12) yields (iii).

(iv) This rule immediately follows from condition (b) of Definition 10.2 for C = Ω,
because

E[E(Y |𝒞)] = E[1Ω E(Y |𝒞)] [(3.31)]
= E(1Ω Y) [Def. 10.2 (b)]
= E(Y). [(3.31)]

(v) The terms on both sides of this equation are 𝒞0-measurable because of Definition
10.2 (a). Furthermore, for all C ∈ 𝒞0 ⊂ 𝒞,

E(1C E[E(Y |𝒞) |𝒞0]) = E(1C E(Y |𝒞)) [Def. 10.2 (b)]
= E(1C Y). [Def. 10.2 (b)]

In the first equation, we apply Definition 10.2 (b) to E[E(Y |𝒞) |𝒞0] and 𝒞0,
whereas in the second, we apply it to E(Y |𝒞) and 𝒞. The last equation shows
that E[E(Y |𝒞) |𝒞0] ∈ ℰ (Y |𝒞0), and Proposition (10.12) yields (v).

(vi) The constant E(Y) is measurable with respect to any σ-algebra𝒞 onΩ (see Exam-
ple 2.10). Furthermore, if Y and 𝒞 are independent, then Y and 1C are indepen-
dent for all C ∈ 𝒞 (see Rem. 5.46). Hence, for C ∈ 𝒞, E(1C Y) = E(1C) E(Y) for
all C ∈ 𝒞 (see Th. 6.24). Therefore, Rules (ii) and (iii) of Box 6.1 yield

E(1C Y) = E(1C) E(Y) = E[1C E(Y)], ∀ C ∈ 𝒞 .

(vii) We assume that Y is 𝒞-measurable. Furthermore,

E(1C Y) = E(1C Y), ∀ C ∈ 𝒞

obviously holds. Hence, according to Definition 10.2 (b) and Proposition (10.12),
this implies that Y ∈ ℰ (Y |𝒞) and E(Y |𝒞) =

P
Y .
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(i) The σ-algebra generated by α is {Ω, Ø}, which is a subset of every σ-algebra on
Ω. Hence, σ(α) ⊂ 𝒞, which shows that Rule (i) is a special case of Rule (vii).

(viii)

E
[
Y ||| E(Y |𝒞)

]
=
P

E
[
E(Y |𝒞) ||| E(Y |𝒞)

] [
(v) with 𝒞0 = σ[E(Y |𝒞)]

]

=
P

E(Y |𝒞). [σ[E(Y |𝒞)] ⊂ σ[E(Y |𝒞)], (vii)]

(ix)

Y1 =P Y2

⇒ ∀ C ∈ 𝒞: E(1C ⋅ Y1) = E(1C ⋅ Y2) [Th. 3.48, (6.1), 𝒞 ⊂ 𝒜]
⇒ ∀ C ∈ 𝒞: E[1C ⋅ E(Y1 |𝒞)] = E(1C ⋅ Y1)

= E(1C ⋅ Y2) = E[1C ⋅ E(Y2 |𝒞)] [Def. 10.2 (b)]
⇒ E(Y2 |𝒞) ∈ ℰ (Y1 |𝒞). [Def. 10.2]

According to Proposition (10.12), this implies (ix).

(x)

E(Y) finite ⇒ ∀ V ∈ ℰ (Y |𝒞): E(V) finite [E(V) = E(Y), (iv)]
⇒ ∀ V ∈ ℰ (Y |𝒞): V is real-valued P-a.s. [Lemma 3.41]

Now let V∗∈ ℰ (Y |𝒞) and A := {ω ∈ Ω: V(ω) ∉ R}. Then A ∈ 𝒞 and P(A) = 0.
Define V := 1Ω∖A ⋅ V∗. Then V is real-valued, 𝒞-measurable, and V =

P
V∗, which

implies V ∈ ℰ (Y |𝒞).

(xv) If Y1 (or Y2) is real-valued and with finite expectation, then there is a real-valued
version E(Y1 |𝒞) ∈ ℰ (Y1 |𝒞) [or E(Y2 |𝒞) ∈ ℰ (Y2 |𝒞)] [see (x)]. If Y1 (or Y2)
is nonnegative, then there is a nonnegative version E(Y1 |𝒞) ∈ ℰ (Y1 |𝒞) [or
E(Y2 |𝒞) ∈ ℰ (Y2 |𝒞)] [see Box 10.3 (v) for α = 0]. [Note that the proof of Box
10.3 (v) uses Box 10.1 (iv) and (ii).]

For versions E(Y1 |𝒞) ∈ ℰ (Y1 |𝒞), E(Y2 |𝒞) ∈ ℰ (Y2 |𝒞) that are nonneg-
ative or with finite expectations, the sum E(Y1 |𝒞) + E(Y2 |𝒞) is 𝒞-measurable
(see Th. 2.57), and for all C ∈ 𝒞,

E
(
1C [E(Y1 |𝒞) +E(Y2 |𝒞)]

)

= E
(
1C E(Y1 |𝒞)

)
+ E

(
1C E(Y2 |𝒞)

)
[Box 6.1 (vi)]

= E(1C Y1) + E(1C Y2) [Def. 10.2 (b)]
= E[1C (Y1 + Y2)]. [Box 6.1 (vi)]

(xvi)
E(α1 Y1 + α2 Y2 |𝒞 )

=
P

E(α1 Y1 |𝒞 ) + E(α2 Y2 |𝒞 ) [(xv)]

=
P

α1 E(Y1 |𝒞)) + α2 E(Y2 |𝒞). [(iii)]

The equation for n summands follows by induction.
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(xi) Cor. 8.17 of Klenke (2013).

(xiv) If Y1 is 𝒞-measurable, then Y1 ⋅ E(Y2 |𝒞) is 𝒞-measurable as well [see Def. 10.2
(a), Th. 2.57]. First, consider the case Y1 = 1C∗ , for C∗∈ 𝒞. Then, for all C ∈ 𝒞,

∫
1C ⋅ E(1C∗ ⋅ Y2 |𝒞) dP

=
∫

1C ⋅ 1C∗ ⋅ Y2 dP [Def. 10.2 (b)]

=
∫

1C ∩ C∗ ⋅ Y2 dP [(1.33)]

=
∫

1C ∩ C∗ ⋅ E(Y2 |𝒞) dP [C ∩ C∗ ∈ 𝒞 , Def. 10.2 (b)]

=
∫

1C ⋅ 1C∗ ⋅ E(Y2 |𝒞) dP. [(1.33)]

Hence, according to Definition 10.2 (b) and Proposition (10.12),

E(1C∗ ⋅ Y2 |𝒞) =
P

1C∗ ⋅ E(Y2 |𝒞). (10.74)

If E(Y2
1 ), E(Y2

2 ) < ∞ or Y1, Y2 nonnegative, then Remark 3.30, Box 10.1 (xi) and
(xvi), and Theorem 10.21 imply, for all 𝒞-measurable Y1,

∫
1C ⋅ E(Y1 ⋅ Y2 |𝒞) dP =

∫
1C ⋅ Y1 ⋅ E(Y2 |𝒞) dP, ∀ C ∈ 𝒞.

Now, according to Definition 10.2 (b), Y1 ⋅ E(Y2 |𝒞) ∈ ℰ (Y1 ⋅ Y2 |𝒞), and
Proposition (10.12) yields

E(Y1 ⋅ Y2 |𝒞) =
P

Y1 ⋅ E(Y2 |𝒞).

(xii) Note that E(Y2) < ∞ implies E[E(Y |𝒞)2] < ∞ [see Box 10.1 (xi)].

Cov [Y , E(Y |𝒞)]
= E[Y ⋅ E(Y |𝒞)] − E(Y) ⋅ E[E(Y |𝒞)] [Box 7.1 (i)]
= E(E[Y ⋅ E(Y |𝒞) |𝒞]) − E(Y) ⋅ E[E(Y |𝒞)] [(iv)]
= E[E(Y |𝒞) ⋅ E(Y |𝒞)] − E[E(Y |𝒞)] ⋅ E[E(Y |𝒞)] [(xiv), (iv)]
= Var [E(Y |𝒞)]. [Box 6.2 (i)]

(xiii) Note that E(Y2
2) < ∞ implies E[E(Y2 |𝒞)2] < ∞ [see Box 10.1 (xi)]. Hence,

Cov (Y1, Y2) = E(Y1 ⋅ Y2) − E(Y1) ⋅ E(Y2) [Box 7.1 (i)]
= E[E(Y1 ⋅ Y2 |𝒞 )] − E(Y1) ⋅ E[E(Y2 |𝒞)] [(iv)]
= E[Y1 ⋅ E(Y2 |𝒞)] − E(Y1) ⋅ E[E(Y2 |𝒞)] [σ(Y1) ⊂ 𝒞 , (xiv)]
= Cov [Y1, E(Y2 |𝒞)]. [Box 7.1 (i)]
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10.5 (v) First, we prove

Y ≥
P

0 ⇒ ∃ V ∈ ℰ (Y |𝒞): V ≥ 0. (10.75)

Let V∗∈ ℰ (Y |𝒞). Define A := {ω ∈ Ω: V∗(ω) < 0} ∈ 𝒞 [see Rem. 2.67 (a)]. Apply-
ing Definition 10.2 (b) and Equation (3.50) to 1A ⋅ Y yields

∫
1A ⋅ V∗ dP =

∫
1A ⋅ Y dP ≥ 0, if Y ≥

P
0. (10.76)

If we assume P(A) > 0, then Lemma 3.44 with f := − V∗ and Equation (3.32) yield

−
∫

1A ⋅ V∗ dP =
∫

1A ⋅ (− V∗) dP > 0

and hence ∫ 1A ⋅ V∗ dP < 0, which contradicts (10.76). Therefore, P(A) = 0 and thus
V∗ ≥

P
0.

If we define V := 1Ω∖A ⋅ V∗ ≥ 0, then V is 𝒞-measurable (see Th. 2.57), V =
P

V∗,

and V ∈ ℰ (Y |𝒞) [see (10.12)]. For α ∈ R, applying (10.75),

Y ≥
P
α ⇒ Y − α ≥

P
0 ⇒ ∃ Vα ∈ ℰ (Y − α |𝒞): Vα ≥ 0.

Now Rule (ii) of Box 10.1 implies that there is a V := Vα + α such that V ∈ ℰ (Y |𝒞)
and V ≥ α.

(vii) If Y is nonnegative and there is an α ∈ R such that Y ≤
P
α, then (3.25) and

(3.44) imply 0 ≤ E(Y) ≤ α. If E(Y) is finite, then E(−Y) = −E(Y) is finite as well.
Furthermore,

Y ≤
P
α ⇒ −Y ≥

P
−α

⇒ ∃ V∗∈ ℰ (−Y |𝒞): V∗ ≥ −α [(v)]

⇒ ∃ V ∈ ℰ (Y |𝒞): V ≤ α. [Box 10.1 (iii), V := −V∗]

(vi)

Y =
P
α

⇒ Y ≥
P
α ∧ Y ≤

P
α

⇒ ∃ V1 ∈ ℰ (Y |𝒞): V1 ≥ α ∧ ∃ V2 ∈ ℰ (Y |𝒞): V2 ≤ α [(v), (vii)]
⇒ ∃ V1, V2 ∈ ℰ (Y |𝒞): ∃ A ∈ 𝒞: P(A) = 0

∧ ∀ ω ∈ Ω ∖ A: V1(ω) = V2(ω) = α [(10.12)]
⇒ ∃ V ∈ ℰ (Y |𝒞): V = α. [V := α ⋅ 1A + V1 ⋅ 1Ω∖A]

(ii), (iv), and (iii) are direct implications of (v), (vi), and (vii).
(x), (xi) follow from (iv) and (5.11).
(i) is a straightforward implication of Theorem 3.43 and (iv).
(ix) is proved in Bauer (1996).
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10.6 Let g(X) ∈ ℰ (Y | X). Then, according to Equation (10.26), for all g∗(X) ∈ ℰ (Y | X),

g(x) = g∗(x), for PX -a.a. x ∈ Ω′
X .

Hence, if P(X=x) > 0 for an x ∈ Ω′
X , then according to Remark 2.71, g(x) = g∗(x),

that is, g(x) is uniquely defined. Furthermore, Equation (9.6) yields

E(Y | X=x) =
∫

Y dPX=x [(9.5)]

= 1
P(X=x)

⋅
∫

1X=x ⋅ Y dP [(9.7)]

= 1
P(X=x)

⋅
∫

1X=x ⋅ g(X) dP [Def. 10.2 (b), (10.22)]

= 1
P(X=x)

⋅
∫

1X=x ⋅ g(x) dP [1X=x ⋅ g(X) = 1X=x ⋅ g(x)]

= 1
P(X=x)

⋅ g(x) ⋅
∫

1X=x dP [(3.32)]

= 1
P(X=x)

⋅ g(x) ⋅ P(X=x) = g(x). [(3.8)]

10.7 If g is a factorization of E(Y | X) ∈ ℰ (Y | X), then, for all ω ∈ {X=x},

E(Y | X)(ω) = (g ◦ X)(ω) [(10.22)]
= g[X(ω)] = g(x) [ω ∈ {X=x}]
= E(Y | X=x). [(10.27)]

10.8 Assume that Z is a discrete random variable with values z1, z2, … ∈ Ω′
Z such that

PZ({z1, z2, …}) = 1 and, for all i = 1, 2 …, {zi} ∈ 𝒜 ′
Z , and let g be a factorization of

E(Y | X, Z) = g(X, Z). Then, for all x ∈ Ω′
X with P(X=x, Z=zi) > 0 for all i ∈ N,

E(Y | X=x)

= E[E(Y | X, Z) | X=x] [(10.38)]

= E[g(X, Z) | X=x] [(10.22)]

=
∞∑

i=1
g(x, zi) ⋅ P(X=x, Z=zi | X=x) [Rem. 10.35, (9.16), (9.22)]

=
∞∑

i=1
E(Y | X=x, Z=zi) ⋅

P(X=x, Z=zi, X=x)
P(X=x)

[(10.27), (4.2)]

=
∞∑

i=1
E(Y | X=x, Z=zi) ⋅

P(X=x, Z=zi)
P(X=x)

=
∞∑

i=1
E(Y | X=x, Z=zi) ⋅P(Z=zi | X=x). [(4.2)]
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10.9 If E(Y | X) =
P

E(Y), then,

Cov (X, Y) = Cov [X, E(Y | X)] [Box 10.2 (xiii)]
= Cov [X, E(Y)] [E(Y | X) =

P
E(Y), Box 7.1 (x)]

= 0. [Box 7.1 (vii)]

10.10 If Y is dichotomous with values 0 and 1, then E(Y) = P(Y =1) [see Example 5.10 and
Eq. (6.5)]. Hence, E(Y) is finite, and Box 10.2 (vi) yields

Y ⟂⟂
P

X ⇒ E(Y | X) =
P

E(Y).

For all C′∈ 𝒜 ′
X , the event {X ∈ C′} = X −1(C′) ∈ σ(X) [see Eq. (2.14)]. Hence, if

E(Y | X) =
P

E(Y), and therefore P(Y =1 | X) =
P

P(Y =1) [see Eq. (10.4)], then for all

C′∈ 𝒜 ′
X ,

P(Y =1, X ∈ C′) =
∫

1X∈C ′ ⋅ 1Y=1 dP [(3.9), (1.33)]

=
∫

1X∈C ′ ⋅ P(Y =1 | X) dP [Def. 10.2 (b)]

=
∫

1X∈C ′ ⋅ P(Y =1) dP [P(Y =1 | X) =
P

P(Y =1)]

= P(Y =1) ⋅ P(X ∈ C′), [(3.9)]

which, according to Remark 5.46, implies Y ⟂⟂
P

X.
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Residual, conditional variance,
and conditional covariance

In chapters 9 and 10, we introduced the concepts conditional expectation and regression. In
this chapter, we turn to the residual of a conditional expectation. Its properties supplement the
properties of conditional expectations. Oftentimes a residual is what econometricians call a
disturbance, applied statisticians call an error term, and psychometricians call a measurement
error. Furthermore, we define the coefficient of determination, which represents the propor-
tion of variance of a regressand explained by the regressor. It appears under different names in
special areas of applied statistics, ranging from intra-class correlation to reliability in psycho-
metrics. The square root of the coefficient of determination is known as the multiple correla-
tion. Next, we will define the concepts of a conditional variance and a conditional covariance
given a σ-algebra and given a random variable, as well as the partial correlation. Just like
the expectation has been used to define variance, covariance, and correlation, the conditional
expectation can be used to define conditional variance, conditional covariance, and the partial
correlation.

11.1 Residual with respect to a conditional expectation

In section 10.4.2, we showed that a conditional expectation E(Y |𝒞) is the best approximation
of Y in the sense of minimizing the mean-squared error function. Now we study the proper-
ties of the deviation of Y from E(Y |𝒞). Defining this deviation, we refer to the following
assumptions.

Assumptions 11.1
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with finite expectation,
𝒞 ⊂ 𝒜 a σ-algebra, and E(Y |𝒞) a real-valued version of the 𝒞-conditional expectation
of Y.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Note that, according to Rule (x) of Box 10.1, finiteness of E(Y) implies that there is a real-
valued version E(Y |𝒞). Hence, assuming that E(Y |𝒞) is real-valued is no substantial loss
of generality. Referring to a real-valued version E(Y |𝒞) avoids the subtraction of ∞ and ∞
for values of Y and E(Y |𝒞), respectively.

Definition 11.2 [Residual with respect to a conditional expectation]
Under the assumptions 11.1,

𝜀 := Y − E(Y |𝒞) (11.1)

is called a version of the residual of Y with respect to E(Y |𝒞).

Remark 11.3 [Versions of the residual] If E(Y |𝒞), E(Y |𝒞)∗ ∈ ℰ (Y |𝒞) are real-valued
and 𝜀, 𝜀∗ are the respective residuals, then 𝜀 =

P
𝜀∗. ⊲

Box 11.1 summarizes some properties of the residual, which are proved in Exercise 11.1.
All these properties follow from the definition of a residual and the assumption that E(Y |𝒞)
is a real-valued version of the 𝒞-conditional expectation of Y .

Box 11.1 Rules of computation for a residual.

Let the assumptions 11.1 hold. Then the following properties hold for all real-valued ver-
sions of E(Y |𝒞) and all versions of the residual 𝜀 defined in (11.1):

𝜀 =
P

Y − E(Y |𝒞). (i)

Y =
P

E(Y |𝒞) + 𝜀. (ii)

E(𝜀) = 0. (iii)

Var (Y) = Var [E(Y |𝒞)] + Var (𝜀), if E(Y2) < ∞. (iv)

𝜀 =
P

0, if Y =
P

E(Y |𝒞). (v)

Additionally, let 𝒞0 be a σ-algebra and W: (Ω, 𝒜, P) → (Ω′
W , 𝒜 ′

W) be a random variable.
Then,

E(𝜀 |𝒞0) =
P

0, if 𝒞0 ⊂ 𝒞 . (vi)

E(𝜀 | W) =
P

0, if σ(W) ⊂ 𝒞. (vii)

If W is real-valued, σ(W) ⊂ 𝒞, and E(W2), E(Y2) < ∞, then,

Cov (𝜀, W) = E(𝜀 ⋅ W) = 0. (viii)

Cov [W, E(Y |𝒞)] = Cov [W, E(Y |𝒞) + 𝜀] = Cov (W, Y). (ix)



342 PROBABILITY AND CONDITIONAL EXPECTATION

Remark 11.4 [Some special cases] Because E(Y |𝒞) is 𝒞-measurable, the following equa-
tions are special cases of Rules (vii) and (viii) of Box 11.1, respectively.

E
[
𝜀

||| E(Y |𝒞)
]
=
P

0, (11.2)

Cov [𝜀, E(Y |𝒞)] = 0, if E(Y2) < ∞. (11.3)

According to Equation (11.2), the conditional expectation of the residual 𝜀 given E(Y |𝒞)
is 0 with probability 1. According to the second equation, the residual 𝜀 = Y − E(Y |𝒞) is
uncorrelated with E(Y |𝒞) if E(Y2) < ∞. [Note that finiteness of E(E(Y |𝒞)2) follows from
E(Y2) < ∞; see Box 10.1 (xi).]

Now consider a random variable X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) with σ(X) = 𝒞and the residual
𝜀 := Y − E(Y | X). Then a special case of Rule (vii) is

E(𝜀 | X) =
P

0. (11.4)

This property is illustrated in Figure 11.1. In this figure, the black points represent the values
of the conditional expectation E(𝜀 | X), whereas the circles are possible values of 𝜀. If f (X)
denotes the composition of X and a function f : (Ω′

X , 𝒜 ′
X) → (R,ℬ) that is (𝒜 ′

X ,ℬ)-measurable,
then,

E[𝜀 | f (X)] =
P

0 (11.5)

with the special case

E
[
𝜀

||| E(Y | X)
]
=
P

0. (11.6)

Furthermore, if E(Y 2), E[ f (X) 2] < ∞, then,

Cov [𝜀, f (X)] = 0 (11.7)

21 3 x

−1

1

0

ε

Figure 11.1 Conditional expectation of the residual on its regressor.
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is a special case of Rule (viii). Hence, if (Ω′
X , 𝒜 ′

X) = (R,ℬ) and E(X2), E(Y2) < ∞, then,

Cov (𝜀, X) = 0 (11.8)

is another special case of Rule (viii).
Now consider the residual 𝜀 := Y − E(Y | X, Z), where X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and

Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) are not necessarily real-valued. In this case,

E(𝜀 | X, Z) =
P

E(𝜀 | X) =
P

E(𝜀 | Z) =
P

0 (11.9)

are special cases of Rule (vii), where 𝒞= σ(X, Z). If we additionally assume X and Z to be
numerical and E(Y2), E(X2), E(Z2) < ∞, then,

Cov (X, 𝜀) = E(X ⋅ 𝜀) = Cov (Z, 𝜀) = E(Z ⋅ 𝜀) = 0 (11.10)

are special cases of Rule (viii) (see Exercise 11.2). ⊲

Example 11.5 [No treatment for Joe – continued] Table 11.1 displays the conditional
expectations E(Y | X), E(Y | X, U), and P(X=1 | U), which have been computed in Exam-
ples 9.22 and 9.23. Additionally, it contains the residuals of Y with respect to these condi-
tional expectations. First, we illustrate the property E(𝜀) = 0 for 𝜀 = Y − E(Y | X). Looking at

Table 11.1 No treatment for Joe with conditional expectations and residuals.

Conditional
Elements of Ω Observables expectations Residuals

U
ni

t
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re
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s
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({
ω}

)

Pe
rs

on
va

ri
ab

le
U

T
re
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m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

E
(Y

|X
,U

)

E
(Y

|X
)

P
(X

=
1
|U

)

Y
−

E
(Y

|X
,U

)

Y
−

E
(Y

|X
)

X
−

P
(X

=
1
|U

)

( Joe, no, −) .152 Joe 0 0 .696 .6 0 −.696 −.6 0
( Joe, no, +) .348 Joe 0 1 .696 .6 0 .304 .4 0
( Joe, yes, −) 0 Joe 1 0 0 .4 0 0 −.4 1
( Joe, yes, +) 0 Joe 1 1 0 .4 0 1 .6 1
(Ann, no, −) .096 Ann 0 0 .2 .6 .76 −.2 −.6 −.76
(Ann, no, +) .024 Ann 0 1 .2 .6 .76 .8 .4 −.76
(Ann, yes, −) .228 Ann 1 0 .4 .4 .76 −.4 −.4 .24
(Ann, yes, +) .152 Ann 1 1 .4 .4 .76 .6 .6 .24
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the table reveals that 𝜀 = Y − E(Y | X) has four different values: −.6, .4, .6, and −.4. Hence,
according to Equation (6.3),

E(𝜀) = −.6 ⋅ (.152 + .096) + .4 ⋅ (.348 + .024) + .6 ⋅ (0 + .152) − .4 ⋅ (0 + .228)

= 0.

Second, we illustrate the property

E(𝜀 | X) = 0

[see Eq. (11.4)]. Because X is an indicator variable with values 0 and 1, according to Equation
(9.24) and Remark 10.35, it suffices to show that E(𝜀 | X=0) = 0 and E(𝜀 | X=1) = 0. The
four values of 𝜀 = Y − E(Y | X) occur with (X=0)-conditional probabilities

P(𝜀=−.6 | X=0) = .152 + .096
.152 + .348 + .096 + .024

= .4,

P(𝜀= .4 | X=0) = .348 + .024
.152 + .348 + .096 + .024

= .6,

P(𝜀= .6 | X=0) = 0, P(𝜀=−.4 | X=0) = 0,

and with (X=1)-conditional probabilities

P(𝜀=−.6 | X=1) = 0, P(𝜀= .4 | X=1) = 0

P(𝜀= .6 | X=1) = 0 + .152
0 + 0 + .152 + .228

= .4,

P(𝜀=−.4 | X=1) = 0 + .228
0 + 0 + .152 + .228

= .6,

respectively. Hence, according to Equation (9.21),

E(𝜀 | X=0) = −.6 ⋅ .4 + .4 ⋅ .6 + .6 ⋅ 0 − .4 ⋅ 0 = 0

and

E(𝜀 | X=1) = −.6 ⋅ 0 + .4 ⋅ 0 + .6 ⋅ .4 − .4 ⋅ .6 = 0.

Because X is dichotomous with values 0 and 1, and P(X=0), P(X=1) > 0, we can conclude:

E(𝜀 | X) = E(𝜀 | X=0) ⋅ 1X=0 + E(𝜀 | X=1) ⋅ 1X=1 = 0 ⋅ 1X=0 + 0 ⋅ 1X=1 = 0

[see Eq. (9.24) and Rem. 10.35]. ⊲
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11.2 Coefficient of determination and multiple correlation

The coefficient of determination quantifies the strength of the dependence of a numerical ran-
dom variable Y on a σ-algebra 𝒞, where we refer to the dependence described by the con-
ditional expectation E(Y |𝒞). The multiple correlation is a closely related concept. Reading
the following definition, remember that E(Y2) < ∞ implies Var (Y) < ∞ and E(Y) < ∞ (see
Rem. 6.25). It also implies that the conditional expectation E(Y |𝒞) is defined.

Definition 11.6 [Coefficient of determination]
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with E(Y2) < ∞ and 𝒞 ⊂ 𝒜
be a σ-algebra. Then,

R2
Y|𝒞 :=

{Var[E(Y |𝒞)]
Var(Y)

, if Var(Y) > 0

0, if Var(Y) = 0,
(11.11)

is called the coefficient of determination of E(Y |𝒞).

Remark 11.7 [The case Var (Y) = 0] If E(Y |𝒞) =
P

E(Y) and Var (Y) > 0, then R2
Y|𝒞 =

Var [E(Y)]∕Var (Y) = 0 [see Eq. (11.11) and Box 6.2 (iv)]. Defining R2
Y|𝒞 = 0 if Var (Y) = 0

is arbitrary. However, Var (Y) = 0 if and only if there is an α ∈ R such that Y =
P
α [see again

Box 6.2 (iv)], and Y =
P
α implies E(Y |𝒞) =

P
E(Y) [see Box 6.1 (i) and Box 10.1 (i)]. Hence,

Definition (11.11) implies R2
Y|𝒞 = 0 whenever E(Y |𝒞) =

P
E(Y), that is, whenever Y is mean

independent from 𝒞. Because 𝒞⟂⟂
P

Y implies E(Y |𝒞) =
P

E(Y) [see Box 10.1 (vi)], indepen-

dence of 𝒞and Y implies mean independence of Y from 𝒞, which itself implies R2
Y|𝒞 = 0, and

this implication holds irrespective of whether or not Var (Y) > 0. ⊲

Remark 11.8 [Range of the coefficient of determination] Using Rule (iv) of Box 11.1
yields

R2
Y|𝒞 = Var [E(Y |𝒞)]

Var [E(Y |𝒞)] + Var (𝜀)
, (11.12)

provided that Var (Y) > 0. Because Var (𝜀) is nonnegative, 0 ≤ R2
Y|𝒞 ≤ 1. The number R2

Y|𝒞 is
close to 1 if the variance of the residual 𝜀 = Y − E(Y |𝒞) is small compared to the variance
of the conditional expectation E(Y |𝒞). In contrast, R2

Y|𝒞 is close to 0 if the variance of the
residual is large compared to the variance of E(Y |𝒞). ⊲

Remark 11.9 [Conditions implying R2
Y|𝒞 = 1] If Var (Y) > 0 and we assume that

Y =
P

E(Y |𝒞), then R2
Y|𝒞 = 1 [see Eq. (11.11) and Box 6.2 (v)]. Note that this does not neces-

sarily mean that Y is 𝒞-measurable. However, if Y is 𝒞-measurable, then Y =
P

E(Y |𝒞) already

follows from Box 10.1 (vii). ⊲
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Remark 11.10 [Alternative notation] Suppose that X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is a random
variable and 𝒞= σ(X). Then we also use the notation R2

Y|X instead of R2
Y|𝒞 , that is,

R2
Y|X := R2

Y|σ(X) . (11.13)

Equations (10.1) and (11.11) yield

R2
Y|X =

{Var [E(Y | X)]
Var (Y)

, if Var (Y) > 0

0, if Var (Y) = 0.
(11.14)

If we consider the multivariate regressor X = (X1, … , Xn), then we also use the notation

R2
Y|X1, …, Xn

:= R2
Y|X . (11.15)

⊲

Remark 11.11 [Correlation and the coefficient of determination] Assume that X:
(Ω, 𝒜, P) → (R, ℬ) is a real-valued random variable, E(X2) < ∞, and that there is a version
E(Y | X) ∈ ℰ (Y | X) with

E(Y | X) = Qlin(Y | X) = β0 + β1 X (11.16)

(see Def. 7.2). Then,

β1 = Cov (X, Y)
Var (X)

(11.17)

[see Th. 7.14 (ii)] and

R2
Y|X = Corr (X, Y)2, (11.18)

which implies

R2
Y|X = 0 ⇔ Corr (X, Y) = 0 (11.19)

(see Exercise 11.3). Hence, under these assumptions, the correlation Corr (X, Y) also quantifies
the strength of the dependence of Y on X described by E(Y | X). Both, R2

Y|X and Corr (X, Y)
are normed quantities. The first takes on its values in the interval [0, 1], and the latter in the
interval [−1, 1]. In contrast, the slope β1 as well as Cov (X, Y) quantify the strength of the
dependence described by Qlin(Y | X) by real numbers without bounds. ⊲

Remark 11.12 [Quantifying the strength of dependence] The term R2
Y|X quantifies the

strength of the dependence of Y on X described by E(Y | X), irrespective of whether or not
Equation (11.16) holds. While E(Y | X) = g(X) describes how the conditional expectation
values E(Y | X=x) of Y depend on the values x of X, the coefficient of determination R2

Y|X
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quantifies the strength of this dependence by a single real number between 0 and 1. Simi-
larly, R2

Y|𝒞 quantifies the strength of the dependence of Y on 𝒞 described by E(Y |𝒞) (see
Rem. 10.18). ⊲

Remark 11.13 [Uniqueness of R2
Y|𝒞 ] If V , V∗ ∈ ℰ (Y |𝒞), then V and V∗ are P-equivalent,

and, according to Rule (v) of Box 6.2, this implies Var (V) = Var (V∗). Hence, Equation (11.11)
implies that R2

Y|𝒞 is identical for all versions V ∈ ℰ (Y |𝒞). ⊲

Remark 11.14 [Correlation of Y and the conditional expectation] The coefficient of deter-
mination R2

Y|𝒞 is identical to the squared correlation of Y and E(Y |𝒞), that is,

R2
Y|𝒞 = Corr [Y , E(Y |𝒞)]2 (11.20)

(see Exercise 11.4). Correspondingly,

R2
Y|X = Corr [Y , E(Y | X)]2

. (11.21)

Note that this equation does not rely on any parameterization of E(Y | X). ⊲

Definition 11.15 [Multiple correlation]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (R, ℬ) be random variables and as-

sume E(Y2) < ∞. Then,

RY|X :=
√

R2
Y|X (11.22)

is called the multiple correlation of Y and X.

Equations (11.21) and (11.22) immediately imply

RY|X = Corr [Y , E(Y | X)]. (11.23)

Remark 11.16 [Multivariate X] If X = (X1, … , Xn) is a multivariate random variable, then
we also use the notation

RY|X1, …, Xn
:= RY|X . (11.24)

⊲

Remark 11.17 [The multiple correlation is not symmetric] Note that, in contrast to a corre-
lation of two numerical random variables, the multiple correlation of Y and X is not symmetric.
That is, RY|X can differ from RX|Y even if X is real-valued. ⊲

Example 11.18 [No treatment for Joe – continued] In Table 9.2, we displayed the con-
ditional expectations E(Y | X), E(Y | X, U), and P(X=1 | U). Now we compute R2

Y|X for the



348 PROBABILITY AND CONDITIONAL EXPECTATION

conditional expectation E(Y | X). Looking at the table reveals that E(Y | X) has two different
values: .6, which occurs with probability

P[E(Y |X)= .6] = .152 + .348 + .096 + .024 = .62,

and .4, occurring with probability

P[E(Y |X)= .4] = 0 + 0 + .228 + .152 = .38.

Furthermore, the expectation of Y is

E(Y) = P(Y=1) = .348 + 0 + .024 + .152 = .524

Hence, according to Equation (i) of Box 6.2,

Var [E(Y | X)] = E[E(Y | X)2] − E[E(Y | X)]2

= E[E(Y | X)2] − E(Y)2 [Box 10.2 (iv)]

= (.62 ⋅ .62 + .42 ⋅ .38) − .5242

≈ .284 − .2746 = .0094.

According to Equation (6.29), the variance of Y is Var (Y) = P(Y=1) ⋅ [1 − P(Y=1)] = .524 ⋅
(1 − .524) ≈ 0.2494. This yields

R2
Y|X = Var [E(Y | X)]

Var (Y)
≈ .0094

.2494
≈ .0377 and RY|X ≈ .1941.

Similarly, the conditional expectation E(Y | U) takes on each of the two values .696 and
.352 with probability .5, that is,

P[E(Y |U)= .696] = P[E(Y |U)= .352] = .5.

Hence,

Var [E(Y | U)] = E[E(Y | U)2] − E[E(Y | U)]2 [Box 6.2 (i)]

= E[E(Y | U)2] − E(Y)2 [Box 10.2 (iv)]

= (.6962 ⋅ .5 + .3522 ⋅ .5) − .5242

≈ .3042 − .2746 = .0296,

and this yields,

R2
Y|U = Var [E(Y | U)]

Var (Y)
≈ .0296

.2494
≈ .1187 and RY|U ≈ .3445.
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Finally,

Var [E(Y | X, U)] = E[E(Y | X, U)2] − E[E(Y | X, U)]2 [Box 6.2 (i)]

= E[E(Y | X, U)2] − E(Y)2 [Box 10.2 (iv)]

= (.6962 ⋅ .5 + .22 ⋅ .12 + .42 ⋅ .38) − .5242

≈ .3078 − .2746 = .0332.

Hence,

R2
Y|X,U = Var [E(Y | X, U)]

Var (Y)
≈ .0332

.2494
≈ .1331 and RY|X,U ≈ .3649.

Note that, in this example, R2
Y|X,U is smaller than the sum of R2

Y|X and R2
Y|U . ⊲

In the following theorem, we present a condition under which the coefficients of determi-
nation are additive [see Eq. (11.31)]. This theorem also contains a condition under which the
coefficient α1 of X in the equation E(Y | X) = α0 + α1 X is identical to the coefficient β1 of X
in the equation E(Y | X, Z) = β0 + β1 X + β2 Z (see section 12.8 for a generalization).

Theorem 11.19 [Additivity of the coefficients of determination]
Let X, Y , Z: (Ω, 𝒜, P) → (R, ℬ) be three real-valued random variables with finite sec-
ond moments and positive variances, and assume that there are β0, β1, β2, γ0, γ1 ∈ R,
E(Y | X, Z) ∈ ℰ (Y | X, Z), and E(Z | X) ∈ ℰ (Z | X) such that

E(Y | X, Z) = β0 + β1 X + β2 Z, (11.25)

E(Z | X) = γ0 + γ1 X. (11.26)

(i) Then there are α0, α1 ∈ R such that

E(Y | X) = α0 + α1 X. (11.27)

(ii) If E(Z | X) =
P

E(Z) or β2 = 0, then for α0, α1 occurring in (i),

α0 = β0 + β2 E(Z) (11.28)

and

α1 = β1. (11.29)

(iii) If

(E(Z | X) =
P

E(Z) or β2 = 0) and (E(X | Z) =
P

E(X) or β1 = 0),
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then,

Var[E(Y | X, Z)] = Var[E(Y | X)] + Var[E(Y | Z)] (11.30)

and

R2
Y|X,Z = R2

Y|X + R2
Y|Z . (11.31)

(Proof p. 359)

Remark 11.20 [Independence of X and Z] Note that the condition specified in proposition
(iii) of Theorem 11.19 is satisfied, for example, if X and Z are independent [see Rule (vi) of
Box 10.2]. ⊲

11.3 Conditional variance and covariance given a 𝛔-algebra

The covariance Cov (Y1, Y2) has been defined as the expectation of the product of the mean
centered random variables Y1 − E(Y1) and Y2 − E(Y2), that is,

Cov (Y1, Y2) = E([Y1 − E(Y1)] ⋅ [Y2 − E(Y2)]) (11.32)

(cf. Def. 7.8). Similarly, we define the 𝒞-conditional covariance Cov (Y1, Y2 |𝒞) as the
𝒞-conditional expectation of the product [Y1 − E(Y1 |𝒞)] ⋅ [Y2 − E(Y2 |𝒞)] = 𝜀1⋅ 𝜀2 of the
residuals of Y1 and Y2 with respect to their 𝒞-conditional expectations.

Definition 11.21 [Conditional covariance given a σ-algebra]
For i = 1, 2, let Yi: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables with finite sec-
ond moments, let 𝒞 ⊂ 𝒜 be a σ-algebra, and define 𝜀i := Yi − E(Yi |𝒞). Then,

Cov (Y1, Y2 |𝒞) := E(𝜀1⋅ 𝜀2 |𝒞) (11.33)

is called a version of the 𝒞-conditional covariance of Y1 and Y2.

Remark 11.22 [X-conditional covariance] Let the assumptions of Definition 11.21 hold
and let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable. Then,

Cov (Y1, Y2 | X) := Cov (Y1, Y2 | σ(X)) (11.34)

is called a version of the X-conditional covariance of Y1 and Y2. ⊲

The 𝒞-conditional variance is defined analogously.
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Definition 11.23 [Conditional variance given a σ-algebra]
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with E(Y2) <∞, let 𝒞 ⊂ 𝒜
be a σ-algebra, and define 𝜀 := Y − E(Y |𝒞).

(i) Then,

Var(Y |𝒞) := E(𝜀2 |𝒞) (11.35)

is called a version of the 𝒞-conditional variance of Y.

(ii) Let Var(Y |𝒞) be a nonnegative version of the𝒞-conditional variance of Y. Then,

SD (Y |𝒞) :=
√

Var(Y |𝒞) (11.36)

is called a version of the 𝒞-conditional standard deviation of Y.

Remark 11.24 [Conditional variance given X] Let the assumptions of Definition 11.23 hold
and let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable. Then,

Var (Y | X) := Var (Y | σ(X)) (11.37)

is called a version of the X-conditional variance of Y . Correspondingly, let Var (Y | X) be a
nonnegative version of the X-conditional variance of Y . Then we call

SD (Y | X) :=
√

Var (Y | X) (11.38)

a version of the X-conditional standard deviation of Y . ⊲

11.4 Conditional variance and covariance given a value
of a random variable

While the concepts defined above are random variables, the (X=x)-conditional covariance
is a number. It is defined using the (X=x)-conditional expectation value E(𝜀1⋅ 𝜀2 | X=x)
that has been introduced as a value g(x) of a factorization g of an X-conditional expectation
E(𝜀1⋅ 𝜀2 | X) = g(X) (see section 10.4.4).

Definition 11.25 [(X=x)-conditional variance and covariance]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable.

(i) For i = 1, 2, let Yi: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables with
E(Y2

i ) <∞, and let 𝜀i := Yi − E(Yi | X). Then we call

Cov (Y1, Y2 | X=x) := E(𝜀1⋅ 𝜀2 | X=x) (11.39)

an (X=x)-conditional covariance of Y1 and Y2.
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(ii) Let Y: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random variable with E(Y2) <∞ and
let 𝜀 := Y − E(Y | X). Then we call

Var(Y | X=x) := E(𝜀2 | X=x) (11.40)

an (X=x)-conditional variance of Y.

(iii) If, under the assumptions of (ii), Var(Y | X) is a nonnegative version of the X-con-
dit ional variance of Y, then we call

SD(Y | X=x) :=
√

Var(Y | X=x) (11.41)

an (X=x)-conditional standard deviation of Y.

Remark 11.26 [Equivalent propositions] Note that Cov (Y1, Y2 | X=x) is uniquely defined
only if P (X=x) > 0. However, even if P (X=x) = 0 for all x ∈ Ω′

X , then we can still make
propositions such as:

Cov (Y1, Y2 | X=x) = Cov (Z1, Z2 | X=x), for PX-almost x ∈ Ω′
X , (11.42)

provided that Z1, Z2 are real-valued random variables on (Ω, 𝒜, P) with finite second moments.
According to Corollary 10.39, this proposition is equivalent to

Cov (Y1, Y2 | X) =
P

Cov (Z1, Z2 | X) . (11.43)

Of course, the same applies to the X-conditional variance. ⊲

Remark 11.27 [Values of the conditional covariance] As mentioned, the term defined in
Remark 11.22 is a random variable. Its values are

Cov (Y1, Y2 | X) (ω) = Cov (Y1, Y2 | X=x), if X(ω) = x (11.44)

(see Rem. 10.37). This also implies that the value of Cov (Y1, Y2 | X) is constant on all sets
{X=x}. Similarly,

Var (Y | X) (ω) = Var (Y | X=x), if X(ω) = x. (11.45)
⊲

Example 11.28 [Joe and Ann with self-selection] Table 11.2 presents a new example with
Joe and Ann. In this example, the probabilities of the elementary events differ from the exam-
ple with randomized assignment (see Table 4.1). The values of the conditional expectations
are computed analogously as in Example 9.21. In this new example, all individual treatment
effects

E(Y | X=1, U=Joe) − E(Y | X=0, U=Joe)

and

E(Y | X=1, U=Ann) − E(Y | X=0, U=Ann)
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Table 11.2 Joe and Ann with self-selection and residuals.

Outcomes ω Observables Conditional expectations Residuals
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Y

E
(Y

|X
,U

)

E
(Y

|X
)

E
(Y

|U
)

P
(X

=
1
|U

)

𝜀
Y
=

Y
−

E
(Y

|U
)

𝜀
X
=

X
−

P
(X

=
1
|U

)

(Joe, no, −) .144 Joe 0 0 .7 .6 .704 .04 −.704 −.04
(Joe, no, +) .336 Joe 0 1 .7 .6 .704 .04 .296 −.04
(Joe, yes, −) .004 Joe 1 0 .8 .42 .704 .04 −.704 .96
(Joe, yes, +) .016 Joe 1 1 .8 .42 .704 .04 .296 .96
(Ann, no, −) .096 Ann 0 0 .2 .6 .352 .76 −.352 −.76
(Ann, no, +) .024 Ann 0 1 .2 .6 .352 .76 .648 −.76
(Ann, yes, −) .228 Ann 1 0 .4 .42 .352 .76 −.352 .24
(Ann, yes, +) .152 Ann 1 1 .4 .42 .352 .76 .648 .24

are positive, whereas the difference E(Y | X=1) − E(Y | X=0) is negative. Hence, in this
example, this difference cannot be used to evaluate the treatment effect.

Let us consider the (unconditional) covariance of the treatment variable X and the out-
come variable Y . Note that X and Y are indicator variables with values 0 and 1. Therefore,
E(X) = P(X=1), E(Y) = P(Y =1), E(X ⋅ Y) = P(X=1, Y =1), and

Cov (X, Y) = E(X ⋅ Y) − E(X) ⋅ E(Y) = P(X=1, Y =1) − P(X=1) ⋅ P(Y =1)

= (.016 + .152) − (.004 + .016 + .228 + .152) ⋅ (.336 + .016 + .024 + .152)

= .168 − .4 ⋅ .528 = −0.0432.

Hence, the treatment variable and the outcome variable have a negative covariance.
Now let us compute the (U=u)-conditional covariances of X and Y for u=Joe

and for u=Ann. First of all, note that P(U=Joe) = .144 + .336 + .004 + .016 = .5 and
P(U=Ann) = .096 + .024 + .228 + .152 = .5. According to Equation (9.21), we have to sum
the values of the product variable 𝜀X ⋅ 𝜀Y weighted by their (U=u)-conditional probabilities.
Hence,

Cov (Y , X | U=Joe) = E(𝜀X⋅ 𝜀Y | U=Joe)

= .04 ⋅ .704 ⋅
.144
.5

− .04 ⋅ .296 ⋅
.336
.5

− .96 ⋅ .704 ⋅
.004
.5

+ .96 ⋅ .296 ⋅
.016
.5

= .00384
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and

Cov (Y , X | U=Ann) = E(𝜀X⋅ 𝜀Y | U=Ann)

= .76 ⋅ .352 ⋅
.096
.5

− .76 ⋅ .648 ⋅
.024
.5

− .24 ⋅ .352 ⋅
.228
.5

+ .24 ⋅ .648 ⋅
.152
.5

= .03648.

Both conditional covariances are positive. Hence, in this example, the (unconditional) covari-
ance of X and Y (which is negative) is highly misleading if used to evaluate the effects of
the treatment on success, because for both persons the (U=u)-conditional (or person-specific)
covariances of X and Y are positive. ⊲

11.5 Properties of conditional variances and covariances

Boxes 11.2 and 11.3 summarize some important properties of conditional covariances and
conditional variances. The rules for conditional variances are special cases of the corre-
sponding rules for conditional covariances with Y1 = Y2 = Y and A = B, respectively [see
Box 11.2 (xiv)]. Hence, we only have to prove the rules for the conditional covariances (see
Exercise 11.5).

For n = 2 variables Yi and m = 2 variables Zj, Equation (xiii) of Box 11.2 can be written
as:

Cov (α1Y1 + α2 Y2, β1Z1 + β2Z2 |𝒞)

=
P
α1β1 Cov (Y1, Z1 |𝒞) + α1β2 Cov (Y1, Z2 |𝒞)

+ α2β1 Cov (Y2, Z1 |𝒞 ) + α2β2 Cov (Y2, Z2 |𝒞).

(11.46)

Similarly, for two random variables Y1 and Y2, Rule (xiii) of Box 11.3 can also be written as:

Var (α1Y1 + α2Y2 |𝒞)

=
P
α2

1 Var (Y1 |𝒞) + α2
2 Var (Y2 |𝒞) + 2 α1 α2 Cov (Y1, Y2 |𝒞).

(11.47)

Example 11.29 [Conditional variance of an indicator] Let (Ω, 𝒜, P) be a probability
space, let 1A denote the indicator variable of A ∈ 𝒜, and consider the random variable
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X). Then, according to Rule (xiv) of Box 11.3,

Var (1A | X) =
P

P(A | X) ⋅ [1 − P(A | X)]. (11.48)

Hence, the X-conditional variance of an indicator variable does not contain any information
additional to the X-conditional expectation E(1A | X) =

P
P(A | X) (cf. Exercise 11.7). According

to Corollaries 10.29 and 10.26, Equation (11.48) is equivalent to

Var (Y | X=x) = P(Y=1 | X=x) ⋅ [1 − P(Y =1 | X=x)], for PX-a.a. x ∈ Ω′
X . (11.49)

⊲
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Box 11.2 Rules of computation for 𝒞-conditional covariances.

For i = 1, 2, let Yi: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables with E(Y2
i ) < ∞.

Furthermore, let α, β ∈ R and let 𝒞0, 𝒞 ⊂ 𝒜be σ-algebras. Then, the following properties
hold for all real-valued versions of E(Yi |𝒞) and all versions of the residuals 𝜀i := Yi −
E(Yi |𝒞), i = 1, 2:

Cov (Y1, Y2 |𝒞) =
P

E(Y1 ⋅ Y2 |𝒞) − E(Y1 |𝒞) ⋅ E(Y2 |𝒞). (i)

Cov (Y1, Y2 |𝒞) =
P

Cov (𝜀1, 𝜀2 |𝒞). (ii)

Cov (Y1, Y2 |𝒞) =
P

0, if Y1 =P α. (iii)

Cov (α + Y1, β + Y2 |𝒞) =
P

Cov (Y1, Y2 |𝒞). (iv)

Cov (α Y1, β Y2 |𝒞) =
P
α β Cov (Y1, Y2 |𝒞). (v)

E
[
Cov (Y1, Y2 |𝒞) ||| 𝒞0

]
=
P

E(𝜀1 ⋅ 𝜀2 |𝒞0) =
P

Cov (Y1, Y2 |𝒞0), if 𝒞0 ⊂ 𝒞. (vi)

E[Cov (Y1, Y2 |𝒞)] = E(𝜀1 ⋅ 𝜀2) = Cov (𝜀1, 𝜀2). (vii)

Cov (Y1, Y2) = Cov [E(Y1 |𝒞), E(Y2 |𝒞)] + E[Cov (Y1, Y2 |𝒞)] (viii)

= Cov [E(Y1 |𝒞), E(Y2 |𝒞)] + Cov (𝜀1, 𝜀2). (ix)

If we additionally assume 𝒞0 ⊂ 𝒞, then,

Cov (Y1, Y2, |𝒞0) =
P

Cov
[
E(Y1 |𝒞), E(Y2 |𝒞) ||| 𝒞0

]
+ E

[
Cov (Y1, Y2 |𝒞) ||| 𝒞0

]
(x)

=
P

Cov
[
E(Y1 |𝒞), E(Y2 |𝒞) ||| 𝒞0

]
+ Cov (𝜀1, 𝜀2 |𝒞0). (xi)

Let W1, W2, Y1, Y2: (Ω, 𝒜, P) → (R, ℬ) be random variables such that E(W 4
1 ),

E(W 4
2 ), E(Y 4

1 ), and E(Y 4
2 ) < ∞. If W1 and W2 are 𝒞-measurable, then,

Cov (W1 ⋅ Y1, W2 ⋅ Y2 |𝒞) =
P

W1 ⋅ W2 ⋅ Cov (Y1, Y2 |𝒞). (xii)

For i = 1, … , n, j = 1, … , m, let Yi, Zj: (Ω, 𝒜, P) → (R, ℬ) be random variables with
E(Y2

i ), E(Z2
j ) < ∞, and let αi, βj ∈ R. Then,

Cov

(
n∑

i=1
αi Yi,

m∑

j=1
βj Zj

||||
𝒞

)
=
P

n∑

i=1

m∑

j=1
αi βj Cov (Yi, Zj |𝒞). (xiii)

If A, B ∈ 𝒜, then,

Cov (1A, 1B |𝒞 ) =
P

P(A ∩ B |𝒞 ) − P(A |𝒞 ) ⋅ P(B |𝒞 ). (xiv)
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Box 11.3 Rules of computation for conditional variances.

Let Y: (Ω, 𝒜, P) → (R, ℬ) denote a real-valued random variable with E(Y2) < ∞. Fur-
thermore, let α ∈ R and let 𝒞 ⊂ 𝒜 be a σ-algebra. Then the following properties hold for
all real-valued versions of E(Y |𝒞) and all versions of the residual 𝜀 := Y − E(Y |𝒞):

Var (Y |𝒞) =
P

E(Y2 |𝒞) − E(Y |𝒞) 2
. (i)

Var (Y |𝒞) =
P

Var (𝜀 |𝒞). (ii)

Var (Y |𝒞) =
P

0, if Y =
P
α. (iii)

Var (α + Y |𝒞) =
P

Var (Y |𝒞). (iv)

Var (α Y |𝒞) =
P
α2 Var (Y |𝒞). (v)

E
[
Var (Y |𝒞) ||| 𝒞0

]
=
P

E(𝜀2 |𝒞0) =
P

Var (𝜀 |𝒞0), if 𝒞0 ⊂ 𝒞. (vi)

E[Var (Y |𝒞)] = E(𝜀2) = Var (𝜀). (vii)

Var (Y) = Var [E(Y |𝒞)] + E[Var (Y |𝒞)] (viii)

= Var [E(Y |𝒞)] + Var (𝜀). (ix)

If we additionally assume that the random variable X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is
𝒞-measurable, then,

Var (Y | X) =
P

Var
[
E(Y |𝒞) ||| X

]
+ E

[
Var (Y |𝒞) ||| X

]
(x)

=
P

Var
[
E(Y |𝒞) ||| X

]
+ Var (𝜀 | X). (xi)

Let X, Y: (Ω, 𝒜, P) → (R, ℬ) be random variables with E(X4), E(Y4) < ∞. If X is
𝒞-measurable, then,

Var (X ⋅ Y |𝒞) =
P

X2 ⋅ Var (Y |𝒞). (xii)

Let Yi: (Ω, 𝒜, P) → (R, ℬ) be random variables with E(Y2
i ) <∞ and αi ∈ R, where

i = 1, … , n. Then,

Var

(
n∑

i=1
αi Yi

||||
𝒞

)
=
P

n∑

i=1
α2

i Var (Yi |𝒞) +
n∑

i=1

n∑

j=1, j≠ i
αi αj Cov (Yi, Yj |𝒞). (xiii)

If A ∈ 𝒜, then,

Var (1A |𝒞 ) =
P

P(A |𝒞 ) ⋅ [1 − P(A |𝒞 )]. (xiv)
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Remark 11.30 [Two more properties of conditional covariances] If 𝜀1 = Y1 − E(Y1 |𝒞 )
and W: (Ω, 𝒜, P) → (R, ℬ) is a random variable and E(W2) < ∞, then,

Cov (𝜀1, W |𝒞0) =
P

E(𝜀1 ⋅ W |𝒞0), if 𝒞0 ⊂ 𝒞, (11.50)

and

Cov (Y1, W |𝒞 ) =
P

0, if σ(W) ⊂ 𝒞. (11.51)

For a proof, see Exercise 11.6. ⊲

11.6 Partial correlation

Another concept used to describe a certain kind of dependence between two random variables
Y1 and Y2 is the partial correlation, which is the correlation of the residuals of Y1 and Y2 with
respect to the conditional expectations E(Y1 |𝒞) and E(Y2 |𝒞), respectively.

Definition 11.31 [Partial correlation]
For i = 1, 2, let Yi: (Ω, 𝒜, P) → (R, ℬ) be random variables with E(Y2

i ) < ∞, let 𝒞 ⊂ 𝒜
be a σ-algebra, and define 𝜀i := Yi − E(Yi |𝒞) for real-valued versions E(Yi |𝒞). Then
we call

Corr (Y1, Y2; 𝒞) := Corr (𝜀1, 𝜀2) (11.52)

the partial correlation of Y1 and Y2 given 𝒞. If X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is a random
variable, then we call

Corr (Y1, Y2; X) := Corr [Y1, Y2; σ(X)] (11.53)

the partial correlation of Y1 and Y2 given X.

Remark 11.32 [Formulas for the partial correlation] If Var (Y1), Var (Y2) > 0, and R2
Y1|𝒞,

R2
Y2|𝒞 < 1, then,

Corr (Y1, Y2; 𝒞) =
Corr (Y1, Y2) − RY1|𝒞 ⋅ RY2|𝒞 ⋅ Corr [E(Y1 |𝒞), E(Y2 |𝒞)]

√
1 − R 2

Y1|𝒞 ⋅
√

1 − R 2
Y2|𝒞

, (11.54)

where R2
Yi|𝒞 = Var [E(Yi |𝒞)]∕Var (Yi), i = 1, 2, denotes the coefficient of determination (see

Def. 11.6 and Exercise 11.8). Similarly, if, for i = 1, 2, there are versions E(Yi | X) with
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E(Yi | X) = βi0 + βi1X with slopes βi1 ≠ 0 and Corr (Yi, X)2 < 1, then Equation (11.54) sim-
plifies to

Corr (Y1, Y2; X) = Corr (Y1, Y2) − Corr (Y1, X) ⋅ Corr (Y2, X)√
1 − Corr (Y1, X) 2 ⋅

√
1 − Corr (Y2, X) 2

(11.55)

(see Exercise 11.9). ⊲

Remark 11.33 [(X=x)-conditional correlation] If P (X=x) > 0 and, for i = 1, 2,
Var (Yi | X=x) > 0, then we define

Corr (Y1, Y2 | X=x) = Cov (Y1, Y2 | X=x)√
Var (Y1 | X=x) ⋅

√
Var (Y2 | X=x)

, (11.56)

and call it the (X=x)-conditional correlation of Y1 and Y2. If Var (Y1 | X=x) = 0 or
Var (Y2 | X=x) = 0, then we define Corr (Y1, Y2 | X=x) = 0. ⊲

Remark 11.34 [Interpretation of the partial correlation] The definition of the partial cor-
relation Corr (Y1, Y2; X), Rule (vii) of Box 11.2, and Rule (vii) of Box 11.3 imply

Corr (Y1, Y2; X) = E[Cov (Y1, Y2 | X)]√
E[Var (Y1 | X)] ⋅

√
E[Var (Y2 | X)]

. (11.57)

⊲

Example 11.35 [Joe and Ann with self-selection – continued] We compute the partial cor-
relation Corr (Y , X; U) in the example presented in Table 11.2. For this purpose, we use Equa-
tions (11.52), (11.53), and (7.18). The covariance of the two residuals is

Cov (𝜀Y , 𝜀X) = E(𝜀Y ⋅ 𝜀X)

= (−.704 ⋅ (−.04)) ⋅ .144 + (.296 ⋅ (−.04)) ⋅ .336 + (−.704 ⋅ .96) ⋅ .004

+ (.296 ⋅ .96) ⋅ .016 + (−.352 ⋅ (−.76)) ⋅ .096 + (.648 ⋅ (−.76)) ⋅ .024

+ (−.352 ⋅ .24) ⋅ .228 + (.648 ⋅ .24) ⋅ .152 = .02016,

the variance of 𝜀Y is

Var (𝜀Y ) = E
(
𝜀

2
Y

)
= (−.704)2 ⋅ .144 + .2962 ⋅ .336 + (−.704)2 ⋅ .004

+ .2962 ⋅ .016 + (−.352)2 ⋅ .096 + .6482 ⋅ .024

+ (−.352)2 ⋅ .228 + .6482 ⋅ .152 = .21824,

and the variance of 𝜀X is

Var (𝜀X) = E
(
𝜀

2
X

)
= (−.04)2 ⋅ .144 + (−.04)2 ⋅ .336 + .962 ⋅ .004 + .962 ⋅ .016

+ (−.76)2 ⋅ .096 + (−.76)2 ⋅ .024 + .242 ⋅ .228 + .242 ⋅ .152 = .1104.



RESIDUAL, CONDITIONAL VARIANCE, AND CONDITIONAL COVARIANCE 359

Hence,

Corr (Y , X; U) = Cov (𝜀Y , 𝜀X)
SD (𝜀Y ) ⋅ SD (𝜀X)

= .02016√
.21824 ⋅

√
.1104

≈ .1299,

which is a positive number. Again, this indicates that using the (unconditional) covariance of
X and Y or the (unconditional) correlation for the evaluation of the effects of the treatment on
success would be highly misleading, because in Example 11.28 we showed that Cov (X, Y) is
negative although the treatment effects are positive for both persons. For Joe it is .8 − .7 = .1,
and for Ann .4 − .2 = .2 (see the column headed E(Y | X, U) in Table 11.2). ⊲

11.7 Proofs

Proof of Theorem 11.19

(i) Equation (11.27) can be derived as follows:

E(Y | X) =
P

E[E(Y | X, Z) | X] [Box 10.2 (v)]

=
P

E(β0 + β1 X + β2 Z | X) [(11.25)]

=
P
β0 + β1 X + β2 E(Z | X) [Box 10.2 (xvi), (vii)]

=
P
β0 + β1 X + β2 (γ0 + γ1 X) [(11.26)]

=
P

(β0 + β2 γ0) + (β1 + γ1) X

=
P
α0 + α1 X,

with α0 := β0 + β2 γ0 and α1 := β1 + γ1.

(ii) If E(Z | X) =
P

E(Z), then the third line of the equations above yields Equations (11.28)

and (11.29). If β2 = 0, then the proof of (i) shows that E(Y | X) =
P
β0 + β1X =

P
α0 + α1X,

which proves the proposition.

(iii) If E(X | Z) =
P

E(X) or β1 = 0, then,

E(Y | Z) =
P

E[E(Y | X, Z) | Z] [Box 10.2 (v)]

=
P

E(β0 + β1 X + β2 Z | Z) [(11.25)]

=
P
β0 + β1 E(X | Z) + β2 Z [Box 10.2 (i), (xvi), (vii)]

=
P
β0 + β1 E(X) + β2 Z. [E(X | Z) =

P
E(X) or β1 = 0]

Hence, our assumption implies

Var [E(Y | Z)] = β2
2Var (Z) (11.58)
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[see Box 6.2 (ii), (iii)]. Now consider

Var [E(Y | X, Z)]

= Var (β0 + β1 X + β2 Z) [(11.25)]

= β2
1Var (X) + β2

2Var (Z) + 2 β1β2Cov (X, Z). [Box 6.2 (ii), Box 7.1 (viii)]

Assuming

[E(Z | X) =
P

E(Z) or β2 = 0] and [E(X | Z) =
P

E(X) or β1 = 0]

yields 2 β1β2Cov (X, Z) = 0, because E(Z | X) =
P

E(Z) and E(X | Z) =
P

E(X) both imply

Cov (X, Z) = 0 [see Eq. (10.52)]. Hence,

Var [E(Y | X, Z)] = β2
1Var (X) + β2

2Var (Z)

= α2
1Var (X) + β2

2Var (Z) [(11.29)]

= Var [E(Y | X)] + Var [E(Y | Z)],

because Var [E(Y | X)] = α2
1Var (X) and Var [E(Y | Z)] = β2

2Var (Z) [see (i), Eq. (11.58),
and Box 6.2 (ii) and (iii)]. Now Equation (11.31) follows, dividing both sides by Var (Y)
and using the definition of the coefficient of determination.

Exercises

11.1 Prove the rules of computation for the residual 𝜀 = Y − E(Y |𝒞) summarized in
Box 11.1.

11.2 Show that for 𝜀 = Y − E(Y | X, Z), the equations Cov (X, 𝜀) = Cov (Z, 𝜀) = 0 are spe-
cial cases of Rule (viii) of Box 11.1 if we consider the conditional expectation
E(Y | X, Z), assume X and Z to be numerical, and E(Y2), E(X2), E(Z2) < ∞.

11.3 Prove Equations (11.17) and (11.18).

11.4 Show that R2
Y|𝒞 = Corr [Y , E(Y |𝒞)]2.

11.5 Prove the rules of Box 11.2.

11.6 Prove the propositions of Remark 11.30.

11.7 Show: If Y is a dichotomous random variable on (Ω, 𝒜, P) with values 0 and 1,
and P (X=x) > 0, then Var (Y | X=x) = P(Y =1 | X=x) ⋅ [1 − P(Y =1 | X=x)]. Fur-
thermore, if P(X=x1), P(X=x2) > 0, P(Y =1 | X=x1) ≠ P(Y =1 | X=x2) and P(Y =1 |
X=x1) ≠ 1 − P(Y =1 | X=x2), then Var (Y | X=x1) ≠ Var (Y | X=x2).

11.8 Show that Equation (11.54) holds for Corr (Y1, Y2; 𝒞).

11.9 Prove Equation (11.55).
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Solutions

11.1 (i) This rule directly follows from Theorem 10.9 (ii) and Proposition (2.36).

(ii) This rule directly follows from (i) and the assumption that Y and E(Y |𝒞) are
real-valued.

(v)

𝜀 =
P

Y − E(Y |𝒞) [(i)]

=
P

Y − Y = 0. [Y =
P

E(Y |𝒞)]

(vi) This rule can be derived as follows:

E(𝜀 |𝒞0) =
P

E[Y − E(Y |𝒞) |𝒞0] [def. of 𝜀]

=
P

E(Y |𝒞0) − E[E(Y |𝒞) |𝒞0] [Box 10.1 (xvi)]

=
P

E(Y |𝒞0) − E(Y |𝒞0) [Box 10.1 (v)]

=
P

0.

(iii) This rule is a special case of Rule (vi) for 𝒞0 = {Ω, Ø} (see Rem. 10.5).

(vii) This rule is a special case of Rule (vi) for 𝒞0 := σ(W) ⊂ 𝒞 .

(viii) Note that E(Y2) < ∞ implies E[E(Y |𝒞)2] < ∞ [see Box 10.1 (xi)], which in turn
implies E(𝜀2) = E(Y2) + E[E(Y |𝒞)2] − 2E[Y ⋅ E(Y |𝒞)] < ∞ (see Rem. 7.1).

Cov (𝜀, W) = E(𝜀 ⋅ W) − E(𝜀) ⋅ E(W) [Box 7.1 (i)]

= E(𝜀 ⋅ W) − 0 [(iii)]

= E[E( 𝜀 ⋅ W |𝒞)] [Box 10.1 (iv)]

= E[W ⋅ E(𝜀 |𝒞)] [Box 10.1 (xiv)]

= E(W ⋅ 0) [(vi)]

= E(0) = 0. [Box 6.1 (i)]

(iv)

Var (Y) = Var [E(Y |𝒞) + 𝜀] [(ii)]

= Var [E(Y |𝒞)] + Var (𝜀) + 2 ⋅ Cov [E(Y |𝒞), 𝜀] [Box 7.1 (viii)]

= Var [E(Y |𝒞)] + Var (𝜀). [(viii)]

In the last equation, we used the fact that E(Y |𝒞) is 𝒞-measurable, thus taking
the role of W in Rule (viii) of Box 11.1.
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(ix) Note that E(Y2) < ∞ implies E[E(Y |𝒞)2] < ∞ [see Box 10.1 (xi)]. Hence,

Cov (W, Y) = Cov [W, E(Y |𝒞) + 𝜀] [(ii)]

= Cov [W, E(Y |𝒞)] + Cov (W, 𝜀) [Box 7.1 (ix)]

= Cov [W, E(Y |𝒞)] + 0. [(viii)]

11.2 E(Y | X, Z) =
P

E(Y |𝒞) with 𝒞 := σ(X, Z). Hence, X and Z are both 𝒞-measurable

[see Eq. (2.17)], and Rule (viii) of Box 11.1 applies if we assume E(Y2), E(X2), and
E(Z2) < ∞.

11.3 Equation (11.17) follows from Theorem 7.14 (ii). Now assume Var (X), Var (Y) > 0.
Then,

R2
Y|X = Var [E(Y | X)]

Var (Y)
[(11.14)]

= Var (β0 + β1X)
Var (Y)

[(11.16)]

=
β2

1Var (X)

Var (Y)
[Box 6.2 (ii), (iii)]

=

(
Cov (X, Y)

Var (X)

)2

Var (X)

Var (Y)
[(11.17)]

= Cov (X, Y)2

Var (X) ⋅ Var (Y)

= Corr (X, Y)2
. [(7.18)]

If Var (Y) = 0, then R2
Y|X = Corr (X, Y) = 0 by the definitions of the two terms.

If Var (X) = 0, Var (Y) > 0, then Corr (X, Y) = 0 by definition and Var [E(Y | X)] =
Var (β0 + β1X) = β2

1Var (X) = 0, and Equation (11.14) implies R2
Y|X = 0 as well. Hence,

in both cases Equation (11.18) holds.

11.4 Assume that Var (Y), Var [E(Y |𝒞)] > 0. Then,

Corr [Y , E(Y |𝒞)] = Cov [Y , E(Y |𝒞)]
SD(Y) ⋅ SD[E(Y |𝒞)]

[(7.18)]

= Var [E(Y |𝒞)]
SD(Y) ⋅ SD[E(Y |𝒞)]

[Box 10.1 (xii)]

= SD[E(Y |𝒞)] ⋅ SD[E(Y |𝒞)]
SD(Y) ⋅ SD[E(Y |𝒞)]

= SD[E(Y |𝒞)]
SD(Y)

.
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Squaring both sides and inserting the definition of R2
Y|𝒞 yield

R2
Y|𝒞 = Corr [Y , E(Y |𝒞)]2

.

If Var (Y) = 0, then Corr [Y , E(Y |𝒞)]2 = 0 = R2
Y|𝒞 , which follows from the defini-

tions of Corr [Y , E(Y |𝒞)] and R2
Y|𝒞 . If Var [E(Y |𝒞)] = 0, then Corr [Y , E(Y |𝒞)]2

= 0 (see the definition of Corr [Y , E(Y |𝒞)]), and R2
Y|𝒞 = 0, either because

Var [E(Y |𝒞)] = 0 or, if Var (Y) = 0, by definition of R2
Y|𝒞 .

11.5 (i)

Cov (Y1, Y2 |𝒞)

=
P

E(𝜀1 ⋅ 𝜀2 |𝒞) [(11.33)]

=
P

E
(
[Y1 − E(Y1 |𝒞)] ⋅ [Y2 − E(Y2 |𝒞)] ||| 𝒞

)
[(11.1)]

=
P

E
[
Y1 ⋅ Y2 −Y1 ⋅ E(Y2 |𝒞) −E(Y1 |𝒞) ⋅ Y2 +E(Y1 |𝒞) ⋅ E(Y2 |𝒞) ||| 𝒞

]

=
P

E(Y1 ⋅ Y2 |𝒞) − E[Y1 ⋅ E(Y2 |𝒞) |𝒞 ] − E[E(Y1 |𝒞) ⋅ Y2 |𝒞 ]

+ E[E(Y1 |𝒞) ⋅ E(Y2 |𝒞) |𝒞 ] [Box 10.1 (xvi)]

=
P

E(Y1 ⋅ Y2 |𝒞) − E(Y1 |𝒞) ⋅ E(Y2 |𝒞) . [Box 10.1 (xiv)]

(ii)

Cov (𝜀1, 𝜀2 |𝒞) =
P

E(𝜀1 ⋅ 𝜀2 |𝒞) − E(𝜀1 |𝒞) ⋅ E(𝜀2 |𝒞) [(i)]

=
P

E(𝜀1 ⋅ 𝜀2 |𝒞) [Box 11.1 (vi)]

=
P

Cov (Y1, Y2 |𝒞). [(11.33)]

(iii)

Cov (Y1, Y2 |𝒞) =
P

E(Y1 ⋅Y2 |𝒞) − E(Y1 |𝒞) ⋅ E(Y2 |𝒞) [(i)]

=
P

E(α Y2 |𝒞) − α E(Y2 |𝒞) [Y1 =P α, Box 10.3 (iv)]

=
P

α E(Y2 |𝒞) − α E(Y2 |𝒞) =
P

0. [Box 10.1 (iii)]

(iv)

Cov (α + Y1, β + Y2 |𝒞)

=
P

E
([
α + Y1 − E(α + Y1 |𝒞)

]
⋅
[
β + Y2 − E(β + Y2 |𝒞)

] |||𝒞
)

[(11.33)]

=
P

E
([

Y1 − E(Y1 |𝒞)
]
⋅
[

Y2 − E(Y2 |𝒞)
] |||𝒞

)
[Box 10.1 (ii)]

=
P

E(𝜀1 ⋅ 𝜀2 |𝒞) [(11.1)]

=
P

Cov (Y1, Y2 |𝒞). [(11.33)]



364 PROBABILITY AND CONDITIONAL EXPECTATION

(v)

Cov (α Y1, β Y2 |𝒞)

=
P

E
([
α Y1 − E(α Y1 |𝒞)

]
⋅
[
β Y2 − E(β Y2 |𝒞)

] |||𝒞
)

[(11.33)]

=
P

E
([
α ⋅ [Y1 − E(Y1 |𝒞)]

]
⋅
[
β ⋅ [Y2 − E(Y2 |𝒞)]

] |||𝒞
)

[Box 10.1 (iii)]

=
P

E(α 𝜀1 ⋅ β 𝜀2 |𝒞) [(11.1)]

=
P
α β E(𝜀1 ⋅ 𝜀2 |𝒞) [Box 10.1 (iii)]

=
P
α β Cov (Y1, Y2 |𝒞). [(11.33)]

(vi)

Cov (Y1, Y2 |𝒞0) =
P

E(𝜀1 ⋅ 𝜀2 |𝒞0) [(11.33)]

=
P

E
[
E(𝜀1 ⋅ 𝜀2 |𝒞 ) ||| 𝒞0

]
[Box 10.1 (v)]

=
P

E
[
Cov (Y1, Y2 |𝒞 ) ||| 𝒞0

]
. [(11.33)]

(vii)

E[Cov (Y1, Y2 |𝒞)] = E[E(𝜀1 ⋅ 𝜀2 |𝒞)] [(11.33)]

= E(𝜀1 ⋅ 𝜀2) [Box 10.1 (iv)]

= Cov (𝜀1, 𝜀2). [Box 7.1 (i), Box 11.1 (iii)]

(ix),(viii)

Cov (Y1, Y2) = Cov (E(Y1 |𝒞) + 𝜀1, E(Y2 |𝒞) + 𝜀2) [Box 11.1 (ii)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞)) + Cov (E(Y1 |𝒞), 𝜀2)

+ Cov (𝜀1, E(Y2 |𝒞)) + Cov (𝜀1, 𝜀2) [Box 7.1 (ix)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞)) + Cov (𝜀1, 𝜀2). [Box 11.1 (viii)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞)) + E[Cov (Y1, Y2 |𝒞)]. [(vii)]

(xii) For i = 1, 2, consider the residual of Wi ⋅ Yi with respect to its 𝒞-conditional
expectation,

Wi ⋅ Yi − E(Wi ⋅ Yi |𝒞) =
P

Wi ⋅ Yi − Wi ⋅ E(Yi |𝒞) [Box 10.1 (xiv)]

=
P

Wi ⋅ [Yi − E(Yi |𝒞)] =
P

Wi ⋅ 𝜀i.

This equation implies

Cov (W1 ⋅ Y1, W2 ⋅ Y2 |𝒞) =
P

E(W1 ⋅ 𝜀1 ⋅ W2 ⋅ 𝜀2 |𝒞) [(11.33)]

=
P

W1 ⋅ W2 ⋅ E(𝜀1 ⋅ 𝜀2 |𝒞) [Box 10.1 (xiv)]

=
P

W1 ⋅ W2 ⋅ Cov (Y1, Y2 |𝒞). [(11.33)]
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(xiii) Define

𝜀i := Yi − E(Yi |𝒞), i = 1, … , n, and 𝛿j := Zj − E(Zj |𝒞), j = 1, … , m.

Then,

n∑

i=1
αiYi − E

(
n∑

i=1
αiYi

|||||
𝒞

)
=
P

n∑

i=1
αi[Yi − E(Yi |𝒞)] [Box 10.1 (xvi)]

=
P

n∑

i=1
αi 𝜀i,

and, analogously,

m∑

j=1
βj Zj − E

(
m∑

j=1
βj Zj

|||||
𝒞

)
=

m∑

j=1
βj 𝛿j.

Hence,

Cov

(
n∑

i=1
αiYi,

m∑

j=1
βj Zj

|||||
𝒞

)
=
P

E

[(
n∑

i=1
αi 𝜀i

)
⋅

(
m∑

j=1
βj 𝛿j

) |||||
𝒞

]
[(11.33)]

=
P

E

(
n∑

i=1

m∑

j=1
αi βj ⋅ 𝜀i ⋅ 𝛿j

|||||
𝒞

)

=
P

n∑

i=1

m∑

j=1
αi βj E(𝜀i ⋅ 𝛿j |𝒞) [Box 10.1 (xvi)]

=
P

n∑

i=1

m∑

j=1
αi βj Cov (Yi, Zj |𝒞). [(11.33)]

(x),(xi)

Cov (Y1, Y2 |𝒞0)

= Cov (E(Y1 |𝒞) + 𝜀1, E(Y2 |𝒞) + 𝜀2 |𝒞0) [Box 11.1 (ii)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞) |𝒞0) + Cov (E(Y1 |𝒞), 𝜀2 |𝒞0)

+ Cov (𝜀1, E(Y2 |𝒞) |𝒞0) + Cov (𝜀1, 𝜀2 |𝒞0) [(xiii)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞) |𝒞0) + Cov (𝜀1, 𝜀2 |𝒞0) [Box 11.1 (viii)]

= Cov (E(Y1 |𝒞), E(Y2 |𝒞) |𝒞0) + E[Cov (Y1, Y2 |𝒞) |𝒞0]. [(vii)]

Hence,

Cov (Y1, Y2, |𝒞0)

=
P

Cov [E(Y1 |𝒞), E(Y2 |𝒞) |𝒞0] + E[Cov (Y1, Y2 |𝒞) |𝒞0]

=
P

Cov [E(Y1 |𝒞), E(Y2 |𝒞) |𝒞0] + Cov (𝜀1, 𝜀2 |𝒞0). [(ii), (vi), (ii)]
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(xiv)

Cov (1A, 1B |𝒞) =
P

E(1A ⋅ 1B |𝒞) − E(1A |𝒞) ⋅ E(1B |𝒞) [(i)]

=
P

P(A ∩ B |𝒞) − P(A |𝒞) ⋅ P(B |𝒞). [(1.33), (10.2)]

11.6

(11.50)

Cov (𝜀1, W |𝒞0) =
P

E
([
𝜀1 − E(𝜀1 |𝒞0)

]
⋅
[
W − E(W |𝒞0)

] |||𝒞0

)
[(11.33)]

=
P

E
(
𝜀1 ⋅ [W − E(W |𝒞0)] ||| 𝒞0

)
[𝒞0 ⊂ 𝒞 , Box 11.1 (vi)]

=
P

E
(
𝜀1 ⋅ W − 𝜀1 ⋅ E(W |𝒞0) ||| 𝒞0

)

=
P

E(𝜀1 ⋅ W |𝒞0) − E
(
𝜀1 ⋅ E(W |𝒞0) ||| 𝒞0

)
[Box 10.1 (xvi)]

=
P

E(𝜀1 ⋅ W |𝒞0) − E(𝜀1 |𝒞0) ⋅ E(W |𝒞0) [Box 10.1 (xiv)]

=
P

E(𝜀1 ⋅ W |𝒞0). [Box 11.1 (vi)]

(11.51)

Cov (Y1, W |𝒞 )

=
P

E
([

Y1 − E(Y1 |𝒞)
]
⋅
[
W − E(W |𝒞 )

] |||𝒞
)

[(11.33)]

=
P

E
(
Y1 − E(Y1 |𝒞) ||| 𝒞

)
⋅
(
W − E(W |𝒞 )

)
[σ(W) ⊂ 𝒞, Box 10.1 (xiv)]

=
P

0. [Box 11.1 (vi)]

11.7 If P (X=x) > 0, then (11.48) and Remark 10.35 imply

Var (Y |X=x) = P(Y =1 | X=x) ⋅ [1 − P(Y=1 | X=x)].

Now, define a := P(Y=1 | X=x1) and b := P(Y =1 | X=x2). Then,

a ⋅ (1 − a) = b ⋅ (1 − b)

⇒ a − a2 = b − b2

⇒ a − b = (a − b) ⋅ (a + b).

If a − b = 0, then a = b. Furthermore, if a − b ≠ 0, then a + b = 1 and hence a = 1 − b.
Thus, we have shown that a ⋅ (1 − a) = b ⋅ (1 − b) implies a = b or a = 1 − b. The con-
traposition of this implication and substituting a and b by the conditional probabilities
prove the proposition.

11.8 Because E(Y1 |𝒞) and E(Y2 |𝒞) are 𝒞-measurable, Rule (ix) of Box 11.1 implies

Cov [Y1, E(Y2 |𝒞)] = Cov [E(Y1 |𝒞), E(Y2 |𝒞)] = Cov [Y2, E(Y1 |𝒞)].
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Therefore,

Cov (𝜀1, 𝜀2)

= Cov [Y1 − E(Y1 |𝒞), Y2 − E(Y2 |𝒞)]

= Cov (Y1, Y2) + Cov [E(Y1 |𝒞), E(Y2 |𝒞)]

− Cov [Y1, E(Y2 |𝒞)] − Cov [Y2, E(Y1 |𝒞)] [Box 7.1 (ix)]

= Cov (Y1, Y2) − Cov [E(Y1 |𝒞), E(Y2 |𝒞)]

= SD (Y1) ⋅ SD (Y2) ⋅ Corr (Y1, Y2) − Cov [E(Y1 |𝒞), E(Y2 |𝒞)] [(7.18)]

= SD (Y1) ⋅ SD (Y2) ⋅
[

Corr (Y1, Y2) − Cov [E(Y1 |𝒞), E(Y2 |𝒞)]
SD (Y1) ⋅ SD (Y2)

]

= SD (Y1) ⋅ SD (Y2) ⋅
[

Corr (Y1, Y2) − RY1|𝒞 RY2|𝒞 ⋅
Cov [E(Y1 |𝒞), E(Y2 |𝒞)]

SD [E(Y1 |𝒞)] ⋅ SD [E(Y2 |𝒞)]

]

[(11.11), (11.22)]

= SD (Y1) ⋅ SD (Y2) ⋅
[
Corr (Y1, Y2) − RY1|𝒞 RY2|𝒞 ⋅ Corr [E(Y1 |𝒞), E(Y2 |𝒞)]

]
.

Furthermore, for i = 1, 2,

SD (𝜀i) =
√

Var (𝜀i) =
√

Var (Yi) − Var [E(Yi |𝒞)] [Box 11.1 (iv)]

=
√

Var (Yi) − Var (Yi) ⋅ R2
Yi|𝒞 =

√
Var (Yi) ⋅

(
1 − R2

Yi|𝒞
)

[(11.11)]

= SD (Yi) ⋅
√

1 − R2
Yi|𝒞 ,

which implies

SD (𝜀1) ⋅ SD (𝜀2) = SD (Y1) ⋅ SD (Y2) ⋅
√

1 − R2
Y1|𝒞 ⋅

√
1 − R2

Y2|𝒞 .

Using these results, Definition (11.52) yields

Corr (Y1, Y2; 𝒞)

:= Corr (𝜀1, 𝜀2) = Cov (𝜀1, 𝜀2)
SD (𝜀1) ⋅ SD (𝜀2)

=
SD (Y1)⋅SD (Y2)⋅

[
Corr (Y1, Y2) − RY1|𝒞 ⋅ RY2|𝒞 ⋅ Corr [E(Y1 |𝒞), E(Y2 |𝒞)]

]

SD (Y1) ⋅ SD (Y2) ⋅
√

1 − R2
Y1|𝒞 ⋅

√
1 − R2

Y2|𝒞

=
Corr (Y1, Y2) − RY1|𝒞 ⋅ RY2|𝒞 ⋅ Corr [E(Y1 |𝒞), E(Y2 |𝒞)]

√
1 − R2

Y1|𝒞 ⋅
√

1 − R2
Y2|𝒞

,

which is Equation (11.54).
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11.9 If there are βi0, βi1 ∈ R, i = 1, 2, such that

E(Y1 | X) =
P
β10 + β11X and E(Y2 | X) =

P
β20 + β21X, β11, β21 ≠ 0,

then,

E(Y1 | X) =
P

a0 + a1E(Y2 | X), with a0 = β10 − β20 ⋅
β11

β21
and a1 = β11

β21
.

Furthermore, βi1 ≠ 0, Corr (Yi, X) 2< 1, i = 1, 2, and Equations (7.18) and (11.17)
imply 0 < Corr (Yi, X) 2< 1. Now we consider two cases.

Case 1: The slopes β11 and β21 have identical signs. Then a1 > 0 and the correlations
Corr (Y1, X), Corr (Y2, X) have identical signs as well [see (11.17)], and

RY1|X ⋅ RY2|X = Corr (Y1, X) ⋅ Corr (Y2, X)

[see Eqs. (11.18) and (11.22)] and Corr [E(Y1 | X), E(Y2 | X)] = 1 [see Cor. 7.23]. This
implies that Equation (11.54) simplifies to

Corr (Y1, Y2; X) = Corr (Y1, Y2) − Corr (Y1, X) ⋅ Corr (Y2, X)√
1 − Corr (Y1, X) 2 ⋅

√
1 − Corr (Y2, X) 2

.

Case 2: The slopes β11 and β21 have different signs. Then a1 < 0 and the corre-
lations Corr (Y1, X), Corr (Y2, X) have different signs as well [see (11.17)]. In this
case, the same equation holds, because RY1|X ⋅ RY2|X = −Corr (Y1, X) ⋅ Corr (Y2, X)
[see Eqs. (11.18) and (11.22)] and, according to Corollary 7.23, Corr [E(Y1 | X),
E(Y2 | X)] = −1.
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Linear regression

In chapter 10 we introduced the general concepts of a conditional expectation and a regression,
and in chapter 11 we treated the residual with respect to a conditional expectation, the con-
cepts conditional variance, conditional covariance, and partial correlation. Now we turn to
parameterizations of a conditional expectation. A parameterization serves to describe a con-
ditional expectation with a few parameters (real numbers). Oftentimes, these parameters have
important meanings that differ between different parameterizations. We treat a linear parame-
terization of a conditional expectation, which is also called the linear regression. We start with
the basic ideas, present the definitions, treat some examples, consider the relationship between
a linear regression and a linear quasi-regression, and deal with uniqueness of a linear parame-
terization and the identification of the regression coefficients. Finally, we present a theorem on
the invariance of regression coefficients and a theorem on the existence of a linear regression
if the regressand and the regressors have a joint multivariate normal distribution.

12.1 Basic ideas

Consider the random variables X: (Ω, 𝒜, P) → (R, ℬ) and Y: (Ω, 𝒜, P) → (R,ℬ), and let Y
be nonnegative or with finite expectation. Furthermore, let 𝒞 ⊂ 𝒜 be a σ-algebra and assume
that X is 𝒞-measurable. Now assume that there are a real-valued version E(Y |𝒞) of the
𝒞-conditional expectation of Y and coefficients β0, β1 ∈ R such that

E(Y |𝒞) = β0 + β1X. (12.1)

Then we call the function g: R → R defined by

g(x) := β0 + β1x, ∀ x ∈ R, (12.2)

a linear parameterization of E(Y |𝒞) in X. This definition implies g(X) ∈ ℰ (Y |𝒞), where
g(X) denotes the composition of X and g.
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If 𝒞 = σ(X), then a function g: R → R satisfying E(Y |𝒞) = E(Y | X) = g(X) always
exists (see Rem. 10.3 and Cor. 10.23). However, g is not necessarily a linear function. Hence,
even if 𝒞 = σ(X), a linear parameterization of E(Y |𝒞) = E(Y | X) in X does not necessarily
exist. Yet, if we assume that

(a) Equations (12.1) and (12.2) hold, and

(b) the variance of X is positive and finite,

then E(Y | X) and g, and therefore the coefficients β0 and β1, are uniquely defined (see section
12.5 and cf. Rem. 11.11). Under the assumptions (a) and (b), the function g is also called the
linear regression of Y on X and the numbers β0 and β1 are called regression coefficients.

Remark 12.1 [Composition of X and a linear function] Because the conditional expecta-
tion E(Y |𝒞) is a function with domain Ω, strictly speaking, it is not a linear function itself.
Assuming that Equation (12.1) holds and saying that E(Y |𝒞) is a linear function of X, we
mean that E(Y |𝒞) is the composition of the random variable X: (Ω, 𝒜, P) → (R, ℬ) and the
linear function g: R → R satisfying (12.2). This is why g and not E(Y |𝒞) itself is called a
linear parameterization and a linear regression if the assumptions (a) and (b) hold. ⊲

Remark 12.2 [Estimation] Although estimation is beyond the scope of this book, it is worth-
while noting that estimation is one of the reasons why a parameterization is useful. The def-
inition of a concrete version of a conditional expectation E(Y | X) requires that we know for
all ω ∈ Ω which values E(Y | X)(ω) are assigned to ω. In empirical applications, these values
are often unknown, that is, we do not know which concrete number E(Y | X)(ω) is assigned to
a concrete ω. In these cases, estimating the values of the conditional expectation may be an
issue. In particular, if Equations (12.1) and (12.2) hold and the variance of X is positive and
finite, then the coefficients β0 and β1 – and with them E(Y | X) = β0 + β1X – can be computed
from estimable quantities such as the variance of X and the expectations and the covariance
of X and Y . In this case, estimation of the values of E(Y | X) is relatively simple because the
variance of X as well as the expectations and the covariance of X and Y can be estimated in a
data sample. ⊲

Example 12.3 [Joe and Ann with self-selection – continued] Table 12.1 (cf. also
Table 11.2) shows nine random variables, the first five of which may be called observable
(or manifest), whereas the last four are unobservable (or latent). The difference between the
two kinds of random variables is that, in empirical applications, the values of the conditional
expectations, the unobservable random variables, are unknown parameters that we might wish
to estimate in a sample. These parameters can be computed from the joint distributions of the
random variables involved. In this fictitious example, the information about the joint distri-
bution of the random variables U, X, and Y is contained in the second column of the table,
whereas in empirical applications these parameters usually have to be estimated using a data
sample. Examples in case are the conditional expectation values E(Y | U=Joe, X=0) = .7 and
E(Y | X=0) = .6. In contrast to the values of the conditional expectations, the values of the five
observables are known for all eight possible outcomes ω ∈ Ω of the random experiment. For
example, if ω = (Joe, no, −), then U(ω) = Joe, X(ω) = 0, and Y(ω) = 0, and these values are
known, because the definitions of these observables do not involve unknown parameters that
depend on the joint distribution of the random variables involved.
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Table 12.1 Joe and Ann with self-selection: conditional expectations.

Outcomes ω Observables Conditional expectations
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E
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P
(X

=
1
|U

)

(Joe, no, −) .144 Joe 1 0 0 0 .7 .6 .704 .04
(Joe, no, +) .336 Joe 1 0 0 1 .7 .6 .704 .04
(Joe, yes, −) .004 Joe 1 0 1 0 .8 .42 .704 .04
(Joe, yes, +) .016 Joe 1 0 1 1 .8 .42 .704 .04
(Ann, no, −) .096 Ann 0 1 0 0 .2 .6 .352 .76
(Ann, no, +) .024 Ann 0 1 0 1 .2 .6 .352 .76
(Ann, yes, −) .228 Ann 0 1 1 0 .4 .42 .352 .76
(Ann, yes, +) .152 Ann 0 1 1 1 .4 .42 .352 .76

In this example, we may consider, for instance, the conditional expectations

E(Y | X) = .6 − .18 ⋅ X, (12.3)

E(Y | U) = .352 + .352 ⋅ 1U=Joe, (12.4)

and

E(Y | X, U) = .2 + .2 ⋅ X + .5 ⋅ 1U=Joe − .1 ⋅ X ⋅ 1U=Joe. (12.5)

The computation of the parameters in Equations (12.3) and (12.5) is illustrated in Examples
12.16 and 12.24. ⊲

12.2 Assumptions and definitions

In this section, we often refer to the following assumptions and the following notation.

Notation and assumptions 12.4
Y: (Ω, 𝒜, P) → (R,ℬ) and X := (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn) are random vari-
ables, where Y is nonnegative or has a finite expectation E(Y). Furthermore, 𝒞 ⊂ 𝒜 is a
σ-algebra and X is 𝒞 -measurable.
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Referring to these assumptions, we define a linear parameterization as follows:

Definition 12.5 [Linear parameterization]
Let the assumptions 12.4 hold and let β0, β1, … , βn ∈ R. If there is a real-valued version
E(Y |𝒞) ∈ ℰ (Y |𝒞) such that

E(Y |𝒞) = β0 +
n∑

i=1
βi Xi, (12.6)

then the function g: R
n → R defined by

g(x) := β0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (12.7)

is called a linear parameterization of E(Y |𝒞) in X.

Note that, even if it exists, a linear parameterization of E(Y |𝒞) is not uniquely defined
unless additional assumptions hold (see Example 12.9). Uniqueness of a linear parameteriza-
tion is treated in Corollary 12.31.

Remark 12.6 [Another notation] If σ(X) = 𝒞, then Equation (12.6) is equivalent to

E(Y | X) = β0 +
n∑

i=1
βi Xi. (12.8)

⊲

Remark 12.7 [X-conditional mean independence] Equation (12.6) implies that E(Y |𝒞) ∈
ℰ (Y | X), which in turn implies that Y is X-conditionally mean independent from 𝒞 (see
Def. 10.45). If σ(X) ≠ 𝒞, then this conditional mean independence does not necessarily
hold. ⊲

Remark 12.8 [Other versions and other factorizations] Note that a linear parameterization
g of E(Y |𝒞) in X is a factorization of E(Y | X), that is, E(Y | X) = g(X) is the composition
of X and g (see section 10.4). Also note that there may be other factorizations g∗ of E(Y | X)
and versions in V∗ ∈ ℰ (Y |𝒞) that do not satisfy Equations (12.6) and (12.7), respectively.
However, according to Theorem 10.9 (ii), Equation (12.6) implies

V∗=
P
β0 +

n∑

i=1
βi Xi, ∀ V∗ ∈ ℰ (Y |𝒞) . (12.9)

Furthermore, if g, g∗ are factorizations of versions V , V∗ ∈ ℰ (Y | X), respectively, then,

g∗ =
PX

g (12.10)

(see Cor. 10.29). ⊲
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Example 12.9 [Constant regressor] Suppose that E(Y |𝒞) = g(X) = β0 + β1X and X is a
constant function, that is, there is an α ∈ R such that, for all ω ∈ Ω, X(ω) = α. Then, Var (X) =
0 and g, g∗: R → R defined by

∀ x ∈ R: g(x) = β0 + β1x and g∗(x) = (β0 − γα) + (β1 + γ) x, 0 ≠ γ ∈ R,

are two linear parameterizations in X that differ from each other but satisfy g(X) = g∗(X) =
E(Y |𝒞). This example shows that a linear parameterization of E(Y |𝒞) in X is not uniquely
defined unless additional assumptions hold. ⊲

Remark 12.10 [Linear parameterizations in different random variables] Consider Equa-
tion (12.6), which involves a linear parameterization g of E(Y |𝒞) in X. If Z = (Z1, … , Zm):
Ω → R

m is an m-variate random variable on (Ω, 𝒜, P), and σ(Z) ⊂ 𝒞, then for one and the
same version E(Y |𝒞) ∈ ℰ (Y |𝒞), there may also be a linear parameterization f : R

m → R of
E(Y |𝒞) in Z with coefficients γ0, γ1, … , γm ∈ R satisfying

f (z) = γ0 +
m∑

i=1
γi zi, ∀ z = (z1, … , zm) ∈ R

m
. (12.11)

In other words, one and the same version E(Y |𝒞) ∈ ℰ (Y |𝒞) may have several parameteri-
zations such as f and g that are linear in Z = (Z1, … , Zm) and X = (X1, … , Xn), respectively.
Note that the regression coefficients γ0, γ1, … , γm ∈ R and β0, β1, … , βn ∈ R pertaining to
the two parameterizations f and g may differ from each other. ⊲

Remark 12.11 [Conditional expectation values] If g is a linear parameterization of E(Y | X)
in X satisfying Equation (12.7), then, according to Definition 10.33,

E(Y | X=x) = E(Y | X1=x1, … , Xn=xn)

= g(x) = β0 + β1x1 +⋯ + βn xn, ∀ x = (x1, … , xn) ∈ R
n
.

(12.12)

Note that another factorization g∗ of E(Y | X) might yield another conditional expectation value
E(Y | X=x) if P(X=x) = 0. ⊲

Remark 12.12 [PX-equivalence of different parameterizations] If g, g∗ are factorizations
of versions V , V∗ ∈ ℰ (Y | X), then, according to Equation (12.10),

g(x) = g∗(x), for PX-a.a. x ∈ R
n, (12.13)

[see Eq. (10.26)]. ⊲

12.3 Examples

Example 12.13 [Univariate real-valued X] If X: (Ω, 𝒜, P) → (R, ℬ) and

E(Y | X) = β0 + β1X, (12.14)
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then the function g: R → R defined by

g(x) = β0 + β1x, x ∈ R, (12.15)

is a linear parameterization of E(Y | X) in X. If 0 < Var (X) < ∞, then g is uniquely defined
and also called the simple linear regression of Y on X (see Cor. 12.31 and Rem. 12.34). ⊲

Example 12.14 [Intercept and slope] If E(Y | X) = β0 + β1X, then,

β0 = E(Y | X=0). (12.16)

Furthermore, if x1, x2 ∈ R and x2 > x1, then,

β1 = 1
x2 − x1

⋅ [E(Y | X=x2) − E(Y | X=x1)] (12.17)

[see Exercise 7.2 and Eq. (12.12)]. Equation (12.17) yields

β1 = E(Y | X=x2) − E(Y | X=x1), if x2 − x1 = 1. (12.18)

This justifies calling β0 the intercept and β1 the slope of E(Y | X), respectively (see Fig. 7.3).
Note that these equations also apply if P(X=0) = P(X=x1) = P(X=x2) = 0. They even apply
if 0, x1, x2 ∉ X(Ω). ⊲

Example 12.15 [Dichotomous regressor] If X is dichotomous with values 0 and 1 (see
Example 5.10), then there is always a version E(Y | X) ∈ ℰ (Y | X) such that

E(Y | X) = β0 + β1X (12.19)

with

β0 = E(Y | X=0), (12.20)

and

β1 = E(Y | X=1) − E(Y | X=0) (12.21)

(for a proof, see Th. 12.37). ⊲

Example 12.16 [Joe and Ann with self-selection – continued] In Table 12.1, X is dichoto-
mous. According to Example 12.15, this implies that there is a linear parameterization of
E(Y | X) in X satisfying Equation (12.19). In this example,

E(Y | X) = .6 − .18 X, (12.22)

and the function g: R → R defined by g(x) = .6 − .18 x, x ∈ R, is a linear parameterization of
E(Y | X) in X.
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The intercept is most easily obtained via Equation (12.20):

β0 = E(Y | X=0) = P(Y =1 | X=0)

= P(Y =1, X=0)
P(X=0)

= .336 + .024
.144 + .336 + .096 + .024

= .6.
(12.23)

The slope is obtained via Equation (12.21):

β1 = E(Y | X=1) − E(Y | X=0) = P(Y =1 | X=1) − P(Y =1 | X=0)

= P(Y =1, X=1)
P(X=1)

− P(Y =1 | X=0)

= .016 + .152
.004 + .016 + .228 + .152

− .6 = .42 − .6 = −.18.

(12.24)

⊲

Example 12.17 [Dichotomous regressor – continued] Continue Example 12.15 and define
the random variable Z: (Ω, 𝒜, P) → (R, ℬ) by Z := 2X − 1. Then Z is dichotomous with val-
ues −1 and 1, and

∀ ω ∈ Ω: X(ω) = 0 ⇔ Z(ω) = −1 and X(ω) = 1 ⇔ Z(ω) = 1.

Note that σ(Z) = σ(X) holds for the σ-algebras generated by X and Z. Because X = 1
2
(Z + 1),

E(Y | X) = β0 + β1X = β0 +
β1

2
(Z + 1) = β0 +

β1

2
+ β1

2
Z = E(Y | Z) . (12.25)

the function g∗: R → R defined by g∗(z) = α0 + α1z, z ∈ R, is a linear parameterization of
E(Y | X) in Z, where

α0 = β0 +
β1

2
= E(Y | X=0) + E(Y | X=1) − E(Y | X=0)

2

= E(Y | X=1) + E(Y | X=0)
2

(12.26)

and

α1 = β1

2
= E(Y | X=1) − E(Y | X=0)

2
. (12.27)

Note that

{X=1} =
{1

2
(Z + 1) = 1

}
= {Z=1},

{X=0} =
{1

2
(Z + 1) = 0

}
= {Z=−1}.

(12.28)
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Because X and Z are dichotomous with positive probabilities for both of their values, Equation
(12.28) and E(Y | X=x) = E(Y | {X=x}) [see Eq. (9.6)] imply

α0 = E(Y | Z=1) + E(Y | Z=−1)
2

, (12.29)

α1 = E(Y | Z=1) − E(Y | Z=−1)
2

. (12.30)

Comparing Equations (12.26) and (12.27) to Equations (12.20) and (12.21) shows that the
meaning of the regression coefficients depends on the choice of the random variable, here X
or Z, with respect to which we consider a linear parameterization. ⊲

Example 12.18 [Joe and Ann with self-selection – continued] Using the results of Example
12.16 as well as Equations (12.25) to (12.27) yields

E(Y | X) = E(Y | Z) = .42 + .6
2

+ .42 − .6
2

Z = .51 − .09 Z. (12.31)

Note again that E(Y | X) and E(Y | Z) are only different notations for a version of ℰ (Y |𝒞),
where 𝒞= σ(X) = σ(Z) and that g: R → R defined by g(x) = .6 − .18 x, x ∈ R, and
g∗: R → R defined by g∗(z) = .51 − .09 z, z ∈ R, are two different linear parameteriza-
tions of one and the same version E(Y |𝒞) ∈ ℰ (Y |𝒞), one is linear in X, the other one
linear in Z. ⊲

Example 12.19 [Quadratic function] Let X1: (Ω, 𝒜, P) → (R, ℬ) be a real-valued random
variable, let X2 := X 2

1 , X :=(X1, X2), and assume that there is a version E(Y | X) ∈ ℰ (Y | X)
with

E(Y | X) = β0 + β1X1 + β2X 2
1 . (12.32)

Then the function g: R
2 → R defined by

g(x) = β0 + β1x1 + β2x2, x = (x1, x2) ∈ R
2, (12.33)

is a linear parameterization of E(Y | X) in X = (X1, X 2
1 ). ⊲

Example 12.20 [Logarithmic function] Consider Z: (Ω, 𝒜, P) → (R, ℬ), a real-valued and
positive random variable; define X := ln Z; and assume that there is a version E(Y | X) ∈
ℰ (Y | X) with

E(Y | X) = β0 + β1 ln Z = β0 + β1X. (12.34)

Then the function g: R → R defined by

g(x) = β0 + β1x, x ∈ R, (12.35)

is a linear parameterization of E(Y | X) in X = ln Z. Note that ℰ (Y | Z) = ℰ (Y | X), because
σ(X) = σ(Z) (see Exercise 12.1). ⊲
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Example 12.21 [Two regressors] If Xi: (Ω, 𝒜, P) → (R, ℬ), i = 1, 2, are univariate real-
valued random variables, X := (X1, X2), and there is a version E(Y | X) ∈ ℰ (Y | X) with

E(Y | X) = β0 + β1X1 + β2X2, (12.36)

then the function g: R
2 → R defined by

g(x) = β0 + β1x1 + β2x2, x = (x1, x2) ∈ R
2, (12.37)

is a linear parameterization of E(Y | X) in X = (X1, X2). ⊲

Example 12.22 [Two regressors and their product] Let Xi: (Ω, 𝒜, P) → (R, ℬ), i = 1, 2,
be univariate real-valued random variables; define X3 := X1 ⋅ X2 and X := (X1, X2, X3); and
assume that there is a version E(Y | X) ∈ ℰ (Y | X) with

E(Y | X) = β0 + β1X1 + β2X2 + β3X1⋅X2. (12.38)

Then the function g: R
3 → R defined by

g(x) = β0 + β1x1 + β2x2 + β3x3, ∀ x = (x1, x2, x3) ∈ R
3, (12.39)

is a linear parameterization of E(Y | X) in X = (X1, X2, X1⋅X2). ⊲

Remark 12.23 [Dichotomous random variables] Note that the linear parameterization of
E(Y | X) specified by Equations (12.38) and (12.39) always exists, if X1 and X2 are dichoto-
mous with values 0 and 1 (see Example 5.10 and Exercise 12.2). ⊲

Example 12.24 [Joe and Ann with self-selection – continued] Consider the random
variables X and 1U=Joe specified in Table 12.1, and define Z := (Z1, Z2, Z3) := (X, 1U=Joe,
X ⋅ 1U=Joe). Then, according to Example 12.22 and Remark 12.23,

E(Y | Z) = β0 + β1 X + β2 1U=Joe + β3 X ⋅ 1U=Joe, (12.40)

and the function g: R
3 → R defined by

g(z) = .2 + .2 z1 + .5 z2 − .1 z3, ∀ z = (z1, z2, z3) ∈ R
3,

is a linear parameterization of E(Y | Z) in Z = (X, 1U=Joe, X ⋅ 1U=Joe).
The coefficients β0 to β3 in Equation (12.40) can also be obtained as follows (cf. Exer-

cise 12.2). Table 12.1 and Equation (12.40) yield:

β0 = E(Y | Z1=0, Z2=0, Z3=0) = P(Y =1 | X=0, U=Ann) = .2,

β0 + β1 = E(Y | Z1=1, Z2=0, Z3=0) = P(Y =1 | X=1, U=Ann) = .4,

β0 + β2 = E(Y | Z1=0, Z2=1, Z3=0) = P(Y =1 | X=0, U=Joe) = .7,

β0 + β1 + β2 + β3 = E(Y | Z1=1, Z2=1, Z3=1) = P(Y =1 | X=1, U=Joe) = .8.
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Solving these equations for the four coefficients and inserting them into Equation (12.40)
yield

E(Y | Z) = .2 + .2 X + .5 1U=Joe − .1 X ⋅ 1U=Joe. (12.41)

In this example, σ(Z) = σ(X, U) and Z(Ω) = {0, 1}3. According to Remark 10.12, this implies
E(Y | Z) = E(Y | X, U) and that the function g is also a linear parameterization of E(Y | X, U)
in Z = (X, 1U=Joe, X ⋅ 1U=Joe). ⊲

Remark 12.25 [Generalizing the examples] Generalizing the Examples 12.19 to 12.24, let
Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be a (univariate or multivariate) random variable. For i = 1, … , n,

let hi : (Ω′
Z , 𝒜 ′

Z) → (R, ℬ) be measurable functions, define Xi := hi(Z), and X := (X1, … , Xn).
If there is a version E(Y | X) ∈ ℰ (Y | X) such that

E(Y | X) = β0 +
n∑

i=1
βi hi(Z), (12.42)

then g: R
n → R defined by

g(x) = β0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (12.43)

is a linear parameterization of E(Y | X) in X = (h1(Z), … , hn(Z)). Remember that σ(X) ⊂ σ(Z),
but note that σ(X) = σ(Z) does not necessarily hold. If σ(X) ≠ σ(Z), then there is not necessar-
ily a version E(Y | Z) ∈ ℰ (Y | Z) with E(Y | Z) = E(Y | X). However, if we assume that there
is a version E(Y | Z) ∈ ℰ (Y | Z) with E(Y | Z) = E(Y | X), then

E(Y | Z) = β0 +
n∑

i=1
βi hi(Z). (12.44)

In this case, the function g is also a linear parameterization of E(Y | Z) in X =
(h1(Z), … , hn(Z)). ⊲

12.4 Linear quasi-regression

In the following corollary, Qlin(Y | X1, … , Xn) denotes the function that has been intro-
duced in Definition 7.28. This corollary immediately follows from Theorem 10.26 and
Definition 12.5.

Corollary 12.26 [Linear regression and linear quasi-regression]
Let the assumptions 12.4 hold, and suppose that E(Y 2), E(X 2

i ) < ∞, i = 1, … , n. If there
is a version E(Y |𝒞) ∈ ℰ (Y |𝒞) with E(Y |𝒞) = β0 +

∑n
i=1 βi Xi, where β0, β1, … , βn ∈

R, then,

E(Y |𝒞) = Qlin(Y | X1, … , Xn) = β0 +
n∑

i=1
βi Xi. (12.45)
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Hence, if E(Y |𝒞) = β0 +∑n
i=1 βi Xi, then E(Y |𝒞) and Qlin(Y | X1, … , Xn) = f (X) are

identical, where f (X) is the composition of X and the linear quasi-regression f : R
n → R (see

Def. 7.28).

Remark 12.27 [Dichotomous regressor] If X is dichotomous with values 0 and 1 (see Exam-
ple 5.10), then E(Y | X) = Qlin(Y | X) (see Example 12.15 and Th. 12.37). If P(X=xi) > 0
for at least three different xi ∈ R, then it is not necessarily true that Qlin(Y | X) ∈ ℰ (Y | X).
If Qlin(Y | X) ∉ ℰ (Y | X), then there are no β0, β1 ∈ R such that the function g defined by
g(x) = β0 + β1x, x ∈ R, is a linear parameterization in X of a version E(Y | X) ∈ ℰ (Y | X) (see
Example 12.41). ⊲

Remark 12.28 [Unbounded regressor, dichotomous regressand] Suppose that X and Y
are real-valued random variables on (Ω, 𝒜, P), and that Y is dichotomous with values 0 and 1.
Because P(0 ≤ Y ≤ 1) = 1, Rules (ii) and (iii) of Box 10.3 imply

0 ≤
P

E(Y | X) = P(Y =1 | X) ≤
P

1. (12.46)

Suppose that the regressor X is not P-almost surely bounded, that is, suppose

∀ c ∈ R, c > 0: P(X < −c) + P(X > c) > 0. (12.47)

Then there is no linear parameterization of E(Y | X) in X with slope β1 ≠ 0 (see Exercise
12.3 and cf. ch. 13). Note that the premise (12.47) holds, for example, if X has a normal
distribution. ⊲

Example 12.29 [No treatment for Joe – continued] In the example presented in Table 9.2,

E(Y | X) = β0 + β1X = .6 − .2 X (12.48)

(see Example 12.15), and

g(x) = β0 + β1 x = .6 − .2 x, ∀ x ∈ R, (12.49)

defines a linear parameterization g: R → R of E(Y | X) in X. Hence, according to Remark
12.11, we may define

E(Y | X=x) = g(x) = .6 − .2 x, ∀ x ∈ R, (12.50)

(see Def. 10.33). For x=0, Equation (12.50) yields E(Y | X=0) = .6, and it yields
E(Y | X=1) = .4 for x=1. Note that the definition of the conditional expectation values
E(Y | X=x) for x ∈ R ∖{0, 1} via Equation (12.50) is arbitrary, because P(X ∈ R ∖{0, 1}) = 0.
Using any other factorization of E(Y | X) for the definition of the conditional expectation val-
ues E(Y | X=x) for x ∈ R ∖{0, 1} would do as well.

Remark 12.27 and Definition 7.28 imply that the function MSE: R
2 → [0, ∞[ defined by

MSE (a0, a1) = E([Y − (a0 + a1 X)] 2), ∀ (a0, a1) ∈ R
2, (12.51)
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has its minimum for (a0, a1) = (.6, −.2). Hence, in this example,

E(Y | X) = Qlin(Y | X) = .6 − .2 X,

and the function g: R → R defined by Equation (12.49) is a linear parameterization of E(Y | X)
in X. ⊲

12.5 Uniqueness and identification of regression coefficients

In Example 12.9, we showed that a linear parameterization is not uniquely defined unless
additional assumptions hold. Such assumptions are specified in Corollary 12.31, which uses
the following notation and general assumptions:

Notation and assumptions 12.30
Let the assumptions 12.4 hold. Furthermore, x := [X1, … , Xn]′ is the column vector
of X = (X1, … , Xn), 𝛍 := [E(X1), … , E(Xn)]′ the column vector of the expectations of
X1, … , Xn, and 𝛃 := [β1, … , βn]′ a column vector of n real numbers.

Assuming finite second moments of Y and X1, … , Xn,

𝚺xx = E
(
[x − 𝛍] [x − 𝛍]′

)
=

⎡
⎢
⎢
⎢
⎢⎣

σ 2
X1

σX1X2
… σX1Xn

σX2X1
σ 2

X2
… σX2Xn...

... . . . ...
σXnX1

σXnX2
… σ 2

Xn

⎤
⎥
⎥
⎥
⎥⎦

denotes the variance-covariance matrix of X = (X1, … , Xn) (see section 7.4.3). Furthermore,

𝚺yx = [σYX1
, … , σYXn

]

denotes the row vector of the covariances Cov (Y , Xi) = σYXi
, i = 1, … , n, and 𝚺xy := 𝚺′

yx the
column vector of these covariances. Remember that the notation X = (X1, … , Xn) refers to an
n-variate random variable, whereas x = [X1, … , Xn] denotes the row vector of the random
variables X1, … , Xn.

The following corollary immediately follows from Theorem 7.30 and Corollary 12.26.
It shows how to compute (identify) the regression coefficients of a linear parameterization of
E(Y |𝒞) in X, and it specifies sufficient conditions under which such a linear parameterization
of E(Y |𝒞) is uniquely defined.

Corollary 12.31 [Identification of parameters]
Let the assumptions 12.30 hold. If there is a version E(Y |𝒞) ∈ ℰ (Y |𝒞) with

E(Y |𝒞) = β0 + 𝛃′x = β0 +
n∑

i=1
βi Xi, (12.52)
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then,

β0 = E(Y) − 𝛃′𝛍. (12.53)

If, in addition, Y and X1, … , Xn have finite second moments and the inverse 𝚺 −1
xx exists,

then,

𝛃 = 𝚺 −1
xx 𝚺xy, (12.54)

and the linear parameterization g: R
n → R of E(Y |𝒞) in X with

g(x) = β0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (12.55)

is uniquely defined.

12.6 Linear regression

As already mentioned in the Preface, much empirical research uses some kind of regression in
order to investigate how the conditional expectation values of one random variable depend on
the values of one or more other random variables. In Definition 10.25, we introduced the con-
cept of a regression as a special case of a factorization of a conditional expectation in which
the regressor X is numerical. In Definition 12.5, we defined the concept of a parameteriza-
tion of E(Y |𝒞) that is linear in X. Such parameterizations of E(Y |𝒞) are not necessarily
uniquely defined. If there is a parameterization g of E(Y |𝒞) that is linear in X and satisfies
Equation (12.55), then we call it the linear regression of Y on X. According to Corollary 12.31,
the linear regression is uniquely defined.

Definition 12.32 [Linear regression]
Let the assumptions 12.30 hold, and suppose that there is a version E(Y |𝒞) ∈ ℰ (Y |𝒞)
such that Equation (12.52) holds. Furthermore, assume that Y and X1, … , Xn have finite
second moments and that the inverse 𝚺 −1

xx exists. Then the function g: R
n → R defined by

Equation (12.55) is called the linear regression of Y on X (with respect to P).

Figure 12.1 shows the conditional expectation E(Y | X) as the composition of X and the lin-
ear regression g. Hence, while the conditional expectation E(Y | X) is a function with domain
Ω and codomain R, the linear regression g is a function with domain R

n and codomain R.

Remark 12.33 [Simple and multiple linear regression] If n ≥ 2, then the linear regression
of Y on X is also called the multiple linear regression of Y on X. The coefficients β0, β1, … , βn
are called regression coefficients, and β0 the intercept. If n = 1, then a linear regression of Y
on X is also called a simple linear regression of Y on X with slope β1. ⊲
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Ω nX g (linear regression)

E(Y X ) = g(X )∣

Figure 12.1 E(Y | X) as the composition of X and the linear regression g.

Remark 12.34 [Simple regression as a special case] If n =1 and we define X := X1, then
Equation (12.52) can be written as:

E(Y |𝒞) = β0 + β1 X. (12.56)

If Equation (12.56) holds, then there is a version E(Y | X) ∈ ℰ (Y | X) such that

E(Y |𝒞) = E(Y | X) = β0 + β1 X = Qlin(Y | X) . (12.57)

Therefore, we obtain the same results for the regression coefficients that have already been
described in Theorem 7.14. In particular, Equation (12.53) yields

β0 = E(Y) − β1 E(X), (12.58)

and (12.54) implies

β1 = Cov (X, Y)
Var (X)

. (12.59)

If n =1 and X=X1, then 𝚺 −1
xx =

[ 1
Var (X)

]
and the existence of the inverse 𝚺 −1

xx is equivalent to
Var (X) > 0 (see Th. 7.14 and Rem. 7.25). ⊲

In the following theorem, we consider the special case that Z = (Y , X1, … , Xn) has an (n + 1)-
variate normal distribution (see Def. 8.36).

Theorem 12.35 [Linear parameterization and normal distribution]
Let the assumptions 12.30 hold and let Z := (Y , X1, … , Xn) be an (n + 1)-variate real-
valued random variable on (Ω, 𝒜, P) with Z ∼  𝛍z, 𝚺zz

Furthermore, assume that the

inverse 𝚺 −1
xx exists. Then, there is a version E(Y | X) ∈ ℰ (Y | X) with

E(Y | X) = β0 + 𝛃′ x

such that Equations (12.53) and (12.54) hold for β0 and 𝛃, respectively.

Existence is proved by Rao (1973, Eq. 8a.2.16), and Corollary 12.31 implies that Equations
(12.53) and (12.54) hold for β0 and 𝛃 = [β1, … , βn]′.
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12.7 Parameterizations of a discrete conditional expectation

Now we consider two parameterizations of a discrete conditional expectation E(Y | Z). In both
cases, there are only a finite number of values of Z. In the first case, the possible values of Z
are denoted z1, … , zn. In the second case, the notation is changed for didactic reasons.

Theorem 12.36 [Means as coefficients]
Let the assumptions 12.30 hold, assume that Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) is a discrete ran-

dom variable, and P(Z ∈ {z1, … , zn}) = 1 with P(Z=zi) > 0, for all i = 1, … , n. Fur-
thermore, define Xi := 1Z=zi

, i = 1, … , n, and X := (X1, … , Xn). Then there is a version
E(Y | Z) ∈ ℰ (Y | Z) with

E(Y | Z) =
n∑

i=1
βi 1Z=zi

=
n∑

i=1
βi Xi, (12.60)

where

βi = E(Y | Z=zi), ∀ i = 1, … , n . (12.61)

The function g: R
n → R defined by

g(x) = 0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (12.62)

is a linear parameterization of E(Y | Z) in X = (1Z=z1
, … , 1Z=zn

). If Z(Ω) =
{z1, … , zn}, then V = V∗ for all V , V∗ ∈ ℰ (Y | Z).

(Proof p. 388)

Hence, in this parameterization, the coefficients of Equation (12.7) are

β0 = 0, β1 = E(Y | Z=z1), … , βn = E(Y | Z=zn), (12.63)

that is, in this parameterization, the coefficients βi, i = 1, … , n, are the (Z=zi)-conditional
expectation values of Y .

In the following theorem, we present another linear parameterization of E(Y | Z), general-
izing Example 12.15. For convenience, the possible values of Z are now denoted z0, z1, … , zn.
Aside from this change in the notation, the assumptions in Theorems 12.36 and 12.37 are
identical.

Theorem 12.37 [Differences between means as coefficients]
Let the assumptions 12.4 hold, and assume that Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) is discrete,

P(Z ∈ {z0, z1, … , zn}) = 1 with P(Z=zi) > 0, for all i = 0, 1, … , n. Furthermore, define
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Xi := 1Z=zi
, i = 1, … , n, and X := (X1, … , Xn). Then there is a version E(Y | Z) ∈

ℰ (Y | Z) with

E(Y | Z) = β0 +
n∑

i=1
βi 1Z=zi

= β0 +
n∑

i=1
βi Xi, (12.64)

where

β0 = E(Y | Z=z0) (12.65)

and

βi = E(Y | Z=zi) − E(Y | Z=z0), ∀ i = 1, … , n . (12.66)

The function g: R
n → R defined by

g(x) = β0 +
n∑

i=1
βi xi, ∀ x = (x1, … , xn) ∈ R

n, (12.67)

is a linear parameterization of E(Y | Z) in X = (1Z=z1
, … , 1Z=zn

). If Z(Ω) =
{z0, z1, … , zn}, then V = V∗ for all V , V∗ ∈ ℰ (Y | Z).

(Proof p. 388)

Hence, in contrast to Equation (12.63), in this parameterization the coefficients are

β0 = E(Y | Z=z0),

β1 = E(Y | Z=z1) − E(Y | Z=z0),

⋅
⋅
⋅

βn = E(Y | Z=zn) − E(Y | Z=z0) .

(12.68)

Now we present a lemma on the covariance matrix of the indicators 1Z=zi
for the values

z0, z1, … , zn of a discrete random variable Z. In particular, this lemma helps to prove that the
covariance matrix of the indicators 1Z=z1

, … , 1Z=zn
is regular. This implies that the inverse

of this covariance matrix exists so that Corollary 12.31 can be applied.

Lemma 12.38 [Covariance matrix of indicators]
Let Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be discrete with P(Z ∈ {z0, z1, … , zn}) = 1 and pi :=

P(Z=zi) > 0, for all i = 0, 1, … , n. Then the following two propositions hold:
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(i) The second moments of the indicators 1Z=z1
, … , 1Z=zn

are finite, and for all
i, j = 0, 1, … , n,

σij := Cov (1Z=zi
, 1Z=zj

) =
{

pi ⋅ (1 − pi), if i = j
− pi ⋅ pj, if i ≠ j.

(12.69)

(ii) For all i = 1, … , n,

σii >

n∑

j=1, j≠ i
| σij| . (12.70)

(Proof p. 389)

Remark 12.39 [Strict diagonal dominance] Proposition (ii) of Lemma 12.38 implies that
the covariance matrix of the indicators 1Z=z1

, … , 1Z=zn
is strictly diagonally dominant, that

is, it satisfies

| σii| >
n∑

j=1, j≠ i
| σij|, ∀ i = 1, … , n . (12.71)

⊲

Remark 12.40 [Regularity of the covariance matrix of indicators] According to Corol-
lary 5.6.17 of Horn and Johnson (1991), (12.71) implies that the covariance matrix of the
indicators 1Z=z1

, … , 1Z=zn
is regular. In contrast, the covariance matrix of the indicators

1Z=z0
, 1Z=z1

, … , 1Z=zn
is not strictly diagonally dominant, and it is not regular. The reason

is that 1Z=z0
= 1 −∑n

i=1 1Z=zi
, that is, 1Z=z0

is a linear combination of 1Z=z1
, … , 1Z=zn

,
which implies that the covariance matrix of 1Z=z0

, 1Z=z1
, … , 1Z=zn

is not regular (see
Exercise 12.4). ⊲

Example 12.41 [Tom, Jim, and Kate – continued] Table 5.1 displays an example in which
the treatment variable X has three values. The conditional expectation E(Y | X) = P(Y =1 | X)
has three values as well, namely the following conditional probabilities:

P(Y =1 | X=0) = (10 + 15 + 8) ∕ 99
(10 + 10 + 5 + 15 + 12 + 8) ∕ 99

= .55,

P(Y =1 | X=1) = (6 + 5 + 3) ∕ 99
(2 + 6 + 3 + 5 + 5 + 3) ∕ 99

= .583,

P(Y =1 | X=2) = (4 + 3 + 1) ∕ 99
(1 + 4 + 2 + 3 + 4 + 1) ∕ 99

= .53.

There are several linear parameterizations of the conditional expectation E(Y | X). For
example, we can use the linear parameterization in (X, X2) specified in Equation (12.33),
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x

E (Y | X = x)

0.2

0.4

0.6

0.8

1.0

21

Figure 12.2 A regression with a parameterization that is linear in (X, X 2) but not in X.

which yields

P(Y =1 | X=0) = β0,

P(Y =1 | X=1) = β0 + β1 + β2,

P(Y =1 | X=2) = β0 + 2 ⋅ β1 + 4 ⋅ β2.

Solving this equation system results in

β0 = P(Y =1 | X=0) = .55,

β1 = 1
2

[
− P(Y =1 | X=2) + P(Y=1 | X=1) − 3 ⋅ P(Y =1 | X=0)

]
= −.8,

β2 = 1
2

[
P(Y =1 | X=2) − 2 ⋅ P(Y =1 | X=1) + P(Y =1 | X=0)

]
= −0.0416.

In this example, β2 ≠ 0, and there is no linear parameterization of E(Y | X) in X. This is
illustrated in Figure 12.2 (see Exercise 12.5). Note that X and the conditional expectation
E(Y | X) = P(Y =1 | X) have only three different values.

We could also use the linear parameterization specified in Equation (12.62). In this case,
according to (12.63), the coefficients are

β0 = 0, β1 = P(Y =1 | X=0) = .55, β2 = P(Y =1 | X=1) = .583,

β3 = P(Y =1 | X=2) = .53.

If we use the linear parameterization specified in Equation (12.67), then, according to (12.68),
the coefficients are

β0 = P(Y =1 | X=0) = .55,

β1 = P(Y =1 | X=1) − P(Y=1 | X=0) = .03,

β2 = P(Y =1 | X=2) − P(Y=1 | X=0) = −.016.
⊲
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Remark 12.42 [n-valued regressor] If X is a discrete random variable with n different val-
ues, then there is a version P(Y =1 | X) with a linear parameterization in (X, X2, … , Xn−1),
that is, P(Y =1 | X) can be written as a polynomial in X of degree n − 1 (see Süli & Mayers,
2003, Theorem 6.1, Lagrange’s interpolation theorem). ⊲

12.8 Invariance of regression coefficients

Remark 12.43 [Simple versus multiple regression] Let the assumptions 12.4 hold with
n = 2, and let the second moments of Y , X1, and X2 be finite. Assume that the inverse of the
covariance matrix of (X1, X2) exists and that there is a version E(Y | X1, X2) ∈ ℰ (Y | X1, X2)
such that

E(Y | X1, X2) = β0+ β1 X1+ β2 X2. (12.72)

Furthermore, assume that there is a version E(Y | X1) ∈ ℰ (Y | X1) with

E(Y | X1) = α0+ α1 X1. (12.73)

Then, α1 = β1 does not necessarily hold. ⊲

In the following theorem, we formulate a sufficient condition for α1 = β1 and generalize it
to the n-variate case, where n ≥ 2. That is, instead of E(Y | X1), we consider E(Y | X1, … , Xm)
and replace E(Y | X1, X2) by E(Y | X1, … , Xn), presuming m < n.

Theorem 12.44 [Invariance of regression coefficients]
Let the assumptions 12.4 hold, let m < n, and suppose that there is a version
E(Y | X1, … , Xn) ∈ ℰ (Y | X1, … , Xn) such that

E(Y | X1, … , Xn) = β0 +
m∑

i=1
βi Xi +

n∑

i=m+1
βi Xi. (12.74)

If

∀ i = m + 1, … , n:
(
βi = 0 or E(Xi | X1, … , Xm) =

P
E(Xi)

)
, (12.75)

then there is a version E(Y | X1, … , Xm) ∈ ℰ (Y | X1, … , Xm) such that

E(Y | X1, … , Xm) = α0 +
m∑

i=1
αi Xi (12.76)

with

α0 = β0 +
n∑

i=m+1
βi E(Xi) (12.77)
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and

αi = βi, ∀ i = 1, … , m . (12.78)

(Proof p. 390)

Note that

X1, … , Xm ⟂⟂
P

Xi, ∀ i = m + 1, … , n

is a sufficient condition for

E(Xi | X1, … , Xm) =
P

E(Xi), ∀ i = m + 1, … , n

[see Eq. (12.75) and Box 10.2 (vi)].

12.9 Proofs

Proof of Theorem 12.36

The existence of a version E(Y | Z) satisfying (12.60) and (12.61) immediately follows from
Definition 9.14 and Remark 10.11. Note that

σ(X) = σ(1Z=z1
, … , 1Z=zn

) = σ
({

{Z=zi}: i = 1, … , n
})

⊂ σ(Z),

where X := (X1, … , Xn) = (1Z=z1
, … , 1Z=zn

). This implies that the function g defined by
Equation (12.62) is a linear parameterization of E(Y | Z) in X = (1Z=z1

, … , 1Z=zn
) with coef-

ficients

β0 = 0, β1 = E(Y | Z=z1), … , βn = E(Y | Z=zn)

(see Def. 12.5). Uniqueness is an immediate implication of Remark 10.12, provided that
Z(Ω) = {z1, … , zn}.

Proof of Theorem 12.37

Let h: Ω′
Z → R be a function such that h(Z) ∈ ℰ (Y | Z). Then,

h(Z) =
P

n∑

i=0
h(zi) ⋅ 1Z=zi

[(5.34)]

=
P

n∑

i=0
E(Y | Z=zi) ⋅1Z=zi

[(10.27)]
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=
P

E(Y | Z=z0) ⋅1Z=z0
+

n∑

i=1
E(Y | Z=zi) ⋅1Z=zi

=
P

E(Y | Z=z0) −
n∑

i=1
E(Y | Z=z0) ⋅1Z=zi

+
n∑

i=1
E(Y | Z=zi) ⋅1Z=zi

[(5.33)]

=
P

E(Y | Z=z0) +
n∑

i=1
[E(Y | Z=zi) − E(Y | Z=z0)] ⋅ 1Z=zi

=
P
β0 +

n∑

i=1
βi ⋅ 1Z=zi

,

where β0 := E(Y | Z=z0) and βi := E(Y | Z=zi) − E(Y | Z=z0), for i = 1, … , n. Because the
function on the right-hand side of the last equation is Z-measurable (see Rem. 2.17), it is an
element of ℰ (Y | Z), that is,

β0 +
n∑

i=1
βi ⋅ 1Z=zi

∈ ℰ (Y | Z) .

This proves equations (12.64), (12.65), and (12.66). Note that

σ(X) = σ({{Z=zi}: i = 1, … , n}) ⊂ σ({{Z=zi}: i = 0, 1, … , n}) ⊂ σ(Z),

where X := (X1, … , Xn) = (1Z=z1
, … , 1Z=zn

). This implies that g [see Eq. (12.67)] is a
linear parameterization of E(Y | Z) in X = (1Z=z1

, … , 1Z=zn
) (see Def. 12.5). If Z(Ω) =

{z0, z1, … , zn}, then Remark 10.12 implies that E(Y | Z) is the only version in ℰ (Y | Z).

Proof of Lemma 12.38

(i) For i = j, Equation (12.69) immediately follows from Equation (6.29) for the event
A = {Z=zi}. For i ≠ j, Equation (12.69) follows from Equation (7.14) and the fact
that P(Z=zi, Z=zj) = 0 if i ≠ j. Equation (12.69) also shows that the variances and
covariances of the indicators 1Z=z1

, … , 1Z=zn
are finite, which implies that their sec-

ond moments are finite as well [see Box 7.1 (i)].

(ii) This proposition can be derived as follows: For all i = 1, … , n,

σii = pi ⋅ (1 − pi) [(12.69) for i = j ]

= pi ⋅
n∑

j=0, j≠ i
pj

[
1 − pi =

∑n
j=0, j≠ i pj

]

=
n∑

j=1, j≠ i
pi pj + pi ⋅ p0
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>

n∑

j=1, j≠ i
pi pj [pi > 0, ∀ i = 0, 1, … , n, pi ⋅ p0 > 0 ]

=
n∑

j=1, j≠ i
| − pi pj | [pi pj = | − pi pj | ]

=
n∑

j=1, j≠ i
|σij| . [(12.69) for i ≠ j ]

Proof of Theorem 12.44

E(Y | X1, … , Xm)

=
P

E
(
E(Y | X1, … , Xn) ||| X1, … , Xm

)
[m < n, Box 10.2 (v)]

=
P

E

(
β0 +

m∑

i=1
βi Xi +

n∑

i=m+1
βi Xi

|||||
X1, … , Xm

)
[(12.74)]

=
P
β0 + E

(
m∑

i=1
βi Xi

|||||
X1, … , Xm

)
+ E

(
n∑

i=m+1
βi Xi

|||||
X1, … , Xm

)
[Box 10.2 (xvi), (i)]

=
P
β0 +

m∑

i=1
βi Xi +

n∑

i=m+1
βi E(Xi | X1, … , Xm) [Box 10.2 (xiv), (xvi)]

=
P
β0 +

m∑

i=1
βi Xi +

n∑

i=m+1
βi E(Xi) [(12.75)]

=
P
α0 +

m∑

i=1
βi Xi. [(12.77)]

Exercises

12.1 Consider Example 12.20 and show that σ(X) = σ(Z).

12.2 Let X and Z be dichotomous random variables on (Ω, 𝒜, P) with values x1, x2, and z1,
z2, respectively (see Example 5.10), and k: {0, 1}2 → R a (not necessarily measurable)
function. Show that there are β0, … , β3 ∈ R such that

k(X, Z) =
P
β0 + β1 ⋅ 1X=x2

+ β2 ⋅ 1Z=z2
+ β3 ⋅ 1X=x2

⋅ 1Z=z2
,

and determine these coefficients in terms of the values of k(X, Z). [Special cases are
k(X, Z) = E(Y | X, Z) (see Example 12.22) and k(X, Z) = logit[P(Y =1 | X, Z)] (see
Example 13.24 with Z = U).]

12.3 Show that under the assumptions made in Remark 12.28, there is no linear parameter-
ization g of E(Y | X) in X with g(x) = β0 + β1x, x ∈ R, and slope β1 ≠ 0.
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12.4 Assume X0, X1, … , Xn: (Ω, 𝒜, P) → (R, ℬ) are random variables with finite second
moments. Show: If X0 = a′x + b, where x := [X1, … , Xn]′, a′ := [a1, … , an] ∈ R

n,
and b ∈ R, then the variance-covariance matrix of X0, X1, … , Xn is singular.

12.5 Compute the parameters of the quadratic function displayed in Figure 12.2 using the
three conditional probabilities computed in Example 12.41.

Solutions

12.1 Because the function ln: ]0, ∞[ → R is continuous, it is (ℬ|]0,∞[, ℬ)-measurable (see
Klenke, 2013, Th. 1.88). Hence, for X = ln Z, Lemma 2.52 implies σ(X) ⊂ σ(Z). Fur-
thermore, the exponential function exp: R → R is continuous as well, and therefore it is
(ℬ, ℬ)-measurable (see again Klenke, 2013, Th. 1.88). Because Z = exp(X), Lemma
2.52 implies σ(Z) ⊂ σ(X), and this yields σ(Z) = σ(X).

12.2 Note that 1X=x2
= (1 − 1X=x1

), 1Z=z2
= (1 − 1Z=z1

), and 1X=xi,Z=zj
= 1X=xi

⋅ 1Z=zj
,

i, j = 1, 2 [see Eq. (1.33)]. Hence,

k(X, Z) =
P

k(x1, z1) ⋅ 1X=x1
⋅ 1Z=z1

+ k(x2, z1) ⋅ 1X=x2
⋅ 1Z=z1

+ k(x1, z2) ⋅ 1X=x1
⋅ 1Z=z2

+ k(x2, z2) ⋅ 1X=x2
⋅ 1Z=z2

[Cor. 5.63]

= k(x1, z1) ⋅ (1 − 1X=x2
) ⋅ (1 − 1Z=z2

) + k(x2, z1) ⋅ 1X=x2
⋅ (1 − 1Z=z2

)

+ k(x1, z2) ⋅ (1 − 1X=x2
) ⋅ 1Z=z2

+ k(x2, z2) ⋅ 1X=x2
⋅ 1Z=z2

= k(x1, z1) +
(
k(x2, z1) − k(x1, z1)

)
⋅ 1X=x2

+
(
k(x1, z2) − k(x1, z1)

)
⋅ 1Z=z2

+
(
k(x2, z2) − k(x2, z1) − k(x1, z2) + k(x1, z1)

)
⋅ 1X=x2

⋅ 1Z=z2
,

where the last equation is obtained by multiplying out the parentheses and rearranging
terms. Hence,

β0 = k(x1, z1),

β1 = k(x2, z1) − k(x1, z1),

β2 = k(x1, z2) − k(x1, z1),

β3 = k(x2, z2) − k(x2, z1) − k(x1, z2) + k(x1, z1).

12.3 This proposition follows from

P[g(X) < 0] + P[g(X) > 1] =

⎧
⎪
⎪
⎨
⎪
⎪⎩

P

(
X < −β0

β1

)
+ P

(
X >

1 − β0

β1

)
> 0, if β1 > 0

P

(
X > −β0

β1

)
+ P

(
X <

1 − β0

β1

)
> 0, if β1 < 0,

because P[g(X) < 0] + P[g(X) > 1] > 0 is a contradiction to (12.46).
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12.4 Let 𝚺 denote the variance-covariance matrix of X0, X1, … , Xn. Then,

𝚺 =

⎡
⎢
⎢
⎢
⎢⎣

σ 2
X0

σX0X1
… σX0Xn

σX1X0
σ 2

X1
… σX1Xn...

... . . . ...
σXnX0

σXnX1
… σ 2

Xn

⎤
⎥
⎥
⎥
⎥⎦

= E

[(
a′ x − E(a′ x)

x − E(x)

) (
a′ x − E(a′ x), x′ − E(x′)

) ]
[X0 = a′ x + b, (7.35)]

= E

[
a′[x − E(x)][x′ − E(x′)] a a′[x − E(x)][x′ − E(x′)]
[x − E(x)][x′ − E(x′)] a [x − E(x)][x′ − E(x′)]

]
[Box 7.2 (iii), (v)]

=
[

a′ E
(
[x − E(x)][x′ − E(x′)]

)
a a′ E

(
[x − E(x)][x′ − E(x′)]

)
E
(
[x − E(x)][x′ − E(x′)]

)
a E

(
[x − E(x)][x′ − E(x′)]

)
]
. [(7.29)]

The first row of this matrix is obtained by multiplying the lower two submatrices by a′ from
the left. Hence, the first row of this variance-covariance matrix is a linear combination of
its other rows. This implies that 𝚺 is singular.

12.5 For x1 = x and x2 = x 2, the parameterization g(x) = β0 + β1 x1 + β2 x2 [see Eq.
(12.33)] yields

.55 = β0,

if x = 0,

.583 = β0 + β1 + β2,

if x = 1, and

.533 = β0 + β1 ⋅ 2 + β2 ⋅ 4,

if x = 2. Hence, β0 = .55, and solving the last two equations for the remaining two
unknowns yields β1 ≈ .0750 and β2 ≈ −.0416.
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Linear logistic regression

In chapter 12, we treated the notions of a linear parameterization of a conditional expecta-
tion and of a linear regression. In this chapter, we turn to the linear logit regression, presum-
ing that the regressand, say Y , is an indicator variable. In Remark 10.4, we noted that in this
case a version E(Y |𝒞) of the 𝒞-conditional expectation of Y is also called a version of the
𝒞-conditional probability of the event {Y =1} and that it is also denoted by P(Y =1 |𝒞). As
noted in Remark 12.28, if X is a 𝒞-measurable real-valued random variable on (Ω, 𝒜, P)
and X is P-almost surely unbounded, then there is no linear parameterization g in X of
E(Y |𝒞) = P(Y =1 |𝒞) = g(X) with a nonzero slope. However, in this case, there might be a
linear logistic parameterization.

We begin with the logit transformation, define the logit of a 𝒞-conditional probability
P(Y =1 |𝒞), a linear logistic parameterization, and then present a theorem on uniqueness and
the identification of the parameters. Finally, the concept of a linear logit regression is defined.

13.1 Logit transformation of a conditional probability

The general assumptions and notation are as follows:

Notation and assumptions 13.1
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a dichotomous random variable with values 0 and 1, let
𝒞 ⊂ 𝒜 be a σ-algebra, and assume that there is a version P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞)
with 0 < P(Y =1 |𝒞) < 1.

Remark 13.2 [Necessary condition] If {Y =1} ∈ 𝒞 or {Y =0} ∈ 𝒞, then there is no
version P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞) with 0 < P(Y =1 |𝒞) < 1. Furthermore, there is no
version P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞) with 0 < P(Y =1 |𝒞) < 1 if σ(Y) ⊂ 𝒞 (see Exer-
cise 13.1). ⊲
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© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Figure 13.1 Graph of the logit transformation of p.

Remark 13.3 [The logit transformation] Each version P(Y =1 |𝒞) of the conditional prob-
ability is P-almost surely bounded, because

P({ω ∈ Ω: 0 ≤ P(Y =1 |𝒞)(ω) ≤ 1}) = 1 (13.1)

[see Box 10.3 (ii), (iii)]. If there is a version P(Y =1 |𝒞 ) with 0 < P(Y =1 |𝒞 ) < 1, then
this version can be transformed using the logit transformation, that is, using the function
logit: ]0, 1[ → R defined by

logit (p) := ln

(
p

1 − p

)
= ln(p) − ln(1 − p), ∀ p ∈ ]0, 1[, (13.2)

where ln denotes the natural logarithm. If p represents a probability, then ln( p
1−p

) is also called

the log-odds of p. Figure 13.1 shows the graph of such a logit transformation. In the context of
generalized linear models (see, e.g., Agresti, 2015; McCullagh & Nelder, 1989), this function
is an example of a link function. Some algebra yields

p =
exp[logit(p)]

1 + exp[logit(p)]
, ∀ p ∈ ]0, 1[, (13.3)

(see Exercise 13.2). ⊲

Remark 13.4 [Logistic function] The function h: R → ]0, 1[ specified by

h(x) =
exp(x)

1 + exp(x)
, ∀ x ∈ R, (13.4)

is called the logistic function. Equation (13.3) implies that the logistic function is the inverse
of the logit function. ⊲
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Definition 13.5 [Logit of P(Y =1 |𝒞)]
Let the assumptions 13.1 hold. Then,

logit [P(Y =1 |𝒞)] := ln

(
P(Y=1 |𝒞)

1 − P(Y=1 |𝒞)

)
(13.5)

is called the logit of P(Y=1 |𝒞).

Remark 13.6 [One-to-one transformation] Note that logit [P(Y =1 |𝒞)] denotes the
composition of P(Y =1 |𝒞) and the function logit defined by Equation (13.2). Hence,
logit [P(Y =1 |𝒞)] is a random variable on (Ω, 𝒜, P). Also note that P(Y =1 |𝒞) and its
logit contain the same information, that is, the σ-algebras they generate are identical (see
Lemma 13.7). While P(Y =1 |𝒞) informs us about the 𝒞-conditional probability of the event
{Y =1} on the probability scale with values between 0 and 1, a logit of P(Y =1 |𝒞) informs
us about this conditional probability on the log-odds scale with values between −∞ and ∞.
Applying (13.3) yields

P(Y=1 |𝒞) =
exp(logit[P(Y =1 |𝒞)])

1 + exp(logit[P(Y =1 |𝒞)])
. (13.6)

Hence, P(Y =1 |𝒞 ) is uniquely determined by logit[P(Y =1 |𝒞 )], and vice versa [see
Eq. (13.5)]. ⊲

Lemma 13.7 [σ-Algebra generated by P(Y=1 |𝒞) and its logit]
Let the assumptions 13.1 hold. Then

σ[P(Y =1 |𝒞)] = σ(logit [P(Y =1 |𝒞)]). (13.7)

(Proof p. 407)

Remark 13.8 [Motivation for considering the logit of P(Y =1 |𝒞)] Suppose that X is a
real-valued 𝒞-measurable random variable on (Ω, 𝒜, P) and that X is not P-almost surely
bounded [see (12.47)]. Then it is still possible to assume that there are a version P(Y =1 |𝒞) ∈
𝒫(Y =1 |𝒞) and numbers λ0, λ1 ∈ R such that

logit [P(Y =1 |𝒞)] = λ0 + λ1X. (13.8)

In contrast, assuming P(Y =1 |𝒞) = λ0 + λ1X for real numbers λ0, λ1, λ1 ≠ 0, would be con-
tradictory if X is not P-almost surely bounded. ⊲
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13.2 Linear logistic parameterization

Notation and assumptions 13.9
Let Y: (Ω, 𝒜, P) → (R, ℬ) be a dichotomous random variable with values 0 and 1, let
𝒞 ⊂ 𝒜 be a σ-algebra, and assume that there is a version P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞)
with 0 < P(Y =1 |𝒞) < 1. Furthermore, let Xi: (Ω, 𝒜, P) → (R, ℬ), i = 1, … , n, be real-
valued random variables, define X := (X1, … , Xn): (Ω, 𝒜, P) → (Rn, ℬn), and assume
that X is 𝒞-measurable.

Using this notation and these assumptions, a linear logistic parameterization of a conditional
probability P(Y =1 |𝒞) is now defined as follows:

Definition 13.10 [Linear logistic parameterization]
Let the assumptions 13.9 hold. If there are λ0, λ1, … , λn ∈ R and a version P(Y =1 |𝒞) ∈
𝒫(Y =1 |𝒞) such that

P(Y =1 |𝒞) =
exp(λ0 +

∑n
i=1 λi Xi)

1 + exp(λ0 +
∑n

i=1 λi Xi)
, (13.9)

then the function g: R
n → [0, 1] satisfying

g(x) =
exp(λ0 +

∑n
i=1 λi xi)

1 + exp(λ0 +
∑n

i=1 λi xi)
, ∀ x = (x1, … , xn) ∈ R

n, (13.10)

is called a linear logistic parameterization of P(Y =1 |𝒞) in X.

If 𝒞= σ(X), then Equation (13.9) is equivalent to

P(Y =1 | X) =
exp(λ0 +

∑n
i=1 λi Xi)

1 + exp(λ0 +
∑n

i=1 λi Xi)
. (13.11)

Remark 13.11 [Univariate real-valued X] If Equation (13.9) holds for n = 1, then there is
a version P(Y=1 | X) ∈ 𝒫(Y =1 | X) such that

P(Y =1 |𝒞) = P(Y =1 | X) =
exp(λ0 + λ1X)

1 + exp(λ0 + β1X)
. (13.12)

In Example 17.82, we present a sufficient condition of Equation (13.12) related to the normal
distribution. ⊲
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Remark 13.12 [Conditional probabilities] If g is a linear logistic parameterization of
P(Y =1 | X) in X satisfying Equation (13.10), then, according to Definition 10.33, we can
define

P(Y =1 | X=x) = P(Y =1 | X1=x1, … , Xn=xn)

:= g(x) =
exp(λ0 +

∑n
i=1 λi xi)

1 + exp(λ0 +
∑n

i=1 λi xi)
, ∀ x ∈ R

n
.

(13.13)

This definition is convenient, but note that another factorization g∗ of P(Y=1 | X) might yield
other conditional probabilities P(Y =1 | X=x) for values x of X with P (X=x) = 0. However,
according to Equation (12.10), if g, g∗ are factorizations of two versions V , V∗ ∈ 𝒫(Y =1 | X),
then g(x) = g∗(x), for PX-almost all x ∈ R

n [see Eq. (12.13)]. ⊲

Remark 13.13 [Meaning of coefficients] Figure 13.2 displays the graphs of logistic trans-
formations in which the logits of P(Y =1 | X) are linear functions λ0 + λ1 X. As is easily
seen,

P

(
Y =1

||||
X = −

λ0

λ1

)
=

exp(0)

1 + exp(0)
= 1

1 + 1
= 1

2
.

This equation shows that x = −
λ0

λ1
is the point on the x-axis at which the conditional probability

P(Y =1 | X=x) is .5. Furthermore, the derivative of the linear parameterization g with respect
to x is

d
dx

g(x) = d
dx

exp(λ0 + λ1x)

1 + exp(λ0 + λ1x)
=

λ1 exp(λ0 + λ1x)

(1 + exp(λ0 + λ1x))2
. (13.14)

Hence, the derivative (i.e., the slope) of g at x = −
λ0

λ1
is

λ1

4
(see Exercise 13.3). ⊲

−6 −4 −2 642
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λ 0 = −2, λ1 = 2

x

P(Y  = 1| X = x)

Figure 13.2 Graphs of three logistic functions.
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13.3 A parameterization of a discrete conditional probability

In Theorem 12.37, we already considered a parameterization of a discrete condi-
tional expectation E(Y | Z) in which the parameters β1, … , βn are the differences
E(Y | Z=zi) − E(Y | Z=z0), i = 1, … , n. If Y is dichotomous, then there is also a logistic
parameterization of the conditional probability E(Y | Z) = P(Y =1 | Z).

Theorem 13.14 [Existence of the logit effects]
Let Y: (Ω, 𝒜, P) → (R, ℬ) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables, where Y

is dichotomous with values 0 and 1, and Z is discrete with P(Z ∈ {z0, z1, … , zn}) = 1,
and assume 0 < P(Z=zi) < 1 and 0 < P(Y =1 | Z=zi) < 1, for all i = 0, 1, … , n. Then
P(Y =1 | Z) is uniquely defined, and there are coefficients β0, β1, … , βn, λ0, λ1, … , λn ∈
R such that

P(Y=1 | Z) = β0 +
n∑

i=1
βi ⋅ 1Z=zi

(13.15)

=
exp

[
λ0 +

∑n
i=1 λi ⋅1Z=zi

]

1 + exp
[
λ0 +

∑n
i=1 λi ⋅1X=xi

] (13.16)

with

β0 = P(Y=1 | Z=z0) (13.17)

=
exp(λ0)

1 + exp(λ0)
(13.18)

and

βi = P(Y =1 | Z=z0) − P(Y=1 | Z=zi) (13.19)

=
exp(λ0 + λi)

1 + exp(λ0 + λi)
−

exp(λ0)

1 + exp(λ0)
. (13.20)

(Proof p. 408)

Remark 13.15 [Log odds] In terms of conditional probabilities, the logit intercept can be
written as:

λ0 = ln

[
P(Y=1 | Z=z0)

1 − P(Y =1 | Z=z0)

]
. (13.21)

Hence, λ0 is the log odds of P(Y =1 | Z=z0). Similarly,

λ0 + λi = ln

[
P(Y =1 | Z=zi)

1 − P(Y =1 | Z=zi)

]
, ∀ i = 1, … , n, (13.22)

[see Eqs. (13.17) to (13.20) and (13.2)]. This equation shows that λ0 + λi is the log odds of
P(Y =1 | Z=zi). ⊲
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Remark 13.16 [Log odds ratio] Equations (13.21) and (13.22) immediately imply

λi = ln

[
P(Y =1 | Z=zi)

1 − P(Y =1 | Z=zi)

]
− ln

[
P(Y =1 | Z=z0)

1 − P(Y =1 | Z=z0)

]
(13.23)

= ln

[(
P(Y =1 | Z=zi)

1 − P(Y =1 | Z=zi)

)/(
P(Y =1 | Z=z0)

1 − P(Y =1 | Z=z0)

)]
(13.24)

= ln

[
P(Y =1 | Z=zi) ⋅ (1 − P(Y =1 | Z=z0))

(1 − P(Y=1 | Z=zi)) ⋅ P(Y =1 | Z=z0)

]
, ∀ i = 1, … , n.

Hence, the logit effect λi, i = 1, … , n, is the difference between the log odds of P(Y =1 | Z=zi)
and P(Y =1 | Z=z0), respectively [see Eq. (13.23)]. Equation (13.24) shows that λi is the log
odds ratio of P(Y=1 | Z=zi) and P(Y=1 | Z=z0). ⊲

Remark 13.17 [Odds ratio] The value of the exponential function for the argument λi is

exp(λi) =
(

P(Y =1 | Z=zi)

1 − P(Y=1 | Z=zi)

)/(
P(Y=1 | Z=z0)

1 − P(Y =1 | Z=z0)

)

=
P(Y=1 | Z=zi) ⋅ (1 − P(Y=1 | Z=z0))

(1 − P(Y =1 | Z=zi)) ⋅ P(Y =1 | Z=z0)
, ∀ i = 1, … , n.

(13.25)

This equation shows that the number exp(λi) is the odds ratio of P(Y =1 | Z=zi) and
P(Y =1 | Z=z0). ⊲

Remark 13.18 [Risk ratio] Another closely related parameter is

κi :=
P(Y=1 | Z=zi)

P(Y=1 | Z=z0)
, ∀ i = 1, … , n. (13.26)

This parameter is called the risk ratio of P(Y =1 | Z=zi) and P(Y =1 | Z=z0). ⊲

Remark 13.19 [Four kinds of effect parameters] Hence, under the assumptions of Theo-
rem 13.14, we may consider four different kinds of effect parameters: βi, λi, exp(λi), and κi.
They all quantify the effect of xi compared to x0 on Y , each one on a different scale. ⊲

13.4 Identification of coefficients of a linear logistic
parameterization

The following theorem specifies sufficient conditions under which a linear logit parameteriza-
tion of P(Y =1 | X) is uniquely defined.
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Theorem 13.20 [Identification of coefficients and uniqueness]
Let the assumptions 13.9 hold and, let λ0 ∈ R, and 𝛌 ∈ R

n. Furthermore, define x =
[X1, … , Xn] and assume

(a) There is a version P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞) such that Equation (13.9) holds.

(b) X1, … , Xn have finite second moments.

(c) The inverse 𝚺 −1
xx of the covariance matrix of X = (X1, … , Xn) exists.

Then, using

L := logit[P(Y =1 |𝒞)] = λ0 + 𝛌′ x, (13.27)

the following two equations hold:

λ0 = E(L) − 𝛌′𝛍, (13.28)

𝛌 = 𝚺 −1
xx 𝚺xl, (13.29)

where 𝛍 := [E(X1), … , E(Xn)]′; and 𝚺xl denotes the column vector of the covariances
Cov (Xi, L). The coefficient λ0 and 𝛌 are uniquely determined, and hence, the linear logis-
tic parameterization g: R

n → [0, 1] of P(Y =1 |𝒞) satisfying

g(x1, … , xn) =
exp(λ0 +

∑n
i=1 λixi)

1 + exp(λ0 +
∑n

i=1 λixi)
, ∀ (x1, … , xn) ∈ R

n, (13.30)

is uniquely defined.
(Proof p. 408)

Remark 13.21 [Identification versus estimation] Note that, for a version P(Y =1 |𝒞) ∈
𝒫(Y =1 |𝒞) satisfying assumptions 13.1, the logit of P(Y =1 |𝒞) is uniquely defined.
Because the expectation vector 𝛍 = [E(X1), … , E(Xn)], the covariance matrix 𝚺xx, and the
covariance vector 𝚺xl in Equation (13.29) are also uniquely defined, we can conclude that
the coefficients of the linear logistic parameterization are uniquely defined, (or ‘identified’)
as well. Estimation in the logistic case is more difficult as compared to the linear regres-
sion, because, in contrast to Y (see Rem. 12.2), the random variable L = logit[P(Y =1 |𝒞)]
is nonobservable. For methods of estimation, see, for example, Agresti (2015) or McCullagh
and Nelder (1989). ⊲

13.5 Linear logistic regression and linear logit regression

In Definition 13.10, we defined the concept of a linear logistic parameterization of P(Y =1 |𝒞)
in X. Such parameterizations of P(Y =1 |𝒞) are not necessarily uniquely defined. If there is a
linear logistic parameterization g of P(Y =1 |𝒞) in X that satisfies Equation (13.30), then we
call it the linear logistic regression of Y on X. According to Theorem 13.20, the linear logistic
regression is uniquely defined.
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Definition 13.22 [Linear logistic regression and linear logit regression]
Let the assumptions 13.9 hold and suppose there are an P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞)
and λ0, λ1, … , λn ∈ R such that Equation (13.9) holds. Furthermore, assume that Y and
X1, … , Xn have finite second moments and that the inverse 𝚺 −1

xx of the covariance matrix
of X = (X1, … , Xn) exists. Then the function g: R

n → [0, 1] defined by Equation (13.30)
is called the linear logistic regression or the linear inverse logit regression,
and the function f : R

n → R defined by

f (x1, … , xn) = λ0 +
n∑

i=1
λixi, ∀ (x1, … , xn) ∈ R

n, (13.31)

is called the linear logit regression of Y on X.

Figure 13.3 shows P(Y =1 | X) as the composition of the functions introduced above.
According to this figure, P(Y =1 | X) is the composition of X and the linear logistic regres-
sion g, which itself is the composition of the linear logit regression f and the logistic function
h [see Eq. (13.4)] that transforms a logit into a probability.

Remark 13.23 [Simple and multiple linear logistic regression] If n ≥ 2, then a linear logis-
tic regression is also called a multiple linear logistic regression. If n = 1, then it is also called
a simple linear logistic regression. ⊲

Example 13.24 [Joe and Ann with randomized assignment – continued] Table 9.1 shows
the random variables U, X, and Y as well as the conditional expectations E(Y | X, U) and
E(Y | X). Because X is dichotomous with values 0 and 1, the conditional probability E(Y | X) =
P(Y =1 | X) can always be written as a linear function of X. Applying the equations of
Example 12.15 yields

P(Y =1 | X) = .45 + .15 ⋅ X (13.32)

(see also Example 12.16).

Ω n [0,1]
X f  (linear logit regression) h (logistic function)

h −1 (logit link function)

g = h( f ) (linear logistic regression)

P (Y = 1 | X ) = g (X ) = h [ f (X )] (conditional probability)

Figure 13.3 P(Y =1 | X) as the composition of X, the linear logit regression f , and the logistic
function h.
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Alternatively, we can also write the logit of E(Y | X) = P(Y =1 | X) as a linear function of
X. This yields

P(Y =1 | X) =
exp(α0 + α1 ⋅ X)

1 + exp(α0 + α1 ⋅ X)
≈

exp(−.201 + .606 ⋅ X)

1 + exp(−.201 + .606 ⋅ X)
(13.33)

(see Exercise 13.4). Inserting the two values of X, this equation yields the probabilities

P(Y =1 | X)(ω) = P(Y=1 | X=0) = .45, for ω ∈ {X=0}

and

P(Y=1 | X)(ω) = P(Y =1 | X=1) = .60, for ω ∈ {X=1},

which is consistent with Equation (13.32). The function g: R → [0, 1] defined by

g(x) ≈
exp(−.201 + .606 ⋅ x)

1 + exp(−.201 + .606 ⋅ x)
, ∀ x ∈ R ,

is the linear logistic regression of Y on X. ⊲

Remark 13.25 [Linear versus linear logistic regression] In this particular example, there is
no compelling reason to prefer the logistic linear regression over the (ordinary) linear regres-
sion. However, this does not apply any more if X is unbounded (see Rem. 13.8).

Furthermore, note that the standard computer programs (and the underlying statistical
models) for linear regressions assume equality (homogeneity) of the conditional variances
Var (Y | X=x) for different values x of X. In contrast, computer programs (and the underly-
ing statistical models) for the analysis of linear logistic regressions allow for heterogeneous
(X=x)-conditional variances of Y .

Remember that

Var (Y | X=x) = P(Y =1 | X=x) ⋅ [1 − P(Y =1 | X=x)], for PX-a.a. x ∈ Ω′
X (13.34)

[see Eq. (11.49)]. Equation (13.34) shows that Var (Y | X=x) depends on P(Y =1 | X=x). In
Example 13.24, the (X=0)-conditional variance is

Var (Y | X=0) = P(Y =1 | X=0) ⋅ [1 − P(Y =1 | X=0)] = .45 ⋅ (1 − .45) = .2475,

whereas the (X=1)-conditional variance is

Var (Y | X=1) = P(Y =1 | X=1) ⋅ [1 − P(Y =1 | X=1)] = .6 ⋅ (1 − .6) = .24.

⊲
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Example 13.26 [Joe and Ann with randomized assignment – continued] According to
Remark 12.23, the logit of E(Y | X, U) = P(Y =1 | X, U) can be written as a linear function in
X, 1U=Ann, X ⋅ 1U=Ann . Hence, we can write

P(Y =1 | X, U) =
exp(λ0 + λ1 X + λ2 ⋅ 1U=Ann + λ3 X ⋅ 1U=Ann)

1 + exp(λ0 + λ1 X + λ2 ⋅ 1U=Ann + λ3 X ⋅ 1U=Ann)

≈
exp(.847 + .539 X − 2.234 ⋅ 1U=Ann + .442 X⋅ 1U=Ann)

1 + exp(.847 + .539 X − 2.234 ⋅ 1U=Ann + .442 X ⋅ 1U=Ann)

(see Exercise 13.5) Inserting the two values of X and the two values of 1U=Ann , this equation
yields the four probabilities P(Y =1 | X=x, U=u) listed in Table 9.1. The function g: R

3 →
[0, 1] defined by

g(x) ≈
exp(.847 + .539 ⋅ x1 − 2.234 ⋅ x2 + .442 ⋅ x3)

1 + exp(.847 + .539 ⋅ x1 − 2.234 ⋅ x2 + .442 ⋅ x3)
, ∀ x ∈ R

3,

is the linear logistic regression of Y on X = (X1, X2, X3) = (X, 1U=Ann , X ⋅ 1U=Ann).
Rearranging the equation for P(Y =1 | X, U) yields

P(Y =1 | X, U) =
P

exp((λ0 + λ2 ⋅ 1U=Ann) + (λ1 + λ3 ⋅ 1U=Ann) X)

1 + exp((λ0 + λ2 ⋅ 1U=Ann) + (λ1 + λ3 ⋅ 1U=Ann) X)

≈
exp((.847 − 2.234 ⋅ 1U=Ann) + (.539 + .442 ⋅ 1U=Ann) X)

1 + exp((.847 − 2.234 ⋅ 1U=Ann) + (.539 + .442 ⋅ 1U=Ann) X)
,

showing that the logit is f0(U) + f1(U) ⋅ X with

f0(U) = λ0 + λ2 ⋅ 1U=Ann ≈ .847 − 2.234 ⋅ 1U=Ann

and

f1(U) = λ1 + λ3 ⋅ 1U=Ann = .539 + .442 ⋅ 1U=Ann .

The function f0(U) is called the logit intercept function and f1(U) the logit effect function. Note
that

α1 ≈ .606

≠ E[ f1(U)] ≈ .539 + .442 ⋅ E(1U=Ann) ≈ .7599.

Hence, although X and U are independent (see Example 5.37), the slope α1 of the logit in
the logistic parameterization of E(Y | X) = P(Y =1 | X) is not equal to the expectation of
the logit effect function f1(U) of the logit in the logistic parameterization of E(Y | X, U) =
P(Y =1 | X, U).

From a methodological point of view, this means that randomized assignment of a unit to
one of two treatment conditions – which creates independence of a treatment variable X and the
person variable U – does not imply that the slope α1 of the logit in the logistic parameterization
of E(Y | X) = P(Y =1 | X) can be interpreted as an average effect of treatment variable on Y
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[or on the logit of the linear logit parameterization of E(Y | X)]. In examples in which f1(U) =
λ1 is a constant, this implies that α1 = λ1 does not follow from independence of X and U. In
contrast, compare the corresponding invariance property formulated in Theorem 12.44 for a
linear parameterization. ⊲

Remark 13.27 [Normal distribution and linear logistic regression] Let X be a real-valued
continuous random variable, let A ∈ 𝒜 with 0 < P(A) < 1, and let Y = 1A. Furthermore,
assume that X has a normal distribution with respect to each of the two conditional-probability
measures PY =y, y = 0, 1, and that Var (X | Y =0) = Var (X | Y=1). Then P(Y =1 | X) has a lin-
ear logistic parameterization (for a proof see Examples 17.80 to 17.82). ⊲

Example 13.28 [Joe and Ann with latent abilities] Table 13.1 describes a random experi-
ment that consists of sampling a person from the set ΩU = {Joe, Ann} of persons and observ-
ing whether (+) or not (−) problem 1, 2, and 3, respectively, are solved. The probabilities of
the elementary events are displayed in the second column, which can be used to compute the
values of the conditional probabilities P(Yi=1 | U) for Joe and for Ann, or more precisely, the
values P(Yi=1 | U)(ω) if ω ∈ {U=Joe} and if ω ∈ {U=Ann}. The last three columns present
the logit transformations of these conditional probabilities, that is,

logiti := logit[P(Yi=1 | U)] = ln

(
P(Yi=1 | U)

1 − P(Yi=1 | U)

)
, ∀ i = 1, … , m, (13.35)

(see Def. 13.5), where m = 3. The probability space (Ω, 𝒜, P) is completely specified by Ω :=
{ω1, … , ω16},𝒜 := 𝒫(Ω), and the 16 probabilities P({ωi}) of the outcomesωi ∈ Ω. Also note
that the conditional probabilities P(Yi=1 | U) and their logits are completely determined by
the 16 probabilities P({ωi}).

The probability measure P is such that it satisfies the following two conditions for m = 3,
the number of items considered in Table 13.1:

∀ i, j ∈ {1, … , m} ∃ βij ∈ R: logiti − logitj = βij, (13.36)

P(Yi=1 | U, Y1, … , Yi−1, Yi+1, … , Ym) = P(Yi=1 | U), ∀ i = 1, … , m. (13.37)

While (13.36) is easily checked by inspecting the last three columns of Table 13.1, we delay
showing that (13.37) holds to Example 16.51. If (13.36) and (13.37) hold, then we say that Y1,
Y2, and Y3 satisfy the (two assumptions of the) Rasch model (cf. Rasch, 1960/1980). Assump-
tion (13.36) is called Rasch homogeneity. According to this assumption, the graphs of the
logits of each pair of items are translations of each other. Assumption (13.37) postulates U-
conditional mean independence of each item Yi from the other items Y1, … , Yi−1, Yi+1, … , Ym
[see Def. 10.45 (ii) and Rem. 46 (ii)]. In chapter 16, it is shown that this assumption is equiv-
alent to U-conditional independence of the random variables Yi (see Example 16.51 for more
details).

Now define

𝜉 := logit1 and βi := β1i, ∀ i = 1, … , m . (13.38)
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In applications in which the Yi indicate whether or not a problem is solved, the random variable
𝜉 is called the latent ability variable, and βi the difficulty parameter of problem i, respectively.
Inserting the definitions of 𝜉 and βi into (13.36), we receive

logiti = 𝜉 − βi, ∀ i = 1, … , m . (13.39)

Furthermore, inserting Equation (13.39) into (13.35) and solving it for P(Yi=1 | U) yield

P(Yi=1 | U) =
exp(𝜉 − βi)

1 + exp(𝜉 − βi)
(13.40)

= P(Yi=1 | 𝜉), ∀ i = 1, … , m. (13.41)

According to Equation (13.41), the graphs of the logits of the conditional probabilities
P(Yi=1 | 𝜉) and P(Yj=1 | 𝜉) are translations of each other. Figure 13.4 shows the graphs of
the factorizations g: R → [0, 1] of the conditional probabilities P(Yi=1 | 𝜉) = g(𝜉), that is, the
graphs of the regressions of Yi on 𝜉 (see Def. 10.25). This figure illustrates that these graphs
are translations (parallel to the 𝜉 axis) of each other.

The difficulty parameters β1, β2, and β3 can be computed as follows: Using Equations
(13.36) and (13.38), and the logits displayed in Table 13.1, we receive

β1 = β11 = logit1 − logit1 = 0,

β2 = β12 = logit1 − logit2 = −1,

β3 = β13 = logit1 − logit3 = 1.

(13.42)

−4 −2 42

0.5

1

P(Yi =1 | ξ)

ξ

β1 = 0
β2 = −1

β3 = 1

Figure 13.4 Graphs of the 𝜉-conditional probabilities of items Yi satisfying the Rasch model.
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Note that the definitions of the latent variable 𝜉 and the difficulty parameters βi are arbitrary
to some degree. Defining 𝜉∗ := 𝜉 + a and β∗i := βi + a for any a ∈ R would do as well, that is,
𝜉∗ and β∗i also satisfy Equation (13.40).

Also note that the definition of 𝜉 and Corollary 2.53 imply that there is a function
f : ΩU → R such that 𝜉 is the composition f ◦ U = f (U) of U and f . The function f assigns
to each u ∈ ΩU its value f (u), where

∀ u ∈ ΩU ∀ω ∈ {U=u}: f (u) = f [U(ω)] = 𝜉(ω) [(2.25)]

= logit[P(Y1=1 | U)(ω)] [(13.35), (13.38)]

= logit[P(Y1=1 | U=u)]. [(10.9)]
(13.43)

Hence, the values of 𝜉 are attributes of the persons in the set ΩU. This justifies calling such a
value the ability of person u, if the items Yi indicate whether or not problem i is solved.

Finally, note that the values of the latent variable 𝜉 are unknown in empirical applica-
tions. However, in Example 16.51 we treat some details on estimating the value f (u) from the
response pattern (y1, … , ym) of the items Y1, … , Ym that is observed for a person u ∈ ΩU if
the random experiment is actually conducted, that is, if we actually sample a person from a set
of persons and observe, for i = 1, … , m, whether or not problem i is solved. ⊲

13.6 Proofs

Proof of Lemma 13.7

Let V: (Ω, 𝒜, P) → (R, ℬ) be a version in 𝒫(Y =1 |𝒞) with values in ]0, 1[. Furthermore,
let g: ]0, 1[ → R be a continuous and strictly monotone function with g(]0, 1[) = R. Then
the inverse function g−1: R → ]0, 1[ exists (see Ellis & Gulick, 2006, section 7.1), and it is
continuous (Ellis & Gulick, 2006, Th. 7.4) and strictly monotone with g−1(R) = ]0, 1[. Hence,

σ[g(V)]

= (g ◦ V)−1(ℬ) [(2.14)]

= V−1 ◦ g−1(ℬ) [(2.29)]

= V−1 ◦ g−1[σ({]−∞, b]: b ∈ R})] [(1.19)]

= σ[V−1 ◦ g−1({]−∞, b]: b ∈ R})] [(2.12)]

= σ[V−1({]−∞, g−1(b)]: b ∈ R})] [monotonicity, continuity]

= σ[V−1(]−∞, c]: c ∈ ]0, 1[})] [domain of g]

= σ[V−1({]−∞, b]: b ∈ R})]
[b ≤ 0: V−1(]−∞, b]) = Ø, b ≥ 1: V−1(]−∞, b]) = R]

= V−1[σ({]−∞, b]: b ∈ R})] [(2.12)]

= V−1(ℬ) [(1.19)]

= σ(V) . [(2.14)]

The result σ[g(V)] = σ(V) can now be applied to g = logit [see Eq. (13.2)].
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Proof of Theorem 13.14

By definition, P(Y =1 | Z) = E(1Y=1 | Z). Hence, the existence of coefficients β0, β1, … , βn
and a version P(Y =1 | Z) ∈ 𝒫(Y =1 | Z) satisfying Equations (13.15), (13.17), and (13.19)
has already been proved in Theorem 12.37. In order to show that there are λ0, λ1, … , λn sat-
isfying Equation (13.16), we define

λ0 := logit[P(Y =1 | Z=z0)], (13.44)

[see Eq. (13.2)] and

λi := logit[P(Y =1 | Z=zi)] − logit[P(Y =1 | Z=z0)], ∀ i = 1, … , n. (13.45)

These definitions and Equation (13.3) then yield

P(Y =1 | Z=z0) =
exp(logit[P(Y =1 | Z=z0)])

1 + exp(logit[P(Y =1 | Z=z0)])
=

exp(λ0)

1 + exp(λ0)
,

and

P(Y =1 | Z=zi) =
exp(logit[P(Y =1 | Z=zi)])

1 + exp(logit[P(Y =1 | Z=zi)])
=

exp(λ0 + λi)

1 + exp(λ0 + λi)
, ∀ i = 1, … , n.

Hence, Equation (13.17) implies

β0 = P(Y =1 | Z=z0) =
exp(λ0)

1 + exp(λ0)
,

and Equation (13.19) yields

βi = P(Y =1 | Z=zi) − P(Y =1 | Z=z0)

=
exp(λ0 + λi)

1 + exp(λ0 + λi)
−

exp(λ0)

1 + exp(λ0)
, ∀ i = 1, … , n.

Proof of Theorem 13.20

Denote x := [X1, … , Xn]′, 𝛍 := [E(X1), … , E(Xn)]′, 𝛌 = [λ1, … , λn]′, as well as

L := logit[P(Y =1 |𝒞)] = λ0 + 𝛌′ x

[see Eqs. (13.27) and (13.9)]. Taking the expectation on both sides, using the definition of 𝛍,
and rearranging yield

λ0 = E(L) − 𝛌′𝛍.
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Furthermore, consider the n-dimensional covariance vector

𝚺xl = 𝚺x,λ0 +𝛌′x [(13.27)]
= 𝚺xx 𝛌. [Box 7.3 (ii), (iii)]

Multiplying both sides by 𝚺 −1
xx yields

𝛌 = 𝚺 −1
xx 𝚺xl.

This equation also shows that the vector 𝛌 is uniquely defined, and this implies that λ0 is
uniquely defined as well. Uniqueness of λ0 and 𝛌 implies that the linear logit parameterization
g satisfying Equation (13.30) is uniquely defined as well.

Exercises

13.1 Prove the propositions of Remark 13.2.

13.2 Prove Equation (13.3).

13.3 Calculate the derivative (13.14).

13.4 Consider Example 13.24 and compute the coefficients of the linear logit parameteriza-
tion of E(Y | X).

13.5 Consider Example 13.24 and compute the coefficients of the linear logit parameteriza-
tion of E(Y | X, U).

Solutions

13.1 Note that 1Y =0 ⋅ Y = 1Y =0 ⋅ 0 = 0 [see Eq. (2.49)], Hence, if {Y =0} ∈ 𝒞, then Defi-
nition 10.2 (b) yields

∫
1Y =0 ⋅ P(Y =1 |𝒞) dP =

∫
1Y =0 ⋅ Y dP =

∫
0 dP = 0. (13.46)

Let P(Y =1 |𝒞) ∈ 𝒫(Y =1 |𝒞) be a version with P(Y =1 |𝒞) ≥ 0 [for its existence,
see Box 10.3 (v)]. Then Theorem 3.43 yields 1Y=0 ⋅ P(Y =1 |𝒞) =

P
0, that is, P(A) = 0

for A := {ω ∈ Ω: 1Y=0(ω) ⋅ P(Y =1 |𝒞)(ω) ≠ 0}. This implies P(Ac) = 1 and

{Y =0} ∩ Ac
⊂ {P(Y =1 |𝒞) = 0} ∩ Ac,

which in turn yields

P(P(Y =1 |𝒞) = 0)
= P({P(Y =1 |𝒞) = 0} ∩ Ac) [Box 4.1 (viii)]
≥ P({Y =0} ∩ Ac) [Box 4.1 (v)]
= P(Y =0) [Box 4.1 (viii)]
> 0. [Y dichotomous, Example 5.10]
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Hence, we have shown that {Y =0} ∈ 𝒞 implies P(P(Y =1 |𝒞) = 0) > 0, which in turn
implies that there is no version P(Y =1 |𝒞) > 0, that is, there is no version P(Y =1 |𝒞)
with {ω ∈ Ω: P(Y =1 |𝒞)(ω) ≤ 0} = Ø [see Rem. 2.77 and (10.12)]. Now,

{Y =1} ∈ 𝒞

⇒
∫

1Y =1 ⋅ Y dP =
∫

1Y =1 ⋅ P(Y =1 |𝒞) dP [Def. 10.2 (b)]

⇒
∫

(1 − 1Y =0) ⋅ Y dP =
∫

(1 − 1Y=0) ⋅ P(Y =1 |𝒞) dP

[Y dichotomous, (5.33)]

⇒ E(Y) −
∫

1Y =0 ⋅ Y dP = E(Y) −
∫

1Y =0 ⋅ P(Y =1 |𝒞) dP [(3.33), (6.1)]

⇒
∫

1Y =0 ⋅ Y dP =
∫

1Y =0 ⋅ P(Y =1 |𝒞) dP. [E(Y) is finite]

The last equation is identical to (13.46). Hence, we can also conclude that there is no
version P(Y =1 |𝒞) > 0 if {Y =1} ∈ 𝒞.

13.2

exp[logit(p)] = exp

[
ln

(
p

1 − p

)]
=

p

1 − p
.

Hence,

p =

p

1 − p
1

1 − p

=

p

1 − p
1 − p + p

1 − p

=

p

1 − p
1 − p

1 − p
+

p

1 − p

=

p

1 − p

1 +
p

1 − p

=
exp[logit(p)]

1 + exp[logit(p)]
.

13.3 The chain rule and the quotient rule of differential calculus yield

d
dx

g(x) = d
dx

exp(λ0 + λ1x)

1 + exp(λ0 + λ1x)

=
λ1 exp(λ0 + λ1x)(1 + exp(λ0 + λ1x)) − exp(λ0 + λ1x) ⋅ λ1 exp(λ0 + λ1x)

(1 + exp(λ0 + λ1x))2

=
λ1 exp(λ0 + λ1x)(1 + exp(λ0 + λ1x) − exp(λ0 + λ1x))

(1 + exp(λ0 + λ1x))2

=
λ1 exp(λ0 + λ1x)

(1 + exp(λ0 + λ1x))2
.

13.4 Inserting the value x = 0 in the equation

logit[P(Y =1 | X=x)] = ln

(
P(Y =1 | X=x)

1 − P(Y =1 | X=x)

)
= α0 + α1x
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[see Eqs. (13.2) and (13.13)] yields

logit[P(Y =1 | X=0)] = ln
(

.45
1 − .45

)
≈ −.201 ≈ α0,

and inserting the value x = 1 yields

logit[P(Y =1 | X=1)] = ln
(

.6
1 − .6

)
≈ .406 ≈ α0 + α1.

[InR, these values are obtained by qlogis(.45) and qlogis(.60), respectively.] Solv-
ing the last equation yields α1 ≈ .406 − (−.201) = .606.

13.5 For x1 = 0, x2 = 0, and x3 = 0, the equation

logit[P(Y =1 | X=0, U=Ann )] = ln

(
P(Y =1 | X=0, U=Ann )

1 − P(Y =1 | X=0, U=Ann )

)

= λ0 + λ1x1 + λ2x2 + λ3x3

[see Eqs. (13.2) and (13.13)] yields

ln

(
P(Y =1 | X=0, U=Joe)

1 − P(Y =1 | X=0, U=Joe)

)
= ln

(
.7

1 − .7

)
≈ −.847 = λ0,

for x1 = 1, x2 = 0, and x3 = 0 it yields

ln

(
P(Y =1 | X=1, U=Joe)

1 − P(Y =1 | X=1, U=Joe)

)
= ln

(
.8

1 − .8

)
≈ 1.386 ≈ λ0 + λ1,

for x1 = 0, x2 = 1, and x3 = 0 it yields

ln

(
P(Y=1 | X=0, U=Ann )

1 − P(Y=1 | X=0, U=Ann )

)
= ln

(
.2

1 − .2

)
≈ −1.386 ≈ λ0 + λ2,

and for x1 = 1, x2 = 1, and x3 = 1 it yields

ln

(
P(Y =1 | X=1, U=Ann )

1 − P(Y=1 | X=1, U=Ann )

)
= ln

(
.4

1 − .4

)
≈ −.406 ≈ λ0 + λ1 + λ2 + λ3.

[In R, these values are obtained by qlogis(.7) to qlogis(.4).] Solving the second
equation yields λ1 ≈ .539, solving the third equation yields λ2 ≈ −2.234, and solving
the last one yields λ3 ≈ .442.
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Conditional expectation
with respect to a
conditional-probability measure

In chapter 10, we treated the concept of a 𝒞-conditional expectation E(Y |𝒞) with respect to
a probability measure P on a measurable space (Ω, 𝒜 ). In this chapter, we introduce the con-
cept of a 𝒞-conditional expectation EB(Y |𝒞) of Y with respect to the conditional-probability
measure PB on (Ω, 𝒜 ) (see Def. 4.29). A special case with 𝒞 = σ(X) is the X-conditional
expectation of Y with respect to PB, which is also denoted by EB(Y | X). If B = {Z=z} is the
event that a random variable Z on (Ω, 𝒜, P) takes on the value z and P(Z=z) > 0, then we
use the notation EZ=z(Y | X) and call it a version of the X-conditional expectation of Y with
respect to PZ=z.

In empirical applications, the conditional expectation EZ=z(Y | X) can be used to describe
how the conditional expectation values of Y depend on the values x of X given that Z takes on
the value z. The dependency of Y on X described by EZ=z(Y | X) may not only differ for differ-
ent values z1 and z2 of Z, but also differ from the dependency described by the X-conditional
expectation E(Y | X) of Y with respect to P. If, for instance, X denotes a treatment variable
and Z = sex with values m (male) and f (female), then EZ=m(Y | X) and EZ= f (Y | X) refer
to the X-conditional expectation of Y for males and females, respectively. In a data sample,
these are the conditional expectations estimated using only the y-values and x-values obtained
within the male and female subsamples, respectively. In contrast, E X=x(Y | Z) refers to the
Z-conditional expectation of Y given treatment x, and this is the conditional expectation esti-
mated in the analysis of experimental or quasi-experimental data using only the y-values and
z-values obtained in treatment condition x. If the treatment variable X is dichotomous with
values 0 (control) and 1 (treatment), then g1(Z) := E X=1(Y | Z) − E X=0(Y | Z) and g1 is the
Z-conditional-effect function of X. The values g1(z) are the effects of X on Y given the value
z of Z.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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Table 14.1 Joe and Ann with randomized assignment: conditional expectations with
respect to PX=x.

Outcomes ω Observables Conditional expectations
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Y

E
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)

E
(Y

|X
)

P
(X

=
1
|U

)

E
X
=

0
(Y

|U
)

E
X
=

1
(Y

|U
)

g 1
(U

)

P
X
=

0
({
ω}

)

P
X
=

1
({
ω}

)

(Joe, no, −) .09 Joe 0 0 .7 .45 .4 .7 .8 .1 .15 0
(Joe, no, +) .21 Joe 0 1 .7 .45 .4 .7 .8 .1 .35 0
(Joe, yes, −) .04 Joe 1 0 .8 .6 .4 .7 .8 .1 0 .1
(Joe, yes, +) .16 Joe 1 1 .8 .6 .4 .7 .8 .1 0 .4
(Ann, no, −) .24 Ann 0 0 .2 .45 .4 .2 .4 .2 .4 0
(Ann, no, +) .06 Ann 0 1 .2 .45 .4 .2 .4 .2 .1 0
(Ann, yes, −) .12 Ann 1 0 .4 .6 .4 .2 .4 .2 0 .3
(Ann, yes, +) .08 Ann 1 1 .4 .6 .4 .2 .4 .2 0 .2

14.1 Introductory examples

Example 14.1 [Joe and Ann with randomized assignment – continued] Table 14.1 dis-
plays the random variables U, X, and Y , and, among other things, the conditional expectations
E(Y | X) and E(Y | X, U), the values of which have already been computed in Example 9.21.
Here, the conditional expectation E(Y | X, U) is uniquely defined. According to Remark 12.23,
it has a linear parameterization in (1U=Joe, X, 1U=Joe ⋅ X). The coefficient of this linear param-
eterization can be computed analogously to Example 12.24, which yields

E(Y | X, U) = .2 + .5 ⋅ 1U=Joe + .2 ⋅ X − .1 ⋅ 1U=Joe ⋅ X

= (.2 + .5 ⋅ 1U=Joe) + (.2 − .1 ⋅ 1U=Joe) ⋅ X (14.1)

= g0(U) + g1(U) ⋅ X.

In this equation, g0 is the U-conditional-intercept function that assigns the person-specific
intercept to each value u of the person variable U, and g1 is the U-conditional-effect function
that assigns the person-specific effect of X on Y to each value u of U. The function g1(U) is
a random variable on (Ω, 𝒜, P). It is the composition of the person variable U and the effect
function g1. In this example, the treatment effect for Joe is g1(Joe) = .2 − .1 ⋅ 1 = .1, and for
Ann it is g1(Ann) = .2 − .1 ⋅ 0 = .2. Hence,

g1(U)(ω) = .2 − .1 ⋅ 1U=Joe(ω) =

{
.1, if ω ∈ {U=Joe}

.2, if ω ∈ {U=Ann}.
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In Theorem 15.3, we show that Equation (14.1) implies

g0(U) = E X=0(Y | U) (14.2)

and

g1(U) = E X=1(Y | U) − E X=0(Y | U), (14.3)

where E X=x(Y | U), x = 0, 1, denotes the U-conditional expectation of Y with respect to the
conditional-probability measure PX=x.

Furthermore, because E(1U=Joe) = P(U=Joe) = .5 [see Eq. (6.4)], the expectation of the
effect function is

EU(g1) = E[g1(U)]

= E(.2 − .1 ⋅ 1U=Joe) = .2 − .1 ⋅ E(1U=Joe) = .2 − .1 ⋅ .5 = .15 (14.4)

[see Eq. (6.13)]. For simplicity, this expectation is also called the average treatment effect. In
this example, E[g1(U)] is also the slope of X in the equation

E(Y | X) = .45 + .15 ⋅ X, (14.5)

which can be computed by applying the equations of Example 12.15 (see also Example 12.16).
From a methodological point of view, note that in this example the function g1 and its

expectation have a causal interpretation as a U-conditional-effect function and the average
effect of the treatment. Furthermore, the slope of X in Equation (14.5) is also identical to the
average causal effect of the treatment variable X. As shown in Corollary 15.18, this follows
from independence of X and U [see the column headed P(X=1 | U) in Table 14.1, Exam-
ple 5.37, and Rem. 10.59]. In empirical applications, in which we draw one person and then
assign him or her to one of two treatment conditions (see Table 14.1), independence of X and
U is created by assigning the drawn person to treatment x with identical probabilities for all
persons such that P(X=1 | U) = P(X=1) (see Rem. 10.50). ⊲

Example 14.2 [Joe and Ann with self-selection – continued] Table 14.2 shows another
example with Joe and Ann. Some of the conditional expectations displayed have already been
presented in Table 11.2. In Table 14.2, the treatment probability does depend on the per-
son drawn, that is, P(X=1 | U) ≠ P(X=1) [see the column headed P(X=1 | U)]. Therefore,
according to Remark 10.50, X and U are not independent. In applied statistics, such a depen-
dence between X and U is often created by ‘self-selection’ into one of the treatment conditions.

Inspecting the columns headed by E(Y | X, U) in Tables 14.1 and 14.2 shows that these
columns are identical. Therefore, Equation (14.1) still holds for E(Y | X, U), and this implies
that the conditional treatment effect for Joe is again g1(Joe) = .1, and for Ann it is g1(Ann) = .2.
Furthermore, because P(U=Joe) = .5 still holds, the average treatment effect is again
E[g1(U)] = .15 [see also Eq. (14.4)]. In contrast to Example 14.1, E[g1(U)] is not identical to
the slope of X in the equation

E(Y | X) = .60 − .18 ⋅ X, (14.6)

which can be computed by applying the equations of Example 12.15 (see also Example 12.16).
Now the slope −.18 has no causal interpretation, because all individual treatment effects are
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Table 14.2 Joe and Ann with self-selection: conditional expectations with respect to PX=x.

Outcomes ω Observables Conditional expectations
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(Joe, no, −) .144 Joe 0 0 .7 .6 .04 .7 .8 .1 .24 0
(Joe, no, +) .336 Joe 0 1 .7 .6 .04 .7 .8 .1 .56 0
(Joe, yes, −) .004 Joe 1 0 .8 .42 .04 .7 .8 .1 0 .01
(Joe, yes, +) .016 Joe 1 1 .8 .42 .04 .7 .8 .1 0 .04
(Ann, no, −) .096 Ann 0 0 .2 .6 .76 .2 .4 .2 .16 0
(Ann, no, +) .024 Ann 0 1 .2 .6 .76 .2 .4 .2 .04 0
(Ann, yes, −) .228 Ann 1 0 .4 .42 .76 .2 .4 .2 0 .57
(Ann, yes, +) .152 Ann 1 1 .4 .42 .76 .2 .4 .2 0 .38

positive (.1 for Joe, .2 for Ann), whereas this slope is negative. Hence, this slope would be
extremely misleading if used for the evaluation of the treatment. Note that the phenomenon
that E[g1(U)] and the slope of X in Equation (14.6) are not identical can only occur if X and
U are not independent (see Theorem 15.14).

Hence, while the function g1 and its expectation EU(g1) = E[g1(U)] can still be causally
interpreted as a U-conditional-effect function and the average effect of the treatment, respec-
tively, the slope of X in Equation (14.6) does not have a causal meaning. ⊲

Example 14.3 [No treatment for Joe – continued] Table 14.3 displays a third example
with Joe and Ann. Note that the values of the versions E(Y | X) and E(Y | X, U) in this table are
specified for allω ∈ Ω (see Examples 9.22, 9.23, and Exercise 14.1). However, in this example,
there are infinitely many versions of the conditional expectation E(Y | X, U). In Table 9.2, we
already specified a version V ∈ ℰ (Y | X, U) with

V(ω) = 0, if ω ∈ {(Joe, yes, −), (Joe, yes, +)},

and in Example 10.19, we noted that assigning any other real number instead would do as well.
For instance, assigning

V∗(ω) = 9, if ω ∈ {(Joe, yes, −), (Joe, yes, +)},

we define a second version V∗ ∈ ℰ (Y | X, U), provided, of course, that the other values are
assigned as in Table 9.2. The version V∗ = E(Y | X, U) is displayed in Table 14.3. In Exam-
ple 10.19, we also noted that two versions V and V∗ of E(Y | X, U) are P-equivalent.
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Table 14.3 No treatment for Joe: conditional expectations with respect to PX=x.

Outcomes ω Observables Conditional expectations
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(Joe, no, −) .152 Joe 0 0 .696 .6 0 .696 9 .245 0
(Joe, no, +) .348 Joe 0 1 .696 .6 0 .696 9 .561 0
(Joe, yes, −) 0 Joe 1 0 9 .4 0 .696 9 0 0
(Joe, yes, +) 0 Joe 1 1 9 .4 0 .696 9 0 0
(Ann, no, −) .096 Ann 0 0 .2 .6 .76 .2 .4 .155 0
(Ann, no, +) .024 Ann 0 1 .2 .6 .76 .2 .4 .039 0
(Ann, yes, −) .228 Ann 1 0 .4 .4 .76 .2 .4 0 .6
(Ann, yes, +) .152 Ann 1 1 .4 .4 .76 .2 .4 0 .4

For the version V [see the column headed E(Y | X, U) in Table 9.2], we can write

V = .2 + .496 ⋅ 1U=Joe + .2 ⋅ X − .896 ⋅ 1U=Joe ⋅ X

= (.2 + .496 ⋅ 1U=Joe) + (.2 − .896 ⋅ 1U=Joe) ⋅ X (14.7)

= g0(U) + g1(U) ⋅ X.

(The coefficients of this equation are obtained analogously as in Example 12.24.) In this equa-
tion, g0(U) := .2 + .496 ⋅ 1U=Joe holds for the U-conditional-intercept function, and

g1(U) := .2 − .896 ⋅ 1U=Joe

holds for the U-conditional-effect function g1. For the version V , the value of g1 for Joe is
g1(Joe) = .2 − .896 ⋅ 1 = −.696, and for Ann it is g1(Ann) = .2 − .896 ⋅ 0 = .2.

Furthermore, the version V∗ satisfies

V∗ = .2 + .496 ⋅ 1U=Joe + .2 ⋅ X + 8.104 ⋅ 1U=Joe ⋅ X

= (.2 + .496 ⋅ 1U=Joe) + (.2 + 8.104 ⋅ 1U=Joe) ⋅ X (14.8)

= g∗0(U) + g∗1(U) ⋅ X.

In contrast to the two different versions of E(Y | X, U), different versions of the U-
conditional-effect function are not necessarily PU-equivalent. For instance, if we consider the
version V ∈ ℰ (Y | X, U) specified above, then the associated effect function g1 has the two
values

g1(Joe) = .2 − .896 ⋅ 1 = −.696 and g1(Ann) = .2 − .896 ⋅ 0 = .2,
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whereas considering the version V∗ ∈ ℰ (Y | X, U) specified above, the associated effect func-
tion g∗1(U) has the two values

g∗1(Joe) = .2 + 8.104 ⋅ 1 = 8.304 and g∗1(Ann) = .2 + 8.104 ⋅ 0 = .2.

Consequently, the expectations of different versions of the effect function also differ from
each other. Because P(U=Joe) = .152 + .348 + 0 + 0 = .5 and P(U=Ann) = .096 + .024 +
.228 + .152 = .5, the expectation of g1 is

EU(g1) = E[g1(U)] = − .696 ⋅ P(U=Joe) + .2 ⋅ P(U=Ann) = − .696 ⋅ .5 + .2 ⋅ .5 = − .248,

whereas the expectation of g∗1 is

EU(g∗1) = E[g∗1(U)] = 8.304 ⋅ P(U=Joe) + .2 ⋅ P(U=Ann) = 8.304 ⋅ .5 + .2 ⋅ .5 = 4.252.

For both computations, we used Equation (6.15). ⊲

Remark 14.4 [Methodological conclusions] Examples 14.1 to 14.3 show that the notions
effect function, conditional effects, and average effects are crucial for the evaluation of treat-
ments, interventions, and expositions. This applies not only to U-conditional effects but also to
effects conditioning on other variables, say Z, such as Z = gender, Z = severity of symptoms,
Z = educational status, and so on. Our examples with a dichotomous treatment variable X
with values 0 and 1 show: Although a conditional expectation E(Y | X, U) is uniquely defined
up to P-equivalence, this guarantees neither that the effect function is uniquely defined up
to PU-equivalence nor that the expectations of g1 and g∗1 are identical for different versions
g1, g∗1 of the effect function. This suggests that we need to learn more about the effect func-
tion and the conditional expectations E X=0(Y | U) and E X=1(Y | U) [see Eq. (14.3)]. In more
general terms, we need to learn more about a conditional expectation EB(Y | Z) with respect
to a conditional-probability measure PB. ⊲

14.2 Assumptions and definitions

In section 4.2, we considered a probability space (Ω, 𝒜, P) and an event B ∈ 𝒜 with P(B) > 0.
According to Theorem 4.28, the function PB: 𝒜 → [0, 1] defined by

PB(A) = P(A | B) = P(A ∩ B)
P(B)

, ∀ A ∈ 𝒜, (14.9)

is a probability measure on (Ω, 𝒜 ) called the B-conditional-probability measure. We also
noted that (Ω, 𝒜, PB) is a probability space sharing the measurable space (Ω, 𝒜 ) with the
original probability space (Ω, 𝒜, P).

In section 9.1, we used the conditional-probability measure PB in order to introduce the
B-conditional expectation value

E(Y | B) = EB(Y) =
∫

Y dPB, (14.10)

assuming P(B) > 0 [see Eq. (9.2)] and that the expectation of Y with respect to PB exists (see
Def. 6.1), that is, that Y is quasi-integrable with respect to PB (see Def. 3.28). Hence, E(Y | B)
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denotes the B-conditional expectation of Y and, by definition, it is identical to the expectation
EB(Y) of Y with respect to PB. If Z is a random variable on (Ω, 𝒜, P) and B = {Z=z} =
{ω ∈ Ω: Z(ω) = z} with P(Z=z) > 0, then we use the notation EZ=z(Y) and

E(Y | Z=z) = EZ=z(Y) (14.11)

instead of EB(Y) as well as PZ=z instead of PB. Note, however, that E(Y | Z=z) is also defined
if P(Z=z) = 0. [For the definition see Eq. (10.27), and for uniqueness see Rem. 10.28.]

In this section, we often refer to the following assumptions and notation:

Notation and assumptions 14.5
Let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable, B ∈ 𝒜 with P(B) > 0, 𝒞 ⊂ 𝒜 a σ-alge-
bra, and PB defined by Equation (14.9). Furthermore, assume that Y is nonnegative or
such that EB(Y) is finite.

Remark 14.6 [Finite expectation with respect to PB] If Y is a random variable with finite
expectation E(Y), then EB(Y) is finite, too (see Exercise 14.2). In contrast, finiteness of EB(Y)
does not imply that E(Y) is finite. ⊲

In chapter 10, we defined a version of a 𝒞-conditional expectation E(Y |𝒞) with respect
to the measure P (see Def. 10.2). For convenience, we repeat this definition of a 𝒞-conditional
expectation, but now it is for a conditional-probability measure PB defined by Equation (14.9).

Reading the following definition, note that V , X, Y are random variables on the probability
space (Ω, 𝒜, P) if and only if they are random variables on (Ω, 𝒜 , PB), provided, of course, that
P(B) > 0 so that PB is defined (see Exercise 14.3). Also remember that σ(V) = V−1(ℬ) denotes
the σ-algebra generated by the random variable V: (Ω, 𝒜, P) → (R,ℬ) (see section 2.3.2).

Definition 14.7 [𝒞-conditional expectation with respect to PB]
Let the assumptions 14.5 hold. A random variable V: (Ω, 𝒜, P) → (R,ℬ) is called a ver-
sion of the 𝒞-conditional expectation of Y with respect to PB, if the following two
conditions hold:

(a) σ(V) ⊂ 𝒞.

(b) EB(1C ⋅ V) = EB(1C ⋅ Y), ∀ C ∈ 𝒞.

If V satisfies (a) and (b), then we also use the notation EB(Y |𝒞) := V.

According to Equation (6.1), condition (b) of this definition is equivalent to

∫
1C ⋅ V dPB =

∫
1C ⋅ Y dPB, ∀ C ∈ 𝒞. (14.12)

This equation shows more clearly how the measure PB is involved in the definition of
EB(Y |𝒞).
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Remark 14.8 [Existence] The only difference between Definitions 10.2 and 14.7 is that,
instead of referring to P, now we refer to the conditional-probability measure PB defined
by Equation (14.9). Hence, Theorem 10.9 (i) implies that, under the assumptions of Defi-
nition 14.7, there exists at least one version EB(Y |𝒞). ⊲

Remark 14.9 [Uniqueness] Theorem 10.9 (ii) implies that two versions V and V∗of the 𝒞-
conditional expectation of Y with respect to PB are PB-equivalent. In other words, EB(Y |𝒞)
is PB-unique (see Rem. 10.13). ⊲

Remark 14.10 [Set of all versions of the 𝒞-conditional PB-expectation] The notation
EB(Y |𝒞) refers to a version of the 𝒞-conditional expectation of Y with respect to PB. In
contrast, the set of all random variables V on (Ω, 𝒜, P) that satisfy conditions (a) and (b) of
Definition 14.7 is denoted by ℰB(Y |𝒞). Hence, we can write EB(Y |𝒞) ∈ ℰB(Y |𝒞) (see
also Exercise 14.4). ⊲

Remark 14.11 [EB(Y |𝒞) is not necessarily P-unique] Although EB(Y |𝒞) is PB-unique,
it is not necessarily P-unique (see Rem. 10.13). In section 14.6 we present necessary and
sufficient conditions for P-uniqueness of EB(Y |𝒞), a property that has important implications
(see, e.g., section 14.6.4 and Box 14.1). ⊲

Remark 14.12 [Properties of EB(Y |𝒞)] Because EB(Y |𝒞) is a conditional expectation,
the properties that have been treated in detail in chapters 10 and 11 analogously also apply to
EB(Y |𝒞). We simply have to exchange the probability measure P by PB, the expectation E(⋅)
by EB(⋅), the variance Var(⋅) by VarB(⋅), and the covariance Cov(⋅, ⋅) by CovB(⋅, ⋅). ⊲

Remark 14.13 [Existence of a real-valued version EB(Y |𝒞)] Box 10.1 (x) immediately
yields: If the assumptions 14.5 hold and EB(Y) is finite, then there is a real-valued version
V ∈ ℰB(Y |𝒞). ⊲

Remark 14.14 [𝒞-conditional probability with respect to PB] Let the assumptions 14.5
hold and let A ∈ 𝒜 . Then we call

PB(A |𝒞 ) := EB(1A |𝒞 ) (14.13)

a version of the 𝒞-conditional probability of A with respect to PB. Correspondingly,
𝒫B(A |𝒞 ) denotes the set of all these versions PB(A |𝒞 ). ⊲

Now we adapt notation and terminology of a 𝒞-conditional expectation with respect to a
conditional-probability measure to the case in which the σ-algebra 𝒞 is generated by a random
variable.

Remark 14.15 [X-conditional expectation with respect to PB] Let the assumptions 14.5
hold and assume that X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is a random variable. Then we define

EB(Y | X) := EB(Y | σ(X)) (14.14)

and call it a version of the X-conditional expectation of Y with respect to PB or a version of
the X-conditional PB-expectation of Y . ⊲
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Correspondingly, we use ℰB(Y | X) to denote the set of all versions of the X-conditional
expectation of Y with respect to PB.

Remark 14.16 [X-conditional probability of an event with respect to PB] If A ∈ 𝒜,
then,

PB(A | X) := EB(1A | X) (14.15)

is called a version of the X-conditional probability of A with respect to PB, and 𝒫B(A | X)
denotes the set of all these versions. ⊲

If B is the event {Z=z} = {ω ∈ Ω: Z(ω) = z} that a random variable Z takes on the value
z, then we adapt the notation and the terminology correspondingly.

Notation and assumptions 14.17
Let Y: (Ω, 𝒜, P) → (R,ℬ) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables and𝒞 ⊂ 𝒜

a σ-algebra. Furthermore, let z ∈ Ω′
Z with P(Z=z) > 0 and assume that Y is nonnegative

or such that EZ=z(Y) is finite.

Remark 14.18 [Conditional expectation with respect to PZ=z] Let the assumptions 14.17
hold. Then we use the notation

EZ=z(Y |𝒞) := E{Z=z}(Y |𝒞) (14.16)

and call it a version of the 𝒞-conditional expectation of Y with respect to PZ=z. The measure
PZ=z is defined by Equation (14.9) with B = {Z=z}. Correspondingly, ℰZ=z(Y |𝒞) denotes
the set of all versions of the 𝒞-conditional expectation of Y with respect to PZ=z. ⊲

Remark 14.19 [𝒞-conditional probability with respect to PZ=z] Correspondingly, for
A ∈ 𝒜 we define PZ=z(A |𝒞) := EZ=z(1A |𝒞), a version of the 𝒞-conditional probability of
the event A with respect to the measure PZ=z, and we use 𝒫 Z=z(A |𝒞) to denote the fam-
ily of all versions of the 𝒞-conditional probability of the event A with respect to the measure
PZ=z. ⊲

In the next definition, we additionally consider a random variable X and use it such that
σ(X) takes the role of the σ-algebra 𝒞 .

Notation and assumptions 14.20
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R,ℬ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be

random variables. Furthermore, let z ∈ Ω′
Z with P(Z=z) > 0, and assume that Y is non-

negative or such that EZ=z(Y) is finite.

Under these assumptions, we define an X-conditional expectation with respect to a (Z=z)-
conditional probability measure as follows:
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Remark 14.21 [X-conditional expectation with respect to PZ=z] Let the assumptions 14.20
hold. Then,

EZ=z(Y | X) := E{Z=z}(Y | σ(X)), (14.17)

is called a version of the X-conditional expectation of Y with respect to PZ=z. ⊲

Again, note the distinction between a version EZ=z(Y | X) and ℰZ=z(Y | X), the family of
all versions of the X-conditional expectation of Y with respect to PZ=z. Of course, what has
been said in Remark 14.12 about the properties of a 𝒞-conditional expectation with respect to
PB applies to EZ=z(Y | X) as well.

Remark 14.22 [X-conditional probability with respect to PZ=z] Correspondingly, for
A ∈ 𝒜 we define PZ=z(A | X) := EZ=z(1A | X), a version of the X-conditional probability of
the event A with respect to the measure PZ=z, and we use 𝒫Z=z(A | X) to denote the family
of all these versions. ⊲

Example 14.23 [Joe and Ann with self-selection – continued] We continue Example 14.2,
illustrating how to compute EX=0(Y | U) and EX=1(Y | U), which, in this example, are both
uniquely defined. First we compute the probabilities of the elementary events with respect to
the measures PX=0 and PX=1, and then specify EX=0(Y | U) and EX=1(Y | U).

Enumerating the eight elementary events {ω1} to {ω8} from top to bottom of the first col-
umn of Table 14.2, the probabilities of these elementary events with respect to PX=0 can be
computed as follows:

PX=0({ω1}) = PX=0[{(Joe, no, −)}] = P[{(Joe, no, −)} ∩ {X=0}]
P(X=0)

= P[{(Joe, no, −)}]
P(X=0)

= .144
.144 + .336 + .096 + .024

= .24.

For the elementary event {ω2}, we obtain

PX=0({ω2}) = PX=0[{(Joe, no, +)}] = P[{(Joe, no, +)} ∩ {X=0}]
P(X=0)

= P[{(Joe, no, +)}]
P(X=0)

= .336
.144 + .336 + .096 + .024

= .56.

For {ω5}, we obtain

PX=0({ω5}) = PX=0[{(Ann, no, −)}] = P[{(Ann, no, −)} ∩ {X=0}]
P(X=0)

= P[{(Ann, no, −)}]
P(X=0)

= .096
.144 + .336 + .096 + .024

= .16;
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and, for {ω6},

PX=0({ω6}) = PX=0[{(Ann, no, +)}] = P[{(Ann, no, +)} ∩ {X=0}]
P(X=0)

= P[{(Ann, no, +)}]
P(X=0)

= .024
.144 + .336 + .096 + .024

= .04.

The probabilities of the other four elementary events with respect to PX=0 are 0 (see the last
but one column of Table 14.2). The probabilities of the eight elementary events with respect
to PX=1 are computed analogously (see also the last column of Table 14.2).

Now we specify the U-conditional expectation of Y with respect to PX=0. Because Y
is an indicator variable with values 0 and 1, the conditional expectation EX=0(Y | U) can
also be denoted by PX=0(Y =1 | U) [see Eq. (14.15)]. It has two different values, one for
ω ∈ {U=Joe} and one for ω ∈ {U=Ann}. These values can be computed as follows:

PX=0(Y =1 | U=Joe) = PX=0(Y =1, U=Joe)
PX=0(U=Joe)

= .56
.24 + .56

= .7

and

PX=0(Y =1 | U=Ann) = PX=0(Y =1, U=Ann)
PX=0(U=Ann)

= .04
.04 + .16

= .2.

The results of the corresponding computations for PX=1(Y =1 | U) are displayed in the third
from the right column of Table 14.2.

Note that, in this example, there is only one single element in ℰX=0(Y | U) and one single
element in ℰX=1(Y | U), that is, the conditional expectations EX=0(Y | U) and EX=1(Y | U)
are uniquely defined. In contrast, in Example 14.24 there is one single element inℰX=0(Y | U),
but an infinite number of different elements in ℰX=1(Y | U). ⊲

Example 14.24 [No treatment for Joe – continued] We continue Example 14.3. In this
example, EX=0(Y | U) is uniquely defined (see Exercise 14.7). In contrast, this is not true for
EX=1(Y | U). The probabilities of the elementary events with respect to the measures PX=x

are computed analogously to Example 14.23. The results are displayed in the last two columns
of Table 14.3.

Now we specify a version of the U-conditional expectation of Y with respect to the measure
PX=1. Because Y is an indicator variable with values 0 and 1, a version of this conditional
expectation can also be denoted by PX=1(Y =1 | U) [see Eq. (14.15)]. It has two different
values, one for U(ω) = Joe and one for U(ω) = Ann. The latter is

PX=1(Y =1 | U=Ann) = PX=1(Y =1, U=Ann)
PX=1(U=Ann)

= .4
.6 + .4

= .4.

In contrast, the fraction PX=1(Y =1, U=Joe)∕PX=1(U=Joe) is not defined, because
PX=1(U=Joe) = 0. Nevertheless, a value PX=1(Y =1 | U= Joe) of a factorization of
PX=1(Y =1 | U) is defined [see Def. 10.33 and also Eq. (14.34)]. In this case, we can choose
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any real number as the value of PX=1(Y =1 | U) for ω ∈ {U=Joe} = {ω1, … , ω4}. For exam-
ple,

V1(ω) =

{
9, if U(ω) = Joe

.4, if U(ω) = Ann,

[see Eq. (10.31) and also Eq. (14.41)] defines a first element of 𝒫X=1(Y =1 | U) (see
Table 14.3), and

V∗
1 (ω) =

{
0, if U(ω) = Joe

.4, if U(ω) = Ann,

is a second element of the set 𝒫X=1(Y =1 | U). Obviously, V1 and V∗
1 are PX=1-equivalent,

because PX=1(A1) = 0, where

A1 :=
{
ω ∈ Ω: V1(ω) ≠ V∗

1 (ω)
}
= {ω1, … , ω4}

= {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)}.

This probability can be computed by

PX=1(A1) =
∑

ω∈A1

PX=1({ω}) = 0 + 0 + 0 + 0 = 0

(see the last column of Table 14.3). In contrast,

P(A1) =
∑

ω∈A1

P({ω}) = .152 + .348 + 0 + 0 = .5.

Hence, the two versions V1 and V∗
1 of the U-conditional PX=1-expectation of Y are PX=1-

equivalent, that is, they are equivalent with respect to the measure PX=1. However, the two
versions are not equivalent with respect to the measure P. (This issue will be treated in more
detail in section 14.6.)

Note that the values of a version E X=x(Y | U) of the conditional expectation are defined for
all elements ω ∈ Ω and that these conditional expectations are random variables on all three
probability spaces (Ω, 𝒜, P), (Ω, 𝒜, PX=0), and (Ω, 𝒜, PX=1), because they share the same
measurable space (Ω, 𝒜 ) (see Def. 5.1). Furthermore, the values of such a version E X=x(Y | U)
only depend on the person drawn. This illustrates that they are measurable with respect to U
[see Def. 14.7 (b)]. ⊲

14.3 Properties

Remark 14.25 [Rules of computation] The rules of computation for conditional expecta-
tions E(Y |𝒞) with respect to a probability measure P analogously hold for conditional expec-
tation EB(Y |𝒞) with respect to a conditional-probability measure PB. For example, according
to Rule (iv) of Box 10.1,

EB[EB(Y |𝒞)] = EB(Y). (14.18)
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Similarly, according to Rule (iii) of Box 10.1,

EB(α ⋅ Y |𝒞 ) =
PB

α ⋅ EB(Y |𝒞 ), α ∈ R. (14.19)

We simply have to exchange the notation E(⋅), which refers to the measure P, by EB(⋅) referring
to the conditional-probability measure PB and, of course, exchange P by PB. ⊲

In the following theorem we extend Equation (14.19), showing how to deal with a 𝒞-
conditional expectation with respect to PZ=z of f (Z) ⋅ Y .

Theorem 14.26 [Regressand f (Z) ⋅ Y]
Let the assumptions 14.17 hold. If f : (Ω′

Z , 𝒜 ′
Z) → (R,ℬ) is a measurable function and

f (z) ∈ R, then,

EZ=z[ f (Z) ⋅ Y |𝒞 ] =
P Z=z

f (z) ⋅ EZ=z(Y |𝒞 ). (14.20)

(Proof p. 439)

Remark 14.27 [Two special cases] For the constant 1 taking the role of Y , Rule (i) of
Box 10.1 yields EZ=z(Y |𝒞 ) =

P Z=z
1. Therefore, Equation (14.20) implies

EZ=z[ f (Z) |𝒞 ] =
P Z=z

f (z). (14.21)

Another special case of Equation (14.20) is

EZ=z[ f (Z)] = f (z), (14.22)

which follows from Remark 10.5 and (14.21) for 𝒞 = {Ω, Ø}. ⊲

Remark 14.28 [Two probability spaces] There are also some properties of a conditional
expectation EB(Y |𝒞) that are related to the fact that two probability spaces, (Ω, 𝒜, P) and
(Ω, 𝒜, PB), are involved. By definition, a version of the conditional expectation EB(Y |𝒞)
with respect to PB is a random variable on the probability space (Ω, 𝒜, PB). Therefore, it
is also a random variable on (Ω, 𝒜, P). However, different elements of ℰB(Y |𝒞) are not
necessarily P-equivalent; they are necessarily equivalent only with respect to PB. Hence, if
V , V∗ ∈ ℰB(Y |𝒞), then the expectations E(V) and E(V∗) with respect to P may differ from
each other, whereas EB(V) and EB(V∗) are necessarily identical. These issues are treated in
detail in section 14.6.2. ⊲

14.4 Partial conditional expectation

Now we introduce the concept of a partial conditional expectation using a factorization of a
version g(X, Z) = E(Y | X, Z) ∈ ℰ (Y | X, Z). We show how this concept is related to a condi-
tional expectation with respect to a conditional-probability measure. In Definition 14.29, we
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refer to the functions gz: Ω′
X → R that, for all z ∈ Ω′

Z , are defined by

gz(x) = g(x, z), ∀ x ∈ Ω′
X . (14.23)

Referring to the concept of an (X=x, Z=z)-conditional expectation value introduced in Defi-
nition 10.33, we can write

gz(x) = g(x, z) = E(Y | X=x, Z=z), ∀ (x, z) ∈ Ω′
X × Ω′

Z . (14.24)

Note that, in Equations (14.23) to (14.25), we do not assume P(Z=z) > 0.

Definition 14.29 [Partial conditional expectation]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R,ℬ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be

random variables and assume that Y is nonnegative or with finite expectation E(Y). Fur-
thermore, let g(X, Z) = E(Y | X, Z) ∈ ℰ (Y | X, Z) and, for z ∈ Ω′

Z, let the function gz, be
defined by Equation (14.23). Then the function E(Y | X, Z=z): Ω → R defined by

E(Y | X, Z=z) := gz(X) (14.25)

is called a version of the partial (X, Z=z)-conditional expectation of Y (with
respect to P).

To emphasize, for each z ∈ Ω′
Z , the function E(Y | X, Z=z) denotes the composition of X

and gz. Hence, for each z ∈ Ω′
Z it is a random variable on (Ω, 𝒜, P) that is X-measurable (see

Lemma 2.52). In Theorem 14.33, we show that E(Y | X, Z=z) is a version of the conditional
expectation of Y on X with respect to PZ=z, provided that P(Z=z) > 0.

Remark 14.30 [Partial conditional probability] If A ∈ 𝒜, then we also use the notation
P(A | X, Z=z) := E(1A | X, Z=z) and call it the partial (X, Z=z)-conditional probability of
the event A (with respect to P). Furthermore, if Y is dichotomous with values 0 and 1, then
we also use the notation P(Y=1 | X, Z=z) := E(Y | X, Z=z) and call it the partial (X, Z=z)-
conditional probability of the event {Y =1}, or simply of Y =1 (with respect to P). ⊲

Remark 14.31 [Factorization and partial conditional expectation] If the assumptions of
Definition 14.29 hold, then,

1Z=z ⋅ g(X, Z) = 1Z=z ⋅ gz(X). (14.26)

(For a proof, see Exercise 14.5.) ⊲

Remark 14.32 [Discrete Z] Under the assumptions of Definition 14.29, suppose that
Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) is discrete and Z(Ω) ⊂ Ω′

Z is finite or countable with {z} ∈ 𝒜 ′
Z for

all z ∈ Z(Ω). Then,

E(Y | X, Z) =
∑

z ∈ Z(Ω)
E(Y | X, Z=z) ⋅1Z=z (14.27)
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holds for the specific version E(Y | X, Z) that is used in Definition 14.29 (see Exercise 14.6).
Furthermore,

V =
P

∑

z ∈ Z(Ω)
E(Y | X, Z=z) ⋅1Z=z, ∀ V ∈ ℰ (Y | X, Z) . (14.28)

⊲

According to the following theorem, the partial conditional expectation E(Y | X, Z=z) is
also a version of the X-conditional expectation of Y with respect to PZ=z, provided that z ∈ Ω′

Z
with P(Z=z) > 0.

Theorem 14.33 [Relationship between E(Y | X, Z=z) and EZ=z(Y | X)]
Let the assumptions of Definition 14.29 hold and suppose that z ∈ Ω′

Z with P(Z=z) > 0.
Then,

E(Y | X, Z=z) ∈ ℰZ=z(Y | X), (14.29)

and therefore

E(Y | X, Z=z) =
P Z=z

EZ=z(Y | X), ∀ EZ=z(Y | X) ∈ ℰZ=z(Y | X) . (14.30)

(Proof p. 439)

Remark 14.34 [An immediate implication] If the assumptions of Theorem 14.33 hold and
if Z is discrete with P(Z ∈ Ω′

0) = 1 and P(Z=z) > 0 for all z ∈ Ω′
0 (see Def. 5.56), then,

V =
P

∑

z ∈ Ω′
0

EZ=z(Y | X) ⋅1Z=z, ∀ V ∈ ℰ (Y | X, Z) . (14.31)
⊲

14.5 Factorization

Let the assumptions 14.5 hold and let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random variable. Because
EB(Y | X) is measurable with respect to X, Lemma 2.52 implies that there is a measurable
function gB: (Ω′

X , 𝒜 ′
X) → (R,ℬ) such that

EB(Y | X) = gB(X) (14.32)

is the composition of X and gB. A function gB satisfying Equation (14.32) is called a factor-
ization of the version EB(Y | X) ∈ ℰB(Y | X) (see sections 10.4.1 and 10.4.4).

14.5.1 Conditional expectation value with respect to PB

The values of a factorization gB of EB(Y | X) are called (X=x)-conditional expectation values
with respect to PB, and they are denoted by

EB(Y | X=x) := gB(x), ∀ x ∈ Ω′
X (14.33)
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(see Def. 10.33). Instead of EB(1A | X=x), we also use the notation PB(A | X=x), provided
that A ∈ 𝒜.

Correspondingly, under the assumptions 14.5,

EZ=z(Y | X=x) := gZ=z(x), ∀ x ∈ Ω′
X , (14.34)

and PZ=z(A | X=x) := EZ=z(1A | X=x) for A ∈ 𝒜 . Note that gZ=z is not necessarily identical
to the function gz defined by Equation (14.23).

Remark 14.35 [Relationship between the functions gz and gZ=z] Let g(X, Z) ∈
ℰ (Y | X, Z) and gZ=z(X) ∈ ℰZ=z(Y | X). Then the relationship between the function gz defined
by Equation (14.23) and the function gZ=z defined by Equation (14.34) is as follows:

(i) gz =
PZ=z

X

gZ=z if P(Z=z) > 0.

(ii) gz = gZ=z if z ∈ Ω′
Z with P(Z=z, X=x) > 0 for all x ∈ Ω′

X .

(see Exercise 14.8). Note that gZ=z is only defined if P(Z=z) > 0. ⊲

Remark 14.36 [Relationship between factorizations] Suppose that the assumptions 14.20
hold, where Y is nonnegative or with finite expectation E(Y). Then Theorem 14.33 implies

EZ=z(Y | X=x) = E(Y | X=x, Z=z)

= E(Y | X=x, 1Z=z=1), for P Z=z
X -a.a. x ∈ Ω′

X ,
(14.35)

where EZ=z(Y | X=x) and E(Y | X=x, Z=z) are the conditional expectation values defined
by (14.34) and (10.27), respectively (see Exercise 14.9). Note that B = {1B = 1}. Therefore,
according to (14.33), for B ∈ 𝒜 with P(B) > 0, Z = 1B, and z = 1, the first of these two
equations yields

EB(Y | X=x) = E(Y | X=x, 1B=1), for PB
X -a.a. x ∈ Ω′

X . (14.36)
⊲

Remark 14.37 [A sufficient condition for uniqueness] Applying Remark 2.71 to Equa-
tion (14.35) yields

EZ=z(Y | X=x) = E(Y | X=x, Z=z) = E X=x, Z=z(Y) (14.37)

for all x ∈ Ω′
X for which PZ=z(X=x) > 0, or equivalently, for which P(X=x, Z=z) > 0,

where E X=x, Z=z(Y) denotes the expectation of Y with respect to the conditional-probability
measure PB with B = {X=x} ∩ {Z=z}. Hence, EZ=z(Y | X=x) is uniquely defined if
P(X=x, Z=z) > 0. ⊲

14.5.2 Uniqueness of factorizations

Remark 14.38 [Uniqueness of factorizations] For a fixed version EB(Y | X), the factoriza-
tion gB of EB(Y | X) is uniquely defined, provided that Ω′

X is identical to the image X(Ω) =
{X(ω): ω ∈ Ω}. If Ω′

X ≠ X(Ω), then there can be different factorizations of a single version
EB(Y | X) (see Rem. 10.28).
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If gB and g∗B are factorizations of two versions V and V∗ of ℰB(Y | X), respectively, then,
according to Corollary 10.29,

gB =
PB

X

g∗B, (14.38)

that is, gB and g∗B are PB
X-equivalent, where PB

X denotes the probability measure on (Ω′
X , 𝒜 ′

X)
defined by

PB
X (A′) = PB(X ∈ A′), ∀ A′∈ 𝒜 ′

X . (14.39)

Hence, because PB(X ∈ A′) is just another notation for PB[X −1(A′)], PB
X is the image measure

of PB under X (see Def. 5.3 and Rem. 5.5). ⊲

Remark 14.39 [Values of the X-conditional expectation with respect to PB] If P(B) > 0
and EB(Y | X) ∈ ℰB(Y | X), then, for all x ∈ Ω′

X ,

EB(Y | X)(ω) = EB(Y | X=x), ∀ ω ∈ {X=x} (14.40)

(see Rem. 10.37). This also implies that the value of EB(Y | X) is constant on all sets {X=x},
x ∈ Ω′

X . Correspondingly, if P(Z=z) > 0, then, for all x ∈ Ω′
X ,

EZ=z(Y | X)(ω) = EZ=z(Y | X=x), ∀ ω ∈ {X=x}. (14.41)

In other words, whenever the random variable X takes on the value x, and this is the case
if ω ∈ {X=x}, then the random variable EZ=z(Y | X) takes on the value EZ=z(Y | X=x).
Note that Equation (14.41) also holds if Ω is finite or countable and some ω ∈ {X=x}
have the probability PZ=z({ω}) = 0. [As an example, consider the values of EX=1(Y | U) for
ω ∈ {(Joe, yes, −), (Joe, yes, +)} in Example 14.24.] ⊲

14.6 Uniqueness

14.6.1 A necessary and sufficient condition of uniqueness

In Theorem 10.17, we presented a necessary and sufficient condition for uniqueness of a con-
ditional expectation. In the following corollary, we translate this result to a conditional expec-
tation with respect to PB.

Corollary 14.40 [Uniqueness of EB(Y |𝒞)]
Let the assumptions 14.5 hold, let ℰ be a finite or countable partition of Ω, and assume
𝒞 = σ(ℰ ). Then V = V∗ for all V , V∗ ∈ ℰB(Y |𝒞), if and only if

PB(A) > 0, ∀ A ∈ ℰ . (14.42)
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Remark 14.41 [Values of EB(Y |𝒞)] In other words, under the assumptions of Corol-
lary 14.40, the conditional expectation EB(Y |𝒞) is uniquely defined if and only if (14.42)
holds. Furthermore, if (14.42) holds, then,

EB(Y |𝒞) =
∑

A∈ℰ

EB(Y | A) ⋅1A (14.43)

[see Eq. (10.14)] and

∀ A ∈ ℰ: EB(Y |𝒞)(ω) = EB(Y | A), if ω ∈ A (14.44)

[see Eq. (10.15)]. The last equation shows that EB(Y |𝒞) describes how the conditional expec-
tation values EB(Y | A) depend on the events A ∈ ℰ . ⊲

The corresponding result for the X-conditional expectation EB(Y | X) of Y with respect to PB

is as follows:

Corollary 14.42 [Uniqueness of EB(Y | X)]
Let the assumptions 14.5 hold. Furthermore, let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random

variable such that Ω′
X is finite or countable, X(Ω) = Ω′

X, and 𝒜 ′
X = 𝒫(Ω′

X). Then V = V∗

for all V , V∗ ∈ ℰB(Y | X), if and only if

PB(X=x) > 0, ∀ x ∈ X(Ω). (14.45)

Remark 14.43 [Values of EB(Y | X)] Hence, under the assumptions of Corollary 14.42,
EB(Y | X) is uniquely defined if and only if (14.45) holds. And, if (14.45) holds, then,

EB(Y | X) =
∑

x∈X(Ω)
EB(Y | X=x) ⋅1X=x (14.46)

and

∀ x ∈ X(Ω): EB(Y | X)(ω) = EB(Y | X=x), if ω ∈ {X=x}. (14.47)

This equation shows that the conditional expectation EB(Y | X) describes how the conditional
expectation values EB(Y | X=x) depend on the values x of X. ⊲

Example 14.44 [Joe and Ann] Applying Corollary 14.42 to the introductory Examples 14.1
and 14.2 implies that the conditional expectations EX=0(Y | U) and EX=1(Y | U) are uniquely
defined. Furthermore, according to Remark 14.37, in these two examples, the conditional
expectation values E X=x(Y | U=u) are also uniquely defined, which follows from the fact
that PX=x(U=u) > 0 for all pairs (x, u) of values of X and U. In contrast, in Example 14.3,
only EX=0(Y | U) is uniquely defined, but EX=1(Y | U) is not. In fact, in this example,
EX=1(Y | U) is even not P-unique, although it is PX=1-unique. This issue is dealt with in
section 14.6.2. ⊲
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14.6.2 Uniqueness with respect to P and other probability measures

A conditional expectation EB(Y |𝒞) is always PB-unique (see Rem. 14.9). However, we may
also ask if EB(Y |𝒞) is Q-unique, where Q is any probability measure on (Ω, 𝒜 ). This includes
Q = P, but also Q = PC, where C ∈ 𝒜 and C ≠ B (see Remarks 5.17 and 5.20). If EB(Y |𝒞)
is Q-unique, then two versions V , V∗ ∈ ℰB(Y |𝒞) have identical distributions, expectations,
variances, and so on not only with respect to PB, but also with respect to Q (i.e., QV = Q∗

V )
(see Cors. 5.24 and 6.17). The following example shows why this is of interest.

Example 14.45 [Pre-post design] Suppose that X is an indicator variable with values 0 (con-
trol) and 1 (treatment), Y represents life satisfaction after treatment, and Z life satisfaction
before treatment. Then P-uniqueness of E X=x(Y | Z) is crucial if we consider

E(Y | X, Z) =
P

g0(Z) + g1(Z) ⋅ X

with

g1(Z) =
P

EX=1(Y | Z) − EX=0(Y | Z),

or the expectation

E[g1(Z)] = E
[
EX=1(Y | Z)

]
− E

[
EX=0(Y | Z)

]
.

Furthermore, for x = 0 and x = 1, we may also consider the (X=x)-conditional expectation
values of g1(Z)

E[g1(Z) | X=x] = E
[
EX=1(Y | Z) | X=x

]
− E

[
EX=0(Y | Z) | X=x

]
,

the average effect of X on Y given x = 0 (control) and x = 1 (treatment), respectively. Con-
sidering E[g1(Z) | X=x], where x = 0 or x = 1, it is crucial that EX=0(Y | Z) and EX=1(Y | Z)
are unique with respect to the measure PX=x for the following reason: For x = 0 or x = 1,
if P(X=x) > 0 and EX=1(Y | Z) is PX=x-unique, then the conditional expectation value
E
[
EX=1(Y | Z) | X=x

]
is identical for different versions EX=1(Y | Z) ∈ ℰX=1(Y | Z). Cor-

respondingly, for x = 0 or x = 1, if P(X=x) > 0 and EX=0(Y | Z) is PX=x-unique, then
E
[
EX=0(Y | Z) | X=x

]
is identical for different versions EX=0(Y | Z) ∈ ℰX=0(Y | Z) (see

Exercise 14.10). ⊲

14.6.3 Necessary and sufficient conditions of P-uniqueness

Now we present conditions that are equivalent to P-uniqueness of EB(Y |𝒞). Note that, in this
theorem, we do not refer to the expectation EB(V) of V with respect to the measure PB, but to
the expectation E(V) of V with respect to P.

Theorem 14.46 [Conditions equivalent to P-uniqueness of EB(Y |𝒞)]
Let the assumptions 14.5 hold. Then the following propositions are equivalent to each
other:

(a) EB(Y |𝒞) is P-unique.

(b) P ≪
𝒞

PB.

(c) P(B |𝒞 ) >
P

0.
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If there is a version V ∈ ℰB(Y |𝒞) such that E(V) is finite, then each of (a) to (c) is also
equivalent to

(d) ∀ V , V∗ ∈ ℰB(Y |𝒞): E(V) = E(V∗).

(Proof p. 440)

Remark 14.47 [Sufficient conditions for finiteness of E[EB(Y |𝒞)]] Remember, the expec-
tation of a random variable Y exists if ∫ Y+ dP or ∫ Y− dP is finite (see Def. 3.28). Hence,
the expectation E[EB(Y |𝒞)] of any version EB(Y |𝒞) ∈ ℰB(Y |𝒞) exists and is finite, for
example if one of the following conditions holds:

(a) 𝒞 is a finite set and EB(Y) is finite (see Exercise 14.11).

(b) EB(Y |𝒞) has only a finite number of real values (see Rem. 6.5).

(c) EB(Y |𝒞) is P-almost surely bounded on both sides, that is,
∃ α ∈ R: − α ≤

P
EB(Y |𝒞) ≤

P
α [see Eq. (3.50)].

(d) Y is P-almost surely bounded on both sides, that is, ∃ α ∈ R: − α ≤
P

Y ≤
P
α

[EB(⋅) = E1B =1(⋅), and see Eq. (14.30), and Box 10.3 (v) and (vii), and (c)].

A special case of (d) is 0 ≤
P

Y ≤
P
α, for 0 < α ∈ R. Another one is Y = 1A, if A ∈ 𝒜. ⊲

In the following corollary, we translate Theorem 14.46 to the special case of an X-
conditional expectation EB(Y | X) with respect to PB and apply Lemma 5.29.

Corollary 14.48 [P-uniqueness of EB(Y | X)]
Let the assumptions 14.5 hold and let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable.

Then the following propositions are equivalent to each other:

(a) EB(Y | X) is P-unique.

(b) P ≪
σ(X)

PB.

(c) P(B | X) >
P

0.

(d) PX ≪
𝒜

′
X

PB
X.

If there is a version V ∈ ℰB(Y | X) such that E(V) is finite, then each of (a) to (d) is also
equivalent to

(e) ∀ V , V∗ ∈ ℰB(Y | X): E(V) = E(V∗).
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Remark 14.49 [Absolute continuity if X is discrete] Under the assumptions of Corol-
lary 14.48: If X is discrete and {x} ∈ 𝒜 ′

X for all x ∈ Ω′
X , then PX ≪

𝒜
′
X

PB
X [see Cor. 14.48 (d)] is

equivalent to

∀ x ∈ Ω′
X: PB(X=x) = 0 ⇒ P(X=x) = 0 (14.48)

(see Exercise 14.12). ⊲

Example 14.50 [Joe and Ann with randomized assignment – continued] The last two
columns of Table 14.1 display the conditional-probability measures PX=0 and PX=1. The val-
ues of PX=1 = PB with B = {X=1} were already computed in Example 4.34. The last two
columns of Table 14.1 show that PX=x(U=u) > 0 for all pairs of values of X and U. This
implies that the conditional expectations E X=x(Y | U) are uniquely defined for both values of
X (see Cor. 14.42), which in turn implies that they are P-unique. Furthermore, according to
Equation (14.35), the expectations

E[E X=x(Y | U)] =
∑

u
E(Y | X=x, U=u) ⋅ P(U=u), x = 0, 1, (14.49)

are finite. According to Remark 14.47 (b), this follows from the fact that the conditional
expectation values E(Y | X=x, U=u) = E X=x(Y | U=u) are finite. Finally, E(V) = E(V∗) =
E[E X=x(Y | U)], for all V , V∗ ∈ ℰX=x(Y | U) [see Cor. 14.48 (e)]. ⊲

Example 14.51 [No treatment for Joe – continued] Continuing Example 14.24, consider
the event

{X=1} = {(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, yes, +)},

that the drawn person is treated, and the event

{U=Joe} = {(Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +)},

that Joe is drawn. In this example, we already computed the (X=1)-conditional prob-
ability PX=1(U=Joe) = 0 and the (unconditional) probability P(U=Joe) = .50. Because
{U=Joe} ∈ σ(U), in this example, it is not true that PX=1(A) = 0 implies P(A) = 0 for all
A ∈ σ(U). Therefore, P ≪

σ(U)
PX=1 does not hold (see Def. 3.70). Hence, Corollary 14.48

implies that the conditional expectation EX=1(Y | U) is not P-unique (see also Examples 14.3
and 14.24).

In Table 14.3, the values of EX=1(Y | U) are not uniquely defined for all four
ω ∈ {U=Joe}. Instead of 9, we could have assigned any real number to these four
possible outcomes ω, because PX=1(U=Joe) = 0. Nevertheless, EX=1(Y | U) is PX=1-
unique. However, because EX=1(Y | U) is not P-unique, in this example, E(V1) = E(V∗

1 ) does
not hold for all V1, V∗

1 ∈ ℰX=1(Y | U) (see Th. 14.46). This has already been illustrated in
Example 14.3. ⊲
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14.6.4 Properties related to P-uniqueness

Box 14.1 summarizes some important properties related to P-uniqueness (for proofs, see Exer-
cise 14.13), some of which have already been treated and illustrated in section 14.6.3. In the
following remarks, we comment on some of the implications of P-uniqueness.

Remark 14.52 [Implications of P-uniqueness] Suppose that Y is nonnegative or with finite
expectation E(Y), that EB(Y |𝒞) is P-unique, and C ∈ 𝒜 with P(C) > 0. Then, according
to property (v) of Box 14.1, EB(Y |𝒞) is also PC-unique, and according to property (vi)
of Box 14.1, the distributions PC

V with respect to PC of all versions V ∈ ℰB(Y |𝒞) are
identical (see Cor. 5.24). This implies, for example, that the expectation EC[EB(Y |𝒞)] of
EB(Y |𝒞) with respect to the conditional-probability measure PC is identical for all versions
V ∈ ℰB(Y |𝒞) [see Box 14.1 (vii)]. The same applies to its variance VarC[EB(Y |𝒞 )] [see
Rem. 6.27 and Box 6.2 (v)] as well as to its covariance CovC[EB(Y |𝒞 ), W] with another
random variable W: (Ω, 𝒜, P) → (R,ℬ) [see Box 7.1 (x)], provided that this variance and this
covariance with respect to PC exist. ⊲

Box 14.1 P-uniqueness of EB(Y |𝒞).

Let (Ω, 𝒜, P) be a probability space, let 𝒞, 𝒟 ⊂ 𝒜 be σ-algebras, let B, C ∈ 𝒜 with
P(B), P(C) > 0, and let Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable that is nonnegative
or with finite expectation E(Y). Then,

EB(Y |𝒞) is P-unique ⇔ ∀ V , V∗ ∈ ℰB(Y |𝒞): V =
P

V∗ (i)

EB(Y |𝒞) is P-unique ⇔ P ≪
𝒞

PB (ii)

EB(Y |𝒞) is P-unique ⇔ P(B |𝒞 ) >
P

0 (iii)

EB(Y |𝒞) is P-unique ⇒ EB(Y |𝒟) is P-unique, if 𝒟 ⊂ 𝒞 (iv)

EB(Y |𝒞) is P-unique ⇒ EB(Y |𝒞) is PC-unique (v)

EB(Y |𝒞) is P-unique ⇒ ∀ V, V∗ ∈ ℰB(Y |𝒞): PC
V = PC

V∗ (vi)

EB(Y |𝒞) is P-unique ⇒ ∀ V, V∗ ∈ ℰB(Y |𝒞): EC(V) = EC(V∗). (vii)

If EB(Y |𝒞 ) or EC(Y |𝒞 ) is real-valued and α, β ∈ R, then,

EB(Y |𝒞 ), EC(Y |𝒞 ) are P-unique ⇒ α EB(Y |𝒞 ) + β EC(Y |𝒞 ) is P-unique. (viii)

If X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) is a random variable and Ω′
X finite or countable, then,

(∀ x ∈ Ω′
X: PB(X=x) > 0) ⇒ EB(Y | X) is P-unique. (ix)
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Remark 14.53 [The special case C = Ω] A special case is C = Ω. Hence, under P-
uniqueness of EB(Y |𝒞 ), the following equations hold for all V , V∗ ∈ ℰB(Y |𝒞):

PV = PV∗ , (14.50)

E(V) = E(V∗), (14.51)

Var(V) = Var(V∗), (14.52)

Cov(V , W) = Cov(V∗, W), (14.53)

provided that these expectations, variances, and covariances with respect to the measure P
exist. ⊲

Remark 14.54 [Another implication of P-uniqueness] Let the assumptions 14.5 hold. Fur-
thermore, let 𝒟 ⊂ 𝒜 be a σ-algebra, 𝒞 ⊂ 𝒟 , and C ∈ 𝒜 with P(C) > 0, and suppose that
EB(Y |𝒞) is PC-unique. Then,

EC[EB(Y |𝒞 ) |𝒟 ] =
PC

EB(Y |𝒞 ), (14.54)

which follows from Rule (vii) of Box 10.1, because, by definition, EB(Y |𝒞 ) is𝒞 -measurable,
and because we assume 𝒞 ⊂ 𝒟. For the special case C = Ω, this yields: If 𝒞 ⊂ 𝒟 and
EB(Y |𝒞) is P-unique, then,

E[EB(Y |𝒞 ) |𝒟 ] =
P

EB(Y |𝒞 ). (14.55)
⊲

Remark 14.55 [Expectation of a linear combination] An implication of Box 14.1 (viii)
and Box 6.1 (vii) is:

E
[
α ⋅ EB(Y |𝒞) + β ⋅ EC(Y |𝒞)

]
= α ⋅ E

[
EB(Y |𝒞)

]
+ β ⋅ E

[
EC(Y |𝒞)

]
, (14.56)

provided that EB(Y |𝒞) and EC(Y |𝒞) are P-unique, that EB(Y |𝒞) or EC(Y |𝒞) is real-
valued, and the expectation E

[
EB(Y |𝒞)

]
or E

[
EC(Y |𝒞)

]
is finite. Under these assump-

tions, for all real-valued versions VB ∈ ℰB(Y |𝒞) and VC ∈ ℰC(Y |𝒞),

E(α ⋅ VB + β ⋅ VC) = α ⋅ E(VB) + β ⋅ E(VC).
⊲

Example 14.56 [Joe and Ann with self-selection – continued] Consider again Table 14.2.
In this example, the function g1(U) = EX=1(Y | U) − EX=0(Y | U) is a uniquely defined ran-
dom variable on (Ω, 𝒜, P), because EX=0(Y | U) as well as EX=1(Y | U) are uniquely defined,
that is, each of the sets ℰX=0(Y | U) and ℰX=1(Y | U) has only one single element. This
implies that the average treatment effect

E[g1(U)] = E
[

EX=1(Y | U) − EX=0(Y | U)
]

is uniquely defined as well. Note that the assumptions of Box 14.1 (viii) are less restrictive,
because they allow that each of the sets ℰX=0(Y | U) and ℰX=1(Y | U) has more than one
element. The requirement of Box 14.1 (viii) is not uniqueness but only P-uniqueness. ⊲
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Example 14.57 [No treatment for Joe – continued] In the example presented in Table 14.3,
the set ℰX=0(Y | U) has only one single element. However, ℰX=1(Y | U) has infinitely
many elements: Replacing the value 9 by any other real number yields a new element of
ℰX=1(Y | U). More important, it is not true that all these elements are pairwise P-equivalent.
Hence, in this example, the function g1(U) = EX=1(Y | U) − EX=0(Y | U) is not P-unique (see
Example 14.51). In other words, it is not true that all elements of the set

{
V1 − V0: V0 ∈ ℰX=0(Y | U), V1 ∈ ℰX=1(Y | U)

}

are pairwise P-equivalent. Therefore, there can be versions V0, V∗
0 ∈ ℰX=0(Y | U) and

V1, V∗
1 ∈ ℰX=1(Y | U) such that

E(V1 − V0) ≠ E(V∗
1 − V∗

0 ).

This means that there is no uniquely defined average treatment effect E[g1(U)] in this
example. ⊲

In the following corollary we extend Theorem 14.33 by adding another assumption.
Remember, if assumptions of Definition 14.29 hold and P(Z=z) > 0, then according to The-
orem 14.33,

EZ=z(Y | X) =
P Z=z

E(Y | X, Z=z), (14.57)

referring to the partial conditional expectation E(Y | X, Z=z) [see Def. 14.29].

Corollary 14.58 [Implications of PC-uniqueness of EZ=z(Y | X)]
Let the assumptions of Definition 14.29 hold, suppose P(Z=z) > 0, and let C ∈ 𝒜 with
P(C) > 0. If EZ=z(Y | X) is PC-unique, then,

EZ=z(Y | X) =
PC

E(Y | X, Z=z), (14.58)

and

EZ=z(Y | X=x) = E(Y | X=x, Z=z), for PC
X -a.a. x ∈ Ω′

X . (14.59)

(Proof p. 442)

Remark 14.59 [Implications of P-uniqueness of EZ=z(Y | X)] For C = Ω, this corollary
yields: If EZ=z(Y | X) is P-unique, then,

EZ=z(Y | X) =
P

E(Y | X, Z=z), (14.60)

and

EZ=z(Y | X=x) = E(Y | X=x, Z=z), for PX-a.a. x ∈ Ω′
X . (14.61)

⊲

Now we consider the family of factorizations gB of EB(Y | X), which are defined by Equa-
tion (14.32). Because each element of ℰB(Y | X) has at least one factorization gB, there is a
family of factorizations, which are random variables on the probability space (Ω′

X , 𝒜 ′
X , PX).
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The next corollary immediately follows from Corollary 5.25 (i) if PC takes the role of P
and PC

X the role of PX .

Corollary 14.60 [PC-uniqueness and PC
X -uniqueness]

Let the assumptions 14.5 hold, let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random variable, let
V = gB(X) and V∗ = g∗B(X) be two elements of ℰB(Y | X), and let C ∈ 𝒜 with P(C) > 0.
Then,

V =
PC

V∗ ⇔ gB =
PC

X

g∗B. (14.62)

Remark 14.61 [P-uniqueness and PX-uniqueness] For C = Ω, Corollary 14.60 yields: If
V = gB(X) and V∗ = g∗B(X) are two elements of ℰB(Y | X), then,

gB(X) =
P

g∗B(X) ⇔ gB =
PX

g∗B. (14.63)

Note that both sides of (14.63) are equivalent not only to each other but also to

gB(x) = g∗B(x), for PX-a.a. x ∈ Ω′
X . (14.64)

⊲

Remark 14.62 [Some formulas for the expectation of EB(Y | X)] Suppose that the
assumptions 14.5 hold, where Y is nonnegative or with finite expectation E(Y), and let
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable. If EB(Y | X) is P-unique, then, according to

Equations (6.13) and (14.36),

E[EB(Y | X)] =
∫

EB(Y | X=x) PX(dx) =
∫

E(Y | X=x, 1B=1) PX(dx). (14.65)

Furthermore, if X is discrete (see Def. 5.56) and PX(Ω′
0) = 1, then,

E[EB(Y | X)] =
∫

EB(Y | X=x) PX(dx) [(6.13)]

=
∑

x∈Ω′
0

EB(Y | X=x) ⋅ P(X=x) [(6.15)]

=
∑

x∈Ω′
0

E(Y | X=x, 1B=1) ⋅ P(X=x). [(14.36)]

(14.66)

⊲

Remark 14.63 [Some formulas for the expectation of EZ=z(Y | X)] Correspondingly, let
the assumptions 14.20 hold, where Y is nonnegative or with finite expectation E(Y). If
EZ=z(Y | X) is P-unique, then for B = {Z=z}, Equations (14.65) and (14.61) yield

E[EZ=z(Y | X)] =
∫

EZ=z(Y | X=x) PX(dx) =
∫

E(Y | X=x, Z=z) PX(dx), (14.67)
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and, if X is discrete (see Def. 5.56) and PX(Ω′
0) = 1, then Equations (14.66) and (14.61)

yield

E[EZ=z(Y | X)] =
∫

EZ=z(Y | X=x) PX(dx)

=
∑

x∈Ω′
0

E(Y | X=x, Z=z) ⋅ P(X=x).
(14.68)

⊲

14.7 Conditional mean independence with respect to PZ=z

According to the following theorem, a numerical random variable Y on (Ω, 𝒜, P) that is non-
negative or with finite expectation E(Y) is 𝒞-conditionally mean independent from Z with
respect to PZ=z. For simplicity, we use the following notation:

σ(𝒞, 𝒟) := σ(𝒞 ∪𝒟), σ(𝒞, Z) := σ(𝒞 ∪ σ(Z)), (14.69)

EZ=z(Y |𝒞, 𝒟) := EZ=z(Y | σ(𝒞 ∪𝒟)), (14.70)

EZ=z(Y |𝒞, Z) := EZ=z(Y | σ[𝒞 ∪ σ(Z)]). (14.71)

Theorem 14.64 [Conditional mean independence]
Let the assumptions 14.17 hold, where Y is nonnegative or with finite expectation E(Y).
Furthermore, let Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be a random variable, and suppose that z ∈ Ω′

Z
with P(Z=z) > 0. Then,

EZ=z(Y |𝒞 ), E(Y |𝒞, Z) ∈ ℰZ=z(Y |𝒞, Z),

which implies

EZ=z(Y |𝒞, Z) =
P Z=z

EZ=z(Y |𝒞 ) =
P Z=z

E(Y |𝒞, Z). (14.72)

(Proof p. 442)

Remark 14.65 [A caveat] If σ(𝒞, Z) ≠ 𝒞, then EZ=z(Y |𝒞, Z) and E(Y |𝒞, Z) are not nec-
essarily elements of ℰZ=z(Y | 𝒞) [see Def. 14.7 (a)]. Nevertheless,

EZ=z(Y |𝒞 ) =
P Z=z

E(Y |𝒞, Z).

According to Box 6.1 (viii) and Box 10.2 (iv), this implies

EZ=z(Y) = EZ=z[EZ=z(Y |𝒞 )
]
= EZ=z[E(Y |𝒞, Z)

]
, (14.73)

and, for 𝒞 = σ(X), using Equation (14.14),

EZ=z(Y) = EZ=z[EZ=z(Y | X)
]
= EZ=z[E(Y | X, Z)

]
. (14.74)
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Furthermore, using (14.30), this equation yields

EZ=z(Y) = EZ=z[EZ=z(Y | X)] = EZ=z[E(Y | X, Z=z)] (14.75)

Note that we still presume that the assumptions of Theorem 14.64 hold. ⊲

Remark 14.66 [Two implications concerning mean independence] Let the assump-
tions 14.20 hold. Then,

EZ=z(Y |𝒞, X) =
P Z=z

EZ=z(Y |𝒞 ), if σ(X) ⊂ σ(Z) (14.76)

(see Exercise 14.14). Furthermore, considering a σ-algebra 𝒟 and assuming that Y is nonneg-
ative or with finite expectation E(Y),

EZ=z[E(Y |𝒞, Z) |𝒟 ] =
P Z=z

EZ=z(Y |𝒟 ), if 𝒟 ⊂ σ(𝒞, Z) (14.77)

(see Exercise 14.15). ⊲

In the following theorem, we generalize the propositions of Remark 14.63.

Theorem 14.67 [Expectation of EZ=z(Y | X, W) with respect to PW=w]
Let the assumptions 14.20 hold, where Y is nonnegative or with finite expectation E(Y),
let W: (Ω, 𝒜, P) → (Ω′

W , 𝒜 ′
W) be a random variable, let w ∈ Ω′

W with P(W=w) > 0, and
assume that EZ=z(Y | X, W) is PW=w-unique. Then,

EW=w
[
EZ=z(Y | X, W)

]
=
∫

EZ=z(Y | X=x, W=w) PW=w
X (dx)

=
∫

E(Y | X=x, W=w, Z=z) PW=w
X (dx).

(14.78)

(Proof p. 443)

Remark 14.68 [Discrete X] If the assumptions of Theorem 14.67 hold, if X is discrete (see
Def. 5.56), and PX(Ω′

0) = 1, then Equations (14.78), (6.15), (14.59), and (9.13) yield

EW=w[EZ=z(Y | X, W)] =
∫

EZ=z(Y | X=x, W=w) PW=w
X (dx)

=
∑

x∈Ω′
0

E(Y | X=x, W=w, Z=z) ⋅ PW=w(X=x)

=
∑

x∈Ω′
0

E(Y | X=x, W=w, Z=z) ⋅ P(X=x | W=w).

(14.79)

⊲

In the following theorem, we study an implication of conditional mean independence [see
Def. 10.45 (ii)] on conditional expectations with respect to PZ=z.
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Theorem 14.69 [An implication of conditional mean independence]
Let the assumptions 14.17 hold, where Y is nonnegative or with finite expectation E(Y),
and let 𝒞, 𝒟 ⊂ 𝒜 be σ-algebras. Then,

E(Y |𝒞, 𝒟, Z) =
P

E(Y |𝒞, Z) ⇒ EZ=z(Y |𝒞, 𝒟 ) =
P Z=z

EZ=z(Y |𝒞 ). (14.80)

(Proof p. 444)

Remark 14.70 [An implication of conditional mean independence] Let the assumptions of
Theorem 14.69 hold. If X and W are two random variables on the probability space (Ω, 𝒜, P),
then,

E(Y | X, W, Z) =
P

E(Y | X, Z) ⇒ EZ=z(Y | X, W) =
P Z=z

EZ=z(Y | X). (14.81)

Furthermore, for X = α, α ∈ Ω′
X , we can conclude

E(Y | W, Z) =
P

E(Y | Z) ⇒ EZ=z(Y | W) =
P Z=z

EZ=z(Y). (14.82)
⊲

14.8 Proofs

Proof of Theorem 14.26

Because f (Z) =
P Z=z

f (z) (see Rem. 9.1),

EZ=z
[

f (Z) ⋅ Y |𝒞 ]
=

P Z=z
EZ=z

[
f (z) ⋅ Y |𝒞 ]

[Box 10.1 (ix)]

=
P Z=z

f (z) ⋅ EZ=z(Y |𝒞 ). [Box 10.1 (iii)]

Proof of Theorem 14.33

Let the assumptions of Definition 14.29 hold. Because g: Ω′
X × Ω′

Z → R is (𝒜 ′
X ⊗ 𝒜 ′

Z ,ℬ)-
measurable, the function gz defined in (14.23) is (𝒜 ′

X ,ℬ)-measurable (see Bauer, 2001,
Lemma 23.5). Hence, condition (a) of Definition 14.7 holds. Furthermore, for all C ∈ σ(X),
we can conclude C ∩ {Z=z} ∈ σ(X, Z), and therefore, for all C ∈ σ(X),

∫
1C E(Y | X, Z=z) dPZ=z = 1

P(Z=z) ∫
1C ⋅ 1Z=z ⋅ E(Y | X, Z=z) dP [(9.16), (9.11)]

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ gz(X) dP [(14.25)]

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ g(X, Z) dP [(14.26)]

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ E(Y | X, Z) dP [Ass. of Def. 14.29]
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= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ Y dP [Def. 10.2 (b)]

=
∫

1C ⋅ Y dPZ=z
. [(9.16)]

This shows that condition (b) of Definition 14.7 holds as well.

Proof of Theorem 14.46

(b) ⇒ (a) Remember that (b) is defined by

∀ C ∈ 𝒞: PB(C) = 0 ⇒ P(C) = 0.

If V , V∗ ∈ ℰB(Y |𝒞), then {V ≠ V∗} ∈ 𝒞 [see Rem. 2.67 (c)], PB({V ≠ V∗}) = 0, and (b)
implies P({V ≠ V∗}) = 0.

(a) ⇒ (b) This proposition is proved by contraposition, that is, we show ¬ (b) ⇒ ¬ (a).
Assume that there is an A ∈ 𝒞 with PB(A) = 0 and P(A) > 0, and let V ∈ ℰB(Y |𝒞) with
V(ω) = 0 for all ω ∈ A. [Note that if V′∈ ℰB(Y |𝒞) and A ∈ 𝒞 with PB(A) = 0, then V :=
V′⋅ 1Ac ∈ ℰB(Y |𝒞).] Then V∗ = V + 1A is also 𝒞-measurable and, for all C ∈ 𝒞,

∫
1C ⋅ V∗ dPB =

∫
1C ⋅ (V + 1A) dPB

=
∫

1C ⋅ V dPB +
∫

1C ⋅ 1A dPB [(3.33)]

=
∫

1C ⋅ V dPB, [Lemma 3.45]

(14.83)

because ∫ 1C ⋅ 1A dPB = PB(C ∩ A) = 0. Hence, according to Definition 14.7, V∗ = V + 1A ∈
ℰB(Y |𝒞). However, P({V ≠ V∗}) = P(A) > 0.

(c) ⇒ (b) Let P(B |𝒞 ) >
P

0. This implies P(A) = 0, where

A = {ω ∈ Ω: P(B |𝒞 )(ω) ≤ 0},

and, according to Remark 2.67 (a), A ∈ 𝒞 . However, if P(A) = 0, then, according to Rule (ix)
of Box 4.1,

P(A ∪ C) = P(C), ∀ C ∈ 𝒞. (14.84)

Now, let C ∈ 𝒞 with PB(C) = 0. This yields

∫
P(B |𝒞 ) ⋅ 1C dP =

∫
1B ⋅ 1C dP [Def. 10.2 (b)]

= P(B ∩ C) = PB(C) ⋅ P(B) = 0. [(1.33), (3.9), (4.14)]
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Because P(B |𝒞 ) ⋅ 1C ≥
P

0 [see Box 10.3 (ii)], Lemma 3.44 yields P(B |𝒞 ) ⋅ 1C =
P

0, which

is equivalent to

1 = P({ω ∈ Ω: P(B |𝒞 )(ω) ⋅ 1C(ω) = 0})

= P({ω ∈ Ω: ω ∈ A or ω ∈ Cc}) = P(A ∪ Cc)

= P(Cc). [(14.84)]

Hence, P(C) = 0, which shows that P(B |𝒞 ) >
P

0 implies (b).

(b) ⇒ (c) This proposition is proved by contraposition, that is, we show ¬ (c) ⇒ ¬ (b).
Again, let A = {ω ∈ Ω: P(B |𝒞 )(ω) ≤ 0}, and assume P(A) > 0. Now, P(B |𝒞 )(ω) ≤ 0 for
all ω ∈ A implies P(B |𝒞 ) ⋅ 1A ≤ 0. Therefore,

0 ≥ E[P(B |𝒞 ) ⋅ 1A] [(3.50)]

= E[E(1B |𝒞 ) ⋅ 1A] [(10.4)]

= E[E(1B ⋅ 1A |𝒞 )] [A ∈ 𝒞 , Box 10.1 (xiv)]

= E(1B ⋅ 1A) [10.1 (iv)]

= E(1A∩B) [(1.33)]

= P(A ∩ B). [(6.4)]

Because P(B) > 0, the equation P(A ∩ B) = PB(A) ⋅ P(B) = 0 implies PB(A) = 0 [see (4.14)].
Hence, A ∈ 𝒞 with PB(A) = P(A ∩ B)∕P(B) = 0 and P(A) > 0.

(b) ⇒ (d) As has been shown above, (b) is equivalent to P-uniqueness of EB(Y |𝒞), and
according to Box 6.1 (ix), P-uniqueness of EB(Y |𝒞) implies (d).

(d) ⇒ (b) This proposition is proved by contraposition, that is, we show ¬ (b) ⇒ ¬ (d).
Assume that there is an A ∈ 𝒞 with PB(A) = 0 and P(A) > 0, and let V ∈ ℰB(Y |𝒞) be
real-valued [see Box 10.1 (x)] with a finite expectation E(V). Then V∗ = V + 1A is also
𝒞-measurable and, for all C ∈ 𝒞,

∫
1C ⋅ V∗ dPB =

∫
1C ⋅ V dPB

. [(14.83)]

Therefore, according to Definition 14.7, V∗ = V + 1A ∈ ℰB(Y |𝒞) and P({V ≠ V∗}) =
P(A) > 0. Now,

E(V∗) =
∫

V∗ dP [(6.1)]

=
∫

(V + 1A) dP [V∗ := V + 1A]

=
∫

V dP +
∫

1A dP [(3.33)]

= E(V) + P(A). [(6.1), (6.4)]

Because E(V) is finite and P(A) > 0, it follows that E(V) ≠ E(V∗).
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Proof of Corollary 14.58

If EZ=z(Y | X) is PC-unique, then all pairs of elements of ℰZ=z (Y | X) are PC-equivalent.
According to Theorem 14.33, E(Y | X, Z=z) is an element of ℰZ=z (Y | X), which implies
Equation (14.58). Finally, according to Corollary 5.25, Equation (14.59) is equivalent to
(14.58).

Proof of Theorem 14.64

First, we show that E(Y |𝒞, Z) ∈ ℰZ=z(Y |𝒞, Z). By Definition 10.2 (a), σ[E(Y |𝒞, Z)] ⊂

σ(𝒞, Z), which implies that condition (a) of Definition 14.7 holds. In order to show condi-
tion (b) of Definition 14.7, note that, for all C ∈ σ(𝒞, Z), {Z=z}, {Z=z} ∩ C ∈ σ(𝒞, Z) and
1{Z=z}∩C = 1Z=z ⋅ 1C. Hence, for all C ∈ σ(𝒞, Z),

EZ=z[1C ⋅ E(Y |𝒞, Z)] = 1
P(Z=z)

E[1Z=z ⋅ 1C ⋅ E(Y |𝒞, Z)] [(9.11)]

= 1
P(Z=z)

E(1Z=z ⋅ 1C ⋅ Y) [Def. 10.2 (b)]

= EZ=z(1C ⋅ Y). [(9.11)]

Now we show that EZ=z(Y |𝒞 ) ∈ ℰZ=z(Y |𝒞, Z). By Definition 14.7 (a) and the defini-
tion of σ(𝒞, Z),

σ[EZ=z(Y |𝒞 )] ⊂ 𝒞 ⊂ σ(𝒞, Z),

and hence, σ[EZ=z(Y |𝒞)] ⊂ σ(𝒞, Z).
Now we show that condition (b) of Definition 14.7 holds. Note that σ(Z)|{Z=z} =

{Ø, {Z=z}} (see the definition of the trace of a set system in Example 1.10). Therefore,

𝒞∪ σ(Z)|{Z=z} =
(
𝒞|{Z=z}

)
∪
(
σ(Z)|{Z=z}

)
[Example 1.10]

=
(
𝒞|{Z=z}

)
∪ {Ø, {Z=z}}

= 𝒞|{Z=z}.
[
Ø ∈ 𝒞, Ω ∩ {Z=z} ∈ 𝒞|{Z=z}

]
(14.85)

Now

σ(𝒞, Z)|{Z=z} = σ
(
[𝒞∪ σ(Z)]|{Z=z}

)
[(14.69)]

= σ(𝒞|{Z=z}) [(14.85)]

= 𝒞|{Z=z}. [(1.15)]

Hence, for all C ∈ σ(𝒞, Z), there is an AC ∈ 𝒞 such that {Z=z} ∩ C = {Z=z} ∩ AC, which
implies

1Z=z ⋅ 1C = 1Z=z ⋅ 1AC
. (14.86)
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Therefore, for all C ∈ σ(𝒞, Z),

EZ=z[1C ⋅ EZ=z(Y |𝒞 )] = 1
P(Z=z)

E[1Z=z ⋅ 1C ⋅ EZ=z(Y |𝒞 )] [(9.11)]

= 1
P(Z=z)

E[1Z=z ⋅ 1AC
⋅ EZ=z(Y |𝒞 )] [(14.86)]

= EZ=z[1AC
⋅ EZ=z(Y |𝒞 )] [(9.11)]

= EZ=z(1AC
⋅ Y) [Def. 14.7 (b)]

= 1
P(Z=z)

E(1Z=z ⋅ 1AC
⋅ Y) [(9.11)]

= 1
P(Z=z)

E(1Z=z ⋅ 1C ⋅ Y) [(14.86)]

= EZ=z (1C ⋅ Y). [(9.11)]

Proof of Theorem 14.67

Let gZ=z(X, W) = EZ=z(Y | X, W) [see (14.34)]. Then,

gZ=z(X, W) ⋅ 1W=w = gZ=z(X, w) ⋅ 1W=w. (14.87)

Furthermore,

EW=w
[
EZ=z(Y | X, W)

]
= 1

P(W=w) ∫
EZ=z(Y | X, W) ⋅ 1W=w dP [(9.11)]

= 1
P(W=w) ∫

EZ=z(Y | X, W=w) ⋅ 1W=w dP [(14.87)]

=
∫

EZ=z(Y | X, W=w) dPW=w [(9.11)]

=
∫

EZ=z(Y | X=x, W=w) PW=w
X (dx), [(6.13)]

which proves the first equation of (14.78).
Now let g(X, W, Z) = E(Y | X, W, Z). Then, for gz(X, W) [see (14.23)],

gz(X, W) ⋅ 1W=w = gz(X, w) ⋅ 1W=w. (14.88)

Furthermore, because EZ=z(Y | X, W) is PW=w-unique,

EW=w
[
EZ=z(Y | X, W)

]
= EW=w

[
E(Y | X, W, Z=z)

]
[(14.58), Box 6.1 (ix)]

= 1
P(W=w) ∫

E(Y | X, W, Z=z) ⋅ 1W=w dP [(9.11)]

= 1
P(W=w) ∫

E(Y | X, W=w, Z=z) ⋅ 1W=w dP [(14.88)]

=
∫

E(Y | X, W=w, Z=z) dPW=w [(9.11)]

=
∫

E(Y | X=x, W=w, Z=z) PW=w
X (dx). [(6.13)]

This proves the second equation of (14.78).



444 PROBABILITY AND CONDITIONAL EXPECTATION

Proof of Theorem 14.69

Note that EZ=z(Y |𝒞 ) is 𝒞-measurable and therefore also σ(𝒞, 𝒟 )-measurable [see
Eq. (14.69)]. Furthermore,

EZ=z(Y |𝒞, 𝒟 ) =
P Z=z

E(Y |𝒞, 𝒟 , Z) [Eqs. (14.72)]

=
P Z=z

E(Y |𝒞, Z) [E(Y |𝒞, 𝒟 , Z) =
P

E(Y |𝒞, Z), Cor. 5.22]

=
P Z=z

EZ=z(Y |𝒞 ). [Eqs. (14.72)]

Exercises

14.1 Consider Table 14.3. Why do the values of the conditional expectation E(Y | X, U)
have to be identical for ω3 = (Joe, yes, −) and ω4 = (Joe, yes, +)?

14.2 Show that if Y: (Ω, 𝒜, P) → (R,ℬ) is a random variable with finite expectation E(Y),
then EB(Y) is finite.

14.3 Let (Ω, 𝒜, P), (Ω, 𝒜, Q) be probability spaces, and consider the random variable
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X). Show that X is a random variable on (Ω, 𝒜, P) if and only

if it is also a random variable on (Ω, 𝒜, Q).

14.4 Show that the assumptions 14.5 imply ℰB(1B ⋅ Y |𝒞) = ℰB(Y |𝒞).

14.5 Prove Equation (14.26).

14.6 Prove Equation (14.27).

14.7 Compute the values of the conditional expectation EX=0(Y | U) in the example pre-
sented in Table 14.3.

14.8 Prove propositions (i) and (ii) of Remark 14.35.

14.9 Show that Theorem 14.33 implies Equation (14.35).

14.10 Prove: For all x ∈ X(Ω) = {0, 1}: If P(X=x) > 0 and EX=0(Y | Z) is PX=x-unique,
then E(V0 | X=x) = E(V∗

0 | X=x) for all versions V0, V∗
0 ∈ ℰX=0(Y | Z).

14.11 Show that the expectation E(V) of a version V ∈ ℰB(Y |𝒞) exists and is finite if 𝒞 is
a finite set and EB(Y) is finite.

14.12 Prove Remark 14.49 for X being discrete.

14.13 Prove the propositions summarized in Box 14.1.

14.14 Prove Equation (14.76).

14.15 Prove Equation (14.77).

Solutions

14.1 If E(Y | X, U)(ω3) ≠ E(Y | X, U)(ω4), then E(Y | X, U) would not be measurable with
respect to (X, U). Measurability of a random variable V with respect to (X, U) requires
that V takes on only one single value for all ω ∈ (X, U)−1({(1, Joe)}) (see Cor. 2.53).
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14.2 According to Equation (9.11),

EB(Y) = 1
P(B)

E(1B ⋅ Y).

If Y has a finite expectation with respect to P, then ∫ Y+ dP < ∞ and ∫ Y− dP < ∞.
Because 0 ≤ 1B ⋅ Y+ ≤ Y+ and 0 ≤ 1B ⋅ Y− ≤ Y−, Equation (3.24) yields ∫ 1B ⋅
Y+ dP < ∞ and ∫ 1B ⋅ Y− dP < ∞, and therefore −∞ < ∫ 1B ⋅ Y dP < ∞. Therefore,
if −∞ < E(Y) < ∞, then −∞ < E(1B ⋅ Y) < ∞.

14.3 Definition 5.1 of a random variable X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) only requires that there
is a probability measure, here denoted P, on a measurable space (Ω, 𝒜 ) and that X is
measurable with respect to 𝒜 , that is, X −1(A′) ∈ 𝒜 , for all A′∈ 𝒜 ′

X . Hence, if X is a
random variable on (Ω, 𝒜, P), then it is also a random variable on (Ω, 𝒜, Q), whenever
P and Q are probability measures on (Ω, 𝒜 ).

14.4 If V ∈ ℰB(1B ⋅ Y |𝒞), then, according to Definition 14.7 (a), it is measurable with
respect to 𝒞 . Furthermore, for all C ∈ 𝒞 ,

EB(1C ⋅ V) = EB(1C ⋅ 1B ⋅ Y) [Def. 14.7 (b)]

= 1
P(B)

⋅ E(1C ⋅ 1B ⋅ 1B ⋅ Y) [(9.7)]

= 1
P(B)

⋅ E(1C ⋅ 1B ⋅ Y) [1B ⋅ 1B = 1B]

= EB(1C ⋅ Y). [(9.7)]

Hence, V ∈ ℰB(Y |𝒞). Vice versa, if V∗ ∈ ℰB(Y |𝒞), then it is measurable with
respect to 𝒞 and, for all C ∈ 𝒞 ,

EB(1C ⋅ V∗) = EB(1C ⋅ Y) [Def. 14.7 (b)]

= 1
P(B)

⋅ E(1C ⋅ 1B ⋅ Y) [(9.7)]

= 1
P(B)

⋅ E(1C ⋅ 1B ⋅ 1B ⋅ Y) [1B ⋅ 1B = 1B]

= EB(1C ⋅ 1B ⋅ Y). [(9.7)]

Hence, V∗ ∈ ℰB(1B ⋅ Y |𝒞).

14.5 For all ω ∈ Ω,

1Z=z(ω) ⋅ g[X(ω), Z(ω)] =

{
0, if 1Z=z(ω) = 0

gz[X(ω)], if 1Z=z(ω) = 1

=

{
1Z=z(ω) ⋅ gz[X(ω)], if 1Z=z(ω) = 0

1Z=z(ω) ⋅ gz[X(ω)], if 1Z=z(ω) = 1

= 1Z=z(ω) ⋅ gz[X(ω)].
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14.6 For all ω ∈ Ω,

(
∑

z ∈ Z(Ω)
E(Y | X, Z=z) ⋅1Z=z

)
(ω)

=

(
∑

z ∈ Z(Ω)
gz(X) ⋅ 1Z=z

)
(ω) [(14.25)]

=

(
∑

z ∈ Z(Ω)
g(X, Z) ⋅ 1Z=z

)
(ω) [(14.26)]

=
∑

z ∈ Z(Ω)
g(X, Z)(ω) ⋅ 1Z=z(ω) [(2.31)]

= g(X, Z)(ω) [(2.26)]

= E(Y | X, Z)(ω). [Def. 14.29]

14.7 The values of the conditional expectation EX=0(Y | U) are the two conditional expec-
tation values EX=0(Y | U=Joe) and EX=0(Y | U=Ann) with respect to the measure
PX=0. Because EX=0(Y | U=u) = PX=0(Y =1 | U=u), they can be computed as fol-
lows:

PX=0(Y =1 | U=Joe) = PX=0(Y =1, U=Joe)
PX=0(U=Joe)

≈ .561
.561 + .245

≈ .696

and

PX=0(Y =1 | U=Ann) = PX=0(Y =1, U=Ann)
PX=0(U=Ann)

≈ .039
.039 + .155

≈ .2.

14.8 (i) If g(X, Z) ∈ ℰ (Y | X, Z) and gZ=z(X) ∈ ℰZ=z(Y | X), then for all C ∈ σ(X),

∫
1C ⋅ gz(X) dPZ=z

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ gz(X) dP [(9.11)]

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ g(X, Z) dP [(14.26)]

= 1
P(Z=z) ∫

1C ⋅ 1Z=z ⋅ Y dP [C ∩ {Z=z} ∈ σ(X, Z), Def. 10.2 (b)]

=
∫

1C ⋅ Y dPZ=z [(9.11)]

=
∫

1C ⋅ gZ=z(X) dPZ=z
. [Def. 14.7 (b)]

Hence, gz(X) =
P Z=z

gZ=z(X) (see Th. 3.48) or, equivalently, gz(x) = gZ=z(x), for PZ=z
X -

a.a. x ∈ Ω′
X [see Cor. 5.25 (a) and (5.12)].
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(ii) If P(X=x, Z=z) > 0 for all x ∈ Ω′
X , then P(Z=z) > 0 [see Box 4.1 (v)]

and

PZ=z
X ({x}) = PZ=z(X=x) = P(X=x, Z=z)

P(Z=z)
> 0, ∀ x ∈ Ω′

X .

Hence, if P(X=x, Z=z) > 0, then Remark 2.71 and gz(X) =
P Z=z

gZ=z(X) imply gz(x) =
gZ=z(x) for all x ∈ Ω′

X .

14.9

E(Y | X, Z=z) =
P Z=z

EZ=z(Y | X) [(14.30)]

=
P Z=z

E1Z=z=1(Y | X) [{Z=z} = {1Z=z = 1}]

=
P Z=z

E(Y | X, 1Z=z=1). [(14.30)]

For E(Y | X, Z) = g(X, Z) ∈ ℰ (Y | X, Z) and P Z=z
X -a.a. x ∈ Ω′

X ,

E(Y | X=x, Z=z) = g(x, z) [(10.27)]

= gz(x) [(14.23)]

= gZ=z(x) [Rem. 14.35 (i)]

= EZ=z(Y | X=x). [(14.34)]

14.10 This proposition follows from the definition of uniqueness of a conditional expectation
with respect to a probability measure PX=x, equivalence of two random variables with
respect to a probability measure PX=x, Corollaries 5.24 and 6.17, and Equations (9.5)
and (9.6) with B = {X=x}.

14.11 If 𝒞 = {A1, … , An} is finite, then there is a finite partition {B1, … , Bm} of Ω with
𝒞 = σ({B1, … , Bm}) (see Rem. 1.21). Then, according to Lemma 2.19 and Defini-
tion 14.7 (b),

V =
m∑

j=1
αj1Bj

, where

⎧
⎪
⎨
⎪⎩

αj = ∫
1Bj

⋅ Y dPB, if PB(Bj) > 0

any αj ∈ R, if PB(Bj) = 0,

is a version V ∈ ℰB(Y |𝒞). Hence, if EB(Y) = ∫ Y dPB is finite, then, for any such
choice of the numbers αj,

E(V) =
m∑

j=1
αj ⋅ P(Bj)

[see Eq. (6.3)] is finite as well.
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14.12 (d) ⇒ (14.48) By definition, condition (d) of Corollary 14.48 is equivalent to

∀A′∈ 𝒜 ′
X: PB

X(A′) = 0 ⇒ PX(A′) = 0.

If X is discrete and {x} ∈ 𝒜 ′
X for all x ∈ Ω′

X , then we can choose A′ = {x} for all
x ∈ Ω′

X , and this yields

∀ x ∈ Ω′
X: PB

X({x}) = 0 ⇒ PX({x}) = 0,

which is (14.48) in a different notation [see Eqs. (5.2) and (5.4)].
(14.48) ⇒ (d) Assume that (14.48) holds and let A′∈ 𝒜 ′

X with PB
X (A′) = 0. Then,

PB
X(A′) =

∑

x∈A′

P(X=x)>0

PB
X({x}) [Th. 4.28, Box 4.1 (i))]

=
∑

x∈A′

P(X=x)>0

PB(X=x) [(5.2), (5.4)]

= 0.

Because a sum of nonnegative summands is 0 if and only if all summands are 0, the
last equation implies PB(X=x) = 0 for all x ∈ A′. Now (14.48) yields P(X=x) = 0 for
all x ∈ A′. Therefore,

P(A′) =
∑

x∈A′

P(X=x)>0

P({x}) =
∑

x∈A′

P(X=x)>0

P(X=x) = 0

[see again Eqs. (5.2) and (5.4)].

14.13 (i) This is the definition of P-uniqueness of EB(Y |𝒞) (see Rem. 10.13).
(ii), (iii) These propositions have been proved in Theorem 14.46.
(iv) This proposition follows from Theorem 14.46, because P ≪

𝒞
PB is equivalent

to

∀ C ∈ 𝒞: PB(C) = 0 ⇒ P(C) = 0,

and 𝒟 ⊂ 𝒞 implies that this implication also holds for all C ∈ 𝒟 , that is, P ≪
𝒟

PB.

(v) This proposition immediately follows from applying Corollary 5.22 to
EB(Y |𝒞).

(vi), (vii) According to (v), P-uniqueness of EB(Y |𝒞) implies V =
PC

V∗. Theo-

rem 2.85 then implies PC
V = PC

V∗ . If the two distributions are identical, then the corre-
sponding expectations are identical as well (see Cor. 6.17).

(viii) This proposition immediately follows from Remark 2.76 (iii).
(ix) Note that PB(X=x) > 0, for all x ∈ Ω′

X , implies X(Ω) = Ω′
X . Therefore, and

because uniqueness of EB(Y | X) implies that EB(Y | X) is P-unique, the proposition
is an immediate implication of Corollary 14.42.
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14.14 If X is measurable with respect to Z, then,

EZ=z(Y |𝒞, X) =
P Z=z

EZ=z
[
EZ=z(Y |𝒞, Z) |𝒞, X

]
[Box 10.1 (v)]

=
P Z=z

EZ=z
[
EZ=z(Y |𝒞 ) |𝒞, X

]
[(14.72), Box 10.1 (ix)]

=
P Z=z

EZ=z(Y |𝒞 ). [Box 10.1 (vii)]

14.15 If 𝒟 ⊂ σ(𝒞, Z), then,

EZ=z(Y |𝒟 ) =
P Z=z

EZ=z[EZ=z(Y |𝒞, Z) |𝒟 ] [Box 10.1 (v)]

=
P Z=z

EZ=z[E(Y |𝒞, Z) |𝒟 ]. [(14.72), Box 10.1 (ix)]



15

Effect functions of a discrete
regressor

In chapter 14, we treated E X=x(Y | Z), the Z-conditional expectation of Y with respect to the
(X=x)-conditional-probability measure PX=x. There we already noted that, if the values of X
represent treatment conditions, then E X=x(Y | Z) refers to the Z-conditional expectation of Y
given treatment x. If X is dichotomous with values 0 and 1, then the values g1(z) of the function
g1(Z) := E X=1(Y | Z) − E X=0(Y | Z) are the effects of X on Y given the value z of Z, and g1
is called the Z-conditional-effect function of X.

From a methodological point of view, the values g1(z) of the Z-conditional-effect function
of X are of interest for at least two reasons. First, the conditional effect g1(z) describes the
effect of X on Y for a fixed value z of Z. Thus, the impact of Z on X and Y is controlled by
keeping Z constant on one of its values. Second, the conditional effect g1(z) is more specific and
therefore more informative than the unconditional effect E(Y | X=1) − E(Y | X=0). Knowing
such conditional effects, we can choose individualized treatments.

In this chapter, we introduce the concepts of conditional-intercept functions and
conditional-effect functions and consider these functions for the parameterizations of the con-
ditional expectation E(Y | X, Z) that have been treated in chapters 12 and 13.

15.1 Assumptions and definitions

In section 14.1, we treated three examples that motivated introducing the conditional expec-
tations E X=x(Y | Z). These examples, in which the person variable U takes the role of Z, also
motivate the present chapter on conditional-effect functions. In Examples 14.1 and 14.2, the
conditional-effect function g1 and each of its two values g1(Joe) and g1(Ann) are uniquely
defined, whereas in Example 14.3 this is not the case. While in the latter example, the value
g1(Ann) is uniquely defined, the value g1(Joe) is not, and we can choose any real number as
the value g1(Joe) = g1(U)(ω) if U(ω) = Joe, and still g0(U) and g1(U) satisfy

E(Y | X, U) =
P

g0(U) + g1(U) ⋅ X, (15.1)
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© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de

http://www.probability-and-conditional-expectation.de


EFFECT FUNCTIONS OF A DISCRETE REGRESSOR 451

for all versions E(Y | X, U) ∈ ℰ (Y | X, U). In other words, the function g1(U) specified in
Example 14.3 is only one out of infinitely many versions of such a conditional-effect function
satisfying Equation (15.1), and even the expectations E[g1(U)] are not necessarily identical.
Therefore, we have to introduce an assumption that guarantees that the values of the functions
g0(U) and g1(U) are not arbitrary and that the expectations E[g0(U)] and E[g1(U)] are uniquely
defined. Instead of the person variable U used in the examples with Joe and Ann, now we
choose Z as a random variable with respect to which we consider intercept and effect functions.

Throughout this chapter, we refer to the following assumptions and notation.

Notation and assumptions 15.1
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R, ℬ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be

random variables, where E(Y) is finite. Furthermore, assume that X is discrete with
P(X ∈ {x0, x1, … , xn}) = 1 and P(X=xi) > 0, for all i = 0, 1, … , n.

Remark 15.2 [An additional assumption] The following additional assumption is often
used in this chapter:

P(X=xi | Z) >
P

0, ∀ i = 0, 1, … , n. (15.2)

According to Corollary 14.48, this assumption is equivalent to each of the following
conditions:

P-uniqueness of the conditional expectations E X=xi(Y | Z), ∀ i = 0, 1, … , n, (15.3)

P ≪
σ(Z)

PX=xi , ∀ i = 0, 1, … , n, (absolute continuity) (15.4)

E(Vi) = E(V∗
i ), ∀ Vi, V∗

i ∈ ℰX=xi(Y | Z), ∀ i = 0, 1, … , n. (15.5)

Also remember, P-uniqueness of the conditional expectations E X=xi(Y | Z) implies that dif-
ferent versions of E X=xi (Y | Z) do not only have identical distributions with respect to
the conditional-probability measure PX=xi [see Def. 4.29 and (9.4)] but also with respect
to P. ⊲

15.2 Intercept function and effect functions

Theorem 15.3 [Existence of intercept function and effect functions]
Let the assumptions 15.1 hold. Then there are an E(Y | X, Z) ∈ ℰ (Y | X, Z) and, for all
i = 0, 1, … , n, real-valued E X=xi(Y | Z) ∈ ℰX=xi(Y | Z) such that

E(Y | X, Z) = g0(Z) +
n∑

i=1
gi(Z) ⋅ 1X=xi

, (15.6)
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with

g0(Z) := E X=x0 (Y | Z), (15.7)

and

gi(Z) := E X=xi (Y | Z) − E X=x0 (Y | Z), ∀ i = 1, … , n. (15.8)

(Proof p. 466)

Referring to Equation (15.6), now we can define the intercept function and the effect functions
as follows.

Definition 15.4 [Intercept function and effect functions]
Let the assumptions 15.1 hold as well as (15.2). Then the function g0: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ)

is called the Z-conditional-intercept function, and, for all i = 1, … , n, the func-
tion gi: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ), the Z-conditional-effect function of xi versus x0 on Y

which pertains to the version E(Y | X, Z) ∈ ℰ (Y | X, Z) in Equation (15.6).

Remark 15.5 [The functions gi versus the functions gi(Z)] Note that the functions gi(Z),
i = 0, 1, … , n, denote the compositions of Z and gi. Because Z is a random variable on
(Ω, 𝒜, P), the compositions gi(Z) are random variables on (Ω, 𝒜, P) as well. In contrast, the
functions gi: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ), i = 0, 1, … , n, are not random variables on (Ω, 𝒜, P). How-

ever, they are random variables on the probability space (Ω′
Z , 𝒜 ′

Z , PZ), where PZ denotes the
distribution of Z. ⊲

Remark 15.6 [P-uniqeness of the intercept function and effect functions] Suppose that
the assumptions of Definition 15.4 hold. Then, (15.3) and (2.36) imply that all measurable
functions g∗0, g∗1, … , g∗n: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ) with

(
g∗0(Z) +

n∑

i=1
g∗i (Z) ⋅ 1X=xi

)
∈ ℰ (Y | X, Z)

are PZ-unique, and according to Corollary 5.25 (i), this implies

g∗i (Z) =
P

gi(Z), ∀ i = 0, 1, … , n . (15.9)

Hence, under the assumptions mentioned above, the compositions of the intercept and effect
functions are P-unique. This in turn implies that the expectations and the variances of the
intercept and effect functions are uniquely defined, provided that they exist. ⊲
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Remark 15.7 [Partial conditional expectation E(Y | X, Z=z)] Let the assumptions of Def-
inition 15.4 hold. Then Equation (15.6) implies

E(Y | X, Z=z) = g0(z) +
n∑

i=1
gi(z) ⋅ 1X=xi

(15.10)

for the partial conditional expectation E(Y | X, Z=z) (see Def. 14.29). This equation justifies
the terminology introduced in Definition 15.4. ⊲

Remark 15.8 [Conditional intercepts and conditional effects] Let the assumptions of Def-
inition 15.4 hold and assume z ∈ Ω′

Z with P(Z=z) > 0. Then Equation (15.10) and (14.29)
imply that there is an EZ=z(Y | X) ∈ ℰZ=z(Y | X) with

EZ=z(Y | X) = E(Y | X, Z=z) = g0(z) +
n∑

i=1
gi(z) ⋅ 1X=xi

. (15.11)

If P(Z=z) > 0, then, according to Remark 2.71, the coefficients gi(z), i = 0, 1, … , n, are
uniquely determined. The number g0(z) is called the (Z=z)-conditional intercept and gi(z)
the (Z=z)-conditional effect of xi vs. x0 on Y , where i = 1, … , n. Equation (15.11) and Theo-
rem 12.37 imply that g0(z) is the intercept and gi(z), i = 1, … , n, are the regression coefficients
pertaining to a linear parameterization in 1X=x1

, … , 1X=xn
of the X-conditional expectation

of Y with respect to the measure PZ=z.
Furthermore, if Y has finite second moments with respect to PZ=z and the matrix of the

covariances of the indicators 1X=x1
, … , 1X=xn

with respect to PZ=z is regular, then Corol-
lary 12.31 can be applied. Note that regularity of the matrix of the covariances of indica-
tors 1X=x1

, … , 1X=xn
with respect to PZ=z holds, if (15.2) and P(Z=z) > 0, because then

PZ=z(X=xi) > 0 for all i = 1, … , n (see Lemma 12.38 and Rem. 12.39).
Also note that the prerequisite of Corollary 12.31 that E(Y2) is finite can be neglected

because finiteness of E(Y) already implies that E(Y ⋅ 1X=xi
) is finite [see Lemma 3.33 (ii)] and

that the covariance vector of (1X=x1
, … , 1X=xn

) and Y exists. Therefore, Equations (12.53)
and (12.54) can be applied as well. ⊲

Remark 15.9 [Versions of EZ=z(Y | X)] Under the assumptions of Remark 15.8, Equation
(15.11) and Remark 14.9 immediately imply

Vz =
P Z=z

g0(z) +
n∑

i=1
gi(z) ⋅ 1X=xi

, ∀ Vz ∈ ℰZ=z(Y | X) . (15.12)
⊲

Remark 15.10 [Partial conditional expectation E(Y | X=xi, Z)] Let the assumptions of
Definition 15.4 hold and let E(Y | X=xi, Z) denote the partial conditional expectation (see
Def. 14.29 and Eq. 14.23). Then Equation (15.6) implies that there is a version E(Y | X=xi, Z)
such that

E(Y | X=xi, Z) = g0(Z) + gi(Z), ∀ i = 1, … , n. (15.13)
⊲
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Remark 15.11 [Conditional expectation E X=xi(Y | Z)] If the assumptions of Definition
15.4 hold, then, for all i = 1, … , n, there is an E X=xi (Y | Z) ∈ ℰX=xi(Y | Z) with

E X=xi(Y | Z) = E(Y | X=xi, Z) = g0(Z) + gi(Z). (15.14)
⊲

Remark 15.12 [Versions of E X=xi (Y | Z)] Remark 14.9 and Equation (15.14) imply, for all
i = 1, … , n,

Vxi
=

P X=xi

g0(Z) + gi(Z), ∀ Vxi
∈ ℰX=xi(Y | Z) . (15.15)

⊲

Example 15.13 [No treatment for Joe – continued] In Example 14.3, the conditional expec-
tation E X=1(Y | Z) is not P-unique. Although the U-conditional-intercept function g0 and
the conditional effect g1(Ann) are uniquely defined, the U-conditional-effect function g1 is
not defined, because P(X=1 | U) >

P
0 [see (15.2)] does not hold. In this example, there are

(infinitely) many functions g1 satisfying Equation (15.1). This example emphasizes the impor-
tance of (15.2), which, in the definition of a conditional-effect function (see Def. 15.4), is
assumed to hold. ⊲

15.3 Implications of independence of X and Z for regression
coefficients

In the following theorem, we presume that the assumptions of Definition 15.4 hold, which
implies that there is a version E(Y | X, Z) of the (X, Z)-conditional expectation of Y such
that Equation (15.6) holds. Now we consider the implications for the conditional expectation
E(Y | X) if we additionally assume

E[E X=xi(Y | Z) | X] =
P

E[E X=xi(Y | Z)], ∀ i = 0, 1, … , n . (15.16)

Note that this equation follows from independence of X and Z [see (14.32) with B = {X=xi},
(14.17), Theorem 5.52, and Box 10.2 (vi)].

Remember, if the assumptions of Definition 15.4 hold, then, according to Theorem 12.37,
there is a version E(Y | X) ∈ ℰ (Y | X) such that

E(Y | X) = β0 +
n∑

i=1
βi ⋅1X=xi

(15.17)

with

β0 = E(Y | X=x0) (15.18)

and

βi = E(Y | X=xi) − E(Y | X=x0). (15.19)
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Theorem 15.14 [Mean independence and average effects]
Let the assumptions of Definition 15.4 hold, and let gi(Z), i = 1, … , n, be the functions
defined in Theorem 15.3. If Equation (15.16) holds, then there is a version E(Y | X) ∈
ℰ (Y | X) satisfying Equations (15.17) to (15.19) with

β0 = E[g0(Z)] (15.20)

and

βi = E[gi(Z)], ∀ i = 1, … , n. (15.21)

(Proof p. 467)

Remark 15.15 [Uniqueness of regression coefficients] According to Equations (15.20) and
(15.21), the regression coefficients β0, β1, … , βn are uniquely defined. The crucial assumption
for uniqueness is P(X ∈ {x0, x1, … , xn}) = 1 and P(X=xi) > 0, for all i = 0, 1, … , n. ⊲

Remark 15.16 [Independence of X and Z] Independence of X and Z implies (15.16), which
in turn implies

E[gi(Z) | X] =
P

E[gi(Z)], ∀ i = 0, 1, … , n . (15.22)

Note that Equation (15.22) also immediately follows from Theorem 5.52 and Box
10.2 (vi). ⊲

Remark 15.17 [The role of randomization] From a methodological point of view it should
be noted that independence of a treatment variable X and a variable Z can be created by ran-
domized assignment of the observational unit (e.g., a person) to one of the treatment conditions,
provided that Z represents a pretreatment variable. Randomized assignment creates indepen-
dence of X and all pretreatment variables. Examples for such pretreatment variables are the
person variable U (see Table 14.1 for a concrete example) as well as any function of U such
as sex, race, and any other attribute of persons prior to treatment.

This means that we can ignore a pretreatment variable Z in a randomized experiment
with treatment variable X and response variable Y and still interpret the coefficient βi as the
average effect E[gi(Z)] of xi compared to x0 on Y , where i = 1, … , n [see Eq. (15.21)]. ⊲

According to Corollary 15.18, independence of X and Z implies P-uniqueness of the func-
tions gi(Z), provided that we presume P(X=xi) > 0 for all i = 0, 1, … , n.

Corollary 15.18 [Independence and P-uniqeness]
Let the assumptions 15.1 hold. If X ⟂⟂

P
Z, then E X=xi(Y | Z) and the functions gi(Z) in

Equations (15.7) and (15.8) are P-unique, for all i = 0, 1, … , n.
(Proof p. 467)
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Example 15.19 [Joe and Ann with randomized assignment – continued] In Example 14.1,
we already showed that the slope in

E(Y | X) = .45 + .15 ⋅ X,

[see Eq. (14.5)] is identical to the expectation EU(g1) = E[g1(U)] = .15 of the U-conditional-
effect function g1. Similarly, using Equation (14.1) and E(1U=Joe) = .5 (see Table 14.1),

E[g0(U)] = E(.2 + .5 ⋅ 1U=Joe) = .2 + .5 ⋅ E(1U=Joe) = .2 + .5 ⋅ .5 = .45,

which is identical to the intercept in the equation for E(Y | X). This illustrates Theorem
15.14. ⊲

Example 15.20 [Joe and Ann with self-selection – continued] In Example 14.2, we already
showed that the slope in

E(Y | X) = .6 − .18 ⋅ X,

[see Eq. (14.6)] is not identical to the expectation

EU(g1) = E[g1(U)] = .15

of the U-conditional-effect function g1. In this example, neither independence of U and X
nor E[EU(g1) | X] = E[g1(U)] hold, and the slope −.18 in the equation for E(Y | X) cannot be
used for the evaluation of the treatment effect. This emphasizes the importance of assumption
(15.16), which is the crucial assumption made in Theorem 15.14. ⊲

15.4 Adjusted effect functions

Remark 15.21 [Methodological background] In Definition 15.4, we introduced the Z-
conditional-intercept function g0 as well as the Z-conditional-effect functions gi, i = 1, … , n,
where Z = (Z1, … , Zm) can be an m-dimensional random variable consisting of m unidimen-
sional random variables. Examples of such random variables are pretest (Z1), sex (Z2), educa-
tional status (Z3), body mass index (Z4), and blood type (Z5). As mentioned before, condition-
ing on a (possibly multidimensional) random variable Z = (Z1, … , Zm) also serves to obtain
more specific effects that are more informative than unconditional effects.

However, the (Z1, … , Zm)-conditional effects described by the effect functions gi might
be too fine-grained and one may wish to reaggregate them. The most radical reaggregation
is to consider the (unconditional) expectation (the ‘average’) of the (Z1, … , Zm)-conditional
effects.

Aside from the average effects, that is, the (unconditional) expectations of the functions
gi(Z1, … , Zm), we might also be interested in the conditional expectation values of the func-
tions gi(Z1, … , Zm) given Z2 = male and given Z2 = female, or in the conditional expectation
values of the functions gi(Z1, … , Zm) given various values of Z1 (pretest). This way of reaggre-
gation may be called coarsening the effects. Knowing such coarsened effects is very important;
for example, if, knowing the (Z1, … , Zm)-conditional-effect functions (e.g., from a previous



EFFECT FUNCTIONS OF A DISCRETE REGRESSOR 457

study), we want to conduct an as much as possible individualized treatment, but are not able
to assess all components Z1, … , Zm of Z, but just Z1 or just Z1 and Z2.

In Definition 15.22, we consider reaggregating the Z-conditional-intercept function and the
Z-conditional-effect functions to a W-conditional-effect function that is adjusted for Z, where
W is another random variable. If Z = (Z1, … , Zm) with m ≥ 2, then W = Z1 and W = (Z1, Z2)
are examples in case. In these two cases, W would be Z-measurable.

Note that reaggregating the Z-conditional-effect functions is not equivalent to ignoring Z
and conditioning on W instead. More precisely, assume

(a) Z = (Z1, … , Zm) and there are real-valued functions gi such that

E(Y | X, Z) =
P

g0(Z) +
n∑

i=1
gi(Z) ⋅ 1X=xi

, (15.23)

(b) W = (Zi1
, … , Zik

), for {i1, … , ik} ⊂ {1, … , m}, and

(c) there are real-valued functions fi such that

E(Y | X, W) =
P

f0(W) +
n∑

i=1
fi(W) ⋅ 1X=xi

. (15.24)

Then f i (W) = E[gi(Z) | W], for i ∈ {i1, … , ik}, does not necessarily hold (see Example
15.24).

Considering E(Y | X, W) instead of E(Y | X, Z), we might miss the purpose of controlling
and adjusting for important confounders contained in Z but not in W. In contrast, using the
conditional expectation E[gi(Z) | W] (see Def. 15.22), we still control for Z, and with it we
control for potential confounders contained in Z. Although, reaggregating the Z-conditional-
effect functions in this way, that is, considering E[gi(Z) | W], we obtain less informative and
less individualized conditional effects, the purpose of controlling and adjusting for important
confounders is still fulfilled. ⊲

Definition 15.22 [Adjusted effect function]
Let the assumptions of Definition 15.4 hold, let E(Y | X, Z) ∈ ℰ (Y | X, Z), let gi,
i = 1,… , n, be the functions satisfying Equation (15.6), and let W: (Ω, 𝒜, P) → (Ω′

W , 𝒜 ′
W)

be a random variable.

(i) Then, for each i = 1, … , n, the conditional expectation E[gi(Z) | W] is called a
Z -adjusted W -conditional-effect function of xi versus x0 on Y.

(ii) Furthermore, for each i = 1, … , n, the expectation E[gi(Z)] is called the
Z-adjusted effect of xi versus x0 on Y or the average of the Z-condition-
al effects of xi versus x0 on Y.

According to Remark 15.2, the conditional expectations E[gi(Z) | W], i = 1, … , n, are P-
unique and the expectations E[gi(Z)] are uniquely determined. The values of E[gi(Z) | W] are
the (W=w)-conditional effects of xi versus x0 on Y that are adjusted for Z.
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Remark 15.23 [Z-adjusted W-conditional expectation of Y given X=xi] Using the defini-
tion of the functions gi(Z) [see Eq. (15.8)] and Rule (xv) of Box 10.2 yield

E[gi(Z) | W]

= E[E X=xi (Y | Z) − E X=x0 (Y | Z) | W]

= E[E X=xi (Y | Z) | W] − E[E X=x0 (Y | Z) | W], ∀ i = 1, … , n.

(15.25)

A conditional expectation E[E X=xi (Y | Z) | W] is called a Z-adjusted W-conditional expecta-
tion of Y given X=xi, where i = 0, 1, … , n. ⊲

Example 15.24 [Four persons with self-selection to treatment] In Table 15.1 we present
a new example displaying the conditional expectations E(Y | X, U), E(Y | X, Z), E(Y | X), and
P(X=1 | U) with dichotomous random variables X, Y , and Z, where X indicates with its values
0 and 1 whether or not the person is treated, Y indicates with its values 0 and 1 whether or not
the person is successful, the values of Z are male and female, and U is the person variable with
values Joe, Jim, Sue, and Ann.

Table 15.1 Four persons with self-selection to treatment.

Outcomes ω Observables Conditional expectations
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P
(X

=
1
|U

)
(Joe, no, −) .0675 Joe m 0 0 .7 .66 .63 .1
(Joe, no, +) .1575 Joe m 0 1 .7 .66 .63 .1
(Joe, yes, −) .0050 Joe m 1 0 .8 .44 .44 .1
(Joe, yes, +) .0200 Joe m 1 1 .8 .44 .44 .1

(Jim, no, −) .0175 Jim m 0 0 .3 .66 .63 .9
(Jim, no, +) .0075 Jim m 0 1 .3 .66 .63 .9
(Jim, yes, −) .1350 Jim m 1 0 .4 .44 .44 .9
(Jim, yes, +) .0900 Jim m 1 1 .4 .44 .44 .9

(Sue, no, −) .0600 Sue f 0 0 .7 .60 .63 .2
(Sue, no, +) .1400 Sue f 0 1 .7 .60 .63 .2
(Sue, yes, −) .0200 Sue f 1 0 .6 .44 .44 .2
(Sue, yes, +) .0300 Sue f 1 1 .6 .44 .44 .2

(Ann, no, −) .0400 Ann f 0 0 .2 .60 .63 .8
(Ann, no, +) .0100 Ann f 0 1 .2 .60 .63 .8
(Ann, yes, −) .1200 Ann f 1 0 .4 .44 .44 .8
(Ann, yes, +) .0800 Ann f 1 1 .4 .44 .44 .8
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We use the example of Table 15.1 to show that reaggregating the U-conditional-effect
function is not equivalent to ignoring U and conditioning on Z instead. In order to formulate
this more precisely, consider the equations

E(Y | X, U) = g0(U) + g1(U) ⋅ X (15.26)

and

E(Y | X, Z) = f0(Z) + f1(Z) ⋅ X. (15.27)

We show that, in this example, the function f1(Z) is not identical to the U-adjusted Z-condi-
tional expectation E[g1(U) | Z].

Using the values E(Y | X=x, U=u) of the conditional expectation E(Y | X, U) displayed
in Table 15.1 yields the following values of the functions gi of Equation (15.26):

g0(Joe) = .7, g0(Jim) = .3, g0(Sue) = .7, g0(Ann) = .4, (15.28)

and

g1(Joe) = .1, g1(Jim) = .1, g1(Sue) = −.1, g1(Ann) = .2. (15.29)

Similarly, using the values E(Y | X=x, Z=z) of the conditional expectation E(Y | X, Z) dis-
played in Table 15.1 yields the following values of the functions fi of Equation (15.27):

f0(male) = .66, f0(female) = .6 (15.30)

and

f1(male) = .22, f1(female) = .16. (15.31)

Hence, the (Z=male)-conditional effect of X on Y is .22 and the (Z= female)-conditional effect
of X on Y is .16. In this example, these two numbers are misleading if used for the evaluation
of the treatment effect, because the individual treatment effects for Joe and Jim are both .1,
and for Sue and Ann they are −.1 and .2, respectively.

In contrast, computing the two values of the U-adjusted Z-conditional expectation
E[g1(U) | Z] yields

E[g1(U) | Z=male] =
∑

u
g1(u) ⋅ P(U=u | Z=male) = .1 ⋅ .5 + .1 ⋅ .5 − .1 ⋅ 0 + .2 ⋅ 0 = .1,

and, correspondingly,

E[g1(U) | Z= female] =
∑

u
g1(u) ⋅ P(U=u | Z= female)

= .1 ⋅ 0 + .1 ⋅ 0 − .1 ⋅ .5 + .2 ⋅ .5 = .5.

Hence, the U-adjusted (Z=male)-conditional expectation value E[g1(U) | Z=male] = .1 is
the average effect of the treatment for males, and the U-adjusted (Z= female)-conditional
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expectation value E[g1(U) | Z= female] = .5 is the average effect of the treatment for females.
These effects are less informative than the person-specific effects g1(u) [see (15.29)]. Nev-
ertheless, in this example they still inform us about the (conditional) expectations of these
person-specific effects for the two sexes. In other words, in this example, they are the average
treatment effects of the males and of the females, respectively. ⊲

15.5 Logit effect functions

In the previous sections of this chapter, we studied the conditional intercept and conditional-
effect functions g0, g1, … , gn. Now we consider the special case, in which Y is dichotomous
with values 0 and 1 (see Example 5.10). In this case, E(Y | X, Z) is also called a condi-
tional probability and is denoted by P(Y =1 | X, Z) (see Rem. 10.4). If Y is dichotomous,
then aside from the Z-conditional-intercept functions and the Z-conditional-effect functions
g0, g1, … , gn, there are also Z-conditional logit intercept and logit effect functions (see Exam-
ple 13.24), denoted fi.

Theorem 15.25 [Existence of the logit effect functions]
Let the assumptions 15.1 hold, let Y be dichotomous with values 0 and 1, and
suppose there is a P(Y =1 | X, Z) ∈ 𝒫(Y =1 | X, Z) with 0 < P(Y=1 | X, Z) < 1.
Then there are a version P(Y =1 | X, Z) ∈ 𝒫(Y =1 | X, Z), measurable functions
g0, g1, … , gn: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ), measurable functions f0, f1, … , fn: (Ω′

Z , 𝒜 ′
Z) →

(R, ℬ), and, for all i = 0, 1, … , n, a real-valued PX=xi(Y =1 | Z) ∈ 𝒫X=xi(Y =1 | Z)
such that

P(Y =1 | X, Z) = g0(Z) +
n∑

i=1
gi(Z) ⋅ 1X=xi

(15.32)

=
exp

[
f0(Z) +∑n

i=1 fi(Z) ⋅ 1X=xi

]

1 + exp
[

f0(Z) +∑n
i=1 fi(Z) ⋅ 1X=xi

] (15.33)

with

g0(Z) := PX=x0 (Y =1 | Z) (15.34)

=
exp[ f0(Z)]

1 + exp[ f0(Z)]
(15.35)

and, for i = 1, … , n,

gi(Z) := PX=xi(Y =1 | Z) − PX=x0 (Y =1 | Z) (15.36)

=
exp[ f0(Z) + fi(Z)]

1 + exp[ f0(Z) + fi(Z)]
−

exp[ f0(Z)]

1 + exp[ f0(Z)]
. (15.37)

(Proof p. 467)
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Remark 15.26 [P-uniqueness of the functions fi(Z)] Let the assumptions of Theo-
rem 15.25 and the additional assumption (15.2) hold. Then, for all measurable functions
f ∗0 , f ∗1 , … , f ∗n : (Ω′

Z , 𝒜 ′
Z) → (R, ℬ) satisfying Equations (15.34) to (15.37),

f ∗i (Z) =
P

fi(Z), ∀ i = 0, 1, … , n, (15.38)

(see Exercise 15.1). Hence, E[ f ∗i (Z)] = E[ fi(Z)], i = 1, … , n, provided that these expectations
exist. ⊲

Definition 15.27 [Logit intercept function and logit effect function]
Let the assumptions of Theorem 15.25 as well as (15.2) hold. Then the function
f0: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ) is called the Z -conditional logit intercept function, and,

for all i = 1, … , n, the function fi: (Ω′
Z , 𝒜 ′

Z) → (R, ℬ), the Z -conditional logit
effect function of xi versus x0 on Y which pertains to the version P(Y =1 | X, Z) ∈
𝒫(Y =1 | X, Z) in Equation (15.33).

Remark 15.28 [Partial conditional probability P(Y =1 | X, Z=z)] Let the assumptions of
Theorem 15.25 hold. Then Equations (15.33) and (14.25) imply

P(Y=1 | X, Z=z) =
exp

(
f0(z) +∑n

i=1 fi(z) ⋅ 1X=xi

)

1 + exp
(

f0(z) +∑n
i=1 fi(z) ⋅ 1X=xi

) (15.39)

for the partial conditional probability P(Y =1 | X, Z=z) (see Rem. 14.30). This equation jus-
tifies the terminology introduced in Definition 15.27. ⊲

Remark 15.29 [(Z=z)-conditional logit intercept and effects] If the assumptions of The-
orem 15.25 hold and z ∈ Ω′

Z with P(Z=z) > 0, then Equation (15.39) and (14.29) imply that
there is a PZ=z(Y =1 | X) ∈ 𝒫Z=z(Y =1 | X) with

PZ=z(Y =1 | X) = P(Y =1 | X, Z=z) =
exp

[
f0(z) +∑n

i=1 fi(z) ⋅ 1X=xi

]

1 + exp
[

f0(z) +∑n
i=1 fi(z) ⋅ 1X=xi

] . (15.40)

Equation (15.40) and Theorem 13.20 imply that f0(z) is the intercept and fi(z), i = 1, … , n, are
the coefficients pertaining to a linear logistic parameterization of PZ=z(Y =1 | X). Accord-
ing to Lemma 12.38 and Remark 12.39, PZ=z(X=xi) > 0 for all i = 1, … , n implies that the
matrix of the covariances of the random variables 1X=x1

, … , 1X=xn
with respect to the mea-

sure PZ=z is regular. Therefore, we can apply Theorem 13.20 for identifying the coefficients
f0(z) and fi(z), i = 1, … , n.
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Under the assumptions of Theorem 15.25, Remark 14.9 and Equation (15.40) imply

Vz =
P Z=z

exp
(

f0(z) +∑n
i=1 fi(z) ⋅ 1X=xi

)

1 + exp
(

f0(z) +∑n
i=1 fi(z) ⋅ 1X=xi

) , ∀ Vz ∈ 𝒫Z=z(Y =1 | X) . (15.41)

⊲

Remark 15.30 [Conditional probability PX=xi(Y =1 | Z)] Remark 14.9 and Equation
(15.32) imply

V0 =
P X=x

exp( f0(Z))

1 + exp( f0(Z))
, ∀ V0 ∈ 𝒫X=0(Y =1 | Z), (15.42)

and, for all i = 1, … , n,

Vi =
P X=xi

exp( f0(Z) + fi(Z))

1 + exp( f0(Z) + fi(Z))
, ∀ Vi ∈ 𝒫X=xi (Y =1 | Z) . (15.43)

⊲

Remark 15.31 [Log odds functions] In terms of conditional probabilities, the Z-conditional
logit intercept function f0 satisfies

f0(Z) = ln

[
PX=x0 (Y =1 | Z)

1 − PX=x0 (Y =1 | Z)

]
(15.44)

(cf. Rem. 13.15). Hence, f0 may also be called the Z-conditional log odds function of
PX=x0 (Y =1 | Z). Similarly,

f0(Z) + fi(Z) = ln

[
PX=xi(Y =1 | Z)

1 − PX=xi(Y =1 | Z)

]
, i = 1, … , n (15.45)

(see Exercise 15.2). The function f0 + fi: (Ω′
Z , 𝒜 ′

Z) → (R, ℬ) satisfying ( f0 + fi)(Z) = f0(Z) +
fi(Z) is called the Z-conditional log odds function of PX=xi(Y =1 | Z). ⊲

Remark 15.32 [Log odds ratio functions] Equations (15.44) and (15.45) imply

fi(Z) = ln

[
PX=xi (Y =1 | Z)

1 − PX=xi (Y =1 | Z)

]
− ln

[
PX=x0 (Y =1 | Z)

1 − PX=x0 (Y =1 | Z)

]
(15.46)

= ln

[
PX=xi(Y =1 | Z)

1 − PX=xi(Y =1 | Z)

/
PX=x0 (Y =1 | Z)

1 − PX=x0 (Y =1 | Z)

]
, i = 1, … , n, (15.47)

for the Z-conditional logit effect functions fi (cf. Rem. 13.16).
Referring to Equation (15.47), fi, i = 1, … , n, is also called the Z-conditional log odds

ratio function of PX=xi(Y =1 | Z) and PX=x0 (Y =1 | Z). ⊲
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Remark 15.33 [Odds ratio functions] The exponential function of fi(Z) is

exp[ fi(Z)] = PX=xi(Y =1 | Z)

1 − PX=xi (Y =1 | Z)

/
PX=x0 (Y =1 | Z)

1 − PX=x0 (Y =1 | Z)
, i = 1, … , n. (15.48)

The composite function exp( fi): (Ω′
Z , 𝒜 ′

Z) → (R, ℬ) is called the Z-conditional odds ratio
function of PX=xi(Y =1 | Z) and PX=x0 (Y =1 | Z) (cf. Rem. 13.17). ⊲

Remark 15.34 [Risk ratio functions] Another closely related function describing condi-
tional effects of (X=xi) compared to (X=x0) is

ki(Z) := PX=xi (Y =1 | Z)

PX=x0 (Y =1 | Z)
, i = 1, … , n. (15.49)

The function ki: (Ω′
Z , 𝒜 ′

Z) → (R, ℬ) satisfying (15.49) is called the Z-conditional risk ratio
function of PX=xi(Y =1 | Z) and PX=x0 (Y =1 | Z) (cf. Rem. 13.18). ⊲

Remark 15.35 [Four kinds of conditional-effect functions] Hence, under the assumptions
of Theorem 15.25, we considered four kinds of different Z-conditional-effect functions: gi, fi,
exp( fi), and ki. They all describe Z-conditional-effect functions of xi compared to x0 on Y on
different scales. ⊲

15.6 Implications of independence of X and Z for the logit
regression coefficients

In section 15.3, we already treated the implication of

E[gi(Z) | X] = E[gi(Z)], ∀ i = 0, 1, … , n, (15.50)

[see Eq. (15.22)]. According to Theorem 15.14, this equation implies

E[gi(Z)] = βi, i = 0, 1, … , n, (15.51)

where βi are the parameters in the equation

P(Y =1 | X) = β0 +
n∑

i=1
βi ⋅ 1X=xi

. (15.52)

Note that, under the assumptions of Theorem 15.25, there are coefficients β0, β1, … , βn ∈
R such that Equation (15.52) holds. Remember, according to Remark 15.16, Equation (15.50)
holds if X and Z are independent.

Remark 15.36 [Mean independence and logit effect functions] Note that the analog to
Equation (15.51) does not hold for the expectation of the logit effect functions fi specified in
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Equation (15.33). That is, although, under the assumptions of Theorem 15.25, there are always
coefficients α0, α1, … , αn ∈ R such that

P(Y =1 | X) =
exp

(
α0 +

∑n
i=1 αi ⋅ 1X=xi

)

1 + exp
(
α0 +

∑n
i=1 αi ⋅ 1X=xi

) , (15.53)

neither

E[ fi(Z) | X] =
P

E[ fi(Z)], ∀ i = 0, 1, … , n, (15.54)

nor does independence of X and Z imply that αi is identical to E[ fi(Z)] (see Example 15.38).
In fact, it is even possible that αi is negative and E[ fi(Z)] is positive (see Example 15.39). ⊲

Remark 15.37 [Implications for methodology] From a methodological point of view, this
means that randomized assignment of a unit to one of the treatment conditions – which creates
independence of a treatment variable X and the person variable U – does not imply that the
regression coefficients in the logistic parameterization of P(Y =1 | X) can be interpreted as the
expectation of the corresponding functions fi(U). As mentioned before, it is even possible that
a coefficient αi is negative and E[ fi(Z)] is positive (see Example 15.39). In contrast, compare
Equations (15.50) to (15.53) and the invariance property formulated in Theorem 12.44 for a
linear parameterization of a conditional expectation. ⊲

Example 15.38 [Joe and Ann with randomized assignment – continued] Now we show by
an example that independence of X and Z does not imply that the coefficients αi of Equation
(15.53) are identical to E[ fi(Z)], where the functions fi are specified in Theorem 15.25. [In
contrast, compare Equations (14.4) and (14.5) for the effect function g1.]

In Examples 13.24 and 13.26, we computed

P(Y=1 | X) =
exp(α0 + α1 ⋅ X)

1 + exp(α0 + α1 ⋅ X)
≈

exp(−.201 + .606 ⋅ X)

1 + exp(−.201 + .606 ⋅ X)
(15.55)

and

P(Y =1 | X, U) =
exp

[
(𝜆0 + 𝜆2 ⋅ 1U=Ann ) + (𝜆1 + 𝜆3 ⋅ 1U=Ann ) ⋅ X

]

1 + exp
[
(𝜆0 + 𝜆2 ⋅ 1U=Ann ) + (𝜆1 + 𝜆3 ⋅ 1U=Ann ) ⋅ X

]

≈
exp

[
(.847 − 2.234 ⋅ 1U=Ann ) + (.539 + .442 ⋅ 1U=Ann ) ⋅X

]

1 + exp
[
(.847 − 2.234 ⋅ 1U=Ann ) + (.539 + .442 ⋅ 1U=Ann ) ⋅ X

] ,

(15.56)

showing that the logit of P(Y =1 | X, U) is f0(U) + f1(U) ⋅ X with logit intercept function f0
satisfying

f0(U) = 𝜆0 + 𝜆2 ⋅ 1U=Ann ≈ .847 − 2.234 ⋅ 1U=Ann



EFFECT FUNCTIONS OF A DISCRETE REGRESSOR 465

and logit effect function f1 satisfying

f1(U) = 𝜆1 + 𝜆3 ⋅ 1U=Ann = .539 + .442 ⋅ 1U=Ann .

Note that

α1 ≈ .606 ≠ E[ f1(U)] ≈ .539 + .442 ⋅ E(1U=Ann ) ≈ .76.

Hence, although X and U are independent, the logit effect α1 of X in the logistic parameteri-
zation of P(Y =1 | X) is not equal to the expectation of f1(U) in the logistic parameterization
of P(Y =1 | X, U). ⊲

Example 15.39 [Joe and Ann: reversed average logit effect] Table 15.2 displays an exam-
ple in which the coefficient α1 in the equation

P(Y=1 | X) =
exp(α0 + α1 ⋅ X)

1 + exp(α0 + α1 ⋅ X)
(15.57)

is negative, whereas the expectation E[ f1(U)] of the function f1(U) in the equation

P(Y =1 | X, U) =
P

exp
(

f0(U) + f1(U) ⋅ X
)

1 + exp
(

f0(U) + f1(U) ⋅ X
) (15.58)

Table 15.2 Joe and Ann: reversed average logit effect.
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=

0
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P
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1
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P
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=

1
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g 1
(U

)
=

P
X
=

1
(Y

=
1
|U

)
−

P
X
=

0
(Y

=
1
|U

)

f 1
(U

)

(Joe, no, −) .067 Joe 0 0 .732 .732 .5 .732 .984 1.005 .252 3.114
(Joe, no, +) .183 Joe 0 1 .732 .732 .5 .732 .984 1.005 .252 3.114
(Joe, yes, −) .004 Joe 1 0 .984 .626 .5 .732 .984 4.119 .252 3.114
(Joe, yes, +) .246 Joe 1 1 .984 .626 .5 .732 .984 4.119 .252 3.114
(Ann, no, −) .067 Ann 0 0 .732 .732 .5 .732 .268 1.005 −.464 −2.010
(Ann, no, +) .183 Ann 0 1 .732 .732 .5 .732 .268 1.005 −.464 −2.010
(Ann, yes, −) .183 Ann 1 0 .268 .626 .5 .732 .268 −1.005 −.464 −2.010
(Ann, yes, +) .067 Ann 1 1 .268 .626 .5 .732 .268 −1.005 −.464 −2.010
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is positive, although X and U are independent. The coefficients of Equation (15.57) are
α0 ≈ 1.005 and α1 ≈ −.490, whereas the expectation of the conditional logit effect function is
EU( f1) = E[ f1(U)] ≈ .552 (see Exercise 15.3). ⊲

15.7 Proofs

Proof of Theorem 15.3

For all i = 0, 1, … , n,

E(Y) is finite ⇒ E X=xi(Y) is finite [Rem. 14.6]

⇒ there is a real-valued E X=xi(Y | Z) ∈ ℰX=xi(Y | Z) . [Box 10.2 (x)]

According to Theorem 10.9 and Corollary 10.23, finiteness of E(Y) also implies that there is
a g(X, Z) ∈ ℰ (Y | X, Z) such that, for real-valued versions E X=xi(Y | Z),

g(X, Z) =
P

n∑

i=0
E X=xi(Y | Z) ⋅ 1X=xi

[(14.31)]

=
P

E X=x0 (Y | Z) ⋅1X=x0
+

n∑

i=1
E X=xi(Y | Z) ⋅ 1X=xi

=
P

E X=x0 (Y | Z) −
n∑

i=1
E X=x0 (Y | Z) ⋅1X=xi

+
n∑

i=1
E X=xi(Y | Z) ⋅ 1X=xi

[(5.33)]

=
P

E X=x0 (Y | Z) +
n∑

i=1
[E X=xi(Y | Z) − E X=x0 (Y | Z)] ⋅ 1X=xi

.

Because the function on the right-hand side of the last equation is (X, Z)-measurable and P-
equivalent to g(X, Z) ∈ ℰ (Y | X, Z) (see Th. 2.57), it is an element of ℰ (Y | X, Z). Defining
the specific version

E(Y | X, Z) := E X=x0 (Y | Z) +
n∑

i=1
[E X=xi (Y | Z) − E X=x0 (Y | Z)] ⋅ 1X=xi

completes the proof.

Proof of Theorem 15.14

For all versions E(Y | X) ∈ ℰ (Y | X),

E(Y | X) =
P

E[E(Y | X, Z) | X] [Box 10.2 (v)]

=
P

E

[
g0(Z) +

n∑

i=1
gi(Z) ⋅ 1X=xi

|||||
X

]
[(15.6)]

=
P

E[g0(Z) | X] +
n∑

i=1
E
[
gi(Z) ⋅ 1X=xi

| X
]

[Box 10.2 (xv)]
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=
P

E[g0(Z) | X] +
n∑

i=1
E[gi(Z) | X] ⋅ 1X=xi

[σ(1X=xi
) ⊂ σ(X), (10.74), (2.36)]

=
P

E[g0(Z)] +
n∑

i=1
E[gi(Z)] ⋅ 1X=xi

. [(15.22)]

According to Remark 2.18, the right-hand side of the last equation above is X-measurable.
Because it is P-equivalent to all versions E(Y | X) ∈ ℰ (Y | X), it is an element of ℰ (Y | X)
[see (10.12)], and it satisfies Equations (15.17) to (15.21).

Proof of Corollary 15.18

According to Box 10.2 (vi) and Equations (6.5) and (10.4), independence of X and Z implies
P(X=xi | Z) =

P
P(X=xi). Because P(X=xi) > 0, we can conclude P(X=xi | Z) >

P
0. Further-

more, P(X=xi | Z) >
P

0 is equivalent to P-uniqueness of E X=xi(Y | Z) [see Cor. 14.48 (a)

and (c)]. According to Box 14.1 (viii), this implies P-uniqueness of the functions gi(Z),
i = 0, 1, … , n.

Proof of Theorem 15.25

By definition, P(Y =1 | X, Z) = E(1Y =1 | X, Z). Hence, the existence of measurable func-
tions g0, g1, … , gn: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ) satisfying Equations (15.32), (15.34), and (15.36) has

already been proved in Theorem 15.3. In order to show that there are measurable functions f0,
f1, … , fn: (Ω′

Z , 𝒜 ′
Z) → (R, ℬ) satisfying Equation (15.33), we define

li(Z) := logit
[
PX=xi (Y =1 | Z)

]
, ∀ i = 0, 1, … , n, (15.59)

using the logit of PX=xi(Y =1 | Z) defined by Equation (13.5). Furthermore, we define

f0(Z) := l0(Z), (15.60)

and

fi(Z) := li(Z) − l0(Z), ∀ i = 1, … , n. (15.61)

These definitions and Equation (13.6) then yield

PX=xi(Y =1 | Z) =
exp

(
logit

[
PX=xi(Y =1 | Z)

])

1 + exp
(
logit

[
PX=xi(Y =1 | Z)

]) =
exp

(
li(Z)

)

1 + exp
(
li(Z)

) , ∀ i = 0, 1, … , n.

Hence, for i = 0, Equation (15.34) implies

g0 = PX=x0 (Y =1 | Z) =
exp

(
f0(Z)

)

1 + exp
(

f0(Z)
) ,
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which proves (15.35). Furthermore, Equation (15.36) yields

gi(Z) = PX=xi (Y =1 | Z) − PX=x0 (Y =1 | Z)

=
exp

(
f0(Z) + fi(Z)

)

1 + exp
(

f0(Z) + fi(Z)
) −

exp
(

f0(Z)
)

1 + exp
(

f0(Z)
) , ∀ i = 1, … , n,

which proves (15.37).
Finally, for all ω ∈ Ω,

(
f0(Z) +

n∑

i=1
fi(Z) ⋅ 1X=xi

)
(ω) =

{(
f0(Z) + fj(Z)

)
(ω), if X(ω) = xj, j = 1, … , n

f0(Z)(ω), otherwise.

For all ω ∈ {X=x0},

exp
[(

f0(Z) +∑n
i=1 fi(Z) ⋅ 1X=xi

)
(ω)

]

1 + exp
[(

f0(Z) +∑n
i=1 fi(Z) ⋅ 1X=xi

)
(ω)

]

=
exp[ f0(Z)(ω)]

1 + exp[ f0(Z)(ω)]
[1X=xi

(ω) = 0, ∀ i = 1, … , n]

= g0(Z)(ω). [(15.35)]

Hence, for all j = 1, … , n and all ω ∈ {X=xj},

exp
[(

f0(Z) +∑n
i=1 fi(Z) ⋅ 1X=xi

)
(ω)

]

1 + exp
[(

f0(Z) +∑n
i=1 fi(Z) ⋅ 1X=xi

)
(ω)

]

=
exp[( f0(Z) + fj(Z))(ω)]

1 + exp[( f0(Z) + fj(Z))(ω)]

= [g0(Z) + gj(Z)](ω) [(15.36), (15.35)]

=
[
g0(Z) +

n∑

i=1
gi(Z) ⋅1X=xi

]
(ω) [1X=xi

(ω) = 1 ⇔ xi = xj]

= P(Y=1 | X, Z)(ω). [(15.32)]

Exercises

15.1 Prove Equation (15.38).

15.2 Prove Equations (15.44) and (15.45).

15.3 Using the results displayed in Table 15.2, compute the coefficients α0 and α1 of Equation
(15.57) as well as the expectation of the conditional logit effect function f1.
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Solutions

15.1 According to Theorem 14.46, assuming (15.2) implies that the conditional probabilities
PX=xi(Y =1 | Z) are P-unique, which in turn implies that the functions gi are P-unique
[see (2.36)]. If, for all i = 0, 1, … , n, the PX=xi(Y =1 | Z) are P-unique, then the func-
tions li(Z) and their differences [see Eqs. (15.60) and (15.61)] are P-unique as well [see
(2.34) and Rem. 2.76].

15.2 The composition of Z and the conditional logit intercept function can be written as:

f0(z) = logit
[
PX=x0 (Y =1 | Z)

]
[(15.35), (13.3)]

= ln

[
PX=x0 (Y =1 | Z)

1 − PX=x0 (Y =1 | Z)

]
. [(13.2)]

Furthermore,

f0(Z) + fi(Z) = logit
[
PX=xi(Y =1 | Z)

]
[(15.37), (13.3)]

= ln

[
PX=xi(Y =1 | Z)

1 − PX=xi(Y =1 | Z)

]
. [(13.2)]

15.3 Using Equations (13.6) (13.8) and the conditional probabilities P(Y =1 | X=x) dis-
played in Table 15.2 yields

α0 = logit[P(Y =1 | X=0)] ≈ ln(.732∕(1 − .732)) ≈ 1.005,

α0 + α1 = logit[P(Y =1 | X=1)] ≈ ln(.626∕(1 − .626)) ≈ .515,

and α1 ≈ .515 − 1.005 = −.490.
Similarly,

𝜆0 = logit[P(Y =1 | X=0, U=Joe)] ≈ ln(.732∕(1 − .732)) ≈ 1.005,

𝜆0 + 𝜆1 = logit[P(Y =1 | X=1, U=Joe)] ≈ ln(.984∕(1 − .984)) ≈ 4.119,

𝜆0 + 𝜆2 = logit[P(Y =1 | X=0, U=Ann )] ≈ ln(.732∕(1 − .732)) ≈ 1.005,

𝜆0 + 𝜆1 + 𝜆2 + 𝜆3 = logit[P(Y =1 | X=1, U=Ann )] ≈ ln(.268∕(1 − .268)) ≈ −1.005,

and this yields

𝜆1 ≈ 4.119 − 1.005 = 3.114,

𝜆2 ≈ 1.005 − 1.005 = 0,

𝜆3 ≈ −1.005 − 1.005 − 3.114 − 0 = −5.124.
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Hence, the composition of U and the logit effect function f1 is

f1(U) = 𝜆1 + 𝜆3 ⋅ 1U=Ann ≈ 3.114 − 5.124 ⋅ 1U=Ann ,

and taking its expectation we receive

EU( f1) = E[ f1(U)] [(6.13)]

≈ 3.114 − 5.124 ⋅ .5 = .552. [Table 15.2, Box 6.1 (ii), (iii)]
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16

Conditional independence

In section 4.3 we introduced independence of events and of sets of events, and in section 4.4
we treated conditional independence of events given an event that has a positive probability.
There, we noted that conditional independence given an event B is equivalent to independence
with respect to the conditional-probability measure PB. Furthermore, in section 5.4 we used
these definitions in order to introduce independence of random variables. In this chapter we
generalize these concepts and define conditional independence of events, of sets of events,
and of random variables given a σ-algebra or given a random variable. Furthermore, we study
the relationship between conditional independence and conditional mean independence (see
section 10.6). For further implications of conditional independence, see section 17.6.

16.1 Assumptions and definitions

In this section, we make the following assumptions and use the following notation.

Notation and assumptions 16.1
Let Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be a random variable, let 𝒞 ⊂ 𝒜 be a σ-algebra, and let

A, B ∈ 𝒜.

Also remember that P(A |𝒞) := E(1A |𝒞), where E(1A |𝒞) denotes the 𝒞-conditional
expectation of the indicator 1A of A ∈ 𝒜, and P(A | Z) := E(1A | Z) the Z-conditional proba-
bility of A (see Def. 10.2 and Rem. 10.4). Finally, see Remark 5.17 for the concept of P-
equivalence and section 10.2 for propositions on P-equivalence of conditional expectations.

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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16.1.1 Two events

Definition 16.2 [𝒞-conditional independence of two events]
Let the assumptions 16.1 hold.

(i) A and B are called 𝒞-conditionally P-independent, denoted A ⟂⟂
P

B |𝒞, if

P(A ∩ B |𝒞) =
P

P(A |𝒞) ⋅ P(B |𝒞). (16.1)

(ii) A and B are called Z -conditionally P-independent, denoted A ⟂⟂
P

B | Z, if

P(A ∩ B | Z) =
P

P(A | Z) ⋅ P(B | Z). (16.2)

A synonym for 𝒞-conditional P-independence of A and B is conditional independence of
A and B given 𝒞with respect to the probability measure P.

Remark 16.3 [Symmetry] Obviously, 𝒞-conditional independence of A and B with respect
to P is symmetric in the following sense:

A ⟂⟂
P

B |𝒞 ⇔ B ⟂⟂
P

A |𝒞. (16.3)
⊲

Note that we did not exclude that the events A or B are elements of the σ-algebra 𝒞. This
case is considered in the following lemma.

Lemma 16.4 [A sufficient condition]
Let the assumptions 16.1 hold. Then,

A ∈ 𝒞 or B ∈ 𝒞 ⇒ A ⟂⟂
P

B |𝒞 (16.4)

and

A ∈ σ(Z) or B ∈ σ(Z) ⇒ A ⟂⟂
P

B | Z. (16.5)

(Proof p. 493)

Remark 16.5 [An immediate implication] If (Ω, 𝒜, P) is a probability space and A, B ∈ 𝒜,
then A ⟂⟂

P
B |𝒜. ⊲

Corollary 16.6 [Two formulations of Z-conditional P-independence]
Let the assumptions 16.1 hold. Then the following propositions are equivalent to each
other:

(i) A ⟂⟂
P

B | Z.

(ii) P(A ∩ B | Z=z) = P(A | Z=z) ⋅ P(B | Z=z), for PZ-a.a. z ∈ Ω′
Z.

(Proof p. 493)
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Remark 16.7 [The special case P(Z=z) > 0] Corollary 16.6 and Remark 2.71 imply: If
A ⟂⟂

P
B | Z and P(Z=z) > 0, then,

P(A ∩ B | Z=z) = P(A | Z=z) ⋅ P(B | Z=z) . (16.6)

According to Equation (10.30), P(A | Z=z) = P(A | {Z=z}), if P(Z=z) > 0. Therefore, Equa-
tion (16.6) is consistent with Equation (4.27). ⊲

Definition 16.8 [(Z=z)-conditional independence of two events]
Let the assumptions 16.1 hold and assume that z ∈ Ω′

Z with P(Z=z) > 0. Then A and B are
called (Z=z)-conditionally independent, denoted A ⟂⟂

P
B | Z=z, if Equation (16.6) holds.

Remark 16.9 [Conditioning on a constant] Let the assumptions 16.1 hold. If 𝒞= {Ω, Ø},
then Remark 10.5 implies P(A |𝒞) = P(A), P(B |𝒞) = P(B), and P(A ∩ B |𝒞) = P(A ∩ B).
Hence, in this case, 𝒞-conditional independence and (unconditional) independence of two
events are equivalent, that is,

𝒞= {Ω, Ø} ⇒ (A ⟂⟂
P

B |𝒞 ⇔ A ⟂⟂
P

B). (16.7)

If Z=α, α ∈ Ω′
Z , that is, if Z is a constant random variable, then σ(Z) = {Ω, Ø}. Therefore,

(16.7) implies

(∃ α ∈ Ω′
Z : Z = α) ⇒ (A ⟂⟂

P
B | Z ⇔ A ⟂⟂

P
B). (16.8)

A more general proposition is that independence and Z-conditional independence of two
events are equivalent if Z =

P
α, α ∈ Ω′

Z , that is,

(∃ α ∈ Ω′
Z : Z =

P
α) ⇒ (A ⟂⟂

P
B | Z ⇔ A ⟂⟂

P
B) (16.9)

(see Exercise 16.1). ⊲

16.1.2 Two sets of events

Using the concept of conditional independence of two events, we define 𝒞-conditional P-
independence of two sets of events. One or both of these sets of events can be a σ-algebra, but
this is not required.
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Definition 16.10 [𝒞-conditional independence of two sets of events]
Let the assumptions 16.1 hold and let 𝒟, ℰ ⊂ 𝒜. Then:

(i) 𝒟 and ℰ are called 𝒞-conditionally P-independent, denoted 𝒟⟂⟂
P
ℰ |𝒞, if

for all pairs (A, B) ∈ 𝒟 ×ℰ, the events A and B are 𝒞-conditionally P-indepen-
dent.

(ii) 𝒟 and ℰ are called Z -conditionally P-independent, denoted 𝒟⟂⟂
P
ℰ | Z, if

for all pairs (A, B) ∈ 𝒟 ×ℰ, the events A and B are Z-conditionally P-indepen-
dent.

Remark 16.11 [Conditioning on a constant] Remark 16.9 implies

𝒞= {Ω, Ø} ⇒ (𝒟⟂⟂
P
ℰ |𝒞 ⇔ 𝒟⟂⟂

P
ℰ ). (16.10)

Hence, 𝒟⟂⟂
P
ℰ (see Def. 4.40) is a special case of 𝒟⟂⟂

P
ℰ |𝒞with 𝒞= {Ω, Ø}. Similarly,

(∃ α ∈ Ω′
Z : Z = α) ⇒ (𝒟⟂⟂

P
ℰ | Z ⇔ 𝒟⟂⟂

P
ℰ ). (16.11)

Again, a more general proposition, which follows from (16.9), is that independence and
Z-conditional independence of two sets of events are equivalent if Z =

P
α, α ∈ Ω′

Z , that is,

(∃ α ∈ Ω′
Z : Z =

P
α) ⇒ (𝒟⟂⟂

P
ℰ | Z ⇔ 𝒟⟂⟂

P
ℰ ) (16.12)

(see Exercise 16.2). ⊲

According to the following lemma, two σ-algebras are conditionally independent if
two ∩-stable set systems (see Def. 1.36) that generate these σ-algebras are conditionally
independent.

Lemma 16.12 [∩-Stable generators]
Let the assumptions 16.1 hold, let 𝒟, ℰ ⊂ 𝒜, and suppose that 𝒟 and ℰ are ∩-stable.
Then,

𝒟⟂⟂
P
ℰ |𝒞 ⇔ σ(𝒟) ⟂⟂

P
σ(ℰ ) |𝒞. (16.13)

(Proof p. 493)

16.1.3 Two random variables

The sets of events 𝒟 and ℰ occurring in Definition 16.10 may also be two σ-algebras, such
as σ(X) and σ(Y), the σ-algebras generated by random variables X and Y , respectively (see
Def. 2.26). This case will now be used to define conditional P-independence of two random
variables.
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Definition 16.13 [Conditional P-independence of two random variables]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables and 𝒞 ⊂ 𝒜 a σ-algebra. Then:

(i) X and Y are called 𝒞-conditionally P-independent, denoted X ⟂⟂
P

Y |𝒞, if

σ(X) and σ(Y) are 𝒞-conditionally P-independent.

(ii) X and Y are called Z -conditionally P-independent, denoted X ⟂⟂
P

Y | Z, if

σ(X) and σ(Y) are Z-conditionally P-independent.

Remark 16.14 [Three equivalent notations] Let {X ∈ A′} := {ω ∈ Ω: X(ω) ∈ A′} and
{Y ∈ B′} := {ω ∈ Ω: Y(ω) ∈ B′} denote the events that X takes on a value in A′ and Y takes on
a value in B′, respectively. Then we use the following equivalent notations for 𝒞-conditional
independence of two random variables:

(i) X ⟂⟂
P

Y |𝒞.

(ii) σ(X) ⟂⟂
P
σ(Y) |𝒞.

(iii) {X ∈ A′} ⟂⟂
P

{Y ∈ B′} |𝒞, ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y .

Each of these notations is equivalent to

P(X ∈ A′, Y ∈ B′ |𝒞) =
P

P(X ∈ A′ |𝒞) ⋅ P(Y ∈ B′ |𝒞), ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y . (16.14)

Analogously, X ⟂⟂
P

Y | Z is equivalent to

P(X ∈ A′, Y ∈ B′ | Z) =
P

P(X ∈ A′ | Z) ⋅ P(Y ∈ B′ | Z), ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y . (16.15)
⊲

Remark 16.15 [An implication for random variables] The following proposition follows
from Definition 16.13. If 𝒟, ℰ ⊂ 𝒜, σ(X) ⊂ 𝒟, and σ(Y) ⊂ ℰ, then,

𝒟⟂⟂
P
ℰ |𝒞 ⇒ X ⟂⟂

P
Y |𝒞. (16.16)

⊲

16.2 Properties

Now we study some implications of conditional independence of two sets of events and
of two random variables. According to Example 1.37, the set {A} is a ∩-stable genera-
tor of σ({A}) = {A, Ac, Ω, Ø}. Furthermore, σ(1A) = σ({A}) (see Example 2.31). Therefore,
Lemma 16.2, Definitions 16.2 and 16.13, and 1Bc = 1 − 1B imply the following corollary.
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Corollary 16.16 [Equivalent propositions]
Let the assumptions 16.1 hold. Then the following propositions are equivalent to each
other:

(i) {A} ⟂⟂
P

{B} |𝒞.

(ii) σ({A}) ⟂⟂
P
σ({B}) |𝒞.

(iii) 1A ⟂⟂
P

1B |𝒞.

(iv) A ⟂⟂
P

B |𝒞.

(v) B ⟂⟂
P

A |𝒞.

(vi) A ⟂⟂
P

Bc |𝒞.

Lemma 16.4 and Definition 16.13 imply the following corollary.

Corollary 16.17 [Sub-σ-algebras]
Let the assumptions 16.1 hold and let 𝒟 , ℰ ⊂ 𝒜. Then,

(𝒟 ⊂ 𝒞 or ℰ ⊂ 𝒞 ) ⇒ 𝒟⟂⟂
P
ℰ |𝒞. (16.17)

Furthermore, if the assumptions of Definition 16.13 hold, then,

(σ(X) ⊂ σ(Z) or σ(Y) ⊂ σ(Z)) ⇒ X ⟂⟂
P

Y | Z. (16.18)

Remark 16.18 [An implication for compositions] Corollary 16.17 and Lemma 2.52 imply:
If g(Z) is a composition of Z and an (𝒜 ′

Z ,ℬ)-measurable function g: (Ω′
Z , 𝒜 ′

Z) → (R,ℬ), then
X ⟂⟂

P
g(Z) | Z. ⊲

Now we consider conditional independence of two discrete random variables. Remember,
a random variable X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is called discrete if there is a finite or countable

set Ω′
X0 ⊂ Ω′

X with PX(Ω′
X0) = 1 and {x} ∈ 𝒜 ′

X for all x ∈ Ω′
X0 (see Def. 5.56). If we consider

two discrete random variables X, Y and adopt the corresponding notation for Y , then Equation
(16.14) can be replaced by a simpler equation specified in the following corollary.

Corollary 16.19 [Conditional independence of discrete random variables]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be discrete random variables

and let 𝒞 ⊂ 𝒜 be a σ-algebra. Then X and Y are 𝒞-conditionally P-independent, if and
only if

P(X=x, Y=y |𝒞) =
P

P(X=x |𝒞) ⋅ P(Y=y |𝒞), ∀ (x, y) ∈ Ω′
X0 × Ω′

Y0. (16.19)

(For a proof, see the proof of the more general Corollary 16.47.)
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Table 16.1 Joe and Ann with no individual treatment effects.

Outcomes ω Observables Conditional probabilities
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ω}

)

Pe
rs

on
va

ri
ab

le
U

T
re

at
m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

P
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=
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=
1
|X

)
=

E
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|X
)

P
(Y

=
1
|U

)
=

E
(Y

|U
)

P
(X

=
1
|U

)
=

E
(X

|U
)

P
(X

=
1,

Y
=

1
|U

)

(Joe, no, −) .04 Joe 0 0 .6 .76 .6 3∕4 9∕20
(Joe, no, +) .06 Joe 0 1 .6 .76 .6 3∕4 9∕20
(Joe, yes, −) .12 Joe 1 0 .6 .68 .6 3∕4 9∕20
(Joe, yes, +) .18 Joe 1 1 .6 .68 .6 3∕4 9∕20
(Ann, no, −) .08 Ann 0 0 .8 .76 .8 1∕3 8∕30
(Ann, no, +) .32 Ann 0 1 .8 .76 .8 1∕3 8∕30
(Ann, yes, −) .04 Ann 1 0 .8 .68 .8 1∕3 8∕30
(Ann, yes, +) .16 Ann 1 1 .8 .68 .8 1∕3 8∕30

Equation (16.19) only refers to all pairs (x, y) ∈ Ω′
X0 × Ω′

Y0, whereas (16.14) refers to all
pairs (A′, B′) of elements in the σ-algebras 𝒜 ′

X and 𝒜 ′
Y , respectively.

Remark 16.20 [Conditioning on a random variable] If Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z), then
(16.19) can be written as:

P(X=x, Y =y | Z) =
P

P(X=x | Z) ⋅ P(Y =y | Z), ∀ (x, y) ∈ Ω′
X0 × Ω′

Y0. (16.20)

⊲

Example 16.21 [Joe and Ann with no individual treatment effects] Table 16.1 displays a
new example with Joe and Ann. As before, the random experiment consists of drawing Joe or
Ann, each one with probability .5, observing whether (X=1) or not (X=0) the drawn person
receives treatment, and whether (Y =1) or not (Y =0) a success criterion is reached. In this
example, X and Y are U-conditionally independent with respect to P. In other words, condi-
tioning on the events {U=Joe} or {U=Ann}, X and Y are P-independent. Intuitively speaking,
this means that there are no individual treatment effects.

According to Definition 16.13, we have to show that the two σ-algebras σ(X) and
σ(Y) are U-conditionally P-independent, where X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) →

(Ω′
Y , 𝒜 ′

Y ) with Ω′
X = Ω′

Y = {0, 1} and 𝒜 ′
X = 𝒜 ′

Y = {{0, 1}, Ø, {0}, {1}}. In other words, we
have to show

P(X ∈ A′, Y ∈ B′ | U) = P(X ∈ A′ | U) ⋅ P(Y ∈ B′ | U), ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y . (16.21)
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According to Corollary 16.16, it suffices to consider A′ = B′ = {1}, using the nota-
tion P(X ∈ A′ | U) = P(X=1 | U), P(Y ∈ B′ | U) = P(Y =1 | U), and P(X ∈ A′, Y ∈ B′ | U) =
P(X=1, Y=1 | U). Looking at the last three columns of conditional probabilities in Table 16.1
shows that, in this example,

P(X=1, Y =1 | U) = P(X=1 | U) ⋅ P(Y =1 | U). (16.22)
⊲

The following theorem adds another important property of conditional independence that
is also useful in some proofs.

Theorem 16.22 [A property equivalent to conditional P-independence]
Let (Ω, 𝒜, P) be a probability space, let 𝒞, 𝒟, ℰ⊂ 𝒜, and let 𝒞, 𝒟 be σ-algebras. Then,

ℰ⟂⟂
P
𝒟 |𝒞 ⇔ ∀ A ∈ ℰ: P(A |𝒞, 𝒟) =

P
P(A |𝒞). (16.23)

(Proof p. 495)

In the following remark, we use the notation E(Y |𝒞, Z) := E(Y | σ[𝒞∪ σ(Z)]) for a ver-
sion of the σ[𝒞∪ σ(Z)]-conditional expectation of Y and P(A |𝒞, Z) := P(A | σ[𝒞∪ σ(Z)]) for
a version of the σ[𝒞∪ σ(Z)]-conditional probability of an event A ∈ 𝒜 .

Remark 16.23 [Sufficient condition for conditional independence of events] An immedi-
ate implication of Theorem 16.22 is

∀ A, B ∈ 𝒜:
(
P(A | 1B, 𝒞) =

P
P(A |𝒞) ⇒ A ⟂⟂

P
B |𝒞 )

. (16.24)

This proposition may also be written as:

∀ A, B ∈ 𝒜:
(
E(1A | 1B, 𝒞) =

P
E(1A |𝒞) ⇒ A ⟂⟂

P
B |𝒞 )

. (16.25)
⊲

The following corollary follows from Theorem 16.22 for A := {Y =y}.

Corollary 16.24 [An implication of conditional independence]
Let Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be a random variable with {y} ∈ 𝒜 ′

Y for all y ∈ Ω′
Y , and let

𝒞, 𝒟 ⊂ 𝒜 be σ-algebras. Then,

Y ⟂⟂
P
𝒟 |𝒞 ⇒ ∀ y ∈ Ω′

Y : P(Y =y |𝒞, 𝒟) =
P

P(Y =y |𝒞). (16.26)

Remark 16.25 [Rewriting the corollary for random variables] In addition to the assump-
tions of Corollary 16.24, let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be ran-

dom variables. Then,

Y ⟂⟂
P

X | Z ⇒ ∀ y ∈ Ω′
Y : P(Y=y | X, Z) =

P
P(Y =y | Z). (16.27)

⊲
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Box 16.1 Notation.

Let (Ω, 𝒜, P) be a probability space, let A, B ∈𝒜, let 𝒞, 𝒟, ℰ⊂ 𝒜, where 𝒞 is a σ-algebra,
and let X, Y , Z be random variables on (Ω, 𝒜, P). Then,

Symbol Meaning

A ⟂⟂
P

B |𝒞 𝒞-conditional P-independence of A and B

ℰ⟂⟂
P
𝒟 |𝒞 𝒞-conditional P-independence of ℰ and 𝒟

X ⟂⟂
P

Y |𝒞 𝒞-conditional P-independence of X and Y

X ⟂⟂
P
𝒟 |𝒞 𝒞-conditional P-independence of X and 𝒟 [i.e., σ(X) ⟂⟂

P
𝒟 |𝒞]

A ⟂⟂
P

B | Z Z-conditional P-independence of A and B [i.e., A ⟂⟂
P

B | σ(Z)]

ℰ⟂⟂
P
𝒟 | Z Z-conditional P-independence of ℰ and 𝒟 [i.e., ℰ⟂⟂

P
𝒟 | σ(Z)]

Now we consider a special case of Theorem 16.22 for a discrete random variable. This
means that we consider a random variable Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) such that there is a finite

or countable set Ω′
Y0 ⊂ Ω′

Y with PY (Ω′
Y0) = 1 and {y} ∈ 𝒜 ′

Y for all y ∈ Ω′
Y0 (see Def. 5.56). In

this theorem, we also use the notation Y ⟂⟂
P
𝒟 |𝒞 introduced in Box 16.1.

Theorem 16.26 [A proposition equivalent to conditional independence]
Let Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be a discrete random variable and let 𝒞, 𝒟 ⊂ 𝒜be σ-alge-

bras. Then,

Y ⟂⟂
P
𝒟 |𝒞 ⇔ ∀ y ∈ Ω′

Y0: P(Y=y |𝒞, 𝒟) =
P

P(Y =y |𝒞). (16.28)

(Proof p. 495)

Remark 16.27 [Rewriting the theorem for random variables] Suppose that X: (Ω, 𝒜, P)
→ (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) are random variables,

and that Y is discrete. Then, for 𝒟 = σ(X) and 𝒞= σ(Z), Theorem 16.26 immediately yields:

Y ⟂⟂
P

X | Z ⇔ ∀ y ∈ Ω′
Y0: P(Y =y | X, Z) =

P
P(Y =y | Z). (16.29)

⊲

Box 16.2 summarizes some important propositions on conditional independence of σ-
algebras, and Box 16.3 translates these propositions to conditional independence of random
variables. Proofs are provided in Exercise 16.3.

Considering a value z ∈ Ω′
Z for which P(Z=z) > 0, some rules of Box 16.2 may also

have implications for conditional independence with respect to a conditional-probability
measure PZ=z. For example, if X is a numerical Z-measurable function, then according to



482 PROBABILITY AND CONDITIONAL EXPECTATION

Box 16.2 Conditional independence of set systems.

Let (Ω, 𝒜, P) be a probability space; 𝒞, 𝒟, 𝒟1, 𝒟2, 𝒟3 ⊂ 𝒜 be σ-algebras; and ℰ, ℱ,
𝒢 ⊂ 𝒜. Then:

ℰ⟂⟂
P
ℱ |𝒞 ⇔ ℱ ⟂⟂

P
ℰ |𝒞 (i)

ℰ⟂⟂
P
σ(ℱ, 𝒢 ) |𝒞 ⇒ ℰ⟂⟂

P
ℱ |𝒞 and ℰ⟂⟂

P
𝒢 |𝒞 (ii)

⟂⟂
P
𝒟1, 𝒟2, 𝒟3 ⇒ 𝒟1 ⟂⟂

P
𝒟2 |𝒟3 (iii)

ℱ ⊂ 𝒞 ⇒ ℰ⟂⟂
P
ℱ |𝒞 (iv)

ℱ = {Ω, Ø} ⇒ ℰ⟂⟂
P
ℱ |𝒞 (v)

ℰ⟂⟂
P
ℱ |𝒞 and 𝒢 ⊂ ℱ ⇒ ℰ⟂⟂

P
𝒢 |𝒞 (vi)

𝒟1 ⟂⟂
P
𝒟2 |𝒞 ⇔ 𝒟1 ⟂⟂

P
σ(𝒞, 𝒟2) |𝒞 (vii)

ℰ⟂⟂
P
σ(𝒟1, 𝒟2) |𝒞 ⇔ ℰ⟂⟂

P
𝒟1 |𝒞 and ℰ⟂⟂

P
𝒟2 | σ(𝒞, 𝒟1) (viii)

ℰ⟂⟂
P
σ(𝒟1, 𝒟2) ⇔ ℰ⟂⟂

P
𝒟1 and ℰ⟂⟂

P
𝒟2 |𝒟1. (ix)

Let ℱ0 ⊂ ℱ, 𝒢0 ⊂ 𝒢 and ℱ0, ℱ, 𝒢0, 𝒢 ⊂ 𝒜 be σ-algebras. Then:

ℱ ⟂⟂
P
𝒢 |𝒞 ⇒ ℱ ⟂⟂

P
𝒢 | σ(𝒞, ℱ0, 𝒢0). (x)

Let X1, X2, X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be random variables. Then:

X1 =P X2 and X1 ⟂⟂
P
ℰ |𝒞 ⇒ X2 ⟂⟂

P
ℰ |𝒞 (xi)

X =
P
α, α ∈ Ω′

X ⇒ X ⟂⟂
P
ℰ |𝒞. (xii)

Lemma 2.52, there is a measurable function g: (R,ℬ) → (R,ℬ) such that X = g(Z).
This implies that X =

P Z=z
g(z) (see Rem. 9.1). Therefore, for α = g(z), Box 16.2 (xii) yields the

following corollary.

Corollary 16.28 [Measurability and conditional independence with respect to PZ=z]
Let X: (Ω, 𝒜, P) → (R,ℬ) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables, let

P(Z=z) > 0, and 𝒞, ℰ⊂ 𝒜, where 𝒞 is a σ-algebra. Then,

X is Z-measurable ⇒ X ⟂⟂
P Z=z

ℰ |𝒞. (16.30)
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Box 16.3 Conditional independence of random variables.

Let W, X, X1, X2, X3, Y , and Z be random variables on the probability space (Ω, 𝒜, P).
Then:

X ⟂⟂
P

Y | Z ⇔ Y ⟂⟂
P

X | Z (i)

X ⟂⟂
P

(W, Y) | Z ⇒ X ⟂⟂
P

W | Z and X ⟂⟂
P

Y | Z (ii)

⟂⟂3
i=1 Xi ⇒ X1 ⟂⟂

P
X2 | X3 (iii)

σ(Y) ⊂ σ(Z) ⇒ X ⟂⟂
P

Y | Z (iv)

X = α, α ∈ Ω′
X ⇒ X ⟂⟂

P
Y | Z (v)

X ⟂⟂
P

Y | Z and σ(W) ⊂ σ(Y) ⇒ X ⟂⟂
P

W | Z (vi)

X ⟂⟂
P

Y | Z ⇔ X ⟂⟂
P

(Z, Y) | Z (vii)

X ⟂⟂
P

(W, Y) | Z ⇔ X ⟂⟂
P

Y | Z and X ⟂⟂
P

W | (Z, Y) (viii)

X ⟂⟂
P

(W, Y) ⇔ X ⟂⟂
P

Y and X ⟂⟂
P

W | Y . (ix)

If Y0 and W0 are random variables on (Ω, 𝒜, P) that are measurable with respect to Y and
W, respectively, then,

W ⟂⟂
P

Y | Z ⇒ W ⟂⟂
P

Y | (Z, Y0, W0) (x)

X1 =P X2 and X1 ⟂⟂
P

Y | Z ⇒ X2 ⟂⟂
P

Y | Z (xi)

X =
P
α, α ∈ Ω′

X ⇒ X ⟂⟂
P

Y | Z. (xii)

Remark 16.29 [Z-measurability and independence with respect to PZ=z] For 𝒞=
{Ω, Ø}, Corollary 16.28 implies that ℰ and X are independent with respect to PZ=z, that is,

X is Z-measurable ⇒ X ⟂⟂
P Z=z

ℰ. (16.31)

This result is also an immediate implication of Lemmas 2.52 and 5.51. ⊲

Example 16.30 [Conditional independence of treatment and person variables] Table
16.2 displays some parameters of a new random experiment. In this experiment, a person
(unit) is drawn from a set of six persons with a sampling probability of P(U=u) = 1∕6 for
each person. There are four males (Z=m) and two females (Z= f ). If a male person is drawn,
then he receives treatment (X=1) with probability P(X=1 | U=u) = 3∕4; if a female person is
drawn, then she gets treatment with probability P(X=1 | U=u) = 1∕4. The table also displays
the conditional expectation values E(Y | X=0, U=u) and E(Y | X=1, U=u) of a real-valued
outcome variable Y .
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Table 16.2 Z-conditional independence of X and U.

Persons u Conditional expectation values

Pe
rs

on
va

ri
ab

le
U

P
(U

=
u)

Se
x

Z

E
(Y

|X
=

0,
U
=

u)

E
(Y

|X
=

1,
U
=

u)

P
(X

=
1
|U

=
u)

u1 1∕6 m 68 81 3∕4
u2 1∕6 m 78 86 3∕4
u3 1∕6 m 88 100 3∕4
u4 1∕6 m 98 103 3∕4
u5 1∕6 f 106 114 1∕4
u6 1∕6 f 116 130 1∕4

In this example,

P(X=1 | Z, U) = P(X=1 | Z) = 3
4
⋅ 1Z=m + 1

4
⋅ 1Z= f .

However, if the first of these two equations holds, then P(X=0 | Z, U) = P(X=0 | Z) holds
as well, because P(X=0 | Z) = 1 − P(X=1 | Z) and P(X=0 | Z, U) = 1 − P(X=1 | Z, U) (see
again Exercise 16.4). Therefore,

P(X=x | Z, U) = P(X=x | Z), x = 0, 1, (16.32)

and, according to (16.29), the treatment variable X and the person variable U are conditionally
independent given Z (sex). ⊲

Example 16.31 [Joe and Ann with no individual treatment effects – continued] In Exam-
ple 16.21, we presented Table 16.1 and showed that X and Y are U-conditionally independent.
According to Theorem 16.26,

P(Y =y | X, U) =
P

P(Y =y | U), y = 0, 1,

is equivalent to U-conditional independence of X and Y . Comparing the columns headed by
P(Y =1 | X, U) and P(Y =1 | U) in Table 16.1 confirms that the displayed equation is sat-
isfied for y=1. However, this implies that P(Y =0 | X, U) =

P
P(Y =0 | U) holds as well (see

Exercise 16.4). ⊲
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16.3 Conditional independence and conditional
mean independence

Now we generalize the product rule for the expectations of independent random variables
[see Box 6.1 (x) and Proposition (16.7)] using the notation X ⟂⟂

P
Y |𝒞 introduced in Defini-

tion 16.13.

Theorem 16.32 [Product rule under conditional P-independence]
Let X, Y: (Ω, 𝒜, P) → (R, ℬ) be random variables that are both nonnegative or both with
finite expectations, and let 𝒞 ⊂ 𝒜 be a σ-algebra. Then,

X ⟂⟂
P

Y |𝒞 ⇒ E(X ⋅ Y |𝒞) =
P

E(X |𝒞) ⋅ E(Y |𝒞). (16.33)

(Proof p. 495)

Remark 16.33 [Conditioning on a random variable] If Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) is a ran-
dom variable, then, under the assumptions of Theorem 16.32,

X ⟂⟂
P

Y | Z ⇒ E(X ⋅ Y | Z) =
P

E(X | Z) ⋅ E(Y | Z). (16.34)

Hence, under the assumptions of Theorem 16.32, and if X and Y have finite second moments,
then Z-conditional independence of X and Y also implies Cov(X, Y | Z) =

P
0 [see Rule (i) of

Box 11.2]. ⊲

In section 10.6, we introduced the concept of conditional mean independence. Now we
consider its relationship to conditional independence.

Theorem 16.34 [Conditional mean independence]
Let (Ω, 𝒜, P) be a probability space, let 𝒞, 𝒟, ℰ⊂ 𝒜 be σ-algebras, and let
Y: (Ω, 𝒜, P) → (R,ℬ) be a random variable that is nonnegative or has a finite expec-
tation E(Y). If σ(Y) ⊂ ℰ, then,

ℰ⟂⟂
P
𝒟 |𝒞 ⇒ E(Y |𝒞, 𝒟) =

P
E(Y |𝒞) . (16.35)

(Proof p. 496)

An immediate implication is

Y ⟂⟂
P
𝒟 |𝒞 ⇒ E(Y |𝒞, 𝒟) =

P
E(Y |𝒞) . (16.36)

Remark 16.35 [Conditioning on random variables] If X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) and
Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) are random variables, and Y: (Ω, 𝒜, P) → (R,ℬ) is a random
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variable that is nonnegative or has a finite expectation E(Y), then,

Y ⟂⟂
P

X | Z ⇒ E(Y | X, Z) =
P

E(Y | Z) . (16.37)

⊲

Remark 16.36 [Implications of independence] For Z being a constant, the last remark
yields

Y ⟂⟂
P

X ⇒ E(Y | X) =
P

E(Y) (16.38)

[cf. Box 10.2 (vi)]. ⊲

While Theorem 16.34 deals with an implication of conditional independence on condi-
tional mean independence, now we present some conditions that are equivalent to conditional
independence.

Theorem 16.37 [Characterizations of conditional independence]
Let (Ω, 𝒜, P) be a probability space, let 𝒞, 𝒟, ℰ⊂ 𝒜 be σ-algebras, and let
W, Y: (Ω, 𝒜, P) → (R, ℬ) be real-valued random variables. Then the following propo-
sitions are equivalent to each other:

(i) ℰ⟂⟂
P
𝒟 |𝒞.

(ii) E(Y |𝒞, 𝒟) =
P

E(Y |𝒞), for all nonnegative Y with finite expectation and σ(Y) ⊂

ℰ.

(iii) E(W ⋅ Y |𝒞) =
P

E(W |𝒞) ⋅ E(Y |𝒞), for all nonnegative Y with finite expectation

and σ(Y) ⊂ ℰ and all nonnegative W with σ(W) ⊂ 𝒟.

(iv) E
[
E(Y |𝒞) ||| 𝒟

]
=
P

E(Y |𝒟), for all nonnegative Y with finite expectation and

σ(Y) ⊂ σ(𝒞, ℰ ).

(Proof p. 497)

In the next theorem, we assume Z ⟂⟂
P

Y |𝒞 and present an implication for the conditional

expectation EZ=z(Y |𝒞) (see ch. 14).

Theorem 16.38 [An implication of 𝒞-conditional P-independence]
Let Y: (Ω, 𝒜, P) → (R,ℬ) and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be random variables, let z ∈ Ω′

Z
with {z} ∈ 𝒜 ′

Z and P(Z=z) > 0, and let Y be nonnegative or such that EZ=z(Y) =
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∫ Y dPZ=z is finite. Furthermore, let 𝒞 ⊂ 𝒜 be a σ-algebra. If Z ⟂⟂
P

Y |𝒞, then
ℰ (Y |𝒞) ⊂ ℰZ=z(Y |𝒞), and therefore,

EZ=z(Y |𝒞) =
P Z=z

E(Y |𝒞) . (16.39)

(Proof p. 498)

Note that, even if Z ⟂⟂
P

Y |𝒞, then EZ=z(Y |𝒞) is not necessarily an element of ℰ (Y |𝒞),

because Equation (16.39) does not imply EZ=z(Y |𝒞) =
P

E(Y |𝒞). For 𝒞= {Ω, Ø}, Theo-

rem 16.38 implies the following corollary:

Corollary 16.39 [An implication of P-independence]
Let the assumptions of Theorem 16.38 hold. If Z ⟂⟂

P
Y, then,

EZ=z(Y) = E(Y). (16.40)

16.4 Families of events

Now we extend the concept of conditional independence to more than two events, more than
two sets of events, and more than two random variables.

Three events A1, A2, A3 are called 𝒞-conditionally P-independent, if

P(Ai ∩ Aj |𝒞) =
P

P(Ai |𝒞) ⋅ P(Aj |𝒞), ∀ i, j = 1, 2, 3, i ≠ j, (16.41)

(pairwise conditional independence), and

P(A1 ∩ A2 ∩ A3 |𝒞) =
P

P(A1 |𝒞) ⋅ P(A2 |𝒞) ⋅ P(A3 |𝒞) (16.42)

(triple-wise conditional independence). We use the notation

⟂⟂
P

A1, A2, A3 |𝒞

for 𝒞-conditional P-independence of A1, A2, A3. Four events are conditionally P-independent
if the corresponding product rule holds for all pairs, all triples, and the quadruple. The general
definition is as follows:
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Definition 16.40 [Conditional independence of a family of events]
Let (Ω, 𝒜, P) be a probability space, I be a nonempty set, Ai ∈ 𝒜, for all i ∈ I, and 𝒞 ⊂ 𝒜
be a σ-algebra. Then,

(i) (Ai, i ∈ I) is called a family of 𝒞-conditionally P-independent events,
denoted ⟂⟂

P
(Ai, i ∈ I) |𝒞, if

P
( ⋂

i∈J
Ai

||||
𝒞
)
=
P

∏
i∈J

P(Ai |𝒞), for all finite sets J ⊂ I. (16.43)

(ii) Let Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) be a random variable. Then, (Ai, i ∈ I) is called a
family of Z -conditionally independent events, denoted ⟂⟂

P
(Ai, i ∈ I) | Z,

if (16.43) holds for 𝒞= σ(Z).

16.5 Families of set systems

Using the concept of conditional P-independence of families of events, we can now define con-
ditional P-independence of families of set systems or of sets of events. Three sets ℰ1, ℰ2, ℰ3
of events are called 𝒞-conditionally P-independent if, for all i, j = 1, 2, 3, i ≠ j,

P(Ai ∩ Aj |𝒞) =
P

P(Ai |𝒞) ⋅ P(Aj |𝒞), ∀ (Ai, Aj) ∈ ℰi ×ℰj, (16.44)

and

P(A1 ∩ A2 ∩ A3 |𝒞) =
P

P(A1 |𝒞) ⋅ P(A2 |𝒞) ⋅ P(A3 |𝒞),

∀ (A1, A2, A3) ∈ ℰ1 ×ℰ2 ×ℰ3.
(16.45)

The general definition for a family (ℰi, i ∈ I) of sets of events is as follows:

Definition 16.41 [Conditional independence of a family of sets of events]
Let (Ω, 𝒜, P) be a probability space, I be a nonempty set, and ℰi ⊂ 𝒜, i ∈ I.

(i) Then, (ℰi, i ∈ I) is called a family of 𝒞-conditionally P-independent
sets of events, denoted ⟂⟂

P
(ℰi, i ∈ I) |𝒞, if each family (Ai, i ∈ I) of events

Ai ∈ ℰi, i ∈ I, is 𝒞-conditionally P-independent.

(ii) Furthermore, let Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) be a random variable. Then,
(ℰi, i ∈ I) is called a family of Z-conditionally P-independent sets
of events, denoted ⟂⟂

P
(ℰi, i ∈ I) | Z, if each family (Ai, i ∈ I) of events Ai ∈ ℰi,

i ∈ I, is Z-conditionally P-independent.

Remark 16.42 [Subfamilies] This definition immediately implies

⟂⟂
P

(ℰi, i ∈ I) |𝒞 ⇔ ∀ J ⊂ I : ⟂⟂
P

(ℰi, i ∈ J) |𝒞. (16.46)
⊲
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Remark 16.43 [Smallest σ-algebra] If 𝒞= {Ω, Ø}, then,

⟂⟂
P

(ℰi, i ∈ I) |𝒞 ⇔ ⟂⟂
P

(ℰi, i ∈ I) (16.47)

[see Eq. (10.2) and Remark 10.5]. Hence, P-independence of families of events (see Def. 4.40)
is a special case of 𝒞-conditional P-independence of families of events. ⊲

Theorem 16.44 [Conditional independence of ∩-stable set systems]
If (Ω, 𝒜, P) is a probability space, 𝒞 ⊂ 𝒜 is a σ-algebra, and (ℰi, i ∈ I) is a family of
∩-stable set systems with ℰi ⊂ 𝒜, i ∈ I, then,

⟂⟂
P

(ℰi, i ∈ I) |𝒞 ⇔ ⟂⟂
P

(σ(ℰi), i ∈ I) |𝒞. (16.48)

(Proof p. 499)

16.6 Families of random variables

Now we turn to the concept of conditional P-independence of (families of) random variables.
Three random variables X1, X2, and X3 are called 𝒞-conditionally P-independent if Equa-
tions (16.44) and (16.45) hold for ℰi = σ(Xi). Note that 𝒞-conditional P-independence of
X1, X2, and X3 implies that X1 and X2, X1 and X3, as well as X2 and X3 are 𝒞-conditionally
P-independent. Of course, the same applies to Z-conditional P-independence.

Definition 16.45 [Conditional independence of random variables]
Let I be a nonempty set, let Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ), i ∈ I, be random variables, and let

𝒞 ⊂ 𝒜 be a σ-algebra.

(i) (Xi, i ∈ I) is called a family of 𝒞-conditionally P-independent random
variables, denoted ⟂⟂

P
(Xi, i ∈ I) |𝒞, if

⟂⟂
P

(σ(Xi), i ∈ I) |𝒞. (16.49)

(ii) Let Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) be a random variable. Then (Xi, i ∈ I) is called
a family of Z -conditionally P-independent random variables, denoted
⟂⟂
P

(Xi, i ∈ I) | Z, if

⟂⟂
P

(σ(Xi), i ∈ I) | Z. (16.50)

Remark 16.46 [Conditional independence of subfamilies] If (Xi, i ∈ I) is a family
of 𝒞-conditionally P-independent random variables, that is, if ⟂⟂

P
(Xi, i ∈ I) |𝒞, then

⟂⟂
P

(Xi, i ∈ J) |𝒞, for all J ⊂ I, because in this case any finite subset of J is also a finite subset
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of I (cf. Def. 16.40). For example, if X1, X2, X3 are 𝒞-conditionally P-independent, then they
are also pairwise 𝒞-conditionally P-independent (cf. Rem. 5.40). ⊲

Now we consider conditional independence of n discrete random variables, generalizing
Corollary 16.19. Remember that a random variable Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ) is called discrete

if there is a finite or countable set Ω′
i0⊂ Ω′

i with PXi
(Ω′

i0) = 1 and {xi} ∈ 𝒜 ′
i for all xi ∈ Ω′

i0,
i = 1, … , n (see Def. 5.56).

Corollary 16.47 [Conditional independence of n discrete random variables]
Let Xi: (Ω, 𝒜, P) → (Ω′

i , 𝒜
′
i ), i = 1, … , n, be discrete random variables and let 𝒞 ⊂ 𝒜

be a σ-algebra. Then, ⟂⟂
P

(Xi, i = 1, … , n) |𝒞 if and only if

P(X1=x1, … , Xn=xn |𝒞) =
P

P(X1=x1 |𝒞) ⋅ … ⋅ P(Xn=xn |𝒞),

∀ (x1, … , xn) ∈ Ω′
10 ×… × Ω′

n0 .
(16.51)

(Proof p. 499)

Remark 16.48 [Conditioning on a random variable] If Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z), n = 2,
X1 = X, and X2 = Y , then (16.51) yields:

P(X=x, Y =y | Z) =
P

P(X=x | Z) ⋅ P(Y =y | Z), ∀ (x, y) ∈ Ω′
X0 × Ω′

Y0. (16.52)
⊲

Lemma 16.49 [Unions of independent σ-algebras]
Under the assumptions of Definition 16.45, let (Xi, i ∈ I) be a family of 𝒞-conditionally
P-independent random variables, let J be a nonempty set, and let {Ij, j ∈ J} be a set of
pairwise disjoint subsets of I. Then,

⟂⟂
P

(σ(Xi, i ∈ Ij), j ∈ J) |𝒞. (16.53)

(Proof p. 499)

If Y1, … , Ym: (Ω, 𝒜, P) → (R, ℬ) are discrete random variables and X is a random vari-
able on (Ω, 𝒜, P), then the following corollary presents a useful characterization of X-
conditional independence of the Y1, … , Ym.

Corollary 16.50 [X-conditional independence of discrete random variables]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable, let (Y1, … , Ym): (Ω, 𝒜, P) →

(Ω′
1 ×… × Ω′

m, 𝒜 ′
1⊗…⊗𝒜 ′

m) be a discrete multivariate random variable, and let Ω′
i0 ⊂

Ω′
i be finite or countable with P(Yi ∈ Ω′

i0) = 1, i = 1, … , n. Then the following proposi-
tions are equivalent to each other:
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(i) ⟂⟂
P

Y1, … , Ym | X.

(ii) For all i = 1, … , m and all y ∈ Ω′
i0:

P(Yi=y | X, Y1, … , Yi−1, Yi+1, … , Ym) =
P

P(Yi=y | X).

(iii) For all i = 2, … , m and all y ∈ Ω′
i0:

P(Yi=y | X, Y1, … , Yi−1) =
P

P(Yi=y | X).

(iv) For all i = 1, … , m − 1 and all y ∈ Ω′
i0:

P(Yi=y | X, Yi+1, … , Ym) =
P

P(Yi=y | X).

(Proof p. 500)

Example 16.51 [Joe and Ann with latent abilities – continued] Table 13.1 describes an
example in which three dichotomous variables Y1, Y2, Y3 satisfy the assumptions (13.36) and
(13.37) that define a Rasch model. Because Y is dichotomous with values 0 and 1, the second
of these assumptions,

P(Yi=1 | U, Y1, … , Yi−1, Yi+1, … , Ym) = P(Yi=1 | U), ∀ i = 1, … , m, (16.54)

is equivalent to ⟂⟂
P

(Y1, … , Ym) | U (see Cor. 16.50) and, because

P(Yi=0 | U, Y1, … , Yi−1, Yi+1, … , Ym) = 1 − P(Yi=1 | U, Y1, … , Yi−1, Yi+1, … , Ym),

also to

P(Yi=0 | U, Y1, … , Yi−1, Yi+1, … , Ym) = P(Yi=0 | U), ∀ i = 1, … , m.

Using the probabilities displayed in Table 13.1, Equation (4.2), and Notation (5.4), Equa-
tion (16.54) can be illustrated for i = 1 as follows:

P(Y1=1 | U=Joe, Y2=1, Y3=1) = P(Y1=1, U=Joe, Y2=1, Y3=1)
P(U=Joe, Y2=1, Y3=1)

= .0492
.0492 + .0492

= .5

= P(Y1=1 | U=Joe).
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Analogously, we obtain

P(Y1=1 | U=u, Y2=y2, Y3=y3) = P(Y1=1, U=u, Y2=y2, Y3=y3)
P(U=Joe, Y2=y2, Y3=y3)

= P(Y1=1 | U=u)

for all other combinations of values of U, Y2, and Y3. The corresponding equations for
P(Y2=1 | U=Joe, Y1, Y3) and P(Y3=1 | U=Joe, Y1, Y2), which are also assumed with
(16.54), can be checked analogously.

Assumptions (13.36) and (13.37) and the definition of 𝜉 [see (13.38)] also imply 𝜉-
conditional independence of the random variables Y1, … , Ym, that is, they imply

P(Yi=1 | 𝜉, Y1, … , Yi−1, Yi+1, … , Ym) = P(Yi=1 | 𝜉), ∀ i = 1, … , m (16.55)

(see Exercise 16.5), which is equivalent to

∀ J ⊂ {1, … , m}, ∀ yi ∈ {0, 1}: P
( ⋂

i∈J
{Yi = yi}

||||
𝜉

)
=
∏
i∈J

P(Yi = yi | 𝜉) (16.56)

(see Exercise 16.6).
Applying Equation (16.56) for J = {1, 2, 3} and Equation (13.40) to the conditional prob-

abilities P(Yi=1 | U) = P(Yi=1 | 𝜉) displayed in Table 13.1 yields the functions

P(Y1=0, Y2=1, Y3=1 | 𝜉) = P(Y1=0 | 𝜉) ⋅ P(Y2=1 | 𝜉) ⋅ P(Y3=1 | 𝜉)

=
(

1 − exp(𝜉 − β1)
1 + exp(𝜉 − β1)

)
⋅

exp(𝜉 − β2)
1 + exp(𝜉 − β2)

⋅
exp(𝜉 − β3)

1 + exp(𝜉 − β3)

(see Fig. 16.1), where the difficulty parameters βi have been computed in Equation (13.42).
The conditional probabilities P(Y1=1, Y2=0, Y3=1 | 𝜉) and P(Y1=1, Y2=1, Y3=0 | 𝜉) are
computed analogously.

These functions are called likelihood functions. The graphs of these functions in Fig-
ure 16.1 illustrate that the most likely ability parameter of a person solving exactly two
items is the value of 𝜉 at which the functions P(Y1=y1, Y2=y2, Y3=y3 | 𝜉) have their
maximum.

The likelihood functions can also be used for the estimation of the ability of a person,
for which the score pattern (0, 1, 1), (1, 0, 1), or (1, 1, 0) is observed. The value of 𝜉 (ability)
at which these functions have their maximum, the maximum likelihood estimate, is the most
likely ability score of such a person. For each value of 𝜉 other than this maximum likelihood
estimate, the probability of such a score pattern is smaller. ⊲
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−4 − 6422

0.1

0.3

ξ

P (Y1 =1, Y2 =1, Y3 =0 | ξ )

P (Y1 =0, Y2 =1, Y3 =1 | ξ )

P (Y1 =1, Y2 =0, Y3 =1 | ξ )

Figure 16.1 Likelihood functions for the response patterns of three variables Yi satisfying
the Rasch model.

16.7 Proofs

Proof of Lemma 16.4

If B ∈ 𝒞, then 1B is (𝒞, ℬ)-measurable (see Example 2.12). Hence,

P(A ∩ B |𝒞) =
P

E(1A∩B |𝒞)

=
P

E(1A ⋅ 1B |𝒞) [(1.33)]

=
P

E(1A |𝒞) ⋅ 1B [Box 10.1 (xiv)]

=
P

E(1A |𝒞) ⋅ E(1B |𝒞). [Box 10.1 (vii)]

If we assume A ∈ 𝒞, then the proof is analogous, exchanging the roles of A and B. Proposition
(16.5) is an immediate implication of (16.4).

Proof of Corollary 16.6

A ⟂⟂
P

B | Z

⇔ P(A ∩ B | Z) =
P

P(A | Z) ⋅ P(B | Z) [Def. 16.2 (ii)]

⇔ P(A ∩ B | Z=z) = P(A | Z=z) ⋅ P(B | Z=z), for PZ-a.a. z ∈ Ω′
Z . [Cor. 10.39 (i)]

Proof of Lemma 16.12

(i) σ(𝒟) ⟂⟂
P
σ(ℰ ) |𝒞 ⇒ 𝒟 ⟂⟂

P
ℰ |𝒞 follows from Definition 16.10 (i), because 𝒟 ⊂ σ(𝒟)

and ℰ ⊂ σ(ℰ ).
(ii)𝒟 ⟂⟂

P
ℰ |𝒞 ⇒ σ(𝒟) ⟂⟂

P
σ(ℰ ) |𝒞. Assume𝒟 ⟂⟂

P
ℰ |𝒞, apply Equation (10.2), and define

the set of events

ℱ := {A ∈ 𝒜 : ∀ B ∈ ℰ : E(1A ⋅ 1B |𝒞) =
P

E(1A |𝒞) ⋅ E(1B |𝒞)}.



494 PROBABILITY AND CONDITIONAL EXPECTATION

The assumption implies 𝒟 ⊂ ℱ. Now we show (a) Ω ∈ ℱ and (b) ℱ is closed under com-
plement and (c) closed under countable disjoint union, that is, ℱ is a Dynkin system (see
Def. 1.40).
(a) Because 1Ω = 1, for all B ∈ ℰ,

E(1Ω ⋅ 1B |𝒞) =
P

E(1 ⋅ 1B |𝒞)

=
P

1 ⋅ E(1B |𝒞) [Box 10.1 (iii)]

=
P

E(1 |𝒞) ⋅ E(1B |𝒞) [Box 10.1 (i)]

=
P

E(1Ω |𝒞) ⋅ E(1B |𝒞).

Hence, Ω ∈ ℱ.
(b) Assume that A ∈ ℱ. Then, for all B ∈ ℰ,

E(1Ac ⋅ 1B |𝒞) =
P

E[(1 − 1A) ⋅ 1B |𝒞]

=
P

E(1B |𝒞) − E(1A ⋅ 1B |𝒞) [Box 10.1 (xvi)]

=
P

E(1B |𝒞) − E(1A |𝒞) ⋅ E(1B |𝒞) [def. of ℱ]

=
P

[1 − E(1A |𝒞)] ⋅ E(1B |𝒞)

=
P

E(1 − 1A |𝒞) ⋅ E(1B |𝒞) [Box 10.1 (i), (xvi)]

=
P

E(1Ac |𝒞) ⋅ E(1B |𝒞).

Hence, A ∈ ℱ implies Ac ∈ ℱ.
(c) Assume A1, A2, … ∈ ℱ and Ai ∩ Aj = Ø for i ≠ j. Then, for all B ∈ ℰ,

E

(
1⋃∞

i=1 Ai
⋅ 1B

||||
𝒞
)

=
P

E

[( ∞∑

i=1
1Ai

)
⋅ 1B

|||||
𝒞

]
[(1.37)]

=
P

E

(
∞∑

i=1
(1Ai

⋅ 1B)
||||
𝒞

)

=
P

∞∑

i=1
E(1Ai

⋅ 1B |𝒞) [Th. 10.21 (ii)]

=
P

∞∑

i=1
E(1Ai

|𝒞) ⋅ E(1B |𝒞) [def. of ℱ]

=
P

E

(
∞∑

i=1
1Ai

||||
𝒞

)
⋅ E(1B |𝒞) [Th. 10.21 (ii)]

=
P

E
(

1⋃∞
i=1 Ai

||||
𝒞
)
⋅ E(1B |𝒞). [(1.37)]

Hence,
⋃∞

i=1 Ai ∈ ℱ. This proves that ℱ is a Dynkin system (see Def. 1.40). Because 𝒟 ⊂ ℱ,
we can conclude 𝛿(𝒟) ⊂ ℱ, where 𝛿(𝒟) denotes the Dynkin system generated by 𝒟, that is,
the smallest Dynkin system that contains 𝒟 (see Rem. 1.14). According to Theorem 1.41 (ii),
∩-stability of 𝒟 implies 𝛿(𝒟) = σ(𝒟). Hence, σ(𝒟) ⊂ ℱ.

Now we have shown: 𝒟⟂⟂
P
ℰ |𝒞 ⇒ σ(𝒟) ⟂⟂

P
ℰ |𝒞. Because σ(𝒟) ⟂⟂

P
ℰ |𝒞 ⇔

ℰ⟂⟂
P
σ(𝒟) |𝒞, this also implies σ(𝒟) ⟂⟂

P
ℰ |𝒞 ⇒ σ(𝒟) ⟂⟂

P
σ(ℰ ) |𝒞.
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Proof of Theorem 16.22

ℰ⟂⟂
P
𝒟 |𝒞

⇔ E(1A ⋅ 1B |𝒞) =
P

E(1A |𝒞) ⋅ E(1B |𝒞), ∀ (A, B) ∈ ℰ ×𝒟 [(10.2), Def. 16.10 (i)]

⇔ E(1A ⋅ W |𝒞) =
P

E(1A |𝒞) ⋅ E(W |𝒞), ∀ A ∈ ℰ and all nonnegative 𝒟 -measurable W

⇔ E(1A |𝒞, 𝒟 ) =
P

E(1A |𝒞), ∀ A ∈ ℰ [Th. 10.51]

⇔ P(A |𝒞, 𝒟 ) =
P

P(A |𝒞), ∀ A ∈ ℰ . [(10.2)]

The equivalence of the second and third propositions is obtained by using the proof of Theorem
16.32, with W taking the role of X, where W = ∑∞

i=1 αi1Ai
and Y = 1A.

Proof of Theorem 16.26

⇒ This is an implication of Corollary 16.24.
⇐ For A′

Y ∈ 𝒜 ′
Y , define A′

Y0 := A′
Y ∩ Ω′

Y0, which is finite or countable. Then, 1Y ∈A′
Y
=
P

1Y ∈A′
Y0

.

Furthermore,

P(Y=y |𝒞, 𝒟 ) =
P

P(Y =y |𝒞), ∀ y ∈ Ω′
Y0

⇒ E

(
∑

y∈ A′
Y0

1Y =y

|||||
𝒞, 𝒟

)
=
P

E

(
∑

y∈ A′
Y0

1Y =y

|||||
𝒞

)
[(10.2), Th. 10.21 (ii)]

⇒ E(1Y ∈A′
Y0
|𝒞, 𝒟 ) =

P
E(1Y ∈A′

Y0
|𝒞) [(1.36) (1.37)]

⇒ E(1Y ∈A′
Y
|𝒞, 𝒟 ) =

P
E(1Y ∈A′

Y
|𝒞) [Box 10.1 (ix)]

⇒ Y ⟂⟂
P
𝒟 |𝒞. [(10.2), Th. 16.22]

Proof of Theorem 16.32

Case 1: X and Y nonnegative. If X: (Ω, 𝒜, P) → (R, ℬ) is a nonnegative random variable,
then it is also (σ(X), ℬ)-measurable, and therefore, according to Theorem 3.39 (ii), there are
a sequence A1, A2, … ∈ σ(X) and a sequence of nonnegative real numbers α1, α2, … such that
X = ∑∞

i=1 αi1Ai
. Analogously, a nonnegative random variable Y can be represented as Y =∑∞

j=1 βj1Bj
, βj ≥ 0, Bj ∈ σ(Y), j ∈ N. Hence,

E(X ⋅ Y |𝒞) =
P

E

(
∞∑

i=1
αi1Ai

⋅
∞∑

j=1
βj1Bj

|||||
𝒞

)

=
P

E

(
∞∑

i=1

∞∑

j=1
αiβj1Ai

⋅ 1Bj

|||||
𝒞

)

=
P

∞∑

i=1

∞∑

j=1
αiβj E(1Ai

⋅ 1Bj
|𝒞) [Th. 10.21 (ii), Box 10.1 (iii)]

=
P

∞∑

i=1

∞∑

j=1
αiβj E(1Ai

|𝒞) ⋅ E(1Bj
|𝒞) [σ(X) ⟂⟂

P
σ(Y) |𝒞 ]

=
P

E

(
∞∑

i=1
αi1Ai

|||||
𝒞

)
⋅ E

(
∞∑

j=1
βj1Bj

|||||
𝒞

)
[Th. 10.21 (ii), Box 10.1 (iii)]

=
P

E(X |𝒞) ⋅ E(Y |𝒞).
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Case 2: Let X+, Y+ and X−, Y− be the positive and negative parts of X and Y (see Def.
2.62). These functions are nonnegative and measurable. Note that σ(X+), σ(X−) ⊂ σ(X) and
σ(Y+), σ(Y−) ⊂ σ(Y) (see Th. 2.66). Hence, (16.33) holds for the four pairs of random vari-
ables (X+, Y+), (X+, Y−), (X−, Y+), and (X−, Y−). If E(X) and E(Y) are finite, then E(X+),
E(X−), E(Y+), and E(Y−) are finite as well, and according to Box 10.1 (x), there are real-valued
versions of the conditional expectations that are used in the following equations. Because
X = X+ − X− and Y = Y+ − Y−, it can be shown that (16.33) also holds if we assume finite
expectations:

E(X |𝒞) ⋅ E(Y |𝒞)

=
P

E(X+ − X− |𝒞) ⋅ E(Y+ − Y− |𝒞)

=
P

[E(X+ |𝒞) − E(X− |𝒞)] ⋅ [E(Y+ |𝒞) − E(Y− |𝒞)] [Box 10.1 (xvi)]

=
P

E(X+ |𝒞) ⋅ E(Y+ |𝒞) − E(X+ |𝒞) ⋅ E(Y− |𝒞)

− E(X− |𝒞) ⋅ E(Y+ |𝒞) + E(X− |𝒞) ⋅ E(Y− |𝒞)

=
P

E(X+ ⋅ Y+ |𝒞) − E(X+ ⋅ Y− |𝒞) − E(X− ⋅ Y+ |𝒞) + E(X− ⋅ Y− |𝒞) [(16.33)]

=
P

E(X+ ⋅ Y+ + X+ ⋅ Y− − X− ⋅ Y+ + X− ⋅ Y− |𝒞 ) [Box 10.1 (xvi)]

=
P

E[(X+ − X−) ⋅ (Y+ − Y−) |𝒞 ]

=
P

E(X ⋅ Y |𝒞).

Proof of Theorem 16.34

Part 1. If Y: (Ω, 𝒜, P) → (R,ℬ) is nonnegative, then it is also (σ(Y),ℬ)-measurable, and there-
fore, according to Theorem 3.19 (ii), there is a sequence A1, A2, … ∈ σ(Y) and a sequence of
nonnegative real numbers α1, α2, … such that

Y =
∞∑

i=1
αi 1Ai

, αi ≥ 0, Ai ∈ σ(Y).

Hence, if σ(Y) ⊂ ℰ, then

ℰ⟂⟂
P
𝒟 |𝒞 ⇒ P(A |𝒞, 𝒟) =

P
P(A |𝒞), ∀ A ∈ ℰ [(16.23)]

⇒
∞∑

i=1
αi E(1Ai

|𝒞, 𝒟) =
P

∞∑

i=1
αi E(1Ai

|𝒞) [(10.2), (2.39)]

⇒ E

(
∞∑

i=1
αi 1Ai

||||
𝒞, 𝒟

)
=
P

E

(
∞∑

i=1
αi E(1Ai

|𝒞)

)
[Th. 10.21 (ii)]

⇒ E(Y |𝒞, 𝒟) =
P

E(Y |𝒞). [Th. 3.19 (ii)]

Part 2. If Y has a finite expectation, we use the positive part Y+ and the negative part
Y− of

Y = Y+− Y−
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(see Rem. 2.62). Because both Y+ and Y− are nonnegative and σ(Y+) ⊂ σ(Y) ⊂ ℰ, σ(Y−) ⊂

σ(Y) ⊂ ℰ, we can use Part 1 of this proof. Hence,

E(Y |𝒞, 𝒟) =
P

E(Y+− Y− |𝒞, 𝒟) [Rem. 2.62]

=
P

E(Y+ |𝒞, 𝒟) − E(Y− |𝒞, 𝒟) [Box 10.1 (xvi)]

=
P

E(Y+ |𝒞) − E(Y− |𝒞) [Part 1]

=
P

E(Y+− Y− |𝒞) [Box 10.1 (xvi)]

=
P

E(Y |𝒞). [Rem. 2.62]

Proof of Theorem 16.37

We thank Ernesto San Martin for hinting at proposition (iv). In this proof, we use the notation
Y ∈ ⟨ℰ⟩+ for ‘Y is nonnegative and σ(Y) ⊂ ℰ ’.

(i) ⇒ (ii) This implication immediately follows from Theorem 16.34.
(ii) ⇒ (i)

(ii) ⇒ ∀ B ∈ ℰ: E(1B |𝒞, 𝒟) =
P

E(1B |𝒞) [1B ∈ ⟨ℰ⟩+]

⇒ ∀ B ∈ ℰ: P(B |𝒞, 𝒟) =
P

P(B |𝒞) [(10.2)]

⇒ ℰ⟂⟂
P
𝒟 |𝒞. [(16.23)]

(ii) ⇔ (iii) This immediately follows from Theorem 10.51.
(iv) ⇒ (iii) Let W, X, Y: (Ω, 𝒜, P) → (R, ℬ) be random variables. Then, for all

X ∈ ⟨𝒞 ⟩+, W ∈ ⟨𝒟 ⟩+, Y ∈ ⟨ℰ⟩+,

E[X ⋅ E(W ⋅ Y |𝒞)]
= E[E(X ⋅ W ⋅ Y |𝒞)] [Box 10.1 (xiv)]

= E(X ⋅ W ⋅ Y) [Box 10.1 (iv)]

= E[E(X ⋅ W ⋅ Y |𝒟)] [Box 10.1 (iv)]

= E[W ⋅ E(X ⋅ Y |𝒟)] [Box 10.1 (xiv)]

= E(W ⋅ E[E(X ⋅ Y |𝒞) |𝒟]) [(iv), σ(X ⋅ Y) ⊂ σ(𝒞, ℰ )]

= E(E[W ⋅ E(X ⋅ Y |𝒞) |𝒟]) [σ(W) ⊂ σ(𝒟), Box 10.1 (xiv)]

= E(W ⋅ E(X ⋅ Y |𝒞)) [Box 10.1 (iv)]

= E(E[W ⋅ E(X ⋅ Y |𝒞) |𝒞]) [Box 10.1 (iv)]

= E(X ⋅ E(W |𝒞) ⋅ E(Y |𝒞)). [σ(X), σ(E(Y |𝒞)) ⊂ 𝒞, Box 10.1 (xiv)]

Because this equation holds for all X ∈ ⟨𝒞 ⟩+, it also holds for all 1C, C ∈ 𝒞, and using Defi-
nition 10.2 (b) we conclude: E(W ⋅ Y |𝒞) =

P
E(W |𝒞) ⋅ E(Y |𝒞).
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(i) ⇒ (iv) Note that we have already shown that (i) and (ii) are equivalent to each other.
Therefore, we can use (ii) in this part of the proof. For all nonnegative random variables Y
with finite expectation and σ(Y) ⊂ σ(𝒞, ℰ ),

ℰ⟂⟂
P
𝒟 |𝒞

⇒ σ(𝒞, ℰ ) ⟂⟂
P
𝒟 |𝒞 [Box 16.2 (vii)]

⇒ E(Y |𝒞) =
P

E(Y |𝒞, 𝒟 ) [(ii)]

⇒ E[E(Y |𝒞) |𝒟] =
P

E[E(Y |𝒞, 𝒟) |𝒟] [Box 10.1 (ix)]

⇒ E[E(Y |𝒞) |𝒟] =
P

E(Y |𝒟). [Box 10.1 (v)]

Proof of Theorem 16.38

EZ=z(Y |𝒞) and E(Y |𝒞) are both 𝒞-measurable. Hence, it suffices to show that condition
(b) of Definition 14.7 holds for E(Y |𝒞), that is, it suffices to show

EZ=z[1C ⋅ E(Y |𝒞)] = EZ=z(1C ⋅ Y), ∀ C ∈ 𝒞. (16.57)

Now,

E[1A ⋅ E(Y |𝒞, Z)] = E(1A ⋅ Y), ∀ A ∈ σ(𝒞, Z). [Def. 10.2 (b)]

Because, for C ∈ σ(𝒞, Z), {Z=z} ∩ C ∈ σ(𝒞, Z), and 1{Z=z}∩C = 1Z=z ⋅ 1C, Definition
10.2 (b) implies

E[1Z=z ⋅ 1C ⋅ E(Y |𝒞, Z)] = E(1Z=z ⋅ 1C ⋅ Y), ∀ C ∈ 𝒞.

Dividing both sides by P(Z=z) yields

1
P(Z=z)

E[1Z=z ⋅ 1C ⋅ E(Y |𝒞, Z)] = 1
P(Z=z)

E(1Z=z ⋅ 1C ⋅ Y), ∀ C ∈ 𝒞,

which, according to Equation (9.11), is equivalent to

EZ=z[1C ⋅ E(Y |𝒞, Z)] = EZ=z(1C ⋅ Y), ∀ C ∈ 𝒞.

According to Theorem 16.34, assuming Z ⟂⟂
P

Y |𝒞 implies E(Y |𝒞, Z) =
P

E(Y |𝒞) and

Corollary 5.22 yields E(Y |𝒞, Z) =
P Z=z

E(Y |𝒞). Now, Equation (16.57) follows from

Box 6.1 (viii).
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Proof of Theorem 16.44

⇐ This proposition immediately follows from Definition 16.41 (i).
⇒ If (ℰi, i ∈ I) is a family of ∩-stable set systems with ℰi ⊂ 𝒜, i ∈ I, and J ⊂ I is finite, then,

⟂⟂
P

(ℰi, i ∈ I) |𝒞 ⇒ ⟂⟂
P

(ℰi, i ∈ J) |𝒞 [(16.46)]

⇒ ⟂⟂
P

(σ(ℰi), i ∈ J) |𝒞.

This last implication follows from repeatedly applying (ii) (b) of the proof of Lemma 16.12.
Because the implications above hold for all finite J ⊂ I, this yields ⟂⟂

P
(σ(ℰi), i ∈ I) |𝒞.

Proof of Corollary 16.47

⟂⟂
P

(Xi, i = 1, … , n) |𝒞 ⇒ (16.51) immediately follows from Definitions 16.45 and 16.41,

because {Xi=xi} ∈ X −1
i (𝒜 ′

i ) for all xi ∈ Ω′
i0, i = 1, … , n.

(16.51) ⇒ ⟂⟂
P

(Xi, i = 1, … , n) |𝒞. For i = 1, … , n, let A′
i ∈ 𝒜 ′

i and A′
i0 := A′

i ∩ Ω′
i0,

which implies that the A′
i0 are finite or countable. Then,

1Xi∈ A′
i
=
P

1Xi∈ A′
i0

∀ i = 1, … , n. (16.58)

Furthermore,

P(X1 ∈ A′
1, … , Xn ∈ A′

n |𝒞)

=
P

E(1X1∈ A′
10
⋅… ⋅ 1Xn∈ A′

n0
|𝒞) [(16.58), Box 10.1 (ix)]

=
P

E

(
∑

x1∈A′
10

…
∑

xn∈A′
n0

1X1 =x1
⋅… ⋅ 1Xn =xn

||||
𝒞

)
[(1.36) (1.37)]

=
P

∑

x1∈A′
10

…
∑

xn∈A′
n0

E(1X1 =x1
⋅… ⋅ 1Xn =xn

|𝒞) [Th. 10.21 (ii)]

=
P

∑

x1∈A′
10

…
∑

xn∈A′
n0

E(1X1 =x1
|𝒞) ⋅… ⋅ E(1Xn =xn

|𝒞) [(16.51)]

=
P

(
∑

x1∈A′
10

E(1X1 =x1
|𝒞)

)
⋅ … ⋅

(
∑

xn∈A′
n0

E(1Xn =xn
|𝒞)

)

=
P

E

(
∑

x1∈A′
10

1X1 =x1

||||
𝒞

)
⋅ … ⋅ E

(
∑

xn∈A′
n0

1Xn =xn

||||
𝒞

)
[Th. 10.21 (ii)]

=
P

E(1X1∈ A′
10
|𝒞) ⋅… ⋅ E(1Xn∈ A′

n0
|𝒞) [(1.36) (1.37)]

=
P

P(X1 ∈ A′
1 |𝒞) ⋅… ⋅ P(Xn ∈ A′

n |𝒞). [(16.58), Box 10.1 (ix)]

Now, Remark 16.46 yields the result.

Proof of Lemma 16.49

This proof is analogous to the proof of Theorem 6.5 of Bauer (1996). For all j ∈ J, consider

ℰj :=

{
n⋂

k=1
Aik

: Aik
∈ σ(Xik

), {i1, … , in} ⊂ Ij, n ∈ N

}
.
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The set system ℰj is ∩-stable because the intersection of two finite intersections of sets is
again a finite intersection, and the σ-algebras σ(Xik

) are ∩-stable as well. Furthermore, if
⟂⟂
P

(σ(Xi), i ∈ I) |𝒞, then according to Definitions 16.45 (i) and 16.41,

⟂⟂
P

(ℰj, j ∈ J) |𝒞,

because the intersection of finitely many sets that are finite intersections is again an intersection
of finitely many sets. Because ℰj ⊂ σ(Xi, i ∈ Ij) for all j ∈ J and σ(Xi) ⊂ ℰj for all i ∈ Ij, j ∈ J,
we can conclude σ(ℰj) = σ(Xi, i ∈ Ij) (see Rem. 2.39 and Def. 1.13). Therefore, applying The-
orem 16.44 completes the proof.

Proof of Corollary 16.50

(i) ⇒ (ii) For all i = 1, … , m and all yi ∈ Ω′
i0,

⟂⟂
P

Y1, … , Ym | X

⇒ Yi ⟂⟂P σ(Y1, … , Yi−1, Yi+1, … , Ym) | X [Def. 16.45, Lemma 16.49]

⇒ 1Yi =yi
⟂⟂
P
σ(Y1, … , Yi−1, Yi+1, … , Ym) | X [σ(1Yi =yi

) ⊂ σ(Yi)]

⇒ P[Yi=yi | X, σ(Y1, … , Yi−1, Yi+1, … , Ym)] =
P

P(Yi=yi | X) [(10.4), (16.37)]

⇒ P(Yi=yi | X, Y1, … , Yi−1, Yi+1, … , Ym) =
P

P(Yi=yi | X).

The last implication follows from

σ[σ(Y1, … , Yi−1, Yi+1, … , Ym) ∪ σ(X)] = σ(Y1, … , Yi−1, Yi+1, … , Ym, X).

(ii) ⇒ (iv) For all i = 1, … , m and all yi ∈ Ω′
i0,

P(Yi=yi | X, Y1, … , Yi−1, Yi+1, … , Ym) =
P

P(Yi=yi | X)

⇒ E
(
E(1Yi =yi

| X, Y1, … , Yi−1, Yi+1, … , Ym) ||| X, Yi+1, … , Ym

)

=
P

E
(
E(1Yi =yi

| X) ||| X, Yi+1, … , Ym

)
[(10.4), Box 10.2 (ix)]

⇒ E(1Yi =yi
| X, Yi+1, … , Ym) =

P
E(1Yi =yi

| X) [Box 10.2 (v), (xiv), (i)]

⇒ P(Yi=yi | X, Yi+1, … , Ym) =
P

P(Yi=yi | X). [(10.4)]

(iv) ⇒ (i) If

P(Yi=yi | X, Yi+1, … , Ym) =
P

P(Yi=yi | X), ∀ yi ∈ Ω′
i0, ∀ i = 1, … , m − 1,

then (10.4) and Th. 16.37 (ii) and (iii) [with ℰ = σ(1Yi =yi
), 𝒞= σ(X), 𝒟 = σ(Yi+1, … , Ym)]

imply

E(1Yi =yi
⋅ 1Yi+1 =yi+1

⋅… ⋅ 1Ym =ym
| X) =

P
E(1Yi =yi

| X) ⋅ E(1Yi+1 =yi+1
⋅… ⋅ 1Ym =ym

| X),

∀ yj ∈ Ω′
j0, j = i + 1, … m, ∀ i = 1, … , m − 1 .
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Sequential application of this implication for i = 1, … , m − 1 yields

E(1Y1 =y1
⋅…⋅1Ym =ym

| X) =
P

E(1Y1 =y1
| X)⋅…⋅E(1Ym =ym

| X), ∀ yj ∈ Ω′
j0, j = 1, … , m.

According to (10.4), this in turn implies

P(Y1=y1, … , Ym=ym | X) =
P

m∏
i=1

P(Yi=yi | X), ∀ yj ∈ Ω′
j0, j = 1, … m.

Now Corollary 16.47 yields

⟂⟂
P

Y1, … , Ym | X.

(ii) ⇒ (iii) This proof is analogous to the proof of (ii) ⇒ (iv), where the role of Yi+1, … , Ym
is taken by Y1, … , Yi−1, and the role of i = 1, … , m − 1 by i = 2, … , m.

(iii) ⇒ (i) This proof is analogous to the proof of (iv) ⇒ (i), where again the role of
Yi+1, … , Ym is taken by Y1, … , Yi−1, and the role of i = 1, … , m − 1 by i = 2, … , m.

Exercises

16.1 Prove proposition (16.9).

16.2 Prove proposition (16.12).

16.3 Prove the propositions of Box 16.2.

16.4 Comparing the columns for P(Y =1 | X, U) and P(Y =1 | U) in Table 16.1 reveals
that P(Y=1 | X, U) =

P
P(Y=1 | U). Show that this implies P(Y =0 | X, U) =

P
P(Y =0 | U).

16.5 Show that Assumptions (13.36) and (13.37) and the definition of 𝜉 imply Equation
(16.55).

16.6 Show that Equations (16.55) and (16.56) are equivalent to each other.

Solutions

16.1 If Z =
P
α, α ∈ Ω′

Z , then,

A ⟂⟂
P

B | Z

⇔ P(A ∩ B | Z=α) = P(A | Z=α) ⋅ P(B | Z=α) [Cor. 16.6, P(Z=α) = 1]
⇔ P(A ∩ B) = P(A) ⋅ P(B) [Rem. 10.35, Def. 4.12, P(Z=α) = 1]
⇔ A ⟂⟂

P
B. [Def. 4.37 (i)]

16.2 𝒟⟂⟂
P
ℰ | Z ⇔ ∀ (A, B) ∈ 𝒟 ×ℰ : A, B⟂⟂

P
| Z [Def. 16.10 (ii)]

⇔ ∀ (A, B) ∈ 𝒟 ×ℰ : A ⟂⟂
P

B [Z =
P
α, (16.9)]

⇔ 𝒟⟂⟂
P
ℰ. [Def. 4.40]
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16.3 (i) This proposition follows from Definitions 16.2 (i) and 16.10 (i) of conditional
independence and commutativity of ∩ and multiplication.

(ii) This proposition follows from monotonicity of generated σ-algebras (see Def.
1.13 and Rem. 1.23).

(iii) If ⟂⟂
P
𝒟1, 𝒟2, 𝒟3, then, according to Equation (4.23),

𝒟i ⟂⟂P 𝒟j, i ≠ j, i, j = 1, 2, 3. (16.59)

Furthermore, Equations (4.23) and Equation (4.24) yield

{
A ∩ B: (A, B) ∈ 𝒟1 ×𝒟2

}
⟂⟂
P
𝒟3. (16.60)

Hence, for all (A, B) ∈ 𝒟1 ×𝒟2,

P(A ∩ B |𝒟3) =
P

E(1A∩B |𝒟3) [(10.2)]

=
P

E(1A∩B) [(16.60), Box 10.1 (vi)]

= E(1A ⋅ 1B) [(1.33)]
= E(1A) ⋅ E(1B) [(16.59), Box 6.1 (x)]
=
P

E(1A |𝒟3) ⋅ E(1B |𝒟3) [(16.59), Box 10.1 (vi)]

=
P

P(A |𝒟3) ⋅ P(B |𝒟3), [(10.2)]

that is, 𝒟1 ⟂⟂
P
𝒟2 |𝒟3.

(iv) This is an implication of Corollary 16.4.

(v) This is a special case of (iv).

(vi)

ℰ⟂⟂
P
ℱ |𝒞 ⇒ A ⟂⟂

P
B |𝒞, ∀ (A, B) ∈ ℰ ×ℱ [Def. 16.10 (i)]

⇒ A ⟂⟂
P

B |𝒞, ∀ (A, B) ∈ ℰ ×𝒢 [𝒢 ⊂ ℱ]

⇒ ℰ⟂⟂
P
𝒢 |𝒞. [Def. 16.10 (i)]

(vii) Using σ[𝒞, σ(𝒞, 𝒟2)] = σ(𝒞, 𝒟2) [see Eq. (1.13)] yields

𝒟1 ⟂⟂
P
𝒟2 |𝒞 ⇔ P(A |𝒞, 𝒟2) =

P
P(A |𝒞), ∀ A ∈ 𝒟1 [Th. 16.22]

⇔ P[A |𝒞, σ(𝒞, 𝒟2)] =
P

P(A |𝒞), ∀ A ∈ 𝒟1

⇔ 𝒟1 ⟂⟂
P
σ(𝒞, 𝒟2) |𝒞. [Th. 16.22]

(viii) ⇒

ℰ⟂⟂
P
σ(𝒟1, 𝒟2) |𝒞 ⇒ ℰ⟂⟂

P
𝒟1 |𝒞, [Box 16.2 (vi)]
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and using σ[𝒞, σ(𝒟1, 𝒟2)] = σ[𝒟2, σ(𝒟1, 𝒞)] (see Rem. 1.16) yields

ℰ⟂⟂
P
σ(𝒟1, 𝒟2) |𝒞 and ℰ⟂⟂

P
𝒟1 |𝒞

⇒ P[A |𝒞, σ(𝒟1, 𝒟2)] =
P

P(A |𝒞) and P(A |𝒞, 𝒟1) =
P

P(A |𝒞), ∀ A ∈ ℰ

[Th. 16.22]
⇒ P[A |𝒟2, σ(𝒟1, 𝒞)] =

P
P(A |𝒞, 𝒟1), ∀ A ∈ ℰ [Rem. 2.73 (iii)]

⇒ ℰ⟂⟂ 𝒟2 | σ(𝒟1, 𝒞). [16.2 (ii)]

⇐

ℰ⟂⟂
P
𝒟1 |𝒞 and ℰ⟂⟂

P
𝒟2 | σ(𝒞, 𝒟1)

⇒ P(A |𝒞, 𝒟1) =
P

P(A |𝒞) and P[A |𝒞, σ(𝒟1, 𝒟2)] =
P

P(A |𝒞, 𝒟1), ∀ A ∈ ℰ

[(1.13), Th. 16.22]
⇒ P[A |𝒞, σ(𝒟1, 𝒟2)] =

P
P(A |𝒞), ∀ A ∈ ℰ [Rem. 2.73 (iii)]

⇒ ℰ⟂⟂
P
σ(𝒟1, 𝒟2) |𝒞. [Th. 16.22]

(ix) This proposition immediately follows from (viii) for 𝒞 = {Ω, Ø}.

(x)

ℱ ⟂⟂
P
𝒢 |𝒞 ⇒ σ(ℱ, ℱ0) ⟂⟂

P
𝒢 |𝒞 [ℱ0 ⊂ ℱ, σ(ℱ0, ℱ ) = ℱ]

⇒ ℱ ⟂⟂
P
𝒢 | σ(𝒞, ℱ0) [(viii)]

⇒ ℱ ⟂⟂
P
σ(𝒢, 𝒢0) | σ(𝒞, ℱ0) [𝒢0 ⊂ 𝒢 , σ(𝒢0, 𝒢 ) = 𝒢]

⇒ ℱ ⟂⟂
P
𝒢 | σ(𝒞, ℱ0, 𝒢0).

[(viii), σ[σ(𝒞, ℱ0), 𝒢0] = σ(𝒞, ℱ0, 𝒢0), Rem. 1.16]

(xi) First of all, note that for i = 1, 2,

∀ A′∈ 𝒜 ′
X ∀ ω ∈ Ω: 1A′ [Xi(ω)] = 1X−1

i (A′)(ω),

and

{ω ∈ Ω: 1A′ [X1(ω)] ≠ 1A′ [X2(ω)]} ⊂ {ω ∈ Ω: X1(ω) ≠ X2(ω)}. (16.61)

Now, for all A ∈ σ(X2), let A′denote an element of 𝒜 ′
X for which A = X−1

2 (A′).
Then,

∀ A ∈ σ(X2): 1A = 1X−1
2 (A′), (16.62)
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and, for all A ∈ σ(X2) and all B ∈ ℰ,

P(A ∩ B |𝒞) =
P

E(1A ⋅ 1B |𝒞) [(10.2), (1.33)]

=
P

E(1X−1
2 (A′) ⋅1B |𝒞) [(16.62)]

=
P

E(1X−1
1 (A′) ⋅1B |𝒞) [X1 =P X2, (16.61), Box 10.1 (ix)]

=
P

E(1X−1
1 (A′) |𝒞) ⋅ E(1B |𝒞) [X1 ⟂⟂

P
ℰ |𝒞 ]

=
P

E(1X−1
2 (A′) |𝒞) ⋅ E(1B |𝒞) [X1 =P X2, (16.61), Box 10.1 (ix)]

=
P

E(1A |𝒞) ⋅ E(1B |𝒞) [(16.62)]

=
P

P(A |𝒞) ⋅ P(B |𝒞). [(10.2)]

(xii) If X = α, then σ(X) = {Ω, Ø} (see Example 2.10). Furthermore, Box 16.2 (v)
implies X ⟂⟂

P
ℰ |𝒞. If X =

P
α, then applying Rule (xi) of Box 16.2 completes the

proof.

16.4 Because P(Y =1 | X, U) =
P

1 − P(Y =0 | X, U) and P(Y =1 | U) =
P

1 − P(Y =0 | U) [see

(10.2) and Box 10.2 (i) and (xv)],

P(Y =1 | X, U) =
P

P(Y =1 | U)

⇔ 1 − P(Y =0 | X, U) =
P

1 − P(Y =0 | U) [Rem. 2.73 (iii)]

⇔ P(Y =0 | X, U) =
P

P(Y =0 | U). [(2.36)]

16.5 Using σ(𝜉) ⊂ σ(U), the notation introduced in Equation (10.4), and Remark (10.7): For
all i = 1, … , m,

P(Yi=1 | 𝜉, Y1, … , Yi−1, Yi+1, … , Ym)

=
P

E
(
P(Yi=1 | U, Y1, … , Yi−1, Yi+1, … , Ym) ||| 𝜉, Y1, … , Yi−1, Yi+1, … , Ym

)

[(13.37), Box 10.2 (v)]
=
P

E
(
P(Yi=1 | U) ||| 𝜉, Y1, … , Yi−1, Yi+1, … , Ym

)
[(13.37), Box 10.2 (ix)]

=
P

E
( exp(𝜉 − βi)

1 + exp(𝜉 − βi)

||||
𝜉, Y1, … , Yi−1, Yi+1, … , Ym

)
[(13.40)]

=
P

exp(𝜉 − βi)
1 + exp(𝜉 − βi)

[(13.41), Box 10.2 (vii)]

=
P

P(Yi=1 | U) [(13.40)]

=
P

P(Yi=1 | 𝜉). [(13.41)]

16.6 According to Corollary 16.50 (i) and (ii), Equation (16.55) is equivalent to
⟂⟂
P

Y1, … , Ym | 𝜉. Applying Corollary 16.47 yields that ⟂⟂
P

Y1, … , Ym | 𝜉 is equivalent

to (16.56).
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Conditional distribution

In the previous chapters, we treated conditional probabilities and conditional expectations. In
chapter 16, conditional expectations have been used to define conditional independence, and
in this chapter we use them to introduce the concept of a conditional distribution. While a
conditional expectation can be used to describe how the expectation of a numerical random
variable depends on a σ-algebra or on a random variable, a conditional distribution can be used
to describe how the distribution of a (not necessarily numerical) random variable depends on
a σ-algebra or on a random variable.

17.1 Conditional distribution given a 𝛔-algebra or a
random variable

In section 5.1, we defined the distribution PY of a random variable Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y )
by

PY (A′) := P(Y ∈A′) = P[Y−1(A′)], ∀ A′∈ 𝒜 ′
Y .

There, we noted that PY : 𝒜 ′
Y → [0, 1] is a probability measure on the measurable space

(Ω′
Y , 𝒜 ′

Y ). According to Remark 5.33, PY is also the marginal distribution of Y with respect
to the joint distribution of (X, Y), where X is any other random variable on (Ω, 𝒜, P). Further-
more, in Equation (10.2) we defined the 𝒞-conditional probability P(A |𝒞) := E(1A |𝒞) of an
event A ∈ 𝒜given the σ-algebra 𝒞 ⊂ 𝒜.

In Definition 17.1, we consider the event {Y ∈A′} = Y−1(A′), where A′∈ 𝒜 ′
Y , and we

use a 𝒞-conditional probability P(Y ∈A′ |𝒞) of this event, which is an element of the set
𝒫(Y ∈A′ |𝒞) of all versions of the 𝒞-conditional probability of {Y ∈A′} (see Rem. 10.10).

We also consider functions PY|𝒞 : Ω ×𝒜 ′
Y → [0, 1] and the family (PY|𝒞 (⋅, A′), A′∈ 𝒜 ′

Y )
of functions PY|𝒞 (⋅, A′): Ω → [0, 1], defined by

PY|𝒞 (⋅, A′)(ω) := PY|𝒞 (ω, A′), ω ∈ Ω, (17.1)

Probability and Conditional Expectation: Fundamentals for the Empirical Sciences, First Edition. Rolf Steyer and Werner Nagel.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion website: http://www.probability-and-conditional-expectation.de
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and the family (PY|𝒞 (ω, ⋅), ω ∈ Ω) of functions PY|𝒞 (ω, ⋅): 𝒜 ′
Y → [0, 1], defined by

PY|𝒞 (ω, ⋅)(A′) := PY|𝒞 (ω, A′), A′∈ 𝒜 ′
Y . (17.2)

Definition 17.1 [Conditional distribution given a σ-algebra]
Let Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be a random variable and 𝒞 ⊂ 𝒜 be a σ-algebra. Further-

more, suppose that there is a function PY|𝒞: Ω ×𝒜 ′
Y → [0, 1] satisfying the following two

conditions:

(a) For all A′∈ 𝒜 ′
Y ,

PY|𝒞 (⋅, A′) ∈ 𝒫(Y ∈A′ |𝒞) . (17.3)

(b) For all ω ∈ Ω, the function PY|𝒞 (ω, ⋅): 𝒜 ′
Y → [0, 1] is a probability measure on

(Ω′
Y , 𝒜 ′

Y ).

Then PY|𝒞 is called a version of the 𝒞- conditional distribution of Y.

Remark 17.2 [X-conditional distribution] Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) be a random vari-
able. Using the σ-algebra σ(X) = X −1(𝒜 ′

X) generated by X, we define

PY|X := PY|σ(X) (17.4)

and call it a version of the X-conditional distribution of Y , provided that it exists. ⊲

A version of a conditional distribution is also called a stochastic kernel or Markov kernel.
Note that neither Y nor the random variable X have to be numerical; both might be nonnumer-
ical random variables on the probability space (Ω, 𝒜, P).

Remark 17.3 [The functions PY|𝒞 (⋅, A′)] Equation (17.3) implies that, for all A′∈ 𝒜 ′
Y , there

is a version P(Y ∈A′ |𝒞) ∈ 𝒫(Y ∈A′ |𝒞) such that

PY|𝒞 (⋅, A′) = P(Y ∈A′ |𝒞) . (17.5)

This equation is equivalent to

PY|𝒞 (ω, A′) = P(Y ∈A′ |𝒞) (ω), ∀ ω ∈ Ω. (17.6)

Equation (17.5) is also equivalent to

PY|𝒞 (⋅, A′) =
P

E(1Y∈ A′ |𝒞) =
P

E[1A′ (Y) |𝒞], (17.7)

where 1A′ (Y) denotes the composition of Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y ) and the indicator function
1A′ : (Ω′

Y , 𝒜 ′
Y ) → (R, ℬ).

Note that, according to Equation (17.5), PY|𝒞 (⋅, A′): Ω → [0, 1] is a 𝒞-measurable
random variable on (Ω, 𝒜, P), because, for each A′∈ 𝒜 ′

Y , the function P(Y ∈A′ |𝒞) is a
𝒞-conditional probability of the event {Y ∈A′}. ⊲



CONDITIONAL DISTRIBUTION 507

Remark 17.4 [Existence of PY|𝒞 ] Under the assumptions of Definition 17.1, a function PY|𝒞
satisfying condition (a) of Definition 17.1 always exists (see Th. 10.9). However, the function
PY|𝒞 (ω, ⋅): 𝒜 ′

Y → [0, 1] is not necessarily a measure. Therefore, the 𝒞-conditional distribu-
tion of Y does not necessarily exist, and it is worthwhile studying sufficient conditions for
its existence (see section 17.3.1). As we will see, one of the sufficient conditions of its exis-
tence is that Y is real-valued. Another condition under which it exists, is independence of
Y and 𝒞. ⊲

Remark 17.5 [The set 𝒫Y|𝒞 ] Even if PY|𝒞 exists, this does not imply that it is uniquely
defined. Therefore, we use 𝒫Y|𝒞 to denote the set of all functions satisfying (a) and (b) of
Definition 17.1. Similarly, 𝒫Y|X denotes the set of all functions satisfying these conditions
with 𝒞= σ(X). If 𝒫Y|𝒞 is nonempty, then assuming PY|𝒞 ∈ 𝒫Y|𝒞 means that PY|𝒞 is a ver-
sion of the 𝒞-conditional distribution of Y . Of course, PY|X ∈ 𝒫Y|X has the same meaning for
𝒞= σ(X). Uniqueness of PY|𝒞 is treated in section 17.3.2. ⊲

Example 17.6 [Joe and Ann with self-selection – continued] Table 17.1 shows an example
that has already been introduced in chapter 11. However, now the table also contains four
additional columns showing the conditional distribution PY|X . In Table 11.2, the values of
the conditional expectation E(Y | X) are displayed, which are repeated in the column headed
P(Y =1 | X) of Table 17.1. According to Equations (17.4) and (17.7), E(Y | X) = PY|X(⋅, {1})
(see the last but one column of Table 17.1). The other three of the last four columns can be
computed using the fact that PY|X(ω, ⋅) is a probability measure on (Ω′

Y , 𝒜 ′
Y ) for each of the

eight ω ∈ Ω (see the rows of the table).

Table 17.1 Joe and Ann with self-selection: conditional distribution PY|X .

Conditional
Outcomes ω Observables probabilities PY|X

U
ni

t

T
re

at
m

en
t

Su
cc

es
s

P
({
ω}

)

Pe
rs

on
va

ri
ab

le
U

T
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at
m

en
tv

ar
ia

bl
e

X

O
ut

co
m

e
va

ri
ab

le
Y

P
(Y

=
1
|X

,U
)

P
(Y

=
1
|X

)

P
(X

=
1
|U

)

P
Y
|X

(⋅
,Ω

′ Y
)

P
Y
|X

(⋅
,Ø

)

P
Y
|X

(⋅
,{

0}
)

P
Y
|X

(⋅
,{

1}
)

(Joe, no, −) .144 Joe 0 0 .7 .6 .04 1 0 .4 .6
(Joe, no, +) .336 Joe 0 1 .7 .6 .04 1 0 .4 .6
(Joe, yes, −) .004 Joe 1 0 .8 .42 .04 1 0 .58 .42
(Joe, yes, +) .016 Joe 1 1 .8 .42 .04 1 0 .58 .42
(Ann, no, −) .096 Ann 0 0 .2 .6 .76 1 0 .4 .6
(Ann, no, +) .024 Ann 0 1 .2 .6 .76 1 0 .4 .6
(Ann, yes, −) .228 Ann 1 0 .4 .42 .76 1 0 .58 .42
(Ann, yes, +) .152 Ann 1 1 .4 .42 .76 1 0 .58 .42
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For example, for ω1 = (Joe, no, −) and Ω′
Y , PY|X(ω1, Ω′

Y ) = 1. Because PY|X(ω1, {1}) =
.6, for A′= {0} ∈ 𝒜 ′

Y , we receive

PY|X(ω1, {0}) = 1 − PY|X(ω1, {1}) = 1 − .6 = .4.

Furthermore, PY|X(ω1, Ø) = 0. ⊲

17.2 Conditional distribution given a value of a
random variable

In the definition of PY|X , for each A′∈ 𝒜 ′
Y , we use a version P(Y ∈A′ | X) of the X-conditional

probability, which is measurable with respect to X. Therefore, Equation (17.4) and Defini-
tion 17.1 (a) imply

PY|X(ω, A′) = P(Y ∈A′ | X)(ω) = P(Y ∈A′ | X=x), ∀ ω ∈ {X=x} (17.8)

(see Def. 10.33 and Rem. 10.37), which can also be written as

PY|X(ω, A′) = E[1A′ (Y) | X](ω) = E(1Y∈ A′ | X=x)

= E[1A′ (Y) | X=x], ∀ ω ∈ {X=x},
(17.9)

where E(1Y∈ A′ | X=x) = gA′ (x), and gA′ is a factorization of E(1Y∈ A′ | X). Equation (17.8)
implies that, for a given A′∈ 𝒜 ′

Y , the function PY|X(ω, A′) is constant for all ω ∈ {X=x}, a
fact to keep in mind while reading the following definition.

Definition 17.7 [Conditional distribution given X=x]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and let

PY|X ∈ 𝒫Y|X and (PY|X=x, x ∈ Ω′
X) be the family of probability measures PY|X=x: 𝒜 ′

Y →
[0, 1], defined by

∀ x ∈ Ω′
X ∀ ω ∈ {X=x} ∀ A′∈ 𝒜 ′

Y : PY|X=x(A′) := PY|X(ω, A′). (17.10)

Then PY|X=x, x ∈ Ω′
X, is called an (X=x)-conditional distribution of Y pertaining

to PY|X.

Definitions 17.1 and 17.7 imply the following lemma.

Lemma 17.8 [A characterization of a family of (X=x)-conditional distributions]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables. A fam-

ily (PY|X=x, x ∈ Ω′
X) of functions PY|X=x: 𝒜 ′

Y → [0, 1] is a family of (X=x)-conditional
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distributions of Y pertaining to PY|X if and only if the following two conditions hold:

(a) For all A′∈ 𝒜 ′
Y , there is a version P(Y ∈A′ | X) ∈ 𝒫(Y ∈A′ | X) with

∀ x ∈ Ω′
X: PY|X=x(A′) = P(Y ∈A′ | X=x). (17.11)

(b) For all x ∈ Ω′
X, the function PY|X=x is a probability measure on (Ω′

Y , 𝒜 ′
Y ).

(Proof p. 534)

Lemma 17.8, P-uniqueness of the X-conditional probabilities P(Y ∈A′ | X), and Corol-
lary 10.39 (i) imply Corollary 17.9 that shows how the (X=x)-conditional distributions
of Y are related to (X=x)-conditional probabilities P∗(Y ∈A′ | X=x) pertaining to any
version P∗(Y ∈A′ | X) ∈ 𝒫(Y ∈A′ | X). Reading this corollary, note that, for two functions
f1, f2: Ω′

X → R,

f1(x) =
PX-a.a.

f2(x) (17.12)

is a more convenient way to express

f1(x) = f2(x), for PX-a.a. x ∈ Ω′
X . (17.13)

Each of Equations (17.12) and (17.13) is equivalent to f1 =
PX

f2 (see Rem. 5.17).

Corollary 17.9 [Conditional distribution and conditional probabilities]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables. If

PY|X ∈ 𝒫Y|X and (PY|X=x, x ∈ Ω′
X) is the family of (X=x)-conditional distributions per-

taining to PY|X, then, for all A′∈ 𝒜 ′
Y and all versions P∗(Y ∈A′ | X) ∈ 𝒫(Y ∈A′ | X),

PY|X=x(A′) =
PX-a.a.

P∗(Y ∈A′ | X=x). (17.14)

In Corollary 17.10, we consider the relationship between an (X=x)-conditional distribu-
tion PY|X=x introduced in Definition 17.7 and the distribution PX=x

Y of Y with respect to the
conditional-probability measure PX=x for an x ∈ Ω′

X with P(X=x) > 0 [see Eq. (9.4)].

Corollary 17.10 [Consistency of definitions of conditional distributions]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, assume

that PY|X exists and that x ∈ Ω′
X with P(X=x) > 0, and let PY|X=x denote an (X=x)-

conditional distribution of Y pertaining to PY|X. Then

PX=x
Y = PY|X=x, (17.15)
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which is equivalent to

PY|X=x(A′) = PX=x
Y (A′), ∀ A′∈ 𝒜 ′

Y . (17.16)

(Proof p. 535)

Example 17.11 [Joe and Ann with self-selection – continued] We continue the example
presented in Table 17.1. Obviously, the information about the conditional distribution PY|X
is already contained in the two conditional distributions PY|X=0 and PY|X=1. According to
Equation (17.10), for A′ = {0},

PY|X=0({0}) = PY|X(ω1, {0}) = PY|X(ω2, {0}) = .4,

where ω1 = (Joe, no, −) and ω2 = (Joe, no, +). Hence, in this example, the (X=0)-conditional
distribution of the outcome variable Y is

PY|X=0({0}) = P(Y ∈{0} | X=0) = P(Y =0 | X=0) = .4

PY|X=0({1}) = P(Y ∈{1} | X=0) = P(Y =1 | X=0) = .6

PY|X=0(Ω′
Y ) = P(Y ∈Ω′

Y | X=0) = 1

PY|X=0(Ø) = P(Y ∈Ø | X=0) = 0,

and the (X=1)-conditional distribution of Y is

PY|X=1({0}) = P(Y ∈{0} | X=1) = P(Y =0 | X=1) = .58

PY|X=1({1}) = P(Y ∈{1} | X=1) = P(Y =1 | X=1) = .42

PY|X=1(Ω′
Y ) = P[Y−1(Ω′

Y ) | X=1] = 1

PY|X=1(Ø) = P[Y−1(Ø) | X=1] = 0.

Obviously, in this example, in which X takes on all its values x with P(X=x) > 0,
the two conditional distributions PY|X=0 and PY|X=1 contain all information conveyed
by PY|X , and both are probability measures on (Ω′

Y , 𝒜 ′
Y ), where Ω′

Y = {0, 1} and 𝒜 ′
Y =

{Ω′
Y , Ø, {0}, {1}}. ⊲

In the next corollary, we consider a random variable X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X), a mea-
surable function h: (Ω′

X , 𝒜 ′
X) → (Ω′, 𝒜 ′), and the composition h(X). Reading this corollary,

remember that 𝛿h(x) denotes the Dirac measure at h(x) (see Example 1.52), which is a proba-
bility measure on (Ω′, 𝒜 ′).

Corollary 17.12 [Conditional distribution of a composition]
If X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) is a random variable and h: (Ω′

X , 𝒜 ′
X) → (Ω′, 𝒜 ′) a measur-

able function, then there is a version Ph(X)|X ∈ 𝒫h(X)|X such that

∀ x ∈ Ω′
X: Ph(X)∣X=x = 𝛿h(x). (17.17)

(Proof p. 535)
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Remark 17.13 [Conditional distribution of a composition] Note that for the version
Ph(X)|X , Equation (17.17) is equivalent to

∀ x ∈ Ω′
X ∀ A′∈ 𝒜 ′: Ph(X)∣X=x(A′) = 𝛿h(x)(A

′) = 1A′ [h(x)] (17.18)

(see again Example 1.52). In other words,

∀ x ∈ Ω′
X ∀ A′∈ 𝒜 ′: Ph(X)∣X=x(A′) =

{
1, if h(x) ∈ A′

0, otherwise.
⊲

17.3 Existence and uniqueness

In this section, we consider sufficient conditions for the existence and for uniqueness of the
conditional distributions PY|𝒞 , PY|X , and PY|X=x.

17.3.1 Existence

Reading the following lemma, remember that Y ⟂⟂
P
𝒞 denotes independence of σ(Y) and 𝒞

with respect to P (see Rem. 5.44).

Lemma 17.14 [PY|𝒞 if Y and 𝒞 are independent]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables and 𝒞 ⊂ 𝒜

a σ-algebra. If Y ⟂⟂
P
𝒞, then PY|𝒞 exists and

PY|𝒞 (ω, A′) := PY (A′), ∀ (ω, A′) ∈ Ω ×𝒜 ′
Y , (17.19)

defines a version of the 𝒞-conditional distribution of Y. Correspondingly, if Y ⟂⟂
P

X, then

PY|X exists and

PY|X(ω, A′) := PY (A′), ∀ (ω, A′) ∈ Ω ×𝒜 ′
Y , (17.20)

defines a version of the X-conditional distribution of Y.
(Proof p. 535)

Hence, if 𝒞 and Y are independent, then the distribution of Y is a version of the 𝒞 -condi-
tional distribution of Y . Correspondingly, if X and Y are independent, then the distribution of
Y is a version of the X-conditional distribution of Y .

Remark 17.15 [Constant X] If X is P-a.s. constant (i.e., if X =
P

α, α ∈ Ω′
X), then, accord-

ing to Lemma 5.51, Y ⟂⟂
P

X. Therefore, Equation (17.20) always yields a version PY|X if

X =
P

α. ⊲
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Another sufficient condition for the existence of PY|X is that X is discrete (see Def. 5.56
and Cor. 17.10).

Theorem 17.16 [Existence and uniqueness if X is discrete]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and let

X be discrete. Then PY|X exists, and for all x ∈ Ω′
X with P(X=x) > 0, the conditional

distribution PY|X=x is uniquely defined.
(Proof p. 536)

According to Theorem 17.17, the conditional distribution PY|X also exists if Y is discrete.

Theorem 17.17 [Existence for a discrete Y]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and

assume that Y is discrete. Then PY|X exists.
(Proof p. 536)

Other theorems provide sufficient conditions for the existence of PY|𝒞 (see, e.g., Bauer,
1996; Klenke, 2013). Some sufficient conditions that are important for our purposes are stated
in Theorem 17.18.

Theorem 17.18 [Existence of a conditional distribution]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables and

𝒞 ⊂ 𝒜 a σ-algebra. If one of the following assumptions holds, then PY|𝒞 and PY|X exist:

(a) (Ω′
Y , 𝒜 ′

Y ) = (Rn, ℬn), n ∈ N.

(b) Ω′
Y = N

n, n ∈ N, and 𝒜 ′
Y = 𝒫(Ω′

Y ).

(c) Ω′
Y is finite and 𝒜 ′

Y is a σ-algebra on Ω′
Y .

For a proof, see Klenke (2013, Th. 8.37).

17.3.2 Uniqueness of the functions PY|𝒞 (⋅, A′)

Remark 17.19 [P-uniqueness of PY|𝒞 (⋅, A′)] If PY|𝒞 , P∗
Y|𝒞 ∈ 𝒫Y|𝒞 , then according to

Equations (10.2), (10.12), and (17.3),

(i) ∀ A′∈ 𝒜 ′
Y : PY|𝒞 (⋅, A′) =

P
P∗

Y|𝒞 (⋅, A′).

(ii) ∀ A′∈ 𝒜 ′
Y ∃ NA′ ∈ 𝒜: P(NA′ ) = 0 and ∀ ω ∈ Ω ∖ NA′ : PY|𝒞 (ω, A′) = P∗

Y|𝒞 (ω, A′).

According to Remark 5.17, (i) is another notation for (ii). ⊲



CONDITIONAL DISTRIBUTION 513

Remark 17.20 [P-uniqueness of PY|X(⋅, A′)] Similarly, if PY|X , P∗
Y|X ∈ 𝒫Y|X , then

(i) ∀ A′∈ 𝒜 ′
Y : PY|X(⋅, A′) =

P
P∗

Y|X(⋅, A′).

(ii) ∀ A′∈ 𝒜 ′
Y ∃ NA′ ∈ 𝒜: P(NA′ ) = 0 and ∀ ω ∈ Ω ∖ NA′ : PY|X(ω, A′) = P∗

Y|X(ω, A′).

(iii) ∀ A′∈ 𝒜 ′
Y ∃ N′

A′ ∈ 𝒜 ′
X : PX(N′

A′) = 0 and ∀ x ∈ Ω′
X
∖ N′

A′ : PY|X=x(A′) = P∗
Y|X=x

(A′).

According to Equations (17.10) and (10.34), Propositions (ii) and (iii) are equivalent to each
other. These propositions refer to null sets NA′ and N′

A′ . Note that for A′, B′∈ 𝒜 ′
Y , A′≠ B′, the

sets NA′ and NB′ may differ from each other, and the same applies to the sets N′
A′ and N′

B′ . Finally,
in order to express (iii), we write

∀ A′∈ 𝒜 ′
Y : PY|X=x(A′) =

PX-a.a.
P∗

Y|X=x(A′). (17.21)
⊲

17.3.3 Common null set uniqueness of a conditional distribution

Considering a family (PY|X=x, x ∈ Ω′
X) of probability measures, it is of interest if a unique-

ness property holds that is stronger than Equation (17.21), that is, if there is a set N such that
N = NA′ for all A′∈ 𝒜 ′

Y . In other words, it is of interest if there is a common null set that
does not depend on A′. For convenience, we introduce the following term for this kind of
uniqueness.

Definition 17.21 [Common null set uniqueness]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and let

𝒞 ⊂ 𝒜 be a σ-algebra. If for all PY|𝒞 , P∗
Y|𝒞 ∈ 𝒫Y|𝒞 ,

∃ N ∈ 𝒜: P(N) = 0 and ∀ ω ∈ Ω ∖ N ∀ A′∈ 𝒜 ′
Y : PY|𝒞 (ω, A′) = P∗

Y|𝒞 (ω, A′),

then PY|𝒞 is called CNS-unique. Correspondingly, PY|X is called CNS-unique if
PY|σ(X) is CNS-unique, and in this case we write

PY|X=x =
PX-a.a.

P∗
Y|X=x, (17.22)

or, equivalently,

for PX-a.a. x ∈ Ω′
X , ∀ A′∈ 𝒜 ′

Y : PY|X=x(A′) = P∗
Y|X=x(A′). (17.23)

Remark 17.22 [Alternative formulations] Equations (17.22) and (17.23) can equivalently
be written in each of the following ways:

(i) ∃ N′∈ 𝒜 ′
X: PX(N′) = 0 and ∀ x ∈ Ω′

X
∖ N′: PY|X=x = P∗

Y|X=x
.

(ii) ∃ N′∈ 𝒜 ′
X: PX(N′) = 0 and ∀ x ∈ Ω′

X
∖ N′ ∀ A′∈ 𝒜 ′

Y : PY|X=x(A′) = P∗
Y|X=x

(A′).
⊲
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Definition 17.23 [PX-uniqueness of (PY|X=x, x ∈ Ω′
X)]

Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) and Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y ) be random variables. If

∀ PY|X , P∗
Y|X ∈ 𝒫Y|X: PY|X=x =

PX-a.a.
P∗

Y|X=x, (17.24)

then we say that the family (PY|X=x, x ∈ Ω′
X) of (X=x)-conditional distributions of Y is

PX -unique.

Remark 17.24 [PX-uniqueness and CNS-uniqueness] An immediate implication of Defi-
nitions 17.21 and 17.23 is

(PY|X=x, x ∈ Ω′
X) is PX-unique ⇔ PY|X is CNS-unique. (17.25)

⊲

Remark 17.25 [CNS-uniqueness for discrete X] According to Theorem 17.16, if X is dis-
crete and P(X=x) > 0 for all x ∈ Ω′

X , then each PY|X=x as well as the family (PY|X=x, x ∈ Ω′
X)

of conditional distributions are uniquely defined. This implies that (PY|X=x, x ∈ Ω′
X) is PX-

unique, which in turn implies that PY|X is CNS-unique. ⊲

In Remark 17.25, we provided a sufficient condition of CNS-uniqueness of PY|X that refers
to X. Now, we turn to conditions referring to Y that imply CNS-uniqueness of PY|𝒞 and PY|X .
In Lemma 17.26, we choose a more general notation that proves useful in a number of proofs.
Reading this lemma, remember: If (Ω, 𝒜 ) is a measurable space, then 𝒜 is called countably
generated if there is a finite or countable set ℰ ⊂ 𝒜 such that σ(ℰ ) = 𝒜 (see Def. 1.24). Also
remember that each of the σ-algebras 𝒜 ′

Y in (a) to (c) of Theorem 17.18 is countably generated
(see Example 1.25 and Rem. 1.28).

Lemma 17.26 [CNS-uniqueness]
Let (Ω, 𝒜, P) be a probability space, let (Ω′, 𝒜 ′) be a measurable space, and let
K, K∗: Ω ×𝒜 ′ → R be functions such that the following three conditions hold:

(a) ∀ A′∈ 𝒜 ′: K(⋅, A′), K∗(⋅, A′): Ω → R are (𝒜, ℬ)-measurable.

(b) ∀ ω ∈ Ω: K(ω, ⋅), K∗(ω, ⋅) are probability measures on (Ω′, 𝒜 ′).

(c) ∀ A′∈ 𝒜 ′ ∃ NA′ ∈ 𝒜: P(NA′ ) = 0 and ∀ ω ∈ Ω ∖ NA′ : K(ω, A′) = K∗(ω, A′).

If 𝒜 ′ is countably generated, then

∃ N ∈ 𝒜 ∀ A′∈ 𝒜 ′: P(N) = 0 and ∀ ω ∈ Ω ∖ N: K(ω, A′) = K∗(ω, A′). (17.26)

(Proof p. 537)
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Condition (c) of Lemma 17.26 may equivalently be written as

∀ A′∈ 𝒜 ′: K(⋅, A′) =
P

K∗(⋅, A′). (17.27)

While this condition refers to null sets NA′ that may depend on A′∈ 𝒜 ′, Equation (17.26) refers
to a common null set N for all A′∈ 𝒜 ′.

The following corollary is a special case of Lemma 17.26.

Corollary 17.27 [Sufficient condition for CNS-uniqueness]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, let

𝒞 ⊂ 𝒜be a σ-algebra, and suppose that the conditional distributions PY|𝒞 and PY|X exist.
If 𝒜 ′

Y is countably generated, then PY|𝒞 and PY|X are CNS-unique.

For many applications, Corollary 17.28 implies that conditional distributions are CNS-
unique. This corollary immediately follows from Corollary 17.27, Example 1.25, and
Remark 1.28.

Corollary 17.28 [Sufficient condition for CNS-uniqueness]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables and

𝒞 ⊂ 𝒜 a σ-algebra. Then each of the conditions (a) to (c) of Theorem 17.18 implies that
PY|𝒞 and PY|X exist and are CNS-unique.

Note that the σ-algebras appearing in Theorem 17.18 are countably generated. For simplic-
ity, instead of CNS-uniqueness, we often assume that the σ-algebras are countably generated,
which according to Corollary 17.27 implies that the conditional distributions of Y are CNS-
unique.

Now we turn to X-conditional distributions of a discrete random variable Y .

Remark 17.29 [Discrete Y] If Y is discrete, then, according to Theorem 17.17, the con-
ditional distribution PY|X exists and, according to Definition 17.7, the conditional distribu-
tions PY|X=x exist as well. Furthermore, the (X=x)-conditional distributions of Y are deter-
mined if the values PY|X=x({y}) for the singletons {y} are specified. More precisely, let
X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and assume that

Y is discrete. Then, by Definition 17.1 (b) and Definition 17.7, the conditional distributions
PY|X=x are probability measures. Therefore, σ-additivity [see Def. 4.1 (c)] yields

∀ A′∈ 𝒜 ′
Y : PY|X=x(A′) =

PX-a.a.

∑

y∈Ω′
Y

P(Y =y) > 0

1A′(y) ⋅ PY|X=x({y}) (17.28)

[see also Def. 5.56 and Eqs. (5.44) to (5.46)].
Note that, according to Theorem 3.19 (ii), any nonnegative measurable function

h: (Ω′
Y , 𝒜 ′

Y ) → (R, ℬ) can be described by a weighted sum of the indicators of a countable
sequence A′

1, A′
2, … ∈ 𝒜 ′

Y . Furthermore, a countable union of null sets NA′
1
, NA′

2
, … [see
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Rem. 17.20 (iii)] is a null set as well. Therefore, we can apply Remark 3.30, which yields:
For all nonnegative measurable h: (Ω′

Y , 𝒜 ′
Y ) → (R, ℬ),

∫
h(y) PY|X=x(dy) =

PX-a.a.

∑

y∈Ω′
Y

P(Y =y) > 0

h(y) ⋅ PY|X=x({y}). (17.29)

⊲

Remember, in Theorem 17.17 we showed that the conditional distribution PY|X exists if Y
is discrete. Now we prove that it is also CNS-unique.

Theorem 17.30 [CNS-uniqueness for a discrete Y]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and

assume that Y is discrete. Then PY|X is CNS-unique.
(Proof p. 538)

Remark 17.31 [An implication of CNS-uniqueness] Applying CNS-uniqueness of PY|X ,
we can strengthen Equation (17.28) as follows: If Y is discrete, then, for PX-a.a. x ∈ Ω′

X ,

∀ A′∈ 𝒜 ′
Y : PY|X=x(A′) =

∑

y∈Ω′
Y

P(Y =y) > 0

1A′ (y) ⋅ PY|X=x({y}). (17.30)

This means that there is a common null set such that Equation (17.30) holds for all A′∈ 𝒜 ′
Y .

In contrast, in (17.28), there can be different null sets for different A′∈ 𝒜 ′
Y . ⊲

According to Corollary 5.24, the distributions of two P-equivalent random variables
are identical. In the following corollary, we formulate a corresponding result for (X=x)-
conditional distributions.

Corollary 17.32 [P-equivalence and conditional distributions]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y , Z: (Ω, 𝒜, P) → (Ω′, 𝒜 ′) be random variables, and

assume that PY|X exists and 𝒜 ′ is countably generated. If Y =
P

Z, then PZ|X exists as well

and

PY|X=x =
PX-a.a.

PZ|X=x. (17.31)

(Proof p. 539)

17.4 Conditional-probability measure given a value of a
random variable

Presuming P(X=x) > 0, we already introduced the (X=x)-conditional-probability measure
PX=x: 𝒜→ [0, 1] with

PX=x(A) = P(A | X=x), ∀ A ∈ 𝒜
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[see Eq. (9.4)]. Now we extend this concept in such a way that the assumption P(X=x) > 0 is
no longer required, utilizing the identity mapping introduced in Example 2.11. Furthermore,
we consider the relationship between the (X=x)-conditional distributions PY|X=x introduced in
Definition 17.7 and the distributions of Y with respect to the conditional-probability measures
PX=x, x ∈ Ω′

X .

Definition 17.33 [Conditional-probability measure given X=x]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) be a random variable, let id: (Ω, 𝒜, P) → (Ω, 𝒜 ) denote

the identity mapping, assume that Pid|X exists, and let (Pid∣X=x, x ∈ Ω′
X) be a family of

(X=x)-conditional distributions of id pertaining to Pid|X. For all x ∈ Ω′
X, the function

PX=x: 𝒜→ [0, 1] defined by

PX=x := Pid∣X=x, (17.32)

is called an (X=x)-conditional-probabili ty measure on (Ω, 𝒜 ) pertaining to Pid|X.

Hence, a probability measure PX=x is a special (X=x)-conditional distribution, the (X=x)-
conditional distribution of the identity mapping id. Existence and uniqueness of (X=x)-
conditional distributions have been treated in section 17.3.

Definition 17.33 and Corollary 17.9 imply Corollary 17.34. Reading this corollary, remem-
ber that P∗(A | X=x) denotes a value of a factorization of P∗(A | X) (see Def. 10.33).

Corollary 17.34 [(X=x)-conditional probability]
Let (PX=x, x ∈ Ω′

X) be a family of (X=x)-conditional-probability measures defined by
Equation (17.32). Then, for all A ∈ 𝒜and all P∗(A | X) ∈ 𝒫(A | X),

PX=x(A) =
PX-a.a.

P∗(A | X=x). (17.33)

(Proof p. 539)

Reading the following theorem, remember that according to Definition 5.3,

PX=x
Y (A′) = PX=x[Y−1(A′)], ∀ A′∈ 𝒜 ′

Y ,

defines the distribution of Y with respect to the measure PX=x defined by Equation (17.32).

Theorem 17.35 [Distribution of Y with respect to PX=x]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and as-

sume that PY|X and Pid|X exist. Furthermore, let (PY|X=x, x ∈ Ω′
X) denote a family of

(X=x)-conditional distributions of Y pertaining to PY|X, and let (PX=x, x ∈ Ω′
X) be a

family of (X=x)-conditional-probability measures pertaining to Pid|X. Then

∀ A′∈ 𝒜 ′
Y : PY|X=x(A′) =

PX-a.a.
PX=x

Y (A′), (17.34)
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and, if 𝒜 ′
Y is countably generated, then,

PY|X=x =
PX-a.a.

PX=x
Y , (17.35)

or, equivalently, for

PX-a.a. x ∈ Ω′
X , ∀ A′∈ 𝒜 ′

Y : PY|X=x(A′) = PX=x
Y (A′). (17.36)

(Proof p. 540)

Hence, if 𝒜 ′
Y is countably generated, then the (X=x)-conditional distribution of Y and the

distribution of Y with respect to an (X=x)-conditional-probability measure PX=x are identical
for PX-a.a. x ∈ Ω′

X . This theorem extends the case P(X=x) > 0 already considered in Corol-
lary 17.10.

Remark 17.36 [Uniqueness and consistency of definitions] Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X)
be a random variable, and let (PX=x, x ∈ Ω′

X) be a family defined by Equation (17.32). If
x ∈ Ω′

X with P(X=x) > 0, then PX=x defined by (17.32) is uniquely defined, and it is identical
to PX=x defined in Equation (9.4) (see Exercise 17.1). ⊲

17.5 Decomposing the joint distribution of random variables

In section 4.2.5, we treated the Theorem of Total Probability. If we consider the random vari-
ables X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), assuming that X is discrete, and

the event {Y ∈B′}, B′∈ 𝒜 ′
Y , then this theorem yields

P(Y ∈B′) =
∑

x∈Ω′
X

P(X=x) > 0

P(Y ∈B′ | X=x) ⋅ P(X=x), (17.37)

and, for the event {X∈A′}, A′∈ 𝒜 ′
X ,

P(X∈A′, Y ∈B′) =
∑

x∈Ω′
X

P(X=x) > 0

P(X∈A′, Y ∈B′ | X=x) ⋅ P(X=x)

=
∑

x∈Ω′
X

P(X=x) > 0

1A′(x) ⋅ P(Y ∈B′ | X=x) ⋅ P(X=x)
(17.38)

(see Exercise 17.2). Furthermore, if Y is discrete as well, then

P(X∈A′, Y ∈B′) =
∑

x∈Ω′
X

P(X=x) > 0

∑

y∈Ω′
Y

P(Y =y) > 0

1A′(x) ⋅ 1B′ (y) ⋅ P(Y=y | X=x) ⋅ P(X=x). (17.39)
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This equation is generalized in the following theorem:

Theorem 17.37 [Decomposition]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables. If

PY|X ∈ 𝒫Y|X, then for all (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y ,

P(X∈A′, Y ∈B′) =
∫

1A′ (x) ⋅ PY|X=x(B′) PX(dx) (17.40)

=
∫ ∫

1A′(x) ⋅ 1B′ (y) PY|X=x(dy) PX(dx), (17.41)

as well as for all C′∈ 𝒜 ′
X ⊗𝒜 ′

Y ,

PX,Y (C′) =
∫ ∫

1C′(x, y) PY|X=x(dy) PX(dx). (17.42)

In addition, for all PX,Y-integrable or nonnegative measurable functions
h: Ω′

X × Ω′
Y → R,

∫
h(x, y) PX,Y [d(x, y)] =

∫ ∫
h(x, y) PY|X=x(dy) PX(dx). (17.43)

(Proof p. 540)

Remark 17.38 [Marginal distribution] For A′= Ω′
X , Equations (17.40), (5.2), and (5.3)

yield

PY (B′) = P(Y ∈B′) =
∫

PY|X=x(B′) PX(dx), ∀ B′∈ 𝒜 ′
Y . (17.44)

This equation generalizes Equation (17.37); it also holds if X is continuous. If X is discrete,
then Equation (6.15) or (6.16), respectively, yields

PY (B′) = P(Y ∈B′) =
∑

x∈Ω′
X

P(X=x) > 0

PY|X=x(B′) ⋅ P(X=x), ∀ B′∈ 𝒜 ′
Y , (17.45)

which is equivalent to Equation (17.37) (see Lemma 17.8). ⊲

Remark 17.39 [Joint distribution for discrete X] If X is discrete, then applying Equations
(5.45), (6.15), or (6.16) shows that Equation (17.40) is equivalent to

P(X∈A′, Y ∈B′) =
∑

x∈Ω′
X

P(X=x) > 0

1A′ (x) ⋅ PY|X=x(B′) ⋅ P(X=x) (17.46)

=
∑

x∈A′

P(X=x) > 0

PY|X=x(B′) ⋅ P(X=x), (17.47)

which is equivalent to Equation (17.38) (see Lemma 17.8). ⊲
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Remark 17.40 [Mixture distributions] Reading the equations in Theorem 17.37
and Remark 17.38 from right to left yields formulas for mixture distributions. If
(X, Y): (Ω, 𝒜, P) → (Ω′

X × Ω′
Y , 𝒜 ′

X ⊗𝒜 ′
Y ) is a bivariate random variable, then the joint distri-

bution PX,Y and the marginal distribution PY can be determined from a family (PY|X=x, x ∈ Ω′
X)

of (X=x)-conditional distributions of Y and the distribution PX . This is illustrated in Exam-
ple 17.80 using densities. ⊲

In Lemma 17.41, P X=x
Y|Z denotes a version of the Z-conditional distribution of Y with respect

to the conditional-probability measure PX=x that has been defined by Equation (17.32). In
other words, P X=x

Y|Z is specified by Definition 17.1 replacing P by the measure PX=x. Further-

more, 𝒫X=x
Y|Z denotes the set of all versions of the Z-conditional distribution of Y with respect

to PX=x (see Rem. 17.5). Correspondingly, a (Z=z)-conditional distribution P X=x
Y|Z=z of Y with

respect to PX=x is specified by Definition 17.7 replacing P by PX=x.

Lemma 17.41 [(Z=z)-conditional distribution of Y with respect to PX=x]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables, and assume that the conditional distributions PY|Z, PY|X,Z, and PZ|X
exist. Furthermore, for all x ∈ Ω′

X, assume that the (X=x)-conditional-probability mea-
sures PX=x and P X=x

Y|Z exist. Then,

∀ B′∈ 𝒜 ′
Y : P X=x

Y|Z=z(B
′) =

PX,Z-a.a.
PY|X=x, Z=z(B

′). (17.48)

(Proof p. 541)

In other words, for each B′∈ 𝒜 ′
Y , the two probabilities P X=x

Y|Z=z(B
′) and PY|X=x, Z=z(B

′) are
equal for PX,Z-almost all (x, z) ∈ Ω′

X × Ω′
Z .

In Corollary 17.42, we assume P(X=x) > 0, which allows us to reformulate Proposition
(17.48) in terms of the conditional distribution PX=x

Z .

Corollary 17.42 [The special case P(X=x) > 0]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables, and assume that x ∈ Ω′
X with P(X=x) > 0. Furthermore, assume

that PY|Z, PY|X,Z, PZ|X, and P X=x
Y|Z exist. Then,

∀ B′∈ 𝒜 ′
Y : P X=x

Y|Z=z(B
′) =

P X=x
Z

PY|X=x, Z=z(B
′). (17.49)

(Proof p. 542)

17.6 Conditional independence and conditional distributions

In Lemma 5.49, we showed that independence of random variables implies that their joint dis-
tribution is identical to the product measure of their distributions, and vice versa. Furthermore,
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in Theorem 16.32, we presented a product rule for conditional expectations. Now we turn to
product rules for conditional distributions.

Theorem 17.43 [Product rule]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables and assume that PX,Y|Z, PX|Z, and PY|Z exist.

(i) The following four propositions are equivalent to each other:

(a) X ⟂⟂
P

Y | Z.

(b) For all (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y ,

PX,Y|Z=z(A
′× B′) =

PZ-a.a.
PX|Z=z(A

′) ⋅ PY|Z=z(B
′). (17.50)

(c) For all D′∈ 𝒜 ′
X ⊗𝒜 ′

Y ,

PX,Y|Z=z(D
′) =

PZ-a.a.
PX|Z=z ⊗PY|Z=z(D

′). (17.51)

(d) For all measurable nonnegative or PX,Y,Z-integrable functions
h: (Ω′

X × Ω′
Y × Ω′

Z , 𝒜 ′
X ⊗𝒜 ′

Y ⊗𝒜 ′
Z) → (R, ℬ),

∫ ∫
h(x, y, z) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫ ∫ ∫

h(x, y, z) PX|Z=z(dx) PY|Z=z(dy) PZ(dz).
(17.52)

(ii) If 𝒜 ′
X and 𝒜 ′

Y are countably generated, then each of (a) to (d) is equivalent to

PX,Y|Z=z =
PZ-a.a.

PX|Z=z ⊗PY|Z=z. (17.53)

(Proof p. 542)

Now consider the special case Z = X. Because X ⟂⟂
P

Y | X (see Rem. 16.18), Theo-

rem 17.43 implies Corollary 17.44.

Corollary 17.44 [X-conditional distribution of (X, Y)]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables. If the

conditional distributions PX,Y|X and PY|X exist, then,

(i) For all measurable functions h: (Ω′
X × Ω′

Y , 𝒜 ′
X ⊗𝒜 ′

Y ) → (R, ℬ) that are nonneg-
ative,

∫
h(x∗, y)PX,Y|X=x[d(x∗, y)] =

PX-a.a. ∫
h(x, y) PY|X=x(dy). (17.54)
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(ii) For all D′∈ 𝒜 ′
X ⊗𝒜 ′

Y ,

PX,Y|X=x(D′) =
PX-a.a.

PY|X=x(D′
x), (17.55)

where D′
x := {y ∈ Ω′

Y : (x, y) ∈ D′}.
(Proof p. 544)

Reading Theorem 17.45, remember that

PY|Z(⋅, B′) =
P

E(1Y∈ B′ | Z)

[see Def. 17.1 (a) and Eq. (17.4)].

Theorem 17.45 [Conditional distribution and conditional independence]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables and assume that the conditional distributions PY|Z and PY|X,Z exist.
Then, X ⟂⟂

P
Y | Z if and only if

∀ B′∈ 𝒜 ′
Y : PY|X,Z(⋅, B′) =

P
PY|Z(⋅, B′). (17.56)

(Proof p. 544)

Remark 17.46 [Conditional distribution and conditional independence] In other words,
under the assumptions of Theorem 17.45, PY|Z ∈ 𝒫Y|X, Z if and only if X ⟂⟂

P
Y | Z (see Exer-

cise 17.3). ⊲

Remark 17.47 [Equivalent equations] According to Equation (17.10) and Corollary 5.25
(i), Equation (17.56) is equivalent to

∀ B′∈ 𝒜 ′
Y : PY|X=x, Z=z(B

′) =
PX,Z-a.a.

PY|Z=z(B
′). (17.57)

If 𝒜 ′
Y is countably generated, then, according to Corollary 17.27, Equation (17.56) is also

equivalent to

PY|X=x, Z=z =
PX,Z-a.a.

PY|Z=z. (17.58)

For Z being a constant, this implies: If 𝒜 ′
Y is countably generated, then, according to Equation

(17.10) and Corollary 5.25 (i), Equation (17.58) is equivalent to

PY|X=x =
PX-a.a.

PY . (17.59)
⊲

Replacing X by 1X=x, Theorem 17.45 and Remark 17.47 imply Corollary 17.48.
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Corollary 17.48 [Conditional independence of 1X=x and Y]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables, and assume that PY|X,Z and PY|Z exist. If x ∈ Ω′
X with P(X=x) > 0

and 1X=x ⟂⟂P Y | Z, then

∀ B′∈ 𝒜 ′
Y : PY|X=x, Z=z(B

′) = PY|Z=z(B
′), for PZ|X=x-a.a. z ∈ Ω′

Z . (17.60)

(Proof p. 545)

Remark 17.49 [Countably generated] If, additionally to the assumptions of Corollary 17.48
𝒜 ′

Y is countably generated, then

PY|X=x, Z=z = PY|Z=z, for PZ|X=x-a.a. z ∈ Ω′
Z . (17.61)

⊲

The following corollary immediately follows from Remarks 17.47 and Theorems 17.45
and 16.34.

Corollary 17.50 [Conditional mean independence]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R, ℬ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be

random variables, and assume that Y is nonnegative or with finite expectation. Then,
(
∀ B′∈ ℬ: PY|X=x, Z=z(B

′) =
PX,Z-a.a.

PY|Z=z(B
′)
)
⇒ E(Y | X, Z) =

P
E(Y | Z).

The following corollary combines the decomposition theorem 17.37 with proposi-
tion (17.57).

Corollary 17.51 [Decomposition under conditional independence]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables, and assume that the conditional distributions PY|X,Z, PY|Z, and PX|Z
exist. If X ⟂⟂

P
Y | Z, then for all nonnegative measurable functions

h: (Ω′
X × Ω′

Y × Ω′
Z , 𝒜 ′

X ⊗𝒜 ′
Y ⊗𝒜 ′

Z) → (R, ℬ),

∫ ∫ ∫
h(x, y, z) PY|Z=z(dy) PX|Z=z(dx) PZ(dz)

=
∫ ∫ ∫

h(x, y, z) PY|X=x, Z=z(dy) PX|Z=z(dx) PZ(dz),
(17.62)

and for all (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y ,

PX|Z=z(A
′) ⋅ PY|Z=z(B

′) =
PZ-a.a. ∫

1A′(x) ⋅ PY|X=x, Z=z(B
′) PX|Z=z(dx). (17.63)

(Proof p. 546)
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Now we consider the case 1X=x ⟂⟂P Y . In contrast to Lemma 17.14, the assumption of

independence refers only to the event {X=x} and not to the random variable X, unless σ(X)
and σ(1X=x) are identical.

Corollary 17.52 [Independence of 1X=x and Y]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, and

assume that PY|X exists. If x ∈ Ω′
X with P(X=x) > 0, then the following propositions are

equivalent to each other:

(a) 1X=x ⟂⟂P Y.

(b) PY|X=x = PY.
(Proof p. 547)

In the following corollary, we introduce assumptions that are stronger than those made
in Corollary 17.48. This yields a proposition for PZ-a.a. z ∈ Ω′

Z instead of the corresponding
proposition for PZ|X=x-a.a. z ∈ Ω′

Z .

Corollary 17.53 [Z-conditional independence of X and Y and PY|X=x, Z=z]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z)

be random variables. Furthermore, assume that PY|X,Z and PY|Z exist and X ⟂⟂
P

Y | Z.

(i) Then, for all x ∈ Ω′
X:

P(X=x | Z) >
P

0 ⇒ PY|X=x, Z=z(B
′) =

PZ-a.a.
PY|Z=z(B

′), ∀ B′∈ 𝒜 ′
Y . (17.64)

(ii) Furthermore, if 𝒜 ′
Y is countably generated, then,

∀ x ∈ Ω′
X: P(X=x | Z) >

P
0 ⇒ PY|X=x, Z=z =

PZ-a.a.
PY|Z=z. (17.65)

(Proof p. 547)

Lemma 17.54 provides a proposition equivalent to P(X=x | Z) >
P

0 (see the premise of

Cor. 17.53, and cf. Cor. 14.48).

Lemma 17.54 [A condition equivalent to P(X=x | Z) >
P

0]

Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) and Z: (Ω, 𝒜, P) → (Ω′
Z , 𝒜 ′

Z) be random variables. Then,
for all x ∈ Ω′

X, the following propositions are equivalent to each other:

(a) P(X=x | Z) >
P

0.

(b) P(X=x) > 0 and PZ ≪
𝒜

′
Z

PX=x
Z .

(Proof p. 548)
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This lemma shows that P(X=x | Z) >
P

0 is stronger than P(X=x) > 0, assumed in Corol-

lary 17.48. It is equivalent to assuming P(X=x) > 0 and absolute continuity of the measure
PZ with respect to PX=x

Z (see Def. 3.70).

17.7 Expectations with respect to a conditional distribution

The conditional expectation value E(Y | X=x) has been defined in section 9.1 as the expecta-
tion of Y with respect to the PX=x-conditional-probability measure, provided that P(X=x) > 0.
In section 10.4.4, it has been defined more generally as the value g(x) of a factorization of a
version g(X) = E(Y | X) ∈ ℰ (Y | X). In this section, we show how it can be computed from
the (X=x)-conditional distribution PY|X=x. We start by considering E[ f (Y) | X=x].

Theorem 17.55 [Conditional expectation value of a composition]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables. If

PY|X ∈ 𝒫Y|X, f : (Ω′
Y , 𝒜 ′

Y ) → (R,ℬ) is a measurable function that is nonnegative or such
that E[ f (Y)] is finite, and E[ f (Y) | X] ∈ ℰ [ f (Y) | X], then,

E[ f (Y) | X=x] =
∫

f (y) PY|X=x(dy), for PX-a.a. x ∈ Ω′
X . (17.66)

(Proof p. 548)

Remark 17.56 [A special case] Let X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X), and Y: (Ω, 𝒜, P) → (R,ℬ) be
random variables. If Y is nonnegative or with finite expectation E(Y), then,

E(Y | X=x) =
∫

y PY|X=x(dy), for PX-a.a. x ∈ Ω′
X . (17.67)

This equation immediately follows from Theorem 17.55 if the identity function id: (R,ℬ) →
(R,ℬ) takes the role of f . ⊲

Corollary 17.57 [Transformation theorem for conditional distributions]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X) and Y: (Ω, 𝒜, P) → (Ω′

Y , 𝒜 ′
Y ) be random variables, let

f : (Ω′
Y , 𝒜 ′

Y ) → (R,ℬ) be a nonnegative measurable function or such that E[ f (Y)] is finite,
and assume that PY|X ∈ 𝒫Y|X and Pf (Y)|X ∈ 𝒫f (Y)|X. Then,

E[ f (Y) | X=x] =
∫Ω′

Y

f (y) PY|X=x(dy)

=
∫

R

z Pf (Y)|X=x(dz), for PX-a.a. x ∈ Ω′
X .

(17.68)

(Proof p. 549)
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Remark 17.58 [Domains of integration] Note that PY|X=x is a probability measure on

(Ω′
Y , 𝒜 ′

Y ), whereas Pf (Y)|X=x is a probability measure on (R,ℬ). Hence, in the first line of
(17.68), integration is over all y ∈ Ω′

Y , whereas integration in the second line is over all
z ∈ R. ⊲

Remark 17.59 [Discrete Y] If Y takes on only a finite number of values y1, … , yn, then
Equation (17.66) can also be written as:

E[ f (Y) | X=x] =
n∑

i=1
f (yi) ⋅ PY|X=x({yi}) for PX-a.a. x ∈ Ω′

X , (17.69)

and if, additionally, P(X=x) > 0, then,

E[ f (Y) | X=x] =
n∑

i=1
f (yi) ⋅ P(Y =yi | X=x), (17.70)

with P(Y =yi | X=x) = PX=x
Y ({yi}), where PX=x

Y denotes the distribution of Y with respect
to the (X=x)-conditional-probability measure PX=x [see Eqs. (17.15) and (17.11)] (see Exer-
cise 17.4). ⊲

According to Equation (17.67), the conditional expectation value E(Y | X=x) is identical
to the expectation of Y with respect to a conditional distribution PY|X=x. Now consider the
equation

E(Y | X) =
P

E[E(Y | X, Z) | X], (17.71)

which is a special case of Rule (v) of Box 10.2. According to Theorem 17.60, this equation for
conditional expectations can also be written in terms of expectations with respect to conditional
distributions.

Theorem 17.60 [Marginalization]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R,ℬ), and Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z) be

random variables, and let Y be nonnegative or with finite expectation. If PZ|X exists,
then,

E(Y | X=x) =
PX-a.a. ∫

E(Y | X=x, Z=z) PZ|X=x(dz). (17.72)

(Proof p. 549)

Remark 17.61 [The case P(X=x) > 0] Suppose that P(X=x) > 0 for an x ∈ Ω′
X . Then

PZ|X=x is uniquely defined (see Cor. 17.10), and in this case Theorem 17.60 implies

E(Y | X=x) =
∫

E(Y | X=x, Z=z) PZ|X=x(dz). (17.73)
⊲
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Corollary 17.62 [Discrete Z]
If Z is discrete, then Equation (17.72) can be written as:

E(Y | X=x) =
PX-a.a.

n∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x). (17.74)

If additionally P(X=x) > 0, then,

E(Y | X=x) =
n∑

i=1
E(Y | X=x, Z=zi) ⋅ P(Z=zi | X=x). (17.75)

(Proof p. 549)

Theorem 17.60 and Equation (17.58) imply Corollary 17.63:

Corollary 17.63 [Conditional independence among regressors]
Let X: (Ω, 𝒜, P) → (Ω′

X , 𝒜 ′
X), Y: (Ω, 𝒜, P) → (R,ℬ), Z: (Ω, 𝒜, P) → (Ω′

Z , 𝒜 ′
Z), and

W: (Ω, 𝒜, P) → (Ω′
W , 𝒜 ′

W) be random variables, and let Y be nonnegative or with finite
expectation. If PW|Z exists and X ⟂⟂

P
W | Z, then,

E(Y | X=x, Z=z) =
PX,Z-a.a. ∫

E(Y | X=x, Z=z, W=w) PW|Z=z(dw). (17.76)

(Proof p. 549)

Example 17.64 [Joe and Ann with self-selection – continued] Let us use the example dis-
played in Table 17.1 to illustrate Corollary 17.62. Applying Equation (17.75) to the conditional
expectation values E(Y | X=0) and E(Y | X=0, U=u) yields,

E(Y | X=0) =
∑

u
E(Y | X=0, U=u) ⋅ P(U=u | X=0)

= E(Y | X=0, U=Joe) ⋅ P(U=Joe | X=0)

+ E(Y | X=0, U=Ann) ⋅ P(U=Ann | X=0)

= .7 ⋅
.144 + .336

.144 + .336 + .096 + .024
+ .2 ⋅

.096 + .024
.144 + .336 + .096 + .024

= .56 + .04 = .6.

This is exactly the same number as obtained in Example 9.22 using a different formula for its
computation. ⊲
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17.8 Conditional distribution function and
probability density

Consider a bivariate real-valued random variable (X, Y): (Ω, 𝒜, P) → (R2, ℬ2) and its joint
distribution function [see Eq. (5.56)] defined by:

FX,Y (x, y) = P(X≤x, Y ≤y), ∀ (x, y) ∈ R
2
. (17.77)

If there is a nonnegative Riemann-integrable function fX,Y : R
2 → [0, ∞] with:

FX,Y (x, y) =
∫

y

−∞ ∫

x

−∞
fX,Y (u, v) du dv, ∀ (x, y) ∈ R

2 (17.78)

(see Remark 5.99), then fX,Y is a joint probability density of (X, Y). Often, it is useful to repre-
sent a conditional distribution PY|X=x by its conditional distribution function and – if it exists –
by a conditional probability density. These functions can be constructed as follows: If, for
x ∈ R and h > 0, we assume P(X ∈ ]x−h, x]) = P(x−h<X≤x)>0, then,

P(Y ≤y | x−h<X≤x) = P(Y≤y, x−h<X≤x)
P(x−h<X≤x)

. (17.79)

Furthermore, Theorem 1.68 (ii) yields

lim
h↓0

P(x−h<X≤x) = P(X=x) (17.80)

and

lim
h↓0

P(Y ≤y, x−h<X≤x) = P(Y ≤y, X=x), (17.81)

where lim h↓0 denotes the limit for h → 0 from above. If X is a continuous random variable,
these probabilities are 0, but nevertheless, the limit of the ratio in Equation (17.79) can have
a value in the interval [0, 1]. Reading the following theorem, note the distinction between a
continuous random variable (see Def. 5.94) and a continuous function in the sense of calculus
(see ch. 2 of Ellis & Gulick, 2006).

Theorem 17.65 [Conditional distribution function and density]
Let (X, Y): (Ω, 𝒜, P) → (R2, ℬ2) be a continuous bivariate real-valued random variable
with joint density fX,Y with respect to the Lebesgue measure. Furthermore, suppose fX,Y
as well as the marginal density fX are continuous functions. Then, for all x ∈ R with
fX(x) > 0:

(i) The limit

FY|X=x(y) := lim
h↓0

P(Y ≤y | x−h≤X<x) (17.82)
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exists for all y ∈ R, and it can be written as:

FY|X=x(y) =
∫

y
−∞ fX,Y (x, v) dv

fX(x)
, ∀ y ∈ R. (17.83)

(ii) The function FY|X=x: R → [0, 1] is the distribution function of a probability mea-
sure on (R, ℬ), and it has a probability density fY|X=x satisfying

fY|X=x(y) =
fX,Y (x, y)

fX(x)
, ∀ y ∈ R. (17.84)

For a proof, see Fisz (1963).

Remark 17.66 [Joint density] Equation (17.84) immediately yields

fX,Y (x, y) = fY|X=x(y) ⋅ fX(x), ∀ y ∈ R, ∀ x ∈ R with fX(x) > 0. (17.85)
⊲

Remark 17.67 [Convention] For fX(x) = 0, we define FY|X=x(y) := 0 as well as
fY|X=x(y) := 0. ⊲

Lemma 17.68 [Consistency]
Under the assumptions of Theorem 17.65, let (FY|X=x, x ∈ R) be the family of functions
defined by Equation (17.82) and Remark 17.67. Then, there is a PY|X ∈ 𝒫Y|X with a family
(PY|X=x, x ∈ R) of (X=x)-conditional distributions of Y pertaining to PY|X such that, for
PX-a.a. x ∈ R, FY|X=x is the distribution function of PY|X=x.

(Proof p. 550)

This lemma justifies Definition 17.69.

Definition 17.69 [Conditional distribution function and density]
Let the assumptions of Theorem 17.65 be satisfied. Then,

(i) FY|X=x is called the (X=x)-conditional distribution function of Y.

(ii) fY|X=x is called an (X=x)-conditional probabili ty density of Y.

In section 17.9, the definition of an (X=x)-conditional probability density is extended,
dropping the assumption that X and Y are real valued.

Using the notation introduced in Definition 17.69, Equation (17.44) with B = ]−∞, y]
yields Lemma 17.70.
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Lemma 17.70 [Marginal and conditional distribution functions]
Let the assumptions of Theorem 17.65 be satisfied. Then,

FY (y) =
∫

∞

−∞
FY|X=x(y) ⋅ fX(x) dx, ∀ y ∈ R, (17.86)

holds for the marginal distribution function of Y, and a marginal probability density of Y
is specified by:

fY (y) =
∫

∞

−∞
fY|X=x(y) ⋅ fX(x) dx, ∀ y ∈ R. (17.87)

(Proof p. 551)

Remark 17.71 [Total probability] In a sense, Equation (17.86) is a ‘continuous version’ of
the formula of total probability (see Th. 4.25). This can be seen as follows: For a sequence
…<x−1<x0<x1<x2<… with P(xi<X≤xi+1) > 0,

FY (y) = P(Y ≤y) =
∑

i
P(Y ≤y | xi<X≤xi+1) ⋅ P(xi<X≤xi+1)

=
∫

FY|X=x(y) ⋅ fX(x) dx.
(17.88)

Hence, for a fixed y ∈ R, the probability FY (y) = P(Y ≤y) is represented as the integral with
respect to x over the product FY|X=x(y) ⋅ fX(x). ⊲

Theorem 17.72 [Bayes’ theorem]
Suppose that the assumptions of Theorem 17.65 hold. Then, for all (x, y) ∈ R

2, with fX(x),
fY (y) > 0,

fY|X=x(y) =
fX|Y=y(x) ⋅ fY (y)

∫
∞
−∞ fX|Y =y∗(x) ⋅ fY (y∗) dy∗

, ∀ y ∈ R, (17.89)

specifies an (X=x)-conditional density of Y.
(Proof p. 551)

Analogously to Equation (6.10), Lemma 17.73 shows that replacing the density fY by the
conditional density fY|X=x yields a conditional expectation value E(Y | X=x).
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Lemma 17.73 [Conditional densities and conditional expectation]
Let the assumptions of Theorem 17.65 hold. Furthermore, assume that Y is nonnegative
or with finite expectation. Then,

E(Y | X=x) =
∫

y ⋅ fY|X=x(y) dy, ∀ x ∈ R, (17.90)

defines a version of the X-conditional expectation of Y.
(Proof p. 551)

17.9 Conditional distribution and Radon-Nikodym density

In section 17.8, we considered real-valued random variables X and Y and densities with respect
to the Lebesgue measure. Now we generalize some of these results for random variables X
and Y that are not necessarily real-valued. We consider the case in which PX,Y is absolutely
continuous with respect to the product measure 𝜇 ⊗ ν of some σ-finite measures 𝜇 and ν on
arbitrary measurable spaces (see Defs. 3.70 and 1.63 and Lemma 1.66).

Notation and assumptions 17.74
Let (X, Y): (Ω, 𝒜, P) → (Ω′

X × Ω′
Y , 𝒜 ′

X ⊗𝒜 ′
Y ) be a random variable, and let PX,Y denote

its distribution. Furthermore, assume that 𝜇 and ν are σ-finite measures on (Ω′
X , 𝒜 ′

X) and
(Ω′

Y , 𝒜 ′
Y ), respectively, and

PX,Y ≪
𝒜

′
X⊗𝒜

′
Y

𝜇 ⊗ ν.

In the following definition, we adapt Equation (17.84) and Definition 17.69 (ii).

Definition 17.75 [(X=x)-conditional density]
Let the assumptions 17.74 hold. For a fixed version fX,Y = d PX,Y

d𝜇 ⊗ ν of the density of (X, Y)
(see Th. 3.72) and its marginal density fX, we define fY|X=x by:

fY|X=x(y) :=
⎧
⎪
⎨
⎪⎩

fX,Y (x, y)

fX(x)
, if fX(x) > 0

0, otherwise,
∀ y ∈ Ω′

Y , (17.91)

and call it an (X=x) - conditional density of Y (with respect to 𝜇 ⊗ ν).

Now we show that this definition is consistent with the definition of conditional distribu-
tions.
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Lemma 17.76 [Consistency]
Let the assumptions 17.74 hold. Furthermore, suppose that PY|X exists and 𝒜 ′

Y is count-
ably generated. Then, for PX-almost all x ∈ Ω′

X, the function fY|X=x defined in Equation
(17.91) is a density of PY|X=x with respect to the measure ν.

(Proof p. 552)

As a generalization of Lemma 17.70 [Eq. (17.87)], using (5.48) we obtain Lemma 17.77.

Lemma 17.77 [Decomposition of the joint density]
If the assumptions 17.74 hold, then,

fY (y) =
∫

fY|X=x(y) ⋅ fX(x) 𝜇(dx), for ν-a.a. y ∈ Ω′
Y . (17.92)

(Proof p. 552)

Now we generalize Lemma 17.73. Now Y may be numerical, and its distribution PY does
not necessarily have a density with respect to the Lebesgue measure. Furthermore, X can be
any random variable on (Ω, 𝒜, P). In particular, it may be multivariate.

Lemma 17.78 [Conditional densities and conditional expectation]
Let the assumptions 17.74 hold, and let Y: (Ω, 𝒜, P) → (R,ℬ) be nonnegative or with
finite expectation. Then,

E(Y | X=x) =
∫

y ⋅ fY|X=x(y) ν(dy), ∀ x ∈ Ω′
X (17.93)

defines a version of the X-conditional expectation of Y.
(Proof p. 553)

Remark 17.79 [Existence of a linear logistic regression] In Remark 13.27, we already
hinted at a sufficient condition for the existence of a linear logistic regression. Formulated
in the notation and the concepts of the present chapter, that proposition reads as follows: Let
Y: (Ω, 𝒜, P) → (R, ℬ) be a continuous random variable, let A ∈ 𝒜 with 0 < P(A) < 1, and
let X = 1A. Furthermore, assume that the (X=x)-conditional densities of Y are normal and
Var (Y | X=0) = Var (Y | X=1). Then, P(X=1 | Y) has a linear logistic parameterization. This
proposition is proved in Examples 17.80 to 17.82. ⊲

Example 17.80 [A mixture of two normal distributions] Consider the random variable
(X, Y): (Ω, 𝒜, P) → (R2, ℬ2), where X is an indicator variable with P(X=0) = 1 − p and
P(X=1) = p, that is,

PX = P(X=0) ⋅ 𝛿0 + P(X=1) ⋅ 𝛿1, (17.94)
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where 𝛿0 and 𝛿1 are Dirac measures at 0 and 1 on (R, ℬ), respectively (see Example 1.52). For
the conditional distributions, assume PY ∣X=0 = 𝒩(μ0, σ2

0), and PY ∣X=1 = 𝒩(μ1, σ2
1), where

μ0, μ1 ∈ R, σ2
0, σ2

1 > 0 (see section 8.2.2). Then, according to Equation (17.45),

PY = PY ∣X=0 ⋅ P(X=0) + PY ∣X=1 ⋅ P(X=1). (17.95)

According to Equations (17.94) and (17.46), for all (A′, B′) ∈ ℬ ×ℬ,

PX,Y (A′× B′) = P(X∈A′, Y ∈B′)

=
∑

x∈Ω′
X

P(X=x) > 0

1A′(x) ⋅ PY|X=x(B′) ⋅ PX({x})

= 1A′ (0) ⋅ PY ∣X=0(B′) ⋅ P(X=0) + 1A′(1) ⋅ PY ∣X=1(B′) ⋅ P(X=1).

(17.96)

⊲

Example 17.81 [A mixture of two normal distributions – densities] Define 𝜇 = 𝛿0 + 𝛿1,
and let 𝜆 be the Lebesgue measure on (R, ℬ). Then, PX,Y ≪

ℬ2

𝜇 ⊗𝜆 (see Exercise 17.5). This

implies that the assumptions 17.74 are satisfied, and we can apply Definition 17.75. Hence, if
fY|X=x denotes the density (with respect to 𝜆) of PY|X=x = 𝒩(μx, σ2

x), x = 0, 1, then,

fX,Y (x, y) =
⎧
⎪
⎨
⎪⎩

(1 − p) ⋅ fY|X=0(y), if y ∈ R, x = 0
p ⋅ fY|X=1(y), if y ∈ R, x = 1
0, otherwise,

(17.97)

fX(x) =
⎧
⎪
⎨
⎪⎩

1 − p, if x = 0
p, if x = 1
0, otherwise,

(17.98)

and

fY (y) = (1 − p) ⋅ fY|X=0(y) + p ⋅ fY|X=1(y) (17.99)

[see Lemma 5.79 and Eq. (3.58)]. Furthermore, according to Definition 17.75 and Equa-
tion (17.97),

fX|Y=y(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

(1 − p) ⋅ fY|X=0(y)

(1 − p) ⋅ fY|X=0(y) + p ⋅ fY|X=1(y)
, if x = 0

p ⋅ fY|X=1(y)

(1 − p) ⋅ fY|X=0(y) + p ⋅ fY|X=1(y)
, if x = 1

0, otherwise.

(17.100)

⊲
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Example 17.82 [A mixture of two normal distributions – logistic regression] If 0 < p < 1,
then Equation (17.100) for the conditional density fX|Y=y implies

P(X=1 | Y) =
P

exp(β0 + β1Y + β2Y2)
1 + exp(β0 + β1Y + β2Y2)

(17.101)

with

β0 = ln

(
p σ0

(1 − p) σ1

)
+

(
𝜇2

0

2σ2
0

−
𝜇2

1

2σ2
1

)
, (17.102)

β1 =
(
𝜇1

σ2
1

− 𝜇0

σ2
0

)
, (17.103)

and

β2 =
(

1
2σ2

0

− 1
2σ2

1

)
(17.104)

(see Exercise 17.6). If σ0 = σ1 =: σ, then β2 = 0 and Equation (17.101) simplifies to

P(X=1 | Y) =
P

exp(β0 + β1Y)
1 + exp(β0 + β1Y)

(17.105)

with

β0 = ln

(
p

(1 − p)

)
+

(
𝜇2

0 − 𝜇2
1

2σ2

)
, (17.106)

and

β1 =
(
𝜇1 − 𝜇0

σ2

)
. (17.107)

Hence, under the specified assumptions, the conditional probability P(X=1 | Y) has a linear
logistic parameterization in Y [see Eq. (17.105) and Def. 13.10]. ⊲

17.10 Proofs

Proof of Lemma 17.8

⇒ If PY|X ∈ 𝒫Y|X and (PY|X=x, x ∈ Ω′
X) is the family of (X=x)-conditional distributions per-

taining to PY|X , then,

∀ x ∈ Ω′
X ∀ ω ∈ {X=x} ∀ A′∈ 𝒜 ′

Y : PY|X=x(A′) = PY|X(ω, A′) [(17.10)]

= P(Y ∈A′ | X=x), [(17.8)]

which is condition (a). The definition of 𝒫Y|X (see Rem. 17.5), Definition 17.1 (b), and Equa-
tion (17.8) imply that condition (b) is satisfied as well.

⇐ Let (PY|X=x, x ∈ Ω′
X) be a family of functions PY|X=x: 𝒜 ′

Y → [0, 1] satisfying (a) and
(b). Define the function PY|X: Ω ×𝒜 ′

Y → [0, 1] by

PY|X(ω, A′) = P(Y ∈A′ | X)(ω), ∀ ω ∈ Ω, ∀ A′∈ 𝒜 ′
Y , (17.108)
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where P(Y ∈A′ | X) is the version specified in (a). Then, for all A′∈ 𝒜 ′
Y , the function

PY|X(⋅, A′) = P(Y ∈A′ | X) is X-measurable [see Def. 10.2 (a)]. Furthermore, for all ω ∈ Ω,
there is an x ∈ Ω′

X with x = X(ω) and

PY|X(ω, ⋅) = P(Y ∈A′ | X=x) [(17.108), (10.32), (10.28)]
= PY|X=x, [(a)]

and, according to (b), this is a probability measure. Hence, PY|X is a version of the X-
conditional distribution of Y , and (PY|X=x, x ∈ Ω′

X) is the family of (X=x)-conditional dis-
tributions pertaining to PY|X .

Proof of Corollary 17.10

For all A′∈ 𝒜 ′
Y ,

PY|X=x(A′) = P(Y ∈A′ | X=x) [(17.3), (17.10), (10.32)]
= PX=x(Y ∈A′) [Rem. 10.35]
= PX=x

Y (A′). [(14.39)]

Proof of Corollary 17.12

Let 1A′ (h(X)) denote the composition of h(X) and the indicator 1A′ . Then, Box 10.2 (vii) and
proposition (10.12) imply:

∀ A′∈ 𝒜 ′: 1A′ (h(X)) ∈ ℰ (1A′ (h(X)) | X) = 𝒫(h(X) ∈ A′| X).

Therefore, defining

Ph(X)|X(ω, A′) := 1A′ (h(X))(ω) = 𝛿h(X(ω))(A
′), ∀ (ω, A′) ∈ Ω ×𝒜 ′,

yields a version of the X-conditional distribution of h(X), because, for all ω ∈ Ω, the Dirac
measure 𝛿h(X(ω)) is a probability measure on (Ω′, 𝒜 ′). Then Equation (17.10) yields, for all
x ∈ Ω′

X , ω ∈ {X=x},

Ph(X)∣X=x(A′) = 𝛿h(x)(A
′), ∀ A′∈ 𝒜 ′

.

Proof of Lemma 17.14

Y ⟂⟂
P
𝒞

⇒ ∀ A′∈ 𝒜 ′
Y : 1Y∈ A′ ⟂⟂

P
𝒞 [Rem. 5.44, σ(1Y∈ A′ ) ⊂ σ(Y)]

⇒ ∀ A′∈ 𝒜 ′
Y : E(1Y∈ A′ |𝒞) =

P
E(1Y∈ A′ ) = PY (A′) [Box 10.1 (vi), (6.4), (5.2), (5.3)]

⇒ ∀ A′∈ 𝒜 ′
Y : PY (A′) ∈ 𝒫(Y ∈A′ |𝒞). [(10.12), Rem. 10.10]

Therefore, if we define

PY|𝒞 (ω, A′) := PY (A′), ∀ ω ∈ Ω,
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then condition (a) of Definition 17.1 holds for PY|𝒞 . Because, for all ω ∈ Ω, PY|𝒞 (ω, ⋅) = PY
is a probability measure, condition (b) of Definition 17.1 is satisfied as well.

Proof of Theorem 17.16

Let X be discrete, let Ω′
0⊂ Ω′

X be finite or countable with PX(Ω′
0) = 1 (see Def. 5.56), and let

P(X=x) > 0 for all x ∈ Ω′
0. For all A′∈ 𝒜 ′

Y , we define a version P(Y ∈A′ | X) ∈ 𝒫(Y ∈A′ | X)
by

∀ ω ∈ Ω: P(Y ∈A′ | X)(ω) :=
{

PX=x(Y ∈A′), if X(ω) = x and P(X=x) > 0
P(Y ∈A′), otherwise,

where PX=x(Y ∈A′) is defined by (4.14) with B = {X=x}. According to Remarks 10.35 and
10.36, this defines a version P(Y ∈A′ | X) ∈ 𝒫(Y ∈A′ | X) for each A′∈ 𝒜 ′

Y . Therefore, condi-
tion (a) of Lemma 17.8 is satisfied if we define

PY|X=x(A′) = P(Y ∈A′ | X=x), ∀ x ∈ Ω′
X .

For all x ∈ Ω′
X , the functions PY|X=x are probability measures on (Ω′

Y , 𝒜 ′
Y ). [If P(X=x) >

0, see Th. 4.28. If P(X=x) = 0, then P(Y ∈A′ | X)(ω) = P(Y ∈A′) (see the last but one equa-
tion).] Therefore, condition (b) of Lemma 17.8 is satisfied as well. Now Lemma 17.8 implies
that (PY|X=x, x ∈ Ω′

X) is the family of (X=x)-conditional distributions of Y pertaining to a
conditional distribution PY|X . This proves the existence of PY|X . Uniqueness of PY|X for all
x ∈ Ω′

X with P(X=x) > 0 immediately follows from (17.14) and Remark 2.71.

Proof of Theorem 17.17

DefineΩ′
>

:= {y ∈ Ω′
Y : P(Y =y) > 0}, which is finite or countable (see Def. 5.56). Fix a family

(P(Y =y | X), y ∈ Ω′
Y>

) of versions P(Y =y | X) ∈ 𝒫(Y =y | X) with 0 ≤ P(Y =y | X) ≤ 1 [see
Box 10.3 (v), (vii)]. Because P(Y ∈ Ω′

>
) = 1, there is a version such that P(Y ∈ Ω′

>
| X) = 1

[see (10.4) and Box 10.3 (vi)]. Hence, for this version,

∑

y∈Ω′
>

P(Y=y | X) =
P

∑

y∈Ω′
>

E(1Y =y | X) [(10.4)]

=
P

E

(
∑

y∈Ω′
>

1Y=y

||||
X

)
[Box 10.2 (xvi), (10.20)]

=
P

E
(
1Y∈ Ω′

>
| X

)
[(1.36), (1.37)]

=
P

P
(
Y ∈ Ω′

>
| X

)
[(10.4)]

= 1.

Therefore, P(A) = 0 holds for the set A := {ω ∈ Ω:
∑

y∈Ω′
>

P(Y =y | X)(ω) ≠ 1} and A ∈ σ(X)
[see Rem. 2.67 (c)].
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Now define the function PY|X: Ω ×𝒜 ′
Y → [0, 1] by

PY|X(ω, A′) =
⎧
⎪
⎨
⎪⎩

∑

y∈A′∩Ω′
>

P(Y=y | X)(ω), if ω ∈ Ω ∖ A

PY (A′), otherwise,

with the convention PY|X(ω, A′) = 0 if A′∩ Ω′
>
= Ø. Now we show that PY|X is in fact a version

of the X-conditional distribution of Y . For all ω ∈ Ω, the function PY|X(ω, ⋅): 𝒜 ′
Y → [0, 1] is

a probability measure because, for ω ∈ A, the function PY|X(ω, ⋅) is a probability measure by
definition, and for ω ∈ Ω ∖ A,

PY|X(ω, Ω′
Y ) =

∑

y∈Ω′
>

P(Y =y | X)(ω) = 1,

PY|X(ω, A′) ≥ 0, ∀ A′∈ 𝒜 ′
Y ,

and if A′
1, A′

2, … ∈ 𝒜 ′
Y are pairwise disjoint, then

PY|X

(
ω,

∞⋃

i=1
A′

i

)
=

∑

y∈
(⋃∞

i=1 A′
i

)
∩Ω′

>

P(Y =y | X)(ω) =
∞∑

i=1

∑

y∈A′
i
∩Ω′

>

P(Y =y | X)(ω)

=
∞∑

i=1
PY|X(ω, A′

i).

This shows that conditions (a) to (c) of Definition 4.1 are satisfied. Therefore, condition (b) of
Definition 17.1 holds for PY|X .

Now, for all A′∈ 𝒜 ′
Y ,

PY|X(⋅, A′) =
P

∑

y∈A′∩Ω′
>

P(Y =y | X) [P(A) = 0]

=
P

P
(
Y ∈ (A′∩ Ω′

>
) | X

)
[(10.4), Box 10.2 (xvi), (10.20), (1.36), (1.37)]

=
P

P(Y ∈ A′| X). [PY (A′) = PY (A′∩ Ω′
>

), 1Y∈ A′ =
P

1Y ∈ (A′∩Ω′
>

), Box 10.2 (vi)]

Because PY|X(⋅, A′) is X-measurable [see Th. 2.57 and Th. 1.92 of Klenke, 2013], proposition
(10.12) implies PY|X(⋅, A′) ∈ 𝒫(Y ∈A′) | X) for all A′∈ 𝒜 ′

Y . Hence, condition (a) of Defini-
tion 17.1 holds for PY|X .

Proof of Lemma 17.26

This proof is analog to the proof of Theorem 44.2 (ii) of Bauer (1996). If 𝒜 ′ is countably
generated and ℰ ′ = {A′

i , i ∈ I} is a finite or countable set system generating 𝒜 ′, then define

𝒞 ′ :=

{
⋂

i∈J
A′

i : J ⊂ I, J finite

}
,
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the set system of all intersections of finitely many elements of ℰ ′. Then 𝒞 ′ is also finite or
countable, and moreover it is ∩-stable. Note that ℰ ′

⊂ 𝒞 ′, and σ(ℰ ′) is closed with respect to
finite intersection. Hence,

ℰ ′
⊂ 𝒞 ′

⊂ σ(ℰ ′) = 𝒜 ′
.

Monotonicity of generated σ-algebras (see Rem. 1.23) implies

𝒜 ′= σ(ℰ ′) ⊂ σ(𝒞 ′) ⊂ σ(𝒜 ′) = 𝒜 ′
.

Therefore, σ(𝒞 ′) = 𝒜 ′, that is, 𝒞 ′ is a finite or countable set system generating 𝒜 ′. Now
define

N :=
⋃

A′∈𝒞 ′
NA′ ,

using the sets NA′ mentioned in (c). σ-Subadditivity of probability measures [see Box 4.1
(xi)] yields

P(N) ≤
∑

A′∈𝒞 ′
P(NA′ ) = 0.

Furthermore, (c) implies

∀ ω ∈ Ω ∖ N ∀ A′∈ 𝒞 ′: K(ω, A′) = K∗(ω, A′).

Hence, for all ω ∈ Ω ∖ N, the probability measures K(ω, ⋅) and K∗(ω, ⋅) are identical on the
∩-stable generating system 𝒞 ′. Therefore, Theorem 1.72 implies

∀ ω ∈ Ω ∖ N ∀ A′∈ 𝒜 ′: K(ω, A′) = K∗(ω, A′).

Proof of Theorem 17.30

Define Ω′
>

:= {y ∈ Ω′
Y : P(Y =y) > 0}, which is finite or countable (see Def. 5.56). Further-

more, let PY|X , P∗
Y|X ∈ 𝒫Y|X and, for all y ∈ Ω′

>
, define

Ny := {ω ∈ Ω: PY|X(ω, {y}) ≠ P∗
Y|X(ω, {y})},

N≠ := {ω ∈ Ω: PY|X(ω, Ω′ ∖ Ω′
>

) ≠ 0}, and N∗
≠

:= {ω ∈ Ω: P∗
Y|X(ω, Ω′ ∖ Ω′

>
) ≠ 0}.

Condition (a) of Definition 17.1 and Proposition (10.12) imply P(Ny) = 0 for all y ∈ Ω′
>

.
Furthermore, P(Y ∈ (Ω′ ∖ Ω′

>
)) = 0 implies 1Y ∈ (Ω′∖Ω′

>
) =

P
0, and hence P(Y ∈ (Ω′ ∖ Ω′

>
) | X)

=
P

0 [see Box 10.3 (iv)]. Condition (a) of Definition 17.1 and Proposition (10.12) imply

PY|X(⋅, Ω′ ∖ Ω′
>

) =
P

0, and therefore P(N≠) = P(N∗
≠

) = 0. Then, for

N := N≠ ∪ N∗
≠
∪

⋃

y∈Ω′
>

Ny,
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σ-subadditivity of P [see Box 4.1 (xi)] yields

P(N) ≤ P(N≠) + P
(
N∗
≠

)
+

∑

y∈Ω′
>

P(Ny) = 0.

Now for all ω ∈ Ω ∖ N and all A′∈ 𝒜 ′
Y ,

PY|X(ω, A′) =
∑

y∈A′∩Ω′
>

PY|X(ω, {y}) + PY|X(ω, A′∩ (Ω′ ∖ Ω′
Y )) [17.28, Def. 17.1 (b)]

=
∑

y∈A′∩Ω′
>

PY|X(ω, {y}) [def. of N≠, Def. 17.1 (b)]

=
∑

y∈A′∩Ω′
>

P∗
Y|X(ω, {y}) [def. of N]

=
∑

y∈A′∩Ω′
>

P∗
Y|X(ω, {y}) + P∗

Y|X(ω, A′∩ (Ω′ ∖ Ω′
Y ))

[def. of N∗
≠

, Def. 17.1 (b)]
= P∗

Y|X(ω, A′). [17.28, Def. 17.1 (b)]

This shows that PY|X is CNS-unique.

Proof of Corollary 17.32

According to Remark 2.72 (ii), Y =
P

Z implies 1Y∈ A′ =
P

1Z∈ A′ , for all A′∈ 𝒜 ′. Therefore,

for all A′∈ 𝒜 ′,

PY|X=x(A′) =
PX-a.a.

E(1Y∈ A′ | X=x) [(17.3), (17.10), (10.28)]

=
PX-a.a.

E(1Z∈ A′ | X=x) [Box 10.2 (ix)]

=
PX-a.a.

PZ|X=x(A′). [(10.28), (17.10), (17.3)]

Because 𝒜 ′ is countably generated, Lemma 17.26 and Corollary 5.25 (i) imply

PY|X=x =
PX-a.a.

PZ|X=x.

Proof of Corollary 17.34

For an (X=x)-conditional-probability measure PX=x defined by Equation (17.32) and all
A ∈ 𝒜,

PX=x(A) = Pid∣X=x(A) [(17.32)]

=
PX-a.a.

P∗(id ∈ A | X=x) [(17.14)]

=
PX-a.a.

P∗(A | X=x). [{id ∈ A} = A]
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Proof of Theorem 17.35

If PX=x exists for all x ∈ Ω′
X , then, according to Definition 5.3,

∀ A′∈ 𝒜 ′
Y ∀ x ∈ Ω′

X: PX=x
Y (A′) = PX=x[Y−1(A′)].

This implies

∀ A′∈ 𝒜 ′
Y : PX=x

Y (A′) =
PX-a.a.

P[Y−1(A′) | X=x] [(17.33)]

=
PX-a.a.

P(Y ∈A′ | X=x) [{Y ∈A′} = Y−1(A′)]

=
PX-a.a.

PY|X=x(A′). [(17.11), (10.34)]

If 𝒜 ′
Y is countably generated, Lemma 17.26 implies PX=x

Y =
PX-a.a.

PY|X=x.

Proof of Theorem 17.37

For A′∈ 𝒜 ′
X and B′∈ 𝒜 ′

Y ,

P(X∈A′, Y ∈B′) = E(1X∈ A′ ⋅ 1Y∈ B′) [(1.33), (6.4)]

= E[E(1X∈ A′ ⋅ 1Y∈ B′ | X)] [Box 10.2 (iv)]

= E[1X∈ A′ ⋅ E(1Y∈ B′ | X)] [Box 10.2 (xiv)]

=
∫

1A′ (x) ⋅ E(1Y∈ B′ | X=x) PX(dx) [(6.13)]

=
∫

1A′ (x) ⋅ PY|X=x(B′) PX(dx) [(10.3), (17.11)]

=
∫

1A′ (x)
∫

1B′ (y) PY|X=x(dy) PX(dx) [(3.9)]

=
∫ ∫

1A′ (x) ⋅ 1B′ (y) PY|X=x(dy) PX(dx), [(3.32)]

which proves Equations (17.40) and (17.41). Hence,

P(X∈A′, Y ∈B′) =
∫

1A′ (x) ⋅ 1B′ (y) PX,Y [d(x, y)] [Th. 3.57]

=
∫ ∫

1A′ (x) ⋅ 1B′(y) PY|X=x(dy) PX(dx). [(17.41)]

Consider the set 𝒞 ′
⊂ 𝒜 ′

X ⊗𝒜 ′
Y of all sets C′

⊂ Ω′
X × Ω′

Y satisfying

∫
1C′(x, y) PX,Y [d(x, y)] =

∫ ∫
1C′(x, y) PY|X=x(dy) PX(dx).

Because

P(A′∈ 𝒜 ′
X , B′∈ 𝒜 ′

Y ) = PX,Y (A′× B′) =
∫

1A′× B′ (x, y) PX,Y [d(x, y)]
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and 1A′× B′ (x, y) = 1A′(x) ⋅ 1B′ (y) for all (x, y) ∈ Ω′
X × Ω′

Y [see Eq. (1.38)], Equation (17.41)
can equivalently be written as:

∫
1A′× B′(x, y) PX,Y [d(x, y)] =

∫ ∫
1A′× B′ (x, y) PY|X=x(dy) PX(dx).

Therefore, ℰ ′= {A′× B′: A′∈ 𝒜 ′
X , B′∈ 𝒜 ′

Y} ⊂ 𝒞 ′. Because Ω′
X × Ω′

Y ∈ 𝒞 ′ and 𝒞 ′ is closed
with respect to complements [see Eqs. (1.35) and (3.36)] and countable unions of pairwise
disjoint sets [see Eq. (3.65)], the set 𝒞 ′ is a Dynkin system (see Def. 1.40). Hence,

𝛿(ℰ ′) ⊂ 𝒞 ′
⊂ 𝒜 ′

X ⊗𝒜 ′
Y .

Because ℰ ′ is ∩-stable (see Example 1.39), Theorem 1.41 (ii) yields

𝛿(ℰ ′) = σ(ℰ ′) = 𝒜 ′
X ⊗𝒜 ′

Y

(see Def. 1.31). Hence, we can conclude: 𝒞 ′= 𝒜 ′
X ⊗𝒜 ′

Y . This proves Equation (17.42). Now
the proof of Equation (17.43) can be completed by standard methods of integration theory (see
Rem. 3.30).

Proof of Lemma 17.41

For all B′∈ 𝒜 ′
Y , D′∈ 𝒜 ′

X ⊗𝒜 ′
Z , and E′ := B′× D′,

∫
1D′ (x, z) ⋅ P X=x

Y|Z=z(B
′) PX,Z[d(x, z)]

∫ ∫
1D′ (x, z) ⋅ 1B′ (y) P X=x

Y|Z=z(dy) PX,Z[d(x, z)] [(3.9), (3.32)]

=
∫ ∫

1E′(y, x, z) P X=x
Y|Z=z(dy) PX,Z[d(x, z)] [(1.38)]

=
∫ ∫ ∫

1E′ (y, x, z) P X=x
Y|Z=z(dy) PX=x

Z (dz) PX(dx) [(17.43), (17.35)]

=
∫ ∫

1E′(y, x, z) PX=x
Y,Z [d(y, z)] PX(dx) [(17.43)]

=
∫ ∫

1E′(y, x, z) PY,Z|X=x[d(y, z)] PX(dx) [(17.35)]

=
∫

1E′ (y, x, z) PY,X, Z[d(y, x, z)] [(17.43)]

=
∫ ∫

1E′(y, x, z) PY|X=x, Z=z(dy) PX,Z[d(x, z)] [(17.43)]

=
∫ ∫

1D′ (x, z) ⋅ 1B′ (y) PY|X=x, Z=z(dy) PX,Z[d(x, z)] [(1.38)]

=
∫

1D′ (x, z) ⋅ PY|X=x, Z=z(B
′) PX,Z[d(x, z)]. [(3.9), (3.32)]

Applying Theorem 3.48 completes the proof.
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Proof of Corollary 17.42

According to Equation (17.48), for all B′∈ 𝒜 ′
Y : PX,Z(N ′

B) = 0, where

N ′
B =

{
(x, z) ∈ Ω′

X × Ω′
Z : P X=x

Y|Z=z(B
′) ≠ PY|X=x, Z=z(B

′)
}
.

Defining N ′
B,x = {z ∈ Ω′

Z : (x, z) ∈ N ′
B} for all x ∈ Ω′

X ,

PX,Z(N ′
B) = 0 ⇔

∫ ∫
1N ′

B,x
(z) PZ|X=x(dz) PX(dx) = 0. [(17.42)]

Hence,

∫
PZ|X=x(N ′

B,x) PX(dx) = 0, [(3.9)]

which according to Theorem 3.43 implies

PZ|X=x(N ′
B,x) =

PX-a.a.
0.

If x ∈ Ω′
X and P(X=x) > 0, then this equation implies

PX=x
Z (N ′

B,x) = PZ|X=x(N ′
B,x) [(17.15)]

= 0. [Rem. 2.71]

Therefore, for x ∈ Ω′
X with P(X=x) > 0, proposition (17.48) implies (17.49).

Proof of Theorem 17.43

(i)
(a) ⇔ (b) Using (16.15) as well as Equations (17.5), (17.8), and (17.10) yields:

X ⟂⟂
P

Y | Z

⇔ ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y : P(X∈A′, Y ∈B′ | Z) =
P

P(X∈A′ | Z) ⋅ P(Y ∈B′ | Z)

⇔ ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y : PX,Y|Z(⋅, A′× B′) =
P

PX|Z(⋅, A′) ⋅ PY|Z(⋅, B′)

⇔ ∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y : PX,Y|Z=z(A
′× B′) = PX|Z=z(A

′) ⋅ PY|Z=z(B
′),

for PZ-a.a. z ∈ Ω′
Z .

(b) ⇒ (c) (17.50) and Theorem 3.48 imply

∀ (A′, B′, C′) ∈ 𝒜 ′
X ×𝒜 ′

Y ×𝒜 ′
Z :
∫ ∫

1A′×B′ (x, y) ⋅ 1C′ (z) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫ ∫

1A′×B′ (x, y) ⋅ 1C′ (z) PX|Z=z ⊗PY|Z=z[d(x, y)] PZ(dz).
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Now let 𝒟 ′
⊂ 𝒜 ′

X ⊗𝒜 ′
Y denote the set of all sets D′∈ 𝒜 ′

X ⊗𝒜 ′
Y satisfying

∀ C′∈ 𝒜 ′
Z :

∫ ∫
1D′ (x, y) ⋅ 1C′ (z) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫ ∫

1D′ (x, y) ⋅ 1C′ (z) PX|Z=z ⊗PY|Z=z[d(x, y)] PZ(dz).

Then, just as in the proof of Equation (17.42) in Theorem 17.37, we can conclude 𝒟 ′=
𝒜 ′

X ⊗𝒜 ′
Y . Together with Theorem 3.48, this yields (c).

(c) ⇒ (b) This implication is trivial because A′× B′∈ 𝒜 ′
X ⊗𝒜 ′

Y for all (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y
(see Def. 1.31).

(d) ⇒ (c) For C′∈ 𝒜 ′
Z and D′∈ 𝒜 ′

X ⊗𝒜 ′
Y , choose

h(x, y, z) = 1D′ (x, y) ⋅ 1C′ (z), ∀ (x, y, z) ∈ Ω′
X × Ω′

Y × Ω′
Z .

Then,

∫
1C′(z) ⋅ PX,Y|Z=z(D

′) PZ(dz)

=
∫ ∫

1D′ (x, y) ⋅ 1C′(z) PX,Y|Z=z[d(x, y)] PZ(dz) [(6.4), (6.1)]

=
∫ ∫ ∫

1D′ (x, y) ⋅ 1C′ (z) PX|Z=z(dx) PY|Z=z(dy) PZ(dz) [(17.52)]

=
∫ ∫

1D′ (x, y) ⋅ 1C′(z) PX|Z=z ⊗PY|Z=z[d(x, y)] PZ(dz) [(3.80)]

=
∫

1C′(z) ⋅ PX|Z=z ⊗PY|Z=z(D
′) PZ(dz). [(6.4), (6.1)]

Because these equations hold for all C′∈ 𝒜 ′
Z , Theorem 3.48 yields (c).

(c) ⇒ (d) Applying (6.4) and (6.1), Equation (17.51) can equivalently be written as:

∀ D′∈ 𝒜 ′
X ⊗𝒜 ′

Y :

∫
1D′ (x, y) PX,Y|Z=z[d(x, y)] =

PZ-a.a. ∫
1D′ (x, y) PX|Z=z ⊗PY|Z=z[d(x, y)],

and Theorem 3.48 implies that this equation is equivalent to

∀ D′∈ 𝒜 ′
X ⊗𝒜 ′

Y ∀ C′∈ 𝒜 ′
Z :

∫ ∫
1D′(x, y) ⋅ 1C′ (z) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫ ∫

1D′(x, y) ⋅ 1C′ (z) PX|Z=z ⊗PY|Z=z[d(x, y)] PZ(dz).
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Just like in the proof of Equation (17.42) in Theorem 17.37, we can conclude

∀ E′∈ 𝒜 ′
X ⊗𝒜 ′

Y ⊗𝒜 ′
Z :

∫ ∫
1E′(x, y, z) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫ ∫ ∫

1E′ (x, y, z) PX|Z=z(dx) PY|Z=z(dy) PZ(dz),

where, on the right-hand side, we applied Equation (3.80). Now the proof can be completed
by standard methods of integration theory (see Rem. 3.30).

(ii)
(17.53) ⇒ (b) This implication immediately follows from Lemma 1.66.
(b) ⇒ (17.53) If 𝒜 ′

X and 𝒜 ′
Y are countably generated, then 𝒜 ′

X ⊗𝒜 ′
Y is countably gener-

ated as well (see Cor. 1.33). Therefore, (b), Lemmas 17.26 and 1.66, and (17.25) imply

PX,Y|Z=z =
PZ-a.a.

PX|Z=z ⊗PY|Z=z.

Proof of Corollary 17.44

(i) Note that X ⟂⟂
P

Y | X [see Eq. (16.18)]. Therefore, for all nonnegative measurable func-

tions h: (Ω′
X × Ω′

Y , 𝒜 ′
X ⊗𝒜 ′

Y ) → (R, ℬ), proposition (d) of Theorem 17.43 with Z = X
yields

∀ A′∈ 𝒜 ′
X :

∫ ∫
1A′(x) ⋅ h(x∗, y) PX,Y|X=x[d(x∗, y)] PX(dx)

=
∫ ∫ ∫

1A′ (x) ⋅ h(x∗, y) PX|X=x(dx∗) PY|X=x(dy) PX(dx) [(17.52)]

=
∫ ∫

1A′(x) ⋅ h(x, y) PY|X=x(dy) PX(dx). [(17.17), (3.57)]

Because these equations hold for all A′∈ 𝒜 ′
X , Theorem 3.48 yields (17.54).

(ii) For D′∈ 𝒜 ′
X ⊗𝒜 ′

Y , apply (17.54) with h = 1D′ . Note that 1D′(x, y) = 1D′
x
(y) for all

(x, y) ∈ Ω′
X × Ω′

Y . Therefore,

PX,Y|X=x(D′) =
∫

1D′ (x∗, y) PX,Y|X=x[d(x∗, y)] [(6.4), (6.1)]

=
PX-a.a. ∫

1D′ (x, y) PY|X=x(dy) [(17.54)]

= PY|X=x(D′
x). [(6.4), (6.1), def. of D′

x]

Proof of Theorem 17.45

X ⟂⟂
P

Y | Z ⇒ (17.56) According to the definition of conditional independence:

X ⟂⟂
P

Y | Z ⇒ ∀ B′∈ 𝒜 ′
Y : X ⟂⟂

P
1Y∈ B′ | Z. [Box 16.3 (vi)]
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Hence, for all B′∈ 𝒜 ′
Y ,

PY|X,Z(⋅, B′) =
P

E(1Y∈ B′ | X, Z) [(17.7)]

=
P

E(1Y∈ B′ | Z) [(16.37)]

=
P

PY|Z(⋅, B′). [(17.7)]

(17.56) ⇒ X ⟂⟂
P

Y | Z For all (A′, B′, C′) ∈ 𝒜 ′
X ×𝒜 ′

Y ×𝒜 ′
Z ,

∫
1C′(z)

∫ ∫
1A′ (x) ⋅ 1B′ (y) PX,Y|Z=z[d(x, y)] PZ(dz)

=
∫

1A′(x) ⋅ 1B′ (y) ⋅ 1C′(z) PX,Y,Z[d(x, y, z)] [(17.41)]

=
∫

1A′(x) ⋅ 1C′ (z)

[
∫

1B′ (y) PY|X=x, Z=z(dy)

]
PX,Z[d(x, z)] [(17.41)]

=
∫

1A′(x) ⋅ 1C′ (z)

[
∫

1B′ (y) PY|Z=z(dy)

]
PX,Z[d(x, z)] [(17.56), Th. 3.48]

=
∫

1C′(z)
∫ ∫

1A′ (x) ⋅ 1B′ (y) PY|Z=z(dy) PX|Z=z(dx) PZ(dz). [(17.41)]

Hence, Theorem 3.48 implies

∀ (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y : PX,Y|Z=z(A
′, B′) =

PZ-a.a.
PX|Z=z(A

′) ⋅ PY|Z=z(B
′),

which, according to Theorem 17.43, implies X ⟂⟂
P

Y | Z.

Proof of Corollary 17.48

Equation (17.57) implies

∀ B′∈ 𝒜 ′
Y : PY|1X=x =v, Z=z(B

′) = PY|Z=z(B
′), for P1X=x, Z-a.a. (v, z) ∈ {0, 1} × Ω′

Z .

Hence, for all B′∈ 𝒜 ′
Y , there is a set D′

⊂ {0, 1} × Ω′
Z with P1X=x, Z(D′) = 0 and

∀ (v, z) ∈ ({0, 1} × Ω′
Z) ∖ D′: PY|1X=x =v, Z=z(B

′) = PY|Z=z(B
′).

Now, if we define D′
v := {z ∈ Ω′

Z : (v, z) ∈ D′}, for v = 0, 1, then D′= ({0} × D′
0) ∪ ({1} × D′

1)
and ({0, 1} × Ω′

Z) ∖ D′= [{0} × (Ω′
Z
∖ D′

0)] ∪ [{1} × (Ω′
Z
∖ D′

1)]. This implies

∀ z ∈ Ω′
Z
∖ D′

1: PY|1X=x =1, Z=z(B
′) = PY|Z=z(B

′)
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and

P1X=x, Z(D′) = 0

⇒ P1X=x, Z({1} × D′
1) = 0 [{1} × D′

1 ⊂ D′]

⇒ P(X=x, Z∈D′
1) = 0 [(5.2)]

⇒
P(X=x, Z∈D′

1)

P(X=x)
= 0 [P(X=x) > 0]

⇒ PZ|X=x(D′
1) = 0. [(4.2), (9.4), Cor. 17.10]

Hence, PY|1X=x =1, Z=z(B
′) = PY|Z=z(B

′) for PZ|X=x-a.a. z ∈ Ω′
Z . Because {1X=x=1} =

{X=x}, the proof of (17.60) is complete.

Proof of Corollary 17.51

If X ⟂⟂
P

Y | Z, then, for all nonnegative measurable h: Ω′
X × Ω′

Y × Ω′
Z → R,

∫ ∫ ∫
h(x, y, z) PY|Z=z(dy) PX|Z=z(dx) PZ(dz)

=
∫ ∫

h(x, y, z) PX,Y|Z=z[d(x, y)] PZ(dz) [(17.52)]

=
∫

h(x, y, z) PX,Y,Z[d(x, y, z)] [(17.43)]

=
∫ ∫

h(x, y, z) PY|X=x, Z=z(dy) PX,Z[d(x, z)] [(17.43)]

=
∫ ∫ ∫

h(x, y, z) PY|X=x, Z=z(dy) PX|Z=z(dx) PZ(dz). [(17.43)]

This proves Equation (17.62).
Now, for

h = 1A′ ⋅ 1B′ ⋅ 1C′ , (A′, B′, C′) ∈ 𝒜 ′
X ×𝒜 ′

Y ×𝒜 ′
Z ,

(17.62) yields

∫
1C′(z) ⋅ PY|Z=z(B

′) ⋅ PX|Z=z(A
′) PZ(dz)

=
∫

1C′(z)
∫

1A′(x) ⋅ PY|X=x, Z=z(B
′) PX|Z=z(dx) PZ(dz). [(6.4), (6.1)]

Therefore, (3.45) implies: For all (A′, B′) ∈ 𝒜 ′
X ×𝒜 ′

Y ,

PX|Z=z(A
′) ⋅ PY|Z=z(B

′) =
PZ-a.a. ∫

1A′ (x) ⋅ PY|X=x, Z=z(B
′) PX|Z=z(dx).
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Proof of Corollary 17.52

PY|X=x(B′) = PY (B′), ∀ B′∈ 𝒜 ′
Y ,

⇔ PX=x
Y (B′) = PY (B′), ∀ B′∈ 𝒜 ′

Y , [(17.15), P(X=x) > 0]

⇔
1

P(X=x)
⋅ P(X=x, Y ∈B′) = P(Y ∈B′), ∀ B′∈ 𝒜 ′

Y , [Defs. 4.12, 5.3]

⇔ P(X=x, Y ∈B′) = P(X=x) ⋅ P(Y ∈A′), ∀ B′∈ 𝒜 ′
Y ,

⇔ {X=x} ⟂⟂
P

Y [Def. 4.40]

⇔ 1X=x ⟂⟂P Y . [Rem. 5.46]

Proof of Corollary 17.53

Note that ∫ 1{x}(x′) PX|Z=z(dx′) = PX|Z=z({x}) [see Eqs. (6.4) and (6.1)]. Furthermore,
P(X=x | Z) >

P
0 implies P(X=x | Z=z) >

PZ-a.a.
0 [see Cor. 5.25 (ii)], which in turn implies

PX|Z=z({x}) >
PZ-a.a.

0 [see (17.11), (17.14), and (2.40)]. Therefore,

∫

1
PX|Z=z({x})

⋅ 1{x}(x′) PX|Z=z(dx′) = 1, for PZ-a.a. z ∈ Ω′
Z . (17.109)

For all B′∈ 𝒜 ′
Y and x ∈ Ω′

X with P(X=x | Z) >
P

0,

∫
PY|Z=z(B

′) PZ(dz)

=
∫ ∫

1B′ (y) PY|Z=z(dy) PZ(dz) [(3.8)]

=
∫ ∫

1B′ (y) PY|Z=z(dy)
∫

1
PX|Z=z({x})

⋅ 1{x}(x′) PX|Z=z(dx′) PZ(dz) [(17.109)]

=
∫ ∫ ∫

1B′ (y) ⋅
1

PX|Z=z({x})
⋅ 1{x}(x′) PY|Z=z(dy) PX|Z=z(dx′) PZ(dz) [(3.32)]

=
∫ ∫ ∫

1B′ (y) ⋅
1

PX|Z=z({x})
⋅ 1{x}(x′) PY|X=x, Z=z(dy) PX|Z=z(dx′) PZ(dz) [(17.62)]

=
∫ ∫

1B′ (y) PY|X=x, Z=z(dy) PZ(dz) [(17.109)]

=
∫

PY|X=x, Z=z(B
′) PZ(dz). [(3.8)]

Applying Theorem 3.48 yields (17.64), and Lemma 17.26 completes the proof of (17.65).
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Proof of Lemma 17.54

If P(X=x | Z) >
P

0, then,

P(X=x) = E(1X=x) [(6.4)]

= E[E(1X=x | Z)] [Box 10.2 (iv)]

= E[P(X=x | Z)] [(10.3)]

> 0. [P(X=x | Z) >
P

0, (6.1), (3.51)]

Now we can apply Corollary 14.48 with B = {X=x}, because P(X=x) > 0 in (a) as well as in
(b). This implies

(
P(X=x) > 0 and P ≪

σ(Z)
PX=x

)
⇔ P(X=x | Z) >

P
0.

Furthermore,

P ≪
σ(Z)

PX=x

⇔ ∀ C′∈ 𝒜 ′
Z : PX=x

Z (C′) = PX=x[Z−1(C′)] = 0 ⇒ PZ(C′) = P[Z−1(C′)] = 0

[Def. 3.70, (5.2)]
⇔ PZ ≪

𝒜
′
Z

PX=x
Z .

Proof of Theorem 17.55

Let A′∈ 𝒜 ′
X . Then, A := X −1(A′) ∈ σ(X), and the definition of E[ f (Y) | X] (see Def. 10.2)

implies

∫
1A ⋅ E[ f (Y) | X] dP =

∫
1A ⋅ f (Y) dP,

which, according to Theorem 3.57, is equivalent to

∫
1A′ (x) ⋅ E[ f (Y) | X=x] PX(dx) =

∫
1A′ (x) ⋅ f (y) PX,Y [d(x, y)]

=
∫ ∫

1A′ (x) ⋅ f (y) PY|X=x(dy) PX(dx) [(17.43)]

=
∫

1A′ (x)

(
∫

f (y) PY|X=x(dy)

)
PX(dx). [(3.32)]

Because these equations hold for all A′∈ 𝒜 ′
X , Theorem 3.48 yields

E[ f (Y) | X=x] =
∫

f (y) PY|X=x(dy), for PX-a.a. x ∈ Ω′
X .
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Proof of Corollary 17.57

For all nonnegative measurable functions g: Ω′
X × R → R,

∫ ∫
g[x, f (y)] PY|X=x(dy) PX(dx) =

∫
g[x, f (y)] PX,Y [d(x, y)] [(17.43)]

=
∫

g(x, z) PX, f (Y)[d(x, z)] [(3.59), (5.5)]

=
∫ ∫

g(x, z) Pf (Y)|X=x(dz) PX(dx). [(17.43)]

Choosing g(x, z) = 1A′ (x) ⋅ z for A′∈ 𝒜 ′
X , Theorem 3.48 implies (17.68).

Proof of Theorem 17.60

Consider Equation (17.66) and replace f (Y) by E(Y | X, Z), which is a function of (X, Z). Then,
for PX-a.a. x ∈ Ω′

X ,

E(Y | X=x) = E [E(Y | X, Z) | X=x] [Box 10.2 (v), (10.34)]

=
∫

E(Y | X=x′, Z=z) PX,Z|X=x[d(x′, z)] [(17.66)]

=
∫

E(Y | X=x, Z=z) PZ|X=x(dz). [Cor. 17.44 (i)]

Proof of Corollary 17.62

If Z is discrete, then for PX-a.a. x ∈ Ω′
X ,

E(Y | X=x) =
∫

E(Y | X=x, Z=z) PZ|X=x(dz) [(17.72)]

=
∑

z∈Ω′
Z

P(Z=z) > 0

E(Y | X=x, Z=z) ⋅ PZ|X=x({z}) [(17.29)]

=
∑

z∈Ω′
Z

P(Z=z) > 0

E(Y | X=x, Z=z) ⋅ P(Z=z | X=x). [(17.8), (17.10)]

Proof of Corollary 17.63

Replacing in Theorem 17.60 W by Z and X by (X, Z): (Ω, 𝒜, P) → (Ω′
X × Ω′

Z , 𝒜 ′
X ⊗𝒜 ′

Z)
yields, for PX,Z-a.a. (x, z) ∈ Ω′

X × Ω′
Z ,

E(Y | X=x, Z=z) =
∫

E(Y | X=x, Z=z, W=w) PW∣X=x,Z=z(dw)

=
∫

E(Y | X=x, Z=z, W=w) PW∣Z=z(dw). [X ⟂⟂
P

W | Z, (17.58)]
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Proof of Lemma 17.68

For all x ∈ R with f (x) > 0, the distribution function FY|X=x defines a probability measure on
(R, ℬ) (see Rem. 5.83), which in this proof is denoted by P(x). Furthermore, define

C′ := {x ∈ R: fX(x) > 0}.

If fX(x) = ∫ fX,Y (x, y) dy = 0, then fX,Y (x, ⋅) =
PY

0 (see Th. 3.43). Hence, for all measurable

nonnegative functions h: R
2 → R,

∫
R ∖C ′ ∫

h(x, y) ⋅ fX,Y (x, y) dy dx = 0. (17.110)

Note that, according to Theorem 17.18 (a), PY|X ∈ 𝒫Y|X exists. Furthermore, for all PY|X ∈
𝒫Y|X ,

∫ ∫
h(x, y) PY|X=x(dy) PX(dx)

=
∫

h(x, y) ⋅ PX,Y [d(x, y)] [(17.43)]

=
∫ ∫

h(x, y) ⋅ fX,Y (x, y) dy dx [(3.72)]

=
∫C ′ ∫

h(x, y)
fX,Y (x, y)

fX(x)
dy fX(x) dx +

∫
R ∖C ′ ∫

h(x, y) fX,Y (x, y) dy dx [def. of C′]

=
∫C ′ ∫

h(x, y) P(x)(dy) PX(dx). [(17.84), (17.110)]

This implies that for all A′∈ 𝒜 ′
X , B′∈ 𝒜 ′

Y , and h(x, y) = 1A′ (x) ⋅ 1B′ (y),

∫
1A′ (x) ⋅ PY|X=x(B′) PX(dx) =

∫
1A′∩ C ′(x) ⋅ P(x)(B

′) PX(dx).

Because PX(R ∖ C′) = ∫
R ∖C ′ fX(x) PX(dx) = 0, we can conclude PX(C′) = 1. Therefore,

according to Box 4.1 (viii), PX(A′∩ C′) = PX(A′). Hence, 1A′ =
PX

1A′∩ C ′ , and we obtain

∫
1A′ (x) ⋅ PY|X=x(B′) PX(dx) =

∫
1A′∩ C ′(x) ⋅ PY|X=x(B′) PX(dx)

=
∫

1A′∩ C ′(x) ⋅ P(x)(B
′) PX(dx)

=
∫

1A′ (x) ⋅ P(x)(B
′) PX(dx).

Now Theorem 3.48 and Corollary 17.28 imply

PY|X=x =
PX-a.a.

P(x),

where we define P(x) = 0 for x ∈ R ∖ C′.
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Proof of Lemma 17.70

Equation (17.83) implies, for all y ∈ R,

FY|X=x(y) ⋅ fX(x) =
∫

y

−∞
fX,Y (x, v) dv,

which also holds if fX(x) = 0 [see Rem. 17.67 and (17.110)]. Taking the Riemann integral with
respect to x and applying Theorem 3.62 yield, for all y ∈ R,

∫

∞

−∞
FY|X=x(y) ⋅ fX(x) dx =

∫

∞

−∞ ∫

y

−∞
fX,Y (x, v) dv dx

=
∫

y

−∞ ∫

∞

−∞
fX,Y (x, v) dx dv [Th. 3.76]

=
∫

y

−∞
fY (v) dv [(5.50)]

= FY (y). [(5.64)]

Furthermore, for all y ∈ R,

∫

∞

−∞
fY|X=x(y) ⋅ fX(x) dx =

∫

∞

−∞
fX,Y (x, y) dx [(17.85)]

= fY (y), [(5.50)]

where fY is the density of the marginal distribution of Y .

Proof of Theorem 17.72

We assume fX(x) > 0 and fY (y) > 0. Therefore,

fY|X=x(y) =
fX,Y (x, y)

fX(x)
[(17.84)]

=
fX|Y=y(x) ⋅ fY (y)

fX(x)
[(17.85)]

=
fX|Y=y(x) ⋅ fY (y)

∫
∞
−∞ fX|Y =y∗(x) ⋅ fY (y∗) dy∗

. [(17.87)]

(17.111)

Proof of Lemma 17.73

Define the function g: R → R by

∀ x ∈ R: g(x) =
∫

y ⋅ fY|X=x(y) dy

=

{ 1
fX (x)

∫ y ⋅ fX,Y (x, y) dy, if fX(x) > 0 and ∫ y ⋅ fX,Y (x, y) dy exists

0, otherwise.
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The function g: R → R is (ℬ,ℬ)-measurable (see Th. 3.76). Therefore, according to Theo-
rem 2.49, g(X): Ω → R is (σ(X),ℬ)-measurable. If A ∈ σ(X), then there is an A′∈ 𝒜 ′

X with
A = X −1(A′) and

∫
1A ⋅ g(X) dP =

∫
1A′ (x) ⋅ g(x) PX(dx) [(6.13)]

=
∫

1A′ (x) ⋅
∫

y ⋅ fY|X=x(y) dy PX(dx) [def. of g]

=
∫ ∫

1A′ (x) ⋅ y ⋅ fY|X=x(y) fX(x) dy dx [(3.72)]

=
∫ ∫

1A′ (x) ⋅ y ⋅ fX,Y (x, y) dy dx [(17.85)]

=
∫

1A′ (x) ⋅ y PX,Y [d(x, y)] [(3.72)]

=
∫

1A ⋅ Y dP. [(6.13)]

Hence, according to Definition 10.2, g(X) ∈ ℰ (Y | X).

Proof of Lemma 17.76

In the proof of Lemma 17.68, let the P(x) be defined by the densities fY|X=x, x ∈ Ω′
X , and replace

dx by 𝜇(dx) and dy by ν(dy) (i.e., replace the integration with respect to the Lebesgue measure
by the integration with respect to 𝜇 and ν, respectively).

Proof of Lemma 17.77

Let fX,Y denote a density of PX,Y with respect to 𝜇 ⊗ ν. Note that, for A′ := {x ∈ Ω′
X:

fX(x) = 0} and all B′∈ 𝒜 ′
Y ,

∫
1A′ (x) ⋅ 1B′(y) ⋅ fX,Y (x, y) (𝜇 ⊗ ν)[d(x, y)]

=
∫

1A′ (x) ⋅ 1B′(y) PX,Y [d(x, y)] [(5.40)]

= PX,Y (A′× B′) [(3.8)]

≤ PX,Y (A′× Ω′
Y ) [Box 4.1 (v)]

= PX(A′) [(5.21)]

=
∫

1A′ (x) PX(dx) [(3.8)]

=
∫

1A′ (x) ⋅ fX(x) 𝜇(dx) = 0. [(5.40), Lemma 5.79, (3.40)]
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This implies: for all B′∈ 𝒜 ′
Y ,

∫
1B′ (y) ⋅

(
∫

fY|X=x(y) ⋅ fX(x) 𝜇(dx)

)
ν(dy)

=
∫

1B′ (y)
∫

fX,Y (x, y) 𝜇(dx) ν(dy) [Def. 17.75, Th. 3.76]

=
∫

1B′ (y) ⋅ fY (y) ν(dy). [(5.48)]

Theorem 3.48, then, implies the proposition of the lemma.

Proof of Lemma 17.78

The proof is analogous to the proof of Lemma 17.73 using the function g: Ω′
X → R with

g(x) =
∫

y ⋅ fY|X=x(y) ν(dy), ∀ x ∈ Ω′
X ,

and replacing dy by ν(dy) and dx by 𝜇(dx), respectively.

Exercises

17.1 Prove the proposition of Remark 17.36.

17.2 Suppose that X: (Ω, 𝒜, P) → (Ω′
X , 𝒜 ′

X) and Y: (Ω, 𝒜, P) → (Ω′
Y , 𝒜 ′

Y ) are random vari-
ables, A′∈ 𝒜 ′

X , B′∈ 𝒜 ′
Y , and P(X=x) > 0. Show that

P(X∈A′, Y ∈B′ | X=x) = 1A′ (x) ⋅ P(Y ∈B′ | X=x).

17.3 Prove the proposition of Remark 17.46.

17.4 Prove the propositions of Remark 17.59.

17.5 Consider Example 17.81 and prove PX,Y ≪
ℬ2

𝜇 ⊗𝜆.

17.6 Prove Equations (17.101) to (17.104).

Solutions

17.1 For an (X=x)-conditional-probability measure PX=x defined by Equation (17.32) and
for all A ∈ 𝒜, there is a version P(id ∈ A | X) such that

PX=x(A) = Pid∣X=x(A) [(17.32)]

= P(id ∈ A | X=x) [(17.10)]

= PX=x(id ∈ A) [Rem. 10.35, (9.4)]

= PX=x(A). [{id ∈ A} = A]

According to (9.4), this value is unique for all A ∈ 𝒜.
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17.2 For A′∈ 𝒜 ′
X , consider the events

{X∈A′} = {ω∈Ω: X(ω) ∈ A′} = {ω∈Ω: 1A′ (X)(ω) = 1}

and, for x ∈ Ω′
X ,

{X∈A′} ∩ {X=x} = {ω∈Ω: X(ω) ∈ A′} ∩ {ω∈Ω: X(ω) = x}

= {ω∈Ω: 1A′ (X)(ω) = 1, X(ω) = x}

=
{

{X=x}, if x ∈ A′

Ø, if x ∉ A′.

(17.112)

Hence, if x ∈ A′ (i.e., if 1A′ (x) = 1), then

P(X∈A′, Y ∈B′ | X=x) = P({X∈A′} ∩ {Y ∈B′} ∩ {X=x})
P({X=x})

[(4.2)]

= P({Y ∈B′} ∩ {X=x})
P({X=x})

[(17.112)]

= P(Y ∈B′ | X=x) [(4.2)]

= 1A′ (x) ⋅ P(Y ∈B′ | X=x).

If x ∉ A′ (i.e., if 1A′ (x) = 0), then

P(X∈A′, Y ∈B′ | X=x) = P({X∈A′} ∩ {Y ∈B′} ∩ {X=x})
P({X=x})

[(4.2)]

= P(Ø)
P({X=x})

[(17.112)]

= 0

= 1A′ (x) ⋅ P(Y ∈B′ | X=x).

17.3 We show that (17.56) is equivalent to PY|Z ∈ 𝒫Y|X, Z . We assume that PY|Z and PY|X,Z
exist. Hence, according to (17.3) and (17.4), for all B′∈ 𝒜 ′

Y there is a P(Y ∈B′ | X, Z) ∈
𝒫(Y ∈B′ | X, Z) and a P(Y ∈B′ | Z) ∈ 𝒫(Y ∈B′ | Z) with

P(Y ∈B′ | X, Z)(ω) = PY|X,Z(ω, B′), ∀ ω ∈ Ω,

and

P(Y ∈B′ | Z)(ω) = PY|Z(ω, B′), ∀ ω ∈ Ω.
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Hence, (17.56) is equivalent to

∀ B′∈ 𝒜 ′
Y : P(Y ∈B′ | X, Z) =

P
P(Y ∈B′ | Z) (17.113)

Because σ(Z) ⊂ σ(X, Z), the random variable P(Y ∈B′ | Z) is (X, Z)-measurable, and
proposition (10.12) implies that, for all B′∈ 𝒜 ′

Y , P(Y ∈B′ | Z) ∈ 𝒫(Y ∈B′ | X, Z)
is equivalent to (17.113). However, according to Definition 17.1, P(Y ∈B′ | Z) ∈
𝒫(Y ∈B′ | X, Z) is equivalent to PY|Z ∈ 𝒫Y|X, Z .

17.4 If Y takes on only a finite number of values y1, … , yn, then,

f (y) =
n∑

i=1
1{yi}

(y) ⋅ f (yi).

Therefore, for PX-a.a. x ∈ Ω′
X ,

E[ f (Y) | X=x] =
∫

f (y) PY|X=x(dy) [(17.66)]

=
n∑

i=1
f (yi) ⋅ PY|X=x({yi}). [(17.29)]

If P(X=x) > 0, then Equation (17.70) follows from Equation (17.11) for A′= {yi}.

17.5 According to Theorem 5.77, the probability function pX of X (see Def. 5.56) is a den-
sity of PX with respect to 𝜇 = 𝛿0 + 𝛿1. If fY|X=x denotes the density (with respect
to 𝜆) of PY|X=x = 𝒩(μx, σ2

x), x = 0, 1, then, for all nonnegative measurable functions

h: R
2 → R,

∫
h(x, y) PX,Y [d(x, y)] =

∫ ∫
h(x, y) PY|X=x(dy) PX(dx) [(17.43)]

=
∫ ∫

h(x, y) ⋅ fY|X=x(y) 𝜆(dy) pX(x) 𝜇(dx) [(3.79)]

=
∫ ∫

h(x, y) ⋅ fY|X=x(y) ⋅ pX(x) 𝜆(dy) 𝜇(dx)

=
∫

h(x, y) ⋅ fY|X=x(y) ⋅ pX(x) 𝜇 ⊗𝜆[d(x, y)]. [(3.80)]

Hence, choosing h = 1D′ for D′∈ ℬ2, Theorem 3.65 implies that fY|X=x(y) pX(x),

where (x, y) ∈ R
2, describes a Radon-Nikodym density of PX,Y with respect to 𝜇 ⊗𝜆,

which implies PX,Y ≪
ℬ2

𝜇 ⊗𝜆.
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17.6 According to Lemma 17.78, for all y ∈ Ω′
Y :

E(X | Y =y)

=
∫

x ⋅ fX|Y=y(x) 𝜇(dx)

= fX|Y=y(1) [𝜇 = 𝛿0 + 𝛿1, (3.57)]

=
p ⋅ fY|X=1(y)

(1 − p) ⋅ fY|X=0(y) + p ⋅ fY|X=1(y)
[(17.100)]

=

p ⋅
1
σ1

⋅ exp

[
−1

2

(
y − μ1

σ1

)2
]

(1 − p) ⋅
1
σ0

⋅ exp

[
−1

2

(
y − μ0

σ0

)2
]
+ p ⋅

1
σ1

⋅ exp

[
−1

2

(
y − μ1

σ1

)2
]

[(8.23)]

defines a version of E(X ∣ Y). Note that the term 1√
2𝜋

in the densities fY|X=x, x = 0, 1,

of the normal distributions cancels out. If we define

q0 := 1 − p
σ0

, q1 := p
σ1

, c := q1

q0
,

and

a := −1
2

(
y − 𝜇0

σ0

)2

, b := −1
2

(
y − 𝜇1

σ1

)2

,

then,

E(X | Y =y) = q1 ⋅ eb

q0 ⋅ ea + q1 ⋅ eb
[cancel by q0 ⋅ ea]

= c ⋅ eb−a

1 + c ⋅ eb−a
[replace c, c = eln c]

= eb−a+ln c

1 + eb−a+ln c
.

Now consider

b − a = −1
2

[(
y − 𝜇1

σ1

)2

−
(

y − 𝜇0

σ0

)2
]

= −1
2

[
1
σ2

1

(y2 − 2𝜇1y + 𝜇
2
1) − 1

σ2
0

(y2 − 2𝜇0y + 𝜇
2
0)

]

=

(
𝜇2

0

2σ2
0

−
𝜇2

1

2σ2
1

)
+
(
𝜇1

σ2
1

− 𝜇0

σ2
0

)
⋅ y +

(
1

2σ2
0

− 1
2σ2

1

)
⋅ y2

.

If σ0 = σ1 =: σ, then this equation simplifies to

b − a =

(
𝜇2

0 − 𝜇2
1

2σ2

)
+
(
𝜇1 − 𝜇0

σ2

)
⋅ y.
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¬ not
∧ and
∨ or
⇒ implies
⇔ equivalent to
∃ there is (synonymously, there exists)
∀ for all
∈ element of

1A indicator (function) of the set A
∪ union of sets
∩ intersection of sets
∖ set difference

Ac complement of a set A with respect to a set Ω, that is, Ac := Ω ∖ A
⊂ subset or equal
× Cartesian product or product set
⊗ product σ-algebra
⊗ product measure
◦ composition of two mappings
⊙ measure with density
=
𝜇

𝜇-equivalence of mappings

<
𝜇

smaller than except for a 𝜇-null set

>
𝜇

greater than except for a 𝜇-null set

≤
𝜇

smaller than or equal except for a 𝜇-null set

≥
𝜇

greater than or equal except for a 𝜇-null set

=
P

P-equivalence of random variables

=
𝜇-a.a.

equal for 𝜇-almost all ω ∈ Ω
≪
𝒜

absolute continuity of a measure with respect to another measure

≈
𝒜

null-set equivalence of two measures

⟂⟂
P

independence with respect to the probability measure P

[a, b] closed interval between real numbers a and b
]a, b] half-open interval including b but not a

Symbols

http://www.probability-and-conditional-expectation.de
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{x} singleton (i.e., the set that contains x as the only element)
Ø empty set

(Ai, i ∈ I) family of sets Ai, i ∈ I, where the index set I may be finite, count-
able, or uncountable

⋃
i∈I Ai union of the sets Ai, i ∈ I

⋂
i∈I Ai intersection of the sets Ai, i ∈ I

⋃n
i=1 Ai union of finitely many sets A1, … , An⋃∞
i=1 Ai union of countably many sets A1, A2, …

⋂n
i=1 Ai intersection of finitely many sets A1, … , An⋂∞
i=1 Ai intersection of countably many sets A1, A2, …

×n
i=1 Ai Cartesian product or product set of n sets Ai

lim
n→∞

an limit of a sequence a1, a2, … of real numbers
∑n

i=1 ai sum of the numbers a1, … , an∑∞
i=1 ai lim

n→∞
∑n

i=1 ai
∏n

i=1 ai product of the real numbers a1, … , an
𝒜1 ⊗ … ⊗ 𝒜n product σ-algebra of the 𝒜1, … , 𝒜n⨂n

i=1 𝒜i product σ-algebra of the 𝒜1, … , 𝒜n

∫ f d𝜇 integral of a measurable function f : (Ω, 𝒜, 𝜇) → (R,ℬ) with
respect to the measure 𝜇

∫A f d𝜇 integral of a measurable function f (Ω, 𝒜, 𝜇) → (R, ℬ) with
respect to the measure 𝜇 over a subset A of Ω

∫
b

a f (x) dx Riemann integral of the function f from a to b
𝒜 | Ω0

trace of the set system 𝒜 in the set Ω0
(Ω, 𝒜 ) measurable space

(Ω, 𝒜, 𝜇) measure space
(Ω, 𝒜, P) probability space
f : A → B mapping f assigning to each a ∈ A one and only one element b ∈B

f (A) image of the set A under f
f−1(A′) inverse image of the set A′ under f

{ f ∈A′} := f−1(A′)
{ f = ω′} := f−1({ω′})
( fi, i ∈ I) family of mappings

f−1(ℰ ′) set of the inverse images of all sets A′ ∈ ℰ ′. If ℰ ′ is a σ-algebra,
then f−1(ℰ ′) is the σ-algebra generated by f

g ◦ f , g( f ) composition of f and g
∣ f ∣ absolute value function of f
f+ positive part of the function f
f− negative part of the function f

fn ↑ f the sequence f1, f2, … of functions converges pointwise and mono-
tonically from below to f

f : (Ω, 𝒜 ) → (Ω′, 𝒜 ′) (Ω, 𝒜 ), (Ω′, 𝒜 ′) are measurable spaces and the mapping f : Ω → Ω′

is (𝒜, 𝒜 ′)-measurable
f : (Ω, 𝒜, 𝜇) → Ω′ (Ω, 𝒜, 𝜇) is a measure space and f : Ω → Ω′ is a mapping
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f : (Ω, 𝒜, 𝜇) → (Ω′, 𝒜 ′) f : Ω → Ω′ is an (𝒜, 𝒜 ′)-measurable mapping and 𝜇 is a measure
on (Ω, 𝒜 )

f =
𝜇

g the mappings f and g are 𝜇-equivalent
f <

𝜇
g f is smaller than g except for a set A of arguments with 𝜇(A) = 0

f >
𝜇

g f is greater than g except for a set A of arguments with 𝜇(A) = 0

f ≤
𝜇

g f is smaller than or equal to g except for a set A of arguments with
𝜇(A) = 0

f ≥
𝜇

g f is greater than or equal to g except for a set A of arguments with
𝜇(A) = 0

f (ω) =
𝜇-a.a.

g(ω) f (ω) = g(ω), for 𝜇-almost all ω ∈ Ω
𝜇f image measure of 𝜇 under f

ν≪
𝒜

𝜇 the measure ν is absolutely continuous with respect to the mea-
sure 𝜇

ν ≈
𝒜
𝜇 the measures𝜇 and ν are null-set equivalent (i.e., they are absolutely

continuous with respect to each other)
A ⟂⟂

P
B the events A and B are independent with respect to the probability

measure P
⟂⟂
P

(Ai, i ∈ I) a family of events Ai that are independent with respect to the prob-
ability measure P

A ⟂⟂
P

C | B the events A and C are B-conditionally independent with respect to
the probability measure P

ℰ1 ⟂⟂P ℰ2 the set systems ℰ1 and ℰ2 are independent with respect to the prob-
ability measure P

⟂⟂
P

(ℰi, i ∈ I) a family of set systems ℰi that are independent with respect to the
probability measure P

A ⟂⟂
P
ℰ the event A and the set system ℰ1 are independent with respect to

the probability measure P
⟂⟂
P

(Xi, i ∈ I) a family of random variables Xi that are independent with respect
to the probability measure P

⟂⟂
P

X1, … , Xn the random variables X1, … , Xn are independent with respect to the
probability measure P

ℰ ⟂⟂
P

X the set system ℰ and the random variable X are independent with
respect to the probability measure P

X ⟂⟂
P

(Yi, i ∈ I) the random variable X and the (σ-algebra generated by the) family
of random variables Yi, i ∈ I, are independent with respect to the
probability measure P

⟂⟂
P

(ℰi, i ∈ I) | B a family of set systemsℰi that are B-conditionally independent with
respect to the probability measure P

⟂⟂
P

A1, A2, A3 |𝒞 the events A1, A2, A3 are 𝒞-conditionally independent with respect
to P

⟂⟂
P

(Ai, i ∈ I) |𝒞 a family of events Ai that are 𝒞-conditionally independent with
respect to P

⟂⟂
P

(Ai, i ∈ I) | Z a family of events Ai that are Z-conditionally independent with
respect to P

⟂⟂
P

(ℰi, i ∈ I) |𝒞 a family of set systems ℰi that are 𝒞-conditionally independent
with respect to P
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⟂⟂
P

(ℰi, i ∈ I) | Z a family of set systemsℰi that are Z-conditionally independent with
respect to P

⟂⟂
P

(Xi, i ∈ I) |𝒞 a family of random variables Xi that are 𝒞-conditionally indepen-
dent with respect to P

⟂⟂
P

(Xi, i ∈ I) | Z a family of random variables Xi that are Z-conditionally indepen-
dent with respect to P

A ⟂⟂
P

B |𝒞 the events A and B are 𝒞-conditionally independent with respect to
the probability measure P

A ⟂⟂
P

B | Z the events A and B are Z-conditionally independent with respect to
the probability measure P

𝒟 ⟂⟂
P
ℰ |𝒞 the set systems 𝒟 and ℰ are 𝒞-conditionally independent with

respect to the probability measure P
𝒟 ⟂⟂

P
ℰ | Z the set systems 𝒟 and ℰ are Z-conditionally independent with

respect to the probability measure P
X ⟂⟂

P
Y |𝒞 the random variables X and Y are𝒞-conditionally independent with

respect to the probability measure P
X ⟂⟂

P
Y | Z the random variables X and Y are Z-conditionally independent with

respect to the probability measure P
Y arithmetic mean (sample mean) of the real-valued random variables

Y1, … , Yn
𝒜 , ℬ, 𝒞 , 𝒟 , ℰ set systems, sometimes σ-algebras
𝒜1 ⊗ … ⊗ 𝒜n product σ-algebra of the σ-algebras 𝒜1, … , 𝒜n

𝒜|Ω0
trace of the set system 𝒜 in the set Ω0

ℬ Borel σ-algebra on R

ℬn Borel σ-algebra on R
n

ℬ Borel σ-algebra on R

ℬn Borel σ-algebra on R
n

n,p binomial distribution with parameters n and p
bn,p probability function of the binomial distribution with parameters n

and p
𝒞 ′

f final σ-algebra of 𝒞 under f
Cov (X, Y) covariance of the random variables X and Y

Cov (Y1, Y2 | X=x) (X=x)-conditional covariance of Y1 and Y2
Cov (Y1, Y2 |𝒞) a version of the 𝒞-conditional covariance of Y1 and Y2

Corr (X, Y) correlation of the random variables X and Y
Cov (Y1, Y2 | X) a version of the X-conditional covariance of Y1 and Y2

Corr (Y1, Y2 | X=x) (X=x)-conditional correlation of Y1 and Y2
Corr (Y1, Y2; 𝒞) partial correlation of Y1 and Y2 given 𝒞
Corr (Y1, Y2; X) partial correlation of Y1 and Y2 given X

𝜒 2
n central 𝜒2-distribution with n degrees of freedom

dν
d𝜇

Radon-Nikodym density (also Radon-Nikodym derivative) of ν
with respect to 𝜇

𝛿ω Dirac measure at (point) ω
E(Y) expectation of the random variable Y
E(x) column vector of expectations
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EB(Y) expectation of the random variable Y with respect to the probability
measure PB

E(Y | B) conditional expectation value of Y given the event B
E(Y | X=x) conditional expectation value of Y given the event {X=x}, also

denoted by E(Y | {X=x})
E(Y | X=x) (X=x)-conditional expectation value of Y

EY (g) expectation of the random variable g with respect to the distribution
of the random variable Y

E(X) matrix of expectations
E X=x

Y (g) expectation of g with respect to the distribution PX=x
Y

E X=x(Y) expectation of Y with respect to the conditional-probability mea-
sure PX=x

E{X=x}(Y) expectation of Y with respect to the conditional-probability mea-
sure PX=x

ε residual of a random variable Y with respect to its 𝒞-conditional
expectation

𝜖 residual with respect to a (multiple) linear quasi-regression
E(Y | X) a version of the X-conditional expectation of Y
ℰ (Y | X) set of all versions of the X-conditional expectation of Y

E(Y | X1, … , Xn) a version of the conditional expectation of Y given the multivariate
regressor X1, … , Xn

E(Y |𝒞) a version of the 𝒞-conditional expectation of Y
E(Y |𝒞, 𝒟) a version of the σ(𝒞 ∪𝒟)-conditional expectation of Y
E(Y |𝒞, Z) a version of the σ[𝒞 ∪ σ(Z)]-conditional expectation of Y
ℰ (Y |𝒞) set of all versions of the 𝒞-conditional expectation of Y

EB(Y |𝒞) a version of the 𝒞-conditional expectation of Y with respect to the
measure PB

ℰB(Y |𝒞) the set of all versions of the 𝒞-conditional expectation of Y with
respect to the measure PB

EB(Y | X) a version of the X-conditional expectation of Y with respect to the
measure PB

EB(Y | X=x) an (X=x)-conditional expectation value of Y with respect to the
measure PB

ℰB(Y | X) the set of all versions of the X-conditional expectation of Y with
respect to the measure PB

EZ=z(Y |𝒞) a version of the 𝒞-conditional expectation of Y with respect to the
measure PZ=z

ℰZ=z(Y |𝒞) the set of all versions of the 𝒞-conditional expectations of Y with
respect to the measure PZ=z

EZ=z(Y | X=x) an (X=x)-conditional expectation value of Y with respect to the
measure PZ=z

E(Y | X, Z=z) a version of the partial (X, Z=z)-conditional expectation of Y (with
respect to the measure P)

EZ=z(Y | X) a version of the X-conditional expectation of Y with respect to the
measure PZ=z

ℰZ=z(Y | X) the family of all versions of the X-conditional expectation of Y with
respect to the measure PZ=z
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EZ=z(Y | X=x) an (X=x)-conditional expectation value of Y with respect to the
measure PZ=z

EZ=z(Y | X, W ) a version of the (X, W)-conditional expectation of Y with respect to
the measure PZ=z

EZ=z(Y |𝒞 , 𝒟) a version of the σ(𝒞 ∪𝒟)-conditional expectation of Y with respect
to the measure PZ=z

EZ=z(Y |𝒞, Z) a version of the σ[𝒞 ∪ σ(Z)]-conditional expectation of Y with
respect to the measure PZ=z

FX distribution function of a real-valued random variable X
FX1,…,Xn

joint distribution function of X1, … , Xn

F(x)|ba F(b) − F(a)
FY|X=x (X=x)-conditional distribution function of Y
fY|X=x (X=x)-conditional-probability density of Y

fX probability density of a continuous real-valued random variable X
( fi, i ∈ I) family of mappings

f ⊙𝜇 measure with density f with respect to 𝜇

Fm,n F-distribution with m and n degrees of freedom
Γ gamma function
p geometric distribution with parameter p
1A indicator (function) of the set A

1X∈ A′ indicator of the event {X ∈ A′}, that is, 1X∈ A′ = 1X−1(A′)
1X=x, 1{X=x} indicator of the event {X=x}

ℐ1 set system of all half-open intervals in R

id identity mapping
ℐn set system of all half-open cuboids in R

n

logit logit transformation
logit [P(Y =1 |𝒞) ] logit of P(Y =1 |𝒞)

𝜆, 𝜆n Lebesgue measure on (Rn, ℬn), where 𝜆 := 𝜆1
𝜇# counting measure

𝜇, ν general symbols for measures
𝜇f image measure of 𝜇 under f
N set of all positive integers without zero (i.e., N = {1, 2, … , })

N0 set of all nonnegative integers including zero (i.e., N0 =
{0, 1, 2, … , })

μ,σ2 univariate normal distribution with parameters μ and σ2

𝛍,𝚺 multivariate normal distribution with parameters 𝛍 and 𝚺
(Ω, 𝒜, P) probability space

𝒫 (Ω) power set of Ω
P probability measure

P(A) probability of the event A
P(X=x) probability of the event {X=x} = X−1({x})

P(X ∈ A′) probability of the event {X ∈ A′} = X−1(A′)
P(A | B) conditional probability of A given B (with respect to the probability

measure P)
P(X1 ∈ A′, X2 ∈ B′) probability of the event {X1 ∈ A′} ∩ {X2 ∈ B′}

PB B-conditional-probability measure
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P(A | X=x) conditional probability of the event A given the event {X=x}, also
called (X=x)-conditional probability of A

P(Y =y | {X=x}) conditional probability of the event {Y =y} given the event {X=x}
with P({X=x}) > 0, also denoted by P(Y =y | X=x)

P(Y =y | X=x) conditional probability of the event {Y =y} given the event {X=x},
also called (X=x)-conditional probability of {Y =y} and also
denoted by P({Y =y} | X=x)

P(A |𝒞) a version of the 𝒞-conditional probability of the event A
P(A |𝒞, 𝒟) a version of the σ(𝒞 ∪𝒟)-conditional probability of the event A
P(A |𝒞, Z) a version of the σ[𝒞 ∪ σ(Z)]-conditional probability of the event A
𝒫(A |𝒞) set of all versions of the 𝒞-conditional expectation of the event A

P(A | X) a version of the X-conditional probability of the event A
𝒫(A | X) set of all versions of the X-conditional expectation of the event A

P(Y =y | X) a version of the X-conditional probability of the event {Y =y}
PX=x the (X=x)-conditional-probability measure on (Ω, 𝒜 )

PX distribution of the random variable X (with respect to P)
PX1,…, Xn

joint distribution of the random variables X1, … , Xn, the distribu-
tion of the multivariate random variable X = (X1, … , Xn)

(PX)g image measure of PX under g
Φ distribution function of the standard normal distribution

PB
X distribution of X with respect to the conditional-probability mea-

sure PB

pX probability function of a discrete random variable X
pX1, X2

probability function of the bivariate random variable X = (X1, X2)
𝜋j jth projection mapping
 λ Poisson distribution with parameter 𝜆

PB(A |𝒞) a version of the 𝒞-conditional probability of the event A with
respect to the measure PB

𝒫B(A |𝒞) the set of all versions of the 𝒞-conditional probability of the event
A with respect to the measure PB

PB(A | X) a version of the X-conditional probability of the event A with
respect to the measure PB

PB(A | X=x) an (X=x)-conditional probability of A with respect to the mea-
sure PB

PZ=z(A | X=x) an (X=x)-conditional probability of A with respect to the measure
PZ=z

𝒫B(A | X ) the set of all versions of the X-conditional probability of the event
A with respect to the measure PB

PZ=z(A |𝒞 ) a version of the 𝒞-conditional probability of the event A with
respect to the measure PZ=z

𝒫Z=z(A |𝒞 ) the family of all versions of the 𝒞-conditional probability of the
event A with respect to the measure PZ=z

PZ=z(A | X ) a version of the X-conditional probability of the event A with
respect to the measure PZ=z

𝒫Z=z(A | X) the family of all versions of the X-conditional probability of the
event A with respect to the measure PZ=z
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PY|𝒞 a version of the conditional distribution of Y given the σ-algebra 𝒞
𝒫Y|𝒞 the set of all versions of the conditional distribution of Y given 𝒞

PY|X=x (X=x)-conditional distribution of Y
PY|X a version of the conditional distribution of Y given the random vari-

able X
P X=x

Y|Z a version of the Z-conditional distribution of Y with respect to the

probability measure PX=x

P X=x
Y|Z=z (Z=z)-conditional distribution of Y with respect to the probability

measure PX=x

QX quantile function of a real-valued random variable X
ℚ set of all rational numbers

Qlin(Y | X) the composition of X and the linear quasi-regression (or linear least-
squares regression of Y on X)

Qlin(Y | X1, … , Xn) linear quasi-regression of Y on X1, … , Xn
RY|X multiple correlation of Y and X

RY|X1, …, Xn
multiple correlation of Y and (X1, … , Xn)

R2
Y|𝒞 coefficient of determination of E(Y |𝒞)

R2
Y|X coefficient of determination of E(Y | X)

R2
Y|X1, …, Xn

coefficient of determination of E(Y | X1, … , Xn)
R set of all real numbers

R
2 Cartesian product R× R

R
n n-fold Cartesian product R×… × R

R extended set of all real numbers (i.e., R = R ∪ {∞, −∞})
SD(Y) standard deviation of the random variable Y
SE(Y) standard error of the sample mean of the random variables

Y1, … , Yn
sgn( f ) sign function of f

SD(Y | X=x) (X=x)-conditional standard deviation of Y
SD(Y |𝒞) a version of the 𝒞-conditional standard deviation of Y
SD(Y | X) a version of the X-conditional standard deviation of Y

σ(ℰ ) σ-algebra generated by the set system ℰ
σ( f ) σ-algebra generated by the mapping f

σ( f1, … , fn) σ-algebra generated by the mappings f1, … , fn
σ(X) σ-algebra generated by the random variable X

σ( f , 𝒜 ) the σ-algebra generated by the union of σ( f ) and 𝒜
𝚺xy covariance matrix of x and y
𝚺xx variance–covariance matrix of x

tn t-distribution with n degrees of freedom
 B continuous uniform distribution on the set B

Var (Y) variance of the random variable Y
Var (Y | X=x) (X=x)-conditional variance of Y

Var (Y | X) a version of the X-conditional variance of Y
Var (Y |𝒞) a version of the 𝒞-conditional variance of Y

x column vector of numerical random variables
X matrix of numerical random variables



LIST OF SYMBOLS 567

X−1(𝒜 ′
X) σ-algebra generated by the random variable X

X ∼  the random variable X has the distribution . Examples for  are
n,p,  λ,  0,1, or Fm,n

X =
P

Y X and Y are P-equivalent

X(ω) =
P-a.a.

Y(ω) X and Y are identical for P-almost all ω ∈ Ω
ZY Z-transformation of the random variable Y
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absolute continuity, 112
and P-equivalence, 171
and independence, 179
of a conditional-probability measure, 147
of marginal distributions, 188

absolute value function, 64
additivity of a measure

σ-additivity, 18
finite additivity, 18

adjusted conditional effect function, 457
adjusted effect, 457
adjusted logit effect, 461
almost all, 169
almost everywhere, 104
average effect, 457

Bayes’ theorem
for densities, 530
for events, 145

Bernoulli distribution, 255
Bernoulli variable, 255
binomial coefficient, 256
binomial distribution, 256

approximation by Poisson distribution, 260
bivariate normal distribution, 268
Borel σ-algebra on R, 12
Borel σ-algebra on R

n, 12, 15
Borel set, 12

cardinality, 8, 22
Cartesian product, 3
Cauchy distribution, 273
Cauchy-Schwarz inequality, 230
central F-distribution, 275
central t-distribution, 273
central limit theorem, 266
central moment, 217
𝜒2-distribution, 271
closed interval, 6

CNS-uniqueness, 513
codomain of a mapping, 43
coefficient of determination

of a conditional expectation, 345
of a linear quasi-regression, 226, 239

coefficient of variation, 220
common null set uniqueness, 513
complement of a set, 5
composition of two mappings, 59
conditional correlation

given a value of a random variable, 358
conditional covariance

given a σ-algebra, 350
given a random variable, 350
given a value of a random variable, 351
rules of computation, 355

conditional density, 529, 531
conditional distribution, 506

and P-equivalence, 516
and conditional independence, 522
and conditional independence given a random

variable, 521
and independence, 511
and mean independence, 523
existence, 512
of a random variable given a σ-algebra, 506
of a random variable given a random variable,

506
of a random variable given a value of a random

variable, 508
conditional distribution function, 529
conditional effect function, 452
conditional expectation

w.r.t. a conditional-probability measure,
418–421

and conditional densities, 531, 532
and joint distribution, 322
and mean-squared error, 317
coefficient of determination, 345
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convergence, 315, 316
discrete, 294
given a σ-algebra, 306
given a random variable, 306
linear parameterization, 372
marginalization, 526
monotonicity, 315
rules of computation, 312, 313
uniqueness w.r.t. a probability measure,

308
conditional expectation value

and conditional distribution, 525
given a value of a random variable, 288, 319
given an event, 288
of a composition, 291
rules of computation, 293, 294

conditional independence
of random variables given an event, 182

conditional independence given a σ-algebra
and conditional mean independence, 485
characterizations, 486
family of ∩-stable set systems, 489
family of events, 488
family of random variables, 489
family of set systems, 488
notation, 481
of two events, 474
of two random variables, 477
of two set systems, 476
properties, 482

conditional independence given a random variable
and conditional distributions, 520
family of events, 488
family of random variables, 489
family of set systems, 488
of two events, 474
of two random variables, 477
of two set systems, 476
properties, 483

conditional independence given a value of a
random variable

of two events, 475
conditional independence given an event

family of ∩-stable set systems, 154
family of set systems, 152
of two events, 152

conditional intercept function, 452
conditional logit effect function, 461
conditional logit intercept function, 461
conditional mean independence, 323

and conditional independence, 485
and independence, 324

from a σ-algebra, 323
from random variable, 323

conditional probability
w.r.t. a conditional-probability measure,

419–421
given a σ-algebra, 306
given a random variable, 306
given a value of a random variable, 319
given an event, 138
of an event given a value of a random variable,

290
of an event given an event, 290

conditional probability density, see conditional
density

conditional standard deviation
given a σ-algebra, 351
given a random variable, 351
given a value of a random variable, 352

conditional variance
given a σ-algebra, 351
given a random variable, 351
given a value of a random variable, 352
rules of computation, 356

conditional-probability measure, 146, 517
constant mapping, 49
continuity of a measure from above, 25
continuity of a measure from below, 25
continuous random variable, 193

without expectation, 211
continuous uniform distribution, 135, 262
convergence of conditional expectations, 315,

316
convergence of integrals, 107
correlation, 232

and slope of a linear quasi-regression, 233
invariance under linear transformations, 233

countable intersection, 6
countable union, 5
countably generated σ-algebra, 11
counting measure, 22
covariance, 228

rules of computation, 230
covariance matrix, 237

rules of computation, 238

density, see also probability density
and probability function, 188
of the 𝜒

2-distribution, 272
of the F-distribution, 275
of the t-distribution, 273
of the bivariate normal distribution, 268
of the Cauchy distribution, 273
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density (Continued)
of the multivariate normal distribution, 267
of the standard normal distribution, 111
of the univariate normal distribution, 264

density of a measure w.r.t. another measure, 110
dichotomous function, 49
dichotomous random variable, 165
Dirac measure, 21
discrete conditional expectation given a random

variable, 294
discrete conditional probability given a random

variable, 295
discrete distribution, 182
discrete random variable, 182

without expectation, 210
discrete regression, 296
discrete uniform distribution, 254
disjoint sets, 4
distribution, 163

and distribution function, 190, 192
Bernoulli, 255
binomial, 256
𝜒2, 271
Cauchy, 273
discrete uniform, 254
F, 275
geometric, 261
multivariate normal, 267
of a composition, 164
of an indicator, 164
Poisson, 259
t, 273
univariate normal, 264
univariate standard normal, 265

distribution function, 190
and distribution, 190, 192
and independence, 193
joint and marginal distribution function, 193
of a binomial distribution, 256
of the geometric distribution, 262
of the Poisson distribution, 259
of the standard normal distribution, 265
of the univariate normal distribution, 265

domain of a mapping, 43
dominated convergence of integrals, 108
Dynkin system, 16

effect function, 452
elementary event, 134
elementary function, 87

equivalence w.r.t. a measure, 66
necessary and sufficient conditions, 111

equivalence w.r.t. a probability measure
of random variables, 169
of two factorizations of a conditional

expectation, 318
equivalence class w.r.t. a measure, 67
equivalence of probability densities w.r.t. a

measure, 187
equivalence relation, 67
event, 134
existence

of a conditional distribution, 512
of a conditional expectation given a σ-algebra,

307
of an expectation, 208

expectation
w.r.t. a conditional-probability measure, 209,

289
w.r.t. a probability measure, 208
of a distribution, 213
of a random matrix, 236
of a random variable, 208
of a random variable with a countable number

of real values, 210
of a random variable with a finite number of

real values, 209
of a random variable with density, 211
of a random vector, 235
of a sample mean, 216
of an indicator, 209
of the product of random variables under

independence, 216
of the product of two random variables, 229
rules of computation, 215

expectation of a random matrix
rules of computation, 236

factorial of an integer, 256
factorization

equivalence of two versions w.r.t. a probability
measure, 318

of a conditional expectation given a random
variable, 317

uniqueness, 318
factorization of a composition, 61
F-distribution, 275
filtration, 139
final σ-algebra, 55
finite additivity of a measure, 18
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finite intersection, 6
finite measure, 24
finite union, 5
Fubini’s theorem, 114

Γ-function, 271
generating system

of a σ-algebra, 9
of a product σ-algebra, 16

geometric distribution, 261
distribution function, 262

identically distributed random variables, 164
identification

linear logit regression, 400
linear regression, 380

identity
of mappings, 47
of random variables, 168

identity mapping, 49
i.i.d., 178
image measure, 69

under a step function, 71
image of a set under a mapping, 42, 44
increasing sequence of nonnegative step

functions, 95
independence

and P-equivalence, 179
and absolute continuity, 179
and conditional mean independence, 324
and distribution function, 193
and probability densities, 195
and product measure, 180
conditional, see conditional independence
family of σ-algebras, 151
family of events, 150
family of random variables, 178
family of set systems, 150
measurable mappings, 181
of ∩-stable set systems, 151
of n random variables, 178
of a constant and a set of events, 181
of a random variable and a set system, 179
of an event and a set system, 151
of three events, 150
of two events, 149
of two random variables, 177

independent and identically distributed, 178
indicator, 20
infinite measure, 24

integrable, 98
integral

w.r.t. a Dirac measure, 97
w.r.t. a finite weighted sum of measures, 105
w.r.t. a measure with density, 110
w.r.t. a weighted sum of Dirac measures, 106
w.r.t. a weighted sum of measures, 105
w.r.t. an image measure, 106
w.r.t. the Lebesgue measure, 98
of 𝜇-equivalent functions, 103
of a constant, 90
of a function with a finite number of values,

107
of a measurable function, 98
of a nonnegative measurable function, 96
of a nonnegative step function, 90
of a positive measurable function, 102
over a null set, 102
over a subset, 91, 99
over the union of two sets, 101

intercept
of a simple linear quasi-regression, 228
of a simple linear regression, 374

intercept function, 452
intersection

of countably many sets, 6
of finitely many sets, 6

invariance of regression coefficients, 387
inverse image of a set under a mapping, 42

joint distribution, 175
joint distribution function, 192

Lebesgue integral and Riemann integral, 108
Lebesgue measure, 23
linear combination of two functions, 63
linear logistic regression, 401
linear logit parameterization, 396

identification, 400
linear logit regression, 401
linear parameterization

differences between means as coefficients, 383
identification, 380
means as coefficients, 383

linear parameterization of a conditional
expectation, 372

linear quasi-regression, 225
and linear regression, 378
and regression, 317
equivalent characterizations, 231
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linear regression, 381
and linear quasi-regression, 378
and normal distribution, 382
identification, 380

linearity
of the integral, 100

link function, 394
log odds, 394, 398
log odds ratio, 399
logit effect function, 461
logit intercept function, 461
logit of a conditional probability, 395
logit transformation, 394

marginal density, 189
marginal distribution, 175
marginal distribution function, 530
marginal probability density, 530
marginalization of a conditional expectation,

526
mean centered random variable, 218
mean independence, 323

and conditional distributions, 523
and uncorrelatedness, 328

mean squared error, 226, 239
measurability w.r.t. a mapping, 58
measurable mapping, 47
measurable set, 5
measurable space, 6
measure, 17
measure space, 17
measure with density, 110
mixture of probability measures, 138
moment, 217
moment of a numerical random variable, 217
monotonicity

of a conditional expectation, 315
of a measure, 19
of an integral, 97, 104

MSE, mean squared error function, 226
𝜇-almost everywhere, 104
multiple correlation, 347
multiple linear logistic regression, 401
multiple linear quasi-regression, 239
multiple linear regression, 381
multiplication rule for probabilities, 141
multivariate Bernoulli distribution, 255
multivariate Bernoulli variable, 255
multivariate mapping, 56
multivariate normal distribution, 267
multivariate random variable, 175

negative part of a function, 64
nonnegative step function, 88

and counting measure, 92
and Dirac measure, 91
normal representation, 88

normal distribution, 264
and linear regression, 382
bivariate, 268
density, 264
multivariate, 267
standard, 265
univariate, 264

normal representation of a nonnegative step
function, 88

null set, 28
integral over a null set, 102

null-set equivalence of two measures, 112

odds ratio, 399
outcome of a random experiment, 134

pairwise independence, 150
P-almost all, 169
partial (X, Z = z)-conditional expectation, 425
partial correlation, 357
partition of a set, 10
P-equivalence, 169

and absolute continuity, 171
and conditional distributions, 516
and distributions, 170
and independence, 179
of compositions, 171
of random variables, 169

PB-expectation, 209
pointwise convergence, 95
Poisson distribution, 259

approximation of the binomial distribution,
260

distribution function, 259
positive part of a function, 63
power set, 7
probability density, see also density

of a continuous real-valued random variable,
193

of a probability measure, 186
of a random variable, 186

probability function, 182
and density, 188
of a marginal distribution, 184

probability measure, 133
with density, 186
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probability of an event, 134
probability space, 134
product σ-algebra, 14, 57
product measure, 25

and independence, 180
product set, 3
projection mapping, 57
P-uniqueness, 308

of a conditional expectation, 308
of a conditional expectation w.r.t.

conditional-probability measure, 433
PB-uniqueness, 424

quantile, 191
quantile function, 191

and inverse distribution function, 191
quasi-integrable, 98
quasi-regression

linear, 225

Radon-Nikodym derivative, 113
Radon-Nikodym theorem, 113

and probability density, 187
random sample, 178
random variable, 163

continuous, 193
discrete, 182
discrete real-valued, 183
numerical, 163
real-valued, 163

regressand, 296, 317
regression, 317

and linear quasi-regression, 317
discrete, 296

regression coefficients, 381
invariance, 387

regressor, 296, 317
residual

w.r.t. a conditional expectation, 341
w.r.t. a linear quasi-regression, 231, 239

residual w.r.t. a conditional expectation
rules of computation, 341

restriction of a measure, 23
Riemann integral and Lebesgue integral, 108
risk ratio, 399
rules of computation

for a residual w.r.t. a conditional expectation,
341

for conditional covariances, 355
for conditional expectation values given a

value of a random variable, 294

for conditional expectation values given an
event, 293

for conditional expectations given a σ-algebra,
312

for conditional expectations given a random
variable, 313

for conditional variances, 356
for covariance matrices, 238
for covariances, 230
for expectations of random matrices, 236
for measures, 19
for probabilities, 136
for the expectation of a random variable,

215
for variances, 218

set system, 4
σ-additivity of a measure, 18
σ-algebra, 5

Borel, 12
countably generated, 11
final, 55
generated by a composition, 60
generated by a family of mappings, 56
generated by a mapping, 53
generated by a multivariate mapping, 56
generated by a set system, 9
generated by an indicator, 53
trivial, 28

σ-field, see σ-algebra
σ-finite measure, 24
σ-subadditivity, 19
sign function, 65
simple function, 87
simple linear logistic regression, 401
simple linear regression, 374, 381

identification of the intercept, 382
identification of the slope, 382
intercept, 374
slope, 374

singleton, 6
skewness, 220
slope

of a linear quasi-regression and correlation,
233

of a simple linear quasi-regression, 228
of a simple linear regression, 374

stability of a set system w.r.t. intersections,
∩-stability, 16

standard deviation, 217
of the sample mean, 219
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standard error
of the sample mean, 219

standard normal distribution, 265
step function, 50

normal representation, 88
strictly diagonally dominant matrix, 385

t-distribution, 273
theorem

B. Levi, 107
Bayes’ theorem for densities, 530
Bayes’ theorem for events, 145
central limit, 266
Fubini, 114
of total probability, 143
Radon-Nikodym, 113
transformation theorem for a conditional

expectation value, 291
transformation theorem for an integral,

106
transformation theorem of an expectation,

212
time order

between events, 140
between random variables, 167

trace σ-algebra, 8
trace of a set system, 8
transformation theorem

for a conditional expectation value, 291
for an expectation, 212

for an integral, 106
for conditional distributions, 525

triple-wise independence, 150
trivial σ-algebra, 28
trivial σ-algebra w.r.t. a measure, 28

uncorrelated random variables, 229
uncorrelatedness

mean independence, 328
uncountable union, 6
uniform distribution, 262
union

of countably many sets, 5
of finitely many sets, 5

uniqueness
of a conditional expectation w.r.t. a probability

measure, 308
of a conditional expectation given a σ-algebra,

307
of a factorization, 318

univariate normal distribution, 264
density, 264
distribution function, 265

variance, 217
of an indicator, 218
of the sample mean, 219
rules of computation, 218

Z-transformation, 220
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