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CHAPTER 1

How They Play the Game

There’s an old saying: “It’s not whether you win or lose; it’s how you

play the game.” It comes to us from the 1908 poem “Alumnus Football”

by the legendary sportswriter Grantland Rice, in which Coach

Experience exhorts a young running back to keep on giving it his all

against the defensive line of Failure, Competition, Envy, and Greed:

Keep coming back, and though the world may romp across your spine,

Let every game’s end find you still upon the battling line;

For when the One Great Scorer comes to mark against your name,

He writes not that you won or lost but how you played the Game.

If we take “the Game” literally rather than as a metaphor, it’s pretty

easy to tell whether you have won or lost; there’s usually a large electronic

board standing by with that information at the ready. But quantifying

“how you played the Game” is quite another matter, and it’s something

that has been evolving for centuries.

Among the earliest organized sports was cricket. Scorekeepers have

been keeping track of cricket matches as far back as 1697, when two such

reporters would sit together and make a notch in a stick for every run

that scored. Soon the newspapers took an interest in the matches, and the

recordkeeping gradually began to evolve. The earliest contest from which

a scorecard survives where runs are attributed to individual batsmen took

place between Kent and All England at London’s Artillery Ground on

June 18, 1744. In the early 19th century the accounts would include the

names of bowlers when a batsman was dismissed. Fred Lillywhite, an

English sports outfitter who published many early books on cricket,

traveled with a portable press with which he both wrote newspaper

dispatches and printed scorecards whenever he needed them. He accom-

panied the English cricket team, captained by George Parr, when it made

its first barnstorming tour of the United States and Canada in 1859,

served as scorer, and later published an account of the trip. Cricket had

been played in North America since at least 1709; Benjamin Franklin

brought home a copy of the 1744 rule book from his second trip to

England, and over the first half of the 19th century teams were organized
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in cities and colleges from Virginia to Ontario. The matches that George

Parr’s XI, as the English squad was known, played against local teams

were modestly successful in raising interest for cricket in America, but

those gains soon faded with the outbreak of the US Civil War. Soldiers

on both sides tended to prefer cricket’s young cousin, which was already

establishing itself from the cities to the coal towns of the nation. By the

time the English team returned for a second visit in 1868, cricket’s popu-

larity in America had declined. However, the connection between sports

and statistics that had begun with cricket back in England was about to

take on a completely new dimension.

Of all the organized American sports, it’s perhaps not terribly surpris-

ing that the one game to make numbers a fundamental part of its soul

would be baseball. Every event that occurs in a baseball game does so

with few unknown quantities: there are always nine fielders in the same

general area, one batter, no more than three base runners, no more than

two outs. There is no continuous flurry of activity as in basketball, soccer,

or hockey; the events do not rely heavily upon player formations as in

football; there are no turnovers and no clock—every play is a discrete

event. After Alexander Cartwright and his Knickerbocker Base Ball Club

set down the first written rules for this new game on September 23,

1845, it took less than a month for the first box score to grace the pages

of a newspaper. The New York Morning News of October 22, 1845,

printed the lineups of the “New York Club” and the “Brooklyn Club”

for a three-inning game won by Cartwright’s team 24�4, along with the

number of runs scored and hands out (batted balls caught by a fielder on

the fly or “on the bound,” the first bounce) made by each batter. Thus

was born a symbiotic relationship: newspapers print baseball results to

attract readers from the nascent sport’s growing fan base, giving free pub-

licity to the teams at the same time.

While he was not the first to describe a sporting match with data, “in

the long romance of baseball and numbers,” as Major League Baseball’s

official historian John Thorn put it, “no figure was more important than

that of Henry Chadwick.”1 Chadwick had immigrated to the United

States from England as a boy in the 1830s. Once across the pond, he

continued to indulge his interest in cricket, at first playing the game and

later writing about it for various newspapers in and around Brooklyn.

1 Thorn, J., Palmer, P., & Wayman, J.M. (1994). The history of major league baseball

statistics. In Total Baseball (4th ed.) (p. 642). New York, NY: Viking.
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He eventually found himself working for the New York Clipper, a weekly

newspaper published on Saturdays by Frank Queen. “The Oldest

American Sporting and Theatrical Journal,” as the Clipper billed itself,

was “devoted to sports and pastimes—the drama—physical and mental

recreations, etc.” It did cover a wide variety of sports and games, from

baseball (“Ball Play”), cricket, and boxing (“Sparring” or “The Ring”),

to checkers, billiards, and pigeon shooting. It would also cover the newest

play opening at the local theater, and the front page would often feature

poetry and the latest installment of a fictional story, for which the paper

would offer cash prizes. Eventually the Clipper would drop “Sporting”

from its motto and focus exclusively on theater, cinema, and state fairs.

By 1856, Chadwick had been covering cricket matches for a decade

for the Clipper. Returning from one such match, he happened to pass the

Elysian Fields in Hoboken, New Jersey, where many of New York’s and

Brooklyn’s teams would come to play, open space being much easier to

come by on the west bank of the Hudson. “The game was being sharply

played on both sides, and I watched it with deeper interest than any pre-

vious ball game between clubs that I had seen,” he would later recall. “It

was not long, therefore, after I had become interested in baseball, before I

began to invent a method of giving detailed reports of leading contests at

baseball.”2 Those detailed reports were box scores, and while he did not

invent them he did much to develop and expand them.

On August 9, 1856, describing a game in which the Union Club of

Morrisania, New York, defeated the New York Baltics 23�17, the

Clipper published what was the forerunner of the line score, a table of

runs and hands out with the hitters on the vertical axis and innings on

the horizontal. The first actual line score would appear on June 13, 1857,

for the season opener between the Eagles and the Knickerbockers, with

each team’s inning-by-inning tallies listed separately on its respective side

of the box score. The line score would not appear in the Clipper again

until September 5, describing a six-inning “match between the light and

heavy weights of the St. Nicholas Base Ball Clubs on the 25th”3

of August, this time listed vertically. In the following week’s edition,

Chadwick generated the first modern line score, horizontally with both

teams together. The following season saw the first pitch counts. In an

2 Quoted in Schwarz, A. (2004). The Numbers Game: Baseball’s lifelong fascination with

numbers (p. 4). New York, NY: St. Martin’s Griffin.
3 Light vs. heavy. The New York Clipper, V(20), September 5, 1857, 159.
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August 7, 1858, game between Resolute of Brooklyn and the Niagara

Club of South Brooklyn, won by Resolute 30�17 when play was halted

after eight innings because of darkness, a whopping 812 pitches were

thrown. Resolute’s R.S. Canfield threw 359 pitches, including 128 in

one inning, with John Shields of Niagara tossing 453. At the plate, both

scored four runs. The lineup section of this box score still included just

hands out (now called “hands lost” or just “H. L.”) and runs. It would be

the late 1870s before the box score would settle into a generally consistent

format. Alfred H. Wright, a former player who later wrote for the

Philadelphia Sunday Mercury before becoming the Clipper’s baseball editor,

was the first to publish league standings, described in 1889 as “the

checker-board arrangement now universally used to show the progress of

the championship grade.”4

In the December 10, 1859, edition of the Clipper, Chadwick gener-

ated a three-section season recap of the Brooklyn Excelsiors. “Analysis of

the Batting” included games played (“matches played in”), outs made

(“hands lost”), runs, and home runs for the 17 players, as well as the per-

game means, maxima, and minima for hands lost and runs. The mean

was formatted in the cricket style of average and over, meaning dividend

and remainder; with 31 hands lost in 11 games (2 9/11), Arthur

Markham’s average and over was listed as 2�9. “Analysis of the Fielding”

consisted of total putouts “on the Fly,” “on the Bound,” and “on the

Base,” as well as per-game maxima and the number of games in which no

putouts of each type were recorded, followed by total number of games,

total number of putouts, and average and over for putouts per game.

“Additional Statistics” contained paragraphs of what we today might con-

sider trivia: highest (62) and lowest-scoring (3), longest (3:55) and short-

est (1:50), and earliest (May 12) and latest (October 25) games; the

number of innings in which no runs were scored (29 of 133) and in

which the Excelsiors scored in double figures (6). Chadwick acknowl-

edged that there were gaps in his analysis, but nonetheless prevailed upon

his dear readers to fear not:

As we were not present at all the matches, we are unable to give any infor-

mation as to how the players were put out. Next season, however, we intend

keeping the correct scores of every contest, and then we shall have data for a

full analysis. As this is the first analysis of a Base Ball Club we have seen

4 Palmer, H. C., et al. (1889). Athletic sports in America, England and Australia

(pp. 577�578). New York, NY: Union House Publishing.
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published, it is of course capable of improvement, and in our analysis of the

other prominent clubs, which we intend giving as fast as prepared, we shall

probably be able to give further particulars of interest to our readers.5

The only table in the “Additional Statistics” section was a list of who

played the most games at each position; Ed Russell pitched in eight of

the Excelsiors’ 15 games in 1859, and, strikingly from a modern perspec-

tive, that was the only time pitching is mentioned in the entire report.

But at second glance, perhaps it’s not so surprising that pitching was an

afterthought. In the early days of baseball, the pitcher was the least impor-

tant member of the team. He was required to throw underhand, as one

would pitch horseshoes, which was how the position got its name. It also

took some years before a rule change allowed him to snap his wrist as he

delivered the ball. There were essentially two strike zones: the batter (or

“striker” as he would be called) could request either a high pitch, mean-

ing between the shoulders and the waist, or a low pitch, between the

waist and the knees. If a striker requested a high pitch, and the pitcher

threw one at mid-thigh level, the pitch would be called a ball, even if it

went right over the middle of the plate. It took nine balls before the

striker would be awarded first base, and a foul ball was no play, so strike-

outs were rare; even so, Chadwick considered a strikeout as a failure by

the batter and not a mark in favor of the pitcher, which it officially would

not become until 1889. With so few opportunities for strategy, it would

be the pitcher’s job, more or less, to get the strikers to put the ball in

play, which they did with great regularity. Fielding was much more of an

adventure—the first baseball glove was still a decade away, and wouldn’t

become customary for two more after that; a single ball would last the

entire game, regardless of how dirty or tobacco juice-stained or deformed

it might become—so double-digit error totals were as common as

double-digit run totals. Until 1865 some box scores even had a dedicated

column for how many times each batter reached base on an error right

next to the column for hits. As today, the statistical analysis reflected those

aspects of the game considered most important.

But in another sense, statistics are separate from the game. We can

change the way we record the events of the game and the significance we

impart to them without changing the game itself. As Shakespeare might

have put it, that which we call a walk by any other name would still place

a runner on first base. Such was the case in 1887, when baseball’s

5 Excelsior club. The New York Clipper, VII(34), December 10, 1859, 268.
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statistical rules were modified to consider bases on balls as base hits in

order to artificially inflate batting averages. “Baseball’s increasing audience

seemed fascinated with batting stars,” wrote the great sportswriter

Leonard Koppett. “Batting stars were usually identified by their high bat-

ting averages, as the dissemination of annual and daily statistics continued

to grow.”6 The batting average had been around since 1868—the Clipper

analyses presented each player’s “Average in game of bases on hits,” doing

so in decimals rather than average-and-over format. In 1876, announcing

the conditions for its batting title, the National League adopted hits

divided by at-bats as the definition of batting average and, for better or

for worse, it has remained the go-to number for evaluating a hitter’s

prowess at the plate ever since.

Scoring walks as hits had an effect: batting averages leaguewide sky-

rocketed, though they received an additional boost from some other

whimsical changes to the actual rules of play—pitchers could only take

one step when delivering rather than a running start and, perhaps most

glaring of all, it became one, two, three, four strikes you’re out at the old

ball game. Some sportswriters began referring to walks as “phantoms.”

Chadwick’s Clipper was not impressed with “the absurdities of the so-

called official batting averages of the National League for 1887” and

refused to go along. “The idea of giving a man a base-hit when he gets

his base on balls is not at all relished here. Base-hits will be meaningless

now, as no one can be said to have earned his base who has reached first

on balls.”7 Its pages considered the Phillies’ Charlie Buffinton as having

thrown two consecutive one-hitters, first shutting out Indianapolis 5�0

on August 6 and then having the Cubs “at his mercy, only one safe hit

being made off him, and that was a scratch home-run”8 in a 17�4 romp

3 days later; officially, with walks as hits though, they went down as a

three-hitter and a five-hitter. Chadwick’s bulletins gave two batting

averages for each player, one “actual” and one “under National League

rules.” The differences were substantial: Cap Anson won the batting title

over Sam Thompson, .421 to .407, but without the rule, Thompson

would best Anson, .372 to .347. In 1968, baseball’s Special Records

Commission formally removed walks from all 1887 batting averages,

6 Koppett, L. (1998). Koppett’s concise history of major league baseball (p. 54). Philadelphia, PA:

Temple University Press.
7 From the hub. The New York Clipper, XXXIV(38), December 4, 1886, 603.
8 Baseball: Chicago vs. Philadelphia. The New York Clipper, XXXV(No. 23), August 20,

1887, 361.
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though Anson is still officially the 1887 National League batting cham-

pion. Overall, the National League hit a combined .321. Of players who

appeared in at least 100 games, more hit over .380 than under .310.

Throw out the walks, and it’s a different story: the league average dips 52

points to .269, and the median among those with 100 games played

plunges from .343 to .285. The story was the same in the American

Association, whose collective average was .330, inflated from .273. Its bat-

ting crown went to Tip O’Neill of the Louisville Colonels, who was over

.500 for much of the year before a late slump dragged him down to a pal-

try .485 (at the time listed as .492). Six batters with 100 games played

broke .400, twice as many as were under .300. And after all of that, atten-

dance remained more or less flat. In the face of considerable opposition

to walks-as-hits, the Joint Rules Committee of the National League and

American Association abandoned the new rule following the 1887 season,

reverting the strikeout to three strikes as well. Despite the outcry, it’s

important to note that counting walks in the batting average did not

change the game itself, only the way it was measured.

There were a few rare situations in which players and managers would

allow statistics to influence their approach to the game. Chadwick, who

by 1880 had spawned an entire generation of stat-keepers, was concerned

about this: “The present method of scoring the game and preparing

scores for publication is faulty to the extreme, and it is calculated to drive

players into playing for their records rather than for their side.” In the late

1880s, with batting averages dominating the statistical conversation, some

hitters were reluctant to lay down a bunt—sure, it might advance a run-

ner, but at what cost? They “always claimed that they could not sacrifice

to advantage,” The New York Times reported. “In reality they did not care

to, as it impaired their batting record.”9 Scorekeepers started recording

sacrifices in 1889 but would still charge the hitter with an at-bat; this was

changed in 1893 but it would be a year before anyone actually paid atten-

tion to it and three more before it was generally accepted. Another such

scenario is of much more recent vintage with the evolution of the mod-

ern bullpen. The save had been an official statistic since 1969, but as the

turn of the century approached and relief pitching became much more

regimented—assigned into roles like the closer, the set-up guy, the long

man, and the LOOGY (lefty one-out guy, one of baseball’s truly great

expressions)—it became customary and even expected that the closer,

9 Quoted in Schwarz, p. 19.
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ostensibly the best arm in the pen, would only be called in to pitch with

a lead of at least one but no more than three runs in the ninth inning or

later. Sure, the game might be on the line an inning or two earlier with

the bases loaded and the opposition’s best slugger up, but conventional

wisdom dictates that you can’t bring the closer in then because it’s not a

“save situation.” When the visiting team is playing an extra-inning game,

the closer is almost never brought in when the score is tied, even though

in a tie game there is no margin for error—if a single run scores the game

is over—whereas in the “save situation” he can allow one, possibly two,

or maybe even three runs without losing the game.

Over the years, other statistics would begin to emerge from a variety

of sources. A newspaper in Buffalo began to report runs batted in (RBI)

as part of its box scores in 1879; a year later the Chicago Tribune would

include that figure in White Stocking player stats, though it would not

continue that practice into 1881. In his Baseball Cyclopedia, published in

1922, Ernest J. Lanigan wrote of the RBI that “Chadwick urged the

adoption of this feature in the middle [18]80s, and by 1891 carried his

point so that the National League scorers were instructed to report this

data. They reported it grudgingly, and finally were told they wouldn’t

have to report it.”10 By 1907 the RBI was being revived by the New York

Press, and thirteen years later it became an official statistic at the request

of the Baseball Writers Association of America, though that didn’t neces-

sarily mean that others were enamored of it. For one, The New York

Times didn’t include RBIs in its box scores for another eight years, when

it placed them in the paragraph beneath the line score alongside other sta-

tistics like extra base hits and sacrifice flies. And it wasn’t until 1958 that

the Times moved the RBI into its own column in the lineup, where we

expect it to be today.

Occasionally a new statistic would arise from the contestants them-

selves. Philadelphia Phillies outfielder Sherry Magee had a tendency to

intentionally hit a fly ball to the outfield to drive in a runner on third,

and his manager Billy Murray didn’t think that an at-bat should be

charged against Magee’s batting average in such situations. His lobbying

efforts were successful, as on February 27, 1908, the major leagues created

a new statistic—this “sacrifice fly” would find itself in and out of favor

and on and off the list of official statistics before finally establishing

itself in 1954. Perhaps with an eye toward his own situation, in 1912,

10 Lanigan, E. Baseball cyclopedia, p. 89.
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Detroit Tigers catcher Charles Schmidt requested that scorers keep track

of base runners caught stealing; before then, the only dedicated catching

statistic was the passed ball.

Some statistics underwent changes and evolutions. In 1878, Abner

Dalrymple of the Milwaukee Grays hit .356 to win the National League

batting title, but only because at that time tie games were not included in

official statistics. Had they been, Dalrymple would have lost out to

Providence’s Paul Hines, .358 to .354. They later would be, but unfortu-

nately for Hines, this would not happen until 1968, 33 years after his

death, when he was recognized as having won not only the 1878 batting

title but also, by virtue of his 4 home runs and of the 50 RBIs for which

he was retroactively credited, baseball’s first-ever Triple Crown. When the

stolen base was introduced in 1886, it was defined as any base advanced by

a runner without the benefit of a hit or an error; thus a runner who went

from first to third on a single would be considered to have advanced from

first to second on the base hit, and to have stolen third. In 1898 this defi-

nition was revised to our modern understanding of a stolen base, and the

notion of defensive indifference—not crediting an uncontested stolen base

late in a lopsided game—followed in 1920. Also in 1898, the National

League clarified that a hit should not be awarded for what we now know

as a fielder’s choice, and errors should not automatically be charged on

exceptionally difficult chances.

The first inkling of the notion of an earned run dates back to 1867,

when Chadwick’s box scores began reporting separately runs that scored

on hits and runs that scored on errors; even so, to him it was a statistic

about batting and fielding, not pitching, much like he considered strike-

outs about batting, not pitching, and stolen bases about fielding, not base-

running. For the 1888 season, the Joint Rules Committee established

that a “base on the balls will be credited against the pitcher in the error

column.”11 The Clipper opined that “[t]here must be some mistake in this

matter, as it will be impossible to make a base on balls a factor in estimat-

ing earned runs if the rule, as stated above, charges an error to the pitcher

for each base on balls.”11 (This is not to say that Chadwick was necessarily

on the right side of history about everything. In the same article, he refers

to pinch hitters—“the question of each club having one or more extra

men in uniform who may be introduced into the game at any time”—as

a “dangerous innovation.”) Chadwick resisted the notion of the earned

11 Amending the rules. The New York Clipper, XXXV(36), November 19, 1887, 576.
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run as a pitching metric until his death in 1908. In August 1912,

National League Secretary John Heydler began recording earned runs

officially and created a new statistic, the earned run average (ERA),

which he defined not as earned runs per game, but as earned runs per

nine innings. The American League would follow suit for the start of the

1913 season. As relief pitching became more of a factor in the modern

game, the statistics had to be updated to reflect that. A pitcher’s ERA, of

course, reflects only earned runs and not unearned runs, which are runs

that the team at bat scores by virtue of some sort of failure by the team in

the field, namely a passed ball or an error other than catcher’s interfer-

ence, that they would not have scored otherwise. Whether a given run

that scores after an error is committed is earned or unearned depends on

the game situation. The official scorer is charged with reconstructing the

inning as if the error had not occurred, using his best judgment with

regard to where the base runners would have ended up, and to record as

unearned any run that scored after there would have been three outs.

Thus if a batter reaches on an error with the bases empty and two outs,

any run that scores for the rest of that inning would be unearned, since

the error obviated what should have been the third out. This was good

news for a relief pitcher, as he could enter the game in that situation and

allow any number of runs—they all would be unearned and his ERA

would only go down. In 1969 the earned run rule was changed so that a

reliever could not take advantage of the fact that an error had occurred

before he entered the game. Now any run charged to his record during

the inning in which he came on to pitch would be an earned run (bar-

ring, of course, another two-out error). One shortcoming of the ERA

with respect to relief pitchers is that runs are charged to whichever

pitcher put the scoring runner on base, not who allowed the runner to

score. A relief pitcher entering a game with a runner on first base who

serves up a two-run home run to the first batter he faces would only be

charged with one run. The run scored by the man on first would be

charged to the previous pitcher, even though he allowed the runner to

advance only one base compared to three by the reliever.

With the evolution of all of these statistical categories, it wasn’t long

before writers and analysts began to use them prospectively rather than

simply retrospectively, launching a science that continues today. Hugh

Fullerton was a Chicago-based sportswriter who was unusual for includ-

ing direct quotes from players and managers in his articles. He also was a

careful observer of the game, and would achieve lasting fame for his
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statistical analyses of the Chicago White Sox in the World Series. In

1906, the first cross-town World Series pitted the White Sox against the

Cubs, the dominating champions of the National League. The 1906 Cubs

won 116 games, a record not matched until 2001 (although the 116�46

Seattle Mariners required seven more games to do it than the 116�36�3

Cubs), including an unparalleled 60�15 record on the road. Aside from the

celebrated infield of Tinker, Evers, and Chance, the “Spuds,” as they were

sometimes called, were led on the mound by future Hall of Famer Mordecai

“Three Finger” Brown, who went 26�6 with nine shutouts. They won the

National League by 20 games over the New York Giants, and scored half a

run more and allowed half a run fewer per game than anyone else. On the

South Side, the White Sox and their respectable 93 wins edged the New

York Yankees by just three games. Their offense scored 3.68 runs per game,

just barely above the league average of 3.66, and their league-worst .230 team

batting average and seven total home runs earned them the dubious nick-

name of “The Hitless Wonders.” What chance could they have possibly had

in the World Series against the most dominant ball club in history?

Plenty, thought Fullerton. “The White Sox will win it—taking four

out of the first six games . . . winning decisively, although out-hit during

the entire series.”12 He acknowledged that the Cubs were “the best ball

club in the world and perhaps the best that was ever organized . . . [b]ut
even the best ball club in the world is beatable.” So sure of this was

Fullerton that he promised to “find a weeping willow tree, upon which I

will hang my score book and mourn” if his prediction didn’t come true.

His confidence stemmed from what he called “doping,” a term that

referred to something far different then than it does today. Fullerton

described doping in a 1915 article published in the Washington Times:

“We will first take every player on the two teams that are to fight for

the championship, and study the statistics. We will find out what each

man bats against right and left-handed pitchers, against speed pitching,

and against slow pitching. We will figure his speed, aggressiveness, con-

dition, and disposition.” He would then take these analyses and meet

with the players, their teammates, their opponents, and “men who

know him better than I do.”13 He would then rate the players on

batting, fielding, and value to his team on a scale of 0 to 1000, adding

12 Fullerton, H.S. (October 15, 1906). Series verifies Fullerton’s Dope. The Chicago Tribune, 4.
13 Fullerton, H.S. (September 27, 1915). Hugh S. Fullerton explains his famous system of

‘Doping’ the Greatest Series of the Diamond. The Washington Times, 11.
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or subtracting for factors such as defensive position or their physical

and psychological state. “[Ty] Cobb’s total value to his team in a season

I figure at 850. Now, it makes no difference whether we say Cobb is

750 or 500 or 250. It is an arbitrary figure assumed for purposes of

comparison.”13 Since there was no interleague play, Fullerton handi-

capped the batting matchups based on pitchers the hitters had faced

who were similar to those they would be facing in the World Series.

He also considered what we today would call “park factors.”

Fullerton concluded that Brown was “the kind of pitcher the Sox will

beat.”14 The Cubs’ leading hitter at .327, third baseman Harry Steinfeldt,

was “not that good a hitter. He never hit .300 in his life before, and proba-

bly never would again.” He reckoned that the offensive disparity between

the two teams was misleading because “[a]n American league batter is hit-

ting against good pitching about six games out of seven,” twice as often as a

National Leaguer. When his analysis was complete, he predicted that the

White Sox would win in six games. It wasn’t actually printed until October

15, the day after the White Sox did indeed win the 1906 World Series in

six games, because, the editor’s note explained, a “man in authority refused

to take a chance in printing Mr. Fullerton’s forecast, but it has been verified

so remarkably by the games as played that it is now printed just as it was

written.”15 The White Sox did beat Three Finger Brown in two of his three

starts. Steinfeldt hit .250 in the World Series, and never hit .270 for a season

again, let alone .300. Fullerton would continue his World Series doping,

and in 1919 would be instrumental in uncovering the Black Sox conspiracy.

Hugh Fullerton would be followed by others. Ferdinand Cole Lane

had a scientific background, working as a biologist for Boston University

and the Massachusetts Commission of Fisheries and Game before editing

for many years a monthly called the Baseball Magazine. F.C. Lane, as he

was known, was an early proponent of run expectancy and a fierce critic

of batting average, calling it “worse than worthless”16 as a statistic for

evaluating prowess at the plate.17 “Suppose you asked a close personal

14 Fullerton. Series verifies Fullerton’s Dope.
15 Fullerton. Series verifies Fullerton’s Dope (editor’s note).
16 Quoted in Schwarz, p. 34.
17 In 1925, Lane published Batting: One thousand expert opinions on every conceivable angle of

batting science. In an apparent about-face, he concluded the chapter “What the Records

Tell Us” thusly: “To sum up, baseball owes a great deal to the records. Batting averages

are the most accurate of these records. They serve as the only fair basis for comparing

old time batters with modern hitters, or in comparing one present-day hitter with

another.” Lane, Batting, p. 14.
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friend how much change he had in his pocket and he replied, ‘Twelve

coins,’ would you think you had learned much about the precise state of

his exchequer?” he wrote in the March 1916 issue. “Would a system that

placed nickels, dimes, quarters and fifty cent pieces on the same basis be

much of a system whereby to compute a man’s financial resources?

Anyone who offered such a system would deserve to be examined as to

his mental condition.”18 Lane proposed not slugging percentage but a

system of weights applied to singles, doubles, triples, home runs, and sto-

len bases in proportion to what his run expectancy analyses told him

each event contributed to scoring a run. Singles, he calculated, were

worth 0.4 runs, doubles 0.65, triples 0.9, home runs 1.15, and stolen

bases and walks 0.25. Lane then applied this formula to batting statistics,

and concluded that the Brooklyn Dodgers’ two-time former National

League batting champion Jake Daubert, whose .301 average was fifth

best in 1915, was not as good a hitter as the Phillies’ Gavvy Cravath,

though Cravath only finished 12th at .285. Of Daubert’s 151 hits,

120 (79.4%) were singles, compared to 87 of 149 (58.4%) for Cravath;

he also trailed far behind Cravath in doubles (21�31) and especially in

home runs (2�24). Lane’s proposed batting average would divide those

run values by at-bats; his model returned a total of 58 runs created by

Daubert and 79 by Cravath, and averages of .106 and .151 respectively.

“[T]he two are not in the same class,” he concluded. “And yet, accord-

ing to the present system, Daubert is the better batter of the two. It is

grotesqueries such as this that bring the whole foundation of baseball

statistics into disrepute.”19

Branch Rickey, the brilliant baseball executive, also ventured into the

realm of statistics. In a 1954 Life magazine article called “Goodby to Some

Old Baseball Ideas,” Rickey, then the general manager of the Pittsburgh

Pirates, proposed what he called a “bizarre mathematical device” to

measure a team’s efficiency. “The formula, for I so designate it, is what

mathematicians call a simple, additive equation.”20 The first part signified

offense and the second pitching and defense, and the difference closely

correlated a team’s win�loss record: 1.255 for the first-place Brooklyn

Dodgers and 0.967 for the last-place Pirates for the 1953 season. Despite its

18 Lane, F.C. (March 1916). Why the system of batting averages should be changed. The

Baseball Magazine, 16(No. 5), 41�42.
19 Lane, F.C. (March 1916). Why the system of batting averages should be changed. The

Baseball Magazine, 16(No. 5), 47.
20 Rickey, B. (August 2, 1954). Goodby to some old baseball ideas. Life Magazine.
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awkward appearance, the equation consisted of basic arithmetic and

common statistics like hits, walks, at-bats, earned runs, and strikeouts:
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Rickey claimed that his formula, developed in conjunction with

Dodgers statistician Allan Roth and “mathematicians at a famous research

institute,” could reveal a team’s strengths and weaknesses, why a team is

showing improvement or regression, or which players are helping a team

and which are not. He was persuaded that “[a]s a statistic RBIs were not

only misleading but dishonest. They depended on managerial control, a

hitter’s position in the batting order, park dimensions, and the success of

his teammates in getting on base ahead of him.” He begrudgingly

included fielding percentage so that defense would be represented, even

as he called it “utterly worthless as a yardstick” and “not only misleading,

but deceiving.” Rickey was bringing mathematics into the front office

half a century before Billy Beane and Moneyball. “Now that I believe in

this formula, I intend to use it as sensibly as I can in building my

Pittsburgh club into a pennant contender. The formula opened my eyes

to the fact that the Pirates’ [on-base percentage] is almost as high as the

league-leading New York Giants. We get plenty of men on base. But

they stay there! Our clutch figure is pathetically low, only .277 compared

to New York’s .397.” The Pirates’ clutch figure, which he defined as

“simply the percentage of men who got on base who scored,” would

improve modestly to .301 by the end of 1954 and to .319 in 1955 when

health problems forced Rickey to retire, leaving unresolved the question

of whether his methodology would translate into long-term success.

Chadwick, Lanigan, Fullterton, Lane, Rickey, and others like George

Lindsey and Earnshaw Cook represented small steps for the science of

sports analytics, but it was a night watchman who made the giant leap.

Not much typically happens in the wee small hours at a pork and beans

factory outside of Kansas City, which afforded a man named Bill James

plenty of time for examining the numbers of baseball. James’s mind was

bursting with ideas for different analyses of the 1976 season. But without

a newspaper, and with only a few freelance articles in Baseball Digest to
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his credit, if he was going to put out a book he would need to do it him-

self. He spent hours and days and weeks in the quiet, dark factory

crunching numbers by hand. He wrote the text out longhand and handed

it over to his girlfriend for a rendezvous with a manual typewriter. Finally

he placed a small classified ad in The Sporting News to inform the world of

The 1977 Baseball Abstract: Featuring 18 Categories of Statistical Information

That You Just Can’t Find Anywhere Else, cover price $3.50. It sold 70 copies.

James self-published the Abstract again for 1978. In November, he was

contacted by one of his readers, himself a writer. Dan Okrent, who

would go on to write Nine Innings and become one of the founders of

what evolved into fantasy sports, saw something in James and wanted to

do a feature on him. While that was in the works, Okrent helped James

secure the assignment of Esquire’s 1979 baseball preview. After more than

two years, Okrent’s piece on James finally ran in the May 31, 1981, issue

of Sports Illustrated. Ballantine Books soon called with a book deal, and in

1982 the Abstract graduated from the ranks of self-publishing, and he con-

tinued to produce it until 1988.

In 1980 James coined the term sabermetrics to describe the science of

baseball analytics in honor of the Society for American Baseball Research

(SABR), which was founded in 1971. James has been pigeonholed as a

“stat geek” by some members of the media and in the baseball establish-

ment, both his critics and those who offer just a superficial description of

him. James himself bristles at that characterization. “I would never have

invented that word if I had realized how successful I was going to be,” he

later said. “I never intended to help characterize SABR as a bunch of num-

bers freaks.”21 James was much more than a mental spreadsheet sitting in

the cheap seats; beyond the tables of figures, his Abstracts were full of com-

mentary that could be as witty or as acerbic as it was insightful. Beyond

baseball, James had a love of crime stories, and that helped inform his

determination to get to the truth by way of evidence, to answer questions

few have thought to ask. “There are millions of fans who ‘know’ that

Clemente was better, because they saw him play, and there are millions

who ‘know’ that Kaline was better for the same reason,” he wrote in his

book Win Shares. “I don’t want to ‘know’ that way. I want reasons.”22

Most of the analyses in the earlier Abstracts were based on end-of-

season and career statistics or on information that could be gleaned from

21 Gray, S. (2006). The mind of Bill James (p. 39). New York, NY: Doubleday.
22 Gray, S. (2006). The mind of Bill James (p. 186). New York, NY: Doubleday.
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box scores. A better understanding of baseball required lower-level data—

actual play-by-play accounts. The problem was that in the 1980s, this

information was simply not publicly available. The Elias Sports Bureau,

founded 70 years earlier by Al Munro Elias and his brother Walter to pro-

vide timely and accurate statistics to New York newspapers, had become

MLB’s official statistician, and data beyond the box score was considered

proprietary.23 Beyond that, James argued that keeping this information

secret was even an unfair labor practice, as it meant that during contract

talks players had access to far less information than their counterparts

across the negotiating table. So in 1984 James launched Project

Scoresheet, which enlisted hundreds of volunteers to watch or listen to

broadcasts and compile play-by-play data one game at a time using a spe-

cial scorecard that James designed. Those accounts would be aggregated

and the resulting dataset offered to the public, free of charge. In response,

Elias published the Elias Baseball Analyst, containing data it had previously

provided only to ball clubs along with a few arrows fired toward James,

such as that their book contained “no arcane formulas with strange-

sounding acronymic names” but rather represented “the state of the art

for a variety of imitators, various individuals . . . outside baseball [who]

were fascinated by reports of its contents and attempted to copy it, with a

notable lack of success.”24 For his part, James wrote that Elias had “ripped

off my methods and my research so closely that many passages fall just

short of plagiarism.”24

James’s goal was not simply to look at numbers for their own sake; he

bristled at the volume of figures displayed on the screen during telecasts

and the notion that the stats themselves were the sine qua non of the

23 In 1995 Motorola began marketing a pager called SportsTrax that displayed live scores

of NBA games. The NBA sued and received an injunction against Motorola, which

was appealed. In 1997, the US Court of Appeals for the Second Circuit ruled that a

while producing a live sporting event and licensing its broadcast were protected by

copyright law, the “collection and retransmission of strictly factual material about the

games” were not, as the scores and statistics arising from those games did not constitute

“authored works.” The Court also held that disseminating those facts did not constitute

unfair competition: “With regard to the NBA’s primary products—producing basket-

ball games with live attendance and licensing copyrighted broadcasts of those games—

there is no evidence that anyone regards SportsTrax or the AOL site as a substitute for

attending NBA games or watching them on television.” The raw data that the sports

analytics community required was now public domain. The case was National Basketball

Association and NBA Properties, Inc. v. Motorola, Inc., 105 F.3d 841 (2d Cir. 1997).
24 Quoted in Gray, p. 74.
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game. Sure, Lenny Randle may have hit .285 with one RBI against

lefthanders during night games on Thursdays in 1979, but did that neces-

sarily mean anything? Baseball stats were not an end unto themselves but

a means to an end, a tool to discover the fundamental theories underlying

the game that had long lain hidden and to reveal those that were widely

accepted but perhaps shouldn’t have been. Baseball had long been run by

baseball men, those who had grown up with the game and played the

game and who were guided by their gut, their own experience, and a

fealty to the way things had always been done. James represented a new

way to approach the game based on mathematical investigation and the

scientific method. Earlier analysts like Chadwick and Cook and Fullerton

and Rickey and Roth had used numbers retrospectively, to describe

players and teams based on things they had already done, and to predict

how they were likely to perform against other players and teams. James

was using evidence to argue that much of the conventional wisdom sur-

rounding baseball was simply wrong. Teams would reach higher levels of

success if they would only embrace at least his methods if not his conclu-

sions. But James hadn’t played baseball. He was an outsider preaching

heresy, and by and large baseball did not take kindly to outsiders. They

had no time for profound truths. By 1988, James was disillusioned with

“the invasion of statistical gremlins crawling at random all over the

telecast of damn near every baseball game”25 along with the increasing

amount of time he spent sending “Dear Jackass” letters to his most vitri-

olic critics. He walked away, at least for a while. “The idea has taken hold

that the public is just endlessly fascinated by any statistic you can find,

without regard to whether it means anything,” he wrote. “I didn’t create

this mess, but I helped.”25

But the sabermetric revolution was well underway. Bill James had lit a

spark in countless imaginations, and thanks in part to him, raw data was

now much more readily available. The third leg of the triangle was just as

important: the rise of the home desktop computer along with spreadsheet

software and eventually the World Wide Web. One of those imaginations

inspired by James belonged to a Harvard graduate who had read the Bill

James Abstracts—unusual perhaps but hardly unique. But this Harvard

graduate was Sandy Alderson, who was also the general manager of the

Oakland Athletics. Through The Sinister First Baseman, a collection of

25 Bill James. 1988 Baseball Abstract. Quoted in Lewis, M. (2003). Moneyball: The art of

winning an unfair game (p. 95). New York, NY: W.W. Norton & Company.
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writings by a sometime�National Public Radio contributor named Eric

Walker, Alderson made a discovery. “For more than a hundred years,

walks were made by hits,” wrote Alan Schwarz in The Numbers Game.

“Walker turned that strategy backwards and claimed that runs were scored

not by hits, but by avoiding outs.”26 Outs were finite; you get only 27 of

them in a regulation game. The best way to avoid making an out is to get

on base. Unlike batting average, which is concerned only with hits, on-

base percentage credits the batter for getting on base via a hit as well as

drawing a walk or getting hit by a pitch. F.C. Lane had illustrated the

concept of slugging percentage by rhetorically asking the total value of

the coins in a friend’s pocket rather than simply how many there were.

Appreciating the importance of walks was like asking the friend to

include the coins he had in his other pocket. Alderson hired Walker to

consult for the Oakland front office. In 1982 Walker provided a paper

explaining how the Athletics could improve their on-base percentage. In

future years his reports would offer advice on off-season roster changes.

At the end of spring training in 1990, after he failed to make the big

club, a former first-round draft pick who had stepped to the plate only

315 times over parts of six big-league seasons walked into Alderson’s

office. Just shy of his 28th birthday, he stated that he had had enough, and

that rather than spend another season shuttling back and forth between

the benches of Triple-A and The Show, he had an unconventional idea

for how he could help the ball club. Billy Beane wanted to become an

advance scout. By 1993 Beane had become assistant general manager.

After the Athletics’ owner died in 1995, the new ownership ordered the

team to cut payroll. Alderson was going to use sabermetrics. He intro-

duced Beane to the works of Bill James and Eric Walker, and Beane

became a convert to objective rather than subjective analysis. Alderson

left Oakland in 1997 for a job in the commissioner’s office, and Beane

succeeded him as general manager. He hired Paul DePodesta, a 25-year-

old Cleveland Indians staffer, as his assistant GM and protégé. The two of

them carried the banner of sabermetrics not only to use as a tool for eval-

uating players but to change the culture of the organization. Beane

encountered substantial resistance from his scouting department, com-

prised largely of baseball lifers who could tell a ballplayer when he saw

him and had no time for calculators and spreadsheets. Eventually, through

a combination of epiphany and turnover, they came over to his side.

26 Schwarz, p. 217.
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The secret to Beane’s success was what Alderson had taught him: to

recognize which statistics were most closely correlated with scoring runs

and winning games, and at the same time were undervalued if not over-

looked by the rest of the baseball establishment. If Player A made $3

million and hit .290, and Player B made $650,000 but hit only .250, but

both had similar on-base percentages, most other teams would ignore B

and sign A. Beane would happily sign B and get nearly the same produc-

tion at a fraction of the price. And if B was guilty of the crime of not

“looking like a ballplayer,” so much the better. And should he lose a pro-

ductive player, as he did when Jason Giambi became a free agent and

signed a contract with the New York Yankees, Beane realized that he

could still get the same production out of his lineup by restoring Giambi’s

numbers, and that doing so did not necessarily require him to find an

individual ballplayer to do so, if he could even find one who was available

and affordable at all. With three new players whose total production was

above average, Beane could replace the lost superstar as well as two

underperforming marginal players at the same time while also cutting his

already meager payroll. Once he had the players, he and his farm system

had to get them to change their approach. A surefire way to avoid outs

was to stop giving them away through sacrifices and ill-advised stolen

base attempts. To maximize on-base percentage, hitters must look to

draw more walks. (Ironically, Beane walked only 11 times in his playing

career, putting up a lifetime on-base percentage of just .246 alongside a

.219 batting average.) With one of the lowest payrolls in the major lea-

gues the Athletics reached the playoffs five times between 2000 and 2006,

topping the 100-win plateau twice.

A large component of Moneyball, as the strategy employed by

Oakland’s front office would be known, was that Beane was the only one

doing it. He could get good players for cheap only so long as other teams

undervalued them. But other ball clubs gradually learned from Oakland’s

example. Soon there would many more suitors vying for Player B’s ser-

vices, and his price wouldn’t stay a bargain for long. In 2003 Bill James

finally got his foot in the baseball establishment’s door when he joined

the Boston Red Sox as a senior consultant. After losing Game 7 of the

American League Championship Series to the New York Yankees, the

Red Sox fired manager Grady Little and replaced him with Terry

Francona. Francona was receptive to the concept of analytics; he would at

least consider them when making decisions in the dugout as he guided

the Red Sox to their first World Series championship in 86 years.
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Analytics departments began to appear in front offices around the major

leagues. In 2016 they would reach a regrettable and perhaps

inevitable milestone, one better suited for other sections of the newspa-

per: Chris Correa, the St. Louis Cardinals’ scouting director who had

started with the team as a data analyst, pleaded guilty to federal charges of

hacking into the baseball operations database of the Houston Astros and

was sentenced to 46 months in prison.

Today Alderson is the general manager of the New York Mets.

In October 2015 Beane was promoted from general manager to

executive vice president of the Athletics. DePodesta would later

serve as general manager of the Los Angeles Dodgers and vice presi-

dent of the Mets and the San Diego Padres. In January 2016 he left

baseball for the NFL, becoming the chief strategy officer of the

Cleveland Browns.

Football’s past is even more gradual and evolutionary. Games that place

some number of people on a field of some size with the object of advanc-

ing a ball over a goal line have been around for nearly as long as there

have been civilizations. The ancient Greeks called such a game

harpaston, and of our modern games it most closely resembled rugby.

Harpaston was later adopted by the Romans as harpastum, and from there

it spread to Britain, although it is generally accepted that its migration

across the Channel likely did not take place as part of the Roman inva-

sion. Around 1175, William Fitzstephen described how the people of

London would engage in the “well known game of play ball after dinner

on Shrove Tuesday,”27 a tradition that would continue until 1830. Soon

though the game would receive attention from the monarch, and not

in a good way; King Edward II prohibited football in 1314 after com-

plaints that it disturbed the peace, and his son Edward III would like-

wise declare a ban in 1349 on the grounds that playing “various useless

and unlawful games”27 like football distracted from the practice of

archery. Across the Tyne in Scotland, James II appreciated the beneficial

effects of the games people play, but nonetheless in a 1457 edict,

famously quoted in a dissenting opinion by US Supreme Court Justice

Antonin Scalia,28 banned both football and golf, the former for its

violence and brutality and the latter, like Edward III, for its effect on

27 Baker, L.H. (1945). Football: Facts & figures (p. 4). New York, NY: Farrar & Rinehart.
28 PGA Tour, Inc. v. Martin, 532 U.S. 661, 700 (2001) (Scalia, J., dissenting)
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archery training. Shakespeare referred to football in both A Comedy of

Errors29 and King Lear.30

The word football itself referred originally not to a game where a ball

is kicked by a foot, but rather to a family of games played on foot as

opposed to on horseback. By the 19th century football had become the

sport of schools and universities. With no central authority at the time,

each school played a different variation depending on its surroundings. At

schools like Charterhouse, where there wasn’t a lot of room, the ball

could be advanced only by kicking, whereas at places like Rugby, which

had large fields, other means were allowed. It was there in 1823 that a

game took place involving a student named William Web Ellis. Ellis

caught a high kicked ball, and the rules at that time allowed him to

attempt a drop kick. He was too far away to score with a drop kick, and

with the light fading and the 5:00 bell nearly at hand, Ellis determined

his only chance was to run the ball. His opponents were stunned and

enraged at his audacity, which they attempted to punish by tackling him.

Ellis had unwittingly invented the game that would be known simply as

rugby. The Charterhouse and Rugby games would eventually become

distinct, and formal rules would be drawn up for the respective sports by

the Football Association in 1863 and the Rugby Football Union in 1871.

The term “Association football” would soon be shortened to “soccer.”

Football came across the Atlantic with the English colonists in the early

17th century. As the first colleges were established in the colonies that

would become the United States, football was uncommon; Yale historian

L.H. Baker ascribed this to the predominantly theological nature of

American colleges, which frowned upon spending time playing sports

when it could otherwise be used in the study of Scripture. But this would

change. The earliest account of a college football game was in the Harvard

Register of October 1827; its popularity at Harvard grew during the fol-

lowing decade. By 1840 it had spread to Princeton and Yale, two schools

that both would ban it for its violence within 20 years. The first intercol-

legiate game took place in New Brunswick, New Jersey, on November 6,

1869, between Rutgers and Princeton. Rutgers challenged their rivals to a

football game to avenge a 40�2 defeat in baseball, and prevailed 6�4 in a

game that was not exactly football, not exactly soccer. Princeton won the

rematch 8�0 on its home field and under its own rules with which the

29 Act II, scene 1.
30 Act I, scene 4.
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Rutgers squad was unfamiliar, but the rubber game was canceled. The fol-

lowing year Rutgers defeated Columbia and lost to Princeton again.

Football took a year off in 1871 after the violence of the game left a bad

taste in many mouths, but in 1872 it spread to Yale, New York University,

City College of New York, and Stevens Institute of Technology; football

was on its way. The American Intercollegiate Football Association was

formed in 1876 between Yale (which would quickly leave), Harvard,

Princeton, and Columbia, and the rules it adopted were much like rugby,

although punting dates back to this meeting as well. By the turn of the

20th century, football’s violent nature dominated its virtues in people’s

minds yet again, and it got to the point that President Theodore

Roosevelt threatened to outlaw the game. This led directly to the legaliza-

tion of the forward pass and the formation of what is now the National

Collegiate Athletic Association (NCAA) in 1906.

Unlike baseball, football’s relationship with numbers was a long time

coming. For many years, records were kept independently with no guar-

antee as to their completeness or accuracy. Numbers in football were rudi-

mentary: points scored, wins and losses, yardage on rushing and total

offense. Longest runs had been kept since 1884; tops on that list was a

115-yard run by Terry of Yale in an 1884 game against Wesleyan back when

the field was still 110 yards long. Punting was recorded in terms of average

yardage per punt since its adoption in 1876. Kickers were evaluated on field

goals since 1873 and points-after-touchdown as early as 1906. But still there

was no official statistician above the school level. This system finally changed

in 1937 when Homer S. Cooke founded the American Football Statistical

Bureau, marking the beginning of the modern era for college football statis-

tics. To put this in context, by 1937 Babe Ruth, legendary for his marks of

714 career home runs and 60 in one season, was already retired. The first

official statistics for rushing were simply games played, number of carries,

and total net yardage. It would not be until 1970 that college football

officially kept rate statistics for offense: yards per game for rushing, receiv-

ing, and total offense; catches per game for receiving and intercepting.

Postseason games did not count in official statistics until 2002.

In 1979, the NCAA introduced the passer efficiency rating as a means

to evaluate quarterbacks beyond touchdown passes and total yards.

Statistics were aggregated from a 14-season period (1965�78) during

which passers averaged 6.29 yards per attempt, and of those attempts

47.14% were completions, 3.97% were for touchdowns, and 6.54% were

intercepted. These figures were incorporated into a formula such that a
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quarterback with those average statistics would have a rating of 100, and a

touchdown pass was worth two interceptions:

PR5
8:4 � YDS1 100 � COMP1 330 � TD2 200 � INT

ATT

To qualify, a passer must average 15 attempts per game and play in 75%

of his team’s games. The average passer rating across all of the NCAA’s

Football Bowl Subdivision (FBS; formerly known as Division I�A) has

steadily grown over the years, from 104.49 in 1979 to 127.54 in 2006. The

National Football League (NFL) also has a passer rating but it differs from

the NCAA’s. Adopted in 1973, the NFL’s also looks at the same statistics

and the formula is indexed to a 10-year aggregate sample, but the weight-

ings and thus the scale are quite different. Unlike the NCAA’s original

average rating of 100, the NFL’s average was 66.7, a number that has also

gradually tracked upwards and is now well over 80. The NFL also limits

each of the four categories to a minimum of 0 and a maximum of 2.375,

thus the pro passer rating has an upper limit of 158.3.
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Both the NFL and NCAA refer to these figures as passer ratings, not

quarterback ratings, as they do not encompass all of the aspects of the

position such as rushing, play-calling, or avoiding sacks.

With no official statistics in earlier years, there was no way to objec-

tively rank players against each other. Baseball had its batting averages, but

what did college football have? Thus college football turned from
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objective to subjective means: the poll and the All-America Team. The

first All-America Team dates back to 1889 and was compiled by Walter

Camp, perhaps the most prominent of modern football’s founding fathers,

and possibly in collaboration with Caspar Whitney of Week’s Sport. Soon

it seemed that everyone wanted to jump aboard the All-America Team

bandwagon; by 1909 the Official Football Guide contained 35 of them.

“The popularity of the All-America Team spread quickly as the sport

itself grew more popular and it became part of the duty of a sports writer

to get up one of his own for publication,” wrote L.H. Baker. “Ex-coaches

were invited to make up lists for newspapers and other publications.”31

But the All-America Team was just a list of players from the late season.

Who would make up a team of the best players ever? Enter the All-Time

Team. The first such list appeared in the New York Evening World in 1904,

and it tells us something about player evaluation at that time. The “All-

Time All-Player” list was comprised entirely of gridders from Harvard,

Yale, and Princeton, along with one from Army, each a northeastern

school. Camp’s All-Time Team from 1910 reflected the fact that he had

traveled more extensively and seen more games himself, as it included

players from Michigan, Pennsylvania, and Chicago. These were soon fol-

lowed by All-Eastern teams, All-Western teams, All-Conference teams,

and All-State teams; individual schools even named All-Opponent teams.

Football grew so popular that one couldn’t narrow down the best to a

squad of 11, which begat the second- and third-team All Americas. With

the rise of the one-way player in the late 1940s, begun by Fritz Crisler

of Michigan in a game against Army in 1945, there would of course be

separate All-America teams for offense and defense, debuting in 1950.

Subjective means have also been a huge factor in announcing the sea-

son’s national champion. Major college football is unique in that it is the

only sport in which the NCAA itself does not recognize a national cham-

pion. Founded in 1906 primarily as a rules-making body, the NCAA

awarded its first national title in 1921 to Illinois at the National Track and

Field Championship. By the time of that first NCAA national champion-

ship, intercollegiate football was already over 50 years old. The stronger

football schools had since organized themselves into conferences, the old-

est of which were the Southern Intercollegiate Athletic Association,

founded in 1894, and the Big Ten, formed as the Western Conference in

1896. Other conferences included the Missouri Valley Intercollegiate

31 Baker, L.H. p. 142.
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Athletic Association (1907, today the Missouri Valley Conference), the

Pacific Coast Conference (1915, today the Pac-12), the Southwestern

Athletic Conference (1920), and the Southern Conference (1921).

For most of the 20th century, major college football’s postseason con-

sisted of schools receiving invitations, or “bids,” to participate in games

called bowls, which are independently operated and thus not under the

direct purview of the NCAA. The oldest of the college bowl games is

the Rose Bowl, first held in 1902, in conjunction with the Tournament

of Roses Parade. The parade was not in addition to the game; rather the

game was held to attract more people to the existing parade. The

Pasadena Tournament of Roses Association was founded in 1890 to orga-

nize a parade on New Year’s Day to celebrate the beauty both of flowers

and of weather in southern California at a time of year when many back

east were huddled under blankets, watching inch upon inch of snow pile

up outside. And come those easterners did, and predominately from the

Midwestern states. To attract even more visitors, and the money they

brought along with them, the Association sponsored the Tournament

East�West Football Game featuring the University of Michigan, which

trounced West Coast representative Stanford 49�0. Perhaps because of

the lopsided score at the expense of the approximate home team, football

was replaced by other sporting events until 1916, when the Rose Bowl

Game (as it would be known beginning in the 1920s) became a perma-

nent fixture on the college football calendar for January 1, or January 2 if

New Year’s Day fell on a Sunday. Once postseason football resumed in

Pasadena, the Rose Bowl Game would feature a champion from the West

Coast and another team chosen by the Tournament of Roses Association.

That arrangement lasted until 1946, when the Association signed an

unprecedented contract with the Big Ten and Pacific Coast Conferences.

The Rose Bowl was joined in the 1930s by the Sugar Bowl (1935),

Orange Bowl (1935), Sun Bowl (1935), and Cotton Bowl Classic (1937).

There were at least 10 other different postseason bowl or all-star games

held irregularly between 1907 and 1939, many of which were held

only once or twice; some invited specific teams rather than conference

champions and for that reason are no longer officially recognized.

Following the bowl games, which traditionally take place on or within

a few days of New Year’s Day, various organizations would either vote,

poll, or crunch numbers to recognize a team as the national champion for

that season. All of these bowl games and polls and rankings arose inde-

pendently and spontaneously, without the imprimatur of the NCAA, to
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fill a need that the public had for postseason play and the naming of a

national champion as recognized by some accepted authority, and this

all took place before the NCAA even created what would become its

showcase postseason event. The first college basketball game was played

in 1896, but it wasn’t until 1939 that the NCAA held the men’s basketball

tournament. Likewise in college basketball, nature abhors a vacuum, and

the void had already begun to be filled by two independent postseason

tournaments: the National College Basketball (later the National

Association of Intercollegiate Basketball, or NAIB) tournament in 1937,

and the National Invitation Tournament (NIT) in 1938. At least with

basketball, the NCAA was not too far behind the competing tourna-

ments: it caught up with, overpowered, and eventually bought out the

NIT; and the NAIB would become the National Association of

Intercollegiate Athletics, comprised chiefly of small colleges. But with

football, if the NCAA had decided to create a football playoff around the

same time it did likewise for basketball, there would have been a lot of

resistance; the bowl system and conference structures were just too long

established. As an organization with voluntary membership, the NCAA

had no power simply to impose a playoff. Moreover, as matters relating to

football have been of paramount importance in how the NCAA has

operated over the years, its governance would become dominated by the

very football powerhouses that would have the most to lose financially by

abandoning the bowl games in favor of a postseason tournament.

The NCAA recognizes over 30 different systems that have been used to

name a national champion over the years, including some that have retro-

actively evaluated old records long after the fact. One such model was the

Dickinson System. In 1926, University of Illinois economics professor Frank

Dickinson created a ranking system to crown a national champion, which

he did for the next 14 years. In 1935, Dickinson named Southern Methodist

University (SMU) as the national champion, even though SMU had been

defeated by Stanford 7�0 in the Rose Bowl. The Associated Press (AP) first

polled its members on college football rankings in 1934, and it became a

permanent institution in 1936. That season, the AP named Minnesota as the

national champion, even though it had lost to Northwestern and both

schools finished with identical 7�1 records. Notre Dame was the first wire-

to-wire AP champion in 1943, and four years later the Irish would go back

and forth with Michigan at the top of the poll throughout the season, both

finishing 9�0. After the championship was announced, Michigan went to

the Rose Bowl and trounced USC 49�0, whereas it was Notre Dame’s

policy until 1969 to decline all bowl bids. Michigan’s dominant victory
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meant nothing, as the AP poll did not consider postseason games, and the

national championship went to South Bend.

In 1950 the United Press (UP) created its own poll, but one of

coaches rather than of sportswriters. The first time the AP and UP

polls differed in their choice of national champions was in 1954, when the

AP selected Ohio State and UP named UCLA. With the Buckeyes from the

Big Ten and the Bruins from the Pac-8, this seemed to make the Rose Bowl

a de facto national championship game. It did not happen, as the Pac-8 had

a rule at the time that did not allow one of its members to appear in the

Rose Bowl two years in a row. Twice a split championship happened

because the AP and UP had different philosophies. In 1957 the AP crowned

Auburn as the national champion; the UP disqualified Auburn from its poll

as the Tigers had been placed on probation by the Southeastern Conference

(SEC) for paying cash to two high school players, and instead named Ohio

State. This happened again in 1974 when Oklahoma was on probation for

recruiting violations and banned from appearing in a bowl game. The

Sooners came away with the AP’s Number 1 ranking, whereas the UP, now

called United Press International (UPI), dropped Oklahoma from its ballots

entirely and proclaimed USC instead. In 1959 both polls went to

Minnesota, who then lost in the Rose Bowl. Soon both polls would include

postseason games, the AP starting in 1965 and UPI in 1974.

As the major conferences were contractually tied to individual bowls, it

was rare that the polls’ differing No. 1 choices or their No. 1 and No. 2

could face each other in a postseason game; they would have to be either

from the right conferences or not affiliated with a conference at all.

Alabama of the SEC was able to play independent Notre Dame in the

1974 Sugar Bowl, and in 1986 the Fiesta Bowl hosted two independents as

Penn State defeated the University of Miami. It was more usual that split

champions would play separate bowl games, as was the case in 1990 when

AP champion Colorado (11�1�1) did not face UPI champion Georgia

Tech (10�0�1). The following year, there were again two champions,

both of which were undefeated: Miami (AP) and Washington (UPI).

There was no chance for a national title game because Washington, as Pac-

10 champion, was contractually obligated to face Michigan in the Rose

Bowl. A showdown between two undefeated teams could not happen.

The second consecutive split championship was quickly followed by a

new alliance between some of the major bowls and the college football

powerhouses called the Bowl Coalition. The champions of the Big East

and Big 8 (today the Big 12) would meet in the Orange Bowl, of the

Atlantic Coast Conference (ACC) and SEC in the Sugar Bowl, and
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the champion of the Southwest Conference (SWC) and Notre Dame in

the Cotton Bowl. The Rose Bowl, with its exclusive conference and

television contract, was not a part of the Bowl Coalition. The national

championship would be contested in the Fiesta Bowl, but only if the

No. 1 and No. 2 teams came from the Big East, ACC, or Notre Dame. If

the No. 1 or No. 2 team came from the Big Ten or Pac-10, a national

championship game would not be held. It soon became clear that nothing

much could conceivably come from the Bowl Coalition, and in 1994

it disbanded.

The new flavor of the month was a 1994 proposal for a six-team

playoff involving Notre Dame and the champions of the Big Ten, ACC,

Pac-10, Big 8, and SEC. At the same time, the NCAA announced it

would begin a study of its own playoff. Cedric Dempsey, the new execu-

tive director of the NCAA, cautioned that a “play-off system must prove

it won’t lose money. . . . The bowls are proven to be profitable.”32 The

Rose Bowl claimed a disproportionate share of those profits, comprising

fully a third of all bowl game television revenues, so naturally the Big Ten

and Pac-10 had no interest in such a plan. A poll in February 1994 of the

College Football Coaches Association revealed that 70% of its Division I

membership opposed a playoff. By June the study was abandoned because

of a lack of interest.

In 1998, after the Rose Bowl contract with the Big Ten and Pac-10

expired, the six power conferences along with Notre Dame created the

Bowl Championship Series (BCS). The impetus was yet another split

national champion in 1997, this time Michigan and Nebraska. The BCS

was not a championship series per se; the existing bowls would remain in

place and one would be designated as the championship game on a rotat-

ing basis. “If fans want a playoff,” said Big Ten commissioner Jim

Delaney, “they can get it from the NFL and the NBA.”33 In a June 22,

1998, article in The Sporting News called “Bowl Championship Series is

Better than a Tournament,” Tom Dienhart and Mike Huguenin34 wrote

that “a one-and-done playoff like the one the NCAA runs for basketball

crowns the best team less often than any system college football has ever

employed.” Unlike the weekly and even preseason polls, the first BCS

32 Talk of I-A playoff moves along slowly. The NCAA News, January 19, 1994, 27.
33 Quoted in Smith, R.A. (2001). Play-by-play: Radio, television, and big-time college sport.

Baltimore, MD: Johns Hopkins University Press.
34 Dienhart, T., & Huguenin, M. (June 22, 1998). Bowl Championship Series is better

than a tournament. The Sporting News.
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rankings for the inaugural season were not released until mid-November.

The BCS formula consisted of team’s positions in the AP poll, their aver-

age ranking in three computer models (Jeff Sagarin, Anderson-Hester,

and The New York Times), along with a strength of schedule component

and a penalty for a loss, with the Number 1 ranking going to the school

with the lowest score.

The BCS methodology was constantly evolving. After the first year

the computer ranking component was refactored as five new models were

added (Billingsley, Dunkel, Massey, Matthews, and Rothman) with each

school’s lowest rating among them being dropped. In 2001 Dunkel and

The New York Times were replaced by Wolfe and Colley as the BCS

sought to diminish the role played by margin of victory in the rankings.

In addition, a quality win factor was introduced. Once all the numbers

were run, a team’s BCS score would be reduced by 0.1 points for a vic-

tory over the No. 15 school, 0.2 points for defeating No. 14, and so on

up to 1.5 points for beating the No. 1 team. The next year the quality

win factor was tweaked to include only wins over the top 10, not the top

15. The game of musical chairs among the computer models continued

as Matthews and Rothman were out; Sagarin dropped his margin of vic-

tory component entirely as did The New York Times in its return to the

BCS fold. Gone as well were the quality win, strength of schedule, and

win�loss record components.

Amidst grumblings from commentators and some fans about the com-

puter rankings, the BCS formula underwent its biggest transformation in

2004 as once again two teams were proclaimed as national champions,

despite the fact that the primary reason for the BCS’s existence was to

prevent that from happening. In 2003, USC was ranked No. 1 in the

polls but the computer models helped place Oklahoma and LSU in the

BCS championship game. Now the BCS formula was simplified to

include three components: the AP poll, the ESPN/USA Today coaches’

poll, and the computers. There would be six models (Sagarin, Anderson

and Hester, Billingsley, Colley, Massey, and Wolfe); each team’s highest

and lowest rankings among them would be discarded and the remaining

four averaged. BCS officials considered weighting the polls 40% each and

the computer models 20% before deciding, as BCS coordinator and

Big 12 commissioner Kevin Weiberg put it, “that the equal weighting

approach was the simplest.”35

35 Greenstein, T. (July 16, 2004). BCS revises ranking system. Chicago Tribune.
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But the AP had finally had enough of the complaints and controver-

sies and reformulations. On December 21, 2004, the AP’s associate gen-

eral counsel George Galt sent the BCS a cease-and-desist letter, saying

that the AP had never formally agreed to “assist [the BCS] in preparing

its rankings,” and that the BCS’s “forced association of the AP Poll with

BCS has harmed AP’s reputation” and violated the AP’s copyright.

“BCS’s continued use of the AP Poll interferes with AP’s ability to pro-

duce the AP Poll and undermines the integrity and validity of the AP

Poll. BCS has damaged and continues to damage AP’s reputation for honesty

and integrity in its news accounts through the forced association of the AP

Poll with the BCS rankings. . . . Furthermore, to the extent that the public

does not fully understand the relationship between BCS and AP, any

animosity toward BCS may get transferred to AP.”36 One option to replace

the AP Poll was that of the Football Writers Association of America

(FWAA), but they were only amenable to having their poll used in an

advisory capacity. “We don’t want to be part of a formula,” said FWAA

executive director Steve Richardson.37 Left with the coaches’ poll, which

was heavily criticized because its balloting was secret, and the computer

models, the BCS briefly flirted with the idea of a selection committee before

appointing the Harris Interactive College Football Poll to replace the AP.

The formula and the results thereof were not the only controversy.

Beyond selecting the teams for the championship game, the BCS was also

responsible for selecting the teams that would play in the oldest and most

venerable bowl games by determining those schools that automatically

qualified and those that were eligible for the pool of teams from which

the bowls themselves would award at-large bids. The method by which

the BCS did this left half of the FBS on the outside looking in by grant-

ing automatic qualifying bids for BCS bowls to some conferences but not

to others. Unless playing in the championship game, the conference

champions of the ACC and (until 2006) the Big East would play in the

Orange Bowl, the Big Ten and Pac-12 in the Rose Bowl, the Big 12 in

the Fiesta Bowl, and the SEC in the Sugar Bowl, with the remaining slots

in those bowl games being awarded as at-large bids. So if your school was

in one of the Power Six, life was straightforward: win your conference,

go to a BCS bowl. But for those in the nonautomatic qualifying

36 The Associated Press. (December 21, 2004). AP sends cease-and-desist letter to BCS.

USA Today.
37 Greenstein, T. (January 5, 2005). BCS selection committee still on table. Chicago Tribune.
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conferences—Conference USA, the Mid-American Conference (MAC),

the Midwest Conference (MWC), or Sun Belt—it seemed the only way

to get to a BCS bowl game was to buy a ticket.

In 2003, the mid-majors began to revolt. Tulane considered dropping

out of the FBS altogether because “of the inequities and restrictions

inherent in the NCAA system and the Bowl Championship Series alli-

ance,” wrote its president Scott Cowen in The New York Times. “Tulane is

a member of Conference USA, which is not a part of the BCS. This

means that Tulane and other non-BCS football teams have virtually no—

or only limited—access to the highest-paying postseason bowls governed

by the BCS alliance.”38 Popular demand convinced Tulane to remain in

the FBS, but the message still resonated. Fifty university presidents from

the non-BCS conferences formed the Coalition for Athletics Reform,

which brought the term “antitrust” back to the sports pages. When the

BCS operating agreement came up for renewal, NCAA president Myles

Brand helped to negotiate a new deal for 2006 that improved postseason

revenue sharing, added a fifth BCS bowl, and offered non-BCS confer-

ences a path to the BCS bowls, though that path was tougher to navigate

than the one traveled by the BCS conferences.

While a power conference team could receive an automatic bid by

winning its conference championship game, a mid-major would have to

finish in the top 12 in the BCS standings, or ranked between 13 and 16

and above a champion from one of the power conferences. But what if

two mid-majors met those requirements? Unless they finished No. 1 and

No. 2, the higher ranked of the two would receive the automatic bid.

The other would have to hope it received an at-large bid, which itself

required nine wins and a finish in the top 14 of the BCS standings. As a

single conference could receive no more than two BCS bids (unless two

of its nonchampions finished 1 and 2), it was possible that the top 14

might not yield 10 BCS bowl bids, in which case the field would expand

to the top 18, and then the top 22, and so on until all 10 bids were

awarded. Things were likewise inequitable for independent schools as

among them only Notre Dame, by finishing in the top eight, could qual-

ify for an automatic bid.

Under the old system, only one non-BCS school, 11�0 Utah in

2004, made it to a BCS bowl, where the Utes romped over Pittsburgh

38 Cowen, S. (June 15, 2003). How Division I-A is selling its athletes short. The New York

Times.
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35�7 in the Fiesta Bowl. Following the adoption of the 2006 agreement

there was at least one “BCS Buster,” as mid-majors that qualified for BCS

bowl games would be known, every year except 2011. Only one at-large

bid ever went to a mid-major, the 13�0 Boise State squad of 2009 that

defeated TCU in the Fiesta Bowl 17�10; all others were automatic quali-

fiers by finishing higher than a power conference champion. Boise State

went undefeated as well in 2008 but had to settle for the Poinsettia Bowl,

also against TCU.

Still it seemed that no matter what the BCS tried to do to improve

things, popular resentment against it continued to grow, and the march to

the inevitable finally reached its destination. On June 26, 2012, the BCS

Presidential Oversight Committee, consisting of 12 university presidents

and chancellors, sat in Washington’s Dupont Circle Hotel and listened to

a presentation in which the conference commissioners and Notre Dame’s

athletic director proposed a playoff. Just three hours later, it was approved.

“I think some of it was just battle fatigue because the general sporting

public never really embraced the current system, even though that system

did a lot of good things for college football,” ACC commissioner John

Swofford said at the time. “I think the longer that went on, the more

people realized we had to do something that was different and better.”39

The new system was called a “plus-one” model, meaning that only one

game would be added to the schedule. Two of the six major bowls would

be designated as semifinals, and the winners would meet the following

week in the championship game. Gone were the polls and computer

rankings; now a selection committee would meet and through a series of

votes determine which four teams would advance to the playoff based on

win�loss record and strength of schedule, with extra consideration for

those that won head-to-head matchups and their conference champion-

ships. While the playoff may expand in the future, the current agreement

will run through 2025.

Among the three major sports, basketball was the latest to the

party. Professional baseball and intercollegiate football were already well

established when Dr. James Naismith developed the 13 original rules for

“basket ball” in Springfield, Massachusetts, during the winter of 1891�92.

Like football, basketball was long a college sport before turning pro. In the

early 1930s, a sportswriter named Ned Irish, convinced that the game was

39 Schlabach, M. (June 27, 2012). Playoff approved, questions remain. ESPN.com.
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outgrowing on-campus gyms, conceived the idea of scheduling college

basketball games in large arenas. In December 1934 he arranged a very suc-

cessful doubleheader at New York’s Madison Square Garden with NYU

hosting Notre Dame in the opener and St. John’s taking on Westminster

(Pennsylvania) College in the nightcap. The following season he put on

eight more doubleheaders. Perhaps inspired by the growing popularity of

the new postseason games, such as the Orange, Sugar, and Cotton Bowls,

he helped to expand the doubleheaders into a new postseason playoff called

the National Invitation Tournament (NIT). The first NIT, held in 1938,

consisted of six teams including the champion Temple Owls.

Not to be outdone, the NCAA introduced a tournament of its own

in 1939. Unlike the NIT, which invited whomever it wanted, the

NCAA divided schools up into eight regions, and a selection committee,

comprised primarily of coaches, extended bids to one school from each

region. The committee was not bound to select conference champions; it

could offer an invitation to a team it considered to be stronger despite

having a worse record.

Of the two tournaments, the NIT for many years was considered the

more prestigious. In the days before television, there was more media

exposure afforded by playing in New York rather than, say, Evanston,

Illinois. Not wanting to be left behind, the NCAA held its 1943 tourna-

ment in New York and returned every year but one through 1950, when

City College of New York (CCNY) won both the NIT and the NCAA

tournaments. The following year, however, CCNY was implicated in a

point-shaving scandal that involved six other schools, including three in

the New York area, and may also have had connections to organized

crime. The NCAA never held the tournament championship in New

York again, and didn’t even schedule preliminary rounds in Manhattan

until 2014. The NIT, though, was inextricably linked with the Big

Apple; the connection that had once provided a sense of legitimacy now

contributed to the tournament’s decline, as the public associated college

basketball in New York with corruption. As the NCAA’s tournament

overtook the NIT in popularity, it prohibited schools from accepting bids

to play in more than one tournament. This ban also extended to schools

hosting the NCAA tournament. Such was the case in 1970, when ACC

regular season champion South Carolina lost in the finals of the confer-

ence tournament after star player John Roche suffered an ankle injury.

After failing to make the NCAA tournament, the Gamecocks were

forced to decline an NIT invitation because they had been designated as
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the host school for the NCAA East Regionals in Columbia, South

Carolina. The NIT had become the de facto consolation tournament for

those schools that failed to get an invitation to the Big Dance. In 2005

the NCAA finally acquired the NIT.

The Big Dance would continue to get bigger. The field for the 1951

tournament expanded to 16. For the first time, automatic bids were given to

11 conferences, and the remaining 5 at-large spots were earmarked for the

eastern (3) and western (2) parts of the country. Some conferences, including

the Ohio Valley and Mid-American, did not receive automatic bids. Two

years later the bracket grew again, this time to 22, which necessitated first-

round byes for some teams, specifically those from conferences with better

records in previous years’ tournaments. The byes went away in 1975 as the

tournament expanded again, this time to 32, but would return 4 years later

when eight more slots were added, with another eight coming in 1981.

Seeding the tournament was a complicated process, as the bracket was

divided into four regions and a 1979 rule limited each 10-team region to

no more than two teams from any one conference. So in 1981 the

NCAA devised a formula called the Rating Percentage Index (RPI) “to

provide supplemental data for the Division I Men’s Basketball Committee

in its evaluation of teams for at-large selection and seeding of the champi-

onship bracket.”40 That it was intended to be supplemental is a point that

the NCAA was sure to emphasize. “The committee is not unequivocally

committed to selecting the top 48 teams as listed by the computer,”

said committee chairman Wayne Duke.41 A February 1995 edition

of the NCAA’s official newsletter wrote that “[s]ince the RPI’s invention

the committee has come to rely on it less than when it was first

created.”42

The formula has been changed a few times since it was introduced,

but originally it was comprised of four factors:

• Team success (40%): winning percentage in Division I games

minus 0.01 for each non-Division I game the school played

• Opponents’ success (20%): an unweighted average of the winning

percentages for each of the school’s opponents in Division I games,

excluding games between the school and the opponent

40 NCAA Division I men’s basketball championship principles and procedures for estab-

lishing the bracket. NCAA Sports.com, April 11, 2005.
41 Damer, R. (January 23, 1981). In all fairness. The Chicago Tribune.
42 Bollig, L.E. (February 8, 1995). FYI on the RPI. The NCAA News, 1.

34 Optimal Sports Math, Statistics, and Fantasy



• Opponents’ strength of schedule (20%): an unweighted average of

each opponent’s opponents’ success factor

• Road success (20%): an unweighted average of the school’s win-

ning percentage in Division I road games and the opponents’ suc-

cess factor for those road opponents

The results of the RPI were kept confidential, and were not provided

to schools until 1992. The NCAA did not release weekly RPI rankings

until 2006. Before then, the RPI rankings in various media outlets were

estimates of what the real RPI figures were. Rumors abounded that there

was some sort of secret adjustment that made the media estimates inaccu-

rate, and indeed there was. From 1994 until 2004, a bonus was added if

more than half of a school’s nonconference opponents were in the RPI’s

top 50, and a penalty assessed if more than half were outside of the top

150. There were additional bonuses for victories over top 50 and penalties

for losing to sub-150 or non-Division I opponents. These adjustments

“could move some teams up or down as many as five spots,” said NCAA

statistics coordinator Gary K. Johnson.42 In 2005 these adjustments were

replaced by coefficients applied to home and road games. Wins at home

and losses on the road were multiplied by 0.6, road wins and home losses

by 1.4. Neutral site games still counted as 1.0, win or lose.

Today the RPI formula is simpler. Winning percentage counts 25%,

opponents’ winning percentage 50%, and opponents’ opponents’ winning

percentage 25%. Simpler, though, does not necessarily mean better. Like

previous incarnations (as well as BCS computer models), the RPI reflects

the NCAA’s antipathy toward considering margin of victory, because of

both the legacy of point-shaving scandals (CCNY in the 1950s and later at

Boston College in the 1970s) and of a desire not to incentivize teams to

run up the score. As secrecy is no longer an issue, the primary criticism of

the RPI is that it is not an evaluation of a team so much as its schedule,

stacking the deck in favor of schools from power conferences at the expense

of those from mid-majors. “The RPI, I was certain, explained everything,”

wrote Dick Jerardi in The Philadelphia Daily News. “I really believed that.

I was wrong. The RPI, it turns out, is little more than a brainwashing tool

used on those of us who want easy answers. I wanted easy answers. After

watching how these RPI numbers are used, it has become clear they are

just an easy way out, something to justify the status quo.”43

43 Jerardi, D. (January 23, 2002). It’s high time for the NCAA to KO the RPI. The

Philadelphia Daily News.
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Fully three quarters of the RPI figure is based on its opponents’ records.

In 2002 Pittsburgh defeated Rutgers in a January game by a score of 66�58;

because the Panthers walked out of Piscataway with a record of 15�1, the

Scarlet Knights actually moved up three spots in the RPI rankings.44 A

school in a mid-major conference having a breakout year is hampered

by the lower winning percentages of its conference opponents. In 2001,

Kent State went 23�9, winning both the Mid-American Conference’s East

division title and its tournament, garnering the MAC’s automatic bid to

the NCAA tournament as a No. 13 seed. The rest of the MAC, however,

combined for a record of 160�190, including Western Michigan (7�21),

Northern Illinois (5�23), Buffalo (4�24), and Eastern Michigan (3�25).

Owing to this light conference schedule, the Golden Flashes’ RPI ranking

was 93. Rutgers, which went only 11�16 in the much tougher Big East

(the rest of which was a combined 241�150), had an RPI ranking of 80.

To increase its RPI, a mid-major school would be well served by scheduling

tougher nonconference opponents even at the expense of its own win�loss

record. A CNN/Sports Illustrated story from 2000 discussed so-called RPI

consultants, advising institutions on how to game the system. As beefing up

its nonconference schedule is not always an option, a school would almost

have to win its conference’s automatic bid if it had any hopes of earning a

ticket to the dance. Of the 173 at-large selections from 2007 through 2011,

only 31 (17.9%) went to schools outside of the six power conferences

(ACC, Big East, Big Ten, Big 12, SEC, and Pac-10).

Though it is said to be just a tool, the RPI does play a concrete role

in the tournament selection process, which is guided by a document

called “NCAA Division I Men’s Basketball Championship Principles and

Procedures for Establishing the Bracket.” The committee is charged with

selecting the best at-large teams from all conferences. While committee

members are permitted to vote for any schools they deem worthy up to

34, the ballots and information packs provided to them only encompass

teams in the RPI’s top 105. As the committee is narrowing down the

number of candidates, the chair can request what the NCAA calls

the “nitty-gritty” report, which among other things lists a team’s

overall, conference, and nonconference RPI rankings and its record

against opponents ranked 1�50, 51�100, 101�200, and 201 or below.

Today, in the information age, the relationship between sports and

numbers is closer than ever before. No longer must analyses be run by

44 Wetzel, D. (January 9, 2002). RPI continues to lack an ounce of reason. CBS Sportsline.
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collecting statistics from a newspaper, aggregating them with a pocket cal-

culator, and reporting them with a manual typewriter as Bill James did in

the late 1970s. Raw data is easily accessible, and anyone with Internet

access, a spreadsheet application, and a little imagination can reveal those

aspects of sports that had lain hidden for so long.
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CHAPTER 2

Regression Models

2.1 INTRODUCTION

In this chapter we provide readers with the math, probability, and statistics

necessary to perform linear regression analysis. We show how to devise

proper regression models to rank sports teams, predict the winning team

and score, and calculate the probability of winning a contest and/or beat

a sports betting line.

The models in this chapter are formulated to allow any sports fan or

sports professional (including managers, coaches, general managers,

agents, and weekend fantasy sports competitors) to easily apply to predict

game outcomes, scores, probability of winning, and rankings using

spreadsheet models. These techniques do not require an in-depth knowl-

edge of statistics or optimization, and an advanced degree is not required.

Mathematical regression analysis includes three different types of

regressions: linear regression analysis, log-linear regression analysis, and

nonlinear regression analysis. In this chapter we will focus on linear

regression analysis. Log-linear and nonlinear regression analyses are also

appropriate techniques in many situations but are beyond the scope of

this book.

In Chapter 3, Probability Models, we describe the different families of

probability models to determine the probability of winning a game or

achieving a specified outcome (such as winning margin or total points).

In Chapter 4, Advanced Math and Statistics, we introduce advanced

models and mathematical techniques that can be used to evaluate players

and determine their overall contribution to winning, to determine the

optimal mix of players to provide the best chances of winning based on

the opponent and/or opponents’ lineup, for picking fantasy sports teams,

and for salary negotiations between team owners and agents. These mod-

els include principal component analysis and neural networks.
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2.2 MATHEMATICAL MODELS

The usage of mathematical models and statistics in any professional appli-

cation is to serve four main purposes:

1. Determine explanatory factors;

2. Determine the sensitivity of the dependent variable to explana-

tory factors;

3. Estimate outcome values;

4. Perform sensitivity and what-if analysis, to help determine how

the outcome is expected to change if there is an unexpected

change in the set of explanatory variables.

These are described as follows:

Determine Relationship Between Explanatory Factors and Dependent

Variable. Mathematical models are employed by analysts to help

determine a relationship between a dependent variable and a set of

factors. The dependent variable, denoted as the y-variable, is the

value that we are looking to determine and is often referred to as

the outcome. The explanatory factors, denoted as the x-variables,

are also often referred to as the independent factors, the predictor

variables, or simply the model factors. These x-variables consist of

the information set that we are using to help us gain a better under-

standing of the expected outcome (the y-variable). In sports models,

this step will assist analyses, coaches, and managers in determining

the most important set of factors to help predict the team’s winning

chances. For example, is it best to use batting average, on-base per-

centage, or slugging percentage to predict the number of runs a

baseball team will score, or is it best to use some weighted combina-

tion of the three. Additionally, is it best to evaluate a pitcher based

on earned run average (ERA), the opposing team’s batting averages

against the pitcher, the pitcher’s strikeout-to-walk ratio, the oppos-

ing team’s on-base percentage, or some combination of these statis-

tics. And if it is best to use a combination of these measures, what is

the best weighting to maximize likelihood of success.

Determine the Sensitivity of the Dependent Variable to These Factors.

Mathematical techniques are employed to determine the sensitivity

of the dependent variable to the set of explanatory factors. That is,

how much is the dependent variable expected to change given dif-

ferent factors. After determining a statistically significant set of

explanatory variables we then estimate the sensitivity of the

40 Optimal Sports Math, Statistics, and Fantasy



dependent variable to each of these factors. This step will assist us

in determining the best mix of factors to use to predict game out-

comes, as well as the proper weighting across a group of entirely

different or similar factors. The dependent variable that we are try-

ing to predict can consist of many different outcomes such as the

expected winning team, the probability that a team will win a

game, the final score, and/or the expected winning margin or

point spread.

Estimate Outcome Values. Mathematical models are used to estimate

the outcome variable from the set of explanatory factors and sensi-

tivities. The relationship will help determine the winning team,

expected winning score, and the probability that the team will

win. These models also help managers and coaches determine the

best strategy to face an opponent based on different sets of factors

and scenarios.

Perform Sensitivity and What-If Analysis. Mathematical models are

used to help determine how the outcome is expected to change if

there is an unexpected change to the explanatory factors. This will

help coaches, managers, and analysts determine how the outcome

of a game will change if a star player is not able to participate due

to injury or suspension, if a team has acquired a new player

through a trade or signing, as well as if a player is coming off an

injury and is not at full strength. Furthermore, sensitivity and

what-if analysis will help teams determine the best mix of players

to use in a game based on the opponent or opposing team’s lineup.

Statistics have long been used to describe the result of a match or

game as well as to evaluate player or team performance. But in many

cases, these models and statistics are not being applied correctly.

Mathematical models are just now starting to be employed through all

levels of sports to train players, help teams improve their chances of win-

ning, and to determine and negotiate salaries. The sections below provide

proper statistical methods and approaches for use in sports models and

management.

2.3 LINEAR REGRESSION

Regression analysis is used to help us uncover a relationship between

the dependent y-variable (what we are trying to predict) and the set of

x-explanatory factors (which is input data that we are relying on to help

us predict the outcome). Regression analysis will also help us determine
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if the explanatory factor is a statistically significant predictor of the out-

come; if it is, it will help us calculation the sensitivity of the dependent

variable to the explanatory factor.

A linear regression model is a model where we formulate a linear rela-

tionship between a dependent variable y and a set of explanatory factors

denoted as x. In the event that there is more than one explanatory factor

these factors are denoted as x1; x2; . . .; xk.
In the case where we have a single explanatory factor, the analysis is

called a simple regression model and is written as:

y5 b01 b1x1 u

Here, y is the dependent variable or outcome (i.e., what we are look-

ing to predict), x is the explanatory factor (i.e., what we are using to pre-

dict the outcome), and u is the regression error (the value of y that is not

explained by the relationship with x). The error term u is also known as

the noise of the model and signifies the quantity of y that was not

explained by its factors.

In the above equation, b0 and b1 are the model parameters and define

the sensitivity of the dependent variable and the explanatory factor. That

is, how much will the dependent variable change based on the explana-

tory factor. In practice, however, the exact parameter values are not

known and therefore must be estimated from the data.

The corresponding simple regression equation used to estimate the

model parameters is:

ŷ5 b̂01 b̂1x1 ε

where ŷ is the estimated dependent variable value, b̂0 is the constant term

and b̂1 are the estimated parameters indicating the sensitivity of y to

explanatory factor x, and ε is the regression error term, i.e., the value of

y that is not explained by the regression model.

In the case where we have more than one explanatory factor, the anal-

ysis is called a multiple regression model and has the form:

y5 b01 b1x1 1 b2x21?bkxk1 u

Here, y is the dependent variable or outcome (what we are looking to

predict), x1; x2; . . . ; xk are the k-explanatory factors, and u is the random

noise (i.e., the value of y that is not explained by the set of explanatory

factors).
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Here b0 represents the model constant and b1; . . .; bk represent the

actual parameter values of the model. In practice, these exact values are

not known in advance or with any certainty and must be determined

from the data.

The corresponding multiple regression model used to estimate the

outcome event y is:

ŷ5 b̂01 b̂1x11 b̂2x21?1 b̂kxk1 ε

where ŷ is the estimated dependent variable value, b̂0 is the model constant

and b̂1; b̂2; . . .; b̂k are the estimated parameter values and model sensitivities

to the factors, and ε is the regression noise. The goal of regression analysis is

to help us determine which factors are true predictors of the explanatory

variable y and the underlying sensitivity of the dependent variable y to the

explanatory variables x.

Estimating Parameters
To estimate the parameters of the regression model we will first need to

collect a set of observations. The more data samples we collect or have

available the more accurate the prediction will be. A regression model

with n observations can be written in vector form as follows:

y5 b01 b1x11 b2x2 1?bkxk1 u

where

y5

y1
y2
^
yt
^
yn

0
BBBBB@

1
CCCCCA x15

x11
x12
^
x1t
^
x1n

0
BBBBB@

1
CCCCCA x25

x21
x22
^
x2t
^
x2n

0
BBBBB@

1
CCCCCA xk5

xk1
xk2
^
xkt
^
xkn

0
BBBBB@

1
CCCCCA u5

u1
u2
^
ut
^
un

0
BBBBB@

1
CCCCCA

In this notation,

yt 5 the value of the dependent variable at time t

xkt 5 the value of the kth factor at time t

ut 5 the value of the error term at time t

The expected y-value from our regression equation is:

ŷ5 b̂01 b̂1x11 b̂2x21?1 b̂kxk
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The parameters are then estimated via a least-squares minimization pro-

cess referred to as ordinary least squares (OLS). This process is as follows:

Step 1: Calculate the error between the actual dependent variable value y

and the regression output estimate ŷ for every time period t. This is:

et 5 yt 2 ŷt

Step 2: Square the error term as follows:

e2t 5 yt2ŷt
� �2

Step 3: Substitute ŷt 5 b̂01 b̂1x1t 1 b̂2x2t 1?1 b̂kxkt as follows:

e2t 5 yt2 b̂01b̂1x1t1b̂2x2t1?1b̂kxkt
� �� �2

Step 4: Define a loss function L to be the sum of the square errors as

follows:

L5
Xn
t50

yt2 b̂01b̂1x1t1b̂2x2t1?1b̂kxkt
� �� �2

Step 5: Estimate model parameter via minimizing the loss function.

This is accomplished by differentiating L for each variable x and

setting the equation equal to zero. This is:

dL

dx0
522b̂0 �

Xn
t51

yt 2 b̂0x0t 2 b̂1x1t 2 b̂2x2t 2?2 b̂kxkt
� �

5 0

dL

dxk
522b̂1 �

Xn
t51

yt 2 b̂0x0t 2 b̂1x1t 2 b̂2x2t 2?2 b̂kxkt
� �

5 0

^
dL

dxk
522b̂k �

Xn
t51

yt 2 b̂0x0t 2 b̂1x1t 2 b̂2x2t 2?2 b̂kxkt
� �

5 0

The parameters are then calculated by solving the system of k1 1

equations and k1 1 unknowns. Readers familiar with linear algebra

and/or Gaussian elimination will without question realize that the above

set of equations can only be solved if and only if the x vectors are all

independent. Otherwise, we cannot determine a unique solution for the

regression equation and model parameters.

The formulas for our important linear regression models statistics are

provided below.
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Estimated Parameters
The parameters of the linear regression model are found by solving the

set of simultaneous equations above. These results are:

b̂05 b̂1x11 b̂2x21?1 b̂kxk

b̂15

Pn
i51 x1i2 x1ð Þ yi 2 yð ÞPn

i51 x1i2x1ð Þ2

^

b̂k5

Pn
i51 xki2 xkð Þ yi2 yð ÞPn

i51 xki2xkð Þ2

Se bkð Þ: Standard Error of the Parameter
Computing the standard error of the parameter is slightly more detailed

than estimating the parameter values and can best be described in general

terms using matrix algebra (unfortunately there is no way around this).

For a simply linear regression model and a model with two factors

this calculation is a little more straightforward, but below we present the

results for the general case of a k-factor regression model.

Cov b̂
� �

5σ2
y � X

0
X

� �21
5

var b̂0
� �

cov b̂0; b̂1
� �

? cov b̂0; b̂k
� �

cov b̂1; b̂0
� �

var b̂1
� �

? cov b̂1; b̂k
� �

^ ^ & ^

cov b̂k; b̂0
� �

cov b̂k; b̂1
� �

? var b̂k
� �

0
BBBBB@

1
CCCCCA

In this notation, the X variable denotes a data matrix with the first

column being all 1s. This is now consistent with the expanded linear

regression model above.

X 5

1 x11 x21 ? xk1
1 x12 x22 ? xk2
^ ^ ^ & ^
1 x1n x2n ? xkn

2
664

3
775

The variable X
0
denotes the transpose of the X matrix, and X

0
X

� �21

represents the inverse of the product matrix X
0
X .

The term σ2
y denotes the regression variance, which is also known as

the squared regression error value.
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Then we have the variance of the parameter estimates as follows:

Var b̂
� �

5

var b̂0
� �

var b̂1
� �
^

var b̂k
� �

0
BBBB@

1
CCCCA

And finally, the standard error of the parameter estimates is:

Se b̂
� �

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b̂0

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b̂1

� �q
^ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂k
� �q

0
BBBBBB@

1
CCCCCCA

Regression Error

σ2
y 5

P
e2i

n2 k

R-Square (R2)

R25 12

P
e2iP
y2i

t-Stat

tk5
b̂k

Se b̂k
� �

F-Value

F5
R2= k2 1ð Þ

12R2ð Þ n2 kð Þ

Regression Model Requirements
A proper regression model and analysis needs to ensure that the regression

model satisfies the required model properties. Here, there are seven main

properties of a linear regression model. If any of these assumptions are

violated, the results of the analysis could be suspect and potentially give incor-

rect insight into the true relationship between dependent variable and factors.
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In these cases, analysts need to make adjustments to the data. These

techniques are further explained in Gujarati (1988), Kennedy (1998), and

Greene (2000).

The main assumptions of the linear regression model are:

A1. Linear relationship between dependent variable and explanatory factors.

y5 b01 b1x11?1 bkxk1 u

A2. Unbiased parameters: the estimated parameter values are unbiased

estimates of the turn parameter values. That is, they satisfy the

following relationship:

E b0ð Þ5 b0;E b1ð Þ5 b1; . . .;E bkð Þ5 bk

A3. Error term mean zero: the expected value of the error term is zero.

E εð Þ5 0

A4. Constant variance: each error term has the same variance (i.e., no

heteroskedasticity).

Var εkð Þ5σ2 for all k

A5. Independent error t term: no autocorrelation or correlation of any

degree.

E εkεk2tð Þ5 0 for all lagged time periods t

A6. Errors are independent of explanatory factors.

Cov ε; xkð Þ5 0 for all factors k

A7. Explanatory factors are independent.

Cov xj; xk
� �

5 0 for all factors j and k

2.4 REGRESSION METRICS

In performing regression analysis and evaluating the model, we need the

following set of statistical metrics and calculations:

b̂k5model parameter values (estimated sensitivity of y to factor k)

e5 regression error (determined from the estimation process)

Se bkð Þ5 standard error of the estimated parameter bk
σy5 standard error of the regression model

R25 goodness of fit (the percentage of overall variance explained

by the model)

t-Stat5 critical value for the estimated parameter

F-Stat5 critical value for the entire model
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Regression Analysis Statistics
In this section we provide readers with an overview of the important

statistics for performing regression analysis. Our summary is not intended

to be a complete listing of the required analysis and evaluate metrics, but

these will serve as an appropriate starting place for the analyses. These

important statistics are:

t-Test
The t-test is used to test the null hypothesis that a parameter value is zero.

This would indicate that the selected explanatory factor does not have

any predictive power in our regression equation.

The corresponding t-Stat for parameter k is:

t-statðkÞ5 β̂ kð Þ=Se β̂
� �

where

β̂ kð Þ5 parameter k

Se β̂
� �

5 standard error of parameter k

t-StatðkÞ5 t-statistic for parameter k

The testing hypothesis is:

H0: βk5 0

H1: βk 6¼ 0

Analysts could also test the alternative hypothesis that the parameter

value is greater than or less than zero depending on the goal of the analy-

sis. A general rule of thumb is that if the absolute value of the t-Stat above

is greater than two, then reject the null hypothesis and conclude that

factor “k” is a significant predictor variable.

That is:

if tkj j. 2 then reject the null

R2 Goodness of Fit
The R2 statistic is a measure of the goodness of fit of a regression model. This

statistic is also known as the coefficient of determinant. A regression model

with strong explanatory power will have a high coefficient of variation R2.

R2 5 12
Residual Sum of Squares

Total Sum of Squares

48 Optimal Sports Math, Statistics, and Fantasy



F-Test
The F-test is used in regression analysis to test the hypothesis that all

model parameters are zero. It is also used in statistical analysis when

comparing statistical models that have been fitted using the same

underlying factors and data set to determine the model with the

best fit. That is:

H0: B15B25?5Bk5 0

H1: Bj 6¼ 0 for at least one j

The F-test was developed by Ronald A. Fisher (hence F-test) and is a

measure of the ratio of variances. The F-statistic is defined as:

F5
Explained variance

Unexplained variance

A general rule of thumb that is often used in regression analysis is that

if F. 2:5 then we can reject the null hypothesis. We would conclude

that there is a least one parameter value that is nonzero.

Probability Home Team Wins
The probability that the actual outcome Y-variable will be less than or

equal to a value S can be computed from the estimated Y-variable and

regression error as follows:

Prob Y # Sð Þ5NormCdf ðS; Ŷ ;σyÞ
Here, NormCdf ðS; Ŷ ;σyÞ represents the cumulative normal dis-

tribution with mean5 Ŷ and standard deviation5σy, and is the prob-

ability corresponding to a value less than or equal to S (see chapter:

Advanced Math and Statistics, for detailed description of the

calculation).

Subsequently, the probability that the home team will win a game

if the expected outcome is Ŷ and the regression standard error is σy is

calculated as follows:

Prob Home Team Winsð Þ5 12NormCdf ð0; Ŷ ;σyÞ
This equation denotes the probability that the home team victory

margin will be greater than zero and thus the home team wins

the game.
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Matrix Algebra Techniques
In matrix notation, the full regression model is written as:

y5Xβ1 ε

The model used for estimation is:

ŷ5Xβ̂

The vector of error terms (also known as vector of residuals) is then:

e5 y2Xβ̂

Estimate Parameters
The parameters of our regression model are estimated via OLS as follows:

Step I: Compute the residual sum of squares:

eT e5 y2Xβ̂
� �T

y2Xβ̂
� �

Step II: Estimate the parameters β̂ via differentiating. This yields:

β̂ 5 XTX
� �21

XTy

Compute Standard Errors of β̂
This is calculated by computing the covariance matrix of β̂ . We follow

the approach from Greene (2000) and Mittelhammer, Judge, and Miller

(2000). This is as follows:

Step I: Start with the estimated β̂ from above and substitute for y.

β̂ 5 XTX
� �21

XTy

5 XTX
� �21

XT Xβ1 εð Þ

5 XTX
� �21

XTXβ1 XTX
� �21

XTε

5 Iβ1 XTX
� �21

XTε

5β1 XTX
� �21

XTε

Therefore, our estimated parameters are:

β̂ 5β1 XTX
� �21

XTε
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Step II: Computed expected β̂ as follows:

E β̂
� �

5E β1 XTX
� �21

XTε
� �

5E βð Þ1E XTX
� �21

XTε
� �

5E βð Þ1 XTX
� �21

XTE εð Þ
5β1 XTX

� �21
XT � 0

5β

Therefore, we have

E β̂
� �

5 β

which states β̂ is an unbiased estimate of β

Step III: Compute the covariance matrix of β̂ as follows:

Cov β̂
� �

5E β̂ 2β
� �

β̂2β
� �T� �

5E XTX
� �21

XTε
� �

XTX
� �21

XTε
� �T� �

5E XTX
� �21

XTεεTX XTX
� �21

� �
5 XTX
� �21

XTE εεT
� �

X XTX
� �21

5 XTX
� �21

XT σ2 � I� �
X XTX
� �21

5σ2 � XTX
� �21

XTX XTX
� �21

5σ2 � I XTX
� �21

5σ2 XTX
� �21

It is important to note that if E εεT
� � 6¼ σ2 � I then the data is hetero-

skedastic, i.e., it is not constant variance and it violates one of our required

regression properties.
The standard error of the parameters is computed from the above matrix:

Se β̂
� �

5 diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 XTXð Þ21

q� �

R2 Statistic

R25
b̂
0
X

0
y2 ny2

y
0
y2 ny2
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The coefficient of determination will be between 0 and 1. The closer

the value is to 1, the better the fit of the model.

F-Statistic

F5
b̂
0
X

0
y2 ny2

� �
= k2 1ð Þ

y
0
y2 b̂

0
X

0
y

� �
= n2 kð Þ

Probability Home Team Wins
The probability that the actual outcome Y-variable will be less than or

equal to a value S can be computed from the estimated Y-variable and

regression error as follows:

Prob Y # Sð Þ5NormCdf ðS; Ŷ ;σyÞ
The probability that the home team will win a game if the expected

outcome is Ŷ and the regression standard error is σy is:

Prob Home Team Winsð Þ5 12NormCdf ð0; Ŷ ;σyÞ
(See chapter: Advanced Math and Statistics, for detailed explanation.)

Example 2.1 R2 Goodness of Fit
In this section we provide the reader with different examples of the application of linear
regression models and detailed discussion on how to interpret the regression results.
These results are as follows.

Fig. 2.1 provides an illustration of four different linear regression models of the form
y5 b0 1 b1x1 e with different R2 metrics and goodness of fit. In these models, x repre-
sents the input value and y represents is the predicted value.

Fig. 2.1A is an example of a model with no relationship between the input variable
and predicted y-value. This model has a very low goodness of fit R25 0.02 and has a
large amount of scatter and variation in the results with no relationship between y and
x. Fig. 2.1B is an example of a model with some predictive power and a goodness of fit
R25 0.22. Notice the relationship between x and y in this example, but with some scatter
in the results. Fig. 2.1C is an example of a strong predictive model and high goodness of
fit R25 0.57. Notice the relationship between the y-value and input data x and a distin-
guishable trend line. Fig. 2.1D is an example of a model with very strong predictive
power and very high goodness of fit R25 0.85. Notice in this example that most of the
predicted data lies very near or on the trend line.

An important question that often arises regarding the R2 goodness of fit metric is
what is the appropriate value to use as selection criteria for the acceptance or rejection
of a model or data set. This is a difficult question to answer because it is dependent
upon the overall variation or noise in the data. Some statistical relationships can be pre-
dicted with a great degree of accuracy because we have all the important explanatory

52 Optimal Sports Math, Statistics, and Fantasy



y = –0.13x + 7.14 

R² = 0.02

–60

–40

–20

0

20

40

60

(A) No Predictive Power (B) Some Predictive Power

(C) Strong Predictive Power (D) Vey Strong Predictive Power

0 20 40 60 80 100

Y
 V

al
ue

X Value

y = 0.10x – 0.23 

R² = 0.22

–10
–5
0
5

10
15
20
25

0 20 40 60 80 100

Y
 V

al
ue

X Value

y = 0.12x – 0.78 
R² = 0.57

–10

–5

0

5

10

15

20

0 20 40 60 80 100

Y
 V

al
ue

X Value

y = 0.10x – 0.10 
R² = 0.85

–2
0
2
4
6
8

10
12

0 20 40 60 80 100
Y

 V
al

ue
X Value

R2 Goodness of Fit
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factors and there is relatively little noise or uncertainty in the output results. Other mod-
els may have significant dependency on some set of explanatory input factors but also
have a large amount of variation in the output data. In these cases, the best fit model
may only have a small R2.

As we show in subsequent chapters, a good fit sports prediction model will have
an R2 goodness of fit metric from R25 0.20 through R25 0.40. Values higher (R2. 0.40)
are considered excellent models and lower values (R2, 0.20) are considered less
predictable.

It is important to note that the R2 goodness of fit should not be the sole metric
used to critique a linear regression model or select the appropriate underlying data set,
but it does provide insight into the model’s predictive power and overall goodness of fit.

Linear Regression Example
We next provide three examples showing a process to evaluate a linear regression sports
prediction model. In these examples, the output variable Y is the home team’s spread
(i.e., the home team points minus the away team points); this will be a common theme
throughout subsequent chapters. The input data that will be used to predict the home
team’s spread consists of game results data including team strength rating (Rating),
game attendance (Attend), and game time temperature (Degrees).

The data for these models and observations is provided in Tables 2.1 and 2.2. The
general form for this model is:

Y5 b0 1 b1 � XH 2 b2 � XA 1 b3 � Attend1 b4 � Degrees

Example 2.2 Regression: Team Rating
In this example, the linear regression prediction model will only incorporate the team’s
strength rating to make a prediction. This regression was performed in Excel using
the5 LINEST() function and the results are shown in Table 2.3.

Table 2.1 Team Rating Table

Team Rating

1 2.141

2 1.361

3 4.563

4 1.148

5 2.524

6 3.106

7 4.877

8 6.064

9 2.617

10 5.752

54 Optimal Sports Math, Statistics, and Fantasy



These results show a very high R25 0.75 and all the variables are significant with
tj j. 2. The signs of the beta estimates are intuitive. The higher the home team strength
rating the higher the spread but the higher the away team strength rating the lower the
spread. Thus, if you are the home team and play a weaker team you are expected to win,
and if you play a stronger team you are expected to win by fewer points or possibly lose.

Another important item in this regression is the intercept term b0 5 2:87. This signifies
that there is a home field advantage of 2.87 points; thus, a benefit of playing at home.

For example, there may be certain benefits associated with playing at home due to
the field dimensions (such as baseball), field and wind (such as football and soccer), or
process (such as baseball with the home team batting last) that truly provide an advan-
tage to the home team. Another possibility is that there is a benefit from playing in
familiar surroundings and proper rest, as opposed to being worn out from a busy sports
travel schedule.

Example 2.3 Regression: Team Rating and Attendance
This example incorporates game attendance into the regression along with team strength
rating. The game attendance value was computed as the actual game attendance minus the
average league attendance over the season and is expressed in thousands. Therefore, if the
average attendance was 25,000 fans and the actual game had 35,500 fans the attendance
variable is 15.5. If the game attendance was 20,500 fans the attendance variable is 24.5.

This regression was performed in Excel using the5 LINEST() function and the results
are shown in Table 2.4.

These results of this model again have a very high R25 0.78 and all the variables are
again significant with tj j. 2. The signs of the beta estimates are also intuitive and the
team rating parameters are similar to the previous example. Once again we have a
home field advantage since b0 5 2:71 ðt5 2:97. 2Þ, and also the attendance parameter
is positive b3 5 0:13 with a significant t-test ðt5 3:26. 2Þ.

The interesting finding here is that there could be two different home field advan-
tage items occurring. First, we have the familiarity of the field or layout (if applicable
since some sports have the exact same dimensions and are played indoors) or scoring
method (e.g., in baseball the home team bats last and has a true benefit) or just more
rest and familiarity with surroundings. However, there is also a benefit driven by the
number of fans at the game, which will usually provide the home team with extra
encouragement and perhaps a psychological edge.

Our regression can provide insight into many different potential cause�effect rela-
tionships, many of which would be extremely difficult to ascertain with the use of
mathematics.

Example 2.4 Regression: Team Rating, Attendance, and Temperature
In our last example we incorporate the day’s temperature in degrees into the model to
determine if this has any effect on the outcome. It is an important variable to incorporate
for some sports such as football, where there could be large difference in temperature for
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Table 2.2 Game Results

Game
Number

Home
Team

Away
Team

Home
Rating

Away
Rating

Attendance
(Thousands)

Temperature
(Degrees)

(Home�Away)
Point Difference

1 1 2 2.141 1.361 23.20 72.63 6

2 1 3 2.141 4.563 11.59 95.43 1

3 1 4 2.141 1.148 9.36 55.52 7

4 1 5 2.141 2.524 211.84 55.81 21

5 1 6 2.141 3.106 10.39 95.75 1

6 1 7 2.141 4.877 9.00 66.28 23

7 1 8 2.141 6.064 26.02 94.33 1

8 1 9 2.141 2.617 21.23 59.59 21

9 1 10 2.141 5.752 29.35 63.27 27

10 2 1 1.361 2.141 1.21 62.06 21

11 2 3 1.361 4.563 0.44 65.46 26

12 2 4 1.361 1.148 25.93 97.24 3

13 2 5 1.361 2.524 0.87 59.28 21
14 2 6 1.361 3.106 10.53 74.06 23

15 2 7 1.361 4.877 210.07 82.05 21

16 2 8 1.361 6.064 24.10 90.79 26

17 2 9 1.361 2.617 24.99 79.48 23

18 2 10 1.361 5.752 29.69 63.64 24

19 3 1 4.563 2.141 21.76 59.70 10

20 3 2 4.563 1.361 2.19 75.69 7

21 3 4 4.563 1.148 25.16 58.60 10

22 3 5 4.563 2.524 28.81 75.72 7

23 3 6 4.563 3.106 20.65 98.85 7

24 3 7 4.563 4.877 5.16 92.08 6

25 3 8 4.563 6.064 29.70 86.23 21

26 3 9 4.563 2.617 23.17 52.09 9

27 3 10 4.563 5.752 22.17 53.91 21

28 4 1 1.148 2.141 22.08 73.67 22

29 4 2 1.148 1.361 8.24 93.19 7

30 4 3 1.148 4.563 3.88 76.82 22

31 4 5 1.148 2.524 7.25 94.85 22

32 4 6 1.148 3.106 29.29 92.13 1

33 4 7 1.148 4.877 8.59 62.32 27

34 4 8 1.148 6.064 0.91 79.25 213
35 4 9 1.148 2.617 26.45 58.96 24

36 4 10 1.148 5.752 211.25 62.62 211
37 5 1 2.524 2.141 22.98 85.99 9

38 5 2 2.524 1.361 11.83 63.63 9

39 5 3 2.524 4.563 29.42 96.64 24

40 5 4 2.524 1.148 25.37 70.98 10

41 5 6 2.524 3.106 5.52 56.46 6

42 5 7 2.524 4.877 4.23 60.89 3

43 5 8 2.524 6.064 4.11 61.90 24

44 5 9 2.524 2.617 211.90 79.27 26

45 5 10 2.524 5.752 4.52 96.16 25

46 6 1 3.106 2.141 9.47 81.36 5

47 6 2 3.106 1.361 29.88 75.27 5

48 6 3 3.106 4.563 21.08 78.81 5

49 6 4 3.106 1.148 21.19 72.10 10

50 6 5 3.106 2.524 5.81 95.25 4

51 6 7 3.106 4.877 23.87 70.73 1

52 6 8 3.106 6.064 6.90 67.32 23

53 6 9 3.106 2.617 9.47 67.37 9

54 6 10 3.106 5.752 28.61 94.29 23
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Table 2.3 Team Rating Regression Results

Intercept
Home
Rating

Away
Rating

Beta 2.41 2.27 22.04

SE 1.05 0.20 0.20

t-Stat 2.29 11.57 210.40
R2 0.76

SeY 3.12

F 135.97

Table 2.2 (Continued)

Game
Number

Home
Team

Away
Team

Home
Rating

Away
Rating

Attendance
(Thousands)

Temperature
(Degrees)

(Home�Away)
Point Difference

55 7 1 4.877 2.141 29.31 71.86 6

56 7 2 4.877 1.361 11.44 98.53 9

57 7 3 4.877 4.563 25.69 66.22 2

58 7 4 4.877 1.148 27.57 64.85 12

59 7 5 4.877 2.524 7.33 54.28 11

60 7 6 4.877 3.106 6.99 63.19 10

61 7 8 4.877 6.064 27.90 64.10 1

62 7 9 4.877 2.617 10.30 64.33 9

63 7 10 4.877 5.752 12.09 52.14 21

64 8 1 6.064 2.141 2.80 79.05 10

65 8 2 6.064 1.361 25.86 88.39 10

66 8 3 6.064 4.563 24.44 76.51 4

67 8 4 6.064 1.148 210.02 64.00 15

68 8 5 6.064 2.524 9.44 75.53 17

69 8 6 6.064 3.106 24.08 80.96 10

70 8 7 6.064 4.877 3.77 56.78 14

71 8 9 6.064 2.617 29.99 50.07 10

72 8 10 6.064 5.752 23.75 86.09 6

73 9 1 2.617 2.141 210.45 76.95 6

74 9 2 2.617 1.361 2.78 81.96 5

75 9 3 2.617 4.563 22.72 77.61 22

76 9 4 2.617 1.148 7.46 69.47 10

77 9 5 2.617 2.524 3.40 99.78 24

78 9 6 2.617 3.106 1.93 68.81 1

79 9 7 2.617 4.877 22.74 93.60 21

80 9 8 2.617 6.064 29.78 64.17 25

81 9 10 2.617 5.752 11.83 63.23 1

82 10 1 5.752 2.141 2.39 89.07 10

83 10 2 5.752 1.361 29.47 56.04 13

84 10 3 5.752 4.563 26.11 59.22 8

85 10 4 5.752 1.148 4.74 71.15 11

86 10 5 5.752 2.524 27.94 67.31 11

87 10 6 5.752 3.106 9.33 63.25 4

88 10 7 5.752 4.877 29.21 80.72 2

89 10 8 5.752 6.064 9.62 86.99 3

90 10 9 5.752 2.617 27.89 63.79 5
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different teams’ locations, which could provide them with benefits gained by training in
these weather conditions. For example, consider the difference in outdoor temperature
between Buffalo and Miami. The results for this regression are in Table 2.5; they show how
to determine if an explanatory factor is not a significant predictor variable.

First, the model does have a high goodness of fit with R25 0.78. But we do not
have significant t-Stats for all our variables. The beta for the Degrees variable is b4 5 0:02
but it does not have a significant t-Stat for temperature ðt5 1:02. 2Þ, thus indicating
that temperature is not a predictor of home margin.

In this case, it would not be appropriate to incorporate the temperature variable into
the regression and this model formulation should not be used for sports predictions. We
should revert back to the model in the previous examples.

Example 2.5 Estimating Home Team Winning Margin
This example shows how we can use the linear regression model to determine the likely
winner of a game. Suppose that we are interested in predicting the outcome of a game
between Team #6 playing at home against Team #7 in front of 20,000 fans. The estima-
tion equation is based on Example 2.3 and has the form:

Y5 b0 1 b1 � Home Rating2 b2 � Away Rating1 b3 � Attendance

Table 2.4 Team Rating and Attendance Regression Results

Intercept
Home
Rating

Away
Rating Attendance

Beta 2.27 2.30 22.01 0.10

SE 1.03 0.19 0.19 0.04

t-Stat 2.22 11.99 210.52 2.35

R2 0.77

SeY 3.04

F 97.21

Table 2.5 Team Rating, Attendance, and Temperature Regression Results

Intercept
Home
Rating

Away
Rating Attendance Degrees

Beta 3.10 2.29 22.01 0.10 20.01

SE 2.11 0.19 0.19 0.04 0.02

t-Stat 1.47 11.74 210.45 2.36 20.45
R2 0.77

SeY 3.06

F 72.28
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From Table 2.1 we have Team #6 Rating5 3.106 and Team #7 Rating5 4.877. Using
the regression results for Example 2.3 shown in Table 2.4 we have the following:

Est: Home Team Margin5 2:271 2:30 � 3:1062 2:01 � 4:8771 0:10 � 205 1:66

Therefore, home team #6 is expected to win by 1.66 points.
The probability that the home team will win is based on the expected winning mar-

gin of 1.66 points and the regression standard error of 3.06. This is computed as follows:

Prob Home Winsð Þ5 12NormCdf 0; 1:66; 3:06ð Þ5 71%

Thus, the home team has a 71% winning probability.

2.5 LOG-REGRESSION MODEL

A log-regression model is a regression equation where one or more of the

variables are linearized via a log-transformation. Once linearized, the regres-

sion parameters can be estimated following the OLS techniques above. It

allows us to transform a complex nonlinear relationship into a simpler linear

model that can be easily evaluated using direct and standard techniques.

Log-regression models fall into four categories: (1) linear model, which

is the traditional linear model without making any log transformations;

(2) linear-log model, where we transform the x-explanatory variables using

logs; (3) log-linear model, where we transform the y-dependent variable

using logs; and (4) a log-log model, where both the y-dependent variable

and the x-explanatory factors are transformed using logs.

For example, if Y and X refer to the actual data observations, then our

four categories of log transformations are:

1. Linear: Y 5 b01 b1 � X 1 u

2. Linear-Log: Y 5 b0 1 b1 � log Xð Þ1 u

3. Log-Linear: log Yð Þ5 b01 b1 � X 1 u

4. Log-Log: log Yð Þ5 b01 b1 � log Xð Þ1 u

As stated, the parameters of these models can be estimated directly

from our OLS technique provided above.

The process to determine the values for Y from the estimated log(Y)

using log-regression categories (3) and (4) is not as direct and requires

further input from the regression analysis error term. For example, if a

variable y has a log-normal distribution with mean u and variance v2, i.e.,

y B log Normalðu; v2Þ

Then the expected value of EðyÞ is calculated as follows:

E logðyÞð Þ5 u1
1

2
� v2
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And, therefore, we have

y5 e u11
2
�v2ð Þ

Notice that the variance term is included in the estimation equation.

If the estimate parameters of the log-linear equation are b̂0 and b̂1 and

regression error variance term is σ2, then we estimate our log yð Þ as follows:

E log Yð Þ	 

5 b̂01 b̂1 � x1 0:5 � σ2

And Y is then determined as follows:

Y 5 eb̂1b̂1�x10:5�σ2

0

Similarly, the estimated value of the Log-Log regression model is:

E log Yð Þ	 

5 b̂01 b̂1 � logðXÞ1 0:5 � σ2

which can be written in terms of Y as follows:

Ŷ 5 eb̂01b̂1�logðXÞ10:5�σ2

Rewritten we have:

Ŷ 5 eb̂010:5�σ2

eb̂1�logðXÞ5 eb̂010:5�σ2

Xb̂1

Now, if we let k̂5 eb̂010:5�σ2

, then the regression estimate model can

be written as:

Ŷ 5 k � Xb̂
1

let the regression equation be as follows:

Y 5 b0X
b1
1 Xb2

2 ε

If Y has log-normal distribution, then ln Y has a normal distribution.

Thus

ln Yð Þ5 b0 1 b1X11 b2X21 ε

Example: Log-Transformation
An example of a regression model that can be solved through a log-

transformation of the data is shown in Table 2.6 Log-Linear Regression Data.

This model has form:

y5 b0 � xb1ε
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Table 2.6 Log-Linear Regression Data

Obs X Y Log(X) Log(Y)

1 0.010 0.286 24.605 21.253

2 0.010 0.142 24.605 21.954

3 0.010 0.160 24.605 21.831

4 0.010 0.250 24.605 21.388

5 0.010 0.213 24.605 21.548

6 0.100 0.610 22.303 20.494

7 0.100 0.553 22.303 20.593

8 0.100 0.661 22.303 20.414

9 0.100 0.723 22.303 20.324

10 0.100 0.668 22.303 20.403

11 0.200 0.998 21.609 20.002

12 0.200 0.702 21.609 20.353

13 0.200 0.824 21.609 20.193

14 0.200 0.830 21.609 20.186

15 0.200 0.665 21.609 20.407

16 0.300 0.775 21.204 20.254

17 0.300 0.821 21.204 20.197

18 0.300 0.943 21.204 20.058

19 0.300 1.232 21.204 0.209

20 0.300 1.120 21.204 0.114

21 0.400 1.041 20.916 0.040

22 0.400 1.108 20.916 0.103

23 0.400 1.124 20.916 0.117

24 0.400 1.376 20.916 0.319

25 0.400 1.162 20.916 0.150

26 0.500 1.521 20.693 0.419

27 0.500 1.027 20.693 0.027

28 0.500 1.354 20.693 0.303

29 0.500 1.307 20.693 0.267

30 0.500 1.528 20.693 0.424

31 0.600 2.065 20.511 0.725

32 0.600 2.047 20.511 0.716

33 0.600 1.709 20.511 0.536

34 0.600 1.527 20.511 0.423

35 0.600 1.348 20.511 0.299

36 0.700 1.900 20.357 0.642

37 0.700 2.069 20.357 0.727

38 0.700 1.982 20.357 0.684

39 0.700 1.357 20.357 0.305

40 0.700 1.902 20.357 0.643

41 0.800 1.818 20.223 0.598

42 0.800 1.241 20.223 0.216

43 0.800 1.514 20.223 0.415

44 0.800 1.650 20.223 0.501

45 0.800 2.083 20.223 0.734

46 0.900 1.668 20.105 0.512

47 0.900 2.195 20.105 0.786

48 0.900 2.319 20.105 0.841

49 0.900 1.811 20.105 0.594

50 0.900 2.112 20.105 0.748

51 1.000 2.435 0.000 0.890

52 1.000 2.704 0.000 0.995

53 1.000 1.468 0.000 0.384

54 1.000 2.116 0.000 0.749

55 1.000 1.518 0.000 0.418



where lnðεÞBN 0;σ2
� �

. Notice the nonlinear relationship between the

dependent variable y and the explanatory variable x. The sensitivities b0
and b1 in this case can be determined via a log-transformation regression.

There is a linear relationship between the dependent variable Y and

explanatory variable x. That is:

ln yð Þ5 ln b0ð Þ1 b1ln xð Þ1 ε

The parameters of this model as determined via the OLS regression

technique described above use the following formulation:

ln yð Þ5α01α1ln xð Þ1 ε

Solving, we obtain:

α05 0:677
α15 0:503
σy5 0:190

The original parameters are finally computed as follows:

b05 exp α0 1σ2
y

n o
5 exp 0:6771 0:1902

� �
5 2:003

b15α15 0:503

And the best fit equation is:

y5 2:003 � x0:503ε
This relationship is shown in Fig. 2.2, where Fig. 2.2A shows the

relationship between y and x for actual data and Fig. 2.2B shows the

relationship between the log-transformed data. The regression results for

the log-transformed data and parameters and the adjusted parameters are

shown in Table 2.7.

2.6 NONLINEAR REGRESSION MODEL

Now let us turn our attention to nonlinear regression models.

These models are comprised of nonlinear equations that cannot be

linearized via a log-transformation. One of the more infamous nonlinear

models is the I-Star market impact model introduced by Kissell

and Malamut (1999) used for electronic, algorithmic, and high-frequency

trading. See Kissell, Glantz, and Malamut (2004), Kissell and Malamut
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(2006), or Kissell (2013) for an overview of this model and its

applications.

The model has the form:

Ŷ 5 â0 � Xâ1
1 � Xâ2

2 � Xâ3
3 1 â5X

â4
4 1 12 â5ð Þ� �

1 ε
where

0.0

1.0

2.0

3.0

(A) Log-Linear Relationship

(B) Log-Linearized Relationship

0 0.2 0.4 0.6 0.8 1

Best Fit Curve

Data Points

y = 0.5029x + 0.6766

R² = 0.9228

–2.5

–2.0

–1.5

–1.0

–0.5
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0.5

1.0

1.5

2.0

–5 –4 –3 –2 –1 0

Data Point

Log-Linear Regression Model

Figure 2.2 Log-Linear Regression Model: (A) Log-Linear Relationship; (B) Log-Linearized
Relationship.

63Regression Models



Y 5market impact cost of an order. This is the price movement in

the stock due to the buying and selling pressure of the order or

trade. It is comprised of a temporary and permanent component

X15 order size as a percentage of average daily volume to trade

(expressed as a decimal)

X25 annualized volatility (expressed as a decimal)

X35 asset price (expressed in local currency)

X45 percentage of volume and used to denote the underlying

trading strategy (expressed as a decimal)

The parameters of the model are: â0; â1; â2; â3; â4; and b̂1.

The error term of the model ε has normal distribution with mean

zero and variance v2, i.e., εBN ð0; v2Þ.
Nonlinear models of form can be solved via nonlinear OLS providing

the error term has a normal distribution such as the famous I-Star model

above. For nonlinear regression models where the underlying error distri-

bution is not normally distributed we need to turn to maximum likeli-

hood estimation techniques.

A process to estimate the parameters of nonlinear models is described

in Greene (2000), Fox (2002), and Zhi, Melia, Guericiolini, et al. (1994).

We outline the parameter estimation process for a general nonlinear

model below:

Step I: Define the model:

y5 f x;βð Þ1 ε

where

εBiid 0;σ2
� �

Let,

Table 2.7 Log-Linear Regression Results

Log-Adjustment Actual Parameters

Category a0 a1 b0 b1

Beta 0.677 0.503 2.003 0.503

SE 0.034 0.020 0.034 0.020

t-Stat 19.764 25.178 58.506 25.178

R2 0.923 0.923

SeY 0.190 0.190

F 633.946 633.946
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f x;a0;a1;a2;a3;a4;b1ð Þ5a0 �Xa1
1 �Xa2

2 �Xa3
3 1 b1 �Xa4

4 1 12b1ð Þ� �
1ε

Step II: Define the likelihood function for the nonlinear regression

model:

L β;σ2
� �

5
1

2πσ2ð Þ n
2ð Þ exp 2

Pn
i51 yi2f β; xð Þ	 
2

2σ2

( )

Step III: Maximize the likelihood function by minimizing the

following:

S βð Þ5
Xn
i51

yi2f β; xð Þ	 
2
Step IV: Differentiate S βð Þ:

@S βð Þ
@β

522
Xn
i51

yi2 f β; xð Þ	 
 @f βð Þ
@β

Step V: Solve for the model parameters:

The parameters are then estimated by setting the partial deriva-

tives equal to zero. This is determined via maximum likelihood

estimation techniques.

Fig. 2.3 illustrates a nonlinear regression model for the different

explanatory variables: order size, volatility, price, and percentage of vol-

ume (POV) rates. The graph shows how the dependent variable market

impact cost varies with different values for the explanatory variables. This

type of nonlinear model is extremely important for electronic trading and

has become the underlying foundation for trading algorithms, high-

frequency trading strategies, and portfolio construction.

2.7 CONCLUSIONS

In this chapter we provided an overview of regression models that can be

used as the basis for sports prediction. These models are used to predict

the winning team, estimate the winning score (home team points minus

away team points), and to also calculate the probability of winning.

We provided an overview of three different types of regression models,

including linear regression, log-linear regression, and nonlinear regression

models.

These techniques provide analysts with methods to (1) determine the

relationship between a dependent variable Y and a set of explanatory
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factors, (2) estimate parameter values, (3) calculation output variable Y,

and (4) performance sensitivity and what-if analysis.

These techniques allow analysts to determine the likely winner of a

game, the expected home winning margin, and the probability that the

home team will win the game.
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CHAPTER 3

Probability Models

3.1 INTRODUCTION

In this chapter we provide an overview of mathematical probability models

that can be used to rank teams, predict the winner of a game or match,

and estimate the winning margin and the total number of points likely to

be scored.

Different prediction methods require different input and output data.

One of the most important tasks of data analysis is determining the most

important set of input data that will provide an accurate estimate of the

outcome variable you are trying to predict, such as winning team or score.

Additionally, it is important to use only an appropriate number of input

data to avoid overcomplication of the model. For example, many calculated

data sets, especially in sports, are highly correlated with other data sets

already being used. In these cases, incorporation of additional “correlated”

data items will not help improve the prediction accuracy of the model and

it may in fact lead to incorrect inferences and erroneous conclusions.

In this chapter we provide the proper techniques to develop, evaluate,

and utilize probability prediction models.

3.2 DATA STATISTICS

Sports modeling data needs can be broken into two sets of data: input data

(explanatory data) and output data (predicted events). In all of our modeling

cases, we need to (1) determine the proper statistical relationship between

explanatory factors and the output variable we are trying to predict, and

(2) determine the parameter values that describe the underlying relationship

between the input data and output variable. This will allow us to predict the

outcome with the highest degree of statistical accuracy possible.

The input data are commonly known as the x-variables, right-hand side

(RHS) variables, input factors, explanatory factors, independent variables,

and/or predictor variables. In all cases, these terms mean exactly the same

thing and consist of the data that will be used to predict the outcome.
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In probability models, the explanatory factors can be comprised of

team data statistics or based on derived statistical data such as a team

strength rating, and/or an offensive rating score and a defensive rating

score. In many situations, we find that using derived data statistics consist-

ing of team strength ratings provides superior results over actual calculated

data items such as yards per rush and/or yards per pass in football.

The output data used in sports models represent the outcome event

that we are trying to predict. These output data are commonly referred

to as y-variables, left-hand side (LHS) data, dependent variable, outcome,

predictor, and/or expected value.

In sports analysis, the output data that we are primarily trying to predict

can be categorized into four sets of data: (1) win/lose, (2) winning margin

or spread, (3) total points scored, and (4) player performance statistics.

Results from these models will allow us to calculate additional items such as

team rankings, probability of winning, probability of betting against a sports

line, etc. Many of these topics will be further developed in later chapters.

A description of our output data items is as follows:

Win/Lose: A binary data value where 1 designates the home team

won and 0 designates that the home team lost. In the case of a tie, ana-

lysts can include two input records for the game where the home team is

denoted as the winner 11 in the first record and the home team denoted

as the loser in the second record.

In our approach throughout this book, we will specify whether a

team has won or lost from the perspective of the home team. If the home

team won the game then the output variable is 11 and if the home team

lost the game then the output variable is 0.

Spread/Margin: The spread, also known as the margin or winning

margin, denotes the difference in score between the home team and away

team. It is important to note here that we compute the home team win-

ning spread based on the difference between the home team scoring 24

points and the visiting team scoring 21. That is, the home team predicted

winning margin is 242 215 1 3, thus, indicating the home team is

expected to win 3 points. If the home team scored 21 points and the vis-

iting team scored 24 points, then the winning margin for the home team

is 212 24523, thus indicating that home team lost by 3 points. The

winning margin can take on any value.

Total Points: This refers to the total points scored in a game or contest

and is the sum of the points scored by the home team and by the visiting

team. For example, if the home team scored 24 points and the visiting
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team scored 21 points then the total points scored for the game is

241 215 45. The total points scored outcome variable cannot be nega-

tive. That is, it can be any number .5 0. Our models can also be ana-

lyzed based on the points scored by the home team only or based on the

points scored by the away team. In these scenarios, we can predict the

winner of the game based on the difference between expected points

scored by the home team and expected points scored by the away team.

Player Performance: Player performance statistics are data results that

describe the player’s performance during a game or over a season. This

can include ratio of hits to at-bats for a batter, number of earned runs

allowed for a pitcher, number of yards rushed or points scored for a run-

ning back, number of passing yards or passing completion rate for a quar-

terback, points scored or shooting percentage for a point guard, etc. It is

most important that the statistics used to describe player performance are

those metrics that are most predictive of a team’s winning probability. An

in the case of fantasy sports, it is essential that the statistics being used to

predict the expected points from a player are consistent with the scoring

rules of the fantasy sports contest. Different fantasy sports competitions,

even for the same sport and run by the same organization, may have

different scoring systems.

Derived Data: Output data is data that is derived from different statis-

tics. It can be an average of two different estimates or it can be the results

of a different model or methodology. For example, in the logit regression

below, we fit a model using probability data that is derived from the logis-

tic function using different sampling techniques.

3.3 FORECASTING MODELS

The sections below provide examples of different sports forecasting mod-

els that can be used to predict winning percentage, winning margin, and

points.

3.4 PROBABILITY MODELS

A probability model is a model where the outcome value can take on any

value between zero and one. In most of these cases, we are estimating the

probability that one team will beat another team. But the models can also

incorporate a cumulative score based on the cumulative distribution func-

tion (CDF) of data statistics such as winning spread or points.
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The trick behind incorporating probability models is as follows. First,

represent the outcome variable as a value between zero and one. Second,

incorporate a probability mapping function to ensure the prediction

model will only result in outcome values between zero and one. These

models are further discussed below.

For example, these models may be used to determine the probability

that the home team A will beat the visiting team B in a game. This is

written mathematically as:

P A.Bð Þ5 f A;Bð Þ5 p

In this notation, the expression f A;Bð Þ represents the model (formula)

that will be used to estimate the probability p that team A will be victori-

ous over team B in the event.

To utilize this modeling approach, we need to define three different

items: model formula, input data, and output data.

Model Formula: The probability model formula refers to the equation

that will be used to calculate the expected outcome probability p. Our

work will focus on two different probability models: power function and

exponential function. These are:

• Power function: f xð Þ5 x1

x11 x2

• Logistic function: f xð Þ5 1

11 e2 x12x2ð Þð Þ

Input Data: The input data used in our examples will consist of a derived

team strength metric. This team strength metric is also known as the team

rating. The terms strength and rating will be used interchangeably throughout

the book. Analysts can apply techniques in this chapter to derive an overall

team rating, and also an offensive and defensive team rating score.

Output Data: The output data used in probability models requires the

output value y to be defined on the interval between 0 and 1. We provide

examples below based on a binary win/loss metric, and we also

include examples showing how an analyst can transform the margin or

points scored to values between 0 and 1 using various distribution functions.

Determining the proper output data to use in a probability model is

often a very difficult task. This is because we do not know with certainty

the exact likelihood that team A will beat team B and it is very difficult

to ascertain exact probabilities from a limited number of game
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observations. For example, suppose that the exact probability that team A

will beat team B is 80%. This implies that we should observe game results

between A and B where team A indeed beats team B in 8 out of 10

games. But now, if we only have a single observation of results between

A and B we will observe that either A beat B (the 80% chance) or that B

beat A (the 20% chance).

Our data set of game results does not provide enough information to

determine that the true probability is 80%. Additionally, if the probability

that C beat D is 50% and we have three game observations we will find

that one of the teams, say C, won at least two games and possibly three

while the other team, say D, lost two games and possibility three.

By grouping observations, we will begin to calculate the probability

that C wins over D to be 2/35 67% or 3/35 100%. In both cases, the

results are far from the exact probability. The key point here is that if we

are trying to compute probability levels from game results we need

enough observations between the teams (i.e., a statistically sufficient data

set) to have accurate probability levels. Unfortunately, in most sports we

do not have enough observations across teams and additionally, we do not

have observations across all combinations of teams.

To determine “true” probability levels from head-to-head matchups

we need a much larger number of observations and game results. But

since we typically only have a small sample of games we need to employ

statistical analysis to compute these probabilities.

To resolve this limited data issue, we can solve our models using maxi-

mum likelihood estimation (MLE) techniques based solely on if the team

won or lost a game. That is, the outcome variable will be denoted as 1 if

the team won and 0 if the team lost.

Another important modeling item with respect to probability models is

that we need to evaluate the error term of our estimation model. In many

cases, our conclusions and predictions are based on having an error term

that is normally distributed. If the error term (e.g., model noise) follows a

different distribution, then we need to consider these probabilities in our

predictions. In Chapter 4, Advanced Math and Statistics, we discuss some

of the more important probability distributions for sports models.

Example 3.1
Consider a six team sporting event where each team plays a series of games against the
other teams. The outcome of these games is shown in the digraph in Fig. 3.1, where a
line indicates a game between the two teams and an arrow designates the winner of
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the game. For example, there is a line between team A and team B with the arrow
pointing to team B. This indicates that team A beat team B.

Based on the digraph and set of results, an obvious ranking of these teams is A #1,
B&C (tied for 2nd & 3rd), D&E (tied for 4th & 5th), and F (last).

We can also use the MLE process to estimate the set of parameter values that will
maximize the likelihood of observing all outcomes and thus provide a ranking of teams.
This approach will prove to be more beneficial especially when there is a much larger
number of games and when there is no clear or obvious ranking of teams.

These steps are as follows:

Step 1. Define power function formula:

FðX . YÞ5 X
X 1 Y

Step 2. Set up a likelihood function based on observed outcomes.

L5PðA.BÞ � PðA.CÞ � PðB.DÞ � PðB.EÞ � PðC.DÞ � PðC.EÞ � PðD.FÞ � PðE.FÞ

Step 3. Write the likelihood function in terms of the power function formula:

L5
A

A1 B
� A
A1 C

� B
B1D

� B
B1 E

� C
C1D

� C
C1 E

� D
D1 F

� E
E1 F

Unfortunately, when we set out to solve a multiplicative expression where
each term is less than one the product of all these values falls to zero exception-
ally quickly, thus making it extremely difficult to solve the equation above.
For example, if we multiply 0.5 ten times (i.e., there are ten games),
0.50^102 0.000977, the result is extremely small. This value L also becomes
exponentially smaller as the number of games increases.

A

B

E

C

D

F

Games Results

Figure 3.1 Games Results.
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A solution around this data issue is to transform the above equation into
one using logs and thus turn a difficult-to-solve multiplicative expression into an
easier-to-solve additive expression. Additionally, it is important to note that max-
imizing the log transformation of this function L will yield the same results as if
we maximize the actual function L.

Step 4. Transform the likelihood function into a log-likelihood function:

log L5 ln
A

A1 B

0
@

1
A1 ln

A
A1 C

0
@

1
A1 ln

B
B1D

0
@

1
A1 ln

B
B1 E

0
@

1
A1 ln

C
C1 E

0
@

1
A

1 ln
C

C1 F

0
@

1
A1ln

D
D1 F

0
@

1
A1 ln

E
E1 F

0
@

1
A

Now, our problem has turned into one where we simply need to determine
the parameter values A; B; C;D; E; and F that maximize our log-likelihood func-
tion log L.

This maximization optimization problem requires bounds to be placed on
the maximum and minimum parameter values. Otherwise, the solution will
make the parameter value for the team that only wins approach infinity and the
team that only loses approach zero.

Step 5. Set up the maximization optimization with lower and upper bounds.

log L5 ln
A

A1 B

0
@

1
A1 ln

A
A1 C

0
@

1
A1 ln

B
B1D

0
@

1
A1 ln

B
B1 E

0
@

1
A1 ln

C
C1 E

0
@

1
A

1 ln
C

C1 F

0
@

1
A1ln

D
D1 F

0
@

1
A1 ln

E
E1 F

0
@

1
A

s.t.,

0, A# 5
0, B# 5
0, C# 5
0,D# 5
0, E# 5
0, F# 5

It is important to note that in the above formulation, the parameter value
cannot take on a value of zero because we cannot have a value of zero in the
denominator (in the event both team parameters are zero) and the log of zero
in undefined (in the event that the winning team has a parameter of zero and
appears in the numerator). Thus, the values of our parameters need to be strictly
greater than the lower bound zero but less than or equal to the upper bound 5.

Step 6. Solve for the parameters
The parameters that maximize log L can be determined using Excel’s Solver

function or another statistical software application such as MATLAB.
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Table 3.1A Optimization Formulation

Game Results Initialization Phase Final Solution Phase

Obs
Win
Team

Lose
Team

Win
Parameter

Lose
Parameter

Initial
Fx

Initial
Ln Fx

Win
Parameter

Lose
Parameter

Final
Fx

Final
Ln Fx

1 A B 2.500 2.500 0.500 20.693 5.000 0.373 0.931 2 0.072

2 A C 2.500 2.500 0.500 20.693 5.000 0.373 0.931 2 0.072

3 B D 2.500 2.500 0.500 20.693 0.373 0.013 0.965 2 0.035

4 B E 2.500 2.500 0.500 20.693 0.373 0.013 0.965 2 0.035

5 C D 2.500 2.500 0.500 20.693 0.373 0.013 0.965 2 0.035

6 C E 2.500 2.500 0.500 20.693 0.373 0.013 0.965 2 0.035

7 D F 2.500 2.500 0.500 20.693 0.013 0.001 0.931 2 0.072

8 E F 2.500 2.500 0.500 20.693 0.013 0.001 0.931 2 0.072

Initial Log L5 25.545 Final Log L5 2 0.429



The model setup is shown in Table 3.1A. The table shows both the initial values
used at the start of the optimization routine and the final optimized solution parameters.
The parameter constraints are shown in Table 3.1B.

In Table 3.1A we separate the parameter and function values into the initiali-
zation phase and the final solution phase for illustrative purposes only. In the
initialization phase we set the parameter values to a starting value of 2.5 for all
teams as a starting value and to show how the initial probabilities and objective
function value is determined. Thus the probability p that the winning teams wins
a game is:

p5
2:5

2:51 2:5
5 :50

This is noted in the “Initial Fx” column5 0.50 and the log transformation of this value
is Ln Fx520.693. The goal of the optimization process is to maximize the sum of the
Ln Fx across all games. This sum based on the initial parameter value of 2.5 across all
teams is 25.545.

The final solution section shows the optimized team parameters after the MLE opti-
mization process. Notice now that the final Log L value is 20.429 and increased from
25.545 to 20.429. The final team parameter values and team rankings after performing
the optimization are shown in Table 3.1B. These are A5 5.0, B5 0.373 & C5 0.373,
D5 0.013, & E5 0.013, and F5 0.001. Notice that these parameter values and corre-
sponding team rankings are consistent with the intuitive observed rankings determined
from Fig. 3.1.

A benefit of having optimized team parameter values is that it allows us to make
comparisons and predictions across any two teams even if these teams have not played
each other and even if these teams do not have any common opponents. The optimiza-
tion process is robust enough to evaluate every connect across teams, thus providing
final insight to compare two teams based on head-to-head games, based on perfor-
mance against common opponents, and even based on common opponents of com-
mon opponents.

Table 3.1C provides the probability that team X in the left-hand column will beat
team Y shown on the rows of the table. The probabilities are computed based on the

Table 3.1B Optimization Parameter Values

Parameter Values Final Rankings

Team
Initial

Parameter
Final

Parameter LB UB
Team

Ranking
Parameter

Value

A 2.500 5.000 0.001 5.000 A 5.000

B 2.500 0.373 0.001 5.000 C 0.373

C 2.500 0.373 0.001 5.000 B 0.373

D 2.500 0.013 0.001 5.000 E 0.013

E 2.500 0.013 0.001 5.000 D 0.013

F 2.500 0.001 0.001 5.000 F 0.001
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optimized parameter values and allow us to make a “comparison” across teams that did
play one another (such as team A and team B) and also for teams that did not play one
another (such as team A & team F). These probabilities are computed based on the opti-
mized parameter values as follows:

Prob X . Yð Þ5 VðxÞ
V xð Þ1 VðyÞ

where VðxÞ and VðyÞ represent the optimized parameter values for team X and team Y
respectively. Thus, the probability that team A will beat team D is computed as
follows:

Prob A.Dð Þ5 5:0
5:01 0:013

5 :9975 99:7%

Example 3.2
Now let us consider the same example but with an additional team G. In this scenario,
team G has beaten teams D, E, and F. The digraph showing these games and results is
shown in Fig. 3.2. Notice in the diagraph that all we know about team G is that they
should be ranked higher than teams D, E, and F. But how much higher should they be
ranked? That is, from these results alone, can we determine that team G is as good as
team A and should be ranked tied with team A? Or should they be ranked at the same
level as teams B & C? Or possibly, ranked somewhere between A and B&C or between B
& C and just above D & E?

This is the very issue that many ranking committees face each year when ranking
teams for a top 25 poll or trying to rank teams for inclusions in a postseason tourna-
ment. Very often we hear comments that a team that only plays weaker opponents and
is undefeated should not rank at the top. But is this correct? In this example, there is no
data for us to conclude that team G should be ranked tied for #1 with team A, be
ranked equal with B&C, or in any position that is above D&E. An objective model that

Table 3.1C Probability Estimates

Probability Team X (LHS Rows) will Beat Team Y (Top Columns)

X/Y A B C D E F

A � 93% 93% 99% 99% 99%

B 7% � 50% 97% 97% 99%

C 7% 50% � 97% 97% 99%

D 0% 3% 3% � 50% 93%

E 0% 3% 3% 50% � 93%

F 0% 0% 0% 7% 7% �
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seeks to maximize the probability of game results based only on whether a team has
won or lost a game would have to rank all undefeated teams tied for #1 and all teams
with only losses as tied for last. This is the very issue we have had with many of the
sports ranking models in use for the previous BCS tournament and any top 25 poll that
only allows a team to be ranked if it won or lost the game and cannot consider the
final score in the rankings.

In the past when we inquired about some of these models in use that do not rank
undefeated teams as #1, the operators of these models state that they may be doing
some postoptimization adjustment to correct for these issues. (But this seems to violate
the objective nature of the sports model—at least to us.)

A model should only be used by a committee for postseason selection or for
top 25 rankings if and only if the model is transparent and can be duplicated
and verified, it has sound methodology that is agreed to as the appropriate
methodology to use for the rankings or selection, and the model remains
completely objective and does not perform any postoptimization process to cor-
rect for issues. For example, what would make someone believe a model result
should be corrected if they do not have some subjective bias to begin with
regarding the ranking?

A probability-maximizing model should always seek to maximize the likelihood of
observing all sets of outcomes, and should not make any adjustments. Criticism
regarding this approach is that we may result in teams being ranked higher than they
actually should since we are pushing all undefeated teams to the top. While is this
true, selection committees should rely on additional methodology as well to help
rank these teams.

The result of our power function probability-maximizing optimization results in team
G being ranked tied with team A. These power ratings are #1 A&G (5.0), #3 B&C (0.368),
#5 D&E (0.13), #7 F (0.001).

A

B

E

C

D

F

G

Game Results with a Winning Team Outlier

Figure 3.2 Game Results with a Winning Team Outlier.
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Table 3.2A Optimization Formulation

Game Results Initialization Phase Final Solution Phase

Obs
Win
Team

Lose
Team

Win
Parameter

Lose
Parameter

Initial
Fx

Initial
Ln Fx

Win
Parameter

Lose
Parameter

Final
Fx

Final
Ln Fx

1 A B 2.500 2.500 0.500 20.693 5.000 0.368 0.931 20.071

2 A C 2.500 2.500 0.500 20.693 5.000 0.368 0.931 20.071

3 B D 2.500 2.500 0.500 20.693 0.368 0.013 0.966 20.035

4 B E 2.500 2.500 0.500 20.693 0.368 0.013 0.966 20.035

5 C D 2.500 2.500 0.500 20.693 0.368 0.013 0.966 20.035

6 C E 2.500 2.500 0.500 20.693 0.368 0.013 0.966 20.035

7 D F 2.500 2.500 0.500 20.693 0.013 0.001 0.929 20.074

8 E F 2.500 2.500 0.500 20.693 0.013 0.001 0.929 20.074

9 G D 2.500 2.500 0.500 20.693 5.000 0.013 0.997 20.003

10 G E 2.500 2.500 0.500 20.693 5.000 0.013 0.997 20.003

11 G F 2.500 2.500 0.500 20.693 5.000 0.001 1.000 0.000

Initial Log L5 27.62462 Final Log L5 20.435



Table 3.2A shows the initial and final optimization parameters for this example.
Table 3.2B shows the optimization lower and upper bounds, and the final rankings for
each team.

Example 3.3
Now let us consider the same scenario as in Example 3.1 but with an additional team H
that has lost to teams A, B, and C. The digraph showing these games and results is shown
in Tables 3.3A and 3.3B. Notice in the diagraph that all we know about team G is that they
should be ranked lower than A, B, and C. But how much lower? Are they at the bottom of
the rankings with team F or should they be at the same level as teams E and F? Similar to
the issues in Example 3.2 with a team that has only beaten weaker teams, we now face an
issue where a team has lost to all highly ranked and stronger teams (Fig. 3.3).

Unfortunately, there is not enough data in this scenario for us to determine exactly
where team H should rank in comparison to the other team. Our probability-maximizing
model, hence, finds that team H will be rated at the bottom and on par with team F.

These final rankings from our power function optimization are #1 A (5.0), #2 B&C
(0.368), #4 D&E (0.13), #6 F&H (0.001).

Table 3.3A shows the initial and final optimization parameters for this example.
Table 3.3B shows the optimization lower and upper bounds, and the final rankings for
each team.

Example 3.4
Another example that must be discussed from the perspective of the probability model
is that of circular logic. Many times we find a situation where three teams have played
one other with A beating B, B beating C, and C beating A (see Fig. 3.4). But the rankings
of these teams is A#1, B#2, and C#3 because the ranking procedure being used is subjec-
tive and may be based on history or perception, which should not factor into the pres-
ent rankings.

Table 3.2B Optimization Parameter Values

Parameter Values Final Rankings

Team
Initial

Parameter
Final

Parameter LB UB Team
Team

Ranking
Parameter

Value

A 2.500 5.000 0.001 5.000 A 1 5.000

B 2.500 0.368 0.001 5.000 B 4 0.368

C 2.500 0.368 0.001 5.000 C 3 0.368

D 2.500 0.013 0.001 5.000 D 6 0.013

E 2.500 0.013 0.001 5.000 E 5 0.013

F 2.500 0.001 0.001 5.000 F 7 0.001

G 2.500 5.000 0.001 5.000 G 1 5.000
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Table 3.3A Optimization Formulation

Game Results Initialization Phase Final Solution Phase

Obs
Win
Team

Lose
Team

Win
Parameter

Lose
Parameter

Initial
Fx

Initial
Ln Fx

Win
Parameter

Lose
Parameter

Final
Fx

Final
Ln Fx

1 A B 2.500 2.500 0.500 20.693 5.000 0.383 0.929 20.074

2 A C 2.500 2.500 0.500 20.693 5.000 0.383 0.929 20.074

3 B D 2.500 2.500 0.500 20.693 0.383 0.014 0.966 20.035

4 B E 2.500 2.500 0.500 20.693 0.383 0.014 0.966 20.035

5 C D 2.500 2.500 0.500 20.693 0.383 0.014 0.966 20.035

6 C E 2.500 2.500 0.500 20.693 0.383 0.014 0.966 20.035

7 D F 2.500 2.500 0.500 20.693 0.014 0.001 0.931 20.071

8 E F 2.500 2.500 0.500 20.693 0.014 0.001 0.931 20.071

9 A H 2.500 2.500 0.500 20.693 5.000 0.001 1.000 0.000

10 B H 2.500 2.500 0.500 20.693 0.383 0.001 0.997 20.003

11 C H 2.500 2.500 0.500 20.693 0.383 0.001 0.997 20.003

Initial Log L5 27.625 Final Log L5 20.435



Table 3.3B Optimization Parameter Values

Parameter Values Final Rankings

Team
Initial

Parameter
Final

Parameter LB UB Team
Team

Ranking
Parameter

Value

A 2.500 5.000 0.001 5.000 A 1 5.000

B 2.500 0.383 0.001 5.000 B 4 0.383

C 2.500 0.383 0.001 5.000 C 3 0.383

D 2.500 0.014 0.001 5.000 D 6 0.014

E 2.500 0.014 0.001 5.000 E 5 0.014

F 2.500 0.001 0.001 5.000 F 7 0.001

G 2.500 5.000 0.001 5.000 G 1 5.000

H 2.500 0.001 0.001 5.000 H 8 0.001
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D

F

H

Game Results with a Losing Team Outlier

Figure 3.3 Game Results with a Losing Team Outlier.

A

B C

Game Results with Circular Outlier

Figure 3.4 Game Results with Circular Outlier.
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Table 3.4A Optimization Formulation

Game Results Initialization Phase Final Solution Phase

Obs
Win
Team

Lose
Team

Win
Parameter

Lose
Parameter

Initial
(Fx)

Initial
Ln (Fx)

Win
Parameter

Lose
Parameter

Final
(Fx)

Final
Ln (Fx)

1 A B 2.500 2.500 0.500 20.693 2.500 2.500 0.500 20.693

2 B C 2.500 2.500 0.500 20.693 2.500 2.500 0.500 20.693

3 C A 2.500 2.500 0.500 20.693 2.500 2.500 0.500 20.693

Initial Log L5 22.079 Final Log L5 22.079



For example, if in a basketball contest Duke beats Michigan, Michigan beats Stony
Brook, and Stony Brook beats Duke, a nonprobability ranking of the team may rank Duke
#1, Michigan #2, followed by Stony Brook #3 based on perception or belief of the
strength of each team. But there is not any evidence in the empirical win/loss data that
would suggest that there is a difference between the strength of these teams. Thus, all
teams should be ranked equal to one another.

It is safe to state that our probability-rating optimization approach results in all three
teams being rated exactly the same in this situation. These ratings are A5 5.0, B5 5.0,
and C5 5.0.

Table 3.4A shows the initial and final optimization parameters for this example.
Table 3.4B shows the optimization lower and upper bounds, and the final rankings for
each team.

Example 3.5 Logistic Model Optimization
We next demonstrate the use of a logistic probability optimization model to rank the
ten (10) teams from the example used in Chapter 2, Regression Models. This example
has 10 teams with each team playing every other team both home and away. Thus,
each team plays 18 games (9 home games and 9 away games) and there are 90 games
in total. These results are shown in Table 3.5A.

The only difference between the power function and exponential function tech-
nique is the mapping of parameter value to the probability space (values between 0
and 1). In most cases, these resulting rankings between models will be highly corre-
lated but the probability levels corresponding to winning probability level will at
times be different due to the function analyzed. Thus, usage of both models pro-
vides a secondary level of insight and hence further confidence or lack of confi-
dence surrounding our estimates. For example, if our two approaches estimate the
probability that X beat Y to be 92% and 95% we are certain that X has a very high
likelihood of winning the game (i.e., .90%). But if one approach states a 55% likeli-
hood of winning and the other approach a 45% then we are not as confident that X
will beat Y.

Table 3.4B Optimization Parameter Values

Parameter Values Final Rankings

Team
Initial

Parameter
Final

Parameter LB UB Team
Team

Ranking
Parameter

Value

A 2.500 2.500 0.001 5.000 A 2.500 1.000

B 2.500 2.500 0.001 5.000 B 2.500 1.000

C 2.500 2.500 0.001 5.000 C 2.500 1.000
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Table 3.5A Game Results

Game
Number

Home
Team

Away
Team

Winning
Team

Losing
Team

Home
Spread

Actual
Probability

Est.
Logistic

Probability
Spread
Z-Score

Spread
CDF

1 1 2 1 2 6 0.947 0.996 0.449 0.673

2 1 3 1 3 1 0.340 0.442 20.349 0.363

3 1 4 1 4 7 0.860 0.988 0.608 0.728

4 1 5 5 1 2 1 0.512 0.659 20.669 0.252

5 1 6 1 6 1 0.639 0.754 20.349 0.363

6 1 7 7 1 2 3 0.267 0.338 20.988 0.162

7 1 8 1 8 1 0.120 0.107 20.349 0.363

8 1 9 9 1 2 1 0.510 0.659 20.669 0.252

9 1 10 10 1 2 7 0.068 0.061 21.626 0.052

10 2 1 1 2 2 1 0.100 0.098 20.669 0.252

11 2 3 3 2 2 6 0.028 0.017 21.467 0.071

12 2 4 2 4 3 0.463 0.643 20.030 0.488

13 2 5 5 2 2 1 0.049 0.041 20.669 0.252

14 2 6 6 2 2 3 0.080 0.063 20.988 0.162

15 2 7 7 2 2 1 0.019 0.011 20.669 0.252

16 2 8 8 2 2 6 0.009 0.003 21.467 0.071

17 2 9 9 2 2 3 0.052 0.041 20.988 0.162

18 2 10 10 2 2 4 0.005 0.001 21.147 0.126

19 3 1 3 1 10 0.833 0.968 1.087 0.862

20 3 2 3 2 7 0.921 0.999 0.608 0.728

21 3 4 3 4 10 0.925 0.998 1.087 0.862

22 3 5 3 5 7 0.757 0.923 0.608 0.728

23 3 6 3 6 7 0.835 0.950 0.608 0.728

24 3 7 3 7 6 0.565 0.760 0.449 0.673

25 3 8 8 3 2 1 0.351 0.427 20.669 0.252

26 3 9 3 9 9 0.738 0.923 0.927 0.823

27 3 10 10 3 2 1 0.221 0.287 20.669 0.252

28 4 1 1 4 2 2 0.212 0.228 20.828 0.204

29 4 2 4 2 7 0.800 0.930 0.608 0.728

30 4 3 3 4 2 2 0.063 0.046 20.828 0.204

31 4 5 5 4 2 2 0.113 0.104 20.828 0.204

32 4 6 4 6 1 0.175 0.156 20.349 0.363

33 4 7 7 4 2 7 0.045 0.030 21.626 0.052

34 4 8 8 4 2 13 0.021 0.007 22.584 0.005

35 4 9 9 4 2 4 0.115 0.104 21.147 0.126

36 4 10 10 4 2 11 0.011 0.004 22.265 0.012

37 5 1 5 1 9 0.750 0.926 0.927 0.823

38 5 2 5 2 9 0.967 0.998 0.927 0.823

39 5 3 3 5 2 4 0.544 0.668 21.147 0.126

40 5 4 5 4 10 0.937 0.995 1.087 0.862

41 5 6 5 6 6 0.775 0.886 0.449 0.673

42 5 7 5 7 3 0.429 0.564 20.030 0.488

43 5 8 8 5 2 4 0.215 0.234 21.147 0.126

44 5 9 9 5 2 6 0.664 0.831 21.467 0.071

45 5 10 10 5 2 5 0.132 0.141 21.307 0.096

(Continued)
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Table 3.5A (Continued)

Game
Number

Home
Team

Away
Team

Winning
Team

Losing
Team

Home
Spread

Actual
Probability

Est.
Logistic

Probability
Spread
Z-Score

Spread
CDF

46 6 1 6 1 5 0.647 0.887 0.289 0.614

47 6 2 6 2 5 0.871 0.997 0.289 0.614

48 6 3 6 3 5 0.389 0.559 0.289 0.614

49 6 4 6 4 10 0.836 0.992 1.087 0.862

50 6 5 6 5 4 0.519 0.756 0.129 0.552

51 6 7 6 7 1 0.323 0.449 20.349 0.363

52 6 8 8 6 2 3 0.142 0.161 20.988 0.162

53 6 9 6 9 9 0.586 0.756 0.927 0.823

54 6 10 10 6 2 3 0.084 0.094 20.988 0.162

55 7 1 7 1 6 0.902 0.979 0.449 0.673

56 7 2 7 2 9 0.965 1.000 0.927 0.823

57 7 3 7 3 2 0.739 0.884 20.190 0.425

58 7 4 7 4 12 0.955 0.999 1.406 0.920

59 7 5 7 5 11 0.830 0.949 1.247 0.894

60 7 6 7 6 10 0.822 0.967 1.087 0.862

61 7 8 7 8 1 0.444 0.536 20.349 0.363

62 7 9 7 9 9 0.783 0.949 0.927 0.823

63 7 10 10 7 2 1 0.304 0.384 20.669 0.252

64 8 1 8 1 10 0.868 0.995 1.087 0.862

65 8 2 8 2 10 0.916 1.000 1.087 0.862

66 8 3 8 3 4 0.822 0.970 0.129 0.552

67 8 4 8 4 15 0.916 1.000 1.885 0.970

68 8 5 8 5 17 0.841 0.987 2.204 0.986

69 8 6 8 6 10 0.914 0.992 1.087 0.862

70 8 7 8 7 14 0.801 0.954 1.726 0.958

71 8 9 8 9 10 0.836 0.987 1.087 0.862

72 8 10 8 10 6 0.522 0.725 0.449 0.673

73 9 1 9 1 6 0.785 0.926 0.449 0.673

74 9 2 9 2 5 0.900 0.998 0.289 0.614

75 9 3 3 9 2 2 0.538 0.668 20.828 0.204

76 9 4 9 4 10 0.894 0.995 1.087 0.862

77 9 5 5 9 2 4 0.624 0.831 21.147 0.126

78 9 6 9 6 1 0.773 0.886 20.349 0.363

79 9 7 7 9 2 1 0.423 0.564 20.669 0.252

80 9 8 8 9 2 5 0.205 0.234 21.307 0.096

81 9 10 9 10 1 0.132 0.141 20.349 0.363

82 10 1 10 1 10 0.954 0.997 1.087 0.862

83 10 2 10 2 13 0.991 1.000 1.566 0.941

84 10 3 10 3 8 0.873 0.984 0.768 0.779

85 10 4 10 4 11 0.905 1.000 1.247 0.894

86 10 5 10 5 11 0.892 0.993 1.247 0.894

87 10 6 10 6 4 0.955 0.996 0.129 0.552

88 10 7 10 7 2 0.815 0.975 20.190 0.425

89 10 8 10 8 3 0.795 0.901 20.030 0.488

90 10 9 10 9 5 0.943 0.993 0.289 0.614
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The logistic function described above that calculates the probability that team X will
beat team Y is defined as:

P X. Yð Þ5 1
11 e2ðx2yÞ

We expand on this notation to include a home-field advantage term and the proba-
bility that the home team will beat the away team is calculated as:

P Home. Awayð Þ5 1
11 e2ðB01B Home2B AwayÞ

This function ensures that the result will be between 0 and 1 as is required for a
probability model, and also incorporates a home-field advantage parameter value to pro-
vide a potential benefit for the home team.

Since we can only observe if the home team or away team won the game, the for-
mulation for each game result is:

f 5

1
11 e2ðB01B Home2B AwayÞ if Home Team Wins Game

12
1

11 e2ðB01B Home2B AwayÞ if Away Team Wins Game

8>>><
>>>:

The formulation of the likelihood function L for the first five games in this season is:

L5
1

11 e2ðb01b12b2Þ �
1

11 e2ðb01b12b3Þ �
1

11 e2ðb01b12b4Þ � 12
1

11 e2ðb01b12b5Þ

0
@

1
A

� 1
11 e2ðb01b12b6Þ �?

This model is solved via the same technique as above, that is, by taking the log
transformation of these values and performing MLE on these results. The log-likelihood
function for the first five games in the season is:

Log L5 ln
1

11 e2ðb01b12b2Þ

0
@

1
A1 ln

1
11 e2ðb01b12b3Þ

0
@

1
A1 ln

1
11 e2ðb01b12b4Þ

0
@

1
A

1ln 12
1

11 e2ðb01b12b5Þ

0
@

1
A

0
@

1
A1 ln

1
11 e2ðb01b12b6Þ

0
@

1
A1?

Notice that the home team won four of the first five games, losing only game 4.
Therefore, only the fourth expression in the above log-likelihood example adjusts for the
away team winning the game.

This model can be solved via Excel’s Solver function or via a statistical package such
as MATLAB and its optimization toolbox. But as the number of teams and number of
games becomes larger and larger there is more of a need for a mathematical software
such as MATLAB for the optimization due to the time to solve and mathematical preci-
sion needed.
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We initialed the parameter value for this scenario at 5.0 with a lower bound of 0.001
and upper bound of 10.0 for each parameter. Notice that as we increase the number of
teams and number of games we may need to increase the potential parameter set (with
a larger upper bound) to achieve more precision. Proper selection of the upper bound
in these models will come with experience as well as a thorough understanding of the
mathematical techniques.

The rankings of teams and their corresponding rating values are in Table 3.5B.
Similar to the methods above, we can use our parameter values to compute the

probability of winning between any two teams for both home and away games. These
probability estimates across all 10 teams are described in the following sections
(Table 3.5C).

Table 3.5B Logistic Probability Results and Team Ranking

Parameter Values Team Ranking

Team Parameter LB UB Team Ranking

1 4.244 0.001 10.000 1 8

2 0.432 0.001 10.000 2 10

3 6.069 0.001 10.000 3 4

4 1.435 0.001 10.000 4 9

5 5.176 0.001 10.000 5 6

6 4.714 0.001 10.000 6 7

7 6.507 0.001 10.000 7 3

8 7.952 0.001 10.000 8 2

9 5.176 0.001 10.000 9 5

10 8.571 0.001 10.000 10 1

HFA 1.590 0.001 10.000

Table 3.5C Probability that the Home Team will Beat the Away Team

Home/
Away 1 2 3 4 5 6 7 8 9 10

1 � 99% 44% 99% 66% 75% 34% 11% 66% 6%

2 10% � 2% 64% 4% 6% 1% 0% 4% 0%

3 97% 99% � 99% 92% 95% 76% 43% 92% 29%

4 23% 93% 5% � 10% 16% 3% 1% 10% 0%

5 93% 99% 67% 99% � 89% 56% 23% 83% 14%

6 89% 99% 56% 99% 76% � 45% 16% 76% 9%

7 98% 99% 88% 99% 95% 97% � 54% 95% 38%

8 99% 99% 97% 99% 99% 99% 95% � 99% 73%

9 93% 99% 67% 99% 83% 89% 56% 23% � 14%

10 99% 99% 98% 99% 99% 99% 97% 90% 99% �
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3.5 LOGIT MODEL REGRESSION MODELS

A logit regression is a linearization of the logistic function described

above. The logit model is an important and useful mathematical tool but

does require the outcome variables to be between 0 and 1. In the exam-

ples above, our outcome variables were binary and could only take on the

value of 0 or 1. For a logit regression we need these values to be between

0 and 1. When this is the case, the solution to the team ratings is straight-

forward and direct, and can be solved via ordinary least squares regression

techniques.

For example, suppose that the probability of the home team beating

the away team is known. In this case, the logit model will allow us to

determine each team’s strength “rating” and then apply these ratings

across any pair of teams to predict the winner.

The logit regression probability model is solved via the following

steps:

1. Specify the model functional form using the logistic equation:

P x1. x2ð Þ5 1

11 e2ðx12x2Þ 5 p

2. Calculate the wins-ratio by dividing the probably of a win by the

probability of a loss. This is as follows:

Wins Ratio5
P x1. x2ð Þ

12P x1. x2ð Þ 5
1

11 e2ðx12x2Þ

12
1

11 e2ðx12x2Þ

5
p

12 p

3. Simplify the expression:

eðx12x2Þ5
p

12 p

4. Reduce using logs:

ln eðx12x2Þ� �
5 ln

p

12 p

� �

5. Which yields:

x12 x25 ln
p

12 p

� �
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6. This transformation now allows us to rewrite our problem in terms

of a linear regression model in the form:

y5Ab

where y is the log of the Wins-Ratio vector, A is the games

matrix, and b is the vector of parameter values, which needs to be

determined (i.e., the decision variable). The best way to illustrate

the solution of this model is via example.

Example 3.6
We next demonstrate the solution of the logit regression model using games results
data shown in Table 3.5A. This table also has the actual probability of the home team
winning, which will serve as our y-variable. It is unfortunate, however, that in most cases
we do not have the actual probability that one team will win the game, but the proba-
bility can be ascertained using sampling techniques that will be discussed in the next
chapter and in an example below using the CDF of home team winning spread.

We compute the y-vector (LHS) and the A games matrix (RHS) using the data in
Table 3.5A,. In general, if there are n-games and m-teams the y-vector will have dimen-
sion (n1 1)3 1, and the A matrix will have dimension (n1 1)3 (m1 1). So in our exam-
ple with 10 teams and 90 total games, the y-vector will be 913 1 (i.e., 91 rows3 1
column) and the A matrix will be 913 11 (91 rows3 11 columns).

The A matrix will have a 11 in the column corresponding to the home team column
and a 21 in the column corresponding to the away team column. The first column will
be 11 to denote the constant term, which in this case represents the home-field advan-
tage. All other entries will be zero.

The first five rows of the A matrix and the last row using data in Table 3.5A are
shown in Table 3.6A.

Notice that the first five games consist of the home team 31 playing teams 32,
33, 34, 35, and 36. Therefore, the first column will have 1s to denote the constant
term and home-field advantage, and the second column will also have 1s to denote
home team 31 playing in each game. In the first row, we have 21 entered in the cell
corresponding to the 32 team and the negative sign indicates 32 is the away team. In
the second row we have 21 entered in the cell corresponding to the 33 team, again,
the negative sign represents that the team is playing away (and so on).

Why is the last row of the input matrix all 1s? Readers familiar with matrix algebra
will realize that the A matrix through construction will have a rank less than the number
of columns, therefore making it very difficult to determine accurate parameter estimates.

In mathematical terminology, we say that the matrix has reduced rank. For example, if
the matrix A does not have the last row of ones, it is a n3 (m1 1) matrix and its rank is:

rank Að Þ5m,m1 1

Therefore, this results in all sorts of mathematical issues, which will most often result in
inaccurate predictions and inaccurate rankings. This is one of the primary reasons why many
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Table 3.6A Sample Logit Probability Matrix

Sample A Matrix5 LHS Vector5 Y

Home Away 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 Probability Ratio
Log

(Ratio)

31 32 1 1 21 0 0 0 0 0 0 0 0 .947 17.93 2.89

31 33 1 1 0 21 0 0 0 0 0 0 0 .340 0.51 20.66

31 34 1 1 0 0 21 0 0 0 0 0 0 .860 6.13 1.81

31 35 1 1 0 0 0 21 0 0 0 0 0 .512 1.05 0.05

31 36 1 1 0 0 0 0 21 0 0 0 0 .639 1.77 0.57

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Budget 1 1 1 1 1 1 1 1 1 1 1 25



of the models in use fail at some point and provide very inaccurate out-of-sample predictions.
Incorrect mathematics and improper modeling techniques will lead to erroneous conclu-
sions. (But luckily for our readers, we have solved this important issue. You are welcome☺).

If you are unfamiliar with matrix algebra or computing the rank of a matrix, please
do not be discouraged at this point. The important issue is how to solve for the reduced
rank problem. And the solution for solving for a reduced rank matrix is to introduce a
budget constraint. In this case, the budget constraint represents the sum of all parameter
values. We can simply state that the sum of all parameter values needs to equal 25 as an
example. The exact value for the budget constraint will vary by number of teams and
number of games. But analysts can determine the best-fit model based on changing the
budget constraint value.

The y-vector (LHS) for this example is also shown in Table 3.6A. Notice that the
values of y are computed directly from the probability that the home team will win
the game from Table 3.5A. Finally, notice that the very last value in the y-column is 25,
the specified value of the budget constraint.

The parameter values consisting of each team’s rating can now be determined from
the linear regression model. This model represented in matrix form is:

y5 Ab

The solution and corresponding statistics can be determined directly from techni-
ques presented in Chapter 2, Regression Models, or from a software pack such as
MATLAB.

Our solution for these parameter ratings is in Table 3.6B.
An important feature here is that once we have ratings for all teams we are able to

compute the probability of a team winning across all pairs of teams. This will allow us to
compute the probability of winning across two teams that did play each other and
where we do not have a probability value. The data used in this example does provide a
probability of winning across all pairs of teams, but we are usually not provided with
such a luxury in practice.

Table 3.6B Logit Probability Model Results

Team Rating Rank

1 2.019 8

2 2 0.163 10

3 3.042 4

4 0.575 9

5 2.664 5

6 2.057 7

7 3.436 3

8 3.969 2

9 2.531 6

10 4.647 1

HFA 0.222
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How close is the estimated probability to the actual probability? To answer this ques-
tion, we calculate the expected probability that the home team will win the game using
the team ratings above and our regression equation. This is:

y5 b0 1 bH 2 bA

where b0 is the home-field advantage parameter, bh is the home team rating, and bA is
the away team rating. Recall that this regression equation is actually estimating the log
of the probability Wins-Ratio, that is:

y5 ln
p

12 p

� �

Therefore, after some algebra and solving for probability p we have:

p5
ey

11 ey

Alternatively, the probability can be determined directly from the logistic equation
and using the regression rating parameters. This is as follows:

p5
1

11 e2 b01bH2bAð Þ

Readers can verify that these two equations yield the same result. In fact, it is a good
check to ensure there are no errors in any of the calculations.

Example 3.7
To evaluate how well the estimated probability fit the actual probability from the LHS of
the equation we ran a regression analysis on these terms. Please note that this is the
same type of analysis where we would compare the results of the actual y variable with
the estimated variable ŷ . A graphical illustration of this relationship is shown in Fig. 3.5.

y = 1.0094x + 0.0207
R² = 0.974
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Figure 3.5 Probability Estimates.
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This regression is as follows:

Actual ProbabilityðLHSÞ5β0 1 β1�Estimated Probability1 e

This regression had an extremely high goodness of fit with R2 5 0:974.
The results are in Table 3.7 and a graph of the actual probabilities as a function of

estimated probabilities is in Fig. 3.5.

Example 3.8
We can also use the estimated home team winning probability to estimate the home
team’s expected winning margin. This is determined via running a regression of actual
spread on the estimated probability as follows:

Spread5 β0 1 β1�Estimated Probability1 e

The R2 goodness of fit of this example is 66% with significant t-Stat. Additionally, the
regression has a low error term SeY5 3:76. Thus, these results on their own indicate a
predictive model.

A scatter plot of the actual spreads as a function of home winning probability level
is shown in Fig. 3.6 and the regression equation results are shown in Table 3.8. The
regression results comparing estimated probability to winning spread also have a high
fit with R25 0.693. The regression error term is 3.5. This indicates our estimate of the win-
ning spread will be within 1 /2 3.5 points.

Notice that these actual spreads as a function of probability are what we expect, that is,
the average spread is positive when probability is greater than 50% (indicating the home team
is expected to win), and the average spread is below zero when the probability is less than
50% (indicating the home team is expected to lose). But this scatter of the data around the
best-fit line begins to show that a linear relationship between spreads and win probability may
not be the best estimator of spread. Therefore, analysts can improve the estimation of the
spread by using different functions such as an s-curve instead of a straight line. Additionally,
this may be an indication that the data is not normally distributed. Recall from the introduction
to this chapter that these analyses do require the data to be normally distributed.

Table 3.7 Probability Regression Results

Est. Probability Const

Beta 1.009 0.021

SE 0.018 0.011

t-Stat 57.449 1.890

SeY 0.0546

R2 0.974

F 3300.409
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It is important to note here that we may be realizing these results because:

1. The data is not normally distributed.
2. We need a different mapping from win probability to spreads to determine the

best-fit equation, such as an s-curve.
3. In all cases we can incorporate an error correction term to adjust the data.
4. The data sample is too small and we may need either a larger number of games

or a better cross-sectional number of games (i.e., more teams playing one another
than just playing teams in their league or conference).

Example 3.9
Our next example demonstrates a technique that can be used to rate and rank teams
using the logit probability model and incorporating game scores. This will also help
resolve the issues that may arise with a team only winning against weaker opponents
and a team only losing but against the strongest opponents. The technique provides an
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Figure 3.6 Spread Estimates.

Table 3.8 Spread Probability Regression Results

Est. Probability Const

Beta 15.851 25.237

SE 1.124 0.702

t-Stat 14.101 27.464

SeY 3.490

R2 0.693

F 198.852
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objective and unbiased approach to rank these teams based on the scores of the games,
namely, the home team score minus the away team score. We will refer to this difference
as the home team spread or home team margin, and in many cases, just as the spread
or margin. Here, a positive value indicates that the home team won the game (i.e., the
away team lost the game) and a negative value indicates that the home team lost the
game (i.e., the away team won the game).

This example will also use the data provided in Table 3.5A. It is important to note
that in this formulation, the construction of the A matrix is exactly the same. But the con-
struction of the y (LHS) vector is based on the home team winning margin, denoted sim-
ply as “margin” or “spread.”

The calculation of the y-value in this example is as follows:

Step 1. Compute the Spread as:

Spread5Home Team Score2 Away Team Score

Step 2. Compute the z-score of the Spread “z” as:

z5
Spread2 avgðSpreadÞ

stdev Spreadð Þ
Notice that in this calculation we are computing a normalized spread since

we are subtracting out the mean and dividing by its standard deviation. This
z-score provides the number of standard deviations the actual spread was from
its mean. Here, any value above zero indicates the home team wins and any
value below zero indicates the away team wins.

Step 3. Determine the cumulative probability of z:

F zð Þ5NormsDistðzÞ
We now have a value F zð Þ that only has values between 0 and 1 thus mak-

ing a very good candidate for the logit regression. (Please note that we are
using the normal distribution here to work through the example but analysts
will need to determine the proper distribution of spreads to use in this calcula-
tion, e.g., normal, chi square, log-normal, etc.).

Step 4. Calculate Y as follows:

Y5 log
F xð Þ

12 F xð Þ

� �

Notice that this transformation follows the exact same procedure as above using
probabilities with the Wins-Ratio. An important point here is that we can make these
transformations based on the z-score calculated from many different data sets such as
spreads, home team points scored, away team points scored, and total points scored
because the value of FðxÞ will always be between 0 and 1. This approach will also be
used in later chapters where we predict the number of points that a player is likely to
achieve in a fantasy sports competition.

The sample y-vector (LHS) for this example is shown below for the first five games
in Table 3.9A. We include the very last data point of 25 to represent the budget con-
straint value.

Readers will notice that the sample A matrix is the same matrix used in the logit
probability model in Example 3.6. In the logit regressions this will always be the case.
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Table 3.9A Sample Logit Spread Matrix

Sample A Matrix5 LHS Vector5 Y

Home Away 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 Probability Ratio
Log

(Ratio)

31 32 1 1 21 0 0 0 0 0 0 0 0 .673 2.06 0.72

31 33 1 1 0 21 0 0 0 0 0 0 0 .363 0.57 20.56

31 34 1 1 0 0 21 0 0 0 0 0 0 .728 2.68 0.99

31 35 1 1 0 0 0 21 0 0 0 0 0 .252 0.34 21.09

31 36 1 1 0 0 0 0 21 0 0 0 0 .363 0.57 20.56

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Budget 1 1 1 1 1 1 1 1 1 1 1 25



The only change that we can expect is that the LHS vector will have different values
based on the data sets we are evaluating.

Additionally, it is important to point out here that the value of 25 in the budget con-
straint can be determined via statistical analysis. This value will vary based on the number
of teams and games, as well as the parity across teams. Readers can experiment with differ-
ent budget values to determine the value that works best with their specific sports model.

Again, the parameter values (e.g., each team’s rating) can now be determined from
the linear regression model. This model represented in matrix form is:

y5 Ab

The solution and corresponding statistics can be determined directly from techni-
ques presented in Chapter 2, Regression Models, or from a software pack such as
MATLAB.

Our solution for these parameter ratings is shown in Table 3.9B.
We can now use this data to estimate the spread but our steps are in reverse order

from 3.6 since we first estimate the spread, then winning probability.
The spread is computed as follows:

Step 1. Compute F zð Þ

F zð Þ5 1
11 e2 b01bH2bAð Þ

Step 2. Convert F zð Þ to spread using the inverse normal function and the average
spread and standard deviation of the spread. These calculations are shown in
Chapter 4, Advanced Math and Statistics.

Est: Spread5 F21 z; avg Spreadð Þ; stdevðSpreadÞð Þ
For example, in the first game, we have home team #1 playing away team #2. Then

we compute FðzÞ using results in Table 3.9B as follows:

F zð Þ5 1
11 e2 b01bH2bAð Þ 5

1
11 e220:0111:84221:252ð Þ 5 0:6412

Table 3.9B Logit Spread Model Results

Team Rating Rank

1 1.842 8

2 1.252 9

3 3.144 3

4 0.773 10

5 2.133 7

6 2.444 5

7 3.103 4

8 4.256 1

9 2.281 6

10 3.782 2

HFA 20.010
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Then the estimated spread is:

Est: Spread5 F21 0:6412; 3:19; 6:27ð Þ5 5:45

The winning probability can now be computed from the estimated spread as fol-
lows:

Step 1. Run regression of actual spread on estimated spread

Actual Spread5 b0 1 b1�Est: Spread1 e

Step 2. Compute probability that the actual spread will be greater than zero using the
regression results and regression error. That is:

Prob Home. Awayð Þ5 12NormCDFð0; Est Spread; SeYÞ
The results of our regression are shown in Table 3.9C. This regression has a high fit

with R25 0.78 and a regression error of 2.949.
The probability that home team #1 will beat away team #2 is then calculated using

the normal CDF (similar to its use in chapter: Regression Models). This is as follows:

Prob Team 1. Team 2ð Þ5 12NormCdf 0; 5:45; 2:949ð Þ5 :9677

3.6 CONCLUSIONS

This chapter provided readers with an overview of various probability

models that can be used to predict the winner of a game or match, rank

teams, and estimate the winning margin, and compute the probability

that a team will win.

These probability models consist of deriving “team rating” metrics

that are subsequently used as the basis for output predictions. The

techniques discussed include logistic and power function optimization

models, logit regression models using win/loss observations, and

Table 3.9C Logit Spread Probability Regression

Actual
Spread Const

Beta 0.980 0.097

SE 0.055 0.356

t-Stat 17.717 0.272

SeY 2.949

R2 0.781

F 313.875

Est. spread5 5.45

SeY5 2.949

Probability5 0.967705
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cumulative spread distribution functions (CDFs). These models will

serve as the foundation behind our sports prediction models discussed

in later chapters.
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CHAPTER 4

Advanced Math and Statistics

4.1 INTRODUCTION

In this chapter we provide an overview of probability and statistics and

their use in sports modeling applications. The chapter begins with an

overview of the mathematics required for probability and statistics model-

ing and a review of essential probability distribution functions required

for model construction and parameter estimation. The chapter concludes

with an introduction to different sampling techniques that can be used to

test the accuracy of sports prediction models and to correct for data limi-

tation problems. These data limitation issues are often present in sports

modeling problems due to limited data observations and/or not having

games across all pairs of teams.

The sampling techniques include with and without replacement,

Monte Carlo techniques, bootstrapping, and jackknife techniques.

These techniques are useful for sports such as soccer, basketball, foot-

ball, and hockey, as well as baseball when we are evaluating the best

mix of players to use and best lineup based on the opposing team’s

starting pitcher.

Finally, these techniques serve as the building blocks for the advanced

applications and sports models that are discussed in Chapter 12, Fantasy

Sports Models and Chapter 13, Advanced Modeling Techniques. A sum-

mary of these important and essential techniques include:

• Probability and Statistics

• Probability Distribution Function (PDF) and Cumulative

Distribution Function (CDF)

• Sampling Techniques

• With Replacement

• Without Replacement

• Monte Carlo Distribution

• Bootstrapping

• Jackknife Sampling
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4.2 PROBABILITY AND STATISTICS

A random variable is defined as a variable that can take on different values.

These values are determined from its underlying probability distribution,

and the actual distribution is characterized by a mean and standard devia-

tion term (such as a normal distribution) also a skewness and a kurtosis

measure. The value of the random variable is also often subject to random

variations due to noise or chance.

A random variable can represent many different items such as

expected daily temperature at a location in the middle of July, the

expected attendance at a sporting event, a sports team’s strength rating, as

well as the probability that a team will win a game or score a specified

number of points.

A random variable can also be the parameter of a model used to pre-

dict the outcome of the sports game. The goal of the analyst in this case

is to compute an accurate estimate of this random variable parameter.

Random variables can be either discrete or continuous values. A dis-

crete random variable can take on only a specific finite value or a

countable list of values. For example, a discrete random variable in sports

is the number of points that a team scores or the number difference

between the home team points scored and away team points scored. A

continuous random variable can take on any numerical value in an inter-

val (and theoretically, have an infinite number of decimal places). For

example, a continuous random variable in sports could be the team’s

strength rating or a performance metric such as batting average (which

can both have an infinite number of decimals).

Probability Distributions
Mathematicians utilize probability distribution functions in many different

ways. For example, probability distribution functions can be used to

“quantify” and “describe” random variables, they can be used to deter-

mine statistical significance of estimated parameter values, they can be

used to predict the likelihood of a specified outcome, and also to calculate

the likelihood that an outcome falls within a specified interval (i.e., confi-

dence intervals). As mentioned, these probability distribution functions

are described by their mean, variance, skewness, and kurtosis terms.

A probability mass function (pmf ) is a function used to describe the

probability associated with the discrete variable. A cumulative mass function
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(cmf ) is a function used to determine the probability that the observation

will be less than or equal to some specified value.

In general terms, if x is a discrete random variable and x� is a specified
value, then the pmf and cmf functions are defined as follows:

Probability Mass Function (pmf ):

f xð Þ5Prob x5 x�ð Þ
Cumulative Mass Function (cmf ):

F xð Þ5 Prob x# x�ð Þ
Probability distribution functions for continuous random variables

are similar to those for discrete random variables with one exception.

Since the continuous random variable can take on any value in an interval

the probability that the random variable will be equal to a specified value

is thus zero. Therefore, the probability distribution function (pdf ) for a

continuous random variable defines the probability that the variable will

be within a specified interval (say between a and b) and the cumulative

distribution function for a continuous random variable is the probability

that the variable will be less than or equal to a specified value x�.
A probability distribution function (pdf ) is used to describe the proba-

bility that a continuous random variable and will fall within a specified

range. In theory, the probability that a continuous value can be a speci-

fied value is zero because there are an infinite number of values for the

continuous random value. The cumulative distribution function (cdf ) is a

function used to determine the probability that the random value will

be less than or equal to some specified value. In general terms, these

functions are:

Probability Distribution Function (pdf ):

Prob a#X # bð Þ5
ðb
a

f xð Þdx

Cumulative Distribution Function (cdf ):

F xð Þ5Prob X # xð Þ5
ðx
2N

f xð Þdx

Going forward, we will use the terminology “pdf” to refer to proba-

bility distribution function and probability mass function, and we will use

the terminology “cdf” to refer to cumulative distribution function and

cumulative mass function.
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Example 4.1 Discrete Probability Distribution Function
Consider a scenario where a person rolls two dice (die) and adds up the numbers rolled.
Since the numbers on dice range from 1 to 6, the set of possible outcomes is from 2 to 12. A
pdf can be used to show the probability of realizing any value from 2 to 12 and the cdf can
be used to show the probability that the sum will be less than or equal to a specified value.

Table 4.1 shows the set of possible outcomes along with the number of ways of
achieving the outcome value, the probability of achieving each outcome value (pdf ),
and the probability that the outcome value will be less than or equal to the outcome
value (cdf ). For example, there were 6 different ways to roll a 7 from two dice. These

Table 4.1 Discrete Random Variable: Rolling Die

Value Count Pdf Cdf

2 1 3% 3%

3 2 6% 8%

4 3 8% 17%

5 4 11% 28%

6 5 14% 42%

7 6 17% 58%

8 5 14% 72%

9 4 11% 83%

10 3 8% 92%

11 2 6% 97%

12 1 3% 100%

Total 36 100%
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PDF: Rolling Die

Figure 4.1 PDF: Rolling Die.
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combinations are (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). Since there are 36 different combi-
nations of outcomes from the two die, the probability of rolling a seven is 6/365 1/6,
and thus, the pdf of 7 is 16.7%. Additionally, there are 21 ways that we can roll
our die and have a value that is less than or equal to 7. Thus, the cdf is 21/365 58%.
The pdf and cdf graphs for this example are shown in Figs. 4.1 and 4.2 respectively.

Example 4.2 Continuous probability distribution function
An example of a continuous probability distribution function can be best shown via the
familiar standard normal distribution. This distribution is also commonly referred to as
the Gaussian distribution as well as the bell curve.

Table 4.2 provides a sample of data for a standard normal distribution. The left-hand
side of the table has the interval values a and b. The corresponding probability to the
immediate right in this table shows the probability that the standard normal distribution
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CDF: Rolling Die

Figure 4.2 CDF: Rolling Die.

Table 4.2 Standard Normal Distribution

a b Pdf z Cdf

21 1 68.3% 23 0.1%

22 2 95.4% 22 2.3%

23 3 99.7% 21 15.9%

2inf 21 15.9% 0 50.0%

2inf 22 2.3% 1 84.1%

1 inf 15.9% 2 97.7%

2 inf 2.3% 3 99.9%
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will have a value between a and b. That is, if x is a standard normal variable, the proba-
bility that x will have a value between a and b is shown in the probability column.

For a standard normal distribution, the values shown in column “a” and column “b”
can also be thought of as the number of standard deviations where 15 plus one stan-
dard deviation and 215minus one standard deviation (and the same for the other
values). Readers familiar with probability and statistics will surely recall that the probabil-
ity that a standard normal random variable will be between 21 and 11 is 68.3%, the
probability that a standard normal variable will be between 22 and 12 is 95.4%, and
the probability that a standard normal variable will be between 23 and 13 is 99.7%.

–4 –3 –2 –1 0 1 2 3 4
Standardized Value

Standard Normal Distribution - PDF

Figure 4.3 Standard Normal Distribution: PDF.
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Figure 4.4 Standard Normal Distribution: CDF.
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The data on the right-hand side of the table corresponds to the probability that a
standard normal random value will be less than the value indicated in the column titled
z. Readers familiar with probability and statistics will recall that the probability that a nor-
mal standard variable will be less than 0 is 50%, less than 1 is 84%, less than 2 is 97.7%,
and less than 3 is 99.9%.

Fig. 4.3 illustrates a standard normal pdf distribution curve and Fig. 4.4 illustrates a
standard normal cdf distribution curve. Analysts can use the pdf curves to determine the
probability that an outcome event will be within a specified range and can use the cdf
curves to determine the probability that an outcome event will be less than or equal to
a specified value. For example, we utilize these curves to estimate the probability that a
team will win a game and/or win a game by more than a specified number of points.
These techniques are discussed in the subsequent sports chapters.

Important Notes:

• One of the most important items regarding computing probabili-

ties such as the likelihood of scoring a specified number of points,

winning a game, or winning by at least a specified number of

points is using the proper distribution function to compute these

probabilities.

• Different distribution functions will have different corresponding

probability values for the same outcome value.

• It is essential that analysts perform a thorough review of the out-

come variable they are looking to estimate and determine the cor-

rect underlying distribution.

• While there are many techniques that can be used to determine the

proper distribution functions, analysts can gain important insight

using histograms, p-p plots, and q-q plots as the starting points.

• We provide information about some of the more useful distribu-

tions below and analysts are encouraged to evaluate a full array of

these distributions to determine which is most appropriate before

drawing conclusions about outcomes, winning teams, scores, etc.

Descriptive Statistics
Each probability distribution has a set of descriptive statistics that can

be used in analysis. The more important descriptive statistics for sports

models are:

Mean: The arithmetic mean, also known as the simple mean or equal

weighted mean. The mean of a data series is a unique value. The mean is

also known as the first moment of the data distribution.

μ5
1

n

Xn
i51

xi
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Mode: The value(s) of a data series that occurs most often. The mode

of a data series is not a unique value.

Median: The value of a data series such that one-half of the observa-

tions are lower or equal and one-half the observations are higher or equal

value. The median value is not a unique number. For example, in the

series 1, 2, 3 the median is the value 2. But in the series 1, 2, 3, 4 there is

not a unique value. Any number 2, x, 3 is the median of this series

since exactly 50% of the data values are lower than x and exactly 50% of

the data points are higher than x. A general rule of thumb is that if there

are an odd number of data points, the middle value is the median, and if

there is an even number of data points, the median is selected as the

mean of the two middle points. In our example, 1, 2, 3, 4 the median

would be taken as 2.5. However, any value x such that 2, x, 3 would

also be correct.

Standard Deviation: The amount of dispersion around the mean. A

small standard deviation indicates that the data are all close to the mean

and a high standard deviation indicates that the data could be far from the

mean. The standard deviation σ xð Þ is the square root of the variance V x½ �
of the data. The variance is also known as the second moment about the

distribution mean.

σ25
1

n

Xn
i51

x2μð Þ2

σ5
ffiffiffiffiffi
σ2

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i51

x2μð Þ2
s

Coefficient of Variation: A measure of the standard deviation divided

by the mean. The coefficient of variation serves as a normalization of

the data for a fair comparison of data dispersion across different values

(e.g., as a measure of data dispersion of daily or monthly stock trading

volumes).

COV 5
σ
x
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Skewness: A measure of the symmetry of the data distribution. A posi-

tively skewed data distribution indicates that the distribution has more

data on the right tail (data is positively skewed). A negatively skewed data

distribution indicates that the distribution has more data on the left tail

(data is negatively skewed). A skewness measure of zero indicates that

the data is symmetric. Skewness is also known as the third moment about

the mean.

Skewness5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i51

x2μð Þ
σ

3
s

Kurtosis: A measure of the peakedness of the data distribution.

Data distributions with negative kurtosis are called platykurtic distribu-

tions and data distributions with positive kurtosis are called leptokurtic

distributions.

Kurtosis5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i51

x2μð Þ
σ2

3
s

Probability Distribution Functions
In this section we provide a description of the important probability

distribution functions that are used in sports modeling. Readers

interested in a more thorough investigation of these distributions are

referred to Meyer (1970), Dudewicz and Mishra (1988), Pfeiffer (1978),

DeGroot (1986).

Our summary table of the distribution statistics and moments

is based on and can also be found at: www.mathworld.wolfram.

com, www.wikipedia.org/, www.statsoft.com/textbook/, and www.

mathwave.com/articles/distribution_fitting.html. These are excellent

references and are continuously being updated with practical examples.

These probability and distribution functions below are also a subset of

those presented in Glantz and Kissell (2013) and used for financial risk

modeling estimation.
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Continuous Distribution Functions
Normal Distribution
A normal distribution is the workhorse of statistical analysis. It is

also known as the Gaussian distribution and the bell curve (for the distri-

bution’s resemblance to a bell). It is one of the most used distributions

in statistics and is used for several different applications. The normal

distribution also provides insight into issues where the data is not

necessarily normal, but can be approximated by a normal distribution.

Additionally, by the central limit theorem of mathematics we find that

the mean of a sufficiently large number of data points will be normally

distributed. This is extremely useful for parameter estimation analysis

such as with our regression models.

Normal Distribution Statistics1

Notation N ðμ;σ2Þ
2N,μ,N

Parameter σ2 . 0

Distribution 2N, x,N

Pdf
1ffiffiffiffiffiffi
2π

p
σ
exp 2

x2μð Þ2
2σ2

� �

Cdf
1

2
11 erf

x2μ
2σ2

� �h i
Mean μ

Variance σ2

Skewness 0

Kurtosis 0

where erf is the Gauss error function, i.e.,

erf xð Þ5 2ffiffiffi
π

p
ðx
0

expð2 t2Þ

112 Optimal Sports Math, Statistics, and Fantasy



Normal Distribution Graph
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Standard Normal Distribution
The standard normal distribution is a special case of the normal distribu-

tion where μ5 0; σ25 1. If is often essential to normalize data prior to

the analysis. A random normal variable with mean μ and standard devia-

tion μ can be normalized via the following:

z5
x2μ
σ

Standard Normal Distribution Statistics1

Notation N ð0; 1Þ
Parameter n=a

Distribution 2N, z,N

Pdf
1ffiffiffiffiffiffi
2π

p exp 2
1

2
z2

� �

Cdf
1

2
11 erf

z

2

� �h i
Mean 0

Variance 1

Skewness 0

Kurtosis 0

Standard Normal Distribution Graph
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Student’s t-Distribution
Student’s t-distribution (a.k.a. t-distribution) is used when we are estimating

the mean of normally distributed random variables where the sample size is

small and the standard deviation is unknown. It is used to perform hypothe-

sis testing around the data to determine if the data is within a specified

range. The t-distribution is used in hypothesis testing of regression para-

meters (e.g., when developing risk factor models). The t-distribution looks

very similar to the normal distribution but with fatter tails. But it also con-

verges to the normal curve as the sample size increases.

Student’s t-Distribution1

Notation t-dist(ν)

Parameter ν. 0

Distribution 2N, x,N

Pdf
Γ ν1 1

2

� �
ffiffiffiffiffiffi
νπ

p
Γ ν

2

� � 11
x2

ν

	 
2ν11
2

Cdf

Mean 5
0 ν. 1

undefined o:w:

�

Variance 5

ν
ν1 1

ν. 2

N 1 , ν# 2

undefined o:w:

8>><
>>:

Skewness 5
0 ν. 3

undefined o:w:

�

Kurtosis 5

6

ν2 4
ν. 4

N 2, ν# 4

undefined o:w:

8>><
>>:
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Student’s t-Distribution Graph
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Student’s t-Distribution: Interesting Notes

Have you ever wondered why many analysts state that you need to have at least

20 data points to compute statistics such as average or standard deviation? The

reason is that once there are 20 data points, Student’s t-distribution con-

verges to a normal distribution. Then analysts could begin to use the sim-

pler distribution function.

Where did the name “Student’s t-distribution” come from? In many aca-

demic textbook examples, the Student’s t-distribution is used to estimate

their performance from class tests (e.g., midterms and finals, standardized

tests, etc.). Therefore, the t-distribution is the appropriate distribution

since it is a small sample size and the standard deviation is unknown. But

the distribution did not arise from evaluating test scores. The Student’s t-

distribution was introduced to the world by William Sealy Gosset in

1908. The story behind the naming of the Student’s t-distribution is as

follows: William was working at the Guinness Beer Brewery in Ireland

and published a paper on the quality control process they were using for

their brewing process. And to keep their competitors from learning their

processing secrets, Gosset published the test procedure he was using under

the pseudonym Student. Hence, the name of the distribution was born.

Student’s Distribution Graph

(with k5 10, 20, 100 and normal curve)
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Log-Normal Distribution
A log-normal distribution is a continuous distribution of random variable

y whose natural logarithm is normally distributed. For example, if ran-

dom variable y5 expfyg has log-normal distribution then x5 logðyÞ has
normal distribution. Log-normal distributions are most often used in

finance to model stock prices, index values, asset returns, as well as

exchange rates, derivatives, etc.

Log-Normal Distribution Statistics1

Notation ln N ðμ;σ2Þ
2N,μ,N

Parameter σ2 . 0

Distribution x. 0

Pdf
1ffiffiffiffiffiffi
2π

p
σx

exp 2
lnðxÞ2μð Þ2

2σ2

� �

Cdf
1

2
11 erf

lnðx2μÞ
σ

	 
� �

Mean e μ11
2
σ2ð Þ

Variance ðeσ2

2 1Þe2μ1σ2

Skewness ðeσ2

1 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeσ2

2 1Þ
p

Kurtosis e4σ
2

1 2e3σ
2

1 3e2σ
2

2 6

where erf is the Gaussian error function.

Log-Normal Distribution Graph
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Uniform Distribution
The uniform distribution is used when each outcome has the same likeli-

hood of occurring. One of the most illustrated examples of the uniform

distribution is rolling a die where each of the six numbers has equal likeli-

hood of occurring, or a roulette wheel where (again) each number has an

equal likelihood of occurring. The uniform distribution has constant proba-

bility across all values. It can be either a discrete or continuous distribution.

Uniform Distribution Statistics1

Notation Uða; bÞ
Parameter 2N, a, b,N

Distribution a, x, b

Pdf
1

b2 a

Cdf
x2 a

b2 a

Mean
1

2
a1 bð Þ

Variance
1

12
b2að Þ2

Skewness 0

Kurtosis 2
6

5

Uniform Distribution Graph
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Exponential Distribution
The exponential distribution is a continuous distribution that is commonly used

to measure the expected time for an event to occur. For example, in physics it is

often used to measure radioactive decay, in engineering it is used to measure the

time associated with receiving a defective part on an assembly line, and in

finance it is often used to measure the likelihood of the next default for a

portfolio of financial assets. It can also be used to measure the likelihood of

incurring a specified number of defaults within a specified time period.

Exponential Distribution Statistics1

Notation ExponentialðλÞ
Parameter λ. 0

Distribution x. 0

Pdf λe2λx

Cdf 12 e2λx

Mean 1=λ

Variance 1=λ2

Skewness 2

Kurtosis 6

Exponential Distribution Graph
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Chi-Square Distribution
A chi-square distribution is a continuous distribution with k degrees of

freedom. It is used to describe the distribution of a sum of squared ran-

dom variables. It is also used to test the goodness of fit of a distribution

of data, whether data series are independent, and for estimating confi-

dences surrounding variance and standard deviation for a random variable

from a normal distribution. Additionally, chi-square distribution is a

special case of the gamma distribution.

Chi-Square Distribution Statistics1

Notation χðkÞ
Parameter k5 1; 2; . . .

Distribution x$ 0

Pdf x
k
2
21

e
2

x
2

� �.
2
k
2Γ

k

2

	 
	 


Cdf γ
k

2
;
x

2

	 

=Γ

k

2

	 


Mean k

Variance 2k

Skewness
ffiffiffiffiffiffiffi
8=k

p
Kurtosis 12=k

where γ k
2
; x
2

� �
is known as the incomplete Gamma function (www.

mathworld.wolfram.com).
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Logistic Distribution
The logistic distribution is a continuous distribution function. Both its

pdf and cdf functions have been used in many different areas such as

logistic regression, logit models, neural networks. It has been used in the

physical sciences, sports modeling, and recently in finance. The logistic

distribution has wider tails than a normal distribution so it is more consis-

tent with the underlying data and provides better insight into the likeli-

hood of extreme events.

Logistic Distribution Statistics1

Notation Logisticðμ; sÞ

Parameter
0#μ#N

s. 0

Distribution 0# x#N

Pdf
exp 2 x2μ

s

� �
s 11exp 2 x2μ

s

� �� �2
Cdf

1

11 exp 2 x2μ
s

� �
Mean μ

Variance
1

3
s2π2

Skewness 0

Kurtosis 6=5

Logistic Distribution Graph
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Triangular Distribution
The triangular distribution is when there is a known relationship between

the variable data but when there is relatively little data available to conduct a

full statistical analysis. It is often used in simulations when there is very little

known about the data-generating process and is often referred to as a “lack

of knowledge” distribution. The triangular distribution is an ideal distribu-

tion when the only data on hand are the maximum and minimum values,

and the most likely outcome. It is often used in business decision analysis.

Triangular Distribution1

Notation Triangular(a; b; c)

Parameter

2N# a#N
b. a

a, c, b

Distribution a, x, b

Pdf 5

2 x2 að Þ
b2 að Þ c2 að Þ a# x# c

2 x2 að Þ
b2 að Þ b2 cð Þ c# x# b

8>>><
>>>:

Cdf 5

2 x2að Þ2
b2 að Þ c2 að Þ a# x# c

12
b2xð Þ2

b2 að Þ b2 cð Þ c# x# b

8>>>><
>>>>:

Mean
a1 b1 c

3

Variance
a21 b21 c22 ab2 ac2 bc

18

Skewness

ffiffiffi
2

p
a1 b2 2cð Þ 2a2 b2 cð Þ a2 2b1 cð Þ
5 a21b21c22ab2ac2bcð Þ32

Kurtosis 2
3

5
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Triangular Distribution Graph
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Discrete Distributions
Binomial Distribution
The binomial distribution is a discrete distribution used for sampling

experiments with replacement. In this scenario, the likelihood of an ele-

ment being selected remains constant throughout the data-generating

process. This is an important distribution in finance in situations where

analysts are looking to model the behavior of the market participants who

enter reserve orders to the market. Reserve orders are orders that will

instantaneously replace if the shares are transacted. For example, if an

investor who has 1000 shares to buy entered at the bid may be showing

100 shares to the market at a time. Once those shares are transacted the

order immediately replenishes (but the priority of the order moves to the

end of the queue at that trading destination at that price). These order

replenishments could occur with a reserve or iceberg type of order or via

high-frequency trading algorithms where once a transaction takes place

the market participant immediately submits another order at the same

price and order size thus giving the impression that the order was imme-

diately replaced.

Binomial Distribution Statistics1

Notation Binomialðn; pÞ
Parameter n$ 0 0# p# 1

Distribution k5 1; 2; . . . ; n

Pdf
n

k

� �
pk 12pð Þn2k

Cdf
Pk
i51

n
i

� �
pi 12pð Þn2i

Mean np

Variance np 12 pð Þ

Skewness
12 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 12 pð Þ

p
Kurtosis

12 6pð12 pÞ
np 12 pð Þ
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Binomial Distribution Graph
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Poisson Distribution
The Poisson distribution is a discrete distribution that measures the prob-

ability of a given number of events happening in a specified time period.

In finance, the Poisson distribution could be used to model the arrival of

new buy or sell orders entered into the market or the expected arrival of

orders at specified trading venues or dark pools. In these cases, the

Poisson distribution is used to provide expectations surrounding confi-

dence bounds around the expected order arrival rates. Poisson distribu-

tions are very useful for smart order routers and algorithmic trading.

Poisson Distribution Statistics1

Notation PoissonðλÞ
Parameter λ. 0

Distribution k5 1; 2; . . . ;

Pdf
λke2λ

k!

Cdf
Pk
i51

λke2λ

k!

Mean λ

Variance λ

Skewness λ21=2

Kurtosis λ21

Poisson Distribution Graph
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4.3 SAMPLING TECHNIQUES

What is data sampling? Data sampling is a statistical technique that is used

to ascertain information about an outcome event such as a predicted score

or probability of winning, or information about a specified model includ-

ing the significance of the explanatory factors and parameters, or infor-

mation about the underlying probability distribution using a subset of

data rather than the entire data universe.

Data sampling is required when:

1. We are unable to observe and collect all data across all possible

outcomes;

2. The collection of all data outcomes is not easily manageable;

3. We need to understand the accuracy of the model including

significance of the parameters and distribution of the data;

4. We do not have a sufficient number of data points for a com-

plete and thorough analysis.

For example, during a presidential election it is not possible to poll all

voters to determine their favorite candidate and likely election winter.

Thus, statisticians seek to draw conclusions about the likely winner using

a smaller subset of data, known as a sample.

Furthermore, in sports modeling problems, we very often do not have

enough observations across all teams and possible pairs of games to incor-

porate into our models. And in many types of sports competitions we do

not have observations across all potential sets of teams to be able make a

prediction based on actual data or historical data. This is the case with

MLB, NFL, and college sports, as well as in international soccer or FIFA

competitions, we do not have games or observations between all pairs of

teams, thus making it difficult to draw conclusions. In all of these situa-

tions, we are left with making inferences and constructing models using a

subset or limited amount of data.

Data sampling helps analysts resolve data limitation problems and gen-

erate outcome predictions. It allows modelers to utilize smaller data sets

and/or incomplete data sets and build and test models efficiently. Data

sampling, however, is associated with uncertainty and sampling error. It is

required that the analyst understands the statistical error and uncertainty

when making predictions about an upcoming game. As it turns out,

understanding the statistical accuracy of the model and the underlying dis-

tribution of the error term is one of the most important functions of the

data modeling process. In many situations, sampling of the data sample is
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needed to generate these error terms and to understand the distribution

of these error terms. Many of the more important probability distribution

functions for sports modeling problems are described above.

The remainder of this chapter will discuss different types of data sam-

pling techniques and their use in sports modeling problems. These tech-

niques include:

• Random Sampling

• Sampling with Replacement

• Sampling without Replacement

• Monte Carlo Techniques

• Bootstrapping Techniques

• Jackknife Sampling Techniques

4.4 RANDOM SAMPLING

Random sampling is a statistical technique that selects a data sample based

upon a predefined probability that each data point may be selected for

analysis. The probability levels are determined in a manner such that the

underlying data subset will be most appropriate for the data modeling

needs. In many cases these probability levels are specified such that each

data point will have the same chance of being included and in other cases

the probability levels are specified such that the expected data set will

have consistent and/or similar characteristics as the data universe.

Nonrandom sampling is another sampling technique. In this case, the

actual data samples are selected based on availability or ease of the data

collection process. Data points are not selected based on any probability

level, and thus, the likelihood of any data item being included in the sub-

set sample will differ. This makes it difficult to make inferences about the

larger data universe and introduces additional error into the modeling

process. However, there are techniques that analysts can use to account

for these biases. Many of these nonrandom sampling techniques are used

in qualitative surveys where a surveyor stands at the front of a mall, super-

market, train station, or some other location and asks questions to people

walking by. Thus, only the people who would be visiting these sites at

these times could become part of the sample. These types of nonrandom

sampling techniques include convenience sampling, consecutive sampling,

and quota sampling techniques. These sampling techniques are not appro-

priate sampling techniques for sports modeling problems and will not be

discussed in the text.
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Resampling is a statistical technique that consists of performing an

analysis, running a model, or estimating parameter values for many dif-

ferent data sets where these data sets are selected from the larger data

universe. Resampling is an appropriate technique for many different sta-

tistical applications and can be used to estimate parameter values and

probability distributions. In many situations, as mentioned above, we

may not have enough data points or data observations to be able to use

these metrics directly due to data limitation issues, and/or the underlying

mathematical model may be too complex to calculate error terms due to

data limitations.

Resampling allows analysts to estimate parameter values and probabil-

ity distributions using the data samples. This then allows analysts to evalu-

ate, test, and critique modeling approaches to determine the best and

most appropriate model for problem. Resampling allows analysts to make

proper statistical inferences and conclusions about future outcome events

using only the data at hand.

4.5 SAMPLING WITH REPLACEMENT

Sampling with replacement is a resampling technique where each data item

can be selected for and included in the data sample subset more than once.

For example, suppose we have a bag of ping pong balls with numbers writ-

ten on each ball. If we are interested in learning the average number writ-

ten on the ping pong ball using a sampling with replacement approach, we

would pick a ball at random, write down the number, and then put the

ball back in the bag. Then we would pick another ball at random, write

down the number, and then put the ball back in the bag. The selection of

balls would be repeated for a specified number of times. Once completed,

we would calculate the average across all numbers written down. In this

analysis, it is quite possible to pick the same ball multiple times.

Sampling with replacement is similar to many lotto games where the

player picks four numbers from 1 to 10 and where each number can be

selected more than once. In this scenario, there would be 4 machines

with 10 ping pong balls each numbered from 1 to 10. Then the machines

would select one ball from each machine. The four numbers selected

could consist of all different numbers such as 1-2-8-4 or have some or all

repeated numbers such as 5-2-5-1 or 9-9-9-9.

• If a data item can be selected more than once it is considered

sampling with replacement.
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4.6 SAMPLING WITHOUT REPLACEMENT

Sampling without replacement is a resampling technique where each data

item can be selected and used on our data sample subset only once. For

example, using the same ping pong ball example where we are interested in

learning the average value of the numbers on the ping pong balls the sam-

pling without replacement would consist of picking a ball from the bag at

random and writing down its value, but leaving the ball outside of the bag,

and then picking another ball from the bag, writing down its value, and

leaving that ball outside the bag, and repeating this process for a specified

number of draws. In this case, each ball can only be selected one single time.

Sampling without replacement is similar to a Powerball type of contest

where a player is asked to pick 6 numbers from 1 to 44 (or variations of

this type of selection). In this scenario, each number can only be selected

a single time.

• If a data item can only be selected one time than it is considered

sampling without replacement.

4.7 BOOTSTRAPPING TECHNIQUES

Bootstrapping is a statistical technique that refers to random sampling of

data with replacement. One of the main goals of bootstrapping is to allow

analysts to estimate parameter values, corresponding standard errors, and

to gain an understanding of the probability distribution of the model’s

error term.

In sports modeling problems, bootstrapping sampling techniques are

essential for being able to calculate a statistically accurate team strength

rating and also to be able to accurately predict the outcome of an event

or game. This is especially true in situations where we may not have a

large enough number of observations of games across all teams and/or

situations where all teams may not play against each other during the sea-

son. Thus, it is important for all professional sports and college sports

modeling problems.

For a bootstrapping sample, analysts could simply select a specified

sample size, such as 25% of the actual data. Thus, if there are 1000 obser-

vations each sample could consist of 250 data points. Bootstrapping tech-

niques use sampling with replacement so each data point can be selected

for a sample more than one time. The model is then solved repeatedly.

With today’s computing power we can set the number of actual repeated
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samples to be quite large such as Nc1000 to allow accurate parameter

estimates and confidence levels. That is, we can sample the data and solve

the model 1000 times or more.

Consider the power function presented in Chapter 2, Regression

Models, where we seek to maximize the following:

Max : log L5
XG
i51

ln
b0 1 bh

b01 bh1 ba

	 


where G is the total number of games in the sample and bk represents the

model parameters.

If we solve this optimization once we only have the parameter

estimates (e.g., team strength rating) for each team and the home-field

advantage term. But we do not have any estimates surrounding the

standard errors of the parameters.

However, by performing bootstrapping sampling using say 25% of the

games for each optimization solution and repeating this sampling tech-

nique 1000 times or more, we can calculate both the team rating parame-

ter and the standard error of the parameter value, thus allowing us to

statistically evaluate the model and mark comparisons across teams.

Using bootstrapping techniques, the expected parameters value is taken

as the average value across all samples and the confidence interval or stan-

dard error can be computed using either the standard deviation of parame-

ter estimates or computed from a specified middle percentile interval such

as middle 50% or middle 68% (to be consistent with the standard devia-

tion) of data points. It is important to note that using the standard deviation

of results to compute standard errors in this case may be inaccurate in times

of small sizes. Analysts will need to understand how the sample size affects

the parameters estimates for their particular sports models or application.

4.8 JACKKNIFE SAMPLING TECHNIQUES

Jackknife sampling is another type of resampling technique that is used to

estimate parameter values and corresponding standard deviations similar

to bootstrapping. The sampling method for the jackknife technique

requires that the analyst omit a single observation in each data sample.

Thus, if there are n data points in the sample, the jackknife sampling

technique will consist of n samples each with n2 1 data points in each

sample subset analysis. Thus, in this case, the analyst would solve the
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model n times each with n2 1 data point. This would allow the analyst

to estimate both parameter value and corresponding standard error.

Our research into sports modeling problems, however, finds that this

jackknife technique may yield inconsistent results across teams and para-

meters especially in situations where a team wins all of its games or a high

percentage of games, in situations where a team loses all of its games or a

high percentage of its games, and/or where a team plays both very strong

and very weak opponents—which is very common across college sports

and also in many international tournaments such as FIFA soccer and other

World Cup tournaments.

An appropriate adjustment to the jackknife sampling technique in

these situations is to entirely leave out a team and all of its games in each

data sample. For example, if there are 100 games across 10 teams where

each team played 10 games, our jackknife sampling technique would con-

sist of 10 samples each with 90 games. So if team A played 10 games and

we are leaving team A out of this same run we would omit the 10 records

with team A. While both variations of the jackknife sampling techniques

have advantages and disadvantages, analysts will need to determine from

the data which is the most appropriate technique to use and in which

types of situations it is most appropriate and accurate.

Therefore, if we are looking to estimate team rating parameter values

using the power function described in Chapter 2, Regression Models, for

a scenario with 25 teams, we would solve the following optimization

problem 25 times and in each optimization sample we would leave out

one team and all of its games.

Thus, we would maximize the following:

Max : log L5
XGk

i51

ln
b01 bh

b01 bh1 ba

	 


where Gk consists of all the games that did not involve team K. If there

are M teams in total, we would repeat this optimization M times. Here,

bk represents the model parameters. Additionally, it is important to note

that each team will have M 2 1 parameter values, one value for each

scenario that included their team.

The estimated parameter values, or in this case team rating values,

are computed from the optimization results across all M samples.

The expected parameter value is the average across all M2 1 results for

each team. The standard error term is computed as the middle percen-

tile values such as the middle 50% values or middle 68% values (to be

consistent with standard deviation). The standard error can also be
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computed as the standard deviation across all M2 1 parameter

estimates.

Again, it is important for analysts to understand the effect of small

samples and data limitations on their model and error terms. Analysts

need to investigate the actual model error term to determine which is the

most appropriate technique to quantify standard errors.

Finally, once we determine team rating parameters and corresponding

standard errors, we can use this information to make statistically accurate

rankings and comparisons across teams, and predict outcome events with

a high level of accuracy, e.g., predict the expected winner of a game, cal-

culate the expected winning margin, compute the winning probability.

4.9 MONTE CARLO SIMULATION

Monte Carlo simulation is a statistical technique that predicts outcomes

based on probability estimates and other specified input values. These

input values are often assumed to have a certain distribution or can take

on a specified set of values.

Monte Carlo simulation is based on repeatedly sampling the data and

calculating outcome values from the model. In each sample, the input fac-

tor and model parameters can take on different values. These values are

simulated based on the distribution of the input factor and parameter

values. For example, if X is an input factor for our model and X is a stan-

dard normal random variable, each simulation will sample a value of X

from a standard normal distribution. Thus, each sample scenario will have a

different value of X . Analysts then run repeated simulations where they can

allow both the parameter values and input factors to vary based on their

mean and standard error. Analysts then use these the results of these simula-

tions to learn about the system and make better-informed future decisions.

Another important use of Monte Carlo simulation is to evaluate the

performance and accuracy of a model, and also to evaluate whether or

not a model or modeling methodology is appropriate for certain situa-

tion. For example, we discussed in Chapter 2, Regression Models, the

power function and how it can be used in sports modeling as the basis for

predicting the winning team, the winning score, and probability of win-

ning. We can use these same Monte Carlo simulation techniques to deter-

mine whether or not this technique is appropriate for the sport we are

looking to model. The process is as follows:

Suppose we want to determine if the power function and optimization

process is an appropriate modeling technique to rank college football
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teams and to predict the winning team. Here, we apply Monte Carlo

simulation as follows:

Step 1: Assign each team a rating score bi that indicates the team’s overall

strength. These ratings can be assigned via a completely random

process, or they can be assigned based on the team’s previous

years’ winning records, based on conferences, etc. We suggest

running multiple trials where the ratings are assigned via various

methods in order to best analyze the model. It is important to

note here that once we assign the team rating score bi to each

team we then know the exact ranking of teams and the exact

probability that any one team will beat any other team.

Step 2: Run a simulation of game outcomes based on an actual schedule

of games. Similar to Step 1, we suggest repeating this experi-

ment using the schedules from different years in order to fully

test the process and specified model.

Step 3: Determine the winner of a game based on the team’s rating and

power function, and based on a simulated random value

(between 0 and 1). For example, if home team A is playing away

team B, the probability that home team A will win the game is

determined from the power function as follows:

P A.Bð Þ b01 bA

b01 bA1 bB

If x is the randomly generated value (with a value between 0

and 1), we assign team A as the winner of the game if x#P and

we assign team B as the winner of the game if x. P.

Step 4: Simulate the winner of every game on the schedule across all

teams during a season based on Step 3.

Step 5: Solve for each team’s estimated rating value based on the out-

comes of the simulated season.

Step 6: Compare the rating results obtained from the simulated season to

the actual rating values used to simulate the season results. If the

model is appropriate for the sport we should find a high correlation

between actual ratings and estimated ratings. And, the rankings of

the teams from the simulated results should be consistent with the

actual rankings used to simulate the results. If either of these is

found to be inconsistent with actual values used in the simulation,

then the model would not be appropriate for the sport in question.

Step 7: Repeat this simulation test for various scenarios where teams are

given different rating values and using schedules from different

seasons.
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4.10 CONCLUSION

In this chapter we provided readers with an overview of the essential

mathematics required for probability and statistics modeling. The chapter

included insight into different probability distribution functions and the

important mathematical metrics used to describe these functions. We also

provided readers with an overview of different sampling techniques and

how these techniques can be used to evaluate, test, and critique sports

prediction models.

ENDNOTE
1. www.mathworld.wolfram.com/topics/ProbabilityandStatistics.html
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CHAPTER 5

Sports Prediction Models

5.1 INTRODUCTION

In this chapter, we provide an overview of six sports modeling techniques

that will be applied to different sports including football, basketball,

hockey, soccer, and baseball. Our goal is to provide readers with a step-

by-step set of instructions to be able to formulate the model, estimate the

parameters, and predict outcome variables.

It is also important to note that these models will also serve as the basis

for predicting individual player performance, which could be used for

fantasy sports competitions.

These models include:

1. Games Points

2. Team Statistics

3. Logistic Probability

4. Team Ratings

5. Logit Spreads

6. Logit Points

Readers interested in a more thorough understanding of the mathe-

matics behind these models are referred to Chapter 2, Regression

Models; Chapter 3, Probability Models; and Chapter 4, Advanced Math

and Statistics.

These follow from the following four families of mathematical predic-

tion models:

1. Linear Regression:

y5 b01 b1 � x11 b2 � x21?1 bk � xk1 e

2. Logistic Function:

Prob5
1

11 exp 2 b01 bh2 bað Þ� �
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3. Power Function:

Prob5
b01 bh

b01 bh1 ba

4. Logit Regression

b01 bh2 ba5 log
p

12 p

� �

5.2 GAME SCORES MODEL

Description
The game scores model is a linear regression model that predicts game

outcomes based on the expected home team winning margin.

Model Form
The game scores model has the form:

Y 5 b01 b1 �HPS1 b2 �HPA1 b3 � APS1 b4 � APA1 ε

The variables of the model are:

Y 5 home team victory margin, i.e., home team score minus away

team score. A positive value indicates the home team won the

game by the indicated number of points, a negative value indi-

cates the away team won the game by the indicated number of

points, and a zero indicates that the game ended in a tie.

HPS5 home team average points scored per game

HPA5 home team average points allowed per game

APS5 away team average points scored per game

APA5 away team average points allowed per game

The parameters of the model, i.e., what we are trying to solve are:

b05 home field advantage value

b15 home team points scored parameter

b25 home team points allowed parameter

b35 away team points scored parameter

b45 away team points allowed parameter

ε5 random noise

Solving the Model
The model parameters are estimated via ordinary least squares (OLS)

regression analysis. This solution will provide us with the estimated para-

meters and regression statistics.
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Analysts will need to evaluate the model using the regressions good-

ness of fit R2, the t-stat showing the significance of the parameters and

explanatory factors, the F-test showing the overall significance of the

model structure, and the regression error SeY .

Estimating Home Team Winning Spread
The expected home team victory margin is calculated directly from the

model parameters and input variables. For example, after solving the

regression, we estimate the score as follows:

ŷ5 b̂01 b̂1 � HPS1 1 b̂2 �HPS1 b̂3 �HPA1 b̂4 � APS
If ŷ. 0 then the home team is expected to win by this value, if ŷ, 0 then

the home team is expected to lose by this value (i.e., the away team is expected

to win by this value), and if ŷ5 0 then the game is expected to end in a tie.

Estimating Probability
Calculating Probability That the Home Team Wins
The probability that the home team will win the game is determined from

the expected home team winning value Ŷ and the regression error SeY .

Based on these two parameter values we can calculate the probability that the

home team victory margin will be more than zero using the normal distribu-

tion. Analysts will need to ensure that the regression error term, however,

does follow a normal distribution. And if not, probability calculations will

need to be determined from the appropriate probability distribution function.

The probability p that the home team will win the game is computed

as follows:

First, compute the normalized statistic:

z5
02 Ŷ

SeY
5

2Ŷ

SeY

Second, compute the probability that the home team wins the game:

p5 12F21ðzÞ
Here, F21ðzÞ is the normal distribution inverse function for the stan-

dard normal variable z.

Alternatively, the probability that the home team will win the game

can be computed directly using Excel or MATLAB functions as follows:

In Excel:

p5 12NormDistð0; Ŷ ; SeY ;TrueÞ
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In MATLAB:

p5 12 normcdf ð0; Ŷ ; SeY Þ
If p. :50 then the home team is predicted to win the game. If p, :50

then the away team is expected to win the game. If p5 :50 then the

game is expected to end in a tie.

Calculating Probability That the Home Team Wins by a Specified
Score
We can also use the above techniques to compute the probability that the

home team will win the game by more than a specified score S. This is

determined from our regression results and from either Excel or

MATLAB functions as follows:

In Excel:

ProbðHome Margin. SÞ5 12NormDistðS; Ŷ ; SeY ;TrueÞ
In MATLAB:

Prob Home Margin. Sð Þ5 12 normcdf S; Ŷ ; SeY
� �

5.3 TEAM STATISTICS MODEL

Description
The team statistics regression uses team performance statistics to predict

game results. Generally speaking, these measurements could be either

per-game averages (such as total yards per game) or per-event averages

(such as yards per rush). Proper team performance statistics should also

encompass both offensive and defensive ability. Through experimentation,

readers can determine which set of team statistics provides the greatest

predictive power.

Model Form
The team statistics linear regression model has the form:

Y 5 b01 b1 �HomeStatð1Þ1 b2 �HomeStatð2Þ1 b3 �HomeStatð3Þ
1 b4 �HomeStatð4Þ1b5 � AwayStatð1Þ1 b6 � AwayStatð2Þ
1 b7 � AwayStatð3Þ1 b8 � AwayStatð4Þ1 ε
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The variables of the model are:

Y 5 outcome value we are looking to predict (spread, home team

points, away team points, and total points)

HomeStatð1Þ5 home team explanatory statistic 1

HomeStatð2Þ5 home team explanatory statistic 2

HomeStatð3Þ5 home team explanatory statistic 3

HomeStatð4Þ5 home team explanatory statistic 4

AwayStatð1Þ5 away team explanatory statistic 1

AwayStatð2Þ5 away team explanatory statistic 2

AwayStatð3Þ5 away team explanatory statistic 3

AwayStatð4Þ5 away team explanatory statistic 4

b0; b1; b2; b3; b4; b5; b6; b7; b85model parameter, sensitivity to the

corresponding explanatory team statis-

tics variable

ε5 random noise

Solving the Model
The model parameters are estimated via OLS regression analysis. This

solution will provide us with the estimated parameters and regression

statistics.

Analysts will need to evaluate the model using the regressions good-

ness of fit R2, the t-stat showing the significance of the parameters and

explanatory factors, the F-test showing the overall significance of the

model structure, and the regression error SeY .

Estimating Home Team Winning Spread
The expected home team victory margin is calculated directly from the

model parameters and input variables. For example, after solving the

regression, we estimate the score as follows:

ŷ5 b̂0 1 b̂1 �HomeStatð1Þ1 b̂2 �HomeStatð2Þ1 b̂3 �HomeStatð3Þ
1 b̂4 �HomeStatð4Þ1b̂5 � AwayStatð1Þ1 b̂6 � AwayStatð2Þ
1 b̂7 � AwayStatð3Þ1 b̂8 � AwayStatð4Þ

If ŷ. 0 then the home team is expected to win by this value, if ŷ, 0

then the home team is expected to lose by this value (i.e., the away team

is expected to win by this value), and if ŷ5 0 then the game is expected

to end in a tie.
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Estimating Probability
Calculating Probability That the Home Team Wins
The probability that the home team will win the game is determined

from the expected home team winning value Ŷ and the regression error

SeY . Based on these two parameter values we can calculate the probabil-

ity that the home team victory margin will be more than zero using the

normal distribution. Analysts will need to ensure that the regression error

term, however, does follow a normal distribution. And if not, probability

calculations will need to be determined from the appropriate probability

distribution function.

The probability p that the home team will win the game is computed

as follows:

First, compute the normalized statistic:

z5
02 Ŷ

SeY
5

2Ŷ

SeY

Second, compute the probability that the home team wins the game is:

p5 12F21ðzÞ
Here, F21ðzÞ is the normal distribution inverse function for the stan-

dard normal variable z.

Alternatively, the probability that the home team will win the game

can be computed directly using Excel or MATLAB functions as follows:

In Excel:

p5 12NormDistð0; Ŷ ; SeY ;TrueÞ
In MATLAB:

p5 12 normcdf ð0; Ŷ ; SeY Þ
If p. :50 then the home team is predicted to win the game. If p, :50

then the away team is expected to win the game. If p5 :50 then the

game is expected to end in a tie.

Calculating Probability That the Home Team Wins by a Specified
Score
We can also use the above techniques to compute the probability that the

home team will win the game by more than a specified score S. This is
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determined from our regression results and from either Excel or

MATLAB functions as follows:

In Excel:

ProbðHome Margin. SÞ5 12NormDistðS; Ŷ ; SeY ;TrueÞ
In MATLAB:

Prob Home Margin. Sð Þ5 12 normcdf S; Ŷ ; SeY
� �

5.4 LOGISTIC PROBABILITY MODEL

Description
The logistic probability model is one of the more important probability

models that can be applied to sports modeling. This technique allows us

to infer a team strength rating based only on the observations of game

outcomes. The most common set of outcomes is whether the team won,

lost, or tied the game. The result of the game is based from the perspec-

tive of the home team but analysts can easily use the same approach based

on the visiting team.

The traditional logistic probability model will define the outcome

event as 1 if the home team won and 0 if the home team lost. While

there are many approaches that statisticians can use to adjust for a tie, one

suggested approach is to include the game in the dataset twice: once with

the home team winning the game and the second with the away team

winning the game.

Model Form
The logistic model is as follows:

G xð Þ5 1

11 exp 2 b0 1 bh2 bað Þ� �
Here, b0 denotes a home field advantage parameter, bh denotes the

home team rating parameter value, and ba denotes the away team rating

parameter value. Readers can easily verify that as the home team rating

becomes much larger than the away team rating, the probability that the

home team will win approaches 1, and as the home team rating becomes

143Sports Prediction Models



much smaller than the away team rating, the probability that the home

team will win approaches zero.

The notation used to denote the outcome of the game for the logistic

model is:

G xð Þ5

1

11 exp 2 b01 bh2 bað Þ� � if Home Team Wins

1

11 exp⁡ 1 b01 bh2 bað Þ� � if Away Team Wins

8>>><
>>>:

Notice that if the home team wins we use the logistic function G xð Þ
and if the home team loses we use 12G xð Þ. The only difference in the

reduced logistic function (after performing some algebra) is if the home

team wins there is a negative sign in the exponent of exp{} in the

denominator and if the home team loses there is a positive sign in the

denominator of the exponential function.

Solving the Model
The solution to the logistic model is determined via maximum likelihood

estimates (MLEs). Unfortunately, there is no simple adjustment or trick

to enable us to solve this model via OLS regression techniques and the

parameter values are most commonly determined via sophisticated opti-

mization routines.

The MLE technique to solve the above is described in Chapter 3,

Probability Models, and specified as:

Max L5 L
n

i51

Gi xð Þ

where Gi xð Þ is defined above for each game. This equation can also be

rewritten in terms of a log transformation and using addition (as opposed

to multiplication) as follows:

Max Log Lð Þ5
Xn
i51

Log Gi xð Þð Þ

Important Notes:

• The parameter value b0 will be a constant for each game.

• The parameter values for the home team bh and the away team ba will

be based on the actual teams playing in each game. For example,
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if home team k plays away team j logistic equation is written as follows

Pi5
1

11 exp⁡ 2 b0 1 bk 2 bjð Þ
� �.

• The solution of the logistic regression results in a team

strength-rating parameter for each team. This larger the team

strength parameter, the better the team. These parameters can be

used to directly determine the probability of winning a game and

can also be used as input to a linear regression model such as the

team rating model described above.

Estimating Home Team Winning Probability
After determining the team ratings from the MLEs we can compute the

probability that the home team will win the game as follows:

Probability5
1

11 exp⁡ 2 b̂01 b̂h2 b̂a
� �� �

Estimating Home Team Winning Spread
Once this probability is known, the expected home team winning margin

is computed from running a second regression analysis of spreads as a

function of home team winning probability. To run this analysis, we need

to compute the home team winning probability for each game.

Then, the estimated spread is determined from the following

equation:

Home Team Spread5 d̂01 d̂1 � Probability
where d0, d1 are determined from OLS analysis.

Important Notes:

• Analysts need to evaluate the regression error term to understand

its distribution

• Based on actual data, we may find that a probability of p5 .50 may

have an expected home team winning spread that is different than

zero. In theory, the expected home team spread corresponding to

a probability level of p5 .50 should be zero.

• If this occurs, analysts will need to make an adjustment to the

model to correct for bias, or incorporate the appropriate error

term distribution (see Chapter 4: Advanced Math and Statistics).
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5.5 TEAM RATINGS MODEL

Description
The team ratings prediction model is a linear regression model that uses the

team ratings determined from the logistic probability model as the explana-

tory variables to estimate the home team victory margin. This is one of the

reasons why the logistic model is one of the more important sports models

since its results can be used in different modeling applications.

Model Form
The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating1 ε

The variables of the model are:

Y 5 outcome value we are looking to predict (spread, home team

points, away team points, and total points)

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home field advantage value

b15 home team rating parameter

b25 away team rating parameter

ε5 random noise

Analysts can use this formulation to develop more complex linear

and/or nonlinear models based on input from the logistic regression

techniques.

Estimating Home Team Winning Spread
The expected home team victory margin is calculated directly from the

model parameters and input variables. For example, after solving the

regression, we estimate the score as follows:

Ŷ 5 b̂01 b̂1 �Home Rating1 b̂2 � Away Rating1 ε

If ŷ. 0 then the home team is expected to win by this value, if ŷ, 0

then the home team is expected to lose by this value (i.e., the away team

is expected to win by this value), and if ŷ5 0 then the game is expected

to end in a tie.

146 Optimal Sports Math, Statistics, and Fantasy



Estimating Probability
Calculating Probability That the Home Team Wins
The probability that the home team will win the game is determined

from the expected home team winning value Ŷ and the regression error

SeY . Based on these two parameter values we can calculate the probabil-

ity that the home team victory margin will be more than zero using the

normal distribution. Analysts will need to ensure that the regression error

term, however, does follow a normal distribution. And if not, probability

calculations will need to be determined from the appropriate probability

distribution function.

The probability p that the home team will win the game is computed

as follows:

First, compute the normalized statistic:

z5
02 Ŷ

SeY
5

2Ŷ

SeY

Second, compute the probability that the home team wins the game:

p5 12F21ðzÞ
Here, F21ðzÞ is the normal distribution inverse function for the stan-

dard normal variable z.

Alternatively, the probability that the home team will win the game

can be computed directly using Excel or MATLAB functions as follows:

In Excel:

p5 12NormDistð0; Ŷ ; SeY ;TrueÞ
In MATLAB:

p5 12 normcdf ð0; Ŷ ; SeY Þ
If p. :50 then the home team is predicted to win the game. If p, :50

then the away team is expected to win the game. If p5 :50 then the

game is expected to end in a tie.

Calculating Probability That the Home Team Wins by a Specified
Score
We can also use the above techniques to compute the probability that the

home team will win the game by more than a specified score S. This is
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determined from our regression results and from either Excel or

MATLAB functions as follows:

In Excel:

ProbðHome Margin. SÞ5 12NormDistðS; Ŷ ; SeY ;TrueÞ
In MATLAB:

Prob Home Margin. Sð Þ5 12 normcdf S; Ŷ ; SeY
� �

5.6 LOGIT SPREAD MODEL

Description
The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric and home

team winning margin. The model transforms the home team victory

margin to a probability value between zero and one and then the model

can be solved via logit regression analysis.

The inferred team “ratings” are solved via a logit linear regression

model. This technique was described in Chapter 3, Probability Models.

Model Form
The logit spread model has following form:

y� 5 b0 1 bh2 ba

where b0 denotes a home field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.

The left-hand side of the equation y� is the log ratio of the cumulative

density function of victory margin and is computed as follows:

Step 1: si5Home team victory margin in game i.

(si . 0 indicates the home team won the game, si , 0 indicates

the won team lost the game, and si 5 0 indicates the game ended

in a tie).

Step 2: Compute average home team victory margin, s, across all games.

Step 3: Compute standard deviation of home team victory margin, σs,

across all games.

Step 4: Compute the z-score of each spread, zi 5 si 2 sð Þ=σs.
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Step 5: Compute the cumulative probability corresponding to zi as F zið Þ.
This ensures the values of F zið Þ will be between 0 and 1. This can

be computed via Excel or MATLAB in the following manner:

Excel: FðZiÞ5 normsdistðziÞ
MATLAB: F Zið Þ5 normcdf ðziÞ

Step 6: Compute the success ratio y� as follows:

y�5
F zið Þ

12F Zið Þ
Step 7: Take the log transformation of y� as follows:

y5 log y�ð Þ5 log
F zið Þ

12F Zið Þ

� �

Solving the Model
The team rating parameters bk are then estimated via OLS regression

analysis on the following equation:

y5 b̂01 b̂h2 b̂a

Analysts need to perform an analysis of the regression results including

evaluation of R2, t-stats, F-value, and analysis of the error term.

Estimating Home Team Winning Spread
The home team expected winning spread is calculated as follows:

y5 b̂01 b̂k2 b̂j

From the estimated y we determine the normalized z-score z for

home team winning spread as follows:

z5F21 ey

11 ey

� �

where F21 represents the inverse of the normal distribution for the log-

transformed home team winning spread.

This can be computed via Excel or MATLAB functions as follows:

Excel: z5 normsinv
ey

11 ey

� �

MATLAB: z5 norminv
ey

11 ey

� �
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Finally, the expected home team expected points is calculated as follows:

ŝ5 z � σs 1 s

where

s is the average home team winning spread

σs is the standard deviation of home team winning spread

Estimating Probability
The corresponding probability that the home team will win the game can

be determined via a second regression analysis of actual spread as a func-

tion of estimated spread s. The model has the form:

Actual Spread5 c01 c1 � ŝ1Error

Solution of this regression will provide model parameters ĉ0 and ĉ1
and regression error term Error.

After solving the second regression model and determining the regres-

sion error term Error, we can compute the probability that the home

team will win the game.

It can be computed directly from the Excel or MATLAB functions as

follows:

In Excel:

p5 12 normdistð0; ŝ;Error;TrueÞ
In MATLAB:

p5 12 normcdf ð0; ŝ;ErrorÞ
If p. :50 then the home team is predicted to win the game. If p, :50

then the away team is expected to win the game. If p5 :50 then the

game is expected to end in a tie.

5.7 LOGIT POINTS MODEL

Description
The logit points model is a probability model that predicts the home

team victory margin by taking the difference between expected home

team points and expected away team points. The predicted points are

determined based on inferred team “ratings” similar to the logit spread

model discussed above.
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Model Form
The logit points model has the following form:

h5 c01 ch2 ca
a5 d01 dh2 da

where

h denotes is the transformed home team points, c0 denotes a home

field advantage parameter, ch denotes the home team parameter

value, and ca denotes the away team parameter value.

a denotes the transformed away team points, d0 denotes a home

field advantage parameter, dh denotes the home team parameter

value, and da denotes the away team parameter value.

The left-hand side of the equation h, a represents the success ratio of

the transformed points value and is computed as follows:

Step 1: hi5Home team points in game i

ai5Away team points in game i

Step 2: h5Average home team points across all games

a5Average away team points across all games

Step 3: σh5 Standard deviation of home team points across all games

σa5 Standard deviation of away team points across all games

Step 4: Compute the z-score of home and away points as follows:

Home team: zhi 5 hi2 h
� �

=σh

Away team: zai5 ai2 að Þ=σa

Step 5: Compute the standard normal cumulative probability for each

values as follows:

Via Excel functions:

Home team: Fh zið Þ5 normsdist zHið Þ
Away team: Fa zið Þ5 normsdist zAið Þ

Via MATLAB functions:

Home team: Fh zið Þ5 normcdf zHið Þ
Away team: Fa zið Þ5 normcdf zAið Þ

Step 6: Compute the success ratios for home and away points:

Home team points ratio: h�5
Fh zhið Þ

12FhðzhiÞ

Away team points ratio: a� 5
Fa zaið Þ

12FaðzaiÞ
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Step 7: Take a log transformation of the success ratio:

Home team points ratio: h5 log h�ð Þ5 log
Fa zaið Þ

12FaðzaiÞ

� �

Away team points ratio: a5 log a�ð Þ5 log
Fa zaið Þ

12FaðzaiÞ

� �

5.8 ESTIMATING PARAMETERS

The team rating parameters bk are then determined via OLS regression

analysis following techniques in Chapter 2, Regression Models. These

results will be shown for all sports in Chapter 6, Football—NFL;

Chapter 7, Basketball—NBA; Chapter 8, Hockey—NHL; Chapter 9,

Soccer—MLS; and Chapter 10, Baseball—MLB.

After we have the parameters for these models from OLS we can esti-

mate the home and away points for the game via the following techniques:

Estimating Home Team Points
Estimating home team points is accomplished directly from the home

team regression as follows. If team k is the home team and team j is the

away team, the transformed home team points are:

h5 ĉ01 ĉ k2 ĉ j

From the estimated h we determine the normalized z-score zh for

home team points as follows:

zh5F21
h

eh

11 eh

� �

where F21
h represents the inverse of the normal distribution for the log-

transformed home team points.

This can be computed via Excel or MATLAB functions as follows:

Excel: zh5 normsinv
eh

11 eh

� �

MATLAB: zh5 norminv
eh

11 eh

� �
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Finally, the expected home team expected points is calculated as follows:

Est: Home Team Points5 zh � σh1 h

where

h is the average home team winning points

σh is the standard deviation of home team points

Estimating Away Team Points
Estimating away team points is accomplished directly from the away team

regression as follows. If team k is the home team and team j is the away

team, the transformed away team points is:

a5 ĉ01 ĉ k2 ĉ j

From the estimated a we determine the normalized z-score za for

away team points as follows:

za5F21
a

ea

11 ea

� �

where F21
a represents the inverse of the normal distribution for the log-

transformed away team points.

We can now determine za via Excel or MATLAB functions as follows:

Excel: za5 normsinv
ea

11 ea

� �

MATLAB: za5 norminv
ea

11 ea

� �

Finally, the estimated home team expected points is:

Est: Away Team Points5 za � σa1 a

where

a is the average away team winning points

σa is the standard deviation of away team points

Estimating Home Team Winning Spread
The estimated home team victory margin is computed directly from the

home team points and away team points as follows:

Est: Spread5Est: Home Team Points2Est: Away Team Points
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Estimating Home Team Winning Probability
The corresponding probability of winning is determined by performing a

regression analysis of actual home team spread as a function of estimated

spread (from above) The model has the form:

Actual Spread5w01w1 � Est: Spread1Error

Solution of this regression will provide model parameters ŵ0 and ŵ1

and regression error term Error.

After solving the second regression model and determining the regres-

sion error term Error, we can compute the probability that the home

team will win the game.

It can be computed directly from the Excel or MATLAB functions as

follows:

In Excel:

p5 12NormDistð0;Est: Spread;Error;TrueÞ
In MATLAB:

p5 12 normcdf ð0;Est: Spread;ErrorÞ
If p. :50 then the home team is predicted to win the game. If p, :50

then the away team is expected to win the game. If p5 :50 then the

game is expected to end in a tie.

5.9 CONCLUSION

The chapter provided an overview of the six different sports prediction

models that will be applied to NFL, NBA, MLS, NHL, and MLB in sub-

sequent chapters. The models discussed in the chapter are based on linear

regression, logistic probability, and logit regression models. For each of

these, we provided a step-by-step process to estimate model parameters,

predict home team winning spread, predict probability that the home

team will win the game, and also the probability that the home team will

win by a certain score or margin (such as a specified spread or margin).
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CHAPTER 6

Football—NFL

In this chapter we apply our different sports modeling techniques to

NFL football data for the 2015 season. Our goal is to provide readers

with different techniques to predict winning team, estimated victory

margin, and the probability of winning. These models are based on

linear regression techniques described in Chapter 2, Regression

Models, and on probability estimation methods described in Chapter 3,

Probability Models. They include the games points, team statistics,

team ratings, logistic probability, logit spreads, and logit points models.

An overview of these approaches is also provided in Chapter 5, Sports

Prediction Models.

We evaluated these models using in-sample data using different

metrics: winning percentage, R2 goodness of fit, and regression error.

Our out-sample performance results are discussed at the end of the chapter.

Overall, we found the best-performing models to be the probability-based

models that infer explanatory factors based on the data.

Our results are as follows:

Fig. 6.1 depicts the winning percentage by model. In all cases except

for one, our models had a better than 70% winning percentage. The

team statistics model has a winning percentage of 68%. The team ratings

model had the highest winning percentage of 75% followed by the logis-

tic probability model. Each of these outperformed the Vegas line, which

had a 64% winning percentage.

Fig. 6.2 illustrates the R2 goodness of fit for each model. Each model

had a relatively high goodness of fit for sports models with R2.5 30%
for all but one of the models. The logit spread model and logit points

model had the highest goodness of fit of R25 35%. The Vegas line had

R25 16%.

Fig. 6.3 depicts the regression error surrounding the predicted victory

margin. Here, the lower the regression error, the better the model fit.

Our models had a regression error between 11 and 12 points, and the

Vegas line had a regression error of 13.
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Table 6.1 provides the data used in these regression models to allow

readers to test these models and experiment with different formulations.

These models also include the rankings of the teams according to each of

the six models described in the chapter.

In all cases, these models performed better than the Vegas line both in

terms of how often the favorite won the game and how close the point

spreads came to the actual margins of victory. It is, however, important to

note that the Vegas line is a forward-looking model that moves in response

to the wagers placed on the teams, and that its primary purpose is to ensure

that the bookmakers make a profit regardless of the outcome by encourag-

ing equal wagering on both teams. We are comparing “in-sample” data to

Vegas results for comparison purposes. In the section titled Out-Sample

Results (Section 6.8) we compare our look-forward results to the Vegas

line and find that our results are online or better than these lines.

A description of each model is as follows:

6.1 GAME SCORES MODEL

The game scores regression model predicts game outcomes based on the

average number of points scored and allowed by each team.

The model has the following form:

Y 5 b01 b1 �HPS1 b2 �HPA1 b3 � APS1 b4 � APA1 ε
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Figure 6.3 Regression R2: 2015 NFL.
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Table 6.1 Regression Results and Rankings
Team Statistics Ratings Rankings

Team W � L PF/G PA/G OY/R OY/PA DY/R DY/PA
Logistic
Rating

Logit
Spread

Logit
Home
Points

Logit
Away
Points

Game
Scores

Team
Statistics

Logistic
Ratings

Logit
Spread

Logit
Points

Arizona Cardinals 14 � 4 29.4 21.2 4.14 8.07 4.04 6.64 3.368 2.826 2.233 0.346 8 1 3 4 2

Atlanta Falcons 8 � 8 21.2 21.6 3.81 7.06 4.04 6.92 1.160 1.035 1.441 2.101 15 10 20 22 21

Baltimore Ravens 5 � 11 20.5 25.1 3.86 6.32 3.97 6.86 0.735 1.320 1.344 1.678 22 21 24 17 18

Buffalo Bills 8 � 8 23.7 22.4 4.78 7.19 4.39 6.60 1.258 1.576 1.430 1.428 13 12 18 13 13

Carolina Panthers 17 � 2 36.9 19.4 4.27 7.34 3.91 5.90 3.937 2.792 2.621 0.862 1 4 1 5 5

Chicago Bears 6 � 10 20.9 24.8 3.96 7.00 4.47 7.00 1.468 1.405 1.564 1.858 21 13 15 16 16

Cincinnati Bengals 12 � 5 27.2 17.5 3.86 7.57 4.41 6.18 2.777 2.850 2.219 0.397 5 2 4 3 4

Cleveland Browns 3 � 13 17.4 27.0 4.02 6.21 4.49 7.85 0.059 0.786 1.102 2.191 32 32 31 24 25

Dallas Cowboys 4 � 12 17.2 23.4 4.63 6.56 4.20 7.19 0.226 0.714 1.634 2.936 29 27 29 26 29

Denver Broncos 15 � 4 26.4 17.9 4.02 6.46 3.36 5.81 3.447 2.449 2.070 0.746 6 8 2 8 8

Detroit Lions 7 � 9 22.4 25.0 3.77 6.66 4.22 7.18 1.734 1.519 1.807 1.873 19 20 11 14 14

Green Bay Packers 11 � 7 26.4 20.4 4.34 6.09 4.44 6.77 2.672 2.265 1.893 0.811 9 28 7 10 9

Houston Texans 9 � 8 21.2 20.2 3.71 6.08 4.09 6.18 1.424 1.310 0.804 1.123 12 14 16 18 17

Indianapolis Colts 8 � 8 20.8 25.5 3.63 5.98 4.32 7.03 1.239 0.663 0.475 1.689 24 26 19 29 27

Jacksonville Jaguars 5 � 11 23.5 28.0 4.16 6.77 3.68 7.13 0.172 0.641 0.541 1.856 27 19 30 30 30

Kansas City Chiefs 12 � 6 28.9 17.1 4.56 6.98 4.14 5.90 2.674 2.857 2.211 0.377 2 7 6 2 3

Miami Dolphins 6 � 10 19.4 24.3 4.35 6.48 4.01 7.38 0.521 0.712 0.943 2.112 23 29 28 27 26

Minnesota Vikings 11 � 6 23.4 18.4 4.51 6.43 4.20 6.65 2.654 2.278 2.243 1.211 10 23 8 9 10

New England Patriots 13 � 5 31.4 20.1 3.66 7.00 3.89 6.46 2.518 2.507 2.271 0.912 4 6 10 7 7

New Orleans Saints 7 � 9 25.4 29.8 3.76 7.45 4.91 8.35 0.955 0.694 1.779 3.075 28 24 23 28 28

New York Giants 6 � 10 26.3 27.6 3.99 6.98 4.37 7.50 0.704 1.075 1.292 2.001 16 22 25 21 22

New York Jets 10 � 6 24.2 19.6 4.17 6.72 3.58 6.26 1.585 1.734 1.804 1.555 11 9 13 11 11

Oakland Raiders 7 � 9 22.4 24.9 3.94 6.40 4.13 6.46 1.520 1.591 1.652 1.611 18 15 14 12 12

Philadelphia Eagles 7 � 9 23.6 26.9 3.93 6.56 4.50 6.75 1.002 0.931 1.111 2.004 20 17 22 23 23

Pittsburgh Steelers 11 � 7 28.6 19.9 4.53 7.82 3.78 6.81 2.539 2.665 2.529 0.999 7 5 9 6 6

San Diego Chargers 4 � 12 20.0 24.9 3.46 6.88 4.81 7.42 0.523 1.292 1.410 1.855 25 18 27 19 20

San Francisco 49ers 5 � 11 14.9 24.2 3.96 6.30 4.01 7.61 1.060 0.776 0.374 1.422 31 31 21 25 24

Seattle Seahawks 11 � 7 28.6 17.6 4.52 7.63 3.49 6.18 2.711 2.931 2.720 0.785 3 3 5 1 1

St. Louis Rams 7 � 9 17.5 20.6 4.56 5.93 4.02 6.81 1.631 1.476 1.527 1.646 17 30 12 15 15

Tampa Bay Buccaneers 6 � 10 21.4 26.1 4.76 7.20 3.45 7.10 0.605 0.598 1.037 2.379 26 16 26 31 31

Tennessee Titans 3 � 13 18.7 26.4 4.00 6.36 3.89 7.31 2 0.448 0.257 0.604 2.450 30 25 32 32 32

Washington Redskins 9 � 8 25.4 24.4 3.69 7.36 4.80 7.21 1.360 1.252 1.282 1.700 14 11 17 20 19

Home Field Advantage 0.212 0.223 0.034 0.012



In this representation, the dependent variable Y denotes the home

team’s margin of victory (or defeat). A positive value indicates the home

team won by the stated number of points and a negative value indicates

the home team lost by the stated number of points.

The variables of this model are:

Y 5 home team victory margin

HPS5 home team average points scored per game

HPA5 home team average points allowed per game

APS5 away team average points scored per game

APA5 away team average points allowed per game

b0; b1; b2; b3; b45model parameters, represents the sensitivities to

the corresponding model factor.

The model parameters, i.e., betas, are determined from a linear regres-

sion analysis as described in Chapter 2, Regression Models.

The probability that the home team will be victorious is computed

from the Excel normal distribution function as follows:

p5 12NormDistð0;Y ; SeY ;TrueÞ
Winning probability can also be computed from a statistical package

such as via MATLAB’s normal cumulative distribution function as follows:

p5 12 normcdf ð0;Y ; SeY Þ
Here, Y and SeY are the expected victory margin and regression error

term respectively, and zero indicates the reference point used for the cal-

culation (i.e., the probability that the winning margin will be greater than

zero). This notation can be written more generally as:

Regression Results
The best fit regression equation for predicting the home team victory

margin based on average points scored and average points allowed is

below. Victory margin is positive when the home team is favored and

negative when the visiting team is favored.

This model equation is:

Victory Margin521:281 0:867 �HPS2 0:823 �HPA2 0:609 � APS
1 0:999 � APA6 11:72

The game scores model returned a relatively high R2 value of

R25 33%. The t-stats were 23.47 and 4.20 for visiting teams’ points

scored and points allowed, and 4.99 and 23.48 for home teams, and an

F-value of 32.08. The regression error was 11.72.
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The signs of the input variables are intuitive. The sign of the para-

meter is expected to be positive for home points scored (HPS) and away

points allowed (APA). In both of these cases, the home team will score

more points if these input values are higher. Similarly, the signs of the

parameters for home points allowed (HPA) and away team points scored

(APS) are expected to be negative. The home team is expected to win by

fewer points or possibly lose if the HPA and/or APS increase in value.

Table 6.2 shows the results of the regression model and Fig. 6.4 shows

a graph of actual victory margin (spreads) compared to estimated victory

margin (spreads) from our model.

y = x + 3E - 15
R2= 0.3288
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Figure 6.4 Game Scores Model: 2015 NFL.

Table 6.2 Game Scores Model: 2015 NFL

Statistic Value t-Stat

b0 28.519 20.8

b1 (Home points scored) 0.867 5.0

b2 (Home points allowed) 20.823 23.5

b3 (Visitor points scored) 20.609 23.5

b4 (Visitor points allowed) 0.999 4.2

R2 32.88%

F-value 32.082

Standard Error 11.724
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Performance
The game scores model correctly identified the winner in 190 of 267

games, a rate of 71.2%. When the model gave the favorite at least a 60%

win probability, the favorite won 78.5% of the time, and that

figure jumped to 84.2% when the model predicted one team or the other

as having a probability of winning of 70% or higher. Above 85%, the

model was wrong only 3 times out of 46: a three-point loss by Baltimore

to Pittsburgh in Week 4 in which the model had the Ravens as a 6-to-1

favorite, a two-point loss by Kansas City to Chicago in Week 5 in which

the Bears were projected to be a 151/2-point underdog, and a 35�28

defeat of the New England Patriots in Week 13 at the hands of the

Philadelphia Eagles, who made the most of their 10.5% probability of

winning.

For the 2015 NFL postseason, the model correctly predicted the

winner in 9 of 11 games, missing only the Bengals’ loss to the Steelers in

the first AFC Wild Card Game and the Broncos’ upset of the Panthers

in Super Bowl 50, in which it had considered Carolina an 8-to-5 favorite.

The Vegas model predicted the winner 170 times out of 267 games

for a winning percentage of 63.7%. The game scores regression predicted

the winner 190 times out of 267 games for a winning percentage of

71.2%. Thus the game scores regression outperformed the Vegas line and

won 21 more games.

The game scores regression won 66.3% of simulated spread bets

against the Vegas line over the course of the 2015 NFL season, a record

of 171�87�9. If the Vegas line was the Patriots by 9, the model bet on

the Patriots when it predicted they would win by more than 9 points,

and against the Patriots when it predicted they would win by fewer than

9 points or lose outright.

In the 2015 NFL postseason, the model won 9 of 11 times against

the Vegas line, including both conference championship games. The

only missed projections were the division game between Arizona

and Green Bay and the Super Bowl, in which Vegas had the Panthers

as 5-point favorite whereas the model projected a 6.7-point win

by Carolina.

Rankings
The top 10 in the game scores model’s rankings all made the playoffs,

as well as 11 of the top 12. The one playoff team not in the top 12 was

161Football—NFL



the Washington Redskins, who ranked No. 14. The highest-ranked

nonplayoff team was the New York Jets (10�6), who finished behind

the 12�4 New England Patriots in the AFC East and lost the tiebreaker

with the Pittsburgh Steelers for the AFC’s second wild card slot. The

NFC champion Panthers were the No. 1 ranked team while the Super

Bowl champion Broncos came in at No. 6, between the Cincinnati

Bengals and the Steelers.

Example
We compare a game scenario between the Dallas Cowboys (4�12) at

home versus the Oakland Raiders (7�9).

The 2015 Cowboys scored 17.2 points per game while allowing

23.4. The Raiders scored 22.4 points per game while their defense

gave up 24.9 points per game. Given those averages and our regres-

sion results, the game scores model favors the Raiders in this game by

1.59 points:

Victory Margin528:521 0:867 17:2ð Þ2 0:823 23:4ð Þ2 0:609 22:4ð Þ
1 0:999 24:9ð Þ521:59

The negative victory margin in this case indicates that the visiting

team (Raiders) is the favored team by 1.59.

The corresponding probability that the host Cowboys would win is

45% and is calculated as follows:

p5 12NormCDF 0; 21:59; 11:72ð Þ5 44:62%

6.2 TEAM STATISTICS MODEL

The team statistics regression uses team performance statistics (i.e., team

data) to predict game results.

We will demonstrate the regression approach using four team statistics

per team: yards gained per rushing attempt and per pass attempt by the

offense, and yards allowed per rush and per pass attempt by the defense.

The team statistics linear regression model has form:

Y 5 b01 b1 �HTOYR1 b2 �HTOYPA1 b3 �HTDYR1 b4 �HTDYP

1b5 � ATOYR1b6 � ATOYPA1b7 �HTDYR1b8 � ATDYPA1 ε
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The variables of the model are:

Y 5 outcome value we are looking to predict (spread, home team

points, away team points, and total points)

HTOYR5 home team average yards per rush

HTOYPA5 home team average yards per pass attempt

HTDYR5 home team average yards per rush allowed

HTDYPA5 home team average yards per pass attempt allowed

ATOYR5 away team average yards per rush

ATOYPA5 away team average yards per pass attempt

ATDYR5 away team average yards per rush allowed

ATDYPA5 away team average yards per pass attempt allowed

b0; b1; b2; b3; b4; b5; b6; b7; b85model parameter, sensitivity to the

variable

ε5model error

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models. The results of this

model are shown in Table 6.3.

Regression Results
The result of the regression model for predicting home team victory mar-

gin from our team statistics is:

Est: Victory Margin5 21:7952 1:635 HTOYRð Þ1 4:349 HTOYPAð Þ
1 0:258 HTDYRð Þ26:931 HTDYPAð Þ
2 2:555 ATOYRð Þ2 4:246 ATOYPAð Þ
2 4:886 ATDYRð Þ19:179 ATDYPAð Þ6 12:26

Table 6.3 Team Statistics Model: 2015 NFL

Statistic Value t-Stat

b0 21.795 0.0

b1 (Home off yards/rush) 21.635 0.8

b2 (Home off yards/pass attempt) 4.349 20.7

b3 (Home def yards/rush) 0.258 3.1

b4 (Home def yards/pass attempt) 26.931 0.1

b5 (Away off yards/rush) 22.555 24.6

b6 (Away off yards/pass attempt) 24.246 21.1

b7 (Away def yards/rush) 24.886 23.1

b8 (Away def yards/pass attempt) 9.179 22.0

R2 27.67%

F-value 12.336

Standard Error 11.724

163Football—NFL



These regression results had a goodness of fit of R25 27.7%. The

t-statistics were significant for passing but not significant for rushing.

Furthermore, the passing relationship is positive while the rushing vari-

able is negative. This does not imply that better rushing teams result in

less performance. Rather, it implies that the teams that rush more often

lose out on the better yards per pass completion. These results indicate

that passing is more valuable than rushing to a team.

The high F-value of F5 12.34 is an indication that these variables are

all not simultaneously zero. These regression statistics lend some support

that analysts may be able to fine tune and improve the model using addi-

tion or different data variables as the input factors.

The regression standard deviation was 12.26. This is better than the

Vegas line at 13.03. Our predicted results were within 1 point of the

actual margin of victory 16 times (5.99%), 3 points 56 times (20.97%),

and 7 points 126 times (47.19%).

These regression results are shown in Table 6.3 and the graph of actual

spread compared to predicted spread is shown in Fig. 6.5.

Performance
The team statistics model predicted the winner 181 times in 267 games

(67.8%). When the win probability was at least 60% the model was

y  = x + 2E - 14
R2  = 0.2767
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Figure 6.5 Team Statistics Model: 2015 NFL.
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correct 74.59% of the time, and when the win probability was 80% or

higher the model was correct 90.74% of the time. The model was a per-

fect 23 for 23 when the win probability was 85% or higher. For Super

Bowl 50, this model predicted the Panthers as a 3-to-2 favorite.

The Vegas model predicted the winner 170 times out of 267 games

for a winning percentage of 63.7%, so the team statistics model outper-

formed the Vegas line by 11 games. Standard deviations for the point

spreads relative to the home team were 6.20 points for the Vegas line and

7.47 points for the team statistics model.

The team statistics model beat the Vegas line in 63.95% of the

games, a record of 165�93�9. It also won simulated spread bets for 7

of the 11 playoff games, including both conference championships and

the Super Bowl. Both the model and Vegas favored the Panthers, but

the model would have advised taking the Broncos as its predicted vic-

tory margin of 4.6 points would not have covered the official Vegas

spread of 5 points.

Rankings
The top eight were all playoff teams, with the next playoff team com-

ing in at No. 11 (Washington). The Chicago Bears, who finished last

in the NFC North at 6�10, were ranked No. 13, one spot ahead of

the AFC South champion Houston Texans. The two playoff represen-

tatives from the NFC North finished far down the rankings, with the

champion Minnesota Vikings ranked No. 23 and the wild card Green

Bay Packers at No. 28.

The Cardinals were ranked No. 1 by this model, helped in large part

by their 8.07 yards per offensive pass attempt, which was at least half a

yard better than all other teams except the Steelers (7.82) and Seahawks

(7.63). The Panthers finished in the No. 4 slot just a fraction behind

Seattle, with the Broncos coming in at No. 8. These ranking results are

shown in Table 6.1.

Example
The Cowboys and Raiders had nearly identical yards gained per pass

attempt (Oakland 6.40, Dallas 6.56) and yards allowed per rush (Oakland

4.13, Dallas 4.20), while the Cowboys had an advantage on rushing

offense (4.63 to 3.94) as did the Raiders on pass defense (6.46 to 7.19).

But as the model’s beta value for pass defense (26.93) was much more
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significant than that for rushing offense (21.64). Predictions from this

model find Oakland as a 4-point favorite:

Est Margin of Victory521:79521:635 4:63ð Þ14:349 6:56ð Þ10:258 4:20ð Þ
26:931 7:19ð Þ22:555 3:94ð Þ24:246 6:40ð Þ
24:886 4:13ð Þ29:179 6:46ð Þ6SE524:09612:26

The estimated victory margin of 24.09 points is equivalent to a win

probability of 36.9% for the Cowboys:

p5 12NormCDF 0; 24:09; 12:26ð Þ5 36:94%

6.3 LOGISTIC PROBABILITY MODEL

The logistic probability model infers a team strength rating based only on

game outcomes such as whether the team won, lost, or tied the game.

The result of the game is determined from the perspective of the home

team, but analysts can use the same approach from the perspective of the

visiting team.

The logistic model is as follows:

y� 5
1

11 exp 2 b01 bh2 bað Þ� �

Here, b0 denotes a home field advantage parameter, bh denotes the

home team rating parameter value, and ba denotes the away team

rating parameter value. The value y� denotes the probability that the

home team will win the game. Team ratings for the logistic probability

are determined via maximum likelihood estimates and are shown

Table 6.1.

Estimating Spread
The estimated spread (i.e., home team victory margin) is determined via

a second analysis where we regress the actual home team spread on the

estimated probability y� (as the input variable). This regression has form:

Actual Spread5 a01 a1 � y�

This model provides a relationship between the logistic home team

winning probability and the home team winning percentage. It is impor-

tant to note here that analysts may need to incorporate an adjustment to
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the spread calculation if the data results are skewed (see Chapter 3:

Probability Models).

The solution to this model is (Table 6.4):

After computing the home team winning probability y�, the expected

winning spread is estimated from the following equation using the regres-

sion results:

Estimated Spread5214:481 29:59 � y�

A graph illustrating the estimated spread from the probability estimates

is shown in Fig. 6.6.

Table 6.4 Logistic Probability Regression: 2015 NFL

Statistic Value t-Stat

a0 214.467 28.7

a1 29.585 10.7

b0 (Home field advantage) 0.212

R2 30.25%

F-value 114.947

Standard Error 11.883

y = 29.585x – 14.467 
R2= 0.3025
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Figure 6.6 Logistic Probability Model: 2015 NFL.
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Performance
The logistic probability model predicted the winning team in 197 of 267

games for a winning percentage of 73.8%. This is an improvement over the

Vegas line (which predicted 170 games out of 267 correctly) by 27 games.

The logistic probability model also proved to be a very good predictor

of the victory margin with an R25 30.29% and standard error of 11.87.

The standard error of the Vegas line was 13.05.

The model’s favorites won 85.5% of the time when their win proba-

bility was 75% or higher. Above 90% it was wrong only once, in the case

of the Panthers’ Week 16 loss to Atlanta; the model returned a 92.9%

win probability for Carolina. The median win probability for the favorite

was 72.8%; the home team was the favorite 59.8% of the time.

In Super Bowl 50, this model predicted Carolina as a favorite over

Denver with a win probability of 62%. The estimated winning spread for

Carolina was 3.9 points. Had it been a home game for Carolina rather

than a neutral-site game, their win probability would rise to 66.9% with a

spread of 5.32 points.

Rankings
All of the teams in the model’s top 10 rankings were among the 12 that qual-

ified for the playoffs. The only two playoff teams not in the model’s top 12

were the Houston Texans and Washington Redskins, who were ranked No.

16 and No. 17 respectively. These teams finished at 9�7 but were each in a

division where they were the only team to finish above .500, thus qualifying

for the NFL playoffs. The top teams in the model’s rankings who were left

out of the postseason were the Detroit Lions and the St. Louis Rams. Both

finished with a records of 7�9, followed by the New York Jets (10�6).

The 2015 Lions’ opponents averaged a ranking of 12.19; by that mea-

sure Detroit had the fourth-toughest schedule in the NFL. Half of their

schedule came against teams that finished in the top eight—the Broncos,

Cardinals, Chiefs, Seahawks, and two games each against the Vikings and

Packers—against whom they went 1�7, their sole bright spot having

been an 18�16 win over Green Bay in Week 10.

The Rams had a similar schedule. Their average opponent was ranked

No. 13.125, seventh-toughest, and half their schedule came against teams

that finished in the top nine. St. Louis did fare slightly better in those games,

having gone 3�5, including a two-point win over the No. 3 Cardinals in

Week 4 and a sweep of the season series with the No. 5 Seahawks.
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The Jets were one of 6 AFC teams with 10 wins; unfortunately for

Gang Green, each conference has only five playoff berths, and the AFC’s

wild cards were the Kansas City Chiefs (11�5) and Pittsburgh Steelers

(10�6). The Jets had the weakest schedule in the NFL with an average

opponent ranking of 21.69 and only two games against the top 10, both

times the No. 10 Patriots, with each squad claiming one victory. Nine of

the Jets’ 10 wins came against teams in the bottom half.

The No. 1 Panthers actually had the second-easiest schedule, with 13

of 16 opponents in the bottom half of the rankings and 8 in the bottom

10, but 15�1 is still 15�1. Carolina’s opponents in Super Bowl 50, the

champion Denver Broncos, ranked No. 2.

Example
The Cowboys’ logistic rating was the fourth-lowest in the NFL at

0.2256. Oakland’s rating of 1.5202, meanwhile, ranked 14th out of the

32 teams. The logistic probability model gives the Cowboys only a 25.3%

probability of beating the Raiders at home:

y�5
1

11 e2 0:225621:520210:2232ð Þ 5
1

11 e1:082
5 0:2531

The estimated winning margin is computed using its value

(y�5 0:2531) and the regression parameters from above. This calculation

results in a nearly 7-point victory by the visiting Raiders.

Estimated Spread5214:481 29:59 � 0:2531526:98

6.4 TEAM RATINGS MODEL

The team ratings prediction model is a linear regression model that uses

the team ratings determined from the logistic probability model as the

explanatory variables to estimate home team victory margin. This is

one of the reasons why the logistic model is one of the more important

sports models since its results can be used in different modeling

applications.

The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating1 E
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The variables of the model are:

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home field advantage value

b15 home team rating parameter

b25 away team rating parameter

Y 5 home team’s victory margin (positive indicates home team is

favored and negative value indicates away team is favored)

The probability of winning is determined from:

Probability5 12NormCDFð0;Y ; SEÞ
The betas of this model, b1 and b2, are determined from a linear

regression analysis as described in Chapter 2, Regression Models.

Regression Results
The best fit regression equation to predict home team victory margin

from team strength ratings is:

Estimated Victory Margin5 0:99251 5:5642 �Home Rating

2 5:2037 � Away Rating

The regression had an R2 of 30% (considered high for sports predic-

tion models) and significant t-stats for each of the team rating parameters.

The standard error of this model is 11.92, indicating that 70% of the time

the actual spread will be within 11.92 points of our predicted spread.

The regression results are shown in Table 6.5 and a graph showing the

actual victory margin as a function of estimates victory margin is shown

in Fig. 6.7.

Table 6.5 Team Ratings Model: 2015 NFL

Statistic Value t-Stat

b0 0.992 0.6

b1 (Home team rating) 5.564 8.3

b2 (Away team rating) 25.204 27.7

R2 30.11%

F-value 56.868

Standard Error 11.918
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Performance
For the 2015 NFL season and postseason, the team ratings model cor-

rectly returned the winner in 199 of 267 games (74.53%). This success

rate increased as the probability confidence increased; when the probabil-

ity of winning is at least 65%, the model correctly predicted the winning

team 80% of the time. At a predicted winning probability rate of 90%,

the model was correct in 35 out of 36 games. Unsurprisingly, that one

incorrect prediction was the Carolina Panthers’ 20�13 loss to the Atlanta

Falcons in Week 16, which ended the Panthers’ bid for a perfect season

and dropped their record to 14�1.

The Vegas model predicted the winner 170 times out of 267 games

for a winning percentage of 63.7%, so the team ratings model outper-

formed the Vegas line by 29 games. The team ratings model beat the

Vegas line in 67.4% of simulated spread bets, winning 174 wagers while

losing 84. The team ratings model was also 10 for 11 in bets on playoff

games including both conference championships and the Super Bowl. Of

the six models, the team ratings model favored Carolina over Denver by

2.64 points in the Super Bowl.

y = x + 5E –15
R2 = 0.3011
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Figure 6.7 Team Ratings Model: 2015 NFL.
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Example
Given the Cowboys’ rating of 0.2256 and the visiting Raiders’ rating of

1.5202, the team ratings model would predict a victory by Oakland by

5.66 points.

Est: Victory Margin5 0:99251 5:5642 0:2256ð Þ2 5:2037 1:5202ð Þ525:66

The estimated winning probability is calculated using the estimated

victory margin and regression error terms. This results in a 31.7% proba-

bility for Dallas and thus 68.3% for Oakland:

Probability5 12NormCDF 0;25:66; 11:92ð Þ5 31:7%

6.5 LOGIT SPREAD MODEL

The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric. The model

transforms the home team victory margin to a probability value between

0 and 1 via the cumulative distribution function and then estimates model

parameters via logit regression analysis.

The logit spread model has following form:

y5 b01 bh2 ba

where b0 denotes a home field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.

The left-hand side of the equation y is the log ratio of the cumulative

density function of victory margin (see chapter: Sports Prediction Models

for calculation process).

In this formulation, the parameters values b0; bh; ba are then deter-

mined via ordinary least squares regression analysis. The results of this

analysis are shown in Table 6.1.

Estimating Spreads
Estimating the home team winning margin is accomplished as follows.

If team k is the home team and team j is the away team, we compute

y using the logit parameters:

y5 b01 bk2 bj

Compute y� from y via the following adjustment:

y�5
ey

11 ey

Compute z as follows:

z5 norminvðy�Þ
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And finally, the estimated home team spread:

Estimated Spread5 s1 z � σs

where

s5 average home team winning margin (spread) across all games

σs 5 standard deviation of winning margin across all games

Estimating Probability
The corresponding probability of the home team winning is determined by

performing a regression analysis of actual spread as a function of estimated

spread to determine a second set of model parameters. This model has form:

Actual Spread5 a01 a1 � Estimated Spread
To run this regression, we need to compute the estimated spread for

all games using the logit spread parameters from above (see Table 6.1).

The solution to this model is (Table 6.6):

A graphical illustration of the relationship between actual spreads and

estimated spreads is shown in Fig. 6.8.

Performance
The logit spread model predicted the winner in 197 of 267 games

(73.8%). It was 76% accurate when the favorite’s probability of winning

was over 60%, and 81% correct when the probability was 75% or higher.

With a win probability of 97.1% and a spread of 21.8 points, the biggest

favorite was the New England Patriots when they hosted the Tennessee

Titans in Week 15, winning 33�16. The most even matchup involved

the Cincinnati Bengals at the Denver Broncos in Week 16, for which the

model calculated a win probability of 50.08% for Denver. The logit

spread model’s margin of victory regression had the highest R2 with

R25 34.604%, and standard regression error of 11.5.

Table 6.6 Logit Spread Model: 2015 NFL

Statistic Value

s̅ (Average home victory margin) 1.599

σs (Home victory margin standard deviation) 14.202

b0 (Home field advantage) 0.223

R2 34.50%

F-value 139.553

Standard Error 11.516
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This model correctly predicted the winners of 9 of the 11 playoff

games, missing only the AFC Wild Card Game between Cincinnati and

Pittsburgh and the Super Bowl. In Super Bowl 50, the logit spread model

gave the Panthers a 55% chance of beating the Broncos, making them a

1.45-point favorite, which was well under the Vegas line of Carolina by 5.

Rankings
The 12 playoff teams consisted of the top 10 in the logit spread rankings,

followed by the Texans and Redskins, who were ranked 16 and 17

respectively. The top two in the rankings were the two conference cham-

pions, the Panthers and the Broncos.

Example
The Cowboys’ logit spread parameter was 0.7139 (26th of the 32 teams),

while the Raiders yielded a rating of 1.5912, good for 12th in the NFL.

The home field advantage factor (b0) for the NFL in 2015 was 0.2232.

The average winning margin was 11.6 and the standard deviation of

winning margin was 14.2.

The logit spread model predicts Oakland to win by 4.17 with a win-

ning probability of 35.83%.

y = 0.9235x –1.5115
R2= 0.345
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Figure 6.8 Logit Spread Model: 2015 NFL.
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6.6 LOGIT POINTS MODEL

The logit points model is a probability model that predicts the home

team victory margin by taking the difference between home team pre-

dicted points and away team predicted points. The predicted points are

determined based on inferred team “ratings” similar to the logit spread

model discussed above.

The logit points model has following form:

h5 c01 ch2 ca

a5 d01 dh2 da

where

h is the transformed home team points, c0 denotes a home field

advantage, ch denotes the home team rating, and ca denotes the

away team rating corresponding to home team points.

a is the transformed away team points, d0 denotes a home field

advantage, dh denotes the home team rating, da denotes the away

team rating corresponding to away team points.

The left-hand side of the equation h and a is the log ratio of the

cumulative density function of home team points and away team points

respectively (see chapter: Sports Prediction Models for a description).

Estimating Home and Away Team Points
Estimating the home team points is accomplished directly from the home

points team ratings. These rating parameters are shown in Table 6.1. If

team k is the home team and team j is the away team, the transformed

home team points is:

h5 c01 ch2 ca

h� 5
eh

11 eh

Then

z5 norminv h�ð Þ
And finally, home team estimated points are calculated as:

Home Team Points5 h1 z � σh
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where

h5 average home team points

σh5 standard deviation of home team points

Away points are estimated in the same manner but using the team rat-

ings for the away points model. This is:

a5 d01 dh2 da

a�5
eh

11 eh

Then

z5 norminv a�ð Þ
And finally, home team estimated points are calculated as:

Away Team Points5 a1 z � σa

Estimating Spread
The estimated home team victory margin is computed directly from the

home team points and away team points as follows:

Est: Spread5Home Team Points2Away Team Points

Estimating Probability of Winning
The corresponding probability of winning is determined by performing a

regression analysis of actual spread as a function of estimated spread. The

model has form:

Actual Spread5 b01 b1 � Est: Spread
The solution to this model is in Table 6.7:

A graphical illustration of actual home team spreads compared to esti-

mated home team spreads is in Fig. 6.9.

Table 6.7 Logit Points Model: 2015 NFL

Statistic Home Away

s̅ (Average score) 23.532 21.933

σs (Score standard deviation) 10.176 9.432

b0 (Home field advantage) 0.034 0.012

R2 34.67%

F-value 140.603

Standard Error 11.501
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Performance
The logit points model won 191 times out of 267 games, a winning per-

centage of 71.5%. When the probability of the favorite winning was over

90%, it was correct 34 times out of 35. It missed only the Eagles’ 35�28

upset over the Patriots in Foxboro in Week 13, a game in which the

model favored New England by 15.3 points.

This model correctly predicted 8 of the 11 playoff games, including

the four division games and the two conference championships. In Super

Bowl 50, the logit points model had the Panthers as a narrow 1.7-point

favorite with a win probability of 56%.

Example
To determine the probability and margin of winning, we must first calcu-

late the estimated scores for each team. The 2015 Cowboys’ ratings were

bh5 1.6343 and dh5 2.9357, while the Raiders’ values were ba5 1.6525

and da5 1.6111. The home field advantage factors were b05 0.0336 and

d05 0.0116.

Home Score5 23:63

Away Score5 29:60

y = 0.9265x + 0.0812
R2= 0.3467
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Figure 6.9 Logit Points Model: 2015 NFL.
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This gives us a projection that the Raiders should win by nearly 6 points:

Victory Margin5 23:632 29:60525:97

The normal cumulative distribution function yields the probability of

a Dallas win, given the regression’s standard deviation of 11.501:

Probability5 12 normcdf 0; 25:97; 11:501ð Þ5 30:19%

6.7 EXAMPLE

All six models favored Oakland over the Cowboys in Dallas in our imag-

ined matchup with odds of almost 2 to 1. The average estimated winning

margin was Oakland by 4.7 points with a winning probability of 65.9%.

These results are shown in Table 6.8.

6.8 OUT-SAMPLE RESULTS

We next performed an out-sample analysis where we predicted our game

results using a walk forward approach. In this analysis, we use previous game

results data to predict future games. Here, the model parameters were esti-

mated after each week of games (beginning in the fifth week) and then we

predicted the winning team for the next week. For all models we found the

predictive power of the model declining slightly, but after 10 weeks the results

from the out-sample began to converge to the results with in-sample data.

The results from our analysis showed that the game scores and team

statistics models had the greatest reduction in predictive power. The game

scores model had a winning percentage of about 65% but the team statis-

tics model had a winning percentage of 62% (which was below the Vegas

line of 63.7%).

Table 6.8 Example Results

Model Favorite Underdog Line
P(DAL
Win)

P(OAK
Win)

Game Scores Oakland Dallas 1.6 44.6% 55.4%

Team Statistics Oakland Dallas 4.1 36.9% 63.1%

Logistic Probability Oakland Dallas 7.0 25.3% 74.7%

Team Ratings Oakland Dallas 5.7 31.7% 68.3%

Logit Spread Oakland Dallas 4.2 35.8% 64.2%

Logit Points Oakland Dallas 6.0 30.2% 69.8%

Average Oakland Dallas 4.7 34.1% 65.9%
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The probability models also had a slight reduction in predictive power

but still outperformed the Vegas line on a walk forward basis. These models

all have a winning percentage of greater than 70% except for the logit points

model, which had a winning percentage of 68.8%. From Week 12 through

the regular season and into the postseason, the out-sample results were on

par with the in-sample results, thus indicating that once we have 10�12

weeks of data the model results are as strong as they can be (Fig. 6.10).

6.9 CONCLUSION

In this chapter we applied six different sports model approaches to

National Football League results for the 2015 season. The models were

used to predict winning team, estimated home team victory margin, and

probability of winning. We found that in all cases, these models per-

formed better than the Vegas line using in-sample data and five of six of

the models performed better than the Vegas line using out-sample data.

The family of probability models (logistic probability, team ratings, logit

spreads, and logit points) performed the best (highest predictive power)

and outperformed the data-driven models (game scores and team statis-

tics). The best-performing models were the logistic probability model and

the team ratings model. In all cases, our modeling approaches proved to

be a valuable predictor of future game results including predicting win-

ning team, winning spread, and probability of winning.
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Figure 6.10 Comparison of In-Sample to Out-Sample: 2015 NFL.
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CHAPTER 7

Basketball—NBA

This chapter applies the different sports modeling techniques to NBA

basketball data for the 2014�15 season. Our goal is to provide readers

with different techniques to predict the winning team, estimated victory

margin, and probability of winning. These models are based on linear

regression techniques described in Chapter 2, Regression Models, and on

probability estimation methods described in Chapter 3, Probability

Models. They include the game scores, team statistics, team ratings, logis-

tic probability, logit spreads, and logit points models. An overview of

these approaches is also provided in Chapter 5, Sports Prediction Models.

We evaluated these models using in-sample data in three different

ways: winning percentage, R2 goodness of fit, and regression error.

Out-sample performance results are discussed at the end of the chapter.

Fig. 7.1 depicts the winning percentage by model. The game scores,

team ratings, logistic probability, and logit spread models all picked the

winners between 69.3% and 70.3% of the time. This is quite similar to

the results of the 2015 NFL season with the exception of the logit points

model, which by a large margin had the lowest success rate at 57.9%. The

team statistics regression had the second-lowest success rate at 65.6%.

Fig. 7.2 illustrates the R2 goodness of fit for each model. The Vegas

line tied the game scores model for the best favorites’ winning percentage

(70.3%) and was also within 0.15 points of the lowest standard deviation

for margin of victory error. Its R2 for margin of victory of 23.5% was in

line with the best-performing models.

Fig. 7.3 depicts the regression error surrounding the predicted victory

margin. Here, the lower the regression error, the better the model fit.

The team statistics regression also returned the largest standard deviation

for the differential between the home teams’ projected and actual margins

of victory or defeat, 11.65 points. Next highest was the game scores

model at 9.22 points. The four other models were nearly identical,

ranging from 7.35 to 7.54 points. Team statistics also gave the lowest R2

for margin of victory, 18%. The five other models had R2 values between

22.6% and 23.9%.
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Table 7.1 provides the data used in these regression models to allow

readers to test these models and experiment with different formulations.

These models also include the rankings of the teams according to each of

the six models described in the chapter.
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7.1 GAME SCORES MODEL

The game scores regression model predicts game outcomes based on the

average number of points scored and allowed by each team.

The games score model has form:

Y 5 b01 b1 �HPS1 b2 �HPA1 b3 � APS1 b4 � APA1 ε

In this representation, the dependent variable Y denotes the home team’s

margin of victory (or defeat). A positive value indicates the home team won

by the stated number of points and a negative value indicates the home team

lost by the stated number of points.

The variables of the model are:

Y 5 home team victory margin

HPS5 home team average points scored per game

HPA5 home team average points allowed per game

APS5 away team average points scored per game

APA5 away team average points allowed per game

b0; b1; b2; b3; b45model parameters, represents the sensitivities to

the corresponding model factor

The betas of this model are determined from a linear regression analysis

as described in Chapter 2, Regression Models.
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Table 7.1 Regression Results and Rankings
Team Statistics Ratings Rankings

Team W � L Pct PF/G PA/G FG% APG RPG
Logistic
Rating

Logit
Spread

Logit
Home
Points

Logit
Away
Points

Game
Scores

Team
Statistics

Logistic
Ratings

Logit
Spread

Logit
Points

Atlanta Hawks 60 � 22 .732 102.5 97.1 .466 25.7 40.6 3.390 2.994 2.664 2.059 4 7 5 6 5

Boston Celtics 40 � 42 .488 101.4 101.2 .443 24.5 43.8 2.299 2.430 2.348 2.442 16 14 19 17 18

Brooklyn Nets 38 � 44 .463 98.0 100.9 .451 20.9 42.4 2.307 2.066 2.379 2.842 22 20 18 24 22

Charlotte Hornets 33 � 49 .402 94.2 97.3 .420 20.2 44.1 1.985 2.006 2.207 2.774 23 28 22 25 25

Chicago Bulls 50 � 32 .610 100.8 97.8 .442 21.7 45.7 2.929 2.913 2.722 2.267 11 11 10 10 10

Cleveland Cavaliers 53 � 29 .646 103.1 98.7 .458 22.1 43.0 3.353 3.158 2.826 2.062 5 10 6 4 4

Dallas Mavericks 50 � 32 .610 105.2 102.3 .463 22.5 42.3 3.041 2.951 2.884 2.339 10 9 9 9 9

Denver Nuggets 30 � 52 .366 101.5 105.0 .433 21.8 44.7 1.909 2.075 2.366 2.862 24 21 24 23 24

Detroit Pistons 32 � 50 .390 98.5 99.5 .432 21.6 44.9 1.922 2.341 2.702 2.910 20 22 23 20 20

Golden State Warriors 67 � 15 .817 110.0 99.9 .478 27.4 44.7 4.254 3.857 3.327 1.740 1 1 1 1 1

Houston Rockets 56 � 26 .683 103.9 100.5 .444 22.2 43.7 3.479 2.970 2.610 2.024 7 17 2 8 8

Indiana Pacers 38 � 44 .463 97.3 97.0 .439 21.4 44.9 2.253 2.474 2.494 2.525 17 16 20 16 16

Los Angeles Clippers 56 � 26 .683 106.7 100.1 .473 24.8 42.6 3.431 3.399 2.877 1.869 2 4 3 2 2

Los Angeles Lakers 21 � 61 .256 98.5 105.3 .435 20.9 43.9 1.355 1.695 1.894 2.872 27 25 27 27 27

Memphis Grizzlies 55 � 27 .671 98.3 95.1 .458 21.7 42.6 3.430 2.991 2.717 2.116 9 15 4 7 6

Miami Heat 37 � 45 .451 94.7 97.3 .456 19.8 39.1 2.214 2.090 2.478 2.922 21 26 21 22 21

Milwaukee Bucks 41 � 41 .500 97.8 97.4 .459 23.6 42.1 2.405 2.355 2.405 2.507 15 13 17 19 19

Minnesota Timberwolves 16 � 66 .195 97.8 106.5 .438 21.6 40.9 0.984 1.444 1.642 2.884 28 27 29 28 28

New Orleans Pelicans 45 � 37 .549 99.4 98.6 .457 22.0 43.5 2.733 2.656 2.738 2.560 13 8 14 13 13

New York Knicks 17 � 65 .207 91.9 101.2 .428 21.3 40.4 0.932 1.226 1.648 3.072 30 29 30 30 30

Oklahoma City Thunder 45 � 37 .549 104.0 101.8 .447 20.5 47.5 2.769 2.793 2.773 2.384 12 5 12 11 11

Orlando Magic 25 � 57 .305 95.7 101.4 .453 20.6 41.8 1.520 1.723 2.226 3.100 26 24 26 26 26

Philadelphia 76ers 18 � 64 .220 92.0 101.0 .408 20.5 42.9 1.034 1.245 2.015 3.384 29 30 28 29 29

Phoenix Suns 39 � 43 .476 102.4 103.3 .452 20.2 43.2 2.454 2.427 2.333 2.411 19 18 15 18 17

Portland Trail Blazers 51 � 31 .622 102.8 98.6 .450 21.9 45.9 3.047 3.023 2.737 2.137 6 6 8 5 7

Sacramento Kings 29 � 53 .354 101.3 105.0 .455 20.3 44.2 1.882 2.116 2.070 2.536 25 12 25 21 23

San Antonio Spurs 55 � 27 .671 103.2 97.0 .468 24.4 43.6 3.341 3.348 3.259 2.287 3 2 7 3 3

Toronto Raptors 49 � 33 .598 104.0 100.9 .455 20.7 41.5 2.753 2.722 2.351 2.094 8 23 13 12 12

Utah Jazz 38 � 44 .463 95.1 94.9 .447 19.9 44.0 2.407 2.602 2.531 2.387 18 19 16 14 14

Washington Wizards 46 � 36 .561 98.5 97.8 .462 24.0 44.7 2.800 2.588 2.763 2.623 14 3 11 15 15

Home-Court Advantage 0.387 0.321 0.013 0.011



The probability that the home team will be victorious is computed

from the Excel normal distribution function as follows:

p5 12NormDistð0;Y ; SeY ;TrueÞ
Here, Y and SeY are the expected victory margin and regression

error term respectively, and zero indicates the reference point used for

the calculation. That is, the probability that the winning margin will be

greater than zero.

Regression Results
The best fit regression equation for predicting the victory margin as a

function of team points scored and points allowed is below. The resulting

victory margin is positive when the home team is favored and negative

when the visiting team is favored.

This model equation is:

Est: Victory Margin521:281 0:867 �HPS2 0:823 �HPA

2 0:609 � APS1 0:999 � APA
The game scores model yielded a moderately high R2 value of 23.7%.

The t-Stats were 211.68 and 7.74 for visiting teams’ points scored and

points allowed, and 13.72 and 28.89 for home teams, and an F-value

of 101.55.

The signs of the input variables are intuitive. The sign of the sensitivity

parameter is expected to be positive for home points scored (HPS) and away

points allowed (APA). In both of these cases, the home team will score more

points if these input values are higher. Similarly, the signs of the sensitivity

parameters for home points allowed (HPA) and away team points scored

(APS) are expected to be negative. The home team is expected to win by

fewer points or possibly lose if the HPA and/or APS increase in value.

A graph showing the actual spreads as a function of estimates spreads

is shown in Fig. 7.4 and Table 7.2.

Performance
The game scores regression accurately identified the winner 921 times

in 1311 games (70.25%). The probability predictions had a very high

goodness of fit of 86.3% when compared with teams’ actual winning

percentages at a granularity of 5 percentage points, and the t-statistic was

7.09. When the favorite’s probability of winning was over 60%, the
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favorite won 75.8% of the time. The correct prediction rate climbed to

82.3% above 70% confidence, and 90% correct above 80% confidence.

Above 90% confidence, the prediction was wrong only twice out of 37

games (94.6%), both of which were road wins by the Knicks. The first

was a five-point victory over the Cleveland Cavaliers on October 30,

2014, when LeBron James, in his first home game since returning to the

Cavaliers, shot 5 of 15 from the floor to finish with just 17 points and 8

turnovers. The other came on April 13, 2015, against the Atlanta Hawks,

who had long since sewn up the top seed in the Eastern Conference,

in what was each team’s second-to-last regular-season game.

y = x + 5E – 14
R2= 0.2372
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Figure 7.4 Game Scores Model: 2014�2015 NBA.

Table 7.2 Game Scores Model: 2014�2015 NBA

Statistic Value t-Stat

b0 20.442 0.0

b1 (Home points scored) 1.068 13.7

b2 (Home points allowed) 21.008 28.9
b3 (Visitor points scored) 0.078 211.7
b4 (Visitor points allowed) 0.878 7.7

R2 23.72%

F-value 101.546

Standard Error 11.821
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Predictions for postseason series fell into one of two categories. If the

difference between the teams was smaller than the home-court advantage

factor, the model would favor the home team in each game. If one team

was stronger than the other by more than the home-court advantage

factor, that team would be favored to win every game. The Golden State

Warriors were the clear favorite in each postseason series, as they went

16�5 in the playoffs en route to the NBA Championship. There were

clear favorites in three of the four Eastern Conference first-round series

(Hawks, Bulls, Cavaliers), but none in the Western Conference other than

Golden State. The only other series in which there was a clear favorite was

the Eastern Conference semifinals between the Hawks and the Washington

Wizards. Of the 15 playoff series, there were clear favorites in eight, and

the favorite did indeed win all eight. For the other seven series, the favored

home team compiled a win�loss record of 23�16 (.590).

The Vegas line predicted the winner 912 times out of 1297 games

for a winning percentage of 71.7%, excluding 14 pick ’em games where

Vegas did not name a favorite.

Rankings
The game scores model’s top ranking went to the champion Warriors

(rating 29.195), with the Los Angeles Clippers (22.274) and San Antonio

Spurs (21.212) coming in second and third. The Clippers and Spurs met in

the first round of the playoffs; Los Angeles prevailed in the only postseason

series that went the full seven games. The two Eastern Conference finalists,

the Hawks and the Cavaliers, came in at fourth and fifth. Fifteen of the top

sixteen teams made the postseason. The highest-ranked nonplayoff team

was the Oklahoma City Thunder at No. 12; they had lost the tiebreaker

with the New Orleans Pelicans for the Western Conference’s last playoff

spot. The lowest-ranked playoff team was the No. 22 Brooklyn Nets, who

put up a regular season record of just 38�44 playing in the NBA’s weakest

division. The Atlantic Division was the only one of the six that produced

no 50-game winners, but it was home to not one but two teams that

failed to win 20. The Eastern Conference’s three divisions accounted for

the same number of teams that finished over .500 (five) as the Western

Conference’s Southwest Division did by itself. Brooklyn was ranked

lower than three nonplayoff Eastern Conference teams: the Indiana Pacers

(No. 17, against whom the Nets also won the tiebreaker), the Detroit

Pistons (No. 20), and the Miami Heat (No. 21).
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Example
To compare the six models, we will examine a matchup of two top-tier

Western Conference teams, the Golden State Warriors (67�15) and the

San Antonio Spurs (55�27). To make things a little closer, let’s make this

a road game for the more powerful Warriors.

The 2014�15 Spurs scored 103.2 points per game while allowing

97.0. The Warriors’ offense averaged 110.0 points while their defense

gave up 99.9 points per game. Given those averages and the betas from

the regression, the game scores model favors the Warriors in this game by

the extremely slim margin of 0.4 points:

Est: Victory Margin52 0:441 1:07 103:2ð Þ2 1:01 97:0ð Þ2 0:91 110:0ð Þ
10:88 99:9ð Þ520:406 11:8

The corresponding probability that the host Spurs would win is 48.65%:

p5 12NormCDF 0; 20:40; 11:82ð Þ5 48:65%

7.2 TEAM STATISTICS MODEL

The team statistics regression uses team performance statistics to predict

game results. Generally speaking, these measurements could be either

per-game averages (such as rebounds per game) or per-event averages

(such as field goal shooting percentage). Proper team performance statis-

tics should also encompass both offensive and defensive ability. Through

experimentation, readers can determine which set of team statistics pro-

vides the greatest predictive power.

In this section, we will demonstrate the regression using three statistics

for each team: field goal shooting percentage, assists per game, and total

rebounds per game.

The team statistics linear regression model has form:

Y 5 b01 b1 �HTFG%1 b2 �HTAPG1 b3 �HTRPG1 b4 � ATFG%

1b5 � ATAPG1 b6 � ATRPG1 ε

The variables of the model are:

Y 5 outcome value we are looking to predict (spread, home team

points, away team points, and total points)

TFG%5 home team field goal percentage

HTAPG5 home team assists per game
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HTRPG5 home team total rebounds per game

ATFG%5 away team field goal percentage

ATAPG5 away team assists per game

ATRPG5 away team total rebounds per game

b0; b1; b2; b3; b4; b5; b65model parameter, sensitivity to the variable

ε5model error

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models. The results of this

model are shown in Table 7.3.

Regression Results
The result of the regression model for predicting home team victory

margin from our team statistics is:

Est:Victory Margin5238:5531 215:048 HTFG%ð Þ1 0:587 HTAPGð Þ
1 1:362 HTRPGð Þ2198:323 ATFG%ð Þ
2 0:408 ATAPGð Þ2 0:682 ATRPGð Þ6 12:263

The model produced an R2 of 18.0% and a standard error of 12.26

points. The t-statistic for the road team’s free throw percentage was not

significant at 21.77, while that of the home team’s field goal percentage

was just over 7.5.

Actual victory margins with respect to the home team ranged

from 254 (Bulls 120, Bucks 66 in the first round of the playoffs) to 153

(Mavericks 123, 76ers 70 in November) with a standard deviation of

Table 7.3 Team Statistics Model: 2014�2015 NBA

Statistic Value t-Stat

b0 238.553 21.9
b1 (Home field goal percentage) 215.048 7.5

b2 (Home assists per game) 0.587 2.5

b3 (Home rebounds per game) 1.362 6.9

b4 (Away field goal percentage) 2198.323 26.9

b5 (Away assists per game) 20.408 21.8

b6 (Away rebounds per game) 20.682 23.5

R2 18.04%

F-value 47.823

Standard Error 12.263

189Basketball—NBA



13.5 points. The projected home team victory margins ranged from 217.84

to 20.21 points, a standard deviation of 5.74 points. Differences between

projected and actual victory margins had a standard deviation of 12.2 points.

The model was accurate to within one point 81 times (6.2%), three points

in 254 games (19.4%), and six points 501 times (38.2%). It was off by

20 points or more only 9.4% of the time.

These regression results and a graph of actual spread compared to

predicted spread is shown in Fig. 7.5 and Table 7.3.

Performance
The team statistics model correctly predicted the winner in 860 of 1311

games, a success rate of 65.6%. The model was only 40.5% accurate

when the favorite was estimated as having a win probability between 50%

and 55%, but that was the only interval for which it underperformed.

When the model calculated at least an 85% chance of winning, the favorite

won 55 times and lost only twice (96.5%); one was the Warriors’ two-

point loss at home to the Bulls in late January, and the other a four-point

road win by the Hornets over the Wizards the following week. Above

87.7% it was a perfect 34 for 34. Overall the goodness of fit between the

estimated win probability and actual win percentage was 95.8%.

y = x – 4E – 14
R2= 0.1804
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Figure 7.5 Team Statistics Model: 2014�2015 NBA.
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The Vegas model predicted the winner 912 times out of 1297 games

for a winning percentage of 71.7%, excluding 14 pick ’em games where

Vegas did not name a favorite.

Rankings
Unsurprisingly the Golden State Warriors finished atop the team statistics

model’s rankings, as teams from the Western Conference accounted for

five of the top six spots. San Antonio, Washington, and the Los Angeles

Clippers finished close together in the No. 2 through No. 4 slots.

Oklahoma City, who lost the tiebreaker for the last playoff berth in the

West, was ranked No. 5, while Sacramento (12) and Indiana (16) were

other nonplayoff teams in the top 16. Brooklyn was the lowest-ranked

playoff team at No. 20, behind Utah and Phoenix. The five teams at

the bottom of the rankings included three that won no more than

18 games—the Timberwolves, Knicks, and 76ers—and two that won at

least 33, the No. 26 Heat (37�45) and the No. 28 Hornets (33�49).

Example
The team statistics model comes to a nearly identical conclusion as the

game scores model. Golden State has slight edges in all three categories:

field goal percentage (.488 to .478), rebounding (44.7 to 43.6), and assists

per game (27.4 to 24.4). The Warriors are still favored, but owing to the

home-court advantage factor the margin is still less than 1 point:

Est Margin of Victory5238:5531 215:048 :468ð Þ1 0:587 24:4ð Þ
1 1:362 43:6ð Þ2198:323 :478ð Þ2 0:408 27:4ð Þ
2 0:682ð44:7Þ6 SE520:576 12:26

The margin of 20.57 points is equivalent to a win probability of

48.1% for Golden State:

p5 12NormCDF 0; 20:57; 12:26ð Þ5 48:1%

7.3 LOGISTIC PROBABILITY MODEL

The logistic probability model infers a team strength rating based only on

game outcomes such as whether the team won, lost, or tied the game.

The result of the game is determined from the perspective of the home

team, but analysts can use the same approach from the perspective of the

visiting team.
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The logistic model is as follows:

y� 5
1

11 exp 2 b01 bh2 bað Þ� �
Here, b0 denotes a home-field advantage parameter, bh denotes the home

team rating parameter value, and ba denotes the away team rating parameter

value. The value y� denotes the probability that the home team will win the

game. Team ratings for the logistic probability are determined via maximum

likelihood estimates and are shown in Table 7.1.

Estimating Spread
The estimated spread (i.e., home team victory margin) is determined via

a second analysis where we regress the actual home team spread on the

estimated probability y� (as the input variable). This regression has form:

Actual Spread5 a01 a1 � y�

This model now provides a relationship between the logistic home

team winning probability and the home team winning percentage.

It is important to note here that analysts may need to incorporate an

adjustment to the spread calculation if the data results are skewed;

(see Chapter 3: Probability Models).

The solution to this model is (Table 7.4):

After computing the home team winning probability, the expected

spread is estimated from the following equation based on the regression

results:

Estimated Spread5214:0031 28:466 � y�
A graph illustrating the estimated spread from the probability estimates

is shown in Fig. 7.6.

Table 7.4 Logistic Probability Regression: 2014�2015 NBA

Statistic Value t-Stat

b0 214.003 215.6

b1 28.466 19.6

b0 (Home-court advantage) 0.387

R2 22.61%

F-value 382.473

Standard Error 11.893
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Performance
The logistic probability model had an accuracy of 69.8% for selecting the

winner, as the teams it favored won 915 of 1311 games over the regular

season and the playoffs. The logistic probability model also proved to be a

very good predictor of the victory margin with an R25 22.6% and

standard error of 11.89. The standard error of the Vegas line was 11.82.

The model’s favorites won 741 of 984 games with projected win

probabilities of 60% or higher, a rate of 75.3%. When the win probability

was above 85%, their win rate rose to 91.1%. The largest upset was the

Knicks’ road win in Atlanta in April; the model gave the Hawks a 94.5%

chance of winning, making New York a 17-to-1 underdog. The home

team was the favorite 61.7% of the time.

Rankings
The top of the logistic rankings was dominated by teams from the Western

Conference, led by the eventual NBA Champion Golden State Warriors and

followed by the Houston Rockets, Los Angeles Clippers, and Memphis

Grizzlies. Only two of the top nine teams came from the Eastern Conference,

the Atlanta Hawks at No. 5 and the Cleveland Cavaliers at No. 6.

Teams bound for the playoffs made up the top 11 places in the logistic

rankings. The Oklahoma City Thunder, who did not make the playoffs,

was ranked at No. 12, ahead of five teams who did, including the No. 13

y = 32.646 x – 16.273
R2= 0.2228
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Figure 7.6 Logistic Probability Model: 2014�2015 NBA.
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Toronto Raptors, the No. 4 seed in the Eastern Conference. In the

bottom half of the rankings, Eastern Conference teams outnumbered

their Western counterparts 2 to 1.

Example
The Warriors’ logistic rating of 4.2544 led the NBA, while San Antonio

came in seventh with 3.3412. So far the game scores and team statistics

models have predicted an extremely narrow win by Golden State. The

logistic probability model favors the Warriors by a somewhat larger margin:

y� 5
1

11 e2 0:3871 1 3:3412 2 4:2544ð Þ 5
1

11 e0:5261
5 0:3714

We can then take this value and combine it with the regression para-

meters b0 (214.003) and b1 (28.466) to estimate that this matchup should

result in a Golden State win by nearly 31/2 points, and win probabilities of

38.65% for the Spurs and 61.35% for the Warriors:

Estimated Spread5214:0031 28:466 � 0:37146 SE523:436 11:89

Probability5 12 normdist 0; 23:43; 11:89ð Þ5 38:65%

7.4 TEAM RATINGS MODEL

The team ratings prediction model is a linear regression model that uses

the team ratings determined from the logistic probability model as the

explanatory variables to estimate home team victory margin. This is one of

the reasons why the logistic model is among the more important sports

models since its results can be used in different modeling applications.

The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating
The variables of the model are:

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home-court advantage value

b15 home team rating parameter

b25 away team rating parameter

Y 5 value we are looking to predict
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The probability of winning is determined from:

Probability5 12NormCDFð0;Y ; SEÞ
The betas of this model, b1 and b2, are determined from a linear

regression analysis as described in Chapter 2, Regression Models.

Regression Results
The best fit regression equation to predict home team victory margin

from team strength ratings is: (Fig. 7.7, Table 7.5).

Victory Margin5 0:99251 5:5642 �Home Rating2 5:2037 � Away Rating

y = x + 5E – 15
R2 = 0.2301
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Figure 7.7 Team Ratings Model: 2014�2015 NBA.

Table 7.5 Team Ratings Model: 2014�2015 NBA

Statistic Value t-Stat

b0 2 0.016 0.0

b1 (Home team rating) 6.159 15.4

b2 (Away team rating) 2 5.213 2 13.0

R2 23.01%

F-value 195.424

Standard Error 11.867
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Performance
This model’s expected favorites won 912 of 1311 regular and postseason

NBA games for 2014�15, a rate of 69.6%. When the estimated probability

of Team A’s defeating Team B was at least 75%, A did go on to win

321 times out of 365 (87.9%).

The two biggest upsets according to the ratings regression were the

same two as in the game scores regression, i.e., the Knicks’ two road wins

against the Cavaliers (9.2% chance the Knicks would win) in October

and in Atlanta against the Hawks in April (9.1%). There were only four

other upsets by underdogs with a win probability under 15%, all of which

belonged to the Lakers when they defeated the Warriors, Rockets,

Hawks, and Spurs.

The Vegas model predicted the winner 912 times out of 1297 games

for a winning percentage of 71.7%, excluding 14 pick ’em games where

Vegas did not name a favorite. The ratings regression predicted the winner

903 times out of 1311 games for a winning percentage of 68.9%.

Rankings
The 16 playoff teams all finished in the top 19 of the rankings. Golden State

once again took the top spot, and owing to their dominance the next three

spots were also filled by Western Conference teams. The Eastern

Conference managed only two teams in the top nine, the Hawks at No. 5

and the Cavaliers at No. 6. The highest-ranked nonplayoff team was the

Oklahoma City Thunder at No. 12, who lost the tiebreaker for the last

playoff berth in the West to New Orleans, two spots below. Phoenix

(No. 15) and Utah (No. 17) also finished ahead of the bottom two Eastern

Conference playoff teams, the Nets (No. 18) and the Celtics (No. 19).

Example
The ratings regression also predicts a close game by very nearly the same

score, but this time the projected margin of victory is wider at a little

over a point and a half. The Warriors came out on top of the rakings

with a rating of 4.254, while San Antonio finished in the No. 7 spot with

a rating of 3.341.

Est: Victory Margin520:0161 6:159 3:341ð Þ2 5:213 4:254ð Þ6 SE

521:626 11:87
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The estimated winning probability is 44.6% for San Antonio and 55.4%

for Golden State:

Probability5 12NormCDF 0; 21:62; 11:87ð Þ5 44:6%

7.5 LOGIT SPREAD MODEL

The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric. The model

transforms the home team victory margin to a probability value between

zero and one via the cumulative distribution function and then estimates

model parameters via logit regression analysis.

The logit spread model has following form:

y� 5 b01 bh2 ba

where b0 denotes a home-field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.

The left-hand side of the equation y is the log ratio of the cumulative

density function of victory margin (see chapter: Sports Prediction Models,

for calculation process).

In this formulation, the parameters values b0; bh; ba are then determined

via ordinary least squares regression analysis. The results of this analysis are

shown in Table 7.6.

Estimating Spreads
Estimating the home team winning margin is accomplished as follows.

If team k is the home team and team j is the away team, we compute

y using the logit parameters:

y5 b0 1 bk2 bj

Compute y� from y via the following adjustment:

y�5
ey

11 ey

Compute z as follows:

z5 norminvðy�Þ
And finally, the estimated home team spread:

Estimated Spread5 s1 z � σs
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where

s5 average home team winning margin (spread) across all games

σs 5 standard deviation of winning margin across all games

Estimating Probability
The corresponding probability of the home team winning is determined

by performing a regression analysis of actual spread as a function of

estimated spread. The model has form:

Actual Spread5 b01 b1 � spread
The solution to this model is (Table 7.6):

A graphical illustration of this model is (Fig. 7.8):

Table 7.6 Logit Spread Model: 2014�2015 NBA

Statistic Value

s (Average home victory margin) 2.391

σs (Home victory margin standard deviation) 13.514

b0 (Home-court advantage) 0.321

R2 23.84%

F-value 409.749

Standard Error 11.798

y = 0.9202 x – 2.2192
R2= 0.2384
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Figure 7.8 Logit Spread Model: 2014�2015 NBA.
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Performance
The logit spread model correctly identified the winner in 884 of 1311

games, a rate of 67.4%, which is the second-most accurate of the six.

When the favorite’s probability of winning was over 75%, the favorite

won 87% of the time. There were only two upsets among the 47 games

where one team had a win probability of 88% or better, the aforemen-

tioned Knicks wins over Atlanta (90.0%) and Cleveland (90.5%).

Rankings
Golden State again finished atop the ratings for the logit spread model,

followed by the Clippers and the Spurs. The Hawks, Cavaliers, and Bulls,

the top three seeds in the Eastern Conference, placed sixth, fourth,

and tenth respectively. The Thunder again was the highest-ranked team

that did not qualify for postseason play. The No. 8-seed in the East, the

Brooklyn Nets, ranked 24th, behind even three teams (the Detroit

Pistons, Sacramento Kings, and Denver Nuggets) with winning percen-

tages below .400.

Example
The Warriors’ logit spread parameter of 3.8573 again led the NBA, while

the Spurs’ value of 3.2586 was good enough for third out of the 30 teams.

The home-court advantage factor (b0) was 0.3207 for the NBA in 2015.

y5
1

11 e2ð0:321 1 3:8537 2 4:254Þ 5
1

11 e20:592
5 0:453

The average NBA game in 2014�15 ended with the home team

winning by 2.391 points with a standard deviation of 13.514. The logit

spread expects San Antonio to win by less than one point:

Victory Margin5 z � σs 1 s5 norminvð0:453Þ � 13:5141 2:3915 0:796

With an estimated margin of victory of 0.796 points, the model

puts the win probability at 52.69% for San Antonio and 47.31% for

Golden State:

Probability5 12 normdist 0; 0:796; 11:798ð Þ5 52:69%
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7.6 LOGIT POINTS MODEL

The logit points model is a probability model that predicts the home team

victory margin by taking the difference between home team predicted points

and away team predicted points. The predicted points are determined based

on inferred team “ratings” similar to the logit spread model discussed above.

The logit points model has following form:

h� 5 b0 1 bh2 ba

a� 5 d01 dh2 da

where

h is the transformed home team points, c0 denotes a home-field

advantage, ch denotes the home team rating, and ca denotes the

away team rating corresponding to home team points

a is the transformed away team points, d0 denotes a home-field

advantage, dh denotes the home team rating, da denotes the away

team rating corresponding to away team points

The left-hand side of the equation h and a is the log ratio of the

cumulative density function of home team points and away team points

respectively (see chapter: Sports Prediction Models, for a description).

Estimating Home and Away Team Points
Estimating the home team points is accomplished directly from the home

points team ratings. These rating parameters are shown in Table 7.1.

If team k is the home team and team j is the away team, the transformed

home team points is:

h5 c01 ck2 cj

h�5
eh

11 eh

Then,

z5 norminv h�ð Þ
And finally, the x value is:

Home Points5 h1 z � σh

where

h5 average home team points

σh5 standard deviation of home team points

Away points are estimated in the same manner but using the team

ratings for the away points model.
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Estimating Spread
The estimated home team victory margin is computed directly from the

home team points and away team points as follows:

Est: Spread5Home Team Points2Away Team Points

Estimating Probability of Winning
The corresponding probability of winning is determined by performing

a regression analysis of actual spread as a function of estimated spread.

The model has form:

Actual Spread5 b0 1 b1 � Est: Spread
The solution to this model is: (Table 7.7).

A graphical illustration of this model is: (Fig. 7.9).

Table 7.7 Logit Points Model: 2014�2015 NBA

Statistic Home Away

s (Average score) 101.243 98.852

σs (Score standard deviation) 11.690 11.725

b0 (Home-court advantage) 0.013 0.011

R2 23.87%

F-value 410.365

Standard Error 11.796

y = 0.9026x + 0.2145
R2= 0.2387
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Figure 7.9 Logit Points Model: 2014�2015 NBA.
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Performance
The logit points model’s favorite won 907 times out of 1311 games, a winning

percentage of 69.2%. When the spread was at least 11 points, the favorite won

90% of the time (177 out of 197). Above six points, the model was correct in

465 times out of 570 (81.6%). The two biggest upsets were again the Knicks’

road wins over the Cavaliers (Cleveland was favored by 18.1 points) and the

Hawks (Atlanta was favored by 17.03 points). The spreads were within 61

point of the actual margins of victory 91 times (6.94%), within 63 points 283

times (21.6%), and within 66 points 537 times (41.0%).

Rankings
The Warriors were ranked No. 1 by the logit points model, as Golden

State took the top ranking in each of the six models. The top nine spots

were comprised of seven playoff teams from the Western Conference and

two from the East. The West also contributed the only nonplayoff teams

in the top 50%, the Oklahoma City Thunder (No. 11) and the Utah Jazz

(No. 14). Utah finished one spot above the Washington Wizards, the

5-seed in the East, despite having eight fewer wins, in another demonstra-

tion of the relative dominance of the Western Conference.

Example
San Antonio had values of bh5 3.2586 and dh5 2.2867, and those for

Golden State were ba5 3.3268 and da5 1.7399. The home-court advan-

tage factors were b05 0.0133 and d05 0.0109.

Home Score5 norminv

�
1

11 e2 0:0133 1 3:2586 2 3:327ð Þ

�
� 11:69871 101:2426

5 100:84

Away Score5 norminv

�
1

11 e2 0:0109 1 2:2867 2 1:7399ð Þ

�
� 11:72471 98:8520

5 102:93
Subtracting the away score from the home score results in a margin of

just over 2 points in favor of the visiting Warriors:

Victory Margin5 100:842 102:93522:09

Taking the normal cumulative distribution of this margin and the

regression’s standard deviation of 11.769, the model reports that the Spurs

have a 43% chance of defeating the Warriors at home:

Probability5 12 normcdf 0; 2 2:09; 11:796ð Þ5 42:98%
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7.7 EXAMPLE

Overall, five of the six models favor Golden State in our imagined

matchup with the Spurs in San Antonio, while the logit spread model

calls this game for Gregg Popovich’s team. Three models estimated that

the favorite would win by less than 1 point, while only the logistic proba-

bility model gave its favorite more than a 60% probability of winning.

Averaged together, Golden State has a 54.0% chance of a road win in

San Antonio, with a margin of 1.2 points (Table 7.8).

7.8 OUT-SAMPLE RESULTS

We performed an out-sample analysis where we predicted our game

results using a walk forward approach. In this analysis, we use previous

game results data to predict future games. Here, the model parameters

were estimated after about 10 games per team and then we predicted

the winning team for the next game. We found the predictive power

of the model only declining slightly, but after 20 games per team the

out-sample began to converge to the results with in-sample data.

The results from our analysis showed that the game scores (21.9%) and

team statistics (23.6%) models had the greatest reduction in predictive

power. The game scores model had an out-sample winning percentage of

about 68% but the team statistics model had an out-sample winning per-

centage of 62%.

The probability models only had a very slight reduction in predictive

power based on a walk forward basis. These models all have a winning

percentage consistent with the in-sample results and the logit points had a

higher winning percentage. After about 20 games per team (i.e., one-fourth

Table 7.8 Example Results

Model Favorite Underdog Line P(SA Win) P(GS Win)

Game Scores Golden State San Antonio 0.4 48.7% 51.3%

Team Statistics Golden State San Antonio 0.6 48.1% 51.9%

Logistic Probability Golden State San Antonio 3.4 38.7% 61.3%

Team Ratings Golden State San Antonio 1.6 44.6% 55.4%

Logit Spread San Antonio Golden State 0.8 52.7% 47.3%

Logit Points Golden State San Antonio 2.1 43.0% 57.0%

Average Golden State San Antonio 1.2 45.9% 54.1%
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of the season) and into the postseason, the out-sample results were on par

with the in-sample results (Fig. 7.10).

7.9 CONCLUSION

In this chapter we applied six different sports model approaches to

National Basketball Association results for the 2014�15 season. The

models were used to predict winning team, estimated home team victory

margin, and probability of winning. Three of the six models accurately

predicted the winner 70% of the time with two others better than 65%;

five had regression R2 values of between 22.6% and 23.9%. The four

probability models (logistic probability, team ratings, logit spreads,

and logit points) had an average regression error of 7.46 points, nearly 3

points fewer than the average of the two data-driven models (game scores

and team statistics). These modeling approaches performed well in terms

of predicting winning teams, winning spread, and probability of winning.
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CHAPTER 8

Hockey—NHL

In this chapter, we apply the sports modeling techniques introduced in

previous chapters to the 2014�15 National Hockey League (NHL) sea-

son. Our goal is to provide readers with proper techniques to predict

expected winning team and probability of winning, and to estimate

winning victory margin.

Our techniques include six different models: game scores, team statis-

tics, team ratings, logistic probability, logit spreads, and logit points.

These models are based on linear regression techniques described in

Chapter 2, Regression Models, and on probability estimation methods

described in Chapter 3, Probability Models.

The models were evaluated in three different ways based on in-sample

data: winning percentage, R2 goodness of the estimated victory margin,

and the regression error. Out-sample performance results are discussed at

the end of the chapter.

The six models performed very similar to each other. All had accuracy

rates between 58% and 61%, and five had R2 values between 8% and 9%.

At 5.6%, only the team statistics model, using one particular set of para-

meters, had an R2 below 8%. The standard deviations of the differences

between expected and actual margins of victory were also nearly identical,

all coming in between 2.20 and 2.25 (Figs. 8.1�8.3 and Table 8.1).

8.1 GAME SCORES MODEL

The game scores regression model predicts game outcomes based on the

average number of goals scored and allowed by each team.

The game scores model has form:

Y 5 b01 b1 �HGS1 b2 �HGA1 b3 � AGS1 b4 � AGA1 ε

In the representation, the dependent variable Y denotes the value that

we are trying to predict; this can be the home team’s margin of victory (or

defeat), the number of goals scored by the home team, the number of goals

scored by the away team, and the total combined score. For our purposes,
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we define the Y variable to be the home team victory margin. A positive

value indicates the home team won by the stated number of goals and a

negative value indicates the home team lost by the stated number of goals.

The variables of the model are:

Y 5 home team victory margin

HGS5 home team average goals scored per game

HGA5 home team average goals allowed per game

AGS5 away team average goals scored per game

AGA5 away team average goals allowed per game

b0; b1; b2; b3; b45model parameters, represents the sensitivities to

the corresponding model factor.

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models.

The probability that the home team will be victorious is computed

from the Excel normal distribution function as follows:

p5 12NormDistð0;Y ; SeY ;TrueÞ
Here, Y and SeY are the expected victory margin and regression error

term respectively, and zero indicates the reference point used for the calcula-

tion (i.e., the probability that the winning margin will be greater than zero).
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Table 8.1 Regression Results and Rankings
Team Statistics Ratings Rankings

Team W � L � OTL Points GF/G GA/G S% SV%
Logistic
Rating

Logit
Spread

Logit
Points
(Home)

Logit
Points
(Away)

Game
Scores

Team
Statistics

Logistic
Ratings

Logit
Spread

Logit
Points

Anaheim Ducks 51 � 24 � 7 109 2.8 2.7 .0928 .907 3.092 2.697 2.538 2.251 18 17 1 10 10

Arizona Coyotes 24 � 50 � 8 56 2.0 3.3 .0690 .902 1.620 1.557 1.719 3.047 29 30 28 29 29

Boston Bruins 41 � 27 � 14 96 2.5 2.5 .0821 .918 2.480 2.503 2.372 2.373 17 16 19 19 19

Buffalo Sabres 23 � 51 � 8 54 1.9 3.3 .0771 .908 1.544 1.463 1.623 3.099 30 27 30 30 30

Calgary Flames 45 � 30 � 7 97 2.9 2.6 .1052 .911 2.693 2.641 2.708 2.501 8 4 12 13 13

Carolina Hurricanes 30 � 41 � 11 71 2.2 2.7 .0725 .902 1.932 2.172 2.026 2.476 26 28 26 26 26

Chicago Blackhawks 48 � 28 � 6 102 2.7 2.3 .0792 .925 3.072 2.937 2.790 2.165 5 14 3 2 3

Colorado Avalanche 39 � 31 � 12 90 2.5 2.7 .0914 .918 2.454 2.474 2.585 2.629 22 7 21 20 20

Columbus Blue Jackets 42 � 35 � 5 89 2.8 3.0 .0959 .910 2.530 2.371 2.487 2.681 24 10 18 22 22

Dallas Stars 41 � 31 � 10 92 3.1 3.1 .1005 .895 2.549 2.570 2.538 2.480 19 22 15 18 18

Detroit Red Wings 43 � 25 � 14 100 2.8 2.6 .0951 .909 2.579 2.617 2.576 2.411 13 13 13 15 16

Edmonton Oilers 24 � 44 � 14 62 2.4 3.4 .0828 .888 1.613 1.721 1.668 2.814 28 29 29 28 28

Florida Panthers 38 � 29 � 15 91 2.4 2.6 .0787 .912 2.325 2.321 2.430 2.692 23 26 23 24 24

Los Angeles Kings 40 � 27 � 15 95 2.7 2.4 .0860 .911 2.454 2.637 2.473 2.281 12 21 20 14 14

Minnesota Wild 46 � 28 � 8 100 2.8 2.4 .0900 .913 2.767 2.795 2.840 2.419 7 15 9 7 7

Montreal Canadiens 50 � 22 � 10 110 2.6 2.2 .0917 .926 2.905 2.714 2.852 2.519 6 2 6 8 8

Nashville Predators 47 � 25 � 10 104 2.8 2.5 .0865 .913 2.804 2.801 2.726 2.275 10 18 7 6 6

New Jersey Devils 32 � 36 � 14 78 2.1 2.5 .0876 .917 2.039 2.194 2.055 2.485 25 12 25 25 25

New York Islanders 47 � 28 � 7 101 3.0 2.7 .0884 .903 2.758 2.701 2.707 2.405 11 25 10 9 9

New York Rangers 53 � 22 � 7 113 3.0 2.3 .0960 .923 3.074 3.018 2.784 2.036 1 1 2 1 1

Ottawa Senators 43 � 26 � 13 99 2.8 2.5 .0914 .921 2.546 2.694 2.932 2.668 9 6 16 11 11

Philadelphia Flyers 33 � 31 � 18 84 2.6 2.7 .0879 .910 2.081 2.339 2.359 2.594 21 20 24 23 23

Pittsburgh Penguins 43 � 27 � 12 98 2.6 2.5 .0837 .915 2.538 2.600 2.672 2.501 16 19 17 17 15

San Jose Sharks 40 � 33 � 9 89 2.7 2.8 .0865 .907 2.445 2.437 2.441 2.510 20 23 22 21 21

St. Louis Blues 51 � 24 � 7 109 2.9 2.4 .0943 .912 2.971 2.936 2.766 2.107 3 9 4 3 2

Tampa Bay Lightning 50 � 24 � 8 108 3.2 2.5 .1067 .910 2.955 2.922 2.828 2.223 2 3 5 4 4

Toronto Maple Leafs 30 � 44 � 8 68 2.5 3.1 .0859 .906 1.930 2.027 2.486 3.242 27 24 27 27 27

Vancouver Canucks 48 � 29 � 5 101 2.9 2.7 .0962 .910 2.778 2.617 2.473 2.315 15 8 8 16 17

Washington Capitals 45 � 26 � 11 101 2.9 2.4 .0980 .916 2.709 2.851 2.730 2.230 4 5 11 5 5

Winnipeg Jets 43 � 26 � 13 99 2.7 2.5 .0914 .913 2.574 2.675 2.793 2.541 14 11 14 12 12

Home-Ice Advantage 0.188 20.003 0.022 0.028



Regression Results
The best fit regression equation for predicting the victory margin as a

function of team goals scored and goals allowed is below. The resulting

victory margin is positive when the home team is favored and negative

when the visiting team is favored.

This model equation is:

Est: Victory Margin521:281 0:867 �HGS2 0:823 �HGA

20:609 � AGS1 0:999 � AGA

The signs of the input variables are intuitive. The sign of the sensitiv-

ity parameter is expected to be positive for home goals scored (HGS) and

away goals allowed (AGA). In both of these cases, the home team will

score more goals if these input values are higher. Similarly, the signs of

the sensitivity parameters for home goals allowed (HGA) and away team

goals scored (AGS) are expected to be negative. The home team is

expected to win by fewer goals or possibly lose if the HGA and/or AGS

increase in value (Fig. 8.4, Table 8.2).

Performance
The game scores model correctly identified the winner in 787 of 1319

regular-season and playoff games, a rate of 59.7%. Interestingly, accuracy rates

for regulation games and overtime games were nearly identical: 61.5% for

y = 0.8992 x – 2.0244
R2= 0.028
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Figure 8.4 Game Scores Model: 2014�15 NHL.
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games decided in regulation and 61.3% for games decided in sudden-death

overtime. However, it was a different story for games decided by shootout,

as the model’s favorite won only 47.6% of the time (81 of 170 games).

The model was 79.7% accurate when the win probability was at least

70%, and 70.9% accurate when the win probability was at least 60%. The

largest upsets were two wins by the Buffalo Sabres on the road against the

Montreal Canadiens, one by shootout in November and the other a 3�2

victory in regulation in February; the model favored the Canadiens by 2.18

goals when hosting Buffalo while giving Montreal an 83.8% win probability.

The closest matchup was the New York Islanders at the Vancouver

Canucks, in which the Canucks were favored 50.014% to 49.986% by a

margin of 0.00076 goals. Vancouver did win that game in January by a

score of 3�2. The widest prediction was for a January game between the

Sabres and the New York Rangers at Madison Square Garden. The

model put the Rangers’ win probability at 86.3% and set the spread at

2.41 goals; the Rangers won that game 6�1.

For the postseason, the model would either favor the same team in

each game, or the home team in each game, depending on the difference

between the teams’ relative strength compared with the home-ice advan-

tage factor. The model was over 50% accurate in eight postseason series,

50% accurate in four series, and less than 50% accurate in three. It picked

the winner five times out of six in two first-round series (Calgary Flames

vs Vancouver Canucks and Chicago Blackhawks vs Nashville Predators).

In the Stanley Cup Finals, the model favored Tampa Bay in every game,

57.1% to 42.9% at home and 51.3% to 48.7% in Chicago. The

Blackhawks won the series in six games, as each of the first five games

was decided by one goal.

Table 8.2 Game Scores Model: 2014�15 NHL

Statistic Value t-Stat

b0 2.685 1.8

b1 (Home goals scored) 0.653 2.9

b2 (Home goals allowed) 21.077 24.8

b3 (Visitor goals scored) 21.287 25.7

b4 (Visitor goals allowed) 0.795 3.5

R2 9.09%

F-value 32.839

Standard Error 2.205
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Rankings
The New York Rangers finished atop the game scores model’s rankings,

ahead of the Eastern Conference Champion Tampa Bay Lightning. The

Chicago Blackhawks, who won the Stanley Cup, were ranked No. 5.

The highest-ranked nonplayoff team was the Los Angeles Kings at No.

12, three and six spaces ahead of the Vancouver Canucks and the Anaheim

Ducks respectively, two other teams from the Pacific Division that did qual-

ify for the playoffs. Despite winning the Pacific Division, the No. 18 Ducks

were the lowest-ranked playoff team. They scored 236 goals and allowed

226 (tied for 11th-most in the NHL), while the Calgary Flames, who won

five fewer games than Anaheim, scored five more goals and allowed 10

fewer. The Kings’ 205 goals allowed was seventh-best in the NHL, but they

also tied for second with 15 overtime losses, and they missed the playoffs by

two points in the standings. The No. 17 Boston Bruins were the only other

nonplayoff team ranked ahead of a playoff team. Six of the bottom eight

represented the Eastern Conference’s Atlantic and Metropolitan Divisions.

Example
Our example game to evaluate using the six models will feature two

teams from the Eastern Conference, the Pittsburgh Penguins (43�27�12,

98 points) and the Washington Capitals (45�26�11, 99 points), taking

place in Washington.

Goal differentials in 2014�15 were 2.64 for and 2.49 against for the

Penguins, and 2.89 for and 2.43 against for the Capitals. Based on the

betas from the regression, the model predicts a win for the Capitals by

more than half a goal, with a win probability of 59.5%:

Est: Victory Margin5 2:6851 0:653 2:89ð Þ2 1:077 2:43ð Þ
2 1:287 2:64ð Þ1 0:795 2:49ð Þ

5 0:5306 2:205

Probability5 12NormCDF 0; 20:530; 2:205ð Þ5 59:50%

8.2 TEAM STATISTICS MODEL

In this section, we will demonstrate the regression using two statistics for

each team: shooting percentage (goals scored divided by offensive shots

on goal) and save percentage (saves divided by opponent shots on goal).
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The team statistics linear regression model has form:

Y 5 b01 b1 �HTS%1 b2 �HTSV%1 b3 � ATS%1 b4 � ATSV%1 ε

The variables of the model are:

Y 5 outcome value we are looking to predict (spread, home team

goals, away team goals, and total goals)

HTS%5 home team shooting percentage

HTSV%5 home team save percentage

ATS%5 away team shooting percentage

ATSV%5 away team save percentage

b0; b1; b2; b3; b45model parameter, sensitivity to the variable

ε5model error

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models. The results of these

model are shown in Table 8.3.

Regression Results
The result of the regression model for predicting home team victory mar-

gin from our team statistics is:

Est:Victory Margin5 2:1251 25:600 HTS%ð Þ1 29:782 HTSV%ð Þ
2 37:163 ATS%ð Þ230:716ðATSV%Þ6 2:247

The model produced an R2 of 5.6% and a standard error of 2.25 goals.

The t-statistics had absolute values between 3.5 and 4, with the exception of

the away team’s shooting percentage, the t-stat for which was 25.16

(Fig. 8.5).

Table 8.3 Team Statistics Model: 2014�15 NHL

Statistic Value t-Stat

b0 2.125 0.2

b1 (Home shooting percentage) 25.600 3.5

b2 (Home save percentage) 29.782 3.8

b3 (Away shooting percentage) 237.163 25.2
b4 (Away save percentage) 230.716 23.9

R2 5.62%

F-value 19.575

Standard Error 2.247
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Performance
The team statistics model’s favored teams won 774 of 1319 games, a rate

of 58.7%. There were 170 regular-season games decided by shootout, of

which the model’s favorite won 89 (52.4%). With shootout games

ignored, the model was 59.6% accurate. When the win probability was at

least 70%, the model was right 77.1% of the time.

The home team was the favorite in 897 games (68.0%). Favored road

teams averaged an expected win probability of 56.3%; four (Lightning,

Rangers, and Flames twice) had probabilities over 70%, all for games

against the Oilers in Edmonton. The biggest favorite was the Rangers, a

78.8% favorite for a home game in February against Arizona, which the

Blueshirts did win by a score of 4�3.

Rankings
The Rangers came in as the top-ranked team again, powered by their 9.6%

shooting percentage, sixth in the NHL, and .923 save percentage, better than

all but the Montreal Canadiens, who were ranked No. 2, and the Chicago

Blackhawks. Chicago’s 7.92% shooting percentage was fifth worst in the

NHL, and as a result the 2015 Stanley Cup champions were ranked No. 14.

The only other team in the top 10 in the league in each statistical category

was the No. 5. Washington Capitals, fourth in shooting percentage and eighth

in save percentage. The Tampa Bay Lightning, champions of the Eastern

y = x + 5E –15
R2 = 0.0562
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Figure 8.5 Team Statistics Model: 2014�15 NHL.
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Conference, ranked No. 3, followed by the Calgary Flames, the highest-

ranked Canadian team. The bottom three places in the rankings were made

up by the Carolina Hurricanes, Edmonton Oilers, and Arizona Coyotes.

Example
The Washington Capitals scored on 9.797% of their shots, and their goal-

tenders stopped 91.6% of their opponents’ shots on goal. Pittsburgh’s net-

minders saved goals at a similar rate, 91.5%, but their shooting percentage

was much lower at 8.365%.

Note that the betas b1�b4 are based on the shooting and save percentages

expressed as decimals between 0 and 1, and not as percentages between

0 and 100. So we need to provide the Penguins’ shooting percentage as

0.08365, and we find that Washington should win this game by 0.7 goals:

Est: Margin of Victory5 2:1251 25:600 0:09797ð Þ1 29:782 0:91596ð Þ
2 37:163 0:08365ð Þ230:716ð0:91504Þ
6 SE5 0:697396 2:247

The margin of 20.69739 goals is equivalent to a win probability of

62.1% for the Capitals:

p5 12NormCDF 0; 0:69739; 2:247ð Þ5 62:1%

8.3 LOGISTIC PROBABILITY MODEL

The logistic model is as follows:

y� 5
1

11 exp 2 b01 bh2 bað Þ� �
Here, b0 denotes a home-field advantage parameter, bh denotes the

home team rating parameter value, and ba denotes the away team rating

parameter value. The value y� denotes the probability that the home

team will win the game. Team ratings for the logistic probability are

determined via maximum likelihood estimates and are shown Table 8.1.

Estimating Spread
The estimated spread (i.e., home team victory margin) is determined via

a second analysis where we regress the actual home team spread on the

estimated probability y� (as the input variable). This regression has form:

Actual Spread5 a01 a1 � y�
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This model now provides a relationship between the logistic home

team winning probability and the home team winning percentage. It is

important to note here that analysts may need to incorporate an adjust-

ment to the spread calculation if the data results are skewed

(see Chapter 3: Probability Models).

The solution to this model is (Table 8.4):

Therefore, after computing the home team winning probability, the

expected spread is estimated from the following equation based on the

regression results:

Estimated Spread522:3311 4:733 � Probability
A graph illustrating the estimated spread from the probability estimates

is shown in Fig. 8.6.

Table 8.4 Logistic Probability Regression: 2014�15 NHL

Statistic Value t-Stat

a0 22.331 29.4

a1 4.733 10.7

b0 (Home-ice advantage) 0.188

R2 8.05%

F-value 115.335

Standard Error 2.215

R2 = 0.0795
y = 5.7412 x – 2.8692
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Figure 8.6 Logistic Probability Model: 2014�15 NHL.
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Performance
The logistic probability model’s accuracy rate for predicting winners was

60.9%, its favorites winning 803 of 1319 regular-season and playoff

games. The winning percentage for games not decided by shootout was

61.8% (710 out of 1149). The home teams were favored in 65% of games,

of which they won 61.5%. Visiting teams were favored 35% of the time,

and won 59.7%. A projected spread of one goal was equivalent to a win

probability of 67.4%.

The model’s most even matchup was for the Minnesota Wild playing

at the Dallas Stars. Dallas was favored by one one-hundred-thousandth of

a goal, and their win probability was 50.0001%. The teams met in Dallas

three times during the 2014�15 season; the first game went to the Wild

2�1, while the Stars took the second 5�4 in overtime before blowing

out Minnesota 7�1 in the rubber game. The 36 most lopsided matchups

involved various teams hosting the Buffalo Sabres, Edmonton Oilers, and

Arizona Cardinals; the favorites won 28 of the 36 games while splitting

six shootouts.

Rankings
Only one nonplayoff team finished ahead of a playoff team; the Dallas

Stars’ rating of 2.579 put them at No. 15, behind all eight playoff-bound

Western Conference teams but ahead of Ottawa and Pittsburgh, the

Eastern Conference’s seven- and eight-seeds. Anaheim took the top spot

in the rankings with a team rating of 3.092, ahead of the New York

Rangers (3.074) and the eventual Stanley Cup Champion Chicago

Blackhawks (3.072). The Tampa Bay Lightning, Chicago’s Finals oppo-

nent, was ranked No. 5. The eight teams with the lowest point totals in

the standings finished in the same order in the model’s rankings.

Example
The Capitals’ logistic rating of 2.709 was 12th in the NHL, ranking them

between the New York Islanders and Calgary Flames. Pittsburgh was

ranked 18th with a logistic rating of 2.538.

Probability Parameter5
1

11 e2 0:188 1 2:709 2 2:538ð Þ 5
1

11 e0:359
5 0:5889

We can then take this value and combine it with the regression para-

meters b0 (22.331) and b1 (4.733) to estimate that this matchup should
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result in a Washington victory by a little under half a goal, with win prob-

abilities of 58.2% for the Capitals and 41.8% for the Penguins:

Estimated Spread5214:0031 28:466 � 0:58896 SE520:4566 2:215

Probability5 12 normdist 0; 20:456; 2:215ð Þ5 58:16%

8.4 TEAM RATINGS MODEL

The team ratings prediction model is a linear regression model that uses

the team ratings determined from the logistic probability model as the

explanatory variables to estimate home team victory margin. This is one

of the reasons why the logistic model is one of the more important sports

models since its results can be used in different modeling applications.

The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating1 E

The variables of the model are:

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home-field advantage value

b15 home team rating parameter

b25 away team rating parameter

Y 5 home team’s victory margin (positive indicates home team is

favored and negative value indicates away team is favored)

The probability of winning is determined from:

Probability5 12NormCDFð0;Y ; SEÞ
The betas of this model, b1 and b2, are determined from a linear

regression analysis as described in Chapter 2, Regression Models.

Regression Results
The best first regression equation to predict home team victory margin

from team strength ratings is:

Victory Margin5 1:11741 0:9269 �Home Rating2 1:2738 � Away Rating
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The regression results and a graph showing the actual victory margin

as a function of estimated victory margin are given in Table 8.5 and

Fig. 8.7, respectively.

Performance
The ratings regression chose the winner in 800 of 1311 games, or 61.0%

of the time. An estimated spread of one goal was equivalent to a win

probability of 67.45%.

The 56 highest win probabilities were projected for various teams

playing on their home ice against either the Sabres, Coyotes, or Ducks.

That figure rises to 95 if the Maple Leafs and Hurricanes are included,

ranging from 73.6% (Hurricanes at Lightning) to 81.9% (Sabres at

Table 8.5 Team Ratings Model: 2014�15 NHL

Statistic Value t-Stat

b0 1.117 2.2

b1 (Home team rating) 0.927 6.5

b2 (Away team rating) 21.274 28.9

R2 8.47%

F-value 60.484

Standard Error 2.215

y = x + 8E – 15
R2= 0.0805
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Figure 8.7 Team Ratings Model: 2014�15 NHL.
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Ducks). Over those 95 games, the favorites were a combined 77�11�7.

The lowest win probability for a favorite was 50.1% for the New York

Islanders on the road for two games against the Detroit Red Wings in

December and January, each team winning one game.

The biggest upset was a 3�2 shootout win by the Coyotes against the

Ducks in Anaheim, with Arizona given only 19.2% probability of win-

ning. On November 9, the Oilers beat the Rangers 3�1 at Madison

Square Garden; the model had given New York an 80.7% probability of

victory, projecting a spread of 1.91 goals.

Example
The ratings regression also predicts a narrow win by the Capitals at home

over Pittsburgh:

Est: Victory Margin52 1:1171 0:927 2:709ð Þ2 1:274ð2:538Þ
6 SE520:3956 1:274

The estimated winning probability is 42.9% for the Penguins and

57.1% for Washington:

Probability5 12NormCDF 0; 20:395; 1:274ð Þ5 57:1%

8.5 LOGIT SPREAD MODEL

The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric. The model

transforms the home team victory margin to a probability value between

0 and 1 via the cumulative distribution function and then estimates model

parameters via logit regression analysis.

The logit spread model has following form:

y5 b01 bh2 ba

where b0 denotes a home-field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.

The left-hand side of the equation y is the log ratio of the cumulative

density function of victory margin (see chapter: Sports Prediction

Models, for calculation process).

In this formulation, the parameters values b0; bh; ba are then deter-

mined via ordinary least squares regression analysis. The results of this

analysis are shown in Table 8.1.
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Estimating Spreads
Estimating the home team winning margin is accomplished as follows.

If team k is the home team and team j is the away team, we compute

y using the logit parameters:

y5 b01 bk2 bj

Compute y� from y via the following adjustment:

y�5
ey

11 ey

Compute z as follows:

z5 norminvðy�Þ
And finally, the estimated home team spread:

Estimated Spread5 s1 z � σs

where

s5 average home team winning margin (spread) across all games

σs 5 standard deviation of winning margin across all games

Estimating Probability
The corresponding probability of the home team winning is determined

by performing a regression analysis of actual spread as a function of esti-

mated spread to determine a second set of model parameters. This model

has form:

Actual Spread5 a0 1 a1 � Estimated Spread
To run this regression, we need to compute the estimated spread for

all games using the logit spread parameters from above (see Table 8.1).

The solution to this model is (Table 8.6):

Table 8.6 Logit Spread Model: 2014�15 NHL

Statistic Value

s (Average home victory margin) 0.242

σs (Home victory margin standard deviation) 2.309

b0 (Home-ice advantage) 2 0.003

R2 8.99%

F-value 130.145

Standard Error 2.204
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A graphical illustration of this model is (Fig. 8.8):

Performance
The logit spread model was able to predict the winners 797 times in 1319

games, a rate of 60.4%. The winning percentage was 62.3% (716 of 1149

games) excluding games decided by shootout. Favorites with win probabili-

ties over 70% won 166 of 212 games, a rate of 78.3%. A spread of one goal

equaled a win probability of 67.5%. The most lopsided matchup was the

Sabres playing the Rangers in Madison Square Garden; New York was

favored by 2.4 goals with a win probability of 86.2%, and went on to defeat

Buffalo by a score of 6�1. The biggest upset was a 2�1 Buffalo victory in

Washington in November; the model gave the Sabres only a 16.1% chance.

The Capitals would avenge the loss in a March rematch, also by a 6�1 score.

Rankings
At No. 14, the Los Angeles Kings were the only nonplayoff team to finish

ahead of a playoff team; their logit spread rating of 2.637 was higher than

that of the Detroit Red Wings (2.6168, No. 6 seed in the East),

Vancouver Canucks (2.6166, No. 5 seed in the West), and the Pittsburgh

Penguins (2.600, No. 8 seed in the East). The New York Rangers

took the top spot in the rankings, followed by the eventual Stanley

Cup Champion Chicago Blackhawks, the fourth seed in the Western

y = 0.9045 x + 0.026
R2= 0.0899
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Figure 8.8 Logit Spread Model: 2014�15 NHL.
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Conference. The St. Louis Blues, the West’s 1-seed, were ranked third

while the Anaheim Ducks, the 2-seed in the West, ranked tenth.

Example
Washington had a logit spread rating of 2.851, fifth best in the NHL.

Pittsburgh, on the other hand, had the lowest rating of any playoff team,

as their 2.600 was 17th. The home-ice advantage factor for the logit

spread model (b0) was a negligible 20.003 for the NHL in 2014�15.

Home teams averaged a goal differential of 10.242 with a standard

deviation of 2.309. With those parameters, the logit spread model pro-

vides a 0.6-goal advantage for Washington, with a 60.7% chance of

defeating the Penguins at home.

y�5
1

11 e2ð2:85122:60020:003Þ 5
1

11 e20:248
5 0:5616

Victory Margin5 z � σs 1 s5 norminvð0:5616Þ�2:3091 0:2425 0:5998

Probability5 12 normdist 0; 0:5998; 2:204ð Þ5 60:73%

8.6 LOGIT POINTS MODEL

The logit points model is a probability model that predicts the home team

victory margin by taking the difference between home team predicted goals

and away team predicted goals. The predicted goals are determined based on

inferred team “ratings” similar to the logit spread model discussed above.

The logit points model has following form:

h5 c01 ch2 ca

a5 d01 dh2 da

where

h is the transformed home team goals, c0 denotes a home-field

advantage, ch denotes the home team rating, and ca denotes the

away team rating corresponding to home team goals.

a is the transformed away team goals, d0 denotes a home-field

advantage, dh denotes the home team rating, da denotes the away

team rating corresponding to away team goals.
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The left-hand side of the equation h and a is the log ratio of the

cumulative density function of home team goals and away team goals

respectively (see chapter: Sports Prediction Models, for a description).

Estimating Home and Away Team Goals
Estimating the home team goals is accomplished directly from the home

goals team ratings. These rating parameters are shown in Table 8.1. If team k

is the home team and team j is the away team, the transformed home team

goals are:

h5 c01 ck2 cj

h� 5
eh

11 eh

Then

z5 norminv h�ð Þ
And finally, the x-value is:

Home Points5 h1 z � σh

where

h5 average home team goals

σh5 standard deviation of home team goals

Away goals are estimated in the same manner but using the team rat-

ings for the away goals model.

Estimating Spread
The estimated home team victory margin is computed directly from the

home team goals and away team goals as follows:

Est: Spread5Home Team Goals2Away Team Goals

Estimating Probability of Winning
The corresponding probability of winning is determined by performing

a regression analysis of actual spread as a function of estimated spread.

The model has form:

Actual Spread5 b0 1 b1 � Est: Spread
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The solution to this model is (Table 8.7):

A graphical illustration of this model is (Fig. 8.9):

Performance
The logit points model predicted the winner in 796 games, a rate of 60.3%.

Excluding games decided by shootout, the rate was 62.2% (715 of 1149).

The Sabres, Coyotes, Maple Leafs, and Oilers comprised the 102 least-

favored home teams (from 19.0% for the Sabres hosting the Rangers to

33.1% for the Maple Leafs hosting the Capitals) as well as the 96 least-

favored visitors (from 13.7% for Buffalo at the Rangers to 25.7% for Toronto

at Washington); the four teams won only 24.2% of those 198 games.

Table 8.7 Logit Points Model: 2014�15 NHL

Statistic Home Away

s (Average score) 2.838 2.596

σs (Score standard deviation) 1.655 1.526

b0 (Home-ice advantage) 0.022 0.028

R2 9.00%

F-value 130.283

Standard Error 2.204

y = 0.8996 x + 0.0272
R 2= 0.09
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Figure 8.9 Logit Points Model: 2014�15 NHL.
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The predicted spread was within 6 1 goal of the actual margin of victory

in 402 games (31.5%). The predicted spread was one goal or less in 1048

games (79.5%), with a one-goal favorite having a win probability of 67.4%.

Example
The ratings for the Capitals at home were bh5 2.7302 and dh5 2.2305,

and the Penguins’ were ba5 2.2674 and da5 2.5007. The home-ice

advantage had factors of b05 0.0220 and d05 0.0281. The model’s con-

clusion is that the Capitals should win by a little over half a goal, and that

the probability that Washington would defeat Pittsburgh at home is 60%.

HomeScore5norminv
1

11e2 0:022012:730222:2674ð Þ

� �
�1:655312:837852:9205

AwayScore5norminv
1

11e2 0:028112:230522:5007ð Þ

� �
�1:526112:595952:3645

VictoryMargin52:920522:364550:5559

Probability512normcdf 0; 0:5559; 2:204ð Þ559:96%

8.7 EXAMPLE

In our matchup of the Capitals and Penguins in Washington, all six mod-

els favor the Capitals. The six win probabilities were all very similar, fit-

ting in a narrow five-percentage-point range of 57.1�62.1%. Four of the

six models favor Washington by more than half a goal. The game scores

model was closest to the average of the six both for win probability and

margin of victory (Table 8.8).

Table 8.8 Example Results

Model Favorite Underdog Line
P(WAS
Win)

P(PIT
Win)

Game Scores Washington Pittsburgh 0.5 59.5% 40.5%

Team Statistics Washington Pittsburgh 0.7 62.2% 37.8%

Logistic Probability Washington Pittsburgh 0.5 58.2% 41.8%

Team Ratings Washington Pittsburgh 0.4 57.1% 42.9%

Logit Spread Washington Pittsburgh 0.6 60.7% 39.3%

Logit Points Washington Pittsburgh 0.6 60.0% 40.0%

Average Washington Pittsburgh 0.5 59.6% 40.4%
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The Capitals hosted the Penguins twice in the 2014�15 regular season.

Washington shut Pittsburgh out on January 28 by a score of 4�0, a loss the

Penguins avenged with a 4�3 win on February 25.

8.8 OUT-SAMPLE RESULTS

We performed an out-sample analysis where we predicted our game

results using a walk forward approach. In this analysis, we use previous

game results data to predict future games. Here, the model parameters

were estimated after about 10 games per team and then we predicted the

winning team for the next game. For all models we found the predictive

power declined slightly using an out-sample test, but after about 20 games

per team the results from the out-sample began to converge to the results

with in-sample data.

These models had a decrease in winning percentage using out-sample

results of only 20.5%. The winning percentage for these models after

about 20 games and into the postseason were in line with the in-sample

results, thus indicating that once we have about 20 games per team the

model results are as strong as they can be (Fig. 8.10).
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Figure 8.10 Comparison of In-Sample to Out-Sample: 2014�15 NHL.
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8.9 CONCLUSION

In this chapter we applied six different sports model approaches to

National Hockey League results for the 2014�15 season. The models

were used to predict winning team, estimated home team victory margin,

and probability of winning. Overall the six models performed fairly simi-

larly to one another; each had in-sample winning team prediction rates

between 58% and 61% and regression errors between 2.20 and 2.25. As

would be expected, each model’s predictive accuracy was diminished by

games decided by shootout. Five of the six models had similar regression

R2 values of 8.1�9.1%, while the team statistics model, using shooting

and save percentages as parameters, was lower at 5.6%. The three most

accurate models were all probability models (logistic probability, team rat-

ings, and logit spreads), followed by the two data-driven models (game

scores and team statistics) and the fourth probability model.
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CHAPTER 9

Soccer—MLS

In this chapter, we apply the sports modeling techniques introduced in

previous chapters to the 2015 Major League Soccer (MLS) season. Our

goal is to provide readers with proper techniques to predict expected

winning team and probability of winning, and to estimate winning

victory margin.

Our techniques include six different models: game scores, team statis-

tics, team ratings, logistic probability, logit spreads, and logit points.

These models are based on linear regression techniques described in

Chapter 2, Regression Models, and on probability estimation methods

described in Chapter 3, Probability Models.

The models were evaluated in three different ways based on in-sample

data: winning percentage, R2 goodness of the estimated victory margin,

and the regression error. Out-sample performance results are discussed at

the end of the chapter.

Fig. 9.1 depicts the winning percentage by model. For the purposes

of comparing the various models, we will calculate the favorites’ winning

percentage by counting a draw as half a win and half a loss. This is

because tie games are so common in Major League Soccer; in 2015 more

than 20% of matches ended in draws. All of the six models were between

64.0% and 66.1% accurate in correctly identifying the winner, compared

with 62.7% for the Vegas line. The low-scoring nature of soccer matches

affected the other two performance analyses. Fig. 9.2 illustrates the R2

goodness of fit for each model, which was uniformly low, between 2.7%

and 5.0%. Fig. 9.3 depicts the regression error surrounding the predicted

victory margin. All of the models’ regression errors were within 0.03

goals of each other. The Vegas line does not set point spreads for soccer

and thus they are not included in Figs. 9.2 and 9.3 (Table 9.1).

9.1 GAME SCORES MODEL

The game scores regression model predicts game outcomes based on the

average number of goals scored and allowed by each team.
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The game scores model has form:

Y 5 b01 b1 �HGS1 b2 �HGA1 b3 � AGS1 b4 � AGA1 ε

In the representation, the dependent variable Y denotes the value that

we are trying to predict; this can be the home team’s margin of victory

(or defeat), the number of goals scored by the home team, the number of

goals scored by the away team, and the total combined score. For our

purposes, we define the Y variable to be the home team victory margin.

A positive value indicates the home team won by the stated number of

goals and a negative value indicates the home team lost by the stated

number of goals.

The variables of the model are:

Y 5 home team victory margin

HGS5 home team average goals scored per game

HGA5 home team average goals allowed per game

AGS5 away team average goals scored per game

AGA5 away team average goals allowed per game

b0; b1; b2; b3; b45model parameters, represents the sensitivities to

the corresponding model factor

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models.
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Figure 9.3 Regression R2: 2015 MLS.
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Table 9.1 Regression Results and Rankings
Team Statistics Ratings Rankings

Team W � L � T PF/G PA/G SOG/G CK/G OFF/G
Logistic
Rating

Logit
Spread

Logit
Home
Points

Logit
Away
Points

Game
Scores

Team
Statistics

Logistic
Ratings

Logit
Spread

Logit
Points

Chicago Fire 8 � 20 � 6 1.26 1.56 4.79 5.79 2.38 1.754 2.077 1.924 2.385 15 8 20 19 19

Colorado Rapids 9 � 15 � 10 0.97 1.12 3.74 5.85 2.79 2.084 2.323 2.579 2.877 20 20 17 15 15

Columbus Crew 15 � 11 � 8 1.71 1.53 5.29 6.09 2.06 2.633 2.610 2.833 2.778 3 1 6 9 9

DC United 15 � 13 � 6 1.26 1.94 4.00 4.79 2.62 2.444 2.362 2.844 3.063 18 16 13 14 14

FC Dallas 18 � 10 � 6 1.53 1.21 4.35 4.94 1.68 2.993 2.881 2.854 2.374 5 11 3 2 2

Houston Dynamo 11 � 14 � 9 1.24 1.21 3.65 4.76 1.44 2.368 2.364 2.662 2.953 13 17 15 13 13

Los Angeles Galaxy 14 � 11 � 9 1.65 1.35 4.50 4.68 1.41 2.877 2.881 2.901 2.470 4 9 4 3 3

Montreal Impact 15 � 13 � 6 1.41 1.15 4.97 4.82 1.94 2.551 2.616 2.710 2.572 7 4 10 8 8

New England Revolution 14 � 12 � 8 1.41 1.47 4.65 5.82 1.85 2.594 2.416 2.047 2.073 9 10 8 11 11

New York City 10 � 17 � 7 1.44 1.24 4.71 4.94 2.29 1.901 2.152 2.706 3.297 6 7 19 17 17

New York Red Bulls 18 � 10 � 6 1.82 1.24 5.24 6.06 3.26 3.130 2.991 2.865 2.298 1 3 1 1 1

Orlando City 12 � 14 � 8 1.35 1.53 3.68 4.82 2.41 2.380 2.103 2.008 2.362 11 18 14 18 18

Philadelphia Union 10 � 17 � 7 1.24 1.24 4.38 5.35 2.06 2.040 2.075 2.028 2.551 14 13 18 20 20

Portland Timbers 15 � 11 � 8 1.21 1.41 4.88 6.00 2.29 3.108 2.703 2.479 2.113 17 6 2 6 6

Real Salt Lake 11 � 15 � 8 1.12 1.68 4.24 4.53 2.06 2.467 2.208 2.074 2.446 19 14 12 16 16

San Jose Earthquakes 13 � 13 � 8 1.21 1.38 3.79 5.76 2.18 2.590 2.630 2.056 1.813 16 19 9 7 7

Seattle Sounders 15 � 13 � 6 1.29 1.41 4.24 4.26 1.97 2.676 2.833 2.719 2.332 12 12 5 4 4

Sporting Kansas City 14 � 11 � 9 1.41 1.41 4.15 4.50 1.74 2.599 2.557 2.525 2.382 8 15 7 10 10

Toronto FC 15 � 15 � 4 1.71 1.29 4.97 5.26 1.97 2.310 2.401 2.223 2.215 2 5 16 12 12

Vancouver Whitecaps 16 � 13 � 5 1.32 1.12 5.06 5.09 2.06 2.500 2.795 2.883 2.560 10 2 11 5 5

Home-Field Advantage 0.726 0.024 0.078 0.087



This model can also be used to calculate the probability p that the

home team will win the game as follows:

p5 12NormCDFð0;Y ; SeY Þ
Here, Y and SeY are the expected victory margin and regression error

term respectively, and zero indicates the reference point used for the

calculation (i.e., the probability that the winning margin will be greater

than zero).

Regression Results
The best fit regression equation for predicting the victory margin as a

function of team goals scored and goals allowed is below. The resulting

victory margin is positive when the home team is favored and negative

when the visiting team is favored.

This model equation is:

Est: Victory Margin522:2131 1:210 �HGS1 0:345 �HGA

20:208 � AGS1 0:696 � AGA

The R2 value of the game scores model’s margin of victory model was

low at 3.48%. The only significant t-Stat was 3.012 for home team goals

allowed.

The signs of the input variables are intuitive. The sign of the sensitivity

parameter is expected to be positive for home goals scored (HGS) and away

goals allowed (AGA). In both of these cases, the home team will score more

goals if these input values are higher. Similarly, the signs of the sensitivity

parameters for home goals allowed (HGA) and away team goals scored

(AGS) are expected to be negative. The home team is expected to win by

fewer goals or possibly lose if the HGA and/or AGS increase in value.

Table 9.2 shows the results of the regression model and Fig. 9.4 shows a

graph of actual victory margin (spreads) compared to the model’s estimates.

Performance
The game scores regression’s favorites combined for a record of

194�89�74. It correctly predicted the winner 54.3% of the time; with the

draws counted as half a win and half a loss, the rate was 64.0%. The Vegas

favorite won 187 matches and lost 96, a rate of 62.7% counting the 74

draws as each half a win and half a loss. The game scores regression pre-

dicted the winner 194 times (64.7%), an improvement of seven matches.
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If the model is instructed to predict a draw when the projected

margin of victory is less than half a goal, and only predict a winner when

the margin is at least half a goal, the favorite won 59% of the matches,

lost 21%, and played to a draw 20% of the time. As the probability of

victory is directly related to the estimated margin of victory, a spread of

half a goal is equivalent to a win probability of 62.3%.

p5 12NormCDF 0; 0:5; 1:593ð Þ5 62:3%

The home-pitch advantage was substantial enough that the visiting

team was favored only eight times in 357 matches (2.24%). Colorado was

Table 9.2 Game Scores Model: 2015 MLS

Statistic Value t-Stat

b0 22.214 21.9

b1 (Home goals scored) 1.210 3.0

b2 (Home goals allowed) 0.345 0.8

b3 (Visitor goals scored) 20.207 20.5

b4 (Visitor goals allowed) 0.696 1.6

R2 3.48%

F-value 3.170

Standard Error 1.593

y = x – 2E – 15
R2= 0.0348
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Figure 9.4 Game Scores Model: 2015 MLS.
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the home team in all eight matches in which the road team was

favored; the Rapids combined for a record of 2�3�3 in those eight

matches. Overall the Rapids had the 14 lowest win probabilities for

home teams.

The New York Red Bulls were the beneficiaries of the highest calculated

probability of victory, 82.8%, for each of three matches with DC United

that they hosted, all of which they won. There were 17 matches in which

the favorite’s probability was at least 76%; the favorites won 14 and lost 1.

During the playoffs, the model’s favorites collectively recorded 12

wins, 3 losses, and 2 draws (70.6%).

The range for the estimated victory margins spanned 0.04 goals

(Colorado Rapids a narrow favorite at home over Sporting Kansas City)

to just over 1.5 (New York Red Bulls hosting DC United). Actual

margins of victory went as high as five goals, though 65.5% of matches

were decided by only one or two goals and 20.7% ended in draws.

The estimated goal spreads were accurate to within half a goal in

90 matches (25.2%), one goal in 172 matches (48.2%), and two goals in

285 matches (79.8%). The projections missed by more than three goals

23 times (6.4%); the largest discrepancy was a 5�0 win by the San Jose

Earthquakes over Sporting Kansas City, a match the model had called for

Kansas City by 0.7 goals.

Rankings
Twelve teams qualify for the playoffs in the 20-team league. In the game

scores regression, there were 10 playoff teams among the top 12. The two

playoff teams that were ranked lower than No. 12 were the Portland

Timbers at No. 17 and DC United at No. 18. The regression weighted

offense (goals scored per game) much more heavily than defense (goals

allowed per game); Portland averaged 1.21 goals per game, tied for third

lowest in MLS. DC United was tied for seventh-lowest at 1.26, while

they were last in MLS with 1.94 goals allowed per game. New York City

was sixth in offense and tied for sixth in defense, but did not make the

playoffs by virtue of their 10�17�7 record; they won by an average 1.6

goals and lost by an average of 1.4.

Example
The example matchup for MLS will pit the New York Red Bulls

(4�12) against the Toronto Football Club (FC) on Toronto’s home
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pitch. The Red Bulls led MLS by scoring 1.87 goals per game in 2015;

Toronto FC was tied for second with 1.71. Defensively, the Red Bulls’

1.24 goals allowed per game put them in a three-way tie with New

York City and Philadelphia Union for the sixth-best defense in the

league; Toronto was right behind in ninth place with 1.29. The game

scores regression projects that Toronto would win by 0.78 goals, plus or

minus the standard error of 1.593 goals, with a win probability of

68.8%:

Victory Margin522:2131 1:21 � 1:711 0:345 � 1:302 0:208 � 1:83
1 0:696 � 1:246 SE5 0:7796 1:593

p5 12NormCDF 0; 0:779; 1:593ð Þ5 68:8%

9.2 TEAM STATISTICS MODEL

For soccer, we will provide three per-game rates to the team statistics

model: shots on goal, corner kicks, and offsides penalties.

The team statistics linear regression model has form:

Y 5 b01 b1 �HTSPG1 b2 �HTCKPG1 b3 �HTOFFPG1 b4 � ATSPG
1 b5 � ATCKPG1b6 � ATOFFPG1 ε

The variables of the model are:

Y 5 outcome value we are looking to predict

HTSPG5 home team shots on goal per game (offense)

HTCKPG5 home team corner kicks per game

HTOFFPG5 home team offsides penalties per game

ATSPG5 away team shots on goal per game (offense)

ATCKPG5 away team corner kicks per game

ATOFFPG5 away team offsides penalties per game

b0; b1; b2; b3; b4; b5; b65model parameter, sensitivity to the variable

ε5model error

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models. The results of these

model are shown in Table 9.3.
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Regression Results
The result of the regression model for predicting home team victory

margin from our team statistics is:

Victory Margin5 1:4251 0:387 �HTSPG2 0:126 �HTCKPG

2 0:272 �HTOFFPG20:116 � ATSPG
2 0:052 � ATCKPG2 0:249 � ATOFFPG6 1:604

The victory margin prediction model produced an R2 of 2.65% and a

standard error of 1.60 goals. The one average with a significant t-statistic

was the home team’s shots on goals per game.

These regression results are listed in Table 9.3, with a graph of actual

spread compared to predicted spread in Fig. 9.5.

Performance
The team statistics regression’s favorites won 199 matches and lost 84, a

success rate of 66.1%. The Vegas favorite won 187 matches and lost 96,

an adjusted rate of 62.7% excluding 74 draws.

With six, this regression had even fewer underdog home teams than

the eight returned by the game scores regression. This includes a matchup

of New York City at Colorado, where the visiting New York squad’s win

probability was calculated to be just 50.018%. The lowest win probability

for a home team was Orlando, given a 46.3% chance of beating the Red

Bulls at home. The highest was 76.6% for Los Angeles the two times they

hosted Houston, a 1�1 draw in March and a 1�0 Galaxy victory in May.

Table 9.3 Team Statistics Model: 2015 MLS

Statistic Value t-Stat

b0 1.425 1.1

b1 (Home shots on goal per game) 0.387 2.1

b2 (Home corner kicks per game) 20.126 20.7

b3 (Home offsides per game) 20.272 21.2

b4 (Away shots on goal per game) 20.116 20.6

b5 (Away corner kicks per game) 20.052 20.3

b6 (Away offsides per game) 20.249 21.1

R2 2.65%

F-value 21.090

Standard Error 1.604
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Estimated victory margins ranged from 0.001 goals (New York

City at Colorado Rapids) to 1.163 goals (Los Angeles at home against

Houston).

The estimated goal spreads were accurate to within half a goal in

90 matches (25.2%), one goal in 172 matches (48.2%), and two goals in

285 matches (79.8%). The projections missed by more than three goals

23 times (6.4%); the largest discrepancy was a 5�0 win by the San Jose

Earthquakes over Sporting Kansas City, a match the model had called for

Kansas City by 0.7 goals.

Rankings
The top six spots in the rankings went to playoff teams, as did 10 of the

top 11. No. 7 New York City was the one nonplayoff team in the Top

10, primarily because their 4.71 shots on goal average, the stat with the

most significance according to the regression, was good enough for eighth

in MLS. The Red Bulls’ shot average of 5.24 and 6.06 corner kicks per

game were each second only to Columbus’s, but they were held back by

virtue of their league-worst 3.27 offsides penalty average. Despite their

15 wins, DC United was 16th in shooting, 15th in corner kicks, and

18th in offsides penalties.

y = x + 6E – 15
R2= 0.0265
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Figure 9.5 Team Statistics Model: 2015 MLS.
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Example
The Red Bulls were second in MLS with 5.24 shots on goal and 6.06

corner kicks per game, while Toronto FC was fourth with 4.97 shots on

goal and ninth with 5.26 corner kicks per match. The Red Bulls led the

league by a comfortable margin with 3.26 offsides penalties per match,

nearly half a penalty per game more than any other team, and far more

than Toronto’s 1.97. Thus under the team statistics model, Toronto is

favored by less than half a goal:

Est:Margin of Victory5 1:4251 0:387 � 4:972 0:126 � 5:26
2 0:272 � 1:972 0:116 � 5:2420:052 � 6:06
2 0:249 � 3:266 SE5 0:4146 1:604

The margin of 0.414 goals is equivalent to a win probability of 60.2%

for Toronto FC:

p5 12NormCDF 0; 0:414; 1:604ð Þ5 60:2%

9.3 LOGISTIC PROBABILITY MODEL

The logistic model is as follows:

y�5
1

11 exp 2 b01 bh2 bað Þ� �
Here, b0 denotes a home-field advantage parameter, bh denotes the

home team rating parameter value, and ba denotes the away team rating

parameter value. The value y� denotes the probability that the home team

will win the game. Team ratings for the logistic probability are determined

via maximum likelihood estimates and are shown in Table 9.1.

Estimating Spread
The estimated spread (i.e., home team victory margin) is determined via

a second analysis where we regress the actual home team spread on the

estimated probability y� (as the input variable). This regression has form:

Actual Spread5 a01 a1 � y�

This model now provides a relationship between the logistic

home team winning probability and the home team winning percentage.
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It is important to note here that analysts may need to incorporate an

adjustment to the spread calculation if the data results are skewed (see

Chapter 3 : Probability Models).

The solution to this model is (Table 9.4):

Therefore, after computing the home team winning probability, the

expected spread is estimated from the following equation based on the

regression results:

Estimated Spread521:411 3:03 � y�

A graph illustrating the estimated spread from the probability estimates

is shown in Fig. 9.6.

Table 9.4 Logistic Probability Regression: 2015 MLS

Statistic Value t-Stat

a0 21.409 22.7
a1 3.026 4.0

b0 (Home-field advantage) 0.726

R2 4.22%

F-value 15.623

Standard Error 1.580

y = 3.026 x – 1.4085
R2= 0.0422
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Figure 9.6 Logistic Probability Model: 2015 MLS.
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Performance
The logistic probability model’s projections were correct in 195 of 357

matches for an adjusted winning percentage of 65.0%. This is an

improvement over the Vegas line, which only predicted the winning team

187 times for an adjusted winning percentage of 62.7%.

The away team was the favorite in 25 of the 357 matches, with a maxi-

mum win probability of 65.7%; the visiting favorites went 10�12�3 in

those 25 games. Home team favorites had win probabilities as high as 89.1%,

as did the Red Bulls for a September match against the Chicago Fire, which

New York won 3�2. When the win probability was at least 80%, the favor-

ites went 27�4�5, an adjusted winning percentage of 81.9%.

In the playoffs, the logistic probability model’s favorites won 12 of the

17 matches while losing 3 with 2 draws.

Rankings
The top eight teams in the logistic ratings—the New York Red Bulls,

Portland, Dallas, Los Angeles, Seattle, Columbus, Kansas City, and New

England—all made the playoffs. The San Jose Earthquakes at No. 9 were

the highest-ranked nonplayoff team, followed by Real Salt Lake at

No. 12. The two playoff teams not ranked in the top 12 were DC

United (No. 13) and Toronto FC (No. 16). The Portland Timbers, who

won the MLS Cup, were ranked No. 2.

Example
Toronto FC ranked 16th among the 20 teams with a logistic rating of

2.3105, while the Red Bulls’ rating of 3.1296 led Major League Soccer.

Despite the large gap between the two ratings, the logistic probability

model favors New York by a relatively small margin, thanks in large part

to the home-field advantage parameter:

y5
1

11 e2 2:3105 2 3:1296 1 0:7255ð Þ 5
1

11 e20:0936
5 0:4766

We can then take this probability and combine it with the regression

parameters b0 (21.409) and b1 (3.027) to estimate that this matchup

would result in a very narrow win by Toronto:

Estimated Spread521:4091 3:027 � 0:47666 SE5 0:0346 1:580

ProbabilityHome5 normcdf 0:034; 0; 1:580ð Þ5 50:86%
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9.4 TEAM RATINGS MODEL

The Team ratings prediction model is a linear regression model that uses

the team ratings determined from the logistic probability model as the

explanatory variables to estimate home team victory margin. This is one

of the reasons why the logistic model is one of the more important sports

models since its results can be used in different modeling applications.

The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating1 ε

The variables of the model are:

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home-field advantage value

b15 home team rating parameter

b25 away team rating parameter

Y 5 home team’s victory margin (positive indicates home team is

favored and negative value indicates away team is favored)

The probability of winning is determined from:

Probability5 12NormCDFð0;Y ; SEÞ

The betas of this model, b1 and b2, are determined from a linear

regression analysis as described in Chapter 2, Regression Models.

Regression Results
The best fit regression equation to predict home team victory margin

from team strength ratings is:

Estimated Victory Margin520:0961 0:771 �HomeRating2 0:493 � AwayRating

The regression had an R2 of 4.26% and significant t-Stat for each of

the team rating parameters. The standard error of this model is 1.58, indi-

cating that 70% of the time the actual spread will be within 1.58 goals of

our predicted spread. The regression results and graph showing the actual

victory margin as a function of estimated victory margin are in Table 9.5

and Fig. 9.7, respectively.
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Performance
The team ratings model’s favorites won 195 of 357 matches for an

adjusted success rate of 65.0%, eight wins more than the Vegas line.

Visiting teams were favored in only 13 matches—8 of which were

home games for the Chicago Fire—combining for a record of 6�6�1.

The average home team’s win probability was 64.5%, with a maximum of

82.0% for the Red Bulls when they played Chicago at home. There were

50 matches for which the predicted spread was at least one full goal,

equivalent to a win probability of 73.6%, over which the favorites went

35�9�6. In the playoffs, the model’s favorites went 12�3�2. In the

final, the model gave the Columbus Crew a 60% chance of beating the

visiting Portland Timbers, but Portland won the match 3�2.

Table 9.5 Team Ratings Model: 2015 MLS

Statistic Value t-Stat

b0 20.096 20.1

b1 (Home team rating) 0.771 3.3

b2 (Away team rating) 20.493 22.1

R2 4.26%

F-value 7.873

Standard Error 1.582
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Figure 9.7 Team Ratings Model: 2015 MLS.
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Example
Toronto FC’s rating of 2.3105 was 12th in Major League Soccer in 2015,

while the Red Bulls had a league-best 3.1296. The team ratings model

equates that to a margin of victory of about one-seventh of a goal:

Est: Victory Margin52 0:0961 0:771 2:3105ð Þ2 0:493 3:1296ð Þ5 0:1426 1:582

The output of this formula is the estimated victory margin for the

home team, and a negative result indicates that the visiting team is favored.

The estimated winning probability is 53.6% for Toronto and 46.4%

for the Red Bulls:

Probability5 12NormCDF 0; 0:142; 1:582ð Þ5 53:6%

9.5 LOGIT SPREAD MODEL

The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric. The model

transforms the home team victory margin to a probability value between

0 and 1 via the cumulative distribution function and then estimates model

parameters via logistic regression analysis.

The logit spread model has following form:

y5 b01 bh2 ba

where b0 denotes a home-field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.

The left-hand side of the equation y is the log ratio of the cumulative

density function of victory margin (see chapter: Sports Prediction

Models, for calculation process).

In this formulation, the parameters values b0; bh; ba are then deter-

mined via ordinary least squares regression analysis. The results of this

analysis are shown in Table 9.1.

Estimating Spreads
Estimating the home team winning margin is accomplished as follows.

If team k is the home team and team j is the away team, we compute

y using the logit parameters:

y5 b01 bk2 bj
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Compute y� from y via the following adjustment:

y�5
ey

11 ey

Compute z as follows:

z5 norminvðy�Þ

And finally, the estimated home team spread:

Estimated Spread5 s1 z � σs

where

s5 average home team winning margin (spread) across all games

σs 5 standard deviation of winning margin across all games

Estimating Probability
The corresponding probability of the home team winning is determined

by performing a regression analysis of actual spread as a function of esti-

mated spread to determine a second set of model parameters. This model

has form:

Actual Spread5 a01 a1 � Estimated Spread

To run this regression, we need to compute the estimated

spread for all games using the logit spread parameters from above

(see Table 9.1).

The solution to this model is (Table 9.6):

Table 9.6 Logit Spread Model: 2015 MLS

Statistic Value

s (Average home victory margin) 0.602

σs (Home victory margin standard deviation) 1.612

b0 (Home-field advantage) 0.024

R2 5.00%

F-value 18.679

Standard Error 1.574
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A graphical illustration of this model is (Fig. 9.8):

Performance
Along with having the best regression statistics, the logit spread model

tied for the second-most correct in-sample predictions. Its favorites won

197 out of 357 matches, an adjusted winning percentage of 65.5%. The

visiting team was favored in only 22 matches (6.2%). The Chicago Fire

was an underdog at home five times, followed by four matches apiece for

Orlando City, Philadelphia Union, and Real Salt Lake. The Red Bulls

were a road favorite eight times, and also comprised the six highest win

probability estimates.

When the home team’s win probability was over 70%, they combined

for a record of 83�20�15 and an adjusted winning percentage of 76.7%.

Favorites of at least 80% went 11�2�0 (84.6%). In the playoffs, the mod-

el’s favorites won 13 matches against 2 losses and 2 draws.

The logit spread model had the highest R2 (4.9987%) and lowest

standard deviation (1.5738 goals) of the six models when applied to the

2015 Major League Soccer season.

y = 0.9016 x + 0.0376
R2= 0.05
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Figure 9.8 Logit Spread Model: 2015 MLS.
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Rankings
The Red Bulls were the top-ranked team by logit spread rating, followed

by FC Dallas and the Los Angeles Galaxy. The San Jose Earthquakes were

ranked seventh, the highest ranking among nonplayoff teams. At No. 13

the Houston Dynamo was the only other nonplayoff team ranked ahead

of a playoff team, as the Dynamo’s rating of 2.6343 was just ahead of DC

United’s 2.3622. The Columbus Crew, winners of the 2015 MLS Cup,

ranked ninth.

Example
Toronto FC’s logit spread parameter was 2.4005 (12th of the 20 teams),

while the Red Bulls led the MLS with a rating of 2.9907. The home-

field advantage factor (b0) was 0.0236.

y5
1

11 e2 2:400522:990710:0236ð Þ 5
1

11 e20:5666
5 0:5084

According to the logit spread model, Toronto would be a very narrow

favorite hosting the Red Bulls, with a win probability between 50% and

51%:

Victory Margin5 z � σs 1 s5 norminvð0:5084Þ � 1:6121 0:6025 0:033

Probability5 12 normdist 0; 0:033; 1:612ð Þ5 50:81%

9.6 LOGIT POINTS MODEL

The logit points model is a probability model that predicts the home team

victory margin by taking the difference between home team predicted goals

and away team predicted goals. The predicted goals are determined based on

inferred team “ratings” similar to the logit spread model discussed above.

The logit points model has following form:

h5 c01 ch2 ca

a5 d01 dh2 da
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where

h is the transformed home team goals, c0 denotes a home-field

advantage, ch denotes the home team rating, and ca denotes the

away team rating corresponding to home team goals.

a is the transformed away team goals, d0 denotes a home-field

advantage, dh denotes the home team rating, da denotes the away

team rating corresponding to away team goals.

The left-hand side of the equation h and a is the log ratio of the

cumulative density function of home team goals and away team goals

respectively (see chapter: Sports Prediction Models, for a description).

Estimating Home and Away Team Goals
Estimating the home team goals is accomplished directly from the home

goals team ratings. These rating parameters are shown in Table 9.1. If

team k is the home team and team j is the away team, the transformed

home team goals are:

h5 c01 ck2 cj

h�5
eh

11 eh

Then

z5 norminv h�ð Þ
And finally, the x-value is:

Home Points5 h1 z � σh

where

h5 average home team goals

σh5 standard deviation of home team goals

Away goals are estimated in the same manner but using the team

ratings for the away goals model.

Estimating Spread
The estimated home team victory margin is computed directly from the

home team goals and away team goals as follows:

Est: Spread5Home Team Goals2Away Team Goals
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Estimating Probability of Winning
The corresponding probability of winning is determined by performing a

regression analysis of actual spread as a function of estimated spread. The

model has form:

Actual Spread5 b0 1 b1 � Est: Spread

The solution to this model is (Table 9.7):

A graphical illustration of this model is (Fig. 9.9):

Table 9.7 Logit Points Model: 2015 MLS

Statistic Home Away

s (Average score) 1.681 1.078

σs (Score standard deviation) 1.278 1.016

b0 (Home-field advantage) 0.078 0.087

R2 4.94%

F-value 18.455

Standard Error 1.574

y = 0.9874x + 5E – 05
R2  = 0.0494
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Figure 9.9 Logit Points Model: 2015 MLS.
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Performance
The logit points model matched the logit spread model with an adjusted win-

ning percentage of 65.5%, as its favorites won 197 times out of 357 matches.

These two models picked different favorites only four times, with each

winning twice and losing twice. In terms of projected win probabilities, the

two models’ outputs were within 3.75 percentage points of each other

for every match, and within 3 percentage points for all but five matches.

The logit points model was 12�3�2 in predicting in-sample playoff

games. One of the four matches on which the logit points and logit

spread models disagreed was a quarterfinal between the Red Bulls and

DC United in Washington. Logit points gave DC a 52.8% chance of vic-

tory while logit spread called the match ever so slightly for the visiting

Red Bulls, calculating a 49.87% probability for DC New York went on

to win 1�0.

Example
The model calculated Toronto’s ratings to be bh5 2.2228 and dh5 2.2146,

with values of ba5 2.8652 and da5 2.2978 for the Red Bulls and

b05 0.0781 and d05 0.0868 for the home-field advantage factor.

Home Score5 norminv
1

11 e2 0:0781 1 2:2228 2 2:8652ð Þ

� �
�1:2781 1:6815 1:231

Away Score5 norminv
1

11 e2 0:0868 1 2:2146 2 2:2978ð Þ

� �
�1:0161 1:0785 1:081

These scores point to a Toronto victory by less than a quarter of a

goal, and a win probability of 53.8%.

Victory Margin5 1:2312 1:0815 0:150

Probability5 12 normcdf 0; 0:150; 1:574ð Þ5 53:81%

9.7 EXAMPLE

The six models were unanimous in their conclusions: Toronto FC should

defeat the New York Red Bulls. Two models, logistic probability and

logit spread, gave the edge to Toronto by less than a 51�49% margin,

while the game scores model had Toronto as better than a 2-to-1 favorite

and had the only line of over half a goal (Table 9.8).
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9.8 OUT-SAMPLE RESULTS

We performed an out-sample analysis where we predicted our game

results using a walk forward approach. In this analysis, we use previous

game results data to predict future games. Here, the model parameters

were estimated after about 10 games per team and then we predicted the

winning team for the next game.

The regression based models using game scores and team statistics

were associated with declines of 26.6% and 23.9% respectively. The

probability models only had a slight reduction in predictive power with

winning percentages consistent with in-sample data (e.g., 21.1%) except

for the logit points model, which was down by 24.4%. For all models

we found the predictive power of the model to begin to converge to the

in-sample results after about 20 games per team (Fig. 9.10).

9.9 CONCLUSION

In this chapter we applied six different sports model approaches to Major

League Soccer results for the 2015 season. The models were used to pre-

dict winning team, estimated home team victory margin, and probability

of winning. As with shootouts during regular-season NHL games, when

predicting outcomes some consideration must be made for the large per-

centage of MLS matches, roughly one in five, that will end in a draw. All

of the models had adjusted winning percentages in the neighborhood of

65%, with the team statistics model performing the best at 66.1%, despite

the highest regression error and lowest regression R2 value of the six

models. The logit spreads and logit points models had the next-best win-

ning percentage, lowest regression error, and highest regression R2 values,

Table 9.8 Example Results

Model Favorite Underdog Line
P(TOR
Win)

P(NYRB
Win)

Game Scores Toronto FC NY Red Bulls 0.78 68.8% 31.2%

Team Statistics Toronto FC NY Red Bulls 0.41 60.2% 39.8%

Logistic Probability Toronto FC NY Red Bulls 0.03 50.9% 49.1%

Team Ratings Toronto FC NY Red Bulls 0.14 53.6% 46.4%

Logit Spread Toronto FC NY Red Bulls 0.03 50.8% 49.2%

Logit Points Toronto FC NY Red Bulls 0.15 53.8% 46.2%

Average Toronto FC NY Red Bulls 0.26 56.3% 43.7%
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followed by the other two probability models, logistic probability and

team ratings.

We found that in all cases, these models performed better than the

Vegas line using in-sample data and five of six of the models performed

better than the Vegas line using out-sample data. The Logit Spread and

Logit Points models had the highest goodness of fit (each with

R25 65.5%) and the lowest regression (each with seY5 1.57). These

models performed better than the data driven models, but the Team

Statistics model had the highest winning percentage at 66.1%. In all cases,

our modeling approaches proved to be a valuable predictor of future game

results including predicting winning team, winning spread, and probability

of winning.
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Figure 9.10 Comparison of In-Sample to Out-Sample: 2015 MLS.
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CHAPTER 10

Baseball—MLB

In this chapter, we apply the sports modeling techniques introduced in

previous chapters—game scores, team statistics, logistic probability, team

ratings, logit spreads, and logit points—to Major League Baseball (MLB)

data for the 2015 season.

The models were evaluated in three different ways based on in-sample

data: winning percentage, R2 goodness of the estimated victory margin,

and the regression error. Out-sample performance results are discussed at

the end of the chapter.

Fig. 10.1 depicts the winning percentage by model. The game scores,

team ratings, logistic probability, and logit spread models all picked the

winners between 57% and 58.5% of the time, while the team statistics

regression’s win rate was a bit lower at 55.6%. Fig. 10.2 illustrates the R2

goodness of fit for each model. All six models had relatively low R2 values

of between 2.4% and 3.6%. Fig. 10.3 shows each model’s regression error

for predicting the home team’s victory margin, all of which were nearly

identical, ranging from 4.18 to 4.21.

The regression results for the different models is shown in Table 10.1.

These data will be used throughout the chapter. Each of the prediction

models is described in the remainder of this chapter.

10.1 GAME SCORES MODEL

The game scores regression model predicts game outcomes based on the

average number of runs scored and allowed by each team.

The game scores model has form:

Y 5 b01 b1 �HRS1 b2 �HRA1 b3 � ARS1 b4 � ARA1 ε

In this representation, the dependent variable Y denotes the home

team’s margin of victory (or defeat). A positive value indicates the home

team won by the stated number of runs and a negative value indicates

the home team lost by the stated number of runs.
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The variables of the model are:

Y 5 home team victory margin

HRS5 home team average runs scored per game

HRA5 home team average runs allowed per game

ARS5 away team average runs scored per game

ARA5 away team average runs allowed per game

b05 home-field advantage value

b15 home team runs scored parameter

b25 home team runs allowed parameter

b35 away team runs scored parameter

b45 away team runs allowed parameter

The betas of this model are determined from a linear regression

analysis as described in Chapter 2, Regression Models.

This model can also be used to calculate the probability p that the

home team will win the game as follows:

p5 12NormCDFð0;Y ; SeY Þ
Here, Y and SeY are the expected victory margin and regression

error term respectively, and zero indicates the reference point used for

the calculation. That is, the probability that the winning margin will be

greater than zero.
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Table 10.1 Regression Results and Rankings
Team Statistics Ratings Rankings

Team W � L Pct RF/G RA/G OBP
Opponent

OBP
Logistic
Rating

Logit
Spread

Logit
Home
Points

Logit
Away
Points

Game
Scores

Team
Statistics

Logistic
Ratings

Logit
Spread

Logit
Points

Arizona Diamondbacks 79 � 83 .488 4.44 4.40 .324 .322 2.338 2.384 2.520 2.696 15 14 22 22 22

Atlanta Braves 67 � 95 .414 3.54 4.69 .314 .339 2.020 1.888 1.980 2.901 30 27 29 29 30

Baltimore Orioles 81 � 81 .500 4.40 4.28 .307 .321 2.587 2.736 2.981 2.584 14 22 14 5 5

Boston Red Sox 78 � 84 .481 4.62 4.65 .325 .327 2.511 2.664 2.874 2.640 16 16 17 9 8

Chicago Cubs 97 � 65 .599 4.25 3.75 .321 .290 2.819 2.579 2.525 2.430 6 2 5 14 15

Chicago White Sox 76 � 86 .469 3.84 4.33 .306 .322 2.520 2.404 2.283 2.443 25 24 16 21 21

Cincinnati Reds 64 � 98 .395 3.95 4.65 .312 .328 2.076 2.136 2.350 2.860 28 23 28 27 27

Cleveland Indians 81 � 80 .503 4.16 3.98 .325 .297 2.630 2.680 2.911 2.633 12 4 11 6 6

Colorado Rockies 68 � 94 .420 4.55 5.21 .315 .353 2.084 2.116 2.699 3.293 26 29 27 28 28

Detroit Tigers 74 � 87 .460 4.28 4.99 .328 .330 2.482 2.319 2.209 2.463 27 15 18 23 23

Houston Astros 86 � 76 .531 4.50 3.81 .315 .299 2.689 2.910 2.670 2.055 3 7 8 2 2

Kansas City Royals 95 � 67 .586 4.47 3.96 .322 .314 2.990 2.852 2.716 2.194 5 12 1 3 4

Los Angeles Angels 85 � 77 .525 4.08 4.17 .307 .313 2.662 2.598 2.381 2.235 19 19 10 12 11

Los Angeles Dodgers 92 � 70 .568 4.12 3.67 .326 .297 2.620 2.510 2.359 2.372 11 3 12 19 19

Miami Marlins 71 � 91 .438 3.78 4.19 .310 .322 2.110 2.188 2.235 2.671 22 21 26 25 24

Milwaukee Brewers 68 � 94 .420 4.04 4.55 .307 .329 2.168 2.212 2.385 2.844 24 26 25 24 25

Minnesota Twins 83 � 79 .512 4.30 4.32 .305 .321 2.666 2.597 2.532 2.405 17 25 9 13 13

New York Mets 90 � 72 .556 4.22 3.78 .312 .296 2.592 2.544 2.426 2.322 10 8 13 16 14

New York Yankees 87 � 75 .537 4.72 4.31 .323 .316 2.710 2.851 2.803 2.214 7 13 7 4 3

Oakland Athletics 68 � 94 .420 4.28 4.50 .312 .316 2.275 2.546 2.412 2.366 20 18 23 15 17

Philadelphia Phillies 63 � 99 .389 3.86 4.99 .303 .341 1.931 1.884 2.052 2.946 29 30 30 30 29

Pittsburgh Pirates 98 � 64 .605 4.30 3.68 .323 .311 2.839 2.609 2.475 2.333 4 9 4 11 12

San Diego Padres 74 � 88 .457 4.01 4.51 .300 .321 2.223 2.171 2.176 2.654 23 28 24 26 26

San Francisco Giants 84 � 78 .519 4.30 3.87 .326 .305 2.443 2.526 2.348 2.301 8 5 20 18 16

Seattle Mariners 76 � 86 .469 4.05 4.48 .311 .322 2.448 2.417 2.200 2.360 21 20 19 20 20

St. Louis Cardinals 100 � 62 .617 3.99 3.24 .321 .310 2.887 2.668 2.534 2.308 2 10 2 8 9

Tampa Bay Rays 80 � 82 .494 3.98 3.96 .314 .304 2.558 2.678 2.629 2.381 18 11 15 7 7

Texas Rangers 88 � 74 .543 4.64 4.52 .325 .328 2.717 2.637 2.746 2.541 13 17 6 10 10

Toronto Blue Jays 93 � 69 .574 5.50 4.14 .340 .304 2.843 3.165 2.933 1.943 1 1 3 1 1

Washington Nationals 83 � 79 .512 4.34 3.92 .321 .301 2.389 2.528 2.489 2.445 9 6 21 17 18

Home-Field Advantage 0.172 0.002 0.167 0.167



Regression Results
The best fit regression equation for predicting the victory margin as a

function of team runs scored and runs allowed is below. The resulting

victory margin is positive when the home team is favored and negative

when the visiting team is favored.

This model equation is:

Est: Victory Margin522:1631 1:161 �HRS2 0:772 �HRA

2 0:846 � ARS1 1:009 � ARA
The game scores model yielded an R2 value of 3.4%. The t-Stats were

�11.68 and 7.74 for visiting teams’ runs scored and runs allowed, and

13.72 and �8.89 for home teams, and an F-value of 101.55.

The signs of the input variables are intuitive. The sign of the sensitivity

parameter is expected to be positive for home runs scored (HRS) and away

runs allowed (ARA). In both of these cases, the home team will score more

runs if these input values are higher. Similarly, the signs of the sensitivity

parameters for home runs allowed (HRA) and away team runs scored (ARS)

are expected to be negative. The home team is expected to win by fewer

runs or possibly lose if the HRA and/or ARS increase in value.

A graph showing the actual spreads as a function of estimated spreads

is shown in Fig. 10.4 (Table 10.2).

y = 0.9945 x – 0.0003
R2= 0.0339
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Performance
The game scores model correctly identified the winner in 1429 of 2465

games throughout the regular season and the playoffs, a rate of 58.0%.

The average estimated win probability for the favorite was very low

at just 56.1%. In only three matchups was the probability estimated to be

over 70%, all of which were home games for the Blue Jays: a two-game

series with the Philadelphia Phillies in July (74.9%, series was split), three

games with the Atlanta Braves in April (74.6%, Braves won two of three),

and a three-game set with the Detroit Tigers in August (72.1%, Blue Jays

swept). In 288 games the win probability was between 50% and 51%, and

overall the median was 55.4%. When the probability was 60% or greater,

the model was accurate 63.1% of the time.

In the postseason, only three home teams were underdogs, the Texas

Rangers in the American League Division Series (ALDS) and the Kansas

City Royals in the American League Championship Series (ALCS), both

against the Blue Jays, and the Cubs at home in the National League Division

Series against the St. Louis Cardinals. The Rangers lost those two games,

while the Royals won their three games and the Cubs won both of theirs.

At 65.6% the biggest favorites were the Blue Jays at home against Texas in

the ALDS; Toronto would lose two of the three games. The model was over

50% accurate in both American League Division Series and the World

Series, but not in the either of the National League Division Series, either

League Championship Series, or either wild card game.

Rankings
The top spot of the game scores rankings went to the Toronto Blue Jays,

who won the American League East, by virtue of their 5.50 runs scored

per game, a full run per game more than all but four other teams. Their

Table 10.2 Game Scores Model: 2015 MLB

Statistic Value t-Stat

b0 2 2.163 2 1.2

b1 (Home runs scored) 1.161 4.9

b2 (Home runs allowed) 2 0.772 2 4.0

b3 (Visitor runs scored) 2 0.845 2 3.6

b4 (Visitor runs allowed) 1.009 5.2

R2 3.44%

F-value 21.883

Standard Error 4.189
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average run differential of 11.364 led the majors by an extremely wide

margin. The St. Louis Cardinals were second in average run differential

(10.753) and in the rankings, as they were the only team to win 100

games during the 2015 regular season. The Kansas City Royals, who won

the World Series, were ranked fifth, while their counterparts in the Fall

Classic, the New York Mets, placed tenth. The 10 playoff teams finished

in the top 13 along with 3 nonplayoff teams, the No. 8 San Francisco

Giants, No. 9 Washington Nationals, and No. 12 Cleveland Indians. The

Texas Rangers were the lowest-ranked playoff team at No. 13. Along

with top 10 teams the Mets and Nationals, the National League East also

comprised the bottom two, with the Philadelphia Phillies (63�99) at

No. 29 and the Atlanta Braves (67�95) at No. 30.

Example
We will use the six models to predict the outcome of a game between

the Chicago Cubs (97�65) and the Toronto Blue Jays (93�69), the

runners-up in 2015’s two League Championship Series, if they were to

play north of the border. The Cubs scored 4.25 runs per game while

allowing 3.75, while the Blue Jays scored 5.50 runs a game and gave up

4.14. The game scores model calculates a Blue Jays victory by a little over

one run with a win probability of 61.5%:

Est: Victory Margin5 2:1631 1:161ð5:50Þ2 0:772ð4:14Þ2 0:846ð4:25Þ
1 1:009ð4:14Þ5 1:2266 4:189

p5 12NormCDF 0; 1:226; 4:189ð Þ5 61:511%

10.2 TEAM STATISTICS MODEL

The team statistics regression uses measures of team performance to pre-

dict game results.

In this section, we will demonstrate the regression using on-base per-

centage (OBP), both the teams’ own as well as that of their opponents.

On-base percentage is the sum of hits, walks (intentional or otherwise),

and hit batsmen divided by the sum of at-bats, walks, hit batsmen, and

sacrifice flies. Sacrifice flies do not count against batting average, but they

do count against OBP.

OBP5
H 1BB1HBP

AB1BB1HBP1 SF
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The team statistics linear regression model has form:

Y5b01b1 �HOBP1 b2 �HOBPOpp1 b3 � AOBP1 b4 � AOBPOpp 1 ε

The variables of the model are:

Y 5 outcome value we are looking to predict

HOBP5 home team’s on-base percentage

HOBPOpp 5 home team’s opponents’ on-base percentage

AOBP5 away team’s on-base percentage

AOBPOpp5 away team’s opponents’ on-base percentage

b0; b1; b2; b3; b45model parameter, sensitivity to the variable

ε5model error

The betas of this model are determined from a linear regression analy-

sis as described in Chapter 2, Regression Models. The results of these

model are shown in Table 10.3.

Regression Results
The result of the regression model for predicting home team victory

margin from our team statistics is:

Est: Victory Margin523:6541 24:306 HOBPð Þ2 18:757 HOBPOpp

� �
220:570 AOBPð Þ1 27:167ðAOBPOppÞ6 4:211

All four parameters had significant t-statistics, the highest being 4.3 for

away team’s opponents’ OBP (Fig. 10.5).

Performance
The team statistics model had an accuracy of 55.6%, identifying the win-

ners in 1371 of 2465 games in the regular season and in the postseason.

Table 10.3 Team Statistics Model: 2015 MLB

Statistic Value t-Stat

b0 23.654 20.6

b1 (Home on-base percentage) 24.306 2.4

b2 (Home opponent on-base percentage) 218.757 23.0

b3 (Away on-base percentage) 220.570 22.0

b4 (Away opponent on-base percentage) 27.167 4.3

R2 2.40%

F-value 15.147

Standard Error 4.211
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The model was 51.9% correct when the visiting team was favored, and

58.0% when the home team was given a higher win probability. The

highest win probability was 67.75% for the Blue Jays when they hosted

the Phillies in July, and conversely the highest probability for a visiting

team was also for the Blue Jays (63.28%) when they traveled to

Philadelphia. There were 86 games for which the home team was favored

by at least 62.75%, and in all of them the visiting team was either the

Phillies, the Colorado Rockies, or the Atlanta Braves. When the win

probability was at least 60%, the model’s accuracy was 65.5%, compared

with an average win probability of 62.0% across that sample.

In the postseason the model’s predictions were 41.7% accurate. It

was over 50% for only two series, the National League Division Series

between St. Louis and Chicago, and the American League Division

Series between Texas and Toronto. The Cubs were favored in each

game of the NLCS, in which they were swept by the Mets. The Mets,

in turn, were favored in each game of the World Series, which the

Kansas City Royals won in five games. The margins in the World Series

were extremely narrow: 51/49 for Games 1 and 2 in Kansas City, and

53/47 for Games 3�5 in New York. When the model’s win probabili-

ties for all of the winners are averaged together, it works out to a

mean of 49.6%.
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Rankings
The Blue Jays took the top ranking with a rating of 1.885 thanks largely

to their MLB-best .340 OBP, 12 points higher than any other club. On

the other side of the ball, the Cubs held their opponents to a .290 OBP,

which helped them rise to No. 2 with a rating of 1.478. Each team in

the top eight held the opposition to an OBP of no more than .305. The

lowest-ranked playoff team was the Texas Rangers at No. 17, while the

Cleveland Indians (.325 gained/.297 allowed), third in the AL Central

with a record of just 81�80, ranked No. 4, best among nonplayoff teams.

The National League champion Mets ranked at No. 8, between the

Astros and Pirates, while the World Series champion Royals placed 12th.

Example
The Toronto Blue Jays led the major leagues with a .340 team OBP,

while holding their opponents to .304, seventh best overall. The Chicago

Cubs’ OBP of .321 was toward the middle of the pack, but their pitching

and defense kept the opposition to an OBP of .290, the best in baseball.

So our matchup has the team with the highest OBP and the team that

allowed the lowest.

Est:Margin of Victory523:6541 24:306 :33963ð Þ2 18:757 :30368ð Þ
2 20:570 :32139ð Þ1 27:167ð:29015Þ6 SE

5 0:17646 4:211

This spread works out to a 51.7% probability of a Toronto victory:

p5 12NormCDF 0; 0:1764; 4:211ð Þ5 51:670%

10.3 LOGISTIC PROBABILITY MODEL

The logistic probability model infers a team strength rating based only on

game outcomes such as whether the team won, lost, or tied the game.

The result of the game is determined from the perspective of the home

team, but analysts can use the same approach from the perspective of the

visiting team.

The logistic model is as follows:

y�5
1

11 exp 2 b01 bh2 bað Þ� �
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Here, b0 denotes a home-field advantage parameter, bh denotes the

home team rating parameter value, and ba denotes the away team rating

parameter value. The value y� denotes the probability that the home team

will win the game. Team ratings for the logistic probability are determined

via maximum likelihood estimates and are shown in Table 10.1.

Estimating Spread
The estimated spread (i.e., home team victory margin) is determined via

a second analysis where we regress the actual home team spread on the

estimated probability y�(as the input variable). This regression has form:

Actual Spread5 a01 a1 � y�

This model now provides a relationship between the logistic home

team winning probability and the home team winning percentage. It is

important to note here that analysts may need to incorporate an adjustment

to the spread calculation if the data results are skewed (see Chapter 3:

Probability Models).

The solution to this model is (Table 10.4):

Therefore, after computing the home team winning probability y�,
the expected winning spread is estimated from the following equation

using the regression results:

Estimated Spread524:2311 8:164 � y�

A graph illustrating the estimated spread from the probability estimates

is shown in Fig. 10.6.

Performance
The logistic probability model identified the winner in 1436 of 2465 games,

a rate of 58.3%. The biggest favorite was the Cardinals (67.77%) at home

Table 10.4 Logistic Probability Regression: 2015 MLB

Statistic Value t-Stat

a0 2 4.231 2 8.0

a1 8.164 8.5

b0 (Home-field advantage) 0.172

R2 2.85%

F-value 72.279

Standard Error 4.199
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against the Phillies in April, a series in which St. Louis won three out of four

by a combined score of 26�14. Naturally, the biggest underdog among

home teams was Philadelphia when they hosted the Cardinals in June; St.

Louis won the first two games 12�4 and 10�1 before Philadelphia salvaged

the third game with a 9�2 victory. When a team was calculated as having a

win probability of 61% or more, it won 70.3% of the time. The most even

matchup according to this model was a two-game series between the

Rangers and the Dodgers in Los Angeles, in which the Dodgers were favored

by a margin of 50.02% to 49.98% and in which each team won one game.

Rankings
The World Series champion Royals had the highest rating of 2.9897,

followed by the Cardinals (2.8875), Blue Jays (2.8434), Pirates (2.8434),

and Cubs (2.8195). The Royals’ opponents in the Fall Classic ranked

13th as the Mets drew a rating of 2.5921, lowest among playoff teams.

The Twins, Angels, and Indians were the highest ranked among those

who stayed home in October, ranking 7th, 8th, and 9th respectively.

The bottom seven teams were all National League clubs, with three of

the bottom five (No. 26 Marlins, No. 29 Braves, and No. 30 Phillies)

representing the NL East. The Oakland Athletics, ranked 23rd, were the

only American League team among the bottom 11.

y = 10.631 x – 5.3167
R2= 0.0283
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Figure 10.6 Logistic Probability Model: 2015 MLB.
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Example
Our matchup features the teams in the No. 3 and No. 5 slots in the logis-

tic probability model’s rankings, the Blue Jays (2.8434) and the Cubs

(2.8195).

y�5
1

11 e2 0:172112:843422:8195ð Þ 5
1

11 e�0:1961
5 0:5489

We can then take this value and combine it with the regression para-

meters b0 (�4.231) and b1 (8.164) to estimate a margin of 0.250 runs in

favor of Toronto. That works out to a win probability of 52.37% for the

Blue Jays and 47.63% for the Cubs.

Estimated Spread524:2311 8:164 � 0:54896 SE5 0:24976 4:199

Probability5 12 normdist 0; 0:2497; 4:199ð Þ5 52:37%

10.4 TEAM RATINGS MODEL

The team ratings prediction model is a linear regression model that uses

the team ratings determined from the logistic probability model as the

explanatory variables to estimate home team victory margin. This is one

of the reasons why the logistic model is one of the more important sports

models since its results can be used in different modeling applications.

The team ratings regression has form:

Y 5 b01 b1 �Home Rating1 b2 � Away Rating1 E

The variables of the model are:

Home Rating5 home team strength rating (from logistic probability

model)

Away Rating5 away team strength rating (from logistic probability

model)

b05 home-field advantage value

b15 home team rating parameter

b25 away team rating parameter

Y 5 value we are looking to predict

The probability of winning is determined from:

Probability5 12NormCDFð0;Y ; SEÞ
The betas of this model, b1 and b2, are determined from a linear

regression analysis as described in Chapter 2, Regression Models.
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Regression Results
The best fit regression equation to predict home team victory margin

from team strength ratings is:

Victory Margin5 0:3401 1:930 �Home Rating2 1:990 � Away Rating

The regression results and graph showing the actual victory margin as

a function of estimated victory margin are in Table 10.5 and Fig. 10.7,

respectively.

y = 0.9943 x – 0.0005
R2= 0.0279
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Figure 10.7 Team Ratings Model: 2015 MLB.

Table 10.5 Team Ratings Model: 2015 MLB

Statistic Value t-Stat

b0 0.340 0.3

b1 (Home team rating) 1.930 6.3

b2 (Away team rating) 2 1.990 2 6.5

R2 2.83%

F-value 35.847

Standard Error 4.200
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Performance
Teams favored by the team ratings model won 1440 of 2465 games, a rate of

58.4%, the highest rate among the six models. When the favorite had a win

probability of 61% or more, that team won 70.4% of the time. The favorites’

win probabilities averaged 55.5%; between 50% and the average the win rate

was 55.1%, and between the average and maximum it was 63.1%.

The most lopsided contests involved the Cardinals (68.89%), Blue Jays

(68.17%), Pirates (68.10%), and Cubs (67.78%) when each hosted the

Phillies, along with the Royals (68.12%). The favorites won 9 of the 14

games among that sample, even after the Phillies swept the Cubs three

straight. The most even matchup was a three-game series in May between

the Indians (50.07%) and the Rangers (49.93%) in Cleveland, with Texas

winning two out of three.

Example
Toronto’s rating of 2.843 was third in the major leagues, behind only the

Royals and Cardinals. The Cubs were fifth with a rating of 2.819. With a

home-field advantage factor of 0.340, this model projects a win probabil-

ity of 52.06% for Toronto and 47.94% for the Cubs, with a margin of

victory of 0.217 runs in favor of the hometown Blue Jays:

Est: Victory Margin5 0:3401 1:930 2:843ð Þ2 1:990ð2:819Þ6 SE

5 0:2176 4:200

Probability5 12NormCDF 0; 0:217; 4:200ð Þ5 52:06%

10.5 LOGIT SPREAD MODEL

The logit spread model is a probability model that predicts the home

team victory margin based on an inferred team rating metric. The model

transforms the home team victory margin to a probability value between

0 and 1 via the cumulative distribution function and then estimates model

parameters via logit regression analysis.

The logit spread model has following form:

y5 b01 bh2 ba

where b0 denotes a home-field advantage parameter, bh denotes the home

team parameter value, and ba denotes the away team parameter value.
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The left-hand side of the equation y is the log ratio of the cumulative

density function of victory margin (see chapter: Sports Prediction

Models, for calculation process).

In this formulation, the parameters values b0; bh; ba are then deter-

mined via ordinary least squares regression analysis. The results of this

analysis are shown in Table 10.1.

Estimating Spreads
Estimating the home team winning margin is accomplished as follows.

If team k is the home team and team j is the away team, we compute

y using the logit parameters:

y5 b01 bk2 bj

Compute y�from y via the following adjustment:

y�5
ey

11 ey

Compute z as follows:

z5 norminvðy�Þ
And finally, the estimated home team spread:

Estimated Spread5 s1 z � σs

where

s5 average home team winning margin (spread) across all games

σs 5 standard deviation of winning margin across all games

Estimating Probability
The corresponding probability of the home team winning is determined

by performing a regression analysis of actual spread as a function of

estimated spread to determine a second set of model parameters. This

model has form:

Actual Spread5 a0 1 a1 � Estimated Spread

To run this regression, we need to compute the estimated spread for

all games using the logit spread parameters from above (see Table 10.1).
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The solution to this model is (Table 10.6):

A graphical illustration of this model is (Fig. 10.8):

Performance
The logit spread model’s predictions had an accuracy of 57.2%, as its

favorite won 1409 of 2465 games. This rate was very close to 57.3%, the

average win probability for the favorite. This model also had the highest

projected win probabilities, with a maximum of 79.998% for the Blue

Jays when hosting the Phillies. There were 46 games with a win probabil-

ity over 70%, of which the favorites won 76.1%. The most even matchup

was when the Miami Marlins traveled to Colorado in June for a

y = 0.8512 x + 0.023
R2 = 0.0357
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Figure 10.8 Logit Spread Model: 2015 MLB.

Table 10.6 Logit Spread Model: 2015 MLB

Statistic Value

s (Average home victory margin) 0.190

σs (Home victory margin standard deviation) 4.259

b0 (Home-field advantage) 0.002

R2 3.62%

F-value 92.590

Standard Error 4.182
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three-game series in which the Rockies were favored by a margin of

50.014% to 49.986% and lost two of three.

In the postseason the model’s accuracy was 47.2%. It did pick the

Royals both at home (59.6%) and on the road (55.9%) in the World Series.

It also favored the Cardinals in each game of the NL Division Series against

the Cubs, although for Games 3 and 4 in Chicago, both of which went to

the Cubs, St. Louis was given only a 50.4% chance of winning. The aver-

age win probability for a favorite in the postseason was 55.2%.

Rankings
The Blue Jays led the rankings with a rating of 3.1645, followed by the

Astros (2.9100), Royals (2.8517), and Yankees (2.8512). The next three

spots went to nonplayoff teams from the American League, the Orioles,

Indians, and Rays, followed by the NL Central champion Cardinals at

No. 8. The Nationals at No. 17 were the highest-ranked nonplayoff team

from the Senior Circuit. The four lowest-ranked playoff teams were all

from the National League, i.e., the Pirates (No. 11), Cubs (No. 14), Mets

(No. 16), and Dodgers (No. 19), as were the seven lowest-ranked teams

overall, as the Braves (1.8884) and Phillies (1.8844) brought up the rear as

the only teams with ratings less than 2.

Example
The average score differential for the Blue Jays at home was 11.77, while

the friendly confines of Wrigley Field were somewhat less

hospitable for the Cubs, as they averaged a 10.188 run differential in their

home games. The margins for the two teams were much more even when

playing on the road, where the Blue Jays averaged 10.721, just more than

the Cubs’ 0.686. This should equate to a much higher logit spread rating for

Toronto, and indeed that is the case. The Blue Jays led the major leagues

with a value of 3.1645, while the Cubs were 14th overall with a rating of

2.5791. The home-field advantage factor, b0, was very low at 0.001911.

y5
1

11 e2ð3:164522:579120:001911Þ 5
1

11 e20:5835
5 0:6428

In 2015, the average MLB game ended with a home-team victory by

0.1903 runs, with a standard deviation of 4.259. With those parameters,

the logit spread model calculates that the Blue Jays should defeat the

Cubs at home by 1.75 runs with a win probability of 66.21%:

Victory Margin5 z � σs1 s5 norminvð0:6428Þ � 4:2591 0:19035 1:7484

Probability5 normdist 1:7484; 4:259ð Þ5 66:21%
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10.6 LOGIT POINTS MODEL

The logit points model is a probability model that predicts the home

team victory margin by taking the difference between home team

predicted runs and away team predicted runs. The predicted runs are

determined based on inferred team “ratings” similar to the logit spread

model discussed previously.

The logit points model has following form:

h5 c01 ch2 ca

a5 d01 dh2 da
where

h is the transformed home team runs, c0 denotes a home-field

advantage, ch denotes the home team rating, and ca denotes the

away team rating corresponding to home team runs.

a is the transformed away team runs, d0 denotes a home-field

advantage, dh denotes the home team rating, da denotes the away

team rating corresponding to away team runs.

The left-hand side of the equation h and a is the log ratio of the

cumulative density function of home team runs and away team runs

respectively (see chapter: Sports Prediction Models, for a description).

Estimating Home and Away Team Runs
Estimating the home team runs is accomplished directly from the home

runs team ratings. These rating parameters are shown in Table 10.1. If

team k is the home team and team j is the away team, the transformed

home team runs are:

h5 c01 ck2 cj

h� 5
eh

11 eh

Then

z5 norminv h�ð Þ
And finally, the x-value is:

Home Points5 h1 z � σh

where

h5 average home team runs

σh5 standard deviation of home team runs
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Away runs are estimated in the same manner but using the team

ratings for the away runs model.

Estimating Spread
The estimated home team victory margin is computed directly from the

home team runs and away team runs as follows:

Est: Spread5Home Team Points2Away Team Points

Estimating Probability of Winning
The corresponding probability of winning is determined by performing a

regression analysis of actual spread as a function of estimated spread. The

model has form:

Actual Spread5 b01 b1 � Est: Spread

The solution to this model is (Table 10.7):

A graphical illustration of this model is shown in Fig. 10.9.

Performance
The logit points model identified the winner in 1397 of 2465 games.

Its success rate of 56.7% was fifth best among the six models, and was

below the average win probability of 57.8%.

This model calculated the only win probabilities above 80% for games

in two series played in Toronto involving the Phillies (Blue Jays favored

81.4% to 18.6%) and the Braves (Blue Jays 81.7%). Philadelphia split

the two games, while Atlanta took two of three. The closest matchup

Table 10.7 Logit Points Model: 2015 MLB

Statistic Home Away

s (Average score) 0.180 0.517

σs (Score standard deviation) 1.018 0.094

b0 (Home-field advantage) 0.167 0.167

R2 3.60%

F-value 91.905

Standard Error 4.183
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involved the Chicago White Sox when they played in Detroit, as the

Tigers were favored by a margin of 50.005% to 49.995%. They met 10

times over three series in April, June, and September, Detroit winning six

of the 10 games.

In the postseason, the model projected the winner 47.2% of the time.

This model narrowly favored the home team in each game of the

National League Championship Series, won by the Mets in four straight

games. New York’s win probability was 52.0% in Games 1 and 2, and

Chicago’s was 51.5% for Games 3 and 4. The Blue Jays were a much

stronger favorite in the ALCS, with odds of 60.2% at home and 56.8%

on the road in Kansas City; the Royals won 4 games to 2. The model

preferred Kansas City in each game of the 2015 World Series, with win

probabilities of 59.2% when the Royals were at home and 55.6% for

Games 3�5 played in New York.

Example
The logit points model requires that we first estimate the score for our

matchup before determining the win probability. Toronto’s ratings were

bh5 2.9334 and dh5 1.9428, as the Cubs’ figures were ba5 2.5249 and

y = 0.7894 x + 0.0473
R2= 0.0354
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Figure 10.9 Logit Points Model: 2015 MLB.
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da5 2.4304. The home-field advantage factors were b05 0.1672 and

d05 0.1674.

Home Score5norminv
1

11 e2 0:167212:933422:4304ð Þ

� �
� 3:008414:346955:4261

Away Score5norminv
1

11 e2 0:167411:942822:4304ð Þ

� �
� 3:111614:156653:5332

When these estimates are rounded it yields a prediction of Blue Jays 5,

Cubs 4, although without rounding the victory margin is closer to two

runs than one:

Victory Margin5 5:42612 3:53325 1:8929

The normal cumulative distribution function yields the probability of

a win for the Jays, given the regression’s standard deviation of 4.1828.

According to the logit points model, that probability is 67.5%, the highest

among the six models:

Probability5 12 normcdf 0; 1:8929; 4:1828ð Þ5 67:46%

10.7 EXAMPLE

All six models favor the Toronto Blue Jays at home over the Chicago

Cubs. Three models gave the Blue Jays around a 52% chance of winning

with a margin of around a quarter of a run, while two others put

Toronto’s chances at 67% giving them nearly two full runs (Table 10.8).

The Cubs and Blue Jays did not face each other during the regular

season or in the playoffs in either 2015 or 2016. They last played in

Toronto in September 2014, when the Blue Jays swept a very different

Cubs team in a three-game series by a combined score of 28�3.

Table 10.8 Example Results

Model Favorite Underdog Line
P(TOR
Win)

P(CHC
Win)

Game Scores Toronto Chicago Cubs 1.23 61.5% 38.5%

Team Statistics Toronto Chicago Cubs 0.18 51.7% 48.3%

Logistic Probability Toronto Chicago Cubs 0.25 52.4% 47.6%

Team Ratings Toronto Chicago Cubs 0.22 52.1% 47.9%

Logit Spread Toronto Chicago Cubs 1.75 66.2% 33.8%

Logit Points Toronto Chicago Cubs 1.89 67.5% 32.5%

Average Toronto Chicago Cubs 0.92 58.5% 41.5%
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10.8 OUT-SAMPLE RESULTS

We performed an out-sample analysis where we predicted our game

results using a walk forward approach. In this analysis, we use previous

game results data to predict future games. The model parameters were

estimated after about 20 games per team. We then predicted the winning

team for the next game using this data.

The regression-based models using game scores and team statistics

were associated with declines of 26.6% and 23.9% respectively. The

probability models only had a slight reduction in predictive power with

winning percentages consistent with in-sample data (e.g., 21.1%) except

for the logit points model, which was down by 24.4%. For all models

we found the predictive power of the model to begin to converge to the

in-sample results after about 40 games per team.

Compared to the other sports, MLB required the largest number of

games before our models become statistically predictive (approximately

20 games per team) and MLB also required the largest number of games

before the out-sample began to converge to in-sample results (approxi-

mately 40 games per team). The large number of games required for

MLB is most likely due to baseball teams playing series where they play

the same team consecutive times in a row thus needing more games to

have a large enough sample across different pairs of teams. Additionally,

baseball results are highly dependent upon the pitcher, who can only

compete about every fifth game, thus again requiring a larger number of

games than other sports to be statistically predictive (Fig. 10.10).
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Figure 10.10 Comparison of In-Sample to Out-Sample: 2015 MLB.
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10.9 CONCLUSION

In this chapter we applied six different sports model approaches to Major

League Baseball results for the 2015 season. The models were used to

predict winning team, estimated home team victory margin, and proba-

bility of winning. Baseball is somewhat trickier to predict than other

sports. The gap between the best and worst teams is much narrower in

baseball (a baseball team going 111�51 or 41�121 would almost be his-

toric while an NFL team going 11�5 or 4�12 is rather ordinary), and

with games played nearly every day, a star player is more likely to have a

day off than in other sports that do not play every day. And perhaps the

most significant factor is one unique to baseball, mentioned in Earl

Weaver’s old aphorism that “momentum is the next day’s starting pitcher.”

Underdogs have a better chance of winning a baseball game than in

any other sport, and our analyses bear this out. The best-performing

models—logistic probability, team ratings, and game scores—all had pre-

dictive accuracy of between 58% and 58.4%, the lowest of the five leagues

examined. The regression R2 values were uniformly low, between 2.4%

and 3.6%, while the regression errors were all around 4.20. The modeling

approaches did not have strong predictive power for baseball, though each

still performed substantially better than chance.
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CHAPTER 11

Statistics in Baseball�

Baseball and statistics have a long and inseparable history. More than a

quarter of the pages in the 2015 edition of the Official Baseball Rules are

devoted to statistical matters. This also means that there is a lot of data

available to analysts, and far more than just the totals and averages on the

back of a baseball card. We can examine the statistical record beyond

the boxscore and perform analyses on a more granular level, looking at

combinations and sequences of different plays rather than just evaluating

sums.

To illustrate this method, in this chapter we will look at the results of

two such studies. We will find out what types of plays contribute to creat-

ing runs and which players have contributed the most to their teams’

chances of winning ballgames. This is not intended to be an exhaustive or

authoritative list of which analyses are most important, nor a comprehen-

sive review of the myriad baseball analytics that have evolved in recent

years. Rather, what follows is simply a demonstration of how these

expanded data sets may be used so that analysts can then be inspired to

devise their own statistical experiments.

These types of analyses require us to consider individual plays, game by

game. Thankfully, the good people at Retrosheet, a 501(c)(3)

charitable organization continuing in the tradition of the old Project

Scoresheet, make this data freely available at www.retrosheet.org. This

event data is formatted in a series of text files containing comma-separated

values. Each game begins with a series of rows containing information

about the game itself (date, start time, umpires, attendance, and so forth),

followed by the starting lineups for both sides. This is followed by the play-

by-play data, which includes the inning, batter, count, pitch sequence, and

a coded string representing the play’s scoring and the disposition of any

baserunners, interspersed with any offensive or defensive substitutions. The

� The information used here was obtained free of charge from and is copyrighted by

Retrosheet. Interested parties may contact Retrosheet at 20 Sunset Rd., Newark, DE

19711.
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game ends with a list of all pitchers and the number of earned runs charged

to each. A typical game may have around 165 rows in the file.

To make analyses easier to perform, Retrosheet offers a DOS

executable called bevent.exe that scans the event files and outputs the data

in a more comprehensive format. This utility keeps track of the game

conditions as the data progresses and can output up to 97 different values,

such as what the home team’s score was or who the pitcher and baserun-

ners were at any point in the ballgame. These values can then be loaded

into a database system, which can then be employed to perform any man-

ner of analysis.

Such was the case with the two analyses presented here. Retrosheet

data was run through the bevent.exe utility and then imported into a

PostgreSQL database. We used all data that was available beginning with

the 1940 season through the 2015 season, comprising 10,800,256 events

involving 11,843 players over 190,049 games.

11.1 RUN CREATION

To score a run in baseball, two things need to happen: the batter

must reach base, and then he must find his way home. Often that

is accomplished through the actions of a subsequent batter, though

it can also occur through the actions of the defense, the pitcher, or

himself.

Scoring Runs as a Function of How That Player Reached Base
Table 11.1 lists the different types of events that can take place with

respect to a batter during a plate appearance. Reached on Error includes

only those errors that allowed the batter to reach base, and not those that

may have been committed as part of the same play but after the batter

reached base. So if a batter reaches on a base hit and takes second when

the right fielder bobbles the ball, that is represented under Single and not

Reached on Error. Number of Plays reflects how many instances of that

event there were over the span of 76 seasons between 1940 and 2015 as

reflected in the available Retrosheet data.

The column Batter Reached Base Safely indicates how many times

the batter not only reached base but also did not make an out on the

basepaths before the play had concluded. This is why the number of bat-

ters who drew a walk is not equal to the figure under the Batter Reached
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Table 11.1 Reaching Base by Play Type, 1940�2015

Runs Scored
Number
of Plays

Runs Per
Play

Batter
Reached
Safely

Runs Per
Time on
BasePlay Type by Batter by PR Total

Home Run 238,542 0 238,542 238,542 1.0000 238,542 1.0000

Triple 35,917 289 36,206 61,083 0.5927 60,630 0.5972

Double 174,777 2954 177,731 426,075 0.4171 421,983 0.4212

Error 33,174 660 33,834 121,761 0.2779 118,686 0.2851

Single 428,395 8427 436,822 1,680,729 0.2599 1,664,604 0.2624

Hit by Pitch 16,784 759 17,543 67,744 0.2590 67,744 0.2590

Walk 199,888 4263 204,151 821,899 0.2484 821,885 0.2484

Interference 287 3 290 1178 0.2462 1178 0.2462

Fielder’s Choice 6431 102 6533 31,976 0.2043 31,502 0.2074

Intentional Walk 12,081 338 12,419 80,094 0.1551 80,094 0.1551

Force Out 28,764 420 29,184 279,066 0.1046 278,987 0.1046

Sacrifice 3562 54 3616 109,431 0.0330 8948 0.4041

Sacrifice Fly 175 2 177 68,007 0.0026 473 0.3742

Strikeout 1053 26 1079 1,566,190 0.0007 4572 0.2360

Double Play 72 1 73 246,285 0.0003 1196 0.0610

Generic Out 5 0 5 4,643,255 0.0000 38 0.1316

Triple Play 0 0 0 293 0.0000 0 �
Total 1,179,907 18,298 1,198,205 10,443,608 0.1147 3,801,062 0.3152



Base Safely column. Since 1940 the available data includes 14 instances in

which a batter reached first base on a walk and immediately attempted to

advance for whatever reason, only to be tagged out. Most recently this

occurred in a 2009 game between the Boston Red Sox and the Atlanta

Braves. Ball four to Boston’s Kevin Youkilis got by Braves catcher David

Ross; Youkilis tried to take second and Ross threw him out. Thirteen of

these events are represented in the Walk row; the fourteenth involved Bill

Wilson of the Philadelphia Phillies who in 1969 somehow managed to

walk into a double play against the Pittsburgh Pirates.

This analysis was done by taking the events table in the database

(aliased as e1) and left-joining it to itself twice (aliased as pr and e2) such

that the three tables had the same game and inning identifiers. A sepa-

rate join constraint on the pr table accounts for any batters who reached

base and were removed for pinch runners, while the join condition on

e2 restricts it to only those events in which a run was scored by the bat-

ter in e1 or his pinch runner. (The possibility of a pinch runner for a

pinch runner was ignored.) To prevent miscalculations that may arise

when teams bat around, two additional constraints were used on each

table join. The event number in e1 must be less than that in pr and less

than or equal to that in e2; the “or equal to” accounts for home runs

and errors that allow the batter to score directly. Additionally, the batting

team’s score in e1 must be no more than four runs less than the scores

in pr and e2. This query took just under 15 minutes to complete on a

typical desktop computer running PostgreSQL 9.4.5 on Microsoft

Windows 7.

It’s always a good idea to check over the data to see if anything is out

of order. Every batter who hits a home run both reaches base safely and

scores. For singles, doubles, and triples, a batter could be thrown out try-

ing to take an extra base, so Number of Plays and Batter Reached Base

Safely need not be equal. It is possible, but rare, to reach base on a double

play, as the two outs could be made on other baserunners.

One figure that jumps out is the 38 batters who reached base via a

generic out. This category includes ordinary fly outs, pop outs, line outs,

and ground outs that did not get rolled up into one of the other categories.

All of the other out types that could allow the batter to reach base (when

coupled with a wild pitch, passed ball, fielding error, or a play on another

runner) are represented; this total should be 0, not 38. Once the 38 records

are identified, we find that they are consistent with ground-ball force
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outs—an assist for an infielder, a putout for the shortstop or second base-

man, runner from first out at second, batter reaches first—yet they are clas-

sified as outs in the air. Nearly a third of these suspect records come from

two three-game series played in Chicago in 1988, one between the Phillies

and the Cubs in June and the other between the Brewers and the White

Sox in September. Put together, this evidence points to an inconvenient

truth: there are likely problems with the source data.

This is an instructive reminder that as analysts, we need to look into

anything that doesn’t seem quite right, and find out why our results are

what they are. In the case of the 14 walks that didn’t reach base, we find

a few very rare and unusual plays. The 38 stray generic outs reveal a

problem with our source data. And there’s always that third and most

common possibility, that we’ve made an error in our analysis.

When batters reached base via a hit, they stayed safe 99.15% of the

time, 99.05% excluding home runs. With a walk or when hit by a pitch,

they stayed safe 99.999% of the time. But even when their on-base per-

centage would not increase—reaching on an error, fielder’s choice, force

out, dropped third strike, or catcher’s interference—hitters still managed

to reach base safely 6.30% of the time.

Overall, 31.2% of batters who reached base (or their pinch runners)

came around to score. Extra-base hits exceeded the average—home runs

100%, triples 59.2%, doubles 41.4%—but so did both sacrifices (39.9%)

and sacrifice flies (37.5%). Of course it’s rare to reach base by either of

those methods (8.2% for sacrifices and 0.7% for sacrifice flies). Events that

ordinarily leave the batter on first saw runners score at generally the same

rates: 25.9% for singles, 25.1% for hit batsmen, 24.4% for interference

and walks, and 23.2% for dropped third strikes. Though seemingly simi-

lar, hit batsmen and walks should be considered separately: when a batter

is hit by a pitch the ball is dead, but when he draws a base on balls, the

ball is live and there is a chance, albeit very small, that one or more run-

ners could either advance another base or make an out. The percentages

for fielder’s choices (20.6%) and force outs (10.4%) should be, and in fact

are, lower than for other types of plays that do not register an out. If a

batter reaches on a fielder’s choice or a force out, the next batter rarely

comes to the plate with no outs; additionally, the fielder’s choice and

force out numbers include those that ended the inning. Batters given

intentional walks scored 15.1% of the time. Intentional walks are not ran-

dom events and are only used when the team in the field considers it to
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be to their advantage, primarily either to bypass a stronger hitter to pitch

to a weaker hitter or when first base is unoccupied to set up a force.

Bringing Runners Home
Once there’s a runner on base, it’s time to bring him home. A batter can

do this himself by hitting a home run, but barring that he’ll generally

need someone else to drive him in.

The types of plays that can bring a runner home are more numerous

than those that can put a man on base. A runner can score on a balk or a

wild pitch or even a stolen base. There are two event types, the home

run and the sacrifice fly, whose very definition includes driving in a run,

and for which we should expect that the average number of runs brought

home should be at least 1.

This query used for this analysis was much simpler, consisting of only

one table join. The events table was again joined to itself with aliases e1

and e2 with the same constraints on game and inning identifiers and con-

siderations for teams batting around. Unlike the run creation analysis,

here we’re not concerned with whether the run was scored by the batter

or by a pinch runner, simply that the run scored and whether the batter

earned an RBI.

Not every run that scores has a corresponding RBI, so in Table 11.2,

runs scored and RBIs credited are listed separately.

As with the run-scoring analysis, any results that don’t look quite right

should be further investigated in case they signal a flaw in our methodol-

ogy. There were 318 RBIs credited on double plays and one on a triple

play. While the Official Baseball Rules does hold in Rule 10.04(b)(1) that

“[t]he official scorer shall not credit a run batted in when the batter

grounds into a force double play or a reverse-force double play,” a batter

may receive an RBI in other types of double plays, such as one in which

the batter hits a sacrifice fly and an out is made on a trailing baserunner.

The RBI on a triple play went to Brooks Robinson on September 10,

1964, facing Jim Hannan of the Washington Senators with the bases

loaded in the top of the fifth inning. Robinson hit into what started as a

conventional 6�4�3 double play that scored Jerry Adair and moved Luis

Aparicio from second to third, only for Aparicio to make the third out at

home. The one run that scored via defensive indifference took place on

June 21, 1989, when the Reds’ Lenny Harris scored from third following

a pickoff throw to first by the Braves’ Jim Acker.
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Comparing Estimated and Actual Values
So we have these percentages—the rate of how often a batter who

reached base by getting hit by a pitch came around to score, the average

number of runs brought home by a double, and so on. We can then use

these as coefficients to project run and RBI totals. We’ll ignore the possi-

bility of an intentional walk with the bases loaded:

Runs � 0:2599 �H1B1 0:4171 �H2B1 0:5927 �H3B1HR

1 0:2484 � BB1 0:2590 �HBP1 0:1551 � IBB1 0:0330 � SH
1 0:0026 � SF1 0:0007 � K 1 0:2779�ReachOnErr

1 0:2462 � ReachOnInterference1 0:2043 � FC1 0:1046 � FO

Table 11.2 Play Types that Score Runs, 1940�2015

Play Type
Number of

Plays
Runs
Scored RBI

Runs Per
Play

RBI Per
Play

Home Run 238,542 379,453 379,453 1.5907 1.5907

Sacrifice Fly 69,019 69,295 69,056 1.0040 1.0005

Triple 61,083 39,346 38,594 0.6441 0.6318

Double 426,075 180,251 178,376 0.4230 0.4186

Single 1,680,729 384,048 373,063 0.2285 0.2220

Error 121,761 24,655 5325 0.2025 0.0437

Wild Pitch 73,944 13,051 � 0.1765 �
Balk 11,579 1977 � 0.1707 �
Fielder’s Choice 31,976 5000 3499 0.1564 0.1094

Passed Ball 19,755 3033 � 0.1535 �
Force Out 279,066 20,191 17,747 0.0724 0.0636

Pickoff 31,794 1365 � 0.0429 �
Sacrifice 109,580 4591 3213 0.0419 0.0293

Other Advance 3615 138 � 0.0382 �
Double Play 245,125 8051 318 0.0328 0.0013

Hit by Pitch 67,744 1966 1966 0.0290 0.0290

Interference 1178 32 28 0.0272 0.0238

Stolen Base 144,399 3282 � 0.0227 �
Walk 821,899 17,438 16,843 0.0212 0.0205

Triple Play 282 4 1 0.0142 0.0035

Generic Out 4,643,255 39,988 39,919 0.0086 0.0086

Caught Stealing 61,538 192 � 0.0031 �
Strikeout 1,566,190 871 � 0.0006 �
Defensive Indifference 5559 1 � 0.0002 �
Intentional Walk 80,094 9 3 0.0001 0.0000

Total 10,795,781 1,198,228 1,127,404 0.1110 0.1044
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RBI � 0:2285 �H1B1 0:4186 �H2B1 0:6318 �H3B1 1:5907�HR

1 0:0205 � BB1 0:0290 �HBP1 0:0293 � SH 1 1:0005 � SF
1 0:0437�ReachOnErr1 0:0238 � ReachOnInterference

1 0:1094 � FC1 :0636 � FO
It may not be practical to project run and RBI totals using all of these

parameters, as the values may not be readily available. Websites listing

players’ batting statistics are not likely to include how many times Curtis

Granderson has grounded into a fielder’s choice, for example. To work

around this, we can focus on the more common “back of the baseball

card” stats and roll up the more specific types of outs into a single figure.

After combining errors, fielder’s choices, force outs, and interference with

generic outs (leaving sacrifices and sacrifice flies alone), we arrive at

averages of 0.01313 batter-runs and 0.00959 RBI per out. For RBI, we

can calculate outs simply as AB2H as sacrifices, sacrifice flies, and catch-

er’s interference do not charge a time at bat. Since a player can reach base

on a strikeout, and a strikeout is required to reach base on a wild pitch or

passed ball, we’ll keep that in the runs formula. We do not need to

include strikeouts in the RBI formula because (1) the run scores on the

wild pitch or passed ball and not the strikeout itself, and (2) no RBI is

awarded for a run that scores on a dropped third strike.

Runs � 0:2599 �H1B1 0:4171 �H2B1 0:5927 �H3B1HR

1 0:2484 � BB1 0:2590 �HBP1 0:1551 � IBB1 0:0330 � SH
1 0:0026 � SF1 0:0007 � K 1 0:01313� AB2H 2Kð Þ

RBI � 0:2285 �H1B1 0:4186 �H2B1 0:6318 �H3B1 1:5907�HR

1 0:0205 � BB1 0:0290 �HBP1 0:0293 � SH 1 1:0005 � SF
1 0:00959 � AB2Hð Þ

Regressions of the simplified formulas against the actual run and RBI

totals had virtually equal R2 values compared with regressions using the

more complicated formulas. For runs, the R2 dropped from 96.85% to

96.72% and the t-Stat from 681.7 to 668.1, with the standard error rising

from 5.19 to 5.50. Projected run totals changed by an average of 0.39 runs,

with a maximum of 3.5. For RBI the differences were even smaller, 96.83%

to 96.75% for R2, 5.09 to 5.42 for the standard error, and 679.7 to 671.3

for the t-Stat. The average difference between each formula’s projected RBI
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total was 0.84 RBI, with a maximum of 3.99. As the changes were rather

insignificant, we will use the simpler formulas (Fig. 11.1 and Table 11.3).

The greatest underprojection was 91.2 runs scored for Rafael Furcal

in 2003, when his actual total of 130 was third best in the National

League. The greatest overprojection was 82.1 runs for David Ortiz in

2014, who scored only 59 runs and was removed for a pinch runner five

times. The differences between projected and actual run totals had a stan-

dard deviation of 5.51 runs. Of the 5133 players who scored at least 25

runs in a season between 2000 and 2015, 49.1% of the estimated runs

scored were within 6 10% of the actual figures. Barry Bonds rated the

highest runs-scored projection of 146.3 for his 2001 season, when he

scored 129 runs (Fig. 11.2 and Table 11.4).

Among the sample of players who drove in at least 25 runs in a season

between 2000 and 2015, estimated RBI totals were within 6 10% of

y = 1.0134 x – 0.2497
R2= 0.9672
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Figure 11.1 Runs Scored Estimation.

Table 11.3 Runs Scored Estimation: 2000�15 MLB

Statistic Value t-Stat

b0 (y-Intercept of best-fit line) 20.250 24.4

b1 (Slope of best-fit line) 1.013 668.1

R2 96.72%

F-value 446,373.61

Standard Error 5.499
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actual totals 76.9% of the time, and 10% of the estimates were accurate to

within 1 RBI. The closest estimate was 98.998 RBI for Jay Bruce in

2012, when he recorded 99 RBI. The greatest overestimate was for

Hanley Ramirez in 2008, when he drove in 67 runs but was expected to

drive in 102.7. Preston Wilson of the Colorado Rockies led the National

League with 141 RBI in 2003, making his projected total of 101.4 the

most substantial underestimate among this sample. The highest estimate

was 153.6 RBI for Sammy Sosa in 2001, when he drove in 160 runs.

11.2 WIN PROBABILITY ADDED

Win probability is a measure of how many times in the past a team that

found itself in a given game situation went on to win the game. The game

y = 1.0033 x – 0.4568
R2= 0.9675
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Figure 11.2 RBI Estimation.

Table 11.4 RBI Scored Estimation: 2000�15 MLB

Statistic Value t-Stat

b0 (y-Intercept of best-fit line) 20.457 28.2

b1 (Slope of best-fit line) 1.003 671.3

R2 96.75%

F-value 450,698.46

Standard Error 5.418
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situation includes whether the team is the home team or the visiting team,

the inning, the number of outs, the number and position of any baserun-

ners, and the score margin. Win probabilities are not probabilities in the

strict statistical sense as there is no mathematical theory underlying them;

rather they are determined by examining the historical record. Using

Retrosheet’s play-by-play event data files for the period from 1940 to 2015,

comprising over 10.7 million events, we take all of the various permuta-

tions of innings, outs, score differentials, baserunners, and play types, corre-

lating that with how often teams in that situation went on to win.

The two teams do not begin the game with equal win probabilities of

0.5, as home teams have won about 54% of the time. The

figures fluctuate from play to play based on the changing game situation.

By attributing this fluctuation to the pitcher, batter, or baserunner

involved in the play, we can measure by how much that player’s actions

either increased or decreased his club’s chance of victory. All events are

not created equal; a home run in a tie game in the ninth inning will add

far more to the batting team’s win probability than would a home run in

the third inning with the team up by six runs. We can then aggregate

those figures over the course of a game, a season, or a career. This is win

probability added, or WPA. Beyond the players, we can also apply WPA

to each type of play. This is similar to F.C. Lane’s run expectancy analysis,

but we can look at much more than just singles, doubles, triples, and

home runs, and use more parameters than just the number of outs and

positions of any baserunners.

For example, say a team is batting in the bottom of the fourth inning,

ahead by one run. There is one out and a runner is on first base. These

game conditions occurred 5959 times in the sample for which data was

available, and when they did, the batting team won 4302 times. This

gives us a win probability of 72.19%. It’s the pitcher’s turn at bat, and he

is asked to sacrifice. If he is successful, the runner will advance to second

with two outs, still in the bottom of the fourth, still up by one run.

Teams faced these conditions in 3636 games, winning 2570 of them

(70.68%). Thus a sacrifice with a runner on first and one out while bat-

ting in the home fourth inning with a one-run lead yields a WPA of

�1.51 percentage points (72.19�70.68). If the pitcher does not convert

the sacrifice and strikes out instead, the runner will stay on first base but

with two outs now in the bottom of the fourth ahead by a run; teams in

this situation won 4241 of 6072 games, a win probability of 69.85%, and

a win probability added for the strikeout of �2.34 percentage points.
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Extra innings were treated equally. In other words, a game situation of

bases loaded with one out in the top of the 10th inning with a tie score

was lumped together with the same conditions but in the top of the 13th

inning. One reason for this is simply a matter of sample size; over

157,000 games ended in the ninth inning compared with only 7200 in

the 10th and barely 100 past the 16th. The other reason reflects the

nature of extra-inning games. Unlike regulation games, which are played

for a determined number of innings, extra-inning games persist only as

long as the score is still even. When the top of an extra inning begins,

the score is always tied, and when the home team takes the lead in the

bottom of an extra inning, the game immediately ends. While there may

be practical differences between the 10th or 12th or 16th inning, such as

the number of substitutes remaining on the bench or in the bullpen, for

the purposes of calculating win probability they can be ignored.

Events
Unsurprisingly, home runs added the most to the offensive team’s win

probability, increasing it by an average of 113.78 percentage points. The

results also show how the relative power of the home run has declined

over the years; the average WPA of a home run was only 112.84 per-

centage points in 2003 compared with 115.23 in 1943. In 1968, the so-

called Year of the Pitcher, a home run added 114.56 percentage points

to a team’s win probability, the 11th highest figure in the sample. On the

other end of the scale, of the 24 seasons with the lowest WPA values for

home runs, 21 have taken place in the offensive golden age since the end

of the 1994 players’ strike.

Triples were right behind at 19.95 percentage points, followed

by doubles (17.26), reaching on an error (14.62), and singles (14.51).

The sacrifice was a minor net negative, lowering a team’s win expectancy

by an average of �0.29 percentage points. This includes sacrifices

employed as a team is playing for a single run in the bottom of the ninth

inning, as well as the garden-variety sac bunt by a weak-hitting pitcher

early in a ballgame, which for such a pitcher presents a better option than

a potential strikeout (�2.62) or double play (�7.49) (Table 11.5).

The offensive team’s win probability was hurt the most by triple plays,

double plays, baserunners caught stealing, and baserunners out advancing,

all plays that add one or more outs and remove one or more baserunners

at the same time. A stolen base added 12.19 percentage points, or about
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half as much as was lost by an unsuccessful stolen base attempt (�4.35),

indicating that in the aggregate, a stolen base attempt would be worth the

risk only if it had a probability of success of at least 66.5%. Year to year,

this break-even point has fluctuated between 61.4% (1968) and 69.2%

(2005). Generally speaking, big league teams have used the stolen base

prudently, at least since the expansion era began. From 1940 to 1960,

base stealers were successful only 58.1% of the time, far below the break-

even level of 64.7% over that period. Since 1961, however, stolen-base

success rates have fallen short of the break-even level only four times

(1963, 1967, 1991, 1992), and when they did it was by no more than

4.8%. By contrast, more recently the stolen base success rate exceeded the

break-even level by at least 9% every season since 2003, peaking at 18.5%

in 2007. Part of this may be simply that teams are far more circumspect

Table 11.5 WPA by Play Type, 1940�2015

Play Type
Number of

Plays Total WPA
Average
WPA

Home Run 238,542 3,286,679 13.78

Triple 61,083 607,778 9.95

Double 426,075 3,094,461 7.26

Error 121,761 550,197 4.52

Single 1,680,729 7,574,882 4.51

Interference 1178 4150 3.52

Hit by Pitch 67,744 206,530 3.05

Walk 821,899 2,428,502 2.95

Balk 11,579 32,937 2.84

Wild Pitch 73,944 203,722 2.76

Passed Ball 19,755 54,028 2.73

Stolen Base 144,399 316,099 2.19

Intentional Walk 80,094 76,990 0.96

Sacrifice Fly 69,019 54,207 0.79

Defensive Indifference 5559 289 20.02

Sacrifice 109,580 233,016 20.30

Pickoff 31,794 272,787 22.29

Generic Out 4,643,255 210,818,580 22.33

Strikeout 1,566,190 24,145,260 22.65

Fielder’s Choice 31,976 288,376 22.76

Force Out 279,066 2875,842 23.14

Other Advance 3615 214,695 24.07

Caught Stealing 61,538 2267,735 24.35

Double Play 245,125 21,846,853 27.53

Triple Play 282 23899 213.83
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nowadays with respect to when they will try to steal a base as they were

in previous eras, and as a result the running game is a shadow of what it

once was. There were 1.15 stolen base attempts per game in 2015, the

lowest figure since 1964. Between 1976 and 1999, there were more than

3750 stolen base attempts in every non-strike-shortened season, a level

that has not been reached since.

Some plays have identical effects on the game situation, and while their

average WPA over time is not exactly equal, any difference is insignificant.

For example, a wild pitch (12.75) and a passed ball (12.73) both cause at

least one baserunner to advance. A walk (12.95) and a hit batsman

(13.05) both put the batter on first base and advance any runners on base

who do not have an open base in front of them. An intentional walk,

which also has the same effect, has a much lower WPA (10.96), but this is

because an intentional walk is just that—intentional; the defensive team

can call for an intentional walk whenever they feel it would be advanta-

geous to do so, while a regular walk or a hit batsman is largely happen-

stance. In our sample data covering 1940 through 2015, batters drew

16,843 walks and were hit by pitches 1966 times with the bases loaded,

but only three (Lonny Frey in 1941, Barry Bonds in 1998, and Josh

Hamilton in 2008) received an intentional walk to drive in a run.

The difference between a runner caught stealing (�4.35) and a runner

picked off (�2.28) is much larger. While the two plays are similar, they are

not quite the same. The runner has control over when he decides to steal a

base and risk being thrown out, while a pickoff is never planned. The CS

statistic also includes those runners tagged out after a batter fails to make

contact on a hit-and-run or a suicide squeeze. By looking at the data sur-

rounding the circumstances in which runners are caught stealing or picked

off, we find that the former has occurred more often when the effect on

win probability by trading a baserunner for an out is greater. When a runner

was caught stealing, 61.3% of the time he was the only man on base and

there were one or two outs, compared with 47.5% of runners picked off.

Batting
For evaluating players, we used only the seasons 1975�2015, as that is as

far back as the Retrosheet files go before encountering seasons with

incomplete data. Using incomplete data from 1940 to 1974 for compiling

play WPA was something we could accept, but for individual players

every game really does matter.
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When a batter steps to the plate, his team has a certain win probability

based on the game conditions. When his turn at bat ends, his team has a

second win probability. That second probability could be 0 (he makes the

last out of the game) or 1 (he drives in the winning run). The difference

between those two numbers represents the win probability added or sub-

tracted during that plate appearance. Over the course of a full season,

those numbers add up (or down, as the case may be). In Table 11.6,

WPA represents the sum of the number of percentage points by which

the win probability of each player’s team rose or fell as a result of each of

his plate appearances over the course of the entire season.

The lowest single-season WPA during this span was �517.0 for Neifi

Pérez of the 2002 Kansas City Royals. That year, Pérez hit .236 with a

.260 on-base percentage and .303 slugging percentage for a Royals team

that lost 100 games. The next two lowest were Andres Thomas of the

1989 Atlanta Braves (�466.3) and Matt Dominguez of the 2014 Houston

Astros (�427.9).

We can normalize the WPA values for individual players by expressing

them as a per-plate appearance average. As with any rate statistic, there

should be a minimum value for the denominator to minimize statistical

insignificance. Without this restriction, the highest single-season WPA

average would belong to Dave Sells at 36.32. Sells, a relief pitcher for the

Los Angeles Dodgers, came to bat one time during the 1975 season,

smacking a go-ahead RBI single in the top of the 11th inning in a

September game at the Astrodome. We’ll follow the current rule for qual-

ifying for the batting title: at least 3.1 plate appearances per team game,

Table 11.6 Highest WPA, Batting, 1975�2015

Rank Batter Team Season WPA

1 Barry Bonds SF 2004 1309.62

2 Barry Bonds SF 2001 1198.66

3 Todd Helton Col 2000 1050.15

4 Mark McGwire StL 1998 1048.89

5 Barry Bonds SF 2002 1015.78

6 Albert Pujols StL 2006 989.99

7 Ryan Howard Phi 2006 950.58

8 David Ortı́z Bos 2005 940.60

9 David Ortı́z Bos 2006 896.60

10 Jason Giambi Oak 2005 880.15
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which is 502 for a 162-game schedule. Like the total WPA for hitters, the

top 10 averages come from the same era, though the range is now 12 sea-

sons from 1995 to 2006. The list includes each of Barry Bonds’ four con-

secutive National League MVP seasons from 2001 to 2004 (Table 11.7).

Pitching
Every plate appearance begins with one win probability and ends with

another. Just as the change can be ascribed to the performance of the hit-

ter in that plate appearance, so it can to the pitcher out on the mound.

To be sure, the pitcher can be the statistical victim or beneficiary for the

actions of the fielders behind him; e.g., the same ground ball hit with

the bases loaded can be either an inning-ending double play or a two-run

single depending on the ability and positioning of the second baseman.

But as that is the case with many pitching statistics from earned run

average (ERA) to batting average against, for the purposes of this particular

analysis that is something we can accept.

Dwight Gooden followed up his Rookie of the Year season in 1984

with a career year in 1985: 24�4 with an ERA of 1.53 and 276 strike-

outs, taking home the National League Cy Young Award at the tender

age of 20. His best game of that season, at least by this measure, was a

July 14 start against Houston in the Astrodome; the Mets beat the Astros

1�0 behind Gooden’s complete-game five-hitter with 2 walks and 11

strikeouts. Gooden added a total of 76.75 percentage points to the Mets’

win probability over the course of the game. Though he may have had

other shutouts with more strikeouts and fewer hits allowed, Gooden’s

Table 11.7 Top 10 Average WPA, Batting, 1975�2015

Rank Batter Team Season WPA

1 Barry Bonds SF 2004 2.1226

2 Barry Bonds SF 2001 1.8052

3 Barry Bonds SF 2002 1.6598

4 Albert Pujols StL 2006 1.5615

5 Mark McGwire StL 1998 1.5402

6 Todd Helton Col 1998 1.5067

7 Barry Bonds SF 2003 1.3725

8 Edgar Martı́nez Sea 1995 1.3577

9 Ryan Howard Phi 2006 1.3503

10 David Ortı́z Bos 2005 1.3192
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WPA was higher in this particular game because it remained scoreless

until the eighth inning, and consequently each play took on greater mag-

nitude than it would have in a more lopsided contest. The biggest play of

the game was when José Cruz, representing the potential winning run

with nobody out in the bottom of the ninth, grounded into a 4�6�3

double play, increasing the Mets’ win probability from 69.2% to 96.2%.

Over the course of the 1985 season, plays like those added up to total of

1054.5 percentage points, 250 more than any other pitcher in a single

year since 1975 (Table 11.8).

Pedro Martı́nez’s legendary 1999 season, with his record of 23�4 and

313 strikeouts, ranked 93rd with a total of 459.5. Because of the potential

for large swings in win probability late in games, like the 27 percentage

points for the Cruz double play, this type of analysis does tend to empha-

size the later innings. Gooden had 16 complete games in 1985, while in

1999 Martı́nez had only 5.

To that end, we can apply the average WPA method for pitchers as

well. Given the potential for bias toward the later innings, and the innings

in which pitchers pitch over the course of a season are far less uniformly

distributed than the innings in which batters come to the plate, the top of

the average WPA rankings for pitchers primarily tends toward closers. As

with most rate statistics, we should define a minimum value for the

denominator. Mariano Rivera averaged 272 batters faced per season while

he was the Yankees’ full-time closer, so 250 is a good starting point

(Tables 11.9�Table 11.12).

Greg Maddux, elected to the Hall of Fame in 2014, had the second-

highest career WPA of any pitcher whose career began in 1975 or later.

Table 11.8 Top 10 WPA, Pitching, 1975�2015

Rank Pitcher Team Season WPA

1 Dwight Gooden NYM 1985 1054.54

2 Orel Hershiser LAD 1988 802.07

3 Willie Hernández Det 1984 764.71

4 Greg Maddux Atl 1995 741.46

5 Zack Greinke LAD 2015 735.54

6 Roger Clemens Bos 1990 700.97

7 Jim Palmer Bal 1975 688.61

8 John Tudor StL 1985 685.10

9 Frank Tanana Cal 1976 681.41

10 Vida Blue Oak 1976 671.71
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Table 11.9 Top 10 Average WPA, Pitching, 1975�2015

Minimum 250 Batters Faced

Rank Pitcher Team Season Average WPA

1 Trevor Hoffman SD 1998 1.8242

2 J.J. Putz Sea 2007 1.7393

3 Dennis Eckersley Oak 1990 1.717

4 José Mesa Cle 1995 1.7084

5 Eric Gagné LAD 2003 1.7025

6 Mark Melancon Pit 2015 1.6681

7 Tyler Clippard Was 2011 1.6176

8 Randy Myers NYM 1988 1.607

9 Jim Johnson Bal 2012 1.5495

10 Jay Howell LAD 1989 1.5128

Table 11.10 Season Batting and Pitching WPA Leaders, 2006�2015

Batter Team WPA Season Pitcher Team WPA

Albert Pujols StL 990.0 2006 Joe Nathan Min 385.5

Alex Rodrı́guez NYY 739.5 2007 J.J. Putz Sea 478.3

Manny Ramı́rez Bos/LAD 737.7 2008 Cliff Lee Cle 520.9

Prince Fielder Mil 786.5 2009 Chris Carpenter StL 544.4

Miguel Cabrera Det 823.4 2010 Roy Halladay Phi 490.5

José Bautista Tor 799.6 2011 Tyler Clippard Was 546.8

Joey Votto Cin 630.9 2012 Felix Hernández Sea 444.7

Chris Davis Bal 800.0 2013 Clayton Kershaw LAD 585.5

Mike Trout LAA 643.7 2014 Clayton Kershaw LAD 600.8

Anthony Rizzo ChC 601.2 2015 Zack Greinke LAD 735.5

Table 11.11 2015 Batting and Pitching WPA Leaders

Batter Team WPA Rank Pitcher Team WPA

Anthony Rizzo ChC 601.2 1 Zack Greinke LAD 735.5

Joey Votto Cin 577.3 2 Jake Arrieta ChC 619.1

Paul Goldschmidt Ari 556.6 3 Clayton Kershaw LAD 553.1

Josh Donaldson Tor 539.7 4 Mark Melancon Pit 500.4

Bryce Harper Was 507.0 5 Tony Watson Pit 435.8

Mike Trout LAA 495.4 6 Dallas Keuchel Hou 412.1

Matt Carpenter StL 488.6 7 Wade Davis KC 387.4

Andrew McCutchen Pit 447.9 8 Jacob deGrom NYM 377.6

Chris Davis Bal 399.6 9 John Lackey StL 360.4

Carlos González Col 396.2 10 Max Scherzer Was 358.7
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His achievements on the mound did not translate to success at the plate,

however; his career batting WPA of �1608.5 was the fifth lowest among

hitters of that same era.

11.3 CONCLUSION

The Retrosheet event data loaded into a database system provides analysts

with the tools to perform many types of research in the field of baseball ana-

lytics that are not possible using statistics aggregated at the season level.

Readers are encouraged to obtain this data and familiarize themselves with it.

Table 11.12 Career WPA Leaders, Debuting in 1975 or Later, Through 2015

Batter Career WPA Rank Pitcher Career WPA

Barry Bonds 1986�2007 12,460.2 1 R. Clemens 1984�2007 5275.1

Frank Thomas 1990�2008 6766.3 2 G. Maddux 1986�2008 4802.9

Manny Ramı́rez 1993�2011 6694.2 3 P. Martı́nez 1992�2009 3963.4

Alex Rodrı́guez 1994� 6637.7 4 R. Johnson 1988�2009 3293.9

Albert Pujols 2001� 6437.9 5 C. Kershaw 2008� 3247.6

Jim Thome 1991�2012 6426.8 6 M. Rivera 1995�2013 3065.2

Rickey Henderson 1979�2003 6343.2 7 J. Smoltz 1988�2009 2923.8

Chipper Jones 1993�2012 6134.4 8 F. Hernández 2005� 2656.9

Todd Helton 1997�2013 6015.1 9 R. Halladay 1998�2013 2579.7

Jeff Bagwell 1991�2005 5904.9 10 T. Glavine 1987�2008 2524.2

295Statistics in Baseball



CHAPTER 12

Fantasy Sports Models

12.1 INTRODUCTION

In this chapter we apply our different sports modeling techniques to fan-

tasy sports. We show how these models can be used to predict the number

of points that a player will score against an opponent and we show how

these models can be used by gamers looking to draft or pick a fantasy

sports team for a season or weekly contest. These models and approaches

can be applied to any type of fantasy sports scoring system as well as used

to compute the probability of achieving at least a specified number of

points. These models can also be used by professional managers and/or

coaches to help determine the best team to field against an opposing team.

The five models that we apply to fantasy sports include:

1. Game Points Model

2. Team Statistics Model

3. Logistic Probability Model

4. Logit Spread Model

5. Logit Points Model

12.2 DATA SETS

We apply our models to fantasy sports competitions using team and player

data from the NFL for the 2015�2016 season1. We use the first 16 weeks

of game data (all data that was available at time the chapter was written).

We show how these models can be used to predict player performance

for three different positions:

1. Running Backs (RB)

2. Wide Receivers (WR)

3. Quarterbacks (QB)

1 All data used in this chapter was compiled and cross-checked using multiple public

sources. The goal of this chapter is to introduce the reader to advanced mathematical

and statistical techniques that can be applied to player evaluation and point prediction

for fantasy sports competitions.
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To demonstrate our modeling approach, we selected the player from

each NFL team who played in the most games for the team at that posi-

tion. Therefore, there were 32 players for each position.

The one exception in our analysis was for the wide receiver position,

where we included 33 players. The 33rd player in our analysis was Will

Tye (tight end) from the NY Giants. Why Will Tye? As a fellow Stony

Brook athlete and alumni, we simply decided to include players from our

alma mater. Readers can apply the techniques of this chapter to any

player of their choice using any specified scoring system2,3.

A list of players, positions, and games played is shown in

Tables 12.1�12.3.

Important Note:

When developing fantasy sports models, it is important to highlight that

different fantasy sports competitions have different scoring systems.

Depending on the scoring system used, different players may have different

performance rankings, expected number of points, and different accuracy

measures from the model. For example, in football, scoring systems may

provide points for the total yards gained by a player and/or for the total

points scored by the player. It may turn out that a model may be very accu-

rate in predicting the number of points that one player will score during a

game and not as accurate in predicting the number of yards that player will

achieve during a game, and vice versa for a different player. In this chapter

we show how our models can be applied to different scoring systems.

12.3 FANTASY SPORTS MODEL

The main difference between sports team prediction models and fantasy

sports models is that the fantasy sports models are constructed from the

player’s perspective. This means that we are treating each player as an

individual team and estimating player-specific parameters (similar to

team-specific parameters discussed previously). And like the team predic-

tion models, we do need to have on hand a large-enough number of

games and degrees of freedom to develop accurate models.

To help resolve the degree of freedom issue and to ensure that we

have enough data points and game observations to construct an accurate

model, we do not include all of the explanatory factors from the team

2 In Spring 1987, the Stony Brook men’s soccer team beat the Villanova men’s soccer

team twice. The second victory was in the Spring Soccer Cup Finals. Stony Brook fin-

ished the tournament undefeated.
3 Jim Sadler, QED!
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prediction models. In these cases, we can simply include only the team’s

opponent’s explanatory factors (e.g., input data). This allows us to develop

statistically significant models using a smaller data set, which is important

for football where we do not have a large number of games for each

team. For other sports (basketball, baseball, soccer, and hockey) readers

can experiment with variations of these models following the formula-

tions shown in each of the sports chapters.

The model formulations for football fantasy sports models are shown

below for each of the five models. We transform the nonlinear models into

linear regression forms for simplicity but the user can also apply the more

Table 12.1 Running Back (RB)

Number Team Pos Games Player Yards Points

1 ARI RB 15 David Johnson 979 72

2 BAL RB 15 Javorius Allen 799 18

3 CAR RB 15 Mike Tolbert 346 24

4 CIN RB 15 Giovani Bernard 1154 12

5 CLE RB 15 Duke Johnson 868 12

6 DAL RB 15 Darren McFadden 1272 18

7 DEN RB 15 Ronnie Hillman 847 36

8 DET RB 15 Theo Riddick 797 18

9 GNB RB 15 James Starks 951 30

10 IND RB 15 Frank Gore 1158 42

11 MIA RB 15 Lamar Miller 1206 60

12 MIN RB 15 Adrian Peterson 1639 60

13 NYG RB 15 Rashad Jennings 983 18

14 OAK RB 15 Latavius Murray 1242 36

15 PHI RB 15 Darren Sproles 661 18

16 SDG RB 15 Danny Woodhead 1029 54

17 TAM RB 15 Doug Martin 1565 42

18 ATL RB 14 Devonta Freeman 1540 78

19 CHI RB 14 Jeremy Langford 802 42

20 HOU RB 14 Chris Polk 439 12

21 NYJ RB 14 Chris Ivory 1206 48

22 PIT RB 14 DeAngelo Williams 1254 66

23 SEA RB 14 Fred Jackson 351 12

24 WAS RB 14 Alfred Morris 706 6

25 NOR RB 13 C.J. Spiller 351 12

26 STL RB 13 Todd Gurley 1296 60

27 BUF RB 12 LeSean McCoy 1187 30

28 JAX RB 12 T.J. Yeldon 1019 18

29 TEN RB 12 Antonio Andrews 731 24

30 KAN RB 11 Charcandrick West 816 30

31 NWE RB 11 LeGarrette Blount 749 42

32 SFO RB 7 Carlos Hyde 523 18

Note: Data for 2015�2016 Season through Week 16.
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sophisticated form of the model. Our transformation to a linear form in

these situations is mathematically correct since our output variable can

take on any real value including both positive and negative values. In our

cases, since we are only estimating the total yards per game or total points

scored per game per player, our value will only be zero or positive.

The data used as input for these models is from the Chapter 6,

Football and is provided in Table 12.4 as a reference.

These transformed fantasy models are as follows:

Table 12.2 Wide Receiver (WR)

Number Team Pos Games Player Yards Points

1 ARI WR 15 Larry Fitzgerald 1160 48

2 ATL WR 15 Julio Jones 1722 48

3 CIN WR 15 A.J. Green 1263 54

4 DEN WR 15 Demaryius Thomas 1187 30

5 DET WR 15 Calvin Johnson 1077 48

6 GNB WR 15 Randall Cobb 839 36

7 HOU WR 15 DeAndre Hopkins 1432 66

8 IND WR 15 T.Y. Hilton 1080 30

9 JAX WR 15 Allen Robinson 1292 84

10 MIA WR 15 Jarvis Landry 1201 30

11 NOR WR 15 Brandin Cooks 1134 54

12 NYG WR 15 Rueben Randle 718 42

13 NYJ WR 15 Brandon Marshall 1376 78

14 OAK WR 15 Michael Crabtree 888 48

15 PHI WR 15 Jordan Matthews 943 36

16 PIT WR 15 Antonio Brown 1675 54

17 SEA WR 15 Doug Baldwin 1023 84

18 STL WR 15 Tavon Austin 845 54

19 WAS WR 15 Pierre Garcon 728 30

20 BAL WR 14 Kamar Aiken 868 30

21 CAR WR 14 Ted Ginn 799 60

22 CLE WR 14 Travis Benjamin 925 30

23 DAL WR 14 Terrance Williams 667 18

24 KAN WR 14 Jeremy Maclin 1030 42

25 MIN WR 14 Jarius Wright 450 0

26 BUF WR 13 Robert Woods 552 18

27 NWE WR 13 Danny Amendola 678 18

28 SDG WR 13 Malcom Floyd 561 18

29 SFO WR 13 Anquan Boldin 718 18

30 TAM WR 13 Mike Evans 1109 18

31 TEN WR 13 Harry Douglas 386 12

32 CHI WR 10 Marquess Wilson 464 6

33 NYG TE/WR 9 Will Tye 390 12

Note: Data for 2015�16 Season through Week 16.
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Game Scores Model

Y 5 b01 b1 �HF1 b2 � APA1 ε

The variables of this model are:

Y 5 player’s total yards in the game or player’s points scored in

the game

HF5 home field dummy variable, 15 home game, 05 away game

APA5 away team’s average points allowed per game

b0; b1; b2 5 player-specific parameters for game scores model

ε5model error

Table 12.3 Quarterback (QB)

Number Team Pos Games Player Yards Points

1 WAS QB 15 Kirk Cousins 4038 186

2 TAM QB 15 Jameis Winston 3915 162

3 SEA QB 15 Russell Wilson 4368 192

4 SDG QB 15 Philip Rivers 4587 162

5 OAK QB 15 Derek Carr 3919 186

6 NYJ QB 15 Ryan Fitzpatrick 3982 186

7 NYG QB 15 Eli Manning 4195 198

8 NWE QB 15 Tom Brady 4726 234

9 MIN QB 15 Teddy Bridgewater 3322 102

10 MIA QB 15 Ryan Tannehill 3993 138

11 KAN QB 15 Alex Smith 3767 120

12 JAX QB 15 Blake Bortles 4499 222

13 GNB QB 15 Aaron Rodgers 3862 186

14 DET QB 15 Matthew Stafford 4107 180

15 CAR QB 15 Cam Newton 4170 246

16 ATL QB 15 Matt Ryan 4320 114

17 ARI QB 15 Carson Palmer 4566 210

18 NOR QB 14 Drew Brees 4566 192

19 CHI QB 14 Jay Cutler 3604 120

20 PHI QB 13 Sam Bradford 3446 102

21 CIN QB 13 Andy Dalton 3392 168

22 BUF QB 13 Tyrod Taylor 3374 138

23 TEN QB 12 Marcus Mariota 3111 132

24 STL QB 11 Nick Foles 2072 48

25 PIT QB 11 Ben Roethlisberger 3607 108

26 HOU QB 10 Brian Hoyer 2401 108

27 BAL QB 10 Joe Flacco 2814 102

28 CLE QB 9 Johnny Manziel 1730 42

29 SFO QB 8 Colin Kaepernick 1871 42

30 IND QB 8 Matt Hasselbeck 1705 54

31 DEN QB 8 Peyton Manning 2141 54

32 DAL QB 8 Matt Cassel 1353 30

Note: Data for 2015�2016 Season through Week 16.
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Table 12.4 Team Statistics

Team ID Team Name Team
Logistic

Probability
Logit
Spread

Logit
Home
Points

Logit
Away
Points

Pi Total
Points

Off
PPG

Def
PPG

Offensive Defensive

OFF Y/R OFF Y/PA DEF Y/R DEF Y/PA

1 Arizona Cardinals ARI 3.3677 2.8259 2.2333 0.3460 1.2856 29.44 21.22 4.14 8.07 4.04 6.64

2 Atlanta Falcons ATL 1.1595 1.0353 1.4412 2.1009 1.8477 21.19 21.56 3.81 7.06 4.04 6.92

3 Baltimore Ravens BAL 0.7351 1.3195 1.3435 1.6784 1.4663 20.50 25.06 3.86 6.32 3.97 6.86

4 Buffalo Bills BUF 1.2585 1.5760 1.4296 1.4281 1.3819 23.69 22.44 4.78 7.19 4.39 6.60

5 Carolina Panthers CAR 3.9371 2.7919 2.6214 0.8619 1.8408 36.88 19.42 4.27 7.34 3.91 5.90

6 Chicago Bears CHI 1.4676 1.4046 1.5640 1.8577 1.6993 20.94 24.81 3.96 7.00 4.47 7.00

7 Cincinnati Bengals CIN 2.7765 2.8496 2.2185 0.3975 1.2208 27.19 17.47 3.86 7.57 4.41 6.18

8 Cleveland Browns CLE 0.0590 0.7858 1.1023 2.1911 1.6415 17.38 27.00 4.02 6.21 4.49 7.85

9 Dallas Cowboys DAL 0.2256 0.7139 1.6343 2.9357 2.5809 17.19 23.38 4.63 6.56 4.20 7.19

10 Denver Broncos DEN 3.4468 2.4491 2.0696 0.7459 1.3536 26.38 17.89 4.02 6.46 3.36 5.81

11 Detroit Lions DET 1.7342 1.5190 1.8074 1.8729 1.9491 22.38 25.00 3.77 6.66 4.22 7.18

12 Green Bay Packers GNB 2.6716 2.2653 1.8926 0.8111 1.2819 26.44 20.39 4.34 6.09 4.44 6.77

13 Houston Texans HOU 1.4241 1.3096 0.8040 1.1229 0.7994 21.19 20.18 3.71 6.08 4.09 6.18

14 Indianapolis Colts IND 1.2387 0.6632 0.4748 1.6894 0.9150 20.81 25.50 3.63 5.98 4.32 7.03

15 Jacksonville Jaguars JAX 0.1725 0.6406 0.5410 1.8561 0.9814 23.50 28.00 4.16 6.77 3.68 7.13

16 Kansas City Chiefs KAN 2.6741 2.8569 2.2107 0.3767 1.1296 28.88 17.06 4.56 6.98 4.14 5.90

17 Miami Dolphins MIA 0.5207 0.7122 0.9434 2.1122 1.4678 19.38 24.31 4.35 6.48 4.01 7.38

18 Minnesota Vikings MIN 2.6537 2.2781 2.2434 1.2107 1.7490 23.38 18.35 4.51 6.43 4.20 6.65

19 New England Patriots NWE 2.5184 2.5070 2.2705 0.9118 1.5782 31.44 20.11 3.66 7.00 3.89 6.46

20 New Orleans Saints NOR 0.9549 0.6943 1.7791 3.0750 2.9816 25.38 29.75 3.76 7.45 4.91 8.35

21 New York Giants NYG 0.7038 1.0749 1.2922 2.0010 1.5849 26.25 27.63 3.99 6.98 4.37 7.50

22 New York Jets NYJ 1.5854 1.7343 1.8037 1.5552 1.7389 24.19 19.63 4.17 6.72 3.58 6.26

23 Oakland Raiders OAK 1.5202 1.5912 1.6525 1.6111 1.6271 22.44 24.94 3.94 6.40 4.13 6.46

24 Philadelphia Eagles PHI 1.0017 0.9314 1.1111 2.0042 1.4896 23.56 26.88 3.93 6.56 4.50 6.75

25 Pittsburgh Steelers PIT 2.5387 2.6647 2.5285 0.9985 1.8817 28.56 19.89 4.53 7.82 3.78 6.81

26 San Diego Chargers SDG 0.5232 1.2922 1.4098 1.8552 1.6703 20.00 24.88 3.46 6.88 4.81 7.42

27 San Francisco 49ers SFO 1.0602 0.7764 0.3741 1.4217 0.5985 14.88 24.19 3.96 6.30 4.01 7.61

28 Seattle Seahawks SEA 2.7112 2.9311 2.7201 0.7846 1.9110 28.56 17.61 4.52 7.63 3.49 6.18

29 St. Louis Rams STL 1.6308 1.4755 1.5268 1.6459 1.6022 17.50 20.63 4.56 5.93 4.02 6.81

30 Tampa Bay Buccaneers TAM 0.6048 0.5981 1.0367 2.3792 1.7499 21.38 26.06 4.76 7.20 3.45 7.10

31 Tennessee Titans TEN 2 0.4483 0.2571 0.6038 2.4502 1.5342 18.69 26.44 4.00 6.36 3.89 7.31

32 Washington Redskins WAS 1.3597 1.2521 1.2822 1.6995 1.4330 25.38 24.35 3.69 7.36 4.80 7.21

33 HF 0.2124 0.2232 0.0336 0.0116 0.0272 #N/A #N/A #N/A #N/A



Team Statistics Model

Y 5 b01 b1 �HF1 b2 �HTDYR1 b3 � ATDYPA1 ε

The variables of the model are:

Y 5 player’s total yards in the game or player’s points scored in the

game

HF5 home field dummy variable, 15 home game, 05 away game

ATDYR5 away team average yards per rush allowed

ATDYPA5 away team average yards per pass attempt allowed

b0; b1; b2; b35model parameter, sensitivity to the variable

ε5model error

Logistic Probability Model

Y 5 b01 b1 �HF1 b2 � Away Rating1 ε

The variables of the model are:

Y 5 player’s total yards in the game or player’s points scored in the

game

HF5 home field dummy variable, 15 home game, 05 away game

Away Rating5 away team’s logistic probability rating

b0; b1; b2 5model parameter, sensitivity to the variable

ε5model error

Logit Spread Model

Y 5 b0 1 b1 �HF1 b2 � Away Logit Spread1 ε

The variables of the model are:

Y 5 player’s total yards in the game or player’s points scored in the

game

HF5 home field dummy variable, 15 home game, 05 away game

Away Logit Spread5 away team’s logit spread rating

b0; b1; b2 5model parameter, sensitivity to the variable

ε5model error

Logit Points Model

Y 5 b01 b1 �HF1 b2 � Logit Points1 E
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The variables of the model are:

Y 5 player’s total yards in the game or player’s points scored in the

game

HF5 home field dummy variable, 15 home game, 05 away game

Logit Points5 opponent’s away logit points rating if a home game and

opponent’s home logit points rating if an away game

b0; b1; b25model parameter, sensitivity to the variable

ε5model error

Predicting Points
Similar to the approaches presented in the chapters above, these regression

equations and player-specific parameters can be used to predict the num-

ber of points a player will score for whatever scoring system is being used

by the fantasy sports competition. Readers can refer to the specific sports

chapters in this book for further insight into the prediction model.

Points Probability
We can also use the regression results from these models to estimate the

probability that the player will score more than a specified number of

points or less than a specified number of points, as well as the probability

that they will score within an interval of points such as between 250 and

300 yards in a game. These techniques are described in detail in the chap-

ter for each sport for the specified model.

12.4 REGRESSION RESULTS

The results for our five fantasy sports models for Will Tye are shown in

Table 12.5A and B. The models used data for the 2015�16 season for the

first 16 weeks of the season.

Table 12.5A shows the regression results for predicting total yards per

game. The model performance results measured from the model’s R2

goodness of fit ranged from a low of R25 21.4% for the logistic probabil-

ity model to a high of R25 41.6% for the team statistics model.

Table 12.5B shows the regression results for predicting total points

per game. The model performance results ranged from a low of

R25 5.9 for the team statistics model to a high of R25 34.8 for the

logit points model.
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Table 12.5A Will Tye Fantasy Sports Model: Total Yards Per Game Model

Games Points Model Team Statistics Model

Est OppPAG HF Const Est Opp/Y/PA OppY/R HF Const

Beta 2 4.500 2 2.542 150.561 Beta 0.409 22.931 26.125 2 62.774

Se 4.430 24.622 112.955 Se 15.481 19.579 18.183 132.699

R2/F 0.348 19.870 #N/A R2/F 0.416 21.030 #N/A #N/A

SeY/df 1.337 5.000 #N/A SeY/df 0.950 4.000 #N/A #N/A

SSE/TSS 1055.490 1974.010 #N/A SSE/TSS 1260.414 1769.086 #N/A #N/A

t-Stat 2 1.016 2 0.103 1.333 t-Stat 0.026 1.171 1.437 2 0.473

Logistic Probability Model Logit Spread Model

Est
Team
Rating HF Const Est

Logit
Spread HF Const

Beta 0.349 17.510 35.945 Beta 5.450 12.120 31.490

Se 9.549 20.438 13.723 Se 13.078 20.718 15.670

R2/F 0.214 21.821 #N/A R2/F 0.240 21.455 #N/A

SeY/df 0.681 5.000 #N/A SeY/df 0.791 5.000 #N/A

SSE/TSS 648.637 2380.863 #N/A SSE/TSS 727.943 2301.557 #N/A

t-Stat 0.037 0.857 2.619 t-Stat 0.417 0.585 2.010

Logit Points Model

Est
Logit
Points HF Const

Beta 37.575 14.457 2 4.833

Se 28.559 13.570 32.611

R2/F 0.416 18.810 #N/A

SeY/df 1.781 5.000 #N/A

SSE/TSS 1260.453 1769.047 #N/A

t-Stat 1.316 1.065 2 0.148

Note: Data for 2015�16 through Week 16.



Table 12.5B Will Tye Fantasy Sports Model: Total Points Per Game Model

Game Points Model Team Statistics Model

Est OppPAG HFA Const Est Opp/Y/PA OppY/R HFA Const

Beta 2 0.747 2 3.408 20.462 Beta 2 1.231 2 0.466 2 0.838 12.206

Se 0.652 3.625 16.630 Se 2.624 3.318 3.081 22.489

R2/F 0.208 2.925 #N/A R2/F 0.059 3.564 #N/A #N/A

SeY/df 0.655 5.000 #N/A SeY/df 0.084 4.000 #N/A #N/A

SSE/TSS 11.213 42.787 #N/A SSE/TSS 3.191 50.809 #N/A #N/A

Logistic Probability Model Logit Spread Model

Est
Logistic

Probability HFA Const Est
Logit
Spread HFA Const

Beta 1.506 2 2.114 0.187 Beta 1.512 2 1.631 0.179

Se 1.271 2.720 1.826 Se 1.886 2.987 2.259

R2/F 0.219 2.904 #N/A R2/F 0.114 3.093 #N/A

SeY/df 0.702 5.000 #N/A SeY/df 0.321 5.000 #N/A

SSE/TSS 11.844 42.156 #N/A SSE/TSS 6.152 47.848 #N/A

Logit Points Model

Est Logit Points HFA Const

Beta 2 6.580 0.621 8.695 Game Points 0.208

Se 4.030 1.915 4.601 Team Stats 0.059

R2/F 0.348 2.654 #N/A Logistic Probability 0.219

SeY/df 1.333 5.000 #N/A Logit Spread 0.114

SSE/TSS 18.783 35.217 #N/A Logit Points 0.348

Note: Data: 2015�16 through Week 16.



Analysis of these results shows that for almost all models and for all

predicted output values, the model parameters have a very low t-statistic,

indicating that the explanatory variable may not be significant. However,

the F-Stat of these models shows that the combination of explanatory fac-

tors is significant (i.e., all the input variables are not statistically equal to

zero).

One of the reasons for the low t-statistics is a small number of obser-

vations. For example, we have nine observations for Will Tye for our

analysis period (first 16 weeks of games) and we are estimating three or

four model parameters. The small degrees of freedom for these models is

the cause of the low t-statistic but high R2. The small number of observa-

tions per player is what makes predicting player performance for fantasy

sports more difficult that predicting team performance, where we have at

least the same number of game observations (and often more data points

if the player did not participate in all games), and we also have observa-

tions across common opponents, which results in a higher level of statisti-

cal significance.

There are two ways to increase the statistical accuracy of fantasy sports

models. First, we can utilize a larger data sample, which is not always pos-

sible since we are limited to the number of games played and we often

want to predict results before the end of the season. A second way to

increase statistical accuracy is to perhaps model each half of each game,

thus doubling the data sample size. Depending on the number of times

the team has possession in each quarter, it might also be possible to model

player performance in each quarter as well, resulting in an even larger

data set—almost four times as many data points.

Example
The NY Giants (home) are playing the NY Jets at home. We are inter-

ested in determining the total number of yards for Will Tye using the

logistic probability model with parameters shown in Table 12.5A and the

NY Jets’ logistic probability rating (Table 12.4) as follows:

Est:Total Yards5 35:9451 14:4571 0:349 � 1:58545 54:008

If we are interested in the probability that Will Tye will have at least

45 yards in the game, we use the standard error of the regression along

with the expected number of yards as follows:

Prob5 12NormCDF 45; 54; 9:549ð Þ5 83%
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12.5 MODEL RESULTS

Fantasy sports model parameters for all of the selected players for both

predicted yards per game and predicted points per game are provided in

Tables 12.6�12.11. These parameters can be used to estimate the points

from any player against any team.

Table 12.6 shows parameters for predicted yards per game for running

backs. Table 12.7 shows parameters for predicted total points per game

for running backs. Table 12.8 shows parameters for predicted yards per

game for wide receivers. Table 12.9 shows parameters for predicted total

points per game for wide receivers. Table 12.10 shows parameters for

total yards per game for quarterbacks. Table 12.11 shows parameters for

total points per game for quarterbacks.

Overall, we found that the models performed slightly better for pre-

dicting total points per game compared to total yards per game by player.

This is primarily due to the often large variation in player yards per game

across games. Total points per game by player had a lower variation from

game to game.

Additionally, we found that the team statistics models proved to be the

best-performing models based on our R2 goodness of fit measure for both

yards per game and points per game. This is most notable since this model

was found to have the lowest predictive power of team performance

across all our models. However, it was the best-performing model of

player performance.

Readers interested in expanding and improving these results for fan-

tasy sports could use variations of the team statistics models by incorpo-

rating a larger number of team statistics input variables and using a larger

data set by modeling each game by half or by quarter. This could increase

the total data set by two to four times, thus providing better results and a

higher level of statistical accuracy.

12.6 CONCLUSION

In this chapter we applied five of our sports models to fantasy sports. We

showed how the model and data from the team models can be applied to

fantasy sports by player using a linear regression modeling approach.

These models can be easily applied for a variety of different fantasy sports

scoring systems such as for total yards per game or total points per game

for football. These techniques can be easily applied to different sports and
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Table 12.6 Running Back Prediction Model: Total Yards Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

12 Adrian Peterson 0.232 265.227 216.008 8.211 0.123 248.992 234.050 39.186 1.866 0.237 177.050 228.232 228.013 0.242 181.939 215.785 236.165 0.257 52.293 214.733 43.793

24 Alfred Morris 0.396 213.483 46.113 1.472 0.504 2135.603 43.171 34.301 2.346 0.404 3.424 56.585 11.148 0.394 5.964 54.866 9.048 0.420 45.968 57.741 215.509

29 Antonio Andrews 0.768 217.982 237.708 4.266 0.714 279.541 235.290 9.045 18.246 0.704 100.114 235.897 213.309 0.742 109.900 238.625 219.969 0.463 78.952 237.370 2.395

25 C.J. Spiller 0.045 10.399 11.241 0.440 0.188 2146.212 9.452 16.223 14.826 0.105 29.806 8.845 25.628 0.098 31.577 10.459 28.542 0.222 21.483 24.335 18.267

32 Carlos Hyde 0.001 80.059 2.212 20.308 0.074 2155.844 9.933 29.262 15.740 0.007 81.853 2.958 24.018 0.044 105.602 3.149 214.897 0.001 68.100 5.178 2.428

30 Charcandrick West 0.080 137.558 23.325 23.199 0.739 223.704 7.804 2125.124 55.506 0.175 34.841 22.874 17.584 0.082 34.953 20.466 17.342 0.113 131.227 10.214 234.136

21 Chris Ivory 0.244 130.262 51.139 22.625 0.430 2316.389 37.154 70.186 13.573 0.240 59.339 51.705 7.437 0.229 66.376 47.136 1.326 0.307 105.342 65.691 228.814

20 Chris Polk 0.116 61.509 27.587 21.163 0.139 63.830 26.728 7.006 28.535 0.109 29.515 28.158 3.561 0.156 26.282 28.076 6.040 0.063 36.548 28.870 21.017

16 Danny Woodhead 0.264 230.226 14.698 3.992 0.536 2311.595 19.203 51.176 23.326 0.211 77.101 18.502 211.949 0.190 83.742 16.698 214.697 0.332 4.831 28.538 28.136

6 Darren McFadden 0.083 177.158 223.063 23.446 0.114 283.229 228.457 219.099 215.245 0.014 88.212 210.479 0.578 0.055 75.419 219.778 12.495 0.056 113.920 27.632 218.789

15 Darren Sproles 0.158 116.625 211.704 22.909 0.207 135.210 220.775 231.037 6.633 0.106 51.022 219.856 1.026 0.106 51.590 220.203 0.768 0.108 48.414 221.061 2.418

1 David Johnson 0.020 12.805 22.966 2.148 0.224 251.588 214.636 93.698 238.705 0.022 78.518 23.282 210.337 0.069 93.499 24.328 219.697 0.054 91.026 24.776 217.763

22 DeAngelo Williams 0.098 72.487 41.651 20.475 0.138 162.207 48.735 15.294 224.965 0.148 31.455 48.737 14.825 0.126 29.306 52.068 14.603 0.176 28.144 63.131 34.627

18 Devonta Freeman 0.006 143.780 1.702 21.305 0.073 276.239 9.601 9.506 20.397 0.088 124.031 6.426 215.151 0.038 125.688 3.147 216.232 0.003 114.834 4.987 23.609

17 Doug Martin 0.052 72.266 221.395 1.878 0.160 113.645 2.122 65.234 240.072 0.071 104.944 216.456 10.080 0.069 100.698 219.077 16.045 0.074 138.584 22.304 217.470

5 Duke Johnson 0.159 5.423 217.102 2.880 0.284 2116.360 213.182 5.318 24.106 0.091 73.817 212.172 24.857 0.127 83.810 215.019 29.159 0.128 88.883 220.728 212.264

10 Frank Gore 0.089 114.892 23.858 21.623 0.047 127.196 24.812 23.647 25.146 0.160 68.143 25.386 7.070 0.140 64.305 24.249 9.525 0.025 82.899 23.939 23.239

23 Fred Jackson 0.068 21.025 23.591 1.145 0.066 237.224 21.937 6.822 4.682 0.017 25.695 21.099 21.350 0.031 27.837 21.292 22.642 0.014 19.511 21.089 2.441

4 Giovani Bernard 0.055 43.230 16.148 1.259 0.147 38.152 9.253 35.556 216.010 0.066 65.527 12.289 4.869 0.064 63.035 11.488 5.958 0.166 45.786 17.287 17.770

9 James Starks 0.268 29.339 37.014 0.877 0.265 42.928 36.300 7.912 23.937 0.273 39.727 39.614 3.977 0.273 38.922 37.329 5.351 0.392 16.828 39.452 18.099

2 Javorius Allen 0.038 5.646 25.842 2.073 0.172 259.974 1.982 228.267 32.466 0.144 77.216 211.684 213.627 0.170 85.893 24.985 219.589 0.017 62.389 29.428 26.119

19 Jeremy Langford 0.225 2.423 245.759 3.630 0.372 2132.405 246.698 236.270 54.112 0.387 131.983 235.217 226.826 0.437 158.452 244.839 240.876 0.238 133.019 265.019 229.314

11 Lamar Miller 0.083 38.987 33.563 1.184 0.172 138.728 31.622 44.428 237.361 0.086 74.120 32.283 26.644 0.130 97.821 32.671 223.803 0.274 126.418 53.998 245.097

14 Latavius Murray 0.155 215.662 26.360 3.843 0.340 2160.869 36.755 211.361 40.172 0.374 97.797 27.188 216.798 0.162 100.647 22.938 217.019 0.051 89.808 4.266 29.080

31 LeGarrette Blount 0.325 259.848 13.471 5.095 0.469 2215.387 13.666 3.869 38.098 0.240 73.708 19.026 212.443 0.406 99.588 16.359 233.202 0.335 100.193 43.736 234.026

27 LeSean McCoy 0.110 161.021 7.397 22.920 0.570 526.528 12.125 254.828 230.965 0.082 80.778 8.688 9.515 0.110 76.315 10.412 11.735 0.156 64.130 15.696 20.673

3 Mike Tolbert 0.257 226.081 9.871 1.764 0.362 272.813 11.948 23.325 14.497 0.138 22.564 10.821 25.066 0.250 27.825 8.871 28.940 0.148 10.879 4.838 5.917

13 Rashad Jennings 0.111 83.562 220.612 20.541 0.147 113.264 221.280 8.675 211.200 0.387 54.641 233.916 17.975 0.270 52.109 230.586 19.178 0.361 106.455 29.699 227.796

7 Ronnie Hillman 0.039 37.189 13.936 0.542 0.229 2212.337 26.288 26.215 21.527 0.078 62.288 18.014 28.362 0.043 56.444 14.675 24.034 0.036 48.931 12.831 0.671

28 T.J. Yeldon 0.046 35.380 22.899 2.141 0.081 237.434 210.292 17.758 8.104 0.169 96.028 21.596 29.331 0.145 101.136 22.387 212.546 0.205 112.462 7.099 220.811

8 Theo Riddick 0.349 29.184 20.411 0.536 0.374 81.012 19.435 24.577 23.031 0.404 51.038 22.606 25.301 0.386 51.881 20.818 25.740 0.427 19.470 28.812 10.717

26 Todd Gurley 0.255 2110.551 245.069 10.515 0.622 2784.105 263.994 35.697 111.582 0.083 141.182 221.244 214.823 0.213 179.798 233.833 232.413 0.231 15.321 10.296 45.149



Table 12.7 Running Back Prediction Model: Total Points Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

12 Adrian Peterson 0.015 6.658 20.995 20.104 0.051 20.407 21.541 3.331 21.288 0.040 6.012 20.900 20.878 0.027 5.680 20.600 20.841 0.106 0.591 20.214 2.321

24 Alfred Morris 0.176 21.388 21.471 0.114 0.235 22.866 21.326 1.565 20.337 0.133 1.254 21.223 20.037 0.143 1.758 21.409 20.360 0.138 1.581 21.081 20.227

29 Antonio Andrews 0.059 0.407 1.364 0.034 0.076 5.167 1.439 21.254 0.158 0.109 2.066 1.417 20.650 0.081 2.052 1.316 20.619 0.070 0.303 1.231 0.623

25 C.J. Spiller 0.195 23.619 1.641 0.152 0.305 213.145 1.675 1.601 0.964 0.211 0.669 1.520 20.420 0.175 0.504 1.668 20.401 0.222 21.071 0.957 0.877

32 Carlos Hyde 0.015 0.560 1.161 0.063 0.195 228.762 1.820 4.580 1.739 0.027 3.166 0.994 20.529 0.090 5.925 1.018 21.793 0.072 6.862 21.161 22.409

30 Charcandrick West 0.081 11.009 0.827 20.374 0.777 27.321 0.198 210.639 3.018 0.209 20.733 0.724 1.922 0.076 20.779 0.468 1.925 0.027 6.217 20.312 21.765

21 Chris Ivory 0.253 24.851 3.814 0.277 0.367 25.369 3.337 23.834 3.336 0.233 1.563 4.374 0.130 0.238 1.003 4.491 0.581 0.263 20.399 3.209 1.631

20 Chris Polk 0.162 2.694 21.650 20.043 0.172 21.085 21.685 0.795 20.069 0.174 2.117 21.797 20.255 0.161 1.951 21.747 20.161 0.157 1.617 21.745 0.071

16 Danny Woodhead 0.314 211.665 5.887 0.554 0.304 223.863 6.053 0.434 3.352 0.331 4.198 6.314 22.156 0.392 7.411 5.705 23.642 0.379 27.631 7.937 4.382

6 Darren McFadden 0.031 1.224 20.785 0.019 0.086 25.773 20.167 1.181 0.321 0.064 2.278 20.439 20.505 0.057 2.348 20.396 20.589 0.074 0.218 20.999 1.122

15 Darren Sproles 0.098 6.506 1.643 20.258 0.289 16.646 1.594 22.285 20.957 0.038 1.233 0.711 20.210 0.031 0.970 0.824 20.068 0.036 1.371 0.914 20.280

1 David Johnson 0.187 24.468 22.696 0.450 0.440 215.217 24.232 10.726 23.273 0.096 7.124 22.919 20.737 0.166 9.003 22.991 21.924 0.127 8.300 23.029 21.445

22 DeAngelo Williams 0.046 7.356 2.925 20.222 0.081 13.580 1.734 24.008 0.916 0.064 0.688 2.782 1.081 0.037 1.673 2.617 0.572 0.049 20.064 3.138 1.488

18 Devonta Freeman 0.061 19.574 21.737 20.530 0.146 211.083 22.653 5.926 20.955 0.021 6.668 21.034 20.741 0.009 6.178 21.199 20.189 0.030 7.910 20.359 21.546

17 Doug Martin 0.282 23.343 4.998 0.139 0.347 12.074 3.626 25.341 1.611 0.278 20.496 5.260 0.396 0.274 20.360 5.150 0.342 0.325 2.380 7.082 21.979

5 Duke Johnson 0.170 0.924 21.780 0.038 0.631 210.349 21.541 4.158 20.692 0.169 1.875 21.715 20.090 0.167 1.631 21.701 0.041 0.173 2.234 21.902 20.268

10 Frank Gore 0.129 5.101 22.532 20.074 0.183 9.677 22.936 22.723 0.681 0.129 3.747 22.550 20.222 0.126 3.748 22.582 20.218 0.218 5.456 22.230 21.424

23 Fred Jackson 0.251 6.909 21.220 20.243 0.261 25.432 21.480 2.919 20.735 0.305 0.422 21.807 0.770 0.265 0.187 21.704 0.915 0.287 20.597 21.612 1.440

4 Giovani Bernard 0.129 6.997 20.652 20.261 0.421 3.979 20.626 3.749 22.660 0.025 0.367 20.047 0.325 0.052 20.141 20.154 0.605 0.105 2.509 20.262 21.084

9 James Starks 0.127 25.028 2.619 0.266 0.190 215.129 1.998 3.819 0.081 0.193 4.150 1.561 21.457 0.167 3.938 2.423 21.683 0.392 24.972 3.046 3.309

2 Javorius Allen 0.265 22.289 21.543 0.176 0.344 28.212 21.627 0.512 1.137 0.425 3.298 21.963 20.886 0.343 3.341 21.573 20.965 0.260 3.118 21.946 20.901

19 Jeremy Langford 0.194 2.430 23.355 0.122 0.343 12.809 24.055 25.480 2.324 0.190 4.366 23.387 0.320 0.188 5.635 23.295 20.326 0.638 16.785 27.925 26.376

11 Lamar Miller 0.002 2.148 0.319 0.066 0.051 7.000 0.230 2.900 22.236 0.013 2.996 0.256 0.756 0.001 3.570 0.248 0.141 0.009 4.815 0.642 20.815

14 Latavius Murray 0.242 28.497 1.148 0.467 0.220 213.958 0.295 1.768 1.304 0.192 4.028 0.272 21.094 0.091 4.236 0.006 21.124 0.030 3.302 21.141 20.461

31 LeGarrette Blount 0.386 226.649 21.265 1.298 0.286 217.101 0.773 25.934 6.633 0.109 5.963 0.685 22.143 0.219 9.683 0.382 25.149 0.152 9.460 4.496 25.031

27 LeSean McCoy 0.174 10.755 20.668 20.357 0.005 5.979 20.178 20.316 20.314 0.077 1.234 20.448 0.952 0.136 0.638 20.285 1.273 0.093 0.421 0.132 1.481

3 Mike Tolbert 0.178 27.990 2.222 0.346 0.322 25.950 22.054 7.021 22.932 0.068 1.168 2.023 20.442 0.073 1.466 1.824 20.616 0.076 20.077 1.433 0.681

13 Rashad Jennings 0.370 18.608 23.196 20.667 0.300 16.177 21.719 0.954 22.573 0.212 0.648 21.922 1.260 0.275 20.188 22.129 2.055 0.044 2.463 20.673 20.569

7 Ronnie Hillman 0.389 8.413 3.391 20.324 0.353 210.010 4.587 3.227 20.445 0.480 22.022 3.006 1.886 0.378 21.487 3.495 1.401 0.378 3.479 3.405 21.712

28 T.J. Yeldon 0.105 24.269 21.008 0.263 0.095 20.182 20.532 21.594 1.217 0.130 2.708 20.910 20.682 0.113 3.060 20.968 20.898 0.193 4.243 20.147 21.786

8 Theo Riddick 0.153 23.998 0.667 0.229 0.131 26.536 1.032 2.308 20.364 0.141 2.686 1.163 20.926 0.074 2.309 0.852 20.737 0.082 3.043 0.033 21.110

26 Todd Gurley 0.547 219.508 20.168 1.069 0.581 256.720 20.349 1.920 7.708 0.599 9.443 1.022 22.885 0.602 11.338 0.513 23.873 0.406 25.191 5.149 3.822



Table 12.8 Wide Receiver Prediction Model: Total Yards Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

3 A.J. Green 0.062 115.654 226.131 20.738 0.176 259.233 221.515 259.554 12.073 0.061 96.562 224.453 1.145 0.092 80.160 227.076 10.995 0.063 104.572 225.281 24.126

9 Allen Robinson 0.052 43.371 214.919 1.994 0.220 38.507 20.366 248.572 34.999 0.300 111.694 213.068 220.077 0.175 115.714 215.810 221.088 0.053 79.081 220.518 9.361

29 Anquan Boldin 0.030 16.411 8.651 1.712 0.085 114.538 8.585 235.426 12.400 0.036 66.853 7.632 26.095 0.006 61.001 4.730 22.653 0.020 40.615 11.764 7.981

16 Antonio Brown 0.085 37.940 31.063 2.772 0.105 230.401 37.389 240.849 4.681 0.077 104.260 38.140 25.576 0.117 138.703 26.946 219.998 0.171 6.627 73.430 41.617

11 Brandin Cooks 0.034 22.448 0.420 2.053 0.327 263.664 14.133 52.898 212.850 0.097 56.153 7.680 7.726 0.073 55.406 5.593 10.138 0.097 90.328 12.626 214.565

13 Brandon Marshall 0.222 278.562 221.166 7.263 0.240 2205.658 219.229 9.537 37.735 0.085 110.406 215.943 214.334 0.174 127.322 216.761 227.444 0.029 80.387 214.146 10.284

5 Calvin Johnson 0.239 74.339 35.363 20.951 0.384 130.656 28.468 50.000 242.326 0.230 52.582 34.310 0.791 0.239 44.499 34.605 4.894 0.539 223.958 64.014 39.667

27 Danny Amendola 0.003 37.791 22.462 0.664 0.248 168.948 6.631 39.778 241.360 0.112 36.646 22.848 17.477 0.024 43.307 23.830 9.642 0.237 103.258 25.675 244.062

7 DeAndre Hopkins 0.020 58.942 1.768 1.477 0.105 212.262 21.228 237.956 5.366 0.123 112.466 20.505 212.678 0.138 116.111 0.791 216.144 0.115 115.874 9.710 216.972

4 Demaryius Thomas 0.052 113.790 7.264 21.615 0.168 2112.133 17.408 56.423 27.838 0.053 66.178 7.303 6.429 0.043 66.245 8.375 5.873 0.033 69.807 13.344 3.650

17 Doug Baldwin 0.214 199.524 18.472 26.488 0.113 317.664 8.042 232.804 217.418 0.168 37.821 2.531 13.805 0.345 14.630 2.957 27.795 0.025 74.236 5.302 28.248

31 Harry Douglas 0.126 47.612 214.756 20.596 0.229 17.808 220.168 21.415 29.840 0.200 27.048 216.791 5.719 0.135 28.339 214.798 3.731 0.168 19.221 215.782 9.454

25 Jarius Wright 0.246 70.528 10.891 22.054 0.215 55.672 12.174 10.252 210.941 0.462 20.875 12.652 13.313 0.393 1.150 9.297 13.669 0.199 30.866 14.129 25.863

10 Jarvis Landry 0.176 174.480 225.393 23.626 0.269 293.817 225.913 230.303 211.552 0.118 79.046 221.563 8.108 0.101 78.806 221.718 6.530 0.097 81.037 223.864 4.660

24 Jeremy Maclin 0.027 118.826 11.773 22.191 0.568 186.602 25.146 139.300 2106.386 0.011 66.744 8.527 2.924 0.085 25.338 14.362 24.573 0.041 41.319 10.486 18.296

15 Jordan Matthews 0.017 102.123 21.619 21.765 0.022 26.451 210.985 6.698 6.311 0.007 63.605 27.069 20.099 0.010 57.506 25.278 3.589 0.324 128.501 0.166 235.418

2 Julio Jones 0.225 233.665 0.925 5.806 0.179 4.395 8.048 229.359 31.620 0.160 128.085 24.045 214.517 0.234 141.071 24.680 227.636 0.077 95.677 218.023 15.642

20 Kamar Aiken 0.242 37.565 34.400 0.364 0.309 13.662 29.613 31.199 213.239 0.261 53.502 32.203 24.277 0.244 41.779 34.365 2.418 0.307 66.287 32.918 213.116

1 Larry Fitzgerald 0.030 112.766 0.594 21.404 0.095 129.718 5.144 232.319 11.905 0.027 70.694 0.863 6.183 0.030 69.504 1.511 6.804 0.096 60.286 1.794 12.464

28 Malcom Floyd 0.480 96.844 234.346 21.647 0.486 210.527 233.725 22.262 22.960 0.477 51.891 236.194 5.277 0.492 44.213 234.175 8.822 0.477 44.728 236.301 10.013

32 Marquess Wilson 0.068 85.087 11.040 22.098 0.472 371.832 22.957 14.116 257.664 0.092 20.523 3.960 10.438 0.086 12.337 7.360 14.594 0.294 242.878 51.725 46.726

14 Michael Crabtree 0.113 22.947 24.383 2.385 0.153 237.816 28.845 219.510 24.419 0.079 58.738 18.146 23.880 0.060 56.329 15.573 21.861 0.553 27.078 37.723 38.297

30 Mike Evans 0.066 113.752 223.243 20.615 0.110 235.576 223.155 24.542 4.352 0.115 114.787 225.627 211.738 0.065 101.426 224.251 21.733 0.157 71.798 250.160 25.032

19 Pierre Garcon 0.065 43.008 29.936 0.375 0.122 82.520 28.274 214.293 3.986 0.139 63.608 215.521 26.476 0.101 63.488 214.268 26.914 0.066 55.693 27.964 22.380

6 Randall Cobb 0.275 122.589 23.101 23.429 0.420 238.941 28.406 24.903 225.871 0.319 17.062 32.855 13.184 0.375 9.573 25.510 20.374 0.161 54.587 23.085 24.387

26 Robert Woods 0.112 23.443 26.086 2.107 0.073 228.556 211.254 17.834 0.274 0.028 43.787 29.486 1.673 0.025 45.383 28.636 0.270 0.121 63.925 210.188 213.505

12 Rueben Randle 0.277 2104.773 29.327 5.760 0.290 2120.922 18.928 25.950 6.885 0.038 42.838 10.979 22.172 0.047 45.536 12.177 24.901 0.034 39.083 8.671 1.456

8 T.Y. Hilton 0.491 291.113 5.997 7.040 0.399 2179.408 7.295 20.249 37.075 0.259 90.448 11.220 215.847 0.289 103.414 8.525 224.321 0.029 75.641 11.047 25.566

18 Tavon Austin 0.029 54.659 212.027 0.473 0.144 237.653 229.165 224.794 31.144 0.027 65.192 211.174 20.232 0.049 77.600 213.733 26.067 0.269 11.230 0.036 28.592

21 Ted Ginn 0.365 273.181 28.688 4.753 0.326 2133.268 26.998 21.961 26.310 0.295 64.979 31.826 219.127 0.294 71.566 22.752 220.883 0.206 29.374 12.902 15.522

23 Terrance Williams 0.499 6.830 220.239 2.053 0.497 217.558 220.693 14.841 1.693 0.448 65.230 222.944 25.195 0.449 67.060 221.403 27.096 0.406 63.346 227.872 22.937

22 Travis Benjamin 0.063 13.040 1.639 2.547 0.197 103.405 0.077 247.114 22.760 0.132 83.764 6.416 210.027 0.125 94.523 1.088 214.065 0.040 48.798 13.080 8.812

33 Will Tye 0.348 150.561 22.542 24.500 0.416 262.774 26.125 22.931 0.409 0.214 35.945 17.510 0.349 0.240 31.490 12.120 5.450 0.416 24.833 14.457 37.575



Table 12.9 Wide Receiver Prediction Model: Total Points Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

3 A.J. Green 0.026 22.332 0.612 0.245 0.086 22.892 0.612 22.859 2.594 0.047 4.842 0.137 20.939 0.022 4.792 0.210 20.827 0.038 1.377 0.325 1.347

9 Allen Robinson 0.231 217.160 20.060 0.973 0.313 223.038 0.578 24.109 6.560 0.314 8.847 20.304 22.740 0.294 10.537 20.655 23.846 0.072 9.052 0.337 22.431

29 Anquan Boldin 0.041 3.205 21.157 20.052 0.083 2.317 21.551 2.124 21.292 0.037 2.074 20.972 20.041 0.042 1.495 21.120 0.259 0.064 3.493 21.811 20.783

16 Antonio Brown 0.258 1.296 5.050 20.015 0.286 20.732 4.447 22.042 1.564 0.260 1.420 4.929 20.196 0.292 3.608 4.256 21.125 0.294 22.334 6.294 1.619

11 Brandin Cooks 0.178 211.235 1.219 0.591 0.488 237.975 2.484 7.836 1.190 0.043 3.003 1.547 20.234 0.038 2.571 1.714 0.001 0.100 4.806 2.892 21.636

13 Brandon Marshall 0.412 0.876 4.149 0.071 0.417 23.314 4.070 0.482 0.564 0.411 2.757 4.190 20.159 0.448 4.123 3.848 21.267 0.517 5.689 5.891 22.406

5 Calvin Johnson 0.230 24.819 4.063 0.267 0.345 29.918 4.280 7.838 23.321 0.296 4.479 4.891 21.835 0.302 5.532 4.270 22.373 0.420 28.409 7.779 4.706

27 Danny Amendola 0.215 23.555 2.225 0.149 0.317 17.786 1.981 21.636 21.564 0.191 0.199 2.256 20.205 0.199 0.487 2.320 20.457 0.191 20.370 2.041 0.329

7 DeAndre Hopkins 0.087 10.058 1.958 20.292 0.256 33.322 1.744 23.981 22.010 0.040 4.016 1.612 20.372 0.066 2.059 1.842 0.934 0.126 5.909 2.424 21.796

4 Demaryius Thomas 0.276 7.659 24.188 20.165 0.351 10.212 23.635 24.920 2.108 0.302 2.315 24.394 0.977 0.334 1.281 24.584 1.546 0.421 20.630 22.393 2.748

17 Doug Baldwin 0.008 1.959 0.600 0.149 0.049 23.870 0.413 26.341 1.131 0.009 5.847 1.002 20.419 0.028 3.035 0.660 1.264 0.012 3.570 1.093 0.980

31 Harry Douglas 0.015 21.061 0.081 0.082 0.075 6.362 0.197 21.633 0.163 0.004 1.134 0.063 20.136 0.008 1.314 0.046 20.270 0.028 2.070 0.129 20.753

25 Jarius Wright 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

10 Jarvis Landry 0.045 8.734 20.530 20.269 0.167 25.848 20.690 0.076 23.470 0.001 2.233 20.250 0.017 0.036 3.871 20.232 21.272 0.134 5.386 0.903 22.400

24 Jeremy Maclin 0.254 210.528 21.789 0.640 0.045 24.383 21.111 22.344 2.625 0.055 4.696 20.844 20.861 0.074 6.682 21.120 21.918 0.006 3.298 20.627 20.175

15 Jordan Matthews 0.047 6.532 20.306 20.181 0.025 3.435 20.889 20.466 0.155 0.028 2.194 20.710 0.211 0.063 1.244 20.471 0.804 0.039 3.576 20.746 20.547

2 Julio Jones 0.063 26.116 0.731 0.356 0.013 5.991 0.380 21.335 0.333 0.225 4.842 0.979 22.044 0.136 5.303 0.558 22.441 0.017 1.842 20.421 0.937

20 Kamar Aiken 0.049 6.196 20.611 20.159 0.025 21.406 20.665 0.783 0.125 0.010 2.566 20.570 0.003 0.010 2.404 20.569 0.099 0.136 4.918 20.731 21.507

1 Larry Fitzgerald 0.107 26.020 21.466 0.420 0.108 217.541 22.128 2.157 1.766 0.089 6.353 21.563 21.707 0.111 6.964 21.741 22.059 0.030 4.538 21.760 20.495

28 Malcom Floyd 0.205 20.457 23.348 0.164 0.180 3.029 23.219 20.633 0.394 0.217 4.267 23.202 20.651 0.189 4.043 23.212 20.512 0.182 3.814 23.072 20.467

32 Marquess Wilson 0.408 8.830 21.564 20.353 0.791 18.126 21.833 3.598 24.766 0.248 20.446 21.989 0.891 0.527 23.129 22.120 2.300 0.274 22.322 0.441 1.990

14 Michael Crabtree 0.013 3.664 20.900 20.010 0.088 2.625 0.162 23.301 2.054 0.070 4.532 20.002 20.829 0.013 3.271 20.939 0.106 0.106 0.051 0.456 2.133

30 Mike Evans 0.045 0.331 21.128 0.072 0.218 25.215 0.127 4.557 21.812 0.040 2.215 21.018 20.165 0.040 2.284 20.988 20.256 0.039 1.767 21.218 0.211

19 Pierre Garcon 0.243 10.048 2.449 20.408 0.436 17.287 2.858 2.221 23.786 0.094 20.380 2.002 0.728 0.154 21.953 2.570 1.680 0.280 5.636 2.175 22.530

6 Randall Cobb 0.252 19.866 20.140 20.783 0.481 17.315 20.154 9.233 27.822 0.176 22.328 1.503 2.168 0.280 24.120 0.322 3.656 0.098 6.364 20.309 22.153

26 Robert Woods 0.102 0.294 1.673 0.020 0.319 16.139 2.180 23.565 20.133 0.111 1.071 1.803 20.274 0.104 0.976 1.703 20.166 0.234 2.783 1.467 21.510

12 Rueben Randle 0.152 12.611 22.986 20.363 0.183 12.996 22.283 0.976 21.908 0.238 2.240 22.902 1.404 0.198 1.859 22.764 1.696 0.216 6.213 21.028 22.115

8 T.Y. Hilton 0.430 210.920 4.030 0.484 0.558 226.882 4.218 1.223 3.292 0.275 0.847 4.342 20.591 0.305 1.815 4.225 21.236 0.442 23.422 3.710 2.403

18 Tavon Austin 0.005 6.337 20.020 20.111 0.295 22.461 24.172 29.110 3.099 0.005 3.296 20.073 0.311 0.004 4.724 20.401 20.340 0.102 21.038 0.794 2.696

21 Ted Ginn 0.062 3.511 22.396 0.096 0.098 26.232 22.596 0.683 1.312 0.063 6.410 22.248 20.524 0.091 7.429 22.389 21.384 0.058 5.851 22.623 0.112

23 Terrance Williams 0.307 21.771 21.937 0.169 0.307 25.768 21.700 0.378 0.918 0.288 3.121 22.099 20.492 0.316 3.561 21.725 20.920 0.262 3.121 22.564 20.412

22 Travis Benjamin 0.309 29.035 1.925 0.477 0.203 22.030 2.775 21.645 1.426 0.501 4.207 2.820 21.876 0.397 5.430 2.018 22.243 0.453 25.569 5.003 3.319

33 Will Tye 0.208 20.462 23.408 20.747 0.059 12.206 20.838 20.466 21.231 0.219 0.187 22.114 1.506 0.114 0.179 21.631 1.512 0.348 8.695 0.621 26.580



Table 12.10 Quarterback Prediction Model: Total Yards Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

13 Aaron Rodgers 0.094 248.078 41.387 20.230 0.148 187.043 37.029 58.092 226.880 0.151 204.596 53.210 16.993 0.139 206.253 43.199 20.080 0.101 257.208 40.272 28.065

11 Alex Smith 0.311 467.067 225.504 29.202 0.439 342.076 212.385 132.165 295.024 0.159 243.414 235.754 14.773 0.327 175.248 232.680 50.670 0.186 208.094 228.592 37.792

21 Andy Dalton 0.118 400.868 259.177 24.882 0.209 579.215 254.464 22.878 256.390 0.104 269.767 248.260 10.591 0.109 258.109 249.215 15.827 0.116 329.929 258.461 225.324

25 Ben Roethlisberger 0.030 289.911 15.483 1.917 0.332 605.004 29.988 2126.854 34.693 0.025 319.159 25.052 2.943 0.028 310.012 29.048 6.653 0.474 126.608 99.813 91.412

12 Blake Bortles 0.039 362.665 225.166 22.290 0.050 217.976 219.553 212.348 20.143 0.084 322.784 221.253 214.069 0.104 336.569 222.945 224.072 0.033 302.282 225.637 4.687

26 Brian Hoyer 0.244 92.794 226.397 6.899 0.115 233.385 219.089 239.022 25.823 0.307 286.200 212.907 230.912 0.361 299.569 218.196 236.522 0.097 275.873 211.749 219.830

15 Cam Newton 0.019 214.148 9.303 2.644 0.369 283.700 255.346 126.918 219.582 0.133 257.767 218.330 34.040 0.078 253.257 0.317 28.828 0.062 246.931 25.055 25.343

17 Carson Palmer 0.136 454.468 9.179 26.585 0.143 535.155 23.877 284.855 16.510 0.032 282.018 12.232 12.689 0.091 261.937 13.512 25.264 0.059 269.468 14.031 20.045

29 Colin Kaepernick 0.217 270.943 8.709 14.075 0.556 21187.670 85.074 2234.390 343.234 0.324 359.554 211.778 256.330 0.189 361.207 28.229 258.553 0.209 65.073 53.620 94.146

5 Derek Carr 0.307 2119.070 93.814 15.560 0.582 2406.196 130.362 2132.445 170.806 0.395 312.993 76.028 247.521 0.346 355.943 82.100 271.689 0.042 217.823 39.399 20.138

18 Drew Brees 0.347 30.381 68.254 10.470 0.330 2172.540 63.171 19.282 54.783 0.228 293.394 67.343 27.599 0.216 279.185 70.415 2.228 0.290 240.349 36.702 35.999

7 Eli Manning 0.121 68.039 69.777 7.641 0.290 2164.721 68.422 220.888 71.487 0.084 254.546 36.124 8.130 0.078 265.936 46.015 24.871 0.205 333.247 60.690 254.547

2 Jameis Winston 0.280 410.967 215.247 25.904 0.247 407.133 28.461 30.298 238.563 0.253 243.653 215.563 19.890 0.364 225.513 220.531 40.944 0.137 293.372 21.216 220.620

19 Jay Cutler 0.295 90.603 241.210 9.140 0.131 130.504 231.406 26.240 5.824 0.336 349.387 225.416 233.507 0.317 368.492 237.234 243.891 0.119 241.612 219.709 22.391

27 Joe Flacco 0.167 107.786 34.385 6.918 0.227 264.810 11.431 94.491 26.457 0.169 313.771 16.013 223.618 0.145 309.932 31.367 225.483 0.455 385.006 34.859 272.029

28 Johnny Manziel 0.107 2147.044 2136.157 18.381 0.286 2486.974 2151.075 281.652 155.821 0.089 259.250 269.065 225.017 0.062 253.910 268.814 221.840 0.357 219.354 31.588 102.964

1 Kirk Cousins 0.573 247.737 29.160 13.221 0.308 2105.618 8.191 48.990 22.957 0.143 281.322 10.280 218.813 0.154 298.267 6.192 229.920 0.108 281.947 36.945 219.802

23 Marcus Mariota 0.378 2173.376 42.720 16.721 0.312 2298.244 67.655 224.586 89.362 0.266 289.355 46.334 243.958 0.425 338.093 39.572 279.245 0.030 273.415 29.441 219.159

32 Matt Cassel 0.702 2321.296 36.558 20.758 0.706 21386.319 145.349 47.847 192.039 0.332 247.048 1.232 243.108 0.393 274.314 11.512 265.362 0.132 118.961 236.933 51.267

30 Matt Hasselbeck 0.740 288.045 0.200 13.558 0.663 159.807 14.648 292.208 61.445 0.633 290.958 21.599 256.818 0.558 303.540 23.082 262.151 0.087 207.716 29.151 6.046

16 Matt Ryan 0.332 59.051 26.463 8.746 0.381 29.084 41.617 236.657 60.689 0.201 301.400 18.281 220.414 0.244 315.740 16.437 234.705 0.070 258.962 20.237 19.459

14 Matthew Stafford 0.300 113.246 44.941 6.251 0.255 62.578 54.448 57.624 29.246 0.413 316.592 61.942 235.757 0.441 339.490 49.819 247.445 0.458 112.201 100.582 67.956

24 Nick Foles 0.498 381.266 49.999 210.240 0.526 631.554 33.395 231.909 247.686 0.164 139.656 37.555 12.917 0.286 114.653 38.573 25.346 0.096 179.424 26.159 23.356

31 Peyton Manning 0.154 289.992 242.281 20.284 0.667 2707.740 229.734 270.081 223.176 0.231 259.419 250.992 16.455 0.160 273.941 244.474 6.242 0.295 336.733 249.515 236.931

4 Philip Rivers 0.198 114.542 221.858 9.378 0.361 2340.342 220.775 39.361 74.347 0.071 350.578 211.254 219.812 0.099 376.467 216.343 231.679 0.085 248.302 2.657 36.574

3 Russell Wilson 0.228 324.038 32.589 22.330 0.338 515.986 25.911 257.546 20.184 0.223 265.493 26.768 5.236 0.246 258.463 27.095 9.484 0.192 272.137 28.893 1.339

6 Ryan Fitzpatrick 0.008 190.692 25.626 3.018 0.100 280.527 215.048 211.908 56.953 0.015 278.967 28.509 214.324 0.014 284.131 26.016 217.839 0.009 241.167 210.728 16.296

10 Ryan Tannehill 0.248 407.727 268.588 25.017 0.322 630.409 270.405 243.436 223.416 0.221 275.014 263.284 11.904 0.212 273.093 263.529 10.819 0.224 309.050 255.221 216.973

20 Sam Bradford 0.274 210.259 19.603 11.067 0.384 2248.944 23.958 88.466 17.368 0.143 232.108 55.106 23.027 0.177 258.230 49.333 218.873 0.289 300.126 62.612 239.875

9 Teddy Bridgewater 0.141 363.242 253.820 25.054 0.148 321.466 258.349 49.423 240.147 0.397 155.829 244.841 46.902 0.241 180.223 259.663 40.895 0.103 251.812 247.806 22.395

8 Tom Brady 0.059 217.528 20.488 4.422 0.018 219.615 4.024 14.643 5.734 0.014 328.008 1.983 26.876 0.004 323.304 4.341 23.702 0.014 300.864 21.953 13.734

22 Tyrod Taylor 0.011 253.452 210.491 0.503 0.557 260.168 28.086 126.927 229.233 0.110 241.285 29.434 17.913 0.085 239.401 26.388 17.383 0.010 263.155 210.181 1.165



Table 12.11 Quarterback Prediction Model: Total Points Per Game
Game Points Model Team Statistics Model Logistic Probability Model Logit Spread Model Logit Points Model

Number Player R2 Const HF OppPAG R2 Const HF OppY/R Opp/Y/PA R2 Const HF
Logistic

Probability R2 Const HF
Logit
Spread R2 Const HF

Logit
Points

13 Aaron Rodgers 0.075 25.017 1.609 20.589 0.317 16.154 1.085 13.554 28.857 0.104 6.651 3.355 2.367 0.170 4.390 2.081 4.158 0.028 14.227 1.533 21.264

11 Alex Smith 0.128 28.235 20.497 0.744 0.002 5.723 0.337 20.540 0.616 0.072 10.834 0.262 21.693 0.208 17.189 20.013 25.048 0.010 9.624 0.195 21.246

21 Andy Dalton 0.306 213.255 20.972 1.206 0.250 225.406 23.198 1.935 4.718 0.330 20.738 23.597 23.632 0.261 22.486 23.405 24.173 0.074 13.234 23.411 1.030

25 Ben Roethlisberger 0.716 210.716 10.194 0.724 0.787 2.759 12.298 27.909 4.913 0.669 6.539 11.934 21.469 0.730 10.649 10.112 23.134 0.772 28.727 17.517 5.369

12 Blake Bortles 0.145 23.697 22.663 0.828 0.146 1.567 21.801 24.435 4.608 0.181 18.431 22.869 22.340 0.224 20.637 23.153 23.930 0.105 19.599 21.968 22.867

26 Brian Hoyer 0.647 212.725 25.955 1.139 0.520 213.064 25.379 24.266 6.400 0.706 18.793 23.802 24.750 0.723 20.299 24.628 25.209 0.138 13.122 24.823 0.060

15 Cam Newton 0.072 5.581 3.993 0.385 0.440 225.307 24.327 15.881 23.138 0.104 13.575 1.590 2.635 0.069 13.602 3.101 1.850 0.045 15.084 3.325 0.251

17 Carson Palmer 0.006 11.008 20.156 0.139 0.202 211.455 21.474 10.296 22.382 0.000 14.322 20.245 20.047 0.017 12.498 20.255 1.123 0.001 14.068 20.248 0.115

29 Colin Kaepernick 0.559 218.562 22.183 1.167 0.680 269.133 1.572 215.575 20.146 0.406 13.617 24.106 22.969 0.256 12.575 24.025 22.525 0.380 23.653 0.055 5.885

5 Derek Carr 0.026 7.415 20.573 0.266 0.205 1.990 2.182 29.571 7.286 0.128 16.668 0.574 22.218 0.064 17.239 0.114 22.379 0.171 5.435 1.505 5.228

18 Drew Brees 0.455 236.560 9.665 1.854 0.418 272.264 9.999 7.397 7.214 0.247 9.537 9.622 21.025 0.235 8.484 9.953 20.383 0.242 9.836 11.474 21.586

7 Eli Manning 0.095 212.424 0.428 1.101 0.124 224.992 21.003 1.779 4.531 0.231 11.145 27.708 5.060 0.082 12.142 25.627 3.551 0.128 22.943 21.578 25.707

2 Jameis Winston 0.128 10.395 24.393 0.102 0.192 15.215 22.491 5.262 23.612 0.129 12.336 24.163 0.416 0.133 11.819 24.264 0.988 0.126 13.310 23.916 20.377

19 Jay Cutler 0.167 10.728 24.150 0.013 0.372 1.155 22.997 8.275 23.797 0.216 13.592 23.730 21.308 0.170 11.884 24.156 20.454 0.209 6.198 22.253 2.598

27 Joe Flacco 0.760 216.085 3.881 1.077 0.583 227.808 3.652 0.996 4.675 0.709 15.369 1.365 23.423 0.574 14.570 3.667 23.575 0.335 9.434 5.770 21.261

28 Johnny Manziel 0.237 214.281 23.714 1.002 0.125 4.971 0.147 23.394 2.002 0.431 9.711 20.814 22.184 0.211 9.143 20.746 21.863 0.842 26.300 5.073 5.140

1 Kirk Cousins 0.299 27.328 6.102 0.646 0.274 27.409 7.380 3.943 20.230 0.247 6.112 8.484 0.469 0.245 6.520 8.215 0.273 0.248 8.682 8.335 20.918

23 Marcus Mariota 0.564 239.194 0.020 2.040 0.438 237.687 4.012 29.134 11.986 0.278 16.414 0.061 24.492 0.425 21.122 20.670 27.864 0.016 10.360 22.197 1.153

32 Matt Cassel 0.753 234.813 9.996 1.476 0.673 293.043 15.370 5.236 10.109 0.283 4.517 6.701 22.260 0.423 7.181 8.001 24.378 0.368 27.738 5.000 6.714

30 Matt Hasselbeck 0.210 20.418 1.849 20.577 0.071 14.091 0.855 1.701 21.956 0.077 5.413 1.430 1.577 0.004 7.370 0.552 0.092 0.090 5.044 20.345 1.848

16 Matt Ryan 0.300 212.865 3.823 0.766 0.277 218.807 4.680 22.096 4.690 0.254 8.634 3.251 22.090 0.384 10.650 3.195 24.134 0.061 5.937 1.955 0.658

14 Matthew Stafford 0.454 216.559 2.377 1.264 0.523 244.849 5.052 11.664 0.750 0.484 21.317 5.272 25.588 0.618 26.154 3.374 28.053 0.140 1.577 6.712 4.423

24 Nick Foles 0.069 7.809 22.814 20.089 0.405 36.006 29.241 214.078 4.730 0.116 2.515 22.051 1.358 0.098 3.084 22.497 1.271 0.088 9.108 24.114 21.575

31 Peyton Manning 0.635 34.807 210.375 21.055 0.422 17.605 27.853 4.701 24.072 0.518 5.152 29.369 3.078 0.485 4.307 29.281 3.569 0.363 6.908 27.199 1.857

4 Philip Rivers 0.717 223.052 24.093 1.665 0.632 235.788 24.249 25.853 10.942 0.673 23.181 22.660 25.742 0.633 27.254 23.652 27.496 0.012 11.029 21.349 0.558

3 Russell Wilson 0.002 10.079 20.224 0.130 0.133 50.068 21.117 214.446 3.371 0.024 14.968 0.433 21.257 0.000 12.613 20.023 0.147 0.013 10.075 0.417 1.734

6 Ryan Fitzpatrick 0.421 20.482 7.817 20.502 0.398 3.154 6.545 21.273 1.553 0.385 7.924 7.193 0.556 0.383 9.147 6.695 20.470 0.382 9.044 7.100 20.365

10 Ryan Tannehill 0.113 16.663 3.387 20.349 0.222 43.823 3.038 23.327 23.137 0.107 9.462 3.741 21.217 0.180 12.762 3.800 23.542 0.243 14.036 5.878 24.429

20 Sam Bradford 0.128 25.754 22.171 0.642 0.332 223.756 22.065 7.015 0.482 0.001 8.233 20.081 20.129 0.000 8.199 20.048 20.119 0.095 11.474 0.265 21.886

9 Teddy Bridgewater 0.203 217.914 4.765 1.011 0.107 29.102 2.183 6.258 21.622 0.053 5.025 3.432 0.060 0.072 7.700 3.901 21.543 0.237 23.755 4.976 5.590

8 Tom Brady 0.034 23.054 0.857 20.309 0.041 24.419 0.260 22.938 0.550 0.076 13.863 1.094 1.546 0.043 13.942 0.622 1.586 0.004 15.366 0.264 0.494

22 Tyrod Taylor 0.207 31.815 3.734 20.949 0.154 40.477 3.701 1.098 25.139 0.066 8.373 2.965 1.454 0.088 7.150 3.366 2.141 0.356 21.622 3.742 27.761



for different points-scoring systems. Additionally, these techniques can be

used to compute the probability that a player will score at least a specified

number of points or score points within a specified interval using regres-

sion results and our probability models.

It is important to point out here that the selection of the best fantasy

sports team will be different based on the scoring system selected by the

fantasy sports league or commissioner. However, the approaches provided

in this chapter provide the necessary insight and foundation to build suc-

cessful fantasy sports models.
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CHAPTER 13

Advanced Modeling Techniques

13.1 INTRODUCTION

In this chapter we show how to apply advanced mathematical techniques

to sports modeling problems. The techniques discussed in this chapter

include principal component analysis (PCA), neural networks (NNETs),

and adaptive regression analysis.

In particular, these techniques can be used by sports professionals to:

1. Compute the most appropriate set of explanatory factors for a pre-

diction model, including regression models and probability models;

2. Determine the most optimal mix of players for a game or team, e.g.,

based on player rankings and/or based on the opponent’s roster;

3. Adapt model parameter values in real time based on a changing

mix of players available for a game—e.g., revise the model para-

meters based on whether a player will or will not be available for

a game (due to an injury or coming off an injury).

Content in this chapter provides all sports professionals and analysts,

including owners, coaches, general managers, and the amateur and professional

fantasy sports competitor, with tools to fine tune their predictive models based

on real-time information, player availability, and opponent rosters, as well as to

determine the optimal complementary relationships across team members.

These techniques can further be used as the basis for:

• Salary Arbitration

• National Team Selection

• Hall of Fame Evaluation

• Team Trades

13.2 PRINCIPAL COMPONENT ANALYSIS

This section provides an application of PCA to sports modeling data.

Readers interested in a more mathematical discussion of PCA are

referred to articles on PCA, eigenvalue�eigenvector decomposition,

and/or singular value decomposition.
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PCA is a statistical process that is used to reduce the number of data

variables from a correlated set explanatory factors into a smaller subset of

data variables that are uncorrelated and independent. The set of uncorre-

lated principal components are determined in a way such that the first

principal component factor explains the greatest variability of the corre-

lated data, the second principal component factor explains the second

greatest amount of variability of the correlated data, and so on, with the

last principal factor explaining the least amount of variability of the corre-

lated data. The number of principal components will always be less than

or equal to the number of original factors (variables).

PCA is an important statistical tools used in data analysis and in mathe-

matical models. It has recently become a staple for financial modeling and

algorithmic trading, and is just starting to make its way into professional

sports modeling problems and sports statistics. Although many of the pro-

fessional sports teams using PCA techniques claim they are not appropriate

for sports and that other teams should not waste time or resources experi-

menting with these approaches, these claims are enough to justify their

usage; otherwise, why would a team try to help a competitor.

The mathematics behind PCA is based on either eigenvalue�eigenvec-

tor decomposition (if the data set is a square matrix) or based on singular

value decomposition of any data matrix (e.g., singular value decomposition

can be applied to a square and rectangular matrix). Knowledge of factor

analysis and matrix theory is also beneficial for PCA.

The goal of PCA is to reduce the underlying correlated data set into a

smaller set of uncorrelated factors. In sports modeling problems, many

times the explanatory factors are correlated, and if used in a regression

analysis, will lead to erroneous conclusions and incorrect predictions.

Recall from Chapter 2, Regression Models, that one of the underlying

requirements for a proper analysis is to have an uncorrelated (e.g., inde-

pendent) explanatory factor.

Example 13.1 PCA With Baseball
Baseball is a sport with an almost unlimited amount of data, and the number of data
points seems to be increasing each season. And in many cases, these data points are
highly correlated with each other. For example, for offensive hitting statistics we have:
(1) batting average (AVG), (2) on-base percentage (OBP), (3) slugging percentage (SLG),
and (4) a statistic that is the sum of on-base percentage plus slugging percentage appro-
priately titled on-base percentage plus slugging percentage (OPS), etc. But are all of
these statistics necessary? What incremental value can each of these statistics provide
considering that they are highly correlated?
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Table 13.1A Baseball Statistics

Team Record Hitting Statistics PCA Factors

Team Win Loss WinPct AVG OBP SLG OPS S1� S2 S3� S4

Arizona Diamondbacks 79 83 .488 0.264 .324 0.414 0.738 0.021 0.007 0.003 0.000

Atlanta Braves 67 95 .414 0.251 .314 0.359 0.674 2 0.064 0.016 2 0.004 2 0.001

Baltimore Orioles 81 81 .500 0.250 .307 0.421 0.728 0.012 2 0.016 0.004 0.000

Boston Red Sox 78 84 .481 0.265 .325 0.415 0.740 0.024 0.008 0.003 0.000

Chicago Cubs 97 65 .599 0.244 .321 0.398 0.719 2 0.006 0.000 2 0.012 0.000

Chicago White Sox 76 86 .469 0.250 .306 0.380 0.686 2 0.044 0.000 0.003 0.000

Cincinnati Reds 64 98 .395 0.248 .312 0.394 0.706 2 0.020 2 0.003 2 0.002 0.000

Cleveland Indians 81 80 .503 0.256 .325 0.401 0.725 0.003 0.008 2 0.005 0.001

Colorado Rockies 68 94 .420 0.265 .315 0.432 0.748 0.038 2 0.007 0.011 2 0.001

Detroit Tigers 74 87 .460 0.270 .328 0.420 0.748 0.034 0.011 0.005 0.000

Houston Astros 86 76 .531 0.250 .315 0.437 0.752 0.041 2 0.018 2 0.001 0.000

Kansas City Royals 95 67 .586 0.269 .322 0.412 0.734 0.018 0.009 0.008 0.000

Los Angeles Angels 85 77 .525 0.246 .307 0.396 0.702 2 0.023 2 0.008 0.000 0.001

Los Angeles Dodgers 92 70 .568 0.250 .326 0.413 0.739 0.020 0.001 2 0.010 0.000

Miami Marlins 71 91 .438 0.260 .310 0.384 0.694 2 0.034 0.007 0.008 0.000

Milwaukee Brewers 68 94 .420 0.251 .307 0.393 0.700 2 0.026 2 0.004 0.003 0.000

Minnesota Twins 83 79 .512 0.247 .305 0.399 0.704 2 0.020 2 0.010 0.002 0.000

New York Mets 90 72 .556 0.244 .312 0.400 0.712 2 0.012 2 0.007 2 0.005 0.000

New York Yankees 87 75 .537 0.251 .323 0.421 0.744 0.028 2 0.004 2 0.006 0.000

Oakland Athletics 68 94 .420 0.251 .312 0.395 0.707 2 0.018 2 0.001 0.000 0.000

Philadelphia Phillies 63 99 .389 0.249 .303 0.382 0.684 2 0.046 2 0.003 0.004 0.001

Pittsburgh Pirates 98 64 .605 0.260 .323 0.396 0.719 2 0.004 0.011 0.000 0.000

San Diego Padres 74 88 .457 0.243 .300 0.385 0.685 2 0.045 2 0.010 0.002 0.000

San Francisco Giants 84 78 .519 0.267 .326 0.406 0.732 0.013 0.013 0.004 0.000

Seattle Mariners 76 86 .469 0.249 .311 0.411 0.722 0.002 2 0.010 0.000 0.000

St. Louis Cardinals 100 62 .617 0.253 .321 0.394 0.716 2 0.009 0.007 2 0.005 2 0.001

Tampa Bay Rays 80 82 .494 0.252 .314 0.406 0.720 2 0.001 2 0.004 0.000 0.000

Texas Rangers 88 74 .543 0.257 .325 0.413 0.739 0.021 0.004 2 0.004 2 0.001

Toronto Blue Jays 93 69 .574 0.269 .340 0.457 0.797 0.096 0.003 2 0.002 0.000

Washington Nationals 83 79 .512 0.251 .321 0.403 0.724 0.002 0.002 2 0.006 0.000

The “�” in S1� and S3� indicate that the statistical factors S1 and S3 are statistically significant predictors of team winning percentage. The statistical factors S2 and S4 were not found to be statistically significant predictors of team winning

percentage.



To determine which of these “statistics” are the most important to assess a player’s
offensive ability and to be used as a predictor of team’s winning success, we turn to PCA
for insight.

Table 13.1A shows these four statistics for each team for the 2015 season. The corre-
lation of these statistics is quite high and is shown in Table 13.1B.

To determine a subset of data that is uncorrelated we turn to PCA. We can perform
PCA analysis using a statistical package such as MATLAB’s PCA function as follows:

½Coef f ; Score; Latent; Tsquared; Explained;Mu�5 pcaðXÞ
where

X5 original correlated data matrix
Coeff5 principal component weightings matrix
Score5 principal component factors
Latent5 principal component variances
Tsquared5Hotelling’s T-squared statistic for each observation in X
Explained5 percentage of total variance explained
Mu5mean of each original factor in the X data matrix

After performing our PCA analysis on data set X we have an uncorrelated Score
matrix consisting of four PCA factors S5 ½S1; S2; S3; S4� one for each of the columns of X.

The correlation matrix of Score is shown in Table 13.1C and as expected is the iden-
tity matrix representing an independent and uncorrelated data set. The four PCA factors
from our analysis are shown in Table 13.1A. The matrix showing the correlation between
PCA factors (Score) and the X data matrix is shown in Table 13.1D.

The percentage of total variance of data set X explained by the principal factors is
shown in Table 13.1D. In this example, the first principal component explains 91.2%
of the variance in X, and the second principal component factor explains 6.4% of the
variance in X. Thus, combined, we have two factors that explain 97.6% of the variance
in X (Table 13.1E).

Table 13.1B Correlation of Baseball Statistics

AVG OBP SLG OPS

AVG 1.00 0.67 0.47 0.60

OBP 0.67 1.00 0.58 0.80

SLG 0.47 0.58 1.00 0.96

OPS 0.60 0.80 0.96 1.00

Table 13.1C Correlation of Baseball Principal Components

S1 S2 S3 S4

S1 1 0 0 0

S2 0 1 0 0

S3 0 0 1 0

S4 0 0 0 1

320 Optimal Sports Math, Statistics, and Fantasy



The original data matrix X can be computed in terms of the PCA statistics as follows:

X 5 Score � Coeff 0 1 repmatðMu;N; 1Þ
where

N5 number of data observations
Repmat(Mu,N,1)5matrix where each column is the corresponding column mean of
X. This notation simply entails adding the average of each column to each data point.

The next question that naturally arises is what do these principal factors mean? And
can they be used to predict the winning team.

To answer these questions, we run a regression of team winning percentage “Y” as a
function of the four principal component factors “S.” This regression is as follows:

WinPct5α0 1α1S1 1α2S2 1α3S3 1α4S4 1 ε

The results of this regression are shown in Table 13.1F and the percentage of WinPct
explained by each statistical factor is shown in Table 13.1G.

Table 13.1F Winning Percentage as a Function of PCA Factor Regression

Factor Value SE t-Stat

Const 0.5000 0.0096 51.8742

S1 0.8513 0.3013 2.8256

S2 0.8924 1.1331 0.7875

S3 2 5.8059 1.8787 2 3.0904

S4 2 2.3920 35.5034 2 0.0674

R2 0.4208

MSE 0.0028

F-Stat 4.5398

The bolded values in Table 13.1F indicate that the factor is statistically significant.

Table 13.1D Correlation of PCA Factors and X Data

S/X AVG OBP SLP OPS

S1 0.60 0.76 0.97 1.00

S2 0.61 0.58 2 0.24 0.03

S3 0.51 2 0.28 0.07 2 0.04

S4 0.00 0.02 0.01 2 0.01

Table 13.1E PCA Variance Explained

PCA Pct Cumulative

S1 91.2% 91.2%

S2 6.4% 97.6%

S3 2.3% 100.0%

S4 0.0% 100.0%
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Notice that this regression has goodness of fit of R25 42.8%, which is quite high for
sports models. Furthermore, we see that only principal component factors S1 and S3 are
significant explanatory factors of team winning percentage. Factors S2 and S4 have insig-
nificant t-Stats. This tells us that we only need two of the four PCA factors to model
team winning percentage. Furthermore, the percentage of total R2 explained by factors
S1 and S3 are 0.1850 and 0.2213 respectively. Factors S2 and S4 explain an insignificant
amount of total R2 of 0.0144 and 0.0001 respectively.

The next step in our analysis is to infer a meaning of these PCA statistical factors via
a regression of the PCA factor on the underlying data set X. Since we have two signifi-
cant PCA factors, we need to run two regression models of the form:

S5 b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 ε

The results of these regressions provide us with the significant baseball hitting statis-
tics. Having a relationship between the statistical factors and the real data set allows us
to calculate the value of the statistical factors directly. These are:

S1 52 0:89921 0:1508 � AVG1 0:2151 � OBP1 0:5653 � SLG1 0:7820 � OPS1 ε

R2 5 0:9999

S3 52 0:00331 0:8020 � AVG2 0:4864 � OBP1 0:2702 � SLG2 0:2165 � OPS1 ε

R2 5 0:9999

In both cases, as expected, we have a very high goodness of fit between the PCA
factor and the original data variables. In fact, using all four PCA factors would result in a
goodness of fit of R25 1. The significant factors S1 and S3 are highlighted with an aster-
isk in Table 13.1A. Readers can use this data table to verify our results.

In many cases, practitioners give these PCA factors a qualitative name based on their
data composition. We leave these naming conventions to our readers.

13.3 NEURAL NETWORK

NNET, also known as an artificial neural network, is a process which consists

of mapping an input vector to a set of nodes and then to an output value.

At each node, a weighting is applied to the data point similar to how we

Table 13.1G Variance Explained by Each PCA Factor

Factor R2

S1 0.1850

S2 0.0144

S3 0.2213

S4 0.0001

Total 0.4208
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apply the parameter value in our logit regression model. These new data

values are then mapped to another set of nodes and the process is repeated

until we arrive at the last node of the network and the output value.

NNETs have been used in industry as the basis for handwriting recog-

nition and data mining. In the case of handwriting recognition, the input

and output data values consist of binary data points, i.e., 0 or 1. NNETs

also serve as the computational engine behind machine-learning algo-

rithms and data reduction problems. The NNET determines the optimal

set of weightings to apply at each node based on a method known as

“learning” or “training.”

In this section we show how NNETs can be applied to sports model-

ing problems to determine the optimal mix of players for a team and

appropriate player rankings. These modeling techniques can also be

expanded to calculate the expected winner of a game as well as the home

team point spread. Readers interested in learning more about NNET

models are encouraged to perform additional research regarding the dif-

ferent learning approaches and different applications of these networks.

In our sports modeling approach, we follow the techniques developed

in handwriting recognition using binary data. Two different sports

modeling NNET architectures for player rankings are shown in Fig. 13.1

(two-sided multilayer neural network) and Fig. 13.2 (one-sided multilayer

neural network).

The two-sided multilayer neural network consists of an input vector

that includes a variable for each player for the home team and another

variable for each player for the away team. That is, the length of the input

Home Team Input Vector Visiting Team Input Vector

Input Layer

Hidden Layer #2

Output Layer

Hidden Layer #1

Two-Sided Multilayer Neural Network

Figure 13.1 Two-Sided Multilayer Neural Network.
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vector is 23 the number of players. If the player is on the home team

the value of the input variable is 11 and if they are not on the team the

value of their input variable is 0 (similarly for the away team). For the

one-sided multilayer neural network, the input vector consists of a vari-

able for each player. The value of this input variable is 11 if the player is

on the home team, 21 if the player is on the away team, and 0 if the

player is not on any of the teams. Thus, the weightings at each input vari-

able node represent the player’s strength or rating.

Example 13.2 NNET Player Selection
In this example, we show how a NNET model can be used to assist teams and coaches
in evaluating and ranking players. This provides coaches with an alternative means for
player evaluation.

The data used for this analysis is based on a soccer tryout where players were evalu-
ated in part on how well they performed in small-sided 6-versus-6 games. The data set
included 30 players and 66 games in total. Ultimately, players were assigned to one of
two teams. The more highly ranked players were assigned to the A team and the next
level of ranked players were assigned to the B team.

While this example examines a soccer player’s performance and rankings, the NNET
techniques can be applied to almost any team sport including basketball, hockey, cricket,
rugby, etc.

The NNET model used in this example is based on the one-sided multilayer network
shown in Fig. 13.2. Our input vector consisted of 30 variables (one variable per player).
Players on a team were arbitrarily assigned as either the home team or the away team.
The output score was always taken from the perspective of the home team. The six
players assigned to the home team had an input value of 11. The six players assigned
to the away team had an input value of 21. Players who were not a part of the game
had an input value of 0. The output value was defined as the home team spread, i.e., the

Multiteam Input Vector

Input Layer

Hidden Layer #2

Hidden Layer #1

Output Layer

One-Sided Multilayer Neural Network

Figure 13.2 One-Sided Multilayer Neural Network.
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home team score minus the away team score. If the home team won by a score of 3�1
then the output value was 12. If the home team lost by a score of 4�1 the output
value was 23. If the game ended in a tie the output value was 0.

For example, if players 1�6 were assigned to the home team and players 7�12
were assigned to the away team, the input vector for this game would be 11 for the
first six values, 21 for the next six values, and 0 for the remaining 18 values. If the home
team won the game 2�0, the output value corresponding to this vector would be 12.

It is important to note that there are many different ways of specifying the network
structure, including number of hidden layers and number of nodes at each layer, and
also using different values for the input and output values. For example, based on the
data, it may be appropriate to scale or transform the input and output values. The more
common transformation techniques include transforming the value into a z-score and
scaling the value based on the range of the data points. Additionally, for some sports,
the output value could also be defined as home team time of possession, etc.

We determined player strength ratings, i.e., rankings, via our NNET model. These
results were then compared to the coaches’ selection of players using in-sample data.
Our data observations were not large enough to perform a full in-sample and out-
sample analysis of the results, but the approach described can be applied to a larger
data sample with improved accuracy.

For each of the 66 small-sided games, we estimated the winning team based on our
ranking of the players. We also estimated the winning team based on the coach’s selec-
tion of players. If in a game, the home team had more A-Team players than the away
team, then the coaches model would predict the home team to win. If the away team
had more A-Team players than the home team did, then the coaches model would pre-
dict the away team to win. If the home and away team had the same number of A
players, then the coaches model would predict a tie. In actuality, the coaches model
could further fine tune these predictions based on the coaches ranking of each individ-
ual player. However, our data set only included the end result where the players was
either assigned to the A team or the B team.

In the case of a predicted tie, we eliminated that data point from our comparison
since there was no way to determine which team the coaches model would predict to
win. There were 12 games with the same number of A players on each team so these
games were not included in our comparison analysis.

Overall, the coaches’ selection technique won 31 games and lost 23 for a winning
percentage of 57%. For the same set of games, the NNET model won 39 games and lost
15 for a winning percentage of 72%—much higher than the coaches model. Using all
the games, the NNET won 47 games and lost 19 for a winning percentage of 71% (thus
showing consistency). These results are shown in Fig. 13.3.

Overall, the NNET model had rankings that resulted in a different team placement
for 10 players compared to the coaches model. The difference in player rankings results
in the coaches having a much lower winning percentage than our NNET model.

The results and conclusion of this analysis confirm the belief of several sports profes-
sionals—namely, that it is extremely difficult to evaluate player performance for players
who play more of a supporting and complementary role and perform extremely highly
in this role. For example, in soccer, basketball, or hockey, a player may provide the team
with great benefit by shutting down the opponent’s top player or the player may
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contribute to offense by creating space for their own team’s top players to excel. These
types of performances do not have any corresponding statistics or metrics, and unless a
coach fully observes the player they may not be ranked as highly as their true contribu-
tion deserves. This player, however, will surely be highlighted in our NNET approach.

Additionally, there is pretty much a general consensus in the sports industry that we
can most certainly reach an agreement for the top 25% of players and for the bottom
25% of players simply by observing game and/or practice performance. However, con-
sensus is rarely found when trying to rank the middle 50% of players into either the sec-
ond 25% grouping or the third 25% grouping. This is mainly due to not having any
appropriate performance statistics that can accurately evaluate the player with respect to
team performance. This is where our NNET model will excel.

Finally, while this approach is relatively new to the sports industry, it has proven suc-
cessful for player rankings and player selections for teams. This technique can be
extremely helpful for a national sport system in selecting players for different levels and/
or for inclusions or exclusions from a national team. It also provides coaches and national
team selection committees with an alternative, unbiased, and completely objective view
of player performance and ability, which can complement the current selection process
as well as highlight players who may be deserving of further and detailed evaluation.

Model

Neural Network – All

Neural Network

Coaches Selection

Games

66

54

54

Wins

47

39
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15
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57%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Neural Network – All Neural Network Coaches Selection

Player Selection – Game Win Percentage 

Comparison of NNET Model Performance Compared to Coaches' Selection

Figure 13.3 Comparison of NNET Model Performance Compared to Coaches’ Selection.
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13.4 ADAPTIVE REGRESSION ANALYSIS

In our sports modeling problems adaptive regression analysis provides a

means to revise or update a statistical parameter value (such as the logistic

rating parameter) based on a player being added or removed from the

team roster for the game. For example, suppose the team’s top scorer will

not be available for an upcoming game, but the statistical logistic rating

parameter was computed based on this player playing in the past. If the

player is not going to be available for a game (due to injury or suspen-

sion), how can we revise the statistical parameter value to account for

the missing player? Similarly, how should the statistical parameter value be

revised if a top player will be playing in a game but was not in any of the

previous games where the statistical parameter value derived? This would

occur if the player is coming off an injury or suspension.

The answer to this question is relatively straightforward, provided

that we have team data statistics that have been found to be predictive of

team performance. In this case, we can run a regression of the statistical

parameter as a function of the predictive team data. Once a relationship

is found between the statistical parameter and predictive team data, the

statistical parameter value can be revised based on how the team data is

expected to change based on the availability or unavailability of a player.

However, the effect that the player will have on overall team data and

performance is still subjective to some extent, but it will still be able to

improve the results.

For example, a regression model of a statistical parameter as a function

of team data is as follows:

λ5 b0 1 b1 � x11?1 bk � xk1 ε

where

λ5 statistical parameter value

xk5 team data predictive factor

bk5 sensitivity to team data metric k

Example 13.3 Adaptive Regression Analysis
Let us revisit our NFL modeling results using the logistic ratings parameters and team
data statistics (Table 13.2A). If for an upcoming game, we find that a team will be missing
a top scorer, we can revise the logistic rating parameter based on its relationship with
the team data statistics.

We show results using both team points data and team performance data.
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The regression using team points data is:

λ5 b0 1 b1 � PSPG1 b2 � PAPG1 ε
where

λ5 logistic rating parameter
PSPG5 team’s points scored per game
PAPG5 team’s points allowed per game
bi 0s5 regression parameters

Table 13.2A Adaptive Regression Model

Team PSPG PAPG OFF Y/R OFF Y/PA DET Y/R DET Y/PA

Logistic

Rating

Arizona Cardinals 29.4 21.2 4.142 8.075 4.044 6.640 3.368

Atlanta Falcons 21.2 21.6 3.815 7.056 4.038 6.920 1.160

Baltimore Ravens 20.5 25.1 3.859 6.318 3.974 6.857 0.735

Buffalo Bills 23.7 22.4 4.778 7.189 4.391 6.598 1.258

Carolina Panthers 36.9 19.4 4.273 7.336 3.912 5.898 3.937

Chicago Bears 20.9 24.8 3.962 7.004 4.467 7.004 1.468

Cincinnati Bengals 27.2 17.5 3.862 7.573 4.408 6.182 2.777

Cleveland Browns 17.4 27.0 4.024 6.210 4.487 7.851 0.059

Dallas Cowboys 17.2 23.4 4.627 6.563 4.198 7.186 0.226

Denver Broncos 26.4 17.9 4.016 6.460 3.363 5.809 3.447

Detroit Lions 22.4 25.0 3.771 6.665 4.224 7.176 1.734

Green Bay Packers 26.4 20.4 4.339 6.086 4.440 6.771 2.672

Houston Texans 21.2 20.2 3.712 6.078 4.089 6.184 1.424

Indianapolis Colts 20.8 25.5 3.631 5.984 4.319 7.032 1.239

Jacksonville Jaguars 23.5 28.0 4.161 6.768 3.683 7.128 0.172

Kansas City Chiefs 28.9 17.1 4.565 6.978 4.136 5.904 2.674

Miami Dolphins 19.4 24.3 4.349 6.481 4.014 7.380 0.521

Minnesota Vikings 23.4 18.4 4.511 6.431 4.203 6.651 2.654

New England Patriots 31.4 20.1 3.664 6.997 3.889 6.463 2.518

New Orleans Saints 25.4 29.8 3.756 7.451 4.908 8.353 0.955

New York Giants 26.3 27.6 3.993 6.978 4.374 7.497 0.704

New York Jets 24.2 19.6 4.170 6.717 3.579 6.261 1.585

Oakland Raiders 22.4 24.9 3.938 6.401 4.133 6.459 1.520

Philadelphia Eagles 23.6 26.9 3.935 6.560 4.504 6.750 1.002

Pittsburgh Steelers 28.6 19.9 4.532 7.816 3.779 6.805 2.539

San Diego Chargers 20.0 24.9 3.455 6.883 4.808 7.424 0.523

San Francisco 49ers 14.9 24.2 3.959 6.304 4.008 7.612 1.060

Seattle Seahawks 28.6 17.6 4.524 7.634 3.486 6.180 2.711

St. Louis Rams 17.5 20.6 4.559 5.930 4.018 6.809 1.631

Tampa Bay Buccaneers 21.4 26.1 4.756 7.200 3.446 7.098 0.605

Tennessee Titans 18.7 26.4 4.003 6.358 3.890 7.312 2 0.448

Washington Redskins 25.4 24.4 3.691 7.361 4.801 7.206 1.360
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Results from the regression are shown in Table 13.2B. Notice the very high goodness
of fit with R2 5 0:826. The high R2 implies that the predictive points factors are also pre-
dictive explanatory factors for the logistic ratings parameter. The logistic ratings parame-
ter can then be updated based on the expected effect on scoring of the missing players.
For example, if the missing player is expected to result in the team’s points scored per
game decreasing by 13 points and the team’s points allowed per game increasing by
13 points (since the team will be on offense for less time), the logistic rating parameter
can be updated using the sensitivities determined from the regression and the revised
predictive input data.

The regression using team performance data is:

λ5 b0 1 b1 � Off Y=R1 b2 � Off Y=PA1 b3 � Def Y=R1 b4 � Def Y=PA1 ε

where

λ5 logistic rating parameter
OffY=R5 team’s yards per rush
OffY=PA5 team’s yards per pass attempt
DefY=R5 team’s defense yards allowed per rush
DefY=PA5 team’s defense yards per pass attempt
bi 0s5 regression parameters

Results from the regression are shown in Table 13.2C. Notice again the very high
goodness of fit with R2 5 0:634. The high R2 once again shows that the set of predictive
factors also serves as explanatory factors for the logistic ratings parameter. The logistic

Table 13.2B Logistic Rating as Functon of Team Points Data

Category PAPG PSPG Const

Est 2 0.170 0.118 2.654

Se 0.027 0.020 0.951

t-Stat 2 6.258 5.802 2.791

R2/SE 0.826 0.469

F/df 68.986 29.000

SSE 30.320 6.373

Table 13.2C Logistic Rating as Function of Team Performance Statistics

Category DET Y/PA DET Y/R OFF Y/PA OFF Y/R Const

Est 2 1.417 0.404 0.583 2 0.018 5.707

Se 0.251 0.407 0.231 0.393 3.130

t-Stat 2 5.652 0.994 2.521 2 0.045 1.824

R2/SE 0.634 0.706

F/df 11.677 27.000

SSE 23.252 13.441
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ratings parameter can then be updated based on the expected effect on scoring of the
missing players. For example, if the missing player is expected to result in the team’s
yards per run decreasing by 0.5 and the team’s yards per passing attempt decreasing by
3.5 yards, the logistic rating parameter can be updated using the sensitivities determined
from the regression and the revised predictive input data. If the missing player is a
defensive player we could make similar adjustments to the defensive team performance
statistics.

13.5 CONCLUSION

In this chapter, we introduced three advanced modeling techniques that

can be used to help improve sports models. These techniques consisted of

PCA, NNETs, and adaptive regression analysis. PCA provides analysts

with statistical tools to reduce the underlying data set, which can often be

cumbersome, correlated, and filled with data variables that do not lend

insight into the problem at hand. Using PCA and principal factors, how-

ever, analysts can reduce the original data set into a smaller subset of vari-

ables that are uncorrelated and predictive, and can provide insight into

the problem that is difficult to ascertain from the original data set.

NNETs provide analysts with a modeling technique that mimics the way

the human brain solves problems. In addition to providing a different

solution technique, NNETs have been found to, at times, provide better

evaluation of player performance and ability than via observation of game

performance. These techniques are especially useful to assess and rank

players in the middle group of ability, where the current performance

metrics may not be consistent with the players’ true contributions to

overall team performance. Adaptive regression analysis provides analysts

with means to revise and update statistical parameter values such as the

logistic rating parameter based on changing player performance. This is

helpful in situations where a player will be in a game but was not in the

previous games during which the statistical parameter was calculated, and

in situations where a player will not be in a game but did participate in

the games where the statistical parameter was calculated. These techniques

have been found to improve the models presented in the preceding

chapters.
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