Applied Structural Mechanics




Springer-Verlag Berlin Heidelberg GmbH



H. Eschenauer, N. Olhoff, W. Schnell

Applied Structural
Mechanics

Fundamentals of Elasticity, Load-Bearing Structures,
Structural Optimization

Including Exercises

With 179 Figures

) Springer



Prof. Dr.-Ing. H. Eschenauer

University of Siegen

Research Center for Multidisciplinary Analyses
and Applied Structural Optimization FOMAAS
Institute of Mechanics and Control Engineering
D - 57068 Siegen / Germany

Prof. Dr. techn. N. Olhoff

Aalborg University
Institute of Mechanical Engineering
DK - 9220 Aalborg East / Denmark

Prof. Dr. Dr.-Ing. E. h. W. Schnell

Technical University of Darmstadt
Institute of Mechanics
D - 64289 Darmstadt / Germany

ISBN 978-3-540-61232-2

Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Eschenauer, Hans A.: Applied structural mechanics: fundamentals of elasticity, load bearing
structures, structural optimization; including exercises / H. Eschenauer; N. Olhoff; W. Schnell. -
Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris;
Santa Clara; Singapur; Tokyo: Springer, 1997

ISBN 978-3-540-61232-2 ISBN 978-3-642-59205-8 (eBook)

DOI 10.1007/978-3-642-59205-8
NE: Olhoff, Niels; Schnell, Walter

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September
9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Originally published by Springer-Verlag Berlin Heidelberg New York in 1997

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and
application contained in this book. In every individual case the user must check such information by
consulting the relevant literature.

Typesetting: Camera-ready by editors
SPIN:10508157 61/3020-54 3 2 1 0 - Printed on acid -free paper



Preface

The present English-language work is a compilation of the two-volume 3rd
edition (in German ) of ” Elastizitatstheorie ” (1993, 1994 ) published by BI-
Wissenschaftsverlag Mannheim, Leipzig, Wien, Zirich. Since the first edi-
tion of this book had appeared in 1983, the fundamental concept of this
book has remained unaltered, in spite of an increasing amount of structu-
ral-analytical computation software (eg Finite Element Methods). The
importance of computer—tools, may this be supercomputers, parallel compu-
ters, or workstations, is beyond discussion, however, the responsible engineer
in research, development, computation, design, and planning should always
be aware of the fact that a sensible use of computer—systems requires a re-
alistic modeling and simulation and hence respective knowledge in solid
mechanics, thermo— and fluiddynamics, materials science, and in further
disciplines of engineering and natural sciences. Thus, this book provides the
basic tools from the field of the theory of elasticity for students of natural
sciences and engineering; besides that, it aims at assisting the engineer in
an industrial environment in solving current problems and thus avoid a
mere black-boz thinking. In view of the growing importance of product lia-
bility as well as the fulfilment of extreme specification requirements for
new products, this practice-relevant approach plays a decisive role. Apart
from a firm handling of software systems, the engineer must be capable of
both the generation of realistic computational models and of evaluating the
computed results.

Following an outline of the fundamentals of the theory of elasticity and the
most important load-bearing structures, the present work illustrates the
transition and interrelation between Structural Mechanics and Structural
Optimization. As mentioned before, a realistic modeling is the basis of
every structural analysis and optimization computation, and therefore nu-
merous exercises are attached to each main chapter.

By using tensor notation, it is attempted to offer a more general insight into
the theory of elasticity in order to move away from a mere Cartesian view.
An ” arbitrarily shaped” solid described by generally valid equations shall
be made the object of our investigations ( Main Chapter A ). Both the condi-
tions of equilibrium and the strain—displacement relations are presented for
large deformations (nonlinear theory); this knowledge is of vital import-
ance for the treatment of stability problems of thin-walled load-bearing



VI Preface

structures. When deriving the augmented equations as well as the corre-
sponding solution procedures, we limit our considerations to the most essen-
tial aspects. All solution methods are based on the HOOKEAN concept of
the linear-elastic solid. As examples of load-bearing structures, disks,
plates and shells will be treated in more detail (Main Chapters B,C). Fi-
nally, an introduction into Structural Optimization is given in order to illus-

trate ways of determining optimal layouts of load-bearing structures (Main
Chapter D).

In the scope of this book, the most important types of exercises arising
from each Main Chapter are introduced, and their solutions are presented
as comprehensively as necessary. However, it is highly recommended for the
reader to test his own knowledge by solving the tasks independently. When
treating structural optimization problems a large numerical effort generally
occurs that cannot be handled without improved programming skills. Thus,
at corresponding tasks, we restrict ourselves to giving hints and we have
consciously avoided presenting details of the programming.

The authors would like to express their gratitude to all those who have as-
sisted in preparing the camera-ready pages, in translating and proofreading
as well as in drawing the figures. At this point, we would like to thank Mrs
A. Wachter-Freudenberg, Mr K. Gesenhues, and Mr M. Wengenroth who
fulfilled these tasks with perseverance and great patience. We further ac-
knowledge the help of Mrs Dipl.-Ing. P. Neuser and Mr Dipl.-Ing. M. Seibel
in proofreading.

Finally, we would also like to express our thanks to the publisher, and in
particular to Mrs E. Raufelder, for excellent cooperation.

Hans Eschenauer Niels Olhoff Walter Schnell
Siegen/ GERMANY Aalborg/ DENMARK Darmstadt / GERMANY

April 1996
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List of symbols

Note: The following list is restricted to the most important subscripts, notations
and letters in the book.

Scalar quantities are printed in roman letters, vectors in boldface, tensors
or matrices in capital letters and in boldface.

1. Indices and notations

The classification is limited to the most important indices and notations. Further
terms are given in the text and in corresponding literature, respectively.

i,j,k,... latin indices valid for 1,2,3

a,B,u,... greek indices valid for 1,2

k Index for a layer of a laminate

X; subscripts for covariant components

xi superscripts for contravariant components
(ii) indices in brackets denote no summation

, prime after index denotes rotated coordinate system e.g. Oy’

comma denotes partial differentiation with respect to the
quantity appearing after the comma, e.g. u, 4

superscript prime before symbol denotes deviator, e.g. '1:;
vertical line after a symbol denotes covariant derivative rela-

ting to curvilinear coordinates £, e.g. vil;
bar over a symbol denotes virtual value, e.g. Fi

roof over a symbol denotes the reference to a deformed body
~ tilde denotes approximation

asterisk right hand of a small letter denotes physical compo-
nent of a tensor, eg. a¥

* asterisk right hand of a letter denotes extremal point

* asterisk right hand of a capital letter denotes the comple-
mentary of work or energy, eg. U*

v nabla—operator

04 differential operator

ANB intersection of A and B

ACB A is a subset of B

Y for all



XIV List of symbols

2. Latin letters
a determinant of a surface tensor

radius of a spherical or a circular cylindrical shell

a, ,a co— and contravariant base vector of a surface in arbitrary
coordinates
a, normal unit vector to a surface
35 a? co— and contravariant components of a surface tensor
a,b semiaxis of an ellipse
b determinant of the covariant curvature tensor
b af 1 baﬁ , b; co—, contravariant and mixed curvature tensor
e volume dilatation
€ orthonormalized base ( Cartesian coordinates )
€ijk 1 ek permutation symbol
f volume force vector
f,f objective function, — vector
g weight per area unit
g determinant of the metric tensor
g8 inequality constraint function, — vector
g8 co— and contravariant base (arbitrary coordinates )
8 ,gij co— and contravariant metric components, metric tensor
h height of a boiler
h;,h equality constraint function, — vector
he, by, by core height, distance of the k. layer from the mid-plane
k buckling value
k = t? 3 shell parameter
12a
n normal unit vector
P parabola parameter
P vector of external loads ; vector of control polygon points
P; pseudo-load matrix
p[f(x )] preference function
%, p circumferential and normal loads
Py1Pg,P external loads of a cylindrical shell
r distance perpendicular to axis of rotation
r radius of curvature
T, distance to axis of rotation along the curvature radius
r load vector
r position vector to an arbitrary point of the mid-surface or a

body
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1 Introduction

The classical fundamentals of modern Structural Mechanics have been
founded by two scientists. In his work ”Discorsi”, Galileo GALILEI (1564 -
1642) carried out the first systematic investigations into the fracture pro-
cess of brittle solids. Besides that, he also described the influence of the
shape of a solid (hollow solids, bones, blades of grass) on its stiffness, and
thus successfully treated the problem of the Theory of Solids with Uni-
form Strength. One century later, Robert HOOKE (1635 - 1703) stated the
fundamental law of the linear theory of elasticity by claiming that strain
(alteration of length) and stress (load) are proportional (”ut tensio sic
vis”). On the basis of this material law for the Theory of Elasticity,
Edme MARIOTTE (1620 - 1684), Gottfried Wilhelm von LEIBNIZ (1646 —
1716), Jakob BERNOULLI (1654 - 1705), Leonard EULER (1707 - 1783),
Charles Augustin COULOMB (1736 — 1806) and others treated special pro-
blems of bending of beams.

Until the beginning of the 19th century, the Theory of Beams had almost
exclusively been the focus of the Theory of Elasticity and Strength.
Claude - Louis - Marie - Henri NAVIER (1785 — 1836) developed the general
equations of elasticity from the equilibrium of a solid element, and thus
augmented the beam theory. Finally, he also set up a torsion theory of the
beam. Hence, he may quite justly be seen as the actual founder of the
Theory of Elasticity. NAVIER s disciple Barré de DE SAINT-VENANT
(1797 - 1886) augmented the work of his teacher by contributing new the-
ories on the impact of elastic solids. His contemporary, the outstanding
scientist and engineer Gustav Robert KIRCHHOFF (1824 - 1887), derived
with scientific strictness the plate theory named after him. The first math-
ematical treatments of shell structures were contributed by mathematicians
and experts in the theory of elasticity as Carl Friedrich GAUSS (1777 -
1855), CASTIGLIANO (1847 - 1884), MOHR (1835 — 1918), Augustin Louis
Baron CAUCHY (1789 - 1857), LAME (1795 - 1870), BOUSSINESQ (1842 -
1929), and, as mentioned above, NAVIER, DE SAINT-VENANT and
KIRCHHOFF. A complete bending theory of shells was derived systemati-
cally by Augustus Edward Hough LOVE (1863 — 1940) on the basis of a
publication by ARON in 1847.

During the 19th century, numerous works have been published in the field
of Structural Mechanics which cannot be described in detail here. However,
based on the above-said one might assume that this discipline is an old
one, the problems of which have largely been solved. As a matter of fact,

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997



2 1 Introduction

this surmise may have been true until recently. However, the continuous de-
velopment of the sciences and the technology, especially during recent
years, calls for an increased exactness of computations, in particular in the
construction of complex systems and plants and in lightweight construc-
tions, respectively. Owing to the introduction of duraluminium and other
advanced materials like composites, ceramics, etc. into the lightweight con-
structions, the number of publications in the field of shell and lightweight
structures has witnessed a substantial increase. In [C.6] it is shown that the
amount of publications has doubled per each decade since 1900. Proceeding
from about 100 papers in the year 1950, one counted about 1000 publications
in 1982, i.e. three per day. Thus, the references to this book can only com-
prise a very limited selection of textbooks and publications.

The still continuing importance of Structural Mechanics also stems from
the fact that the relevance of structures that are optimal with respect to
bearing capacity, reliability, accuracy, costs, etc., is becoming much more
apparent than in former times. Especially in the field of structural optim:i-
zation, considerable progress has been achieved during recent years and
this has prompted increased research efforts in underlying branches of solid
mechanics like fracture and damage mechanics, viscoelasticity theory, pla-
stomechanics, mechanics of advanced materials, contact mechanics, and sta-
bility theory. Here, the application of computers and of increasingly refined
algorithms allows treatment of more and more complex systems. In this

determination of
an initial design

D intuitive modification
" of structural parameters
structural
mathematical structural analysis
optimization procedures l
MSOP A

A

Specifications
fullfilled?

objectives
met?

final design

Fig. 1.1: Integration of mathematical structural optimization procedures
(MSOP) into the design process



1 Introduction 3

context, one should mention the large amount of novel finite computation
procedures (eg Finite Element Methods [A.l, C.25]) as well as the Algo-
rithms of Mathematical Programming applied in structural mechanics. One
can thus justly claim that all of the above-named more novel fields and
their solution approaches are all based on the fundamentals of elasticity
without which the currently occurring problems cannot be solved and evalu-
ated. The field of Structural Optimization increasingly moves away from
the stage of a mere trial-and-error procedure to enter into the very des-
ign process using mathematical algorithms (Fig. 11). This development
roots back to the 17th century, and is closely connected with the name
Gottfried Wilhelm LEIBNIZ (1646 — 1716) as one of the last universal scho-
lars of modern times. His works in the fields of mathematics and natural
sciences may be seen as the foundation of analytical working, i.e. of a cohe-
rent thinking that is a decisive assumption of structural optimization.
LEIBNIZ provided the basis of the differential calculus, and he also inven-
ted the first mechanical computer. Without his achievements, modern opti-
mization calculations would yet not have been possible on a large scale.

Here, one must also name one of the greatest scientists Leonard EULER
(1707 - 1783) who extended the determination of extremal values of given
functions to practical examples. The search for the extremal value of a
function soon led to the development of the variational calculus where
entire functions can become extremal. Hence, Jakob BERNOULLI (1655 —
1705) determined the curve of the shortest falling time (Brachistochrone),
and Issac NEWTON (1643 - 1727) found the solid body of revolution with
the smallest resistance. Jean Louis LAGRANGE (1736 - 1813) and Sir Wil-
liam Rowan HAMILTON (1805 — 1865) set up the principle of the smallest
action and formulated an integral principle, and thus contributed to the
perfection of the variational calculus that still is the basis of several types
of optimization problems. Many publications on engineering applications
over the previous decades utilize the variational principle. LAGRANGE,
CLAUSEN and DE SAINT -VENANT had already treated the optimal shape
of one-dimensional beam structures subjected to different load conditions.
Typical examples here are the buckling of a column, as well as the canti-
lever beam for which optimal cross-sections could be found using the vari-
ational principle. This requires the derivation of optimality criteria as ne-
cessary conditions; these are EULER s equations in the case of unconstrai-
ned problems. If constraints are considered, as, e.g., in solution of an iso-
perimetrical problem, LAGRANGE ‘s multiplier method is used.



A Fundamentals of elasticity

Al Definitions — Formulas — Concepts

2 Tensor algebra and analysis
2.1 Terminology — definitions

The use of the index notation is advantageous because it normally makes it
possible to write in a very compact form mathematical formulas or systems
of equations for physical or geometric quantities, which would otherwise
contain a large number of terms.

Coordinate transformations constitute the basis for the general concept of
tensors which applies to arbitrary coordinate systems. The reason for the
use of tensors lies in the remarkable fact that the validity of a tensor equa-
tion is independent of the particular choice of coordinate system. In the fol-
lowing we confine our considerations to quantities of the three—dimen-
sional EUCLIDEAN space. We introduce the following definitions:

A scalar characterized by ome component (eg. temperature, volume) is
called a tensor of zeroth order.

A vector characterized by three components ( eg force, velocity ) is called a
tensor of first order.

The dyadic product of two vectors, called a dyad (e.g. strain, stress), is a
tensor of second order characterized by nine components.

Tensors of higher order appear as well.

Notation of tensors of first order:

1
2
3

a) Symbolic in matrix notation: a =

[ S

b) Analytical: a=ace tae +ae,
or a-—ale1+ae2+ae3 Zae

with e,, e;, e, as base vectors in a Cartesian coordinate system. The sub-
scripts are mdlces and not exponents. In index notation the expression a'
(ora;)(i=1,2, 3) denotes the total vector ( see Fig. 2.1).

Notation of tensors of second order:

a) Symbolic in matrix notation: T =] ta1 t22 T2

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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Fig. 2.1: Definition of the base vectors

b) Analytical: T=t, ee + 17 e’ + ..+ tas ee’

- 1
or T= ZZtije e,
1
where e'e’ is the dyadic product of the base vectors. In index notation the
expression t;; denotes the total tensor.

2.2 Index rules and summation convention

(1) Index rule

If a letter index appears one and only one time in each term of
an expression, the expression is valid for each of the actual va-
lues, the letter index can take. Such an index is called a free
indez.

(1) EINSTEIN ’s summation convention

Whenever a letter index appears twice within the same term, as
subscript and/or as superscript, a summation is implied over
the range of this index, ie, from 1 to 3 in the three - dimen-
sional space (Latin indices used ), and from 1 to 2 in the two -
dimensional space ( Greek indices used ). Such an index is called
dummy.

(1) Mazimum rule

Any letter index may never be applied more than twice in each
term.

Ezamples of (i):
a' +2b' =0,
a +2b =0 <=> a®+2b’ =0,
a’+2b°=0.
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_ _ 9T
tl_T’l_aX17
t,=T,, <=>
B B8 OT
t, =T, ==
2 2 ()Xz

Note: Comma implies partial differentiation with respect to the coordi-
nate(s) of succeeding indices. The rules (i) — (i) apply for these in-
dices as well.

Ezamples of (i) :

i 1 2 3 . .
a =ae=2ae tae+a e, three - dimensional space ,
o 1 2 . .
a =ae =ae +ae, two — dimensional space (surface),
_ ig_ 11 12 3 3
T—tijee—tuee +t,ee + ...+t e e,

i g 2 3
to=t=t ottty
1 of 2 of 3
X + —dx dx” .
o x2 +r)X3

i f
df = f,iXm —_—a—)zi‘d

Attention: As it is of no importance which notation a doubly appearing
index possesses, this so - called dummy index can be arbitrarily renamed:

e —de - afe —
a = ei—aej—aek—....

Ezception: No summation over paranthesized indices, i.e.

a¥ =a, ]/g(ii) —af =a, g11 etc.
Ezamples of (ii):
Following expressions are meaningless :

cit: =0 , bicosd =1.

The following expressions are also meaningless, as the free indices have to
be the same in each term:

= B%

i i
t+b =0 , A .

a
ﬁ:a
2.3 Tensor of first order (vector)

Base vectors (Fig. 2.2)

e; = orthogonal base with the unit vectors e, e

i 21e3’

g base in arbitrary coordinates with the base vectors g, , g,, &;-

Measure or metric components
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x|

Fig. 2.2: Orthonormalized and
arbitrary base

Metric tensor

8 812 B3
(g;)=| = 82 &3 | — Dueto(2la) the metric (2.1b)
tensor is symmetrical.
833
Determinant of the metric tensor  det(g) = |g| = lgij l . (2.1c)

Scalar product x - y of the vectors x = X g, andy = yj 8; (Fig. 2.2)
x-y=g;xy . (2.2a)

Length of a vector x

d:{x‘zygijxixj. (2.2b)

Angle ¢ between vectors x and y

Xy _ gijxiyj
IXI. ‘YI /gmnymyn /;pqxpxq

Covariant and contravariant base

An arbitrary base g;(i = 1,2,3) is given in the three-dimensional
EUCLIDEAN space. We are searching a second base g’ so that the following
relation exists between the base vectors:

(2.2c)

cosp =

g g =6, (2.3a)

where KRONECKER's delta is defined by

. 1 for i=;
63: or 1=1J, (23b)
0 for i#j.
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If the base g; is known, the base g/ can be determined by means of the nine
equations (2.a). The base g; is called the covariant base and g’ the contra-
variant base.

Covariant metric components

8 =8 8 =§;- (2.4a)
Contravariant metric components

gl=¢ g'=¢". (24b)

Rule of exchanging indices

g€ =¢g, (250)
5 = £ gy (2.5c)

Other determination of the contravariant base vectors

g = 82 X 83 o = g X 8 g = g1 % 8 (256)
(81:82,8;] (81,82:8;] (81:82:8;5]

where [gl,gz,g3] is the scalar triple product of the three covariant base
vectors g, g2, 83

Transformation behaviour

A fundamental ( defining) property of a tensor is its behaviour in connec-
tion with a coordinate transformation. In order to investigate this transfor-
mation behaviour, the following task shall be considered:

An initial base g; or g! (i =1,2,3) is given together with a "new” base g,
or gi' (i' = 1,2,3) generated by an arbitrary linear transformation with
prescribed transformation coefficients 3}, . Additionally, a vector be gjyen in
the initial base by its components v' or v;. Its components v;. or v!" shall
now be determined in the "new” base.

Rules of transformation
Transformations of bases

g =Pg ., & =B g, (27a)
i’ k k i
g = ,8;( g » g = IBi' gl . (2.1)
The following relations are valid

K

g8 =6, , BB =6r. (28)
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Transformations of tensors of first order
i iy
v =Bpv; , Vv =B v, (29a)
_ i _pi Y
vy = ,Bj v, , v =ppv . (2.95)
Physical components of tensors of first order (vector)

a*¥ =a' V& of a¥ = a; 1/g(“) . (2.10)
2.4 Tensors of second and higher order

Definitions:
Two vectors x and y are given in the EUCLIDEAN space. With that we are
forming the new product

T=xy. (2.11)

The notation without dot or cross shall indicate that it is neither a scalar
product nor a vector product.

Depending on whether the covariant base vectors g, or the contravariant
base vectors g' are applied here, one obtains four kinds of descriptions for a
tensor of order two:

T= tijgigj = tij gigj = t‘,j gigj = tij gi gj . (212)
According to the position of the indices one denotes
ti; as covariant components ,
as contravariant components ,
¢ as mixed contravariant-covariant components ,

t? as mixed covariant-contravariant components of the tensor T .

Formal generalization of tensors

T = ¢ tensor of zeroth order (scalar) 3° = 1base element,
T = tigi tensor of first order ( vector) 3' = 3base elements,
T = tijgi g; tensor of second order (dyad ) 3> = 9base elements,
(3 _ ik . 3

=t 8,88 tensor of third order 3° = 27 base elements,
(4 _ ikl 4 |

=t g;8; 88 tensor of fourth order 3" = 8lbase elements.
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Transformation rules
For a transformation of a vector base g; into a new vector base g; equa-

tions (2.7a) and (2.7b) are used:
g =0 gy and g, = B g

The tensor T can be given either in the old base g; or in the new base g;,

T =" g 8 = £ 88 (2.18)
The transformation formulas read as follows

9 =6, B or £ =l g (214)
From T = ts gi gj = by gk'l’ (2.15)
follows  t; =B Bty or tu, =Bl Bty - (2.16)

In a similar way one obtains the transformation formulas of the mixed
components of the tensor T.

Note: It is worth mentioning that tensors are actually defined by the rules
by which their components transform due to coordinate transforma-
tions. Thus, any quantity T with 3% = 9 components is then and only
then a second order tensor if its components transform according to
(2.14) or (2.16) in connection with an arbitrary coordinate transfor-
mation.

Physical components of a tensor of second order
The physical components for orthogonal coordinate systems can be deter-
mined as follows (for non - orthogonal coordinate systems see [ A.8]):

W=t e [T
t*ij = tij 1/?(_“—)— 1/g(_JJ )
™ =t Yg@ /g .
Symmetrical and antisymmetrical tensors of second order

Any tensor of second order can always be presented as a sum of a symme-
trical and an antisymmetrical ( or skew — symmetrical ) tensor:

(2.17)

g = Qi Qi (2184)
with £ = %(tij + ity (2.18b)

P =5 (1= ) (2.18¢)
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Permutation tensor or €-tensor
As permutation tensor a tensor of third order is defined

ijk 1 ijk
Sk = V8 & e =—=¢" (2.19)

/&

with the permutation symbol

. +1 for {i,j,k} cyclic ,
ek = el = { -1 » {i,j,k} anticyclic, (2.20a)
0 » {i,j,k} acyclic

Permutation symbol in two dimensions

e, =0 e, =+1
11 S b )
(2.20b)
e =-1 , e, =0.
Vector product as application of the g—tensor
xxyzsklmxkylgm. (2.21)

Eigenvalues and eigenvectors of a symmetrical tensor
- Principal azis transformation

Lemma: | For any symmetrical, real valued, three—column matrix T there
always exist three mutually orthogonal principal directions
(eigenvectors) a and three corresponding real eigenvalues A
(which not necessarily have to be different from each other ).
These eigenvectors and eigenvalues are governed by the follow-
ing algebraic eigenvalue problem, where I is the unit tensor:

(T-AI)a=0 or (tf—)\ﬁf)ajZO. (2.22a)

Determination of the eigenvalues:

1 1 1
b= Xt ty
det(ti - A6y =| & t2-x t5 |=o0. (2.22b)
3 3 3
t) ty oty - A

Characteristic equation of (2.22b):
3 2
Mo =0. (2.22¢)

The roots A = X;, Ay and Mp of this cubic equation are invariant with
respect to transformations of coordinates. Substituting sequentially these
eigenvalues into (2.22a) and solving for a, we obtain aj, aj; and apy.
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The quantities I, I,, I3 in (2.22c) are invariants defined by [A.S}:

I =t, (2.23a)
1 . . . .

L =5 (4t - t;t), (2.23b)

I, = det(t}). (2.25c)

2.5 Curvilinear coordinates

Base vectors — metric tensor

In the three - dimensional space a vector r can be presented in Cartesian
coordinates x' and in curvilinear coordinates indicated by ¢'(i = 1,2,3)
(Figs. 2.3 and 24).

3 g

£)

2
1
g 5
Fig. 2.3: Position vector in Fig. 2.4: Curvilinear coordinates
orthonormalized base and base vectors
Position vector r of a point P
r=r(x) | r=r(¢). (2.24)
Base vectors
or or
4T i | 8 = agi:r,i' (2.25)
Relation between base g, (¢ ) and orthonormalized base e
0 xi
gk = a{kei. (226)
Length of a line element
ds’ = dr - dr —— First fundamental form of a surface. (2.27a)

Indicating the derivative with respect to the curve parameter t by a dot, the
length of the curve between t; and t, is given by :

4
s = I g b et (2.275)

to
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Volume element

dv = /g d¢'de®ae’ . (2.28)
Partial base derivatives - CHRISTOFFEL symbols

B, = I‘lfl g (2.29a)
gi,k = -Fil g . (2.29)
CHRISTOFFEL symbols of the first kind

Ly = é—(gjk,i t 8,y gij,k) . (2.30)
CHRISTOFFEL symbols of the second kind

™ =gm"r.

u - (2.31)

Rule: | The CHRISTOFFEL symbols can be expressed alone by the
metric tensor and its derivatives.

Note: The CHRISTOFFEL symbols do not have tensor character.

For the CHRISTOFFEL symbols of the first kind (2.30) the following rela-
tions hold:

1) T ik = ik interchangeability (2.32a)
of the first two indices ,
5}
2) r_+I_ . = ir‘:f interchangeability (2.2b)
o¢ of the last two indices .

For the CHRISTOFFEL symbols of the second kind, the following relations
are derived from (2.51) using (2.80):

1) I‘]i; = I’}‘i interchangeability of subscripts ( symmetry ), (2.82c)
2) oo L ik 9 Bix _c)(lnw/—g—) (2.82d)
5728 g T ad '

Covariant derivatives
Tensor of first order

a; = al[jgi (2.33)
with ai|j = a,i'j + Fjik . (2.8a)
By anology ai|j =2 ;- Fi];. a, . (2.84b)
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Tensor of second order
aij‘k =ay ) - ry i~ 1";;: a, (2.85a)
aij|k = aij;k + F]i(m a™ + Fljtmaim . (2.85b)
Gradient of a scalar funktion &
v=grad¢=V45=d5]jgj. (2.36a)

Gradient of a vector v

Gradv=Vv = vj|igigj . (2.36b)

Divergence of a vector v

divv=V_. v—vJ|J /— c)fJ (Vg v v'). (2.87a)
Divergence of a tensor T of second order

DvT=V-T=t"g-. (2.3M)
Rotation of a vector v

rotv—va—vl(g x g;) - (2.58)
LAPLACE operator

AE=V'& = divgrad = 8|} —T (V2" %,),;- (2.39)
Bipotential operator

ALE =V e =V (V'S) =9l =

(2.40)

- 75 el (e, ]l

GAUSSIAN theorem

J-HVJ’L. Jg et de*de’ = ”vj n;dA . (241)
\' A
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Ezample: Application of the previous formulas to cylindrical coordinates
Single-valued relations between Cartesian coordinates x' and cylindrical
coordinates ¢ read as follows (see Fig. 2.5):

xl=£1cos.£2 , xzzﬁlsin{2 , x3=§3. (2.42a)
Position vector
r(fi)=£lcos£2el+flsin{2e2+{3e3. (242b)
Covariant base vectors according to (2.25)
g, = cos fzel + sin{2 e,,
gi=r;,= :2 g, :—flsin52e1+£lcos§2e2, (243)
83 = €3
Covariant metric components according to (2.4a)
&; = 8i Bj-
For example: g,, =g, &, = (¢ )2 sin” € + ({1 )2 cos’ € = (€ )2 .
Covariant metric tensor
1 0 0
( 8;; )=10 ( fl )2 0 (2-44)
0 0 1

According to (2.5¢c), because of g; =6 8§ =0 for i # j

—— Orthogonal base
Contravariant components from (2.5¢)

g(ll) g(ii) = 1 —_ g

B(ii)

(i) _ 1

€;

€ §1 §3 X2
Fig. 2.5: Presentation of a position vector
xl/ in cylindxical coordinates
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Contravariant metric tensor
1 0 0
(8)=[0 (£)" o (245)
0 0 1
Determinant g of the covariant metric tensor
1 0 0
gl =lgs| =| 0 (&) of=(). (246)
0 0 1

CHRISTOFFEL symbols of the first kind according to (2.80)

1 1 1
For example: F221:7(g21,2+g12,2—g22'1):7(0+0—26)=—§ .

CHRISTOFFEL symbols in matrix notation

[0 0 0]
1
(Fij1)= 0 _f 0f,
L0 0 o0
[0 & 0]
(Fijz)z 61 0 0 )
L0 0 0]
(Fijs):o.

CHRISTOFFEL symbols of the second kind according to (2.31)

For example: F;z =g1kI‘22k =1- (—§l)+ 0-04+0-0=-¢".

CHRISTOFFEL symbols in matrix notation

0 0 0 )
(ry)={o ¢ of,
L0 0 0
i &yt o
(i =gyt o 0
0 0
(1".3.).—_0

1

(2.47)

(248)
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LAPLACE operator according to (2.39)

1 ik 1 j1 j2 j3 _
Agp—_-_(vgngp ~=—[1/g(g95 +g°d, +g @ ) L=
/g ,k):J /g ,1 2 ,3 J,j

= _ﬁ [(/Egu@,l)J + (/ggzz 45,2),2 + (}/Eg33¢,3),3} -

1
é

[(5145,1),1 + (Lo ), + (51453)3]:

(51)2 45,22 + 45,33 : (2‘49)

3 State of stress

3.1 Stress vector

The essential objective of structural analysis is the calculation of stresses
and deformations of bodies. As shown in Fig. 3.1 we make a cut through the
body, which is in equilibrium under external loads in the form of volume
forces f;, surface tractions p; and concentrated forces Fy . A resulting force
AF is transmitted at every element A A of the cut.

Fig. 3.1: Cut through a body Fig. 3.2: Resolution of the stress vector
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LAPLACE operator according to (2.39)

1 i j2 j3 —
AQ—T (Veg' 2, ,J:ﬁ[/g(gﬂé,ﬁgj s,+¢ ¢,3)J,j_
__/1——[ /—g11¢,1 }/*g22¢,2)'2+(‘/75—g33q5'3)’3}=

'

=§;[(£ 235+ (5%a)0+ (£¢,),]=

1[4 1 1
Z_E—I[E ®,+2, +§¢,22 +¢ 95,33}

> AP =0 458 s, + P, (2.49)

&t (e '

3 State of stress

3.1 Stress vector

The essential objective of structural analysis is the calculation of stresses
and deformations of bodies. As shown in Fig. 3.1 we make a cut through the
body, which is in equilibrium under external loads in the form of volume
forces f;, surface tractions p; and concentrated forces Fy . A resulting force
AF is transmitted at every element A A of the cut.

Fig. 3.1: Cut through a body Fig. 3.2: Resolution of the stress vector

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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According to NEWTON's principle of "actio = reactio”, reaction of the
resulting force AF is found on the same plane of the opposite part of the
body, in the form of an opposite directed force of the same magnitude. We
assume that the relation AF/A A in the limit of AA —> 0 tends to a finite
value, and we call this limiting value

. AF dF
stress vector t= 1 —_— = = 8.1
R AA T dA (31)

Here it is assumed that only forces (and no moments) are transmitted at
any point of the cut.

The stress vector t can be resolved into a part perpendicular to the surface
of the cut, the so —called normal stress of the value o, and into a part tan-
gential to the surface, the shear stress of the value 7 ( Fig. 3.2).

Sign convention:| Stresses on cut planes with outward normals pointing
in the positive (respective negative ) coordinate direc-
tions, are taken positive in the positive (respective
negative ) coordinate directions (Fig. 3.3).

Stress vectors on the positive cut planes of the cubic element in Cartesian
coordinates :

< Txx v Tyx s Tax
t = Txy , tt=|o vy , t = 'sz . (3'2 )
Xz yz 7z

In this context, o, (i = x,y,z) are normal stresses and T (i,j = x,y,2)
are shear stresses.

yA "positive" Oyy
/lcut planes Tyx
"negative" Xy

B
/]cut planes P > )
T T

cut planes positive negative
stresses stresses

Fig. 3.3: Sign convention for the stresses
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3.2 Stress tensor

The stress vectors can be assembled in matrix notation as the so-called
stress tensor S. In Cartesian coordinates it reads

T X145 2 Txx 2 Tyx E Tax
S =[titit] = Tay | Oy | Tay | (5.3)
Tez ! yz ! P

The superscript T indicates transpose of a matrix.

The important CAUCHY's formula in arbitrary coordinates is written
t=Sn (34a)
i

or =" n; . (3.4b)

In words: This formula gives the stress vector t at a given surface or cut
plane in terms of the stress tensor S and the unit outward nor-
mal vector n for the surface or cut.

The stress vector t acts on the infinitesimal area dA of the inclined cut
plane characterized by the unit outward normal vector n (Fig. 3.4):

n, cos a tx
n=— ny = COS/B s t = ty . (35(1,[))
n, cos 7y b,

The remaining infinitesimal surfaces of the tetrahedron result from the pro-

jection of dA which can be written as follows in index notation with x = x!,

y =x% 2 =x%:

dA, = dAcosa =dAn,
dA; = dAcosff = dAn, dA, = dAn,. (36)
dA, = dAcosy =dAn,

Fig. 3.4: Stress vector t at a tetrahedron in
Cartesian coordinates
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Relationships between Cartesian and other coordinates will be given later.
In Cartesian coordinates there is no difference between a covariant and a
contravariant base, and for this reason the indices can always be lowered.

Component notation in Cartesian coordinates

t, = Oy + Tyx Oy + 7,0,

o«
1

Teyfx T Oy, + 7,01 (37)

y y zy "z
t =T,0, -!»'ryzny +o0,,0n,.

Ncte: Shear stresses are pairwise equal to one another, i.e., the stress tensor
S is symmetric —

Txy = 7-yx ’ Tyz = sz v Tax = Txa (3'8)

The symmetry reflects satisfaction of moment equilibrium conditions.

3.3 Coordinate transformation — principal axes

We consider a Cartesian coordinate system %' and a rotated system x (see
Fig. 35).

Stresses in a rotated system according to (2.14)
7’1 v = ,B;(’ ﬂi' Tkl .

Symbolic notation

S'=B-S-B". (39)
3
X 3
1:13 122
A ]
T
1 <2

Fig. 3.5: Stresses in a rotated coordinate system
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Arrangement of transformation coefficients in a rotation matrix B

B B B
B=|g B 5| (3.10)
g B B

Principal stresses, principal azes

Principal stresses ( see (2.22) and (2.23))
(T;—Jég)n;"zo. (811)
Characteristic equation
3 2
o -Lo"+Lo-1,=0 (312)

with the invariants for any direction and for the principal stresses o
(i=1,I,1I):

I, =04 +0,,+ 0, =01+ 0+ oy sum of normal stresses , (3.13a)

o T o T o T
_ XX Xy yy yz 22 zx | _

L= + + ‘ =010+ o9 + T %1

TxY UYY TYZ 0'" sz Uxx
(3.1b)

Oxx Txy Txa

I3 = Txy Uyy 7-yz = 0191 % - (3.13(:)
Txz 7-yz O

Note: It can be shown that the three roots of (312) comprise the maximum
and the minimum normal stress appearing on all possible cut planes
through a given point. That is where the name principal stresses is
coming from. For the symmetrical stress tensor the principal stresses
are always real. The directions of principal stresses of different mag-
nitudes are always unique and mutually orthogonal.

State of plane stress in Cartesian coordinates
Definition: o, =7, =7,=0. (3.14)

2z Xz

Stress tensor

S = [ Tex Tay ] . (3.15)
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X Fig. 3.6: Coordinate transformation

Transformation coefficients according to Fig. 3.6

ﬁil cosa ﬂ; =cos(%—a)=sina,
(8.16)

,lezcos I +a)=-sina ¥~ cosa .
1 2 v P2

Formulas of transformation for any rotation « of the coordinate system

1

1 .

Tprgr = 5 (0yy +0yy) + 5 (0, = 0y ) cOs 20 + 7,y sin 20,

=1 L 2 in2 (317)
cry,y,—7(Uxx+ayy)——f(axx—ayy)cos a -7, sin2a, .
T =L(U -0, )sin2a + 7, _cos2a
x'y’ 2 yy XX Xy .

Principal stresses
o } _ 1 o -0, \2
oy | =7 (et oy) £ (__XXTXL) +72 (3.18)

The directions of the principal stresses follow from the extremal condition
to be
27T
tan2o* = U—"L (3.19)

XX - Uyy

and from this the principal directions 2a* and 2a* + 7 or o* and o* + —72r—
The principal directions are orthogonal to each other.

Maximum shear stress

o, — 0, \2 g, - O
T =1/(————U—xx )+72 =11 (320)

.. s
Direction ot = of + T
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ay

Fig. 3.7 MOHR's stress circle

MOHR's circle
The formulas for transformation of the plane state of stress lead to the

MOHR's circle (o,,,, S0 , 7,,., =7)
Oy T 0,0 \? 2 2 2 2
(U-__}“(—Z_ZL) + 7 :(0’-0’0) +7 =71 (321)

with the distance of the centre M on the o-axis

1
0y =5 (0 + 0yy) (322a)

and the radius of the circle

o,.— 0. \?
rz/(irﬂ) T S T (3.22b)
3.4 Stress deviator
. . [ S S i 29
Definition : T, =T 7 Oy 5j (3.23)
with the mean normal stress oM
=1 1 =1 (8.24)
oy =5 (0 oy +o,)=F(op+oy+oy)=3. '

Physical interpretation :

The stress deviator "Tji expresses the deviation of the state of stress from the

mean normal stress.

Since 'I; = 0, the principal values of the stress deviator follow in analogy to
(3.12) from
'0° + 'L'o -1

;=0 (3.25)

with 'L, =1 -30y,

} (3.26)

=L -Loy+20y.
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3.5 Equilibrium conditions

The conditions of force equilibrium are stated with regard to the unde-
formed configuration of the body in this section [A.ll, A5, A6, A.17].

z dx aT,,
/ tZX + az dZ
"
ot
d +=d
lz o Iyx ay y
<———dy — cxx + ag))((x dx

Fig. 3.8: Equilibrium for an infinitesimal volume element in Cartesian
coordinates

1) Cartesian coordinates ( Fig. 3.8)

0 Oux

c)'ryx 0T,

zX _
X oy t3z k=0,
9T o0 9T,
2y Yy Zy = 3.27a
3% 5y Tz =0 (327)
oT oT, 90
Xz yz 22 _
sx toy tea t f,=0. J
f, (i = x,y,2) are the components of the vector of volume forces.
Abbreviated notation
rf=0. (327)
2) Curvilinear coordinates
i+ =0 (3.28)
or DivS+f=0. (3.28b)
3) Cylindrical coordinates ({1 =1, =29, &= z) (Fig. 2.5)
00 1 0T oT, 1
T L or 21 1 _ —
ot T op MY +r(0" Uw)+fr ’
oT, 1 90 9T, 2
29 PP o 4 4 = 3.29a
or r dp 0z +rT‘PT+f¢ 0, ( )
T, 1 0T 1
Iz 1 Q3 27 1 —
TRt et T et =0
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Fig. 3.9: Spherical coordinates
(€=r,829620)

Two-dimensional case: Polar coordinates r, ¢

90 1 o7 1
. - __pr - - =0
5t T T e T (o) FE=0 (3.29b)
ey 1% 2 o
or r dp r er e T
4) Spherical coordinates r, 9, ¢ ( Fig. 3.9)
90 1 0T, 1 orT 1
T 1 v T 1
or r 39 ' Tsind dp + rT“’COtﬂ—i—
1 —
+?(20"—0M—awp)+fr—0,
oT 1 90, 1 oT 3
o = 99 2ilA =2 3.80
or r oY rsind d¢ T Tes T (30)

a‘rw La'rw, 1 .,
or r o9 rsind d¢ r

4 State of strain
4.1 Kinematics of a deformable body
Description of the deformation of a body with LAGRANGE's notation:

The displacement of a material point of a body B is observed as a
function of the initial state.

We distinguish between the initial state t = t, (without =) and the defor-
med state of the body t =t (with 7).
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Fig. 3.9: Spherical coordinates
(€=2r,829620)

Two-dimensional case: Polar coordinates r, ¢

90, oT
T"—+i7ﬂ+l(a"—aw)+fr:o,
R (3.29b)
O Tor +laa¢'¢ +37- +f =0
or r dp r er e T
4) Spherical coordinates r, ¥, ¢ ( Fig. 3.9)
90 1 0T, 1 orT 1
T L 504 3% L
or r o9 rsind Q¢ + rT“’CO“}+
1 —
+?(20"—0M—aww)+fr—0,
oT 1 90, 1 oT 3
)04 = e 704 9 8.90
or r oY rsind d¢ T Tes T (330)
1
+Tcot19(crw—aw)+f1,=0,
oT 1 9T 1 90 3 2
o 2 " @Y pp 2 £ =0.
or + r o9 rsind Qd¢ T T T T¢0C°t1’+f¢

4 State of strain
4.1 Kinematics of a deformable body
Description of the deformation of a body with LAGRANGE's notation:

The displacement of a material point of a body B is observed as a
function of the initial state.

We distinguish between the initial state t = t, (without =) and the defor-
med state of the body t =t (with 7).

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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Fig. 4.1: Kinematics of a deformable body

Position vector T of the material point P of the deformed body B (Fig. 4.1)

F(&)=r(€)+v() (4.1)

with the position vector r(¢') and the displacement vector v(€') of the
same material point P of the undeformed body B.

Differential increase dv of the displacement vector v
dv =dr - dr = Vdr, (4.2)
where V is the tensor of the displacement derivatives.

According to (2.25) the base vectors g, and g; result from the total differen-
tial of the respective position vectors

dr=j—zi—d§i =r,d' = gde', (4.30)
o OT i a g A g
dr = a; d¢' = F,d¢' = g de’. (4.3b)

These infinitesimal changes of the position vectors lead to the points Q and
Q adjacent to P and P (see Fig. 4.1).

In accordance with the rules for the transformation behaviour of tensors
(Sections 2.3, 2.4) the base vectors of the deformed body can be expressed
by those of the undeformed body and vice versa:

gi = ﬁjigj , (44a)

gi=5§ Ej- (4-4b)
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The displacement vector can be written as follows
v=vigi=Vi§i=F—r. (4.5a)
Differentiation of (4.5a) with (2.33) leads to
Vi< vjligj = vj”igj =F; -1, =8 & (4.5b)

Since the base of the undeformed body or the base of the deformed body
can be used alternately in order to illustrate the displacement vector v, we
have two different covariant derivatives of the displacement components as
a result (according to (4.5b)). Here, one line stands for the covariant deri-
vative applied to the base of the undeformed body, a double line stands for
the covariant derivative related to the base of the deformed body. With the
KRONECKER symbol we obtain the relation between the base vectors of
the deformed body and the undeformed body [ A.7]:

gi = (5'1 + VJL)gj ) (""6‘1)
g = (5 -%))g- (4.6b)
The elements of the transformation tensor then read
J j J
Bl=6+v), (4.7a)
G 0
Corresponding transformation relations are valid for the line elements dr

and df in analogy with the base vectors. If we define a mixed tensor of or-
der two according to (2.12)

F=(8+v])gg =1+V, (4.8)

F=(s-v)gg =1-V, (48b)
for the line elements this results in

dr = Fdr, (4.9a)

dr = Fdr . (4.9b)

By means of (4.2) and due to (4.5a) we obtain the following total differen-
tial of the displacement vector dv:

dv=df -dr=(F-1I)dr= Vdr. (4.10a)

According to (4.2), V is called the tensor of the displacement derivatives
or the deformation gradient.
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Due to (4.10a), the total differential dv can be written in other notation by
means of (2.36b)

dv = Gradv - dr. (4.10b)

In Cartesian coordinates the relation (4.10b) for a time independent dis-
placement vector
u(x,y,2)
v(x,y,2) =| v(x,y,2)
w(x,y,z)

reads as follows in matrix notation

[« 7
=1
o
=
(%
=

du X oy 02 dx
_ | ov oV oV
dv=]| dv | = 3% 3y oz dy (4.10c)
dw OW OW oW dz

|
|
|

[« 72
b
o
[
o
N

4.2 Strain tensor

The state of strain of an elastic body is obtained by subtraction of the
squared line elements of a deformed and an undeformed body. Thus, we ob-
tain a measure of how the distances of single points have changed due to a

load [A.7,A8].
We write
dF - dF -dr-dr=ds’ - ds’ = (§;- §; - g; - §)d d¢’ =
= (&; - g;)d¢ d¢’ = 2;d¢7de’, (411a)

where v;; are the components of the strain tensor.
Accordingly, they can be determined as follows

1,

Y% = ?(gij - gij) . (4.116)
Expressing the metric components of the deformed body by those of the
undeformed body, we obtain the GREEN - LAGRANGE's components of
strain [ A.6]:

=1 ( k ) 4.12

Y% T g "i|j + Vj|i +v ‘ivkij : (4.12a)

Linearized components of strain by neglecting the quadratic terms in
(4.12a):

1
Y%= 7(Vi|j + vj|i) . (4.12b)
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4.3 Strain—displacement relations

— Cartesian coordinates

From the tensor of the displacement derivatives V follows as the symmetric

part the linear strain tensor. According to the rules (2.18), it becomes in
Cartesian coordinates:

1 1
€xx 77xy 7’)’”
1 T 1
Vo=5(V+V)=| - g T,
€z

where due to (4.12b)

Ju _ou 4 ov
9x Ty T 3y T ox
oV ou oW
oy Y =57 Tax
oW oV oW
oz T =37 T oy

(4.18)

(4.14)

i (1,j = x,y,2) are the so-called technical shears, and ¢; (i = x,y,z) are
the normal strains.

Special cases:

- Cylindrical coordinates ( Fig. 2.5) (r,u; ¢,v; z,w)

Ju _1ou Qv
or 7"P_ra<p or
Lav+g _ du oW
rodp 1’ T2 T 35 or ’
oW _av+l9_w_
oz Yor = 33 r op

~ Spherical coordinates (Fig. 3.9) (r,u;4,v;p,w)

€l‘l‘

T Tod
1

Jou

~or

1 oW .
rsinﬂ(__ + usind + vcosﬂ),
v

@
10 u
r

rsind o ' or

(%2

.1 (a—(p+—a%-sin19—wcos19).

\%
?)

(4.15)

(4.16)
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4.4 Transformation of principal axis
The principal strains are determined in analogy to the principal stresses.

Characteristic equation according to (2.22¢):
Mo+ LA -L=0. (4.17a)

The first invariant corresponds to the so — called volume dilatation e:

Ilze:divv:vjjz'yj:. (4.170)
4.5 Compatibility conditions

The linear strain - displacement relations (4.12b) form a system of six
coupled, partial differential equations for the three components v; of the
displacements for given values of the strain tensor. Thus, the system is
kinematically redundant. In order that there will exist a displacement
vector v, subject to given values of the six mutually independent compo-
nents of the strain tensor, it is necessary that the three components of the
displacement vector satisfy the following compatibility conditions (DE
SAINT VENANT):

'Yij’kl + '7k1|ij - ’Yi1|kj - ’ij‘il = 7ij’kl et =0, (4.18)

Mechanical interpretation:
The interior coherence of the body has to be preserved after the defor-
mation, i.e. material gaps or overlaps must not occur.

For a two - dimensional state of stress or strain the compatibility condition
in Cartesian coordinates reads as follows:

2 2
c)c':xx_*_c)syy_c)'yxL

oy? ox?  9x9y

=0 . (419)

5 Constitutive laws of linearly elastic bodies
5.1 Basic concepts

In the following we are going to deal with bodies for which there exist re-
versibly unique relations between the components of the strain tensor and
the stress tensor, and we furthermore assume that these relations are time
independent. The behaviour of the bodies is denoted as elastic, i.e. there are
mo permanent strains ey after removing the load of the body ( Fig. 5.1). The
bodies considered shall furthermore, as it is usual in the classical elasticity
theory, be made of a linearly elastic material such that their constitutive
law expresses linear relationship between the components of the stress ten-

sor and the strain tensor (range 0- A - in Fig. 51). Such bodies are usually
called HOOKEAN bodies.
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4.4 Transformation of principal axis
The principal strains are determined in analogy to the principal stresses.

Characteristic equation according to (2.22¢):
ML+ LA -L=0. (4.17a)

The first invariant corresponds to the so — called volume dilatation e:

II:e:divv:ij:'yj:. (4.170)
4.5 Compatibility conditions

The linear strain - displacement relations (4.12b) form a system of six
coupled, partial differential equations for the three components v; of the
displacements for given values of the strain tensor. Thus, the system is
kinematically redundant. In order that there will exist a displacement
vector v, subject to given values of the six mutually independent compo-
nents of the strain tensor, it is necessary that the three components of the
displacement vector satisfy the following compatibility conditions (DE
SAINT VENANT):

7ij‘kl + ’Yk1|ij - 'Yi1|kj - ’ij‘il = ’Yij’kl et =0, (4.18)

Mechanical interpretation:
The interior coherence of the body has to be preserved after the defor-
mation, i.e. material gaps or overlaps must not occur.

For a two - dimensional state of stress or strain the compatibility condition
in Cartesian coordinates reads as follows:

2 2 2
J € J € 9 7.
xx vy Xy _
+ - =0 |. 419
oy? ox?  9x9y (419)

5 Constitutive laws of linearly elastic bodies
5.1 Basic concepts

In the following we are going to deal with bodies for which there exist re-
versibly unique relations between the components of the strain tensor and
the stress tensor, and we furthermore assume that these relations are time
independent. The behaviour of the bodies is denoted as elastic, i.e. there are
no permanent strains ey after removing the load of the body ( Fig. 5.1 ). The
bodies considered shall furthermore, as it is usual in the classical elasticity
theory, be made of a linearly elastic material such that their constitutive
law expresses linear relationship between the components of the stress ten-

sor and the strain tensor (range 0 - A - in Fig. 51). Such bodies are usually
called HOOKEAN bodies.

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997



5 Constitutive laws of linearly elastic bodies

32

stressA , elastic Fig. 5.1: 0,e - diagram of a real
material with a linear -

partially plastlc
elastic range

F 2 limit of proportionality
= elastic limit
= upper yield point
= lower yield point
- E = elastic - plastic state
ultimate stress limit
plastic strain

HgooaQuw e

1

0 1
O, strain

i m

™

pl

For a great number of problems in practice this assumption is feasible, even
if we have to consider non - linear strain - displacement relations (e.g. geo-
metrical non - linearities for the post - buckling of plates and shells ).

5.2 Generalized HOOKE-DUHAMEL’'s law for thermo-—

elastic, isotropic materials

— Cartesian coordinates

1 1
exx:f{oxx—u(ayy+cru)]+aT@ v Yy =G Ty
_1 o -1 5.1
eyy_f[ayy—y(ozz+oxx)]+aT ) ’sz_—G—sz’ ()
. 1 (o, - o _ 1
w= T % V(0 + 0,0 + o v Yy =G Ty J
with
E YOUNG's modulus ,
v POISSON's ratio
G= B shear modulus
2(1+v) ’
fos one — dimensional thermal expansion coefficient ,
=T -T, difference between final and initial temperature.

Symbolic notation

(52)

1+v v
vs:TS_TSI+aT@I

with s = sum of normal stresses .
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Solving ('5.1) with respect to stresses yields
_ E v E _ 3
Txx = 1+V(exx+ 1—2Ve)_1-2VaT9 > Ty = Gy
_E v E _
Uyy_1+y(5yy+1-2ye)"1_2ya'r9a”'xz~G’7xz, (53)
_E v E _
azz_—_1+y(€zz+ 1_2Ve)— 1-21/aT@ , Tyz—G’sz~
Symbolic notation
_ v 14w
§=2G|V, + 1 el - 1Y o 01 (54)
with e = volume dilatation .
- Curvilinear coordinates in index notation
According to (5.1) it follows that
_1+v v j © = D...l ) (550)
M= Tm E&aT;targn® =D +argy 08
with the flexibility tensor of fourth order
1+v v
Diju = 5% (88 + & 8) — E 8ij 8u - (5.5)
Solving (5.5a) with regard to stresses leads to
. il .
Ao, gie (56a)
with the elasticity tensor of fourth order
Cijkl _ G(gikgjl " gilgjk " . EVZV gij gkl) (5.6b)
and the thermo - elastic tensor of second order
. . Ea. .
VI T _ij 56
B =Pg =1=5,8 (56c)
Other notation of (5.6a):
. il
™= (1, - arg,0) (57a)
with C*ijkl - }\gij gkl + ’u(gik gjl + gil gjk) (57b)
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and the LAME constants

2v
1-2v°

L=G, X=G

The relations between the different specific elasticity constants can be
drawn from the following table:

AZ l[:G: E: V=
p(3X+2u) A
Ast A K X+ u 20X + 1)
v A M1-2v) | (L+v)(1-2v)X y
’ 2v v
p(E-2p) E-2u
u,E 34 E 7 E 74
Ev E
Evi a2z | za+9) B g

Table 5.1: Elasticity properties

The linearly elastic constitutive equations shall be augmented by another
system of equations which allows a physical interpretation, and which is
applied in elastoplastic structures. Therefore, we split both the strain and
the stress tensor in a spherical-symmetrical and a deviatoric part accord-
ing to the following relations:

"/:lzée&;n'f‘ ”']’;ﬂ,
m 1 m m } (5.8)
T 2355}( + "1 -

In (58) the known expressions for the sum of strains e = 'yt or the sum of
stresses s = 7 occur which are the first invariants of the strain tensor or
the stress tensor according to (4.I7b). Substituting (58) in the generalized
HOOKE's law leads to the following two equations

mtk — "7km:'2—1G,T;cn’ (59a)
m=k — e:%oM+3aT9 (5.95)
with
K = B compression modulus ,
3(1-2v)
oy =5/3 mean value of the normal stresses ,

3ag volumetric thermal expansion coefficient .
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With (59a) a change of the shape without a change of volume K =0 s
described physically according to (5.8), whereas (5.9b) describes a change of
volume without a change in shape ("7} = 0 — 7§ = 1/3eéy"). Both re-
lations (59) give the proportionality between strains and stresses for lin-
early elastic materials. It has to be emphasized once again that an isotropic,
linearly elastic body only possesses two mutually independent material pro-
perties, and most often E and v are chosen.

POISSON's ratio » can be more closely limited from (59b) neglecting all
effects of thermal stresses

e=3(1—21/!0

20D, (510)

Since e and oy always have the same sign, v must be smaller than /2. Ac-
cording to (510), e = 0 for v = 1/2, which corresponds to an incompress-
ible medium (constant volume ). » = 0,3 + 0,33 is valid for steel and light
metals.

5.3 Material law for plane states

a) State of plane stress
— Cartesian coordinates
Definition: o, =7, =7,=0. (511)

Strain — stress relations

1 0 1

fax = T (Oxx ~VOy) T a7 @ Ny =G Tayo
1 0

€y =—E(ayy—uaxx)+aT © , 7,=0, (512)
v 0

€10 =_f(0xx+0yy)+aT e , 'sz:O'

Stress — strain relations

E 0
o= 1_U2[EXX+V€yy_(1+V)aT o], Tey = Gy
-_E_ 1 % =0 (518)
Oyy = 1_V2[6yy+yexx_( +V)aT ] » Txg = Y :
0, =0, Tys =0

with 0 (x,y)=T,(x,y) - T,.
Symbolic notation of (5.13)

o= Ele-e] (54)
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with
[ 7 1 v 0
Uxx
E v 1 0
oc=|o0 E =
Tyy ’ 1 -2 0 0 1-v
- 'xy - 2
[ ey ] 1
0
€= ¢, y €g =agp Of 1
L Vxy 0

— Curvilinear coordinates

The equations (5.12) and (518) read in index notation

_ v6 0
Yap = Dogrs 7+ apgys © (5.15a)

Taﬁ — Eaﬁ76(776 _ CYTg,Y5 09) (515b)

with the plane elasticity and the plane flexibility tensors of fourth order

1+ v v
Daﬁ'yb‘ = 9F (ga7 8ps + Bus gﬁ’y) TF 8apBys

Eaﬁwé 2 v aﬁ g-ﬂs) .

a 5 a6
2il+ui 7gﬁ gﬁ’Y

b) State of plane strain in Cartesian coordinates

Definitions: ¢, =v,, =17, =0. (5.16)
Strain - stress relations
1+ v 0 1
exx: E [(1_V)Uxx~yayy]+(1+l/)aT o ”ny:-é’rxy’
14+ v 0 517
s}'Y: E [(I—V)O'yy—llaxx}+(1+1/)a,r © ”yxz=0’ ( )
€,=0, 'yyz-—-O.
Stress — strain relations
E 0
« =TT 7)1 _2V)[(1—V)sxx+ueyy—(l +v)ap 0],
E 0
UYY_(1+1/)(1—21/)[ y T re, —(1L+v)ap 0],
_ Ev + v 0
T2 = (1+V)(1—2V)[€xx+eyy ar 0],
Ty =Gy » Ty =Ty, = 0. (5.18)
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5.4 Material law for a unidirectional layer (UD —layer) of a
fibre reinforced composite

The material law for a UD - layer reads as follows according to (5.15) with-
out temperature terms

’Ta'ﬁ' — Ea'ﬁ"y'&t 7716, . (519)

Here, indices equipped with a dash refer to the material coordinate system
in the UD - layer.

Plane elasticity tensor of fourth order for a UD-layer in the £',£* - co-
ordinate system (see Fig. 5.2):

11’11’ E1’1’2'2’ E1’1'1’2'
(Ealﬁl,ylé‘l ) _ Ezlzlllll E2!2I212l E2I2I112I

E1'2’l’1’ E1’2'2’2’ E1'2'1’2'

E, Vo By 0
L=vygvpy 1= VgV
| v, B, E,. . | (520)
L= vy Vo 1= Vpg Voups
0 0 Gy

where the material properties have the following meaning [ B.lO]:
E,,  YOUNG's modulus in fll—direction parallel to the fibres ,
E,, YOUNG's modulus in le—direction perpendicular to the fibres ,

POISSON's ratio perpendicular to the fibres in case of a loading pa-
rallel to the fibres ,
¢ T

7 s

) 7 ) 7 ) 7 ) 7
VA AN A
Ve /// /// /// //// ’
s Ve Ve s V7
s AP S
s

\

 ASCo e
s fibre matrix

Fig. 5.2: Material coordinate system for a UD ~layer
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or1»  POISSON's ratio parallel to the fibres in case of a loading perpendi-
cular to the fibres; it holds that

Voryr = Vyigr Egu/Epb
G,,, Shear modulus parallel and perpendicular to the fibres .

Rotation of the UD - layer by an angle a (see Fig. 5.3) is obtained by appli-
cation of the transformation formula for a tensor of fourth order ( generali-
zation of (2.14)):

15! [~
B = B3, g B BL BT (521)

Transformation coefficients according to (8.16) in matrix notation:

(/3:,)= ﬁi: ,3;: =[ cos a sina]. (522)

ﬁf, ,Bg, -sina cosa

Substitution of the components of the elasticity tensor by simplifying the
notation yields:

1'1'1'1’ 1’1’2’2’ 1'1'1'2' 11 12’ 1’3’
E E E EY E'Y E
2'2'1'1" 2'2'2'2' 2'2"'1'2' 2'1 2'2' 2'3’
E E — | BV E¥Y B |, (523)
1'2'1'1" 1'2'2'2' 1'2'1'2' 31 3'2' 3'3’
E E E Y EY E

Components of the elasticity tensor for the rotated vector base read then as
follows :

EY = B cos*a + E¥? sin'a + %All sin’ 2 ,
E? = E* cos*a + E'V sin*a + %All sin’2a , (524a)
E® = 2% + —i—AZ' sin’ 2« ,
2'
é A §2 .
vk
o gl
> Fig. 5.3: Rotation of a UD - layer

C.L’ by an angle o
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‘ E'J(3i=j) | Eij(s#j)
ﬂ [10° MPa] [10 MPa]
150 = 60
120 \\ i/ 40 12
E
90 \ / 20
\\Eu // Ezz 0 _ N
60 N\ 20 ?\ //23
30 PN T B 10 E E
1/ \\
0 = 60 —-—

0O 20 40 60 8 oaf'] O 20 40 60 80 of°]

Fig. 5.4: Components of the elasticity tensors vs. the fibre —orientation a
of a High Tensile fibre ( HT - fibre ) [ B.10]

Material values: E;, = 143000 MPa , E,, = 5140 MPa ,
Gy, = 5280MPa , v ,, =028 ,v,, =001.

E? =¥ =" + %AT sin’2a ,

ER =¥ = % [—Ellll + AY + A7 sinza]sinZa , (5.24b)
E? =82 = —li— [ EXY - AY - AY sinza]sinZa
with A" = B 4 2E¥Y | AY = 'V 4+ E¥% - 24" .

6 Energy principles
6.1 Basic terminology and assumptions

Our consideration of solid bodies in this section is based on the following
assumptions [ A.9, A.15, A.16, A.18]:

a) The processes produced in a stressed body are reversible, i.e. no dissipa-
tive effects (e.g. plastic deformations) occur. We limit ourselves to the
scope of the classical elasticity theory.

b) The deformation process takes an isothermal course, ie. there is no in-
teraction between deformation and temperature.
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‘ E'J(3i=j) | Eij(s#j)
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Fig. 5.4: Components of the elasticity tensors vs. the fibre —orientation a
of a High Tensile fibre ( HT - fibre ) [ B.10]

Material values: E;, = 143000 MPa , E,, = 5140 MPa ,
G,y = 5280MPa , v, =028, v,,, =001.

E? =¥ =" + %AT sin’2a ,

ER =¥ = % [—Ellll + AY + A7 sinza]sinZa , (5.24b)
E? =82 = —12— [ EXY - AY - AY sinza]sinZa
with AV = E*" 4 2E%% | AY = 'V 4+ E*¥ - 24"

6 Energy principles
6.1 Basic terminology and assumptions

Our consideration of solid bodies in this section is based on the following
assumptions [ A.9, A.15, A.16, A.18]:

a) The processes produced in a stressed body are reversible, i.e. no dissipa-
tive effects (e.g. plastic deformations) occur. We limit ourselves to the
scope of the classical elasticity theory.

b) The deformation process takes an isothermal course, ie. there is no in-
teraction between deformation and temperature.

H. Eschenauer et al., Applied Structural Mechanics
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¢) The load process is quasi - static, i.e. the kinetic energy or the forces of
inertia can be neglected.

d) The state of displacement of a solid body is described according to a
LAGRANGEAN approach.

e) The theorem of mass conservation (dVA: dV) and the volume forces in
the deformed and undeformed bodies (f = f) are equal.

6.2 Energy expressions

First, we consider the uniaxial state of stress of a rod subjected to a single
force F. The relation between force and displacement can be assumed to be
nonlinear as well as linear (Fig. 6.1). The external work done by the nor-
mal force F against the displacement §u is given by

§W = Féu. (6.1)

Here, we use the differential § for the changes of state, e.g. deformation dif-
ferentials, strain differentials. For these quantities it is assumed that they
are virtual (not existing in reality ), infinitesimally small and geometrically
compatible. Eq. (6.1) illustrates the area of a thin strip with the width 61
and the height F in a force-deformation diagram (Fig. 6.1), where terms of
higher order have been neglected. The total work of the single force results
from an integration over the deformation differentials

W = T?&ﬁ. (62)

ey

b) . 'u

cly

a) | ou u

Fig. 6.1: Nonlinear and linear force ~ deformation curve of a rod subject to
a single load
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In Fig. 6.1, the area W* represents the complementary work, because W and
W* complement one another and their sum is represented by the rectangle
F-u=W4+ W*

By analogy to (61) and (6.2) the following holds for the complementary
work

SW* =

el

§F (6.8)

or

W =

F

a6F . (64)

ey

In the case of a linear force - deformation curve F = c- i (Fig 6.1b) an in-
tegration over the deformation differentials can be carried out. Thus, we ob-
tain

W=Wt=2Fu. (65)

The external work is stored as so - called internal energy or deformation
energy in the rod. Substituting the increase of deformation du by fedx in
(61), we can write (U is denoted by u now, because it cannot be changed
with the final value u):

6W=F¢5u:%A&edx:a&eAdx:o&edV=6U. (66)

If we divide by the volume element dV = A dx, we obtain the expression for
the specific deformation energy

60 =gée (67)
and by analogy, for the specific complementary energy we obtain
§T* = ebo. (68)

The relation between the stress ¢ and the strain € is given by a non - linear
curve similar to the one shown in Fig. 6.1a. If a linear o,¢ - curve exists, by
analogy to (6.5) we obtain the following for the specific deformation energy
and the specific complementary energy

I_J=ﬁ*::%as. (69)
The expression is now extended to a three - dimensional elastic body sub-
jected to external forces ( volume forces f, distributed surface tractions p,
and concentrated forces F, ) (Fig. 6.2).
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p(xy,2)

v

y
p \'% Fig. 6.2: Elastic body subjected
f(

X,,Z) to external forces

In vector notation, the external work can be written as follows

W = JfTévdV + JpTﬁvdS + F6v° (610)
v 5
with
7 = (£, £, 1;) vector of volume forces ,
pT = (px 1Py pz) vector of surface tractions ,
u
v =|V displacement vector of an elastic body ,
w
F = (F’lr , F;r, ,F;r) vector of concentrated forces
T
F = (vaFvaz)i ,
V0
3 vector of displacement vectors for points
v o= V2 of action of concentrated forces
0 Y
n Vi — V0

Woi

Transition to 1sotropic, linearly elastic body

Specific deformation energy and complementary energy

ﬁzﬁ*:%a’Tc=%e’r¢r. (6.11)
Introduction of HOOKE's law
T =%¢Tc,, (612a)

T* = %UTD, (6.12b)
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with vectors for the strains and stresses in Cartesian coordinates defined by
€ = (€, €, € Y, 0 =(0,,0, .0, > Tyer Tax)
XX yy? T2z ’ny ! 7yz ' ’yzx 4 - xx' yy' zz) Xxy’' yz' zx/

leads to the elasticity matriz

1-v v v I
1-v v l 0
v v l—ul
=—E |l—22u 0 0 =’ (6.13a)
(1+v)(1-2v) | Y
| 0 0
0 | 2
1-2
| | 0 5 ]
and the flezibility matriz
1 -v -V ‘
-v 1 -v | 0
D=2X|-v v vl =D". (6.13b)
l2(1+v) 0 0
0 l 0 2(1 +v) 0
| 0 0 2(1 +v)

The expressions (6.12) are bilinear forms which are positive definite be-
cause U > 0 and U* > 0.

In usual index notation

1

U =U*= 5 7 % (6.14)
or

U % ¢ Vi Vi - (6.15a)

U* = % Dy A (6.15b)

Consideration of thermal influences

1_]kl

al
|I

lJ(’YIJ_Ongu@) kl—ﬂT’Y;@v (6.15(1)

U 1 kl
Ut =+ (VU +apg;0) = ule”T + aTT o. (6.16b)

In (6.16), the quadratic temperature terms are neglected [ B.1].
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6.3 Principle of virtual displacements (Pvd)

The virtual work § W of external forces is equal to the increase of virtual
strain energy 6 U according to (66):

§W =6U = f#jayij av | . (6.17)
v

~

With the strain energy U =2 internal potential IL;
U= fﬁ dv =11 (6.18a)
\%

and the work of the ezternal forces ( here without concentrated forces) of a
conservative system equals the negative of the potential II_ of the external
forces

W = jf‘vi dv + in v;ds = -1I_, (6.18b)
\Y% S

the total potential of the elastic body reads as follows

=T, +1I,. (6.19)
Principle of stationarity of the virtual total potential

S =6(I,+M,)=0. (6.20)
This implies an extremum value of the total potential

Il = II, + II, = extremum . (6.21a)

GREEN - DIRICHLET's principle of a minimum (valid for linearly elastic
behaviour of material ) [ A.8]

II = II; + I, = minimum . (6.21b)

6.4 Principle of virtual forces (Pvf)

The complementary virtual work § W* of the external forces is equal to the
increase of the complementary virtual energy é U*:

SW* = 6U* = injarij v . (622)
\'%

Total complementary potential follows by analogy to (6.19)
I* = I + IT* (623)
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with internal complementary potential  U* = fﬁ* dVv = II¥ (6.24a)
%

and erternal complementary potential IT¥ defined as the negative of the
external complementary work W*

we = [wf'av + [vpids = -r. (6.24b)
\ 8,
Principle of stationarity of the virtual total complementary potential
SI* =6(IF + IM¥) = 0. (6.25)
This implies an extremum value of the total complementary potential
IT* = II¥ + II¥ = extremum . (6.26a)

The CASTIGLIANO and MENABREA principle (valid for linear — elastic
behaviour of material ) [ A.9]

[I* = I} + IT¥ = minimum . (6.265)
x (1
First theorem by CASTIGLIANO v = 2U(FY) (6272)
y 1 c)Fl
x ([
Theorem by MENABREA %;'“_R) =0, (6.28)
)
where the index R refers to the reaction forces.
i oU(vy)
Second theorem by CASTIGLIANO F = —WJ_ . (6.275)
i

Generalized variational functional by HELLINGER and REISSNER [A.S,
A17, A8, A19]:

Iy = j{ﬁ(’)’ij) - fivi + 7'ij[%(vi|j + vj|i) = ’yij”dV -
v (629)

- Jpgvids + J(vio ~v,)p dS,
St 54

where pi), v;, are prescribed loads or displacements at the boundary.

HELLINGER - REISSNER stationary principle:
0llg =0. (6.30)
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6.5 Reciprocity theorems and ”"Unit—Load” method
Theorem by BETTI
(6.31a)

In words: If two sets of loads are acting on an elastic body, the work of
loadset 1 against the displacements due to loadset 2 is equal to
the work of loadset 2 against the displacements due to loadset 1.

If displacements at points 1 and 2 are expressed by MAXWELL's influence
coefficients 6,;, the Theorem by MAXWELL follows proving the symmetry
of the coefficients:

6. =6 |. (6.31b)

ij Ji

In words: The displacements at a point i due to a unit load at another
point j is equal to the displacements at j due to a unit load at i.
(It is assumed that the displacements of the points are measu-
red in the directions of the applied forces.)

Unit-Load method

The Unit-Load method plays an important role in elasto—mechanics. By
means of this method, the deformations of an elastic body at a certain
point can be calculated [A.18, A.IQ]:

virtual static group
I i |
D(F'v,+ M'y;) = F‘J 1AV (6.52)
| I

real kinematic group

6.6 Treatment of a variational problem

A curve y = y(x) is to be determined in such a way that an integral I
depending on x, y = y(x), and the derivatives y' = y'(x) to y N
y™ (%),

X2
I=1(x,5,5,,y™) = [F(x,y,5",...,y™ ) dx (633)

X1

attains an extremum value. This implies stationarity of I

*2
61=6fF(x,y,y’,...,y(n))dx:0 . (6.3)

X1

For an integrand function F containing only derivatives up to the second
order of the unknown function y = y(x), follows from partial integration:
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X2 2
_F(oF d oF | d® oF
“—xf(w T3yt aa ey Syt
1

= EULER's equation

OF d oF ]"2 [c)F ,
(G - desym )|+ symey

(6.35)

—

=>  residual ( physical)

boundary conditions essential ( geometric)

boundary conditions
6.7 Continuous approximation methods

The following approaches belong to the group of continuous methods [A.B]
(as opposed to discrete methods like the Finite Element Method, or the
Boundary Element Method ).

1) Method by RAYLEIGH - RITZ [ A14]

Point of reference —— variational expression (6.33)
*2
I= f F(x,y,y',...,y(n))dx —  Extremum .
X
1

Choice of a set of linearly independent approximation functions
N
vH(x) = D a,vi(x), (6.36)
n=0

where the y¥ must at least satisfy the geometric boundary conditions.

Demand of a minimum:

ol

a—an=0 , (n=0,...,N). (6.37)

Assuming a quadratic form of the functional, this leads to a linear system
of equations for determination of the coefficients a_ .

2) Method by GALERKIN [ A6, A.16 ]
Point of reference —— variational functional in the varied form according
to (6.95).

Choice of a function y*(x) in analogy to the RITZ approach (6.36). Func-
tions y¥( x ) must fulfill e/l boundary conditions.

Demand of a minimum:
Fulfilling of the GALERKIN equations

X
2
JL(y*)ytdx=0, (n=1,2,3,...,N) (638)
X1

with L (y*) as the differential equation for the problem (see (6.35) ).
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This leads to a system of linear equations with respect to the coefficients
a, if a quadratic form of the functional (= linear differential equation) is
assumed. In the case of functionals of higher order than quadratic, we get a
non - linear system of equations.

7 Problem formulations in the theory of linear
elasticity

7.1 Basic equations and boundary—value problems

- three equilibrium conditions (3.28a) ,
- siz strain - displacement relations (4.12) ,
- siz equations of the material law (5.5) or (56) ,

i.e. altogether 15 equations for 15 unknown field quantities (6 stresses 7, 6
strains Vo 3 displacements v, ).

Problem of elasticity theory: solution of basic equations with given bound-
ary conditions
—— boundary - value problems.

We distinguish between three kinds of boundary-value problems:

- First boundary-value problem .
On the total surface S of a body B, the tractions t’ are given (Fig. 7.1a).
The following is valid for the components of the stress vector

tzs) = ('rij n;)g - (71a)

- Second boundary-value problem
The displacements of the total surface S of the body B are given (Fig.
7.1b). On the surface the following displacements are given:

Vi) = (Vi )s - (7.2a)

- Mized boundary-value problem

On one part St of the surface S of the body B, the tractions are given, and
on the remaining part Sy of the surface the displacements are given ( Fig.
7.1c). The boundary conditions then read

Fig. 7.1: Illustration of boundary-value problems
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This leads to a system of linear equations with respect to the coefficients
a, if a quadratic form of the functional (= linear differential equation) is
assumed. In the case of functionals of higher order than quadratic, we get a
non - linear system of equations.

7 Problem formulations in the theory of linear
elasticity

7.1 Basic equations and boundary—value problems

— three equilibrium conditions (3.28a) ,
- siz strain - displacement relations (4.12) ,
- siz equations of the material law (5.5) or (56) ,

i.e. altogether 15 equations for 15 unknown field quantities (6 stresses 7, 6
strains Yij» 3 displacements v, ).

Problem of elasticity theory: solution of basic equations with given bound-
ary conditions
—— boundary - value problems.

We distinguish between three kinds of boundary-value problems:

- First boundary-value problem .
On the total surface S of a body B, the tractions t’ are given (Fig. 7.1a).
The following is valid for the components of the stress vector

tzs) = ('rij n;)g - (71a)

- Second boundary-value problem
The displacements of the total surface S of the body B are given (Fig.
7.1b). On the surface the following displacements are given:

Vig) = (v;)s - (7.2a)

- Mized boundary-value problem

On one part St of the surface S of the body B, the tractions are given, and
on the remaining part Sy of the surface the displacements are given ( Fig.
7.1¢c). The boundary conditions then read

Fig. 7.1: Illustration of boundary-value problems

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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tzst) = (,,_‘Jni)st , (71b)
Visa) = (Vidsg - (72b)
7.2 Solutions of basic equations

LAME - NAVIER's equations — solving with regard to the displacements

1

AVi+e|i—3>A\+;ZﬂaT9|i+mfi=0 (7.3)

—k
A+ p

with the LAME constants 4, A according to (575) and the volume dilata-
tion e according to (4.17).

These are three coupled, partial differential equations of second order for
the three unknown displacement components v'.

BELTRAMI ~MICHELL's equations — solving with regard to the stresses

ATij+1+1Vsij—1+'/VgijAs=0 (74)

with s as the sum of the normal stresses according to (3.13a).

These are six coupled, partial differential equations of second order for the
six unkown stress components 7Y,

7.3 Special equations for three—dimensional problems

Solved with respect to displacements [A.5, A0, A1l A.12]
Use of the LOVE function x leads to

DAY =0. (75)

This bipotential equation has an infinite number of solutions, e.g. feasible
solutions in cylindrical coordinates are for the axisymmetric case [ A.Q]

x:rz,lnr,rzlnr;z,zz,zs;zlnr,R,—l—,ln—R—-{_z,zln(z+R) (76)
R R-2
with R=vr%+ 22 .

All linear combinations of (76) with arbitrary constants are solutions of
(75) as well.
Displacements in the axisymmetric case

—__ 1 ox 77

Y ST 20 drez (77a)
2

W:z(l—y)Ax— 1 aX. (77b)
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Stresses in the axisymmetrical case

o, :2G1—V2VT)C)7(AX_%%T)2<) , (78a)
0y =26 722 (Ax -1 9X) (78b)
o, =2G12__2VV—(%(AX—2£VZL2~), (78¢)
ny =20 2 (ax -2 0K) (181)

7.4 Special equations for plane problems

a) State of plane stress

~ Solved with regard to displacements

NAVIER's equation

a|B 14+ v a 1+ v 0| 1 _
Vgt eV -2y er e +6f0—ﬂ' (79)

Coupled system of two partial differential equations for the two unknown
displacement components v*.
Introduction of a displacement function ¥

v =y, (710)

For vanishing volume forces f* the POISSON's equation is obtained from

(79)

‘o, (711)

U =00 =V'¥=(1+v)a

where ¥ is called the thermo - elastic displacement potential [A.13].

- Solving with regard to stresses

& P Daﬁ76776|uu + aT0@|g =0 |. (712)

Introduction of AIRY's stress function in (712) assuming conservative vol-
ume forces ({* = - V|°‘) [A4, AB]

= 56745[(" +Vvg” (713)
provides the bipotential equation

&7 = -Eay'0) - (1-v)V[

aT £
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or AA@z—EaTAOG—(l—u)AV‘. (714)

b) State of plane strain
- Solved with regard to displacements

Analogous to (7.11)

_1+v 0
AW—ﬁaT @‘ (715)

- Solved with regard to the stresses

In analogy to (714)

E

_ 0, 1-2v
AND = ——1_VaTA6

AV | (116)

7.5 Comparison of state of plane stress and state of plane
strain

Since many problems can be described in Cartesian coordinates, we would
like to list the notations for both two - dimensional states in these coordi-
nates again.

State of plane stress | State of plane strain

The stresses must fulfill the equilibrium conditions by analogy to (3.27a)

0% | Oy Ly
oX oy X !
(717)
T, +c)a 4 =
0X oy y

The boundary conditions (7.1, 7.2b) can be given in a mixed form

(o, cosa + Tay sma)|s =ty

(718a)

o _sina osa| =t
( vy S + Ty )s 40

or ug=u, , Vg =V,. (718b)
Here, equations (718a) are valid at points on S, where external loads are
acting with the components t_, and t,o per surface unit. For points on S at
which boundary displacements are given by the components u, and v,,
(718b) is valid. These quantities, but also the tractions may equal zero.
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For ©® = 0, the material laws (5.12) and (5.17) read

1 1 2
exxz—ﬁ(axx—yayy), exxzf[(l_” )axx—y(1+v)ayy],
P O =Lli(1-ve, -v(1+v)ay,], (719)
yy — E \yy xx /0 Eyy = E v yy xx 7 ’
_ 1
Txy =G Ty Txy =G Txy

and the corresponding compatibility condition according to (4.19) follows to
be

()2 e ()2 2

€ )
-+ - LS (720)
oy 00X dx Iy

One should pay attention to the fact that v,y is the technical shear strain
which differs from the tensorial quantity 7,5 by a factor of 2!
Substituting the material law (719) into (7.20) leads to

A(oy, t+o,)= A(Uxx+oyy)=
f f of of (721)
o1y 9 1
=_ xSy -1 (Zx 4y
(1+”)(ax+ay) +(1—1/)(ax+ay>‘

According to this, the sum of stresses as the first invariant of the stress
state is a harmonic function. If the external load is known at the whole
boundary, the stresses can be determined from (7.17), (718), and (721)
without considering the displacement field.
By introducing AIRY's stress function & according to (7.13)
3’
Opx = 2y +V

2 2
2°P 0 @

=22 v, 7 =- 722

2 xy X Ay (7.22)

yy dX

the equilibrium conditions (7.17) are identically fulfilled with

oV __ oV o_
ax x99y v
From (7.21) result
AAG + (1-v)AV =0 26g + 22 AV =0, (723)

If no volume forces are present, the biharmonic equations (7.23) take the
same form for both states
4 4 4
pog =22, 22 292 (724)
oX ox 9oy oy




B Plane load-bearing structures

B.1 Definitions — Formulas —Concepts

8 Disks

8.1 Definitions — Assumptions — Basic Equations

Disks are plane load-bearing structures the thicknesses t of which are
small in comparison with the other dimensions (Fig. 8.1) and which are
subjected to loads acting in the mid-plane. All stresses are assumed uni-
formly distributed over the thickness, i.e. they do not depend on z. We
therefore have a State of Plane Stress for which the most important basic
equations in Cartesian and in polar coordinates are summarized in the fol-
lowing, where the thickness of the disk is assumed to be constant.

a) Isotropic disk in Cartesian coordinates
Bipotential equation (disk equation) according to (7.14):
AAS = -Ea A°0 - (1-v)AV (8.1)
with  afox=()x , ofay=().y.
A=)+ ()yy LAPLACE operator due to (2.39) ,

é=2&(x,y) AIRY's stress function due to (7.22) ,

0 0 . . s
0 ="0(x,y) Temperature difference relative to the initial
stress—-free state ,

V=V(x,y) Potential of volume forces .
-< / > >
P = — - = /—/ 7 X
7 7 /Z J' , pX
Ve
7 7 f
/// fy X
px // 2.
- Z
- L e . —q / b
y Tt
fe——a — Fig. 8.1: Dimensions and loads on a disk

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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Stresses from derivatives of AIRY's stress function due to (7.22)
T =Pyt V 0y =0tV Ty =0, (82)

Strain - displacement equations

Exx TUx v &y =Vy o My TUy TV (83)

1 0 )
exxz—E-(oxx—uayy)+aT e,
1 0
eyyzi-(oyy_yaxx)_i_aT@’ ( (8'4)
1
‘ny_ETxy
or due to (5.13)
E 0 )
axxz——l_yz[exx+ueyy—(1+l/)aT @] ,
- _E 1 e (85)
UYY_I—yz[EYY+VExx_( +V)aT ] ) ’
Tay = G Yy

with the YOUNG s modulus E, the shear modulus G, and the POISSON's
ratio v.

b) Isotropic disk in polar coordinates

Bipotential equation using (2.49) with 9/3r = ( ).r,0/00 =( )ie

2 1
AA¢ = ¢,rrrr + ? é,rrr - ?(é,rr - 2¢,rr<ﬂ<ﬂ) +
1 1 _
+?(¢,r—2¢,ww)+7(4¢:«ow+¢rw«ww)_
(86)
0 1o lo
=—EaT( O+ 1 Ot 3 @’W)_
1 1
—(I-V)(",rr+?v,r+7V,w)-
Stresses by (713)
-1ls le 4+v
arr—? ,ww+T et (r,cp),
00y =P+ V(r,p), (87)
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Strain - displacement equations due to (4.15)

€rr =u,r’
~ u 1 fe Y (88)
eww__,w+? ’ Trp = o TV T T
Material law due to (512) and (5.13)
1 0
- =“§(‘7n -vo,,)tap @,
1 0
€op =—E(0ww_yarr)+aT e, (89)
_1
Yo =G Tre
or
E 0
o, =———1_V2[e"—kw:w—(l+V)c¢T o],
o ———-E—[e +ve, -(1+4+v)a 0@] (8.10)
ve T 12 Twe T T ’

Tro =G'yw.

8.2 Analytical solutions to the homogeneous bipotential
equation

a) Cartestan coordinates

— Approach with power series expansion
ik
¢=§§aikx'y (811)

with the free coefficients a,, and arbitrary integer exponents i and k
(including zero ).

Since according to (8.2) the stresses result from second derivatives of the
stress function, terms with

i+k<2
do not contribute. Power series with
i+k<4

fulfill the basic equation for arbitrary constants a; , because only deriva-
tives of fourth order occur in the bipotential equation. The most important
special cases are listed in Table 8.1.
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(x,¥)|| %xx Ty Ty comment
ay, y2 2a,, 0 0 constant tension in x —direction
a, Xy 0 0 -ay, constant shear
a0 X 0 2a,, 0 constant tension in y -direction
g, y3 6ay,y 0 0 pure bending moment M,
ay, X 0 6a,,x 0 pure bending moment M_

Table 8.1: States of stress in power approaches

For i+k>4

AAP = 0 is only fulfilled if single constants a,, satisfy the necessary coup-
ling conditions.

- Approach with FOURIER series ezpansion

Periodic functions
A load is given as a periodic function along a boundary, or it varies peri-
odically.

FOURIER expansion of a boundary load q(x),0 < x <!

Q(X)=ao+Zancosanx+ansinanx (8.12a)
n n
with a, =207 (n=1,2,3,...),
1 ¢ 2 ;
aozl_of'Q(X)dX , an=l—0fq(x)cosanxdx, (8.126)
2 | :
bn=—z—bfq(x)smanxdx.

Expansion of a stress function in FOURIER series in case of an odd func-
tion

Q(x,y):Z@n(y)sinanx. (813)

Transformation of the homogeneous bipotential equation leads to an ordi-
nary differential equation with constant coefficients for every & (y):

2 4 ~
@n'yyyy—2an¢n,yy+an¢n:0 , (dfdy = y). (8.14)
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Solutions to (8.14):

AmnY
Con€

®.(y)=

N

or 45,.(}’)=%(Ancoshany+Bnanycoshany+
an
+ C,sinha, y + D a ysinha,y).
Non -periodic functions

Load described by the FOURIER integral formula

q(x) = 1 T[cosaerfo;(f)cosa{df]da +
0 - oo

T

00 + o0
+ %J[sinax_fq(f)sinafdf]da.

— Approach with complex stress functions

(8.15)

(8.16)

Instead of the real variables x and y, the complex variable z=x+ iy and

its complex conjugate z = x — iy are introduced. Because of
1 - 1. —
x—7(2+z) , y——fl(z—z),

follow the derivatives

2
o _9 49 3_¥+23+6
9X 9z 0z’ ox: ozt 0207 = yz?’
2 2
o2y o, 0
dy ~ \oz 0z ! c)y2 Y 0297  y7?
and the LAPLACE operator
2 2 2
) ) 9
A=t oy T Youer

Approach for a stress function in complex notation (cf. [ B2, B5]):

8(2,7) = 3 [7¢(2) +2(2) + [$(2)dz + [ ¥ (7)d7]

(8.17)

(8.18)

Equations for determining states of plane stress and the displacements:

Ox + 0, =2(¢' +¢') =4Rep'(z),

Opy = Oy + 217, =2(Zp"" + ¥'),

2G(u+iv)=-z9' -9¢ + ko

(819)
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3 -

. v
Wlth K = m

for state of plane stress ,

k =3 -4v  for state of plane strain .

The superscript prime ' denotes derivatives with respect to z or Z. ¢ and ¥
are two arbitrary analytical functions by means of which all stresses and
displacements can be calculated.

GOURSAT already presented this solution at the turn of the century, and
KOLOSOV improved this procedure which was augmented and presented in
detail by MUSKHELISHVILI | B6].

b) Polar coordinates
- Azisymmetrical states of stress & = &(r)

Differential equation from (86) with d/dr=()r,V =0, ‘%9 =0

G e t 2 - —:5 s+ %Q,r =0. (820)
Solution: & = C, + C, 4 C, ln% + C, r’ ln% , (821)
where a denotes the reference length.

Stresses
Op=t®, , 0,,=8. , T,=0. (822)

— Radius-independent states of stress d=3(yp)

Differential equation from (86) with d/dyp = ( ).e

dsl(p‘p‘pw + 4¢:WP =0. (8.23)
Solution: & =C,p + C, + Cycos2¢ + C,sin2¢ . (8.24)
Stresses

orr=%d5,w y O, =0, 'rwz—(% anp),r' (8.25)
— Radiating states of stress Trp =0
Stress function @ =rg(y)+ h(r), (8.26a)

where h (1) denotes an axisymmetric state of stress according to (8.20).

Differential equation for g(¢)

80000 T 28,,, t8=0. (8.26b)

Solution: & = C;rcosp + C,rsing + Cyrpcosp + Cyrpsing . (8.27)
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Stresses due to (8.7)

o, .=0 T,=0. (8.28)

T v vy ’ Y

1 1
=72t 32,

- Non-azisymmetric states of stress

Further solutions are obtained from (86) by means of separation approach-
es of the form rcosn¢y (n > 2)[see Exercise B-8-4].

— Complezx stress function
. . . . . i®
Transformation of (8.19) into polar coordinates with z = x + iy = re'

yields
o, + 095 =4Req'(z),

Tgg = Oy + 2175 = 2(Z " +¢,)e2i19, (829)
2G(u+iv)=(-2p' -9 +kp)e ”

where u, v are the components of the displacements in the r- and % -direc-

tion, respectively (see [B.5]).

9 Plates

9.1 Definitions — Assumptions — Basic equations

A plate is a structure like a disk with small thickness t in comparison with
other dimensions. The plane which halves the plate thickness is called the
mid-plane. As shown in Fig. 9.1 a), the plate is subjected to surface loads p
perpendicular to the mid-plane. An arbitrary load is resolved vertically
and parallel to the surface. The in-plane forces can then be dealt with by
means of the disk theory (Ch. 8). The interest in this chapter is restricted
to the influence of the transverse loading on the plate. The thickness of the
plate is assumed constant in the following.

Y
L 7 X
RNy o
/” // z /«—Xy
¢ //i! /,/ y My7‘-w y =
4 i/ b
t - — - —- —-—-—- M)’x
I
v,V z,wY a) b)
lfe— q ———— =

Fig. 9.1: a) Dimensions and loads of a plate
b) Sign convention for stress resultants of a plate element
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Stresses due to (8.7)

o, .=0 T,=0. (8.28)

T v vy ’ Y

1 1
=72t 32,

- Non-azisymmetric states of stress

Further solutions are obtained from (86) by means of separation approach-
es of the form rcosn¢y (n > 2)[see Exercise B-8-4].

— Complezx stress function
Transformation of (8.19) into polar coordinates with z = x + iy = re’

yields
o, + 095 =4Req'(z),

ch—a"+2iTn,=2(E<p"+¢')e2w, (8.29)
2G(u+iv)=(-2p' -9 +kp)e ”

where u, v are the components of the displacements in the r- and % -direc-

tion, respectively (see [B.5]).

9 Plates

9.1 Definitions — Assumptions — Basic equations

A plate is a structure like a disk with small thickness t in comparison with
other dimensions. The plane which halves the plate thickness is called the
mid-plane. As shown in Fig. 9.1 a), the plate is subjected to surface loads p
perpendicular to the mid-plane. An arbitrary load is resolved vertically
and parallel to the surface. The in-plane forces can then be dealt with by
means of the disk theory (Ch. 8). The interest in this chapter is restricted
to the influence of the transverse loading on the plate. The thickness of the
plate is assumed constant in the following.

Y
L 7 X
RNy il
/” // z /«—Xy
¢ //V /,/ y My7‘-w y =
4 i/ b
t - — - —- —-—-—- M)’x
I
v,V z,wY a) b)
lfe— q ———— =

Fig. 9.1: a) Dimensions and loads of a plate
b) Sign convention for stress resultants of a plate element

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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a) Plates in Cartesian coordinates

— Shear —elastic, isotropic plate

Displacements of an arbitrary point P at a distance z from the mid-plane
(cross —sections remain plane, see Fig. 9.2):

u(x,y,z) =z¢,(x,y),
v(x,y,2) = 2%, (x,5), (91)
w(x,y,z) 2 w(x,y,z=0)
with the bending angles ¢, and 'l,by.
Strain - displacement relations from (4.24) with (91) (9/ox= ( )x,
ofoy =( )y)
Eax = Z%x x0Ty = (Pyy T 9542,
€y = 2%y Ty = ¥yt Wy (92)
€, =0, Vox = W T Yy -

Stress resultants (defined per unit length of a line y = const or x = const
in the plate mid - plane ):

+t/2 +1t/2
M,, = J 0., 2dz, M, = J oy,2dz  bending moments )
-t/2 -t/2
+t/2
M,, =M, = J. Tey 242 torsional moments (9.3a)
-i/2
+t/2 +t/2
Q, = j T,z 4% , Q = J. Ty 42 transverse shear )
iy ~i/2 forces

The sign convention consistent with (9.3a) for the stress resultants is shown
in Fig. 9.1 b).

Definitions (9.3a) with the material law (512) and (9.2) lead to the stress
resultant - deformation relations

M, =K(¢, x+v¥,,), )
Myy = K(’/’y,y + V'l’x,x)»
1-v
Mxy = Myx = 2 K(¢y,x + d)x,y) ) (93b)

Q, =Gt (¥, + W)
Q, =Gt (¢, +w,)

. . Et3
with the plate stiffness K =

—————~ , the shear modulus G, and the
shear thickness t <'t. 12(1-v7)
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i ﬂéq

Fig. 9.2: Deformation of a plate in
a cut y = const

” deformed

Equilibrium conditions

Qi+ Q,y+p =0,
Myxt My, Qe =0, (94)
Myyx + Myyy = Qy =

The relations (9.3a) and (9.4) result in eight equations for the eight un-
knowns (five stress resultants, three deformation quantities).

Reduction of the equations

The combinations
S=9,  t ¥, » Y=Y Yuy (95)

are the basis for the derivatives (see [B.5]):

__¢x+é%(qx—igiww)

(96)
K 1-v
W’y=~¢y+6‘€(¢,y+ 3 W,x)'

This yields three equations for the three unknown functions w, ¢ and ¥

KA S
AP - -Aw

-P
K
Gt

s

Il

(97)
AW -k ¥ = 0

with the shear influence factor
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By means of an additional auxiliary function

_. K
w,=w G_ts¢ (98)

two uncoupled equations are derived

KoaAw, =p
v-Law=0 |. (99)

Hereby, a partial differential problem of the sixth order is generated. Three
quantities can be prescribed at each boundary [B.5].

— Shear-rigid, isotropic plates with temperature gradient

For such plates the shear stiffness Gt, — oo, i.e. the terms multiplied by
K/G ts can be neglected. From (96) follows:

Ve ="W,, P, =-w, . (9.10)

This means that after deformation a normal to the mid-plane remains a
normal. Thus, no shear deformation occurs in cross direction (7

y2 =V T
0) => KIRCHHOFF s Plate Theory.
Material law - stress resultant-displacement equations due to (9.3)
M, = —K[w,xx tvw o+ (1+ V)aTl(-)] ,

MYY

I

_K[w,yy+yw,xx+(1+V)aT19]’ (9.11)

M, =-K(1-v)w,

Xy y

with the constant temperature gradient '9(x,y) through the thickness of
the plate.

Transverse shear forces from (94)

Q =-K(aw), - (1+v)agK'6 ,
. (912)
Q, =-K(aw),-(1+v)arK'O .

Note: As the shear deformation vanishes, no law of elasticity for Q, and
Qy as in (9.3b) exists.

Basic equation of KIRCHHOFF ’s plate theory

KAAw =p-ap(1+v)KA'E |. (918)

The above equation is a partial differential equation of fourth order. At
each boundary only two boundary conditions can be fulfilled.
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Boundary conditions at a boundary x = const:

- Free boundary

M,=0 or w'xx+uw,yy+(1+u)aT1@:0, (914a)
o m . (9.14)
or W,xxx+(2‘”)“’,yyx+(1+V)aT 6e,=0,
where 6x=—K[w'xxx+(2—z/)wayx+(1+y)aT]@,x] (9.14c)

is one of the KIRCHHOFF s effective transverse shear forces.
- Simply supported boundary
, M =0 (9.150)

XX

w=0
or w=0 , Aw=0. (9.15b)
Egs. (9.15b) are called NAVIER s boundary conditions.
- Clamped boundary

w=0 , w_=0. (9.16)

Analogous boundary conditions can be formulated for a boundary y = const.

— Corner force

A=2Mxy=—2K(1—z/)w,xy. (917)
Determination of maximum stresses
M M M
= XX = —_yy = —Xr .
XXmax +6 t2 ’ UYYmax * 6 t2 ’ Tmeax +6 t2 : (918)

~ Transversely vibrating isotropic plate

Differential equation for free transverse vibrations

2

KAAw:—,f;‘;’ , (919)
T

where 7 denotes time and u = gt denotes the mass per unit plate area (o =
mass density of the plate material).

Product approach due to D. BERNOULLI for the calculation of natural vi-
brations:

w=w(x,y)  T(7). (920)
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Differential equation for the time-independent vibration mode W (x,y):
AAw =N (921)

For an overall simply supported plate as example, the natural angular fre-
quencies w_ are calculated from

2
4 KWy,
Amn - K

Refer to the shear-rigid plate (9.14) to (916) for the boundary conditions
to (9.21).

— Shear -rigid, orthotropic plate
Material law - stress resultant - deformation equations according to (9.11)

M, = _Kx(w,xx + Vyw,yy) ’

(9.22a)

Myy = —Ky(w'yy + wa,xx) , MXy = —2nyw’x

y
with the stiffnesses

E_t E t }

G, _t
=—F)"* = = 2L 9.22b
K,y 12(1-vv,) Ky 12@1—quy) Ky 12 (9220)

The equilibrium conditions are the same as in the case of the isotropic
plate (see (9.4b)).

HUBER s differential equation

Kx w,xxxx + 2 Hw,xxyy + Ky wryyyy = p (9.23)
with the effective torsional stiffness
2H=4K,, +v K +v K . (9.24)
b) Plates in polar coordinates
— Shear-rigid, isotropic circular plates ) )
_ (r I
Differential equation due to (2.40) and (2.49) with o/or = r, 9/p = 1o

1 1 2
AAw = (w,rr+Tw,r+ﬁw,¢up) =

1 11 11
=-PK—aT(1+V)( @'"+T 9,r+—r§ 9:<ﬂ<ﬂ)' (9.25)
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Material law - stress resultant—displacement relations

M = —K[w'rr + I/(%W,r + %w,“w) + (1 + V)aTl(-D] ,
MW’:—K[%WJ+%W,W’+z/w'rr+(1+V)aT1@], (9.26)
M, =-(1- V)K(lTw,w —%w,(p) .

Effective transverse shear forces

6r=—K[(Aw)lr+1_ry(lw L

— it - l _L
Qw = K[ (AW),‘p + (1 V)( T wyl"P r2 wl‘P),r + (927b)

+ (1 + V)aT<l@,rsin<p - IOIwL:(p)] .

- Transversely vibrating circular plates

Differential equation for the time-independent vibration mode w(r,¢) ac-
cording to (9.21) [B.8, B.9]

2 2
):X‘W with A‘*:% . (9.28)

Separation of the vibration mode

w(r,p)=R(r)  &(p)= iRn(r)cosntp (9.29)

n=0

—— BESSEL s differential equations:
d;lj“ % dj;“ + (,\2 —’r‘—:)Rn =0 , (9.80a)
d;l}. oL din _(,\2+Ir1_:)Rn:O . (9.306)

This type of differential equation is dealt with in [B.3].
c) Plates in curvilinear coordinates
Equilibrium conditions
Q°l, +p =0,
} (9.81)

M7, -Q =0,
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Material law - stress resultant-displacement relations
of el 1
 M¥=-KE*""(w|, + ara, @) (9.32)
with

K plate stiffness,

3,5 a%? components of the metric tensor in the mid - plane of the plate,

‘o (¢*) temperature gradient,

aff 6

grprs 1oV (a*" 2 am) +va a' plane elasticity tensor.

2
Differential equation

KAAw:p—aT(1+V)KA16 (918)

with the LAPLACE operator A given by (2.39) in terms of the applied cur-
vilinear coordinates.

Energy expressions
- Cartesian coordinates (9/ox = ( )x, 3/dy = ( )y) from (6.16a) [A9]

)

+

1 2 2 2
I, = JJ{?K[W'XX +w o+ 2(1- x/)w'xy + 2uwlxxw,yy]

+Kap(l+v)(w, + w’yy)lé)}dxdy

or (9.38)
1 2

= [ [ 5 K w0y = 201 = 0) (W = w5 +

+Kap(l+v)(w, + w’yy)le}dxdy.

- Polar coordinates (9/or = ( )r, /0@ = ( )p)
I :ff{lK[wz +2v(w_w +ilw o w ) +
i 2 ) IT JIT 0 r IT T

2 2 1 2
+(1—V)(W,W—Tw’ww'<p+—2w )+ (9.%)

+ (wiw + %w,«ww,r + %wzr)” rdedr.

- Curvilinear coordinates (with a= |aaﬁ‘)

I, = fj(_li_KE*aﬁw5w|aﬁw‘76 + aTKaaﬁ E*aﬁ16W|751@)ﬁd§1 d£2 .
(9.85)
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9.2 Analytical solutions for shear-rigid plates
a) Cartesian coordinates

- Simply supported plate strip (9foy =0 , 9fox= (), )

_ Pp(x)
K-

Differential equation from (9.13) AAW =W oy =

4
. P . NTX
Solution: w=235_°"1_sin 9.36
K2 (an) a (9.56)
for p(x):ansinI”rx
n
a
with pn=%Jp(X)sin“”Xd . (n=1,3,5,...)
0

— Rectangular plate with simply supported boundaries ( dimensions a, b;
Fig. 9.3)

Differential equation from (9.13) (9/ox = (), , 9foy =w )

_p(x,y)

DMw = w + 2w + = K

1XXXX 1XXYY w, yyyy

Solution : Double series expansion according to NAVIER

W(X,}’)ZZZWmnsinm:xsinnTTy , (m,n=1,2,3,...).
m n

_ . mTX . N7y
Load p(x,y)= ;mensm S sin—p (9.37)
Expansion coefficients w__ = Prn 5 - (9.38a)
mn K4[(m)2+(_1_1_)2]
T\ b
I :-Q---‘--V -------- : ‘ { —_— 2d —
E ‘ | 2d Po(x.y)
b : s YYYYVY .
! |1 A 2=y
L o SN o 235
e« b—
—— U —> -
«————— 3 — 3
Yy

Fig. 9.3: Plate under a uniformly distributed load over a rectangular sub-
domain
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A plate subjected to a uniformly distributed load p, over a rectangular sub-
domain as shown in Fig. 9.3 will be considered as an example of applica-
tion.

We first expand the constant load p, in the y—direction

P(y) = D p,sin *pY
n

with
b v+d
2 . L 2 .. nm
pnz—g_[posm————nbydyzg P, Sin bydy=
0 v=d
+d
_ 2 b ( n7ry)v _
=5 nx Pol ~cos = =
v-d
_oPp, . nmv . nwd _
—2n7r251n 5 Sin g (n=1,2,3,...).

Ensuing, this p(y) is expanded in the x-direction

P(X,Y)‘:Zmensin m;rxsin n;ry (9.37)
m n

a
with  p_ = %J.pn sin 22X dx
0

The calculation yields

Po . mmu . mmc . nwmv . nwd
- 9.98b
Ppn = 16 — sin—— sin——sin—p—sin— ( )

(m,n=1,2,3,...).
Herewith, we obtain with (9.36b)

w:ZZ Pmn ; 5 sin m:xsinnvry. (9.39)
m n K m

b

Two special cases:

e Fullload —> c=u=a/2 , d=v=>b/2

It follows that: Ppp = 16—

16 1
w = pg ZZ 2sinmﬂ'xsin n7bry
Kr ‘&% m m 2 a
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Herewith, for a quadratric plate (b = a) the maximum deflection (found at
the centre ) becomes

aa)_16P034(1 11 1 )
4 300 300

wmuzw(?,? = TKat +m—...
One can discern a fast convergence, particularly as the higher terms have
alternating signs.
o Single load F at the point u,v
We extend the expansion coefficients

. mwmc _._nwd

=== sin——
=4 4cd sinmﬂ'usin nry ¥ b
Pmn = 3% Py a b

m7wc nwd

a b

in such a way that the rectangle can be reduced to a point. With the limit-
ing value
lim SiRKC lim SIRA d

=1 , =1
c—»0 KC d—o pd

and lim4cdp, =F,

c—0
d— 0
we obtain pmn::—g—sinm:usin n;rv (m,n=1,2,3,...).

~ Plates with two parallel, simply supported boundaries and other bound-
aries arbitrary

Differential equation —— (913).

Solution approach according to LEVY:

w(x,y):an(y)sinn:X. (940)

Transformation of (913) into an ordinary differential equation with con-
stant coefficients (d/dy = ( )y ):

(¥ )y~ 2(2E Y w(v),, + () wa(v) = 2g(y).  (941)

Homogeneous solution :

_ nrTy . . nTy
wh—Z(Ancosh Y + B, sinh 2 +

(942)

n

+C BT osh 2TY 4 D nwysinhnry)sinnvrx.
a a n 3 a a
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— Plates with arbitrarily supported boundaries

If the surface load can be considered as a product similar to (9.37), closed
form solutions for plates with mixed supports can still be found. We are
going to explain the solution approach by the example of an overall clamp-
ed plate according to Fig. 9.4.

Since no solution is known for the overall clamped plate which fulfills both
the differential equation and the boundary conditions, we separate the pro-
blem into the following three subproblems according to usual methods of
structural engineering, and obtain the solution using the superposition prin-
ciple:

"0” The overall simply supported plate under uniformly distributed load
with the solution w,, following from (9.89).

"” An overall simply supported plate with a yet unknown moment distri-
bution Mxxl — solution w,.

"9” An overall simply supported plate with a yet unknown moment distri-
bution M, —— solution w,.
yy2 2
From the geometric boundary conditions — the bending angles have to van-
ish at the supported boundaries in the superposition, i.e.,

a

o, V0 Wt Wt W, =0,
b (948)
x,ii : Wo,y T Wiy T W, =0.

From (9.43) follow the previously unknown moment distributions, and from
W =w,+ w, +Ww,

we obtain the general solution.

In case of non-symmetrical support the partial solutions become more
complicated and the number of geometric boundary conditions increases.
Herewith, a solution in closed form can be only theoretically established at
the expense of more work. Thus, the use of an energy method would be
more effective [ B.8 ]

T
i
Vi

llOll " 1 "

Fig. 9.4: Plate with all edges clamped
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- Orthotropic plates [B.S, B.9]

From the series expansion w, = ZCm '™ sin TX follows the char-
acteristic equation m
mm \¢ 2 (mm \2 4
K (BE) - omal (B 4+ K 0% =0. (944)

With the four roots

Mg gg0 = E 00 < (H /E-KK ) (945)

y

the solution procedure depends on the radicand. We distinguish between
three types of plates:

~

1. Type: H > K, K, = plate of high stiffness against torsion.

Since the bending stiffnesses are always positive, the inner root is less than
H. Hence, all four roots are real. The solution is valid for K (or K ) = 0.
This corresponds to a plate with a negligible bending stiffness in the x—(or
y—) direction. This assumption is valid if the plate is of very high stiffness,
which may be achieved by means of box-type ribs in the y—(or x-) direc-
tion (Fig. 9.5a).

2. Type: H = K,K, = approximation according to (9.35).

We find the double roots

A =)\ =BT H _mmy x A =)\ =-m7 x

This type occurs with a crosswise reinforced concrete plate as shown in Fig.
9.5b.

Fig. 9.5: Orthotropic plate profiles
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3. Type: H < K, Ky = plate of low stiffness against torsion.

In this case, the roots are complex conjugate

Mg gsa = i%’/%y-(ﬂ +i/KK -H ).

For negligibly low stiffness against torsion H =~ 0 we obtain

K 1 K
_ ., mmw . x _,mm1l N4 X
Mmasa =5 YEIY R =5 Zﬁ(lil)]/ K

y

This solution occurs, e.g. in cases of plates stiffened by bending profiles that
have very low torsional stiffness ( Fig. 9.5¢).

b) Polar coordinates

- Azisymmetrical load case

The loads and boundary conditions are independent of ¢ — p = p(r),
w=w(r).

From (9.25) we obtain EULER s differential equation

W + %w,", - % W+ %w,r = ﬂKiz . (946)
Homogeneous solution :
wh=C0+Clr2+C21n§+C3r21n% (947)
with a suitable reference length a.
- Non-symmetrical load case
Load p(r,cp):g(r)ancosntp , (n integer) . (948)
n

Expansion approach for deflection  w(r,p) = Z w_ (r)cosng . (949)
n

Transformation of (9.25) into an ordinary differential equation:

& 14 1’y 1
(F-’rm—?) wn=T{—png(r). (9'50)
n=20: solution (947) for the axisymmetrical load case ,
C
n=1:  wy; =Cr+—=+Cr +Crln_, (951a)

n>2: Wi =Clnrn+Can_n+C3nr2+n+C4nr2-n. (9.51b)
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10 Coupled disk—plate problems
10.1 Isotropic, plane structures with large displacements
~ Basic equations

In the previous chapters we considered elastic structures with small dis-
placements. This simplifying assumption is not always fulfilled; especially
in cases of thin-walled structures subjected to larger compressive loads, the
deformations may become large compared with the thickness. The equilibri-
um conditions must then be formulated for the deformed state of the struc-
ture and terms of higher order must be taken into account in the strain-
deformation relations. This corresponds to the geometrical non-linearity.
Here, the material law is considered to be linear. Furthermore, the lemma
of mass conservation (g dV = pdV) is assumed to remain valid as well as
equality of the volume forces in the deformed and undeformed state (f =
f). The stress-free initial state (LAGRANGE formulation) is taken as a
basis. With these assumptions, the equilibrium conditions read as follows
[B1, B2, B4]:

(83 + V[ )™ ][+t =0. (10.1)

The strain-displacement relations have been introduced in Chapter 4, and
we obtain according to (4.12a)

Yy = %(vilj + vl + a vil;) - (10.2)

As the strains are assumed to be very small in comparison with the defor-
mations, non-linear terms can be neglected in the compatibility conditions.
The six equations of the material law are adopted in their usual form (5.5a)
or (56a).

Fig. 10.1: Plane load-bearing structure under temperature and surface loads

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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In Chapters 8 and 9, disks and plates were considered separately because
their loads were assumed to act either in the mid -plane or perpendicular
to the mid - plane of the structure. Now, we extend our consideration to the
coupled disk-plate problem. Besides, it will be assumed that the plane
structure is subjected to an arbitrary temperature field ( Fig. 10.1)

O(€,¢)="0(£)+¢o'(¢) (103)
with  °0(€) =1 [6,(¢%) + 6,(£)],
'0(€) =1 [6,(6) - 0,(6)]

and an external surface load p(¢”). At its boundaries, it must satisfy pre-
scribed boundary conditions. In the following, we will restrict ourselves to
the shear-rigid plane structure, but assume large deformations.

Treatment of the problem by means of the HELLINGER - REISSNER energy
functional:

— Stress resultants — tensors

In addition to the moment tensor M®P, we introduce the tensor of in-plane
forces N* (membrane tensor ). According to Fig. 101 with ¢ = (, they
read:

+% +4
NP = j *Pac , M¥ = J Pedc. (10.4)
4 3

— Strain-displacement equations

A plane load -bearing structure is subjected to strains °'ya5 and distortions
l’yaﬁ of the mid - plane. The total strains at an arbitrary point can be super-
posed from these two parts. According to (10.2), the following strain-dis-
placements relations are valid

0 1
Yap = 7(va|ﬁ + vﬁla T W w'ﬁ) ‘ (1052)

Assuming v_ < w, only the non-linear term w,, w,5 is taken into considera-
tion in (10.5a).

The distortion of the mid-plane 'y,4 is obtained from the relations of the
shear -rigid plate, where the cross sectional rotations are expressed by the
angles of the bending surface w,, ( KIRCHHOFF's normal hypothesis ). The
following relation is valid for the distortion of the shear-rigid plate

1
Vapg = = Wlap - (10.5b)



10.1 Isotropic, plane structures with large deformations 115

With %y, and 7,5 we form the total strain Vop

0 1
Yo = Yap T € Vop - (10.5¢)
— Material law

The material law is used in the form for a state of plane stress of the
body (7,3 ~ 0). With the temperature field (10.3) and the strain tensor
components (10.5) we obtain the following relations for the stress resul-
tants

N =tE¥" (% ; - apa ;0), (10.62)
aff t3 affv6 1 1
M =33 E (5~ apa, ©), (10.6b)

where, after substitution of (10.5b), the equation (10.6b) becomes identical
with (9.82) and with the elasticity tensor E*#7¢ defined in connection with
(9.82).

Variational functional

We shall now derive the differential equations and boundary conditions for
the coupled disk-plate problem by means of an energy functional without
work contributions from volume forces, boundary loads, and boundary dis-
placements [ ET2]. If we substitute the deformation energy U of (6.16a) into
(6.29) for the three-dimensional body, then first follows

II; = J‘[‘r‘.l’yij _3T1J(’Yij + aTgijO)]dV (10.7a)
\%
and when regarding the plane structure as a two-dimensional body

o 1 o
.IIR'zJ-{‘rﬁ,),mﬁ_7 ﬁ(’yaﬁ+aTgaﬁ9)}dV (107b)
\'%

In (10.7b) we have omitted all terms with 733 because of the thin-walled
structure (733 ~ 0) and with +y,; because of the shear-rigid behaviour (7ag
~ 0) of the plane structure. By introducing into (10.75) the stress resultants
according to (10.4) and the temperature field according to (10.3), the func-
tional becomes
_ af 0 af 1 11 aff \1Y6

I = I{N Vop T M Yap = 5 TDaﬁ%N N" +
A (10.8)
12
3

+ 22Dy s MP MY + 20, N2% + 2aTM§1@]}dA :
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With

Daﬁ16 = i aﬁ'y& oy 35 1 2as a‘p»y) T Vasgda

[§1+V§(a

and the plate stiffness K defined by (9.3), the functional takes the form

t
= [ {37 8l (s + vl t wawg) +
1,2

+ %E*aﬂw w|aﬁw|16 +Kaga,, Exf7 w|7616 - (10.9a)

g 0, ate]

Abbreviated the functional (10.9a) has the form
Ty = [F(E e vl w, W wlapi 0l ) A (109b)
A

where the three functions v, ,w,® are unknown.

The external potential IT, in (6.18b) for the work of the surface loads p (£*)
is given by

He=-W=—JpwdA. (10.10)
A
The total potential is now superposed from (10.9a) and (10.10)
O=I, + 1= -W. (10.11)

In Cartesian coordinates the total potential of the coupled disk- plate pro-
blem is expressed as

II= J-'[[ (V) +%w )+ 8, (ulx+—;—w;i)—

-&

'xy(u +v,tww ) +

K[ 2 2 2

+ 7[ w T Wt 2(1- 1/)w,xy + 2Vw,xxw,yy] +

. (10.12)
+ Kap (1 +v)(w ot W)@ -

2
P e e 21402 |-

—tag (8, + Qlyy)()@}dxdy - [[pwdxdy .



10.1 Isotropic, plane structures with large deformations 117

From the stationarity condition 611 = 0 (see (6.20)) in anology with (6.35)
now, the equilibrium condition (10.13a), the compatibility condition (10.135)
and the boundary conditions follow as :

VON KARMAN ’s differential equations

KAAw=p-Kap(l+v)A'0 +t0*(w,8) , (10.13a)

DAG = -Eaph’0 - 2 0% (w,w) (10.18b)

or in index notation (see [B1, B.2, B8])

Kw|"

6 =P-Kay(1+v)'0]) + e w|,, 9| (10.14a)

aff !

o =-Bag'efl -5 ul, vl (10148

(10.13a) = equilibrium condition of the forces in the z-direction in cases of
large deformations,

(10.186) = compatibility condition of the coupled disk - plate problem .

The operator ¢ in (10.18) is defined in Cartesian coordinates by

O (£,8) = £ 48,0y ~ 28 4 By + £y B - (10.15)
Boundary conditions for boundaries y = const or x = const:
- Simply supported boundary

w=0 , M,=0 o w=0, M =0. (10.16a)
- Clamped boundary

w=0 , w =0 o w=0 , w =0. (10.16b)
— Free boundary

M =0 Ntk Bt % = (10.16¢c)

or Myy=0 , nywlx+Nyyw’y+Qy=0.

Note: Due to the equilibrium considerations for the deformed element, the
transverse force conditions contain additional contributions from in-
plane compressive and shear forces in (10.16c) .
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stable
w#0

stable unstable

w=0 N w=0 N

crit
Fig. 10.2: Plate under in-plane com- Fig. 10.3: Characteristics of a
pressive and shear forces bifurcation problem

Special case: Basic equation for plate buckling

Forp =0, !9 = 0 and the operator fully written, the differential equation
(10.13a) reads

KAbw=t(S w  +& w. -28 W

vy , (10.17)

Xy )
If we introduce, by means of (8.2), the in - plane forces Ny = t oy, and Ny =
toy, as well as the shearing force N,y, = t7,, for the derivatives of the
stress function, and if we take the compressive forces to be positive, we ob-
tain the following differential equation for plate buckling:

KAaow + N (x,y)w, + N (x,y)w, + 2N, (xy)w,, =0 |. (10.18)

’

The solution of this equation leads to a bifurcation at a critical load ( Fig.
10.3)

10.2 Load-bearing structures made of composite materials

The use of structures made of composite materials will be steadily increas-
ing because of the possibility of tailoring their characteristics. Thus, very
demanding technical requirements can be specified for composites, which
cannot be achieved with conventional single - component materials.

Our main interest here will be directed towards composite materials with
glass and carbon fibres. It is characteristic for a composite material ( Fig.
10.4) that the fibre components of a single layer (lamina) are all oriented
in the same direction and embedded in a matrix material. We call such a
layer a unidirectional layer or, in short, a UD-layer. Characteristic parame-
ters of a UD-layer ( Fig. 10.4) are
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fibre orientation

Fig. 10.4: Multilayer composite consisting of stacked single layers

— layer thicknesses t, ,
— fibre angles o ,
— volume percentage of the fibres ¢p

and all material data for matrix and fibre materials.

Further to the orthotropic plate (Ch. 9.1) we shall now consider an aniso-
tropic, plane structure made up as a laminate consisting of several layers

Fig. 10.5). Here, strains %y, and distortions ? are treated together as
g of Yaop
discussed in 10.1.

Material law - stress resultant-strain relations

For a plane structure made up of several layers, we assume a linear stress-
strain behaviour as was done for the previous isotropic plane structures. In
case of a composite structure, however, the stress curve exhibits certain dis-
continuities at the boundaries between the single layers; here, the stress re-

mid-plane

N+ NI+

Fig. 10.5: Plate made of several
i layers
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sultants in the single layers remain constant. For the laminate itself they
depend on the thickness coordinate ¢, because the components of the tensor
of elasticity differ from one layer to another. The stress resultants of the
laminate follow from the equilibrium conditions by means of summation of
the stress resultants of all single layers [ B.11]:

0 1
= DN O By N
1
- ng"" = BP0+ Ky - MY (1019)
_ (=% a3ﬁ3
= 2.Q7 =5, )
k
: 75}
with aﬁuu Z Aaﬁyu , aﬁuu Z Ba ;u/
aﬁuu afuv oz3ﬁ3 a3ﬁ3
K S
Z Z (10.20)
af afuv 0 afuv 1
N@ - %(kA k@uv + kB k@uu) ’
of afuv 0 afuv 1
MY = ;(kB 0, + K*10,.).

For a physical interpretation of the relations between stress resultants and
strains we write (10.19) with (10.20) in an appropriate symbolic notation:

N A B o 9 N
M(=|B K o||'y|-|M, (1021)
Q 0 0 S|, (i}
with
(A, A, A, ]
11 12 13
A = A A matrix of membrane stiffnesses
22 ‘i3 (Aij _ Aji),
| sym. Ay |
(K, K, K
n P2 13
K = K K W matrix of bending stiffnesses
22 23 (K, = K,),
| sSym. K3 | j j
By, B, By ]
B = B B matrix of couple stiffnesses
22 23 (B, = B.),
| sym. B, j i
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s = [ Si Sy matrix of shear stiffnesses

sym. S22 (Sij = Sji),
N = [Ny, Ny, Npo vector of in-plane disk ( membrane ) forces,
M’ = (M, M,,,M,,] vector of plate moments,
QT = {leQz] vector of shear forces,
ho = [511 ,522,512] vector of strains,
1T . .
P ={KyyrKgg, K] vector of distortions,
‘7T = ['yl,'yz] vector of shear deformations.

For calculation of the matrix components we need the components of the
elasticity matrix E for a single layer, which we obtain from a transforma-
tion according to (5.21) presented in matrix notation

T
E=,T.E,T (10.22a)
with
[ 2 . 2 .
cos” oy sin” oy s1n2c¥k
T = sin’ o coszozk -sin2q |, (10.22b)
h—%sinZozk —;—sin2ak cos 2 o
E. Vary By 0
1= vygivory 1= vigiVoip
B = vig Eg E,. Elasticity matrix of
0 a UD-layer (5.20).
1=vig vy 1= vyg Vg yer (5.20)
L 0 0 Gy |

The material parameters can be determined by means of the relations by
TSAI and HAHN [ B.10, B.11].

As (10.21) shows, disk and plate actions occur coupled in a plane structure
made of composite material. In addition, as a result of the transformation,
the single components of the stiffness matrix depend on the fibre angle a,.
The components of the submatrices in (10.21) therefore are based on the
laminate design and the fibre orientation.
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Strain-displacement equations according to (10.5c)

0 -1
Yopg = Yap T ¢ Vap

0

with the strains Vap = %(Va|ﬁ + vﬁla)

1

and the distortions Vap = —;—(¢a|ﬁ + 1/)ﬁ|a) .

Shear deformation

0 _1
Va3 = 7701

with vy, =19, + wla

and v in-plane displacements of the mid-surface ,

a

Y, bending angles ,

w displacement perpendicular to the mid-surface .

Equilibrium conditions for the undeformed state

From (326a) N*|_ +p° =0 , (1t =N7)

From (9.31) Q, +p =0,

Mdﬁlﬁ _ Qa —0

(10.23)

(10.24)

(10.25)

(10.96)

} (10.27)

In (10.21), (10.23) and (10.25) the strains are expressed by means of defor-
mations. Substituting these relations into (10.26) and (10.27) then leads to a
system of five coupled differential equations for the unknown deformations
V4, W and for the angles 1, of rotations of the cross section [B.7, B.10,

B11].



C.2 Exercises

Exercise C-11-1:

A circular conical surface constitutes a
special case of an elliptic conical sur-
face, and belongs to those conical sur-
faces that can be described by moving
a generatrix (parameter) along a di-
rectrix y () (circle with radius a) pa-
rallel to the x!,x?-plane (see Fig. C-1).
The position vector r of a point P on
the surface reads in parametric pre-
sentation:

r=r(s,%)= ssinacosde + x/

ssinasinde, + . .
+ 2 Fig. C-1: Circular conical surface
+ scosae,

with s,? GAUSSIAN parameters ,
a = const  semi-angle of a cone .

Determine
a) the fundamental quantities of first and second order ,

b) the equilibrium conditions for the membrane theory of a circular coni-
cal shell.

Solution:
a) Fundamental quantity of first order - surface tensors

By means of the given parametric representation of a circular conical surface
s sin a cos 9
r(s,3) =|ssinasin$ (1)
s cos o

we determine from (11.10) the covariant base vectors :

__or _

1 2
o 2 T, where ' —> s ,E°— &

b

It then follows

sin o cos & —ssin o sin 9
a,=r, =|sinasind| , a,=r y=| ssinacosd | . (2a,b)

/8 '
cos o 0
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By means of (2a,b) and according to (11.11), the covariant components of the sur-
face tensor ( first fundamental form for the surface) are calculated as:

3, = 8, g — a,=a -a =1,

a - a, = s?gin?a

22 = 8 &

am:al-az:O

The covariant surface tensor thus reads :

(aaﬁ>=[; . ] (3a)

s“sin
and the determinant due to (11.12)

2sina . (3b)

2= Jagy| =5

The diagonal form of (3a) (a;, = 0) implies that the parametric lines are mutu-
ally perpendicular (orthogonal mesh). The contravariant surface tensor can be
obtained by forming the reciprocal values of the elements of the principal
diagonal, i.e.

0

1
(%) = (agg) " = | ¢ S (4)

b) Fundamental quantity of second order - curvature tensor

The curvature tensor constitutes the second fundamental form for the surface.
The single components are calculated by means of (11.18) :

b = [aa:é’al’aZ]
aff }/;

with the derivatives

0 —ssin o cos 9
C)al aaz . .
a,,=>3; = 0 » B 33 = —-ssin a sind )
0 0
2a, 2a, sTnasm«‘)
‘1'2=.2"=T\9_= 3 = sin a cos 9
0

One obtains the components of the curvature tensor by formulating the scalar
triple products:

0 0 0
1

by, =—= sin o cos 9 sin « sin 9 cosa [ =0,
ssin a

—ssin o sin 9 s sin a cos 9 0
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-ssinacos® —sinasind 0
1 . . . .
b22 = — sin o cos 9 sin a sin 9 cosa | =ssinacosa,
ssin a
—ssin asin 9 s 8in a cos 9 0
—ssin a sin 9 sin o cos & 0
1 . . .
b12 = n sin o cos 9 sin a sin 9 cosa (=0
s sin o
~ssin asin 9 s sin o cos 9 0

The curvature tensor thus reads

§ §in o Cos A

(baﬁ>=[§ ’ } (s2)

with the determinant b = lbaﬁl =0. (5b)

The form of the fundamental quantities allows us to draw the following con-
clusions :

a;, = 0 and b, = 0 mean that the parametric lines are simultaneously lines
of principal curvature.

b,; = 0 implies that the curvature is zero along the parametric line s.

The curvature at a point P of the surface can be calculated according to (11.20)

1 bapdf®d® 1 1 by
R a 1B =R - a3, O
aaﬁdi dE Rl R. 1 (6)
1 1 bg 1
== =z =-———=-—cota .
R, R, ay, 5

The two invariants describe the curvature properties of a surface (see (11.22a,b)):

1
H= 73"43 b.s mean curvature ,

K=2 GAUSSIAN curvature .

This yields

Hz—%scota, (7a)
K=0. (m)
Surfaces with an equal measure of GAUSSIAN curvature K = const can be

mapped isometrically onto each other, ie. they are developable on each other.
Owing to the fact that K = 0 due to (7b), the circular conical surface can be
developed on the plane, just as is the case with any cylindrical surface.
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b) Equilibrium conditions for the membrane theory of a circular conical shell
We proceed from the equations (12.1)
NP ot pp =0,

ap —
N baﬁ +p=20.
As an example, the first equilibrium condition (8 = 1), ie.,
N11|1 " an2 +pt=0, (8a)

shall be written in expanded form. The resultant normal forces N N?! are ten-
sors of the second order, and their covariant derivatives are to be formed accord-
ing to (2.35b) :

1

1 1 ol 1 1o 2 2 ol 1 a2 1 _
N+ TN + T N® 4+ N°, + Ty N 4+ T, N¥ +p =0. (8b)

In a first step, the CHRISTOFFEL symbols of the surface have to be determined,
using (11.23a) :

(3087 T 29006 = 3ppie) -
One thus obtains the following CHRISTOFFEL symbols:

(rzlzﬂ)zl:g —ssi(:lztx] ’ (riﬁ)=[17s 1{)5]' (9a,b)

By substituting ( 9a,b ) into ( 8b ) one obtains:

N+ N 4 LNY-ssinfaN? 4 pl=0. (10)

Finally, the physical components are introduced into ( 10 )by (2.17):

N+ = N, = N (11a)
N*ueNM,: N2ssina , (11b)
N*¥?2 = Nyo = NZ2s2gina . (11c)

From (10) and (11) now follows

()N“ 9 Nsﬂ
s + ﬁ(

1 1 -
)+—5_Nss_?N1919+ps =0

s sin «
ONg 1 O Ngs _
—_ s——as +N“+sina Y —1‘11,1,+sps 0
(12)
or (sN)+ L N -N,,+s =0
8/ T sina 890 99 Py .

The above equation is identical with equilibrium condition (12.16a) where ( ),s =
9/3 and (),=0/09 .
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Finally, the equilibrium condition (12.16c) is checked, i.e.,

Nubll + N22b22 +p=0 — N%2ssinacosa + p=0.
Using (11c) it follows that

Ngy————ssinacosa + p=0 — Ngy,=-pstana.
%% $25in2« P LA

Exercise C-12-1:

A shell of revolution with an elliptic meridional shape (Fig. C-2) is subject-
ed to a constant internal overpressure p,, .

Determine the membrane forces in the shell.

Fig. C-2: Shell of revolution with
elliptical meridional shape

Solution:
We take from analytical geometry the radius of curvature r, for a point P of the
ellipse

a? b?
(a?sin?¢ + bZcos? o)

n= 32

and the distance r, = PN to the axis of revolution

a?

(a%sin%2¢ + b%cos?e )1/2

I'2=

Assuming that p, = 0, we obtain according to (12.7a)

2 . 2 2 2 \1/2 2
N =(a. sin“e + b“cos <P) J *b 5 Pocos $dF

A aZsin?¢ (a?sin?F + b2cos?@)

By means of the substitution

b2
a2 — b2 ’
the integral can be transformed into a basic integral.

sin2$=z— 2sinpcospdp =dz ,
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Fig. C-3: Equilibrium at large

However, the above results can be obtained more easily if we consider the equili-
brium at large for a thin top section, cut symmetrically from the shell of revolu-
tion at arbitrary angles ¢ (see Fig. C-3). The vertical load F results from the
pressure acting on the horizontal projection of the shell (circular surface of radius
r (¢), since the horizontal components of p, counterbalance each other):

F = 7tr2( ® )po .
From the equilibrium at large follows that
21tr((p)vasincp =F = nrz(cp)po ,

and by assuming that r(¢) = r,sin ¢ , one obtains the membrane force in the
meridional direction
_PoT
va - 2

and the membrane force in the latitudinal direction by (12.76)

Iy Pg T2 Ty
Nw=r21’o_r_1 2 =porz(1'2rl)

. a?
At the top (¢ = 0) holds withr; = 1, = T that

2

Py2
Nop =Nos = 55
2
and at the equator (¢ = -723) follows with r, = —— , r, = a that
poa' 32
Nop == Ngs = poa (1 - 2b2)

For a > Y2 b , ie. in cases of more shallow shells, a compressive stress occurs in
the circumferential direction at the equator. An elliptic shell bottom reduces its
diameter when subjected to overpressure. In the special case of a spherical shell
with 1, = r, = a = b, the boiler formula (12.13) is verified in the form:

Py2

Ny = Ngg = 2

A spherical shell subjected to internal overpressure only exhibits tensile stresses.
The same applies for a cylinder.
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Exercise C-12-2:

A spherical boiler (radius a, wall
thickness t) subjected to internal
overpressure p, is supported in bear-
ings at its top and bottom points (Fig,
C-4). The boiler rotates around the
vertical axis A-A with a constant an-
gular velocity w.

Determine the rotational speed for
unset of yielding, assuming that only
a membrane state of stress exists and
that the deadweight can be neglected.

Numerical values: Fig. C-4: Spherical boiler
a=1m , t=2-10"°m ,

0, =360 MPa (yield stress) , p, = 08MPa , o =786 kg/ms.

Solution :

Besides the internal overpressure, a centrifugal load occurs in this problem. With
r = asin ¢, the resulting load components in the meridional and the normal di-
rection become:

P=7p,+etwasin’e, (1a)
pwzptmzasinq:cosq: . (lb)

Substitution of (1a,b ) into (127a) yields

"4
a

©
_ N e 1 a e —
pr: sin2q> j(pcoscp —p‘psmrp)smwdqp = 3 J.pocosq:smtpdq:.

p=0 =0

Fig. C-5: Components of the centri-
fugal load
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All terms with © vanish so that the meridional resultant force N‘p 0 only depends
on the internal pressure p,. After integration we obtain

s (Bemle, ) (2)

$®  gin? 4

Since the meridional resultant force Noo has to be finite for ¢ = 0, we get

cos 2 P
=2 (-RP i c)| > finite —> C=-2
¥¥Y  sin‘e 4 0=0
Substitution of C into (2) yields :
_ Pod
N, =B (30)

The resultant forces in the latitudinal direction are calculated by means of equa-
tion (12.12c) and by superposing the two load cases:

Pya .
Nys =—g— + ptw?a?sin?e . (3b)

The stresses in the latitudinal and meridional direction then become:
_ Py 2.2.. 2 _ Po2
coo—W+pmasm<p , °¢¢_2t

The maximum stress occurs at m/2. Following the von MISES hypothesis, the
maximum stress can be expressed as follows :

_ /A2 2 _
o, = ol+cs2 0,0, —_—

P2 \2 P,a
Ormax — 1/(—211;-) + (Ow232)2+—20—tpw23-2 < Oy . (4)

With w = Z2 | relation (4) allows us to calculate the rotational speed n for un-
set of yielding:

_30 J1 02_3(E)2_P_oi _
~ ra 0 y 4t 4t -

30 1 ( 3 2 )
Y - 3. ~ 100
71000 ]/ 360 3-100 1

7.86-107°

n R~ 264 rev/sec
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Exercise C-12-3:

Calculate the membrane forces in a spherical shell (radius a) subjected to a
wind pressure described by the approximate distribution

P = —pysingpcos

Tangential frictional forces occur in practice but will be neglected here.

side view top view

Fig. C-6: Spherical shell subjected to wind pressure load

Solution :

Assuming that P, =Py =0, the equilibrium conditions (12.12) read :
sincp(va),w +coseN  + (N y),-cospNy; =0,
sincp(Nw,)’w-k2cos<me9+(NM)’l, =0, (1)
N«w+N1919 :—poa.sinqacosS .

By a product approach according to (12.9)

N,,=0(@)cos® , N,y=¥(p)sin® , Nyy=0(p)cos 9, (2)

we transform the system of partial differential equations (1) into a system of or-
dinary differential equations (, 0 = ()):

sine®' + cosp® + ¥ -cosp® =0, (3a)
smne¥' + 2cose¥ - O =0, (3b)
o+ 0 = -pyasing . (3c)

By eliminating from ( 3c)
© =-0-pyasine,
we obtain

(4)

sing ®' + 2cose ® + ¥ + pjasinpcose =0 , }

I
=}

sing ¥' + 2cose ¥ + ® + pyasing
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The form of (4 ) suggests introduction of the sum and the difference of the un-
known functions as new functions :

F,=0+Y% , F,=0-Y. (5)

If we now divide (4) by sing, (5) yields by addition and subtraction, respective-
ly, of the two equations (4)

F{,2+>‘1,2F1,2+ P1,2=° (6)

1
sin ¢

with Aj,g=2cote & , P1’2=poa(costp;tl), (7)

where the index 1 implies ” + ” and the index 2 implies ” - .

The ordinary inhomogeneous differential equations of the first order with variable
coefficients ( 6 ) have the following solutions according to (12.27) :

Fi2= (CI,Z - _[Pl,ze'[’\l'zdwdq’)e—bl'zdw : (8)

The integrals are evaluated by means of (7):

J.)\ldtpz-[(2cotcp+?illl—cp)dcp 21nsinq)+ln1:a.n2 ,

I

2
eflldo _ e2lnsintp+lnta.n¢/2 - sinhptan% .
In a similar way we determine
[ L
_ cot — —(rd tan
e Pade =—2 eszdw = sinlpcot & | e [rade == 22
sin‘ ¢ sin? ¢
For F| we then obtain
2 ® cot i;—
Flz[Cl—Jpoa(cos¢+1)51n cptan;dqo el (9)

By means of

1+cos<p=2cos2-';2 R sin2<p=4sin2-‘2£cosz-§,

the integral can be determined as follows :

J(cos ? + l)sinztpta.n%dtp = J-8 cossg-sin3%d<p = Isin3¢d¢ =

= —-cos ¢ + —:];Tcosstp

If we substitute

2cos’
cos 2 _ 14+ cose
2 sin %—cos % sin ¢

P
t— =
co 5
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we obtain from (9)

_ 1 3 1+ coso
Fl_[cl+poa(coscp——3—cos (p)] sinde '
and analogously
_ B 13 ]1 - co8 @
Fz—[C2 poa(cos<p 3 CO8 cp) ——sin3cp

Substitution into (5) and solving leads, after introduction of two new integration
constants D1 = C1 + C2 and D2 = C1 - 02 , to

1
¢=7(F1+F2)=

1 1 1
= —2—[D1+ D2coscp + 2p0acoscp(cos<p —?cosstp) sinde (10)
1 1 1 3 1
vy =—2-(F1- F2)=?[D2+ D cosp + 2p0a(coscp -3 cos qo)] ande

In order to ensure finiteness of the resultant forces at the top (@ = 0), we de-
mand that

2 _
D, + D, + 2pjag- =0 . (11)
Since sin® ¢ occurs in the denominator, not only the numerator but also its first

and second derivative have to vanish at the point ¢ = 0. We obtain, from the
second equation (10 ), for the first derivative of the term in square brackets

[—Dlsin<p+2p0a(—sincp+cos2q:sincp)] =0
=0

and for the second derivative

=0
=0
Whereas the first condition is fulfilled directly for ¢ = 0, the second derivative
for ¢ = 0 yields :

[—chostp + 2pja(-cose - 2cos psin’e + cosaqo)]

-D, + 2pja(-1+1)=0 — D, =0
and thus, according to (11),
4
D2 = —E-poa

With (10) and (2) the following expressions for the membrane forces are ob-
tained :

_ 2 1 3 )cosq)
N‘pw_poa( 3-}—cosw 3 cos” ¢ o cos 9 ,

ind¢
- _2 - Leos®p ) —Li—si 12
NW, = poa( 3t cose - 3cosTo sin3qasm8 , (12)

2

_ 2 22 4 ) 1
Ny _poa(acoscp sin“p - 3cos @ |3 cos 9

P
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Fig. C-7: Support of the spherical shell at the ground

The wind load p( ¢ ,9) possesses a resultant F in the x-direction which can be
equilibrated by the resultant of the shear forces N, at the cut ¢ = /2. At
other cuts defined by ¢, components of N, contribute to the equilibrium at
large. However, since the shear forces at the two semi-spheres act in the same di-
rection and therefore add up, their resulting force has to be provided by the
ground through a stiffening ring (Fig. C-7). Without this or a similar type of
support, the spherical shell would be blown away. Thus, the support disturbes
the membrane state of the shell which can therefore only be considered as an ap-
proximation.

Exercise C-12-4:

A hanging conical shell (height h, conical semi-angle a) supported as de-
picted in Fig. C-8 is filled with liquid of mass density p.

Determine expressions for the membrane forces in the ranges I and II
shown in Fig. C-8. The deadweight of the shell can be disregarded.

Fig. C-8: Hanging conical shell
filled with liquid

Solution :

The loads are axisymmetrical, and can be written as follows for the two ranges:
Range I: p=0, p,=0 , (1a)
Range II: P=-ecgz=opg(h -scosa), p,=0 . (1b)
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The expressions for the membrane forces can be determined by means of the
equilibrium conditions (12.16) for the axisymmetrical load case

4 (sN,,) = Ny, , (2a)
Nys = pstana . (2b)
Range I: Nygg=0 —> N“=-Cs—. (2¢)

In order to determine the constant C, we proceed from the ” equilibrium at
large " at the transition between range I and II. We demand according to Fig. C-9
that
2 sin a
h, ——.
lcos2a

(3)

We determine the constant C from the boundary conditions for s =s, =h,/cos a
with (3) as follows :

(Ngcosa)2nh tana = %pgn:(hil tan®a)h; — N, = —16—pg

_ cosa _ 1 2 sin a _ 1 3 sin a
"(sl)— h, C—Goghlcosza - C_ﬁpghlcos3a

Substitution into ( 2c) then yields the following expression for the membrane force
N,, in range I:

13
-1 _ ,_ 1  sina
Ny =608 0ag 5 - (4)
Range II: By including (1b ), we obtain from (2b)
Nyy=seg(h; - scosa)tana

and from ( 2a ) after integration

an%g-(hl-s;—s—;cosa+C)tana. (53)
N, N
r,=h tana
4_——‘ o
—
1 =
o

Fig. C-9: Equilibrium at large for
range II of the conical shell
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At the boundary s = 5, we have

. 3 3 .
gsin a hj _ hy 2 sina

2

N, (5) =2 7 +Ctana=%osh

h, 2sin’a  3sin’a 1cos?a

— C=0
Thus, we determine the following expression for the membrane force N in range

II:

N =9%§(3hltana—25sina) . (5b)

Exercise C-12-5:

A section of a casing has the shape of a circular toroidal shell as shown in
Fig. C-10 (radius of the circular section a, radius from centre point r,, wall
thickness t).

At the boundary ¢ = ¢, the shell is subjected to a uniformly distributed
boundary load N, acting in the tangential direction.

To

Fig. C-10: Section of a casing with toroidal shell shape

a) Determine the membrane forces and the stresses in the shell.

b) State the basic equations for determining the displacements u and w for
the section of the casing.

Solution :

a) We proceed from the equilibrium conditions for shells of revolution with arbi-

trary contours (12.6) subject to an axisymmetrical loading (py = 0 ; —;—9 =0):

(rN¢¢)'¢—r1cos¢N00+rrlpw=0 , (1a)
N N
&+ =p . (1b)

1 2
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With the angle ¢ relative to the axis of rotational symmetry, the radius of curva-
ture r; = a, the distance r = asin¢ + r, from the centre line, and the auxiliary
radius r, = a + r,/sin resulting from the projection onto the centre line, the
following system of equations is obtained :

[(asintp+rO)Nww]lw—acoscme,:O, (2a)
N sin

pp ? -

a T I, + asine oo =0 . (2b)

Differentiation of (2a ) and transformation of (2b) yield

N, ,acosp + N“w'w(asinq: +15) - Nygacosp =0
acos @ _
= Ny ro+a5in<p(pr_NM)_0’ (32)
ry + asineg
- _ 3b
Nso asin ¢ N‘P‘P ’ (3b)

If we substitute (3b ) into (3a), we get

N a cos @ ( r0+asin<p) — 0
ppip T, + asing asin @ vp
acos @ _
- I‘I¢wr¢v+[r()+asincp'*'co‘:cP Npp=0-
P(¢)

The general solution of the differential equation of type pr ot P(o) Nwo =0
reads

- -JP(p)de
Nww =Ce ) .

Evaluation of the integral leads to:

a cos @ _
Jp(e)de = [ Tamade + Jootode =

T
(ot feotn (2 tame) s e (8
0 .

T-{-sm(p

— N — Ce‘[ln(:—o'i'lil’lw)-f-ln(sinw)]
P

or N«w_c[ T, . sincpl_c sing (r, + asing) (s)

Boundary condition : N, (¢ =¢)=-Ng . (6)
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1
sin ¢, (1, + a sin @g)

From (5) follows that -N,=C*

—  C* = —singp (1, + asingpy) Ny
Thus we obtain
sin @, (1 + a sin @)

= - 7
Noo sin ¢ (r, + a sin @) No (7)

and by including (3b):

sin @, (1, + a sing;) N (8)
asinZe )

Ny =
The stresses are given by

N Ndd
_ e _ 9
Opp = t and Oyy = t . ( )

b) With axisymmetrical loading and support conditions, we apply the following
strain-displacement relations (12.21) with /39 = ( ), s=0and v=0:

u,+ w
L :--‘p—rl—:%(ulw-}-w) ) (10a)
ucosp + wsine  ucosp + wsing
€y = T = asine + 1, ’ (10b)
Yps =0 . (10c)

According to (12.26) the constitutive equations read :

swjzﬁ(NW’—vN’M) , (11a)
t9s = o7 (Nps - vN,,) (11b)

Solution of (10 ) with respect to w yields:

(102 ) — W= a-u

(10b) —> " = ei,l,(a.sinqas;fpo)—ucoscp

By comparing we obtain
smoasinq) - U,,8inQ = gy, (asinrp + ro)— ucos ¢

— u,w—ucottpzs‘pwa.—st,l,(a.-k sirr(:q;) . (12)
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We now substitute (11) into (12) and get

1 To -
U, ~ucote = ﬁ[(Nw ~VNys)a ‘(NM“"Nw)(a t e )]_

_ 1 o To ]
_ﬂ[N‘pw(a+va+vm)—NM(a+va+sin(p) . (13)

Finally, substitution of the membrane forces (7) and (8) into (13) yields:

To
sin @

u

N [ singy(ry + asingy)a(l +v)+v
P B

- - o
ucote = gy sin(p(r0 + asing)

(14)

r
_ sincpo(r0+ a sin @) a(l+v)+ sir?cp)}]

asinZe
The linear, first order differential equation (14 ) reads in abbreviated form
u,+P(e)u=Q(e)

with P(9) = —cot¢ and Q(¢) = right-hand side of (14) .

With (12.27), the general solution is

- P d
a(9) = TP fq(g)elP)% 4 4 o] | (1)
Calculation of the integrals :
efP(tp)d‘p =e—fcot¢pdw — e~ Insing _ '1 ,
sin ¢

e—fP(q:)dtp — efcottpd(p — elnsintp - sinq:: ,

fa(e)ePl)degq -
T, T,

__Nolo a(1+v)+vsin<p _Nolo a'(1+V)+sincp de

Et | (r, + asine)sin?¢ ?~ Rt asine

with 1 = singy(ry + asing,) .

In order to determine the constants of integration , we write the boundary condi-
tions at point A

u(cp:%):O . (16)

Thus we obtain the meridional displacement u( ¢ ) by means of which we can de-
termine the normal displacement w (¢ ) from (10a ). For reasons of brevity, the
integrals will not be determined here.
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Exercise C-12-6:

A thin-walled circular cylindrical shell with one end clamped as shown in
Fig. C-11 is subjected to a sinusoidal distribution of tangential membrane
forces at its free end with the shown vertical force Fy as resultant.

P
FR*J,__,_IaJ.__

A

Fig. C-11: Circular cylindrical shell
subjected to an end load

z

\J

a) How large are the membrane forces?

b) Determine the vertical displacement w of the bottom point A of the
free end of the shell.

c) Check this displacement by means of the first theorem of CASTIG-
LIANO.

Solution :

a) We assume that the vertical force Fp at the free end of the shell stems from
the following sinusoidal distribution (see Fig. C-12):

—Nxvﬂ =ksin9 .
Then /2 /2
FR:4J-—Nx1,sin3ad9=4kaJ-sin23d8=4kal‘;— (1)
0 0

must hold. From (1) follows that k = F;/7a, and according to (12.14) with
Py = P, = P = 0 we obtain the resultant forces as follows

F F
Nyy=0 , N,= Rgng , N_=-L R xcos9 + C (9) .

x¢ = " wa xx ~ a Ta

Owing to the boundary condition N, (x = 0)= 0 , the constant C,(9) va-
nishes. Thus, the final result reads

Fr . Fr
Ngg=0 , Nx,o:—’;%sm«‘) , Ny = nazxcos{). (2)

Fig. C-12: Relationship between vertical load Fy
and tangential membrane forces N_
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This corresponds to the solution that would be obtained by the elementary beam
theorg. By defining the moment of inertia for a thin-walled circular section as I

= 7ma"t and the bending moment of the cantilever beam My = - Fp x, the nor-
mal stress at sections x = const is
M Fpx F N
- Xy, _ R _ "R _1 — Zxx
Oux = Iy z = 3tac053_ Kazxtcoss— t

b) The deformations are calculated by means of the equations of the constitutive
equations (12.26) after substituting the strain-displacement relations of the circu-
lar cylindrical shell (12.23):

U,x =_E%T(Nxx_vN00) ’ (33')
Vet w =ﬁ(NM—vax) ) (3b)
1 2(1 +v)

2 UtV = Et N - (3¢)

After substituting the resultant forces (2)into equations (3), we calculate the
axial displacement u by integrating (3a ), the tangential displacement from (3c)
and, finally, by a simple transformation the radial displacement w from ( 3b ). We
then obtain

F 2
nzszcos9+C2(8) , (4a)

u =

1
Et

1 Fp . Fp x3 .
v:ﬁ[—2(1 +v)n—1;xsm9+—n—§§is—-sm9—§czlo+ 03(3)] ,  (4b)

F, F 8
L2 (24 v)xcoss - B X cos9+ X

W= ra a3l 6 a 2,00‘03,19] : (4c)

1
Et

The two arbitrary functions C,(9) and C;(9) only allow the fulfillment of two
boundary conditions, eg. u(l) = v(l) = 0, instead of the four boundary condi-
tions for the clamped boundary u(l) = v(1) =w(l) =w _(!)=0. Thus,

Fp 2

(4a) yields wu(l)=0 — Cz(S):—ﬁycosS, (5a)
(4b) yields v(I)=0 —
FR . FR 13 . l FR 12 .
Cy(9)=2(1+ V) o lsin® - §F51n3+§—n—a‘7-2—s1n8
Fr . B
= Cy(9)=Psind| S5 +2(1+ v)L (5b)

We then obtain the radial displacement w from ( 4c ) with (5a,b)

W =

3 2 3
cos9 (2+\J)x X x 1 L

l
T-66,3 a-_2a2—3a3-2(1+v)_a-]'(5c)

Fr
Etr
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Since no function is available to fulfill w(!) = 0, this condition cannot be com-
plied with. It holds that

W(l)_—VFR l

a

The membrane theory cannot meet these essential boundary conditions and there-
fore only yields an approximate solution as we have already seen in various exam-
ples. In order to fulfill the essential boundary conditions w(l) = w (1) =0, a
bending solution has to be superposed onto the approximate solution.

—cos9 £ 0 . Similarly, w(I)F0

From (5¢c) we obtain for the displacement of point A:

F 3
wx=0,9=n)=w_, = E:‘n i +2(1+v) (6)

When compared to TIMOSHENKO beam theory, the first term represents the
contribution from bending, and the second term the contribution from shear de-
formation.

c) Comparison by means of the Theorem of CASTIGLIANO

The displacement of the point of load application can be calculated by means of
the first theorem of CASTIGLIANO (6.27a) as follows :

_ QU*(F) _ oU(FJ) . ()

Vi OF! OF!

Equation ( 7) applies to a linearly elastic structure. In the present case, the defor-
mation energy according to (12.28b) can be employed. For the circular cylindrical
shell x = ¢, so:

1 2
U—2EtJ‘|iNxx+N""0—2UNxxN'019+2(1+v)Nx19 dA . (83.)
According to (2), Ny, = 0 holds in the present case, i.. (8a) reduces to:

1 2
A

We then obtain the displacement w by (7) with (8b) as

i

x=09=0

(l-l-V)NXl, aF adddx . (9)

We now substitute into (9) the resultant forces N, and N,, from (2) and their
derivatives :

[ 2x
__a._f J xcosS+2(1+v)——B'—sdexd3.

T Et
x=09=0

After integration we obtain the same result as given in (6)

Fp [ o3 I
max = Etr| 347 T 21+ V)T

g
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Exercise C-12-7:

A type of shell often found in civil and mechanical engineering is a ruled
shell as shown in Fig. C-13. Its mid-surface has the form of a special hy-
perbolical paraboloid which is generated by moving a straight line g along
a rectangle ABCD. The rectangle lies in the x', x%plane and has the side
lengths 1, I,. The straight line moves along the line AD and along the hy-
potenuse of the triangle BEC. This so-called skew hyperbolical paraboloid
shell is also termed a hypar shell and its parametric description is given
by

X ~ 2 i1
()= xey tyey+ e, (x2 6, yo€, o-b).

Fig. C-13: Coordinates of a hyper-
bolical paraboloid shell

a) Set up the equilibrium conditions of this shell according to membrane
theory.

b) Determine the resultant forces and moments for a shell subjected to
the deadweight g per unit surface area, ie. its physical load compo-
nents in the global Cartesian coordinate system x' (i = 1,2,3) are
given as:

pp=pP,=0 , p;=-8g

Solution

a) FEquilibrium conditions
First, the fundamental quantities of first and second order as well as the CHRI-

STOFFEL-symbols have to be determined. Proceeding from the given parameter
description

X
r(x’Y) =xe tye,+ 'Tyegx ’
the base vectors are determined as :

a=r :e1-+——3:—e3 , (1a)

a2=r’y:e2+cie3 . (1)
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Similarly, the metric tensors are calculated according to (11.11), the determinant
according to (11.12), and the covariant tensor of curvature according to (11.18):

pAY Xy
(309) = A , (22)
3 1+(3)
em bl 1+ B (1) ()
x)? _ Xy
(aaﬁ)z(aap)_1=% 1+(c) c2 ’ (2(:)
-8 1+
0 1
baﬁ: 1 o : (3)
0
cYa

From (11.23a), the CHRISTOFFEL-symbols of the second kind result as

0 _a 0 x
(I-.l ) = c2a (I,z )= ca (4)
af y ! af /= X ’
c2a 0 c?a 0

In order to formulate the equilibrium conditions (12.1)
1 21 1
N+ ¥+ =0,
: (5)

11 12 22
N"b,; +2N" b, + N by, + p=0 ,

NIZII + N22|2 + p2 =0

the covariant derivatives of the stress resultants are required. With the relations
(2.35b) and (4) they become

1 11 2y .12
M=ot G N

12 12 22 X 12
N|1=N,1+cglaN tz N

(6)

21 21 x 1 Y g2
N =N+ 5N N
N2 = N2 2x 12

p=N" 3+ 5N
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Substitution of the derivatives (6) into (5) yields:

3 3
Nu,1 n N21'2 + 2y N12 + 72( Nu n pl =0,
c‘a c‘a
12 22 3x 12 y 22 2
N + N + =0 7
1 2 c?a c?a ! ( )
2 12
+ =0 .
c/a P ‘

The solution of this system of equations requires a transformation into physical
components. Owing to the occuring non-orthogonal surface coordinate system (me-
tric (2a ) is fully occupied), the relations (2.17) cannot be used for determining the
physical components. On the basis of [C.6,C.11] we therefore define, as physical
components of a stress vector tJ, the components of the stress vector in the di-
rection of the unit vectors that are parallel to the base vectors and that are thus
not perpendicular to a tetrahedron cut plane. We obtain from the equilibrium of
the tetrahedron

" g
A _ [ 56
T £ . (8a)

In transition to the shell, (8a) yields the physical components of the membrane
forces

B _ [ *BB) \oB 8b
N o) N . (8b)

Substitution of (8b) into ( 7) requires formation of the following derivatives :

o fa _ xy? o fal x|
= - ,
ox 4n ctaa Ya,; ay, Toox 322 ctava
2
> a2 x2y 5 a2 _ _y

b

oy 22 ctafa Ya,; a,, oy an ctaia

By introducing the physical components of the surface loads
a
=73 P* , P*=p ,
and by denoting the physical components of the membrane forces by subscripts

22 N

XX ’ yy ?

1 12
N¥" = N N = N
Egs. (7) finally yield the equilibrium conditions of the skew hyperbolic parabo-
loid shell (9/0x = ,x, 9/dy = ,y):

X yra ST *1
—_ 9
wyy P+ 252_2Nxx+2 Ny P Ja =0, (9)

Nxx,xl a'22 +N
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S [ y Y73y, x2 _
N7 2n + Ny yVay +c2/§ Nyy +2 2a Nyt P Ja =0, (%)

2 *
= Ny tp*=0 . (9¢)

Eqgs. (9a,b) are a system of first order partial differential equations with variable
coefficients. Eq. (9c) yields the membrane shear force

- _L %
ny_ 2 2P

By formulating the derivatives (note (2b))

* C *

*'—%a'p* ) N -1 _Eap )

X
ny,x =-<P xy. gy — _¢cP

and by substituting them together with the metric (2a) into (9a,b), we obtain
after re-formulation two uncoupled differential equations for the two unknown
membrane forces:

— — — — il
(Nxx 222 ),x = %L an p* + %a' an p‘;y -ra P* ! (108.)
(N /a—) _ﬁ/a— * L Caya p*. -4 a +? (10b)
yy¥ 21 )y = ¢ 22 P° T yava; Py ap -

b) Resultant membrane forces

First, the physical load components in the global Cartesian coordinate system
x'(i =1,2,3) have to be decomposed into components both in the direction of
the local surface parameters and perpendicular to them.

a; is calculated from a; and a, (1la)b) by forming the vector product according
to (11.16):

a=e +ie, (11a)
a,=e+te, (1b)
a;=-Te -Te te . (11¢)

The above vector equations constitute the transformation between the local base
vectors and the base vectors in the Cartesian coordinate system. The latter vec-
tors can be written in abbreviated form as
_al
a;, = Bi’ ej

Correspondingly, the vector can be written in different bases. The covariant com-
ponents of the load vector with (2.9a) read, for instance,

vy
P =BLp
With (2.8)
By Bl =38)

the transformation coefficients B;I are determined by inverting ( BJi, ):
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&N

X X
A T
i’ 2
=% -%F w&H £ (12)
X
-1 -t 1

By substituting the load components we obtain with (2.10) the physical compo-
nents of the load vectors:

1 v 2 ia 1
pr=-Lg i o X Pw pr=-g— - (13)

Substitution of these transformed loads into (10a ) yields after re-formulation

2
(M 1+ (2) )_1_# - (14)

By integration we obtain
J1+ (%)2

From the boundary condition N, (x,0) = 0, the integration function C(y) fol-
lows as

C(y)=-Inyc?+ y?

g ()

From (10b) with the boundary condition N, (x 0) = 0, one analogously ob-
tains the membrane force in the y-direction :

, S

In(x + /T4 574 72) + C(y)] . (1)

-_8
Nxx_ 2y

and thus N =

(16a)

N_= n (16b)
yy © 2 2
J1+ (YC—) Lyva
Eq. (9c) finally yields the membrane shear force
=<8
Ny=57a . (16c)

TIMOSHENKO [C.24] and other authors have treated the same problem by pro-
jecting the forces onto the x,y-plane, and then formulating the equilibrium. Their
results can be transformed, by respective measures ( eg N, m N 11TIM)
into eq. (16). Given the prescribed boundary conditions, the load at the bounda-
ries x = 0 and y = 0 only acts via shear. Thus, boundary stiffeners are required, a
fact that leads to incompatibilities between the deformations of the stiffeners and
of the shell boundaries. For this reason, the membrane solution has to be augmen-
ted by a solution from bending theory. Further examples are treated in [C.2,C.8].
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Exercise C-13-1:

A circular water tank (radius a, height h) has a linearly varying wall thick-
ness (t, = maximum wall thickness)

H(x) = ty(1- %)
as shown in Fig. C-14.

g [

| ]
' pg
. . . h
A tx)
g b
Fig. C-14: Water tank clamped at
to a the bottom
Given values: a=40m , h=50m , t,=035m , v =03 ,

E=21-10°MPa , pg=1-10" N/m® .
a) Derive the differential equation and the boundary conditions for the
circular water tank by means of a variational principle.

b) Determine the radial displacement w by a RITZ approach. For this pur-
pose,

x )2 x \k
B(x)=(2)(1-%) (k=1,2)
shall be chosen as coordinate functions for the approximation of w, and

the calculation shall be performed using a two-term approach .

Note: The deadweight of the tank can be disregarded. The assumptions of
the technical shell theory are valid.

Solution :

a) The total potential energy is composed of the deformation energy of the shell
and the potential energy of the external loads (see [C.11]). With the approxima-
tion NoF ~ NP we obtain the total potential energy expression

H:%J.(N“ﬂaap+M“ﬁmaﬁ)dA—J(paVa+pW)dA : (1)
A A
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For a cylindrical shell we write in physical components

1
II= 7J(Nxxsxx + Nygegs + 2Nygeyg + M, 0y t
A
+ Myswgs + 2Mxomx‘,)dA - I(pxu + pyv + pw)dA . (2)
A
An axisymmetrical load case is given in the present problem, and the longitudinal
force N, , vanishes. Thus, (2) reduces to
A A
With (13.14)
w W, ~ X
and
Ngs =D(1-v3)T =Et(8)% , (4a)
K(¢E
M o

From (3) follows that

_[ f{ Et +K( 'f‘)]—pw}dA (5

II= H(E,w,w,“
$=0 ¢=0

)

By (5) we have determined a variational functional for which we now have to

find an extremum according to (6.34). Therefore, we formulate

sII = SJ.L(E,w,wl&)dA =0

We then obtain an EULER differential equation in accordance with (6.35) as a

necessary condition:
(L) 4 2L
Wee Tee OV

K
a2
For a constant wall thickness t follows

4

Et 2 _ pa
K2* "7 K

+Etf§—p=0

- :12‘< Ve ),se

Woegee T
4x*
as the differential equation of a circular cylindrical boiler (13.16a)

We obtain as boundary conditions
oL =0 —»%w'&=0 or SW,E=0,

— 3
aW,& b £ =const

(6)

(7a)
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(2L - K - -
<c)w,&)f 5WL=COMt =0 — S Wee=0 or 3w =0. (7b)

b) In order to calculate the radial displacement w by means of the RITZ me-
thod, we employ the energy expression (5). For this purpose, we introduce the
linearly increasing pressure

p=geh(l-1E)

and the varying bending stiffness

3
Eto a 3
K=———(1-+ .
12(1 - vz)( h )
| S —
K,
With dA = 2radx = 2na%df we obtain
h/a

IM=2n J[%Eto(l -rE)w 4+ —(1- %g)
£=0

~goh(1-3¢E)a’w |de

The application of the RITZ method (cf. Section 6.7) requires that we choose an
approximation to w with linearly independent coordinate functions in such a way
that the essential, ie. geometrical, boundary conditions are fulfilled. According to
(6.36) we choose an approximation

N
w* = chfn(i) (n:1,2,...,N) R (93')
n=1
where the coordinate functions in the problem formulation are given as
2 n
—(a -2
L8 =(2e) (1-2¢)" . (9b)
The coefficients ¢, are the free, yet unknown coefficients.

The approximation (9) obviously fulfills the geometrical boundary conditions
(w(o0) = W, (0) = 0). In addition, the dynamic boundary conditions are also
satisfied since K(x = h) = 0.

Based upon (6.37)
ol

oc, =0 , n=1,2,...,.N ,

we derive a linear system of equations for determination of the coefficients c,
with
h/a

N
> ek [Eto(l—
k=1 £=0

=

K a 3
E) ity + 22 (1 - 8 fic g e [4E -

a (10)

-goha? (1-%E)fnd§:0
£=0

-
~
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For a two-termed approximation n = 1,2, this system of equations reads:

h/a
K
n=1: c J.[Et —%E)f12+a—3(1—%-5)3f12’&]d§+
e K,
'[ TELf + ( hE) fy.e Léf]dg =
h/a
= goha? J-(l_%g)fldz ,
§=0
h/a
K
n=2 CIJ[EtO(l—%E)f1f2+:g‘(l_%g)a fl,fffglff]d5+
=0
h/a
K 3,2
+c J'[Et (1-1¢ )f2+—a—g—(1-%§) fmf]dgz
€=0
h/a
= goha? J(1-%z)r2d§
§=0
X X X
hA hA E?
1 1 1

0.5 0.5 0.5

. ~

0 1 2 wk 0 1 2 N%, 0 -05 -1 M%
[10° m] [10° N/m] [10°N]

Fig. C15: Approximate displacement w*, membrane force Nj,, and bending
moment M;x of a cylindrical tank with variable thickness
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After integration and solution of the linear system of equations we obtain the fol-
lowing coefficients :

. — go(1-v2)hs 1008
! Et] 468 + 87X + A2
c. - _8Be(1-v?)h® 21(36 -2)
2 Et) 468 + 87X + 22
. _ 2 h2 2
with r=(1-v )(W) .

By (9a) we thus approximate the radial displacement w* as

a a
._go(1- VZ)hs(EE)z 1008 (1 - 7 E) - 21(36 -2)(1-+E)
Et h 468 + 87\ + \Z

2
. (1)

w

Finally, the curves for N}, and M?, are calculated by means of ( 4a,b ). Fig. C-15
presents the w*-curve and the approximations for the resultant forces of the
numerical example.

Exercise C-13-2:

A reinforcing ring 2 (cross-section b- 3t, b « 1) is to be positioned in the
middle of a thin-walled, long pressure tube 1 made of sheet steel (radius a,
wall thickness t). For this purpose, the ring is warmed up in such a way
that it can be slided into its position on the unloaded tube (see Fig. C-16).

At a temperature T, = 50°C the ring just fits the tube in stress-free contact.
Cooling of the ring to the tube temperature of T, = 20°C leads to shrinking
of the ring

—>
—>
—
—
—
—
—

Fig. C-16: Pressurized tube with shrinked reinforcing ring
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Determine the resultant quantities Ny, and M,, in the tube as well as the
stresses in the tube and the ring, when the tube is subjected to a constant

internal overpressure p.
Numerical values: a=1m , b=1m , t= 15-10°m |

p=15MPa , ap, =11-107°/°C , v=03 ,

il

E,=E,=E=21-10° MPa .

Solution:

The problem will be solved by means of the well-known, so-called Method of
Theory of Structures (Section 13.1.4). For this purpose, we partition the pressu-
re tube and the reinforcing ring into three subsystems (”0”—, ”1”- and "2 "-sy-
stem) according to Fig. C-17. We can now formulate the compatibility conditions:

w(® + w4 w(® = w4 W(zl) + wid) (1)

S S S T Y N St I 2 S (1b)

Here, the subscript denotes tube 1 or ring 2, respectively, (including tube ele-
ment ). The parenthesized superscript refers to the ”0”-, ”1”- and " 2 "-system.

We can now compile the values of deformation for the tube and the ring, where
the membrane solution follows from (12.14), (12.23) and (12.26). The values for
the partitioned tube subjected to the boundary force and boundary moment M are
derived from Fig. 13.2:

Y 20C | 50C I~
T . R O
._.__E_._.Lz.__ _____ ; ._._._Ll_.L._L._ B._.__._ -+

"0"-;yctem
B INem =) (B
R o R O o Y o
"1" - system "2" - system

Fig. C-17: Partitioning of the pressure tube in single subsystems
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Tube 1:
(0) — pa’ (1) _ __Ra® (2) _ Ma? 9
"1 Et ° "1 T ToKe? 0 "1 T 2Kk? (2)
(0 _ (1) _ __Ra? (2) - Ma b
x; =0, =g 0 M Xe (2b)
Ring 2:
w(® — (o) | (02) _ A pba® _ A+ pa’
2~ 2 2 = EA 4Et °
, \ (3a)
(1) _ 2Ra”" _ Ra (2) _
Y3 ="EA " 2Etp ’ "z — 0>
(3b)

KRN N R

A in (3a) denotes the shrinking measure.

We now substitute (2) and (3) into (1), and obtain a system of linear equa-
tions by means of which we can determine the unknown boundary loads:
P a? Ral Ma?

2 2
_ _ pa Ra
Bt 2k o2 Lt 4ET T2ER T O (4a)

Ra Ma
- + = 4b
0 7t & 0o . (4b)

Eq. (4b) leads to

and (4a) correspondingly to
2
n-3R2
4 Et
M = - = (5b)
_a'__+i
2Kk? Etb

The shrinking measure A has to be determined by an additional calculation. For
this purpose, we separate ring 2 from tube element 1 according to Fig. C-18 and
insert the forces acting on the single parts. Then, the following circumferential
strains are determined :

S99 )

€99, = E1=‘ £t (6a)
S99

Eo9y E2 —aqy (T, - Ty) =

p.(a + 2t)

3Bt - g, ©

(6b)

Fig. C-18: Free-body-diagram of ring and tube
element




Exercise C-13-2 279

where p, denotes the shrinking pressure and © = T, - T; the temperature
difference. After the ring has been mounted and cooled to T, the circumferential
extensions and hence strains in ( 6a,b ) must be equal, ie.,

€99y = E99y - (7)

Substitution of ( 6a,b ) into (7) yields with %_ > 1:

Psa __ Pg2 _ 3 Et
"Bt Y3 m® T P=y, m® (8)

We then calculate the circumferential strain from (6a) with (8) as

_ _3
€991 = "4 %129 >
and with €991 = %, the shrinking measure A is determined as
A=-3aa,0 (9)
=Tgaar 0 .

By substituting (9) into (5b) we obtain the boundary moment :

2

a
Fr t e

a2 aK
2k?’K T Etb

M=

w|w

We are now able to calculate the circumferential membrane force Nyy and the
bending moment M,, from (1317c). For this purpose, the membrane solution wy
of a circular cylindrical shell subjected to internal pressure has to be superposed.
The total deformation then reads as follows:

2 2
W=%+2:—2K —%RcosnE+M(cosn§—sin/~:E) e ¢ . (10)
M, Nog
[N] [10'N/m]
A 3
600 1500
400 1000 /
200 500 /
0 > 0 >
3 L 3
-200 -500
0 02 04 06 038 0 02 04 06 038

Fig. C-19: Bending moment M,, and circumferential force Ny, in the
pressure tube
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Now we replace R by (5a) and substitute it into the relation for the circumferen-
tial force N, :

2 -
Noo=%t'w=Pa'2:—M(C°SNE+Sin'€E)e o (11a)
From (13.17c) we obtain for the bending moment M,, with R = —zaﬁM (here
opposite to the assumed direction of R)
M,, = -M(coskE - sinkE)e ¢ . (11b)

Fig. C-19 depicts the curves of the resultant moments and forces for the given
numerical values.

Finally, we calculate the stresses in the tube and the ring:
- Tube 1
Longitudinal stress : Opy, = £ %I%ﬁ + % . (12a)

XXy

The second term in (12a) only applies for a tube closed at both ends, since in
this case an additional longitudinal load occurs.

Equation (11b) substituted into (12a ) yields the maximum stress

|
[=2]
ol
=
—~~
['aat
|
o
~—

- —OMxwlc=0) pa _6M , pa 12b
c’x:»cmax’_ t2 + 2t t2 + 2t : ( )

Circumferential stress :

o _ Nool + 6N[xxl pa
99 = T ¢ VT2 1

Il

2
~—23ﬁt—M(cosnE +sinkE)e ¢+

ive

tl;’[ (coskE - sinkE)e <&
From

doygy,

Fo=0 — E=03

we obtain
Ogo,(E=035) = o5y
Numerical values: Oxxpay ~ 156 MPa
O89max ~ 102 MPa .
- Ring 2
Circumferential stress :

P2 _pa  2Ra _ Eamp® pa kM
999, ¥ 3% T 4t T 4bt - 4 T 4t T bt

Numerical value : Ops, ~ 82 MPa .
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Exercise C-13-3:

A pressure boiler made of steel

consists of a circular cylindrical cylinder sphere
shell (radius a, wall thickness — i

t) closed at each end by two T T T T
semi-spherical shells (Fig. C-20). = :

The boiler is subjected to a - '_:_;_)__cgr_)s_t_'_!__
constant internal overpressure p |

(the deadweight of the boiler l l l

can be neglected). ! ]
Determine the curves for the 2a—>="a
stress resultants both in the cy-

lindrical shell and the semi-

spherical shells. Fig. C-20: Pressure boiler

Numerical values: p=10MPa , a=2m , t=01m ,

E=2110°"MPa , v=r

Solution :

Owing to the symmetry we only consider one half of the pressure boiler. As in
the previous exercise C-13-2, we partition the spherical shell from the cylindrical
shell and mark the single loads according to the ”0”—, ”1”~ and ”2”-systems in
Fig. C-21.

© ©
Wg w

) R
v—lo—xb—-—-p—-—l--z +
I
w(sl) wél)

WA

"1" - system "2" - system

Fig. C-21: Partitioning of the pressure boiler in subsystems
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Here, the compatibility conditions for displacements and rotations at the interface
become::

w(so) + Wg) + w(sz) = wg)) + wg) + w(cz) ) (12)
&+ 1O+ @ =20+ 3P+ P (1b)

We substitute the single deformation values for the boundary loads (see Fig.
C-21); the deformations of the ”0”-system are membrane solutions of the cylin-
drical and the spherical shell:

2 2 2
pa _ Ral Ma? _ pa Ma 9
25117 "ok wd T 2k A? = 2ET 2 ")+2Kn3+2Kn2 » (22)
0+ Ra’ _Ma — 0+ R a’ +Ma (2b)
2Kk?2 Kk ~ 2Kk?2 Kk
Eq. (2b) immediately yields
M=0 . (33')

Owing to the fact that the semi-sphere and the cylindrical shell exhibit the same
deformation behaviour at their boundaries when subjected to boundary forces,
and because no twisting angle y of the boundaries occurs subject to internal
compression, the compatibility of the deformations can be introduced by the
transverse boundary forces alone. Eq. (2a ) then leads to:

_ _pa
R=-22 (3b)

The curves for the resultant forces as a function of £ = x/a can be determined by
means of the relations (13.17):

Nss = pa(l —%e_nfcosni) ,  Qy

%%e"‘e(cosni— sinkE) ,

2
pa‘ _xe . pa
Mxx—snze “sinkE Nux = 5

We then calculate the resultant forces in the semi-spheres by means of (13.18):

Nyg = p2a(1+ e ““lecoskaw,) ,

Q,p=——g%e_'°“1(coslcml—sinnml) ,

M —_ pa'z —'cwl . N ~ pa’
oo = g2 © sinkw, oo X5

Fig. C-22 shows the behaviour of the stress resultants around the transition
between the cylindrical and the semi-spherical shell.
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20000}~ e
L - 110000
10 Npo { Ny, [10'N/mm]

0.1 02 xm]

Fig. C-22: Resultant forces and moments in cylindrical and semi-spherical shell

Exercise C-13-4:

A thin-walled circular cylindrical tube made of steel (radius a, wall thick-
ness t) as shown in Fig. C-23 is horizontally supported between two rigid
walls in such a way that the cross-sections at both ends of the tube are
completely clamped.

Determine the stresses in the tube due to its specific deadweight p g, after
removal of the mounting equipment which ensures an initial stress-free
state of the tube. Use the following numerical values :

I =10m , a=1m t =1-10°m ,

K

E=21-10°MPa, v=03, og=8-10"N/m
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e >

Fig. C-23: Circular cylindrical tube clamped horizontally at both ends

Solution :

The complete solution is determined by superposition of a membrane solution
(Ch. 12) and the solution of the boundary disturbance problem (Ch. 13).

Membrane solution (denoted by superscript 0)

Using the abbreviated notation vy for the Ps
deadweight pgt per unit area of the mid- l
surface, the following surface loads are act-
ing on the shell (see Fig. C-24).

|
P =0 , !
p:&:YSina ) I

]
P =-yvcosd .

Fig. C24: Components of the dead-
weight within the shell

We obtain the following resultant forces by substituting the loads into the equili-
brium conditions (12.14) and by defining £ = %‘—

Ngo =-vyacos 9 , (1a)
N)y =-(2vaE+D,)sin9 , (1b)
Ngx =(Ya§2+DIE+D2)cos«‘) . (1c)

Based on (12.23) and (12.26) , we write

u. =%(NXX—va) , (23)
Vet W =ﬁ(NM—vNXX) , (2b)
_ 2(1+v)a

11’1’+ Vlf = T— Nx‘l’ . (ZC)
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Substituting (1) into (2) and integrating, we obtain the membrane displacements

0_ a 3 g2
= gilra(5+ve) + D5 4 0e 4 by fes (32)
4 2 3 2
0_ a " & g £
W =g ya(ﬁ-7(4+3v))+Dl(g—2(1+")5)+D2‘2‘+
(3b)
+D3§+D4]sin8 ,
E4 g2 3
we-2lva(E L)1) 4n (S -24v)e)+
(3)
.‘.])2(%.|.\;)+D3£+D4 cos &
The integration constants D, (i =1,...,4) can only be determined from the

complete solution of the problem.

Bending solution (denoted by superscript 1)

Since the membrane solution depends on the circumferential coordinate 9 via cos 9
or sin 9, respectively, the bending solution of a shell clamped at its boundaries
possesses terms with m = 1 only. The eigenvalue equation thus reduces to the fol-
lowing characteristic equation dealt with in detail in [ET2(11.3.2 ]:

2
2 o2(2-v)a It =0 (4)
with the shell parameter k defined by (13.31d).

The characteristic equation has the roots

2 —_y2
)\f'zzz—vﬂ:%2—v)2—liv =2—v:§:i~‘/1k\’ —(2—\))2

Since > (2-v )2, these roots may be approximated by
_ . . 1 1- v2 5
)\1'2’3'4—:tu1j:1u1 with u, = 3 X . (5)

The characteristic equation (4) has four additional eigenvalues X5 5,78 = 0 .
The corresponding solutions are already included in the membrane solution (3),
and therefore they do not need to be considered in the homogeneous solution.

The shell shall have a sufficient length so that no mutual influence of the boun-
dary disturbances occurs. We therefore exclusively consider the boundary £ = 0,
and by including (5) we obtain the following homogeneous solution :

u! =(A1ei“1€+Aze—i“lf)e_“lecosa ,
o =(B1ei“1f+Bze’i“lf)e_“lfsina‘) ’ (6)

wl = (C1 et 4 Cze_i“lf)e_“lecoss
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The complex constants Aj, Bj, Cj (j = 1,2) are coupled to each other via a ho-
mogeneous system of equations. The first equation (for m =1, k « 1) yields

2 _1-vy 1+v _
("j 2 )Aj+ 3 NB tvyG =0,
14v 2 _

2 "jAj+( 2 j)Bj+ G =20,

and for j =1 with \; = -y, + iy, we obtain the following dependencies of the
constants :

A1=4—;3 [—1 +2vuf+i(1 + 2vuf)]C1=(al+ia2)Cl ,

' (7)

1 1 . .
B=—[-—+1(2+v)]C = (B, +1iB,)C
1 4l121 (1% 1 1 2/
Since A, = -y, - iy, the conjugate complex relations for j = 2 follow as
Ay=(a;-i0,)C, , B, =(B -iB,y)C, . (8)

If we substitute (7) and (8) into (6), all displacements depend on C; and C,
only.

Boundary conditions

If we consider the boundary £ = 0 only in the case of the membrane solution,
the two boundary conditions for £ = 0 and £ = [/a have to be replaced by two
symmetry conditions for £ = [/2a. We thus obtain from

Ngﬁ(%) =0 und uo(%) =0

with (1b) and (3a)

3
w(s) - va

The remaining four constants C;, C,, Dy and D4 result from the four boundary
conditions

l
D, yl , D3:—D25;+'(a

u(0) =u’0)+ul(0) =0,
v(o) =+v"(0)+ v'(0) =0,
w(0) =w’(0)+w!(0) =0,
we(0) =wi(0)+w,(0) =0

After carrying out the numerical calculation with the given values we obtain the
circumferential force as

—12.9¢

Ngs = Ngs + Nys =| -8 + (47.3cos 12.9E + 5.02sin129E )€ cos 9 .
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Fig. C-25 shows the membrane forces according to (1) and the bending moments
M, und MM acting along the top longitudinal line $ = 0 of the shell. One can
see how fast the bending disturbance has decayed already at a distance of ~ 0.4
m from the boundary. The stresses are calculated from

0=—i% Ny | 6Myy . (9)

\
0- -
01 02 03 04 05 x[m]
ol L]

Fig. C-25: Membrane forces and bending moments along the top longitudinal line
of the cylindrical tube under deadweight
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The maximum stresses at the boundary are due to (9)

e} <= 1.31 &, 0.92 = 2.23 MPa ,

XXma

Oy, ., = 039 (&, 0.28 = 0.67 MPa

The numerical values show that both the longitudinal and the circumferential
stresses due to the boundary disturbances are of similar magnitude as the mem-
brane stresses.

Exercise C-13-5:

A circular cylindrical shell (a,l = 4a,
t = a/400) is subjected to a constant
external pressure p (Fig. C-26).

Formulate the basic equation for shell
buckling in analogy with the basic
equation of plate buckling (see

(10.17)).

Determine then the critical load for
the special case of a shell which is
simply supported at both ends.

Fig. C-26: Circular cylindrical shell
under external pressure

Solution:

We proceed from the simplified basic equations for a shear-rigid shell (DON-
NELL’s theory). Before buckling the initial stress state prevails within the shell

Nyx=0 , Ny=-pa , Ny=0 . (1)

At buckling the component Ny, w,s59 must be included in the equilibrium condi-
tion in the radial direction of the deformed shell . Then, u and v can be eliminat-
ed, and we obtain in analogy with (13.39)

_y2 Pa =
kAAAAW + (1 - v )w'“&-{- DAAW,M_O (2)
as the basic equation of shell buckling under erternal pressure.

In order to determine the critical load, we put the coordinate x in the centre of
the cylinder. The approximation

w=Wcosm—."laécos—na—y (m,n=1,2,3...) , (3)
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fulfills the boundary conditions of the simply supported shell in the longitudinal
direction

w(izLa)zo , Mxx(ia-l;)=o : Nxx(i%;)=0 , v(ig;)=o :

and the condition of periodicity in the circumferential direction
w(2ra)=w(0) . (4)

By substituting (3 ) into (2) and by defining A = I—n—T[@, we obtain the relation
for the critical load as

%(xz+nz)n2=k(12+n2)4+(1-v2)x4 (5a)
. - 22
or with P= plg , k(—_*’—l—l-i (1- 2)2—(——2)5 . (5b)

We now have to determine that combination of m and n for which p has the
smallest value. We can immediately see from (5b) that A will attain its smallest
value for m = 1. The shell therefore buckles with one wave in the longitudinal
direction.

: _ 2 (ma\?
Assuming that « =,z = (W) )
we obtain Pp=kn?(1+a)+ 1-v3) 2% =
p ( ) ( )n2(1+a)2
1-v2 | ¥t (1 2 3
= 2\) 3 ( +(l) + x 3 . (63.)
P\ 1-v o (1+a)

Assuming that many waves occur in the circumferential direction (n> 1), then it
is valid for long shells [ > a that

axl ,
and ( 6a ) then reduces to

—_ 1-vE Kt 1
(1) "

)? 1-v

The minimum value follows by differentiating p

dp _ 1-v2| kat (1 2| _ x_y8/ kK 7
da ~ 22 [1—v2(-07)+3a =0 = «t=a 3(1-v2) (")

Substituting (7) into ( 6b ) yields after elementary re-transformations :

£2 \3/4
Py = P(@*) = 207 & T 4/3(1-7) (mr) (8a)

or with v = 0.3

~ 0.92ET"*(%)5/2 ) (8b)

Perit
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Eq. (7) delivers the corresponding number of waves as

A2 4 k 2 a a
=2 =) _ B n‘~7173= —_
n? V 3(1-v2) LVt

Using the given numerical values | = 4a and t = a/400, we obtain
1 -
n? ~ 7357400 =365 , n=604 and p ~ TI9E-10"° MPa .

Owing to the necessary periodicity in the circumferential direction, the following
adjacent integer number at buckling is n = 6; in the numerical example follows
a*~ 0.017 and therefore « 1.

Exercise C-13-6:

Determine the eigenfrequencies of the free vibrations of a circular cylindri-
cal shell with simply supported ends as shown in Fig. C-26 (without exter-
nal pressure p). Assume small vibration amplitudes (linear theory) and
solve the exercise using DONNELL s theory.

Note: The coordinate system has in this case been moved to the lower
boundary.

Solution:

In order to treat the circular cylindrical shell, the basic equations (13.31) are sim-
plified in accordance with DONNELLs theory (see (13.38)):

2
1-v 1+v __ap
Uee t =5 gy + V,E1,+vwle___Dx , (12)
2
1+4v 1-v a"p
o) u’&,+v”m+-—2 v,££+w,0 =_—LD s (lb)
2
vu'f+v’0+w+kAAw = LDP—- . (1c)

As "loadings " we write D’ALEMBERT s inertia forces:

o%u _ o%v _ 3w
atz ’ Py—-‘Qt ()112 y P=-pt ()1:2 ’ (2)
where p denotes the mass density and t the time (t is introduced in order to
avoid confusion with the wall-thickness t). This approximate theory neglects the
rotational inertia of the shell; its consideration would result in additional, very

high frequencies, whereas its influence on the lower frequencies considered here is
negligible (see [C.21,C.22,C.23]).

Py =0t

The eigenfrequencies are determined via separation of variables:
u=1(x,¢)sinwt ,

v=V(x,p)sinwt , (3)

I

w=w(x,p)sinwt
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Substitution of (3) into (1a,b,c) and (2) yields elimination of time, and we
obtain the equations

= - 1-v - 1+vc = _
)‘“+u,ff+ 2 u+ 2 vlf+vw,€_0 ,

T4vs Lo, love Lo, = _
7 et AV+ =V +V+W =0, (4)
Vi + ¥, - AW + kKAAW =0

with the frequency parameter

207 _ .2
xzﬂl_\’_z(‘ﬁ . (5)

E

In (4), W, V, W are position functions T(x,¢ ), etc. The following assumption
regarding the form of these functions

- — X
T =Ucosnecosm 3

- . L= X

V= Vsinnesinm 3 , (6)

. X . _ mma
W =Wecosnesinm 3 with m = ———

fulfills all boundary conditions for a shell with simply supported ends
(w=v= IVIx:ITTx =0 for x = 0 and x = [). Substitution into (4) yields a ho-
mogeneous system of equations for the unknown amplitudes U, V, W. By setting
the determinant of the coefficients equal to zero, one obtains the characteristic
equation of an eigenvalue problem

NM_oAZ4BL-C=0, (7)

where the coefficients A, B, and C depend on the dimensions of the shell as well
ason m and n.

Numerical evaluation of (7) shows that each pair of values of m and n defines
one lower and two higher eigenvalues which exceed the lower ones by powers of
ten. The technically relevant lower eigenvalue can thus be approximated from ( 7):
C

M=F - (8)
The numerical values additionally show that X, is associated with a pronounced
transverse vibration (W » U,V ), while longitudinal vibrations are associated
with X, and X; (U,V»> W ). Based upon this observation, the lowest frequency
can be governed by a single formula.

If the amplitudes U and V are very small, the terms of inertia forces in the lon-
gitudinal and circumferential direction can be neglected in equation (4 ). Conse-
quently, the displacements u and v can be eliminated from the first two equations,
using the same procedure as in (13.38). Thereby, (13.39) is augmented by the w-
inertia term, and we obtain considering the vibration approach

kKAAAAW + (1-v2)wV - abnAwW=0 . (9)

With (6) this yields an approximation for the lowest eigenfrequency:

M=) G oo

The results according to (8) and (10 ) are numerically almost identical.
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The eigenfrequency equation (10) consists of two termes, where the first stems
from extensional vibrations and the second from bending vibrations. Fig. C-27
presents a numerical example, where both terms are drawn separately in depen-
dence on n. The curves clearly illustrate that for a small number n of circumfe-
rential waves extensional vibrations predominantly occur, and for large n ben-
ding vibrations, respectively. Close to the minimum, the two terms are approxi-
mately equal. Therefore, no further simplifications must be performed for the
simply supported shell. Elimination of the first term in (9), for instance, cannot
be admitted since this would correspond to an inextensional vibration. If defor-
mations which are incompatible with the assumption of inextensional bending are
prescribed at the boundary, bending and extension will act jointly, and thus have
to be considered by a complete shell theory.

The minimum of X; can be calculated by a formula. Eq (10) implies that A, in-
creases with . It attains its smallest value for m = 1, ie. the shell v1brates
with one wave in the longitudinal direction. X, then only depends on n. If the
actually discrete number of waves n is a.ssumed to be continuous, (10) can be
differentiated with respect to n:

dx

— 4
1 _ 2 m —
ECETS SR Cory L
It follows that
oy
(m2+at)? = me, /o) (11)

1.4

1.2 \
1.0 X

0.8

0.6 \ p
\% A=A+ Ay /7

04 g
02| A, =k(m +n’ )\\//x (1-vHm'
T~ (m+n)

T T

T T
5 6 7 8 9 10 11 12 13 n

0

Fig. C-27: Lowest eigenfrequency of a simply supported cylindrical shell
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Substitution yields (the two terms in (10 ) result in the same value)
— _ y2 2
lein_2¢(1 vi)k m

or, with the frequency parameter

: _,B [/ k (may
("Min"zpa2 (1—\)2)(1) : (12)

This proves that the lowest frequency depends on all dimensions and on the ma-
terial data. From (11) we determine the number of waves n assigned to the mini-
mum. In practice, the adjacent integer value of n would occur. In our example,
the shell vibrates with nine circumferential waves; using the given numerical
values, (11) would give the value n = 9.22.

For a shell with free boundaries, inextensional bending may be assumed as a pos-

sible vibration mode. For this case, Lord RAYLEIGH determined, by equalling ki-

netic and elastic energy, that
2(.2_ 1)2

n?(n®-1) (13)
n2+1

We obtain the same result by defining m — 0 in (10). Here, the differences in
dependence on n are a result of the DONNELL simplifications. For larger n,
these differences are unimportant (A = k- n?).

A=k

Exercise C-14-1:

A spherical cap (Fig. C-28) is extended over a circular base (radius r,,
1, << a), and is assumed to be subjected to a constant surface pressure
load p. The height of the cap is given as f.

Fig. C-28: Spherical cap over a circular base
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As 1, << a, the mid-surface of the spherical cap can be approximated by

2, 2 2
z(r)~f-X2 ¥ - ¢ L (1)
2a 2a
. . . 1
implying constant curvatures everywhere, ie. k, = Ky = =5

a) State the differential equation and obtain the solution of the homo-
geneous equation for an axisymmetrical problem.

b) Calculate the deflection of the shallow spherical cap when subjected to
a concentrated force F at the top point and assuming that r — 0.

Solution :

a) With the given assumptions, the system of differential equations (14.9) reads

1 _P
Abw+ b0 =% (2a)
AA(D—-E—tAw=0 . (2b)

We now multiply (2b) by a factor A and add it to (2a ). We thus obtain

AD(w+20) - ZExa(w - xéth’):R . (3)

If the underscored terms in (3) are equal, one can formulate a differential equa-
tion for

F=w+2r0 . (4)
Introducing i as the imaginary unit, we write

X = Eit2 Yi2(1-v2) . (5a)
With the abbreviation k we obtain

Za= - =ik . (sb)

a

By (5b) and (4), (3) transforms into

AAF—iszFz% . (6)

Here, our considerations will be restricted to the homogeneous solution of ( 6).
Then, the differential equation can be split as follows :

(A-ik’)AF =A(L-ikK’)F=0 . (7)

In the present case it is sensible to use polar coordinates owing to the axisym-
metry of shell and load. The LAPLACE-operator is then independent of the
angular coordinate 9 and hence
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2
We can thus determine partial solutions from the two differential equations:
AF =0 , (8a)
AF -ik’F=0 . (8b)

The solution to (8a) can be stated immediately as
F,=C, + Cylnr , (9a)
while (8b) is a BESSEL differential equation [B.3] of the form

d?F  1dF ..2
Er—z—-l-;g—kF:O . (10)

Solutions to (10) are modified cylinder functions of first and second type,
Io(k r 1/—1 ) and Ko(k r 1/_1 ), respectively, that are linearly independent [ B.3]:

F, = C Iy (kry/i ) + C, Ky (kryi) , (9b)

where C; and C, are complex constants.

According to KELVIN, two new functions ber(kr) and bei(kr) can_be
introduced that correspond to the real and the imaginary part of I, (krﬁ ),
respectively, as well as the functions ker(kr) and kei (kr) which are equal to
the real and imaginary part of K, (k rﬁ ) [B3]:

I, (kry/i ) = ber(kr) + ibei(kr) , }

Ky (kryi) =ker(kr) + ikei(kr)

(11)

The reader is referred to standard tables, eg. [B.3], for graphs of the KELVIN
functions.

The general solution to (6) then consists of a linear combination of F, according
to (92) and of F, according to (9b). If we substitute the solution into (4) and
compare the coefficients, considering the complex constants, we obtain from (11)
the following terms for the bending w and for AIRY s stress function @ :

w = B ber(kr) + Bybei(kr) + B, ker(kr) +
+ B kei(kr) + By + Bglnr , (12a)
Et’
o =———————[—Blbei(kr) + Byber(kr) - B kei(kr) +
12(1 - v?)
+B4ker(kr)+B7+B81nr , (12b)

where B1 ...Bg are real constants.
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b) In the following, the deformation in the middle of the shallow spherical cap
shall be considered. For this purpose it is assumed that the boundary of the
shell is very remote from the top point (r — 00), and that the displacement w
and its higher derivatives vanish at the boundary.

Under the given assumptions we write for r —> 00 (d/dr = ( )e ):
w=w =w_=0 ., (13a)
In addition, for r = 0, i.e. at the top point

w,w_,N have to be finite. (13b)

r’ Nww
The concentrated force F at the top point (r = 0) is equilibrated by a total verti-
cal shear force V, along any circle of radius r. Thus,
__F
7 2nr

(14)
r
where V, =Q + ;Nn .

After evaluation of all conditions, we obtain the constants as follows:

B,=B,=B;=B,=B,=B;=B,=0, B, =B

p - Fa y12(1 - v?)

87 on Et?

8

The deflection function then reads

w - Fa Y12(1 - v?)

T 2n Et?

kei(kr) . (15a)

The maximum deflection occurs at the top point where the load acts. For r=20
we have kei(0) = —m /4. This yields:
1 Fa
w, =-293(1-v?
max 4 ( ) E t2

In his fundamental papers, REISSNER has treated problems of shallow spherical
shells with a number of load cases. For further details refer to [C.20].

(15b)

Exercise C-14-2:

The eigenfrequencies of a hypar shell projected against a rectangular base
(Fig. C-29) shall be determined. The distance f between base and shell is
assumed to be small.

a) Set up the fundamental equations for the eigenfrequencies.

b)  Which eigenfrequencies appear for the special case of a simply sup-
ported shell? Derive an approximate formula for the lowest frequency.



C Curved load-bearing structures

C.1 Definitions — Formulas — Concepts

11 General fundamentals of shells
11.1 Surface theory — description of shells

11.1.1 Representation of surfaces

We assume that there exist one-to-one relationships between the curvilinear
coordinates ( GAUSSIAN surface parameters) {*(a = 1,2) and the Cartesi-
an coordinates x'(i = 1,2,3) of the points P of a surface (Fig. 11.1). This
correlation is expressed by

X =x (&) (111a)

or, in vector notation with the position vector r of a point on the surface
[C5,C11] as

r=r(£°‘)=xi(£°‘)ei . (11.1b)

Differentiability with continuous first derivatives is assumed along with
non-singularity of the JACOBIAN matrix ( functional matrix ):

—

X c)x2 r)x3

i t)fl ()£1 ()61
J=2°X _ . (112)

‘)gx c)x1 c)x2 ax3

0 2f ol

X! X (E%)

Fig. 11.1: Definition of the parametric representation of a surface

H. Eschenauer et al., Applied Structural Mechanics
© Springer-Verlag Berlin Heidelberg 1997
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If €2 = const for variable ¢!, (11.1b) describes space curves embedded on
the surface, and these curves are called ¢!-lines. In analogy, with ¢! =
const, one obtains ¢2-lines. These ¢!~ and ¢2-lines constitute a curvilinear
coordinate mesh on the surface ( Fig. 11.1).

a) Surfaces of revolution

Definition 1:  One obtains a surface of revolution (Fig. 11.2), if a two-di-
mensional curve m positioned in the x*, x3- plane (x* = 0)

1 2 3 3
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