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P R E F A C E

‘‘Statistical thinking will one day be as necessary a qualification for

efficient citizenship as the ability to read and write.”

–H.G. Wells

Why we wrote this book
Helping students make sense of data will serve them well in life and in any field they
might choose. Our goal in writing this book is to help students understand, appreciate,
and use the power of statistics and to help instructors teach an outstanding course
in statistics.

The text is designed for use in an introductory statistics course. The focus
throughout is on data analysis and the primary goal is to enable students to
effectively collect data, analyze data, and interpret conclusions drawn from data.
The text is driven by real data and real applications. Although the only prerequisite is
a minimal working knowledge of algebra, students completing the course should be
able to accurately interpret statistical results and to analyze straightforward datasets.
The text is designed to give students a sense of the power of data analysis; our hope
is that many students learning from this book will want to continue developing their
statistical knowledge.

Students who learn from this text should finish with

• A solid conceptual understanding of the key concepts of statistical inference:
estimation with intervals and testing for significance.

• The ability to do straightforward data analysis, using either traditional methods
or modern resampling methods.

• Experience using technology to perform a variety of different statistical proce-
dures.

• An understanding of the importance of data collection, the ability to recognize
limitations in data collection methods, and an awareness of the role that data
collection plays in determining the scope of inference.

• The knowledge of which statistical methods to use in which situations and the
ability to interpret the results effectively and in context.

• An awareness of the power of data analysis.

Building Conceptual Understanding with Simulation
Methods
This book takes a unique approach of utilizing computer simulation methods
to introduce students to the key ideas of statistical inference. Methods such as
bootstrap intervals and randomization tests are very intuitive to novice students
and capitalize on visual learning skills students bring to the classroom. With proper
use of computer support, they are accessible at very early stages of a course
with little formal background. Our text introduces statistical inference through
these resampling and randomization methods, not only because these methods are
becoming increasingly important for statisticians in their own right but also because
they are outstanding in building students’ conceptual understanding of the key ideas.

Our text includes the more traditional methods such as t-tests, chi-square tests,
etc., but only after students have developed a strong intuitive understanding of

vi
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inference through randomization methods. At this point students have a conceptual
understanding and appreciation for the results they can then compute using the
more traditional methods. We believe that this approach helps students realize
that although the formulas may take different forms for different types of data,
the conceptual framework underlying most statistical methods remains the same.
Our experience has been that after using the intuitive simulation-based methods to
introduce the core ideas, students understand and can move quickly through most
of the traditional techniques.

Sir R.A. Fisher, widely considered the father of modern statistics, said of
simulation and permutation methods in 1936:

‘‘Actually, the statistician does not carry out this very simple and very tedious process,
but his conclusions have no justification beyond the fact that they agree with those
which could have been arrived at by this elementary method.’’

Modern technology has made these methods, too ‘tedious’ to apply in 1936, now
readily accessible. As George Cobb wrote in 2007:

‘‘... despite broad acceptance and rapid growth in enrollments, the consensus curricu-
lum is still an unwitting prisoner of history. What we teach is largely the technical
machinery of numerical approximations based on the normal distribution and its
many subsidiary cogs. This machinery was once necessary, because the concep-
tually simpler alternative based on permutations was computationally beyond our
reach. Before computers statisticians had no choice. These days we have no excuse.
Randomization-based inference makes a direct connection between data production
and the logic of inference that deserves to be at the core of every introductory course.”

Building Understanding and Proficiency with
Technology
Technology is an integral part of modern statistics, but this text does not require
any specific software. We have developed a user-friendly set of online interactive
dynamic tools, StatKey, to illustrate key ideas and conduct computer-intensive
analyses. StatKey is freely available with data from the text fully integrated. We also
provide Companion Manuals, tied directly to the text, for other popular calculator
and software options. The text uses many real datasets which are electronically
available in multiple formats.

Building a Framework for the Big Picture: Essential
Synthesis
One of the drawbacks of many current texts is the fragmentation of ideas into
disjoint pieces. While the segmentation helps students understand the individual
pieces, we believe that integration of the parts into a coherent whole is also essential.
To address this we have sections called Essential Synthesis at the end of each unit,
in which students are asked to take a step back and look at the big picture. We hope
that these sections, which include case studies, will help to prepare students for the
kind of statistical thinking they will encounter after finishing the course.

Building Student Interest with Engaging Examples and
Exercises
This text contains over 280 fully worked-out examples and over 1500 exercises, which
are the heart of this text and the key to learning statistics. One of the great things



viii P R E F A C E

about statistics is that it is relevant in so many fields. We have tried to find studies
and datasets that will capture the interest of students—and instructors! We hope all
users of this text find many fun and useful tidbits of information from the datasets,
examples, and exercises, above and beyond the statistical knowledge gained.

The exercise sets at the end of every section assess computation, interpretation,
and understanding using a variety of problem types. Some features of the exercise
sets include:

• Skill Builders. After every section, the exercise set starts with skill-building
exercises, designed to be straightforward and to ensure that students have the
basic skills and confidence to tackle the more involved problems with real data.

• Lots of real data. After the opening skill builders, the vast majority of the exercises
in a section involve real data from a wide variety of different disciplines. These
allow students to practice the ideas of the section and to see how statistics is used
in actual practice. Many of the exercises call for interpretations of the statistical
findings in the context of a real situation.

• Exercises using technology. While many exercises provide summary statistics, some
problems in each exercise set invite students to use technology to do analysis based
on raw data. All datasets, and software-specific companion manuals, are available
electronically.

• Essential synthesis and review. Exercises at the end of each unit let students choose
from among a wider assortment of possible approaches, without the guiding cues
associated with section-specific exercise sets. These exercises help students see
the big picture and prepare them for determining appropriate analysis methods.

Building Confidence with Robust Student and Instructor
Resources
This text has many additional resources designed to facilitate and enhance its use in
teaching and learning statistics. The following are all readily accessible and organized
to make them easy to find and easy to use. Almost all were written exclusively by
the authors.

Resources for students and instructors:
• StatKey; online interactive dynamic tools (www.lock5stat.com/StatKey)

• Software-specific companion manuals (www.wiley.com/college/lock)

• All datasets in multiple formats (www.wiley.com/college/lock)

• Video solutions for all examples and video tutorials for all learning goals
(www.wiley.com/college/lock)

• WileyPLUS—an innovative, research-based online environment for effective
teaching and learning

• Student solution manual with fully worked solutions to odd-numbered exercises

Resources for instructors
• Complete instructors manual with sample syllabi, teaching tips and recommended

class examples, class activities, homework assignments, and student project assign-
ments

• Videos with class suggestions for every section

• Detailed interactive class activities with handouts

• PowerPoint slides

• In-class worksheets
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• Clicker questions

• Fully worked out solutions to all exercises

• Test bank with a wide variety of question types

• The full WileyPLUS learning management system at your disposal

Content and Organization

UNIT A: Data
The first unit deals with data—how to obtain data (Chapter 1) and how to summarize
and visualize the information in data (Chapter 2). We explore how the method of
data collection influences the types of conclusions that can be drawn and how
the type of data (categorical or quantitative) helps determine the most appropriate
numerical and/or graphical technique for describing a single variable or investigating
a relationship between two variables.

UNIT B: Understanding Inference
In Unit B we develop the key ideas of statistical inference—estimation and test-
ing—using simulation methods to build understanding and to carry out the analysis.
Chapter 3 introduces the idea of a bootstrap distribution to use information from a
single sample to provide an estimate for a population and judge how accurate that
estimate might be. In Chapter 4 we illustrate the important ideas for testing statisti-
cal hypotheses, again using simple simulations that mimic the random processes of
data production.

UNIT C: Inference with Normal and t-Distributions
In Unit C we see how theoretical distributions, such as the classic, bell-shaped
normal curve, can be used to approximate the distributions of sample statistics that
we encounter in Unit B. Chapter 5 shows, in general, how the normal curve can
be used to facilitate constructing confidence intervals and conducting hypothesis
tests. In Chapter 6 we see how to estimate standard errors and use the normal or
t-distributions in situations involving means, proportions, differences in means, and
differences in proportions. Since the main ideas of inference have already been
covered in Unit B, this chapter has many very short sections that can be combined
and covered in almost any order.

UNIT D: Inference for Multiple Parameters
In Unit D we consider statistical inference for situations with multiple parame-
ters: testing categorical variables with more than two categories (chi-square tests
in Chapter 7), comparing means between more than two groups (ANOVA in
Chapter 8), making inferences using the slope and intercept of a regression model
(simple linear regression in Chapter 9), and building regression models with more
than one explanatory variable (multiple regression in Chapter 10).

The Big Picture: Essential Synthesis
This section gives a quick overview of all of the units and asks students to put the
pieces together with questions related to a case study on speed dating that draws on
ideas from throughout the text.
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Chapter 11: Probability Basics
This is an optional chapter covering basic ideas of formal probability theory. The
material in this chapter is independent of the other chapters and can be covered at
any point in a course or omitted entirely.

Tips for Students
• Partial Answers Partial answers to the odd-numbered problems are included in

the back of the book. These are partial answers, not full solutions or even complete
answers. In particular, many exercises expect you to interpret or explain or show
details, and you should do so!

• Exercises Referencing Exercises Many of the datasets and studies included in
this book are introduced and then referenced again later. When this happens, we
include the earlier reference for your information, but you should not need to
refer back to the earlier reference. All necessary information will be included in
the later problem. The reference is there in case you get curious and want more
information or the source citation.

• Accuracy Statistics is not an exact science. Just about everything is an approxima-
tion, with very few exactly correct values. Don’t worry if your answer is slightly
different from your friend’s answer, or slightly different from the answer in the
back of the book. Especially with the simulation methods of Chapters 3 and 4,
a certain amount of variability in answers is a natural and inevitable part of the
process.
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U N I T A

Data
‘‘For Today’s Graduate, Just One Word: Statistics’’

New York Times headline, August 5, 2009

U N I T O U T L I N E

1 Collecting Data
2 Describing Data

Essential Synthesis

In this unit, we learn how to collect and describe

data. We explore how data collection influences

the types of conclusions that can be drawn, and

discover ways to summarize and visualize data.



C H A P T E R 1

Collecting
Data

‘‘You can’t fix by analysis what you bungled by design.”

Richard Light, Judith Singer, and John Willett in By Design

Top left: © Pete Saloutos/iStockphoto, Top right: © Keith Szafranski/iStockphoto, Bottom right: Al Diaz/Miami Herald/MCT
via Getty Images
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Questions and Issues

C H A P T E R O U T L I N E

1 Collecting Data 2
1.1 The Structure of Data 4

1.2 Sampling from a Population 16

1.3 Experiments and Observational
Studies 29

Here are some of the questions and issues we will discuss in this chapter:

• Is there a ‘‘sprinting gene”?

• Does tagging penguins for identification purposes harm them?

• Do humans subconsciously give off chemical signals (pheromones)?

• What proportion of people using a public restroom wash their hands?

• If parents could turn back time, would they still choose to have children?

• Why do adolescent spiders engage in foreplay?

• How broadly do experiences of parents affect their future children?

• What percent of college professors consider themselves ‘‘above-average” teachers?

• Does giving lots of high fives to teammates help sports teams win?

• Which is better for peak performance: a short mild warm-up or a long intense warm-up?

• Does the color red increase the attractiveness of women to men?

• Are city dwellers more likely than country dwellers to have mood and anxiety disorders?

• Is there truth to the saying ‘‘beauty sleep”?

• Do tanning salons mislead their customers on the dangers of tanning?

• What percent of young adults in the US move back in with their parents?

• Does turning up the music in a bar cause people to drink more beer?

3



4 C H A P T E R 1 Collecting Data

1.1THE STRUCTURE OF DATA

We are being inundated with data. It is estimated that the amount of new technical
information is doubling every two years, and that over 1.5 exabytes (that’s 1.5 × 1018

bytes) of unique new information will be generated this year.1 That is more than was
generated during the entire 5000-year period before you were born. An incredible
amount of data is readily available to us on the Internet and elsewhere. The people
who are able to analyze this information are going to have great jobs and are going
to be valuable in virtually every field. One of the wonderful things about statistics
is that it is relevant in so many areas. Whatever your focus and your future career
plans, it is likely that you will need statistical knowledge to make smart decisions in
your field and in everyday life. As we will see in this text, effective collection and
analysis of data can lead to very powerful results.

Statistics is the science of collecting, describing, and analyzing data. In this
chapter, we discuss effective ways to collect data. In Chapter 2, we discuss methods
to describe data. The rest of the chapters are devoted to ways of analyzing data to
make effective conclusions and to uncover hidden phenomena.

D A T A 1 . 1 A Student Survey
For several years, a first-day survey has been administered to students in an
introductory statistics class at one university. Some of the data for a few of the
students are displayed in Table 1.1. A more complete table with data for 362
students and 17 variables can be found in the file StudentSurvey.2 ■

Cases and Variables
The subjects/objects that we obtain information about are called the cases or units
in a dataset. In the StudentSurvey dataset, the cases are the students who completed
the survey. Each row of the dataset corresponds to a different case.

A variable is any characteristic that is recorded for each case. Each column of
our dataset corresponds to a different variable. The data in Table 1.1 show eight
variables (in addition to the ID column), each describing a different characteristic
of the students taking the survey.

Table 1.1 Partial results from a student survey

ID Gender Smoke Award Exercise TV GPA Pulse Birth

1 M No Olympic 10 1 3.13 54 4
2 F Yes Academy 4 7 2.5 66 2
3 M No Nobel 14 5 2.55 130 1
4 M No Nobel 3 1 3.1 78 1
5 F No Nobel 3 3 2.7 40 1
6 F No Nobel 5 4 3.2 80 2
7 F No Olympic 10 10 2.77 94 1
8 M No Olympic 13 8 3.3 77 1
9 F No Nobel 3 6 2.8 60 2

10 F No Nobel 12 1 3.7 94 8

1http://www.glumbert.com/media/shift, accessed March 2011.
2Most datasets used in this text and descriptions are available electronically. See the preface for more
information.
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Cases and Variables

We obtain information about cases or units in a dataset, and generally
record the information for each case in a row of a data table.

A variable is any characteristic that is recorded for each case. The
variables generally correspond to the columns in a data table.

In any dataset, it is important to understand exactly what each variable is
measuring and how the values are coded. For the data in Table 1.1, the first column
is ID, to provide an identifier for each of the individuals in the study. In addition,
we have:

Gender M for male and F for female
Smoke Does the student smoke: yes or no
Award Award the student prefers to win: Academy Award, Olympic gold

medal, or Nobel Prize
Exercise Number of hours spent exercising per week
TV Number of hours spent watching television per week
GPA Current grade point average on a 4-point scale
Pulse Pulse rate in number of beats per minute at the time of the survey
Birth Birth order: 1 for first/oldest, 2 for second born, etc.

Example 1.1
Explain what each variable tells us about the student with ID 1 in the first row of
Table 1.1.

Solution Student 1 is a male who does not smoke and who would prefer to win an Olympic
gold medal over an Academy Award or a Nobel Prize. He says that he exercises 10
hours a week, watches television one hour a week, and that his grade point average
is 3.13. His pulse rate was 54 beats per minute at the time of the survey, and he is
the fourth oldest child in his family.

Categorical and Quantitative Variables
In determining the most appropriate ways to summarize or analyze data, it is useful
to classify variables as either categorical or quantitative.

Categorical and Quantitative Variables

A categorical variable divides the cases into groups, placing each case
into exactly one of two or more categories.

A quantitative variable measures or records a numerical quantity for
each case. Numerical operations like adding and averaging make sense
for quantitative variables.

We may use numbers to code the categories of a categorical variable, but this
does not make the variable quantitative unless the numbers have a quantitative
meaning. For example, ‘‘gender” is categorical even if we choose to record the
results as 1 for male and 2 for female, since we are more likely to be interested

o
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in how many are in each category rather than an average numerical value. In
other situations, we might choose to convert a quantitative variable into categorical
groups. For example, ‘‘household income” is quantitative if we record the specific
values but is categorical if we instead record only an income category (‘‘low,”
‘‘medium,” ‘‘high”) for each household.

Example 1.2
Classify each of the variables in the student survey data in Table 1.1 as either
categorical or quantitative.

Solution Note that the ID column is neither a quantitative nor a categorical variable. A
dataset often has a column with names or ID numbers that are for reference only.

• Gender is categorical since it classifies students into the two categories of male
and female.

• Smoke is categorical since it classifies students as smokers or nonsmokers.

• Award is categorical since students are classified depending on which award is
preferred.

• Exercise, TV, GPA, and Pulse are all quantitative since each measures a numerical
characteristic of each student. It makes sense to compute an average for each
variable, such as an average number of hours of exercise a week.

• Birth is a somewhat ambiguous variable, as it could be considered either quantita-
tive or categorical depending on how we use it. If we want to find an average birth
order, we consider the variable quantitative. However, if we are more interested
in knowing how many first-borns, how many second-borns, and so on, are in the
data, we consider the variable categorical. Either answer is acceptable.

Investigating Variables and Relationships between
Variables
In this book, we discuss ways to describe and analyze a single variable and to
describe and analyze relationships between two or more variables. For example,
in the student survey data, we might be interested in the following questions, each
about a single variable:

• What percentage of students smoke?

• What is the average number of hours a week spent exercising?

• Are there students with unusually high or low pulse rates?

• Which award is the most desired?

• How does the average GPA of students in the survey compare to the average
GPA of all students at this university?

Often the most interesting questions arise as we look at relationships between
variables. In the student survey data, for example, we might ask the following
questions about relationships between variables:

• Who smokes more, males or females?

• Do students who exercise more tend to prefer an Olympic gold medal? Do
students who watch lots of television tend to prefer an Academy Award?

• Do males or females watch more television?

• Do students who exercise more tend to have lower pulse rates?

• Do first-borns generally have higher grade point averages?

o



1.1 The Structure of Data 7

These examples show that relationships might be between two categorical
variables, two quantitative variables, or a quantitative and a categorical variable. In
the following chapters, we examine statistical techniques for exploring the nature of
relationships in each of these situations.

D A T A 1 . 2 Data on Countries

As of this writing, there are 213 countries listed by the World Bank.3 A great deal
of information about these countries (such as energy use, birth rate, life
expectancy) is in the full dataset under the name AllCountries. ■

© redmal/iStockphoto

Countries of the world

Example 1.3
The dataset AllCountries includes information on the percent of people in each
country with access to the Internet.

(a) Data from Iceland was used to determine that 90% of Icelanders have access
to the Internet, the highest rate of any country. What are the cases in the data
from Iceland? What variable is used? Is it categorical or quantitative?

(b) In the AllCountries dataset, we record the percent of people with access to
the Internet for each country. What are the cases in that dataset? What is the
relevant variable? Is it categorical or quantitative?

Solution (a) For determining the rate of Internet usage in Iceland, the cases are people in
Iceland, and the relevant variable is whether or not each person has access to
the Internet. This is a categorical variable.

(b) In the AllCountries dataset, the cases are the countries of the world. The variable
is the proportion with access to the Internet. For each country, we record a
numerical value. These values range from a low of 0.2% in Myanmar to the
high of 90.5% in Iceland and Norway, and the average is 28.96%. This is a
quantitative variable.

As we see in the previous example, we need to think carefully about what the
cases are and what is being recorded in each case in order to determine whether a
variable is categorical or quantitative.

3http://data.worldbank.org/indicator/IT.NET.USER.P2. Data include information on both countries and
economies.
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8 C H A P T E R 1 Collecting Data

Example 1.4
In later chapters, we examine some of the following issues using the data in
AllCountries. Indicate whether each question is about a single variable or a rela-
tionship between variables. Also indicate whether the variables are quantitative or
categorical.

(a) How much energy does the average country use in a year?

(b) Do countries larger in area tend to have a more rural population?

(c) What is the relationship, if any, between a country’s government spending on
the military and on health care?

(d) Is the birth rate higher in developed or undeveloped countries?

(e) Which country has the highest percent of elderly people?

Solution (a) The amount of energy used is a single quantitative variable.

(b) Both size and percent rural are quantitative variables, so this is a question about
a relationship between two quantitative variables.

(c) Spending on the military and spending on health care are both quantitative,
so this is another question about the relationship between two quantitative
variables.

(d) Birth rate is a quantitative variable and whether or not a country is developed is a
categorical variable, so this is asking about a relationship between a quantitative
variable and a categorical variable.

(e) Because the cases are countries, percent elderly is a single quantitative variable.

Using Data to Answer a Question
The StudentSurvey and AllCountries datasets contain lots of information and we
can use that information to learn more about students and countries. Increasingly,
in this data-driven world, we have large amounts of data and we want to ‘‘mine” it
for valuable information. Often, however, the order is reversed: We have a question
of interest and we need to collect data that will help us answer that question.

© Pete Saloutos/iStockphoto

Is there a ‘‘sprinting gene”?
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Example 1.5
Is There a ‘‘Sprinting Gene”?

A gene called ACTN3 encodes a protein which functions in fast-twitch muscles.
Some people have a variant of this gene that cannot yield this protein. (So we might
call the gene variant a possible non-sprinting gene.) To address the question of
whether this gene is associated with sprinting ability, geneticists tested people from
three different groups: world-class sprinters, world-class marathon runners, and a
control group of non-athletes. In the samples tested, 6% of the sprinters had the
gene variant, compared with 18% of the non-athletes and 24% of the marathon
runners. This study4 suggests that sprinters are less likely than non-sprinters to have
the gene variant.

(a) What are the cases and variables in this study? Indicate whether each variable
is categorical or quantitative.

(b) What might a table of data look like for this study? Give a table with a possible
first two cases filled in.

Solution (a) The cases are the people included in the study. One variable is whether the
individual has the gene variant or not. Since we record simply ‘‘yes” or ‘‘no,” this
is a categorical variable. The second variable keeps track of the group to which
the individual belongs. This is also a categorical variable, with three possible
categories (sprinter, marathon runner, or non-athlete). We are interested in the
relationship between these two categorical variables.

(b) The table of data must record answers for each of these variables and may or
may not have an identifier column. Table 1.2 shows a possible first two rows for
this dataset.

Table 1.2 Possible table to investigate
whether there is a sprinter’s gene

Name Gene Variant Group

Allan Yes Marathon runner
Beth No Sprinter
· · · · · · · · ·

Example 1.6
What’s a Habanero?

A habanero chili is an extremely spicy pepper (roughly 500 times hotter than a
jalapeño) that is used to create fiery food. The vice president of product development
and marketing for the Carl’s Jr. restaurant chain5 is considering adding a habanero
burger to the menu. In developing an advertising campaign, one of the issues he
must deal with is whether people even know what the term ‘‘habanero” means. He
identifies three specific questions of interest and plans to survey customers who visit
the chain’s restaurants in various parts of the country.

• What proportion of customers know and understand what ‘‘habanero” means?

• What proportion of customers are interested in trying a habanero burger?

• How do these proportions change for different regions of the country?

4Yang, N., et al., ‘‘ACTN3 genotype is associated with human elite athletic performance,” American
Journal of Human Genetics, September 2003; 73: 627–631.
5With thanks to Bruce Frazer.
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10 C H A P T E R 1 Collecting Data

(a) Identify the cases for the data he collects.

(b) Describe three variables that should be included in the dataset.

Solution (a) The cases in the habanero marketing study are the individual customers that
respond to the survey request.

(b) Here are three variables that should be included in the data:

• Know = yes or no, depending on whether the customer knows the term
‘‘habanero”

• Try = yes or no, to indicate the customer’s willingness to try a habanero burger

• Region = area in the country where the customer lives

All three variables are categorical.

© Keith Szafranski/iStockphoto

Does tagging penguins harm them?

D A T A 1 . 3 Tagging Penguins
Do metal tags on penguins harm them? Scientists trying to tell penguins apart
have several ways to tag the birds. One method involves wrapping metal strips
with ID numbers around the penguin’s flipper, while another involves electronic
tags. Neither tag seems to physically harm the penguins. However, since tagged
penguins are used to study all penguins, scientists wanted to determine whether
the metal tags have any significant effect on the penguins. Data were collected
over a 10-year time span from a sample of 100 penguins that were randomly
given either metal or electronic tags. This included information on number of
chicks, survival over the decade, and length of time on foraging trips.6 ■

Example 1.7
In the study on penguin tags:

(a) What are the cases? What are the variables? Identify each variable as categorical
or quantitative.

6Saraux, C., et al., ‘‘Reliability of flipper-banded penguins as indicators of climate change,” Nature,
January 2011; 469: 203–206.
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1.1 The Structure of Data 11

(b) What information do the scientists hope to gain from the data? Describe at least
one question in which they might be interested.

Solution (a) The cases are the tagged penguins. The variables are the type of tag (categorical),
number of chicks (quantitative), survival or not (categorical), and length of time
on foraging trips (quantitative).

(b) The scientists want to determine whether there is a relationship between the
type of tag and any of the other variables. For example, they might be interested
in knowing whether survival rates differ between the penguins with the metal
tags and penguins with the electronic tags.

In Example 1.7, we are investigating whether one of the variables (the type of
tag) helps us explain or predict values of the other variables. In this situation, we call
the type of tag the explanatory variable and the other variables the response variables.
One way to remember these names is the explanatory variable helps explain the
response variable, and the response variable responds to the explanatory variable.

Explanatory and Response Variables

If we are using one variable to help us understand or predict values of
another variable, we call the former the explanatory variable and the
latter the response variable.

Example 1.8
In Example 1.4, we considered the following three questions about relationships
between variables in the AllCountries dataset. Identify the explanatory variable and
the response variable if it makes sense to do so.

(a) Do countries larger in area tend to have a more rural population?

(b) Is the birth rate higher in developed or undeveloped countries?

(c) What is the relationship, if any, between a country’s government spending on
the military and on health care?

Solution (a) The question indicates that we think area might influence the percent of a
country that is rural, so we call area the explanatory variable and percent rural
the response variable.

(b) The question indicates that we think whether or not a country is developed
might influence the birth rate, so the explanatory variable is whether the country
is developed or undeveloped and the response variable is birth rate.

(c) There is no indication in this situation of why we might identify either of the two
variables (spending on military and spending on health care) as explanatory or
as response. In a relationship between two variables, we don’t always identify
one as the explanatory variable and one as the response variable.

Different Ways to Answer a Broad Question
A pheromone is a chemical signal given off by one member of a species

that influences other members of the species. Many studies (involving data, of
course!) provide evidence that different types of animals give off pheromones. It is
currently under debate whether humans also communicate subconsciously through
pheromones. How might we collect data to answer the question of whether there

o
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12 C H A P T E R 1 Collecting Data

are human pheromones? We might start by narrowing the question to one that is
not so general. For example, are there pheromones in female tears that affect the
behavior of males?

Several new studies7 suggest that the scent of tears from a crying woman may
reduce sexual interest in men. However, to determine whether this effect is caused
subconsciously by pheromones (rather than by obvious social influences), we need
to think carefully about how to collect data. How might you collect data to answer
this question? Three different methods were used in the new studies. See what you
think of the three methods.

• In one study, 24 men in their twenties had a pad attached to their upper lip that
contained either tears collected from women who watched sad films or a salt
solution that had been trickled down the same women’s faces. Neither substance
had a perceptible odor. The men who had tears on the upper lip rated female
faces as less sexually alluring than the men who had salt solution on the upper lip.

• In a second study, 50 men who sniffed women’s tears showed reduced levels of
testosterone relative to levels after sniffing a salt solution.

• In a third study involving 16 men, those who sniffed female tears displayed
significantly reduced brain-cell activity in areas that had reacted strongly to an
erotic movie, whereas those who sniffed a salt solution did not show the same
reduced activity.

Example 1.9
For each of the three studies on women’s tears, state the explanatory and response
variables.

Solution In all three studies, the explanatory variable is whether tears or a salt solution is
used. In the first study, the response variable is how sexually alluring males rated
female faces, in the second study it is testosterone levels, and in the third study it is
brain cell activity.

All three of these studies describe data collected in a careful way to answer a
question. How to collect data in a way that helps us understand real phenomena is
the subject of the rest of this chapter.

We have described several datasets, studies, and questions in this section,
involving students, countries, sprinter genes, habanero burgers, penguins, and
pheromones. If you are intrigued by any of these questions, keep reading! We
examine all of them in more detail in the pages ahead.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize that a dataset consists of cases and variables

• Identify variables as either categorical or quantitative

• Determine explanatory and response variables where appropriate

• Describe how data might be used to address a specific question

• Recognize that understanding statistics allows us to investigate a wide
variety of interesting phenomena

7Gelstein, S., et al., ‘‘Human Tears Contain a Chemosignal,’’ Science, January 2011; 331(6014): 226–230.
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Exercises for Section 1.1

SKILL BUILDER 1
For the situations described in Exercises 1.1 to 1.6:

(a) What are the cases?

(b) What is the variable and is it quantitative or
categorical?

1.1 People in a city are asked if they support a new
recycling law.

1.2 Record the percentage change in the price
of a stock for 100 stocks publicly traded on Wall
Street.

1.3 Collect data from a sample of teenagers with a
question that asks ‘‘Do you eat at least five servings
a day of fruits and vegetables?”

1.4 Measure the shelf life of bunches of bananas
(the number of days until the bananas go bad) for a
large sample.

1.5 Estimate the bending strength of beams by
bending 10 beams until they break and recording
the force at which the beams broke.

1.6 Record whether or not the literacy rate is over
75% for each country in the world.

SKILL BUILDER 2
In Exercises 1.7 to 1.10, a relationship between two
variables is described. In each case, we can think
of one variable as helping to explain the other.
Identify the explanatory variable and the response
variable.

1.7 Lung capacity and number of years smoking
cigarettes

1.8 Amount of fertilizer used and the yield of a
crop

1.9 Blood alcohol content (BAC) and number of
alcoholic drinks consumed

1.10 Year and the world record time in a marathon

1.11 Student Survey Variables Data 1.1 introduced
the dataset StudentSurvey, and Example 1.2 iden-
tified seven of the variables in that dataset as
categorical or quantitative. The remaining variables
are:

Year FirstYear, Sophomore, Junior,
Senior

Height In inches
Weight In pounds
Siblings Number of siblings the person has
VerbalSAT Score on the Verbal section of the

SAT exam

MathSAT Score on the Math section of the
SAT exam

SAT Sum of the scores on the Verbal and
Math sections of the SAT exam

HigherSAT Which is higher, Math SAT score or
Verbal SAT score?

(a) Indicate whether each variable is quantitative
or categorical.

(b) List at least two questions we might ask about
any one of these individual variables.

(c) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

1.12 Countries of the World Information about the
world’s countries is given in AllCountries, intro-
duced in Data 1.2 on page 7. You can find a descrip-
tion of the variables in Appendix B on page 691.
For the full dataset:

(a) Indicate which of the variables are quantitative
and which are categorical.

(b) List at least two questions we might ask about
any one of these individual variables.

(c) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

1.13 Diet and Retinol and Beta-Carotene Levels
The data from a study8 examining the association
between diet and plasma retinol and beta-carotene
levels are given in NutritionStudy. The data include
315 observations and 16 variables that are described
in Appendix B on page 691.

(a) Indicate which of the variables are quantitative
and which are categorical.

(b) Discuss one possible relationship of interest in
this dataset between two categorical variables.
Between two quantitative variables. Between
one categorical and one quantitative variable.

1.14 Spider Sex Play Spiders regularly engage in
spider foreplay that does not culminate in mating.
Male spiders mature faster than female spiders and
often practice the mating routine on not-yet-mature
females. Since male spiders run the risk of getting
eaten by female spiders, biologists wondered why

8Nierenberg, D., et al., ‘‘Determinants of plasma levels of
beta-carotene and retinol,’’ American Journal of Epidemiology,
September 1989; 130(3): 511–521.
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spiders engage in this behavior. In one study,9 some
spiders were allowed to participate in these near-
matings, while other maturing spiders were isolated.
When the spiders were fully mature, the scientists
observed real matings. They discovered that if either
partner had participated at least once in mock sex,
the pair reached the point of real mating significantly
faster than inexperienced spiders did. (Mating faster
is, apparently, a real advantage in the spider world.)
Describe the variables, indicate whether each vari-
able is quantitative or categorical, and indicate the
explanatory and response variables.

1.15 Hormones and Fish Fertility When women
take birth control pills, some of the hormones found
in the pills eventually make their way into lakes and
waterways. In one study, a water sample was taken
from various lakes. The data indicate that as the
concentration of estrogen in the lake water goes up,
the fertility level of fish in the lake goes down. The
estrogen level is measured in parts per trillion (ppt)
and the fertility level is recorded as the percent of
eggs fertilized. What are the cases in this study?
What are the variables? Classify each variable as
either categorical or quantitative.

1.16 Fast-Twitch Muscles and Race Example 1.5
studied a variant of the gene ACTN3 which inhibits
fast-twitch muscles and seems to be less prevalent
in sprinters. A separate study10 indicated ethnic
differences: Approximately 20% of a sample of Cau-
casians, approximately 25% of a sample of Asians,
and approximately 1% of a sample of Africans had
the gene variant. What are the variables in this
study? Classify each as categorical or quantitative.

1.17 Trans-Generational Effects of Diet Can expe-
riences of parents affect future children? New
studies11 suggest that they can: Early life experi-
ences of parents appear to cause permanent changes
in sperm and eggs. In one study, some male rats
were fed a high-fat diet with 43% of calories from
fat (a typical American diet), while others were
fed a normal healthy rat diet. Not surprisingly,
the rats fed the high-fat diet were far more likely
than the normal-diet rats to develop metabolic
syndrome (characterized by such things as excess
weight, excess fat, insulin resistance, and glucose

9Pruitt, J., paper presented at the Society for Integrative
and Comparative Biology Annual Meeting, January 2011, and
reported in ‘‘For spiders, sex play has its pluses,” Science News,
January 29, 2011.
10North, K., et al., ‘‘A common nonsense mutation results in α-
actinin-3 deficiency in the general population,’’ Nature Genetics,
April 1999; 21(4): 353–354.
11Begley, S., ‘‘Sins of the Grandfathers,’’ Newsweek, November
8, 2010; 48–50.

intolerance.) What surprised the scientists was that
the daughters of these rats were also far more likely
to develop metabolic syndrome than the daughters
of rats fed healthy diets. None of the daughters
and none of the mothers ate a high-fat diet and the
fathers did not have any contact with the daughters.
The high-fat diet of the fathers appeared to cause
negative effects for their daughters. What are the
two main variables in this study? Is each categor-
ical or quantitative? Identify the explanatory and
response variables.

1.18 Trans-Generational Effects of Environment
In Exercise 1.17, we ask whether experiences of
parents can affect future children, and describe a
study that suggests the answer is yes. A second
study, described in the same reference, shows sim-
ilar effects. Young female mice were assigned to
either live for two weeks in an enriched environ-
ment or not. Matching what has been seen in other
similar experiments, the adult mice who had been
exposed to an enriched environment were smarter
(in the sense that they learned how to navigate
mazes faster) than the mice that did not have that
experience. The other interesting result, however,
was that the offspring of the mice exposed to the
enriched environment were also smarter than the
offspring of the other mice, even though none of
the offspring were exposed to an enriched environ-
ment themselves. What are the two main variables
in this study? Is each categorical or quantitative?
Identify explanatory and response variables.

1.19 Hookahs and Health Hookahs are waterpipes
used for smoking flavored tobacco. One study12 of
3770 university students in North Carolina found
that 40% had smoked a hookah at least once, with
many claiming that hookah smoke is safer than
cigarette smoke. However, a second study observed
people at a hookah bar and recorded the length of
the session, the frequency of puffing, and the depth
of inhalation. An average session lasted one hour
and the smoke inhaled from an average session was
equal to the smoke in more than 100 cigarettes.
Finally, a third study measured the amount of tar,
nicotine, and heavy metals in samples of hookah
smoke, finding that the water in a hookah filters
out only a very small percentage of these chemi-
cals. Based on these studies and others, many states
are introducing laws to ban or limit hookah bars.
In each of the three studies, identify the individual
cases, the variables, and whether each variable is
quantitative or categorical.

12Quenqua, D., ‘‘Putting a Crimp in the Hookah,’’ New York
Times, May 31, 2011, p A1.
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1.20 Rowing Solo Across the Atlantic Ocean On
January 14, 2012, Andrew Brown of Great Britain
set the world record time (40 days) for rowing
solo across the northern Atlantic Ocean. On March
14, 2010, Katie Spotz of the United States became
the youngest person to ever row solo across the
Atlantic when she completed it in 70 days at the age
of 22 years old. Table 1.3 shows times for males and
females who rowed solo across the Atlantic Ocean
in the last few years.13

(a) How many cases are there in this dataset? How
many variables are there and what are they? Is
each categorical or quantitative?

(b) Display the information in Table 1.3 as a dataset
with cases as rows and variables as columns.

Table 1.3 Number of days to row
alone across the Atlantic Ocean

Male times: 40, 87, 78, 106, 67
Female times: 70, 153, 81

1.21 How Are Age and Income Related? An
economist collects data from many people to deter-
mine how age and income are related. How the
data is collected determines whether the variables
are quantitative or categorical. Describe how the
information might be recorded if we regard both
variables as quantitative. Then describe a different
way to record information about these two variables
that would make the variables categorical.

1.22 Psychological and Physiological Effects of
Meditation Forty-one employees of a biotechnol-
ogy company participated in a study14 that exam-
ines the immunological and psychological effects of
meditation. Twenty-five of the participants, chosen
at random, completed an eight-week meditation
program while the other 16 employees did no
meditation. Brain wave activity across the front
of the left hemisphere was measured for all par-
ticipants before, immediately following, and four
months after the program. (Studies have suggested
that increased activity in this part of the brain
is associated with decreases in negative emotions
and increases in positive emotions.) All 41 people
received an influenza vaccination at the end of the
program and their immune response to the vaccine

13http://www.oceanrowing.com/statistics/ocean rowing records2
.htm.
14Davidson, R., et al., ‘‘Alterations in brain and immune function
produced by mindfulness meditation,’’ Psychosomatic Medicine,
July/August 2003; 65: 564–570.

was measured through blood samples taken one
month and two months later. All participants also
completed surveys designed to measure negative
and positive emotions before and after the course.
The surveys produced two numerical scores (one for
positive emotions and one for negative emotions)
in both situations.

Meditators showed an increase in brain wave
activity, a decrease in reported negative feelings,
and no change in reported positive feelings. Non-
meditators showed no significant change in any of
these areas. Meditators had a stronger antibody
response to the vaccine than the non-meditators.

(a) What are the cases in this study? How many
cases are there?

(b) What are the variables? Which are categorical
and which are quantitative?

(c) Which variable is the explanatory variable?

(d) How many rows and how many columns will the
dataset contain if we assume that each data case
is a row and each variable is a column?

1.23 Special Shakes A large restaurant chain (see
Example 1.6) periodically offers special milk shake
flavors for a limited time. Suppose that the con-
tenders for the next special flavor are Green Mint,
Orange Crush, Egg Nog, and Piña Colada. The
chain plans to collect data from customers on these
flavors, and there are several ways they might solicit
responses. For each of the options below, state the
number of variables needed to code the information
in a dataset, whether the variable(s) is/are categor-
ical or quantitative, and what sort of values should
be recorded.

(a) ‘‘Which of the four flavors is most appealing to
you?”

(b) ‘‘Put a check next to any of the four flavors you
find appealing.”

(c) ‘‘Please rank the four flavors with 1=most
appealing and 4=least appealing.”

(d) ‘‘Rate each of the four flavors on a 1 to 10
scale with 10=extremely appealing and 1=very
unappealing.”

1.24 Political Party and Voter Turnout Suppose
that we want to investigate the question ‘‘Does
voter turnout differ by political party?” How might
we collect data to answer this question? What would
the cases be? What would the variable(s) be?

1.25 Wealth and Happiness Are richer people hap-
pier? How might we collect data to answer this
question? What would the cases be? What would
the variable(s) be?
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1.26 Choose Your Own Question Come up with
your own question you would like to be able to
answer. What is the question? How might you

collect data to answer this question? What would
the cases be? What would the variable(s) be?

1.2SAMPLING FROM A POPULATION

While most of this textbook is devoted to analyzing data, the way in which data are
collected is critical. Data collected well can yield powerful insights and discoveries.
Data collected poorly can yield very misleading results. Being able to think critically
about the method of data collection is crucial for making or interpreting data-based
claims. In the rest of this chapter, we address some of the most important issues that
need to be considered when collecting data.

Samples from Populations
The US Census is conducted every 10 years and attempts to gather data about all
people living in the US. For example, the census shows that, for people living in the
US who are at least 25 years old, 84.6% have at least a high school degree and 27.5%
have at least a college bachelor’s degree.15 The cases in the census dataset are all
residents of the US, and there are many variables measured on these cases. The US
census attempts to gather information from an entire population. In AllCountries,
introduced as Data 1.2 on page 7, the cases are countries. This is another example
of a dataset on an entire population because we have data on every country.

Usually, it is not feasible to gather data for an entire population. If we want to
estimate the percent of people who wash their hands after using a public restroom,
it is certainly not possible to observe all people all the time. If we want to try out
a new drug (with possible side effects) to treat cancer, it is not safe to immediately
give it to all patients and sit back to observe what happens. If we want to estimate
what percentage of people will react positively to a new advertising campaign, it is
not feasible to show the ads to everyone and then track their responses. In most
circumstances, we can only work with a sample from what might be a very large
population.

Samples from Populations

A population includes all individuals or objects of interest.

Data are collected from a sample, which is a subset of the population.

Example 1.10
To estimate what percent of people in the US wash their hands after using a public
restroom, researchers pretended to comb their hair while observing 6000 people in
public restrooms throughout the United States. They found that 85% of the people
who were observed washed their hands after going to the bathroom.16 What is the
sample in this study? What is a reasonable population to which we might generalize?

Solution The sample is the 6000 people who were observed. A reasonable population to
generalize to would be all people in the US. There are other reasonable answers to

15http://factfinder.census.gov.
16Zezima, K., ‘‘For many, ‘Washroom’ seems to be just a name,” New York Times, September 14, 2010,
p A14.
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give for the population, such as all people in the US who use public restrooms or
all people in the US who use public restrooms in the cities in which the study was
conducted. Also, people might behave differently when alone than when there is
someone else in the restroom with them, so we might want to restrict the population
to people in a restroom with someone else.

We denote the size of the sample with the letter n. In Example 1.10, n = 6000
because there are 6000 people in the sample. Usually, the sample size, n, is much
smaller than the size of the entire population.

Since we rarely have data on the entire population, a key question is how to use
the information in a sample to make reliable statements about the population. This
is called statistical inference.

Statistical Inference

Statistical inference is the process of using data from a sample to gain
information about the population.

Figure 1.1 diagrams the process of selecting a sample from a population, and
then using that sample to make inferences about the population. Much of the
data analysis discussed in this text focuses on the latter step, statistical inference.
However, the first step, selecting a sample from the population, is critical because
the process used to collect the sample determines whether valid inference is even
possible.

Figure 1.1 From
population to sample
and from sample to
population

Data Collection

Statistical Inference

Population

Sample

Sampling Bias

Example 1.11
Dewey Defeats Truman

The day after the 1948 presidential election, the Chicago Tribune ran the headline
‘‘Dewey Defeats Truman.” However, Harry S. Truman defeated Thomas E. Dewey
to become the 33rd president of the United States. The newspaper went to press
before all the results had come in, and the headline was based partly on the results
of a large telephone poll which showed Dewey sweeping Truman.

(a) What is the sample and what is the population?

(b) What did the pollsters want to infer about the population based on the sample?

(c) Why do you think the telephone poll yielded such inaccurate results?
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Solution (a) The sample is all the people who participated in the telephone poll. The pop-
ulation is all voting Americans.

(b) The pollsters wanted to estimate the percentage of all voting Americans who
would vote for each candidate.

(c) One reason the telephone poll may have yielded inaccurate results is that people
with telephones in 1948 were not representative of all American voters. People
with telephones tended to be wealthier and prefer Dewey while people without
phones tended to prefer Truman.

Photo by Underwood Archives/Getty Images

A triumphant Harry S. Truman holds the Chicago Tribune
published with the incorrect headline ‘‘Dewey defeats
Truman”

The previous example illustrates sampling bias, because the method of selecting
the sample biased the results by selecting only people with telephones.

Sampling Bias

Sampling bias occurs when the method of selecting a sample causes
the sample to differ from the population in some relevant way. If
sampling bias exists, then we cannot trust generalizations from the
sample to the population.

Example 1.12
After a flight, one of the authors recently received an email from the airline asking
her to fill out a survey regarding her satisfaction with the travel experience. The
airline analyzes the data from all responses to such emails.

(a) What is the sample and in what population is the airline interested?

(b) Do you expect these survey results to accurately portray customer satisfaction?

Solution (a) The sample is all people who choose to fill out the survey and the population is
all people who fly this airline.
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1.2 Sampling from a Population 19

(b) The survey results will probably not accurately portray customer satisfaction.
Many people won’t bother to fill out the survey if the flight was uneventful,
while people with a particularly bad or good experience are more likely to fill
out the survey.

A sample comprised of volunteers (like the airline survey) often creates sampling
bias in opinion surveys, because the people who choose to participate (the sample)
often have more extreme opinions than the population.

To avoid sampling bias, we try to obtain a sample that is representative of
the population. A representative sample resembles the population, only in smaller
numbers. The telephone survey in 1948 reached only people wealthy enough to own
a telephone, causing the sample to be wealthier than the population, so it was not a
representative sample. The more representative a sample is, the more valuable the
sample is for making inferences about the population.

Example 1.13
Personal Trainers

‘‘Today’s Poll” on June 8, 2011 for fitnessmagazine.com asked, ‘‘Have you ever hired
a personal trainer?” Visitors to the website had the option to select yes or no, and
27% of respondents answered yes. Can we infer that 27% of people have hired a
personal trainer? Why or why not?

Solution No. People who visit the website for Fitness Magazine and choose to take the poll
are probably more likely than the general public to have hired a personal trainer.
This sample is not representative of the population of all people, so the results
cannot be generalized to all people.

Simple Random Sample
Since a representative sample is essential for drawing valid inference to the
population, you are probably wondering how to select such a sample! The key
is random sampling. We can imagine putting the names of all the cases in the
population into a hat and drawing out names to be in our sample. Random sampling
avoids sampling bias.

Simple Random Sample

When choosing a simple random sample of n units, all groups of size
n in the population have the same chance of becoming the sample. As
a result, in a simple random sample, each unit of the population has
an equal chance of being selected, regardless of the other units chosen
for the sample.

Taking a simple random sample avoids sampling bias.

Part of the power of statistics lies in this amazing fact: A simple random
sample tends to produce a good representative sample of the population. At the
time of writing this book, the population of the United States is more than 300
million people. Although the census collects some data on the entire population, for
many questions of interest we are forced to rely on a small sample of individuals.
Amazingly, if a simple random sample is selected, even a small sample can yield
valid inferences for all 300 million Americans!

A
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Example 1.14
Election Polling

Right before the 2008 presidential election, the Gallup Poll17 randomly sampled and
collected data on n = 2847 Americans. Of those sampled, 52% supported Barack
Obama and 42% supported John McCain. Can we generalize these results to the
entire population of 129 million voters in order to estimate the popular vote in the
election?

Solution Yes! Because the poll included a random sample of voters, the results from the
sample should generalize to the population. In the actual election, 53% voted for
Obama and 46% voted for McCain. Of course, the sample data do not perfectly
match the population data (in Chapter 3 we will learn how closely we expect
sample results to match population results), but the fact that we can get such an
accurate guess from sampling only a very small fraction of the population is quite
astonishing!

Analogy to Soup

Patti McConville/GettyImages, Inc.

Sampling the soup

Do we need to eat an entire large pot of soup to know what the soup tastes like?
No! As long as the soup is well mixed, a few spoonfuls will give us a pretty good idea
of the taste of the soup. This is the idea behind sampling: Just sampling a small part
of the soup (or population) can still give us a good sense of the whole. However, if
the soup is not mixed, so that the broth is at the top, the meat at the bottom, and so
on, then a few spoonfuls will not give us a good sense of the taste of the soup. This
is analogous to taking a biased sample. Mixing the soup randomizes the sample, so
that the small part we taste is representative of the entire large pot.

How Do We Select a Random Sample?
You may think that you are capable of ‘‘randomly” selecting samples on your

own, but you are wrong! Deborah Nolan, a statistics professor, has half of her
students flip a coin and write the resulting sequence of heads and tails on the board

17http://www.gallup.com/poll/111661/gallup-daily-obama-52-mccain-42-among-likely-voters.aspx.
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(flipping a coin is truly random), and the other half of her students generate their
own sequence of heads and tails without actually flipping the coin, trying to fake
randomness. She can always tell the difference.18 How can she tell? Because students
(and their professors and all people!) are very bad at actual randomness.

Similarly, you may think you can select representative samples better than
randomness can, but again, you are most likely wrong! Just as humans are surprisingly
bad at faking randomness, humans are surprisingly bad at selecting representative
samples. We tend to oversample some types of units and undersample less obvious
types, even when we are explicitly trying hard not to do so. Luckily, randomness is
surprisingly good at selecting a representative sample.

If we can’t do randomness ourselves, how do we select a random sample? As
mentioned, one way is to draw names out of a hat. A more common way is to use
technology. Some forms of technology can automatically draw a sample randomly
from a list of the entire population, mimicking the process of drawing names from
a hat. Other forms produce random numbers, in which case we give a number to
each unit in the population, and our sample becomes the units corresponding to the
selected numbers.

Example 1.15
The dataset AllCountries contains data on 213 countries or economies. Select a
random sample of 5 of these.

Solution There are many ways to do this, depending on the technology or method available.
One way is to number the countries from 1 to 213 and then use a random number
generator to select five of the numbers between 1 and 213. Suppose we do this and
get the numbers

46 85 152 161 49

As we see in the dataset, the corresponding countries are Costa Rica (46), Hungary
(85), Paraguay (152), Rwanda (161), and Cuba (49). These five countries are a
random sample from the population of all countries. Of course, the numbers are
randomly generated, so each sample generated this way is likely to be different. We
talk more about the variability of random samples in Chapter 3.

Random Sampling Caution

In statistics, random is NOT the same as haphazard! We cannot obtain
a random sample by haphazardly picking a sample on our own. We
must use a formal random sampling method such as technology or
drawing names out of a hat.

Realities of Random Sampling
While a random sample is ideal, often it may not be achievable. A list of the

entire population may not exist, it may be impossible to contact some members of
the population, or it may be too expensive or time consuming to do so. Often we
must make do with whatever sample is convenient. The study can still be worth
doing, but we have to be very careful when drawing inferences to the population
and should at least try to avoid obvious sampling bias as much as possible.

18Gelman, A. and Nolan, D., Teaching Statistics: A Bag of Tricks, Oxford University Press, New York,
2002.
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Example 1.16
If the Chicago Tribune had wanted to more accurately predict the outcome of the
1948 presidential election, what should they have done? Why do you think they
didn’t do this?

Solution To more accurately predict the 1948 presidential election, they should have selected
a random sample from the list of all registered voters and then asked the selected
people who they would vote for. There are several possible reasons they did not
select a random sample. They may not have had a list of all registered voters available
from which to sample randomly. Also, collecting data from a random sample of
voters might have required traveling to homes all over the country, which would
have been time consuming and expensive. Sampling only people with telephones
was cheaper and more convenient.

When it is difficult to take a random sample from the population of interest, we
may have to redefine the population to which we generalize.

Example 1.17
What Proportion of People Are Vegetarian?

To determine what proportion of people are vegetarian, we would need to take a
random sample of all people, which would be extremely difficult or impossible. How
might we redefine our population and question so that it is possible to obtain an
accurate estimate?

Solution One option is to narrow our population to those living in Boston and ask, ‘‘What
proportion of Bostonians are vegetarian?” It would be possible to take a random
sample of telephone numbers from a Boston phone book and call and ask whether
they eat meat. In this case our population would only include people with land line
phone numbers listed in the Boston phone book so would not include people who
rely only on cell phones or who have no phone at all.

For simplicity we only describe a simple random sample in detail, but there
are other types of random samples. If we want to know the average weight of a
population and want to ensure that the proportion of males and females in our
sample matches that of the population, we may take two simple random samples,
one within males and one within females. For a study on high school students, it is
hard to take a simple random sample. We might first take a simple random sample of
schools and then, within each of the sampled schools, take a simple random sample
of students. These random sampling schemes are more complicated than the simple
random sample but can still yield valid inferences.

Other Sources of Bias
Sampling bias is not the only form of bias that can occur when collecting data.
Particularly when collecting data on humans, even if we have a good random
sample, there are other issues that might bias the results.

Bias

Bias exists when the method of collecting data causes the sample data
to inaccurately reflect the population.
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Bias can occur when people we have selected to be in our sample choose not to
participate. If the people who choose to respond would answer differently than the
people who choose not to respond, results will be biased.

Example 1.18
In 1997 in Somerset (a county in England), a study was conducted on lifestyle
choices associated with health.19 A random sample of 6009 residents of Somerset
were mailed a questionnaire that they were asked to fill out and return, and 57.6%
of the people in the sample returned the questionnaire. Do you think health-
related behavior such as exercise and smoking are accurately portrayed by the data
collected?

Solution Probably not. People who returned the questionnaire may have been more proud
of their responses, or may have been more organized and motivated in general, so
more likely to lead a healthy lifestyle.

The researchers followed up with phone interviews for a random sample
of those who had not responded. As suspected, the non-responders were quite
different regarding health behaviors. For example, only 35.9% of initial responders
reported getting no moderate or vigorous physical activity, while this percentage
was almost doubled, 69.6%, for non-responders. Using only the data from the initial
responders is very misleading.

The way questions are worded can also bias the results. In 1941 Daniel Rugg20

asked people the same question in two different ways. When asked ‘‘Do you think
that the United States should allow public speeches against democracy?” 21% said
the speeches should be allowed. However, when asked ‘‘Do you think that the
United States should forbid public speeches against democracy?” 39% said the
speeches should not be forbidden. Merely changing the wording of the question
nearly doubled the percentage of people in favor of allowing (not forbidding) public
speeches against democracy.

© Carmen Martínez Banús/iStockphoto

Would you have children?

19Hill, A., Roberts, J., Ewings, P., and Gunnell, D., ‘‘Non-response bias in a lifestyle survey,” Journal of
Public Health Medicine, June 1997; 19(2): 203–207.
20Rugg, D., ‘‘Experiments in wording questions,” Public Opinion Quarterly, 1941; 5: 91–92.
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D A T A 1 . 4 ‘‘If you had it to do over again, would you have children?”
In 1976, a young couple wrote to the popular columnist Ann Landers, asking for
advice on whether or not to have children.21 Ann ran the letter from the young
couple (which included various reasons not to have kids, but no positive aspects
of parenting) and asked her readers to respond to the question ‘‘If you had it to
do over again, would you have children?” Her request for data yielded over
10,000 responses, and to her surprise, only 30% of readers answered ‘‘Yes.” She
later published these results in Good Housekeeping, writing that she was
‘‘stunned, disturbed, and just plain flummoxed” by the survey results. She again
asked readers to answer the exact same question, and this time 95% of
responders said ‘‘Yes.” ■

Example 1.19
In Data 1.4, why do you think the two percentages, 30% and 95%, are so drastically
different?

Solution The initial request for data was in a column with a letter stating many reasons not
to have kids, which may have brought these issues to the minds of the responders.
The second request was in an article mentioning Ann Landers’ dismay at parents
answering no, which may have influenced responses. The context in which the
question is asked can bias answers one way or another.

Sampling bias is also present, since readers of her column in the newspaper
and readers of Good Housekeeping and readers who choose to respond to each
request for data are probably not representative of the population and probably
differ from each other. For the first request, people with more negative experiences
with children may have been encouraged to respond, while the opposite may have
been true in the second case. You may be able to think of additional reasons for the
discrepancy in the sample results.

Example 1.20
Suppose you are considering having children and would really like to know whether
more parents are happy about having kids or regret their decision. Which percentages
in Data 1.4 can you trust? How would you go about collecting data you can trust?

Solution Since both of these samples only include people who decided to write in (volunteer
samples) instead of taking a random sample, both almost definitely contain sampling
bias, so neither should be trusted. To collect data you can trust, you should take a
random sample of all parents (or perhaps take a random sample of all parents of
your nationality).

Newsday took a random sample of all parents in the US, asking the same
question as in Data 1.4. In this random sample, 91% said ‘‘Yes,” they would have
children again if given the choice. This doesn’t mean that exactly 91% of parents
are happy they had kids, but because it was a random sample, it does mean that the
true percentage is close to 91%. In Chapter 3 we’ll learn how to assess exactly how
close we expect it to be. (Notice that the initial sample result of 30% is extremely
misleading!)

Bias may also be introduced if people do not answer truthfully. If the sample data
cannot be trusted, neither can generalizations from the sample to the population.

21http://www.stats.uwo.ca/faculty/bellhouse/stat353annlanders.pdf.
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Example 1.21
Illicit Drug Use

The 2009 National Survey on Drug Use and Health22 selected a random sample of
US college students and asked them about illicit drug use, among other things. In
the sample, 22.7% of the students reported using illicit drugs in the past year. Do
you think this is an accurate portrayal of the percentage of all college students using
illicit drugs?

Solution This may be an underestimate. Even if the survey is anonymous, students may be
reluctant to report illicit drug use on an official survey and thus may not answer
truthfully.

Bias in data collection can result in many other ways not discussed here. The
most important message is to always think critically about the way data are collected
and to recognize that not all methods of data collection lead to valid inferences.
Recognizing sources of bias is often simply common sense, and you will instantly
become a more statistically literate individual if, each time you are presented with a
statistic, you just stop, inquire, and think about how the data were collected.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between a sample and a population

• Recognize when it is appropriate to use sample data to infer information
about the population

• Critically examine the way a sample is selected, identifying possible
sources of sampling bias

• Recognize that random sampling is a powerful way to avoid sampling
bias

• Identify other potential sources of bias that may arise in studies on
humans

Exercises for Section 1.2

SKILL BUILDER 1
In Exercises 1.27 to 1.30, state whether the data are
best described as a population or a sample.
1.27 To estimate size of trout in a lake, an angler
records the weight of 12 trout he catches over a
weekend.
1.28 A subscription-based music website tracks its
total number of active users.

1.29 The US Department of Transportation
announces that of the 250 million registered

passenger vehicles in the US, 2.1% are electro-gas
hybrids.
1.30 A questionnaire to understand athletic partic-
ipation on a college campus is emailed to 50 college
students, and all of them respond.

SKILL BUILDER 2
In Exercises 1.31 to 1.36, describe the sample and
describe a reasonable population.

1.31 A sociologist conducting a survey at a mall
interviews 120 people about their cell phone use.

22Substance Abuse and Mental Health Services Administration, Results from the 2009 National
Survey on Drug Use and Health: Volume I. Summary of National Findings (Office of Applied
Studies, NSDUH Series H-38A, HHS Publication No. SMA 10-4856Findings), Rockville, MD, 2010,
https://nsduhweb.rti.org/.
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1.32 A fishing boat captain examines one day’s
catch of fish to see if the average weight of fish
in that area is large enough to make fishing there
profitable.

1.33 Five hundred Canadian adults are asked if they
are proficient on a musical instrument.

1.34 A cell phone carrier sends a satisfaction survey
to 100 randomly selected customers.

1.35 A hungry yet diligent snacker eats an entire
package of Chips Ahoy! cookies while counting and
recording the number of chocolate chips in each
cookie.

1.36 The Nielsen Corporation attaches databoxes
to televisions in 1000 households throughout the
US to monitor what shows are being watched and
produce the Nielsen Ratings for television.

SKILL BUILDER 3
In Exercises 1.37 to 1.40, a biased sampling situation
is described. In each case, give:

(a) The sample

(b) The population of interest

(c) A population we can generalize to given the
sample.

1.37 To estimate the proportion of Americans who
support changing the drinking age from 21 to 18, a
random sample of 100 college students are asked the
question ‘‘Would you support a measure to lower
the drinking age from 21 to 18?”

1.38 To investigate the growth of the canine pop-
ulation in New York City, 100 dogs are randomly
selected from a registry of licensed pets in the city,
and it is found that 78 of them have been neutered.

1.39 To investigate interest across all residents of
the US in a new type of ice skate, a random sample
of 1500 people in Minnesota are asked about their
interest in the product.

1.40 To determine the height distribution of female
high school students, the rosters are collected from
20 randomly selected high school girls basketball
teams.

SKILL BUILDER 4
In Exercises 1.41 to 1.46, state whether or not the
sampling method described produces a random sam-
ple from the given population.

1.41 The population is incoming students at a partic-
ular university. The name of each incoming student
is thrown into a hat, the names are mixed, and 20
names (each corresponding to a different student)
are drawn from the hat.

1.42 The population is the approximately 25,000
protein-coding genes in human DNA. Each gene
is assigned a number (from 1 to 25,000), and com-
puter software is used to randomly select 100 of
these numbers yielding a sample of 100 genes.

1.43 The population is all employees at a company.
All employees are emailed a link to a survey.

1.44 The population is adults between the ages of
18 and 22. A sample of 100 students is collected
from a local university, and each student at the uni-
versity had an equal chance of being selected for the
sample.

1.45 The population is all trees in a forest. We walk
through the forest and pick out trees that appear to
be representative of all the trees in the forest.

1.46 The population is all people who visit the web-
site CNN.com. All visitors to the website are invited
to take part in the daily online poll.

IS IT BIASED?
In Exercises 1.47 to 1.51, indicate whether we
should trust the results of the study. Is the method
of data collection biased? If it is, explain why.

1.47 Ask a random sample of students at the library
on a Friday night ‘‘How many hours a week do
you study?” to collect data to estimate the average
number of hours a week that all college students
study.

1.48 Ask a random sample of people in a given
school district ‘‘Excellent teachers are essential to
the well-being of children in this community, and
teachers truly deserve a salary raise this year. Do
you agree?” Use the results to estimate the propor-
tion of all people in the school district who support
giving teachers a raise.

1.49 Take 10 apples off the top of a truckload of
apples and measure the amount of bruising on those
apples to estimate how much bruising there is, on
average, in the whole truckload.

1.50 Take a random sample of one type of printer
and test each printer to see how many pages of text
each will print before the ink runs out. Use the aver-
age from the sample to estimate how many pages,
on average, all printers of this type will last before
the ink runs out.

1.51 Send an email to a random sample of students
at a university asking them to reply to the question:
‘‘Do you think this university should fund an ulti-
mate frisbee team?” A small number of students
reply. Use the replies to estimate the proportion of
all students at the university who support this use of
funds.
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1.52 Do Parents Regret Having Children? In
Data 1.4 on page 24, we describe the results of a
question asked by a national newspaper columnist:
‘‘If you had it to do over again, would you have
children?” In addition to those results and a follow-
up national survey, the Kansas City Star selected
a random sample of parents from Kansas City and
asked them the same question. In this sample, 94%
said ‘‘Yes.” To what population can this statistic be
generalized?

1.53 How Many People Wash Their Hands After
Using the Washroom? In Example 1.10 on page 16,
we introduce a study by researchers from Harris
Interactive who were interested in determining what
percent of people wash their hands after using the
washroom. They collected data by standing in public
restrooms and pretending to comb their hair or put
on make-up as they observed patrons’ behavior.23

Public restrooms were observed at Turner’s Field
in Atlanta, Penn Station and Grand Central Station
in New York, the Museum of Science and Industry
and the Shedd Aquarium in Chicago, and the Ferry
Terminal Farmers Market in San Francisco. Of the
over 6000 people whose behavior was observed,
85% washed their hands. Women were more likely
to wash their hands: 93% of women washed, while
only 77% of men did. The Museum of Science and
Industry in Chicago had the highest hand-washing
rate, while men at Turner’s Field in Atlanta had the
lowest.

(a) What are the cases? What are the variables?
Classify each variable as quantitative or cate-
gorical.

(b) In a separate telephone survey of more than
1000 adults, more than 96% said they always
wash their hands after using a public restroom.
Why do you think there is such a discrepancy
in the percent from the telephone survey com-
pared to the percent observed?

1.54 Teaching Ability In a sample survey of pro-
fessors at the University of Nebraska, 94% of
them described themselves as ‘‘above average”
teachers.24

(a) What is the sample? What is the population?

(b) Based on the information provided, can we con-
clude that the study suffers from sampling bias?

23Bakalar, ‘‘Study: More people washing hands after using bath-
room,” Salem News, September 14, 2010.
24Cross, P., ‘‘Not can, but will college teaching be improved?,”
New Directions for Higher Education, 1977; 17: 115.

(c) Is 94% a good estimate for the percentage
of above-average teachers at the University of
Nebraska? If not, why not?

1.55 Does Physical Beauty Matter? One of the daily
polls on CNN.com during June 2011 asked ‘‘Does
Physical Beauty Matter to You?” Of 38,485 people
responding, 79% said yes and 21% said no. Can we
conclude that about 79% of all people think physical
beauty matters? Why or why not? In making such
a conclusion, what are we considering the sample?
What are we considering the population? Is there
any bias in the sampling method?

1.56 Effects of Alcohol and Marijuana In 1986 the
Federal Office of Road Safety in Australia con-
ducted an experiment to assess the effects of alcohol
and marijuana on mood and performance.25 Partic-
ipants were volunteers who responded to advertise-
ments for the study on two rock radio stations in
Sydney. Each volunteer was given a randomly deter-
mined combination of the two drugs, then tested and
observed. Is the sample likely representative of all
Australians? Why or why not?

1.57 What Percent of Young Adults Move Back
in with Their Parents? The Pew Research Center
polled a random sample of n = 808 US residents
between the ages of 18 and 34. Of those in the
sample, 24% had moved back in with their parents
for economic reasons after living on their own.26

Do you think that this sample of 808 people is a
representative sample of all US residents between
the ages of 18 and 34? Why or why not?

1.58 Do Tanning Salons Mislead Their Customers?
Investigators posing as fair-skinned teenage girls
contacted 300 tanning salons nationwide, including
at least three randomly selected in each state. The
investigators report that 90% of the salons stated
that indoor tanning did not pose a health risk and
over half (51%) of the salons denied that indoor
tanning would increase a fair-skinned teenager’s
risk of developing skin cancer. Going even further,
78% of the tanning salons even claimed that indoor
tanning is beneficial to health.27 (In fact, many

25Chesher, G., Dauncey, H., Crawford, J. and Horn, K., ‘‘The
Interaction between Alcohol and Marijuana: A Dose Depen-
dent Study on the Effects on Human Moods and Performance
Skills,” Report No. C40, Federal Office of Road Safety, Federal
Department of Transport, Australia, 1986.
26Parker, K., ‘‘The Boomerang Generation: Feeling OK about
Living with Mom and Dad,” Pew Research Center, March 15,
2012.
27‘‘Congressional Report Exposes Tanning Industry’s Misleading
Messaging to Teens,” http://www.skincancer.org/news/tanning/
tanningreport, a report released by the House Committee on
Energy and Commerce, February 1, 2012.
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studies have shown that tanning is dangerous, espe-
cially for teenagers, and that tanning raises the risk
of melanoma, the deadliest type of skin cancer, by
74%.)

(a) What is the sample?

(b) Do you think the sample is representative of all
tanning salons in the US?

(c) Although the sample is random, discuss why the
results do not paint an accurate picture of the
dangers of tanning.

(d) Do you think the study accurately portrays
the messages tanning salons give to teenage
girls?

1.59 Employment Surveys Employment statistics in
the US are often based on two nationwide monthly
surveys: the Current Population Survey (CPS) and
the Current Employment Statistics (CES) survey.
The CPS samples approximately 60,000 US house-
holds and collects the employment status, job type,
and demographic information of each resident in
the household. The CES survey samples 140,000
nonfarm businesses and government agencies and
collects the number of payroll jobs, pay rates, and
related information for each firm.

(a) What is the population in the CPS survey?

(b) What is the population in the CES survey?

(c) For each of the following statistical questions,
state whether the results from the CPS or CES
survey would be more relevant.

i. Do larger companies tend to have higher
salaries?

ii. What percentage of Americans are self-
employed?

iii. Are married men more or less likely to be
employed than single men?

1.60 National Health Statistics The Centers for Dis-
ease Control and Prevention (CDC) administers a
large number of survey programs for monitoring the
status of health and health care in the US. One of
these programs is the National Health and Nutrition
Examination Survey (NHANES), which interviews
and examines a random sample of about 5000 people
in the US each year. The survey includes questions
about health, nutrition, and behavior while the
examination includes physical measurements and
lab tests. Another program is the National Hospi-
tal Ambulatory Medical Care Survey (NHAMCS),
which includes information from hospital records
for a random sample of individuals treated in hos-
pital emergency rooms around the country.

(a) To what population can we reasonably general-
ize findings from the NHANES?

(b) To what population can we reasonably general-
ize findings from the NHAMCS?

(c) For each of the questions below, indicate
which survey, NHANES or NHAMCS, would
probably be more appropriate to address the
issue.

i. Are overweight people more likely to
develop diabetes?

ii. What proportion of emergency room visits
in the US involve sports-related injuries?

iii. Is there a difference in the average waiting
time to be seen by an emergency room physi-
cian between male and female patients?

iv. What proportion of US residents have vis-
ited an emergency room within the past
year?

1.61 Interviewing the Film Crew on Hollywood
Movies There were 136 movies made in Hollywood
in 2011. Suppose that, for a documentary about
Hollywood film crews, a random sample of five of
these movies will be selected for in-depth interviews
with the crew members. Assuming the movies are
numbered 1 to 136, use a random number generator
or table to select a random sample of five movies by
number. Indicate which numbers were selected. (If
you want to know which movies you selected, check
out the dataset HollywoodMovies2011.)

1.62 Sampling Some Hardee’s Restaurants The
Hardee’s Restaurant chain has about 1900 quick-
serve restaurants in 30 US states and 9 countries.28

Suppose that a member of the Hardee’s administra-
tion wishes to visit six of these restaurants, randomly
selected, to gather some first-hand data. Suppose the
restaurants are numbered 1 to 1900. Use a random-
number generator or table to select the numbers for
6 of the restaurants to be in the sample.

1.63 Strawberry Fields A strawberry farmer has
planted 100 rows of plants, each 12 inches apart,
and there are about 300 plants in each row. He
would like to select a random sample of 30 plants to
estimate the average number and weight of berries
per plant.

(a) Explain how he might choose the specific plants
to include in the sample.

(b) Carry out your procedure from (a) to identify
the first three plants selected for the sample.

28hardees.com/company/franchise.
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1.3EXPERIMENTS AND OBSERVATIONAL STUDIES

Association and Causation
Three neighbors in a small town in northern New York State enjoy living in a
climate that has four distinct seasons: warm summers, cold winters, and moderate
temperatures in the spring and fall. They also share an interest in using data to help
make decisions about questions they encounter at home and at work.

• Living in the first house is a professor at the local college. She’s been looking at
recent heating bills and comparing them to data on average outside temperature.
Not surprisingly, when the temperature is lower, her heating bills tend to be much
higher. She wonders, ‘‘It’s going to be an especially cold winter; should I budget
for higher heating costs?”

• Her neighbor is the plant manager for a large manufacturing plant. He’s also been
looking at heating data and has noticed that when the building’s heating plant is
used, there are more employees missing work due to back pain or colds and flu.
He wonders, ‘‘Could emissions from the heating system be having adverse health
effects on the workers?”

• The third neighbor is the local highway superintendent. He is looking at data on
the amount of salt spread on the local roads and the number of auto accidents. (In
northern climates, salt is spread on roads to help melt snow and ice and improve
traction.) The data clearly show that weeks when lots of salt is used also tend to
have more accidents. He wonders, ‘‘Should we cut down on the amount of salt we
spread on the roads so that we have fewer accidents?”

Each of these situations involves a relationship between two variables. In each
scenario, variations in one of the variables tend to occur in some regular way with
changes in the other variable: lower temperatures go along with higher heating
costs, more employees have health issues when there is more activity at the heating
plant, and more salt goes with more accidents. When this occurs, we say there is an
association between the two variables.

Association

Two variables are associated if values of one variable tend to be
related to the values of the other variable.

The three neighbors share a desirable habit of using data to help make decisions,
but they are not all doing so wisely. While colder outside temperatures probably
force the professor’s furnace to burn more fuel, do you think that using less salt on
icy roads will make them safer? The key point is that an association between two
variables, even a very strong one, does not imply that there is a cause and effect
relationship between the two variables.

Causation

Two variables are causally associated if changing the value of one
variable influences the value of the other variable.

The distinction between association and causation is subtle, but important. In a
causal relationship, manipulating one of the variables tends to cause a change in the
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other. For example, we put more pressure on the gas pedal and a car goes faster.
When an association is not causal, changing one of the variables will not produce
a predictable change in the other. Causation often implies a particular direction,
so colder outside temperatures might cause a furnace to use more fuel to keep
the professor’s house warm, but if she increases her heating costs by buying more
expensive fuel, we should not expect the outdoor temperatures to fall!

Recall from Section 1.1 that values of an explanatory variable might help predict
values of a response variable. These terms help us make the direction of a causal
relationship more clear: We say changing the explanatory variable tends to cause
the response variable to change. A causal statement (or any association statement)
means that the relationship holds as an overall trend—not necessarily in every case.

Example 1.22
For each sentence discussing two variables, state whether the sentence implies
no association between the variables, association without implying causation, or
association with causation. If there is causation, indicate which variable is the
explanatory variable and which is the response variable.

(a) Studies show that taking a practice exam increases your score on an exam.

(b) Families with many cars tend to also own many television sets.

(c) Sales are the same even with different levels of spending on advertising.

(d) Taking a low-dose aspirin a day reduces the risk of heart attacks.

(e) Goldfish who live in large ponds are usually larger than goldfish who live in
small ponds.

(f) Putting a goldfish into a larger pond will cause it to grow larger.

Solution (a) This sentence implies that, in general, taking a practice exam causes an increase
in the exam grade. This is association with causation. The explanatory variable
is whether or not a practice exam was taken and the response variable is the
score on the exam.

(b) This sentence implies association, since we are told that one variable (number of
TVs) tends to be higher when the other (number of cars) is higher. However, it
does not imply causation since we do not expect that buying another television
set will somehow cause us to own more cars, or that buying another car will
somehow cause us to own more television sets! This is association without
causation.

(c) Because sales don’t vary in any systematic way as advertising varies, there is no
association.

(d) This sentence indicates association with causation. In this case, the sentence
makes clear that a daily low-dose aspirin causes heart attack risk to go down.
The explanatory variable is taking aspirin and the response variable is heart
attack risk.

(e) This sentence implies association, but it only states that larger fish tend to be in
larger ponds, so it does not imply causation.

(f) This sentence implies association with causation. The explanatory variable is the
size of the pond and the response variable is the size of the goldfish.

Contrast the sentences in Example 1.22 parts (e) and (f). Both sentences are
correct, but one implies causation (moving to a larger pond makes the fish grow
bigger) and one does not (bigger fish just happen to reside in larger ponds).
Recognizing the distinction is important, since implying causation incorrectly is one

o
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of the most common mistakes in statistics. Try to get in the habit of noticing when a
sentence implies causation and when it doesn’t.

Many decisions are made based on whether or not an association is causal.
For example, in the 1950s, people began to recognize that there was an association
between smoking and lung cancer, but there was a debate that lasted for decades
over whether smoking causes lung cancer. It is now generally agreed that smoking
causes lung cancer, and this has led to a substantial decline in smoking rates in the
US. The fact that smoking causes lung cancer does not mean that everyone who
smokes will get lung cancer, but it does mean that people who smoke are more likely
to get it (in fact, 10 to 20 times more likely29). Other important causal questions,
such as whether cell phones cause cancer or whether global warming is causing an
increase in extreme weather events, remain topics of research and debate. One of
the goals of this section is to help you determine when a study can, and cannot,
establish causality.

Confounding Variables
Why are some variables associated even when they have no cause and effect
relationship in either direction? As the next example illustrates, the reason is often
the effect of other variables.

D A T A 1 . 5 Vehicles and Life Expectancy
The US government collects data from many sources on a yearly basis. For
example, Table 1.4 shows the number of passenger vehicles (in millions)
registered in the US30 and the average life expectancy (in years) of babies born31

every four years from 1970 to 2006. A more complete dataset with values for
each of the years from 1970 through 2009 is stored in LifeExpectancyVehicles. If
we plot the points in Table 1.4, we obtain the graph in Figure 1.2. (This graph is
an example of a scatterplot, which we discuss in Chapter 2.) As we see in the
table and the graph, these two variables are very strongly associated; the more
vehicles that are registered, the longer people are expected to live. ■

Table 1.4 Vehicle registrations
(millions) and life expectancy

Year Vehicles Life Expectancy

1970 108.4 70.8
1974 129.9 72.0
1978 148.4 73.5
1982 159.6 74.5
1986 175.7 74.7
1990 188.8 75.4
1994 198.0 75.7
1998 211.6 76.7
2002 229.6 77.3
2006 244.2 77.7

29http://www.cdc.gov/cancer/lung/basic info/risk factors.htm#1.
30Vehicle registrations from US Census Bureau, http://www.census.gov/compendia/statab/cats/
transportation.html.
31Centers for Disease Control and Prevention, National Center for Health Statistics, Health Data
Interactive, www.cdc.gov/nchs/hdi.htm, accessed April 7, 2012.
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Figure 1.2 A strong
association between
vehicles and life
expectancy
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There is a clear association between vehicle registrations and life expectancy.
Is this a causal association? If so, which way might it go? Do people live longer
because they have a car to drive? When people live longer, do they have time to buy
more vehicles? Or is there something else driving this association?

Confounding Variable

A confounding variable, also known as a confounding factor or
lurking variable,32 is a third variable that is associated with both
the explanatory variable and the response variable. A confounding
variable can offer a plausible explanation for an association between
two variables of interest.

Example 1.23
Describe a possible confounding variable in Data 1.5 about vehicle registrations and
life expectancy.

Solution One confounding variable is the year. As time goes along, the population grows
so more vehicles are registered and improvements in medical care help people live
longer. Both variables naturally tend to increase as the year increases and may
have little direct relationship with each other. The years are an explanation for the
association between vehicle registrations and life expectancy.

When faced with a strong association such as that between vehicles and life
expectancy, it can be tempting to immediately jump to conclusions of causality.
However, it is important to stop and think about whether there are confounding
variables which could be explaining the association instead.

Example 1.24
In 2008, the Los Angeles Times published a headline33 that included ‘‘Hospitals. . .
Riskier than a Casino in Event of Cardiac Arrest.” The article, based on a study

32Some statisticians distinguish between confounding variables and lurking variables. However, for
simplicity in this book we treat them as synonymous.
33Maugh, T., ‘‘Study Finds Hospitals Slow to Defibrillate: Researchers Say They’re Riskier than a Casino
in Event of Cardiac Arrest,” Los Angeles Times, January 3, 2008.
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published in the New England Journal of Medicine,34 states that the widespread
availability of defibrillators and bystanders in public places like casinos leads to a
higher survival rate than hospitals in the case of cardiac arrest.

(a) What are the primary variables of interest in this study? Which is the explanatory
variable and which is the response variable?

(b) Give an example of one potential confounding variable in this study.

(c) If you are having a heart attack, would you go to a hospital or a casino?

Solution (a) The two primary variables of interest are the place of cardiac arrest (explanatory)
and whether or not the person survives (response).

(b) A confounding variable is the health of the person at the time of cardiac arrest.
Older, frailer, sicker people are more likely to be in the hospital and also less
likely to survive (not because they are in a hospital, but just because they are
weaker to begin with). Someone in a casino is much more likely to be in better
physical shape, and thus better able to survive a heart attack. Notice that the
confounding variable (health of the person) influences both of the variables of
interest: where the person might be and whether the person is likely to survive.

(c) If you are having a heart attack, you should go to a hospital! Even though
casinos have a higher survival rate, this can be explained by the confounding
variable, and we cannot conclude that being in a casino causes a higher survival
rate. For a person of a given health status, it is probably safer to be in a hospital
under the care of professionals.

Many seemingly surprising claims in the media (such as that hospitals are riskier
than casinos) can be explained simply by the presence of a confounding variable.
Knowing how and when to be on the lookout for confounding variables is essential
for statistical literacy and for assessing any data-based claims.

Observational Studies vs Experiments
How can we establish (statistically) when an association represents a causal rela-
tionship? The key is in how the data are collected. If we want to study how the
explanatory variable influences the response variable, we have to be able to control
or specify the values of the explanatory variable to make sure it is not associated
with any potential confounding variables.

Note that in data such as LifeExpectancyVehicles or the study of cardiac arrest
we merely collect available data after the fact. We call data collected in this way,
with no effort or ability to manipulate the variables of interest, an observational
study. With observational data we can never be certain that an apparent association
is not due to some confounding variable, and thus the association is not evidence of
a causal relationship.

The alternative is to intentionally control one or more of the explanatory
variables when producing the data to see how the response variable changes. We
call this method of data collection a statistical experiment. With a well-designed
experiment, we can make conclusions about causation when we see a strong
association, since the method for assigning the values of the explanatory variable(s)
are not influenced by any confounding variables.

34Chan, P., Krumholz, H., Nichol, G., and Nallamothu, B., American Heart Association National Registry
of Cardiopulmonary Resuscitation Investigators, ‘‘Delayed Time to Defibrillation after In-Hospital
Cardiac Arrest,” New England Journal of Medicine, 2008; 358: 9–17.
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Observational Studies and Experiments

An experiment is a study in which the researcher actively controls one
or more of the explanatory variables.

An observational study is a study in which the researcher does not
actively control the value of any variable but simply observes the
values as they naturally exist.

Example 1.25
Both studies below are designed to examine the effect of fertilizer on the yield of an
apple orchard. Indicate whether each method of collecting the data is an experiment
or an observational study.

(a) Researchers find several different apple orchards and record the amount of
fertilizer used and the yield of the orchards.

(b) Researchers find several different apple orchards and assign different amounts
of fertilizer to each orchard. They record the resulting yield from each.

Solution (a) This is an observational study, since data were recorded after the fact and
no variables were actively manipulated. Notice that there are many possible
confounding variables that might be associated with both the amount of fertilizer
used and the yield, such as the quality of soil.

(b) This is an experiment since the amount of fertilizer was assigned to different
orchards. The researchers actively manipulated the assignment of the fertilizer
variable, in order to determine the effect on the yield variable.

Al Diaz/Miami Herald/MCT via Getty Images

Do high fives help teams win?

Example 1.26
Basketball High Fives

In the 2011 NBA (National Basketball Association) finals, the Dallas Mavericks
defeated the Miami Heat. One headline on NBC sports35 stated ‘‘Miami’s real

35http://probasketballtalk.nbcsports.com/2011/06/09/miami’s-real-problem-this-series-not-enough-high-
fives/.
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problem this series: Not enough high fives,” citing a study36 that found that teams
exhibiting more ‘‘touching,” such as high fives, early in the season had better per-
formance later in the season. Is this study an experiment or an observational study?
Does the study provide evidence that additional high fiving improves basketball
performance?

Solution The study is an observational study, because researchers did not manipulate or assign
the number of high fives. The word ‘‘improves” implies causality, but because this
was an observational study, confounding variables are likely and causality cannot
be established. This study does not provide evidence that giving high fives improves
basketball performance.

One possible confounding variable in Example 1.26 is how well a team gets
along, which is likely to be associated both with the number of high fives and a
team’s performance. While we consider methods to account for some confounding
variables later in this text, additional confounding variables may still exist. In an
observational study, there is no way of guaranteeing that we haven’t missed one.

Causation Caution

It is difficult to avoid confounding variables in observational studies.
For this reason, observational studies can almost never be used to
establish causality.

Randomized Experiments
In an experiment, the researcher controls the assignment of one or more variables.
This power can allow the researcher to avoid confounding variables and identify
causal relationships, if used correctly. But how can the researcher possibly avoid
all potential confounding variables? The key is surprisingly simple: a randomized
experiment. Just as randomness solved the problem of sampling bias, randomness
can also solve the problem of confounding variables.

Randomized Experiment

In a randomized experiment the value of the explanatory variable
for each unit is determined randomly, before the response variable is
measured.

If a randomized experiment yields an association between the two
variables, we can establish a causal relationship from the explanatory
to the response variable.

Recall from Section 1.2 that ‘‘random” does not mean haphazard. A formal
randomization method (such as flipping a coin, dealing cards, drawing names out
of a hat, or using technology) must be used to assign the value of the explanatory
variable. This assures that the value of the explanatory variable for each unit is

36Kraus, M., Huang, C., and Keltner, D., ‘‘Tactile communication, cooperation, and performance: An
ethological study of the NBA,” Emotion, 2010; 10(5): 745–749.
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determined by random chance alone and is not influenced by any confounding
variables.

Example 1.27
A college professor writes two final exams for her class of 50 students and would
like to know if the two exams are similar in difficulty. On exam day, she gives Exam
A to the first 25 students to enter the classroom and Exam B to the remaining 25
students.

(a) What is the explanatory variable? What is the response variable?

(b) Is this a randomized experiment? What might be a confounding variable?

Solution (a) The explanatory variable is the exam the student took (A or B); the response
variable is the exam score.

(b) No, this is not a randomized experiment. The exam students take is determined
by when they enter the room, which is not random. Students that arrive especially
early may be more motivated, and those that straggle in late may be less likely
to perform well; time of arrival is a confounding variable.

Example 1.28
The following year the professor decides to do a truly randomized experiment. She
prints the name of each of her students on an index card, shuffles the cards, and
deals them into two piles. On exam day, she gives Exam A to the students with
names dealt into one pile, and Exam B to the other pile. After grading, she observes
that the students taking Exam B had much higher scores than those who took Exam
A. Can we conclude that Exam B was easier?

Solution Yes! This experiment provides evidence that Exam B was easier. Only random
chance determined which student got which exam, so there is no reason to suspect
confounding variables.

The key idea of Section 1.2 was that results from a sample can only be generalized
to the population if the sampling units were selected randomly from the population.
The key idea of this section is that causality can only be established if the values
of the explanatory variable are randomly assigned to the units. Randomness is
the essential ingredient in both cases, but the type of randomness should not be
confused. In the first case we are randomly determining which units will be a part
of the study. In the second case we are randomly determining which value of the
explanatory variable will be assigned to each of the units already selected to be in
our sample. Lack of randomness in either stage drastically influences the types of
conclusions that can be made: Lack of randomness in sampling prevents generalizing
to the population, lack of randomness in assigning the values of the explanatory
variable prevents making causal conclusions. See Figure 1.3.

Figure 1.3 Two
fundamental questions
about data collection
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D A T A 1 . 6 Physicians’ Health Study
Does anyone you know regularly take a low-dose aspirin? If so, it may be
because of a randomized experiment conducted in the 1980s, the Physicians’
Health Study.37 The study recruited 22,071 male physicians and randomly
assigned half of them to take an aspirin every other day for about five years and
the other half to take a fake aspirin pill instead. They found that the physicians
who took the real aspirin had 44% fewer heart attacks than those taking the fake
aspirin. ■

The study in Data 1.6 is a randomized experiment because the researchers
randomly determined which physicians received the real aspirin. The physicians
themselves had no choice and in fact did not even know which pill they were taking.
Because the physicians were split into two groups randomly, the only difference
between the groups should be the aspirin. Therefore, we can conclude that the
difference in heart attack rates must be caused by the aspirin. From this study we can
conclude that regularly taking a low-dose aspirin reduces the risk of heart attack.

Many ideas of experimental design were originally developed for medical studies
(such as Data 1.6) or agricultural experiments (like the fertilizer example of Example
1.25). For this reason, we often refer to values of the explanatory variable which
the researcher controls as treatments. In Data 1.6, the treatments are the real aspirin
and the fake aspirin.

Example 1.29
Warming Up

Warming up is a regular part of almost every athlete’s pre-game routine, but
the optimal amount to warm up is not always known. Cyclists typically have a
very intense warm-up, and a study38 in 2011 tests whether a shorter, less intense
warm-up is better. Ten cyclists were recruited from the Calgary Track Cycling
League and completed both a traditional intense warm-up and a shorter, less
physically demanding, experimental warm-up. Each cyclist completed each warm-
up at different times, and the order in which the warm-ups were performed was
randomized. After each warm-up, performance was measured. The study found
performance to be better after the shorter warm-up.

(a) What are the treatments?

(b) What conclusion can we draw from this study?

Solution (a) There are two treatments to be compared: the more intense traditional warm-up
and the shorter, less intense, experimental warm-up.

(b) Because the order of the warm-ups was randomized, causal conclusions can be
made. The shorter warm-up causes the cyclists to perform better.

In Example 1.28 and Data 1.6, it was randomly determined which units got
which treatment. In Example 1.29, every unit got both treatments, but the order
of the treatments was randomly determined. Both ways of randomization yield

37The Steering Committee of the Physicians’ Health Study Research Group, Final report on the aspirin
component of the ongoing Physicians’ Health Study, New England Journal of Medicine, 1989; 321:
129–135.
38Tomaras, E. and Macintosh, B., ‘‘Less is More: Standard Warm-up Causes Fatigue and Less Warm-up
Permits Greater Cycling Power Output,” Journal of Applied Physiology, May 5, 2011.

o



38 C H A P T E R 1 Collecting Data

valid randomized experiments. The former is known as a randomized comparative
experiment because two groups of units are compared. The latter is known as a
matched pairs experiment, because each unit forms a pair of data values (one under
each treatment), and comparisons are made within each pair. These are only two of
many different ways to incorporate randomization into an experiment.

Two Types of Randomized Experiments

In a randomized comparative experiment, we randomly assign cases to
different treatment groups and then compare results on the response
variable(s).

In a matched pairs experiment, each case gets both treatments in
random order (or cases get paired up in some other obvious way), and
we examine individual differences in the response variable between
the two treatments.

Example 1.30
Is the Dominant Hand Stronger?

We wish to run an experiment using 30 right-handed people to determine whether
gripping strength in the dominant hand is greater than gripping strength in the other
hand.

(a) Describe the experiment if we use a randomized comparative design.

(b) Describe the experiment if we use a matched pairs design.

(c) Which design makes more sense in this case?

Solution (a) Using a randomized comparative design, we randomly divide the 30 people into
two groups of 15 each. We measure gripping strength in the right hand for one
of the groups and in the left hand for the other group, and compare results.

(b) In a matched pairs experiment, we measure the gripping strength in both hands
for each of the 30 people. The data are ‘‘paired” because we compare the right-
and left-handed gripping strength for each person, and examine the difference
between the two values. We randomize the order in which participants use the
hands: some (randomly determined) doing the right hand first and some the left
hand first. Notice that all participants are doing both, unlike in the experiment
described in part (a) with two distinct groups each assigned a different treatment.

(c) A matched pairs experiment makes sense here since hand-gripping strength can
vary a great deal between different people and it makes sense to compare a
person’s right-hand strength to his or her own left-hand strength.

Control Groups, Placebos, and Blinding
The Physicians’ Health Study illustrates many aspects of a well-designed exper-

iment. The participants who did not take an aspirin pill are an example of a control
group. Nothing was done to this group that might directly influence the response
variable. The control group provides a good comparison for the group that actually
got the treatment of interest. Not all good experiments need a control group. There
is no control, for example, in Example 1.28 when testing to see if one exam is more
difficult than the other. In all cases, however, procedures for handling the groups
should match as closely as possible, so that effective comparisons can be made.

If people believe they are getting an effective treatment, they may experience the
desired effect regardless of whether the treatment is any good. This phenomenon is
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called the placebo effect. Although perhaps not intuitive, the placebo effect has been
studied extensively and can be very powerful. A placebo is a fake pill or treatment,
and placebos are often used to control for the placebo effect in experiments. The
fake aspirin pill given to participants in the control group of the Physicians’ Health
Study is an example of a placebo.

Using a placebo is not helpful, however, if participants know they are not getting
the real treatment. This is one of the reasons that blinding is so important. In a
single-blind experiment, the participants are not told which group they are in. In a
double-blind experiment, the participants are not told which group they are in and
the people interacting with the participants and recording the results of the response
variable also do not know who is in which group. The Physicians’ Health Study was
double-blind: The people taking the pills did not know whether they were taking an
aspirin or a placebo and the doctors treating them and determining who had heart
attacks also did not know.

D A T A 1 . 7 Sham Knee Surgery
For people suffering from arthritis of the knee, arthroscopic surgery has been
one possible treatment. In the mid-1990s, a study39 was conducted in which 10
men with arthritic knees were scheduled for surgery. They were all treated
exactly the same except for one key difference: only some of them actually had
the surgery! Once each patient was in the operating room and anesthetized, the
surgeon looked at a randomly generated code indicating whether he should do
the full surgery or just make three small incisions in the knee and stitch them up
to leave a scar. All patients received the same post-operative care, rehabilitation,
and were later evaluated by staff who didn’t know which treatment they had.
The result? The men getting the sham knee surgery had improvement that was
not distinguishable from the men getting the real surgery. ■

Example 1.31
Discuss the experiment in Data 1.7. How is randomization used? Is there a placebo?
Is the study double-blind? Why did the doctors make incisions in the knees of the
men not getting the surgery?

Solution Randomization was used to divide the men into groups, determining who got the
real surgery and who didn’t. The placebo was the fake surgery. Because the placebo
surgery should match the real surgery as much as possible, those in the placebo
group still received incisions and stitches. The men needed similar scars so that both
the patients and the staff giving follow-up care were blind as to who actually had
surgery done inside their knee. This made the study double-blind.

You may wonder whether data from only 10 patients is sufficient to make
strong conclusions about the best treatment plan for arthritic knees. That would be
a valid concern. In general, we would like to replicate each treatment on as many
experimental units as is feasible. In many situations a small pilot study, such as the
one described in Data 1.7, is used for initial guidance before undertaking a larger,
more expensive experiment. In the case of the placebo knee surgery, a follow-up
study with 180 patients produced similar results40 – indicating that full knee surgery
may not be needed for patients with this condition.

39Talbot, M., ‘‘The Placebo Prescription,” The New York Times, January 9, 2000.
40Moseley, J., et al., ‘‘A Controlled Trial of Arthroscopic Surgery for Osteoarthritis of the Knee,’’ The
New England Journal of Medicine, 2002; 347: 81–88.
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Example 1.32
Does an injection of caffeine help rats learn a maze faster? Design an experiment to
investigate this question. Incorporate elements of a well-designed experiment.

Solution We take the rats that are available for the study and randomly divide them into two
groups. One group will get a shot of caffeine while the other group will get a shot
of saline solution (placebo). We have the rats run the maze and record their times.
Don’t tell the rats which group they are in! Ideally, all people who come in contact
with the rats (the people giving the shots, the people recording the maze times,
and so on) should not know which rats are in which group. This makes the study
double-blind. Only the statistician analyzing the data will know which rats are in
which group. (We describe here a randomized comparative experiment. A matched
pairs experiment would also work, and in that case we would also use a placebo and
blinding.)

Realities of Randomized Experiments
Randomization should always be used in designing an experiment. Blinding and

the use of a placebo treatment should be used when appropriate and possible. How-
ever, there are often ethical considerations that preclude the use of an experiment in
any form. For example, imagine designing an experiment to determine whether cell
phones cause cancer or whether air pollution leads to adverse health consequences.
It would not be appropriate to require people to wear a cell phone on their head
for large amounts of time to see if they have higher cancer rates! Similarly, it would
not be appropriate to require some people to live in areas with more polluted air.
In situations such as these, observational studies can at least help us determine
associations.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize that not every association implies causation

• Identify potential confounding variables in a study

• Distinguish between an observational study and a randomized
experiment

• Recognize that only randomized experiments can lead to claims of
causation

• Explain how and why placebos and blinding are used in experiments

• Distinguish between a randomized comparative experiment and a
matched pairs experiment

• Design and implement a randomized experiment

Exercises for Section 1.3

SKILL BUILDER 1
In Exercises 1.64 to 1.69, we give a headline that
recently appeared online or in print. State whether
the claim is one of association and causation, asso-
ciation only, or neither association nor causation.

1.64 Daily exercise improves mental performance.

1.65 Among college students, no link found
between number of friends on social networking
websites and size of the university.

o

o
o
o
o
o
o
o



1.3 Experiments and Observational Studies 41

1.66 Cell phone radiation leads to deaths in honey
bees.

1.67 Wealthy people are more likely than other
folks to lie, cheat, and steal.

1.68 Cat owners tend to be more educated than dog
owners.

1.69 Want to lose weight? Eat more fiber!

SKILL BUILDER 2
Exercises 1.70 to 1.75 describe an association
between two variables. Give a confounding variable
that may help to account for this association.

1.70 More ice cream sales have been linked to more
deaths by drowning.

1.71 The total amount of beef consumed and the
total amount of pork consumed worldwide are
closely related over the past 100 years.

1.72 People who own a yacht are more likely to buy
a sports car.

1.73 Sales of toboggans tend to be higher when
sales of mittens are higher.

1.74 Air pollution is higher in places with a higher
proportion of paved ground relative to grassy
ground.

1.75 People with shorter hair tend to be taller.

SKILL BUILDER 3
In Exercises 1.76 to 1.79, we describe data collec-
tion methods to answer a question of interest. Are
we describing an experiment or an observational
study?

1.76 To examine whether eating brown rice affects
metabolism, we ask a random sample of people
whether they eat brown rice and we also measure
their metabolism rate.

1.77 To examine whether playing music in a store
increases the amount customers spend, we randomly
assign some stores to play music and some to stay
silent and compare the average amount spent by
customers.

1.78 To examine whether planting trees reduces air
pollution, we find a sample of city blocks with sim-
ilar levels of air pollution and we then plant trees
in half of the blocks in the sample. After waiting
an appropriate amount of time, we measure air
pollution levels.

1.79 To examine whether farm-grown salmon con-
tain more omega-3 oils if water is more acidic, we
collect samples of salmon and water from multiple
fish farms to see if the two variables are related.

REVISITING QUESTIONS FROM SECTION 1.1
Exercises 1.80 to 1.82 refer to questions of interest
asked in Section 1.1 in which we describe data col-
lection methods. Indicate whether the data come
from an experiment or an observational study.

1.80 ‘‘Is there a sprinting gene?” Introduced in
Example 1.5 on page 9.

1.81 ‘‘Do metal tags on penguins harm them?”
Introduced in Data 1.3 on page 10.

1.82 ‘‘Are there human pheromones?” Introduced
on page 11. Three studies are described; indicate
whether each of them is an experiment or an obser-
vational study.

1.83 Shoveling Snow Three situations are described
at the start of this section, on page 29. In the second
bullet, we describe an association between activity
at a building’s heating plant and more employees
missing work due to back pain. A confounding vari-
able in this case is amount of snow. Describe how
snowfall meets the definition of a confounding vari-
able by describing how it might be associated with
both the variables of interest.

1.84 Salt on Roads and Accidents Three situa-
tions are described at the start of this section, on
page 29. In the third bullet, we describe an associa-
tion between the amount of salt spread on the roads
and the number of accidents. Describe a possible
confounding variable and explain how it fits the
definition of a confounding variable.

1.85 Height and Reading Ability In elementary
school (grades 1 to 6), there is a strong associa-
tion between a child’s height and the child’s reading
ability. Taller children tend to be able to read at
a higher level. However, there is a very significant
confounding variable that is influencing both height
and reading ability. What is it?

1.86 Exercise and Alzheimer’s Disease A headline
at MSNBC.com41 stated ‘‘One way to ward off
Alzheimer’s: Take a hike. Study: Walking at least
one mile a day reduces risk of cognitive impairment
by half.” The article reports on a study42 showing
that elderly people who walked a lot tended to
have more brain mass after nine years and were
less likely to develop dementia that can lead to
Alzheimer’s disease than subjects who walked less.
At the start of the study the researchers measured

41http://www.msnbc.msn.com/id/39657391/ns/health-alzheimer’s
disease.

42Erickson, K., et al., ‘‘Physical activity predicts gray matter
volume in late adulthood: The Cardiovascular Health Study,”
Neurology, published online October 13, 2010.
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the walking habits of the elderly subjects and then
followed up with measures of brain volume nine
years later. Assuming that active walkers really did
have more brain mass and fewer dementia symp-
toms, is the headline justified?

1.87 Single-Sex Dorms and Hooking Up The pres-
ident of a large university recently announced43

that the school would be switching to dorms that
are all single-sex, because, he says, research shows
that single-sex dorms reduce the number of student
hook-ups for casual sex. He cites studies show-
ing that, in universities that offer both same-sex
and coed housing, students in coed dorms report
hooking up for casual sex more often.

(a) What are the cases in the studies cited by the
university president? What are the two variables
being discussed? Identify each as categorical or
quantitative.

(b) Which is the explanatory variable and which is
the response variable?

(c) According to the second sentence, does there
appear to be an association between the vari-
ables?

(d) Use the first sentence to determine whether
the university president is assuming a causal
relationship between the variables.

(e) Use the second sentence to determine whether
the cited studies appear to be observational
studies or experiments?

(f) Name a confounding variable that might be
influencing the association. (Hint: Students usu-
ally request one type of dorm or the other.)

(g) Can we conclude from the information in the
studies that single-sex dorms reduce the number
of student hook-ups?

(h) What common mistake is the university presi-
dent making?

1.88 Music Volume and Beer Consumption In 2008,
a study44 was conducted measuring the impact
that music volume has on beer consumption. The
researchers went into bars, controlled the music
volume, and measured how much beer was con-
sumed. The article states that ‘‘the sound level of
the environmental music was manipulated accord-
ing to a randomization scheme.” It was found that

43Stepp, L., ‘‘Single-sex dorms won’t stop drinking or ‘hooking-
up‘”, www.cnn.com, June 16, 2011.
44Gueguen, N., Jacob, C., Le Guellec, H., Morineau, T. and
Lourel, M., ‘‘Sound Level of Environmental Music and Drinking
Behavior: A Field Experiment with Beer Drinkers,” Alcoholism:
Clinical and Experimental Research, 2008; 32: 1795–1798.

louder music corresponds to more beer consump-
tion. Does this provide evidence that louder music
causes people to drink more beer? Why or why not?

1.89 Does Red Increase Men’s Attraction to
Women? A recent study45 examined the impact
of the color red on how attractive men perceive
women to be. In the study, men were randomly
divided into two groups and were asked to rate the
attractiveness of women on a scale of 1 (not at all
attractive) to 9 (extremely attractive). One group
of men were shown pictures of women on a white
background and the other group were shown the
same pictures of women on a red background. The
men who saw women on the red background rated
them as more attractive. All participants and those
showing the pictures and collecting the data were
not aware of the purpose of the study.

(a) Is this an experiment or an observational study?
Explain.

(b) What is the explanatory variable and what is the
response variable? Identify each as categorical
or quantitative.

(c) How was randomization used in this experi-
ment? How was blinding used?

(d) Can we conclude that using a red background
color instead of white increases men’s attrac-
tiveness rating of women’s pictures?

1.90 Urban Brains and Rural Brains A study pub-
lished in 2010 showed that city dwellers have a 21%
higher risk of developing anxiety disorders and a
39% higher risk of developing mood disorders than
those who live in the country. A follow-up study
published in 2011 used brain scans of city dwellers
and country dwellers as they took a difficult math
test.46 To increase the stress of the participants,
those conducting the study tried to humiliate the
participants by telling them how poorly they were
doing on the test. The brain scans showed very dif-
ferent levels of activity in stress centers of the brain,
with the urban dwellers having greater brain activity
than rural dwellers in areas that react to stress.

(a) Is the 2010 study an experiment or an observa-
tional study?

(b) Can we conclude from the 2010 study that living
in a city increases a person’s likelihood of devel-
oping an anxiety disorder or mood disorder?

45Elliot, A. and Niesta, D., ‘‘Romantic Red: Red Enhances
Men’s Attraction to Women,’’ Journal of Personality and Social
Psychology, 2008; 95(5): 1150–1164.
46‘‘A New York state of mind,’’ The Economist, June 25,
2011, p. 94.
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(c) Is the 2011 study an experiment or an observa-
tional study?

(d) In the 2011 study, what is the explanatory vari-
able and what is the response variable? Indicate
whether each is categorical or quantitative.

(e) Can we conclude from the 2011 study that living
in a city increases activity in stress centers of the
brain when a person is under stress?

1.91 Be Sure to Get Your Beauty Sleep! New
research47 supports the idea that people who get
a good night’s sleep look more attractive. In the
study, 23 subjects ages 18 to 31 were photographed
twice, once after a good night’s sleep and once
after being kept awake for 31 hours. Hair, make-up,
clothing, and lighting were the same for both pho-
tographs. Observers then rated the photographs for
attractiveness, and the average rating under the two
conditions was compared. The researchers report in
the British Medical Journal that ‘‘Our findings show
that sleep-deprived people appear less attractive
compared with when they are well rested.”

(a) What is the explanatory variable? What is the
response variable?

(b) Is this an experiment or an observational study?
If it is an experiment, is it a randomized com-
parative design or a matched pairs design?

(c) Can we conclude that sleep deprivation causes
people to look less attractive? Why or why not?

1.92 Do Antidepressants Work? Following the
steps below, design a randomized comparative
experiment to test whether fluoxetine (the active
ingredient in Prozac pills) is effective at reducing
depression. The participants are 50 people suffering
from depression and the response variable is the
change on a standard questionnaire measuring level
of depression.

(a) Describe how randomization will be used in the
design.

(b) Describe how a placebo will be used.

(c) Describe how to make the experiment double-
blind.

47Stein, R., ‘‘Beauty sleep no myth, study finds,” Washington
Post, washingtonpost.com, accessed December 15, 2010.

1.93 Do Children Need Sleep to Grow? About 60%
of a child’s growth hormone is secreted during sleep,
so it is believed that a lack of sleep in children might
stunt growth.48

(a) What is the explanatory variable and what is the
response variable in this association?

(b) Describe a randomized comparative experiment
to test this association.

(c) Explain why it is difficult (and unethical) to
get objective verification of this possible causal
relationship.

1.94 Carbo Loading It is commonly accepted that
athletes should ‘‘carbo load,” that is, eat lots of
carbohydrates, the day before an event requiring
physical endurance. Is there any truth to this? Sup-
pose you want to design an experiment to find out for
yourself: ‘‘Does carbo loading actually improve ath-
letic performance the following day?” You recruit
50 athletes to participate in your study.

(a) How would you design a randomized compara-
tive experiment?

(b) How would you design a matched pairs experi-
ment?

(c) Which design do you think is better for this
situation? Why?

1.95 Alcohol and Reaction Time Does alcohol
increase reaction time? Design a randomized exper-
iment to address this question using the method
described in each case. Assume the participants are
40 college seniors and the response variable is time
to react to an image on a screen after drinking
either alcohol or water. Be sure to explain how
randomization is used in each case.

(a) A randomized comparative experiment with
two groups getting two separate treatments

(b) A matched pairs experiment

1.96 Causation and Confounding Causation does
not necessarily mean that there is no confounding
variable. Give an example of an association between
two variables that have a causal relationship AND
have a confounding variable.

48Rochman, B., ‘‘Please, Please, Go to Sleep,” Time magazine,
March 26, 2012, p. 46.
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Describing
Data

‘‘Technology [has] allowed us to collect vast amounts of data in almost every business. The

people who are able to in a sophisticated and practical way analyze that data are going to

have terrific jobs.’’

Chrystia Freeland, Managing Editor, Financial Times∗

∗Speaking on CNN ‘‘Your Money,” November 29, 2009.
Top left: Image Source/Getty Images, Inc., Top right: Erik Von Weber/Getty Images, Inc., Bottom right: © Dumrong
Khajaroen/iStockphoto

44

* y

r*

i

!
m

\
\



Questions and Issues

C H A P T E R O U T L I N E

2 Describing Data 44
2.1 Categorical Variables 46

2.2 One Quantitative Variable: Shape and Center 60

2.3 One Quantitative Variable: Measures of Spread 74

2.4 Outliers, Boxplots, and Quantitative/
Categorical Relationships 90

2.5 Two Quantitative Variables: Scatterplot
and Correlation 103

2.6 Two Quantitative Variables: Linear Regression 119

Here are some of the questions and issues we will discuss in this chapter:

• Can dogs smell cancer in humans?

• What percent of college students say stress negatively affects their grades?

• How big is the home field advantage in soccer?

• Does electrical stimulation of the brain help with problem solving?

• Should males with a laptop computer worry about lowering their sperm count?

• What percent of people smoke?

• Can cricket chirps be used to predict the temperature?

• Which coffee has more caffeine: light roast or dark roast?

• How much do restaurant customers tip?

• How heavily does economic growth depend on the inflation rate?

• How does a person’s body posture affect levels of stress?

• Do movies with larger budgets get higher audience ratings?

• Does it pay to get a college degree?

• What percent of college students have been in an emotionally abusive relationship?

• Does sexual frustration increase the desire for alcohol?

• What percent of NBA basketball players never attempt a 3-point shot?

• Are there ‘‘commitment genes”? Are there ‘‘cheating genes”?

45
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2.1CATEGORICAL VARIABLES

In Chapter 1, we learned that there are two types of variables, categorical and
quantitative. In this chapter, we see how to describe both types of variables and
the relationships between them. In each case, the description takes two parts: We
see how to visualize the data using graphs and we see how to summarize key
aspects of the data using numerical quantities, called summary statistics. We start by
investigating categorical variables in this section.

© Denis Zbukarev/iStockphoto

Does each person have one true love?

Do you believe that there is only one true love for each person? What proportion
of people do you think share your opinion? A recent survey addressed this question.

D A T A 2 . 1 Is there one true love for each person?

A nationwide US telephone survey conducted by the Pew Foundation1 in
October 2010 asked 2625 adults ages 18 and older ‘‘Some people say there is
only one true love for each person. Do you agree or disagree?” In addition to
finding out the proportion who agree with the statement, the Pew Foundation
also wanted to find out if the proportion who agree is different between males
and females, and whether the proportion who agree is different based on level
of education (no college, some college, or college degree). The survey
participants were selected randomly, by landlines and cell phones. ■

Example 2.1
What is the sample? What is the population? Do you believe the method of sampling
introduces any bias? Can the sample results be generalized to the population?

Solution The sample is the 2625 people who were surveyed. The population is all US adults
ages 18 or older who have a landline telephone or cell phone. Since the sampling
was random, there is no sampling bias. There are no obvious other forms of bias, so
the sample results can probably generalize to the population.

1Adapted from ‘‘The Decline of Marriage and Rise of New Families,” Social and Demographic Trends,
Pew Research Center, pewresearch.org, released November 18, 2010.
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Example 2.2
What are the cases in the survey about one true love? What are the variables? Are
the variables categorical or quantitative?

Solution The cases are the adults who answered the survey questions. The description indi-
cates that there are at least three variables. One variable is whether the responder
agrees or disagrees with the statement that each person has only one true love. A
second variable is gender and a third is level of education. All three variables are
categorical.

One Categorical Variable
Of the n = 2625 people who responded to the survey, 735 agree with the statement
that there is only one true love for each person, while 1812 disagree and 78 say they
don’t know. Table 2.1 displays these results in a frequency table, which gives the
counts in each category of a categorical variable.

What proportion of the responders agree with the statement that we all have
exactly one true love? We have

Proportion who agree = Number who agree
Total number

= 735
2625

= 0.28

This proportion is a summary statistic that helps describe the categorical variable
for this group of adults. We see that the proportion who agree that there is one true
love is 0.28 or 28%.2

Proportion

The proportion in some category is found by

Proportion in a category = Number in that category
Total number

Proportions are also called relative frequencies, and we can display them in a
relative frequency table. The proportions in a relative frequency table will add to 1
(or approximately 1 if there is some round-off error). Relative frequencies allow us
to make comparisons without referring to the sample size.

Table 2.1 A frequency table: Is
there one true love for each person?

Response Frequency

Agree 735
Disagree 1812
Don’t know 78

Total 2625

2The two values 0.28 and 28% are equivalent and we use them interchangeably.
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Example 2.3
Find the proportion of responders who disagree in the one-true-love survey and the
proportion who don’t know and display all the proportions in a relative frequency
table.

Solution The proportion of responders who disagree is 1812/2625 = 0.69 and the proportion
who responded that they didn’t know is 78/2625 = 0.03. A frequency table or
relative frequency table includes all possible categories for a categorical variable,
so the relative frequency table includes the three possible answers of ‘‘Agree,”
‘‘Disagree,” and ‘‘Don’t know,” with the corresponding proportions. See Table 2.2.
The proportions add to 1, as we expect.

Table 2.2 A relative frequency table:
Is there one true love for each person?

Response Relative Frequency

Agree 0.28
Disagree 0.69
Don’t know 0.03

Total 1.00

Visualizing the Data in One Categorical Variable
Figure 2.1(a) displays a bar chart of the results in Table 2.1. The vertical axis

gives the frequency (or count), and a bar of the appropriate height is shown for
each category. Notice that if we used relative frequencies or percentages instead of
frequencies, the bar chart would be identical except for the scale on the vertical axis.
The categories can be displayed in any order on the horizontal axis. Another way to
display proportions for a categorical variable, common in the popular media, is with
a pie chart, as in Figure 2.1(b), in which the proportions correspond to the areas of
sectors of a circle.

Notation for a Proportion
As we saw in Chapter 1, it is important to distinguish between a population

and a sample. For this reason, we often use different notation to indicate whether a
quantity such as a proportion comes from a sample or an entire population.
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One true love?

Category
Agree
Disagree
Don’t know

(a) A bar chart (b) A pie chart

Figure 2.1 Is there one true love for each person?

o



2.1 Categorical Variables 49

Notation for a Proportion

The proportion for a sample is denoted p̂ and read ‘‘p-hat”.

The proportion for a population is denoted p.

Example 2.4
In each of the situations below,3 find the proportion of people who identify them-
selves as Hispanic or Latino. Use the correct notation with each answer.

(a) The 2010 US Census shows a US population of 308,745,538 people, and
50,325,523 of these people identify themselves as Hispanic or Latino.

(b) A random sample of 300 US citizens in Colorado shows that 62 of them identify
themselves as Hispanic or Latino.

Solution (a) The US Census gives information about essentially all residents of the US. This
is a population, so we use the notation p for the proportion and we have

p = 50,325,523
308,745,538

= 0.163

(b) This is a sample of the population of Colorado, so we use the notation p̂ for the
sample proportion. We have

p̂ = 62
300

= 0.207

Two Categorical Variables: Two-Way Tables
Does the proportion of people who agree that there is exactly one true love for each
person differ between males and females? Does it differ based on the education
level of the responders? Both questions are asking about a relationship between two
categorical variables. We investigate the question about gender here and investigate
the effect of education level in Exercise 2.18.

To investigate a possible relationship between two categorical variables we use
a two-way table. In a two-way table, we add a second dimension to a frequency table
to account for the second categorical variable. Table 2.3 shows a two-way table for
the responses to the question of one true love by gender.

Two-Way Table

A two-way table is used to show the relationship between two cate-
gorical variables. The categories for one variable are listed down the
side (rows) and the categories for the second variable are listed across
the top (columns). Each cell of the table contains the count of the
number of data cases that are in both the row and column categories.

It is often helpful to also include the totals (both for rows and columns) in
the margins of a two-way table, as in Table 2.4. Notice the column labeled ‘‘Total’’
corresponds exactly to the frequency table in Table 2.1.

32010.census.gov/2010census.
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Table 2.3 Two-way table: Is there
one true love for each person?

Male Female
Agree 372 363
Disagree 807 1005
Don’t know 34 44

Table 2.4 Two-way table with row and
column totals

Male Female Total
Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78
Total 1213 1412 2625

So, are men or women more hopelessly romantic? The two-way table can help
us decide.

Example 2.5
Use Table 2.4 to answer the following questions.

(a) What proportion of females agree?

(b) What proportion of the people who agree are female?

(c) What proportion of males agree?

(d) Are females or males more likely to believe in one true love?

(e) What proportion of survey responders are female?

Solution (a) To determine what proportion of females agree, we are interested only in the
females, so we use only that column. We divide the number of females who
agree (363) by the total number of females (1412):

Proportion of females who agree = Number of females who agree
Number of females

= 363
1412

= 0.26

(b) To determine what proportion of the people who agree are female, we are
interested only in the people who agree, so we use only that row. We have

Proportion who agree that are female = Number of females who agree
Number who agree

= 363
735

= 0.49

Notice that the answers for parts (a) and (b) are NOT the same! The proportion
in part (a) is probably more useful. More females than males happened to be
included in the survey, and this affects the proportion in part (b), but not in
part (a).

(c) To determine what proportion of males agree, we have

Proportion of males who agree = Number of males who agree
Number of males

= 372
1213

= 0.31

o
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(d) We see in part (c) that 31% of the males in the survey agree that there is one
true love for each person while we see in part (a) that only 26% of the females
agree with that statement. In this sample, males are more likely than females
to believe in one true love.

(e) To determine what proportion of all the survey responders are female, we use
the total row. We have

Proportion of females = Number of females
Total number

= 1412
2625

= 0.54

We see that 54% of the survey respondents are female and the other 46% are
male.

Be sure to read questions carefully when using a two-way table. The questions
‘‘What proportion of females agree?” and ‘‘What proportion of people who agree are
female?” in Example 2.5(a) and (b) sound similar but are asking different questions.
Think about the proportion of US Senators who are male and the proportion of
males who are US senators; clearly these proportions are not the same!

Example 2.6
In the StudentSurvey dataset, students are asked which award they would prefer to
win: an Academy Award, a Nobel Prize, or an Olympic gold medal. The data show
that 20 of the 31 students who prefer an Academy Award are female, 76 of the
149 students who prefer a Nobel Prize are female, and 73 of the 182 who prefer an
Olympic gold medal are female.

(a) Create a two-way table for these variables.

(b) Which award is the most popular with these students? What proportion of all
students selected this award?

Solution (a) The relevant variables are gender and which award is preferred. Table 2.5 shows
a two-way table with three columns for award and two rows for gender. It
doesn’t matter which variable corresponds to rows and which to columns, but
we need to be sure that all categories are listed for each variable. The numbers
given in the problem are shown in bold, and the rest of the numbers can be
calculated accordingly.

Table 2.5 Two-way table of gender and preferred award

Academy Nobel Olympic Total
Female 20 76 73 169
Male 11 73 109 193
Total 31 149 182 362

(b) More students selected an Olympic gold medal than either of the others, so that
award is the most popular. We have

Proportion selecting Olympic = Number selecting Olympic
Total number

= 182
362

= 0.503

We see that 50.3%, or about half, of the students prefer an Olympic gold medal
to the other options.

A
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Difference in Proportions

Example 2.7
In Example 2.6, we see that the most popular award is the Olympic gold medal.
Is preferring an Olympic gold medal associated with gender? Use Table 2.5 to
determine the difference between the proportion of males who prefer an Olympic
gold medal and the proportion of females who prefer an Olympic gold medal.

Solution Since the data come from a sample, we use the notation p̂ for a proportion, and
since we are comparing two different sample proportions, we can use subscripts M
and F for males and females, respectively. We compute the proportion of males who
prefer an Olympic gold medal, p̂M,

p̂M = 109
193

= 0.565

and the proportion of females who prefer an Olympic gold medal, p̂F ,

p̂F = 73
169

= 0.432

The difference in proportions is

p̂M − p̂F = 0.565 − 0.432 = 0.133

Males in the sample are much more likely to prefer an Olympic gold medal, so
there appears to be an association between gender and preferring an Olympic gold
medal.

As in Example 2.7, we often use subscripts to denote specific sample proportions
and take the difference between two proportions. Computing a difference in
proportions is a useful measure of association between two categorical variables,
and in later chapters we develop methods to determine if this association is likely to
be present in the entire population.

Visualizing a Relationship between Two Categorical Variables
There are several different types of graphs to use to visualize a relation-

ship between two categorical variables. One is a segmented bar chart, shown in
Figure 2.2(a), which gives a graphical display of the results in Table 2.5. In a seg-
mented bar chart, the height of each bar represents the number of students selecting
each award, while the color (in this case, red for females and green for males)
indicates how many of the students who preferred each type were male and how
many were female.

Example 2.8
Use Figure 2.2(a) to determine which award was most preferred overall and which
award was most preferred by females. Explain.

Solution From the height of the bars, we see that more students in general preferred an
Olympic gold medal. From the colors, we see that the preferred award for females
was a Nobel prize, by a small margin over an Olympic gold medal.

This same information can instead be displayed in side-by-side bar charts, in
which separate bar charts are given for each group in one of the categorical variables.
In Figure 2.2(b), we show bar charts for each gender, males and females. We could
have also decided to show gender bar charts for each award. The graph we choose
to display depends on what information we hope to convey about the data. Graphs

o
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Gender
M F

200

150
C

o
u

n
t

Academy Nobel OlympicAward

100

50

0

(a) A segmented bar chart
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(b) Side-by-side bar charts

Figure 2.2 Displaying a relationship between gender and preferred award

such as a segmented bar chart or side-by-side bar charts are called comparative plots
since they allow us to compare groups in a categorical variable.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Display information from a categorical variable in a table or graph

• Use information about a categorical variable to find a proportion, with
correct notation

• Display information about a relationship between two categorical
variables in a two-way table

• Use a two-way table to find proportions

• Interpret graphs involving two categorical variables

Exercises for Section 2.1

SKILL BUILDER 1
Exercises 2.1 to 2.4 provide information about data
in StudentSurvey. Find the sample proportion p̂.

2.1 The survey students consisted of 169 females
and 193 males. Find p̂, the proportion who are
female.

2.2 The survey included 43 students who smoke
and 319 who don’t. Find p̂, the proportion who
smoke.

2.3 Of the students who identified their class year
in the survey, 94 were first years, 195 were sopho-
mores, 35 were juniors, and 36 were seniors. Find p̂,
the proportion who are upperclass students (juniors
or seniors.)

2.4 The math SAT score is higher than the ver-
bal SAT score for 205 of the 355 students who
answered the questions about SAT scores. Find p̂,
the proportion for whom the math SAT score is
higher.

SKILL BUILDER 2
In Exercises 2.5 to 2.8, give the relevant proportion
using correct notation.

2.5 In the 2010 US Census, we see that 37,342,870
people, or 12.4% of all residents, are foreign-born.4

4www.census.gov.
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2.6 A recent headline states that ‘‘73% say Woman
President Likely in Next 10 Years.” The report gives
the results of a survey of 1000 randomly selected
likely voters in the US. 5

2.7 A survey conducted of 1502 randomly selected
US adults found that 931 of them believed the
government does not provide enough support for
soldiers returning from Iraq or Afghanistan.6

2.8 Of all 1,547,990 members of the high school
class of 2010 who took the SAT (Scholastic Aptitude
Test), 1,114,273 were from a public high school.7

SKILL BUILDER 3
In Exercises 2.9 and 2.10, data from the StudentSur-
vey dataset is given. Construct a relative frequency
table of the data using the categories given. Give
the relative frequencies rounded to three decimal
places.

2.9 Of the 362 students who answered the question
about what award they would prefer, 31 preferred
an Academy Award, 149 preferred a Nobel Prize,
and 182 preferred an Olympic gold medal.

2.10 Of the 361 students who answered the ques-
tion about the number of piercings they had in
their body, 188 had no piercings, 82 had one or two
piercings, and the rest had more than two.

SKILL BUILDER 4
In Exercises 2.11 and 2.12, cases are classified
according to one variable, with categories A and
B, and also classified according to a second variable
with categories 1, 2, and 3. The cases are shown,
with the first digit indicating the value of the first
variable and the second digit indicating the value of
the second variable. (So ‘‘A1” represents a case in
category A for the first variable and category 1 for
the second variable.) Construct a two-way table of
the data.

2.11 Twenty cases:

A1 A1 A1 A2 A3 A3 A3 A3 A3 A3
A3 A3 B1 B1 B1 B1 B2 B2 B2 B3

2.12 Thirty cases:

A1 A1 A2 A2 A2 A2 A2 A2 A3 A3
A3 A3 B1 B1 B1 B1 B1 B2 B2 B3
B3 B3 B3 B3 B3 B3 B3 B3 B3 B3

5Rassmussen Reports, June 27, 2010.
6‘‘Four Years After Walter Reed, Government Still Faulted for
Troop Support,” Pew Research Center, pewresearch.org, June
29, 2011.
7professionals.collegeboard.com.

2.13 Rock-Paper-Scissors Rock-Paper-Scissors,
also called Roshambo, is a popular two-player
game often used to quickly determine a winner and
loser. In the game, each player puts out a fist (rock),
a flat hand (paper), or a hand with two fingers
extended (scissors). In the game, rock beats scissors
which beats paper which beats rock. The question
is: Are the three options selected equally often
by players? Knowing the relative frequencies with
which the options are selected would give a player
a significant advantage. A study8 observed 119 peo-
ple playing Rock-Paper-Scissors. Their choices are
shown in Table 2.6.

(a) What is the sample in this case? What is the
population? What does the variable measure?

(b) Construct a relative frequency table of the
results.

(c) If we assume that the sample relative frequen-
cies from part (b) are similar for the entire
population, which option should you play if
you want the odds in your favor?

(d) The same study determined that, in repeated
plays, a player is more likely to repeat the option
just picked than to switch to a different option. If
your opponent just played paper, which option
should you pick for the next round?

Table 2.6 Frequencies in
Rock-Paper-Scissors

Option Selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

2.14 Home Field Advantage in Soccer In the book
Scorecasting,9 we learn that ‘‘Across 43 profes-
sional soccer leagues in 24 different countries
spanning Europe, South America, Asia, Africa,
Australia, and the United States (covering more
than 66,000 games), the home field advantage [per-
cent of games won by the home team] in soccer
worldwide is 62.4%.” Is this a population or a sam-
ple? What are the cases and approximately how
many are there? What is the variable and is it

8Eyler, D., Shalla, Z., Doumaux, A., and McDevitt, T., ‘‘Winning
at Rock-Paper-Scissors,’’ College Mathematics Journal, March
2009.
9Moskowitz, T. and Wertheim, L., Scorecasting, Crown
Archetype, New York, 2011, p. 113.
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categorical or quantitative? What is the relevant
statistic, including correct notation?

2.15 Airborne Antibiotics A recent study shows
that antibiotics added to animal feed to accelerate
growth can become airborne. Some of these drugs
can be toxic if inhaled and may increase the evo-
lution of antibiotic-resistant bacteria. Scientists10

analyzed 20 samples of dust particles from animal
farms. Tylosin, an antibiotic used in animal feed that
is chemically related to erythromycin, showed up in
16 of the samples.

(a) What is the variable in this study? What are the
individual cases?

(b) Display the results in a frequency table.

(c) Make a bar chart of the data.

(d) Give a relative frequency table of the data.

2.16 What Type of Cell Phone? A 2012 survey11

examined cell phone ownership by US adults. The
results of the survey are shown in Table 2.7.

(a) Make a relative frequency table of the data.
Give results to three decimal places.

(b) What percent of the survey respondents do not
own a cell phone? What percent own a cell
phone but not a smartphone? What percent
own a smartphone?

Table 2.7 Frequencies in cell phone
ownership

Cell Phone Owned Frequency

Android smartphone 458
iPhone smartphone 437
Blackberry smartphone 141
Cell phone not smartphone 924
No cell phone 293

Total 2253

2.17 Can Dogs Smell Cancer? Scientists are work-
ing to train dogs to smell cancer, including early
stage cancer that might not be detected with other
means. In previous studies, dogs have been able to
distinguish the smell of bladder cancer, lung cancer,
and breast cancer. Now, it appears that a dog in

10Hamscher, G., et al., ‘‘Antibiotics in Dust Originating from a
Pig-Fattening Farm: A New Source of Health Hazard for Farm-
ers?” Environmental Health Perspectives, October 2003; 111(13):
1590–1594.
11‘‘Nearly Half of American Adults are Smartphone Owners,”
Pew Research Center, pewresearch.org, March 1, 2012.

Japan has been trained to smell bowel cancer.12

Researchers collected breath and stool samples
from patients with bowel cancer as well as from
healthy people. The dog was given five samples in
each test, one from a patient with cancer and four
from healthy volunteers. The dog correctly selected
the cancer sample in 33 out of 36 breath tests and in
37 out of 38 stool tests.

(a) The cases in this study are the individual tests.
What are the variables?

(b) Make a two-way table displaying the results of
the study. Include the totals.

(c) What proportion of the breath samples did the
dog get correct? What proportion of the stool
samples did the dog get correct?

(d) Of all the tests the dog got correct, what pro-
portion were stool tests?

2.18 Does Belief in One True Love Differ by Edu-
cation Level? In Data 2.1 on page 46, we introduce
a study in which people were asked whether they
agreed or disagreed with the statement that there is
only one true love for each person. Is the level of a
person’s education related to the answer given, and
if so, how? Table 2.8 gives a two-way table show-
ing the results for these two variables. A person’s
education is categorized as HS (high school degree
or less), Some (some college), or College (college
graduate or higher).

(a) Create a new two-way table with row and col-
umn totals added.

(b) Find the percent who agree that there is only
one true love, for each education level. Does
there seem to be an association between educa-
tion level and agreement with the statement? If
so, in what direction?

(c) What percent of people participating in the
survey have a college degree or higher?

(d) What percent of the people who disagree with
the statement have a high school degree or less?

Table 2.8 Education level and belief in one
true love

HS Some College

Agree 363 176 196
Disagree 557 466 789
Don’t know 20 26 32

12‘‘Dog Detects Bowel Cancer,” CNN Health Online, January
31, 2011.
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2.19 Who Smokes More: Males or Females The
StudentSurvey dataset includes variables on gender
and on whether or not the student smokes. Who
smokes more: males or females? Table 2.9 shows a
two-way table of these two variables.

(a) Which gender has a higher percentage of smok-
ers: males or females?

(b) What is the proportion of smokers for the entire
sample?

(c) What proportion of the smokers in the sample
are female?

Table 2.9 Smoking habits by gender

Female Male Total
Don’t smoke 153 166 319
Smoke 16 27 43
Total 169 193 362

2.20 Is There a Genetic Marker for Dyslexia? A
disruption of a gene called DYXC1 on chromosome
15 for humans may be related to an increased risk
of developing dyslexia. Researchers13 studied the
gene in 109 people diagnosed with dyslexia and in
a control group of 195 others who had no learn-
ing disorder. The DYXC1 break occurred in 10 of
those with dyslexia and in 5 of those in the control
group.

(a) Is this an experiment or an observational study?
What are the variables?

(b) How many rows and how many columns will the
data table have? Assume rows are the cases and
columns are the variables. (There might be an
extra column for identification purposes; do not
count this column in your total.)

(c) Display the results of the study in a two-way
table.

(d) To see if there appears to be a substantial differ-
ence between the group with dyslexia and the
control group, compare the proportion of each
group who have the break on the DYXC1 gene.

(e) Does there appear to be an association between
this genetic marker and dyslexia for the peo-
ple in this sample? (We will see in Chapter
4 whether we can generalize this result to the
entire population.)

(f) If the association appears to be strong, can we
assume that the gene disruption causes dyslexia?
Why or why not?

13Science News, August 30, 2003, p 131.

2.21 Near-Death Experiences People who have a
brush with death occasionally report experiencing a
near-death experience, which includes the sensation
of seeing a bright light or feeling separated from
one’s body or sensing time speeding up or slow-
ing down. Researchers14 interviewed 1595 people
admitted to a hospital cardiac care unit during a
recent 30-month period. Patients were classified as
cardiac arrest patients (in which the heart briefly
stops after beating unusually quickly) or patients
suffering other serious heart problems (such as
heart attacks). The study found that 27 individu-
als reported having had a near-death experience,
including 11 of the 116 cardiac arrest patients.
Make a two-way table of these data. Compute the
appropriate percentages to compare the rate of
near-death experiences between the two groups.
Describe the results.

2.22 Painkillers and Miscarriage A recent study15

examined the link between miscarriage and the
use of painkillers during pregnancy. Scientists inter-
viewed 1009 women soon after they got positive
results from pregnancy tests about their use of
painkillers around the time of conception or in
the early weeks of pregnancy. The researchers then
recorded which of the pregnancies were successfully
carried to term. The results are in Table 2.10.

(a) What percent of the pregnancies ended in mis-
carriage?

(b) Compute the percent of miscarriages for each
of the four groups. Discuss the results.

(c) Is this an experiment or an observational study?
Describe how confounding variables might
affect the results.

(d) Aspirin and ibuprofen belong to a class of med-
ications called nonsteroidal anti-inflammatory
drugs, or NSAIDs. What percent of women
taking NSAIDs miscarried? Does the use of
NSAIDs appear to increase the risk of miscar-
rying? Does the use of acetominophen appear
to increase the risk? What advice would you
give pregnant women?

(e) Is Table 2.10 a two-way table? If not, construct
one for these data.

(f) What percent of all women who miscarried had
taken no painkillers?

14Greyson, B., ‘‘Incidence and correlates of near-death expe-
riences on a cardiac care unit,’’ General Hospital Psychiatry,
July/August 2003; 25: 269–276.
15Li, D-K., et al., ‘‘Use of NSAIDs in pregnancy increases
risk of miscarriage,’’ British Medical Journal, August 16, 2003;
327(7411): 1.



2.1 Categorical Variables 57

Table 2.10 Does the use of painkillers increase
the risk of miscarriage?

Miscarriage Total

Aspirin 5 22
Ibuprofen 13 53
Acetaminophen 24 172
No painkiller 103 762

Total 145 1009

2.23 Electrical Stimulation for Fresh Insight? If we
have learned to solve problems by one method, we
often have difficulty bringing new insight to similar
problems. However, electrical stimulation of the
brain appears to help subjects come up with fresh
insight. In a recent experiment16 conducted at the
University of Sydney in Australia, 40 participants
were trained to solve problems in a certain way
and then asked to solve an unfamiliar problem that
required fresh insight. Half of the participants were
randomly assigned to receive non-invasive electrical
stimulation of the brain while the other half (control
group) received sham stimulation as a placebo. The
participants did not know which group they were
in. In the control group, 20% of the participants
successfully solved the problem while 60% of the
participants who received brain stimulation solved
the problem.

(a) Is this an experiment or an observational study?
Explain.

(b) From the description, does it appear that the
study is double-blind, single-blind, or not blind?

(c) What are the variables? Indicate whether each
is categorical or quantitative.

(d) Make a two-way table of the data.

(e) What percent of the people who correctly solved
the problem had the electrical stimulation?

(f) Give values for p̂E, the proportion of people
in the electrical stimulation group to solve the
problem, and p̂S, the proportion of people in the
sham stimulation group to solve the problem.
What is the difference in proportions p̂E − p̂S?

(g) Does electrical stimulation of the brain appear
to help insight?

2.24 Does It Pay to Get a College Degree? The
Bureau of Labor Statistics17 in the US tells us that,
in 2010, the unemployment rate for high school

16Chi, R. and Snyder, A., ‘‘Facilitate Insight by Non-Invasive
Brain Stimulation,’’ PLoS ONE, 2011; 6(2).
17Thompson, D., ‘‘What’s More Expensive than College? Not
Going to College,’’ The Atlantic, March 27, 2012.

graduates with no college degree is 9.7% while the
unemployment rate for college graduates with a
bachelor’s degree is only 5.2%. Find the difference
in proportions of those unemployed between these
two groups and give the correct notation for the
difference, with a minus sign. Since the data come
from the census, you can assume that the values are
from a population rather than a sample. Use the
correct notation for population proportions, and
use subscripts on the proportions to identify the two
groups.

2.25 Smoking and Pregnancy Rate Studies have
concluded that smoking while pregnant can have
negative consequences, but could smoking also neg-
atively affect one’s ability to become pregnant? A
study collected data on 678 women who had gone
off birth control with the intention of becoming
pregnant.18 Smokers were defined as those who
smoked at least one cigarette a day prior to preg-
nancy. We are interested in the pregnancy rate
during the first cycle off birth control. The results
are summarized in Table 2.11.

(a) Is this an experiment or an observational study?
Can we use these data to determine whether
smoking influences one’s ability to get preg-
nant? Why or why not?

(b) What is the population of interest?

(c) What is the proportion of women successfully
pregnant after their first cycle (p̂)? Proportion
of smokers successful (p̂s)? Proportion of non-
smokers successful (p̂ns)?

(d) Find and interpret (p̂ns − p̂s) the difference in
proportion of success between non-smokers and
smokers.

Table 2.11 Smoking and pregnancy rate

Smoker Non-smoker Total
Pregnant 38 206 244
Not pregnant 97 337 434
Total 135 543 678

National College Health Assessment Survey
Exercises 2.26 to 2.29 use data on college stu-
dents collected from the American College Health
Association–National College Health Assessment
survey19 conducted in Fall 2011. The survey was

18Baird, D. and Wilcox, A., ‘‘Cigarette Smoking Associated
with Delayed Conception,’’ Journal of the American Medical
Association, June 2011; 305(23): 2379–2484.
19www.acha-ncha.org/docs/ACHA-NCHA-II ReferenceGroup
DataReport Fall2011.pdf.



58 C H A P T E R 2 Describing Data

administered at 44 colleges and universities rep-
resenting a broad assortment of types of schools
and representing all major regions of the coun-
try. At each school, the survey was administered
to either all students or a random sample of stu-
dents, and more than 27,000 students participated in
the survey.

2.26 Emotionally Abusive Relationships Students
in the ACHA–NCHA survey were asked ‘‘Within
the last 12 months, have you been in a relationship
(meaning an intimate/coupled/partnered relation-
ship) that was emotionally abusive?” The results
are given in Table 2.12.

(a) What percent of all respondents have been in
an emotionally abusive relationship?

(b) What percent of the people who have been in
an emotionally abusive relationship are male?

(c) What percent of males have been in an emo-
tionally abusive relationship?

(d) What percent of females have been in an emo-
tionally abusive relationship?

Table 2.12 Have you been in an emotionally
abusive relationship?

Male Female Total
No 8352 16,276 24,628
Yes 593 2034 2627
Total 8945 18,310 27,255

2.27 Binge Drinking Students in the ACHA–
NCHA survey were asked ‘‘Within the last two
weeks, how many times have you had five or more
drinks of alcohol at a sitting?” The results are given
in Table 2.13.
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(a) Personal use (b) Perception of others’ use

Figure 2.3 How many drinks of alcohol?

(a) What percent of all respondents answered zero?

(b) Of the students who answered five or more days,
what percent are male?

(c) What percent of males report having five or
more drinks at a sitting on three or more days
in the last two weeks?

(d) What percent of females report having five or
more drinks at a sitting on three or more days
in the last two weeks?

Table 2.13 In the last two weeks, how
many times have you had five or more
drinks of alcohol?

Male Female Total
0 5402 13,310 18,712
1–2 2147 3678 5825
3–4 912 966 1878
5 + 495 358 853
Total 8956 18,312 27,268

2.28 How Accurate are Student Perceptions? Stu-
dents in the ACHA–NCHA survey were asked two
questions about alcohol use, one about their own
personal consumption of alcohol and one about
their perception of other students’ consumption of
alcohol. Figure 2.3(a) shows side-by-side bar charts
for responses to the question ‘‘The last time you
‘partied’/socialized, how many drinks of alcohol
did you have?” while Figure 2.3(b) shows side-by-
side bar charts for responses to the question ‘‘How
many drinks of alcohol do you think the typical
student at your school had the last time he/she
‘partied’/socialized?”

rd Ov, I \ i
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(a) What is the most likely response for both males
and females when asked about their own per-
sonal alcohol use?

(b) What is the most likely response for both males
and females when asked about alcohol use of a
‘‘typical student”?

(c) Do students’ perceptions of ‘‘typical” alcohol
use match reality? (This phenomenon extends
what we learned about the inability of students
to select unbiased samples in Chapter 1. In this
case, students tend to notice heavy drinkers
disproportionately.)

2.29 Does Stress Affect Academic Performance?
Students in the ACHA–NCHA survey were asked
‘‘Within the last 12 months, has stress negatively
affected your academics?” Figure 2.4(a) shows a
segmented bar chart for response frequencies while
Figure 2.4(b) shows a segmented bar chart for
response relative frequencies as percents. Possible
responses were ‘‘I haven’t had any stress,” shown in
red, ‘‘I’ve had stress but it hasn’t hurt my grades,”
shown in green, or ’’I’ve had stress and it has hurt
my grades,” shown in blue.

(a) Did more males or more females answer the
survey or did approximately equal numbers of
males and females participate? Is graph (a) or
(b) more helpful to answer this question?

(b) Did a greater number of males or females say
they had no stress or is it approximately equal
between males and females? Is graph (a) or (b)
more helpful to answer this question?

(c) Did a greater percent of males or females say
they had no stress or is it approximately equal

(a) Frequency counts
Male

0
Female

5000

10,000

15,000

20,000

(b) Relative frequency counts
Male

0
Female

20

40

60

80

100Response
Stress affected grades
Stress, but no effect
No stress

Response
Stress affected grades
Stress, but no effect
No stress

Figure 2.4 Has stress hurt your grades?

between males and females? Is graph (a) or (b)
more helpful to answer this question?

(d) Did a greater percent of males or females say
that stress affected their grades or is it approx-
imately equal between males and females? Is
graph (a) or (b) more helpful to answer this
question?

2.30 Vaccine for Malaria In order for a vaccine to
be effective, it should reduce a person’s chance of
acquiring a disease. Consider a hypothetical vaccine
for malaria—a tropical disease that kills between
1.5 and 2.7 million people every year.20 Suppose
the vaccine is tested with 500 volunteers in a vil-
lage who are malaria free at the beginning of the
trial. Two hundred of the volunteers will get the
experimental vaccine and the rest will not be vac-
cinated. Suppose that the chance of contracting
malaria is 10% for those who are not vaccinated.
Construct a two-way table to show the results of the
experiment if:

(a) The vaccine has no effect.

(b) The vaccine cuts the risk of contracting malaria
in half.

2.31 Which of These Things Is Not Like the Other?
Four students were working together on a project
and one of the parts involved making a graph to
display the relationship in a two-way table of data
with two categorical variables: college accept/reject
decision and type of high school (public, private,
parochial). The graphs submitted by each student
are shown in Figure 2.5. Three are from the same
data, but one is inconsistent with the other three.
Which is the bogus graph? Explain.

20World Health Organization.
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Figure 2.5 Views of the same two-way table—with one error

2.2ONE QUANTITATIVE VARIABLE: SHAPE AND CENTER

In Section 2.1, we see how to describe categorical variables. In this section, we begin
to investigate quantitative variables. In describing a single quantitative variable, we
generally consider the following three questions:

• What is the general shape of the data?

• Where are the data values centered?

• How do the data vary?

These are all aspects of what we call the distribution of the data. In this section,
we focus on the first two questions and leave the third question, on variability, to
Section 2.3.

The Shape of a Distribution
We begin by looking at graphical displays as a way of understanding the shape of
a distribution. A common way to visualize the shape of a moderately sized dataset
is a dotplot. We create a dotplot by using an axis with a scale appropriate for the
numbers in the dataset and placing a dot over the axis for each case in the dataset.
If there are multiple data values that are the same, we stack the dots vertically.
To illustrate a dotplot, we look at some data on the typical lifespan for several
mammals.
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Table 2.14 Longevity of mammals

Species Longevity Species Longevity Species Longevity
Baboon 20 Elephant 40 Mouse 3
Black bear 18 Elk 15 Opossum 1
Grizzly bear 25 Fox 7 Pig 10
Polar bear 20 Giraffe 10 Puma 12
Beaver 5 Goat 8 Rabbit 5
Buffalo 15 Gorilla 20 Rhinoceros 15
Camel 12 Guinea pig 4 Sea lion 12
Cat 12 Hippopotamus 25 Sheep 12
Chimpanzee 20 Horse 20 Squirrel 10
Chipmunk 6 Kangaroo 7 Tiger 16
Cow 15 Leopard 12 Wolf 5
Deer 8 Lion 15 Zebra 15
Dog 12 Monkey 15
Donkey 12 Moose 12

D A T A 2 . 2 Longevity of Mammals
The dataset MammalLongevity includes information on longevity (typical
lifespan), in years, for 40 species of mammals as well as information on length
of gestation for these same mammals.21 The longevity data are given in
Table 2.14. ■

© Britta Kasholm-Tengve/iStockphoto

How long does an elephant live?

A dotplot of the longevity data is shown in Figure 2.6. We see a horizontal scale
from 0 to 40 to accommodate the range of lifespans. Quite a few mammals have
lifespans of 12, 15, and 20 years. All but one typically live between 1 and 25 years,
while the elephant’s lifespan of 40 years is much higher than the rest. The value of
40 years appears to be an outlier for longevity in this group of mammals.

Figure 2.6 Dotplot of
longevity of mammals 0 10 20

Longevity
30 40

212010 World Almanac, p. 292.
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Outliers

An outlier is an observed value that is notably distinct from the other
values in a dataset. Usually, an outlier is much larger or much smaller
than the rest of the data values.

Histograms
An alternative graph for displaying a distribution of data is a histogram. If we

group the longevity data into five-year intervals (1–5 years, 6–10 years, and so on),
we obtain the frequency table in Table 2.15. We see that, for example, six of the
mammals in the sample have longevity between 1 and 5 years.

The histogram for this dataset is shown in Figure 2.7. The frequency count of 6
for values between 1 and 5 in Table 2.15 corresponds to a vertical bar of height 6
over the interval from 1 to 5 in Figure 2.7. Similarly, we draw vertical bars of heights
corresponding to all the frequencies in Table 2.15. Histograms are similar to bar
charts for a categorical variable, except that a histogram always has a numerical scale
on the horizontal axis. The histogram of mammal longevities in Figure 2.7 shows the
relatively symmetric nature of most of the data, with an outlier (the elephant) in the
class from 36 to 40.

Table 2.15 Frequency counts for
longevity of mammals

Longevity (years) Frequency Count

1–5 6
6–10 8

11–15 16
16–20 7
21–25 2
26–30 0
31–35 0
36–40 1

Total 40

Figure 2.7 Histogram of
longevity of mammals
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Symmetric and Skewed Distributions
We are often interested in the general ‘‘big picture” shape of a distribution.

A distribution is considered symmetric if we can fold the plot (either a histogram
or dotplot) over a vertical center line and the two sides match closely. When we
consider the shape of a dataset, we ask: Is it approximately symmetric? If not, is
the data piled up on one side? If so, which side? Are there outliers? These are all
questions that a histogram or dotplot can help us answer.

Example 2.9
The StudentSurvey data introduced in Data 1.1 on page 4 contains results for
362 students and many variables. Figure 2.8 shows histograms for three of the
quantitative variables: Pulse (pulse rate in number of beats per minute), Exercise
(number of hours of exercise per week), and Piercings (number of body piercings).
Describe each histogram.

Solution (a) In the histogram for Pulse, we see that almost all pulse rates are between about
35 beats per minute and about 100 beats per minute, with two possible outliers
at about 120 and 130. Other than the outliers, this histogram is quite symmetric.

(b) In the histogram for Exercise, the number of hours spent exercising appears to
range from about 0 hours per week to about 30 hours per week, with a possible
outlier at 40. This histogram is not very symmetric, since the data stretch out
more to the right than to the left.

(c) The histogram for Piercings is even more asymmetric than the one for Exercise.
It does not stretch out at all to the left and stretches out quite a bit to the right.
Notice the peak at 0, for all the people with no piercings, and the peak at 2,
likely due to students who have pierced ears and no other piercings.

The histogram in Figure 2.8(a) is called symmetric and bell-shaped. The sort
of non-symmetric distributions we see in Figures 2.8(b) and (c) are called skewed.
The direction of skewness is determined by the longer tail. In both cases, we see
that the right tail of the distribution is longer than the left tail, so we say that these
distributions are skewed to the right.

Using a Curve to Represent the Shape of a Histogram
We often draw smooth curves to illustrate the general shape of a distribution.

Smoothing a histogram into a curve helps us to see the shape of the distribution with
less jagged edges at the corners. When we describe a histogram with a smooth curve,
we don’t try to match every bump and dip seen in a particular sample. Rather we
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Figure 2.8 Three histograms for the student survey data
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(a) Skewed to the right (b) Skewed to the left (c) Symmetric and bell-shaped

50 60 70 80 90 100 5 10 15 20 25 30 35

(d) Symmetric but not bell-shaped

2 4 6 8 10 12 20 40 60 80 100

Figure 2.9 Common shapes for distributions

find a relatively simple curve that follows the general pattern in the data. Figure 2.9
gives examples of curves showing several common shapes for distributions.

Common Shapes for Distributions

A distribution shown in a histogram or dotplot is called:

• Symmetric if the two sides approximately match when folded on a
vertical center line

• Skewed to the right if the data are piled up on the left and the tail
extends relatively far out to the right

• Skewed to the left if the data are piled up on the right and the tail
extends relatively far out to the left

• Bell-shaped if the data are symmetric and, in addition, have the
shape shown in Figure 2.9(c)

Of course, many other shapes are also possible.

The Center of a Distribution
A graph is useful to help us visualize the shape of a distribution. We can also
summarize important features of a distribution numerically. Two summary statistics
that describe the center or location of a distribution for a single quantitative variable
are the mean and the median.

Mean
The mean for a single quantitative variable is the numerical average of the data

values:
Mean = Sum of all data values

Number of data values

To express the calculation of the mean in a mathematical formula, we let n
represent the number of data cases in a dataset and x1, x2, . . . , xn represent the
numerical values for the quantitative variable of interest.

Mean

The mean of the data values for a single quantitative variable is
given by

Mean = x1 + x2 + · · · + xn

n
= �x

n
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The Greek letter � is used as a shorthand for adding all of the x values. For
example, the longevity data in Table 2.14 yield a sum of �x = 526 years and thus
the mean longevity for this sample of 40 mammals is 526

40 = 13.15 years.

Notation for a Mean
As with a proportion, we use different notation to indicate whether a mean

summarizes the data from a sample or a population.

Notation for a Mean

The mean of a sample is denoted x and read ‘‘x-bar.”

The mean of a population is denoted μ, which is the Greek letter
‘‘mu.”

Example 2.10
Give the notation for the mean in each case.

(a) For a random sample of 50 seniors from a large high school, the average SAT
(Scholastic Aptitude Test) score was 582 on the Math portion of the test.

(b) Nearly 1.6 million students in the class of 2010 took the SAT,22 and the average
score overall on the Math portion was 516.

Solution (a) The mean of 582 represents the mean of a sample, so we use the notation x for
the mean, and we have x = 582.

(b) The mean of 516 represents the mean for everyone who took the exam in the
class of 2010, so we use the notation μ for the population mean, and we have
μ = 516.

Median
The median is another statistic used to summarize the center of a set of numbers.

If the numbers in a dataset are arranged in order from smallest to largest, the median
is the middle value in the list. If there are an even number of values in the dataset,
then there is not a unique middle value and we use the average of the two middle
values.

Median

The median of a set of data values for a single quantitative variable,
denoted m, is

• the middle entry if an ordered list of the data values contains an odd
number of entries, or

• the average of the middle two values if an ordered list contains an
even number of entries.

The median splits the data in half.23

22sat.collegeboard.org/scores.
23If there are duplicate values at the median, we may not have exactly half on either side.
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no single number in the middle. The median is the average of the two middle
numbers:

m = 100 + 112
2

= 106 beats per minute

The mean of the heart rates for the 55-year-old patients is

x = 868
8

= 108.5 beats per minute

In this case, also, the mean and median are relatively close but not equal.

Resistance
The term resistance is related to the impact of outliers on a statistic. We examine
the effect of an outlier on the mean and the median.

Example 2.12
In Example 2.11(a), we saw that the mean and the median heart rate for n = 5 ICU
patients in their twenties are given by

x = 82.2 bpm and m = 80 bpm

Suppose that the patient with a heart rate of 108 bpm instead had an extremely high
heart rate of 200 bpm. How does this change affect the mean and median?

Solution The median doesn’t change at all, since 80 is still the middle value. The effect on the
mean is substantial: We see that with the change the mean increases to x = 100.6
beats per minute. The extreme value of 200 has a large effect on the mean but little
effect on the median.

Resistance

In general, we say that a statistic is resistant if it is relatively unaffected
by extreme values. The median is resistant, while the mean is not.

The mean and the median both provide valuable measures of the center of a
dataset. Knowing that outliers have a substantial effect on the mean but not the
median can help determine which is more meaningful in different situations.

Example 2.13
As in most professional sports, some star players in the National Football League
(NFL) in the US are paid much more than most other players. In particular, three
players (all quarterbacks) were paid salaries greater than $20 million in 2010. Two
measures of the center of the player salary distribution for the 2009–2010 NFL
season are

$838,000 and $1.87 million

(a) One of the two values is the mean and the other is the median. Which is which?
Explain your reasoning.

(b) In salary negotiations, which measure (the mean or the median) are the owners
more likely to find relevant? Which are the players more likely to find relevant?
Explain.

o
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Solution (a) There are some high outliers in the data, representing the players who make a
very high salary. These high outliers will pull the mean up above the median.
The mean is $1.87 million and the median is $838,000.

(b) The owners will find the mean more relevant, since they are concerned about
the total payroll, which is the mean times the number of players. The players
are likely to find the median more relevant, since half of the players make less
than the median and half make more. The high outliers influence the mean but
are irrelevant to the salaries of most players. Both measures give an appropriate
measure of center for the distribution of player salaries, but they give significantly
different values. This is one of the reasons that salary negotiations can often be
so difficult.

Visualizing the Mean and the Median on a Graph
The mean is the ‘‘balancing point” of a dotplot or histogram in the sense that it

is the point on the horizontal axis that balances the graph. In contrast, the median
splits the dots of a dotplot, or area in the boxes of a histogram, into two equal halves.

© Dennis Hallinan/Alamy Limited

Fishing in a Florida lake

D A T A 2 . 4 Florida Lakes

The FloridaLakes dataset25 describes characteristics of water samples taken at
n = 53 Florida lakes. Alkalinity (concentration of calcium carbonate in mg/L) and
acidity (pH) are given for each lake. In addition, the average mercury level is
recorded for a sample of fish (large mouth bass) from each lake. A standardized
mercury level is obtained by adjusting the mercury averages to account for the
age of the fish in each sample. Notice that the cases are the 53 lakes and that all
four variables are quantitative. ■

Example 2.14
Using the Alkalinity values for the n = 53 lakes in the FloridaLakes dataset:

(a) Use technology to create a histogram of the alkalinity values. What is the shape
of the histogram?

(b) Which do you expect to be larger for this sample of alkalinity values, the mean
or the median? Why?

25Lange, T., Royals, H., and Connor, L., ‘‘Mercury accumulation in largemouth bass (Micropterus
salmoides) in a Florida Lake,’’ Archives of Environmental Contamination and Toxicology, 2004; 27(4):
466–471.
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Figure 2.10 Alkalinity in Florida lakes

(c) Use technology to compute the mean and the median alkalinity for this sample.

(d) Locate the mean and the median on the histogram.

Solution (a) We use technology to create the histogram of alkalinity values shown in
Figure 2.10(a). There are many alkalinity values between 0 and 40, with a few
large values extending out as far as 130 or so. The data are clearly skewed to the
right.

(b) The few very large values on the right will pull up the mean and won’t affect the
median very much, so we expect the mean to be larger than the median.

(c) Using technology, we compute the mean to be x = 37.5 mg/L and the median to
be m = 19.6 mg/L. The median splits the data in half: there are 26 values above
the median and 26 values below it.

(d) See Figure 2.10(b). The mean is the balance point for the histogram, and the
median splits the data in half. The mean is substantially larger than the median,
and almost two-thirds of the lakes (35 out of 53) have alkalinity levels below the
mean. The data are skewed to the right, and the values out in the extended right
tail pull the mean up quite a bit.

Since the median cuts a histogram in half, if a histogram is symmetric, the
median is right in the middle and approximately equal to the mean. If the data are
skewed to the right, as we see in Figure 2.10, the values in the extended right tail
pull the mean up but have little effect on the median. In this case, the mean is bigger
than the median. Similarly, if data are skewed to the left, the mean is less than the
median. See Figure 2.11.

(a) Mean < Median (b) Mean = Median (c) Mean > Median

m
x

mm = x
x

Figure 2.11 Mean and median for different shaped distributions
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a dotplot or histogram to describe the shape of a distribution

• Calculate the mean and the median for a set of data values, with
appropriate notation

• Identify the approximate locations of the mean and the median on a
dotplot or histogram

• Explain how outliers and skewness affect the values for the mean and
median

Exercises for Section 2.2

SKILL BUILDER 1
Exercises 2.32 to 2.38 refer to histograms A through
H in Figure 2.12.

2.32 Which histograms are skewed to the left?

2.33 Which histograms are skewed to the right?

2.34 Which histograms are approximately sym-
metric?

2.35 Which histograms are approximately symmet-
ric and bell-shaped?
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Figure 2.12 Eight histograms

2.36 For each of the four histograms A, B, C, and D,
state whether the mean is likely to be larger than the
median, smaller than the median, or approximately
equal to the median.

2.37 For each of the four histograms E, F, G, and H,
state whether the mean is likely to be larger than the
median, smaller than the median, or approximately
equal to the median.

2.38 Which of the distributions is likely to have the
largest mean? The smallest mean?
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SKILL BUILDER 2
In Exercises 2.39 to 2.42, draw any dotplot to show
a dataset that is

2.39 Clearly skewed to the left

2.40 Approximately symmetric and bell-shaped

2.41 Approximately symmetric but not bell-shaped

2.42 Clearly skewed to the right

SKILL BUILDER 3
For each set of data in Exercises 2.43 to 2.46:
(a) Find the mean x.

(b) Find the median m.

(c) Indicate whether there appear to be any outliers.
If so, what are they?

2.43 8, 12, 3, 18, 15

2.44 41, 53, 38, 32, 115, 47, 50

2.45 15, 22, 12, 28, 58, 18, 25, 18

2.46 110, 112, 118, 119, 122, 125, 129,
135, 138, 140

SKILL BUILDER 4
In Exercises 2.47 to 2.50, give the correct notation
for the mean.

2.47 The average number of calories eaten in one
day is 2386 calories for a sample of 100 participants.

2.48 The average number of text messages sent or
received in a day was 60, in a survey of n = 799 teen
cell phone users26 conducted in June 2011.

2.49 The average number of yards per punt for
all punts in the National Football League is 41.5
yards.27

2.50 The average number of television sets owned
per household for all households in the US is 2.6.28

2.51 Arsenic in Toenails Arsenic is toxic to humans,
and people can be exposed to it through contami-
nated drinking water, food, dust, and soil. Scientists
have devised an interesting new way to measure
a person’s level of arsenic poisoning: by examin-
ing toenail clippings. In a recent study,29 scientists
measured the level of arsenic (in mg/kg) in toe-
nail clippings of eight people who lived near a

26’’Teens, Smartphones, and Texting,’’ Pew Research Center,
pewresearch.org, March 19, 2012.

27Moskowitz, T. and Wertheim, L., Scorecasting, Crown
Archetype, New York, 2011, p. 119.
28www.census.gov.
29Button, M., Jenkin, G., Harrington, C., and Watts, M., ‘‘Human
Toenails as a biomarker of exposure to elevated environment
arsenic,’’ Journal of Environmental Monitoring, 2009; 11(3):
610–617. Data are reproduced from summary statistics and are
approximate.

former arsenic mine in Great Britain. The following
levels were recorded:

0.8 1.9 2.7 3.4 3.9 7.1 11.9 26.0

(a) Do you expect the mean or the median of these
toenail arsenic levels to be larger? Why?

(b) Calculate the mean and the median.

2.52 Normal Body Temperature It is commonly
believed that normal human body temperature is
98.6◦F (or 37◦C). In fact, ‘‘normal” temperature can
vary from person to person, and for a given person
it can vary over the course of a day. Table 2.16 gives
a set of temperature readings of a healthy woman
taken over a two-day period.

(a) Make a dotplot of the data.

(b) Compute the mean of the data and locate it on
the dotplot as the balance point.

(c) Compute the median of the data and locate it
on the dotplot as the midway point.

Table 2.16 Body temperature during the day

97.2 97.6 98.4 98.5 98.3 97.7
97.3 97.7 98.5 98.5 98.4 97.9

2.53 Population of States in the US The dataset
USStates has a great deal of information about the
50 states, including population. Figure 2.13 shows a
histogram of the population, in millions, of the 50
states in the US.

(a) Do these values represent a population or a
sample?

(b) Describe the shape of the distribution: Is it
approximately symmetric, skewed to the right,
skewed to the left, or none of these? Are there
any outliers?
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Figure 2.13 Population, in millions, of the 50 states
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(c) Estimate the median population.

(d) Estimate the mean population.

2.54 Insect Weights Consider a dataset giving the
adult weight of species of insects. Most species of
insects weigh less than 5 grams, but there are a few
species that weigh a great deal, including the largest
insect known: the rare and endangered Giant Weta
from New Zealand, which can weigh as much as
71 grams. Describe the shape of the distribution of
weights of insects. Is it symmetric or skewed? If it
is skewed, is it skewed to the left or skewed to the
right? Which will be larger, the mean or the median?

2.55 Is Language Biased toward Happiness? ‘‘Are
natural languages neutrally, positively, or negatively
biased?” That is the question a recent study30 set
out to answer. They found the top 5000 words used
in English in each of four different places: Twitter,
books on the Google Book Project, The New York
Times, and music lyrics. The resulting complete list
was 10,222 unique words in the English language.
Each word was then evaluated independently by 50
different people, each giving a rating on how the
word made them feel on a 1 to 9 scale where 1 =
least happy, 5 = neutral, and 9 = most happy. (The
highest rated word was ‘‘laughter” while the lowest
was ‘‘terrorist.”) The distributions of the ratings for
all 10,222 words for each of the four media sources
were surprisingly similar, and all had approximately
the shape shown in Figure 2.14.

(a) Describe the shape of the distribution.

(b) Which of the following values is closest to the
median of the distribution:

3.5 5 6.5 7 7.5 8

1 3 5

Positivity Score
7 9

Figure 2.14 Distribution of ratings of words where
9 = most positive

30Kloumann, I., Danforth, C., Harris, K., Bliss, C., and Dodds,
P., ‘‘Positivity of the English Language,” PLoS ONE, 2012; 7(1).

(c) Will the mean be smaller or larger than the
value you gave for the median in part (b)?

2.56 Life Expectancy Life expectancy for all the
different countries in the world ranges from a low
of only 43.9 years (in Afghanistan) to a high of
82.8 years (in San Marino). Life expectancies are
clustered at the high end, with about half of all the
countries having a life expectancy between about 72
and the maximum of 82.8. A few countries, such as
Afghanistan, have a very low life expectancy. The
full dataset is in AllCountries.

(a) What is the shape of the distribution of life
expectancies for all countries?

(b) From the information given, estimate the
median of the life expectancies.

(c) Will the mean be larger or smaller than the
median?

2.57 Fiber in the Diet The number of grams of fiber
eaten in one day for a sample of ten people are

10 11 11 14 15 17 21 24 28 115

(a) Find the mean and the median for these
data.

(b) The value of 115 appears to be an obvious out-
lier. Compute the mean and the median for the
nine numbers with the outlier excluded.

(c) Comment on the effect of the outlier on the
mean and on the median.

2.58 Beta-Carotene Levels in the Blood The plasma
beta-carotene level (concentration of beta-carotene
in the blood), in ng/ml, was measured for a sample
of n = 315 individuals, and the results31 are shown
in the histogram in Figure 2.15.
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Figure 2.15 Concentration of beta-carotene in the
blood

31http://lib.stat.cmu.edu/datasets/Plasma Retinol, accessed Nov-
ember 24, 2003.
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(a) Describe the shape of this distribution. Is it
symmetric or skewed? Are there any obvious
outliers?

(b) Estimate the median of this sample.

(c) Estimate the mean of this sample.

2.59 Number of Text Messages per Day A survey
conducted in May 2010 asked 1917 cell phone users
to estimate, on average, the number of text messages
sent and received per day.

(a) Do you expect the distribution of number of
text messages per day to be symmetric, skewed
to the right, or skewed to the left?

(b) Two measures of center for this distribution are
10 messages and 39.1 messages.32 Which is most
likely to be the mean and which is most likely to
be the median? Explain your reasoning.

2.60 Time Spent Exercising, between Males and
Females Often we are interested not just in a single
mean but in a difference in means between two
groups. In the StudentSurvey data, there are 36
seniors: 26 males and 10 females. Table 2.17 gives
the number of hours per week that each said he or
she spent exercising.

(a) Calculate xf , the mean number of hours spent
exercising by the females.

(b) Calculate xm, the mean number of hours spent
exercising by the males.

(c) Compute the difference, xm − xf , and interpret
it in context.

Table 2.17 Number of hours spent
exercising a week

Females 4 2 5 6 12 15 10
5 0 5

Males 10 10 6 5 7 8 4
12 12 4 15 10 5 5

2 2 7 3 5 15 6
6 5 0 8 5

2.61 Does It Pay to Get a College Degree? In
Exercise 2.24 on page 57, we saw that those with
a college degree were much more likely to be
employed. The same article also gives statistics
on earnings in the US in 2009 by education level.
The median weekly earnings for high school grad-
uates with no college degree was $626, while the
median weekly earnings for college graduates with a
bachelor’s degree was $1025. Give correct notation
for and find the difference in medians, using the

32Lenhard, A., ‘‘Cell Phones and American Adults,” Pew
Research Center, pewresearch.org, September 2, 2010.

notation for a median, subscripts to identify the two
groups, and a minus sign.

2.62 Does Sexual Frustration Increase the Desire
for Alcohol? Apparently, sexual frustration increa-
ses the desire for alcohol, at least in fruit flies. Sci-
entists33 randomly put 24 fruit flies into one of
two situations. The 12 fruit flies in the ‘‘mating”
group were allowed to mate freely with many avail-
able females eager to mate. The 12 in the ‘‘rejected”
group were put with females that had already mated
and thus rejected any courtship advances. After four
days of either freely mating or constant rejection,
the fruit flies spent three days with unlimited access
to both normal fruit fly food and the same food
soaked in alcohol. The percent of time each fly
chose the alcoholic food was measured. The fruit
flies that had freely mated chose the two types of
food about equally often, choosing the alcohol vari-
ety on average 47% of the time. The rejected males,
however, showed a strong preference for the food
soaked in alcohol, selecting it on average 73% of the
time. (The study was designed to study a chemical
in the brain called neuropeptide that might play a
role in addiction.)

(a) Is this an experiment or an observational study?

(b) What are the cases in this study? What are the
variables? Which is the explanatory variable
and which is the response variable?

(c) We are interested in the difference in means,
where the means measure the average percent
preference for alcohol (0.47 and 0.73 in this
case). Find the difference in means and give the
correct notation for your answer, using the cor-
rect notation for a mean, subscripts to identify
groups, and a minus sign.

(d) Can we conclude that rejection increases a male
fruit fly’s desire for alcohol? Explain.

2.63 Create a Dataset Give any set of five numbers
satisfying the condition that:

(a) The mean of the numbers is substantially less
than the median.

(b) The mean of the numbers is substantially more
than the median.

(c) The mean and the median are equal.

2.64 Describe a Variable Describe one quantitative
variable that you believe will give data that are
skewed to the right, and explain your reasoning. Do
not use a variable that has already been discussed.

33Shohat-Ophir, G., Kaun, K., Azanchi, R., and Heberlein, U.,
‘‘Sexual Deprivation Increases Ethanol Intake in Drosophila,”
Science, 16 March 2012; 335(6074): 1351–1355.
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2.65 Mean or Median Calculate the mean and the
median for the numbers

1, 1, 1, 1, 1, 1, 2, 5, 7, 12

Which do you think is a better measure of center for
this set of values? Why? (There is no right answer,
but think about which you would use.)

2.66 Number of Children Table 2.18 shows the
number of women (per 1000) between 15 and 44
years of age who have been married grouped by the
number of children they have had. Table 2.19 gives
the same information for women who have never
been married.34

(a) Without doing any calculations, which of the
two samples appears to have the highest mean
number of children? Which of the distributions
appears to have the mean most different from
the median? Why?

(b) Find the median for each dataset.

34Bachu, A., Current Population Reports, P20-499, Fertility of
American Women (June 1995 Update), issued October 1997,
obtained from www.census.gov.

Table 2.18 Women who have been married

Number of Children Women per 1000

0 162
1 190
2 290
3 289
4 48

5+ 21

Table 2.19 Women who have never been married

Number of Children Women per 1000

0 791
1 108
2 53
3 29
4 12

5+ 7

2.3ONE QUANTITATIVE VARIABLE: MEASURES OF SPREAD

So far, we have looked at two important summary statistics for a single quantitative
variable: the mean and the median. Although there are important differences
between them, both of these measurements tell us something about the ‘‘middle” or
‘‘center” of a dataset. When we give a statistical summary of the values in a dataset,
we are interested in not just the center of the data but also how spread out the data
are. Knowing that the average high temperature in Des Moines, Iowa, in April is
62◦F is helpful, but it is also helpful to know that the historical range is between 8◦F
and 97◦F! In this section, we examine additional measures of location and measures
of spread.

Using Technology to Compute Summary Statistics
In practice, we generally use statistical software or a graphing calculator to

compute the summary statistics for a dataset. For assistance in using a wide variety
of different types of technology and software, see the available supplementary
resources.

Example 2.15
Des Moines vs San Francisco Temperatures

Average temperature on April 14th for the 16 years ending in 2010 is given in
Table 2.20 for Des Moines, Iowa, and San Francisco, California.26 Use technology
and the data in April14Temps to find the mean and the median temperature on
April 14th for each city.

26www.weather.com.
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Table 2.20 Temperature on April 14th

Des Moines 56.0 37.5 37.2 56.0 54.3 63.3 54.7 60.6
70.6 53.7 52.9 74.9 44.4 40.3 44.4 71.0

San Francisco 51.0 55.3 55.7 48.7 56.2 57.2 49.5 61.0
51.4 55.8 53.0 58.1 54.2 53.4 49.9 53.8

Figure 2.16 Output from
Minitab with summary
statistics Variable

DesMoines
Mean
54.49

N
16

StDev
11.73

Minimum
37.20

Q1
44.40

Q3
62.62

Maximum
74.90

Median
54.50

SE Mean
2.93

Descriptive Statistics: DesMoines

Figure 2.17 Output from
TI-83

1-Var Stats
= 54.4875

= 37.2

= 74.9

= 54.5

= 871.8
= 49566.2

= 44.4

= 61.95

= 11.73029553
= 11.35780981
= 16

x

minX

maxX

Med

∑x
∑x2

Q1

Q3

S ×
σ ×
↓ n

Solution Computer output from one statistics package for the Des Moines temperatures is
shown in Figure 2.16 and an image of the descriptive statistics as they appear on
a TI-83 graphing calculator is shown in Figure 2.17. We see from either output
that for Des Moines the mean temperature is 54.49◦F and the median is 54.50◦F.
Similar output shows that for San Francisco the mean temperature is 54.01◦F and
the median is 54.0◦F.

Standard Deviation
We see in Example 2.15 that the means and medians for temperatures in Des Moines
and San Francisco are almost identical. However, the dotplots in Figure 2.18 show
that, while the centers may be similar, the distributions are very different. The
temperatures in San Francisco are clustered closely around the center, while the
temperatures in Des Moines are very spread out. We say that the temperatures in
Des Moines have greater variability or greater spread. The standard deviation is a
statistic that measures how much variability there is in the data.

In a sample, the deviation of an individual data value x from the mean x is
simply the difference x − x. We see in Example 2.15 that the mean April 14th
temperature in Des Moines is x = 54.49, so the deviation for the first data value
listed, 56.0, is 56.0 − 54.49 = 1.51. Since values can fall above and below the mean,

Figure 2.18 Which city
has greater variability in
temperature?

DesMoines

SanFrancisco
36 42 48 54

Temperature
60 66 72
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some deviations are negative and some are positive. In fact, if you add up all of the
deviations, the sum will always be zero.

The standard deviation is computed by squaring each deviation (to make them
all positive), adding up these squared deviations, dividing by n − 1 (to take an
approximate average), and taking the square root of the result (to undo the earlier
squaring). It is not necessary to fully understand the details of this computation.27

However, interpreting the standard deviation correctly is essential: A larger standard
deviation means the data values are more spread out and have more variability.

Definition of Standard Deviation

The standard deviation for a quantitative variable measures the spread
of the data in a sample:

Standard deviation =
√

�(x − x)2

n − 1

The standard deviation gives a rough estimate of the typical distance
of a data value from the mean. The larger the standard deviation,
the more variability there is in the data and the more spread out the
data are.

In practice, we generally compute the standard deviation using a calculator or
computer software. The units for the standard deviation are the same as the units
for the original data.

Notation for the Standard Deviation

The standard deviation of a sample is denoted s, and measures how
spread out the data are from the sample mean x.

The standard deviation of a population28 is denoted σ , which is the
Greek letter ‘‘sigma,” and measures how spread out the data are from
the population mean μ.

Example 2.16
Temperatures on April 14th in Des Moines and San Francisco are given in Table 2.20
and shown in Figure 2.18.

(a) Which dataset do we expect to have a larger standard deviation? Why?

(b) Use technology to find the standard deviation for each dataset and compare
your answers.

Solution (a) The Des Moines temperatures are more spread out, so we expect this dataset to
have a larger standard deviation.

(b) We use statistical software or a graphing calculator to find the standard deviation.
In Figure 2.16, standard deviation is denoted ‘‘StDev.’’ In Figure 2.17, the

27Two natural questions here are (1) Why square everything and then take a square root? and (2) Why
divide by n − 1 instead of n (like a mean)? Both have justifications but are beyond the scope of this
textbook.
28The formula can be modified slightly for a population.
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standard deviation is given by ‘‘S×’’. In both cases, we see that the standard
deviation for the sample of Des Moines temperatures is about s = 11.73◦F.
Similar output for the San Francisco temperatures shows that the standard
deviation for those 16 values is s = 3.38◦F. As we expect, the standard devi-
ation is larger for the Des Moines temperatures than for the San Francisco
temperatures.

Interpreting the Standard Deviation
Since the standard deviation is computed using the deviations from the mean,

we get a rough sense of the magnitude of s by considering the typical distance of a
data value from the mean. The following rule of thumb is helpful for interpreting
the standard deviation for distributions that are symmetric and bell-shaped.

Using the Standard Deviation: The 95% Rule

If a distribution of data is approximately symmetric and bell-shaped,
about 95% of the data should fall within two standard deviations of
the mean. This means that about 95% of the data in a sample from
a bell-shaped distribution should fall in the interval from x − 2s to
x + 2s. See Figure 2.19.

Example 2.17
We see in Example 2.9 on page 63 that the distribution for pulse rates from the
StudentSurvey data is symmetric and approximately bell-shaped. Use the fact that
the mean of the pulse rates is x = 69.6 and the standard deviation is s = 12.2 to give
an interval that is likely to contain about 95% of the pulse rates for students.

Solution To identify pulse rates within two standard deviations of the mean, we compute

x ± 2s

69.6 ± 2(12.2)

69.6 ± 24.4

69.6 − 24.4 = 45.2 and 69.6 + 24.4 = 94.0.

Roughly 95% of the pulse rates are between 45.2 and 94.0 beats per minute.

Figure 2.19 Most data
are within two standard
deviations of the mean

x−3s

95%

x−2s x−s x+s x+2s x+3sx

o

*<



78 C H A P T E R 2 Describing Data

Peter Cade/Getty Images,Inc.

How high are monthly retail sales in the US?

D A T A 2 . 5 Monthly Retail Sales

The dataset RetailSales29 contains data on total US retail sales each month from
January 2000 through April 2011. Units are billions of dollars. ■

Example 2.18
A histogram of the retail sales data is shown in Figure 2.20. Is the distribution
approximately symmetric and bell-shaped? Use the histogram to give a rough
estimate of the mean and standard deviation of monthly retail sales totals.

Solution The histogram is relatively symmetric and bell-shaped. The mean appears to be
approximately 300 billion dollars. To estimate the standard deviation, we estimate
an interval centered at 300 that contains approximately 95% of the data. The interval
from 225 to 375 appears to contain almost all the data. Since 225 is 75 units below
the mean of 300 and 375 is 75 units above the mean, by the 95% rule we estimate
that 2 times the standard deviation is 75, so the standard deviation appears to be
approximately 37.5 billion dollars. Note that we can only get a rough approximation
from the histogram. To find the exact values of the mean and standard deviation,
we would use technology and all the values in the dataset.

Understanding z-Scores
A doctor finds that a patient has a a systolic blood pressure of 200 mmHg. Just

how unusual is this? Sometimes a single data value is meaningless without knowing

Figure 2.20 Estimate the
mean and the standard
deviation 350 400300
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29http://www.census.gov/retail/.
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the center and spread of a distribution. A common way to determine how unusual
a single data value is, that is independent of the units used, is to count how many
standard deviations it is away from the mean. This quantity is known as the z-score.

Number of Standard Deviations from the Mean: z-Scores

The z-score for a data value, x, from a sample with mean x and
standard deviation s is defined to be

z-score = x − x
s

For a population, x is replaced with μ and s is replaced with σ .

The z-score tells how many standard deviations the value is from the
mean, and is independent of the unit of measurement.

If the data have a distribution that is symmetric and bell-shaped, we know from
the 95% rule that about 95% of the data will fall within two standard deviations
of the mean. This means that only about 5% of the data values will have z-scores
beyond ±2.

Example 2.19
One of the patients (ID#772) in the ICU study (Data 2.3 on page 66) had a high
systolic blood pressure of 204 mmHg and a low pulse rate of 52 bpm. Which of these
values is more unusual relative to the other patients in the sample? The summary
statistics for systolic blood pressure show a mean of 132.2 and standard deviation of
32.95, while the heart rates have a mean of 98.9 and standard deviation of 26.83.

Solution We compute the z-scores for this patient’s blood pressure and heart rate:

Blood pressure: z = x − x
s

= 204 − 132.2
32.95

= 2.18

This patient’s blood pressure is slightly more than two standard deviations above
the sample mean.

Heart rate: z = x − x
s

= 52 − 98.9
26.83

= −1.75

This patient’s heart rate is less than two standard deviations below the sample mean
heart rate. The high blood pressure is somewhat more unusual than the low heart
rate.

Percentiles
We turn now to an alternate way to give information about a distribution. The
Scholastic Aptitude Test (SAT) is given several times a year to secondary school
students and is often used in admissions decisions by colleges and universities. The
SAT has three parts: Critical Reading, Mathematics, and Writing. Each is scored on
a scale of 200 to 800. The SAT aims to have the average score close to 500 in each
part. For students in the graduating class of 2010, the averages were as follows:

Critical Reading: 501 Mathematics: 516 Writing: 492

When students receive their score reports, they see their score as well as their
percentile. For example, for the class of 2010, a score of 620 in Critical Reading is

o
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the 84th percentile. This means that 84% of the students in the class of 2010 who
took the exam scored less than or equal to 620. The 20th percentile in Mathematics
is a score of 420, which means that 20% of the students scored less than 420.

Percentiles

The Pth percentile is the value of a quantitative variable which is
greater than P percent of the data.30

Example 2.20
Standard & Poor’s maintains one of the most widely followed indices of large-cap
American stocks: the S&P 500. The index includes stocks of 500 companies in
industries in the US economy. A histogram of the daily closing price for the S&P
500 stock index for every day in 2010 is shown in Figure 2.21. The closing price data
are stored in SandP500. Use the histogram to roughly estimate and interpret the
25th percentile and the 90th percentile.

Solution The 25th percentile is the value with a quarter of the values below or equal to it. This
is the value where 25% of the area of the histogram lies to the left. This appears to
be about 1100. We do not expect you to compute this exactly, but simply be able to
give an estimate. A closing price of about 1220 has roughly 10% of the data values
above it (and 90% below), so the 90th percentile is about 1220.

Five Number Summary
The minimum and maximum in a dataset identify the extremes of the distribution:
the smallest and largest values, respectively. The median is the 50th percentile, since

Figure 2.21 Daily
closing prices for the
S&P 500 index in 2010 1200 12501150
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30Different software packages may give slightly different answers for percentiles. Some sources, for
example, define the Pth percentile as the value which is greater than or equal to P percent of the values.
For large datasets, however, the numbers will generally be very similar.
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it divides the data into two equal halves. If we divide each of those halves again,
we obtain two additional statistics known as the first (Q1) and third (Q3) quartiles,
which are the 25th and 75th percentiles. Together these five numbers provide a good
summary of important characteristics of the distribution and are known as the five
number summary.

Five Number Summary

We define

Five Number Summary = (minimum, Q1, median, Q3, maximum)

where

Q1 = First quartile = 25th percentile

Q3 = Third quartile = 75th percentile

The five number summary divides the dataset into fourths: about 25%
of the data fall between any two consecutive numbers in the five
number summary.

© kristian sekulic/iStockphoto

How many hours a week do students exercise?

Example 2.21
The five number summary for the number of hours spent exercising a week for the
StudentSurvey sample is (0, 5, 8, 12, 40). Explain what this tells us about the amount
of exercise for this group of students.

Solution All of the students exercise between 0 and 40 hours per week. The 25% of students
who exercise the least exercise between 0 and 5 hours a week, and the 25% of
students who exercise the most exercise between 12 and 40 hours a week. The
middle 50% of students exercise between 5 and 12 hours a week, with half exercising
less than 8 hours per week and half exercising more than 8 hours per week.

Range and Interquartile Range
The five number summary provides two additional opportunities for summariz-

ing the amount of spread in the data, the range and the interquartile range.
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Range and Interquartile Range

From the five number summary, we can compute the following two
statistics:

Range = Maximum − Minimum

Interquartile range (IQR) = Q3 − Q1

Example 2.22
The five number summary for the mammal longevity data in Table 2.14 on page 61
is (1, 8, 12, 16, 40). Find the range and interquartile range for this dataset.

Solution From the five number summary (1, 8, 12, 16, 40) we see that the minimum longevity
is 1 and the maximum is 40, so the range is 40 − 1 = 39 years. The first quartile is 8
and the third quartile is 16, so the interquartile range is IQR = 16 − 8 = 8 years.

Note that the range and interquartile range calculated in Example 2.22 (39 and
8, respectively) are numerical values not intervals. Also notice that if the elephant
(longevity = 40) were omitted from the sample the range would be reduced to
25 − 1 = 24 years while the IQR would go down by just one year, 15 − 8 = 7. In
general, although the range is a very easy statistic to compute, the IQR is a more
resistant measure of spread.

Example 2.23
Using the temperature data for Des Moines and San Francisco given in Table 2.20,
find the five number summary for the temperatures in each city. Find the range and
the IQR for each dataset and compare the results for the two cities.

Solution We use computer software or a calculator to find the five number summaries. From
the output in Figure 2.16 or Figure 2.17 on page 75, we see that the five number sum-
mary for Des Moines temperatures is (37.2, 44.4, 54.5, 62.6, 74.9). (Notice that the
value for Q3 is slightly different between the two outputs. You may get slightly differ-
ent values for the quartiles depending on which technology you use.) The five number
summary for San Francisco temperatures is (48.7, 51.1, 54.0, 56.1, 61.0). We have

Range for Des Moines = 74.9 − 37.2 = 37.7◦F

Range for San Francisco = 61.0 − 48.7 = 12.3◦F

IQR for Des Moines = 62.6 − 44.4 = 18.2◦F

IQR for San Francisco = 56.1 − 51.1 = 5◦F

The range and IQR are much larger for the Des Moines data than the San Francisco
data. Temperatures are much more variable in central Iowa than they are on the
California coast!

Choosing Measures of Center and Spread
Because the standard deviation measures how much the data values deviate from the
mean, it makes sense to use the standard deviation as a measure of variability when
the mean is used as a measure of center. Both the mean and standard deviation

o

Jik
o
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have the advantage that they use all of the data values. However, they are not
resistant to outliers. The median and IQR are resistant to outliers. Furthermore,
if there are outliers or the data are heavily skewed, the five number summary can
give more information (such as direction of skewness) than the mean and standard
deviation.

Example 2.24
Example 2.13 on page 67 describes salaries in the US National Football League, in
which some star players are paid much more than most other players.

(a) We see in that example that players prefer to use the median ($838,000 in 2010)
as a measure of center since they don’t want the results heavily influenced by a
few huge outlier salaries. What should they use as a measure of spread?

(b) We also see that the owners of the teams prefer to use the mean ($1.87 million
in 2010) as a measure of center since they want to use a measure that includes
all the salaries. What should they use as a measure of spread?

Solution (a) The interquartile range (IQR) should be used with the median as a measure of
spread. Both come from the five number summary, and both the median and
the IQR are resistant to outliers.

(b) The standard deviation should be used with the mean as a measure of spread.
Both the mean and the standard deviation use all the data values in their
computation.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use technology to compute summary statistics for a quantitative
variable

• Recognize the uses and meaning of the standard deviation

• Compute and interpret a z-score

• Interpret a five number summary or percentiles

• Use the range, the interquartile range, and the standard deviation as
measures of spread

• Describe the advantages and disadvantages of the different measures
of center and spread

Exercises for Section 2.3

SKILL BUILDER 1
For the datasets in Exercises 2.67 to 2.72, use tech-
nology to find the following values:

(a) The mean and the standard deviation

(b) The five number summary

2.67 10, 11, 13, 14, 14, 17, 18, 20, 21, 25, 28

2.68 1, 3, 4, 5, 7, 10, 18, 20, 25, 31, 42
2.69 4, 5, 8, 4, 11, 8, 18, 12, 5, 15, 22, 7, 14,
11, 12
2.70 25, 72, 77, 31, 80, 80, 64, 39, 75, 58, 43,
67, 54, 71, 60

2.71 The variable Exercise, number of hours spent
exercising per week, in the StudentSurvey dataset

o

o
o
o
o
o
o
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(a) Histogram A

−5 0 5 10 15 20 25

(c) Histogram C

−5 0 5 10 15 20 25

(b) Histogram B

−5 0 5 10 15 20 25

Figure 2.22 Three histograms for Exercise 2.73

2.72 The variable TV, number of hours spent
watching television per week, in the StudentSurvey
dataset

SKILL BUILDER 2
In Exercises 2.73 and 2.74, match the standard devi-
ations with the histograms.

2.73 Match the three standard deviations s = 1,
s = 3, and s = 5 with the three histograms in
Figure 2.22.

2.74 Match each standard deviation with one of the
histograms in Figure 2.23.

(a) s = 0.5

(b) s = 10

(c) s = 50

(d) s = 1

(e) s = 1000

(f) s = 0.29
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Figure 2.23 Histograms for Exercises 2.74 and 2.75

SKILL BUILDER 3
In Exercises 2.75 and 2.76, match each five number
summary with the corresponding histogram.

2.75 Match each five number summary with one of
the histograms in Figure 2.23.

(a) (0, 0.25, 0.5, 0.75, 1)

(b) (−1.08, −0.30, 0.01, 0.35, 1.27)

(c) (0.64, 27.25, 53.16, 100, 275.7)

(d) (−3.5, −0.63, −0.11, 0.59, 2.66)

(e) (71.45, 92.77, 99.41, 106.60, 129.70)

(f) (−1296, −1005, −705, 998, 1312)

2.76 Match each five number summary with one of
the histograms in Figure 2.24. The scale is the same
on all four histograms.

(a) (1, 3, 5, 7, 9)

(b) (1, 4, 5, 6, 9)

(c) (1, 5, 7, 8, 9)

(d) (1, 1, 2, 4, 9)

-r
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X Y

W

2 4 6 82

Z

4 6 8

Figure 2.24 Match five number summaries in
Exercise 2.76

SKILL BUILDER 4
In Exercises 2.77 to 2.82, estimate the summary
statistics requested, using the histogram in
Figure 2.25 for Exercises 2.77 to 2.79 and the dot-
plot in Figure 2.26 for Exercises 2.80 to 2.82. There
are n = 100 data points included in the dotplot.
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Figure 2.25 Histogram for Exercises 2.77 to 2.79

60 63 66 69 72 75

Figure 2.26 Dotplot with n = 100 for Exercises 2.80
to 2.82

2.77 Estimate the mean and the standard deviation
for the data in the histogram in Figure 2.25.

2.78 Estimate values at the 10th percentile and the
90th percentile for the data in Figure 2.25.

2.79 Estimate the five number summary for the data
in Figure 2.25.

2.80 Estimate the mean and the standard deviation
for the data in the dotplot in Figure 2.26.

2.81 Estimate values at the 10th percentile and the
90th percentile for the data in Figure 2.26.

2.82 Estimate the five number summary for the data
in Figure 2.26.

SKILL BUILDER 5
In Exercises 2.83 to 2.86, indicate whether the five
number summary corresponds most likely to a dis-
tribution that is skewed to the left, skewed to the
right, or symmetric.

2.83 (15, 25, 30, 35, 45)

2.84 (100, 110, 115, 160, 220)

2.85 (0, 15, 22, 24, 27)

2.86 (22.4, 30.1, 36.3, 42.5, 50.7)

SKILL BUILDER 6: Z-SCORES
In Exercises 2.87 to 2.90, find and interpret the
z-score for the data value given.

2.87 The value 243 in a dataset with mean 200 and
standard deviation 25

2.88 The value 88 in a dataset with mean 96 and
standard deviation 10

2.89 The value 5.2 in a dataset with mean 12 and
standard deviation 2.3

2.90 The value 8.1 in a dataset with mean 5 and
standard deviation 2

SKILL BUILDER 7: THE 95% RULE
In Exercises 2.91 to 2.94, use the 95% rule and the
fact that the summary statistics come from a distri-
bution that is symmetric and bell-shaped to find an
interval that is expected to contain about 95% of
the data values.

2.91 A bell-shaped distribution with mean 200 and
standard deviation 25

2.92 A bell-shaped distribution with mean 10 and
standard deviation 3

2.93 A bell-shaped distribution with mean 1000
and standard deviation 10

2.94 A bell-shaped distribution with mean 1500
and standard deviation 300

2.95 Estimating Summary Statistics For the data-
set

45, 46, 48, 49, 49, 50, 50, 52, 52, 54, 57, 57, 58, 58, 60, 61

i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i
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(a) Without doing any calculations, estimate which
of the following numbers is closest to the mean:

60, 53, 47, 58

(b) Without doing any calculations, estimate which
of the following numbers is closest to the stan-
dard deviation:

52, 5, 1, 10, 55

(c) Use statistics software on a calculator or com-
puter to find the mean and the standard devia-
tion for this dataset.

2.96 Percent Obese by State Computer output
giving descriptive statistics for the percent of the
population that is obese for each of the 50 US states,
from the USStates dataset, is given in Figure 2.27.
Since all 50 US states are included, this is a popula-
tion, not a sample.

(a) What are the mean and the standard deviation?
Include appropriate notation with your answers.

(b) Calculate the z-score for the largest value and
interpret it in terms of standard deviations. Do
the same for the smallest value.

(c) This distribution is relatively symmetric and
bell-shaped. Give an interval that is likely to
contain about 95% of the data values.

2.97 Five Number Summary for Percent Obese by
State Computer output giving descriptive statistics
for the percent of the population that is obese for
each of the 50 US states, from the USStates dataset,
is given in Figure 2.27.

(a) What is the five number summary?

(b) Give the range and the IQR.

(c) What can we conclude from the five number
summary about the location of the 15th per-
centile? The 60th percentile?

2.98 How Many Hot Dogs Can You Eat in Ten
Minutes? Every Fourth of July, Nathan’s Famous
in New York City holds a hot dog eating contest
in which contestants try to eat as many hot dogs
as possible in 10 minutes.40 In 2011, over 30,000
people watched the event live on Coney Island, and
it was broadcast live to many more on ESPN. The

Variable
Obese

Mean
24.552

N
50

N*
0

StDev
3.044

Minimum
17.800

Q1
22.175

Q3
26.825

Maximum
30.900

Median
24.400

SE Mean
0.431

Descriptive Statistics: Obese

Figure 2.27 Percent of the population that is obese by state

40nathansfamous.com.

winner in 2011 was Joey Chestnut, who downed
62 hot dogs (with buns), for his fifth straight title.
Before Joey, the reigning hot dog eating champion
was Takeru Kobayashi of Japan. (Although many
people compete in the contest, every contest since
2002 has been won by one or the other of these two
men.) The winning number of hot dogs along with
the year is shown in Table 2.21 and is available in
the dataset HotDogs.

(a) Use technology to find the mean and the stan-
dard deviation of the 10 numbers.

(b) How many of the 10 values are above the mean?
How many are above the mean for the 5 values
in the earlier five years (2002–2006)? How many
are above the mean for the 5 values in the later
five years (2007–2011)?

Table 2.21 Winning number of hot
dogs in the hot dog eating contest

Year Hot Dogs

2011 62
2010 54
2009 68
2008 59
2007 66
2006 54
2005 49
2004 54
2003 45
2002 50

2.99 The Hot Dog Eating Rivalry: Matched Pairs
In Exercise 2.98, we mention that either Joey Chest-
nut of California, US, or Takeru Kobayashi of Japan
has won the Nathan’s Famous Hot Dog Eating Con-
test every year from 2002 until 2011. In five of those
years, both men competed and the results of the
rivalry are shown in Table 2.22. (After the tie in
2008, Joey Chestnut won in an overtime.) Because
the conditions of the year matter, this is a matched-
pairs situation, with the two men going against each
other each year. In a matched-pairs situation, we use
the summary statistics of the differences between the
pairs of values.
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(a) For each of the five years, find the difference
in number of hot dogs eaten between Joey and
Takeru. For example, in 2009, the difference
is 68 − 64 = 4. Since it is important to always
subtract the same way (in this case, Joey’s value
minus Takeru’s value), some of the differences
will be negative.

(b) Use technology to find the mean and the stan-
dard deviation of the differences.

Table 2.22 Hot dog eating rivalry

Year Joey Chestnut Takeru Kobayashi

2009 68 64
2008 59 59
2007 66 63
2006 52 54
2005 32 49

2.100 Time in Days to Row Solo Across the Atlantic
Ocean Exercise 1.20 on page 15 gives a sample of
eight times, in days, to row solo across the Atlantic
Ocean. The times are

40, 87, 78, 106, 67, 70, 153, 81

(a) Use technology to find the mean and standard
deviation of the eight times.

(b) Find and interpret the z-scores for the longest
time and shortest time in the sample.

2.101 Laptop Computers and Sperm Count Stu-
dies have shown that heating the scrotum by just
1◦C can reduce sperm count and sperm quality,
so men concerned about fertility are cautioned to
avoid too much time in the hot tub or sauna. A
new study41 suggests that men also keep their lap-
top computers off their laps. The study measured
scrotal temperature in 29 healthy male volunteers
as they sat with legs together and a laptop computer
on the lap. Temperature increase in the left scrotum
over a 60-minute session is given as 2.31 ± 0.96 and
a note tells us that ‘‘Temperatures are given as ◦C;
values are shown as mean ± SD.” The abbreviation
SD stands for standard deviation. (Men who sit with
their legs together without a laptop computer do
not show an increase in temperature.)

(a) If we assume that the distribution of the temper-
ature increases for the 29 men is symmetric and
bell-shaped, find an interval that we expect to
contain about 95% of the temperature increases.

41Sheynkin, Y., et al., ‘‘Protection from scrotal hyperthermia in
laptop computer users,’’ Fertility and Sterility, February 2011;
92(2): 647–651.

(b) Find and interpret the z-score for one of the
men, who had a temperature increase of 4.9◦.

2.102 Grade Point Averages A histogram of the
n = 345 grade point averages reported by stu-
dents in the StudentSurvey dataset is shown in
Figure 2.28.

(a) Estimate and interpret the 10th percentile and
the 75th percentile.

(b) Estimate the range.
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Figure 2.28 Estimate the 10th percentile and 75th
percentile

2.103 Arsenic in Toenails Exercise 2.51 on page 71
discusses the use of toenail clippings to measure
the level of arsenic exposure of individuals in
Great Britain. A similar study was conducted in
the US. Table 2.23 gives toenail arsenic concentra-
tions (in ppm) for 19 individuals with private wells in
New Hampshire, and the data are also available in
ToenailArsenic. Such concentrations prove to be an
effective indicator of ingestion of arsenic-containing
water.42

(a) Use technology to find the mean and standard
deviation.

(b) Compute the z-score for the largest concentra-
tion and interpret it.

Table 2.23 Arsenic concentration in
toenail clippings

0.119 0.118 0.099 0.118 0.275 0.358 0.080
0.158 0.310 0.105 0.073 0.832 0.517 0.851
0.269 0.433 0.141 0.135 0.175

42Adapted from Karagas, M., et al., ‘‘Toenail Samples as an
Indicator of Drinking Water Arsenic Exposure,’’ Cancer Epi-
demiology, Biomarkers and Prevention, 1996; 5: 849–852.

n~T-rTl thIl r \ T I I



88 C H A P T E R 2 Describing Data

(c) Use technology to find the five number sum-
mary.

(d) What is the range? What is the IQR?

2.104 A Dotplot of Arsenic in Toenails Figure 2.29
shows a dotplot of the arsenic concentrations in
Table 2.23.

(a) Which measures of center and spread are most
appropriate for this distribution: the mean and
standard deviation or the five number summary?
Explain.

(b) Is it appropriate to use the general rule about
having 95% of the data within two standard de-
viations for this distribution? Why or why not?

0.12 0.24 0.36 0.48

Arsenic
0.60 0.72 0.84

Figure 2.29 Dotplot of arsenic concentration in
toenails

STATISTICS FOR NBA PLAYERS IN 2010–2011
Exercises 2.105 to 2.107 refer to the dataset NBA
Players2011, which contains information on many
variables for players in the NBA (National Bas-
ketball Association) during the 2010–2011 season.
The dataset includes information for all players
who averaged more than 24 minutes per game, and
includes n = 176 players and 24 variables.

2.105 Distribution of Three-Point Attempts in the
NBA In basketball, a basket is awarded three points
(rather than the usual two) if it is shot from far-
ther away. Some players attempt lots of three-point
shots and quite a few attempt none, as we see in
the distribution of number of three-point attempts
by players in the NBA in Figure 2.30. The data are
available in NBAPlayers2011 under the variable
name FG3Attempt. Is it appropriate to use the 95%
rule with this dataset? Why or why not?

490420350280210

FG3Attempt
140700

Figure 2.30 Number of three-point shot attempts in the
NBA, by player

2.106 Distribution of Blocked Shots in the NBA
The variable Blocks in the dataset NBAPlayers2011
includes information on the number of blocked
shots during the season for each of the 176 players
in the dataset.

(a) Use technology to find the mean and the stan-
dard deviation of the number of blocked shots.

(b) Use technology to find the five number summary
for the same variable.

(c) Which set of summary statistics, those from
part (a) or part (b), is more resistant to outliers
and more appropriate if the data are heavily
skewed?

(d) Use technology to create a graph of the data in
Blocks and describe the shape of the distribu-
tion.

(e) Is it appropriate to use the 95% rule with these
data? Why or why not?

2.107 Which Accomplishment of LeBron James is
Most Impressive? Table 2.24 shows the means and
standard deviations for four of the variables in the
NBAPlayers2011 dataset. FGPct is the field goal
percentage, Points is total number of points scored
during the season, Assists is total number of assists
during the season, and Steals is total number of
steals during the season. LeBron James had a field
goal percentage of 0.510, scored 2111 points, had
554 assists, and had 124 steals. Find the z-score
for each of LeBron’s statistics. Use the z-scores to
determine, relative to the other players in the NBA
that season, which statistic of LeBron’s is the most
impressive. Which is the least impressive?

Table 2.24 Summary statistics on NBA
players

Variable Mean Standard Deviation

FGPct 0.464 0.053
Points 994 414
Assists 220 170
Steals 68.2 31.5

2.108 SAT Scores Stanley, a recent high school stu-
dent, took the SAT exam in 2011 and got a 600
in all three components (Critical Reading, Math,
and Writing). He was interested in how well he did
compared to the rest of his peers. Table 2.25 shows
the summary statistics for all students in 2011.43

43http://media.collegeboard.com/digitalServices/pdf/SAT-
Percentile Ranks 2011.pdf.
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(a) Calculate z-scores for all three of Stanley’s
scores using the summary statistics in Table 2.25.

(b) Which of Stanley’s three scores is the most
unusual relative to his peers? Which is the least
unusual?

(c) In which component did Stanley perform best
relative to his peers?

Table 2.25 Summary statistics for SAT scores

Component Mean Standard Deviation

Critical Reading 497 114
Math 514 117
Writing 489 113

2.109 Comparing Global Internet Connections The
Nielsen Company measured connection speeds on
home computers in nine different countries and
wanted to determine whether connection speed
affects the amount of time consumers spend
online.44 Table 2.26 shows the percent of Internet
users with a ‘‘fast” connection (defined as 2Mb or
faster) and the average amount of time spent online,
defined as total hours connected to the web from
a home computer during the month of February
2011. The data are also available in the dataset
GlobalInternet.
(a) Use technology to find the mean and standard

deviation of the nine values for percent with a
fast connection.

(b) Use technology to find the mean and standard
deviation of the nine values for time online.

(c) Does there seem to be a relationship between
the two variables? Explain. (We examine this
relationship further in Section 2.5.)

Table 2.26 Internet connection speed and
hours online

Percent Fast Hours
Country Connection Online

Switzerland 88 20.18
United States 70 26.26
Germany 72 28.04
Australia 64 23.02
United Kingdom 75 28.48
France 70 27.49
Spain 69 26.97
Italy 64 23.59
Brazil 21 31.58

44‘‘Swiss Lead in Speed: Comparing Global Internet Connec-
tions,” NielsenWire, April 1, 2011.

2.110 Jogging Times Consider the jogging times
from a set of 5-mile runs by two different runners in
Table 2.27.

(a) Which runner is faster on average?

(b) What is the main difference in the jogging times
of joggers 1 and 2?

Table 2.27 Jogging times

Jogger 1 Jogger 2

44 48
45 49
43 38
48 40
45 50

2.111 Mammal Longevities Table 2.14 on page 61
shows longevity (typical lifespan) in years for 40
species of mammals, and the data are also available
in MammalLongevity.

(a) Use technology to find the mean and standard
deviation of the 40 values.

(b) The elephant’s longevity of 40 years appears
to be an outlier in the dotplot in Figure 2.6 on
page 61. Find and interpret the z-score for the
elephant.

2.112 Daily Calorie Consumption The five num-
ber summary for daily calorie consumption for the
n = 315 participants in the NutritionStudy is (445,
1334, 1667, 2106, 6662).

(a) Give the range and the IQR.

(b) Which of the following numbers is most likely
to be the mean of this dataset? Explain.

1550 1667 1796 3605

(c) Which of the following numbers is most likely
to be the standard deviation of this dataset?
Explain.

5.72 158 680 1897 5315

2.113 Largest and Smallest Standard Deviation
Using only the whole numbers 1 through 9 as pos-
sible data values, create a dataset with n = 6 and
x = 5 and with:

(a) Standard deviation as small as possible

(b) Standard deviation as large as possible

USING THE 95% RULE TO DRAW SMOOTH
BELL-SHAPED CURVES
In Exercises 2.114 to 2.117, sketch a curve show-
ing a distribution that is symmetric and bell-shaped
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and has approximately the given mean and stan-
dard deviation. In each case, draw the curve on a
horizontal axis with scale 0 to 10.

2.114 Mean 3 and standard deviation 1

2.115 Mean 7 and standard deviation 1

2.116 Mean 5 and standard deviation 2

2.117 Mean 5 and standard deviation 0.5

2.118 Using the Five Number Summary to Visual-
ize Shape of a Distribution Draw a histogram or a
smooth curve illustrating the shape of a distribution
with the properties that:

(a) The range is 100 and the interquartile range
is 10

(b) The range is 50 and the interquartile range is 40

2.119 Rough Rule of Thumb for the Standard Devi-
ation According to the 95% rule, the largest value in
a sample from a distribution which is approximately
symmetric and bell-shaped should be between 2 and
3 standard deviations above the mean, while the
smallest value should be between 2 and 3 standard
deviations below the mean. Thus the range should

be roughly 4 to 6 times the standard deviation. As
a rough rule of thumb, we can get a quick estimate
of the standard deviation for a bell-shaped distribu-
tion by dividing the range by 5. Check how well this
quick estimate works in the following situations.

(a) Pulse rates from the StudentSurvey dataset dis-
cussed in Example 2.17 on page 77. The five
number summary of pulse rates is (35, 62, 70,
78, 130) and the standard deviation is s = 12.2
bpm. Find the rough estimate using all the data,
and then excluding the two outliers at 120 and
130, which leaves the maximum at 96.

(b) Number of hours a week spent exercising
from the StudentSurvey dataset discussed in
Example 2.21 on page 81. The five number sum-
mary of this dataset is (0, 5, 8, 12, 40) and the
standard deviation is s = 5.741 hours.

(c) Longevity of mammals from the Mammal-
Longevity dataset discussed in Example 2.22
on page 82. The five number summary of the
longevity values is (1, 8, 12, 16, 40) and the stan-
dard deviation is s = 7.24 years.

2.4OUTLIERS, BOXPLOTS, AND QUANTITATIVE/
CATEGORICAL RELATIONSHIPS

In this section, we examine a relationship between a quantitative variable and a
categorical variable by examining both comparative summary statistics and graphical
displays. Before we get there, however, we have a bit more to do in our analysis of a
single quantitative variable. We make the definition of an outlier more precise and
look at one more graphical display for a single quantitative variable.

Detection of Outliers
Consider again the data on mammal longevity in Data 2.2 on page 61. Our intuition
suggests that the longevity of 40 years for the elephant is an unusually high value
compared to the other lifespans in this sample. How do we determine objectively
when such a value is an outlier? The criteria should depend on some measure of
location for ‘‘typical” values and a measure of spread to help us judge when a
data point is ‘‘far” from those typical cases. One approach uses the quartiles and
interquartile range. As a rule, most data values will fall within about 1.5(IQR)’s of
the quartiles.45

Detection of Outliers

As a general rule of thumb, we call a data value an outlier if it is

Smaller than Q1 − 1.5(IQR) or Larger than Q3 + 1.5(IQR)

45In practice, determining outliers requires judgment and understanding of the context. We present a
specific method here, but no single method is universally used for determining outliers.
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Example 2.25
Is the elephant an outlier for the mammal longevities in the dataset Mammal-
Longevity? Are any other mammals outliers in that dataset?

Solution The five number summary for mammal longevities is (1, 8, 12, 16, 40). We have
Q1 = 8 and Q3 = 16 so the interquartile range is IQR = 16 − 8 = 8. We compute

Q1 − 1.5(IQR) = 8 − 1.5(8) = 8 − 12 = −4

and
Q3 + 1.5(IQR) = 16 + 1.5(8) = 16 + 12 = 28

Clearly, there are no mammals with negative lifetimes, so there can be no outliers
below the lower value of −4. On the upper side, the elephant, as expected, is clearly
an outlier beyond the value of 28 years. No other mammal in this sample exceeds
that value, so the elephant is the only outlier in the longevity data.

Boxplots
A boxplot is a graphical display of the five number summary for a single quantitative
variable. It shows the general shape of the distribution, identifies the middle 50% of
the data, and highlights any outliers.

Boxplots

To draw a boxplot:

• Draw a numerical scale appropriate for the data values.

• Draw a box stretching from Q1 to Q3.

• Divide the box with a line drawn at the median.

• Draw a line from each quartile to the most extreme data value that
is not an outlier.

• Identify each outlier individually by plotting with a symbol such as
an asterisk or a dot.

Example 2.26
Draw a boxplot for the data in MammalLongevity, with five number summary
(1, 8, 12, 16, 40).

Solution The boxplot for mammal longevities is shown in Figure 2.31. The box covers the
interval from the first quartile of 8 years to the third quartile of 16 years and is
divided at the median of 12 years. The line to the left of the lower quartile goes all
the way to the minimum longevity at 1 year, since there were no small outliers. The
line to the right stops at the largest data value (25, grizzly bear and hippopotamus)
that is not an outlier. The outlier elephant is plotted with an individual symbol at
the maximum of 40 years.

D A T A 2 . 6 US States
The dataset USStates includes many variables measured for each of the 50
states in the US. Some of the variables included for each state are average

o
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Figure 2.31 Boxplot of
longevity of mammals 0

Minimum non-outlier Maximum non-outlier Outlier

Q1 Q3m

10 20

Longevity
30 40

∗

household income, percent to graduate high school, health statistics such as
consumption of fruits and vegetables, percent obese, percent of smokers, and
some results from the 2008 US presidential election.46 ■

Example 2.27
One of the quantitative variables in the USStates dataset is Smokers, which gives the
percentage of the population that smokes for each of the states. Figure 2.32 shows a
boxplot of the percent of smokers for all 50 states.

(a) Discuss what the boxplot tells us about the distribution of this variable.

(b) Estimate the five number summary.

Solution (a) The distribution of smoking percentages is relatively symmetric, with two
outliers, and centered around 21. The percent of people who smoke appears to
range from about 12% to about 29%. The middle 50% of smoking percentages
is between about 19% and 23%, with a median value at about 21%. The low
outlier is about 12% (Utah) and the high outlier is about 29% (Kentucky).

(b) The five number summary appears to be approximately (12, 19, 21, 23, 29).

Figure 2.32 Percent of
people who smoke, by
state 10 15

∗ ∗

20

Smokers

25 30

46Data from a variety of sources, mostly www.census.gov.
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How much did it cost to
make this movie?

D A T A 2 . 7 Hollywood Movies 2011
There were 136 movies that came out of Hollywood in 2011 and the dataset
HollywoodMovies2011 contains lots of information on these movies, such as
studio, genre, budget, audience ratings, box office average opening weekend,
world gross, and others.47 ■

Example 2.28
One of the quantitative variables in the HollywoodMovies2011 dataset is Budget,
which gives the budget, in millions of dollars, to make each movie. Figure 2.33 shows
the boxplot for the budget of all Hollywood movies that came out in 2011.

(a) Discuss what the boxplot tells us about the distribution of this variable.

(b) What movie does the largest outlier correspond to?

(c) What was the budget to make Harry Potter and the Deathly Hallows, Part 2? Is
it an outlier?

Figure 2.33 Budget, in
millions of dollars, of
Hollywood movies 0 50 100

Budget

150 200 250

∗∗∗ ∗∗∗ ∗∗ ∗ ∗

47McCandless, D., ‘‘Most Profitable Hollywood Movies,” from ‘‘Information is Beautiful,” davidmc-
candless.com, accessed January 2012. The data were compiled late in 2011 so they reflect results as of
December 2011.
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Solution (a) Because the minimum, first quartile, and median are so close together, we see
that half the data values are packed in a small interval, then the other half extend
out quite far to the right. These data are skewed to the right, with many large
outliers.

(b) The largest outlier represents a movie with a budget of 250 million dollars.
We see from the dataset HollywoodMovies2011 that the movie is Pirates of the
Caribbean: On Stranger Tides.

(c) We see from the dataset that the budget for Harry Potter and the Deathly
Hallows, Part 2 was 125 million dollars. We see in the boxplot that this is not an
outlier.

One Quantitative and One Categorical Variable
Do men or women tend to watch more television? Is survival time for cancer
patients related to genetic variations? How do April temperatures in Des Moines
compare to those in San Francisco? These questions each involve a relationship
between a quantitative variable (amount of TV, survival time, temperature) and a
categorical variable (gender, type of gene, city). One of the best ways to visualize
such relationships is to use side-by-side graphs. Showing graphs with the same axis
facilitates the comparison of the distributions.

Visualizing a Relationship between Quantitative and

Categorical Variables

Side-by-side graphs are used to visualize the relationship between
a quantitative variable and a categorical variable. The side-by-side
graph includes a graph for the quantitative variable (such as a boxplot,
histogram, or dotplot) for each group in the categorical variable, all
using a common numeric axis.

Erik Von Weber/Getty Images, Inc.

Who watches more TV, males or females?

Example 2.29
Who watches more TV, males or females? The data in StudentSurvey contains
the categorical variable Gender as well as the quantitative variable TV for the
number of hours spent watching television per week. For these students, is there an
association between gender and number of hours spent watching television? Use the
side-by-side graphs in Figure 2.34 showing the distribution of hours spent watching
television for males and females to discuss how the distributions compare.
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Figure 2.34 Who watches more TV, males or females?

Solution Both distributions are skewed to the right and have many outliers. There appears
to be an association: In this group of students, males tend to watch more television.
In fact, we see in Figure 2.34(a) that the females who watch about 15 hours of
TV a week are considered outliers, whereas males who watch the same amount of
television are not so unusual. The minimum, first quartile, and median are relatively
similar for the two genders, but the third quartile for males is much higher than the
third quartile for females and the maximum for males is also much higher. While
the medians are similar, the distribution for males is highly skewed to the right, so
the mean for males will be higher than the mean for females.

D A T A 2 . 8 Genetics and Cancer Survival
Genetic profiles may help oncologists predict the survival time for cancer
patients. In a recent study,48 scientists looked for variations in two genes that
encode proteins governing DNA repair in 103 advanced lung cancer patients.
Variations of both genes were found in 13 of the patients, variations on just one
of the genes were found in 64 of the patients, and 26 of the patients had neither
variation. The scientists compared the survival time on chemotherapy for the
patients in each of the three groups. (The study lasted 60 months.) ■

Example 2.30
In Data 2.8, we are interested in whether the genetic differences can help us predict
survival time.

(a) What is the explanatory variable and what is the response variable? Indicate
whether each is categorical or quantitative.

(b) Figure 2.35 shows side-by-side boxplots for the three groups. Discuss what the
graph shows. What conjectures might we make about these genetic variations
and survival time?

(c) Can we conclude that having one or both of the gene variations reduces survival
time? Why or why not?

48Adapted from Gurubhagavatula, S., ‘‘XPD and XRCC1 Genetic Polymorphisms are Associated with
Overall Survival (OS) in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients Treated with
Platinum Chemotherapy,’’ Abstract 491, paper presented at the Annual Meeting of the American
Society of Clinical Oncology, June 2003.
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Figure 2.35 Lung cancer
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Solution (a) The explanatory variable is which of the three groups the patient is in, which is
categorical. The response variable is survival time, which is quantitative.

(b) The side-by-side boxplots show that survival time is substantially shorter for
patients with variations on both genes, and tends to be longest for patients
with neither variation. Based on this study, we might hypothesize that survival
time for patients undergoing chemotherapy for advanced lung cancer is reduced
when variations of either gene are present and more seriously shortened when
both variations are present.

(c) No. Although there appears to be a strong association between these two
variables, the data come from an observational study and we cannot conclude
that there is a cause and effect relationship. As we learned in Chapter 1, only
when we have conducted a randomized experiment can we conclude that one
variable is causing another to change.

What about the added circles we see in the boxplots in Figure 2.35? Often, we
use circles such as these to indicate the means in each case. Notice in Figure 2.35 that
the mean survival time is highest for those with neither gene variation and lowest
for those with both variations. The large outliers for those with both gene variations
are so extreme that the mean is even larger than the third quartile.

Comparative Summary Statistics
Most statistical software packages will give summary statistics for a quantitative

variable by categorical groups. This gives us a numerical way to compare the two
variables in addition to the graphical way provided by side-by-side graphs.

Example 2.31
Use the Minitab output provided in Figure 2.36, based on the StudentSurvey dataset,
to compare the mean and standard deviation for number of hours spent watching
television per week broken down by gender. Find the difference in means, using
appropriate notation, and interpret it in terms of television viewing habits.

Solution The output in Figure 2.36 shows that there were 169 females who filled out the
survey, and these females watched TV for a mean of 5.237 hours per week with a
standard deviation of 4.1 hours per week. There were 192 males in the survey and

0
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Variable
TV

Descriptive Statistics: TV

Gender
F
M

N
169
192

Mean
5.237
7.620

SE Mean
0.315
0.464

StDev
4.100
6.427

Minimum
0.000
0.000

Q1
2.500
3.000

Median
4.000
5.000

Maximum
20.000
40.000

Q3
6.000

10.000

Figure 2.36 Output from Minitab comparing TV watching by gender

these males had a mean of 7.620 hours spent watching TV per week with a standard
deviation of 6.427. Both the mean and the standard deviation are larger for the
males, which matches what we see in the graphs in Figure 2.34.

Using the notation xm for the male mean and xf for the female mean, the
difference in means is

xm − xf = 7.620 − 5.237 = 2.383

In this sample, on average the males watched an additional 2.383 hours of television
per week.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify outliers in a dataset based on the IQR method

• Use a boxplot to describe data for a single quantitative variable

• Use a side-by-side graph to visualize a relationship between
quantitative and categorical variables

• Examine a relationship between quantitative and categorical variables
using comparative summary statistics

Exercises for Section 2.4

SKILL BUILDER 1
In Exercises 2.120 and 2.121, match the five number
summaries with the boxplots.

2.120 Match each five number summary with one
of the boxplots in Figure 2.37.

(a) (2, 12, 14, 17, 25)

(b) (5, 15, 18, 20, 23)

(c) (10, 12, 13, 18, 25)

(d) (12, 12, 15, 20, 24)

2.121 Match each five number summary with one
of the boxplots in Figure 2.38.

(a) (1, 18, 20, 22, 25)

(b) (1, 10, 15, 20, 25)

(c) (1, 3, 5, 10, 25)

(d) (1, 1, 10, 15, 25)

TempDiff
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S

T

2520151050
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∗∗

Figure 2.37 Match five number summaries in
Exercise 2.120
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X
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Z

W

2520151050

∗

∗

Figure 2.38 Match five number summaries in
Exercise 2.121

SKILL BUILDER 2
Exercises 2.122 to 2.125 show a boxplot for a set of
data. In each case:

(a) Indicate whether the distribution of the data
appears to be skewed to the left, skewed to
the right, approximately symmetric, or none of
these.

(b) Are there any outliers? If so, how many and are
they high outliers or low outliers?

(c) Give a rough approximation for the mean of the
dataset.

2.122

600580560540520500

∗∗ ∗

2.123

14012010080604020

2.124

145140135130125

2.125

160015001200 1300 1400900 1000 1100800700

∗∗∗ ∗∗

SKILL BUILDER 3
Exercises 2.126 to 2.129 each describe a sample. The
information given includes the five number sum-
mary, the sample size, and the largest and smallest
data values in the tails of the distribution. In each
case:
(a) Clearly identify any outliers.

(b) Draw a boxplot.
2.126 Five number summary: (210, 260, 270, 300,
320); n = 500
Tails: 210, 215, 217, 221, 225, . . ., 318, 319, 319, 319,
320, 320

2.127 Five number summary: (15, 42, 52, 56, 71);
n = 120
Tails: 15, 20, 28, 30, 31, . . ., 64, 65, 65, 66, 71

2.128 Five number summary: (42, 72, 78, 80, 99);
n = 120
Tails: 42, 63, 65, 67, 68, . . ., 88, 89, 95, 96, 99

2.129 Five number summary: (5, 10, 12, 16, 30);
n = 40
Tails: 5, 5, 6, 6, 6, . . ., 22, 22, 23, 28, 30

INVESTIGATING HOLLYWOOD MOVIES
In Exercises 2.130 to 2.133, we use data from
HollywoodMovies2011 introduced in Data 2.7 on
page 93. The dataset includes information on all 136
movies to come out of Hollywood in 2011.

T T T T
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2.130 How Profitable Are Hollywood Movies?
One of the variables in the HollywoodMovies2011
dataset is Profitability, which measures the propor-
tion of the budget recovered in revenue from the
movie. A profitability less than 1 means the movie
did not make enough money to cover the budget,
while a profitability greater than 1 means it made a
profit. A boxplot of the profitability ratings of all 136
movies is shown in Figure 2.39. (The largest outlier
is the movie Insidious, which had a relatively small
budget and relatively high gross revenue.)

(a) Describe the shape of the distribution.

(b) Estimate the range.

(c) Estimate the median. Interpret it in terms of
profitability of movies.

(d) Do we expect the mean to be greater than or
less than the median?

50 60 7040

Profitability
3020100

Figure 2.39 Profitability of Hollywood movies

2.131 Audience Scores on Rotten Tomatoes Audi-
ence scores (on a scale from 1 to 100) on the Rotten
Tomatoes website for all movies that came out of
Hollywood in 2011 have a five number summary
of (24, 49, 61, 77, 93). (These data are in the vari-
able AudienceScore in the dataset Hollywood-
Movies2011.) Are there any outliers in these scores?
How bad would an average audience score rating
have to be on Rotten Tomatoes to qualify as a low
outlier?

Variable Genre N Mean StDev Minimum Q1 Median Q3 Maximum

Audience Score Action 32 58.63 18.39 32.00 44.50 51.00 78.00 93.00
Animation 12 64.08 13.89 43.00 50.50 64.00 78.25 82.00
Comedy 27 59.11 15.68 31.00 48.00 58.00 71.00 93.00
Drama 21 72.10 14.55 46.00 59.00 72.00 84.50 91.00
Horror 17 48.65 15.88 25.00 34.00 52.00 60.50 78.00
Romance 10 64.80 12.90 50.00 52.25 65.50 78.00 84.00
Thriller 13 64.31 14.87 24.00 57.00 67.00 74.50 81.00

2.132 Do Movie Budgets Differ Based on the Genre
of the Movie? The dataset HollywoodMovies2011
includes a quantitative variable on the Budget of
the movie, in millions of dollars, as well as a cate-
gorical variable classifying each movie by its Genre.
Figure 2.40 shows side-by-side boxplots investigat-
ing a relationship between these two variables. (We
use four of the possible categories in Genre for this
exercise.)

(a) Which genre appears to have the largest bud-
gets? Which appears to have the smallest?

(b) Which genre has the biggest spread in its bud-
gets? Which has the smallest spread?

(c) Does there appear to be an association between
genre of a movie and size of the budget? Explain.

Budget

G
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25020015010050

Horror

Drama

Comedy

Action

0

Figure 2.40 Movie budgets (in millions of dollar)
based on genre

2.133 Do Audience Ratings Differ Based on the
Genre of the Movie? The dataset Hollywood-
Movies2011 includes a quantitative variable on the
AudienceScore of the movie as well as a categorical
variable classifying each movie by its Genre. The
computer output below gives the audience rating
based on genre. (We have only included the genres
with at least 10 movies in that category.)

(a) Which genre has the highest mean audience
score? The lowest mean audience score?



100 C H A P T E R 2 Describing Data

(b) Which genre has the highest median score? The
lowest median score?

(c) In which genre is the lowest score, and what is
that score? In which genre is the highest score,
and what is that score?

(d) Which genre has the largest number of movies
in that category?

2.134 Physical Activity by Region of the Country in
the US The variables in USStates include the per-
cent of the people in each state who say they have
engaged in any physical activity in the last month as
well as the region of the country in which the state
is found (Midwest, Northeast, South, or West). One
of these variables is quantitative and one is cate-
gorical, and Figure 2.41 allows us to visualize the
relationship between the two variables.

(a) Which region shows the lowest level of physical
activity? Which region shows the highest?

(b) Which region appears to have the biggest range?

(c) Are there any outliers?

(d) Does there appear to be an association between
amount of physical activity and region of the
country?
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Figure 2.41 Physical activity in US states by region of
the country

2.135 Infection in Dialysis Patients Table 2.28 gives
data showing the time to infection, at the point of
insertion of the catheter, for kidney patients using
portable dialysis equipment. There are 38 patients,
and the data give the first observation for each
patient.49 The five number summary for these data
is (2, 15, 46, 149, 536).

49McGilchrist, C. and Aisbett, C., ‘‘Regression with frailty in
survival analysis,” Biometrics, 1991; 47: 461–466.

(a) Identify any outliers in the data. Justify your
answer.

(b) Draw the boxplot.

Table 2.28 Time to infection for dialysis
patients

2 5 6 7 7 8 12 13
15 15 17 22 22 23 24 27
30 34 39 53 54 63 96 113

119 130 132 141 149 152 152 185
190 292 402 447 511 536

2.136 Hits in Baseball Major League Baseball is
split into two leagues, the National League (NL)
and the American League (AL). The main differ-
ence between the two leagues is that pitchers take at
bats in the National League but not in the American
League. Are total team hits different between the
two leagues? Figure 2.42 shows side-by-side box-
plots for the two leagues. The data are stored in
BaseballHits.

(a) Estimate the median number of hits for each
league, and estimate the difference in median
hits between the two leagues. Which league
appears to get more hits?

(b) What is the other obvious difference (apparent
in Figure 2.42) between the two leagues?
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Figure 2.42 Side-by-side boxplots for hits by league

EFFECT OF DIET ON NUTRIENTS IN THE
BLOOD
Exercises 2.137 to 2.139 use data from Nutrition-
Study on dietary variables and concentrations of
micronutrients in the blood for a sample of n = 315
individuals.

h
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2.137 Daily Calorie Consumption The five number
summary for daily calorie consumption is (445, 1334,
1667, 2106, 6662).

(a) The 10 largest data values are given below.
Which (if any) of these is an outlier?

3185 3228 3258 3328 3450

3457 3511 3711 4374 6662

(b) Determine whether there are any low outliers.
Show your work.

(c) Draw the boxplot for the calorie data.

2.138 Daily Calories by Gender Figure 2.43 shows
side-by-side boxplots comparing calorie consump-
tion by gender.

(a) Which gender has the largest median daily calo-
rie consumption? Which gender has the largest
outlier? Which gender has the most outliers?

(b) Does there seem to be an association between
gender and calorie consumption? Explain.
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Figure 2.43 Calorie consumption by gender

2.139 Concentration of Retinol by Vitamin Use
Figure 2.44 displays the relationship between
vitamin use and the concentration of retinol

Plasma Retinol
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Figure 2.44 Concentration of retinol by vitamin use

(a micronutrient) in the blood. Does there seem to
be an association between these two variables?

2.140 Systolic Blood Pressure Figure 2.45 shows the
boxplot for the systolic blood pressures for all 200
patients in the ICU study in ICUAdmissions. Dis-
cuss what information this graph gives about the
distribution of blood pressures in this sample of
patients. What is the five number summary?

225 250200

∗ ∗ ∗∗∗

175150

Systolic Blood Pressure (mm Hg)

1251007550

Figure 2.45 Systolic blood pressure of ICU patients

2.141 Systolic Blood Pressure and Survival The
data in ICUAdmissions contains a categorical vari-
able Status indicating whether each patient lived
(0) or died (1). Is there a relationship between the
status (lived/died) and the systolic blood pressures?
Use the side-by-side boxplots showing the systolic
blood pressures for these two groups of patients
in Figure 2.46 to discuss how the distributions
compare.
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Figure 2.46 Systolic blood pressures of patients who
lived or died

2.142 How Do Honeybees Communicate Quality?
When honeybees are looking for a new home, they
send out scouts to explore options. When a scout
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returns, she does a ‘‘waggle dance” with multi-
ple circuit repetitions to tell the swarm about the
option she found.50 The bees then decide between
the options and pick the best one. Scientists wanted
to find out how honeybees decide which is the best
option, so they took a swarm of honeybees to an
island with only two possible options for new homes:
one of very high honeybee quality and one of low
quality. They then kept track of the scouts who vis-
ited each option and counted the number of waggle
dance circuits each scout bee did when describing
the option.51 Comparative dotplots of number of
circuits performed by the 41 bees that visited the
high-quality option and the 37 bees that visited the
low-quality option are shown in Figure 2.47. The
data are available in HoneybeeCircuits.

(a) Does there appear to be an association between
number of circuits in the waggle dance and the
quality of the site? If so, describe the association.

(b) The five number summary for the number of
circuits for those describing the high-quality site
is (0, 7.5, 80, 122.5, 440), while the five number
summary for those describing the low-quality
site is (0, 0, 0, 42.5, 185). Use the IQR method
to identify any outliers in either group. Justify
your answer.

(c) The mean for the high-quality group is xH =
90.5 with a standard deviation of 94.6, while
the mean for the low-quality group is xL = 30.0
with a standard deviation of 49.4. What is the
difference in means, xH − xL?

(d) Find the z-score for the largest value in the high-
quality group and the z-score for the largest
value in the low-quality group. Which is larger
relative to its group?

(e) Is it appropriate to use the 95% rule with either
set of data?
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Figure 2.47 Number of circuits completed in the
honeybee waggle dance

50Check out a honeybee waggle dance on YouTube!
51Seeley, T., Honeybee Democracy, Princeton University Press,
Princeton, NJ, 2010, p. 128.

2.143 Effect of Calcium on Fish In a study52 to
determine how the calcium level of water affects
respiration rate of fish, 360 fish in a sample were
randomly divided into three tanks with different
levels of calcium: low, medium, and high. The respi-
ration rate of the fish, in beats per minute, was then
measured. The dataset is in FishGills3 and the two
variables are Calcium and GillRate.

(a) Use technology to create side-by-side boxplots
for gill rate in the three different calcium con-
ditions. Describe the relationship between the
two variables.

(b) Use technology to obtain comparative summary
statistics for gill rate in the three different cal-
cium conditions and give the mean and the
standard deviation for the gill rates in each of
the three calcium conditions.

(c) Is this study an experiment or an observational
study?

2.144 Better Traffic Flow Have you ever driven
along a street where it seems that every traffic
light is red when you get there? Some engineers in
Dresden, Germany, are looking at ways to improve
traffic flow by enabling traffic lights to communicate
information about traffic flow with nearby traffic
lights. The data in TrafficFlow show results of one
experiment53 that simulated buses moving along a
street and recorded the delay time (in seconds) for
both a fixed time and a flexible system of lights. The
simulation was repeated under both conditions for
a total of 24 trials.

(a) What is the explanatory variable? What is the
response variable? Is each categorical or quan-
titative?

(b) Use technology to find the mean and the stan-
dard deviation for the delay times under each of
the two conditions (Timed and Flexible). Does
the flexible system seem to reduce delay time?

(c) The data in TrafficFlow are paired since we
have two values, timed and flexible, for each
simulation run. For paired data we gener-
ally compute the difference for each pair. In
this example, the dataset includes a variable
called Difference that stores the difference

52Thanks to Professor Brad Baldwin of St. Lawrence University
for this dataset.
53Lammer, S. and Helbing, D., ‘‘Self-Stabilizing Decentralized
Signal Control of Realistic, Saturated Network Traffic,” Santa Fe
Institute, Santa Fe, NM, working paper No. 10-09-019, September
2010.
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Timed − Flexible for each simulation run. Use
technology to find the mean and standard devi-
ation of these differences.

(d) Use technology to draw a boxplot of the differ-
ences. Are there any outliers?

DRAW THESE SIDE-BY-SIDE BOXPLOTS
Exercises 2.145 and 2.146 examine issues of location
and spread for boxplots. In each case, draw side-
by-side boxplots of the datasets on the same scale.
There are many possible answers.

2.145 One dataset has median 25, interquartile
range 20, and range 30. The other dataset has median
75, interquartile range 20, and range 30.

2.146 One dataset has median 50, interquartile
range 20, and range 40. A second dataset has median
50, interquartile range 50, and range 100. A third
dataset has median 50, interquartile range 50, and
range 60.

2.147 Examine a Relationship in StudentSurvey
From the StudentSurvey dataset, select any cate-
gorical variable and select any quantitative variable.

Use technology to create side-by-side boxplots to
examine the relationship between the variables.
State which two variables you are using and describe
what you see in the boxplots. In addition, use tech-
nology to compute comparative summary statistics
and compare means and standard deviations for the
different groups.

2.148 Examine a Relationship in USStates
Exercise 2.134 examined the relationship between
region of the country and level of physical activity
of the population of US states. From the USStates
dataset, examine a different relationship between
a categorical variable and a quantitative variable.
Select one of each type of variable and use tech-
nology to create side-by-side boxplots to examine
the relationship between the variables. State which
two variables you are using and describe what you
see in the boxplots. In addition, use technology to
compute comparative summary statistics and com-
pare means and standard deviations for the different
groups.

2.5TWO QUANTITATIVE VARIABLES: SCATTERPLOT
AND CORRELATION

In Section 2.1 we look at relationships between two categorical variables, and in
Section 2.4 we investigate relationships between a categorical and a quantitative
variable. In this section, we look at relationships between two quantitative variables.

D A T A 2 . 9 Presidential Approval Ratings and Re-election
When a US president runs for re-election, how strong is the relationship
between the president’s approval rating and the outcome of the election?
Table 2.29 includes all the presidential elections since 1940 in which an
incumbent was running and shows the presidential approval rating at the time
of the election and the margin of victory or defeat for the president in the
election.54 The data are available in ElectionMargin. ■

Example 2.32
(a) What was the highest approval rating for any of the losing presidents? What

was the lowest approval rating for any of the winning presidents? Make a
conjecture about the approval rating needed by a sitting president in order to
win re-election.

(b) Approval rating and margin of victory are both quantitative variables. Does
there seem to be an association between the two variables?

54Silver, N., ‘‘Approval Ratings and Re-Election Odds,” fivethirtyeight.com, posted January 28, 2011.
There are no results for 1944 because Gallup went on wartime hiatus.
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Table 2.29 Presidential approval rating and margin of victory or defeat

Year Candidate Approval Margin Result

1940 Roosevelt 62 10.0 Won
1948 Truman 50 4.5 Won
1956 Eisenhower 70 15.4 Won
1964 Johnson 67 22.6 Won
1972 Nixon 57 23.2 Won
1976 Ford 48 −2.1 Lost
1980 Carter 31 −9.7 Lost
1984 Reagan 57 18.2 Won
1992 G. H. W. Bush 39 −5.5 Lost
1996 Clinton 55 8.5 Won
2004 G. W. Bush 49 2.4 Won

Solution (a) Three presidents lost, and the highest approval rating among them is 48%. Eight
presidents won, and the lowest approval rating among them is 49%. It appears
that a president needs an approval rating of 49% or higher to win re-election.

(b) In general, it appears that a higher approval rating corresponds to a larger
margin of victory, although the association is not perfect.

Visualizing a Relationship between Two Quantitative
Variables: Scatterplots
The standard way to display the relationship between two quantitative variables is to
extend the notion of a dotplot for a single quantitative variable to a two-dimensional
graph known as a scatterplot. To examine a relationship between two quantitative
variables, we have paired data, where each data case has values for both of the
quantitative variables.

Scatterplot

A scatterplot is a graph of the relationship between two quantitative
variables.

A scatterplot includes a pair of axes with appropriate numerical scales,
one for each variable. The paired data for each case are plotted as
a point on the scatterplot. If there are explanatory and response
variables, we put the explanatory variable on the horizontal axis and
the response variable on the vertical axis.

Example 2.33
Draw a scatterplot for the data on approval rating and margin of victory in
Table 2.29.

Solution We believe approval ratings may help us predict the margin of victory, so the
explanatory variable is approval rating and the response variable is margin of
victory. We put approval rating on the horizontal axis and margin of victory on
the vertical axis. The 11 data pairs are plotted as 11 points in the scatterplot of
Figure 2.48. The point corresponding to Roosevelt in 1940, with an approval rating
of 62% and a margin of victory of 10 points, is indicated. We notice from the upward
trend of the points that the margin of victory does tend to increase as the approval
rating increases.
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Figure 2.48 Approval
rating and margin of
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Interpreting a Scatterplot
When looking at a scatterplot we often address the following questions:

• Do the points form a clear trend with a particular direction, are they more
scattered about a general trend, or is there no obvious pattern?

• If there is a trend, is it generally upward or generally downward as we look
from left to right? A general upward trend is called a positive association while a
general downward trend is called a negative association.

• If there is a trend, does it seem to follow a straight line, which we call a linear
association, or some other curve or pattern?

• Are there any outlier points that are clearly distinct from a general pattern in the
data?

For the presidential re-election data in Figure 2.48, we see a positive association
since there is an upward trend in margin of victory as approval increases. While the
points certainly do not all fall exactly on a straight line, we can imagine drawing a
line to match the general trend of the data. There is a general linear trend, and it is
a relatively strong association.

Example 2.34
Scatterplots Using Data from Florida Lakes

Four scatterplots are shown in Figure 2.49 using data from the FloridaLakes dataset,
introduced in Data 2.4 on page 68. For each pair of variables, discuss the information
contained in the scatterplot. If there appears to be a positive or negative association,
discuss what that means in the specific context.

Solution (a) Acidity appears to have a negative linear association with average mercury level,
but not a strong one as the points are scattered widely around any straight line.
Since the association is negative, larger values of acidity tend to be associated
with smaller levels of mercury.

(b) Alkalinity also is negatively associated with average mercury level, with a slightly
stronger association along a more curved trend. One lake with a high average
mercury level around 1.1 ppm also has a high alkalinity at almost 90 mg/L and is
clearly away from the general trend of the data. Note that neither of the values
for this lake would be considered outliers for the individual variables, but the
data pair stands out in the scatterplot so it is considered an outlier. Since the
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Figure 2.49 Scatterplots of data from Florida lakes

association is negative, larger values of alkalinity tend to be associated with
smaller levels of mercury.

(c) There is a positive association since the acidity increases with alkalinity along a
curved pattern. Since the association is positive, larger values of acidity tend to
be associated with larger values of alkalinity.

(d) The average mercury levels show a strong positive association with the standard-
ized mercury levels that fit fairly closely to a straight line. Since the association is
positive, larger levels of standardized mercury tend to be associated with larger
levels of mercury.

Summarizing a Relationship between Two Quantitative
Variables: Correlation
Just as the mean or median summarizes the center and the standard devia-
tion or interquartile range measures the spread of the distribution for a single
quantitative variable, we need a numerical statistic to measure the strength and
direction of association between two quantitative variables. One such statistic is the
correlation.
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Correlation

The correlation is a measure of the strength and direction of linear
association between two quantitative variables.

As with previous summary statistics, we generally use technology to compute a
correlation. Also as with some of our previous summary statistics, the notation we
use for correlation depends on whether we are referring to a sample or a population.

Notation for the Correlation

The correlation between two quantitative variables of a sample is
denoted r.

The correlation between two quantitative variables of a population is
denoted ρ, which is the Greek letter ‘‘rho”.

Properties of the Correlation
Table 2.30 shows correlations for each of the pairs of variables that have been

displayed in scatterplots earlier in this section.

Table 2.30 Compare these correlations to their scatterplots

Variable 1 Variable 2 Correlation

Margin of victory Approval rating 0.86
Average mercury Acidity −0.58
Average mercury Alkalinity −0.59
Alkalinity Acidity 0.72
Average mercury Standardized mercury 0.96

Notice that all the correlations in the table are between −1 and +1. We see that a
positive correlation corresponds to a positive association and a negative correlation
corresponds to a negative association. Notice also that correlation values closer to 1
or −1 correspond to stronger linear associations. We make these observations more
precise in the following list of properties.

Properties of the Correlation

The sample correlation r has the following properties:

• Correlation is always between −1 and 1, inclusive: −1 ≤ r ≤ 1.

• The sign of r (positive or negative) indicates the direction of associ-
ation.

• Values of r close to +1 or −1 show a strong linear relationship,
while values of r close to 0 show no linear relationship.

• The correlation r has no units and is independent of the scale of
either variable.

• The correlation is symmetric: The correlation between variables x
and y is the same as the correlation between y and x.

The population correlation ρ also satisfies these properties.
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Table 2.31 Cricket chirps and temperature

Temperature (◦ F) 54.5 59.5 63.5 67.5 72.0 78.5 83.0

Chirps (per minute) 81 97 103 123 150 182 195

D A T A 2 . 10 Cricket Chirps and Temperature
Common folk wisdom claims that one can determine the temperature on a
summer evening by counting how fast the crickets are chirping. Is there really
an association between chirp rate and temperature? The data in Table 2.31 were
collected by E. A. Bessey and C. A. Bessey,55 who measured chirp rates for
crickets and temperatures during the summer of 1898. The data are also stored
in CricketChirps. ■

© Dumrong Khajaroen/iStockphoto

Is the chirp rate of crickets associated with the
temperature?

Example 2.35
A scatterplot of the data in Table 2.31 is given in Figure 2.50.

(a) Use the scatterplot to estimate the correlation between chirp rate and tempera-
ture. Explain your reasoning.

(b) Use technology to find the correlation and use correct notation.

(c) Are chirp rate and temperature associated?

Solution (a) Figure 2.50 shows a very strong positive linear trend in the data, so we expect
the correlation to be close to +1. Since the points do not all lie exactly on a line,
the correlation will be slightly less than 1.

(b) We use the notation r for this sample correlation. Using technology, we see
that r = 0.99, matching the very strong positive linear relationship we see in the
scatterplot.

(c) Yes, cricket chirp rates and air temperature are strongly associated!

55Bessey, E. A. and Bessey, C. A., ‘‘Further Notes on Thermometer Crickets,’’ American Naturalist,
1898; 32: 263–264.

V

A
o



2.5 Two Quantitative Variables: Scatterplot and Correlation 109

Figure 2.50 Scatterplot
of chirp rate and
temperature 80
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Correlation Cautions

Example 2.36
Figure 2.51 shows the estimated average life expectancy56 (in years) for a sample
of 40 countries against the average amount of fat57 (measured in grams per capita
per day) in the food supply for each country. The scatterplot shows a clear positive
association (r = 0.70) between these two variables. The countries with short life
expectancies all have below-average fat consumption, while the countries consuming
more than 100 grams of fat on average all have life expectancies over 70 years. Does
this mean that we should eat more fat in order to live longer?

Figure 2.51 Life
expectancy vs grams of
fat in daily diet for 40
countries 10
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56United Nations Development Program, Human Development Report 2003.
57Food and Agriculture Organization of the United Nations.
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Solution No! Just because there is a strong association between these two variables, it would
be inappropriate to conclude that changing one of them (for example, increasing
fat in the diet) would cause a corresponding change in the other variable (lifetime).
An observational study was used to collect these data, so we cannot conclude that
there is a causal relationship. One likely confounding variable is the wealth of the
country, which is associated with both life expectancy and fat consumption.

A strong correlation does not necessarily imply a causal association! As we saw
in Chapter 1, we need to be aware of confounding variables and we need to pay
attention to whether the data come from an experiment or an observational study.

Correlation Caution #1

A strong positive or negative correlation does not (necessarily) imply
a cause and effect relationship between the two variables.

Example 2.37
Core body temperature for an individual person tends to fluctuate during the day
according to a regular circadian rhythm. Suppose that body temperatures for an
adult woman are recorded every hour of the day, starting at 6 a.m. The results are
shown in Figure 2.52. Does there appear to be an association between the time of
day and body temperature? Estimate the correlation between the hour of the day
and the woman’s body temperature.

Solution There is a regular pattern with temperatures rising in the morning, staying fairly
constant throughout the day, and then falling at night, so these variables are
associated. Despite this association, the correlation between these two variables will
be near zero. (For Figure 2.52 the actual correlation is r = −0.08.) The beginning
hours appear to have a positive association but the trend is negative for the later
hours. Remember that correlation measures the strength of a linear relationship
between two variables.
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Correlation Caution #2

A correlation near zero does not (necessarily) mean that the two
variables are not associated, since the correlation measures only the
strength of a linear relationship.

D A T A 2 . 11 Effects of Diet on Levels of Retinol and Beta-carotene
In a study on the association between diet and levels of retinol and beta-carotene
in the blood stream, researchers recorded a variety of dietary and demographic
variables for the subjects. Variables include alcohol consumption, average daily
calories, age, gender, multivitamin use, fat grams per day, fiber grams per day,
smoking habits, etc. The data are available in NutritionStudy. ■

Example 2.38
Figure 2.53 shows the alcohol consumption (drinks per week) and average daily
caloric intake for 91 subjects who are at least 60 years old, from the data in
NutritionStudy. Notice the distinct outlier who claims to down 203 drinks per week
as part of a 6662 calorie diet! This is almost certainly an incorrect observation. The
second plot in Figure 2.53 shows these same data with the outlier omitted. How do
you think the correlation between calories and alcohol consumption changes when
the outlier is deleted?

Solution The correlation between alcohol consumption and daily calories is r = 0.72 with the
outlier present, but only r = 0.15 when that data point is omitted. What initially
might look like a strong association between alcohol consumption and daily calories
turns out to be much weaker when the extreme outlier is removed.

Correlation Caution #3

Correlation can be heavily influenced by outliers. Always plot your
data!
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A Formula for Correlation
We routinely rely on technology to compute correlations, but you may be wondering
how such computations are done. While computing a correlation ‘‘by hand” is tedious
and often not very informative, a formula, such as the one shown below, can be
helpful in understanding how the correlation works:

r = 1
n − 1

∑ (
x − x

sx

) (
y − y

sy

)
Essentially this involves converting all values for both variables to z-scores,

which puts the correlation on a fixed −1 to +1 scale and makes it independent of
the scale of measurement. For a positive association, large values for x tend to occur
with large values of y (both z-scores are positive) and small values (with negative
z-scores) tend to occur together. In either case the products are positive, which leads
to a positive sum. For a negative association, the z-scores tend to have opposite
signs (small x with large y and vice versa) so the products tend to be negative.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Describe an association displayed in a scatterplot

• Explain what a positive or negative association means between two
variables

• Interpret a correlation

• Use technology to calculate a correlation

• Recognize that correlation does not imply cause and effect

• Recognize that you should always plot your data in addition to
interpreting numerical summaries

Exercises for Section 2.5

SKILL BUILDER 1
Match the scatterplots in Figure 2.54 with the cor-
relation values in Exercises 2.149 to 2.152.

2.149 r = −1

2.150 r = 0
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Figure 2.54 Match the correlations to the scatterplots

2.151 r = 0.8

2.152 r = 1

SKILL BUILDER 2
Match the scatterplots in Figure 2.55 with the cor-
relation values in Exercises 2.153 to 2.156.
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Figure 2.55 Match the correlations to the scatterplots

2.153 r = 0.09

2.154 r = −0.38

2.155 r = 0.89

2.156 r = −0.81

SKILL BUILDER 3
In Exercises 2.157 to 2.162, two quantitative vari-
ables are described. Do you expect a positive or
negative association between the two variables?
Explain your choice.

2.157 Size of a house and Cost to heat the house

2.158 Distance driven since the last fill-up of the gas
tank and Amount of gas left in the tank

2.159 Outside temperature and Amount of clothes
worn

2.160 Number of text messages sent on a cell phone
and Number of text messages received on the phone

2.161 Number of people in a square mile and Num-
ber of trees in the square mile

2.162 Amount of time spent studying and Grade on
the exam

SKILL BUILDER 4
In Exercises 2.163 and 2.164, make a scatterplot of
the data. Put the X variable on the horizontal axis
and the Y variable on the vertical axis.

2.163

X 3 5 2 7 6

Y 1 2 1.5 3 2.5

2.164

X 15 20 25 30 35 40 45 50

Y 532 466 478 320 303 349 275 221

SKILL BUILDER 5
In Exercises 2.165 and 2.166, use statistical software
on a computer or calculator to find the correlation
for the data indicated.

2.165 The data in Exercise 2.163

2.166 The data in Exercise 2.164

2.167 Presidential Approval Ratings and Re-
election Odds In Data 2.9 on page 103, we discuss
the relationship between a president’s approval rat-
ing when running for re-election and the margin of
victory or defeat in the election. Table 2.29 shows
the data and Figure 2.48 shows a scatterplot of the
data.

(a) In how many of the 11 elections listed did the
incumbent president lose? Since 1940, what per-
cent of the time has the sitting president lost his
bid for re-election?

(b) Which president had the highest approval rat-
ing? Which president had the highest margin
of victory? Identify these two points on the
scatterplot.

2.168 Height and Weight The quantitative vari-
ables Height (in inches) and Weight (in pounds) are
included in the StudentSurvey dataset.

(a) What would a positive association mean for
these two variables? What would a negative
association mean? Which do you expect is more
likely?

(b) Figure 2.56 shows a scatterplot of the data.
Does there appear to be a positive or nega-
tive relationship between height and weight?
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Figure 2.56 Scatterplot of height and weight
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How strong does the trend appear to be? Does
it appear to be approximately a linear trend?

(c) Describe the person represented by the outlier
in the lower right corner.

2.169 Light Roast or Dark Roast for Your Cof-
fee? A somewhat surprising fact about coffee is
that the longer it is roasted, the less caffeine it has.
Thus an ‘‘extra bold” dark roast coffee actually
has less caffeine than a light roast coffee. What is
the explanatory variable and what is the response
variable? Do the two variables have a negative
association or a positive association?

2.170 Mother’s Love, Hippocampus, and Resiliency
Multiple studies58 in both animals and humans show
the importance of a mother’s love (or the uncondi-
tional love of any close person to a child) in a child’s
brain development. A recent study shows that chil-
dren with nurturing mothers had a substantially
larger area of the brain called the hippocampus
than children with less nurturing mothers. This is
important because other studies have shown that
the size of the hippocampus matters: People with
large hippocampus area are more resilient and are
more likely to be able to weather the stresses and
strains of daily life. These observations come from
experiments in animals and observational studies in
humans.

(a) Is the amount of maternal nurturing one
receives as a child positively or negatively
associated with hippocampus size?

(b) Is hippocampus size positively or negatively
associated with resiliency and the ability to
weather the stresses of life?

(c) How might a randomized experiment be
designed to test the effect described in part (a) in
humans? Would such an experiment be ethical?

(d) Can we conclude that maternal nurturing in
humans causes the hippocampus to grow larger?
Can we conclude that maternal nurturing in ani-
mals (such as mice, who were used in many
of the experiments) causes the hippocampus to
grow larger? Explain.

2.171 Commitment Genes and Cheating Genes In
earlier studies, scientists reported finding a ‘‘com-
mitment gene” in men, in which men with a certain
gene variant were much less likely to commit to
a monogamous relationship.59 That study involved

58Raison, C., ‘‘Love key to brain development in children,”
cnn.com, The Chart, March 12, 2012.
59Timmer, J., ‘‘Men with genetic variant struggle with commit-
ment,” arstechnica.com, reporting on a study in the Proceedings
of the National Academy of Science, 2009.

only men (and we return to it later in this text),
but a new study, involving birds this time rather
than humans, shows that female infidelity may be
inherited.60 Scientists recorded who mated with or
rebuffed whom for five generations of captive zebra
finches, for a total of 800 males and 754 females.
Zebra finches are believed to be a monogamous
species, but the study found that mothers who cheat
with multiple partners often had daughters who also
cheat with multiple partners. To identify whether
the effect was genetic or environmental, the scien-
tists switched many of the chicks from their original
nests. More cheating by the mother was strongly
associated with more cheating by the daughter. Is
this a positive or negative association?

2.172 The Happy Planet Index The website
TED.com offers free short presentations, called
TED Talks, on a variety of interesting subjects.
One of the talks is called ‘‘The Happy Planet
Index,” by Nic Marks.61 Marks comments that we
regularly measure and report economic data on
countries, such as Gross National Product, when
we really ought to be measuring the well-being of
the people in the countries. He calls this measure
Happiness, with larger numbers indicating greater
happiness, health, and well-being. In addition, he
believes we ought to be measuring the ecological
footprint, per capita, of the country, with larger
numbers indicating greater use of resources (such
as gas and electricity) and more damage to the
planet. Figure 2.57 shows a scatterplot of these two
quantitative variables. The data are given in Hap-
pyPlanetIndex.

(a) Does there appear to be a mostly positive or
mostly negative association between these two
variables? What does that mean for these two
variables?

(b) Describe the happiness and ecological footprint
of a country in the bottom left of the graph.

(c) Costa Rica has the highest Happiness index.
Find it on the graph and estimate its ecological
footprint score.

(d) For ecological footprints between 0 and 6, does
a larger ecological footprint tend to be asso-
ciated with more happiness? What about for
ecological footprints between 6 and 10? Discuss
this result in context.

60Millus, S., ‘‘Female infidelity may be inherited,” Science News,
July 16, 2011, p. 10.
61Marks, N., ‘‘The Happy Planet Index,” www.TED.com/talks,
August 29, 2010.
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Figure 2.57 Happiness and ecological footprint

(e) Marks believes we should be working to move
all countries to the top left of the graph, closer
to Costa Rica. What attributes does a country
in the upper left of the graph possess?

(f) This graph shows a third variable as well:
region of the world. One way to depict a
categorical variable on a scatterplot is using
different colors or shapes for different cate-
gories. The code is given in the top right, and
is categorized as follows: 1 = Latin America,
2 = Western nations, 3 = Middle East, 4 =
Sub-Saharan Africa, 5 = South Asia, 6 =
East Asia, 7 = former Communist countries.
Discuss one observation of an association
between region and the two quantitative vari-
ables.

(g) If the goal is to move all countries to the top
left, how should efforts be directed for those in
the bottom left? How should efforts be directed
for those in the top right?

2.173 Vegetables and Obesity
The USStates dataset includes information on the
50 US states, including the percent of the popula-
tion of each state that eats at least five servings of
fruits and vegetables a day and the percent of the
population of each state that is obese. Figure 2.58
shows a scatterplot of these two variables.

(a) Does the scatterplot show a positive or negative
association? Explain why your answer makes
sense for these two variables.

(b) Where would a very healthy state be located
on the scatterplot: top left, top right, bottom
left, bottom right, or middle? What about a very
unhealthy state?

(c) Pick a point in a very healthy location in the
scatterplot, and use the dataset USStates to
find the state it represents. Pick a point in a
very unhealthy location and find the state it
represents.

(d) Is the data from a sample or a population? What
is the correct notation for the correlation?

(e) Which of the following is most likely to be the
correlation between these two variables?

− 1, −0.941, −0.605, −0.083,
0.172, 0.445, 0.955, 1

(f) Would a positive correlation imply that eating
more vegetables will cause you to gain weight?

(g) Would a negative correlation imply that eating
more vegetables will cause you to lose weight?

(h) One state stands out for eating an average num-
ber of vegetables but having a particularly low
obesity rate. What state is this?
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2.174 Ages of Husbands and Wives Suppose we
record the husband’s age and the wife’s age for
many randomly selected couples.

(a) What would it mean about ages of couples if
these two variables had a negative relationship?

(b) What would it mean about ages of couples if
these two variables had a positive relationship?

(c) Which do you think is more likely, a negative or
a positive relationship?

(d) Do you expect a strong or a weak relationship
in the data? Why?

(e) Would a strong correlation imply there is an
association between husband age and wife age?

2.175 Is Your Body Language Closed or Open? A
closed body posture includes sitting hunched over
or standing with arms crossed rather than sitting or
standing up straight and having the arms more open.
According to a recent study, people who were rated
as having a more closed body posture ‘‘had higher
levels of stress hormones and said they felt less
powerful than those who had a more open pose.’’62

(a) What are the variables in this study? Is each
variable categorical or quantitative? Assume
participants had body language rated on a
numerical scale from low values representing
more closed to larger values representing more
open. Assume also that participants were rated
on a numerical scale indicating whether each
felt less powerful (low values) or more powerful
(higher values).

(b) Do the results of the study indicate a positive
or negative relationship between the body lan-
guage scores and levels of stress hormones?
Would your answer be different if the scale had
been reversed for the body language scores?

(c) Do the results of the study indicate a positive
or negative relationship between the body lan-
guage scores and the scores on the feelings of
power? Would your answer be different if both
scales were reversed? Would your answer be
different if only one of the scales had been
reversed?

2.176 SAT Scores: Math vs Verbal The StudentSur-
vey dataset includes scores on the Math and Verbal
portions of the SAT exam.

(a) What would a positive relationship between
these two variables imply about SAT scores?
What would a negative relationship imply?

62‘‘Don’t Slouch!” Consumer Reports OnHealth, February 2011;
23(2): p. 3.

(b) Figure 2.59 shows a scatterplot of these two
variables. For each corner of the scatterplot
(top left, top right, bottom left, bottom right),
describe a student whose SAT scores place him
or her in that corner.

(c) Does there appear to be a strong linear rela-
tionship between these two variables? What
does that tell you about SAT scores?

(d) Which of the following is most likely to be the
correlation between these two variables?

−0.941, −0.605, −0.235, 0.445, 0.751, 0.955
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Figure 2.59 MathSAT score and VerbalSAT score

2.177 Exercising or Watching TV? The StudentSur-
vey dataset includes information on the number of
hours a week students say they exercise and the
number of hours a week students say they watch
television.

(a) What would a positive relationship between
these two variables imply about the way stu-
dents spend their time? What would a negative
relationship imply?

(b) For each corner of the scatterplot of these two
variables shown in Figure 2.60 (top left, top
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Figure 2.60 Number of hours a week of exercise and of
television watching
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right, bottom left, bottom right), describe a stu-
dent whose daily habits place him or her in that
corner.

(c) There are two outliers in this scatterplot.
Describe the student corresponding to the out-
lier on the right. Describe the student corre-
sponding to the outlier on the top.

(d) The correlation between these two variables
is r = 0.01. What does this correlation tell
you about the strength of a linear relationship
between these two variables?

2.178 Blood Pressure and Heart Rate In
Example 2.19 on page 79 we computed z-scores for
patient #772 in the ICUAdmissions dataset, who
had a high systolic blood pressure reading of 204
but a low pulse rate of 52 bpm.

(a) Find the point corresponding to patient #772 on
the scatterplot of blood pressure vs heart rate
shown in Figure 2.61.

(b) Patient #772 has a high blood pressure reading
but a low pulse rate. Does the scatterplot in
Figure 2.61 support a conjecture that these two
variables have a negative association?
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Figure 2.61 Blood pressure vs heart rate for ICU
patients

2.179 An Outlier in Jogging Times Table 2.32 gives
the times for five races in which two joggers partici-
pated.

(a) Use technology to construct a scatterplot of the
race times.

(b) Use technology to find the correlation.

(c) A sixth race is held on a very windy day, and
jogger A takes 50 minutes while jogger B takes
a whole hour to complete the race. Recalculate
the correlation with this point added.

(d) Compare correlations from parts (b) and (c).
Did adding the results from the windy day have
an effect on the relationship between the two
joggers?

Table 2.32 Jogging times

Jogger A Jogger B

44 48
45 49
43 38
48 40
45 50

2.180 Comparing Global Internet Connections In
Exercise 2.109 on page 89, we discuss a study in
which the Nielsen Company measured connection
speeds on home computers in nine different coun-
tries in order to determine whether connection
speed affects the amount of time consumers spend
online.63 Table 2.33 shows the percent of Internet
users with a ‘‘fast” connection (defined as 2Mb or
faster) and the average amount of time spent online,
defined as total hours connected to the web from
a home computer during the month of February
2011. The data are also available in the dataset
GlobalInternet.

(a) What would a positive association mean
between these two variables? Explain why a
positive relationship might make sense in this
context.

(b) What would a negative association mean bet-
ween these two variables? Explain why a neg-
ative relationship might make sense in this
context.

Table 2.33 Internet connection speed and
hours online

Percent Fast Hours
Country Connection Online

Switzerland 88 20.18
United States 70 26.26
Germany 72 28.04
Australia 64 23.02
United Kingdom 75 28.48
France 70 27.49
Spain 69 26.97
Italy 64 23.59
Brazil 21 31.58

63‘‘Swiss Lead in Speed: Comparing Global Internet Connec-
tions,” NielsenWire, April 1, 2011.
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(c) Make a scatterplot of the data, using connec-
tion speed as the explanatory variable and time
online as the response variable. Is there a pos-
itive or negative relationship? Are there any
outliers? If so, indicate the country associated
with each outlier and describe the characteristics
that make it an outlier for the scatterplot.

(d) If we eliminate any outliers from the scatter-
plot, does it appear that the remaining countries
have a positive or negative relationship between
these two variables?

(e) Use technology to compute the correlation. Is
the correlation affected by the outliers?

(f) Can we conclude that a faster connection speed
causes people to spend more time online?

2.181 What’s Wrong with the Statement? A
researcher claims to have evidence of a strong
positive correlation (r = 0.88) between a person’s
blood alcohol content (BAC) and the type of alco-
holic drink consumed (beer, wine, or hard liquor).
Explain, statistically, why this claim makes no sense.

2.182 Iris Petals Allometry is the area of biology
that studies how different parts of a body grow
in relation to other parts. Figure 2.62 shows a
scatterplot64 comparing the length and width of
petals of irises.

(a) Does there appear to be a positive or nega-
tive association between petal width and petal
length? Explain what this tells us about petals.

(b) Discuss the strength of a linear relationship
between these two variables.

(c) Estimate the correlation.

(d) Are there any clear outliers in the data?
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Figure 2.62 Iris petals

64R.A. Fishers’s iris data downloaded from http://lib.stat.cmu
.edu/DASL/Datafiles/Fisher’sIrises.html.

(e) Estimate the width of the petal which has a
length of 30 mm.

(f) There are at least two different types of irises
included in the study. Explain how the scat-
terplot helps illustrate this, and name one dif-
ference between the types that the scatterplot
makes obvious.

2.183 Create a Scatterplot Draw any scatterplot
satisfying the following conditions:

(a) n = 10 and r = 1

(b) n = 8 and r = −1

(c) n = 5 and r = 0

2.184 Offensive Rebounds vs Defensive Rebounds
The dataset NBAPlayers2011 is introduced on
page 88, and includes many variables about play-
ers in the National Basketball Association in
2010–2011.

(a) Use technology to create a scatterplot for the
relationship between the number of offensive
rebounds in the season and the number of defen-
sive rebounds. (Put offensive rebounds on the
vertical axis.)

(b) Does the relationship appear to be positive or
negative? What does that mean for these two
variables? How strong is the relationship?

(c) There appear to be three outliers in the top
right. Who are they?

(d) Use technology to find the correlation between
these two variables.

2.185 Do Movies with Larger Budgets Get
Higher Audience Ratings? The dataset Hollywood-
Movies2011 is introduced on page 93, and includes
many variables for movies that were produced in
Hollywood in 2011, including Budget and Audi-
enceScore.

(a) Use technology to create a scatterplot to show
the relationship between the budget of a movie,
in millions of dollars, and the audience score.
We want to see if the budget has an effect on
the audience score.

(b) Is there a linear relationship? How strong is it?
Give your answer in the context of movies.

(c) There is an outlier with a very large budget.
What is the audience rating for this movie and
what movie is it? There is another data value
with a budget of about 125 million dollars and
an audience score over 90. To what movie does
that dot correspond?

(d) Use technology to find the correlation between
these two variables.

i i i i i i r
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2.186 Pick a Relationship to Examine Choose one
of the following datasets: USStates, Hollywood-
Movies2011, AllCountries, or NBAPlayers2011,
and then select any two quantitative variables that
we have not yet analyzed. Use technology to graph
a scatterplot of the two variables and discuss what
you see. Is there a linear relationship? If so, is the

association positive or negative? How strong is the
trend? Are there any outliers? If so, identify them
by name. In addition, use technology to find the
correlation. Does the correlation match what you
see in the scatterplot? Be sure to state the dataset
and variables you use.

2.6TWO QUANTITATIVE VARIABLES: LINEAR REGRESSION

In Section 2.5 we investigate the relationship between two quantitative variables. In
this section, we discuss how to use one of the variables to predict the other when
there is a linear trend.

D A T A 2 . 12 Restaurant Tips

The owner65 of a bistro called First Crush in Potsdam, New York, is interested in
studying the tipping patterns of its patrons. He collected restaurant bills over a
two-week period that he believes provide a good sample of his customers. The
data from 157 bills are stored in RestaurantTips and include the amount of the
bill, size of the tip, percentage tip, number of customers in the group, whether
or not a credit card was used, day of the week, and a coded identity of the
server. ■

Image Source/Getty Images, Inc.

Can we predict the size of a
tip?

For the restaurant tips data, we want to use the bill amount to predict the tip
amount, so the explanatory variable is the amount of the bill and the response
variable is the amount of the tip. A scatterplot of this relationship is shown in
Figure 2.63.

65Thanks to Tom DeRosa for providing the tipping data.
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Figure 2.63 Tip vs Bill
for a sample of First
Crush customers 0
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Example 2.39
(a) Use Figure 2.63 to describe the relationship between the bill amount and the tip

amount at this restaurant.

(b) Use technology to find the correlation between these two variables.

(c) Draw a line on the scatterplot that seems to fit the data well.

Solution (a) Figure 2.63 shows a strong positive linear relationship in the data, with a few
outliers (big tippers!) above the main pattern.

(b) Using technology, we see that the correlation is r = 0.915, reinforcing the fact
that the data have a strong positive linear relationship.

(c) There are many lines we could draw that fit the data reasonably well. Try
drawing some! Which of the lines you drew do you think fits the data the best?
One line that fits the data particularly well is shown in Figure 2.64.

The Regression Line
The process of fitting a line to a set of data is called linear regression and the line of
best fit is called the regression line. The regression line for the restaurant tips data is
shown in Figure 2.64 and we see that it seems to fit the data very well. The regression
line provides a model of a linear association between two variables, and we can use
the regression line on a scatterplot to give a predicted value of the response variable,
based on a given value of the explanatory variable.

Figure 2.64 How well
does this line fit the data? 0
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Example 2.40
Use the regression line in Figure 2.64 to estimate the predicted tip amount on a
$60 bill.

Solution The predicted tip amount for a $60 bill is about $10, because the point on the
regression line above Bill = 60 is at a height of about $10 on the vertical Tip scale.

Usually, rather than estimating predictions using a graph, we use the equation
of the regression line. Recall that the equation for a line is given by y = a + bx
where the constant a represents the y-intercept and the coefficient b represents the
slope of the line.66 Finding the regression line, then, means finding values for the
slope and intercept of the line that best describes the linear trend of the data. This
can be done on many calculators and computer programs.

To help distinguish between the predicted and observed values of the response
variable, we often add a ‘‘hat” to the response variable name to denote the predicted
value. Thus if our data pairs are (x, y) with x as the explanatory variable and y as the
response variable, the regression line is given by

ŷ = a + bx

Explanatory and Response Variables

The regression line to predict y from x is NOT the same as the
regression line to predict x from y. Be sure to always pay attention to
which is the explanatory variable and which is the response variable!
A regression line is always in the form

̂Response = a + b · Explanatory

For the restaurant tips data, the equation of the regression line shown in Fig-
ure 2.64 is

T̂ip = −0.292 + 0.182 · Bill

The y-intercept of this line is −0.292 and the slope is 0.182.

Using the Equation of the Regression Line to Make Predictions
The equation of the regression line is often also called a prediction equation

because we can use it to make predictions. We substitute the value of the explanatory
variable into the prediction equation to calculate the predicted response.

Example 2.41
Three different bill amounts from the RestaurantTips dataset are given. In each
case, use the regression line T̂ip = −0.292 + 0.182 · Bill to predict the tip.

(a) A bill of $59.33

(b) A bill of $9.52

(c) A bill of $23.70

66You may have learned the equation for a line as y = mx + b. Statisticians prefer to use y = a + bx. In
either case, the coefficient of x is the slope and the constant term is the vertical intercept.

o

A



122 C H A P T E R 2 Describing Data

Solution (a) If the bill is $59.33, we have

T̂ip = −0.292 + 0.182 · Bill

= −0.292 + 0.182(59.33)

= 10.506

The predicted size of the tip is 10.506 or about $10.51.

(b) For a bill of $9.52, we have T̂ip = −0.292 + 0.182(9.52) = 1.441 ≈ $1.44.

(c) For a bill of $23.70, we have T̂ip = −0.292 + 0.182(23.70) = 4.021 ≈ $4.02.

The predicted value is an estimate of the average response value for that
particular value of the explanatory variable. We expect actual values to be above or
below this amount.

Residuals
In Example 2.41, we found the predicted tip for three of the bills in the restaurant

tips dataset. We can look in the dataset to see how close these predictions are to the
actual tip amount for those bills. The residual is the difference between the observed
value and the predicted value. On a scatterplot, the predicted value is the height
of the regression line for a given Bill amount and the observed value is the height
of the particular data point with that Bill amount, so the residual is the vertical
distance from the point to the line. The residual for one data value is shown in
Figure 2.65.

Residuals

The residual at a data value is the difference between the observed
and predicted values of the response variable:

Residual = Observed − Predicted = y − ŷ

On a scatterplot, the residual represents the vertical deviation from the
line to a data point. Points above the line will have positive residuals
and points below the line will have negative residuals. If the predicted
values closely match the observed data values, the residuals will be
small.

Figure 2.65 A residual is
the vertical deviation
from a point to the line 0
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Example 2.42
In Example 2.41, we find the predicted tip amount for three different bills in the
RestaurantTips dataset. The actual tips left by each of these customers are shown
below. Use this information to calculate the residuals for each of these sample
points.

(a) The tip left on a bill of $59.33 was $10.00.

(b) The tip left on a bill of $9.52 was $1.00.

(c) The tip left on a bill of $23.70 was $10.00.

Solution (a) The observed tip left on the bill of $59.33 is $10.00 and we see in Example 2.41(a)
that the predicted tip is $10.51. The observed tip is a bit less than the predicted
tip. We have

Residual = Observed − Predicted = 10.00 − 10.51 = −0.51

(b) The observed tip left on the bill of $9.52 is just $1.00, and we see in Ex-
ample 2.41(b) that the predicted tip for a bill this size is $1.44, so

Residual = Observed − Predicted = 1.00 − 1.44 = −0.44

(c) The observed tip left on a bill of $23.70 (the first case in the dataset) is $10.00
and we see in Example 2.41(c) that the predicted tip is only $4.02. The observed
tip is quite a bit larger than the predicted tip and we have

Residual = Observed − Predicted = 10.00 − 4.02 = 5.98

This is one of the largest residuals. The server would be quite happy to receive
this extra large tip!

Example 2.43
Data 2.9 on page 103 introduced data that show the approval rating of a president
running for re-election and the resulting margin of victory or defeat for the president
in the election. The data are in ElectionMargin.

(a) The regression line for these 11 data points is

̂Margin = −36.5 + 0.836(Approval)

Calculate the predicted values and the residuals for all the data points.

(b) Show the residuals as distances on a scatterplot with the regression line.

(c) Which residual is the largest? For this largest residual, is the observed margin
higher or lower than the margin predicted by the regression line? To which
president and year does this residual correspond?

Solution (a) We use the regression line to find the predicted value for each data point, and
then subtract to find the residuals. The results are given in Table 2.34. Some of
the residuals are positive and some are negative, reflecting the fact that some of
the data points lie above the regression line and some lie below.

(b) See Figure 2.66. At a given approval rating, such as 62, the observed margin (10)
corresponds to the height of the data point, while the predicted value (15.32)
corresponds to the height of the line at an approval rating of 62. Notice that
in this case the line lies above the data point, and the difference between the
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Table 2.34 Predicted margin and residuals for presidential
incumbents

Approval Actual Margin Predicted Margin Residual

62 10.0 15.32 −5.32
50 4.5 5.30 −0.80
70 15.4 22.01 −6.61
67 22.6 19.50 3.10
57 23.2 11.14 12.06
48 −2.1 3.62 −5.72
31 −9.7 −10.58 0.88
57 18.2 11.14 7.06
39 −5.5 −3.90 −1.60
55 8.5 9.47 −0.97
49 2.4 4.46 −2.06

Figure 2.66 Residuals
measure vertical
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observed value and the predicted value is the length of the vertical line joining
the point to the line.

(c) The largest residual is 12.06. The observed margin of victory is 23.2, high above
the predicted value of 11.14. We see in Figure 2.66 that this is the point with the
greatest vertical deviation from the line. Looking back at Table 2.29 on page
104, we see that this residual corresponds to President Nixon in 1972.

What Does ‘‘Line of Best Fit’’ Mean?
How can we determine which line is the best fit for a set of data? And what

do we even mean by ‘‘best fit”? Our goal is to find the line that provides the best
predictions for the observed values of the response variable. The line that fits the
data best should then be one where the residuals are close to zero. In particular, we
usually try to make the squares of the residuals, (y − ŷ)2, small. The least squares line
is the line with the slope and intercept that makes the sum of the squared residuals
as small as it can possibly be.

Least Squares Line

The least squares line, also called the line of best fit, is the line which
minimizes the sum of the squared residuals.
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Throughout this text, we use the terms regression line and least squares line
interchangeably.

We should expect observed values to fall both above and below the line of best
fit, so residuals are both positive and negative. This is one reason why we square
them. In fact, if we add up all of the residuals from the regression line, the sum will
always be zero.

Interpreting the Slope and Intercept of the Regression Line
Recall that the regression line for the RestaurantTips data is

T̂ip = −0.292 + 0.182 · Bill

How can we interpret the slope 0.182 and intercept −0.292?
Recall that for a general line y = a + bx, the slope represents the change in y

over the change in x. If the change in x is 1, then the slope represents the change in
y. The intercept represents the value of y when x is zero.

Interpreting the Slope and Intercept of the Regression Line

For the regression line ŷ = a + bx,

• The slope b represents the predicted change in the response vari-
able y given a one unit increase in the explanatory variable x.

• The intercept a represents the predicted value of the response vari-
able y if the explanatory variable x is zero. The interpretation may
be nonsensical since it is often not reasonable for the explanatory
variable to be zero.

Example 2.44
For the RestaurantTips regression line T̂ip = −0.292 + 0.182 · Bill, interpret the
slope and the intercept in context.

Solution The slope 0.182 indicates that the tip is predicted to go up by about $0.182 for a one
dollar increase in the bill. A rough interpretation is that people in this sample tend
to tip about 18.2%.

The intercept −0.292 indicates that the tip will be −$0.292 if the bill is $0. Since
a bill is rarely zero dollars and a tip cannot be negative, this makes little sense.

Example 2.45
In Example 2.34 on page 105, we consider some scatterplots from the dataset
FloridaLakes showing relationships between acidity, alkalinity, and fish mercury
levels in n = 53 Florida lakes. We wish to predict a quantity that is difficult to
measure (mercury level of fish) using a value that is more easily obtained from a
water sample (acidity). We see in Example 2.34 that there appears to be a negative
linear association between these two variables, so a regression line is appropriate.

(a) Use technology to find the regression line to predict Mercury from pH, and plot
it on a scatterplot of the data.

(b) Interpret the slope of the regression line in the context of Florida lakes.
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Figure 2.67 Using
acidity to predict average
mercury level in fish 3.5
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(c) Put an arrow on the scatterplot pointing to the data for Puzzle Lake which has an
acidity of 7.5 and an average mercury level of 1.10 ppm. Calculate the predicted
mercury level for Puzzle Lake and compare it to the observed mercury level.
Calculate the residual.

Solution (a) We use technology to find the regression line:

̂Mercury = 1.53 − 0.1523 · pH

For the scatterplot, since we are predicting mercury level from pH, the pH
variable goes on the horizontal axis and the mercury variable goes on the
vertical axis. The line is plotted with the data in Figure 2.67.

(b) The slope in the prediction equation represents the expected change in the
response variable for a one unit increase in the explanatory variable. Since the
slope in this case is −0.1523, we expect the average mercury level in fish to
decrease by about 0.1523 ppm for each increase of 1 in the pH of the lake water.

(c) See the arrow in Figure 2.67. The predicted value for Puzzle Lake is ̂Mercury =
1.53 − 0.1523 · (7.5) = 0.388 ppm. The observed value of 1.10 is quite a bit higher
than the predicted value for this lake. The residual is 1.10 − 0.388 = 0.712, the
largest residual of all 53 lakes.

Notation for the Slope
We have seen that we use the notation b for the slope of a regression line

that comes from a sample. What about the regression line for a population?
The dataset on presidential elections used to create the regression line ̂Margin =
−36.5 + 0.836 · Approval in Example 2.43 represents the population of all relevant
US presidential elections since 1940. As we have seen with other quantities, the
notation we use for the slope of the regression line of a population is different than
the notation we use for the slope of the regression line of a sample. For the slope of
a regression line for a population, we use the Greek letter β (beta).

Regression Cautions
In the solution to Example 2.44, we see that predicting the tip for a bill of $0 does not
make any sense. Since the bill amounts in that dataset range from $1.66 to $70.51, it
also would not make sense to use the regression line to predict the tip on a bill of
$1000. In general, it is not appropriate to use regression lines to make predictions
using values of the explanatory variable that are far from the range of values used
to create the line. This is called extrapolating too far from the original data.
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Regression Caution #1

Avoid trying to apply a regression line to predict values far from those
that were used to create it.

Example 2.46
In Example 2.45 on page 125, we used the acidity (pH) of Florida lakes to predict
mercury levels in fish. Suppose that, instead of mercury, we use acidity to predict
the calcium concentration (mg/l) in Florida lakes. Figure 2.68 shows a scatterplot of
these data with the regression line ̂Calcium = −51.4 + 11.17 · pH for the 53 lakes in
our sample. Give an interpretation for the slope in this situation. Does the intercept
make sense? Comment on how well the linear prediction equation describes the
relationship between these two variables.

Solution The slope of 11.17 in the prediction equation indicates that the calcium concentration
in lake water increases by about 11.17 mg/l when the pH goes up by one. The intercept
does not have a physical interpretation since there are no lakes with a pH of zero
and a negative calcium concentration makes no sense. Although there is clearly
a positive association between acidity and calcium concentration, the relationship
is not a linear one. The pattern in the scatterplot indicates a curved pattern that
increases more steeply as pH increases. The least squares line predicts negative
calcium concentrations (which are impossible) for pH levels as large as 4.5, which
are within the domain of lakes in this sample.

The correlation between acidity and average mercury levels in Figure 2.67 is
−0.575 while acidity and calcium concentration in Figure 2.68 have a correlation of
0.577. Although these correlations are close in magnitude, linear regression is a more
appropriate model for the first situation than it is for the second. It is always important
to plot the data and look for patterns that may or may not follow a linear trend.

Regression Caution #2

Plot the data! Although the regression line can be calculated for any
set of paired quantitative variables, it is only appropriate to use a
regression line when there is a linear trend in the data.

Figure 2.68 Using
acidity to predict calcium
concentration 3.5
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Finally, when we plot the data, we also look for outliers that may exert a strong
influence on the regression line, similar to what we see for correlation in Figure 2.53
on page 111.

Regression Caution #3

Outliers can have a strong influence on the regression line, just as we
saw for correlation. In particular, data points for which the explanatory
value is an outlier are often called influential points because they exert
an overly strong effect on the regression line.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use technology to find the regression line for a dataset with two
quantitative variables

• Calculate predicted values from a regression line

• Interpret the slope (and intercept, when appropriate) of a regression
line in context

• Calculate residuals and visualize residuals on a scatterplot

• Beware of extrapolating too far out when making predictions

• Recognize the importance of plotting your data

Exercises for Section 2.6

SKILL BUILDER 1
In Exercises 2.187 to 2.190, two variables are
defined, a regression equation is given, and one
data point is given.

(a) Find the predicted value for the data point and
compute the residual.

(b) Interpret the slope in context.

(c) Interpret the intercept in context, and if the
intercept makes no sense in this context, explain
why.

2.187 Hgt = height in inches, Age = age in years of
a child
Ĥgt = 24.3 + 2.74(Age); data point is a child 12
years old who is 60 inches tall

2.188 BAC = blood alcohol content (% of alcohol
in the blood), Drinks = number of alcoholic drinks
̂BAC = −0.0127 + 0.018(Drinks); data point is an
individual who consumed 3 drinks and had a BAC
of 0.08

2.189 Weight = maximum weight capable of bench
pressing (pounds), Training = number of hours spent
lifting weights a week
̂Weight = 95 + 11.7(Training); data point is an indi-

vidual who trains 5 hours a week and can bench 150
pounds

2.190 Study = number of hours spent studying for
an exam, Grade = grade on the exam
̂Grade = 41.0 + 3.8(Study); data point is a student
who studied 10 hours and received an 81 on the
exam

SKILL BUILDER 2
Use technology to find the regression line to predict
Y from X in Exercises 2.191 to 2.194.

2.191

X 3 5 2 7 6
Y 1 2 1.5 3 2.5

/h
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o
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2.192

X 2 4 6 8 10 12
Y 50 58 55 61 69 68

2.193

X 10 20 30 40 50 60
Y 112 85 92 71 64 70

2.194

X 15 20 25 30 35 40 45 50
Y 532 466 478 320 303 349 275 221

2.195 Concentration of CO2 in the Atmosphere
Levels of carbon dioxide (CO2) in the atmosphere
are rising rapidly, far above any levels ever before
recorded. Levels were around 278 parts per million
in 1800, before the Industrial Age, and had never,
in the hundreds of thousands of years before that,
gone above 300 ppm. Levels are now nearing 400
ppm. Table 2.35 shows the rapid rise of CO2 con-
centrations over the last 50 years, also available in
CarbonDioxide.67 We can use this information to
predict CO2 levels in different years.

(a) What is the explanatory variable? What is the
response variable?

(b) Draw a scatterplot of the data. Does there
appear to be a linear relationship in the data?

(c) Use technology to find the correlation between
year and CO2 levels. Does the value of the
correlation support your answer to part (b)?

Table 2.35 Concentration of
carbon dioxide in the atmosphere

Year CO2

1960 316.91
1965 320.04
1970 325.68
1975 331.08
1980 338.68
1985 345.87
1990 354.16
1995 360.62
2000 369.40
2005 379.76
2010 389.78

67Dr. Pieter Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/
trends/. Values recorded at the Mauna Loa Observatory in
Hawaii.

(d) Use technology to calculate the regression line
to predict CO2 from year.

(e) Interpret the slope of the regression line, in
terms of carbon dioxide concentrations.

(f) What is the intercept of the line? Does it make
sense in context? Why or why not?

(g) Use the regression line to predict the CO2 level
in 2003. In 2020.

(h) Find the residual for 2010.

2.196 The Honeybee Waggle Dance When honey-
bee scouts find a food source or a nice site for a
new home, they communicate the location to the
rest of the swarm by doing a ‘‘waggle dance.”68

They point in the direction of the site and dance
longer for sites farther away. The rest of the bees
use the duration of the dance to predict distance to
the site. Table 2.36 shows the distance, in meters,
and the duration of the dance, in seconds, for seven
honeybee scouts.69 This information is also given in
HoneybeeWaggle.

(a) Which is the explanatory variable? Which is the
response variable?

(b) Figure 2.69 shows a scatterplot of the data. Does
there appear to be a linear trend in the data? If
so, is it positive or negative?

(c) Use technology to find the correlation between
the two variables.

(d) Use technology to find the regression line to
predict distance from duration.

(e) Interpret the slope of the line in context.

(f) Predict the distance to the site if a honeybee
does a waggle dance lasting 1 second. Lasting 3
seconds.

Table 2.36 Duration of a
honeybee waggle dance to
indicate distance to the source

Distance Duration

200 0.40
250 0.45
500 0.95
950 1.30

1950 2.00
3500 3.10
4300 4.10

68Check out a honeybee waggle dance on youtube!
69Seeley, T., Honeybee Democracy, Princeton University Press,
Princeton, NJ, 2010, p. 128.
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Figure 2.69 Using dance duration to predict distance
to source

2.197 Is It Getting Harder to Win a Hot Dog Eating
Contest? Every Fourth of July, Nathan’s Famous in
New York City holds a hot dog eating contest, which
we discuss in Exercise 2.98. Table 2.21 on page 86
shows the winning number of hot dogs and buns
eaten every year from 2002 to 2011, and the data
are also available in HotDogs. Figure 2.70 shows
the scatterplot with the regression line.

(a) Is the trend in the data mostly positive or nega-
tive?

(b) Using Figure 2.70, is the residual larger in 2007
or 2008? Is the residual positive or negative in
2010?

(c) Use technology to find the correlation.

(d) Use technology to find the regression line to
predict the winning number of hot dogs from
the year.

(e) Interpret the slope of the regression line.

(f) Predict the winning number of hot dogs in 2012.
(Bonus: Find the actual winning number in 2012
and compute the residual.)
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Figure 2.70 Winning number of hot dogs and buns

(g) Why would it not be appropriate to use this
regression line to predict the winning number
of hot dogs in 2020?

2.198 Runs and Wins in Baseball In Exercise 2.136
on page 100, we looked at the relationship between
total hits by team in the 2010 season and division
(NL or AL) in baseball. Two other variables in the
BaseballHits dataset are the number of wins and
the number of runs scored during the season. The
dataset consists of values for each variable from all
30 MLB teams. From these data we calculate the
regression line:

̂Wins = 0.362 + 0.114(Runs)

(a) Which is the explanatory and which is the
response variable in this regression line?

(b) Interpret the intercept and slope in context.

(c) The Oakland A’s won 81 games while scoring
663 runs. Predict the number of games won
by Oakland using the regression line. Calculate
the residual. Were the A’s efficient at winning
games with 663 runs?

2.199 Presidential Elections In Example 2.43 on
page 123, we use the approval rating of a president
running for re-election to predict the margin of vic-
tory or defeat in the election. We saw that the least
squares line is ̂Margin = −36.5 + 0.836(Approval).
Interpret the slope and the intercept of the line in
context.

2.200 Height and Weight Using the data in the Stu-
dentSurvey dataset, we use technology to find that
a regression line to predict weight (in pounds) from
height (in inches) is

̂Weight = −170 + 4.82(Height)

(a) What weight does the line predict for a person
who is 5 feet tall (60 inches)? What weight is
predicted for someone 6 feet tall (72 inches)?

(b) What is the slope of the line? Interpret it in
context.

(c) What is the intercept of the line? If it is reason-
able to do so, interpret it in context. If it is not
reasonable, explain why not.

(d) What weight does the regression line predict
for a baby who is 20 inches long? Why is it not
appropriate to use the regression line in this
case?

PREDICTING PERCENT BODY FAT
Exercises 2.201 to 2.203 use the dataset BodyFat,
which gives the percent of weight made up of body

T T
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fat for 100 men as well as other variables such as
Age, Weight (in pounds), Height (in inches), and
circumference (in cm) measurements for the Neck,
Chest, Abdomen, Ankle, Biceps, and Wrist.70

2.201 Using Weight to Predict Body Fat Figure 2.71
shows the data and regression line for using weight
to predict body fat percentage. For the case with the
largest positive residual, estimate the values of both
variables. In addition, estimate the predicted body
fat percent and the residual for that point.
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Figure 2.71 Using weight to predict percent body fat

2.202 Using Abdomen Circumference to Predict
Body Fat Figure 2.72 shows the data and regression
line for using abdomen circumference to predict
body fat percentage.

(a) Which scatterplot, the one using Weight in
Figure 2.71 or the one using Abdomen in
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Figure 2.72 Using abdomen circumference to predict
percent body fat

70A sample taken from data provided by R. Johnson in
‘‘Fitting Percentage of Body Fat to Simple Body Measure-
ments,” Journal of Statistics Education, 1996, http://www.amstat
.org/publications/jse/v4n1/datasets.johnson.html.

Figure 2.72, appears to contain data with a larger
correlation?

(b) In Figure 2.72, one person has a very large
abdomen circumference of about 127 cm. Esti-
mate the actual body fat percent for this person
as well as the predicted body fat percent.

(c) Use Figure 2.72 to estimate the abdomen cir-
cumference for the person with about 40% body
fat. In addition, estimate the residual for this
person.

2.203 Using Neck Circumference to Predict Body
Fat The regression line for predicting body fat per-
cent using neck circumference is

̂BodyFat = −47.9 + 1.75 · Neck

.
(a) What body fat percent does the line predict for

a person with a neck circumference of 35 cm?
Of 40 cm?

(b) Interpret the slope of the line in context.

(c) One of the men in the study had a neck circum-
ference of 38.7 cm and a body fat percent of
11.3. Find the residual for this man.

2.204 Cricket Chirps and Temperature In the Crick-
etChirp dataset given in Table 2.31 on page 108, we
learn that the chirp rate of crickets is related to the
temperature of the air.

(a) Figure 2.73 shows the seven points together with
the regression line. Does there appear to be
a linear relationship between these two vari-
ables? How strong is it? Is it positive or nega-
tive?

(b) Use technology to find the formula for the
regression line for the seven data points.

(c) Calculate the predicted values and the residuals
for all seven data points.
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Figure 2.73 Draw a length representing a residual
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Table 2.37 Land area (in 1000 sq km) and percent living in rural areas

Country SRB BHS SVN UZB TUN ARM ROU MKD LBN PRK
Land Area 88.3 10.0 20.1 425.4 155.4 28.5 229.9 25.2 10.2 120.4
Rural 48.0 16.3 51.4 63.2 33.5 36.1 45.8 33.1 13 37.3

2.205 Land Area and Rural Population Two vari-
ables in the dataset AllCountries are the size of
the country (in 1000 sq km) and the percent of the
population living in rural areas. We are interested in
using the size of the country (LandArea) to predict
the percent rural (Rural). The values of these vari-
ables for a random sample of ten countries is shown,
with the 3-letter country codes, in Table 2.37, and is
also available in TenCountries. Figure 2.74 shows a
scatterplot of the data.

(a) What is the explanatory variable? What is the
response variable?

(b) Without doing any calculations, which do you
think is the most likely correlation between the
two variables?

0.00, 0.60, −0.60, 60

(c) Use technology to find the regression line to pre-
dict percent rural from land area, and interpret
the slope.

(d) Does the intercept make sense in this situation?

(e) Which country is the most influential on this
regression line (use the 3 letter code)?

(f) Use the regression line to predict the percent
of the US population living in rural areas given
that the area of the US is 9147.4 thousand sq km.
Does the prediction seem reasonable? Explain
why it is not appropriate to use this regression
line to predict the percent rural for the US.
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Figure 2.74 Scatterplot of land area and percent rural

2.206 Adding One Point to Land Area and Rural
Population In Exercise 2.205, we used a random
sample of 10 countries to use the size of a country
to predict the percent of the population living in

rural areas. We now see how results change if we
add the United States (Land Area: 9147.4, Rural:
18.3%) to the sample.

(a) Use technology to find the new regression line
using the 11 data points.

(b) The slope of the regression line using the orig-
inal 10 points in Exercise 2.205 is about 0.08.
Compare the slope with US added to the slope
without US. Does adding US have a strong
effect on the slope? Why or why not? (Hint:
Plot the data!)

(c) Predict the percent rural for US with the new
regression line. Is this prediction better than the
prediction given in Example 2.205 (which was
752%)?

2.207 Predicting World Gross Revenue for a Movie
from Its Opening Weekend Use the data in Holly-
woodMovies2011 to use revenue from a movie’s
opening weekend (OpeningWeekend) to predict
total world gross revenues by the end of the year
(WorldGross). Both variables are in millions of
dollars.

(a) Use technology to create a scatterplot for this
relationship. Describe the scatterplot: Is there
a linear trend? How strong is it? Is it positive
or negative? Does it look like revenue from a
movie’s opening weekend is a good predictor of
its future total earnings?

(b) The scatterplot contains an outlier in the top
right corner. Use the dataset to identify this
movie.

(c) Use technology to find the correlation between
these variables.

(d) Use technology to find the regression line.

(e) Use the regression line to predict world gross
revenues for a movie that makes 50 million
dollars in its opening weekend.

2.208 Using Life Expectancy to Predict Happiness
In Exercise 2.172 on page 114, we introduce the
dataset HappyPlanetIndex, which includes infor-
mation for 143 countries to produce a ‘‘happiness”
rating as a score of the health and well-being of the
country’s citizens, as well as information on the eco-
logical footprint of the country. One of the variables
used to create the happiness rating is life expectancy
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in years. We explore here how well this variable,
LifeExpectancy, predicts the happiness rating, Hap-
piness.

(a) Using technology and the data in HappyPlan-
etIndex, create a scatterplot to use LifeEx-
pectancy to predict Happiness. Is there enough
of a linear trend so that it is reasonable to
construct a regression line?

(b) Find a formula for the regression line and dis-
play the line on the scatterplot.

(c) Interpret the slope of the regression line in
context.

2.209 Pick a Relationship to Examine Choose one
of the following datasets: USStates, StudentSurvey,
AllCountries, or NBAPlayers2011, and then select
any two quantitative variables that we have not yet
analyzed. Use technology to create a scatterplot of
the two variables with the regression line on it and
discuss what you see. If there is a reasonable linear
relationship, find a formula for the regression line.
If not, find two other quantitative variables that do
have a reasonable linear relationship and find the
regression line for them. Indicate whether there are
any outliers in the dataset that might be influential
points or have large residuals. Be sure to state the
dataset and variables you use.

2.210 The Impact of Strong Economic Growth In
2011, the Congressional Budget Office predicted
that the US economy would grow by 2.8% per year
on average over the decade from 2011 to 2021. At
this rate, in 2021, the ratio of national debt to GDP
(gross domestic product) is predicted to be 76%
and the federal deficit is predicted to be $861 bil-
lion. Both predictions depend heavily on the growth
rate. If the growth rate is 3.3% over the same decade,
for example, the predicted 2021 debt-to-GDP ratio

is 66% and the predicted 2021 deficit is $521 billion.
If the growth rate is even stronger, at 3.9%, the
predicted 2021 debt-to-GDP ratio is 55% and the
predicted 2021 deficit is $113 billion.71

(a) There are only three individual cases given (for
three different economic scenarios), and for
each we are given values of three variables.
What are the variables?

(b) Use technology and the three cases given to find
the regression line for predicting 2021 debt-to-
GDP ratio from the average growth rate over
the decade 2011 to 2021.

(c) Interpret the slope and intercept of the line from
part (b) in context.

(d) What 2021 debt-to-GDP ratio does the model
in part (b) predict if growth is 2%? If it is 4%?

(e) Studies indicate that a country’s economic
growth slows if the debt-to-GDP ratio hits 90%.
Using the model from part (b), at what growth
rate would we expect the ratio in the US to hit
90% in 2021?

(f) Use technology and the three cases given to
find the regression line for predicting the deficit
(in billions of dollars) in 2021 from the average
growth rate over the decade 2011 to 2021.

(g) Interpret the slope and intercept of the line from
part (f) in context.

(h) What 2021 deficit does the model in part (f)
predict if growth is 2%? If it is 4%?

(i) The deficit in 2011 was $1.4 trillion. What growth
rate would leave the deficit at this level in 2021?

71Gandel, S., ‘‘Higher growth could mean our debt worries are
all for nothing,” Time Magazine, March 7, 2011, p. 20.
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Summary: Collecting Data
In Chapter 1, we learn about appropriate ways to collect data. A dataset consists
of values for one or more variables that record or measure information for each
of the cases in a sample or population. A variable is generally classified as either
categorical, if it divides the data cases into groups, or quantitative, if it measures
some numerical quantity.

What we can infer about a population based on the data in a sample depends on
the method of data collection. We try to collect a sample that is representative of the
population and that avoids sampling bias. The most effective way to avoid sampling
bias is to select a random sample. Also, we try to avoid other possible sources of
bias by considering things like the wording of a question. The key is to always think
carefully about whether the method used to collect data might introduce any bias.

Data collected to analyze a relationship between variables can come from an
observational study or a randomized experiment. In an observational study, we need
to be wary of confounding variables. A randomized experiment allows us to avoid
confounding variables by actively manipulating one of the variables. The handling
of different treatment groups in an experiment should be as similar as possible, with
the use of blinding (double-blind or single-blind) and a placebo treatment when
appropriate.

The only way to infer a causal association between variables statistically is through
data obtained from a randomized experiment. One of the most common and serious
mistakes in all of statistics comes from a failure to appreciate the importance of this
statement.

Summary: Describing Data
In Chapter 2, we learn about methods to display and summarize data. We use
statistical graphs to display information about the variables, and summary statistics
to quantify aspects of that information. The type of graph or statistic we use often
depends on the types of variables (quantitative or categorical), as summarized below.

Describing a Single Variable
• Quantitative variable

– Graphical display: dotplot, histogram, boxplot

– Summary statistics:

* Center: mean, median

* Other locations: maximum, minimum, first quartile, third quartile

* Spread: standard deviation, interquartile range, range

• Categorical variable

– Graphical display: bar chart, pie chart

– Summary statistics: frequency, relative frequency, proportion

Describing a Relationship between Two Variables
• Categorical vs Categorical

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table
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• Categorical vs Quantitative

– Graphical display: side-by-side boxplots (or other side-by-side graphs)

– Summary statistics: statistics for the quantitative variable within each category

• Quantitative vs Quantitative

– Graphical display: scatterplot

– Summary statistics: correlation, regression line

Some statistics (such as the median and interquartile range) are resistant to the
effects of outliers, while others (such as the mean, standard deviation, correlation,
and regression line) can be strongly influenced by extreme values. We discuss two
methods for identifying possible outliers in quantitative data: using z-scores or using
1.5 · IQR.

The techniques discussed in Chapter 2 allow us to look for patterns, find
anomalies, and suggest relationships within a given set of data. Many of the
conclusions we draw are fairly informal. We might see that the sample mean for one
group is larger than that of another group, but we are not ready yet to determine
whether that difference might extend to the entire population or whether it is likely
due just to random chance. We return to these ideas in Chapter 3 when we study
more formal techniques for using the information in sample data to make inferences
about the nature of a given population.

Case Study: Fat Mice

D A T A A . 1 Light at Night Makes Fat Mice
Numerous studies have shown that exposure to light at night is harmful to
human health. A recent study72 in mice shows that even low-level light at night
can interfere with normal eating and sleeping cycles. Furthermore, the study
finds that food is especially fattening if consumed at the wrong time of day, at
least in mice. In the study, 27 mice were randomly split into three groups. One
group was on a normal light–dark cycle (LD), one group had bright light on all
the time (LL), and one group had light during the day and dim light at night
(DM). The dim light was equivalent to having a television set on in a room. The
mice in darkness ate most of their food during their active (nighttime) period,

© Johannes Norpoth/iStockphoto

Does light at night make mice fatter?

72Fonken, L., et al., ‘‘Light at night increases body mass by shifting time of food intake,” Proceedings of
the National Academy of Sciences, October 26, 2010; 107(43): 18664–18669.
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matching the behavior of mice in the wild. The mice in both dim light and bright
light, however, consumed more than half of their food during the well-lit rest
period, when most mice are sleeping. Although the data collected show that the
three groups of mice ate approximately the same amount of food and had the
same levels of physical activity, the mice exposed to light at night gained
substantially more weight, ate a greater percent of calories during the day, and
were more likely to be classified as glucose intolerant at the end of the study. An
absence of darkness seems to be associated with fatter mice. ■

Example A.1
What are the cases in this study? What is the sample size n? List all variables
mentioned in the description and indicate whether each is categorical or quantitative.
What is the explanatory variable? What are the three primary response variables?

Solution The cases are the mice, and the sample size is n = 27. The explanatory variable is
whether the mouse is in a normal light–dark cycle, in dim light at night, or in bright
light at night. This variable is categorical. Two additional variables are amount of
food consumed and amount of activity; both are quantitative. The three primary
response variables are weight gain (quantitative), percent of food eaten during
the day (quantitative), and whether or not the mouse became glucose intolerant
(categorical).

Example A.2
Does this study describe an experiment or an observational study? Can you tell
from the description whether the study was blind? Can we infer causation from the
results? Why or why not? What conclusion can you make from this study?

Solution The study describes an experiment since the experimenters actively manipulated
the light cycle. It is not clear whether the study was blind. Since this is a randomized
experiment, we can infer causation. We can conclude that an absence of darkness
causes mice to be fatter and more likely to be glucose intolerant.

Example A.3
In each case, indicate how we might display the relevant data graphically and what

summary statistics we might use to examine the variable or relationship.

(a) The daily food consumption for the 27 mice

(b) The relationship between the light condition at night and weight gain

(c) The relationship between weight gain and percent of calories consumed during
the day

(d) The relationship between the light condition at night and glucose intolerance

Solution (a) Amount of food consumed is quantitative, so we might display the results using
a dotplot, a histogram, or a boxplot. Relevant summary statistics are the mean
and standard deviation and/or the five number summary.

(b) Light condition is categorical and weight gain is quantitative so we might use
side-by-side boxplots to visualize this relationship. It would make sense to
compare the mean weight gain for each group or to look at the difference in
mean weight gain between the groups.

(c) Weight gain and percent of calories consumed during the day are both quanti-
tative so we would use a scatterplot to visualize the relationship. The relevant
summary statistics are correlation and possibly a regression line.

o

o
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(d) Both variables are categorical so we would most likely display the data in a
two-way table. We might compare the proportion that are glucose intolerant in
each of the three light groups.

Example A.4
Use technology to examine each of the variables or relationships mentioned in
Example A.3. The data are available in the dataset LightatNight, and some of the
data, including all the values for the relevant variables below, is shown in Table A.1.

(a) The daily calorie intake (Consumption) for the 27 mice. Daily consumption is
given in grams. Be sure to include both a graph and summary statistics.

(b) The relationship between the light condition at night (Light) and body mass gain
in grams (BMGain). Again, include a graph and some comparative summary
statistics such as means. Does there appear to be an association?

(c) The relationship between body mass gain in grams (BMGain) and percent of
calories consumed during the day (DayPct). In addition to a graph, find the
correlation and the regression line to predict body mass gain from percent of
calories consumed during the day. Interpret the slope of the regression line.

(d) The relationship between the light condition at night (Light) and glucose
intolerance (GlucoseInt). In addition to displaying the data in a two-way table,
find the relevant proportions to determine whether light at night seems to affect
the likelihood of a mouse becoming glucose intolerant.

Table A.1 Dataset for light at night and fat mice

Light BMGain Corticosterone DayPct Consumption GlucoseInt Activity

LL 9.89 42.132 71.552 3.387 Yes 5752
DM 10.2 128.56 40.848 3.414 No 1409
LD 5.02 87.838 31.063 3.791 No 1437
LL 9.58 48.238 61.453 3.451 No 1256
DM 7.29 124.43 47.45 3.219 Yes 509
LL 11.2 92.191 85.978 3.501 Yes 244
DM 7.57 98.517 56.429 3.613 Yes 2003
LD 6.67 191.22 41.408 3.923 No 2541
LL 9.05 51.999 64.827 4.24 No 931
DM 3.42 208.26 55.051 3.857 No 1084
LD 8.17 67.7 47.573 4.489 No 346
DM 5.82 80.685 48.352 3.587 Yes 1848
LD 2.79 41.017 34.947 4.161 No 5837
LL 12.33 12.252 81.6 3.479 Yes 3582
DM 10.92 26.41 67.635 4.514 Yes 1841
LD 8.13 21.817 41.94 4.416 No 877
LL 9.39 3 87.257 5.94 Yes 2657
DM 5.21 3 42.969 4.231 No 2716
LL 10.88 132.4 70.441 4.586 No 153
DM 13.47 3 72.864 5.324 Yes 4622
LD 6.34 23.403 40.5 4.89 No 1649
LL 9.37 8.615 84.415 4.873 Yes 4482
DM 8.64 49.142 66.746 4.633 Yes 1744
LD 6.32 70.47 28.95 4.946 No 728
LL 17.4 66.679 81.636 7.177 Yes 6702
DM 6.05 11.994 56.816 4.849 No 7253
LD 3.97 56.718 21.846 4.004 No 6048

Jlllk
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Solution (a) A histogram of consumption is shown in Figure A.1. We see that number of
grams of food ingested in a day is slightly skewed to the right with a possible
outlier at about 7. (A boxplot verifies that the value near 7 is indeed an
outlier.) Using technology, we see that the mean is x = 4.32 grams with a
standard deviation of s = 0.88, and the five number summary is (3.22, 3.59, 4.23,
4.85, 7.18).

(b) A side-by-side boxplot showing body mass gain under the three light conditions
is shown in Figure A.2. We see that there appears to be a clear association
between body mass gain and the light condition, with the smallest gain for the
mice in the normal light–dark cycle (LD). The mice with dim light at night
(DM) gained more and the mice with bright light all the time (LL) gained even
more. Using technology to find the means of the three groups, we find average
body mass gain, in grams, for the three groups:

xLD = 5.93 xDM = 7.86 xLL = 11.01

(c) A scatterplot with the regression line included is shown in Figure A.3. The
response variable is BMGain, so that goes on the vertical axis. We see that there
is a clear positive trend in the data; mice who eat a greater percent of food
during the day (when mice are normally sleeping) tend to gain more weight.
We use technology to see that the correlation is r = 0.74 and that the regression
line is

̂BMGain = 1.11 + 0.127DayPct

Figure A.2 Body mass
gain under the three light
conditions 1814 1612108642
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Table A.2 Light condition
and glucose intolerance

No Yes Total
LD 8 0 8
DM 4 6 10
LL 3 6 9
Total 15 12 27

The slope is 0.127 and tells us that if the percent of food eaten during the
day goes up by 1, the body mass gain goes up by 0.127 gram.

(d) Both variables are categorical so we display the results in a two-way table as in
Table A.2. We can use technology to find the proportion that become glucose
intolerant under each of the three light conditions or find the proportions by
hand:

p̂LD = 0/8 = 0 p̂DM = 6/10 = 0.60 p̂LL = 6/9 = 0.67

Any light at night, including only dim light, seems to greatly increase the chance
that a mouse becomes glucose intolerant, even when eating the same amount
and type of food.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a description of a study to evaluate the method of data collection
and to identify relevant variables

• Use the method of data collection to determine what inferences might
be possible

• Recognize which graphs and statistics are relevant in different
situations

• Examine individual variables and relationships between variables in a
dataset

o
o
o
o
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Exercises for UNIT A: Essential Synthesis

A.1 Does Eye Black Work for Athletes? Athletes
routinely swipe black grease under their eyes to
help cut down on glare on sunny days. Recently,
some athletes have switched from grease to patches
of black tape. Does either method work? Which is
best? A recent study73 helped to answer these ques-
tions. A sample of 46 subjects were tested using the
Pelli-Robson contrast chart, which gives a numerical
rating for ability to discern contrast against a sunlit
background. Subjects were then randomly assigned
to one of three groups and tested again. One group
used black grease, one used black tape patches, and
one used clear petroleum jelly. The group wearing
the black grease was the only group to show signifi-
cant improvement in discerning contrast in sunlight.

(a) Is this an experiment or an observational study?
Explain.

(b) Why is this study not double-blind (or even
single-blind)?

(c) What is the sample in this study? Give a rea-
sonable intended population.

(d) What are the variables in the study? Identify
each as either categorical or quantitative.

(e) What sort of graph would you use to display the
results of the study?

A.2 Penguin Tags May Do Harm In Data 1.3 on
page 10, we describe a 10-year study in which sci-
entists investigated the effect of tagging penguins
with either a metal strip or an electronic tag. In
the study, a sample of 100 penguins were randomly
assigned to one of the two groups and then followed
for 10 years. The study found that, overall, penguins
banded using a metal strip had fewer chicks, had
a lower survival rate (percent to survive over the
decade), and on average took significantly longer on
foraging trips than penguins who were tagged with
an electronic tag.74

(a) What are the cases in this study? What are the
variables? Identify each variable as categorical
or quantitative.

73DeBroff, B. and Pahk, P., ‘‘The Ability of PeriorbitallyApplied
Antiglare Products to Improve Contrast Sensitivity in Conditions
of Sunlight Exposure,” Archives of Ophthalmology, July 2003;
121: 997–1001.
74Saraux, C., et al., ‘‘Reliability of flipper-banded penguins as
indicators of climate change,” Nature, January 13, 2011; 469:
203–206.

(b) The description above indicates that the scien-
tists found a strong association between the type
of tag and various measures, with the metal-
tagged penguins having less success. Can we
conclude that the metal tag is causing the prob-
lems?

(c) To investigate a relationship between each of
the following two variables, what graph or table
might we use? What statistics might we compare
or use?

i. Type of tag and number of chicks

ii. Type of tag and survival

iii. Type of tag and foraging time

iv. Foraging time and number of chicks

v. Foraging time and survival

A.3 What Webpages do Students Visit During
Class? In a study75 investigating how students
use their laptop computers in class, researchers
recruited 45 students at one university in the North-
east who regularly take their laptops to class.
Software was installed on each of their comput-
ers that logged information on the applications the
computer was running, including how long each
was open and which was the primary focus on the
monitor. Logs were kept over multiple lectures. On
average, the students cycled through 65 active win-
dows per lecture, with one student averaging 174
active windows per lecture! The researchers devel-
oped a rubric to distinguish productive class-related
applications from distractive ones, such as email
and social networking sites. For each student, they
recorded the percent of active windows that were
distractive and the percent of time spent on distrac-
tive windows. They found that, on average, 62% of
the windows students open in class are completely
unrelated to the class, and students had distract-
ing windows open and active 42% of the time, on
average. Finally, the study included a measure of
how each student performed on a test of the rele-
vant material. Not surprisingly, the study finds that
the students who spent more time on distracting
websites generally had lower test scores.

75Kraushaar, J. and Novak, D., ‘‘Examining the Affects of Stu-
dent Multitasking with Laptops during the Lecture,” Journal of
Information Systems Education, 2010; 21(2): 241–251.
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(a) What are the cases in this dataset? What is the
sample size? Is the sample a random sample?

(b) Is this an experiment or an observational study?
Explain.

(c) From the description given, what variables are
recorded for each case? Identify each as cate-
gorical or quantitative.

(d) What graph(s) might we use to display the data
about the number of active windows opened
per lecture? What graph is most appropriate
if we want to quickly determine whether the
maximum value (174) is an outlier?

(e) The last sentence of the paragraph describes
an association. What graph might be used to
display this association? What statistic might be
used to quantify it? Is it a positive or negative
association?

(f) From the information given, can we con-
clude that students who allocate their cognitive
resources to distracting sites during class get
lower grades because of it? Why or why not?

(g) For the association described in part (e), what is
the explanatory variable? What is the response
variable?

(h) Describe the design of a study that might allow
us to make the conclusion in part (f). Comment
on the feasibility of conducting such a study.

A.4 Time of Eating Affects Calories’ Impact A
study described in Data A.1 on page 136 found that
mice exposed to dim light at night gained sub-
stantially more weight than mice that had complete
darkness at night, despite the fact that calorie intake
and activity levels were the same for the two groups.
Was it the light that caused the mice to gain weight
or was it the fact that they ate a large percent-
age of their calories when mice would normally
be sleeping? The same researchers conducted a sec-
ond experiment to answer this question. The second
experiment matched the first in every respect except
a new variable was added: half of the mice could eat
whenever they wanted while the other half could
only eat at night (the normal time mice eat). The
mice in dim light that could eat whenever they
wanted grew fatter, matching the results in the first
experiment almost exactly. However, the mice in
dim light that could only eat at night stayed as slim
and healthy as the mice in darkness.

(a) In the new experiment, two variables are manip-
ulated. What are they? Are they categorical or
quantitative?

(b) A question is asked in the description above.
Answer it, using the information that follows it.

A.5 Does Time of Eating Affect Calories’ Impact
in Humans? Data A.1 on page 136 and the follow-
up study described in Exercise A.4 imply that mice
that eat when they should normally be sleeping
gain significantly more weight than mice that eat at
the usual time. This is consistent with other stud-
ies showing that nighttime eating by people can
foster weight gain and prediabetic changes in glu-
cose control.76 A biologist at the Salk Institute in
California notes, however, ‘‘Unfortunately, there
is not even a single study in humans looking at
[how] temporal spreading of caloric intake [affects
fat deposition or glucose control].’’ In other words,
observational studies show a relationship between
eating a substantial portion of daily calories at night
and weight gain, but no experiments have been con-
ducted that might allow us to deduce a cause and
effect relationship. Describe carefully the design of
a randomized experiment to test whether eating at
night rather than during the day increases weight
gain in humans.
A.6 Laptop Computers and Sperm Count In
Exercise 2.101 on page 87, we discuss a study about
the effect of heat from laptop computers on scro-
tum temperature in men. Heating the scrotum by
just 1◦C can reduce sperm count and quality, and
repeated increases in temperature can have a long-
term effect. In a new study,77 temperature increases
in the right scrotum over one hour were measured
in ◦C while men sat with a laptop computer on their
lap. Three different conditions were tested. In Ses-
sion 1, men sat with legs close together. In Session 2,
the legs were kept close together and a lap pad was
used to separate the laptop computer from the legs.
In Session 3, no lap pad was used but the legs were
spread farther apart. The sessions were conducted
on three different days with the same volunteers.
(Sitting with legs together without a laptop does not
increase temperature.) A histogram of the values
from Session 2 is shown in Figure A.4, and sum-
mary statistics from computer output for all three
sessions are shown in Figure A.5.

(a) Describe the shape of the histogram of the tem-
perature changes from Session 2.

(b) How many men participated in each session?

76Raloff, J., ‘‘Mice robbed of darkness fatten up,” Science News,
October 11, 2010.
77Data are approximated from summary statistics given in
Sheynkin, Y., et al., ‘‘Protection from scrotal hyperthermia in
laptop computer users,” Fertility and Sterility, February 2011;
95(2): 647–651.
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Figure A.4 Histogram of Session 2

Variable Session N Mean StDev Minimum Q1 Median Q3 Maximum
TempDiff 1 29 2.325 1.058 −0.076 1.571 2.328 2.806 4.915

2 29 1.911 0.747 0.158 1.398 1.936 2.475 3.806
3 29 1.494 0.617 0.534 1.005 1.439 1.898 3.141

Figure A.5 Output with summary statistics on temperature increases

(c) Give the summary statistics from Session 1.
What are the mean and standard deviation?
What is the five number summary?

(d) Find the z-score for the smallest value in Session
3. Is the smallest value more than two standard
deviations from the mean?

(e) If the histogram in Figure A.4 makes it appro-
priate to do so, use the mean and standard
deviation from Session 2 to find an interval that
is likely to contain 95% of the values. If the
shape of the histogram makes this rule inappro-
priate, say so.

(f) Use the IQR for Session 1 to determine if the
largest value in Session 1 is an outlier. Show
your work.

(g) Side-by-side boxplots for the three sessions are
shown in Figure A.6. Describe what you see.
How many outliers are there in each session?
Which situation produced the largest temper-
ature increase? Which is more effective at
reducing the negative effects of the laptop:
using a lap pad or sitting with legs farther
apart?

A.7 A New Drug for Bladder Cancer Eighty-six
patients with bladder cancer participated in a study
in which all tumors were removed and then the
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Figure A.6 Comparing temperature increase for the
three sessions

subjects were monitored to see if the tumors
returned. Patients were randomly assigned to one of
two treatment groups: one group received a placebo
and one group received the drug thiotepa. The study
was double-blind. Tumors returned in 29 out of 48
patients in the placebo group and in 18 out of 38
patients in the thiotepa group.78

78Wei, L., Lin, D., and Weissfeld, L., ‘‘Regression-analysis of
multivariate incomplete failure time data by modeling marginal
distributions,” Journal of the American Statistical Association,
1989; 84: 1065–1073.
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(a) What is the sample in this study? What is the
intended population?

(b) What are the variables in this study? Classify
each as categorical or quantitative.

(c) Is this an experiment or an observational study?
What does it mean to say that the study was
‘‘double-blind”?

(d) What kind of graph or table might be used to
display the data? Display the data in this way.

(e) Compute relevant statistics to compare the suc-
cess rate of the two groups. Does the drug
appear to be more effective than the placebo?

A.8 How Much Do People Tip in Restaurants?
Data 2.12 on page 119 introduces a dataset contain-
ing information on customers’ tipping patterns in
a restaurant. The data are available in Restaurant-
Tips.

(a) What are the cases? What is the sample size?

(b) What are the variables? Identify each variable
as quantitative or categorical.

(c) The variable PctTip includes information on
the tip as a percent of the bill. Use tech-
nology to find the mean tip percentage, the
standard deviation, and the five number sum-
mary. How large or small does a tip percentage
have to be to qualify as an outlier relative to this
dataset?

(d) Use technology to create a histogram of PctTip
and describe its shape.

(e) Use technology to create a two-way table of
Credit (yes or no depending on whether the bill
was paid with a credit card) and Day (the day of
the week). Compute the proportion of bills paid
with a credit card on Thursday; do the same for
Friday. Does there appear to be an association
between whether it is Thursday or Friday and
whether a person pays with a credit card or
cash? Why do you think this might be so? (Hint:
For many people, Friday is payday.)

(f) We might be interested in how the tip percent-
age, in the PctTip variable, varies for different
servers (Server)? What graph should be used to
examine a relationship between these two vari-
ables? Use technology to create such a graph
and comment on the relationship. Which server
appears to make the highest percent tips?

(g) Does the size of the bill (Bill) influence the tip
percentage (PctTip)? In addressing this ques-
tion, what is the explanatory variable? What is
the response variable? Use technology to draw a
scatterplot. Are there any outliers in the scatter-
plot? Ignoring the outliers, does there appear
to be a positive, negative, or no relationship
between these two variables?

(h) Use technology to find the correlation between
Bill and PctTip.

A.9 Analyzing Data from US States The dataset
USStates has a great deal of information on the 50
states in the US, including two categorical variables
and 14 quantitative variables. In the questions that
follow, we ask you to use technology to do some
analysis of this dataset.

(a) Choose one of the two categorical variables and
use technology to create a frequency table and
a relative frequency table of the values.

(b) Choose one of the quantitative variables and
use technology to create a histogram. Describe
the shape of the histogram. For the same vari-
able, create a boxplot. Are there any outliers?
Finally, for the same variable, give summary
statistics: mean, standard deviation, and the five
number summary.

(c) Choose any quantitative variable and any cat-
egorical variable and use technology to create
a side-by-side boxplot. Describe what you see
in the graph, and discuss any association that
might exist between the variables, as evidenced
by the graph.

(d) Create a two-way table of the two categori-
cal variables. Find appropriate proportions to
help you determine if there is an association
between the two variables, and explain your
reasoning.

(e) Choose any two quantitative variables and use
technology to create a scatterplot. Describe
the scatterplot: Is there an obvious positive or
negative linear trend? Are there any outliers?
Use technology to find the correlation and the
least squares line to predict one variable from
the other. Interpret the slope of the line in
context.
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Review Exercises for UNIT A

A.10 Student Survey: Sample or Population? The
results of a student survey were introduced in
Data 1.1 on page 4. Is the dataset from a sample
or a population? If it is from a sample, describe a
relevant population to which we might make infer-
ences.

A.11 Intensive Care Unit Admissions Data 2.3 on
page 66 introduced the dataset ICUAdmissions,
which contains 20 different variables recorded for
200 patients admitted to the Intensive Care Unit at
a hospital.

(a) What is the sample? What is a reasonable pop-
ulation?

(b) Indicate which variables are quantitative.

(c) List at least two questions we might ask about
any of these individual variables.

(d) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

A.12 Exercise, Protein, and Muscle Mass A Dutch
study implies that exercising before eating protein
might help the body convert more of the protein
into muscle. In the study, 48 men were randomly
assigned to either exercise or rest for 30 minutes.
At the end of the 30 minutes, all drank a pro-
tein shake and had their muscle-protein synthesis
measured. Regardless of age, exerciser’s bodies con-
verted more of the protein to muscle than the resting
bodies.79

(a) What is the sample? What is a reasonable pop-
ulation?

(b) What are the variables? Include all variables
mentioned in the description.

(c) Identify all variables as either categorical or
quantitative.

A.13 Fish Consumption and Intelligence In 2000, a
study80 was conducted on 4000 Swedish 15-year-old
males. The boys were surveyed and asked, among
other things, how often they consume fish each
week. Three years later, these answers were linked
to the boys’ scores as 18-year-olds on an intelligence
test. The study found that boys who consume fish at

79Published online, American Journal of Clinical Nutrition,
November 27, 2010, reported in Consumer Reports OnHealth,
March 2011; 23(3): 3.
80Aberg, M., et al., ‘‘Fish intake of Swedish male adolescents is
a predictor of cognitive performance,” Acta Paediatrica, 2009;
98(3): 555.

least once a week scored higher on the intelligence
test.

(a) Is this an experiment or an observational study?
Explain.

(b) What are the explanatory and response vari-
ables?

(c) Give an example of a potential confounding
factor.

(d) Does this study provide evidence that eating fish
once a week improves cognitive ability?

A.14 First Quiz Easy or Hard? In an introduc-
tory statistics class in which regular quizzes are
given, should the first quiz be easy (to give students
confidence) or hard (to convince students to work
harder)? The response variable will be grades on a
later exam that is common to all students.

(a) Describe an observational study to answer this
question.

(b) Describe a confounding variable that is likely to
impact the results of the observational study.

(c) Describe a randomized experiment designed to
answer this question.

A.15 Outwit the Grim Reaper by Walking Faster!
The title of this exercise was a recent headline.81 The
article goes on to describe a study in which men’s
walking speeds at age 70 were measured and then
the men were followed over several years. In the
study, men who walked slowly were more likely to
die. The article concludes that ‘‘Men can elude the
Grim Reaper by walking at speeds of at least 3 miles
per hour.” What common mistake is this article
making? What is a possible confounding variable?

A.16 Percent of College Graduates by Region of
the US The dataset USStates includes informa-
tion on the percent of the population to graduate
from college (of those age 25 and older) for each
US state. Figure A.7 shows side-by-side boxplots
for percent of college graduates by region of the
country (Midwest, Northeast, South, and West.)

(a) What are the variables and is each categorical
or quantitative?

(b) Describe the results seen in the graph. Which
region has the highest percent of college grad-
uates? Which has the lowest? Are there any
outliers and, if so, where?

81‘‘Outwit the Grim Reaper by Walking Faster,” medicalex-
press.com, posted December 16, 2011.
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Figure A.7 Percent of college graduates by region of the US

(c) Does there appear to be an association between
these two variables?

(d) Can we conclude that there is causation between
the two variables: that one of the variables is
causing changes in the other?

A.17 Moving in Sync Increases Feelings of Connec-
tion If you want people to agree with you, get them
to join you in a line dance or to march in lock-step
with you. A recent study82 shows that we feel more
emotionally connected to one another when we’re
moving in sync. In the study, researchers asked 70
college students to walk behind an accomplice either
matching stride for stride, walking completely out of
sync, or walking at any comfortable pace. The stu-
dents were randomly divided between the three
options. After following the accomplice around
campus, the students were asked to rate how close
they felt to the accomplice, how much they liked
the accomplice, and how similar they felt to the
accomplice. Ratings were on a 7-point scale (which
we will treat as quantitative) with 7 representing
highest levels of closeness, liking, and similarity. On
all three questions, those who had been forced to
walk in sync gave substantially higher ratings than
either of the other two groups.

(a) What are the cases? What is the sample size?

(b) What are the variables?

(c) Is this an experiment or an observational study?

(d) Use the information given to draw a rough
sketch of possible side-by-side boxplots compar-
ing the three groups on the similarity rankings.

82Carroll, L., ‘‘Moving in sync makes people think alike, study
finds,” The Body Odd, msnbc.com, posted January 18, 2012.

Be sure the sketch shows the association
described.

(e) In a second part of the experiment, the students
were encouraged by the accomplice to funnel
live pill bugs into a grinder labeled an ‘‘exter-
mination machine.’’ Those who had marched
in step with the accomplice followed orders
and ‘‘killed’’ the most pill bugs. (The pill bugs
were actually secretly funneled to safety.) What
graph would we use to look at a relationship of
number of pill bugs killed by which treatment
group the student was in? What graph would we
use to look at the association of number of pill
bugs killed with the rating given on the liking
accomplice scale?

A.18 Using Proportions and Means: Pricing and
Social Responsibility An experiment on pricing and
social responsibility was conducted using a popular
ride at a large amusement park, where digital pho-
tos are taken of the riders and offered for sale at
the end of the ride.83 The experiment was designed
to determine the effect of pricing strategy under
four conditions: the normal pricing strategy used by
the ride; the effect when customers are allowed to
pay whatever they want; the effect when customers
are told that half the revenue is donated to charity;
and the effect when customers can pay what they
want and half the money is donated to charity. The
experimenter had the amusement park try all four
pricing strategies, and the proportion of riders buy-
ing the photos and the mean price paid are given for

83Nelson, L., Pricing Strategy and Corporate Social Responsibil-
ity, Research News from the Haas School of Business, October
13, 2010.
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each of the pricing scenarios in Table A.3. The ride
has 15,000 customers per day, and photos normally
cost $12.95. Compute the daily total revenue for
the company under each of the scenarios. (The
total number of customers buying the photo is the
proportion buying times the 15,000 customers. The
total revenue is the number buying photos times the
mean price paid. Also don’t forget to donate half
the money to charity when required!) What pricing
strategy should the managers of the business use if
they are only concerned about maximizing revenue?
What pricing strategy should they use if they want
high revenue combined with social responsibility?

Table A.3 Which pricing strategy is best?

Proportion Mean Amount
Pricing Strategy Buying Paid

(a) Standard 0.005 $12.95
(b) Pay what you want 0.08 $ 0.92
(c) Half to charity 0.006 $12.95
(d) Both (b) and (c) 0.04 $ 5.50

A.19 Sampling Some Frazer Computing Customers
Frazer Computing, a company that leases software,
has over 8000 used car dealer customers.84 The
company wants to contact 10 of these car dealers,
randomly selected, to conduct in-depth interviews
on how the software is meeting their needs. Sup-
pose the car dealers are numbered 1 to 8000. Use
a random number generator or table to select the
numbers for the 10 dealers to be in the sample.

A.20 Driving with a Pet on Your Lap Over 30,000
people participated in an online poll on cnn.com85

asking ‘‘Have you ever driven with a pet on your
lap?” The results show that 34% answered yes and
66% answered no. Can we conclude that 34% of all
people have driven with a pet on their lap? Can we
conclude that 34% of all people who visit cnn.com
have driven with a pet on their lap? Explain.

A.21 Does Smiling Increase Positive Emotions Sci-
entists came up with a clever way to test whether the
physical act of smiling increases positive emotions.86

They randomly divided participants into two groups
of 24 each. The ‘‘smiling” group was asked to hold
a pencil between their teeth (which forces the face
into a smile), while the ‘‘non-smiling” group was

84Thanks to Michael J. Frazer, President of Frazer Computing,
for the information.
85cnn.com, poll results from April 12, 2012.
86Soossignan, R., ‘‘Duchenne smile, emotional experience, and
automatic reactivity: A test of the facial feedback hypothesis,”
Emotion, March 2002; 2(1): 52–74.

asked to hold a pencil between their lips (which
does not). Participants were not told the purpose
of the experiment. They then rated video clips on a
scale from −9 (very negative) to +9 (very positive).
The ratings of the two groups did not differ on the
negative clips, but the mean for the smiling group
on a positive clip (from a Tom & Jerry cartoon) was
7.8 while it was 5.9 for the non-smiling group.

(a) Is this an experiment or an observational study?

(b) Why is it important that participants were not
told the purpose of the study?

(c) Find the difference in means for the ratings on
the positive clip, and use notation, with sub-
scripts and a minus sign, for your answer.

(d) If the difference in means from part (c) is
considered substantial, can we conclude that
forcing the facial muscles into a smile in this
way increases positive emotions?

A.22 Age of Patients with Back Pain Figure A.8
shows a histogram of the ages of n = 279 patients
being treated for back pain.87 Estimate the mean
and standard deviation of the ages of back pain
patients.
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Figure A.8 Age of patients with back pain

A.23 Lie Detection Is lie detection software accu-
rate? A recent study was conducted in order to
test the accuracy of a commonly used method
of lie detection.88 The researchers are specifically
interested in how lie detectors perform when an
individual is stressed. A sample of 48 participants
were gathered and attached to the lie detection
device. They were asked to read deceptive material

87Sample dataset from Student Version 12 of Minitab Statistical
Software.
88Hollien, H., Harnsberger, J., Martin, C., and Hollien, K., ‘‘Eval-
uation of the NITV CVSA,” Journal of Forensic Sciences, January
2010; 53(1): 183–193.
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out loud while receiving an electric shock (to add
stress). The lie detector failed to report deception
in 17 of the 48 participants.

(a) What is the sample in this study? What is the
population of interest? What does the variable
measure?

(b) What proportion of time does the lie detector
fail to report deception?

(c) If you were a prosecutor, would you recommend
this lie detector to reveal deception?

A.24 Lie Detection of Truthful Material
Exercise A.23 describes a study in which lie detec-
tor accuracy is checked by having participants read
deceptive material. In addition to deceptive mate-
rial, the individuals were also asked to read truthful
material. The electric shock was again included to
add stress. The lie detector accurately reported no
deception in 21 of the 48 participants.

(a) What proportion of the time does the lie detec-
tor incorrectly report deception?

(b) If you were on a jury, would you trust results
from this device?

A.25 Clutch Sizes of Birds A naturalist counts the
number of baby birds, or clutch size, in a sample
of 130 different nests. A histogram of her results
is shown in Figure A.9. Is the distribution approx-
imately symmetric and bell-shaped? Estimate the
mean of the clutch sizes. Estimate the standard
deviation of the clutch sizes.
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deviation

A.26 PSA Cancer Screening A sample of 30 men
were given the PSA (prostate specific antigen) test
to screen for prostate cancer. For the 30 values
obtained, the median score was m = 3 and the mean
was x = 11. Explain how it is possible for the mean
and the median to be so different. What is likely to

be true about the shape of the distribution of PSA
scores?

A.27 The Growing Season The number of consec-
utive frost-free days in a year is called the growing
season. A farmer considering moving to a new
region finds that the median growing season for
the area for the last 50 years is 275 days while the
mean growing season is 240 days.

(a) Explain how it is possible for the mean to be
so much lower than the median, and describe
the distribution of the growing season lengths in
this area for the last 50 years.

(b) Draw a possible curve for the shape of this dis-
tribution. Label the mean and median on the
horizontal axis.

(c) Describe the likely shape of the distribution.

A.28 Diabetes Drug Benefits Heart Patients
Rosiglitazone is normally prescribed to control
blood sugar in people with Type II diabetes, but
it may also provide a benefit to heart patients. A
study89 identified 95 people with Type II diabetes
who were undergoing angioplasty to open coro-
nary arteries. For six months after the angioplasty,
about half the patients received daily oral doses of
rosiglitazone, while the rest received a placebo. The
groups were randomly assigned and the study was
double-blind. Each patient was then tested to see if
blood vessel blockage was greater or less than 50%.
Since the goal is to limit the propensity of blood
vessels to close again after angioplasty, an outcome
of less than 50% is desirable. The results are shown
in Table A.4.

(a) How many patients received the drug? How
many received a placebo?

(b) What percent of all patients in the study had
less than 50% blockage within 6 months of the
angioplasty?

(c) Of the patients with greater than 50% blockage,
what percent were on rosiglitazone?

(d) What percent of the patients given a placebo
had less than 50% blockage?

Table A.4 Is the drug effective at keeping
blockage less than 50%?

Greater than 50% Less than 50%

Rosiglitazone 5 42
Placebo 21 27

89‘‘Double Duty: Diabetes drug protects reopened heart vessels,”
Science News, June 21, 2003; 163(25): 389–390.
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(e) We wish to compare the effectiveness of rosigli-
tazone to a placebo at keeping blockage to less
than 50%. Calculate the relevant percentages to
make this comparison and discuss the results.

(f) Does rosiglitazone appear to be effective?

A.29 Number of Cell Phone Calls per Day A sur-
vey of n = 1917 cell phone users in May 2010 asked
‘‘On an average day, about how many phone calls
do you make and receive on your cell phone?” The
results90 are displayed in Table A.5.

(a) What is the sample? What is the intended pop-
ulation?

(b) Is this a frequency table or a relative frequency
table?

(c) We can’t draw an accurate histogram from the
data in the table since the first category has a
single value and the last is unbounded (even
if we ignore the nonresponses). However, you
should still be able to discuss the general shape
of the distribution. For example, are the data
skewed or relatively symmetric? Explain your
reasoning.

(d) The article lists two statistics for the ‘‘center” of
these data: 5.00 and 13.10. Which is the mean
and which is the median? Explain.

Table A.5 Number of cell phone
calls made or received per day

Number of Calls Percentage

0 5%
1–5 44%

6–10 22%
11–20 14%
21–30 5%

More than 30 6%
Don’t know 3%

A.30 Prostate Cancer and a Drug for Baldness
The drug finasteride is marketed as Propecia to
help protect against male pattern baldness, and it
also may protect against prostate cancer. A large
sample91 of healthy men over age 55 were randomly
assigned to receive either a daily finasteride pill or a
placebo. The study lasted seven years and the men
had annual check-ups and a biopsy at the end of
the study. Prostate cancer was found in 804 of 4368
men taking finasteride and in 1145 of the 4692 men
taking a placebo.
90Princeton Survey Research Results, ‘‘Spring Change Assess-
ment Survey,” June 4, 2010.
91Thompson, I., et al., ‘‘The Influence of Finasteride on the
Development of Prostate Cancer,” New England Journal of
Medicine, July 17, 2003; 349(3): 215–224.

(a) Is this an experiment or an observational study?
The study was double-blind; what does that
mean?

(b) What are the variables in the study?

(c) Make a two-way table to display the results.
Include the row and column totals.

(d) What percent of men in the study received finas-
teride?

(e) What percent of the men with prostate cancer
were in the placebo group?

(f) Compare the percent of men getting prostate
cancer between the two groups. Does finas-
teride appear to offer some protection against
prostate cancer?

A.31 Length of Calls on a Cell Phone
(a) Do you expect the distribution of the lengths of

all phone calls made on a cell phone during one
month to be symmetric, skewed to the right, or
skewed to the left?

(b) Two measures of center for this distribution are
2.5 minutes and 13.7 minutes. Which is most
likely to be the mean and which is most likely to
be the median? Explain your reasoning.

A.32 Fighting Insomnia Studies have shown that
behavioral changes and prescription medication can
help older people fight insomnia. Researchers92 fol-
lowed the sleep patterns of 72 people whose average
age was 65. Seventeen people took a medication
called temazepam an hour before bedtime, 18 peo-
ple received training in techniques to improve sleep,
19 did both, and 18 took a placebo and received no
training. The results are summarized in Table A.6.
Find the following proportions for this sample.

(a) The proportion who experienced much
improved sleep quality

(b) The proportion of those who took medica-
tion (with or without training) who experienced
much improvement

(c) The proportion of those with no improvement
who used temazepam

Table A.6 Treating insomnia

Improvement Medication Training Both Neither Total
Much 5 7 10 0 22
Some 4 5 6 1 16
None 8 6 3 17 34
Total 17 18 19 18 72

92Information adapted from Science News, April 3, 1999.



150 U N I T A

(d) The proportion of those who did not have
training who experienced some or much
improvement

A.33 Comparing Two Drugs in Dialysis Patients
Many kidney dialysis patients get vitamin D injec-
tions to correct for a lack of calcium. Two forms
of vitamin D injections are used: calcitriol and par-
icalcitol. In the first study93 to compare survival
rates of patients getting one drug or the other,
the records of 67,000 dialysis patients were exam-
ined. Half received one drug; the other half the
other drug. After three years, 58.7% of those get-
ting paricalcitol had survived, while only 51.5% of
those getting calcitriol had survived. What percent
of the survivors had received paricalcitol? Construct
an approximate two-way table of the data (due to
rounding of the percentages we can’t recover the
exact frequency counts).

A.34 Birth Rate Is the birth rate different in devel-
oped and undeveloped countries? In the dataset
AllCountries, we have information on the birth
rate of all 213 countries as well as an indicator for
whether the country is considered a developed or
undeveloped nation.94 Use the five number sum-
maries for each group of countries in Table A.7 to
answer the following questions.

(a) Does the birth rate distribution appear to be
different in developed and undeveloped coun-
tries?

(b) Would any of the undeveloped countries be out-
liers if they were considered developed? What
about developed countries if they were consid-
ered undeveloped?

(c) Libya is on the border between being consid-
ered developed or undeveloped. The birth rate
in Libya is 23.3. Is this an outlier for undevel-
oped countries? Is it an outlier for developed
countries?

Table A.7 Five number summaries for birth
rate in developed and undeveloped nations

1st 3rd
Min Quartile Median Quartile Max

Developed 8.3 10.6 11.7 15.2 23.4
Undeveloped 9.1 18.3 24.4 31.2 44.9

93Teng, M., et al., ‘‘Survival of Patients Undergoing Hemodialy-
sis with Paricalcitol or Calcitriol Therapy,’’ New England Journal
of Medicine, July 31, 2003; 349(5): 446–456.
94In this exercise nations are considered undeveloped if the aver-
age electricity used per person is less then 2500 kWh a year
(coded with ‘‘1” in the Developed variable of AllCountries).
We combined the other two categories into a single category.
Seventy-eight countries were excluded due to missing data.

(d) Using the five number summaries, make a rough
sketch of side-by-side boxplots for birth rate
(ignoring outliers).

A.35 Draw a Boxplot
(a) Draw a boxplot for data that illustrate a distri-

bution skewed to the right.

(b) Draw a boxplot for data that illustrate a distri-
bution skewed to the left.

(c) Draw a boxplot for data that illustrate a sym-
metric distribution.

A.36 Variability by Age in Systolic Blood Pressure
How does the variability in systolic blood pres-
sure compare between ICU patients in their teens
and those in their eighties for the patients in the
dataset ICUAdmissions? The values for each group
are given in Table A.8. Use technology to find the
five number summary, the range and IQR, and the
standard deviation in each case and compare the
measures of spread for the two groups.

Table A.8 Systolic blood pressure of ICU
patients

Teens 100 100 104 104 112 130
130 136 140 140 142 146 156

Eighties 80 100 100 110 110 122 130
135 136 138 140 141 162 190 190

A.37 Examining Blood Pressure by Age Are any
of the systolic blood pressures in Exercise A.36 for
patients in their teens or eighties outliers within
their group? Justify your answer.

A.38 Systolic Blood Pressure Figure A.10 shows a
histogram of the systolic blood pressure (in mm Hg)
for all 200 patients admitted to the Intensive Care
Unit, from the ICUAdmissions dataset. The mean
and standard deviation of these 200 numbers are
x = 132.28 and s = 32.95.

(a) Is it appropriate to use the 95% rule with these
data? Why or why not?

(b) Use the 95% rule to give an interval that is likely
to contain about 95% of the data values.

(c) Use the data in the ICUAdmissions dataset to
count the actual number of data values, and
find the percent of data values, lying within the
interval given in part (b).

(d) Is the result for the sample close to the result
predicted by the 95% rule?

A.39 Heart Rates Figure A.11 shows a histogram
of the heart rate data, in beats per minute, from
ICUAdmissions. The values come from n = 200
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Figure A.11 Heart rate in beats per minute

patients being admitted to the Intensive Care Unit
at a hospital.

(a) Estimate the mean and the standard deviation.

(b) Estimate the 10th percentile and interpret it.

(c) Estimate the range.

A.40 Estimate the Correlation Give a rough esti-
mate of the correlation r for each of the scatterplots
shown in Figure A.12.

A.41 A Small Sample of SAT Scores A random
sample of seven statistics students were taken from
the StudentSurvey dataset. The Math and Verbal

SAT scores for the seven students are shown in
Table A.9. We are interested in predicting scores on
the verbal section using scores on the math section.

(a) Use technology to plot the data with a regres-
sion line to predict verbal scores based on math
scores.

(b) Use technology to find the correlation between
these seven verbal and math scores.

(c) Based on this sample, is it reasonable to use
a regression line to predict verbal scores using
math scores? Explain your answer using what
you have found in (a) and (b).
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(d) (e)

(a) (b) (c)

Figure A.12 Estimate the correlation

Table A.9 SAT scores

Math Verbal

720 450
650 530
670 680
660 680
550 560
620 600
680 670

A.42 Positive or Negative Association? In each
case, decide whether the relationship between the
variables is more likely to be positive or negative.
In the cases where it makes sense to view one vari-
able as an explanatory variable and the other as the
response variable, identify which is which.

(a) Number of years spent smoking cigarettes and
lung capacity

(b) Height and weight

(c) Systolic blood pressure and diastolic blood
pressure

A.43 Effect of Outliers For the five data points in
Table A.10:

(a) Make a scatterplot of the data.

(b) Use technology to find the correlation.

(c) Make a new scatterplot showing these five data
points together with an additional data point at
(10, 10).

(d) Use technology to find the correlation for this
larger dataset with six points.

(e) Discuss the effect of an outlier on the correla-
tion.

Table A.10 What is the correlation?

x 2 1 4 5 3

y 5 3 4 3 4

A.44 A Sample of Height and Weight Figure A.13
shows a scatterplot of height and weight for a new
sample of 105 college students.

(a) Does there appear to be a positive or a negative
relationship in the data?

(b) Describe the body shape of the individuals
whose points are labeled by A, B, C, and D.

A.45 Fat and Fiber and Calories The dataset Nutri-
tionStudy contains information on daily calorie
consumption, fat consumption, and fiber consump-
tion for 315 healthy individuals. Figure A.14 shows
a scatterplot of fat vs calories and a scatterplot of
fiber vs calories. (In these figures, we have omitted
one extreme outlier.)

(a) Does there appear to be a positive or negative
correlation between calories and fat? Between
calories and fiber?

(b) Judging from the scatterplots, which correlation
appears to be larger: between calories and fat
or between calories and fiber?
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Figure A.14 Calorie consumption vs fat or fiber consumption

(c) One person in the study consumed over 4000
calories daily. Approximately what was the fat
consumption for this person? The fiber con-
sumption? Is the value an extreme value for
either fat or fiber as an individual variable?

A.46 The Effect of a Hyper-Aggressive Male If a
male wants mating success, he should not hang out
with hyper-aggressive males. They tend to scare
away all the females. At least, that is the message
from a study95 on water striders. Water striders are
common bugs that skate across the surface of water.
Water striders have different personalities and some
of the males are hyper-aggressive, meaning they
jump on and wrestle with any other water strider
near them. Individually, because hyper-aggressive

95Sih, A. and Watters, J., ‘‘The mix matters: behavioural types and
group dynamics in water striders,” Behaviour, 2005; 142(9–10):
1423.

males are much more active, they tend to have bet-
ter mating success than more inactive striders. This
study examined the effect they have on a group.
Four males and three females were put in each of
ten pools of water. Half of the groups had a hyper-
aggressive male as one of the males and half did not.
The proportion of time females are in hiding was
measured for each of the 10 groups, and a measure of
mean mating activity was also measured with higher
numbers meaning more mating. Results are shown
in Table A.11 and are available in WaterStriders.

(a) For the five groups with no hyper-aggressive
male, find the mean and standard deviation of
the proportion of time females stay in hiding.
Also find the same summary statistics for the five
groups with a hyper-aggressive male. Does there
seem to be a difference in the proportion of time
females are in hiding between the two groups?
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(b) Using all 10 data points, make a scatterplot of
the proportion of time females are hiding and
the mean mating activity. We consider the pro-
portion of time in hiding to be the explanatory
variable.

(c) Using all 10 points, find the regression line to
predict mean mating activity from the propor-
tion of time females spend hiding.

(d) For each of the two means found in part (a), find
the predicted mating activity for that proportion
of time in hiding. What is the predicted mean
mating activity if there is not a hyper-aggressive
male in the group? What is the predicted mean
mating activity if there is a hyper-aggressive
male in the group?

(e) What advice would you give to a male water
strider that wants to mate?

Table A.11 Effect of a hyper-aggressive male on
water striders

Aggressive Male? Females Hiding Mating Activity

No 0 0.48
No 0 0.48
No 0 0.45
No 0.09 0.30
No 0.13 0.49
Yes 0.16 0.49
Yes 0.17 0.57
Yes 0.25 0.36
Yes 0.55 0.45
Yes 0.82 0.11

A.47 Predicting Percent of College Graduates
Using High School Graduation Rates Exercise A.16
on page 145 used data in the USStates dataset to
examine the percent of adults to graduate college
in US states by region. The dataset also includes
information on the percent to graduate high school
in each state. We use the percent to graduate high
school to predict the percent to graduate college. A
scatterplot with regression line for all 50 states is
shown in Figure A.15.

(a) The formula for the regression line is ̂College =
−25.4 + 0.654 · HighSchool. Interpret the slope
of the line in context.

(b) What is the predicted percent to graduate col-
lege if 80% graduate high school? What is it if
90% graduate high school?

(c) Massachusetts appears to have a particularly
large positive residual. Massachusetts has 86.9%
graduating high school and 43.2% graduat-
ing college. Compute the residual for Mas-
sachusetts.
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Figure A.15 Predicting percent to graduate college
using percent to graduate high school

A.48 Predicting Percent of College Graduates
Using Income In Exercise A.47, we used the per-
cent of the population graduating high school to
predict the percent to graduate college, using data
in USStates. It is likely that the mean household
income in the state might also be a reasonable
predictor. Figure A.16 shows a scatterplot with
regression line for these two variables.

(a) Describe the scatterplot in Figure A.16. Is there
a linear trend? Is it positive or negative? Are
there any really obvious outliers?

(b) Use Figures A.15 and A.16 to decide which
variable, percent to graduate high school or
household income, is more strongly correlated
with percent to graduate college.

(c) For the state with the largest positive residual,
estimate from the graph the household income,
the percent graduating college, and the pre-
dicted percent to graduate college.

(d) For the state with the largest negative residual,
estimate from the graph the household income,
the percent graduating college, and the pre-
dicted percent to graduate college.
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Figure A.16 Predicting college graduation rate from
household income
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A.49 Investigating NBA Statistics The dataset
NBAPlayers2011 is introduced on page 88, and
includes many variables about players in the
National Basketball Association in 2010–2011. In
this exercise, we’ll use FTPct, the percent of free
throws made, to predict FGPct, the percent of field
goals made.

(a) Make a scatterplot of this relationship. Is there
a linear trend? If so, is it positive or negative?
Indicate what positive/negative means in this
situation.

(b) Are there any outliers on the scatterplot? If so,
describe them. Identify the players by name.

(c) Use technology to find the correlation between
the two variables.

(d) Use technology to find a formula for the regres-
sion line and also to plot it on the scatterplot.

(e) Find the predicted field goal percentage for a
player who has a 0.70 free throw percentage.

A.50 Investigating the Happy Planet Index In
Exercise 2.172 on page 114, we introduced the
dataset HappyPlanetIndex. This exercise asks you

to use technology to investigate more variables and
relationships in that dataset.

(a) Use technology to create a frequency table for
the number of countries in each of the different
regions. (The code for each region is given in
Exercise 2.172 on page 114).

(b) Use technology to create both a histogram and
a boxplot for any one of the quantitative vari-
ables. Describe the shape of the distribution
and indicate whether there are any outliers. In
addition, give summary statistics (mean, stan-
dard deviation, five number summary) for the
variable.

(c) For a different quantitative variable than the
one you used in part (b), create a side-by-side
boxplot for your variable by region. Discuss
what you see in the graph.

(d) Pick two quantitative variables where you
believe one might be useful to predict the other.
Create a scatterplot and discuss what you see.
Find the correlation between the variables and
find the regression line. Use the regression line
to make at least one prediction.

Projects for UNIT A

Project 1 Statistics in the Media

This project asks you to find examples of statistics
in the media. You are asked to describe four
specific examples, with two of the sources
describing a single variable and two of the sources
describing examples of a relationship between
variables. Your four examples must come from
four different articles or news stories. You may use
print media or online media to find the four
examples of statistics, but you must give a
reference for each. Use section headers or titles to
separate each of your four descriptions.

Part 1 For each of the two stories in the media

about a single variable:

Write a well-crafted paragraph or two summarizing
how the article describes information about a
single variable. As you write the paragraph, try to
incorporate answers to all the following questions:

• What is the variable measuring?

• Is the variable categorical or quantitative?

• What are the cases?

• Are any specific summary statistics given, such as
a proportion or a mean? If so, what are they?

• Is any visual display or graph included in the arti-
cle? If so, what?

• Do the data represent a sample or a population?

• If the data are a sample, to what population
might we generalize?

• Does the article discuss the method of sampling?
If so, describe it.

• Would you have any reason to suspect that
the method of sampling introduced any bias?
Explain.

Part 2 For each of the two stories in the media

about a relationship between variables:

Write a well-crafted paragraph or two summarizing
how the article describes the relationship between
two variables. As you write the paragraph, try to
incorporate answers to all the following
questions:

• What are the variables measuring?



156 U N I T A

• Is each variable categorical or quantitative?

• What are the cases?

• Are any specific summary statistics given, such as
a correlation or a comparison of proportions or
comparison of means? If so, what are they?

• Is any visual display or graph included in the arti-
cle? If so, what?

• If the article describes a relationship between
two quantitative variables, does the association
appear to be positive or negative?

• Do the data come from an observational study or
an experiment?

• Does the article imply a causal association? If so,
is such a conclusion appropriate?

Project 2 Analyze Your Own Data

Step 1 Select a Dataset

For this project, you must find some sort of
published, existing data. Possible sources include:
almanacs, magazine and journal articles, textbooks,
web resources, athletic teams, newspapers,
reference materials, campus organizations,
professors with experimental data, electronic data
repositories, the sports pages.

The dataset you select must have at least 25
cases. It also must have at least two categorical
variables and at least two quantitative variables. It
is very helpful to have a dataset that interests you.

Step 2 Analyze Your Data!

See the description below of what analysis should
be included. Use technology as needed to
automate calculations and graphs.

Step 3 Write Your Report

Include all of the following:

• Introduction: Give a reference for your data and
describe all relevant variables. Include a copy of
the dataset.

• Analysis of One Quantitative Variable: For at
least one of the quantitative variables, include
summary statistics (mean, standard deviation,
five number summary) and at least one graphical
display. Are there any outliers? Is the distribu-
tion symmetric, skewed, or some other shape?

• Analysis of One Categorical Variable: For at least
one of the categorical variables, include a fre-
quency table and a relative frequency table.

• Analysis of One Relationship between Two Cat-
egorical Variables: Include a two-way table and
discuss any relevant proportions. Does there
appear to be an association between the two vari-
ables? If so, describe it.

• Analysis of One Relationship between a Categori-
cal Variable and a Quantitative Variable: Include
a side-by-side plot and describe it. Does there
appear to be an association between the two vari-
ables? If so, describe it. Also, use some summary
statistics to compare the groups.

• Analysis of One Relationship between Two Quan-
titative Variables: For at least one pair of quanti-
tative variables, include a scatterplot and discuss
it. Give the correlation and comment on the
strength of linear association. Pick one of the
variables to be a response variable, use the other
as an explanatory variable, and fit a regression
line. Interpret the slope of the regression line.
Use the regression line to make at least one pre-
diction for a point in the dataset and compute the
residual.

• Conclusion: Briefly summarize the most interest-
ing features of your data.

As you discuss each analysis, be sure to inter-
pret what you are finding in the context of your
particular data situation.

Project 3 Simpson’s Paradox

In this project, we investigate an interesting
phenomenon known as Simpson’s Paradox.

A study on the survival rate of patients
recorded whether hospital patients lived or died,
which of two hospitals the patients were admitted
to, and the condition (poor or good) of the patient
when admitted to the hospital. One way to
examine three categorical variables is to give
multiple two-way tables: one for each category of

the third variable. Tables A.12 and A.13 give
two-way tables for the status and the hospital
variables, with the subjects separated based on the
condition on admittance.

(a) Considering only patients in good condition,
which hospital has a lower death rate?

(b) Considering only patients in poor condition,
which hospital has a lower death rate?
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(c) No matter what condition a patient is in, which
hospital is the best choice?

(d) Suppose the researchers decided the condi-
tion of the patient was not relevant, and looked
only at the two variables of the survival status
and the two hospitals. Complete Table A.14 to
include all patients (in either condition).

(e) Use Table A.14 to determine which hospital
has a lower death rate.

(f) Discuss the discrepancy in your answers
to parts (c) and (e). This discrepancy is an
example of Simpson’s Paradox, in which the
existence of a confounding variable—in this
case, the condition of the patient—can actually
reverse the interpretation of an observed effect.
Which hospital really is the best choice?

(g) Here’s the fun part: Do a web search and find
another example of Simpson’s Paradox. Give
the details of the example and explain how it
demonstrates this paradox.

Table A.12 Good condition

Hospital A Hospital B

Died 6 8
Survived 594 592

Table A.13 Poor condition

Hospital A Hospital B

Died 57 8
Survived 1443 192

Table A.14 Let’s ignore the condition of the
patient

Hospital A Hospital B

Died
Survived
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Understanding
Inference

‘‘The sexy job in the next 10 years will be statisticians.’’

Hal Varian, Chief Economist at Google∗

U N I T O U T L I N E

3 Confidence Intervals
4 Hypothesis Tests
Essential Synthesis

In this unit, we develop the key ideas of sta-

tistical inference–estimation and testing–using

simulation methods to build understanding and

to carry out the analysis.

∗New York Times, August 6, 2009, p. A1
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Confidence
Intervals

‘‘Knowing what to measure and how to measure it makes a complicated world less so. If you

learn to look at data in the right way, you can explain riddles that otherwise might have

seemed impossible. Because there is nothing like the sheer power of numbers to scrub away

layers of confusion and contradiction.’’

Levitt and Dubner∗

∗Freakonomics, HarperCollins, NY, 2005, p. 13
Top left: © Pavel Losevsky/iStockphoto, Top right: © Mikkel William Nielsen/iStockphoto, Bottom right: © Andrew Rich/iStockphoto
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Questions and Issues

C H A P T E R O U T L I N E

3 Confidence Intervals 160
3.1 Sampling Distributions 162

3.2 Understanding and Interpreting
Confidence Intervals 179

3.3 Constructing Bootstrap Confidence
Intervals 192

3.4 Bootstrap Confidence Intervals using
Percentiles 205

Here are some of the questions and issues we will discuss in this chapter:

• Do they really pay you to go to graduate school in statistics? (Yes)

• What proportion of US residents have a college degree?

• What is the average number of calls per day by cell phone users?

• What proportion of Hollywood movies are comedies?

• What proportion of US adults own a laptop computer?

• When studying for a test, is it better to mix up the topics or study one topic at a time?

• What proportion of adults send text messages? What proportion of teens do?

• How many people are in the largest group to ever be inducted into the Rock and Roll Hall of
Fame?

• What proportion of young adults in the US have ever been arrested?

• If a person overeats for a month and then loses the weight, are there long-term effects?

• How much BPA (the chemical bisphenol A) is in your canned soup?

• Does playing action video games improve a person’s ability to make accurate quick decisions?

• Does adding indifferent people to a group make it more democratic?

• Are rats compassionate? Are female rats more compassionate than male rats?

• Does drinking tea help the immune system?

• How often, on average, do people laugh in a day?

161
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3.1SAMPLING DISTRIBUTIONS

In Chapter 1 we discuss data collection: methods for obtaining sample data from a
population of interest. In this chapter we begin the process of going in the other
direction: using the information in the sample to understand what might be true
about the entire population. If all we see are the data in the sample, what conclusions
can we draw about the population? How sure are we about the accuracy of those
conclusions? Recall from Chapter 1 that this process is known as statistical inference.

Statistical Inference

Statistical inference is the process of drawing conclusions about the
entire population based on the information in a sample.

Data Collection

Statistical Inference

Population

Sample

Statistical inference uses sample data to understand a
population

Population Parameters and Sample Statistics
To help identify whether we are working with the entire population or just a sample,
we use the term parameter to identify a quantity measured for the population and
statistic for a quantity measured for a sample.

Parameters vs Statistics

A parameter is a number that describes some aspect of a population.

A statistic is a number that is computed from the data in a sample.

As we saw in Chapter 2, although the name (such as ‘‘mean” or ‘‘proportion”)
for a statistic and parameter is generally the same, we often use different notation
to distinguish the two. For example, we use μ (mu) as a parameter to denote the
mean for a population and x as a statistic for the mean of a sample. Table 3.1

Table 3.1 Notation for common parameters and statistics

Population Parameter Sample Statistic

Mean μ x
Standard deviation σ s
Proportion p p̂
Correlation ρ r
Slope (regression) β b
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summarizes common notation for some population parameters and corresponding
sample statistics. The notation for each should look familiar from Chapter 2.

Example 3.1
Proportion of College Graduates

The US Census states that 27.5% of US adults who are at least 25 years old have
a college bachelor’s degree or higher. Suppose that in a random sample of n = 200
US residents who are 25 or older, 58 of them have a college bachelor’s degree or
higher. What is the population parameter? What is the sample statistic? Use correct
notation for each answer.

Solution The population parameter is the proportion with a bachelor’s degree for all US adults
who are at least 25 years old; it is p = 0.275. The sample statistic is the proportion
with a bachelor’s degree for all people in the sample; it is p̂ = 58/200 = 0.29.

Sample Statistics as Point Estimates of Population
Parameters
On April 29, 2011, Prince William married Kate Middleton (now Duchess Catherine)
in London. The Pew Research Center reports that 34% of US adults watched some
or all of the royal wedding.1 How do we know that 34% of all US adults watched?
Did anyone ask you if you watched it? In order to know for sure what proportion
of US adults watched the wedding, we would need to ask all US adults whether
or not they watched. This would be very difficult to do. As we will see, however,
we can estimate the population parameter quite accurately with a sample statistic,
as long as we use a random sample (as discussed in Chapter 1). In the case of
the royal wedding, the estimate is based on a poll using a random sample of 1006
US adults.

In general, to answer a question about a population parameter exactly, we
need to collect data from every individual in the population and then compute the
quantity of interest. That is not feasible in most settings. Instead, we can select a
sample from the population, calculate the quantity of interest for the sample, and
use this sample statistic to estimate the value for the whole population.

The value of a statistic for a particular sample gives a point estimate (or simply
estimate) of the population parameter. If we only have the one sample and don’t
know the value of the population parameter, this point estimate is our best estimate
of the true value of the population parameter.

Point Estimate

We use the statistic from a sample as a point estimate for a population
parameter.

Example 3.2
Fuel economy information for cars is determined by the EPA (Environmental
Protection Agency) by testing a sample of cars.2 Based on a sample of n = 12
Toyota Prius cars in 2012, the average fuel economy was 48.3 mpg. State the
population and parameter of interest. Use the information from the sample to give
the best estimate of the population parameter.

1Pew Research Center, ‘‘Too Much Coverage: Birth Certificate, Royal Wedding,” http://www
.pewresearch.org, May 3, 2011.
2http://www.epa.gov/fueleconomy/data.htm.

o
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Solution The population is all Toyota Prius cars manufactured in 2012. The population
parameter of interest is μ, the mean fuel economy (mpg) for all 2012 Toyota Prius
cars. For this sample, x = 48.3. Unless we have additional information, the best
point estimate of the population parameter is the sample statistic of 48.3. Notice
that to find μ exactly, we would have to obtain information on the fuel economy for
every 2012 Toyota Prius.

Example 3.3
For each of the questions below, identify the population parameter(s) of interest
and the sample statistic we might use to estimate the parameter.

(a) What is the mean commute time for workers in a particular city?

(b) What is the correlation between the size of dinner bills and the size of tips at a
restaurant?

(c) How much difference is there in the proportion of 30 to 39-year-old US residents
who have only a cell phone (no land line phone) compared to 50 to 59-year-olds
in the US?

Solution (a) The relevant parameter is μ, the mean commute time for all people who work
in the city. We estimate it using x, the mean from a random sample of people
who work in the city.

(b) The relevant parameter is ρ, the correlation between the bill amount and tip size
for all dinner checks at the restaurant. We estimate it using r, the correlation
from a random sample of dinner checks.

(c) The relevant quantity is p1 − p2, the difference in the proportion of all 30 to
39-year-old US residents with only a cell phone (p1) and the proportion with the
same property among all 50 to 59-year-olds (p2). We estimate it using p̂1 − p̂2,
the difference in sample proportions computed from random samples taken in
each age group.

Variability of Sample Statistics
We usually think of a parameter as a fixed value3 while the sample statistic varies
from sample to sample, depending on which cases are selected to be in the sample.
We would like to know the value of the population parameter, but this usually cannot
be computed directly because it is often very difficult or impossible to collect data
from every member of the population. The sample statistic might vary depending
on the sample, but at least we can compute its value.

In Example 3.3, we describe several situations where we might use a sample
statistic to estimate a population parameter. How accurate can we expect the
estimates to be? That is one of the fundamental questions of statistical inference.
Because the value of the parameter is usually fixed but unknown, while the value of
the statistic is known but varies depending on the sample, the key to addressing this
question is to understand how the value of the sample statistic varies from sample
to sample.

Consider the average fuel economy for 2012 Toyota Prius cars in Example 3.2.
The average observed in the sample is x = 48.3. Now suppose we were to take a
new random sample of n = 12 cars and calculate the sample average. A new sample

3In reality, a population may not be static and the value of a parameter might change slightly, for example,
if a new person moves into a city. We assume that such changes are negligible when measuring a quantity
for the entire population.

o
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average of x = 48.2 (very close to 48.3!) would suggest low variability in the statistic
from sample to sample, suggesting the original estimate of 48.3 is pretty accurate.
However, a new sample average of 56.8 (pretty far from 48.3) would suggest high
variability in the statistic from sample to sample, giving a large amount of uncertainty
surrounding the original estimate.

Of course, it’s hard to judge variability accurately from just two sample means.
To get a better estimate of the variability in the means we should consider many
more samples. One way to do this is to use computer simulations of samples from a
known population, as illustrated in the following examples.

© Andrew Rich/iStockphoto

Is a statistics graduate program in your future?

D A T A 3 . 1 Enrollment in Graduate Programs in Statistics
Graduate programs in statistics often pay their graduate students, which means
that many graduate students in statistics are able to attend graduate school
tuition free with an assistantship or fellowship. (This is one of the many
wonderful things about studying statistics!) There are 82 US statistics doctoral
programs (departments of statistics or biostatistics in the US reporting a PhD
program) for which enrollment data were available.4 The dataset StatisticsPhD

lists all these schools together with the total enrollment of full-time graduate
students in each program in 2009. ■

Example 3.4
What is the average full-time graduate student enrollment in US statistics doctoral
programs in 2009? Use the correct notation for your answer.

Solution Based on the data StatisticsPhD, the mean enrollment in 2009 is 53.54 full-time
graduate students. Because this is the mean for the entire population of all US
statistics doctoral programs for which data were available that year, we have
μ = 53.54 students.

4Full list of the 82 Group IV departments was obtained at http://www.ams.org/profession/data/annual-
survey/group iv. Data on enrollment obtained primarily from Assistantships and Graduate Fellowships
in the Mathematical Sciences, 2009, American Mathematical Society. The list does not include combined
departments of mathematics and statistics and does not include departments that did not reply to the
AMS survey.
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Example 3.5
Select a random sample of 10 US statistics doctoral programs from the file Statistics
PhD and compute the mean enrollment for your sample. Use the correct notation
for your answer. Compare your answer to the population mean.

Solution We use StatKey, other technology, or a random number table to select the sample.
One sample is given in Table 3.2. We compute the mean enrollment for this sample
to be x = 53.0. The sample mean is similar to the population mean of μ = 53.54 but
is not exactly the same.

That the sample statistic in Example 3.5 does not exactly match the population
parameter is not surprising: We don’t expect to get exactly the mean of the entire
population from every sample we choose, but we hope that our sample mean is close
to the population mean.

A different random sample of 10 US statistics doctoral programs is shown in
Table 3.3. The mean enrollment for this sample is x = 61.5. Again, the sample mean
is somewhat similar to the population mean of μ = 53.54 but is not exactly the same.
Note that this sample mean is also different from the sample mean found from the
sample in Table 3.2.

If everyone in your statistics class selects a random sample of size 10 from the
population of US statistics doctoral programs and computes the sample mean, there
will be many different results. Try it! (In fact, from a population of size 82, there
are 2,139,280,241,670 different samples of size 10 that can be selected!) We expect
these sample means to be clustered around the true population mean of μ = 53.54.

Table 3.2 A sample of full-time graduate student enrollment in 2009

University Department Enrollment

Case Western Reserve University Statistics 11
University of South Carolina Biostatistics 45
Harvard University Statistics 67
University of California–Riverside Statistics 54
Medical University of South Carolina Biostatistics 46
University of Nebraska Statistics 44
New York University Statistics 6
Columbia University Statistics 196
University of Iowa Biostatistics 35
Baylor University Statistics 26

Table 3.3 Another sample of full-time graduate student enrollment
in 2009

University Department Enrollment

University of Wisconsin Statistics 116
Cornell University Statistics 78
Yale University Statistics 36
Iowa State University Statistics 145
Boston University Biostatistics 39
University of Nebraska Statistics 44
University of Minnesota Biostatistics 48
University of California–Los Angeles Biostatistics 60
University of California–Davis Statistics 34
Virginia Commonwealth University Statistics 15

A o
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Figure 3.1 1000 means
for samples of size n = 10
from StatisticsPhD 30 40 50 60

xbar
70 80 90

To see that this is so, we use StatKey or other technology to take 1000 random
samples of size n = 10 from our population and compute the sample mean in each
case. A dotplot of the results is shown in Figure 3.1. The sample means of x = 53.0
and x = 61.5 from the two random samples above correspond to two of the dots in
this dotplot.

Notice in Figure 3.1 that we do indeed have many different values for the
sample means, but the distribution of sample means is quite symmetric and centered
approximately at the population mean of 53.54. From Figure 3.1 we see that most
sample means for samples of size 10 fall between about 30 and 80. We will see that
the bell-shaped curve seen in this distribution is very predictable. The distribution
of sample statistics for many samples, such as those illustrated in Figure 3.1, is called
a sampling distribution.

Sampling Distribution

A sampling distribution is the distribution of sample statistics com-
puted for different samples of the same size from the same population.

A sampling distribution shows us how the sample statistic varies from
sample to sample.

Figure 3.1 illustrates the sampling distribution for sample means based on
samples of size 10 from the population of all statistics PhD programs. Of course, we
don’t show the means for all 2 trillion possible samples. However, the approximation
based on 1000 samples should be sufficient to give us a good sense of the shape,
center, and spread of the sampling distribution.

Sampling distributions apply to every statistic that we saw in Chapter 2 and lots
more! We look next at a sampling distribution for a proportion.

Example 3.6
In Example 3.1 on page 163 we see that 27.5% of US adults at least 25 years
old have a college bachelor’s degree or higher. Investigate the behavior of sample
proportions from this population by using StatKey or other technology to simulate
lots of random samples of size n = 200 when the population proportion is p = 0.275.
Describe the shape, center, and spread of the distribution of sample proportions.

Solution Figure 3.2 illustrates the sampling distribution of proportions for 1000 samples, each
of size n = 200 when p = 0.275. We see that the sampling distribution of simulated
p̂ values is relatively symmetric, centered around the population proportion of
p = 0.275, ranges from about 0.175 to 0.38, and again has the shape of a bell-shaped
curve. Note that the sample statistic p̂ = 0.29 mentioned in Example 3.1 is just one
of the dots in this dotplot.
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Figure 3.2 Sample
proportions when
n = 200 and p = 0.275 0.16 0.18 0.20 0.22 0.24 0.26

SampleP
0.28 0.30 0.32 0.34 0.36 0.38

The distributions of sample proportions in Figure 3.2 and sample means in
Figure 3.1 have a similar shape. Both are symmetric, bell-shaped curves centered at
the population parameter. As we will see, this is a very common pattern and can
often be predicted with statistical theory. If samples are randomly selected and the
sample size is large enough, the corresponding sample statistics will often have a
symmetric, bell-shaped distribution centered at the value of the parameter. In later
chapters we formalize the idea of a bell-shaped distribution and elaborate on how
large a sample size is ‘‘large enough.”

Shape and Center of a Sampling Distribution

For most of the parameters we consider, if samples are randomly
selected and the sample size is large enough, the sampling distribution
will be symmetric and bell-shaped and centered at the value of the
population parameter.

Measuring Sampling Variability: The Standard Error
What we really care about is the spread of the sampling distribution (the variability
of the statistic from sample to sample). Knowing how much a statistic varies from
sample to sample is key in helping us know how accurate an estimate is.

One measure of variability associated with the sample statistic can be found by
computing the standard deviation of the sample statistics in a sampling distribution.
Although this is no different from the standard deviation of sample values we saw in
Chapter 2, the standard deviation of a sample statistic is so important that it gets its
own name: the standard error of the statistic. The different name helps to distinguish
between the variability in the sample statistics and the variability among the values
within a particular sample. We think of the standard error as a ‘‘typical” distance
between the sample statistics and the population parameter.

Standard Error

The standard error of a statistic, denoted SE, is the standard deviation
of the sample statistic.
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In situations such as the mean graduate program enrollment in Example 3.5 and
the proportion of college graduates in Example 3.6 where we can simulate values of
a statistic for many samples from a population, we can estimate the standard error
of the statistic by finding the usual standard deviation of the simulated statistics.

Example 3.7
Use StatKey or other technology to estimate the standard error for the sampling
distributions of the following:

(a) Mean enrollment in statistics PhD programs in samples of size 10 (as in
Example 3.5)

(b) Proportion of college graduates in samples of size 200 (as in Example 3.6)

Solution The standard error is the standard deviation of all the simulated sample statistics.
In StatKey, this standard deviation is given in the upper right corner of the box
containing the sampling distribution. With other technology, once we have the
sampling distribution we find the standard deviation of the values in the same way
as in Chapter 2.

(a) For the 1000 means for simulated samples of n = 10 statistics program enroll-
ments shown in Figure 3.1, we find the standard deviation of the 1000 means to
be 10.9 so we have SE = 10.9.

(b) For the 1000 proportions of college graduates in simulated samples of size 200
shown in Figure 3.2, we find the standard deviation of the 1000 proportions to
be 0.03, so we have SE = 0.03.

Since these standard errors are estimated from a set of random simulations, the
values might change slightly from one simulation to another.

Recall from Section 2.3 that when distributions are relatively symmetric and
bell-shaped, the 95% rule tells us that approximately 95% of the data values fall
within two standard deviations of the mean. Applying the 95% rule to sampling
distributions, we see that about 95% of the sample statistics will fall within two
standard errors of the mean. This allows us to get a rough estimate of the standard
error directly from the dotplot of the sampling distribution, even if we don’t have
the individual values for each dot.

Example 3.8
Use the 95% rule to estimate the standard error for the following sampling
distributions:

(a) Mean enrollment in statistics PhD programs in samples of size 10 (from
Figure 3.1)

(b) Proportion of college graduates in samples of size 200 (from Figure 3.2)

Solution (a) In Figure 3.1, we see that the middle 95% of sample means appear to range
from about 34 to about 78. This should span about two standard errors below
the mean and two standard errors above the mean. We estimate the standard
error to be about (78 − 34)/4 = 11.

(b) In Figure 3.2, we see that the middle 95% of sample proportions appear to range
from about 0.21 to 0.34, or about 0.065 above and below the mean of p = 0.275.
We estimate the standard error to be about 0.065/2 = 0.0325.
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These rough estimates from the graphs match what we calculated in
Example 3.7.

A low standard error means statistics vary little from sample to sample, so we
can be more certain that our sample statistic is a reasonable point estimate. In
Section 3.2, we will learn more about how to use the standard error to quantify the
uncertainty in a point estimate.

The Importance of Sample Size

Example 3.9
In Example 3.1, we learn that the population proportion of college graduates in
the US is p = 0.275, and Figure 3.2 on page 168 shows the sampling distribution for
the sample proportion of college graduates when repeatedly taking samples of size
n = 200 from the population. How does this distribution change for other sample
sizes? Figure 3.3 shows the distributions of sample proportions for many (simulated)
random samples of size n = 50, n = 200, and n = 1000. Discuss the effect of sample
size on the center and variability of the distributions.

Solution The center appears to be close to the population proportion of p = 0.275 in all three
distributions, but the variability is quite different. As the sample size increases,
the variability decreases and a sample proportion is likely to be closer to the
population proportion. In other words, as the sample size increases, the standard
error decreases.

We see in Example 3.9 that the larger the sample size the lower the variability
in the sampling distribution, so the smaller the standard error of the sample statistic.
This makes sense: A larger sample allows us to collect more information and estimate
a population parameter more precisely. If the sample were the entire population,
then the sample statistic would match the population parameter exactly and the
sampling distribution would be one stack of dots over a single value!

Figure 3.3 What effect
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Sample Size Matters!

As the sample size increases, the variability of sample statistics tends
to decrease and sample statistics tend to be closer to the true value of
the population parameter.

Example 3.10
Here are five possible standard errors for proportions of college graduates using
different size samples:

SE = 0.005 SE = 0.014 SE = 0.032 SE = 0.063 SE = 0.120

For each of the three sample sizes shown in Figure 3.3, use the 95% rule to
choose the most appropriate standard error from the five options listed.

Solution Since each of the distributions is centered near p = 0.275, we consider the interval
0.275 ± 2 · SE and see which standard error gives an interval that contains about
95% of the distribution of simulated p̂’s shown in Figure 3.3.

n=1000: It appears that SE = 0.014 is the best choice, since the interval on either
side of p = 0.275 would go from 0.275 ± 2(0.014) which is 0.247 to 0.303. This
looks like a reasonable interval to contain the middle 95% of the values in
the dotplot shown in the top panel of Figure 3.3, when the sample size is
n = 1000.

n=200: It appears that SE = 0.032 is the best choice, since the interval on either
side of p = 0.275 would go from 0.275 ± 2(0.032) which is 0.211 to 0.339. This
looks like a reasonable interval to contain the middle 95% of the values in
the dotplot shown in the middle panel of Figure 3.3, when the sample size is
n = 200.

n=50: It appears that SE = 0.063 is the best choice, since the interval on either
side of p = 0.275 would go from 0.275 ± 2(0.063) which is 0.149 to 0.401. This
looks like a reasonable interval to contain the middle 95% of the values in
the dotplot shown in the bottom panel of Figure 3.3, when the sample size is
n = 50.

The standard error of SE = 0.005 is too small for any of these plots, and SE = 0.120
would give an interval that is too large.

We see again in Example 3.10 that as the sample size increases, the standard
error decreases, so the sample statistic generally becomes a better estimate of the
population parameter.

Importance of Random Sampling
So far, the sampling distributions we have looked at have all been centered around
the population parameter. It is important that samples were selected at random in
each of these cases. Too often this is overlooked. Random sampling will generally
yield a sampling distribution centered around the population parameter, but, as
we learned in Section 1.2, non-random samples may be biased, in which case the
sampling distribution may be centered around the wrong value.

o



172 C H A P T E R 3 Confidence Intervals

Figure 3.4 Sample
means: Which color
shows a biased sampling
method? 9 12 15 18 21

HoursStudy

24 27 30

Example 3.11
Suppose that students at one college study, on average, 15 hours a week. Two
different students, Judy and Mark, are curious about sampling. They each sample
n = 50 students many times, ask each student the number of hours they study a
week, and record the mean of each sample. Judy takes many random samples of
50 students from the entire student body, while Mark takes many samples of 50
students by asking students in the library. The sampling distributions generated by
Mark and Judy are shown with different colors in Figure 3.4. Which set of sample
means (red or black) were produced by Judy? Why did Mark and Judy get such
different results?

Solution Judy was utilizing random sampling, so we expect her sample means to be centered
around the true average of 15 hours a week. Therefore, we can conclude that
her sample means correspond to the black dots. Mark chose to take a convenient
sampling approach, rather than take a random sample. Due to this fact his samples
are not representative of the population (students sampled in the library are likely
to study more), so his sample means are biased to overestimate the average number
of hours students study.

Inference Caution

Statistical inference is built on the assumption that samples are
drawn randomly from a population. Collecting the sample data in
a way that biases the results can lead to false conclusions about the
population.

In this section, we’ve learned that statistics vary from sample to sample, and that
a sample statistic can be used as a point estimate for an unknown fixed population
parameter. However, a sample statistic will usually not match the population
parameter exactly, and a key question is how accurate we expect our estimate to be.
We explore this by looking at many statistics computed from many samples of the
same size from the same population, which together form a sampling distribution.
The standard deviation of the sampling distribution, called the standard error, is
a common way of measuring the variability of a statistic. Knowing how much a
statistic varies from sample to sample will allow us to determine the uncertainty in
our estimate, a concept we will explore in more detail in the next section.

:

o
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between a population parameter and a sample statistic,
recognizing that a parameter is fixed while a statistic varies from
sample to sample

• Compute a point estimate for a parameter using an appropriate statistic
from a sample

• Recognize that a sampling distribution shows how sample statistics
tend to vary

• Recognize that statistics from random samples tend to be centered at
the population parameter

• Estimate the standard error of a statistic from its sampling distribution

• Explain how sample size affects a sampling distribution

Exercises for Section 3.1

SKILL BUILDER 1
In Exercises 3.1 to 3.5, state whether the quantity
described is a parameter or a statistic and give the
correct notation.

3.1 Average household income for all houses in
the US, using data from the US Census.

3.2 Correlation between height and weight for
players on the 2010 Brazil World Cup team, using
data from all 23 players on the roster.

3.3 Proportion of people who use an electric tooth-
brush, using data from a sample of 300 adults.

3.4 Proportion of registered voters in a county
who voted in the last election, using data from the
county voting records.

3.5 Average number of television sets per house-
hold in North Carolina, using data from a sample of
1000 households.

SKILL BUILDER 2
In Exercises 3.6 to 3.11, give the correct notation for
the quantity described and give its value.

3.6 Proportion of families in the US who were
homeless in 2010. The number of homeless families5

in 2010 was about 170,000 while the total num-
ber of families is given in the 2010 Census at
78 million.

5Luo, M., ‘‘Number of Families in Shelters Rises,” New York
Times, September 12, 2010.

3.7 Average enrollment in charter schools in Illi-
nois. In 2010, there were 95 charter schools in the
state of Illinois6 and the total number of students
attending the charter schools was 30,795.

3.8 Proportion of US adults who own a cell phone.
In a survey of 2252 US adults, 82% said they had a
cell phone.7

3.9 Correlation between age and heart rate for
patients admitted to an Intensive Care Unit. Data
from the 200 patients included in the file ICUAd-
missions gives a correlation of 0.037.

3.10 Mean number of cell phone calls made or
received per day by cell phone users. In a survey
of 1917 cell phone users, the mean was 13.10 phone
calls a day.8

3.11 Correlation between points and penalty min-
utes for the 24 players with at least one point on

6Data obtained from www.uscharterschools.org.
7‘‘Spring Change Assessment Survey 2010,” Princeton Sur-
vey Research Associates International, 6/4/10, accessed via
‘‘Cell Phones and American Adults,” Amanda Lenhart,
Pew Research Center’s Internet and American Life Project,
accessed at http://pewinternet.org/Reports/2010/Cell-Phones-
and-American-Adults/Overview.aspx.
8‘‘Spring Change Assessment Survey 2010,” Princeton Sur-
vey Research Associates International, 6/4/10, accessed via
‘‘Cell Phones and American Adults,” Amanda Lenhart,
Pew Research Center’s Internet and American Life Project,
accessed at http://pewinternet.org/Reports/2010/Cell-Phones-
and-American-Adults/Overview.aspx.

o
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Table 3.4 Points and penalty minutes for the 2009–2010 Ottawa Senators NHL team

Points 71 57 53 49 48 34 32 29 28 26 26 26
Pen mins 22 20 59 54 34 18 38 20 28 121 53 24

Points 24 22 18 16 14 14 13 13 11 5 3 3
Pen mins 45 175 16 20 20 38 107 22 190 40 12 14

the 2009–2010 Ottawa Senators9 NHL hockey team.
The data are given in Table 3.4 and the full data are
available in the file OttawaSenators.

SKILL BUILDER 3
Exercises 3.12 to 3.15 refer to the sampling distribu-
tions given in Figure 3.5. In each case, estimate the
value of the population parameter and estimate the
standard error for the sample statistic.

3.12 Figure 3.5(a) shows sample proportions from
samples of size n = 40 from a population.

3.13 Figure 3.5(b) shows sample means from sam-
ples of size n = 30 from a population.

3.14 Figure 3.5(c) shows sample means from sam-
ples of size n = 100 from a population.

3.15 Figure 3.5(d) shows sample proportions from
samples of size n = 180 from a population.

SKILL BUILDER 4
Exercises 3.16 to 3.19 refer to the sampling distri-
butions given in Figure 3.5. Several possible values

9Data obtained from http://senators.nhl.com/club/stats.htm.

0.02 0.09 0.16 0.23 0.30

(a)

0.37 0.44 0.51 0.58

(b)
25 45 65 85 105 125 145

(c)

285 290 295 300 305 310 315

(d)
0.71 0.74 0.77 0.80 0.83 0.86 0.89

Figure 3.5 Four sampling distributions

are given for a sample statistic. In each case, indi-
cate whether each value is (i) reasonably likely to
occur from a sample of this size, (ii) unusual but
might occur occasionally, or (iii) extremely unlikely
to ever occur.

3.16 Using the sampling distribution shown in
Figure 3.5(a), how likely are these sample propor-
tions:

(a) p̂ = 0.1 (b) p̂ = 0.35 (c) p̂ = 0.6

3.17 Using the sampling distribution shown in
Figure 3.5(b), how likely are these sample means:

(a) x = 70 (b) x = 100 (c) x = 140

3.18 Using the sampling distribution shown in
Figure 3.5(c), how likely are these sample means:

(a) x = 250 (b) x = 305 (c) x = 315

3.19 Using the sampling distribution shown in
Figure 3.5(d), how likely are these sample propor-
tions:

(a) p̂ = 0.72 (b) p̂ = 0.88 (c) p̂ = 0.95

. i i .
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3.20 Customized Home Pages A random sample of
n = 1675 Internet users in the US in January 2010
found that 469 of them have customized their web
browser’s home page to include news from sources
and on topics that particularly interest them.10 State
the population and parameter of interest. Use the
information from the sample to give the best esti-
mate of the population parameter. What would we
have to do to calculate the value of the parameter
exactly?

3.21 Laptop Computers A survey conducted in May
of 2010 asked 2252 adults in the US ‘‘Do you own a
laptop computer?” The number saying yes was 1238.
What is the best estimate for the proportion of US
adults owning a laptop computer? Give notation
for the quantity we are estimating, notation for the
quantity we are using to make the estimate, and the
value of the best estimate. Be sure to clearly define
any parameters in the context of this situation.

3.22 Florida Lakes Florida has over 7700 lakes.11

We wish to estimate the correlation between the pH
levels of all Florida lakes and the mercury levels of
fish in the lakes. We see in Data 2.4 on page 68 that
the correlation between these two variables for a
sample of n = 53 of the lakes is −0.575.

(a) Give notation for the quantity we are estimat-
ing, notation for the quantity we use to make
the estimate, and the value of the best estimate.

(b) Why is an estimate necessary here? What would
we have to do to calculate the exact value of the
quantity we are estimating?

3.23 Topical Painkiller Ointment The use of topi-
cal painkiller ointment or gel rather than pills for
pain relief was approved just within the last few
years in the US for prescription use only.12 Insur-
ance records show that the average copayment for
a month’s supply of topical painkiller ointment for
regular users is $30. A sample of n = 75 regular
users found a sample mean copayment of $27.90.

(a) Identify each of 30 and 27.90 as a parameter or
a statistic and give the appropriate notation for
each.

(b) If we take 1000 samples of size n = 75 from
the population of all copayments for a month’s
supply of topical painkiller ointment for regular

10Purcell, Rainie, Mitchell, Rosenthal, and Olmstead,
‘‘Understanding the Participatory News Consumer,” Pew
Research Center, March 1, 2010, http://www.pewinternet.org/
Reports/2010/Online-News.aspx.
11www.stateofflorida.com/florquicfac.html.
12Tarkan, L., ‘‘Topical Gel Catches up with Pills for Relief,” The
New York Times, September 6, 2010.

users and plot the sample means on a dotplot,
describe the shape you would expect to see in
the plot and where it would be centered.

(c) How many dots will be on the dotplot you
described in part (b)? What will each dot repre-
sent?

3.24 Average Household Size The latest US Census
lists the average household size for all households in
the US as 2.61. (A household is all people occupying
a housing unit as their primary place of residence.)
Figure 3.6 shows possible distributions of means for
1000 samples of household sizes. The scale on the
horizontal axis is the same in all four cases.

(a) Assume that two of the distributions show
results from 1000 random samples, while two
others show distributions from a sampling
method that is biased. Which two dotplots
appear to show samples produced using a biased
sampling method? Explain your reasoning. Pick
one of the distributions that you listed as biased
and describe a sampling method that might pro-
duce this bias.

(b) For the two distributions that appear to show
results from random samples, suppose that one
comes from 1000 samples of size n = 100 and
one comes from 1000 samples of size n = 500.
Which distribution goes with which sample size?
Explain.

2.61

A

B

C

D

Figure 3.6 Sets of 1000 sample means

3.25 Proportion of US Residents Less than 25 Years
Old The US Census indicates that 35% of US res-
idents are less than 25 years old. Figure 3.7 shows
possible sampling distributions for the proportion
of a sample less than 25 years old, for samples of
size n = 20, n = 100, and n = 500.

(a) Which distribution goes with which sample size?

(b) If we use a proportion p̂, based on a sample of
size n = 20, to estimate the population parame-
ter p = 0.35, would it be very surprising to get
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an estimate that is off by more than 0.10 (that
is, the sample proportion is less than 0.25 or
greater than 0.45)? How about with a sample of
size n = 100? How about with a sample of size
n = 500?

(c) Repeat part (b) if we ask about the sample
proportion being off by just 0.05 or more.

(d) Using parts (b) and (c), comment on the effect
that sample size has on the accuracy of an esti-
mate.

0.2 0.3 0.4 0.5 0.6 0.70.1

A

B

C

0.0

Figure 3.7 Match the dotplots with the sample size

3.26 Mix It Up for Better Learning In preparing for
a test on a set of material, is it better to study one
topic at a time or to study topics mixed together?
In one study,13 a sample of fourth graders were
taught four equations. Half of the children learned
by studying repeated examples of one equation at
a time, while the other half studied mixed prob-
lem sets that included examples of all four types
of calculations grouped together. A day later, all
the students were given a test on the material. The
students in the mixed practice group had an average
grade of 77, while the students in the one-at-a-time
group had an average grade of 38. What is the best

13Rohrer, D. and Taylor, K., ‘‘The Effects of Interleaved Prac-
tice,” Applied Cognitive Psychology, 2010;24(6): 837–848.

(a) Boxplot A
20 30 40 50 60 70 80

(b) Boxplot B
40 60 80 100 120 140 1600 20

Figure 3.8 One sample and one sampling distribution: Which is which?

estimate for the difference in the average grade
between fourth-grade students who study mixed
problems and those who study each equation inde-
pendently? Give notation (as a difference with a
minus sign) for the quantity we are trying to esti-
mate, notation for the quantity that gives the best
estimate, and the value of the best estimate. Be sure
to clearly define any parameters in the context of
this situation.

3.27 What Proportion of Adults and Teens Text
Message? A study of n = 2252 adults age 18 or
older found that 72% of the cell phone users send
and receive text messages.14 A study of n = 800
teens age 12 to 17 found that 87% of the teen cell
phone users send and receive text messages. What
is the best estimate for the difference in the pro-
portion of cell phone users who use text messages,
between adults (defined as 18 and over) and teens?
Give notation (as a difference with a minus sign)
for the quantity we are trying to estimate, notation
for the quantity that gives the best estimate, and the
value of the best estimate. Be sure to clearly define
any parameters in the context of this situation.

3.28 Hollywood Movies Data 2.7 on page 93 intro-
duces the dataset HollywoodMovies2011, which
contains information on all the 136 movies that
came out of Hollywood in 2011.15 One of the vari-
ables is the budget (in millions of dollars) to make
the movie. Figure 3.8 shows two boxplots. One rep-
resents the budget data for one random sample of
size n = 30. The other represents the values in a
sampling distribution of 1000 means of budget data
from samples of size 30.

14Lenhart, A.,‘‘Cell Phones and American Adults,” Pew
Research Center’s Internet and American Life Project,
accessed at http://pewinternet.org/Reports/2010/Cell-Phones-
and-American-Adults/Overview.aspx.
15McCandless, D., ‘‘Most Profitable Hollywood Movies,” ‘‘Infor-
mation is Beautiful,” davidmccandless.com, accessed January
2012.
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(a) Which is which? Explain.

(b) From the boxplot showing the data from one
random sample, what does one value in the sam-
ple represent? How many values are included
in the data to make the boxplot? Estimate the
minimum and maximum values. Give a rough
estimate of the mean of the values and use
appropriate notation for your answer.

(c) From the boxplot showing the data from a
sampling distribution, what does one value in
the sampling distribution represent? How many
values are included in the data to make the
boxplot? Estimate the minimum and maximum
values. Give a rough estimate of the value of
the population parameter and use appropriate
notation for your answer.

3.29 Defective Screws Suppose that 5% of the
screws a company sells are defective. Figure 3.9
shows sample proportions from two sampling dis-
tributions: One shows samples of size 100, and the
other shows samples of size 1000.

(a) What is the center of both distributions?

(b) What is the approximate minimum and maxi-
mum of each distribution?

(c) Give a rough estimate of the standard error in
each case.

(d) Suppose you take one more sample in each
case. Would a sample proportion of 0.08 (that
is, 8% defective in the sample) be reasonably
likely from a sample of size 100? Would it be
reasonably likely from a sample of size 1000?

Proportion Defective (n = 100)

0.04 0.06 0.08 0.10 0.120.020.00

0
15

0

Proportion Defective (n = 1000)

0.04 0.06 0.08 0.10 0.120.020.00

0
20

0

Figure 3.9 Sampling distributions for n = 100 and
n = 1000 screws

3.30 Number of Screws in a Box A company that
sells boxes of screws claims that a box of its screws
contains on average 50 screws (μ = 50). Figure 3.10
shows a distribution of sample means collected from
many simulated random samples of size 10 boxes.

(a) For a random sample of 10 boxes, is it unlikely
that the sample mean will be more than 2 screws
different from μ? What about more than 5? 10?

(b) If you bought a random sample of 10 boxes at
the hardware store and the mean number of
screws per box was 42, would you conclude that
the company’s claim (μ = 50) is likely to be
incorrect?

(c) If you bought a random box at the hardware
store and it only contained 42 screws, would you
conclude that the company’s claim is likely to
be incorrect?

0
50

15
0

46 48 50 52 54

Mean Number of Screws

Figure 3.10 Sampling distribution for average number
of screws in a box

3.31 Average Points for a Hockey Player Table 3.4
on page 174 gives the number of points for all 24
players on the Ottawa Senators NHL hockey team,
also available in the dataset OttawaSenators.

(a) Use StatKey, other technology, or a random
number table to select a random sample of 5
of the 24 Points values. Indicate which values
you’ve selected and compute the sample mean.

(b) Repeat part (a) by taking a second sample and
calculating the mean.

(c) Find the mean for the entire population of these
24 players. Use correct notation for your answer.
Comment on the accuracy of using the sample
means found in parts (a) and (b) to estimate the
population mean.

(d) Give a rough sketch of the sampling distribution
if we calculate many sample means taking sam-
ples of size n = 5 from this population of Points
values. What shape will it have and where will it
be centered?
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3.32 Time to Finish in 2008 Olympic Men’s
Marathon In the 2008 Olympic Men’s Marathon,
76 athletes finished the race. Their times are stored
in the file OlympicMarathon. Use the times stored
in the Minutes column.

(a) Use StatKey, other technology, or a random
number table to randomly select 10 values. Indi-
cate which values you’ve selected and compute
the sample mean.

(b) Repeat part (a) by taking a second sample and
calculating the mean. Make a mini-dotplot by
plotting the two sample means on a dotplot.

(c) Find the mean for the entire population of 76
race times. Use correct notation for your answer.
Comment on the accuracy of using the sample
means found in parts (a) and (b) to estimate the
population mean.

(d) Suppose we take many samples of size n = 10
from this population of values and plot the mean
for each sample on a dotplot. Describe the shape
and center of the result. Draw a rough sketch of
a possible distribution for these means.

3.33 A Sampling Distribution for Average Points
for a Hockey Player Use StatKey or other technol-
ogy to generate a sampling distribution of sample
means using a sample size of n = 5 from the Points
values in Table 3.4 on page 174, which gives the
number of points for all 24 players on the Ottawa
Senators NHL hockey team, also available in the
dataset OttawaSenators. What are the smallest and
largest sample means in the distribution? What is
the standard deviation of the sample means (in other
words, what is the standard error?)

3.34 A Sampling Distribution for Time to Finish
in 2008 Olympic Men’s Marathon Use StatKey or
other technology to generate a sampling distribu-
tion of sample means using a sample size of n = 10
from the population of all times to finish the 2008
Olympic Men’s Marathon, available in the Minutes
column of the file OlympicMarathon. What are the
smallest and largest sample means in the distribu-
tion? What is the standard deviation of the sample
means (in other words, what is the standard error?)

3.35 Gender in the Rock and Roll Hall of Fame
From its founding through 2012, the Rock and Roll
Hall of Fame has inducted 273 groups or individu-
als. Forty-one of the inductees have been female or
have included female members.16 The full dataset is
available in RockandRoll.

16Rock and Roll Hall of Fame website: rockhall.com/inductees.

(a) What proportion of inductees have been female
or have included female members? Use the
correct notation with your answer.

(b) If we took many samples of size 50 from the
population of all inductees and recorded the
proportion female or with female members for
each sample, what shape do we expect the dis-
tribution of sample proportions to have? Where
do we expect it to be centered?

3.36 Performers in the Rock and Roll Hall of Fame
From its founding through 2012, the Rock and Roll
Hall of Fame has inducted 273 groups or individu-
als, and 181 of the inductees have been performers
while the rest have been related to the world of
music in some way other than as a performer. The
full dataset is available in RockandRoll.

(a) What proportion of inductees have been per-
formers? Use the correct notation with your
answer.

(b) If we took many samples of size 50 from the
population of all inductees and recorded the
proportion who were performers for each sam-
ple, what shape do we expect the distribution
of sample proportions to have? Where do we
expect it to be centered?

3.37 A Sampling Distribution for Gender in the
Rock and Roll Hall of Fame Exercise 3.35 tells us
that 41 of the 273 inductees to the Rock and Roll
Hall of Fame have been female or have included
female members. The data are given in Rockand
Roll. Using all inductees as your population:

(a) Use StatKey or other technology to take many
random samples of size n = 10 and compute
the sample proportion that are female or with
female members. What is the standard error for
these sample proportions? What is the value of
the sample proportion farthest from the popu-
lation proportion of p = 0.150? How far away is
it?

(b) Repeat part (a) using samples of size n = 20.

(c) Repeat part (a) using samples of size n = 50.

(d) Use your answers to parts (a), (b), and (c) to
comment on the effect of increasing the sample
size on the accuracy of using a sample propor-
tion to estimate the population proportion.

3.38 A Sampling Distribution for Performers in the
Rock and Roll Hall of Fame Exercise 3.36 tells us
that 181 of the 273 inductees to the Rock and Roll
Hall of Fame have been performers. The data are
given in RockandRoll. Using all inductees as your
population:
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(a) Use StatKey or other technology to take many
random samples of size n = 10 and compute the
sample proportion that are performers. What
is the standard error of the sample propor-
tions? What is the value of the sample propor-
tion farthest from the population proportion of
p = 0.663? How far away is it?

(b) Repeat part (a) using samples of size n = 20.

(c) Repeat part (a) using samples of size n = 50.

(d) Use your answers to parts (a), (b), and (c) to
comment on the effect of increasing the sample
size on the accuracy of using a sample propor-
tion to estimate the population proportion.

3.2UNDERSTANDING AND INTERPRETING CONFIDENCE
INTERVALS

Interval Estimates and Margin of Error
In the previous section we use the value of a statistic computed from a sample to give
a point estimate for a parameter of a population. However, since statistics vary from
sample to sample, a point estimate is often not sufficient. We need some measure
of accuracy associated with our point estimate. Thankfully, we can use knowledge
about how sample statistics vary to find a margin of error for the point estimate.
This allows us to construct an interval estimate for the population parameter.

Example 3.12
Is a Television Set a Necessity?

The percent of Americans saying that a television set is a necessity has dropped
dramatically in recent years. In a nationwide survey conducted in May 2010 of
1484 people ages 18 and older living in the continental United States, only 42%
say that a television set is a necessity rather than a luxury.17 The article goes on to
say ‘‘the margin of sampling error is plus or minus 3.0 percentage points.” Use the
information from this article to find an interval estimate for the proportion of people
18 and older living in the continental United States who believe that a television set
is a necessity.

Solution The proportion who believe a television set is a necessity in the sample is p̂ = 0.42.
The phrase ‘‘margin of sampling error is plus or minus 3.0 percentage points”
indicates that the true proportion for the entire population of all American adults is
probably within 3% (or 0.03) on either side of the point estimate. Thus an interval
estimate for the population proportion is

0.42 ± 0.03

Since 0.42 − 0.03 = 0.39 and 0.42 + 0.03 = 0.45, the interval estimate is 0.39 to 0.45,
or from 39% to 45%.

Let’s take a minute to think about the information in Example 3.12. There are
about 240,000,000 people age 18 and older living in the continental United States,
and we only asked 1484 of them the question. It is remarkable that we can be
relatively confident that our estimate will be off by at most ±0.03 even though we
only asked a very small portion of the entire population. This is part of the amazing
power of statistics!

17Taylor, P. and Wang, W., ‘‘The Fading Glory of the Television and Telephone,” Pew Research
Center, August 19, 2010, http://pewsocialtrends.org/pubs/762/fading-glory-television-telephone-luxury-
necessity#prc-jump.

o
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We often use interval notation to denote an interval estimate. For example, for
the interval from 0.39 to 0.45 in Example 3.12, we write (0.39, 0.45).

Interval Estimate Based on a Margin of Error

An interval estimate gives a range of plausible values for a population
parameter. One common form of an interval estimate is

Point estimate ± margin of error

where the margin of error is a number that reflects the precision of
the sample statistic as a point estimate for this parameter.

Example 3.13
Suppose the results of an election poll show the proportion supporting a particular
candidate is p̂ = 0.54. We would like to know how close the true p is to p̂. Two
possible margins of error are shown. In each case, indicate whether we can be
reasonably sure that this candidate will win the majority of votes and win the
election.

(a) Margin of error is 0.02

(b) Margin of error is 0.10

Solution (a) If the margin of error is 0.02, then our interval estimate for p is 0.54 ± 0.02,
which gives an interval of 0.52 to 0.56. All plausible values of the true proportion
are greater than one-half, so we can be reasonably sure that this candidate will
win the election.

(b) If the margin of error is 0.10, then our interval estimate is 0.54 ± 0.10, which
gives an interval of 0.44 to 0.64. Since this interval contains values of p that are
less than one-half, we would be less certain about the result of the election.

Confidence Intervals
The ‘‘range of plausible values” interpretation for an interval estimate can be
refined with the notion of a confidence interval. A confidence interval is an interval
estimate, computed from a sample, that has a predetermined chance of capturing
the value of the population parameter. Remember that the parameter is a fixed
value; it is the sample that is prone to variability. The method used to construct a
confidence interval should capture the parameter for a predetermined proportion of
all possible samples. Some (hopefully most) samples will give intervals that contain
the parameter and some (hopefully just a few) will give intervals that miss the target.

Confidence Interval

A confidence interval for a parameter is an interval computed from
sample data by a method that will capture the parameter for a specified
proportion of all samples.

The success rate (proportion of all samples whose intervals contain
the parameter) is known as the confidence level.

o



3.2 Understanding and Interpreting Confidence Intervals 181

Recall that for a symmetric, bell-shaped distribution, roughly 95% of the values
fall within two standard deviations of the center. Therefore, we can assume that
the sample statistic will be within two standard errors of the parameter about 95%
of the time. Thus the interval Statistic ± 2 · SE, where SE stands for the standard
error, will contain the population parameter for about 95% of all samples. If we
have a way to estimate the standard error (SE), and if the sampling distribution is
relatively symmetric and bell-shaped, this is one way to construct an approximate
95% confidence interval.

95% Confidence Interval Using the Standard Error

If we can estimate the standard error SE and if the sampling dis-
tribution is relatively symmetric and bell-shaped, a 95% confidence
interval can be estimated using

Statistic ± 2 · SE

Example 3.14
A sample of 10 enrollments in PhD programs in statistics is given in Table 3.3 on
page 166 and is repeated in Table 3.5. For this sample, we have n = 10 with x = 61.5
and s = 40.5.

In Example 3.7 on page 169, we estimate that the standard error for means
based on samples of size n = 10 from this population is about 11.

(a) Use the information in this one sample and the estimated standard error of 11
to find a 95% confidence interval for the average enrollment in PhD programs
in statistics. Also give the best point estimate and the margin of error.

(b) For these data, we know that the true population parameter is μ = 53.54. Does
the confidence interval generated from this one sample contain the true value
of the parameter?

(c) The standard deviation of 40.5 and the standard error of 11 are quite different.
Explain the distinction between them.

Solution (a) Let μ represent the average enrollment for all PhD programs in statistics for
which we have data. The best point estimate for μ using this one sample is x, so
a 95% confidence interval is given by

x ± 2 · SE

61.5 ± 2(11)

61.5 ± 22

39.5 to 83.5

A 95% confidence interval for the mean enrollment goes from 39.5 students to
83.5 students. Since the confidence interval is 61.5 ± 22, the best point estimate
using this one sample is 61.5 students and the margin of error is 22.

Table 3.5 Number of graduate students in statistics at 10 schools

116 78 36 145 39 44 48 60 34 15

o
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(b) The population mean 53.54 falls within the interval from 39.5 to 83.5, so in
this case, the confidence interval generated from one sample of 10 values does
contain the population parameter.

(c) The standard deviation of 40.5 is the standard deviation of the 10 individual
enrollments in our sample. We see in Table 3.5 that the individual enrollments
are quite spread out. The standard error of 11 is the standard deviation of the
sample means if we sampled 10 statistics departments at a time and computed
the sample means over and over (as shown in the sampling distribution in
Figure 3.1). These means are much less spread out than the individual values.

Margin of error, standard error, and standard deviation of a sample are all different!
Be careful to distinguish correctly between them. The margin of error is the amount
added and subtracted in a confidence interval. The standard error is the standard
deviation of the sample statistics if we could take many samples of the same size.
The standard deviation of a sample is the standard deviation of the individual values
in that one sample.

Understanding Confidence Intervals
In Section 3.1, we saw that the proportion of US adults with a college degree is
0.275. Figure 3.11 shows the sampling distribution (the same one as in Figure 3.2
on page 168) of the proportion of adults with a college degree for 1000 samples of
size 200. Each of the dots in Figure 3.11 represents the proportion with a college
degree for a different possible random sample of size n = 200 from a population
with parameter p = 0.275. Any one of those dots represents a sample statistic we
might actually see, and we could find a separate confidence interval for each of
the dots in that sampling distribution. How many of these intervals will contain the
parameter value of p = 0.275?

Example 3.15
Each of the three values listed below is one of the sample proportions shown in the
dotplot in Figure 3.11. Find a 95% confidence interval using the sample proportion
and the fact that the standard error is approximately 0.03 (SE = 0.03). In each case,

Figure 3.11 Sample
proportions for samples
of size n = 200 when
p = 0.275 0.16 0.18 0.20 0.22 0.24 0.26

SampleP
0.28 0.30 0.32 0.34 0.36 0.38
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also locate the sample proportion on the sampling distribution and indicate whether
the 95% confidence interval captures the true population proportion.

(a) p̂ = 0.26

(b) p̂ = 0.32

(c) p̂ = 0.20

Solution We use the sample proportion p̂ as our best point estimate for the population
proportion, so in each case, we find a 95% confidence interval using

p̂ ± 2 · SE

(a) For p̂ = 0.26 the interval is 0.26 ± 2 · 0.03 = (0.20, 0.32). We see in Figure 3.11
that a sample proportion of p̂ = 0.26 is close to the center of the sampling
distribution. The confidence interval (0.20, 0.32) does include the population
proportion of 0.275.

(b) For p̂ = 0.32 the interval is 0.32 ± 2 · 0.03 = (0.26, 0.38). We see in Figure 3.11
that a sample proportion of p̂ = 0.32 is farther from the center of the sampling
distribution, but not way out in one of the tails. The confidence interval
(0.26, 0.38) does include the population proportion of 0.275.

(c) For p̂ = 0.20 the interval is 0.20 ± 2 · 0.03 = (0.14, 0.26). We see in Figure 3.11
that a sample proportion of p̂ = 0.20 is quite far out in the left tail of the sampling
distribution and is not very close to the center. In fact, this sample proportion
is outside of the middle 95% of values, so it is more than 2 · SE away from
the center. The confidence interval (0.14, 0.26) does not include the population
proportion of 0.275.

Note that two of the confidence intervals found in Example 3.15 successfully
capture the population parameter of p = 0.275, but the third interval, the one gen-
erated from p̂ = 0.20, fails to contain p = 0.275. Remember that a 95% confidence
interval should work only about 95% of the time. The sample proportion p̂ = 0.20
is in a pretty unusual place of the sampling distribution in Figure 3.11. Any of the
(rare) samples that fall this far away will produce intervals that miss the parameter.
This will happen about 5% of the time—precisely those samples that fall in the most
extreme tails of the sampling distribution.

Figure 3.12 shows the sampling distribution for the proportion of college gradu-
ates in samples of size n = 200 (it should look very similar to Figure 3.11), although

Figure 3.12 Sampling
distribution for
proportion of college
graduates in samples of
size n = 200. Statistics
within 2 × SE of the true
proportion p = 0.275 are
colored blue, and
statistics not within this
range are colored red. 0.20 0.25

Sample Proportion

2 SE 2 SE

0.30 0.35
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Figure 3.13 Plots
showing 95% confidence
intervals for many
samples Proportion
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(b) One hundred samples
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now the dots (statistics) are colored according to how far they are from the true
population proportion of p = 0.275. Notice that all the statistics colored blue are
within two standard errors of p = 0.275, and these comprise about 95% of all
statistics. The more extreme statistics, those farther than two standard errors from
p = 0.275, are colored red and comprise about 5% of all statistics. The blue statistics,
those closer to the true parameter, will lead to confidence intervals that contain the
truth, p = 0.275, while the red statistics, those farther from p = 0.275, will lead to
confidence intervals that miss the true parameter.

Figure 3.13(a) on the left shows the three 95% confidence intervals from
Example 3.15, with samples 1, 2, and 3 corresponding to those computed in parts
(a), (b), and (c), respectively. Each horizontal line represents one of the confidence
intervals (with a black dot showing the sample proportion), while the vertical line
represents the population parameter of p = 0.275. The confidence interval that fails
to capture the parameter value is shown in red.

Extending this idea to more sample proportions, Figure 3.13(b) shows confi-
dence intervals for 100 of the sample proportions from Figure 3.12. Again, each
horizontal line represents a confidence interval and we can see which intervals
(shown in red) fail to capture the parameter value of p = 0.275. In this instance
6 of the 100 intervals miss the mark, while the other 94 are successful. Notice
that the intervals are changing from sample to sample, while the parameter value
(p = 0.275) is staying fixed. Over the long run, for many such intervals, about 95%
will successfully contain the parameter, while about 5% will miss it. That is what we
mean by ‘‘95% confidence.”

The parallelism in colors between Figures 3.12 and 3.13 is not a coincidence;
any of the 5% of statistics colored red in the tails of the sampling distribution, those
farther than 2 × SE from the parameter, will lead to a confidence interval colored
red that misses the true parameter. Likewise, any of the 95% of statistics colored
blue in the middle of the sampling distribution will lead to a confidence interval
colored blue that captures the true parameter.

Interpreting Confidence Intervals
We usually only have one sample and we do not know what the population
parameter is. Referring to Figure 3.13(b), we don’t know if our sample is one of
the ones producing a ‘‘blue” confidence interval (successfully capturing the true
population parameter) or one of the few producing a ‘‘red” confidence interval (and
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missing the mark). That is why we use words such as ‘‘95% confident” or ‘‘95%
sure” when we interpret a confidence interval.

Interpreting Confidence Level

The confidence level indicates how sure we are that our interval
contains the population parameter. For example, we interpret a 95%
confidence interval by saying we are 95% sure that the interval contains
the population parameter.

2000 20101990

2010

No Data 15%–19%10%–14% 20%–24% 25%–29%<10% ≥30%

Obesity rates in the US over time

D A T A 3 . 2 Obesity in America

Obesity is one of the most serious public health concerns of the 21st century,
and has become one of the leading preventable causes of death worldwide.18

Besides being a health issue, obesity is an important economic concern. It is
estimated that in 2008, medical care costs due to obesity totaled about $147
billion.19 Moreover, obesity rates are increasing at an alarming rate (see
animation at http://www.cdc.gov/obesity/data/trends.html which includes the
figures above). The Centers for Disease Control and Prevention (CDC) annually
conducts a large national survey, based on a random sample of adults living in
US states and territories, called the Behavioral Risk Factor Surveillance
System.20 Height and weight, from which we calculate body mass index (used to
categorize ‘‘obese”), are among hundreds of variables collected on over 450,000
people in 2010. ■

Example 3.16
Average BMI

Body mass index (BMI) is calculated as weight in pounds
(height in inches)2 × 703. For the sample

described in Data 3.2, the sample mean BMI for those surveyed is x = 27.655, with
a standard error of SE = 0.009.

(a) Give a 95% confidence interval for the average BMI for all adults living in the
US, and interpret this interval.

18Barness, L.A., Opitz, J.M., and Gilbert-Barness, E. ‘‘Obesity: Genetic, Molecular, and Environmental
Aspects,” Am. J. Med. Genet. A 2007; 143(24): 3016–3034.
19Finkelstein, E.A., Trogdon, J.G., Cohen, J.W., and Dietz, W., ‘‘Annual Medical Spending Attributable
to Obesity: Payer- and Service-Specific Estimates,” Health Affairs 2009; 28(5): w822-w831.
20Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey
Data, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention,
Atlanta, 2010.
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(b) A BMI ≥ 25 is classified as overweight. Is it plausible that America’s overall
average BMI would not be classified as overweight?

Solution (a) Let μ represent the mean BMI for all adults living in the US. A 95% confidence
interval is given by

x ± 2 · SE

27.655 ± 2(0.009)

27.655 ± 0.018

27.637 to 27.673

A 95% confidence interval for μ is (27.637, 27.673). We are 95% sure that the
mean BMI for all adults living in the US in 2010 is between 27.637 and 27.673.

(b) Because the entire interval is above 25, we are (unfortunately) confident that
America’s average BMI in 2010 is considered overweight.

Notice that the interval in Example 3.16 is extremely narrow. This is because
of the extremely large sample size (n = 451, 075). Remember, the larger the sample
size, the lower the variability in the sample statistics, so the smaller the standard
error. The fact that we can be 95% sure that the average BMI of all 250 million
plus American adults is between 27.63 and 27.67 is quite remarkable! Sampling only
a small fraction of the population (chances are no one asked you your height and
weight for a national survey), we can get a very accurate estimate of the average for
the entire population.

Example 3.17
BMI and Exercise

The survey in Data 3.2 also asked people whether they had exercised in the past
30 days, to which p̂ = 0.726 of the people, with SE = 0.0007, responded yes. We
expect that people who exercise have lower BMIs, but by how much? The sample
difference in mean BMI between those who said they had exercised in the past 30
days and those who said they hadn’t is xE − xN = −1.915, with a standard error
of 0.016. Give and interpret a 95% confidence interval for the difference in mean
BMI between people who exercise and those who don’t for the entire US adult
population. Is it plausible that there is no difference in average BMI between
exercisers and non-exercisers?

Solution Let μE − μN be the mean BMI in 2010 for all adults living in the US who had
exercised in the past 30 days minus the mean BMI in 2010 for all adults living in
the US who had not exercised in the past 30 days. A 95% confidence interval for
μE − μN is

(xE − xN) ± 2 · SE

−1.915 ± 2(0.016)

−1.915 ± 0.032

−1.947 to −1.883

We are 95% confident that people living in the US in 2010 who exercise (at least
once in 30 days) have mean BMI between 1.883 and 1.947 lower than people living
in the US in 2010 who do not exercise. Because this interval does not contain 0, we
can be confident that there is a difference in average BMI between exercisers and
non-exercisers.

o

o
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Example 3.18
Obesity Prevalence

The CDC classifies an adult as ‘‘obese” if BMI ≥ 30. Based on the data from the
2010 survey, a 95% confidence interval for the proportion of all adults living in the
US that were obese in 2010, p2010, is (0.276, 0.278). Based on the data from the 2000
survey, a 95% confidence interval for the proportion of all adults living in the US
that were obese in 2000, p2000, is (0.195, 0.199).

(a) Interpret both confidence intervals.

(b) Do you think the sample size for the 2000 survey was smaller or larger than the
sample size for the 2010 survey? Why?

(c) The confidence interval for the difference in proportions, p2010 − p2000, based on
the two sets of survey data is (0.049, 0.111). Interpret this interval.

Solution (a) We are 95% confident that the proportion of all adults living in the US who
were obese in 2010 is between 0.276 and 0.278. We are also 95% confident that
the proportion of all adults living in the US who were obese in 2000 is between
0.195 and 0.199.

(b) The sample size for the 2000 survey was smaller, because the margin of error
for the 2000 interval is larger, meaning the standard error is larger, and smaller
sample sizes correspond to larger standard errors. (In fact, the 2000 sample size
was 184,450.)

(c) We are 95% sure that the proportion of adults living in the US that were obese
increased by anywhere from 0.049 to 0.111 from 2000 to 2010. (This is a very
large increase in the obesity rate over the span of just 10 years!)

Common Misinterpretations of Confidence Intervals
Misinterpretation 1 A 95% confidence interval contains 95% of the data in the
population.

This is a common mistake! The 95% confidence interval for the mean BMI of
US adults computed in Example 3.16 goes from 27.637 to 27.673. It certainly isn’t
true that 95% of all adults living in the US have a BMI within the narrow range of
27.637 and 27.673! Remember that the confidence interval is built to try and capture
a parameter (in this case the mean) of the population, not individual cases. The
correct statement is that we are 95% confident that the population mean is in the
interval.

Misinterpretation 2 I am 95% sure that the mean of a sample will fall within a
95% confidence interval for the mean.

Again, this is a false statement. The correct statement is that we are 95% sure
that the mean of the population will fall within a 95% confidence interval for the
mean. In fact, we are 100% sure that the mean of our sample falls within the
confidence interval since we constructed the confidence interval around the sample
mean. A confidence interval gives us information about the population parameter,
not about means of other samples. Remember that the interval is making a statement
about where the population parameter is likely to be found.

Misinterpretation 3 The probability that the population parameter is in this
particular 95% confidence interval is 0.95.

False! Remember that what varies are the statistics from sample to sample, not
the population parameter. Once we have constructed an interval such as 27.637
to 27.673 for the mean BMI, it either does or does not contain the true average
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BMI for all US adults. The actual mean doesn’t bounce around and fall within that
interval some proportion of the time. That is why we use language such as ‘‘we are
95% confident that ...” or ‘‘we are 95% sure that ...” rather than making an explicit
probability statement. This helps distinguish between the method of constructing
the interval working 95% of the time (or for 95% of all samples), rather than a
success rate for a particular interval.

But How Can We Construct a Confidence Interval?
We now know how to interpret a confidence interval and how to construct a 95%
confidence interval if we know the standard error. But how can we find the standard
error if we only have one sample? And how do we construct intervals for confidence
levels other than 95%? If we had a sampling distribution, we could get a good idea
of how far the sample statistic tends to vary from the parameter. But in reality we
only have the data in our original sample to work with! We do not know the true
value of the parameter, and do not have the funds to sample thousands of times
from the population to generate a sampling distribution. How can we know how
accurate our estimate is?

You may have detected this subtle impracticality in our approach so far: in order
to understand the variability of the sample statistic, we need to know the population
parameter or be able to take thousands of real samples from the population.
However, this would defeat the point of using a sample statistic to estimate a
population parameter! In most real situations we only have the information from
just one sample, just one of the dots in the sampling distribution dotplots shown.
How can we possibly determine how much a statistic varies from sample to sample
if we only have one sample?!?

Amazingly, it is possible to assess variability of a sample statistic using just the
data from one sample, and we will see how to do it in the next section.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Construct a confidence interval for a parameter based on a point
estimate and a margin of error

• Use a confidence interval to recognize plausible values of the popula-
tion parameter

• Construct a confidence interval for a parameter given a point estimate
and an estimate of the standard error

• Interpret (in context) what a confidence interval says about a population
parameter

Exercises for Section 3.2

SKILL BUILDER 1
In Exercises 3.39 to 3.42, construct an interval esti-
mate for the given parameter using the given sample
statistic and margin of error.

3.39 For μ, using x = 25 with margin of error 3.

3.40 For p, using p̂ = 0.37 with margin of error 0.02.

3.41 For ρ, using r = 0.62 with margin of error 0.05.

o
o
o
o
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3.42 For μ1 − μ2, using x1 − x2 = 5 with margin of
error 8.

SKILL BUILDER 2
In Exercises 3.43 and 3.44, a 95% confidence inter-
val is given, followed by possible values of the
population parameter. Indicate which of the values
are plausible values for the parameter and which
are not.

3.43 A 95% confidence interval for a mean is 112.1
to 128.2. Is the value given a plausible value of μ?

(a) μ = 121

(b) μ = 113.4

(c) μ = 105.3

3.44 A 95% confidence interval for a proportion
is 0.72 to 0.79. Is the value given a plausible
value of p?

(a) p = 0.85

(b) p = 0.75

(c) p = 0.07

SKILL BUILDER 3
In Exercises 3.45 to 3.50, information about a sam-
ple is given. Assuming that the sampling distribution
is symmetric and bell-shaped, use the information
to give a 95% confidence interval, and indicate the
parameter being estimated.

3.45 p̂ = 0.32 and the standard error is 0.04.

3.46 x = 55 and the standard error is 1.5.

3.47 r = 0.34 and the standard error is 0.02.

3.48 r = −0.46 and the margin of error for 95%
confidence is 0.05.

3.49 x1 − x2 = 3.0 and the margin of error for 95%
confidence is 1.2.

3.50 p̂1 − p̂2 = 0.08 and the margin of error for 95%
confidence is ±3%.

3.51 Have You Ever Been Arrested? According to
a recent study of 7335 young people in the US, 30%
had been arrested21 for a crime other than a traffic
violation by the age of 23. Crimes included such
things as vandalism, underage drinking, drunken
driving, shoplifting, and drug possession.

(a) Is the 30% a parameter or a statistic? Use the
correct notation.

(b) Use the information given to estimate a param-
eter, and clearly define the parameter being
estimated.

21From a study in USA Today, quoted in The Week, 2012; 11:
547–548.

(c) The margin of error for the estimate in part (b)
is 0.01. Use this information to give a range of
plausible values for the parameter.

(d) Given the margin of error in part (c), if we asked
all young people in the US if they have ever been
arrested, is it likely that the actual proportion is
less than 25%?

3.52 Employer-Based Health Insurance A report
from a Gallup poll22 in 2011 started by saying,
‘‘Forty-five percent of American adults reported
getting their health insurance from an employer...”
Later in the article we find information on the sam-
pling method, ‘‘a random sample of 147,291 adults,
aged 18 and over, living in the US,” and a sentence
about the accuracy of the results, ‘‘the maximum
margin of sampling error is ±1 percentage point.”

(a) What is the population? What is the sample?
What is the population parameter of interest?
What is the relevant statistic?

(b) Use the margin of error23 to give an interval
estimate for the parameter of interest. Interpret
it in terms of getting health insurance from an
employer.

3.53 Is a Car a Necessity? A random sample of
n = 1483 adults in the US were asked whether they
consider a car a necessity or a luxury,24 and we
find that a 95% confidence interval for the pro-
portion saying that it is a necessity is 0.83 to 0.89.
Explain the meaning of this confidence interval in
the appropriate context.

3.54 Number of Text Messages a Day A random
sample of n = 755 US cell phone users age 18 and
older in May 2011 found that the average number
of text messages sent or received per day is 41.5
messages,25 with standard error about 6.1.

(a) State the population and parameter of interest.
Use the information from the sample to give the
best estimate of the population parameter.

(b) Find and interpret a 95% confidence interval
for the mean number of text messages.

22http://www.gallup.com/poll/148079/Employer-Based-Health-
Insurance-Declines-Further.aspx.
23Actually, the margin of error is significantly less than ±1% for
this sample, but the Gallup Poll rounded up to the nearest whole
number.
24Taylor, P. and Wang, W., ‘‘The Fading Glory of the
Television and Telephone,” Pew Research Center, http://
pewsocialtrends.org/pubs/762/fading-glory-television-telephone-
luxury-necessity#prc-jump, accessed August 19, 2010.
25Smith, A., ‘‘Americans and Text Messaging,” Pew
Research Center, http://www.pewinternet.org/Reports/2011/
Cell-Phone-Texting-2011/Main-Report/How-Americans-Use-
Text-Messaging.aspx, accessed September 19, 2011.
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3.55 What Proportion Believe in One True Love?
In Data 2.1 on page 46, we describe a study in which
a random sample of 2625 US adults were asked
whether they agree or disagree that there is ‘‘only
one true love for each person.” The study tells
us that 735 of those polled said they agree with
the statement. The standard error for this sample
proportion is 0.009. Define the parameter being
estimated, give the best point estimate, the margin
of error, and find and interpret a 95% confidence
interval.

3.56 Males vs Females and One True Love In
Data 2.1 on page 46, we describe a study in which
a random sample of 2625 US adults were asked
whether they agree or disagree that there is ‘‘only
one true love for each person.” The response and
gender of the participants is shown in Table 3.6.
Use the information in the table to construct and
interpret a 95% confidence interval for the differ-
ence in the proportion who agree, between males
and females, using the fact that the standard error
for the difference is 0.018. Is it plausible that there
is no difference between males and females in the
proportion who agree that each person has only one
true love?

Table 3.6 Is there only one true love for each
person?

Male Female Total

Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78

Total 1213 1412 2625

3.57 Playing Video Games A new study provides
some evidence that playing action video games
strengthens a person’s ability to translate sen-
sory information quickly into accurate decisions.
Researchers had 23 male volunteers with an aver-
age age of 20 look at moving arrays on a computer
screen and indicate the direction in which the dots
were moving.26 Half of the volunteers (11 men)
reported playing action video games at least five
times a week for the previous year, while the other
12 reported no video game playing in the previ-
ous year. The response time and the accuracy score
were both measured. A 95% confidence interval

26Green, et al., ‘‘Improved Probabilistic Inference as a Gen-
eral Learning Mechanism with Action Video Games,” Current
Biology, 2010; 20(September 14): 1.

for the mean response time for game players minus
the mean response time for non-players is −1.8 to
−1.2 seconds, while a 95% confidence interval for
mean accuracy score for game players minus mean
accuracy score for non-players is −4.2 to +5.8.

(a) Interpret the meaning of the 95% confidence
interval for difference in mean response time.

(b) Is it likely that game players and non-game
players are basically the same in response time?
Why or why not? If not, which group is faster
(with a smaller response time)?

(c) Interpret the meaning of the 95% confidence
interval for difference in mean accuracy score.

(d) Is it likely that game players and non-game play-
ers are basically the same in accuracy? Why or
why not? If not, which group is more accurate?

3.58 Bisphenol A in Your Soup Cans Bisphenol A
(BPA) is in the lining of most canned goods, and
recent studies have shown a positive association
between BPA exposure and behavior and health
problems. How much does canned soup consump-
tion increase urinary BPA concentration? That was
the question addressed in a recent study27 in which
consumption of canned soup over five days was asso-
ciated with a more than 1000% increase in urinary
BPA. In the study, 75 participants ate either canned
soup or fresh soup for lunch for five days. On the
fifth day, urinary BPA levels were measured. After
a two-day break, the participants switched groups
and repeated the process. The difference in BPA
levels between the two treatments was measured for
each participant. The study reports that a 95% con-
fidence interval for the difference in means (canned
minus fresh) is 19.6 to 25.5 μg/L.

(a) Is this a randomized comparative experiment
or a matched pairs experiment? Why might this
type of experiment have been used?

(b) What parameter are we estimating?

(c) Interpret the confidence interval in terms of
BPA concentrations.

(d) If the study had included 500 participants
instead of 75, would you expect the confidence
interval to be wider or narrower?

3.59 Predicting Election Results Throughout the
US presidential election of 2012, polls gave regular
updates on the sample proportion supporting each

27Carwile, J., Ye, X., Zhou, X., Calafat, A., and Michels, K.,
‘‘Canned Soup Consumption and Urinary Bisphenol A: A Ran-
domized Crossover Trial,” Journal of the American Medical
Association, 2011; 306(20): 2218–2220.
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candidate and the margin of error for the estimates.
This attempt to predict the outcome of an election
is a common use of polls. In each case below, the
proportion of voters who intend to vote for each
candidate is given as well as a margin of error for
the estimates. Indicate whether we can be relatively
confident that candidate A would win if the elec-
tion were held at the time of the poll. (Assume
the candidate who gets more than 50% of the vote
wins.)

(a) Candidate A: 54% Candidate B: 46% Margin
of error: ±5%

(b) Candidate A: 52% Candidate B: 48% Margin
of error: ±1%

(c) Candidate A: 53% Candidate B: 47% Margin
of error: ±2%

(d) Candidate A: 58% Candidate B: 42% Margin
of error: ±10%

3.60 Effect of Overeating for One Month: Average
Long-Term Weight Gain Overeating for just four
weeks can increase fat mass and weight over two
years later, a Swedish study shows.28 Researchers
recruited 18 healthy and normal-weight people with
an average age of 26. For a four-week period, par-
ticipants increased calorie intake by 70% (mostly
by eating fast food) and limited daily activity to a
maximum of 5000 steps per day (considered seden-
tary). Not surprisingly, weight and body fat of the
participants went up significantly during the study
and then decreased after the study ended. Partici-
pants are believed to have returned to the diet and
lifestyle they had before the experiment. However,
two and a half years after the experiment, the mean
weight gain for participants was 6.8 lbs with a stan-
dard error of 1.2 lbs. A control group that did not
binge had no change in weight.

(a) What is the relevant parameter?

(b) How could we find the actual exact value of the
parameter?

(c) Give a 95% confidence interval for the parame-
ter and interpret it.

(d) Give the margin of error and interpret it.

Fish Democracies Exercises 3.61 to 3.63 consider
the question (using fish) of whether uncommitted
members of a group make it more democratic. It

28Ernersson, A., Nystrom, F., and Linsstrrom, T., ‘‘Long-Term
Increase of Fat Mass after a Four Week Intervention with a Fast-
Food Hyper-Alimentation and Limitation of Physical Activity,”
Nutrition & Metabolism, 2010; 7: 68. Some of the data is estimated
from available information.

has been argued that individuals with weak prefer-
ences are particularly vulnerable to a vocal opinion-
ated minority. However, recent studies, including
computer simulations, observational studies with
humans, and experiments with fish, all suggest that
adding uncommitted members to a group might
make for more democratic decisions by taking con-
trol away from an opinionated minority.29 In the
experiment with fish, golden shiners (small fresh-
water fish who have a very strong tendency to stick
together in schools) were trained to swim toward
either yellow or blue marks to receive a treat. Those
swimming toward the yellow mark were trained
more to develop stronger preferences and became
the fish version of individuals with strong opinions.
When a minority of five opinionated fish (wanting to
aim for the yellow mark) were mixed with a majority
of six less opinionated fish (wanting to aim for the
blue mark), the group swam toward the minority yel-
low mark almost all the time. When some untrained
fish with no prior preferences were added, however,
the majority opinion prevailed most of the time.30

Exercises 3.61 to 3.63 elaborate on this study.

3.61 Training Fish to Pick a Color Fish can be
trained quite easily. With just seven days of train-
ing, golden shiner fish learn to pick a color (yellow
or blue) to receive a treat, and the fish will swim
to that color immediately. On the first day of train-
ing, however, it takes them some time. In the study
described under Fish Democracies above, the mean
time for the fish in the study to reach the yellow
mark is x = 51 seconds with a standard error for this
statistic of 2.4. Find and interpret a 95% confidence
interval for the mean time it takes a golden shiner
fish to reach the yellow mark. Is it plausible that
the average time it takes fish to find the mark is 60
seconds? Is it plausible that it is 55 seconds?

3.62 How Often Does the Fish Majority Win? In a
school of fish with a minority of strongly opinion-
ated fish wanting to aim for the yellow mark and a
majority of less passionate fish wanting to aim for
the blue mark, as described under Fish Democracies
above, a 95% confidence interval for the proportion
of times the majority wins (they go to the blue mark)
is 0.09 to 0.26. Interpret this confidence interval. Is it
plausible that fish in this situation are equally likely
to go for either of the two options?

29Milius, S., ‘‘Uncommitted Newbies Can Foil Forceful Few,”
Science News, 2012: 181(1); 18.
30Couzin, I., et al., ‘‘Uninformed Individuals Promote Demo-
cratic Consensus in Animal Groups,” Science, 2011; 334(6062):
1578–1580.
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3.63 What Is the Effect of Including Some Indiffer-
ent Fish? In the experiment described above under
Fish Democracies, the schools of fish in the study
with an opinionated minority and a less passionate
majority picked the majority option only about 17%
of the time. However, when groups also included
10 fish with no opinion, the schools of fish picked
the majority option 61% of the time. We want to
estimate the effect of adding the fish with no opinion
to the group, which means we want to estimate the
difference in the two proportions. We learn from
the study that the standard error for estimating this
difference is about 0.14. Define the parameter we
are estimating, give the best point estimate, and find
and interpret a 95% confidence interval. Is it plau-
sible that adding indifferent fish really has no effect
on the outcome?

3.64 Student Misinterpretations Suppose that a stu-
dent is working on a statistics project using data
on pulse rates collected from a random sample of
100 students from her college. She finds a 95% con-
fidence interval for mean pulse rate to be (65.5,
71.8). Discuss how each of the statements below

would indicate an improper interpretation of this
interval.

(a) I am 95% sure that all students will have pulse
rates between 65.5 and 71.8 beats per minute.

(b) I am 95% sure that the mean pulse rate for this
sample of students will fall between 65.5 and
71.8 beats per minute.

(c) I am 95% sure that the confidence interval for
the average pulse rate of all students at this
college goes from 65.5 to 71.8 beats per minute.

(d) I am sure that 95% of all students at this college
will have pulse rates between 65.5 and 71.8 beats
per minute.

(e) I am 95% sure that the mean pulse rate for all
US college students is between 65.5 and 71.8
beats per minute.

(f) Of the mean pulse rates for students at this
college, 95% will fall between 65.5 and 71.8
beats per minute.

(g) Of random samples of this size taken from stu-
dents at this college, 95% will have mean pulse
rates between 65.5 and 71.8 beats per minute.

3.3CONSTRUCTING BOOTSTRAP CONFIDENCE INTERVALS

The distributions of sample statistics considered so far in this chapter require us to
either already know the value of the population parameter or to have the resources to
take thousands of different samples. In most situations, neither of these is an option.

In this section we introduce a method for estimating the variability of a
statistic that uses only the data in the original sample. This clever technique, called
bootstrapping,31 allows us to approximate a sampling distribution and estimate a
standard error using just the information in that one sample.

© Pavel Losevsky/iStockphoto

What is the average commute time in Atlanta?

31The term bootstrap was coined by Brad Efron and Robert Tibsharani to reflect the phrase ‘‘pulling
oneself up by one’s own bootstraps.”
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D A T A 3 . 3 Commuting in Atlanta
What is the average commuting time for people who live and work in the
Atlanta metropolitan area? It’s not very feasible to contact all Atlanta residents
and ask about their commutes, but the US Census Bureau regularly collects
data from carefully selected samples of residents in many areas. One such data
source is the American Housing Survey (AHS), which contains information about
housing and living conditions for samples from the country as a whole and
certain metropolitan areas. The data in CommuteAtlanta includes cases where
the respondent worked somewhere other than home in the Atlanta metropolitan
area.32 Among the questions asked were the time (in minutes) and distance
(in miles) that respondents typically traveled on their commute to work
each day. ■

The commute times for this sample of 500 Atlantans are shown in the dotplot
of Figure 3.14. The sample mean is x = 29.11 minutes and the standard deviation in
the sample is s = 20.7 minutes. The distribution of commute times is somewhat right
skewed with clusters at regular intervals that reflect many respondents rounding
their estimates to the nearest 5 or 10 minutes. Based on this sample we have a
point estimate of 29.11 minutes for μ, the mean commute time for all workers in
metropolitan Atlanta. How accurate is that estimate likely to be?

To get a range of plausible values for the mean commute time of all Atlantans
it would help to see a sampling distribution of means for many samples of size 500.
However, we don’t have data for the population of all Atlanta commuters, and if we
did we could easily find the population mean exactly! We only have the commuting
times for the single sample of 500 workers. How can we use the information in that
sample to assess how much the means for other samples of 500 Atlantans might
vary?

Bootstrap Samples
Ideally, we’d like to sample repeatedly from the population to create a sampling
distribution. How can we make the sample data look like data from the entire
population? The key idea is to assume for the moment that the population of all
commuters in Atlanta is basically just many, many copies of the commuters in

Figure 3.14 Sample of
500 Atlanta commute
times

CommuteAtlanta

20 40 60 80 100 120 140 160 180

Time

Dot Plot

32Sample chosen using DataFerret at http://www.thedataweb.org/index.html.
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Figure 3.15 Using a sample to represent a population

our original sample. See Figure 3.15, which illustrates this concept for a very small
sample of six stick figures, in which we assume the population is just many copies
of the sample. If we make lots of copies of the sample and then sample repeatedly
from this hypothetical ‘‘population,” we are coming as close as we can to mimicking
the process of sampling repeatedly from the population.

In practice, instead of actually making many copies of the sample and sampling
from that, we use a sampling technique that is equivalent: we sample with replacement
from the original sample. Sampling with replacement means that once a commuter
has been selected for the sample, he or she is still available to be selected again.
This is because we’re assuming that each commuter in the original sample actually
represents many fellow Atlantans with a similar commute time. Each sample
selected in this way, with replacement from the original sample, is called a bootstrap
sample.

Recall from Section 3.1 that the variability of a sample statistic depends on
the size of the sample. Because we are trying to uncover the variability of the
sample statistic, it is important that each bootstrap sample is the same size as the
original sample. For the Atlanta commuters, each bootstrap sample will be of size
n = 500.

For each bootstrap sample, we compute the statistic of interest, giving us a
bootstrap statistic. For the Atlanta commuters, we compute a bootstrap statistic as
the sample mean commute time for a bootstrap sample. If we take many bootstrap
samples and compute a bootstrap statistic from each, the distribution of these
bootstrap statistics will help us understand the distribution of the sample statistic.
Table 3.7 shows the sample means for 10 different bootstrap samples of size 500
taken with replacement from the original commute times in CommuteAtlanta.

Table 3.7 Mean commute times for 10 bootstrap samples of n = 500 Atlantans

28.06 29.21 28.43 28.97 29.95 28.67 30.57 29.22 27.78 29.58

© /© ©\ @ f>\ v. (2)
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Bootstrap Distribution
Based on just the 10 bootstrap statistics in Table 3.7, we can begin to get some feel
for how accurately we can estimate the mean commute time based on a sample of
size 500. Note that, for the hypothetical population we simulate when sampling with
replacement from the original sample, we know that the ‘‘population” mean is the
sample mean, 29.11 minutes. Thus the bootstrap sample means give us a good idea
of how close means for samples of size 500 should be to a ‘‘true” mean. For the 10
samples in Table 3.7 the biggest discrepancy is the seventh sample mean (30.57),
which is still within 1.46 minutes of 29.11.

Of course, with computer technology, we aren’t limited to just 10 bootstrap
samples. We can get a much better picture of the variability in the means for samples
of size 500 by generating many such samples and collecting the sample means.
Figure 3.16 shows a dotplot of the sample means for 1000 samples of size 500, taken
with replacement, from the original sample of Atlanta commute times. This gives a
good representation of the bootstrap distribution for mean Atlanta commute times.
We see that the distribution is relatively symmetric, bell-shaped, and centered near
the original sample mean of 29.11.

Generating a Bootstrap Distribution

To generate a bootstrap distribution, we:

• Generate bootstrap samples by sampling with replacement from
the original sample, using the same sample size.

• Compute the statistic of interest, called a bootstrap statistic, for
each of the bootstrap samples.

• Collect the statistics for many bootstrap samples to create a boot-
strap distribution.

This process is illustrated in Figure 3.17.

Assuming the original sample is chosen randomly from the population, the
bootstrap distribution generally gives a good approximation to a sampling distri-
bution that we might see if we were able to collect lots of samples from the entire
population, but is centered around the sample statistic rather than the population
parameter. This allows us to get a good idea of how variable our sample statistic is,
and how close we can expect it to be to the population parameter. In Figure 3.16
we see that none of the 1000 sample means are more than three minutes away from
the center of the bootstrap distribution. Thus, we are quite confident that a sample

Figure 3.16 Commuting
time means for 1000
bootstrap samples of size
n = 500 26 27 28

xbar
29 30 31 32
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Figure 3.17 Generating
a bootstrap distribution
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of 500 Atlanta commuters will give an estimate that is within three minutes of the
mean commute time for the entire population.

Example 3.19
Mixed Nuts with Peanuts

Containers of mixed nuts often contain peanuts as well as cashews, pecans, almonds,
and other nuts. For one brand, we want to estimate the proportion of mixed nuts
that are peanuts. We get a jar of the nuts and assume that the nuts in that container
represent a random sample of all the mixed nuts sold by that company. We open the
jar and count 100 nuts of which 52 are peanuts. The estimated proportion of peanuts
is p̂ = 52/100 = 0.52.

(a) How could we physically use the jar of nuts to construct one bootstrap sample?
What would we record to find the bootstrap statistic?

(b) If we create a bootstrap distribution by collecting many bootstrap statistics,
describe the center and anticipated shape of the distribution.

(c) Use StatKey or other technology to create a bootstrap distribution.

Solution (a) To find a bootstrap sample we need to select 100 nuts from the original sample
with replacement. To accomplish this we could shake the nuts in the jar, reach
in and pick one at random, record whether or not it is a peanut, and put it back
in the jar. (This is what sampling with replacement means.) Repeat this process
99 more times to simulate a new sample of 100 nuts. The bootstrap statistic is
the proportion of peanuts among the 100 nuts selected.

(b) Since the bootstrap statistics come from the original sample with a sample
proportion of 0.52, we expect the bootstrap distribution to be centered at 0.52.
Since we are simulating a sampling distribution, we think it is likely that the
distribution will be bell-shaped.

(c) While it would be time consuming to repeat the physical sampling process
described in part (a) many times, it is relatively easy to use StatKey or other
technology to simulate the process automatically. Figure 3.18 shows a dotplot of
the bootstrap distribution of sample proportions for 1000 samples of size 100,
simulated from the original sample with 52 peanuts out of 100. As expected, we
see a symmetric, bell shape distribution, centered near the value of the statistic
in the original sample (0.52).

Example 3.20
Laughter in Adults

How often do you laugh? Estimates vary greatly in how often, on average, adults
laugh in a typical day. (Different sources indicate that the average is 10, or 15, or 40,
depending on the source, although all studies conclude that adults laugh significantly

1
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Figure 3.18 Bootstrap
proportions for 1000
samples simulated from a
sample with p̂ = 0.52 and
n = 100 0.35
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0.40 0.45 0.50 0.55
0.522

0.60 0.65

Left Tail Two-Tail Right Tail # samples = 1000
mean = 0.522
st. dev. = 0.050

Table 3.8 Number of laughs in a day

16 22 9 31 6 42

less than children.) Suppose that one study randomly selects six adults and records
how often these adults laugh in a day, with the results given in Table 3.8.

(a) Define the parameter we are estimating and find the best point estimate from
this sample.

(b) Describe how to use cards to generate one bootstrap sample. What statistic
would we record for this sample?

(c) Generate several bootstrap samples this way, and compute the mean for each.

(d) If we generated many such bootstrap statistics, where will the bootstrap distri-
bution be centered?

Solution (a) We are estimating μ, the average number of laughs in a typical day for all adults.
The best point estimate is the mean from our sample, which we calculate to be
x = 21.0.

(b) Since there are six values in the sample, we use six cards and put the six
values on the cards. We then mix them up, pick one, and write down the value.
(Since there are six values, we could also roll a six-sided die to randomly select
one of the numbers.) Then we put the card back (since we are sampling with
replacement), mix the cards up, and draw out another. We do this six times to
obtain a bootstrap sample of size 6. Since we are interested in the mean, the
statistic we record is the mean of the six values.

(c) Several bootstrap samples are shown in Table 3.9. Answers will vary, but all
bootstrap samples will have the same sample size, n = 6, and will only include
values already present in the original sample.

(d) If we calculated many bootstrap statistics to generate a bootstrap distribution, it
would be centered at the value of the original sample statistic, which is x = 21.0.
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Table 3.9 Three bootstrap samples

Bootstrap Sample 1: 16 31 9 16 6 42 Mean = 20.0
Bootstrap Sample 2: 31 16 16 6 31 22 Mean = 20.33
Bootstrap Sample 3: 42 31 42 9 42 22 Mean = 31.33

Estimating Standard Error Based on a Bootstrap
Distribution
The variability of bootstrap statistics is similar to the variability of sample statistics
if we were to sample repeatedly from the population, so we can use the standard
deviation of the bootstrap distribution to estimate the standard error of the sample
statistic.

Standard Error from a Bootstrap Distribution

The standard deviation of the bootstrap statistics in a bootstrap
distribution gives a good approximation of the standard error of the
statistic.

Example 3.21
Use the information in Figure 3.18 to find the standard error of the sample pro-
portion when estimating the proportion of peanuts in mixed nuts with a sample of
size 100.

Solution The information in the upper corner of Figure 3.18 indicates that the standard
deviation of those 1000 bootstrap proportions is 0.050, so we use that value as an
estimate of the standard error for the proportion.

The 1000 bootstrap means for Atlanta commute times in Figure 3.16 have a
standard deviation of 0.915 minutes, so we have SE = 0.915 for the sample mean
commute time based on samples of size n = 500. The standard error depends
on the size and variability of the original sample, but not on the number of
bootstrap samples (provided we use enough bootstrap samples to obtain a reasonable
estimate).

Because the estimated SE is based on simulated bootstrap samples, it will vary
slightly from simulation to simulation. A different set of 1000 commute bootstrap
means produced a standard error estimate of 0.932 (similar to the previous estimate
of 0.915), and 1000 new simulated mixed nut samples gave an estimated standard
error of 0.048 (also similar to the previous estimate of SE = 0.050.) In practice, these
subtle differences are almost always negligible. However, a more accurate estimate
can easily be achieved by simulating more bootstrap samples: The more bootstrap
samples, the more accurate the estimated SE will be. In this text we often use 1000
bootstrap samples so that the individual bootstrap statistics are visible in plots, but
10,000 or more bootstrap samples are more often used in practice.33 If we create
100,000 bootstrap samples for the Atlanta commute times, the SE is 0.927 in one
simulation, 0.928 in another simulation, and 0.927 in a third simulation: We are now
estimating within 1 one-thousandth of a minute.

33The number of bootstrap samples you find may depend on the speed of your technology.
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95% Confidence Interval Based on a Bootstrap
Standard Error
Recall from Section 3.2 that we can use the standard error to construct a 95%
confidence interval by going two standard errors on either side of the original statistic.
Now, we can use this idea more practically by using the bootstrap distribution to
estimate the standard error.

A 95% Confidence Interval Using a Bootstrap Standard Error

When a bootstrap distribution for a sample statistic is symmetric and
bell-shaped, we estimate a 95% confidence interval using

Statistic ± 2 · SE

where SE denotes the standard error of the statistic estimated from
the bootstrap distribution.

Example 3.22
Use the standard errors found in previous examples to find and interpret 95%
confidence intervals for

(a) the mean Atlanta commute time, and

(b) the proportion of peanuts in mixed nuts.

In addition, give the margin of error for both intervals.

Solution (a) The sample mean from the original sample of 500 Atlanta commuters is
x = 29.11 minutes and the estimated standard error for this mean from the
bootstrap distribution in Figure 3.16 is 0.915. Going two standard errors on
either side of the sample statistic gives

x ± 2 · SE

29.11 ± 2(0.915)

29.11 ± 1.83

or an interval from 29.11 − 1.83 = 27.28 minutes to 29.11 + 1.83 = 30.94 min-
utes. The margin of error is 1.83 minutes, and we are 95% confident that the
mean commute time for all Atlanta commuters is between 27.28 minutes and
30.94 minutes.

(b) The original sample has a proportion of p̂ = 0.52 peanuts, and the estimated
standard error for this proportion from Example 3.21 is 0.050. Going two
standard errors on either side of the estimate gives

p̂ ± 2 · SE

0.52 ± 2(0.050)

0.52 ± 0.10

or an interval from 0.52 − 0.10 = 0.42 to 0.52 + 0.10 = 0.62. The margin of error
is 0.10, and we are 95% confident that between 42% and 62% of all mixed nuts
from this company are peanuts.

o
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We now have a very powerful technique for constructing confidence intervals
for a wide variety of parameters. As long as we can do the following:

• Find a sample statistic to serve as a point estimate for the parameter.

• Compute bootstrap statistics for many samples with replacement from the original
sample.

• Estimate the standard error from the bootstrap distribution.

• Check that the bootstrap distribution is reasonably symmetric and bell-shaped.

Then we can use statistic ± 2 · SE to estimate a 95% confidence interval for the
parameter.

But what about other confidence levels, like 90% or 99%? We explore an alter-
nate method for obtaining a confidence interval from a bootstrap distribution in the
next section, which will address this question and provide even more general results.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Describe how to select a bootstrap sample to compute a bootstrap
statistic

• Recognize that a bootstrap distribution tends to be centered at the
value of the original statistic

• Use technology to create a bootstrap distribution

• Estimate the standard error of a statistic from a bootstrap distribution

• Construct a 95% confidence interval for a parameter based on a sample
statistic and the standard error from a bootstrap distribution

Exercises for Section 3.3

SKILL BUILDER 1
In Exercises 3.65 and 3.66, a sample is given. Indi-
cate whether each option is a possible bootstrap
sample from this original sample.

3.65 Original sample: 17, 10, 15, 21, 13, 18.
Do the values given constitute a possible bootstrap
sample from the original sample?

(a) 10, 12, 17, 18, 20, 21

(b) 10, 15, 17

(c) 10, 13, 15, 17, 18, 21

(d) 18, 13, 21, 17, 15, 13, 10

(e) 13, 10, 21, 10, 18, 17

3.66 Original sample: 85, 72, 79, 97, 88.
Do the values given constitute a possible bootstrap
sample from the original sample?

(a) 79, 79, 97, 85, 88

(b) 72, 79, 85, 88, 97

(c) 85, 88, 97, 72

(d) 88, 97, 81, 78, 85

(e) 97, 85, 79, 85, 97

(f) 72, 72, 79, 72, 79

SKILL BUILDER 2
In Exercises 3.67 to 3.70, use the bootstrap distribu-
tions in Figure 3.19 to estimate the point estimate
and standard error, and then use this information
to give a 95% confidence interval. In addition, give
notation for the parameter being estimated.

3.67 The bootstrap distribution in Figure 3.19(a),
generated for a sample proportion

3.68 The bootstrap distribution in Figure 3.19(b),
generated for a sample mean

3.69 The bootstrap distribution in Figure 3.19(c),
generated for a sample correlation

3.70 The bootstrap distribution in Figure 3.19(d),
generated for a difference in sample means

o
o
o
o
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Figure 3.19 Four bootstrap distributions

SKILL BUILDER 3
Exercises 3.71 to 3.74 give information about the
proportion of a sample that agrees with a cer-
tain statement. Use StatKey or other technology
to estimate the standard error from a bootstrap dis-
tribution generated from the sample. Then use the
standard error to give a 95% confidence interval
for the proportion of the population to agree with
the statement. StatKey tip: Use‘‘CI for Single Pro-
portion” and then ‘‘Edit Data” to enter the sample
information.

3.71 In a random sample of 100 people, 35 agree.

3.72 In a random sample of 250 people, 180 agree.

3.73 In a random sample of 400 people, 112 agree
and 288 disagree.

3.74 In a random sample of 1000 people, 382 people
agree, 578 disagree, and 40 are undecided.

3.75 Hitchhiker Snails A type of small snail is very
widespread in Japan, and colonies of the snails
that are genetically similar have been found very
far apart. Scientists wondered how the snails could
travel such long distances. A recent study34 pro-
vides the answer. Biologist Shinichiro Wada fed 174
live snails to birds and found that 26 of the snails
were excreted live out the other end. The snails

34Yong, E., ‘‘The Scatological Hitchhiker Snail,” Discover, Octo-
ber 2011, 13.

apparently are able to seal their shells shut to keep
the digestive fluids from getting in.

(a) What is the best point estimate for the propor-
tion of all snails of this type to live after being
eaten by a bird?

(b) Figure 3.20 shows a bootstrap distribution based
on this sample. Estimate the standard error.

(c) Use the standard error from part (b) to find
and interpret a 95% confidence interval for the
proportion of all snails of this type to live after
being eaten by a bird.

(d) Using your answer to part (c), is it plausible that
20% of all snails of this type live after being
eaten by a bird?

3.76 Ants on a Sandwich How many ants will climb
on a piece of a peanut butter sandwich left on the
ground near an ant hill? To study this, a student
in Australia left a piece of a sandwich for several
minutes, then covered it with a jar and counted
the number of ants. He did this eight times, and the
results are shown in Table 3.10. (In fact, he also con-
ducted an experiment to see if there is a difference
in number of ants based on the sandwich filling. The
details of that experiment are given in Chapter 8,
and the full dataset is in SandwichAnts.)35

35Mackisack, M., ‘‘Favourite Experiments: An Addendum
to What Is the Use of Experiments Conducted by Statis-
tics Students?,” Journal of Statistics Education, 1994, http://
www.amstat.org/publications/jse/v2n1/mackisack.supp.html.
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Figure 3.20 Bootstrap distribution of sample proportion of the snails that live

Table 3.10 Number of ants on a sandwich

Number of ants 43 59 22 25 36 47 19 21

(a) Find the mean and standard deviation of the
sample.

(b) Describe how we could use eight slips of paper
to create one bootstrap statistic. Be specific.

(c) What do we expect to be the shape and center
of the bootstrap distribution?

(d) What is the population parameter of interest?
What is the best point estimate for that param-
eter?

(e) A bootstrap distribution of 5000 bootstrap
statistics gives a standard error of 4.85. Use
the standard error to find and interpret a 95%
confidence interval for the parameter defined in
part (d).

Table 3.11 Prices of skateboards for sale online

19.95 24.99 39.99 34.99 30.99 92.50 84.99 119.99 19.99 114.99
44.99 50 84.99 29.91 159.99 61.99 25 27.50 84.99 199

3.77 Skateboard Prices A sample of prices of skate-
boards for sale online36 is shown in Table 3.11 and
is available in the dataset SkateboardPrices.

(a) What are the mean and standard deviation of
the 20 skateboard prices?

(b) Describe how to use the data to select one boot-
strap sample. What statistic is recorded from the
sample?

(c) What shape and center do we expect the boot-
strap distribution to have?

(d) One bootstrap distribution gives a standard
error of 10.9. Find and interpret a 95% con-
fidence interval.

3.78 Saab Sales Saab, a Swedish car manufacturer,
is interested in estimating average monthly sales in

36Random sample taken from all skateboards available for sale
on eBay on February 12, 2012.
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the US, using the following sales figures from a
sample of five months:37

658, 456, 830, 696, 385

Use StatKey or other technology to construct a boot-
strap distribution and then find a 95% confidence
interval to estimate the average monthly sales in
the United States. Write your results as you would
present them to the CEO of Saab.

3.79 Rats with Compassion The phrase ‘‘You dirty
rat” does rats a disservice. In a recent study,38

rats showed compassion that surprised scientists.
Twenty-three of the 30 rats in the study freed
another trapped rat in their cage, even when choco-
late served as a distraction and even when the rats
would then have to share the chocolate with their
freed companion. (Rats, it turns out, love choco-
late.) Rats did not open the cage when it was empty
or when there was a stuffed animal inside, only when
a fellow rat was trapped. We wish to use the sample
to estimate the proportion of rats to show empathy
in this way. The data are available in the dataset
CompassionateRats.

(a) Give the relevant parameter and its point esti-
mate.

(b) Describe how to use 30 slips of paper to create
one bootstrap statistic. Be specific.

(c) Use StatKey or other technology to create a
bootstrap distribution. Describe the shape and
center of the bootstrap distribution. What is the
standard error?

(d) Use the standard error to find and interpret a
95% confidence interval for the proportion of
rats likely to show empathy.

3.80 Are Female Rats More Compassionate Than
Male Rats? Exercise 3.79 describes a study in
which rats showed compassion by freeing a trapped
rat. In the study, all six of the six female rats showed
compassion by freeing the trapped rat while 17 of
the 24 male rats did so. Use the results of this study
to give a point estimate for the difference in propor-
tion of rats showing compassion, between female
rats and male rats. Then use StatKey or other tech-
nology to estimate the standard error39 and use it to
compute an interval estimate for the difference in
proportions. Use the interval to determine whether
it is plausible that male and female rats are equally

37http://www.saabsunited.com/saab-sales-data.
38Bartal, I.B., Decety, J., and Mason, P., ‘‘Empathy and Pro-
Social Behavior in Rats,” Science, 2011; 224(6061): 1427–1430.
39In practice we should raise a caution here, since the proportion
for female rats will be p̂ = 1 for every bootstrap sample.

compassionate (i.e., that the difference in propor-
tions is zero). The data are available in the dataset
CompassionateRats.

3.81 Teens Are More Likely to Send Text Mes-
sages Exercise 3.27 on page 176 compares studies
which measure the proportions of adult and teen
cell phone users that send/receive text messages.
The summary statistics are repeated below:

Group Sample Size Proportion
Teen nt = 800 p̂t = 0.87
Adult na = 2252 p̂a = 0.72

Figure 3.21 shows a distribution for the differences
in sample proportions (p̂t − p̂a) for 5000 bootstrap
samples (taking 800 values with replacement from
the original teen sample and 2252 from the adults).
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Figure 3.21 Bootstrap difference in sample proportions
of teen and adult cell phone users who text

(a) Based on the bootstrap distribution, which is the
most reasonable estimate of the standard error
for the difference in proportions: SE = 0.015,
0.030, 0.050, 0.10, or 0.15? Explain the reason
for your choice.

(b) Using your choice for the SE estimate in
part (a), find and interpret a 95% confidence
interval for the difference in proportion of teen
and adult cell phone users who send/receive text
messages.

3.82 Tea, Coffee, and Your Immune System
Researchers suspect that drinking tea might
enhance the production of interferon gamma, a
molecule that helps the immune system fight bacte-
ria, viruses, and tumors. A recent study40 involved

40Adapted from Kamath et.al., ‘‘Antigens in Tea-Beverage Prime
Human Vγ 2Vδ2 T Cells in vitro and in vivo for Memory and
Non-memory Antibacterial Cytokine Responses,” Proceedings
of the National Academy of Sciences, May 13, 2003.
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21 healthy people who did not normally drink tea
or coffee. Eleven of the participants were randomly
assigned to drink five or six cups of tea a day, while
10 were asked to drink the same amount of coffee.
After two weeks, blood samples were exposed to
an antigen and production of interferon gamma was
measured.41 The results are shown in Table 3.12
and are available in ImmuneTea. We are interested
in estimating the effect size, the increase in aver-
age interferon gamma production for drinking tea
when compared to coffee. Use StatKey or other
technology to estimate the difference in mean pro-
duction for tea drinkers minus coffee drinkers. Give
the standard error for the difference and a 95%
confidence interval. Interpret the result in context.

Table 3.12 Immune system response in tea and
coffee drinkers

Tea 5 11 13 18 20 47
48 52 55 56 58

Coffee 0 0 3 11 15 16
21 21 38 52

3.83 Better Traffic Flow Exercise 2.144 on page 102
introduces the dataset TrafficFlow, which gives
delay time in seconds for 24 simulation runs in Dres-
den, Germany, comparing the current timed traffic
light system on each run to a proposed flexible traffic
light system in which lights communicate traffic flow
information to neighboring lights. On average, pub-
lic transportation was delayed 105 seconds under
the timed system and 44 seconds under the flexible
system. Since this is a matched pairs experiment,
we are interested in the difference in times between
the two methods for each of the 24 simulations. For
the n = 24 differences D, we saw in Exercise 2.144
that xD = 61 seconds with sD = 15.19 seconds. We
wish to estimate the average time savings for public
transportation on this stretch of road if the city of
Dresden moves to the new system.

(a) What parameter are we estimating? Give cor-
rect notation.

(b) Suppose that we write the 24 differences on 24
slips of paper. Describe how to physically use
the paper slips to create a bootstrap sample.

(c) What statistic do we record for this one boot-
strap sample?

41To be specific, peripheral blood mononuclear cells were cul-
tured with the antigen alkylamine ethylalamine in an enzyme-
linked immunospot assay to the frequency of interferon-gamma-
producing cells.

(d) If we create a bootstrap distribution using many
of these bootstrap statistics, what shape do we
expect it to have and where do we expect it to
be centered?

(e) How can we use the values in the bootstrap
distribution to find the standard error?

(f) The standard error is 3.1 for one set of 10,000
bootstrap samples. Find and interpret a 95%
confidence interval for the average time savings.

3.84 Commuting Distances in Atlanta In addition
to the commute time (in minutes), the CommuteAt-
lanta dataset gives the distance for the commutes
(in miles) for 500 workers sampled from the Atlanta
metropolitan area.

(a) Find the mean and standard deviation of the
commute distances in CommuteAtlanta.

(b) Use StatKey or other technology to create a
bootstrap distribution of the sample means of
the distances. Describe the shape and center of
the distribution.

(c) Use the bootstrap distribution to estimate the
standard error for mean commute distance when
using samples of size 500.

(d) Use the standard error to find and interpret a
95% confidence interval for the mean commute
distance of Atlanta workers.

3.85 Correlation between Distance and Time for
Atlanta Commutes The data in CommuteAtlanta
contains information on both the Distance (in miles)
and Time (in minutes) for a sample of 500 Atlanta
commutes. We expect the correlation between these
two variables to be positive, since longer distances
tend to take more time.

(a) Find the correlation between Distance and Time
for the original sample of 500 Atlanta com-
mutes.

(b) The file BootAtlantaCorr contains the corre-
lations of Distance vs Time for 1000 bootstrap
samples using the Atlanta commuting data, or
use StatKey or other technology to create your
own bootstrap distribution. Create a plot and
describe the shape and center of the bootstrap
distribution of these correlations.

(c) Use the statistics in the bootstrap distribution
to estimate the margin of error and create an
interval estimate for the correlation between
distance and time of Atlanta commutes.

(d) Mark where the interval estimate lies on your
plot in part (b).

3.86 NHL Penalty Minutes Table 3.4 on page 174
shows the number of points scored and penalty
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minutes for 24 ice hockey players on the Ottawa
Senators NHL team for the 2009–2010 season. The
data are also stored in OttawaSenators. Assume
that we consider these players to be a sample of all
NHL players.

(a) Create a dotplot of the distribution of penalty
minutes (PenMin) for the original sample of 24
players. Comment on the shape, paying partic-
ular attention to skewness and possible outliers.

(b) Find the mean and standard deviation of the
penalty minute values for the original sample.

(c) Use StatKey or other technology to construct
a bootstrap distribution for the mean penalty
minutes for samples of size n = 24 NHL play-
ers. Comment on the shape of this distribution,
especially compared to the shape of the original
sample.

(d) Compute the standard deviation of the boot-
strap means using the distribution in part (c).

Compare this value to the standard deviation of
the penalty minutes in the original sample.

(e) Construct an interval estimate for the mean
penalty minutes of NHL players.

(f) Give a reason why it might not be reasonable to
use the players on one team as a sample of all
players in a league.

3.87 Standard Deviation of NHL Penalty Min-
utes Exercise 3.86 describes data on the number
of penalty minutes for Ottawa Senators NHL play-
ers. The sample has a fairly large standard deviation,
s = 49.1 minutes. Use StatKey or other technology
to create a bootstrap distribution, estimate the stan-
dard error, and give a 95% confidence interval for
the standard deviation of penalty minutes for NHL
players. Assume that the data in OttawaSenators
can be viewed as a reasonable sample of all NHL
players.

3.4BOOTSTRAP CONFIDENCE INTERVALS USING
PERCENTILES

Confidence Intervals Based on Bootstrap Percentiles
If we were only concerned with 95% confidence intervals and always had a sym-
metric, bell-shaped bootstrap distribution, the rough Statistic ± 2 · SE interval we
computed in Section 3.3 would probably be all that we need. But we might have a
bootstrap distribution that is symmetric but subtly flatter (or steeper) so that more
(or less) than 95% of bootstrap statistics are within two standard errors of the
center. Or we might want more (say 99%) or less (perhaps 90%) confidence that
the method will produce a successful interval.

Fortunately, the bootstrap distribution provides a method to address both of
these concerns. Rather than using ±2 · SE as a yardstick to locate the middle 95%
of the bootstrap statistics, we can use the percentiles of the bootstrap distribution
directly. If we want the middle 95% of the bootstrap distribution (the values that
are most likely to be close to the center), we can just chop off the lowest 2.5% and
highest 2.5% of the bootstrap statistics to produce an interval.

Example 3.23
Figure 3.16 on page 195 shows a bootstrap distribution of sample means based on
a sample of commute times (in minutes) for 500 residents of metropolitan Atlanta.
That figure is reproduced in Figure 3.22 where we also indicate the boundaries for the
middle 95% of the data, leaving 2.5% of the values in each tail. Use these boundaries
to find and interpret a 95% confidence interval for Atlanta commute times.

Solution The 2.5%-tile of the bootstrap distribution is at 27.43 minutes and the 97.5%-tile
is at 31.05 minutes. Thus the 95% confidence interval for mean commute time in
Atlanta, based on the original sample, goes from 27.43 to 31.05 minutes. We are
95% sure that the mean commute time for all Atlanta commuters is between 27.43
and 31.05 minutes.

o
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Figure 3.22 Middle
95% of a bootstrap
distribution for means of
Atlanta commute times 26 27

2.5% 2.5%

27.43 31.05

28 29

xbar
30 31 32

95%

If we could actually poll every single commuter in Atlanta and find the commute
times and calculate the population mean, the resulting value would either lie within
the 95% confidence interval of 27.43 to 31.05 or it would not. Remember that when
we say we are ‘‘95% sure,” we just mean that 95% of intervals constructed using
this method will contain the population parameter.

The 95% confidence interval calculated based on percentiles in Example 3.23
is similar to the 95% confidence interval based on two standard error bounds
calculated in Example 3.22 that went from 27.28 to 30.94 minutes. If the bootstrap
distribution is symmetric and bell-shaped, the two methods give approximately the
same results for a 95% confidence interval.

Example 3.24
Use the bootstrap distribution in Figure 3.22 to estimate 99% and 90% confidence
intervals for the mean Atlanta commute time.

Solution Since the bootstrap distribution used 1000 samples, the middle 99% of the values
would include 990 bootstrap means, leaving just five values in each of the tails. In
Figure 3.22 this would put boundaries near 27.0 and 31.6. For a 90% confidence
interval we need the 5%-tile and 95%-tile, leaving roughly 50 values in each tail.
This gives a 90% confidence interval for mean commute times between about 27.7
and 30.7 minutes. More precise values for the percentiles found with computer
software are shown in Figure 3.23.

Figures 3.22 and 3.23 make it clear that to get more confidence that our interval
contains the true mean, we need to use a wider interval. This is generally the case
for any particular sample.

Why don’t we look for a 100% confidence interval? We might be 100% sure that
the mean commute time in Atlanta is between 0 and 200 minutes, but is that interval
of any practical use? In general we need to balance a reasonable chance of capturing
the parameter of interest with a need to narrow in on where the parameter might be.

Figure 3.23 99% and
90% confidence intervals
for mean commute time
in Atlanta 26 27

26.98

27.70 30.71

31.63

28 29

xbar
30 31 32

99%

90%
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That is why we commonly use confidence levels like 90%, 95%, or 99% depending
on the trade-off we are willing to make between a precise, narrow interval and a
good chance that it succeeds.

Constructing a Confidence Interval from the Percentiles of a

Bootstrap Distribution

If the bootstrap distribution is approximately symmetric and bell-
shaped, we construct a confidence interval by finding the percentiles in
the bootstrap distribution so that the proportion of bootstrap statistics
between the percentiles matches the desired confidence level.

Finding Confidence Intervals for Many Different
Parameters
These procedures for finding bootstrap confidence intervals are quite flexible and
can be applied in a wide variety of different situations and with many different
parameters. The basic procedure is very straightforward. As long as we can construct
a reasonable bootstrap distribution, we can use it to estimate a confidence interval.
The tools in StatKey automate this process, as do many statistical software packages.

The process of creating bootstrap samples can require a bit more thought when
the sampling process is more involved. We should always create bootstrap statistics
as similar as possible to the relevant statistic from the original data, as illustrated in
the next two examples.

Example 3.25
Who Exercises More: Males or Females?

Fifty students were asked how many hours a week they exercise, and the results
are included in the dataset ExerciseHours. Figure 3.24 shows comparative boxplots
of the number of hours spent exercising, and we compute the summary statistics to
be xM = 12.4 and sM = 8.80 with nM = 20 for the males and xF = 9.4 and sF = 7.41
with nF = 30 for the females. How big might the difference in mean hours spent
exercising be, between males and females?

(a) Use the sample to give a point estimate for the difference in mean hours spent
exercising between males and females.

(b) Describe the process we would use to compute one bootstrap statistic from the
sample.

(c) Use StatKey or other technology to find and interpret a 95% confidence interval
for the difference in mean number of hours spent exercising.

Solution (a) We get a point estimate for the difference in mean exercise times between males
and females (μM − μF) with the difference in the sample means, xM − xF =
12.4 − 9.4 = 3.0 hours per week. In other words, we estimate that males spend,
on average, three more hours a week exercising than females spend.

(b) To match the original data as closely as possible, for each bootstrap sample we
take 20 male times with replacement from the original 20 male values and 30
female times with replacement from the original 30 female values. To compute
the bootstrap statistic, we compute the sample means for males and females,
and find the difference in the two means, mimicking the statistic found in the
original sample.

ilk

o



208CHAPTER3ConfidenceIntervals

Figure3.24Numberof
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(c)Figure3.25displaysadotplotfromStatKeyshowingthesedifferencesinmeans
basedon3000bootstrapsamples.

Usingthe2.5%-tileand97.5%-tilesfromthebootstrapdistributionin
Figure3.25wegeta95%confidenceintervalforthedifferenceinmeanexercise
hoursbetweenmenandwomenfrom−1.717hoursto7.633hours.

Sincethebootstrapdistributionisrelativelysymmetricandbell-shaped,we
canalso(orinstead)useitsstandarderrortofinda95%confidenceinterval.
Thestandarddeviationforthebootstrapstatistics,foundintheuppercornerof
Figure3.25,is2.341,soweestimatethestandarderrorofthestatisticxM−xFto
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be SE = 2.341. We find an interval estimate for the difference in the population
means with

(xM − xF) ± 2 · SE

(12.4 − 9.4) ± 2 · (2.341)

3.0 ± 4.68

−1.68 to 7.68

While this is not exactly the same as the interval we obtained from the percentiles,
there is not much practical difference between them.

To interpret the percentile interval, we are 95% sure that the difference in
mean time spent exercising between males and females is between −1.72 and
7.63 hours per week. To make the direction of the difference more explicit,
we might revise the interpretation to say that we are 95% sure that the mean
exercise time for males is between 1.72 hours less and 7.63 hours more than
mean exercise time for females. Since 0 is within this interval and thus a plausible
value for μM − μF , it is plausible that there is no difference in mean exercise
times between males and females.

© Mikkel William Nielsen/iStockphoto

How do price and mileage correlate for used Mustangs?

D A T A 3 . 4 Mustang Prices
A statistics student, Gabe McBride, was interested in prices for used Mustang
cars being offered for sale on an Internet site. He sampled 25 cars from the
website and recorded the age (in years), mileage (in thousands of miles), and
asking price (in $1000s) for each car in his sample. The data are stored in
MustangPrice and the scatterplot in Figure 3.26 shows the relationship between
the Miles on each car and the Price. Not surprisingly, we see a strong negative
association showing the price of a used Mustang tends to be lower if it has been
driven for more miles. The correlation between Price and Miles for this sample
is r = −0.825. ■
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Figure 3.26 Price (in
$1000s) and mileage (in
1000s) for a sample of 25
used Mustang cars 0
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Example 3.26
(a) Describe how we might create one bootstrap statistic for the correlation between

price and mileage of used Mustang cars, using the data described in Data 3.4.

(b) Figure 3.27 shows a dotplot of the correlations between Price and Miles for each
of 5000 bootstrap samples from the MustangPrice data, and Table 3.13 gives
some percentiles from this bootstrap distribution. Use this information to create
a 98% confidence interval for the correlation between Price and Miles for the
population of all Mustangs for sale at this website. Interpret the interval in
context.

Figure 3.27 Bootstrap
correlations between
Price and Miles for 5000
samples of size 25 −1.00 −0.95 −0.90 −0.85 −0.80

r
−0.75 −0.70 −0.65 −0.60

Table 3.13 Percentiles from a bootstrap distribution of Mustang correlations

0.5% 1.0% 2.0% 2.5% 5.0% 95.0% 97.5% 98.0% 99.0% 99.5%

Percentile −0.945 −0.940 −0.931 −0.928 −0.919 −0.741 −0.723 −0.717 −0.705 −0.689
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Solution (a) Because the correlation is based on ordered pairs of data (price and mileage),
we compute a bootstrap statistic by sampling (with replacement) ordered pairs
from the original sample. We select 25 ordered pairs in this way (to match the
original sample size) and compute the correlation of the 25 ordered pairs for
one bootstrap statistic.

(b) For a 98% confidence interval we need to take 1% from each tail of the bootstrap
distribution, so we use the 1%-tile and 99%-tile from Table 3.13. This gives us
an interval from −0.940 to −0.705. Based on this sample of 25 Mustangs, we are
98% sure that the correlation between price and mileage for all used Mustangs
for sale at this Internet site is somewhere between −0.940 and −0.705.

Another Look at the Effect of Sample Size
In Example 3.22, we calculated a 95% confidence interval for the proportion of
peanuts in mixed nuts based on a sample proportion of p̂ = 0.52 and a sample size of
n = 100. The next example investigates how the result changes if we have the same
sample proportion but a larger sample size.

Example 3.27
Suppose a sample of size n = 400 mixed nuts contains 208 peanuts, so the proportion
of peanuts is p̂ = 0.52. Use this sample data to compute a 95% confidence interval
for the proportion of peanuts. Compare your answer to the 95% confidence interval
of 0.42 to 0.62 based on a sample of size n = 100 given in Example 3.22.

Solution Figure 3.28 shows a dotplot of the bootstrap proportions for 1000 simulated samples
of size 400. We see that a 95% confidence interval for the proportion of peanuts goes
from 0.472 to 0.568. This confidence interval for a sample size of 400 is considerably
narrower than the interval based on a sample size of 100; in fact, it is about half the
width. The margin of error has gone from about 0.10 to about 0.05.

Figure 3.28 Bootstrap
proportions for 1000
samples simulated from a
sample with p̂ = 0.52 and
n = 400
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At first glance the bootstrap distribution for proportions based on samples of
size n = 400 might look similar to Figure 3.18, which used samples of size n = 100.
However, pay close attention to the scale for the horizontal axis. As we saw with
the sampling distribution, when the sample size is larger, the bootstrap proportions
tend to be closer to the center proportion of 0.52. This is consistent with the fact
that the estimated standard error of the proportion based on the larger samples
is SE = 0.024, about half of the standard error when n = 100. We improve the
accuracy of our estimate, and reduce the width of our interval, by taking a larger
sample.

Larger Sample Size Increases Accuracy

A larger sample size tends to increase the accuracy of the estimate,
giving a smaller standard error and reducing the width of a confidence
interval.

One Caution on Constructing Bootstrap Confidence
Intervals

Example 3.28
Bootstrap Intervals Don’t Always Work Well

Use StatKey or other technology to create a bootstrap distribution for the median
price of Mustangs using the sample of 25 cars in MustangPrice. Explain why it would
not be appropriate to use the bootstrap distribution to construct a 95% confidence
interval for the median price of mustangs.

Solution We create 5000 bootstrap samples, each with 25 cars selected from the original
sample, and find the median price for each sample. Figure 3.29 shows a dotplot
of the 5000 bootstrap medians. While the mechanics of constructing a confidence
interval from this bootstrap distribution appear very straightforward, it is important
to always pause first and take a good look at the bootstrap distribution. This
plot looks quite different from the bootstrap distributions we have seen in other
examples. Notice that the median for 25 data points is always one of the data
values, so the choices for bootstrap medians are limited to the original 25 prices.
For example, a percentile can be at prices of 16 or 21, but never in between. When
using the percentiles of the bootstrap distribution or using the ±2 · SE method, we
need to make sure that the bootstrap distribution is reasonably symmetric around
the original statistic and reasonably bell-shaped. In this case, it is not appropriate to
use this bootstrap distribution to find a confidence interval.

Figure 3.29 Bootstrap
medians for Mustang
prices (n = 25) 8 10 12 14 16

MedianPrice
18 20 22 24
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You should always look at a plot of the bootstrap distribution. If the plot is poorly
behaved (for example, heavily skewed or isolated clumps of values), you should
not have much confidence in the intervals it produces. Fortunately, for most of the
statistics we consider, the bootstrap distributions work well.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Construct a confidence interval based on the percentiles of a bootstrap
distribution

• Describe the process of constructing a bootstrap statistic for many
different parameters

• Explain how the width of an interval is affected by the desired level of
confidence and the sample size

• Recognize when it is appropriate to construct a bootstrap confidence
interval using percentiles or the standard error

Exercises for Section 3.4

SKILL BUILDER 1
3.88 To create a confidence interval from a boot-
strap distribution using percentiles, we keep the
middle values and chop off a certain percent from
each tail. Indicate what percent of values must be
chopped off from each tail for each confidence level
given.
(a) 95%

(b) 90%

(c) 98%

(d) 99%

SKILL BUILDER 2
3.89 To create a confidence interval from a boot-
strap distribution using percentiles, we keep the
middle values and chop off some number of the
lowest values and the highest values. If our boot-
strap distribution contains values for 1000 bootstrap
samples, indicate how many we chop off at each end
for each confidence level given.
(a) 95%

(b) 90%

(c) 98%

(d) 99%

SKILL BUILDER 3
In estimating the mean score on a fitness exam, we
use an original sample of size n = 30 and a boot-
strap distribution containing 5000 bootstrap samples

to obtain a 95% confidence interval of 67 to 73. In
Exercises 3.90 to 3.95, a change in this process is
described. If all else stays the same, which of the
following confidence intervals (A, B, or C) is the
most likely result after the change:

A. 66 to 74 B. 67 to 73 C. 67.5 to 72.5

3.90 Using the data to find a 99% confidence
interval

3.91 Using the data to find a 90% confidence
interval

3.92 Using an original sample of size n = 45

3.93 Using an original sample of size n = 16

3.94 Using 10,000 bootstrap samples for the
distribution

3.95 Using 1000 bootstrap samples for the
distribution

SKILL BUILDER 4
Exercises 3.96 to 3.99 give information about the
proportion of a sample that agree with a certain
statement. Use StatKey or other technology to find
a confidence interval at the given confidence level
for the proportion of the population to agree, using
percentiles from a bootstrap distribution. StatKey
tip: Use ‘‘CI for Single Proportion” and then ‘‘Edit
Data” to enter the sample information.

3.96 Find a 95% confidence interval if 35 agree in
a random sample of 100 people.

/h

o
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3.97 Find a 95% confidence interval if 180 agree
in a random sample of 250 people.

3.98 Find a 90% confidence interval if 112 agree
and 288 disagree in a random sample of 400 people.

3.99 Find a 99% confidence interval if, in a ran-
dom sample of 1000 people, 382 agree, 578 disagree,
and 40 can’t decide.

3.100 IQ Scores A sample of 10 IQ scores was used
to create the bootstrap distribution of sample means
in Figure 3.30.

(a) Estimate the mean of the original sample of IQ
scores.

(b) The distribution was created using 1000 boot-
strap statistics. Use the distribution to estimate
a 99% confidence interval for the mean IQ score
for the population. Explain your reasoning.
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Figure 3.30 Bootstrap distribution of sample means of
IQ scores

3.101 Average Penalty Minutes in the NHL In
Exercise 3.86 on page 204, we construct an interval
estimate for mean penalty minutes given to NHL
players in a season using data from players on the
Ottawa Senators as our sample. Some percentiles
from a bootstrap distribution of 1000 sample means
are shown below. Use this information to find and
interpret a 98% confidence interval for the mean
penalty minutes of NHL players. Assume that the
players on this team are a reasonable sample from
the population of all players.

0.5% 1.0% 2.0% 2.5% 5.0% 95.0% 97.5% 98.0% 99.0% 99.5%

Percentile 27.4 29.4 31.2 31.8 34.7 65.9 70.0 70.9 76.7 81.1

3.102 How Important Is Regular Exercise? In a
recent poll42 of 1000 American adults, the number
saying that exercise is an important part of daily
life was 753. Use StatKey or other technology to
find and interpret a 90% confidence interval for the
proportion of American adults who think exercise
is an important part of daily life.

3.103 Many Europeans Don’t Recognize Signs of
Stroke or Heart Attack Across nine European coun-
tries in a large-scale survey, people had a hard time
identifying signs of a stroke or heart attack. The
survey43 included 10,228 inhabitants of Austria,
France, Germany, Italy, the Netherlands, Poland,
Russia, Spain, and the United Kingdom. Partici-
pants ages ranged from 14 to 98. Of those surveyed,
less than half (4910) linked arm or shoulder pain to
heart attacks. Use StatKey to find and interpret a
99% confidence interval for the proportion of Euro-
peans (from these nine countries) who can identify
arm or shoulder pain as a symptom of a heart attack.
Can we be 99% confident that the proportion is less
than half?

3.104 Comparing Methods for Having Dogs Iden-
tify Cancer in People Exercise 2.17 on page 55
describes a study in which scientists train dogs to
smell cancer. Researchers collected breath and stool
samples from patients with cancer as well as from
healthy people. A trained dog was given five sam-
ples, randomly displayed, in each test, one from a
patient with cancer and four from healthy volun-
teers. The results are displayed in Table 3.14. Use
StatKey or other technology to use a bootstrap dis-
tribution to find and interpret a 90% confidence
interval for the difference in the proportion of time

Table 3.14 Can dogs smell cancer?

Breath Test Stool Test Total

Dog selects cancer 33 37 70
Dog does not select
cancer

3 1 4

Total 36 38 74

42Rasmussen Reports, ‘‘75% Say Exercise is Important in Daily
Life,” March 26, 2011.
43Mata, J., Frank, R., and Gigerenza, G., ‘‘Symptom Recog-
nition of Heart Attack and Stroke in Nine European Coun-
tries: A Representative Survey,” Health Expectations, 2012; doi:
10.1111/j.1369–7625.2011.00764.x.

A
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the dog correctly picks out the cancer sample,
between the two types of samples. Is it plausible
that there is no difference in the effectiveness in the
two types of methods (breath or stool)?

3.105 Average Tip for a Waitress Data 2.12 on
page 119 describes information from a sample of 157
restaurant bills collected at the First Crush bistro.
The data is available in RestaurantTips. Create a
bootstrap distribution using this data and find and
interpret a 95% confidence interval for the average
tip left at this restaurant. Find the confidence inter-
val two ways: using the standard error and using
percentiles. Compare your results.

3.106 Daily Tip Revenue for a Waitress Data 2.12
on page 119 describes information from a sample
of 157 restaurant bills collected at the First Crush
bistro. The data is available in RestaurantTips. Two
intervals are given below for the average tip left at
a restaurant; one is a 90% confidence interval and
one is a 99% confidence interval.

Interval A: 3.55 to 4.15 Interval B: 3.35 to 4.35

(a) Which one is the 90% confidence interval?
Which one is the 99% confidence interval?

(b) One waitress generally waits on 20 tables in an
average shift. Give a range for her expected
daily tip revenue, using both 90% and 99%
confidence. Interpret your results.

3.107 Who Smokes More: Male Students or Female
Students? Data 1.1 on page 4 includes lots of infor-
mation on a sample of 362 college students. The
complete dataset is available at StudentSurvey. We
see that 27 of the 193 males in the sample smoke
while 16 of the 169 females in the sample smoke.

(a) What is the best point estimate for the differ-
ence in the proportion of smokers, using male
proportion minus female proportion? Which
gender smokes more in the sample?

(b) Find and interpret a 99% confidence interval
for the difference in proportions.

3.108 Home Field Advantage Is there a home field
advantage in soccer? We are specifically interested
in the Football Association (FA) premier league, a
football (soccer) league in Great Britain known for
having especially passionate fans. We took a sample
of 120 matches (excluding all ties) and found that
the home team was victorious in 70 cases.44

(a) What is the population of interest? What is the
specific population parameter of interest?

(b) Estimate the population parameter using the
sample.

44http://www.premierleague.com/page/Home/0,,12306,00.html.

(c) Using StatKey or other technology, construct
and interpret a 90% confidence interval.

(d) Using StatKey or other technology, construct
and interpret a 99% confidence interval.

(e) Based on this sample and the results in parts (c)
and (d), are we 90% confident a home field
advantage exists? Are we 99% confident?

3.109 Using Percentiles to Estimate Tea vs Coffee
Immune Response In Exercise 3.82, we introduce a
study to estimate the difference in mean immune
response (as measured in the study) between tea
drinkers and coffee drinkers. The data are given
in Table 3.12 on page 204 and are available in
ImmuneTea.

(a) Give a point estimate for the difference in
means: tea drinkers mean immune response
minus coffee drinkers mean immune response.

(b) What quantity are we estimating? Give the cor-
rect notation.

(c) Using StatKey or other technology, construct
and interpret a 90% confidence interval.

(d) Using StatKey or other technology, construct
and interpret a 99% confidence interval.

(e) Based on this sample and the results in parts (c)
and (d), are we 90% confident that tea drinkers
have a stronger immune response? Are we 99%
confident?

3.110 Standard Deviation of Penalty Minutes in the
NHL Exercise 3.87 on page 205 asked you to use the
standard error to construct a 95% confidence inter-
val for the standard deviation of penalty minutes for
NHL players.

(a) Assuming the data in OttawaSenators can be
viewed as a reasonable sample of all NHL
players, use StatKey or other technology and
percentiles of a bootstrap distribution to find
and interpret a 95% confidence interval for the
standard deviation of NHL penalty minutes for
players in a season.

(b) What is the standard deviation for the origi-
nal sample? Is the standard deviation for the
original sample exactly in the middle of the
confidence interval found in part (a)?

3.111 Average Land Area in Countries of the World
Table 3.15 shows land area (in 1000 sq km) and per-
cent living in rural areas for a random sample of 10
countries selected from the AllCountries dataset.
The data for this sample is stored in TenCountries.
Use StatKey or other technology and this sample to
find and interpret a 99% confidence interval for the
average country size, in 1000 sq km.
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Table 3.15 Land area (in 1000 sq km) and percent living in rural areas

Country SRB BHS SVN UZB TUN ARM ROU MKD LBN PRK

Land Area: 88.3 10.0 20.1 425.4 155.4 28.5 229.9 25.2 10.2 120.4
Rural: 48.0 16.3 51.4 63.2 33.5 36.1 45.8 33.1 13 37.3

3.112 Land Area and Percent Rural in Countries
of the World Table 3.15 shows land area (in 1000
sq km) and percent living in rural areas for a ran-
dom sample of 10 countries from the AllCountries
dataset that are stored in TenCountries.

(a) Using the data in the sample, find the slope of
the regression line to predict the percent of the
population living in rural areas using the land
area (in 1000 sq km).

(b) Using StatKey or other technology and per-
centiles from a bootstrap distribution of this
sample, find a 95% confidence interval to esti-
mate the true slope (for all 213 countries) for
predicting percent rural using the land area.

(c) The actual population slope is essentially 0.
Does your 95% confidence interval from part
(b) succeed in capturing the true slope from all
213 countries?

3.113 St. Louis vs Atlanta Commute Times The
datafile CommuteAtlanta contains a sample of com-
mute times for 500 workers in the Atlanta area
as described in Data 3.3 on page 193. The data
in CommuteStLouis has similar information on
the commuting habits of a random sample of 500
residents from metropolitan St. Louis. Figure 3.31
shows comparative boxplots of the commute times
for the two samples. We wish to estimate the differ-
ence in mean commute time between Atlanta and
St. Louis.
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Figure 3.31 Commute times for samples in Atlanta
and St. Louis

(a) Discuss and compare the boxplots in
Figure 3.31. Which city appears to have the
longer average commute time?

(b) Give notation for the parameter we are estimat-
ing and give the best point estimate from the
data.

(c) Describe how to compute one bootstrap statistic
from this data.

(d) Use StatKey or other technology to create a
bootstrap distribution for the difference in mean
commute times between the two cities and use
the standard error to find and interpret a 95%
confidence interval.

3.114 Effect of Overeating for One Month: Corre-
lation between Short-Term and Long-Term Weight
Gain In Exercise 3.60 on page 191, we describe a
study in which participants ate significantly more
and exercised significantly less for a month. Two
and half years later, participants weighed an average
of 6.8 pounds more than at the start of the experi-
ment (while the weights of a control group had not
changed). Is the amount of weight gained over the
following 2.5 years directly related to how much
weight was gained during the one-month period?
For the 18 participants, the correlation between
increase of body weight during the one-month inter-
vention and increase of body weight after 30 months
is r = 0.21. We want to estimate, for the population
of all adults, the correlation between weight gain
over one month of bingeing and the effect of that
month on a person’s weight 2.5 years later.

(a) What is the population parameter of inter-
est? What is the best point estimate for that
parameter?

(b) To find the sample correlation r = 0.21, we used
a dataset containing 18 ordered pairs (weight
gain over the one month and weight gain 2.5
years later for each individual in the study).
Describe how to use this data to obtain one
bootstrap sample.

(c) What statistic is recorded for the bootstrap
sample?

(d) Suppose that we use technology to calculate the
relevant statistic for 1000 bootstrap samples.
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Describe how to find the standard error using
those bootstrap statistics.

(e) The standard error for one set of bootstrap
statistics is 0.14. Calculate a 95% confidence
interval for the correlation.

(f) Use the confidence interval from part (e) to
indicate whether you are confident that there
is a positive correlation between amount of
weight gain during the one-month intervention
and amount of weight gained over the next 2.5
years, or whether there is a reasonable possi-
bility that there is no correlation at all. Explain
your reasoning.

(g) Will a 90% confidence interval most likely be
wider or narrower than the 95% confidence
interval found in part (e)?

3.115 Mustang Prices and Saab Sales Figure 3.32
shows bootstrap distributions for the standard devi-
ation of two different datasets. In each case, if
appropriate, use the bootstrap distribution to esti-
mate and interpret a 95% confidence interval for the
population standard deviation. If not appropriate,
explain why not.
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Figure 3.32 Bootstrap distributions for standard deviation

(a) Standard deviation of prices of used Mustang
cars (in thousands of dollars), introduced in
Data 3.4 on page 209, with bootstrap distribu-
tion in Figure 3.32(a)

(b) Standard deviation of monthly sales of new Saab
cars, introduced in Exercise 3.78 on page 202,
with bootstrap distribution in Figure 3.32(b)

3.116 Small Sample Size and Outliers As we have
seen, bootstrap distributions are generally symmet-
ric and bell-shaped and centered at the value of the
original sample statistic. However, strange things
can happen when the sample size is small and there
is an outlier present. Use StatKey or other tech-
nology to create a bootstrap distribution for the
standard deviation based on the following data:

8 10 7 12 13 8 10 50

Describe the shape of the distribution. Is it appro-
priate to construct a confidence interval from this
distribution? Explain why the distribution might
have the shape it does.
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Hypothesis
Tests

‘‘Few things mislead us more than failing to grasp simple statistical principles.

Understanding what counts as evidence should trump memorizing the structural formulas

for alkanes.’’

Sharon Begley, Science Editor for Newsweek Magazine∗

Top left: © Kevin Klöpper/iStockphoto, Top right: Peter G. Aiken/Getty Images, Inc., Bottom right: © Mark Swallow/iStockphoto

∗Begley, S., ‘‘Wanted: BS Detectors, What Science Ed Should Really Teach,’’ Newsweek, November 8, 2010, p. 26.
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Questions and Issues

C H A P T E R O U T L I N E

4 Hypothesis Tests 218
4.1 Introducing Hypothesis Tests 220

4.2 Measuring Evidence with P-values 236

4.3 Determining Statistical
Significance 252

4.4 Creating Randomization
Distributions 266

4.5 Confidence Intervals and Hypothesis
Tests 282

Here are some of the questions and issues we will discuss in this chapter:

• Do dogs tend to look like their owners?

• Do sports teams wearing aggressive-looking uniforms tend to get more penalties?

• Is ADHD more likely if pesticide exposure is high?

• Are mosquitoes more attracted to someone who has been drinking beer?

• If you want to remember something, should you take a nap or have some caffeine?

• If you get called before a disciplinary panel, should you smile or maintain a serious expression?

• We know exercise is good for the body. Is it also good for the brain?

• If you have an outstanding kindergarten teacher, how long do the beneficial effects last?

• Does the price you pay for something impact your sense of how effective it is?

• Does drinking red wine boost metabolism and facilitate weight loss?

• Does radiation from cell phones affect brain activity?

• Does massage help muscles recover from exercise stress?

• Are lions more likely to attack after a full moon?

• What percent of couples say that they are ‘‘In a relationship’’ on Facebook?

• Do people read faster using a printed book or a Kindle or iPad?
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4.1 INTRODUCING HYPOTHESIS TESTS

© Kevin Klöpper/iStockphoto

D A T A 4 . 1 Do Dogs Resemble their Owners?
You may have seen dogs that look like their owners, but is this just a
coincidence or do dogs really tend to resemble their owners? To investigate this
question statistically, we need data. Roy and Christenfeld1 conducted a study
testing people’s ability to pair a dog with its owner. Pictures were taken of 25
owners and their purebred dogs, selected at random from dog parks. Study
participants were shown a picture of an owner together with pictures of two
dogs (the owner’s dog and another random dog from the study) and asked to
choose which dog most resembled the owner. Of the 25 owners, 16 were paired
with the correct dog.2 Is this convincing evidence that dogs tend to resemble
their owners? ■

To address this question, let’s think about what might happen if a dog’s looks
are completely unrelated to its owner. In this case, the participants’ choices would
be no better than random guesses for each pair of dogs. Since there are two possible
choices, we’d expect people to choose correctly about half the time. Of course,
even guessing randomly, people will not always be correct exactly half the time;
sometimes they will get slightly more than half correct and sometimes slightly less.
While 16 out of 25 is more than 50% correct, how do we know if this is because dogs
really resemble their owners or just due to random chance?

Example 4.1
Consider each of the following numbers of hypothetical matches. For each scenario,
does the evidence convince you that dogs resemble their owners? Why or why not?

(a) 25 out of 25 correct matches

(b) 10 out of 25 correct matches

(c) 13 out of 25 correct matches

1Roy, M. and Christenfeld, N., ‘‘Do Dogs Resemble their Owners?,’’ Psychological Science, 2004; 15(5):
361–363.
2Each dog–owner pair was viewed by 28 naive undergraduate judges, and the pairing was deemed
‘‘correct” if the majority of judges (more than 14) chose the correct dog to go with the owner.
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Solution (a) Observing 25 out of 25 correct matches would provide very convincing evidence
that dogs resemble their owners, since this would be very unlikely to happen if
participants were just guessing at random.

(b) Observing 10 out of 25 correct matches does not provide any evidence that dogs
resemble their owners, since less than 50% were paired correctly.

(c) Observing 13 out of 25 correct matches (52%) is greater than 50%, but this
is not convincing evidence because this could easily happen under random
guessing.

In the actual study, the conclusion is not obvious. If participants are guessing
randomly, how ‘‘lucky” would they have to be to get at least 64% (16/25) correct?
Is this a commonplace occurrence or an extreme event? How extreme does a result
have to be in order to rule out random chance? These are the types of questions
we’ll be discussing in this chapter.

In Data 4.1, we’re using data from the sample (16 out of 25) to assess a claim
about a population (do dogs really resemble their owners.) This is the essence of all
statistical tests: determining whether results from a sample are convincing enough
to allow us to conclude something about the population.

Statistical Tests

A statistical test uses data from a sample to assess a claim about
a population.

Null and Alternative Hypotheses
In Chapter 3, we use data from a sample to create a confidence interval for a
population parameter. In this chapter, we use data from a sample to help us decide
between two competing hypotheses about a population. In Data 4.1, one hypothesis
is that dogs really do tend to look like their owners, and the competing hypothesis is
that there is no dog–owner resemblance. We make these hypotheses more concrete
by specifying them in terms of a population parameter of interest. In this case, we
are interested in the population parameter p, the proportion of all purebred dogs
that can be correctly matched with their owners. If there is no resemblance, we have
p = 0.5 since guessers would be choosing randomly between two options. However,
if dogs do resemble their owners, we have p > 0.5. Which is correct: p = 0.5 or
p > 0.5? We use the data in the sample (16 correct out of 25, giving p̂ = 0.64) to try
to answer this question.

We refer to the competing claims about the population as the null hypothesis,
denoted by H0, and the alternative hypothesis, denoted by Ha. The roles of these two
hypotheses are not interchangeable. The claim for which we seek significant evidence
(p > 0.5 in the dog–owner example) is assigned to the alternative hypothesis.
Usually, the null hypothesis is a claim that there really is ‘‘no effect” or ‘‘no
difference.” For the test of dogs resembling owners, where p is the true proportion
of correct dog/owner matches, the hypotheses are

H0 : p = 0.5

Ha : p > 0.5

In many cases, the null hypothesis represents the status quo or that noth-
ing interesting is happening. The alternative is usually what the experimenter or

o
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researcher wants to establish or find evidence for. We assess the strength of evidence
by assuming the null hypothesis is true and determining how unlikely it would be to
see sample results as extreme as those in the original sample.

Null and Alternative Hypotheses

Null Hypothesis (H0): Claim that there is no effect or no difference.

Alternative Hypothesis (Ha): Claim for which we seek significant evi-
dence.

The alternative hypothesis is established by observing evidence (data)
that contradicts the null hypothesis and supports the alternative
hypothesis.

Note that the hypotheses are written in terms of the population parameter p,
not in terms of the sample statistic p̂. We know that the proportion for the sample
of 25 owners, p̂ = 0.64, is greater than 0.5. The key question is whether that statistic
provides convincing evidence that the proportion of correct matches for all owners
is more than 0.5.

In Example 4.1, matching all 25 dogs correctly with their owners would be very
unlikely if the null hypothesis (p = 0.5) were true. (Think of the chance of getting
25 heads in consecutive coin flips.) Observing 25 out of 25 correct matches would be
very convincing evidence against the null hypothesis and in favor of the alternative
hypothesis, supporting the claim that dogs resemble their owners. If we were to
observe 10 out of 25 correct guesses (p̂ = 0.40), we would have no evidence for an
alternative hypothesis of p > 0.5 since the sample statistic is less than 0.5. Seeing 13
out of 25 correct matches would support the alternative hypothesis (since p̂ > 0.5),
but the result would not be surprising if the null hypothesis were true. If we can’t
rule out the null hypothesis of p = 0.5, we don’t have enough evidence to conclude
that dogs really resemble their owners.

© Cameron Whitman/iStockphoto

A neutral expression and a smiling expression: Which
student gets the harsher punishment?

M
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D A T A 4 . 2 Smiles and Leniency
Can a simple smile have an effect on punishment assigned following an
infraction? LeFrance and Hecht3 conducted a study examining the effect of a
smile on the leniency of disciplinary action for wrongdoers. Participants in the
experiment took on the role of members of a college disciplinary panel judging
students accused of cheating. For each suspect, along with a description of the
offense, a picture was provided with either a smile or neutral facial expression.
A leniency score was calculated based on the disciplinary decisions made by the
participants. The full data can be found in Smiles. The experimenters have prior
knowledge that smiling has a positive influence on people, and they are testing
to see if the average lenience score is higher for smiling students than it is for
students with a neutral facial expression (or, in other words, that smiling
students are given more leniency and milder punishments.) ■

Example 4.2
In testing whether smiling increases leniency, define the relevant parameter(s) and
state the null and alternative hypotheses.

Solution We are comparing two means in this test, so the relevant parameters are μs, the true
mean score for smiling students, and μn, the true mean score for neutral students.
We are testing to see if there is evidence that the average leniency score is higher
for smiling students, so the alternative hypothesis is μs > μn. The null hypothesis is
that facial expression has no effect on the punishment given, so the two means are
equal:

H0 : μs = μn

Ha : μs > μn

Example 4.3
In Example 4.2, we are testing to see if the leniency score is higher for smiling
students. For the two other scenarios described below, state the null and alternative
hypotheses.

(a) The experimenters have no prior beliefs about the effect of smiling on leniency
and are testing to see if facial expression has any effect.

(b) The experimenters believe that during a hearing for an offense such as cheating,
a disciplinary panel will view smiling as arrogant and disrespectful. They are
testing to see if there is evidence that smiling will cause harsher punishments
(less leniency).

Solution (a) We are testing to see if there is evidence that the average score for smiling
students is different (in either direction) from the average score for neutral
students, so the alternative hypothesis is μs �= μn. The null hypothesis is still ‘‘no
effect.” We have

H0 : μs = μn

Ha : μs �= μn

3LeFrance, M. and Hecht, M. A., ‘‘Why Smiles Generate Leniency,” Personality and Social Psychology
Bulletin, 1995; 21: 207–214.
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(b) We are testing to see if there is evidence that the average score for smiling
students is less than the average score for neutral students, so the alternative
hypothesis is μs < μn. The null hypothesis is still ‘‘no effect.” We have

H0 : μs = μn

Ha : μs < μn

Notice that, in general, the null hypothesis is a statement of equality, while the
alternative hypothesis contains a range of values, using notation indicating greater
than, not equal to, or less than. It is relatively straightforward to assess evidence
against a statement of equality. In a hypothesis test, we measure evidence against
the null hypothesis and for the alternative hypothesis.

In each case in Examples 4.2 and 4.3, the choice of hypotheses is made prior to
the analysis of data. While the null hypothesis of ‘‘no difference” is the same in each
case, the alternative hypothesis depends on the question of interest. In general, the
question of interest, and therefore the null and alternative hypotheses, should be
determined before any data are examined. In analyzing this study about cheating
(or in any situation), we would be cheating in the statistical analysis if we used our
sample data to determine our hypotheses!

In any of these examples, we could also phrase the null hypothesis as simply
‘‘Smiling has no effect on leniency scores” rather than the more specific claim that
the means are equal. For the sake of simplicity in this book, we will generally choose
to express hypotheses in terms of parameters, even when the hypothesis is actually
more general, such as ‘‘no effect.”

In Example 4.2, we describe a hypothesis test comparing two means. In Data
4.1 about dogs resembling their owners, we describe a test for whether a single
proportion is greater than 0.5. Just as we discussed confidence intervals for any
population parameter in Chapter 3, statistical tests can apply to any population
parameter(s). In the next example, we consider a hypothesis test for a correlation.

Garrett Ellwood/Getty Images, Inc. Tom Hauck/Getty Images, Inc.

Most and least malevolent NFL team logos

D A T A 4 . 3 Do Teams with Malevolent Uniforms Get More Penalties?

Frank and Gilovich4 describe a study of relationships between the type of
uniforms worn by professional sports teams and the aggressiveness of the team.
They consider teams from the National Football League (NFL) and National
Hockey League (NHL). Participants with no knowledge of the teams rated the
jerseys on characteristics such as timid/aggressive, nice/mean, and good/bad.
The averages of these responses produced a ‘‘malevolence” index with higher

4Frank, M.G. and Gilovich, T., ‘‘The Dark Side of Self- and Social Perception: Black Uniforms and
Aggression in Professional Sports,” Journal of Personality and Social Psychology, 1988; 54(1): 74–85.
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Table 4.1 Malevolence rating of uniforms and z-scores for penalties

NFLTeam Malevolence ZPenYds NHLTeam Malevolence ZPenMin
LA Raiders 5.10 1.19 Vancouver 5.33 0.88
Pittsburgh 5.00 0.48 Philadelphia 5.17 2.01
Cincinnati 4.97 0.27 Boston 5.13 0.42
New Orleans 4.83 0.10 New Jersey 4.45 −0.78
Chicago 4.68 0.29 Pittsburgh 4.27 0.64
Kansas City 4.58 −0.19 Chicago 4.18 −0.02
Washington 4.40 −0.07 Montreal 4.18 −0.70
St. Louis 4.27 −0.01 Detroit 4.15 0.44
NY Jets 4.12 0.01 Edmonton 4.15 0.58
LA Rams 4.10 −0.09 Calgary 4.13 −0.40
Cleveland 4.05 0.44 LA Kings 4.05 −0.20
San Diego 4.05 0.27 Buffalo 4.00 −0.68
Green Bay 4.00 −0.73 Minnesota 4.00 −0.11
Philadelphia 3.97 −0.49 NY Rangers 3.90 −0.31
Minnesota 3.90 −0.81 NY Islanders 3.80 −0.35
Atlanta 3.87 0.30 Winnipeg 3.78 −0.30
Indianapolis 3.83 −0.19 St. Louis 3.75 −0.09
San Francisco 3.83 0.09 Washington 3.73 −0.07
Seattle 3.82 0.02 Toronto 3.58 0.34
Denver 3.80 0.24 Quebec 3.33 0.41
Tampa Bay 3.77 −0.41 Hartford 3.32 −0.34
New England 3.60 −0.18
Buffalo 3.53 0.63
Detroit 3.38 0.04
NY Giants 3.27 −0.32
Dallas 3.15 0.23
Houston 2.88 0.38
Miami 2.80 −1.60

scores signifying impressions of more malevolent (evil-looking) uniforms. To
measure aggressiveness, the authors used the amount of penalties (yards for
football and minutes for hockey) converted to z-scores and averaged for each
team over the seasons from 1970 to 1986. The data are shown in Table 4.1 and
stored in MalevolentUniformsNFL and MalevolentUniformsNHL. ■

Figure 4.1 shows a scatterplot with regression line of the malevolence ratings
vs z-scores of the penalty yardage for the n = 28 NFL teams in this dataset.
The graph shows a somewhat positive association: Teams with more malevolent
uniforms tend to have more penalty yards. In fact the most penalized team (LA
Raiders, now in Oakland) had the most malevolent uniform, and the least penalized
team (Miami Dolphins) had the least malevolent uniform. The sample correlation
between malevolence and penalties for the 28 teams is r = 0.43. Does this provide
evidence to conclude that the true correlation is really positive?

Example 4.4
Define the parameter of interest and state the null and alternative hypotheses.

Solution The parameter of interest is the correlation ρ between malevolence of uniforms and
number of penalty yards. We are testing to see if the correlation is positive, so the
hypotheses are

H0 : ρ = 0

Ha : ρ > 0

o
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Figure 4.1 Relationship
between penalties and
uniform malevolence for
NFL teams
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Even if there were no relationship between the types of jerseys and penalties
for the teams, we would not expect the correlation for any sample of teams and
seasons to be exactly zero. Once again, the key question is whether the statistic for this
sample (in this case the sample correlation r) is farther away from zero than we would
reasonably expect to see by random chance alone. In other words, is it unusual to see
a sample correlation as high as r = 0.43 if the null hypothesis of ρ = 0 is really true?

Statistical Significance
This idea, whether the sample results are more extreme than we would reasonably
expect to see by random chance if the null hypothesis were true, is the fundamental
idea behind statistical hypothesis tests. If data as extreme would be very unlikely
if the null hypothesis were true, we say the data are statistically significant.5

Statistically significant data provide convincing evidence against the null hypothesis
in favor of the alternative, and allow us to generalize our sample results to the claim
about the population.

Statistical Significance

When results as extreme as the observed sample statistic are unlikely
to occur by random chance alone (assuming the null hypothesis is
true), we say the sample results are statistically significant.

If our sample is statistically significant, we have convincing evidence
against H0 and in favor of Ha.

Example 4.5
If the sample correlation of r = 0.43 is statistically significant, what does that mean?

Solution If the sample data are statistically significant, it means that we have convincing
evidence against H0 and for Ha. This means we have convincing evidence that the
true correlation is positive, indicating that teams with more malevolent uniforms
tend to be more heavily penalized. It also means that we are unlikely to get a sample
correlation as high as r = 0.43 just by random chance if the true correlation ρ is
really zero.

5Statistical significance will be made more rigorous in Section 4.3.
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Is divorce morally acceptable?

D A T A 4 . 4 Divorce Opinions by Gender
Do men and women have different views on divorce? A May 2010 Gallup poll of
US citizens over the age of 18 asked participants if they view divorce as ‘‘morally
acceptable.” Of the 1029 adults surveyed, 71% of men and 67% of women
responded ‘‘yes.”6 ■

Example 4.6
In Data 4.4, what are the population, sample, response variable, and statistical
question of interest?

Solution The population of interest is all US adults. The sample is the 1029 adults surveyed.
The response variable is whether or not the respondent views divorce as morally
acceptable. We observe that the sample proportions for men and women are not
the same; the statistical question is whether this same phenomenon is likely to hold
for the population.

Example 4.7
Define the population parameter(s) of interest and state the null and alternative
hypotheses for testing whether there is a gender difference in opinions about divorce.

Solution The parameters of interest are pm and pw, the proportions of men and women,
respectively, who view divorce as morally acceptable. We are testing to see if there
is a difference between the two proportions, so the hypotheses are

H0 : pm = pw

Ha : pm �= pw

6http://www.gallup.com/poll/117328/marriage.aspx.

*

o

o



228 C H A P T E R 4 Hypothesis Tests

Example 4.8
Assume the 1029 adults in the Gallup survey were selected by an unbiased method
that produced a random sample from the population of all US citizens. Does the fact
that a higher proportion of men in the sample view divorce as morally acceptable
allow us to conclude that such a difference must exist in the entire population?

Solution No. Even if the polling methods used in Data 4.4 are perfect (i.e., participants are
truly a random sample from the population), the data are still subject to sampling
variability. It is possible that the difference we see in the sample proportions between
men and women is just a result of random chance. (We’ll examine this further in
Section 4.3.) If the sample difference can be explained by random chance, then the
true difference could be larger, smaller, or even in the other direction.

Example 4.9
If the 1029 adults were randomly selected from all US adults and we find that the
results are statistically significant, can we conclude that males and females have
different opinions about the moral acceptability of divorce?

Solution We can never know for sure without surveying the entire population, but if the
results are statistically significant, we will have strong evidence that males and
females have different opinions about the moral acceptability of divorce.

© Lauri Patterson/iStockphoto

How much arsenic is in this chicken?

D A T A 4 . 5 Arsenic Levels in Chicken Meat
Arsenic-based additives in chicken feed have been banned by the European
Union but are mixed in the diet of about 70% of the 9 billion broiler chickens

o

o
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produced annually in the US.7 Many restaurant and supermarket chains are
working to reduce the amount of arsenic in the chicken they sell. To accomplish
this, one chain plans to measure, for each supplier, the amount of arsenic in a
random sample of chickens. The chain will cancel its relationship with a supplier
if the sample provides sufficient evidence that the average amount of arsenic in
chicken provided by that supplier is greater than 80 ppb (parts per billion). ■

Example 4.10
For the situation in Data 4.5, define the population parameter(s) and state the null
and alternative hypotheses.

Solution The parameter of interest is μ, the mean arsenic level in all chickens from a supplier.
We are testing to see if the mean is greater than 80, so the hypotheses are

H0 : μ = 80

Ha : μ > 80

Since we are testing to see if there is evidence that the mean is greater than 80, it
is clear that the alternative hypothesis is Ha : μ > 80. For the null hypothesis, writing
H0 : μ ≤ 80 makes intuitive sense, as any arsenic level less than 80 is satisfactory.
However, it is easier to assess the extremity of our data for a single, specific value
(H0 : μ = 80). This is a conservative choice; if the sample mean is large enough
to be statistically significant when μ = 80, it would be even more significant when
compared to μ = 78 or μ = 75. Thus, for convenience, we generally choose to write
the null hypothesis as an equality.

Example 4.11
Suppose the chain measures arsenic levels in chickens sampled randomly from three
different suppliers, with data given in Figure 4.2.

(a) Which of the samples shows the strongest evidence for the alternative
hypothesis?

(b) Which of the samples shows no evidence in support of the alternative hypothesis?

Solution (a) The sample from Supplier 3 shows the strongest evidence of an average arsenic
amount greater than 80, because it has the highest sample mean and all of the
sampled chickens have arsenic levels at least 80.

(b) The sample from Supplier 1 shows no evidence of an average arsenic amount
greater than 80, since the mean of that sample is less than 80.

Example 4.12
Under what conditions will the chain cancel its relationship with a supplier?

Solution The chain will cancel its relationship with a supplier if there is evidence that the
true mean arsenic level is greater than 80. This evidence is established if a value
as high as the observed sample mean is unlikely if the true mean is 80. In other
words, the chain will cancel its relationship with a supplier if the data are statistically
significant.

7‘‘Arsenic in Chicken Production,” Chemical and Engineering News: Government and Policy, 2007;
85(15): 34–35.
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Figure 4.2 Arsenic levels
in chicken samples from
three different suppliers
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In this section, we’ve learned that evidence for a claim about a population can
be assessed using data from a sample. If the sample data are unlikely to occur just
by random chance when the null hypothesis (usually ‘‘no effect”) is true, then we
have evidence that there is some effect and that the alternative hypothesis is true.
We understand that you don’t yet know how to determine what is ‘‘likely” to occur
by random chance when the null hypothesis is true, and that you are probably
eager to learn. That is the topic of the next section. By the end of the chapter,
we’ll return to the examples in this section as well as the situations described in
the exercises and find out which of them are statistically significant and which
aren’t.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize when and why statistical tests are needed

• Specify null and alternative hypotheses based on a question of interest,
defining relevant parameters

• Recognize that the strength of evidence against the null hypothesis
depends on how unlikely it would be to get a sample as extreme just
by random chance, if the null hypothesis were true

• Demonstrate an understanding of the concept of statistical
significance

Exercises for Section 4.1

SKILL BUILDER 1
In Exercises 4.1 to 4.4, a situation is described for a
statistical test and some hypothetical sample results
are given. In each case:

(a) State which of the possible sample results pro-
vides the most significant evidence for the claim.

(b) State which (if any) of the possible results pro-
vide no evidence for the claim.

4.1 Testing to see if there is evidence that the
population mean for mathematics placement exam
scores is greater than 25. Use Figure 4.3.
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Sample A

Sample B

Sample C

Sample D

Figure 4.3 Samples for Exercise 4.1

4.2 Testing to see if there is evidence that the mean
service time at Restaurant #1 is less than the mean
service time at Restaurant #2. Use Figure 4.4 and
assume that the sample sizes are all the same. Sam-
ple means are shown with circles on the boxplots.

Sample A
Group

Sample B Sample C Sample D
1 2

20

15

10

5

0

1 2 1 2 1 2

Figure 4.4 Samples for Exercise 4.2

4.3 Testing to see if there is evidence that the
correlation between exam grades and hours playing
video games is negative for a population of students.
Use Figure 4.5.

Sample DSample C

Sample BSample A

Figure 4.5 Samples for Exercise 4.3

4.4 Testing to see if there is evidence that the pro-
portion of US citizens who can name the capital city
of Canada is greater than 0.75. Use the following
possible sample results:

Sample A: 31 successes out of 40

Sample B: 34 successes out of 40

Sample C: 27 successes out of 40

Sample D: 38 successes out of 40

SKILL BUILDER 2
In Exercises 4.5 to 4.8, state the null and alternative
hypotheses for the statistical test described.

4.5 Testing to see if there is evidence that the mean
of group A is not the same as the mean of group B

4.6 Testing to see if there is evidence that a pro-
portion is greater than 0.3

4.7 Testing to see if there is evidence that a mean
is less than 50

4.8 Testing to see if there is evidence that the
correlation between two variables is negative

SKILL BUILDER 3
In Exercises 4.9 to 4.13, a situation is described
for a statistical test. In each case, define the rele-
vant parameter(s) and state the null and alternative
hypotheses.

4.9 Testing to see if there is evidence that the pro-
portion of people who smoke is greater for males
than for females

4.10 Testing to see if there is evidence that a corre-
lation between height and salary is significant (that
is, different than zero)

4.11 Testing to see if there is evidence that the
percentage of a population who watch the Home
Shopping Network is less than 20%

4.12 Testing to see if average sales are higher in
stores where customers are approached by sales-
people than in stores where they aren’t

4.13 Testing to see if there is evidence that the mean
time spent studying per week is different between
first-year students and upperclass students

SKILL BUILDER 4
In Exercises 4.14 and 4.15, determine whether the
sets of hypotheses given are valid hypotheses.

4.14 State whether each set of hypotheses is valid
for a statistical test. If not valid, explain why not.

(a) H0 : μ = 15 vs Ha : μ �= 15

(b) H0 : p �= 0.5 vs Ha : p = 0.5
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(c) H0 : p1 < p2 vs Ha : p1 > p2

(d) H0 : x1 = x2 vs Ha : x1 �= x2

4.15 State whether each set of hypotheses is valid
for a statistical test. If not valid, explain why not.

(a) H0 : ρ = 0 vs Ha : ρ < 0

(b) H0 : p̂ = 0.3 vs Ha : p̂ �= 0.3

(c) H0 : μ1 �= μ2 vs Ha : μ1 = μ2

(d) H0 : p = 25 vs Ha : p �= 25

4.16 Pesticides and ADHD Are children with
higher exposure to pesticides more likely to develop
ADHD (attention-deficit/hyperactivity disorder)?
In a recent study, authors measured levels of uri-
nary dialkyl phosphate (DAP, a common pesticide)
concentrations and ascertained ADHD diagnostic
status (Yes/No) for 1139 children who were rep-
resentative of the general US population.8 The
subjects were divided into two groups based on high
or low pesticide concentrations, and we compare
the proportion with ADHD in each group.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) In the sample, children with high pesticide levels
were more likely to be diagnosed with ADHD.
Can we necessarily conclude that, in the popula-
tion, children with high pesticide levels are more
likely to be diagnosed with ADHD? (Whether
or not we can make this generalization is, in fact,
the statistical question of interest.)

(c) To assess statistical significance, we assume the
null hypothesis is true. What does that mean
in this case? State your answer in terms of
pesticides and ADHD.

(d) The study found the results to be statistically
significant. Which of the hypotheses, H0 or Ha,
is no longer a very plausible possibility?

(e) What do the statistically significant results imply
about pesticide exposure and ADHD?

4.17 Beer and Mosquitoes Does consuming beer
attract mosquitoes? A study done in Burkino
Faso, Africa, about the spread of malaria inves-
tigated the connection between beer consumption
and mosquito attraction.9 In the experiment, 25
volunteers consumed a liter of beer while 18 vol-
unteers consumed a liter of water. The volunteers

8Bouchard, M., Bellinger, D., Wright, R., and Weisskopf, M.,
‘‘Attention-Deficit/Hyperactivity Disorder and Urinary Meta-
bolites of Organophosphate Pesticides,” Pediatrics, 2010; 125:
e1270–e1277.
9Lefvre, T., et al., ‘‘Beer Consumption Increases Human Attrac-
tiveness to Malaria Mosquitoes,” PLoS ONE, 2010; 5(3):
e9546.

were assigned to the two groups randomly. The
attractiveness to mosquitoes of each volunteer was
tested twice: before the beer or water and after.
Mosquitoes were released and caught in traps as
they approached the volunteers. For the beer group,
the total number of mosquitoes caught in the traps
before consumption was 434 and the total was 590
after consumption. For the water group, the total
was 337 before and 345 after.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses for a test to
see if, after consumption, the average number
of mosquitoes is higher for the volunteers who
drank beer.

(b) Compute the average number of mosquitoes
per volunteer before consumption for each
group and compare the results. Are the two
sample means different? Do you expect that
this difference is just the result of random
chance?

(c) Compute the average number of mosquitoes per
volunteer after consumption for each group and
compare the results. Are the two sample means
different? Do you expect that this difference is
just the result of random chance?

(d) If the difference in part (c) is unlikely to happen
by random chance, what can we conclude about
beer consumption and mosquitoes?

(e) If the difference in part (c) is statistically signif-
icant, do we have evidence that beer consump-
tion increases mosquito attraction? Why or why
not?

4.18 Guilty Verdicts in Court Cases A reporter on
cnn.com stated in July 2010 that 95% of all court
cases that go to trial result in a guilty verdict. To test
the accuracy of this claim, we collect a random sam-
ple of 2000 court cases that went to trial and record
the proportion that resulted in a guilty verdict.

(a) What is/are the relevant parameter(s)? What
sample statistic(s) is/are used to conduct the
test?

(b) State the null and alternative hypotheses.

(c) We assess evidence by considering how likely
our sample results are when H0 is true. What
does that mean in this case?

4.19 Exercise and the Brain It is well established
that exercise is beneficial for our bodies. Recent
studies appear to indicate that exercise can also
do wonders for our brains, or, at least, the brains
of mice. In a randomized experiment, one group
of mice was given access to a running wheel



4.1 Introducing Hypothesis Tests 233

while a second group of mice was kept sedentary.
According to an article describing the study, ‘‘The
brains of mice and rats that were allowed to run
on wheels pulsed with vigorous, newly born neu-
rons, and those animals then breezed through mazes
and other tests of rodent IQ”10 compared to the
sedentary mice. Studies are examining the reasons
for these beneficial effects of exercise on rodent
(and perhaps human) intelligence. High levels of
BMP (bone-morphogenetic protein) in the brain
seem to make stem cells less active, which makes
the brain slower and less nimble. Exercise seems
to reduce the level of BMP in the brain. Addi-
tionally, exercise increases a brain protein called
noggin, which improves the brain’s ability. Indeed,
large doses of noggin turned mice into ‘‘little mouse
geniuses,” according to Dr. Kessler, one of the lead
authors of the study. While research is ongoing in
determining which effects are significant, all evi-
dence points to the fact that exercise is good for
the brain. Several tests involving these studies are
described. In each case, define the relevant param-
eters and state the null and alternative hypotheses.

(a) Testing to see if there is evidence that mice
allowed to exercise have lower levels of BMP in
the brain on average than sedentary mice

(b) Testing to see if there is evidence that mice
allowed to exercise have higher levels of noggin
in the brain on average than sedentary mice

(c) Testing to see if there is evidence of a negative
correlation between the level of BMP and the
level of noggin in the brains of mice

4.20 Taste Test A taste test is conducted between
two brands of diet cola, Brand A and Brand B,
to determine if there is evidence that more people
prefer Brand A. A total of 100 people participate in
the taste test.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Give an example of possible sample results that
would provide strong evidence that more people
prefer Brand A. (Give your results as num-
ber choosing Brand A and number choosing
Brand B.)

(c) Give an example of possible sample results that
would provide no evidence to support the claim
that more people prefer Brand A.

(d) Give an example of possible sample results for
which the results would be inconclusive: The

10Reynolds, G., ‘‘Phys Ed: Your Brain on Exercise,” The New
York Times, July 7, 2010.

sample provides some evidence that Brand A is
preferred but the evidence is not strong.

INTENSIVE CARE UNIT (ICU) ADMISSIONS
Exercises 4.21 to 4.25 describe tests we might con-
duct based on Data 2.3, introduced on page 66. This
dataset, stored in ICUAdmissions, contains infor-
mation about a sample of patients admitted to a
hospital Intensive Care Unit (ICU). For each of
the research questions below, define any relevant
parameters and state the appropriate null and alter-
native hypotheses.

4.21 Is there evidence that mean heart rate is higher
in male ICU patients than in female ICU patients?

4.22 Is there a difference in the proportion who
receive CPR based on whether the patient’s race is
white or black?

4.23 Is there a positive linear association between
systolic blood pressure and heart rate?

4.24 Is either gender over-represented in patients
to the ICU or is the gender breakdown about equal?

4.25 Is the average age of ICU patients at this
hospital greater than 50?

4.26 Income East and West of the Mississippi For
a random sample of households in the US, we record
annual household income, whether the location is
east or west of the Mississippi River, and number of
children. We are interested in determining whether
there is a difference in average household income
between those east of the Mississippi and those west
of the Mississippi.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) What statistic(s) from the sample would we use
to estimate the difference?

4.27 Relationship between Income and Number
of Children Exercise 4.26 discusses a sample of
households in the US. We are interested in deter-
mining whether or not there is a linear relation-
ship between household income and number of
children.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Which sample correlation shows more evidence
of a relationship, r = 0.25 or r = 0.75?

(c) Which sample correlation shows more evidence
of a relationship, r = 0.50 or r = −0.50?

4.28 Red Wine and Weight Loss Resveratrol, a
compound in grapes and red wine, has been shown
to promote weight loss in rodents and now in a
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primate.11 Lemurs fed a resveratrol supplement for
four weeks had decreased food intake, increased
metabolic rate, and a reduction in seasonal body
mass gain compared to a control group. Suppose a
hypothetical study is done for a different primate
species, with one group given a resveratrol supple-
ment and the other group given a placebo. We wish
to see if there is evidence that resveratrol increases
the mean metabolism rate for this species. (This
exercise presents hypothetical data. We will see the
results from the actual study later in this chapter.)

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Possible sample results for Species A are shown
in Figure 4.6(a) with the mean indicated by a
circle on the boxplots. In the sample, is the
mean greater for the resveratrol group? Can we
necessarily conclude that resveratrol increases
the metabolism rate for this species?

(c) Possible sample results for Species B are shown
in Figure 4.6(b) and the sample sizes are the
same as for Species A. For which of the two
species, A or B, is the evidence stronger that
resveratrol increases the metabolism rate for
this species? Explain your reasoning.

4.29 Flaxseed and Omega-3 Studies have shown
that omega-3 fatty acids have a wide variety of
health benefits. Omega-3 oils can be found in foods
such as fish, walnuts, and flaxseed. A company sell-
ing milled flaxseed advertises that one tablespoon
of the product contains, on average, at least 3800mg
of ALNA, the primary omega-3.

(a) The company plans to conduct a test to ensure
that there is sufficient evidence that its claim is

11BioMed Central, ‘‘Lemurs Lose Weight with ‘Life-Extending’
Supplement Resveratrol,” ScienceDaily, June 22, 2010.

(a) Species A
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Figure 4.6 Does red wine boost metabolism rates?

correct. To be safe, the company wants to make
sure that evidence shows the average is higher
than 3800 mg. What are the null and alternative
hypotheses?

(b) Suppose, instead, that a consumer organization
plans to conduct a test to see if there is evidence
against the claim that the product contains an
average of 3800 mg per tablespoon. The con-
sumer organization will only take action if it
finds evidence that the claim made by the com-
pany is false and the actual average amount of
omega-3 is less than 3800 mg. What are the null
and alternative hypotheses?

STATISTICAL TESTS?
In Exercises 4.30 to 4.36, indicate whether the anal-
ysis involves a statistical test. If it does involve a
statistical test, state the population parameter(s) of
interest and the null and alternative hypotheses.
4.30 Polling 1000 people in a large community to
determine the average number of hours a day people
watch television
4.31 Polling 1000 people in a large community to
determine if there is evidence for the claim that the
percentage of people in the community living in a
mobile home is greater than 10%

4.32 Utilizing the census of a community, which
includes information about all residents of the com-
munity, to determine if there is evidence for the
claim that the percentage of people in the commu-
nity living in a mobile home is greater than 10%

4.33 Testing 100 right-handed participants on the
reaction time of their left and right hands to deter-
mine if there is evidence for the claim that the right
hand reacts faster than the left

4.34 Testing 50 people in a driving simulator to find
the average reaction time to hit the brakes when an
object is seen in the view ahead
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4.35 Giving a Coke/Pepsi taste test to random peo-
ple in New York City to determine if there is
evidence for the claim that Pepsi is preferred

4.36 Using the complete voting records of a county
to see if there is evidence that more than 50% of
the eligible voters in the county voted in the last
election

4.37 Influencing Voters When getting voters to sup-
port a candidate in an election, is there a difference
between a recorded phone call from the candidate
or a flyer about the candidate sent through the
mail? A sample of 500 voters is randomly divided
into two groups of 250 each, with one group get-
ting the phone call and one group getting the flyer.
The voters are then contacted to see if they plan to
vote for the candidate in question. We wish to see if
there is evidence that the proportions of support are
different between the two methods of campaigning.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Possible sample results are shown in Table 4.2.
Compute the two sample proportions: p̂c, the
proportion of voters getting the phone call who
say they will vote for the candidate, and p̂f ,
the proportion of voters getting the flyer who
say they will vote for the candidate. Is there a
difference in the sample proportions?

Table 4.2 Sample A: Is a phone call or a
flyer more effective?

Will Vote Will Not Vote
Sample A for Candidate for Candidate

Phone call 152 98
Flyer 145 105

(c) A different set of possible sample results are
shown in Table 4.3. Compute the same two
sample proportions for this table.

Table 4.3 Sample B: Is a phone call or a
flyer more effective?

Will Vote Will Not Vote
Sample B for Candidate for Candidate

Phone call 188 62
Flyer 120 130

(d) Which of the two samples seems to offer
stronger evidence of a difference in effectiveness
between the two campaign methods? Explain
your reasoning.

4.38 Influencing Voters: Is a Phone Call More
Effective? Suppose, as in Exercise 4.37, that we
wish to compare methods of influencing voters to
support a particular candidate, but in this case we
are specifically interested in testing whether a phone
call is more effective than a flyer. Suppose also that
our random sample consists of only 200 voters, with
100 chosen at random to get the flyer and the rest
getting a phone call.

(a) State the null and alternative hypotheses in this
situation.

(b) Display in a two-way table possible sample
results that would offer clear evidence that the
phone call is more effective.

(c) Display in a two-way table possible sample
results that offer no evidence at all that the
phone call is more effective.

(d) Display in a two-way table possible sample
results for which the outcome is not clear: There
is some evidence in the sample that the phone
call is more effective but it is possibly only due
to random chance and likely not strong enough
to generalize to the population.

4.39 Mice and Pain Can you tell if a mouse is in
pain by looking at its facial expression? A new study
believes you can. The study12 created a ‘‘mouse gri-
mace scale” and tested to see if there was a positive
correlation between scores on that scale and the
degree and duration of pain (based on injections
of a weak and mildly painful solution). The study’s
authors believe that if the scale applies to other
mammals as well, it could help veterinarians test
how well painkillers and other medications work in
animals.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Since the study authors report that you can tell
if a mouse is in pain by looking at its facial
expression, do you think the data were found to
be statistically significant? Explain.

(c) If another study were conducted testing the
correlation between scores on the ‘‘mouse gri-
mace scale” and a placebo (non-painful) solu-
tion, should we expect to see a sample corre-
lation as extreme as that found in the original
study? Explain. (For simplicity, assume we use a
placebo that has no effect on the facial expres-
sions of mice. Of course, in real life, you can
never automatically assume that a placebo has
no effect!)

12‘‘Of Mice and Pain,” The Week, May 28, 2010, p. 21.
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(d) How would your answer to part (c) change if
the original study results showed no evidence
of a relationship between mouse grimaces and
pain?

4.40 Euchre One of the authors and some statisti-
cian friends have an ongoing series of Euchre games
that will stop when one of the two teams is deemed
to be statistically significantly better than the other
team. Euchre is a card game and each game results
in a win for one team and a loss for the other. Only
two teams are competing in this series, which we’ll
call Team A and Team B.

(a) Define the parameter(s) of interest.

(b) What are the null and alternative hypotheses if
the goal is to determine if either team is sta-
tistically significantly better than the other at
winning Euchre?

(c) What sample statistic(s) would they need to
measure as the games go on?

(d) Could the winner be determined after one or
two games? Why or why not?

4.2MEASURING EVIDENCE WITH P-VALUES

What Is a P-value?
In Section 4.1 we learned that evidence against the null hypothesis is measured by
examining how extreme sample results would be, if the null hypothesis were true.
This leads us to one of the most important ideas of statistical inference: the p-value
of the sample. The p-value gives us a formal way to measure the strength of evidence
a sample provides against the null hypothesis and in support of the alternative
hypothesis.

The P-value

The p-value of the sample data in a statistical test is the probability,
when the null hypothesis is true, of obtaining a sample as extreme as
(or more extreme than) the observed sample.

The smaller the p-value, the stronger the statistical evidence is against
the null hypothesis and in favor of the alternative.

There are various ways to calculate p-values. In this chapter we’ll take an
approach similar to the bootstrapping procedures of Chapter 3 and calculate the
p-value by generating lots of simulated samples. In Chapter 3, we use bootstrap
samples to show the distribution of sample statistics if we resample from the original
sample to approximate a sampling distribution for the population. Here, we are
interested in the sort of statistics we observe if we assume the null hypothesis is true.
Thus, when testing hypotheses, we simulate samples in a way that is consistent with
the null hypothesis. We call these randomization samples.

For each simulated sample, we calculate the statistic of interest. We collect the
values of the statistic for many randomization samples to generate a randomization
distribution. This distribution approximates a sampling distribution from a popula-
tion where the null hypothesis holds. If the statistic from the original sample lies in
a typical part of that distribution, we do not find it to be significant. On the other
hand, if the statistic for our original sample lies in an extreme, unlikely part of
the randomization distribution, usually out in one of the tails, we have statistically
significant evidence against H0 and in support of Ha.
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Randomization Distribution

Simulate many samples using a random process that matches the way
the original data were collected and that assumes the null hypothesis is
true. Collect the values of a sample statistic for each sample to create
a randomization distribution.

Assess the significance of the original sample by determining where
its sample statistic lies in the randomization distribution.

P-values from Randomization Distributions
By now you are probably curious, do dogs really resemble their owners? Recall that
in Data 4.1 we saw that 16 out of 25 dogs were matched correctly with their owners.
Just how extreme is this result?

In Data 4.1 we are interested in testing H0 : p = 0.5 vs Ha : p > 0.5, where p is
the proportion of correct matches between dogs and owners. In the actual sample
of 25 trials, we found 16 matches, giving a sample proportion of p̂ = 0.64. How
unlikely is it to see 16 or more matches out of 25 tries if participants are just guessing
at random? One way to assess the chance of this happening is to simulate lots of
samples of 25 trials when p = 0.5 and keep track of how often 16 or more matches
occur. While it is impractical to repeat the experimental procedure many times
(lots of sets of 25 dog–owner pairs), we could easily simulate the results with an
equivalent process that ensures p = 0.5. For example, we could flip a fair coin 25
times and count the number of heads, then repeat the process several thousand
times. That might also be fairly time consuming (and produce a very sore flipping
thumb), so we generally use computer simulations instead. For example, Figure 4.7
shows a histogram of the number of heads (correct dog–owner matches) in each of
10,000 sets of 25 simulated coin flips where p = 0.5.

Example 4.13
Explain, using the definition of a p-value, how we can find the p-value from the
randomization distribution in Figure 4.7. What does the p-value tell us about the
likelihood of dogs looking like their owners?

Solution A p-value is the probability, when the null hypothesis is true, of obtaining a sample
as extreme as the observed sample. In this case, the null hypothesis (p = 0.5)

Figure 4.7
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1600

1400

1200

1000

800

600

400

200

0

Matches

16

1145
10,000F

re
q

u
en

cy

4 5 6 7 8 9 101112131415161718192021

o

i i I r



238 C H A P T E R 4 Hypothesis Tests

represents random guessing. The randomization distribution in Figure 4.7 shows
many simulated samples where we assume the null hypothesis is true. To find the
p-value, we want to find the proportion of these simulated samples that are as
extreme as the observed sample. Among these 10,000 simulated samples of size 25,
we find 1145 cases with a number of matches greater than or equal to the 16 that
were observed in the original dog–owner study (see the region in the upper tail of
Figure 4.7). Thus, for the dog–owner data, we have

p-value = 1145
10, 000

= 0.1145

This value, 0.1145, estimates the probability of seeing results as extreme as 16 if
people are randomly guessing. Even if there were no dog–owner resemblances,
we would expect to get 16 or more correct at least 11% of the time. This is not
so unusual, so we expect that the original sample is not statistically significant.
We do not have sufficient evidence to conclude that dogs tend to resemble their
owners.

You may be wondering why we compute the probability of at least 16 heads,
rather than exactly 16 heads. In many situations, there are many possible outcomes,
and the probability of getting any single outcome (even a typical one) will be
very small. For example, consider flipping 100 coins. Getting 50 heads is the most
likely answer, and certainly 50 heads should not be considered atypical, but there
is actually quite a small probability of getting exactly 50 heads. For this reason, we
always measure the probability of getting a result as extreme as that observed.

Note that the value of 0.1145 (from our simulation of dog–owner matches)
is only an approximation of the p-value. If we had created another set of 10,000
simulated results, we might see a slightly different number of simulations with 16 or
more matches. For example, two other simulations of 10,000 samples are shown in
Figure 4.8 and yield p-values13 of 0.1137 and 0.1162. While these p-values differ a
bit from simulation to simulation, the basic conclusion that results so extreme occur
in slightly more than 1 out of every 10 samples is the same in every instance. As in
Chapter 3, we observe a fairly regular, consistent pattern in the general shapes of
each of these randomization distributions. They each peak near 12 or 13 matches (as
we would expect with n = 25 and p = 0.5), are relatively symmetric bell shapes, and
display roughly the same variability. As we will see in later chapters, these features
are all quite predictable and can be exploited in certain situations to compute
p-values very efficiently.
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13Technically, these are called ‘‘empirical” or ‘‘estimated” p-values, but we will often refer to them simply
as the p-values from each of the randomization distributions.
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Example 4.14
Flip a coin 25 times and count the number of heads. Where does your point fall on
the randomization distribution?

Solution Most of you will get numbers in the ‘‘typical” part of the distribution, but some of
you may get an atypical number out in one of the tails. Probably none of you will get
less than 4 heads or more than 21 heads, since none of our 10,000 simulated values
are that extreme. About 11% of you will get at least 16 heads.

Example 4.15 (a) Use Figure 4.7 or 4.8 to determine which has a smaller p-value: sample results
of 15 correct matches or 19 correct matches?

(b) It turns out that the p-value for 15 correct matches is about 0.2151, while the
p-value for 19 correct matches is about 0.0075. Interpret each of these as a
proportion of the total area in the randomization histogram in Figure 4.7.

(c) Interpret each of the p-values from part (b) in terms of the probability of the
results happening by random chance.

(d) Which of the p-values from part (b), 0.2151 or 0.0075, provides the strongest
evidence against the null hypothesis and in support of the alternative hypothesis?

Solution (a) The part of the tail past 15 is much larger than the part past 19, so the p-value
will be smaller for 19 correct matches.

(b) The fact that the p-value for 15 is 0.2151 tells us that the area in the tail past
15 is about 21.5% of the total area under the distribution. See Figure 4.9(a).
Likewise, since the p-value for 19 is 0.0075, the area in the tail past 19 is a very
small percentage of the total area, as we see in Figure 4.9(b).

(c) The p-value tells us the probability of the sample results (or ones more extreme)
happening by random chance if the null hypothesis is true. The p-value for 15
tells us that, if people are just randomly guessing, they will get 15 or more correct
matches about 21.5% of the time. The p-value for 19 tells us that, if people are
just randomly guessing, they will get 19 or more correct matches only about
0.75% of the time, or only 7 or 8 times out of 1000. If people are guessing,
getting at least 15 correct out of 25 is relatively common whereas getting at least
19 correct is very unlikely.

(d) We know that the smaller the p-value, the stronger the evidence against the null
hypothesis and in favor of the alternative hypothesis. The smaller p-value of
0.0075 provides the strongest evidence that dogs resemble their owners. (This
makes sense, since 19 correct matches provides greater evidence than 15 correct
matches out of 25.)

Figure 4.9 Empirical
p-values for different
correct dog–owner
matches in n = 25 trials
and p = 0.5
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Example 4.16
Use Figure 4.7 to estimate the p-value for sample results of 22 correct matches out
of 25. What is the conclusion of the test in this case? Do you get the same result if
you use either of the distributions in Figure 4.8?

Solution The randomization distribution in Figure 4.7 does not even extend out as far as 22,
so in all 10,000 simulations, there are no results as extreme as 22. The same result is
evident in both distributions in Figure 4.8. Although it is possible to get 22 or even
all 25 correct just by guessing, it is very unlikely. The p-value is approximately zero,
which shows very strong evidence against the null hypothesis and in support of the
alternative hypothesis. If 22 dogs had been correctly matched with their owners in
our experiment, we would have had strong evidence that dogs do resemble their
owners.

Photodisc/Getty Images,Inc.© Hakan Dere/iStockphoto

Does caffeine facilitate rapid movements?

D A T A 4 . 6 Finger Tapping and Caffeine
Many people feel they need a cup of coffee or other source of caffeine to ‘‘get
going” in the morning. The effects of caffeine on the body have been
extensively studied. In one experiment,14 researchers trained a sample of male
college students to tap their fingers at a rapid rate. The sample was then divided
at random into two groups of 10 students each. Each student drank the
equivalent of about two cups of coffee, which included about 200 mg of caffeine
for the students in one group but was decaffeinated coffee for the second group.
After a 2-hour period, each student was tested to measure finger tapping rate
(taps per minute). The students did not know whether or not their drinks
included caffeine and the person measuring the tap rates was also unaware of
the groups. This was a double-blind experiment with only the statistician
analyzing the data having information linking the group membership to the

14Hand, A.J., Daly, F., Lund, A.D., McConway, K.J., and Ostrowski, E., Handbook of Small Data Sets,
Chapman and Hall, London, 1994, p. 40.

o

I w
A



4.2 Measuring Evidence with P-values 241

Table 4.4 Finger tap rates for subjects with and without caffeine

Caffeine 246 248 250 252 248 250 246 248 245 250 Mean = 248.3
No caffeine 242 245 244 248 247 248 242 244 246 242 Mean = 244.8

observed tap rates. (Think back to Chapter 1: Why is this important?) The goal of
the experiment was to determine whether caffeine produces an increase in the
average tap rate. The finger-tapping rates measured in this experiment are
summarized in Table 4.4 and stored in CaffeineTaps. ■

Example 4.17
State null and alternative hypotheses for the finger-tapping experiment.

Solution We are dealing with quantitative data and are interested in the average tap rate
for the two different groups. Appropriate parameters to consider are μc and μn,
the mean tap rates for populations of male students with and without caffeine,
respectively. The researchers are looking for a difference in means in a particular
direction (higher mean tap rate for the caffeine group) so the hypotheses are

H0 : μc = μn

Ha : μc > μn

We see that, in the sample data, the mean tap rate of the caffeine group is higher
than that of the no-caffeine group. The key question is whether that difference is
statistically significant or could have occurred merely due to the random assignment
of students to the two groups. Figure 4.10 shows comparative dotplots of the finger
tap rates for the two samples, with arrows at the two sample means. Note that
everyone in the caffeine group has a tap rate above the mean of the no-caffeine
group, while none of the rates from the no-caffeine group are above the mean of the
caffeine group. This would tend to support the alternative hypothesis that caffeine
increases the average tap rate. On the other hand, there is considerable overlap
between the two distributions, so perhaps it was just random chance that happened
to assign several of the slowest tappers to the no-caffeine group and the fastest
tappers to the group with caffeine.

The sample statistic of interest is the difference in the sample means. For these
data, the observed difference in the sample means is

D = xc − xn = 248.3 − 244.8 = 3.5

To determine whether this difference is statistically significant, we need to find the
chance of a difference as large as D = 3.5 occurring if caffeine really has no effect
on tap rates. In other words, we need to find the p-value.

Figure 4.10 Dotplots of
tap rates for groups with
and without caffeine
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Table 4.5 Random assignment of tap rates to groups

Caffeine 244 250 248 246 248 245 246 247 248 246 Mean = 246.8
No-caffeine 250 244 252 248 242 250 242 245 242 248 Mean = 246.3

We generate a randomization distribution by assuming the null hypothesis is
true. In this case, the null hypothesis is μc = μn or, more generally, that caffeine
has no effect on tap rate. This assumption means that a person’s tap rate would be
the same whether the person is assigned to the caffeine group or the no-caffeine
group. Any of the values observed in the caffeine group could just as easily have
come from the no-caffeine group and vice versa if a different random assignment
had been made at the start of the experiment.

To create the randomization distribution by assuming H0 is true, then, we
randomly assign the 20 observed values to the two groups and compute D, the
difference in means, for each such randomly generated assignment. For example, the
data in Table 4.5 show the same 20 tap rates after a new random assignment into the
two groups. Now the difference in the sample means is xc − xn = 246.8 − 246.3 = 0.5.

We can imagine putting all 20 sample values on index cards, shuffling the deck
and repeatedly dealing them at random into two piles of 10 values each. Each
such random deal represents a different random assignment of subjects to the two
experimental groups and, if the null hypothesis (no effect due to caffeine) is true,
gives a plausible value for the difference in the two sample means. If we repeat this
process many times, we obtain a randomization distribution of plausible differences
and can see where our actual observed difference, D = 3.5, falls.

Figure 4.11 shows a dotplot of the differences in means based on a computer
simulation of 1000 random assignments of these 20 tap rate values into two groups
of size 10. Since we started by assuming that H0 : μc = μn is true (which implies that
μc − μn = 0), it is no surprise that the distribution of the randomization differences
in means is centered approximately at zero and symmetric.
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Figure 4.11 Distribution of differences in finger tap means for 1000 randomizations
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Example 4.18
How unlikely is the original observed difference D = 3.5? Use Figure 4.11 to find
and interpret the p-value. Is there evidence that caffeine increases tap rate?

Solution We see in Figure 4.11 that the observed difference D = 3.5 is very far in the upper
‘‘tail” of the distribution—certainly not in a typical location. In fact, only four of
the simulated group assignments produced a difference in means equal to or larger
than what was observed in the actual experiment. We have

p-value = 4
1000

= 0.004

This provides very strong evidence that the experimental results are statistically
significant; it is very unlikely to see a difference this extreme if we simply assign two
groups at random assuming caffeine has no effect on the tap rates. Since this was an
experiment with the researchers randomly assigning the values of the explanatory
variable (caffeine, no-caffeine), it is appropriate to infer causation and we have
strong evidence that caffeine does increase tap rates.

P-values and the Alternative Hypothesis
As we have seen, we create the randomization distribution by assuming the null
hypothesis is true. Does the alternative hypothesis play any role in computing a
p-value? It turns out it does. In some tests, the alternative hypothesis specifies a
particular direction (greater than or less than). We refer to these as one-tailed or
one-sided tests since we seek evidence in just one direction from the null value. In
other cases, we are only looking to see if there is a difference without specifying in
advance in which direction it might lie. These are called two-tailed or two-sided tests.
Whether a test is one-sided or two-sided is determined by the alternative hypothesis
(Ha), which in turn is derived directly from the question of interest. The definition of
‘‘more extreme” when computing a p-value is dependent on whether the alternative
hypothesis is one-tailed or two-tailed, as the next example illustrates.

To see if a coin is biased, we might flip the coin 10 times and count the number
of heads. For a fair coin, we expect the proportion of heads to be p = 0.5 so we have
H0 : p = 0.5. A randomization distribution for the number of heads in 10 flips of a
coin with p = 0.5 using 1000 simulations is shown in Figure 4.12.

Figure 4.12
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Example 4.19
If the alternative hypothesis for the coin-flipping data is

Ha : p > 0.5

use Figure 4.12 to estimate the p-value for each of the following observed numbers
of heads in 10 flips:

(a) 8 heads

(b) 6 heads

(c) 4 heads

Solution (a) We see in Figure 4.12 that, in our simulated coin flips, we obtained 8 heads
41 times, 9 heads 11 times, and all 10 heads twice. In other words, our results
were greater than or equal to 8 on 41 + 11 + 2 = 54 of 1000 simulations, so the
estimated p-value is 54/1000 = 0.054. Since the alternative hypothesis is one
tailed, only looking for evidence that p > 0.5, we only care about results that are
more extreme in that direction.

(b) In Figure 4.12, we see that the simulated results were greater than or equal to
6 heads in 200 + 120 + 41 + 11 + 2 = 374 times out of the 1000 simulations, so
the empirical p-value is 374/1000 = 0.374.

(c) Again, because of the alternative hypothesis, we only care about results more
extreme to the right of our observed value of 4 heads. We see in Figure 4.12 that
this includes 194 + 259 + 200 + 120 + 41 + 11 + 2 = 827 times out of 1000, so the
p-value is 827/1000 = 0.827. This p-value is very large and provides no evidence
at all for the alternative hypothesis. As we expect, seeing 4 heads in 10 flips of a
coin gives no evidence that the coin is biased in a way that will produce too many
heads.

Example 4.20
Now assume the alternative hypothesis for the coin-flipping data is

Ha : p �= 0.5

and estimate the p-value if we see 8 heads in 10 flips.

Solution Using Figure 4.12 as in the example above, we again see that there are 54 simulated
samples (out of 1000) that produced 8 or more heads. But now, with the two-tailed
alternative Ha : p �= 0.5, results ‘‘as extreme as” 8 heads include both tails of the
distribution: At least 8 heads, or at least 8 tails (2 or fewer heads). To calculate the
probability of results as extreme as 8, we need to measure the area in both tails.
In Figure 4.13 we see that 0 + 13 + 38 = 51 of the 1000 simulations had 2 or fewer
heads in the 10 flips and 41 + 11 + 2 = 54 had 8 or more heads. Thus one estimate
of the p-value would be (51 + 54)/1000 = 105/1000 = 0.105. You can see why these
are called two-tailed tests since we use counts of the extreme values from both tails
of the randomization distribution.

Another way to estimate the p-value for a two-tailed test is to just double the
one-tail p-value. This gives an empirical p-value of 2(54)/1000 = 0.108, which is very
close to what we obtain by adding the two tails separately. The results are similar in
this example because the randomization distribution is fairly symmetric around the
expected value (when H0 is true) of five heads.

To measure p-values for two-tailed tests, we need to account for both tails of
the distribution. Although many of the randomization distributions we encounter

o
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Figure 4.13 Two-tailed
p-value for 8 heads in 10
flips when H0 : p = 0.5
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will be symmetric, that is not always the case (see Exercise 4.64). For this reason,
we usually estimate a p-value for a two-tailed test based on a randomization
distribution using the second method illustrated above: Find the proportion of
randomization samples with statistics at or beyond what was observed in our
original sample and double that value to account for the other tail. That gives a
consistent interpretation of ‘‘as extreme as” to mean ‘‘as unlikely as” rather than
just ‘‘as far away as,” since in asymmetric cases it may be difficult to determine from
what center point to measure distance.

Estimating a P-value from a Randomization Distribution

For a one-tailed alternative: Find the proportion of randomization
samples that equal or exceed the original statistic in the direction (tail)
indicated by the alternative hypothesis.

For a two-tailed alternative: Find the proportion of randomization
samples in the smaller tail at or beyond the original statistic and then
double the proportion to account for the other tail.

Take care when applying this method for a two-tailed test to always use the
proportion in the smaller tail. For example, in the coin flip example, if we saw 4
heads and were doing a two-tailed test, the estimated p-value based on the ran-
domization distribution in Figure 4.12 would be 2(0 + 13 + 38 + 122 + 194)/1000 =
2(367)/1000 = 0.734. Note that doubling the upper tail p-value for 4 heads from
Example 4.19(c) would give 2(0.827) = 1.654, which is impossible. A p-value can
never be larger than 1!

Just as different bootstrap distributions gave slightly different confidence inter-
vals, different randomization distributions will give slightly different p-values.
Different simulations yield slightly different counts and p-value estimates which
are similar, but not identical. Our goal in constructing the randomization distribu-
tion is to get an idea of whether the sample data are unusual if the null hypothesis
is true, and variation in the third decimal place of the p-value is not something
to worry about. However, just as with confidence intervals, if we do care about
accuracy even in the third decimal place, we can simply increase the number of
simulated randomizations.
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How small does the p-value need to be for us to consider the sample to be
statistically significant? That is the topic we consider in the next section. At that
point you will be equipped to use the information shown in the randomization
distribution to make a decision concerning the competing claims in the null and
alternative hypotheses. After Section 4.3 we will return to the question of construct-
ing randomization distributions in Section 4.4 to see how to use StatKey or other
technology to create randomization distributions and to illustrate more examples
for testing different types of hypotheses.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Interpret a p-value as the probability of results as extreme as the
observed results happening by random chance, if the null hypothesis
is true

• Estimate a p-value from a randomization distribution

• Connect the definition of a p-value to the motivation behind a random-
ization distribution

• Comparatively quantify strength of evidence using p-values

• Distinguish between one-tailed and two-tailed tests in estimating
p-values

Exercises for Section 4.2

SKILL BUILDER 1
In Exercises 4.41 to 4.44, two p-values are given.
Which one provides the strongest evidence against
H0?

4.41 p-value = 0.90 or p-value = 0.08

4.42 p-value = 0.04 or p-value = 0.62

4.43 p-value = 0.007 or p-value = 0.13

4.44 p-value = 0.02 or p-value = 0.0008

SKILL BUILDER 2
In Exercises 4.45 to 4.47, a randomization distribu-
tion based on 1000 simulated samples is given along
with the relevant null and alternative hypotheses.
Which p-value most closely matches the observed
statistic?

4.45 Figure 4.14 shows a randomization distribu-
tion for testing H0 : μ = 50 vs Ha : μ > 50. In each
case, use the distribution to decide which value is
closer to the p-value for the observed sample mean.

(a) The p-value for x = 68 is closest to: 0.01 or 0.25?

(b) The p-value for x = 54 is closest to: 0.10 or 0.30?

(c) The p-value for x = 63 is closest to: 0.05 or 0.50?
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Figure 4.14 Randomization distribution for
Exercise 4.45

4.46 Figure 4.15 shows a randomization distribu-
tion for testing H0 : p = 0.3 vs Ha : p < 0.3. In each
case, use the distribution to decide which value
is closer to the p-value for the observed sample
proportion.

(a) The p-value for p̂ = 0.25 is closest to: 0.001 or
0.30?

o
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(b) The p-value for p̂ = 0.15 is closest to: 0.04 or
0.40?

(c) The p-value for p̂ = 0.35 is closest to: 0.30 or
0.70?
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Figure 4.15 Randomization distribution for
Exercise 4.46

4.47 Figure 4.16 shows a randomization distribu-
tion for testing H0 : μ1 = μ2 vs Ha : μ1 �= μ2. The
statistic used for each sample is D = x1 − x2. In each
case, use the distribution to decide which value is
closer to the p-value for the observed difference in
sample means.

(a) The p-value for D = x1 − x2 = −2.9 is closest
to: 0.01 or 0.250?

(b) The p-value for D = x1 − x2 = 1.2 is closest to:
0.30 or 0.60?
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Figure 4.16 Randomization distribution for
Exercises 4.47 to 4.51

SKILL BUILDER 3
Exercises 4.48 to 4.51 also refer to Figure 4.16,
which shows a randomization distribution for
hypotheses H0 : μ1 = μ2 vs Ha : μ1 �= μ2. The statis-
tic used for each sample is D = x1 − x2. Answer
parts (a) and (b) using the two possible sample
results given in each exercise.

(a) For each D-value, sketch a smooth curve
to roughly approximate the distribution in
Figure 4.16, mark the D-value on the horizon-
tal axis, and shade in the proportion of area
corresponding to the p-value.

(b) Which sample provides the strongest evidence
against H0? Why?

4.48 D = 2.8 or D = 1.3

4.49 D = 0.7 or D = −1.3

4.50 x1 = 17.3, x2 = 18.7 or x1 = 19.0, x2 = 15.4

4.51 x1 = 95.7, x2 = 93.5 or x1 = 94.1, x2 = 96.3

4.52 Arsenic in Chicken Data 4.5 on page 228 dis-
cusses a test to determine if the mean level of arsenic
in chicken meat is above 80 ppb. If a restaurant chain
finds significant evidence that the mean arsenic level
is above 80, the chain will stop using that supplier
of chicken meat. The hypotheses are

H0 : μ = 80

Ha : μ > 80

where μ represents the mean arsenic level in all
chicken meat from that supplier. Samples from two
different suppliers are analyzed, and the resulting
p-values are given:

Sample from Supplier A: p-value is 0.0003

Sample from Supplier B: p-value is 0.3500

(a) Interpret each p-value in terms of the probabil-
ity of the results happening by random chance.

(b) Which p-value shows stronger evidence for the
alternative hypothesis? What does this mean in
terms of arsenic and chickens?

(c) Which supplier, A or B, should the chain get
chickens from in order to avoid too high a level
of arsenic?

4.53 Multiple Sclerosis and Sunlight It is believed
that sunlight offers some protection against multi-
ple sclerosis (MS) since the disease is rare near the
equator and more prevalent at high latitudes. What
is it about sunlight that offers this protection? To
find out, researchers15 injected mice with proteins
that induce a condition in mice comparable to MS
in humans. The control mice got only the injection,
while a second group of mice were exposed to UV
light before and after the injection, and a third group
of mice received vitamin D supplements before and
after the injection. In the test comparing UV light

15Seppa, N., ‘‘Sunlight May Cut MS Risk by Itself,” Science News,
April 24, 2010, p. 9, reporting on a study in Proceedings of the
National Academy of Science, March 22, 2010.

fin, .
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to the control group, evidence was found that the
mice exposed to UV suppressed the MS-like disease
significantly better than the control mice. In the test
comparing mice getting vitamin D supplements to
the control group, the mice given the vitamin D did
not fare significantly better than the control group.
If the p-values for the two tests are 0.472 and 0.002,
which p-value goes with which test?

4.54 Dogs and Owners The data for the 10,000
simulated dog–owner matches shown in Figure 4.7
on page 237 are given in Table 4.6. We are test-
ing H0 : p = 0.5 (random guessing) vs Ha : p > 0.5
(evidence of a dog–owner resemblance).

(a) Use the data in the table to verify that the
p-value for the observed statistic of 16 correct
matches is 0.1145.

(b) Use the data to calculate a p-value for an
observed statistic of 20 correct matches.

(c) Use the data to calculate a p-value for an
observed statistic of 14 correct matches.

(d) Which of the three p-values in parts (a) to (c)
gives the strongest evidence against H0?

(e) If any of the p-values in parts (a) to (c) indicate
statistical significance, which one would it be?

4.55 Finger Tapping and Caffeine In Data 4.6 on
page 240 we look at finger-tapping rates to see if
ingesting caffeine increases average tap rate. Let-
ting μc and μn represent the average tap rate of
people who have had coffee with caffeine and with-
out caffeine, respectively, the null and alternative
hypotheses are

H0 : μc = μn

Ha : μc > μn

(a) Sketch a smooth curve that roughly approxi-
mates the distribution in Figure 4.17 and shade
in the proportion of area corresponding to the
p-value for a difference in average sample tap
rates of D = xc − xn = 1.6. Which of the follow-
ing values is closest to the p-value: 0.60, 0.45,
0.11, or 0.03?

Table 4.6 Data for Figure 4.7 on simulated numbers of correct matches in 25 trials

Correct matches 4 5 6 7 8 9 10 11 12
Frequency 1 17 54 148 341 599 972 1302 1549

Correct matches 13 14 15 16 17 18 19 20 21
Frequency 1551 1344 977 612 322 142 51 14 4
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Figure 4.17 Distribution of differences in means for
1000 randomizations when μc = μn

(b) On another sketch of the distribution in
Figure 4.17, shade in the proportion of area
corresponding to the p-value for a difference in
average sample tap rates of D = xc − xn = 2.4.
Which of the following values is closest to the
p-value: 0.60, 0.45, 0.11, or 0.03?

(c) Which of the results given in parts (a) and (b)
provides the strongest evidence that caffeine
increases average finger-tapping rate? Why?

4.56 Influencing Voters: Is a Phone Call Better
Than a Flyer? Exercise 4.38 on page 235 describes a
study to investigate whether a recorded phone call
is more effective than a flyer in persuading voters
to vote for a particular candidate. The response
variable is the proportion of voters planning to vote
for the candidate, with pc and pf representing the
proportions for the two methods (receiving a phone
call and receiving a flyer, respectively.) The sample
statistic of interest is D = p̂c − p̂f . We are test-
ing H0 : pc = pf vs Ha : pc > pf . A randomization
distribution for this test is shown in Figure 4.18.

(a) Sketch a smooth curve that roughly approxi-
mates the distribution in Figure 4.18 and shade
in the proportion of the area corresponding to
the p-value for the sample statistic D = 0.3.

(b) Four possible sample statistics are given, along
with four possible p-values. Match the statistics
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with the p-values:

Statistics : 0.1, 0.3, 0.5, 0.7

P-values : 0.012, 0.001, 0.365, 0.085

(c) Interpret the p-value 0.001 in terms of the
probability of the results happening by random
chance.

(d) Of the four p-values given in part (b), which
provides the strongest evidence that a phone
call is more effective?
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Figure 4.18 Randomization distribution using n =
1000 for testing H0 : pc = pf

4.57 Influencing Voters: Is There a Difference in
Effectiveness between a Phone Call and a Flyer?
Exercise 4.37 on page 235 describes a study to inves-
tigate which method, a recorded phone call or a
flyer, is more effective in persuading voters to vote
for a particular candidate. Since in this case, the
alternative hypothesis is not specified in a par-
ticular direction, the hypotheses are H0 : pc = pf

vs Ha : pc �= pf . All else is as in Exercise 4.56,
including the randomization distribution shown in
Figure 4.18.

(a) Sketch smooth curves that roughly approximate
the distribution in Figure 4.18 and shade in the
proportion of the area corresponding to the
p-value for each of D = 0.2 and D = −0.4.

(b) Two possible sample statistics are given below,
along with several possible p-values. Select the
most accurate p-value for each sample statistic.

Statistics : D = 0.2, D = −0.4

P-values : 0.008, 0.066, 0.150, 0.392, 0.842

(c) Of all five p-values given in part (b), which pro-
vides the strongest evidence that the methods
are not equally effective?

4.58 Colonoscopy, Anyone? A colonoscopy is a
screening test for colon cancer, recommended as a

routine test for adults over age 50. A new study16

provides the best evidence yet that this test saves
lives. The proportion of people with colon polyps
expected to die from colon cancer is 0.01. A sample
of 2602 people who had polyps removed during a
colonoscopy were followed for 20 years, and 12 of
them died from colon cancer. Does this provide
evidence that the proportion of people who die
from colon cancer after having polyps removed in
a colonoscopy is significantly less than the expected
proportion (without a colonoscopy) of 0.01?

(a) What are the null and alternative hypotheses?

(b) What is the sample proportion?

(c) Figure 4.19 shows a randomization distribution
for this test. Use the fact that there are 1000 dots
in the distribution to find the p-value. Explain
your reasoning.

0.01000.0046

Figure 4.19 Randomization distribution for 1000
samples testing effectiveness of colonoscopies

(d) Does the p-value appear to show significant
evidence that colonoscopies save lives?

4.59 Measuring the Impact of Great Teachers An
education study in Tennessee in the 1980s (known
as Project Star) randomly assigned 12,000 students
to kindergarten classes, with the result that all
classes had fairly similar socioeconomic mixes of
students.17 The students are now about 30 years
old, and the study is ongoing. In each case below,
assume that we are conducting a test to compare
performance of students taught by outstanding
kindergarten teachers with performance of students
taught by mediocre kindergarten teachers. What
does the quoted information tell us about whether
the p-value is relatively large or relatively small in a
test for the indicated effect?

16Zauber, et al., ‘‘Colonoscopic Polypectomy and Long-Term
Prevention of Colorectal-Cancer Deaths,” New England Journal
of Medicine, 2012; 366: 687–696.
17Leonhardt, D., ‘‘The Case for $320,000 Kindergarten Teach-
ers,” The New York Times, July 27, 2010, reporting on a study by
R. Chetty, a Harvard economist, and his colleagues.
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(a) On the tests at the end of the kindergarten
school year, ‘‘some classes did far better than
others. The differences were too big to be
explained by randomness.”

(b) By junior high and high school, the effect
appears to be gone: ‘‘Children who had excel-
lent early schooling do little better on tests than
similar children who did not.”

(c) The newest results, reported in July 2010 by
economist Chetty, show that the effects seem
to re-emerge in adulthood. The students who
were in a classroom that made significant gains
in kindergarten were significantly ‘‘more likely
to go to college, . . . less likely to become sin-
gle parents, . . . more likely to be saving for
retirement, . . . Perhaps most striking, they were
earning more.” (Economists Chetty and Saez
estimate that a standout kindergarten teacher is
worth about $320,000 a year in increased future
earnings of one class of students. If you had
an outstanding grade-school teacher, consider
sending a thank you note!)

4.60 Smiles and Leniency Data 4.2 on page 223
describes an experiment to study the effects of smil-
ing on leniency in judging students accused of cheat-
ing. The full data are in Smiles. In Example 4.2 we
consider hypotheses H0 : μs = μn vs Ha : μs > μn

to test if the data provide evidence that average
leniency score is higher for smiling students (μs)
than for students with a neutral expression (μn). A
dotplot for the difference in sample means based on
1000 random assignments of leniency scores from
the original sample to smile and neutral groups is
shown in Figure 4.20.

−1.0 −0.5 0.0 0.5 1.0

D = 0.79Diff

Figure 4.20 Randomization distribution for 1000 samples testing H0 : μs = μn using Smiles data

(a) The difference in sample means for the original
sample is D = xs − xn = 4.91 − 4.12 = 0.79 (as
shown in Figure 4.20). What is the p-value for
the one-tailed test? Hint: There are 27 dots in
the tail beyond 0.79.

(b) In Example 4.3 on page 223 we consider the test
with a two-tailed alternative, H0 : μs = μn vs
Ha : μs �= μn, where we make no assumption in
advance on whether smiling helps or discour-
ages leniency. How would the randomization
distribution in Figure 4.20 change for this test?
How would the p-value change?

4.61 Definition of a P-value Using the definition
of a p-value, explain why the area in the tail of
a randomization distribution is used to compute a
p-value.

4.62 Classroom Games Two professors18 at the
University of Arizona were interested in whether
having students actually play a game would help
them analyze theoretical properties of the game.
The professors performed an experiment in which
students played one of two games before coming
to a class where both games were discussed. Stu-
dents were randomly assigned to which of the two
games they played, which we’ll call Game 1 and
Game 2. On a later exam, students were asked to
solve problems involving both games, with Ques-
tion 1 referring to Game 1 and Question 2 referring
to Game 2. When comparing the performance of the
two groups on the exam question related to Game 1,
they suspected that the mean for students who had

18Dufewenberg, M. and Swarthout, J.T., ‘‘Play to Learn?
An Experiment,” from a working paper, at http://econ
.arizona.edu/docs/Working Papers/2009/Econ-WP-09-03.pdf.
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played Game 1 (μ1) would be higher than the mean
for the other students μ2, so they considered the
hypotheses H0 : μ1 = μ2 vs Ha : μ1 > μ2.

(a) The paper states: ‘‘test of difference in means
results in a p-value of 0.7619.” Do you think this
provides sufficient evidence to conclude that
playing Game 1 helped student performance on
that exam question? Explain.

(b) If they were to repeat this experiment 1000
times, and there really is no effect from play-
ing the game, roughly how many times would
you expect the results to be as extreme as those
observed in the actual study?

(c) When testing a difference in mean performance
between the two groups on exam Question 2
related to Game 2 (so now the alternative is
reversed to be Ha : μ1 < μ2 where μ1 and
μ2 represent the mean on Question 2 for the
respective groups), they computed a p-value of
0.5490. Explain what it means (in the context
of this problem) for both p-values to be greater
than 0.5.

4.63 Classroom Games: Is One Question Harder?
Exercise 4.62 describes an experiment involving
playing games in class. One concern in the experi-
ment is that the exam question related to Game 1
might be a lot easier or harder than the question
for Game 2. In fact, when they compared the mean
performance of all students on Question 1 to Ques-
tion 2 (using a two-tailed test for a difference in
means), they report a p-value equal to 0.0012.

(a) If you were to repeat this experiment 1000 times,
and there really is no difference in the difficulty
of the questions, how often would you expect
the means to be as different as observed in the
actual study?

(b) Do you think this p-value indicates that there is
a difference in the average difficulty of the two
questions? Why or why not?

(c) Based on the information given, can you tell
which (if either) of the two questions is easier?

4.64 What Is Your Lucky Number? Thirty students
are asked to choose a random number between 0
and 9, inclusive, to create a dataset of n = 30 digits.
If the numbers are truly random, we would expect
about three 0’s, three 1’s, three 2’s, and so on. If the
dataset includes eight 7’s, how unusual is that? If
we look exclusively at the number of 7’s, we expect
the proportion of 7’s to be 0.1 (since there are 10
possible numbers) and the number of 7’s to be 3 in
a sample of size 30. We are testing H0 : p = 0.1 vs
Ha : p �= 0.1, where p is the proportion of 7’s. We

can generate the randomization distribution by gen-
erating 1000 sets of 30 random digits and recording
X = the number of 7’s in each simulated sample.
See Figure 4.21.

(a) Notice that this randomization distribution is
not symmetric. This is a two-tailed test, so we
need to consider both ‘‘tails.” How far is X = 8
from the expected value of 3? What number
would be equally far out on the other side?
Explain why it is better in this situation to dou-
ble the observed one-tailed p-value rather than
to add the exact values on both sides.

(b) What is the p-value for the observed statistic of
X = 8 sevens when doing the two-tailed test?

(c) The randomization distribution in Figure 4.21
would apply to any digit (not just 7’s) if the null
hypothesis is H0 : p = 0.1. Suppose we want to
test if students tend to avoid choosing zero
when picking a random digit. If we now let p
be the proportion of 0’s all students choose, the
alternative would be Ha : p < 0.1. What is the
smallest p-value we could get using the random-
ization distribution in Figure 4.21? What would
have to happen in the sample of digits from 30
students for this p-value to occur?
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Figure 4.21 Randomization distribution for 1000
samples of number of 7’s in 30 digits when H0 : p = 0.1

4.65 Rolling Dice You roll a die 60 times and record
the sample proportion of fives, and you want to test
whether the die is biased to give more fives than a
fair die would ordinarily give. To find the p-value for
your sample data, you create a randomization dis-
tribution of proportions of fives in many simulated
samples of size 60 with a fair die.

(a) State the null and alternative hypotheses.

(b) Where will the center of the distribution be?
Why?
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(c) Give an example of a sample proportion for
which the number of 5’s obtained is less than
what you would expect in a fair die.

(d) Will your answer to part (c) lie on the left or
the right of the center of the randomization
distribution?

(e) To find the p-value for your answer to part (c),
would you look at the left, right, or both tails?

(f) For your answer in part (c), can you say anything
about the size of the p-value?

4.66 Determining Statistical Significance How small
would a p-value have to be in order for you to con-
sider results statistically significant? Explain. (There
is no correct answer! This is just asking for your per-
sonal opinion. We’ll study this in more detail in the
next section. )

4.3DETERMINING STATISTICAL SIGNIFICANCE

Statistical Decisions
In previous sections we have seen how to set up null and alternative hypotheses
corresponding to a question of interest, collect sample data, and calculate a p-value
using a randomization distribution. We know that a very small p-value means that
such a sample is very unlikely to occur by random chance alone and provides
strong evidence against the null hypothesis, H0, in favor of the alternative, Ha. If
the evidence is strong enough against the null hypothesis, we can reject the null
hypothesis in favor of the alternative. On the other hand, if the data are reasonably
likely to occur when the null hypothesis is true, we do not reject the null hypothesis.

When Making a Formal Decision in a Statistical Test Based on

Sample Data:

Reject H0 if a sample so extreme is unlikely when H0 is true.
This means we have found evidence to support Ha.

Do not reject H0 if a sample is not too extreme when H0 is true.
This means the test is inconclusive, and either H0 or
Ha may be true.

In either case, be sure to interpret the decision in the context of the
question of interest.

Notice that the formal decision is generally made in terms of whether or not we
reject the null hypothesis: Reject H0 or do not reject H0. If the data are significant,
we reject H0. If the data are not significant, we do not reject H0. When the sample
is not significant, we do not say that we ‘‘accept H0.” Finding a lack of convincing
evidence against the null hypothesis should not be confused with finding strong
evidence for the null hypothesis. In fact, in a hypothesis test, the conclusion is never
that we have found evidence for the null hypothesis. The next example illustrates
this point.

Example 4.21
Walking Elephants

Suppose that we have a mystery animal named X and consider the hypotheses

H0 : X is an elephant

Ha : X is not an elephant
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What conclusion would you draw from each of the following pieces of evidence?

(a) X has four legs.

(b) X walks on two legs.

Solution (a) It is not at all unusual for an elephant to have four legs, so that evidence would
certainly not lead to rejecting this null hypothesis. However, we do not ‘‘Accept
H0” and we do not conclude that X must be an elephant. Rather we say that the
data do not provide significant evidence against H0 and we cannot determine
whether X is or is not an elephant.

(b) While it is not impossible for an elephant to walk on two legs (for example,
you might think of trained circus elephants), it is certainly very uncommon. So
‘‘walking on two legs” would be sufficient evidence to reject H0 and conclude X
is probably not an elephant.

Michael Edwards/Stone/Getty Images, Inc.

An elephant standing on two legs

If we reject H0, we have found evidence for the alternative hypothesis. If we
fail to reject H0, we have not found evidence of anything. These are the only two
possible outcomes of a formal hypothesis test. Again, we never find evidence for
the null hypothesis. Furthermore, even if we reject the null hypothesis, we never
conclude that our sample statistic is the true value of the parameter—it has simply
provided evidence to reject the null hypothesis claim.

Example 4.22
In Data 4.5 on page 228, a company is testing whether chicken meat from a supplier
has an average arsenic level higher than 80 ppb. The hypotheses are

H0 : μ = 80

Ha : μ > 80

where μ is the mean arsenic level in chicken from this supplier.

(a) If the null hypothesis is rejected, what can the company conclude?

(b) If the null hypothesis is not rejected, what can the company conclude?

o
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Solution (a) If the null hypothesis is rejected, the company has found evidence that the
average level of arsenic in chickens from that supplier is greater than 80, and the
company should stop buying chicken from that supplier.

(b) If the null hypothesis of μ = 80 is not rejected, the company cannot conclude
anything significant from this sample about the average level of arsenic in
chickens from that supplier. The company would not have sufficient evidence to
cancel its relationship with the supplier, since the arsenic level may or may not
be greater than 80 ppb.

How Small is Small Enough? The Significance Level
You’re probably wondering, how small does a p-value have to be for us to reject H0?
If we agree that a p-value of 0.0001 is clearly strong enough evidence to reject H0
and a p-value of 0.50 provides insufficient evidence to make such a conclusion, there
must be some point between 0.0001 and 0.50 where we cross the threshold between
statistical significance and random chance. That point, measuring when something
becomes rare enough to be called ‘‘unusual,” might vary a lot from person to person.
We should agree in advance on a reasonable cutoff point. Statisticians call this cutoff
point the significance level of a test and usually denote it with the Greek letter α

(alpha). For example, if α = 0.05 we say we are doing a 5% test and will reject the
null hypothesis if the p-value for the sample is smaller than 0.05. Often, shorthand
notation such as P < 0.05 is used to indicate that the p-value is less than 0.05, which
means the results are significant at a 5% level.

Significance Level

The significance level, α, for a test of hypotheses is a boundary
below which we conclude that a p-value shows statistically significant
evidence against the null hypothesis.

Common significance levels are α = 0.05, α = 0.01, or α = 0.10.

Given a specific significance level, α, the formal decision in a statistical test,
based on comparing the p-value from a sample to α, is very straightforward.

Formal Statistical Decision Based on a Significance Level

Given a significance level α and the p-value from a sample, we:

Reject H0 if the p-value < α.

Do not reject H0 if the p-value ≥ α.

Example 4.23
Dogs and Owners: The Conclusion!

In Section 4.2 on page 237 we construct a randomization distribution to see how
unusual it is to see 16 or more correct matches among 25 sets of dog–owner pairs
under a null hypothesis of no dog–owner resemblance (H0 : p = 0.5 vs Ha : p > 0.5).
The estimated p-value from the randomization distribution is 0.1145. Using a 5%
significance level, what decision do we make? Does the decision change if we use
α = 0.10 or α = 0.01?

o
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Solution Since the p-value of 0.1145 is greater than the significance level of α = 0.05, we
do not reject H0 at a 5% level. This sample does not provide convincing evidence
that dogs tend to resemble their owners. Since the p-value is also more than both
0.10 and 0.01, the decision and interpretation are the same for those significance
levels.

Notice that we always follow up the formal decision (reject H0 or do not reject
H0) with a statement that interprets the decision in the context of the data situation.
This is an important step in addressing any statistical question that involves real
data.

Example 4.24
In Example 4.15 on page 239 we consider other possible outcomes for number of
matches in the dog–owner experiment. For each of these situations, what is the
decision when doing a 5% test of H0 : p = 0.5 vs Ha : p > 0.5?

(a) 19 correct matches with p-value = 0.0075

(b) 15 correct matches with p-value = 0.215

Solution (a) With 19 correct matches out of 25 trials, the p-value of 0.0075 is less than
α = 0.05. If we saw 19 correct matches out of 25, the results would be statistically
significant, providing sufficient evidence to reject H0, and conclude that dogs
tend to resemble their owners.

(b) Finding only 15 correct matches in the 25 trials would be even less significant
than the 16 matches in the original study. The p-value of 0.215 is not even
close to being less than α = 0.05 so we do not reject H0. If we saw only 15
correct matches, we would have insufficient evidence to say that a dog–owner
resemblance exists.

We can visualize the significance level α as a portion of the total area in a
randomization distribution. Figure 4.22 shows the randomization distribution for
dog–owner matches. Notice that if we use α = 0.05, we decide to reject H0 for all
sample values in the 5% of area in the upper tail (17 or more matches out of 25

Figure 4.22 5%
significance level as
proportion of total area
in a randomization
distribution 212019181716151413121110987654
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trials). If instead we use α = 0.01, we only reject H0 for sample values in the upper
1% of area (about 19 or more matches). The samples in the extreme tail that lead
to rejecting H0 at a significance level of α take up a proportion of area equal to α.
Since this is a one-tailed test, the whole area is in one tail. For a two-tailed test, the
area of α would be split evenly between the two tails.

How do we decide on a significance level in the first place? Many research
areas have standard accepted values of α for their fields. In other cases, researchers
are allowed to choose α based on what makes the most sense for their particular
situation, although it is important that α is chosen before the experiment takes place.
In still other cases, researchers may report results of a test based on which of a set of
commonly used α values give significant results. For example, a claim that ‘‘results
are significant at a 10% level” may be viewed as somewhat less strong than ‘‘results
are significant at a 1% level.” However, without knowing the p-value, we can never
know for sure which gives stronger evidence. In all cases, providing the p-value
itself is preferred since then a reader can more accurately assess the strength of the
evidence.

Type I and Type II Errors
Formal hypothesis testing produces one of two possible generic decisions (ignoring
context): ‘‘reject H0” or ‘‘do not reject H0.” In reality, the claims about the
population described by H0 and Ha might be either true or false. Perhaps dogs really
do tend to resemble owners (Ha), or maybe this phenomenon doesn’t exist at all
(H0) and people are just guessing. When we make a formal decision to ‘‘reject H0,”
we generally are accepting some risk that H0 might actually be true. For example, we
may have been unlucky and stumbled upon one of those ‘‘1 in a 1000” samples that
are very rare to see when H0 holds but still are not impossible. This is an example
of what we call a Type I error: rejecting a true H0. The other possible error to make
in a statistical test is to fail to reject H0 when it is false and the alternative Ha is
actually true. We call this a Type II error: failing to reject a false H0. See Table 4.7.

Table 4.7 Possible errors in a formal statistical
decision

Reject H0 Do not reject H0

H0 is true Type I error No error
H0 is false No error Type II error

Example 4.25
Describe the consequences of making Type I and Type II errors in each case.

(a) In the dogs–owners experiment where we test H0 : p = 0.5 vs Ha : p > 0.5

(b) In Example 4.21 where we have a mystery animal named X and test H0 : X is an
elephant vs Ha : X is not an elephant

Solution (a) A Type I error is to reject a true H0. In the dog–owner study, a Type I error
is to conclude that dogs do resemble their owners when actually there is no
relationship between appearances of dogs and owners.

A Type II error is to fail to reject a false H0. In this case, a Type II error
means the test based on our sample data does not convince us that dogs look
like their owners when dogs actually do tend to resemble their owners.

o
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(b) If we see evidence (perhaps that X walks on two legs) that is so rare we conclude
that X is not an elephant and it turns out that X is an elephant (perhaps trained
in a circus), we have made a Type I error.

For a Type II error, we might find evidence (perhaps having four legs) that
is not unusual for an elephant, so we do not reject H0 and then discover that X
is actually a giraffe.

If our results are significant and we reject H0, there is usually no way of knowing
whether we are correct or whether we have made a Type I error. If our results are
insignificant and we fail to reject H0, we could be correct or we could have made a
Type II error. While we can never rule out these possibilities entirely, we do have
some control over the chance of making these errors.

While we wish to avoid both types of errors, in practice we have to accept some
trade-off between them. We could reduce the chance of making a Type I error by
making it very hard to reject H0, but then we would probably make Type II errors
more often. On the other hand, if we routinely reject H0, we would rarely be guilty
of a Type II error, but we would end up rejecting too many H0’s that were actually
true. Remember that at the outset we set up our hypotheses with H0 representing
the ‘‘status quo” and only reject it (in favor of Ha) when there is convincing evidence
against it. For this reason, we are generally more concerned with keeping the chances
of making a Type I error relatively small, even if it sometimes means we accept a
larger chance of making a Type II error.

How can we reduce the chance of making a Type I error? In other words, how
can we make it harder to reject H0 when it is actually true? One key is to think about
the significance level, α. The randomization distribution represents what we expect
to see if the null hypothesis is true, and as we see in Figure 4.22 on page 255, the
proportion of samples that lead to rejecting H0 is equal to α. If we make α smaller,
fewer samples would be that extreme, meaning we would reject H0 less often. The
smaller we make the significance level α, the less likely we are to make a Type I
error when H0 is true.

Choosing a Significance Level

The significance level, α, represents the tolerable probability of making
a Type I error.

If the consequences of a Type I error are severe (for example, approving a
new drug that is potentially dangerous), we might use a very small α (perhaps
even α = 0.005). However, remember that using a very small α also increases the
likelihood that we make a Type II error when the alternative Ha is true. For this
reason we usually use the common significance levels of 5%, 10%, or 1%.

Example 4.26
Analogy to Law

It is often helpful to think of significance tests as similar to cases in a court of law.
For each italicized word or phrase below, give the analogy in a statistical test.

(a) A person is innocent until proven guilty.
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(b) The evidence provided must indicate the suspect’s guilt beyond a reasonable
doubt.

(c) There are two types of errors a jury can make:

• Releasing a guilty person

• Convicting an innocent person

Solution (a) ‘‘Innocent” is the null hypothesis, H0 (the status quo that we assume to be the
situation until we see convincing evidence to the contrary). ‘‘Guilty” represents
the alternative hypothesis, Ha (the claim that instigates the trial).

(b) The ‘‘evidence” is the data from the sample and its p-value. The ‘‘reasonable
doubt” corresponds to the significance level, α. We reject the claim of innocence
(H0) and determine the suspect is guilty (Ha) when the evidence (p-value) is
very unlikely (less than α) to occur if the suspect is really innocent.

(c) ‘‘Releasing a guilty person” corresponds to a Type II error, since we fail to find
evidence to reject a false H0. ‘‘Convicting an innocent person” corresponds to
a Type I error, since we (incorrectly) find evidence in the data to reject a true
H0. As in our legal system, we are usually more worried about a Type I error
(convicting an innocent person) than about a Type II error (releasing a guilty
person). Also as in our legal system, there is a trade-off between the two kinds
of errors when we test hypotheses.

In medical terms we often think of a Type I error as a ‘‘false positive”—a test
that indicates a patient has an illness when actually none is present, and a Type II
error as a ‘‘false negative”—a test that fails to detect an actual illness.

Less Formal Statistical Decisions
Classical hypothesis testing requires a formal decision to ‘‘Reject H0” or ‘‘Do
not reject H0” depending on whether or not the p-value is less than the desired
significance level. The general idea for a 5% test is illustrated in Figure 4.23. If the
p-value is less than 5%, we reject the null in favor of the alternative; otherwise we
find the evidence insufficient to discard the null hypothesis.

In Data 4.2 on page 223 we describe an experiment to see if smiles have an
effect on leniency in a disciplinary action. Participants viewed a photograph of
the ‘‘suspect” who either was smiling or had a neutral expression. There were 34
participants in each group who made disciplinary decisions that were interpreted
to give a leniency score (on a 10-point scale) for each case. The data are stored
in Smiles and we are interested in whether smiling makes a difference (in either
direction) on the leniency scores. Letting μs and μn be the mean leniency scores for
smiling and neutral suspects in general, we test the hypotheses

H0 : μs = μn

Ha : μs �= μn

For the sample data, we find xs = 4.91 and xn = 4.12, so the difference in sample
means is D = 4.91 − 4.12 = 0.79. The randomization distribution in Figure 4.24

Figure 4.23 Formal
decision rule for p-values
with a 5% significance
test

Reject H0 Do not reject H0

1% 5% 10%

o
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Figure 4.24

Randomization
distribution of differences
in leniency means,
D = xs − xn D = 0.79

Diff

−1.0 −0.5 0.0 0.5 1.0

shows the results of the differences in sample means for 1000 simulations where the
34 ‘‘smile” and ‘‘neutral” labels were randomly assigned to the 68 leniency scores.
There are 23 values in the upper tail of the 1000 simulations that are larger than the
original sample difference of D = 0.79.

Example 4.27
(a) Use the randomization distribution and the information above to estimate a

p-value in the smiling and leniency experiment. Use a 5% significance level to
reach a decision.

(b) If we change the score for just one of the participants in the smiling and leniency
experiment by a single point, either less lenient for someone in the smile group
or more lenient for someone in the neutral group, the difference in means
becomes D = 0.76 and four new points in the randomization distribution would
exceed this difference. Repeat part (a) for this value of D.

Solution (a) Since we are doing a two-tailed test with 23 out of 1000 simulated differences
more extreme than D = 0.79 the estimated p-value is 2 · 23/1000 = 0.046. This
p-value is less than the significance level of α = 0.05 so we reject H0 and conclude
that the difference in mean leniency scores is more than we expect to see by
random chance alone. Based on these data we conclude that smiling makes a
difference and we expect more leniency, on average, to be awarded to smiling
suspects. If you go before a disciplinary panel, you should smile!

(b) The randomization distribution in Figure 4.24 has 23 + 4 = 27 cases above
D = 0.76, which produces a p-value of 2 · 27/1000 = 0.054. This p-value is not
less than 5%, so we do not reject H0 and thus conclude that we do not have
sufficient evidence to show that smiling makes a difference in the amount of
leniency. If you go before a disciplinary panel, it may not matter whether you
smile or maintain a neutral expression.

Notice in Example 4.27 that changing just one person’s score by a single point
dramatically changes the conclusion of the test. One of the drawbacks of the classical
approach to hypothesis testing is that it forces us to make very black–white decisions.
We either reject the null or don’t reject it. In some situations we might feel more
comfortable with a less prescriptive decision. We might be ‘‘pretty sure” that H0
should be rejected or find some, but not entirely convincing, evidence against it. For
this reason we sometimes interpret a p-value less formally by merely indicating the
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Figure 4.25 Informal
strengths of evidence
against H0

Strong ModerateVery Strong LittleSome

1% 5% 10%

strength of evidence it shows against the null hypothesis. For example, the p-values
of 0.046 and 0.054 in Example 4.27 might both be interpreted as showing moderate
but not very strong evidence that smiling helps increase leniency.

Figure 4.25 gives a schematic representation of a less formal way to interpret
p-values as strength of evidence against a null hypothesis. Contrast this with the
formal decision rule shown in Figure 4.23. Which way is right? They both have their
merits. As we continue studying significance testing, keep both approaches in mind
so that you can make a concrete decision for a given significance level but also
interpret any p-value as a measure of strength of evidence.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Make a formal decision in a hypothesis test by comparing a p-value to
a given significance level

• State the conclusion to a hypothesis test in context

• Interpret Type I and Type II errors in hypothesis tests

• Recognize a significance level as measuring the tolerable chance of
making a Type I error

• Make a less formal decision that reflects the strength of evidence in a
p-value

Exercises for Section 4.3

SKILL BUILDER 1
Exercises 4.67 to 4.70 give a p-value. State the con-
clusion of the test based on this p-value in terms of
‘‘Reject H0” or ‘‘Do not reject H0” if we use a 5%
significance level.

4.67 p-value = 0.0007

4.68 p-value = 0.0320

4.69 p-value = 0.2531

4.70 p-value = 0.1145

SKILL BUILDER 2
In Exercises 4.71 to 4.74, using the p-value given,
are the results significant at a 10% level? At a 5%
level? At a 1% level?

4.71 p-value = 0.0320

4.72 p-value = 0.2800

4.73 p-value = 0.008

4.74 p-value = 0.0621

SKILL BUILDER 3
In Exercises 4.75 and 4.76, match the four p-values
with the appropriate conclusion:

(a) The evidence against the null hypothesis is sig-
nificant, but only at the 10% level.

(b) The evidence against the null and in favor of the
alternative is very strong.

(c) There is not enough evidence to reject the null
hypothesis, even at the 10% level.

(d) The result is significant at a 5% level but not at
a 1% level.

4.75 I. 0.0875 II. 0.5457
III. 0.0217 IV. 0.00003

o
o
o
o
o
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4.76 I. 0.00008 II. 0.0571
III. 0.0368 IV. 0.1753

4.77 Significance Levels Test A is described in a
journal article as being significant with ‘‘P < .01”;
Test B in the same article is described as
being significant with ‘‘P < .10.” Using only this
information, which test would you suspect provides
stronger evidence for its alternative hypothesis?

4.78 Interpreting a P-value In each case, indicate
whether the statement is a proper interpretation of
what a p-value measures.

(a) The probability the null hypothesis H0 is true.

(b) The probability that the alternative hypothesis
Ha is true.

(c) The probability of seeing data as extreme as the
sample, when the null hypothesis H0 is true.

(d) The probability of making a Type I error if the
null hypothesis H0 is true.

(e) The probability of making a Type II error if the
alternative hypothesis Ha is true.

4.79 Divorce Opinions and Gender In Data 4.4 on
page 227, we introduce the results of a May 2010
Gallup poll of 1029 U.S. adults. When asked if
they view divorce as ‘‘morally acceptable,” 71%
of the men and 67% of the women in the sam-
ple responded yes. In the test for a difference in
proportions, a randomization distribution gives a
p-value of 0.165. Does this indicate a significant dif-
ference between men and women in how they view
divorce?

4.80 Red Wine and Weight Loss Resveratrol, an
ingredient in red wine and grapes, has been shown
to promote weight loss in rodents. A recent study19

investigates whether the same phenomenon holds
true in primates. The grey mouse lemur, a pri-
mate, demonstrates seasonal spontaneous obesity
in preparation for winter, doubling its body mass.
A sample of six lemurs had their resting metabolic
rate, body mass gain, food intake, and locomotor
activity measured for one week prior to resvera-
trol supplementation (to serve as a baseline) and
then the four indicators were measured again after
treatment with a resveratrol supplement for four
weeks. Some p-values for tests comparing the mean
differences in these variables (before vs after treat-
ment) are given below. In parts (a) to (d), state the

19BioMed Central. ‘‘Lemurs Lose Weight with ‘Life-Extending’
Supplement Resveratrol,” ScienceDaily, June 22, 2010.

conclusion of the test using a 5% significance level,
and interpret the conclusion in context.

(a) In a test to see if mean resting metabolic rate is
higher after treatment, p = 0.013.

(b) In a test to see if mean body mass gain is lower
after treatment, p = 0.007

(c) In a test to see if mean food intake is affected
by the treatment, p = 0.035.

(d) In a test to see if mean locomotor activity is
affected by the treatment, p = 0.980

(e) In which test is the strongest evidence found?
The weakest?

(f) How do your answers to parts (a) to (d) change
if the researchers make their conclusions using
a stricter 1% significance level?

(g) For each p-value, give an informal conclusion in
the context of the problem describing the level
of evidence for the result.

(h) The sample only included six lemurs. Do you
think that we can generalize to the popula-
tion of all lemurs that body mass gain is lower
on average after four weeks of a resveratrol
supplement? Why or why not?

4.81 Euchre Exercise 4.40 on page 236 describes an
ongoing game of Euchre, in which the game con-
tinues until one of the two teams is deemed to be
statistically significantly better than the other team.
Which significance level, 5% or 1%, will make the
game last longer?

4.82 Sleep or Caffeine for Memory? The consump-
tion of caffeine to benefit alertness is a common
activity practiced by 90% of adults in North Amer-
ica. Often caffeine is used in order to replace the
need for sleep. One recent study20 compares stu-
dents’ ability to recall memorized information after
either the consumption of caffeine or a brief sleep.
A random sample of 35 adults (between the ages
of 18 and 39) were randomly divided into three
groups and verbally given a list of 24 words to
memorize. During a break, one of the groups takes
a nap for an hour and a half, another group is kept
awake and then given a caffeine pill an hour prior to
testing, and the third group is given a placebo. The
response variable of interest is the number of words
participants are able to recall following the break.

20Mednick, S., Cai, D., Kanady, J., and Drummond, S., ‘‘Com-
paring the Benefits of Caffeine, Naps and Placebo on Verbal,
Motor and Perceptual Memory,” Behavioural Brain Research,
2008; 193: 79–86.
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The summary statistics for the three groups are
in Table 4.8. We are interested in testing whether
there is evidence of a difference in average recall
ability between any two of the treatments. Thus we
have three possible tests between different pairs of
groups: Sleep vs Caffeine, Sleep vs Placebo, and
Caffeine vs Placebo.

(a) In the test comparing the sleep group to the
caffeine group, the p-value is 0.003. What is
the conclusion of the test? In the sample, which
group had better recall ability? According to the
test results, do you think sleep is really better
than caffeine for recall ability?

(b) In the test comparing the sleep group to the
placebo group, the p-value is 0.06. What is the
conclusion of the test using a 5% significance
level? Using a 10% significance level? How
strong is the evidence of a difference in mean
recall ability between these two treatments?

(c) In the test comparing the caffeine group to
the placebo group, the p-value is 0.22. What is
the conclusion of the test? In the sample, which
group had better recall ability? According to the
test results, would we be justified in concluding
that caffeine impairs recall ability?

(d) According to this study, what should you do
before an exam that asks you to recall informa-
tion?

Table 4.8 Effect of sleep and caffeine on
memory

Standard
Group Sample Size Mean Deviation

Sleep 12 15.25 3.3
Caffeine 12 12.25 3.5
Placebo 11 13.70 3.0

4.83 Price and Marketing How influenced are con-
sumers by price and marketing? If something costs
more, do our expectations lead us to believe it is
better? Because expectations play such a large role
in reality, can a product that costs more (but is in
reality identical) actually be more effective? Baba
Shiv, a neuroeconomist at Stanford, conducted a
study21 involving 204 undergraduates. In the study,
all students consumed a popular energy drink which
claims on its packaging to increase mental acuity.

21Shiv, B., Carmon, Z. and Ariely D., ‘‘Placebo Effects of Market-
ing Actions: Consumers May Get What They Pay For,” Journal
of Marketing Research, 2005; 42: 383–393.

The students were then asked to solve a series of
puzzles. The students were charged either regular
price ($1.89) for the drink or a discount price ($0.89).
The students receiving the discount price were told
that they were able to buy the drink at a discount
since the drinks had been purchased in bulk. The
authors of the study describe the results: ‘‘the num-
ber of puzzles solved was lower in the reduced-price
condition (M = 4.2) than in the regular-price con-
dition (M = 5.8) . . . p < 0.0001.”

(a) What can you conclude from the study? How
strong is the evidence for the conclusion?

(b) These results have been replicated in many simi-
lar studies. As Jonah Lehrer tells us: ‘‘According
to Shiv, a kind of placebo effect is at work. Since
we expect cheaper goods to be less effective,
they generally are less effective, even if they
are identical to more expensive products. This
is why brand-name aspirin works better than
generic aspirin and why Coke tastes better than
cheaper colas, even if most consumers can’t tell
the difference in blind taste tests.”22 Discuss the
implications of this research in marketing and
pricing.

4.84 Mercury Levels in Fish Figure 4.26 shows a
scatterplot of the acidity (pH) for a sample of n = 53
Florida lakes vs the average mercury level (ppm)
found in fish taken from each lake. The full dataset
is introduced in Data 2.4 on page 68 and is available
in FloridaLakes. There appears to be a negative
trend in the scatterplot, and we wish to test whether
there is significant evidence of a negative association
between pH and mercury levels.

(a) What are the null and alternative hypotheses?
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8 976543

0.0

0.2

0.4

0.6

A
vg

M
er

cu
ry

0.8

1.0

1.2

1.4

Figure 4.26 Water pH vs mercury levels of fish in
Florida lakes

22Lehrer, J., ‘‘Grape Expectations: What Wine Can Tell Us
About the Nature of Reality,” The Boston Globe, February 28,
2008.
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(b) For these data, a statistical software package
produces the following output:

r = −0.575 p-value = 0.000017

Use the p-value to give the conclusion of the
test. Include an assessment of the strength of
the evidence and state your result in terms
of rejecting or failing to reject H0 and in terms
of pH and mercury.

(c) Is this convincing evidence that low pH causes
the average mercury level in fish to increase?
Why or why not?

4.85 Penalty Shots in Soccer A recent article noted
that it may be possible to accurately predict which
way a penalty-shot kicker in soccer will direct his
shot.23 The study finds that certain types of body
language by a soccer player—called ‘‘tells”—can be
accurately read to predict whether the ball will go
left or right. For a given body movement leading up
to the kick, the question is whether there is strong
evidence that the proportion of kicks that go right
is significantly different from one-half.

(a) What are the null and alternative hypotheses in
this situation?

(b) If sample results for one type of body movement
give a p-value of 0.3184, what is the conclusion
of the test? Should a goalie learn to distinguish
this movement?

(c) If sample results for a different type of body
movement give a p-value of 0.0006, what is the
conclusion of the test? Should a goalie learn to
distinguish this movement?

4.86 Radiation from Cell Phones and Brain
Activity Does heavy cell phone use affect brain
activity? There is some concern about possible neg-
ative effects of radiofrequency signals delivered to
the brain. In a randomized matched-pairs study,24

47 healthy participants had cell phones placed on
the left and right ears. Brain glucose metabolism (a
measure of brain activity) was measured for all par-
ticipants under two conditions: with one cell phone
turned on for 50 minutes (the ‘‘on” condition) and
with both cell phones off (the ‘‘off” condition).
The amplitude of radiofrequency waves emitted by
the cell phones during the ‘‘on” condition was also
measured.

23‘‘A Penalty Kicker’s Cues,” The Week, July 16, 2010, p. 21.
24Volkow, et al., ‘‘Effects of Cell Phone Radiofrequency Sig-
nal Exposure on Brain Glucose Metabolism,” Journal of the
American Medical Association, 2011; 305(8): 808–813.

(a) Is this an experiment or an observational study?
Explain what it means to say that this was a
‘‘matched-pairs” study.

(b) How was randomization likely used in the
study? Why did participants have cell phones
on their ears during the ‘‘off” condition?

(c) The investigators were interested in seeing
whether average brain glucose metabolism was
different based on whether the cell phones were
turned on or off. State the null and alternative
hypotheses for this test.

(d) The p-value for the test in part (c) is 0.004. State
the conclusion of this test in context.

(e) The investigators were also interested in see-
ing if brain glucose metabolism was significantly
correlated with the amplitude of the radiofre-
quency waves. What graph might we use to
visualize this relationship?

(f) State the null and alternative hypotheses for the
test in part (e).

(g) The article states that the p-value for the test in
part (e) satisfies p < 0.001. State the conclusion
of this test in context.

4.87 ADHD and Pesticides In Exercise 4.16 on
page 232, we describe an observational study inves-
tigating a possible relationship between exposure
to organophosphate pesticides as measured in uri-
nary metabolites (DAP) and diagnosis of ADHD
(attention-deficit/hyperactivity disorder). In report-
ing the results of this study, the authors25 make the
following statements:

• ‘‘The threshold for statistical significance was set
at P < .05.”

• ‘‘The odds of meeting the . . . criteria for ADHD
increased with the urinary concentrations of total
DAP metabolites.”

• ‘‘The association was statistically significant.”

(a) What can we conclude about the p-value ob-
tained in analyzing the data?

(b) Based on these statements, can we distinguish
whether the evidence of association is very
strong vs moderately strong? Why or why not?

(c) Can we conclude that exposure to pesticides
is related to the likelihood of an ADHD
diagnosis?

25Bouchard, M., Bellinger, D., Wright, R., and Weisskopf, M.,
‘‘Attention-Deficit/Hyperactivity Disorder and Urinary Metabo-
lites of Organophosphate Pesticides,” Pediatrics, 2010; 125:
e1270–e1277.
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(d) Can we conclude that exposure to pesticides
causes more cases of ADHD? Why or why not?

4.88 Diabetes and Pollution Diabetes tends to be
more prevalent in urban populations, but why this
is so is not fully understood. A recent study26 on
mice was designed to investigate the link between
diabetes and air pollution. The study involved 28
mice, with 14 randomly selected to have filtered air
pumped into their cage while the other 14 breathed
particulate matter that simulated common air pollu-
tion. The response variable is the amount of insulin
resistance each mouse had after 24 weeks. Higher
insulin resistance indicates a greater risk for devel-
oping diabetes.

(a) Is this an observational study or randomized
experiment?

(b) If we are interested in whether there is a dif-
ference in mean insulin resistance between the
two groups, what are the null and alternative
hypotheses?

(c) The difference in sample means from the
original sample is D = xFA − xPM = 1.8 − 6.2 =
−4.4. Figure 4.27 shows 1000 random assign-
ments of insulin-resistant scores from the origi-
nal sample to each of the two groups. Is it likely
we will reject the null hypothesis?
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Figure 4.27 Randomization distribution for 1000
simulations with H0 : μFA = μPM

(d) What is the p-value?

(e) State the conclusion of the test in context.

4.89 Beer and Mosquitoes Does consuming beer
attract mosquitoes? Exercise 4.17 on page 232
discusses an experiment done in Africa testing
possible ways to reduce the spread of malaria by

26Data recreated from information in Sun et al., ‘‘Ambient Air
Pollution Exaggerates Adipose Inflammation and Insulin Resis-
tance in a Mouse Model of Diet-Induced Obesity,” Journal of
the American Heart Association, 2009; 119(4): 538–546.

mosquitoes. In the experiment, 43 volunteers were
randomly assigned to consume either a liter of
beer or a liter of water, and the attractiveness
to mosquitoes of each volunteer was measured.
The experiment was designed to test whether beer
consumption increases mosquito attraction. The
report27 states that ‘‘Beer consumption, as opposed
to water consumption, significantly increased the
activation . . . of An. gambiae [mosquitoes] . . .

(P < 0.001).”

(a) Is this convincing evidence that consuming beer
is associated with higher mosquito attraction?
Why or why not?

(b) How strong is the evidence for the result?
Explain.

(c) Based on these results, is it reasonable to con-
clude that consuming beer causes an increase in
mosquito attraction? Why or why not?

4.90 Exercise and the Brain Exercise 4.19 on page
232 describes a study investigating the effects of
exercise on cognitive function.28 Separate groups of
mice were exposed to running wheels for 0, 2, 4, 7,
or 10 days. Cognitive function was measured by Y-
maze performance. The study was testing whether
exercise improves brain function, whether exercise
reduces levels of BMP (a protein which makes the
brain slower and less nimble), and whether exercise
increases the levels of noggin (which improves the
brain’s ability). For each of the results quoted
in parts (a), (b), and (c), interpret the informa-
tion about the p-value in terms of evidence for
the effect.

(a) ‘‘Exercise improved Y-maze performance in
most mice by the 7th day of exposure, with fur-
ther increases after 10 days for all mice tested
(p < .01).”

(b) ‘‘After only two days of running, BMP . . . was
reduced . . . and it remained decreased for all
subsequent time-points (p < .01).”

(c) ‘‘Levels of noggin . . . did not change until 4
days, but had increased 1.5-fold by 7–10 days of
exercise (p < .001).”

(d) Which of the tests appears to show the strongest
statistical effect?

(e) What (if anything) can we conclude about the
effects of exercise on mice?

27Lefvre, T., et al., ‘‘Beer Consumption Increases Human Attrac-
tiveness to Malaria Mosquitoes.” PLoS ONE, 2010; 5(3): e9546.
28Gobeske, K., et al., ‘‘BMP Signaling Mediates Effects of
Exercise on Hippocampal Neurogenesis and Cognition in Mice,”
PLoS One, 2009; 4(10): e7506.
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4.91 Translating Information to Other Significance
Levels Suppose in a two-tailed test of H0 : ρ = 0 vs
Ha : ρ �= 0, we reject H0 when using a 5% signifi-
cance level. Which of the conclusions below (if any)
would also definitely be valid for the same data?
Explain your reasoning in each case.

(a) Reject H0 : ρ = 0 in favor of Ha : ρ �= 0 at a 1%
significance level.

(b) Reject H0 : ρ = 0 in favor of Ha : ρ �= 0 at a
10% significance level.

(c) Reject H0 : ρ = 0 in favor of the one-tail alter-
native, Ha : ρ > 0, at a 5% significance level,
assuming the sample correlation is positive.

4.92 Flaxseed and Omega-3 Exercise 4.29 on
page 234 describes a company that advertises that
its milled flaxseed contains, on average, at least
3800 mg of ALNA, the primary omega-3 fatty
acid in flaxseed, per tablespoon. In each case
below, which of the standard significance levels,
1% or 5% or 10%, makes the most sense for that
situation?

(a) The company plans to conduct a test just to
double-check that its claim is correct. The com-
pany is eager to find evidence that the average
amount per tablespoon is greater than 3800
(their alternative hypothesis) and is not really
worried about making a mistake. The test is
internal to the company and there are unlikely
to be any real consequences either way.

(b) Suppose, instead, that a consumer organiza-
tion plans to conduct a test to see if there is
evidence against the claim that the product
contains at least 3800 mg per tablespoon. If the
organization finds evidence that the advertising
claim is false, it will file a lawsuit against the
flaxseed company. The organization wants to
be very sure that the evidence is strong, since
there could be very serious consequences if the
company is sued incorrectly.

SELECTING A SIGNIFICANCE LEVEL
For each situation described in Exercises 4.93
to 4.98, indicate whether it makes more sense to
use a relatively large significance level (such as
α = 0.10) or a relatively small significance level
(such as α = 0.01).

4.93 Testing a new drug with potentially danger-
ous side effects to see if it is significantly better
than the drug currently in use. If it is found to be
more effective, it will be prescribed to millions of
people.

4.94 Using your statistics class as a sample to see
if there is evidence of a difference between male
and female students in how many hours are spent
watching television per week.

4.95 Using a sample of 10 games each to see if your
average score at Wii bowling is significantly more
than your friend’s average score.

4.96 Testing to see if a well-known company is lying
in its advertising. If there is evidence that the com-
pany is lying, the Federal Trade Commission will
file a lawsuit against them.

4.97 Testing to see whether taking a vitamin sup-
plement each day has significant health benefits.
There are no (known) harmful side effects of the
supplement.

4.98 A pharmaceutical company is testing to see
whether its new drug is significantly better than
the existing drug on the market. It is more expen-
sive than the existing drug. Which significance level
would the company prefer? Which significance level
would the consumer prefer?

TYPE I AND TYPE II ERRORS
For each situation given in Exercises 4.99 to 4.103,
describe what it means in that context to make a
Type I and Type II error. Personally, which do you
feel is a worse error to make in the given situation?

4.99 The situation described in Exercise 4.93

4.100 The situation described in Exercise 4.94

4.101 The situation described in Exercise 4.95

4.102 The situation described in Exercise 4.96

4.103 The situation described in Exercise 4.97

4.104 Influencing Voters Exercise 4.38 on page 235
describes a possible study to see if there is evidence
that a recorded phone call is more effective than a
mailed flyer in getting voters to support a certain
candidate. The study assumes a significance level of
α = 0.05.

(a) What is the conclusion in the context of this
study if the p-value for the test is 0.027?

(b) In the conclusion in part (a), which type of error
are we possibly making: Type I or Type II?
Describe what that type of error means in this
situation.

(c) What is the conclusion if the p-value for the test
is 0.18?

(d) In the conclusion in part (c), which type of error
are we possibly making: Type I or Type II?
Describe what that type of error means in this
situation.
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4.105 Significant and Insignificant Results
(a) If we are conducting a statistical test and deter-

mine that our sample shows significant results,
there are two possible realities: We are right in
our conclusion or we are wrong. In each case,
describe the situation in terms of hypotheses
and/or errors.

(b) If we are conducting a statistical test and deter-
mine that our sample shows insignificant results,
there are two possible realities: We are right in
our conclusion or we are wrong. In each case,
describe the situation in terms of hypotheses
and/or errors.

(c) Explain why we generally won’t ever know
which of the realities (in either case) is correct.

4.106 Classroom Games Exercise 4.62 describes
a situation in which game theory students are

randomly assigned to play either Game 1 or Game 2,
and then are given an exam containing questions on
both games. Two one-tailed tests were conducted:
one testing whether students who played Game 1
did better than students who played Game 2 on the
question about Game 1, and one testing whether
students who played Game 2 did better than stu-
dents who played Game 1 on the question about
Game 2. The p-values were 0.762 and 0.549, respec-
tively. The p-values greater than 0.5 mean that, in
the sample, the students who played the opposite
game did better on each question. What does this
study tell us about possible effects of actually play-
ing a game and answering a theoretical question
about it? Explain.

4.4CREATING RANDOMIZATION DISTRIBUTIONS

Although we introduce randomization distributions in Section 4.2, our main focus in
that section is on understanding a p-value. In this section, we focus more explicitly
on how randomization distributions are created. As we saw in Section 4.2, we select
randomization samples by focusing on three important goals.

Generating Randomization Samples

The main criteria to consider when creating randomization samples
for a statistical test are:

• Be consistent with the null hypothesis.

• Use the data in the original sample.

• Reflect the way the original data were collected.

Two examples of randomization distributions are given in Section 4.2: a test
for a proportion (dogs and owners) and a test for a difference in means (finger
tapping and caffeine). The information in the sample for the dog–owner test is the
count of the number of correct matches (16) in 25 trials and the null hypothesis is
H0 : p = 0.5. To generate randomization samples, we simulate counts of matches
based on 25 random trials when the probability of a match on each trial is 0.5. For
the finger-tapping experiment the subjects were randomly assigned to one of two
treatment groups (caffeine or no-caffeine) and their tap rates were measured after
treatment. The null hypothesis states that the treatment has no effect on the tap
rates (H0 : μc = μn). To generate randomization samples, we reassign the treatment
labels at random to tap rates from the actual subjects (to satisfy H0 and use the
original sample).

Our goal in both situations is to generate lots of samples that mimic what we
see in the original sample but use a random process that is consistent with both the
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null hypothesis and the way the actual sample was generated. By doing so we can
assess how unlikely the original sample results might be when H0 is true.

In this section, we describe three additional examples: randomization tests for
a difference in two proportions, a correlation, and a single mean. Before reading
the details for each example, you might think for a minute about how you might
generate randomization samples for each situation that satisfy the three criteria in
the box above. For example, you might put the original data on cards to shuffle, flip
a coin, or roll a die. One goal in this section is to understand the basic principles
behind creating a randomization distribution. Since a randomization distribution is
created assuming the null hypothesis is true, it is no surprise that it will be centered
at the value given by the null hypothesis.

Center of a Randomization Distribution

Because we assume the null hypothesis is true when we create a
randomization distribution, the distribution will usually be centered
at the value of the parameter given in the null hypothesis.

In practice, we use technology, such as the online tools at StatKey, to automate
the selection of lots of randomization samples and collect the results in a random-
ization distribution.29 A second goal of this section is to become adept at using
technology to create randomization distributions and find p-values.

Randomization Test for a Difference in Proportions:
Cocaine Addiction

D A T A 4 . 7 Cocaine Addiction
Cocaine addiction is very hard to break. Even among addicts trying hard to
break the addiction, relapse is common. (A relapse is when a person trying to
break out of the addiction fails and uses cocaine again.) One experiment30

investigates the effectiveness of the two drugs desipramine and lithium in the
treatment of cocaine addiction. The subjects in the study were cocaine addicts
seeking treatment, and the study lasted six weeks. The 72 subjects were
randomly assigned to one of three groups (desipramine, lithium, or a placebo,
with 24 subjects in each group) and the study was double blind. The results of
the study are summarized in Table 4.9. ■

For now, we focus on comparing the data for those in the lithium group with
those taking the placebo. (Exercise 4.139 asks you to consider desipramine versus a

Table 4.9 Treatment for cocaine addiction

Relapse No Relapse

Desipramine 10 14
Lithium 18 6
Placebo 20 4

29Supplementary materials with instructions for creating randomization distributions using various
statistical software packages are available online.
30Gawin, F., et al., ‘‘Desipramine Facilitation of Initial Cocaine Abstinence,” Archives of General
Psychiatry, 1989; 46(2): 117–121.
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placebo.) The question of interest is whether lithium is more effective at preventing
relapse than taking an inert pill. We could state the hypotheses very generally as

H0 : Lithium is equally effective as a placebo

Ha : Lithium is more effective than a placebo

We might also define parameters such as pl and pn, the proportion who relapse
while taking lithium and the placebo, respectively, and test

H0 : pl = pn

Ha : pl < pn

In the sample data we see that the proportion of subjects using lithium who relapsed
(p̂l = 18/24 = 0.75) is smaller than the proportion who relapsed with the placebo
(p̂n = 20/24 = 0.83). That result is in the direction of Ha, but is that difference
statistically significant? We construct a randomization distribution and use it to
address this question.

Example 4.28
Explain how to use cards to generate one randomization sample for the test to see if
lithium is more effective than a placebo. What statistic is recorded for the sample?

Solution Since this was a designed experiment and the treatments (lithium or placebo) were
assigned at random, our procedure for generating randomization samples should
also be based on random assignments. Suppose that the null hypothesis is true and
lithium is no more effective than the placebo, so all participants would have had the
same response (relapse or no relapse) if they had been assigned to the other group.
If we construct a deck of 48 cards with 38 ‘‘relapse” cards and 10 ‘‘no relapse” cards,
we could shuffle the deck and deal the cards into two piles of 24 to simulate the
random assignments into the lithium and placebo groups. Randomly dealing the
cards into these two piles of 24 gives us one randomization sample. What statistic
should we record for each of the randomization samples? Since we are conducting
a test for a difference in proportions, an obvious choice is the difference in sample
proportions, p̂l − p̂n.

While dealing cards may help us understand what is going on in a randomization
distribution, in practice, of course, we use technology to generate a randomization
distribution and to compute a p-value.

Example 4.29
Use StatKey or other technology to generate a randomization distribution for the
difference in proportions between the lithium group and the placebo group. Use the
sample data to find a p-value. What is the conclusion of the test?

Solution Figure 4.28 shows a dotplot of the difference in proportions for 5000 randomization
samples. As expected, the distribution is centered approximately at zero, represent-
ing the null value of zero difference in the proportions. We find the p-value by finding
how extreme the sample results are. The original sample difference in proportions is
p̂l − p̂n = 0.75 − 0.83 = −0.08. Since the alternative hypothesis is Ha : pl < pn, this
is a left-tail test. We see in Figure 4.28 that the area to the left of −0.08 is 0.36. The
p-value is 0.36. Since this p-value is not less than any reasonable significance level,
we do not reject H0. We do not have sufficient evidence that lithium works better
than a placebo when treating cocaine addiction.
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Figure 4.28 Randomization distribution of difference in proportions

Using Other Statistics
In Example 4.28, we dealt cards into two piles and computed the difference in

proportion of relapses between the two piles. Now imagine that you were actually
shuffling and dealing the cards over and over again. You might soon realize that you
don’t really need to divide each relapse count by 24, since comparing the difference
in the counts is equally effective. After a few more randomizations you might also
realize that you just need to count the red cards in the lithium pile, since the total
number of red cards is always the same (38). All three of these ways to record the
sample statistic are effective, since each offers an equivalent way to measure how
extreme the original sample results are. We could have used any of these three
statistics in constructing a randomization distribution.

We often have this sort of flexibility in choosing a sample statistic. One of the
powerful aspects of the randomization approach is that we can apply it to whatever
statistic makes sense for a sample. As long as the statistic we use consistently
measures which samples are more extreme than the original data, the results (i.e.,
the p-values) from the randomization distributions will be the same.

Randomization Test for a Correlation: Malevolent
Uniforms and Penalties
In Data 4.3 on page 224 we consider the question of whether the perceived malevo-
lence score of NFL team jerseys (NFL Malevolence) is related to the aggressiveness
of the team as measured by a standardized score for number of penalty yards
(ZPenYds). If we let ρ be the population correlation for all teams in all years, we
want to see if malevolence is positively associated with penalty yards. We have

H0 : ρ = 0
Ha : ρ > 0

3 a
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The data for the study are stored in the MalevolentUniformsNFL file. For the sample
of n = 28 NFL teams in the years of the original study, the correlation between
NFL Malevolence and ZPenYds is r = 0.43. We create a randomization distribution
of sample correlations to assess the strength of evidence that the original sample
correlation, r = 0.43, has in this situation and make a conclusion about a possible
relationship between the perceived malevolence of uniforms and penalty yards.

Example 4.30
To construct the randomization distribution, we assume the null hypothesis is true.
What does that mean in this case? How might we construct a randomization sample
using the original data while also assuming that the null hypothesis is true? What
statistic do we record for each randomization sample?

Solution The null hypothesis is ρ = 0, which means that NFL Malevolence and ZPenYds are
really unrelated. This would mean that there is no connection between the two data
columns, and that any number in one column could just as easily be assigned to
any number in the other column. One way to simulate this physically is to put the
28 ZPenYds values on index cards, shuffle, and randomly deal the cards to the 28
teams. This way the ZPenYds value that gets paired with each NFL Malevolence
value happens by random chance. In this method, we use the data that we have while
also forcing the null hypothesis to be true. For each such randomization sample, we
compute the sample correlation.

After computing one randomization statistic as in Example 4.30, we shuffle the
cards again and deal out another set of ZPenYds assignments. Using this process
of creating the randomization samples, we ensure no association between ZPenYds
and NFL Malevolence values, as required by the null hypothesis. Thus we can use
the original data to build up a distribution of typical sample correlations under
the assumption that the null hypothesis, ρ = 0, holds. Table 4.10 shows the original
malevolent uniform data and four random assignments of the ZPenYds values along
with the sample correlation of each assignment.

Of course, in practice we use technology to simulate this process and generate
the randomization distribution of sample correlations more efficiently, as in the next
example.

Example 4.31
Use StatKey or other technology to create a randomization distribution and use
the randomization distribution of sample correlations to find a p-value for the
malevolent uniform data. What conclusion can we make about the relationship (if
any) between the perceived malevolence of uniforms and penalty yards for NFL
teams?

Solution Figure 4.29 shows a randomization distribution for these data. Since Ha : ρ > 0, this
is a right-tail test. The sample correlation is r = 0.43 and we are interested in what
proportion of the randomization statistics are more extreme than r = 0.43. We see
in Figure 4.29 that

p-value = 0.011

This small p-value gives fairly strong evidence to conclude that there is a positive
association between the malevolence score of NFL uniforms and the number of
penalty yards a team receives.
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Table 4.10 Original ZPenYds and four random assignments

NFL Team Malevolence ZPenYds ZPenYds 1 ZPenYds 2 ZPenYds 3 ZPenYds 4

LA Raiders 5.10 1.19 −0.19 0.02 −0.41 1.19
Pittsburgh 5.00 0.48 0.02 0.10 0.27 −0.19
Cincinnati 4.97 0.27 0.38 0.23 −0.01 0.24
New Orleans 4.83 0.10 −0.49 −0.07 −0.73 −0.01
Chicago 4.68 0.29 0.10 1.19 0.38 −0.07
Kansas City 4.58 −0.19 −0.01 0.48 −0.18 0.27
Washington 4.40 −0.07 1.19 0.27 −0.49 0.23
St. Louis 4.27 −0.01 −0.32 0.24 −0.81 −0.81
NY Jets 4.12 0.01 0.01 −0.32 0.02 0.48
LA Rams 4.10 −0.09 0.23 −0.49 −1.60 0.10
Cleveland 4.05 0.44 −0.73 −0.01 0.63 0.38
San Diego 4.05 0.27 0.48 0.29 −0.07 −0.73
Green Bay 4.00 −0.73 −0.18 0.04 0.29 0.29
Philadelphia 3.97 −0.49 0.29 0.09 0.44 −1.60
Minnesota 3.90 −0.81 −0.09 −0.41 −0.19 0.44
Atlanta 3.87 0.30 −0.19 −0.19 0.27 −0.18
Indianapolis 3.83 −0.19 −0.07 0.38 0.09 0.02
San Francisco 3.83 0.09 −1.60 0.01 −0.32 −0.32
Seattle 3.82 0.02 0.09 −0.18 1.19 −0.41
Denver 3.80 0.24 0.27 −1.60 0.30 0.27
Tampa Bay 3.77 −0.41 0.30 −0.09 0.01 0.01
New England 3.60 −0.18 −0.41 0.27 0.04 −0.19
Buffalo 3.53 0.63 0.27 −0.81 0.10 −0.09
Detroit 3.38 0.04 0.44 0.44 −0.09 −0.49
NY Giants 3.27 −0.32 0.04 0.30 0.48 0.09
Dallas 3.15 0.23 −0.81 −0.19 −0.19 0.04
Houston 2.88 0.38 0.63 0.63 0.24 0.30
Miami 2.80 −1.60 0.24 −0.73 0.23 0.63
Correlation 0.43 −0.02 0.23 −0.26 0.08
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null = 0
0.2 0.4 0.6

# samples = 10000
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st. dev.  = 0.194

0.430

0.011

Left Tail Two-Tail Right Tail

Figure 4.29 Randomization distribution of NFL Malevolence vs ZPenYds correlations when ρ = 0
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Take care when interpreting this conclusion to avoid assuming a cause-effect
relationship since these data come from an observational study and not an experi-
ment. It may be true that referees deal more harshly with malevolent-looking players
or that donning such a uniform might instill a more aggressive attitude. However, it
might also be the case that owners or coaching staffs that value aggressiveness might
select players with such attitudes and also choose a more malevolent team uniform.

Randomization Test for a Mean: Body Temperature

© Tom Hahn/iStockphoto

Is the average body temperature 98.6◦F?

D A T A 4 . 8 Body Temperature
What is the average body temperature for healthy humans? Most people using a
Fahrenheit scale will say 98.6◦F. This ‘‘fact” has been well established for many
years. But is it possible that the average body temperature has changed over
time? Perhaps people are getting warmer in response to global warming of the
environment or have slightly lower temperatures than they had in past
centuries. Allen Shoemaker31 presented some data derived from a study of
healthy adults which contains body temperature, gender, and pulse rate for
each subject. The data in BodyTemp50 contains a sample of n = 50 cases from
that dataset with information for 25 males and 25 females. Figure 4.30 shows a
dotplot of the body temperature readings in the variable BodyTemp. The mean
in this sample is x = 98.26 and the standard deviation is s = 0.765. Do these data
provide significant evidence (at a 5% level) that the average body temperature is
really different from the standard 98.6◦F? ■

31Shoemaker, A., ‘‘What’s Normal?—Temperature, Gender and Heartrate,” Journal of Statistics Educa-
tion, 1996; 4(2).
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98.6

xbar
98.2 98.3

98.26

98.4 98.5 98.7 98.8 98.9 99.0

Figure 4.31 Randomization distribution of body temperature means when μ = 98.6

In this instance, we see in Figure 4.31 that only 8 of the 10,000 simulated means are
as small (or smaller) than 98.26. This is a two-tail test since the alternative hypothesis
is Ha : μ �= 98.6. Doubling to account for both tails gives

p-value = 2 · (8/10000) = 0.0016

This very small p-value (well below α = 0.05) gives strong evidence against the
null hypothesis that the average body temperature is 98.6◦F and indicates that
the mean human body temperature is probably lower. Note that, even though the
sample leads to convincingly rejecting the null hypothesis, the practical effect of
assuming the average body temperature may be closer to 98.3◦F than 98.6◦F is pretty
minimal.

The ‘‘randomness” in the collection of the original body temperatures is the
random selection of participants for the sample. Notice that our method of selecting
samples for the randomization distribution has mimicked this process as best we
can, only in a setting where we know the population mean matches the 98.6 of the
null hypothesis. In other cases (such as randomized experiments), the randomness in
the sample statistic comes from the random allocation of subjects to treatments. In
those cases, recall that we create the randomization distribution by rerandomizing
the treatment assignment (as in the cocaine example), rather than resampling from
a population.

Reflect the Way the Original Data Were Collected
The box at the start of this section lists three criteria for creating randomization
samples. The first is to be consistent with the null hypothesis. This is essential for
computing a p-value as a measurement of extremity when H0 is true. The second
point should be obvious: Use the original sample. As we see in every example, the
randomization samples are drawn in some way from the original data. The final point
is to reflect the way the original data were collected. Whenever feasible, the method
of randomization to make simulated samples should mimic the way randomization
was used in collecting the data. For example, if data are from an experiment with
random allocation of an explanatory variable, we should randomly reallocate that
variable for randomization samples. If the data are obtained by randomly sampling
two groups, we can randomly resample from those two samples. Software, such as
the online tools at StatKey, can help implement these methods.

I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
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Example 4.34
Finger Tapping and Caffeine

Data 4.6 on page 240 discusses a study on the effects of caffeine on finger tap rates.
The results for 20 subjects in Table 4.4 were obtained from an experiment where
subjects were randomly assigned to take either caffeine or a placebo before tapping.
To obtain the randomization distribution in Figure 4.11 we randomly reassigned
the ‘‘caffeine” and ‘‘no-caffeine” labels to the 20 finger tap rates to compute the
randomization samples. Below we give two other methods for generating the data
in Table 4.4. Discuss how we might create randomization samples in each case.

(a) The researchers randomly sampled 20 people in the morning, 10 who had one
or more cups of coffee and 10 who had no-caffeine. They recorded the tap rates
for each subject.

(b) The researchers recruited 10 subjects and measured tap rates for each, once
after a caffeine pill and once after a placebo. They flipped a coin for each subject
to determine which pill was used first.

Solution (a) If the subjects were selected at random in an observational study, we should use
a similar process for getting randomization samples, although we must still be
sure the null hypothesis (it doesn’t matter whether or not they’ve had caffeine)
holds. One way to do this is to pool the 20 tap rates and then randomly draw
two samples of size 10 with replacement to create the caffeine and no-caffeine
groups.

(b) Having each of 10 subjects use both pills produces paired data. To create
randomization samples we need to randomly decide which of the tap rates
goes with ‘‘caffeine” and which goes with ‘‘no-caffeine” for each subject. One
convenient way to do this is to find the difference in tap rate (caffeine −
no-caffeine) for each subject and then randomly change the sign on some of the
differences.

Summary
As long as we follow the guidelines given at the start of this section, there are
many ways to construct appropriate randomization distributions. This fact reflects
the great flexibility of this method but can also make it hard to sort through all
the options. To help with this, we summarize a few of the most common ways to
generate a randomization sample in the box below.

Summarizing Some Methods for Generating a

Randomization Sample

Here are a few of the many ways to generate a randomization sample:

• For a test for a proportion: We sample from a population with the
null proportion using the sample size in the original sample.

• For a test for a mean: To keep the variability of the simulated sam-
ples the same as the original sample, we shift the original sample so
that the mean of the shifted values is at the null mean. We sample
with replacement from these shifted values to obtain a sample with
the same sample size as the original sample.

o
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• For a test for a difference in means in which the results come from a
randomized experiment: To match the null assumption of no differ-
ence between the two groups, we deal all the values randomly to the
two groups, matching the two sample sizes in the original sample.

• For a test for a difference in proportions in which the results come
from a randomized experiment: To match the null assumption of no
difference between the two groups, we deal all the values randomly
to the two groups, matching the two sample sizes in the original
sample.

• For a test for a correlation: To match a null hypothesis of zero cor-
relation, we randomly assign the values of one variable to the values
of the other variable.

There are other methods, as we have seen, but these are some of the
most common.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• For a given sample and null hypothesis, describe the process of creating
a randomization distribution

• Use the hypotheses of a test to identify the expected center of a
randomization distribution and determine whether the p-value is found
using the left, right, or two tails

• Use technology to create a randomization distribution

• Conduct a hypothesis test for a variety of situations

Exercises for Section 4.4

SKILL BUILDER 1
In Exercises 4.107 to 4.111, null and alternative
hypotheses for a test are given. Give the notation (x,
for example) for a sample statistic we might record
for each simulated sample to create the randomiza-
tion distribution.

4.107 H0 : p = 0.5 vs Ha : p �= 0.5

4.108 H0 : μ = 15 vs Ha : μ < 15

4.109 H0 : ρ = 0 vs Ha : ρ �= 0

4.110 H0 : μ1 = μ2 vs Ha : μ1 > μ2

4.111 H0 : p1 = p2 vs Ha : p1 �= p2

SKILL BUILDER 2
In Exercises 4.112 to 4.116, the null and alternative
hypotheses for a test are given as well as some
information about the actual sample(s) and the
statistic that is computed for each randomization
sample. Indicate where the randomization distribu-
tion will be centered. In addition, indicate whether
the test is a left-tail test, a right-tail test, or a two-
tailed test.

4.112 Hypotheses: H0 : p = 0.5 vs Ha : p < 0.5

Sample: p̂ = 0.4, n = 30

Randomization statistic = p̂

o
o

o
o
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4.113 Hypotheses: H0 : μ = 10 vs Ha : μ > 10
Sample: x = 12, s = 3.8, n = 40
Randomization statistic = x

4.114 Hypotheses: H0 : ρ = 0 vs Ha : ρ �= 0
Sample: r = −0.29, n = 50
Randomization statistic = r

4.115 Hypotheses: H0 : μ1 = μ2 vs Ha : μ1 �= μ2
Sample: x1 = 2.7 and x2 = 2.1
Randomization statistic = x1 − x2

4.116 Hypotheses: H0 : p1 = p2 vs Ha : p1 > p2

Sample: p̂1 = 0.3, n1 = 20 and p̂2 = 0.167, n2 = 12

Randomization statistic = p̂1 − p̂2

SKILL BUILDER 3
Exercises 4.117 to 4.122 give null and alternative
hypotheses for a population proportion, as well as
sample results. Use StatKey or other technology to
generate a randomization distribution and calculate
a p-value. StatKey tip: Use ‘‘Test for a Single Pro-
portion” and then ‘‘Edit Data” to enter the sample
information.

4.117 Hypotheses: H0 : p = 0.5 vs Ha : p > 0.5
Sample data: p̂ = 30/50 = 0.60 with n = 50

4.118 Hypotheses: H0 : p = 0.5 vs Ha : p < 0.5
Sample data: p̂ = 38/100 = 0.38 with n = 100

4.119 Hypotheses: H0 : p = 0.7 vs Ha : p < 0.7
Sample data: p̂ = 125/200 = 0.625 with n = 200

4.120 Hypotheses: H0 : p = 0.6 vs Ha : p > 0.6
Sample data: p̂ = 52/80 = 0.65 with n = 80

4.121 Hypotheses: H0 : p = 0.5 vs Ha : p �= 0.5
Sample data: p̂ = 42/100 = 0.42 with n = 100

4.122 Hypotheses: H0 : p = 0.5 vs Ha : p �= 0.5
Sample data: p̂ = 28/40 = 0.70 with n = 40

4.123 Paul the Octopus In the 2010 World Cup,
Paul the Octopus (in a German aquarium) became
famous for being correct in all eight of the pre-
dictions it made, including predicting Spain over
Germany in a semifinal match. Before each game,
two containers of food (mussels) were lowered into
the octopus’s tank. The containers were identical,
except for country flags of the opposing teams,
one on each container. Whichever container Paul
opened was deemed his predicted winner.32 Does
Paul have psychic powers? In other words, is an
8-for-8 record significantly better than just guessing?

(a) State the null and alternative hypotheses.

32For video of Paul go to http://www.cnn.com/2010/SPORT/
football/07/08/germany.octopus.explainer/index.html.

(b) Simulate one point in the randomization dis-
tribution by flipping a coin eight times and
counting the number of heads. Do this five
times. Did you get any results as extreme as
Paul the Octopus?

(c) Why is flipping a coin consistent with assuming
the null hypothesis is true?

4.124 How Unlikely Is Paul the Octopus’s Success?
For the Paul the Octopus data in Exercise 4.123, use
StatKey or other technology to create a randomiza-
tion distribution. Calculate a p-value. How unlikely
is his success rate if Paul the Octopus is really not
psychic?

4.125 Flipping Coins We flip a coin 150 times and
get 90 heads, so the sample proportion of heads
is p̂ = 90/150 = 0.6. To test whether this provides
evidence that the coin is biased, we create a ran-
domization distribution. Where will the distribution
be centered? Why?

4.126 Finger Tapping and Caffeine In Data 4.6 we
look at finger-tapping rates to see if ingesting caf-
feine increases average tap rate. The sample data
for the 20 subjects (10 randomly getting caffeine
and 10 with no-caffeine) are given in Table 4.4 on
page 241. To create a randomization distribution for
this test, we assume the null hypothesis μc = μn is
true, that is, there is no difference in average tap
rate between the caffeine and no-caffeine groups.

(a) Create one randomization sample by randomly
separating the 20 data values into two groups.
(One way to do this is to write the 20 tap rate
values on index cards, shuffle, and deal them
into two groups of 10.)

(b) Find the sample mean of each group and cal-
culate the difference, xc − xn, in the simulated
sample means.

(c) The difference in sample means found in
part (b) is one data point in a randomization
distribution. Make a rough sketch of the ran-
domization distribution shown in Figure 4.11 on
page 242 and locate your randomization statistic
on the sketch.

4.127 Light at Night Makes Fat Mice? In Data A.1
on page 136, we introduce a study in which mice
are randomly separated into one group on a normal
light dark cycle and one group with bright light on all
the time. Although the mice ate the same amounts
and exercised the same, the sample mice with the
light at night gained more weight. We wish to
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determine whether there is evidence that mean
weight gain for all mice (not just this sample)
is higher in the presence of light at night. The
body mass gain, in grams, after four weeks is
shown (rounded to the nearest whole number) in
Table 4.11.

(a) What are the null and alternative hypotheses?

(b) How can we create one randomization sample?
Create one (using cards or some other physi-
cal simulation) and record the results of your
simulated sample in a table similar to Table 4.11.

Table 4.11 Body mass gain of mice in grams

Bright light (LL) 10 10 11 9 12 9 11 9 17
Light/Dark (LD) 5 6 7 8 3 8 6 6 4

4.128 Arsenic in Chicken Data 4.5 on page 228
introduces a situation in which a restaurant chain is
measuring the levels of arsenic in chicken from its
suppliers. The question is whether there is evidence
that the mean level of arsenic is greater than 80
ppb, so we are testing H0 : μ = 80 vs Ha : μ > 80,
where μ represents the average level of arsenic in
all chicken from a certain supplier. It takes money
and time to test for arsenic so samples are often
small. Suppose n = 6 chickens from one supplier
are tested, and the levels of arsenic (in ppb) are:

68, 75, 81, 93, 95, 134

(a) What is the sample mean for the data?

(b) Translate the original sample data by the appro-
priate amount to create a new dataset in which
the null hypothesis is true. How do the sample
size and standard deviation of this new dataset
compare to the sample size and standard devia-
tion of the original dataset?

(c) Write the six new data values from part (b) on
six cards. Sample from these cards with replace-
ment to generate one randomization sample.
(Select a card at random, record the value, put
it back, select another at random, until you have
a sample of size 6, to match the original sample
size.) List the values in the sample and give the
sample mean.

(d) Generate 9 more simulated samples, for a total
of 10 samples for a randomization distribution.

Table 4.12 Number of words recalled

Sleep 14 18 11 13 18 17 21 9 16 17 14 15 Mean = 15.25

Caffeine 12 12 14 13 6 18 14 16 10 7 15 10 Mean = 12.25

Give the sample mean in each case and cre-
ate a small dotplot. Use an arrow to locate the
original sample mean on your dotplot.

4.129 A Randomization Distribution for Arsenic in
Chicken For the study in Exercise 4.128, use StatKey
or other technology to create the randomization dis-
tribution for this test. Find the p-value and give a
conclusion for the test. Should the restaurant chain
stop ordering chickens from that supplier?

4.130 Effect of Sleep and Caffeine on Memory
Exercise 4.82 on page 261 describes a study in which
a sample of 24 adults are randomly divided equally
into two groups and given a list of 24 words to mem-
orize. During a break, one group takes a 90-minute
nap while another group is given a caffeine pill.
The response variable of interest is the number of
words participants are able to recall following the
break. We are testing to see if there is a difference
in the average number of words a person can recall
depending on whether the person slept or ingested
caffeine. The data33 are shown in Table 4.12 and are
available in SleepCaffeine.

(a) Define any relevant parameter(s) and state the
null and alternative hypotheses.

(b) What assumption do we make in creating the
randomization distribution?

(c) What statistic will we record for each of the
simulated samples to create the randomization
distribution? What is the value of that statistic
for the observed sample?

(d) Where will the randomization distribution be
centered?

(e) Find one point on the randomization distribu-
tion by randomly dividing the 24 data values
into two groups. Describe how you divide the
data into two groups and show the values in each
group for the simulated sample. Compute the
sample mean in each group and compute the dif-
ference in the sample means for this simulated
result.

(f) Use StatKey or other technology to create a ran-
domization distribution. Estimate the p-value

33These data are recreated from the published summary statistics
and are estimates of the actual data.
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for the observed difference in means given in
part (c).

(g) At a significance level of α = 0.01, what is the
conclusion of the test? Interpret the results in
context.

4.131 Watch Out for Lions after a Full Moon Scien-
tists studying lion attacks on humans in Tanzania34

found that 95 lion attacks happened between 6 pm
and 10 pm within either five days before a full moon
or five days after a full moon. Of these, 71 hap-
pened during the five days after the full moon while
the other 24 happened during the five days before
the full moon. Does this sample of lion attacks pro-
vide evidence that attacks are more likely after a full
moon? In other words, is there evidence that attacks
are not equally split between the two five-day peri-
ods? Use StatKey or other technology to find the
p-value, and be sure to show all details of the test.
(Note that this is a test for a single proportion since
the data come from one sample.)

4.132 Does Massage Help Heal Muscles Strained
by Exercise? After exercise, massage is often used
to relieve pain, and a recent study35 shows that
it also may relieve inflammation and help muscles
heal. In the study, 11 male participants who had just
strenuously exercised had 10 minutes of massage
on one quadricep and no treatment on the other,
with treatment randomly assigned. After 2.5 hours,
muscle biopsies were taken and production of the
inflammatory cytokine interleukin-6 was measured
relative to the resting level. The differences (control
minus massage) are given in Table 4.13.

(a) Is this an experiment or an observational study?
Why is it not double blind?

(b) What is the sample mean difference in inflam-
mation between no massage and massage?

(c) We want to test to see if the population mean dif-
ference μD is greater than zero, meaning muscle
with no treatment has more inflammation than
muscle that has been massaged. State the null
and alternative hypotheses.

(d) Use StatKey or other technology to find the
p-value from a randomization distribution.

34Packer, C., Swanson, A., Ikanda, D., and Kushnir, H., ‘‘Fear of
Darkness, the Full Moon and the Nocturnal Ecology of African
Lions,” PLoS ONE, 2011; 6(7): e22285.
35Data approximated from summary statistics in Crane, J.,
et al., ‘‘Massage Therapy Attenuates Inflammatory Signaling
After Exercise-Induced Muscle Damage,” Science Translational
Medicine, February 1, 2012.

(e) Are the results significant at a 5% level? At a
1% level? State the conclusion of the test if we
assume a 5% significance level (as the authors
of the study did).

Table 4.13 Inflammation in muscle: control
minus massage

0.6 4.7 3.8 0.4 1.5 −1.2 2.8 −0.4 1.4 3.5 −2.8

4.133 Hockey Malevolence Data 4.3 on page 224
describes a study of a possible relationship between
the perceived malevolence of a team’s uniforms and
penalties called against the team. In Example 4.31
on page 270 we construct a randomization distribu-
tion to test whether there is evidence of a positive
correlation between these two variables for NFL
teams. The data in MalevolentUniformsNHL has
information on uniform malevolence and penalty
minutes (standardized as z-scores) for National
Hockey League (NHL) teams. Use StatKey or other
technology to perform a test similar to the one in
Example 4.31 using the NHL hockey data. Use a
5% significance level and be sure to show all details
of the test.

4.134 Electrical Stimulation for Fresh Insight?
Exercise 2.23 on page 57 introduces a study in which
40 participants are trained to solve problems in
a certain way and then asked to solve an unfa-
miliar problem that requires fresh insight. Half of
the participants were randomly assigned to receive
electrical stimulation of the brain while the other
half (control group) received sham stimulation as a
placebo. The results are shown in Table 4.14.

(a) Use StatKey or other technology to create a
randomization distribution to test whether the
proportion able to solve a problem is signif-
icantly higher in a group receiving electrical
stimulation of the brain. Be sure to state the
hypotheses, give the p-value, and clearly state
the conclusion in context.

(b) Can we conclude that electrical stimulation of
the brain helps people solve a new problem that
needs fresh insight?

Table 4.14 Does electrical brain
stimulation bring fresh insight to a
problem?

Treatment Solved Not Solved

Sham 4 16
Electrical 12 8
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4.135 Medicinal Marijuana in HIV Treatment In
1980, the active ingredient in marijuana was shown
to outperform a placebo in reducing nausea in
chemotherapy patients, with a p-value of 0.0004.
Many studies36 are now underway to see if the
drug has additional medicinal uses. In one con-
trolled, randomized trial, 55 patients with HIV were
randomly assigned to two groups, with one group
getting cannabis (marijuana) and the other getting
a placebo. All of the patients had severe neuro-
pathic pain, and the response variable is whether
or not pain was reduced by 30% or more (a stan-
dard benchmark in pain measurement). The results
are shown in Table 4.15. The question of interest is
whether marijuana is more effective than a placebo
in relieving pain.

(a) What are the null and alternative hypotheses?

(b) What are the sample proportions of patients
with reduced pain in each group? Are the sam-
ple results in the direction of the alternative
hypothesis?

(c) The US Food and Drug Administration (FDA)
is reluctant to approve the medicinal use of
cannabis unless the evidence supporting it is
very strong because the drug has significant side
effects. Do you expect the FDA to use a rela-
tively small or relatively large significance level
in making a conclusion from this test?

(d) What assumption do we make in creating the
randomization distribution? If we use the dif-
ference in sample proportions, D = p̂1 − p̂2,
as our sample statistic, where will the distri-
bution be centered? Give a rough sketch of
the general shape of the randomization dis-
tribution, showing the shape and where it is
centered.

(e) What is the observed statistic from the sample?
If the p-value for this test is 0.02, locate the
observed statistic on your rough sketch of the
randomization distribution.

(f) Use the p-value given in part (e) to give an
informal conclusion to the test by describing the
strength of evidence for the result.

(g) Combining your answers to parts (c) and (f),
what is the likely formal conclusion of the
test?

36Seppa, N., ‘‘Not Just a High: Scientists Test Medicinal Mar-
ijuana Against MS, Inflammation, and Cancer,” ScienceNews,
June 19, 2010.

Table 4.15 Is marijuana effective at relieving
pain in HIV patients?

Pain Reduced Pain Not Reduced

Cannabis 14 13
Placebo 7 21

4.136 Finding a P-value for Marijuana for HIV
Patients For the study in Exercise 4.135, use StatKey
or other technology to create the randomization dis-
tribution for this data. Use the distribution to calcu-
late a p-value for the test, and compare this p-value
to the one given in Exercise 4.135(e). Use the p-
value obtained in this exercise to assess the strength
of evidence against the null hypothesis, in context.

4.137 Election Poll In October before the 2008
US presidential election, ABC News and the
Washington Post jointly conducted a poll of ‘‘a
random national sample” and asked people who
they intended to vote for in the 2008 presiden-
tial election.37 Of the 1057 sampled people who
answered either Barack Obama or John McCain,
55.2% indicated that they would vote for Obama
while 44.8% indicated that they would vote for
McCain. While we now know the outcome of the
election, at the time of the poll many people were
very curious as to whether this significantly predicts
a winner for the election. (While a candidate needs a
majority of the electoral college vote to win an elec-
tion, we’ll simplify things and simply test whether
the percentage of the popular vote for Obama is
greater than 50%.)

(a) State the null and alternative hypotheses for
testing whether more people would vote for
Obama than McCain. (Hint: This is a test for a
single proportion since there is a single variable
with two possible outcomes.)

(b) Describe in detail how you could create a ran-
domization distribution to test this (if you had
many more hours to do this homework and no
access to technology).

4.138 Finding the P-value for the Election Poll
Use StatKey or other technology to create a ran-
domization distribution for the poll described in
Exercise 4.137. What is the p-value for the test?
Would this have been convincing evidence that
Obama would win the election (at least the pop-
ular vote)? Now, knowing the true outcome of the
election, does the test avoid making a Type I or
Type II error?

37http://www.washingtonpost.com/wp-srv/politics/polls/postpoll
101308.html.
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4.139 Desipramine vs Placebo in Cocaine Addic-
tion In this exercise, we see that it is possible to
use counts instead of proportions in testing a cate-
gorical variable. Data 4.7 describes an experiment
to investigate the effectiveness of the two drugs
desipramine and lithium in the treatment of cocaine
addiction. The results of the study are summarized
in Table 4.9 on page 267. The comparison of lithium
to the placebo is the subject of Example 4.29. In this
exercise, we test the success of desipramine against
a placebo using a different statistic than that used
in Example 4.29. Let pd and pc be the proportion
of patients who relapse in the desipramine group
and the control group, respectively. We are testing
whether desipramine has a lower relapse rate than
a placebo.

(a) What are the null and alternative hypotheses?

(b) From Table 4.9 we see that 20 of the 24 placebo
patients relapsed, while 10 of the 24 desipramine
patients relapsed. The observed difference in
relapses for our sample is

D = desipramine relapses − placebo relapses

= 10 − 20 = −10

If we use this difference in number of relapses
as our sample statistic, where will the random-
ization distribution be centered? Why?

(c) If the null hypothesis is true (and desipramine
has no effect beyond a placebo), we imagine that
the 48 patients have the same relapse behav-
ior regardless of which group they are in. We
create the randomization distribution by simu-
lating lots of random assignments of patients to
the two groups and computing the difference in
number of desipramine minus placebo relapses
for each assignment. Describe how you could
use index cards to create one simulated sample.
How many cards do you need? What will you
put on them? What will you do with them?

4.140 Testing Desipramine vs Placebo in Cocaine
Addiction

(a) For the study in Exercise 4.139, use StatKey or
other technology to create a randomization dis-
tribution for these data. Use the distribution to
calculate a p-value. Interpret the results.

(b) In Example 4.29 on page 268, we saw that the
p-value was 0.36 for testing whether lithium is
better than a placebo in battling cocaine addic-
tion. Using this p-value and your result from
part (a), which drug shows stronger evidence
that it is better than a placebo? Explain.

4.141 Quiz vs Lecture Pulse Rates Do you think
that students undergo physiological changes when in
potentially stressful situations such as taking a quiz
or exam? A sample of statistics students were inter-
rupted in the middle of a quiz and asked to record
their pulse rates (beats for a 1-minute period). Ten
of the students had also measured their pulse rate
while sitting in class listening to a lecture, and these
values were matched with their quiz pulse rates.
The data appear in Table 4.16 and are stored in
QuizPulse10. Note that this is paired data since we
have two values, a quiz and a lecture pulse rate, for
each student in the sample. The question of interest
is whether quiz pulse rates tend to be higher, on
average, than lecture pulse rates. (Hint: Since this is
paired data, we work with the differences in pulse
rate for each student between quiz and lecture. If
the differences are D = quiz pulse rate − lecture
pulse rate, the question of interest is whether μD is
greater than zero.)

(a) Define the parameter(s) of interest and state the
null and alternative hypotheses.

(b) Determine an appropriate statistic to measure
and compute its value for the original sample.

(c) Describe a method to generate randomization
samples that is consistent with the null hypoth-
esis and reflects the paired nature of the data.
There are several viable methods. You might
use shuffled index cards, a coin, or some other
randomization procedure.

(d) Carry out your procedure to generate one ran-
domization sample and compute the statistic
you chose in part (b) for this sample.

(e) Is the statistic for your randomization sample
more extreme (in the direction of the alterna-
tive) than the original sample?

Table 4.16 Quiz and lecture pulse rates for 10
students

Student 1 2 3 4 5 6 7 8 9 10
Quiz 75 52 52 80 56 90 76 71 70 66
Lecture 73 53 47 88 55 70 61 75 61 78

4.142 Testing Quiz vs Lecture Pulse Rates Use
StatKey or other technology to create a random-
ization distribution for the paired data in the
quiz–lecture pulse test described in Exercise 4.141.
Find the p-value for the original sample and deter-
mine if there is sufficient evidence to conclude that
the mean pulse rate during a quiz is larger than the
mean pulse rate during lecture. [Hint: As described
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in Exercise 4.141, be sure to pay attention to
the paired nature of the data. In particular, you
will need to use the differences (D = quiz pulse −
lecture pulse) for each person as your data and con-
duct a test for a mean to determine whether the
average difference is larger than zero.]

4.143 Clicker Questions A statistics instructor
would like to ask ‘‘clicker” questions that about
80% of her students in a large lecture class will
get correct. A higher proportion would be too easy
and a lower proportion might discourage students.
Suppose that she tries a sample of questions and
receives 76 correct answers and 24 incorrect answers
among 100 responses. The hypotheses of interest are
H0 : p = 0.80 vs Ha : p �= 0.80. Discuss whether or
not the methods described below would be appro-
priate ways to generate randomization samples in
this setting. Explain your reasoning in each case.

(a) Sample 100 answers (with replacement) from
the original student responses. Count the num-
ber of correct responses.

(b) Sample 100 answers (with replacement) from a
set consisting of 8 correct responses and 2 incor-
rect responses. Count the number of correct
responses.

4.144 Exercise Hours Introductory statistics stu-
dents fill out a survey on the first day of class.
One of the questions asked is ‘‘How many hours of
exercise do you typically get each week?” Responses
for a sample of 50 students are introduced in
Example 3.25 on page 207 and stored in the file
ExerciseHours. The summary statistics are shown
in the computer output. The mean hours of exercise
for the combined sample of 50 students is 10.6 hours
per week and the standard deviation is 8.04. We are
interested in whether these sample data provide evi-
dence that the mean number of hours of exercise per
week is different between male and female statistics
students.

Variable Gender N Mean StDev Minimum Maximum

Exercise F 30 9.40 7.41 0.00 34.00

M 20 12.40 8.80 2.00 30.00

Discuss whether or not the methods described below
would be appropriate ways to generate randomiza-
tion samples that are consistent with H0 : μF = μM

vs Ha : μF �= μM. Explain your reasoning in each
case.

(a) Randomly label 30 of the actual exercise values
with ‘‘F” for the female group and the remain-
ing 20 exercise values with ‘‘M” for the males.
Compute the difference in the sample means,
xF − xM.

(b) Add 1.2 to every female exercise value to give a
new mean of 10.6 and subtract 1.8 from each
male exercise value to move their mean to
10.6 (and match the females). Sample 30 val-
ues (with replacement) from the shifted female
values and 20 values (with replacement) from
the shifted male values. Compute the difference
in the sample means, xF − xM.

(c) Combine all 50 sample values into one set of data
having a mean amount of 10.6 hours. Select 30
values (with replacement) to represent a sam-
ple of female exercise hours and 20 values (also
with replacement) for a sample of male exercise
values. Compute the difference in the sample
means, xF − xM.

4.145 Different Randomization Distributions for
Exercise Hours Use StatKey or other technology
and the data in ExerciseHours to carry out any two
of the three randomization procedures as described
in parts (a) to (c) in Exercise 4.144 comparing mean
hours of exercise per week by gender. Are the
results relatively consistent or are they quite differ-
ent? What conclusion would you draw about the
relationship (if any) between gender and amount of
exercise?

4.5CONFIDENCE INTERVALS AND HYPOTHESIS TESTS

In Chapter 3 we examine methods to construct confidence intervals for population
parameters. We sample (with replacement) from the original sample to create
a bootstrap distribution of possible values for a sample statistic. Based on this
distribution, we produce a range of plausible values for the parameter so that we
have some degree of certainty that the interval will capture the actual parameter
value for the population.

In this chapter we develop methods to test claims about populations. After
specifying null and alternative hypotheses, we assess the evidence in a sample by
constructing a randomization distribution of possible sample statistics that we might
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see by random chance, if the null hypothesis were true. If the original sample falls
in an unlikely location of the randomization distribution, we have evidence to reject
the null hypothesis in favor of the alternative.

You have probably noticed similarities in these two approaches. Both use some
sort of random process to simulate many samples and then collect values of a sample
statistic for each of those samples to form a distribution. In both cases we are
generally concerned with distinguishing between ‘‘typical” values in the middle of
a distribution and ‘‘unusual” values in one or both tails. Assuming that the values
in a bootstrap or randomization distribution reflect what we might expect to see if
we could generate many sets of sample data, we use the information based on our
original sample to make some inference about what actually might be true about a
population, parameter, or relationship.

Randomization and Bootstrap Distributions
In Data 4.8 on page 272 we consider measurements of body temperature for a
sample of n = 50 individuals to test H0 : μ = 98.6 vs Ha : μ �= 98.6, where μ is the
average body temperature. The mean in the sample is x = 98.26, so we construct
a randomization distribution by adding the difference, 0.34, to each of the sample
values, creating a ‘‘population” that matches the null mean of 98.6, and then sampling
with replacement from that new sample. The original sample mean (98.26) is well
out in the tail of this randomization distribution (estimated p-value = 0.0016). This
shows significant evidence in the sample to reject H0 and conclude that the average
body temperature probably differs from 98.6◦F.

Now suppose that we use the original data to find a 95% confidence interval
for the average body temperature, μ, by constructing a bootstrap distribution. This
involves sampling (with replacement) from the original sample and computing the
mean for each sample. How does this differ from the randomization distribution
we use in the test? The procedures are exactly the same, except that one set of
values has been shifted by 0.34◦F. The two distributions are displayed in Figure 4.32.
Note that any of the bootstrap samples might have been selected as a sample in the
randomization distribution, with the only difference being that each of the values
would be 0.34◦ larger in the randomization sample to account for the adjustment to
a null mean of 98.6◦F.

To find a 95% confidence interval from the bootstrap distribution of Figure 4.32
we need to find values with just 2.5% of the samples beyond them in each tail. This
interval goes from 98.05 to 98.47. Thus, based on this sample, we are relatively sure
that mean body temperature for the population is somewhere between 98.05◦F and
98.47◦F.

Figure 4.32 Bootstrap
and randomization
distributions for body
temperatures with
H0 : μ = 98.6
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Note that, looking at the bootstrap confidence interval, the hypothesized value,
μ = 98.6, is not within the 95% confidence interval and, looking at the randomization
distribution for the test, the mean of the sample, x = 98.26, falls in the extreme tail
of the distribution. This is not a coincidence! If 98.6◦F is not a plausible value for
the population mean, we should see this with both the confidence interval and the
hypothesis test. The values in the lower and upper 2.5% tails of the randomization
distribution (including the original sample mean of x = 98.26) are values of sample
means that would be extreme if H0 were true and thus would lead to rejecting
H0 : μ = 98.6 at a 5% level. The values in the lower and upper 2.5% tails of the
bootstrap distribution (including the null mean of μ = 98.6) are values of means that
would be outside of the 95% confidence bounds and thus are considered unlikely
candidates to be the actual mean for the population.

Example 4.35
Suppose we observe the same data (so x = 98.26) but are instead testing H0 : μ =
98.4 versus Ha : μ �= 98.4. How would Figure 4.32 change? Would the confidence
interval contain the null value of μ = 98.4? Would we reject the null hypothesis?

Solution Since the bootstrap distribution and corresponding confidence interval don’t depend
on the hypotheses, they would remain unchanged. When testing H0 : μ = 98.4 the
randomization samples would only be shifted to the right by 0.14 to be centered
at 98.4, as shown in Figure 4.33. Now we see that the hypothesized value, μ = 98.4
is contained within the 95% confidence interval and the sample mean, x = 98.26,
falls in the ‘‘typical” region of the randomization distribution, so the null hypothesis
would not be rejected at a 5% level.

Connecting Confidence Intervals and Hypothesis Tests
In general, we see that a sample statistic lies in the tail of the randomization dis-
tribution when the null hypothesized parameter lies in the tail of the bootstrap
distribution, and that the sample statistic lies in the typical part of the randomization
distribution when the null hypothesized parameter lies in the typical part of the
bootstrap distribution (i.e., in the confidence interval). While this relationship is
precise for a mean, the idea extends (somewhat more loosely) to any parameter.
We summarize this relationship between two-tailed tests and confidence intervals in
the following box.

Figure 4.33 Bootstrap
and randomization
distributions for body
temperatures with
H0 : μ = 98.4

98.0 98.2 98.4 98.6 98.8 99.0

B
o

o
ts

tr
ap

R
an

d
o

m
iz

at
io

n

98.4

98.26

o



4.5 Confidence Intervals and Hypothesis Tests 285

Connection between Confidence Intervals and Hypothesis

Tests

The formal decision to a two-tailed hypothesis test is related to whether
or not the hypothesized parameter value falls within a confidence
interval:

• When the parameter value given in H0 falls outside of a 95% confi-
dence interval, we should reject H0 at a 5% level in a two-tailed test
based on the same sample.

• When the parameter value specified by H0 falls inside of a 95%
confidence interval, we should not reject H0 at a 5% level in a two-
tailed test based on the same sample.

One way to interpret this relationship between confidence intervals and tests is to
view the values in a confidence interval as the plausible values for a parameter—those
that would not be rejected if formally tested against a two-tailed alternative. This
relationship is very flexible: It can be applied to different parameters and we
can use different significance levels by adjusting the confidence level accordingly.
For example, a 1% test would correspond to seeing if the hypothesized value is
within a 99% confidence interval and a significance level of 10% would use a 90%
confidence interval. Note that, especially when doing confidence intervals and tests
using simulation methods, the correspondence is not exact. For example, the precise
boundaries for the 2.5% points in the tails of either a randomization or a bootstrap
distribution will vary slightly depending on the particular batch of simulated samples.

Example 4.36
The Comprehensive Assessment of Outcomes in Statistics38 (CAOS) exam is a
standardized test for assessing students’ knowledge of statistical concepts. The
questions on this exam have been tested extensively to establish benchmarks for
how well students do when answering them. One of the tougher questions, dealing
with misinterpretations of a confidence interval, is answered correctly by about 42%
of all statistics students. A statistics instructor gets the results for 30 students in a
class and finds that 17 of the students (p̂ = 17/30 = 0.567) answered the confidence
interval question correctly. Based on these sample results a 95% confidence interval
for the proportion of students with this instructor who get the question correct goes
from 0.39 to 0.75. We assume that the 30 students who answered the question are a
representative sample of this instructor’s students.

(a) Based on this confidence interval, is the instructor justified in saying the propor-
tion of his students who get the question correct is different from the baseline
national proportion of p = 0.42?

(b) This question is in a multiple-choice format with four possible answers, only one
of which is correct. Can the instructor conclude that his students are not just
guessing on this question?

Solution (a) If the hypotheses are H0 : p = 0.42 and Ha : p �= 0.42, we see that the null
proportion is within the 95% confidence interval, (0.39, 0.75), so using a 5%

38https://app.gen.umn.edu/artist/caos.html.
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significance level we do not reject H0. The instructor would not have sufficient
evidence to conclude that the proportion correct for his students is different
than 42%.

(b) If students are just guessing, the proportion correct for a question with four
choices is p = 0.25. Since 0.25 is not within the 95% confidence interval, we
reject H0 and the instructor can conclude (using a 5% significance level) that
the proportion of correct answers for this question is different from 0.25. The
students are doing better than merely guessing at random.

© jonathan miller/Alamy Limited

About 59% of Americans favor a ban on
smoking in restaurants

Example 4.37
In a Gallup poll of American adults in August 2010, 59% of the respondents favored
a total ban on smoking in restaurants.39 In a similar survey a decade earlier the
proportion who favored such a ban was only 40%. We use these two samples to
construct a 95% confidence interval for the difference in proportion of support for
a smoking ban in restaurants between these two years, p2 − p1, where p2 is the
proportion in 2010 and p1 is the proportion in 2000. The confidence interval for the
difference in proportions is 0.147 to 0.233.

(a) Does this confidence interval provide sufficient evidence at a 5% level that
the proportion of Americans supporting a ban on smoking in restaurants was
different in 2010 than it was in 2000?

(b) What conclusions (if any) could we draw if the significance level was 10% or
1%?

Solution (a) When testing H0 : p2 = p1, the null difference in proportions is p2 − p1 = 0.
Since the 95% confidence interval for p2 − p1 does not include zero, we have

39http://www.gallup.com/poll/141809/Americans-Smoking-Off-Menu-Restaurants.aspx.
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sufficient evidence (at a 5% level) to reject H0 and conclude that the proportion
of Americans favoring the smoking ban changed over the decade.

Since the confidence interval includes only positive differences, we can go
even further and conclude that the proportion supporting such a ban was higher
in 2010 than it was in 2000. This conclusion may seem more appropriate for a
one-tailed test, but note that a sample statistic which is far enough in the tail
to reject H0 for a two-tailed test will also reject H0 for a one-tailed test in that
direction.

(b) Since part (a) indicates that we should reject H0 at a 5% significance level,
we know we would also reject H0 at the larger 10% level and draw the same
conclusion. However, we cannot reach a firm decision for a 1% test based only
on the results of the 95% confidence interval for the difference in proportions.
Since that is a stricter significance level, we would need to either construct a
99% confidence interval for the difference or carry out the actual details of the
hypothesis test to make a decision at the 1% level.

Since we can use a confidence interval to make a conclusion in a hypothesis test,
you might be wondering why we bother with significance tests at all. Couldn’t we
just always compute a confidence interval and then check whether or not it includes
some hypothesized value for a parameter? If we adopted this approach, we could
make a reject–not reject decision, but we lose information about the strength of
evidence. For example, when actually doing a hypothesis test for the situation in
Example 4.37, the p-value is less than 0.0001, indicating very strong evidence that
the proportion of Americans who support a total ban on smoking in restaurants has
increased over the decade from 2000 to 2010. On the other hand, the question of
interest is often ‘‘how big is the difference?” not just does a difference exist at all.
In that case the confidence interval for the difference in proportions, (0.147, 0.233),
is more useful than just knowing that the p-value is very small. Confidence intervals
and hypothesis tests are both important inference procedures, and which is most
relevant in a particular situation depends on the question of interest.

Practical vs Statistical Significance
Suppose that a company offers an online tutorial course to help high school students
improve their scores when retaking a standardized exam such as the Scholastic
Aptitude Test (SAT). Does the online course improve scores? We might use a
hypothesis test to determine if there is an improvement in scores and a confidence
interval to determine the size of the improvement. Suppose we set up an experiment
to measure the change in SAT score by randomly assigning students to either take
the course or just study on their own before retaking the SAT. We let μc be the mean
change in SAT scores for those taking the online course and μnc be the mean change
for those who just prepare on their own with no course. This gives the hypotheses

H0 : μc = μnc

Ha : μc > μnc

Suppose that we randomly assign 2000 students to take the online course and
another 2000 students to a ‘‘no course” group. Figure 4.34 shows histograms of
the score changes for both groups. Although some students in both groups do
worse (i.e., have a negative change) when they retake the exam, in general students
tend to do better the second time. The mean change for the sample of students
taking the online course is xc = 42.7 points improvement and for the other group
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Figure 4.34 Hypothetical SAT score changes for groups of 2000 students with/without an online course

without the course the sample mean change is xnc = 38.5 points. The difference
is D = 42.7 − 38.5 = 4.2 points and a randomization distribution shows the upper
tail p-value is about 0.0038. For any reasonable significance level this is a small
p-value so we have very strong evidence to reject H0 and conclude that the mean
improvement in SAT scores is higher for students who use the online course.

We not only care about significance but also want to know how much higher
the average improvement is for students who use the online course. For this, we
compute an interval estimate. A 95% confidence interval for difference in mean
improvement in SAT scores for students who use the online course minus students
who don’t is (1.04, 7.36) points. Is an improvement between 1 and 7 points worth it?

Now suppose that the online prep course costs $3000 and takes more than 50
hours to complete. Would you be willing to spend that time and money to earn
(on average) roughly 4 more points than you might get by preparing on your own
(on an exam that is scored out of 800 points)? Would that magnitude of a score
change really make much difference in how your SAT score is viewed by a college
admissions officer?

Example 4.38
In testing whether an online prep course for the SAT test improves scores, we saw
that the average increase is 4.2 points and the p-value for the test is 0.0038. Are the
results statistically significant? Are the results practically significant?

Solution Since the p-value is very low, at 0.0038, the results are definitely statistically
significant. Since the average improvement is only 4.2 points, however, the results
are probably not practically significant. It is probably not worth taking the online
course for such a small change.

This hypothetical example demonstrates that a difference that is statistically
significant might not have much practical significance. Especially when the sample
sizes are large, a rather small difference (such as 4 points on an 800-point SAT exam)
might turn out to be statistically significant. That does not necessarily mean that
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the difference is going to be particularly important to individuals making a decision
(such as whether or not to take the online course). While some small differences may
be important and large samples can help reveal the true effects, we should not make
the mistake of automatically assuming that anything that is statistically significant
is practically significant. Conversely, for smaller samples, a difference that appears
large may be the result of random chance and not statistically significant.

The Problem of Multiple Testing
In Section 3.2 we see that a 95% confidence interval will capture the true parameter
95% of the time, which also means that 5% of these confidence intervals will miss
the true parameter. Similarly, in Section 4.3, we see that if the null hypothesis is
true, then 5% of hypothesis tests using α = 0.05 will incorrectly reject the null
hypothesis. (Recall that α is the probability of a Type I error, which is rejecting
a true null hypothesis.) It is important to remember that intervals will not always
capture the truth and results can be deemed statistically significant even when the
null hypothesis is in fact true.

These issues become even more important when doing multiple hypothesis
tests. Of all hypothesis tests conducted for a true null hypothesis, using α = 0.05, 5%
of the tests will lead to rejecting the null hypothesis! In other words, if you do 100
hypothesis tests, all testing for an effect that doesn’t exist (the null is true), about
5% of them will incorrectly reject the null.

If we use a significance level of α = 0.05, about 5% of tests that are testing true
null hypotheses will incorrectly reject the null hypothesis.

Example 4.39
Opening an Umbrella Indoors

Is it really bad luck to open an umbrella indoors? Suppose researchers all over
the world set out to actually test this idea, each randomizing people to either open
an umbrella indoors or open an umbrella outdoors, and somehow measure ‘‘luck”
afterward. If there are 100 people all testing this phenomenon at α = 0.05, and if
opening an umbrella indoors does not bring bad luck, then about how many people
do you expect to get statistically significant results?

Solution If the null hypothesis is true (opening an umbrella indoors has no effect on luck),
then about 5% of the hypothesis tests will get p-values less than 0.05 just by random
chance, so about 5 of the 100 people testing this phenomenon will get statistically
significant results.

If multiple hypothesis tests are conducted for an effect that doesn’t exist, some
of them may get significant results just by chance. The more hypothesis tests being
conducted, the higher the chance that at least one of those tests will make a Type I
error. This problem is known as the problem of multiple testing.

The Problem of Multiple Testing

When multiple hypothesis tests are conducted, the chance that at least
one test incorrectly rejects a true null hypothesis increases with the
number of tests.

If the null hypotheses are all true, α of the tests will yield statistically
significant results just by random chance.
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This issue is made even worse by the fact that usually only significant results
are published. This problem is known as publication bias: Usually only significant
results are published, while no one knows of all the studies producing insignificant
results. Consider the umbrella example. If the five statistically significant studies are
all published, and we do not know about the 95 insignificant studies, we might take
this as convincing evidence that opening an umbrella indoors really does cause bad
luck. Unfortunately this is a very real problem with scientific research.

Often, only significant results are published. If many tests are conducted, some
of them will be significant just by chance, and it may be only these studies that we
hear about.

The problem of multiple testing can also occur when one researcher is testing
multiple hypotheses.

D A T A 4 . 9 Genes and Leukemia
Genome association studies, tests for whether genes are associated with certain
diseases or other traits, are currently widely used in medical research,
particularly in cancer research. Typically, DNA is collected from a group of
people, some of whom have the disease in question, and some of whom don’t.
These DNA data are made up of values for thousands of different genes, and
each gene is tested to see if there is a difference between the diseased patients
and the healthy patients. Results can then be useful in risk assessment,
diagnosis, and the search for a cure. One of the most famous genome
association studies tested for genetic differences between patients with two
different types of leukemia (acute myeloid leukemia and acute lymphoblastic
leukemia).40 In this study, scientists collected data on 7129 different genes for 38
patients with leukemia. ■

Example 4.40
Genes and Leukemia

Data 4.9 refers to a study in which data included information on 7129 genes, and
each gene was tested for a difference between the two types of leukemia.

(a) If all tests used a significance level of α = 0.01, and if there are no genetic
differences between the two types of leukemia, about how many of the genes
would be found to be significantly different between the two groups?

(b) Do we have reason to believe that all of the genes found to be statistically
significant are actually associated with the type of leukemia?

(c) In the actual study, 11% of tests for each gene yielded p-values less than 0.01.
Do we have reason to believe that there is some association between genes and
the type of leukemia?

Solution (a) If there are no genetic differences between the two types of leukemia, then we
would expect about 0.01 of the tests to yield statistically significant results just by
random chance. We expect about 0.01 × 7129 ≈ 71 of the genes to be found to
be significantly different between the two groups, even if no differences actually
exist.

40Golub, T.R., et al., ‘‘Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring,” Science, 1999; 286: 531–537.
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(b) Because we expect 71 genes to be found significant just by random chance
even if no associations exist, we should not believe that all genes found to be
statistically significant are actually associated with the type of leukemia.

(c) If there were no association between genes and leukemia, we would only expect
about 1% of the tests to yield p-values less than 0.01. Because 11% of the genes
yielded p-values below 0.01, some of them are probably truly associated with
the type of leukemia.

There are many ways of dealing with the problem of multiple testing,41 but
those methods are outside the scope of this text. The most important thing is to
be aware of the problem, and to realize that when doing multiple hypothesis tests,
some are likely to be significant just by random chance.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Interpret a confidence interval as the plausible values of a parameter
that would not be rejected in a two-tailed hypothesis test

• Determine the decision for a two-tailed hypothesis test from an appro-
priately constructed confidence interval

• Recognize that statistical significance is not always the same as practi-
cal significance

• Explain the potential problem with significant results when doing
multiple tests

Exercises for Section 4.5

SKILL BUILDER 1
In Exercises 4.146 to 4.149, hypotheses for a sta-
tistical test are given, followed by several possible
confidence intervals for different samples. In each
case, use the confidence interval to state a conclusion
of the test for that sample and give the significance
level used.

4.146 Hypotheses: H0 : μ = 15 vs Ha : μ �= 15

(a) 95% confidence interval for μ: 13.9 to 16.2

(b) 95% confidence interval for μ: 12.7 to 14.8

(c) 90% confidence interval for μ: 13.5 to 16.5

4.147 Hypotheses: H0 : p = 0.5 vs Ha : p �= 0.5

(a) 95% confidence interval for p: 0.53 to 0.57

(b) 95% confidence interval for p: 0.41 to 0.52

(c) 99% confidence interval for p: 0.35 to 0.55

4.148 Hypotheses: H0 : ρ = 0 vs Ha : ρ �= 0. In addi-
tion, in each case for which the results are significant,
give the sign of the correlation.

(a) 95% confidence interval for ρ: 0.07 to 0.15

(b) 90% confidence interval for ρ: −0.39 to −0.78

(c) 99% confidence interval for ρ: −0.06 to 0.03

4.149 Hypotheses: H0 : μ1 = μ2 vs Ha : μ1 �= μ2. In
addition, in each case for which the results are sig-
nificant, state which group (1 or 2) has the larger
mean.

(a) 95% confidence interval for μ1 − μ2:
0.12 to 0.54

41One common way, known as Bonferroni’s correction, is to divide the significance level by the number
of tests. For α = 0.05 and 100 tests, a p-value would have to be less than 0.05/100 = 0.0005 to be deemed
statistically significant.
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(b) 99% confidence interval for μ1 − μ2:
−2.1 to 5.4

(c) 90% confidence interval for μ1 − μ2:
−10.8 to −3.7

SKILL BUILDER 2
In Exercises 4.150 to 4.152, a confidence interval for
a sample is given, followed by several hypotheses
to test using that sample. In each case, use the con-
fidence interval to give a conclusion of the test (if
possible) and also state the significance level you
are using.

4.150 A 95% confidence interval for p: 0.48 to 0.57

(a) H0 : p = 0.5 vs Ha : p �= 0.5

(b) H0 : p = 0.75 vs Ha : p �= 0.75

(c) H0 : p = 0.4 vs Ha : p �= 0.4

4.151 A 99% confidence interval for μ: 134 to 161

(a) H0 : μ = 100 vs Ha : μ �= 100

(b) H0 : μ = 150 vs Ha : μ �= 150

(c) H0 : μ = 200 vs Ha : μ �= 200

4.152 A 90% confidence interval for p1 − p2: 0.07
to 0.18

(a) H0 : p1 = p2 vs Ha : p1 �= p2

(b) H0 : p1 = p2 vs Ha : p1 > p2

(c) H0 : p1 = p2 vs Ha : p1 < p2

4.153 Approval Rating for Congress In a Gallup
poll42 conducted in August 2010, a random sam-
ple of n = 1013 American adults were asked ‘‘Do
you approve or disapprove of the way Congress is
handling its job?” The proportion who said they
approve is p̂ = 0.19, and a 95% confidence interval
for Congressional job approval is 0.166 to 0.214. If
we use a 5% significance level, what is the conclu-
sion if we are:

(a) Testing to see if there is evidence that the job
approval rating is different than 20%. (This hap-
pens to be the average sample approval rating
from the six months prior to this poll.)

(b) Testing to see if there is evidence that the job
approval rating is different than 14%. (This
happens to be the lowest sample Congressional
approval rating Gallup ever recorded through
the time of the poll.)

4.154 Car Window Skin Cancer? A new study
suggests that exposure to UV rays through the car

42http://www.gallup.com/poll/141827/Low-Approval-Congress-
Not-Budging.aspx.

window may increase the risk of skin cancer.43 The
study reviewed the records of all 1050 skin can-
cer patients referred to the St. Louis University
Cancer Center in 2004. Of the 42 patients with
melanoma, the cancer occurred on the left side of
the body in 31 patients and on the right side in the
other 11.

(a) Is this an experiment or an observational study?

(b) Of the patients with melanoma, what proportion
had the cancer on the left side?

(c) A bootstrap 95% confidence interval for the
proportion of melanomas occurring on the left
is 0.579 to 0.861. Clearly interpret the confidence
interval in the context of the problem.

(d) Suppose the question of interest is whether
melanomas are more likely to occur on the
left side than on the right. State the null and
alternative hypotheses.

(e) Is this a one-tailed or two-tailed test?

(f) Use the confidence interval given in part (c)
to predict the results of the hypothesis test in
part (d). Explain your reasoning.

(g) A randomization distribution gives the p-value
as 0.003 for testing the hypotheses given in
part (d). What is the conclusion of the test in
the context of this study?

(h) The authors hypothesize that skin cancers are
more prevalent on the left because of the sun-
light coming in through car windows. (Windows
protect against UVB rays but not UVA rays.)
Do the data in this study support a conclusion
that more melanomas occur on the left side
because of increased exposure to sunlight on
that side for drivers?

4.155 Print vs E-books Suppose you want to find
out if reading speed is any different between a print
book and an e-book.

(a) Clearly describe how you might set up an exper-
iment to test this. Give details.

(b) Why is a hypothesis test valuable here? What
additional information does a hypothesis test
give us beyond the descriptive statistics we dis-
cussed in Chapter 2?

43‘‘Surprising Skin Cancer Risk: Too Much Driving,” Live-
Science.com, May 7, 2010, reporting on Butler, S. and Fosko,
S., ‘‘Increased Prevalence of Left-Sided Skin Cancers,” Journal
of the American Academy of Dermatology, published online,
March 12, 2010.



4.5 Confidence Intervals and Hypothesis Tests 293

(c) Why is a confidence interval valuable here?
What additional information does a confidence
interval give us beyond the descriptive statistics
of Chapter 2 and the results of a hypothesis test
described in part (b)?

(d) A similar study44 has been conducted and
reports that ‘‘the difference between Kindle
and the book was significant at the p < .01
level, and the difference between the iPad and
the book was marginally significant at p = .06.”
The report also stated that ‘‘the iPad mea-
sured at 6.2% slower reading speed than the
printed book, whereas the Kindle measured at
10.7% slower than print. However, the differ-
ence between the two devices [iPad and Kindle]
was not statistically significant because of the
data’s fairly high variability.” Can you tell from
the first quotation which method of reading
(print or e-book) was faster in the sample or do
you need the second quotation for that? Explain
the results in your own words.

4.156 Are You ‘‘In a Relationship”? A new study45

shows that relationship status on Facebook mat-
ters to couples. The study included 58 college-age
heterosexual couples who had been in a relation-
ship for an average of 19 months. In 45 of the
58 couples, both partners reported being in a
relationship on Facebook. In 31 of the 58 cou-
ples, both partners showed their dating partner in
their Facebook profile picture. Men were some-
what more likely to include their partner in the
picture than vice versa. However, the study states:
‘‘Females’ indication that they are in a relation-
ship was not as important to their male partners
compared with how females felt about male part-
ners indicating they are in a relationship.” Using
a population of college-age heterosexual couples
who have been in a relationship for an average of
19 months:

(a) A 95% confidence interval for the proportion
with both partners reporting being in a relation-
ship on Facebook is about 0.66 to 0.88. What
is the conclusion in a hypothesis test to see
if the proportion is different from 0.5? What
significance level is being used?

44Neilsen, J., ‘‘iPad and Kindle Reading Speeds,” www.useit
.com/alertbox/ipad-kindle-reading.html, accessed July 2010.
45Roan, S., ‘‘The True Meaning of Facebook’s ‘In a Relation-
ship’,” Los Angeles Times, February 23, 2012, reporting on a
study in Cyberpsychology, Behavior, and Social Networking.

(b) A 95% confidence interval for the proportion
with both partners showing their dating partner
in their Facebook profile picture is about 0.40 to
0.66. What is the conclusion in a hypothesis test
to see if the proportion is different from 0.5?
What significance level is being used?

4.157 Testing for a Gender Difference in Com-
passionate Rats In Exercise 3.80 on page 203, we
found a 95% confidence interval for the difference
in proportion of rats showing compassion, using the
proportion of female rats minus the proportion of
male rats, to be 0.104 to 0.480. In testing whether
there is a difference in these two proportions:

(a) What are the null and alternative hypotheses?

(b) Using the confidence interval, what is the con-
clusion of the test? Include an indication of the
significance level.

(c) Based on this study would you say that female
rats or male rats are more likely to show com-
passion (or are the results inconclusive)?

4.158 Testing for a Home Field Advantage in Soc-
cer In Exercise 3.108 on page 215, we see that the
home team was victorious in 70 games out of a
sample of 120 games in the FA premier league, a
football (soccer) league in Great Britain. We wish
to investigate the proportion p of all games won by
the home team in this league.

(a) Use StatKey or other technology to find and
interpret a 90% confidence interval for the pro-
portion of games won by the home team.

(b) State the null and alternative hypotheses for a
test to see if there is evidence that the proportion
is different from 0.5.

(c) Use the confidence interval from part (a) to
make a conclusion in the test from part (b).
State the confidence level used.

(d) Use StatKey or other technology to create a
randomization distribution and find the p-value
for the test in part (b).

(e) Clearly interpret the result of the test using the
p-value and using a 10% significance level. Does
your answer match your answer from part (c)?

(f) What information does the confidence interval
give that the p-value doesn’t? What informa-
tion does the p-value give that the confidence
interval doesn’t?

(g) What’s the main difference between the boot-
strap distribution of part (a) and the random-
ization distribution of part (d)?
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4.159 Change in Stock Prices Standard & Poor’s
maintains one of the most widely followed indices
of large-cap American stocks: the S&P 500. The
index includes stocks of 500 companies in indus-
tries in the US economy. A random sample of 50
of these companies was selected, and the change in
the price of the stock (in dollars) over the 5-day
period from August 2 to 6, 2010 was recorded for
each company in the sample. The data are available
in StockChanges.

(a) Is this an experiment or an observational study?
How was randomization used in the study, if at
all? Do you believe the method of data collec-
tion introduced any bias?

(b) Describe one way to select a random sample of
size 50 from a population of 500 stocks.

(c) Figure 4.35 shows a boxplot of the data.
Describe what this plot shows about the dis-
tribution of stock price changes in this sample.

S&P change
543210−1−2−3−4

∗ ∗ ∗ ∗ ∗

Figure 4.35 Changes in stock prices on the S&P 500
over a 5-day period

(d) Give relevant summary statistics to describe the
distribution of stock price changes numerically.

(e) Use StatKey or other technology to calculate a
95% confidence interval for the mean change in
all S&P stock prices. Clearly interpret the result
in context.

(f) Use the confidence interval from part (e) to pre-
dict the results of a hypothesis test to see if the
mean change for all S&P 500 stocks over this
period is different from zero. State the hypothe-
ses and significance level you use and state the
conclusion.

(g) Now give the null and alternative hypotheses
in a test to see if the average 5-day change is
positive. Use StatKey or other technology to

find a p-value of the test and clearly state the
conclusion.

(h) If you made an error in your decision in part (g),
would it be a Type I error or a Type II error?
Can you think of a way to actually find out if
this error occurred?

4.160 How Long Do Mammals Live? Data 2.2 on
page 61 includes information on longevity (typical
lifespan), in years, for 40 species of mammals.

(a) Use the data, available in MammalLongevity,
and StatKey or other technology to test to see if
the average lifespan of mammal species is differ-
ent from 10 years. Include all details of the test:
the hypotheses, the p-value, and the conclusion
in context.

(b) Use the result of the test to determine whether
μ = 10 would be included as a plausible value in
a 95% confidence interval of average mammal
lifespan. Explain.

4.161 How Long Are Mammals Pregnant? Data 2.2
on page 61 includes information on length of gesta-
tion (length of pregnancy in days) for 40 species of
mammals.

(a) Use the data, available in MammalLongevity,
and StatKey or other technology to test to see
if the average gestation of mammals is different
from 200 days. Include all details of the test: the
hypotheses, the p-value, and the conclusion in
context.

(b) Use the result of the test to indicate whether
μ = 200 would be included as a plausible value
in a 95% confidence interval of average mammal
gestation time. Explain.

4.162 Weight Loss Program Suppose that a weight
loss company advertises that people using its pro-
gram lose an average of 8 pounds the first month
and that the Federal Trade Commission (the main
government agency responsible for truth in adver-
tising) is gathering evidence to see if this advertising
claim is accurate. If the FTC finds evidence that the
average is less than 8 pounds, the agency will file a
lawsuit against the company for false advertising.

(a) What are the null and alternative hypotheses
the FTC should use?

(b) Suppose that the FTC gathers information from
a very large random sample of patrons and finds
that the average weight loss during the first
month in the program is x = 7.9 pounds with a
p-value for this result of 0.006. What is the con-
clusion of the test? Are the results statistically
significant?
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(c) Do you think the results of the test are practi-
cally significant? In other words, do you think
patrons of the weight loss program will care
that the average is 7.9 pounds lost rather than
8.0 pounds lost? Discuss the difference between
practical significance and statistical significance
in this context.

4.163 Do iPads Help Kindergartners Learn: A Sub-
test The Auburn, Maine, school district conducted
an early literacy experiment in the fall of 2011. In
September, half of the kindergarten classes were
randomly assigned iPads (the intervention group)
while the other half of the classes got them in
December (the control group.) Kids were tested
in September and December and the study mea-
sures the average difference in score gains between
the control and intervention group.46 The exper-
imenters tested whether the mean score for the
intervention group was higher on the HRSIW sub-
test (Hearing and Recording Sounds in Words) than
the mean score for the control group.

(a) State the null and alternative hypotheses of the
test and define any relevant parameters.

(b) The p-value for the test is 0.02. State the con-
clusion of the test in context. Are the results
statistically significant at the 5% level?

(c) The effect size was about two points, which
means the mean score for the intervention group
was approximately two points higher than the
mean score for the control group on this sub-
test. A school board member argues, ‘‘While
these results might be statistically significant,
they may not be practically significant.” What
does she mean by this in this context?

4.164 Do iPads Help Kindergartners Learn: A
Series of Tests Exercise 4.163 introduces a study in
which half of the kindergarten classes in a school
district are randomly assigned to receive iPads. We
learn that the results are significant at the 5% level
(the mean for the iPad group is significantly higher
than for the control group) for the results on the
HRSIW subtest. In fact, the HRSIW subtest was one
of 10 subtests and the results were not significant
for the other 9 tests. Explain, using the prob-
lem of multiple tests, why we might want to hesitate

46Reich, J., ‘‘Are iPads Making a Significant Difference? Find-
ings from Auburn Maine,” Ed Tech Researcher, February 17,
2012.

before we run out to buy iPads for all kindergartners
based on the results of this study.

4.165 Eating Breakfast Cereal and Conceiving Boys
Newscientist.com ran the headline ‘‘Breakfast Cere-
als Boost Chances of Conceiving Boys,” based on an
article which found that women who eat breakfast
cereal before becoming pregnant are significantly
more likely to conceive boys.47 The study used a
significance level of α = 0.01. The researchers kept
track of 133 foods and, for each food, tested whether
there was a difference in the proportion conceiving
boys between women who ate the food and women
who didn’t. Of all the foods, only breakfast cereal
showed a significant difference.

(a) If none of the 133 foods actually have an effect
on the gender of a conceived child, how many (if
any) of the individual tests would you expect to
show a significant result just by random chance?
Explain. (Hint: Pay attention to the significance
level.)

(b) Do you think the researchers made a Type I
error? Why or why not?

(c) Even if you could somehow ascertain that the
researchers did not make a Type I error, that is,
women who eat breakfast cereals are actually
more likely to give birth to boys, should you
believe the headline ‘‘Breakfast Cereals Boost
Chances of Conceiving Boys”? Why or why not?

4.166 Approval from the FDA for Antidepressants
The FDA (US Food and Drug Administration) is
responsible for approving all new drugs sold in the
US. In order to approve a new drug for use as an
antidepressant, the FDA requires two results from
randomized double-blind experiments showing the
drug is more effective than a placebo at a 5% level.
The FDA does not put a limit on the number of
times a drug company can try such experiments.
Explain, using the problem of multiple tests, why
the FDA might want to rethink its guidelines.

4.167 Does Massage Really Help Reduce Inflam-
mation in Muscles? In Exercise 4.132 on page 279,
we learn that massage helps reduce levels of the
inflammatory cytokine interleukin-6 in muscles
when muscle tissue is tested 2.5 hours after mas-
sage. The results were significant at the 5% level.

47Mathews, F., Johnson, P.J., and Neil, A., ‘‘You Are What Your
Mother Eats: Evidence for Maternal Preconception Diet Influ-
encing Foetal Sex in Humans,” Proceedings of the Royal Society
B: Biological Sciences, 2008; 275: 1643,1661–1668.
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However, the authors of the study actually per-
formed 42 different tests: They tested for signifi-
cance with 21 different compounds in muscles and
at two different times (right after the massage and
2.5 hours after).

(a) Given this new information, should we have
less confidence in the one result described in the
earlier exercise? Why?

(b) Sixteen of the tests done by the authors involved
measuring the effects of massage on muscle

metabolites. None of these tests were significant.
Do you think massage affects muscle metabo-
lites?

(c) Eight of the tests done by the authors (includ-
ing the one described in the earlier exercise)
involved measuring the effects of massage on
inflammation in the muscle. Four of these
tests were significant. Do you think it is safe
to conclude that massage really does reduce
inflammation?



U N I T B E S S E N T I A L S Y N T H E S I S

Unit B introduces the key ideas of statistical inference. Statistical inference enables
us to use information in a sample to understand properties of a population. Statistical
inference can be very powerful. As we have seen, data from just a small subset
of a population can often be used to give very accurate estimates and make very
specific conclusions about the entire population. We can use the data in a sample
to estimate one or more population parameter(s), create an interval estimate for the
parameter(s), and test a hypothesis about the parameter(s).

For any of the methods discussed in Chapters 3 and 4, it is important to
remember the lessons of Chapter 1: For statistical inference to be valid, the data
must be collected in a way that does not introduce bias. If the data are collected in
an appropriate way, we can learn remarkable things from just one sample.

Summary: Confidence Intervals
We estimate a population parameter using a sample statistic. Since such statistics
vary from sample to sample, we need to get some sense of the accuracy of the statistic,
for example, with a margin of error. This leads to the concept of an interval estimate
as a range of plausible values for the population parameter. When we construct this
interval using a method that has some predetermined chance of capturing the true
parameter, we get a confidence interval. The correct interpretation of a confidence
interval is important:

We have some level of confidence that the population parameter is contained
within the confidence interval.

We describe two methods to compute a confidence interval. Both use a bootstrap
distribution, created using the key idea that if the sample is representative of the
population, then the population can be approximated by many, many copies of the
sample. To construct a bootstrap distribution we:

• Generate bootstrap samples, with replacement, from the original sample, using
the same sample size

• Compute the statistic of interest for each of the bootstrap samples

• Collect the statistics from many (usually at least 1000) bootstrap samples into a
bootstrap distribution

Once we have a bootstrap distribution, we have two methods to construct an
interval estimate:

Method 1: Estimate SE, the standard error of the statistic, as the standard devi-
ation of the bootstrap distribution. The 95% confidence interval is then

Sample statistic ± 2 · SE

Method 2: Use percentiles of the bootstrap distribution to chop off the tails
of the bootstrap distribution and keep a specified percentage (determined by the
confidence level) of the values in the middle.

Both methods apply to a wide variety of parameters and situations, and can
be used whenever the bootstrap distribution is approximately symmetric. They
each have strengths in helping us understand the ideas behind interval estimation.
For 95% confidence, the two methods usually give very similar answers. In later
chapters we will learn other methods for constructing confidence intervals for
specific parameters.

297
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Summary: Hypothesis Tests
Hypothesis tests are used to investigate claims about population parameters. We
use the question of interest to determine the two competing hypotheses: The null
hypothesis is generally that there is no effect or no difference while the alternative
hypothesis is the claim for which we seek evidence. The null hypothesis is the default
assumption; we only conclude in favor of the alternative hypothesis if the evidence in
the sample supports the alternative hypothesis and provides strong evidence against
the null hypothesis. If the evidence is inconclusive, we stick with the null hypothesis.

We measure the strength of evidence against the null hypothesis using a p-value.
A p-value is the probability of obtaining a sample statistic as extreme as (or more
extreme than) the observed sample statistic, when the null hypothesis is true. A
small p-value means that the observed sample results would be unlikely to happen
just by random chance, if the null hypothesis were true, and thus provides evidence
against the null hypothesis. The smaller the p-value, the stronger the evidence against
the null hypothesis and in support of the alternative hypothesis.

When making specific decisions based on the p-value, we use a pre-specified
significance level. If the p-value is less than the significance level, we reject H0,
conclude that there is evidence to support the alternative hypothesis, and say the
results are statistically significant. If the p-value is not less than the significance
level, we do not reject H0, we have an inconclusive test, and we say the results are
not statistically significant at that level. The conclusion should always be given in
context to answer the question of interest.

We calculate a p-value by constructing a randomization distribution of possible
sample statistics that we might see by random chance, if the null hypothesis were
true. A randomization distribution is constructed by simulating many samples in a
way that:

• Assumes the null hypothesis is true

• Uses the original sample data

• Mirrors the way the data in the original sample were collected

The p-value is the proportion of the randomization distribution that is as
extreme as, or more extreme than, the observed sample statistic. If the original
sample falls out in the tails of the randomization distribution, then a result this
extreme is unlikely to occur if the null hypothesis is true, and we have evidence
against the null hypothesis in favor of the alternative.

Connecting Confidence Intervals and Hypothesis Tests
The two processes of interval estimation and significance testing are related,

and, in many circumstances, each one can tell us something about the other. If the
null parameter in a test falls outside the corresponding confidence interval for the
same data, we are likely to reject that null hypothesis. On the other hand, if the
null parameter in a test falls inside the confidence interval, we will likely not have
sufficient evidence to reject the null hypothesis. The two processes are designed to
give different information, but both are based on understanding how far the sample
statistic might be from an unknown population parameter (in interval estimation) or
a hypothesized population parameter (in testing). Creating a bootstrap distribution
or randomization distribution helps us visualize and estimate this variability.

Case Study: Restaurant Tips
The exercises at the end of this section include several case studies that ask you to tie
together the pieces of statistical inference learned so far. In addition to connecting
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the ideas that we have already discussed, you now have the power to extend these
ideas to new situations. The methods we have covered have few conditions and
great flexibility. To illustrate that flexibility, we ask you, in the examples that follow,
to extend these ideas to a new parameter: the slope of a regression line.

Data 2.12 on page 119 describes information from a sample of 157 restaurant
bills collected at the First Crush bistro. The relevant data file is RestaurantTips.
In Chapter 2 we calculated a regression line with these data to investigate how
the tip amount is related to the bill size. However, in Chapter 2 our analysis was
limited to just the sample data. Now, with our newfound ability to perform statistical
inference, we can extend the results from the sample to make conclusions about the
population!

Example B.1
Data Collection

What population can we draw inferences about from the data in RestaurantTips?
The sample was generated by collecting all bills over several nights at the restaurant.
Is this a problem for making inferences?

Solution Because the data are all from one restaurant, the population of interest is all bills
and tips at this restaurant. The original sample was not a random sample of all
bills, but rather the data were collected from all bills in a certain time frame. That
might introduce bias if the days for the bills in the sample are different in some
substantial way (for example, over a holiday season or only weekends). However,
the owner indicates that the days for which bills were sampled are representative
of the business at his restaurant. As data analysts we might alert the owner to the
possibility of bias when reporting our findings, but we proceed for now with the
assumption that the sample is representative of all bills at this restaurant.

Example B.2
Interval or Test?

There are many questions we could ask about the RestaurantTips dataset. For each
question below, indicate whether it is best assessed by using a confidence interval, a
hypothesis test, or whether statistical inference is not relevant to answer it. Assume
the population is all bills given to customers of the First Crush bistro.

(a) Estimate the size of an average bill at this restaurant.

(b) Is there evidence that customers at this restaurant leave an average tip greater
than 15% of the bill?

(c) For what proportion of the 157 bills included in the dataset did the customer
leave a tip greater than 20% of the bill?

(d) Is there a significant difference in the average tip left between waitress A and
waitress B?

(e) What proportion of customers at the restaurant have a bill greater than $30?

Solution (a) We want to find an estimate and are not given any specific claim to test, so a
confidence interval is most appropriate.

(b) Since we are specifically testing a claim about the average tip percentage, we use
a hypothesis test to address this claim.

(c) This is a question about the 157 values in the dataset, not about the population.
Statistical inference is not appropriate here, since we can find the proportion
exactly from the dataset.

o

o
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(d) Since we are testing a claim about a difference in means, we use a hypothesis
test.

(e) We are estimating a proportion and are not given any specific claim to test, so a
confidence interval is most appropriate.

Example B.3
Find the Regression Line

Find the equation of the least squares line for predicting the Tip amount based on
the Bill. Interpret the slope of that line in context and include a plot to show the
relationship.

Solution Using statistical software with the data in RestaurantTips gives the prediction
equation

T̂ip = −0.292 + 0.182 · Bill

The slope of 0.182 indicates that for every extra dollar in the restaurant bill the
tip will increase, on average, by about $0.18. This means the typical tip rate at this
restaurant is roughly 18% of the total bill.

Figure B.1 shows a scatterplot of the relationship between Tip and Bill with the
regression line drawn on it. We see a fairly strong, positive, linear association.

Figure B.1 Tip vs Bill
for n = 157 restaurant
customers
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Example B.4
Confidence Interval for a Slope
(a) Describe how to use this sample to construct a bootstrap distribution for the

slope of the regression line of Tip on Bill.

(b) A dotplot for one such bootstrap distribution from 100 bootstrap samples is
shown in Figure B.2. Use the plot to estimate a 90% confidence interval for the
slope of this regression line. Be sure to include an interpretation (in context) of
the interval.

A
o
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Figure B.2 Bootstrap
distribution of 100
sample slopes 0.2050.2000.1950.1900.185

slope
0.1800.1750.1700.165

Solution (a) To construct a bootstrap distribution for the sample slope, we select samples of
size n = 157, with replacement, from the cases in the RestaurantTips dataset.
For each sample, we run the regression model, compute the sample slope, and
save it to form the bootstrap distribution.

(b) Because the dotplot in Figure B.2 is based on the slopes from 100 bootstrap
samples, we need to find the cutoffs for the upper and lower 5% in each tail to
get the boundaries for a 90% confidence interval. Removing the smallest 5 and
largest 5 bootstrap slopes leaves values ranging from about 0.168 to 0.197. Thus
we are roughly 90% sure that the slope (or average tip rate) for the population
of customers at this restaurant is somewhere between 0.168 and 0.197. Note that
100 bootstrap samples is a convenient number for finding the boundaries by
eye from a dotplot, but in practice we should use a larger number of simulated
samples and rely on technology to help with the counting.

Example B.5
Test for Slope using a Confidence Interval

(a) If the amount of tip is unrelated to the size of the bill, the population slope for
this relationship would be zero. On the other hand, we generally suspect that
the Tip tends to increase as the Bill increases. What are the null and alternative
hypotheses for testing whether the sample provides evidence that the slope of
the regression relationship between these two variables is positive? [Hint: Use
the Greek letter β (beta) to represent the slope for the population.]

(b) Can we make a decision about the outcome of the test (assuming a 10%
significance level) based solely on the confidence interval for the slope found in
Example B.4? If so, explain the decision. If not, explain why we cannot reach a
conclusion.

Solution (a) If we let β denote the population slope for the relationship between amount of
tips and size of bills at this restaurant, the hypotheses to test whether or not
there is a positive slope are

H0 : β = 0

Ha : β > 0

(b) The 90% confidence interval for the slope, found in Example B.4, is (0.168,
0.197). It does not include the null value of zero, so we reject H0 in favor of
a two-tailed alternative at a 10% level. In fact, since the confidence interval
includes only positive values, we can be fairly sure that the true slope is above
zero. Thus we have evidence that there is some positive slope for the relationship
between the amount of a tip and the size of a bill at this restaurant.

o

o
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What about Tip Percentage?
The data in RestaurantTips also include a variable showing the tip amount

expressed as a percentage of the bill (PctTip). Most people use a fairly regular
percentage (which may vary from person to person) of the total bill when deciding
how big a tip to leave. Some economists49 have theorized that people tend to reduce
that percentage when the bill gets large, but larger groups of customers might be
more generous as a group due to peer pressure. We can use the RestaurantTip
data to see if there is evidence to support either theory—or perhaps there is no
consistent relationship between the size of the bill and percent tip. Figure B.3 shows
a scatterplot with regression line for this relationship. The sample slope in the
regression line, ̂PctTip = 15.5 + 0.0488 · Bill, is positive, but looks pretty close to
zero. Just looking at this scatterplot, it is hard to tell whether this slope is significantly
different from zero. We need to conduct a hypothesis test.

Example B.6
Another Test for Slope, Using a Randomization Distribution

Perform a hypothesis test based on a randomization distribution to see if there is
sufficient evidence to conclude that the slope of the relationship between PctTip
and Bill is different from zero.

Figure B.3 Tip
percentage vs size of
restaurant bill
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−PctTip = 15.5 + 0.0488Bill; r2 = 0.018

Solution If we now let β denote the slope for predicting tip percentage based on bills at this
restaurant, the relevant hypotheses are

H0 : β = 0

Ha : β �= 0

Borrowing an idea from the randomization test for correlation in Example 4.30 on
page 270, we can simulate data under the null hypothesis of no relationship (β = 0) by

49Loewenstein, G. and Prelec, D. (1992). Anomalies in Intertemporal Choice: Evidence and an Inter-
pretation, Quarterly Journal of Economics, 1992; 107: 573–597.
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Figure B.4

Randomization
distribution for slopes of
PctTip vs Bill under
H0 : β = 0

Slope
0.120.100.080.060.040.020.00−0.02−0.04−0.06−0.08−0.10

0.0488

randomly assigning the tip percentages in the dataset to the bill amounts. For each
rearrangement, we compute the new regression line and save the sample slope to
create a randomization distribution. Figure B.4 shows one such distribution with
slopes for 10,000 simulated samples.

The location of the slope from our original sample, b = 0.0488, is indicated on
the randomization distribution. It turns out that 545 of the 10,000 samples simulated
under the null hypothesis of zero slope produced sample slopes above 0.0488.
Doubling to account for a two-tail test gives a p-value of 2 · 545/10, 000 = 0.109,
which is not very small. The sample does not have enough evidence to conclude
that the slope between PctTip and Bill is different from zero. Since the slope in our
sample is positive, there is certainly no evidence to support the economists’ claim of
a negative relationship.

Example B.7
What About the Outliers?

Figures B.1 and B.3 both show a few possible outliers from the pattern of the rest
of the data. Three very generous customers left tips that were more than 30% of
the bill. Do those points have a large effect on the conclusions of the slopes for
either of these relationships (Tip vs Bill or PctTip vs Bill)? One way to investigate
this question is to omit those cases from the data and re-run the analysis without
them.

Solution After dropping the three generous data points, the new least squares lines with the
remaining 154 cases for both relationships are shown in Figure B.5. The outliers
have a negligible effect on the slope of the relationship between Tip and Bill. It
barely changes from 0.182 with the outliers to 0.183 without them. A 90% confidence
interval for this slope, based on the data without outliers, goes from 0.173 to 0.193,
which is a bit narrower, but otherwise similar to the 90% interval, (0.168, 0.197),
from the full data.

The regression equation for predicting percentage tip, ̂PctTip = 14.9 + 0.056 ·
Bill, is a bit steeper when the outliers are removed. When testing H0 : β = 0 vs
Ha : β �= 0 for this new slope, the p-value for one set of 10,000 randomizations turns
out to be 0.006. This p-value is quite small, showing that, when we remove the
outlier big tippers, there is a significant positive association with the percentage of
the tip tending to increase with larger bills.

jllk
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Figure B.5 Regressions based on Bill with three outliers removed

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Demonstrate an understanding of estimation and testing and how they
fit together

• Distinguish whether an interval or a test is more appropriate for
addressing a particular question

• Apply the concepts of estimation and testing to answer questions using
real data

Exercises for UNIT B: Essential Synthesis

B.1 Statistical Inference I For each question, indi-
cate whether it is best assessed by using a confidence
interval, a hypothesis test, or whether statistical
inference is not relevant to answer it. If inference is
not relevant, explain why.

(a) What percent of US voters support instituting a
national kindergarten through 12th grade math
curriculum?

(b) Do basketball players hit a higher proportion of
free throws when they are playing at home than
when they are playing away?

(c) Do a majority of adults riding a bicycle wear a
helmet?

(d) On average, were the 23 players on the 2010
Canadian Olympic hockey team older than the
23 players on the 2010 US Olympic hockey
team?

B.2 Statistical Inference II For each question, indi-
cate whether it is best assessed by using a confidence
interval, a hypothesis test, or whether statistical

inference is not relevant to answer it. If inference is
not relevant, explain why.

(a) What proportion of people using a public
restroom wash their hands after going to the
bathroom?

(b) On average, how much more do adults who
played sports in high school exercise than adults
who did not play sports in high school?

(c) In 2010, what percent of the US Senate voted
to confirm Elena Kagan as a member of the
Supreme Court?

(d) What is the average daily calorie intake of 20-
year-old males?

B.3 Does Vitamin C Cure the Common Cold? A
study conducted on a college campus tested to see
whether students with colds who are given large
doses of vitamin C recover faster than students who
are not given the vitamin C. The p-value for the test
is 0.003.

- -

: o J
: / . ° o

' .: .f *

- .yf ° o o o ° % If, °© oo ~

i * r ? »°s> „«°

1
taBfSo8

%° ° v°° °
„° °v

° 0

-

o
o
o



B Essential Synthesis 305

(a) Given the p-value, what is the conclusion of the
test: Reject H0 or do not reject H0?

(b) Results of statistical inference are only as good
as the data used to obtain the results. No matter
how low a p-value is, it has no relevance (and
we can’t trust conclusions from it) if the data
were collected in a way that biases the results.
Describe an inappropriate method of collecting
the data for this study that would bias the results
so much that a conclusion based on the p-value
is very unreliable.

(c) Describe a method of collecting the data that
would allow us to interpret the p-value appro-
priately and to extend the results to the broader
student population.

(d) Assuming the data were collected as you
describe in part (c), use the p-value to make a
conclusion about vitamin C as a treatment for
students with a common cold.

B.4 Can Dogs Smell Cancer? Can dogs provide
an easy noninvasive way to detect cancer? Several
methods have been used to test this. In a recent
study,50 five dogs were trained over a three week
period to smell cancer in breath samples. To collect
the data, cancer patients who had just been diag-
nosed and had not yet started treatment were asked
to breathe into a tube. Breath samples were also
collected from healthy control adults. Dogs were
trained to sit if a breath sample came from a cancer
patient. After training, the dogs were presented with
breath samples from new subjects, with the samples
randomly presented in a double-blind environment.
The study was done for patients who were in differ-
ent stages of cancer and for lung and breast cancer
patients. The results for all groups were similar. The
data for early-stage breast cancer are presented in
Table B.1.

(a) Discuss the data collection for this study. Why is
it important that the samples are from new
subjects whose samples the dogs have not
encountered before? That they are randomly
presented? That the study is double-blind? That
patients have not yet started treatment? Do you
think this experiment was well designed?

(b) In the study for lung cancer, the experimenters
had to account for the effect of smoking. Why?

50McCulloch, M., Jezierski, T., Broffman, M., Hubbard, A.,
Turner, K., and Janecki, T., ‘‘Diagnostic Accuracy of Canine
Scent Detection in Early- and Late-Stage Lung and Breast Can-
cers,” Integrative Cancer Therapies , 2006; 5(1): 30–39.

(c) The question of interest is whether dogs are
more likely to sit if the subject has cancer than if
the subject does not have cancer. State the null
and alternative hypotheses and give the relevant
sample statistics.

(d) Without doing any computations, just looking
at the data, do you expect the p-value to be
relatively large or relatively small? Why? How
strong is the evidence? (Sometimes, in extreme
cases such as this one, we see results so obvious
that a formal test may not be necessary. Unless
results are exceptionally obvious, however, you
should confirm your intuition with statistical
inference.)

Table B.1 Can dogs smell cancer?

Control Cancer

Dog doesn’t sit 99 3
Dog sits 6 45

B.5 Diet Cola and Calcium A recent study51 exam-
ined the effect of diet cola consumption on calcium
levels in women. A sample of 16 healthy women
aged 18 to 40 were randomly assigned to drink 24
ounces of either diet cola or water. Their urine was
collected for three hours after ingestion of the bev-
erage and calcium excretion (in mg) was measured.
The researchers were investigating whether diet
cola leaches calcium out of the system, which would
increase the amount of calcium in the urine for diet
cola drinkers. The data are given in Table B.2 and
stored in ColaCalcium.

(a) Using StatKey or other technology, carry out an
appropriate inference procedure to address the
question of whether or not the mean amount of
calcium lost for women who drink diet cola is
more than for women who drink water.

(b) If the analysis in part (a) indicates that the
results are significant, construct a 95% confi-
dence interval to estimate the size of the effect.
If the results in part (a) are not significant, com-
bine the data into one sample of 16 values and
use it to construct a 95% confidence interval for
the average amount of calcium excreted. Be sure
to interpret whichever interval you construct.

51Larson, N.S., et al., ‘‘Effect of Diet Cola on Urine Calcium
Excretion,” Endocrine Reviews, 2010; 31(3): S1070. These data
are recreated from the published summary statistics and are
estimates of the actual data.
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Table B.2 Do diet cola drinkers excrete more
calcium?

Diet cola 50 62 48 55 58 61 58 56

Water 48 46 54 45 53 46 53 48

B.6 NFL Overtime The National Football League
(NFL) has used a sudden death overtime period
since 1974 to help decide a winner in games that are
tied at the end of regulation time. Before the over-
time starts, a coin flip is used to determine which
team gets the ball first. Some critics of the system
complain that the team that wins the coin flip has an
unfair advantage. In the 445 overtime NFL games in
the period between 1974 and 2009, the team winning
the coin toss has won 240 times and lost 188 times
and 17 games have ended in a tie when neither team
scored during the overtime. When considering the
impact of overtime policy for future games, we’ll
consider these games as a sample of all possible
NFL games.

(a) Discarding the 17 tie games, we see that the
winner of the coin flip has gone on to win 240 of
the 428 games where a winner is determined in
overtime. Does this provide sufficient evidence
to show that the team winning the coin flip
has an advantage? Use StatKey or other tech-
nology and assume that the league uses a 5%
significance level.

(b) The NFL changed a rule before the 1994 season
(moving the kickoff line back 5 yards) that might
affect this analysis. For 188 games (again ignor-
ing ties) from 1974 to 1993, the winner of the
coin flip won 94 times and lost 94 times. In 240
games played between 1994 and 2009 (after the
rule change) the winner of the coin flip won 146
games and lost 94. Organize this information in
a two-way table and discuss any statistical evi-
dence for a difference in the advantage (if any
exists at all) for the team winning the coin flip
under the new and old rules.

B.7 Impact of College Roommates on Grades
How much of an effect does your roommate have
on your grades? In particular, does it matter whether
your roommate brings a videogame to college? A
study52 examining this question looked at n = 210

52Stinebrickner, R. and Stinebrickner, T., ‘‘The Causal Effect
of Studying on Academic Performance,” The B.E. Journal of
Economic Analysis & Policy, 2008; 8(1) (Frontiers), Article 14.

students entering Berea College as first-year stu-
dents in the Fall of 2001 who were randomly
assigned a roommate. The explanatory variable is
whether or not the roommate brought a videogame
to college and the response variable is grade point
average (GPA) for the first semester.

(a) Discuss one of the important strengths of the
method of data collection.

(b) In conducting a test to see whether GPA is lower
on average for students whose roommate brings
a videogame to campus, define the parameter(s)
of interest and state the null and alternative
hypotheses.

(c) The p-value for the test in part (b) is 0.036. What
is the conclusion for a 5% significance level?

(d) We are interested in seeing how large the room-
mate effect is on GPA. A 90% confidence
interval for μv − μn is (−0.315, −0.015), where
μv is the average GPA for first-year students
whose roommate brings a videogame to college
and μn is the average GPA for first-year students
whose roommate does not bring a videogame
to college. Explain how you can tell just from
the confidence interval which group has a
higher average GPA. Interpret the confidence
interval in terms of roommates, videogames,
and GPA.

(e) The researchers also record whether the stu-
dent him- or herself brought a videogame to
college. We conduct the same test as in part (b),
to see if having a roommate bring a videogame
to college hurts GPA, for each of these groups
separately. For the test for students who do not
themselves bring a videogame to college, the
p-value is 0.068. What is the conclusion, using a
5% significance level?

(f) For the test for students who themselves bring a
videogame to campus, the p-value for the test is
0.026. What is the conclusion, again using a 5%
significance level?

(g) Using the p-values in parts (e) and (f), for which
group of students (those who bring a videogame
or those who do not) does having a room-
mate bring a videogame have a larger effect on
GPA? Does this match what you would expect?
Explain.

(h) For students who bring a videogame to cam-
pus, a 90% confidence interval for μv − μn

is (−0.526, −0.044). Interpret this confidence
interval in context and compare the effect size
to that found for all students in part (d).
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Table B.3 Videogames and GPA

Student Brought Roommate Brought
Videogame Videogame Sample Size Mean GPA Std. Dev.

No No 88 3.128 0.590
Yes No 44 3.039 0.689
No Yes 38 2.932 0.699
Yes Yes 40 2.754 0.639

(i) The summary statistics are in Table B.3. Com-
ment on the effect on GPA of videogames at
college in general.

(j) Describe at least one additional test you might
conduct using the data summarized in Table B.3.

B.8 Husbands Older Than Wives? A sample of
marriage licenses from 2010 to 2011 in St. Lawrence
County53 in Northern New York State gives the
ages of husbands and wives at the time of marriage
for 105 newly married couples. The data are stored
in MarriageAges and the first few cases from this
file are shown in Table B.4. The question of interest
is whether or not husbands tend to be older than
their wives. Use StatKey or other technology and
statistical inference to address this issue based on
the questions in parts (a) and (b). In all cases be
sure to interpret your findings in the context of this
problem, stating to what population (if any) your
findings apply.

(a) When getting married, is the average age for
husbands greater than the average age for
wives? (Hint: The data are paired.)

(b) Is the proportion of couples for which the hus-
band is older greater than 50%?

53Thanks to Linda Casserly at the County Clerk’s office for the
data.

(c) For any significant results in parts (a) and (b),
construct and interpret an interval for the size
of the effect.

Table B.4 First ten cases in MarriageAges,
giving ages from marriage licenses

Husband 53 38 46 30 31 26 29 48 65 29 . . .

Wife 50 34 44 36 23 31 25 51 46 26 . . .

B.9 Correlation between Ages of Husbands and
Wives Exercise B.8 describes data on ages of hus-
bands and wives at the time of marriage.

(a) Do you expect the correlation between the ages
at marriage of husbands and wives to be positive,
negative, or near zero? Explain.

(b) Using the data in MarriageAges, find the sample
correlation and display the data in a scatterplot.
Describe what you observe about the data in
the scatterplot.

(c) Use StatKey or other technology to construct
and interpret a 95% confidence interval for the
correlation between the ages of husbands and
wives when they get married.

(d) Does the correlation between ages help address
the question in the previous exercise about
whether husbands tend to be older than their
wives?

Review Exercises for UNIT B

B.10 Average GRE Scores The GRE (Graduate
Record Exam) is like the SAT exam except it is
used for application to graduate school instead of
college. The mean GRE scores54 for all examinees
tested between July 1, 2006, and June 20, 2009, are
as follows: Verbal 456, Quantitative 590, Analytic
Writing 3.8. If we consider the population to be all
people who took the test during this time period,
are these parameters or statistics? What notation
would be appropriate for each of them? Suppose

54http://ets.org/s/gre/pdf/gre interpreting scores.pdf.

we take 1000 different random samples, each of
size n = 50, from each of the three exam types
and record the mean score for each sample. Where
would the distribution of sample means be centered
for each type of exam?
B.11 Do Violent Movies Lead to Violence in Soci-
ety? A recent national telephone survey55 reports
that 57% of those surveyed think violent movies
lead to more violence in society. The survey included
a random sample of 1000 American adults and

55‘‘57% Believe Violence in Movies Leads to Violence in Soci-
ety,” Rasmussen Reports, February 14, 2012.
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reports: ‘‘The margin of sampling error is +/- 3
percentage points with a 95% level of confidence.”

(a) Define the relevant population and parameter.
Based on the data given, what is the best point
estimate for this parameter?

(b) Find and interpret a 95% confidence interval
for the parameter defined in part (a).

B.12 Carbon Stored in Forest Biomass Scientists
hoping to curb deforestation estimate that the car-
bon stored in tropical forests in Latin America,
sub-Saharan Africa, and southeast Asia has a total
biomass of 247 gigatons spread over 2.5 billion
hectares. The scientists56 measured carbon levels
at 4079 inventory plots and also used information
from satellite images. A 95% confidence inter-
val for the mean amount of carbon per square
kilometer in tropical forests in Latin America, sub-
Saharan Africa, and southeast Asia is 9600 to 13,600
tons. Interpret this confidence interval. In addition,
explain what the scientists would have to do to
calculate the estimated quantity exactly.

B.13 What Proportion of Hollywood Movies Are
Comedies? Data 2.7 on page 93 introduces the
dataset HollywoodMovies2011, which contains
information on all 136 movies to come out of
Hollywood in 2011. Twenty-seven of those movies
were comedies.

(a) What proportion of Hollywood movies in 2011
were comedies? Use the correct notation with
your answer.

(b) If we took many samples of size 25 from the
population of all 2011 Hollywood movies and
recorded the proportion of comedies for each
sample, what shape do we expect the distribu-
tion of sample proportions to have? Where do
we expect it to be centered?

B.14 Sampling Distributions for Proportion of
Hollywood Movies That Are Comedies The dataset
HollywoodMovies2011 contains information on all
136 movies to come out of Hollywood in 2011. We
see in Exercise B.13 that 27 of the movies were
comedies. If we take 1000 samples of size n = 25
from this dataset and record the proportion of
movies in the sample that are comedies, we get the
sampling distribution shown in Figure B.6. In each
case below, fill in the blank with the best option
provided.

(a) The standard error of this sampling distribution
is approximately .

0.02 0.07 0.13 0.17 0.20
56Saatchi, S.S., et al., ‘‘Benchmark Map of Forest Carbon Stocks
in Tropical Regions Across Three Continents,” Proceedings of
the National Academy of Sciences, May 31, 2011.

(b) If we create a new sampling distribution using
samples of size n = 40, we expect the center
of the new distribution to be the
center of the distribution shown in Figure B.6.

smaller than about the same as larger than

(c) If we create a new sampling distribution using
samples of size n = 40, we expect the standard
error of the new distribution to be
the standard error of the distribution shown in
Figure B.6.

smaller than about the same as larger than

(d) If we create a new sampling distribution using
5000 samples of size n = 25, we expect the center
of the new distribution to be the
center of the distribution shown in Figure B.6.

smaller than about the same as larger than

(e) If we create a new sampling distribution using
5000 samples of size n = 25, we expect the
standard error of the new distribution to be

the standard error of the distri-
bution shown in Figure B.6.

smaller than about the same as larger than
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Figure B.6 Sampling distribution using 1000 samples
of size n = 25

B.15 Cell Phones in the Classroom Many profes-
sors do not like having cell phones ring during class.
A recent study57 appears to justify this reaction,
by showing that a ringing cell phone can adversely
affect student learning. In the experiment, students
in a college classroom were exposed to a ringing cell
phone during a psychology lecture. In the first part
of the experiment, performance on a quiz revealed

57Shelton, J., Elliott, E., Eaves, S., and Exner, A., ‘‘The Dis-
tracting Effects of a Ringing Cell Phone: An Investigation of the
Laboratory and the Classroom Setting,” Journal of Environmen-
tal Psychology, 2009.
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significantly lower accuracy rates on material pre-
sented while the phone was ringing. In a second
part of the experiment, proximity of the students to
the ringing phone was measured and results showed
that the location of the ringing phone within the
classroom was not associated with performance.
The p-values for the two tests were 0.93 and 0.0004.
Which p-value goes with which test? For the signifi-
cant result, describe the strength of the evidence in
context.

B.16 What Proportion of US Adults Exercise?
In Example 3.17 on page 186, we learn that, in a
random sample of over 450,000 US adults, the pro-
portion of people who say they exercised at some
point in the last 30 days is p̂ = 0.726 with a standard
error of SE = 0.0007. Find and interpret a 95% con-
fidence interval for the proportion of US adults who
have exercised in the last 30 days.

B.17 Does Light at Night Make Fat Mice? In
Data A.1 on page 136, we introduce a study in
which mice are randomly separated into one group
on a normal light–dark cycle and one group with
bright light all the time. Although the mice ate the
same amounts and exercised the same, the sample
mice with light at night gained more weight. The
body mass gain, in grams, after four weeks is shown
(rounded to the nearest whole number) in Table B.5
and stored in FatMice18.

Table B.5 Body mass gain of mice, in grams

Bright light (LL) 10 10 11 9 12 9 11 9 17
Light/dark (LD) 5 6 7 8 3 8 6 6 4

We saw in Exercise 4.127 on page 277 that the null
and alternative hypotheses for testing whether mean
weight gain is higher in the presence of light at night
are given by

H0 : μLL = μLD

Ha : μLL > μLD

Use StatKey or other technology to complete the
test. State the p-value and state the conclusion of
the test in context. How strong is the evidence for
the result?

B.18 Do Ovulating Women Affect Men’s Speech?
Studies suggest that when young men interact with a
woman who is in the fertile period of her menstrual
cycle, they pick up subconsciously on subtle changes
in her skin tone, voice, and scent. A new study58

suggests that they may even change their speech

58Data approximated from information given in ‘‘How Ovulat-
ing Women Affect Men’s Speech,” the chart, CNNHealth.com,
February 8, 2012.

patterns. The experiment included 123 male and 5
female college students, all of them heterosexual.
The men were randomly divided into two groups
with one group paired with a woman in the fertile
phase of her cycle and the other group with a
woman in a different stage of her cycle. The women
were used equally in the two different stages. For
the men paired with a less fertile woman, 38 of the
61 men copied their partner’s sentence construction
in a task to describe an object. For the men paired
with a woman at peak fertility, 30 of the 62 men
copied their partner’s sentence construction. The
experimenters hypothesized that men might be less
likely to copy their partner during peak fertility in
a (subconscious) attempt to attract more attention
to themselves. Use StatKey or other technology to
create a randomization distribution and conduct
a hypothesis test to see if the proportion copying
sentence structure is less when the woman is at
peak fertility. Include all details of the test. Are the
results significant at a 5% level? Are they significant
at a 10% level?

B.19 Estimating Pizza Girl’s Tips A pizza delivery
person was interested in knowing how she spends
her time and what her actual hourly earnings are, so
she recorded all of her deliveries and tips and how
she spent every minute of her time over three shifts,
on one Friday night and two Saturday nights. She
discusses the results, and much more, on ‘‘Diary of
a Pizza Girl” on the Slice website.59 Some of these
data are available in PizzaGirl. The average tip for
pizza deliveries on the nights sampled is x = $3.04.
If we want to use this sample mean to estimate the
average tip for all deliveries, the margin of error is
$0.86. Find an interval estimate for the average tip
for all pizza deliveries she makes. What do we have
to assume about the sample in order for this point
estimate and interval estimate to be valid?

B.20 Price of Textbooks We select a random sam-
ple of n = 10 textbooks at a university bookstore
and are testing to see if there is evidence that the
average price of textbooks at that store is greater
than $100. Give an example of possible sets of 10
prices that would provide:

(a) Strong evidence that the average price of the
store’s textbooks is greater than $100

(b) No evidence at all that the average price is
greater than $100

(c) Some evidence that the average price is greater
than $100 but not strong evidence

59http://slice.seriouseats.com/archives/2010/04/statistical-analysis
-of-a-pizza-delivery-shift-20100429.html.
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B.21 Most Americans Don’t Go Out to Movies
According to a recent survey,60 most Americans
prefer to watch a movie in the comfort of their own
home rather than going out to a theater. In the
telephone survey of 1000 randomly selected Amer-
ican adults, 56% say they rarely or never go out to
the movies, while 32% go ‘‘occasionally” and 12%
go at least once a month. We wish to estimate the
proportion of American adults that rarely or never
go out to the movies, and the report tells us: ‘‘The
margin of sampling error is +/- 3 percentage points
with a 95% level of confidence.” Find and interpret
a 95% confidence interval for the proportion rarely
or never going out. Can we be relatively sure that
the percent rarely or never going out to the movies
is greater than 50%?

B.22 Effect of Smoking on Pregnancy Rate
Exercise 2.25 on page 57 introduces a study of 678
women who had gone off birth control with the
intention of becoming pregnant. Table B.6 includes
information on whether or not a woman was a
smoker and whether or not the woman became
pregnant during the first cycle. We wish to estimate
the difference in the proportion who successfully
get pregnant, between smokers and non-smokers.

(a) Find the best point estimate for the difference
in proportions.

(b) Use StatKey or other technology to find and
interpret a 90% confidence interval for the
difference in proportions. Is it plausible that
smoking has no effect on pregnancy rate?

Table B.6 Smoking and pregnancy rate

Smoker Non-smoker Total

Pregnant 38 206 244
Not pregnant 97 337 434

Total 135 543 678

B.23 Testing the Effect of Smoking on Pregnancy
Rate Exercise B.22 discusses a study to see if smok-
ing might be negatively related to a woman’s ability
to become pregnant. The study looks at the pro-
portion of successful pregnancies in two groups,
smokers and non-smokers, and the results are
summarized in Table B.6. In this exercise, we are
interested in conducting a hypothesis test to deter-
mine if there is evidence that the proportion of
successful pregnancies is lower among smokers than
non-smokers.

60‘‘56% Rarely Go To Movies,” Rasmussen Reports, February 7,
2012.

(a) Is this a one- or two-tailed test?

(b) What are the null and alternative hypotheses?

(c) If the null hypothesis is true (and smoking has
no effect on pregnancy rate), we expect the 678
women to have the same pregnancy success rate
regardless of smoking habits. We might cre-
ate a randomization distribution by simulating
many random assignments of women to the two
groups. How many women would you randomly
assign to the smoking group? The nonsmoking
group?

(d) Figure B.7 shows the counts for successful preg-
nancies in the smoking group from 1000 such
simulations. Using the same statistic (count for
successful pregnancies in the smoking group)
from the original sample and using this figure,
which value would best approximate the p-value
for our test?
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Figure B.7 Randomization distribution for 1000
simulations H0 : ps = pns

B.24 Taxes and Soda Consumption: Dotplots of
Samples The average American drinks approxi-
mately 50 gallons of soda (pop) a year, delivering
approximately 50,000 calories and no nutrition.61

Some legislators are recommending instituting a
sales tax on soda to raise revenue and fight obesity.
Will a sales tax impact consumption? Suppose that
a sales tax on soda will be added in a random sample
of communities to measure the impact on soda con-
sumption. We wish to determine whether average

61Kiviat, B., ‘‘Tax and Sip,” Time Magazine, July 12, 2010,
p. 51–52.
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Gallons of soda per year

36
Sample B

Sample A

5439 42 45 48 51

(a)
Gallons of soda per year

40
Sample B

Sample A

5442 44 46 48 50 52

(b)

Gallons of soda per year

44
Sample B

Sample A

6848 52 56 60 64

(c)

Figure B.8 Samples for Exercise B.24

per-capita consumption of taxed soda is significantly
less than 50 gallons a year. Figure B.8 shows dot-
plots of three pairs of possible sample results. In
each case, indicate whether the results of Sample A
or Sample B show stronger evidence that average
consumption of taxed soda is below 50, or state
that neither sample shows evidence that the mean
is below 50. Explain your reasoning in each case.

B.25 Taxes and Soda Consumption: Boxplots of
Samples We extend the situation described in
Exercise B.24 to each of the pairs of boxplots in
Figure B.9. In each case, indicate whether the results
of Sample A or Sample B show stronger evidence
that average consumption of taxed soda is below 50,
or state that neither sample shows evidence of this.

Gallons of soda per year

555045

(a)

4035

Sample B (n=30)

Sample B (n=30)

(b)

65605550454030 35

Gallons of soda per year

Sample A (n=30)

Sample B (n=30)

(c)

525048464440 42

Gallons of soda per year

Sample A (n=500)

Sample B (n=10)

Figure B.9 Samples for Exercise B.25

Notice that sample sizes are shown on the side of
the boxplots.

B.26 Taxes on Soda: Interpreting P-values
Exercises B.24 and B.25 describe a study to deter-
mine whether a sales tax on soda will reduce
consumption of soda in the US below the cur-
rent per-capita level of about 50 gallons of soda per
year. The hypotheses for the test are H0 : μ = 50 vs
Ha : μ < 50, where μ represents the average annual
consumption of soda in communities where the sales
tax is implemented.

(a) Suppose sample results give a p-value of 0.02.
Interpret this p-value in terms of random chance
and in the context of taxes and soda consump-
tion.
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(b) Now suppose sample results give a p-value of
0.41. Interpret this p-value in terms of random
chance and in the context of taxes and soda
consumption.

(c) Which p-value, 0.02 or 0.41, gives stronger
evidence that a sales tax will reduce soda con-
sumption?

(d) Which p-value, 0.02 or 0.41, is more statistically
significant?

B.27 Standard Error for Proportion of Holly-
wood Movies that are Action Movies Data 2.7
on page 93 introduced the dataset Hollywood-
Movies2011, which contains information on all the
136 movies that came out of Hollywood in 2011.
Thirty-two of the Hollywood movies that year were
classified as action movies.

(a) What proportion of Hollywood movies in 2011
were action movies? Use the correct notation
with your answer.

(b) Use StatKey or other technology to generate
a sampling distribution for the proportion of
action movies for sample proportions of size
n = 30. Give the shape and center of the sam-
pling distribution and give the standard error.

B.28 Average Size of a Performing Group in the
Rock and Roll Hall of Fame From its founding
through 2012, the Rock and Roll Hall of Fame has
inducted 273 groups or individuals, and 181 of the
inductees have been performers while the rest have
been related to the world of music in some way other
than as a performer. The full dataset is available at
RockandRoll. Some of the 181 performer inductees
have been solo artists while some are groups with
a large number of members. We are interested in
the average number of members across all groups
or individuals inducted as performers.

(a) What is the mean size of the performer inductee
groups (including individuals)? Use the correct
notation with your answer.

(b) Use technology to create a graph of all 181 val-
ues. Describe the shape, and identify the two
groups with the largest numbers.

(c) Use technology to generate a sampling distri-
bution for the mean size of the group using
samples of size n = 10. Give the shape and cen-
ter of the sampling distribution and give the
standard error.

(d) What does one dot on the sampling distribution
represent?

B.29 Sampling Distributions vs Bootstrap Distribu-
tions Given a specific sample to estimate a specific
parameter from a population, what are the expected

similarities and differences in the corresponding
sampling distribution (using the given sample size)
and bootstrap distribution (using the given sam-
ple)? In particular, for each aspect of a distribution
listed below, indicate whether the values for the two
distributions (sampling distribution and bootstrap
distribution) are expected to be approximately the
same or different. If they are different, explain how.

(a) The shape of the distribution

(b) The center of the distribution

(c) The spread of the distribution

(d) What one value (or dot) in the distribution
represents

(e) The information needed in order to create the
distribution

B.30 Bootstrap Distributions for Intervals vs Ran-
domization Distributions for Tests What is the
expected center of a bootstrap distribution gen-
erated to find a confidence interval? What is the
expected center of a randomization distribution
generated to test a hypothesis?

B.31 Exercise Hours: Males vs Females In
Example 3.25 on page 207, we compare the mean
hours of exercise per week between male and female
college students. The sample results are included in
the dataset ExerciseHours, where we see that the
20 men in the sample exercised for an average
of 12.4 hours per week and the 30 women in the
sample exercised for an average of 9.4 hours per
week. Using the standard error for a bootstrap dis-
tribution, we find a 95% confidence interval for
the difference in means (μm − μf ) to go from −1.75
hours to 7.75 hours. Use StatKey or other technology
and a bootstrap distribution to find and interpret a
90% confidence interval for the difference in mean
hours of exercise between males and females. How
does your interval compare to the 95% confidence
interval based on the standard error?

B.32 What Proportion Watch the Super Bowl? The
Super Bowl is the final championship game in the
National Football League in the US, and is one
of the most watched television events of the year.
In February 2012, just before Super Bowl XLVI,
a random sample62 of 1807 American adults were
asked if they plan to watch the Super Bowl. A 95%
confidence interval for the proportion planning to
watch is 0.61 to 0.65.

(a) What is the population? What is the sample?

(b) Interpret the confidence interval in context.

62‘‘Game Day: 63% Will Watch Super Bowl; Most Will Be At
Home,” Rasmussen Reports, February 5, 2012.
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(c) Approximately what is the best point estimate
and margin of error for the estimate?

B.33 A Possible Fast-Acting Antidepressant Tra-
ditional antidepressants often take weeks or months
to improve symptoms. A new study63 may provide
a faster acting option. The anesthetic ketamine is
very dangerous and can be deadly at high doses.
However, low doses appear to have a rapid effect
on levels of a brain compound linked to depression.
In the study, mice receiving a single injection of
ketamine showed fewer signs of depression within
30 minutes and the results lasted almost a week.
One standard test of depression in mice is called the
forced-swim test: Mice who are not depressed will
struggle longer to stay afloat rather than giving up
and sinking. The quantity measured is seconds that
the mouse is immobilized, and lower numbers mean
less depression. In a sample of 10 depressed mice
30 minutes after receiving a shot of ketamine, the
mean number of seconds immobile was 135 with a
standard error for the estimate of 6.

(a) Describe carefully how to use slips of paper
containing the sample data to generate one
bootstrap statistic. In particular, how many slips
of paper are needed and what is on them?
What do we do with them to obtain a bootstrap
sample? What statistic do we then record?

(b) Find and interpret a 95% confidence interval
for the time immobile in a forced-swim test for
mice receiving a shot of ketamine.

(c) Researchers report that the average immobile
time for depressed mice is about 160 seconds.
Based on the interval in part (b), is 160 a plausi-
ble value for the mean immobile time for mice
treated with ketamine?

B.34 A Test for a Possible Fast-Acting Antide-
pressant Exercise B.33 describes a study on the use
of ketamine in treating depression in mice. Ten
depressed mice given the drug had a mean score of
135 seconds on a forced-swim test used to measure
depression (lower scores indicate less depression).
The usual mean for depressed mice on this test is
about 160 seconds.

(a) Using the parameter μ to denote the mean score
on this test for depressed mice after treatment
with ketamine, what are the null and alternative
hypotheses for seeing if there is evidence that
the mean score is lower than 160?

(b) Describe carefully how to use slips of paper
to generate one randomization statistic for this

63Autry, A., et al., ‘‘NMDA Receptor Blockade at Rest Triggers
Rapid Behavioural Antidepressant Responses,” Nature, online,
June 15, 2011.

test. In particular, how many slips of paper are
needed and what do we write on them? What
do we do with them to obtain a randomization
sample? What statistic do we then record?

B.35 Proportion of a Country’s Population with
Access to the Internet One of the variables in the
AllCountries dataset gives the percent of the pop-
ulation of each country with access to the Internet.
This information is available for all 199 countries
(ignoring a few with missing values). We are inter-
ested in the average percent with Internet access.

(a) What is the mean percent with Internet access
across all countries? What is the standard devi-
ation of the values? Use the correct notation
with your answers.

(b) Which country has the highest Internet access
rate, and what is that percent? Which country
has the lowest Internet access rate, and what is
that percent? What is the Internet access rate
for your country?

(c) Use StatKey or other technology to generate
a sampling distribution for the mean Internet
access rate using samples of size n = 10. Give
the shape and center of the sampling distribution
and give the standard error.

B.36 What Is an Average Budget for a Hollywood
Movie? Data 2.7 on page 93 introduces the dataset
HollywoodMovies2011, which contains information
on all the 136 movies that came out of Hollywood
in 2011.

(a) Find the mean and standard deviation for the
budgets (in millions of dollars) of all 2011 Hol-
lywood movies. Use the correct notation with
your answer.

(b) Use StatKey or other technology to generate a
sampling distribution for the sample mean of
budgets of 2011 Hollywood movies using a sam-
ple size of n = 20. Give the shape and center of
the sampling distribution and give the standard
error.

B.37 Cell Phones and Cancer Does heavy cell
phone use increase the incidence of brain tumors?
A study of cell phone use among 10,000 participants
found that ‘‘the 10% who used their phones most
often and for the longest time had a 40% higher risk
of developing some form of brain cancer than those
who didn’t use a mobile phone.”64 Nonetheless, the

64Walsh, B., ‘‘A Study on Cell Phones and Cancer,” Time Maga-
zine, May 31, 2010, p. 15, reporting on a study in the International
Journal of Epidemiology, May 17, 2010.
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results were not statistically significant. Epidemi-
ologists Saracci and Samet write that the results
‘‘tell us that the question of whether mobile-phone
use increases risks for brain cancers remains open.”
Based on this study, describe whether each state-
ment below is plausible for this population:

(a) Heavy cell phone use has no effect on develop-
ing brain cancer.

(b) Heavy cell phone use is associated with an
increased risk of brain cancer.

(c) Heavy cell phone use causes an increased risk
of brain cancer.

B.38 Infections in Childbirth The Centers for Dis-
ease Control and Prevention (CDC) conducted a
randomized trial in South Africa designed to test
the effectiveness of an inexpensive wipe to be used
during childbirth to prevent infections.65 Half of the
mothers were randomly assigned to have their birth
canal wiped with a wipe treated with a drug called
chlorohexidine before giving birth, and the other
half to get wiped with a sterile wipe (a placebo).
The response variable is whether or not the new-
borns develop an infection. The CDC hopes to find
out whether there is evidence that babies delivered
by the women getting the treated wipe are less likely
to develop an infection.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) What is/are the sample statistic(s) to be used to
test this claim?

(c) If the results are statistically significant, what
would that imply about the wipes and infec-
tions?

(d) If the results are not statistically significant,
what would that imply about the wipes and
infections?

B.39 Estimating the Proportion with Employer-
Based Health Insurance In Exercise 3.52 on
page 189, we discuss a Gallup poll stating that
the proportion of American adults getting health
insurance from an employer is estimated to be 0.45.
We are also told that, with 95% confidence, ‘‘the
maximum margin of sampling error is ±1 percentage
point” for this estimate. In fact, the Gallup organi-
zation rounded up the margin of error to the nearest
whole number and the actual margin of error is quite
a bit less. Figure B.10 shows a bootstrap distribution

65Eriksen, N., Sweeten, K. and Blanco, J., ‘‘Chlorohexidine Vs.
Sterile Vaginal Wash During Labor to Prevent Neonatal Infec-
tion,” Infectious Disease in Obstetrics and Gynecology, 1997;
5(4): 286–290.

based on the sample results. Use the bootstrap
distribution to estimate the standard error and find
and interpret a 95% confidence interval.
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Figure B.10 Bootstrap proportions for 10,000 samples
based on a Gallup poll with n = 147, 291 and p̂ = 0.45

B.40 False Positives in Lie Detection Is lie detec-
tion software accurate? Exercise A.23 on page 147
describes a study in which 48 individuals read a
truthful passage while under stress and while con-
nected to a lie detector. The lie detection software
inaccurately reported deception in 57% of the cases.
A bootstrap distribution shows an estimated stan-
dard error of 0.07.

(a) Give a point estimate for the population param-
eter of interest.

(b) Give a 95% confidence interval for this popula-
tion parameter.

(c) Comment on the accuracy of this lie detec-
tor. Do you think results from this lie detector
should hold up in court?

B.41 How Common are False Positives in Lie
Detection? In Exercise B.40, we learn that when
48 stressed individuals read a truthful passage while
being hooked up to a lie detector, the lie detection
software inaccurately reported deception by 27 of
them. Does this sample provide evidence that lie
detection software will give inaccurate results more
than half the time when used in situations such as
this? State the null and alternative hypotheses. Use
StatKey or other technology to create a random-
ization distribution, find a p-value, and give a clear
conclusion in context.

B.42 Genetic Component of Autism It is estimated
that in the general population about 9 out of every
1000, or 0.009, children are diagnosed with autism.
A recent study66 included 92 six-month-old babies

66CBS Evening News, February 17, 2012.
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who had a sibling with autism. Twenty-eight of
these babies were later diagnosed with autism. Use
StatKey or other technology to find a 99% con-
fidence interval for the proportion of siblings of
autistic children likely to have autism. (In the study,
brain scans taken at six-months old predicted almost
perfectly which children would later be diagnosed
with autism, providing the earliest known method
for diagnosing the disease.)

B.43 Mean of Atlanta Commuting Distances
Exercise 3.84 on page 204 describes the variable
Distance for the Atlanta commuter sample stored
in CommuteAtlanta, giving the distance of each
commute (in miles). Use StatKey or other technol-
ogy to create a distribution with the mean distances
for 1000 bootstrap samples and use it to find and
interpret a 90% confidence interval for the mean
commute distance in metropolitan Atlanta.

B.44 Confidence Intervals for Correlation using
Atlanta Commutes In Exercise 3.85 on page 204,
we use the standard error to construct a 95% confi-
dence interval for the correlation between Distance
(in miles) and Time (in minutes) for Atlanta com-
muters, based on the sample of size n = 500 in
CommuteAtlanta. The file BootAtlantaCorr con-
tains 1000 values of bootstrap correlations produced
from the original sample.

(a) Describe a process that might have been used
to produce the data in BootAtlantaCorr.

(b) Use the information in the 1000 bootstrap cor-
relations (or a similar bootstrap distribution
found using StatKey or other technology) to
find and interpret a 99% confidence interval for
the correlation in this setting.

(c) Repeat (b) for 95% and 90% confidence levels.
You do not need to repeat the interpretation.

(d) Describe how the interval changes as the confi-
dence level decreases.

B.45 Mercury Levels in Fish and pH in Lake Water
Data 2.4 on page 68 introduces the dataset Flori-

daLakes and discusses the correlation between the
acidity (pH) for a sample of n = 53 Florida lakes
and the average mercury level (ppm) found in fish
taken from each lake. We saw in Chapter 2 that
there appears to be a negative trend in the scat-
terplot between the two variables. We wish to test
whether there is significant evidence of a negative
correlation between pH and mercury levels. A ran-
domization distribution based on the data is shown
in Figure B.11. The sample statistic of interest is the
sample correlation.

(a) What are the null and alternative hypotheses?

(b) Use Figure B.11 to give a very rough estimate
of the sample correlation corresponding to a
p-value of 0.30. Explain your reasoning.

(c) Use Figure B.11 to give a very rough estimate
of the sample correlation corresponding to a
p-value of 0.01. Explain your reasoning.
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Figure B.11 Randomization distribution of
correlations for 10,000 samples using H0 : ρ = 0

B.46 Arsenic in Chicken In Data 4.5 on page 228
we describe a situation in which a restaurant chain
will test for arsenic levels in a sample of chickens
from a supplier. If there is evidence that the average
level of arsenic is over 80 ppb, the chain will perma-
nently cancel its relationship with the supplier. The
null and alternative hypotheses are H0 : μ = 80 vs
Ha : μ > 80.

(a) What would it mean for analysts at the restau-
rant chain to make a Type I error in the context
of this situation?

(b) What would it mean to make a Type II error in
this situation?

(c) Does the word ‘‘error” mean that the person
doing the test did something wrong (perhaps
by sampling in a way that biased the results,
making a mistake in data entry, or an arithmetic
error)? Explain.

B.47 Possible Errors in Testing Infections in Child-
birth Exercise B.38 on page 314 describes a ran-
domized trial in South Africa to test whether the
proportion of babies born with infections is smaller
if women in labor are treated with a wipe contain-
ing chlorohexidine rather than a sterile wipe (the
placebo). A sample of n = 481 pregnant women
were randomly split into the two groups. One goal
of the study is to test H0 : pc = pw vs Ha : pc < pw,
where pc and pw are the proportion of babies who
develop infections during childbirth with the respec-
tive treatments.

IHlfln
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(a) What does it mean to make a Type I error in
this situation?

(b) What does it mean to make a Type II error in
this situation?

(c) In which of the following two situations should
we select a smaller significance level:

• The drug chlorohexidine is very safe and
known to have very few side effects.

• The drug chlorohexidine is relatively new and
may have potentially harmful side effects for
the mother and newborn child.

(d) The p-value for the data in this study is 0.32.
What is the conclusion of the test?

(e) Does this conclusion mean that the treated
wipes do not help prevent infections? Explain.

B.48 Mercury Levels in Fish The dataset Flori-
daLakes is introduced in Data 2.4 on page 68,
and we return to the dataset in Exercise B.45 on
page 315. To see if there is evidence of a negative
correlation between pH in lakes and mercury levels
in fish, the hypotheses are H0 : ρ = 0 vs Ha : ρ < 0.
For the observed sample, with n = 53, we have
r = −0.575.

(a) What assumption do we make in creating the
randomization distribution?

(b) Where will the randomization distribution be
centered?

(c) Describe how you could use index cards to
create one simulated sample. How many cards
do you need? What will you put on them? What
will you do with them? Once you have used
the cards to create a simulated sample, what
statistic will you calculate from it to use in a
randomization distribution? (You don’t have to
actually create a simulated sample, just give a
description of the process you would follow.)

B.49 A Randomization Distribution for Mercury
Levels in Fish Use StatKey or other technology
to create the randomization distribution for the
situation in Exercise B.48. Use the distribution to
calculate a p-value. Using α = 0.05, state the con-
clusion in context.

B.50 Heart Rates and Blood Pressure Table B.7
shows the heart rates and systolic blood pressure for
eight 55-year-old patients from the Intensive Care
Unit data introduced in Data 2.3 on page 66 and
available at ICUAdmissions. We are testing to see
if the data provide evidence of a positive correlation
between these two variables for 55-year-old ICU
patients.
(a) Define any relevant parameter(s) and state the

null and alternative hypotheses.

(b) What assumption do we make in creating the
randomization distribution?

(c) What statistic will we record for each of the
simulated samples to create the randomization
distribution? What is the value of that statistic
for the observed sample?

(d) Where will the randomization distribution be
centered?

(e) Explain how we can create randomization sam-
ples to be consistent with the null hypothesis.

(f) Find one point on the randomization distribu-
tion by carrying out the procedure in part (e).
Show the resulting values for the variables,
and compute the sample correlation for the
randomization sample.

(g) Find a second randomization sample and record
its sample correlation.

Table B.7 Are heart rate and
systolic blood pressure positively
correlated?

Heart Rate Systolic BP

86 110
86 188
92 128

100 122
112 132
116 140
136 190
140 138

B.51 Randomization Distribution for Heart Rate
and Blood Pressure Use StatKey or other technol-
ogy to create the randomization distribution for
the data in Exercise B.50. Use the distribution to
estimate the p-value for the test. Are the results
statistically significant?

Randomization Samples In Exercises B.52 to B.56,
a situation is described for a statistical test. In
Section 4.1 you were asked to state the null and alter-
native hypotheses (Exercises 4.9 to 4.13). Here, for
each situation, describe how you might physically
create one randomization sample and compute one
randomization statistic (without using any technol-
ogy) from a given sample. Be explicit enough that a
classmate could follow your instructions (even if it
might take a very long time).

B.52 Testing to see if there is evidence that the pro-
portion of people who smoke is greater for males
than for females.
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B.53 Testing to see if there is evidence that a corre-
lation between height and salary is significant (that
is, different than zero.)

B.54 Testing to see if there is evidence that the
percentage of a population who watch the Home
Shopping Network is less than 20%.

B.55 Testing to see if average sales are higher in
stores where customers are approached by sales-
people than in stores where they aren’t.

B.56 Testing to see if there is evidence that the
mean time spent studying per week is different
between first-year students and upperclass students.

Projects for UNIT B

Project 1 Statistical Inference in the Media

This project asks you to find examples of statistical
inference in the media. You are asked to find one
article in the popular press where a test is de-
scribed but no explicit p-value is given, and one
article in a scholarly journal where a p-value
is explicitly given. You should submit a well-
written report addressing each of the following
parts.

Part 1 Mainstream media

Find a description of a statistical test in the popular
press (such as in a magazine or online).

(a) Describe how the test was conducted. How
were the data collected (or can you not tell this
from the article)? Are the data the result of an
experiment or an observational study?

(b) What is the conclusion of the test?

(c) What is a likely range for the p-value of this test
given the information in the article?

(d) Attach a copy of the relevant article (or the rel-
evant portion of the article) and include the
complete citation or web address.

Part 2 Scholarly article

Find a scholarly article (such as that typically found
in a journal) that gives the results of a statistical
test and that explicitly includes the p-value or that
gives a range for the p-value.

(a) Describe how the test was conducted. How
were the data collected (or can you not tell this
from the article)? Are the data the result of an
experiment or an observational study?

(b) What is the conclusion of the test?

(c) In your own words, how strong is the evidence
for the conclusion of the test?

(d) Attach a copy of the relevant article (or the rel-
evant portion of the article) and include the
complete citation or web address.

Project 2 Analyze Your Own Data—Inference for a Difference in Means

This project asks you to collect and analyze your
own data for a difference in means. You should
submit a well-written report addressing each of the
following parts.

Part 1 Clearly state what you want to study.

What is your population and what two groups are
you comparing? What is your quantitative variable
of interest? Define the parameter(s) of interest.
(Note: Several suggestions are given below or come
up with your own idea.)

Part 2 Describe clearly how you will collect

your data.

Remember Chapter 1! Devise a way to efficiently
collect data in a way that will be relatively
unbiased. After you have described your sampling

method, discuss any ways that your sampling
method may bias the results. (Note: If collecting
your own data is not feasible, perhaps you could
sample your statistics class.)

Part 3 Collect your data!

Include all the data. Also, give summary statistics
(mean, standard deviation, and sample size) for
each group. Include a comparative plot and discuss
what you see in the graph.

Part 4 Create a confidence interval for the

difference in means between your two groups.

Use StatKey or other technology to construct a
bootstrap distribution for the difference in means
using the data in your sample. Use the bootstrap
distribution to construct the confidence interval
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(choose your own confidence level) and be sure to
interpret your result in the context of your data
situation.

Part 5 Test whether your data show evidence

for a difference in means between the two

groups.

Specify the appropriate null and alternative
hypotheses. Use a two-tailed alternative, unless
you have some reason in advance to suspect a
difference in a particular direction. Explain how
you might physically go about creating a
randomization sample for this test and then use
StatKey or other technology to create a
randomization distribution. Include a rough sketch
of this distribution. Explain how to find a p-value
from this randomization distribution and then do
so. Use the p-value to make a conclusion (in

context) about the evidence for a difference in
means between your groups.

Topic Suggestions

Determine whether there is a difference in average:

• Number of hours spent watching television in a
week, between males and females

• Life expectancy, between countries in the East-
ern and Western hemispheres

• Number of hours spent studying per week,
between first-year students and upper-class
students

• Number of pitches thrown in baseball games,
between the National and American leagues

• Price of textbooks, between introductory and
upper level courses

Project 3 Analyze Your Own Data—Inference for a Difference in Proportions

This project asks you to collect and analyze your
own data for a difference in proportions. You
should submit a well-written report addressing
each of the following parts.

Part 1 Clearly state what you want to study.

What is your population and what two groups are
you comparing? What is your categorical variable
of interest? Define the parameter(s). (Note:
Several suggestions are given below or come up
with your own idea.)

Part 2 Describe clearly how you will collect

your data.

Remember Chapter 1! Devise a way to efficiently
collect data in a way that will be relatively
unbiased. After you have described your sampling
method, discuss any ways that your sampling
method may bias the results. (Note: If collecting
your own data is not feasible, perhaps you could
sample your statistics class.)

Part 3 Collect your data!

Display the data in a two-way table. Also, give the
summary statistics (sample proportion and sample
size) for each group. Include a comparative plot
and discuss what you see in the graph.

Part 4 Create a confidence interval for the

difference in proportions between your two

groups.

Use StatKey or other technology to construct a
bootstrap distribution for the difference in
proportions using the data in your sample. Use the
bootstrap distribution to construct the confidence
interval (choose your own confidence level) and be
sure to interpret your result in the context of your
data situation.

Part 5 Test whether your data show evidence

for a difference in proportions between the

two groups.

Specify the appropriate null and alternative hypo-
theses. Use a two-tailed alternative, unless you
have some reason in advance to suspect a
difference in a particular direction. Explain how
you might physically go about creating a
randomization sample for this test and then use
StatKey or other technology to create a
randomization distribution. Include a rough sketch
of this distribution. Explain how to find a p-value
from this randomization distribution and then do
so. Use the p-value to make a conclusion (in
context) about the evidence for a difference in
proportions between your groups.
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Topic Suggestions

Determine whether there is a difference in the
proportion of:

• Students who have talked on the phone with a
parent in the last 24 hours, between males and
females

• Free throws made by a basketball player,
between home and road games

• Students who are going somewhere other than
home for the next school break, between first-
year and upper class students

• Words with more than eight letters, between arti-
cles in the New York Times and USA Today

• Students who ate breakfast that morning,
between males and females

Project 4 Analyze Your Own Data—Test for a Correlation

This project asks you to collect and analyze your
own data for a test to determine if a correlation is
significant. You should submit a well-written
report addressing each of the following parts.

Part 1 Clearly state what you want to test.

What is your population? What are your two
quantitative variables? Define the parameter(s)
and state your hypotheses. (Note: Several
suggestions are given below or come up with your
own idea.)

Part 2 Describe clearly how you will collect

your data.

Remember Chapter 1! Devise a way to efficiently
collect data in a way that will be relatively
unbiased. After you have described your sampling
method, discuss any ways that your sampling
method may bias the results. (Note: If collecting
your own data is not feasible, perhaps you could
sample your statistics class.)

Part 3 Collect your data!

Include all the data. Also, give the summary
statistics (mean, standard deviation, and sample
size) for each variable. Include a scatterplot and
discuss what you see in the graph. Give the sample
correlation.

Part 4 Create a single simulated sample.

What assumption do you make in creating the
randomization distribution? How could you create
one randomization sample given this assumption?
Use technology to generate one simulated sample
result.

For the simulated sample, what is the sample
correlation? Does it exceed the correlation in your
original sample?

Part 5 Create the randomization distribution

for your test.

Use StatKey or other technology to create the
randomization distribution. Include a sketch of the
resulting plot, and locate your observed sample
correlation on the plot.

Part 6 State the p-value and give the

conclusion.

Finally, use technology to find the p-value for your
test from the randomization distribution. Clearly
state the p-value in your report. What is your
conclusion? How strong is the evidence for your
result? Be sure to state your conclusion in terms of
H0 and in terms of the question of interest.

Topic Suggestions

Determine whether there is a significant
correlation between:

• Number of hours spent studying and number of
hours spent playing video games for students

• Driving distance and scoring for professional
golfers

• Life expectancy and per-capita GDP for
countries

• Asking price and mileage for used cars at an
Internet sales site

• Number of friends on Facebook and number of
hours on the computer per day for students
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Inference with
Normal and

t-Distributions
‘‘Statistics is now the sexiest subject around.”

Hans Rosling, Professor of International Health∗

U N I T O U T L I N E

5 Approximating with a
Distribution

6 Inference for Means and
Proportions

Essential Synthesis

In this unit, we use the normal and t-distribu-

tions, together with formulas for standard er-

rors, to create confidence intervals and conduct

hypothesis tests involving means and propor-

tions.

∗‘‘When the Data Struts its Stuff,” The New York Times, April 3, 2011, p. B3
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Approximating
with a
Distribution

‘‘The
normal

law of error
stands out in the

experience of man-
kind as one of the broad-

est generalizations of natural
philosophy. It serves as the guiding

instrument in researches in the physical
and social sciences and in medicine, agriculture and

engineering. It is an indispensable tool for the analysis and the
interpretation of the basic idea obtained by observation and experiment.”

–W. J. Youden∗
∗Experimentation and Measurement, 1962.
Top left: © zhang bo/iStockphoto, Top right: © Robert Kneschke/iStockphoto, Bottom right: SERGEI SUPINSKY/AFP
/Getty Images, Inc.
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Questions and Issues

C H A P T E R O U T L I N E

5 Approximating with a
Distribution 322

5.1 Normal Distributions 324

5.2 Confidence Intervals and P-values Using
Normal Distributions 336

Here are some of the questions and issues we will discuss in this chapter:

• How many times do people typically use a cell phone in a day?

• What proportion of adults say television is their main source of news?

• How often will a soccer goalie correctly guess the direction of a penalty kick?

• What is a fair method to curve exam grades?

• How helpful is it to use self-quizzes when studying?

• If we stand a penny on edge and spin it, will it fall heads about half the time?

• What proportion of teenagers have some hearing loss?

• What percent of air travelers prefer a window seat?

• Has smoke-free legislation had an effect on asthma rates?

• What percent of people rarely use cash?

• What proportion of cell phone users have downloaded an app?

323
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5.1NORMAL DISTRIBUTIONS

If you skim through Chapters 3 and 4, you will notice that many of the graphs
of sampling, bootstrap, and randomization distributions (for example, those repro-
duced in Figure 5.1) have a similar shape. This is not a coincidence. Under fairly
general circumstances, the distribution of many common statistics will follow this
same bell-shaped pattern. The formal name for this shape is a normal distribution,
and we examine normal distributions more thoroughly in this section.
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Figure 5.1 Some bootstrap and randomization distributions

Density Curves
A theoretical model for a distribution is called a density curve. A density curve is a
curve that reflects the location, spread, and general shape of the distribution, similar
to the smooth curves we introduced in Section 2.2. Figure 5.2 shows a bootstrap
distribution of sample proportions with a density curve. A density curve is a relatively
simple curve that follows the general pattern of the data, thus providing a model for
the underlying distribution.

Density Curves

A density curve is scaled to have two important properties:

• The total area under the curve is equal to one, to correspond to
100% of the distribution.

• The area over any interval is the proportion of the distribution in
that interval.
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Figure 5.2 Bootstrap
distribution with density
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The density curve represents the entire distribution and regions under the curve
correspond to portions of the distribution.

Example 5.1
The density curve in Figure 5.3 is a model for a bootstrap distribution of sample
mean times for Atlanta commutes (see Data 3.3 on page 193). Three regions of
bootstrap mean times are given. Match the proportion in each region with one of
the following values:

0.05 0.15 0.40 0.50 0.80 1.0 29

(a) Between 30 and 31 minutes (the shaded region)

(b) Less than 30 minutes

(c) More than 31 minutes

Solution The proportions correspond to the area under the curve over that region. All three
areas are less than the total area that is 1.0, so all three proportions are less than 1.

(a) The area of the region between 30 and 31 minutes is well less than half of the
total area, so the area is definitely less than 0.5. A guess between 10% and 25%
would be reasonable, so we estimate that the proportion is about 0.15.

Figure 5.3 Density curve
for Atlanta commute
means 30 31 3226 27 28 29

Commute Means
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(b) The area below 30 minutes is clearly more than half of the total area. A guess
between 70% and 85% would be reasonable, so we match this proportion with
0.80.

(c) There’s not much area above 31 minutes. Since the three areas need to add up
to the total of 100%, a guess of 5% for the tail area to the right of 31 minutes
would be consistent with the previous estimates of 15% and 80% for the other
two regions. We match this proportion with 0.05.

Normal Distributions
While a density curve can have almost any shape, a normal density curve has the
special form of a bell-shaped curve. The actual equation of this curve is fairly
complicated, but the general shape is readily recognized.

Normal Density Curve

A normal distribution follows a bell-shaped curve. We use the two
parameters mean, μ, and standard deviation, σ , to distinguish one
normal curve from another.

For shorthand we often use the notation N(μ, σ) to specify that
a distribution is normal (N) with some mean (μ) and standard
deviation (σ ).

We use the population parameters μ and σ when specifying a normal density.
The reason is that the normal curve is a model for the population, even if that
‘‘population” is a bootstrap or randomization distribution for some sample statistic.
In practice, we often use sample values (x and s) or a hypothesized value of a
parameter to estimate or specify the mean or standard deviation for a normal
distribution.

Figure 5.4 shows a normal density curve centered at some mean μ. The standard
deviation helps determine the horizontal scale. Recall that roughly 95% of data fall
within two standard deviations of the mean. This amount corresponds to the area
within μ ± 2σ .

Figure 5.4 Normal
density curve

σ σ

μ−2σ μ+2σμ−σ μ+σμ
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(a) Different means
−4 −2 0 2

N(0,1) N(2,1)

4 −4 −2 0 2 4
(b) Different standard deviations
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N(0,1)

N(0,2)

Figure 5.5 Comparing normal curves

Graph of a Normal Density Curve

The graph of the normal density curve N(μ, σ) is a bell-shaped curve
which:

• Is centered at the mean μ

• Has a horizontal scale such that 95% of the area under the curve
falls within two standard deviations of the mean (within μ ± 2σ )

Figure 5.5 shows how the normal distribution changes as the mean μ is shifted
to move the curve horizontally or the standard deviation σ is changed to stretch or
shrink the curve. Remember that the area under each of these curves is equal to
one.

Example 5.2
Drawing Normal Curves

Sketch a normal density curve for each of the following situations:

(a) Scores on an exam which have a N(75, 10) distribution

(b) A bootstrap distribution for differences in mean commute times between
Atlanta and St. Louis that has a mean of 7.1 minutes and standard deviation of
1.1 minutes

(c) A randomization distribution of sample slopes for testing H0 : β = 0 that is
centered at zero with a standard deviation of 0.02

Solution (a) The normal density curve N(75, 10) is a bell-shaped curve centered at the mean
of 75 and with a scale on the horizontal axis so that 95% of the area under the
curve is within the range μ ± 2σ = 75 ± 2(10) = 75 ± 20, or between 55 and 95.
See Figure 5.6(a).

(b) The normal density curve N(7.1, 1.1) is a bell-shaped curve centered at the
mean of 7.1 and with a scale so that 95% of the area is within the range
μ ± 2σ = 7.1 ± 2(1.1) = 7.1 ± 2.2, or between 4.9 and 9.3. See Figure 5.6(b).

(c) The normal density curve N(0, 0.02) is a bell-shaped curve centered at the
mean of 0 and with a scale so that 95% of the area is within the range
μ ± 2σ = 0 ± 2(0.02) = ±0.04. See Figure 5.6(c).

Note that the shapes of the three curves in Figure 5.6 are the same; only the scaling
on the horizontal axis changes in each case. The mean locates the center of the
distribution and the standard deviation on either side controls the spread.
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105

(a) Exam scores~ N (75, 10)

45 55 65 75

Exam Scores

85 95

(b) Bootstrap differences~ N (7.1, 1.1)

3.8 4.9 6.0 7.1

Atlanta mean–St. Louis mean

8.2 9.3 10.4

(c) Randomization slopes~ N (0, 0.02)

−0.06 −0.04 −0.02 0.00

Slope

0.02 0.04 0.06

Figure 5.6 Three normal curves

Finding Normal Probabilities and Percentiles
We find probabilities of intervals using the area under the density curve, but no
convenient formulas exist for computing areas with a normal density.1 For this
reason we rely on technology, such as StatKey, statistical software, or a calculator,
to compute probabilities for normal distributions. In most of these applications we
need to specify:

• The mean and standard deviation for the normal distribution

• The endpoint(s) of the interval

• The direction (above, below, or between) the endpoint(s)

© Robert Kneschke/iStockphoto

Will scores on this exam follow a normal curve?

Example 5.3
Exam Scores

Suppose that scores on an exam follow a normal distribution with mean μ = 75 and
standard deviation σ = 10. What proportion of the scores are above 90?

1Even those of you with a calculus background will find that there is no antiderivative to help find areas
under a normal density function.
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shows the results, again using several different technologies. The instructor should
ask students with exam grades below 66.6 to sign up for the extra tutoring.

Standard Normal N(0,1)
Because all the normal distributions look the same except for the horizontal scale,
another common way to deal with normal calculations is to convert problems to one
specific standard normal scale. The standard normal has a mean of 0 and a standard
deviation of 1, so μ = 0 and σ = 1. We often use the letter Z to denote a standard
normal, so that Z ∼ N(0, 1).

To convert a value from a N(μ, σ) scale to a standard normal scale, we subtract
the mean μ to shift the center to zero, then divide the result by the standard deviation
σ to stretch (or shrink) the difference to match a standard deviation of 1. If X is a
value on the N(μ, σ) scale, then Z = (X − μ)/σ is the corresponding point on the
N(0, 1) scale.3 You should recognize this as the z-score from page 78, because the
standardized value just measures how many standard deviations a value is above
or below the mean. The process of converting from the standard normal back to
N(μ, σ) just reverses the process of finding a z-score. Namely, we multiply the
z-value by the standard deviation and then add the mean.

Standard Normal

The standard normal distribution has mean zero and standard devia-
tion equal to one, Z ∼ N(0, 1).

To convert from any X ∼ N(μ, σ) to Z ∼ N(0, 1), we standardize
values with the z-score:

Z = X − μ

σ

To convert from Z ∼ N(0, 1) to any X ∼ N(μ, σ), we reverse the
standardization with:

X = μ + Z · σ

Example 5.5
The distribution of bootstrap means for samples of Atlanta commutes shown in
Example 5.1 on page 325 follows a N(29.11, 0.93) distribution.

(a) Convert the interval from 30 to 31 minutes in that distribution to a standard
normal scale.

(b) Sketch both distributions, shading the corresponding intervals.

(c) Use the standard normal endpoints to find the probability of the interval.

(d) Use the standard normal endpoints to find the probability of being below the
interval (less than 30 minutes in the original normal distribution). Also find
the probability of being above the interval (greater than 31 minutes). Compare
these results to the estimates for Example 5.1.

3When technology is not available, a printed table with probabilities for certain standard normal endpoints
can be used.
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(a) N (29.11, 0.93)

D
en

si
ty

x
29.11 30 31

0.1482

Distribution Plot
Normal, Mean = 29.11, StDev = 0.93

(b) N (0, 1)

D
en

si
ty

z
0 0.957 2.032

0.1482

Distribution Plot
Normal, Mean = 0, StDev = 1

Figure 5.9 Converting to standard normal for Example 5.5(a)–(c)

Solution (a) We compute the z-scores for each of the original endpoints:

z = X − μ

σ
= 30 − 29.11

0.93
= 0.957 and

z = X − μ

σ
= 31 − 29.11

0.93
= 2.032

The interval from 30 to 31 on the N(29.11, 0.93) scale translates to an interval
from 0.957 to 2.032 on the N(0, 1) scale.

(b) The intervals on both the original and standardized scales are shown in
Figure 5.9. Notice that they look identical except for the horizontal scale.

(c) The probability is shown in the plots of Figure 5.9, and we see that the probability
is 0.1482. (Online supplements provide additional assistance in finding normal
probabilities using StatKey and a variety of other technology tools.)

(d) The plots in Figure 5.10 show the areas on the standard normal curve below
0.957 (area = 0.8307 or 83%) and above 2.032 (area = 0.02108 or 2%). These
are consistent with the rough estimates from Example 5.1.

What about getting percentiles using a standard normal distribution? For that
we must reverse the process. We first find an endpoint (or endpoints) on the standard
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Normal, Mean = 0, StDev = 1
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Figure 5.10 Standard normal intervals for Example 5.5(d)
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normal curve that has the desired property, then convert that value to the given
normal distribution.

Example 5.6
More Exam Scores

Use the standard normal distribution to find a point in a N(75, 10) exam distribution
that has 20% of the scores below it.

Solution This is the same question as in Example 5.4 on page 329. The difference now is that
we illustrate the use of the standard normal distribution. Using technology, we find
that the lowest 20% of a standard normal distribution is all of the values below
z = −0.8416. Thus we need to find the point on a N(75, 10) curve that is −0.8416
standard deviations from its mean. The relevant calculation is

x = μ + z · σ = 75 − 0.8416 · 10 = 66.584

This answer, recommending tutors for students with exam grades below 66.6, is
consistent with what we found without standardizing in Example 5.4.

You might be wondering why we use the standard normal when technology
makes it just as easy to compute quantities directly for any N(μ, σ). One reason
comes in the next section when we use properties of a bootstrap or randomization
distribution, along with the standard normal, to help compute confidence intervals
and p-values. We use the standard normal distribution extensively throughout the
rest of this chapter and the next.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Estimate probabilities as areas under a density function

• Recognize how the mean and standard deviation relate to the center
and spread of a normal distribution

• Use technology to compute probabilities of intervals for any normal
distribution

• Use technology to find endpoint(s) of intervals with a specified proba-
bility for any normal distribution

• Convert in either direction between a general N(μ, σ ) distribution and
a standard N(0, 1) distribution

Exercises for Section 5.1

SKILL BUILDER 1
Exercises 5.1 to 5.3 refer to the density function
shown in Figure 5.11. In each exercise, use the den-
sity function to choose the best estimate for the
proportion of the population found in the specified
region.

5.1 The percentage of the population that is less
than 25 is closest to:

10% 28% 50% 62% 95%

5.2 The percentage of the population that is more
than 30 is closest to:

4% 27% 50% 73% 95%
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5.3 The percentage of the population that is
between 10 and 30 is closest to:

3% 33% 50% 67% 95%

5 10 15 20 25 30 35

Figure 5.11 Density curve for Exercises 5.1 to 5.3

SKILL BUILDER 2

5.4 Two of the curves shown in Figure 5.12 are
valid density curves and one is not. Identify the one
that is not a density. Give a reason for your choice.

SKILL BUILDER 3
In Exercises 5.5 to 5.8, find the specified areas for a
N(0, 1) density.

5.5 (a) The area below z = 1.04

(b) The area above z = −1.5

(c) The area between z = 1 and z = 2

5.6 (a) The area below z = 0.8

(b) The area above z = 1.2

(c) The area between z = −1.75 and z = −1.25

5.7 (a) The area above z = −2.10

(b) The area below z = −0.5

(c) The area between z = −1.5 and z = 0.5

0.0
−2 0 2

(a)

(b)

(c)

4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 5.12 Two density curves and one that isn’t

5.8 (a) The area above z = 1.35.

(b) The area below z = −0.8.

(c) The area between z = −1.23 and z = 0.75.

SKILL BUILDER 4
In Exercises 5.9 to 5.12, find endpoint(s) on a N(0, 1)

density with the given property.

5.9 (a) The area to the left of the endpoint is about
0.10.

(b) The area to the right of the endpoint is about
0.80.

(c) The area between ±z is about 0.95.

5.10 (a) The area to the left of the endpoint is about
0.70.

(b) The area to the right of the endpoint is about
0.01.

(c) The area between ±z is about 0.90.

5.11 (a) The area to the right of the endpoint is
about 0.90.

(b) The area to the left of the endpoint is about
0.65.

5.12 (a) The area to the right of the endpoint is
about 0.02.

(b) The area to the left of the endpoint is about
0.40.

SKILL BUILDER 5
In Exercises 5.13 to 5.16, find the specified areas for
a normal density.

5.13 (a) The area below 80 on a N(75, 10) distribu-
tion

(b) The area above 25 on a N(20, 6) distribution

(c) The area between 11 and 14 on a N(12.2, 1.6)

distribution
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5.14 (a) The area above 6 on a N(5, 1.5) distribution

(b) The area below 15 on a N(20, 3) distribution

(c) The area between 90 and 100 on a N(100, 6)

distribution

5.15 (a) The area above 200 on a N(120, 40) distri-
bution

(b) The area below 49.5 on a N(50, 0.2) distribution

(c) The area between 0.8 and 1.5 on a N(1, 0.3)

distribution

5.16 (a) The area below 0.21 on a N(0.3, 0.04) dis-
tribution

(b) The area above 472 on a N(500, 25) distribution

(c) The area between 8 and 10 on a N(15, 6) distri-
bution

SKILL BUILDER 6
In Exercises 5.17 to 5.20, find endpoint(s) on the
given normal density curve with the given property.

5.17 (a) The area to the right of the endpoint on a
N(50, 4) curve is about 0.01.

(b) The area to the left of the endpoint on a
N(2, 0.05) curve is about 0.70.

(c) The symmetric middle area on a N(100, 20)

curve is about 0.95.

5.18 (a) The area to the right of the endpoint on a
N(25, 8) curve is about 0.25.

(b) The area to the left of the endpoint on a
N(500, 80) curve is about 0.02.

(c) The symmetric middle area on a N(10, 3) curve
is about 0.95.

5.19 (a) The area to the left of the endpoint on a
N(100, 15) curve is about 0.75.

(b) The area to the right of the endpoint on a N(8, 1)

curve is about 0.03.

5.20 (a) The area to the left of the endpoint on a
N(5, 2) curve is about 0.10.

(b) The area to the right of the endpoint on a
N(500, 25) curve is about 0.05.

SKILL BUILDER 7
Exercises 5.21 to 5.28 ask you to convert an area
from one normal distribution to an equivalent area
for a different normal distribution. Draw sketches
of both normal distributions, find and label the
endpoints, and shade the regions on both curves.

5.21 The area below 40 for a N(48, 5) distribution
converted to a standard normal distribution

5.22 The upper 30% for a N(48, 5) distribution con-
verted to a standard normal distribution

5.23 The upper 5% for a N(10, 2) distribution con-
verted to a standard normal distribution

5.24 The area above 13.4 for a N(10, 2) distribution
converted to a standard normal distribution

5.25 The lower 10% for a standard normal distri-
bution converted to a N(500, 80) distribution

5.26 The area above 2.1 for a standard normal
distribution converted to a N(500, 80) distribution

5.27 The area between 1 and 2 for a standard normal
distribution converted to a N(100, 15) distribution

5.28 The middle 80% for a standard normal distri-
bution converted to a N(100, 15) distribution

5.29 What Proportion Have College Degrees?
According to the US Census Bureau,4 about 27.5%
of US adults over the age of 25 have a bache-
lor’s level (or higher) college degree. For random
samples of n = 500 US adults over the age of 25,
the sample proportions, p̂, with at least a bachelor’s
degree follow a normal distribution with mean 0.275
and standard deviation 0.02. Draw a sketch of this
normal distribution and label at least three points
on the horizontal axis.

5.30 SAT scores The Scholastic Aptitude Test
(SAT) was taken by 1,547,990 college-bound stu-
dents in the class of 2010.5 The test has three parts:
Critical Reading, Mathematics, and Writing. Scores
on all three parts range from 200 to 800. The means,
standard deviations, and shapes for the three tests
are shown in Table 5.1. Draw a sketch of the normal
distribution for the scores on Critical Reading and
a sketch of the normal distribution for the scores on
Writing. Label at least 3 points on the horizontal
axis in each case.

Table 5.1 SAT scores for the class of 2010

Mean St.Dev. Shape

Critical Reading 501 112 Approximately normal
Mathematics 516 116 Small left skew
Writing 492 111 Approximately normal

5.31 Random Samples of College Degree Propor-
tions In Exercise 5.29, we see that the distribution
of sample proportions of US adults with a col-
lege degree for random samples of size n = 500 is
N(0.275, 0.02). How often will such samples have a
proportion, p̂, that is more than 0.30?

5.32 Critical Reading on the SAT Exam In
Table 5.1 with Exercise 5.30, we see that scores on

4http://www.census.gov/hhes/socdemo/education/data/cps/.
5http://professionals.collegeboard.com/data-reports-research/sat/
cb-seniors-2010.
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the Critical Reading portion of the SAT (Scholastic
Aptitude Test) exam are normally distributed with
mean 501 and standard deviation 112. Use the nor-
mal distribution to answer the following questions:

(a) What is the estimated percentile for a student
who scores 690 on Critical Reading?

(b) What is the approximate score for a student who
is at the 30th percentile for Critical Reading?

5.33 Writing on the SAT Exam In Table 5.1 with
Exercise 5.30, we see that scores on the Writing por-
tion of the SAT (Scholastic Aptitude Test) exam
are normally distributed with mean 492 and stan-
dard deviation 111. Use the normal distribution to
answer the following questions:

(a) What is the estimated percentile for a student
who scores 450 on Writing?

(b) What is the approximate score for a student who
is at the 90th percentile for Writing?

5.34 Boys Heights Heights of 10-year-old boys (5th
graders) follow an approximate normal distribution
with mean μ = 55.5 inches and standard deviation
σ = 2.7 inches.6

(a) Draw a sketch of this normal distribution and
label at least three points on the horizontal axis.

(b) According to this normal distribution, what pro-
portion of 10-year-old boys are between 4 ft 4 in
and 5 ft tall (between 52 inches and 60 inches)?

(c) A parent says his 10-year-old son is in the 99th
percentile in height. How tall is this boy?

5.35 Heights of Men in the US Heights of adult
males in the US are approximately normally dis-
tributed with mean 70 inches (5 ft 10 in) and standard
deviation 3 inches.

(a) What proportion of US men are between 5 ft
8 in and 6 ft tall (68 and 72 inches, respectively)?

6Centers for Disease Control and Prevention growth chart,
http://www.cdc.gov/growthcharts/html charts/statage.htm.

20.0 20.5 21.0 21.5 22.0
xbar

22.5 23.0 23.5 24.0

Figure 5.13 Bootstrap means for commute times in CommuteStLouis

(b) If a man is at the 10th percentile in height, how
tall is he?

5.36 Commuting Times in St. Louis A bootstrap
distribution of mean commute times (in minutes)
based on a sample of 500 St. Louis workers stored
in CommuteStLouis is shown in Figure 5.13. The
pattern in this dotplot is reasonably bell-shaped so
we use a normal curve to model this distribution
of bootstrap means. The mean for this distribution
is 21.97 minutes and the standard deviation is 0.65
minutes. Based on this normal distribution, what
proportion of bootstrap means should be in each of
the following regions?

(a) More than 23 minutes

(b) Less than 20 minutes

(c) Between 21.5 and 22.5 minutes

5.37 Quartiles for Commuting Times in St. Louis
A distribution of bootstrap means for commuting
times in St. Louis is given in Figure 5.13. As in
Exercise 5.36, we use a N(21.97, 0.65) distribution as
a reasonable model for these bootstrap means. Find
the first and third quartiles of this normal distribu-
tion. That is, find a time (Q1) where about 25% of the
bootstrap means are below it and a time (Q3) that
is larger than about 75% of the bootstrap means.

5.38 Randomization Slopes A randomization dis-
tribution is created to test a null hypothesis that the
slope of a regression line is zero. The randomization
distribution of sample slopes follows a normal distri-
bution, centered at zero, with a standard deviation
of 2.5.

(a) Draw a rough sketch of this randomization dis-
tribution, including a scale for the horizontal
axis.

(b) Under this normal distribution, how likely are
we to see a sample slope above 3.0?

(c) Find the location of the 5%-tile in this normal
distribution of sample slopes.
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5.39 Exam Grades Exam grades across all sections
of introductory statistics at a large university are
approximately normally distributed with a mean of
72 and a standard deviation of 11. Use the normal
distribution to answer the following questions.

(a) What percent of students scored above a 90?

(b) What percent of students scored below a 60?

(c) If the lowest 5% of students will be required
to attend peer tutoring sessions, what grade is
the cutoff for being required to attend these
sessions?

(d) If the highest 10% of students will be given a
grade of A, what is the cutoff to get an A?

5.40 Curving Grades on an Exam A statistics
instructor designed an exam so that the grades
would be roughly normally distributed with mean
μ = 75 and standard deviation σ = 10. Unfortu-
nately, a fire alarm with ten minutes to go in the
exam made it difficult for some students to finish.
When the instructor graded the exams, he found
they were roughly normally distributed, but the
mean grade was 62 and the standard deviation was
18. To be fair, he decides to ‘‘curve” the scores to

match the desired N(75, 10) distribution. To do this,
he standardizes the actual scores to z-scores using
the N(62, 18) distribution and then ‘‘unstandard-
izes” those z-scores to shift to N(75, 10). What is
the new grade assigned for a student whose original
score was 47? How about a student who originally
scores a 90?

5.41 Empirical Rule for Normal Distributions Pick
any positive values for the mean and the standard
deviation of a normal distribution. Use your selec-
tion of a normal distribution to answer the questions
below. The results of parts (a) to (c) form what is
often called the Empirical Rule for the standard
deviation in a normal distribution.

(a) Verify that about 95% of the values fall within
two standard deviations of the mean.

(b) What proportion of values fall within one stan-
dard deviation of the mean?

(c) What proportion of values fall within three stan-
dard deviations of the mean?

(d) Will the answers to (b) and (c) be the same for
any normal distribution? Explain why or why
not.

5.2CONFIDENCE INTERVALS AND P-VALUES USING
NORMAL DISTRIBUTIONS

For categorical data, the parameter of interest is often the population proportion p.
For quantitative data, the parameter of interest is often the population mean μ. In
Section 3.1, we consider several sampling distributions for means and proportions,
including:

• In Example 3.1 on page 163, we use samples of size 200 from a population of US
adults where the proportion who have a college degree is p = 0.275.

• In Example 3.5 on page 166, we consider means for samples of size 10 from a
population of enrollments in statistics PhD programs where the mean is μ = 53.54
students.

In each situation, we investigate the distribution of sample statistics (p̂ or x)
when using a specific sample size, n, from a population with some given population
parameter(s). Figure 5.14 shows graphs of these sampling distributions.

Sampling Distributions: The Central Limit Theorem
Both of the distributions in Figure 5.14 show the bell-shaped pattern of a normal
distribution, and in each case, the normal distribution appears to be centered at the
population parameter. Statistical theory confirms that, for a large enough sample
size, the distribution of sample proportions and sample means for random samples
from a population will be approximately normally distributed and centered at the
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Figure 5.14 Distributions of sample means and proportions

population parameter (p or μ). These results follow from one of the most important
results in all of statistics: the Central Limit Theorem.

Central Limit Theorem

For random samples with a sufficiently large sample size, the distri-
bution of sample statistics for a mean or a proportion is normally
distributed and is centered at the value of the population parameter.

This version of the Central Limit Theorem describes the shape and center of
sampling distributions. What about spread? And what do we mean by ‘‘sufficiently
large” sample size? We return to the Central Limit Theorem in Chapter 6 and
address both of these questions. It is worth noting now, however, that in every case,
as the sample size n gets larger, the distribution more closely approximates the
normal distribution and the standard deviation of the sample statistics decreases.

The Central Limit Theorem applies to a sampling distribution, and as we saw in
Chapters 3 and 4, a bootstrap distribution approximates a sampling distribution and
a randomization distribution for a test approximates a sampling distribution when
the null hypothesis is true. For this reason, the distributions of sample statistics from
bootstraps and randomizations also tend to follow a normal distribution. In cases
where a bootstrap distribution or randomization distribution follows the pattern of
a normal distribution we can readily compute a confidence interval or p-value using
the normal density.

Confidence Intervals Based on a Normal Distribution
Recall from Section 3.2 on page 199 that we first found a rough confidence interval
using

Sample Statistic ± 2 · SE

where SE is the standard deviation of the statistics in a bootstrap distribution.
Later in Section 3.4 we considered a second method that used the percentiles of the
bootstrap distribution to create an interval. For example, to find a 95% confidence
interval, we look for the points in the distribution to leave 95% of the values in the
middle.

In cases where the bootstrap distribution is roughly normally distributed, we
can combine these two ideas to generalize the ±2 · SE bounds to handle any desired
confidence level.

id j-r
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Confidence Interval based on a Normal Distribution

If the distribution for a statistic follows the shape of a normal distri-
bution with standard error SE, we find a confidence interval for the
parameter using

Sample Statistic ± z∗ · SE

where z∗ is chosen so that the area between −z∗ and +z∗ in the
standard normal distribution is the desired level of confidence.

Note that the form of the interval is consistent with the process of converting
from standard normal to normal in the previous section: We multiply the standard
normal percentile, z∗, by the standard deviation, SE, then shift the center to the
original value of the statistic.

Example 5.7
Confidence Intervals for Atlanta Commute Time

Figure 5.15 reproduces the bootstrap distribution of mean commute times in Atlanta
that appears in Figure 3.16 on page 195 of Section 3.2. In that example, the original
sample of n = 500 Atlanta commute times has a mean of x = 29.11 minutes. The
standard deviation of the 1000 bootstrap means in this figure is 0.915 minutes. Use
this information to find 95%, 99%, and 90% confidence intervals for the mean
Atlanta commute time.

Figure 5.15 Means for
1000 bootstrap samples
from CommuteAtlanta 26 27 28 29

xbar
30 31 32

Solution To find a 95% confidence interval, we find the standard normal percentiles at 2.5%
and 97.5%, taking 2.5% from each tail and leaving 95% in the middle. We find these
values using technology, such as the output in Figure 5.16.

For 95% confidence, the corresponding endpoint values are −z = −1.96 and
z = 1.96. Note that these are quite close to the values of ±2 that we used as a rough
approximation in Section 3.2. The resulting interval is

x ± z∗ · SE

29.11 ± 1.96(0.915)

29.11 ± 1.79

27.32 to 30.90

As usual we interpret this interval to say that we are 95% sure that the mean
commute time for all commuters in Atlanta is between 27.32 and 30.90 minutes.

For a 99% confidence interval we find the 0.5%-tile and 99.5%-tile for a standard
normal to be z = ±2.576, which gives the interval

29.11 ± 2.576(0.915) = 29.11 ± 2.36 = (26.75, 31.47)

o o a5§ )§ >o§x>(P o
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Figure 5.16 Standard
normal percentiles for a
95% confidence interval
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For a 90% confidence interval, the standard normal endpoints are z = ±1.645 and
the interval is

29.11 ± 1.645(0.915) = 29.11 ± 1.51 = (27.60, 30.62)

We see in Example 5.7 that for a larger level of confidence, the normal z∗ gets
larger and the interval widens to have a better chance of capturing the true mean
commute time.

We can compare the confidence intervals computed in Example 5.7 to the ones
based on the percentiles computed directly from the 1000 bootstrap samples shown
in Figure 3.23 on page 206. These were (26.98, 31.63) and (27.20, 30.71) for 99% and
90%, respectively. While not exactly the same, the intervals are consistent with each
other. Remember that even the percentile method would yield different intervals
for a different 1000 bootstrap samples and a new sample of another 500 Atlanta
drivers would also produce a slightly different interval.

One of the advantages of using the standard normal percentile for finding a
confidence interval is that the z∗-values become familiar for common confidence
levels. Table 5.2 gives some of these common values.

Table 5.2 Normal percentiles for common confidence levels

Confidence level 80% 90% 95% 98% 99%

z∗ 1.282 1.645 1.960 2.326 2.576

Example 5.8
A study7 asked a random sample of 1,917 cell phone users age 18 or older ‘‘On an
average day, about how many phone calls do you make and receive on your cell
phone?” The average was 13.10 phone calls a day. A bootstrap distribution of the
data gives SE = 0.20. Find and interpret a 99% confidence interval for the average
number of cell phone calls per day.

7‘‘Spring Change Assessment Survey 2010,” Princeton Survey Research Associates, June 4, 2010,
pewresearch.org.

A
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How many phone calls do you make
a day?

Solution To construct the confidence interval, we use

Sample Statistic ± z∗ · SE

The sample statistic is x = 13.10 and the standard error is SE = 0.20. For a 99%
confidence interval, we find the value of z∗ by finding the 0.5%-tile and 99.5%-tile
for a standard normal (or by looking at Table 5.2.) We see that z∗ = 2.576. The 99%
confidence interval is

x ± z∗ · SE

13.10 ± 2.576(0.20)

13.10 ± 0.515

12.585 to 13.615

We are 99% confident that the average number of cell phone calls made per day by
all cell phone users 18 years and older is between 12.585 calls and 13.615 calls.

P-values Based on a Normal Distribution
When a randomization distribution displays the bell-shaped pattern of a normal
distribution, we can use a normal density curve to compute a p-value in a hypothesis
test. The process of choosing a null and alternative hypothesis in a particular
situation is the same as in Chapter 4, and our interpretation of the outcome of the
test remains the same—the smaller the p-value, the stronger the evidence against
the null hypothesis. The only difference in the test is that we use a standard normal
density curve (rather than the randomization distribution) to compute the p-value.

Recall that a p-value is the probability, when the null hypothesis is true, of
seeing a value as extreme as the original statistic. The normal distribution we use
should be consistent with the null hypothesis, so the mean is determined by the
null hypothesis. We can use the standard deviation of the randomization statistics,
SE, to estimate the standard deviation of the normal density. To find a p-value, we
standardize the value of the statistic from our original sample, using the null mean
and randomization SE.

5
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Hypothesis Test based on a Normal Distribution

When the distribution of the statistic under H0 is normal, we compute
a standardized test statistic using

z = Sample Statistic − Null Parameter
SE

The p-value for the test is the probability a standard normal value is
beyond this standardized test statistic, depending on the direction of
the alternative hypothesis.

Example 5.9
Testing Average Body Temperature

In Data 4.8 and the examples that follow on page 272, we use the data in Body-
Temp50 to test whether average body temperature is different from 98.6◦F. The
hypotheses are

H0 : μ = 98.6

Ha : μ �= 98.6

The sample of body temperatures for n = 50 subjects has mean x = 98.26 and
standard deviation s = 0.765. Figure 4.31 on page 274 shows a randomization distri-
bution, with a standard deviation of 0.1066 for these randomization means. Compute
a test statistic and use the standard normal distribution to find the p-value for this test.

Solution The histogram of the randomization means in Figure 5.17 shows that an overlayed
normal curve is an appropriate model. Based on the null hypothesis, we use 98.6 as
the mean for this normal distribution and the standard error, SE = 0.1066, from the
randomization means as the standard deviation.

To find a p-value, we need to measure how unusual the original x = 98.26 is
within this N(98.6, 0.1066) distribution. Converting to a standard normal, we find

z = Sample statistic − Null parameter
SE

= 98.26 − 98.6
0.1066

= −3.19

We use technology to find the area in a standard normal curve below −3.19 and
then, since the alternative hypothesis, Ha : μ �= 98.6, is two-tailed, we double the
result to account for the two tails. Figure 5.18 shows that the area below −3.19 is
about 0.0007, so we have

p-value = 2 · 0.0007 = 0.0014

Figure 5.17

Randomization
distribution of body
temperature means with
a normal density 98.2 98.3 98.4 98.5 98.6

xbar

N (98.6, 0.1066)

98.7 98.8 98.9 99.0
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Figure 5.18 P-value
based on the normal
distribution for the test of
body temperature
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As always, we interpret this p-value in terms of the question that motivated
the test in the first place. The very small p-value (0.0014) indicates strong evidence
against H0 : μ = 98.6 and we conclude that the average body temperature is probably
different from 98.6◦F.

In Example 5.9, the test statistic is −3.19, more than three standard deviations
below the mean, so we should not be surprised by the small p-value. The small
region beyond −3.19 in the standard normal curve in Figure 5.18 corresponds
to the small region below 98.26 in the histogram of Figure 5.17. In fact, for the
randomization distribution in Figure 4.31 on page 274, the p-value obtained by
counting the outcomes more extreme than x = 98.26 was 0.0016, so the normal
distribution results are quite consistent with those obtained earlier directly from the
randomization distribution.

Example 5.10
A study by the Pew Research Center8 reports that in 2010, for the first time, more
adults aged 18 to 29 got their news from the Internet than from television. In a
random sample of 1500 adults of all ages in the US, 66% said television was one
of their main sources of news. Does this provide evidence that more than 65%
of all adults in the US use television as one of their main sources for news? A
randomization distribution for this test shows SE = 0.013.

Solution Since we are testing to see if there is evidence that the proportion of all adults saying
TV is a primary source of news, p, is greater than 0.65, the relevant hypotheses are

H0 : p = 0.65

Ha : p > 0.65

The sample statistic of interest is p̂ = 0.66, the null parameter from the null
hypothesis is 0.65, and the standard error from the randomization distribution is
0.013. The test statistic is

z = Sample Statistic − Null Parameter
SE

= 0.66 − 0.65
0.013

= 0.77

8‘‘Internet Gains on Television as Public’s Main News Source,’’ Pew Research Center, January 4, 2011.
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This is a one-tailed test on the right, so we find the proportion of a standard normal
distribution larger than 0.77. The area in this upper tail is 0.221, so we have

p-value = 0.221

Since the p-value is larger than any reasonable significance level, we do not find
evidence that the proportion of adults using TV as a main news source is greater
than 65%.

The test statistic of 0.77 in Example 5.10 is less than one standard deviation
above the mean, so we should not be surprised at the relatively large p-value. In
Examples 5.9 and 5.10, we could have conducted the test using another normal
density curve rather than the standard normal. We chose to use a standard normal
distribution here to help build intuition about test statistics as z-scores and to lead
into the methods we use in Chapter 6.

Looking Ahead
We now have two very easy formulas that apply when a sample statistic is

approximately normally distributed:

Sample Statistic ± z∗ · SE

for a confidence interval, and

Sample Statistic − Null Parameter
SE

for a test statistic which can be compared to the standard normal distribution to find
a p-value.

In both cases, we need to know the standard error SE. While computers have
made it relatively easy to generate thousands of simulations, wouldn’t it be nice if we
had simple formulas we could use to compute SE directly? If this sounds nice to you,
keep reading! The next chapter gives ‘‘shortcut” formulas to estimate the standard
error for common parameters. As we work through the many shortcut formulas for
the standard error, keep the big picture in mind. In every case, we return to the two
general formulas displayed above.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute a confidence interval using a normal distribution

• Compute a p-value using a standardized test statistic and a normal
distribution

• Recognize when a normal distribution is appropriate for inference

Exercises for Section 5.2

SKILL BUILDER 1
In Exercises 5.42 and 5.43, find the z∗ values based
on a standard normal distribution for each of the
following.

5.42 (a) An 80% confidence interval for a propor-
tion

(b) An 84% confidence interval for a slope

o
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(c) A 92% confidence interval for a standard devi-
ation

5.43 (a) An 86% confidence interval for a correla-
tion

(b) A 94% confidence interval for a difference in
proportions

(c) A 96% confidence interval for a proportion

SKILL BUILDER 2
In Exercises 5.44 to 5.49, find the indicated confi-
dence interval. Assume the standard error comes
from a bootstrap distribution that is approximately
normally distributed.

5.44 A 95% confidence interval for a proportion
p if the sample has n = 100 with p̂ = 0.43, and the
standard error is SE = 0.05

5.45 A 95% confidence interval for a mean μ if the
sample has n = 50 with x = 72 and s = 12, and the
standard error is SE = 1.70

5.46 A 90% confidence interval for a mean μ if the
sample has n = 30 with x = 23.1 and s = 5.7, and
the standard error is SE = 1.04

5.47 A 99% confidence interval for a proportion
p if the sample has n = 200 with p̂ = 0.78, and the
standard error is SE = 0.03

5.48 A 95% confidence interval for a difference
in proportions p1 − p2 if the samples have n1 = 50
with p̂1 = 0.68 and n2 = 80 with p̂2 = 0.61, and the
standard error is SE = 0.085

5.49 A 95% confidence interval for a difference in
means μ1 − μ2 if the samples have n1 = 100 with
x1 = 256 and s = 51 and n2 = 120 with x = 242 and
s = 47, and the standard error is SE = 6.70

SKILL BUILDER 3
Exercises 5.50 to 5.55 include a set of hypotheses,
some information from one or more samples, and
a standard error from a randomization distribution.
Find the value of the standardized z-test statistic in
each situation.

5.50 Test H0 : μ = 80 vs Ha : μ > 80 when the sam-
ple has n = 20, x = 82.4, and s = 3.5, with SE = 0.8.

5.51 Test H0 : p = 0.25 vs Ha : p < 0.25 when the
sample has n = 800 and p̂ = 0.235, with SE = 0.018.

5.52 Test H0 : p = 0.5 vs Ha : p �= 0.5 when the sam-
ple has n = 50 and p̂ = 0.41, with SE = 0.07.

5.53 Test H0 : μ = 10 vs Ha : μ �= 10 when the
sample has n = 75, x = 11.3, and s = 0.85, with
SE = 0.10.

5.54 Test H0 : p1 = p2 vs Ha : p1 < p2 when the
samples have n1 = 150 with p̂1 = 0.18 and n2 = 100

with p̂2 = 0.23. The standard error of p̂1 − p̂2 from
the randomization distribution is 0.05.

5.55 Test H0 : μ1 = μ2 vs Ha : μ1 > μ2 when the
samples have n1 = n2 = 50, x1 = 35.4, x2 = 33.1,
s1 = 1.28, and s2 = 1.17. The standard error of
x1 − x2 from the randomization distribution is 0.25.

SKILL BUILDER 4
In Exercises 5.56 and 5.57, find the p-value based
on a standard normal distribution for each of the
following standardized test statistics.

5.56 (a) z = 0.84 for an upper tail test for a differ-
ence in two proportions

(b) z = −2.38 for a lower tail test for a difference in
two means

(c) z = 2.25 for a two-tailed test for a correlation

5.57 (a) z = −1.08 for a lower tail test for a mean

(b) z = 4.12 for an upper tail test for a proportion

(c) z = −1.58 for a two-tailed test for a slope

5.58 Hearing Loss in Teenagers A recent study9

found that, of the 1771 participants aged 12 to 19
in the National Health and Nutrition Examination
Survey, 19.5% had some hearing loss (defined as a
loss of 15 decibels in at least one ear). This is a dra-
matic increase from a decade ago. The sample size
is large enough to use the normal distribution, and a
bootstrap distribution shows that the standard error
for the proportion is SE = 0.009. Find and inter-
pret a 90% confidence interval for the proportion
of teenagers with some hearing loss.

5.59 Where Is the Best Seat on the Plane? A sur-
vey of 1000 air travelers10 found that 60% prefer
a window seat. The sample size is large enough to
use the normal distribution, and a bootstrap distri-
bution shows that the standard error is SE = 0.015.
Use a normal distribution to find and interpret a
99% confidence interval for the proportion of air
travelers who prefer a window seat.

5.60 Average Age for ICU Patients The ICUAd-
missions dataset includes a variable indicating the
age of the patient. Find and interpret a 95% confi-
dence interval for mean age of ICU patients using
the facts that, in the sample, the mean is 57.55 years
and the standard error for such means is SE = 1.42.
The sample size of 200 is large enough to use a
normal distribution.

9Rabin, R., ‘‘Childhood: Hearing Loss Grows Among Teen-
agers,” www.nytimes.com, August 23, 2010.
10Willingham, A., ‘‘And the best seat on a plane is... 6A!,”
HLNtv.com, April 25, 2012.
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5.61 Smoke-Free Legislation and Asthma Hospital
admissions for asthma in children younger than 15
years was studied11 in Scotland both before and after
comprehensive smoke-free legislation was passed in
March 2006. Monthly records were kept of the annu-
alized percent change in asthma admissions, both
before and after the legislation was passed. For
the sample studied, before the legislation, admis-
sions for asthma were increasing at a mean rate of
5.2% per year. The standard error for this estimate
is 0.7% per year. After the legislation, admissions
were decreasing at a mean rate of 18.2% per year,
with a standard error for this mean of 1.79%. In
both cases, the sample size is large enough to use a
normal distribution.

(a) Find and interpret a 95% confidence interval for
the mean annual percent rate of change in child-
hood asthma hospital admissions in Scotland
before the smoke-free legislation.

(b) Find a 95% confidence interval for the same
quantity after the legislation.

(c) Is this an experiment or an observational study?

(d) The evidence is quite compelling. Can we con-
clude cause and effect?

5.62 To Study Effectively, Test Yourself! Cognitive
science consistently shows that one of the most effec-
tive studying tools is to self-test. A recent study12

reinforced this finding. In the study, 118 college stu-
dents studied 48 pairs of Swahili and English words.
All students had an initial study time and then three
blocks of practice time. During the practice time,
half the students studied the words by reading them
side by side, while the other half gave themselves
quizzes in which they were shown one word and
had to recall its partner. Students were randomly
assigned to the two groups, and total practice time
was the same for both groups. On the final test
one week later, the proportion of items correctly
recalled was 15% for the reading-study group and
42% for the self-quiz group. The standard error
for the difference in proportions is about 0.07. Test
whether giving self-quizzes is more effective and
show all details of the test. The sample size is large
enough to use the normal distribution.

5.63 How Much More Effective Is It to Test Your-
self in Studying? In Exercise 5.62, we see that
students who study by giving themselves quizzes

11Mackay, D., et al., ‘‘Smoke-free Legislation and Hospitaliza-
tions for Childhood Asthma,” The New England Journal of
Medicine, September 16, 2010; 363(12): 1139–45.
12Pyc, M. and Rawson, K., ‘‘Why testing improves memory:
Mediator effectiveness hypothesis,” Science, October 15, 2010;
330: 335.

recall a greater proportion of words than students
who study by reading. In Exercise 5.62 we see that
there is an effect, but often the question of interest
is not ‘‘Is there an effect?” but instead ‘‘How big
is the effect?” To address this second question, use
the information in Exercise 5.62 to find and inter-
pret a 99% confidence interval for the difference in
proportions pQ − pR, where pQ represents the pro-
portion of items correctly recalled by all students
who study using a self-quiz method and pR repre-
sents the proportion of items correctly recalled by all
students who study using a reading-only approach.
Assume that the standard error for a bootstrap
distribution of such differences is also about 0.07.

5.64 Penalty Shots in World Cup Soccer A study13

of 138 penalty shots in World Cup Finals games
between 1982 and 1994 found that the goalkeeper
correctly guessed the direction of the kick only 41%
of the time. The article notes that this is ‘‘slightly
worse than random chance.” We use these data as
a sample of all World Cup penalty shots ever. Test
at a 5% significance level to see whether there is
evidence that the percent guessed correctly is less
than 50%. The sample size is large enough to use the
normal distribution. The standard error from a ran-
domization distribution under the null hypothesis is
SE = 0.043.

5.65 How Often Do You Use Cash? In a survey14

of 1000 American adults conducted in April 2012,
43% reported having gone through an entire week
without paying for anything in cash. Test to see if
this sample provides evidence that the proportion
of all American adults going a week without paying
cash is greater than 40%. Use the fact that a ran-
domization distribution is approximately normally
distributed with a standard error of SE = 0.016.
Show all details of the test and use a 5% significance
level.

5.66 Exercise and Gender The dataset Exercise-
Hours contains information on the amount of
exercise (hours per week) for a sample of statis-
tics students. The mean amount of exercise was 9.4
hours for the 30 female students in the sample and
12.4 hours for the 20 male students. A randomiza-
tion distribution of differences in means based on
these data, under a null hypothesis of no difference
in mean exercise time between females and males,
is centered near zero and reasonably normally

13St. John, A., ‘‘Physics of a World Cup Penalty-Kick
Shootout–2010 World Cup Penalty Kicks,” Popular Mechanics,
June 14, 2010.
14‘‘43% Have Gone Through a Week Without Paying Cash,”
Rasmussen Reports, April 11, 2011.
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distributed. The standard error for the difference
in means, as estimated from the standard deviation
of the randomization differences, is SE = 2.38. Use
this information to test, at a 5% level, whether the
data show that the mean exercise time for female
statistics students is less than the mean exercise time
of male statistics students.

5.67 Smile Leniency Data 4.2 on page 223 describes
an experiment to study the effects of smiling on
leniency in judging students accused of cheating.
Exercise 4.60 on page 250 shows a dotplot, repro-
duced in Figure 5.19, of a randomization distribu-
tion of differences in sample means. The relevant
hypotheses are H0 : μs = μn vs Ha : μs > μn, where
μs and μn are the mean leniency scores for smiling
and neutral expressions, respectively. This distribu-
tion is reasonably bell-shaped and we estimate the
standard error of the differences in means under
the null hypothesis to be about 0.393. For the actual
sample in Smiles, the original difference in the sam-
ple means is D = xs − xn = 4.91 − 4.12 = 0.79. Use
a normal distribution to find and interpret a p-value
for this test.

5.68 Prices of Used Mustangs Data 3.4 on page 209
describes a sample of n = 25 Mustang cars being
offered for sale on the Internet. Use the data in
MustangPrice to construct a 95% confidence inter-
val to estimate the mean Price (in $1000s) for the
population of all such Mustangs. Find the 95%
confidence interval two ways:

(a) Using percentiles of a bootstrap distribution

(b) Using a normal distribution with SE estimated
from a bootstrap distribution

Compare your answers.

0.0

Diff

0.5
D = 0.79

1.0−0.5−1.0

Figure 5.19 Randomization distribution for 1000 samples testing H0 : μs = μn using Smiles data

5.69 Predicting Price of Used Mustangs from Miles
Driven Data 3.4 on page 209 describes a sample
of n = 25 Mustang cars being offered for sale on
the Internet. The data are stored in MustangPrice,
and we want to predict the Price of each car (in
$1000s) based on the Miles it has been driven (also
in 1000s).

(a) Find the slope of the regression line for predict-
ing Price based on Miles for these data.

(b) Estimate the standard error of the slope using a
bootstrap distribution and use it and the normal
distribution to find a 98% confidence interval for
the slope of this relationship in the population
of all Mustangs for sale on the Internet.

5.70 Correlation between Time and Distance in
Commuting In Exercise 3.85 on page 204, we find
an interval estimate for the correlation between
Distance (in miles) and Time (in minutes) for
Atlanta commuters, based on the sample of size
n = 500 in CommuteAtlanta. The correlation in the
original sample is r = 0.807. The file BootAtlanta-
Corr contains 1000 values of bootstrap correlations
produced from the original sample.

(a) Use technology and the bootstrap samples to
estimate the standard error of sample correla-
tions between Distance and Time for samples of
500 Atlanta commutes.

(b) Assuming that the bootstrap correlations can
be modeled with a normal distribution, use the
result of part (a) to find and interpret a 90%
confidence interval for the correlation between
distance and time of Atlanta commutes.

5.71 Cell Phone Apps In 2010, some researchers
with the Pew Internet & American Life project

8 8
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0.25 0.26 0.27 0.28 0.29

phat

0.30 0.31 0.32 0.33

Figure 5.20 Bootstrap distribution for the proportion of cell phone users who have downloaded an app

interviewed a random sample of adults about their
cell phone usage.15 One of the questions asked was
whether the respondent had ever downloaded an
application or ‘‘app” to their cell phone. The sam-
ple proportion who had, based on 1917 respondents
who had cell phones, was p̂ = 0.29.

(a) Describe how you could construct a bootstrap
distribution to estimate the standard error of
the proportion in this situation.

(b) One such distribution, based on proportions
from 5000 bootstrap samples, is shown in
Figure 5.20. The standard deviation of these
proportions is 0.0102. Use this information to
find a 99% confidence interval for the propor-
tion of cell phone users (in 2010) who have
downloaded at least one app to their phone.

5.72 Hockey Malevolence Data 4.3 on page 224
describes a study of a possible relationship between
the perceived malevolence of a team’s uniform and
penalties called against the team. In Exercise 4.133
on page 279 we consider a randomization distribu-
tion to test for a positive correlation for National
Hockey League teams using the NHLMalevolence
and ZPenMin data in MalevolentUniformsNHL.
Repeat this test, using the fact that the randomiza-
tion distribution is reasonably normal to find and
interpret a p-value.

5.73 More Hockey Malevolence Refer to the
randomization test described in Exercise 5.72 for
the correlation between uniform malevolence and
penalty minutes for NHL teams. Suppose that
a student constructs randomization samples by
scrambling the NHLMalevolence variable in Malev-
olentUniformsNHL and computing the correlation
with ZPenMin. The student repeats this process
1000 times to generate a randomization distribution

15http://pewinternet.org/Shared-Content/Data-Sets/2010/May-
2010—Cell-Phones.aspx.

and finds the standard deviation of the randomiza-
tion correlations to be 0.22. Since the distribution
is reasonably normal and the correlation between
these variables in the original sample is r = 0.521,
the student computes a 90% confidence inter-
val for the correlation using 0.521 ± 1.645 · 0.22 =
(0.159, 0.883).

(a) Identify a clear error in the process that the stu-
dent has used to construct a confidence interval
for the correlation in this situation.

(b) Suggest a more appropriate method for esti-
mating the standard error to find a confidence
interval for the correlation between uniform
malevolence and standardized penalty minutes
for NHL teams, based on the sample data in
MalevolentUniformsNHL.

(c) Carry out the procedure you describe in part (b)
to obtain an estimate of the standard error.
Assuming that a normal distribution is appropri-
ate, use the standard error to find (and interpret)
a 90% confidence interval for the correlation in
this context.

(d) Does it look like a normal distribution is appro-
priate in this situation? Explain why or why
not.

5.74 Penny Spinning Suppose that you hold a coin
vertically on edge, flick one side to make it spin,
then see if it settles on heads or tails. Is this a fair
process? That is, will half of spins tend to fall heads
and the other half on tails? To investigate this ques-
tion, a student spun the same US penny 200 times
and recorded 84 heads and 116 tails. She uses these
results to test H0 : p = 0.5 vs Ha : p �= 0.5, where p
is the proportion of penny spins that land heads.
The file RandomP50N200 contains counts and pro-
portions of heads for 5000 simulated samples of size
n = 200 when p = 0.50.
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348 C H A P T E R 5 Approximating with a Distribution

(a) Use the randomization proportions, the vari-
able Phat in RandomP50N200, to estimate the
standard error for the sample proportion, p̂, in
this situation.

(b) Use the standard error from part (a) to com-
pute a standardized test statistic for testing
H0 : p = 0.5 based on her original sample of
200 spins.

(c) Under this null hypothesis, what should be the
mean of the distribution of counts of number of
heads in 200 spins?

(d) The counts of heads for each of the 5000 ran-
domization samples are in the variable Count.
Use these to estimate the standard deviation for
the counts (number of heads in 200 spins) under
this null hypothesis.

(e) Use the mean from part (c) and standard error
from part (d) to compute a standardized test
statistic based on the count of 84 heads in the
original sample of 200 spins. How does this test
statistic compare to the one based on the sample
proportions in part (b)?

(f) Use either test statistic and the fact that both
randomization distributions are relatively nor-
mal to compute and interpret a p-value for this
test.

5.75 Malevolent Uniforms in Football Figure 5.21
shows a bootstrap distribution of correlations

−0.4
0
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100
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−0.2 0.0 0.2 0.4 0.6 0.8

0.397

Number of Bootstrap Samples = 5000
Mean = 0.397
Std. Dev. = 0.205

0.005

−0.224 0.788

0.990 0.005

Left Tail Right TailTwo-Tail

Figure 5.21 Bootstrap correlations for uniform malevolence vs penalty yards

between penalty yards and uniform malevolence
using the data on 28 NFL teams in Malevolent-
UniformsNFL. We see from the percentiles of
the bootstrap distribution that a 99% confidence
interval for the correlation is −0.224 to 0.788. The
correlation between the two variables for the origi-
nal sample is r = 0.37.

(a) Use the original sample correlation and the
standard deviation of the bootstrap distribution
shown in Figure 5.21 to compute a 99% confi-
dence interval for the correlation using z∗ from
a normal distribution.

(b) Why is the normal-based interval somewhat dif-
ferent from the percentile interval? Hint: Look
at the shape of the bootstrap distribution.

5.76 Lucky numbers If people choose lottery num-
bers at random, the last digit should be equally likely
to be any of the digits from 0 to 9. Let p measure
the proportion of choices that end with the digit 7.
If choices are random, we would expect p = 0.10,
but if people have a special preference for numbers
ending in 7 the proportion will be greater than 0.10.
Suppose that we test this by asking a random sample
of 20 people to give a three-digit lottery number and
find that four of the numbers have 7 as the last digit.
Figure 5.22 shows a randomization distribution of
proportions for 5000 simulated samples under the
null hypothesis H0 : p = 0.10.
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Figure 5.22 Randomization distribution for proportions in Exercise 5.76 when p = 0.10 and n = 20

(a) Use the sample proportion p̂ = 0.20 and a stan-
dard error estimated from the randomization
distribution to compute a standardized test
statistic.

(b) Use the normal distribution to find a p-value
for an upper tail alternative based on the test
statistic found in part (a).

(c) Compare the p-value obtained from the normal
distribution in part (b) to the p-value shown
for the randomization distribution. Explain why
there might be a discrepancy between these two
values.
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C H A P T E R 6

Inference for
Means and
Proportions

‘‘To exploit the data flood, America will need many more [data analysts] . . . The story is

similar in fields as varied as science and sports, advertising and public health—a drift

toward data-driven discovery and decision-making.’’

Steve Lohr∗

This chapter has many short sections that can be combined and covered in almost any order.

∗‘‘The Age of Big Data,” The New York Times, February 12, 2012, p. SR1.
Top Left: © Stephen Strathdee/iStockphoto, Top Right: © slobo/iStockphoto, Bottom Right: Photo by Mike Stobe/Getty Images, Inc.
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6.12 Test for a Difference in Means 421
6.13 Paired Difference in Means 427

Here are some of the questions and issues we will discuss in this chapter:

• Which option is picked most frequently in Rock-Paper-Scissors?

• What percent of college football fans favor instituting a tournament-style playoff system?

• Could maternal use of antidepressants lead to autism?

• What percent of US adults have a profile on a social networking site?

• Does keeping a light on at night affect weight gain?

• Does the use of a wetsuit increase a swimmer’s speed?

• What percent of US adults believe in ghosts?

• Are polyester clothes polluting our shorelines?

• If you are mean to a bird, will it remember you?

• Can babies tell if you can’t be trusted?

• What percent of airline flights arrive on time?

• Do men behave differently around ovulating women?

• If your college roommate brings a videogame to campus, are your grades negatively affected?

• Does diet cola leach calcium out of your system?

• If you just think you should be losing weight, are you more likely to lose weight?

• How strong are the benefits of exercise in helping us be more resilient to stress?

• If we give away the ending of a story, will readers like the story more or less?

• Does the scent of female tears reduce testosterone levels in men?
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352 C H A P T E R 6 Inference for Means and Proportions

6.1DISTRIBUTION OF A SAMPLE PROPORTION

For categorical data, the parameter of interest is often a population proportion p.
From the Central Limit Theorem (CLT), we know that the distribution of sample
proportions when using a specific sample size, n, from a population with some given
proportion, p, is centered at p and is approximately normally distributed if n is
sufficiently large.

Computing the Standard Error
Besides the center, the other important quantity we need to describe a normal
distribution is the standard deviation, the standard error (SE) of the sample
proportions. As we saw in Chapter 5, one way to estimate this SE is to find the
standard deviation of the many sample proportions in a bootstrap or randomization
distribution. Three distributions from previous chapters are shown in Figure 6.1.
The standard error estimates for these three distributions are SE = 0.032 for the
proportion of 200 adults with college degrees, SE = 0.049 for the proportion of 100
mixed nuts that are peanuts, and SE = 0.10 for the proportion of 25 dogs that are
correctly matched with owners.

Normal curves with these respective parameters are superimposed over the
histograms of the sample proportions in Figure 6.1. In each case the normal distri-
bution does a good job of summarizing the center, shape, and spread of the sample
proportions.

However, this method of estimating the SE still requires simulating thousands
of sample proportions, so we haven’t saved much computing time or effort. Here’s
where a bit more statistical theory comes to the rescue.

Standard Error for Sample Proportions

When choosing random samples of size n from a population with
proportion p, the standard error of the sample proportions is given by

SE =
√

p(1 − p)

n

The larger the sample size (n), the smaller the standard error (SE).

While the derivation of this formula is beyond the scope of this text, we can at
least check it against the three examples in Figure 6.1.

(a) College degrees, n = 200, p = 0.275  (b) Mixed nuts, n = 100, p = 0.52 (c) Dog/Owner match, n = 25, p = 0.50
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6.1 Distribution of a Sample Proportion 353

Situation Sample Size Proportion SE by Simulation SE by Formula

College degrees 200 0.275 0.032

√
0.275(1 − 0.275)

200
= 0.032

Mixed nuts 100 0.52 0.049

√
0.52(1 − 0.52)

100
= 0.050

Dog/Owner match 25 0.50 0.100

√
0.50(1 − 0.50)

25
= 0.100

The values of SE obtained with the formula agree nicely with the standard error
estimates that we found with the simulated sample proportions.

Example 6.1
Extrasensory Perception (ESP)

Suppose that a test for extrasensory perception (ESP) is designed where a person
tries to guess the suit (spades, diamonds, hearts, clubs) of a randomly selected
playing card. In the absence of ESP, the proportion guessed correctly should be
p = 0.25, so a natural test to consider is H0 : p = 0.25 vs Ha : p > 0.25. Find the
mean and standard error of the distribution of sample proportions of correct guesses
in each of the following situations.

(a) Subjects view n = 50 cards and guess randomly (no ESP) with p = 0.25.

(b) Subjects guess randomly, p = 0.25, but the sample size is n = 200 cards.

(c) Subjects have some ESP, so that p = 0.40, and they view n = 50 cards.

Solution (a) The mean of the sample proportions when just guessing is 0.25. The standard

error for a sample of size 50 is SE =
√

0.25(1−0.25)
50 = 0.0612.

(b) When the sample size is increased to n = 200 the mean of the sample proportions

stays at 0.25 (when no ESP), but the standard error drops to SE =
√

0.25(1−0.25)
200 =

0.0306.

(c) If the chance of guessing correctly increases to p = 0.40, the mean of the
distribution of p̂’s also increases to 0.40. If the sample size is n = 50, the standard

error of the sample proportions is SE =
√

0.4(1−0.4)
50 = 0.0693.

In Example 6.1, we see that multiplying the sample size by 4 (n = 50 to n = 200)
cuts the standard error of the sample proportions in half. This is due to the square
root of n in the denominator of the formula for SE. In Example 3.9 on page 170 we
see that the variability of the sampling distribution for a proportion decreases with
increasing sample size—the formula for SE quantifies this relationship.

We also see that the standard error depends on the population proportion p.
Values closer to p = 0.5 give a slightly larger SE than proportions near the extremes
of 0 or 1. In fact, suppose that the true proportion is actually p = 0 (for example,
deluxe mixed nuts that contain no peanuts). In this case every sample would give
p̂ = 0 and the variability in the sample proportions would also be 0. At the other
extreme, if the true p = 1 (such as in a jar of only peanuts), the proportion in
every sample would also be p̂ = 1 and, again, the standard deviation of the sample
proportions is 0. While not a formal derivation, this gives some justification for the√

p(1 − p) part of the formula for SE.
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354CHAPTER6InferenceforMeansandProportions

HowLargeaSampleSizeisNeeded?
ThedistributionsofsampleproportionsinFigure6.1allappeartobewell-modeled
withanormaldistribution.Whilethisisoftenthecase,therearesituationswhere
anormaldistributionisnotappropriate.AsFigures6.2and6.3illustrate,problems
tendtooccurwhenthesamplesizeissmallorthepopulationproportionisvery
extreme(near0or1).DotplotsofsampleproportionsareshowninFigure6.2for
n=50andvariousvaluesofp,andinFigure6.3forp=0.10andvariousvaluesofn.

LookingatthedotplotsinFigure6.2weseethatthenormalshapestartsto
breakdownwhenthepopulationproportionpstartstogetcloseto0or1.Aswe
approachtheseextremes(p=0.05,0.10,0.90,or0.99),oneofthetailsofwhatwould
beanormaldistributiongetstruncatedat0or1sincethesampleproportionmust
bebetweenthesevalues.Formoremoderateproportions(p=0.25andp=0.50)a
normalcurveisstillappropriate.

InFigure6.3weseethatthesamplesizealsoplaysarole.Forasmallproportion,
suchasp=0.10,normalityisaproblemforn=10orn=25butlooksfinefor
n=200.Again,whenthesamplesizeistoosmall,oneofthetailsofthedistribution
pilesupat0or1.Foralargesamplesize,thestandarderrorissmallenoughthat
thetaildoesn’tbumpintothisboundary.

Asageneralrule,thesamplesizeislargeenoughforthedistributiontostay
awayfrom0ifnp≥10.Attheotherend,wecanavoidproblemsat1ifn(1−p)≥10.
Thissaysthatthesamplesizeislargeenoughthatwecanexpecttoseeatleast10
‘‘yes”valuesandatleast10‘‘no”valuesinthesample.Thedistributionofthesample
proportionswillbereasonablynormallydistributedifnp≥10andn(1−p)≥10.

(a) p = 0.05

0.000.020.040.060.080.100.120.140.160.18

(b) p = 0.10

0.000.050.100.150.200.25

(c) p = 0.25

0.00.10.20.30.40.5

(d) p = 0.50
0.30.40.50.60.7

(e) p = 0.90

0.750.800.850.900.951.00

(f) p = 0.99

0.920.930.940.950.960.970.980.991.00

Figure6.2Distributionsofsampleproportionswhenn=50

0.000.040.080.120.160.20

(c) n = 200

0.00.10.20.30.40.50.6

(a) n = 10   

0.000.050.100.150.200.250.300.350.40

(b) n = 25

Figure6.3Distributionsofsampleproportionswhenp=0.10
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6.1 Distribution of a Sample Proportion 355

Central Limit Theorem for Sample Proportions

When choosing random samples of size n from a population with
a proportion p, the distribution of the sample proportions has the
following characteristics:

Center: The mean is equal to the population proportion, p.

Spread: The standard error is SE =
√

p(1 − p)

n
.

Shape: If the sample size is sufficiently large, the distribution is rea-
sonably normal.

The larger the sample size, the more like a normal distribution it
becomes. A normal distribution is a good approximation as long as
np ≥ 10 and n(1 − p) ≥ 10.

Using our notation for a normal distribution, this means that if n is sufficiently
large,

p̂ ∼ N

(
p,

√
p(1 − p)

n

)

Example 6.2
Ontime Arrivals

The Bureau of Transportation Statistics1 tells us that 80% of flights for a particular
airline arrive on time (defined as within 15 minutes of the scheduled arrival time).
We examine a random sample of 400 flights for this airline and compute the
proportion of the sample flights that arrive on time. Verify that the conditions of the
Central Limit Theorem for proportions apply and draw a sketch of the distribution
of proportion of ontime flights for samples of size 400 when p = 0.8.

Solution The mean of the distribution of sample ontime proportions is 0.80, the proportion
for the entire population. The standard error for samples of size 400 is

SE =
√

0.8(1 − 0.8)

400
= 0.02

For n = 400 and p = 0.8 we have

np = 400 · 0.8 = 320 and n(1 − p) = 400 · (1 − 0.8) = 80

Both of these values are well above 10, so we can safely use a normal distribution to
model the sample ontime proportions. A sketch of the N(0.80, 0.02) distribution is
shown in Figure 6.4.

We now know how to compute the SE for a distribution of sample proportions
and how to determine whether this distribution will be approximately normally
distributed. In the next two sections we use these tools as shortcuts to easily create
confidence intervals and conduct hypothesis tests for a proportion.

1For example, see http://www.transtats.bts.gov/HomeDrillChart.asp for data collected by the Bureau of
Transportation Statistics.
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Figure 6.4 Distribution
of airline ontime
proportions for samples
of 400 flights 0.74 0.76 0.78 0.80

Sample Ontime Proportions

0.82 0.84 0.86

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Find the mean and standard error for a distribution of sample propor-
tions

• Identify when a normal distribution is an appropriate model for a
distribution of sample proportions

Exercises for Section 6.1

SKILL BUILDER 1
In Exercises 6.1 to 6.6, if random samples of the
given size are drawn from a population with the
given proportion:
(a) Find the mean and standard error of the distri-

bution of sample proportions.

(b) If the sample size is large enough for the Central
Limit Theorem to apply, draw a curve showing
the shape of the sampling distribution. Include
at least three values on the horizontal axis.

6.1 Samples of size 50 from a population with
proportion 0.25

6.2 Samples of size 1000 from a population with
proportion 0.70

6.3 Samples of size 60 from a population with
proportion 0.90

6.4 Samples of size 30 from a population with
proportion 0.27

6.5 Samples of size 300 from a population with
proportion 0.08

6.6 Samples of size 100 from a population with
proportion 0.41

6.7 Mobile Phones in India India has over 600 mil-
lion mobile phone subscribers. The largest company

providing mobile phone service is Bharti Airtel,
which has 30% of the market share.2 If random
samples of 500 mobile phone subscribers in India
are selected and we compute the proportion using
service from Bharti Airtel, find the mean and the
standard error of the sample proportions.

6.8 Percent over 600 on Math SAT In the class of
2010, 25% of students taking the Mathematics por-
tion of the SAT (Scholastic Aptitude Test)3 scored
over a 600. If we take random samples of 100 mem-
bers of the class of 2010 and compute the proportion
who got over a 600 on the Math SAT for each sam-
ple, what will be the mean and standard deviation
of the distribution of sample proportions?

6.9 What Percent of Houses Are Owned vs
Rented? The 2010 US Census4 reports that, of all the
nation’s occupied housing units, 65.1% are owned
by the occupants and 34.9% are rented. If we take
random samples of 50 occupied housing units and
compute the sample proportion that are owned for
each sample, what will be the mean and standard
deviation of the distribution of sample proportions?

2’’Happy customers, no profit,” The Economist, June 18, 2011.
3sat.collegeboard.org/scores.
4www.census.gov.
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6.10 Percent of Free Throws Made Usually, in
sports, we expect top athletes to get better over time.
We expect future athletes to run faster, jump higher,
throw farther. One thing has remained remarkably
constant, however. The percent of free throws made
by basketball players has stayed almost exactly the
same for 50 years.5 For college basketball players,
the percent is about 69%, while for players in the
NBA (National Basketball Association) it is about
75%. (The percent in each group is also very similar
between male and female basketball players.) In
each case below, find the mean and standard devi-
ation of the distribution of sample proportions of
free throws made if we take random samples of the
given size.

(a) Samples of 100 free throw shots in college bas-
ketball

(b) Samples of 1000 free throw shots in college
basketball

(c) Samples of 100 free throw shots in the NBA

(d) Samples of 1000 free throw shots in the NBA

6.11 Impact of Sample Size on Accuracy Com-
pute the standard error for sample proportions
from a population with proportion p = 0.4 for sam-
ple sizes of n = 30, n = 200, and n = 1000. What
effect does increasing the sample size have on
the standard error? Using this information about
the effect on the standard error, discuss the effect
of increasing the sample size on the accuracy of
using a sample proportion to estimate a population
proportion.

6.12 Impact of the Population Proportion on SE
Compute the standard error for sample proportions
from a population with proportions p = 0.8, p = 0.5,
p = 0.3, and p = 0.1 using a sample size of n = 100.
Comment on what you see. For which proportion is
the standard error the greatest? For which is it the
smallest?

Is a Normal Distribution Appropriate? In Exer-
cises 6.13 and 6.14, indicate whether the Central
Limit Theorem applies so that the sample propor-
tions follow a normal distribution.

6.13 In each case below, does the Central Limit
Theorem apply?

(a) n = 500 and p = 0.1

(b) n = 25 and p = 0.5

(c) n = 30 and p = 0.2

(d) n = 100 and p = 0.92

5Branch, J., ‘‘For Free Throws, 50 Years of Practice is No Help,”
New York Times, March 3, 2009.

6.14 In each case below, does the Central Limit
Theorem apply?

(a) n = 80 and p = 0.1

(b) n = 25 and p = 0.8

(c) n = 50 and p = 0.4

(d) n = 200 and p = 0.7

Standard Error from a Formula and Simulation In
Exercises 6.15 to 6.18, find the mean and standard
error of the sample proportions two ways:

(a) Use StatKey or other technology to simulate at
least 1000 sample proportions. Give the mean
and standard error and comment on whether
the distribution appears to be normal.

(b) Use the formulas in the Central Limit Theorem
to compute the mean and standard error. Are
the results similar to those found in part (a)?

6.15 Sample proportions of sample size n = 50 from
a population with p = 0.25

6.16 Sample proportions of sample size n = 100
from a population with p = 0.4

6.17 Sample proportions of sample size n = 40 from
a population with p = 0.5

6.18 Sample proportions of sample size n = 10 from
a population with p = 0.2

Standard Error from a Formula and a Bootstrap
Distribution In Exercises 6.19 to 6.22, use StatKey
or other technology to generate a bootstrap distri-
bution of sample proportions and find the standard
error for that distribution. Compare the result to the
standard error given by the Central Limit Theorem,
using the sample proportion as an estimate of the
population proportion p.

6.19 Proportion of peanuts in mixed nuts, with
n = 100 and p̂ = 0.52

6.20 Proportion of home team wins in soccer, with
n = 120 and p̂ = 0.583

6.21 Proportion of lie detector trials in which the
technology misses a lie, with n = 48 and p̂ = 0.354

6.22 Proportion of survey respondents who say
exercise is important, with n = 1000 and p̂ = 0.753

6.23 Missing Country Data The data in AllCoun-
tries include information for all of the countries
of the world, but some of the variables have miss-
ing data because values weren’t available for some
countries. For example, there are values for Energy
use in only 136 of the 213 countries (64%). Suppose
students select random samples of 20 countries from
the list of all countries, and calculate the proportion
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of countries with non-missing Energy values in each
sample.

(a) Find the mean and standard error for the sam-
ple proportions of countries with Energy values
for these samples.

(b) Is the sample size of 20 in this example sufficient
to be confident that a normal distribution is a
good model for these sample proportions?

(c) How would your answers to parts (a) and
(b) change if we recorded the proportion of
countries in each sample that had missing infor-
mation for Energy?

6.24 Ontime Arrivals Example 6.2 on page 355
reports data from the Bureau of Transportation
Statistics that 80% of flights at a particular air-
line arrive on time (defined as within 15 minutes

of the scheduled arrival time). Use the results in
Example 6.2 to determine how likely it is that the
ontime proportion for a random sample of 400
flights will be within 0.03 of the true population
proportion.

6.25 NBA Free Throws In Exercise 6.10, we learn
that the percent of free throws made in the NBA
(National Basketball Association) has been about
75% for the last 50 years. If we take random samples
of free throws in the NBA and compute the propor-
tion of free throws made, what percent of samples of
size n = 200 will have a sample proportion greater
than 80%? Use the fact that the sample proportions
are normally distributed and compute the mean and
standard deviation of the distribution.

6.2CONFIDENCE INTERVAL FOR A SINGLE PROPORTION

Confidence Interval for a Single Proportion
In Section 5.2 we see that when a distribution for a sample statistic is normally
distributed, a confidence interval can be formed using

Sample Statistic ± z∗ · SE

where z∗ is an appropriate percentile from a standard normal distribution and SE is
the standard error estimated from a bootstrap distribution.

In Section 6.1 we see that, for a large sample, the distribution of sample pro-
portions is reasonably normal with standard error given by

SE =
√

p(1 − p)

n

where n is the sample size and p is the proportion in the population.
We are almost in a position to combine these facts to produce an easy formula

for computing a confidence interval for a proportion. One small, but very important,
detail remains. In order to compute the standard error, SE, for the sample propor-
tions we need to know the proportion, p, for the population—but that’s exactly
the quantity we are trying to estimate with the confidence interval! Fortunately,
there’s an easy fix to this predicament. We use the sample proportion, p̂, in place of
the population proportion, p, when estimating the standard error for a confidence
interval. As long as the sample is large enough for the CLT to apply (at least 10
‘‘yes” and at least 10 ‘‘no” values in the sample), a normal distribution with this
approximated SE is still a good model for the sample proportions.

Confidence Interval for a Single Proportion

Provided the sample size is large enough so that np̂ ≥ 10 and
n(1 − p̂) ≥ 10, a confidence interval for a population proportion
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p can be computed based on a random sample of size n
using

p̂ ± z∗
√

p̂(1 − p̂)

n
where p̂ is the sample proportion and z∗ is a standard normal
endpoint to give the desired level of confidence.

Example 6.3
More Mixed Nuts

In Example 3.19 on page 196 we describe a sample of 100 mixed nuts that contains
52 peanuts. Verify that the sample is large enough for the CLT to apply and use
the formula to find a 95% confidence interval for the proportion of peanuts in
this brand of mixed nuts. Interpret the confidence interval in context. Compare
the result to the interval 0.420 to 0.620 obtained using a bootstrap distribution in
Example 3.22 on page 199.

Solution The sample has 52 peanuts and 48 other nuts. Since both of these counts are
bigger than 10, we can use the normal approximation. The sample proportion is
p̂ = 52/100 = 0.52 and, for a 95% confidence interval, the standard normal z∗ = 1.96.
Using the formula we have

p̂ ± z∗
√

p̂(1 − p̂)

n

0.52 ± 1.96

√
0.52(1 − 0.52)

100
0.52 ± 0.098

0.422 to 0.618
Based on this sample, we are 95% sure that between 42.2% and 61.8% of the mixed
nuts from this company are peanuts. In Example 3.22 we found a confidence interval
of (0.420, 0.620) based on the SE from a bootstrap distribution, which agrees nicely
with the result from the formula.

Antenna Audio, Inc/GettyImages, Inc.

What proportion of Quebecers want to
secede from Canada?
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Example 6.4
Quebec Sovereignty

Quebec is a large province in eastern Canada, and is the only Canadian province
with a predominantly French-speaking population. Historically there has been
debate over whether Quebec should secede from Canada and establish itself as an
independent, sovereign nation. In a recent survey of 800 Quebec residents, 28%
thought that Quebec should separate from Canada. In the same survey, 82% agreed
that Quebec society is distinct from the rest of Canada.6

(a) Find a 95% confidence interval for the proportion of Quebecers who would like
Quebec to separate from Canada.

(b) Find a 95% confidence interval for the proportion of Quebecers who think
Quebec society is distinct from the rest of Canada.

Solution The sample size is clearly large enough to use the formula based on the normal
approximation.

(a) The proportion in the sample who think Quebec should separate is p̂ = 0.28 and
z∗ = 1.96 for 95% confidence, so we have

0.28 ± 1.96

√
0.28(1 − 0.28)

800
= 0.28 ± 0.031 = (0.249, 0.311)

We are 95% sure that between 24.9% and 31.1% of Quebecers would like
Quebec to separate from Canada.

(b) The proportion in the sample who think Quebec society is distinct from the rest
of Canada is p̂ = 0.82 so the 95% confidence interval is

0.82 ± 1.96

√
0.82(1 − 0.82)

800
= 0.82 ± 0.027 = (0.793, 0.847)

We are 95% sure that between 79.3% and 84.7% of Quebecers think Quebec
society is distinct.

Examples 6.3 and 6.4 illustrate how the margin of error (ME) in a confi-
dence interval for a proportion depends on both the sample size and the sample
proportion.

Example 6.3 n = 100 p̂ = 0.52 ME = 0.098
Example 6.4(a) n = 800 p̂ = 0.28 ME = 0.031
Example 6.4(b) n = 800 p̂ = 0.82 ME = 0.027

We know that the margin of error decreases for larger sample sizes. We also see
that, even for the same sample size, a sample proportion closer to 0 or 1 gives a
smaller margin of error than p̂ closer to 0.5. In fact, the largest margin of error (and
thus the widest interval) occurs when p̂ is 0.5.

Determining Sample Size for Estimating a Proportion
A common question when designing a study is ‘‘How large a sample should we
collect?” When estimating a proportion with a confidence interval, the answer to
this question depends on three related questions:

6‘‘Separation from Canada Unlikely for a Majority of Quebecers,” Angus Reid, June 9, 2009.

o
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• How accurate do we want the estimate to be?

• How much confidence do we want to have in the interval?

• What sort of proportion do we expect to see?

The first question deals with obtaining a desired margin of error, ME, for the
confidence interval. Suppose that we want to set the margin of error in advance,
along with a certain level of confidence. From the formula for the confidence interval
we see that the margin of error is computed with

ME = z∗
√

p̂(1 − p̂)

n
By choosing a large enough n, we can get the margin of error as small as we’d like. If
we knew the proportion, we could solve this equation for n to determine the sample
size needed to get a specified margin of error with a given level of confidence. With
a bit of algebra this gives us

n =
(

z∗

ME

)2

p̂(1 − p̂)

Unfortunately, we haven’t even taken a sample yet so we don’t have a value to use
for p̂. In practice, we address this problem in one of two ways:

• If we have some idea of what the proportion might be, we go ahead and substitute
it into the equation to calculate a sample size n (we’ll refer to this substituted
proportion as p̃).

• If we are not willing or able to make a reasonable guess, we use p̃ = 0.5.

In some cases we might have past experience with a proportion or conduct a small
pilot study to get an initial estimate for p̂ to use in estimating the required sample
size. Remember that the margin of error is largest when p̂ = 0.5, so if we use that
value to estimate a sample size, the resulting interval will have a margin of error
within the bound we set or slightly smaller if p̂ is farther away from 0.5.

Determination of Sample Size to Estimate a Proportion

If we want to estimate a population proportion to within a desired
margin of error, ME, with a given level of confidence, we should select
a sample of size

n =
(

z∗

ME

)2

p̃(1 − p̃)

where we use p̃ = 0.5 or, if available, some other estimate of p.

Example 6.5
Quebec Sovereignty (continued)

In Example 6.4 we analyzed a poll of 800 Quebecers, in which 28% thought that
Quebec should separate from Canada. About how many Quebecers should we
randomly sample to estimate the proportion of residents who think the province
should separate to within ±1% with 99% confidence?

Solution Based on the previous poll, our best guess at the proportion is p̃ = 0.28, so we use
this to estimate the sample needed. The margin of error desired is ME = 0.01, and
z∗ = 2.576 for 99% confidence, which gives

n =
(

2.576
0.01

)2

0.28(1 − 0.28) = 13377.72

o
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By convention we round up any fractional parts of the sample, so we would require
a (rather large) sample size of 13,378 Quebecers to achieve the desired accuracy.

Example 6.6
Political Approval

Polling agencies often ask voters whether they approve or disapprove of the
job a politician is doing. Suppose that pollsters want to estimate the proportion
who approve of the job done by a particular politician to within ±3% with 95%
confidence. How large a sample should they take?

Solution The desired margin of error is ME = 0.03. If we don’t assume anything about what
the approval rating might be, we use 0.5 for the proportion and z∗ = 1.96 for 95%
confidence. To compute the sample size we use

n =
(

1.96
0.03

)2

0.5(1 − 0.5) = 1067.11

So, a random sample of 1068 voters is enough to estimate the approval rating of a
politician to within 0.03 with 95% confidence.

In practice, polling organizations often include multiple questions in a survey,
so assuming the worst case proportion of p̂ = 0.5 when choosing a sample size for
the whole survey is a prudent decision. The next time you see poll results reported
in a news story, check whether the report includes a sample size (often a bit more
than 1000) and a general margin of error (often 3%).

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to compute a confidence
interval for a population proportion

• Determine a sample size needed to estimate a proportion within a
specified margin of error at a given level of confidence

Exercises for Section 6.2

SKILL BUILDER 1
In Exercises 6.26 to 6.29, use the normal distribu-
tion to find a confidence interval for a proportion
p given the relevant sample results. Give the best
point estimate for p, the margin of error, and the
confidence interval. Assume the results come from
a random sample.

6.26 A 95% confidence interval for p given that
p̂ = 0.38 and n = 500

6.27 A 90% confidence interval for p given that
p̂ = 0.85 and n = 120

6.28 A 99% confidence interval for the proportion
who will answer ‘‘Yes” to a question, given that 62
answered yes in a random sample of 90 people
6.29 A 95% confidence interval for the proportion
of the population in Category A given that 23% of
a sample of 400 are in Category A

SKILL BUILDER 2
In Exercises 6.30 to 6.33, what sample size is needed
to give the desired margin of error in estimating a
population proportion with the indicated level of
confidence?

o

o
o
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6.30 A margin of error within ±5% with 95% con-
fidence.

6.31 A margin of error within ±1% with 99% con-
fidence.

6.32 A margin of error within ±3% with 90% confi-
dence. We estimate that the population proportion
is about 0.3.

6.33 A margin of error within ±2% with 95% con-
fidence. An initial small sample has p̂ = 0.78.

6.34 What Percent of US Adults Say They Never
Exercise? In a survey of 1000 US adults, twenty
percent say they never exercise. This is the highest
level seen in five years.7 Find and interpret a 99%
confidence interval for the proportion of US adults
who say they never exercise. What is the margin of
error, with 99% confidence?

6.35 Fourth Down Conversions in American Foot-
ball In analyzing data from over 700 games in the
National Football League, economist David Romer
identified 1068 fourth-down situations in which,
based on his analysis, the right call would have been
to go for it and not to punt. Nonetheless, in 959 of
those situations, the teams punted. Find and inter-
pret a 95% confidence interval for the proportion
of times NFL teams punt on a fourth down when,
statistically speaking, they shouldn’t be punting.8

Assume the sample is reasonably representative of
all such fourth down situations in the NFL.

6.36 Do Kids Spend Too Much Time on Electronic
Devices? In a nationwide poll of 1000 randomly
sampled adults conducted in June 2011, 83% said
they think children spend too much time on their
computers and other electronic devices (but 37%
say time spent on a computer is better than time
spent in front of a TV).9 Find and interpret a 95%
confidence interval for the proportion of adults who
believe children spend too much time on electronic
devices. What is the margin of error for this result?
Is it plausible that the proportion of all adults who
feel this way is less than 80%? Is it plausible that
the proportion is greater than 85%?

6.37 One True Love? Data 2.1 on page 46 deals
with a survey that asked whether people agree or
disagree with the statement ‘‘There is only one
true love for each person.” The survey results in
Table 2.1 show that 735 of the 2625 respondents

7‘‘75% say exercise is important in daily life,’’ Rasmussen
Reports, March 26, 2011.
8Moskowitz, T. and Wertheim, J., Scorecasting, Crown Arche-
type, New York, 2011, p. 39.
9‘‘83% Say Kids Spend Too Much Time On Electronic Devices,”
Rasmussen Reports, July 6, 2011.

agreed, 1812 disagreed, and 78 answered ‘‘don’t
know.”

(a) Find a 90% confidence interval for the propor-
tion of people who disagree with the statement.

(b) Find a 90% confidence interval for the propor-
tion of people who ‘‘don’t know.”

(c) Which estimate has the larger margin of error?

6.38 Home Field Advantage in Baseball There
were 2430 Major League Baseball (MLB) games
played in 2009, and the home team won in 54.9%
of the games.10 If we consider the games played
in 2009 as a sample of all MLB games, find and
interpret a 90% confidence interval for the propor-
tion of games the home team wins in Major League
Baseball.

6.39 Social Networking Sites In a survey of 2255
randomly selected US adults (age 18 or older), 1787
of them use the Internet regularly. Of the Internet
users, 1054 use a social networking site.11 Find and
interpret a 95% confidence interval for each of the
following proportions:

(a) Proportion of US adults who use the Internet
regularly.

(b) Proportion of US adult Internet users who use
a social networking site.

(c) Proportion of all US adults who use a social
networking site. Use the confidence interval to
estimate whether it is plausible that 50% of all
US adults in 2011 use a social networking site.

6.40 What Do People Do on Facebook? In the
survey of 2255 US adults described in Exercise 6.39,
we also learn that 970 of the respondents use
the social networking site Facebook.12 Of the
970 Facebook users, the survey shows that on an
average day:

• 15% update their status

• 22% comment on another’s post or status

• 20% comment on another user’s photo

• 26% ‘‘like” another user’s content

• 10% send another user a private message

(a) For each of the bulleted activities, find a
95% confidence interval for the proportion of

10http://www.baseballprospectus.com/article.php?articleid=
9854, accessed June 2011.
11Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, June
16, 2011.
12Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, June
16, 2011.
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Facebook users engaging in that activity on an
average day.

(b) Is it plausible that the proportion commenting
on another’s post or status is the same as the
proportion updating their status? Justify your
answer.

6.41 Worldwide, Store Brands Are Gaining on
Name Brands In a Nielsen global online survey
of about 27,000 people from 53 different countries,
61% of consumers indicated that they purchased
more store brands during the economic downturn
and 91% indicated that they will continue to pur-
chase the same number of store brands when the
economy improves. The results were remarkably
consistent across all regions of the world.13 The
survey was conducted during September 2010 and
had quotas for age and gender for each country,
and the results are weighted to be representative of
consumers with Internet access.

(a) What is the sample? What is an appropriate
population?

(b) Find and interpret a 99% confidence interval
for the proportion of consumers who purchased
more store brands during the economic down-
turn.

(c) Find and interpret a 99% confidence interval for
the proportion of consumers who will continue
to purchase the same number of store brands.

6.42 Democrat or Republican? March 2011 A sur-
vey of 15,000 American adults in March 2011 found
that 35.3% identify as Democrats and 34.0% iden-
tify as Republicans, with the rest identifying as
independent or other.14 If we want 95% confidence,
what is the margin of error in the estimate for the
proportion of Democrats? For the proportion of
Republicans? Do you feel comfortable conclud-
ing that in March 2011 more American adults
self-identified as Democrats than self-identified as
Republicans? Explain.

6.43 Democrat or Republican? February 2010 A
little more than a year earlier than the survey
described in Exercise 6.42, in February 2010, a dif-
ferent survey of 15,000 American adults found that
35.1% identified as Democrats and 32.1% identi-
fied as Republicans, with the rest identifying as
independent or other.15 Answer the same questions
about these survey results as in Exercise 6.42: If we

13‘‘The Rise of the Value-Conscious Shopper,” A Nielsen Global
Private Label Report, www.nielsen.com, March 2011.
14‘‘Partisan Trends,” Rasmussen Reports, April 1, 2011.
15‘‘Partisan Trends,” Rasmussen Reports, April 1, 2011.

want 95% confidence, what is the margin of error
in the estimate for the proportion of Democrats?
For the proportion of Republicans? Do you feel
comfortable concluding that in February 2010 more
American adults self-identified as Democrats than
self-identified as Republicans? Explain.

Comparing Normal and Bootstrap Confidence
Intervals In Exercises 6.44 and 6.45, find a 95% con-
fidence interval for the proportion two ways, using
StatKey or other technology and percentiles from a
bootstrap distribution and using the normal distri-
bution and the formula for standard error. Compare
the results.

6.44 Proportion of home team wins in soccer, using
p̂ = 0.583 with n = 120

6.45 Proportion of Reese’s Pieces that are orange,
using p̂ = 0.48 with n = 150

What Influences the Sample Size? In Exercises 6.46
to 6.48, we examine the effect of different inputs
on determining the sample size needed to obtain a
specific margin of error when finding a confidence
interval for a proportion.

6.46 Find the sample size needed to give, with 95%
confidence, a margin of error within ±6% when esti-
mating a proportion. Within ±4%. Within ±1%.
(Assume no prior knowledge about the popula-
tion proportion p.) Comment on the relationship
between the sample size and the desired margin of
error.

6.47 Find the sample size needed to give a margin
of error to estimate a proportion within ±3% with
99% confidence. With 95% confidence. With 90%
confidence. (Assume no prior knowledge about the
population proportion p.) Comment on the rela-
tionship between the sample size and the confidence
level desired.

6.48 Find the sample size needed to give, with 95%
confidence, a margin of error within ±3% when
estimating a proportion. First, find the sample size
needed if we have no prior knowledge about the
population proportion p. Then find the sample size
needed if we have reason to believe that p ≈ 0.7.
Finally, find the sample size needed if we assume
p ≈ 0.9. Comment on the relationship between the
sample size and estimates of p.

6.49 Does the Public Support Sin Taxes? A survey
of 1000 adults in the US conducted in March 2011
asked ‘‘Do you favor or oppose ‘sin taxes’ on soda
and junk food?” The proportion in favor of taxing
these foods was 32%.16

16‘‘32% favor ‘sin taxes’ on soda, junk food,” Rasmussen Reports,
April 1, 2011.
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(a) Find a 95% confidence interval for the propor-
tion of US adults favoring taxes on soda and
junk food.

(b) What is the margin of error?

(c) If we want a margin of error of only 1% (with
95% confidence), what sample size is needed?

6.50 What Proportion Favor a Gun Control Law?
A survey is planned to estimate the proportion of
voters who support a proposed gun control law. The
estimate should be within a margin of error of ±2%
with 95% confidence, and we do not have any prior
knowledge about the proportion who might support
the law. How many people need to be included in
the sample?

6.51 Advertising a Sunscreen Pill An advertising
firm plans to have a sample of individuals view a
commercial on a ‘‘sunscreen pill” that one can swal-
low to provide mild SPF protection throughout the
day. After viewing the commercial, each individual
will be asked if he/she would consider buying the
product. How many individuals should the firm sam-
ple to estimate the proportion who would consider
buying the product to within a ±4% margin of error
with 98% confidence?

6.52 Congressional Approval Rating In April 2012,
the Gallup Poll reported that in a random sample
of 1016 US adults, only 17% approve of the way
Congress is handling its job.17

(a) Use the poll results to estimate the proportion of
all US adults who approve of the way Congress
is doing its job. What is the margin of error, with
99% confidence, for this estimate?

17http://www.gallup.com/poll/153968/Congressional-Approval-
Recovers-Slightly.aspx, accessed April 2012.

(b) If the Gallup Poll wants the estimate to be accu-
rate to within ±1%, with 99% confidence, how
large a sample must they use?

6.53 Gender of Atlanta Commuters One of the vari-
ables in the dataset CommuteAtlanta, introduced
in Data 3.3 on page 193, gives the sex of each com-
muter in the sample. Use technology and the dataset
to construct and interpret a 95% confidence interval
for the proportion of Atlanta commuters who are
male.

6.54 Survival of ICU Patients The dataset ICUAd-
missions, introduced in Data 2.3 on page 66,
includes information on 200 patients admitted to
an Intensive Care Unit. One of the variables, Status,
indicates whether each patient lived (indicated with
a 0) or died (indicated with a 1). Use technology and
the dataset to construct and interpret a 95% con-
fidence interval for the proportion of ICU patients
who live.

6.55 College Football Playoffs As of 2011, Divi-
sion I college football in the US does not have a
tournament-style playoff to pick a national cham-
pion. In a random survey conducted by Quinnipiac
University,18 people who identified themselves as
college football fans were asked if they favor a
playoff system, similar to college basketball, to
determine a national champion. Of those sampled,
63% said they would favor such a system, and the
margin of error is ±3.1%. Assuming the margin
of error corresponds to a 95% confidence inter-
val, about how many college football fans were
sampled?

18‘‘Use Playoff System to Pick College Football Champ, Ameri-
can Fans Tell Quinnipiac University National Poll,” Quinnipiac
University Polling Institute, December 29, 2009.

6.3TEST FOR A SINGLE PROPORTION

In Section 5.2 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z = Sample Statistic − Null Parameter
SE

The sample statistic is computed from the sample data and the null parameter is
specified by the null hypothesis, H0.

When testing a hypothesis about a population proportion, the null hypothesis is
typically H0 : p = p0 where p0 is some specific value of the proportion. Thus the null
parameter is p0 and the sample statistic is the proportion from a sample, p̂. We have

z = p̂ − p0

SE
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We use the Central Limit Theorem for proportions (page 355) to determine the
standard error. Remember that, in conducting a hypothesis test, we want to see if
p̂ is in an unusual place of a distribution we would expect to see when H0 is true.
Since we assume H0 is true, we use p0 as the center of the distribution and also
for computing SE. Using the hypothesized null proportion, p0, when computing the
standard error for a test, we have

SE =
√

p0(1 − p0)

n

Test for Single Proportion

To test H0 : p = p0 vs Ha : p �= p0 (or a one-tail alternative), we use
the standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

where p̂ is the proportion in a random sample of size n. Provided
the sample size is reasonably large (so that np0 ≥ 10 and n(1 − p0) ≥
10), the p-value of the test is computed using the standard normal
distribution.

We find the p-value for the test as the area beyond z in one (or both) tail(s)
of the standard normal distribution, depending on the direction of the alternative
hypothesis.

Example 6.7
In a Gallup poll19 conducted in August 2010, a random sample of n = 1013 American
adults were asked ‘‘Do you approve or disapprove of the way Congress is handling
its job?” Nineteen percent responded that they approved, while 75% disapproved,
and 6% weren’t sure. Test, using a 5% significance level, to see if this provides
evidence that the Congressional job approval rating is less than 20%, the average
sample approval rating from the six months prior to this poll.

Solution The null and alternative hypotheses are

H0 : p = 0.20

Ha : p < 0.20

The proportion from the null hypothesis is p0 = 0.20 and the sample size is n = 1013,
so the sample size is definitely large enough for the CLT to apply. We may use the
test based on a normal distribution. The approval proportion from the sample is
p̂ = 0.19 and the standardized test statistic is

z = p̂ − p0√
p0(1−p0)

n

= 0.19 − 0.20√
0.20(1−0.20)

1013

= −0.80

Since this is a lower tail alternative, Ha : p < 0.20, the p-value is the area under a
standard normal curve in the tail below −0.80. Using technology or a table we find

19http://www.gallup.com/poll/141827/Low-Approval-Congress-Not-Budging.aspx.

o
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this area is 0.212. This is a one-tail test, so we have

p-value = 0.212

The p-value is not less than the significance level of 0.05, so we do not find significant
evidence that the approval rating is less than 20%.

© Nickilford/iStockphoto

Rock-Paper-Scissors

D A T A 6 . 1 Rock-Paper-Scissors
Rock-Paper-Scissors, also called Roshambo, is a popular two-player game often
used to quickly determine a winner and loser. In the game, each player puts out
a fist (rock), a flat hand (paper), or a hand with two fingers extended (scissors).
In the game, rock beats scissors which beats paper which beats rock. The
question is: Are the three options selected equally often? Knowing the relative
frequencies with which the options are selected would give a player a significant
advantage. A study20 observed 119 people playing Rock-Paper-Scissors. Their
choices for the first turn are shown in Table 6.1. ■

Table 6.1 Frequencies for first
turn in Rock-Paper-Scissors

Option Selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

20Eyler, D., Shalla, Z., Doumaux, A., and McDevitt, T., ‘‘Winning at Rock-Paper-Scissors,” The College
Mathematics Journal, March 2009; 40(2): 125–128.
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Example 6.8
Do the data in Table 6.1 provide evidence that the proportion of times players start
with ‘‘rock” is different from the 1/3 we would expect if the players are choosing
randomly?

Solution We test H0 : p = 1/3 vs Ha : p �= 1/3, where p is the proportion of times a player
uses rock on the first turn of a Rock-Paper-Scissors game. For the sample of n = 119
players we have p̂ = 66/119 = 0.555. We compute a standardized test statistic:

z = p̂ − p0√
p0(1−p0)

n

= 0.555 − 1/3√
1/3(1−1/3)

119

= 5.13

Checking that 119 · 1/3 = 39.7 and 119 · (1 − 1/3) = 79.3 are both bigger than 10,
we can use the standard normal curve to find the p-value. However, a test statistic
of 5.13 is so far out in the tail of a standard normal distribution that we don’t really
need to use technology to recognize that the p-value is extremely small, even after
doubling the area to account for the two-tailed alternative. Since the p-value is
essentially zero, this gives very strong evidence that rock is used more often than
random chance would suggest on the first turn of a Rock-Paper-Scissors game.

© AP/Wide World Photos

Red Sox vs Yankees

Example 6.9
Red Sox vs Yankees

By midseason in 2011, the Boston Red Sox had played the New York Yankees nine
times and had won eight of those games. From this sample of games, can we conclude
that the proportion of times the Red Sox will beat the Yankees is more than half?

Solution Let p denote the proportion of Red Sox vs Yankees games that the Red Sox will win.
Our sample proportion is p̂ = 8/9 = 0.889, and our sample size is n = 9. We wish
to test H0 : p = 0.5 vs Ha : p > 0.5. To determine whether it is appropriate to use
the normal distribution, we check np0 = 9 · 0.5 = 4.5 < 10, and find that the normal
distribution should not be used for this problem. Instead, we return to the methods
of Chapter 4 and perform a randomization test. Using technology, we construct a
randomization distribution of proportions of Red Sox wins in nine games, assuming
the teams are equally matched (p = 0.5). We find the area in the upper tail (at
p̂ = 0.8899 and above) in one set of 1000 randomizations to be 0.001. Based solely
on the p-value of 0.001, there is evidence to conclude that the 2011 Red Sox are
significantly better than the 2011 Yankees when playing each other.

However, remember that, whether we use a randomization test or a normal
distribution, both methods assume random sampling from the population. This is
clearly not the case here—games from the first half of the season are not randomly
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sampled from the whole season. Our sample may not be representative of the
population of the entire season (people may get injured, teams may make trades,
etc.), which casts some doubt on our conclusion. In fact, the Yankees won five of
the remaining nine games against the Red Sox that season.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to test a hypothesis about
a population proportion

Exercises for Section 6.3

SKILL BUILDER 1
In Exercises 6.56 to 6.61, determine whether it is
appropriate to use the normal distribution to esti-
mate the p-value. If it is appropriate, use the normal
distribution and the given sample results to com-
plete the test of the given hypotheses. Assume the
results come from a random sample and use a 5%
significance level.

6.56 Test H0 : p = 0.5 vs Ha : p > 0.5 using the sam-
ple results p̂ = 0.57 with n = 40

6.57 Test H0 : p = 0.3 vs Ha : p < 0.3 using the sam-
ple results p̂ = 0.21 with n = 200

6.58 Test H0 : p = 0.25 vs Ha : p < 0.25 using the
sample results p̂ = 0.16 with n = 100

6.59 Test H0 : p = 0.8 vs Ha : p > 0.8 using the sam-
ple results p̂ = 0.88 with n = 50

6.60 Test H0 : p = 0.75 vs Ha : p �= 0.75 using the
sample results p̂ = 0.69 with n = 120

6.61 Test H0 : p = 0.2 vs Ha : p �= 0.2 using the sam-
ple results p̂ = 0.26 with n = 1000

6.62 Left-Handed Lawyers Approximately 10% of
Americans are left-handed (we will treat this as a
known population parameter). A study on the rela-
tionship between handedness and profession found
that in a random sample of 105 lawyers, 16 of them
were left-handed.21 Test the hypothesis that the
proportion of left-handed lawyers differs from the
proportion of left-handed Americans.

(a) Clearly state the null and alternative hypothe-
ses.

21Schachter, S. and Ransil, B., ‘‘Handedness Distributions in
Nine Professional Groups,” Perceptual and Motor Skills, 1996;
82: 51–63.

(b) Calculate the test statistic and p-value.

(c) What do we conclude at the 5% significance
level? At the 10% significance level?

6.63 Do You Believe in Ghosts? A telephone sur-
vey of 1000 randomly selected US adults found that
31% of them say they believe in ghosts.22 Does this
provide evidence that more than 1 in 4 US adults
believe in ghosts? Clearly show all details of the test.

6.64 Home Field Advantage in Baseball There
were 2430 Major League Baseball (MLB) games
played in 2009, and the home team won the game
in 54.9% of the games.23 If we consider the games
played in 2009 as a sample of all MLB games, test
to see if there is evidence, at the 1% level, that the
home team wins more than half the games. Show
all details of the test.

6.65 Do You Know Your Neighbors? The percent
of US adults who know their neighbors appears to
be trending up. A survey of 2255 randomly selected
US adults conducted in November 2010 found that
51% said they know all or most of their neighbors.24

(The result in a similar survey conducted in 2008
was 40%.) Does the 2010 survey provide evidence
that more than half of US adults know most or all
of their neighbors?

6.66 Is B a Good Choice on a Multiple-Choice
Exam? Multiple-choice questions on Advanced

22‘‘31% Believe in Ghosts,” Rasmussen Reports, October 30,
2011.
23http://www.baseballprospectus.com/article.php?articleid=9854,
accessed June 2011.
24Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
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Placement exams have five options: A, B, C, D,
and E. A random sample of the correct choice on
400 multiple-choice questions on a variety of AP
exams25 shows that B was the most common cor-
rect choice, with 90 of the 400 questions having B
as the answer. Does this provide evidence that B
is more likely to be the correct choice than would
be expected if all five options were equally likely?
Show all details of the test. The data are available
in APMultipleChoice.

6.67 Which Award? In Example 2.6 on page 51 we
consider a survey of students who were asked to
choose an award they would like to win from among
an Academy Award, Nobel Prize, and Olympic gold
medal. If the awards are equally popular we would
expect about 1/3 to choose each type of award.
In one sample of 169 female students (see data in
StudentSurvey) we find that 73 chose the Olympic
gold medal. Does this provide sufficient evidence
to conclude that the proportion of female students
choosing the Olympic gold medal is not 1/3?

6.68 Dogs and Owners—One More Time In
Data 4.1 on page 220 we consider an experiment
to see if dogs tend to resemble their owners. In the
study, 16 of 25 dogs were correctly matched with
the owner when two choices were provided. To see
if that is more than we would expect by random
chance alone, we test H0 : p = 0.5 vs Ha : p > 0.5.

25http://apcentral.collegeboard.com.

Verify whether the sample size is large enough for
the CLT to apply. If applicable, complete the details
of the test using the standard normal test statistic.

6.69 Euchre In Exercise 4.40 on page 236, we intro-
duce a series of Euchre games played between two
teams: Team A and Team B. After 40 games, Team
A has won 16 times and Team B has won 24 times.
Can we conclude that one team is better than the
other? Use the normal approximation to test this.
Clearly state the null and alternative hypotheses,
calculate the test statistic and p-value, and interpret
the result.

6.70 Percent of Smokers The data in Nutrition-
Study, introduced in Exercise 1.13 on page 13,
include information on nutrition and health habits
of a sample of 315 people. One of the variables is
Smoke, indicating whether a person smokes or not
(yes or no). Use technology to test whether the data
provide evidence that the proportion of smokers is
different from 20%.

6.71 Regular Vitamin Use The data in Nutri-
tionStudy, introduced in Exercise 1.13 on page 13,
include information on nutrition and health habits
of a sample of 315 people. One of the variables
is VitaminUse, indicating whether a person takes a
multivitamin pill regularly or occasionally or not at
all. Use technology to test whether the data provide
evidence that the proportion taking a vitamin pill
regularly is different from 35%.

6.4DISTRIBUTION OF A SAMPLE MEAN

For quantitative data, the parameter of interest is often the population mean, μ.
From the Central Limit Theorem (CLT), we know that the distribution of sample
means when using a specific sample size, n, from a population with some given mean,
μ, is centered at μ and is approximately normally distributed if n is sufficiently large.

Computing the Standard Error
Besides the center, the other important quantity we need to describe a normal
distribution is the standard deviation, the standard error (SE) of the sample means.
As we saw in Chapter 5, one way to estimate this SE is to find the standard deviation
of the many sample means in a bootstrap or randomization distribution. Three
distributions from previous chapters are shown in Figure 6.5. The standard error
estimates for these three distributions are SE = 11.63 for the means of 10 statistics
PhD program enrollments, SE = 0.93 for the means of 500 bootstrapped Atlanta
commute times, and SE = 0.11 for the randomized samples of body temperatures
under a null hypothesis that μ = 98.6◦F.
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Figure 6.5 Normal fits for distributions of sample means

Normal curves with these respective parameters are superimposed over the
histograms of the sample means in Figure 6.5. In each case the normal distribution
does a good job of summarizing the center, shape, and spread of the sample means.

However, this method of estimating the SE still requires simulating thousands
of sample means, so we haven’t saved much computing time or effort. Here’s where
a bit more statistical theory comes to the rescue.

Standard Error of Sample Means

When choosing random samples of size n from a population with mean
μ and standard deviation σ , the standard error of the sample means is

SE = σ√
n

The larger the sample size (n), the smaller the standard error (SE).

While the derivation of this formula is beyond the scope of this text, we can at
least check it against the three examples in Figure 6.5.

Sample Std. SE by SE by
Situation Size Mean Dev. Simulation Formula

Stat PhD programs 10 53.54 36.9 11.63
36.9√

10
= 11.67

Atlanta commutes 500 29.11 20.7 0.93
20.7√

500
= 0.93

Body temperatures 50 98.6 0.765 0.11
0.765√

50
= 0.11

The values of SE obtained with the formula agree nicely with the standard error
estimates that we found with the simulated sample means.

Example 6.10
Statistician Salaries

According to the Bureau of Labor Statistics,26 there are more than 20,000 statisticians
employed in the US with a mean annual salary (in 2009) of $75,220. Suppose that
the standard deviation of statistician’s salaries is about $32,000. If we take lots of
random samples of statistician salaries, what would you expect to be the mean

26Information on statisticians as of May 2009 survey derived from http://data.bls.gov/oes/.
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and standard deviation of the distribution of sample mean salaries if each sample
contained:

(a) 100 randomly selected statisticians

(b) 400 randomly selected statisticians

Solution For any sample size, the distribution of sample means is centered at the mean of the
population, μ = $75, 220.

(a) For n = 100 the standard error of the sample means is SE = 32,000√
100

= 3200.

(b) For n = 400 the standard error of the sample means is SE = 32,000√
400

= 1600.

In Example 6.10, we see that multiplying the sample size by 4 (n = 100 to
n = 400) cuts the standard error of the sample means in half. This is due to the
square root of n in the denominator of the formula. A larger sample will tend to
give a more accurate estimate of the mean, so the sample means are more likely to
be close to the true mean.

How Large a Sample Size Is Needed?
The distributions of sample means in Figure 6.5 all appear to be reasonably well-
modeled with a normal distribution. This isn’t so surprising in cases such as the
body temperatures where the underlying data are relatively normal themselves,
but is interesting in cases, such as the Atlanta commute times, where the data
are clearly quite skewed with several big outliers. One key factor is the sample
size. Amazingly, large random samples from any distribution (even a skewed non-
normal distribution) will still tend to produce sample means that follow a normal
distribution. Figure 6.6 illustrates this point, showing the distribution of sample
means for random samples of various sizes chosen27 from the data on commute
times in CommuteAtlanta.

Looking at the dotplots in Figure 6.6 we see that the smaller sample sizes tend
to have distributions that are not so normally distributed, especially in the extreme

263634323028262445403530

(d) n = 30 (e) n = 125 (f) n = 500

(c) n = 15(b) n = 5(a) n = 1

2520

0 20 40 60 80 100 120 140 160 180 10 20 30 40 50 60 70 80 20 30 40 50 60

27 28 29 30 31 32 33

Figure 6.6 Distributions of sample mean commute times for various sample sizes

27Data are sampled with replacement from the original sample, mimicking sampling from the population.
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case of n = 1 where the distribution mimics the underlying data (see Figure 3.3 on
page 193). The right skew is still quite apparent with n = 15 but it is less evident by
the time the sample size gets to n = 30. The two larger sample sizes (125 and 500)
display quite symmetric, normal distributions. Note also that all of the distributions
are centered near the mean commute time (29.1 minutes) and the spreads of the
distributions get smaller as the sample size increases.

Sample means from any population (regardless of its shape!) will tend to follow
a normal distribution if the sample size is sufficiently large, where ‘‘sufficiently large”
depends on the distribution in the original population. The more skewed and non-
normal a distribution is, the larger the sample needs to be for the sample means to be
normally distributed. For sample means to be approximately normally distributed
in practice, a sample size of 30 or more is usually sufficient. If the underlying
population distribution is reasonably normal to begin with, a smaller sample size
may be sufficient. In fact, samples of any size from a normal population will have
normally distributed sample means. Only in rare circumstances of a strongly skewed
population or one with very extreme outliers would a sample size of more than 30
be needed to assure reasonable normality of the sample means.

Central Limit Theorem for Sample Means

When choosing random samples of size n from a population with mean
μ and standard deviation σ , the distribution of the sample means is
reasonably normal if the sample size is sufficiently large (n ≥ 30), with
mean μ and standard error SE = σ/

√
n.

Using notation for a normal distribution, this means if n is sufficiently large,

x ∼ N
(

μ,
σ√
n

)

The t-Distribution
What about the standard deviation, σ? In statistical inference, we usually know the
sample statistics but not the population parameters. In practice, we usually use the
sample standard deviation, s, as an estimate for σ , modifying the standard error
formula as

SE = s√
n

However, this introduces a new problem. If we standardize using s/
√

n, rather than
σ/

√
n, the resulting z-score for the sample mean no longer has a standard normal

distribution.
A man named William Sealy Gosset28 worked out the distribution for this

quantity in the early 1900s—under an assumption that the underlying population
follows a normal distribution. The result is known as a t-distribution and it turns out
to work well even if the underlying population is not perfectly normal.

A key fact about the t-distribution is that it depends on the size of the sample.
We would expect a larger sample to tend to give a better estimate of the true
standard deviation σ and thus the standardization based on s/

√
n should behave

more like a standard normal. This is exactly what happens. The sample size is

28Gosset used his statistical knowledge to become Head Brewmaster at Guinness Brewery.
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reflected in a parameter called the degrees of freedom for the t-distribution. When
working with x for a sample of size n and SE = s/

√
n, we use a t-distribution with

n − 1 degrees of freedom (df).

The Distribution of Sample Means Using the Sample Standard

Deviation

When choosing random samples of size n from a population with
mean μ, the distribution of the sample means has the following
characteristics.

Center: The mean is equal to the population mean, μ.

Spread: The standard error is estimated using SE = s√
n , where s is the

standard deviation of a sample.

Shape: The standardized sample means approximately follow a t-
distribution with n − 1 degrees of freedom (df).

For small sample sizes (n < 30), the t-distribution is only a good
approximation if the underlying population has a distribution that is
approximately normal.

We sometimes use tn−1 to denote a t-distribution with n − 1 degrees of freedom.
The above box tells us that if n is sufficiently large and the underlying distribution is
approximately normal, then

x − μ

s/
√

n
∼ tn−1

For small samples, the use of the t-distribution requires that the population distri-
bution be approximately normal. If the sample size is small, we need to check that
the data are relatively symmetric and have no huge outliers that might indicate a
departure from normality in the population.

If the sample size is small and the data are heavily skewed or contain extreme
outliers, the t-distribution should not be used.

Example 6.11
Dotplots of three different samples are shown in Figure 6.7. In each case, indicate
whether or not it is appropriate to use the t-distribution. If it is appropriate, give the
degrees of freedom for the t-distribution and give the estimated standard error.

(a) A sample with n = 50, x = 8.0, and s = 10.5, shown in Figure 6.7(a)

(b) A sample with n = 8, x = 4.9, and s = 1.25, shown in Figure 6.7(b)

(c) A sample with n = 10, x = 12.6, and s = 4.8, shown in Figure 6.7(c)

Solution The t-distribution is appropriate if the sample size is large (n ≥ 30) or if the
underlying distribution appears to be relatively normal. We have concerns about
the t-distribution only for small sample sizes and heavy skewness or outliers.

(a) Since the sample size is large (n = 50), the t-distribution is appropriate. For the
degrees of freedom df and estimated standard error SE, we have

df = n − 1 = 50 − 1 = 49 and SE = s√
n

= 10.5√
50

= 1.485
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Figure 6.7 In which
cases might we have
concerns about using the
t-distribution?

(a) n = 50, x = 8.0 s = 10.5

6 12 18 24 30 36 42 48

(b) n = 8, x = 4.9, s = 1.25

3 54 6 7

(c) n = 10, x = 12.6 , s = 4.8

10 12 14 16 18 20 22 24

(b) The sample size is small in this case (n = 8) but the sample is not heavily skewed
or with outliers, so a condition of normality is reasonable. The t-distribution is
appropriate. For the degrees of freedom df and estimated standard error SE,
we have

df = n − 1 = 8 − 1 = 7 and SE = s√
n

= 1.25√
8

= 0.442

(c) In this case, the sample size is small (n = 10) and the data are heavily skewed
and have an obvious outlier. It is not appropriate to use the t-distribution with
this sample. If we want to do inference using this sample, we might try simulation
methods, such as using a bootstrap or randomization distribution.

Figure 6.8 shows plots of the density curves for t-distributions with 5 and 15
degrees of freedom along with a standard normal density. Note that the t-density is
very similar to the classic bell-shaped pattern of the normal curve, only with slightly
thicker tails—especially for small degrees of freedom. Even for 15 degrees of
freedom, the t-distribution and standard normal are virtually indistinguishable. The
larger the sample size, n, the closer the t-distribution is to the normal distribution.

The practical importance of this discussion is that we generally use the t-
distribution with n − 1 df, rather than the standard normal, when doing inference
for a population mean based on a sample mean x and sample standard deviation, s.

Figure 6.8 Densities for
t-distributions with 5 and
15 df and N(0,1)

t: 5 df

t:15 df

N(0,1)

−4 −3 −2 −1 0 1 2 3 4
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Fortunately, when using technology to find endpoints or probabilities for a t-
distribution, the process is usually very similar to what we have already seen for the
normal distribution. For larger samples, the results will be very close to what we get
from a standard normal, but we will still use the t-distribution for consistency. For
smaller samples, the t-distribution gives an extra measure of safety when using the
sample standard deviation s in place of the population standard deviation σ .

Example 6.12
We select a sample of size 16 from a population that is reasonably normally
distributed and use a t-statistic for inference about the sample mean.

(a) Use technology or a table to find the 2.5%-tile and 97.5%-tile for this t-
distribution.

(b) Use technology or a table to find the probability that the t-statistic is more than
1.5.

(c) Compare the results of (a) and (b) to the corresponding values for a standard
normal distribution.

Solution For a sample size of n = 16 we need to use a t-distribution with 15 degrees of
freedom.

(a) Figure 6.9(a) shows that the points with 2.5% of the t-distribution in each tail
are at −2.131 and +2.131.

(b) Figure 6.9(b) shows that about 7.7% of a t-distribution with 15 df will lie above
1.5. If using a paper table, we cannot be quite this precise but can tell that the
area is between 0.05 and 0.10.

(c) The 2.5% and 97.5% points for a standard normal are ±1.96, not quite as far out
as ±2.131 for the t-distribution. The N(0, 1) area beyond 1.5 is 0.0668, slightly
smaller than for the t-distribution.

In the next two sections, we explore the use of the t-distribution in more
detail, first for computing a confidence interval for a population mean and then for
computing a p-value to test a hypothesis about a mean.
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Figure 6.9 Calculations for t-distribution with 15 df
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Find the mean and standard error for a distribution of sample means

• Recognize when a t-distribution is an appropriate model for a distribu-
tion of sample means

• Find endpoints and probabilities for a t-distribution

Exercises for Section 6.4

SKILL BUILDER 1
In Exercises 6.72 to 6.75, if random samples of the
given size are drawn from a population with the
given mean and standard deviation:
(a) Find the mean and standard error of the distri-

bution of sample means.

(b) If the sample size is large enough for the Central
Limit Theorem to apply, draw a curve showing
the shape of the sampling distribution. Include
at least three values on the horizontal axis.

6.72 Samples of size 1000 from a population with
mean 28 and standard deviation 5

6.73 Samples of size 10 from a population with
mean 6 and standard deviation 2

6.74 Samples of size 40 from a population with
mean 250 and standard deviation 80

6.75 Samples of size 75 from a population with
mean 60 and standard deviation 32

SKILL BUILDER 2
Use a t-distribution to answer the questions in
Exercises 6.76 to 6.83. Assume the sample is a ran-
dom sample from a distribution that is reasonably
normally distributed and we are doing inference for
a sample mean.
6.76 Find endpoints of a t-distribution with 5%
beyond them in each tail if the sample has size
n = 10.

6.77 Find endpoints of a t-distribution with 1%
beyond them in each tail if the sample has size
n = 18.

6.78 Find endpoints of a t-distribution with 0.025
beyond them in each tail if the sample has size
n = 25.

6.79 Find endpoints of a t-distribution with 0.005
beyond them in each tail if the sample has size
n = 40.

6.80 Find the area in a t-distribution above 2.3 if
the sample has size n = 6.
6.81 Find the area in a t-distribution above 1.5 if
the sample has size n = 8.
6.82 Find the area in a t-distribution below −1.0 if
the sample has size n = 20.
6.83 Find the area in a t-distribution below −3.2 if
the sample has size n = 50.
6.84 How Old Is the US Population? From the US
Census,29 we learn that the average age of all US
residents is 36.78 years with a standard deviation of
22.58 years. Find the mean and standard deviation
of the distribution of sample means for age if we
take random samples of US residents of size:
(a) n = 10

(b) n = 100

(c) n = 1000

6.85 Time to Finish the Boston Marathon The
Boston Marathon is the world’s oldest annual
marathon, held every year since 1897. In 2011,
23,879 runners finished the race, with a mean time
for all runners of 3:49:54 (about 230 minutes) with
standard deviation 0:37:56 (about 38 minutes).30

Find the mean and standard deviation (in minutes)
of the distribution of sample means if we take ran-
dom samples of Boston marathon finishers of size:
(a) n = 10

(b) n = 100

(c) n = 1000

6.86 How Big Are the Countries of the World?
The AllCountries dataset includes land area, in
square kilometers, for all 213 countries in the
world. The median land area for all the countries is

29www.census.gov.
30Boston Marathon Race Results 2011, http://www.marathon
guide.com/results/browse.cfm?MIDD=15110418.
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94,080 sq km and the mean is 608,120 sq km with
standard deviation 1,766,860.

(a) How is it possible for the mean and the median
to be so different? What does this tell us about
land areas of countries?

(b) If random samples of size 10 are taken from all
countries of the world, what is the mean and
standard deviation of the distribution of means
of all such samples?

(c) If random samples of size 20 are taken from all
countries of the world, what is the mean and
standard deviation of the distribution of means
of all such samples?

(d) Comment on your answers to parts (b) and (c):
How does the sample size affect the center and
variability of the distribution?

6.87 Mathematics SAT Scores For the class of
2010, the average score on the Mathematics portion
of the SAT (Scholastic Aptitude Test) is 516 with a
standard deviation of 116. Find the mean and stan-
dard deviation of the distribution of mean scores if
we take random samples of 100 scores at a time and
compute the sample means.

6.88 Writing SAT Scores For the class of 2010,
the average score on the Writing portion of the
SAT (Scholastic Aptitude Test) is 492 with a stan-
dard deviation of 111. Find the mean and standard
deviation of the distribution of mean scores if we
take random samples of 1000 scores at a time and
compute the sample means.

6.89 Critical Reading SAT Scores The Critical
Reading portion of the Scholastic Aptitude Test
(SAT) was taken by 1,547,990 college bound stu-
dents in the class of 2010.31 Scores on that portion
of the test range from 200 to 800 and the aver-
age score for the class of 2010 is 501 with a standard
deviation of 112. Scores are approximately normally
distributed.

(a) For each sample size below, give the mean and
standard deviation of the distribution of the
sample means:

i. n = 1

ii. n = 10

iii. n = 100

iv. n = 1000

31http://professionals.collegeboard.com/data-reports-research/
sat/cb-seniors-2010.

(b) Considering your answers from part (a), discuss
the effect of the sample size on the center and
variability of the distribution of sample means.

6.90 Impact of Sample Size on Accuracy Com-
pute the standard error for sample means from a
population with mean μ = 100 and standard devi-
ation σ = 25 for sample sizes of n = 30, n = 200,
and n = 1000. What effect does increasing the sam-
ple size have on the standard error? Using this
information about the effect on the standard error,
discuss the effect of increasing the sample size on
the accuracy of using a sample mean to estimate a
population mean.

6.91 Impact of the Population Standard Devia-
tion on SE Compute the standard error for sample
means from populations all with mean μ = 100 and
with standard deviations σ = 5, σ = 25, and σ = 75
using a sample size of n = 100. Discuss the effect of
the population standard deviation on the standard
error of the sample means.

Is a t-Distribution Appropriate? In Exercises 6.92
to 6.95, we give summary statistics and a dotplot
for a sample. In each case, indicate whether or not
it is appropriate to use the t-distribution. If it is
appropriate, give the degrees of freedom for the
t-distribution and give the estimated standard error.

6.92 A sample with n = 12, x = 7.6, and s = 1.6

5 6 7 8 9 10 11

6.93 A sample with n = 75, x = 18.92, and s = 10.1

10 20 30 40 50 60

6.94 A sample with n = 18, x = 87.9, and s = 10.6
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6.95 A sample with n = 10, x = 508.5, and s = 21.5

500 510 520 530 540 550 560 570

Standard Error from a Formula and a Boot-
strap Distribution In Exercises 6.96 to 6.99, use
StatKey or other technology to generate a bootstrap
distribution of sample means and find the standard
error for that distribution. Compare the result to the
standard error given by the Central Limit Theorem,
using the sample standard deviation as an estimate
of the population standard deviation.

6.96 Mean number of penalty minutes for NHL
players using the data in Ottawa Senators with
n = 24, x = 49.58, and s = 49.14

6.97 Mean commute time in Atlanta, in minutes,
using the data in CommuteAtlanta with n = 500,
x = 29.11, and s = 20.72

6.98 Mean price of used Mustang cars online (in
$1000s) using the data in MustangPrice with n = 25,
x = 15.98, and s = 11.11

6.99 Mean body temperature, in ◦F, using the
data in BodyTemp50 with n = 50, x = 98.26, and
s = 0.765

6.100 Homes for Sale The dataset HomesForSale
has data on price in thousands of dollars for houses
for sale in three Mid-Atlantic states (NY, NJ, and
PA). Figure 6.10 shows a histogram for a random
sample of the asking price for 30 homes in each
state. Is the t-distribution appropriate to model
sample means of our sample from New York? New
Jersey? Pennsylvania?

6.101 Homes for Sale with a Different Sample Size
Answer the same questions using Figure 6.10 as in
Exercise 6.100 except assume that each histogram
represents only 15 homes. Is the t-distribution

0
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Figure 6.10 Histograms for housing prices from three Mid-Atlantic states

appropriate to model sample means of housing price
from New York? New Jersey? Pennsylvania?

6.102 IQ Scores Most IQ tests scale the scores so
that the mean IQ score is μ = 100 and standard
deviation is σ = 15. Suppose that 30 fourth graders
in one class are given such an IQ test that is appro-
priate for their grade level. If the students are really
a random sample of all fourth graders, what is the
chance that the average IQ score for the class is
above 105?

6.103 Means of Critical Reading SAT Scores Exer-
cise 6.89 describes scores on the Critical Reading
portion of the Scholastic Aptitude Test (SAT) for
college-bound students in the class of 2010. Critical
Reading scores are approximately normally dis-
tributed with mean μ = 501 and standard deviation
σ = 112.

(a) For each sample size below, use a normal distri-
bution to find the percentage of sample means
that will be greater than or equal to 525. Assume
the samples are random samples.

i. n = 1

ii. n = 10

iii. n = 100

iv. n = 1000

(b) Considering your answers from part (a), discuss
the effect of the sample size on the likelihood of
a sample mean being as far from the population
mean as x = 525 is from μ = 501.

6.104 How Big Are Sample Means for Countries of
the World? The AllCountries dataset includes land
area, in square kilometers, for all 213 countries in
the world. The mean land area for all the countries
is 608,120 sq km with standard deviation 1,766,860.
For samples of size 50, what percentage of sam-
ple means will be less than 400,000 sq km? What
percentage will be greater than 900,000?
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6.5CONFIDENCE INTERVAL FOR A SINGLE MEAN
Confidence Interval for a Mean Using
the t-Distribution
In Section 5.2 we see that when a distribution is normally distributed, a confidence
interval can be formed using

Sample Statistic ± z∗ · SE

where z∗ is an appropriate percentile from a standard normal distribution and SE is
the standard error estimated from a bootstrap distribution.

In Section 6.4 we see that we can estimate the standard error for a sample mean
using

SE = s√
n

where n is the sample size and s is the sample standard deviation. However, when we
use s rather than the (unknown) population standard deviation σ in computing the
SE, the standardized statistic follows a t-distribution with n − 1 degrees of freedom,
rather than a standard normal (provided the underlying population is reasonably
normal).

We combine these facts to produce an easy formula for a confidence interval
for a mean.

Confidence Interval for a Single Mean

A confidence interval for a population mean μ can be computed based
on a random sample of size n using

x ± t∗
s√
n

where x and s are the mean and standard deviation, respectively, from
the sample and t∗ is an endpoint chosen from a t-distribution with
n − 1 df to give the desired level of confidence.

The t-distribution is appropriate if the distribution of the popu-
lation is approximately normal or the sample size is large (n ≥ 30).

We don’t insist on perfect symmetry or an exact bell-shape in the data in order
to use the t-distribution. The normality condition is most critical for small sample
sizes, since for larger sample sizes the CLT for means kicks in. Unfortunately, it is
more difficult to judge whether a sample looks ‘‘normal” when the sample size is
small. In practice, we avoid using the t-distribution if the sample is small (say less
than 20) and the data contain clear outliers or skewness. For more moderate sized
samples (20 to 50) we worry if there are very extreme outliers or heavy skewness.
When in doubt, we can always go back to the ideas of Chapter 3 and directly simulate
a bootstrap distribution.
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How long does it take to fly from Boston to San Francisco?

D A T A 6 . 2 Boston/San Francisco Flight Times
United Airlines Flight 179 is a nonstop flight from Boston’s Logan Airport to San
Francisco International Airport. During 2010 it was scheduled to leave each day
around 5:30 pm (Eastern time) and arrive around 9:30 pm (Pacific time). Due to
the three hour difference between the time zones, the flight is expected to take
about 7 hours (420 minutes) including time spent taxiing on runways and
waiting to take off. An important factor in scheduling such flights is the actual
airborne flying time from takeoff to touchdown. The data32 in Flight179 contain
the airborne time (in minutes) for three dates each month (the 5th, 15th, and
25th) in the year 2010. ■

Example 6.13
Use the data on airborne times (in minutes) for Flight179 to find a 95% confidence
interval for the mean flight time on this route from Boston to San Francisco.

Solution Although the sample size is large enough for the CLT for means to apply, before
using the t-distribution we should check a plot of the data for signs of extreme
outliers or heavy skewness. The dotplot in Figure 6.11 shows no reasons for serious
concerns.

32Data collected from the Bureau of Transportation Statistics website, http://www.bts.gov/xml/
ontimesummarystatistics/src/dstat/OntimeSummaryAirtime.xml.
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Figure 6.11 Airborne
flight times (in minutes)
for Flight 179 from
Boston to San Francisco 330 340 350 360 370

Flight 179
380 390 400 410

Using technology and the data in Flight179 we find the mean airborne time for
the sample of n = 36 instances of Flight 179 to be x = 357.9 minutes with standard
deviation, s = 20.18 minutes. To find a confidence interval for the population mean,
we use a t-distribution with 36 − 1 = 35 degrees of freedom. For a 95% confidence
interval, as in Figure 6.12, we find the endpoints with 2.5% of the distribution in the
tail, t∗ = 2.030.

We put all the pieces together to construct the confidence interval:

x ± t∗
s√
n

357.9 ± 2.030
(

20.18√
36

)
357.9 ± 6.8

351.1 to 364.7

Based on these data, we are 95% sure that the mean airborne time for Flight 179
from Boston to San Francisco is between 351.1 and 364.7 minutes.

Note that the t∗ = 2.030 value in the previous example is slightly larger than the
standard normal z∗ = 1.96 for a 95% confidence interval. This helps account for the
uncertainty in estimating the population standard deviation, σ , using the standard
deviation from the sample, s. As the degrees of freedom increase, the t∗ values will
get closer and closer to the standard normal endpoints.

Example 6.14
In Example 3.24 on page 206 we compute 99% and 90% confidence intervals using
percentiles from a bootstrap distribution for the mean commute time in Atlanta,
based on the data in CommuteAtlanta. For that sample of n = 500 commutes the
mean time is x = 29.11 minutes with s = 20.7 minutes. Use the summary statistics to
redo both confidence intervals.

Solution Although the underlying distribution of commute times is somewhat skewed (see
Figure 3.14 on page 193), the sample size of 500 is large enough for us to avoid

Figure 6.12 Endpoints
for a 95% CI using a
t-distribution with 35 df 0.0
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worrying much about the population distribution. For the 99% confidence interval,
we use technology to find the points that leave 0.5% in each tail of a t-distribution
with 499 degrees of freedom, t∗ = 2.586. We compute the 99% confidence interval
with

29.11 ± 2.586
(

20.7√
500

)
= 29.11 ± 2.39 = (26.72, 31.50)

We are 99% sure that the mean commute time for all Atlanta commuters is between
26.72 and 31.50 minutes.

For the 90% interval, the endpoint for the t-distribution is t∗ = 1.648, so the
interval is

29.11 ± 1.648
(

20.7√
500

)
= 29.11 ± 1.53 = (27.58, 30.64)

We are 90% sure that the mean commute time for all Atlanta commuters is between
27.58 and 30.64 minutes.

We have constructed 99% and 90% confidence intervals for the mean commute
time in Atlanta by two other methods in previous examples. In Example 3.24 on
page 206 we used the percentiles of a bootstrap distribution. In Example 5.7 on
page 338 we used standard normal endpoints with an estimate for the standard error
of the mean derived from the bootstrap distribution. Table 6.2 compares each of
these intervals.

The confidence intervals are similar for all three methods. As expected, the
width goes down as we require less confidence (from 99% to 90%), but all three
methods give intervals of about the same width at the same confidence level.
Remember that the key idea when constructing a confidence interval is to use a
method that produces an interval containing the true mean some fixed proportion
of the time. That is true for each of these methods, even though they give slightly
different intervals for any particular sample. The advantage of the t-interval is that
it is most commonly used in practice when estimating a mean. The advantage of
the bootstrap methods is that they remain valid in cases where conditions, such as
normality for a small sample, might be questionable. Also, the bootstrap methods
are flexible enough to use for almost all parameters, while the t-distribution only
works for certain parameters such as the mean.

Table 6.2 Comparing confidence intervals for mean Atlanta commute time

Method 99% CI 99% CI Width 90% CI 90% CI Width

Example 3.24 Bootstrap percentiles (26.98, 31.63) 4.65 (27.70, 30.71) 3.01
Example 5.7 z∗ and bootstrap SE (26.75, 31.47) 4.72 (27.60, 30.62) 3.02
Example 6.14 t∗ and SE = s/

√
n (26.72, 31.50) 4.78 (27.58, 30.64) 3.06

Example 6.15
Manhattan Apartments

What is the average rental price of a one-bedroom apartment in Manhattan? We go
on Craigslist and record the monthly rent prices for a sample of 20 listed one bedroom
apartments in Manhattan. These data33 are stored in ManhattanApartments and are
displayed in Figure 6.13. Give a 95% confidence interval for the average monthly
rent for a one-bedroom apartment in Manhattan.

33Data were obtained from newyork.craigslist.org, July 5, 2011.



384 C H A P T E R 6 Inference for Means and Proportions

Figure 6.13 Monthly
rent for 20 one-bedroom
apartments in Manhattan 4000 5000

MonthlyRent
6000 7000 800030002000

Solution This is a small sample size, n = 20, so we check the sample data for normality.
Figure 6.13 shows a few high outliers, indicating a lack of normality, so we should
not use the t-distribution in this case. Instead, we return to the methods of Chapter
3 and use technology to create a bootstrap distribution. The standard error of
the bootstrap distribution is $302, and the bootstrap distribution is approximately
normal so we create the interval by

Sample Mean ± 2 · SE = 3157 ± 2 · 302 = (2553, 3761)

We are 95% confident that the average monthly rent for a one-bedroom apartment
in Manhattan is between $2553 and $3761. If you are ever looking to rent an
apartment, you can collect your own data to estimate the average price in your city.

Determining Sample Size for Estimating a Mean
A common question when designing a study is ‘‘How large a sample should we
collect?” When estimating a mean with a confidence interval, the answer to this
question depends on three related questions:

• How accurate do we want the estimate to be?

• How much confidence do we want to have in the interval?

• How much variability is there in the population?

The first question deals with obtaining a desired margin of error, ME, for the
confidence interval. Suppose that we want to set the margin of error in advance,
along with a certain level of confidence. From the formula for the confidence interval
for a mean we see that the margin of error is computed with

ME = t∗
s√
n

All else being equal, as n gets larger, the margin of error, ME, gets smaller. We
should be able to obtain any desired ME just by taking a sufficiently large sample.
In fact, with a bit of algebra, we can solve the equation for the margin of error to
get a direct expression to compute n:

n =
(

t∗ · s
ME

)2

However, there are two problems with using this formula in practice to determine
a sample size. First, the degrees of freedom for t∗ also depends on the choice of n.
Second, the standard deviation, s, is computed from the sample—but we haven’t
even collected a sample yet!

We address the first of these issues by using the standard normal value, z∗, in
place of t∗. We know that, as sample size increases, the t∗ values get closer and closer
to z∗. Our goal is to get a rough estimate for the sample size we need to get the
desired margin of error. Unless that indicated sample size is quite small, we don’t
lose much by using z∗ in place of t∗.

o
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The more serious concern is what to do about s, since we haven’t even taken a
sample yet. The solution is to make a reasonable guess about the standard deviation,
σ , in the population. We’ll call that guess σ̃ . To do this we might:

• Use the standard deviation from a previous study or a sample from a similar
population as σ̃ .

• Take a small pre-sample and use its standard deviation for σ̃ .

• Estimate the range (max − min) for the population and set σ̃ ≈ Range/4. This
assumes that most values tend to be within about two standard deviations on
either side of the mean.

• Make a reasonable guess for σ̃ .

When in doubt, use an estimate or guess on the high side for σ̃ . In general,
more variability requires a larger sample size to get a specific margin of error. If our
estimate of σ̃ is a bit high, we might end up taking a larger sample than is needed,
but the end result would be a margin of error that is smaller (and thus better) than
we expected.

Determination of Sample Size to Estimate a Mean

If we want to estimate a population mean to within a desired margin of
error, ME, with a given level of confidence, we should select a sample
of size

n =
(

z∗ · σ̃

ME

)2

where σ̃ is an estimate for the standard deviation in the population.

Example 6.16
In Example 6.13 on page 381, we consider flying times for a sample of size n = 36
Boston to San Francisco flights. The 95% confidence interval for the mean airborne
time in that example is 357.9 ± 6.8. Suppose that the schedulers for United Airlines
want to get a more accurate estimate, to within just two minutes of the actual mean
airborne time, still with 95% confidence. How large a sample of flights would they
need to collect to accomplish this?

Solution The desired margin of error is ME = 2 minutes and for 95% confidence the standard
normal value is z∗ = 1.96. We use the standard deviation in the sample from
Example 6.13 to estimate σ̃ = 20.18 minutes. To compute the sample size, we use

n =
(

z∗ · σ̃

ME

)2

=
(

1.96 · 20.18
2

)2

= 391.1

By convention we round up any factional parts of a sample, so to estimate the mean
airborne time of Flight 179 to within 2 minutes with 95% confidence, we should use
a random sample of about 392 flights.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to compute a confidence interval
for a population mean

• Determine a sample size needed to estimate a mean to within a
specified margin of error at a given level of confidence

o

o
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Exercises for Section 6.5

SKILL BUILDER 1
In Exercises 6.105 to 6.110, use the t-distribution to
find a confidence interval for a mean μ given the
relevant sample results. Give the best point estimate
for μ, the margin of error, and the confidence inter-
val. Assume the results come from a random sample
from a population that is approximately normally
distributed.
6.105 A 95% confidence interval for μ using the
sample results x = 12.7, s = 5.6, and n = 30
6.106 A 95% confidence interval for μ using the
sample results x = 84.6, s = 7.8, and n = 42
6.107 A 90% confidence interval for μ using the
sample results x = 3.1, s = 0.4, and n = 100
6.108 A 90% confidence interval for μ using the
sample results x = 137.0, s = 53.9, and n = 50
6.109 A 99% confidence interval for μ using the
sample results x = 46.1, s = 12.5, and n = 10
6.110 A 99% confidence interval for μ using the
sample results x = 88.3, s = 32.1, and n = 15

SKILL BUILDER 2
In Exercises 6.111 to 6.114, what sample size is
needed to give the desired margin of error in esti-
mating a population mean with the indicated level
of confidence?
6.111 A margin of error within ±5 with 95% confi-
dence, assuming a previous sample had s = 18
6.112 A margin of error within ±1 with 99% confi-
dence, assuming a sample from a similar population
had s = 3.4
6.113 A margin of error within ±0.5 with 90%
confidence, if we make a reasonable estimate that
σ = 25
6.114 A margin of error within ±12 with 95% con-
fidence, assuming we estimate that σ ≈ 125

6.115 How Much TV Do College Students Watch?
In the dataset StudentSurvey, 361 students recorded
the number of hours of television they watched per
week. The average is x = 6.504 hours with a stan-
dard deviation of 5.584. Find a 99% confidence
interval for μ and interpret the interval in context.
In particular, be sure to indicate the population
involved.
6.116 How Many Close Confidants Do People
Have? In a recent study,34 2006 randomly selected

34Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.

US adults (age 18 or older) were asked to give the
number of people in the last six months ‘‘with whom
you discussed matters that are important to you.”
The average number of close confidants was 2.2,
with a standard deviation of 1.4.

(a) Find the margin of error for this estimate if we
want 99% confidence.

(b) Find and interpret a 99% confidence interval
for average number of close confidants.

6.117 How Big Are Gribbles? Gribbles are small,
pale white, marine worms that bore through wood.
While sometimes considered a pest since they can
wreck wooden docks and piers, they are now being
studied to determine whether the enzyme they
secrete will allow us to turn inedible wood and
plant waste into biofuel.35 A sample of 50 gribbles
finds an average length of 3.1 mm with a standard
deviation of 0.72. Give a best estimate for the length
of gribbles, a margin of error for this estimate (with
95% confidence), and a 95% confidence interval.
Interpret the confidence interval in context. What
do we have to assume about the sample in order to
have confidence in our estimate?
6.118 Is Your Stomach Controlling Your Person-
ality? Scientists estimate that there are 10 times
more bacterial cells in your body than your own
body’s cells, and new studies on bacteria in the gut
indicate that your gut microbes might be influenc-
ing you more than you realize, having positive or
negative effects on health, development, and possi-
bly even personality and behavior. A recent study36

found that the average number of unique genes
in gut bacteria, for a sample of 99 healthy Euro-
pean individuals, was 564 million, with a standard
deviation of 122 million. Use the t-distribution to
find and interpret a 95% confidence interval for the
mean number of unique genes in gut bacteria for
European individuals.
6.119 Dim Light at Night Makes Fat Mice Data A.1
on page 136 introduces a study in which mice that
had a dim light on at night (rather than com-
plete darkness) ate most of their calories when
they should have been resting. These mice gained
a significant amount of weight, despite eating the
same number of calories as mice kept in total
35Sanderson, K., ‘‘A Chewy Problem,” Nature, June 23, 2011,
p. S12.
36Qin, J., et al., ‘‘A human gut microbial gene catalogue estab-
lished by metagenomic sequencing,” Nature, March 4, 2010; 464:
59–65.
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Figure 6.14 Body mass gain (in grams) for mice with a night light

darkness. The time of eating seemed to have a sig-
nificant effect. There were 10 mice in the group
with dim light at night and they gained an average
of 7.9 g with a standard deviation of 3.0. We see in
Figure 6.14 that the data are not heavily skewed and
do not have extreme outliers. Use the t-distribution
to find and interpret a 90% confidence interval for
weight gain. As always, define the parameter being
estimated.

6.120 Bright Light at Night Makes Even Fatter
Mice Data A.1 on page 136 introduces a study in
which mice that had a light on at night (rather than
complete darkness) ate most of their calories when
they should have been resting. These mice gained
a significant amount of weight, despite eating the
same number of calories as mice kept in total dark-
ness. The time of eating seemed to have a significant
effect. Exercise 6.119 examines the mice with dim
light at night. A second group of mice had bright
light on all the time (day and night). There were
nine mice in the group with bright light at night and
they gained an average of 11.0 g with a standard
deviation of 2.6. The data are shown in Figure 6.15.
Is it appropriate to use a t-distribution in this sit-
uation? Why or why not? If not, how else might
we construct a confidence interval for mean weight
gain of mice with a bright light on all the time?

10 12
BMGain

14 16 18

Figure 6.15 Body mass gain (in grams) for mice with a
bright night light

6.121 Size of the Tip in a Restaurant The dataset
RestaurantTips has information from First Crush
bistro in northern New York state. Computer out-
put of descriptive statistics for the variable giving
the size of the tip is shown:

Descriptive Statistics: Tip
Variable N N* Mean SE Mean StDev
Tip 157 0 3.849 0.193 2.421

Minimum Q1 Median Q3 Maximum
0.250 2.050 3.350 5.000 15.000

(a) How many tips are included in the dataset?
What is the mean? What is the standard devia-
tion?

(b) Compute the standard error for the mean using
the formula SE = s/

√
n. Compare the result

to the value given under ‘‘SE Mean” in the
computer output.

(c) Use the summary statistics to compute a 95%
confidence interval for the average tip given at
this restaurant.

(d) Compare the answer in part (c) to the confi-
dence interval given in the following computer
output for the same data:

One-Sample T: Tip
Variable N Mean StDev SE Mean 95% CI
Tip 157 3.849 2.421 0.193 (3.468, 4.231)

(e) Interpret the confidence interval in context.

6.122 Number of Walks for a Baseball Team in a
Season The dataset BaseballHits gives 2010 sea-
son statistics for all Major League Baseball (MLB)
teams. We treat this as a sample of all MLB teams
in all years. Computer output of descriptive statis-
tics for the variable giving the number of Walks is
shown:

Descriptive Statistics: Walks
Variable N N* Mean SE Mean StDev
Walks 30 0 525.9 11.5 63.2

Minimum Q1 Median Q3 Maximum
415.0 471.0 524.5 559.3 672.0

(a) How many teams are included in the dataset?
What is the mean number of walks? What is the
standard deviation?

(b) Compute the standard error for the mean using
the formula SE = s/

√
n. Compare the result

to the value given under ‘‘SE Mean” in the
computer output.

(c) Use the summary statistics to compute a 95%
confidence interval for the mean number of
walks per team in a season.

(d) Compare the answer from part (c) to the confi-
dence interval given in the following computer
output for the same data:

One-Sample T: Walks
Variable N Mean StDev SE Mean 95% CI
Walks 30 525.9 63.2 11.5 (502.3, 549.6)

(e) Interpret the confidence interval in context.
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Comparing Normal and Bootstrap Confidence
Intervals In Exercises 6.123 and 6.124, find a 95%
confidence interval for the mean two ways: using
StatKey or other technology and percentiles from a
bootstrap distribution and using the t-distribution
and the formula for standard error. Compare the
results.

6.123 Mean distance of a commute for a worker
in Atlanta, using data in CommuteAtlanta with
x = 18.156 miles, s = 13.798, and n = 500

6.124 Mean price of a used Mustang car online, in
$1000s, using data in MustangPrice with x = 15.98,
s = 11.11, and n = 25

6.125 NHL Hockey Penalties In the 2010-11
National Hockey League (NHL) regular season,
the number of penalty minutes per game for each of
the 30 teams ranged from a low of 8.8 for the Florida
Panthers to a high of 18.0 for the most penalized
New York Islanders. All 30 data values are given
in Table 6.3 and are also available in the dataset
HockeyPenalties.

(a) Find the mean and the standard deviation of
penalty minutes per game.

(b) Use the data in Table 6.3 from the 2010-11 sea-
son as a sample for all NHL teams in all years,
and use the t-distribution to find a 95% confi-
dence interval for the average number of penalty
minutes per game by team.

(c) Discuss why it may or may not be appropri-
ate to generalize this sample to the population
described in part (b).

6.126 How Much Fat Do US Adults Consume?
Using the dataset NutritionStudy, we calculate that
the average number of grams of fat consumed in a
day for the sample of n = 315 US adults in the study
is x = 77.03 grams with s = 33.83 grams.

(a) Find and interpret a 95% confidence interval
for the average number of fat grams consumed
per day by US adults.

(b) What is the margin of error?

(c) If we want a margin of error of only ±1, what
sample size is needed?

6.127 Estimating Number of Close Confidants
More Accurately In Exercise 6.116 on page 386,

Table 6.3 Penalty minutes per game for 30 NHL teams

8.8 8.9 9.3 9.3 9.6 10.2 10.4 10.6 11.0 11.1
11.2 11.2 11.4 11.4 11.6 11.8 12.0 12.7 13.4 13.5
13.5 13.6 13.6 13.9 13.9 14.0 14.5 14.9 16.8 18.0

we see that the average number of close confidants
in a random sample of 2006 US adults is 2.2 with a
standard deviation of 1.4. If we want to estimate the
number of close confidants with a margin of error
within ±0.05 and with 99% confidence, how large a
sample is needed?

6.128 Plastic Microfiber Pollution from Clothes
Plastic microparticles are contaminating the world’s
shorelines (see Exercise 6.129), and much of this
pollution appears to come from fibers from washing
polyester clothes.37 The worst offender appears to
be fleece, and a recent study found that the mean
number of polyester fibers discharged into waste-
water from washing fleece was 290 fibers per liter of
wastewater, with a standard deviation of 87.6 and a
sample size of 120.

(a) Find and interpret a 99% confidence interval
for the mean number of polyester microfibers
per liter of wastewater when washing fleece.

(b) What is the margin of error?

(c) If we want a margin of error of only ±5 with
99% confidence, what sample size is needed?

6.129 Plastic Microfiber Pollution on Shorelines In
Exercise 6.128, we see that plastic microparticles
are contaminating the world’s shorelines and that
much of the pollution appears to come from fibers
from washing polyester clothes. The same study ref-
erenced in Exercise 6.128 also took samples from
ocean beaches. Five samples were taken from each
of 18 different shorelines worldwide, for a total of
90 samples of size 250 mL. The mean number of
plastic microparticles found per 250 mL of sediment
was 18.3 with a standard deviation of 8.2.

(a) Find and interpret a 99% confidence interval
for the mean number of polyester microfibers
per 250 mL of beach sediment.

(b) What is the margin of error?

(c) If we want a margin of error of only ±1 with
99% confidence, what sample size is needed?

What Influences the Sample Size Needed? In
Exercises 6.130 to 6.132, we examine the effect of

37Browne, M., et al., ‘‘Accumulation of Microplastic on Shore-
lines Worldwide: Sources and Sinks,” Environmental Science and
Technology, 2011; 45: 9175–9179. Data are approximated from
information given.
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different inputs on determining the sample size
needed.

6.130 Find the sample size needed to give, with 95%
confidence, a margin of error within ±10. Within
±5. Within ±1. Assume that we use σ̃ = 30 as our
estimate of the standard deviation in each case.
Comment on the relationship between the sample
size and the margin of error.

6.131 Find the sample size needed to give a margin
of error within ±3 with 99% confidence. With 95%
confidence. With 90% confidence. Assume that we
use σ̃ = 30 as our estimate of the standard deviation
in each case. Comment on the relationship between
the sample size and the confidence level desired.

6.132 Find the sample size needed to give, with
95% confidence, a margin of error within ±3, if the

estimated standard deviation is σ̃ = 100. If the esti-
mated standard deviation is σ̃ = 50. If the estimated
standard deviation is σ̃ = 10. Comment on how the
variability in the population influences the sample
size needed to reach a desired level of accuracy.

6.133 How Big Is the Tip Percentage at a Restau-
rant? Use technology and the RestaurantTips
dataset to find a 95% confidence interval for the
mean tip percentage (PctTip) at the restaurant.
Interpret the answer in context.

6.134 How Many Grams of Fiber Do People Get
in a Day? Use technology and the NutritionStudy
dataset to find a 95% confidence interval for the
mean number of grams of fiber (Fiber) people eat
in a day. Interpret the answer in context.

6.6TEST FOR A SINGLE MEAN

In Section 5.2 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z = Sample Statistic − Null Parameter
SE

The sample statistic is computed from the sample data and the null parameter is
specified by the null hypothesis, H0.

When testing a hypothesis about a population mean, the null hypothesis is
typically H0 : μ = μ0, where μ0 is some specific value of the mean. Thus the null
parameter is μ0 and the sample statistic is the mean from a sample, x:

z = x − μ0

SE

As we see in Section 6.4, we can estimate the standard error of x with SE = s/
√

n,
where s is the standard deviation of the sample. However, with this sample estimate
for SE, the distribution of the quantity above follows a t-distribution with n − 1
degrees of freedom rather than a standard normal:

t = x − μ0

s/
√

n
∼ tn−1

This requires that the underlying population be reasonably normally distributed,
although that condition is less critical as the sample size gets larger. In cases where
the t-distribution applies, we find a p-value for a given sample by computing this
t-statistic and using technology (or a table) to find the area beyond it under the
t-distribution. As in the normal-based test in Section 5.2, the alternative hypothesis
will determine which tail(s) we use when computing the p-value. Because we are
using the t-distribution, a hypothesis test conducted this way is often called a
t-test.



390 C H A P T E R 6 Inference for Means and Proportions

T-Test for Single Mean

To test H0 : μ = μ0 vs Ha : μ �= μ0 (or a one-tail alternative) use the
t-statistic

t = x − μ0

s/
√

n

where x is the mean and s is the standard deviation in a random sample
of size n. Provided the underlying population is reasonably normal (or
the sample size is large), the p-value of the test is computed using the
appropriate tail(s) of a t-distribution with n − 1 degrees of freedom.

Example 6.17
In Data 4.8 on page 272 we consider some data collected to see if the mean body
temperature for humans differs from 98.6◦F. In that sample of 50 healthy subjects,
the mean body temperature is x = 98.26◦F with standard deviation s = 0.765. Test
whether there is evidence that the mean body temperature is different from 98.6◦F.

Solution The relevant hypotheses are H0 : μ = 98.6 vs Ha : μ �= 98.6 where μ is the mean
body temperature for all healthy humans. Figure 6.16 shows a dotplot of this sample
of body temperatures. The plot raises no concerns about a lack of normality in
the population and the sample size (n = 50) is quite large, so a t-distribution is
appropriate for this test.

Figure 6.16 Sample of
body temperatures for 50
people 96 97 98

Body Temp
99 100 101

The t-statistic is computed as

t = x − μ0

s/
√

n
= 98.26 − 98.6

0.765/
√

50
= −3.14

To find the p-value, we use a t-distribution with 50 − 1 = 49 degrees of freedom and
find the area in the tail that is below −3.14. We see in Figure 6.17 that this area is

Figure 6.17 Using a
t-distribution with 49 df
to find a p-value for
t = −3.14
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about 0.0014. Since the alternative hypothesis is two-tailed, we double that area to
find

p-value = 2(0.0014) = 0.0028

Based on the small p-value of 0.0028 we have strong evidence to reject the null
hypothesis and conclude that the mean body temperature for healthy humans is
different from 98.6◦F.

We have already found p-values for the body temperature data in two previous
examples. From the randomization distribution in Figure 4.31 on page 274 we
estimate a two-tailed p-value of 0.0016. In Example 5.9 on page 341 we used a
normal distribution after estimating the standard error from the randomization
distribution to get a p-value of 0.0014. While the p-value from the t-test is slightly
larger than these values, all three p-values indicate that a sample mean as small
as 98.26◦F would be very unusual to see in a sample of size 50 if the real mean
body temperature is 98.6◦F. Remember that p-values based on a randomization
distribution will also vary as different randomizations are used. The t-test provides
a shortcut to eliminate the need to produce thousands of randomization means.
However, if the condition of normality is in doubt, for example with a small sample
that is skewed or has significant outliers, we can always return to the randomization
procedure as a safe way to assess the strength of evidence.

Example 6.18
The FloridaLakes dataset includes information on alkalinity values for 53 Florida
lakes. Figure 2.10 on page 69 shows a histogram of the alkalinity values. The mean
of the values is x = 37.5 mg/L with standard deviation s = 38.20. Test to see if this
sample provides evidence that the average alkalinity of all Florida lakes is greater
than 35 mg/L.

Solution We see in Figure 2.10 that the alkalinity values in this sample are very skewed and
don’t seem to follow a normal distribution at all. Nonetheless, the sample size of
n = 53 is large enough that the CLT for means is relevant so a t-test is probably
valid. The hypotheses for the test are

H0 : μ = 35

Ha : μ > 35

where μ represents the mean alkalinity level in all Florida lakes. The t-statistic is

t = x − μ0

s/
√

n
= 37.5 − 35

38.20/
√

53
= 0.48

The area in the right tail beyond 0.48 of a t-distribution with df = 52 is 0.317. This
is a one-tailed test, so we have

p-value = 0.317

The p-value is quite large, so we find no convincing evidence that the average
alkalinity levels in all Florida lakes is greater than 35 mg/L.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to test a hypothesis about a
population mean.

o

o
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Exercises for Section 6.6

SKILL BUILDER 1
In Exercises 6.135 to 6.140, use the t-distribution
and the sample results to complete the test of the
hypotheses. Use a 5% significance level. Assume the
results come from a random sample, and if the sam-
ple size is small, assume the underlying distribution
is relatively normal.

6.135 Test H0 : μ = 15 vs Ha : μ > 15 using the
sample results x = 17.2, s = 6.4, with n = 40.

6.136 Test H0 : μ = 100 vs Ha : μ < 100 using the
sample results x = 91.7, s = 12.5, with n = 30.

6.137 Test H0 : μ = 120 vs Ha : μ < 120 using the
sample results x = 112.3, s = 18.4, with n = 100.

6.138 Test H0 : μ = 10 vs Ha : μ > 10 using the
sample results x = 13.2, s = 8.7, with n = 12.

6.139 Test H0 : μ = 4 vs Ha : μ �= 4 using the sam-
ple results x = 4.8, s = 2.3, with n = 15.

6.140 Test H0 : μ = 500 vs Ha : μ �= 500 using the
sample results x = 432, s = 118, with n = 75.

6.141 How Many Social Ties Do You Have? Most
US adults have social ties with a large number of
people, including friends, family, co-workers, and
other acquaintances. It is nearly impossible for most
people to reliably list all the people they know, but
using a mathematical model, social analysts estimate
that, on average, a US adult has social ties with 634
people.38 A survey of 1700 randomly selected US
adults who are cell phone users finds that the aver-
age number of social ties for the cell phone users
in the sample was 664 with a standard deviation
of 778. Does the sample provide evidence that the
average number of social ties for a cell phone user
is significantly different from 634, the hypothesized
number for all US adults? Define any parameters
used and show all details of the test.

6.142 The Autistic Brain Autistic children often
have a small head circumference at birth, followed
by a sudden and excessive increase in head circum-
ference during the first year of life. A recent study39

examined the brain tissue in autopsies of seven
autistic male children between the ages of 2 and 16.

38Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
39Adapted from Courchesne, E., et al., ‘‘Neuron Number and
Size in Prefrontal Cortex of Children with Autism,” Journal of
the American Medical Association, 2011; 306(18): 2001–2010.

The mean number of neurons in the prefrontal
cortex in non-autistic male children of the same
age is about 1.15 billion. The prefrontal cortex is
the part of the brain most disrupted in autism, as
it deals with language and social communication.
In the sample of seven autistic children, the mean
number of neurons in the prefrontal cortex was 1.94
billion with a standard deviation of 0.50 billion. The
values in the sample are not heavily skewed. Use
the t-distribution to test whether this sample pro-
vides evidence that autistic male children have more
neurons (on average) in the prefrontal cortex than
non-autistic children. (This study indicates that the
causes of autism may be present before birth.)

6.143 Be Nice to Pigeons, As They Remember
Your Face In a study40 conducted in Paris, France,
equal amounts of pigeon feed were spread on the
ground in two adjacent locations. A human feeder
was present in both sites, with one acting as a hostile
feeder running at the birds to scare them away and
the other acting as a neutral feeder and just observ-
ing. The human feeders were randomly exchanged
between the two sites throughout and the birds
quickly learned to avoid the hostile feeder’s site and
to eat at the site of the neutral feeder. At the end of
the training session, both feeders behaved neutrally
but the birds continued to remember which one was
hostile. In the most interesting part of the exper-
iment, when the feeders exchanged coats (orange
worn by the hostile feeder and yellow by the neutral
feeder throughout training), the pigeons were not
fooled and continued to recognize and avoid the
hostile person. The quantity measured is difference
in number of pigeons at the neutral site minus the
hostile site. With n = 32 measurements, the mean
difference in number of pigeons is 3.9 with a stan-
dard deviation of 6.8. Test to see if this provides
evidence that the mean difference is greater than
zero, meaning the pigeons can recognize faces (and
hold a grudge!).

6.144 Getting Enough Sleep? It is generally rec-
ommended that adults sleep at least 8 hours each
night. One of the authors recently asked some of
her students (undergraduate and graduate students
at Harvard) how many hours each had slept the
previous night, curious as to whether her students
are getting enough sleep. The data are displayed
in Figure 6.18. The 12 students sampled averaged

40Belguermi, A., ‘‘Pigeons discriminate between human feeders,”
Animal Cognition, 2011; 14: 909–914.
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6.2 hours of sleep with a standard deviation of 1.70
hours. Assuming this sample is representative of all
her students, and assuming students need at least 8
hours of sleep a night, does this provide evidence
that, on average, her students are not getting enough
sleep?

4 5 6 7 8 9 10
Hours of Sleep

Figure 6.18 Hours of sleep for Harvard statistics
students

6.145 The Chips Ahoy! Challenge In the mid-1990s
a Nabisco marketing campaign claimed that there
were at least 1000 chips in every bag of Chips
Ahoy! cookies. A group of Air Force cadets col-
lected a sample of 42 bags of Chips Ahoy! cookies,
bought from locations all across the country, to ver-
ify this claim.41 The cookies were dissolved in water
and the number of chips (any piece of chocolate)
in each bag were hand counted by the cadets. The
average number of chips per bag was 1261.6, with
standard deviation 117.6 chips.

(a) Why were the cookies bought from locations all
over the country?

(b) Test whether the average number of chips per
bag is greater than 1000. Show all details.

(c) Does part (b) confirm Nabisco’s claim that every
bag has at least 1000 chips? Why or why not?

6.146 Quality Control Susan is in charge of quality
control at a small fruit juice bottling plant. Each
bottle produced is supposed to contain exactly 12
fluid ounces (fl oz) of juice. Susan decides to test this
by randomly sampling 30 filled bottles and carefully
measuring the amount of juice inside each. She will
recalibrate the machinery if the average amount of
juice per bottle differs from 12 fl oz at the 1% signifi-
cance level. The sample of 30 bottles has an average
of 11.92 fl oz per bottle and a standard deviation of
0.26 fl oz. Should Susan recalibrate the machinery?

6.147 Homes for Sale The dataset HomesFor-
Sale has data on houses available for sale in
three Mid-Atlantic states (NY, NJ, and PA).

41Warner, B. and Rutledge, J., ‘‘Checking the Chips Ahoy!
Guarantee,” Chance, 1999; 12(1): 10–14.

Table 6.4 (also used in Exercise 6.100) shows the
mean and standard deviation from the three Mid-
Atlantic states, in thousands of dollars. Use this
table, the knowledge that within the US the aver-
age house sells for about 265 thousand dollars,42

and a 5% significance level to answer the following
questions.

(a) Is the average cost of a house in New York
significantly greater than the US average?

(b) Is the average cost of a house in New Jersey
significantly greater than the US average?

(c) Is the average cost of a house in Pennsylvania
significantly greater than the US average?

(d) Which state shows the most evidence that the
state average is greater than the US average?

Table 6.4 Mean housing prices for New York,
New Jersey, and Pennsylvania

State n Mean Std. Dev.

New York 30 565.6 697.6
New Jersey 30 388.5 224.7
Pennsylvania 30 249.6 179.3

6.148 Homes for Sale, Canton We are interested
in whether or not the average cost of a house in
Canton, NY (the hometown of the Lock family) is
significantly different from the national average of
$265,000. Table 6.5 and the histogram in Figure 6.19
show the cost (in thousands of dollars) of a sample of
10 houses for sale in Canton. These prices are stored
in HomesForSaleCanton. Do the appropriate test
to determine if the sample provides evidence that
the average price of a house in Canton is different
from the national average.

Table 6.5 Price ($1000s) of houses for sale in
Canton, NY

Canton 169 299 325 75 89 105 59 110 168 69

50

0
1

2
3

4

100 150
Prices Canton

200 250 300 350

Figure 6.19 Price ($1000s) of houses for sale in
Canton, NY

42According to the US Census in April 2011.
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6.149 Team Batting Average in Baseball The
dataset BaseballHits gives 2010 season statistics for
all Major League Baseball teams. We treat this as
a sample of all MLB teams in all years. Computer
output of descriptive statistics for the variable giving
the batting average is shown:

Descriptive Statistics: BattingAvg
Variable N N* Mean SE Mean StDev
BattingAvg 30 0 0.25727 0.00190 0.01039

Minimum Q1 Median Q3 Maximum
0.23600 0.24800 0.25700 0.26725 0.27600

(a) How many teams are included in the dataset?
What is the mean batting average? What is the
standard deviation?

(b) Use the descriptive statistics above to conduct
a hypothesis test to determine whether there is
evidence that average team batting average is
different from 0.250. Show all details of the test.

(c) Compare the test statistic and p-value you found
in part (b) to the computer output below for the
same data:
One-Sample T: BattingAvg
Test of mu = 0.25 vs not = 0.25
Variable N Mean StDev
BattingAvg 30 0.25727 0.01039

SE Mean 95% CI T P
0.00190 (0.25339, 0.26115) 3.83 0.001

6.150 Are Florida Lakes Acidic or Alkaline? The
pH of a liquid is a measure of its acidity or alkalinity.
Pure water has a pH of 7, which is neutral. Solutions
with a pH less than 7 are acidic while solutions with a
pH greater than 7 are basic or alkaline. The dataset
FloridaLakes gives information, including pH val-
ues, for a sample of lakes in Florida. Computer
output of descriptive statistics for the pH variable is
shown:

Descriptive Statistics: pH
Variable N N* Mean SE Mean StDev
pH 53 0 6.591 0.177 1.288

Minimum Q1 Median Q3 Maximum
3.600 5.800 6.800 7.450 9.100

(a) How many lakes are included in the dataset?
What is the mean pH value? What is the stan-
dard deviation?

(b) Use the descriptive statistics above to conduct
a hypothesis test to determine whether there
is evidence that average pH in Florida lakes is
different from the neutral value of 7. Show all
details of the test and use a 5% significance
level. If there is evidence that it is not neutral,
does the mean appear to be more acidic or more
alkaline?

(c) Compare the test statistic and p-value you found
in part (b) to the computer output below for the
same data:

One-Sample T: pH
Test of mu = 7 vs not = 7
Variable N Mean StDev SE Mean
pH 53 6.591 1.288 0.177

95% CI T P
(6.235, 6.946) -2.31 0.025

6.151 Mercury Content in Fish The US Food and
Drug Administration has a limit for mercury con-
tent in fish of 1.0 ppm (parts per million), while in
Canada the limit is 0.5 ppm. Use the variable Avg-
Mercury in the FloridaLakes dataset to test whether
there is evidence that average mercury level of fish
(large-mouth bass) in Florida lakes is:

(a) Less than 1.0 ppm

(b) Less than 0.5 ppm

6.152 Number of Fouls in a Season by NBA Players
The variable Fouls in the dataset NBAPlayers2011
shows the total number of fouls during the 2010-11
season for all players in the NBA (National Basket-
ball Association) who played at least 24 minutes per
game that season. We use this group as a sample of
all NBA players in all seasons who play regularly.
Use this information to test whether there is evi-
dence that NBA players who play regularly have a
mean number of fouls in a season greater than 160
(or roughly 2 fouls per game).

6.7DISTRIBUTION OF DIFFERENCES IN PROPORTIONS

In this section we consider the distribution of the difference in proportions between
samples taken from two distinct groups. The parameter of interest is p1 − p2, where
p1 and p2 represent the proportions in each of the two groups. For example, we
might be interested in comparing the proportion of cancer patients who live at least
five years after being treated between patients assigned to two different treatment
groups.
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Note that we are not dealing with two different proportions computed for the
same group, such as the difference in proportion of voters who choose Candidate
A compared to those who choose Candidate B. Even if the data all come from a
single sample, we need to identify two groups within the sample and compare the
proportions between those two groups.

Example 6.19
One True Love

In Data 2.1 on page 46 we consider a study that asks whether or not people agree
with the statement ‘‘There is only one true love for each person.” The results for
2625 respondents are broken down by gender: 372 of 1213 males agree and 363 of
1412 females agree. Use this information to estimate the difference in proportions
of males and females who agree with the statement.

Solution We are comparing the proportion who agree with the statement about one true love
between two distinct groups in the sample: females and males. The relevant sample
proportions are

p̂f = 363
1412

= 0.257 and p̂m = 372
1213

= 0.307

To estimate the difference in proportions, pf − pm, in the population, we use the
difference in the sample proportions:

p̂f − p̂m = 0.257 − 0.307 = −0.050

Note that we could have just as easily estimated pm − pf with p̂m − p̂f = +0.05. The
interpretation is still the same; we estimate a difference of about 0.05 with males
being somewhat more likely to agree.

As always, the key question now is how accurately does the estimate in the
sample reflect the true difference in proportions for the population. One way to
address this is to use bootstrapping to simulate the difference in proportions for lots
of samples drawn (with replacement) from the original data. Figure 6.20 shows the

Figure 6.20 Distribution
of p̂f − p̂m for 5000
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results for 5000 such simulations. Note that the bootstrap distribution is centered
around the difference in the original sample (−0.050) and follows the usual bell-
shaped pattern. Based on the standard deviation of the 5000 bootstrap differences
in Figure 6.20 we can estimate the standard error of the difference in proportions to
be about 0.0178.

In Section 6.1 we see that the distribution of p̂ for a single sample is centered

at the population proportion p, has spread given by SE =
√

p(1−p)

n , and approaches
a normal curve as the sample size gets large. We extend these ideas to get a similar
Central Limit Theorem for differences in proportions for two samples.

Central Limit Theorem for Differences in Two Sample

Proportions

When choosing random samples of size n1 and n2 from popula-
tions with proportions p1 and p2, respectively, the distribution of
the differences in the sample proportions, p̂1 − p̂2, has the following
characteristics:

Center: The mean is equal to the difference in population proportions,
p1 − p2.

Spread: The standard error is SE =
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2
.

Shape: As both sample sizes get large, the distribution of p̂1 − p̂2
approaches a normal curve.

To ensure that the sample size is large enough in each group, check that
n1p1 ≥ 10 and n1(1 − p1) ≥ 10 and that n2p2 ≥ 10 and n2(1 − p2) ≥ 10.

Using notation for a normal distribution, this means that, if both sample sizes
are sufficiently large,

p̂1 − p̂2 ∼ N

⎛⎝p1 − p2,

√
p1(1 − p1)

n1
+ p2(1 − p2)

n2

⎞⎠
In finding the standard error for p̂1 − p̂2, you may be tempted to subtract p2(1−p2)

n2

from p1(1−p1)

n1
within the square root rather than add those two terms. It’s important

that the variability of the difference depends on adding the variability generated
from each of the two samples.

Example 6.20
Figure 6.20 shows the distribution of the difference in sample proportions for samples
simulated from the original ‘‘one true love” data where the proportions are 0.257 (for
females) and 0.307 (for males). Use these sample proportions as approximations of
the population proportions and use the sample sizes (1412 females and 1213 males)
to find a normal curve to approximate the distribution.

Solution The curve should be centered at 0.257 − 0.307 = −0.50. The standard error is
given by

SE =
√

0.257(1 − 0.257)

1412
+ 0.307(1 − 0.307)

1213
= 0.0176

&
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Both sample sizes are quite large (well more than 10 people agreeing and disagreeing
in each group) so the normal distribution is a reasonable model and we have

p̂f − p̂m ≈ N(−0.050, 0.0176)

This curve is plotted in Figure 6.20 and agrees nicely with the simulated results.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize when a question calls for comparing proportions for two
different groups (as opposed to two proportions within the same
group)

• Find the mean and standard error for a distribution of differences in
sample proportions for two groups

• Recognize when a normal distribution is an appropriate model for a
distribution of the differences in two sample proportions

Exercises for Section 6.7

SKILL BUILDER 1
In Exercises 6.153 to 6.158, if random samples of
the given sizes are drawn from populations with the
given proportions:

(a) Find the mean and standard error of the dis-
tribution of differences in sample proportions,
p̂A − p̂B.

(b) If the sample sizes are large enough for the
Central Limit Theorem to apply, draw a curve
showing the shape of the sampling distribution.
Include at least three values on the horizontal
axis.

6.153 Samples of size 50 from population A with
proportion 0.70 and samples of size 75 from popu-
lation B with proportion 0.60

6.154 Samples of size 300 from population A with
proportion 0.15 and samples of size 300 from popu-
lation B with proportion 0.20

6.155 Samples of size 100 from population A with
proportion 0.20 and samples of size 50 from popu-
lation B with proportion 0.30

6.156 Samples of size 80 from population A with
proportion 0.40 and samples of size 60 from popu-
lation B with proportion 0.10

6.157 Samples of size 40 from population A with
proportion 0.30 and samples of size 30 from popu-
lation B with proportion 0.24

6.158 Samples of size 500 from population A with
proportion 0.58 and samples of size 200 from popu-
lation B with proportion 0.49

TWO GROUPS OR ONE?
In Exercises 6.159 and 6.160, situations compar-
ing two proportions are described. In each case,
determine whether the situation involves compar-
ing proportions for two groups or comparing two
proportions from the same group. State whether the
methods of this section apply to the difference in
proportions.

6.159 (a) Compare the proportion of students who
use a Windows-based PC to the proportion who
use a Mac.

(b) Compare the proportion of students who study
abroad between those attending public univer-
sities and those at private universities.

(c) Compare the proportion of in-state students at
a university to the proportion from outside the
state.

(d) Compare the proportion of in-state students
who get financial aid to the proportion of out-
of-state students who get financial aid.

6.160 (a) In a taste test, compare the proportion
of tasters who prefer one brand of cola to the
proportion who prefer the other brand.

o

o
o
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(b) Compare the proportion of males who voted in
the last election to the proportion of females
who voted in the last election.

(c) Compare the graduation rate (proportion to
graduate) of students on an athletic scholarship
to the graduation rate of students who are not
on an athletic scholarship.

(d) Compare the proportion of voters who vote in
favor of a school budget to the proportion who
vote against the budget.

6.161 Does Austria or Denmark Have a Greater
Percentage of Elderly? We see in the AllCountries
dataset that the percent of the population that is
elderly (over 65 years old) is 17.0 in Austria and
15.9 in Denmark. Suppose we take random samples
of size 200 from each of these countries and com-
pute the difference in sample proportions p̂A − p̂D,
where p̂A represents the proportion of the sample
that is elderly in Austria and p̂D represents the
proportion of the sample that is elderly in Den-
mark. Find the mean and standard deviation of the
differences in sample proportions.

6.162 Does Australia or New Zealand Have a
Greater Percentage of Elderly? We see in the All-
Countries dataset that the percent of the population
that is over 65 is 13.4 in Australia and 12.5 in New
Zealand. Suppose we take random samples of size
500 from Australia and size 300 from New Zealand,
and compute the difference in sample proportions
p̂A − p̂NZ, where p̂A represents the sample propor-
tion of elderly in Australia and p̂NZ represents the
sample proportion of elderly in New Zealand. Find
the mean and standard deviation of the differences
in sample proportions.

6.163 Male-Female Ratios Of the 50 states in the
Unites States, Alaska has the largest percentage of
males and Rhode Island has the largest percentage
of females. (Interestingly, Alaska is the largest state
and Rhode Island is the smallest). According to
the 2010 US Census, the population of Alaska is
52.0% male and the population of Rhode Island is
48.3% male. If we randomly sample 300 people from
Alaska and 300 people from Rhode Island, what is
the approximate distribution of p̂a − p̂ri, where p̂a is
the proportion of males in the Alaskan sample and
p̂ri is the proportion of males in the Rhode Island
sample?

6.164 Is Argentina or Bolivia More Rural? We see
in the AllCountries dataset that the percent of the
population living in rural areas is 8.0 in Argentina

and 34.4 in Bolivia. Suppose we take random sam-
ples of size 200 from each country, and compute the
difference in sample proportions p̂A − p̂B, where
p̂A represents the sample proportion living in rural
areas in Argentina and p̂B represents the proportion
of the sample that lives in rural areas in Bolivia.

(a) Find the mean and standard deviation of the dis-
tribution of differences in sample proportions,
p̂A − p̂B.

(b) If the sample sizes are large enough for the
Central Limit Theorem to apply, draw a curve
showing the shape of the sampling distribution.
Include at least three values on the horizontal
axis.

(c) Using the graph drawn in part (b), are we likely
to see a difference in sample proportions as
large in magnitude as −0.4? As large as −0.3?
Explain.

6.165 Is Egypt or Jordan More Rural? The All-
Countries dataset shows that the percent of the
population living in rural areas is 57.3% in Egypt and
21.6% in Jordan. Suppose we take random samples
of size 400 people from each country, and com-
pute the difference in sample proportions p̂E − p̂J ,
where p̂E represents the sample proportion living in
rural areas in Egypt and p̂J represents the sample
proportion living in rural areas in Jordan.

(a) Find the mean and standard deviation of the dis-
tribution of differences in sample proportions,
p̂E − p̂J .

(b) If the sample sizes are large enough for the
Central Limit Theorem to apply, draw a curve
showing the shape of the sampling distribution.
Include at least three values on the horizontal
axis.

(c) Using the graph drawn in part (b), are we likely
to see a difference in sample proportions as
large in magnitude as 0.4? As large as 0.5?
Explain.

Standard Error from a Formula and a Boot-
strap Distribution In Exercises 6.166 and 6.167, use
StatKey or other technology to generate a bootstrap
distribution of sample differences in proportions
and find the standard error for that distribution.
Compare the result to the value obtained using
the formula for the standard error of a differ-
ence in proportions from this section (and using
the sample proportions to estimate the population
proportions).
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6.166 Sample A has a count of 30 successes with
n = 100 and Sample B has a count of 50 successes
with n = 250.

6.167 Sample A has a count of 90 successes with
n = 120 and Sample B has a count of 180 successes
with n = 300.

6.168 Coin Flips Ron flips a coin n1 times and Freda
flips a coin n2 times. We can assume all coin flips
are fair: The coin has an equal chance of landing
heads or tails. In each of the following cases, state
whether inference for a difference in proportions
is appropriate using the methods of this section. If
so, give the mean and standard error for the distri-
bution of the difference in proportions (p̂1 − p̂2)
and state whether the normal approximation is
appropriate.

(a) Let p̂1 be the proportion of Ron’s flips that land
heads and p̂2 be the proportion of Freda’s flips
that land heads; n1 = 100 and n2 = 50.

(b) Let p̂1 be the proportion of Ron’s flips that land
heads and p̂2 be the proportion of Ron’s flips
that land tails; n1 = 100.

(c) Let p̂1 be the proportion of Ron’s flips that land
heads and p̂2 be the proportion of Freda’s flips
that land tails; n1 = 200 and n2 = 200.

(d) Let p̂1 be the proportion of Ron’s flips that land
tails and p̂2 be the proportion of Freda’s flips
that land tails; n1 = 5 and n2 = 10.

6.169 College Degrees in Australia According to
the 2006 Australia Census,43 25.5% of Australian
women over the age of 25 had a college degree, while
the percentage for Australian men was 21.4%. Sup-
pose we select random samples of 200 women and
200 men from this population and look at the differ-
ences in proportions with college degrees, p̂f − p̂m,
in those samples.

(a) Describe the distribution (center, spread, shape)
for the difference in sample proportions. Include
a rough sketch of the distribution with values
labeled on the horizontal axis.

(b) What is the chance that the proportion with
college degrees in the men’s sample is actually
more than the proportion in the women’s sam-
ple? (Hint: Think about what must be true about
p̂f − p̂m when this happens.)

43Australian Census data from http://www.abs.gov.au/website
dbs/d3310114.nsf/home/census+data.

6.8CONFIDENCE INTERVAL FOR A DIFFERENCE IN
PROPORTIONS

In Section 5.2 we see that when a distribution of a sample statistic is normally
distributed, a confidence interval can be formed using

Sample Statistic ± z∗ · SE

where z∗ is an appropriate percentile from a standard normal distribution.
In Section 6.7 we see that we can estimate a difference in proportions, p1 − p2,

for two groups using the difference in the sample proportions from those groups,
p̂1 − p̂2. The standard error found in Section 6.7 for a difference in proportions uses
the population proportions p1 and p2. Just as we did for the standard error of a single
proportion, we substitute the sample proportions to estimate the standard error for
the difference with

SE =
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

where n1 and n2 are the respective sample sizes.
We combine these results to compute a confidence interval for a difference in

two proportions.
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Confidence Interval for a Difference in Two Proportions

If we have large samples of sizes n1 and n2 from two different groups,
we can construct a confidence interval for p1 − p2, the difference in
proportions between the two groups, using

(p̂1 − p̂2) ± z∗ ·
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

where p̂1 and p̂2 are the proportions in the respective samples and z∗
is a standard normal endpoint to give the desired level of confidence.

To ensure that the sample size is large enough in each group,
we check that n1p1 ≥ 10 and n1(1 − p1) ≥ 10 and that n2p2 ≥ 10 and
n2(1 − p2) ≥ 10.

© slobo/iStockphoto

Crows hold a grudge

D A T A 6 . 3 Crows Never Forget a Face
Biologists studying crows will capture a crow, tag it, and release it. These crows
seem to remember the scientists who caught them and will scold them later. A
study44 to examine this effect had several scientists wear a caveman mask while
they trapped and tagged seven crows. A control group did not tag any crows
and wore a different mask. The two masks did not elicit different reactions from
the crows before the tagging. Volunteers then strolled around town wearing one
or the other of the two masks. Sure enough, the tagged crows scolded the
caveman mask significantly more often. What is really interesting, however, is
that even more than two years later and even at sites over a kilometer from the

44Cornell, H., Marzluff, J., and Pecoraro, S., ‘‘Social learning spreads knowledge about dangerous humans
among American crows,” Proceedings of the Royal Society, Biological Sciences, February 2012; 279(1728):
499–508.
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original tagging, crows that did not get tagged and even crows that were not
born yet at the time of the tagging continued to scold the caveman mask more
than the other mask. The crows had apparently communicated to other crows
the fact that the caveman mask was dangerous. It appears that crows hold a
grudge for a long time! As one volunteer put it after wearing the caveman mask
on a stroll, the reaction to the mask was ‘‘quite spectacular. The birds were
really raucous, screaming persistently, and it was clear they weren’t upset about
something in general. They were upset with me.” The crows scolded a person
wearing a caveman mask in 158 out of 444 encounters with crows, whereas
crows scolded a person in a neutral mask in 109 out of 922 encounters. ■

Example 6.21
Use the information in Data 6.3 to find and interpret a 90% confidence interval for
the difference in the proportion of crow scoldings between volunteers wearing the
caveman mask and those wearing the neutral mask.

Solution First, we compute the proportion of scoldings for each of the two groups, using p̂c

for the proportion when volunteers are wearing the caveman mask and p̂n for the
proportion when volunteers are wearing the neutral mask:

p̂c = 158
444

= 0.356 and p̂n = 109
922

= 0.118

The estimated difference in proportions is p̂c − p̂n = 0.356 − 0.118 = 0.238.
The sample sizes are both quite large, well more than 10 scolding and not

scolding for each type of mask, so we model the difference in proportions with a
normal distribution. For 90% confidence the standard normal endpoint is z∗ = 1.645.
This gives

(p̂1 − p̂2) ± z∗ ·
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

(0.356 − 0.118) ± 1.645 ·
√

0.356(1 − 0.356)

444
+ 0.118(1 − 0.118)

922

0.238 ± 0.041

0.197 to 0.279

We are 90% sure that the proportion of crows that will scold is between 0.197 and
0.279 higher if the volunteer is wearing the caveman mask than if he or she is wearing
the neutral mask.

Note that we could easily have switched the order in the previous example
and estimated the difference in proportions with p̂n − p̂c = 0.118 − 0.356 = −0.238.
This would only change the signs in the confidence interval and lead to the same
interpretation.

Note also that the interpretation includes some direction (caveman mask tends
to be more likely to elicit scolding) rather than a less informative statement such
as ‘‘We are 90% sure that the difference in proportion of crow scoldings between
the caveman mask and the neutral mask is between 0.197 and 0.279.” In fact, since
the interval includes only positive values (and not zero), we can be relatively sure
(at least to a 10% significance level) that a hypothesis of no difference in the two
proportions would be rejected.

o
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to compute a confidence
interval for difference in proportions between two groups

Exercises for Section 6.8

SKILL BUILDER 1
In Exercises 6.170 to 6.173, use the normal distribu-
tion to find a confidence interval for a difference
in proportions p1 − p2 given the relevant sample
results. Give the best estimate for p1 − p2, the mar-
gin of error, and the confidence interval. Assume
the results come from random samples.
6.170 A 95% confidence interval for p1 − p2 given
that p̂1 = 0.72 with n1 = 500 and p̂2 = 0.68 with
n2 = 300
6.171 A 90% confidence interval for p1 − p2 given
that p̂1 = 0.20 with n1 = 50 and p̂2 = 0.32 with
n2 = 100
6.172 A 99% confidence interval for p1 − p2 given
counts of 114 yes out of 150 sampled for Group 1
and 135 yes out of 150 sampled for Group 2
6.173 A 95% confidence interval for p1 − p2 given
counts of 240 yes out of 500 sampled for Group 1
and 450 yes out of 1000 sampled for Group 2.
6.174 Who Is More Trusting: Internet Users or
Non-users? In a randomly selected sample of 2237
US adults, 1754 identified themselves as people who
use the Internet regularly while the other 483 indi-
cated that they do not use the Internet regularly. In
addition to Internet use, participants were asked if
they agree with the statement ‘‘most people can be
trusted.” The results show that 807 of the Internet
users agree with this statement, while 130 of the
non-users agree.45 Find and clearly interpret a 90%
confidence interval for the difference in the two
proportions.

6.175 Gender and Gun Control A survey reported
in Time magazine included the question ‘‘Do you
favor a federal law requiring a 15 day waiting period
to purchase a gun?” Results from a random sample
of US citizens showed that 318 of the 520 men who
were surveyed supported this proposed law while
379 of the 460 women sampled said ‘‘yes.’’ Use this

45Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.

information to find and interpret a 90% confidence
interval for the difference in the proportions of men
and women who agree with this proposed law.

6.176 Has Support for Capital Punishment
Changed over Time? The General Social Survey
(GSS) has been collecting demographic, behavioral,
and attitudinal information since 1972 to monitor
changes within the US and to compare the US to
other nations.46 Support for capital punishment (the
death penalty) in the US is shown in 1974 and in
2006 in the two-way table in Table 6.6. Find a 95%
confidence interval for the change in the proportion
supporting capital punishment between 1974 and
2006. Is it plausible that the proportion supporting
capital punishment has not changed?

Table 6.6 Has public support for capital
punishment changed?

Year Favor Oppose Total

1974 937 473 1410
2006 1945 870 2815

6.177 Are Errors Less Likely with Electronic Pre-
scriptions? Errors in medical prescriptions occur
and a study47 examined whether electronic pre-
scribing may help reduce errors. Two groups of
doctors used written prescriptions and had similar
error rates before the study. One group switched
to e-prescriptions while the other continued to use
written prescriptions, and error rates were measured
one year later. The results are given in Table 6.7.
Find and interpret a 95% confidence interval for the
difference in proportion of errors between the two
groups. Is it plausible that there is no difference?

46General Social Survey website, http://www3.norc.org/GSS+
Website.
47Kaushal, R., et al., ‘‘Electronic Prescribing Improves Medica-
tion Safety in Community-Based Office Practices,” Journal of
General Internal Medicine, June 2010; 25(6): 530–536.
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Table 6.7 Are prescription error rates
different?

Error No Error Total

Electronic 254 3594 3848
Written 1478 2370 3848

6.178 Metal Tags on Penguins and Survival Data
1.3 on page 10 discusses a study designed to test
whether applying metal tags is detrimental to pen-
guins. One variable examined is the survival rate 10
years after tagging. The scientists observed that 10
of the 50 metal tagged penguins survived, compared
to 18 of the 50 electronic tagged penguins. Construct
a 90% confidence interval for the difference in pro-
portion surviving between the metal and electronic
tagged penguins (pM − pE). Interpret the result.

6.179 Metal Tags on Penguins and Breeding Suc-
cess Data 1.3 on page 10 discusses a study designed
to test whether applying metal tags is detrimental
to penguins. Exercise 6.178 investigates the survival
rate of the penguins. The scientists also studied the
breeding success of the metal- and electronic-tagged
penguins. Metal-tagged penguins successfully pro-
duced offspring in 32% of the 122 total breeding
seasons, while the electronic-tagged penguins suc-
ceeded in 44% of the 160 total breeding seasons.
Construct a 95% confidence interval for the differ-
ence in proportion successfully producing offspring
(pM − pE). Interpret the result.

6.180 Gender and Award Preference In Exam-
ple 2.6 on page 51 we consider data from a sample
of statistics students that is stored in StudentSur-
vey. One of the survey questions asked which
award students would most like to win from among
an Academy Award, Nobel Prize, and Olympic
gold medal. Among the 193 male students who
responded, 109 chose the Olympic gold medal, while
73 of the 169 females also picked Olympic gold. Use
this information to find a 90% confidence interval
for the difference between the proportions of male
and female statistics students who choose Olympic
gold.

Hormone Replacement Therapy Exercises 6.181
through 6.184 refer to a study on hormone replace-
ment therapy. Until 2002, hormone replacement
therapy (HRT), taking hormones to replace those
the body no longer makes after menopause, was
commonly prescribed to post-menopausal women.
However, in 2002 the results of a large clinical
trial48 were published, causing most doctors to stop
prescribing it and most women to stop using it,

impacting the health of millions of women around
the world. In the experiment, 8506 women were ran-
domized to take HRT and 8102 were randomized
to take a placebo. Table 6.8 shows the observed
counts for several conditions over the five years
of the study. (Note: The planned duration was 8.5
years. If Exercises 6.181 through 6.184 are done cor-
rectly, you will notice that several of the intervals
just barely exclude zero. The study was terminated
as soon as some of the intervals included only posi-
tive values, because at that point it was unethical to
continue forcing women to take HRT.)

Table 6.8 Counts for several conditions within
the HRT group and the placebo group

Condition HRT Group Placebo Group

Cardiovascular Disease 164 122
Invasive Breast Cancer 166 124
Cancer (all) 502 458
Fractures 650 788

6.181 Find a 95% confidence interval for the differ-
ence in proportions of women who get cardiovascu-
lar disease taking HRT vs taking a placebo.

6.182 Find a 95% confidence interval for the dif-
ference in proportions of women who get invasive
breast cancer taking HRT vs taking a placebo.

6.183 Find a 95% confidence interval for the differ-
ence in proportions of women who get any type of
cancer taking HRT vs taking a placebo.

6.184 Find a 95% confidence interval for the differ-
ence in proportions of women who fracture a bone
taking HRT vs taking a placebo.

Comparing Normal and Bootstrap Confidence
Intervals In Exercises 6.185 and 6.186, find a 95%
confidence interval for the difference in proportions
two ways, using StatKey or other technology and
percentiles from a bootstrap distribution and using
the normal distribution and the formula for standard
error. Compare the results.

6.185 Difference in proportion who use text mes-
saging, using p̂t = 0.87 with n = 800 for teens and
p̂a = 0.72 with n = 2252 for adults.

48Rossouw, J., et al., ‘‘Risks and benefits of estrogen plus
progestin in healthy postmenopausal women: principal results
from the women’s health initiative randomized controlled trial,”
Journal of the American Medical Association, 2002; 288(3):
321–333.
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6.186 Difference in proportion who favor a gun
control proposal, using p̂f = 0.82 for 379 out of
460 females and p̂m = 0.61 for 318 out of 520 for
males. (We found a 90% confidence interval for this
difference in Exercise 6.175.)

6.187 Survival in the ICU and Infection In the
dataset ICUAdmissions, the variable Status indi-
cates whether the ICU (Intensive Care Unit) patient
lived (0) or died (1), while the variable Infection indi-
cates whether the patient had an infection (1 for yes,
0 for no) at the time of admission to the ICU. Use
technology to find a 95% confidence interval for the

difference in the proportion who die between those
with an infection and those without.

6.188 Survival in the ICU and Gender The dataset
ICUAdmissions contains information on patients
admitted to an Intensive Care Unit. The variable
Status indicates whether the patient lived (0) or
died (1), while the variable Sex indicates whether
the patient is male (0) or female (1). Use tech-
nology to find a 95% confidence interval for the
difference in the proportion who die between males
and females.

6.9TEST FOR A DIFFERENCE IN PROPORTIONS

In Section 5.2 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z = Sample Statistic − Null Parameter
SE

The sample statistic is computed from the sample data and the null parameter is
specified by the null hypothesis, H0.

When comparing proportions between two groups, the null hypothesis is typ-
ically H0 : p1 = p2 or, equivalently, H0 : p1 − p2 = 0. Thus the ‘‘null parameter”
is often equal to zero and we use the difference in proportions for two samples,
p̂1 − p̂2, as the ‘‘sample statistic”:

z = (p̂1 − p̂2) − 0
SE

= p̂1 − p̂2

SE

Once again, we are left with the problem of how to estimate the standard error, SE.
From the CLT for a difference in proportions in Section 6.7 we know that it has the
form

SE =
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2

But what do we use for p1 and p2? Recall in Section 6.3 that we solved this problem
for a single proportion by substituting the proportion specified by the null hypothesis,
p0. In this case, however, the null hypothesis only specifies that the two proportions
are equal, but not the value to which they are equal. We can’t just substitute p̂1
and p̂2 from the sample, because the null hypothesis says the proportions must
be equal.

If the null hypothesis is really true, then the best way to estimate the common
proportion is to combine the two samples into one big sample and find its proportion.
That is precisely what we do to compute what is known as a pooled proportion,
denoted p̂. We combine the two groups into one big combined group with sample
size n1 + n2 and find the sample proportion p̂ for that large group.
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Golden Balls: split or steal?

D A T A 6 . 4 Split or Steal?
A popular British TV show called Golden Balls features a final round where two
contestants each make a decision to either split or steal the final jackpot. If both
choose ‘‘split,” they share the prize, but if one chooses ‘‘split” and the other
picks ‘‘steal,” the whole prize goes to the player who steals. If both choose
‘‘steal,” they both win nothing.

Some researchers49 collected data from 287 episodes, each with two
participants, to give 574 ‘‘split” or ‘‘steal” decisions. Some results are displayed
in Table 6.9 broken down by the age of the participant. ■

Example 6.22
We use the data in Table 6.9 to test if there is a significant difference in the
proportions who choose ‘‘split” between younger and older players. Specify the
hypotheses and compute the sample proportion within each group as well as the
pooled proportion.

Solution If we let p1 and p2 represent the proportions who choose ‘‘split” among under and
over 40-year-old players, respectively, the relevant hypotheses are H0 : p1 = p2 vs
Ha : p1 �= p2. The sample proportions within each group are

Under 40: p̂1 = 187
382

= 0.490 Over 40: p̂2 = 116
192

= 0.604

Table 6.9 Split/Steal choice by age group

Age Group Split Steal Total
Under 40 187 195 382
Over 40 116 76 192
Total 303 271 574

49Van den Assem, M., Van Dolder, D., and Thaler, R., ‘‘Split or Steal? Cooperative Behavior When the
Stakes Are Large,” available at SSRN, http://ssrn.com/abstract=1592456, February 19, 2011.
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Under the null hypothesis that the two proportions are the same, we estimate the
pooled proportion by combining the two groups into one combined group, in which
303 opted to split out of a total of 574 players. The pooled proportion is

p̂ = 187 + 116
382 + 192

= 303
574

= 0.528

Note that the value of the pooled proportion is between the two sample
proportions in each group—this is always the case. To be consistent with the null
hypothesis of equal proportions, we use the pooled proportion for both samples
when computing the standard error for p̂1 − p̂2.

SE =
√

p̂(1 − p̂)

n1
+ p̂(1 − p̂)

n2
=

√
p̂(1 − p̂)

(
1
n1

+ 1
n2

)
Pay attention to this difference in the standard error for a difference in proportions!
For a confidence interval, we use the two sample proportions. For a hypothesis
test, in which we use the assumption that the null hypothesis of equal proportions
is true, we use a pooled sample proportion in place of both the individual sample
proportions.

Test for Difference in Two Proportions

To test H0 : p1 = p2 vs Ha : p1 �= p2 (or a one-tail alternative) based
on samples of size n1 and n2 from the two groups, the standardized
test statistic is

z = p̂1 − p̂2√
p̂(1−p̂)

n1
+ p̂(1−p̂)

n2

where p̂1 and p̂2 are the proportions in the two samples and p̂ is the
pooled proportion obtained by combining the two samples.

If both samples are sufficiently large (at least 10 successes and
failures in each group), the p-value of the test statistic is computed
using the standard normal distribution.

Example 6.23
Split or Steal?

Complete the details for testing whether the information in Data 6.4 provide
sufficient evidence to suggest that the proportion of participants who choose ‘‘split”
is different between younger and older players.

Solution Using the hypotheses and sample proportions from Example 6.22 we compute the
standardized test statistic

z = (0.490 − 0.604) − 0√
0.528(1−0.528)

382 + 0.528(1−0.528)
192

= −0.114
0.04416

= −2.58

For the two-tailed alternative, the p-value is twice the area in the standard normal
tail beyond z = −2.58, so we have

p-value = 2(0.0049) = 0.0098.

This is a small p-value, indicating that there is little chance that we would see this
big a difference in the sample proportions if age really didn’t matter. This gives
strong evidence that the proportion of younger contestants who choose to cooperate

/t
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and split the jackpot is lower than the proportion of older contestants willing to
cooperate.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to test a hypothesis about
a difference in proportions between two groups

Exercises for Section 6.9

SKILL BUILDER 1
In Exercises 6.189 to 6.194:

(a) Find the relevant sample proportions in each
group and the pooled proportion.

(b) Complete the hypothesis test using the normal
distribution and show all details.

6.189 Test whether there is a difference between
two groups in the proportion who voted, if 45 out of
a random sample of 70 in Group 1 voted and 56 out
of a random sample of 100 in Group 2 voted.

6.190 Test whether patients getting Treatment A
are more likely to survive, if 63 out of 82 get-
ting Treatment A survive and 31 out of 67 getting
Treatment B survive.

6.191 Test whether people with a specific genetic
marker are more likely to have suffered from clinical
depression than people without the genetic marker,
using the information that 38% of the 42 people in
a sample with the genetic marker have had clini-
cal depression while 12% of the 758 people in the
sample without the genetic marker have had clinical
depression.

6.192 Test whether males are less likely than
females to support a ballot initiative, if 24% of
a random sample of 50 males plan to vote yes on
the initiative and 32% of a random sample of 50
females plan to vote yes.

6.193 Table 6.10 gives flight arrival numbers from
a random sample of flights for two airlines. Test

Table 6.10 Arrival times for two airlines

Early On-time Late Total
Airline A 133 416 151 700
Airline B 58 355 87 500
Total 191 771 238 1200

whether there is a difference between the two air-
lines in the percent of flights that arrive late.

6.194 Table 6.11 shows data on whether or not a
treatment relieved pain for patients. Test whether
the treatment is significantly better than a placebo
at relieving pain. The patients were randomly allo-
cated to the two groups and the experiment was
double-blind.

Table 6.11 Is the treatment significantly better
than the placebo?

Treatment Placebo Total
Relieved pain 36 21 57
Did not relieve pain 39 54 93
Total 75 75 150

6.195 Babies Learn Early Who They Can Trust A
new study50 indicates that babies may choose not
to learn from someone they don’t trust. A group
of 60 babies, aged 13 to 16 months, were randomly
divided into two groups. Each baby watched an
adult express great excitement while looking into
a box. The babies were then shown the box and it
either had a toy in it (the adult could be trusted)
or it was empty (the adult was not reliable). The
same adult then turned on a push-on light with her
forehead, and the number of babies who imitated
the adult’s behavior by doing the same thing was
counted. The results are in Table 6.12. Test at a 5%
level to see if there is evidence that babies are more
likely to imitate those they consider reliable.

50Wood, J., ‘‘Babies Learn Early Who They Can Trust,” Psych-
Central, http://psychcentral.com/news/2011/12/07/babies-learn-
early-who-they-can-trust/32278.html.
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Table 6.12 Babies imitate those they trust

Imitated Did not imitate

Reliable 18 12
Unreliable 10 20

6.196 Do Ovulating Women Affect Men’s Speech?
Studies suggest that when young men interact with
a woman who is in the fertile period of her men-
strual cycle, they pick up subconsciously on subtle
changes in her skin tone, voice, and scent. A study
introduced in Exercise B.18 suggests that men may
even change their speech patterns around ovulating
women. The men were randomly divided into two
groups with one group paired with a woman in the
fertile phase of her cycle and the other group with
a woman in a different stage of her cycle. The same
women were used in the two different stages. For
the men paired with a less fertile woman, 38 of the
61 men copied their partner’s sentence construction
in a task to describe an object. For the men paired
with a woman at peak fertility, 30 of the 62 men
copied their partner’s sentence construction. The
experimenters hypothesized that men might be less
likely to copy their partner during peak fertility in
a (subconscious) attempt to attract more attention
to themselves. Use the normal distribution to test at
a 5% level whether the proportion of men copying
sentence structure is less when the woman is at peak
fertility.

6.197 Quebec vs Texas Secession In Example 6.4
on page 360 we analyzed a poll of 800 Quebecers,
in which 28% thought that the province of Quebec
should separate from Canada. Another poll of 500
Texans found that 18% thought that the state of
Texas should separate from the United States.51

(a) In the sample of 800 people, about how many
Quebecers thought Quebec should separate
from Canada? In the sample of 500, how many
Texans thought Texas should separate from the
US?

(b) In these two samples, what is the pooled pro-
portion of Texans and Quebecers that want to
separate?

(c) Can we conclude that the two population pro-
portions differ? Use a two-tailed test and inter-
pret the result.

6.198 Physician’s Health Study In the Physician’s
Health Study, introduced in Data 1.6 on page 37,

51‘‘In Texas, 31% Say State Has Right to Secede From U.S., But
75% Opt To Stay,” Rasmussen Reports, April 17, 2009.

22,071 male physicians participated in a study to
determine whether taking a daily low-dose aspirin
reduced the risk of heart attacks. The men were
randomly assigned to two groups and the study was
double-blind. After five years, 104 of the 11,037 men
taking a daily low-dose aspirin had had a heart attack
while 189 of the 11,034 men taking a placebo had
had a heart attack.52 Does taking a daily low-dose
aspirin reduce the risk of heart attacks? Conduct
the test, and, in addition, explain why we can infer
a causal relationship from the results.

6.199 Electrical Stimulation for Fresh Insight? In
Exercise 4.134 on page 279, we used the data in
Table 6.13 to conduct a randomization test to see if
there was evidence that electrical stimulation of the
brain helped people solve a problem that requires
fresh insight. Explain why it would not be appropri-
ate to conduct this test using the normal distribution
and the formulas in this section.

Table 6.13 Does electrical brain stimulation
bring fresh insight to a problem?

Treatment Solved Not Solved

Sham 4 16
Electrical 12 8

6.200 Autism and Maternal Antidepressant Use A
recent study53 compared 298 children with Autism
Spectrum Disorder to 1507 randomly selected con-
trol children without the disorder. Of the children
with autism, 20 of the mothers had used antidepres-
sant drugs during the year before pregnancy or the
first trimester of pregnancy. Of the control children,
50 of the mothers had used the drugs.

(a) Is there a significant association between pre-
natal exposure to antidepressant medicine and
the risk of autism? Test whether the results are
significant at the 5% level.

(b) Can we conclude that prenatal exposure to
antidepressant medicine increases the risk of
autism in the child? Why or why not?

(c) The article describing the study contains the
sentence ‘‘No increase in risk was found for

52‘‘Final report on the aspirin component of the ongoing
Physicians’ Health Study. Steering Committee of the Physi-
cians’ Health Study Research Group,’’ New England Journal of
Medicine, 1989; 321(3): 129–135.
53Croen, L., Grether, J., Yoshida, C., Odouli, R., and Hen-
drick, V., ‘‘Antidepressant Use During Pregnancy and Childhood
Autism Spectrum Disorders,” Archives of General Psychiatry,
2011; 68(11): 1104–1112.
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mothers with a history of mental health treat-
ment in the absence of prenatal exposure to
selective serotonin reuptake inhibitors [antide-
pressants].” Why did the researchers conduct
this extra analysis?

6.201 Who Is More Trusting: Internet Users or
Non-users? In a randomly selected sample of 2237
US adults, 1754 identified themselves as people who
use the Internet regularly while the other 483 indi-
cated that they do not. In addition to Internet use,
participants were asked if they agree with the state-
ment ‘‘most people can be trusted.” The results
show that 807 of the Internet users agree with this
statement, while 130 of the non-users agree.54

(a) Which group is more trusting in the sample (in
the sense of having a larger percentage who
agree): Internet users or people who don’t use
the Internet?

(b) Can we generalize the result from the sample?
In other words, does the sample provide evi-
dence that the level of trust is different between
the two groups in the broader population?

(c) Can we conclude that Internet use causes people
to be more trusting?

(d) Studies show that formal education makes peo-
ple more trusting and also more likely to use the
Internet. Might this be a confounding factor in
this case?

6.202 Green Tea and Prostate Cancer A prelimi-
nary study suggests a benefit from green tea for those
at risk of prostate cancer.55 The study involved 60
men with PIN lesions, some of which turn into
prostate cancer. Half the men, randomly deter-
mined, were given 600 mg a day of a green tea
extract while the other half were given a placebo.
The study was double-blind, and the results after
one year are shown in Table 6.14. Does the sam-
ple provide evidence that taking green tea extract
reduces the risk of developing prostate cancer?

Table 6.14 Does green tea extract
reduce the risk of prostate cancer?

Treatment Cancer No Cancer

Green tea 1 29
Placebo 9 21

54Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
55Schardt, D., ‘‘What’s all the fuss about green tea?” Nutrition-
Action Health Letter, Center for Science in the Public Interest,
May 2011, p. 10.

6.203 Number of Bedrooms in Houses in New York
and New Jersey The dataset HomesForSale has data
on houses available for sale in three Mid-Atlantic
states (NY, NJ, and PA). For this exercise we are
specifically interested in homes for sale in New
York and New Jersey. We have information on 30
homes from each state and observe the proportion
of homes with more than three bedrooms. We find
that 26.7% of homes in NY (p̂NY) and 63.3% of
homes in NJ (p̂NJ) have more then three bedrooms.

(a) Is the normal distribution appropriate to model
this difference?

(b) Test for a difference in proportion of homes
with more than three bedrooms between the
two states and interpret the result.

6.204 THC vs Prochloroperazine An article in the
New York Times on January 17, 1980 reported on
the results of an experiment that compared an exist-
ing treatment drug (prochloroperazine) with using
THC (the active ingredient in marijuana) for com-
bating nausea in patients undergoing chemotherapy
for cancer. Patients being treated in a cancer clinic
were divided at random into two groups which were
then assigned to one of the two drugs (so they did
a randomized, double-blind, comparative experi-
ment). Table 6.15 shows how many patients in each
group found the treatment to be effective or not
effective.

(a) Use these results to test whether the propor-
tion of patients helped by THC is significantly
higher (no pun intended) than the proportion
helped by prochloroperazine. Use a 1% signifi-
cance level since we would require very strong
evidence to switch to THC in this case.

(b) Why is it important that these data come from
a well-designed experiment?

Table 6.15 Effectiveness of anti-nausea
treatments

Treatment Sample Size Effective Not Effective

THC 79 36 43
Prochloroperazine 78 16 62

Hormone Replacement Therapy Exercises 6.205
through 6.208 refer to a study on hormone replace-
ment therapy. Until 2002, hormone replacement
therapy (HRT), taking hormones to replace those
the body no longer makes after menopause,
was commonly prescribed to post-menopausal
women. However, in 2002 the results of a large
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clinical trial56 were published, causing most doc-
tors to stop prescribing it and most women to stop
using it, impacting the health of millions of women
around the world. In the experiment, 8506 women
were randomized to take HRT and 8102 were ran-
domized to take a placebo. Table 6.16 shows the
observed counts for several conditions over the five
years of the study. (Note: The planned duration was
8.5 years. If Exercises 6.205 through 6.208 are done
correctly, you will notice that several of the p-values
are just below 0.05. The study was terminated as
soon as HRT was shown to significantly increase
risk (using a significance level of α = 0.05), because
at that point it was unethical to continue forcing
women to take HRT).

Table 6.16 Counts for several conditions
within the HRT group and the placebo group

Condition HRT Group Placebo Group

Cardiovascular Disease 164 122
Invasive Breast Cancer 166 124
Cancer (all) 502 458
Fractures 650 788

56Rossouw, J., et al., ‘‘Risks and benefits of estrogen plus pro-
gestin in healthy postmenopausal women: principal results from
the women’s health initiative randomized controlled trial,” Jour-
nal of the American Medical Association, 2002; 288(3): 321–333.

6.205 Does HRT influence the chance of a woman
getting cardiovascular disease?

6.206 Does HRT influence the chance of a woman
getting invasive breast cancer?

6.207 Does HRT influence the chance of a woman
getting cancer of any kind?

6.208 Does HRT influence the chance of a woman
having a fracture?

6.209 Infections in the ICU and Gender In the
dataset ICUAdmissions, the variable Infection indi-
cates whether the ICU (Intensive Care Unit) patient
had an infection (1) or not (0) and the variable Sex
gives the gender of the patient (0 for males and 1
for females.) Use technology to test at a 5% level
whether there is a difference between males and
females in the proportion of ICU patients with an
infection.

6.210 Surgery in the ICU and Gender In the
dataset ICUAdmissions, the variable Service indi-
cates whether the ICU (Intensive Care Unit) patient
had surgery (1) or other medical treatment (0) and
the variable Sex gives the gender of the patient (0
for males and 1 for females.) Use technology to test
at a 5% level whether there is a difference between
males and females in the proportion of ICU patients
who have surgery.

6.10DISTRIBUTION OF DIFFERENCES IN MEANS

In this section we consider the distribution of the differences in means between
samples taken from two distinct groups. Those groups might be two different
populations, two subsets within a single sample identified by a categorical variable,
or different treatments in an experiment. The parameter of interest is μ1 − μ2,
where μ1 and μ2 represent the ‘‘true” means in each of the two groups. Here are
two examples from previous chapters:

• In Example 3.25 on page 207, we consider mean number of hours per week spent
exercising, between males and females, from the ExerciseHours dataset. The
mean for the 20 males is xM = 12.4 hours with standard deviation sM = 8.80. The
mean for the 30 females is xF = 9.4 hours with standard deviation sF = 7.41.

• In Data 4.2 on page 223, we look at an experiment to compare the leniency scores
assigned to students charged with a disciplinary infraction. Subjects were shown
a picture of the alleged wrongdoer which was randomly selected from either a
smiling or a neutral pose. The data in Smiles show that the 34 scores given to
smiling faces had a mean leniency score of 4.91 with a standard deviation of 1.68,
while the 34 neutral expressions had a mean score of 4.11 and standard deviation
of 1.52.

In comparing the male and female exercise times we created a bootstrap
distribution of differences in sample means, as shown in Figure 6.21(a). When
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(a) Bootstrap differences in exercise means for males
and females

(b) Randomization differences in leniency means
when μs = μc
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Figure 6.21 Simulation distributions for differences in two sample means

testing for a difference in leniency means, we created a randomization distribution,
shown in Figure 6.21(b), of the differences in sample means after scrambling the
smile/neutral group labels to reflect the null hypothesis, H0 : μs = μn.

Once again, we notice that both distributions have a relatively normal shape.
The differences in the bootstrap exercise means are centered around 3.0 hours, the
difference in the means of the original data from which the bootstrap samples were
chosen. The randomization distribution is centered around zero, which is consistent
with the null hypothesis, which says that μs − μn = 0. We can also estimate the
standard error of the difference in means in each situation. From the standard
deviation of the bootstrap differences in Figure 6.21(a) we find SE ≈ 2.34. For the
randomization differences in Figure 6.21(b) we get SE ≈ 0.40.

Computing the Standard Error
In Section 6.4 we saw that the distribution of x for a single sample is centered at
the population mean μ, has spread given by SE = σ/

√
n, and approaches a normal

curve as the sample size gets large. Notice that we can also write the standard error
as SE =

√
σ 2/n. This leads us to the Central Limit Theorem for differences in means

for two samples to describe distributions such as those in Figure 6.21.

Central Limit Theorem for Differences in Two Sample Means

When choosing random samples of size n1 and n2 from populations
with means μ1 and μ2 and standard deviations σ1 and σ2, respectively,
the distribution of the differences in the two sample means, x1 − x2,
is approximately normal if both sample sizes are large (at least 30), is

centered at μ1 − μ2, and has standard deviation SE =
√

σ 2
1

n1
+ σ 2

2
n2

.

Using notation for a normal distribution, this means if both sample sizes are
sufficiently large

x1 − x2 ∼ N

⎛⎝μ1 − μ2,

√
σ 2

1

n1
+ σ 2

2

n2
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The t-Distribution
Recall from the work with a single mean in Section 6.4 that we need to make a small
adjustment when working with means, since we almost certainly do not know the
population standard deviations. Fortunately, we can apply a similar remedy in the
case of differences in two sample means, namely to substitute the sample standard
deviations when computing the standard error

SE =
√

s2
1

n1
+ s2

2

n2

and then use the t-distribution instead of the normal distribution when finding end-
points for confidence intervals or p-values for tests. Also, as with a single mean, we
need to check each sample for heavy skewness or extreme outliers that might indicate
serious departures from normality, especially when either sample size is small.

However, we have one additional difficulty in the two-sample case: What
should we use for the degrees of freedom? Recall that for a single sample we
use n − 1 degrees of freedom, but now we have two (possibly different) sample
sizes. One solution is a complicated formula, called Satterwaithe’s approximation,
for estimating the degrees of freedom, which is used in many statistical software
packages. As a conservative approach, in this text we will use the smaller of the two
degrees of freedom, either n1 − 1 or n2 − 1.

The Distribution of Differences in Sample Means

When choosing random samples of size n1 and n2 from populations
with means μ1 and μ2, respectively, the distribution of the differences
in the two sample means, x1 − x2, has the following characteristics.

Center: The mean is equal to the difference in population means,
μ1 − μ2.

Spread: The standard error is estimated using SE =
√

s2
1

n1
+ s2

2

n2
.

Shape: The standardized differences in sample means follow a
t-distribution with degrees of freedom approximately equal to the
smaller of n1 − 1 and n2 − 1.

For small sample sizes (n1 < 30 or n2 < 30), the t-distribution is only
a good approximation if the underlying population has a distribution
that is approximately normal.

In finding the standard error for the difference x1 − x2, you may be tempted to
subtract s2

2/n2 from s2
1/n1 within the square root rather than add those two terms.

It’s important that the variability of the difference depends on adding the variability
generated from each of the two samples.

Example 6.24
We’ve already verified that the center and shape of the two distributions in
Figure 6.21 are consistent with the CLT for differences in two sample means.
Check that the standard errors also agree with the formulas in the CLT.

&
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Solution For the bootstrap differences in mean exercise times the standard error
should be

SE =
√

8.802

20
+ 7.412

30
= 2.39

For the randomization differences in leniency scores the standard error
should be

SE =
√

1.682

34
+ 1.522

34
= 0.39

Thus we would expect the bootstrap differences to be distributed as N(3.0, 2.39)

and the randomization differences to be N(0, 0.39). These curves are plotted in
Figure 6.21 and agree nicely with the simulated results.

Example 6.25
Is it appropriate to use a t-distribution for conducting inference on the data on male
and female exercise hours described at the start of this section? If it is appropriate,
what degrees of freedom should we use?

Solution The sample size for males is nM = 20 and the sample size for females is nF = 30.
Since the sample size for males is less than 30, we check the distribution. A dotplot
of the number of hours spent exercising for the 20 males is shown in Figure 6.22. It
is not extremely skewed and does not have extreme outliers, so a t-distribution is
appropriate.

Figure 6.22 Male
exercise times

Exercise

Male
4 8 12 16 20 24 28

The degrees of freedom is the smaller of nM − 1 or nF − 1. Since nM is less than
nF , we have df = nM − 1 = 20 − 1 = 19.

In the next two sections, we explore the use of the t-distribution in more
detail—first for computing a confidence interval for a difference in two means and
then for computing a p-value to test a hypothesis that two means are equal.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Find the mean and standard error for a distribution of differences in
sample means for two groups

• Recognize when a t-distribution is an appropriate model for a distribu-
tion of the standardized difference in two sample means

o

o

o
o
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Exercises for Section 6.10

SKILL BUILDER 1
In Exercises 6.211 to 6.214, random samples of the
given sizes are drawn from populations with the
given means and standard deviations. For each sce-
nario:

(a) Find the mean and standard error of the
distribution of differences in sample means,
x1 − x2.

(b) If the sample sizes are large enough for the
Central Limit Theorem to apply, draw a curve
showing the shape of the sampling distribution.
Include at least three values on the horizontal
axis.

6.211 Samples of size 100 from Population 1 with
mean 87 and standard deviation 12 and samples of
size 80 from Population 2 with mean 81 and standard
deviation 15

6.212 Samples of size 25 from Population 1 with
mean 6.2 and standard deviation 3.7 and samples
of size 40 from Population 2 with mean 8.1 and
standard deviation 7.6

6.213 Samples of size 50 from Population 1 with
mean 3.2 and standard deviation 1.7 and samples
of size 50 from Population 2 with mean 2.8 and
standard deviation 1.3

6.214 Samples of size 300 from Population 1 with
mean 75 and standard deviation 18 and samples
of size 500 from Population 2 with mean 83 and
standard deviation 22

SKILL BUILDER 2
Use a t-distribution to answer the questions in
Exercises 6.215 to 6.218. Assume the samples are
random samples from distributions that are reason-
ably normally distributed, and that a t-statistic will
be used for inference about the difference in sample
means. State the degrees of freedom used.

6.215 Find the endpoints of the t-distribution with
2.5% beyond them in each tail if the samples have
sizes n1 = 15 and n2 = 25.

6.216 Find the endpoints of the t-distribution with
5% beyond them in each tail if the samples have
sizes n1 = 8 and n2 = 10.

6.217 Find the area in a t-distribution less than −1.4
if the samples have sizes n1 = 30 and n2 = 40.

6.218 Find the area in a t-distribution above 2.1 if
the samples have sizes n1 = 12 and n2 = 12.

SAT SCORES
Exercises 6.219 to 6.223 involve scores from the high
school graduating class of 2010 on the SAT (Scholas-
tic Aptitude Test).57

6.219 Mathematics Scores by Gender The average
score on the Mathematics part of the SAT exam for
males is 534 with a standard deviation of 118, while
the average score for females is 500 with a standard
deviation of 112.

(a) If random samples are taken with 40 males and
60 females, find the mean and standard devia-
tion of the distribution of differences in sam-
ple means, xm − xf , where xm represents the
sample mean for the males and xf represents
the sample mean for the females.

(b) Repeat part (a) if the random samples contain
400 males and 600 females.

(c) What effect do the different sample sizes have
on center and spread of the distribution?

6.220 Writing Scores by Gender The average score
on the Writing part of the SAT exam for males
is 486 with a standard deviation of 112, while the
average score for females is 498 with a standard
deviation of 111.

(a) If random samples are taken with 100 males and
100 females, find the mean and standard devia-
tion of the distribution of differences in sample
means, xm − xf , where xm represents the sample
mean for the males and xf represents the sample
mean for the females.

(b) Repeat part (a) if the random samples contain
500 males and 500 females.

(c) What effect do the different sample sizes have
on center and spread of the distribution?

6.221 Critical Reading Scores by Gender The dis-
tribution of sample means xm − xf , where xm repre-
sents the mean Critical Reading score for a sample
of 50 males and xf represents the mean Critical
Reading score for a sample of 50 females, is cen-
tered at 5 with a standard deviation of 22.5. Give
notation and define the quantity we are estimating
with these sample differences. In the population of
all students taking the test, who scored higher on
average, males or females?

6.222 Critical Reading Scores by Native Language
The distribution of sample means xN − xE, where

57professionals.collegeboard.com.
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xN represents the mean Critical Reading score for a
sample of 100 people for whom the native language
is not English and xE represents the mean Critical
Reading score for a sample of 100 people whose
native language is English, is centered at −41 with a
standard deviation of 16.0. Give notation and define
the quantity we are estimating with these sample
differences. In the population of all students taking
the test, who scored higher on average, non-native
English speakers or native English speakers?

6.223 Mathematics Scores by Native Language The
distribution of sample means xN − xE, where xN
represents the mean Mathematics score for a sam-
ple of 100 people for whom the native language is
not English and xE represents the mean Mathemat-
ics score for a sample of 100 people whose native
language is English, is centered at 10 with a stan-
dard deviation of 17.41. Give notation and define
the quantity we are estimating with these sample
differences. In the population of all students taking
the test, who scored higher on average, non-native
English speakers or native English speakers?

Standard Error from a Formula and a Boot-
strap Distribution In Exercises 6.224 and 6.225, use
StatKey or other technology to generate a bootstrap
distribution of sample differences in means and
find the standard error for that distribution. Com-
pare the result to the standard error given by the
Central Limit Theorem, using the sample standard
deviations as estimates of the population standard
deviations.

6.224 Difference in mean commuting time (in min-
utes) between commuters in Atlanta and com-
muters in St. Louis, using n1 = 500, x1 = 29.11, and
s1 = 20.72 for Atlanta and n2 = 500, x2 = 21.97, and
s2 = 14.23 for St. Louis.

6.225 Difference in mean commuting distance (in
miles) between commuters in Atlanta and com-
muters in St. Louis, using n1 = 500, x1 = 18.16, and
s1 = 13.80 for Atlanta and n2 = 500, x2 = 14.16, and
s2 = 10.75 for St. Louis.

6.226 Common Stat Exams Professor A and Pro-
fessor B are teaching sections of the same introduc-
tory statistics course and decide to give common
exams. They both have 25 students and design the
exams to produce a grade distribution that fol-
lows a bell curve with mean μ = 75 and standard
deviation σ = 10.

(a) Suppose students are randomly assigned to the
two classes and the instructors are equally effec-
tive. Describe the center, spread, and shape of
the distribution of the difference in class means,
xA − xB, for the common exams.

(b) Based on the distribution in part (a), how often
should one of the class means differ from the
other class by three or more points? (Hint: Look
at both the tails of the distribution.)

(c) How do the answers to parts (a) and (b) change
if the exams are much harder than expected
so the distribution for each class is N(60, 10)

rather that N(75, 10)?

6.227 More Common Stat Exams Refer to the situa-
tion described in Exercise 6.226 where two statistics
instructors are comparing class means on common
exams. Suppose that the class sizes are both 100,
rather than 25. If all else remains the same, are we
more, less, or equally likely to see a difference in
means as large as 3 or more points between the
two classes? Do a calculation based on the larger
samples to check your conjecture.

6.11CONFIDENCE INTERVAL FOR A DIFFERENCE IN MEANS

In Section 6.5 we see that, when the underlying population is reasonably normal or
the sample size is large, a confidence interval for a mean can be formed with

x ± t∗
s√
n

where t∗ is an appropriate percentile from a t-distribution with n − 1 degrees of
freedom.

In Section 6.10 we see that we can estimate a difference in means for two groups
based on the difference in the means for samples from those groups, x1 − x2. We
can also estimate the standard error for this difference with

SE =
√

s2
1

n1
+ s2

2

n2

where s1 and s2 are the standard deviations from the respective samples.
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Combining these results, we can extend the formula for computing a confidence
interval for a single mean to one that works for a difference in two means.

Confidence Interval for a Difference in Two Means

If we have large samples (or samples that are reasonably normally
distributed) of sizes n1 and n2 from two different groups, we can
construct a confidence interval for μ1 − μ2, the difference in means
between those two groups, using

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2

where x1 and x2 are the means and s1 and s2 are the standard deviations
for the respective samples.

The t∗ value is a percentile from a t-distribution to give the
desired level of confidence. Use the smaller of n1 − 1 and n2 − 1, or
technology, to give the degrees of freedom.

Example 6.26
Atlanta vs St. Louis Commute Times

In Data 3.3 on page 193, we introduce a sample of 500 commuting times for people
who work in Atlanta, and in Exercise 3.113 we introduce a sample of 500 commuting
times for people who work in St. Louis. The data are in CommuteAtlanta and
CommuteStLouis. The summary statistics for these two samples are shown below
and Figure 6.23 displays boxplots of the commute times from each city.

Group n Mean Std. Dev.

Atlanta 500 29.11 20.72
St. Louis 500 21.97 14.23

Use these data to compute a 90% confidence interval for the difference in mean
commute time between Atlanta and St. Louis.

Solution From the boxplots we see that both samples are right skewed and have numerous
outliers. If these were smaller samples, we would be hesitant to model the difference
in means with a t-distribution. However, with these large samples (n1 = n2 = 500)
we can go ahead and use the t-distribution to find the interval.

Each sample has 500 − 1 = 499 degrees of freedom, so we find the t∗ value
with an area of 0.05 in the tail beyond it in a t-distribution with 499 degrees of

Figure 6.23 Commute
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freedom. This value is t∗ = 1.648 and is very close to the standard normal percentile
of z∗ = 1.645.

Substituting into the formula for a confidence interval for a difference in means
we get

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2

(29.11 − 21.97) ± 1.648

√
20.722

500
+ 14.232

500
7.14 ± 1.85

5.29 to 8.99

Based on these results, we are 95% sure that the mean commute time in Atlanta is
between 5.29 and 8.99 minutes more than the mean commute time in St. Louis.

Note that we could easily have switched the order in the previous example
and estimated the difference in means with xstl − xatl = 21.97 − 29.11 = −7.14. This
would only change the signs in the confidence interval and lead to the same inter-
pretation.

Note also that the interpretation includes some direction (commute times tend
to be longer in Atlanta than St. Louis) rather than a less informative statement such
as ‘‘We are 90% sure that the difference in mean commute time between Atlanta
and St. Louis is between 5.29 and 8.99 minutes.” In fact, since the interval includes
only positive values (and not zero), we can be relatively sure (at least to a 10%
significance level) that a hypothesis of no difference in the two means would be
rejected.

In Exercise 3.113 on page 216 we used a bootstrap distribution in Figure 3.31
to estimate this 90% confidence interval for the difference in mean commute time
between the two cities. The percentiles of that distribution give an interval from 5.21
to 8.95 minutes, which is very similar to the result from the t-interval in Example 6.26.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to compute a confidence interval
for the difference in means between two groups

Exercises for Section 6.11

SKILL BUILDER 1
In Exercises 6.228 to 6.231, use the t-distribution to
find a confidence interval for a difference in means
μ1 − μ2 given the relevant sample results. Give the
best estimate for μ1 − μ2, the margin of error, and
the confidence interval. Assume the results come
from random samples from populations that are
approximately normally distributed.

6.228 A 95% confidence interval for μ1 − μ2 using
the sample results x1 = 75.2, s1 = 10.7, n1 = 30 and
x2 = 69.0, s2 = 8.3, n2 = 20

6.229 A 90% confidence interval for μ1 − μ2 using
the sample results x1 = 10.1, s1 = 2.3, n1 = 50 and
x2 = 12.4, s2 = 5.7, n2 = 50

o
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6.230 A 99% confidence interval for μ1 − μ2 using
the sample results x1 = 501, s1 = 115, n1 = 400 and
x2 = 469, s2 = 96, n2 = 200

6.231 A 95% confidence interval for μ1 − μ2 using
the sample results x1 = 5.2, s1 = 2.7, n1 = 10 and
x2 = 4.9, s2 = 2.8, n2 = 8

Homes for Sale Exercises 6.232 to 6.235 refer to the
dataset HomesForSale, which has data on houses
available for sale in three Mid-Atlantic states (NY,
NJ, and PA) as well as California (CA). Table 6.17
has summary statistics for each of the four states,
with prices given in thousands of dollars. (Since
n = 30, we ask you to use the t-distribution here
despite the fact that the data are quite skewed.
In practice, we might have enough concern about
the skewness to choose to use bootstrap methods
instead.)

Table 6.17 Mean housing prices for four states

State n Mean Std. Dev.

New York 30 565.6 697.6
New Jersey 30 388.5 224.7
Pennsylvania 30 249.6 179.3
California 30 715.1 1112.3

6.232 Find and interpret a 95% confidence interval
for the mean price of a home in California.

6.233 Find and interpret a 90% confidence interval
for the difference in mean housing price between
California and New York.

6.234 Find and interpret a 99% confidence interval
for the difference in mean housing price between
New Jersey and Pennsylvania.

6.235 Find and interpret a 95% confidence interval
for the difference in mean housing price between
New York and New Jersey.

6.236 Dark Chocolate for Good Health A recent
study58 examines chocolate’s effects on blood
vessel function in healthy people. In the ran-
domized, double-blind, placebo-controlled study,
11 people received 46 grams (1.6 ounces) of
dark chocolate (which is naturally flavonoid-rich)
every day for two weeks, while a control group
of 10 people received a placebo consisting of
dark chocolate with low flavonoid content. Par-
ticipants had their vascular health measured (by

58Engler, M., et al., ‘‘Flavonoid-rich dark chocolate improves
endothelial function and increases plasma epicatechin concen-
trations in healthy adults,” Journal of the American College of
Nutrition, 2004; 23(3): 197–204.

means of flow-mediated dilation) before and after
the two-week study. The increase over the two-week
period was measured, with larger numbers indicat-
ing greater vascular health. For the group getting
the good dark chocolate, the mean increase was 1.3
with a standard deviation of 2.32, while the control
group had a mean change of −0.96 with a standard
deviation of 1.58.

(a) Explain what ‘‘randomized, double-blind,
placebo-controlled study” means.

(b) Find and interpret a 95% confidence interval
for the difference in means between the two
groups. Be sure to clearly define the parameters
you are estimating. You may assume that nei-
ther sample shows significant departures from
normality.

(c) Is it plausible that there is ‘‘no difference”
between the two kinds of chocolate? Justify
your answer using the confidence interval found
in part (b).

6.237 Close Confidants and Social Networking Sites
Exercise 6.116 introduced a study59 in which 2006
randomly selected US adults (age 18 or older) were
asked to give the number of people in the last six
months ‘‘with whom you discussed matters that are
important to you.” The average number of close
confidants for the full sample was 2.2. In addition,
the study asked participants whether or not they
had a profile on a social networking site. For the
947 participants using a social networking site, the
average number of close confidants was 2.5 with a
standard deviation of 1.4, and for the other 1059
participants who do not use a social networking site,
the average was 1.9 with a standard deviation of 1.3.
Find and interpret a 90% confidence interval for the
difference in means between the two groups.

6.238 Does Red Increase Men’s Attraction to
Women? Exercise 1.89 on page 42 described a
recent study60 which examines the impact of the
color red on how attractive men perceive women to
be. In the study, men were randomly divided into
two groups and were asked to rate the attractive-
ness of women on a scale of 1 (not at all attractive)
to 9 (extremely attractive). Men in one group were
shown pictures of women on a white background

59Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
60Data approximated from information given in Elliot, A. and
Niesta, D., ‘‘Romantic Red: Red Enhances Men’s Attraction to
Women,” Journal of Personality and Social Psychology, 2008;
95(5): 1150–1164.
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while the men in the other group were shown the
same pictures of women on a red background. The
results are shown in Table 6.18 and the data for
both groups are reasonably symmetric with no out-
liers. To determine the possible effect size of the
red background over the white, find and interpret a
90% confidence interval for the difference in mean
attractiveness rating.

Table 6.18 Does red increase
men’s attraction to women?

Color n x s

Red 15 7.2 0.6
White 12 6.1 0.4

6.239 Light at Night and Weight Gain A study
described in Data A.1 on page 136 found that mice
exposed to light at night gained substantially more
weight than mice who had complete darkness at
night, despite the fact that calorie intake and activity
levels were the same for the two groups. How large
is the effect of light on weight gain? In the study, 27
mice were randomly divided into two groups. The
8 mice with darkness at night gained an average of
5.9 grams in body mass, with a standard deviation
of 1.9 grams. The 19 mice with light at night gained
an average of 9.4 grams with a standard deviation
of 3.2 grams. We see in Figure 6.24 that there is
no extreme skewness or extreme outliers, so it is
appropriate to use a t-distribution. Find and inter-
pret a 99% confidence interval for the difference in
mean weight gain.
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Figure 6.24 Does light at night affect body mass gain?

Table 6.19 Videogames and GPA

Student brought Roommate brought
videogame videogame Sample Size Mean GPA Std. Dev.

No No 88 3.128 0.590
Yes No 44 3.039 0.689
No Yes 38 2.932 0.699
Yes Yes 40 2.754 0.639

6.240 Home Field Advantage in American Foot-
ball How big is the home field advantage in the
National Football League (NFL)? To investigate
this question, we select a sample of 80 games from
the 2011 regular season61 and find the home team
scored an average of 25.16 points with standard
deviation 10.14 points. In a separate sample of 80
different games, the away team scored an average
of 21.75 points with a standard deviation of 10.33
points. Use this summary information to estimate
the mean home field advantage and find a 90% con-
fidence interval for the mean home field advantage,
μH − μA, in points scored.

Impact of College Roommates on Grades In
Exercises 6.241 to 6.245, we investigate answers to
the questions: How much of an effect does your
roommate have on your grades? In particular,
does it matter whether your roommate brings a
videogame to college? Exercise B.7 on page 306
introduces a study involving n = 210 first-year stu-
dents who were randomly assigned a roommate.
Table 6.19 gives summary statistics on grade point
average (GPA) for the first semester depending on
whether the student and/or the roommate brought
a videogame to campus.

6.241 Considering only students who do not bring
a videogame to campus, find and interpret a 95%
confidence interval for the difference in mean GPA
between students whose roommate does not bring

61NFL scores found at http://www.pro-football-reference.com/
years/2011/games.htm. Home scores from weeks 2, 4, 12, 14, and
16. Away scores from weeks 1, 3, 13, 15, and 17.
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a videogame and those whose roommate does bring
a videogame. Comment on the effect on these stu-
dents of having a roommate bring a videogame.

6.242 Considering only students who do bring a
videogame to campus, find and interpret a 95%
confidence interval for the difference in mean GPA
between students whose roommate does not bring
a videogame and those whose roommate does bring
a videogame. Comment on the effect on these stu-
dents of having a roommate bring a videogame.

6.243 Considering only students whose roommate
does not bring a videogame to campus, find and
interpret a 95% confidence interval for the differ-
ence in mean GPA between students who bring a
videogame and those who do not bring a videogame.
Comment on the effect on these students of bringing
a videogame.

6.244 Considering only students whose roommate
does bring a videogame to campus, find and interpret
a 95% confidence interval for the difference in mean
GPA between students who bring a videogame and
those who do not bring a videogame. Comment on
the effect on these students of bringing a videogame.

6.245 We consider the effect of neither student
bringing videogames compared to both students
bringing them, still using the data in Table 6.19.

(a) Find and interpret a 95% confidence interval
for the difference in means between students
in rooms in which neither the student nor the
roommate brings a videogame and students in
rooms in which both the student and the room-
mate bring a videogame. Comment on the effect
of videogames on GPA.

(b) Can we conclude that bringing videogames to
campus reduces GPA? Why or why not?

6.246 Who Exercises More: Males or Females? The
dataset StudentSurvey has information from males
and females on the number of hours spent exercising
in a typical week. Computer output of descriptive
statistics for the number of hours spent exercising,
broken down by gender, is given:

Descriptive Statistics: Exercise
Variable Gender N Mean StDev
Exercise F 168 8.110 5.199

M 193 9.876 6.069

Minimum Q1 Median Q3 Maximum
0.000 4.000 7.000 12.000 27.000
0.000 5.000 10.000 14.000 40.000

(a) How many females are in the dataset? How
many males?

(b) In the sample, which group exercises more, on
average? By how much?

(c) Use the summary statistics to compute a 95%
confidence interval for the difference in mean
number of hours spent exercising. Be sure to
define any parameters you are estimating.

(d) Compare the answer from part (c) to the confi-
dence interval given in the following computer
output for the same data:

Two-sample T for Exercise
Gender N Mean StDev SE Mean
F 168 8.11 5.20 0.40
M 193 9.88 6.07 0.44

Difference = mu (F) − mu (M)
Estimate for difference: −1.766
95% CI for difference: (−2.932, −0.599)

(e) Interpret the confidence interval in context.

6.247 Who Watches More TV: Males or Females?
The dataset StudentSurvey has information from
males and females on the number of hours spent
watching television in a typical week. Computer
output of descriptive statistics for the number of
hours spent watching TV, broken down by gender,
is given:

Descriptive Statistics: TV
Variable Gender N Mean StDev
TV F 169 5.237 4.100

M 192 7.620 6.427

Minimum Q1 Median Q3 Maximum
0.000 2.500 4.000 6.000 20.000
0.000 3.000 5.000 10.000 40.000

(a) In the sample, which group watches more TV,
on average? By how much?

(b) Use the summary statistics to compute a 99%
confidence interval for the difference in mean
number of hours spent exercising. Be sure to
define any parameters you are estimating.

(c) Compare the answer from part (c) to the confi-
dence interval given in the following computer
output for the same data:

Two-sample T for TV
Gender N Mean StDev SE Mean
F 169 5.24 4.10 0.32
M 192 7.62 6.43 0.46

Difference = mu (F) − mu (M)
Estimate for difference: −2.383
99% CI for difference: (−3.836, −0.930)

(d) Interpret the confidence interval in context.
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6.248 Who Eats More Fiber: Males or Females?
Use technology and the NutritionStudy dataset to
find a 95% confidence interval for the difference
in number of grams of fiber (Fiber) eaten in a day
between males and females. Interpret the answer
in context. Is ‘‘No difference” between males and
females a plausible option for the population differ-
ence in number of grams of fiber eaten?

6.249 Systolic Blood Pressure and Survival Status
Use technology and the ICUAdmissions dataset

to find a 95% confidence interval for the difference
in systolic blood pressure (Systolic) upon admission
to the Intensive Care Unit at the hospital based
on survival of the patient (Status with 0 indicating
the patient lived and 1 indicating the patient died.)
Interpret the answer in context. Is ‘‘No difference”
between those who lived and died a plausible option
for the difference in mean systolic blood pressure?
Which group had higher systolic blood pressures on
arrival?

6.12TEST FOR A DIFFERENCE IN MEANS

In Section 5.2 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z = Sample Statistic − Null Parameter
SE

When comparing means between two groups, the null hypothesis is typically
H0 : μ1 = μ2 or, equivalently, H0 : μ1 − μ2 = 0. Thus the ‘‘Null Parameter’’ is
usually equal to zero and we use the difference in means for two samples, x1 − x2,
as the ‘‘Sample Statistic.’’

As we see in Section 6.10, we can estimate the standard error of x1 − x2 with

SE =
√

s2
1

n1
+ s2

2

n2

where s1 and s2 are the standard deviations in the two samples.62 However, when
we use the sample standard deviations in estimating SE, we need to switch to a
t-distribution rather than the standard normal when finding a p-value. This requires
either that the underlying populations are reasonably normal or that the sample
sizes are large.

Two-Sample t-Test for a Difference in Means

To test H0 : μ1 = μ2 vs Ha : μ1 �= μ2 (or a one-tail alternative) based
on samples of sizes n1 and n2 from the two groups, we use the
two-sample t-statistic

t = x1 − x2√
s2
1

n1
+ s2

2
n2

where x1 and x2 are the means and s1 and s2 are the standard deviations
for the respective samples.

If the underlying populations are reasonably normal or the sample
sizes are large, we use a t-distribution to find the p-value for this
statistic. For degrees of freedom we can either use the smaller of
n1 − 1 or n2 − 1, or technology to get a more precise approximation.

62Some textbooks use a pooled standard deviation when standard deviations are approximately equal.
This practice offers almost no advantage, however, and is not included in this text.
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Table 6.20 Summary statistics for
leniency scores

Group n Mean Std. Dev.

Smile 34 4.91 1.68
Neutral 34 4.12 1.52

Example 6.27
Smiles and Leniency

In Data 4.2 on page 223, we look at an experiment to compare the leniency scores
assigned to students charged with a disciplinary infraction in which subjects are
shown a picture of the alleged wrongdoer randomly selected to show either a
smiling or a neutral pose. Summary statistics from the data in Smiles are given in
Table 6.20.

(a) Construct and interpret a graph to verify that the t-distribution is appropriate
for comparing these means.

(b) Use the t-distribution to test whether the mean leniency score for smiling
students is higher than the mean score for students with a neutral expression.

Solution (a) Figure 6.25 shows boxplots of the sample leniency scores for the neutral and
smiling groups. Both plots are relatively symmetric and have no strong outliers
so we don’t see strong evidence that the distributions are not normal. Also,
the sample sizes of 34 for each group are not very small, so a t-distribution is
reasonable to model the standardized distribution of xs − xn.

(b) The hypotheses are H0 : μs = μn vs Ha : μs > μn, where μs and μn are the means,
respectively, for leniency scores assigned to smiling and neutral expressions.
Based on the summary statistics, we compute the t-statistic

t = xs − xn√
s2
s

ns
+ s2

n
nn

= 4.91 − 4.12√
1.682

34 + 1.522

34

= 0.79
0.389

= 2.03

To find the p-value we use the upper tail of a t-distribution with 34 − 1 = 33
degrees of freedom. Technology shows this area to give a p-value of 0.025. This
gives fairly strong evidence that the mean leniency score for smiling expressions
is higher than the mean leniency score for neutral expressions.

Figure 6.25 Leniency
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We often use technology to handle the details of a two-sample t-test such as in
Example 6.27. Here is some typical output for such a test with the data in Smiles:

Two-sample T for Leniency
Group N Mean StDev SE Mean
neutral 34 4.12 1.52 0.26
smile 34 4.91 1.68 0.29

Difference = mu (neutral) − mu (smile)
Estimate for difference: −0.794
95% upper bound for difference: −0.145
T-Test of difference = 0 (vs <): T-Value = −2.04 P-Value = 0.023 DF = 65

We see several differences between the computer output and the calculations
in Example 6.27. First, the stat package uses the difference in the other direction,
xn − xs, so the test becomes lower rather than upper tailed. The small difference in
the magnitude of the t-statistic (T-value = −2.04 in the bottom line of the output)
is due to rounding, but the larger degrees of freedom (65 rather than 33) is because
the technology uses a more complicated formula for approximating the degrees
of freedom. This gives a slightly smaller p-value (0.023 in the output) than our
conservative use of 34 − 1 = 33 degrees of freedom. Nevertheless, the basic results
and interpretation of the test are the same.

Figure 4.24 on page 259 shows a randomization distribution for 1000 differences
in means for the Smiles data. In that figure there are 23 values that are at or
beyond the sample difference of xs − xn = 0.79. This gives an estimated p-value
of 23/1000 = 0.023, which agrees nicely with the results of Example 6.27 and the
computer output. While the formulas in this section make it easy to calculate a test
statistic using summary statistics, remember that the randomization procedures of
Chapter 4 still apply, even in situations where the conditions for the t-distribution
might be in question.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to test a hypothesis about a
difference in means between two groups

Exercises for Section 6.12

SKILL BUILDER 1
In Exercises 6.250 to 6.253, use the t-distribution
and the given sample results to complete the test of
the given hypotheses. Assume the results come from
random samples, and if the sample sizes are small,
assume the underlying distributions are relatively
normal.
6.250 Test H0 : μ1 = μ2 vs Ha : μ1 > μ2 using the
sample results x1 = 56, s1 = 8.2 with n1 = 30 and
x2 = 51, s2 = 6.9 with n2 = 40.
6.251 Test H0 : μ1 = μ2 vs Ha : μ1 �= μ2 using the
sample results x1 = 15.3, s1 = 11.6 with n1 = 100
and x2 = 18.4, s2 = 14.3 with n2 = 80.

6.252 Test H0 : μA = μB vs Ha : μA �= μB using the
fact that Group A has 8 cases with a mean of 125
and a standard deviation of 18 while Group B has 15
cases with a mean of 118 and a standard deviation
of 14.

6.253 Test H0 : μT = μC vs Ha : μT < μC using the
fact that the treatment group (T) has a sample
mean of 8.6 with a standard deviation of 4.1 while
the control group (C) has a sample mean of 11.2
with a standard deviation of 3.4. Both groups have
25 cases.

6.254 Handedness and Earnings Do left-handed
or right-handed people make more money? One

o
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study63 recorded the hourly earnings for a random
sample of 2295 American men, of whom 2027 were
right-handed and 268 were left-handed. The right-
handed men earned an average of $13.10 per hour,
while the left-handed men earned an average of
$13.40 per hour. The sample standard deviation
for both left-handed and right-handed workers was
about $7.90. Test the hypothesis that the average
earnings for left-handed and right-handed men are
the same. Be sure to state the null and alternative
hypotheses, find the test statistic and p-value, and
interpret the conclusion.

6.255 Comparing Weight Loss Methods Research-
ers randomly assigned 107 young overweight women
to cut 25% of their calories in one of two ways: The
continuous group ate about 1500 calories a day
every day while the intermittent group ate about
500 calories a day for two days a week and their
typical diets the rest of the week. (Interestingly, the
women who cut calories on two days a week did not
overeat on the other days.)64 The summary statistics
for weight loss (in pounds) after 6 months are shown
in Table 6.21. Test to see if there is any difference in
mean weight loss results between the two methods.
Show all details of the test.

Table 6.21 Number of pounds lost
under two different calorie restriction
methods

Method n x s

Continuous 54 14.1 13.2
Intermittent 53 12.2 10.6

6.256 Mind-Set Matters In 2007 a Harvard psy-
chologist set out to test her theory that ‘‘Mind-Set
Matters.”65 She recruited 75 female maids66 work-
ing in different hotels to participate in her study,
and informed 41 maids (randomly chosen) that
the work they do satisfies the Surgeon General’s
recommendations for an active lifestyle (which is
true), giving the maids examples on how their work

63Ruebeck, C., et al., ‘‘Handedness and Earnings,” Laterality,
2007; 12(2): 101–120.
64Harvie, M., et al., ‘‘The Effects of Intermittent or Continuous
Energy Restriction on Weight Loss and Metabolic Disease Risk
Markers: A Randomised Trial in Young Overweight Women,”
International Journal of Obesity (London), 2011; 35(5): 714–727.
65Crum, A. and Langer, E., ‘‘Mind-Set Matters: Exercise and the
Placebo Effect,” Psychological Science, 2007; 18: 165–171.
66Maids with missing values for weight change have been
removed.

qualifies as good exercise. The other 34 maids were
told nothing. After four weeks, the exercise habits
of the two groups had not changed, but the informed
group had lost an average of 1.79 lbs (s = 2.88) and
the uninformed group had lost an average of 0.2 lbs
(s = 2.32). The data are stored in MindsetMatters.
Based on this study, does ‘‘Mind-Set Matter”? In
other words, for maids, does simply thinking they
are exercising more actually cause them to lose more
weight? Show all details of the test.

6.257 Exercise and Stress Many studies have shown
that people who engage in any exercise have
improved mental health over those that never
exercise. In particular, even a small amount of
exercise seems to confer some resilience to stress.
Most of these studies, by necessity, have been
observational studies. A recent experiment with
mice67 moves us one step closer to determining
a causal association. In the study, mice were ran-
domly assigned to either an enriched environment
(EE) where there was an exercise wheel available
or a standard environment (SE) with no exercise
options. After three weeks in the specified environ-
ment, for five minutes a day for two weeks, the mice
were each exposed to a ‘‘mouse bully”—a mouse
that was very strong, aggressive, and territorial. At
the end of the two weeks, the mice in the SE group
exhibited maladaptive, depressive-like, and anxiety-
like behavior across a wide spectrum of activities.
This was not true of the mice in the EE group;
they behaved similarly to mice that had never had
the stress-inducing bully experience. In particular,
one measure of mouse anxiety is amount of time
hiding in a dark compartment, with mice that are
more anxious spending more time in darkness. The
amount of time spent in darkness during one trial is
recorded for all the mice and is shown in Table 6.22
and available in StressedMice. Test to see if mice
that have spent time in an enriched environment
with options for exercise spend significantly less
time in darkness after a stress-inducing experience.

Table 6.22 Do mice from an enriched
environment spend less time in darkness?

Environment Time in Darkness (seconds)

Enriched 359 280 138 227 203 184 231
Standard 394 477 439 428 391 488 454

67Data approximated from summary statistics in, Lehmann,
M. and Herkenham, M., ‘‘Environmental Enrichment Con-
fers Stress Resiliency to Social Defeat through an Infralimbic
Cortex-Dependent Neuroanatomical Pathway,” The Journal of
Neuroscience, 2011; 31(16): 6159–6173.



6.12 Test for a Difference in Means 425

6.258 Stomach Bacteria and Irritable Bowel Syn-
drome Studies are finding that bacteria in the
stomach are essential for healthy functioning of the
human body. One study68 compared the number
of unique bacterial genes in stomachs of healthy
patients and those of patients with irritable bowel
syndrome (IBS). For healthy patients, we have
x = 564 million with s = 122 million and n = 99.
For those with IBS, we have x = 425 million with
s = 127 million and n = 25. Both distributions
appear to be approximately normally distributed.
Test to see if people with IBS have, on average,
significantly fewer unique bacterial genes in their
stomachs. Show all details, including giving the
degrees of freedom used.

6.259 Diet Cola and Calcium Exercise B.5 on
page 305 introduces a study examining the effect of
diet cola consumption on calcium levels in women.
A sample of 16 healthy women aged 18 to 40 were
randomly assigned to drink 24 ounces of either
diet cola or water. Their urine was collected for
three hours after ingestion of the beverage and cal-
cium excretion (in mg) was measured. The summary
statistics for diet cola are xC = 56.0 with sC = 4.93
and nC = 8 and the summary statistics for water are
xW = 49.1 with sW = 3.64 and nW = 8. Figure 6.26
shows dotplots of the data values. Test whether
there is evidence that diet cola leaches calcium out
of the system, which would increase the amount
of calcium in the urine for diet cola drinkers. In
Exercise B.5, we used a randomization distribu-
tion to conduct this test. Use a t-distribution here,
after first checking that the conditions are met and
explaining your reasoning. The data are stored in
ColaCalcium.

6.260 Drink Tea for a Stronger Immune System
Drinking tea appears to offer a strong boost to
the immune system. In a study introduced in
Exercise 3.82 on page 203, we see that production
of interferon gamma, a molecule that fights bacte-
ria, viruses, and tumors, appears to be enhanced
in tea drinkers. In the study, eleven healthy

68Qin, J., et. al., ‘‘A Human Gut Microbial Gene Catalogue
Established by Metagenomic Sequencing,” Nature, 4 March 2010;
464: 59–65.
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Figure 6.26 Do diet cola drinkers excrete more calcium?

non-tea-drinking individuals were asked to drink
five or six cups of tea a day, while ten healthy non-
tea- and non-coffee-drinkers were asked to drink
the same amount of coffee, which has caffeine but
not the L-theanine that is in tea. The groups were
randomly assigned. After two weeks, blood samples
were exposed to an antigen and production of inter-
feron gamma was measured. The results are shown
in Table 6.23 and are available in ImmuneTea. The
question of interest is whether the data provide evi-
dence that production is enhanced in tea drinkers.

(a) Is this an experiment or an observational study?

(b) What are the null and alternative hypotheses?

(c) Find a standardized test statistic and use the
t-distribution to find the p-value and make a
conclusion.

(d) Always plot your data! Look at a graph of
the data. Does it appear to satisfy a normality
condition?

(e) A randomization test might be a more appro-
priate test to use in this case. Construct a
randomization distribution for this test and use
it to find a p-value and make a conclusion.

(f) What conclusion can we draw?

Table 6.23 Immune system response in tea and
coffee drinkers

Tea 5 11 13 18 20 47
48 52 55 56 58

Coffee 0 0 3 11 15 16
21 21 38 52

6.261 Metal Tags on Penguins and Length of For-
aging Trips Data 1.3 on page 10 discusses a study
designed to test whether applying a metal tag is
detrimental to a penguin, as opposed to applying an
electronic tag. One variable examined is the length
of foraging trips. Longer foraging trips can jeopar-
dize both breeding success and survival of chicks
waiting for food. Mean length of 344 foraging trips
for penguins with a metal tag was 12.70 days with
a standard deviation of 3.71 days. For those with
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an electronic tag, the mean was 11.60 days with
standard deviation of 4.53 days over 512 trips. Do
these data provide evidence that mean foraging trips
are longer for penguins with a metal tag? Show all
details of the test.

6.262 Metal Tags on Penguins and Arrival Dates
Data 1.3 on page 10 discusses a study designed to
test whether applying a metal tag is detrimental to
a penguin, as opposed to applying an electronic tag.
One variable examined is the date penguins arrive at
the breeding site, with later arrivals hurting breed-
ing success. Arrival date is measured as the number
of days after November 1st. Mean arrival date for
the 167 times metal-tagged penguins arrived was
December 7th (37 days after November 1st) with a
standard deviation of 38.77 days, while mean arrival
date for the 189 times electronic-tagged penguins
arrived at the breeding site was November 21st (21
days after November 1st) with a standard devia-
tion of 27.50. Do these data provide evidence that
metal-tagged penguins have a later mean arrival
time? Show all details of the test.

6.263 What Gives a Small P-value? In each case
below, two sets of data are given for a two-tail dif-
ference in means test. In each case, which version
gives a smaller p-value relative to the other?

(a) Both options have the same standard deviations
and same sample sizes but:

Option 1 has: x1 = 25 x2 = 23

Option 2 has: x1 = 25 x2 = 11

(b) Both options have the same means (x1 = 22,
x2 = 17) and same sample sizes but:

Option 1 has: s1 = 15 s2 = 14

Option 2 has: s1 = 3 s2 = 4

(c) Both options have the same means (x1 = 22,
x2 = 17) and same standard deviations but:

Option 1 has: n1 = 800 n2 = 1000

Option 2 has: n1 = 25 n2 = 30

6.264 Spring Break Effect? A statistics professor
was handing out midterm grade slips on a Friday
which happened to be the day before the school’s
Spring break. He noticed that there were an unusu-
ally large number of students missing from class
that day. So he collected the leftover grade slips and
created the data in Table 6.24 that summarized the
midterm grades (out of a possible 100) for students
that attended and missed class.

(a) The professor had reason to suspect, before
even looking at the data, that, in general, stu-
dents who missed class would tend to have lower
mean midterm grades. Write down the null and
alternative hypotheses that he should use to test
this suspicion using this class as a sample.

(b) Carry out the test in part (a). You may assume
that the data for both groups are reasonably
symmetric and have no strong outliers.

(c) Can we conclude on the basis of this test that
skipping class on the day before break tends to
hurt students’ grades?

(d) There was one student who had stopped coming
to class after the first week and thus had mostly
zero grades and an extremely low midterm aver-
age. The instructor did not include that student
when computing the statistics for Table 6.24.
Was that a good decision? Explain.

Table 6.24 Summary statistics for midterm
grades

n Mean Std. Dev.

In class 15 80.9 11.07
Missed class 9 68.2 9.26

6.265 Quiz Timing A young statistics professor
decided to give a quiz in class every week. He
was not sure if the quiz should occur at the begin-
ning of class when the students are fresh or at the
end of class when they’ve gotten warmed up with
some statistical thinking. Since he was teaching two
sections of the same course that performed equally
well on past quizzes, he decided to do an exper-
iment. He randomly chose the first class to take
the quiz during the second half of the class period
(Late) and the other class took the same quiz at the
beginning of their hour (Early). He put all of the
grades into a data table and ran an analysis to give
the results shown below. Use the information from
the computer output to give the details of a test to
see whether the mean grade depends on the timing
of the quiz. (You should not do any computations.
State the hypotheses based on the output, read the
p-value off the output, and state the conclusion in
context.)

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean
Late 32 22.56 5.13 0.91
Early 30 19.73 6.61 1.2



6.13 Paired Difference in Means 427

Difference = mu (Late) − mu (Early)
Estimate for difference: 2.83
95% CI for difference: (−0.20, 5.86)
T-Test of difference = 0 (vs not =): T-Value = 1.87
P-Value = 0.066 DF = 54

6.266 Survival Status and Heart Rate in the ICU
The dataset ICUAdmissions contains information
on a sample of 200 patients being admitted to the
Intensive Care Unit (ICU) at a hospital. One of the
variables is HeartRate and another is Status which
indicates whether the patient lived (Status = 0) or
died (Status = 1). Use the computer output to give
the details of a test to determine whether mean
heart rate is different between patients who lived
and died. (You should not do any computations.
State the hypotheses based on the output, read the
p-value off the output, and state the conclusion in
context.)

Two-sample T for HeartRate
Status N Mean StDev SE Mean
0 160 98.5 27.0 2.1
1 40 100.6 26.5 4.2

Difference = mu (0) - mu (1)
Estimate for difference: -2.12
95% CI for difference: (-11.53, 7.28)

T-Test of difference = 0 (vs not =): T-Value = -0.45
P-Value = 0.653 DF = 60

6.267 Who Exercises More: Males or Females? Use
technology and the StudentSurvey dataset to test
whether the data provide evidence that there is a
difference in the mean number of hours of exercise
per week between males and females. What are
the hypotheses? What is the p-value given by the
software? State the conclusion in context.

6.268 Who Watches More TV: Males or Females?
Use technology and the StudentSurvey dataset to
test whether the data provide evidence that there
is a difference in the mean number of hours spent
watching television per week between males and
females. What are the hypotheses? What is the p-
value given by the software? State the conclusion in
context.

6.269 Gender and Atlanta Commutes The data
in CommuteAtlanta (see Data 3.3 on page 193 for
more description) contain a variable that identifies
the sex of each commuter in the Atlanta sample.
Test at a 5% level whether there is a difference
in mean commute time between female and male
commuters in Atlanta.

6.13PAIRED DIFFERENCE IN MEANS

In Sections 6.10 to 6.12 we consider inference for a difference in means when the
data consist of two separate samples. However, in situations such as the matched
pairs experiments described in Section 1.3, the data being compared consist of pairs
of data values. Paired data may consist of two measurements on each unit, such as
the same unit being measured under two different conditions, or measurements on
a pair of units that go together, such as twin studies. In this section we see how to
handle inferences for a difference in means when the data are paired in some way.

D A T A 6 . 5 Wetsuits and Swimming Speed
The 2008 Olympics were full of controversy about new swimsuits possibly
providing unfair advantages to swimmers, leading to new international rules
that came into effect January 1, 2010, regarding swimsuit coverage and
material. Can a certain swimsuit really make a swimmer faster? A study69 tested
whether wearing wetsuits influences swimming velocity. Twelve competitive
swimmers and triathletes swam 1500 m at maximum speed twice each, once
wearing a wetsuit and once wearing a regular bathing suit. The order of the
trials was randomized. Each time, the maximum velocity in meters/sec of the

69de Lucas, R., Balildan, P., Neiva, C., Greco, C., and Denadai, B., ‘‘The effects of wetsuits on physiological
and biomechanical indices during swimming,” Journal of Science and Medicine in Sport, 2000; 3(1): 1–8.
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swimmer (among other quantities) was recorded. These data are available in
Wetsuits and shown in Table 6.25. ■

Photo by MikeStobe/Getty Images, Inc.

Olympic swimmer Michael Phelps in a
wetsuit

Example 6.28
Using Data 6.5 and the methods of Section 6.12, test whether the average maximum
velocity for competitive swimmers differs when wearing wetsuits vs not wearing
wetsuits.

Solution The relevant parameters are μw and μnw, the average maximum velocities for
swimmers wearing wetsuits and swimmers not wearing wetsuits, respectively. We
wish to test H0 : μw = μnw vs Ha : μw �= μnw. The relevant sample statistics are
xw = 1.507, sw = 0.136, nw = 12 for the swimmers in wetsuits and xnw = 1.429,
snw = 0.141, nnw = 12 for the swimmers without wetsuits. Figure 6.27 does not show

Table 6.25 Maximum velocity swimming with and without a wetsuit

Swimmer 1 2 3 4 5 6 7 8 9 10 11 12 x s
Wetsuit 1.57 1.47 1.42 1.35 1.22 1.75 1.64 1.57 1.56 1.53 1.49 1.51 1.507 0.136
No Wetsuit 1.49 1.37 1.35 1.27 1.12 1.64 1.59 1.52 1.50 1.45 1.44 1.41 1.429 0.141

Figure 6.27 Dotplot of
maximum velocity
swimming with and
without a wetsuit 1.1

NoWetsuit

Wetsuit

1.2 1.3 1.4
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extreme skewness or outliers, so we can proceed with the t-distribution. We compute
the t-statistic using the formula from Section 6.12:

t = xw − xnw√
s2
w

nw
+ s2

nw

nnw

= 1.507 − 1.429√
0.1362

12 + 0.1412

12

= 1.38

We compare this to a t-distribution with 11 df and find the area in the upper tail to
be 0.0975. Since this is a two-tailed test, the p-value is 2(0.0975) = 0.195. This study
does not provide convincing evidence that swimming speeds are affected by wearing
a wetsuit.

Using this naive method, we do not find any association between wearing a
wetsuit and swimming speeds. However, taking a closer look at the data in Table 6.25,
we see that every single swimmer swam faster wearing the wetsuit! Surely this must
provide conclusive evidence that swimmers are faster wearing a wetsuit. What went
wrong?

We failed to take into account the paired structure of the data. The formula for
the standard error for a difference in means given in Section 6.10 applies only to
data from two different groups, not to paired data. When used on paired data it will
often give a standard error that is much too high.

The wetsuit study was conducted on males and females, swimmers and triath-
letes. Not surprisingly, there is a great deal of variability in the maximum velocities
of the swimmers! Because of all this variability, it is difficult to tell whether the
difference in mean swim speed observed in the sample (1.507 − 1.429 = 0.078) rep-
resents a real difference or is just due to random chance. Rather than comparing
females in the wetsuit group to males in the non-wetsuit group, and triathletes in
the non-wetsuit group to swimmers in the wetsuit group, we would really like to
compare each swimmer’s wetsuit and non-wetsuit values directly! The secret is to
take the difference for each pair of data values. These differences are displayed in
the bottom row of Table 6.26.

The key to analyzing paired data is to work with these differences rather than
the original data. This helps us to eliminate the variability across different units
(different swimmers) and instead focus on what we really care about—the difference
between the values with and without a wetsuit. We denote the differences with the
letter d.

Note that the mean of the sample of differences is equal to the difference of
the sample means: xd = xw − xnw. (For the swimming data, we see that 0.078 =
1.507 − 1.429.) To make inferences about the difference in means, μw − μnw, we
can equivalently make inferences about the mean difference, μd.

The paired differences are a single sample of values for the differences. Thus
we estimate μd with the sample mean of these differences, xd. As with any mean for
a single sample, we estimate its standard error by dividing the standard deviation of
the sample values by the square root of the sample size. Here the sample size is the

Table 6.26 Maximum velocity swimming with and without a wetsuit, including differences

Swimmer 1 2 3 4 5 6 7 8 9 10 11 12 x s
Wetsuit 1.57 1.47 1.42 1.35 1.22 1.75 1.64 1.57 1.56 1.53 1.49 1.51 1.507 0.136
No Wetsuit 1.49 1.37 1.35 1.27 1.12 1.64 1.59 1.52 1.50 1.45 1.44 1.41 1.429 0.141
Difference, d 0.08 0.10 0.07 0.08 0.10 0.11 0.05 0.05 0.06 0.08 0.05 0.10 0.078 0.022
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number of data pairs (which is also the number of computed differences), nd, and
the relevant standard deviation is the standard deviation of the differences, sd.

Fortunately, we have already discussed inference for a mean based on a single
sample in Sections 6.4 to 6.6. The procedures are the same for paired data, once we
convert the data to a single sample of differences.

Inference for a Difference in Means with Paired Data

To estimate the difference in means based on paired data, we first
subtract to compute the difference for each data pair and compute
the mean xd, the standard deviation sd, and the sample size nd for the
sample differences.

Provided the differences are reasonably normally distributed (or
the sample size is large), a confidence interval for the difference in
means is given by

xd ± t∗
sd√
nd

where t∗ is a percentile from a t-distribution with nd − 1 degrees of
freedom.

To test H0 : μd = 0 vs Ha : μd �= 0 (or a one-tail alternative) we
use the t-test statistic

t = xd

sd/
√

nd

If the differences are reasonably normally distributed (or the sample
size is large), we use a t-distribution with nd − 1 degrees of freedom
to compute a p-value for this test statistic.

Example 6.29
Wetsuits and Swimming Speed

Using Data 6.5, test whether the average maximum velocity for competitive swim-
mers differs when wearing wetsuits vs not wearing wetsuits. (Note that this is exactly
the same as Example 6.28, except that we now know how to utilize the paired
structure.)

Solution Because the sample size is fairly small, we should check to see whether there are
problems with normality in the sample of differences. Figure 6.28 shows a dotplot
of the differences.

Although it is difficult to see a bell-shape for samples this small, the differences
look relatively symmetric and have no clear outliers, so we don’t detect any
serious problems with normality and can proceed with the t-distribution. Using the
differences in Table 6.26, we see that xd = 0.078 with sd = 0.022 and nd = 12. We
compute the t-statistic as follows:

t = xd

sd/
√

nd
= 0.078

0.022/
√

12
= 12.3

Figure 6.28 Dotplot of
differences in maximum
velocity with and without
a wetsuit 0.08

Difference
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This is a huge t-statistic, and corresponds to a p-value of essentially zero. (Anytime
the t-statistic is bigger than 5, there is really no point in looking up the p-value—it
will be very small!) These data provide very convincing evidence that swimmers are
faster on average when wearing wetsuits. Because this was a randomized experiment,
we can conclude that wetsuits cause swimmers to swim faster.

Notice the difference in conclusions between Examples 6.28 and 6.29. The same data
were analyzed in each case, but the conclusions reached were drastically different.
It is very important to think about how the data were collected before proceeding
with the analysis! Although we can find the mean of the differences, xd, from the
difference in the individual sample means, xw − xnw, there is no way to compute
the standard deviation of the differences, sd, from the standard deviations of the
individual samples. To compute the standard deviation properly when the data are
paired, we must find the individual differences for all pairs.

Example 6.30
Example 6.29 verifies that wetsuits make swimmers faster, but how much faster?
Compute a 95% confidence interval for the difference in average maximum velocity
for swimmers wearing wetsuits minus swimmers not wearing wetsuits.

Solution We have already verified from Figure 6.28 that it is appropriate to use the
t-distribution. With 11 degrees of freedom for 95% confidence, we have t∗ = 2.20.
We compute a confidence interval as follows:

xd ± t∗
sd√
nd

= 0.078 ± 2.20
(

0.022√
12

)
= 0.078 ± 0.014 = (0.064, 0.092)

We are 95% confident that for competitive swimmers and triathletes, wetsuits
increase maximum swimming velocity by an average of between 0.064 and 0.092
meters per second.

If this had not been paired data but simply two groups of 12 swimmers each, the
95% confidence interval would be

0.078 ± 2.20(0.057) = 0.078 ± 0.125 = (−0.047, 0.203)

The margin of error is larger, and the interval is wider than in Example 6.30. By
using paired data and analyzing it appropriately, we can get a much more accurate
and reliable estimate of the difference in means.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between separate samples and paired data when compar-
ing two means

• Identify the advantages of using paired data when estimating a differ-
ence in means

• Use a t-distribution, when appropriate, to compute a confidence interval
for a difference in means based on paired data

• Use a t-distribution, when appropriate, to test a hypothesis about a
difference in means based on paired data

A

o

o
o
o
o
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Exercises for Section 6.13

SKILL BUILDER 1
In Exercises 6.270 to 6.273, use a t-distribution to
find a confidence interval for the difference in means
μ1 − μ2 using the relevant sample results from
paired data. Give the best estimate for μ1 − μ2,
the margin of error, and the confidence interval.
Assume the results come from random samples
from populations that are approximately normally
distributed, and that differences are computed using
d = x1 − x2.

6.270 A 95% confidence interval for μ1 − μ2 using
the paired difference sample results xd = 3.7, sd =
2.1, nd = 30

6.271 A 90% confidence interval for μ1 − μ2 using
the paired difference sample results xd = 556.9,
sd = 143.6, nd = 100

6.272 A 99% confidence interval for μ1 − μ2 using
the paired data in the following table:

Case 1 2 3 4 5

Treatment 1 22 28 31 25 28
Treatment 2 18 30 25 21 21

6.273 A 95% confidence interval for μ1 − μ2 using
the paired data in the following table:

Case Situation 1 Situation 2

1 77 85
2 81 84
3 94 91
4 62 78
5 70 77
6 71 61
7 85 88
8 90 91

SKILL BUILDER 2
In Exercises 6.274 to 6.277, use a t-distribution and
the given matched pair sample results to complete
the test of the given hypotheses. Assume the results
come from random samples, and if the sample sizes
are small, assume the underlying distribution of
the differences is relatively normal. Assume that
differences are computed using d = x1 − x2.

6.274 Test H0 : μ1 = μ2 vs Ha : μ1 �= μ2 using the
paired difference sample results xd = 15.7, sd =
12.2, nd = 25.

6.275 Test H0 : μ1 = μ2 vs Ha : μ1 �= μ2 using the
paired difference sample results xd = −2.6, sd = 4.1,
nd = 18.

6.276 Test H0 : μ1 = μ2 vs Ha : μ1 < μ2 using the
paired data in the following table:

Treatment 1 16 12 18 21 15 11 14 22
Treatment 2 18 20 25 21 19 8 15 20

6.277 Test H0 : μ1 = μ2 vs Ha : μ1 > μ2 using the
paired data in the following table:

Situation 1 125 156 132 175 153 148 180 135 168 157
Situation 2 120 145 142 150 160 148 160 142 162 150

SKILL BUILDER 3
In Exercises 6.278 to 6.283, a data collection method
is described to investigate a difference in means. In
each case, determine which data analysis method is
more appropriate: paired data difference in means
or difference in means with two separate groups.

6.278 To study the effect of sitting with a laptop
computer on one’s lap on scrotal temperature, 29
men have their scrotal temperature tested before
and then after sitting with a laptop for one hour.

6.279 To study the effect of women’s tears on men,
levels of testosterone are measured in 50 men after
they sniff women’s tears and after they sniff a salt
solution. The order of the two treatments was ran-
domized and the study was double-blind.

6.280 In another study to investigate the effect of
women’s tears on men, 16 men watch an erotic
movie and then half sniff women’s tears and half
sniff a salt solution while brain activity is monitored.

6.281 To measure the effectiveness of a new teach-
ing method for math in elementary school, each
student in a class getting the new instructional
method is matched with a student in a separate
class on IQ, family income, math ability level the
previous year, reading level, and all demographic
characteristics. At the end of the year, math ability
levels are measured again.

6.282 In a study to determine whether the color
red increases how attractive men find women, one
group of men rate the attractiveness of a woman
after seeing her picture on a red background and
another group of men rate the same woman after
seeing her picture on a white background.
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6.283 A study investigating the effect of exercise
on brain activity recruits sets of identical twins in
middle age, in which one twin is randomly assigned
to engage in regular exercise and the other doesn’t
exercise.

6.284 Drink Tea for a Stronger Immune System
We saw in Exercise 6.260 on page 425 that drinking
tea appears to offer a strong boost to the immune
system. In a study extending the results of the study
described in that exercise,70 blood samples were
taken on five participants before and after one week
of drinking about five cups of tea a day (the partic-
ipants did not drink tea before the study started).
The before and after blood samples were exposed to
e.coli bacteria, and production of interferon gamma,
a molecule that fights bacteria, viruses, and tumors,
was measured. Mean production went from 155
pg/mL before tea drinking to 448 pg/mL after tea
drinking. The mean difference for the five subjects
is 293 pg/mL with a standard deviation in the differ-
ences of 242. The paper implies that the use of the
t-distribution is appropriate.

(a) Why is it appropriate to use paired data in this
analysis?

(b) Find and interpret a 90% confidence interval for
the mean increase in production of interferon
gamma after drinking tea for one week.

6.285 Radiation from Cell Phones and Brain Activ-
ity Exercise 4.86 on page 263 introduces a matched
pairs study in which 47 participants had cell phones
put on their ears and then had their brain glucose
metabolism (a measure of brain activity) measured
under two conditions: with one cell phone turned on
for 50 minutes (the ‘‘on” condition) and with both
cell phones off (the ‘‘off” condition). Brain glucose
metabolism is measured in μmol/100 g per minute,
and the differences of the metabolism rate in the on
condition minus the metabolism rate in the off con-
dition were computed for all participants. The mean
of the differences was 2.4 with a standard deviation
of 6.3. Find and interpret a 95% confidence interval
for the effect size of the cell phone waves on mean
brain metabolism rate.

6.286 Testing the Effects of Tea on the Immune
System Exercise 6.284 describes a study to examine
the effects of tea on the immune system. Use the
information there to test whether mean production
of interferon gamma as a response to bacteria is

70Adapted from Kamath, A., et al., ‘‘Antigens in tea-beverage
prime human Vγ 2Vδ2 T cells in vitro and in vivo for memory
and non-memory antibacterial cytokine responses,” Proceedings
of the National Academy of Sciences, 2003; 100(10): 6009–6014.

significantly higher after drinking tea than before
drinking tea. Use a 5% significance level.

6.287 Testing the Effects of Cell Phones on Brain
Activity Exercise 6.285 describes a matched pairs
study examining the effect of cell phones on brain
glucose metabolism. Use the information there to
test to see if there is evidence that mean glucose
metabolism is higher when a cell phone is nearby.
Show all details of the test.

6.288 Pheromones in Female Tears? On page 11
in Section 1.1, we describe studies to investigate
whether there is evidence of pheromones (subcon-
scious chemical signals) in female tears that affect
sexual arousal in men. In one of the studies,71 50 men
had a pad attached to the upper lip that contained
either female tears or a salt solution dripped down
the same female’s face. Each subject participated
twice, on consecutive days, once with tears and
once with saline, randomized for order, and double-
blind. Testosterone levels were measured before
sniffing and after sniffing on both days. While nor-
mal testosterone levels vary significantly between
different men, average levels for the group were the
same before sniffing on both days and after sniff-
ing the salt solution (about 155 pg/mL) but were
reduced after sniffing the tears (about 133 pg/mL).
The mean difference in testosterone levels after
sniffing the tears was 21.7 with standard deviation
46.5.

(a) Why did the investigators choose a matched-
pairs design for this experiment?

(b) Test to see if testosterone levels are significantly
reduced after sniffing tears?

(c) Can we conclude that sniffing female tears
reduces testosterone levels (which is a signifi-
cant indicator of sexual arousal in men)?

6.289 Measuring the Effect of Female Tears Exer-
cise 6.288 describes a study to measure, in a double-
blind randomized experiment, the effect of female
tears on male testosterone. Use the information
there to find a 99% confidence interval for the
effect size (the amount of reduction in testosterone
levels after sniffing female tears.)

6.290 Quiz vs Lecture Pulse Rates Do you think
your pulse rate is higher when you are taking a
quiz than when you are sitting in a lecture? The
data in Table 6.27 show pulse rates collected from
10 students in a class lecture and then from the
same students during a quiz. The data are stored

71Data approximated from Gelstein, S., et al., ‘‘Human Tears
Contain a Chemosignal,” Science, January 14 2011; 331(6014):
226–230.
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Table 6.27 Quiz and lecture pulse rates for 10 students

Student 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

Quiz 75 52 52 80 56 90 76 71 70 66 68.8 12.5
Lecture 73 53 47 88 55 70 61 75 61 78 66.1 12.8

in QuizPulse10. Construct a 95% confidence inter-
val for the difference in mean pulse rate between
students in a class lecture and taking a quiz.

6.291 Testing for a Difference in Pulse Rates Exer-
cise 6.290 describes pulse rates collected from 10
students, once during a quiz and once during a lec-
ture. The data are given in Table 6.27 and stored in
QuizPulse10. We might expect mean pulse rates to
increase under the stress of a quiz. Use the informa-
tion in Exercise 6.290 and the data in Table 6.27 to
test whether the data provide sufficient evidence to
support this claim.

6.292 Testing whether Story Spoilers Spoil Stories
A story spoiler gives away the ending early. Does
having a story spoiled in this way diminish suspense
and hurt enjoyment? A study72 investigated this
question. For 12 different short stories, the study’s
authors created a second version in which a spoiler
paragraph at the beginning discussed the story and
revealed the outcome. Each version of the 12 stories
was read by at least 30 people and rated on a 1 to 10
scale to create an overall rating for the story, with
higher ratings indicating greater enjoyment of the
story. The ratings are given in Table 6.28 and stored
in StorySpoilers. Stories 1 to 4 were ironic twist
stories, stories 5 to 8 were mysteries, and stories 9
to 12 were literary stories. Test to see if there is a
difference in mean overall enjoyment rating based
on whether or not there is a spoiler.

72Leavitt, J. and Christenfeld, N., ‘‘Story Spoilers Don’t Spoil
Stories,” Psychological Science, published OnlineFirst, August
12, 2011.

Table 6.28 Enjoyment ratings for stories with and without spoilers

Story 1 2 3 4 5 6 7 8 9 10 11 12

With spoiler 4.7 5.1 7.9 7.0 7.1 7.2 7.1 7.2 4.8 5.2 4.6 6.7
Original 3.8 4.9 7.4 7.1 6.2 6.1 6.7 7.0 4.3 5.0 4.1 6.1

Table 6.29 Are grades higher on the second quiz?

First Quiz 72 95 56 87 80 98 74 85 77 62
Second Quiz 78 96 72 89 80 95 86 87 82 75

6.293 Measuring the Effect of Story Spoilers
Exercise 6.292 describes a study investigating
whether giving away the ending of the story
makes the story more or less enjoyable to read.
The data are given in Table 6.28 and stored in
StorySpoilers.

(a) Explain why it is appropriate and helpful to use
the matched pairs nature of these data in the
analysis.

(b) Find and interpret a 95% confidence interval
for the difference in mean enjoyment rating
between stories with a spoiler and stories with-
out.

6.294 Home Field Advantage in American Foot-
ball How big is the home field advantage in the
National Football League (NFL)? In Exercise 6.240
on page 419, we examine a difference in means
between home and away teams using two separate
samples of 80 games from each group. However,
many factors impact individual games, such as
weather conditions and the scoring of the opponent.
It makes more sense to investigate this question
using a matched pairs design, using scores for home
and away teams matched for the same game. The
data in NFLScores2011 include the points scored
by the home and away team in 256 regular sea-
son games in 2011. We will treat these games as a
sample of all NFL games. Estimate average home
field scoring advantage and find a 90% confidence
interval for the mean difference.

6.295 Are Grades Significantly Higher on the Sec-
ond Quiz? Table 6.29 gives a sample of grades on the
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first two quizzes in an introductory statistics course.
We are interested in testing whether the mean grade
on the second quiz is significantly higher than the
mean grade on the first quiz.

(a) Complete the test if we assume that the grades
from the first quiz come from a random sample
of 10 students in the course and the grades on
the second quiz come from a different separate
random sample of 10 students in the course.
Clearly state the conclusion.

(b) Now conduct the test if we assume that the
grades recorded for the first quiz and the second
quiz are from the same 10 students in the same
order. (So the first student got a 72 on the first
quiz and a 78 on the second quiz.)

(c) Why are the results so different? Which is a
better way to collect the data to answer the
question of whether grades are higher on the
second quiz?





U N I T C E S S E N T I A L S Y N T H E S I S

Summary of Inference for Means and Proportions
using Distributions
In Unit C, we discuss the process of using the normal and t-distributions, together
with formulas for standard errors, to make inferences about means and proportions.
The Central Limit Theorem tells us that, when the sample size is large enough,
sample means and sample proportions are approximately normally distributed and
centered at the value of the corresponding population parameter.

The general formulas we obtain are:

Confidence Interval: Sample Statistic ± (t∗ or z∗) · SE

Hypothesis Test: Test Statistic = Sample Statistic − Null Parameter
SE

When deciding which procedure to apply to answer a given question, we need
to consider at least three aspects of the question:

• Is the question about a quantitative variable (mean) or categorical data (propor-
tion)?

• Are we considering a single sample, comparing two samples, or using paired data?

• Are we interested in estimating the size of a parameter or effect (confidence
interval) or checking if a difference exists (hypothesis test)?

When doing inferences for proportions, we approximate the distribution of
sample proportions with a normal distribution, provided the sample size is large
enough. ‘‘Large” usually means some version of np ≥ 10 and n(1 − p) ≥ 10.

When doing inference for means and using the standard deviation from a
sample, we use a t-distribution, provided the condition of normality is reasonably
met. This condition is more critical for smaller sample sizes (less than 30) and can
be relaxed for larger samples.

Once we have decided on the method to use, the tables on the next page give
a summary of the key formulas, distributions, and conditions for applying each
technique.

437
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Summary of Key Formulas and Facts

Distribution Conditions Standard Error

Proportion Normal np ≥ 10 and n(1 − p) ≥ 10

√
p(1 − p)

n

Mean t, df = n − 1 n ≥ 30 or reasonably normal
s√
n

Diff. in Proportions Normal n1p1 ≥ 10, n1(1 − p1) ≥ 10, and
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2
n2p2 ≥ 10, n2(1 − p2) ≥ 10

Diff. in Means t, df = the smaller of n1 ≥ 30 or reasonably normal, and
√

s2
1

n1
+ s2

2

n2n1 − 1 and n2 − 1 n2 ≥ 30 or reasonably normal

Paired Diff. in Means t, df = nd − 1 nd ≥ 30 or reasonably normal
sd√
nd

Confidence Interval Test Statistic

General Sample Statistic ± z∗ · SE
Sample Statistic − Null Parameter

SE

Proportion p̂ ± z∗ ·
√

p̂(1 − p̂)

n
p̂ − p0√
p0(1−p0)

n

Mean x ± t∗ · s√
n

x − μ0

s/
√

n

Difference in Proportions
(p̂1 − p̂2) ± z∗ ·

√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

(p̂1 − p̂2) − 0√
p̂(1−p̂)

n1
+ p̂(1−p̂)

n2

Difference in Means
(x1 − x2) ± t∗ ·

√
s2

1

n1
+ s2

2

n2

(x1 − x2) − 0√
s2
1

n1
+ s2

2
n2

Paired Diff. in Means xd ± t∗ · sd√
nd

xd − 0
sd/

√
nd
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Case Study: Miami Heat Free Throws
The Miami Heat lost to the Dallas Mavericks in the finals of the 2011 National
Basketball Association (NBA) playoffs. The Heat generated considerable fan
interest at the start of the year by signing two superstar free agents (LeBron James
and Chris Bosh) to play along with their own star, Dwayne Wade. Many fans
predicted this dynasty would win multiple NBA championships. The data described
below come from the Heat’s games during the first season that these three played
together.

Issac Baldizon/NBAE via Getty Images, Inc.

Miami Heat’s Dwayne Wade attempts a free throw.

D A T A C . 1 Miami Heat 2010–2011 Regular Season
The data in MiamiHeat include game results for all 82 games of the 2010–11
regular season.73 Variables include information such as the number of points
scored, shots attempted, steals, rebounds, turnovers, and fouls for both the Heat
and their opponent in each game. There is also a Location variable that codes
whether each game was played on the Heat’s home court in Miami or on the
road in their opponent’s city. ■

73Data for the 2010–2011 Miami games, http://www.basketball-reference.com/teams/MIA/2011/gamelog/.
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This case study focuses on the topic of free throws. These are shots awarded to a
team for certain infractions (fouls) made by its opponent (hence they are also called
foul shots). Free throws are taken at a set distance (15 feet) from the basket with no
opponent allowed to defend the shot. This produces a consistent environment for
comparing shooting effectiveness. The variables of interest in the MiamiHeat data
are free throws attempted by the Heat each game (FTA), free throws successfully
made (FT), and similar quantities for its opponents (OppFTA and OppFT).

Here are some of the questions that fans might have about Miami Heat free
throws:

• What’s an average number of free throws for the Heat to attempt during a game?

• Do the Heat attempt more free throws during home games (on average) than on
the road?

• What proportion of free throw attempts do the Heat players make?

• Players in the NBA as a whole make about 75.6% of their free throws. Is the
proportion made by the Heat different from this?

• Is the mean number of free throw attempts awarded to the Heat during their
games different from the mean number attempted by their opponents?

• Is the proportion of free throws made by the Heat different between games they
play at home and those they play on the road?

• Over the past 10 years, NBA teams have averaged close to 25 free throw attempts
per game. Treating this as the population mean, is the mean number of free throw
attempts by the Heat much different?

• How many more (or fewer) free throw attempts do the Heat make (on average)
for home games compared to road games?

• How much better (or worse) are the Heat at making free throw attempts compared
to their opponents?

• How many more (or fewer) free throws do the Heat make (on average per game)
than their opponents?

We address some of these questions in the next few examples and leave the rest
for you to try in the exercises. For purposes of this case study, we will regard the
82 games played by the Miami Heat in the 2010–2011 regular season as a sample
of games they might have played against other NBA opponents in that or future
seasons. For some questions the sampling unit is games (for example in determining
the mean number of free throws that are attempted in a game). For other questions
the sampling unit is each free throw attempt, in which case we have a total sample
of 2288 attempts by Heat players over the season. Before we start any analysis we’ll
first consider whether conditions are likely to be met.

Example C.1
Are normality conditions reasonable for the distributions of numbers of free throws
attempted or made per game? Check both the Heat and their opponents.

Solution Figure C.1 shows dotplots for the numbers of free throws made and attempted by
both the Heat and their opponents during the 82 games of the regular season. They
each are relatively symmetric and bell-shaped with no strong outliers. Also a sample
size of 82 (for the full season) or 41 (for home or away games) should be ample for
the Central Limit Theorem to apply when doing inference for means.
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Based on this sample of free throws, we are 99% sure that the Miami Heat make
between 74.6% and 79.2% of their free throws.

Some basketball fans suspect that referees are more likely to call fouls on
players for the visiting team, possibly in response to reactions from the home crowd.
It might also be true that visiting players actually commit more fouls. Let’s see if
there really is much difference.

Example C.4
Do the Heat attempt more free throws during home games (on average) than on the
road?

Solution This is a question about comparing two means, μH and μA, the respective mean
number of free throw attempts at home and away. It suggests an upper tail test of
H0 : μH = μA vs Ha : μH > μA to see if we have evidence that the average number
of free throws attempted by the Heat when playing games at home is more than the
mean number of attempts for road games.

Using technology we find the mean and standard deviation for number of free
throws attempted (FTA) at home and away:

Location Sample Size Mean Std. Dev.

Home 41 29.8 8.11
Away 41 26.0 7.25

Both sample sizes are more than 30 and we see no big outliers in the FTA values,
so we use a two-sample t-test:

t = xH − xA√
s2
H

nH
+ s2

A
nA

= 29.8 − 26.0√
8.112

41 + 7.252

41

= 2.24

We compare this to the upper tail of a t-distribution with 41 − 1 = 40 degrees of
freedom to get a p-value of 0.015. This is less than a significance level of α = 0.05, so
we reject H0 and conclude that the mean number of free throws the Heat attempts
at home games is more than the mean number of attempts at road games.

Example C.5
Is the mean number of free throw attempts awarded to the Heat during their games
different from the mean number attempted by their opponents?

Solution The MiamiHeat dataset also has the number of free throws attempted by the Heat’s
opponent in each game (OppFTA). This question asks for a test of a difference
in mean free throw attempts per game between the Heat and their opponents.
Now we have paired data, values for each variable (FTA and OppFTA) in each of
the 82 games. Pairing the data by game makes sense, since we might expect that
referees call some games more tightly and others have fewer fouls (for both teams).
The hypotheses are H0 : μd = 0 vs Ha : μd �= 0, where μd is the mean difference in
number of free throw attempts (per game) between the Heat and their opponents.

Since this is paired data, we first find the difference (FTA − OppFTA) for
each game. Figure C.2 shows a dotplot of these differences which appears relatively
symmetric with no big outliers.

A
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Example C.7
How many more free throws do the Heat make (on average per game) than their
opponents?

Solution This question is similar to Example C.5, only now we are interested in estimating
the magnitude of the difference in mean number of free throws made (rather than
testing the difference in mean number of free throws attempted). Again, we have
paired data, this time finding the difference in free throws made for each game,
FT − OppFT. The mean of these differences is xd = 3.50 and the standard deviation
is sd = 7.65. As with the differences in free throws attempted, the distribution is
relatively symmetric with no big outliers. We find a 95% confidence interval for
the difference using a t-distribution with 81 degrees of freedom, so t∗ = 1.990. The
confidence interval is

xd ± t∗ · sd√
nd

= 3.50 ± 1.990 · 7.65√
82

= 3.50 ± 1.68 = (1.82, 5.18)

Based on these results, we are 95% sure that the Miami Heat average somewhere
between 1.82 and 5.18 more points from free throws made per game than their
opponents.

From the data in MiamiHeat we can also see that the Heat outscored their
opponents in those games by an average score of 102.06 to 94.60 points, a victory
margin of 7.46 points on average. Their advantage of 3.50 mean free throws made
per game accounts for almost half of their typical winning margin.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Demonstrate an understanding of the complete process of using the
normal or t-distribution in inference for means and proportions

• Identify which type of inference for means or proportions is appropriate
in a given situation

• Put all the pieces together to answer more involved questions using
real data

Exercises for UNIT C: Essential Synthesis

Restaurant Tips Exercises C.1 to C.5 refer to the
dataset RestaurantTips. The data were introduced
in Data 2.12 on page 119, and include information
from a sample of 157 restaurant bills collected at the
First Crush bistro.

C.1 Table C.1 shows a two-way table for Servers
A, B, and C and for whether a credit/debit card or
cash was used for payment (yes for a credit or debit
card, no for cash). Do the data in the table provide

evidence that Server B is responsible for more than
1/3 of the bills at this restaurant?

Table C.1 Two-way table of
server and method of payment

A B C

Yes 21 15 15

No 39 50 17

A

o
o
o
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C.2 Use the information in Table C.1 to compute
and interpret a 95% confidence interval for the
proportion of bills paid with a credit card.

C.3 Use the information in Table C.1 to determine
whether the sample provides evidence of a differ-
ence between Servers B and C in the proportion of
bills paid with cash.

C.4 Table C.2 gives summary statistics for the tip
percentage based on whether or not a credit card
was used. In the sample, which method of payment
has a larger average tip percent? Which method has
more variability? Is there evidence of a difference
in mean tip percentage depending on the method of
payment?

Table C.2 Summary statistics for tip percent
by method of payment

Credit? Sample Size Mean Std. Dev.

Yes 51 17.10 2.47
No 106 16.39 5.05

C.5 Table C.3 gives summary statistics for the size
of the bill based on whether or not a credit card
was used. In the sample, which method of payment
was used for larger bills? Which method has more
variability in the size of the bill? Is there evidence of
a difference in the mean size of the bill depending
on the method of payment?

Table C.3 Summary statistics for size of bill
by method of payment

Credit? Sample Size Mean Std. Dev.

Yes 51 29.4 14.5
No 106 19.5 9.4

C.6 Posture and Pain Research shows that people
adopting a dominant pose have reduced levels of
stress and feel more powerful than those adopting
a submissive pose. Furthermore, it is known that
if people feel more control over a situation, they
have a higher tolerance for pain. Putting these ideas
together, a recent study74 describes three exper-
iments investigating how posture might influence
the perception of pain.

74Data approximated from Bohns, V. and Wiltermuth S., ‘‘It
hurts when I do this (or you do that): Posture and pain toler-
ance,” Journal of Experimental Social Psychology, 2012; 48(1):
453–4561.

(a) In the first experiment, 89 participants were
told that they were in a study to examine the
health benefits of doing yoga poses at work. All
participants had their pain threshold measured
both before and after holding a yoga pose for 20
seconds. The pain threshold was measured by
inflating a blood pressure cuff until participants
said stop: The threshold was measured in mmHg
and the difference in before and after thresh-
olds was recorded. Participants were randomly
divided into two groups: One group (n = 45)
was randomly assigned to strike a dominant
pose (moving limbs away from the body) while
the other group (n = 44) was assigned to strike a
submissive pose (curling the torso inward). The
mean change in pain threshold for the group
striking a dominant pose was 14.3 with a stan-
dard deviation of 39.8, while the mean change
in pain threshold for the group striking a sub-
missive pose was −6.1 with a standard deviation
of 40.4. Does the experiment provide evidence
that a dominant pose increases one’s mean
tolerance of pain more than a submissive pose?

(b) Prior research has shown that a person will
assume a pose complementary to the pose of a
peer or colleague: assuming a more submissive
pose if the peer has a dominant pose and vice
versa. In the second experiment, 30 participants
were told they were participating in a study on
relaxation methods and randomly divided into
two groups of size 15. Each participant took
turns describing nature photographs with a peer
who was part of the study and was secretly
told to strike either a dominant or submissive
posture during the interactions. Pain thresholds
were measured in the same way as in the first
experiment. Mean difference in pain threshold
was −13.8 with a standard deviation of 27.1 for
the group with a dominant peer and 4.2 with a
standard deviation of 22.9 for the group with a
submissive peer. Does the experiment provide
evidence that mean pain tolerance is higher
if one’s interaction partner is submissive? The
data do not have any significant outliers.

(c) As part of the experiment described in part (b),
participants were also given a handgrip strength
test both before and after the interaction with
the peer, and the difference in handgrip strength
was measured in newtons. Mean change in
handgrip strength for those with a dominant
interaction partner is −45.3 newtons with a
standard deviation of 46.5 while for those with
a submissive partner mean change was −6.8
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Table C.4 Mental and actual times for physical activity after muscle fatigue

Mental pre-fatigue 5.9 9.9 8.1 7.2 6.6 7.4 6.9 6.7
Mental post-fatigue 7.4 6.0 6.6 6.1 5.5 7.2 5.4 4.6
Actual pre-fatigue 7.3 7.8 6.8 7.1 6.2 7.2 8.4 6.5
Actual post-fatigue 9.8 7.8 7.5 7.6 6.4 7.8 8.1 9.3

with a standard deviation of 31.0. The data do
not have any very large outliers. Find a 90%
confidence interval for the difference in means
and interpret the result. Based on the confidence
interval, do you believe that there is a significant
difference in mean change in handgrip strength
between those with a submissive partner and
those with a dominant partner?

(d) Since reducing the perception of pain is a goal
in health care, what are the implications of these
studies for health care professionals?

C.7 Mental Imaging and Muscle Fatigue Stud-
ies suggest that when people mentally rehearse a
physical action, they engage similar neural and cog-
nitive operations as when they actually perform the
action. Because of this, mental imaging can be a
valuable training tool. A new study75 explores how
actual muscle fatigue affects mental imaging. In the
study, participants were asked to either perform
actual arm pointing motions or to mentally imagine
equivalent arm pointing motions. Participants then
developed muscle fatigue by holding a heavy weight
out horizontally as long as they could. After becom-
ing fatigued, they were asked to repeat the previous
mental or actual motions. Eight participants were
assigned to each group, and the time in seconds
to complete the motions is given in Table C.4 and
stored in MentalMuscle. Use a 5% significance level
for all tests.

(a) Test to see whether there is a significant differ-
ence in mean times between mentally imaging
doing the actions and actually doing the actions
before any muscle fatigue (pre-fatigue).

(b) Test to see whether people who actually perform
the motions are slower, on average, post-fatigue
than pre-fatigue.

(c) Test to see whether people who mentally per-
form the motions are faster, on average, at
mentally imaging the actions post-fatigue than
pre-fatigue.

75Data approximated from summary statistics in Demougeot,
L. and Papaxanthis, C., ‘‘Muscle Fatigue Affects Mental Sim-
ulation of Action,” The Journal of Neuroscience, 2011; 31(29):
10712–10720.

(d) Test to see whether there is a significant differ-
ence in mean times between mentally imaging
doing the actions and actually doing the actions,
after experiencing muscle fatigue (post-fatigue).

(e) Write a short paragraph summarizing the results
of the experiment.

C.8 Results from the Student Survey Data 1.1 on
page 4 describes a dataset giving results of a stu-
dent survey. We use the students who filled out
the survey as a sample from the population of all
students at that university. Answer the following
questions using the computer output which follows
the exercise. Justify your answers to the questions
using specific values from the computer output. In
particular, for all tests, give the null and alternative
hypotheses, the p-value from the computer output,
and the conclusion in context.

(a) Nationally, about 20% of people smoke. What
percent of students in the sample smoke? Is the
percent of all students at this university who
smoke different from the national percentage?

(b) Is the average math SAT score of students at
this university greater than 600?

(c) One of the variables in the dataset is Higher-
SAT, which indicates whether the math or the
verbal SAT score was higher for each student.
What is the proportion of females in the sample
with a higher verbal SAT score? What is the
proportion of males for whom the verbal score
is higher? Is the proportion for whom verbal is
higher different between males and females for
all students at this university? In addition to the
test, state and interpret a 95% confidence inter-
val for the gender effect: the difference between
the proportion of females with a higher ver-
bal score minus the proportion of males with a
higher verbal score.

(d) Who has a higher average pulse rate in the
sample: smokers or non-smokers? Is there evi-
dence of a difference in mean pulse rate between
smokers and non-smokers for all students at this
university?

(e) Who has a higher mean GPA (grade point aver-
age) in the sample: smokers or non-smokers?
Is there evidence of a difference in mean GPA
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Computer Output for Exercise C.8

Test and CI for One Proportion: Smoke
Test of p = 0.2 vs p not = 0.2
Event = Yes
Variable X N Sample p 95% CI P-Value
Smoke 43 362 0.118785 (0.087313, 0.156653) 0.000

One-Sample T: MathSAT
Test of mu = 600 vs > 600
Variable N Mean StDev SE Mean 95% Lower Bound T P
MathSAT 362 609.44 68.49 3.60 603.50 2.62 0.005

Test and CI for Two Proportions: HigherSAT, Gender
Event = Verbal
Gender X N Sample p
F 84 165 0.509091
M 66 190 0.347368
Difference = p (F) - p (M)
Estimate for difference: 0.161722
95% CI for difference: (0.0597323, 0.263713)
Test for difference = 0 (vs not = 0): Z = 3.11 P-Value = 0.002

Two-Sample T-Test and CI: Pulse, Smoke
Two-sample T for Pulse
Smoke N Mean StDev SE Mean
No 319 69.3 12.3 0.69
Yes 43 71.8 11.7 1.8
Difference = mu (No) - mu (Yes)
Estimate for difference: -2.54
95% CI for difference: (-6.37, 1.28)
T-Test of difference = 0 (vs not =): T-Value = -1.33 P-Value = 0.188 DF = 55

Two-Sample T-Test and CI: GPA, Smoke
Two-sample T for GPA
Smoke N Mean StDev SE Mean
No 302 3.173 0.399 0.023
Yes 43 3.054 0.379 0.058
Difference = mu (No) - mu (Yes)
Estimate for difference: 0.1188
95% CI for difference: (-0.0059, 0.2435)
T-Test of difference = 0 (vs not =): T-Value = 1.91 P-Value = 0.061 DF = 56

between smokers and non-smokers for all stu-
dents at this university? Are the results signif-
icant at a 10% level? At a 5% level? At a 1%
level?

More Miami Heat Free Throws The data in Miami-
Heat contains information from 82 regular season
games played by the Miami Heat basketball team
that we use to analyze questions about free throws
in the case study starting on page 439. Exercises C.9
to C.12 involve some of the other questions raised
in that case study. For each question, decide what

inference technique is appropriate for addressing it
and use the data in MiamiHeat to carry out the pro-
cedure and reach a conclusion. Use 95% confidence
for any intervals and α = 0.05 for any hypothesis
tests.

C.9 Is there evidence that the mean number of
free throw attempts per game by the Heat is dif-
ferent from the mean for all NBA teams? Assume
that the mean number of free throws attempted by
teams in all NBA games is 25.0 (based on a very
large number of games over the past 10 years).
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C.10 Is the proportion of free throws successfully
made by the Heat players different from the overall
proportion for all NBA players? Assume that the
proportion of free throws made by all NBA players
is about 0.756 (based on many free throw attempts
over a 10 year period).

C.11 Is the proportion of free throws made by the
Heat better at games they play at home versus those
they play on the road? In Example C.4 on page 442
we see that the Heat tends to get more free throw
attempts (on average) when playing games at home
than on the road. Does this advantage also extend
to their ability to make free throws? Here is a table
showing Miami free throws made and attempted in
both locations.

Location Made Attempts

Home 949 1222
Away 811 1066

Total 1760 2288

C.12 How many more (or fewer) successful free
throw points do the Heat tend to make (on average)
at home games compared to their road games?
C.13 Patients Admitted to an Intensive Care Unit
Data 2.3 on page 66 describes a dataset about
patients being admitted to an Intensive Care Unit
at a large hospital. We use the patients for whom
information is available as a sample from the pop-
ulation of all patients admitted to the ICU at this
hospital. Use technology and the data stored in the
file ICUAdmissions to answer the following ques-
tions. Justify your answers to the questions using
specific values from the statistical software package
that you use. In particular, for all tests, give the null
and alternative hypotheses, the p-value from the
computer output, and the conclusion in context.

(a) The average heart rate for healthy adults is 72
beats per minute. What is the average heart rate
(HeartRate) for the sample of patients admitted
to the ICU? Does it give evidence that the aver-
age heart rate of patients admitted to this ICU
is different than 72?

(b) What proportion of patients in the sample died?
Survival is coded as 0 = lived and 1 = died in the

Status variable. Find and interpret a 95% con-
fidence interval for the proportion of patients
admitted to this ICU that die.

(c) Were more males or females admitted to this
ICU in this sample? Gender is coded as 0 for
male and 1 for female in the Sex variable. Is
there evidence that the genders of patients are
not equally split between males and females
among all ICU patients at this hospital?

(d) Does the average age of patients admitted to
this ICU differ between males and females?

(e) Does the proportion of patients who die differ
between males and females?

C.14 Effect of Diet on Nutrient Levels Data 2.11
on page 111 describes a dataset that gives nutri-
ent levels in people’s blood as well as information
about their eating habits. We use the people for
whom information is available as a sample from
the population of all people. Use technology and
the data stored in the file NutritionStudy to answer
the following questions. Justify your answers to the
questions using specific values from the statistical
software package that you use. In particular, for all
tests, give the null and alternative hypotheses, the p-
value from the computer output, and the conclusion
in context.

(a) Find and interpret a 95% confidence interval
for the percent of people that smoke.

(b) Find and interpret a 99% confidence interval
for the average number of grams of fiber per
day that people eat. Give the best estimate, the
margin of error, and the confidence interval.

(c) Find and interpret a 90% confidence interval
for the average number of grams of fat per day
that people eat.

(d) Is there evidence of a difference in the percent
of current smokers by gender?

(e) Is there evidence of a difference in the mean
cholesterol level of males and females?

(f) Is there evidence of a difference in mean level
of beta carotene in the blood (BetaPlasma)
between smokers and non-smokers?

Review Exercises for UNIT C

Finding Areas in a Standard Normal Distribution
In Exercises C.15 and C.16, find the specified areas
for a N(0, 1) density.

C.15 (a) The area below z = −2.10

(b) The area above z = 1.25
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C.16 (a) The area below z = 1.68

(b) The area above z = 2.60

Finding Endpoints on a Standard Normal Distribu-
tion In Exercises C.17 and C.18, find endpoint(s) on
a N(0, 1) density with the given property.

C.17 (a) The area to the left of the endpoint is
about 0.60.

(b) The area to the left of the endpoint is about
0.02.

C.18 (a) The area to the left of the endpoint is
about 0.25.

(b) The area to the right of the endpoint is about
0.08.

Using a t-distribution Use a t-distribution to answer
the questions in Exercises C.19 to C.22. Assume the
sample is a random sample from a distribution that
is reasonably normally distributed and we are doing
inference for a sample mean.

C.19 Find endpoints of a t-distribution with 5%
beyond them in each tail if the sample has size
n = 25.

C.20 Find endpoints of a t-distribution with 1%
beyond them in each tail if the sample has size
n = 12.

C.21 Find the area in a t-distribution to the right of
2.75 if the sample has size n = 10.

C.22 Find the area in a t-distribution to the left of
−1.50 if the sample has size n = 24.

C.23 Grams of Fiber per Day The NutritionStudy
dataset includes a variable indicating the number
of grams of fiber consumed per day by the par-
ticipants. In the sample, the mean is 12.79 grams
and the standard error for such means is SE = 0.30.
The sample size of n = 315 is large enough to use a
normal distribution.

(a) Find and interpret a 95% confidence interval
for mean number of grams of fiber per day.

(b) Use a normal distribution to test whether there
is evidence that mean number of grams of
fiber is greater than 12. Give all details of
the test.

C.24 Online Browsing on a Phone A recent study76

shows that 17% of a random sample of 1954 cell
phone owners do most of their online browsing on
their phone. The standard error for the proportion
is 0.0085. The sample size is large enough to use a
normal distribution.

76Smith, A., ‘‘Cell Internet Use 2012,” Pew Research Center,
pewresearch.org, June 26, 2012.

(a) Find and interpret a 90% confidence interval
for the proportion of cell phone owners who do
most of their online browsing on their phone.

(b) Use a normal distribution to test whether there
is evidence that the proportion is greater than
0.15. Give all details of the test.

Using Intuition about Test Statistics In Exer-
cises C.25 to C.30, a standardized test statistic is
given for a hypothesis test involving proportions
(using the standard normal distribution) or means
(using the t-distribution and assuming a relatively
large sample size). Without using any technology or
tables, in each case:

(a) Is the p-value likely to be relatively large or
relatively small?

(b) Is the conclusion of the test likely to be Reject
H0 or Do not reject H0?

C.25 z = 5.6

C.26 z = 8.3

C.27 z = 0.54

C.28 t = 12.2

C.29 t = 7.1

C.30 t = 0.83

Identifying the Method of Analysis In Exer-
cises C.31 to C.38, identify the method of analy-
sis needed to answer the question. Indicate whether
we should conduct a hypothesis test or find a confi-
dence interval and also indicate whether the analysis
will be done on a proportion, a mean, a difference
in proportions, a difference in means, or a matched
pairs difference in means.

C.31 Use data collected at a retail store to estimate
the average amount of money people spend in the
store.

C.32 Use results collected at a supermarket to see
whether there is a difference in the average amount
of time customers have to wait in line between two
different check-out cashiers.

C.33 Use data from an experiment on mice to see
if there is evidence that mice fed a high-sugar diet
are more likely to be classified as insulin-resistant
than mice fed a normal diet.

C.34 Use data collected at an online shopping site
to estimate the proportion of people visiting the site
who make a purchase.

C.35 Use data collected from a sample of applicants
at a college admissions office to measure how large
the difference is in the average size of the financial
aid package between early decision applicants and
regular decision applicants.



450 U N I T C

C.36 Use data from a study done at a college fit-
ness center in which muscle mass of participants
was measured before and after a 6-week program
working with resistance bands to estimate the mean
increase in muscle mass.

C.37 Use a sample of students at a large university
to determine whether the proportion of students at
the university who are left-handed is different from
the national US proportion of 12%.

C.38 Use results from a survey to estimate the dif-
ference in the proportion of males and females who
say they are trying to lose weight.

C.39 How Likely Is a Female President of the US?
A recent headline states that ‘‘73% say Woman
President Likely in Next 10 Years.” The report gives
the results of a survey of 1000 randomly selected
likely voters in the US.77 Find and interpret a 95%
confidence interval for the proportion of likely vot-
ers in the US who think a woman president is likely
in the next 10 years.

C.40 Can Rats Feel Empathy? Can rats feel empa-
thy toward fellow rats? In a recent study,78 some
rats were first habituated to two chambers: a witness
chamber adjacent to a shock chamber. The experi-
mental rats (n = 15) were then given electric shocks
through the floor of the shock chamber, while the
control rats (n = 11) received no shocks but had all
else the same. Twenty-four hours after the shocks
were administered, each rat was put in the witness
room and observed another rat getting shocked
in the shock chamber. When rats get shocked, they
freeze. The response variable as a measure of empa-
thy on the part of the witness rats was the percent of
time the witness rats spent in ‘‘freeze” mode when
watching other rats get shocked. The experiment
was double-blind. For the experimental rats who
had previously received shocks, the mean percent
time spent in freeze mode was 36.6 with a standard
deviation of 21.3. For the control rats who had never
been shocked, the mean time in freeze mode was 1.2
with a standard deviation of 2.3. Test to see whether
the time spent in freeze mode is significantly higher
for the rats with prior shock experience. Show all
details of the test. You may assume that the data on
time spent in freeze mode have no large outliers.

C.41 Laptop Computers and Sperm Count Studies
have shown that heating the scrotum by just 1◦C
can reduce sperm count and sperm quality, so men
concerned about fertility are cautioned to avoid too

77Rasmussen Reports, June 27, 2010.
78Atsak, P., et al., ‘‘Experience Modulates Vicarious Freezing in
Rats: A Model for Empathy,” PLoS ONE, 2001; 6(7): e21855.

much time in the hot tub or sauna. Exercise 2.101
on page 87 introduces a study suggesting that men
also keep their laptop computers off their laps. The
study measured scrotal temperature in 29 healthy
male volunteers as they sat with legs together and a
laptop computer on their lap. Temperature increase
in the left scrotum over a 60-minute session is given
as 2.31 ± 0.96 and a note tells us that ‘‘Tempera-
tures are given as ◦C; values are shown as mean ±
SD.” Test to see if we can conclude that the aver-
age temperature increase for a man with a laptop
computer on his lap for an hour is above the danger
threshold of 1◦C.

C.42 NFL Overtime In Exercise B.6 on page 306
we look at some data on the results of overtime
games in the National Football League (NFL) from
1974 through the 2009 season. The question of inter-
est is how much advantage (if any) is given to the
team that wins the coin flip at the start of the sudden
death overtime period. Assume that the overtime
games played during this period can be viewed as a
sample of all possible NFL overtime games.

(a) The winner of the coin flip has gone on to win
240 of the 428 games where a winner is deter-
mined in overtime. Does this provide sufficient
evidence to conclude that the team winning the
coin flip has an advantage in overtime games?

(b) The NFL changed a rule before the 1994 sea-
son (moving the kickoff line back 5 yards) that
might affect this analysis. For 188 games (again
ignoring ties) from 1974 to 1993 the winner of
the coin flip won 94 times and lost 94 times. In
240 games played between 1994 and 2009 (after
the rule change) the winner of the coin flip won
146 games and lost 94. Discuss any statistical
evidence for a difference in the advantage (if
any exists at all) for the team winning the coin
flip under the new and old rules.

C.43 Is There a Genetic Marker for Dyslexia?
Exercise 2.20 on page 56 describes a study finding
that a gene disruption may be related to an increased
risk of developing dyslexia. Researchers studied the
gene in 109 people diagnosed with dyslexia and in
a control group of 195 others who had no learning
disorder. The disruption occurred in 10 of those with
dyslexia and in 5 of those in the control group. Are
the conditions met to use the normal distribution
to estimate the size of the difference in the pro-
portion of those with the gene disruption between
those who have dyslexia and those who don’t? Use
an appropriate method to estimate the size of this
difference, with 95% confidence.
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Do Lie Detectors Work? Exercises C.44 to C.47
refer to the data in Table C.5. These data, intro-
duced in Exercise A.23 on page 147, involve partici-
pants who read either deceptive material or truthful
material while hooked to a lie detector. The two-
way table indicates whether the participants were
lying or telling the truth and also whether the lie
detector indicated that they were lying or not.

Table C.5 How accurate are lie detectors?

Detector Detector
Says Lying Says Not Total

Person lying 31 17 48
Person not lying 27 21 48

C.44 Find and interpret a 90% confidence interval
for the proportion of times a lie detector accurately
detects a lying person.

C.45 Test to see if there is evidence that the lie
detector says a person is lying more than 50% of the
time, regardless of what the person reads.

C.46 Test to see if there is a difference in the pro-
portion the lie detector says is lying depending on
whether the person is lying or telling the truth.

C.47 Find and interpret a 95% confidence interval
for the difference in the proportion the lie detector
says is lying between those lying and those telling
the truth.

C.48 Does the US Government Provide Enough
Support for Returning Troops? A survey conducted
of 1502 randomly selected US adults found that 931
of them believed the government does not pro-
vide enough support for soldiers returning from
Iraq or Afghanistan.79 Use this information to con-
struct a 99% confidence interval. Clearly define the
parameter you are estimating.

C.49 Arsenic in Toenails Arsenic is toxic to
humans, and people can be exposed to it through
contaminated drinking water, food, dust, and soil.
Exercises 2.51 and 2.103 on pages 71 and 87, respec-
tively, describe an interesting new way to measure
a person’s level of arsenic poisoning: by examining
toenail clippings. Two samples of arsenic in toe-
nails are given below: one from near an arsenic
mine in Great Britain and one from New Hamp-
shire, US. In each case, find a 95% confidence
interval for the level of arsenic in toenails in the
relevant population. First, determine whether it

79‘‘Four Years After Walter Reed, Government Still Faulted for
Troop Support,” Pew Research Center, pewresearch.org, June
29, 2011.

appears to be appropriate to use a t-distribution to
construct the confidence interval. If a t-distribution
is appropriate, use it. If not, use a bootstrap method.
Note that the units for measuring arsenic (mg/kg or
ppm) are not the same for the two studies.

(a) Levels of arsenic, measured in mg/kg, are given
below for 8 people living near a former arsenic
mine in Great Britain:

0.8 1.9 2.7 3.4 3.9 7.1 11.9 26.0

(b) Levels of arsenic, measured in ppm, are given
for 19 individuals with private wells in New
Hampshire in Table C.6 (and stored in Toe-
nailArsenic).

Table C.6 Arsenic concentration in toenail
clippings in New Hampshire

0.119 0.118 0.099 0.118 0.275 0.358 0.080
0.158 0.310 0.105 0.073 0.832 0.517 0.851
0.269 0.433 0.141 0.135 0.175

C.50 Smoking and Pregnancy Rate Exercise 2.25
on page 57 introduces a study investigating whether
smoking might negatively effect a person’s ability
to become pregnant. The study collected data on
678 women who had gone off birth control with
the intention of becoming pregnant. Smokers were
defined as those who smoked at least one cigarette
a day prior to pregnancy. We are interested in the
pregnancy rate during the first cycle off birth control.
The results are summarized in Table C.7.

(a) Find a 95% confidence interval for the differ-
ence in proportion of women who get pregnant
between smokers and non-smokers. From the
confidence interval, can we conclude that one
group has a significantly higher pregnancy suc-
cess rate than the other? Explain.

(b) Conduct a hypothesis test to determine if the
pregnancy success rates of smokers and non-
smokers are significantly different. Does the
result agree with the conclusion in part (a)?

(c) Can we conclude that smoking causes women
to have less success when trying to become
pregnant during the first cycle? Explain.

Table C.7 Smoking and Pregnancy Rate

Smoker Non-smoker Total
Pregnant 38 206 244
Not pregnant 97 337 434
Total 135 543 678
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C.51 Does Red Increase Men’s Attraction to
Women? Exercise 1.89 on page 42 describes a
recent study which examines the impact of the color
red on how attractive men perceive women to be.
(We examine a confidence interval involving these
data in Exercise 6.238 on page 418.) In the study,
men were randomly divided into two groups and
were asked to rate the attractiveness of women on
a scale of 1 (not at all attractive) to 9 (extremely
attractive). One group of men were shown pictures
of women on a white background and the other
group were shown the same pictures of women on a
red background. The results are shown in Table C.8.
Test to see if men rate women as significantly more
attractive (on average) when a red background is
used rather than a white background. Show all
details and clearly state your conclusion.

Table C.8 Does red increase
men’s attraction to women?

Color n x s

Red 15 7.2 0.6
White 12 6.1 0.4

C.52 Close Confidants and Social Networking
SitesExercise 6.116 on page 386 introduced a study
in which 2006 randomly selected US adults (age 18
or older) were asked to give the number of people
in the last six months ‘‘with whom you discussed
matters that are important to you.” The average
number of close confidants for the full sample is 2.2.
In addition, the study asked participants whether or
not they had a profile on a social networking site.
For the 947 participants using a social networking
site, the average number of close confidants is 2.5
with a standard deviation of 1.4, and for the other
1059 participants who do not use a social network-
ing site, the average is 1.9 with a standard deviation
of 1.3. (We examine a confidence interval involving
these data in Exercise 6.237 on page 418.)

(a) What is the sample? What is the intended pop-
ulation?

Table C.9 Number of hours spent exercising a week

Females 4 2 5 6 12 15 10 5 0 5

Males 10 10 6 5 7 8 4 12 12 4 15 10 5
5 2 2 7 3 5 15 6 6 5 0 8 5

(b) Is this an experiment or an observational study?
Can we make causal conclusions from these
data?

(c) Do the sample data provide evidence that those
who use social networking sites tend to have
more close confidants on average?

(d) Describe a possible confounding variable that
might be influencing the association in part (c).

C.53 Near Death Experiences Exercise 2.21 on
page 56 describes a study of the prevalence of
near-death experiences. A near-death experience
includes the sensation of seeing a bright light or
feeling separated from one’s body or sensing time
speeding up or slowing down, and sometimes is
experienced by people who have a brush with death.
Researchers interviewed 1595 people admitted to a
hospital cardiac care unit during a recent 30-month
period. Patients were classified as cardiac arrest
patients (in which the heart briefly stops after beat-
ing unusually quickly) or patients suffering other
serious heart problems (such as heart attacks). The
study found that 27 individuals reported having had
a near-death experience, including 11 of the 116
cardiac arrest patients.

(a) What proportion of cardiac arrest patients in the
sample reported near-death experiences? What
proportion of other heart patients reported
them?

(b) Test, at a 5% level, to see if cardiac arrest
patients are more likely to have a near-death
experience than other heart patients.

C.54 Time Spent Exercising, between Males and
Females In the StudentSurvey data, there are 36
seniors: 26 males and 10 females. Table C.9 gives
the number of hours per week that each said he or
she spent exercising. Find a 95% confidence inter-
val for the difference in mean time spent exercising
between male and female seniors at this university.

C.55 Fighting Insomnia Exercise A.32 on page 149
introduces a study investigating the effectiveness of
behavioral changes and prescription medication in
helping older people find improvement in fighting
insomnia. The results are summarized in Table C.10.
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(a) Some of the counts in the cells are very small,
definitely too small to use a normal based
test. When this is the case, we often collapse
some of the cells together. Combine cells from
Table C.10 to fill in the cells in Table C.11 with
appropriate values.

(b) Although, when completed, one of the cells in
Table C.11 has only a count of 9, this is close
to 10 and is only one cell, so we proceed with a
normal-based test. Test to see if training helps
people improve in the fight against insomnia.

Table C.10 Treating insomnia

Improvement Medication Training Both Neither Total
Much 5 7 10 0 22
Some 4 5 6 1 16
None 8 6 3 17 34
Total 17 18 19 18 72

Table C.11 Combine cells to create this table

Any Improvement Training No Training Total
Yes
No
Total

C.56 Heart Rates The typical resting pulse rate in
adults is 60 to 80 beats per minute. For the 200
Intensive Care Unit patients in the dataset ICUAd-
missions, the average pulse rate in the sample is
x = 98.9 bpm with s = 26.8 bpm. Test to see if this
provides evidence that the average pulse rate of
ICU patients is greater than 80.

C.57 Normal Body Temperature It is commonly
believed that normal human body temperature is
98.6◦F (or 37◦C). In fact, ‘‘normal” temperature can
vary from person to person, and for a given person
it can vary over the course of a day. Table C.12 gives
a set of temperature readings of a healthy woman
taken over a two-day period. Test to see if the mean
body temperature for this person is different from
98.6◦F.

C.58 Prostate Cancer and a Drug for Baldness
Exercise A.30 on page 149 introduces a study in

Table C.12 Body temperature during the day

97.6 98.0 98.8 98.9 98.7 98.1 97.7 98.1 98.9 98.9 98.8 98.3

which the drug finasteride, marketed as Propecia to
help protect against male pattern baldness, is inves-
tigated for its protective effects against prostate
cancer. Men were randomly assigned to receive
either a daily finasteride pill or a placebo, and the
study was double-blind. At the end of the seven-year
study, prostate cancer was found in 804 of 4368 men
taking finasteride and in 1145 of 4692 men taking
a placebo. Test to see if men taking finasteride are
less likely to get prostate cancer than men taking a
placebo.

C.59 Dark Chocolate for Good Health A recent
study examines chocolate’s effects on blood ves-
sel function in healthy people. In the randomized,
double-blind, placebo-controlled study, 11 people
received 46 grams (1.6 ounces) of flavonoid-rich
dark chocolate (which is normal dark chocolate)
every day for two weeks, while a control group of
10 people were given dark chocolate with reduced
flavonoid content. Participants had their vascular
health measured (by means of flow-mediated dila-
tion) before and after the two-week study. The
increase in flow-mediated dilation over the two
week period was measured, with larger numbers
indicating greater vascular health. For the group
getting the flavonoid-rich dark chocolate, the mean
increase was 1.3 with a standard deviation of 2.32,
while the control group had a mean change of
−0.96 with a standard deviation of 1.58. (We exam-
ine a confidence interval involving these data in
Exercise 6.236. on page 418.)

(a) Why were participants in the control group
given dark chocolate that had reduced
flavonoids? Why weren’t they given nothing
at all?

(b) Do the results of the study provide evidence that
vascular health (as measured by flow-mediated
dilation) is greater in those eating dark choco-
late daily? Are the results significant at the 5%
level? At the 1% level?

(c) Can we conclude that eating dark chocolate
improves vascular health? Why or why not?

C.60 How Old Are Scout Honeybees? Honeybee
colonies have specific ‘‘scout” honeybees, that are
entrusted with finding new sites for hives. The mean
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age of honeybees in a hive is about 12 days.80 In
a sample of 50 scout honeybees, the average age
is 29.1 days with a standard deviation of 5.6. Does
this provide evidence that scout bees are older, on
average, than expected by random chance if they
were selected from the hive as a whole? Show all
details of the test.

C.61 Tribulus Tribulus is a food supplement that
some athletes use to enhance performance. A
study81 on the effects of this supplement involved
randomly assigning 20 athletes to take the supple-
ment for a 20 day period and comparing various
characteristics to 12 similar athletes who were not
given Tribulus. One of the measurements was anaer-
obic alactic muscular power (AAMP) where the
Tribulus group showed a mean performance of
1305.6 with a standard deviation of 177.3 while
the control group had a mean AAMP of 1255.9 with
a standard deviation of 66.8.

(a) Test whether the data provide evidence that
mean AAMP is higher for athletes using Tribu-
lus compared to those not using the supplement.

(b) The authors of the study also report that the
mean AAMP of the 20 subjects in the experi-
mental group before they started the Tribulus
supplements was 1215.5 with a standard devia-
tion of 146.6. Explain why this is not sufficient
information to let us test for a difference in
means before and after using the supplement.

C.62 Homes for Sale The dataset HomesForSale
has data on houses available for sale in three Mid-
Atlantic states (NY, NJ, and PA) and California
(CA).82 We are interested in the proportion of Mid-
Atlantic houses that are larger than the mean US
household size, which is approximately 2700 square
feet. In the sample of 90 Mid-Atlantic homes for
sale in HomesForSale, we see that 16 are larger
then 2700 sqft.

(a) What is the sample proportion? Estimate the
standard error of the sample proportion.

(b) Is the sample size large enough for the Central
Limit Theorem to apply?

(c) Find and interpret a 95% confidence interval for
the proportion of homes larger than the national
mean in the Mid-Atlantic states.

80Values approximated from information available in Seeley,
T., Honeybee Democracy, Princeton University Press, Princeton,
NJ, 2010, p 96.
81Milasius, K., Peciukoniene, M., Dadeliene, R., and Skernevi-
cius, J., ‘‘Efficacy of the Tribulus Food Supplement Used By
Athletes,” Acta Medica Lituanica, 2010; 17(1–2): 65–70.
82Data collected from www.zillow.com.

C.63 Homes for Sale in Mid-Atlantic States and
California The dataset HomesForSale has data on
houses available for sale in three Mid-Atlantic states
(NY, NJ, and PA) as well as California (CA). In
Exercise C.62 we see that in the sample of 90 Mid-
Atlantic homes for sale, 16 are larger than the
national average. In the sample of 30 California
homes, 7 are larger than the national average.

(a) Is the normal distribution appropriate to model
the proportion larger than the national average
for Mid-Atlantic houses? California houses?

(b) Do we have sufficient evidence at a 5% level that
the proportion of Mid-Atlantic homes larger
than the national average is less then 25%?
Perform an appropriate test.

(c) Do we have sufficient evidence at a 5% level that
the proportion of California homes larger than
the national average is less than 25%? Perform
an appropriate test.

C.64 How Big Is the Difference in Homes For Sale?
The dataset HomesForSale has data on houses avail-
able for sale in three Mid-Atlantic states (NY, NJ,
and PA) as well as California (CA). In Exercise
C.63 we looked at the proportion of homes for sale
that were larger than the national average of 2700
SqFt. We found 16 large houses out of 90 in the
Mid-Atlantic states and 7 large houses out of 30 in
California.

(a) Find a point estimate for the difference in pro-
portions, pM − pC.

(b) Find a 90% confidence interval for the differ-
ence in proportions, pM − pC.

(c) Based on the interval in part (b), is there evi-
dence of a difference in the proportion of large
houses between the two locations?

C.65 Infection in Dialysis Patients Exercise 2.135
on page 100 discusses a study showing the recur-
rence time to infection at the point of insertion of
the catheter for kidney patients using portable dial-
ysis equipment. There are 38 patients, and the mean
time to infection is x = 111.7 days with s = 144.0.

(a) Find a 99% confidence interval for the mean
time to infection for these patients. Give the
best estimate, the margin of error, and give and
interpret the confidence interval.

(b) Is it reasonable to find a patient with a time to
infection of 24 days? How about 152 days?

(c) Is it reasonable to find the mean time to infec-
tion in the population is 24 days? How about
152 days?
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Table C.13 Systolic blood pressure of ICU patients

Teens 100 100 104 104 112 130 130 136 140 140 142
146 156

Eighties 80 100 100 110 110 122 130 135 136 138 140
141 162 190 190

C.66 Age and Blood Pressure Table C.13 gives sys-
tolic blood pressure readings (first introduced in
Exercise A.36 on page 150) for Intensive Care Unit
patients in their teens and those in their eighties.

(a) Find and interpret a 95% confidence interval for
the mean systolic blood pressure for each group.
Which has a larger margin of error? What aspect
of the data is the cause of that larger margin of
error?

(b) Test to see if there is a difference in systolic
blood pressure readings between ICU patients
in their teens and those in their eighties.

C.67 Light at Night and Weight Gain A study
described in Data A.1 on page 136 found that mice
exposed to light at night gained substantially more
weight than mice who had complete darkness at
night, despite the fact that calorie intake and activ-
ity levels were the same for the two groups. In
the study, 27 mice were randomly divided into two
groups. The 8 mice with darkness at night gained an
average of 5.9 grams in body mass, with a standard
deviation of 1.9 g. The 19 mice with light at night
gained an average of 9.4 g with a standard deviation
of 3.2 g. Is there evidence that mice with light at
night gain significantly more weight (while eating
the same number of calories) than mice with dark-
ness at night? Justify your answer by showing all
details of the test. (We examine a confidence inter-
val involving these data in Exercise 6.239 on page
419, and the figure in that exercise indicates that it
is appropriate to use a t-distribution for this test.)

C.68 CAOS Exam The Comprehensive Assess-
ment of Outcomes in Statistics (CAOS) exam83 is an
online multiple-choice test on concepts covered in
a typical introductory statistics course. Students can
take a pretest version before instruction and then
a posttest version after instruction. Scores on the
pretest and posttest for a random sample of n = 10

83http://app.gen.umn.edu/artist/caos.html.

Table C.14 CAOS pretest and posttest scores

Student A B C D E F G H I J

Pretest 42.5 40 47.5 65 60 47.5 42.5 37.5 42.5 37.5
Posttest 60 45 55 80 85 72.5 57.5 55 57.5 55

students with one instructor are shown in Table C.14
and stored in CAOSExam. Use this information to
compute and interpret a 95% confidence interval for
the improvement in mean CAOS scores between the
two exams for this instructor’s students.

C.69 CAOS Comparisons An article84 by the devel-
opers of the CAOS exam described in Exercise C.68
gives benchmark data based on a very large number
of students taking the CAOS pretest and posttest.
The mean score on the CAOS pretest was 44.9 and
the mean on the CAOS postest was 54.0 for an
average improvement of 9.1 points. We treat these
values as population means for all students taking
the CAOS exams.

(a) Using the data in Table C.14 and CAOSExam
for a sample from one instructor, is there enough
evidence to conclude at the 5% level that this
instructor’s students have a mean score on the
posttest that is higher than 54.0?

(b) Can we conclude that this instructor was start-
ing with stronger students? Test if the mean
score for this instructor’s students on the CAOS
pretest is higher than the benchmark mean of
44.9 points, using a 5% significance level.

(c) Can we conclude, at the 5% level, that the
mean improvement from pretest to posttest for
students with this instructor is higher than the
national norm of 9.1 points?

C.70 Gender and Commuting Time–St. Louis
Some computer output is shown on the next page
from an analysis to compare mean commute time
between males and females using data from St.
Louis commuters in CommuteStLouis. Write a
paragraph interpreting what this output shows
about the relationship (if any) between commuting
time and gender in St. Louis.

84DelMas, R., Garfield, J., Ooms, A., and Chance, B., ‘‘Assess-
ing Students’ Conceptual Understanding After a First Statistics
Course,” Statistics Education Research Journal, 2007; 6(2): 28–58.
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Two-sample T for Time
Sex N Mean StDev SE Mean
F 240 21.6 13.9 0.90
M 260 22.3 14.6 0.90

Difference = mu (F) - mu (M)
Estimate for difference: -0.70
95% CI for difference: (-3.20, 1.80)
T-Test of difference = 0 (vs not =): T-Value = -0.55 P-Value = 0.585 DF = 497

C.71 Gender and Commuting Time–Atlanta
Exercise C.70 gives computer output comparing
mean commute time between males and females
in the city of St. Louis. Use the data in CommuteAt-
lanta to see if a similar relationship (or lack of
relationship) holds in Atlanta. Include both a con-
fidence interval and test for the difference in mean
commute time by gender in Atlanta.

C.72 Commuting by Bicycle: Which Type of Bike
Is Best? Dr. Jeremy Groves, a British anaesthetist,
often uses a bicycle for his 27-mile round-trip com-
mute to work. He bought an expensive, lightweight,
carbon bike but also had an older, heavier, steel
bike—so he decided to do an experiment.85 On
each day he biked to work he flipped a coin to
determine which bike he would ride. He used a
bicycle computer to accurately record the commute
time each day as well as his maximum and average
speed for the day. His data for 56 days are stored in
BikeCommute. The type of bicycle (carbon or steel)
is in the Bike variable and his time (in minutes) is
stored in Minutes. Do the data provide evidence
that mean commute time differs between the two
types of bikes?

C.73 Marriage Ages Exercise B.8 on page 307
introduces the MarriageAges dataset that contains
the ages for husbands and wives from a sample
of 105 marriage licenses in St. Lawrence County,
New York. In that exercise we use bootstrap and
randomization methods to compare ages between
husbands and wives. Repeat the analyses now using
technology and the methods of this unit.

(a) For couples marrying in St. Lawrence County,
does the sample provide evidence that, on aver-
age, husbands are older than wives?

(b) Is the proportion of couples for which the hus-
band is older greater than 50%?

85‘‘Bicycle weight and commuting time: randomised trial,” British
Medical Journal, 2010; 341: c6801. Thanks to Dr. Groves for
providing his data.

(c) For any significant results in parts (a) and (b),
construct and interpret a 95% confidence inter-
val for the parameter of interest.

C.74 Marriage Age Intervals Refer to Exer-
cise C.73 for a description of the data in Mar-
riageAges for a sample of 105 newly married
couples.

(a) Use technology to find the mean age for the
wives in this sample and construct a 95% confi-
dence interval for the mean age at marriage for
wives in the population.

(b) Repeat part (a) for the husbands’ ages.

(c) Based on the confidence intervals in parts (a)
and (b), can we predict what a hypothesis test
for a difference in mean marriage age between
the husband and wife in a couple might con-
clude, based on this dataset? If so, explain what
that decision would be. If not, explain why not.

C.75 Better Traffic Flow Exercise 2.144 on page
102 describes a study conducted by engineers in
Dresden, Germany looking at ways to improve traf-
fic flow by enabling traffic lights to communicate
with each other in real time. They simulated buses
moving along a street and recorded the delay time
(in seconds) for both the current fixed timed sys-
tem and a flexible interacting system of lights. They
repeated the simulation in each case for a total
of 24 situations. The data in TrafficFlow show the
total delay time (in minutes) for both the Timed
and the Flexible simulations for each run, as well
as a column showing the Difference in the time
for each pair, with Difference = Timed − Flexible in
each case. Use statistical software to find a 95%
confidence interval for the mean difference in delay
time between the two systems and to conduct a
hypothesis test to see if there is a difference in delay
times between the two systems. Interpret the con-
fidence interval and include all details of the test.
Which method has the least average delay time for
traffic?
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Projects for UNIT C

Project 1 Statistical Inference in the Media

(This is a repeat of Project 1 in Unit B. It is
appropriate in either unit.)

This project asks you to find examples of
statistical inference in the media. You are asked to
find one article in the popular press where a test is
described but no explicit p-value is given, and one
article in a scholarly journal where a p-value is
explicitly given. You should submit a well-written
report addressing each of the following parts.

Part 1 Mainstream Media

Find a description of a statistical test in the popular
press (such as in a magazine or online).

(a) Describe how the test was conducted. How
were the data collected (or can you not tell this
from the article)? Are the data the result of an
experiment or an observational study?

(b) What is the conclusion of the test?

(c) What is a likely range for the p-value of this
test, given the information in the article?

(d) Attach a copy of the relevant article and include
the complete citation or web address.

Part 2 Scholarly Article

Find a scholarly article (such as that typically found
in a journal) that gives the results of a statistical
test and that explicitly includes the p-value, or that
gives a range for the p-value.

(a) Describe how the test was conducted. How
were the data collected (or can you not
tell this from the article)? Are the data the
result of an experiment or an observational
study?

(b) What is the conclusion of the test?

(c) In your own words, how strong is the evidence
for the conclusion of the test?

(d) Attach a copy of the relevant article (or the rel-
evant portion of the article) and include the
complete citation or web address.

Project 2 Analyze Your Own Data–Inference for a Difference in Means

This project asks you to collect and analyze your
own data for a difference in means. You must use a
statistical software package to perform the analysis
and you should incorporate output from the
package to verify your answers. All results should
include both computer output and a discussion of
the results in your own words. You should submit a
well-written report addressing each of the
following parts.

Part 1 Clearly state what you are

investigating.

What is your population and what two groups are
you comparing? What is your quantitative variable
of interest? Define the parameter(s) of interest.
(Note: Several suggestions are given below, or
come up with your own idea.)

Part 2 Describe clearly how you collect

your data.

Remember Chapter 1! Devise a way to efficiently
collect data in a way that will be relatively
unbiased. After you have described your sampling
method, discuss any ways that your sampling

method may bias the results. (Note: If collecting
your own data is not feasible, perhaps you could
sample your statistics class.)

Part 3 Collect your data!

Include a copy of the dataset in your report. If
appropriate, include a reference for the source of
your data.

Part 4 Describe your data.

Include a graph of the data in your quantitative
variable and include summary statistics (mean,
standard deviation, five number summary). Discuss
the results. In addition, give summary statistics
(mean, standard deviation, and sample size) for
each of the two groups. Include a comparative plot
to compare the two groups and discuss what you
see in the graph and the comparative statistics.

Part 5 Create a confidence interval for the

difference in means between your two groups.

Include the output from the software package you
use (choose your own confidence level) and be sure
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to interpret your result in the context of your data
situation.

Part 6 Test whether your data show evidence

for a difference in means between the two

groups.

Specify the appropriate null and alternative
hypotheses. Use a two-tailed alternative, unless
you have some reason in advance to suspect a
difference in a particular direction. Include the
output from the software package you use and use
the p-value to make a conclusion (in context)
about the evidence for a difference in means
between your groups.

Topic Suggestions

Determine whether there is a difference in average:

• Number of hours spent watching television in a
week, between males and females

• Life expectancy, between countries in the East-
ern and Western hemispheres

• Number of hours spent studying per week,
between first-year students and upper-class
students

• Number of pitches thrown in baseball games,
between the National and American leagues

• Price of textbooks, between introductory and
upper level courses

Project 3 Analyze Your Own Data–Inference for a Difference in Proportions

This project asks you to collect and analyze your
own data for a difference in proportions. You
should submit a well-written report addressing
each of the following parts.

Part 1 Clearly state what you are

investigating.

What is your population and what two groups are
you comparing? What is your categorical variable
of interest? Define the parameter(s). (Note:
Several suggestions are given at the bottom of this
page, or come up with your own idea.)

Part 2 Describe clearly how you collect

your data.

Remember Chapter 1! Devise a way to efficiently
collect data in a way that will be relatively
unbiased. After you have described your sampling
method, discuss any ways that your sampling
method may bias the results. (Note: If collecting
your own data is not feasible, perhaps you could
sample your statistics class.) If appropriate, include
a reference for the source of your data.

Part 3 Collect your data!

Display the data in a two-way table. Also, give the
summary statistics (sample proportion and sample
size) for each group. Include a comparative plot
and discuss what you see in the graph.

Part 4 Create a confidence interval for the

difference in the proportions between your

two groups.

Include the output from the software package you
use (choose your own confidence level) and be sure
to interpret your result in the context of your data
situation.

Part 5 Test whether your data show evidence

for a difference in proportions between the

two groups.

Specify the appropriate null and alternative
hypotheses. Use a two-tailed alternative, unless
you have some reason in advance to suspect a
difference in a particular direction. Include the
output from the software package you use and use
the p-value to make a conclusion (in context)
about the evidence for a difference in proportions
between your groups.

Topic Suggestions

Determine whether there is a difference in the
proportion of:

• Students who have talked on the phone with a
parent in the last 24 hours, between males and
females

• Free throws made by a basketball player,
between home and road games

• Students who are going somewhere other than
home for the next school break, between first-
year and upper-class students

• Words with more than eight letters, between arti-
cles in the New York Times and USA Today

• Students who ate breakfast that morning,
between males and females
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Inference for Multiple
Parameters

‘‘The biggest leaps forward in the next several decades—in business,
science, and society at large—will come from insights gleaned through

perpetual, real-time analysis of data’’

–IBM∗

U N I T O U T L I N E

7 Chi-Square Tests for
Categorical Variables

8 ANOVA to Compare Means
9 Inference for Regression

10 Multiple Regression
Essential Synthesis

In this unit, we consider statistical inference

for situations with multiple parameters: test-

ing categorical variables with more than two

categories, comparing means between more

than two groups, making inferences using the

slope and intercept of a regression model, and

building regression models with more than one

explanatory variable.

∗Advertisement, May 2010, seen in The Week, May 14, 2010, p. 12.



C H A P T E R 7

Chi-Square
Tests for
Categorical
Variables

‘‘The marshalling of data to test presumptions and locate paths to success is transforming

almost every aspect of human life.”

–Larry Summers∗

∗‘‘What you (really) need to know,” The New York Times, January 22, 2012.
Top left: PNC/Getty Images, Inc., Top right: © 97/iStockphoto, Bottom right: Sports Illustrated/Getty Images, Inc.
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Questions and Issues

C H A P T E R O U T L I N E

7 Chi-Square Tests for Categorical
Variables 460

7.1 Testing Goodness-of-Fit for a Single
Categorical Variable 462

7.2 Testing for an Association between Two
Categorical Variables 476

Here are some of the questions and issues we will discuss in this chapter:

• How often do people ‘‘like” something on Facebook?

• Are left-handed people more likely to choose certain occupations?

• Can people delay death to make it to a special occasion?

• Are Canadian youth hockey players born early in the year more likely to become professional
hockey players than those born late in the year?

• Can people tell bottled water and tap water apart in a blind taste test?

• In Rock-Paper-Scissors, are the three options chosen equally often?

• Are hospitals deadlier in July?

• Which James Bond actor is the favorite?

• Do males or females update their status more frequently on Facebook?

• Is there a ‘‘sprinting gene”?

• Are children who are the youngest in their class more likely to be diagnosed with ADHD?

461
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Solution (a) The data in Table 7.1 are from a sample of exam questions so we use the notation
for sample proportions when giving the relative frequencies. For example, for
letter A we have

p̂a = 85
400

= 0.2125

The other four proportions are

p̂b = 90
400

= 0.225 p̂c = 79
400

= 0.1975 p̂d = 78
400

= 0.195 p̂e = 68
400

= 0.170

(b) Since we are interested in the proportions for the population of all AP multiple
choice questions, we use the notation p for a parameter. If each of the five letters
are equally often the correct choice, the proportion for each is 1/5 or 0.20. We
have

pa = pb = pc = pd = pe = 0.20

We could test the proportion in any one of the categories, for example H0 : pa =
0.2 vs Ha : pa �= 0.2, with the techniques of Chapter 4 or Section 6.3. However, we
prefer to assess the evidence for/against ‘‘equally likely” using all five categories at
once.

Null and Alternative Hypotheses
The answer to part (b) of Example 7.1 is precisely the sort of hypothesis we would
like to test for a categorical variable. The null hypothesis specifies proportions for
each of the groups defined by the variable’s categories. The alternative hypothesis is
that at least one of those proportions is wrong. For the five multiple choice answers
we have

H0 : pa = pb = pc = pd = pe = 0.2

Ha : Some pi �= 0.2

Note that the alternative doesn’t specify which specific group has a proportion
different from 0.2, just that at least one of the null proportions (denoted by a generic
‘‘pi”) is different from what the null hypothesis claims. Also, as the next example
illustrates, we don’t have to have all proportions equal to each other in the null
hypothesis. We can test all sorts of distributions of proportions for the groups.

PNC/Getty Images, Inc.
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D A T A 7 . 2 Alameda County Jury Pools
Pools of prospective jurors are supposed to be drawn at random from eligible
adults in a community. The American Civil Liberties Union (ACLU) conducted an
analysis2 of the jury pools for a sample of 10 trials in Alameda County, California.
The racial makeup of those jury pools, a total of 1453 individuals, is shown in
Table 7.2. To see if these data are consistent with community percentages, we
also have census data on the percentage breakdown by race of eligible jurors
for the entire county. These percentages are also shown in Table 7.2. ■

Table 7.2 Racial makeup of Alameda County juries and community

Race White Black Hispanic Asian Other

Number in jury pools 780 117 114 384 58
Census percentage 54% 18% 12% 15% 1%

Example 7.2
Write down the null and alternative hypotheses for testing if the racial distribution
of Alameda County jury pools differs significantly from the census proportions of
the community.

Solution If we let pw, pb, ph, pa, and po represent the proportions of White, Blacks, Hispanics,
Asians and Others, respectively, in Alameda jury pools, the hypotheses of interest
are

H0 : pw = 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01

Ha : Some pi is not as specified in H0

Notice that in both examples the alternative hypothesis is that things are not as
we expect and that something interesting is going on.

Expected Counts
The null hypothesis in both of these examples is more complicated than those in
earlier chapters. Neither reduces to a claim about the value of a single parameter
(such as H0 : p = 0.2) or even about two parameters (such as H0 : p1 = p2). For this
reason we need a more complicated test statistic than the form (sample statistic −
null parameter)/SE that is common in Chapters 5 and 6. We begin by finding the
expected frequency counts in each category if the null hypothesis is true.

Example 7.3
In Data 7.1 about Advanced Placement exams, if we have a sample of size n = 400
multiple choice questions and assume the null hypothesis is exactly true (that the
proportion for each letter is equal to 0.2), what frequency counts do we expect to
see for each letter?

Solution If the data fit the null hypothesis perfectly, we would expect to see 400(0.2) = 80
counts in each cell, as in Table 7.3.

2http://www.aclunc.org/docs/racial justice/racial and ethnic disparities in alameda county
jury pools.pdf.

o
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Table 7.3 Expected frequencies for n = 400 under
H0 : pa = pb = pc = pd = pe = 0.2

Answer A B C D E
Expected count 80 80 80 80 80

In general, for a specific sample size, we compute the expected count for each
cell in a table by multiplying the sample size by the proportion specified in the null
hypothesis:

Expected count = n · pi

Example 7.4
The data on potential jurors in Table 7.2 is based on a sample containing 1453
individuals. Use the null hypothesis in Example 7.2 to find expected counts for each
of the racial groups.

Solution To find the expected count for each cell we multiply the sample size (n = 1453) by
the proportion given in the null hypothesis. For example, the expected number of
Whites is

Expected count = n · pw = 1453(0.54) = 784.6

The expected count for each racial group is shown in Table 7.4.

Table 7.4 Expected juror counts based on null census proportions

Race White Black Hispanic Asian Other
Expected count 784.6 261.5 174.4 218.0 14.5

Of course, in practice we rarely see the actual counts observed in a real sample
exactly match the expected counts, even if the null hypothesis is true. The observed
counts tend to vary from sample to sample. Once again, we come to the key
question of a test of significance: ‘‘Are the observed counts in the original sample
farther from the expected counts than we would reasonably tend to see by random
chance alone (assuming the actual population proportions are as given in the null
hypothesis)?”

Chi-square Statistic
We need a statistic to compare the observed counts from a sample to the expected
counts from a null hypothesis and we would like it to combine the information from
all cells of the table. One common way of doing this is with a chi-square statistic.

Chi-square Statistic

The chi-square statistic, denoted with the Greek χ2, is found by
comparing the observed counts from a sample with expected counts
derived from a null hypothesis. The formula for computing the statistic
is

χ2 =
∑ (Observed − Expected)2

Expected

where the sum is over all cells of the table.

o
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Example 7.5
Use the information from Tables 7.1 and 7.3 to find the value of the chi-square
statistic for the sample of answers from multiple choice questions on AP exams.

Solution The summation is a bit tedious but straightforward:

χ2 = (85 − 80)2

80
+ (90 − 80)2

80
+ (79 − 80)2

80
+ (78 − 80)2

80
+ (68 − 80)2

80
= 0.3125 + 1.25 + 0.0125 + 0.05 + 1.8

= 3.425

The square term in the formula for the chi-square statistic prevents large positive
deviations from canceling large negative deviations when they are summed. Dividing
each square by the expected count for that cell is a way of standardizing each term,
since an Observed − Expected difference of 20 might be a large discrepancy if the
expected count is 30, but would be pretty good agreement if the expected count is
3000. Note that large values of the chi-square statistic correspond to samples that
do not agree with the null hypothesis.

So now we have a test statistic, χ2 = 3.425, that measures how close the observed
counts for the sample of 400 multiple choice answers are to the expected counts
under a null hypothesis of equal proportions. Is that an especially large value?
Bigger than we would usually see by chance alone? Fortunately, we can apply
randomization methods to address these questions.

Randomization Test for Goodness-of-Fit
Recall from Chapter 4 that we can obtain a p-value for almost any statistic by

simulating new randomization samples that are consistent with a null hypothesis,
constructing a randomization distribution of the statistics for those samples, and
seeing where the value from the original sample lies in that distribution. Let’s try
that now for the data on AP multiple choice answers.

The null hypothesis, H0 : pa = pb = pc = pd = pe = 0.2, states that answers
should be chosen at random from among A, B, C, D, and E for each of the 400
questions in a sample. With technology we can randomly sample 400 values with
replacement from among those five letters, which is equivalent to sampling from a
population with all letters equally likely. For each randomization sample we count
how many times each of the five letters appears. Table 7.5 shows the results for one
such sample.

The value of the chi-square statistic for this randomization sample is

χ2 = (77 − 80)2

80
+ (86 − 80)2

80
+ (73 − 80)2

80
+ (77 − 80)2

80
+ (87 − 80)2

80
= 1.90

Figure 7.1 shows a randomization distribution with the chi-square statistics for
1000 such simulated samples. The value from the original sample, χ2 = 3.425, lies
somewhere in the middle of this distribution. In fact, 493 of these 1000 samples, which
were simulated with random choices of the letters for each question, produced a
chi-square statistic that is bigger (farther from the expected counts) than the original
sample. This gives an estimated p-value of 0.493, which is not less than any reasonable

Table 7.5 Observed counts for one
randomization sample with n = 400

Answer A B C D E
Frequency 77 86 73 77 87

o
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Figure 7.1 Chi-square
statistics for 1000
samples simulated with
H0 : pa = pb = pc = pd =
pe = 0.2 0 2 4 6

3.425

8

chiSquare Value
10 12 14 16 18

significance level. We do not have sufficient evidence to reject a null hypothesis
that the proportion for each possible answer is 0.2 for the population of all multiple
choice questions on AP exams.

Are we sure that the letters used for the correct responses really are equally
likely on AP exams? No. Remember that a lack of evidence to refute a null
hypothesis, even a p-value as large as 0.493, should not be misinterpreted as strong
evidence to accept H0. Perhaps there are some small differences that this sample
was not large enough to detect, or we happened to pick a sample that was more
‘‘random” than the rest of the population.

Chi-square Distribution
In Chapter 5 we see that many distributions of sample statistics can be approximated
with normal distributions. However, a quick glance at Figure 7.1 shows that a normal
distribution is not an appropriate model for the simulated chi-square statistics. The
distribution is clearly skewed to the right and can never have values below zero.

Fortunately, the shape of the statistics in Figure 7.1 is quite predictable. We use
a new distribution, called a chi-square distribution, as a model for this shape. Similar
to a t-distribution, the chi-square distribution has a degrees of freedom parameter
that is determined by the number of categories (cells) in the table. In general, for
a goodness-of-fit test based on a table with k cells, we use a chi-square distribution
with k − 1 degrees of freedom.

For the five cells in Table 7.1 we use a chi-square distribution with four degrees
of freedom. Because we know the total sample size, if we ‘‘free”-ly choose any four
of the sample counts in Table 7.1 or 7.5, the fifth count is completely determined
by the sample size. That is why we have just four degrees of freedom. Figure 7.2

Figure 7.2 Chi-square
distribution with four
degrees of freedom fits a
histogram of simulated
statistics
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Figure 7.3 P-value for
χ2 = 3.425 from a
chi-square distribution
with df = 4
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0.00
0 3.425

X

0.4894

Distribution Plot
Chi-Square, df = 4

shows a histogram for the 1000 randomization chi-square statistics from Figure 7.1
with the density curve for a chi-square distribution with four degrees of freedom.
This provides a good model for the distribution of these statistics under the null
hypothesis.

We can compute a p-value for a sample statistic, such as χ2 = 3.425, as the
area under a chi-square distribution. Figure 7.3 shows this area using four degrees
of freedom. Compare this plot to Figure 7.1. The resulting p-value (0.4894) is
quite close to the empirical value (0.493) that we obtained from the randomization
distribution. Note that in both cases we use the upper tail (above the observed
chi-square statistic) since those values represent samples that are as far (or farther)
away from the null expected counts.

As with the Central Limit Theorems of Chapters 5 and 6, the fit of a chi-square
distribution tends to get better for larger sample sizes. As a general rule, if the
expected count in each cell is at least five, the chi-square distribution should be a
good approximation.

Chi-square Goodness-of-Fit Test

To test a hypothesis about the proportions of a categorical variable,
based on a table of observed counts in k cells:

H0 : Specifies proportions, pi, for each cell

Ha : At least one pi is not as specified

• Compute the expected count for each cell using n · pi, where n is the
sample size and pi is given in the null hypothesis.

• Compute the value of the chi-square statistic,

χ2 =
∑ (observed − expected)2

expected

• Find the p-value for χ2 using the upper tail of a chi-square distribu-
tion with k − 1 degrees of freedom.

The chi-square distribution is appropriate if the sample size is large
enough that each of the expected counts is at least 5.
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Be sure that all possible categories of a categorical variable are listed when doing a
chi-square goodness-of-fit test. The probabilities given in the null hypothesis for all
the categories should add up to one, and the sum of the expected counts will be the
sample size, which is also the sum of the observed counts.

Example 7.6
Alameda County Jurors

Use the data in Table 7.2 to test whether the racial proportions of jury pools tend to
differ from the racial make-up in the Alameda County community.

Solution The hypotheses are

H0 : pw = 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01

Ha : Some pi is not as specified

Table 7.6 shows the observed counts from the sample together with the expected
counts (in parentheses) that we found for a sample of size n = 1453 in Example 7.4
on page 465.

We calculate the chi-square statistic using the observed and expected counts:

χ2 = (780 − 784.6)2

784.6
+ (117 − 261.5)2

261.5
+ (114 − 174.4)2

174.4

+ (384 − 218.0)2

218.0
+ (58 − 14.5)2

14.5

= 0.03 + 79.8 + 20.9 + 126.4 + 130.5

= 357.4

Checking a chi-square distribution with four degrees of freedom (df = #cells − 1)
we see that χ2 = 357.4 is extremely far in the tail, giving a p-value that is essentially
zero. The data provide very strong evidence that the proportions of racial groups
in Alameda County jury pools are quite different from the racial makeup of the
community.

Table 7.6 Observed (expected) juror counts in Alameda County

Race White Black Hispanic Asian Other

780 (784.6) 117 (261.5) 114 (174.4) 384 (218.0) 58 (14.5)

The chi-square statistic of Example 7.6 provides strong evidence against the null
hypothesis, but that doesn’t tell us which groups might be over- or under-represented.
One way to address this is to compare the observed and expected counts and look at
the contribution to the chi-square statistic from each cell. Although the agreement
is very close for Whites, the other four groups show very large discrepancies. It
would appear that Blacks and Hispanics are under-represented in Alameda County
jury pools while more Asians and Others are present than we would expect by their
share of the population.

In practice we generally use technology to automate the calculations for a
goodness-of-fit test. Some typical output for the test on Alameda County jurors in
Example 7.6 is shown below.

/h

o
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Test Contribution
Category Observed Proportion Expected to Chi-Sq
White 780 0.54 784.62 0.027
Black 117 0.18 261.54 79.880
Hispanic 114 0.12 174.36 20.895
Asian 384 0.15 217.95 126.509
Other 58 0.01 14.53 130.051

N DF Chi-Sq P-Value
1453 4 357.362 0.000

Example 7.7
We complete a chi-square test for testing jury pools in Alameda County in
Example 7.6. Explain why a chi-square test is appropriate in that situation.

Solution We use a chi-square test when the variable is categorical and the data are frequency
counts, which is the case for the Alameda County jury data. In addition, it is
appropriate to use a χ2-distribution if all the expected counts are 5 or greater. We
see in Example 7.6 and in the computer output above that the smallest expected
count is 14.53, so it is appropriate to use the χ2-distribution in the test.

Goodness-of-Fit for Two Categories

Example 7.8
Penny Spins

Exercise 5.74 on page 347 describes a sample a student collected by spinning a penny
on edge to see if it would land Heads or Tails. Her data showed 84 heads and 116
tails in 200 spins. Test to see if this provides evidence that spinning a coin is biased
away from a 50–50 distribution of heads and tails. Do this test two ways:

(a) Using a normal-based test for a proportion

(b) Using a chi-square goodness-of-fit test

Solution (a) If we let p denote the proportion of all penny spins that land heads, the
hypotheses are H0 : p = 0.5 vs Ha : p �= 0.5. Based on seeing 84 heads in 200
sample spins the sample proportion is p̂ = 84/200 = 0.42. The standardized test
statistic is

z = p̂ − p0√
p0(1−p0)

n

= 0.42 − 0.50√
0.50(1−0.50)

200

= −2.263

Comparing to a standard normal distribution, the p-value for this two-tailed
test is 2(0.0118) = 0.0236. At a 5% significance level, this is a small p-value and
provides evidence that the proportion of heads when spinning a penny is different
from 0.5.

(b) We can think of this as a goodness-of-fit test for a variable with just two
categories: heads and tails. The null hypothesis is H0 : ph = pt = 0.5 and the
alternative is Ha : ph �= 0.5 or pt �= 0.5. For 200 spins the expected counts should
be 200(0.5) = 100 in both cells. The observed data and expected counts (in
parentheses) are shown in Table 7.7.

We calculate the chi-square statistic.

χ2 = (84 − 100)2

100
+ (116 − 100)2

100
= 2.56 + 2.56 = 5.12

o

o
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Table 7.7 Observed (expected)
counts for 200 penny spins

Heads Tails

84 (100) 116 (100)

Comparing this to a chi-square distribution with just one (2 − 1 = 1) degree of
freedom, we see that the area beyond χ2 = 5.12 gives a p-value of 0.0236. At
a 5% significance level, this is a small p-value and provides evidence that the
proportions of heads and tails when spinning a penny are not both 0.5.

Note that the p-values in both parts of Example 7.8 are the same. This is not
a coincidence. The two methods, a two-tailed test for a proportion based on the
normal distribution and a chi-square test for two categories, are equivalent. In fact,
you can check that the χ2-test statistic for the goodness-of-fit test (5.12) is just the
square of the z-statistic (−2.263). That’s one reason for having ‘‘square” in the name
chi-square. If you are mathematically inclined, you might try to show algebraically
(using the formulas for both test statistics) that this always happens. Furthermore,
in Exercise 5.74 you are asked to do this test using a randomization distribution of
proportions stored in RandomP50N200. The p-value by that method turns out to
be 0.024. This is consistent with both the normal and chi-square tests. Remember
that the randomization procedure is still a viable option in all situations, including
those (like small sample sizes) where the distribution-based tests might not be
appropriate.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Test a hypothesis about a categorical variable using a chi-square
goodness-of-fit test

• Recognize when a chi-square distribution is appropriate for testing a
categorical variable

Exercises for Section 7.1

SKILL BUILDER 1
In Exercises 7.1 to 7.4, find the expected counts in
each category using the given sample size and null
hypothesis.

7.1 H0 : p1 = p2 = p3 = p4 = 0.25; n = 500

7.2 H0: All three categories A, B, C are equally
likely; n = 1200

7.3 H0 : pA = 0.50, pB = 0.25, pC = 0.25;
n = 200

7.4 H0 : p1 = 0.7, p2 = 0.1, p3 = 0.1, p4 = 0.1;
n = 400

SKILL BUILDER 2
In Exercises 7.5 to 7.8, the categories of a categorical
variable are given along with the observed counts
from a sample. The expected counts from a null
hypothesis are given in parentheses. Compute the
χ2-test statistic, and use the χ2-distribution to find
the p-value of the test.

7.5
Category A B C
Observed 35 (40) 32 (40) 53 (40)

(Expected)

o
o
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7.6
Category A B C
Observed 61 (50) 35 (50) 54 (50)

(Expected)

7.7
Category A B C D
Observed 132 (160) 181 (160) 45 (40) 42 (40)

(Expected)

7.8
Category A B C D
Observed 38 (30) 55 (60) 79 (90) 128 (120)

(Expected)

SKILL BUILDER 3
Exercises 7.9 to 7.12 give a null hypothesis for a
goodness-of-fit test and a frequency table from a
sample. For each table, find:

(a) The expected count for the category labeled B

(b) The contribution to the sum of the chi-square
statistic for the category labeled B

(c) The degrees of freedom for the chi-square dis-
tribution for that table

7.9 H0 : pa = pb = pc = pd = 0.25
Ha : Some pi �= 0.25

A B C D Total
40 36 49 35 160

7.10 H0 : pa = pb = pc = pd = 0.25
Ha : Some pi �= 0.25

A B C D Total
120 148 105 127 500

7.11 H0 : pa = 0.1, pb = 0.35, pc = 0.2,
pd = 0.05, pe = 0.1, pf = 0.2

Ha : Some pi is wrong

A B C D E F
210 732 396 125 213 324

7.12 H0 : pa = 0.2, pb = 0.80
Ha : Some pi is wrong

A B
132 468

7.13 Favorite Skittles Flavor Skittles are a popu-
lar fruity candy with five different flavors (colored
green, orange, purple, red, and yellow). A sample
of 66 people3 recorded their favorite flavor and the
results are shown in Table 7.8. Perform a chi-square
test, as indicated in the steps below, to see whether
or not the flavors are equally popular.

(a) State the null and alternative hypotheses.

(b) If every flavor of skittle were equally popular,
how many people (in a sample of 66) would we
expect to choose each?

(c) How many degrees of freedom do we have?

(d) Calculate the chi-square test statistic.

(e) What is the conclusion about the popularity of
the skittles flavors?

Table 7.8 Skittles popularity

Green Orange Purple Red Yellow

18 9 15 13 11

7.14 Rock-Paper-Scissors In Data 6.1 on page 367
we see a table, reproduced in Table 7.9, that shows
the choices made by 119 players on the first turn
of a Rock-Paper-Scissors game. Recall that rock
beats scissors which beats paper which beats rock.
A player gains an advantage in playing this game if
there is evidence that the choices made on the first
turn are not equally distributed among the three
options. Use a goodness-of-fit test to see it there is
evidence that any of the proportions are different
from 1/3.

Table 7.9 Frequencies for first turn in
Rock-Paper-Scissors

Option selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

7.15 Age Distribution of Users of Social Network-
ing Sites As recently as 2008, 70% of users of
social networking sites such as Facebook were 35
years old or younger. Now the age distribution is
much more spread out. Table 7.10 shows the age

3www.quiblblo.com.
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distribution of 975 users of social networking sites
from a survey reported in June 2011.4

(a) Test an assumption that users are equally likely
to be in each of the five age groups listed. Show
all details of the test.

(b) Which age group contributes the largest amount
to the sum for the χ2 test statistic? For this age
group, is the observed count smaller or larger
than the expected count?

Table 7.10 Age distribution of users of social
networking sites

Age 18–22 23–35 36–49 50–65 65+
Frequency 156 312 253 195 59

7.16 Ford Car Sales Assume you are working as
a statistician for the automotive company Ford.
Ford’s three most popular cars are the Escape
(SUV), the Focus (midsize sedan), and the Fusion
(hybrid sedan). Your boss is putting together next
year’s production numbers and asks you to deter-
mine if any of the three models are selling better
or worse than the other two. You have the sales
numbers from one month of sales: the Escape
sold 22,274, the Focus 21,385, and the Fusion sold
20,808.5 Perform the necessary test to determine
if sales are significantly different and report the
conclusion(s) of interest to your boss.

7.17 Birth Date and Canadian Ice Hockey In his
book Outliers: The Story of Success (2008), Malcolm
Gladwell speculates that Canadian ice hockey play-
ers that are born early in the year have an advantage.
This is because the birthdate cutoff for different lev-
els of youth hockey leagues in Canada is January 1st,
so youth hockey players who are born in January
and February are slightly older than teammates born
later in the year. Does this slight age advantage in
the beginning lead to success later on? A 2010 study6

examined the birthdate distribution of players in the
Ontario Hockey League (OHL), a high-level and
selective Canadian hockey league (ages 15–20), for
the 2008–2009 season. The number of OHL players
born during the 1st quarter (Jan–Mar), 2nd quarter

4Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
networking sites and our lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
5Sales from The Wall Street Journal for June 2011.
6Nolan, J. and Howell, G., ‘‘Hockey success and birth date: The
relative age effect revisited,” International Review of Sociology
of Sport, 2010; 45(4): 507–512.

(Apr–Jun), 3rd quarter (Jul–Sep), and 4th quarter
(Oct–Dec) of the year is shown in Table 7.11. The
overall percentage of live births in Canada (year
1989) are also provided for each quarter. Is this
evidence that the birthdate distribution for OHL
players differs significantly from the national pro-
portions? State the null and alternative hypotheses,
calculate the chi-square statistic, find the p-value,
and state the conclusion in context.

Table 7.11 Birthdates nationally in Canada
and for elite hockey players

Qtr 1 Qtr 2 Qtr 3 Qtr 4

OHL players 147 110 52 50
% of Canadian births 23.7% 25.9% 25.9% 24.5%

7.18 Birthdate and Australian Football Most Aus-
tralian youth-sports leagues separate athletes by
birthdate, and the cutoff date is January 1st. Thus,
those children born in January and February have
some physical advantages in youth sports over those
born in November and December. A recent study7

suggests that those physical advantages enjoyed
early in life impact the likelihood of a child becoming
a professional athlete. Table 7.12 gives the number
of Australian-born 2009 Australian Football League
players born in different months of the year, as well
as the proportion of births expected if the birth-
dates of the athletes matched the distribution of
all births nationally. Which parts of the year have
a higher than expected number of AFL athletes?
Which have a lower than expected number? Is there
evidence that the distribution of birthdates of AFL
athletes is not the same as the distribution of birth-
dates nationally? If there is evidence of a difference
between the actual and expected counts, which cat-
egories are contributing the most to the sum for the
chi-square test statistic?

Table 7.12 Birthdates nationally in Australia
and for Australian football players

Proportion Actual for
Months Nationally AFL players

Jan–Mar 0.248 196
Apr–June 0.251 162
Jul–Sep 0.254 137
Oct–Dec 0.247 122

7Biderman, D., ‘‘Born Late Year? Choose Another Sport,” The
Wall Street Journal, March 21, 2010.
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7.19 Are Hospitals Deadlier in July? Most medical
school graduates in the US enter their residency
programs at teaching hospitals in July. A recent
study suggests that a spike in deaths due to med-
ication errors coincides with this influx of new
practitioners.8 The study indicates that the num-
ber of deaths is significantly higher than expected in
July.

(a) What type of statistical analysis was probably
done to arrive at this conclusion?

(b) Is the χ2 statistic likely to be relatively large or
relatively small?

(c) Is the p-value likely to be relatively large or
relatively small?

(d) What does the relevant categorical variable
record?

(e) What cell contributes the most to the χ2 statis-
tic?

(f) In the cell referred to in part (e), which is higher:
the observed count or the expected count?

7.20 Can People Delay Death? A new study indi-
cates that elderly people are able to postpone
death for a short time to reach an important
occasion. The researchers9 studied deaths from nat-
ural causes among 1200 elderly people of Chinese
descent in California during six months before and
after the Harbor Moon Festival. Thirty-three deaths
occurred in the week before the Chinese festival,
compared with an estimated 50.82 deaths expected
in that period. In the week following the festival,
70 deaths occurred, compared with an estimated
52. ‘‘The numbers are so significant that it would
be unlikely to occur by chance,” said one of the
researchers.

(a) Given the information in the problem, is the χ2

statistic likely to be relatively large or relatively
small?

(b) Is the p-value likely to be relatively large or
relatively small?

(c) In the week before the festival, which is higher:
the observed count or the expected count? What
does this tell us about the ability of elderly
people to delay death?

(d) What is the contribution to the χ2-statistic for
the week before the festival?

8Young, J., et al., ‘‘July Effect: Impact of the Academic Year-
End Changeover on Patient Outcomes. A Systematic Review,”
Annals of Internal Medicine, 2011; 155(5): 309–315.
9Phillips, D. and Smith, D., ‘‘Postponement of Death Until
Symbolically Meaningful Occasions,” Journal of the American
Medical Association, 1990; 263(14): 1947–1951.

(e) In the week after the festival, which is higher:
the observed count or the expected count? What
does this tell us about the ability of elderly
people to delay death?

(f) What is the contribution to the χ2-statistic for
the week after the festival?

(g) The researchers tell us that in a control group
of elderly people in California who are not of
Chinese descent, the same effect was not seen.
Why did the researchers also include a control
group?

7.21 Favorite James Bond Actor? Movies based on
Ian Fleming’s novels starring British secret agent
James Bond have become one of the longest run-
ning film series to date. Over the course of the series,
six different actors have portrayed the secret agent.
Which actor is the best James Bond? A sample of
responses10 to this question is shown in Table 7.13.

(a) Does the sample provide evidence of a signif-
icant difference in popularity among the six
actors, at a 5% significance level?

(b) Repeat the test from part (a) if we ignore the
results for George Lazenby, who only appeared
in one Bond film. Do we find evidence of a
significant difference in popularity among the
remaining five actors?

(c) The message from Chapter 1 still holds true: Pay
attention to where the data come from! These
data come from a poll held on a James Bond fan
site. Can we generalize the results of this poll to
the movie-watching population?

Table 7.13 Favorite James
Bond actor

Actor Frequency

Sean Connery 98
George Lazenby 5
Roger Moore 23
Timothy Dalton 9
Pierce Brosnan 25
Daniel Craig 51

7.22 American League West Baseball Champions
Major League Baseball is split into six divisions,
one of which is the American League West. While
specific teams in each division change often, the
four teams currently in the AL West have been
present since 1977 (Los Angeles/California Angels,
Oakland A’s, Seattle Mariners, and Texas Rangers).

10http://www.jamesbondwiki.com/page/Poll+Results.
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The counts for number of division championships
by each team since 1977 are shown in Table 7.14. We
are interested in whether the proportions of cham-
pionships for the teams are much different than we
would expect to see by random chance alone. Are
the conditions for conducting a chi-square test met
in this case? If they are, conduct the test.

Table 7.14 Count of AL West
championships

Los Angeles Oakland Seattle Texas
8 9 3 4

7.23 Genetic Variation in Fast-Twitch Muscles Chi-
square tests are common in genetics. A gene called
ACTN3 encodes a protein which functions in fast-
twitch muscles. People have different variants of
this gene, classified as RR, RX, or XX. Computer
output is shown for testing whether the proportions
in these categories are 0.25, 0.50, and 0.25, respec-
tively. The observed counts come from a study11

conducted in Australia. (We examine the connec-
tion of these variations to fast-twitch muscles in
Exercises 7.49 to 7.51 in the next section.)

Chi-Square Goodness-of-Fit Test for Observed Counts
Test Contribution

Category Observed Proportion Expected to Chi-Sq
RR 130 0.25 109 4.04587
RX 226 0.50 218 0.29358
XX 80 0.25 109 7.71560

N DF Chi-Sq P-Value
436 2 12.0550 0.002

(a) What is the sample size?

(b) What is the observed number of people with the
variant RR for this gene? What is the expected
number of people in this group under H0?

(c) Which variant contributes the most to the chi-
square statistic? For this variant, is the observed
value greater than or less than expected?

Table 7.15 Proportions for leading digits under Benford’s law

Leading digit 1 2 3 4 5 6 7 8 9
Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Table 7.16 Leading digits for 1188 addresses

Leading digit 1 2 3 4 5 6 7 8 9
Observed count 345 197 170 126 101 72 69 51 57

11Yang, N., et al., ‘‘ACTN3 genotype is associated with human
elite athletic performance,” American Journal of Human Genet-
ics, September 2003; 73: 627–631.

(d) What are the degrees of freedom for the test?

(e) What is the p-value? Give the conclusion of the
test in context.

7.24 Examining Genetic Alleles in Fast-Twitch
Muscles Exercise 7.23 discusses a study investigating
the ACTN3 genotypes RR, RX, and XX. The same
study also examines the ACTN3 genetic alleles R
and X, also associated with fast-twitch muscles. Of
the 436 people in this sample, 244 were classified R
and 192 were classified X. Does the sample provide
evidence that the two options are not equally likely?

(a) Conduct the test using a chi-square goodness-
of-fit test. Include all details of the test.

(b) Conduct the test using a test for a proportion,
using H0 : p = 0.5 where p represents the pro-
portion of the population classified R. Include
all details of the test.

(c) Compare the p-values and conclusions of the
two methods.

7.25 Benford’s Law Frank Benford, a physicist
working in the 1930s, discovered an interesting fact
about some sets of numbers. While you might expect
the first digits of numbers such as street addresses
or checkbook entries to be randomly distributed,
Benford showed that in many cases the distribution
of leading digits is not random, but rather tends to
have more ones, with decreasing frequencies as the
digits get larger.12 Table 7.15 shows the proportions
of leading digits for data that satisfy Benford’s law.

Professor Rick Cleary of Bentley University
has given several public lectures about Benford’s
law. As part of his presentation, he rips out pages
of a telephone book and asks audience members to
select entries at random and record the first digit
of the street address. Counts for the leading digits
of 1188 such addresses are shown in Table 7.16 and
stored in a variable called Address in the dataset
Benford. Test if these counts are inconsistent with
the probabilities given by Benford’s law.

12According to Benford’s law, the proportion of leading digits
that are d is log10(1 + 1/d).
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7.26 Auditing a Company with Benford’s Law
Refer to the discussion of Benford’s law in
Exercise 7.25. While this may seem like a curious
oddity, researchers have developed some important
applications for these proportions. One involves
auditing company records to look for instances of
fraud or other financial malfeasance. In many cases
accounting records tend to follow Benford’s law and
significant departures can help auditors discover
patterns that should be examined more closely.
For example, if a company’s policy requires co-
signatures for expenses over $10,000 and auditors
find an unusually high number of claims starting
with the digit ‘‘9,” they might be suspicious and
examine those claims more closely.

Two of Professor Cleary’s students obtained
data for 7273 invoices at a company. The observed
counts for the leading digits of the invoice amounts
are shown in Table 7.17 and stored in the Invoices
variable of the Benford data file. Test if these counts
are inconsistent with the probabilities given by Ben-
ford’s law.

Table 7.17 Leading digits for 7273 invoices

Leading
digit 1 2 3 4 5 6 7 8 9

Observed
count 2225 1214 881 639 655 532 433 362 332

7.27 Craps! The game of craps is a gambling game
where players place wagers on the sum from the
roll of two six-sided dice.13 One author rolled a
pair of dice 180 times and recorded the results
in Table 7.18. He was attempting to make some
numbers appear more often than they would by
random chance. Use the 180 rolls to test whether
he can defeat random chance, and should thus head

13For complete rules see www.crapsrules.org.

to a craps table! (Hint: You will need to calculate or
find the null proportions for each sum.)

Table 7.18 180 craps throws

2 3 4 5 6 7 8 9 10 11 12
5 11 16 13 26 34 19 20 16 13 7

7.28 Random Digits in Students’ Random Num-
bers? How well can people generate random num-
bers? A sample of students were asked to write down
a ‘‘random” four-digit number. Responses from 150
students are stored in the file Digits. The data file
has separate variables (RND1, RND2, RND3, and
RND4) containing the digits in each of the four
positions.

(a) If the numbers are randomly generated, we
would expect the last digit to have an equal
chance of being any of the 10 digits. Test
H0 : p0 = p1 = p2 = · · · = p9 = 0.10 using tech-
nology and the data in RND4.

(b) Since students were asked to produce four-digit
numbers, there are only nine possibilities for the
first digit (zero is excluded). Use technology to
test whether there is evidence in the values of
RND1 that the first digits are not being chosen
by students at random.

7.29 Random Digits in Social Security Numbers?
Refer to the data in Digits that are described in
Exercise 7.28. The 150 students were also asked to
give the last two digits of their nine-digit social secu-
rity number. Those digits are stored in SSN8 and
SSN9 in the same file. Does the government do a
better job at assigning numbers at random? Pick
either of the two columns (SSN8 or SSN9) and use
technology to test whether there is evidence that the
digits are not equally likely (Ha : Some pi �= 0.10).

7.2TESTING FOR AN ASSOCIATION BETWEEN TWO
CATEGORICAL VARIABLES

In Section 2.1 we consider two-way tables as a way to investigate a relationship
between two categorical variables. While we may get some feel for a possible
relationship by just looking at a two-way table, we need a mechanism to formally
test whether an association is really present or whether the apparent pattern might
just be due to random chance.

Example 7.9
One True Love?—Revisited

Data 2.1 on page 46 describes a study in which people are asked how they feel
about a statement that ‘‘there is only one true love for each person.” The results,
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Table 7.19 Two-way table: Is there one true love
for each person?

↓Attitude/Gender→ Male Female Total
Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78
Total 1213 1412 2625

broken down by gender, are reproduced in Table 7.19. What proportion of the
sample agree? Disagree? Don’t know? What proportion of the males agree with the
statement? What proportion of the females agree?

Solution We divide each of the row totals in Table 7.19 by the sample size (n = 2625) to find the
proportion of people in the sample with each attitude. This means 735/2625 = 0.28
or 28% agree, 1812/2625 = 0.69 or 69% disagree, and 78/2625 = 0.03 or 3% don’t
know. If we look at just the 1213 males the proportion who agree is 372/1213 = 0.307
or 30.7%, while the 1412 females have 363/1412 = 0.257 or 25.7% agreeing.

Is the difference in this sample between the proportion of males who agree
(0.307) and the proportion of females who agree (0.257) significant enough to
conclude there is a difference in attitude on this subject between males and females
in the entire population? While we could use the techniques of Section 6.9 to
formally test for a difference in these two proportions, we would be ignoring the
other two groups (Disagree and Don’t know). Just as in Section 7.1 where we want
to test all cells of a one-way table simultaneously, we would like to be able to assess
a possible association between gender and attitude toward one true love using all of
the information in Table 7.19, not just the ‘‘Agree” row.

The distributions of sample responses for males and females are shown in the
comparative bar charts in Figure 7.4. While the distributions are not identical, are
the differences likely to be due to random chance or are they significant enough that
we can generalize to the entire population? We use a chi-square test to answer this
question.

Figure 7.4 Are these
distributions significantly
different?
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Null and Alternative Hypotheses
Up to this point, most of the hypotheses we have tested make specific claims about
one or more parameters of a population. The hypotheses we use when testing
association between variables in a two-way table are a bit more general and tend to
be expressed in words rather than through parameters. For example, to test for an
association between Attitude and Gender with the one true love data we use

H0 : Attitude is not associated with Gender

Ha : Attitude is associated with Gender

As usual, the null hypothesis reflects the belief that nothing significant or interesting
is going on. The alternative says that there is some association between the two
variables. Remember that we only discard the null and go with the alternative if
there is substantial evidence of an association.

Another way to think of an association is that the distribution of one variable
(such as Attitude) is different for different values of the other variable (such
as Gender). In this example, an association means that the percent who agree,
disagree, and don’t know is different between males and females. Of course, the
sample distributions will always tend to differ by some amount. We need to assess
whether the differences are large enough to signal that the population distributions
are actually different.

Expected Counts for a Two-Way Table
In Section 7.1, we see how to use a chi-square test to compare observed to expected
counts for a single categorical variable. The chi-square test for an association
between two categorical variables takes the same approach. How might we compute
the expected counts?

The expected counts are computed assuming the null hypothesis is true. Since
the null hypothesis states that there is no association, we compute the expected
counts to reflect identical percent distributions for males and females that are equal
to the overall percent distribution. Furthermore, we keep the row and column totals
the same, as in Table 7.20.

Since 28% of the people in the entire sample agree, we expect 28% of the
males and 28% of the females to agree, when the null hypothesis is strictly followed.
This gives expected counts of 0.28(1213) = 339.6 for the first row of the males and
0.28(1412) = 395.4 for the first row of the females. Similarly, we use 69% to find the
expected counts for the Disagree row and 3% for the Don’t know row.

Looking again at the computation of the expected count for males who agree,
we have

339.6 = 0.28 · 1213 = 735
2625

· 1213 = 735 · 1213
2625

The computation (735 · 1213)/2625 is an alternate way to compute the expected
count that reduces round-off error and also shows that the computation is completely
symmetric: It doesn’t matter which variable is in the rows and which is in the columns.

Table 7.20 Expected counts should match overall distribution

↓Attitude/Gender→ Male Female Total Relative Frequency
Agree 735 0.28
Disagree 1812 0.69
Don’t know 78 0.03
Total 1213 1412 2625 1.0
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Table 7.21 Expected counts when Attitude and
Gender are not related

↓Attitude/Gender→ Male Female Total
Agree 339.6 395.4 735
Disagree 837.3 974.7 1812
Don’t know 36.0 42.0 78
Total 1213 1412 2625

In general, we find the expected counts for the cells of a two-way table using

Expected count = Row total · Column total
Sample size

For the first cell in Table 7.21, this calculation for the expected count for males who
agree is

Agree row total · Male column total
n

= 735 · 1213
2625

= 339.6

Computing all the expected counts this way, we arrive at the table of expected
counts shown in Table 7.21.

Note that (up to round-off differences) the data in Table 7.21 has the same
row and column totals as the original data. However, with the expected counts, the
distribution (as proportions) is the same in each column (0.28, 0.69, 0.03) so that the
null hypothesis is exactly true.14

Chi-square Test for Association
Now that we can compute expected counts to produce a table that exactly matches
the null hypothesis of no relationship, the remaining task is to assess how far away
our actual sample is from this ideal table. As with the goodness-of-fit test in the
previous section, we use a chi-square statistic:

χ2 =
∑ (Observed − Expected)2

Expected

where the sum now is over all of the cells in the two-way table.
For the one true love survey data in Table 7.19, we have 6 cells and the calcu-

lation of the chi-square statistic is:

χ2 = (372 − 339.6)2

339.6
+ (363 − 395.4)2

395.4
+ (807 − 837.3)2

837.3
+ (1005 − 974.7)2

974.7

+ (34 − 36.0)2

36.0
+ (44 − 42.0)2

42.0

= 3.09 + 2.65 + 1.10 + 0.94 + 0.12 + 0.11

= 7.99

14The expected counts in Table 7.21 also have exactly the same distribution across each row, 0.462 male
and 0.538 female.
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Just one more detail before we can find a p-value and finish the test—how many
degrees of freedom for the chi-square distribution? We say that a two-way table
with 3 categories for rows and 2 categories for columns, such as Table 7.19, has just
2 degrees of freedom because once two cells are ‘‘freely” established, the rest of
the cell values are automatically determined based on the row and column totals.
In general, if a two-way table has r rows and c columns, the degrees of freedom is
(r − 1) · (c − 1). Think of covering up the last row and column (not including totals)
and counting how many cells are left. That gives the degrees of freedom for the
table.

We are finally in a position to complete the test for association between Attitude
on the one true love issue and Gender. We find that the p-value for the statistic,
χ2 = 7.99, using the upper tail of a chi-square distribution with 2 degrees of freedom,
is 0.018. This is a small p-value, less than 5%, so we have fairly strong evidence that
attitudes on the existence of one true love are associated with gender.

Note that the conclusion of the hypothesis test doesn’t tell us how the two
variables are associated, only that the relationship in the data is more extreme than
we would reasonably expect to see by random chance alone. By comparing observed
and expected counts, we see that males tend to be more likely to agree, females
are more likely to disagree, and both genders choose don’t know at about the
same rate.

Chi-square Test for Association

To test for an association between two categorical variables, based
on a two-way table that has r rows as categories for variable A and c
columns as categories for variable B:

Set up hypotheses:

H0 : Variable A is not associated with variable B

Ha : Variable A is associated with variable B

Compute the expected count for each cell in the table using

Expected count = Row total · Column total
Sample size

Compute the value for a chi-square statistic using

χ2 =
∑ (Observed − Expected)2

Expected

Find a p-value using the upper tail of a chi-square distribution with
(r − 1)(c − 1) degrees of freedom.

The chi-square distribution is appropriate if the expected count
is at least five in each cell.

A two-way table in a chi-square test is sometimes referred to as an r × c
contingency table, where r denotes the number of rows and c is the number of
columns, and the test is also sometimes referred to as a χ2 test for independence.
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Which type of water is preferred?

D A T A 7 . 3 Water Taste Preferences
Some students at Longwood University in Virginia were interested in people’s
taste preferences among various brands of bottled water.15 They collected data
from community members, including a double-blind taste test where parti-
cipants ranked water from four sources (tap water, and bottled water from
Aquafina, Fiji, and Sam’s Choice, presented in a random order). Some of the
data from this study are stored in WaterTaste and Table 7.22 shows the top
choices of 100 participants as well as their usual water source (bottled or
tap/filtered). ■

Table 7.22 Usual water source and preferred brand for taste

↓Usual Source/Top Choice→ Tap Aquafina Fiji Sam’s Choice Total
Bottled 4 14 15 8 41
Tap/Filtered 6 11 26 16 59
Total 10 25 41 24 100

Example 7.10
Based on the information in this 2 × 4 table, is there evidence that the top choices
for taste preference are associated with whether or not people usually drink bottled
water?

Solution The hypotheses for this chi-square test are:

H0 : Choice for best tasting brand does not depend on the usual water source

Ha : Choice for best tasting brand is related to the usual water source

15Lunsford, M. and Fink, A., ‘‘Water Taste Data,” Journal of Statistics Education, 2010; 18(1).Q1
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Table 7.23 Observed (expected) counts for water taste test

↓Usual Source/Top Choice→ Tap Aquafina Fiji Sam’s Choice Total
Bottled 4 (4.1) 14 (10.3) 15 (16.8) 8 (9.8) 41
Tap/Filtered 6 (5.9) 11 (14.8) 26 (24.2) 16 (14.2) 59
Total 10 25 41 24 100

We see that

Expected count for (Bottled, Tap) cell = 41 · 10
100

= 4.1

Computing the rest of the expected counts similarly, we obtain the values shown in
parentheses in Table 7.23. The observed count for the (Bottled, Tap) cell is 4—there
are four people who usually drink bottled water that actually prefer tap water! We
see that one expected count is less than 5, but because it is just one cell and only
slightly less than 5, we proceed but with some caution.

The value of the chi-square statistic for this table is

χ2 = (4 − 4.1)2

4.1
+ (14 − 10.3)2

10.3
+ (15 − 16.8)2

16.8
+ (8 − 9.8)2

9.8

+ (6 − 5.9)2

5.9
+ (11 − 14.8)2

14.8
+ (26 − 24.2)2

24.2
+ (16 − 14.2)2

14.2

= 0.002 + 1.329 + 0.193 + 0.331 + 0.002 + 0.976 + 0.134 + 0.228

= 3.195

The degrees of freedom for the 2 × 4 table are (2 − 1) · (4 − 1) = 1 · 3 = 3. The
upper tail of a chi-square distribution with 3 degrees of freedom gives a p-value
of 0.363, which is not small at all. See Figure 7.5. Therefore the table provides no
significant evidence that the brand preferred by taste is related to whether or not
people usually drink bottled water.

Special Case for a 2 × 2 Table
Recall from Section 7.1 that a test for a single proportion can be viewed as a special
case of a goodness-of-fit test when the variable has just two categories. As we see
in the next example, a similar relationship exists between a z-test to compare two
proportions and a chi-square test for a 2 × 2 table.

Figure 7.5 P-value from
a chi-square distribution
with df = 3

0 3.195

0.363

Distribution Plot
Chi-Square, df=3

V
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Table 7.24 Split/steal choice by
age group

Split Steal Total
Younger 187 195 382
Older 116 76 192
Total 303 271 574

Example 7.11
Split or Steal?—Revisited

Data 6.4 on page 405 describes decisions made on the Golden Balls game show to
split a prize or attempt to steal it from another contestant. The decisions made
by a sample of 574 contestants are shown in Table 7.24 along with information on
age (Younger = under 40 years old, Older = 40 or older). Use a chi-square test to
determine if the table provides evidence that split/steal decisions are related to age.

Solution The hypotheses are:

H0 : Split/steal decision is not related to age

Ha : Split/steal decision is related to age

Table 7.25 shows the expected counts (in parentheses) along with the observed
counts of the table. For example, to get the expected count in the first (Younger,
Split) cell we find (382 · 303)/574 = 201.6.

The chi-square statistic for this table is

χ2 = (187 − 201.6)2

201.6
+ (195 − 180.4)2

180.4
+ (116 − 101.4)2

101.4
+ (76 − 90.6)2

90.6

= 1.06 + 1.18 + 2.10 + 2.35

= 6.69

We find the p-value as the area in the tail above χ2 = 6.69 for a chi-square distribution
with df = 1 since (2 − 1) · (2 − 1) = 1 · 1 = 1. This gives a p-value of 0.0097, which
is quite small, providing substantial evidence that the split/steal decision is related
to age.

If we look back at Example 6.23 on page 406, we see the same data analyzed
with a z-test to compare the proportion of ‘‘Younger” who split (0.490 in the
sample) to the proportion who split in the ‘‘Older” group (0.604). The standardized
test statistic for the difference in proportions is z = −2.60 and produces a two-tailed
p-value from the normal distribution of 0.0094. Note that the p-value matches the
p-value from the chi-square test for the 2 × 2 table (up to round-off error) and
you may check that the chi-square statistic is the square of the normal z-statistic.
This is always the case when comparing a chi-square test for a 2 × 2 table with the
corresponding two-tailed test for a difference in two proportions.

Table 7.25 Observed (expected) counts for
split/steal decision by age

Split Steal Total
Younger 187 (201.6) 195 (180.4) 382
Older 116 (101.4) 76 (90.6) 192
Total 303 271 574

o
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Test for an association between two categorical variables based on
data in a two-way table

• Recognize when a chi-square distribution is appropriate for testing with
a two-way table

Exercises for Section 7.2

SKILL BUILDER 1
Exercises 7.30 to 7.33 give a two-way table and spec-
ify a particular cell for that table. In each case find
the expected count for that cell and the contribution
to the chi-square statistic for that cell.

7.30 (Group 3, Yes) cell

Yes No Total
Group 1 56 44 100
Group 2 132 68 200
Group 3 72 28 100
Total 260 140 400

7.31 (B, E) cell

D E F G Total
A 39 34 43 34 150
B 78 89 70 63 330
C 23 37 27 33 120
Total 140 160 140 130 600

7.32 (Control, Disagree) cell

Strongly Dis- Strongly
Agree Agree Neutral agree Disagree

Control 40 50 5 15 10
Treatment 60 45 10 5 0

7.33 (Group 2, No) cell

Yes No
Group 1 720 280
Group 2 1180 320

SKILL BUILDER 2
Exercises 7.34 to 7.37 refer to the tables in Skill
Builder 1. In each case, give the degrees of freedom
for the chi-square test based on that two-way table.

7.34 Two-way table in Exercise 7.30

7.35 Two-way table in Exercise 7.31

7.36 Two-way table in Exercise 7.32

7.37 Two-way table in Exercise 7.33

7.38 Gender and Award Preference Example 2.6
on page 51 contains a two-way table showing prefer-
ences for an award (Academy Award, Nobel Prize,
Olympic gold medal) by gender for the students
sampled in StudentSurvey. The data are reproduced
in Table 7.26. Test whether the data indicate there
is some association between gender and preferred
award.

Table 7.26 Two-way table of gender and
preferred award

Academy Nobel Olympic Total
Female 20 76 73 169
Male 11 73 109 193
Total 31 149 182 362

7.39 One True Love by Educational Level In
Data 2.1 on page 46, we introduce a study in which
people were asked whether they agreed or disagreed
with the statement that there is only one true love
for each person. Table 7.27 gives a two-way table
showing the answers to this question as well as
the education level of the respondents. A person’s
education is categorized as HS (high school degree
or less), Some (some college), or College (college
graduate or higher). Is the level of a person’s educa-
tion related to how the person feels about one true
love? If there is a significant association between
these two variables, describe how they are related.

Table 7.27 Educational level and
belief in One True Love

HS Some College Total
Agree 363 176 196 735
Disagree 557 466 789 1812
Don’t know 20 26 32 78
Total 940 668 1017 2625

o
o
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7.40 Metal Tags on Penguins In Exercise 6.178 on
page 403 we perform a test for the difference in the
proportion of penguins who survive over a 10-year
period, between penguins tagged with metal tags
and those tagged with electronic tags. We are inter-
ested in testing whether the type of tag has an effect
on penguin survival rate, this time using a chi-square
test. In the study, 33 of the 167 metal-tagged pen-
guins survived while 68 of the 189 electronic-tagged
penguins survived.

(a) Create a two-way table from the information
given.

(b) State the null and alternative hypotheses.

(c) Give a table with the expected counts for each
of the four categories.

(d) Calculate the chi-square test statistic.

(e) Determine the p-value and state the conclusion.

7.41 Treatment for Cocaine Addiction Cocaine
addiction is very hard to break. Even among addicts
trying hard to break the addiction, relapse is com-
mon. (A relapse is when a person trying to break
out of the addiction fails and uses cocaine again.)
Data 4.7 on page 267 introduces a study investi-
gating the effectiveness of two drugs, desipramine
and lithium, in the treatment of cocaine addic-
tion. The subjects in the six-week study were
cocaine addicts seeking treatment. The 72 subjects
were randomly assigned to one of three groups
(desipramine, lithium, or a placebo, with 24 subjects
in each group) and the study was double-blind. In
Example 4.29 we test lithium vs placebo, and in
Exercise 4.140 we test desipramine vs placebo. Now
we are able to consider all three groups together
and test whether relapse rate differs by drug. Ten
of the subjects taking desipramine relapsed, 18 of
those taking lithium relapsed, and 20 of those taking
the placebo relapsed.

(a) Create a two-way table of the data.

(b) Find the expected counts. Is it appropriate to
analyze the data with a chi-square test?

(c) If it is appropriate to use a chi-square test,
complete the test. Include hypotheses, and give
the chi-square statistic, the p-value, and an
informative conclusion.

(d) If the results are significant, which drug is most
effective? Can we conclude that the choice of
treatment drug causes a change in the likelihood
of a relapse?

7.42 Homes for Sale Throughout Unit C we exam-
ined various relationships between the variables

regarding houses for sale in the dataset HomesFor-
Sale. One topic of repeated interest was differences
between states. We previously only had the capa-
bility to test for a difference between two states
at a time, but we can now test for relationships
across all four states at once. Table 7.28 shows the
number of big (greater than the national average of
2700 sqft) and not big houses for each of the four
states. Is location associated with the proportion
of big houses? Determine whether conditions are
met for a chi-square test and explain your reasoning.
Perform the appropriate test to see if the proportion
of big houses is related to location (states).

Table 7.28 Houses for sale in four states

New New
California Jersey York Pennsylvania Total

Big 7 6 7 3 23
Not 23 24 23 27 97
Total 30 30 30 30 120

7.43 Favorite Skittles Flavor? Exercise 7.13 on
page 472 discusses a sample of people choosing
their favorite Skittles flavor by color (green, orange,
purple, red, or yellow). A separate poll sampled
91 people, again asking them their favorite skittle
flavor, but rather than by color they asked by the
actual flavor (lime, orange, grape, strawberry, and
lemon, respectively).16 Table 7.29 shows the results
from both polls. Does the way people choose their
favorite Skittles type, by color or flavor, appear to
be related to which type is chosen?

(a) State the null and alternative hypotheses.

(b) Give a table with the expected counts for each
of the 10 cells.

(c) Are the expected counts large enough for a
chi-square test?

(d) How many degrees of freedom do we have for
this test?

(e) Calculate the chi-square test statistic.

(f) Determine the p-value. Do we find evidence
that method of choice affects which is chosen?

Table 7.29 Skittles popularity

Green Purple Red Yellow
(Lime) Orange (Grape) (Strawberry) (Lemon)

Color 18 9 15 13 11
Flavor 13 16 19 34 9

16deviantart.com.
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7.44 Handedness and Occupation Is the career
someone chooses associated with being left- or
right-handed? In one study17 a sample of Ameri-
cans from a variety of professions were asked if they
consider themselves left-handed, right-handed, or
ambidextrous (equally skilled with the left and right
hand). The results for five professions are shown in
Table 7.30.

(a) In this sample, what profession had the greatest
proportion of left-handed people? What profes-
sion had the greatest proportion of right-handed
people?

(b) Test for an association between handedness and
career for these five professions. State the null
and alternative hypotheses, calculate the test
statistic, and find the p-value.

(c) What do you conclude at the 5% significance
level? What do you conclude at the 1% signifi-
cance level?

Table 7.30 Handedness vs profession

Right Left Ambidextrous Total
Psychiatrist 101 10 7 118
Architect 115 26 7 148
Orthopedic surgeon 121 5 6 132
Lawyer 83 16 6 105
Dentist 116 10 6 132
Total 536 67 32 635

7.45 Age Distribution of Social Networking Site
Users The Pew Research Center conducted a sur-
vey of randomly sampled American adults in 2008
and in 2010, asking them about their use of social
networking sites such as Facebook.18 Table 7.31
shows age groups of social networking site users in
2008 and in 2010. Did the age distribution change
significantly in the two-year time span? Show all
details of the test.

Table 7.31 Age distribution of social
network site users

↓Age/Year→ 2008 2010 Total
18–22 138 152 290
23–35 197 303 500
36–49 108 246 354
50+ 52 246 298
Total 495 947 1442

17Schachter, S. and Ransil, B., ‘‘Handedness Distributions in
Nine Professional Groups,” Perceptual and Motor Skills, 1996;
82: 51–63.
18Hampton, K., Goulet, L., Rainie, L., and Purcell, K., ‘‘Social
networking sites and our lives,” Pew Research Center, pewre-
search.org, June 16, 2011.

7.46 Age and Frequency of Status Updates on Face-
book Exercise 7.45 introduced a 2010 study about
users of social networking sites such as Facebook.
Table 7.32 shows the self-reported frequency of sta-
tus updates on Facebook by age groups.

(a) Based on the totals, if age and frequency of sta-
tus updates are really unrelated, how many of
the 156 users who are 18 to 22 years olds should
we expect to update their status every day?

(b) Since there are 20 cells in this table, we’ll save
some time and tell you that the chi-square
statistic for this table is 210.9. What should we
conclude about a relationship (if any) between
age and frequency of status updates?

Table 7.32 Age and frequency of status updates
on Facebook

↓Status/Age→ 18–22 23–35 36–49 50+ Total
Every day 47 59 23 7 136
3–5 days/week 33 47 30 7 117
1–2 days/week 32 69 35 25 161
Every few weeks 23 65 47 34 169
Less often 21 74 99 170 364
Total 156 314 234 243 947

7.47 Gender and Frequency of Status Updates on
Facebook Exercise 7.45 introduced a 2010 study
about users of social networking sites such as Face-
book. Table 7.33 shows the self-reported frequency
of status updates on Facebook by gender. Are fre-
quency of status updates and gender related? Show
all details of the test.

Table 7.33 Gender and frequency of status
updates on Facebook

↓Status/Gender→ Male Female Total
Every day 42 88 130
3–5 days/week 46 59 105
1–2 days/week 70 79 149
Every few weeks 77 79 156
Less often 151 186 337
Total 386 491 877

7.48 Gender and Frequency of ‘‘Liking” Content
on Facebook Exercise 7.45 introduced a 2010 study
about users of social networking sites such as Face-
book. Table 7.34 shows the frequency of users
‘‘liking” content on Facebook, with the data shown
by gender. Does the frequency of ‘‘liking” depend
on the gender of the user? Show all details of the
test.
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Table 7.34 Gender and frequency of ‘‘liking”
content on Facebook

↓Liking/Gender→ Male Female Total
Every day 77 142 219
3–5 days/week 39 54 93
1–2 days/week 62 69 131
Every few weeks 42 44 86
Less often 166 182 348
Total 386 491 877

Genetics and Fast-Twitch Muscles Exercises 7.49
to 7.51 investigate the gene ACTN3, which encodes
a protein that functions in fast-twitch muscles. Peo-
ple can be classified according to which genotype
of this gene they have, RR, RX, or XX, and also
according to which genetic allele they have, R or
X. The study19 described here, and introduced in
Exercises 7.23 and 7.24 on page 475, examines the
association between this gene and different sub-
groups of the population. All participants in the
study live in Australia. The earlier exercises only
included the control group.

7.49 Testing Genotypes for Fast-Twitch Muscles
The study on genetics and fast-twitch muscles
includes a sample of elite sprinters, a sample of elite
endurance athletes, and a control group of non-
athletes. Is there an association between genotype
classification (RR, RX, or XX) and group (sprinter,
endurance, control group)? Computer output is
shown for this chi-square test. In each cell, the
top number is the observed count, the middle num-
ber is the expected count, and the bottom number
is the contribution to the chi-square statistic.

RR RX XX Total
Control 130 226 80 436

143.76 214.15 78.09
1.316 0.655 0.047

Sprint 53 48 6 107
35.28 52.56 19.16
8.901 0.395 9.043

Endurance 60 88 46 194
63.96 95.29 34.75
0.246 0.558 3.645

Total 243 362 132 737

Chi-Sq = 24.805, DF = 4, P-Value = 0.000

19Yang, N., et al., ‘‘ACTN3 genotype is associated with human
elite athletic performance,” American Journal of Human Genet-
ics, 2003; 73: 627–631.

(a) What is the expected count for endurance ath-
letes with the XX genotype? For this cell, what
is the contribution to the chi-square statistic?
Verify both values by computing them yourself.

(b) What are the degrees of freedom for the test?
Verify this value by computing it yourself.

(c) What is the chi-square test statistic? What is the
p-value? What is the conclusion of the test?

(d) Which cell contributes the most to the chi-
square statistic? For this cell, is the observed
count greater than or less than the expected
count?

(e) Which genotype is most over-represented
in sprinters? Which genotype is most over-
represented in endurance athletes?

7.50 Testing Genetic Alleles for Fast-Twitch Mus-
cles The study on genetics and fast-twitch muscles
includes a sample of elite sprinters, a sample of elite
endurance athletes, and a control group of non-
athletes. Is there an association between genetic
allele classification (R or X) and group (sprinter,
endurance, control)? Computer output is shown
for this chi-square test. In each cell, the top num-
ber is the observed count, the middle number is
the expected count, and the bottom number is the
contribution to the chi-square statistic.

R X Total
Control 244 192 436

251.42 184.58
0.219 0.299

Sprint 77 30 107
61.70 45.30
3.792 5.166

Endurance 104 90 194
111.87 82.13
0.554 0.755

Total 425 312 737

Chi-Sq = 10.785, DF = 2, P-Value = 0.005

(a) How many endurance athletes were included in
the study?

(b) What is the expected count for sprinters with the
R allele? For this cell, what is the contribution
to the chi-square statistic? Verify both values by
computing them yourself.

(c) What are the degrees of freedom for the test?
Verify this value by computing it yourself.

(d) What is the chi-square test statistic? What is the
p-value? What is the conclusion of the test?
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(e) Which cell contributes the most to the chi-
square statistic? For this cell, is the observed
count greater than or less than the expected
count?

(f) Which allele is most over-represented in sprint-
ers? Which allele is most over-represented in
endurance athletes?

7.51 Gender and ACTN3 Genotype We see in the
previous two exercises that sprinters are more likely
to have allele R and genotype RR versions of the
ACTN3 gene, which makes these versions associ-
ated with fast-twitch muscles. Is there an association
between genotype and gender? Computer output
is shown for this chi-square test, using the control
group in the study. In each cell, the top number is the
observed count, the middle number is the expected
count, and the bottom number is the contribution to
the chi-square statistic. What is the p-value? What
is the conclusion of the test? Is gender associated
with the likelihood of having a ‘‘sprinting gene”?

RR RX XX Total
Male 40 73 21 134

40.26 69.20 24.54
0.002 0.208 0.509

Female 88 147 57 292
87.74 150.80 53.46
0.001 0.096 0.234

Total 128 220 78 426

Chi-Sq = 1.050, DF = 2, P-Value = 0.592

7.52 Another Test for Cocaine Addiction Exer-
cise 7.41 on page 485 describes an experiment on
helping cocaine addicts break the cocaine addic-
tion, in which cocaine addicts were randomized to
take desipramine, lithium, or a placebo. The results
(relapse or no relapse after six weeks) are summa-
rized in Table 7.35.

(a) In Exercise 7.41, we calculate a χ2 statistic of
10.5 and use a χ2 distribution to calculate a

p-value of 0.005 using these data, but we also
could have used a randomization distribution.
How would you use cards to generate a random-
ization sample? What would you write on the
cards, how many cards would there be of each
type, and what would you do with the cards?

(b) If you generated 1000 randomization samples
according to your procedure from part (a) and
calculated the χ2 statistic for each, approxi-
mately how many of these statistics do you
expect would be greater than or equal to the χ2

statistic of 10.5 found using the original sample?

Table 7.35 Breaking the cocaine addiction

Relapse No relapse Total
Desipramine 10 14 24
Lithium 18 6 24
Placebo 20 4 24
Total 48 24 72

7.53 Who Is More Likely to Take Vitamins: Males
or Females? Data 2.11 on page 111 introduces the
dataset NutritionStudy which contains, among other
things, information about vitamin use and gender
of the participants. Is there a significant associa-
tion between these two variables? Use a statistical
software package and the variables VitaminUse and
Gender to conduct a chi-square analysis and clearly
give the results.

7.54 Who Is More Likely to Smoke: Males or
Females? Data 2.11 on page 111 introduces the
dataset NutritionStudy which contains, among other
things, information about smoking history and gen-
der of the participants. Is there a significant associ-
ation between these two variables? Use a statistical
software package and the variables PriorSmoke and
Gender to conduct a chi-square analysis and clearly
give the results. The variable PriorSmoke is coded
as 1 = never smoked, 2 = prior smoker, and 3 =
current smoker.
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ANOVA to
Compare
Means

‘‘When moral posturing is replaced by an honest assessment of the data, the result is often a

new, surprising insight.”

–Steven Levitt and Stephen Dubner∗

∗Freakonomics, Harper Collins, New York, 2009, p. 11.
Top left: Nick Koudis/Getty Images, Inc., Top right: Ryan McVay/Getty Images, Inc., Bottom right: ©John Wiley & Sons. Photo by
Vincent LaRussa
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Questions and Issues

C H A P T E R O U T L I N E

8 ANOVA to Compare Means 490
8.1 Analysis of Variance 492

8.2 Pairwise Comparisons and Inference
after ANOVA 512

Here are some of the questions and issues we will discuss in this chapter:

• What type of sandwich do ants prefer?

• Does hearing a mother’s voice reduce stress levels? Does it matter if the voice is on the phone
rather than in person? Does it matter if the contact is through texting?

• Do athletes competing against an opponent wearing red perform worse on average than against
other colors?

• We’ve seen that having a light on at night increases weight gain. Why?

• Does regular exercise help give people (or rats) resilience to stress?

• Does adopting a dominant posture enable one to deal with pain more easily?

• What type of courses have the highest textbook costs?

• If a man uses a laptop computer on his lap, how much does groin temperature increase?

• What type of movie gets the highest average ratings on the Rotten Tomatoes website?
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492 C H A P T E R 8 ANOVA to Compare Means

8.1ANALYSIS OF VARIANCE

In the previous chapter, we use chi-square tests to extend tests for a proportion or
a difference in proportions. In this chapter, we investigate a method to extend a
difference in means test. This procedure allows us to analyze a relationship between
a quantitative variable and a categorical variable.

In Section 6.12 we use a t-test to compare the means of a quantitative variable
between two groups. What if we want to compare more than two groups? The goal
of this chapter is to develop a method to test for a difference in means among several
groups. The procedure is quite different from tests introduced earlier in this text.
The basic idea is to compare measures of variability, both between the groups and
within each group, as a way to assess how different the groups really are. Using
variability to test for a difference in means may seem strange to you at first, but this
is a general statistical approach that can be applied in many important settings. We
call such tests analysis of variance or just ANOVA for short.

Nick Koudis/Getty Images,Inc.

D A T A 8 . 1 Sandwich Ants
As young students in Australia, Dominic Kelly and his friends enjoyed watching
ants gather on pieces of sandwiches. Later, as a university student, Dominic
decided to study this with a more formal experiment. He chose three types of
sandwich fillings to compare: vegemite, peanut butter, and ham & pickles. To
conduct the experiment he randomly chose a sandwich, broke off a piece, and
left it on the ground near an ant hill. After several minutes he placed a jar over
the sandwich bit and counted the number of ants. He repeated the process,
allowing time for ants to return to the hill after each trial, until he had eight
samples for each of the three sandwich fillings. The data (number of ants) are
shown in Table 8.1 and stored in the file SandwichAnts1 along with some
additional information about the sandwiches. ■

1Mackisack, M., ‘‘Favourite Experiments: An Addendum to What Is the Use of Experiments Con-
ducted by Statistics Students?” Journal of Statistics Education, 1994, http://www.amstat.org/publications
/jse/v2n1/mackisack.supp.html.
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8.1 Analysis of Variance 493

Table 8.1 Numbers of ants visiting sandwiches

Vegemite 18 29 42 42 31 21 38 25
Peanut Butter 43 59 22 25 36 47 19 21
Ham & Pickles 44 34 36 49 54 65 59 53

Null and Alternative Hypotheses
As usual we have two competing hypotheses. The null hypothesis is that all three
types of sandwiches are equally liked by the ants and attract the same mean number
of ants. If we let μ1, μ2, and μ3 represent the mean number of ants on the respective
sandwich types, we have

H0 : μ1 = μ2 = μ3

The alternative hypothesis is that the means are not all the same. This doesn’t imply
that all three types of sandwiches have different means, just that the mean for at
least one of the fillings is different from the mean for another filling. To state this
we use

Ha : At least one μi �= μj

The alternative hypothesis again indicates that something is going on: that there
is an association between the categorical variable (which defines the groups) and
the quantitative variable for which we compute means. Note that the alternative
hypothesis does not say which two sandwich fillings have different means or give a
direction as we might see in a one-tailed test. The ANOVA procedure for testing a
difference in means is only designed to determine whether we have enough evidence
to conclude that a difference exists somewhere among the groups. We leave to
Section 8.2 the question of determining which groups might be different.

We examine summary statistics and a graph to help us compare the groups
numerically and visually.

Example 8.1
Use the data in SandwichAnts or Table 8.1 to find the sample mean and standard
deviation of the number of ants for each sandwich filling. Also, produce a plot to
compare the samples.

Solution The means and standard deviations are shown in Table 8.2. We use side-by-side
dotplots, as in Figure 8.1, to compare the numbers of ants for each sandwich. The
graph also shows the mean number of ants (vertical bar) for each filling.

Table 8.2 Group means and standard deviations for ant counts

Filling Sample size Mean Standard deviation

Vegemite n1 = 8 x1 = 30.75 s1 = 9.25
Peanut Butter n2 = 8 x2 = 34.0 s2 = 14.63
Ham & Pickles n3 = 8 x3 = 49.25 s3 = 10.79

We see in Table 8.2 that the sample means are different for each sandwich type
and that the mean number of ants for ham & pickles is quite a bit larger than
the means for the other two fillings. But is that difference statistically significant?
Remember, if we want to measure evidence against the null hypothesis, we need to
think about what sort of data we might see if samples were collected when the null
hypothesis is true. In this case the null hypothesis says that all the fillings attract

ilk o
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Figure 8.1 Dotplots
(with means) comparing
number of ants on three
types of sandwiches 0
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the same mean number of ants. If the null hypothesis is true, we can combine the
samples to give one big sample of 24 sandwich pieces. The mean of all 24 values
in the sample is x = 38.0 ants. We can also find the standard deviation of all 24
sandwich bits, s = 13.95, which summarizes the deviations of all the ant counts from
the overall mean.

In this example, we could also find the overall mean by simply averaging the
three sandwich means. However, this only works when the sample sizes are the
same for each group. In general, the overall mean and standard deviation should be
computed from all the data values in the combined sample.

Why Analyze Variability to Test for a Difference in
Means?
If the null hypothesis is true, the samples are generated from populations with the
same mean. If we select samples of size eight from a population where the mean
is 38, how likely is it to see sample means as different as 30.75, 34.0, and 49.25?
We know that variability in sample means depends not only on the sample size but
also on the variability in the population. Furthermore, while we can easily find the
difference between any pair of group means, we want a single measure that reflects
how far apart the means are for all groups. We address both of these issues by
measuring different aspects of the variability in the data.

Example 8.2
Figure 8.2 shows boxplots (with symbols showing the means) for hypothetical data
comparing three groups. The group means in Datasets A and B are the same, but
the boxes show different spread. Datasets A and C have the same spread for the
boxes but different group means. Discuss which of these graphs appear to give
strong visual evidence for a difference in the group means.

Solution The boxplots for Dataset A show the weakest evidence for a difference in means
between the three groups. There is quite a bit of overlap between the boxes and
they could easily be three samples taken from the same population. Datasets B and
C both show strong evidence for a difference in group means, especially since all
the data in the Group 1 sample is less than every data point in Group 2 for both
datasets.

The important point illustrated in Example 8.2 is that an assessment of the
difference in means between several groups depends on two kinds of variability:
how different the means are from each other AND the amount of variability in the
samples. Just knowing the sample means for the groups is not enough. If the values
within each sample are very close to each other, we can detect a small difference in
means as significant (as in Dataset B). If there is more variability in the samples, we
need the group means to be farther apart (as in Dataset C).
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Figure 8.2 Boxplots
comparing samples from
three groups for
Example 8.2
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Partitioning Variability
The basic idea of ANOVA is to split the total variability in data into two (or more)
distinct pieces. When comparing means, one of these pieces reflects the variability
between the groups. If the group means are very different from each other, this
portion of the variability will tend to be large. The other piece measures the
variability within the samples themselves. In the sandwich example, this reflects the
fact that the number of ants varies, even for different pieces of the same sandwich
filling. Here is a diagram to illustrate this partition.

TOTAL Variability =
Variability

BETWEEN
Groups

+
Variability
WITHIN
Groups

How do we go about actually measuring each of these pieces of variability? As
with the sample standard deviation in Chapter 2, we use sums of squared deviations.
The calculations to compute these sums of squares (abbreviated SS) are given at the
end of this section, but they are tedious to apply by hand and we generally rely on
technology to perform the calculations.

TOTAL Variability is denoted SSTotal for total sum of squares. It is a measure
of the variability of all the data values from the overall combined mean.

Variability BETWEEN Groups is denoted SSG for sum of squares for groups.
It is a measure of how far apart the group means are. This is the variability we can
explain by the fact that there are different groups.

Variability WITHIN Groups is denoted SSE for sum of squares for error. It is
a measure of how much variability there is within each group. This is the variability
that we can’t explain by the different groups and for that reason is referred to as the
‘‘error” variability.

If all of the group means happen to be exactly the same, the variability between
groups (SSG) would be zero. If the number of ants were always identical on pieces
with the same filling, the variability within the groups (SSE) would be zero. In
practice, we rarely see either of these two extremes.

The ANOVA rule for partitioning variability means that

SSTotal = SSG + SSE
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Example 8.3
Typical computer output for testing whether there is a difference in mean number
of ants for the three types of sandwich fillings is shown. Identify the three measures
of variability and verify that SSTotal = SSG + SSE.

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 781 5.63 0.011
Error 21 2913 139
Total 23 4474

Solution The partition of variability into sums of squares is shown in the column labeled
‘‘SS.” Total variability is SSTotal and we see that it is 4474. Variability within groups
is SSE and we see in the ‘‘Error” row that it is 2913. The ‘‘groups” in this example
are the three types of fillings, so the variability between groups is SSG and we see
in the row labeled ‘‘Filling” that it is 1561. Since 1561 + 2913 = 4474, we see that
SSG + SSE = SSTotal as required.

The computer output in Example 8.3 is called an ANOVA table and shows
more information than just the various sums of squares. This additional information
allows us to find the test statistic.

The F-Statistic
Remember that our goal is to test whether the data provide evidence of a difference
in means among the groups. The variability between the groups (SSG) is a good
measure of how much the group means vary, but we need to balance that against
the background variation within the groups (SSE). Those two pieces of the total
variability are not directly comparable, since, in the sandwich ant data, SSG measures
variability between 3 means while SSE measures variability using all 24 data values.
To put them on a comparable scale, we use degrees of freedom.

You have already seen the idea of degrees of freedom, for example in Section 6.4
where the t-statistic has n − 1 degrees of freedom. In fact, back in Section 2.3, when
we introduce the sample standard deviation, we see an n − 1 term in the denominator
that is this same degrees of freedom. The degrees of freedom for the total row in an
ANOVA table is this same n − 1. What about the degrees of freedom for groups?
If SSG is based on k groups, then it has k − 1 degrees of freedom. Sum of squared
errors (SSE) loses one degree of freedom for each group mean, so if there are k
groups, the degrees of freedom for SSE is n − k. Degrees of freedom add up in the
same way that sum of squares do. In summary, if we have k groups with a total of n
data values, we have

(df for groups) + (df for error) = Total df
(k − 1) + (n − k) = n − 1

To put the sums of squares on a comparable scale, we divide each sum of squares by
its degrees of freedom. We call the result a mean square:

Mean Square = Sum of Squared Deviations
Degrees of Freedom

o
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We compute the mean square for groups (MSG) by dividing SSG by df for groups,
and we compute mean square for error (MSE) by dividing SSE by df for error:

MSG = SSG
k − 1

(Groups) MSE = SSE
n − k

(Error)

We can now define a statistic for testing for a difference among several means.
If the null hypothesis (no difference) is true, the two mean squares, MSG and
MSE, should be roughly the same size. If the alternative hypothesis is true and the
population means really differ, we expect MSG to be larger relative to MSE (since
the sample means will tend to be more different relative to internal variation). To
compare these two variability estimates, we look at their ratio in what is known as
an F-statistic:

F = MSG
MSE

Example 8.4
Calculate the degrees of freedom, the mean squares, and the F-statistic for the
sandwich ants data. Verify your results using the computer output in Example 8.3.

Solution In the sandwich ant data, there are three Fillings, so the degrees of freedom for
the groups is 3 − 1 = 2. There are 24 data values, so total degrees of freedom is
24 − 1 = 23. Since degrees of freedom must add up, degrees of freedom for error is
21. These values match what we see in the output.

To find the mean squares, we divide the sums of squares by degrees of freedom.
From Example 8.3 we see that SSG = 1561 and SSE = 2913. We have

MSG = SSG
df

= 1561
2

= 780.5 and MSE = SSE
df

= 2913
21

= 138.7

Finally, the F-statistic is

F = MSG
MSE

= 780.5
138.7

= 5.63

All these values match what we see in the output in Example 8.3.

From the F-statistic in Example 8.4, we see that the mean square reflecting the
spread of the sample group means (MSG) is more than five times bigger than we
would expect under the null hypothesis, based on the variability within the groups
(as reflected in MSE). How much larger than the MSE does MSG need to be for us
to conclude that there is some difference in the population means? Although under
certain conditions we can find a theoretical model for the F-statistics, we can always
use the randomization techniques of Chapter 4 to investigate this sort of question.

Randomization Distribution of F-statistics
If the null hypothesis is true (mean ant counts really don’t differ among the

three sandwich fillings), any of the 24 values in the SandwichAnts data could just as
easily be associated with any of the three fillings. To create randomization samples
under this null hypothesis, we randomly scramble the filling labels and assign them
to the 24 ant counts so that each filling is used eight times. This replicates the way
randomization was used to randomly pick which sandwich piece is put out on each
trial of the experiment in the original data collection.

o
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Figure 8.3

Randomization
distribution of
F-statistics for ant counts 0 2 4 6

F
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For each of the randomization samples we compute the F-statistic (good thing
this part is automated!). The ANOVA output for one such randomization sample,
with F = 0.98, is shown.

For one random reallocation:

Level N Mean StDev
Vegemite 8 40.63 14.39
Peanut Butter 8 41.00 14.43
Ham & Pickles 8 32.38 13.02

Source DF SS MS F P
ScrambleFilling 2 380 190 0.98 0.394
Error 21 4094 195
Total 23 4474

To see if the original F-value (5.63) is unusual, we repeat the random reallocation
process 1000 times to obtain a randomization distribution of F-statistics (when H0 is
true.) One such distribution is shown in Figure 8.3.

To find a p-value from the randomization distribution we count the proportion
of randomization samples that give F-statistics bigger than 5.63. We use the upper tail
since large values of the F-statistic occur when MSG is large and the group means are
more different. In the distribution of Figure 8.3, only 16 of the 1000 randomization
statistics are bigger than 5.63, giving an estimated p-value of 0.016. This is close to
the p-value of 0.011 that appears in the ANOVA output in Example 8.3. With such
a small p-value, we have convincing evidence that there is a difference in mean ant
counts among the three types of sandwich filling.

F-distribution
We can use an F-distribution to find the p-value when the following two conditions
are met:

Normal distribution: The data from each of the populations should follow a normal
distribution, although this is more critical for small sample sizes. In practice, we
watch out for clear skewness or extreme outliers if the sample size is small. From
Figure 8.1 we don’t see any concerns about normality in the sandwich ant data.

Equal Variance: The variability should be roughly the same in each of the groups.
This can be a problem, since in some situations the variability tends to be larger for
larger means. As a rough rule, we only worry if the sample standard deviation for
one group is more than twice the standard deviation for another group. Looking
back at Table 8.2 on page 493 we see that the largest standard deviation for those
fillings (s2 = 14.63 for Peanut Butter) is not more than twice the smallest standard
deviation (s1 = 9.25 for Vegemite).

(Sbom*
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Figure 8.4
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When these two conditions are reasonably met, the distribution of the F-statistic
when the null hypothesis is true follows an F-distribution. Since an F-distribution
arises as a ratio of two mean squares, it has two values for degrees of freedom:
one for the numerator and one for the denominator. In the sandwich ant example,
we use an F-distribution with 2 numerator and 21 denominator degrees of freedom
(denoted F2,21). Figure 8.4 shows a scaled histogram of the randomization F-statistics
along with the density for an F2,21 distribution.

The p-value for the test of means of sandwich ants is the area in the upper tail
of this F-distribution beyond the F-statistic of F = 5.63. Using technology, we see
that the p-value is 0.011, matching the ANOVA output in Example 8.3. There is
evidence that ants do not prefer sandwich fillings equally.

ANOVA to Compare Means

To test for a difference in means among k groups:
H0 : μ1 = μ2 = · · · = μk

Ha : At least one μi �= μj

We partition the variability to construct an ANOVA table:

Source df Sum of Sq. Mean Square F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

Conditions to use an F-distribution:

• Sample sizes are large (each ni ≥ 30) or data are relatively normally
distributed.

• Variability is similar in all groups.

More Examples of ANOVA
Data 8.1 deals with data from an experiment where the sample sizes are equal in
each group. (These are called balanced samples.) In the next example we use data
from an observational study where the sample sizes differ between the groups.

\
\
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Example 8.5
Pulse Rates and Award Preference

Data 1.1 on page 4 describes a sample survey collected from students in several
statistics classes. One of the variables records which Award students would prefer
to win from among an Academy Award, Nobel Prize, and Olympic gold medal. The
students also measured their pulse rates (in beats per minute). Could pulse rates be
related to award preference? Use ANOVA to test whether there is a difference in
mean pulse rate between students in the three award categories. Be sure to check
that the conditions are reasonably satisfied.

Solution The computer output below shows the sample size, mean, and standard deviation
for the pulse rates in each award group and overall. Figure 8.5 shows dotplots
comparing the distribution of the three samples.

Variable Award Count Mean StDev
Pulse Academy 31 70.52 12.36

Nobel 149 72.21 13.09
Olympic 182 67.253 10.971

Variable Count Mean StDev
Pulse 362 69.575 12.205

The boxplots are relatively symmetric, with a few outliers in both tails for the
Nobel and Olympic groups, but those sample sizes are large (n2 = 149, n3 = 182) so
we don’t need to be concerned with the normality condition. The standard deviations
for the groups are similar; none is close to being twice another. The conditions for
applying ANOVA to compare the means look reasonable.

To test H0 : μ1 = μ2 = μ3, where each μi denotes the mean pulse rate for one
of the award groups, vs Ha : Some μi �= μj, we obtain the ANOVA output shown
below:

Source DF SS MS F P
Award 2 2047 1024 7.10 0.001
Error 359 51729 144
Total 361 53776

Figure 8.5 Pulse rates
within each Award
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The F-statistic (7.10) gives a p-value of 0.001 when compared to an F-distribution
with 2 numerator and 359 denominator degrees of freedom. This is a very small
p-value, so we have strong evidence that the average pulse rates differ depending
on the award students prefer.

But which groups are different? For example, is the mean pulse rate for students
who prefer an Olympic gold medal different from the mean for those who prefer an
Academy Award? Remember that a significant result in the ANOVA only signals
that a difference exists—it does not tell us which specific groups differ. We look at
techniques for answering that question in the next section.

The data in StudentSurvey are from an observational study, so we can’t conclude
that a desire for a particular award tends to cause pulse rates to increase or decrease.
Can you think of a possible confounding variable that might help explain the
association between award preference and pulse rates? (Hint: Try Exercise 8.31.)

Another Look at Variability
The key to using ANOVA to test for a difference in means is the comparison of

the variability between the sample means (SSG and MSG) to the variability within
the samples (SSE and MSE). In Figure 8.2 on page 495 we see boxplots for three
datasets that compare hypothetical data for three groups. Recall that Datasets A
and B have the same group means, while A and C have the same spread in the
boxplots. Some ANOVA output for each of those datasets is shown below. Pay
attention to how the group means and variability affect the values in the ANOVA
table and the conclusions about the significance of the differences in means for each
dataset.

Dataset A Df Sum Sq Mean Sq F value Pr(>F)
Group 2 216 108 1.6875 0.2006
Residuals 33 2112 64
Total 35 2328
----------------------------------------------------------------------------------------------
Dataset B Df Sum Sq Mean Sq F value Pr(>F)
Group 2 216 108 108 0.000
Residuals 33 33 1
Total 35 249
----------------------------------------------------------------------------------------------
Dataset C Df Sum Sq Mean Sq F value Pr(>F)
Group 2 4704 2352 36.75 0.000
Residuals 33 2112 64
Total 35 6816

For Dataset A, we see from the ANOVA table (p-value = 0.2006) that those sample
means are not considered significantly different. It is not unusual to see three samples
of size ni = 12, drawn from the same population, differ by the amounts shown in the
top graph of Figure 8.2.

Dataset B shows the same sample means as Dataset A, but the standard
deviation of each sample has been reduced (as seen in the much narrower boxes
of the boxplots). The sum of squares and mean square for ‘‘Group” is identical to
those values in the ANOVA for Dataset A, since the group means are the same in
both datasets. However, the smaller standard deviation within the groups of Dataset
B reduces both SSE and MSE. When we divide to find the F-statistic (F = 108) we
see that it is now very significant (p-value = 0.000). The sample means shown in the
middle dataset of Figure 8.2 are considered significantly different, even though the
means themselves are identical to Dataset A.
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When we get to the ANOVA for Dataset C, we see that the SSE and MSE
values (labeled as ‘‘Residuals” in this output) are identical to those in the ANOVA
for Dataset A. This makes sense since the boxplots in Dataset C have the same
spread within the groups as those in Dataset A. In this case, it’s the SSG and MSG
values that change, getting much larger since the means are much farther apart in
Dataset C. With a bigger difference among the sample means, the ANOVA table
for Dataset C has a small p-value (0.000), meaning we are unlikely to see sample
means this far apart if the samples are drawn from the same population. We find
strong evidence for a difference in means in Dataset C.

As we see when comparing these ANOVA tables and the graphs in Example 8.2,
the important point when using ANOVA to test means is that we assess the
differences between the group means against the background variability within the
groups. The same set of means can give significant results when there is less variability
in the samples, but not be detected as different when the samples themselves are
widely scattered.

ANOVA Calculations
While we generally rely on technology to do the nitty gritty calculations for ANOVA,
seeing how the various types of variability are computed can help you distinguish
and keep straight their roles. As the notation ‘‘SS” suggests, each variability is
measured as a sum of squared deviations. The deviations used in each case reflect
the type of variability being measured. The mean for all the data values is often
referred to as the grand mean.

TOTAL Variability: (deviations of the data from the grand mean)
Under the null hypothesis of equal means, we use the grand mean (x) to estimate the
common population mean. The total variability is just the sum of squared deviations
of each of the data points from this grand mean:

Total variability = SSTotal =
∑

(x − x)2

Variability BETWEEN Groups: (deviations of the group means from the grand
mean)
To compare the group means, we square the deviations between the group means
and the grand mean. This sum has just one term for each group and we multiply the
squared deviation by the sample size in the group when computing the sum:

Variability Between Groups = SSG =
∑

ni(xi − x)2

= n1(x1 − x)2 + · · · + nk(xk − x)2

Variability WITHIN Groups: (deviations of the data from their group mean)
To measure variability within the groups, we use squared deviations between each
data value and the mean for its group, xi (rather than the grand mean). If we think
of the group mean as predicting values for the group (like the number of ants for a
particular sandwich filling), the deviations from that mean are often called ‘‘errors”
or ‘‘residuals.” That’s why we use the notation SSE for the sum of the squares of
these errors to measure the variability within the groups:

Variability Within Groups = SSE =
∑

(x − xi)
2

Note that the sums for SSTotal and SSE use the individual data values, so they have
n terms in each sum, where n is the overall sample size. The calculation of SSG
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between the groups is quicker since the number of terms in that sum is just k, the
number of groups.

Recall that
SSTotal = SSG + SSE

so if we know any two of the three sums of squares we can easily find the last one.

Example 8.6
Find each of the sums of squares terms for the sandwich ant data in Table 8.1.

Solution The grand mean is x = 38 and we sum the deviations for all 24 ant counts to get

SSTotal = (18 − 38)2 + (43 − 38)2 + · · · + (21 − 38)2 + (53 − 38)2 = 4474

To find the variability between the three sandwich types, we need only three terms
in the sum

SSG = 8(30.75 − 38)2 + 8(34.0 − 38)2 + 8(49.25 − 38)2 = 1561

We could subtract to find SSE = SSTotal − SSG = 4474 − 1561 = 2913 or do the
sum comparing all 24 ant counts to their sandwich mean:

SSE = (18 − 30.75)2 + (43 − 30.75)2 + · · · + (21 − 49.25)2 + (53 − 49.25)2 = 2913

The computer output showing the ANOVA table in Example 8.3 on page 496
confirms these sum of square values.

The most tedious parts of the calculations in Example 8.6 are finding SSTotal
and SSE since each is a sum of 24 terms. We can save some time if we know the
standard deviation of the overall sample and the standard deviation of the sample
in each group. Recall the formula for computing a standard deviation is

s =
√∑

(x − x)2

n − 1
=

√
SSTotal

n − 1

With a little algebra, we can turn this into an easy formula for computing the total
sum of squares for ANOVA:

SSTotal = (n − 1)s2

where s is the standard deviation obtained from the combined sample and n is the
overall sample size.

In a similar way, we can find the sum of squared deviations from the group mean
within any group using (ni − 1)s2

i where ni is the sample size and si is the standard
deviation from the sample in the ith group. Summing these for each of the groups,
we get a shortcut for finding the sum of squared errors within the groups:

SSE =
∑

(ni − 1)s2
i = (n1 − 1)s2

1 + (n2 − 1)s2
2 + · · · + (nk − 1)s2

k

Adding up the degrees of freedom for each of these terms, (n1 − 1) + (n2 − 1) +
· · · + (nk − 1) = n − k, is another way to see how we get the degrees of freedom for
the error in ANOVA.

o
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We can relatively easily find each of the sum of squared variability terms for an
ANOVA using basic summary statistics (sample size, mean, and standard deviation)
from the groups and overall sample:

Between Groups = SSG =
∑

ni(xi − x)2 = n1(x1 − x)2 + · · · + nk(xk − x)2

Within Groups = SSE =
∑

(ni − 1)s2
i = (n1 − 1)s2

1 + · · · + (nk − 1)s2
k

Total = SSTotal = (n − 1)s2

SSTotal = SSG + SSE

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use ANOVA to test for a difference in means among several groups

• Explain how variation between groups and variation within groups are
relevant for testing a difference in means between multiple groups

Exercises for Section 8.1

SKILL BUILDER 1
In Exercises 8.1 to 8.6, two sets of sample data, A
and B, are given. Without doing any calculations,
indicate in which set of sample data, A or B, there
is likely to be stronger evidence of a difference
in the two population means. Give a brief reason,
comparing means and variability, for your answer.

8.1
Dataset A Dataset B

Group 1 Group 2 Group 1 Group 2
12 25 15 20
20 18 14 21

8 15 16 19
21 28 15 19
14 14 15 21

x1 = 15 x2 = 20 x1 = 15 x2 = 20

8.2
Dataset A Dataset B

Group 1 Group 2 Group 1 Group 2
13 18 13 48
14 19 14 49
15 20 15 50
16 21 16 51
17 22 17 52

x1 = 15 x2 = 20 x1 = 15 x2 = 50

8.3

5 10

Group 2

Group 1

15

Dataset A
20 25

5 10

Group 2

Group 1

15

Dataset B
20 25

o
o
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8.4

0 5 10

Group 2

Group 1

15

Dataset A

2520 30 0 5 10

Group 2

Group 1

15

Dataset B

2520 30

8.5

0
Group 2

Group 1

6 12 18

Dataset A

24 30 36 0

Group 1

Group 2
6 12 18

Dataset B

24 30 36

8.6

8
Group 2

Group 1

16

Dataset A
24 32 40 48 56 64 8 16 24 32 40 48 56 64

Dataset B

Group 2

Group 1

SKILL BUILDER 2
In Exercises 8.7 to 8.10, we give sample sizes for the
groups in a dataset and an outline of an analysis of
variance table with some information on the sums of
squares. Fill in the missing parts of the table. What
is the value of the F-test statistic?

8.7 Three groups with n1 = 5, n2 = 5, and n3 = 5.
ANOVA table includes:

Source df SS MS F-statistic
Groups 120
Error 282
Total 402

:::::
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8.8 Four groups with n1 = 10, n2 = 10, n3 = 10,
and n4 = 10. ANOVA table includes:

Source df SS MS F-statistic
Groups 960
Error 5760
Total 6720

8.9 Three groups with n1 = 10, n2 = 8, and n3 =
11. ANOVA table includes:

Source df SS MS F-statistic
Groups 80
Error
Total 1380

8.10 Four groups with n1 = 5, n2 = 8, n3 = 7, and
n4 = 5. ANOVA table includes:

Source df SS MS F-statistic
Groups
Error 800
Total 1400

SKILL BUILDER 3
In Exercises 8.11 to 8.14, some computer output for
an analysis of variance test to compare means is
given.

(a) How many groups are there?

(b) State the null and alternative hypotheses.

(c) What is the p-value?

(d) Give the conclusion of the test, using a 5%
significance level.

8.11 Source DF SS MS F
Groups 3 360.0 120.0 1.60
Error 16 1200.0 75.0
Total 19 1560.0

8.12 Source DF SS MS F
Groups 4 1200.0 300.0 5.71
Error 35 1837.5 52.5
Total 39 3037.5

8.13 Source DF SS MS F
Groups 2 540.0 270.0 8.60
Error 27 847.8 31.4
Total 29 1387.8

8.14 Source DF SS MS F
Groups 3 450.0 150.0 0.75
Error 16 3200.0 200.0
Total 19 3650.0

8.15 Stress Levels and a Mother’s Voice A recent
study2 examined the impact of a mother’s voice on
stress levels in young girls. The study included 68
girls ages 7 to 12 who reported good relationships
with their mothers. Each girl gave a speech and
then solved mental arithmetic problems in front of
strangers. Cortisol levels in saliva were measured for
all girls and were high, indicating that the girls felt a
high level of stress from these activities. (Cortisol is
a stress hormone and higher levels indicate greater
stress.) After the stress-inducing activities, the girls
were randomly divided into four equal-sized groups:
one group talked to their mothers in person, one
group talked to their mothers on the phone, one
group sent and received text messages with their
mothers, and one group had no contact with their
mothers. Cortisol levels were measured before and
after the interaction with mothers and the change in
the cortisol level was recorded for each girl.

(a) What are the two main variables in this study?
Identify each as categorical or quantitative.

(b) Is this an experiment or an observational study?

(c) The researchers are testing to see if there is a
difference in the change in cortisol level depend-
ing on the type of interaction with mom. What
are the null and alternative hypotheses? Define
any parameters used.

(d) What are the total degrees of freedom? The df
for groups? The df for error?

(e) The results of the study show that hearing
mother’s voice was important in reducing stress
levels. Girls who talk to their mother in per-
son or on the phone show decreases in cortisol
significantly greater, at the 5% level, than girls
who text with their mothers or have no contact
with their mothers. There was not a difference
between in person and on the phone and there
was not a difference between texting and no con-
tact. Was the p-value of the original ANOVA
test above or below 0.05?

8.16 The Color Red and Performance Color affects
us in many ways. For example, Exercise C.51 on
page 452 describes an experiment showing that the
color red appears to enhance men’s attraction to
women. Previous studies have also shown that ath-
letes competing against an opponent wearing red
perform worse, and students exposed to red before

2Seltzer, L., Prososki, A., Ziegler, T., Pollak, S., ‘‘Instant mes-
sages vs. speech: Hormones and why we still need to hear each
other,” Evolution and Human Behavior, 2012; 33(1): 42–45.
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a test perform worse.3 A recent study4 states that
‘‘red is hypothesized to impair performance on
achievement tasks, because red is associated with
the danger of failure.” In the study, US college
students were asked to solve 15 moderately diffi-
cult, five-letter, single-solution anagrams during a
5-minute period. Information about the study was
given to participants in either red, green, or black
ink just before they were given the anagrams. Par-
ticipants were randomly assigned to a color group
and did not know the purpose of the experiment,
and all those coming in contact with the participants
were blind to color group. The red group contained
19 participants and they correctly solved an average
of 4.4 anagrams. The 27 participants in the green
group correctly solved an average of 5.7 anagrams
and the 25 participants in the black group correctly
solved an average of 5.9 anagrams. Work through
the details below to test if performance is different
based on prior exposure to different colors.

(a) State the hypotheses.

(b) Use the fact that sum of squares for color groups
is 27.7 and the total sum of squares is 84.7 to
complete an ANOVA table and find the F-
statistic.

(c) Use the F-distribution to find the p-value.

(d) Clearly state the conclusion of the test.

8.17 Laptop Computers and Sperm Count Studies
have shown that heating the scrotum by just 1◦C
can reduce sperm count and sperm quality, with
long-term consequences. Exercise 2.101 on page 87
introduces a study indicating that males sitting with
a laptop on their laps have increased scrotal temper-
atures. Does a lap pad help reduce the temperature
increase? Does sitting with legs apart help? The
study investigated all three of these conditions: legs
together and a laptop computer on the lap, legs
apart and a laptop computer on the lap, and legs
together with a lap pad under the laptop computer.
Scrotal temperature increase over a 60-minute ses-
sion was measured in ◦C, and the summary statistics
are given in Table 8.3.

(a) Which condition has the largest mean tempera-
ture increase? Which has the smallest?

3‘‘Color Red Increases the Speed and Strength of Reactions,”
Science Daily, sciencedaily.com, June 2, 2011.
4Elliot, A., et al., ‘‘Color and Psychological Functioning: The
Effect of Red on Performance Attainment,” Journal of Experi-
mental Psychology: General, 2007; 136(1): 154–168. Data approx-
imated from summary statistics.

(b) Do the data appear to satisfy the condition that
the standard deviations are roughly the same?
(The data satisfy the normality condition.)

(c) Use the fact that sum of squares for groups is
13.7 and error sum of squares is 53.2 to test
whether there is a difference in mean temper-
ature increase between the three conditions.
Show all details of the test, including an analysis
of variance table.

Table 8.3 Scrotal temperature increase
in ◦C with a laptop computer on lap

Condition n Mean Std.Dev.

Legs together 29 2.31 0.96
Lap pad 29 2.18 0.69
Legs apart 29 1.41 0.66

Exercise and Stress Exercise 6.257 on page 424
introduces a study showing that exercise appears
to offer some resiliency against stress. In the study,
mice were randomly assigned to live in an enriched
environment (EE), a standard environment (SE),
or an impoverished environment (IE) for several
weeks. Only the enriched environment provided
opportunities for exercise. Half the mice then
remained in their home cage (HC) as control groups
while half were subjected to stress (SD) by being
placed repeatedly with a very aggressive mouse. All
the mice in SD exhibited acute signs of stress dur-
ing these brief exposures to ‘‘mouse bullies.” The
researchers were interested in how resilient the mice
were in recovering from the stress after the mouse
bullying stopped. Exercises 8.18 to 8.20 discuss the
results of their work.5 There were eight mice in each
of the six groups, and conditions for the ANOVA
tests are met.

8.18 Time Hiding in Darkness One measure of
mouse anxiety is amount of time hiding in a dark
compartment, with mice that are more anxious
spending more time in darkness. The amount of
time (in seconds) spent in darkness during one trial
is recorded for all the mice and the results are shown
in Table 8.4.

(a) In this sample, do the control groups (HC)
spend less time in darkness on average than
the stressed groups (SD)? Which of the stressed

5Lehmann, M. and Herkenham, M., ‘‘Environmental Enrichment
Confers Stress Resiliency to Social Defeat through an Infralim-
bic Cortex-Dependent Neuroanatomical Pathway,” Journal of
Neuroscience, 2011; 31(16): 6159–6173. Data approximated from
summary statistics.
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groups spends the least amount of time, on
average, in darkness?

(b) The sum of squares for groups is SSG = 481, 776
and for error is SSE = 177, 835. Complete a test
to determine if there is a difference in mean
time spent in darkness between the six groups.

Table 8.4 Mean time (sec) in darkness

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
192 196 205 392 438 231

8.19 Time Immobile One measure of mouse anxi-
ety is amount of time spent immobile; mice tend to
freeze when they are scared. The amount of time (in
seconds) spent immobile during one trial is recorded
for all the mice and the mean results are shown in
Table 8.5.

(a) In this sample, do the control groups (HC)
spend less time immobile on average than the
stressed groups (SD)? Which of the stressed
groups spends the least amount of time, on
average, immobile?

(b) The sum of squares for groups is SSG = 188,464
and for error is SSE = 197,562. Complete a test
to determine if there is a difference in mean
time immobile between the six groups.

Table 8.5 Mean time (sec) immobile

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
50 47 52 191 188 96

8.20 Immunological Effects In addition to the
behavioral effects of stress, the researchers stud-
ied several immunological effects of stress. One
measure studied is stress-induced decline in FosB-
positive cells in the FosB/
FosA expression. This
portion of the study only included seven mice in
each of the six groups, and lower levels indicate
more stress. The mean levels of FosB+ cells for
each combination of environment and stress are
shown in Table 8.6.

(a) In each of the three environments (IE, SE, and
EE), which sample group (HC or SD) has a
lower average level of FosB+ cells? Does this
match what we would expect? Within each of
the no-stress and stress groups (HC and SD)
separately, which environment has the highest
average level of FosB+ cells?

(b) The sum of squares for groups is SSG = 118,286
and for error is SSE = 75,074. Complete a test
to determine if there is a difference in mean
FosB+ levels between the groups.

Table 8.6 FosB+ Cells

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
86 129 178 21 68 152

8.21 Posture and Pain Research shows that people
adopting a dominant pose have reduced levels of
stress and feel more powerful than those adopting
a submissive pose. Furthermore, it is known that
if people feel more control over a situation, they
have a higher tolerance for pain. Putting these ideas
together, a recent study,6 introduced in Exercise C.6
on page 445, investigates how posture might influ-
ence the perception of pain. In the experiment,
participants were told that they were participating
in a study to examine the health benefits of doing
yoga poses at work. All participants had their pain
threshold measured both before and after holding
a yoga pose for 20 seconds. The pain threshold
was measured by inflating a blood pressure cuff
until participants said stop: the threshold was mea-
sured in mmHg and the difference in before and
after thresholds was recorded for each participant.
The participants were randomly divided into three
groups: one group (n = 30) was randomly assigned
to strike a dominant pose (moving limbs away from
the body), another group (n = 30) was assigned to
strike a submissive pose (curling the torso inward),
and a control group (n = 29) struck a neutral pose.
The summary statistics for each of the three groups
are shown in Table 8.7. Do the data provide evi-
dence of a difference in mean pain tolerance based
on the type of pose? Show all details of the test.

Table 8.7 Difference in pain threshold
(mmHg)

Pose Sample Size Mean Std.Dev.

Dominant 30 14.3 34.8
Neutral 29 −4.4 31.9
Submissive 30 −6.1 35.4

Overall 89 1.33 35.0

8.22 Sandwich Ants and Bread Data 8.1 on page
492 describes an experiment to study how differ-
ent sandwich fillings might affect the mean number
of ants attracted to pieces of a sandwich. The stu-
dents running this experiment also varied the type
of bread for the sandwiches, randomizing between
four types: Multigrain, Rye, Wholemeal, and White.

6Bohns, V. and Wiltermuth, S., ‘‘It hurts when I do this (or
you do that): Posture and pain tolerance,” Journal of Experi-
mental Social Psychology, available online May 26, 2011. Data
approximated from information in the article.
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The ant counts in 6 trials and summary statistics for
each type of bread and the 24 trials as a whole are
given in Table 8.8 and stored in SandwichAnts.

(a) Show how to use the summary information to
compute the three sums of squares needed for
using ANOVA to test for a difference in mean
number of ants among these four types of bread.

(b) Use the sums of squares from part (a) to con-
struct the ANOVA table and complete the
details for this test. Be sure to give a conclusion
in the context of this data situation.

Table 8.8 Numbers of ants by type of bread

Bread Ants Mean Std.Dev.

Multigrain 42 22 36 38 19 59 36.00 14.52
Rye 18 43 44 31 36 54 37.67 12.40
Wholemeal 29 59 34 21 47 65 35.83 13.86
White 42 25 49 25 21 53 42.50 17.41

Total 38.00 13.95

8.23 Hollywood Movies and Rotten Tomatoes Rot-
ten Tomatoes7 is a website providing movie ratings
and reviews. We have data on all 2011 Holly-
wood movies, although for this problem we’ve
removed movies classified as ‘‘Adventure” or ‘‘Fan-
tasy” because there are only one and two movies,
respectively, in each category. Each movie gets a
‘‘Tomatometer” score, which is ‘‘The percentage of
Approved Tomatometer critics who have given this
movie a positive review.” The relevant summary
statistics and visualization are shown below. Does
the Tomatometer score differ by movie genre?

mean sd n
Action 44.97 25.10 31
Animation 60.58 26.73 12
Comedy 49.78 26.35 27
Drama 67.90 18.06 21
Horror 41.29 27.04 17
Romance 47.20 31.57 10
Thriller 62.38 28.66 13
----------------------------------------------------------
Overall 52.49 26.785 131
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7www.rottentomatoes.com.

(a) State the appropriate hypotheses for this test.

(b) Are the conditions for using the F-distribution
satisfied? Why or why not?

(c) Complete the ANOVA table below for doing
this test using the template started below.

Source df SS MS F-statistic p-value
Groups 6 11407.4
Error
Total 130 93268.1

(d) Using α = 0.05, does the Tomatometer score
differ significantly by movie genre? Make a con-
clusion in context.

(e) This sample includes data on all 2011 movies
from these genres. What population might we
wish to make inferences about? Do you think
this sample provides valid inferences for this
population? Why or why not?

Light at Night Makes Fat Mice Studies have shown
that exposure to light at night is harmful to human
health. Data A.1 on page 136 introduces a study in
mice showing that even low-level light at night can
interfere with normal eating and sleeping cycles and
can have an effect on weight gain and glucose intol-
erance. In the study, mice were randomly assigned
to live in one of three light conditions: LD had a
standard light/dark cycle, LL had bright light all the
time, and DM had dim light when there normally
would have been darkness. Exercises 8.24 to 8.30
analyze the results of this study.

8.24 Checking Conditions for Body Mass Gain The
mice in the study had body mass measured through-
out the study. Computer output showing body mass
gain (in grams) after 4 weeks for each of the three
light conditions is shown, and a dotplot of the data
is given in Figure 8.6.

Level N Mean StDev
DM 10 7.859 3.009
LD 8 5.926 1.899
LL 9 11.010 2.624

(a) In the sample, which group of mice gained the
most, on average, over the four weeks? Which
gained the least?

(b) Do the data appear to meet the requirement of
having standard deviations that are not dramat-
ically different?

I

I I
I
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Figure 8.6 Body mass gain under three light conditions

(c) The sample sizes are small, so we check that the
data are relatively normally distributed. We see
in Figure 8.6 that we have no concerns about
the DM and LD samples. However, there is an
outlier for the LL sample, at 17.4 grams. We
proceed as long as the z-score for this value is
within ±3. Find the z-score. Is it appropriate to
proceed with ANOVA?

(d) What are the cases in this analysis? What are the
relevant variables? Are the variables categorical
or quantitative?

8.25 Body Mass Gain The mice in the study had
body mass measured throughout the study. Com-
puter output showing an analysis of variance table
to test for a difference in mean body mass gain
(in grams) after four weeks between mice in the
three different light conditions is shown. We see in
Exercise 8.24 that the conditions for ANOVA are
met, and we also find the summary statistics for each
experimental group there.

One-way ANOVA: BM Gain versus Light
Source DF SS MS F P
Light 2 113.08 56.54 8.38 0.002
Error 24 161.84 6.74
Total 26 274.92

(a) State the null and alternative hypotheses.

(b) What is the F-statistic? What is the p-value?
What is the conclusion of the test?

(c) Does there appear to be an association between
the two variables (body mass gain and light
condition)? If so, discuss the nature of that rela-
tionship. Under what light condition do mice
appear to gain the most weight?

(d) Can we conclude that there is a cause-and-effect
relationship between the variables? Why or why
not?

8.26 Activity Levels Perhaps the mice with light at
night in Exercise 8.24 gain more weight because they
are exercising less. The conditions for an ANOVA
test are met and computer output is shown for test-
ing the average activity level for each of the three
light conditions. Is there a significant difference in
mean activity level? State the null and alternative
hypotheses, give the F-statistic and the p-value, and
clearly state the conclusion of the test.

Level N Mean StDev
DM 10 2503 1999
LD 8 2433 2266
LL 9 2862 2418

One-way ANOVA: Activity versus Light
Source DF SS MS F P
Light 2 935954 467977 0.09 0.910
Error 24 118718447 4946602
Total 26 119654401

8.27 Food Consumption Perhaps the mice with light
at night in Exercise 8.24 are gaining more weight
because they are eating more. Computer output is
shown for average food consumption (in grams)
during week 4 of the study for each of the three
light conditions.

Level N Mean StDev
DM 10 4.1241 0.6938
LD 8 4.3275 0.4337
LL 9 4.5149 1.3149

(a) Is it appropriate to conduct an ANOVA test
with these data? Why or why not?

(b) A randomization test is conducted using these
data and the randomization distribution is
shown in Figure 8.7. The randomization test
gives a p-value of 0.652. Clearly state the
conclusion of the test in the context of this
data situation.

• •
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Figure 8.7 Randomization test for consumption by
light at night

8.28 Stress Levels In addition to monitoring weight
gain, food consumed, and activity level, the study
measured stress levels in the mice by measuring cor-
ticosterone levels in the blood (higher levels indicate
more stress). Conditions for ANOVA are met and
computer output for corticosterone levels for each
of the three light conditions is shown.

Level N Mean StDev
DM 10 73.40 67.49
LD 8 70.02 54.15
LL 9 50.83 42.22

One-way ANOVA: Corticosterone versus Light
Source DF SS MS F P
Light 2 2713 1357 0.43 0.656
Error 24 75782 3158
Total 26 78495

(a) What is the conclusion of the analysis of variance
test?

(b) One group of mice in the sample appears to
have very different corticosterone levels than
the other two. Which group is different? What
aspect of the data explains why the ANOVA
test does not find this difference significant?
How is this aspect reflected in both the summary
statistics and the ANOVA table?

8.29 When Calories Are Consumed Researchers
hypothesized that the increased weight gain seen in
mice with light at night might be caused by when the
mice are eating. (As we have seen in the previous
exercises, it is not caused by changes in amount
of food consumed or activity level.) Perhaps mice
with light at night eat a greater percentage of their
food during the day, when they normally should be
sleeping. Conditions for ANOVA are met and com-
puter output for the percentage of food consumed
during the day for each of the three light conditions
is shown.

Level N Mean StDev
DM 10 55.516 10.881
LD 8 36.028 8.403
LL 9 76.573 9.646

One-way ANOVA: DayPct versus Light
Source DF SS MS F P
Light 2 6987.0 3493.5 36.39 0.000
Error 24 2304.3 96.0
Total 26 9291.2

(a) For mice in this sample on a standard light/dark
cycle, what is the average percent of food
consumed during the day? What percent is con-
sumed at night? What about mice that had dim
light at night?

(b) Is there evidence that light at night influences
when food is consumed by mice? Justify your
answer with a p-value. Can we conclude that
there is a cause-and-effect relationship?

8.30 Glucose Tolerance We have seen that light at
night increases weight gain in mice and increases the
percent of calories consumed when mice are nor-
mally sleeping. What effect does light at night have
on glucose tolerance? After four weeks in the exper-
imental light conditions, mice were given a glucose
tolerance test (GTT). Glucose levels were measured
15 minutes and 120 minutes after an injection of glu-
cose. In healthy mice, glucose levels are high at the
15-minute mark and then return to normal by the
120-minute mark. If a mouse is glucose intolerant,
levels tend to stay high much longer. Computer
output is shown giving the summary statistics for
both measurements under each of the three light
conditions.

Descriptive Statistics: GTT-15
Variable Light N Mean StDev
GTT-15 DM 10 338.8 80.6

LD 8 318.7 106.5
LL 9 373.6 59.1

Descriptive Statistics: GTT-120
Variable Light N Mean StDev
GTT-120 DM 10 258.7 113.0

LD 8 173.5 41.9
LL 9 321.4 109.0

(a) Why is it more appropriate to use a random-
ization test to compare means for the GTT-120
data?

(b) Describe how we might use the 27 data values in
GTT-120 to create one randomization sample.

(c) Using a randomization test in both cases, we
obtain a p-value of 0.402 for the GTT-15 data
and a p-value of 0.015 for the GTT-120 data.
Clearly state the results of the tests, using a 5%

4km/M|C/4«
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significance level. Does light at night appear to
affect glucose intolerance?

8.31 Exercise and Award Preference In
Example 8.5 on page 500 we see a comparison of
mean pulse rates between students who prefer
each of three different awards (Academy Award,
Nobel Prize, Olympic gold medal). The ANOVA
test shows that there appears to be a difference in
mean pulse rates among those three groups. Can
you guess why award preference might be associ-
ated with pulse rates? One possibility is exercise.
Perhaps students who prefer an Olympic medal are
more likely to be athletes who exercise more fre-
quently, stay in shape, and thus have lower pulse
rates. Use technology and the data in StudentSur-
vey that includes a variable measuring the typical
hours of exercise per week for each student to see
if there is a difference in mean exercise amounts
depending on award preference. Be sure to check
that the conditions for ANOVA are reasonable in
this situation.

8.32 Fish Ventilation Most fish use gills for respi-
ration in water and researchers can observe how
fast a fish’s gill cover beats to study ventilation,
much like we might observe breathing rate for a

person. Professor Brad Baldwin is interested in how
water chemistry might affect gill beat rates. In one
experiment he randomly assigned fish to tanks with
different levels of calcium. One tank was low in
calcium (0.71 mg/L), the second tank had a medium
amount (5.24 mg/L), and the third tank had water
with a high calcium level (18.24 mg/L). His research
team counted gill rates (beats per minute) for sam-
ples of 30 fish in each tank. The results8 are stored
in FishGills3. (Note: You may also see a file called
FishGills12 which is a more extensive experiment
with 12 tanks.)

(a) Use technology to check that the conditions for
an ANOVA model are reasonable for these
data. Include a plot that compares the gill rates
for the three calcium conditions.

(b) If the conditions are met, use technology to find
the ANOVA table and complete the test. If the
conditions are not reasonable, use a random-
ization test (scrambling the calcium levels) to
complete the test.

8Thanks to Professor Baldwin and his team for supplying the
data.

8.2PAIRWISE COMPARISONS AND INFERENCE
AFTER ANOVA

In Section 8.1 we see how to use ANOVA to test for a difference in means
among several groups. However, that test only tells us when differences exist, not
which specific groups differ. The goal of this section is to adapt the inference
procedures of Chapter 6 to use the results of the ANOVA analysis. This allows us
to find a confidence interval for the mean in any group, find a confidence interval
for a difference in means between two groups, and test when that difference is
significant.

Using ANOVA for Inferences about Group Means
In Chapter 6 we use formulas such as those below for doing inference (either
confidence intervals or tests) for a single mean and differences in two means:

x ± t∗ · s√
n

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2
t = x1 − x2√

s2
1

n1
+ s2

2
n2

If we have found an ANOVA table based on samples from several groups, we make
a couple of small adjustments to these computations:

• Estimate any standard deviation with
√

MSE from the ANOVA table.

• Use the error degrees of freedom, n − k, for any t-distributions.
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For example, to find a confidence interval for the mean of the ith group, we use

xi ± t∗
√

MSE√
ni

Since one of the conditions for the ANOVA is that the standard deviation is the
same in each group, using

√
MSE gives an estimate that is based on all of the

samples, rather than just one. That is why we use the MSE degrees of freedom,
rather than ni − 1. We often call

√
MSE the pooled standard deviation.

Example 8.7
Sandwich Ants

The ANOVA table on page 496 for assessing a difference in average ant counts on
three types of sandwiches is reproduced below:

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 780.5 5.63 0.011
Error 21 2913 138.7
Total 23 4474

The mean number of ants for the sample of eight pieces of peanut butter
sandwiches is 34.0. Use this and the ANOVA results to find a 95% confidence
interval for the mean number of ants attracted to a peanut butter sandwich.

Solution From the ANOVA table we find MSE = 138.7 with 21 degrees of freedom. For a
95% confidence interval we find percentiles from a t-distribution with 21 degrees of
freedom as t∗ = 2.080. The confidence interval is

34.0 ± 2.080

√
138.7√

8
= 34.0 ± 8.66 = (25.34, 42.66)

We are 95% sure that the mean number of ants attracted to a peanut butter sandwich
is between 25.3 and 42.7.

The ANOVA output in Minitab includes a crude graphical representation
of the confidence intervals for the means of each of the groups. Check that the
interval shown for the peanut butter filling is consistent with the calculation from
Example 8.7. The value labeled ‘‘Pooled StDev” is

√
MSE, the estimate of the

common standard deviation within the groups.

Individual 95% CIs For Mean Based on Pooled StDev
Level N Mean StDev --------+---------+---------+---------+-
Ham & Pickles 8 49.25 10.79 (-------*--------)
Peanut Butter 8 34.00 14.63 (-------*--------)
Vegemite 8 30.75 9.25 (--------*-------)

--------+---------+---------+---------+-
30 40 50 60

Pooled StDev = 11.78

We could have found a confidence interval for the peanut butter mean using
just the mean (x2 = 34.0) and standard deviation (s2 = 14.63) from its sample and a
t-distribution with 7 degrees of freedom:

34.0 ± 2.365
14.63√

8
= 34.0 ± 12.23 = (21.77, 46.23)

o
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This gives a wider interval since s2 is larger than
√

MSE and there is more uncertainty
in the estimate of the standard deviation based on just eight values, so we use a
larger t∗ value.

For comparing two means, the usual standard error for xi − xj is SE =
√

s2
i

ni
+

s2
j

nj
.

If we substitute MSE for s2
i and s2

j , this simplifies to

SE (of xi − xj) =
√

MSE
(

1
ni

+ 1
nj

)
(after ANOVA)

We use this in both a confidence interval for μi − μj and a test statistic to compare
a pair of means.

Inference for Means After ANOVA

After doing an ANOVA for a difference in means among k groups,
based on samples of size n1 + n2 + · · · + nk = n:

Confidence interval for μi: xi ± t∗
√

MSE√
ni

Confidence interval for μi − μj: (xi − xj) ± t∗
√

MSE
(

1
ni

+ 1
nj

)
If the ANOVA indicates that there are differences among the means:

Pairwise test of μi vs μj: t = xi − xj√
MSE

(
1
ni

+ 1
nj

)
where MSE is the mean square error from the ANOVA table and the
t-distributions use n − k degrees of freedom.

Example 8.8
Use the SandwichAnts data and ANOVA to find a 95% confidence interval for the
difference in average ant counts between vegemite and ham & pickles sandwiches.

Solution The sample means are x1 = 30.75 for vegemite and x3 = 49.25 for ham & pickles,
both based on samples of size 8. Again, we use a t-distribution with 21 degrees of
freedom so we have t∗ = 2.080 for a 95% confidence interval (just as in Example 8.7).
The confidence interval for μ1 − μ3 is

(30.75 − 49.25) ± 2.080

√
138.7

(
1
8

+ 1
8

)
= −18.50 ± 12.25 = (−30.75, −6.25)

We are 95% sure that the mean number of ants for vegemite sandwiches is
somewhere between 30.75 and 6.25 less than the mean number of ants for ham &
pickles.

Note that the confidence interval for μ1 − μ3 in the previous example includes
only negative differences (and not zero). This implies evidence that the two popu-
lation means differ with vegemite having a smaller mean than ham & pickles. This
result is not so surprising since the ANOVA indicates that at least two of the groups
have different means and the sample means are farthest apart for vegemite and ham
& pickles. What about vegemite versus peanut butter?

o



8.2 Pairwise Comparisons and Inference after ANOVA 515

Example 8.9
Based on the ANOVA results, test at a 5% level whether the data provide evidence
of a difference in mean number of ants between vegemite and peanut butter
sandwiches.

Solution The relevant hypotheses are H0 : μ1 = μ2 vs Ha : μ1 �= μ2. We compare the sample
means, x1 = 30.75 and x2 = 34.0, and standardize using the SE for a difference after
ANOVA:

t = 30.75 − 34.0√
138.7

(
1
8 + 1

8

) = −3.25
5.89

= −0.55

We find the p-value using a t-distribution with 21 (error) degrees of freedom,
doubling the area below t = −0.55 to get p-value = 2(0.2941) = 0.5882. This is a
large p-value so we do not have evidence of a difference in mean number of ants
between vegemite and peanut butter sandwiches.

We leave it to Exercise 8.45 to compare the ant attractiveness of the peanut
butter and ham & pickle fillings. Note that with three different groups we have three
possible pairs of means (vegemite vs peanut butter, vegemite vs ham & pickles, and
peanut butter vs ham & pickles) to compare when the ANOVA indicates there is a
difference in the means. The number of pairwise comparisons can be much larger
when there are more groups. We consider some methods for handling multiple
comparisons in the next example.

Lots of Pairwise Comparisons
For cases with a larger number of groups the number of possible pairs to compare
can grow quite quickly (k = 4 �⇒ 6 pairs, k = 5 �⇒ 10 pairs, etc.). This raises
two issues: the need to automate such comparisons and a concern about multiplicity
where the chance of making a Type I error increases as we do more and more tests.

©John Wiley & Sons. Photo by Vincent LaRussa.

How much do these textbooks cost?

D A T A 8 . 2 Textbook Costs
Textbook costs can have a substantial impact on a student’s budget. Do costs
tend to differ depending on academic area? To investigate this question we
selected a random sample of 10 introductory courses at one college within each

o
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of four broad areas (Arts, Humanities, Natural Science, and Social Science). For
each course we used the college bookstore’s website to determine the number
of required books and total cost of the books (assuming students purchase new
copies), rounding to the nearest dollar. The data for these 40 courses are stored
in TextbookCosts. ■

Example 8.10
Check that the conditions for running an ANOVA are reasonable to compare mean
textbook costs between courses from different academic fields. Use technology
to compute the ANOVA table and explain what it tells us about whether the
differences in the sample means are significant.

Solution Figure 8.8 shows side-by-side boxplots of the textbook costs for the courses, com-
pared between the academic fields. All four samples are relatively symmetric, have
no outliers, and appear to have about the same variability, so the conditions are
met. We use ANOVA to test for a difference in mean textbook costs among the
four fields. The hypotheses are H0 : μ1 = μ2 = μ3 = μ4 vs Ha : At least one μi �= μj,
where we number the fields so that 1 = Arts, 2 = Humanities, 3 = Natural Science,
and 4 = Social Science. Some ANOVA output for comparing costs between these
fields is shown.

Source DF SS MS F P
Field 3 30848 10283 4.05 0.014
Error 36 91294 2536
Total 39 122142

Level N Mean StDev
Arts 10 94.60 44.95
Humanities 10 120.30 58.15
NaturalScience 10 170.80 48.49
SocialScience 10 118.30 48.90

Checking the standard deviations of text costs for each academic area, we see that
they are roughly the same, giving further evidence that the equal-variance condition
is reasonable. The p-value = 0.014 from the ANOVA is fairly small, so we have good
evidence that there is probably some difference in mean textbook costs depending
on the academic field.

Figure 8.8 Textbook
costs between courses in
different academic areas
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Since the ANOVA shows there are differences among the means, we again
need to ask the question ‘‘Which fields differ from others in their mean textbook
costs?” The way we handle automation of pairwise comparisons depends on the
software we use. Some software has an option to produce confidence intervals for all
pairwise differences. Applied to the ANOVA in Example 8.10 we get the following
computer output:

Field N Mean Grouping
NaturalScience 10 170.80 A
Humanities 10 120.30 B
SocialScience 10 118.30 B
Arts 10 94.60 B
Means that do not share a letter are significantly different.

CI for Difference Lower Center Upper
Humanities - Arts -19.97 25.70 71.37
NaturalScience - Arts 30.53 76.20 121.87
SocialScience - Arts -21.97 23.70 69.37
NaturalScience - Humanities 4.83 50.50 96.17
SocialScience - Humanities -47.67 -2.00 43.67
SocialScience - NaturalScience -98.17 -52.50 -6.83

Remember that a 95% confidence interval for μi − μj contains zero exactly when
a 5% test of H0 : μi = μj vs Ha : μi �= μj does not have enough evidence to reject
H0. In the bottom half of the computer output, we see intervals for the six possible
comparisons of these four fields. Three of the intervals include zero (have one
negative and one positive endpoint) so we do not have evidence of a significant
difference in mean textbook costs between courses in Arts, Humanities, or Social
Sciences. The other three intervals, pairing each of these three fields with Natural
Science, fail to contain zero. In each case, the Natural Science mean is enough larger
than the mean cost for courses in the other field that a zero difference is outside of
the plausible range of values.

Thus the data provide evidence that the mean cost for textbooks in Natural
Science courses at this college is different from (and larger than) the mean costs in
Arts, Humanities, and Social Sciences. We find no evidence of a difference in mean
textbook costs among Arts, Humanities, and Social Science courses. This conclusion
is illustrated near the top of the computer output where the letter ‘‘A” sets Natural
Science off by itself and the letter ‘‘B” lumps the other three fields together as not
significantly different.

The Problem of Multiplicity
One concern when doing lots of pairwise comparisons after an ANOVA (or anytime
we do multiple significance tests) is the issue of multiplicity. As we saw in Section 4.5
on page 282, if each test has a 5% chance of making a Type 1 error (in pairwise
comparisons that is finding the two groups have different means, when really they
are the same), the overall error rate for lots of tests can be quite a bit higher. Even
if the null hypothesis (no difference) is true, we would expect about 1 in 20 tests (at
a 5% level) to reject H0. It is important to only conduct the pairwise comparisons
described in this section if an overall analysis of variance test shows significance.

There are several ways to deal with multiplicity, especially when doing pairwise
comparisons, which are beyond the scope of this book. You may find some of these
options, with names like Tukey’s HSD, Fisher’s LSD (see Exercise 8.50), Student
Newman-Kuels, or Bonferroni’s adjustment, in your statistical software or a later
course in statistics.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Create confidence intervals for single means and differences of means
after doing an ANOVA for means

• Test specific pairs of means after ANOVA indicates a difference in
means, recognizing the problem of multiplicity

Exercises for Section 8.2

SKILL BUILDER 1
Exercises 8.33 to 8.37 refer to the data with analysis
shown in the following computer output:

Level N Mean StDev
A 5 10.200 2.864
B 5 16.800 2.168
C 5 10.800 2.387

Source DF SS MS F P
Groups 2 133.20 66.60 10.74 0.002
Error 12 74.40 6.20
Total 14 207.60

8.33 Is there sufficient evidence of a difference in
the population means of the three groups? Justify
your answer using specific value(s) from the output.

8.34 What is the pooled standard deviation? What
degrees of freedom are used in doing inferences for
these means and differences in means?

8.35 Find a 95% confidence interval for the mean
of population A.

8.36 Find a 90% confidence interval for the differ-
ence in the means of populations B and C.

8.37 Test for a difference in population means
between groups A and C. Show all details of the
test.

SKILL BUILDER 2
Exercises 8.38 to 8.44 refer to the data with analysis
shown in the following computer output:

Level N Mean StDev
A 6 86.833 5.231
B 6 76.167 6.555
C 6 80.000 9.230
D 6 69.333 6.154

Source DF SS MS F P
Groups 3 962.8 320.9 6.64 0.003
Error 20 967.0 48.3
Total 23 1929.8

8.38 Is there evidence for a difference in the popu-
lation means of the four groups? Justify your answer
using specific value(s) from the output.

8.39 What is the pooled standard deviation? What
degrees of freedom are used in doing inferences for
these means and differences in means?

8.40 Find a 99% confidence interval for the mean
of population A. Is 90 a plausible value for the
population mean of group A?

8.41 Find a 95% confidence interval for the differ-
ence in the means of populations C and D.

8.42 Test for a difference in population means
between groups A and D. Show all details of the
test.

8.43 Test for a difference in population means
between groups A and B. Show all details of the
test.

8.44 Test for a difference in population means
between groups B and D. Show all details of the test.

8.45 Peanut Butter vs Ham & Pickles The ANOVA
table in Example 8.3 on page 496 for the Sand-
wichAnts data indicates that there is a difference in
mean number of ants among the three types of sand-
wich fillings. In Examples 8.8 and 8.9 we find that the
difference is significant between vegemite and ham
& pickles, but not between vegemite and peanut
butter. What about peanut better vs ham & pickles?
Test whether the difference in mean ant counts is
significant (at a 5% level) between those two fillings,
using the information from the ANOVA.

8.46 Exercise and Award Preference In
Example 8.5 on page 500 we find evidence from
the ANOVA of a difference in mean pulse rate
among students depending on their award prefer-
ece. The ANOVA table and summary statistics for
pulse rates in each group are shown below.

o
o
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Source DF SS MS F P
Award 2 2047 1024 7.10 0.001
Error 359 51729 144
Total 361 53776

Level N Mean StDev
Academy 31 70.52 12.36
Nobel 149 72.21 13.09
Olympic 182 67.25 10.97

Use this information and/or the data in StudentSur-
vey to compare mean pulse rates, based on the
ANOVA, between each of three possible pairs of
groups:

(a) Academy Award vs Nobel Prize

(b) Academy Award vs Olympic gold medal

(c) Nobel Prize vs Olympic gold medal

Light at Night Makes Fat Mice, Continued Data A.1
on page 136 introduces a study in mice showing that
even low-level light at night can interfere with nor-
mal eating and sleeping cycles. In the study, mice
were randomly assigned to live in one of three light
conditions: LD had a standard light/dark cycle, LL
had bright light all the time, and DM had dim
light when there normally would have been dark-
ness. Exercises 8.24 to 8.30 in Section 8.1 show that
the groups had significantly different weight gain
and time of calorie consumption. In Exercises 8.47
and 8.48, we revisit these significant differences.

8.47 Body Mass Gain Computer output showing
body mass gain (in grams) for the mice after four
weeks in each of the three light conditions is shown,
along with the relevant ANOVA output. Which
light conditions give significantly different mean
body mass gain?

Level N Mean StDev
DM 10 7.859 3.009
LD 9 5.987 1.786
LL 9 11.010 2.624

One-way ANOVA: BM4Gain versus Light
Source DF SS MS F P
Light 2 116.18 58.09 8.96 0.001
Error 25 162.10 6.48
Total 27 278.28

8.48 When Calories Are Consumed Researchers
hypothesized that the increased weight gain seen in
mice with light at night might be caused by when
the mice are eating. Computer output for the per-
centage of food consumed during the day (when
mice would normally be sleeping) for each of the
three light conditions is shown, along with the rel-
evant ANOVA output. Which light conditions give

significantly different mean percentage of calories
consumed during the day?

Level N Mean StDev
DM 10 55.516 10.881
LD 9 36.485 7.978
LL 9 76.573 9.646

One-way ANOVA: Day/night consumption versus Light
Source DF SS MS F P
Light 2 7238.4 3619.2 39.01 0.000
Error 25 2319.3 92.8
Total 27 9557.7

8.49 More on Exercise and Stress Exercise 6.257 on
page 424 introduces a study showing that exercise
appears to offer some resiliency against stress, and
Exercise 8.18 on page 507 follows up on this intro-
duction. In the study, mice were randomly assigned
to live in an enriched environment (EE), a standard
environment (SE), or an impoverished environment
(IE) for several weeks. Only the enriched environ-
ment provided opportunities for exercise. Half the
mice then remained in their home cage (HC) as con-
trol groups while half were subjected to stress (SD).
The researchers were interested in how resilient the
mice were in recovering from the stress. One mea-
sure of mouse anxiety is amount of time hiding in
a dark compartment, with mice who are more anx-
ious spending more time in darkness. The amount of
time (in seconds) spent in darkness during one trial
is recorded for all the mice and the means and the
results of the ANOVA analysis are shown. There
are eight mice in each of the six groups.

Group: IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
Mean: 192 196 205 392 438 231

Source DF SS MS F P
Light 5 481776 96355.2 39.0 0.000
Error 42 177835 2469.9
Total 47 659611

(a) Is there a difference between the groups in the
amount of time spent in darkness? Between
which two groups are we most likely to find
a difference in mean time spent in darkness?
Between which two groups are we least likely to
find a difference?

(b) By looking at the six means, where do you think
the differences are likely to lie?

(c) Test to see if there is a difference in mean time
spent in darkness between the IE:HC group and
the EE:SD group (that is, impoverished but not
stressed vs enriched but stressed)
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8.50 Fisher’s LSD One way to ‘‘automate” pair-
wise comparisons that works particularly well when
the sample sizes are balanced is to compute a sin-
gle value that can serve as a threshold for when a
pair of sample means are far enough apart to sug-
gest that the population means differ between those
two groups. One such value is called Fisher’s Least
Significant Difference or LSD for short.

LSD = t∗
√

MSE
(

1
ni

+ 1
nj

)
You may recognize this as the margin of error for
a confidence interval for a difference in two means
after doing an ANOVA. That is exactly how we
compute it. Recall that the test for a pair of means
will show a significant difference exactly when the
confidence interval fails to include zero. The confi-
dence level should be matched to the significance
level of the test (for example, a 95% confidence
interval corresponds to a 5% significance level).
If the difference in two group means (in absolute
value) is smaller than the LSD margin of error, the
confidence interval will have one positive and one
negative endpoint. Otherwise, the interval will stay
either all positive or all negative and we conclude

the two means differ:

Reject H0 and conclude

the two means differ ⇐⇒ |xi − xj| > LSD

Compute LSD using a 5% significance level for
the ANOVA data comparing textbook costs in
Example 8.10 on page 516. Use the value to deter-
mine which academic fields appear to show evidence
of a difference in mean textbook costs.

8.51 LSD for Exercise and Stress Use Fisher’s LSD,
as described in Exercise 8.50, to discuss differences
in mean time mice spend in darkness for the six com-
binations of environment and stress that produce the
output in Exercise 8.49.

8.52 Fish Ventilation In Exercise 8.32 on page 512
we consider an ANOVA to test for difference in
mean gill beat rates for fish in water with three
different levels of calcium. The data are stored in
FishGills3. If the ANOVA table indicates that the
mean gill rates differ due to the calcium levels,
determine which levels lead to different means. If
the ANOVA shows no significant difference, find
a confidence interval for the mean gill rate at each
level of calcium.
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Inference for
Regression

‘‘All models are wrong, but some are useful.’’

–George E. P. Box∗

∗Box, G. and Draper, N., Empirical Model-Building and Response Surfaces, John Wiley and Sons, New York, 1987, p. 424.
Top left: © pagadesign/iStockphoto, Top right: © Jennifer Fluharty/iStockphoto, Bottom right: © NetPhotos/Alamy Limited
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Questions and Issues

C H A P T E R O U T L I N E

9 Inference for Regression 522
9.1 Inference for Slope and Correlation 524

9.2 ANOVA for Regression 539

9.3 Confidence and Prediction
Intervals 550

Here are some of the questions and issues we will discuss in this chapter:

• Is there an association between the number of Facebook friends a person has and the social
perception areas of the brain?

• Does the price of an inkjet printer depend on how fast it prints?

• Does the tip percentage in a restaurant depend on the size of the bill?

• How well do SAT scores predict college grade point averages?

• Does when food is eaten affect weight gain?

• Is offense or defense more important in the NBA?

• Is the percent of a country’s expenditure on health care associated with life expectancy in that
country?

• How do sugar, sodium, and fiber contribute to the number of calories in breakfast cereal?

• What is the relationship between the amount of time a person spends exercising and the amount
of time a person spends watching television?

• How well does a president’s approval rating predict his or her re-election chances?

• What is the average tip left on a restaurant bill of $30?

• How well do first round scores in the Master’s golf tournament do at predicting final scores?

523
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9.1 INFERENCE FOR SLOPE AND CORRELATION

In Sections 2.5 and 2.6 we introduce summary statistics for correlation and linear
regression as ways to describe the relationship between two quantitative variables.
In Chapters 3 and 4 we see examples for doing inference for these quantities using
bootstrap distributions and randomization tests. In this chapter we develop methods
similar to those in Chapters 5 and 6 for applying standard distributions to help with
inferences for quantitative vs quantitative relationships.

Simple Linear Model
For a simple linear model we have a quantitative response variable (Y) and a
quantitative explanatory variable (X). We assume the values of Y tend to increase
or decrease in a regular (linear) way as X increases. This does not mean an exact
relationship with all points falling perfectly on a line. A statistical model generally
consists of two parts: one specifying the main trend of the relationship and the
second allowing for individual deviations from that trend. For a simple linear model,
a line (specified with a slope and an intercept) shows the general trend of the data,
and individual points tend to be scattered above and below the line.

In Section 2.6, we use the notation Ŷ = a + bX for the least squares line for a
sample. Here we switch to the following notation for the least squares line for a
sample:

Ŷ = b0 + b1X

We use the following notation to express a simple linear model for a population:

Y = β0 + β1X + ε

The linear part of the model (β0 + β1X) reflects the underlying pattern for how the
average Y behaves depending on X. We use Greek letters for the intercept and
slope1 in the model since they represent parameters for the entire population. The
error term in the model (denoted by ε) allows for individual points to vary above or
below the line.

In practice, just as we rarely know the mean, μ, or proportion, p, for an entire
population, we can only estimate the population slope and intercept using the data
in a sample. Once we have estimated the line, we can also estimate the error term
for any point as the distance away from the fitted line.

© pagadesign/iStockphoto

What factors influence the price of these
printers?

1We use subscripts for β0 and β1 to make it easy to consider additional explanatory terms in a linear
model.
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9.1 Inference for Slope and Correlation 525

D A T A 9 . 1 Inkjet Printers
Suppose we are interested in purchasing a multifunction inkjet printer. How are
performance factors related to the price of the printer? To investigate this
question we checked reviews at PCMag.com for a sample of 20 all-in-one
printers.2 The data stored in InkjetPrinters include:

PPM printing rate (pages per minute) for a benchmark set of print
jobs

PhotoTime average time (in seconds) to print 4 × 6 color photos
CostBW average cost per page (in cents) for printing in black & white
CostColor average cost per page (in cents) for printing in color
Price typical retail price (in dollars) at the time of the review ■

Data for using the printing rate (PPM) as a predictor for the price of a printer
are shown in Table 9.1.

Example 9.1
Use technology and the data in InkjetPrinters to estimate and display the least
squares line for predicting Price based on PPM.

Solution Here is some computer output for finding the least squares line using the data on 20
printers in InkjetPrinters:

Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) −94.22 56.40 −1.671 0.112086
PPM 90.88 19.49 4.663 0.000193

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

We see that the intercept is b0 = −94.22 and the slope is b1 = 90.88 to produce
the least squares prediction equation

̂Price = −94.22 + 90.88 · PPM

Figure 9.1 shows a scatterplot of Price vs PPM with this least squares line
summarizing the trend in the data. The plot shows a generally increasing trend with
faster printers (higher PPM) tending to cost more.

Inference for Slope
In Example B.4 on page 300 we use a bootstrap distribution to find a confidence
interval for the slope in a regression model to predict Tip based on a restaurant
Bill, using the data in RestaurantTips. In Example B.6 on page 302 we create a
randomization distribution to test if the slope between the percentage tip (PctTip)
and Bill is different from zero. We can apply these same ideas to construct a
bootstrap distribution of slopes for the inkjet printer model or a randomization

Table 9.1 Printing rate and price for 20 inkjet printers

PPM 3.9 2.9 2.7 2.9 2.4 4.1 3.4 2.8 3.0 3.2
Price 300 199 79 129 70 348 299 248 150 150

PPM 2.7 2.7 2.2 2.5 2.7 1.7 2.8 1.8 1.8 4.1
Price 87 100 99 189 99 60 199 149 79 199

2Reviews found at http://www.pcmag.com/reviews/printers, August 2011.
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526 C H A P T E R 9 Inference for Regression

Figure 9.1 Plot of Price
vs PPM with least
squares line for 20 inkjet
printers

PPM

P
ri

ce

50

100

150

200

250

300

350

2.0 2.5 3.0 3.5 4.0

distribution to test if the slope between Price and PPM is positive. Figure 9.2 shows
1000 simulated slopes in each of these situations.

Once again, we see familiar shapes that are predictable in advance when a linear
model is appropriate for summarizing the relationship between two quantitative
variables. The bootstrap slopes for Price vs PPM are bell-shaped, are centered
near 90.88 (the slope in the original sample), and have a standard error of about
SE = 20.4. The randomization slopes are also bell-shaped and centered at zero (as
expected for a null hypothesis that β1 = 0). We see that none of the randomization
slopes are as extreme as the slope b1 = 90.88 that was observed in the original
sample. This gives very strong evidence for a positive association, indicating that the
slope when using PPM to predict Price for all inkjet printers is greater than zero. As
we saw in Chapters 5 and 6, the key to doing inference with a theoretical distribution
such as the normal or t (rather than a bootstrap or randomization distribution) is
being able to estimate the standard error (SE) of the statistic of interest. Fortunately,
most statistical software packages provide an estimate for the standard error of the
slope when estimating a regression model.

Looking back at the computer output for predicting Price based on PPM in
Example 9.1 we see the standard error for the slope (coefficient of PPM) is 19.49,
just a bit smaller than the standard deviation of the bootstrap slopes in Figure 9.2(a).
While the formula for computing the standard error of the slope is a bit complicated
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(a) Bootstrap slopes (b) Randomization slopes when b1 = 0

Left Tail Two-Tail Right Tail # samples = 1000

mean = 0.321

st.dev. = 27.527

Left Tail Two-Tail Right Tail# samples = 1000

mean = 91.056

st.dev. = 20.405

Figure 9.2 Bootstrap and randomization distributions for Price vs PPM with InkjetPrinters.
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9.1 Inference for Slope and Correlation 527

(see the computational notes at the end of Section 9.2), we can use the standard
error from the regression output to form a confidence interval or a standardized test
statistic. Given the bell-shape of the bootstrap and randomization distributions for
slope in Figure 9.2, it shouldn’t surprise you to learn that the appropriate reference
distribution is a t-distribution, although in this case we use n − 2 degrees of freedom
since we are estimating two parameters (coefficients) in this model. The general
formulas for confidence intervals and test statistics that we used repeatedly in
Chapters 5 and 6 apply here also:

Sample statisic ± t∗ · SE and t = Sample statistic − Null parameter
SE

Inference for the Slope in a Simple Linear Model

When the conditions for a simple linear model are reasonably met, we
find:

(a) A confidence interval for the population slope with

b1 ± t∗ · SE

(b) A test statistic for H0 : β1 = 0 using

t = b1 − 0
SE

= b1

SE

where b1 is the slope for the least squares line for the sample and SE
is the standard error of the slope (both obtained with technology.)

The appropriate reference distribution is a t-distribution with
n − 2 degrees of freedom.

Example 9.2
Use information in the computer output to find a 95% confidence interval for the
population slope to predict Price based on PPM. Also test (at a 5% level) whether
we have evidence that the printing speed (PPM) is an effective linear predictor of
the price of such printers.

Solution Here, again, is the output for fitting a least squares line to predict Price using PPM
for the 20 printers in InkjetPrinters:

Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) -94.22 56.40 -1.671 0.112086
PPM 90.88 19.49 4.663 0.000193

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

The estimated slope is b1 = 90.88 and the standard error is SE = 19.49. For 95%
confidence we use a t-distribution with 20 − 2 = 18 degrees of freedom to find
t∗ = 2.10. The confidence interval for the slope is

b1 ± t∗ · SE

90.88 ± 2.10(19.49)

90.88 ± 40.93

49.95 to 131.81

o



528 C H A P T E R 9 Inference for Regression

Based on these data we are 95% sure that the slope (increase in price for every extra
page per minute in printing speed) is somewhere between $49.95 and $131.81.

We know that PPM has some relationship as a predictor of Price if the
population slope β1 is not zero. To test H0 : β1 = 0 vs Ha : β1 �= 0 using the sample
data, we compute a standardized test statistic with

t = b1 − 0
SE

= 90.88
19.49

= 4.66

The p-value is twice the area above 4.66 in a t-distribution with 18 degrees of
freedom, but this is a large t-statistic so we see that p-value ≈ 0. This gives strong
evidence that the printing speed (PPM) is an effective predictor of the price for
inkjet printers. Note that the values of the test statistic (4.663) and the p-value
(0.000193) can also be found directly in the computer output for this model.

Example 9.3
Predicting Tips Based on Restaurant Bills

Some computer output for fitting a least squares line to predict the size of a restaurant
tip using the amount of the bill as a predictor is given below. The data, a sample of
n = 157 restaurant bills at the First Crush bistro, are stored in RestaurantTips.

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) −0.292267 0.166160 −1.759 0.0806
Bill 0.182215 0.006451 28.247 <2e-16

Use information from the computer output to find and interpret a 90% confidence
interval for the slope of this regression model.

Solution From the computer output, the sample slope is b1 = 0.182 with a standard error
given as SE = 0.00645. For a sample size of n = 157 bills, we use a t-distribution
with 157 − 2=155 degrees of freedom. For 90% confidence, we find t∗ = 1.655. The
confidence interval for the slope is

b1 ± t∗ · SE = 0.182 ± 1.655(0.00645) = 0.182 ± 0.011 = (0.171, 0.193)

Based on these data we are 95% sure that the increase in the tip for each extra
dollar of a bill is somewhere between $0.171 and $0.193.

Example 9.4
Predicting Percent Tip Based on Restaurant Bills

Use the data in RestaurantTips to test whether the amount of the bill is an effective
predictor of the size of the tip as a percentage of the bill (PctTip) for customers at
the First Crush bistro.

Solution We are testing H0 : β1 = 0 vs Ha : β1 �= 0, where β1 is the slope for predicting the
percentage tip based on the amount of the bill for all First Crush customers. Here is
some computer output for fitting this model:

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) 15.50965 0.73956 20.97 <2e-16
Bill 0.04881 0.02871 1.70 0.0911

We see that the sample slope is b1 = 0.0488 with standard error SE = 0.0287.
We see in the output that the t-statistic for testing the slope is t = 1.70, which gives
a (two-tail) p-value of 0.0911. This gives some (significant at just a 10% level) but
not very convincing evidence that the percent tip is related to the size of the bill.
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9.1 Inference for Slope and Correlation 529

Note that the computer output for a regression model also gives a standard
error and t-test for the intercept in the model, but we rarely need to worry about
inference for the intercept. We are generally more concerned with the effectiveness
of the predictor and, in many cases, the intercept is not directly interpretable (such
as the cost for a printer that prints zero pages per minute!)

t-Test for Correlation
In some situations we may be interested in testing a linear association between two
quantitative variables when we don’t have a specific predictor/response relationship.
In Section 2.5 we introduce the correlation as a measure of the strength of a linear
association between two quantitative variables. Recall that a correlation of zero
indicates no linear relationship while a positive or negative correlation indicates
some linear relationship. We can use the correlation in a sample as a way to test
whether the population correlation ρ differs from zero. The standard error for
correlation r using a sample of size n is SE =

√
(1 − r2)/(n − 2).

t-Test for correlation

To test H0 : ρ = 0 vs Ha : ρ �= 0 (or a one-tailed alternative) we use a
standardized test statistic

t = Sample statistic − Null parameter
SE

= r − 0√
1−r2

n−2

= r
√

n − 2√
1 − r2

where r is the correlation for a sample of size n. To find a p-value we
use a t-distribution with n − 2 degrees of freedom.

Example 9.5
The correlation between printing rate (PPM) and cost per page for printing in black
& white (CostBW) for the 20 inkjet printers in InkjetPrinters is r = −0.636. Does
this provide sufficient evidence to conclude there is a negative association between
printing speed and cost?

Solution We test H0 : ρ = 0 vs Ha : ρ < 0, where ρ is the correlation between CostBW and
PPM for all inkjet printers on the market. The relevant test statistic is

t = r
√

n − 2√
1 − r2

= −0.636
√

20 − 2√
1 − (−0.636)2

= −3.50

We find the p-value using the lower tail (below −3.50) of a t-distribution with 18
degrees of freedom. This gives p-value = 0.0013, which is quite small. There is strong
evidence of a negative association between printing speed and ink costs per page.
Faster printers actually tend to cost less for the ink on each page.

Note that the strength of evidence when testing a correlation depends on the sample
size as well as the magnitude of the sample correlation. The same value of r might
be quite insignificant for a small sample but strong evidence of an association for a
much larger sample.

Example 9.6
Find the correlation between Bill and PctTip for the RestaurantTip data and use it
to test (at a 5% level) whether the correlation for the population differs from zero.
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530 C H A P T E R 9 Inference for Regression

Solution Using technology we find that the correlation between the size of the bill and
percentage tip for the sample of 157 restaurant tips is r = 0.135. To test H0 : ρ = 0
vs Ha : ρ �= 0 we use the t-statistic

t = 0.135
√

157 − 2√
1 − 0.1352

= 1.70

which gives a two-tailed p-value of 0.0911 (based on a t-distribution with 155 degrees
of freedom). This p-value is not less than 5% so we do not have strong evidence of
a linear association between the size of the bill and percent of the tip.

If you look back at the test for the slope of the model to predict PctTip using
Bill in Example 9.4 on page 528 you should notice an interesting fact. The t-statistic
(t = 1.70) and p-value (0.0911) for that test are exactly the same as in the test for
correlation in Example 9.6. This is not an accident! It turns out that the formula for
computing the t-statistic for a slope always gives an identical result to the t-test for
correlation.

This means we can use these two tests (for a slope and for a correlation)
interchangeably. The t-test for a slope is commonly found in regression output
when the slope and intercept are estimated. The t-test for correlation requires only
knowing r and n and is often easy to compute when summary statistics are given in
an article or report.

Coefficient of Determination: R-squared
Another common connection between a sample correlation and a regression line
comes from computing r2, which is known as the coefficient of determination. Since
−1 ≤ r ≤ 1 is always true for a correlation r, we know that r2 is always between
zero and one. Amazingly, it turns out that this value gives us the proportion of the
total variability in the response variable (Y) that is explained by the explanatory
variable (X). When we interpret it this way, we usually denote it as R2 and state it
as a percentage.

Example 9.7
Find and interpret the value of R2 for the relationship between inkjet Price and
print speed PPM.

Solution Using technology we find the correlation between PPM and Price is r = 0.7397,
which gives R2 = (0.7397)2 = 0.547. This means that 54.7% of the variability in
prices of the inkjet printers in this sample is explained by their print speed.

We see ‘‘R-Sq=54.7%’’ in the computer output for this model in Example 9.1
on page 525. This is a common value to find in regression output and is more
often referred to as ‘‘R-squared’’ rather than the more cumbersome ‘‘coefficient
of determination.’’ The exact notion of a percentage of variability explained by a
model is a bit vague at this point, but we examine this in more detail when we
consider ANOVA for regression in Section 9.2.

Checking Conditions for a Simple Linear Model
Recall that a t-test for a mean is only valid if certain conditions on the underlying
distribution (such as normality) are met. Similarly, when doing inference for a simple
linear model, there are conditions on the model that help ensure that a t-distribution
is reasonable to use when doing inference for the slope.
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Figure 9.3 Simple linear
model with normal
distributions for every
predictor value
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Simple Linear Model

A simple linear model for a response variable Y based on a predictor
X has the form

Y = β0 + β1X + ε

where the random errors are independent values from a N(0, σε)

distribution.

We can think of this as a distribution of Y values for each different value of
the predictor X, where the means increase (or decrease) in a regular way along the
line and the errors cause individual points to scatter above and below the line with
some fixed variability (denoted in the model by σε). This is illustrated in Figure 9.3.
Remember that this is a model for the population. A sample from this population is
drawn from these normal distributions to give the data we see in a scatterplot.

How do we use the data in a sample to check if the conditions for a simple linear
model are reasonable? Visual checks with graphs are generally the most useful tools.
For now, we assess the appropriateness of the simple linear model for a particular
dataset relatively informally by looking at a scatterplot with the regression line
drawn on it.3 Ideally, we like to see a consistent band of data stretching relatively
symmetrically on either side of the line as in Figure 9.4. Try to visualize how data in

Figure 9.4 Scatterplot of
data from a simple linear
model

X

Y

60

80

100

120

1210 14 16 18 20

3We consider additional plots for assessing the conditions of the regression model in Section 10.2.
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532 C H A P T E R 9 Inference for Regression

the scatterplot in Figure 9.4 could arise by sampling from a population as described
in the model of Figure 9.3.

What Can Go Wrong?
As when we assess normality for doing a t-test for a mean, be on the lookout

for signs of obvious departures from the ideal scatterplot for a regression model.
Several of these are illustrated in Figure 9.5. Try not to be too picky; don’t worry
about small departures from an ideal pattern. Pay attention (and view the results of
inference with some skepticism) only when we see a consistent departure from the
expected pattern.

Watch out for:

• Departures from linearity. Figure 9.5(a) shows some obvious curvature with a
trend that is clearly increasing, but not in a linear way.

• Consistently changing variability. Figure 9.5(b) shows data where the variability
above and below the line clearly increases in a ‘‘fanning’’ pattern as the values get
larger. We would prefer to see roughly parallel bands above and below the line.

• Outliers and influential points. Figure 9.5(c) shows four points that clearly depart
from the pattern exhibited by the rest of the data. These large discrepancies
produce outliers in the distribution of errors that indicate a lack of normality.
Also, the two very large predictor values (x = 100 and x = 150) could strongly
influence the location of the least squares line.

Example 9.8
Check Conditions for the Inkjet Printer Model

Using the scatterplot with regression line in Figure 9.1 on page 526, comment on
the appropriateness of the simple linear model to predict inkjet printer prices using
PPM printing rates with the data in InkjetPrinters.

Solution The plot in Figure 9.1 shows a general increasing trend, no obvious curvature or big
outliers, and a relatively equal scatter of points above and below the line. Nothing in
this plot raises serious concerns about the simple linear model conditions. While it is
hard to make definitive assessments of the simple linear model conditions based on
just 20 data points, we don’t see any reason for strong concerns about the conditions
for these data.
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Figure 9.5 Scatterplots for least squares fits with problems
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Example 9.9
Check Conditions for the Restaurant Tip Models

Produce graphs and comment on the appropriateness of the regression models to
predict Tip and PctTip using the amount of the Bill for the data in RestaurantTips.

Solution The scatterplots with regression lines for the two models are shown in Figure 9.6.
Other than a few somewhat unusually large tips, the pattern in the scatterplot

for Tip vs Bill looks pretty good. There is no sign of curvature and the points are
fairly equally distributed on either side of the line with a consistent (and relatively
small) amount of variability. Given the large sample size (n = 157), we have no
serious concerns about using a t-distribution for inference for the slope in this
model. The plot for PctTip vs Bill shows more variability around the line, but
still a relatively linear pattern with reasonably consistent variability. The only mild
concern would be the three large outliers where generous customers tipped more
than 30%. Note that even a relatively poor fit, such as PctTip vs Bill, can still follow
a simple linear model, just one with a slope near zero and fairly large variability in
the errors.

Figure 9.6 Regressions
to predict Tip and PctTip
based on restaurant Bill Bill
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use computer output to make predictions and interpret coefficients
using a fitted simple linear model

• Construct a confidence interval for the slope in a regression model

• Test a hypothesis about the slope of a regression model

• Test for evidence of a linear association between two quantitative
variables using a sample correlation

• Compute and interpret the value of R2 for a regression model

• Check a scatterplot for obvious departures from a simple linear model
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Exercises for Section 9.1

SKILL BUILDER 1
In Exercises 9.1 to 9.4, use the computer output
(from different computer packages) to estimate the
intercept β0, the slope β1, and to give the equation
for the least squares line for the sample. Assume
the response variable is Y in each case.

9.1 The regression equation is Y = 29.3 + 4.30 X
Predictor Coef SE Coef T P
Constant 29.266 6.324 4.63 0.000
X 4.2969 0.6473 6.64 0.000

9.2 The regression equation is Y = 808 - 3.66 A
Predictor Coef SE Coef T P
Constant 807.79 87.78 9.20 0.000
A −3.659 1.199 −3.05 0.006

9.3 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 77.44 14.43 5.37 0.000
Score −15.904 5.721 −2.78 0.012

9.4 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 7.277 1.167 6.24 0.000
Dose -0.3560 0.2007 −1.77 0.087

SKILL BUILDER 2
Exercises 9.5 to 9.8 show some computer output for
fitting simple linear models. State the value of the
sample slope for each model and give the null and
alternative hypotheses for testing if the slope in
the population is different from zero. Identify the
p-value and use it (and a 5% significance level) to
make a clear conclusion about the effectiveness of
the model.

9.5 The regression equation is Y = 89.4 - 8.20 X
Predictor Coef SE Coef T P
Constant 89.406 4.535 19.71 0.000
X -8.1952 0.9563 −8.57 0.000

9.6 The regression equation is Y = 82.3 - 0.0241 X
Predictor Coef SE Coef T P
Constant 82.29 11.80 6.97 0.000
X -0.02413 0.02018 −1.20 0.245

9.7 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 7.277 1.167 6.24 0.000
Dose -0.3560 0.2007 −1.77 0.087

9.8 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 807.79 87.78 9.30 0.000
A -3.659 1.199 -3.05 0.006

SKILL BUILDER 3
In Exercises 9.9 and 9.10, find and interpret a 95%
confidence interval for the slope of the model indi-
cated.

9.9 The model given by the output in Exercise 9.5,
with n = 24.

9.10 The model given by the output in Exercise 9.7,
with n = 30.

SKILL BUILDER 4
In Exercises 9.11 to 9.14, test the correlation, as
indicated. Show all details of the test.

9.11 Test for a positive correlation; r = 0.35; n = 30

9.12 Test for evidence of a linear association;
r = 0.28; n = 10

9.13 Test for evidence of a linear association;
r = 0.28; n = 100

9.14 Test for a negative correlation; r = −0.41;
n = 18

9.15 Student Survey: Correlation Matrix A corre-
lation matrix allows us to see lots of correlations at
once, between many pairs of variables. A correlation
matrix for several variables (Exercise, TV, Height,
Weight, and GPA) in the StudentSurvey dataset is
given. For any pair of variables (indicated by the
row and the column), we are given two values: the
correlation as the top number and the p-value for a
two-tail test of the correlation right beneath it.

Correlations: Exercise, TV, Height, Weight, GPA
Exercise TV Height Weight

TV 0.010
0.852

Height 0.118 0.181
0.026 0.001

Weight 0.118 0.165 0.619
0.026 0.002 0.000

GPA -0.159 -0.129 -0.116 -0.217
0.003 0.017 0.033 0.000

Cell Contents: Pearson correlation
P-Value

(a) Which two variables are most strongly positively
correlated? What is the correlation? What is the
p-value? What does a positive correlation mean
in this situation?

(b) Which two variables are most strongly nega-
tively correlated? What is the correlation? What
is the p-value? What does a negative correlation
mean in this situation?

(c) At a 5% significance level, list any pairs of vari-
ables for which there is not convincing evidence
of a linear association.
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9.16 NBA Players: Correlation Matrix The dataset
NBAPlayers2011 is introduced on page 88 and con-
tains information on many variables for players in
the NBA (National Basketball Association) during
the 2010–11 season. The dataset includes infor-
mation for all players who averaged more than
24 minutes per game (n = 176) and 24 variables,
including Age, Points (number of points for the
season per game), FTPct (free throw shooting per-
centage), Rebounds (number of rebounds for the
season), and Steals (number of steals for the sea-
son). A correlation matrix for these five variables
is shown. A correlation matrix allows us to see lots
of correlations at once, between many pairs of vari-
ables. For any pair of variables (indicated by the
row and the column), we are given two values: the
correlation as the top number and the p-value for a
two-tail test of the correlation right beneath it.

Correlations: Age, Points, FTPct, Rebounds, Steals

Age Points FTPct Rebounds
Points -0.089

0.238

FTPct 0.080 0.311
0.291 0.000

Rebounds -0.091 0.383 -0.384
0.229 0.000 0.000

Steals -0.054 0.453 0.166 0.007
0.476 0.000 0.028 0.932

Cell Contents: Pearson correlation
P-Value

(a) Which two variables are most strongly positively
correlated? What is the correlation? What is the
p-value? What does a positive correlation mean
in this situation?

(b) Which two variables are most strongly nega-
tively correlated? What is the correlation? What
is the p-value? What does a negative correlation
mean in this situation?

(c) At a 5% significance level, list any pairs of vari-
ables for which there is not convincing evidence
of a linear association.

9.17 Verbal SAT as a Predictor of GPA A scat-
terplot with regression line is shown in Figure 9.7
for a regression model using Verbal SAT score,
VerbalSAT, to predict grade point average in col-
lege, GPA, using the data in StudentSurvey. We
also show computer output below of the regression
analysis.

The regression equation is GPA = 2.03 + 0.00189 VerbalSAT

Predictor Coef SE Coef T P
Constant 2.0336 0.1621 12.54 0.000
VerbalSAT 0.0018929 0.0002709 6.99 0.000

S = 0.373214 R-Sq = 12.5% R-Sq(adj) = 12.2%

(a) Use the scatterplot to determine whether we
should have any significant concerns about the
conditions being met for using a linear model
with these data.

(b) Use the fitted model to predict the GPA of a
person with a score on the Verbal SAT exam of
650.

(c) What is the estimated slope in this regression
model? Interpret the slope in context.

(d) What is the test statistic for a test of the slope?
What is the p-value? What is the conclusion of
the test, in context?

(e) What is R2? Interpret it in context.
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Figure 9.7 Using Verbal SAT score to predict grade
point average

9.18 Does When Food Is Eaten Affect Weight
Gain? Data A.1 on page 136 introduces a study
that examines the effect of light at night on weight
gain in a sample of 27 mice observed over a four-
week period. The mice who had a light on at night
gained significantly more weight than the mice with
darkness at night, despite eating the same num-
ber of calories and exercising the same amount.
Researchers noticed that the mice with light at night
ate a greater percentage of their calories during the
day (when mice are supposed to be sleeping). The
computer output shown below allows us to examine
the relationship between percent of calories eaten
during the day, DayPct, and body mass gain in
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grams, BMGain. A scatterplot with regression line
is shown in Figure 9.8.

Pearson correlation of BMGain and DayPct = 0.740
P-Value = 0.000
--------------------------------------------------
The regression equation is
BMGain = 1.11 + 0.127 DayPct

Predictor Coef SE Coef T P
Constant 1.113 1.382 0.81 0.428
DayPct 0.12727 0.02315 5.50 0.000

S = 2.23097 R-Sq = 54.7% R-Sq(adj) = 52.9%

(a) Use the scatterplot to determine whether we
should have any strong concerns about the con-
ditions being met for using a linear model with
these data.

(b) What is the correlation between these two vari-
ables? What is the p-value from a test of the
correlation? What is the conclusion of the test,
in context?

(c) What is the least squares line to predict body
mass gain from percent daytime consumption?
What gain is predicted for a mouse that eats 50%
of its calories during the day (DayPct = 50)?

(d) What is the estimated slope for this regression
model? Interpret the slope in context.

(e) What is the p-value for a test of the slope? What
is the conclusion of the test, in context?

(f) What is the relationship between the p-value of
the correlation test and the p-value of the slope
test?

(g) What is R2 for this linear model? Interpret it in
context.

(h) Verify that the correlation squared gives the
coefficient of determination R2.
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Figure 9.8 Does when food is eaten affect weight gain?

9.19 Social Networks and Brain Structure A recent
study in Great Britain4 examines the relationship
between the number of friends an individual has
on Facebook and grey matter density in the areas
of the brain associated with social perception and
associative memory. The data are available in the
dataset FacebookFriends and the relevant variables
are GMdensity (normalized z-scores of grey mat-
ter density in the relevant regions) and FBfriends
(the number of friends on Facebook). The study
included 40 students at City University London. A
scatterplot of the data is shown in Figure 9.9 and
computer output for both correlation and regression
is shown below.

Pearson correlation of GMdensity and FBfriends = 0.436
P-Value = 0.005
-----------------------
The regression equation is FBfriends = 367 + 82.4 GMdensity

Predictor Coef SE Coef T P
Constant 366.64 26.35 13.92 0.000
GMdensity 82.45 27.58 2.99 0.005

S = 165.716 R-Sq = 19.0% R-Sq(adj) = 16.9%

(a) Use the scatterplot to determine whether any
of the study participants had grey matter den-
sity scores more than two standard deviations
from the mean. (Hint: The grey matter den-
sity scores used in the scatterplot are z-scores!)
If so, in each case, indicate if the grey matter
density score is above or below the mean and
estimate the number of Facebook friends for
the individual.

(b) Use the scatterplot to determine whether we
should have any significant concerns about the
conditions being met for using a linear model
with these data.

(c) What is the correlation between these two vari-
ables? What is the p-value from a test of the
correlation? What is the conclusion of the test,
in context?

(d) What is the least squares line to predict the
number of Facebook friends based on the nor-
malized grey matter density score? What num-
ber of Facebook friends is predicted for a person
whose normalized score is 0? Whose normalized
score is +1? Whose normalized score is −1?

(e) What is the p-value for a test of the slope? Com-
pare it to the p-value for the test of correlation.

4Kanai, R., Bahrami, B., Roylance, R., and Rees, G., ‘‘Online
social network size is reflected in human brain structure,’’ Pro-
ceedings of the Royal Society, 2012; 279(1732): 1327–1334. Data
approximated from information in the article.
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(f) What is R2 for this linear model? Interpret it in
context.
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Figure 9.9 Does brain density influence number of
Facebook friends?

9.20 Inference on the Slope of Facebook Friends
and the Brain In Exercise 9.19, we give computer
output for a regression line to predict the number
of Facebook friends a student will have, based on a
normalized score of the grey matter density in the
areas of the brain associated with social perception
and associative memory. Data for the sample of
n = 40 students are stored in FacebookFriends.

(a) What is the slope in this regression analysis?
What is the standard error for the slope?

(b) Use the information from part (a) to calculate
the test statistic to test the slope to determine
whether GMdensity is an effective predictor of
FBfriends. Give the hypotheses for the test,
find the p-value, and make a conclusion. Show
your work. Verify the values of the test statistic
and the p-value using the computer output in
Exercise 9.19.

(c) Use the information from part (a) to find and
interpret a 95% confidence interval for the
slope.

9.21 Using pH in Lakes as a Predictor of Mer-
cury in Fish The FloridaLakes dataset, introduced
in Data 2.4, includes data on 53 lakes in Florida.
Two of the variables recorded are pH (acidity of
the lake water) and AvgMercury (average mercury
level for a sample of fish from each lake). We wish
to use the pH of the lake water (which is easy to
measure) to predict average mercury levels in fish,
which is harder to measure. A scatterplot of the
data is shown in Figure 2.49(a) on page 106 and we
see that the conditions for fitting a linear model are
reasonably met. Computer output for the regression
analysis is shown below.

The regression equation is AvgMercury = 1.53 - 0.152 pH

Predictor Coef SE Coef T P
Constant 1.5309 0.2035 7.52 0.000
pH -0.15230 0.03031 −5.02 0.000

S = 0.281645 R-Sq = 33.1% R-Sq(adj) = 31.8%

(a) Use the fitted model to predict the average
mercury level in fish for a lake with a pH of 6.0.

(b) What is the slope in the model? Interpret the
slope in context.

(c) What is the test statistic for a test of the slope?
What is the p-value? What is the conclusion of
the test, in context?

(d) Compute and interpret a 95% confidence inter-
val for the slope.

(e) What is R2? Interpret it in context.

9.22 Alkalinity in Lakes as a Predictor of Mer-
cury in Fish The FloridaLakes dataset, introduced
in Data 2.4, includes data on 53 lakes in Florida.
Figure 9.10 shows a scatterplot of Alkalinity (con-
centration of calcium carbonate in mg/L) and
AvgMercury (average mercury level for a sample
of fish from each lake). Explain using the conditions
for a linear model why we might hesitate to fit a lin-
ear model to these data to use Alkalinity to predict
average mercury levels in fish.
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Figure 9.10 Are the conditions met for fitting a linear
model?

9.23 Rain and Hantavirus in Mice Hantavirus is
carried by wild rodents and causes severe lung dis-
ease in humans. A recent study5 on the California
Channel Islands found that increased prevalence of
the virus was linked with greater precipitation. The
study adds ‘‘Precipitation accounted for 79% of the
variation in prevalence.’’

5‘‘More Rain, More Virus,’’ Nature, April 28 2011, p. 392.

•• •••
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(a) What notation or terminology do we use for the
value 79% in this context?

(b) What is the response variable? What is the
explanatory variable?

(c) What is the correlation between the two vari-
ables?

9.24 Homes for Sale The dataset HomesForSaleCA
contains a random sample of 30 houses for sale in
California. We are interested in whether there is a
positive association between the number of bath-
rooms and number of bedrooms in each house.

(a) What are the null and alternative hypotheses
for testing the correlation?

(b) Find the correlation in the sample.

(c) Calculate (or use technology to find) the appro-
priate test statistic, and determine the p-value.

(d) State the conclusion in context.

9.25 Life Expectancy A random sample of 50
countries is stored in the dataset SampCountries.
Two variables in the dataset are life expectancy
(LifeExpectancy) and percentage of government
expenditure spent on health care (Health) for each
country. We are interested in whether or not the per-
cent spent on health care can be used to effectively
predict life expectancy.

(a) What are the cases in this model?

(b) Create a scatterplot with regression line and
use it to determine whether we should have any
serious concerns about the conditions being met
for using a linear model with these data.

(c) Run the simple linear regression, and report and
interpret the slope.

(d) Find and interpret a 95% confidence interval
for the slope.

(e) Is the percentage of government expenditure
on health care a significant predictor of life
expectancy?

(f) The population slope (for all countries) is 0.674.
Is this captured in your 95% CI from part (d)?

(g) Find and interpret R2 for this linear model.

9.26 NBA: Offense or Defense? A common (and
hotly debated) saying among sports fans is ‘‘Defense
wins championships.’’ Is offensive scoring ability or
defensive stinginess a better indicator of a team’s
success? To investigate this question we’ll use data
from the 2010–11 National Basketball Association

(NBA) regular season. The data6 stored in NBA-
Standings include each team’s record (wins, losses,
and winning percentage) along with the average
number of points the team scored per game (PtsFor)
and average number of points scored against them
(PtsAgainst).

(a) Examine scatterplots for (1) predicting WinPct
using PtsFor and (2) predicting WinPct using
PtsAgainst. In each case, discuss whether con-
ditions for fitting a linear model appear to be
met.

(b) Fit a model to predict winning percentage
(WinPct) using offensive ability (PtsFor). Write
down the prediction equation and comment on
whether PtsFor is an effective predictor.

(c) Repeat the process of part (b) using PtsAgainst
as the predictor.

(d) The eventual NBA champion Dallas Maver-
icks averaged scoring 100.2 points per game
while giving up an average of 96.0 points
against. Find the predicted winning percentage
for the Mavericks using each of the models in
(b) and (c).

(e) Overall, which predictor, PtsFor or PtsAgainst,
appears to be more effective at explaining win-
ning percentages for NBA teams? Give some
justification for your answer.

(f) Compare and interpret R2 for both models.

9.27 Birth Rate and Life Expectancy Use the
dataset AllCountries to examine the correlation
between birth rate and life expectancy across coun-
tries of the world.

(a) Plot the data. Do birth rate and life expectancy
appear to be linearly associated?

(b) From this dataset, can we conclude that the pop-
ulation correlation between birth rate and life
expectancy is different from zero?

(c) Explain why inference is not necessary to answer
part (b).

(d) For every percent increase in birth rate, how
much does the predicted life expectancy of a
country change?

(e) From this dataset, can we conclude that lower-
ing the birth rate of a country will increase its
life expectancy? Why or why not?

6Data downloaded from http://www.basketball-reference.com
/leagues/NBA 2011 games.html.
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9.2ANOVA FOR REGRESSION

In the previous section we see that the square of the correlation between two
quantitative variables, R2, can be interpreted as the amount of variability in one of
the variables that is ‘‘explained’’ by the other variable. How do we go about actually
measuring the amount of explained variability? The approach we use falls under
the general heading of analysis of variance, or ANOVA. If you’ve already looked
at Chapter 8, you have seen how the variability in one variable can be broken down
to test for a difference in means among several groups. The approach in this section
for regression is similar, with some changes in the computational details.

Partitioning Variability
The general form of a simple linear model for a single quantitative predictor is

Y = β0 + β1X + ε

or

Response = Regression line + Error

To assess how well the model does at explaining the response, we split the total
variability in the response into two pieces: one that represents the variability
explained by the model (the least squares line) and another that measures the
variability that is left unexplained in the errors.

TOTAL Variability
in the Response

= Variability Explained
by the MODEL

+ Unexplained Variability
in the ERROR

Each of these portions of variability is measured with a sum of squared deviations:

SSTotal = SSModel + SSE

where

SSModel =
∑

(ŷ − y)2

SSE =
∑

(y − ŷ)2

SSTotal =
∑

(y − y)2

You might recognize SSE as the sum of squared residuals that is minimized when
estimating the least squares line. This represents the errors that still occur when
predicting with the fitted model. The SSTotal is the sum of squared deviations from
the mean of the responses that is used in computing the standard deviation of the
sample responses. Think of y as a very crude model that uses a single value to
predict all cases with no information from the predictor. The difference between
these two, SSModel = SSTotal − SSE, is the amount of the original variability in Y
that is successfully explained by the model.

Fortunately, statistical software usually displays the three sums of squares as
part of the standard regression output, as we see in the next example.
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What’s in your cereal?

D A T A 9 . 2 Breakfast Cereals
Labels on many food products contain a wealth of nutritional information. The
data in Cereal include the number of calories as well as the grams of fat,
carbohydrates, fiber, sugars, and protein and milligrams of sodium in each cup
of a sample of 30 breakfast cereals from three different manufacturers (General
Mills, Kellogg’s, and Quaker).7 ■

Example 9.10
Some regression output for a model to predict Calories in cereals based on the
amount of Sugars is shown below. In the output, find the sum of squared deviations,
‘‘SS,’’ explained by the regression model and the SS due to the error, and verify that
they add up to the total sum of squares.

Predictor Coef SE Coef T P
Constant 88.92 10.81 8.22 0.000
Sugars 4.3103 0.9269 4.65 0.000

S = 26.6147 R-Sq = 43.6% R-Sq(adj) = 41.6%

Analysis of Variance
Source DF SS MS F P
Regression 1 15317 15317 21.62 0.000
Residual Error 28 19834 708
Total 29 35150

Solution The sums of squares are found in the section of the output labeled ‘‘Analysis of
Variance.’’ This shows that

Sum of squares explained by the regression model is SSModel = 15,317

Sum of squared errors is SSE = 19,834

Total sum of squares is SSTotal = 35,150

7Cereal data obtained from nutrition labels at http://www.nutritionresource.com/foodcomp2.cfm?id=0800.

r A
''\ '/

Nutrition Facts
Serving Size 1 0 cup

Amount Per Serving
Calories 108 Calories from Fal 11

\ Daily Value *

Total Fat 1g 2%
Saturated Fat Og 1%
Polyunsaturated Fat Og
Monounsaturated Fat Og

Cholesterol Omg 0%
Sodium 2Q1mg 8%
Total Carbohydrate 24g 8%

Dietary Fiber 3g 11%
Sugars 6g

Protein 2g

o
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and we verify that (up to round-off)

SSModel + SSE = 15,317 + 19,834 = 35,150 = SSTotal

The analysis of variance portion of the regression output also has a value labeled
‘‘P’’ which, as you might suspect, is the p-value for a test. If SSModel is large relative
to SSE, the model has done a good job of explaining the variability in the response.
In fact, if all of the data lie exactly on the least squares line, we would have SSE = 0
and all of the variability would be explained by the model. On the other hand, if
SSModel = 0, every prediction is the same as the mean response and we get no
useful information from the predictor. Of course, in practice, we rarely see either
of these two extremes. The key question then becomes: Is the amount of variability
explained by the model more than we would expect to see by random chance alone,
when compared to the variability in the error term? That is the question that we test
with the ANOVA table.

F-Statistic
To compare the variability explained by the model to the unexplained variability
of the error we first need to adjust each by an appropriate degrees of freedom.
These are shown in the ANOVA section of the output of Example 9.10 as 1 degree
of freedom for the model and 28 degrees of freedom for the error. For the simple
linear model the degrees of freedom for the model is always 1 (just one predictor)
and n − 2 for the error, adding up to n − 1 degrees of freedom for the total.

We divide each sum of squares by its degrees of freedom to get a mean square
for each source of variability:

Mean square for the model = MSModel = SSModel
1

Mean square error = MSE = SSE
n − 2

When the predictor is ineffective, these mean squares should be roughly the same
magnitude. However, when the predictor is useful, the mean square model will tend
to be large relative to the mean square error. To compare the two mean squares, we
use their ratio to obtain the F-statistic:

F = MSModel
MSE

The formal hypotheses being tested are:

H0 : The model is ineffective (or, equivalently, β1 = 0)

Ha : The model is effective (or, equivalently, β1 �= 0)

How do we know when the F-statistic is large enough to provide evidence of
something effective in the model? The appropriate reference distribution8 for
finding a p-value is the upper tail of an F-distribution with 1 degree of freedom for
the numerator and n − 2 degrees of freedom for the denominator.

Example 9.11
Verify the calculations for the F-statistic and p-value for the ANOVA output in
Example 9.10 on page 540.

8See more details about the F-distribution in Section 8.1 and Exercise 10.37.
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Solution From the ANOVA portion of the regression output we see

MSModel = 15,317
1

= 15,317 MSE = 19,834
28

= 708.4

and the F-statistic is then found as

F = MSModel
MSE

= 15,317
708.4

= 21.62

Using technology we find the area beyond F = 21.62 for an F-distribution with 1 and
28 degrees of freedom gives a p-value = 0.00007. This provides very strong evidence
that there is some relationship between amount of sugar and calories in cereals and
that Sugars is an effective predictor for Calories.

We summarize the details for using ANOVA to assess the effectiveness of a
simple linear model in the box below.

ANOVA to Test a Simple Linear Model

To test for the effectiveness of a regression model, Y = β0 + β1X + ε:

H0 : The model is ineffective Equivalently, H0 : β1 = 0
Ha : The model is effective Ha : β1 �= 0

We partition the variability to construct an ANOVA table for regres-
sion:

Source df Sum of Sq. Mean Square F-statistic p-value

Model 1 SSModel
SSModel

1 F = MSModel
MSE

F1,n−2

Error n − 2 SSE
SSE
n − 2

Total n − 1 SSTotal

Example 9.12
Some output for using the amount of Sodium to predict Calories for the data in
Cereals is shown in Figure 9.11. Use it to test the effectiveness of the Sodium
predictor two ways:

(a) Using a t-test for the slope

(b) Using an F-test based on the ANOVA

Solution (a) The information for a t-test of H0 : β1 = 0 vs Ha : β1 �= 0 is given in the line
near the top of the output labeled Sodium. We see that the t-statistic is given
as t = 1.686 and the p-value = 0.1028. Since this p-value is not small (even at a
10% significance level), we do not have sufficient evidence to conclude that the
amount of sodium is an effective predictor of the number of calories in breakfast
cereals.

(b) Using the ANOVA table to test whether the model is effective, we see that
the F-statistic is F = 2.844 and the corresponding p-value (using 1 and 28 df) is

o

o
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Figure 9.11 Regression
output for predicting
Calories based on
Sodium

20%

Response attribute (numeric): Calories

Regression Equation:

Sodium

Source DF SS MS F P

Residual

Calories

Sequential Contributions

Predictor

Constant 103.7587 18.8678 5.499 0.0000
Sodium 0.1366

Regression 1
Residual 28
Total 29

3241.28 2.844 0.1028 0.0922

1139.60

3241.28
31908.9
35150.2

R^2: 0.0922124
Adjusted R^2: 0.0597914
Std dev error: 33.758

0.0810 1.686 0.1028 0.0922

t P ΔR2

ΔR2

40% 60%

= 103.8 = 0.1366 Sodium

80% 100%

Std ErrorCoefficient

0.1028. The conclusion is the same as the t-test: We lack convincing evidence to
show that Sodium is an effective predictor of Calories in breakfast cereals.

You have probably noticed that the p-values for both tests in Example 9.12 are
identical. As with the t-tests for slope and correlation, this is no accident. For a single
predictor model, a two-tail t-test for the slope and the ANOVA F-test will always
give equivalent results9 and identical p-values. Why do we need yet another test?
One reason, shown in Section 10.1, is that the ANOVA generalizes nicely to test
models with more than one predictor. Also, as the next examples illustrate, we can
obtain additional information for assessing the regression model from the output
shown in an ANOVA table.

Coefficient of Determination: R-squared
We started this section with a question about how to interpret R2 as the amount

of variability in the response variable that is explained by the model. We can now
answer that question using values from the ANOVA table for the regression model.

Coefficient of Determination, R2

For any regression model, the coefficient of determination is

R2 = SSModel
SSTotal

and is interpreted as the percent of variability in the sample response
values that is explained by the regression model.

Example 9.13
Use the information in the regression ANOVA output in Example 9.10 and
Figure 9.11 to compute (and interpret) the R2 values for using Sugars and Sodium,
respectively, as predictors of Calories in breakfast cereals.

9In fact, you can check that the ANOVA F-statistic is always (up to round-off) the square of the t-statistic!
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Solution Using the output for the model using Sugars in Example 9.10 on page 540, we see
that ‘‘R-Sq = 43.6%.’’ We can also use SS values from the ANOVA table to compute
R2 ourselves:

R2 = SSModel
SSTotal

= 15,317
35,150

= 0.436

The amount of sugars explains 43.6% of the variability in calories for these 30
breakfast cereals.

Using the output for the model using Sodium in Figure 9.12 on page 542, we see
that ‘‘R2 : 0.0922124’’, or we can use the SS values in the ANOVA table to compute
it ourselves:

R2 = SSModel
SSTotal

= 3241
35,150

= 0.092

The amount of sodium explains 9.2% of the variability in calories for these 30
breakfast cereals.

Note that the denominator for computing R2 is the same for both models in
Example 9.13. The total amount of variability in the Calories response variable
(SSTotal = 35,150) is the same regardless of what model we use to try to explain
it. We also see that Sugars (R2 = 43.6%) is much more effective at explaining that
variability than is Sodium (R2 = 9.2%). We often use R2 in this way to quickly
compare the effectiveness of competing models.

Computational Details
In the rest of this section we consider some additional quantities that appear in
typical computer output for a regression model. In many situations we only need
to know where to find the information in the output and how to interpret or use it.
We include some extra computational details below for those who want to see a bit
more about where the numbers come from.

Standard Deviation of the Error Term
For a simple linear model Y = β0 + β1X + ε, we assume that the errors are

distributed as ε ∼ N(0, σε). The standard deviation of the errors, denoted by σε , is an
important quantity to estimate since it measures how much individual data points
tend to deviate above and below the regression line. A small σε indicates that the
points hug the line closely and we should expect fairly accurate predictions, while a
large σε suggests that, even if we estimate the line perfectly, we can expect individual
values to deviate from it by substantial amounts. Fortunately, most regression
computer output includes an estimate for the standard deviation of the error term,
which we denote by sε .

Example 9.14
The standard deviation of the error term is given as S=26.6 in the computer output
of the model to predict cereal calories based on sugars in Example 9.10 on page 540.
Use the fact that about 95% of values from a normal distribution fall within two
standard deviations of the center to interpret what the value sε = 26.6 says about
calories for cereals.

Solution For any particular amount of sugar, the calories should be distributed above and
below the regression line with standard deviation estimated to be sε = 26.6. Since
2sε = 2(26.6) = 53.2, we expect most (about 95%) of the calorie counts for cereals
to be within about 53 calories of the regression line.

o

o
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We can compute the estimate of the standard deviation of the error term for a
least squares line more directly using the sum of squared errors from the ANOVA
table.

Standard Deviation of the Error, sε

For a simple linear model, we estimate the standard deviation of the
error term with

sε =
√∑

(y − ŷ)2

n − 2
=

√
SSE
n − 2

where SSE is obtained from the ANOVA table.

The computation of sε might remind you of the standard deviation of a sample
defined on page 76. Note that in the simple linear model setting we divide by n − 2
(rather than n − 1) since we lose one degree of freedom for each of the two estimated
parameters (intercept and slope). In most situations we use technology to handle
the details of this computation.

Example 9.15
Use the information in the ANOVA table in Figure 9.11 (predicting Calories based
on Sodium) to compute the estimate of the standard deviation of the error term for
that model. Confirm your calculation by finding the estimate in the output.

Solution From the ANOVA table in Figure 9.11 we see that SSE = 31,908.9 and the df for
the error is 30 − 2 = 28. The estimated standard deviation for the error term is

sε =
√

SSE
n − 2

=
√

31908.9
28

=
√

1139.6 = 33.76

This value is labeled in the output as Std dev error: 33.758. Note also that the
ANOVA table shows MSE = 1139.6, which is s2

ε or the variance of the error term.

Standard Error of the Slope
Although we generally rely on technology to find the standard error for the

slope, we can also find this quantity directly from other summary statistics. Here is
one such formula:

SE = sε

sx
√

n − 1
where sε is the standard deviation of the error term (as found in the regression
output or computed above) and sx is the standard deviation for the sample values of
the predictor.

Example 9.16
Use the formula for SE of the slope to verify the standard error value for the
coefficient of Sodium in the computer output of Figure 9.11. Some summary statistics
for the two variables (Calories and Sodium) are given below. Check that the
computed standard error matches (up to round-off) the SE for the slope given in
the output.

Variable N Mean StDev
Sodium 30 220.2 77.4
Calories 30 133.8 34.8

o
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Solution In the computer output (or Example 9.15) we see that the standard deviation of the
error term in this model is estimated to be sε = 33.76 and the summary statistics
show that the standard deviation of the predictor (Sodium) is 77.4. Putting these
together with the sample size (n = 30) gives the following calculation:

SE = sε

sx
√

n − 1
= 33.76

77.4
√

30 − 1
= 0.081

This matches the value of the standard error for the coefficient of Sodium shown in
the output for this model in Figure 9.11.

It is very easy to confuse the various types of standard deviation that occur in the
regression setting. We have the standard error of the slope (SE), standard deviation
of the error (sε), standard deviation of the predictor (sx), and standard deviation of
the response (sy). Take care to pay attention to which type of standard deviation is
called for in a particular setting.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use ANOVA to test the effectiveness of a simple linear model

• Compute and interpret the value of R2 for a simple linear model using
values in the ANOVA table

• Find the standard deviation of the error term for a simple linear
model

• Find the standard error of the slope for a simple linear model

Exercises for Section 9.2

SKILL BUILDER 1
In Exercises 9.28 to 9.31, we show an ANOVA table
for regression. State the hypotheses of the test, give
the F-statistic and the p-value, and state the conclu-
sion of the test.

9.28 Analysis of Variance
Source DF SS MS F P
Regression 1 303.7 303.7 1.75 0.187
Residual Error 174 30146.8 173.3
Total 175 30450.5

9.29 Analysis of Variance
Source DF SS MS F P
Regression 1 3396.8 3396.8 21.85 0.000
Residual Error 174 27053.7 155.5
Total 175 30450.5

9.30 Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

ModelA 1 352.97 352.97 11.01 0.001 **
Residuals 359 11511.22 32.06
Total 360 11864.20

9.31 Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

ModelB 1 10.380 10.380 2.18 0.141
Residuals 342 1630.570 4.768
Total 343 1640.951

SKILL BUILDER 2
In Exercises 9.32 to 9.35, we refer back to the
ANOVA tables for regression given in Exer-
cises 9.28 to 9.31. Use the information in the table
to give the sample size and to calculate R2.

9.32 The ANOVA table in Exercise 9.28

9.33 The ANOVA table in Exercise 9.29

9.34 The ANOVA table in Exercise 9.30

9.35 The ANOVA table in Exercise 9.31

SKILL BUILDER 3
In Exercises 9.36 to 9.39, we give some information
about sums of squares and sample size for a linear

o

/t

o
o
o
o
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model. Use this information to fill in all values in an
analysis of variance for regression table as shown.

Source df SS MS F-statistic p-value
Model
Error
Total

9.36 SSModel = 250 with SSTotal = 3000 and a
sample size of n = 100

9.37 SSModel = 800 with SSTotal = 5820 and a
sample size of n = 40

9.38 SSModel = 8.5 with SSError = 247.2 and a
sample size of n = 25

9.39 SSError = 15,571 with SSTotal = 23,693 and a
sample size of n = 500

9.40 Social Networks and Brain Structure Exer-
cise 9.19 on page 536 introduces a study examin-
ing the relationship between the number of friends
an individual has on Facebook and grey matter
density in the areas of the brain associated with
social perception and associative memory. The data
are available in the dataset FacebookFriends and
the relevant variables are GMdensity (normalized
z-scores of grey matter density in the brain) and
FBfriends (the number of friends on Facebook).
The study included 40 students at City University
London. Computer output for ANOVA for regres-
sion to predict the number of Facebook friends from
the normalized brain density score is shown below.

The regression equation is FBfriends = 367 + 82.4 GMdensity
Analysis of Variance
Source DF SS MS F P
Regression 1 245400 245400 8.94 0.005
Residual Error 38 1043545 27462
Total 39 1288946

Is the linear model effective at predicting the num-
ber of Facebook friends? Give the F-statistic from
the ANOVA table, the p-value, and state the con-
clusion in context. (We see in Exercise 9.19 that the
conditions are met for fitting a linear model in this
situation.)

9.41 Fiber in Cereal In Data 9.2 on page 540, we
introduce the dataset Cereal, which has nutrition
information on 30 breakfast cereals. Computer out-
put is shown for a linear model to predict Calories
in one cup of cereal based on the number of grams
of Fiber. Is the linear model effective at predicting
the number of calories in a cup of cereal? Give the
F-statistic from the ANOVA table, the p-value, and
state the conclusion in context.

The regression equation is Calories = 119 + 8.48 Fiber
Analysis of Variance
Source DF SS MS F P
Regression 1 7376.1 7376.1 7.44 0.011
Residual Error 28 27774.1 991.9
Total 29 35150.2

9.42 Predicting Prices of Printers Data 9.1 on
page 525 introduces the dataset InkjetPrinters,
which includes information on all-in-one printers.
Two of the variables are Price (the price of the
printer in dollars) and CostColor (average cost per
page in cents for printing in color). Computer out-
put for predicting the price from the cost of printing
in color is shown:

The regression equation is Price = 378 - 18.6 CostColor
Analysis of Variance
Source DF SS MS F P
Regression 1 57604 57604 13.19 0.002
Residual Error 18 78633 4369
Total 19 136237

(a) What is the predicted price of a printer that
costs 10 cents a page for color printing?

(b) According to the model, does it tend to cost
more or less (per page) to do color printing on
a cheaper printer?

(c) Use the information in the ANOVA table to
determine the number of printers included in
the dataset.

(d) Use the information in the ANOVA table to
compute and interpret R2.

(e) Is the linear model effective at predicting the
price of a printer? Use information from the
computer output and state the conclusion in
context.

9.43 ANOVA for Verbal SAT as a Predictor of
GPA How well does a student’s Verbal SAT score
(on an 800-point scale) predict future college grade
point average (on a four-point scale)? Computer
output for this regression analysis is shown, using
the data in StudentSurvey:

The regression equation is GPA = 2.03 + 0.00189 VerbalSAT
Analysis of Variance
Source DF SS MS F P
Regression 1 6.8029 6.8029 48.84 0.000
Residual Error 343 47.7760 0.1393
Total 344 54.5788

(a) What is the predicted grade point average of a
student who receives a 550 on the Verbal SAT
exam?

(b) Use the information in the ANOVA table to
determine the number of students included in
the dataset.
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(c) Use the information in the ANOVA table to
compute and interpret R2.

(d) Is the linear model effective at predicting grade
point average? Use information from the com-
puter output and state the conclusion in context.

9.44 Mating Activity of Water Striders In
Exercise A.46 on page 153, we introduce a study
about mating activity of water striders. The dataset
is available as WaterStriders and includes the vari-
ables FemalesHiding, which gives the proportion
of time the female water striders were in hiding,
and MatingActivity, which is a measure of mean
mating activity with higher numbers meaning more
mating. The study included 10 groups of water strid-
ers. (The study also included an examination of the
effect of hyper-aggressive males and concludes that
if a male wants mating success, he should not hang
out with hyper-aggressive males.) Computer output
for a model to predict mating activity based on the
proportion of time females are in hiding is shown
below, and a scatterplot of the data with the least
squares line is shown in Figure 9.12.

The regression equation is
MatingActivity = 0.480 - 0.323 FemalesHiding

Predictor Coef SE Coef T P
Constant 0.48014 0.04213 11.40 0.000
FemalesHiding −0.3232 0.1260 −2.56 0.033

S = 0.101312 R-Sq = 45.1% R-Sq(adj) = 38.3%

Analysis of Variance
Source DF SS MS F P
Regression 1 0.06749 0.06749 6.58 0.033
Residual Error 8 0.08211 0.01026
Total 9 0.14960

(a) While it is hard to tell with only n = 10 data
points, determine whether we should have any
serious concerns about the conditions for fitting
a linear model to these data.

(b) Write down the equation of the least squares line
and use it to predict the mating activity of water
striders in a group in which females spend 50%
of the time in hiding (FemalesHiding = 0.50).

(c) Give the hypotheses, t-statistic, p-value, and
conclusion of the t-test of the slope to determine
whether time in hiding is an effective predictor
of mating activity.

(d) Give the hypotheses, F-statistic, p-value, and
conclusion of the ANOVA test to determine
whether the regression model is effective at
predicting mating activity.

(e) How do the two p-values from parts (c) and (d)
compare?

(f) Interpret R2 for this model.
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Figure 9.12 When females hide, mating is hard

9.45 Points and Penalty Minutes in Hockey The
dataset OttawaSenators contains information on the
number of points and the number of penalty minutes
for 24 Ottawa Senators NHL hockey players. Com-
puter output is shown for predicting the number of
points from the number of penalty minutes:

The regression equation is Points = 28.8 - 0.0476 PenMins

Predictor Coef SE Coef T P
Constant 28.819 5.320 5.42 0.000
PenMins -0.04760 0.07700 −0.62 0.543

S = 18.1460 R-Sq = 1.7% R-Sq(adj) = 0.0%

Analysis of Variance
Source DF SS MS F P
Regression 1 125.8 125.8 0.38 0.543
Residual Error 22 7244.1 329.3
Total 23 7370.0

(a) Write down the equation of the least squares
line and use it to predict the number of points
for a player with 20 penalty minutes and for a
player with 150 penalty minutes.

(b) Interpret the slope of the regression equation in
context.

(c) Give the hypotheses, t-statistic, p-value, and
conclusion of the t-test of the slope to deter-
mine whether penalty minutes is an effective
predictor of number of points.

(d) Give the hypotheses, F-statistic, p-value, and
conclusion of the ANOVA test to determine
whether the regression model is effective at
predicting number of points.

(e) How do the two p-values from parts (c) and (d)
compare?

(f) Interpret R2 for this model.
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9.46 More Computation on Points and Penalty
Minutes in Hockey Exercise 9.45 gives output for a
regression model to predict number of points for a
hockey player based on the number of penalty min-
utes for the hockey player. Use this output, together
with any helpful summary statistics from Table 9.2,
to show how to calculate the regression quantities
given in parts (a) and (b) below. Verify your results
by finding the equivalent results in the output.

(a) The standard deviation of the error term, sε

(b) The standard error of the slope, SE

Table 9.2 Points and penalty minutes for
hockey players

Sample Size Mean Std.Dev.

Points 24 26.46 17.90
PenMin 24 49.6 49.1

9.47 Computations Based on ANOVA for Predict-
ing Mercury in Fish In Exercise 9.21, we see that
the conditions are met for using the pH of a lake
in Florida to predict the mercury level of fish in the
lake. The data are given in FloridaLakes. Computer
output is shown for the linear model with several
values missing:

The regression equation is AvgMercury = 1.53 - 0.152 pH

Predictor Coef SE Coef T P
Constant 1.5309 0.2035 7.52 0.000
pH -0.15230 **(c)** −5.02 0.000

S = **(b)** R-Sq = **(a)**

Analysis of Variance
Source DF SS MS F P
Regression 1 2.0024 2.0024 25.24 0.000
Residual Error 51 4.0455 0.0793
Total 52 6.0479

(a) Use the information in the ANOVA table to
compute and interpret the value of R2.

(b) Show how to estimate the standard deviation of
the error term, sε .

(c) Use the result from part (b) and the summary
statistics below to compute the standard error
of the slope, SE, for this model:

Variable N Mean StDev Minimum Maximum
pH 53 6.591 1.288 3.600 9.100
AvgMercury 53 0.5272 0.3410 0.0400 1.3300

9.48 More Computation on Fiber in Cereal
Exercise 9.41 gives output for a regression model
to predict calories in a serving of breakfast cereal

based on the number of grams of fiber in the serving.
Use this output, together with any helpful summary
statistics from Table 9.3, to show how to calculate
the following regression quantities.

(a) The standard deviation of the error term, sε

(b) The standard error of the slope, SE

Table 9.3 Calories and fiber in cereal

Sample Size Mean Std.Dev.

Calories 30 133.83 34.812
Fiber 30 1.797 1.880

9.49 More Computation on Predicting GPA
Exercise 9.43 gives output for a regression model
to predict grade point average in college based
on score on the Verbal SAT exam. Use this out-
put, together with any helpful summary statistics
from Table 9.4, to calculate the following regression
quantities:

(a) The standard deviation of the error term, sε

(b) The standard error of the slope, SE

Table 9.4 Grade point average and Verbal
SAT score

Sample Size Mean Std.Dev.

GPA 345 3.1579 0.3983
VerbalSAT 345 594.0 74.29

9.50 Time Spent Exercising or Watching TV? Con-
sider a simple linear model for the number of hours
of exercise students get (per week) based on the
number of hours spent watching TV. Use the data
in ExerciseHours to fit this model. Test the effec-
tiveness of the TV predictor three different ways
as requested below, giving hypotheses, test statistic,
p-value, and a conclusion for each test.

(a) Use a t-test for the coefficient of TV.

(b) Use an ANOVA to test the effectiveness of the
model.

(c) Use a t-test for the correlation between TV and
Exercise.

(d) Compare the results for these three tests.

9.51 Life Expectancy and Health Expenditures In
Exercise 9.25 we see that the conditions are met
for fitting a linear model to predict life expectancy
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(LifeExpectancy) from the percentage of govern-
ment expenditure spent on health care (Health)
using the data in SampCountries. Use technology
to examine this relationship further, as requested
below.

(a) Find the correlation between the two variables
and give the p-value for a test of the correlation.

(b) Find the regression line and give the t-statistic
and p-value for testing the slope of the regres-
sion line.

(c) Find the F-statistic and the p-value from an
ANOVA test for the effectiveness of the model.

(d) Comment on the effectiveness of this model.

9.52 Homes for Sale in California The dataset
HomesForSaleCA contains a random sample of
30 houses for sale in California. We are interested
in whether we can use number of bathrooms Baths
to predict number of bedrooms Beds in houses in
California. Use technology to answer the following
questions:

(a) What is the fitted regression equation? Use the
regression equation to predict the number of
bedrooms in a house with three bathrooms.

(b) Give the t-statistic and the p-value for the t-test
for slope in the regression equation. State the
conclusion of the test.

(c) Give the F-statistic and the p-value from an
ANOVA for regression for this model. State
the conclusion of the test.

(d) Give and interpret R2 for this model.

9.53 Which Variable Is Best in Homes for Sale
in California Consider the data described in
Exercise 9.52 on homes for sale in California and
suppose that we are interested in predicting the Size
(in thousands of square feet) for such homes.

(a) What is the total variability in the sizes of the 30
homes in this sample? (Hint: Try a regression

ANOVA with any of the other variables as a
predictor.)

(b) Which other variable in the HomesForSaleCA
dataset explains the greatest amount of the
total variability in home sizes? Explain how
you decide on the variable.

(c) How much of the total variability in home sizes
is explained by the ‘‘best’’ variable identified in
part (b)? Give the answer both as a raw number
and as a percentage.

(d) Which of the variables in the dataset is the weak-
est predictor of home sizes? How much of the
variability does it explain?

(e) Is the weakest predictor identified in part (d)
still an effective predictor of home sizes? Include
some justification for your answer.

9.54 Explore a Relationship between Two Quan-
titative Variables Select any two quantitative vari-
ables in any dataset used thus far in the text, avoiding
those analyzed so far in Chapter 9.

(a) Identify the dataset and variables you are using.
Indicate which variable you will use as the
response variable and which as the explanatory
variable.

(b) Create a scatterplot and describe it. Are the
conditions for fitting a linear model reasonably
met?

(c) Find the correlation between the two variables
and give the p-value for a test of the correlation.

(d) Find the regression line and give the t-statistic
and p-value for testing the slope of the regres-
sion line.

(e) Find the F-statistic and the p-value from an
ANOVA test for the effectiveness of the model.

(f) Find and interpret R2.

(g) Comment on the effectiveness of this model.

9.3CONFIDENCE AND PREDICTION INTERVALS

One of the common purposes for fitting a simple linear model is to make predictions
about the value of the response variable for a given value of the explanatory variable.
For example:

• What size tip should a waitress at the First Crush bistro expect when she hands a
table a bill for $30?

• How much should we expect to pay for an inkjet printer that prints about 3.0
pages per minute?

• If a cereal has 10 grams of sugar, how many calories should it have?
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Interpreting Confidence and Prediction Intervals
Once we have fit the linear model, we can easily use the least squares line to make a
prediction given a specific value of the explanatory variable, but how accurate is that
prediction? We know that there is some uncertainty in the estimated coefficients of
the model and we can also expect additional random error when trying to predict an
individual point. As with estimates for other population parameters, we often want
to produce an interval estimate that has some predetermined chance of capturing the
quantity of interest. In a regression setting we have two common types of intervals
for the response variable.

Regression Intervals for a Response Variable

For a specific value, x∗, of the explanatory variable:

A confidence interval for the mean response is an interval which has
a given chance of capturing the mean response for all elements of the
population where the predictor value is x∗.

A prediction interval for an individual response is an interval which
has a given chance of capturing the response value for a specific case
in the population where the predictor value is x∗.

The conditions for these intervals are the same as we use for the simple
linear model.

Although the predicted value, ŷ = b0 + b1 · x∗, is the same for both types of
interval, they have quite different purposes and interpretations. The confidence
interval for a mean response is much like other confidence intervals we have
encountered for parameters such as the mean or proportion in a population. The
only difference is that we are limiting the ‘‘population’’ to only cases that have the
specific value of the predictor.

On the other hand, the prediction interval is trying to capture most of the
response values in the population for that particular value of the predictor. This
usually requires a much wider interval, since it’s trying to contain most of the
population, rather than just the mean.

Example 9.17
Using the data in RestaurantTips we find a least squares line for predicting the size
of the tip based on the amount of the bill to be

T̂ip = −0.292 + 0.182 · Bill

For a bill of $30, the predicted tip is T̂ip = −0.292 + 0.182 · 30 = 5.17. Using software
we obtain the two intervals below using this model, 95% confidence, and a bill of
$30. Write a sentence interpreting each interval in the context of this problem.

(a) Confidence interval for mean tip = (4.99, 5.35)

(b) Prediction interval for tip = (3.23, 7.12)

Solution (a) From the confidence interval, we are 95% sure that the mean tip amount for all
bills of $30 at this restaurant is somewhere between $4.99 and $5.35.

(b) From the prediction interval, we are 95% sure that the tip for a specific bill of $30
at this restaurant will be between $3.23 and $7.12. This is the more appropriate
interval for answering the question posed at the start of this section.

o
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Note that the predicted tip, T̂ip = 5.17 when the bill is $30, lies at the center of
both of the intervals in Example 9.17. The confidence interval for the mean tip has a
much smaller margin of error ($0.18) than the prediction interval for individual tips
(margin of error = $1.95).

In practice, we generally rely on statistical software to handle the details of
computing either type of interval in a regression setting. However, we need to take
care that we choose the proper type of interval to answer a specific question.

Example 9.18
Suppose we find an inkjet printer with a printing speed of 3.0 pages per minute for
sale at a price of $129. Is this an unusually good deal? Use a regression model and
the data in InkjetPrinters to address this question.

Solution Using technology we fit this model and obtain both types of regression intervals for
the printer prices when PPM = 3.0.

The regression equation is Price = - 94.2 + 90.9 PPM

Predictor Coef SE Coef T P
Constant −94.22 56.40 −1.67 0.112
PPM 90.88 19.49 4.66 0.000

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

Predicted Values for New Observations
New Obs Fit SE Fit 95% CI 95% PI PPM

1 178.4 13.6 (149.9, 206.9) (52.1, 304.7) 3.00

The question asks about the price for a specific printer, so we should use the
prediction interval (labeled 95% PI). This shows that roughly 95% of printers that
print 3.0 pages per minute are priced somewhere between $52 and $305. The $129
price in the example is on the low side of this interval but well within these bounds,
so is not an unusually low price for a printer with this printing speed. (The sale price
of $129 is, however, below the mean price for a printer with this printing rate, based
on the 95% confidence interval for the mean of $149.9 to $206.9.)

Figure 9.13 shows a scatterplot of Price vs PPM with the least squares line and
bounds for both the confidence interval for the mean price and prediction interval
for individual prices computed for every value of the predictor. For example, you
can roughly locate the intervals given in Example 9.18 above PPM = 3.0 in the plot.

Note that most of the data values lie outside of the 95% CI bounds. That is not
unusual. The 95% confidence intervals for the mean responses are trying to capture
the ‘‘true’’ line for the population, not the individual cases. The 95% PI bounds
easily capture all 20 of these printer prices. While this is not always the case, we
should not expect to see many (perhaps about 5%) of the data cases outside of the
prediction bounds.

We also see that the confidence bands (and to a lesser extent the prediction
intervals) are narrower near the middle of the plot and wider at the extremes. This is
also typical of regression intervals since we have more uncertainty when predicting
the response for more unusual predictor values. Visualize a small change in the slope
of the line that still goes through the middle of the plot. This gives more substantial
changes to the predictions at either extreme.
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Computational Details

Although we usually rely on technology to compute confidence and prediction

intervals for a regression response, the formulas for the margin of error can be

instructive and are given in the box that follows.

Note that the formulas for computing both types of intervals are very similar. The

only difference is an extra addition of ‘‘1’’ within the square root for the prediction

interval. After multiplying by t ∗ and sε , this accounts for the extra variability in

individual cases caused by the application of the error term, ε, in the simple linear

model. Even if we could estimate the regression line perfectly, we would still have

uncertainty in predicting individual values due to variability in the error term.

We also see in the (x∗ − x)2 term how the margin of error increases (and the

intervals become wider) as the predicted value moves farther from the center. This

phenomenon is visible in the confidence bands of Figure 9.13.

Formulas for Confidence and Prediction Intervals in Regression

For a specific value, x∗, of a predictor, the predicted response using a

least squares line is

ŷ = b0 + b1 · x ∗

A confidence interval for the mean response when the predictor

is x∗ is

ŷ ± t ∗sε

√
1

n + (x∗ − x)2
(n − 1)s2

x

and the prediction interval for an individual response when the pre-

dictor is x∗ is

ŷ ± t ∗sε

√
1 + 1

n + (x∗ − x)2
(n − 1)s2

x

where x and sx are the mean and standard deviation, respectively,

of the predictor values in the sample. The value sε is the standard

deviation of the error term and t ∗ comes from a t-distribution with

n − 2 degrees of freedom.

•/
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Example 9.19
Use the formulas and data in InkjetPrinters to verify the confidence interval for
mean price and prediction interval for individual price that are shown for PPM = 3.0
in the computer output of Example 9.18.

Solution From the computer output we find the fitted least squares line and substitute
PPM = 3.0 to get a predicted price:

̂Price = −94.22 + 90.88 · 3.0 = 178.42

We also need the mean of the printer PPM values, x = 2.815, and standard deviation,
sx = 0.689, which we find from the original data. The regression output shows that
the standard deviation of the error term is sε = 58.55. Finally, for a t-distribution
with 20 − 2 = 18 degrees of freedom and 95% confidence, we have t∗ = 2.101.

To compute the confidence interval for mean price when PPM = 3.0, we use

178.42 ± 2.101 · 58.55

√
1

20
+ (3.0 − 2.815)2

(20 − 1)0.6892 = 178.42 ± 28.53 = (149.89, 206.95)

To compute the prediction interval for individual price when PPM = 3.0, we use

178.42 ± 2.101 · 58.55

√
1 + 1

20
+ (3.0 − 2.815)2

(20 − 1)0.6892 = 178.42 ± 126.28 = (52.14, 304.70)

The predicted price and both intervals match the computer output.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute and interpret a confidence interval for the mean response for
a specific value of the predictor in a regression model

• Compute and interpret a prediction interval for the individual responses
for a specific value of the predictor in a regression model

Exercises for Section 9.3

SKILL BUILDER 1
In Exercises 9.55 to 9.58, two intervals are given,
A and B, for the same value of the explanatory
variable. In each case:
(a) Which interval is the confidence interval for the

mean response? Which interval is the prediction
interval for the response?

(b) What is the predicted value of the response vari-
able for this value of the explanatory variable?

9.55 A: 10 to 14; B: 4 to 20

9.56 A: 94 to 106; B: 75 to 125

9.57 A: 2.9 to 7.1; B: 4.7 to 5.3

9.58 A: 16.8 to 23.2; B: 19.2 to 20.8

When Calories Are Consumed and Weight Gain
in Mice In Exercise 9.18 on page 535, we look
at a model to predict weight gain (in grams) in
mice based on the percent of calories the mice
eat during the day (when mice should be sleeping
instead of eating). In Exercises 9.59 and 9.60, we
give computer output with two regression intervals
and information about the percent of calories eaten
during the day. Interpret each of the intervals in the
context of this data situation.

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response

JL o
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9.59 The intervals given are for mice that eat 50%
of their calories during the day:

DayPct Fit SE Fit 95% CI 95% PI
50.0 7.476 0.457 (6.535, 8.417) (2.786, 12.166)

9.60 The intervals given are for mice that eat 10%
of their calories during the day:

DayPct Fit SE Fit 95% CI 95% PI
10.0 2.385 1.164 (-0.013, 4.783) (-2.797, 7.568)

Fiber in Cereals as a Predictor of Calories In
Example 9.10 on page 540, we look at a model to
predict the number of calories in a cup of break-
fast cereal using the number of grams of sugars. In
Exercises 9.61 and 9.62, we give computer output
with two regression intervals and information about
a specific amount of sugar. Interpret each of the
intervals in the context of this data situation.

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response

9.61 The intervals given are for cereals with 10
grams of sugars:

Sugars Fit SE Fit 95% CI 95% PI
10 132.02 4.87 (122.04, 142.01) (76.60, 187.45)

9.62 The intervals given are for cereals with 16
grams of sugars:

Sugars Fit SE Fit 95% CI 95% PI
16 157.88 7.10 (143.35, 172.42) (101.46, 214.31)

9.63 Housing Prices People in real estate are inter-
ested in predicting the price of a house by the
square footage, and predictions will vary based on
geographic area. We look at predicting prices (in
$1000s) of houses in New York state based on the
size (in thousands of square feet). A random sample
of 30 houses for sale in New York state is given in
the dataset HomesForSaleNY. Use technology and
this dataset to answer the following questions:

(a) Is square footage an effective predictor of price
for houses in New York?

(b) Find a point estimate for the price of a 2000-
square-foot New York home.

(c) Find and interpret a 90% confidence interval for
the average price of all 2000-square-foot New
York homes.

(d) Find and interpret a 90% prediction interval
for the price of a specific 2000-square-foot New
York home.

9.64 Life Expectancy In Exercise 9.25 on page 555,
we consider a regression equation to predict life
expectancy from percent of government expendi-
ture on health care, using data for a sample of 50
countries in SampCountries. Using technology and
this dataset, find and interpret a 95% prediction
interval for each of the following situations:

(a) A country which puts only 3% of its expenditure
into health care.

(b) A country which puts 10% of its expenditure
into health care.

(c) A country which puts 50% of its expenditure
into health care.

(d) Calculate the widths of the intervals from (a),
(b), and (c). What do you notice about these
widths? (Note that for this sample, government
expenditures on health care go from a minimum
of 2.5% to a maximum of 26.0%, with a mean
of 11.5%.)

9.65 Predicting GPA from Verbal SAT score In
Exercise 9.17 on page 535, we use the information
in StudentSurvey to fit a linear model to use Verbal
SAT score to predict a student’s grade point average
in college. The regression equation is
̂GPA = 2.03 + 0.00189 · VerbalSAT.

(a) What GPA does the model predict for a stu-
dent who gets a 500 on the Verbal SAT exam?
What GPA is predicted for a student who gets
a 700?

(b) Use technology and the StudentSurvey dataset
to find and interpret:

i. A 95% confidence interval for the mean
GPA of students who get a 500 Verbal SAT
score

ii. A 95% prediction interval for the GPA of
students who get a 500 Verbal SAT score

iii. A 95% confidence interval for the mean
GPA of students who get a 700 Verbal SAT
score

iv. A 95% prediction interval for the GPA of
students who get a 700 Verbal SAT score

9.66 Predicting Re-Election Margin Data 2.9 on
page 103 introduces data on the approval rating
of an incumbent US president and the margin of
victory or defeat in the subsequent election (where
negative numbers indicate the margin by which
the incumbent president lost the re-election cam-
paign). The data are reproduced in Table 9.5 and
are available in ElectionMargin.
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Table 9.5 Presidential approval rating and margin of victory or defeat

Approval 62 50 70 67 57 48 31 57 39 55 49
Margin 10.0 4.5 15.4 22.6 23.2 −2.1 −9.7 18.2 −5.5 8.5 2.4

Computer output for summary statistics for the
two variables and for a regression model to predict
the margin of victory or defeat from the approval
rating is shown:

Variable N Mean StDev
Approval 11 53.18 11.54
Margin 11 7.95 11.17

--------------------------

The regression equation is Margin = - 36.5 + 0.836 Approval

Predictor Coef SE Coef T P
Constant −36.483 8.855 −4.12 0.003
Approval 0.8356 0.1631 5.12 0.001

S = 5.95019 R-Sq = 74.5% R-Sq(adj) = 71.6%

Analysis of Variance
Source DF SS MS F P
Regression 1 929.74 929.74 26.26 0.001
Residual Error 9 318.64 35.40
Total 10 1248.39

Use values from this output to calculate and inter-
pret the following. Show your work.

(a) A 95% confidence interval for the mean margin
of victory for all presidents with an approval
rating of 50%

(b) A 95% prediction interval for the margin of
victory for a president with an approval rating
of 50%

(c) A 95% confidence interval for the mean margin
of victory if we have no information about the
approval rating

9.67 Golf Scores In a professional golf tourna-
ment the players participate in four rounds of golf
and the player with the lowest score after all four
rounds is the champion. How well does a player’s
performance in the first round of the tournament

Table 9.6 Golf scores after the first and final rounds of the Masters

First −4 −4 −1 −5 −4 −4 0 −1 −3 −1 0 1 −1 0 −1 4 3 4 −1 7
Final −12 −8 −7 −7 −5 −5 −3 −2 −2 −1 −1 −1 0 3 4 4 6 6 8 10

predict the final score? Table 9.6 shows the first
round score and final score for a random sam-
ple of 20 golfers who made the cut in the 2011
Masters tournament. The data are also stored in
MastersGolf.

Computer output for a regression model to
predict the final score from the first-round score is
shown:

Variable N Mean StDev
First 20 −0.550 3.154
Final 20 −0.65 5.82

--------------------------

The regression equation is Final = 0.162 + 1.48 First

Predictor Coef SE Coef T P
Constant 0.1617 0.8173 0.20 0.845
First 1.4758 0.2618 5.64 0.000

S = 3.59805 R-Sq = 63.8% R-Sq(adj) = 61.8%

Analysis of Variance
Source DF SS MS F P
Regression 1 411.52 411.52 31.79 0.000
Residual Error 18 233.03 12.95
Total 19 644.55

Use values from this output to calculate and inter-
pret the following. Show your work.

(a) Find a 95% interval to predict the average four
round score of all golfers who shoot a 0 on the
first round at the Masters.

(b) Find a 95% interval to predict the four round
score of a golfer who shoots a −5 in the first
round at the Masters.

(c) Find a 95% interval to predict the average four
round score of all golfers who shoot a +3 in the
first round at the Masters.
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Multiple
Regression

‘‘Here’s a sector of the economy that’s growing: data mining. Businesses accumulate much

information about you and the world around you. . . More companies are trying to use that

information, and that is fueling demand for people who can make sense of the data. . .

[There is a] recruitment war for math talent. . . . Everybody’s looking for these people.’’

–Steve Inskeep, Yuki Noguchi, and D.J. Patil∗

∗‘‘The Search for Analysts to Make Sense of Big Data,” NPR’s Morning Edition, November 30, 2011.
Top left: © Science Photo Library/Alamy Limited, Top right: Matt Herring/Getty Images, Inc., Bottom right: © TriggerPhoto/iStockphoto
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Questions and Issues

C H A P T E R O U T L I N E

10 Multiple Regression 558
10.1 Multiple Predictors 560

10.2 Checking Conditions for a Regression
Model 572

10.3 Using Multiple Regression 581

Here are some of the questions and issues we will discuss in this chapter:

• How effective is it to use a person’s body measurements to predict the percent of body fat?

• Which variables are most important in predicting the price of a house: square footage, number of
bedrooms, or number of bathrooms?

• What variables factor into the life expectancy of a country?

• Is age or miles driven more important in the price of a used car?

• Is there gender discrimination in salaries for college professors?

• How well do hourly exam grades in statistics predict the grade on the final exam?

• What variables are best at predicting profitability of movies?

• What variables are most important in predicting the length of time a baseball game lasts?

• Are carbon or steel bikes faster?
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10.1MULTIPLE PREDICTORS

A simple linear model allows us to predict values for a quantitative variable based
on a single quantitative predictor. In many data situations we may have lots of
variables that could serve as potential predictors. For example:

• Response: Printer Price (InkjetPrinters)
Potential predictors: print speed (PPM), photo print time (PhotoTime), black &
white ink cost (CostBW), color ink cost (CostColor)

• Response: Tip amount (RestaurantTips)
Potential predictors: size of bill (Bill), number in the party (Guests), pay with a
credit card? (Card = 1 for yes, Card = 0 for no)

• Response: Breakfast cereal Calories (Cereals)
Potential predictors: amounts of Fiber, Fat, Sodium, Sugars, Carbs, Protein

• Response: NBA team winning percentage, WinPct (NBAStandings)
Potential predictors: points scored per game (PtsFor), points allowed per game
(PtsAgainst)

• Response: Home Price (HomesForSale)
Potential predictors: square feet (Size), number of bedrooms (Beds), number of
bathrooms (Baths)

• Response: Average household income for states HouseholdIncome (USStates)
Potential predictors: Percentage of residents who have a college degree (College),
smoke (Smokers), drink heavily (HeavyDrinkers), are non-white (NonWhite), are
obese (Obese)

Multiple Regression Model
Why should we be limited to just one predictor at a time? Might we get a better
model if we include information from several explanatory variables in the same
model? For this reason, we extend the simple linear model from Section 9.1 to a
multiple regression model that allows more than one predictor.

Multiple Regression Model

Given a response variable Y and k explanatory variables X1, X2, . . . Xk,
a multiple regression model has the form

Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε

where ε ∼ N(0, σε) and independent.

This model allows more than one predictor to contribute to the linear part of
the model and has the same conditions about the random errors as the simple linear
model. With multiple predictors we lose the nice graphical representation of the
model as a line on a scatterplot, but statistical software makes it easy to estimate the
coefficients from sample data.

The prediction equation has the form

Ŷ = b0 + b1X1 + b2X2 + · · · + bkXk
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where the coefficients are chosen to minimize the sum of squared residuals between
the predicted Ŷ values and the actual Y responses in the sample.

Example 10.1
Consider a multiple regression model to predict the prices of inkjet printers based
on the printing speed (PPM) and cost for black & white printing (CostBW). Use
technology and the data in InkjetPrinters to estimate the coefficients of the model
and write down the prediction equation. What price does this fitted model predict
for a printer that prints at 3.0 pages per minute and costs 3.7 cents per page for black
& white printing?

Solution Here is computer output for fitting the model Price = β0 + β1PPM + β2CostBW + ε.

The regression equation is
Price = 89.2 + 58.1 PPM - 21.1 CostBW

Predictor Coef SE Coef T P
Constant 89.20 95.74 0.93 0.365
PPM 58.10 22.79 2.55 0.021
CostBW −21.125 9.341 −2.26 0.037

S = 52.8190 R-Sq = 65.2% R-Sq(adj) = 61.1%

The prediction equation is ̂Price = 89.20 + 58.10 · PPM − 21.125 · CostBW. For
a printer that prints 3.0 pages per minute with a black & white cost of 3.7 cents per
page, we have

̂Price = 89.20 + 58.10(3.0) − 21.125(3.7) = 185.34

The predicted price for this printer is $185.34.

The Kodak ESP Office 2170 All-in-One Printer is a case in the InkjetPrinters
file that has PPM = 3.0, CostBW = 3.7, and its actual price is $150. The residual
for this printer is 150 − 185.34 = −35.34. In the fitted model using just PPM (see
Example 9.1 on page 525) we have ̂Price = −94.22 + 90.88 · PPM and the predicted
price when PPM = 3.0 is $178.42 with a residual of −28.42. Notice that the intercept
and coefficient of PPM both change when CostBW is added to the model. Also, the
prediction for this printer is better when CostBW is not included in the model. Does
this mean the simpler model is better?

When comparing models we should consider the residuals for all of the data
cases. One way to do this is to look at the estimated standard deviation of the
error term. In the output for the multiple regression model in Example 10.1 we
see sε = 52.82, while the output for the simple linear model on page 525 shows
sε = 58.55. The size of the typical error in predicting these inkjet prices is smaller
when we include both PPM and CostBW as predictors in the model.

Testing Individual Terms in a Model
Once we have more than one predictor in a multiple regression model, the question
naturally arises as to which predictors are actually useful to include in the model.
We can test the individual variables in the multiple regression by seeing if their
coefficients are significantly different from zero. This is analogous to the t-test for the
slope that we have already seen for a simple linear model. However, the presence
of additional predictors can make the tests more challenging to interpret.

J til
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T-tests for Coefficients in a Multiple Regression Model

To test the effectiveness of any predictor, say Xi, in a multiple
regression model we consider H0 : βi = 0 vs Ha : βi �= 0 and use the
test statistic

t = bi

SEbi

where the estimated coefficient, bi, and its standard error, SEbi , are
given in the computer output.

We find a p-value (which is usually given along with the t-statistic
in the regression output) using a t-distribution with n − k − 1 degrees
of freedom, where n is the sample size and k is the number of predictors
in the model.

If we reject the null hypothesis, finding evidence that the coeffi-
cient is different from zero, we see that the predictor is an effective
contributor to this model.

Example 10.2
Use the output in the solution of Example 10.1 to judge the effectiveness of each
of the predictors (PPM and CostBW) in the multiple regression model to predict
inkjet prices.

Solution To test PPM we use H0 : β1 = 0 vs Ha : β1 �= 0. From the regression output we see
t = 58.10/22.79 = 2.55, which gives a two-tailed p-value of 0.021 for a t-distribution
with 20 − 2 − 1 = 17 degrees of freedom. This is a fairly small p-value (less than
5%) which means we have evidence that the coefficient of PPM in the population
differs from zero and it is a useful predictor of Price in this model.

To test CostBW we use H0 : β2 = 0 vs Ha : β2 �= 0. From the regression output
we see t = −21.125/9.341 = −2.26 which gives a two-tailed p-value of 0.037. This is
also less than 5%, so it would appear that CostBW is also useful in this model to
predict printer Price.

Note that we can also find the t-statistic (T) and the p-value (P) for both tests
directly from the output.

D A T A 10 . 1 Body Fat
The percentage of a person’s weight that is made up of body fat is often used as
an indicator of health and fitness. However, accurate methods of measuring
percent body fat are difficult to implement. One method involves immersing the
body in water to estimate its density and then applying a formula to estimate
percent body fat. An alternative is to develop a model for percent body fat that is
based on body characteristics such as height and weight that are easy to
measure. The dataset BodyFat contains such measurements for a sample of 100
men.1 For each subject we have the percent body fat (Bodyfat) measured by the
water immersion method, Age, Weight (in pounds), Height (in inches), and
circumference (in cm) measurements for the Neck, Chest, Abdomen, Ankle,
Biceps, and Wrist. ■

1A sample taken from data provided by Johnson, R., ‘‘Fitting Percentage of Body Fat to Simple
Body Measurements,” Journal of Statistics Education, 1996, http://www.amstat.org/publications/jse
/v4n1/datasets.johnson.html.
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What percent body fat?

Example 10.3
Fit a model to predict Bodyfat using Height and Weight. Comment on whether either
of the predictors appears to be important in the model.

Solution Here is some output for fitting Bodyfat = β0 + β1Weight + β2Height + ε:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 71.48247 16.20086 4.412 2.65e-05 ***
Weight 0.23156 0.02382 9.721 5.36e-16 ***
Height −1.33568 0.25891 −5.159 1.32e-06 ***

The prediction equation is
̂Bodyfat = 71.48 + 0.232Weight − 1.336Height

The p-values for the t-tests for the coefficients of Weight and Height are both very
close2 to zero so we have strong evidence that both terms are important in this
model.

Example 10.4
Add Abdomen as a third predictor to the model in Exercise 10.3 and repeat the
assessment of the effectiveness of each predictor.

Solution Here is some output for fitting Bodyfat = β0 + β1Weight + β2Height +
β3Abdomen + ε:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −56.1329 18.1372 −3.095 0.002580 **
Weight −0.1756 0.0472 −3.720 0.000335 ***
Height 0.1018 0.2444 0.417 0.677750
Abdomen 1.0747 0.1158 9.279 5.27e-15 ***

The prediction equation is now

̂Bodyfat = −56.13 − 0.1756Weight + 0.1018Height + 1.0747Abdomen

The coefficient of Abdomen is very significant (t = 9.279, p-value ≈ 0). Weight is also
an effective predictor (t = −3.720, p-value = 0.000335), but the Height coefficient
has a large p-value (0.678), indicating that Height is not an effective predictor in this
model.

2The notation 1.32e-06 means 1.32 × 10−6 = 0.00000132.
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You probably find the results of Exercises 10.3 and 10.4 a bit surprising. Why
is Height considered a strong predictor in the first model but not effective at all in
the second? The key lies in understanding that the individual t-tests for a multiple
regression model assess the importance of each predictor after the other predictors
are in the model. When both Weight and Abdomen are in the model, we really don’t
need Height anymore—most of its information about Bodyfat is already supplied
by the other two predictors.

Even more surprising, while the coefficient of Weight is significant in the three-
predictor model, its sign is negative, the opposite of its sign in the two-predictor
model. Does it really make sense that people who weigh more should be predicted
to have less percentage body fat? Just looking at the two variables together, the
correlation between Bodyfat and Weight is positive (r = +0.6) and quite significant.
However, when Abdomen is also in the model the coefficient of Weight is negative
and quite strong. Think for a moment about two men with the same abdomen
circumference, but one weighs much more than the other (possibly because he is
taller or more muscular). Which would you expect to have the higher percentage of
body fat? For a fixed abdomen size, more weight is actually an indicator of less body
fat as a percentage of weight.

In Section 2.6, we interpret the coefficient in a simple linear model as the
predicted change in the response variable given a one unit increase in the predictor.
The same interpretation of coefficients applies here in a multiple regression model,
with the added condition that the values of all other variables stay the same.

Example 10.5
Interpret the coefficient of Abdomen in context for the model in Example 10.4.

Solution The coefficient of Abdomen is 1.0747. If a person’s weight and height stayed exactly
the same and the abdomen circumference increased by 1 cm, we expect the percent
body fat to increase by 1.0747. (Alternately, if two people have the same weight
and height and one of them has an abdomen 1 cm larger, the one with the larger
abdomen is predicted to have a percent body fat 1.0747 higher.)

Interpreting the individual t-tests in a multiple regression model can be quite
tricky, especially when the predictors are related to each other. For an introductory
course, you should just be aware that the individual tests are assessing the con-
tribution of a predictor to that particular model and avoid making more general
statements about relationships with the response variable.

ANOVA for a Multiple Regression Model
The individual t-tests tell us something about the effectiveness of individual pre-
dictors in a model, but we also need a way to assess how they do as a group. This
is not a big issue for a simple linear model, since the effectiveness of the model
depends only on the effectiveness of the single predictor. For a model with multiple
predictors we need to measure how well the linear combination of the predictors
does at explaining the structure of the response variable. This brings us back to
partitioning variability to construct an ANOVA table as we did in Section 9.2.

The general form of a multiple regression model is

Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε

or

Response = Linear combination of predictors + Error

o
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We split the total variability in the response into two pieces: one that represents the
variability explained by the model and another that measures the variability that is
left unexplained in the errors:

TOTAL Variability
in the Response

= Variability Explained
by the MODEL

+ Unexplained Variability
in the ERROR

We generally rely on statistical software to manage the details of computing the sums
of squared deviations to measure each of these amounts of variability. However, the
formulas are identical to the simple linear case (page 539) and we note that they can
be applied in any situation where we have an estimated model that yields predicted
values (ŷ) for each data case:

SSTotal = SSModel + SSE

where

SSModel =
∑

(ŷ − y)2

SSE =
∑

(y − ŷ)2

SSTotal =
∑

(y − y)2

Example 10.6
Comparing Regression ANOVA Tables

The ANOVA tables for two regression models for printer prices are shown below.
Model A uses just a single predictor (PPM) as in Example 9.1 on page 525. Model
B adds CostBW as a second predictor to the model (as in Example 10.1). Discuss
how the ANOVA table changes as we add the new CostBW predictor.

Model A: Price = β0 + β1PPM + ε

Analysis of Variance
Source DF SS MS F P
Regression 1 74540 74540 21.75 0.000
Residual Error 18 61697 3428
Total 19 136237

Model B: Price = β0 + β1PPM + β2CostBW + ε

Analysis of Variance
Source DF SS MS F P
Regression 2 88809 44405 15.92 0.000
Residual Error 17 47427 2790
Total 19 136237

Solution • The sum of squares explained by the regression model (SSModel) increases
from 74,540 to 88,809 when we add CostBW. Adding a new predictor will never
explain less variability. The individual t-test (as described in Example 10.2) helps
determine whether the new variability explained is more than we would expect
by random chance alone.

• The sum of squares for the error term (SSE) decreases from 61,697 to 47,427.
Again, this is expected since the total variability (SSTotal = 136, 237) is the same
for any model to predict these printer prices. Adding a new predictor can only
improve the overall accuracy for predicting the data cases that are used to fit the
model.

o
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• The degrees of freedom for the regression model increase from 1 to 2. In general,
for a multiple regression model, this degrees of freedom will be the number of
predictors in the model.

• The degrees of freedom for the error decrease from 18 to 17. Again, this is not
surprising since the total degrees of freedom remain at 19. In general, we lose one
degree of freedom for each parameter in the model plus the constant term, so
20 − 2 − 1 = 17.

• The rest of the ANOVA table changes as we divide the new sums of squares by
the new df to get the mean squares and then the F-statistic. Although the p-values
look the same, the first is based on an F1,18 distribution and the second uses F2,17.

In general, the ANOVA table for a k-predictor multiple regression uses k
degrees of freedom for the model and n − k − 1 degrees of freedom for the error.
The other important change concerns the hypotheses being tested. The ANOVA
for regression is testing the whole model, all k predictors as a group. The formal
hypotheses are:

H0 : β1 = β2 = · · · = βk = 0
(Model is ineffective and all predictors could be dropped)

Ha : At least one βi �= 0 (At least one predictor in the model is effective)

Note that the constant term, β0, is not included in the regression ANOVA null
hypothesis. We are only looking for evidence that at least one of the predictors is
more helpful than random chance (and its coefficient is different from zero). When
we see a small p-value (such as both ANOVA tables in Example 10.6) we conclude
that something in the model is effective for predicting the response, but we need to
consider the individual t-tests to judge which predictors are or are not useful.

ANOVA to Test a Regression Model

To test for the overall effectiveness of a regression model,
Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε:

H0 : β1 = β2 = · · · = βk = 0 (The model is ineffective)

Ha : At least one βi �= 0

(At least one predictor in the model is effective)

We partition the variability to construct an ANOVA table for regres-
sion:

Source df Sum of Sq. Mean Square F-statistic p-value

Model k SSModel
SSModel

k F = MSModel
MSE

Fk,n−k−1

Error n − k − 1 SSE
SSE

n − k − 1

Total n − 1 SSTotal
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Example 10.7
Suppose that we use the time to print a color picture (PhotoTime) and cost per page
for color ink (CostColor) as two predictors of inkjet printer prices. Use technology
to find and interpret an ANOVA table for testing the effectiveness of this model.

Solution Here is some computer output for fitting Price = β0 + β1PhotoTime +
β2CostColor + ε:

Predictor Coef SE Coef T P
Constant 371.89 66.89 5.56 0.000
PhotoTime 0.1038 0.3663 0.28 0.780
CostColor −18.732 5.282 −3.55 0.002

S = 67.8509 R-Sq = 42.6% R-Sq(adj) = 35.8%

Analysis of Variance
Source DF SS MS F P
Regression 2 57973 28987 6.30 0.009
Residual Error 17 78264 4604
Total 19 136237

The p-value in the ANOVA is 0.009 which is quite small, giving evidence that at
least one term in this model is effective for helping to explain printer prices. Looking
at the individual t-tests it appears that CostColor is an effective predictor in the
model (p-value = 0.002), but PhotoTime is not very helpful (p-value = 0.780).

Coefficient of Determination: R-squared
On page 543 of Section 9.2 we see that the portion of total variability in the

response variable that is successfully explained by the model is known as the
coefficient of determination or R2. With multiple predictors we cannot get this value
by squaring the correlation (as we did in Section 9.1) with any of the individual
predictors, but we can use the information from the ANOVA table to obtain R2 (as
we did in Section 9.2 for simple regression).3

Coefficient of Determination, R 2

For any regression model, the coefficient of determination is

R2 = SSModel
SSTotal

and is interpreted as the percent of variability in the response values
in the sample that is explained by the fitted regression model.

Example 10.8
In Examples 10.6 and 10.7 we see ANOVA tables for testing two-predictor models
for printer prices: one using PPM and CostBW, the other using PhotoTime and
CostColor. Use the information from each ANOVA table to compute and interpret
the value of R2 for each model. What do the results tell us about the relative
effectiveness of the two models?

3If we let R be the correlation between actual and predicted response values for the sample, its square is
the percentage of variability explained.

itt o
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Solution The total variability, SSTotal = 136,237, is the same for both models, so we find R2

in each case by dividing the sum of squares explained by the model (SSModel) by
this quantity:

R2 = 88,809
136,237

= 0.652 (PPM and CostBW)

R2 = 57,973
136,237

= 0.426 (PhotoTime and CostColor)

We see that PPM and CostBW together explain 65.2% of the variability in the
prices for these 20 printers, while PhotoTime and CostColor together explain only
42.6% of this variability. Although both of these models are judged as ‘‘effective”
based on their ANOVA tests, we would tend to prefer the one based on PPM and
CostBW that explains a larger portion of the variability in inkjet printer prices.

Would some other combination of predictors in the InkjetPrinters dataset give
an even more effective model for predicting prices? We consider the question of
choosing an effective set of predictors in Section 10.3. Before doing so, we examine
the conditions for regression models (and how to check them) in more detail in
Section 10.2.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use computer output to make predictions and interpret coefficients
using a multiple regression model

• Test the effectiveness of individual terms in a multiple regression
model

• Use ANOVA to test the overall effectiveness of a multiple regression
model

• Compute and interpret the value of R2 for a multiple regression model

Exercises for Section 10.1

SKILL BUILDER 1
Exercises 10.1 to 10.11 refer to the multiple regres-
sion output shown:

The regression equation is
Y = 43.4 - 6.82 X1 + 1.70 X2 + 1.70 X3 + 0.442 X4

Predictor Coef SE Coef T P
Constant 43.43 18.76 2.31 0.060
X1 −6.820 1.059 −6.44 0.001
X2 1.704 1.189 1.43 0.202
X3 1.7009 0.6014 2.83 0.030
X4 0.4417 0.1466 3.01 0.024

S = 2.05347 R-Sq = 99.8% R-Sq(adj) = 99.6%

Analysis of Variance
Source DF SS MS F P
Regression 4 10974.7 2743.7 650.66 0.000
Residual Error 6 25.3 4.2
Total 10 11000.0

10.1 What are the explanatory variables? What is
the response variable?

10.2 One case in the sample has Y = 30, X1 = 8,
X2 = 6, X3 = 4, and X4 = 50. What is the predicted
response for this case? What is the residual?

10.3 One case in the sample has Y = 60, X1 = 5,
X2 = 7, X3 = 5, and X4 = 75. What is the predicted
response for this case? What is the residual?

10.4 What is the coefficient of X2 in the model?
What is the p-value for testing this coefficient?

10.5 What is the coefficient of X1 in the model?
What is the p-value for testing this coefficient?

10.6 Which of the variables are significant at the
5% level?

o

o
o
o
o
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10.7 Which of the variables are significant at the
1% level?

10.8 Which variable is most significant in this
model?

10.9 Which variable is least significant in this
model?

10.10 Is the model effective, according to the
ANOVA test? Justify your answer.

10.11 State and interpret R2 for this model.

SKILL BUILDER 2
Exercises 10.12 to 10.22 refer to the multiple regres-
sion output shown:
The regression equation is
Y = - 61 + 4.71 X1 - 0.25 X2 + 6.46 X3 + 1.50 X4 - 1.32 X5

Predictor Coef SE Coef T P
Constant −60.7 105.7 −0.57 0.575
X1 4.715 2.235 2.11 0.053
X2 −0.253 1.178 −0.21 0.833
X3 6.459 2.426 2.66 0.019
X4 1.5011 0.4931 3.04 0.009
X5 −1.3151 0.8933 −1.47 0.163

S = 32.4047 R-Sq = 77.9% R-Sq(adj) = 70.0%

Analysis of Variance
Source DF SS MS F P
Regression 5 51799 10360 9.87 0.000
Residual Error 14 14701 1050
Total 19 66500

10.12 What are the explanatory variables? What is
the response variable?

10.13 One case in the sample has Y = 20, X1 = 15,
X2 = 40, X3 = 10, X4 = 50, and X5 = 95. What is
the predicted response for this case? What is the
residual?

10.14 One case in the sample has Y = 50, X1 = 19,
X2 = 56, X3 = 12, X4 = 85, and X5 = 106. What
is the predicted response for this case? What is the
residual?

10.15 What is the coefficient of X1 in the model?
What is the p-value for testing this coefficient?

10.16 What is the coefficient of X5 in the model?
What is the p-value for testing this coefficient?

10.17 Which of the variables are significant at the
5% level?

10.18 Which of the variables are significant at the
1% level?

10.19 Which variable is most significant in this
model?

10.20 Which variable is least significant in this
model?

10.21 Is the model effective, according to the
ANOVA test? Justify your answer.

10.22 State and interpret R2 for this model.

10.23 Predicting Prices of New Homes Here is
some output for fitting a model to predict the price
of a home (in $1000s) using size (in square feet,
SizeSqFt, different units than the variable Size in
HomesForSale), number of bedrooms, and number
of bathrooms. (The data are based indirectly on
information in the HomesForSale dataset.)

The regression equation is
Price = - 217 + 0.331 SizeSqFt - 135 Beds + 200 Baths

Predictor Coef SE Coef T P
Constant −217.0 145.9 −1.49 0.140
SizeSqFt 0.33058 0.07262 4.55 0.000
Beds −134.52 57.03 −2.36 0.020
Baths 200.03 78.94 2.53 0.013

S = 507.706 R-Sq = 46.7% R-Sq(adj) = 45.3%

Analysis of Variance
Source DF SS MS F P
Regression 3 26203954 8734651 33.89 0.000
Residual Error 116 29900797 257765
Total 119 56104751

(a) What is the predicted price for a 2500 square
foot, four bedroom home with 2.5 baths?

(b) Which predictor has the largest coefficient (in
magnitude)?

(c) Which predictor appears to be the most impor-
tant in this model?

(d) Which predictors are significant at the 5% level?

(e) Interpret the coefficient of SizeSqFt in context.

(f) Interpret what the ANOVA output says about
the effectiveness of this model.

(g) Interpret R2 for this model.

10.24 Predicting Calories Consumed Using the data
in NutritionStudy, we show computer output for a
model to predict calories consumed in a day based
on fat grams consumed in a day, cholesterol con-
sumed in mg per day, and age in years:

The regression equation is
Calories = 513 + 16.3 Fat + 0.421 Cholesterol - 1.42 Age

Predictor Coef SE Coef T P
Constant 512.95 86.51 5.93 0.000
Fat 16.2645 0.7925 20.52 0.000
Cholesterol 0.4208 0.2015 2.09 0.038
Age -1.420 1.304 −1.09 0.277

S = 331.904 R-Sq = 76.4% R-Sq(adj) = 76.2%

Analysis of Variance
Source DF SS MS F P
Regression 3 111082085 37027362 336.12 0.000
Residual Error 311 34259921 110161
Total 314 145342006
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(a) What daily calorie consumption does the model
predict for a 35 year old person who eats 40
grams of fat in a day and 180 mg of cholesterol?

(b) In this model, which variable is least significant?
Which is most significant?

(c) Which predictors are significant at a 5% level?

(d) Interpret the coefficient of Fat in context.

(e) Interpret the coefficient of Age in context.

(f) Interpret what the ANOVA output says about
the effectiveness of this model.

(g) Interpret R2 for this model.

10.25 Predicting Life Expectancy In Exercises 9.25
and 9.64 we attempt to predict a country’s life
expectancy based on the percent of government
expenditure on health care, using a sample of
fifty countries in the dataset SampCountries. We
now add to the model the variables population (in
millions), percentage with Internet, and birth rate
(births per 1000). Table 10.1 shows some computer
output from fitting this model.

(a) Which variables are significant predictors of life
expectancy in this model, at a 5% level? Which
is the most significant?

(b) Predict the life expectancy of a country that
spends 20% of government expenditures on
health care, has a population of 2,500,000, for
which 75% of people have access to the Internet,
and the birth rate is 30 births per 1000.

(c) How does predicted life expectancy change if
we find out the Internet rate is actually higher?

Table 10.1 Multiple regression output

Estimate Std. Error t-value Pr(> |t|)
(Intercept) 77.30 4.11 18.788 <2e−16

Health 0.133 0.216 70.613 0.543
Population −0.017 0.029 −0.573 0.570

Internet 0.112 0.047 2.347 0.023
BirthRate −0.555 0.115 −4.824 <0.0001

10.26 Binary Categorical Variables: Weight Based
on Height and Gender Categorical variables with
only two categories (such as male/female or yes/no)
can be used in a multiple regression model if we
code the answers with numbers. In Chapter 9, we
looked at a simple linear model to predict Weight
based on Height. What role does gender play? If a
male and a female are the same height (say 5’7”),
do we predict the same weight for both of them?
Is gender a significant factor in predicting weight?
We can answer these questions by using a multiple

regression model to predict weight based on height
and gender. Using 1 for females and 0 for males
in a new variable called GenderCode in the dataset
StudentSurvey, we obtain the following output:

The regression equation is
Weight = - 23.9 + 2.86 Height-25.5 GenderCode

Predictor Coef SE Coef T P
Constant −23.92 27.36 −0.87 0.383
Height 2.8589 0.3855 7.42 0.000
GenderCode −25.470 3.138 −8.12 0.000

S = 22.8603 R-Sq = 48.2% R-Sq(adj) = 47.9%

(a) What weight does the model predict for a male
who is 5’7” (67 inches)? For a female who is
5’7”?

(b) Which predictors are significant at a 5% level?

(c) Interpret the coefficient of Height in context.

(d) Interpret the coefficient of GenderCode in con-
text. (Pay attention to how the variable is
coded.)

(e) What is R2 for this model? Interpret it in context.

Price of Horses For Exercises 10.27 to 10.30, use
information in the ANOVA table below, which
comes from fitting a multiple regression model to
predict the prices for horses (in $1000s).

Source DF SS MS F P
Regression 3 4327.7 1442.6 10.94 0.000
Residual Error 43 5671.4 131.9
Total 46 9999.1

10.27 How many predictors are in the model?

10.28 How many horses are in the sample?

10.29 Find and interpret (as best you can with the
given context) the value of R2.

10.30 Is this an effective model for predicting horse
prices? Write down the relevant hypotheses as well
as a conclusion based on the ANOVA table.

10.31 Hantavirus in Mice In Exercise 9.23 on
page 537, we discuss a study4 conducted on the
California Channel Islands investigating the preva-
lence of hantavirus in mice. This virus can cause
severe lung disease in humans. The article states:
‘‘Precipitation accounted for 79% of the variation
in prevalence. Adding in island area upped this to
93%, and including predator richness took the total
to 98%.”

(a) Give the correct notation or terminology for
the quantity the scientists are comparing in the
quotation.

4‘‘More Rain, More Virus,” Nature, April 28 2011, p. 392.
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(b) Based on the information given, do you expect
the ANOVA p-value for the model with all
three predictors to be relatively large or rela-
tively small? Explain.

10.32 Housing Prices in New York In Exercise 9.63
we look at predicting the price (in $1000s) of New
York homes based on the size (in thousands of
square feet), using the data in HomesForSaleNY.
Two other variables in the dataset are the number
of bedrooms and the number of bathrooms. Use
technology to create a multiple regression model
to predict price based on all three variables: size,
number of bedrooms, and number of bathrooms.
(In Exercise 10.23, we investigate a similar model
using homes from more states.)

(a) Which predictors are significant at a 5% level?
Which variable is the most significant?

(b) Interpret the two coefficients for Beds and
Baths. Do they both make sense?

(c) What price does the model predict for a 1500
square foot (Size = 1.5) New York home with 3
bedrooms and 2 bathrooms?

10.33 Predicting Body Mass Gain in Mice Use tech-
nology and the data in LightatNight to predict
body mass gain in mice, BMGain, over a four-
week experiment based on stress levels measured
in Corticosterone, percent of calories eaten during
the day (most mice in the wild eat all calories at
night) DayPct, average daily consumption of food
in grams Consumption, and activity level Activity.

(a) Interpret the coefficient of DayPct in context.

(b) Interpret the coefficient of Consumption in con-
text.

(c) Which variable is most significant in this model?

(d) Which variable is least significant in this model?

(e) According to the ANOVA table, is the model
effective at predicting body mass gain of mice in
this situation?

(f) Interpret R2 for this model.

10.34 NBA Winning Percentage In Exercise 9.26
on page 538 we consider simple linear models to
predict winning percentages for NBA teams based
on either their offensive ability (PtsFor = aver-
age points scored per game) or defensive ability
(PtsAgainst = average points allowed per game).
With multiple regression we can include both factors
in the same model. Use the data in NBAStandings
to fit a two-predictor model for WinPct based on
PtsFor and PtsAgainst.

(a) Write down the fitted prediction equation.

(b) The Dallas Mavericks (2011 NBA Champion)
had a 0.695 winning percentage over the season,
scoring 100.2 points per game, while allowing
96.0 points against per game. Find the predicted
winning percentage for the Mavericks using this
model and compute the residual.

(c) Comment on the effectiveness of each predictor
in this model.

(d) As a single predictor, PtsAgainst is more effec-
tive than PtsFor. Do we do much better by
including both predictors? Choose some mea-
sure (such as sε , SSE, or R2) to compare the
simple linear model based on PtsAgainst to this
two-predictor model.

10.35 Prices of Mustang Cars Data 3.4 on page 209
describes a sample of n = 25 Mustang cars being
offered for sale on the Internet. We would like to
predict the Price of used Mustangs (in $1000s) and
the possible explanatory variables in MustangPrice
are the Age in years and Miles driven (in 1000s).

(a) Fit a simple linear model for Price based on Age.
Does Age appear to be an effective predictor of
Price? Justify your answer.

(b) Fit a multiple regression model for Price based
on Age and Miles. Is Age an effective predictor
in this model? Justify your answer.

(c) Can you think of an explanation for the change
from (a) to (b)?

10.36 Comparing Models for NBA Winning Per-
centage In Exercise 9.26 on page 538 we consider
separate simple linear models to predict NBA win-
ning percentages using PtsFor and PtsAgainst. In
Exercise 10.34 we combine these to form a multiple
regression model. The data is in NBAStandings.

(a) Compare the percentages of variability in win-
ning percentages that are explained by these
three models (PtsFor alone, PtsAgainst alone,
and the two together in a multiple regression).

(b) Create a new predictor, Diff = PtsFor −
PtsAgainst, to measure the average margin of
victory (or defeat) for each team. Use it as
a single predictor in a simple linear model for
WinPct. Include a scatterplot with the regression
line.

10.37 Randomization Test for a Multiple Regres-
sion Model When deriving the F-statistic on
page 541 we include a note that the use of the
F-distribution can be simulated with a random-
ization procedure. That is the purpose of this



572 C H A P T E R 10 Multiple Regression

exercise. Consider the model in Example 10.7 that
uses PhotoTime and CostColor to predict inkjet
printer prices. The F-statistic in that ANOVA table
is F = 6.30. Suppose that we want to estimate how
unusual that is, when H0 is true and there is no
relationship between either predictor and Price. To
simulate this, randomly scramble the 20 printer
prices in InkjetPrinters and assign them to the

various combinations of PhotoTime and CostColor.
For each such randomization, estimate the fitted
model and compute the F-statistic. (Technology is
a must here!) Repeat many times to obtain a ran-
domization distribution and see how far the original
F = 6.30 is in the tail. Compare the results to what
you get with the F-distribution with 2 and 17 degrees
of freedom.

10.2CHECKING CONDITIONS FOR A REGRESSION MODEL

For a given set of k predictors, the multiple regression model is

Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε

where ε ∼ N(0, σε) and independent.
As with the simple linear model, when k = 1, most of the conditions for the

model are reflected in the error term. We expect the deviations of actual response
values from the regression model to have:

• A mean of zero

• The same variability at different values of the explanatory variable(s)

• A normal distribution

These conditions are reflected in Figure 9.3 on page 531 which shows the simple
linear model as a string of normal distributions running along the population
regression line. For single predictors we can often check the conditions (as we did,
somewhat informally, in Section 9.1) by looking at a scatterplot of the data with the
least squares line drawn on it. This is often sufficient to reveal problems such as a
curved rather than linear pattern, variability that consistently increases or decreases
over time, or large outliers that might affect the fit or indicate points that are poorly
predicted.

What about checking conditions for a multiple regression model? Although we
could produce a scatterplot of a response Y versus any single explanatory variable
Xi, we could not easily visualize the multiple regression fit on that plot. We need a
different method for checking the conditions on the error term when we have more
than one predictor.

Residuals vs Fitted Values Plot
The multiple regression model says that the errors from the regression equation
should follow a normal distribution with mean zero and constant standard deviation,
σε . We estimate these errors with the residuals, yi − ŷi, which compare the actual
values for the response variable to the predicted values from the fitted model.
Fortunately, the residuals for least squares regression models always have mean
zero, so the main things we need to look for are changing variance, lack of normality,
or departures from the linear pattern. We generally accomplish this with residual
plots that give graphical displays of the residuals to check model conditions. One
common method is to produce a scatterplot of the residuals vs the predicted
values.
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ResidualsvsFitsPlot

Toassesspossibledeparturesfromthelinearmodeland/orconsistently
changingvarianceweusearesidualsvsfitsplotwiththeresidualson
theverticalaxisandthepredictedvaluesonthehorizontalaxis.

Theidealpatternisahorizontalbandofresidualsscatteredon
eithersideofahorizontallineatzero.

Watchoutfor

•Curvedpatternsorotherobvioustrendsthatindicateproblems
withthelinearityofthemodel

•Fanningpatternsthatshowthevariabilityconsistentlyincreasingor
decreasing

•Outliersthatareunusuallyfaraboveorbelowthezeroline.

Example10.9
Figure10.1(a)showsascatterplotwithregressionlineusingdatafromasimple
linearmodelinFigure9.4onpage531.Figure10.1(b)showstheresidualsvsfits
plotforthesamedata.Bothplotsshowarandom,parallelscatteraboveandbelow
thelinethatweexpecttoseeforalinearmodel.Althoughthescalesaredifferent,
pointsthatareclosetotheregressionlineinFigure10.1(a)correspondtopoints
nearthezerolineinFigure10.1(b).

Example10.10
RecognizingProblems

Figure10.2showsthreescatterplotsfromFigure9.5onpage532thatillustrate
problemswiththeregressionmodelassumptions.Thecorrespondingresidualsvs
fitsplotsforeachdatasetareshownbelowthem.Payattentiontohowtheproblems
(curvature,increasingvariance,andoutliers)translatefromtheoriginalscatterplot
totheresidualplot.

Figure10.1Plotsfrom
thesamesimplelinear
modelX

(a) Scatterplot with regression line
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Figure10.2Residualplotsforleastsquaresfitswithproblems

Histogram/Dotplot/BoxplotofResiduals
Adotplot,histogram,orboxplotoftheresidualsfromamodelisagoodwayto
checkthenormalityconditionandlookforoutliers.Aswithanyplotofasingle
quantitativevariable,welookforreasonablesymmetry.

Example10.11Figure10.3showsthreehistogramsofthesamethreedatasetsasinFigure10.2.
Commentontheappropriatenessofanormalityconditionineachcase.

Solution(a)ThehistogramoftheresidualsforthecurveddatainFigure10.3(a)showssome
mildskewnesswithapeaktotheleftofzeroandverylittle‘‘tail”inthat
direction.However,thesamplesizeisfairlylarge(mostofthehistogrambars
showafrequencymorethan10)soweshouldn’tbetooconcerned.

(b)Thedistributionofresidualsforthemiddlemodelshowsnoconcernswith
normality.Thegraphissymmetric,bell-shaped,andcenteredaroundzero.

(c)TheoutliersinFigure10.3(c)makeitdifficulttotellmoreaboutthedistribution,
butthisisnotwhatweexpecttoseeinanormaldistribution.
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Residuals
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Figure 10.3 Residual plots for least squares fits with problems

Note that the normality condition applies to the residuals of the model. There
is no specific restriction on the distribution of either the explanatory or response
variables. For example, we might have values of the predictor in the sample that
are highly skewed with lots of small values that produce a similar skewness in the
responses. As long as the errors are relatively bell-shaped, we can still use inference
based on the t and F distributions in assessing the regression model.

Example 10.12
Checking Conditions for an Inkjet Printer Model

Produce graphs and comment on the appropriateness of the simple linear model
conditions for the regression model to predict inkjet printer prices using PPM
printing rates with the data in InkjetPrinters.

Solution We have already seen the scatterplot with regression line in Figure 9.1 on page 526.
It shows a general increasing trend, no obvious curvature or big outliers, and a
relatively equal scatter of points above and below the line. Nothing in this plot raises
serious concerns about the simple linear model conditions.

A dotplot of the 20 residuals is shown in Figure 10.4. It looks reasonably
symmetric and has no huge outliers in either tail so we don’t need to worry about
significant departures from normality of the residuals.

A residuals vs fits plot for this model is displayed in Figure 10.5. It shows a
reasonable horizontal band of points on either side of the zero line.

Figure 10.4 Residuals
from regression to predict
inkjet printer price based
on PPM
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Figure 10.5 Residuals vs
Fits for predicting printer
price based on PPM 50
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While it is hard to make definitive assessments of the simple linear model
conditions based on just 20 data points, we don’t see any reason for strong concerns
about any of the conditions for these data.

Checking Conditions for a Multiple Regression Model
The conditions for a multiple regression model are basically the same as for a simple
linear model in that the errors should be normally distributed with zero mean and
a constant variance for any combination of the predictors, i.e. ε ∼ N(0, σε). We can
use most of the same graphical tools to assess the residuals: a residuals vs fits plot
and some sort of histogram or dotplot of the residuals to assess normality and look
for skewness/outliers.

Example 10.13
Checking Conditions for a Bodyfat Model

Since the output in Example 10.4 on page 563 indicates that Height isn’t an especially
effective predictor in that model, run a new model with just Weight and Abdomen
as predictors for Bodyfat. Use residual plots to assess the conditions for the multiple
regression model.

Solution Here is some output for fitting Bodyfat = β0 + β1Weight + β2Abdomen + ε:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −48.77854 4.18098 −11.667 < 2e-16 ***
Weight −0.16082 0.03101 −5.185 1.18e-06 ***
Abdomen 1.04408 0.08918 11.707 < 2e-16 ***

Both predictors have very small p-values and appear to be important in this model.
Figure 10.6 shows a histogram of the residuals and a plot of residuals vs fitted values
for this model. The distribution of the residuals in the histogram is symmetric and
bell-shaped so the normality condition is quite reasonable. The residuals vs fits plot
shows an even scatter on either side of the zero line with no unusual patterns so
constant variability is also reasonable.
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Figure 10.6 Residual
plot for predicting
Bodyfat with Weight and
Abdomen
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(a) Histogram of residuals

Take care to recognize which type of plot is helpful to check the different
conditions. A residual vs fit plot can detect lack of linearity or increasing variability,
but is not so helpful at assessing normality. A histogram or dotplot of residuals can
detect departures from normality or show outliers, but won’t tell us if there are
nonlinear patterns in the data.

What about the condition of independence of the residuals? This means that
the fact that one value in the sample tends to lie above or below the regression fit
does not affect where the next point lies. This is tougher to check visually, but we
can generally rely on the method of randomization used in collecting the data (a
random sample for observational data or random assignment of treatments for an
experiment) to satisfy this condition.

What do we do if we have serious concerns about any of the regression
conditions?

• Use a bootstrap or randomization procedure that is not so dependent on specific
conditions to perform the inference.

• Consider deleting one or two particularly troublesome data points—especially if
they might represent errors in the data—but take care not to blindly exclude any
extreme point. Those are often the most interesting parts of an analysis.

• Although it is beyond the scope of this course, many statisticians use transforma-
tions of the data (such as a square, square root, or logarithm) to help meet the
regression conditions.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a residual vs fits plot to check for linearity and consistent variability
of a regression model

• Use a histogram, dotplot, or boxplot to check for normality and outliers
in the distribution of residuals for a regression model

A
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Exercises for Section 10.2

SKILL BUILDER 1
Exercises 10.38 to 10.41 give scatterplots of residu-
als against predicted values. Match each with one of
the scatterplots shown in Figure 10.7.
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Figure 10.7 Match Exercises 10.38 to 10.41 with these scatterplots
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Check Conditions In Exercises 10.42 and 10.43,
three graphs are shown for a linear model: the
scatterplot with least squares line, a histogram of
the residuals, and a scatterplot of residuals against
predicted values. Determine whether the conditions
are met and explain your reasoning.
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10.44 Height and Weight Using the data in Stu-
dentSurvey, we see that the regression line to predict
Weight from Height is ̂Weight = −170 + 4.82Height.
Figure 10.8 shows three graphs for this linear model:
the scatterplot with least squares line, a histogram of
the residuals, and a scatterplot of residuals against
predicted values.

(a) One of the students in the dataset has a height
of 63 inches and a weight of 200 pounds. Put an
arrow showing the dot representing this person
on the scatterplot with least squares line (or a
rough sketch of the plot).

(b) Calculate the predicted value and the residual
for the person described in part (a).

(c) Put an arrow showing where the person from
part (a) is represented in the histogram of resid-
uals. Also, put an arrow showing where the
person from part (a) is represented in the scat-
terplot of residuals against predicted values.

(d) Determine whether the conditions are met for
inference on this regression model.

10.45 More on Height and Weight As we see in
Exercise 10.44, or by using the data in StudentSur-
vey, the regression line to predict Weight from
Height is ̂Weight = −170 + 4.82Height. Figure 10.8
shows three graphs for this linear model: the scat-
terplot with least squares line, a histogram of the
residuals, and a scatterplot of residuals against pre-
dicted values.

(a) One of the students in the dataset has a height
of 73 inches and a weight of 120 pounds. Put an
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Figure 10.8 Plots to assess Height predicting Weight

arrow showing the dot representing this person
on the scatterplot with least squares line (or a
rough sketch of the plot).

(b) Calculate the predicted value and the residual
for the person described in part (a).

(c) Put an arrow showing where the person from
part (a) is represented in the histogram of resid-
uals. Also, put an arrow showing where the
person from part (a) is represented in the scat-
terplot of residuals against predicted values.

(d) Use these plots to assess the conditions for
inference on this regression model.

10.46 Exercise and Pulse Rate Use the data in
StudentSurvey to assess the conditions for doing
inference on a regression model to predict a per-
son’s pulse rate, Pulse, from the number of hours
a week spent exercising, Exercise. Explain your
reasoning, using each of the three relevant graphs.

10.47 Grams of Fat and Number of Calories Use
the data in NutritionStudy to assess the conditions
for doing inference on a regression model to predict
a person’s daily calories, Calories, from the daily
grams of fat, Fat. Explain your reasoning, using
each of the three relevant graphs.

10.48 Grams of Fat and Cholesterol Level Use the
data in NutritionStudy to assess the conditions for
doing inference on a regression model to predict
a person’s cholesterol level, Cholesterol, from the
daily grams of fat, Fat. Explain your reasoning, using
each of the three relevant graphs.

10.49 Restaurant Bill and Tip Use the data in
RestaurantTips to assess the conditions for doing
inference on a regression line to predict the size
of a customer’s tip, Tip, from the size of the bill,
Bill. Explain your reasoning, using each of the three
relevant graphs.

10.50 Predicting Atlanta Commute Time The data
in CommuteAtlanta show information on both the
commute distance (in miles) and time (in minutes)
for a sample of 500 Atlanta commuters. Suppose

that we want to build a model for predicting the
commute time based on the distance.

(a) Fit the simple linear model, Time = β0 +
β1Distance + ε, for the sample of Atlanta com-
muters and write down the prediction equation.

(b) What time (in minutes) does the fitted model
predict for a 20 mile commute?

(c) Produce a scatterplot of the relationship
between Time and Distance and comment on
any interesting patterns in the plot.

(d) Produce a dotplot or histogram to show the
distribution of the residuals for this model.
Comment on whether the normality condition
is reasonable.

(e) Produce a plot of the residuals vs the fitted val-
ues. Comment on what this plot says about the
simple linear model conditions in this situation.

10.51 Predicting St. Louis Commute Time Refer
to Exercise 10.50. The file CommuteStLouis con-
tains similar information for a sample of 500 com-
muters in St. Louis. Answer the same questions
as Exercise 10.50 using the St. Louis data. Are the
results in St. Louis much different from Atlanta?

10.52 How Accurate Are Our Estimates in Predict-
ing Atlanta Commute Time? In Exercise 10.50 we
consider a simple linear model to predict Time in
minutes for Atlanta commuters based on Distance
in miles using the data in CommuteAtlanta. For a 20
mile commute the predicted time is 31.34 minutes.
Here is some output containing intervals for this
prediction.

NewObs Fit SE Fit 95% CI 95% PI
1 31.343 0.553 (30.257, 32.430) (7.235, 55.452)

(a) Interpret the ‘‘95% CI” in the context of this
data situation.

(b) In Exercise 10.50 we find that the residuals for
this model are skewed to the right with some
large positive outliers. This might cause some
problems with a prediction interval that tries to
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capture this variability. Explain why the 95%
prediction interval in the output is not very real-
istic. (Hint: The speed limit on most Atlanta
freeways is 55 mph.)

10.53 Checking Conditions for Predicting Hous-
ing Prices In Exercise 10.32 on page 571, we use
the data in HomesForSaleNY to predict prices for
houses based on size, number of bedrooms, and
number of bathrooms. Use technology to find the
residuals for fitting that model and construct appro-
priate residual plots to assess whether the conditions
for a multiple regression model are reasonable.

10.54 Checking Conditions for Predicting Body
Mass Gain in Mice In Exercise 10.33 on page 571,
we use the data in LightatNight to predict body
mass gain in mice (BMGain) over a four-week
experiment based on stress levels measured in
Corticosterone, percent of calories eaten during
the day (most mice in the wild eat all calories at
night) DayPct, average daily consumption of food
in grams Consumption, and activity level Activity.

Use technology to find the residuals for that model
and construct appropriate residual plots to assess
whether the conditions for a multiple regression
model are reasonable.

10.55 Checking Conditions for Predicting NBA
Winning Percentage In Exercise 10.34 on page 571,
we use the data in NBAStandings to predict NBA
winning percentage based on PtsFor and PtsAgainst.
Use technology to find the residuals for fitting that
model and construct appropriate residual plots to
assess whether the conditions for a multiple regres-
sion model are reasonable.

10.56 Checking Conditions for Predicting Mustang
Prices In Exercise 10.35 on page 571, we use the
data in MustangPrice to predict the Price of used
Mustang cars based on the Age in years and number
of Miles driven. Use technology to find the residu-
als for fitting that model and construct appropriate
residual plots to assess whether the conditions for a
multiple regression model are reasonable.

10.3USING MULTIPLE REGRESSION

For most of this book, data analysis has been restricted to just one or two variables
at a time. Multiple regression, allowing for the inclusion of many variables, opens up
a whole new world of possibilities! The goal of this section is to delve a little deeper
into multiple regression, and to provide a taste of the type of data analysis you are
now capable of.

Choosing a Model
When several explanatory variables are available, how do we decide which combina-
tion of variables form the best model? If the goal is to use the model for prediction,
we want our model to include all explanatory variables that are helpful for predicting
the response, but to not include superfluous variables. Choosing a final regression
model from several potential predictors is somewhat of an art that often requires
a good deal of experience. While the intricacies of model selection are beyond the
scope of this course (time to take Stat2?) you can still experiment with competing
models and become aware of some criteria available for choosing a model.

Example 10.14
More Predictors for Body Fat

In Section 10.1 we use Weight, Height, and Abdomen circumference to predict per-
cent body fat, Bodyfat. We also have data in Bodyfat on Age and Wrist circumference
for the 100 men in this sample. What combination of these predictors will do the
best job at predicting percent body fat? As an initial step run a multiple regression
with all five possible explanatory variables included. Determine if the overall model
is effective and identify the least effective of the explanatory variables. Should this
variable be dropped from the model?

J til
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Solution Here is some computer output for fitting a model for Bodyfat based on these five
predictors:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −24.94157 20.77414 −1.201 0.2329
Weight −0.08434 0.05891 −1.432 0.1555
Height 0.05177 0.23849 0.217 0.8286
Abdomen 0.96762 0.13040 7.421 5.15e-11 ***
Age 0.07740 0.04868 1.590 0.1152
Wrist −2.05797 0.72893 −2.823 0.0058 **

Residual standard error: 4.074 on 94 degrees of freedom
Multiple R-squared: 0.7542, Adjusted R-squared: 0.7411
F-statistic: 57.67 on 5 and 94 DF, p-value: < 2.2e-16

With all of these predictors, we explain 75.4% of the variability in Bodyfat and
the p-value for the F-statistic is essentially zero, giving strong evidence that some
part of the model is effective for predicting body fat. Looking at the individual t-
tests, only the coefficients corresponding to Abdomen and Wrist are significant. The
p-value for Height is very large (0.8286), indicating that Height is not contributing
significantly to the model.

Based on the result of Example 10.14, we drop Height from the model and
obtain the following output:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −21.06107 10.52814 −2.000 0.04831 *
Weight −0.07608 0.04474 −1.700 0.09231
Abdomen 0.95069 0.10399 9.142 1.13e-14 ***
Age 0.07854 0.04815 1.631 0.10620
Wrist −2.06898 0.72350 −2.860 0.00521 **

Residual standard error: 4.054 on 95 degrees of freedom
Multiple R-squared: 0.754, Adjusted R-squared: 0.7437
F-statistic: 72.81 on 4 and 95 DF, p-value: < 2.2e-16

First, notice that R2 has only decreased by 0.0002, from 0.7542 to 0.7540. Removing
a predictor, even a predictor entirely unrelated to the response variable, can never
explain more variability, so rather than looking for an increase in R2 we check
that R2 has not decreased by any substantial amount. Here R2 barely changes, so
the new model can explain essentially as much variability in body fat without the
unnecessary variable Height.

Beyond R2, we can look at several other numbers to compare models. We
could compare ANOVA p-values and choose in favor of the model with the smaller
p-value, but, as is often the case, here both p-values are too small to observe a
meaningful difference. The residual standard error has decreased from 4.074 to
4.054, indicating that the model without Height yields somewhat more accurate
predictions. The F-statistic has increased from 57.67 to 72.81, more evidence in favor
of the model without Height. Lastly, a number called ‘‘Adjusted R2” has increased
from 0.7411 to 0.7437. Adjusted R2 is essentially R2, but with a small penalty for
including extra variables that are not helping the model. Because of this penalty,
removing a superfluous variable can cause Adjusted R2 to increase, and the fact that
it increases here is further evidence that removing Height is a good idea.
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Criteria for Choosing a Model

There are several numbers which can help in choosing a model:

• Individual t-test p-values

• R2

• Residual standard error

• Overall model p-value

• F-statistic from ANOVA

• Adjusted R2

We want the individual t-test p-values, overall p-value, and residual
standard error to be low, and R2, adjusted R2, and the F-statistic to be
high.

In practice, we may not find a single model that is best for all of
these criteria and we need to use some judgement to balance between
them.

Can we improve the body fat model further by removing Age, which has the
next highest p-value of 0.1062? Let’s find out!

Example 10.15
Multiple regression output using Weight, Abdomen and Wrist to predict Bodyfat
(without Age) is given below. Compare this to the previous output to determine
whether the model with or without Age is better.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −28.75313 9.49382 −3.029 0.003156 **
Weight −0.12360 0.03425 −3.609 0.000491 ***
Abdomen 1.04495 0.08720 11.983 < 2e-16 ***
Wrist −1.46586 0.62722 −2.337 0.021513 *

Residual standard error: 4.089 on 96 degrees of freedom
Multiple R-squared: 0.7471, Adjusted R-squared: 0.7392
F-statistic: 94.56 on 3 and 96 DF, p-value: < 2.2e-16

Solution Some statisticians would say that the model without Age is superior, because the
p-value for Age is insignificant in the earlier model, because removing Age only
caused R2 to decrease from 0.754 to 0.747, and because the F-statistic increased
from 72.81 to 94.56. Other statisticians would say that the model with Age included
is superior, because its residual standard error is lower (4.054 to 4.089) and because
its Adjusted R2 is higher in that model (0.7437 to 0.7392).

The above solution is somewhat unsatisfying. Which answer is correct? This is
where statistics starts to be just as much an art as a science. Often in model selection
there is no ‘‘right” answer, and even experienced statisticians will disagree as to
which is the best model. You can make your own decision about whether Age should
be left in the model. This is part of the fun of statistics!

Based on the output in Example 10.15, we would probably not consider removing
any of the remaining variables from the model. Weight, Abdomen, and Wrist all
yield low individual p-values, indicating that all three of these variables contribute
significantly to the model.
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584 C H A P T E R 10 Multiple Regression

Notice that we consider removing variables one at a time, rather than removing
all insignificant variables immediately from the original model. This is because
coefficients and significance of variables change, depending on what else is included
in the model. For example, Weight was insignificant (p-value = 0.1555) in the
original model including Height and Age, but became quite significant (p-value
= 0.00889) once Height and Age were removed. It’s good practice to consider the
removal of one variable at a time, and then reassess the importance of the other
variables based on the new model.

The coefficients and p-values of remaining variables change when we remove a
variable from a multiple regression model. For this reason, we usually remove one
variable at a time and reassess the model at each stage.

Categorical Variables
Multiple regression is powerful because it can include not only quantitative variables
as predictors, but, when used correctly, categorical explanatory variables as well.
For the model

Y = β0 + β1X1 + · · · + βkXk + ε

to make sense, the values of all explanatory variables need to be numbers. We
can include a binary categorical variable simply by coding its two categories with
0 and 1.

Matt Herring/Getty Images, Inc.

D A T A 10 . 2 Gender Discrimination Among College Teachers?

SalaryGender contains data collected in 2010 on a random sample5 of 100
postsecondary (college) teachers including Gender (coded 0 = female and
1 = male), yearly Salary (in thousands of dollars), Age, and whether or not the
teacher has a PhD (coded 0 = no and 1 = yes). We are interested in whether the
data provide evidence for discrimination based on gender among college
teachers. ■

5A random sample taken from the 2010 American Community Survey (ACS) 1-year Public Use Microdata
Sample (PUMS), http://www.census.gov/acs/www/data documentation/public use microdata sample/.
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Figure 10.9 Yearly
salary (in thousands of
dollars) of college
teachers by gender Female
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Side-by-side boxplots of salary by gender are shown in Figure 10.9. It appears
that the males are making more than the females; is this difference significant? The
sample difference in means is

xm − xf = 63.418 − 41.631 = 21.787

On average, the males in the sample make $21,787 more per year than the females.
A randomization test or t-test for a difference in means yields a two-tail p-value
around 0.0096, indicating that male college teachers have significantly different (and
higher) mean salaries than female college teachers.

We can also do this test using regression. (In fact, you may notice that much of
what we’ve covered in earlier chapters of this book can also be accomplished using
regression.)

Example 10.16
Run a regression model using Salary as the response variable and the 0/1 coded
Gender as the explanatory variable. Comment on how the estimated coefficients
relate to the salary means.

Solution Here is some output for fitting the model Salary = β0 + β1Gender + ε using the data
in SalaryGender:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 41.631 5.796 7.183 1.34e-10 ***
Gender 21.787 8.197 2.658 0.00918 **

Residual standard error: 40.98 on 98 degrees of freedom
Multiple R-squared: 0.06724, Adjusted R-squared: 0.05772
F-statistic: 7.065 on 1 and 98 DF, p-value: 0.009181

We notice that the intercept, 41.631, matches the mean salary for the females
in the sample. The coefficient of Gender, 21.787, is exactly the same as the sample
difference in means (xm − xf ), and the p-value is quite close to the one we achieved
using a test for difference in means.

This is not a coincidence! To interpret this more fully, we need to think a
little harder about what it actually means to code a categorical variable to use in a
regression model.

From the regression output in Example 10.16, we get the prediction equation

̂Salary = 41.631 + 21.787 × Gender
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586 C H A P T E R 10 Multiple Regression

We find the predicted salary for males using Gender = 1:

̂Salary = 41.631 + 21.787 × 1 = 63.418

and the predicted salary for females using Gender = 0:

̂Salary = 41.631 + 21.787 × 0 = 41.631

In this sample, the males make an average of $63,418, and the females make an
average of $41,631 a year. These results based on the fitted regression model match
the means for the females and males in the sample and we see that the slope of the
regression measures the difference in those means.

Example 10.17
Salary and PhD

Output from a model using PhD (1 = teacher has a PhD, 0 = teacher does not have
a PhD) as an explanatory variable for the response variable Salary is shown below.
Use the regression output to answer the questions that follow.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 33.863 4.518 7.496 2.97e-11 ***
PhD 47.850 7.234 6.614 1.98e-09 ***

Residual standard error: 35.28 on 98 degrees of freedom
Multiple R-squared: 0.3086, Adjusted R-squared: 0.3016
F-statistic: 43.75 on 1 and 98 DF, p-value: 1.979e-09

About how big is the difference in mean salary between the two groups in this
sample? Is there evidence that college teachers with a PhD earn significantly more,
on average, than those without a PhD? Give a 95% confidence interval for the size
of the difference in the mean salaries of those with and without PhD’s among all
college teachers from which this sample was drawn.

Solution The estimated coefficient of PhD for this model is 47.85, which indicates that college
teachers with PhD’s average about $47,850 more in salary than those without PhD’s.
The very small p-value of 1.98 × 10−9 for testing this coefficient in the model gives
strong evidence that a difference this large would be very surprising to see by
random chance alone. Since this slope estimates the difference in means, a 95%
confidence interval for the slope can be interpreted as a 95% confidence interval for
the difference in the two means. Using a t-distribution with 100 − 2 = 98 degrees of
freedom and the standard error for the slope in the regression output we have

b1 ± t∗ · SE = 47.85 ± 1.98(7.234) = 47.85 ± 14.32 = (33.53, 62.17)

We are 95% sure that college teachers with a PhD average between $33,530 and
$62,170 more dollars a year than college teachers without a PhD.

Categorical variables with more than two levels can be included similarly, with
multiple 0-1 variables for multiple levels, although the details are beyond the scope
of this course.

We have seen how to use binary categorical variables (with only two possible
categories) in a multiple regression model. In general, it is not appropriate to simply
assign numbers to the categories of a categorical variable with more than two
variables to use in a model.

o
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Accounting for Confounding Variables
We have learned that among college teachers, males get paid significantly more
than females. However, is this alone evidence of gender discrimination? There may
be a confounding variable, or another variable that is associated with both gender
and salary, that can explain the salary difference by gender. For example, we’ve just
learned in Example 10.17 that college teachers with a PhD earn significantly more,
on average, than those without a PhD. Also, in this sample 48% of the males have
a PhD, while only 30% of the females have a PhD. Could this be explaining the
difference in salary due to gender? How do we account for this?

Until now in the course, the only way we’ve had to deal with confounding vari-
ables is to conduct a randomized experiment. With gender and salary, a randomized
experiment would be extremely difficult—how would you randomize a teacher to
be female? While a randomized experiment is the only way to truly eliminate all
confounding variables, multiple regression provides a powerful way to account for
confounding variables by including them as additional explanatory variables in the
model.

To test whether mean salaries are significantly higher for male college teach-
ers, even after accounting for the variable PhD, we simply include both Gender
and PhD as explanatory variables in a multiple regression model. This output is
below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 28.050 5.383 5.211 1.06e-06 ***
Gender 13.638 7.083 1.926 0.0571
PhD 45.270 7.261 6.235 1.18e-08 ***

Residual standard error: 34.81 on 97 degrees of freedom
Multiple R-squared: 0.3341, Adjusted R-squared: 0.3204
F-statistic: 24.33 on 2 and 97 DF, p-value: 2.725e-09

The fitted model is

̂Salary = 28.05 + 13.64 · Gender + 45.27 · PhD

After accounting for whether or not the teachers have a PhD, Gender becomes
only marginally significant (p-value = 0.0571 is not significant at a 5% level), and
the estimated difference in mean salary due to gender drops from $21,878 without
accounting for PhD to $13,638 after accounting for PhD.

Example 10.18
Accounting for both PhD and Age

PhD is not the only potential confounding variable. The sample mean age for males
in SalaryGender is xM = 49.32, and only xF = 44.44 for females. Also, regressing
Salary on Age, we find that Age and Salary are significantly associated, with predicted
salary increasing by $1,319 for every year increase in Age. We account for Age by
including it in the model as an additional explanatory variable, with the relevant
output given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −6.9549 10.8364 −0.642 0.52253
Gender 11.0944 6.7070 1.654 0.10136
PhD 36.4305 7.2534 5.023 2.35e-06 ***
Age 0.8474 0.2318 3.655 0.00042 ***
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Residual standard error: 32.78 on 96 degrees of freedom
Multiple R-squared: 0.4154, Adjusted R-squared: 0.3972
F-statistic: 22.74 on 3 and 96 DF, p-value: 3.308e-11

Is gender a significant predictor of salary, after accounting for the age of the teachers
and for whether or not they have a PhD?

Solution No. After accounting for Age and PhD, Gender is no longer a significant predictor
of Salary (p-value = 0.101). In other words, based solely on this dataset, we do not
have significant evidence of gender discrimination in salaries for college teachers.

It may be tempting to conclude that all differences in salary due to gender can be
explained by the fact that male college teachers tend to be older and more likely to
have a PhD, and therefore that gender discrimination does not exist among salaries
of college teachers. However, remember that lack of significance does NOT mean
the null hypothesis is true! In fact, this is only a subset of a much larger dataset, and
running the same model on the larger dataset yields a significant p-value for Gender,
even after accounting for PhD and Age.

It also may be tempting to make causal conclusions once we have accounted
for confounding variables, but multiple regression only allows us to account for
confounding variables which we have data on. The only way to really make causal
conclusions is to eliminate all possible confounding variables, which can only be
done with a randomized experiment.

Association between Explanatory Variables
The ability to include multiple explanatory variables opens up endless possibilities
for modeling. However, multiple explanatory variables can also make interpret-
ing models much more complicated, particularly when explanatory variables are
associated with each other.

D A T A 10 . 3 Exam Grades
It’s that time of year; your first class in statistics is ending, and the final exam is
probably on your mind. Wouldn’t it be nice to be able to predict your final exam
score? StatGrades contains data on exam scores for 50 students who have
completed a course using this textbook.6 The dataset contains scores on Exam1
(Chapters 1 to 4), Exam2 (Chapters 5 to 8), and the Final exam (entire book). ■

Example 10.19
How well do scores on the first two exams predict scores on the final exam?

Solution We fit a multiple regression model with both exam scores as explanatory variables
and final exam score as the response:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 30.8952 7.9973 3.863 0.000342 ***
Exam1 0.4468 0.1606 2.783 0.007733 **
Exam2 0.2212 0.1760 1.257 0.215086

Residual standard error: 6.377 on 47 degrees of freedom
Multiple R-squared: 0.5251, Adjusted R-squared: 0.5049
F-statistic: 25.98 on 2 and 47 DF, p-value: 2.515e-08

6These students were randomly selected from all students who took a course using this textbook and
were taught by a particular member of the Lock family.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Decide which variables to remove and which variables to keep in a
multiple regression model

• Use categorical variables with two categories as explanatory variables
in multiple regression

• Use multiple regression to account for confounding variables

• Recognize that care should be taken when interpreting coefficients of
predictors that are strongly associated with each other

Exercises for Section 10.3

SKILL BUILDER 1
In Exercises 10.57 and 10.58, use the given output to
answer questions about how a model might change.

10.57 Use the multiple regression output shown to
answer the following questions.

The regression equation is Y = 9.78 + 0.244 X1 + 0.065 X2 - 0.219 X3

Predictor Coef SE Coef T P
Constant 9.781 4.047 2.42 0.025
X1 0.2440 0.1777 1.37 0.184
X2 0.0653 0.1771 0.37 0.716
X3 −0.2186 0.1706 −1.28 0.214

S = 4.93734 R-Sq = 15.0% R-Sq(adj) = 2.9%

Analysis of Variance
Source DF SS MS F P
Regression 3 90.32 30.11 1.23 0.322
Residual Error 21 511.92 24.38
Total 24 602.24

(a) Which variable might we try eliminating first to
possibly improve this model?

(b) What is R2 for this model? Do we expect R2

to increase, decrease, or remain the same if we
eliminate the variable chosen in part (a)? What
type of change in R2 would indicate that remov-
ing the variable chosen in part (a) was a good
idea? A bad idea?

(c) What is the p-value for ANOVA for the original
3-predictor model? Is the p-value most likely to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in the p-value for ANOVA would
indicate that removing the variable chosen in
part (a) was a good idea? A bad idea?

(d) What is the F-statistic from ANOVA for this
model? Is this F-statistic most likely to increase,
decrease, or remain the same if we eliminate an

insignificant variable? What do we hope is true
about any change in this F-statistic when we
eliminate such a variable?

10.58 Use the multiple regression output shown to
answer the following questions.

The regression equation is Y = 15.1 + 0.135 X1 - 0.696 X2 + 0.025 X3

Predictor Coef SE Coef T P
Constant 15.069 5.821 2.59 0.020
X1 0.1353 0.2354 0.57 0.573
X2 −0.6962 0.3029 −2.30 0.035
X3 0.0253 0.1920 0.13 0.897

S = 4.92431 R-Sq = 41.7% R-Sq(adj) = 30.7%

Analysis of Variance
Source DF SS MS F P
Regression 3 277.02 92.34 3.81 0.031
Residual Error 16 387.98 24.25
Total 19 665.00

(a) Which variable might we try eliminating first to
possibly improve this model?

(b) What is R2 for this model? Do we expect R2

to increase, decrease, or remain the same if we
eliminate the variable chosen in part (a)? What
type of change in R2 would indicate that remov-
ing the variable chosen in part (a) was a good
idea? A bad idea?

(c) What is the p-value for ANOVA for the original
3-predictor model? Is the p-value most likely to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in the p-value for ANOVA would
indicate that removing the variable chosen in
part (a) was a good idea? A bad idea?

(d) What is the F-statistic from ANOVA for this
model? Is this F-statistic most likely to increase,
decrease, or remain the same if we eliminate an

o
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o
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insignificant variable? What type of change in
the F-statistic would indicate that removing the
variable chosen in part (a) was a good idea?

10.59 Predicting Profitability of Hollywood Movies
The dataset HollywoodMovies2011 includes infor-
mation on movies that came out of Hollywood
in 2011. We want to build a model to predict
Profitability, which is the percent of the budget
recovered in profits. Start with a model including
the following five explanatory variables:

RottenTomatoes Meta rating of critical
reviews, from the Rotten
Tomatoes website

AudienceScore Average audience score,
from the Rotten Tomatoes
website

TheatersOpenWeek Number of theaters show-
ing the movie on opening
weekend

BOAverageOpenWeek Average box office revenue
per theater opening week-
end, in dollars

DomesticGross Gross revenue in the US by
the end of 2011, in millions
of dollars

Eliminate variables (and justify your decisions) and
comment on how the model changes. Decide which
model you believe is best using only these variables
or a subset of them. Give the model you believe is
best and explain why and how you chose it as the
best model.

10.60 Predicting Mercury Levels in Fish The
dataset FloridaLakes includes information on lake
water in Florida. We want to build a model to
predict AvgMercury, which is the average mercury
level of fish in the lake. Start with a model including
the following four explanatory variables: Alkalinity,
pH, Calcium, and Chlorophyll. Eliminate variables
(and justify your decisions) and comment on how
the model changes. Decide which model you believe
is best using only these variables or a subset of them.
Give the model you believe is best and explain why
and how you chose it as the best model.

10.61 Predicting Blood Levels of Beta-Carotene
We wish to find a model to predict levels of
beta-carotene in the blood, which is the variable
BetaPlasma in the dataset NutritionStudy, using the
following variables as potential predictors: Age, Fat,
Fiber, Alcohol, and BetaDiet. The last is the amount
of beta-carotene consumed by a person.

(a) Use technology to find the correlation between
each of the predictors and the response vari-
able BetaPlasma. Identify the predictors that
appear to be potentially useful based on these
correlations.

(b) Try different models and combinations of pre-
dictors to help explain the beta-carotene plasma
levels. Try to get a good R2 and a good ANOVA
p-value, but also have significant predictors.
Decide on a final model and briefly indicate
why you chose it.

10.62 Predicting Length of Games in Baseball
Baseball is played at a fairly leisurely pace—in fact,
sometimes too slow for some sports fans. What con-
tributes to the length of a major league baseball
game? The file BaseballTimes contains information
from a sample of 30 games to help build a model for
the time of a game (in minutes). Potential predictors
include:

Runs Total runs scored by both teams
Margin Difference between the winner’s and

loser’s scores
Hits Total base hits for both teams
Errors Total number of errors charged to both

teams
Pitchers Total number of pitchers used by both

teams
Walks Total number of walks issued by pitch-

ers from both teams

(a) Use technology to find the correlation between
each of the predictors and the response variable
Time. Identify the predictors that appear to be
potentially useful based on these correlations.

(b) Try different models and combinations of pre-
dictors to help explain the game times. Try to
get a good R2 and a good ANOVA p-value,
but also have significant predictors. Decide on a
final model and briefly indicate why you chose
it.

10.63 Life Expectancy and Electricity Use Use the
data in AllCountries to answer the following ques-
tions.

(a) Is electricity use a significant single predictor of
life expectancy?

(b) Explain why GDP (per-capita Gross Domestic
Product) is a potential confounding variable in
the relationship between Electricity and LifeEx-
pectancy.

(c) Is electricity use a significant predictor of life
expectancy, even after accounting for GDP?
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10.64 Life Expectancy and Cell Phones Use the
data in AllCountries to answer the following ques-
tions.

(a) Is the number of mobile subscriptions per 100
people, Cell, a significant single predictor of life
expectancy?

(b) Explain why GDP (per-capita Gross Domes-
tic Product) is a potential confounding variable
in the relationship between Cell and LifeEx-
pectancy.

(c) Is Cell a significant predictor of life expectancy,
even after accounting for GDP?

10.65 Predicting Prices of New Homes In
Exercise 10.23 on page 569 we fit a model predicting
the price of a home (in $1000s), using size (in square
feet), number of bedrooms, and number of bath-
rooms, based on data in HomesForSale. Output for
fitting a slightly revised model is shown below where
the Size variable is measured in 1000s of square feet
(rather than just the raw square footage in SizeSqFt
in the previous model):

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −217.00 145.90 −1.487 0.1396
Size 330.58 72.62 4.552 1.32e-05 ***
Beds −134.52 57.03 −2.359 0.0200 *
Baths 200.03 78.94 2.534 0.0126 *

Residual standard error: 507.7 on 116 degrees of freedom
Multiple R-squared: 0.4671, Adjusted R-squared: 0.4533
F-statistic: 33.89 on 3 and 116 DF, p-value: 8.383e-16

(a) Compare this output to the regression output in
Exercise 10.23 and comment on how the coef-
ficient, standard error, and t-statistic for Size
change when we code the variable in 1000s
of square feet rather than square feet as in
SizeSqFt.

(b) Interpret the coefficient for Beds, the number
of bedrooms in this fitted model.

(c) An architect (who has not taken statistics) sees
this output and decides to build houses with
fewer bedrooms so they will sell for more
money. As someone who has taken statistics,
help him to correctly interpret this output.

Are Carbon or Steel Bikes Faster? Exercises 10.66
through 10.69 refer to data introduced in
Exercise C.72 on page 456 from an experiment in
which Dr. Jeremy Groves flipped a coin each day to

randomly decide whether to ride his 20.9 lb (9.5 kg)
carbon bike or his 29.75 lb (13.5 kg) steel bike for
his 27 mile round trip commute. His data for 56 days
are stored in BikeCommute. The type of bicycle
(carbon or steel) is the Bike variable and his time
(in minutes) is stored in Minutes. We’ve created a
new variable BikeSteel, which is 1 if the ride is on a
steel bike and 0 if the ride is on a carbon bike.

10.66 Minutes vs Bike Type Output regressing Min-
utes on BikeSteel is shown below.

Response: Minutes
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 108.342 1.087 99.624 <2e-16 ***
BikeSteel −0.553 1.486 −0.372 0.711

Residual standard error: 5.545 on 54 degrees of freedom
Multiple R-squared: 0.002558, Adjusted R-squared: -0.01591
F-statistic: 0.1385 on 1 and 54 DF, p-value: 0.7112

(a) What is Dr. Grove’s predicted commute time if
riding the steel bike?

(b) What is Dr. Grove’s predicted commute time if
riding the carbon bike?

(c) Based on this experiment, is there a significant
difference between the commute time for the
carbon bike and steel bike?

10.67 Distance vs Bike Type The commute is about
27 miles round trip, but actual biking distances,
Distance, ranged from 25.86 to 27.52 miles. Out-
put regressing Distance on BikeSteel is given below.
Is the predicted distance higher for the carbon or
the steel bike? By how much? Is this difference
significant?

Response: Distance
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 27.37446 0.04164 657.363 < 2e-16 ***
BikeSteel −0.39613 0.05689 − 6.962 4.74e-09 ***

Residual standard error: 0.2123 on 54 degrees of freedom
Multiple R-squared: 0.473, Adjusted R-squared: 0.4633
F-statistic: 48.48 on 1 and 54 DF, p-value: 4.741e-09

10.68 Minutes vs Distance and Bike Type Distance
is associated with both the type of bike and com-
mute time, so if we are really interested in which
type of bike is faster, we should account for the
confounding variable Distance. Output regressing
Minutes on both BikeSteel and Distance (measured
in miles) is shown below.
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Response: Minutes
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −176.620 90.065 −1.961 0.05514
BikeSteel 3.571 1.895 1.884 0.06500
Distance 10.410 3.290 3.164 0.00258 **

Residual standard error: 5.133 on 53 degrees of freedom
Multiple R-squared: 0.161, Adjusted R-squared: 0.1294
F-statistic: 5.087 on 2 and 53 DF, p-value: 0.00953

(a) Interpret the coefficient of BikeSteel.

(b) Interpret the coefficient of Distance.

(c) What is the predicted commute time for a 27
mile commute on the steel bike? On the carbon
bike?

10.69 Predicting Average Bike Speed In Exer-
cise 10.66, regressing Minutes on BikeSteel, the

coefficient for BikeSteel is negative. In Exercise
10.68, regressing Minutes on BikeSteel and Distance,
the coefficient for BikeSteel is positive.

(a) A biker interested in whether carbon or steel
bikes are faster is not sure what to make of
these seemingly contradictory results. Explain
to her why the coefficient can be negative in
one model and positive in the other. (Hint:
In Exercise 10.67 we see regressing Distance
on BikeSteel yields a negative coefficient for
BikeSteel.)

(b) If we were to regress the variable AvgSpeed =
Distance/Minutes on BikeSteel, would the coef-
ficient for BikeSteel be negative or positive?
Explain. (You should not need technology to
answer this question.)
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Summary of Inference for Multiple Parameters
In Unit D, we discuss the methods for inference with multiple parameters; either
pertaining to multiple categories in a categorical variable (chi-square tests and
analysis of variance) or multiple parameters in a regression model.

Chi-square tests and analysis of variance extend the hypothesis tests of
Chapters 4 and 6 to allow for categorical variables with multiple categories.
Chi-square tests allow for testing one or two categorical variables with multiple
categories, and analysis of variance allows for testing one quantitative and one
categorical variable with multiple categories.

Regression involves building models to predict a quantitative response variable
based on one quantitative explanatory variable (simple regression), or multiple
explanatory variables (multiple regression). Most of the inferential methods pre-
sented in this book pertain to one or two variables, but multiple regression provides
a way of incorporating more than two variables.

As with the rest of the book, the appropriate method of analysis is determined
by the type of variables, categorical or quantitative, although now we also have to
determine whether the categorical variables have two categories or more than two
categories. The appropriate methods of inference, based on the number of variables,
whether the variable(s) are categorical or quantitative, and whether the categorical
variable(s) have two or more categories, are summarized in Table D.1.

Table D.1 Guide to choosing the appropriate method based on the
variables and number of categories

Variables Number of Categories Appropriate Inference

Two Categories Single Proportion or
One Categorical Chi-Square Goodness of Fit

More Categories Chi-Square Goodness of Fit

One Quantitative — Single Mean

Two Categories Difference in Proportions or
Two Categorical Chi-Square Test for Association

More Categories Chi-Square Test for Association

Two Categories Difference in Means or
One Categorical, Analysis of Variance
One Quantitative More Categories Analysis of Variance

Two Quantitative — Correlation,
Simple Regression

Quantitative Response, — Multiple Regression
Multiple Explanatory

Categorical Response, — Take STAT2!
Multiple Explanatory

Hypothesis Testing
Although the methods of this unit are quite different, they all include hypothesis

testing. In every instance of hypothesis testing:

• We have a null and an alternative hypothesis, a test statistic, a p-value, and a
conclusion to reject or not reject the null hypothesis.
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• The null hypothesis is usually that nothing interesting is going on (no association,
proportions are as specified, variable not useful in model), whereas the alternative
is that there is something interesting going on.

• A smaller p-value provides more evidence to support the alternative hypothesis,
often that there is a relationship between variables.

• The fundamental question in every case: Do the sample data provide enough
evidence against the null hypothesis to rule out random chance as an explanation
for the data (if the null hypothesis is true)?

Although we encounter new distributions and more sophisticated computations, the
basic ideas all build on the fundamental concepts we introduce in Chapter 4 and
have carried throughout the text.

Confidence Intervals
The methods in Unit D tend to be more focused on testing hypotheses (is there

a relationship between these variables?) rather than estimating with confidence
intervals (how big is the effect?). In many of the settings, we use intervals after
running an initial test to see if a relationship exists or after fitting a model. For
example:

• After an ANOVA for difference in means, find a confidence interval for the
difference in means between a specific pair of groups.

• After finding an effective simple linear regression model, find a prediction interval
for the response for a specific value of the explanatory variable.

• After fitting a regression model, find a confidence interval for the coefficient
(slope) for a predictor.

For each of these intervals, we use the familiar formula

Sample Statistic ± t∗ · SE

where we use technology or a formula to find the appropriate standard error.

Chi-Square Tests: Tests for Categorical Variables
Chi-square tests are used for testing hypotheses about one or two categorical

variables and are appropriate when the data can be summarized by counts in a table.
The variables can have multiple categories. The type of chi-square test depends on
whether there are one or two categorical variables:

• One Categorical Variable: Chi-Square Goodness-of-Fit Test

• Two Categorical Variables: Chi-Square Test for Association

Chi-square tests compare observed counts to expected counts (if the null hypothesis
were true). If the observed counts are farther away from the expected counts than
can be explained just by random chance, we have evidence against the null hypothesis
and in favor of the alternative. The distance between observed and expected counts
is quantified with the χ2-statistic, which is compared to a χ2-distribution to calculate
the p-value. The details are laid out below:

1. State hypotheses

• For one categorical variable:

–Null hypothesis: The proportions match some pre-assumed set of proportions.

–Alternative hypothesis: At least one category has a proportion different from
the null values.
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• For two categorical variables:

–Null hypothesis: There is no association between the variables (distribution of
proportions for one variable is the same within each category of the second
variable).

–Alternative hypothesis: There is an association between the variables.

2. Summarize the data in a table with observed counts
3. Calculate the expected counts for each cell (as if the null hypothesis were true)

• For one categorical variable:
Expected count for a cell = n · pi, where pi is given in H0.

• For two categorical variables:

Expected count for a cell = Row total · Column total
Total sample size

.

4. Compute the χ2-statistic:

χ2 =
∑ (Observed − Expected)2

Expected

5. Find the p-value as the upper tail in a χ2-distribution

• For one categorical variable: df = k − 1, where k is the number of categories in
the variable.

• For two categorical variables: df = (r − 1) · (c − 1), where r is the number of rows
(categories in one variable) and c is the number of columns (categories in the
other).

6. Make a conclusion

• If the results are significant, we have evidence in favor of the alternative hypothesis.
A more informative conclusion can be given by comparing the relative sizes of
observed and expected counts of individual cells, and the relative contribution of
cells to the chi-square statistic.

With only two categories the chi-square goodness-of-fit test is equivalent to a
test for a single proportion, and the chi-square test for association is equivalent to a
test for a difference in two proportions.

Analysis of Variance: Test for a Difference in Means
Analysis of variance is used to test for an association between one quantitative

variable and one categorical variable or, equivalently, to test for a difference in
means across categories of a categorical variable. The categorical variable can have
multiple categories. This method is appropriate when the summary statistics include
sample means calculated within groups.

Analysis of variance compares variability within groups to variability between
groups. If the ratio of variability between groups to variability within groups is higher
than we would expect just by random chance, we have evidence of a difference in
means. This ratio is called the F-statistic, which we compare to an F-distribution to
find the p-value. The details are laid out below.

1. State hypotheses

• Null hypothesis: μ1 = μ2 = · · · = μk (no difference in means by category).

• Alternative hypothesis: Some μi �= μj (difference in means between categories).

2. Compute the F-statistic using an ANOVA table:
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Source df Sum of Sq. Mean Square F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

The sums of squares SSTotal = SSG + SSE are obtained by technology or formula.
3. Find the p-value as the upper tail in an F-distribution

• Use df for Groups and df for Error from the ANOVA table.

4. Make a conclusion

• If the results are significant, we have evidence of an association between the
variables (and a difference in means between the groups defined by the categorical
variable). A more informative conclusion can be given if desired by using the
methods of pairwise comparison presented in Section 8.2.

If the categorical variable has only two categories, analysis of variance is
equivalent to a test for a difference in means between two groups.

Inference after ANOVA: Confidence Intervals or Pairwise Tests

• Use t-distribution with Error df and
√

MSE from ANOVA to estimate variability.
Use technology or see formulas on page 514.

Regression
Regression is used to predict a quantitative response variable based on oneQ1

or more explanatory variables, and to model relationships between explanatory
variable(s) and a quantitative response variable. In order to use regression, all
variables need to be measured on the same set of cases.

The simple linear regression model (one quantitative explanatory variable) is
introduced in Section 2.6, and Chapter 9 extends this analysis to include inference.
Multiple regression extends simple linear regression to include multiple explanatory
variables.

Some important aspects of regression are summarized below:

• R2 gives the percent of variability in the response variable that is explained by the
explanatory variable(s) in the model.

• Test for Correlation (only for simple regression)

–Null hypothesis: There is no linear relationship between the variables (ρ = 0)

–Test statistic: t = r
√

n − 2√
1 − r2

–Distribution: t-distribution with df = n − 2

• Test for Slope (in simple regression this is equivalent to a test for correlation)

–Null hypothesis: The variable is not significant in the model (βi = 0)

–Test statistic: t = bi − 0
SE

, where SE is the standard error of the slope

–Distribution: t-distribution with df = n − k − 1, where k is the number of
explanatory variables

• Analysis of Variance for Regression (check overall model fit)
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–Null hypothesis: The model is not effective at predicting the response variable

–Test statistic: F-statistic from an ANOVA table (see details on page 542)

–Distribution: Upper tail for an F-distribution with df for Model and df for Error

• Conditions for Regression

–In a scatterplot (in simple regression) or residuals vs fits plot (in multiple
regression), watch out for curvature (or any non-linear trend), increasing or
decreasing variability, or outliers.

–In a histogram or dotplot of the residuals, watch out for obvious skewness or
outliers.

• Regression intervals (use technology or formulas on page 553)

–Confidence interval for the mean response at some specific explanatory value

–Prediction interval for an individual response at some specific explanatory value

• Variables in Multiple Regression

–The coefficient and significance of each explanatory variable depend on the
other explanatory variables included in the model.

–More variables are not always better; consider pruning insignificant variables
from the model.

Case Study: Sleep, Circadian Preference, and Grade
Point Average

© Klubovy/iStockphoto

Is this an early morning class?

D A T A D . 1 Sleep Study With College Students

A recent study7 examines the relationship between class start times, sleep,
circadian preference, alcohol use, academic performance, and other variables in
college students. The data were obtained from a sample of students who did
skills tests to measure cognitive function, completed a survey that asked many
questions about attitudes and habits, and kept a sleep diary to record time and

7Onyper, S., Thacher, P., Gilbert, J., and Gradess, S., ‘‘Class Start Times, Sleep, and Academic
Performance in College: A Path Analysis,” Chronobiology International, April 2012; 29(3): 318–335.
Thanks to Serge Onyper and Pamela Thacher for sharing the data with us.

I
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quality of sleep over a two-week period. Some data from this study are available
in SleepStudy. ■

Example D.1
Are You a Lark or an Owl?

Past studies8 indicate that about 10% of us are morning people (Larks) while 20%
are evening people (Owls) and the rest aren’t specifically classified as either. Studies
also indicate that this circadian preference may not be settled until 22 years of age
or later. Table D.2 shows the number in each category for the 253 college students
in the study described in Data D.1. Is there evidence that the owl/lark preferences
for college students differ from the claimed proportions?

Table D.2 Circadian preference:
Are you a lark or an owl?

Type Frequency

Lark 41
Neither 163
Owl 49

Total 253

Solution We are comparing frequency counts from a sample to some preconceived propor-
tions, so we use a chi-square goodness-of-fit test for this analysis. The hypotheses
are

H0 : pL = 0.1, pN = 0.7, pO = 0.2

Ha : Some pi is wrong

where pL, pN , pO represent the proportion in each category of Lark, Neither, Owl,
respectively, for the population of college students represented by this sample. We
find the expected counts using n · pi, so we have

EL = 253(0.1) = 25.3 EN = 253(0.7) = 177.1 EO = 253(0.2) = 50.6

All of the expected counts are well above 5 so we proceed with a chi-square test.
We find the chi-square statistic using

χ2 = (41 − 25.3)2

25.3
+ (163 − 177.1)2

177.1
+ (49 − 50.6)2

50.6
= 9.743 + 1.123 + 0.051 = 10.917

We use the upper tail of a chi-square distribution to find the p-value, and there
are three categories so df = 3 − 1 = 2. The area above χ2 = 10.917 gives a p-value
of 0.004. This is a small p-value and we find evidence that the proportions are
significantly different than those expected. The largest contribution comes from the
‘‘Lark” cell and we see (surprisingly, for college students!) that there are more Larks
than expected.

Example D.2
Stress and Circadian Preference

Are stress levels of college students affected by circadian preference? Test to see if
there is evidence of a relationship between the variables LarkOwl and Stress. Stress
level is identified as either normal or high and circadian preference is identified as
lark, owl, or neither. Table D.3 shows the counts in each cell.

8http://www.nasw.org/users/llamberg/larkowl.htm.

o
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Table D.3 Stress levels and circadian
preference

Lark Neither Owl Total

Normal 31 125 41 197
High 10 38 8 56

Total 41 163 49 253

Solution The data are frequency counts for two categorical variables, so we use a chi-square
test of association for the analysis. The null hypothesis is that there is no relationship
between Stress and LarkOwl status and the alternative hypothesis is that there is a
relationship. We find the expected count in each cell, and then the contribution to
the chi-square statistic, using

Expected count = Row total · Column total
Total sample size

Contribution = (Observed − Expected)2

Expected

The computer output below shows, for each cell, the observed count from the table
with the expected count below it and the contribution to the chi-square statistic
below that:

Lark Neither Owl

Normal 31 125 41
31.92 126.92 38.15
0.027 0.029 0.212

High 10 38 8
9.08 36.08 10.85

0.094 0.102 0.747

We add up all the contributions to obtain the χ2-statistic:

χ2 = 0.027 + 0.029 + 0.212 + 0.094 + 0.102 + 0.747 = 1.211

We use a chi-square distribution to find the p-value, with df = (r − 1) · (c − 1) =
2 · 1 = 2. We find a p-value of 0.546. This is a large p-value and does not offer
sufficient evidence that circadian preference and stress levels are related.

Example D.3
Are Cognitive Skills and Alcohol Use Related?

One of the variables in SleepStudy is CognitionZscore which assigns each person a
z-score based on results on several cognitive skills tests, with higher scores indicating
stronger cognitive ability. Another is AlcoholUse which shows self-reported levels
of alcohol use in one of four categories: Abstain, Light, Moderate, or Heavy. Is
there a relationship between cognitive skills and alcohol use? Summary statistics are
given in Table D.4 and side-by-side boxplots are shown in Figure D.1.

Solution Notice that the light drinkers have the highest mean cognitive score while the heavy
drinkers have the lowest. Is the difference between these four alcohol use groups
significant? We are investigating a relationship between a quantitative variable

o

o
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Table D.4 Cognitive skills and alcohol use

Sample Size Mean Std.Dev.

Abstain 34 0.0688 0.7157
Light 83 0.1302 0.7482
Moderate 120 −0.0785 0.6714
Heavy 16 −0.2338 0.6469

Overall 253 0.000 0.7068

Figure D.1 Is there a
difference in cognitive
skills based on alcohol
use? 0

Moderate

CognitionZscore

Light

Heavy

Abstain

A
lc

o
h

o
lU

se

1−1−2 2

(CognitionZscore) and a categorical variable (AlcoholUse), so the appropriate test
is analysis of variance for a difference in means. The relevant hypotheses are:

H0 : Mean cognition score is the same for each alcohol use group

Ha : Mean cognition score differs among some alcohol use groups

We see in Table D.4 and Figure D.1 that the normality and equal variance
conditions appear to be met, so we proceed to construct the ANOVA table.

The Groups df is k − 1 = 4 − 1 = 3 in this case, while the Total df is n − 1 =
253 − 1 = 252 and the Error df is n − k = 253 − 4 = 249. We find the sum of squares
using the formulas or using technology. Using the formulas (page 504), we have

SSG = 34(0.069 − 0)2 + 83(0.130 − 0)2 + 120(0.079 − 0)2

+ 16(−0.234 − 0)2 = 3.183

SSError = 33(0.71572) + 82(0.74822) + 119(0.67142) + 15(0.64692) = 122.7

SSTotal = 252(0.7068)2 = 125.9

Completing the ANOVA table, we arrive at the results shown in the following
computer output:

Source DF SS MS F P
AlcoholUse 3 3.183 1.061 2.15 0.094
Error 249 122.718 0.493
Total 252 125.901

The p-value is found using the F-distribution with 3 numerator df and 249 denom-
inator df. The p-value of 0.094 is not significant at a 5% level, so we do not find
evidence of a difference in mean cognitive skills based on alcohol use. At a 10%
level, however, we do find this evidence. However, we should be careful not to infer

I

i r



D Essential Synthesis 603

cause and effect (in either direction) since these data come from an observational
study.

Example D.4
Comparing Cognitive Skill between Light and Heavy Drinkers

Based on the ANOVA results of Example D.3, find and interpret a 95% confidence
interval for the difference in mean cognitive skill z-scores between students who
classify themselves as light and heavy alcohol users.

Solution From the ANOVA output we find MSE = 0.493 with 249 degrees of freedom. For
95% confidence and this many degrees of freedom we find t∗ = 1.97. Using the
means and sample sizes for the light and heavy categories of Table D.4 we compute
the confidence interval for the difference in means as

(xL − xH) ± t∗ ·
√

MSE
(

1
nL

+ 1
nH

)

(0.1302 − (−0.2338)) ± 1.97 ·
√

0.493
(

1
83

+ 1
16

)
0.3640 ± 0.3780

−0.014 to 0.742

We are 95% sure that students who classify themselves as light alcohol users have
an average cognitive z-score that is somewhere between 0.014 points lower and
0.742 points higher than students classified as heavy alcohol users. Note that this
interval includes zero (no difference at a 5% level) as we expect given the result of
the ANOVA test in Example D.3.

Example D.5
Early Classes and Grade Point Average

The correlation between number of early classes (starting at or before 8:30 am) per
week and grade point average is r = 0.101 with n = 253. Explain what a positive
correlation means in this situation, and test whether this sample correlation provides
evidence of an association between these two variables.

Solution A positive correlation implies that grades tend to be higher for those taking more
early classes. To test for an association, we test H0 : ρ = 0 vs Ha : ρ �= 0. The
t-statistic is

t = r
√

n − 2√
1 − r2

= 0.101
√

251√
1 − (0.1012)

= 1.608

Using a t-distribution with n − 2 = 253 − 2 = 251 degrees of freedom, and using
a two-tail test, we find a p-value of 2(0.0545) = 0.109. We do not find sufficient
evidence to show an association between the number of early classes and grade
point average.

Example D.6
Sleep Quality and DASScore

Students were rated on sleep quality and the results are in the quantitative variable
PoorSleepQuality, with higher values indicating poorer sleep quality. Students
were also rated on Depression, Anxiety, and Stress scales, with the DAS score
(DASScore) giving a composite of the three scores, with higher values indicting
more depression, anxiety, and/or stress. How well does the DAS score predict sleep

o

o
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Figure D.2 Sleep quality
and depression scores
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quality? A scatterplot of the data is in Figure D.2 and computer output for the
regression analysis is given below:

The regression equation is
PoorSleepQuality = 4.64 + 0.0806 DASScore

Predictor Coef SE Coef T P
Constant 4.6418 0.2574 18.04 0.000
DASScore 0.080594 0.009912 8.13 0.000

S = 2.60279 R-Sq = 20.8% R-Sq(adj) = 20.5%

Analysis of Variance
Source DF SS MS F P
Regression 1 447.90 447.90 66.12 0.000
Residual Error 251 1700.40 6.77
Total 252 2148.30

(a) Do the conditions for fitting a linear model appear to be met?

(b) Interpret R2 in this context.

(c) Identify and interpret the t-test of the slope.

(d) What conclusion can we draw based on the ANOVA table?

Solution (a) Judging from the scatterplot of the data, the conditions for a linear model appear
to be met. There is no obvious curvature and the data appear to be scattered in
roughly parallel bands above and below the least squares line.

(b) We see that R2 = 20.8%, so 20.8% of the variability in sleep quality can be
explained by students’ DAS scores.

(c) The slope is 0.0806 and we see from the large t-statistic of 8.13 and small p-value
of 0.000 that DAS score is an effective predictor of sleep quality.

(d) From the ANOVA test, we see that the F-statistic is 66.12 and the p-value is
0.000. This simple linear regression model based on DAS score is effective at
predicting sleep quality.

Example D.7
Predicting Sleep Quality for a Specific Student

Suppose that one of the students at this college has a fairly high DAS score of 40.
Predict the sleep quality for this student and find an interval that will be 95% sure
to contain the actual value for her PoorSleepQuality.

••
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Solution Using the regression equation from Example D.6 we find that the predicted
PoorSleepQuality score for a student with DASScore = 40 is

PoorSl̂eepQuality = 4.642 + 0.0806(40) = 7.87

We use technology to request regression intervals when DASScore = 40 to
produce the output below:

New Obs Fit SE Fit 95% CI 95% PI
1 7.866 0.257 (7.360, 8.371) (2.715, 13.017)

Since we need an interval to contain the sleep quality for a particular student,
we use the prediction interval. We are 95% sure that a student with DAS score of
40 will have a poor sleep quality score somewhere between 2.7 and 13.0.

Example D.8
Predicting Grade Point Average with Multiple Predictors

We create a multiple regression model to predict grade point average (GPA) from
the number of early classes, the number of classes missed, the quality of sleep, a
happiness score (with higher values indicating greater happiness), the number of
alcoholic drinks per week, and the average number of hours of sleep per night.
Graphs of residuals raise no serious concerns about performing the analysis, and
computer output is shown:

The regression equation is
GPA = 3.77 + 0.0111 NumEarlyClass − 0.0198 ClassesMissed

−0.00424 PoorSleepQuality − 0.00244 Happiness − 0.0254 Drinks
− 0.0339 AverageSleep

Predictor Coef SE Coef T P
Constant 3.7699 0.2825 13.34 0.000
NumEarlyClass 0.01110 0.01634 0.68 0.497
ClassesMissed −0.019795 0.007907 −2.50 0.013
PoorSleepQuality −0.004241 0.009540 −0.44 0.657
Happiness −0.002439 0.004774 −0.51 0.610
Drinks −0.025418 0.006040 −4.21 0.000
AverageSleep −0.03388 0.02623 −1.29 0.198

S = 0.386280 R-Sq = 10.9% R-Sq(adj) = 8.7%

Analysis of Variance
Source DF SS MS F P
Regression 6 4.4822 0.7470 5.01 0.000
Residual Error 246 36.7062 0.1492
Total 252 41.1884

(a) Interpret (in context) the signs of the coefficients for NumEarlyClasses and
ClassesMissed.

(b) Which of the six explanatory variables is most significant in the model? Is the
coefficient of this variable positive or negative? Interpret the sign in context.

(c) Which variables are significant at a 5% level?

(d) Use output in the ANOVA table to determine whether the overall model is
effective at predicting GPA.

(e) Interpret R2.

(f) How might we try to improve the model?

o
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Solution (a) The coefficient of NumEarlyClasses is positive, which means that, given the
other variables in the model, GPA tends to go up as the number of early classes
goes up. (This makes sense, since studies show that more motivated students
tend to be more likely to take early classes.) The coefficient of ClassesMissed is
negative, which means that, given the other variables in the model, GPA tends
to go down as the number of classes missed goes up. (This also makes sense,
since more motivated students are less likely to miss class.)

(b) The variable Drinks is most significant in the model. The coefficient is negative
which means that, given the other variables in the model, GPA tends to be lower
for students who have more alcoholic drinks. This variable is very significant in
the model, with a p-value of 0.000.

(c) Only two variables are significant at a 5% level: Drinks and ClassesMissed. Both
have negative coefficients.

(d) The p-value from the ANOVA table is 0.000 so the model as a whole is effective
at predicting grade point average.

(e) We see that 10.9% of the variability in grade point averages can be explained
by these six explanatory variables.

(f) Several of the explanatory variables (such as PoorSleepQuality and Happiness)
are very insignificant in the model. It makes sense to try eliminating one of
them from the model and running the regression again. For example, using
ClassesMissed, Drinks, and AverageSleep will still give an R2 of 10.5%. Are
there other explanatory variables that might do better? Try it and see!

There are many interesting variables in this dataset and much more analysis
that can be conducted. Make up some of your own questions using these variables.
Then use technology and the dataset to see what you can discover!

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify which type of inference for multiple categories or multiple
variables is appropriate in a given situation

• Put all the pieces together to answer more involved questions using
real data for which chi-square, ANOVA, or regression analysis is
appropriate

Exercises for UNIT D: Essential Synthesis

Restaurant Tips In Data 2.12 on page 119, we intro-
duce the dataset RestaurantTips containing infor-
mation on the tipping patterns of patrons of the First
Crush bistro in northern New York state. The data
from 157 bills include the amount of the bill, size of
the tip, percentage tip, number of customers in the

group, whether or not a credit card was used, day
of the week, and a coded identity of the server. The
first four variables are quantitative and the last three
are categorical. In Exercises D.1 to D.10, we use
the RestaurantTips dataset to analyze relationships
between these variables.

o

o
o
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D.1 Do the Servers Serve Equal Numbers of
Tables? The data come from three different servers,
coded as A, B, and C to preserve anonymity.
The number of bills for each server is shown in
Table D.5. Do the servers serve equal numbers of
tables?

Table D.5 Number of bills by server

Server A B C Total

Number of Bills 60 65 32 157

D.2 Are Bills Evenly Distributed between the
Days of the Week? The number of bills for each
day of the week is shown in Table D.6. Does this
provide evidence that some days of the week are
more popular (have more bills) than others?

Table D.6 Number of bills by day

Day Mon Tues Wed Thurs Fri Total

Number of Bills 20 13 62 36 26 157

D.3 Are Credit Cards used Equally Often among
the Three Servers? The data come from three differ-
ent servers, coded as A, B, and C, and we also have
information on whether or not a credit (or debit)
card was used to pay the bill rather than cash. The
frequency counts are shown in the two-way table in
Table D.7. At a 5% significance level, is there an
association between who the server is and whether
the bill is paid in cash or with a credit/debit card?

Table D.7 Cash or credit card by server

Server A B C Total

Cash 39 50 17 106
Card 21 15 15 51

Total 60 65 32 157

D.4 Are Credit Cards used Equally Often between
the Days of the Week? The data come from all five
week days and we also have information on whether
or not a credit (or debit) card was used to pay the bill
rather than cash. The frequency counts are shown in
the two-way table in Table D.8. Find the chi-square
statistic for this two-way table. Are the conditions
met to use the chi-square distribution? Why or why
not? Conduct the appropriate test to determine

whether there is evidence of an association between
the day of the week and whether the bill is paid in
cash or with a credit/debit card.

Table D.8 Cash or credit card by day

Mon Tues Wed Thurs Fri Total

Cash 14 5 41 24 22 106
Card 6 8 21 12 4 51

Total 20 13 62 36 26 157

D.5 Does Average Tip Percentage Vary by
Server? Most restaurant patrons leave a tip between
15% and 20% of the bill, and some restaurant cus-
tomers determine the percent tip to leave based on
the quality of service. Summary statistics for mean
tip percentage left between the three servers, coded
A, B, and C, are given in Table D.9. Is there a dif-
ference in mean tip percentage between the three
servers? Be sure to check conditions of the test, and
conduct the appropriate test.

Table D.9 Percent tip by server

Server Sample Size Mean Std.Dev.

A 60 17.543 5.504
B 65 16.017 3.485
C 32 16.109 3.376

Overall 157 16.619 4.386

D.6 Does Size of the Bill Vary by Server? Are
some servers given the big spenders (or large
groups) while others tend to those having only a
cup of coffee or a glass of wine? Is there a difference
in the mean size of the bill between the three dif-
ferent servers? Summary statistics for mean bill size
between the three servers, coded A, B, and C, are
given in Table D.10. Is there a difference in mean
bill size between the three servers? Be sure to check
conditions of the test, and conduct the appropriate
test.

Table D.10 Size of the bill by server

Server Sample Size Mean Std.Dev.

A 60 22.76 12.71
B 65 21.14 10.19
C 32 25.92 14.35

Overall 157 22.729 12.157
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D.7 Tip by Number of Guests: Correlation Do
larger parties tend to leave a larger tip? Figure D.3
shows a scatterplot between the size of the tip and
the number of guests.

(a) Does there appear to be an association in the
data between number of guests and tip size?
If so, is it positive or negative? Are there any
outliers?

(b) The correlation between the two variables is
r = 0.504 with n = 157. Test to see if this shows
a significant positive correlation.

(c) If the correlation is significant, does that imply
that more guests cause the tip to go up? If not,
what is an obvious confounding variable?
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Figure D.3 Size of the tip by number of guests

D.8 Tip by Number of Guests: Regression How
much larger do tips get with larger parties?
Figure D.3 shows a scatterplot between the size of
the tip and the number of guests. Output regressing
Tip on Guests is shown below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.1068 0.4130 2.680 0.00816 **
Guests 1.3087 0.1802 7.264 1.72e-11 ***

Residual standard error: 2.098 on 155 degrees of freedom
Multiple R-squared: 0.254, Adjusted R-squared: 0.2492
F-statistic: 52.77 on 1 and 155 DF, p-value: 1.715e-11

(a) Interpret the value of the coefficient for Guests
in context.

(b) A server begins to wait on a table with three
guests. What is her predicted tip?

(c) The server calculates a 95% confidence interval
for the average tip for a table of three guests to
be (4.57, 5.49), and a 95% prediction interval to
be (0.86, 9.20), but is unsure what these intervals

tell about how much she should expect to get as
a tip. Help her interpret both intervals.

D.9 ANOVA for Regression to Predict Tip from
Bill We have seen in earlier exercises that the con-
ditions are met for using a regression line to predict
the Tip from the size of the Bill. Some regression
output is shown for fitting this linear model:

The regression equation is
Tip = - 0.292 + 0.182 Bill

S = 0.979523 R-Sq = 83.7% R-Sq(adj) = 83.6%

Analysis of Variance
Source DF SS MS F P
Regression 1 765.53 765.53 797.87 0.000
Residual Error 155 148.72 0.96
Total 156 914.25

(a) Find the value for R2 in the output and interpret
it in context.

(b) Find the F-statistic and p-value in the regression
ANOVA. What is the conclusion of this test?

D.10 Predicting Tip from Bill and Number of
Guests In Exercise D.9, we use the size of the bill to
predict the tip. In this exercise, we use both the size
of the bill and the number of guests to predict the
size of the tip. Some regression output is shown for
this analysis:

The regression equation is
Tip = − 0.252 + 0.184 Bill − 0.036 Guests

Predictor Coef SE Coef T P
Constant −0.2524 0.2019 −1.25 0.213
Bill 0.183751 0.007815 23.51 0.000
Guests −0.0357 0.1019 −0.35 0.727

S = 0.982307 R-Sq = 83.7% R-Sq(adj) = 83.5%

Analysis of Variance
Source DF SS MS F P
Regression 2 765.65 382.82 396.74 0.000
Residual Error 154 148.60 0.96
Total 156 914.25

(a) What is the regression equation? What tip is
predicted for three guests with a $30 bill?

(b) There are two explanatory variables in the
model. Interpret the coefficient of each.

(c) Give the p-value for testing the slope of each
explanatory variable, and indicate whether each
is significant in the model.

(d) Give the value of R2 and interpret it in context.

(e) Find the F-statistic and p-value in the regres-
sion ANOVA. What are the hypotheses and
conclusion of this test?

I

I
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Review Exercises for UNIT D

Using Theoretical Distributions In Exercises D.11
to D.18, a test statistic for one of the tests in this
unit is given, along with information about sample
size(s) or degrees of freedom. Give the p-value and
indicate whether the results are significant at the
5% level.

D.11 An upper-tail test for correlation with
t-statistic = 1.36 and df = 15

D.12 An analysis of variance test with F-statistic =
7.42 and df-numerator = 3 and df-denominator = 56

D.13 A chi-square goodness-of-fit test with
χ2-statistic = 4.18 and 5 groups

D.14 A two-tailed test for slope in a one-predictor
regression model with t-statistic = 2.89 and n = 30

D.15 ANOVA for difference in means for 100 peo-
ple separated into six groups with F-statistic = 2.51

D.16 A chi-square test for a 2 × 4 table with χ2-
statistic = 6.83

D.17 A two-tailed test for the coefficient of the first
predictor in a three-predictor regression model with
t-statistic = 1.83 and n = 26

D.18 A lower-tail test for correlation with t-statistic
= −4.51 and n = 81

Which Test Is Appropriate? In this unit, we have
covered six specific tests, listed below. For each
situation given in Exercises D.19 to D.27, identify
which of these tests is most appropriate. If multiple
tests are appropriate, list them all.

• Chi-square goodness-of-fit test

• Chi-square test for association

• Analysis of variance for difference in means

• Test for correlation

• Test for a slope/coefficient in a regression model

• Analysis of variance for regression

D.19 Three different drugs are being tested on
patients who have leukemia and the response vari-
able is white blood cell count.

D.20 Three different drugs are being tested on
patients who are HIV-positive and the response
variable is whether or not the person develops
AIDS.

D.21 Data are collected from 50 different towns
on number of wood-burning houses and number
of people with asthma, and the study is investigat-
ing whether there is a linear relationship between
the two.

D.22 The admissions office at a university uses data
from high school transcripts such as number of
honors courses, number of AP courses, grade in
11th grade English, and grade in 9th grade math
to develop a model to predict success in college as
measured by grade point average. They wish to test
the effectiveness of this model.

D.23 A polling agency working in a large city knows
(from census data) the distribution of all city resi-
dents by race. They select a sample of 2000 residents
and would like to check that the distribution of
racial groups within their sample is not significantly
different from the proportions in the city as a whole.

D.24 A breakfast cereal company wants to know
how useful the height of the display for that brand is
in the store, in a model predicting sales of the boxes
of cereal based on height of the display, price of the
cereal, width of the aisle in the store, and amount
spent on advertising in that community.

D.25 A hockey team wants to determine how effec-
tive a model is to predict winning percentage based
on power-play percentage, penalty-kill percentage,
number of checks per game, face-off win percentage,
and number of penalties per game.

D.26 A test is being conducted to see if the average
time it takes for a case to go to trial differs between
counties in a state. Seven counties will be included
and the data will include a random sample of 25
cases from each county.

D.27 A test is being conducted to see if the propor-
tion of cases that get settled out of court is different
between the different counties in a state. Seven
counties will be included and the data will include a
random sample of 60 cases from each county.

D.28 North Carolina Republican 2012 Presidential
Primary A SurveyUSA poll conducted March 16
to 20, 2012 on a random sample of 358 North Car-
olina likely Republican primary voters9 found that
38.5% preferred Rick Santorum, 29.6% preferred
Mitt Romney, 20.4% preferred Newt Gingrich, and
11.5% preferred Ron Paul. Is this evidence that the
candidates are not equally preferred among North
Carolina likely Republican primary voters?

D.29 Higher SAT Score? One of the variables in
our StudentSurvey dataset is a categorical variable
indicating in which SAT subject the student scored

9The original sample size was n = 403, but 45 voters answered
‘‘undecided,” and we ignore these voters here.
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higher (Math, Verbal, or the same). The results are
in Table D.11. Perform the appropriate test to deter-
mine if the overall number of intro stat students who
scored higher on the math section is different from
the number who scored higher on the verbal. (Hint:
Ignore ties.)

Table D.11 Higher SAT subject

Math Verbal Same

205 150 7

ADHD? Or Just Youngest in the Class? A new
study10 indicates that the youngest children in a
school grade are more likely to be diagnosed with
attention-deficit/hyperactivity disorder (ADHD)
than their older peers in the same grade. The study
involved 937,943 children between 6 and 12 years
old in British Columbia, Canada. The cutoff date
for entering school in any year in British Columbia
is December 31, so in any given class, those born
late in the year are almost a year younger than those
born early in the year. Is it possible that the younger
students are being over-diagnosed with ADHD?
Exercises D.30 and D.31 examine this question.

D.30 Boys: ADHD or Just Young? Table D.12
shows the number of boys diagnosed with ADHD
based on the quarter of the year in which they were
born, as well as the proportion of boys born during
that quarter.

(a) What is the total number of boys diagnosed with
ADHD in the sample?

(b) For the null hypothesis, use the overall propor-
tion of births in a quarter to give the null pro-
portion for that quarter. Compute the expected
number of ADHD diagnoses for each quarter
under this hypothesis.

(c) Compute the χ2-statistic.

(d) Give the degrees of freedom and find the
p-value.

(e) State the conclusion of the test. For which group
of children does ADHD appear to be diagnosed
more frequently than we would expect? Less
frequently? Write a sentence explaining what
this means about ADHD and relative age in
school.

10Morrow, R., et al., ‘‘Influence of relative age on diagnosis and
treatment of attention-deficit/hyperactivity disorder in children,”
Canadian Medical Association Journal, April 17, 2012; 184(7):
755–762.

Table D.12 ADHD diagnoses and birth date for
boys

Birth Date ADHD Diagnoses Proportion of Births

Jan–Mar 6880 0.244
Apr–Jun 7982 0.258
Jul–Sep 9161 0.257
Oct–Dec 8945 0.241

D.31 Girls: ADHD or Just Young? Exercise D.30
examines a relationship between relative age in a
class and likelihood of ADHD diagnosis for boys in
British Columbia. Girls are less likely overall to be
diagnosed with ADHD but does the same relation-
ship exist with relative age in school? Table D.13
shows the number of girls diagnosed with ADHD
based on the quarter of the year in which they were
born, as well as the proportion of girls born dur-
ing that quarter. Answer the same questions as in
Exercise D.30, using the data for girls instead of
boys.

Table D.13 ADHD diagnoses and relative age
for girls

Birth Date ADHD Diagnoses Proportion of Births

Jan–Mar 1960 0.243
Apr–Jun 2358 0.258
Jul–Sep 2859 0.257
Oct–Dec 2904 0.242

D.32 Rain in California Amy is interested in mov-
ing to California but isn’t certain which city she’d
prefer. One variable of interest to her is the propor-
tion of rainy days in each city. She took a random
sample of days from 2010 for each of the four biggest
cities in California (Los Angeles, San Francisco, San
Diego, and San Jose) and recorded the results in
Table D.14.11 If a day contained any precipitation it
is considered a rainy day.

(a) Is the chi-square distribution appropriate for
testing this two-way table?

(b) Perform the appropriate test to determine if
the proportion of rainy days is different among
these four cities.

(c) State your conclusion(s). If there is a significant
difference, which city would you advise Amy to
move to if she does not like rainy days?

11Sample collected from wunderground.com.
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Table D.14 Count of rainy days in four
California cities

LA SF SD SJ Total

Rain 4 6 22 3 35
No Rain 21 17 63 20 121

Total 25 23 85 23 156

D.33 Rain in San Diego In Exercise D.32 we
observe that within the random sample of 85 days
the city of San Diego has rainy weather just over
a quarter of the time. Amy is now curious as to
whether there is a rainy season, or if the rainy days
are dispersed evenly throughout the year. She sep-
arates the 85 days into the four seasons, Spring
(Mar–May), Summer (Jun–Aug), Fall (Sep–Nov),
and Winter (Dec–Feb) and observes rainy day
counts as seen in Table D.15.

(a) Is the chi-square distribution appropriate for
testing this two-way table?

(b) Perform the appropriate test to determine if the
proportion of rainy days is different among the
four seasons.

(c) State your conclusion(s). If there is a significant
difference, when is the rainy season?

Table D.15 Count of rainy days in four
San Diego seasons

Spring Summer Fall Winter

Rain 5 0 6 11
No Rain 16 22 14 11

D.34 Painkillers and Miscarriage Exercise 2.22 on
page 56 describes a study examining the link
between miscarriage and the use of painkillers dur-
ing pregnancy. Scientists interviewed 1009 women
soon after they got positive results from pregnancy
tests about their use of painkillers around the time of
conception or in the early weeks of pregnancy. The
researchers then recorded which of the pregnancies
were successfully carried to term. The results are in
Table D.16. (NSAIDs refer to a class of painkillers
that includes aspirin and ibuprofen.) Does there
appear to be an association between having a mis-
carriage and the use of painkillers? If so, describe
the relationship. If there is an association, can we
conclude that the use of painkillers increases the
chance of having a miscarriage?

Table D.16 Does the use of painkillers increase
the risk of miscarriage?

Miscarriage No miscarriage Total

NSAIDs 18 57 75
Acetaminophen 24 148 172
No painkiller 103 659 762

Total 145 864 1009

D.35 Binge Drinking The American College
Health Association—National College Health
Assessment survey,12 introduced on page 58, was
administered at 44 colleges and universities in Fall
2011 with more than 27,000 students participated in
the survey. Students in the ACHA—NCHA survey
were asked ‘‘Within the last two weeks, how many
times have you had five or more drinks of alcohol
at a sitting?” The results are given in Table D.17.
Is there a significant difference in drinking habits
depending on gender? Show all details of the test.
If there is an association, use the observed and
expected counts to give an informative conclusion
in context.

Table D.17 In the last two weeks,
how many times have you had five or
more drinks of alcohol?

Male Female Total

0 5402 13,310 18,712
1–2 2147 3678 5825
3–4 912 966 1878
5+ 495 358 853

Total 8956 18,312 27,268

D.36 Which Is More Important: Grades, Sports, or
Popularity? 478 middle school (grades 4 to 6) stu-
dents from three school districts in Michigan were
asked whether good grades, athletic ability, or pop-
ularity was most important to them.13 The results
are shown below, broken down by gender:

Grades Sports Popular

Boy 117 60 50
Girl 130 30 91

12www.acha-ncha.org/docs/ACHA-NCHA-II ReferenceGroup
DataReport Fall2011.pdf.

13Chase, M. and Dummer, G., ‘‘The Role of Sports as a Social
Determinant for Children,” Research Quarterly for Exercise and
Sport, 1992; 63: 418–424.
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(a) Do these data provide evidence that grades,
sports, and popularity are not equally valued
among middle school students in these school
districts? State the null and alternative hypothe-
ses, calculate a test statistic, find a p-value, and
answer the question.

(b) Do middle school boys and girls have different
priorities regarding grades, sports, and popular-
ity? State the null and alternative hypotheses,
calculate a test statistic, find a p-value, and
answer the question.

D.37 Homes for Sale In Exercise C.64 on page 454,
we looked at differences in average housing price
between two states at a time with data from Homes-
ForSale. We can now set up an ANOVA to test and
see if there is a difference between all four states at
once. We have a total of n = 120 homes from the
k = 4 states.

(a) What are the null and alternative hypotheses?

(b) What is the degrees of freedom for Groups?

(c) What is the degrees of freedom for Error?

(d) Without looking at the data, which (groups or
error) would you guess has a greater sum of
squares?

D.38 Checking Conditions for Homes for Sale In
Exercise D.37 we outline and discuss an ANOVA
approach to test for a difference in average hous-
ing price between all four states using the dataset
HomesForSale. Figure D.4 shows one of the sam-
ples, specifically for New York, and Table D.18
shows the mean and standard deviation for each
of the four states. Are the conditions for ANOVA
met? If not, what is the problem or problems?
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Figure D.4 Histogram of sales for New York

Table D.18 Mean housing prices for four
states

State n Mean Std.Dev.

New York 30 565.6 697.6
New Jersey 30 388.5 224.7
Pennsylvania 30 249.6 179.3
California 30 715.1 1112.3

D.39 Fiber and Brand in Breakfast Cereal Data 9.2
on page 540 introduces the dataset Cereal, which
includes information on the number of grams of
fiber in a serving for 30 different breakfast cereals.
The cereals come from three different companies:
General Mills, Kellogg’s, and Quaker. Use the fact
that SSGroups is 4.96 and SSTotal is 102.47 to
conduct an analysis of variance test to determine
whether there is a difference in mean number of
grams of fiber per serving between the three com-
panies. The conditions for ANOVA are reasonably
met.

D.40 Height and Voice Data were collected on the
heights of singers14 and are summarized and dis-
played below. Does average height differ by voice?

mean sd n
alto 64.88571 2.794653 35
bass 70.71795 2.361408 39
soprano 64.25000 1.872737 36
tenor 69.15000 3.216323 20
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(a) State the null and alternative hypotheses.

(b) Are the conditions for using the F-distribution
satisfied? Why or why not?

(c) Complete the ANOVA table given below, and
make a conclusion in context.

Sum of Mean
Source df Sq. Square F-statistic p-value
Groups 1058.5
Error 796.7
Total

D.41 Hollywood Movies and World Gross We have
data in HollywoodMovies2011 on the world gross
(total worldwide box office income) for all 2011
Hollywood movies, although for this problem we’ve
removed movies classified as ‘‘Adventure” or ‘‘Fan-
tasy” because there were only one and two movies,

14Chambers, J., Cleveland, W., Kleiner, B., and Tukey P., Graph-
ical Methods for Data Analysis, Wadsworth International Group,
Belmont, CA, 1983, p. 350.

m



D Review Exercises 613

0
40

0
10

00

Action Animation Comedy Drama Horror Romance Thriller

W
o

rl
d

 G
ro

ss

respectively, in each category. The relevant sum-
mary statistics and visualization are shown. If we
consider this year as a sample of all movies, do we
have evidence that the mean world gross differs by
movie genre?

mean sd n
Action 249.05 280.29 31
Animation 286.58 222.42 12
Comedy 107.53 120.59 27
Drama 44.63 49.92 21
Horror 73.23 73.49 17
Romance 143.52 186.10 10
Thriller 86.91 58.95 13
------------------------------------------------------------
Overall 143.59 190.66 131

(a) Calculate the F-statistic.

(b) Are the conditions for using the F-distribution
satisfied? Why or why not?

D.42 Effect of Color on Performance: In Exer-
cise 8.16 on page 506, we discuss a study investigat-
ing the effect of ink color on performance in an
anagram test. Three different colors were used with
a total of 71 participants. The red group contained
19 participants and they correctly solved an average
of 4.4 anagrams. The 27 participants in the green
group correctly solved an average of 5.7 anagrams
and the 25 participants in the black group correctly
solved an average of 5.9 anagrams. From the analy-
sis of variance in Exercise 8.16, we see that there is
a significant difference between the groups and that
the mean square error from the ANOVA table is
0.84.

(a) Find and interpret a 95% confidence interval
for the mean number of anagrams we expect
people to solve when the ink is red.

(b) Find and interpret a 95% confidence interval
for the difference in mean number of anagrams
we expect people to solve between when the ink
is green and when it is red.

(c) Test whether there is a significant difference in
means between when the ink is red and when it
is black.

D.43 Heat from Laptop Computers and Sperm
Count In Exercise 8.17 on page 507, we conduct

an ANOVA test to see if mean scrotal temperature
increase is different between three different con-
ditions. In each condition, males sit with a laptop
computer on the lap. In one condition, they sit with
legs together, in another with legs apart, and in a
third with legs together but a lap pad under the
laptop. The ANOVA test found a significant differ-
ence in temperature increase between the groups.
The summary statistics are shown in Table D.19 and
the mean square error from the ANOVA table is
0.63. Conduct tests of all three pairwise comparisons
and summarize the findings.

Table D.19 Scrotal temperature increase
in ◦C with a laptop computer on lap

Condition n Mean Std.Dev.

Legs together 29 2.31 0.96
Lap pad 29 2.18 0.69
Legs apart 29 1.41 0.66

D.44 Cognition Skills Test and Grade Point Aver-
age How closely related are results on short cog-
nitive skills tests and a grade point average over
several years in college? In Data D.1 on page 599,
we introduce the data in SleepStudy. Two of the
variables in that study are CognitionZscore, which
is a standardized z-score derived from multiple tests
of cognitive skills such as recalling a list of words,
and GPA, grade point average on a 4-point scale.
The sample correlation between these two variables
is r = 0.267 with n = 253. Test to see if there is evi-
dence to show a positive association between these
two variables in the population.

D.45 Happiness and Hours of Sleep Does a good
night’s sleep make you happier? In Data D.1 on
page 599, we introduce the data in SleepStudy. Two
of the variables in that study are Happiness, scores
on a standard happiness scale with higher numbers
indicating greater happiness, and AverageSleep,
average number of hours slept in a night. The sample
correlation between these two variables is r = 0.104
with n = 253. Test to see if there is evidence to find
a positive association between these two variables
in the population.

-r O °
, L-zn= 1 |

1 O _9_
|

i
|



614 U N I T D

D.46 Depression and Missed Classes Is depression
a possible factor in students missing classes? In
Data D.1 on page 599, we introduce the data in
SleepStudy. Two of the variables in that study are
DepressionScore, scores on a standard depression
scale with higher numbers indicating greater depres-
sion, and ClassesMissed, the number of classes
missed during the semester. Computer output is
shown for predicting the number of classes missed
based on the depression score.
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.77712 0.26714 6.652 1.79e-10 ***
DepressionScore 0.08312 0.03368 2.468 0.0142 *

Residual standard error: 3.208 on 251 degrees of freedom
Multiple R-squared: 0.0237, Adjusted R-squared: 0.01981
F-statistic: 6.092 on 1 and 251 DF, p-value: 0.01424

(a) Interpret the slope of the regression line in
context.

(b) Identify the t-statistic and the p-value for testing
the slope. What is the conclusion, at a 5% level?

(c) Interpret R2 in context.

(d) Identify the F-statistic and p-value from the
ANOVA for regression. What is the conclusion
of that test?

D.47 Alcoholic Drinks and Missed Classes Is drink-
ing alcohol a possible factor in students missing
classes? In Data D.1 on page 599, we introduce the
data in SleepStudy. Two of the variables in that
study are Drinks, the number of alcoholic drinks in
a week, and ClassesMissed, the number of classes
missed during the semester. Computer output is
shown for predicting the number of classes missed
based on the number of drinks.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.86444 0.34395 5.421 1.39e-07 ***
Drinks 0.06196 0.04979 1.244 0.215

Residual standard error: 3.237 on 251 degrees of freedom
Multiple R-squared: 0.006131, Adjusted R-squared: 0.002172
F-statistic: 1.548 on 1 and 251 DF, p-value: 0.2145
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(a) Scatterplot with regression line
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(c) Residual vs fits plot
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(b) Histogram of residuals

Figure D.5 Checking conditions for predicting classes missed by depression scores

(a) Interpret the slope of the regression line in
context.

(b) Identify the t-statistic and the p-value for testing
the slope. What is the conclusion, at a 5% level?

(c) Interpret R2 in context.

(d) Identify the F-statistic and p-value from the
ANOVA for regression. What is the conclusion
of that test?

D.48 Checking Conditions for Depression and
Missing Classes In Exercise D.46, we consider a
regression model to use a student’s depression
score to predict the number of classes missed
in a semester. Here we check the conditions for
using that regression model. Three graphs for this
model are shown in Figure D.5: the scatterplot with
regression line, a histogram of the residuals, and
a scatterplot of residuals against predicted values.
Discuss whether the conditions are met. Be sure to
comment on all three graphs.

D.49 Checking Conditions for Alcoholic Drinks
and Missing Classes In Exercise D.47, we consider
a regression model to use the number of alcoholic
drinks a student has in a week to predict the number
of classes missed in a semester. Here we check the
conditions for using that regression model. Three
graphs for this model are shown in Figure D.6: the
scatterplot with regression line, a histogram of the
residuals, and a scatterplot of residuals against pre-
dicted values. Discuss whether the conditions are
met. Be sure to comment on all three graphs.

Predicting Points Scored by a Basketball Player
Using the data in NBAPlayers2011, we can create
a regression model to predict points in a season for
an NBA basketball player based on the number of
free throws made. For our sample data, the number
of free throws made in a season ranges from 16 to
594, while the number of points ranges from 104
to 2161. In Exercises D.50 and D.51, use the given
information and computer output to give the values
for each interval and interpret it in context:

••

„ ••
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(c) Residual vs fits plot
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(b) Histogram of residuals

Figure D.6 Checking conditions for predicting classes missed by alcoholic drinks

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response

D.50 The intervals given are for a player who makes
100 free throws in a season:

FTMade Fit SE Fit 95% CI 95% PI
100 710.8 17.8 (675.7, 745.8) (340.7, 1080.8)

D.51 The intervals given are for a player who makes
400 free throws in a season:

FTMade Fit SE Fit 95% CI 95% PI
400 1613.6 27.5 (1559.3, 1667.9) (1241.2, 1986.0)

D.52 Predicting Grade Point Average The com-
puter output below shows a multiple regression
model to predict grade point average (GPA) using
six variables from the dataset SleepStudy. Gender
is coded 0 for females and 1 for males; ClassYear is
coded 1 for first year, 2 for sophomore, 3 for junior,
and 4 for senior; ClassesMissed is number of classes
missed during the semester; CognitionZscore is a
normalized z-score of results from cognitive skills
tests; DASScore is a combined measure of depres-
sion, anxiety, and stress with higher numbers indi-
cating more depression, anxiety, or stress; Drinks is
the number of alcoholic drinks consumed in a week.
The regression equation is
GPA = 3.49 − 0.0971 Gender − 0.0558 ClassYear − 0.0146 ClassesMissed

+ 0.118 CognitionZscore + 0.00284 DASScore − 0.0163 Drinks

Predictor Coef SE Coef T P
Constant 3.48759 0.07497 46.52 0.000
Gender −0.09714 0.05326 −1.82 0.069
ClassYear −0.05583 0.02284 −2.44 0.015
ClassesMissed −0.014613 0.007467 −1.96 0.051
CognitionZscore 0.11837 0.03421 3.46 0.001
DASScore 0.002844 0.001441 1.97 0.049
Drinks −0.016336 0.006241 −2.62 0.009

S = 0.369552 R-Sq = 18.4% R-Sq(adj) = 16.4%

Analysis of Variance
Source DF SS MS F P
Regression 6 7.5925 1.2654 9.27 0.000
Residual Error 246 33.5958 0.1366
Total 252 41.1884

(a) Interpret the coefficients of Gender, ClassYear,
and ClassesMissed in context. Be sure to pay
attention to how the first two variables are
coded.

(b) Use the p-value from the ANOVA test to
determine whether the model is effective.

(c) Interpret R2 in context.

(d) Which explanatory variable is most significant
in the model? Which is least significant?

(e) Which variables are significant at a 5% level?

D.53 Predicting Percent Body Fat Data 10.1 on
page 562 introduces the dataset BodyFat. Computer
output is shown for using this sample to create a mul-
tiple regression model to predict percent body fat
using the other nine variables.

The regression equation is
Bodyfat = − 23.7 + 0.0838 Age − 0.0833 Weight + 0.036 Height

+ 0.001 Neck − 0.139 Chest + 1.03 Abdomen + 0.226 Ankle
+ 0.148 Biceps − 2.20 Wrist

Predictor Coef SE Coef T P
Constant −23.66 29.46 −0.80 0.424
Age 0.08378 0.05066 1.65 0.102
Weight −0.08332 0.08471 −0.98 0.328
Height 0.0359 0.2658 0.14 0.893
Neck 0.0011 0.3801 0.00 0.998
Chest −0.1387 0.1609 −0.86 0.391
Abdomen 1.0327 0.1459 7.08 0.000
Ankle 0.2259 0.5417 0.42 0.678
Biceps 0.1483 0.2295 0.65 0.520
Wrist −2.2034 0.8129 −2.71 0.008

S = 4.13552 R-Sq = 75.7% R-Sq(adj) = 73.3%

Analysis of Variance
Source DF SS MS F P
Regression 9 4807.36 534.15 31.23 0.000
Residual Error 90 1539.23 17.10
Total 99 6346.59

(a) Interpret the coefficients of Age and Abdomen
in context. Age is measured in years and
Abdomen is abdomen circumference in cen-
timeters.

r T~n ••
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(b) Use the p-value from the ANOVA test to deter-
mine whether the model is effective.

(c) Interpret R2 in context.

(d) Which explanatory variable is most significant
in the model? Which is least significant?

(e) Which variables are significant at a 5% level?

D.54 Exercise, Gender, and GPA The dataset Stu-
dentSurvey, introduced on page 4, contains infor-
mation on hours of Exercise per week and GPA.
Here we use a slightly modified version called GPA-
Gender which eliminates missing values (leaving
n = 343 students) and codes the gender with 1 for
males and 0 for females in a new GenderCode vari-
able. This allows us to use information on gender in
a regression model.

(a) Test for an association between Exercise and
GPA using the data in GPAGender. Give the
p-value and make a conclusion in context.

(b) Tests for difference in means reveal that gender
is significantly associated with both GPA and
Exercise (males have lower GPAs and exercise
more on average), so gender may be a con-
founding variable in the association between
Exercise and GPA. Use multiple regression to
determine whether Exercise is a significant pre-
dictor of GPA, even after accounting for gender
as coded in GenderCode.

D.55 Number of Piercings, SAT Score, and GPA
The dataset GPAGender, described in Exer-
cise D.54, contains a subset of the StudentSurvey
data which also has information on total SAT scores,
GPA, and number of Piercings for those n = 343
students.

(a) Test for an association between number of
Piercings and GPA using the data in GPAGen-
der. Give the p-value and make a conclusion in
context.

(b) Use multiple regression to test for an associ-
ation between number of Piercings and GPA,
after accounting for SAT score.

D.56 Finding a Model for Percent Body Fat Exer-
cise D.53 shows a multiple regression model to pre-
dict percent body fat using the nine other variables in
the dataset BodyFat. Try to improve on this model,
using a subset of these predictors to balance the
desire to use important individual predictors with
explaining a significant portion of the variability in
body fat. Describe the process you use to obtain
your model and discuss the merits of your final
choice. (Note: There are a number of reasonable
final models.)

D.57 Finding a Model for Baseball Wins The data-
set BaseballHits has a variable called Wins for
the number of wins in a season and also has
many other quantitative variables: Runs, Hits, Dou-
bles, Triples, HomeRuns, RBI, StolenBases, Caught-
Stealing, Walks, StrikeOuts, BattingAverage. Use
technology and this dataset to find a good model
to predict the number of wins for a baseball team.
Describe the process you use to obtain your model
and discuss the merits of your final choice. (Note:
There are a number of reasonable final models.)

D.58 Finding a Model for Happiness The Sleep-
Study dataset introduced in Data D.1 on page 599
contains many variables measuring different char-
acteristics of the students in the study. One of these
is a Happiness score that includes values from a
minimum of 0 (very unhappy) to a maximum of 35
(extremely happy!). Find a reasonable regression
model to predict Happiness based on some of the
other variables available in the SleepStudy dataset.
Describe the process you use to obtain your model
and discuss the merits of your final choice. (Note:
There are a number of reasonable choices for final
models.)

Projects for UNIT D

Project 1 Statistical Inference in the Media

This project asks you to find examples of statistical
inference in the media. You are asked to find one
article in the popular press where a test is
described but no explicit p-value is given, and one
article in a scholarly journal where a p-value is
explicitly given. You should submit a well-written
report addressing each of the following parts.

Part 1 Mainstream Media

Find a description of a statistical test in the popular
press (such as in a magazine or online) in which the
authors appear to be describing a chi-square test,
an analysis of variance test, or any test for
correlation or regression.
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(a) What type of test do you believe is being
described? (Sometimes it is hard to tell, so use
your best judgment.)

(b) Describe how the test was conducted. How
were the data collected (or can you not tell this
from the article)? Are the data the result of an
experiment or an observational study?

(c) What is the conclusion of the test?

(d) What is a likely range for the p-value of this
test, given the information in the article?

(e) Attach a copy of the relevant article and include
the complete citation or web address.

Part 2 Scholarly Article

Find a scholarly article (such as that typically found
in a journal) that gives the results of a statistical
test and that explicitly includes the p-value, or that

gives a range for the p-value. Find an article in
which the authors appear to be describing a
chi-square test, an analysis of variance test, or any
test for correlation or regression.

(a) What type of test do you believe is being
described? (Sometimes it is hard to tell, so use
your best judgment.)

(b) Describe how the test was conducted. How
were the data collected (or can you not tell this
from the article)? Are the data the result of an
experiment or an observational study?

(c) What is the conclusion of the test?

(d) In your own words, how strong is the evidence
for the conclusion of the test?

(e) Attach a copy of the relevant article (or the rel-
evant portion of the article) and include the
complete citation or web address.

Project 2 Analyze Your Own Data—Chi-Square Test

This project asks you to collect and analyze your
own data for a chi-square test for association.

Step 1 Find or collect your data.

You will need frequency counts for two categorical
variables. The sample size should be large enough
that the expected counts will be at least 5 in each
cell, probably at least n = 50. Many survey
instruments give information on categorical data so
it should not be hard to find data online, or you can
collect your own data. Be sure that you have
information about both categorical variables of
interest for each case. (Note: Several suggestions
are given at the bottom of this page, or come up
with your own idea.)

Step 2 Conduct the analysis.

Using technology or by hand, find the expected
counts and conduct the chi-square test.

Step 3 Write your report.

Submit a well-written report addressing each of the
following parts:

• Introduction How did you find or collect your
data? (If you found the data, give a clear refer-
ence. If you collected the data, describe clearly
the data collection process you used.) What are
the cases? What are the variables? What popula-
tion do you believe the sample might generalize
to? Is the sample data from an experiment or an

observational study? Include a two-way table of
the data.

• Analysis State the hypotheses of the test. Con-
duct the test, showing all details such as expected
counts, contribution of each cell to the chi-
square statistic, degrees of freedom used, and the
p-value.

• Conclusion State a clear conclusion in context. If
the results are significant, which cells contribute
the most to the chi-square statistic? For these
cells, are the observed counts greater than or
less than expected? Whether or not the results
are significant, describe the relationship as if you
were writing an article for your campus paper. If
the results are significant, can we infer a causal
relationship between the variables?

Topic or Resource Suggestions

Use one of these or come up with your own idea or
find your own source. There are many sites
reporting frequency counts from survey results.

• Frequency of smoking (never, occasionally, fre-
quently) and gender for students

• Academic division (science, arts, business,
engineering, . . .) and whether the student has a
Mac, PC, or neither, for students

• Whether a person plans to vote in the next elec-
tion and political party affiliation

• Handedness (left or right) and position in
baseball
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• Number of baskets made from the foul shot line
out of 20, for you and two friends

• Any frequency counts given in a two-way table
in a report by the Pew Research Center (pewre-
search.org)

• Any frequency counts given in a two-way table
in a report on American College Health Asso-
ciation—National College Health Assessment
survey (www.acha-ncha.org)

Project 3 Analyze Your Own Data—ANOVA for Means

This project asks you to collect and analyze your
own data for an analysis of variance test for a
difference in means.

Step 1 Find or collect your data.

Your data should consist of information on two
variables: a quantitative variable which will allow
you to calculate means and a categorical variable to
allow you to separate the data into groups. The
sample size should be large enough that there are
at least five data values in each group. You can use
published data or collect your own. Be sure that
you have information about both variables of
interest for each case. (Note: Several suggestions
are given at the bottom of this page, or come up
with your own idea.)

Step 2 Conduct the analysis.

Use technology to create relevant graphs, examine
relevant summary statistics, and conduct the
ANOVA analysis.

Step 3 Write your report.

Submit a well-written report addressing each of the
following parts.

• Introduction How did you find or collect your
data? (If you found the data, give a clear refer-
ence. If you collected the data, describe clearly
the data collection process you used.) What are
the cases? What are the variables? What popula-
tion do you believe the sample might generalize
to? Is the sample data from an experiment or an
observational study?

• Summary Statistics and Visualization Include
summary statistics (mean, standard deviation,
sample size) for each of the groups and for the

sample as a whole. Include side-by-side box-
plots or other visualization and comment on it.
Informally, does there appear to be a difference
between the groups? Do any groups stand out as
higher or lower than the others? Are the condi-
tions for ANOVA reasonably met?

• ANOVA Analysis State the hypotheses of the
test, clearly defining all parameters. Conduct
the test, showing all details including the full
ANOVA table, with p-value.

• Conclusion State a clear conclusion in con-
text. If the results are significant, which group
means appear to be significantly different from
which other group means (and in what direc-
tion?) Whether or not the results are significant,
describe the relationship as if you were writing
an article for your campus paper. If the results
are significant, can we infer a causal relationship
between the variables?

Topic or Resource Suggestions

Use one of these or come up with your own idea or
find your own source:

• Number of text messages sent/received in a day
and year in school, for students

• Number of hours spent studying a week and
academic division (science, arts, business,
engineering, . . .), for students

• Points and position (center, wing, defense) in
hockey

• Time to run a specified distance, with repeated
trials, comparing you and two friends

• Average audience score on RottenToma-
toes.com for four different movies

Project 4 Analyze Your Own Data—Correlation and Regression

This project asks you to collect and analyze your
own data for tests involving two quantitative
variables.

Step 1 Find or collect your data.

Your data should consist of information on two
quantitative variables. The sample size should be at
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least n = 25. You can use published data or collect
your own. Be sure that you have information about
both quantitative variables of interest for each case.
(Note: Several suggestions are given at the bottom
of this page, or come up with your own idea.)

Step 2 Conduct the analysis.

Use technology to create relevant graphs, examine
relevant summary statistics, and conduct the
analysis.

Step 3 Write your report.

Submit a well-written report addressing each of the
following parts:

• Introduction How did you find or collect your
data? (If you found the data, give a clear refer-
ence. If you collected the data, describe clearly
the data collection process you used.) What are
the cases? What are the variables? Which vari-
able is your explanatory variable and which is
your response variable? What population do you
believe the sample might generalize to? Is the
sample data from an experiment or an observa-
tional study? Include a table of the data.

• Summary Statistics and Visualization Include a
scatterplot and discuss what you see. Are there
any outliers or particularly influential points?
Does there appear to be a positive or negative
relationship and how strong does it appear to be?
Include, in addition, a scatterplot with regres-
sion line on it. Include summary statistics (mean,
standard deviation, sample size, five number

summary) for each variable individually, and for
their relationship (correlation).

• Test for Correlation State the correlation and
the p-value for a test of the correlation. Give
the hypotheses of the test, clearly defining the
parameter. State the conclusion of the test in
context.

• Regression State the regression line. Use the first
line of data in your dataset to make a prediction
and compute a residual. Interpret the slope of the
line in context. Test the slope, giving hypotheses,
the t-statistic, the p-value, and a clear conclu-
sion in context. Include computer output for
an ANOVA for regression test for this model.
Give hypotheses and state a clear conclusion in
context.

Topic Suggestions

Determine whether there is a significant
correlation between:

• Number of hours spent studying and number of
hours spent playing video games for students

• Driving distance and scoring for professional
golfers

• Life expectancy and per-capita GDP for coun-
tries

• Asking price and mileage for used cars at an
Internet sales site

• Number of friends on Facebook and number of
hours on the computer per day for students

Project 5 Analyze Your Own Data—Multiple Regression

This project asks you to collect and analyze your
own data to fit a multiple regression model.

Step 1 Find or collect your data.

Your data should consist of information on one
quantitative response variable and at least four
explanatory variables that you think may help
predict the response variable. The explanatory
variables should either be quantitative or
categorical with only two categories. The sample
size should be at least n = 25. You can use
published data or collect your own.

Step 2 Conduct the analysis and write the

report.

Submit a well-written report addressing each of the
following parts. Use technology and be sure to

include all relevant computer output as well as
discussion of all output.

• Introduction How did you find or collect your
data? (If you found the data, give a clear refer-
ence. If you collected the data, describe clearly
the data collection process you used.) What are
the cases? Describe all the variables: What is the
response variable and what are the explanatory
variables? Include the complete dataset, with
columns clearly labeled.

• Correlations Include information on correla-
tions between all pairs of quantitative variables,
possibly in a correlation matrix, and include
p-values for tests of all correlations. Which pre-
dictors have the strongest correlation with the
response variable? Which predictors have the
strongest correlation with each other? Is the sign
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(positive/negative) of any of the correlations
surprising? For several of the correlations, indi-
cate what the sign of the correlation means in
context.

• Multiple Regression Starting with a model that
includes all the x variables, your goal is to find the
best model to predict y. For the first model (with
all the x-variables), indicate whether the model
is effective (and how you arrived at your conclu-
sion). Demonstrate a couple of sample predic-
tions using this model, and compute the residual
for at least one of your predictions. Interpret the
coefficient for at least two of the x-variables. Are
any of the signs of the coefficients surprising?
Give R2 and interpret it.

Now try to improve the model: State what
the prediction equation is at each stage, tell what
variable you decided to eliminate and why at
each stage, and tell how the model changed as
you eliminated variables (does it improve? how?
by a lot or a little?).

Decide which model you think is best, clearly
indicate this as your final model, and explain your
choice. Is it a good model (and, again, what are
you basing your answer on)? Demonstrate a cou-
ple of sample predictions using this final model
and compare them to the actual y values. Discuss
the overall effectiveness of your final model, and
whether the results were what you expected.

Topic Suggestions

You need at least five variables and at least 25
cases. Some good places to look are:

• Sports data, using either teams or players

• Data on countries, such as that found at World-
Bank.org

• Data on US states or regions of other countries

• Surveys of your peers (with permission)

• Data at FedStats.gov (for US data) or Nation-
Master.com (for world data)

Project 6 Analyze Your Own Data—Investigating Relationships

This project asks you to collect and analyze your
own data using a variety of different data analysis
tools.

Step 1 Find or collect your data.

Your data should consist of information on at least
four variables, including at least two categorical
variables and at least two quantitative variables.
The sample size should be at least n = 30. You can
use published data or collect your own. Your goal
is to analyze relationships between the variables so
try to use variables that you think might be related.
Include the dataset in your report, with columns
clearly labeled.

Step 2 Conduct the analysis and write the

report.

Submit a well-written report addressing each of the
following parts. Use technology and be sure to
include all relevant computer output as well as
discussion of all output. Using the variables in your
dataset, analyze at least four different relationships
between variables. For each relationship, include:

• Summary Statistics and Visualization Include the
computer output and a discussion of each graph
or table or summary statistic that is relevant to
the relationship.

• Statistical Inference Use an appropriate method
of statistical inference to determine if there is
a significant relationship between the two vari-
ables. Indicate the method of data analysis used
and include all details of the relevant test. Make
a clear conclusion in context.

Topic Suggestions

You need at least four variables and at least 30
cases. Some good places to look are:

• Sports data, using either teams or players

• Data on countries, such as that found at World-
Bank.org

• Data on US states or regions of other countries

• Surveys of your peers (with permission)

• Data at FedStats.gov (for US data) or Nation-
Master.com (for world data)
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E S S E N T I A L S Y N T H E S I S

We began this journey of investigating the power of statistics, way back in Section 1.1,
by classifying variables as either categorical or quantitative. This way of organizing
our thinking remains effective as we briefly summarize the methods of description
and inference discussed on the journey. Before we examine individual variables or
relationships between variables, however, we revisit again the important messages
of Chapter 1.

Summary: When Is Statistical Inference Appropriate?
Statistical inference is appropriate when we wish to use data from a sample to
estimate one or more parameters for a population or to test a hypothesis about one
or more parameters for a population.

Before conducting any inference procedures, we should always stop and think
about the way the data were collected. Statistical inference is only appropriate if we
believe the sample data are representative of the population about which we hope to
make inferences. The best way to ensure that a sample avoids sampling bias and is
representative of a population is to collect a random sample from the population.

In examining relationships between variables, be wary of confounding variables
and remember that the only way to infer a causal association between variables
statistically is through data obtained from a randomized experiment.

We have seen many methods of analysis in this text. The best analysis there
is, however, will not make up for data that is collected in a biased manner. It is
important to reiterate that appropriate data collection is at least as important as
appropriate data analysis.

Summary: The Key Ideas of Inference
As we have seen, data from just a small subset of a population, if collected well, can
be used to give very accurate estimates and make very specific conclusions about
the entire population. We use an understanding of the variability of sample statistics
to estimate how far the true population parameter may be from the sample statistic.
This distance is the margin of error. The sample statistic, together with a margin of
error, give us a confidence interval for a population parameter.

How do we find evidence for a claim about a population? In order to conclude
that a result holds for an entire population, we need the evidence from the sample
to be quite conclusive. This means the evidence has to be strong against the ‘‘status
quo” (which we call the null hypothesis) and in support of the claim we are testing.
We determine the strength of this evidence by asking: ‘‘How likely is it that sample
results this extreme would happen just by random chance if the null hypothesis were
true?” This is what motivates the important idea of a p-value. If sample results so
extreme are very unlikely to have happened just by random chance, then the p-value
is small and we have strong evidence against the null and in favor of our (alternative
hypothesis) claim.

These key ideas, introduced early in Chapters 3 and 4, have provided the
framework for almost everything we have done since then, and they form the
foundation for most of statistical inference.

621



622 Essential Synthesis

Summary: Investigating Variables and Relationships
between Variables
We organize the summary by quantitative and categorical variables, and look first
at individual variables and then at relationships between variables. In every case,
we discuss descriptive statistics (graphs and/or summary statistics) and methods
of statistical inference. We hope this brief summary is useful, although be sure to
recognize that it leaves out many details. In particular, when using the theoretical
distributions to conduct statistical inference, we need to make sure that the relevant
conditions are met. See the individual unit summaries for more details.

Analyzing a Single Quantitative Variable
• Descriptive statistics

– Graphical display: dotplot, histogram, boxplot

– Summary statistics: mean, standard deviation, five number summary

• Statistical inference

– Estimating with a confidence interval for a mean (using bootstrap or
t-distribution)

– Testing a hypothesis about a population mean (using randomization or
t-distribution)

Analyzing a Single Categorical Variable
• Descriptive statistics

– Graphical display: bar chart, pie chart

– Summary statistics: frequency, relative frequency, proportion

• Statistical inference if the categorical variable has one particular category of
interest

– Estimating with a confidence interval for a proportion (using bootstrap or
normal distribution)

– Testing a hypothesis about a population proportion (using randomization or
normal distribution)

• Statistical inference if the categorical variable has more than two categories of
interest

– Testing a hypothesis about population proportions using chi-square goodness-
of-fit test

Analyzing a Relationship between One Categorical Variable and
One Quantitative Variable
• Descriptive statistics

– Graphical display: side-by-side boxplots, dotplots, or histograms

– Summary statistics: statistics for the quantitative variable within each category,
difference in means

• Statistical inference if the categorical variable has two relevant categories

– Estimating a confidence interval for difference in means (using bootstrap or
t-distribution)

– Testing a hypothesis about a difference in population means (using randomiza-
tion or t-distribution)
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• Statistical inference if the categorical variable has more than two categories

– Testing a hypothesis about several population means using ANOVA for differ-
ence in means

– Intervals and tests for means and differences in pairs of means after ANOVA

Analyzing a Relationship between Two Categorical Variables
• Descriptive statistics

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table, row proportions, column proportions, differ-
ence in proportions

• Statistical inference if both categorical variables have two relevant categories

– Estimating a confidence interval for a difference in proportions (using bootstrap
or normal distribution)

– Testing a hypothesis about a difference in proportions (using randomization or
normal distribution)

• Statistical inference if either categorical variable has more than two categories

– Testing a hypothesis about a relationship using chi-square test for association

Analyzing a Relationship between Two Quantitative Variables
• Descriptive statistics

– Graphical display: scatterplot

– Summary statistics: correlation, regression line

• Statistical inference

– Estimation

* Estimating a confidence interval for the correlation (using bootstrap or
t-distribution)

* Estimating a confidence interval for the slope of the regression line (using
bootstrap or t-distribution)

* Estimating the response variable at one value of the explanatory variable
(using confidence interval for mean response or prediction interval for indi-
vidual responses)

– Testing

* Testing a hypothesis about the correlation (using randomization or
t-distribution)

* Testing a hypothesis about the slope for a regression line (using randomization
or t-distribution)

* Testing the effectiveness of the regression model using analysis of variance
for regression

Analyzing Relationships between More Than Two Variables
• Multiple regression!

As we said at the start of this book, ‘‘We are being inundated with data. . .

The people who are able to analyze this information are going to have great jobs
and are going to be valuable in virtually every field. One of the wonderful things
about statistics is that it is relevant in so many areas. Whatever your focus and your
future career plans, it is likely that you will need statistical knowledge to make smart
decisions in your field and in everyday life.’’ We finish with an example of such an
application in the final case study. We hope this journey we have taken together has
helped you understand the power of data!
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Case Study: Speed Dating

© Spencer Grant/Alamy Limited

Speed Dating

D A T A E . 1 Speed Dating
Between 2002 and 2004, a series of speed dating experiments were conducted
at Columbia University.15,16 Participants were students at Columbia’s graduate
and professional schools, recruited by mass email, posted fliers, and fliers
handed out by research assistants. Each participant attended one speed dating
session, in which they met with each participant of the opposite sex for four
minutes. Order and session assignments were randomly determined. After each
four-minute ‘‘speed date,” participants filled out a form rating their date on a
scale of 1 to 10 on the attributes Attractive, Sincere, Intelligent, Fun, Ambitious,
and SharedInterests. They also made a Decision indicating whether they would
like to see the date partner again, rated how much they Like the partner overall,
and answered how likely they think it is that the partner will say yes to them,
PartnerYes. The data are stored in SpeedDating. Each row is a date, and each
variable name is followed by either an M, indicating male answers, or an F,
indicating female answers. In other words, each case includes answers from
both parties involved in the date. To avoid dependencies in the data, we only
look at data from the first dating round of each session, giving n = 276 dates.17

We also have data on Age and Race. ■

These data can help us gain insights into the mysterious world of dating! How
likely is it that a pair will both like each other enough to want a second date? Are
people more likely to want a second date with someone they think is interested in
them? With someone who actually is interested in them? Do opinions of dates differ
by race/ethnicity? How much is romantic interest reciprocated? Can we predict how
much a male will like a female based on how much the female likes the male? Which

15Fisman, R., Iyengar, S., Kamenica, E., and Simonson, I., ‘‘Gender differences in mate selection:
Evidence from a speed dating experiment,” Quarterly Journal of Economics, 2006; 121(2): 673–697.
16Gelman, A. and Hill, J., Data Analysis using Regression and Multilevel/Hierarchical Models, Cambridge
University Press, New York, 2007.
17Many of the techniques we have used in this book assume independence of the cases. If we were to
include multiple dates for each individual, this assumption would be violated.
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attributes are most helpful for predicting how much someone likes his or her date
overall? Does the answer to this question differ by gender? We’ll explore all of these
questions in this section.

Example E.1
Thinking critically about the data

The following are questions you should always ask yourself before jumping into
data analysis.

(a) What are the cases?

(b) What are the variables, and is each categorical or quantitative?

(c) What is the sample? To what population would you like to make inferences?
What population is more realistic?

(d) What are some ways in which your sample may differ from your ideal population?
From your more realistic population?

(e) Do these data allow for possible conclusions about causality? Why or why not?

Solution (a) The cases are first dates during the speed dating experiment.

(b) Categorical variables are whether a person wants to see his or her partner again
(DecisionM, DecisionF) and race (RaceM, RaceF). Quantitative variables are
how much a person likes the partner (LikeM, LikeF), how likely they think it is
that the partner will say yes to them (PartnerYesM, PartnerYesF), age (AgeM,
AgeF), and the 1-10 ratings for each of the six attributes.

(c) The sample is the 276 first-round speed dates on which we have data. The ideal
population would be all first speed dates, or even all first dates. A more realistic
population may be all first-round heterosexual speed dates between graduate or
professional students at prestigious urban American universities.

(d) Regular first dates allow much more time to get to know the other person
than speed dates. Speed dates between graduate and professional students at
Columbia may involve different types of people than typical speed dates. Some
students may participate in this speed dating in the context of the research
experiment, but would not participate otherwise. Because this wasn’t a random
sample from the population, there may be other forms of sampling bias that we
are not aware of.

(e) No. This was an observational study. Although the pairings were randomized,
none of the variables were, and for causal conclusions the explanatory variable
must be randomly determined.

Example E.2
How likely is a match?

A match is declared if both the male and the female want a second date. Of the
276 speed dates, 63 resulted in matches. Create a 95% confidence interval for the
population proportion of matches using:

(a) Bootstrapping and the percentile method

(b) Bootstrapping and Statistic ± 2 × SE

(c) The normal distribution and the relevant formula for the standard error

Solution (a) Using StatKey or other technology, we create the bootstrap distribution for
a single proportion, shown in Figure E.1. Keeping only the middle 95% of
bootstrap statistics, our 95% confidence interval for the proportion of matches
is (0.181, 0.279).
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Figure E.1 Bootstrap
distribution for
proportion of matches
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(b) We calculate the sample statistic to be p̂ = 63/276 = 0.228. We find the stan-
dard error as the standard deviation of the bootstrap distribution, SE = 0.025.
Therefore our 95% confidence interval for the proportion of matches is

Statistic ± 2 × SE = 0.228 ± 2 × 0.025 = (0.178, 0.278)

(c) The formula for the standard error for a sample proportion is

SE =
√

p̂(1 − p̂)

n
=

√
0.228(1 − 0.228)

276
= 0.025

A 95% confidence interval for the proportion of matches using z∗ = 1.96 from
a normal distribution is

p̂ ± z∗ · SE = 0.228 ± 1.96 × 0.025 = (0.179, 0.277)

Notice that however you decide to create a confidence interval, you get approxi-
mately the same answer. In all cases, the generated confidence interval is interpreted
the same: We are 95% confident that the proportion of matches among first-round
speed dates between graduate or professional students at prestigious urban Ameri-
can universities is between 0.18 and 0.28.

Example E.3 Do people tend to want a second date with people they think will also want a second
date?

Each person was asked ‘‘How probable do you think it is that this person will say
‘yes’ for you? (1 = not probable, 10 = extremely probable),” with answers stored in
PartnerYesM and PartnerYesF.18 Is the perception of the likelihood of a return yes
from a partner higher for males who want a second date than for males who don’t?
(When dating, should you be obviously ‘‘into” your dating partner?)

18The sample sizes in this example are slightly lower than in other examples because of some missing
values for PartnerYesM and PartnerYesF.
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(a) Create the relevant visualization for this relationship.

(b) Calculate the relevant summary statistic(s).

(c) State the relevant hypotheses, use a randomization test to generate a p-value,
and make a conclusion in context.

(d) Repeat (b) and (c), but for females rather than males, and using a theoretical
distribution and formula rather than a randomization test.

Solution (a) We are comparing one ‘‘yes/no” categorical variable, DecisionM, with one quan-
titative assessment of the partner’s inclination, PartnerYesM, and so visualize
with side-by-side boxplots, as shown in Figure E.2. When comparing the box-
plots, we see that the PartnerYesM values tend to be higher for those where the
male says ‘‘yes”.

Figure E.2 Perceived
chance of a return yes
(PartnerYesM) by male
decision (DecisionM) YesNo
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(b) The relevant statistics are the mean PartnerYesM score for two groups, the
males who said ‘‘yes” and those who said ‘‘no,” and the difference between
those two means. The sample mean PartnerYesM score among males who said
yes to their dates is xyes = 6.5, and among males who said no to their dates is
xno = 4.9, so the sample difference in means is xyes − xno = 1.6.

(c) The null and alternative hypotheses are

H0 : μyes = μno

Ha : μyes > μno

Using StatKey or other technology we create a randomization distribution such
as the one shown in Figure E.3. In those 1000 randomization samples there
were no statistics even close to as extreme as the observed sample statistic of
xyes − xno = 1.6, so the p-value ≈ 0. There is very strong evidence that males
are more optimistic about getting a return ‘‘yes” from females they say ‘‘yes’’ to
than those they choose not to date again. Females, perhaps playing hard to get
may not be the best strategy to get a return date, at least in speed dating.

(d) The relevant statistics are the mean PartnerYesF score for two groups, the
females who said ‘‘yes” and those who said ‘‘no,” and the difference between
those two means. The sample mean PartnerYesF score among females who said
yes to their dates is xyes = 6.68, and among females who said no to their dates is
xno = 5.11, so the sample difference in means is xyes − xno = 1.57.
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Figure E.4 Male yes/no
answers by female yes/no
answers
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(b) Calculate the sample difference in proportions: proportion of male yes answers
to females who say yes back minus proportion of male yes answers to females
who say no back. (Note that there are several other interesting differences in
proportions you could also calculate from this table.)

(c) Perform a hypothesis test to see if the proportion of male yes answers is
significantly different between answers to females who say yes and answers to
females who say no.

Solution (a) This is a relationship between two categorical variables, which we can visualize
with a side-by-side bar chart, shown in Figure E.4. In this sample males say yes
about half the time to girls who say yes back, and say yes more than half the
time to girls who say no. This is quite interesting! Although in Example E.3 we
found males say yes more often to girls they think will say yes back, here we see
that they say yes more often to girls who actually say no back (at least in this
sample).

(b) The sample difference in proportions is
63

63 + 64
− 83

83 + 66
= 0.496 − 0.557 = −0.061

(c) Let pFyes and pFno denote the proportion of male yes answers to females who
say yes and no back, respectively. Our hypotheses are

H0 : pFyes = pFno

Ha : pFyes �= pFno

We can use StatKey or other technology to create a randomization distribution,
shown in Figure E.5. The proportion of randomization statistics less than or
equal to the observed sample difference in proportions of −0.061 is 0.155, which
we double because of the two-sided alternative for a p-value of 0.155 · 2 = 0.31.

Because the counts are large enough, we could also use formulas and the
normal distribution to obtain a p-value. The pooled proportion of male yes
answers is

p̂ = 63 + 83
63 + 64 + 83 + 66

= 0.529

so the standard error is

SE =
√

p̂(1 − p̂)

nFyes
+ p̂(1 − p̂)

nFno
=

√
0.529(1 − 0.529)

127
+ 0.529(1 − 0.529)

149
= 0.0603

The z-statistic is then

z = Statistic − Null
SE

= −0.061 − 0
0.0603

= −1.01
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Figure E.5

Randomization
distribution

Left Tail Two Tail Right Tail # samples = 1000
mean = −0.004
st. dev. = 0.063

−0.061 −0.056

−0.20
0

20

40

60

80

100

−0.15 −0.10 −0.05 0.05 0.10 0.15

Proportion1 – Proportion2
Randomization Dotplot of Null Hypothesis: p1 = p2

0.200.00
−0.004

0.1550.155 0.69

The area below z = −1.01 in a normal distribution is 0.156, which we double
because of the two-sided alternative for a p-value of 2 · 0.156 = 0.312. This is
very similar to the p-value obtained by the randomization test.

The p-value is not small, so we do not have sufficient evidence against the
null hypothesis. From these data we cannot determine whether males are more
or less likely to say yes to females who say yes back.

Example E.5
Do opinions of partners differ by race?

Participants rated how much they like their partner overall, on a scale of 1 to 10
(1 = don’t like at all, 10 = like a lot), in the variables LikeM and LikeF. The sample
mean, sample standard deviation, and sample size19 are given in Tables E.2 and E.3
by the race of the rater, along with the proportion of ‘‘yes” decisions.

(a) Does how much males like their partners differ by race/ethnicity of the rater?
Use technology and the data in SpeedDating to construct the appropriate
visualization, conduct the appropriate test, and make a conclusion in context.

Table E.2 Male responses to females, by race of the male raters

MALES Asian Black Caucasian Latino Other Overall

x 6.61 6.44 6.66 6.94 6.95 6.68
s 1.85 1.74 1.78 1.68 1.77 1.78
p̂ 0.59 0.56 0.50 0.59 0.57 0.53
n 64 9 161 17 21 272

19The sample size after excluding cases with missing values for Like or Race.
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Table E.3 Female responses to males, by race of the female raters

FEMALES Asian Black Caucasian Latino Other Overall

x 6.47 7.36 6.27 6.02 6.6 6.37
s 1.66 1.28 1.77 1.96 1.88 1.76
p̂ 0.50 0.57 0.42 0.48 0.53 0.46
n 70 14 146 23 15 268

(b) Does the proportion of females who say yes to their partners differ by
race/ethnicity of the female? Construct the appropriate visualization, conduct
the appropriate test, and make a conclusion in context.

Solution (a) This is exploring the relationship between a quantitative variable, LikeM, and
a categorical variable, RaceM, which we visualize with side-by-side boxplots, as
shown in Figure E.6. We see that the boxplots all have the same median (7) and
are mostly symmetric with only a few mild outliers.

Figure E.6 Male Like
ratings of females, by
race of the male
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Because race has more than two categories, we use analysis of variance
for difference in means to conduct our hypothesis test. The sample standard
deviations are approximately equal, and the distributions appear to be roughly
symmetric, so we can proceed with the F-distribution. Computer output is given
below:

Df Sum Sq Mean Sq F value Pr(>F)
RaceM 4 3.6 0.893 0.278 0.892
Residuals 267 856.2 3.207

The p-value of 0.892 indicates that the differences between races are not
significant, so we cannot determine from these data whether mean LikeM
differs by race/ethnicity of the rater.

(b) This is exploring the relationship between two categorical variables, DecisionF
and RaceF, which we can visualize with side-by-side bar charts, as shown in
Figure E.7.

Because we are interested in a relationship between two categorical vari-
ables, one of which has multiple categories, we use a chi-square test for
association. We first create the relevant two-way table, Table E.4, based on the
information in Table E.3 (using p̂ · n to find the number of yes answers for each
group) or using technology and the data in SpeedDating.

To perform the chi-square test, we could calculate the expected count for
each cell using (Row total)(Column total)

Total , and then calculate the χ2 statistic using

χ2 =
∑ (Observed − Expected)2

Expected

o
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Figure E.7 Proportion of
females who want a
second date, by race of
the female
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Table E.4 Counts for females who want or do not want a second date, by race

FEMALES Asian Black Caucasian Latino Other Total

Yes 35 8 62 11 8 124
No 35 6 84 12 7 144

Total 70 14 146 23 15 268

and compare this to a χ2-distribution with (2 − 1) · (5 − 1) = 4 degrees of
freedom to find the p-value. Instead, we simply use a computer to calculate this
χ2-statistic and p-value for us:

Pearson’s Chi-squared test

data: table(DecisionF, RaceF)
X-squared = 2.2308, df = 4, p-value = 0.6934

The p-value of 0.6934 does not provide enough evidence to reject the null. We
cannot determine whether the proportions of females who say yes to their dates
differ by race/ethnicity of the females.

Example E.6
Predicting a partner’s opinion

How well can you predict a male’s overall rating of a female, LikeM, based on the
female’s overall rating of the male, LikeF?

(a) Use technology to fit the appropriate model, and comment on pieces of the
output relevant to answering the question.

(b) Suppose you are a female participating in speed dating and you really like one
male, whom you gave a 10 (out of 10) for LikeF. Naturally, you want to predict
how much this male likes you! Use the model from part (a) to give a prediction,
and also generate and interpret a prediction interval.

Solution (a) We fit the simple linear regression model ̂LikeM = β0 + β1 · LikeF + ε. Some
computer output is given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.61417 0.40305 13.93 < 2e-16 ***
LikeF 0.16781 0.06103 2.75 0.00637 **
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Residual standard error: 1.763 on 269 degrees of freedom
(5 observations deleted due to missingness)

Multiple R-squared: 0.02734, Adjusted R-squared: 0.02373
F-statistic: 7.562 on 1 and 269 DF, p-value: 0.006366

Figure E.8 Scatterplot of
female rating of male
against male rating of
female for each date 2 4 6 8 10
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The scatterplot with this regression line overlaid is shown in Figure E.8. It’s a
litle difficult to read the scatterplot since many of the integer ratings overlap at
the same point.

The low p-value of 0.006 (either from the test for slope or ANOVA)
indicates a significant association between LikeF and LikeM. Knowing how
much a female likes a male helps to predict how much the male will like the
female. However, the low R2 value of 2.7% indicates that only 2.7% of the
variability in LikeM can be explained by LikeF. Unfortunately, this is what
makes romance so hard! There are many factors which contribute to whether
a male likes a female, and sadly how much the female likes him back is only a
small part of the equation (at least initially).

(b) The predicted value for LikeM when LikeF = 10 is ̂LikeM = 5.61 + 0.168 · 10 =
7.29. (The average for all males is 6.68, so this is slightly above average.) Using
technology, we find the 95% prediction interval is (3.8, 10.8). In fact, the upper
bound doesn’t even make sense (the max score is 10). This interval is very
wide and so not very informative, but it tells us that we are 95% confident that
the male will give you a score between 3.8 and 10. However, looking at the
scatterplot, we see that in our sample of males to which females gave a 10 (the
right-most column of data points), no scores below 6 were given. Remember that
a prediction interval is based on the assumption of equal variability, although
in this case the variability seems to be greater for less extreme values of LikeF,
which would give an interval that is slightly too wide for extreme values of LikeF
such as 10.

Example E.7
Which attributes are most important for romantic interest?

Each participant rated each partner on a scale of 1 to 10 on the attributes Attractive,
Sincere, Intelligent, Fun, Ambitious, and SharedInterests. Which of these attributes
are most helpful for predicting how much each person likes his or her partner
overall? Answer this question separately for males and females, and compare the
results.
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Solution We have multiple explanatory variables and one response variable, so we fit a
multiple regression model. First, some output from the model for males (males
rating females) is given below:

Response: LikeM
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −0.175578 0.430784 −0.408 0.683965
AttractiveM 0.551738 0.054138 10.191 < 2e-16 ***
SincereM 0.188545 0.058899 3.201 0.001563 **
IntelligentM −0.006483 0.075537 −0.086 0.931678
FunM 0.174910 0.055365 3.159 0.001795 **
AmbitiousM −0.055786 0.055317 −1.008 0.314292
SharedInterestsM 0.151640 0.039938 3.797 0.000188 ***

Residual standard error: 1.075 on 229 degrees of freedom
(40 observations deleted due to missingness)

Multiple R-squared: 0.6563, Adjusted R-squared: 0.6473
F-statistic: 72.89 on 6 and 229 DF, p-value: < 2.2e-16

The attractiveness rating is by far the most significant in the model. Besides
attractiveness, how sincere and fun the partner is perceived to be, as well as the
extent to which interests are shared, all seem to be helpful in this model for predicting
how much a male likes a female overall.

Similar output, but this time for females rating males, is given below:

Response: LikeF
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.06755 0.44106 0.153 0.8784
AttractiveF 0.28156 0.04476 6.290 1.58e-09 ***
SincereF 0.08820 0.05122 1.722 0.0864
IntelligentF 0.16064 0.06617 2.428 0.0160 *
FunF 0.24523 0.05009 4.896 1.84e-06 ***
AmbitiousF −0.01628 0.04910 −0.332 0.7405
SharedInterestsF 0.20264 0.03907 5.186 4.71e-07 ***

Residual standard error: 1.095 on 230 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.6223, Adjusted R-squared: 0.6125
F-statistic: 63.16 on 6 and 230 DF, p-value: < 2.2e-16

As with males, attractiveness rating is the most significant explanatory variable. For
females, both shared interests and fun are also extremely significant. Intelligence is
significant with a p-value of 0.016 (this was nowhere near significant for males), and
sincerity is moderately significant with a p-value of 0.086.

Attractiveness, fun, and shared interests are very helpful in predicting romantic
interest for both genders. For males rating females, sincerity is also significant, while
for females rating males, intelligence is significant. Keep in mind that just because
variables are insignificant in the multiple regression model does not mean they are
not important predictors individually. In fact, if you were to do a test for correlation
between Ambitious and Like for either males or females (try it!), you would find
that both correlations are positive and extremely significant.

It’s important to keep in mind the limitations with these data—always think
about how the data were collected when making conclusions! These are speed dates,
and while it is easy to judge someone’s physical attractiveness in four minutes, it is
much more difficult to judge attributes such as ambition, sincerity, intelligence, etc.
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Recognize that these results can only be generalized to speed dating, not dating in
general!

Also, if you have learned nothing else from this course, we hope you have
learned that observational data cannot be used to draw conclusions about causality!
Just because coefficients for Attractive, Sincere, and SharedInterests are positive and
significant in both models does not necessarily imply that becoming more attractive,
sincere, or having interests in common with the person you are speed dating will
raise the Like score. Perhaps the relationship actually works in reverse; maybe if
someone really likes a partner (for whatever reason), he or she tends to see that
person as more attractive, sincere, etc.

There are many other interesting questions to be asked and answered from
this SpeedDating data, and you now have the knowledge and tools to answer them
on your own! Do women prefer older men? Do men prefer younger women?
Are people of the same race more likely to result in a match? Are males or
females more selective? How are the attributes correlated with each other? For
example, is attractiveness positively or negatively correlated with intelligence? Is
this relationship significant? You can make up your own questions and answer
them. At this stage, having completed an entire course in statistics, all you need
is appropriately collected data in order to answer many questions you may have,
whether they pertain to dating, your academic field of interest, your health, your
future job, or almost anything else!

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Unlock the power of data!

Exercises for the Big Picture: Essential Synthesis

American Community Survey The American Com-
munity Survey,20 administered by the US Census
Bureau, is given every year to a random sam-
ple of about 3.5 million households (about 3%
of all US households). It has been crucial for
government and policy decisions, and helps to deter-
mine how over 400 billion dollars of government
funds are distributed each year. Unfortunately,
the House voted in May 2012 to eliminate this
valuable source of information.21 Data on a ran-
dom sample of 1% of all US residents are made
public (after ensuring anonymity), and we have
selected a random sub-sample of n = 1000 from

20http://www.census.gov/acs.
21For more information, see ‘‘The Beginning of the End of
the Census?” by C. Rampell, http://www.nytimes.com/2012
/05/20/sunday-review/the-debate-over-the-american-community-
survey.html? r=4&emc=eta1.

the 2010 data, stored in ACS.22 Exercises E.1 to
E.10 pertain to this dataset.

E.1 Random Sample Daniel Webster, a first-term
Republican congressman from Florida, sponsored
the relevant legislation to eliminate the American
Community Survey. Part of his reasoning was that
‘‘. . .this is not a scientific survey. It’s a random
survey.” As you know, and as was pointed out
by many, including this quote in the New York
Times,23 ‘‘the randomness of the survey is precisely
what makes the survey scientific.” Write a short

22We have selected a small subset of cases and variables to
work with. The full public dataset can be downloaded at
http://www.census.gov/acs/www/data documentation/pums data/,
and the full list of variables are at http://www.census.gov/acs
/www/Downloads/data documentation/pums/DataDict
/PUMSDataDict10.pdf.
23See, for example, Rampell, C., ‘‘The Beginning of the End
of the Census,” http://www.nytimes.com/2012/05/20/sunday-
review/the-debate-over-the-american-community-survey
.html? r=4&emc=eta1, May 19, 2012.
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letter to Congressman Daniel Webster explaining
this concept to him.
E.2 Margin of Error The US Census Bureau
provides a document24 to assist people with sta-
tistical inference using the data from the American
Community Survey. Below is an excerpt from this
document. Use the information given to fill in the
value that goes in the two blanks.

All ACS estimates from tables on AFF
include either the ? percent margin of
error or ? percent confidence bounds.
The margin of error is the maximum dif-
ference between the estimate and the
upper and lower confidence bounds.
Most tables on AFF containing 2005
or later ACS data display the margin
of error. Use the margin of error to
calculate the standard error (dropping
the +/− from the displayed value first)
as: Standard Error = Margin of Error / Z
where Z = 1.645 for 2006 ACS data and
recent years.

E.3 What Percentage of Americans have Health
Insurance? In our sample of 1000 people, 861 have
health insurance and 139 do not.

(a) Use bootstrapping to generate a 90% confidence
interval for the proportion of US residents who
do not have health insurance.

(b) Use the appropriate formula and distribution to
calculate a 90% confidence interval for the pro-
portion of US residents who do not have health
insurance. How does this answer compare to
your answer from part (a)?

(c) Interpret your answer to either (a) or (b) in
context.

(d) What is the sample statistic and corresponding
margin of error in part (b)?

(e) We can also use the website http://factfinder2
.census.gov to find the sample statistic and cor-
responding margin of error based on the entire
American Community Survey sample. There
we find p̂ = 0.155 with a margin of error of
0.001 (for 90% confidence). Why is this margin
of error so different from the one you computed
in (d)?

(f) Use the information given in (e) to generate
and interpret a 90% confidence interval for the
proportion of US residents who do not have
health insurance, based on the entire American
Community Survey sample.

24http://www.census.gov/acs/www/Downloads/data documentation
/Statistical Testing/2010StatisticalTesting1year.pdf.

E.4 What Proportion of US Adults are Married?
The Married variable in ACS codes whether each
respondent is married (1) or not (0).

(a) In the ACS dataset, there are 825 people who are
15 years of age or older, and p̂ = 0.53 of these
people are married. Generate and interpret a
90% confidence interval for the proportion of
US adults aged 15 and older who are married.

(b) While the American Community Survey sur-
veys a sample of US residents every year, the
decennial census surveys the entire US popula-
tion every 10 years. The American Community
Survey has been conducted in some form yearly
since 1850, and the decennial census has been
conducted in years ending in ‘‘0” since 1790,
meaning that there have been 17 years of over-
lap. Suppose we were to use the ACS from
each of these 17 years to create a 90% confi-
dence interval for the proportion of people aged
15 and older in the US who were married (as
of that year). If there were no sampling bias
and everyone responded to the census, approx-
imately how many of these intervals do you
think would have contained the true proportion
of married adults as obtained by the census?

(c) Based on the 2000 census, 54.5% of people aged
15 and older in the US were married in 2000. Do
the data from our ACS sub-sample provide sig-
nificant evidence that the proportion of people
aged 15 and older in the US who were married
in 2010 is different than in 2000?

E.5 Income and Gender The dataset
EmployedACS contains just the subset of people
in the dataset ACS who were employed (n = 431).
Income gives each person’s wages or salary income
in the past 12 months (in thousands of dollars), and
Sex is coded with 1 for males, 0 for females.

(a) Produce a plot of the distribution of yearly
income for US residents and comment on the
distribution.

(b) Give relevant summary statistics for the yearly
income for US residents.

(c) Produce a plot showing the relationship between
Income and Sex and comment on what you see.

(d) Summarize the relationship between Income
and Sex with appropriate summary statistics.

(e) Does the EmployedACS dataset provide sig-
nificant evidence that average yearly income
differs for employed males and females in the
US? State hypotheses, use a randomization test
to calculate a p-value, and make a conclusion in
context.
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E.6 Working Hours and Gender The dataset
EmployedACS contains just the subset of people
in the dataset ACS who were employed (n = 431),
and includes HoursWk, the usual number of hours
worked per week in the past 12 months.

(a) Produce a plot to examine the relationship
between HoursWk and Sex (coded as 1 = male,
0 = female). Comment on what the plot shows.

(b) Summarize the relationship between HoursWk
and Sex with appropriate summary statistics.

(c) Does the EmployedACS dataset provide signif-
icant evidence that employed males work more
hours per week, on average, than employed
females in the US? State hypotheses, use the
appropriate formula and distribution to calcu-
late a p-value, and make a conclusion in context.

E.7 Health Insurance and Race Of the n = 1000
people in ACS, 761 are White, 106 are Black, 70
are Asian, and 63 are other races. The sample pro-
portion of people who have health insurance for
each racial group are p̂white = 0.880, p̂black = 0.811,
p̂asian = 0.843, and p̂other = 0.730.

(a) Create the two-way table for counts of health
insurance status by race.

(b) Produce a graph to visualize the relationship
between health insurance status and race.

(c) Is there a significant association between
whether or not a person has health insurance
and race? State hypotheses, calculate a p-value,
and make a conclusion in context.

E.8 Age and Race

(a) Use the ACS dataset to create a plot for the
overall age distribution in the US, and comment
on the distribution.

(b) Give and interpret a 95% confidence interval
for the average age of a US resident.

(c) Create a plot for the age distribution in the US
by racial group, and comment on what you see.

(d) Does average age differ by racial group in the
US? State hypotheses, calculate a p-value, and
make a conclusion in context. Some relevant
sample statistics are given below:

mean sd n
asian 41.17143 20.45991 70
black 33.00000 23.53437 106
other 31.31746 19.99260 63
white 41.67937 23.06364 761

(e) After doing the analysis in (d), give a 95% con-
fidence interval for the average age of an Asian
US resident. How does this compare to your
answer for all US residents from (b)?

E.9 Income and Hours Worked Answer the fol-
lowing questions using EmployedACS, a subset of
ACS that only includes people who are employed.

(a) Construct a graph to visualize the relationship
between HoursWk and Income. Comment on
what you see.

(b) Is there a significant positive association
between hours worked per week and yearly
income?

(c) Fit a regression model regressing Income
on HoursWk. What is the fitted prediction
equation?

(d) What is the predicted salary for someone who
typically works a 40-hour work week?

(e) How much of the variability in yearly income is
explained by the number of hours worked per
week?

(f) Are the conditions met for performing inference
based on this regression model?

E.10 Income, Hours per Week, and Gender In
Exercise E.5 we find that males have a higher aver-
age yearly income than females, in Exercise E.6 we
find that males work more hours per week than
females, on average, and in Exercise E.9 we find
that people who work more hours per week make
a higher yearly income. Using the EmployedACS
dataset:

(a) Explain why HoursWk is a confounding vari-
able in the relationship between Income and
Sex.

(b) Use multiple regression to see if Sex is a
significant predictor of Income, even after
accounting for the number of hours worked
per week.

(c) What is the predicted yearly income for a male
who works 40 hours per week? For a female
who works 40 hours per week? What is the
difference?

Which Method? We have learned a lot of meth-
ods in this course, some of which are given below.
In Exercises E.11 to E.27, state which statistical
method would be most appropriate for the given
question or situation.
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Interval for a Proportion Test for a Proportion Chi-Square Goodness of Fit
Interval for a Mean Test for a Mean Chi-Square Test for Association
Interval for Difference in

Proportions
Test for Difference in

Proportions
ANOVA for Difference in

Means
Interval for Difference in Means Test for Difference in Means Simple Linear Regression
Interval for Correlation Test for Correlation Multiple Regression

E.11 Anthropologists have found two burial
mounds in the same region. They know that sev-
eral different tribes lived in the region and that the
tribes have been classified according to different
lengths of skulls. They measure the skulls found in
each burial mound and wish to determine if the two
mounds were made by different tribes.

E.12 The Hawaiian Planters Association is devel-
oping three new strains of pineapple (call them A,
B, and C) to yield pulp with higher sugar content.
Twenty plants of each variety (60 plants in all) are
randomly distributed into a two acre field. After har-
vesting, the resulting pineapples are measured for
sugar content and the yields are recorded for each
strain. Are there significant differences in average
sugar content between the three strains?

E.13 Researchers were commissioned by the Vio-
lence In Children’s Television Investigative Moni-
tors (VICTIM) to study the frequency of depictions
of violent acts in Saturday morning TV fare. They
selected a random sample of 40 shows which aired
during this time period over a 12-week period. Sup-
pose that 28 of the 40 shows in the sample were
judged to contain scenes depicting overtly violent
acts. How should they use this information to make
a statement about the population of all Saturday
morning TV shows?

E.14 The Career Planning Office is interested in
seniors’ plans and how they might relate to their
majors. A large number of students are surveyed
and classified according to their major (Natural Sci-
ence, Social Science, Humanities) and future plans
(Graduate School, Job, Undecided). Are the type
of major and future plans related?

E.15 Every week during the Vietnam War, a body
count (number of enemy killed) was reported by
each army unit. The last digits of these numbers
should be fairly random. However, suspicions arose
that the counts might have been fabricated. To test
this, a large random sample of body count figures
was examined and the frequency with which the last
digit was a 0 or a 5 was recorded. Psychologists have
shown that people making up their own ‘‘random’’

numbers will use these digits less often than random
chance would suggest (i.e. 103 sounds like a more
‘‘real’’ count than 100). If the data were authentic
counts, the proportion of numbers ending in 0 or 5
should be about 0.20. Do these data show evidence
of fabrication?

E.16 In one of his adventures, Sherlock Holmes
found footprints made by the criminal at the scene
of a crime and measured the distance between them.
After sampling many people, measuring their height
and length of stride, he confidently announced that
he could predict the height of the suspect. How?

E.17 Do people drive less (fewer miles) when gas
prices are higher?

E.18 How many times a day do humans urinate, on
average?

E.19 Is there an association between whether or
not a person is smiling and whether or not the sun
is shining?

E.20 Does average number of ounces of alcohol
consumed each week, per person, differ by class
year (First Year, Sophomore, Junior, Senior) among
college students?

E.21 What percentage of Americans support same-
sex marriage?

E.22 Is percentage of the national budget spent
on health care associated with life expectancy for
countries?

E.23 Common wisdom says that every dog year cor-
responds to 7 human years, so the human equivalent
maturity level of a dog can be found by multiplying
a dog’s age by 7. If the human maturity age of many
dogs were measured by dog experts, along with their
true age, how would the number 7 be determined?

E.24 A student wants to predict his score on the
MCAT exam (which is being revised to include sta-
tistical concepts beginning in 2015!) and wants to
use all information available to him. He has anony-
mous data on MCAT exam scores from previous
students at his school, as well as data on each stu-
dent’s GPA, number of science/math courses, and
whether or not the person graduated with honors.
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E.25 People were recruited for a study on weight
loss, in which participants were randomly assigned
to one of four groups. Group 1 was given exercise
instructions but no dietary instructions, group 2 was
given dietary instructions but no exercise instruc-
tions, group 3 was given both exercise and dietary
instructions, and group 4 was given neither exercise
nor dietary instructions. The researchers have many
questions, but one goal is to estimate how much
more weight was lost on average by people who
were given exercise instructions, as opposed to those
who weren’t.

E.26 Ultimate Frisbee games often begin by flip-
ping two discs (tossing them as you would when
flipping a coin), while someone calls ‘‘Same” (both
face up or both face down) or ‘‘Different” (one face
up, one face down). Whichever team wins gets to
decide whether to start on offense or defense, or

which side to start on (which may matter if it is
windy). It would be advantageous to know if one
choice is more likely, so a team decides to spend
a practice repeating this flipping of the discs many
times, each time recording same or different. Once
the data are collected, they want to know whether
they have learned anything significant.

E.27 One of the authors of this book used to be a
professional figure skater. For her project when she
took introductory statistics (from another author of
this book), she was interested in which of two jumps
she landed more consistently. She did 50 double
loops (landed 47 successfully) and 50 double flips
(landed 48 successfully), and wanted to determine
whether this was enough evidence to conclude that
she had a higher success rate with one jump than
the other.
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Probability
Basics

‘‘Probability theory is nothing but common sense reduced to calculation.”

–Pierre-Simon Laplace∗

The material in this chapter is independent of the other chapters and can be covered at any point in a course.

∗Théorie Analytique des Probabilités, Ve. Courcier, Paris, 1814.
Top left: © Design Pics Inc./Alamy Limited, Top right: © Photo by Frederick Breedon/Getty Images Inc.
Bottom right: © Ash Waechter/iStockphoto
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Questions and Issues

C H A P T E R O U T L I N E

11 Probability Basics 640
11.1 Probability Rules 642

11.2 Tree Diagrams and Bayes’ Rule 654

11.3 Random Variables and Probability
Functions 661

11.4 Binomial Probabilities 669

Here are some of the questions and issues we will discuss in this chapter:

• If a driver is involved in an accident, what is the chance he or she is under 25 years old?

• How does an insurance company estimate average losses to help price its policies?

• What percent of players in the Hockey Hall of Fame are Canadian?

• What percent of Americans are color-blind?

• If a man in the US lives until his 60th birthday, what is the probability that he lives to be at least
90 years old?

• Are changes in the stock market independent from day to day?

• If a person has a positive tuberculosis test, what is the probability that the person actually has
tuberculosis?

• How do filters identify spam emails and text messages?

• What is the probability that Ray Allen of the Boston Celtics makes two free throws in a row?

• What is the age distribution of the US population?

• What percent of housing units in the US have only one person living there?
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11.1PROBABILITY RULES

A process is random if its outcome is uncertain. For example, when we flip a coin,
it is not known beforehand whether the coin will land heads or tails. Nevertheless,
if we flip a coin over and over and over again, the distribution is predictable: We
can expect that it will land heads about 50% of the time and tails about 50% of the
time. Given some random process, the probability of an event (e.g. a coin flip comes
up heads, a cancer patient survives more than five years, a poker hand contains all
hearts) is the long run frequency or proportion of times the event would occur if the
process were repeated many, many times.

Probability

The probability of an event is the long run frequency or proportion of
times the event occurs.

Probabilities are always between 0 and 1.

Throughout this book we often take advantage of computer technology to esti-
mate probabilities by simulating many occurrences of a random process and counting
how often the event occurs. In some situations we can determine a probabi-
lity theoretically. In this chapter we examine some theoretical methods to compute
probabilities for single events or combinations of events.

Equally Likely Outcomes
The easiest case to handle is when the process consists of selecting one outcome,
at random, from a fixed set of equally likely possible outcomes. For example, a fair
coin flip represents an equally likely choice between two outcomes, heads and tails.
Rolling a standard six-sided die gives a random selection from the outcomes 1, 2, 3,
4, 5, and 6. Putting the names of all students in your class in a hat, then drawing one
out to select a student to solve a homework problem is a random process that fits
this ‘‘equally likely outcomes” description.

For any single outcome, the probability of it occurring in such a random process
is just 1/n, where n is the number of possible outcomes. In many situations we are
interested in combinations of several outcomes, for example, the result of a die
roll is an even number or the gender of the student chosen to solve a problem is
female. We call such a combination of one or more outcomes an event. When the
outcomes are equally likely, we can easily find the probability of any event as a
proportion:

Probabilities When Outcomes Are Equally Likely

When outcomes are equally likely, we have

Probability of an event = P(event) = Number of outcomes in the event
Total number of outcomes
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We use the notation P( ) as a shorthand for the ‘‘probability of” whatever
event is described inside the parentheses. For example, when flipping a fair coin,
P(Heads) = 1/2.

Example 11.1
Pick a Card

Suppose that we start with a standard deck of 52 playing cards. Each card shows
one of four suits (spades, hearts, diamonds, or clubs) and one of 13 denominations
(ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king). We shuffle the cards and draw one at
random. What is the probability that the card:

(a) Is a heart?

(b) Is a jack?

(c) Is the jack of hearts?

(d) Is a face card (jack, queen, or king) of any suit?

Solution Since the deck contains 52 cards and we are selecting one at random, we just need
to count how many cards satisfy each of these events and divide by 52 to get the
probability.

(a) There are 13 hearts in the deck (one of each denomination) so P(Heart) =
13/52 = 1/4.

(b) There are 4 jacks in the deck (one of each suit) so P(Jack) = 4/52 = 1/13.

(c) There is only 1 jack of hearts in the deck, so P(Jack of Hearts) = 1/52.

(d) There are 12 face cards in the deck (4 jacks, 4 queens, and 4 kings) so
P(Face Card) = 12/52.

In other random processes we have outcomes that are not equally likely. For
example, if we toss a tack onto a flat surface, it might land with the point up or
with the point down, but these outcomes may not be equally likely. We could
estimate P(Point Up) by tossing a tack many times, but it would be difficult to derive
this probability theoretically (without a deep understanding of the physics of tack
tossing). Similarly, we might be interested in the probability that a basketball player
makes a free throw, a stock goes up in price, or a surgical procedure relieves a
symptom. In each case we could observe many trials and estimate the probability of
the event occurring.

In other situations we may talk about the probability of an event, even though
repeated trials are not feasible. You might wonder, what’s the probability that I get
an A in this course? Or what’s the probability that it rains tomorrow? You might
have a reasonable estimate for the chance of getting an A in a course, even if it’s
impractical to take the course many times to see how often you get an A. We often
refer to such probabilities as subjective or personal probabilities.

Combinations of Events
Outcomes in events can be combined in various ways to form new events. For
example, we might be interested in the probability that two events occur simultane-
ously, at least one of the two events occurs, an event does not occur, or one of the
events occurs if the other one occurs. The next example illustrates several of these
possibilities.

o
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Example 11.2
Gender and the US Senate

The United States Senate consists of two senators for each of the 50 states. Table 11.1
shows a breakdown of the party affiliation (by caucus) and gender of the 100 senators
who were in office on January 1, 2012.

If we were to select one senator at random from the 2012 US Senate, what is
the probability that senator is:

(a) A woman?

(b) A Republican?

(c) A Republican woman?

(d) A woman if we know the senator is a Republican?

(e) A Republican if we know the senator is a woman?

(f) Either a woman or a Republican?

Table 11.1 Gender and party caucus in the
2012 US Senate

Democrat Republican Total

Female 13 4 17
Male 40 43 83

Total 53 47 100

Solution Since we are choosing at random, we can find each of these probabilities by
computing a proportion.

(a) There are 17 women out of the 100 senators, so the probability of selecting a
woman is 17/100 = 0.17.

(b) There are 47 Republicans out of the 100 senators, so the probability of selecting
a Republican is 47/100 = 0.47.

(c) There are only 4 senators who are both female and Republican, so the probability
of selecting a Republican woman is 4/100 = 0.04.

(d) If we know the senator is a Republican, there are only 47 possible choices. Of
these 47, we see that 4 are women, so the probability of being a woman if the
senator is a Republican is 4/47 = 0.085.

(e) If we know the senator is a woman, there are only 17 possible choices. Of these
17, we see that 4 are Republicans, so the probability of being a Republican if the
senator is a woman is 4/17 = 0.235.

(f) There are 13 + 4 + 43 = 60 senators who are either women or Republicans, so
the probability of selecting a woman or a Republican is 60/100 = 0.60.

The questions and answers such as those in Example 11.2 can be difficult to
discuss in ordinary prose. Phrases such as ‘‘Republican woman,” ‘‘Republican or
woman,” and ‘‘Republican if she is a woman” are easily confused with each other.
To help us express relationships involving probabilities, we often assign a letter to
denote the event of interest. For example, we might let F and M denote the gender
of the randomly chosen senator and use D or R to denote the party affiliation.
Based on the results of Example 11.2, we have P(F) = 0.17 and P(R) = 0.47. More

o
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Table 11.2 Common combinations of events

Notation Meaning Terminology

A and B The event must satisfy both conditions. joint or intersection
A or B The event can satisfy either of the two conditions (or both). union
not A The event A does not happen. complement
B if A The event B happens if A also happens. conditional

complicated expressions typically involve one of four basic operations shown in
Table 11.2.

Example 11.3
Let F or M denote the gender of the randomly chosen senator and label the party
caucus with R or D. Write each of the events described in parts (c) to (f) of
Example 11.2 as probability expressions.

Solution (c) A Republican woman ⇒ P(R and F).

(d) A woman if the senator is a Republican ⇒ P(F if R).

(e) A Republican if the senator is a woman ⇒ P(R if F).

(f) Either a woman or a Republican ⇒ P(F or R).

The various methods for combining events are shown schematically in
Figure 11.1, where the desired probability is the shaded area as a fraction of the
box with a heavy border. For each of these combinations, we have rules to help us
compute the probability based on other probabilities.

Figure 11.1 Common
combinations of events

A

B

(d) A if B

A

B

(e) B if A

A

B

(a) A and B

A

B

(b) A or B

A

(c) not A

Complement Rule
If an event A occurs on 1/3 of all trials, P(A) = 1/3, then it does not occur on the
other 2/3 of the trials. This reasoning leads to the obvious rule for the complement
of an event:

P(not A) = 1 − P(A)

Example 11.4
If we draw a single card at random from a standard deck, what’s the probability it’s
not a face card?

o
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Solution In Example 11.1 we see that P(Face Card) = 12/52, so P(not Face Card) = 1 −
12/52 = 40/52. We could also have counted how many non-face cards are in the
deck and divided by 52 to get this probability directly, but sometimes it is much
easier or more convenient to count how often something doesn’t happen than to
count how often it happens.

Additive Rule
In part (f) of Example 11.2 we see that the probability a randomly chosen senator is
either a woman or a Republican, P(F or R), is 0.60. Note that this is not just the sum
of P(F) = 0.17 and P(R) = 0.47. The reason is that the four female senators who are
also Republicans are double counted if we compute P(F) + P(R) = 0.17 + 0.47 =
0.64. To adjust the sum to avoid the double count, we can subtract the overlap. This
gives the additive rule for the probability that an event A or an event B occurs:

P(A or B) = P(A) + P(B) − P(A and B)

For a senator being a woman or a Republican this means

P(F or R) = P(F) + P(R) − P(F and R)

= 0.17 + 0.47 − 0.04

= 0.60

Example 11.5
ICU Admissions

Suppose that 35% of all patients admitted to a hospital’s intensive care unit have
high blood pressure, 42% have some sort of infection, and 12% have both problems.1

Find the probability that a randomly chosen patient in this ICU has either high
blood pressure or an infection.

Solution Let HBP = high blood pressure and INF = infection. From the given information
we have P(HBP) = 0.35, P(INF) = 0.42, and P(HBP and INF) = 0.12. We need to
find the chance of high blood pressure or infection, P(HBP or INF). Applying the
additive rule gives

P(HBP or INF) = P(HBP) + P(INF) − P(HBP and INF)

= 0.35 + 0.42 − 0.12

= 0.65

Special Case: Disjoint Events
If two events have no outcomes in common, we say they are disjoint. For

example, it’s impossible for a standard playing card to be both a jack and a seven.
Therefore the events ‘‘jack” and ‘‘seven” are disjoint, as are ‘‘spade” and ‘‘heart,”
while ‘‘ace” and ”spade” are not disjoint events. If events A and B have no outcomes
in common, P(A and B) must be zero—they both can’t happen at the same time.
This leads to a special case of the additive rule:

P(A or B) = P(A) + P(B) whenever A and B are disjoint

1Probabilities estimated from the data in ICUAdmissions.

o
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Conditional Probability
Part (d) of Example 11.2 on page 644 asks for the probability of an event (senator is
female) when we assume that some other event (senator is a Republican) has also
occurred. This is known as a conditional probability. Note that in computing this
probability we divided the count of female Republican senators (4) by the number
of Republican senators (47), not the total number of senators. This same reasoning
applies if we have probabilities for the events rather than counts, that is, we divide
the probability of both occurring, P(R and F), by the probability of the condition,
P(R). In general, to find the conditional probability of an event B occurring if A
occurs, we use

P(B if A) = P(A and B)

P(A)

For the US senators this means the probability that a Republican senator is a
woman is

P(F if R) = P(R and F)

P(R)
= 0.04

0.47
= 0.085

Be careful to distinguish properly between the event you want the probability of
and the event that determines the condition. For example, part (e) of Example 11.2
asks for the probability that a female senator is Republican. This would be

P(R if F) = P(F and R)

P(F)
= 0.04

0.17
= 0.235

Example 11.6
Refer to the probabilities of high blood pressure given in Example 11.5. Find the
probability that a patient admitted to the ICU:

(a) With high blood pressure also has an infection.

(b) Has high blood pressure if an infection is present.

Solution From information in Example 11.5 we have P(HBP) = 0.35, P(INF) = 0.42, and
P(HBP and INF) = 0.12.

(a) The conditional probability of infection given that the patient has high blood
pressure is

P(INF if HBP) = P(HBP and INF)

P(HBP)
= 0.12

0.35
= 0.343

(b) The conditional probability of high blood pressure given that the patient has an
infection is

P(HBP if INF) = P(HBP and INF)

P(INF)
= 0.12

0.42
= 0.286

Multiplicative Rule
In some situations it is more natural or convenient to start with information on
conditional probabilities and use it to find the joint probability of two events. To
do so we merely rearrange the conditional probability rule to get the multiplicative
rule:

P(B if A) = P(A and B)

P(A)
⇒ P(A and B) = P(A) · P(B if A)

o
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Thus to find the probability that both A and B occur, we find the probability of A
occurring and multiply by the chance that B occurs if A does.

Example 11.7
Suppose that we draw two cards (without replacement) from a standard 52 card
deck. What is the probability that both the first and second cards are aces?

Solution Let A1 and A2 be the respective events that the first and second cards are aces. From
Example 11.1 we know that P(A1) = 4/52. If the first card drawn is an ace, there are
3 aces remaining in 51 cards of the deck, so the probability the next card is also an
ace is P(A2 if A1) = 3/51. The probability that both cards are aces is

P(A1 and A2) = P(A1) · P(A2 if A1) = 4
52

· 3
51

= 0.0045

Example 11.8
Suppose that 37% of the students in an introductory statistics course are athletes on
one of the school’s sports teams. When asked to pick which award they would prefer
to win, 5% of the athletes chose an Academy Award, 22% picked a Nobel Prize,
and 73% wanted an Olympic Gold. Among non-athletes, the percentages were
15% for the Academy Award, 54% for the Nobel Prize, and 31% for the Olympic
Gold. If we pick a student at random from this class, what is the probability that
we get:

(a) An athlete who wants an Olympic Gold

(b) A non-athlete who wants an Academy Award

Solution We know that P(Athlete) = 0.37 and P(Non-athlete) = 1 − 0.37 = 0.63. The other
information gives conditional probabilities of the various awards (AA, NP, OG),
given the status of athlete or non-athlete:

(a) P(OG and Athlete) = P(Athlete) · P(OG if Athlete) = 0.37 · 0.73 = 0.27.

(b) P(AA and Non-athlete) = P(Non-athlete) · P(AA if Non-athlete) = 0.63 · 0.15 =
0.095.

Special Case: Independent Events
Notice in Example 11.8 that the probabilities for the awards depend on the

athletic status of the students. In some special circumstances, as the next example
illustrates, the conditional probabilities don’t depend on the condition.

Example 11.9
Suppose that we draw a single card from a standard deck and are told the card is a
queen. What is the probability that the card is also a heart?

Solution We need to compute

P(Heart if Queen) = P(Heart and Queen)

P(Queen)
= 1/52

4/52
= 1

4

Notice that the answer P(Heart if Queen) = 1/4 is the same as P(Heart) by itself
without the condition. In fact, if we were told any other denomination (say a ‘‘seven”
or an ‘‘ace”) for the selected card, the probability it is a heart remains 1/4. When

o

o

o
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this happens, we say the events ‘‘Heart” and ‘‘Queen” are independent. The formal
definition is

Events A and B are independent whenever P(B if A) = P(B)

In many circumstances we can infer independence from the way the outcomes are
determined. For example, if we select a card from the deck, record its denomination,
put it back in the deck, shuffle, and select a card at random, the denomination
of the second card is independent of the first. Thus if we choose two cards with
replacement, the chance both are aces is

P(A1 and A2) = P(A1) · P(A2 if A1) = P(A1) · P(A2) = 1
4

· 1
4

= 1
16

This shows a special form of the multiplicative rule.

P(A and B) = P(A) · P(B) whenever A and B are independent

Example 11.10
Traffic Lights

Suppose that a set of three traffic lights along one section of road operate inde-
pendently (i.e. no communication or special timing between the lights). Since this
is a fairly main road, the lights are green with a probability of 0.7 and red with
probability 0.3. As you go through this stretch of road, find the probability that:

(a) All three lights are green.

(b) The first two lights are green but the third is red.

(c) At least one of the lights is red.

Solution Since the lights operate independently, we can apply the special case of the
multiplicative rule to find the probability of any sequence of red and green lights by
multiplying the probabilities for the individual lights:

(a) P(G1 and G2 and G3) = P(G1)P(G2)P(G3) = 0.7 · 0.7 · 0.7 = 0.343.

(b) P(G1 and G2 and R3) = P(G1)P(G2)P(R3) = 0.7 · 0.7 · 0.3 = 0.147.

(c) Note that ‘‘at least one red” is the same as ‘‘not all green,” so by the
complement rule and the result of part (a), we have P(At least one red) =
1 − P(All three green) = 1 − 0.343 = 0.657.

It is easy to confuse the concepts of ‘‘disjoint” events and ‘‘independent” events, but
they are very different. If A and B are disjoint, when A occurs we know that B can’t
possibly also occur on the same trial. However, if A and B are independent, when A
occurs it doesn’t change at all the probability that B occurs on the same trial. Thus
independent events need common outcomes and disjoint events can’t have any.

Example 11.11
In Exercise 11.5, we learn that for one Intensive Care Unit, 35% of admitted patients
have high blood pressure (HPB), 42% have an infection (INF), and 12% have both
problems. Are the two events HPB and INF:

(a) Disjoint?

(b) Independent?

o

A
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Solution (a) Events A and B are disjoint if they cannot happen at the same time, which
means P(A and B) = 0. In this case, HPB and INF can occur simultaneously,
and in fact these events do occur together in 12% of patients. We have
P(HPB and INF) = 0.12. These events are not disjoint.

(b) Events A and B are independent if knowing one gives us no information
about the other. In symbols, this means P(A and B) = P(A) · P(B). In this case,
we see that P(HPB) · P(INF) = 0.35 · 0.42 = 0.147. Since this does not equal
P(HPB and INF) = 0.12, the events are not independent. (We could also have
used the conditional probabilities of Example 11.6 to answer this question.)

Basic Probability Rules: Summary

If A and B represent any two events:

Complement: P(not A) = 1 − P(A)

Additive: P(A or B) = P(A) + P(B) − P(A and B)

Multiplicative: P(A and B) = P(A) · P(B if A)

Conditional: P(B if A) = P(A and B)

P(A)
Special cases:

If A and B are disjoint: P(A or B) = P(A) + P(B)

If A and B are independent: P(A and B) = P(A) · P(B)

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute the probability of events if outcomes are equally likely

• Identify when a probability question is asking for A and B, A or B, not
A, or A if B

• Use the complement, additive, multiplicative, and conditional rules to
compute probabilities of events

• Recognize when two events are disjoint and when two events are
independent

Exercises for Section 11.1

SKILL BUILDER 1
In Exercises 11.1 to 11.7, use the information that,
for events A and B, we have P(A) = 0.4, P(B) = 0.3,
and P(A and B) = 0.1.

11.1 Find P(not A).

11.2 Find P(not B).

11.3 Find P(A or B).

11.4 Find P(A if B).

11.5 Find P(B if A).

11.6 Are events A and B disjoint?

11.7 Are events A and B independent?

SKILL BUILDER 2
In Exercises 11.8 to 11.14, use the information that,
for events A and B, we have P(A) = 0.8, P(B) = 0.4,
and P(A and B) = 0.25.

11.8 Find P(not A).

o

o
o
o
o
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11.9 Find P(not B).

11.10 Find P(A or B).

11.11 Find P(A if B).

11.12 Find P(B if A).

11.13 Are events A and B disjoint?

11.14 Are events A and B independent?

SKILL BUILDER 3
In Exercises 11.15 to 11.18, use the fact that we have
independent events A and B with P(A) = 0.7 and
P(B) = 0.6.

11.15 Find P(A if B).

11.16 Find P(B if A).

11.17 Find P(A and B).

11.18 Find P(A or B).

SKILL BUILDER 4
Table 11.3 gives probabilities for various combina-
tions of events A, B, and their complements. Use
the information from this table in Exercises 11.19
to 11.26.

11.19 Find P(A).

11.20 Find P(not B).

11.21 Find P(A and B).

11.22 Find P(A or B).

11.23 Find P(A if B).

11.24 Find P(B if A).

11.25 Are events A and B disjoint?

11.26 Are events A and B independent?

Table 11.3 Probability of being
in each cell of a two-way table

A not A

B 0.2 0.4
not B 0.1 0.3

Disjoint, Independent, and Complement For
Exercises 11.27 to 11.30, state whether the two
events (A and B) described are disjoint, indepen-
dent, and/or complements. (It is possible that the
two events fall into more than one of the three
categories, or none of them.)

11.27 Draw three skittles (possible colors: yellow,
green, red, purple, and orange) from a bag. Let A
be the event that all three skittles are green and B
be the event that at least one skittle is red.

11.28 South Africa plays Australia for the champi-
onship in the Rugby World Cup. Let A be the event

that Australia wins and B be the event that South
Africa wins. (The game cannot end in a tie.)

11.29 South Africa plays Australia for the champi-
onship in the Rugby World Cup. At the same time,
Poland plays Russia for the World Team Chess
Championship. Let A be the event that Australia
wins their rugby match and B be the event that
Poland wins their chess match.

11.30 Roll two (six-sided) dice. Let A be the event
that the first die is a 3 and B be the event that the
sum of the two dice is 8.

11.31 Explain What Is Wrong Each of the following
statements demonstrate a common misuse of prob-
ability. Explain what is wrong with each statement:

(a) Approximately 10% of adults are left-handed.
So, if we take a simple random sample of 10
adults, 1 of them will be left-handed.

(b) A pitch in baseball can be called a ball or a strike
or can be hit by the batter. As there are three
possible outcomes, the probability of each is 1/3.

(c) The probability that a die lands with a 1 face up
is 1/6. So, since rolls of the die are independent,
the probability that two consecutive rolls land
with a 1 face up is 1/6 + 1/6 = 1/3.

(d) The probability of surviving a heart attack is
2.35.

11.32 Studio and Genre of Movies About 20% of
movies coming out of Hollywood are comedies,
Warner Bros has been the lead studio for about 9%
of recent movies, and about 2% of recent movies
are comedies from Warner Bros.2 Let C denote the
event a movie is a comedy and W denote the event
a movie is produced by Warner Bros.

(a) Write probability expressions for each of the
three facts given in the first sentence of the
exercise.

(b) What is the probability that a movie is either a
comedy or produced by Warner Bros?

(c) What is the probability that a Warner Bros
movie is a comedy?

(d) What is the probability that a comedy has
Warner Bros as its producer?

(e) What is the probability that a movie coming out
of Hollywood is not a comedy?

(f) In terms of movies, what would it mean to say
that C and W are disjoint events? Are they
disjoint events?

2Probabilities based on data from HollywoodMovies2011.
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(g) In terms of movies, what would it mean to say
that C and W are independent events? Are they
independent events?

11.33 Size of Countries and Developed Status Of
the 213 countries or independent economies in the
world recognized by the World Bank, 19% are clas-
sified by the World Bank as being developed. Are
countries with a large land area more likely to be
developed? We classify a country as large if its land
area is greater than 500,000 square kilometers, and
23% of countries are large. Of all the countries, 17%
are both large and developed.3 Use D to denote the
event of a country being classified as developed
and L to denote the event of a country being large
(greater than 500,000 sq km in size).

(a) Write probability expressions for each of the
three facts given about countries in the exercise.

(b) What is the probability that a country is either
large or developed?

(c) What is the probability that a large country is
developed? Compare this to the probability that
any country is developed.

(d) What is the probability that a developed country
is large? Compare this to the probability that
any country is large.

(e) What is the probability that a country selected
at random is not classified as developed?

(f) In terms of countries, what would it mean to
say that D and L are disjoint events? Are they
disjoint events?

(g) In terms of countries, what would it mean to say
that D and L are independent events? Are they
independent events?

11.34 Rock and Roll Hall of Fame From its found-
ing through 2012, the Rock and Roll Hall of Fame
has inducted 273 groups or individuals.4 Table 11.4
shows how many of the inductees have been female
or have included female members and also shows
how many of the inductees have been performers.
(The full dataset is available in RockandRoll.) Let-
ting F represent the event of having female members
(or being a female) and MP represent the event of
being a (music) performer, write each of the follow-
ing questions as a probability expression and find
the probability.

What is the probability that an inductee chosen
at random:

(a) Is a performer?

3Probabilities based on data from AllCountries, which was col-
lected from the World Bank at worldbank.org.
4Rock and Roll Hall of Fame website: rockhall.com/inductees.

(b) Does not have any female members?

(c) Has female members if it is a performer?

(d) Is not a performer if it has no female members?

(e) Is a performer with no female members?

(f) Is either not a performer or has female mem-
bers?

Table 11.4 Members of the Rock and Roll Hall
of Fame

Female No female
members members Total

Performer 32 149 181
Not performer 9 83 92

Total 41 232 273

11.35 Hockey Hall of Fame From its founding
through 2012, the Hockey Hall of Fame has inducted
251 players.5 Table 11.5 shows number of players by
place of birth and by position played. If a player is
chosen at random from all player inductees into the
Hockey Hall of Fame, let C represent the event of
being born in Canada and D represent the event
of being a defenseman. Write each of the following
questions as a probability expression and find the
probability.

(a) What is the probability that an inductee chosen
at random is Canadian?

(b) What is the probability that an inductee chosen
at random is not a defenseman?

(c) What is the probability that a player chosen at
random is a defenseman born in Canada?

(d) What is the probability that a player chosen at
random is either born in Canada or a defense-
man?

(e) What is the probability that a Canadian inductee
plays defense?

(f) What is the probability that an inductee who
plays defense is Canadian?

Table 11.5 Hockey Hall of Fame by place of
birth and position

Offense Defense Goal Total

Canada 123 71 33 227
USA 7 2 1 10
Europe 6 3 2 11
Other 2 1 0 3

Total 138 77 36 251

5Hockey Hall of Fame website: www.hhof.com.
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11.36 Peanut M & Ms In a bag of peanut M & M’s,
there are 80 M & Ms, with 11 red ones, 12 orange
ones, 20 blue ones, 11 green ones, 18 yellow ones,
and 8 brown ones. They are mixed up so that each
candy piece is equally likely to be selected if we pick
one.

(a) If we select one at random, what is the proba-
bility that it is red?

(b) If we select one at random, what is the proba-
bility that it is not blue?

(c) If we select one at random, what is the proba-
bility that it is red or orange?

(d) If we select one at random, then put it back, mix
them up well (so the selections are independent)
and select another one, what is the probability
that both the first and second ones are blue?

(e) If we select one, keep it, and then select a second
one, what is the probability that the first one is
red and the second one is green?

11.37 More Peanut M & Ms As in Exercise 11.36,
we have a bag of peanut M & M’s with 80 M &
Ms in it, and there are 11 red ones, 12 orange ones,
20 blue ones, 11 green ones, 18 yellow ones, and
8 brown ones. They are mixed up so that each is
equally likely to be selected if we pick one.

(a) If we select one at random, what is the proba-
bility that it is yellow?

(b) If we select one at random, what is the proba-
bility that it is not brown?

(c) If we select one at random, what is the proba-
bility that it is blue or green?

(d) If we select one at random, then put it back, mix
them up well (so the selections are independent)
and select another one, what is the probability
that both the first and second ones are red?

(e) If we select one, keep it, and then select a second
one, what is the probability that the first one is
yellow and the second one is blue?

11.38 Free Throws During the 2010-11 NBA sea-
son, Ray Allen of the Boston Celtics had a free
throw shooting percentage of 0.881. Assume that
the probability Ray Allen makes any given free
throw is fixed at 0.881, and that free throws are
independent.

(a) If Ray Allen shoots two free throws, what is the
probability that he makes both of them?

(b) If Ray Allen shoots two free throws, what is the
probability that he misses both of them?

(c) If Ray Allen shoots two free throws, what is the
probability that he makes exactly one of them?

11.39 Color Blindness in Men and Women The
most common form of color blindness is an inability
to distinguish red from green. However, this partic-
ular form of color blindness is much more common
in men than in women (this is because the genes
corresponding to the red and green receptors are
located on the X-chromosome). Approximately 7%
of American men and 0.4% of American women
are red-green color-blind.6

(a) If an American male is selected at random,
what is the probability that he is red-green
color-blind?

(b) If an American female is selected at random,
what is the probability that she is NOT red-
green color-blind?

(c) If one man and one woman are selected at ran-
dom, what is the probability that neither are
red-green color-blind?

(d) If one man and one woman are selected at ran-
dom, what is the probability that at least one of
them is red-green color-blind?

11.40 More Color Blindness in Men and Women
Approximately 7% of men and 0.4% of women
are red-green color-blind (as in Exercise 11.39).
Assume that a statistics class has 15 men and 25
women.

(a) What is the probability that nobody in the class
is red-green color-blind?

(b) What is the probability that at least one person
in the class is red-green color-blind?

(c) If a student from the class is selected at random,
what is the probability that he or she will be
red-green color-blind?

11.41 Probabilities of Death The US Social Secu-
rity Administration collects information on the
life expectancy and death rates of the population.
Table 11.6 gives the number of US men out of
100,000 born alive who will survive to a given age,
based on 2007 mortality rates.7

For example, 47,974 of 100,000 US males live to
their 80th birthday.

(a) What is the probability that a man lives to age
60?

(b) What is the probability that a man dies before
age 70?

6Montgomery, G., ‘‘Color Blindness: More Prevalent Among
Males,” in Seeing, Hearing, and Smelling the World, http://www
.hhmi.org/senses/b130.html, accessed April 27, 2012.
7Period Life Table 2007, http://www.ssa.gov/oact/STATS
/table4c6.html, accessed 06/27/2012.
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(c) What is the probability that a man dies at age
90 (after his 90th and before his 91st birthday)?

(d) If a man lives until his 90th birthday, what is the
probability that he will die at the age of 90?

(e) If a man lives until his 80th birthday, what is the
probability that he will die at the age of 90?

(f) What is the probability that a man dies between
the ages of 60 and 89?

(g) If a man lives until his 60th birthday, what is the
probability that he lives to be at least 90 years
old?

Table 11.6 Life Table for US males, 2007

Age 60 70 80 90 91

Number of lives 85,227 72,066 47,974 15,722 12,986

11.42 Is the Stock Market Independent? The Stan-
dard and Poor 500 (S&P 500) is a weighted average
of the stocks for 500 large companies in the United
States. It is commonly used as a measure of the over-
all performance of the US stock market. Between
January 1, 2009 and January 1, 2012, the S&P 500
increased for 423 of the 756 days that the stock mar-
ket was open. We will investigate whether changes
to the S&P 500 are independent from day to day.
This is important, because if changes are not inde-
pendent, we should be able to use the performance

on the current day to help predict performance on
the next day.

(a) What is the probability that the S&P 500
increased on a randomly selected market day
between January 1, 2009 and January 1, 2012?

(b) If we assume that daily changes to the S&P
500 are independent, what is the probability
that the S&P 500 increases for two consecutive
days? What is the probability that the S&P 500
increases on a day, given that it increased the
day before?

(c) Between January 1, 2009 and January 1, 2012 the
S&P 500 increased on two consecutive market
days 234 times out of a possible 755. Based
on this information, what is the probability
that the S&P 500 increases for two consecu-
tive days? What is the probability that the S&P
500 increases on a day, given that it increased
the day before?

(d) Compare your answers to part (b) and part (c).
Do you think that this analysis proves that daily
changes to the S&P 500 are not independent?

11.43 Pancakes A friend makes three pancakes for
breakfast. One of the pancakes is burned on both
sides, one is burned on only one side, and the other
is not burned on either side. You are served one of
the pancakes at random, and the side facing you is
burned. What is the probability that the other side
is burned? (Hint: Use conditional probability.)

11.2TREE DIAGRAMS AND BAYES’ RULE

Example 11.12
Automobile Accident Rates

According to data from the US Census Bureau’s 2012 Statistical Abstract, the
probability a young person (under the age of 25) is involved as a driver in an
automobile accident during a given year is about 0.16. For a driver whose age is in
the middle (25 to 54 years old), the probability drops to 0.08 and for older drivers
(55 and older) the rate is about 0.04.8 The US Census also tells us that about 13.2%
of all licensed drivers are young, 35.6% are between 25 and 54, and the remaining
51.2% are older. What is the overall probability that a licensed driver has an accident
during the year?

Solution If we let Y, M, and O represent the age groups (young, middle, and old) and A be
the event that a driver has an accident, the given information states that

P(A if Y) = 0.16 P(A if M) = 0.08 P(A if O) = 0.04
P(Y) = 0.132 P(M) = 0.356 P(O) = 0.512

We need to find P(A).
8Based on accident rates given in the US Census Bureau’s 2012 Statistical Abstract, Table 1114, down-
loaded at http://www.census.gov/compendia/statab/cats/transportation/motor vehicle accidents and
fatalities.html.

o
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Using the multiplicative rule we can find the probability of having an accident
and being in each of the respective age groups:

P(A and Y) = P(Y) · P(A if Y) = 0.132 · 0.16 = 0.0211

P(A and M) = P(M) · P(A if M) = 0.356 · 0.08 = 0.0285

P(A and O) = P(O) · P(A if O) = 0.512 · 0.04 = 0.0205

Since the three age groups are disjoint and cover all possible ages, we get the overall
probability of an accident, P(A), by adding these three results:

P(A) = P(A and Y) + P(A and M) + P(A and O)

= 0.0211 + 0.0285 + 0.0205

= 0.0701

The probability a licensed driver has an accident during the year is about 0.0701, or
about a 7% chance.

Total Probability
The last calculation of Example 11.12 involves finding the probability of an event
(A) by adding the probabilities that it occurs along with each of a set of disjoint
events (Y, M, and O). This is an example of the total probability rule. As long as
the disjoint events include all the possible outcomes in the event of interest we can
find its probability this way. In particular, we can always use an event, A, and its
complement, not A, as a pair of disjoint events to help find the probability of some
other event. Depending on the types of probabilities we have this can be done with
joint probabilities (and) or the multiplicative rule and conditional probabilities (if ).
These options are summarized in the formulas below.

Total Probability Rule

For any two events A and B,

P(B) = P(A and B) + P( not A and B)

= P(A)P(B if A) + P(not A)P(B if not A)

More generally if A, B, and C are disjoint events which contain all of
the outcomes of another event D, then

P(D) = P(A and D) + P(B and D) + P(C and D)

= P(A)P(D if A) + P(B)P(D if B) + P(C)P(D if C)

We can extend this in equivalent ways to more than three events.

Example 11.13
Olympic Gold

Refer to Example 11.8 on page 648 where we see that 73% of athletes in a statistics
course would prefer to win an Olympic Gold medal (over an Academy Award or
Nobel Prize) while 31% of non-athletes make that choice. If 37% of the students in
the class are athletes, what is the probability that a student chosen at random from
this class would pick the Olympic Gold?
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Solution If we let A denote the event ‘‘athlete” and OG denote ‘‘Olympic Gold,” the
given probabilities are P(A) = 0.37, P(OG if A) = 0.73, and P(OG if not A) = 0.31.
Applying the total probability rule, we have

P(OG) = P(A)P(OG if A) + P(not A)P(OG if not A)

= 0.37(0.73) + (1 − 0.37)(0.31)

= 0.2701 + 0.1953 = 0.4654

Overall, about 46.5% of students in the class pick the Olympic Gold.

Tree Diagrams
When the given information is in terms of probabilities for one type of event and
conditional probabilities for another, such as in Examples 11.12 and 11.13, we can
often organize the calculation of the multiplicative rule with a tree diagram such
as those shown in Figure 11.2. The initial set of ‘‘branches” show the probabilities
from one set of events and the second set of branches show conditional probabilities
(with the initial branch as the condition). Multiplying along any set of branches uses
the multiplicative rule to find the joint probability for that pair of events.

Example 11.14
An insurance company gets a report that one of its drivers was in an accident. Using
the probabilities given in Example 11.12 and calculations shown in Figure 11.2(a),
what is the probability that the driver is under 25 years old?

Solution We need to find the probability that a driver is young if we know he or she has had
an accident, i.e. P(Y if A). By the conditional probability rule this is

P(Y if A) = P(Y and A)

P(A)

From the work in Example 11.12 and the tree diagram in Figure 11.2 we know that
P(Y and A) = 0.0211 and P(A) = 0.0211 + 0.0285 + 0.0205 = 0.0701, so

P(Y if A) = P(Y and A)

P(A)
= 0.0211

0.0701
= 0.301

Figure 11.2 Tree
diagrams for Examples
11.12 to 11.14
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The probability is 0.301. If the insurance company hears about an accident, there is
about a 30% chance that the driver was young.

A question such as the one posed in Example 11.14 asks for a posterior
probability, since we are given some information (the driver had an accident) and
asked to go back and revise our estimate of some initial probability (the driver is
young). Note that the information that the driver had an accident makes it more
likely that the driver is under 25 (30% compared to the original 13.2%), since
younger drivers are more prone to accidents. We can do a similar calculation for the
other two age groups:

P(M if A) = P(M and A)

P(A)
= 0.0285

0.0701
= 0.41

P(O if A) = P(O and A)

P(A)
= 0.0205

0.0701
= 0.29

When restricted to drivers having an accident, the age distribution is 30% young,
41% middle, and 29% older.

Bayes’ Rule
In Examples 11.12 and 11.14 we know something about the probabilities for one
type of event (the driver age groups) and conditional probabilities for a different
event (having an accident) given each of those groups. When the latter event occurs,
the question of interest is often the chance it is associated with one of the initial
events. Put another way, if we know P(A if B), what can we say about P(B if A)?

Although the calculations are fairly intuitive from a tree diagram, we can also
use formulas to compute the conditional probability directly. This method is known
as Bayes’ rule.9 We give several equivalent formulas below for the case of two
events, but they can easily be generalized to more complicated situations. The form
we choose depends on the nature of the given information. If the formulas look a
bit intimidating, remember that we can also (or instead) use a tree diagram (as we
did in Example 11.14).

Bayes’ Rule

If A and D are any two events,

P(A if D) = P(A and D)

P(D)

= P(A)P(D if A)

P(D)

= P(A and D)

P(A and D) + P( not A and D)

= P(A)P(D if A)

P(A)P(D if A) + P( not A)P(D if not A)

The last two versions can easily be generalized using the total proba-
bility rule to handle more than two events.

9Reverend Thomas Bayes, a Presbyterian minister in England who also studied mathematics, was
credited, after his death in 1761, with the discovery of this method for finding ‘‘inverse” probabilities.
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Example 11.15
Tuberculosis Tests

One of the common tests for tuberculosis (TB) is a skin test where a substance is
injected into a subject’s arm and we see if a rash develops in a few days. The test
is relatively accurate, but in a few cases a rash might be detected even when the
subject does not have TB (a false positive) or the rash may not be seen even when
the subject has TB (a false negative). Assume that the probability of the first event,
P(Rash if not TB), is about 5% and the chance of the other, P(not Rash if TB), is
about 1%. Suppose also that only about 4 in 10,000 people have TB. An applicant
for a teaching position is required to get a TB test and the test comes back positive
(shows a rash). What is the probability that the applicant really has TB?

Solution Our initial information about an applicant is one of two possibilities, P(TB) = 0.0004
and P(not TB) = 1 − 0.0004 = 0.9996. How does this change when we include the
additional information of a positive TB test? Applying Bayes’ rule we have

P(TB if Rash) = P(TB)P(Rash if TB)

P(TB)P(Rash if TB) + P(not TB)P(Rash if not TB)

= 0.0004(0.99)

0.0004(0.99) + 0.9996(0.05)

= 0.000396
0.050376

= 0.00786

Although the TB test came back positive for the applicant, the probability that the
person actually has tuberculosis is only 0.00786.

You may be surprised that the probability found in Example 11.15 is so small,
when it seems as if the test is pretty accurate. Note, however, that the initial
probability of having TB (0.0004) is so small that, when picking a person at random,
it is far more likely that person does not have TB and thus an error to the test would
be a false positive. Figure 11.3 shows a tree diagram attacking this problem, in which
case

P(TB if Rash) = P(TB and Rash)

P(Rash)
= 0.000396

0.050376
= 0.00786

Figure 11.3 Tree
diagram for TB tests
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Note that we get the same answer whether we use a visual display like the tree
diagram or the mathematical formulation of Bayes’ rule.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute probabilities based on conditional probabilities using a tree
diagram

• Use the total probability rule to compute the probability of an event

• Apply Bayes’ rule to compute a conditional probability

Exercises for Section 11.2

SKILL BUILDER 1: INCOMPLETE TREE
DIAGRAMS
In Exercises 11.44 to 11.47, complete each tree dia-
gram by filling in the missing entries (marked with
a ‘‘?”).

11.44
0.0598

0.2002

0.3268

0.062

?

?

Case A

0.23

Case B0.77

Case A

?

Case B0.24

Case A

0.80

Case B0.20

Case III
0.31

Case II
0.43

Cas
e I

?

11.45
0.09

?

?

?

?

0.268

Case A

?

Case B
?

Case A

?

Case B0.45

Case A

0.67

Case B
?

Case III?

Case II
?

Cas
e I

0.1
8

o
o
o
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11.46 ?

0.225

0.16

0.45

0.025

0.025

Case A

?
Case B

?Case C?

Case A

?
Case B

?Case C?

Case I

?

Case II?

11.47 ?

?

?

?

?

0.00

Case A

0.00

Case B
0.19Case C?

Case A

0.56

Case B
?Case C?

Case I

0.38

Case II?

SKILL BUILDER 2: FINDING PROBABILI-
TIES USING TREE DIAGRAMS

In Exercises 11.48 to 11.55, find the requested prob-

abilities using the tree diagram in Figure 11.4.

11.48 P(B and R)

11.49 P(A and S)

11.50 P(R if A)

11.51 P(S if B)

11.52 P(R)

11.53 P(S)

11.54 P(A if S)

11.55 P(B if R)

R
0.9

S
0.1

R
0.2

S
0.8

A
0.6

B
0.4

Figure 11.4 Tree diagram for Exercises 11.48 to 11.55

11.56 Housing Units in the US According to the
2010 US Census, 65% of housing units in the US
are owner-occupied while the other 35% are renter-
occupied.10 Table 11.7 shows the probabilities of the
number of occupants in a housing unit under each
of the two conditions. Create a tree diagram using
this information and use it to answer the following
questions:

(a) What is the probability that a US housing unit
is rented with exactly two occupants?

(b) What is the probability that a US housing unit
has three or more occupants?

(c) What is the probability that a unit with one
occupant is rented?

Table 11.7 Conditional probabilities of
number of occupants in US housing units

Condition 1 2 3 or more

Owner-occupied 0.217 0.363 0.420
Renter-occupied 0.362 0.261 0.377

11.57 Restless Leg Syndrome and Fibromyalgia
People with restless leg syndrome have a strong
urge to move their legs to stop uncomfortable sen-
sations. People with fibromyalgia suffer pain and
tenderness in joints throughout the body. A recent
study indicates that people with fibromyalgia are
much more likely to have restless leg syndrome than
people without the disease.11 The study indicates
that, for people with fibromyalgia, the probabil-
ity is 0.33 of having restless leg syndrome, while

10www.census.gov.
11‘‘Fibromyalgia, Restless Legs Linked in New Study,”
http://www.healthcentral.com/chronic-pain/news-540062-98
.html, 2010.
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for people without fibromyalgia, the probability is
0.03. About 2% of the population has fibromyalgia.
Create a tree diagram from this information and use
it to find the probability that a person with restless
leg syndrome has fibromyalgia.

11.58 Mammograms and Breast Cancer The mam-
mogram is helpful for detecting breast cancer in its
early stages. However, it is an imperfect diagnos-
tic tool. According to one study,12 86.6 of every
1000 women between the ages of 50 and 59 that
do not have cancer are wrongly diagnosed (a ‘‘false
positive”), while 1.1 of every 1000 women between
the ages of 50 and 59 that do have cancer are not
diagnosed (a ‘‘false negative”). One in 38 women
between 50 and 59 will develop breast cancer. If a
woman between the ages of 50 and 59 has a positive
mammogram, what is the probability that she will
have breast cancer?

11.59 What’s the Pitch? Slippery Elum is a baseball
pitcher who uses three pitches, 60% fastballs, 25%
curveballs, and the rest spitballs. Slippery is pretty
accurate with his fastball (about 70% are strikes),
less accurate with his curveball (50% strikes), and
very wild with his spitball (only 30% strikes). Slip-
pery ends one game with a strike on the last pitch
he throws. What is the probability that pitch was a
curveball?

Identifying Spam Text Messages Bayes’ rule can
be used to identify and filter spam emails and text

12Nelson, H., et al., ‘‘Screening for Breast Cancer: System-
atic Evidence Review Update for the U.S. Preventive Services
Task Force,’’ Evidence Review Update No. 74, AHRQ Publica-
tion No. 10-05142-EF-1, Rockville, MD, Agency for Healthcare
Research and Quality, 2009.

messages. Exercises 11.60 to 11.63 refer to a large
collection of real SMS text messages from partici-
pating cellphone users.13 In this collection, 747 of
the 5574 total messages (13.40%) are identified as
spam.

11.60 The word ‘‘free” is contained in 4.75% of all
messages, and 3.57% of all messages both contain
the word ‘‘free” and are marked as spam.

(a) What is the probability that a message contains
the word ‘‘free”, given that it is spam?

(b) What is the probability that a message is spam,
given that it contains the word ‘‘free”?

11.61 The word ‘‘text” (or ‘‘txt”) is contained in
7.01% of all messages, and in 38.55% of all spam
messages. What is the probability that a message
is spam, given that it contains the word ‘‘text” (or
‘‘txt”)?

11.62 Of all spam messages, 17.00% contain both
the word ‘‘free” and the word ‘‘text” (or ‘‘txt”). For
example, ‘‘Congrats!! You are selected to receive a
free camera phone, txt ******* to claim your prize.”
Of all non-spam messages, 0.06% contain both the
word ‘‘free” and the word ‘‘text” (or ‘‘txt”). Given
that a message contains both the word ‘‘free” and
the word ‘‘text” (or ‘‘txt”), what is the probability
that it is spam?

11.63 Given that a message contains the word
‘‘free” but does NOT contain the word ‘‘text” (or
‘‘txt”), what is the probability that it is spam? (Hint:
Use the information in Exercises 11.60 to 11.62.)

13Almeida, T., Hidalgo, J., Yamakami, A., ‘‘Contributions to
the Study of SMS Spam Filtering: New Collection and Results,”
Proceedings of the 2011 ACM Symposium on Document Engi-
neering (DOCENG’11), Association for Computing Machinery,
Mountain View, CA, 2011.

11.3RANDOM VARIABLES AND PROBABILITY FUNCTIONS

Random Variables
A random variable denotes a numeric quantity that changes from trial to trial in
a random process. We often use a capital letter, like X or Y, to denote a random
variable. Here are some examples:

X = number showing when a six-sided die is rolled

Y = sum of the numbers shown on two dice rolls

Z = number of girls among three children in a family

W = weight change after six months in an exercise program

T = time needed to read this section of the text

C = cost to repair damage to a car after an accident
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We would like answers to probability questions about events determined by a
random variable. For example, what is the probability that the sum of two dice rolls
is eight (Y = 8), a family has three children who are all girls (Z = 3), or the cost to
repair a car is more than $2000 (C > 2000)?

Discrete vs Continuous
We say a random variable is discrete if it has a finite set of possible values. The

result of a die roll {1, 2, 3, 4, 5, or 6}, the sum of two dice {2, 3, . . . , or 12}, and the
number of girls among three children{0, 1, 2, or 3} are all discrete random variables.

A variable that can take any value within some interval is called continuous.
The amount of weight change and time needed to read the text are examples of
continuous random variables.

In some cases a variable might technically be discrete (like the cost in dollars to
repair a car), but there are so many possible values that we may decide to treat it
as if it were continuous. In other situations, we might compress/round a continuous
variable to a relatively few discrete values.

The distinction between discrete and continuous random variables is important
for determining how we express their probabilities. For continuous random variables
we use a density curve, as described in Chapter 5 on page 324, where the probability
of being in some region is found as the area under the density curve. Formal
calculations with a density curve generally require the use of calculus and are
beyond the scope of this text.

For the rest of this section we assume that a random variable is discrete with
a relatively small set of possible values. In that case we determine probabilities by
specifying a probability for each possible value of the random variable.

Probability Functions
For a discrete random variable, a probability function gives the probability for each
of its possible values. We often use notation such as p(2) as shorthand to denote the
probability of the event, P(X = 2). In some cases (see Exercises 11.94 and 11.95),
the probability function may be given as a mathematical expression, but often we
simply give a table of the probabilities for each possible value.

Probability Function for a Discrete Random Variable

A probability function assigns a probability, between 0 and 1, to
every value of a discrete random variable. The sum of all of these
probabilities must be one, i.e.

∑
p(x) = 1.

Example 11.16
Roll a Die

Suppose that we roll a fair six-sided die and let the random variable X be the value
showing at the top of the die. Find the probability function for X.

Solution There are six possible values, {1, 2, 3, 4, 5, 6}, that are all equally likely, so the
probability of each is 1/6. We can express this as a table:

x 1 2 3 4 5 6

p(x)
1
6

1
6

1
6

1
6

1
6

1
6

or simply write p(x) = 1/6 for x = 1, 2, . . . , 6.

o
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Table 11.8 Probability function for sum of two dice

x 2 3 4 5 6 7 8 9 10 11 12

p(x)
1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Example 11.17
Sum of Two Dice

Suppose that we roll two six-sided dice and let a random variable X measure the
sum of the two rolls. There are 6 possible outcomes for each die, so 6 × 6 = 36
possible pairs of rolls. The possible sums are values from 2 to 12, but they are not all
equally likely. For example, there is only one pair, 6 + 6, that gives a sum of 12, but
three ways, 4 + 6, 5 + 5, and 6 + 4, to get a sum of 10. The probability function for
X is shown in Table 11.8.

Use the probability function to find:

(a) P(X = 7 or X = 11)

(b) P(X > 8)

Solution (a) The events X = 7 and X = 11 are disjoint so we find the probability that one or
the other occurs by adding the individual probabilities:

P(X = 7 or X = 11) = p(7) + p(11) = 6
36

+ 2
36

= 8
36

= 0.222

(b) To find the probability that the sum is greater than 8, we add the individual
probabilities from the probability function for the values of X that satisfy this
condition:

P(X > 8) = p(9) + p(10) + p(11) + p(12) = 4
36

+ 3
36

+ 2
36

+ 1
36

= 10
36

= 0.278

Mean of a Random Variable

Example 11.18
Raffle Winnings

A charitable organization is running a raffle as a fundraiser. They offer a grand prize
of $500, two second prizes of $100, and ten third prizes of $20 each. They plan to sell
1000 tickets at $2 per ticket. What is the average amount of money won with each
ticket in the lottery?

Solution The total amount of prize money is $500 · 1 + $100 · 2 + $20 · 10 = $900. Since there
are 1000 tickets sold, the average amount won per ticket is $900/1000 = $0.90, or
about 90 cents.

We can formalize the process of Example 11.18 to find the mean of any random
variable if we know its probability function. Letting X represent the amount won
with a raffle ticket, the probability function is shown in Table 11.9. The process of
calculating the total winnings and dividing by the number of tickets sold is equivalent
to multiplying each value of the random variable by its corresponding probability
and adding the results:

500 · 1
1000

+ 100 · 2
1000

+ 20 · 10
100

+ 0 · 987
1000

= 0.90

o

o
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Table 11.9 Probability function for raffle
winnings

x 500 100 20 0

p(x)
1

1000
2

1000
10

1000
987
1000

We call this the mean or expected value of the random variable X. Since this re-
presents the average value over the ‘‘population” of all tickets, we use the notation
μ = 0.90 to represent this mean.

In general, we find the mean for a random variable from its probability function
by multiplying each of the possible values by the probability of getting that value
and summing the results.

Mean of a Random Variable

For a random variable X with probability function p(x), the mean, μ, is

μ =
∑

x · p(x)

Example 11.19
Find the mean of the sum of two dice rolls using the probability function given in
Example 11.17 on page 663.

Solution We multiply each of the possible values from the sum of two dice rolls by its
corresponding probability given in Table 11.8, and add up the results:

μ = 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ 5 · 4
36

+ 6 · 5
36

+ 7 · 6
36

+ 8 · 5
36

+ 9 · 4
36

+ 10 · 3
36

+ 11 · 2
36

+ 12 · 1
36

= 7.0

The average sum on a roll of two dice is 7. This is not very surprising based on the
symmetry of this variable.

Example 11.20
Actuarial Analysis

An actuary is a person who assesses various forms of risk. For example, suppose
that past data indicate that the holder of an automobile insurance policy has a 5%
chance of an accident causing $1000 of damage, 2% chance of $5000 damage, 1%
chance of totaling the car ($25,000), and a 92% chance of making it through the year
with no accidents.10 If the insurance company charges $1200 for such a policy, are
they likely to make or lose money?

Solution The mean of the damages according to the given probabilities is

μ = $1000 · 0.05 + $5000 · 0.02 + $25,000 · 0.01 + $0 · 0.92 = $400

So, on average, the insurance company will make about $800 per policy under these
circumstances, if they charge a $1200 premium.

10In reality, actuaries use much more extensive data than the few values shown here.

o

o
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Standard Deviation of a Random Variable
In Section 2.3 on page 75 we introduce the notion of standard deviation as a way to
measure the variability in a sample:

s =
√∑

(x − x)2

n − 1

We apply similar reasoning to measure the standard deviation in a population that
is defined by a random variable with probability function p(x). To do this, we find
the average squared deviation from the mean, μ, and then take a square root.

Standard Deviation of a Random Variable

For a random variable X with probability function p(x) and mean μ,
the variance, σ 2, is

σ 2 =
∑

(x − μ)2 · p(x)

and the standard deviation is σ =
√

σ 2.

Example 11.21
Find the standard deviation of the random variable X = the sum of two dice rolls.

Solution In Example 11.19 we find that the mean of X is μ = 7. To find the variance, σ 2, we
compute the mean of the squared deviations from μ = 7:

σ 2 = (2 − 7)2 1
36

+ (3 − 7)2 2
36

+ (4 − 7)2 3
36

+ · · · + (11 − 7)2 2
36

+ (12 − 7)2 1
36

= 25 · 1
36

+ 16 · 2
36

+ 9 · 3
36

+ · · · + 16 · 2
36

+ 25 · 1
36

= 5.8333

The standard deviation of X is

σ =
√

5.833 = 2.42

The value σ = 2.42 is the population standard deviation for the sums of all
possible throws of two dice. If you were to roll a sample pair of dice many times,
record the sums, and compute the sample standard deviation, s, you should get a
number fairly close to 2.42. Try it!

Example 11.22
Find the standard deviation of the damage amounts for the auto insurance situation
described in Example 11.20.

Solution Given the mean damage, μ = 400, the variance is

σ 2 = (1000 − 400)2 · 0.05 + (5000 − 400)2 · 0.02

+ (25,000 − 400)2 · 0.01 + (0 − 400)2 · 0.92

= 6,640,000

The standard deviation of damage amounts is σ = √
6,640,000 = $2576.81.

o

o
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Note that we need to be sure to include the deviation from $0 (no accidents) as
part of this calculation.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute probabilities for a random variable using a probability func-
tion

• Compute the mean of a random variable from a probability function

• Compute the variance and standard deviation of a random variable
from a probability function

Exercises for Section 11.3

SKILL BUILDER 1: DISCRETE OR
CONTINUOUS?
In Exercises 11.64 to 11.68, state whether the pro-
cess described is a discrete random variable, is a
continuous random variable, or is not a random
variable.

11.64 Draw 10 cards from a deck and count the
number of hearts.

11.65 Draw 10 cards from a deck and find the
proportion that are hearts.

11.66 Deal cards one at a time from a deck. Keep
going until you deal an ace. Stop and count the total
number of cards dealt.

11.67 Draw one M&M from a bag. Observe
whether it is blue, green, brown, orange, red, or
yellow.

11.68 Observe the average weight, in pounds, of
everything you catch during a day of fishing.

SKILL BUILDER 2: A PROBABILITY
FUNCTION
Exercises 11.69 to 11.74 refer to the probability
function given in Table 11.10 for a random variable
X that takes on the values 1, 2, 3, and 4.

11.69 Verify that the values given in Table 11.10
meet the conditions for being a probability function.
Justify your answer.

11.70 Find P(X = 3 or X = 4).

11.71 Find P(X > 1).

11.72 Find P(X < 3).

11.73 Find P(X is an odd number).

11.74 Find P(X is an even number).

Table 11.10 Probability
function for Exercises 11.69
to 11.74

x 1 2 3 4

p(x) 0.4 0.3 0.2 0.1

SKILL BUILDER 3: MORE PROBABILITY
FUNCTIONS
In Exercises 11.75 to 11.78, fill in the ? to make p(x)

a probability function. If not possible, say so.

11.75 x 1 2 3 4

p(x) 0.1 0.1 0.2 ?

11.76
x 10 20 30 40

p(x) 0.2 0.2 ? 0.2

11.77
x 1 2 3

p(x) 0.5 0.6 ?

o
o
o
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11.78 x 1 2 3 4 5

p(x) 0.3 ? 0.3 0.3 0.3

SKILL BUILDER 4: MEAN AND STANDARD
DEVIATION
In Exercises 11.79 to 11.82, use the probability func-
tion given in the table to calculate:

(a) The mean of the random variable

(b) The standard deviation of the random variable

11.79 x 1 2 3

p(x) 0.2 0.3 0.5

11.80 x 10 20 30

p(x) 0.7 0.2 0.1

11.81 x 20 30 40 50

p(x) 0.6 0.2 0.1 0.1

11.82 x 10 12 14 16

p(x) 0.25 0.25 0.25 0.25

11.83 Owner-Occupied Household Size Table 11.11
gives the probability function for the random
variable15 giving the household size for an owner-
occupied housing unit in the US.16

(a) Verify that the sum of the probabilities is 1 (up
to round-off error).

(b) What is the probability that a unit has only one
or two people in it?

(c) What is the probability that a unit has five or
more people in it?

(d) What is the probability that more than one
person lives in a US owner-occupied housing
unit?

15The largest category is actually ‘‘7 or more” but we have cut it
off at 7 to make it a random variable. Can you explain why this
was necessary?
16www.census.gov.

Table 11.11 Household size in owner-occupied
units

x 1 2 3 4 5 6 7

p(x) 0.217 0.363 0.165 0.145 0.067 0.026 0.018

11.84 Renter-Occupied Household Size Table 11.12
gives the probability function for the random vari-
able giving the household size for a renter-occupied
housing unit in the US.

(a) Verify that the sum of the probabilities is 1 (up
to round-off error.)

(b) What is the probability that a unit has only one
or two people in it?

(c) What is the probability that a unit has five or
more people in it?

(d) What is the probability that more than one
person lives in a US renter-occupied housing
unit?

Table 11.12 Household size in renter-occupied
units

x 1 2 3 4 5 6 7

p(x) 0.362 0.261 0.153 0.114 0.061 0.027 0.022

11.85 Average Household Size for Owner-Occu-
pied Units Table 11.11 in Exercise 11.83 gives the
probability function for the random variable giving
the household size for an owner-occupied housing
unit in the US.

(a) Find the mean household size.

(b) Find the standard deviation for household size.

11.86 Average Household Size for Renter-Occu-
pied Units Table 11.12 in Exercise 11.84 gives the
probability function for the random variable giving
the household size for a renter-occupied housing
unit in the US.

(a) Find the mean household size.

(b) Find the standard deviation for household size.

11.87 Fruit Fly Lifetimes Suppose that the proba-
bility function in Table 11.13 reflects the possible
lifetimes (in months after emergence) for fruit
flies.

(a) What proportion of fruit flies die in their second
month?
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(b) What is the probability that a fruit fly lives more
than four months?

(c) What is the mean lifetime for a fruit fly?

(d) What is the standard deviation of fruit fly life-
times?

Table 11.13 Fruit fly lifetimes (in months)

x 1 2 3 4 5 6

p(x) 0.30 ? 0.20 0.15 0.10 0.05

11.88 Used Car Sales A used car dealership uses
past data to estimate the probability distribution
for the number of cars they sell in a day, X. The
probability distribution of X is given in Table 11.14.

(a) What is P(X = 4)?

(b) What is the probability that the dealership sells
less than two cars during a day?

(c) What is the expected number (mean) of cars
sold in a day?

(d) What is the standard deviation of the number of
cars sold in a day?

Table 11.14 Cars sold in a day

x 0 1 2 3 4

p(x) 0.29 0.3 0.2 0.17 ?

11.89 More Fruit Fly Lifetimes Refer to Table 11.13
in Exercise 11.87 that gives probabilities for fruit fly
lifetimes.

(a) If we know a fruit fly died before the end of its
second month, what is the probability it died in
its first month?

(b) If a fruit fly makes it past its second month,
what is the probability it will live more than
four months?

11.90 More Used Car Sales Refer to Table 11.14 in
Exercise 11.88 that gives probabilities for the num-
ber of used cars a dealer sells in a day. What is
the probability that the dealership sells no cars on
three consecutive days? (Assume daily sales are
independent.)

11.91 Ray Allen’s Free Throws As we see in
Exercise 11.38 on page 653, during the 2010–11

NBA season, Ray Allen of the Boston Celtics had
a free throw shooting percentage of 0.881. Assume
that the probability Ray Allen makes any given free
throw is fixed at 0.881, and that free throws are
independent. Let X be the number of free throws
Ray Allen makes in two attempts.

(a) What is the probability distribution of X?

(b) What is the mean of X?

11.92 Life Insurance A non-profit organization
plans to offer a life insurance service. Participants
agree to a five-year contract in which they pay the
organization a yearly fee. The fee does not change
over the course of the contract. If the policy holder
dies during the five-year period, the organization
will pay $100,000 to her family and there will be no
more yearly fee. The probabilities of death at ages
60, 61, 62, 63, and 64 for a US woman on her 60th
birthday are given in Table 11.15.17

For example, on her 60th birthday a woman will
have a 0.82% chance of dying at the age of 62.

(a) Let X be the organization’s total profit, in dol-
lars, five years after selling a contract to a woman
on her 60th birthday. Write the probability dis-
tribution of X, where the values of X are given
in terms of the yearly fee c.

(b) Write the mean of X in terms of c.

(c) What yearly fee should the organization charge
60-year-old women if they hope to break even?
(The organization can expect to break even if
they have a mean profit of $0.)

Table 11.15 Probabilities of death for a US
woman on her 60th birthday

Age 60 61 62 63 64

Probability 0.00696 0.00756 0.00820 0.00885 0.00950

11.93 Internet Pricing An Internet Service Provider
(ISP) offers its customers three options:

• Basic: Standard internet for everyday needs, at
$23.95 per month.

• Premium: Fast internet speeds for streaming
video and downloading music, at $29.95 per
month.

17Period Life Table 2007, http://www.ssa.gov/oact/STATS
/table4c6.html, accessed June 27, 2012.
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• Ultra: Super-fast internet speeds for online gam-
ing, at $39.95 per month.

Ultra is the company’s least popular option; they
have twice as many Premium customers, and three
times as many Basic customers:

(a) Let X be the monthly fee paid by a randomly
selected customer. Give the probability distri-
bution of X.

(b) What is the mean of X? (This is the company’s
average monthly revenue per customer.)

(c) What is the standard deviation of X?

11.94 Benford’s Law Frank Benford, a physicist
working in the 1930s, discovered an interesting fact
about some sets of numbers. While you might expect
the first digits of numbers such as street addresses
or checkbook entries to be randomly distributed
(each with probability 1/9), Benford showed that in
many cases the distribution of leading digits is not
random, but rather tends to have more ones, with
decreasing frequencies as the digits get larger. If a
random variable X records the first digit in a street
address, Benford’s law says the probability function
for X is

P(X = k) = log10(1 + 1/k)

(a) According to Benford’s law, what is the proba-
bility that a leading digit of a street address is 1?
What is the probability for 9?

(b) Using this probability function, what proportion
of street addresses begin with a digit greater
than 2?

11.95 Getting to the Finish In a certain board game
participants roll a standard six-sided die and need to
hit a particular value to get to the finish line exactly.
For example, if Carol is three spots from the finish,
only a roll of 3 will let her win; anything else and she
must wait another turn to roll again. The chance of
getting the number she wants on any roll is p = 1/6
and the rolls are independent of each other. We
let a random variable X count the number of turns
until a player gets the number needed to win. The
possible values of X are 1, 2, 3, . . . and the prob-
ability function for any particular count is given by
the formula

P(X = k) = p(1 − p)k−1

(a) Find the probability a player finishes on the
third turn.

(b) Find the probability a player takes more than
three turns to finish.

11.4BINOMIAL PROBABILITIES

It is not always necessary to start from basic principles when computing probabilities
for a random variable. Sometimes the probability function is already well known.
For example, a normal distribution (see Section 5.1) can be used to find probabilities
in many applications that require a continuous random variable. In this section we
describe a binomial probability function, which can be used to find probabilities for
an important class of discrete random variables.

Conditions for a Binomial Random Variable
A binomial random variable counts the number of times that something occurs in a
fixed number of independent trials. What that ‘‘something” is, and what each ‘‘trial”
represents, depends on the context. For example, the number of times that a coin
lands heads in a series of 10 tosses is a binomial random variable. On each trial
the outcome that is counted by the random variable (the coin lands heads) is often
called a success, while anything else is often called a failure. This does not necessarily
mean that one is good and the other is bad; we just use these terms to distinguish
between the two outcomes. The conditions that define a binomial random variable
are given in detail below.
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Conditions for a Binomial Random Variable

For a process to give a binomial random variable we need the following
characteristics:

• A number of trials, n, that is fixed in advance

• A probability of success, p, that does not change from trial to trial

• Independence of the outcomes from trial to trial

A binomial random variable counts the number of successes in the n
independent trials.

Consider the coin-tossing example above. The number of trials is fixed (n = 10
tosses), the trials are independent (the outcome of one toss will not influence another
toss), and the probability of success is fixed at p = P(Head) = 1/2 (assuming a fair
coin). This satisfies the conditions for a binomial random variable.18

Example 11.23
In each of the following cases, state whether or not the process describes a binomial
random variable. If it is binomial, give the values of n and p.

(a) Count the number of times a soccer player scores in five penalty shots against
the same goalkeeper. Each shot has a 1/3 probability of scoring.

(b) Count the number of times a coin lands heads before it lands tails.

(c) Draw 10 cards from the top of a deck and record the number of cards that are
aces.

(d) Conduct a simple random sample of 500 registered voters, and record whether
each voter is Republican, Democrat, or Independent.

(e) Conduct a simple random sample of 500 registered voters, and count the number
that are Republican.

(f) Randomly select one registered voter from each of the 50 US states, and count
the number that are Republican.

Solution (a) Binomial (assuming shots are independent), with n = 5 and p = 1/3.

(b) Not binomial, since the number of trials n is not fixed.

(c) Not binomial, since the trials are not independent (if the first card is an ace, it is
less likely that the next card is an ace because there are less of them remaining
in the deck).

(d) Not binomial, because it is not clear what defines a success.

(e) Binomial, with n = 500 and p is the population proportion of registered voters
who are Republican.

(f) Not binomial, because the probability of selecting a Republican can vary from
state to state.

Each trial for a binomial random variable must result in an outcome we call
a success or a failure. In Example 11.23(e), a success means a selected voter is
Republican and a failure means a selected voter is not Republican (remember, a

18We sometimes use B(n, p) as shorthand to denote a binomial, so the number of heads in 10 flips is
B(10, 1/2).

o

A



11.4 Binomial Probabilities 671

success does not imply ‘‘good” or ‘‘bad”!) However, each trial need not have only
two possible outcomes. In Example 11.23(e), a selected voter could be Republican,
Democrat, or Independent.

When sampling from a finite population, the outcomes are not completely
independent. This is illustrated in Example 11.23(b), where the population is a deck
of 52 cards. However, if the population is much larger than the sample size (as a rule
of thumb, 10 times bigger), then the outcomes are very close to being independent
and the binomial distribution is appropriate. This is the case in Example 11.23(e).

Calculating Binomial Probabilities

Example 11.24
Roulette

A European roulette wheel contains 37 colored pockets. One of the pockets is
colored green, 18 are colored red, and 18 are colored black. A small ball spins
around the inside of the wheel before eventually falling into one of the colored
pockets. Each pocket has an equal probability, and gamblers often bet on which
color pocket the ball will fall into.

A gambler decides to place four bets at the roulette wheel, with all four bets
on black. Let X be the number of times the participant bets correctly. What is the
probability function of X?

Solution With each bet, the participant is interested in whether the ball lands on black (a
success: S) or not on black (a failure: F). The probability of success is P(S) = 18

37 and
the probability of failure is P(F) = 19

37 . As each bet is independent, we can multiply
their probabilities. So, the probability of success on all four bets is

P(X = 4) = P(SSSS) = P(S)P(S)P(S)P(S) =
(

18
37

)4

= 0.0560

and the probability of failure on all four bets is

P(X = 0) = P(FFFF) = P(F)P(F)P(F)P(F) =
(

19
37

)4

= 0.0695

There are four possible outcomes in which the participant wins just one bet:
{SFFF, FSFF, FFSF, FFFS}. These outcomes are disjoint and each has probability
18
37 ×

(
19
37

)3
, so

P(X = 1) = 4 × 18
37

×
(

19
37

)3

= 0.2635

Similarly, there are four possible outcomes in which the participant wins three bets

{SSSF, SSFS, SFSS, FSSS}, each with probability
(

18
37

)3 × 19
37 , so

P(X = 3) = 4 ×
(

18
37

)3

× 19
37

= 0.2365

There are six possible outcomes in which the participant wins two bets {SSFF, SFSF,

SFFS, FSSF, FSFS, FFSS}, each with probability
(

18
37

)2 ×
(

19
37

)2
, so

P(X = 2) = 6 ×
(

18
37

)2

×
(

19
37

)2

= 0.3745
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Note that the number of wins (black) in the previous example is a binomial
random variable with n = 4 and p = 18/37. Calculating these probabilities can be
time consuming, and are even more complicated for larger n. Luckily, there is a
shortcut to calculate binomial probabilities. Before we get there, though, we need
to introduce some notation to ease the computation:

• Factorials: The factorial of a number, n!, is the product of all positive integers less
than or equal to n:

n! = n × (n − 1) × (n − 2) × · · · × 1

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. By convention, 0! = 1.

• Binomial Coefficients: The binomial coefficient
(n

k

)
, read ‘‘n choose k,” is given by(

n
k

)
= n!

k!(n − k)!

The binomial coefficient gives the number of possible ways to arrange k successes
in n trials. In Example 11.24 we see there are six possible ways for the participant to
win 2 bets in 4 trials, and a quick calculation shows(

4
2

)
= 4!

2!(4 − 2)!
= 4 × 3 × 2 × 1

(2 × 1)(2 × 1)
= 6

Although they look similar, the binomial coefficient
(n

k

)
is not the same as the

fraction
(n

k

)
.

We are now ready for the formula to compute binomial probabilities.

Binomial Probabilities

If a random variable X is binomial with n trials and probability of
success p, the probability of getting exactly k successes is

P(X = k) =
(

n
k

)
pk(1 − p)n−k

for k = 0, 1, . . . , n.

Example 11.25
Roulette (continued)

In Example 11.24, let X represent the number of times a gambler wins with
four consecutive bets on black. Use the binomial formula to find the probability
distribution of X.

Solution Standard calculations give
(4

0

) = 1,
(4

1

) = 4,
(4

2

) = 6,
(4

3

) = 4, and
(4

4

) = 1. Using the
binomial formula,

P(X = 0) = 1 ×
(

18
37

)0

×
(

19
37

)4

= 0.0695

P(X = 1) = 4 ×
(

18
37

)1

×
(

19
37

)3

= 0.2635

P(X = 2) = 6 ×
(

18
37

)2

×
(

19
37

)2

= 0.3745

&
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P(X = 3) = 4 ×
(

18
37

)3

×
(

19
37

)1

= 0.2365

P(X = 4) = 1 ×
(

18
37

)4

×
(

19
37

)0

= 0.0560

These agree with our raw calculations in Example 11.24.

For the binomial coefficients it is always the case that
(n

k

) = ( n
n−k

)
. However,

unless p = 1/2, it is not the case that P(X = k) = P(X = n − k).

Example 11.26
Norwegian Coffee Consumption

Norwegians drink the most coffee in the world (it must be the cold winters). In one
survey19 of 389,624 Norwegians in their early 40s, more than half claimed to drink
five or more cups of coffee per day! Furthermore, 89.4% drink at least one cup of
coffee per day. Assume that the overall proportion of Norwegian adults who drink
at least five cups of coffee per day is 50%, and the proportion of all Norwegian
adults who drink at least one cup of coffee per day is 89.4%.

(a) In a random sample of 10 Norwegian adults, what is the probability that exactly
6 drink at least five cups of coffee per day?

(b) In a random sample of 10 Norwegian adults, what is the probability that exactly
6 drink at least one cup of coffee per day?

(c) In a random sample of 50 adults, what is the probability that more than 45 will
drink at least one cup of coffee per day?

Solution (a) Using the formula for binomial probabilities with p = 0.5 and n = 10,

P(X = 6) =
(

10
6

)
0.56(1 − 0.5)4 = 210 · 0.560.54 = 0.205

(b) Using the formula for binomial probabilities with p = 0.894 and n = 10,

P(X = 6) =
(

10
6

)
× 0.8946 × (1 − 0.894)4 = 210 · 0.89460.1064 = 0.014

(c) For ‘‘more than 45” we need to find probabilities for X = 46, . . . , 50. Using the
formula for binomial probabilities with p = 0.894 and n = 50,

P(X = 46) =
(

50
46

)
× 0.89446 × (1 − 0.894)4 = 0.1679

Similar calculations show that P(X = 47) = 0.1205, P(X = 48) = 0.0635,
P(X = 49) = 0.0219, and P(X = 50) = 0.0037. So,

P(X > 45) = 0.1679 + 0.1205 + 0.0635 + 0.0219 + 0.0037 = 0.3775

We can also use technology to further automate the computation of binomial
probabilities.

19Tverdal, A., Hjellvik, V., and Selmer, R., ‘‘Coffee intake and oral-oesophageal cancer: follow-up of
389,624 Norwegian men and women 40-45 years,” British Journal of Cancer, 2011; 105: 157–161.
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Mean and Standard Deviation of a Binomial Random
Variable

Example 11.27
Roulette (continued)

In Example 11.24, X represents the number of times a gambler wins with four
consecutive bets on black. Find the mean μ and standard deviation σ of X.

Solution Here is the probability function found in Example 11.24:

x 0 1 2 3 4

p(x) 0.0695 0.2635 0.3745 0.2365 0.0560

Using the formulas from Section 11.3,

μ =
∑

x · p(x)

= 0 · 0.0695 + 1 · 0.2635 + 2 · 0.3745 + 3 · 0.2365 + 4 · 0.0560

= 1.946

and

σ 2 =
∑

(x − μ)2 · p(x)

= (0 − 1.946)2 · 0.0695 + (1 − 1.946)2 · 0.2635 + · · · + (4 − 1.946)2 · 0.0560

= 0.99908

so σ = √
0.99908 = 0.99954.

Just as recognizing that a random variable is binomial can make it easier to
compute probabilities, it can also make it easier to compute the mean and standard
deviation. We do not need to go through the tedious calculations in Example 11.27.
Shortcuts for the mean and standard deviation of a binomial random variable are
given below.

Mean and Standard Deviation of a Binomial Random Variable

If a random variable X is binomial with n trials and probability of
success p, then its mean μ and standard deviation σ are given by

μ = np and σ =
√

np(1 − p)

Example 11.28
Roulette (continued)

Find the mean μ and standard deviation σ of X from Example 11.27, using the
shortcuts for a binomial random variable.

Solution In this case n = 4 and p = 18/37, so

μ = 4 · 18
37

= 1.946

o

o
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and

σ =
√

4 · 18
37

·
(

1 − 18
37

)
= 0.9996

which agree with our answers in Example 11.27.

Example 11.29
Norwegian Coffee Drinkers

In Example 11.26 we see that the proportion of Norwegians in their early 40s who
drink at least one cup of coffee per day is about p = 0.894. Suppose that we take
random samples of 50 Norwegians from this age group. Find the mean and standard
deviation for the number of regular (at least a cup per day) coffee drinkers in such
samples. Would you be surprised to find fewer than 35 coffee drinkers in such a
sample?

Solution The mean and standard deviation for the number of regular coffee drinkers in
samples of size 50 when p = 0.894 are

μ = np = 50 · 0.894 = 44.7 and σ =
√

50 · 0.894 · (1 − 0.894) = 2.18

We see that 35 is almost 4.5 standard deviations below μ = 44.7, so it would be very
surprising for a random sample of 50 Norwegians in this age group to contain fewer
than 35 regular coffee drinkers.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify when a discrete random variable is binomial

• Compute probabilities for a binomial random variable

• Compute the mean and standard deviation for a binomial random
variable

Exercises for Section 11.4

SKILL BUILDER 1: BINOMIAL OR NOT?
In Exercises 11.96 to 11.100, determine whether the
process describes a binomial random variable. If
it is binomial, give values for n and p. If it is not
binomial, state why not.

11.96 Count the number of sixes in 10 dice rolls.

11.97 Roll a die until you get 5 sixes and count the
number of rolls required.

11.98 Sample 50 students who have taken Intro
Stats and record the final grade in the course for
each.

11.99 Suppose 30% of students at a large univer-
sity take Intro Stats. Randomly sample 75 students

from this university and count the number who have
taken Intro Stats.

11.100 Worldwide, the proportion of babies who
are boys is about 0.51. We randomly sample 100
babies born and count the number of boys.

SKILL BUILDER 2: FACTORIALS AND BINO-
MIAL COEFFICIENTS
In Exercises 11.101 to 11.108, calculate the
requested quantity.

11.101 4!

11.102 7!

11.103 8!

o

o
o
o
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11.104 6!

11.105
(

8
3

)
11.106

(
5
2

)
11.107

(
10
8

)
11.108

(
6
5

)
SKILL BUILDER 3: COMPUTING BINOMIAL
PROBABILITIES
In Exercises 11.109 to 11.112, calculate the
requested binomial probability.

11.109 Find P(X = 2) if X is a binomial random
variable with n = 6 and p = 0.3.

11.110 Find P(X = 7) if X is a binomial random
variable with n = 8 and p = 0.9.

11.111 Find P(X = 3) if X is a binomial random
variable with n = 10 and p = 0.4.

11.112 Find P(X = 8) if X is a binomial random
variable with n = 12 and p = 0.75.

SKILL BUILDER 4: MEAN AND STANDARD
DEVIATION OF A BINOMIAL
In Exercises 11.113 to 11.116, calculate the mean
and standard deviation of the binomial random
variable.

11.113 A binomial random variable with n = 6 and
p = 0.4

11.114 A binomial random variable with n = 10 and
p = 0.8

11.115 A binomial random variable with n = 30 and
p = 0.5

11.116 A binomial random variable with n = 800
and p = 0.25

11.117 Boys or Girls? Worldwide, the proportion
of babies who are boys is about 0.51. A couple hopes
to have three children and we assume that the sex
of each child is independent of the others. Let the
random variable X represent the number of girls in
the three children, so X might be 0, 1, 2, or 3. Give
the probability function for each value of X.

11.118 Class Year Suppose that undergraduate stu-
dents at a university are equally divided between
the four class years (first-year, sophomore, junior,
senior) so that the probability of a randomly chosen
student being in any one of the years is 0.25. If we
randomly select four students, give the probability
function for each value of the random variable X =
the number of seniors in the four students.

11.119 College Graduates From the 2010 US Cen-
sus, we learn that 27.5% of US adults have graduated
from college. If we take a random sample of 12 US
adults, what is the probability that exactly 6 of them
are college graduates?

11.120 Senior Citizens In the 2010 US Census, we
learn that 13% of all people in the US are 65 years
old or older. If we take a random sample of 10
people, what is the probability that 3 of them are 65
or older? That 4 of them are 65 or older?

11.121 Owner-Occupied Housing Units In the 2010
US Census, we learn that 65% of all housing units
are owner-occupied while the rest are rented. If we
take a random sample of 20 housing units, find the
probability that:

(a) Exactly 15 of them are owner-occupied

(b) 18 or more of them are owner-occupied

11.122 Mean and Standard Deviation of Boys or
Girls In Exercise 11.117, we discuss the random vari-
able counting the number of girls in three babies,
given that the proportion of babies who are girls is
about 0.49. Find the mean and standard deviation
of this random variable.

11.123 Mean and Standard Deviation of Class Year
In Exercise 11.118, we discuss the random variable
counting the number of seniors in a sample of four
undergraduate students at a university, given that
the proportion of undergraduate students who are
seniors is 0.25. Find the mean and standard deviation
of this random variable.

11.124 Mean and Standard Deviation of College
Graduates Exercise 11.119 describes a random vari-
able that counts the number of college graduates in
a sample. Use the information in that exercise to
find the mean and standard deviation of this random
variable.

11.125 Mean and Standard Deviation of Senior Cit-
izens Exercise 11.120 describes a random variable
that counts the number of senior citizens in a sam-
ple. Use the information in that exercise to find
the mean and standard deviation of this random
variable.

11.126 Mean and Standard Deviation of Owner-
Occupied Housing Units Exercise 11.121 describes
a random variable that counts the number of owner-
occupied units in a sample of housing units. Use the
information in that exercise to find the mean and
standard deviation of this random variable.

11.127 Ray Allen’s Free Throws As we see in
Exercise 11.38 on page 653, during the 2010-11 NBA
season, Ray Allen of the Boston Celtics had a free
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throw shooting percentage of 0.881. Assume that
the probability Ray Allen makes any given free
throw is fixed at 0.881, and that free throws are
independent.

(a) If Ray Allen shoots 8 free throws in a game,
what is the probability that he makes at least 7
of them?

(b) If Ray Allen shoots 80 free throws in the play-
offs, what is the probability that he makes at
least 70 of them?

(c) If Ray Allen shoots 8 free throws in a game,
what are the mean and standard deviation for
the number of free throws he makes during the
game?

(d) If Ray Allen shoots 80 free throws in the play-
offs, what are the mean and standard deviation
for the number of free throws he makes during
the playoffs?

11.128 Airline Overbooking Suppose that past
experience shows that about 10% of passengers
who are scheduled to take a particular flight fail to

show up. For this reason, airlines sometimes over-
book flights, selling more tickets than they have
seats, with the expectation that they will have some
no shows. Suppose an airline uses a small jet with
seating for 30 passengers on a regional route and
assume that passengers are independent of each
other in whether they show up for the flight. Sup-
pose that the airline consistently sells 32 tickets for
every one of these flights.

(a) On average, how many passengers will be on
each flight?

(b) How often will they have enough seats for all of
the passengers who show up for the flight?

11.129 Mean and Standard Deviation of a Propor-
tion To find the proportion of times something
occurs, we divide the count (often a binomial ran-
dom variable) by the number of trials n. Using the
formula for the mean and standard deviation of
a binomial random variable, derive the mean and
standard deviation of a proportion resulting from n
trials and probability of success p.
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Guide to choosing the appropriate method based on the variables and number of
categories:

Variables Visualization Number of
Categories

Appropriate Inference

One Categorical
Two Categories

Single Proportion or
Bar chart, Chi-Square Goodness of Fit
Pie chart

More Categories Chi-Square Goodness of Fit

One Quantitative
Histogram,

— Single Mean
Dotplot, Boxplot

Two Categorical
Two Categories

Difference in Proportions or
Side-by-Side or
Segmented Bar
Chart

Chi-Square Test for
Association

More Categories
Chi-Square Test for
Association

One Quantitative Two Categories
Difference in Means or

One Categorical, Side-by-Side Plots
Analysis of Variance

More Categories Analysis of Variance

Two Quantitative Scatterplot —
Correlation,
Simple Regression

Quantitative Response,
— — Multiple Regression

Multiple Explanatory

Categorical Response,
— — Take STAT2!

Multiple Explanatory

679
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Chapter 1: Collecting Data
In Chapter 1, we learn about appropriate ways to collect data. A dataset consists
of values for one or more variables that record or measure information for each
of the cases in a sample or population. A variable is generally classified as either
categorical, if it divides the data cases into groups, or quantitative, if it measures
some numerical quantity.

What we can infer about a population based on the data in a sample depends on
the method of data collection. We try to collect a sample that is representative of the
population and that avoids sampling bias. The most effective way to avoid sampling
bias is to select a random sample. Also, we try to avoid other possible sources of
bias by considering things like the wording of a question. The key is to always think
carefully about whether the method used to collect data might introduce any bias.

Data collected to analyze a relationship between variables can come from an
observational study or a randomized experiment. In an observational study, we need
to be wary of confounding variables. A randomized experiment allows us to avoid
confounding variables by actively (and randomly) manipulating the explanatory
variables. The handling of different treatment groups in an experiment should be
as similar as possible, with the use of blinding and/or a placebo treatment when
appropriate.

The only way to infer a causal association between variables statistically is through
data obtained from a randomized experiment. One of the most common and serious
mistakes in all of statistics comes from a failure to appreciate the importance of this
statement.

There are many questions to ask involving how data are collected, but two stand
out, both involving randomness. These questions, and their simplified conclusions,
are summarized in the diagram below.

Possible to 
generalize from
the sample to
the population

Cannot 
generalize from
the sample to
the population

Possible to 
make

conclusions
about causality

Cannot make
conclusions

about causality

Yes No

Was the sample
randomly selected?

Was the explanatory variable 
randomly assigned?

Yes No

Two fundamental questions about data collection

N
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Chapter 2: Describing Data
In Chapter 2, we learn about methods to display and summarize data. We use
statistical plots to display information and summary statistics to quantify aspects of
that information. The type of visualization or statistic we use often depends on the
types of variables (quantitative or categorical), as summarized below:

Describing a Single Variable
• Quantitative variable

– Graphical display: dotplot, histogram, boxplot

– Summary statistics:

* Center: mean, median

* Other locations: maximum, minimum, first quartile, third quartile

* Spread: standard deviation, interquartile range, range

• Categorical variable

– Graphical display: bar chart, pie chart

– Summary statistics: frequency, relative frequency, proportion

Describing a Relationship between Two Variables
• Categorical vs Categorical

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table, row/column proportions, difference in
proportions

• Categorical vs Quantitative

– Graphical display: side-by-side boxplots, dotplots, or histograms

– Summary statistics: quantitative statistics within each category, difference in
means

• Quantitative vs Quantitative

– Graphical display: scatterplot

– Summary statistics: correlation, regression line
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Chapter 3: Confidence Intervals
We estimate a population parameter using a sample statistic. Since such statistics
vary from sample to sample, we need an idea for how far the population parameter
could be from the sample statistic, a margin of error. An interval estimate is a range of
plausible values for the population parameter. When we construct this interval using
a method that has some predetermined chance of capturing the true parameter, we
get a confidence interval.

We assess the variability in sample statistics with a bootstrap distribution, created
using the key idea that if the sample is representative of the population, then the
population can be approximated by many copies of the sample. To construct a
bootstrap distribution we:

• Generate bootstrap samples with replacement from the original sample, using the
same sample size

• Compute the statistic of interest for each of the bootstrap samples

• Collect the statistics from many (usually at least 1000) bootstrap samples into a
bootstrap distribution

From a symmetric bootstrap distribution, we have two methods to construct an
interval estimate:

Method 1: Estimate SE, the standard error of the statistic, as the standard deviation
of the bootstrap distribution. The roughly 95% confidence interval for the
parameter is then Sample statistic ±2 · SE.

Method 2: Use percentiles of the bootstrap distribution to chop off the tails of the
bootstrap distribution and keep a specified percentage (determined by the
confidence level) of the values in the middle.

A bootstrap distribution is shown for mean body temperature. The bootstrap
distribution is centered around the sample statistic, x = 98.26, with SE = 0.109, so
a 95% confidence interval is Statistic ± 2 · SE = 98.26 ± 2 · 0.109 = (98.042, 98.478).
A 95% confidence interval can also be found as the middle 95% of bootstrap
statistics, shown in the figure to be (98.044, 98.476). We are 95% confident that mean
body temperature is between 98.04◦F and 98.48◦F.

98.044 98.47698.257
97.8 97.9 98.0 98.1 98.2 98.3 98.4 98.5 98.6
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MeanBootstrap Dotplot of

Left Tail Two Tail Right Tail

0.025 0.95 0.025

# samples = 3000
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Bootstrap distribution of sample means
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Chapter 4: Hypothesis Tests
Hypothesis tests are used to investigate claims about population parameters. We
use the question of interest to determine the two competing hypotheses: The null
hypothesis (H0) is generally that there is no effect or no difference while the
alternative hypothesis (Ha) is the claim for which we seek evidence. We conclude in
favor of the alternative hypothesis if the sample supports the alternative hypothesis
and provides strong evidence against the null hypothesis. We measure the strength
of evidence a sample shows against the null hypothesis with a p-value.

The p-value is the probability of obtaining a sample statistic as extreme as (or
more extreme than) the observed sample statistic, when the null hypothesis is true.

A small p-value means that the observed sample results would be unlikely to
happen, when the null hypothesis is true, just by random chance. When making
formal decisions based on the p-value, we use a pre-specified significance level, α.

• If p-value < α, we reject H0 and have statistically significant evidence for Ha.

• If p-value ≥ α, we do not reject H0, the test is inconclusive, and the results are not
statistically significant.

The key idea is: The smaller the p-value, the stronger the evidence against the null
hypothesis and in support of the alternative hypothesis. Rather than making a formal
reject/do not reject decision, we sometimes interpret the p-value as a measure of
strength of evidence.

One way to estimate a p-value is to construct a randomization distribution of
sample statistics that we might see by random chance, if the null hypothesis were
true. The p-value is the proportion of randomization statistics that are as extreme as
the observed sample statistic. If the original sample falls out in the tails, then a result
that extreme is unlikely to occur if the null hypothesis is true, providing evidence
against the null.

A randomization distribution for difference in mean memory recall between
sleep and caffeine groups for data in SleepCaffeine is shown. Each dot is a difference
in means that might be observed just by random assignment to treatment groups, if
there were no difference in terms of mean (memory) response. We see that 0.042
of the simulated statistics are as extreme as the observed statistic (xs − xc = 3), so
the p-value is 0.042. This p-value is less than 0.05, so the results are statistically
significant at α = 0.05, giving moderately strong evidence that sleeping is better than
drinking caffeine for memory.
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Chapter 5: Approximating with a Distribution
In Chapter 5 we see that the familiar bell-shape we encounter repeatedly in bootstrap
and randomization distributions is predictable, and is called the normal distribution.
Although a normal distribution can have any mean and standard deviation,
X ∼ N(μ, σ), we often work with a standard normal, Z ∼ N(0, 1), by converting to
a z-score:

Z = X − μ

σ

We generally rely on technology (such as the StatKey figures shown below) to
compute areas or endpoints for normal distributions.

The Central Limit Theorem tells us that, when the sample size is large enough,
sample means, proportions, and other statistics are approximately normally dis-
tributed and centered at the value of the corresponding population parameter.

When sample statistics are normally distributed we can utilize the following
general formulas:

Confidence Interval : Sample Statistic ± z∗ · SE

Hypothesis Test : Test Statistic = Sample Statistic − Null Parameter
SE

The z∗ in the confidence interval is based on a threshold keeping the desired
level of confidence in the middle of a standard normal distribution. The test statistic
has a standard normal distribution if the null hypothesis is true, so should be
compared to a standard normal distribution to find the p-value. In general we can
find the standard error, SE, from a bootstrap or randomization distribution. In the
next chapter we see a number of shortcut formulas for estimating SE in common
situations and replace the standard normal z with a t-distribution for inference
involving means.
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Chapter 6: Inference for Means and Proportions
Under general conditions we can find formulas for the standard errors of sample
means, proportions, or their differences. This leads to formulas for computing
confidence intervals or test statistics based on normal or t-distributions.

Distribution Conditions Standard Error

Proportion Normal np ≥ 10 and
n(1 − p) ≥ 10

√
p(1 − p)

n

Mean t, df = n − 1 n ≥ 30 or reasonably
normal

s√
n

Difference in
Proportions

Normal
n1p1 ≥ 10, n1(1 − p1)

≥ 10, and n2p2 ≥ 10,
n2(1 − p2) ≥ 10

√
p1(1 − p1)

n1
+ p2(1 − p2)

n2

Difference in
Means

t, df = the
smaller of n1 − 1
and n2 − 1

n1 ≥ 30 or reasonably
normal, and n2 ≥ 30 or
reasonably normal

√
s2

1

n1
+ s2

2

n2

Paired Difference
in Means

t, df = nd − 1 nd ≥ 30 or reasonably
normal

sd√
nd

Confidence Interval Test Statistic

General Sample statistic ± z∗ · SE
Sample statistic − Null parameter

SE

Proportion p̂ ± z∗ ·
√

p̂(1 − p̂)

n
p̂ − p0√
p0(1−p0)

n

Mean x ± t∗ · s/
√

n
x − μ0

s/
√

n

Difference in
Proportions

(p̂1 − p̂2) ± z∗ ·
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

(p̂1 − p̂2) − 0√
p̂(1−p̂)

n1
+ p̂(1−p̂)

n2

Difference in
Means

(x1 − x2) ± t∗ ·
√

s2
1

n1
+ s2

2

n2

(x1 − x2) − 0√
s2
1

n1
+ s2

2
n2

Paired Diff.
in Means

xd ± t∗ · sd√
nd

xd − 0
sd/

√
nd
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Chapter 7: Chi-Square Tests for Categorical Variables
Chi-square tests are used for testing hypotheses about one or two categorical
variables, and are appropriate when the data can be summarized by counts in
a table. The variables can have multiple categories. The type of chi-square test
depends on whether there are one or two categorical variables:

• One Categorical Variable: Chi-Square Goodness-of-Fit Test

• Two Categorical Variables: Chi-Square Test for Association

Chi-square tests compare observed counts to expected counts (if the null hypothesis
were true). If the observed counts are farther away from the expected counts than
can be explained just by random chance, we have evidence against the null hypothesis
and in favor of the alternative. The distance between observed and expected counts
is quantified with the χ2-statistic, which is compared to a χ2-distribution to calculate
the p-value. The details are laid out below:

1. State hypotheses

• For one categorical variable:

– Null hypothesis: The proportions match an assumed set of proportions.

– Alternative hypothesis: At least one category has a different proportion.

• For two categorical variables:

– Null hypothesis: There is no association between the two variables.

– Alternative hypothesis: There is an association between the two variables.

2. Calculate the expected counts for each cell (as if the null hypothesis were true)

• For one categorical variable: Expected count for a cell = n · pi, where pi is
given in H0

• For two categorical variables:

Expected count for a cell = Row total · Column total
Total sample size

.

3. Compute the χ2-statistic:

χ2 =
∑ (Observed − Expected)2

Expected

4. Find the p-value as the upper tail in a χ2 distribution

• For one categorical variable: df = k − 1, where k is the number of categories.

• For two categorical variables: df = (r − 1) · (c − 1), where r is the number of
categories in one variable and c is the number of categories in the other.

5. Make a conclusion

• If the results are significant, we have evidence in favor of the alternative
hypothesis. A more informative conclusion can be given by comparing the
relative sizes of observed and expected counts of individual cells, and the
relative contribution of cells to the chi-square statistic.

With only two categories the chi-square goodness-of-fit test is equivalent to a
test for a single proportion, and the chi-square test for association is equivalent to a
test for a difference in two proportions.
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Chapter 8: ANOVA to Compare Means
Analysis of variance is used to test for an association between one quantitative
variable and one categorical variable or, equivalently, to test for a difference in
means across categories of a categorical variable. The categorical variable can have
multiple categories. This method is appropriate when the summary statistics include
sample means calculated within groups.

Analysis of variance compares variability within groups to variability between
groups. If the ratio of variability between groups to variability within groups is higher
than we would expect just by random chance, we have evidence of a difference in
means. This ratio is called the F-statistic, which we compare to an F-distribution to
find the p-value. The details are laid out below.

1. State hypotheses

• Null hypothesis: μ1 = μ2 = · · · = μk (no difference in means by category).

• Alternative hypothesis: Some μi �= μj (difference in means between
categories).

2. Compute the F-statistic, using an ANOVA table:

Source d.f. SS MS F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

The sums of squares SSTotal = SSG + SSE are obtained by technology or
formula.

3. Find the p-value as the upper tail in an F-distribution

• Use df for Groups and df for Error from the ANOVA table.

4. Make a conclusion

• If the results are significant, we have evidence of an association between the
variables (and a difference in means between the groups defined by the
categorical variable). A more informative conclusion can be given if desired
by using the methods of pairwise comparison presented in Section 8.2.

If the categorical variable has only two categories, analysis of variance is
equivalent to a test for a difference in means between two groups.

Inference after ANOVA: Confidence Intervals or Pairwise
Tests
• Use a t-distribution with Error df and

√
MSE from ANOVA to estimate

variability. Use technology or see formulas on page 514.

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 781 5.63 0.011
Error 21 2913 139
Total 23 4474
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Chapter 9: Inference for Regression
Simple linear regression predicts a quantitative response variable, Y, based on a
quantitative explanatory variable, X. In order to use regression, both variables
need to be measured on the same set of cases. The simple linear regression model
is introduced in Section 2.6, and Chapter 9 extends this to include inference.

The simple linear regression model is Y = β0 + β1 · X + ε. For prediction
we use the estimated coefficients: Ŷ = b0 + b1 · X.

There are three different ways to test for an association between two
quantitative variables:

• Test for Correlation

* Null hypothesis: There is no linear relationship (ρ = 0).

* Test statistic: t = r
√

n − 2√
1 − r2

.

* Distribution: t-distribution with df = n − 2.

• Test for Slope

* Null hypothesis: The variable is not significant in the model (β1 = 0).

* Test statistic t = b1 − 0
SE

, where SE is the standard error of the slope.

* Distribution: t-distribution with df = n − 2.

• Analysis of Variance for Regression

* Null hypothesis: The model is not effective at predicting the response.

* Test statistic: F-statistic from an ANOVA table (see details on page 542).

* Distribution: Upper tail of F-distribution with df Model and df Error.

A scatterplot should always be checked to make sure the trend is approxi-
mately linear, the variability of points around the line is relatively constant for
different x values, and there are not major outliers.

R2 gives the percent of variability in the response variable that is explained
by the explanatory variable in the model, and is equivalent to the squared
correlation between y and x.

Confidence intervals for the mean response value at a specific x value, or
prediction intervals for an individual response value at a specific x value, can be
created with technology or the formulas on page 553.

The regression equation is Tip = −0.292 + 0.182 Bill

Predictor Coef SE Coef T P
Constant −0.2923 0.1662 −1.76 0.081
Bill 0.182215 0.006451 28.25 0.000

S = 0.979523 R-Sq = 83.7% R-Sq(adj) = 83.6%
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Chapter 10: Multiple Regression
Multiple regression extends simple linear regression to include multiple explana-
tory variables. It allows us to incorporate multiple variables in a single analysis.
Multiple regression is used to predict a quantitative response variable based on
multiple explanatory variables, and to model relationships between explanatory
variable(s) and a quantitative response variable.

Many concepts introduced for simple linear regression also apply to multiple
regression:

• Test for Slope Coefficient

* Null hypothesis: The variable is not significant in the model (βi = 0).

* Test statistic: t = bi − 0
SE

, where SE is the standard error of the slope.

* Distribution: t-distribution with df = n − k − 1, where k is the number of
explanatory variables.

• Analysis of Variance for Regression (check overall model fit)

* Null hypothesis: The model is not effective at predicting the response.

* Test statistic: F-statistic from an ANOVA table (see details on page 566).

* Distribution: Upper tail of F-distribution with df Model and df Error.

• R2 gives the percent of variability in the response variable that is explained
by the explanatory variables in the model.

Each slope coefficient is interpreted as the amount that the predicted response
changes for a unit increase in that explanatory variable, if all the other explanatory
variables in the model are held constant.

In simple linear regression we can assess the conditions by looking at a scat-
terplot. In multiple regression we need to look at a plot of residuals versus fitted
values. We should watch out for curvature (or any nonlinear trend), increasing
or decreasing variability, or outliers. We also watch out for obvious skewness or
outliers on a histogram or dotplot of the residuals.

More variables are not always better; consider pruning insignificant variables
from the model. There are many ways of deciding between competing models; for
details see the box on page 583.

With multiple explanatory variables, it is very important to remember the coef-
ficient and significance of each explanatory variable depend on the other explanatory
variables included in the model.

Multiple regression output for predicting percent body fat is given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −24.94157 20.77414 −1.201 0.2329
Weight −0.08434 0.05891 −1.432 0.1555
Height 0.05177 0.23849 0.217 0.8286
Abdomen 0.96762 0.13040 7.421 5.15e-11 ***
Age 0.07740 0.04868 1.590 0.1152
Wrist −2.05797 0.72893 −2.823 0.0058 **

Residual standard error: 4.074 on 94 degrees of freedom
Multiple R-squared: 0.7542, Adjusted R-squared: 0.7411
F-statistic: 57.67 on 5 and 94 DF, p-value: < 2.2e-16
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Selected
Dataset
Descriptions

Descriptions of Variables for Selected
Larger Datasets

There are about 100 datasets to accompany this text, all described and available in
the web resources. We offer additional descriptions here of a few of the ones with
many variables:

AllCountries

BaseballHits

FloridaLakes

ICUAdmissions

HappyPlanetIndex

HollywoodMovies2011

MiamiHeat

MindsetMatters

NBAPlayers2011

NutritionStudy

SleepStudy

SpeedDating

StudentSurvey

USStates
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AllCountries
Information about 213 individual countries as determined by the World Bank in
2008 (or later).
Source:Worldbank.org

Country Name of the country
Code Three letter country code
LandArea Size in sq. kilometers
Population Population in millions
Energy Energy usage (kilotons of oil)
Rural Percentage of population living in rural areas
Military Percentage of government expenditures directed toward the

military
Health Percentage of government expenditures directed towards

healthcare
HIV Percentage of the population with HIV
Internet Percentage of the population with access to the Internet
Developed Categories for kilowatt hours per capita, 1 = under 2500,

2 = 2500 to 5000, 3 = over 5000
BirthRate Births per 1000 people
ElderlyPop Percentage of the population at least 65 years old
LifeExpectancy Average life expectancy (years)
CO2 CO2 emissions (metric tons per capita)
GDP Gross Domestic Product (per capita)
Cell Cell phone subscriptions (per 100 people)
Electricity Electric power consumption (kWh per capita)

BaseballHits
Team level data for 30 major league baseball teams from the 2010 regular season.
Source: www.baseball-reference.com/leagues/MLB/2011-standard-batting.shtml

Team Name of baseball team
League Either AL (American League) or NL (National League)
Wins Number of wins for the season
Runs Number of runs scored
Hits Number of hits
Doubles Number of doubles
Triples Number of triples
HomeRuns Number of home runs
RBI Number of runs batted in
StolenBases Number of stolen bases
CaughtStealing Number of times caught stealing
Walks Number of walks
Strikeouts Number of strikeouts
BattingAvg Team batting average
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FloridaLakes
This dataset describes characteristics of water and fish samples from 53 Florida
lakes. Some variables (e.g. Alkalinity, pH, and Calcium) reflect the chemistry of
the water samples. Mercury levels were recorded for a sample of large mouth bass
selected at each lake.
Source: Lange, Royals, and Connor, Transactions of the American Fisheries Society
(1993)

ID An identifying number for each lake
Lake Name of the lake
Alkalinity Concentration of calcium carbonate (in mg/L)
pH Acidity
Calcium Amount of calcium in water
Chlorophyll Amount of chlorophyll in water
AvgMercury Average mercury level for a sample of fish (large mouth

bass) from each lake
NumSamples Number of fish sampled at each lake
MinMercury Minimum mercury level in a sampled fish
MaxMercury Maximum mercury level in a sampled fish
ThreeYrStdMercury Adjusted mercury level to account for the age of the fish
AgeData Mean age of fish in each sample

ICUAdmissions
Data from a sample of 200 patients following admission to an adult intensive care
unit (ICU).
Source: DASL dataset downloaded from http://lib.stat.cmu.edu/DASL
/Datafiles/ICU.html

ID Patient ID number
Status Patient status: 0 = lived or 1 = died
Age Patient’s age (in years)
Sex 0 = male or 1 = female
Race Patient’s race: 1 = white, 2 = black, or 3 = other
Service Type of service: 0 = medical or 1 = surgical
Cancer Is cancer involved? 0 = no or 1 = yes
Renal Is chronic renal failure involved? 0 = no or 1 = yes
Infection Is infection involved? 0 = no or 1 = yes
CPR Patient gets CPR prior to admission? 0 = no or 1 = yes
Systolic Systolic blood pressure (in mm Hg)
HeartRate Pulse rate (beats per minute)
Previous Previous admission to ICU within 6 months? 0 = no or

1 = yes
Type Admission type: 0 = elective or 1 = emergency
Fracture Fractured bone involved? 0 = no or 1 = yes
PO2 Partial oxygen level from blood gases under 60? 0 = no or

1 = yes
PH pH from blood gas under 7.25? 0 = no or 1 = yes
PCO2 Partial carbon dioxide level from blood gas over 45?

0 = no or 1 = yes
Bicarbonate Bicarbonate from blood gas under 18? 0 = no or 1 = yes
Creatinine Creatinine from blood gas over 2.0? 0 = no or 1 = yes
Consciousness Level: 0 = conscious, 1 = deep stupor, or 2 = coma
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HappyPlanetIndex
Data for 143 countries from the Happy Planet Index Project, http://www
.happyplanetindex.org, that works to quantify indicators of happiness, well-being,
and ecological footprint at a country level. Region of the world is coded as: 1 =
Latin America, 2 = Western nations, 3 = Middle East, 4 = Sub-Saharan Africa,
5 = South Asia, 6 = East Asia, 7 = former Communist countries.
Source: Downloaded from http://www.happyplanetindex.org/data/

Country Name of country
Region Code for region of the world, with code given in the descrip-

tion above.
Happiness Score on a 0 to 10 scale for average level of happiness (10 is

happiest)
LifeExpectancy Average life expectancy (in years)
Footprint Ecological footprint—a measure of the (per capita) ecological

impact
HLY Happy Life Years—combines life expectancy with well-being
HPI Happy Planet Index (0–100 scale)
HPIRank HPI rank for the country
GDPperCapita Gross Domestic Product (per capita)
HDI Human Development Index
Population Population (in millions)

HollywoodMovies2011
Information for all 136 movies released from Hollywood in 2011.
Source: McCandless, D., ‘‘Most Profitable Hollywood Movies,’’ from ‘‘Information
is Beautiful,’’ davidmccandless.com, accessed January 2012. The data were compiled
late in 2011 so they reflect results as of December 2011.

Movie Title of movie
LeadStudio Studio that released the movie
RottenTomatoes Rotten Tomatoes rating (reviewers)
AudienceScore Audience rating (via Rotten Tomatoes)
Story General theme—one of 21 themes
Genre Action, Adventure, Animation, Comedy, Drama,

Fantasy, Horror, Romance, or Thriller
TheatersOpenWeek Number of screens for opening weekend
BOAverageOpenWeek Average box office income per theater—opening

weekend
DomesticGross Gross income for domestic viewers (in millions)
ForeignGross Gross income for foreign viewers (in millions)
WorldGross Gross income for all viewers (in millions)
Budget Production budget (in millions)
Profitability WorldGross divided by Budget
OpeningWeekend Opening weekend gross (in millions)
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MiamiHeat
Information from online boxscores for all 82 regular season games played by the
Miami Heat basketball team during the 2010–11 regular season.
Source: Data downloaded from
http://www.basketball-reference.com/teams/MIA/2011/gamelog/

Game ID number for each game
Date Date the game was played
Location Away or Home
Opp Opponent team
Win Game result: L or W
FG Field goals made
FGA Field goals attempted
FG3 Three-point field goals made
FG3A Three-point field goals attempted
FT Free throws made
FTA Free throws attempted
Rebounds Total rebounds
OffReb Offensive rebounds
Assists Number of assists
Steals Number of steals
Blocks Number of shots blocked
Turnovers Number of turnovers
Fouls Number of fouls
Points Number of points scored
OppFG Opponent’s field goals made
OppFGA Opponent’s field goals attempted
OppFG3 Opponent’s three-point field goals made
OppFG3A Opponent’s three-point field goals attempted
OppFT Opponent’s free throws made
OppFTA Opponent’s free throws attempted
OppOffReb Opponent’s offensive rebounds
OppRebounds Opponent’s total rebounds
OppAssists Opponent’s assists
OppSteals Opponent’s steals
OppBlocks Opponent’s shots blocked
OppTurnovers Opponent’s turnovers
OppFouls Opponent’s fouls
OppPoints Opponent’s points scored

MindsetMatters
In 2007 a Harvard psychologist recruited 75 female maids working in different hotels
to participate in a study. She informed 41 maids (randomly chosen) that the work
they do satisfies the Surgeon General’s recommendations for an active lifestyle
(which is true), giving them examples showing that their work is good exercise. The
other 34 maids were told nothing (uninformed). Various characteristics (weight,
body mass index, . . .) were recorded for each subject at the start of the experiment
and again four weeks later. Maids with missing values for weight change have been
removed.
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Source: Crum, A.J. and Langer, E.J. (2007). Mind-Set Matters: Exercise and the
Placebo Effect, Psychological Science; 18:165–171. Thanks to the authors for sup-
plying the data.

Cond Treatment condition: 0 = uninformed or 1 = informed
Age Age (in years)
Wt Original weight (in pounds)
Wt2 Weight after 4 weeks (in pounds)
BMI Original body mass index
BMI2 Body mass index after 4 weeks
Fat Original body fat percentage

Fat2 Body fat percentage after 4 weeks
WHR Original waist to hip ratio
WHR2 Waist to hip ratio after 4 weeks
Syst Original systolic blood pressure
Syst2 Systolic blood pressure after 4 weeks
Diast Original diastolic blood pressure
Diast2 Diastolic blood pressure after 4 weeks

NBAPlayers2011
Data for 176 NBA basketball players from the 2010–11 regular season. Includes all
players who averaged more than 24 minutes per game that season.
Source: http://www.basketball-reference.com/leagues/NBA 2011 stats.html

Player Name of player
Age Age (in years)
Team Team name
Games Games played (out of 82)
Starts Games started
Mins Minutes played
MinPerGame Minutes per game
FGMade Field goals made
FGAttempt Field goals attempted
FGPct Field goal percentage
FG3Made Three-point field goals made
FG3Attempt Three-point field goals attempted
FG3Pct Three-point field goal percentage
FTMade Free throws made
FTAttempt Free throws attempted
FTPct Free throw percentage
OffRebound Offensive rebounds
DefRebound Defensive rebounds
Rebounds Total rebounds
Assists Number of assists
Steals Number of steals
Blocks Number of blocked shots
Turnovers Number of turnovers
Fouls Number of personal fouls
Points Number of points scored
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NutritionStudy
Data on 315 patients undergoing elective surgery from a cross-sectional study to
investigate the relationship between personal characteristics and dietary factors,
and plasma concentrations of retinol, beta-carotene and other carotenoids. Study
subjects were patients who had an elective surgical procedure during a three-year
period to biopsy or remove a lesion of the lung, colon, breast, skin, ovary or uterus
that was found to be non-cancerous.
Source: http://lib.stat.cmu.edu/datasets/Plasma Retinol Original source: Nierenberg,
D., Stukel, T., Baron, J., Dain, B., Greenberg, E., ‘‘Determinants of plasma
levels of beta-carotene and retinol,’’ American Journal of Epidemiology, 1989,
130(3):511–521.

ID ID number for each subject in this sample
Age Subject’s age (in years)
Smoke Does the subject smoke: Yes or No
Quetelet Weight/(Height2)
Vitamin Vitamin use coded as: 1 = Regularly, 2 = Occasionally, or 3 = No
Calories Number of calories consumed per day
Fat Grams of fat consumed per day
Fiber Grams of fiber consumed per day
Alcohol Number of alcoholic drinks consumed per week
Cholesterol Cholesterol consumed (mg per day)
BetaDiet Dietary beta-carotene consumed (mcg per day)
RetinolDiet Dietary retinol consumed (mcg per day)
BetaPlasma Concentration of beta-carotene (ng/ml) in the blood
RetinolPlasma Concentration of retinol (ng/ml) in the blood
Gender Female or Male
VitaminUse Coded as No, Occasional, or Regular
PriorSmoke Smoking status coded as: 1 = Never, 2 = Former, or 3 = Current

SleepStudy
The data were obtained from a sample of students who did skills tests to measure
cognitive function, completed a survey that asked many questions about attitudes
and habits, and kept a sleep diary to record time and quality of sleep over a two
week period.
Source: Onyper, S., Thacher, P., Gilbert, J., and Gradess, S., ‘‘Class Start Times,
Sleep, and Academic Performance in College: A Path Analysis,’’ Chronobiology
International, April 2012; 29(3): 318–335. Thanks to the authors for supplying the
data.

Gender 1 = male, 0 = female
ClassYear Year in school, 1 = first year, . . . , 4 = senior
LarkOwl Early riser or night owl? Lark, Neither, or Owl
NumEarlyClass Number of classes per week before 9 am
EarlyClass Indicator for any early classes
GPA Grade point average (0–4 scale)
ClassesMissed Number of classes missed in a semester
CognitionZscore Z-score on a test of cognitive skills
PoorSleepQuality Measure of sleep quality (higher values are poorer sleep)
DepressionScore Measure of degree of depression
AnxietyScore Measure of amount of anxiety
StressScore Measure of amount of stress
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DepressionStatus Coded depression score: normal, moderate, or severe
AnxietyStatus Coded anxiety score: normal, moderate, or severe
Stress Coded stress score: normal or high
DASScore Combined score for depression, anxiety and stress
Happiness Measure of degree of happiness
AlcoholUse Self-reported: Abstain, Light, Moderate, or Heavy
Drinks Number of alcoholic drinks per week
WeekdayBed Average weekday bedtime (24.0 = midnight)
WeekdayRise Average weekday rise time (8.0 = 8am)
WeekdaySleep Average hours of sleep on weekdays
WeekendBed Average weekend bedtime (24.0 = midnight)
WeekendRise Average weekend rise time (8.0 = 8am)
WeekendSleep Average hours of sleep on weekend days
AverageSleep Average hours of sleep for all days
AllNighter Had an all-nighter this semester? 1 = yes, 0 = no

SpeedDating
Participants were students at Columbia’s graduate and professional schools,
recruited by mass email, posted fliers, and fliers handed out by research assistants.
Each participant attended one speed dating session, in which they met with each
participant of the opposite sex for four minutes. Order and session assignments
were randomly determined. After each four minute ‘‘speed date,’’ participants
filled out a form rating their date on a scale of 1 to 10 on various attributes. Only
data from the first date in each session is recorded here—for a total of 276 dates.
Source: Gelman, A. and Hill, J., Data analysis using regression and multi-
level/hierarchical models, Cambridge University Press: New York, 2007

DecisionM Would the male like another date? 1 = yes 0 = no
DecisionF Would the female like another date? 1 = yes 0 = no
LikeM How much the male likes his partner (1–10 scale)
LikeF How much the female likes her partner (1–10 scale)
PartnerYesM Male’s estimate of chance the female wants another date

(1–10 scale)
PartnerYesF Female’s estimate of chance the male wants another date

(1–10 scale)
AgeM Male’s age (in years)
AgeF Female’s age (in years)
RaceM Male’s race: Asian, Black, Caucasian, Latino, or Other
RaceF Female’s race: Asian, Black, Caucasian, Latino, or

Other
AttractiveM Male’s rating of female’s attractiveness (1–10 scale)
AttractiveF Female’s rating of male’s attractiveness (1–10 scale)
SincereM Male’s rating of female’s sincerity (1–10 scale)
SincereF Female’s rating of male’s sincerity (1–10 scale)
IntelligentM Male’s rating of female’s intelligence (1–10 scale)
IntelligentF Female’s rating of male’s intelligence (1–10 scale)
FunM Male’s rating of female as fun (1–10 scale)
FunF Female’s rating of male as fun (1–10 scale)
AmbitiousM Male’s rating of female’s ambition (1–10 scale)
AmbitiousF Female’s rating of male’s ambition (1–10 scale)
SharedInterestsM Male’s rating of female’s shared interests (1–10 scale)
SharedInterestsF Female’s rating of male’s shared interests (1–10 scale)
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StudentSurvey
Data on 362 introductory statistics students from an in-class survey given over
several years. All values are self-reported.
Source: Authors

Year Year in school: FirstYear, Sophomore, Junior, or Senior
Gender Student’s gender: F or M
Smoke Smoker? No or Yes
Award Preferred award: Academy, Nobel, or Olympic
HigherSAT Which SAT is higher? Math or Verbal
Exercise Hours of exercise per week
TV Hours of TV viewing per week
Height Height (in inches)
Weight Weight (in pounds)
Siblings Number of siblings
BirthOrder Birth order, 1 = oldest, 2 = second oldest, etc.

VerbalSAT Verbal SAT score
MathSAT Math SAT score
SAT Combined Verbal + Math SAT
GPA College grade point average
Pulse Pulse rate (beats per minute)
Piercings Number of body piercings

USStates
Data for all 50 US states.
Source: Various online sources, mostly at www.census.gov

State Name of state
HouseholdIncome Mean household income (in dollars)
IQ Mean IQ score of residents
McCainVote Percentage of votes for John McCain in 2008 Presiden-

tial election
Region Area of the country: MW = Midwest, NE = Northeast,

S = South, or W = West
ObamaMcCain Which 2008 Presidential candidate won state?

M = McCain or O = Obama
Population Number of residents (in millions)
EighthGradeMath A numeric vector
HighSchool Percentage of high school graduates
GSP Gross State Product (dollars per capita)
FiveVegetables Percentage of residents who eat at least five servings of

fruits/vegetables per day
Smokers Percentage of residents who smoke
PhysicalActivity Percentage of residents who have competed in a physical

activity in past month
Obese Percentage of residents classified as obese
College Percentage of residents with college degrees
NonWhite Percentage of residents who are not white
HeavyDrinkers Percentage of residents who drink heavily
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UNIT A: Data
CHAPTER 1

Section 1.1 Partial Answers

1.1 (a) The people who are asked
(b) Support the law or not; Categorical

1.3 (a) The teenagers in the sample
(b) At least five servings or not; Categorical

1.5 (a) The 10 beams
(b) Force at which each beam broke; Quantitative

1.7 Explanatory: Years smoking;
Response: Lung capacity

1.9 Explanatory: Number of drinks;
Response: Blood alcohol content

1.11 (a) Year and HigherSAT are categorical; Other six
are quantitative although Siblings might be
either

(b) Answers will vary
(c) Answers will vary

1.13 (a) Five variables are categorical;
All others are quantitative

(b) Answers will vary
1.15 Lakes; Estrogen and fertility level;

Both quantitative
1.17 Explanatory: father’s diet (categorical);

Response: daughter metabolic status (categorical)
1.19 First study: Students; Smoked hookah or not;

Categorical
Second study: People in a hookah bar; Three
variables; All quantitative
Third study: Smoke samples; Three variables; All
quantitative

1.21 Short answer not appropriate
1.23 (a) One categorical variable, value = flavor name

(b) Four categorical variables, value = yes/no
(c) Four variables with rank for each flavor, could

be treated as quantitative or categorical
(d) Four quantitative variables with rating for each

flavor
1.25 Cases: people;

Variables: measure of wealth, measure of happiness

Section 1.2 Partial Answers

1.27 Sample
1.29 Population
1.31 Sample: The 120 people;

Population: Many possible answers
1.33 Sample: 500 Canadian adults;

Population: All Canadian adults

1.35 Sample: cookies in one Chips Ahoy package;
Population: All Chips Ahoy cookies

1.37 (a) 100 college students asked
(b) All Americans
(c) College students

1.39 (a) The 1500 people contacted
(b) All US residents
(c) Residents of Minnesota

1.41 Yes
1.43 No
1.45 No
1.47 Biased; sampling bias
1.49 Biased; sampling bias
1.51 Biased; volunteer sample
1.53 (a) Cases: 6000 restroom patrons observed;

3 categorical variables: Wash, Gender, Location
(b) People not always honest in self-reporting

1.55 No, volunteer sample is biased;
Sample: 38,485 people who voted

1.57 Yes, it is a random sample
1.59 (a) US residents

(b) US businesses and government agencies
(c) i. CES ii. CPS iii. CPS

1.61 Answers will vary
1.63 (a) Short answer not appropriate

(b) Answers will vary

Section 1.3 Partial Answers

1.65 Neither
1.67 Association
1.69 Association and causation
1.71 Population
1.73 Snow
1.75 Gender
1.77 Experiment
1.79 Observational study
1.81 Experiment
1.83 Snow is associated with colder days;

Shoveling snow leads to back pain
1.85 Age or grade level
1.87 (a) Students; type of dorm (categorical);

number of hook-ups (quantitative)
(b) Explanatory: type of dorm;

Response: number of hook-ups
(c) Yes
(d) Yes
(e) Observational studies
(f) Students self-select the type of dorm
(g) No!
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(h) Assuming causation when he shouldn’t be
1.89 (a) Experiment

(b) Explanatory: color (categorical);
Response: rating (quantitative)

(c) Short answer not appropriate
(d) Yes

1.91 (a) Explanatory: amount of rest;
Response: attractiveness rating

(b) Matched pairs experiment
(c) Yes, this is an experiment

1.93 (a) Explanatory: amount of sleep;
Response: growth in height

(b) Short answer not appropriate
(c) Not ethical to deprive children of sleep

1.95 Short answer not appropriate

CHAPTER 2

Section 2.1 Partial Answers

2.1 0.4669, or 46.69%
2.3 0.1972, or 19.72%
2.5 p = 0.124
2.7 p̂ = 0.62
2.9 Academy Award: 0.086;

Nobel Prize: 0.412;
Olympic gold medal: 0.503

2.11 Short answer not appropriate
2.13 (a) Sample: 119 players;

Population: All RPS players;
Variable: the option played

(b) 0.555 (Rock), 0.328 (Paper), 0.118 (Scissors)
(c) Paper
(d) Scissors

2.15 (a) Variable: tylosin or not;
Individuals: 20 dust samples

(b) Short answer not appropriate
(c) Short answer not appropriate
(d) Short answer not appropriate

2.17 (a) Dog correct or not and type of sample
(b) Short answer not appropriate
(c) 0.917; 0.974
(d) 0.529

2.19 (a) Males, 14% to 9.5%
(b) 11.9%
(c) 37.2%

2.21 Cardiac arrest: 9.5%; Other: 1.1%
2.23 (a) Experiment

(b) Single-blind
(c) Two variables, both categorical
(d) Short answer not appropriate
(e) 75%
(f) p̂E − p̂S = 0.60 − 0.20 = 0.40
(g) Yes

2.25 (a) Observational study; No
(b) Women attempting to become pregnant

(c) p̂ = 0.36, p̂s = 0.28, p̂ns = 0.38
(d) p̂ns − p̂s = 0.10

2.27 (a) 68.6% (b) 58.0% (c) 15.7% (d) 7.2%
2.29 (a) Females; Graph (a)

(b) Approximately equal; Graph (a)
(c) Males; Graph (b)
(d) Females; Graph (b)

2.31 Graph (b)

Section 2.2 Partial Answers

2.33 F
2.35 B, C, E
2.37 E, G: Mean ≈ Median; F: Mean > Median;

H: Mean < Median
2.39 Answers will vary
2.41 Answers will vary
2.43 (a) x = 11.2 (b) m = 12 (c) No outliers
2.45 (a) x = 24.5

(b) m = 20
(c) 58 is a likely outlier

2.47 x = 2386
2.49 μ = 41.5
2.51 (a) Mean

(b) Mean = 7.2 mg/kg; Median = 3.65 mg/kg
2.53 (a) Population

(b) Skewed to the right, with one outlier
(c) About 4 million
(d) About 6 million

2.55 (a) Skewed to the left
(b) 6.5
(c) Smaller

2.57 (a) x̄ = 26.6; m = 16
(b) x̄ = 16.78; m = 15
(c) Affects the mean more than the median

2.59 (a) Skewed to the right
(b) Mean = 39.1; Median = 10

2.61 mH − mC = −399
2.63 Answers will vary
2.65 m = 1; x = 3.2

Section 2.3 Partial Answers

2.67 (a) x = 17.36; s = 5.73
(b) (10, 13, 17, 21, 28)

2.69 (a) x = 10.4; s = 5.32
(b) (4, 5, 11, 14, 22)

2.71 (a) x = 9.05; s = 5.74
(b) (0, 5, 8, 12, 40)

2.73 (a) s = 5: Histogram A
(b) s = 1: Histogram B
(c) s = 3: Histogram C

2.75 (a) II (b) V (c) IV (d) I (e) III (f) VI
2.77 x ≈ 500; s between 20 and 25
2.79 Approximately (440, 485, 500, 515, 560)

2.81 62; 73
2.83 Symmetric
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2.85 Skewed left
2.87 1.72, standard deviations above mean
2.89 −2.96, standard deviations below the mean
2.91 150 to 250
2.93 980 to 1020
2.95 (a) x ≈ 53

(b) s ≈ 5
(c) x = 52.875; s = 5.07

2.97 (a) (17.8, 22.175, 24.4, 26.825, 30.9)
(b) Range = 13.1; IQR = 4.65
(c) Between 17.8 and 22.175;

Between 24.4 and 26.825
2.99 (a) 4, 0, 3, −2, −17

(b) Mean −2.4; StDev 8.5
2.101 (a) 0.39◦C to 4.23◦C

(b) 2.7 standard deviations above mean
2.103 (a) x = 0.272; s = 0.237

(b) 2.44
(c) (0.073, 0.118, 0.158, 0.358, 0.851)
(d) Range = 0.778; IQR = 0.24

2.105 No, not bell-shaped
2.107 FGPct: 0.868

Points: 2.698
Assists: 1.965
Steals: 1.771
Most impressive: Points
Least impressive: FGPct

2.109 (a) x = 65.89; s = 18.29
(b) x = 26.18; s = 3.41
(c) Short answer not appropriate

2.111 (a) x = 13.15 years; s = 7.24 years
(b) 3.71 standard deviations above the mean

2.113 (a) 5, 5, 5, 5, 5, 5
(b) 1, 1, 1, 9, 9, 9

2.115 Short answer not appropriate
2.117 Short answer not appropriate
2.119 (a) Estimate = 19, actual = 12.2

(b) Estimate = 8, actual = 5.741
(c) Estimate = 7.8, actual = 7.24

Section 2.4 Partial Answers

2.121 (a) W (b) X (c) Y (d) Z
2.123 (a) Skewed right

(b) No outliers
(c) About 50; Answers may vary

2.125 (a) Approximately symmetric
(b) 3 low outliers and 2 high outliers
(c) About 1200

2.127 (a) Outliers: 15, 20
(b) Short answer not appropriate

2.129 (a) Outliers: 28, 30
(b) Short answer not appropriate

2.131 No outliers; Less than 7
2.133 (a) Drama; Horror

(b) Drama; Action
(c) Thriller, 24; Action & Comedy, 93
(d) Action

2.135 (a) Four outliers, at 402, 447, 511, 536
(b) Short answer not appropriate

2.137 (a) Seven outliers: all greater than 3264
(b) No low outliers
(c) Short answer not appropriate

2.139 Vitamin use has little effect on retinol levels
2.141 Blood pressures slightly higher for survivors;

Descriptions will vary
2.143 (a) Short answer not appropriate

(b) Low: mean 68.50 bpm, stdev 16.23;
Medium: mean 58.67 bpm, stdev 14.28;
High: mean 58.17 bpm, stdev 13.78

(c) Experiment
2.145 Answers will vary
2.147 Answers will vary

Section 2.5 Partial Answers

2.149 (b)
2.151 (d)
2.153 (c)
2.155 (d)
2.157 Positive
2.159 Negative
2.161 Negative
2.163 Short answer not appropriate
2.165 r = 0.915
2.167 (a) 3; 27.3%

(b) Eisenhower; Nixon
2.169 Exp: roasting time, Resp: amount of caffeine;

Negative association
2.171 Positive
2.173 (a) Negative

(b) Bottom right; top left
(c) Vermont; Mississippi, Kentucky, or Oklahoma
(d) Population; ρ

(e) ρ = −0.605
(f) No
(g) No
(h) Colorado

2.175 (a) Three quantitative variables
(b) Negative; Yes
(c) Positive; No; Yes

2.177 (a) Positive: spend time on both or neither;
Negative: spend time on one or the other but
not both

(b) Lots of exercise and little TV;
Lots of time on both;
Very little time doing either;
Lots of TV and little exercise

(c) Lots of TV and little exercise;
Lots of exercise and little TV
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(d) Almost no linear relationship
2.179 (a) Short answer not appropriate

(b) −0.096
(c) 0.562
(d) Yes

2.181 Type of drink is categorical
2.183 Short answer not appropriate
2.185 (a) Short answer not appropriate

(b) No evidence of an association
(c) Pirates of the Caribbean, 61;

Harry Potter and the Deathly Hallows,
Part 2

(d) 0.084

Section 2.6 Partial Answers

2.187 (a) 57.18 inches; 2.82 inches
(b) Grow about 2.74 inches per year
(c) Expected length of newborn is 24.3

2.189 (a) 153.5 lbs; −3.5 lbs
(b) Weight goes up 11.7 for one more hr/wk
(c) If never train, can lift 95 lbs

2.191 Ŷ = 0.395 + 0.349X
2.193 Ŷ = 111.7 − 0.84X
2.195 (a) Year; CO2

(b) Very strong linear relationship
(c) r = 0.993; Yes
(d) ĈO2 = −2571 + 1.47(Year)
(e) CO2 going up 1.47 ppm per year
(f) −2571; No; Can’t be negative
(g) 373.41 ppm; 398.4 ppm
(h) 6.08

2.197 (a) Mild positive linear relationship
(b) Larger in 2007; Negative in 2010
(c) r = 0.692
(d) ̂HotDogs = −3385 + 1.72 · Year
(e) 1.72 more hot dogs eaten each year
(f) 75.64 hot dogs
(g) Extrapolating too far away

2.199 Short answer not appropriate
2.201 190 lbs, 40% body fat;

Predicted body fat = 20%; Residual 20
2.203 (a) 13.35%; 22.1%

(b) Short answer not appropriate
(c) −8.525%

2.205 (a) Land area; Percent rural
(b) 0.60
(c) ̂Rural = 28.99 + 0.079(LandArea)

(d) No
(e) Uzbekistan (UZB)
(f) 752%; Not reasonable; Extrapolate too far

2.207 (a) Short answer not appropriate
(b) Harry Potter and the Deathly Hallows, Part 2
(c) r = 0.904
(d) ̂WorldGross = −8.7 + 7.70 · OpeningWeekend

(e) 376.3 million dollars
2.209 Answers will vary

UNIT A: Essential Synthesis Partial Answers

A.1 (a) Experiment
(b) Subjects can see which treatment
(c) Sample is 46 subjects; Population answers may

vary
(d) One quantitative, one categorical
(e) Side-by-side boxplots

A.3 (a) The students/computers; 45; Not random
(b) Observational study
(c) Four variables, all quantitative
(d) Histogram, dotplot, or boxplot; Boxplot
(e) Scatterplot; Correlation; Negative
(f) No, not an experiment
(g) Explanatory: time on distracting websites;

Response: exam score
(h) Randomized experiment

A.5 Answers will vary
A.7 (a) Sample: 86 patients;

Population: all people with bladder cancer
(b) Two categorical variables
(c) Experiment
(d) Two-way table
(e) Yes, the drug appears to be more effective

A.9 Answers will vary

UNIT A: Review Exercise Partial Answers

A.11 (a) Sample: 200 patients;
Population: All ICU patients

(b) Age, Systolic, HeartRate
(c) Answers will vary
(d) Answers will vary

A.13 (a) Observational study
(b) Explanatory: fish consumption;

Response: test score
(c) Answers will vary
(d) No

A.15 Short answer not appropriate
A.17 (a) Students; 70

(b) Treatment group; Three ratings
(c) Experiment
(d) Short answer not appropriate
(e) Side-by-side boxplots; Scatterplot

A.19 Answers will vary
A.21 (a) Experiment

(b) Short answer not appropriate
(c) xS − xN = 1.9
(d) Yes

A.23 (a) Sample: 48 participants;
Population: All people;
Variable: Whether a person’s lie is detected

(b) p̂ = 0.35
(c) No
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A.25 Yes; x ≈ 7; s ≈ 2
A.27 (a) There are likely low outliers

(b) Short answer not appropriate
(c) Skewed to the left

A.29 (a) Sample: The 1917 people;
Population: All cell phone users

(b) Relative frequency
(c) Skewed to the right
(d) m = 5; x = 13.10

A.31 (a) Skewed to the right
(b) x = 13.7 min; m = 2.5 min

A.33 53.3%
A.35 Answers will vary
A.37 Teens: No outliers; 80s: Two outliers at 190
A.39 (a) x ≈ 100; s ≈ 25

(b) About 60
(c) About 150

A.41 (a) Short answer not appropriate
(b) r = −0.071
(c) No

A.43 (a) Short answer not appropriate
(b) r = −0.189
(c) Short answer not appropriate
(d) r = 0.836
(e) Very substantial effect

A.45 (a) Positive; Positive
(b) Calories and fat
(c) Fat ≈ 240 grams; Fiber ≈ 23 grams;

Extreme for fat not fiber
A.47 (a) Short answer not appropriate

(b) 26.92; 33.46
(c) 11.77

A.49 (a) Negative linear trend
(b) Two outliers at left: Bogut and Jordan
(c) −0.402
(d) ̂FGPct = 0.647 − 0.236 · FTPct
(e) 0.482

UNIT B: Understanding Inference
CHAPTER 3

Section 3.1 Partial Answers

3.1 Parameter; μ

3.3 Statistic; p̂
3.5 Statistic; x
3.7 μ = 324.2
3.9 r = 0.037

3.11 ρ = −0.131
3.13 μ = 85; SE ≈ 20
3.15 p = 0.80; SE ≈ 0.03
3.17 (a) (i) (b) (i) (c) (ii)
3.19 (a) (ii) (b) (ii) (c) (iii)
3.21 p; p̂; 0.55
3.23 (a) μ = 30, parameter; x = 27.90, statistic

(b) Bell-shaped and centered at 30
(c) 1000 dots; each represents a mean for n = 75

3.25 (a) A: n = 20; B: n = 100; C: n = 500
(b) Not surprising; Possible but unlikely; Extremely

unlikely
(c) Not surprising; Not surprising; Possible but

unlikely
(d) As sample size goes up, accuracy increases

3.27 pa − pt; p̂a − p̂t; best estimate = −0.15
3.29 (a) 0.05

(b) About 0 to 0.12; About 0.25 to 0.7
(c) SE ≈ 0.02; SE ≈ 0.005
(d) Yes; No

3.31 (a) Answers will vary
(b) Answers will vary
(c) μ = 26.46 points
(d) Roughly symmetric and centered at 26.46

3.33 Minimum ≈ 8 to maximum ≈ 50; std.dev. about 7:
answers will vary

3.35 (a) p = 0.150
(b) Bell-shaped; centered at 0.150

3.37 (a) SE ≈ 0.11;
largest p̂ ≈ 0.6, off by 0.45

(b) SE ≈ 0.08;
largest p̂ ≈ 0.4, off by 0.25

(c) SE ≈ 0.05;
largest p̂ ≈ 0.3, off by 0.15

(d) Increasing n increases accuracy

Section 3.2 Partial Answers

3.39 22 to 28
3.41 0.57 to 0.67
3.43 (a) Yes (b) Yes (c) No
3.45 0.24 to 0.40; p
3.47 0.30 to 0.38; ρ

3.49 1.8 to 4.2; μ1 − μ2

3.51 (a) Statistic; p̂ = 0.30
(b) Proportion, p, of all US young people arrested

by 23; p̂ = 0.30
(c) 0.29 to 0.31
(d) Very unlikely

3.53 Short answer not appropriate
3.55 Point estimate: p̂ = 0.28; Margin of error: ±0.018;

95% CI: 0.262 to 0.298
3.57 (a) Short answer not appropriate

(b) Not the same; Game players are faster
(c) Short answer not appropriate
(d) Yes; Similar accuracy is plausible

3.59 (a) No (b) Yes (c) Yes (d) No
3.61 46.2 to 55.8 seconds; No, Yes
3.63 Parameter: p1 − p2;

Point estimate: p̂1 − p̂2 = 0.44;
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95% CI: 0.16 to 0.72;
Not likely

Section 3.3 Partial Answers

3.65 (a) No (b) No (c) Yes (d) No (e) Yes
3.67 Point estimate ≈ 0.7; SE ≈ 0.1;

Interval: 0.5 to 0.9; Parameter: p
3.69 Point estimate ≈ 0.4; SE ≈ 0.05;

Interval: 0.3 to 0.5; Parameter: ρ

3.71 SE ≈ 0.048;
Interval: 0.254 to 0.446

3.73 SE ≈ 0.022;
Interval: 0.236 to 0.324

3.75 (a) p̂ = 0.149
(b) SE ≈ 0.028
(c) 0.093 to 0.205
(d) Yes

3.77 (a) x = 67.59; s = 50.02
(b) Short answer not appropriate
(c) Bell-shaped, centered at 67.59
(d) $45.79 to $89.39

3.79 (a) p̂ = 0.767
(b) Short answer not appropriate
(c) Bell-shaped and centered at 0.767; SE ≈ 0.077
(d) 0.613 to 0.921

3.81 (a) SE = 0.015 (b) 0.12 to 0.18
3.83 (a) μD, mean population time savings

(b) Short answer not appropriate
(c) Sample mean for n = 24 values
(d) Slight rightskew, centered at 61
(e) Standard deviation of the bootstrap statistics
(f) 54.8 to 67.2 seconds

3.85 (a) r = 0.807
(b) Bell-shaped, centered near 0.81
(c) Margin of error = 0.071, (0.736,0.878)
(d) Short answer not appropriate

3.87 27.1 to 71.1 minutes

Section 3.4 Partial Answers

3.89 (a) 25 (b) 50 (c) 10 (d) 5
3.91 C
3.93 A
3.95 B
3.97 Approximately 0.66 to 0.78;

Answers may vary
3.99 Approximately 0.34 to 0.42;

Answers may vary
3.101 29.4 to 76.7
3.103 Approximately 0.467 to 0.493; Yes
3.105 3.47 to 4.23; Results are similar
3.107 (a) p̂m − p̂f = 0.045; Males

(b) −0.04 to 0.13
3.109 (a) xt − xc = 17.12

(b) μt − μc

(c) 4.17 to 29.70

(d) −3.30 to 37.04
(e) Yes; No

3.111 30,100 to 228,300 sq km
3.113 (a) Short answer not appropriate

(b) μatl − μstl; xatl − xstl = 7.14 minutes
(c) Short answer not appropriate
(d) 4.89 to 9.39 minutes

3.115 (a) Symmetric and bell-shaped;
CI for σ : about 7 to 14 thousand dollars

(b) Not symmetric and bell-shaped;
Not appropriate to use to find a CI

CHAPTER 4

Section 4.1 Partial Answers

4.1 (a) Sample A (b) Sample C
4.3 (a) Sample A (b) Samples B and C
4.5 H0 : μA = μB vs Ha : μA �= μB

4.7 H0 : μ = 50 vs Ha : μ < 50
4.9 H0 : pm = pf vs Ha : pm > pf

4.11 H0 : p = 0.20 vs Ha : p < 0.20
4.13 H0 : μf = μu vs Ha : μf �= μu

4.15 (a) valid (b) invalid (c) invalid (d) invalid
4.17 (a) H0 : μb = μw vs Ha : μb > μw

(b) 17.36 and 18.72; Yes, Yes
(c) 23.60 and 19.17; Yes, Probably not
(d) Drinking beer attracts mosquitoes!
(e) Yes, since it was an experiment

4.19 (a) H0 : μe = μs vs Ha : μe < μs

(b) H0 : μe = μs vs Ha : μe > μs

(c) H0 : ρ = 0 vs Ha : ρ < 0
4.21 H0 : μm = μf vs Ha : μm > μf

4.23 H0 : ρ = 0 vs Ha : ρ > 0
4.25 H0 : μ = 50 vs Ha : μ > 50
4.27 (a) H0 : ρ = 0 vs Ha : ρ �= 0

(b) r = 0.75
(c) Same (just opposite directions)

4.29 (a) H0 : μ = 3800 vs Ha : μ > 3800
(b) H0 : μ = 3800 vs Ha : μ < 3800

4.31 Test; H0 : p = 0.10 vs Ha : p > 0.10
4.33 Test; H0 : μD = 0 vs Ha : μD < 0

OR: H0 : μR = μL vs Ha : μR < μL

4.35 Test, H0 : p = 0.5 vs Ha : p > 0.5
4.37 (a) H0 : pc = pf vs Ha : pc �= pf

(b) p̂c = 0.608; p̂f = 0.580; Yes
(c) p̂c = 0.752; p̂f = 0.480
(d) Sample B

4.39 (a) H0 : ρ = 0 vs Ha : ρ > 0
(b) Yes
(c) No
(d) Placebo could give as extreme a correlation

Section 4.2 Partial Answers

4.41 0.08
4.43 0.007
4.45 (a) 0.01 (b) 0.30 (c) 0.05
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4.47 (a) 0.01 (b) 0.30
4.49 (a) Short answer not appropriate

(b) D = −1.3
4.51 (a) Short answer not appropriate

(b) Both give same evidence
4.53 UV: 0.002; Vitamin D: 0.472
4.55 (a) 0.11

(b) 0.03
(c) (b) D = 2.4, p-value = 0.03

4.57 (a) Short answer not appropriate
(b) D = 0.2, p-value = 0.392

D = −0.4, p-value = 0.066
(c) 0.008

4.59 (a) Relatively small p-value
(b) Relatively large p-value
(c) Relatively small p-values

4.61 Short answer not appropriate
4.63 (a) Once

(b) Yes, p-value is very small
(c) No

4.65 (a) H0 : p = 1/6 vs Ha : p > 1/6
(b) p = 1/6, the proportion for H0

(c) p̂ = 0.1; Answers will vary
(d) Left
(e) Right
(f) p-value > 0.50

Section 4.3 Partial Answers

4.67 Reject H0

4.69 Do not reject H0

4.71 Yes; Yes; No
4.73 Yes; Yes; Yes
4.75 (a) I. 0.0875

(b) IV. 0.00003
(c) III. 0.0217
(d) II. 0.5457

4.77 Test A
4.79 No
4.81 1%
4.83 (a) Evidence that price affects effectiveness

(b) Short answer not appropriate
4.85 (a) H0 : p = 0.5 vs Ha : p �= 0.5

(b) Do not reject H0; No
(c) Reject H0; Yes

4.87 (a) p-value < 0.05
(b) No
(c) Yes
(d) No, not an experiment

4.89 (a) Yes
(b) Very strong
(c) Yes, this is an experiment

4.91 (a) Not valid (b) Valid (c) Valid
4.93 Small, α = 0.01
4.95 Large, α = 0.10

4.97 Large, α = 0.10
4.99 Short answer not appropriate

4.101 Short answer not appropriate
4.103 Short answer not appropriate
4.105 (a) Reject H0; No error or Type I error

(b) Do not reject H0; No error or Type II error
(c) Need to know the actual value of the parameter

Section 4.4 Partial Answers

4.107 p̂
4.109 r
4.111 p̂1 − p̂2

4.113 10; Right-tail
4.115 0; Two-tail
4.117 p-value ≈ 0.10
4.119 p-value ≈ 0.01
4.121 p-value ≈ 0.12
4.123 (a) H0 : p = 0.5 vs Ha : p > 0.5

(b) Answers will vary
(c) The proportion of heads is p = 0.5

4.125 p = 0.5, the proportion for H0

4.127 (a) H0 : μLL = μLD vs Ha : μLL > μLD

(b) Answers will vary
4.129 p-value ≈ 0.12; Do not reject H0; No
4.131 If p is the proportion after a full moon:

H0 : p = 0.5 vs Ha : p > 0.5;
p-value ≈ 0;
Very strong evidence that attacks are more likely
after a full moon

4.133 H0 : ρ = 0 vs Ha : ρ > 0;
p-value ≈ 0.02; At 5% level, reject H0;
Positively correlated

4.135 (a) H0 : p1 = p2 vs Ha : p1 > p2

(b) p̂1 = 0.519; p̂2 = 0.250; Yes
(c) Small α, such as 0.01
(d) Pain response same either way; 0
(e) p̂1 − p̂2 = 0.27
(f) Fairly strong evidence to reject H0

(g) At 1% level, do not reject H0

4.137 (a) H0 : pO = 0.5 vs Ha : pO > 0.5,
where pO is the proportion supporting Obama

(b) Short answer not appropriate
4.139 (a) H0 : pd = pc vs Ha : pd < pc

(b) 0
(c) Use 48 cards, 30 have ‘‘R” for relapse;

Deal into two piles of 24
4.141 (a) H0 : μQ = μL vs Ha : μQ > μL

(b) xD = 2.7
(c) Answers will vary; many possible methods
(d) Answers will vary
(e) Answers will vary

4.143 (a) Inappropriate;
doesn’t match H0 : p = 0.8

(b) Appropriate
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4.145 p-value ≈ 0.20 for each method;
Do not reject H0

Section 4.5 Partial Answers

4.147 (a) Reject H0, α = 0.05
(b) Do not reject H0, α = 0.05
(c) Do not reject H0, α = 0.01

4.149 (a) Reject H0, α = 0.05, μ1 > μ2

(b) Do not reject H0, α = 0.01
(c) Reject H0, α = 0.10, μ2 > μ1

4.151 (a) Reject H0, α = 0.01
(b) Do not reject H0, α = 0.01
(c) Reject H0, α = 0.01

4.153 (a) Do not reject H0

(b) Reject H0

4.155 (a) Short answer not appropriate
(b) Can generalize to population;

Strength of evidence
(c) Can generalize to population;

Can estimate size of difference
(d) No, need the second quote

4.157 (a) H0 : pF = pM vs Ha : pF �= pM

(b) Reject H0; 5%
(c) Female

4.159 (a) Observational study; random sample; No
(b) Short answer not appropriate
(c) Short answer not appropriate
(d) x = 0.124; s = 0.99;

5-num: (−3.27, −0.03, 0.11, 0.32, 4.86)

(e) −$0.14 to $0.40.
(f) H0 : μ = 0 vs Ha : μ �= 0; Do not reject H0

(g) H0 : μ = 0 vs Ha : μ > 0;
p-value = 0.19; Do not reject H0

(h) Only a Type II error is possible; Check mean
for all 500 stocks to find μ exactly

4.161 (a) H0 : μ = 200 vs Ha : μ �= 200;
p-value ≈ 0.8; Do not reject H0

(b) Included
4.163 (a) H0 : μI = μC vs Ha : μI > μC

(b) Kindergartners with iPads do better;
Yes, statistically significant

(c) Short answer not appropriate
4.165 (a) One or two tests

(b) A Type I error is likely
(c) No, not an experiment

4.167 (a) We should be less confident;
The problem of multiple tests

(b) No
(c) Yes

UNIT B: Essential Synthesis Partial Answers

B.1 (a) Confidence interval
(b) Hypothesis test
(c) Hypothesis test
(d) Inference is not relevant

B.3 (a) Reject H0

(b) Short answer not appropriate
(c) Randomize, placebo, double-blind
(d) Vitamin C reduces mean time to recover

B.5 (a) H0 : μdc = μw vs Ha : μdc > μw ;
p-value ≈ 0.005, reject H0

(b) 95% confidence interval for μdc − μw is (2.88,
10.75)

B.7 (a) Roommates are assigned at random
(b) H0 : μv = μn vs Ha : μv < μn

(c) Reject H0

(d) Negative differences indicate μv < μn

(e) Do not reject H0

(f) Reject H0

(g) Larger effect on those who bring a videogame
themselves

(h) Short answer not appropriate
(i) More videogames associated with lower mean

GPA
(j) Answers will vary

B.9 (a) Positive (b) r = 0.914 (c) 0.88 to 0.94
(d) No

UNIT B: Review Exercise Partial Answers

B.11 (a) All American adults, p, p̂ = 0.57
(b) 0.54 to 0.60

B.13 (a) p = 0.1985
(b) Bell-shaped; centered at 0.1985

B.15 0.0004: effect of ringing phone on learning;
0.93: effect of proximity to phone;
Strong evidence that ringing phone affects learning

B.17 p-value ≈ 0; Very strong evidence;
Weight gain is higher if light at night

B.19 $2.18 to $3.90; Sample is representative
B.21 0.53 to 0.59; Yes
B.23 (a) One-tailed

(b) H0 : ps = pns vs Ha : ps < pns

(c) 135 for smoking, 543 for non-smoking
(d) 0.04

B.25 (a) Sample A (b) Sample B (c) Sample A
B.27 (a) p = 0.235

(b) Bell-shaped; centered at 0.235; SE ≈ 0.08
B.29 (a) Same

(b) Different
(c) Same
(d) Different
(e) Different

B.31 −0.9 to 6.9 hours per week
B.33 (a) Short answer not appropriate

(b) 123 to 147 seconds
(c) No

B.35 (a) μ = 28.96; σ = 26.31
(b) Norway and Iceland 90.5%; Myanmar 0.2%
(c) Bell-shaped; centered at 29; SE ≈ 8.0
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B.37 (a) Plausible
(b) Plausible
(c) Plausible

B.39 SE ≈ 0.001; 0.448 to 0.452
B.41 H0 : p = 0.5 vs Ha : p > 0.5;

p-value ≈ 0.167; Do not reject H0

B.43 (17.2, 19.2)
B.45 (a) H0 : ρ = 0 vs Ha : ρ < 0

(b) r ≈ −0.15
(c) r ≈ −0.50

B.47 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Harmful side effects
(d) Do not reject H0

(e) Not necessarily, results are inconclusive
B.49 p-value ≈ 0; Reject H0

B.51 p-value ≈ 0.24; Do not reject H0

B.53 Short answer not appropriate
B.55 Short answer not appropriate

UNIT C: Inference with Normal
and t-Distributions
CHAPTER 5

Section 5.1 Partial Answers

5.1 62%
5.3 95%
5.5 (a) 0.8508 (b) 0.9332 (c) 0.1359
5.7 (a) 0.982 (b) 0.309 (c) 0.625
5.9 (a) −1.282 (b) −0.8416 (c) ±1.960

5.11 (a) −1.28 (b) 0.385
5.13 (a) 0.691 (b) 0.202 (c) 0.643
5.15 (a) 0.023 (b) 0.006 (c) 0.700
5.17 (a) 59.3 (b) 2.03 (c) 60.8 and 139.2
5.19 (a) 110 (b) 9.88
5.21 z = −1.6
5.23 x = 13.3, z = 1.64
5.25 z = −1.28, x = 397.6
5.27 x = 115 and x = 130
5.29 Short answer not appropriate
5.31 0.106
5.33 (a) 35th percentile (b) 634
5.35 (a) 0.495 (b) 66.2 inches
5.37 Q1 = 21.53, Q3 = 22.41
5.39 (a) 0.0509 or 5.09%

(b) 0.138 or 13.8%
(c) Grades below 53.9
(d) Grades above 86.1

5.41 (a) 0.954 (b) 0.683 (c) 0.997 (d) Yes

Section 5.2 Partial Answers

5.43 (a) z∗ = 1.476 (b) z∗ = 1.881 (c) z∗ = 2.054
5.45 68.668 to 75.332
5.47 0.703 to 0.857
5.49 0.868 to 27.132

5.51 z = −0.83
5.53 z = 13.0
5.55 z = 9.2
5.57 (a) p-value = 0.140

(b) p-value ≈ 0.000
(c) p-value = 0.1142

5.59 0.561 to 0.639
5.61 (a) 3.8% per year to 6.6% per year

(b) −21.7% per year to −14.7% per year
(c) Observational study
(d) No

5.63 0.09 to 0.45 higher using quizzes
5.65 H0 : p = 0.40 vs Ha : p > 0.40;

z = 1.875; p-value = 0.03; Reject H0

5.67 z = 2.01; p-value = 0.022
5.69 (a) Slope = −0.219

(b) Around (−0.288, −0.150)

5.71 (a) Short answer not appropriate
(b) (0.264, 0.316)

5.73 (a) Randomization distribution not for CI
(b) Use a bootstrap distribution
(c) Approximately 0.13 to 0.91.
(d) Bootstrap distribution is left skewed

5.75 (a) −0.158 to 0.898
(b) Bootstrap distribution is slightly skewed

CHAPTER 6

Section 6.1 Partial Answers

6.1 (a) Mean = 0.25; SE = 0.061
(b) Normal curve applies

6.3 (a) Mean = 0.90; SE = 0.039
(b) Normal curve is not appropriate

6.5 (a) Mean = 0.08; SE = 0.016
(b) Normal curve applies

6.7 Mean = 0.30; SE = 0.020
6.9 Mean = 0.651; SE = 0.067

6.11 0.089; 0.035; 0.015;
SE goes down; Accuracy is better

6.13 (a) Yes (b) Yes (c) No (d) No
6.15 (a) Normal; Mean and SE will vary slightly

(b) Mean = 0.25, SE = 0.061; Yes
6.17 (a) Normal; Mean and SE will vary slightly

(b) Mean = 0.5, SE = 0.079; Yes
6.19 About 0.05 both ways; Matches very closely
6.21 About 0.069 both ways; Matches very closely
6.23 (a) Mean = 0.64; SE = 0.107

(b) No, 20 · (1 − 0.64) = 7.2 < 10
(c) Mean = 0.36; SE = 0.107

6.25 0.0534

Section 6.2 Partial Answers

6.27 p̂ = 0.85; ME = 0.054; 90% CI is 0.796 to 0.904
6.29 p̂ = 0.23; ME = 0.041; 95% CI is 0.189 to 0.271
6.31 n ≥ 16,590
6.33 n ≥ 1649
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6.35 0.880 to 0.916
6.37 (a) 0.675 to 0.705 (b) 0.025 to 0.035 (c) Part (a)
6.39 (a) 0.775 to 0.809 (b) 0.567 to 0.613 (c) 0.446 to

0.488; No
6.41 (a) Sample: 27,000 interviewed; Population: all

consumers with Internet access
(b) 0.602 to 0.618
(c) 0.906 to 0.914

6.43 0.0076; 0.0075; Yes
6.45 0.40 to 0.56; Both give similar results
6.47 n = 1844; n = 1068; n = 752; For a higher level of

confidence, need larger n
6.49 (a) Between 0.291 and 0.349

(b) ME = ±2.9%
(c) n ≥ 8360

6.51 n ≥ 846
6.53 0.464 to 0.552
6.55 n ≈ 932

Section 6.3 Partial Answers

6.57 z = −2.78; p-value = 0.003; Reject H0

6.59 z = 1.41; p-value = 0.079; Do not reject H0

6.61 z = 4.74; p-value ≈ 0; Reject H0

6.63 z = 4.38; p-value ≈ 0;
Yes, strong evidence

6.65 z = 0.95; p-value = 0.171; Do not reject H0

6.67 z = 2.72; p-value = 0.006; Reject H0

6.69 H0 : p = 0.5 vs Ha : p �= 0.5;
z = 1.26; p-value = 0.208; Do not reject H0

6.71 z = 1.38; p-value = 0.168; Do not reject H0

Section 6.4 Partial Answers

6.73 (a) Mean = 6; SE = 0.632
(b) Normal curve is not appropriate

6.75 (a) Mean = 60; SE = 3.695
(b) Normal curve applies

6.77 ±2.57
6.79 ±2.71
6.81 0.0886
6.83 0.0012
6.85 (a) Mean = 230 min; SE = 12.0 min

(b) Mean = 230 min; SE = 3.8 min
(c) Mean = 230 min; SE = 1.2 min

6.87 Mean = 516; SE = 11.6
6.89 (a) i. Mean = 501; SE = 112

ii. Mean = 501; SE = 35.42
iii. Mean = 501; SE = 11.20
iv. Mean = 501; SE = 3.54

(b) Center is not affected by sample size;
Variability decreases as sample size increases

6.91 0.5; 2.5; 7.5;
SE goes up as σ goes up

6.93 Appropriate; df = 74; SE = 1.17
6.95 Not appropriate
6.97 About 0.93 both ways; Matches closely

6.99 About 0.11 both ways; Matches closely
6.101 Not NY; maybe NJ and PA
6.103 (a) i. 0.415 ii. 0.249 iii. 0.016 iv. ≈ 0

(b) Sample means closer to μ as sample size
increases

Section 6.5 Partial Answers

6.105 x = 12.7; ME = 2.1; 10.6 to 14.8
6.107 x = 3.1; ME = 0.066; 3.034 to 3.166
6.109 x = 46.1; ME = 12.85; 33.25 to 58.95
6.111 n ≥ 50
6.113 n ≥ 6766
6.115 5.743 to 7.265 hours per week
6.117 x = 3.1; ME = 0.2; 2.9 mm to 3.3 mm;

Assume the sample is random or representative
6.119 6.16 grams to 9.64 grams
6.121 (a) n = 157; x = 3.849; s = 2.421

(b) SE = 0.193; Same as in computer output
(c) $3.466 to $4.232
(d) Same up to round off
(e) Short answer not appropriate

6.123 16.95 to 19.37; Methods give similar results
6.125 (a) x = 12.20; s = 2.25

(b) 11.36 to 13.04 penalty minutes per game
(c) Answers will vary

6.127 n ≥ 5203
6.129 (a) 16.03 to 20.57 particles per 250 mL

(b) ME = ±2.27 particles
(c) n ≥ 447

6.131 n = 664; n = 385; n = 271;
Higher confidence level requires larger sample size

6.133 15.93% to 17.31%

Section 6.6 Partial Answers

6.135 t = 2.17; p-value = 0.018; Reject H0

6.137 t = −4.18; p-value ≈ 0; Reject H0

6.139 t = 1.35, p-value = 0.1984; Do not reject H0

6.141 t = 1.59; p-value = 0.112; Do not reject H0

6.143 t = 3.24; p-value = 0.0014; Reject H0

6.145 (a) To avoid sampling bias
(b) t = 14.4; p-value ≈ 0
(c) No, test is about the mean

6.147 (a) Yes; t = 2.36; p-value = 0.0126
(b) Yes; t = 3.01; p-value = 0.0027
(c) No; t = −0.47; p-value = 0.6791
(d) New Jersey

6.149 (a) n = 30; x = 0.25727; s = 0.01039
(b) t = 3.83; p-value = 0.0006; Reject H0

(c) The same up to round-off
6.151 (a) t = −10.09; p-value ≈ 0; Reject H0

(b) t = 0.58; p-value = 0.718; Do not reject H0

Section 6.7 Partial Answers

6.153 (a) Mean = 0.10; SE = 0.086
(b) Normal curve applies
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6.155 (a) Mean = −0.10; SE = 0.076
(b) Normal curve applies

6.157 (a) Mean = 0.06; SE = 0.106
(b) Normal curve is not appropriate

6.159 (a) One group; No
(b) Two groups; Yes
(c) One group; No
(d) Two groups; Yes

6.161 Mean = 0.011; SE = 0.037
6.163 N(0.037, 0.041)

6.165 (a) Mean = 0.357; SE = 0.032
(b) p̂E − p̂J ≈ N(0.357, 0.032)

(c) Yes; No
6.167 About 0.049 both ways; Matches very closely
6.169 (a) p̂f − p̂m ∼ N(0.041, 0.0423)

(b) About 17% of samples

Section 6.8 Partial Answers

6.171 p̂1 − p̂2 = −0.12; ME = 0.121;
90% CI for p1 − p2 is −0.241 to 0.001

6.173 p̂1 − p̂2 = 0.03; ME = 0.054;
95% CI for p1 − p2 is −0.024 to 0.084

6.175 0.166 to 0.258 lower for men
6.177 0.301 to 0.335 lower with electronic; No
6.179 0.23 to 0.01 lower for metal
6.181 0.0003 to 0.0081
6.183 −0.0046 to 0.0096
6.185 0.12 to 0.18; Similar results
6.187 0.033 to 0.263

Section 6.9 Partial Answers

6.189 (a) p̂1 = 0.643, p̂2 = 0.56, p̂ = 0.594
(b) z = 1.08; p-value = 0.280; Do not reject H0

6.191 (a) p̂Y = 0.38, p̂N = 0.12, p̂ = 107/800 = 0.134
(b) z = 4.82; p-value ≈ 0; Reject H0

6.193 (a) p̂A = 0.216, p̂B = 0.174, p̂ = 0.198
(b) z = 1.80; p-value = 0.072; Do not reject H0

6.195 z = 2.073; p-value = 0.0191; Reject H0

6.197 (a) 224 Quebecers; 90 Texans
(b) p̂ = 0.24
(c) z = 4.10; p-value ≈ 0.000; Reject H0

6.199 Sample size is too small
6.201 (a) Internet users

(b) z = 7.49; p-value ≈ 0; Reject H0

(c) No, not an experiment
(d) Yes

6.203 (a) No, sample size is too small
(b) Randomization p-value ≈ 0.01; Reject H0

6.205 HRT increases risk; z = 2.09; p-value = 0.036
6.207 No; z = 0.69, p-value = 0.490
6.209 z = −0.32; p-value = 0.750; Do not reject H0

Section 6.10 Partial Answers

6.211 (a) Mean = 6; SE = 2.06
(b) Normal curve applies

6.213 (a) Mean = 0.4; SE = 0.30
(b) Normal curve applies

6.215 ±2.14; df = 14
6.217 0.0861; df = 29
6.219 (a) Mean = 34; SE = 23.6

(b) Mean = 34; SE = 7.46
(c) No effect on center; As n’s go up, SE goes down

6.221 μm − μf ; Males
6.223 μN − μE; Non-native English speakers
6.225 SE ≈ 0.78 both ways; Matches closely
6.227 xA − xB ∼ N(0, 1.41);

Area beyond ±3 is 0.033

Section 6.11 Partial Answers

6.229 x1 − x2 = −2.3; ME = 1.46;
95% CI is −3.76 to −0.84

6.231 x1 − x2 = 0.3; ME = 3.09;
95% CI is −2.79 to 3.39

6.233 −257.8 to 556.8
6.235 −96.5 to 450.6
6.237 0.5 to 0.7 higher for those on social network site
6.239 0.02 and 6.98 g more gained in light
6.241 −0.067 to 0.459
6.243 −0.156 to 0.334
6.245 (a) 0.134 to 0.614 (b) No, not an experiment
6.247 (a) Males; 2.383 hours per week more

(b) −3.85 to −0.92
(c) Very similar
(d) Short answer not appropriate

6.249 2.9 to 30.7; No; Higher for those who lived

Section 6.12 Partial Answers

6.251 t = −1.57; p-value = 0.12; Do not reject H0

6.253 t = −2.44; p-value = 0.0112; Reject H0

6.255 t = 0.82; p-value = 0.416; Do not reject H0

6.257 t = −6.80; p-value = 0.00025; Reject H0

6.259 No extreme skewness or extreme outliers;
t = 3.18; p-value = 0.0078; Reject H0

6.261 t = 3.89; p-value ≈ 0; Reject H0

6.263 (a) Option 2 (b) Option 2 (c) Option 1
6.265 t = 1.87, p-value = 0.066; Do not reject H0

6.267 H0 : μf = μm vs Ha : μf �= μm;
t = −2.98; p-value = 0.003; Reject H0

6.269 t = −2.45; p-value = 0.014; Reject H0

Section 6.13 Partial Answers

6.271 xd = 556.9; ME = 23.8;
90% CI is 533.1 to 580.7

6.273 xd = −3.13; ME = 6.46;
95% CI is −9.59 to 3.33

6.275 t = −2.69; p-value = 0.016; Reject H0

6.277 t = 1.36; p-value = 0.103; Do not reject H0

6.279 Paired data
6.281 Paired data
6.283 Paired data
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6.285 0.55 to 4.25 higher when cell phone is on
6.287 t = 2.61; p-value = 0.006; Reject H0

6.289 4.1 to 39.3 pg/ml reduction in testosterone
6.291 t = 1.52, p-value = 0.0814; Do not reject H0

6.293 (a) Short answer not appropriate
(b) 0.271 to 0.713 higher with a spoiler

6.295 (a) t = −1.09; p-value = 0.152; Do not reject H0

(b) t = −2.71; p-value = 0.012; Reject H0

(c) Short answer not appropriate

UNIT C: Essential Synthesis Partial Answers

C.1 z = 2.14; p-value = 0.0162; Reject H0

C.3 z = 2.39; p-value = 0.0168; Reject H0

C.5 t = 4.45; p-value ≈ 0; Reject H0

C.7 (a) t = 0.36; p-value = 0.73; Do not reject H0

(b) t = 2.16; p-value = 0.0338; Reject H0

(c) t = −2.28; p-value = 0.0283; Reject H0

(d) t = −3.83; p-value = 0.0064; Reject H0

(e) Short answer not appropriate
C.9 Test mean; t = 3.33; p-value = 0.0013; Reject H0

C.11 Test difference in proportions; z = 0.895;
p-value = 0.185; Do not reject H0

C.13 (a) x = 98.92; p-value ≈ 0; Reject H0

(b) p̂ = 0.2; 0.147 to 0.262
(c) Females; p-value = 0.001; Reject H0

(d) p-value = 0.184; Do not reject H0

(e) p-value = 0.772; Do not Reject H0

UNIT C: Review Exercise Partial Answers

C.15 (a) 0.018 (b) 0.106
C.17 (a) z = 0.253 (b) z = −2.054
C.19 ±1.711
C.21 0.011
C.23 (a) 12.20 to 13.38

(b) H0 : μ = 12 vs Ha : μ > 12;
z = 2.63; p-value = 0.004; Reject H0

C.25 (a) Small (b) Reject H0

C.27 (a) Large (b) Do not reject H0

C.29 (a) Small (b) Reject H0

C.31 CI for a mean
C.33 Test for difference in proportions
C.35 CI for difference in means
C.37 Test for a proportion
C.39 0.702 to 0.758
C.41 t = 7.35; p-value ≈ 0; Reject H0

C.43 Normal distribution not appropriate;
0.006 to 0.126 using bootstraps

C.45 z = 2.04; p-value = 0.0207; Reject H0

C.47 −0.112 to 0.278
C.49 (a) Bootstrap; 1.57 to 12.85

(b) t-distribution OR bootstrap; 0.158 to 0.386
C.51 t = 5.69; p-value ≈ 0; Reject H0

C.53 (a) Cardiac arrest: p̂A = 0.095;
Other: p̂B = 0.011

(b) z = 6.74; p-value ≈ 0; Reject H0

C.55 (a) Short answer not appropriate
(b) z = 4.0; p-value ≈ 0; Reject H0

C.57 t = −1.41; p-value = 0.186; Do not Reject H0

C.59 (a) Short answer not appropriate
(b) t = 2.63; p-value = 0.014;

Reject H0 at 5%, not at 1%
(c) Yes, a randomized experiment

C.61 (a) t = 1.13; p-value = 0.141;
Do not reject H0

(b) Need paired data
C.63 (a) Yes; No

(b) z = −1.58; p-value = 0.057; Do not Reject H0

(c) Randomization p-value ≈ 0.51, Do not Reject
H0

C.65 (a) x = 111.7; ME = 63.5; 48.2 to 175.2
(b) Yes; Yes
(c) No; Yes

C.67 t = 3.52; p-value = 0.005;
Mice in light gain more

C.69 (a) Yes; t = 1.98; p-value = 0.040
(b) No; t = 0.46; p-value = 0.0.328
(c) Yes; t = 2.43; p-value = 0.019

C.71 Short answer not appropriate
C.73 (a) t = 5.80; p-value ≈ 0; Reject H0

(b) z = 4.39; p-value ≈ 0; Reject H0

(c) CI for μD is 1.87 to 3.80 years
CI for p is 0.618 to 0.798

C.75 95% CI for difference is 54.59 to 67.41 minutes;
t = 19.68; p-value = 0.000; Reject H0

Flexible system is better

UNIT D: Inference for Multiple Paramaters
CHAPTER 7

Section 7.1 Partial Answers

7.1 125; 125; 125; 125
7.3 100; 50; 50
7.5 χ2 = 6.45; p-value = 0.0398
7.7 χ2 = 8.38; p-value = 0.039
7.9 (a) 40 (b) 0.4 (c) df = 3

7.11 (a) 700 (b) 1.46 (c) df = 5
7.13 (a) H0 : pg = po = pp = pr = py = 0.2

Ha : Some pi �= 0.2
(b) 13.2
(c) 4
(d) 3.70
(e) p-value = 0.449; Do not reject H0

7.15 (a) χ2 = 190.2; p-value ≈ 0; Reject H0

(b) Age 65+; Observed < Expected
7.17 χ2 = 82.6; p-value ≈ 0; Reject H0

7.19 (a) χ2 goodness-of-fit test
(b) Large
(c) Small
(d) Monthly deaths due to medication errors
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(e) July
(f) Observed

7.21 (a) Yes, χ2 = 172.0; p-value ≈ 0
(b) Yes, χ2 = 120.2; p-value ≈ 0
(c) No, not a random sample

7.23 (a) n = 436
(b) Observed = 130; Expected = 109
(c) XX; Observed < Expected
(d) df = 2
(e) 0.002; reject H0

7.25 χ2 = 8.24; p-value = 0.410; Do not reject H0

7.27 χ2 = 6.40; p-value = 0.781; Do not Reject H0

7.29 SSN8: χ2 = 1.60; p-value = 0.996; Do not reject H0

SSN9: χ2 = 13.87; p-value = 0.127; Do not reject H0

Section 7.2 Partial Answers

7.31 Expected = 88; Contribution = 0.011
7.33 Expected = 360; Contribution = 4.44
7.35 df = 6
7.37 df = 1
7.39 χ2 = 93.7; p-value ≈ 0; Reject H0

7.41 (a) Short answer not appropriate
(b) 16, 8, 16, 8, 16, 8; Yes
(c) χ2 = 10.5; p-value = 0.005; Reject H0

(d) Desipramine; Yes, experiment
7.43 (a) Short answer not appropriate

(b) Short answer not appropriate
(c) Yes
(d) df = 4
(e) χ2 = 9.07
(f) p-value = 0.059; Do not (quite) reject H0

7.45 χ2 = 68.3; p-value ≈ 0; Reject H0

7.47 χ2 = 9.65; p-value = 0.047; Reject H0

7.49 (a) 34.75; 3.645
(b) df = 4
(c) χ2 = 24.805; p-value = 0.000; Reject H0

(d) (Sprint, XX); Observed less than expected
(e) Sprinters: RR; Endurance: XX

7.51 p-value = 0.592; No evidence of an association
7.53 χ2 = 11.071; p-value = 0.004; Strong association

CHAPTER 8

Section 8.1 Partial Answers

8.1 Dataset B; less variability within groups
8.3 Dataset A; means farther apart
8.5 Dataset B; less variability within groups
8.7 F = 2.55
8.9 F = 0.8

8.11 (a) 4 groups
(b) H0 : μ1 = μ2 = μ3 = μ4 vs Ha : Some μi �= μj

(c) p-value = 0.229
(d) Do not reject H0

8.13 (a) 3 groups
(b) H0 : μ1 = μ2 = μ3 vs Ha : Some μi �= μj

(c) p-value = 0.0013

(d) Reject H0

8.15 (a) Treatment group (categorical);
Change in cortisol level (quantitative)

(b) Experiment
(c) H0 : μ1 = μ2 = μ3 = μ4 vs Ha : Some μi �= μj

(d) 67; 3; 64
(e) p-value less than 0.05

8.17 (a) Largest: Legs together with no lap pad;
Smallest: Legs apart

(b) Yes
(c) F = 10.9; p-value ≈ 0; Reject H0

8.19 (a) Yes; EE
(b) F = 8.0; p-value = 0.00002; Reject H0

8.21 F = 3.29; p-value = 0.042; Reject H0

8.23 (a) H0 : μaction = μanimation = · · · = μthriller

vs Ha : At least one μi �= μj

(b) Yes
(c) F = 2.88, p-value = 0.012
(d) Reject H0

(e) Short answer not appropriate
8.25 (a) Short answer not appropriate

(b) F = 8.38; p-value = 0.002; Reject H0

(c) Short answer not appropriate
(d) Yes, results from a randomized experiment

8.27 (a) No, standard deviations too different
(b) Do not reject H0

8.29 (a) LD: 36.0% day, 64.0% night;
DM: 55.5% day, 44.5% night

(b) p-value = 0.000; Reject H0; Yes
8.31 Conditions are reasonable.

F = 27.86; p-value ≈ 0.000; Reject H0

Section 8.2 Partial Answers

8.33 Yes, p-value = 0.002
8.35 7.77 to 12.63
8.37 H0 : μA = μC vs Ha : μA �= μC;

t = −0.38; p-value = 0.71; Do not reject H0

8.39
√

MSE = 6.95; df = 20
8.41 2.28 to 19.06
8.43 t = 2.66; p-value = 0.015; Reject H0

8.45 t = −2.59; p-value = 0.017; Reject H0

8.47 DM vs LD: t = 1.60; p-value = 0.122
DM vs LL: t = −2.69; p-value = 0.0126
LD vs LL: t = −4.19; p-value = 0.0003

8.49 (a) Yes, ANOVA p-value ≈ 0;
IE:HC vs SE:SD; IE:HC vs SE:HC

(b) Short answer not appropriate
(c) t = −1.57; p-value = 0.124; Do not reject H0

8.51 LSD = 51.2;
IE:HC, SE:HC, EE:HC, EE:SD < IE:SD, SE:SD

CHAPTER 9

Section 9.1 Partial Answers

9.1 β0 ≈ b0 = 29.3; β1 ≈ b1 = 4.30;
Ŷ = 29.3 + 4.30 · X
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9.3 β0 ≈ b0 = 77.44; β1 ≈ b1 = −15.904;
Ŷ = 77.44 − 15.904 · Score

9.5 b1 = −8.20; H0 : β1 = 0 vs Ha : β1 �= 0;
p-value = 0.000; Reject H0

9.7 b1 = −0.3560; H0 : β1 = 0 vs Ha : β1 �= 0;
p-value = 0.087; Do not Reject H0

9.9 −10.18 to −6.22
9.11 t = 1.98; p-value = 0.029; Reject H0

9.13 t = 2.89; p-value = 0.0048; Reject H0

9.15 (a) Height, Weight; r = 0.619; p-value ≈ 0;
Taller people tend to weigh more

(b) GPA, Weight; r = −0.217; p-value ≈ 0;
Heavier people tend to have lower GPA

(c) Exercise, TV; r = 0.010; p-value = 0.852
9.17 (a) No concerns

(b) ̂GPA = 3.26
(c) b1 = 0.00189
(d) t = 6.99; p-value ≈ 0, Reject H0

(e) R2 = 12.5%
9.19 (a) One person; Below the mean;

140 FB friends
(b) No concerns
(c) r = 0.436; p-value = 0.005; Reject H0

(d) ̂FBfriends = 367 + 82.4 · GMdensity;
367; 449.4; 284.6

(e) p-value = 0.005; Same
(f) R2 = 19.0%

9.21 (a) 0.618
(b) b1 = −0.152
(c) t = −5.02; p-value ≈ 0; Reject H0

(d) −0.213 to −0.091
(e) R2 = 33.1%

9.23 (a) R2

(b) Resp = Prevalence; Expl = Precipitation
(c) r = 0.889

9.25 (a) Countries
(b) Reasonable, perhaps one extreme point
(c) b1 = 0.672
(d) 0.029 to 1.31
(e) p-value = 0.041; reject H0

(f) β1 = 0.674 is in the CI
(g) 8.4%

9.27 (a) Yes
(b) Yes, ρ = −0.85
(c) Data on entire population
(d) β1 = −0.8155
(e) No, not an experiment

Section 9.2 Partial Answers

9.29 F = 21.85; p-value = 0.000;
The model is effective

9.31 F = 2.18; p-value = 0.141;
The model is not effective

9.33 n = 176; R2 = 11.2%

9.35 n = 344; R2 = 0.6%
9.37 F = 6.06; p-value = 0.0185
9.39 F = 259.76; p-value ≈ 0
9.41 F = 7.44; p-value = 0.011;

The model is effective
9.43 (a) ̂GPA = 3.07

(b) n = 345
(c) R2 = 12.5%
(d) F = 48.84; p-value = 0.000;

The model is effective
9.45 (a) 27.848; 21.66

(b) Short answer not appropriate
(c) t = −0.62; p-value = 0.543
(d) F = 0.38; p-value = 0.543
(e) They are the same
(f) R2 = 1.7%

9.47 (a) R2 = 33.1% (b) sε = 0.282 (c) SE = 0.0303
9.49 (a) sε = 0.373 (b) SE = 0.00027
9.51 (a) r = 0.290; t = 2.10; p-value = 0.041

(b) ̂LifeExpectancy = 61.9 + 0.672Health
t = 2.10; p-value = 0.041

(c) F = 4.40; p-value = 0.041
(d) Model is moderately effective

9.53 (a) SSTotal = 59.02
(b) Baths
(c) SSModel = 49.93; R2 = 84.6%
(d) Beds; SSModel = 24.3; R2 = 41.2%
(e) F = 19.66; p-value ≈ 0; Effective

Section 9.3 Partial Answers

9.55 (a) A; B (b) 12
9.57 (a) B; A (b) 5
9.59 (a) 6.535 to 8.417 (b) 2.786 to 12.166
9.61 (a) 122.0 to 142.0 (b) 76.6 to 187.5
9.63 (a) p-value ≈ 0; effective predictor

(b) $571,910
(c) (445.3, 698.6) in $1000s
(d) (−133.2, 1277.0) in $1000s

9.65 (a) 2.98; 3.35
(b) i. 2.92 to 3.04

ii. 2.24 to 3.72
iii. 3.29 to 3.43
iv. 2.62 to 4.10

9.67 (a) −1.55 to 1.88
(b) −15.34 to 0.90
(c) 2.01 to 7.17

CHAPTER 10

Section 10.1 Partial Answers

10.1 X1, X2, X3, and X4; Y
10.3 62.85; −2.85
10.5 −6.820; 0.001
10.7 X1
10.9 X2
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10.11 R2 = 99.8%
10.13 13.85; 6.15
10.15 4.715; 0.053
10.17 X3 and X4
10.19 X4
10.21 Yes, p-value = 0.000
10.23 (a) $570,500

(b) Baths, β̂3 = 200
(c) SizeSqFt, t = 4.55, p-value = 0.000
(d) All three
(e) Short answer not appropriate
(f) Effective; p-value = 0.000
(g) R2 = 46.7%

10.25 (a) Internet, BirthRate; BirthRate
(b) 71.67
(c) Increase

10.27 3
10.29 43.3%
10.31 (a) R2 (b) Very small
10.33 (a) 0.116

(b) 0.904
(c) DayPct
(d) Corticosterone
(e) Effective, p-value = 0.000
(f) R2 = 59.4%

10.35 (a) p-value = 0.000, Age is effective
(b) p-value = 0.769, Age is not needed
(c) Age and Miles are strongly related

10.37 Short answer not appropriate

Section 10.2 Partial Answers

10.39 (b)
10.41 (d)
10.43 Conditions are not all met
10.45 (a) Short answer not appropriate

(b) 181.86 lbs; −61.86
(c) Short answer not appropriate
(d) Conditions appear to be met

10.47 Conditions not well met
10.49 Residuals not normal
10.51 (a) ̂Time = 6.41 + 1.0999 · Distance

(b) ̂Time = 28.39 minutes
(c) Short answer not appropriate
(d) Short answer not appropriate
(e) Short answer not appropriate

10.53 Concerns about normality and linear model
10.55 Conditions are reasonably met

Section 10.3 Partial Answers

10.57 (a) X2
(b) R2 = 15%; Decrease; Small decrease; Large

decrease
(c) 0.322; Decrease; Decrease; Increase

10.59 Answers will vary

10.61 (a) Strongest correlations with BetaPlasma are
Fiber and BetaDiet

(b) Answers may vary
10.63 (a) Yes; p-value ≈ 0

(b) GDP is associated with both electricity use and
life expectancy

(c) No; p-value = 0.229
10.65 (a) b1 and SE both 1000 times larger

(b) Short answer not appropriate
(c) Short answer not appropriate

10.67 Carbon; 0.396 miles; Yes, p-value ≈ 0
10.69 (a) Short answer not appropriate (b) Negative

UNIT D: Essential Synthesis Partial Answers

D.1 χ2 = 12.09; p-value = 0.002; Reject H0

D.3 χ2 = 5.818; p-value = 0.055; Do not Reject H0

D.5 Conditions are met;
F = 2.19; p-value = 0.115; Do not Reject H0

D.7 (a) Positive association; One outlier
(b) t = 7.265; p-value ≈ 0; Reject H0

(c) Confounding variable is size of bill
D.9 (a) R2 = 83.7%

(b) F = 797.87; p-value ≈ 0; Reject H0

UNIT D: Review Exercise Partial Answers

D.11 p-value = 0.0970; Not significant
D.13 p-value = 0.382; Not significant
D.15 p-value = 0.035; Significant
D.17 p-value = 0.0808; Not significant
D.19 ANOVA for difference in means
D.21 Test correlation, slope, or regression ANOVA
D.23 Chi-square goodness-of-fit test
D.25 ANOVA for regression
D.27 Chi-square test for association
D.29 χ2 = 8.52; p-value = 0.0035; Reject H0

D.31 (a) 10,081
(b) 2449.7; 2600.9; 2590.8; 2439.6
(c) χ2 = 236.8
(d) df = 3; p-value ≈ 0
(e) Short answer not appropriate

D.33 (a) Yes (just barely)
(b) χ2 = 14.6; p-value = 0.002; Reject H0

(c) Rainy season in winter
D.35 χ2 = 632.3; p-value ≈ 0; Reject H0

D.37 (a) H0 : μCA = μNY = μNJ = μPA

Ha : Some μi �= μj

(b) Groups df = 3
(c) Error df = 116
(d) Sum of squares for error

D.39 F = 0.69; p-value = 0.512; Do not Reject H0

D.41 (a) F = 5.25 (b) No
D.43 Pad vs together; p-value = 0.54, Do not reject H0

Apart vs together: p-value ≈ 0; Reject H0

Apart vs pad: p-value = 0.0004; Reject H0

D.45 t = 1.66; p-value = 0.098; Do not reject H0
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D.47 (a) Slope is 0.0620
(b) t = 1.24; p-value = 0.215; Do not reject H0

(c) R2 = 0.6%
(d) F = 1.55; p-value = 0.215; Do not reject H0

D.49 Conditions not met; Outlier positive residuals
D.51 (a) 1559.3 to 1667.9 (b) 1241.2 to 1986.0
D.53 (a) Short answer not appropriate

(b) p-value = 0.000; Model is effective
(c) R2 = 75.7%
(d) Abdomen; Neck
(e) Abdomen, Wrist

D.55 (a) t = 1.48; p-value = 0.143; Do not Reject H0

(b) t = 2.28; p-value = 0.023; Reject H0

D.57 Answers will vary

Final Essential Synthesis Partial Answers

E.1 Short answer not appropriate
E.3 (a) around 0.121 to 0.157

(b) 0.121 to 0.157
(c) Short answer not appropriate
(d) p̂ = 0.139; ME = 0.018
(e) Larger sample size
(f) 0.154 to 0.156

E.5 (a) Short answer not appropriate
(b) x = $41,494; M = $29,000; s = $52,248
(c) Short answer not appropriate
(d) xM = $50,971, xF = $32,158, xM − xF = $18,813
(e) Yes; p-value = 0.0002

E.7 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Yes; χ2 = 13.79, p-value = 0.0032

E.9 (a) Short answer not appropriate
(b) Yes; t = 8.48; p-value ≈ 0
(c) ̂Income = −18.3468 + 1.5529 · HoursWk
(d) $43,769
(e) R2 = 14.35%
(f) No; variability not constant

E.11 Test for difference in means
E.13 Interval for a proportion
E.15 Test for a proportion
E.17 Test for correlation
E.19 Test for diff. in proportions or chi-square test for

association
E.21 Interval for a proportion
E.23 Simple linear regression
E.25 Interval for difference in means
E.27 Test for difference in proportions

CHAPTER 11

Section 11.1 Partial Answers

11.1 0.6
11.3 0.6
11.5 0.25
11.7 No
11.9 0.6

11.11 0.625
11.13 No
11.15 0.7
11.17 0.42
11.19 0.3
11.21 0.2
11.23 0.333
11.25 No
11.27 Disjoint
11.29 Independent
11.31 Short answer not appropriate
11.33 (a) P(D) = 0.19; P(L) = 0.23; P(D and L) = 0.17

(b) P(D or L) = 0.25
(c) P(D if L) = 0.74;

compared to 19% for all countries
(d) P(L if D) = 0.90;

compared to 23% for all countries
(e) P(not D) = 0.81
(f) Not disjoint
(g) Not independent

11.35 (a) P(C) = 0.90
(b) P(not D) = 0.69
(c) P(C and D) = 0.28
(d) P(C or D) = 0.93
(e) P(D if C) = 0.31
(f) P(C if D) = 0.92

11.37 (a) P(Yellow) = 0.225
(b) P(not Brown) = 0.90
(c) (Blue or Green) = 0.3875
(d) P(Red1 and Red2) = 0.0189
(e) P(Yellow1 and Blue2) = 0.0570

11.39 (a) 0.07
(b) 0.996
(c) 0.926
(d) 0.074

11.41 (a) 0.8523
(b) 0.2793
(c) 0.0274
(d) 0.1743
(e) 0.0571
(f) 0.6951
(g) 0.1845

11.43 2/3

Section 11.2 Partial Answers

11.45 P(A if I) = 0.5; P(B if I) = 0.5;
P(I and B) = 0.09; P(II) = 0.42;
P(A if II) = 0.55; P(II and I) = 0.231;
P(II and B) = 0.189; P(III) = 0.40;
P(B if III) = 0.33; P(III and B) = 0.132

11.47 P(I and A) = 0; P(I and B) = 0.0722;
P(C if I) = 0.81; P(I and C) = 0.3078;
P(II and A) = 0.3472; P(II) = 0.62;
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P(B if II) = 0.44; P(B and II) = 0.2728;
P(C if II) = 0

11.49 P(A and S) = 0.06
11.51 P(S if B) = 0.8
11.53 P(S) = 0.38
11.55 P(B if R) = 0.129
11.57 P(F if R) = 0.183
11.59 P(Curve if Strike) = 0.212
11.61 P(Spam if Text) = 0.737
11.63 P(Spam if Free and not Text) = 0.534

Section 11.3 Partial Answers

11.65 Discrete
11.67 Not a random variable
11.69 Short answer not appropriate
11.71 0.6
11.73 0.6
11.75 0.6
11.77 Not a probability function
11.79 (a) μ = 2.3 (b) σ = 0.781
11.81 (a) μ = 27 (b) σ = 10.05
11.83 (a) Short answer not appropriate

(b) 0.580
(c) 0.111
(d) 0.783

11.85 (a) μ = 2.635
(b) σ = 1.425

11.87 (a) P(X = 2) = 0.20
(b) P(X > 4) = 0.15
(c) μ = 2.7 months
(d) σ = 1.52 months

11.89 (a) 0.60 (b) 0.30
11.91 (a) p(0) = 0.014, p(1) = 0.210, p(2) = 0.776

(b) μ = 1.762
11.93 (a) 3/6, 2/6, 1/6

(b) μ = $28.62
(c) σ = $5.73

11.95 (a) P(X = 3) = 0.116
(b) P(X > 3) = 0.579

Section 11.4 Partial Answers

11.97 Not binomial
11.99 Binomial

11.101 24
11.103 40,320
11.105 56
11.107 45
11.109 0.324
11.111 0.215
11.113 μ = 2.4; σ = 1.2
11.115 μ = 15; σ = 2.74
11.117 p(0) = 0.133; p(1) = 0.382;

p(2) = 0.367; p(3) = 0.118
11.119 0.058
11.121 (a) 0.1272 (b) 0.0122
11.123 μ = 1; σ = 0.866
11.125 μ = 1.3; σ = 1.063
11.127 (a) 0.7551

(b) 0.6469
(c) μ = 7.05, σ = 0.916
(d) μ = 70.5, σ = 2.90

11.129 μ = p, σ =
√

p(1−p)

n
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additive rule in probability, 646
alternative hypothesis, 222
analysis of variance, 499

finding the differences, 512
for multiple regression, 566
for regression, 542
inference for means after, 514

analysis of variance for means
summary, 597

ANOVA, 499
Fisher’s LSD, 520
for multiple regression, 566
for regression, 542
inference for means after, 514

association, 29
causal, 29
linear, 105
negative, 105
positive, 105

bar chart, 48
segmented, 52
side-by-side, 53

Bayes’ rule, 657
bell-shaped distribution, 63, 64
Benford’s law, 475
bias, 22

sampling, 18
wording, 23

binomial
coefficient, 672
probability function, 672

binomial random variable, 670
computing probabilities, 672
conditions, 670
mean, 674
standard deviation, 674

blinding in an experiment, 39
bootstrap distribution, 195

center, 195
if plot is not well behaved, 213

bootstrap sample, 194
bootstrap statistic, 194
boxplot, 91

side-by-side, 94

cases, 5
categorical variable, 5
causally associated, 29
central limit theorem, 336

sample means, 373
sample proportions, 355

chi-square statistic, 465
chi-square test

for association, 480
goodness-of-fit, 468

chi-square tests
summary, 596

coefficient of determination, 530, 543
collecting data

summary, 135
comparative plots, 53, 94
comparative summary statistics, 96
complement rule in probability, 645
conditional probability, 647
confidence interval, 180

based on normal distribution, 338
connection to hypothesis test, 283
effect of confidence level on

width, 206
for a difference in means, 416
for a difference in proportions, 400
for a mean, 380
for a proportion, 359
interpreting, 185
misinterpretations, 187
paired difference in means, 430
slope for regression, 527
summary, 297
summary of formulas, 437, 685
using bootstrap percentiles, 207
using bootstrap standard error,

199
using margin of error, 180
using standard error, 181

confidence level, 180
confounding variable, 32
confounding variables

accounting for, 587
correlation, 107

inference, 529
notation, 107
population, 107
properties, 107
t-test for, 529

degrees of freedom
difference in means, 412
single mean, 374

density curve, 324
describing data

summary, 135
determining sample size

mean, 385

proportion, 361
df, 374
difference in means, 96

confidence interval, 416
distribution, 412
hypothesis test, 421
standard error, 411

difference in proportions, 52
confidence interval, 400
distribution, 396
hypothesis test, 406
standard error, 396

disjoint events, 646
distribution, 60

bell-shaped, 63
bootstrap, 195
F, 498
normal, 326
randomization, 237
sampling, 167
skewed, 63
symmetric, 63
t, 373

dotplot, 60
double-blind experiment, 39

empirical rule, 336
equally likely outcomes, 642
estimate

interval, 180
point, 163

experiment, 34
importance of blinding, 39
matched pairs, 38
randomized, 35
randomized comparative, 38

explanatory variable, 11, 121
extrapolating, 126

F-distribution, 498
factorial, 672
first quartile, 81
Fisher’s LSD, 520
five number summary, 81
frequency table, 47

goodness-of-fit test, 468
graphs

comparative, 53, 94
side-by-side, 94

histogram, 62
hypothesis test, 220, 221
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hypothesis test (continued)
significance level, 257
alternative hypothesis, 222
analogy to law, 257
based on normal distribution, 341
based on randomization

distribution, 237
connection to confidence interval,

283
for a difference in means, 421
for a difference in proportions, 406
for a mean, 390
for a proportion, 366
for correlation, 529
formal decision, 252, 254
informal decision, 258
null hypothesis, 222
one-tailed vs two-tailed test, 243
p-value, 236
paired difference in means, 430
significance level, 254
slope for regression, 527
statistical significance, 226
summary of formulas, 437, 685
test statistic, 341
Type I and Type II errors, 256

independent events, 648
inference

statistical, 17
interquartile range, 82
interval estimate, 180
interval notation, 180
IQR, 82

least squares line, 124, 524
line of best fit, 124
linear association, 105

margin of error, 180
matched pairs experiment, 38
matched pairs inference, 430
mean, 64

central limit theorem, 373
degrees of freedom, 374
formula for standard error, 371
notation, 65

median, 65
multiple regression

ANOVA, 566
categorical variables, 584
choosing a model, 581
confounding variables, 587
model, 560
testing individual terms, 562

multiple tests, 289, 517
multiplicative rule in probability, 647

negative association, 105
normal distribution, 326

common confidence levels, 340
compute p-value, 340
finding percentiles, 329
finding probabilities, 328
graph, 327
normal density curve, 326
standard normal, 330

null hypothesis, 222

observational study, 34
one-tail test, 243
outlier, 62

detection, 90
scatterplot, 105

p-value, 236
from a normal distribution, 340
from a randomization

distribution, 237
from a t-distribution, 390
one-tailed vs two-tailed test, 245

paired difference in means, 430
confidence interval, 430
hypothesis test, 430

parameter, 162
percentile, 80
pie chart, 48
placebo, 39
placebo effect, 39
point estimate, 163
pooled proportion, 404
population, 16
positive association, 105
practical vs statistical

significance, 287
prediction equation, 121
probability, 642

Bayes’ rule, 657
complement rule, 645
conditional, 647
disjoint events, 646
event, 642
independent events, 648
multiplicative rule, 647
total probability rule, 655
tree diagrams, 656

probability function, 662
probability rules

summary, 650
problem of multiple tests, 289,

517
proportion, 47

central limit theorem, 355
difference in, 52
formula for standard error, 352
notation, 48

quantitative variable, 5
quartiles, 81

R-squared, 530, 543
random variable, 661

binomial, 670
discrete vs continuous, 662
expected value, 664
mean, 664
standard deviation, 665

randomization distribution, 237
center, 267

randomization sample, 266
summary, 276

randomization test
estimating p-value, 245
generating randomization

samples, 266
randomization distribution, 237

randomized comparative
experiment, 38

randomized experiment, 35
range, 82
regression, 120

ANOVA, 542
checking conditions, 572
checking normality of residuals,

574
coefficient of determination, 543
confidence interval for mean

response, 551
prediction interval, 551
R-squared, 543
residuals vs fits plot, 573
standard deviation of the error,

544
standard error of slope, 545

regression line, 120, 124, 524
extrapolating too far, 126
interpreting slope, 125
making predictions, 121
notation for population, 126

regression slope
inference, 527

regression tests
summary, 598

relative frequency, 47
relative frequency table, 47
residual, 122
resistant statistic, 67
response variable, 11, 121

sample, 16
bias, 22
simple random, 19

sample size
effect on sampling distribution,

170
effect on standard error, 171

sampling bias, 18
sampling distribution, 167

center, 168
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sampling distribution (continued)
effect of sample size, 170
importance of random sampling,

171
shape, 168

scatterplot, 104
segmented bar chart, 52
side-by-side boxplots, 94
significance

practical vs statistical, 287
statistical, 226, 254

significance level, 254, 257
on a randomization distribution,

255
simple linear model, 524

conditions, 531
simple random sample, 19
skewed distribution, 63, 64
soup analogy, 20
standard deviation, 76

empirical rule, 336

the 95% rule, 77
standard error, 168

difference in means, 411
difference in proportions, 396
effect of sample size, 171
formula for sample means, 371
formula for sample proportions,

352
from a bootstrap distribution, 198
summary of formulas, 437, 685

standard normal distribution, 330
statistic, 162
statistical inference, 17, 162
statistical significance, 226, 254
statistical test, 221
summary statistics, 46

comparative, 96
symmetric distribution, 63, 64

t-distribution, 373
t-test, 389

test statistic, 341
for a difference in means, 421
for a difference in proportions, 406
for a mean, 390
for a proportion, 366

the 95% rule, 77
third quartile, 81
tree diagrams, 656
two-tail test, 243
two-way table, 49
Type I and Type II errors, 256

units, 5

variable, 5
categorical, 5
explanatory, 11
quantitative, 5
response, 11

z-score, 79
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