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Supervisor’s Foreword

Wikipedia tells us “In physics, a partition function describes the statistical
properties of a system in thermodynamic equilibrium. Partition functions are
functions of the thermodynamic state variables, such as the temperature and vol-
ume. Most of the aggregate thermodynamic variables of the system, such as the
total energy, free energy, entropy, and pressure, can be expressed in terms of the
partition function or its derivatives” [1]. Knowledge of the partition function, thus,
gives us access to complete finite temperature phase diagram of any material.
However, no one has previously been able to compute the absolute partition
function as an explicit function of its parameters for any atomistic system, using
realistic models of the interatomic interactions and, indeed, it has generally been
believed that such a computation is intractable. The methods developed in this
thesis allow the partition function to be computed for realistic atomistic models of
materials and thus, for the first time, allow the complete phase diagram of any
material to be determined. Although the work presented in the thesis uses empirical
interatomic potentials, the methods are efficient enough that it will be possible to
use quantum mechanical models in a few years’ time either directly or, more likely,
indirectly through the use of machine learning approaches such as the Gaussian
approximation potentials [2].

The starting point for the work presented in the thesis is nested sampling, a novel
inference algorithm developed by Prof. John Skilling [3], [4]. The work presented
in this thesis introduces two significant advances that together allow the partition
function of realistic materials to be calculated. The first advance is the use of
molecular dynamics to explore the configuration space in place of the more con-
ventionally applied random walks. The use of molecular dynamics significantly
speeds up the exploration but, unfortunately, it biases the sampling of the partition
function. However, the required corrections to remove this bias have been deter-
mined and implemented allowing the potential performance advantage of molecular
dynamics to be realised. The second advance is to develop a constant pressure
method for sampling configurations that is far more efficient than sampling at
constant volume. Of course, the partition function has to be sampled over all
volumes and pressures and so the two approaches are ultimately equivalent but the
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performance advantage is crucial. Together, these advances allow finite temperature
phase diagrams to be computed for any atomistic model and a number of proof of
concept applications are presented in this thesis. It should also be emphasised that
the methodology runs without user intervention and thus can be implemented in
“high-throughput” approaches.

Many of us are aware of the increasing demands for materials’ modellers to have
greater impact on real-world problems. This clearly requires many advances in our
field, but one crucial requirement is the ability to predict phase diagrams of
materials at finite temperature. Hence, the work described in this thesis represents a
significant step forward in our ability to confront these real-world challenges.

Cambridge, UK Prof. Mike Payne
May 2016
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Chapter 1
Introduction

1.1 The Goal: Classical Statistical Mechanics
as a Black Box Tool

Classical statisticalmechanics tells us the phase of amaterial for any particular values
of the thermodynamic parameters.1 We might find that, at these parameter values,
the system is either a gas, a liquid, or a solid. If we find the system to be a solid,
classical statistical mechanics will also tell us what kind of solid phase it forms: it
could be a disordered solid, a crystal, or something between the two. In particular,
both theorists and materials scientists are interested in locating phase transitions: the
thermodynamic parameter values at which the material changes from one phase to
another. There are therefore two primary tasks that “users” of classical statistical
mechanics are interested in accomplishing:

1. Determining the stable phase at thermodynamic parameter values of interest.
2. Locating phase transitions between regions of stability.

Both of these tasks amount to pen-and-paper mathematical calculations, which are
typically intractable for realistic models of atomic interactions. The promise of sta-
tistical mechanics’ predictive power, and the infeasibility of performing the math-
ematics in closed form, have led scientists around the world to develop computer
algorithms for accomplishing the two tasks listed above. At their core, such algo-
rithms must combine efficient exploration of phase space with fast and accurate cal-
culations of the interatomic potential energy function. This thesis is concerned with
the former of these two challenges: phase space exploration. Phase space explo-
ration began between the 1950s and 1960s with the Monte Carlo [1] and mole-
cular dynamics [2–4] algorithms: two algorithms which remain cornerstones of

1Typical thermodynamic parameters for materials include temperature, pressure, and chemical
potential. Alternatively, we can replace any of these parameters with volume (pressure), entropy
(temperature), and the number of particles (chemical potential), to match the experimental situation.

© Springer International Publishing AG 2017
R.J.N. Baldock, Classical Statistical Mechanics with Nested Sampling,
Springer Theses, https://doi.org/10.1007/978-3-319-66769-0_1
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2 1 Introduction

Table 1.1 A short illustrative list of algorithms used for identifying stable phases, or calculating
phase transitions

Informed-search algorithms Blind-search algorithms

Gibbs ensemble Monte Carlo Wang-Landau sampling

Thermodynamic integration Nested sampling

Self-consistent phonon methods Parallel tempering

Umbrella sampling

computational science to this day. Readers new to the field of computational sta-
tistical mechanics are referred to two textbooks on the subject: [5, 6].

The state of the art algorithms that exist today fall into two broad categories:
“Informed-search” algorithms, and “blind-search” algorithms. The former can be
specialised for comparing the stability of phases of a particular type (crystal struc-
tures, for example) or for locating a particular type of phase transition. Such algo-
rithms typically require a great deal of prior knowledge about the system: a short
list of possible solid structures, for example, or that the transition occurs across a
known range of values for some order parameter. The second group of algorithms
explore all possible phases of the system in an unbiasedway, and require no specialist
system knowledge. The advantage of the “informed-search” algorithms is that, by
exploiting a large degree of prior knowledge, they are able to perform the tasks 1 and
2, in a tiny fraction of the computer time required by the “blind-search” algorithms.
The disadvantage of the “informed-search” algorithms is that, to calculate an entire
phase diagram, showing all phases and their phase transitions, we would need to
enlist a zoo of different algorithms, each requiring specific expertise and different
pieces of system knowledge. The advantages of the blind algorithms are that they
can reveal phases and collective phenomena that we had not considered, and that
they are capable of calculating entire phase diagrams in a single framework, generi-
cally applicable to any material. A short list of algorithms of both kinds is given in
Table1.1.

This thesis is concerned with the development of a promising “blind-search”
algorithm called nested sampling [7, 8]. Nested sampling takes as input the inter-
atomic potential, and gives as output the integrated density of states for a material.
From the integrated density of states we can write down the partition function as
an explicit function of temperature. Nested sampling also returns a series of atomic
configurations, from which one may compute ensemble averages of observables and
free energy landscapes. By yielding the partition function together with these atomic
configurations, nested sampling enables us to perform statistical mechanics “from
first principles”. The aim of this thesis is to make nested sampling fast enough that
it might practically be used to calculate entire phase diagrams, and indeed the com-
plete statistical description of a material. Achieving this goal would turn classical
statistical mechanics into a black box tool that almost anyone could use. This should
have a profound effect on the way statistical mechanics is used, both in science and
in industry.



1.2 Nested Sampling in Bayesian Statistics and in Statistical Mechanics 3

1.2 Nested Sampling in Bayesian Statistics
and in Statistical Mechanics

Take a quick glance at the current literature for nested sampling and one will find
articles on cosmology, high energy physics, acoustics, and image reconstruction, as
well as a few articles on classical statistical mechanics. Nested sampling is a method
for calculating the Bayesian “evidence”, which takes the same role in Bayesian
statistics, as the partition function in statistical mechanics: it is the normalising factor
for probability distributions. In classical statistical mechanics, nested sampling is
used to calculate the partition function.

The evidence is the denominator in Bayes’ theorem, Eq. (2.18) on Page 15. Bayes’
theorem is

prob (θ|D) = prob (D|θ) × prob (θ)

prob (D)

where D can represent some data that we have obtained, and θ can represent para-
meters of some model for the data. For example, D could represent measurements of
the temperature on London Bridge, at noon on the 3rd of May, every year for the last
twenty years. Wemight be confident that this data should be described by a Gaussian
distribution, but unsure of the appropriate parameters θ = (μ,σ), where μ repre-
sents the mean, and σ the standard deviation. In this case, prob (θ) is the extent to
which we believe each value of the parameters to begin with, and we call prob (θ) the
“prior”. The “likelihood”, prob (D|θ) is the probability of the data for these particular
parameter values: prob (D|θ) = (

2πσ2
)−10 ∏20

i=1 exp
(
− [Di−μ]2

2σ2

)
. Finally, the “evi-

dence”, prob (D) = ∫
dθprob (D|θ) prob (θ) is the normalising factor. Once we’ve

calculated each of these quantities, we obtain a new, “posterior” probability distrib-
ution over the parameters, prob (θ|D). This represents the (updated) confidence we
should have in the parameter values, given the data. In this way, Bayesian statistics
allow us to compare models or theories to experimental data, using Bayes’ theorem.
In particular, calculating the different evidences for several models, for example this
Gaussian model and also a Cauchy distribution, allows one to compare the models.
In the broadest sense, this is the way in which nested sampling is used in other parts
of the literature.

We can consider statistical mechanics in the language of Bayesian statistics if we
associate the “data” D with inverse temperature β, and then make associations for
the parameters θ, such as those shown in Table1.2.

If we associate θ → (q,p), then Bayes’ theorem reads

prob ((q,p) |β) = 1

N !h3N
e−βH(q,p)

Z (β)
(1.1)

Here we have identified the following:

http://dx.doi.org/10.1007/978-3-319-66769-0_2
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Table 1.2 Association of Bayesian statistics and statistical mechanics. Here we show two possible
associations for the parameters, θ. Other equivalent associations exist, such as D → β, and θ → E
(energy)

Bayesian statistics Classical statistical mechanics

Data D → β Inverse temperature

1. Parameters θ → (q,p) Position in phase-space

2. Parameters θ → � (E) Number of states with energy E or less

prob (β| (q,p)) → e−βH(q,p) (1.2)

prob (q,p) → 1

N !h3N (1.3)

prob (D) → Z (β) = 1

N !h3N
∫∫

dq dpe−βH(q,p). (1.4)

Equation (1.2) is just the Boltzmann distribution, Eq. (1.3) corresponds to the princi-
ple of equal a priory probability (see Sect. 4.1.2), and Eq. (1.4) identifies the Bayesian
evidence, prob (D), with the partition function. In fact, nested sampling can be most
clearly understood bymaking the second (equivalent) association shown in Table1.2.
This association also identifies the Bayesian evidence with the partition function.
Since we shall return to the nested sampling algorithm at length, we consider it
sufficient only to highlight that association here.

1.3 Outline of the Thesis

Part I is a summary of statistical and thermal physics.
Part II introduces the nested sampling algorithm. We compare the approach of

nested sampling to that of parallel tempering. We then explore how the
method works, before developing a Markov chain Monte Carlo implemen-
tation of the algorithm for materials simulated at constant pressure. We
demonstrate that this method is orders of magnitude more efficient than par-
allel tempering. The method is then applied to simple Lennard-Jonesium, a
binary Lennard-Jonesium “alloy”, and in Appendix 8.10, to an embedded
atommodel potential for aluminium.We calculate the pressure-temperature
phase diagrams for these systems, and in each, nested sampling reveals phe-
nomenawe had not anticipated. InChap. 9we showhow the results of nested
sampling can be post-processed to calculate (P, V, T ) equations of state.
This method is applied to Lennard-Jonesium as an example. Finally, we
compare two methods of parallelising the algorithm.

Part III explores methods of performing nested sampling using HamiltonianMonte
Carlo. In particular, we develop a method of performing nested sampling in

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_9
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the total Hamiltonian. We compare the performance of this new method
to our Markov chain Monte Carlo algorithm, and find that the Hamil-
tonian Monte Carlo algorithm decorrelates approximately 64 times more
efficiently with 64 atoms in the simulation cell.

1.4 A History of Nested Sampling

The nested sampling algorithm was originally proposed by John Skilling [7, 8],
who did his Ph.D. in astrophysics at the Department of Physics at the University
of Cambridge, and later worked on Bayesian data processing at the Department of
Applied Mathematics and Theoretical Physics, also at the University of Cambridge.
The first Ph.D. work on nested sampling was performed by Iain Murray [9] who was
supervised by David MacKay. Their work was fundamental, and considered Markov
chain Monte Carlo inference methods in the broadest sense. Since then, and around
that time, other people have also worked on the nested sampling method for general
Bayesian computation, applying it to other fields. Of particular significance is the
work of Farhan Feroz, Mike Hobson and others from the Astrophysics Group in
the Department of Physics, at the University of Cambridge. They have developed
several nested sampling algorithms, and in particular “MultiNest” [10], which is
extremely effective for performing nested sampling on multimodal distributions, in
relatively low numbers of dimensions (fewer than fifty). MultiNest has already found
widespread utility in astrophysics, cosmology and high-energy physics.

Also in Cambridge, Gábor Csányi, a long-term friend of John Skilling, had the
idea to explore the use of nested sampling for classical statistical mechanics. The
first Ph.D. work done on using nested sampling for classical statistical mechanics
was performed by Lívia Bartók-Pártay, who collaborated with Albert Pártay-Bartók,
under the supervision of Gábor Csányi. Their paper on Lennard-Jones clusters [11]
created something of a stir in the classical statistical mechanics community, and
subsequently several papers inspired by their work have been published. In particular,
work has been done on Lennard-Jones clusters [12, 13] and proteins [14]. Lívia,
Albert and Gábor also applied nested sampling to the hard-sphere model [15] and
in 2011, Brendon Brewer, Lívia and Gábor developed the general “diffusive nested
sampling” algorithm [16] (sometimes also referred to as the “energy partitioning
method”). The diffusive nested sampling algorithm has also found use in condensed
matter, where Hainam Do and Richard Wheatley have [17] applied it to calculate
the free energies of solid phases using a cage model [17] and separately to simulate
evaporation [18].
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Chapter 2
A Primer in Probability

This section provides a summary of probability theory, as necessary to understand
this thesis. We consider both discrete and continuous random variables.

� A discrete random variable S takes on one of a set of possible values AS =
{a1, a2, . . . , aI } with probabilities PS = {p1, p2, . . . , pI } such that
prob (S = ai ) = pi , pi ≥ 0 and

∑
ai∈AS

prob (S = ai ) = 1. The probability that
S is found in W , a subset of AS is

prob (S ∈ W ) =
∑

ai∈W
prob (S = ai ) (2.1)

For a continuous random variable X , we only assign probabilities to ranges of
values for X . The probability that a ≤ X ≤ b is

prob (a ≤ X ≤ b) =
∫ b

a
� (x) dx . (2.2)

Here � (x) is termed the probability density function (pdf). The pdf is a non-
negative, integrable function of x . The differential relation (2.3) is also true pro-
vided that the pdf is continuous at x .

d

dx
prob (X ≤ x) = � (x) (2.3)

As in the discrete case, the total probability is one.

∫ ∞

−∞
� (x) dx = 1 (2.4)

� We have the pdf for a random variable X . We desire the pdf for another variable Y
which is a single valued function of X : Y = f (X). This transformation is called
a “change of variables”.

© Springer International Publishing AG 2017
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� (Y = y) = � (X = x) ×
∣
∣
∣
∣
dx

dy

∣
∣
∣
∣ (2.5)

= � (X = x) ÷
∣
∣
∣
∣
d f

dx

∣
∣
∣
∣ (2.6)

� Consider ordered pairs (S = ai , T = bi ): realisations of the discrete random
variables S ∈ AS = {a1, a2, . . . , aI } and T ∈ AT = {b1, b2, . . . , bI }. We call
the probability distribution over these pairs the joint probability of S and T ,
prob (S, T ).
In a similar manner for two continuous random variables X and Y we define the
joint probability distribution via a “multivariate” pdf

prob (a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

x=a

∫ d

y=c
� (X = x,Y = y) dxdy. (2.7)

� Two random variables (S and T ) or (X and Y ) are independent if and only if

prob (S, T ) = prob (S) prob (T ) (2.8)

� (X = x,Y = y) = � (X = x) � (Y = y) (2.9)

� We can recover the probability distribution for S alone prob (S = ai ) = pi from
the joint distribution prob (S, T ) by summing over all values of T : a process called
marginalisation.

prob (S = ai ) =
∑

b j∈AT

prob
(
S = ai , T = b j

)
(2.10)

Likewise, in the continuous case, we can recover the pdf for either variable by
integrating the multivariate pdf.

� (X = x) =
∫ ∞

−∞
� (X = x,Y = y) dy (2.11)

� The conditional probability prob
(
S = ai |T = b j

)
represents “the probability that

S = ai given T = b j”. It is given by

prob
(
S = ai |T = b j

) ≡ prob
(
S = ai , T = b j

)

prob
(
T = b j

) if prob
(
T = b j

) �= 0. (2.12)

(If prob
(
T = b j

) = 0 then prob
(
S = ai |T = b j

)
is undefined.)

If U is the range [a, b] and V the range [c, d]

prob (X ∈ U |Y ∈ V ) ≡ prob (X ∈ U,Y ∈ V )

prob (Y ∈ V )
if prob (Y ∈ V ) �= 0. (2.13)
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(Again, if prob (Y ∈ V ) = 0 then prob (X ∈ U |Y ∈ V ) is undefined.)
� From the definition of conditional probability we have the “product rule” (also

called the “chain rule”).

prob
(
S = ai , T = b j

) = prob
(
S = ai |T = b j

) × prob
(
T = b j

)

= prob
(
T = b j |S = ai

) × prob (S = ai )
(2.14)

� (X = x,Y = y) = � (X = x |Y = y) × � (Y = y)
= � (Y = y|X = x) × � (X = x)

(2.15)

� The sum rule is obtained by rewriting marginalisation using the product rule.

prob (S = ai ) = ∑

b j∈AT

prob
(
S = ai , T = b j

)

= ∑

b j∈AT

prob
(
S = ai |T = b j

) × prob
(
T = b j

) (2.16)

� (X = x) = ∫ ∞
−∞ � (X = x,Y = y) dy

= ∫ ∞
−∞ � (X = x |Y = y) × � (Y = y) dy

(2.17)

� We obtain Bayes’ theorem by rearranging the product rule.

prob (S|T ) = prob (T |S) × prob (S)

prob (T )
(2.18)

prob (S|T ) = prob (T |S) × prob (S)
∑

S prob (T |S) × prob (S)
(2.19)

prob (X ∈ U |Y ∈ V ) = prob (Y ∈ V |X ∈ U ) × prob (X ∈ U )

prob (Y ∈ V )
(2.20)

prob (X ∈ U |Y ∈ V ) = prob (Y ∈ V |X ∈ U ) × prob (X ∈ U )
∫
y∈V

∫ ∞
x=−∞ � (Y = y|X = x) × � (X = x) dxdy

(2.21)



Part I
Statistical and Thermal Physics



Chapter 3
Introduction

3.1 Phase Space

Consider N particles with coordinates q = {q1,q2, . . . ,qN } and momenta p =
{p1,p2, . . . ,pN }. The space spanned by the points (q,p) is called the phase space
of the system. It has 6N dimensions, and each point (q,p) completely describes the
state of those N particles. For this reason (q,p) is called a representative point. In
addition to phase space, we also define configuration space as the 3N dimensional
space spanned by the points q.

3.2 Classical and Statistical Mechanics

The theory of classical mechanics describes the time evolution of representative
points, and their paths are called trajectories. Given initial coordinates (q0,p0), clas-
sicalmechanics tells us the coordinates at any arbitrary time later. By contrast, statisti-
cal mechanics presents the probability density function in phase space, given limited
information about the system’s external conditions. For example, we might know
that the system is in contact with a much larger system, which holds the temperature
and pressure of our system constant, or that it is in complete isolation and therefore
has constant energy. Gibbs introduced the idea of a statistical ensemble: infinitely
many imagined copies of our system distributed through phase space according to
the probability density function. Each of these copies evolves according to classical
mechanics and therefore the time invariant probability density function of statistical
mechanics is just a stationary distribution of that same dynamics. This creates an
important link between the theories of classical and statistical mechanics.

© Springer International Publishing AG 2017
R.J.N. Baldock, Classical Statistical Mechanics with Nested Sampling,
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3.3 Hamilton’s Equations of Motion

In classical mechanics, representative points move through phase space according
to Hamilton’s equations of motion. The central object in Hamilton’s equations of
motion is the HamiltonianH (q,p). The Hamiltonian is the sum of the potential and
kinetic energies, U (q) and K (p)

H (q,p) = K (p) +U (q) . (3.1)

Both the potential andkinetic energies are bounded frombelow.Thekinetic energy
has the form

K (p) =
∑

i

p2i
2mi

(3.2)

and is thus an even function
K (p) = K (−p) . (3.3)

The same may be said for the potential energy of closed systems.
Hamilton’s equations of motion are

∂q
∂t

= ∂H
∂p

,
∂p
∂t

= −∂H
∂q

(3.4)

We return to Hamilton’s equations of motion in Part III, where their properties are
discussed in some detail.

3.4 Statistical Equilibrium

At an initial time t0 we know the coordinates of a system to be (q0,p0)with some error
(�q,�p). A short time later �t , we still have an idea of the system’s coordinates,
but with a larger uncertainty. A longer time later, after what’s called the equilibration
time, the probability density function (pdf) for the coordinates of our system is
independent of the starting conditions. Once the pdf has relaxed to this state the
system is said to be in statistical equilibrium. The subject of statistical mechanics
is this pdf, which is by definition independent of the initial conditions, and depends
instead on the external conditions of the system. For example, our system may be in
complete isolation from all other systems, or alternatively it might be connected to
a much larger system with which it can exchange energy.
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3.5 Correlation Lengths and Statistically Independent
Subsystems

Imagine a large volume of fluid. We divide the fluid in half, keeping the intensive
variables, temperature, pressure and chemical potential, the same as before. In this
case each half will have the same macroscopic properties as the original fluid. We
repeat this operation a number of times. The fluid is made up of atoms and molecules
so after many iterations something different must happen. The characteristic length
scale at which the overall properties of the pieces begin to differ substantially from
the original fluid is called the correlation length, ξ . This is the typical length scale
over which movements of the atoms and molecules in the fluid are correlated.

Atoms separated by distances greater than the correlation length are effectively
independent andwemay therefore consider our original fluid to have beenmade up of
many statistically independent subsystems of length scale greater than ξ . Statistical
independence for two subsystems means that the pdf for the combined system �1,2

may be written as a product of the pdfs for the two subsystems �1 and �2.

�1,2 = �1�2 (3.5)

3.6 Fluctuations

Consider some observable f that depends on the system coordinates (q,p). The
mean value of the observable is given by

f =
∫

f (q,p) � (q,p) dNq dNp. (3.6)

If we measure f we may not observe f exactly, but some value close to it. Let us
represent the difference between the two as � f . The difference � f is traditionally
called the “fluctuation” in this context.

� f = f − f (3.7)

By definition, the mean value of the fluctuation is zero: � f = 0. The mean square
fluctuation (the variance), and the root mean square fluctuation (the standard devia-
tion) are given by

Var ( f ) = 〈(� f )2〉 = f 2 − (
f
)2

(3.8)

s = 〈(� f )2〉 1
2 =

[
f 2 − (

f
)2] 1

2
(3.9)
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The ratio s
f

= 〈(� f )2〉 1
2

f
is a measure of our uncertainty in f and is called “the

relative fluctuation in f ”.
We shall now show that the relative fluctuations in extensive physical quantities

decrease rapidly as the size of a system (the number of particles that make it up)
increases. For extensive quantities we have f = ∑

fi . Therefore, if our total system
is made up of N statistically independent subsystems, the average value f for the
total system may generally be written as

f =
N∑

i=1

fi . (3.10)

The size of f is therefore approximately proportional to N .
Now consider the variance of f . In general

〈(� f )2〉 =
〈(∑

i

� fi

)2〉
. (3.11)

Since the subsystems are statistically independent, mean values of products such as
� fi� f j vanish1

� fi� f j = � fi � f j = 0 : i �= j. (3.12)

This simplifies the total variance (3.11) to a sum of N independent terms

〈(� f )2〉 =
N∑

i=1

〈(� fi )
2〉. (3.13)

The variance 〈(� f )2〉 is therefore also approximately proportional to N .
Hence we can say of the relative fluctuation that

〈(� f )2〉 1
2

f
∝ 1√

N
. (3.14)

1Here is a brief derivation of Eq. (3.12).

� fi� f j = (
fi − fi

) (
f j − f j

)

= fi f j − fi f j − f j fi + fi f j

⇒ � fi� f j = fi f j − fi f j

Since fi and f j are independent
fi f j = fi f j .

Therefore we have
� fi� f j = 0 : i �= j.
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This is true for any extensive physical property. Since the number of independent
subsystems is itself proportional to the number of atoms in the system, we could
equally well replace N in (3.14) with the number of particles in our system.

In the limit of very large N , the relative fluctuation becomes negligible and the
mean value is asymptotically equal to the value of maximum probability. This limit
of large N is called the thermodynamic limit.

Statistical mechanics was developed to describe very large systems and tradition-
ally makes predictions about the most probable value of a physical observable. If the
ideas of statistical mechanics are to be applied to smaller systems, where probability
distributions are broader and possibly even multimodal, then a single value may not
characterise the pdf sufficiently well. In this case it is important to know the complete
pdf for an observable.



Chapter 4
Phase Space Probability Distributions
for Various External Conditions

4.1 Isolated Systems: Fixed N , E and V

This section describes the pdf in phase space � (q,p) for a system with fixed total
energy E and a fixed number of particles N which are constrained inside a volume
V . The statistical ensemble corresponding to these conditions is named the micro-
canonical ensemble.

Beyond restricting q to a region D (V ) and (q,p) to a surface of constant E , the
information we have tells us nothing about (q,p). Therefore the only pdf that we can
reasonably assign is a uniform distribution on that surface. This is a subjective prob-
ability argument, traditionally approached from the “principle of equal equilibrium
probability” which is discussed at the end of this Sect. 4.1.

� (q,p|E) = 1

N !h3N
δ (E − H (q,p))

� (N , E, V )
(4.1)

�(N , E, V ) = 1

N !h3N
∫

dNp
∫
D(V )

dNq δ (E − H (q,p)) (4.2)

The normalising constant �(N , E, V ) is the number of microstates with energy E ,
also called the density of states. The factor 1

N !h3N can be separated into two factors.
The first, 1

N ! accounts for the overcounting of configurations when the particles
are indistinguishable. Although our notation distinguishes between particles i and j ,
naturemaynot. For the second,we consider that our system is a quantumsystem in the
quasi-classical limit. In this case h3N is the “volume” of phase space corresponding
to a single quantum state for N particles. Thus 1

h3N relates the continuous phase space
volume element �q�p to the corresponding number of quantum states �q�p

h3N . This
is how the density of states �(N , E, V ) can be understood as the number of states
with energy E .

© Springer International Publishing AG 2017
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In addition to the density of states �, we also define the integrated density of
states

�(N , E, V ) =
∫ E

−∞
�

(
N , E ′, V

)
dE ′. (4.3)

This is the number of states with energy less than or equal to E , and is therefore
a monotonic increasing function of E . I will often write �(E) and �(E) as a
shorthand for �(N , E, V ) and �(N , E, V ). For real and simulated systems, which
always have finite size, �(E) is a continuous function:

�(E) = d�

dE
. (4.4)

4.1.1 Distributions for U, K

We now introduce separate densities of states for the potential and kinetic energies
g (N ,U, V ) and h (N , K ).

g
(
N ,U ′, V

) = 1

N !h3N
∫

dNq δ
(
U

[
q
] −U ′) (4.5)

h
(
N , K ′) =

∫
dNp δ

(
K

[
p
] − K ′) (4.6)

= π
3N
2

�
(
3N
2

) (2m)
3N
2 K ′ 3N2 −1 (4.7)

The form of (4.7) applies to the standard quadratic form of the potential energy
(3.2) assuming equal masses.1 Shorthand notations for g (N ,U, V ) and h (N , K )

are g (U ) and h (K ).

1Derivation:
|p| ≡ p (4.8)

prob (p) = 2π
3N
2

�
( 3N

2

) p3N−1 (4.9)

prob (K ) = prob (p) ×
∣∣∣∣ dpdK

∣∣∣∣ (4.10)

K = 1

2m

3N∑
i=1

p2i = p2

2m
(4.11)

dK

dp
= p

m
(4.12)

prob (K ) = π
3N
2

�
( 3N

2

)2mp3N−2 (4.13)

http://dx.doi.org/10.1007/978-3-319-66769-0_3
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The multivariate pdf for the potential and kinetic energies is

� (U, K |E) = 1

�(E)
g (U ) f (K ) δ (E −U − K ) (4.16)

Substituting (4.7) into the joint distribution (4.16) we obtain

� (U, K |E) = π
3N
2

�
(
3N
2

) (2m)
3N
2

1

�(E)
g (U ) K

3N
2 −1δ (E −U − K ) . (4.17)

The pdf for U is obtained by marginalisation of (4.17)

� (U |E) = π
3N
2

�
(
3N
2

) (2m)
3N
2

1

�(E)
g (U )

∫ ∞

0
K

3N
2 −1δ (E −U − K ) dK

= π
3N
2

�
(
3N
2

) (2m)
3N
2

1

�(E)
g (U ) (E −U )

3N
2 −1 (4.18)

or more simply
� (U |E) ∝ g (U ) (E −U )

3N
2 −1 . (4.19)

In addition to the density of states forU (4.5) we introduce the integrated density
of states for U

χ (N ,U, V ) =
∫ U

−∞
g

(
N ,U ′, V

)
dU ′. (4.20)

In the same way as�(E) for the total energy, χ
(
N ,U ′, V

)
represents the number of

states withU (q) ≤ U ′, and is a monotonic increasing function ofU ′. As for �(E),
χ (U ) is used as shorthand for χ (N ,U, V ). Furthermore, just as in (4.4),

g (U ) = dχ

dU
. (4.21)

Performing a change of variables from U to χ (U ) we obtain

� (χ (U ) |E) ∝ g (U ) (E −U (χ))
3N
2 −1 ÷ g (U ) (4.22)

∝ (E −U (χ))
3N
2 −1 . (4.23)

(Footnote 1 continued)

= π
3N
2

�
( 3N

2

)2m (2mK )
3N
2 −1 (4.14)

= π
3N
2

�
( 3N

2

) (2m)
3N
2 K

3N
2 −1 (4.15)

.
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4.1.2 Principle of Equal Equilibrium Probability

In addition to energy conservation, a system may have conserved values for momen-
tum (P) and angular momentum (J). The principle of equal equilibrium probability
states that a very large number of repeat measurements of (q,p) will result in a uni-
form density of observations across the surface E = E0, P = P0, J = J0. In practice,
this locus may consist of two or more disconnected surfaces, with no mechanism
for an isolated system to move between them. Therefore the principle of equal equi-
librium probability does not hold in all circumstances. Nevertheless it is used as an
axiom of traditional statistical mechanics.

4.2 Systems That Exchange Energy with the Universe:
Fixed N , T , and V

Anumber of particles N are restricted to a volume V , as in an isolated system. Unlike
the system in themicrocanonical ensemble, these particles are in contact with amuch
larger system, such that energy may pass between the two. The term often applied
for the larger system here is “a heat bath” or “the universe”. We call the statistical
ensemble corresponding to these conditions the “canonical ensemble”.

Together the universe and our system form a combined system. This combined
system has fixed total energy E and is described by the microcanonical ensemble.
The small system has an energy ε and the universe has energy E − ε. The density of
states for the combined system is

�1,2 (E, ε) = �1 (ε)�2 (E − ε) . (4.24)

Here system 1 refers to the small system and system 2 refers to the universe. This
density of states �1,2 is a very large number, so we consider the logarithm

log�1,2 (E, ε) = log�1 (ε) + log�2 (E − ε) . (4.25)

As the combined system is in the microcanonical ensemble, we assume that all states
with total energy E are equally probable. This most probable division of energy
(ε, E − ε) is the one that corresponds to the largest number of microstates in the
combined system. We find this by setting d log�1,2

dε = 0.

d log�1,2

dε
= d log�1(ε)

dε + d log�2(E−ε)
dε (4.26)

= d log�1

dε − d log�2

dε (4.27)

d log�1,2

dε
= 0 (4.28)
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⇒ d log�1

dE ′

∣∣∣∣
E ′=ε

= d log�2

dE ′

∣∣∣∣
E ′=E−ε

(4.29)

Another way of writing this for more than two systems is

d log�1

dE1
= d log�2

dE2
= d log�3

dE3
= . . .

E = E1 + E2 + E3 + . . .

(4.30)

where Ei and log�i are the energy and log density of states of system i .
The differential d log�

dE is the rate at which the (log) number of states at energy
E changes with respect to E . The most probable division of energy balances the
gain in the number of states accessible to one system with the loss in the number of
accessible states in the other. Any deviation from this point would reduce the number
of accessible states overall. We will return to d log�

dE shortly.
We have derived themost probable energy of our small system, butwhat is the pdf?

To derive this we first consider that our system is much smaller than the universe.
Therefore we could assume that the narrow neighbourhood of energies close to ε
contains only one quantum energy state. Conversely, quantum states in the universe
aremuch closer together in energy, and the region close to E − ε contains, effectively,
an almost continuous spectrum of energy states. In this approximation the combined
density of states (4.24) is

�1,2 (E, ε) = �1 (ε) �2 (E − ε) (4.31)

� 1 × �2 (E − ε) (4.32)

� elog�2(E−ε) (4.33)

Since our system is so small compared to the universe ε
E � 0. The log density of

states log�2 (E − ε) therefore changes slowly on the scale of ε, and wemay sensibly
make a Taylor expansion about ε = 0 to first order in ε.

e{log�2(E−ε)} � exp

{
log�2 (E) − ε

d log�2

dE ′

∣∣∣∣
E ′=E

+ O
(
ε2

) + . . .

}
(4.34)

Making a further Taylor expansion of d log�2

dE ′

∣∣∣∣
E ′=E

around E ′ = E − ε we obtain

�1,2 (E, ε) � exp

{
log�2 (E) − ε d log�2

dE ′

∣∣∣∣
E ′=E−ε

+ O
(
ε2

) + . . .

}
(4.35)

⇒ �1,2 (E, ε) ∝ exp

{
−ε d log�1

dE ′

∣∣∣∣
E ′=ε

}
(4.36)



24 4 Phase Space Probability Distributions for Various External Conditions

In (4.36) we have substituted from (4.29). Equation (4.36) is written entirely in terms
of quantities that relate only to our system. We have therefore arrived at the pdf for
our system. Since d log�i

dEi
is both the quantity common to all equilibrium systems able

to exchange energy and also appears in the pdf for our system we give it a special
symbol, β or 1

kBT
d log�

dE
≡ β ≡ 1

kBT
. (4.37)

This is the statistical definition of temperature T .β is called the “inverse temperature”
and kB is “Boltzmann’s constant” which converts between units of temperature and
energy. In light of this definition, Eq. (4.30) indicates that when two or more systems
are able to exchange energy, once equilibrium is achieved their temperatures are the
same.

Writing the pdf for the canonical ensemble in full we have

� (q,p) = 1

N !h3N
e−βH(q,p)

Z (N ,β, V )
(4.38)

Z (N ,β, V ) = 1

N !h3N
∫

dNp
∫
D(V )

dNq e−βH(q,p). (4.39)

The function Z (N ,β, V ) is called the “partition function”. Just like �(N , E, V ) in
the microcanonical ensemble, Z (N ,β, V ) is a measure of the number of accessible
microstates. Assuming equal masses and substituting for the kinetic energy (3.2) we
obtain

Z (N , β, V ) = 1

N !h3N
∫

dp1 . . . dpN exp

⎛
⎝−β

∑
i

p2i
2m

⎞
⎠

∫
D(V )

dNq exp
[−βU (q)

]

(4.40)

Z (N ,β, V ) = 1

N !h3N
(
2πm

β

) 3N
2

∫
D(V )

dNq exp
[−βU (q)

]
(4.41)

The marginal pdf for the coordinates q alone is obtained by integrating out the
momentum coordinates in (4.38) and is given by

� (q) = 1

N !h3N
(
2πm

β

) 3N
2 e−βU (q)

Z (N ,β, V )
(4.42)

The pdf for U is given by

� (U ) = 1

N !h3N
(
2πm

β

) 3N
2 g (U ) e−βU

Z (N ,β, V )
. (4.43)

The partition function can therefore be written as

http://dx.doi.org/10.1007/978-3-319-66769-0_3
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Z (N ,β, V ) = 1

N !h3N
(
2πm

β

) 3N
2

∫ ∞

−∞
dUg (U ) e−βU . (4.44)

As in the microcanonical ensemble we now obtain the pdf for χ by a change of
variables. Starting from (4.43) and recalling (4.21) we have

� (χ) = 1

N !h3N
(
2πm

β

) 3N
2 e−βU (χ)

Z (N ,β, V )
(4.45)

Z (N ,β, V ) = 1

N !h3N
(
2πm

β

) 3N
2

∫ ∞

0
dχe−βU (χ) (4.46)

The simple form of the partition function given by (4.46) forms the basis of much of
this thesis.

4.3 Systems That Exchange Both Energy and Volume
with the Universe: Fixed N , T , and P

We will first establish that the most probable combined state of two systems that can
exchange energy and volume is that their pressures and temperatures are equal. The
arguments we will see here are a straightforward generalisation of those presented
in Sect. 4.2.

Consider once again that our system is in contact with a much larger system,
the universe. The two systems are able to exchange energy and volume with one
another, but the combined system is in the microcanonical ensemble. Therefore the
total energy E and volume V are both fixed. Our system (labelled 1) has energy and
volume (ε, ν) while the universe (labelled 2) has (E − ε, V − ν). The number of
microstates of the combined system is �1,2 (E, ε, V, ν), and its logarithm is

log�1,2 (E, ε, V, ν) = log�1 (ε, ν) + log�2 (E − ε, V − ν) . (4.47)

The total derivative of (4.47) is

d log�1,2 = ∂ log�1,2

∂ε
dε + ∂ log�1,2

∂ν
dν (4.48)

For log�1,2 to be a maximum both ∂ log�1,2

∂ε
and ∂ log�1,2

∂ν
must vanish separately. Thus

we obtain

∂ log�1

∂E ′
∣∣
E ′=ε

= ∂ log�2

∂E ′
∣∣
E ′=E−ε

(4.49)
∂ log�1

∂V ′
∣∣
V ′=ν

= ∂ log�2

∂V ′
∣∣
V ′=V−ν

(4.50)
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Equation (4.49) tells us that, as in the canonical ensemble, the most probable
division of energies is when the temperatures of the two systems are equal: T1 = T2.

The second equation (4.50) identifies a new quantity that is equal in the system
and the universe. We define this to be βP:

∂ log�

∂V
≡ βP. (4.51)

This is the statistical definition of pressure P . Two systems that can exchange energy
and volume have the same values for temperature and pressure in equilibrium.

The derivation of the combined density of states follows the same lines of rea-
soning as in the canonical ensemble. Therefore we simply state the result here.

�1,2 (E, ε, V, ν) ∝ exp

{
−ε ∂ log�1

∂E ′

∣∣∣∣
E ′=ε

− ν ∂ log�1

∂V ′
∣∣
V ′=ν

+ O
(
ε2

) + O
(
ν2

)}

(4.52)

� exp {−β (ε + Pν)} (4.53)

This leads to the pdf and partition function

� (q,p, V ) = 1

N !h3NV0

e−β(H(q,p)+PV )

� (N ,β, P)
(4.54)

�(N ,β, P) = 1

N !h3NV0

∫ ∞

0
dV

∫
D(V )

dNq dNp e−β[H(q,p)+PV ]

= 1

V0

∫ ∞

0
dV Z (N ,β, V ) e−βPV . (4.55)

The constant V0 has dimensions of volume, and is included to correct the dimen-
sions. It does not feature in the predictions of statistical mechanics. Performing the
momentum integration for the case of equal masses and a quadratic kinetic energy
(3.2) we obtain the marginal pdf for (q, V ) and a new expression for the partition
function

� (q, V ) = 1

N !h3NV0

(
2πm

β

) 3N
2 e−β(U (q)+PV )

� (N ,β, P)
(4.56)

�(N ,β, P) = 1

N !h3NV0

(
2πm

β

) 3N
2

∫ ∞

0
dV

∫
D(V )

dNq e−β[U (q)+PV ] (4.57)

http://dx.doi.org/10.1007/978-3-319-66769-0_3
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4.3.1 Microscopic Enthalpy

We introduce the microscopic enthalpy, in order to define a density of states and
integrated density of states for systems that can exchange energy and volume with
the universe. The aim is then to write the pdfs (4.54), (4.56) and partition func-
tions (4.55), (4.57) in terms of the density of states and integrated density of states.

We define the microscopic enthalpy (a microscopic potential) as

H (q,p, P, V ) ≡ E (q,p) + PV . (4.58)

It is now simple to rewrite the pdf (4.54) and the partition function (4.55) for a system
at fixed N , P, T as

� (q,p, V ) = 1

N !h3NV0

e−βH(q,p,P,V )

� (N ,β, P)
(4.59)

�(N ,β, P) = 1

N !h3NV0

∫ ∞

0
dV

∫
D(V )

dNq dNp e−βH(q,p,P,V ) (4.60)

Next we introduce the density of states for enthalpy H ′ at fixed N , P

�
(
N , H ′, P

) = 1

N !h3NV0

∫ ∞

0
dV

∫
dNp

∫
D(V )

dNq δ
(
H ′ − H

[
q,p, P, V

])
.

(4.61)
Again, we define the integrated density of states, �(N , H, P)

� (N , H, P) =
∫ H

−∞
�

(
N , H ′, P

)
dH ′. (4.62)

We also define the configurational enthalpy

Y (q, V, P) = U (q) + PV . (4.63)

From Y we define the configurational density of states g (N ,Y, P) and configura-
tional integrated density of states χ (N ,Y, P) thus:

g (N ,Y, P) = 1

N !h3NV0

∫ ∞

0
dV

∫
D(V )

dNq δ (Y −U (q) − PV ) (4.64)

χ (N ,Y, P) =
∫ Y

−∞
g

(
N ,Y ′, P

)
dY ′ (4.65)
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For convenience, wewill oftenwrite�(H),�(H) and g (Y ),χ (Y ), without explicit
mention of N and P .

As in the microcanonical ensemble, we have the differential relations (4.66)
and (4.67)

�(H) = d�

dH
(4.66)

g (Y ) = dχ

dY
. (4.67)

We obtain the marginal pdfs for H and Y from (4.54) and (4.56)

� (H |N , P,β) = 1

N !h3NV0

�(H) e−βH

�(N ,β, P)
(4.68)

� (Y |N , P,β) = 1

N !h3NV0

(
2πm

β

) 3N
2 g (Y ) e−βY

�(N ,β, P)
. (4.69)

We may also rewrite the partition function as

�(N , P,β) = 1
N !h3N V0

∫ ∞
−∞ dH �(H) e−βH (4.70)

= 1
N !h3N V0

(
2πm

β

) 3N
2 ∫ ∞

−∞ dY g (Y ) e−βY (4.71)

Making changes of variables to � and χ we have the pdfs for � and χ and
alternative expressions for the partition function

� (�|N , P,β) = 1

N !h3NV0

e−βH(�)

� (N ,β, P)
(4.72)

� (χ|N , P,β) = 1

N !h3NV0

(
2πm

β

) 3N
2 e−βY (χ)

� (N ,β, P)
. (4.73)

�(N , P,β) = 1
N !h3N V0

∫ ∞
0 d� e−βH(�) (4.74)

= 1
N !h3N V0

(
2πm

β

) 3N
2 ∫ ∞

0 dχ e−βY (χ) (4.75)
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4.4 Systems That Exchange Energy and Particles
with the Universe: Fixed V , T , and µ

Since the arguments here are the same as in Sects. 4.2 and 4.3 I simply state the
results.

We define the chemical potential μ by

μβ = −∂ log�

∂N
. (4.76)

We consider a combined systemwith N particles and total energy E . Next wemake a
division of this system into a small system (labelled 1) that can exchange particles and
energy with a larger system (labelled 2). We find finally that the maximum number
of states in the combined system occurs when

∂ log�1

∂E1
= ∂ log�2

∂E2
: E1 + E2 = E (4.77)

∂ log�1

∂N1
= ∂ log�2

∂N2
: N1 + N2 = N (4.78)

This corresponds to equal values of β = 1
kBT

and μ in the system and the universe.
Therefore, if we bring our system into contact with the universe such that the two
can exchange energy and particles, then their most probable combined state is one
where their temperatures and chemical potentials are the same.

Assuming that quantum states of our small system are clearly spaced, while those
of the universe are far closer together, we find the combined density of states to be
approximately

�1,2 (E, ε, N , n) ∝ exp
{
−E1

∂ log�1

∂E − N1
∂ log�1

∂N + O
(
E2
1

) + O
(
N 2
1

)}
(4.79)

� exp {−β (E1 − μN1)}. (4.80)

We therefore obtain the pdf and partition function

� (q,p, N |β, V,μ) = 1

N !h3N�
e−β[H(q,p)−μN] (4.81)

� (V,β,μ) =
∞∑
N=0

1

N !h3N
∫

dNq dNp e−β[H(q,p)−μN]

=
∞∑
N=0

Z (N ,β, V ) eβμN .

(4.82)
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4.5 Entropy

Consider a system with � discrete quantum states, with probabilities {Pi }. Gibbs
defined the entropy of the system to be

S = −kB

�∑
i=1

Pi logPi . (4.83)

In cases such as the microcanonical ensemble where all states have equal probability
P = 1

�
then (4.83) simplifies to

S = kB log�. (4.84)

Equation (4.84) is called the “Boltzmann Entropy”.



Chapter 5
Relating Probability Density Functions
to the Behaviour of Systems

5.1 Phase Transitions

How do we decide whether a material should be a liquid or a gas? Let’s say that we
have a systemat fixed pressure and temperature. The liquid and gas phases correspond
to regions of extended phase space (q,p, V ): D (L) and D (G) respectively.Wemay
calculate the probabilities for the liquid and gas phases by integrating the pdf (4.54)
over these two regions

prob (L) = ∫
D(L)

dq dp dV � (q,p, V ) (5.1)

prob (G) = ∫
D(G)

dq dp dV � (q,p, V ) . (5.2)

Typically for a large number of particles the probabilities of the two phases will be
very different. There is a single inverse temperature β at which the probabilities of
the two phases are equal, and we call this point the “phase transition”. Since the two
phases have equal probabilities they coexist at the phase transition.

There are two broad classes of phase transition.

First order phase transitions involve discontinuous changes in the thermody-
namic properties. They occur when the balance of probability shifts abruptly
from one phase to another which has different physical characteristics. The cor-
relation length ξ is generally finite at a first order phase transition. An example
of a first order phase transition is evaporation of a liquid. Here the density and
energy per particle change discontinuously when the system changes from liquid
to gas.

Second-order phase transitions are continuous transitions. The correlation length
becomes effectively infinite in a second order transition and fluctuations become
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correlated over all distances. Approaching the transition from either side, the
two phases become identical. An example is the critical point at the end of the
evaporation line which separates the liquid and gas phases.

5.2 The Equation of State

Consider a very large systemwith effectively infinitelymany particles N . The system
is at fixed temperature and pressure far from any second order phase transition.
Therefore the correlation length is finite and we may consider the system to be made
up of very many statistically independent subsystems. According to equation (3.14)
the relative fluctuations of extensive variables such as volume go to zero for infinite
N . Therefore, when we fix (P, T ) we in fact fix (P, T, V ). Therefore there exists a
unique equation of state

φ (P, T, V ) = 0. (5.3)

This is true everywhere except at first order phase transitions where the system
maymake a discontinuous change in volume. At these points (a set of measure zero),
the equation of state is multivalued. Additionally, at second order phase transitions
the correlation length diverges. However, arbitrarily close to the phase transition the
correlation length is finite, though large. Considering that the mean volume changes
continuously across such second order phase transitions, we see that the equation
of state is a well behaved, simple function, in the region of a second order phase
transition. It should be noted that fluctuations of volume become large at a second
order phase transition, and therefore the value reported by the equation of state there
is nothing but the mean.

As a last remark, it is quite possible to specify a temperature at which a first order
phase transition occurs togetherwith a volume between those volumes corresponding
to either state. In this case the system separates into two phases of density ρ1 and ρ2,
the amount of each being controlled by these quantities, the total number of particles,
and the volume of the system.

A typical equation of state for an atomic fluid is shown in Fig. 5.1. There are many
points to note here, and we will return to the figure in detail in the next Sect. 5.3.

5.3 Phase Diagrams

Projecting the equation of state, Fig. 5.1 into any of the 2D planes P − T , P − V ,
V − T we obtain a “phase diagram”. The phase diagram shows which phase is stable
at each combination of those variables. Typical P − T and P − V phase diagrams
for this equation of state are shown in Fig. 5.2.

http://dx.doi.org/10.1007/978-3-319-66769-0_3
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P

V

Isotherms

T

Tc

Fig. 5.1 A typical equation of state for an atomic or molecular fluid

P

T

P

V

Tc

Fig. 5.2 Typical P − T and P − V phase diagrams, corresponding to the equation of state shown
in Fig. 5.1

There are many things to note from these phase diagrams. First, transitions
between solids, liquids and gases are first order phase transitions, where the vol-
umes of the phases are not equal. From Sects. 4.2–4.4 the pressure, temperature
and chemical potentials of the two phases must be equal at a phase transition. As a
result, phase transitions correspond to points in the P − T diagram, and horizontal
isotherms in the P − V diagram.

At each point on the first order phase boundaries the volume is multivalued. In
particular, at the triple point in the P − T diagram, the solid, liquid and gas phases
have equal probability and the pdf for volume is the sum of three delta functions. At
the top of the liquid - gas line there is a second order phase transition at the “critical
point” (Tc, Pc), abovewhich the volumebecomes single valued. The state at pressures
and temperatures greater than (Tc, Pc) is often referred to as the “supercritical phase”,
although a precise definition of this phase is contentious [1].

It is often stated that there is no distinction between liquid and gas above (Tc, Pc),
but we will see in Sect. 5.5 that there is still structure within this region.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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5.4 Thermodynamic Potentials

It is traditional to define thermodynamic potentials such as the free energy

F (β, V, N ) = − 1

β
log Z (β, V, N ) . (5.4)

Recall that the partition function Z is just the sum of the unnormalised probabilities
of all states; the normalising factor in the pdf (4.38). Consider two phases L and G
that correspond to the configuration space regions D (L) and D (G). One may define
free energies for each phase separately by evaluating only the contribution to Z made
by the regions D (L) and D (G). Since the logarithm is a monotonic function, the
phase with highest probability also has the lowest free energy. This is the language
in which thermodynamics determines the relative stability of phases.

Clearly, it is only appropriate to compare the free energies of phases when we are
interested in conditions of fixed β, V, N . We define the Gibbs free energy (5.5) in
order to compare phases under conditions of fixed β, P, N .

G (β, P, N ) = − 1

β
log�(β, P, N ) (5.5)

Additionally,we define theGrandPotential (5.6) for comparing the stability of phases
at fixed β, V, μ.

�(β, V, μ) = − 1

β
log	 (β, V, μ) (5.6)

In each case, the phase with the lowest value of the appropriate thermodynamic
potential has the highest probability.

5.5 Signatures of Phase Transitions

Consider a system at fixed pressure and temperature. We have seen in Sects. 5.1
and 5.2 that extensive quantities, such as volume and enthalpy, take well defined
values for each phase, and that these values can be very different for each phase,
at a phase transition (this is the basis for a first order transition). For each phase,
the pdf of each variable will be a unimodal, sharply peaked distribution. At a phase
transition, the pdf of each variable will have two modes of equal weight, their means
separated by far more than the widths of the individual peaks. Consider the vari-
ance of such a distribution. The variance is small for a sharp unimodal distribu-
tion, which occurs away from a phase transition. At the phase transition, where the
pdf becomes suddenly bimodal, the variance peaks dramatically. In this way the
variance of extensive quantities are clear indicators of a first order phase transition.
Similarly for second order phase transitions, such variances also peak. This is because

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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the pdfs of extensive variables become extremely broad at a second order phase tran-
sition.

For a system at fixed β, P and N , the variance of enthalpy and volume are both
sharply peaked at a phase transition. Rather than address these statistics directly, it
is more useful to refer to them via closely related measurable quantities: the iso-
baric heat capacity CP , and isothermal compressibility κT . The heat capacity and
isothermal compressibility, together with many other similar functions are collec-
tively referred to as “response functions” or “susceptibilities”.

The heat capacity for a system at fixed T, P, N is defined as the rate at which the
enthalpy changes with respect to temperature:

CP = ∂H (T, P, N )

∂T
(5.7)

= kBβ2 ∂2 log�(β, P, N )

∂β2
(5.8)

= kBβ2Var (H (q,p, P, V )) . (5.9)

The isothermal compressibility is similarly defined as (minus) the rate of change of
the volume with respect to pressure, normalised by the volume:

κT = − 1

V

∂V (T, P, N )

∂P
(5.10)

= 1

βV

∂2 log�(β, P, N )

∂P2
(5.11)

= β

V
Var (V ) . (5.12)

As a final warning, it should be noted that although a peak in the heat capacity
and isothermal compressibility is always present at a phase transition in a system at
fixed N , P, T , the presence of a peak does not guarantee that a phase transition has
occurred. Such peaks also occur along the “Widom lines” [1, 2] in the supercritical
region, where no phase transitions occur.

The liquid and gas phases have different characteristic values for most quantities,
and so the response functions for those quantities will all exhibit a peak at the evap-
oration transition, where the two phases coexist. In the supercritical region the clear
distinction between the phases is lost. Nevertheless, each response function peaks
where the variance of its corresponding observable is largest. Since there is no clear
distinction between the liquid and gas phases, these maxima do not occur at the same
values of (P, β), as they do along the evaporation transition. The lines of maxima
for the response functions in the supercritical region are called the Widom lines [1].
Below the critical point the Widom lines correspond to the evaporation transition.
Above the critical point the Widom lines diverge. The peaks for each response func-
tion become broader and smaller as we move further along the Widom line, into the
supercritical region [1], until the point where it is impossible to resolve the peak.
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5.6 Finite Size Simulations

This thesis is concerned with atomistic simulation. Here one often aims to calculate
properties of an infinite system from simulations of a much smaller system. For
simplicity, let us consider N particles constrained to a cell of side length L with
periodic boundary conditions. When the correlation length ξ is finite, the infinite
system may be considered as the combination of many statistically independent
subsystems of size L � ξ , an idea already introduced in Sect. 3.5. In this case the
pdf for any extensive quantity as calculated in a subsystem has the same form as
the distribution in the infinite system, but with a larger relative fluctuation. This was
described in Sect. 3.6, where it was shown that the relative fluctuation goes as 1√

N
.

Therefore we may extrapolate to the infinite system limit from a finite calculation,
so long as we ensure that L � ξ .

In practice, the correlation length can be very large, so that it is unfeasible to
simulate a statistically independent subsystem. This is always the case at a sec-
ond order phase transition where the correlation length becomes effectively infinite,
ξ → ∞, but this limitation also holds more generally.Wemight assume that it would
be impossible to obtain meaningful results from a system with L < ξ . Considerable
work has been done on the problem of extrapolating to larger system sizes. We will
not be concerned with finite size corrections in this thesis, and instead refer the
interested reader to the texts [3–6].

5.7 Periodic Boundary Conditions

Periodic boundary conditions introduce an unphysical periodicity into simulations
of non-periodic systems, such as a gas. However, if our simulation cell is larger than
the correlation length, then these periodic images are effectively independent atoms,
“unaware” of each other, and results calculated for the subsystem are correct. Even
in simulations that are smaller than the correlation length but “large enough”, the
effect of these correlations may be only slight. Periodic boundary conditions are an
effective way of accounting for the surface interaction of subsystems. This ensures
that quantities such as the energy and volume are extensive quantities, which is
essential for deducing properties of the infinite system limit as described in Sect. 5.6.
It should be noted that under periodic boundary conditions, there is nothing unique
about the edges or corners of the cell, since these points can be mapped to any other
part of the cell by translating all the atoms and applying the boundary conditions.

http://dx.doi.org/10.1007/978-3-319-66769-0_3
http://dx.doi.org/10.1007/978-3-319-66769-0_3
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5.8 Fractional Coordinates and Fully Flexible Simulation
Cells

This thesis is concerned with approximating infinite systems by using only a small,
fixed number of particles, N . Different solid phases may have different crystal lattice
structures, and theremay be noway to arrange N particles in a fixed shape simulation
cell to produce a particular lattice structure. Simulating N particles in, for example, a
cubic simulation cell, may exclude certain phases from the results of our calculation.
This is an example of a finite size effect, which can have terrible consequences.
A second finite size effect arises from the impossibility of representing a crystal
motif with an inappropriate number of nuclei. To pick a specific example, it is not
possible to arrange 65 nuclei into a periodic hexagonal close-packed (HCP) lattice.
Nor is it possible to construct a HCP lattice using periodic images of just one nucleus
(N = 1); we require at least two.

Using a fully flexible simulation cell [7, 8] helps to alleviate the first of these
system size effects, by allowing the simulation cell to take any shape. Sampling
with a fully flexible simulation cell requires that we explore both atomic coordinates
and shapes of the simulation cell. To this end it is useful to work in “fractional
coordinates” s, related to q and the “cell matrix” h by

si ∈ [0, 1)3

qi =hsi
(5.13)

The cell matrix h is a real 3 × 3 matrix and need not be symmetrical. Columns of
the cell matrix correspond to the cell vectors a, b, c. This is illustrated in Fig. 5.3.

The volume of the cell can be obtained from h by

V = det h. (5.14)

Fig. 5.3 A general
simulation cell in the fully
flexible simulation cell
formulation. Rows of the cell
matrix h correspond to the
cell vectors a, b and c. Also
shown are the conventional
axial angles α, β and γ

a

b

c
α

β

γ
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Next we introduce the “unit cell matrix” h0 which corresponds to the cell matrix
scaled to unit volume.

h0 = hV− 1
3 (5.15)

det h0 = 1 (5.16)

We will find it useful to relate the coordinates q and s by h0 and V explicitly:

qi = V 1/3h0si . (5.17)

One generalisation of the pdf and partition function for systems at fixed N , P ,
β to incorporate a fully flexible simulation cell was introduced by Martyna, Tobias
and Klein [7]. In that picture h0 samples a uniform distribution over the surface
det h0 = 1.

H (s,p, P, V,h0) = E
(
V

1
3 h0s,p

)
+ PV (5.18)

� (s,p, V,h0) = V N

N !h3NV0

e−βH(s,p,P,V,h0)

� (N , β, P)
δ (det h0 − 1) (5.19)

� (N , β, P) = 1

N !h3N V0

∫ ∞
0

dV V N
∫

dh0 δ (det h0 − 1)
∫

dN s dNp e−βH(s,p,P,V,h0)

(5.20)
There are three points to note when comparing (5.19) and (5.20) to the pdf and
partition function for a fixed simulation cell (4.59) and (4.60). First, we are now
expressing the pdf as a density over the fractional coordinates s. Second, the trans-
formation from q to s has introduced a factor of V N . This is because dqi = V

1
3 dsi

and there are 3N such terms in dNq. Third, integration over elements of h0 in (5.20)
is over all real values of the elements of h0, from (−∞,∞). Therefore (5.20) corre-
sponds to uniform integration over the surface where h0 has determinant 1.

Tuckerman gives a detailed derivation of the pressure tensor with partition func-
tion (5.20) in [9], page 230.That derivationmakes it clear that the uniformdistribution
over h0 is required to obtain the correct pressure virial theorem and work virial. For
this reason, I will use the fromulation of Martyna, Tobias and Klein [7] throughout
this thesis.
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Chapter 6
The Strategy of Nested Sampling

For the purposes of this discussion we will consider conditions of constant pressure.
This is only so that we may illustrate points with real data calculated as described
later in this thesis. The same discussion could be had for conditions of constant
volume and the same conclusions would apply.

In Part I we saw how all observables in statistical mechanics follow from the
partition function. Recall these forms of the partition function, both written in terms
of the configurational enthalpy Y

�(N , P, β) = 1

N !h3NV0

(
2πm

β

) 3N
2

∫ ∞

−∞
dY g (Y ) e−βY (4.71 revisited)

= 1

N !h3NV0

(
2πm

β

) 3N
2

∫ ∞

0
dχ e−βY (χ). (4.75 revisited)

Fundamentally, calculating the partition function, or any quantity derived from
it, amounts to evaluating the functions Y (χ) and g (Y ), at all values of χ and Y that
contribute appreciable weight to (4.71) and (4.75) for the external conditions (P, β).
If our approach to calculating the functions Y (χ) and g (Y ) is to be one of statistical
sampling, then this in turn requires that we characterise the pdfs for χ and Y (4.73)
and (4.69) sufficiently well.
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� (χ |N , P, β) = 1

N !h3NV0

(
2πm

β

) 3N
2 e−βY (χ)

� (N , β, P)
(4.73 revisited)

� (Y |N , P, β) = 1

N !h3NV0

(
2πm

β

) 3N
2 g (Y ) e−βY

�(N , β, P)
(4.69 revisited)

Figure6.1 shows the function Y
(
log10 χ

)
(black line). The three bimodal distribu-

tions (blue, green and red in order of increasing temperature) show pdfs for Y (4.69),
close to the evaporation temperature1 T ∗

e of Lennard-Jonesium.2 Configurational
enthalpy is shown on the vertical axis, with the value of these pdfs shown on the top
horizontal axis. The green curve is very close to the evaporation temperature.

Obtaining an accurate value for the relative weight of the two peaks is the goal
of any sampler seeking to resolve a phase transition, since at a phase transition two
phases are in thermal equilibrium and therefore have equal probability. Locating a
phase transition therefore amounts to finding the thermodynamic conditions in which
the two modes in Fig. 6.1 have equal weight. Thermal sampling schemes, which
seek to sample according to the physical pdf, are usually based on some process that
mimics the physical system. As in the physical process the low probability range
for Y inhibits movement of the sampler between the two phases. Without frequent
transitions between the phases it is very unlikely that the sampler will obtain an
accurate value for the relative weight of the two peaks. Indeed, in their paper Pártay
et al. [1] showed that the error for the heat capacity of an evaporating atomic cluster
is much greater close to the transition peak when calculated using parallel tempering
(a temperature scheduling algorithm). This is shown in Fig. 6.2.

Nested sampling [2, 3] takes a different approach: it attempts to resolve the value
of Y at evenly spaced values of logχ . If one could achieve this aim, then it is easy
to believe that this approach should be an efficient means of resolving the function
Y (logχ); the approach pays no regard to whether χ corresponds to a first order
phase transition or not and Y (logχ) is a smooth function. We will describe the
methodology of nested sampling in detail during the chapters that follow. For now
however, notice how well behaved the errors are at the peaks of theCV curves shown
in Fig. 6.2. This is the motivation for this thesis, in which we aim to resolve phase
transitions such as that shown in Fig. 6.1 where χ can vary by hundreds of orders of
magnitude.

1Reduced temperature is defined as T ∗ ≡ kBT
ε

.
2 The results shown were calculated using a periodic system of 128 Lennard-Jonesium parti-

cles at reduced pressure log10
(
P∗ ≡ Pσ 3

ε

)
= −1.194. The interatomic potential was exactly that

described later in Sect. 8.8. These results were calculated using Nested Sampling, as described in
Sect. 8.3.

http://dx.doi.org/10.1007/978-3-319-66769-0_8
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Fig. 6.1 The function Y
(
log10 χ

)
(black line) is shown for 128 Lennard-Jonesium particles. χ0 is

the total volume of the configuration space (see Sects. 8.6 and 8.7). Notice the inflection in the black
curve at log10 χ − log10 χ0 � −650.0: this corresponds to the entropy jump from the liquid to the
gas phase. The three bimodal distributions (blue, green and red in order of increasing temperature)
show pdfs for Y (4.69), close to the evaporation temperature at reduced pressure log10 P

∗ = −1.194

Fig. 6.2 Temperature scheduling algorithms (in this case parallel tempering) have largest error
close to a phase transition. (Here, interpolation between temperatures in parallel tempering was
performed using the method of Ferrenberg and Swendsen [4].) Nested sampling does not have the
same bad behaviour. For LJ25, nested sampling has resolved the transition with lower error bars,
at a hundredth of the cost. This figure shows the “evaporation” transition of Lennard-Jonesium
clusters LJ17 and LJ25 Reprinted (adapted) with permission from [1]. Copyright (2010) American
Chemical Society
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Chapter 7
An Introduction to Nested Sampling

Throughout this introduction we assume that we are interested in the NVT ensemble
with fixed simulation cell, described in Sect. 4.2.

As described in Chap.6, we seek to calculate the inverse function to the integrated
density of statesU (χ), in order to calculate the partition function Z (N , V,β) 4.46.

Z (N ,β, V ) = 1

N !h3N
(
2πm

β

) 3N
2

∫ ∞

0
dχe−βU (χ) (4.46 revisited)

χ (N ,U, V ) =
∫ U

−∞
g

(
N ,U ′, V

)
dU ′ (4.20 revisited)

g
(
N ,U ′, V

) = 1

N !h3N
∫

dNq δ
(
U

[
q
] −U ′) (4.5 revisited)

The aim of nested sampling [1, 2] is to calculate U (χ) at a geometric series of
values for χ:

χ ∈ {
χ0 t,χ0 t

2, . . . ,χ0 t
Nits

}
. (7.1)

For each of {χi } we calculate the respective energy U (χi ).
The strategy for achieving this is to set each χi within some error, in a proba-

bilistic way, then calculate the exact energy for the value of χi we have obtained.
Convergence of the algorithm is achieved by reducing the error on {χi }.

© Springer International Publishing AG 2017
R.J.N. Baldock, Classical Statistical Mechanics with Nested Sampling,
Springer Theses, https://doi.org/10.1007/978-3-319-66769-0_7

47

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_6
http://dx.doi.org/10.1007/978-3-319-66769-0_4


48 7 An Introduction to Nested Sampling

7.1 The Nested Sampling Method

Webeginwith a graphic illustration of the central nested sampling procedure, without
mathematical background. We follow this with a technical exposition of the nested
sampling algorithm and its basis. Finally, we give an intuitive explanation of the
algorithm as a microcanonical cooling algorithm.

7.1.1 A Graphical Introduction to the Nested Sampling
Procedure

A graphical illustration of the central nested sampling procedure (or loop) is shown
in Fig. 7.1.

As described in Fig. 7.1, at the start of each iteration we have K configurations
drawn from a uniform distribution over the regionU (q) ≤ Ulim, whereUlim depends
on the iteration. At each iteration Ulim is reduced. This is the basis for the name
“nested sampling”.

It is slightly less obvious that samples drawn uniformly at random from the region
U (q) ≤ Ulim have values χ (U ) (4.20) that are drawn uniformly at random from the
interval χ ∈ [0,χ (Ulim)]. We delay a rigorous explanation of this until the next
section. However, me might consider dividing our (continuous) configuration space
into small pieces of equal volume, and arranging those pieces along a line, sorted from
high energy to low energy. Lengths of the line correspond to volumes of configuration
space. That is, sections of the line correspond to intervals ofχ. A configuration chosen
at random from the space corresponds to a point chosen at random on the line. The
iteration shown in Fig. 7.1 is represented again in this picture, in Fig. 7.2.

7.1.2 The Nested Sampling Algorithm in Detail

Each χi is found from the previous χi−1, where χi−1 > χi and U (χi−1) > U (χi ).
Thus sampling is performed “inwards” towards lower and lower energies. This is the
basis for the name “nested sampling”.

At any given iteration i we have K configurations {q1,q2, . . . ,qK} distributed
uniformly throughout the regionU (q) ≤ Ulim.HereUlim = Ui−1, the configurational
energy exactly corresponding to the approximate value we obtained for logχi−1. The
pdf describing this situation is

� (q|Ulim) =
{

1
χ(Ulim)

, U (q) ≤ Ulim

0, Elsewhere.
(7.2)

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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(a)

(b)

(c)

(d)

Fig. 7.1 A graphical representation of the nested sampling loop. The square box represents our
configuration space, and dots represent configurations. The configurations have different energies,
as represented by the energy contours. The (central) blue region has lowest energy, and the (outer)
grey region has highest energy. a At the start of each iteration we always have K configurations
placed uniformly at random throughout the region of configuration spacewith energyU (q) ≤ Ulim.
The contour U (q) = Ulim is represented by the thick line. b Next, we identify the configuration
with highest energy from the K configurations, indicated by the hollow dot. The value of Ulim is
updated to the energy of that configuration.We save the new value ofUlim and the configurationwith
U (q) = Ulim as output. Finally, the configuration withU (q) = Ulim is removed. This leavesK − 1
configurations in our sample set, all with U (q) ≤ Ulim. c We choose a configuration at random
from the remainingK − 1 configurations and copy it, producing a “clone”. The clone is represented
by the white star. dWe perform a random walk on the clone through the regionU (q) ≤ Ulim, until
it has no memory of its starting configuration. The walk is constructed so that the pdf for the clone’s
final position is a uniform distribution in the region U (q) ≤ Ulim, and zero for U (q) > Ulim. We
now return to the start of the loop, and the loop is repeated using the most recent value of Ulim
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χ = 0 χmax = V N

χ = 0 χmax = V N

χ = 0 χmax = V N

χ2

χ1

U
(2)
lim U

(1)
lim

(a)

(b)

(c)

(d)

Fig. 7.2 We imagine dividing (continuous) configuration space into small pieces of equal size, and
sorting those pieces along a line, from low energy (left) to high energy (right). Starting from the left
end, the length of the line up to U = Ulim corresponds to the volume of configuration space with
U ≤ Ulim. This is precisely χ (Ulim) (4.20). At the left of the line we have χ (U0) = 0, and at the
right we have χ (Umax) = V N (see Sect. 7.1.4). Each infinitesimal length of the line corresponds
to a tiny region of configuration space. Configurations chosen randomly from the space correspond
to a point chosen randomly from the line. In this way, configurations chosen randomly from the
configuration space with U ≤ Ulim correspond to uniformly randomly distributed points along the
line with χ ≤ χ (Ulim). The labels on the left hand side indicate the stages (a)–(d) in Fig. 7.1 to
which each line corresponds. Here we include a grey circle to indicate the sample that occurred
at U (1)

lim , in the previous iteration. On the first line we show the relationship between χ1 and χ2. It
can be shown [2] that, with K points along a unit interval χ ∈ [0,χ1], the largest value of χ in our

sample set is a beta distributed random number: prob (χ2|K,χ1) = K
(

χ2
χ1

)K−1 × χ1. Therefore,

χ2 has mean value 〈χ2〉 = K
K+1χ1, with error that decreases as K is made larger. These details are

described in the next section. In stage (c), a random configuration is copied, producing a “clone”,
as indicated by the white star In stage (d), this clone is walked throughout the regionU (χ) < U (2)

lim ,
until it is completely independent of the its starting configuration

We call this distribution the “bounded uniform distribution”. The pdf for U for a
configuration drawn uniformly from configuration space with configurational energy
U (q) ≤ Ulim is simply the density of states below Ulim

� (U |Ulim) =
{

g(U )

χlim
, U ≤ Ulim

0, Elsewhere
(7.3)

Here χlim ≡ χ (Ulim). The pdfs for χ and logχ are related to (7.3) by a change of
variables.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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� (χ|χlim) =
{

1
χlim

, χ ≤ χlim

0, Elsewhere
(7.4)

� (logχ| logχlim) =
{

elogχ

χlim
, logχ ≤ logχlim

0, Elsewhere.
(7.5)

From (4.20), U and χ (U ) are monotonically related. Therefore, if we sort our K
configurations in order of descendingU they are also sorted in order of descendingχ.
Picking the first (highest energy) configuration from our sorted list, the pdf for t ≡
χlargest

χlim
is a beta distribution [2]

� (t) = KtK−1. (7.6)

This pdf (7.6) has mean and standard deviation

t =
(

K
K + 1

± 1

K + 1

√ K
K + 2

)
. (7.7)

Picking the configuration with highest U , we know that this corresponds to a mean

value of χi

χi−1
= K

K+1 with standard deviation 1
K+1

√
K

K+2 . We refer to the energy of

the configuration with highestU in the i th iteration asUi . We store this configuration
as output:

χi ← χi−1 × K
K + 1

(7.8)

U (χi ) ← Ulargest (7.9)

Finally, having updatedUlim ← Ui we generate a fresh configuration picked uni-
formly as in (7.2). The process is repeated to find Ui+1. For clarity, the algorithm is
written again in Algorithm 7.1.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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7.1.3 Nested Sampling as a Microcanonical Cooling
Algorithm

An intuitive way to understand the nested sampling process is as a microcanonical
cooling algorithm for calculating the density of states.1 Random samples are drawn
from configuration space below some upper energy limit U ≤ Ulim. The potential
energy of such a sample is a continuous random variable distributed according to
the density of states g (U ) below Ulim. The density of states is a rapidly increasing
function of the potential energy, and therefore the overwhelming majority of our
samples will have potential energies close toUlim. As a result we resolve the density
of states accurately in the interval just belowUlim, but our sampling at lower energies
is noisy.

The nested sampling algorithm repeats this process in stages. In the upper panel of
Fig. 7.3, we accurately resolve the density of states in the interval

[
Ui ,Ui−1

]
. Nested

sampling then generates new samples in the region U ≤ Ui , before repeating the
process in the interval

[
Ui+1,Ui

]
.

The really ingenious part of the nested sampling algorithm is that it chooses the
appropriate energy interval automatically to minimise the uncertainty in χi . Recall
from Sects. 7.1.1 and 7.1.2 that the values of χ for our samples are uniformly dis-
tributed along the interval χ ∈ [0,χ (Ulim)]. The number of samples in the interval
χ ∈ [0,χ (U )] is proportional to χ (U ). Therefore, if we make the ratio χ(U )

χ(Ulim)
as

close as possible to unity, we have a proportionally larger number of samples with
which to estimate the same ratio. By adjusting the number of configurations K that
nested sampling uses, we control the contraction ratio χi

χi+1
, and the noise in our

estimate of the density of states.

7.1.4 Initialisation of Nested Sampling

For the case of constant volume in a fixed cell, we can generate initial samples by
generating uniformly random configurations q ∈ [0, V 1

3 )3N . In this case, the initial
value for χ is

χ0 = V N . (7.10)

The integrated density of states and partition function are therefore absolute.

1The density of states may be recovered from the nested sampling output by numerical differenti-
ation, g (U ) 
 �χi

�Ui
.
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Fig. 7.3 Nested sampling
may be understood as a
microcanonical cooling
algorithm. See Sect. 7.1.3 for
discussion

g (U)

g (U)

U

U

U0
0

0
U0 Ui−1

Ui

Ui+1

Ui−1Ui

7.2 Calculating the Partition Function and Other
Quantities

The partition function may be approximated as follows. The full partition function
is

Z (N ,β, V ) = A ×
∫ ∞

0
dχe−βU (χ) (4.46 revisited)

A = 1

N !h3N
(
2πm

β

) 3N
2

The partition function can be approximated from the output of the nested sampling
procedure as
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Z (N ,β, V ) 
 A ∗
Nits∑
i=1

�χi e
−βUi (7.11)

�χi = χ0 (ζi−1 − ζi ) (7.12)

Here ζi is the total phase space contraction after i iterations

ζi =
i∏

n=1

tn (7.13)



( K
K + 1

)i

(7.14)

We have made the simplest possible interpolation of the energy: that it is constant
between successive values of χi . This estimate could be improved by using the
trapezium rule, but the errors introduced by uncertainty in {ζi } tend to overwhelm
small differences introduced by the interpolation scheme.

The partition function (7.11) is an explicit function of β and therefore the heat
capacity at fixed volume, CV = kBβ2 ∂2 log Z(β)

∂β2 , can be calculated from (7.11) at any
inverse temperature. As discussed in Sect. 5.5, the heat capacity is an important tool
for identifying phase transitions.

Other quantities can also be calculated from the output of the nested sam-
pling procedure. As an example, let us consider calculating the free energy of a
region in configuration space. In this case one first decides which of the configu-
rations saved as output belong to that region. Second, the contributions to (7.11)
made by those configurations are summed. This process may be repeated for
another region that does not overlap with the first. In this way it is straightfor-
ward to compare the probabilities of the two regions, or equivalently, their free
energies (5.4). It is a simple task to recalculate this sum at a number of values
of β. As a generalisation of this method, one may calculate entire free energy
surfaces. A free energy surface is defined over particular collective variables,
(φ,ψ): F

(
φ′,ψ′) = − 1

β
log

(
1

N !h3N
∫
dxe−βH(x)δ

[
φ (x) − φ′] δ

[
ψ (x) − ψ′]). The

nested sampling approximation to this function is obtained by dividing the space
{(φ,ψ)} into an array of bins, placing the nested sampling output configurations
into their respective bins, and then computing directly the free energy of each bin.
Computing the free energy of each bin is performed by evaluating the total partition
function for configurations within that bin according to (7.11).

It is also possible to produce projections of the configuration space volume itself
onto reduced coordinates, or individual potential energy minima [3, 4]. Here, the
nested sampling output configurations are mapped onto the reduced coordinates or
minima, and their configuration space volumes �χi (7.12) are binned, as for a free
energy surface calculation. Summing the configuration space volumes in each bin
yields the volume of configuration space associated with each minimum, or small
interval of the reduced coordinates.

http://dx.doi.org/10.1007/978-3-319-66769-0_5
http://dx.doi.org/10.1007/978-3-319-66769-0_5
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7.3 Generating New Samples: Markov Chain Monte Carlo

New samples from (7.2) cannot be generated by rejection sampling, where random
configurations are proposed, and only samples with U ≤ Ulim are accepted. This is
because the volume of the allowed region in configuration space collapses expo-
nentially as the calculation progresses. We can see this from Eq. (7.23). If we used
rejection sampling, then after 100K iterations the probability of accepting proposed
configurations would be e−100. Instead, new samples are generated by Markov chain
Monte Carlo (MCMC), which is a two stage process. First we clone an existing
sample from the region U ≤ Ulim. Second, that sample is moved through configura-
tion space by a random walk. This random walk must be long enough that the final
configuration has no memory of its starting point. The random walk must also have
the bounded uniform pdf (7.2) as its stationary distribution.

An example of one-dimensional randomwalk process that has the energy bounded
uniform pdf (7.2) as its stationary distribution is a random walk of length L with the
iterator described in Algorithm 7.2.

We can derive Algorithm 7.2 by demanding that our integrator satisfy detailed
balance, and asserting that its stationary distribution should be the energy bounded
uniform distribution (7.2). Our first assertion, that the iterator should satisfy detailed
balance between any two configurations o and n, can be written as

N (o) α (o → n) × acc (o → n) = N (n) α (n → o) × acc (n → o) (7.15)

We call Eq. (7.15) the detailed balance equation. Hereα (x → y) is the probability of
proposing the trial configuration y when at the configuration x . The target stationary
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distribution isN (x), which is zero ifU (x) > Ulim and equal to a constant otherwise.
The final term acc (x → y) is the probability of accepting the move from x to y once
we have proposed it. In Algorithm 7.2 we set the proposal distributionα (x → y) to a
symmetrical, uniform distribution over the range [-step_size, +step_size]. Therefore
we have α (o → n) = α (n → o). The configuration o is already inside the good
region. Therefore, substituting the above into the detailed balance Eq. (7.15) and
rearranging we have

acc (o → n)

acc (n → o)
= N (n)

N (o)
(7.16)

An acceptance scheme that satisfies this is

acc (o → n) =
{
1, U (n) ≤ Ulim

0, Elsewhere.
(7.17)

This is exactly the scheme presented in Algorithm 7.2, and therefore that iterator has
the required stationary distribution (7.2).

The complete MCMC process to generate a new sample in our 1D example is
described in Algorithm 7.3.

7.4 Multimodal Potentials

Suppose that the potential energy function has two modes, so that the region with
U (q) ≤ Ulim consists of two disconnected regions. The MCMC iterator described
in Algorithm 7.2 cannot move between modes. As a result, if at any point we have
zero samples in either mode, the “clone and decorrelate” Algorithm 7.3 will never
find that mode again. Let the “gateway” energy at which the two modes become
disconnected be Ug. Such a gateway energy contour is illustrated in Fig. 7.4.
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Fig. 7.4 Illustration of a bimodal potential energy function. The thick dark line corresponds to
the “gateway” energy at which the two modes of the bounded uniform distribution (7.2) become
disconnected. Once separated, no MCMC trajectory can move between the two modes. In this case
it is possible for the (left) mode that contains the global minimum to become depopulated before
the conclusion of the nested sampling calculation

At the gateway energy the configuration space “volumes” of the two modes are
X1 and X2 where X1 + X2 = χ

(
Ug

)
. Without loss of generality let X1 ≤ X2. Let us

also suppose that by bad luck, the smaller mode is the “dominant” mode, meaning it
contains the global minimum of the potential energy U (q). It is therefore of utmost
importance that we have at least one sample inside the smaller, dominant mode. We
are performing nested sampling using K configurations. For each configuration, the
probability of being inside the dominant mode is

w = X1

X1 + X2
. (7.18)

Therefore the probability of having one or more samples in the dominant mode is

prob (success|K) = 1 − (1 − w)K . (7.19)

We need K ≥ 1
w
to have a reasonable chance of finding the global minimum.

Now consider the casewhere the bounded uniform distribution divides in this way,
several times. These divisions are nested sufficiently that in each case the bounded
uniform distribution may be thought as dividing from one mode into two. The prob-
ability of having at least one sample in the dominant mode after every one of these
divisions is

prob (success|K) =
∏
i

[
1 − (1 − wi )

K]
. (7.20)

If the smallest value of {w} is wmin, then we need roughly K 
 1
wmin

configurations
to achieve success: the smallest w dominates the rest.

Systems in which the dominant mode divides from the rest of the space at very
high energy, with a small value ofw constitute pathological problems for nested sam-
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pling, which requires very large numbers of samples to achieve meaningful results
under these circumstances. Some interesting work has been done on alleviating this
problem [5, 6].

7.5 Error Propagation in Nested Sampling

After n nested sampling iterations, the volume of configuration space in the region
U ≤ Ulim has contracted from χ0 to χ0ζn where χ0 is the total volume of the con-
figuration space, and ζn is given by

ζn =
n∏

i=1

ti . (7.13 revisited)

The log of this is just

log ζn =
n∑

i=1

log ti . (7.21)

Making a change of variables (2.5) from the polynomial pdf for t (7.6), we find that
log t is exponentially distributed

� (log t) = KeK log t . (7.22)

This pdf (7.22) has mean and standard deviation

log t = (−1 ± 1) / K. (7.23)

It follows that log ζn has mean and standard deviation

log ζn = (−n ± √
n
)
/ K (7.24)

After K iterations, log ζK has mean value −1, with standard deviation 1√K .
In (7.24) we have assumed for simplicity that t is a Gaussian distributed random

variable, which it isn’t. A better measure of the error introduced by the nested sam-
pling procedure can be obtained by re-sampling {ti } from the pdf (7.6). If the quantity
of interest is recomputed a dozen or so times using fresh {ti }, then the mean value
and standard deviation may be obtained. We call this error estimate the “internal”
error for the nested sampling calculation. This error arises directly from the nested
sampling procedure itself and is separate to errors produced by poor exploration of
configuration space. Those “external” errors, due to improper decorrelation of sam-
ples, can result from using a walk length that is too short or not using enough live
configurations K so that the global minimum is not discovered. In our experience,
the total error is typically dominated by external errors.

http://dx.doi.org/10.1007/978-3-319-66769-0_2


7.6 Conclusion 59

7.6 Conclusion

The nested sampling procedure is an algorithm for calculating the inverse integrated
density of states, U (χ). The central procedure of nested sampling has only two
parameters: the walk length L and the number of samples to be used K. Nested
sampling produces a series of nested sample sets, where the energies of those samples
are distributed according to the density of states. The rate of error accumulation in χ
is set by the parameter K, being proportional to 1√K . The parameter L should be set
large enough that the decorrelated sample is equally likely to have originated from
each of the other samples.

Determining the location of a phase transition requires that we characterise the
pdf for each phase, and calculate the relative probabilities of each phase, extremely
accurately. At first order phase transitions, samplers that mimic physical processes,
like the system they represent, spend long periods of time in one phase or the other,
and transition between the two phases only rarely. We saw in Fig. 6.2 that such
samplers lead to relatively large uncertainty at the peaks of the heat capacity. This
is exactly the point that we must resolve when identifying the location of phase
transitions.

In contrast, nested sampling explores a series of nested uniform distributions, con-
structed to have constant fractional overlap. As such, these distributions are compu-
tationally efficient to equilibrate between and the pathological behaviour of systems
at first order phase transitions is avoided. This makes nested sampling an ideal tool
for finding phase transitions.

Nested sampling’s microcanonical cooling procedure ought to be a powerful tool
for discovering “unknown unknown” phase transitions. In the rest of this thesis we
develop nested sampling to perform this task for classical materials.
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Chapter 8
Nested Sampling for Materials

8.1 Introduction

In Chap.7 we identified nested sampling [1, 2] as a promising strategy for calculating
the inverse integrated density of states U (χ) from first principles. In this chapter
we develop nested sampling into a generic, automated tool for finding “unknown
unknown” phase transitions.

We first apply nested sampling to Lennard-Jonesium, demonstrating that it gives
the correct result for the pressure-temperature phase diagram. Second, we apply
nested sampling to a binary Lennard-Jonesium “alloy”. The alloy exhibits an order-
disorder transition within the solid phase. Within the ordered phase we find two
different structures, distinct in the arrangements of columns of A and B atoms
within the crystal. A phase transition occurs between these two ordered phases at
log10 (P∗) = −1.194. Third, we apply nested sampling to the NPB embedded atom
model potential for aluminium [3], and recover the crystal solid-solid phase transi-
tions as predicted by this model.

8.2 Fixed Volume or Fixed Pressure?

In this section we address the question “in which ensemble should we perform
nested sampling?” concluding that it is best to simulate conditions of constant pres-
sure. MCMC simulations performed at fixed pressure require just a fraction of the
computational expense as equivalent calculations performed at fixed volume. There
are two reasons for this.

© Springer International Publishing AG 2017
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First, allowing the system to change volume by dilating or contracting expedites
the cooperative freeing of jammed atoms. In contrast, at fixed volume, atoms that have
become jammed are only freed by the coincidental movement of all atoms to separate
them. Consequently, MCMC simulations at fixed pressure explore configuration
space far more rapidly than simulations at fixed volume.

The second reason arises from the thermodynamic behaviour of systems at a first-
order phase transition. At a phase transition under constant volume conditions the
two phases coexist and an interface forms between them. Such interfaces are large on
the atomic scale [4], and the behaviour of atoms at an interface is not representative of
the behaviour of atoms in the equilibrium phases. As a result the interface introduces
a systematic error that is overcome only by simulating very large numbers of atoms.

Such interfaces also occur under constant pressure conditions in the infinite system
size limit. The contribution to the Gibbs free energy from an interface is proportional
to γN

2
3 , where γ is the interfacial tension. In contrast, the Gibbs free energies of each

of the pure phases are extensive (proportional to N ). Therefore the Gibbs free-energy
cost per atom of the interface is negligible for thermodynamic systems. Conversely,
for the relatively small system sizes amenable to density of states calculationmethods
such as nested sampling, the Gibbs free-energy cost per atom of the interface is
appreciable, provided γ is not close to zero. Consequently, at a constant pressure
phase transition between phases with identical atomic compositions, configurations
containing an interface have negligible statistical weight in such simulations, and a
discontinuous transition is observed from one equilibrium phase to the other. This
enables the accurate simulation of phase transitions using much smaller numbers of
atoms. We will therefore develop our schemes in the constant pressure ensemble.

8.3 Nested Sampling at Fixed Pressure

In this sectionwe develop amethod for performing nested sampling at fixed pressure.
The result is then the integrated density of states at fixed pressure (4.65).

Our aim is to calculate the full phase diagram of the system, including all its solid
phases. As described in Sect. 5.8, important phases can be completely excluded from
simulations of a fixed number of particles in a cell of fixed shape. We use the fully
flexible simulation cell formulation described in Sect. 5.8 to reduce this finite size
effect.

Recall that themicroscopic enthalpy, pdf andpartition functionwith a fullyflexible
simulation cell are

H (s,p, P, V,h0) = E
(
V

1
3 h0s,p

)
+ PV (5.18 revisited)

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_5
http://dx.doi.org/10.1007/978-3-319-66769-0_5
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� (s,p, V,h0) = V N

N !h3NV0

e−βH(s,p,P,V,h0)

� (N ,β, P)
δ (det h0 − 1) (5.19 revisited)

� (N , β, P) = 1

N !h3N V0

∫ ∞
0

dV V N
∫

dh0 δ (det h0 − 1)
∫

dN s dNp e−βH(s,p,P,V,h0)

(5.20 revisited)

Performing the momentum integration explicitly and assuming a quadratic form
for the kinetic energy and equal masses of all particles in the system we obtain the
configurational enthalpy, marginal pdf and a new form for the partition function

Y (s, P, V,h0) = U
(
V

1
3 h0s

)
+ PV (8.1)

� (s, V,h0) = V N

N !h3NV0

(
2πm

β

) 3N
2 e−βY (s,P,V,h0)

� (N ,β, P)
δ (det h0 − 1) (8.2)

�(N ,β, P) = 1

N !h3N V0
(
2πm

β

) 3N
2

∫ ∞

0
dV V N

∫
dh0

∫
dN s e−βY (s,P,V,h0)δ (det h0 − 1).

(8.3)

The configurational density of states g
(
Y ′, N , P

)
and integrated density of states

χ (Y, N , P) are given by

g
(
Y ′, N , P

) = 1

N !h3N V0
∫ ∞

0
dV V N

∫
dh0 δ (det h0 − 1)

∫
dN s δ

(
Y (s,p, P, V,h0) − Y ′)

(8.4)

χ (Y, N , P) =
∫ Y

0
g

(
Y ′, N , P

)
dY ′ (8.5)

Rewriting the partition function proceeds exactly as in Sect. 4.3.1 except that we
must keep in mind that the definition of Y and χ are now (8.1) and (8.5) respectively.
Thus we have

�(N , P,β) = 1

N !h3NV0

(
2πm

β

) 3N
2

∫ ∞

−∞
dY g (Y ) e−βY (4.71 revisited)

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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�(N , P,β) = 1

N !h3NV0

(
2πm

β

) 3N
2

∫ ∞

0
dχ e−βY (χ). (4.75 revisited)

As described in Chap.7, the aim of nested sampling is to calculate the function
Y (χ). The approach is to set a geometric series of values forχ (7.1) which we obtain
in a probabilistic way with some error.

χ ∈ {
χ0 t,χ0 t

2, . . . ,χ0 t
Nits

}
. (7.1 revisited)

We calculate the exact values Y (χi ) for the estimates of χi we have obtained. Con-
vergence of the algorithm is possible by reducing the error on {χi }. For fixed volume
conditions with a fixed shape simulation cell, at each iteration we generate a fresh
sample with U ≤ U (χi−1), distributed according to the density of states

� (U |U (χi−1)) =
{

g(U )

χi−1
, U ≤ U (χi−1)

0, Elsewhere.
(7.3 revisited)

This is achieved by producing samples from configuration space with a uniform pdf
throughout the region U (q) ≤ Ulim:

� (q|U (χi−1)) =
{

1
χ(U (χi−1))

, U (q) ≤ U (χi−1)

0, Elsewhere.
(7.2 revisited)

In the sameway, for the fixed pressure ensemblewith fully flexible simulation cell,
we also generate a fresh sample at each iteration of the nested sampling procedure
with Y ≤ Y (χi−1), distributed according to the density of states

� (Y |Y (χi−1)) =
{

g(Y )

χi−1
, Y ≤ Y (χi−1)

0, Elsewhere.
(8.6)

This is achieved by generating samples according to the following pdf

�
(
s,h0, V |Y (

χi−1
)
, P

) =
{

V N δ(det h0−1)
χi−1

, s ∈ [0, 1)3N , Y (s,h0, V |P) ≤ Y
(
χi−1

)

0, Elsewhere.
(8.7)

http://dx.doi.org/10.1007/978-3-319-66769-0_7
http://dx.doi.org/10.1007/978-3-319-66769-0_7
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As in the fixed volume ensemble with a fixed shape simulation cell, we approxi-
mate the partition function (4.75) by

�(N , P,β) � 1

N !h3NV0

(
2πm

β

) 3N
2

Nits∑
i=1

�χi e
−βYi (8.8)

�χi =χ0 (ζi−1 − ζi ) (7.12 revisited)

Here, ζi is the factor by which the integrated density of states χ (Ylim) is reduced
from χ0 at the end of iteration i .

ζn =
n∏

i=1

ti (7.13 revisited)

�
( K

K + 1

)n

. (7.14 revisited)

In Eq. (7.14) we have assumed zero error in integrated density of states χ (Ylim) at
every iteration. Errors in the integrated density of states were discussed in Sect. 7.5.

8.4 Minimum Cell Height Criterion

We now consider finite system size effects introduced by the fully flexible simulation
cell formulation. The fully flexible cell formulation [5] described in Sect. 5.8 was
introduced to remove the finite size effect whereby it may not be possible to arrange
a fixed number of particles in a fixed shape cell into certain crystal structures. In
unfortunate cases this can exclude thermodynamically relevant structures from the
results of our calculation.

In this section we establish the following:

1. For a finite number of particles, there exist simulation cells h such that parallel
faces of the cell are separated by only a few layers of atoms.

2. Moreover, such structures are the statistically most probable state for solids.
3. The resulting system of reduced dimension does not approximate the infinite

fluid in three dimensions.
4. This problem can be solved by the introduction of a “minimum cell height”

parameter.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_7
http://dx.doi.org/10.1007/978-3-319-66769-0_7
http://dx.doi.org/10.1007/978-3-319-66769-0_5
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For a Finite Number of Particles, There Exist Simulation Cells h
Such that Parallel Faces of the Cell are Separated by Only a Few
Layers of Atoms

This statement is very simple to prove. In the fully flexible cell formulation, the unit
volume cell matrix h0 is allowed to become arbitrarily thin. Therefore, for any finite
number of atoms, there exist cells h with parallel faces separated by as few as one
layer of atoms.

Moreover, Such Structures are the Statistically Most Probable State
for Solids

The overwhelming majority of cell shapes h0 are extremely thin, and we are able to
show this very generally.

We begin by introducing a quantity called the “cell height”,ch. The perpendicular
distance between faces of the unit cell made by lattice vectors h(i) and h( j) is given
by

d⊥
h(k) = |det h|∣∣h(i) × h( j)

∣∣ . (8.9)

The cell height is defined as the minimum value of d⊥
h(k) , for the cell at normalised

(unit) volume h0.
ch = min

i=1,2,3

(
d⊥
h(i)
0

)
(8.10)

The cell heightmeasures how thin the cell has become.The integrateddensity of states
for chwas calculated using nested sampling, and is shown in Fig. 8.1. Relative to the
integrated density of states at ch = 0.4, we find χ0.5 = 4.16 × 10−3, χ0.7 = 2.79 ×
10−5, and χ0.9 = 1.77 × 10−7. Evidently, the overwhelming majority of simulation
cells are thin in at least one dimension.

The Resulting System of Reduced Dimension Does not Approximate
the Infinite Fluid in Three Dimensions

Figure8.2 shows the heat capacity of Lennard-Jonesium as calculated with a simu-
lation cell containing 64 atoms at pressure log10 P

∗ = −1.194. In each calculation
we constrained the cell height to be greater than some minimum value, mch. The
transition to a quasi-2D system as mch is reduced is clear. The location of themelting
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Fig. 8.1 Integrated density of states for cell height, shown for ch > 0.4. This graph illustrates that
there are many more simulation cells with small values of ch (8.10) than large values (close to 1).
The cell height is the minimum distance between opposite faces of the unit volume (normalised)
simulation cell. A small value indicates that the simulation cell is thin in at least one dimension.
As fractions of the integrated density of states at ch = 0.4, we find χ0.5 = 4.16 × 10−3, χ0.7 =
2.79 × 10−5, and χ0.9 = 1.77 × 10−7. We conclude that the overwhelming majority of simulation
cells are thin in at least one dimension

transition becomes independent ofmch formch ≥ 0.65, and the location of the evap-
oration transition, for mch ≥ 0.35. This is most likely because the atomic potential
used a fixed radial cutoff (rc = 3σ, see Sect. 8.8) and for any particular h0, at lower
densities there will be fewer periodic self images of each atom within the cutoff. At
low values of mch the system’s behaviour is dominated by the fictitious periodicity
imposed by the boundary conditions.

This Problem can be Solved by the Introduction of a “MinimumCell
Height” Parameter

It is clear from Fig. 8.2 that by imposing a suitable minimum cell height we can
remove the unphysical behaviour from the full flexible cell formulation.

This condition,
ch (h0) > mch (8.11)

leads us to write a new density of states

g
(
Y ′, N , P

) = 1

N !h3NV0

∫ ∞

0
dV V N

∫

ch(h0)>mch

dh0 δ (det h0 − 1)×
∫

dN s δ
(
Y (s,p, P, V,h0) − Y ′).

(8.12)
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Fig. 8.2 Convergence of heat capacity with respect to minimum cell height, mch. The legend on
the right shows the value of mch used in each simulation. A higher value of mch restricts the
system to more cube-like cell shapes, while a low value allows the system to become essentially
flat. Curves show the heat capacity of a periodic system of 64 Lennard-Jonesium particles, where
the cell height (8.10) is constrained to be greater than mch. The system was simulated at a reduced
pressure log10 P

∗ = −1.194 using nested sampling, as in this section. The peak at lower temperature
corresponds to melting, and the peak at higher temperature to evaporation. The transition to an
effective 2D system can be seen clearly as mch is reduced. The location of the evaporation transition
is converged for mch ≥ 0.35, but melting requires a higher mch ≥ 0.65. This makes intuitive sense,
since the atomic potential used a fixed radial cutoff (rc = 3σ, see Sect. 8.8) and for any particular
h0, at lower densities there will be fewer periodic self images of each atom within the cutoff

As always in nested sampling, we seek to produceK samples with configurational
enthalpies distributed according to (8.12). This can be achieved by sampling from
configuration space according to

� (s,h0, V |Y (χi−1) , P) =

⎧
⎪⎪⎨
⎪⎪⎩

V N δ(det h0−1)
χi−1

, s ∈ [0, 1)3N AND
ch (h0) > mch AND
Y (s,h0, V |P) ≤ Y (χi−1) ,

0, Elsewhere.

(8.13)

The density of states (8.12) replaces (8.4) in the partition function (4.71).
We stated in Sect. 5.8 where the fully flexible cell formulation was introduced,

that it is not in general valid to impose an arbitrary pdf over h0. It can be seen from
Tuckerman’s derivation of the pressure virial theorem, that this is not the case: [6],
p. 230. We are not proposing to do that here. Rather, we have changed the limits on
the integration for h0 in the partition function (8.13). The interested reader will see
from Tuckerman’s derivation that this leaves the pressure tensor unchanged.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_5
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8.5 MCMC Exploration in the Fully Flexible Cell
Formulation at Fixed Pressure

In Sects. 8.3 and 8.4we saw that for nested sampling at fixed pressure, at each iteration
we require a new sample distributed as the pdf (8.13).

� (s,h0, V |Y (χi−1) , P) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

V N δ(det h0−1)
χi−1

, s ∈ [0, 1)3N AND

ch (h0) > mch AND

Y (s,h0, V |P) ≤ Y (χi−1) ,

0, Elsewhere.
(8.13 revisited)

This is achieved by the “clone and decorrelate” Algorithm 7.3. The MCMC walk
is a random series of single atom steps, volume steps, lattice shear steps and lattice
stretch steps. We describe these Monte Carlo (MC) steps below.
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Algorithm 8.1 Single atom MC step in fractional coordinates s. Samples from the
enthalpy bounded uniform pdf (8.13). ranf() is a random number uniform in [0,1].

Single atom steps. We attempt to displace one atom at a time, rather than all atoms
at once. It is well established that this leads to more efficient exploration of
configuration space [4]. The single atom MC step is shown in Algorithm 8.1.

Volume steps. Volumes have a weight V N in our target pdf (8.13). Volumes are sam-
pled according to this polynomial distribution by Algorithm 8.2, which imple-
ments a symmetric proposal distribution,α (o → n) = α (n → o), togetherwith
the MC acceptance probability

acc (o → n) = min

[
1,

(
Vn

Vo

)N
]

. (8.14)

We can see that applying this gives us the correct stationary distribution by
comparing it with the detailed balance Eq. (7.15).

N (o) α (o → n) × acc (o → n) = N (n) α (n → o) × acc (n → o)
(7.15 revisited)

Since we are using a symmetric proposal distribution, α (o → n) = α (n → o),
(7.15) implies

acc (o → n)

acc (n → o)
= N (n)

N (o)
. (7.16 revisited)

Therefore the MC acceptance probability (8.14) leads to

N (V ) ∝ V N . (8.15)

For reasons explained in Sect. 8.6 we also impose a maximum value for the
volume, V < Vu. That upper bound, Vu is chosen to easily contain a portion of
the ideal gas phase.

http://dx.doi.org/10.1007/978-3-319-66769-0_7
http://dx.doi.org/10.1007/978-3-319-66769-0_7
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Algorithm 8.2 Volume MC step. Samples generated according to the enthalpy
bounded polynomial pdf (8.13). ranf() is a random number uniform in [0,1].

Lattice shape moves. We explore the surface det h0 = 1, subject to the minimum
cell height criterion discussed in Sect. 8.4, ch (h0) > mch. This minimum cell
height criterion excludes quasi one and two-dimensional systems that would
otherwise be an unavoidable artefact of simulating a finite size system using a
fully flexible simulation cell. Our MC strategy employs both shear and stretch
moves.
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Shearmoves. A simulation cellwith side vectorsa,b and cwas shown inFig. 5.3. The
volume of the cell is given by |a · b × c|: the area of the face in the b − c plane,
multiplied by the height of the cell perpendicular to that face. Adding vectors to
a that lie in the b − c plane does not change the height of the cell perpendicular
to the b − c face. Therefore, we may apply such shear deformations to the unit
cell without changing its volume. Note that there is nothing special about the a
vector, a · b × c = b · c × a = c · a × b, so we can apply similar shearing MC
moves to any of the lattice vectors.
Like the single atom MC steps, this MC scheme samples uniformly below the
configurational enthalpy limit. We also enforce the minimum cell height condi-
tion introduced in Sect. 8.4.
The resulting MC strategy is best expressed in algorithmic form, which is given
in Algorithm 8.3.

http://dx.doi.org/10.1007/978-3-319-66769-0_5
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Algorithm 8.3 Lattice shear MC step. Samples the surface det h0 = 1 according to
the enthalpy and cell height bounded uniform pdf (8.13). ranf() is a random
number uniform in [0,1].

Stretch moves. In the stretch MC move we first generate a uniform random number
u from the range [−step_l_st, step_l_st]. Second, we pick two cell vectors at
random, and then stretch one by a factor eu , and the other by e−u . The proposal
is reversible and we use the following acceptance probability

acc (o → n) =
{
1, ch (h0) > mch AND Y (h0|P, V, s) ≤ Y (χi−1)

0, Elsewhere.
(8.16)

For clarity, the complete lattice stretch MC step is given in Algorithm 8.4.
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Algorithm 8.4 Lattice stretch MC step. This algorithm samples the surface
det h0 = 1 according to the enthalpy and cell height bounded uniform pdf (8.13).
ranf() is a random number uniform in [0,1].

8.6 Initialising Nested Sampling at Fixed Pressure

The configuration space for particles in a simulation cell of variable volume, where
the volume is allowed to vary without limit, is not a compact space. To generate the
initial live samples for nested sampling we require a compact configuration space,
and therefore we must impose a maximum allowed volume on our simulation cell.
A sensible way to do this is to place the boundary well inside the region corre-
sponding to the ideal gas. Having chosen a contour well inside the ideal gas, we can
safely neglect the contribution made to statistical quantities by the excluded ideal
gas configurations, provided kBT � PVu . This is described in Sect. 8.7.

From the very start of a nested sampling calculationwe require samples distributed
as (8.13)withYlim = ∞, andwith the added constraintV < Vu. ThevolumeboundVu

is chosen to be so large that it is, effectively, independent of the system, comfortably
within the ideal gas phase. An example value is Vu = N × 107Å3. The time for this

part of the calculation scales as log
(
Vu
Vt

)
where Vt corresponds to the highest volume

at which the gas undergoes a phase transition. The fractional coordinates s should
be initialised as univariate random numbers in the interval [0, 1). Lattice matrices
h0 are generated by applying Algorithms 8.3 and 8.4 in a random sequence, starting
from a cube. Step lengths of 1 can be used for both these algorithms at this point.
Initial volumes may be generated by repeat application of Algorithm 8.2, starting
from any allowed volume. It has been found that a good choice of starting volume is
the mean of the distribution � (V ) ∝ V N : N+1

N+2Vu. A good choice of step length for

volume initialisation has been found to be Vu
N .
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8.7 Partition Function and Thermodynamic Variables

The partition function we seek to calculate is

�̃ (N , β, P,mch) = 1

N !h3N V0
∫
ch(h0)>mch dh0δ (det h0 − 1)

(
2πm

β

) 3N
2 ×

∫

ch(h0)>mch
dh0δ (det h0 − 1)

∫ ∞
0

dV V N
∫

(0,1)3N
ds e−βY (s,P,V,h0).

(8.17)
The factor of 1∫

ch(h0)>mch dh0δ(det h0−1) ensures that the partition function is indepen-

dent of mch in the ideal gas limit. Above some sufficiently large volume Vu we
approximate the system as an ideal gas, neglecting interatomic interactions. This
corresponds to the condition U (s,h0, V ) � PV . In this approximation the volume
integral in (8.17) is the sum of two parts

�̃(N , P,β,mch) ≈ 1

N !h3NV0

(
2πm

β

) 3N
2

[
�NS(N , P,β, Vu,mch)∫

ch(h0)>mch dh0δ (det h0 − 1)

+
∫ ∞

Vu

dVV Ne−βPV
∫

(0,1)3N
ds

] (8.18)

where

�NS(N , P,β, Vu,mch) =
∫

ch(h0)>mch
dh0δ (det h0 − 1) ×

∫ Vu

0
dVV N

∫

(0,1)3N
ds e−β[U (s,h0,V )+PV ].

(8.19)

We calculate �NS using the nested sampling method described in this chapter. The
nested sampling approximation for �NS is

�NS(N , P,β, Vu,mch) ≈
Nits∑
i=1

(χ̃i−1 − χ̃i ) e−βYi (8.20)

≈
Nits∑
i=1

�χ̃i e
−βYi (8.21)

where χ̃i ≈ χ̃0
( K

K+1

)i
, χ̃0 = V N+1

u
N+1

∫
ch(h0)>mch dh0δ (det h0 − 1), and�χ̃i ≈ χ̃i−1 −

χ̃i .
Let us now consider the second integral in Eq. (8.18), which corresponds to the

ideal gas. For the ideal gas
∫
(0,1)3N ds = 1 and so we have
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∫ ∞

Vu

dVV Ne−βPV
∫

(0,1)3N
ds =

∫ ∞

Vu

dVV Ne−βPV

= 1

(βP)N+1
�(N + 1,βPVu),

(8.22)

where �(N + 1,β pVu) is the upper incomplete Gamma function. This form is
closely related to the partition function for hard spheres [7, 8].

We observe that �(N + 1,βPVu) → 0 in the limit kBT/PVu → 0. Therefore,
provided kBT � PVu , we have1

�̃(N , P,β,mch) ≈ 1

N !h3NV0

(
2πm

β

) 3N
2 �NS(N , P,β, Vu,mch)∫

ch(h0)>mch dh0δ (det h0 − 1)
. (8.23)

Note that
∫
ch(h0)>mch dh0δ (det h0 − 1) cancels between the denominator of (8.23)

and χ̃0 in the approximation to �NS (8.21). For convenience, we write (8.23) as

�̃(N , P,β,mch) ≈ 1

N !h3NV0

(
2πm

β

) 3N
2

Nits∑
i=1

�χi e
−βYi (8.24)

where χi ≈ χ0
( K

K+1

)i
, χ0 = V N+1

u
N+1 , and �χi ≈ χi−1 − χi .

One can always assert the condition kBT � PVu , and in practice it is easy to find
values of Vu suitable for physically relevant conditions. As stated in Sect. 8.6, we
found V0 = 107NÅ3 to be suitable for all conditions considered in this thesis.

From (8.24) we obtain the expected enthalpy

〈H〉 = − ∂ ln�(N , P,β)

∂β

=
(
3N

2

)
1

β
+ 〈Y 〉

(8.25)

and the heat capacity at constant pressure

CP = − kBβ2 ∂〈H〉
∂β

(8.26)

=3NkB
2

+ kBβ2
(〈Y 2〉 − 〈Y 〉2) (8.27)

where

1Although Vu appears in Eq. (8.23) as an argument of �NS but not of �̃, there is no inconsistency
because (8.23) is only valid in the limit kBT/PVu → 0 where the value of �NS is independent of
Vu .
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〈Y 〉 =
∑Nits

i=1 �χi Yi e−βYi

∑Nits
i=1 �χi e−βYi

,

〈Y 2〉 =
∑Nits

i=1 �χi Y 2
i e−βYi

∑Nits
i=1 �χi e−βYi

.

(8.28)

This form (8.28) naturally does not depend on the contribution made by the low
density configurations omitted from the NS calculation, or explicitly on the value
of mch. We used Eq. (8.28) when calculating the heat capacities presented in this
thesis.

8.8 Lennard-Jonesium

To validate the method described in this chapter, we applied it to the Lennard-
Jonesium fluid. The Lennard-Jonesium potential is given by

U (q1,q2, . . . ,qN ) = uc +
∑
i≥ j

ui j

ui j =
⎧
⎨
⎩
4ε

[(
σ
ri j

)12 −
(

σ
ri j

)6
]

, ri j ≤ rc

0, Elsewhere

uc = 8π εσ3

3

N 2

V

[
1

3

(
σ

rc

)9

−
(

σ

rc

)3
]

(8.29)

The term uc corresponds to a mean field approximation, which is applied beyond
the radial cutoff rc. That is, we assume that particle mass is distributed uniformly
beyond the radial cutoff. Throughout this section we use the standard definitions for
reduced pressure and temperature: P∗ = Pσ3

ε
, T ∗ = kBT

ε
.

8.8.1 Simulation Details

The calculation was performed using 64 atoms, with rc = 3σ, and a mean-field long-
range correction, as inEq. (8.29).Aminimumcell height ofmch = 0.9was employed
throughout. MCMC trajectories were a random sequence of atom, volume, lattice
shear and lattice stretch MC moves. The MC move type was selected at random for
each step, using a ratio 64:10:1:1 respectively.

EachMC step type had its own step length. These step lengths were updated every
K
2 iterations,which corresponds to a reduction of logχ to approximately 1

2 logχ. Step
lengths were adjusted to obtain an acceptance rate of 0.25 ± 0.05, using separate
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trajectories not used in the rest of the calculation. The theoretically optimal value
for sampling from the canonical distribution for a potential energy that is the sum of
3N + 1 independent variables is 0.23 [9]. The acceptance rate 0.25 is purposefully
chosen to be slightly larger than 0.23, since the acceptance rate of all MC proposals
decreases as the space becomes constricted between step length updates.

All calculations were performed using K = 640 live points. Fresh samples were
decorrelated using a random walk of length L . For melting and evaporation, a walk
length L

N = 2.58 × 103 was more than sufficient, giving good agreement with the
literature values above the triple point.

Equilibrating directly between the gas and the solid is difficult. The following
strategy was used to extrapolate to very large walk lengths

(
L
N → ∞)

:

1. Repeat the calculation three times, using L
N ∈ {

2.58 × 102, 2.58 × 102.5, 2.58 × 103
}
,

obtaining sublimation temperatures {T0, T1, T2}.
2. Perform a least squares fit of the pairs

(
1
Li

, Ti
)
using a straight line.

3. Take the temperature at the intercept, T
(
1
L = 0

)
.

An example of this interpolation is shown in Fig. 8.3.
In Sect. 5.5 we saw that the heat capacity is proportional to the variance of the

enthalpy

CP = kBβ2Var (H (q,p, P, V )) . (5.9 revisited)

0 2 × 10−5 4 × 10−5 6 × 10−5

1
L

0.55

0.6

0.65

T
∗ s

log10 P ∗ = −2.8094
T ∗
s = -492.41645/L +0.68632101

log10 P ∗ = −3.5
T ∗
s = -660.18607/L +0.56807159

Fig. 8.3 Convergence of sublimation temperature T ∗
s with respect to walk length L . The converged

value is taken to be the intercept T ∗
s

( 1
L = 0

)
. All calculationswere performedwith N = 64 particles

in the simulation cell and K = 640 live points

http://dx.doi.org/10.1007/978-3-319-66769-0_5
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Sublimation, melting and evaporation are all first order phase transitions between
phases with markedly different enthalpies. As a result, the variance of the enthalpy
exhibits a peak at such phase transitions, where both phases have appreciable proba-
bility. At each (fixed) pressurewe identified the temperature of these phase transitions
by the corresponding peaks in the heat capacity. Above the critical point, where there
is no first order phase transition, there is still a pointwhere the variance of the enthalpy
is largest and the heat capacity has a peak. The line of such maxima above the critical
point is called a Widom line [10]. Therefore the critical point does not correspond
to the end in the line of maxima in the heat capacity.

Along the evaporation line the density distribution is bimodal, with formally zero
probability of densities between those corresponding to the two phases. At the critical
point, this probability distribution is still bimodal, but intermediate densities, between
the two modes, have a formerly non-zero probability, even in the thermodynamic
limit [11]. At the critical point it is the mean value of the density distribution that
is reported by the equation of state. To identify the point where the evaporation line
ends and the Widom line begins we examined the distribution for volume at the
temperature corresponding to the peak in the heat capacity.

8.8.2 Results

Literature values for the P − T phase diagram of Lennard-Jonesium are shown in
Fig. 8.4 and summarised in Table8.1.

In Fig. 8.5 we present the P − T phase diagram calculated using nested sampling.
For comparison, a selection of the literature values given in Fig. 8.4 are also shown.
Note that we also obtain the first part of theWidom line, corresponding to maxima of
the heat capacity, CP . At higher temperatures the Widom line is indiscernible from
noise.

At pressures in the region of the triple point and below, equilibriumoccurs between
the solid and gas phases. Where this is the case, substantial differences in the phase
transition temperatures are observed; the gas is stabilised at lower temperatures and
higher pressures. In contrast to the nested sampling calculations, the literature values
were almost all performed using a radial-cutoff equal to the radius of the largest
sphere that will fit inside the simulation cell; a density dependent cutoff. For fixed
cutoff values (rc = xσ) it is well known that varying rc can change the relative Gibbs
free energies of the solid and liquid phases, altering the melting temperature by as
much as 2% [13]. At a typical sublimation pressure, log10 P

∗ = −3.42, with 500
particles in a cubic cell, the densities of the solid and gas phases [17] correspond
to rc = 4.00σ in the solid phase, and rc = 46.8σ in the gas phase. Such a large
difference will quite reasonably be expected to affect the sublimation temperature
by between 3 and 9%. The differences observed are consistent with the hypothesis
that the major source of error in the sublimation temperature is the cutoff scheme:
the difference is positively correlated with the density difference between the solid



80 8 Nested Sampling for Materials

Ta
bl
e
8.
1

Su
m
m
ar
y
of

lit
er
at
ur
e
fo
r
P

−
T

ph
as
e
tr
an
si
tio

ns
in

L
en
na
rd
-J
on
es
iu
m

as
sh
ow

n
in

Fi
g.
8.
4.

C
ol
um

ns
:
ph

as
e
tr
an
si
tio

n;
nu

m
be
r
of

pa
rt
ic
le
s
in

si
m
ul
at
io
n
ce
ll

(N
);
ra
di
al
cu
to
ff

(r
c)
;l
on

g-
ra
ng

e
co
rr
ec
tio

n
sc
he
m
e
(L
R
C
);
sh
ap
e
of

si
m
ul
at
io
n
ce
ll;

m
et
ho

d
us
ed
.F

or
ra
di
al
cu
to
ff
di
st
an
ce
,a
ll
st
ud

ie
s
ex
ce
pt

M
as
tn
y
an
d
de

Pa
bl
o
[1
3]

us
ed

th
e
ra
di
us

of
th
e
la
rg
es
ts
ph

er
e
th
at
w
ill

fit
in
si
de

th
e
si
m
ul
at
io
n
ce
ll
(R
O
L
S)

R
ef
er
en

ce
T
ra
ns
it
io
n

N
r c

L
R
C

C
el
ls
ha

pe
M
et
ho

d

K
of
ke

[1
2]

E
va
po

ra
tio

n
L
iq
ui
d/
G
as
:

25
6/
25
6

R
O
L
S

M
ea
n-
fie
ld

C
ub
e

T
he
rm

od
yn
am

ic
in
te
gr
at
io
n
al
on
g

ev
ap
or
at
io
n
lin

e

M
as
tn
y
an
d
de

Pa
bl
o
[1
3]

M
el
tin

g
20
48

6σ
M
ea
n-
fie
ld

N
ot

sp
ec
ifi
ed

T
he
rm

od
yn
am

ic
in
te
gr
at
io
n

M
cN

ei
l-
W
at
so
n
an
d
W
ild

in
g
[1
4]

M
el
tin

g
10
8,

25
6,

50
0

R
O
L
S

M
ea
n-
fie
ld

C
ub
e

Ph
as
e
sw

itc
h
M
on

te
C
ar
lo

A
hm

ed
an
d
Sa
du
s
[1
5]

M
el
tin

g
So

lid
:5

00
Fl
ui
d:

43
2

R
O
L
S

M
ea
n-
fie
ld

C
ub
e

G
ib
bs
-D

uh
em

in
te
gr
at
io
n

A
gr
aw

al
an
d
K
of
ke

[1
6]

M
el
tin

g,
su
bl
im

at
io
n

So
lid

/F
lu
id
:

50
0/
43
2

So
lid

/G
as
:

10
8/
12
8

R
O
L
S

M
ea
n-
fie
ld

So
lid

:C
ub
e

L
iq
ui
d/
G
as
:

T
ru
nc
at
ed

O
ct
ah
ed
ro
n

G
ib
bs
-D

uh
em

in
te
gr
at
io
n

B
ar
ro
so

an
d
Fe
rr
ei
ra

[1
7]

M
el
tin

g,
su
bl
im

at
io
n

50
0

R
O
L
S

So
lid

/F
lu
id
:

A
ve
ra
ge

of
m
ea
n-
fie
ld

an
d

FC
C
/

M
ea
n-
fie
ld

N
ot

sp
ec
ifi
ed

T
he
rm

od
yn
am

ic
in
te
gr
at
io
n

A
pt
e
an
d
K
us
ak
a
[1
8]

Su
bl
im

at
io
n

50
0

R
O
L
S

M
ea
n-
fie
ld

C
ub
e

T
he
rm

od
yn
am

ic
in
te
gr
at
io
n



8.8 Lennard-Jonesium 81
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T ∗
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∗

McNeil-Watson and Wilding (2006): 108 particles

McNeil-Watson and Wilding (2006): 256 particles

McNeil-Watson and Wilding (2006): 500 particles

Kofke (1993)

Ahmed and Sadus (2010)

Agrawal and Kofke (1995)

Mastny and de Pablo (2007)

Barroso and Ferreira (2002)

Apte and Kusaka (2006)

Fig. 8.4 Literature values for Lennard-Jonesium P − T phase transitions. These calculations were
performed with different radial cutoff schemes, long-range corrections and numbers of particles in
the simulation cell. The most important differences are summarised in Table8.1

and gas phases. That is, the difference in the sublimation temperature is negatively
correlated with pressure.

At pressures above the triple point the nested sampling results lie within the spread
of the literature values. This strongly suggests that finite size effects caused by only
having N = 64 particles in the simulation cell do not dominate the error.

8.8.2.1 Identifying the Critical Point

Weidentify the critical point (Pc, Tc)by examining the volumedistribution atmaxima
of the heat capacity CP (P, T ). Along the evaporation curve, T < Tc, a first order
phase transition occurs between the liquid and gas phases. Correspondingly, the
volume distribution at this point has two separate modes of equal weight. At the
critical point, intermediate densities, between those corresponding to the two phases,
have formerly non-zero probability. Along the Widom line T > Tc there is no first
order phase transition and the volume distribution smoothly transitions from the
bimodal distribution at the critical point, to a unimodal distribution.
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Fig. 8.5 P − T phase diagram for Lennard-Jonesium from nested sampling (NS). These calcu-
lations were performed using 64 atoms, rc = 3σ, and a mean-field long-range correction, as in
Eq. (8.29). All calculations were performed usingK = 640 live points. The walk length (L) used to
decorrelate fresh samples is given in the legend. Aminimumcell height ofmch = 0.9was employed
throughout. Convergence of sublimation peaks ( LN → ∞) is described in the text. Good agreement
with the literature is observed at pressures above the triple point. At pressures in the region of the
triple point and below, where equilibrium occurs between the solid and gas phases, substantial dif-
ferences are observed, stabilising the gas phase. As discussed in the text, this is probably the result

of the differing rc values. The literature values use rc ∝ V
1
3 , which is very different in the solid and

gas phases. In contrast, these nested sampling calculations were performed using rc = 3σ. We find
the critical point to be in the range −0.86480 < log10 P

∗
c < −0.84286, 1.3138 < T ∗

c < 1.3273.
This is in agreement with literature values of the critical point [12, 19]. Note that we also obtain
the first part of the Widom line, corresponding to a maximum of the heat capacity, CP . At higher
temperatures the Widom line is indiscernible from noise

Our simulations were performed with only 64 particles and we did not perform a
finite-size scaling analysis. For such small system sizes the two modes of the volume
distribution are rather broad, and the critical point is difficult to estimate, since the
two modes meet, combining continuously as the temperature is raised along the
evaporation line. Instead, we approximate the critical point by the following upper-
bound, which is easier to estimate: we approximated the critical point as that point
at which the minimum between the two maxima in the volume distribution vanishes.
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We find the critical point to be in the range −0.86480 < log10 P
∗
c < −0.84286,

1.3138 < T ∗
c < 1.3273. This is consistent with the literature values of the critical

point [12, 19].
The process of identifying the critical point is illustrated in Fig. 8.6.

8.8.2.2 The Solid Region

It is well known that solid Lennard-Jonesium forms close-packed face-centered cubic
(FCC) and hexagonal close-packed (HCP) structures [20]. The HCP and FCC struc-
tures differ only in the stacking of adjacent layers. In a layer of close-packed spheres
there are two equivalent sets of interstitial sites intowhich one can put another layer of
close-packed spheres. In HCP the layers are arranged ABABAB, each second layer
sitting directly above next-nearest layer. In FCC, layers are arranged ABCABC,
where the third layer has been positioned into the other interstitial set.

At low temperatures and moderate pressures the solid forms a HCP lattice, with
the FCC structure becoming stable at higher temperatures.2 At high pressures, the
FCCstructure is stable at all temperatures [22]. The zero-temperature phase transition
occurs at log10 P

∗ = 2.94 [23]. This is far above the pressure range containing the
typical phase diagram that we simulated. Furthermore, the stability of the HCP
structure over FCC is only marginal; even at zero pressure the lattice energies of
the HCP and FCC structures have a fractional difference of order 10−4 [23].

There are two consequences of these facts that are relevant to this study. First, it
is very difficult to resolve the free energy difference of the two phases with a small
number of particles. With a small number of particles, the enthalpy distribution is
wider than the enthalpy difference between the two phases. Second, failure to resolve
the correct solid phase at high temperatures has little or no effect on themelting curve,
since the free energy difference between the solid and the liquid is far larger than the
free energy difference between the solid phases.

We found that with K = 640 live points, we could not reliably resolve HCP and
FCC structures of the solid phase. With K = 6400, we find that the HCP structure
is stable at low temperatures, in agreement with the literature. At high temperatures,
we do not observe the simple FCC structure. Rather, we observe a stacking defect
phase with mixed ABA and ABC stacking of layers. This structure was identified by
looking at the pdf for the bond order parameter Q6 [24], which measures the angular
arrangement of atoms in a system. The values of Q6 for FCC and HCP are 0.57452
and 0.48476 respectively. The mixed phase takes discrete intermediate values for
Q6, corresponding to stacking faults.

The observation of a stacking fault phase is highly suggestive, and demands closer
examination. Let us begin by constructing the following next-nearest-neighbour
model of layers in a perfect crystal. We assume that each layer mainly interacts
with those exactly adjacent to it and only weakly with the two next nearest layers

2Note that the behaviour of Lennard-Jonesium is different to that of a harmonic-crystal, where
nearest neighbour atoms are connected by springs: at zero pressure the harmonic-crystal slightly
favours the FCC lattice over the HCP lattice [21].
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Fig. 8.6 These four volume
distributions are taken at
maxima of the heat capacity
CP (P, T ). They show
Lennard-Jonesium at
ascending pressures from
lowest to highest. As
described in the text,
approached from along the
evaporation curve, we
approximate the critical point
as that point at which the
minimum between the two
modes vanishes. We find the
approximate critical point to
be between Figures (b) and
(c). That is, we find the
approximate critical point to
be in the region −0.86480 <

log10 P
∗
c < −0.84286,

1.3138 < T ∗
c < 1.3273. This

is in agreement with
literature values of the
critical point [12, 19]
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either side. The energy of a layer is determined by whether it is in the centre of a
stacking ABA or ABC. Relative to any particular layer, the stacking of each layer can
be either A, B or C. Stackings ABA, BCB and ACA are related by symmetry oper-
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ations and therefore have the same energy. Stackings BAB, CBC and CAC are also
equivalent. The same is true for any combination ABC, BCA, CAB. Furthermore,
stackings ABC and CBA are also related by a symmetry operation, and are equiva-
lent. Therefore there are two states for the central layer, ABA and ABC, each with
a multiplicity of 6. Since in Lennard-Jonesium HCP (ABA) has lower energy, we
assign this state energy 0 and FCC (ABC) energy ε. Accounting for the multiplicity
of the stacking faults, the partition function for a single layer is therefore

Z1 = 6 (1 + exp (−βε)) . (8.30)

For M layers we have

ZM = 6M

M !
[
1 + exp (−βε)

]M
. (8.31)

For a (roughly cubic) system of N particles with density ρ we have M = (ρN )
1
3 ,

ε = ε0 (ρN )
2
3 . Here ε0

2 is the energy per unit area and the surface area of each layer

is 2 (ρN )
2
3 . Substituting for M and ε in (8.31), and calculating the expected number

of ABC layers for our system of N particles, we obtain

〈U 〉
ε0

= − 1

ε0

∂ log ZM

∂β
(8.32)

= (ρN )
1
3

e−βε0(ρN )
2
3

1 + e−βε0(ρN )
2
3
. (8.33)

For sufficiently small temperatures (8.33) approaches zero, irrespective of the
other parameters. Similarly, for sufficiently large N we expect no ABC layers, at all
finite β and positive ρ. This supports the hypothesis that the mixed (defect phase) is
an artefact of small system size.

Pronk and Frenkel [25] and Frenkel and Ladd [26] observed similar behaviour in
small simulations of the hard sphere model, where the macroscopically stable FCC
phase competes with the randomly stacked HCP (rHCP) phase. Indeed, in [25] the
authors calculated the relative stability of the FCC and rHCP phases under fixed
volume conditions, at a packing fraction η = 0.5760. By explicitly calculating the
interfacial free energy between HCP and FCC phases at this density, they conclude
that the rHCP phase is stable for crystals with fewer than a thousand particles per
plane, while the FCC structure is stable for larger crystals.

8.9 A Binary Lennard-Jonesium Alloy

We investigated a binary Lennard-Jonesium alloy. The two species have equal atomic
radii (equalσ) but different interaction strengths εAA, εAB, εBB. The potential is shown
in Eq. (8.34).
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U (q1,q2, . . . ,qN ) = uc +
∑
i≥ j

ui j

ui j =
⎧
⎨
⎩
4εi j

[(
σ
ri j

)12 −
(

σ
ri j

)6
]

, ri j ≤ rc

0, Elsewhere

uc = 8π σ3

3V

[
N 2
AεAA + 2NANBεAB + N 2

BεBB
] [

1

3

(
σ

rc

)9

−
(

σ

rc

)3
]

(8.34)

For the binary system we introduced an additional MCmovement class: AB atom
swaps. Here, two atoms are selected at random: one of type A, one of type B. An
attempt is then made to exchange the coordinates of those two atoms, accepted with
probability

acc (o → n) =
{
1, Y (n) ≤ Ylim,

0, Elsewhere.
(8.35)

This MC move is given in Algorithm 8.5.

Algorithm 8.5 AB atom swap MC step for binary systems. Two atoms are chosen
at random: one of type A, the other of type B. An attempt is made to exchange their
coordinates. The swap is accepted if the new state has Y ≤ Ylim.
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8.9.1 Simulation Details

Our simulation used equal numbers of A and B particles: NA = 32, NB = 32. We
used the following interaction strengths: εAA = 1

2 , εAB = 1, εBB = 1
2 . The radial

cutoff was fixed, rc = 3σ.
MCMC trajectories were random sequences of atom, volume, lattice shear, lattice

stretch, and AB swap MC moves. The MC move type was selected at random for
each step, using a ratio 64:10:1:1:1 respectively. All MC proposals (except AB atom
swaps) had a separate MC step length. These step lengths were updated exactly as
described in Sect. 8.8.1, every K

2 iterations, to obtain an acceptance rate of 0.25 ±
0.05.

Fresh samples were decorrelated from their clones using a random walk length
L

NA+NB
= 2.58 × 103. Most pressures were simulated using K = 640 live points,

although some pressures were simulated using K = 5120: those points are clearly
marked on Fig. 8.7. A minimum cell height of mch = 0.9 was used for all calcula-
tions. We applied the same methodology as described in Sect. 8.8.

8.9.2 Results

Figure8.7 shows the phase diagram for this binary Lennard-Jonesium system. An
order-disorder transition occurs at T ∗ = 2.53 × 10−1 ± 1.15 × 10−2. The transition
is between ordered and disordered solid phases of very nearly the same volume,
and is therefore almost temperature independent. Throughout this section we use
P∗ = Pσ3

εAB
, T ∗ = kBT

εAB
.

The radial distribution function of the system was calculated either side of the
mixing transition, at log10 P

∗ = −2.398, T ∗ ∈ {0.172, 0.388}. When calculating the
radial distribution function, periodic images were ignored. Consequently the calcu-
lated radial distribution function goes to zero, rather than one, at large radii. The
radial distribution functions, shown in Fig. 8.8, indicate that the phase transition cor-
responds to a loss of long range order with respect to positions of A and B atoms on
sites of the same lattice.

As in single-speciesLennard-Jonesium, small systemsize precluded the formation
of pure structural phases. For this binary systemwe observed stacking defects, even at
0 K. Nevertheless the ordering of atoms on the close-packed structure was consistent.
Two phases are formed: phases I and II. A phase transition occurs between phases I
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Fig. 8.7 Phase diagram of a binary Lennard-Jonesium alloy. NA = 32, NB = 32, εAA = 1
2 ,

εAB = 1, εBB = 1
2 , σi j = σ ∀ (i, j). All calculations used mch = 0.9 and a random walk length

L
NA+NB

= 2.58 × 103. Each pressure used either 640 or 5120 live points, as indicated in the legend.

There is a solid-solid chemical ordering transition at T ∗ = 2.53 × 10−1 ± 1.15 × 10−2. This mix-
ing transition corresponds to a loss of long range ordering of A and B atoms on sites of the same
lattice. The site-ordered solid has two phases, I and II. Both of these phases are close-packed, with
atoms arranged ABAB in one dimension. A phase transition occurs between phases I and II at zero
temperature within the pressure range 0.386 < log10 P

∗ < 0.561. In phase I, atoms are arranged
AABB in the other two dimensions, whereas in phase II the atoms are arranged into sheets of A
and B atoms. This allows phase II to become slightly thinner in the dimension normal to the planes,
which stabilises phase II at high pressures. The two phases are shown in Fig. 8.9

and II at zero temperature within the pressure range 0.386 < log10 P
∗ < 0.561. The

regions occupied by each are shown on the phase diagram, Fig. 8.7. In both phases,
atoms are arranged ABAB along one dimension and in columns of pure A or B atoms
in another. In phase I, those columns are arranged in a pattern AABB, whereas in
phase II the columns are arranged into planes of pure A or B atoms. Both phases are
shown in Fig. 8.9. Our parameters favour adjacency of A and B atoms. The AABB
pattern allowsmaximal adjacency of A and B atoms, lowering the potential energy of
configurations corresponding to phase I. Conversely, arranging the atoms into planes
reduces the lattice spacing between those planes in phase II and hence reduces the
volume overall. This stabilises phase II at high pressures.
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Fig. 8.8 Radial distribution functions of a binary Lennard-Jonesium system exhibiting a mix-
ing transition. The potential energy function parameters for this binary Lennard-Jonesium alloy
are described in the text. The mean radial distribution function was calculated from the nested
sampling output either side of the mixing transition shown in Fig. 8.7, at log10 P

∗ = −2.398,
T ∗ ∈ {0.172, 0.388}. These radial distribution functions are centred on A-type atoms. The dot-
ted line indicates the radial distribution function for A-A pairs, whilst the continuous line indicates
the radial distribution function for A-B pairs. First, the radial distribution functions go nearly or
exactly to zero between peaks, and the peaks are at the same positions for the two temperatures. This
indicates that both phases correspond to solids, and that those solids have the same lattice structure.
At temperatures above the transition (red lines), we can see that (apart from short range ordering) the
A and B atoms are equivalent. Below the transition (blue lines) there is a clear difference between
the two atom types. This indicates that the transition corresponds to a loss of long range order with
respect to positions of A and B atoms on sites of the lattice

8.10 NPB Embedded Atom Model for Aluminium

We applied nested sampling to the NPB embedded atom model (EAM) potential of
aluminium [3] to demonstrate how nested sampling can be applied to many body
potentials that correspond reasonablywell to physical systems. Figure8.10 shows the
phase diagram as calculated by nested sampling for this interatomic potential. The
MCMC method described in Chap.8 was used for the nested sampling calculations.
Also shown are experimental results for the evaporation and melting transitions, as
well as the critical point. Phase transitions were obtained from maxima of the heat
capacity, and the critical point was obtained using the methodology described in
Sect. 8.8.2.1. Most of these calculations used K = 804 samples with a walk length
L = 3120. More sampling was required to resolve the solid-solid transitions. For
those calculations K = 6432 samples were used, with a walk length L = 15120. A
minimum cell height mch = 0.65 was used for all of the calculations.

Nested samplingobtained the same location for the evaporation line and the critical
point as Gibbs ensemble Monte Carlo [27]. Maxima of the heat capacity along the
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Fig. 8.9 Binary alloy phases I and II. In both phases, atoms are arranged ABAB in one dimension
(right side), and into columns of pure A or B in another (left side). In phase I columns of pure
A and B are arranged into a pattern AABB, whereas in phase II the columns form planes of pure
A or B. Our parameters favour adjacency of A and B atoms. The AABB pattern allows maximal
adjacency of A and B atoms, lowering the potential energy of configurations corresponding to phase
I. Conversely, arranging the pure atoms into planes, which strongly attract one another, reduces the
lattice spacing between those planes in phase II and hence reduces the volume overall. For this
reason phase II is stable at high pressures

evaporation transition are joined by a red line. A section of the Widom line above
the critical point was also resolved. Those points are not connected by the red line.

The nested sampling results agree well with the experimental values for the melt-
ing transition, and show reasonable agreement with empirical results for the critical
point.

Empirically, aluminium exhibits FCC, HCP and BCC structures in the solid phase
at 0 K. The FCC structure is stable at low pressures, and a transition to HCP occurs
at 217GPa [28]. A further transition from HCP to BCC occurs at between 360 and
565GPa [29–31]. We can see the structure predicted by the NPB–EAM potential
within the solid region at zero temperature is qualitatively incorrect. There is no
pressure for which the HCP phase is stable. The NPB–EAM potential does identify
the correct phases and in the correct order at finite temperatures, but at pressures a
fraction of the experimental values.

We conclude that the NPB–EAM potential is successful in that it identifies rea-
sonable values for the melting transition, and qualitatively correct structural phase
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Fig. 8.10 Phase diagram for aluminium with the NPB–EAM potential. Red symbols show the
nested sampling results, with error bars calculated as the width at half maximum of the peaks on
the heat capacity curves. The estimates of the critical points from the literature were obtained as
follows: a Gibbs ensemble Monte Carlo [32] simulation of NPB-EAM potential [27] b estimate
from experiments [33], c estimate from experiments [34]. Black symbols show experimentalmelting
points measured with Bridgmann cell experiments [35], with Diamond anvil cell measurements
(DAC e [36] and DAC f [37]) and Shock wave experiments [38]. The evaporation temperatures
from “Bhatt et al.” correspond to the same paper as the critical point (a), and were also calculated
by Gibbs ensemble Monte Carlo [32] with the NPB-EAM potential

transitions at finite temperature in the solid region. The presence of the Widom line
and the solid-solid transitions were unexpected at the time we performed the calcu-
lation. Nested sampling resolved each of these virtually without guidance.

8.11 Comparison to Parallel Tempering

The calculations presented in this section were performed by Lívia Bartók-Pártay.
The performance of nested sampling was compared to that of parallel temper-

ing. Parallel tempering is a state of the art temperature scheduling algorithm, that
simultaneously equilibrates sampling at a series of temperatures. At each tempera-
ture, Metropolis Monte Carlo [39] is used to explore the isobaric isothermal distribu-
tion (4.54). Parallel tempering hugely accelerates exploration of those distributions at
low temperatures by periodically attempting to swap current configurations between
different temperatures. This allows the sampler to escape local free energy minima.
These swaps are accepted according to the Metropolis-Hastings rule for the joint
distribution

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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Fig. 8.11 Comparison of the convergence of nested sampling and parallel tempering. Details of
these calculations are given in the text. Where no data is shown for the melting transition for
parallel tempering, the solid phase had not yet been discovered. Evaporation is converged for
nested sampling using fewer than 7.2 × 107 enthalpy evaluations, and the melting transition is
converged using 2.2 × 109 enthalpy evaluations. Extrapolating using a line of best fit for the parallel
tempering data as shown here, we predict that parallel tempering would require 3 × 1010 enthalpy
evaluations to converge the melting transition, and 3 × 1012 to converge the evaporation transition.
The converged values were obtained using nested sampling, with 5.7 × 1010 enthalpy evaluations.
These calculations were performed by Lívia Bartók-Pártay
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]
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(
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(8.36)
In this way, the swaps do not disturb the isobaric isothermal distributions.
We simulated a periodic system of N = 64 Lennard-Jonesiumwith the “truncated

and shifted” potential described in Sect. 12.3.7 on page 136, at a reduced pressure
of log10 P

∗ = −1.57. The simulation was performed in the fully flexible cell for-
mulation. For parallel tempering 128 temperatures were spaced evenly across the
range T ∗ ∈ [0.4, 1.4]. For nested sampling, the cost of each calculation was set by
changing both the walk length L used to decorrelate fresh samples, and the number
of live configurations used, K. The nested sampling calculations were performed as
described in Sect. 8.8. Initial configurations for parallel tempering were taken from
the gas phase. Figure8.11 shows the results of these calculations.

We see from Fig. 8.11 that nested sampling requires fewer than 7.2 × 107 energy
evaluations to converge the evaporation transition, and 2.2 × 109 to converge the
melting transition. For parallel tempering, neither result has converged after 1.02 ×
1010 energy evaluations. Extrapolating linearly from Fig. 8.11 we predict that par-
allel tempering would require 3 × 1010 energy evaluations to converge the melting

http://dx.doi.org/10.1007/978-3-319-66769-0_12
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transition, and 3 × 1012 to converge the evaporation transition. We conclude that for
64 particles, nested sampling is at least an order of magnitude faster than parallel
tempering for calculating the melting temperature, and four orders of magnitude
faster for calculating the evaporation temperature.

Parallel tempering works most efficiently when the isobaric isothermal distribu-
tions at neighbouring temperatures have a high degree of overlap. When this is not
the case, the acceptance rate for configuration swaps (8.36) becomes very low. This
problem is typically pronounced at first order phase transitions of periodic simula-
tions, unless an accurate estimate of the transition temperature is included as one
of the temperatures used in parallel tempering. This problem of a reduced exchange
acceptance rate in parallel tempering is more evident for the evaporation transition
than the melting transition because the modes of the enthalpy distribution for the
hot solid and the cold liquid have overlapping tails, whereas this is not the case for
the liquid and gas phases. The behaviour of nested sampling is different to parallel
tempering in this regard. From Fig. 8.11 we see that nested sampling is much more
efficient at resolving the evaporation transition (which corresponds to a large change
in χ) than the melting transition (which corresponds to a smaller change in χ, but for
which the sampler must efficiently explore condensed phases). This suggests that the
variation inχ across a phase transition is not as important a factor for nested sampling
as the rate of decorrelation in the clone and decorrelate algorithm. Exploration of
condensed phases using MCMC is evidently inefficient, even at constant pressure.
This is the motivation for Part III of this thesis, where we explore the use of classical
dynamics for decorrelation.

8.12 Summary

We have developed nested sampling into an automated tool for calculating phase
diagrams from first principles. By inspecting generic physical quantities such as the
heat capacity and volume distribution, we are able to identify phase transitions that
we were not expecting. Examples of this include as the order-disorder transition in
the binary Lennard-Jonesium alloy, the transition between phases I and II, and the
Widom line in the Lennard-Jonesium, binary Lennard-Jonesium, and NPB-EAM
aluminium systems.

In Sect. 8.4 we showed that the overwhelming majority of simulation cells in
the fully flexible cell formulation are very thin. Such simulation cells correspond to
systems of effectively reduced dimension, their physics being dominated by peri-
odic images of each atom which are introduced by periodic boundary conditions.
We showed how one can rigorously modify the fully flexible simulation cell formu-
lation, introducing a minimum cell height criterion, ch (h0) ≥ mch. This excludes
simulation cells that are “too thin”.

We tested nested sampling on simple Lennard-Jonesium, and verified that it gives
the same results as found in the literature above the triple point. Below the triple
point our results do not agree with the literature values. The literature values all use
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a radial cutoff scheme in which the rc is proportional to ρ− 1
3 . In contrast, we use a

fixed value for rc. We identified this as the cause of the discrepancy.
The free energy difference between HCP and FCC structures in the solid region

of Lennard-Jonesium is very small. The HCP and FCC structures are related by a
series of stacking faults, with HCP and FCC as the limiting structures. We identify
HCP as the stable phase at zero temperature for the pressures considered, but did not
find a transition to FCC at higher temperatures. Instead we witnessed the gradual
introduction of stacking faults as the temperature is increased. All calculations were
performed using periodic simulations of only 64 particles.We argued, by introducing
a simple model, that it is not possible to discern whether this is a real phenomenon,
or a system size effect from these simulations, which used only 64 particles.

The heat capacity of Lennard-Jonesium was calculated at a pressure log10 P
∗ =

−1.57 using both nested sampling and parallel tempering. Sixty-four particles were
used for the simulation.We found that nested sampling requires fewer than 7.2 × 107

energy evaluations to converge the evaporation transition, and 2.2 × 109 to converge
the melting transition. After 1.02 × 109 energy evaluations we found that neither
transition was converged with parallel tempering. Extrapolating from our results we
predict that parallel tempering would require 3 × 1010 energy evaluations to con-
verge the melting transition, and 3 × 1012 to converge the evaporation transition. We
conclude that, to the best of our knowledge, the implementation of nested sampling
developed here is the state of the art Monte Carlo algorithm for simulating materials,
when we wish to uncover “unknown unknown” collective phenomena.

8.13 Further Work

Wecompared the performance ofNestedSampling to parallel tempering inSect. 8.11.
Wenoted that nested sampling ismarkedly slower at converging themelting transition
than the evaporation transition. The reason for this is that the single atom MC steps
used in the MCMC exploration are not cooperative. In a condensed phase, simple
MCMC is not an efficient method by which to explore configuration space. In Part III
we explore the use of classical mechanics for decorrelating configurations in the
condensed phase.

The “clone and decorrelate” Algorithm 7.3 creates a “hole and a bump” in the
uniform distribution at each iteration. Much of the computational expense in nested
sampling is spent re-equilibrating the uniform distribution. In recent discussions,
John Skilling described a method by which one can often clone from the high-
est energy configuration, without introducing errors for multimodal potentials. This
ought to reduce the cost of the algorithm dramatically, and mitigate the problem of
multimodal potentials explained in Sect. 7.4.

http://dx.doi.org/10.1007/978-3-319-66769-0_7
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Chapter 9
Equations of State

9.1 Introduction

It was explained in Sect. 5.2 that for an atomic fluid containing very many nuclei,
pressure temperature and volume are related by an equation of state

φ (P, T, V ) = 0. (5.3 revisited)

A typical equation of state was illustrated in Fig. 5.1 on page 34.
We arrive at this simple picture as follows. At any pressure and temperature, there

exists a pdf for V : � (V |P, T ). The relative fluctuations of volume are proportional
to 1/

√
N , according to Eq. (3.14). Therefore in the infinite system limit, the pdf for V

must be a delta function, except at a phase transition, where it is the sum of two delta
functions. Provided that our simulated system is larger than the correlation length,
this delta function will have the same mean value as the pdf in our small system.
Therefore, we can calculate V (P, T ) for the infinite system at any given pressure
and temperature by identifying the mean of the dominant mode in � (V |P, T ).

An algorithm to calculate the mean volume of the dominant mode has the follow-
ing outline:

1. Generate Npost posterior volume samples, {Dk}.
2. Perform a Bayesian model selection over mixtures of M ∈ {1, 2, . . . ,NGmax}

Gaussians. This gives us prob (M | {Dk}). At each M assume that the maximum
likelihood mixture adequately characterises the distribution prob (θ |M, {Dk}).

3. For M > 1, partition the maximum likelihood mixture into overlapping sets of
Gaussians.

4. Calculate the total probability mass and mean value of each partition.
5. Record the average of the dominant partitions’ mean values, weighted by

prob (M | {Dk}).

© Springer International Publishing AG 2017
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9.2 Algorithmic Details

The details of the algorithm described above are given in Sects. 9.2.1–9.2.4.

9.2.1 Generating Posterior Samples

Theoutput of nested sampling [1, 2] consists of a series of configurations {(s,h0, V )i },
each with a microscopic enthalpy Yi , and associated volume of configuration space
χ0 (ζi−1 − ζi ), (7.12). The partition function is then approximated as

�(β) � 1

N !h3NV0

(
2πm

β

) 3N
2

Nits∑
i=1

�χi e
−βYi . (8.8 revisited) (9.1)

Posterior samples are selected according to the weight they contribute to the
partition function (8.8)

w j = �χ j e−βY j

�(β)
. (9.2)

That is, we select Npost configurations by sampling with replacement, according
to the weights (9.2).

9.2.2 Bayesian Model Selection over a Mixtures of Gaussians

A mixture of M Gaussians with amplitudes A = (A1, A2, . . . , AM), means μ =
(μ1, μ2, . . . , μM) and standard deviations σ = (σ1, σ2, . . . , σM) is given by

GM (x |A,μ, σ ) =
M∑
i=1

Ai√
2πσi

exp

[
− (x − μi )

2

2σ 2
i

]
. (9.3)

We apply the methodology and assumptions described in Appendix A to calculate
prob (M | {Dk}).

Under the assumptionsmade inAppendixA, prob (M | {Dk}) (A.5), (A.11) require
the parameters θ0 that maximise the log likelihood L (θ) = log (prob ({Dk} |M, θ)),
together with the value of the prior over the parameters (A.10), and the determinant
of the Hessian matrix ∇∇L|θ=θ0 .

Defining θ = (A,μ, σ ), the maximum likelihood parameter set θ0 is obtained by
application of the soft K-means algorithm, version 2 [3]. That algorithm is presented
in Appendix B, on page 153. The soft K-means algorithm, version 2 requires a
number Npost posterior samples, which can be generated as in Sect. 9.2.1. We
found Npost = 2000 to be a good number of samples.

http://dx.doi.org/10.1007/978-3-319-66769-0_7
http://dx.doi.org/10.1007/978-3-319-66769-0_8
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We have assumed that the prior over the parameters takes a constant value inside
an allowed range

prob (θ |M) =
[
σ M
max (μmax − μmin)

M
∫

(0,1)M
dA1 . . . dAMδ

(
1 −

M∑
i=1

Ai

)]−1

.

(A.10 revisited)

Forμmax andμmin we usedmaximum andminimum volumes of the Npost posterior
samples, and σmax was taken to be 5σ0 with σ0 the standard deviation of the posterior
samples. The integrals

fM =
∫

(0,1)M
dA1 . . . dAMδ

(
1 −

M∑
i=1

Ai

)
(9.4)

were evaluated using Mathematica [4].
TheHessian∇∇L|θ=θ0 was calculated as follows. The total log likelihood is given

by

L =
Npost∑
k=1

Lk (9.5)

Lk = log sk (9.6)

where we define
sk = GM (xk |θ) . (9.7)

Applying the chain rule for differentiation we obtain

∂2Lk

∂θiθ j
= − 1

s2k

∂sk
∂θi

∂sk
∂θ j

+ 1

sk

∂2sk
∂θiθ j

. (9.8)

Terms in (9.8) are calculated individually as follows:

∂sk
∂Ai

= 1√
2πσi

exp

[
− (xk − μi )

2

2σ 2
i

]
(9.9)

∂sk
∂μi

= Ai√
2πσ 3

i

(xk − μi ) exp

[
− (xk − μi )

2

2σ 2
i

]
(9.10)

∂sk
∂σi

= Ai√
2πσ 4

i

(
[xk − μi ]

2 − σ 2
i

)
exp

[
− (xk − μi )

2

2σ 2
i

]
(9.11)

∂2sk
∂Ai A j

= 0,
∂2sk

∂Aiμ j
= δi j

1

Ai

∂sk
∂μi

,
∂2sk

∂Aiσ j
= δi j

1

Ai

∂sk
∂σi

(9.12)
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∂2sk
∂μiμ j

= δi j
1

σi

∂sk
∂σi

(9.13)

∂2sk
∂σiμ j

= δi j
(xk − μi )

2 − 3σ 2
i

σ 3
i

∂sk
∂μi

(9.14)

∂2sk
∂σiσ j

= δi j

[
(xk − μi )

2

σ 3
i

− 4

σi
+ 1

xk − μi + σi
+ 1

μi − xk + σi

]
∂sk
∂σi

(9.15)

Having calculated the probability for each number of Gaussians M , we assume
that the distribution prob (θ |M, {Dk}) is well characterised by the parameters θ0.1

The parameters θ0 were then used to partition the mixture into one or more non-
overlapping sets. That process is described in Sect. 9.2.3.

9.2.3 Partitioning Gaussians into Non-overlapping Sets

The fact that a set of posterior samples may be better described by two Gaussians
than one does not guarantee that there are twomodes in the distribution. Examples of
posterior distributions demonstrating this are shown in Figs. 9.1 and 9.2. In both of
these cases themodel selection gives higher probability to amixture of twoGaussians
than to a single Gaussian (factors of 1.2 × 102 in the solid phase, and 2.7 × 10102 for
the supercritical phase, where the distribution is far from Gaussian.) However, close
to themelting point there are clearly two separate phases, as shown in Fig. 9.3. Indeed,
themodel selection gives prob (M = 2| {Dk}) = 1.3 × 10252 × prob (M = 1| {Dk})
for these conditions so close to the melting point. Clearly a method is required to
partition Gaussians into separate modes.

We partition Gaussians into distinct modes using the following heuristic:

Gaussians A and B have means μA, μB , and standard deviations σA, σB

respectively. μA < μB .

• Gaussian A is in the same partition as Gaussian B if μB −
μA < σA + σB OR there is no point μA < x < μB with GM (x |θ) <

min (GM (μA|θ) ,GM (μB |θ)).
• If Gaussian A is in the same partition as Gaussian B, and Gaussian B is in
the same partition as Gaussian C, then Gaussian A is in the same partition as
Gaussian C.

1This is made possible by the assumption made in Appendix A, Sect. A.1, of a uniform prior over
the parameters (A.10).ApplyingBayes’ Theorem,we see prob (θ |M, {Dk}) = prob ({Dk} |M, θ) ×
prob(θ |M)

prob({Dk }|M)
. With our assumption of a uniform prior for the parameters, the fraction is simply a

constant.
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Fig. 9.1 Lennard-Jonesium periodic simulation of 64 atoms in the solid phase. N =
64, T ∗ = 6.463 × 10−1, P∗ = 1.758 × 10−1. Using the parameters described in Sect. 9.2.2,
prob (M = 2| {Dk}) = 1.2 × 102 prob (M = 1| {Dk}). Nevertheless there is clearly one mode
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Fig. 9.2 Lennard-Jonesium periodic simulation of 64 atoms in the supercritical phase.
N = 64, T ∗ = 1.379, P∗ = 1.758 × 10−1. Using the parameters described in Sect. 9.2.2,
prob (M = 2| {Dk}) = 2.7 × 10102 prob (M = 1| {Dk}). Although far from being a Gaussian dis-
tribution, there is clearly one mode
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Fig. 9.3 Lennard-Jonesium periodic simulation of 64 atoms close to melting. N = 64,
T ∗ = 7.325 × 10−1, P∗ = 1.758 × 10−1. Using the parameters described in Sect. 9.2.2,
prob (M = 2| {Dk}) = 1.3 × 10252 prob (M = 1| {Dk}). Here, close to the melting temperature,
there are two clear modes

9.2.4 Calculating the Mean of the Dominant Partition

Let us begin by considering the mean of the dominant mode for a single mixture.
Having partitioned the Gaussians as described in Sect. 9.2.3, we have a partition
integer ti associated with each Gaussian i . The probability mass of a partition is the
sum of the amplitudes from its constituent Gaussians

prob (ti ) =
M∑
j=1

δti t j A j . (9.16)

In this way the partition with largest weight (the dominant partition) is easily iden-
tified. Let’s call that partition integer tM . The mean of partition tM is

μ (tM) =
M∑
j=1

δtM t j A jμ j . (9.17)

The result of our inference is therefore

μ =
Mmax∑
M=1

⎡
⎣prob (M | {Dk})

M∑
j=1

δtM t j A jμ j

⎤
⎦ . (9.18)
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Fig. 9.4 Equation of state for Lennard-Jonesium. Axes: T ∗ = kBT/ε; P∗ = Pσ 3/ε; v = V/N . These
calculations were performed using 64 atoms, rc = 3σ , and a mean-field long-range correction, as
in Eq.8.29

9.2.5 Equation of State for Lennard-Jonesium

The algorithm described in this chapter was used to calculate the equation of state
of simple Lennard-Jonesium. The nested sampling calculations were exactly those
described in Sect. 8.8. Since we do not have the exact pressure of the triple point in
any of those calculations, no more than two partitions were thought to be required,
and Mmax = 2 was used throughout. The results of these calculations are shown in
Fig. 9.4.

9.3 Further Work

From the equation of state we could in principle obtain the P − V phase diagram.
It would be interesting to compare the results we obtain for that diagram with the
literature values.

The algorithm we describe fits the volume distribution with a number of Gaus-
sians, M . In the example calculation, a maximum of M = 2 Gaussians were used.
Where the volume distribution is extremely non-Gaussian, the procedure produced

http://dx.doi.org/10.1007/978-3-319-66769-0_8
http://dx.doi.org/10.1007/978-3-319-66769-0_8
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Fig. 9.5 Extremely non-Gaussian � (V ) in the supercritical region. N = 64, T ∗ = 1.327,
log10 P

∗ = −3.274. We consider the underlying distribution for volume to have a single mode.
With only two Gaussians the partitioning algorithm described in the text identifies two separate
modes. A better fit would almost certainly obtained by using a Gamma mixture model

undesirable results with so few Gaussians. This occurs in the supercritical region,
as illustrated in Fig. 9.5. There are two approaches that we could use: either we fit
the distribution using many more Gaussians, or better still, we use a Gamma mix-
ture model. Maximum likelihood estimation of Gamma mixture models is described
in [5], and in [6] for a single gamma distribution. This ought to lead to a more
automated means of resolving the critical point.
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Chapter 10
Parallelising Nested Sampling

10.1 Introduction

We saw in Sect. 8.11 that a nested sampling calculation can require billions of energy
evaluations. If we want to apply nested sampling to atomic potentials that are slower
to evaluate than Lennard-Jonesium then it will certainly be necessary to parallelise
the algorithm.

In this section we describe two approaches to parallelising nested sampling. The
first [1, 2] is to parallelise over the number of iterations performed, by discarding P
configurations at each iteration, rather than just one. Each iteration P samples are
cloned and decorrelated, using P computer processors in parallel. In this way the
calculation proceeds in larger steps through χ and takes less time to run.

The second approach, developed by Lívia Bartók-Pártay and myself, parallelises
within the individual iterations, by parallelising over the walk length L . We detail
an efficient algorithm for performing our parallelisation scheme, and evaluate the
speedup, finding it to be almost perfect.

10.2 Parallelising over the Number of Iterations

Unlike standard nested sampling, where Elim is updated to the highest energy in our
sample set at each iteration, here it is updated to theP th highest energy.We then record
the P highest energies and their configurations with appropriate weightings [2].
Finally, P other configurations are chosen at random from our remaining samples,
and the clone and decorrelate algorithm 7.3 is applied to those P clones in parallel.

Recall that in Sect. 7.5 we saw that for standard nested sampling, afterK iterations
logχ is reduced from logχi to logχi+K = logχi − 1 with a standard deviation
1√K . We will now calculate the standard deviation for the same reduction logχ ←

logχ − 1, when taking steps of P configurations as described above.

© Springer International Publishing AG 2017
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The pdf for t = ζi
ζi−1

, when our live set includes K configurations overall is [3]

� (t |P,K) = K!
(P − 1)! (K − P)! t

K−P (1 − t)P−1 . (10.1)

Evaluating the mean, and variance of log t we find [4]

〈log t〉 = −
[ K∑
i=K−P+1

1

i

]
(10.2)

Var (log t) = d(K−P+1)�(z)

dz(K−P+1)

∣∣∣∣
z=1

− d(K+1)�(z)

dz(K+1)

∣∣∣∣
z=1

(10.3)

When parallelising over the number of iterations, Ylim is updated to the lowest
of the P highest enthalpies in our sample set, and the configuration space volume
contained by the updated Ylim is χi ≈ χ0[(K − P + 1)/(K + 1)]i , where i is the
NS iteration number. For P > 1 it is also possible to give analytic estimates of the
configuration space volumes contained by theP − 1 higher enthalpy values between
Y (i−1)
lim and Y (i)

lim [2]. Thus one may consider the configurational entropy contained at
fractional numbers of NS enthalpy levels.

After a number of enthalpy levels

n� =
(

k∑
i=K−P+1

1

i

)−1

(10.4)

the expectation of the logarithm of the configuration space enclosed by Ylim decreases
by 1:

〈logχi − logχi+n�
〉 = −1. (10.5)

If we assume that it is possible to draw exact random samples in each iteration,
then it can be shown that, after the same number of enthalpy levels n�, the variance
of � logχ = logχi − logχi+n�

is given by

Var(� logχ) = d(K−P+1)�(z)

dz(K−P+1)

∣∣∣∣
z=1

− d(K+1)�(z)

dz(K+1)

∣∣∣∣
z=1

(10.6)

where �(z) is the gamma function. The standard deviation,
[
Var(� logχ)

] 1
2 , repre-

sents the rate at which uncertainty in logχ accumulates during a nested sampling

calculation. For a serial calculation (P = 1),
[
Var(� logχ)

] 1
2 = 1√K .

Figure10.1 shows how the ratio of
[
Var(� logχ)

] 1
2 for parallel and serial

NS, R = [Var(� logχ)] 1
2 ÷ 1√K , depends on P

K . R represents the relative rate at
which uncertainty in logχ accumulates during parallel and serial calculations. One
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by removing and walking P > 1 as compared to serial run with P = 1, as a function of scaled
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K , for several values ofK. Dashed line indicates linear trend
for P − 1 � K

can see that log R converges for K > 102, and for P
K ≤ 0.25,

[
Var(� logχ)

] 1
2 ∼

exp
(
0.28P−1

K
)

1√K . For larger P−1
K , R increases more rapidly.

10.3 Parallelising Within Each Iteration

Instead of parallelising over the number of iterations, we propose a method of par-
allelising within each iteration, with the aim of avoiding the cumulative error shown
in Fig. 10.1.

In the serial algorithm, each new clone is decorrelated using a trajectory of walk
length L . In our parallelised algorithm, new clones are decorrelated using a trajectory
of walk length L

P , and (P − 1) other random configurations are also (independently)
propagated through L

P steps. Thus, rather than propagating a single configuration for
L steps, we propagate P configurations for L

P steps.
It is possible to derive the variance of the total number of MC steps that is applied

to a sample between when it is cloned by copying, and when it is eventually written
as output, L ′.

Var(L ′) = L2 P − 1

P (10.7)

While unlike the case of parallelising over the number of iterations, there are no
analytic results for the error due to the variability of L ′, several observations can be
made. One is that the square root of the variance of L ′ (except for the serial case of
P = 1) is almost as large as L itself. Another is that the scaling of Var(L ′) with the
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number of extra parallel tasks P − 1 is polynomial, unlike the exponential scaling
of the error R with extra tasks for parallelising over the number of iterations. It
is unclear, however, how this variability in walk length will affect the error in the
results, although the empirical observation is that this effect does not appear to be
strong. Nevertheless, the serial case results in the lowest uncertainty in estimates of
configuration space volumes.

10.3.1 Details of Our Implementation

TheMCMCstrategy described in Sect. 8.5makes abundant use of single atommoves.
When computing the change in energy after such a move it is often not necessary to
recompute the interaction energies between all atoms. Rather, most of the interaction
energiesmay remain unchanged, such that it is only necessary to compute a few terms.
In this case it is efficient to store the individual interaction energies, updating only a
few at a time. However, the number of such interaction energies can quickly become
very large, and sending large arrays between processors using Message Passing
Interface (MPI) can be slow, depending on the network connecting the processors.
For this reason we developed an implementation with minimal use of MPI.

In our implementation, each processor stores K
P configurations locally. This num-

ber of local configurations should be the same for each processor. At the end of each
iteration, each processor identifies the local configuration with highest energy, and a
single MPI_ALLREDUCE call is made to identify which processor stores the highest
energy value overall. Next, a specific processor sends a cloned configuration to the
processor storing the maximum energy. The “sending” processor is chosen at ran-
dom, and picks the configuration to send at random from the set of configurations it
stores. The configuration received is taken to be the “cloned” configuration, and will
be propagated by the receiving processor, using L

P steps. Each of the other processors
(including the “sending” processor) picks a configuration at random from its local
set, and propagates that configuration through L

P steps.
I performed8 sets of 16 simulations of 64Lennard-Jonesiumparticles, at a reduced

pressure log10
(
P∗ ≡ Pσ 3

ε

)
= −1.194, withK = 640 and L = 4160. Each set of 16

calculations was performed with a different value of P . The mean run time τ in
seconds for these calculations is shown in Fig. 10.2. I fitted the average run times
with a function τ = A × P B + C , and found the fixed run time of the algorithm
C to be less than 1% of the serial run time A, even for Lennard-Jonesium. The
exponent B was found to be B = −0.9799 ± 0.0050, which is extremely close to
perfect parallelisation.

http://dx.doi.org/10.1007/978-3-319-66769-0_8
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Fig. 10.2 Parallelisation by walk length leads to almost perfect speed up. That mean fixed run
time of the algorithm C was found to be less than 1% of the serial run time A. This is particularly
surprising for Lennard-Jonesium where a single energy evaluation is almost as quick as it could
possibly be. The exponent B was found to be B = −0.9799 ± 0.0050, which is extremely close to
perfect parallelisation

10.4 Summary

We assessed the performance of two parallelisation schemes for nested sampling:
parallelisation over the number of iterations and parallelisation over the walk length,
within each iteration.

We found that parallelising over the number of iterations increases the rate at
which error is introduced to our estimate of χ (U ). This error rate is approximately
exponential in P−1

K for P−1
K ≤ 0.25, and much greater for large values.

To address this, we proposed amethod of parallelising over thewalk length, within
each iteration. In this algorithm P processors decorrelate P configurations, each for
a L

P steps. The cloned configuration is always one of the P configurations to be
decorrelated. We found the variance of the total number of MC steps that is applied
to a sample between when it is copied by cloning, and when it is eventually written
as output, L ′, to be Var(L ′) = 〈L〉2 P−1

P . For P  1, the standard deviation of L ′ is
almost as large as the total walk-length L . Nevertheless, we observe empirically that
this variability in walk length does not strongly affect the error in the results.

Finally, we gave a detailed account of our implementation, and measured its
performance.We performed sixteen calculations at each ofP ∈ {

20, 21, 22, . . . , 27
}
,

with a total walk length L = 4160 and K = 640. Fitting the mean run times with
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a function τ = A × P B + C , we found that the fixed calculation costs C were less
than 1% of the serial run time, A = 8.694 × 104s ± 1.8 × 102s. This is surprising
for Lennard-Jonesium, where one might have expected the fixed costs to be a larger
proportion of the run time, since the energy evaluations are very fast. We found
the exponent to be B = −0.9799 ± 0.0050, which is extremely close to perfect
parallelisation.

10.5 Further Work

It would be enlightening to make a comparison of the two parallelisation schemes,
similar to Fig. 10.1. This would require many calculations using the “parallelisation
within each iteration”method, at each number of processors, up to at least P−1

K = 0.5.
For each number of processors, the error, relative to serial calculations, would be
obtained. These could then be compared to the theoretical curve for the relative
error in the method of “parallelisation over the number of iterations”. Repeating
this process at a range of pressures would constitute a fair comparison of the two
methods.
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Chapter 11
Introduction

Up to this point,wehavedescribedhownested sampling [1, 2] canbeperformedusing
a random walk to decorrelate samples in the “clone and decorrelate” algorithm.7.3.
In this sectionwe explore the use of Hamiltonian dynamics as an alternativemeans of
decorrelating cloned configurations. Using Hamiltonian dynamics to produce inde-
pendent samples is far from a new idea [3–9]. Indeed, a method of using Hamiltonian
dynamics for this purpose in nested sampling has already been developed by John
Skilling [10, 11] and is already being applied in acoustics [12]. We return to this in
Chapter. 12.

The problem we are interested in is as follows: the need to quickly explore atomic
configuration spaces in condensed phases to produce configurations according to a
known distribution. For this problem, randommoves of the kind described in Chap. 8
are poorly suited. In condensed phases atoms are crowded together. If we choose an
atom and attempt to displace it in a random direction, it will almost always come
into close proximity with a neighbour. The interaction between atoms is strongly
repulsive at close proximity, so this proposed configuration will have a very high
potential energy, and be rejected. To achieve rapid decorrelation, we require a success
rate of approximately 0.23 [9]. In a condensed phase, this requires a very small step
size for atomic displacements.

The motivation for using Hamiltonian dynamics to update the configuration is
that, rather than moving independently, the atoms should flow cooperatively with
no sudden spikes in the potential energy. Such a motion should allow the system
to decorrelate more quickly. In this section we describe a version of the “Hamil-
tonian Monte Carlo” (HMC) algorithm [9], adapted to nested sampling for atomistic
simulation.
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11.1 Hamiltonian Monte Carlo for the Canonical
Distribution

In Hamiltonian Monte Carlo we begin by considering a phase space {q,p}, rather
than a configuration space {q} alone. In the traditional case, Hamiltonian Monte
Carlo is used to draw samples from the canonical distribution.

11.1.1 The Canonical Distribution, Revisited

In the canonical distribution,q andp are distributed according to the joint distribution

� (q,p) = 1

N !h3N
e−βE(q,p)

Z (N , β, V )
. (4.38 revisited)

Here E (q,p) is the Hamiltonian for our system. TheHamiltonian typically separates
into potential and kinetic energy terms

E (q,p) = K (p) +U (q) . (3.1 revisited)

This in turn makes q and p statistically independent, each following separate canon-
ical distributions

� (q,p) = 1

N !h3N Z exp
[−βU (q)

]
exp

[−βK (p)
]
. (11.1)

11.1.2 Why Hamiltonian Dynamics?

What is it about Hamiltonian dynamics that make it suitable for sampling? The
answer has three parts.

1. The dynamics is reversible. This is useful for proving that transitions of the
Markov chain leave the target distribution invariant.

2. Phase space volume preservation. The volume of a phase space element dq ∧ dp
is conserved by Hamiltonian dynamics. The significance of this is that we do not
have to account for any non-symmetrical change in volume when accepting or
rejecting proposals in Metropolis updates.

3. Conservation of the Hamiltonian. Exact conservation of the Hamiltonian guaran-
tees the acceptance of new proposals. Approximate conservation of the Hamil-
tonian makes the probability of acceptance for new proposals close to unity.

Any dynamics that meet these criteria is a fair alternative to Hamiltonian dynamics.
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In practice, exactly integrating a continuous dynamics is often not possible, and the
dynamicsmust be integrated approximately by taking discrete time steps. The crucial
quality of any integrator therefore is that it has these desirable qualities: reversibility,
phase space preservation, and conservation of the Hamiltonian. Conservation of the
Hamiltonian can not be guaranteed exactly, so it is important that the rate at which
error is accrued be low and that it go to zero when the step size is taken to the
infinitesimal limit.

11.1.3 Hamiltonian Monte Carlo Sampling Step

Hamiltonian Monte Carlo samples from the joint distribution prob (q,p). A Hamil-
tonian Monte Carlo step has two parts.

1. Hamiltonian update

(a) Propagate (q,p) by L steps of leapfrog integration with step size ε. This
takes us to state

(
q′,p′).

(b) Accept or reject
(
q′,p′) according to the Metropolis-Hastings rule

acc
[
(q,p) → (

q′,p′)] = min
(
1, e−β[U(q′)−U (q)+K(p′)−K (p)]

)
. (11.2)

If the leapfrog integration were perfect, with infinitesimal step size, then the
energy of the states (q,p) and

(
q′,p′) would be identical, and every step

would be accepted. Finite step size allows the total energy to change slightly
in the course of a trajectory. ThisMetropolis-Hastings update ensures that the
proposed state

(
q′,p′) is visited according to the canonical distribution (11.1).

If the proposal is rejected, we return to the original state (q,p) but we do not
reset the clock. Let our final state be (q∗,p∗).

2. Select a fresh momentum p∗∗ according to the correct joint distribution

prob
(
q∗,p∗∗) = prob

(
p∗∗|q∗) × prob

(
q∗) . (11.3)

By definition, (q∗,p∗∗) is a correct sample from the target joint distribution. In
cases where q and p are statistically independent, such as the canonical distrib-
ution, p∗∗ is chosen from its independent distribution.

The fresh state is (q∗,p∗∗). We have seen that q and p are statistically independent
in the canonical distribution (11.1). Therefore, for the purposes of sampling quan-
tities in configuration space, we can associate the full mass of each sample with its
configuration q.
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Chapter 12
Hamiltonian Monte Carlo for Nested
Sampling

In order to use Hamiltonian Monte Carlo in Nested Sampling, we expand our con-
figuration space to include momenta p conjugate to the coordinates q. Hamiltonian
Monte Carlo draws new samples from the joint distribution prob (q,p). For nested
sampling we would ideally like to draw configuration samples alone. To this end we
might seek to construct a separable joint distribution prob (q,p) = prob (q) prob (p),
so that we can map the full mass of each sample to q, as in the canonical distribution.
This is the approach of John Skilling, in “Galilean Monte Carlo” [1, 2], which we
now describe.

12.1 Galilean Monte Carlo

In Galilean Monte Carlo, we define a second potential energy function

U ′ (q|Ulim) =
{
0, U (q) ≤ Ulim

∞, Elsewhere
(12.1)

The canonical distribution (11.1) for U ′ (q|Ulim) is just

� (q) � (p) =
{

1
N !h3N Z exp

[−βK (p)
]
, U (q) ≤ Ulim

0, Elsewhere.
(12.2)

This distribution overq (12.2) is exactlywhatwe require for nested sampling: namely
it is constant for U (q) ≤ Ulim and zero outside this region. Nested sampling can
therefore be performed using the potential energies alone. Hamiltonian dynamics on
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the potential energy functionU ′ (q|Ulim) corresponds tomotion in a straight linewith
elastic reflections off the walls of the “well”. The dynamics proposed by Skilling is
as follows.

When no reflection occurs, position is updated using steps of constant time step ε.

[
q,p

] → [
q′ = q + εp,p

]
(12.3)

When the proposed coordinates q′ enter the region of zero probabilityU (q)′ > Ulim

a reflection must instead have occurred. Such (rejected) proposals are replaced by a
reflection step

[
q,p

] → [
q′′ = q + p + p′,p′ = p − 2̂n (̂n · p)

]
. (12.4)

The unit vector n̂ is the normalised gradient ofU (q) at the (rejected) point q′ = q +
εp. If this reflection takes the configuration inside the good region

(
U

(
q′′) ≤ Ulim

)
then this update is accepted. If the reflection proposal q′′ is also outside of the allowed
region then the only plausible move satisfying detailed balance is for the system to
double back on its trajectory

[
q,p

] → [
q,p′ = −p

]
. (12.5)

In the condensed phases of atomistic systems most atomic displacements lead
to collisions and there are relatively few “soft” degrees of freedom along which
appreciable displacement can be made. In order to effectively bias exploration along
those soft degrees of freedom we would like to make use of gradient information
(atomic forces) at every timestep, while Galilean Monte Carlo only uses gradient
informationwhenwe leave the allowed region. This leads us to “Molecular dynamics
nested sampling” (MDNS).

12.2 Molecular Dynamics Nested Sampling in the Total
Hamiltonian

Here, we relax the desirable condition that q and p be statistically independent, so
as to gain the fast decorrelation of Hamiltonian Monte Carlo. We seek to distribute
samples according to the joint distribution

prob (q,p|Elim) =
{

1
�(Elim)

, E (q,p) ≤ Elim

0, Elsewhere
(12.6)

which is suitable for performing nested sampling in the total Hamiltonian E (q,p).
The integrated density of states �(Elim) is taken exactly from the microcanonical
ensemble (4.3)

http://dx.doi.org/10.1007/978-3-319-66769-0_4
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�(N , E, V ) =
∫ E

−∞
�

(
N , E ′, V

)
dE ′. (4.3 revisited)

Hamiltonian Monte Carlo is performed largely as described in Sect. (11.3). Since
we seek the Hamiltonian bounded uniform distribution (12.6), the Metropolis-
Hastings rejection (11.2) is replaced by the rule

acc
[
(q,p) → (

q′,p′)] =
{
1, E

(
q′,p′) ≤ Elim

0, Elsewhere
(12.7)

The position q and momenta p are not statistically independent. Therefore, when
generating fresh momenta p we choose a momentum vector uniformly from the
region

K (p) ≤ Elim −U (q) . (12.8)

Generating a fresh momentum vector for a system of N particles can be performed
as follows.

1. Select a point from the surface of a unit sphere in 3N -dimensions. This can
be performed using the standard method [3, 4] of generating a vector of 3N
Gaussian distributed random numbers,1 then normalising the vector. Let us call
this final vector r̂.

2. Generate a radius r according to the polynomial distribution

prob (r) =
{
3Nr3N−1, r ≤ 1

0, Elsewhere.
(12.9)

This can be performed using Algorithm 12.1.
3. The kinetic energy has the form

K (p) =
∑
i

p2i
2mi

. (3.2 revisited)

In this case, the final momentum is given by

p∗∗ = rS r̂ (12.10)

Si j = δi j
(
2mi

[
Elim −U (q)

]) 1
2 . (12.11)

1These Gaussian distributed random numbers should have mean 0.

http://dx.doi.org/10.1007/978-3-319-66769-0_11
http://dx.doi.org/10.1007/978-3-319-66769-0_11
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subroutine polynomial_rand
! G e n e r a t e s a r a n d om n um b e r
! x d i s t r i b u t e d a s
! prob (x) = xexpo : 0 ≤ x ≤ maximum

x=ranf ()**(1.0/( expo +1.0))
x=rand_out*maximum

end subroutine

Algorithm 12.1 Generating a polynomial distributed random variate with non-negative power,
below a maximum value. Samples from the pdf (12.9). ranf() is a random number uniform in
[0,1].

12.3 Nested Sampling in the Total Hamiltonian at Fixed N
and P

As in Sect. 8, we will perform nested sampling at constant pressure. In this section
we describe sampling under conditions of fixed pressure and fixed simulation cell
shape.

It is common to take the “microscopic enthalpy” H (q,p, P, V ) to be that intro-
duced by Hans C. Andersen in his famous paper [5]

HA =
∑
i

p2i
2mi

+U (q, V ) + PV + p2V
2WA

. (12.12)

Here the traditional phase space {(q,p)} has been expanded to include volume as an
additional coordinate with conjugate momentum pV . The constant WA has dimen-
sions energy × time2 ÷ volume2. Promoting V to a dynamic variable facilitates the
design of molecular dynamics schemes at fixed pressure.

Several molecular dynamics schemes have been published in the literature for
exploring the fixed isothermal—isobaric ensemble with a fixed shape simulation
cell. All these schemes build upon the work of Andersen [5]. Here I use the MTK
equations of motion [6] since they can be shown to give the correct pressure virial
theorem and work virial [7]. Here, Martyna et al. consider a Hamiltonian of the same
form

HMTK =
∑
i

p2i
2mi

+U (q, V ) + PV + p2ε
2WMTK

. (12.13)

However, unlike Andersen, Martyna et al. construct a non-Hamiltonian dynamics
that nevertheless has the desirable qualities of Hamiltonian dynamics required for

HMC. In this dynamics, volume is evolved through a new variable ε = 1
3 log

(
V
V0

)
,

where ε = pε

WMTK
. This is further described in Sect. 12.3.1.

http://dx.doi.org/10.1007/978-3-319-66769-0_8
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The partition function for conditions of fixed N PT and fixed simulation cell shape
is

�(N , P, β) = 1

N !h3NV0

∫ ∞

0
d� e−βHMTK(�) ÷

∫ ∞

0
dpV e− βp2ε

2WMTK (12.14)

= 1

N !h3NV0

(
2β

πWMTK

) 1
2
∫ ∞

0
d� e−βHMTK(�) (12.15)

where the integrated density of states �, and density of states � are given by

�(N , H, P) =
∫ H

−∞
�

(
N , H ′, P

)
dH ′ (4.62 revisited)

�
(
N , H ′, P

) = 1

N !h3N V0

∫ ∞
0

dpε

∫ ∞
0

dV
∫

dNp
∫
D(V )

dNq δ
(
H ′ − HMTK

[
q, V, p, pε ; P

])
.

(12.16)

As usual in nested sampling, we require samples with enthalpies H distributed
as the density of states (12.16) below some limit Hlim. This can be achieved by
distributing the samples according to the joint distribution

prob (q, V,p, pV |Hlim, P) =
{

1
�(Hlim)

, HMTK (q, V,p, pε, P) ≤ Hlim

0, Elsewhere.
(12.17)

12.3.1 MTK Dynamics

We follow the integration scheme described by Yu et al. in their paper “Measure-
preserving integrators for molecular dynamics in the isothermal—isobaric ensemble
derived from the Liouville operator” [8]. The MTK equations of motion [6] for the
isoenthalpic-isobaric ensemble are2

2Particular care must be taken when evaluating the double summation in Pint . For each atom i
we consider interactions with each atom j ∈ {i + 1, . . . , N } and all periodic images of j . If the
simulation cell is so small that self-images are to be considered, interactions between atom i and
its own periodic images incur a factor of a half due to double counting.
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q̇i = pi
mi

+ pε

WMTK
qi

ṗi = − ∂U

∂qi
−

(
1 + 1

N

)
pε

WMTK
pi

V̇ = 3V

WMTK
pε

ṗε = 3V (Pint − P) + 1

N

∑
i

p2i
mi

Pint = 1

3V

⎡
⎣ N∑

i

p2i
mi

−
∑
j>i

N∑
i

∂U

∂qi j
· qi j

⎤
⎦ .

(12.18)

The constant WMTK has dimensions energy × time2. The value of this constant is
discussed in Sect. 12.3.2.

The MTK equations of motion (12.18) cannot be derived from the Hamil-
tonian (12.13) but nevertheless conserve the numerical value of HMTK. They are
also reversible and preserve the volume of a phase space element in the expanded
space. These good qualities are properly maintained in the Liouville-operator based
integrator of Yu et al. [8], where the global error in a long trajectory of M steps, each
of length dt , is of order dt2. The integrator is therefore suitable for use inHamiltonian
Monte Carlo, as explained in Sect. 11.2.

12.3.2 Choice of WMTK

Any fixed choice of WMTK will lead to resonances in the dynamics of the cell when
the available kinetic energy is tuned to excite its motion. In order to perform sampling
in a predictable way, the cell massmust be tuned according to the total kinetic energy.
An optimal choice for WMTK is proposed to be [9]

WMTK = (3N + 1) kBT τ 2
b . (12.19)

Here τb is a free parameter, specifying the time scale of motions of the cell.
ChangingWMTK necessarily changes the joint distribution (12.17) and the density

of states (12.16). One would think that this would destroy the validity of the calcu-
lation. In fact, the sole dependence on temperature (12.19) is a subtly chosen one.
For any value of temperature, WMTK takes a particular constant value. This ensures
that for each temperature, high probability values of H are sampled with the same
cell mass WMTK. The correct heat capacity is recovered by applying Eqs. (8.27) and
(8.28) using the total enthalpy values {Hi } fromMDNS in place of {Yi } from standard
MCMC nested sampling, then subtracting kB from the result.

http://dx.doi.org/10.1007/978-3-319-66769-0_11
http://dx.doi.org/10.1007/978-3-319-66769-0_8
http://dx.doi.org/10.1007/978-3-319-66769-0_8
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We now turn our attention to updating WMTK in practice. Since we are sampling
from the density of states, without thermodynamic temperature, we substitute for T
using the virial theorem

kBT = 2〈K 〉
3N + 1

(12.20)

⇒ WMTK = 2〈K 〉τ 2
b (12.21)

The value of 〈K 〉was re-assessed, andWMTK updated once every K
2 iterations (where

K is the number of independent copies of the system used in the NS calculation). The
value ofWMTK typically decreases in the course of the calculation, as expected, since
WMTK has dimensions energy × time2 and �lim is reduced. When this happens, the

kinetic energy term p2ε
2WMTK

increases. At this point we re-scaled the momenta p, pε

for each system, to retain their enthalpy values.

12.3.3 Hamiltonian Monte Carlo Scheme

The motion of V and pε occurs on a much slower timescale than that of the atoms.
We found that any randomisation of pε destroyed the decorrelation of the system.
Therefore, only atomic velocities were randomised during the HMC update. For this
reason, it was necessary to make use of a slightly more elaborate form of the HMC
update [10]. The Hamiltonian Monte Carlo update used in this thesis is as follows

The initial state is (q,p, V, pε).

1. Hamiltonian update

(a) Propagate (q,p, V, pε) for L steps of the integrator due to Yu et al. [8] with
step size dt . This takes us to state

(
q(1),p(1), V (1), p(1)

ε

)
.

(b) Negate all momenta.

(
q(1),p(1), V (1), p(1)

ε

) → (
q(1),p(2) = −p(1), V (1), p(2)

ε = −p(1)
ε

)
This step is important because it makes the deterministic update reversible,
so that it satisfies detailed balance. This step was not included in Sect. (11.3)
for two reasons: first because kinetic energy is an even function so negating
p and pε does not affect the probability of accepting the move as given in
Eq. (12.7), and second, because all momenta were discarded when choos-
ing a fresh momentum p∗∗ in the last part of the update. It is included
here because we will only randomise the atomic momenta, p. Negating the
momenta is reversible, and since HMTK is an even function of the momenta,
this move leaves HMTK unchanged.

(c) Accept or reject
(
q(1),p(2), V (1), p(2)

ε

)
with probability

http://dx.doi.org/10.1007/978-3-319-66769-0_11
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acc
[
(q,p, V, pε ) →

(
q(1),p(2), V (1), p(2)

ε

)]
=

{
1, HMTK

(
q(1),p(2), V (1), p(2)

ε

)
≤ Hlim

0, Elsewhere

(12.22)

The small error due to finite step size may cause the value of HMTK to
exceed Hlim, but there is no penalty for HMTK decreasing or increasing by
less than this amount. If the proposal is rejected, we return to the origi-
nal state (q,p, V, pε) but we do not reset the clock. Let our final state be(
q(3),p(3), V (3), p(3)

ε

)
.

2. Negate the momenta once again.

(
q(3),p(3), V (3), p(3)

ε

) → (
q(3),p(4) = −p(3), V (3), p(4)

ε = −p(3)
ε

)
If the proposal from (a) was accepted in (c), this negation positions the state at
the end of the trajectory with momenta in the forward facing direction. If the
proposal from (a) was rejected, this reversal positions the state at the initial point
(q,−p, V,−pε), so that the trajectory will double back on itself.

3. Select fresh atomic momenta p(4) according to the correct joint distribution

prob
(
q(3), p(4), V (3), p(3)

ε

)
= prob

(
p(4)|q(3), V (3), p(3)

ε

)
× prob

(
q(3), V (3), p(3)

ε

)
= prob

(
p(4)|q(3), V (3), p(3)

ε

)
× const.

(12.23)
This is performed exactly as described in Sect. 12.2.

The final state is
(
q(3),p(4), V (3), p(3)

ε

)
.

12.3.4 Initialisation

As in nested sampling with MCMC, we impose a boundary on configuration space
that is well inside the ideal gas region. Unlike the MCMC case, we did not find it
convenient to impose a minimum density, and imposed a maximum enthalpy H0

instead. A relatively system-independent value for H0 is N×2000eV.
The method we found convenient for generating K samples according to (12.17)

with Hlim = H0 is as follows.

1. Estimate the ground state enthalpy of the potential, Hmin. This can be performed
for an atomic fluid by choosing any perfect close-packed configuration (FCC,
for example) and calculating the minimum configurational enthalpy of that con-
figuration for 100 values of the box side length, corresponding to atomic radii
in the range (0.1Å, 10.0Å).

2. Set V = 0.4 × (H0−Hmin)

P . This allows some interatomic interactions within the
initial atomic configurations.
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3. Atomic coordinates qi j are univariate random numbers on
[
0, V

1
3

)
.

4. Minimise the configurational enthalpy of each configuration with respect to q to
below H0−Hmin

2 . We applied molecular dynamics to each configuration, starting
from zero momenta, p. Whenever the configurational enthalpy increased, the
coordinates were reset by one step to their most recent minimum enthalpy value,
and the momenta were reset to zero before the trajectory was allowed to con-
tinue. The time step dt was chosen so that it would take an average of 104 steps
for an atom to traverse a distance equal to the mean distance between atoms,
assuming that the total kinetic energy per atom is H0−Hmin

1000N . Occasionally a con-
figuration became trapped, repeatedly taking failed steps. Those configurations
were replaced at the end with other configurations that had not become trapped,
chosen at random. When all configurations had Y (q, V, P) < H0−Hmin

2 a fur-
ther 10 steps of minimisation were applied to each configuration. This ensured
that all configurations, even those with initial Y in the good region, took some
minimisation steps.

5. Estimate an initial value forWMTK using Eq. (12.21), assuming an initial kinetic
energy K = H0−Hmin

2 .
6. Set p = 0, pV = 0.
7. Obtain a step size dt that sets an average acceptance rate of

acc_rat_cautious ± 5% for the Metropolis acceptance step in HMC
updates. (acc_rat_cautious is a parameter of the calculation, and between
0 and 1.)

8. Select fresh atomic momenta p as described in Sect. 12.2.
9. Perform an initial roam_eq × 1

4 molecular dynamics steps for each configura-
tion. (roam_eq is a parameter of the calculation and corresponds to the total
number of steps taken when initialising each starting configuration.) Each tra-
jectory consists of a series of HMC updates as described in Sect. 12.3.3, with L
steps for each update.

10. Revise the value for WMTK using Eq. (12.21).
11. Revise the step size dt that sets an average acceptance rate of

acc_rat_cautious ± 5% for the Metropolis acceptance step in HMC
updates.

12. Perform a further roam_eq × 3
4 molecular dynamics steps for each configura-

tion, as in step 9.
13. Further revise the step size dt that sets an average acceptance rate of

acc_rat_cautious ± 5% for the Metropolis acceptance step in HMC
updates.

12.3.5 HMC Acceptance Rate

The time step dt is set to fix the acceptance rate of HMC proposals to some value
acc_rat ± 5%. In the gas phase, collisions between atoms are extremely penetrat-
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ing, and the system enters very small regions of high curvature in U (q). Motion
through such regions must be integrated with a much smaller time step than motion
through free space. Accommodating both time steps would require an adaptive time
step. At the same time, the regions corresponding to highly penetrating collisions
are a very small fraction of configuration space, surely only relevant at exceptionally
high temperatures and pressures. For this reason, we do not employ an adaptive step
length, preferring to allow the integration to fail in such regions. In this event the
total energy will change almost discontinuously to some very high value that is then
rejected by the HMC update.

What then controls the acceptance rate of HMC proposals in the gas phase?
Throughout the gas phase the density is reduced on average by a constant amount
each iteration, and the evolution is fast. In the rest of the nested sampling calculation
it is more than sufficient to update the time step every K

2 iterations (every time �

halves), but in the gas phase this is not the case. After K
2 iterations the acceptance

rate has dropped notably and the exploration has become very poor. There are two
solutions to this problem. The first, to update the step sizemore often at the beginning
of the run; the second, to set acc_rat to some high value for the first part of the run.
Re-evaluating dt consumes additional energy and force evaluations and we found
that setting acc_rat = 95%, exploration in the gas phase was excellent. Therefore
we chose the second method.

The acceptance rate was set to acc_rat_cautious = 95% ± 5% until an
interval of K

2 iterations passed between successive dt updates, in which the max-
imum recorded value of the difference between the instantaneous enthalpy in any
timestep and Hlim, H (t) − Hlim, was not greater than 〈Hlim − H〉, as calculated from
theK samples at the end of that interval. This corresponds to a definition of the point
at which failures of the dynamics integrator first stop. For the second (major) part of
the calculation, the acceptance rate was set to acc_rat_confident ± 5%.

Figure12.1 compares the heat capacities calculated usingMDNS to the converged
value from standard (MCMC) nested sampling. Using the “two stage” program for
acc_rat (right column) we find that the calculation converges for virtually any
value of acc_rat_confident. The fixed acc_rat calculations (left column)
sample the gas phase poorly for acc_rat ≤ 0.65, and fail for acc_rat ≤ 0.35.
The change of acceptance ratio corresponds to the temperature indicated by the
dotted blue line. In particular, the calculation with constant acc_rat = 0.2 fails,
whereas with the two-stage acceptance rate, the evaporation peak is converged and
the melting peak is “close” to convergence.

Figure8.11 suggests that, for MCMC nested sampling, it is more challenging to
converge the melting transition than the evaporation transition. Convergence of the
melting transition therefore seems like the sensiblemeasure bywhich to compare con-
vergence of theMCMCandHMCnested samplingmethods.We repeated the calcula-
tion 16 times at each of acc_rat_confident ∈ {0.2, 0.35, 0.5, 0.65, 0.8, 0.95}
and found the maximum value of CP . The mean and standard deviations of those 16
values are shown for each value ofacc_rat_confident in Fig. 12.2. Phase space
exploration is least good for high rejection rates. Results for

http://dx.doi.org/10.1007/978-3-319-66769-0_8
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Fig. 12.1 Behaviour of MDNS with a single HMC acceptance rate (left column) and two part
acceptance rate (right column). The HMC acceptance rate used for each row is shown to the left.
In the right hand column, an acceptance rate 0.95 was used for the first part of the calculation, until
the point where no failures of the integrator were detected (see the text). That region corresponds
to temperatures to the right of the dotted blue line. The red lines show the results of three MDNS
calculations withK = 640 live samples. Decorrelating fresh samples was performed using a single
HMC update of walk length L = 65 steps. The black lines show three converged results with
standard (MCMC) NS, using K = 640 live samples, and a walk length L = 165120. We see that
with a single acceptance rate, the integration fails in the gas region for acc_rat < 0.65. With
a two part acceptance rate, the convergence is good for acc_rat ≥ 0.35. In particular, note the
dramatic failure of calculations with fixedacc_rat = 0.2. In contrast, the two part acceptance rate
calculation is correct for the evaporation peak, and close to convergence for the melting transition.
These heat capacities were calculated for Lennard-Jonesium (64 atoms, periodic simulation) at fixed

pressure, with log10
Pσ 3

ε
= −1.194 and a fixed shape (cubic) simulation cell. The potential used is

described in Sect. 12.3.7
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Fig. 12.2 Convergence of melting temperature T ∗
m with respect to acc_rat_confident. Phase

space exploration is worse for high rejection rates (low acceptance rates). Nevertheless, the result is
robust with respect to acc_rat_confident for acc_rat_confident ≥ 0.5. Interestingly,
the lowest variance in this sample set is for acc_rat_confident = 0.65, which is the theoreti-
cally most efficient value for sampling from the canonical distribution for a potential energy that is
the sum of 3N + 1 independent variables [11]. The standard deviation for T ∗

m ranges from 1.15%
to 1.85% of the melting temperature, with 1.54% at acc_rat_confident = 0.95. We conclude
that the two-stage acceptance ratio is required for acc_rat < 0.95, but that the simpler, single-
stage method is almost as good, using acc_rat = 0.95. We therefore advise users to employ the
simpler scheme, with single value acc_rat = 0.95

acc_rat_confident ≥ 0.5 are robust with respect to acc_rat_confident.
Optimal performance in this sample setwas observed foracc_rat_confident =
0.65. Interestingly, this is also the theoretically most efficient value for sampling the
canonical distributionwithHMCfor a potential energy that is the sumof3N + 1 inde-
pendent variables [11]. For acc_rat_confident < 0.95, the two-stage method
is clearly required. However, the improvement in performance over the single-stage
acceptance ratio with acc_rat = 0.95 is marginal: The standard deviation of melt-
ing temperatures is 1.54% of T ∗

m for acc_rat = 0.95 (single value), and 1.15%
of T ∗

m for the two-stage acceptance rate with acc_rat_confident = 0.65. We
consider this to be an insufficient advantage tomotivate themore convoluted scheme,
and propose the simpler single acceptance rate acc_rat = 0.95 throughout.

12.3.6 Thermal Distributions

In Sect. 7.2 we described the mechanism by which is is possible to use all the output
from nested sampling to calculate thermal distributions. Coordinates and momenta
are statistically independent in the isobaric–isoenthalpic distribution, and typically

http://dx.doi.org/10.1007/978-3-319-66769-0_7
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one would like to produce thermal distributions over the coordinates alone. However,
in performing nested sampling in the total Hamiltonian we have instead produced
samples from the joint distribution in the isoenthalpic-isobaric ensemble (12.17).
Unpicking the relative contribution to the configurational density of states would
be a very noisy process. However, it is valid to sample phase-space by choosing
samples according to their thermalised weights (12.24) in the isobaric—isothermal
distribution (4.59).

wi ∝ ��ie
−βHi (12.24)

Since the isobaric—isothermal distribution is separable, we can then take the coor-
dinates of those samples as proper thermal samples from configuration space alone.
This is equivalent to mapping the full thermalised weight of each sample to its coor-
dinates, and thus we may process the results as before.

12.3.7 Comparison of MDNS with MCMC

The heat capacity of a periodic system of N = 64 Lennard-Jonesium particles
was calculated using HMC and MCMC nested sampling methods. We noted in
Sect. 12.3.5 that Fig. 8.11 suggests that it is most difficult to converge the melting
peak. We therefore compare the behaviour of the two methods for this problem.

Simulation details
MCMC calculations with walk lengths LMCMC

N ∈ {8, 16, 32, 64, 128} were com-
pared to HMC calculations with a factor N fewer steps: LHMC ∈
{8, 16, 32, 64, 128, 256}.

The potential used was the “truncated and shifted” Lennard-Jonesium potential,
where the pair-potential goes continuously to 0 at rc with a discontinuous first deriv-
ative, (12.25).

U (q1,q2, . . . ,qN ) =
∑
i≥ j

ui j

ui j =
⎧⎨
⎩4ε

[(
σ
ri j

)12 −
(

σ
ri j

)6
]

− uc, ri j ≤ rc

0, Elsewhere

uc = 4ε

[(
σ

rc

)12

−
(

σ

rc

)6
]

(12.25)

We used parameters ε = 0.1eV, σ = 3Å and rc = 3σ for the potential. The reduced
pressure was set to log10 P

∗ = −1.194. Sixteen independent serial calculations were
performed for each walk length.

http://dx.doi.org/10.1007/978-3-319-66769-0_4
http://dx.doi.org/10.1007/978-3-319-66769-0_8
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Fig. 12.3 Convergence of melting temperature T ∗
m with respect to walk length L in HMC and

MCMC. Sixteen (serial) calculations were performed for each parameter value. Here we show the
mean value of the maximum of T ∗

m, together with the standard deviation of those 16 results. Note
that for MCMC, the horizontal axis corresponds to a factor N = 64 times as many walk steps in
decorrelation, compared to HMC. HMC requires only L = 65 steps to obtain the correct answer
with a standard deviation 1.54%, and that error decreases rapidly when L is increased: 0.64% for
L = 128, and 0.52% for L = 256. For MCMC, the correct result is within a standard deviation
(6.01%) for L = 32 × N . It is not clear that such a result can be said to be converged. At longer
walk lengths, the converged value is consistently within a standard deviation of the mean, although
the convergence is much slower than for HMC. We conclude that for nested sampling in the total
Hamiltonian with 64 atoms in the simulation cell, HMC requires about a factor of 64 fewer walk
steps to decorrelate fresh samples

For MCMC, the calculations were performed with zero lattice shear or lat-
tice stretch MC moves. Otherwise, calculations were performed as described in
Sect. (8.8.1).

For HMC, calculations were initialised using H0 = N×161.25eV. The “cell
timescale” τb was set to 10 fs. The lattice massWMTK and time step dt were updated
in that order every K

2 iterations (corresponding to a reduction of log� by− 1
2 ). A sin-

gle value for the HMC acceptance rate acc_rat = 0.95 was used throughout each
calculation. Decorrelating each fresh sample was performed using a single HMC
update.
Figure12.3 compares the results of these calculations.

Results

Figure12.3 compares convergence of the predicted melting point with MCMC and
HMC nested sampling. The horizontal axis corresponds to a factor of N = 64 more
energy evaluations for MCMC as compared to HMC. Even with a factor 64 fewer
energy evaluations, HMC is better converged. HMC requires only L = 65 steps to

http://dx.doi.org/10.1007/978-3-319-66769-0_8
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obtain the correct melting temperature with a standard deviation 1.54%, and that
error decreases rapidly when L is increased to 0.64% for L = 128, and 0.52% for
L = 256. For MCMC, the correct result is within a standard deviation (6.01%) for
L = 32 × 64. It is not clear that such a result can be said to be converged. At longer
walk lengths, the converged value is consistently within a standard deviation of the
mean, although the convergence is much slower than for MDNS.

A single HMC update was used to decorrelate samples. If that single update is
unsuccessful, the coordinates return to the values belonging to their clone, pε is
negated, and p randomised. At long walk lengths, the convergence of HMC may
therefore have been even better had the decorrelation been divided into shorter parts.
Clearly the HMC updates are a far more effective means of decorrelating configura-
tions than a random walk.

We should state, that by performing nested sampling in total phase space, we
have doubled the dimensions of the space we must characterise. This creates an
additional factor of 2 in thenumber of iterations required for an equivalent calculation.
Nevertheless, we feel that the factor of 2 in the number of iterations is not important
when compared to the factor of 1

64 reduction of the number of energy evaluations
that are required.

12.4 Summary

We developed a new method for decorrelating configurations using Hamiltonian
Monte Carlo. Calculations were performed at fixed pressure, using theMTK dynam-
ics with a fixed shape (cubic) simulation cell. Instead of performing nested sampling
in configuration space, the approach was instead to perform nested sampling in phase
space. We found this method to be more than 64 times as efficient as the MCMC
algorithm for calculating the melting temperature, in a simulation with 64 atoms.

The MTK dynamics promote the cell volume to a dynamical degree of freedom,
with an associated “mass” WMTK. To avoid resonances of the cell dynamics at a
particular kinetic energy, Martyna et al. propose [9] thatWMTK be made proportional
to the temperature. As explained in Sect. 12.3.2, this choice is a subtle one: changing
the value of WMTK changes the partition function, but changing WMTK according to
the temperature ensures that our calculations are correct at any given temperature.

12.5 Further Work

I would like to include anisotropic changes in the unit cell matrix h0 for HMC
in the total Hamiltonian. Martyna et al. [6] note that having distinct masses for
the isotropic and anisotropic motion of the simulation cell enhanced exploration.
Unfortunately the integrator they propose is rather complex. We have preferred to
follow the elegant scheme of Yu et al. [8]. Yu et al. detail integrators for both isotropic
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cell motion, and anisotropic cell motion. For anisotropic cell motion, the scheme they
propose has only a single mass for both motions of the simulation cell, and in our
exploratory calculations we did indeed find the anisotropic exploration to be rather
slow. HamiltonianMonte Carlo is also not well suited to hard boundaries, such as the
minimum cell height criterion introduced in Sect. 8.4. One possible solution to the
poor anisotropic decorrelation would be to develop a cell mass tensor. This would
allow for twomasses within a scheme closely related to [8]. A simpler solutionwould
be to integrate the lattice-stretch and lattice-shear MC moves described in Sect. 8.5
into the HMC scheme, by performing both HMC and MC moves.
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Chapter 13
Summary and Further Work

13.1 Summary

Nested sampling is an algorithm for calculating the integrated density of states. Phase
transitions are easily located by finding the peaks of response functions such as the
heat capacity. In contrast to methods for comparing specific phases, nested sam-
pling unbiasedly explores all of configuration space. Consequently, the phenomena
it reveals are not limited to expected phases or known phase transitions.

We developed the application of nested sampling to systems under constant pres-
sure conditions. The method was applied to standard Lennard-Jonesium, a binary
Lennard-Jonesium “alloy” and the NPB embedded atom model potential for alu-
minium. In each of these systems nested sampling revealed unexpected results: in
the binary alloy we discovered the order-disorder transition in the solid region, with
two different ordered phases I and II, stable at low and high pressures respectively;
in aluminium, we found that the NPB embedded atom model potential incorrectly
describes the solid phase, the hexagonal close packed structure being unstable at
zero Kelvin for all pressures; and we found the Widom line for maxima of the heat
capacity in the supercritical region of all three systems.

We identified a small system size effect in the fully flexible simulation cell for-
mulation with periodic boundary conditions, whereby the most probable low tem-
perature structure of any crystal has a thin simulation cell. Such thin simulation cells
introduce fictitious periodicity, and lead to simulated systems of effectively reduced
dimension. Such systems can not approximate an atomic fluid in three dimensions.
We saw that by introducing a “minimum cell height”, it is possible to rigorously
exclude unphysical simulation cells.

Wedeveloped an algorithm for identifying themean volumeof the dominant phase
at fixed pressure and temperature, from the output of nested sampling. By combining
results from nested sampling calculations at a range of pressures, we obtained the
equation of state of Lennard-Jonesium: φ (P, T, V ) = 0.

We reviewed the published method for parallelising nested sampling, “paralleli-
sation over the number of iterations”. We showed that, relative to serial nested sam-
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pling, the error in this method is at least exponential in P−1
K where P is the number

of processors used, and K is the number of configurations used in the calculation.
We proposed a new method of parallelisation: “parallelisation within each iteration,
over the walk length”. This new scheme makes the total number of MC steps that is
applied to a sample between when it is cloned by copying, and when it is eventually
written as output, L ′, a random variable. While there are no analytic results for the
error due to the variability of L ′, we were able to show that for P � 1 the standard
deviation of L ′ was almost as large as 〈L ′〉. Nevertheless, empirically this does not
appear to strongly affect the results of a nested sampling calculation, while “paral-
lelising over the number of iterations” introduces an exponential scaling of the error
in {χi } with respect to P .

We developed a version of nested sampling based on Hamiltonian Monte Carlo,
using MTK dynamics at constant pressure. Here, nested sampling was performed
in the total Hamiltonian. We compared the efficiency of this method to our ear-
lier Markov chain Monte Carlo method of nested sampling. Both methods were
used to calculate the melting transition of Lennard-Jonesium at a reduced pressure
log10 P

∗ = −1.194. We found that, for a simulation of 64 atoms, the Hamiltonian
Monte Carlo method required a factor of 64 fewer energy evaluations as compared
to the MCMC method for a similar level of convergence.

In all of the constant pressure methods we explored, the volume of the simulation
cell is allowed to vary. For classical dynamics at constant pressure, the simulation
cell volumewas promoted to a dynamical degree of freedom, with its ownmass. This
naturally leads to resonances between the atomic and cellmotions at particular kinetic
energies, and to avoid this we used a temperature dependent mass for the volume.
Varying the volume mass changes the density of states and partition function, but by
setting the mass according to temperature, we find that the sampling is consistent at
each temperature and that phase transitions are correctly predicted.

13.2 Further Work

Most of the computational expense in nested sampling occurs in the “clone and decor-
relate” algorithm. This algorithm first creates a “hole and a bump” in the uniform
distribution, then re-equilibrates that same uniform distribution. It would be trans-
formative to create a version of nested sampling in which this did not occur. One
strategy might be to copy, with some probability, from the recent high energy con-
figuration at each iteration. The difficulty for any such approach would be avoiding
bad sampling in multimodal potentials.
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For the equation of state, it would be interesting to compare the predicted volumes
at phase transitions to those from the literature. Improved results close to the critical
point should also be obtained by using a gammamixturemodel, instead of aGaussian
mixture model for the volume distribution.

Anisotropic shape changes of the simulation cell could be included in the HMC
nested sampling approach by performing some additional simulation cell shape
Monte Carlo moves from the Markov chain Monte Carlo algorithm described in
Part II.



Appendix A: Model Selection for Gaussian
Mixtures

We have some independent data points drawn from an unknown distribution that is
possibly multimodal. We want to model that distribution as a Gaussian mixture. In
this section we see how to calculate a probability distribution over the number of
Gaussians included in the mixture.

A mixture of M Gaussians with amplitudes A = (A1, A2, . . . , AM), means μ =
(μ1, μ2, . . . , μM) and standard deviations σ = (σ1, σ2, . . . , σM) is given by

GM (x |A,μ, σ ) =
M∑

i=1

Ai√
2πσi

exp

[
− (x − μi )

2

2σ 2
i

]
. (A.1)

For simplicity, we represent the parametersA,μ, σ collectively as θ . The data points
{Dk} are drawn independently from the unknown distribution. We want to calculate
the probability prob (M | {Dk}).

From Bayes’ theorem (2.18) we have

prob (M | {Dk}) = prob ({Dk} |M) prob (M)

prob ({Dk}) (A.2)

The denominator prob ({Dk}) will cancel when we normalise the probabilities, and
prob (M) is just the prior reflecting the information we have to start with. Therefore,
we turn our attention to prob ({Dk} |M). Applying marginalisation (2.11) followed
by the product rule (2.15), we have

prob ({Dk} |M) =
∫

dθ prob ({Dk} , θ |M) (A.3)

=
∫

dθ prob ({Dk} |θ, M) prob (θ |M) (A.4)
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The term prob (θ |M) is our prior for the parameters θ in a mixture of M Gaussians.
Substituting from (A.4) into (A.2) and normalising, we find

prob (M | {Dk}) = 1
Z × prob (M)

∫
dθ prob ({Dk} |θ , M) prob (θ |M)

Z = ∑
M prob (M)

∫
dθ prob ({Dk} |θ, M) prob (θ |M).

(A.5)

Assuming that the data points were drawn independently,

prob ({Dk} |θ, M) =
∏

k

GM (Dk |θ). (A.6)

The integral in (A.5) could be performed in a number of ways. One way would
be to use Monte Carlo integration, although the integral may well be dominated
by a small region of configuration space, proportional to e−M . This would tend to
make the integral prohibitively expensive to compute. We could certainly compute
the integral using nested sampling [1], [2] (see Part II), however in the next section
we describe some simplifying assumptions that allow fast evaluation of the integral.

A.1 Simplifying Assumptions: Uniform Priors And A
Harmonic Approximation

Wemight reasonably assign a uniform prior for M on the set M ∈ {1, 2, . . . , Mmax}.
Similarly, we can take a uniform prior for σ and μ on the ranges 0 ≤ σM ≤ σmax,
μmin ≤ μM ≤ μmax, togetherwith a prior δ

(
1 − ∑

M AM
)
on the range 0 ≤ AM ≤ 1.

Next, we assume that at each value of M , prob ({Dk} |θ , M) has a single mode,
of Gaussian form with mean equal to the value of θ that maximises that likelihood.
The optimal θ corresponds to the minimum of χ2 where

−χ2

2
= log (prob ({Dk} |θ , M)) (A.7)

=
∑

k

log (GM (Dk |θ)). (A.8)

In other words, we have made a harmonic approximation for χ2

χ2 (θ) ≈ χ2
min + 1

2 (θ − θ0)
T ∇∇χ2 (θ0) (θ − θ0)

χ2
min = χ2 (θ0) .

(A.9)



Appendix A: Model Selection for Gaussian Mixtures 141

Our uniform prior for θ corresponds to

prob (θ |M) =
[
σ M
max (μmax − μmin)

M
∫

(0,1)M
dA1 . . . dAMδ

(
1 −

M∑

i=1

Ai

)]−1

.

(A.10)

Thus the integral in (A.5) is a multivariate Gaussian integral, and can be evaluated
as

∫
dθ prob ({Dk} |θ , M)prob (θ |M) =

prob (θ |M)
M ! (4π)

3M
2

√
det

(∇∇χ2
) exp

(
−χ2

min

2

)
. (A.11)

The interested reader is referred to [3] where a very similar exposition is given at
greater length.

References

[1] J. Skilling, “Nested sampling,” AIP Conference Proceedings, vol. 735, p. 395,
2004.

[2] J. Skilling, “Nested sampling for general Bayesian computation,” Bayesian
Analysis, vol. 1, p. 833, 2006.

[3] D. Sivia and J. Skilling,Data Analysis: A Bayesian Tutorial, ser. Oxford science
publications. Oxford University Press, 2006.



Appendix B: Soft K-Means Algorithm,
Version 2

The soft K-means algorithm, version 2 [1] is an algorithm for optimising the likeli-
hood of a Gaussianmixture with respect to its parameters, given a number of samples
drawn from a distribution. A Gaussian mixture of M Gaussians is given by

GM (x |A,μ, σ ) =
M∑

i=1

Ai√
2πσi

exp

[
− (x − μi )

2

2σ 2
i

]
. (A.1 revisited)

Since we seek to approximate a pdf, we impose the condition that the mixture is
normalised

M∑

i

Ai = 1. (B.1)

The soft K-means algorithm, version 2 has two steps:

Assignment step. We assign a “responsibility” array r (n)
k . Here the index n

refers to a sample, and the index k to a Gaussian in the
mixture (A.1). In one dimension, the responsibilities are cal-
culated thus:

r (n)
k =

Ak√
2πσk

exp

[
− (μk−x (n))

2

2σ 2
k

]

∑
k ′

A′
k√

2πσ ′
k
exp

[
− (μ′

k−x (n))
2

2σ ′2
k

] . (B.2)

Update step. The parameters of each Gaussian Ak, μk, σ
2
k are adjusted to

match the data points that it is responsible for.
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μk =
∑

n r
(n)
k x (n)

Rk
(B.3)

σk =
∑

n r
(n)
k

(
μk − x (n)

)2

Rk
(B.4)

Ak = Rk∑
k Rk

(B.5)

where Rk is the total responsibility of Gaussian k

Rk =
∑

n

r (n)
k . (B.6)

These two steps are repeated until convergence is obtained, typically in a few
dozen iterations. The amplitude update (B.5) guarantees that the amplitudes satisfy
the normalisation condition (B.1).

To initialise the algorithm, amplitudes may all be set to 1
M and standard deviations

can be drawn randomly from some range, for example σ ∼ U (0, 5σ0) where σ0 is
the standard deviation of the sample set. Initial values for the means {μk} can be
generated by choosing the values of M random samples.

Repeating the algorithm a handful of times from different initial conditions is
usually enough to produce a very close fit to the global maximum.
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