
Springer Texts in Statistics

Robert H. Shumway
David S. Sto� er

Time Series 
Analysis and Its 
Applications
With R Examples

 Fourth Edition 



Springer Texts in Statistics

Series Editors
Richard DeVeaux
Stephen E. Fienberg
Ingram Olkin

More information about this series at http://www.springer.com/series/417

http://www.springer.com/series/417


Robert H. Shumway • David S. Stoffer

Time Series Analysis
and Its Applications
With R Examples

Fourth Edition

123



Robert H. Shumway
Department of Statistics
University of California, Davis
Davis, CA, USA

David S. Stoffer
Department of Statistics
University of Pittsburgh
Pittsburgh, PA, USA

ISSN 1431-875X ISSN 2197-4136 (electronic)
Springer Texts in Statistics
ISBN 978-3-319-52451-1 ISBN 978-3-319-52452-8 (eBook)
DOI 10.1007/978-3-319-52452-8

Library of Congress Control Number: 2017930675

© Springer International Publishing AG 1999, 2012, 2016, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface to the Fourth Edition

The fourth edition follows the general layout of the third edition but includes some
modernization of topics as well as the coverage of additional topics. The preface to
the third edition—which follows—still applies, so we concentrate on the differences
between the two editions here. As in the third edition, R code for each example
is given in the text, even if the code is excruciatingly long. Most of the examples
with seemingly endless coding are in the latter chapters. The R package for the
text, astsa, is still supported and details may be found in Appendix R. The global
temperature deviation series have been updated to 2015 and are included in the newest
version of the package; the corresponding examples and problems have been updated
accordingly.

Chapter 1 of this edition is similar to the previous edition, but we have included
the definition of trend stationarity and the concept of prewhitening when using cross-
correlation. The New York Stock Exchange data set, which focused on an old financial
crisis, was replaced with a more current series of the Dow Jones Industrial Average,
which focuses on a newer financial crisis. In Chap. 2, we rewrote some of the
regression review, changing the smoothing examples from the mortality data example
to the Southern Oscillation Index and finding El Niño. We also expanded on the lagged
regression example and carried it on to Chap. 3.

In Chap. 3, we removed normality from definition of ARMA models; while the
assumption is not necessary for the definition, it is essential for inference and pre-
diction. We added a section on regression with ARMA errors and the corresponding
problems; this section was previously in Chap. 5. Some of the examples have been
modified and we added some examples in the seasonal ARMA section. Finally, we
included a discussion of lagged regression with autocorrelated errors.

In Chap. 4, we improved and added some examples. The idea of modulated
series is discussed using the classic star magnitude data set. We moved some of the
filtering section forward for easier access to information when needed. We removed
the reliance on spec.pgram (from the stats package) to mvspec (from the astsa

package) so we can avoid having to spend pages explaining the quirks of spec.pgram,
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vi Preface to the Fourth Edition

which tended to take over the narrative. The section on wavelets was removed because
there are so many accessible texts available. The spectral representation theorems are
discussed in a little more detail using examples based on simple harmonic processes.

The general layout of Chap. 5 and of Chap. 7 is the same, although we have
revised some of the examples. As previously mentioned, we moved regression with
ARMA errors to Chap. 3.

Chapter 6 sees the biggest change in this edition. We have added a section on
smoothing splines, and a section on hidden Markov models and switching autore-
gressions. The Bayesian section is completely rewritten and is on linear Gaussian
state space models only. The nonlinear material in the previous edition is removed
because it was old, and the newer material is in Douc, Moulines, and Stoffer [53].
Many of the examples have been rewritten to make the chapter more accessible.

The appendices are similar, with some minor changes to Appendix A and
Appendix B. We added material to Appendix C, including a discussion of Riemann–
Stieltjes and stochastic integration, a proof of the fact that the spectra of autoregressive
processes are dense in the space of spectral densities, and a proof of the fact that spec-
tra are approximately the eigenvalues of the covariance matrix of a stationary process.

We tweaked, rewrote, improved, or revised some of the exercises, but the overall
ordering and coverage is roughly the same. And, of course, we moved regression with
ARMA errors problems to Chap. 3 and removed the Chap. 4 wavelet problems. The
exercises for Chap. 6 have been updated accordingly to reflect the new and improved
version of the chapter.

Davis, CA, USA Robert H. Shumway
Pittsburgh, PA, USA David S. Stoffer
December 2016



Preface to the Third Edition

The goals of this book are to develop an appreciation for the richness and versatility
of modern time series analysis as a tool for analyzing data, and still maintain a
commitment to theoretical integrity, as exemplified by the seminal works of Brillinger
[33] and Hannan [86] and the texts by Brockwell and Davis [36] and Fuller [66]. The
advent of inexpensive powerful computing has provided both real data and new
software that can take one considerably beyond the fitting of simple time domain
models, such as have been elegantly described in the landmark work of Box and
Jenkins [30]. This book is designed to be useful as a text for courses in time series on
several different levels and as a reference work for practitioners facing the analysis of
time-correlated data in the physical, biological, and social sciences.

We have used earlier versions of the text at both the undergraduate and gradu-
ate levels over the past decade. Our experience is that an undergraduate course can
be accessible to students with a background in regression analysis and may include
Sects. 1.1–1.5, Sects. 2.1–2.3, the results and numerical parts of Sects. 3.1–3.9,
and briefly the results and numerical parts of Sects. 4.1–4.4. At the advanced un-
dergraduate or master’s level, where the students have some mathematical statistics
background, more detailed coverage of the same sections, with the inclusion of extra
topics from Chaps. 5 or 6, can be used as a one-semester course. Often, the extra
topics are chosen by the students according to their interests. Finally, a two-semester
upper-level graduate course for mathematics, statistics, and engineering graduate stu-
dents can be crafted by adding selected theoretical appendices. For the upper-level
graduate course, we should mention that we are striving for a broader but less rigorous
level of coverage than that which is attained by Brockwell and Davis [36], the classic
entry at this level.

The major difference between this third edition of the text and the second edition is
that we provide R code for almost all of the numerical examples. An R package called
astsa is provided for use with the text; see Sect. R.2 for details. R code is provided
simply to enhance the exposition by making the numerical examples reproducible.
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viii Preface to the Third Edition

We have tried, where possible, to keep the problem sets in order so that an
instructor may have an easy time moving from the second edition to the third edition.
However, some of the old problems have been revised and there are some new
problems. Also, some of the data sets have been updated. We added one section in
Chap. 5 on unit roots and enhanced some of the presentations throughout the text. The
exposition on state-space modeling, ARMAX models, and (multivariate) regression
with autocorrelated errors in Chap. 6 have been expanded. In this edition, we use
standard R functions as much as possible, but we use our own scripts (included in
astsa) when we feel it is necessary to avoid problems with a particular R function;
these problems are discussed in detail on the website for the text under R Issues.

We thank John Kimmel, Executive Editor, Springer Statistics, for his guidance
in the preparation and production of this edition of the text. We are grateful to Don
Percival, University of Washington, for numerous suggestions that led to substantial
improvement to the presentation in the second edition, and consequently in this
edition. We thank Doug Wiens, University of Alberta, for help with some of the
R code in Chaps. 4 and 7, and for his many suggestions for improvement of the
exposition. We are grateful for the continued help and advice of Pierre Duchesne,
University of Montreal, and Alexander Aue, University of California, Davis. We also
thank the many students and other readers who took the time to mention typographical
errors and other corrections to the first and second editions. Finally, work on this
edition was supported by the National Science Foundation while one of us (D.S.S.)
was working at the Foundation under the Intergovernmental Personnel Act.

Davis, CA, USA Robert H. Shumway
Pittsburgh, PA, USA David S. Stoffer
September 2010
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Chapter 1

Characteristics of Time Series

The analysis of experimental data that have been observed at different points in time
leads to new and unique problems in statistical modeling and inference. The obvi-
ous correlation introduced by the sampling of adjacent points in time can severely
restrict the applicability of the many conventional statistical methods traditionally
dependent on the assumption that these adjacent observations are independent and
identically distributed. The systematic approach by which one goes about answer-
ing the mathematical and statistical questions posed by these time correlations is
commonly referred to as time series analysis.

The impact of time series analysis on scientific applications can be partially doc-
umented by producing an abbreviated listing of the diverse fields in which important
time series problems may arise. For example, many familiar time series occur in the
field of economics, where we are continually exposed to daily stock market quota-
tions or monthly unemployment figures. Social scientists follow population series,
such as birthrates or school enrollments. An epidemiologist might be interested in
the number of influenza cases observed over some time period. In medicine, blood
pressure measurements traced over time could be useful for evaluating drugs used
in treating hypertension. Functional magnetic resonance imaging of brain-wave time
series patterns might be used to study how the brain reacts to certain stimuli under
various experimental conditions.

In our view, the first step in any time series investigation always involves careful
examination of the recorded data plotted over time. This scrutiny often suggests
the method of analysis as well as statistics that will be of use in summarizing the
information in the data. Before looking more closely at the particular statistical
methods, it is appropriate to mention that two separate, but not necessarily mutually
exclusive, approaches to time series analysis exist, commonly identified as the time
domain approach and the frequency domain approach. The time domain approach
views the investigation of lagged relationships as most important (e.g., how does
what happened today affect what will happen tomorrow), whereas the frequency

© Springer International Publishing AG 2017
R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52452-8_1
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to 1980-IV

domain approach views the investigation of cycles as most important (e.g., what is
the economic cycle through periods of expansion and recession). We will explore
both types of approaches in the following sections.

1.1 The Nature of Time Series Data

Some of the problems and questions of interest to the prospective time series analyst
can best be exposed by considering real experimental data taken from different subject
areas. The following cases illustrate some of the common kinds of experimental time
series data as well as some of the statistical questions that might be asked about such
data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson, furnished by Professor Paul Griffin (personal communication) of the
Graduate School of Management, University of California, Davis. There are 84
quarters (21 years) measured from the first quarter of 1960 to the last quarter
of 1980. Modeling such series begins by observing the primary patterns in the time
history. In this case, note the gradually increasing underlying trend and the rather
regular variation superimposed on the trend that seems to repeat over quarters.
Methods for analyzing data such as these are explored in Chaps. 2 and 6. To plot
the data using the R statistical package, type the following1:
library(astsa) # SEE THE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")

1 Throughout the text, we assume that the R package for the book, astsa, has been installed and loaded.
See Sect. R.2 for further details.
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Fig. 1.2. Yearly average global temperature deviations (1880–2015) in degrees centigrade

Example 1.2 Global Warming
Consider the global temperature series record shown in Fig. 1.2. The data are the
global mean land–ocean temperature index from 1880 to 2015, with the base period
1951–1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951–1980 average, and are an update of Hansen et al. [89]. We note an
apparent upward trend in the series during the latter part of the twentieth century
that has been used as an argument for the global warming hypothesis. Note also
the leveling off at about 1935 and then another rather sharp upward trend at about
1970. The question of interest for global warming proponents and opponents is
whether the overall trend is natural or whether it is caused by some human-induced
interface. Problem 2.8 examines 634 years of glacial sediment data that might be
taken as a long-term temperature proxy. Such percentage changes in temperature
do not seem to be unusual over a time period of 100 years. Again, the question of
trend is of more interest than particular periodicities. The R code for this example
is similar to the code in Example 1.1:
plot(globtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 Speech Data
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech for
the phrase aaa · · · hhh, and we note the repetitive nature of the signal and the
rather regular periodicities. One current problem of great interest is computer
recognition of speech, which would require converting this particular signal into
the recorded phrase aaa · · · hhh. Spectral analysis can be used in this context to
produce a signature of this phrase that can be compared with signatures of various
library syllables to look for a match. One can immediately notice the rather regular
repetition of small wavelets. The separation between the packets is known as the
pitch period and represents the response of the vocal tract filter to a periodic
sequence of pulses stimulated by the opening and closing of the glottis. In R, you
can reproduce Fig. 1.3 using plot(speech).
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Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to
April 20, 2016

Example 1.4 Dow Jones Industrial Average
As an example of financial time series data, Fig. 1.4 shows the daily returns (or per-
cent change) of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to
April 20, 2016. It is easy to spot the financial crisis of 2008 in the figure. The data
shown in Fig. 1.4 are typical of return data. The mean of the series appears to be
stable with an average return of approximately zero, however, highly volatile (vari-
able) periods tend to be clustered together. A problem in the analysis of these type
of financial data is to forecast the volatility of future returns. Models such as ARCH
and GARCH models (Engle [57]; Bollerslev [28]) and stochastic volatility models
(Harvey, Ruiz and Shephard [94]) have been developed to handle these problems.
We will discuss these models and the analysis of financial data in Chaps. 5 and
6. The data were obtained using the Technical Trading Rules (TTR) package to
download the data from YahooTM and then plot it. We then used the fact that if
xt is the actual value of the DJIA and rt = (xt − xt−1)/xt−1 is the return, then
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1 + rt = xt/xt−1 and log(1 + rt ) = log(xt/xt−1) = log(xt ) − log(xt−1) ≈ rt .2 The
data set is also available in astsa, but xts must be loaded.
# library(TTR)
# djia = getYahooData("^DJI", start=20060420, end=20160420, freq="daily")
library(xts)
djiar = diff(log(djia$Close))[-1] # approximate returns
plot(djiar, main="DJIA Returns", type="n")
lines(djiar)

Example 1.5 El Niño and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscillation
Index (SOI) and associated Recruitment (number of new fish) furnished byDr. Roy
Mendelssohn of the Pacific Environmental Fisheries Group (personal communica-
tion). Both series are for a period of 453 months ranging over the years 1950–1987.
The SOI measures changes in air pressure, related to sea surface temperatures in
the central Pacific Ocean. The central Pacific warms every three to seven years due
to the El Niño effect, which has been blamed for various global extreme weather
events. Both series in Fig. 1.5 exhibit repetitive behavior, with regularly repeating
cycles that are easily visible. This periodic behavior is of interest because under-
lying processes of interest may be regular and the rate or frequency of oscillation
characterizing the behavior of the underlying series would help to identify them.
The series show two basic oscillations types, an obvious annual cycle (hot in the
summer, cold in the winter), and a slower frequency that seems to repeat about
every 4 years. The study of the kinds of cycles and their strengths is the subject of
Chap. 4. The two series are also related; it is easy to imagine the fish population is
dependent on the ocean temperature. This possibility suggests trying some version
of regression analysis as a procedure for relating the two series. Transfer function
modeling, as considered in Chap. 5, can also be applied in this case. The following
R code will reproduce Fig. 1.5:
par(mfrow = c(2,1)) # set up the graphics
plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a collection
of independent series or vectors of series, generated under varying experimental
conditions or treatment configurations. Such a set of series is shown in Fig. 1.6,
where we observe data collected from various locations in the brain via functional
magnetic resonance imaging (fMRI). In this example, five subjects were given pe-
riodic brushing on the hand. The stimulus was applied for 32 seconds and then
stopped for 32 seconds; thus, the signal period is 64 seconds. The sampling rate

2 log(1 + p) = p − p2
2 +

p3
3 − · · · for −1 < p ≤ 1. If p is near zero, the higher-order terms in the

expansion are negligible.
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950–1987

was one observation every 2 seconds for 256 seconds (n = 128). For this exam-
ple, we averaged the results over subjects (these were evoked responses, and all
subjects were in phase). The series shown in Fig. 1.6 are consecutive measures of
blood oxygenation-level dependent (bold) signal intensity, which measures areas
of activation in the brain. Notice that the periodicities appear strongly in the mo-
tor cortex series and less strongly in the thalamus and cerebellum. The fact that
one has series from different areas of the brain suggests testing whether the areas
are responding differently to the brush stimulus. Analysis of variance techniques
accomplish this in classical statistics, and we show in Chap. 7 how these classical
techniques extend to the time series case, leading to a spectral analysis of variance.
The following R commands can be used to plot the data:
par(mfrow=c(2,1))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", main="Thalamus & Cerebellum")

Example 1.7 Earthquakes and Explosions
As a final example, the series in Fig. 1.7 represent two phases or arrivals along the
surface, denoted by P (t = 1, . . . , 1024) and S (t = 1025, . . . , 2048), at a seismic
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128
points, one observation taken every 2 s

recording station. The recording instruments in Scandinavia are observing earth-
quakes and mining explosions with one of each shown in Fig. 1.7. The general
problem of interest is in distinguishing or discriminating between waveforms gen-
erated by earthquakes and those generated by explosions. Features that may be
important are the rough amplitude ratios of the first phase P to the second phase S,
which tend to be smaller for earthquakes than for explosions. In the case of the
two events in Fig. 1.7, the ratio of maximum amplitudes appears to be somewhat
less than .5 for the earthquake and about 1 for the explosion. Otherwise, note a
subtle difference exists in the periodic nature of the S phase for the earthquake.
We can again think about spectral analysis of variance for testing the equality of
the periodic components of earthquakes and explosions. We would also like to be
able to classify future P and S components from events of unknown origin, leading
to the time series discriminant analysis developed in Chap. 7.

To plot the data as in this example, use the following commands in R:
par(mfrow=c(2,1))
plot(EQ5, main="Earthquake")
plot(EXP6, main="Explosion")
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second

1.2 Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for sample data, like that encountered in the previous
section. In order to provide a statistical setting for describing the character of data
that seemingly fluctuate in a random fashion over time, we assume a time series can
be defined as a collection of random variables indexed according to the order they are
obtained in time. For example, we may consider a time series as a sequence of random
variables, x1, x2, x3, . . . , where the random variable x1 denotes the value taken by
the series at the first time point, the variable x2 denotes the value for the second
time period, x3 denotes the value for the third time period, and so on. In general, a
collection of randomvariables, {xt }, indexed by t is referred to as a stochastic process.
In this text, t will typically be discrete and vary over the integers t = 0,±1,±2, . . ., or
some subset of the integers. The observed values of a stochastic process are referred
to as a realization of the stochastic process. Because it will be clear from the context
of our discussions, we use the term time series whether we are referring generically to
the process or to a particular realization and make no notational distinction between
the two concepts.
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It is conventional to display a sample time series graphically by plotting the values
of the random variables on the vertical axis, or ordinate, with the time scale as the
abscissa. It is usually convenient to connect the values at adjacent time periods to
reconstruct visually some original hypothetical continuous time series that might
have produced these values as a discrete sample. Many of the series discussed in
the previous section, for example, could have been observed at any continuous point
in time and are conceptually more properly treated as continuous time series. The
approximation of these series by discrete time parameter series sampled at equally
spaced points in time is simply an acknowledgment that sampled data will, for the
most part, be discrete because of restrictions inherent in the method of collection.
Furthermore, the analysis techniques are then feasible using computers, which are
limited to digital computations. Theoretical developments also rest on the idea that a
continuous parameter time series should be specified in terms of finite-dimensional
distribution functions defined over a finite number of points in time. This is not to
say that the selection of the sampling interval or rate is not an extremely important
consideration. The appearance of data can be changed completely by adopting an
insufficient sampling rate. We have all seen wheels in movies appear to be turning
backwards because of the insufficient number of frames sampled by the camera. This
phenomenon leads to a distortion called aliasing (see Sect. 4.1).

The fundamental visual characteristic distinguishing the different series shown
in Example 1.1–Example 1.7 is their differing degrees of smoothness. One possible
explanation for this smoothness is that it is being induced by the supposition that
adjacent points in time are correlated, so the value of the series at time t, say,
xt , depends in some way on the past values xt−1, xt−2, . . .. This model expresses a
fundamental way in which we might think about generating realistic-looking time
series. To begin to develop an approach to using collections of random variables to
model time series, consider Example 1.8.

Example 1.8 White Noise (3 Flavors)
A simple kind of generated series might be a collection of uncorrelated random
variables, wt , with mean 0 and finite variance σ2

w . The time series generated from
uncorrelated variables is used as a model for noise in engineering applications,
where it is called white noise; we shall denote this process as wt ∼ wn(0, σ2

w). The
designation white originates from the analogy with white light and indicates that
all possible periodic oscillations are present with equal strength.

We will sometimes require the noise to be independent and identically dis-
tributed (iid) random variables with mean 0 and variance σ2

w . We distinguish this
by writing wt ∼ iid(0, σ2

w) or by saying white independent noise or iid noise.
A particularly useful white noise series is Gaussian white noise, wherein the wt

are independent normal random variables, with mean 0 and variance σ2
w; or more

succinctly, wt ∼ iid N(0, σ2
w). Figure 1.8 shows in the upper panel a collection of

500 such random variables, with σ2
w = 1, plotted in the order in which they were

drawn. The resulting series bears a slight resemblance to the explosion in Fig. 1.7
but is not smooth enough to serve as a plausible model for any of the other experi-
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the Gaussian
white noise series (bottom)

mental series. The plot tends to show visually a mixture of many different kinds of
oscillations in the white noise series.

If the stochastic behavior of all time series could be explained in terms of the
white noise model, classical statistical methods would suffice. Two ways of intro-
ducing serial correlation and more smoothness into time series models are given in
Example 1.9 and Example 1.10.

Example 1.9 Moving Averages and Filtering
We might replace the white noise series wt by a moving average that smooths
the series. For example, considerreplacing wt in Example 1.8 by an average of its
current value and its immediate neighbors in the past and future. That is, let

vt =
1
3
(
wt−1 + wt + wt+1

)
, (1.1)

which leads to the series shown in the lower panel of Fig. 1.8. Inspecting the series
shows a smoother version of the first series, reflecting the fact that the slower
oscillations are more apparent and some of the faster oscillations are taken out. We
begin to notice a similarity to the SOI in Fig. 1.5, or perhaps, to some of the fMRI
series in Fig. 1.6.
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A linear combination of values in a time series such as in (1.1) is referred to,
generically, as a filtered series; hence the command filter in the following code
for Fig. 1.8.
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, filter=rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")

The speech series in Fig. 1.3 and the Recruitment series in Fig. 1.5, as well as
some of the MRI series in Fig. 1.6, differ from the moving average series because one
particular kind of oscillatory behavior seems to predominate, producing a sinusoidal
type of behavior. A number of methods exist for generating series with this quasi-
periodic behavior; we illustrate a popular one based on the autoregressive model
considered in Chap. 3.

Example 1.10 Autoregressions
Suppose we consider the white noise serieswt of Example 1.8 as input and calculate
the output using the second-order equation

xt = xt−1 − .9xt−2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or predic-
tion of the current value xt of a time series as a function of the past two values of the
series, and, hence, the term autoregression is suggested for this model. A problem
with startup values exists here because (1.2) also depends on the initial conditions
x0 and x−1, but assuming we have the values, we generate the succeeding values by
substituting into (1.2). The resulting output series is shown in Fig. 1.9, and we note
the periodic behavior of the series, which is similar to that displayed by the speech
series in Fig. 1.3. The autoregressive model above and its generalizations can be
used as an underlying model for many observed series and will be studied in detail
in Chap. 3.

As in the previous example, the data are obtained by a filter of white noise.
The function filter uses zeros for the initial values. In this case, x1 = w1, and
x2 = x1 + w2 = w1 + w2, and so on, so that the values do not satisfy (1.2). An easy
fix is to run the filter for longer than needed and remove the initial values.
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)] # remove first 50
plot.ts(x, main="autoregression")

Example 1.11 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature data in Fig. 1.2,
is the random walk with drift model given by

xt = δ + xt−1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise. The
constant δ is called the drift, and when δ = 0, (1.3) is called simply a random walk.
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Fig. 1.9. Autoregressive series generated from model (1.2)

The term random walk comes from the fact that, when δ = 0, the value of the time
series at time t is the value of the series at time t − 1 plus a completely random
movement determined by wt . Note that we may rewrite (1.3) as a cumulative sum
of white noise variates. That is,

xt = δ t +
t∑

j=1
wj (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this statement.
Figure 1.10 shows 200 observations generated from the model with δ = 0 and .2,
and with σw = 1. For comparison, we also superimposed the straight line .2t on
the graph. To reproduce Fig. 1.10 in R use the following code (notice the use of
multiple commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk", ylab='')
lines(x, col=4); abline(h=0, col=4, lty=2); abline(a=0, b=.2, lty=2)

Example 1.12 Signal in Noise
Many realistic models for generating time series assume an underlying signal with
some consistent periodic variation, contaminated by adding a random noise. For
example, it is easy to detect the regular cycle fMRI series displayed on the top of
Fig. 1.6. Consider the model

xt = 2 cos(2π t+15
50 ) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in the
upper panel of Fig. 1.11. We note that a sinusoidal waveform can be written as

A cos(2πωt + φ), (1.6)
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Fig. 1.10. Random walk, σw = 1, with drift δ = .2 (upper jagged line), without drift, δ = 0
(lower jagged line), and straight (dashed) lines with slope δ

where A is the amplitude, ω is the frequency of oscillation, and φ is a phase shift.
In (1.5), A = 2,ω = 1/50 (one cycle every 50 time points), and φ = 2π15/50 = .6π.

An additive noise term was taken to be white noise with σw = 1 (middle panel)
and σw = 5 (bottom panel), drawn from a normal distribution. Adding the two
together obscures the signal, as shown in the lower panels of Fig. 1.11. Of course,
the degree to which the signal is obscured depends on the amplitude of the signal
and the size of σw . The ratio of the amplitude of the signal to σw (or some function
of the ratio) is sometimes called the signal-to-noise ratio (SNR); the larger the
SNR, the easier it is to detect the signal. Note that the signal is easily discernible in
the middle panel of Fig. 1.11, whereas the signal is obscured in the bottom panel.
Typically, we will not observe the signal but the signal obscured by noise.

To reproduce Fig. 1.11 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi); w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)))

In Chap. 4, we will study the use of spectral analysis as a possible technique for
detecting regular or periodic signals, such as the one described in Example 1.12. In
general, we would emphasize the importance of simple additive models such as given
above in the form

xt = st + vt, (1.7)

where st denotes some unknown signal and vt denotes a time series that may be white
or correlated over time. The problems of detecting a signal and then in estimating or
extracting the waveform of st are of great interest in many areas of engineering and
the physical and biological sciences. In economics, the underlying signal may be a
trend or it may be a seasonal component of a series. Models such as (1.7), where the
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contaminated with additive white Gaussian noise, σw = 1 (middle panel) and σw = 5 (bottom
panel); see (1.5)

signal has an autoregressive structure, form the motivation for the state-space model
of Chap. 6.

In the above examples, we have tried to motivate the use of various combinations
of random variables emulating real time series data. Smoothness characteristics of
observed time series were introduced by combining the random variables in vari-
ous ways. Averaging independent random variables over adjacent time points, as in
Example 1.9, or looking at the output of difference equations that respond to white
noise inputs, as in Example 1.10, are common ways of generating correlated data.
In the next section, we introduce various theoretical measures used for describing
how time series behave. As is usual in statistics, the complete description involves
the multivariate distribution function of the jointly sampled values x1, x2, . . . , xn,
whereas more economical descriptions can be had in terms of the mean and autocor-
relation functions. Because correlation is an essential feature of time series analysis,
the most useful descriptive measures are those expressed in terms of covariance and
correlation functions.
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1.3 Measures of Dependence

A complete description of a time series, observed as a collection of n random variables
at arbitrary time points t1, t2, . . . , tn, for any positive integer n, is provided by the joint
distribution function, evaluated as the probability that the values of the series are
jointly less than the n constants, c1, c2, . . . , cn; i.e.,

Ft1,t2,...,tn (c1, c2, . . . , cn) = Pr
(
xt1 ≤ c1, xt2 ≤ c2, . . . , xtn ≤ cn

)
. (1.8)

Unfortunately, these multidimensional distribution functions cannot usually be writ-
ten easily unless the random variables are jointly normal, in which case the joint
density has the well-known form displayed in (1.33).

Although the joint distribution function describes the data completely, it is an
unwieldy tool for displaying and analyzing time series data. The distribution func-
tion (1.8) must be evaluated as a function of n arguments, so any plotting of the
corresponding multivariate density functions is virtually impossible. The marginal
distribution functions

Ft (x) = P{xt ≤ x}
or the corresponding marginal density functions

ft (x) = ∂Ft(x)
∂x

,

when they exist, are often informative for examining the marginal behavior of a
series.3 Another informative marginal descriptive measure is the mean function.

Definition 1.1 The mean function is defined as

μxt = E(xt ) =
∫ ∞

−∞
x ft (x) dx, (1.9)

provided it exists, where E denotes the usual expected value operator. When no
confusion exists about which time series we are referring to, we will drop a subscript
and write μxt as μt .

Example 1.13 Mean Function of a Moving Average Series
If wt denotes a white noise series, then μwt = E(wt ) = 0 for all t. The top series in
Fig. 1.8 reflects this, as the series clearly fluctuates around a mean value of zero.
Smoothing the series as in Example 1.9 does not change the mean because we can
write

μvt = E(vt) = 1
3 [E(wt−1) + E(wt ) + E(wt+1)] = 0.

3 If xt is Gaussian with mean μt and variance σ2
t , abbreviated as xt ∼ N(μt, σ2

t ), the marginal density

is given by ft (x) = 1
σt

√
2π

exp
{

− 1
2σ2

t

(x − μt )2
}

, x ∈ R.
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Example 1.14 Mean Function of a Random Walk with Drift
Consider the random walk with drift model given in (1.4),

xt = δ t +
t∑

j=1
wj, t = 1, 2, . . . .

Because E(wt ) = 0 for all t, and δ is a constant, we have

μxt = E(xt ) = δ t +
t∑

j=1
E(wj ) = δ t

which is a straight line with slope δ. A realization of a random walk with drift can
be compared to its mean function in Fig. 1.10.

Example 1.15 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data have
been generated by a fixed signal waveform superimposed on a zero-mean noise
process, leading to an additive signal model of the form (1.5). It is clear, because
the signal in (1.5) is a fixed function of time, we will have

μxt = E(xt ) = E
[
2 cos(2π t+15

50 ) + wt

]

= 2 cos(2π t+15
50 ) + E(wt )

= 2 cos(2π t+15
50 ),

and the mean function is just the cosine wave.

The lack of independence between two adjacent values xs and xt can be assessed
numerically, as in classical statistics, using the notions of covariance and correlation.
Assuming the variance of xt is finite, we have the following definition.

Definition 1.2 The autocovariance function is defined as the second moment product

γx(s, t) = cov(xs, xt ) = E[(xs − μs)(xt − μt )], (1.10)

for all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write γx(s, t) as γ(s, t). Note that γx(s, t) =
γx(t, s) for all time points s and t.

The autocovariance measures the linear dependence between two points on the
same series observed at different times. Very smooth series exhibit autocovariance
functions that stay large even when the t and s are far apart, whereas choppy series
tend to have autocovariance functions that are nearly zero for large separations. Recall
from classical statistics that if γx(s, t) = 0, xs and xt are not linearly related, but there
still may be some dependence structure between them. If, however, xs and xt are
bivariate normal, γx(s, t) = 0 ensures their independence. It is clear that, for s = t,
the autocovariance reduces to the (assumed finite) variance, because

γx(t, t) = E[(xt − μt )2] = var(xt ). (1.11)
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Example 1.16 Autocovariance of White Noise
The white noise series wt has E(wt ) = 0 and

γw(s, t) = cov(ws,wt ) =
{
σ2
w s = t,

0 s � t.
(1.12)

A realization of white noise with σ2
w = 1 is shown in the top panel of Fig. 1.8.

We often have to calculate the autocovariance between filtered series. A useful
result is given in the following proposition.

Property 1.1 Covariance of Linear Combinations
If the random variables

U =

m∑

j=1
ajXj and V =

r∑

k=1
bkYk

are linear combinations of (finite variance) random variables {Xj } and {Yk}, respec-
tively, then

cov(U,V) =
m∑

j=1

r∑

k=1
ajbkcov(Xj,Yk). (1.13)

Furthermore, var(U) = cov(U,U).

Example 1.17 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series wt of the
previous example as in Example 1.9. In this case,

γv(s, t) = cov(vs, vt ) = cov
{ 1

3 (ws−1 + ws + ws+1) , 1
3 (wt−1 + wt + wt+1)

}
.

When s = t we have

γv(t, t) = 1
9cov{(wt−1 + wt + wt+1), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt−1,wt−1) + cov(wt,wt ) + cov(wt+1,wt+1)]

= 3
9σ

2
w .

When s = t + 1,

γv(t + 1, t) = 1
9 cov{(wt + wt+1 + wt+2), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt,wt ) + cov(wt+1,wt+1)]

= 2
9σ

2
w,

using (1.12). Similar computations give γv(t − 1, t) = 2σ2
w/9, γv(t + 2, t) = γv(t −

2, t) = σ2
w/9, and 0 when |t − s| > 2. We summarize the values for all s and t as
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γv(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪
⎩

3
9σ

2
w s = t,

2
9σ

2
w |s − t | = 1,

1
9σ

2
w |s − t | = 2,

0 |s − t | > 2.

(1.14)

Example 1.17 shows clearly that the smoothing operation introduces a covariance
function that decreases as the separation between the two time points increases and
disappears completely when the time points are separated by three or more time
points. This particular autocovariance is interesting because it only depends on the
time separation or lag and not on the absolute location of the points along the series.
We shall see later that this dependence suggests a mathematical model for the concept
of weak stationarity.

Example 1.18 Autocovariance of a Random Walk
For the random walk model, xt =

∑t
j=1 wj , we have

γx(s, t) = cov(xs, xt ) = cov �
�

�

s∑

j=1
wj,

t∑

k=1
wk

�
�

�

= min{s, t}σ2
w,

because the wt are uncorrelated random variables. Note that, as opposed to the
previous examples, the autocovariance function of a random walk depends on the
particular time values s and t, and not on the time separation or lag. Also, notice that
the variance of the random walk, var(xt ) = γx(t, t) = t σ2

w , increases without bound
as time t increases. The effect of this variance increase can be seen in Fig. 1.10
where the processes start to move away from their mean functions δ t (note that
δ = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of association
between −1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

ρ(s, t) = γ(s, t)
√
γ(s, s)γ(t, t)

. (1.15)

The ACF measures the linear predictability of the series at time t, say xt, using only
the value xs. We can show easily that −1 ≤ ρ(s, t) ≤ 1 using the Cauchy–Schwarz
inequality.4 If we can predict xt perfectly from xs through a linear relationship,
xt = β0 + β1xs, then the correlation will be +1 when β1 > 0, and −1 when β1 < 0.
Hence, we have a rough measure of the ability to forecast the series at time t from
the value at time s.

Often, we would like to measure the predictability of another series yt from the
series xs . Assuming both series have finite variances, we have the following definition.

4 The Cauchy–Schwarz inequality implies |γ(s, t) |2 ≤ γ(s, s)γ(t, t).
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Definition 1.4 The cross-covariance function between two series, xt and yt , is

γxy(s, t) = cov(xs, yt ) = E[(xs − μxs)(yt − μyt )]. (1.16)

There is also a scaled version of the cross-covariance function.

Definition 1.5 The cross-correlation function (CCF) is given by

ρxy(s, t) = γxy(s, t)
√
γx(s, s)γy(t, t)

. (1.17)

We may easily extend the above ideas to the case of more than two series, say,
xt1, xt2, . . . , xtr ; that is, multivariate time series with r components. For example, the
extension of (1.10) in this case is

γjk(s, t) = E[(xs j − μs j )(xtk − μtk)] j, k = 1, 2, . . . , r . (1.18)

In the definitions above, the autocovariance and cross-covariance functions may
change as one moves along the series because the values depend on both s and t, the
locations of the points in time. In Example 1.17, the autocovariance function depends
on the separation of xs and xt , say, h = |s− t |, and not on where the points are located
in time. As long as the points are separated by h units, the location of the two points
does not matter. This notion, called weak stationarity, when the mean is constant, is
fundamental in allowing us to analyze sample time series data when only a single
series is available.

1.4 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are completely
general. Although we have not made any special assumptions about the behavior of
the time series, many of the preceding examples have hinted that a sort of regularity
may exist over time in the behavior of a time series. We introduce the notion of
regularity using a concept called stationarity.

Definition 1.6 A strictly stationary time series is one for which the probabilistic
behavior of every collection of values

{xt1, xt2, . . . , xtk }
is identical to that of the time shifted set

{xt1+h, xt2+h, . . . , xtk+h}.
That is,

Pr{xt1 ≤ c1, . . . , xtk ≤ ck} = Pr{xt1+h ≤ c1, . . . , xtk+h ≤ ck} (1.19)

for all k = 1, 2, . . ., all time points t1, t2, . . . , tk , all numbers c1, c2, . . . , ck , and all
time shifts h = 0,±1,±2, . . . .
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If a time series is strictly stationary, then all of the multivariate distribution
functions for subsets of variables must agree with their counterparts in the shifted set
for all values of the shift parameter h. For example, when k = 1, (1.19) implies that

Pr{xs ≤ c} = Pr{xt ≤ c} (1.20)

for any time points s and t. This statement implies, for example, that the probability
the value of a time series sampled hourly is negative at 1 am is the same as at 10 am.
In addition, if the mean function, μt , of the series exists, (1.20) implies that μs = μt
for all s and t, and hence μt must be constant. Note, for example, that a random walk
process with drift is not strictly stationary because its mean function changes with
time; see Example 1.14.

When k = 2, we can write (1.19) as

Pr{xs ≤ c1, xt ≤ c2} = Pr{xs+h ≤ c1, xt+h ≤ c2} (1.21)

for any time points s and t and shift h. Thus, if the variance function of the process
exists, (1.20)–(1.21) imply that the autocovariance function of the series xt satisfies

γ(s, t) = γ(s + h, t + h)
for all s and t and h. We may interpret this result by saying the autocovariance function
of the process depends only on the time difference between s and t, and not on the
actual times.

The version of stationarity in Definition 1.6 is too strong for most applications.
Moreover, it is difficult to assess strict stationarity from a single data set. Rather than
imposing conditions on all possible distributions of a time series, we will use a milder
version that imposes conditions only on the first two moments of the series. We now
have the following definition.

Definition 1.7 A weakly stationary time series, xt , is a finite variance process such
that

(i) the mean value function, μt , defined in (1.9) is constant and does not depend on
time t, and

(ii) the autocovariance function, γ(s, t), defined in (1.10) depends on s and t only
through their difference |s − t |.

Henceforth, we will use the term stationary to mean weakly stationary; if a process
is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation functions so that
these quantities (at least) may be estimated by averaging. It should be clear from
the discussion of strict stationarity following Definition 1.6 that a strictly stationary,
finite variance, time series is also stationary. The converse is not true unless there are
further conditions. One important case where stationarity implies strict stationarity
is if the time series is Gaussian [meaning all finite distributions, (1.19), of the series
are Gaussian]. We will make this concept more precise at the end of this section.
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Because the mean function, E(xt ) = μt , of a stationary time series is independent
of time t, we will write

μt = μ. (1.22)

Also, because the autocovariance function, γ(s, t), of a stationary time series, xt ,
depends on s and t only through their difference |s− t |, we may simplify the notation.
Let s = t + h, where h represents the time shift or lag. Then

γ(t + h, t) = cov(xt+h, xt ) = cov(xh, x0) = γ(h, 0)

because the time difference between times t+h and t is the same as the time difference
between times h and 0. Thus, the autocovariance function of a stationary time series
does not depend on the time argument t. Henceforth, for convenience, we will drop
the second argument of γ(h, 0).
Definition 1.8 The autocovariance function of a stationary time series will be
written as

γ(h) = cov(xt+h, xt ) = E[(xt+h − μ)(xt − μ)]. (1.23)

Definition 1.9 The autocorrelation function (ACF) of a stationary time series will
be written using (1.15) as

ρ(h) = γ(t + h, t)
√
γ(t + h, t + h)γ(t, t)

=
γ(h)
γ(0) . (1.24)

The Cauchy–Schwarz inequality shows again that −1 ≤ ρ(h) ≤ 1 for all h,
enabling one to assess the relative importance of a given autocorrelation value by
comparing with the extreme values −1 and 1.

Example 1.19 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed in
Example 1.8 and Example 1.16 are easily evaluated as μwt = 0 and

γw(h) = cov(wt+h,wt ) =
{
σ2
w h = 0,

0 h � 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly stationary
or stationary. If the white noise variates are also normally distributed or Gaussian,
the series is also strictly stationary, as can be seen by evaluating (1.19) using the fact
that the noise would also be iid. The autocorrelation function is given by ρw(0) = 1
and ρ(h) = 0 for h � 0.



22 1 Characteristics of Time Series

Example 1.20 Stationarity of a Moving Average
The three-point moving average process of Example 1.9 is stationary because,
from Example 1.13 and Example 1.17, the mean and autocovariance functions
μvt = 0, and

γv(h) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

3
9σ

2
w h = 0,

2
9σ

2
w h = ±1,

1
9σ

2
w h = ±2,

0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7.
The autocorrelation function is given by

ρv(h) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2.

Figure 1.12 shows a plot of the autocorrelations as a function of lag h. Note that
the ACF is symmetric about lag zero.

Example 1.21 A Random Walk is Not Stationary
A random walk is not stationary because its autocovariance function, γ(s, t) =

min{s, t}σ2
w , depends on time; see Example 1.18 and Problem 1.8. Also, the random

walk with drift violates both conditions of Definition 1.7 because, as shown in
Example 1.14, the mean function, μxt = δt, is also a function of time t.

Example 1.22 Trend Stationarity
For example, if xt = α + βt + yt , where yt is stationary, then the mean function
is μx,t = E(xt ) = α + βt + μy , which is not independent of time. Therefore, the
process is not stationary. The autocovariance function, however, is independent of
time, because γx(h) = cov(xt+h, xt ) = E[(xt+h − μx,t+h)(xt − μx,t )] = E[(yt+h −
μy)(yt − μy)] = γy(h). Thus, the model may be considered as having stationary
behavior around a linear trend; this behavior is sometimes called trend stationarity.
An example of such a process is the price of chicken series displayed in Fig. 2.1.

The autocovariance function of a stationary process has several special properties.
First, γ(h) is non-negativedefinite (see Problem 1.25) ensuring that variances of linear
combinations of the variates xt will never be negative. That is, for any n ≥ 1, and
constants a1, . . . , an,

0 ≤ var(a1x1 + · · · + anxn) =
n∑

j=1

n∑

k=1
ajakγ( j − k) , (1.25)

using Chap. 1.1. Also, the value at h = 0, namely
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Fig. 1.12. Autocorrelation function of a three-point moving average

γ(0) = E[(xt − μ)2] (1.26)

is the variance of the time series and the Cauchy–Schwarz inequality implies

|γ(h)| ≤ γ(0).
A final useful property, noted in a previous example, is that the autocovariance
function of a stationary series is symmetric around the origin; that is,

γ(h) = γ(−h) (1.27)

for all h. This property follows because

γ((t + h) − t) = cov(xt+h, xt ) = cov(xt, xt+h) = γ(t − (t + h)),
which shows how to use the notation as well as proving the result.

When several series are available, a notion of stationarity still applies with addi-
tional conditions.

Definition 1.10 Two time series, say, xt and yt , are said to be jointly stationary if
they are each stationary, and the cross-covariance function

γxy(h) = cov(xt+h, yt ) = E[(xt+h − μx)(yt − μy)] (1.28)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary time
series xt and yt is defined as

ρxy(h) =
γxy(h)

√
γx(0)γy(0)

. (1.29)

Again, we have the result −1 ≤ ρxy(h) ≤ 1 which enables comparison with
the extreme values −1 and 1 when looking at the relation between xt+h and yt .
The cross-correlation function is not generally symmetric about zero, i.e., typically
ρxy(h) � ρxy(−h). This is an important concept; it should be clear that cov(x2, y1)
and cov(x1, y2) need not be the same. It is the case, however, that

ρxy(h) = ρyx(−h), (1.30)

which can be shown by manipulations similar to those used to show (1.27).
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Example 1.23 Joint Stationarity
Consider the two series, xt and yt , formed from the sum and difference of two
successive values of a white noise process, say,

xt = wt + wt−1 and yt = wt − wt−1,

where wt are independent random variables with zero means and variance σ2
w . It

is easy to show that γx(0) = γy(0) = 2σ2
w and γx(1) = γx(−1) = σ2

w, γy(1) =
γy(−1) = −σ2

w . Also,

γxy(1) = cov(xt+1, yt ) = cov(wt+1 + wt,wt − wt−1) = σ2
w

because only one term is nonzero. Similarly, γxy(0) = 0, γxy(−1) = −σ2
w . We

obtain, using (1.29),

ρxy(h) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

0 h = 0,
1/2 h = 1,
−1/2 h = −1,

0 |h| ≥ 2.

Clearly, the autocovariance and cross-covariance functions depend only on the lag
separation, h, so the series are jointly stationary.

Example 1.24 Prediction Using Cross-Correlation
As a simple example of cross-correlation, consider the problem of determining
possible leading or lagging relations between two series xt and yt . If the model

yt = Axt−� + wt

holds, the series xt is said to lead yt for � > 0 and is said to lag yt for � < 0. Hence,
the analysis of leading and lagging relations might be important in predicting the
value of yt from xt . Assuming that the noise wt is uncorrelated with the xt series,
the cross-covariance function can be computed as

γyx(h) = cov(yt+h, xt ) = cov(Axt+h−� + wt+h , xt )
= cov(Axt+h−� , xt ) = Aγx(h − �).

Since (Cauchy–Schwarz) the largest absolute value of γx(h− �) is γx(0), i.e., when
h = �, the cross-covariance function will look like the autocovariance of the input
series xt , and it will have a peak on the positive side if xt leads yt and a peak on
the negative side if xt lags yt . Below is the R code of an example where xt is white
noise, � = 5, and with γ̂yx(h) shown in Fig. 1.13.
x = rnorm(100)
y = lag(x, -5) + rnorm(100)
ccf(y, x, ylab='CCovF', type='covariance')
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Fig. 1.13. Demonstration of the results of Example 1.24 when � = 5. The title shows which
side leads

The concept of weak stationarity forms the basis for much of the analysis per-
formed with time series. The fundamental properties of the mean and autocovariance
functions (1.22) and (1.23) are satisfied by many theoretical models that appear to
generate plausible sample realizations. In Example 1.9 and Example 1.10, two series
were generated that produced stationary looking realizations, and in Example 1.20, we
showed that the series in Example 1.9 was, in fact, weakly stationary. Both examples
are special cases of the so-called linear process.

Definition 1.12 A linear process, xt , is defined to be a linear combination of white
noise variates wt , and is given by

xt = μ +

∞∑

j=−∞
ψjwt−j,

∞∑

j=−∞
|ψj | < ∞. (1.31)

For the linear process (see Problem 1.11), we may show that the autocovariance
function is given by

γx(h) = σ2
w

∞∑

j=−∞
ψj+hψj (1.32)

for h ≥ 0; recall that γx(−h) = γx(h). This method exhibits the autocovariance
function of the process in terms of the lagged products of the coefficients. We only
need

∑∞
j=−∞ ψ2

j < ∞ for the process to have finite variance, but we will discuss
this further in Chap. 5. Note that, for Example 1.9, we have ψ0 = ψ−1 = ψ1 = 1/3
and the result in Example 1.20 comes out immediately. The autoregressive series in
Example 1.10 can also be put in this form, as can the general autoregressive moving
average processes considered in Chap. 3.

Notice that the linear process (1.31) is dependent on the future ( j < 0), the present
( j = 0), and the past ( j > 0). For the purpose of forecasting, a future dependent model
will be useless. Consequently, we will focus on processes that do not depend on the
future. Such models are called causal, and a causal linear process has ψj = 0 for
j < 0; we will discuss this further in Chap. 3.

Finally, as previously mentioned, an important case in which a weakly stationary
series is also strictly stationary is the normal or Gaussian series.
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Definition 1.13 A process, {xt }, is said to be a Gaussian process if the n-dimensional
vectors x = (xt1, xt2, . . . , xtn )′, for every collection of distinct time points t1, t2, . . . , tn,
and every positive integer n, have a multivariate normal distribution.

Defining the n × 1 mean vector E(x) ≡ μ = (μt1, μt2, . . . , μtn )′ and the n × n
covariance matrix as var(x) ≡ Γ = {γ(ti, tj ); i, j = 1, . . . , n}, which is assumed to be
positive definite, the multivariate normal density function can be written as

f (x) = (2π)−n/2 |Γ |−1/2 exp
{

−1
2
(x − μ)′Γ−1(x − μ)

}

, (1.33)

for x ∈ R
n, where | · | denotes the determinant.

We list some important items regarding linear and Gaussian processes.

• If a Gaussian time series, {xt }, is weakly stationary, then μt is constant and
γ(ti, tj ) = γ(|ti − tj |), so that the vector μ and the matrix Γ are independent of
time. These facts imply that all the finite distributions, (1.33), of the series {xt }
depend only on time lag and not on the actual times, and hence the series must be
strictly stationary. In a sense, weak stationarity and normality go hand-in-hand
in that we will base our analyses on the idea that it is enough for the first two
moments to behave nicely. We use the multivariate normal density in the form
given above as well as in a modified version, applicable to complex random
variables throughout the text.

• A result called the Wold Decomposition (Theorem B.5) states that a stationary
non-deterministic time series is a causal linear process (but with

∑
ψ2
j < ∞).

A linear process need not be Gaussian, but if a time series is Gaussian, then it
is a causal linear process with wt ∼ iid N(0, σ2

w). Hence, stationary Gaussian
processes form the basis of modeling many time series.

• It is not enough for the marginal distributions to be Gaussian for the process to be
Gaussian. It is easy to construct a situation where X and Y are normal, but (X,Y)
is not bivariate normal; e.g., let X and Z be independent normals and let Y = Z
if XZ > 0 and Y = −Z if XZ ≤ 0.

1.5 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are useful
for describing the properties of certain hypothesized models, most of the analyses
must be performed using sampled data. This limitation means the sampled points
x1, x2, . . . , xn only are available for estimating the mean, autocovariance, and au-
tocorrelation functions. From the point of view of classical statistics, this poses a
problem because we will typically not have iid copies of xt that are available for
estimating the covariance and correlation functions. In the usual situation with only
one realization, however, the assumption of stationarity becomes critical. Somehow,
we must use averages over this single realization to estimate the population means
and covariance functions.
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Accordingly, if a time series is stationary, the mean function (1.22) μt = μ is
constant so that we can estimate it by the sample mean,

x̄ =
1
n

n∑

t=1
xt . (1.34)

In our case, E(x̄) = μ, and the standard error of the estimate is the square root of
var(x̄), which can be computed using first principles (recall Chap. 1.1), and is given by

var(x̄) = var

(
1
n

n∑

t=1
xt

)

=
1
n2 cov

(
n∑

t=1
xt,

n∑

s=1
xs

)

=
1
n2

(
nγx(0) + (n − 1)γx(1) + (n − 2)γx(2) + · · · + γx(n − 1)

+ (n − 1)γx(−1) + (n − 2)γx(−2) + · · · + γx(1 − n)
)

=
1
n

n∑

h=−n

(
1 − |h|

n

)
γx(h). (1.35)

If the process is white noise, (1.35) reduces to the familiar σ2
x/n recalling that

γx(0) = σ2
x . Note that, in the case of dependence, the standard error of x̄ may be

smaller or larger than the white noise case depending on the nature of the correlation
structure (see Problem 1.19)

The theoretical autocovariance function, (1.23), is estimated by the sample auto-
covariance function defined as follows.

Definition 1.14 The sample autocovariance function is defined as

γ̂(h) = n−1
n−h∑

t=1
(xt+h − x̄)(xt − x̄), (1.36)

with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n − 1.

The sum in (1.36) runs over a restricted range because xt+h is not available for
t + h > n. The estimator in (1.36) is preferred to the one that would be obtained by
dividing by n − h because (1.36) is a non-negative definite function. Recall that the
autocovariance function of a stationary process is non-negative definite [(1.25); also,
see Problem 1.25] ensuring that variances of linear combinations of the variates xt
will never be negative. And because a variance is never negative, the estimate of that
variance

v̂ar(a1x1 + · · · + anxn) =
n∑

j=1

n∑

k=1
ajak γ̂( j − k) ,

should also be non-negative. The estimator in (1.36) guarantees this result, but no
such guarantee exists if we divide by n − h. Note that neither dividing by n nor n − h
in (1.36) yields an unbiased estimator of γ(h).
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Fig. 1.14. Display for Example 1.25. For the SOI series, the scatterplots show pairs of values
one month apart (left) and six months apart (right). The estimated correlation is displayed in
the box

Definition 1.15 The sample autocorrelation function is defined, analogously to
(1.24), as

ρ̂(h) = γ̂(h)
γ̂(0) . (1.37)

The sample autocorrelation function has a sampling distribution that allows us to
assess whether the data comes from a completely random or white series or whether
correlations are statistically significant at some lags.

Example 1.25 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the usual setup
where we have pairs of observations, say (xi, yi), for i = 1, . . . , n. For example, if we
have time series data xt for t = 1, . . . , n, then the pairs of observations for estimating
ρ(h) are the n− h pairs given by {(xt, xt+h); t = 1, . . . , n− h}. Figure 1.14 shows an
example using the SOI series where ρ̂(1) = .604 and ρ̂(6) = −.187. The following
code was used for Fig. 1.14.
(r = round(acf(soi, 6, plot=FALSE)$acf[-1], 3)) # first 6 sample acf values

[1] 0.604 0.374 0.214 0.050 -0.107 -0.187
par(mfrow=c(1,2))
plot(lag(soi,-1), soi); legend('topleft', legend=r[1])
plot(lag(soi,-6), soi); legend('topleft', legend=r[6])

Property 1.2 Large-Sample Distribution of the ACF
Under general conditions,5 if xt is white noise, then for n large, the sample ACF,

ρ̂x(h), for h = 1, 2, . . . , H, where H is fixed but arbitrary, is approximately normally
distributed with zero mean and standard deviation given by

σρ̂x (h) =
1√
n
. (1.38)

5 The general conditions are that xt is iid with finite fourth moment. A sufficient condition for this to
hold is that xt is white Gaussian noise. Precise details are given in Theorem A.7 in Appendix A.
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Based on the previous result, we obtain a rough method of assessing whether peaks
in ρ̂(h) are significant by determining whether the observed peak is outside the interval
±2/√n (or plus/minus two standard errors); for a white noise sequence, approximately
95% of the sample ACFs should be within these limits. The applications of this
property develop because many statistical modeling procedures depend on reducing
a time series to a white noise series using various kinds of transformations. After
such a procedure is applied, the plotted ACFs of the residuals should then lie roughly
within the limits given above.

Example 1.26 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical ACF,
consider a contrived set of data generated by tossing a fair coin, letting xt = 1 when
a head is obtained and xt = −1 when a tail is obtained. Then, construct yt as

yt = 5 + xt − .7xt−1. (1.39)

To simulate data, we consider two cases, one with a small sample size (n = 10)
and another with a moderate sample size (n = 100).
set.seed(101010)
x1 = 2*rbinom(11, 1, .5) - 1 # simulated sequence of coin tosses
x2 = 2*rbinom(101, 1, .5) - 1
y1 = 5 + filter(x1, sides=1, filter=c(1,-.7))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1,-.7))[-1]
plot.ts(y1, type='s'); plot.ts(y2, type='s') # plot both series (not shown)
c(mean(y1), mean(y2)) # the sample means

[1] 5.080 5.002

acf(y1, lag.max=4, plot=FALSE) # 1/√10 = .32
Autocorrelations of series 'y1', by lag

0 1 2 3 4
1.000 -0.688 0.425 -0.306 -0.007

acf(y2, lag.max=4, plot=FALSE) # 1/√100 = .1
Autocorrelations of series 'y2', by lag

0 1 2 3 4
1.000 -0.480 -0.002 -0.004 0.000

# Note that the sample ACF at lag zero is always 1 (Why?).

The theoretical ACF can be obtained from the model (1.39) using the fact that
the mean of xt is zero and the variance of xt is one. It can be shown that

ρy(1) = −.7
1 + .72 = −.47

and ρy(h) = 0 for |h| > 1 (Problem 1.24). It is interesting to compare the theoretical
ACF with sample ACFs for the realization where n = 10 and the other realization
where n = 100; note the increased variability in the smaller size sample.

Example 1.27 ACF of a Speech Signal
Computing the sample ACF as in the previous example can be thought of as
matching the time series h units in the future, say, xt+h against itself, xt . Figure 1.15
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Fig. 1.15. ACF of the speech series

shows the ACF of the speech series of Fig. 1.3. The original series appears to contain
a sequence of repeating short signals. The ACF confirms this behavior, showing
repeating peaks spaced at about 106–109 points. Autocorrelation functions of the
short signals appear, spaced at the intervals mentioned above. The distance between
the repeating signals is known as the pitch period and is a fundamental parameter of
interest in systems that encode and decipher speech. Because the series is sampled
at 10,000 points per second, the pitch period appears to be between .0106 and .0109
seconds. To compute the sample ACF in R, use acf(speech, 250).

Definition 1.16 The estimators for the cross-covariance function, γxy(h), as given
in (1.28) and the cross-correlation, ρxy(h), in (1.11) are given, respectively, by the
sample cross-covariance function

γ̂xy(h) = n−1
n−h∑

t=1
(xt+h − x̄)(yt − ȳ), (1.40)

where γ̂xy(−h) = γ̂yx(h) determines the function for negative lags, and the sample
cross-correlation function

ρ̂xy(h) =
γ̂xy(h)

√
γ̂x(0)γ̂y(0)

. (1.41)

The sample cross-correlation function can be examined graphically as a function
of lag h to search for leading or lagging relations in the data using the property
mentioned in Example 1.24 for the theoretical cross-covariance function. Because
−1 ≤ ρ̂xy(h) ≤ 1, the practical importance of peaks can be assessed by comparing
their magnitudes with their theoretical maximum values. Furthermore, for xt and yt
independent linear processes of the form (1.31), we have the following property.



1.5 Estimation of Correlation 31

0 1 2 3 4−0
.4

0.
0

0.
4

0.
8

AC
F

Southern Oscillation Index

0 1 2 3 4

−0
.2

0.
2

0.
6

1.
0

AC
F

Recruitment

−4 −2 0 2 4

−0
.6

−0
.2

0.
0

0.
2

LAG

C
C

F

SOI vs Recruitment

Fig. 1.16. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and the
sample CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The lag
axes are in terms of seasons (12 months)

Property 1.3 Large-Sample Distribution of Cross-Correlation
The large sample distribution of ρ̂xy(h) is normal with mean zero and

σρ̂xy =
1√
n

(1.42)

if at least one of the processes is independent white noise (see Theorem A.8).

Example 1.28 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for analyzing
the joint behavior of two stationary series whose behavior may be related in some
unspecified way. In Example 1.5 (see Fig. 1.5), we have considered simultaneous
monthly readings of the SOI and the number of new fish (Recruitment) computed
from a model. Figure 1.16 shows the autocorrelation and cross-correlation functions
(ACFs and CCF) for these two series. Both of the ACFs exhibit periodicities
corresponding to the correlation between values separated by 12 units. Observations
12 months or one year apart are strongly positively correlated, as are observations at
multiples such as 24, 36, 48, . . . Observations separated by six months are negatively
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correlated, showing that positive excursions tend to be associated with negative
excursions six months removed.

The sample CCF in Fig. 1.16, however, shows some departure from the cyclic
component of each series and there is an obvious peak at h = −6. This result
implies that SOI measured at time t − 6 months is associated with the Recruitment
series at time t. We could say the SOI leads the Recruitment series by six months.
The sign of the CCF is negative, leading to the conclusion that the two series move
in different directions; that is, increases in SOI lead to decreases in Recruitment
and vice versa. We will discover in Chap. 2 that there is a relationship between
the series, but the relationship is nonlinear. The dashed lines shown on the plots
indicate ±2/√453 [see (1.42)], but since neither series is noise, these lines do not
apply. To reproduce Fig. 1.16 in R, use the following commands:
par(mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

Example 1.29 Prewhitening and Cross Correlation Analysis
Although we do not have all the tools necessary yet, it is worthwhile to discuss the
idea of prewhitening a series prior to a cross-correlation analysis. The basic idea is
simple; in order to use Property 1.3, at least one of the series must be white noise.
If this is not the case, there is no simple way to tell if a cross-correlation estimate is
significantly different from zero. Hence, in Example 1.28, we were only guessing
at the linear dependence relationship between SOI and Recruitment.

For example, in Fig. 1.17 we generated two series, xt and yt , for t = 1, . . . , 120
independently as

xt = 2 cos(2π t 1
12 ) + wt1 and yt = 2 cos(2π [t + 5] 1

12 ) + wt2

where {wt1,wt2; t = 1, . . . , 120} are all independent standard normals. The series
are made to resemble SOI and Recruitment. The generated data are shown in the
top row of the figure. The middle row of Fig. 1.17 shows the sample ACF of each
series, each of which exhibits the cyclic nature of each series. The bottom row
(left) of Fig. 1.17 shows the sample CCF between xt and yt , which appears to show
cross-correlation even though the series are independent. The bottom row (right)
also displays the sample CCF between xt and the prewhitened yt , which shows that
the two sequences are uncorrelated. By prewhitening yt , we mean that the signal has
been removed from the data by running a regression of yt on cos(2πt) and sin(2πt)
[see Example 2.10] and then putting ỹt = yt − ŷt , where ŷt are the predicted values
from the regression.

The following code will reproduce Fig. 1.17.
set.seed(1492)
num=120; t=1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12)
Y = ts(2*cos(2*pi*(t+5)/12) + rnorm(num), freq=12)
Yw = resid( lm(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par(mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
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Fig. 1.17. Display for Example 1.29. Top row; The generated series. Middle row: The sample
ACF of each series. Bottom row; The sample CCF of the series (left) and the sample CCF of
the first series with the prewhitened second series (right)

plot(X)
plot(Y)
acf(X,48, ylab='ACF(X)')
acf(Y,48, ylab='ACF(Y)')
ccf(X,Y,24, ylab='CCF(X,Y)')
ccf(X,Yw,24, ylab='CCF(X,Yw)', ylim=c(-.6,.6))

1.6 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a number
of jointly measured time series are of interest. For example, in the previous sec-
tions, we considered discovering the relationships between the SOI and Recruit-
ment series. Hence, it will be useful to consider the notion of a vector time series
xt = (xt1, xt2, . . . , xt p)′, which contains as its components p univariate time series.
We denote the p × 1 column vector of the observed series as xt . The row vector x′t is
its transpose. For the stationary case, the p × 1 mean vector

μ = E(xt ) (1.43)
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of the form μ = (μt1, μt2, . . . , μt p)′ and the p × p autocovariance matrix

Γ(h) = E[(xt+h − μ)(xt − μ)′] (1.44)

can be defined, where the elements of the matrix Γ(h) are the cross-covariance
functions

γij (h) = E[(xt+h,i − μi)(xt j − μj )] (1.45)
for i, j = 1, . . . , p. Because γij (h) = γji(−h), it follows that

Γ(−h) = Γ ′(h). (1.46)

Now, the sample autocovariance matrix of the vector series xt is the p× p matrix
of sample cross-covariances, defined as

Γ̂(h) = n−1
n−h∑

t=1
(xt+h − x̄)(xt − x̄)′, (1.47)

where

x̄ = n−1
n∑

t=1
xt (1.48)

denotes the p × 1 sample mean vector. The symmetry property of the theoretical
autocovariance (1.46) extends to the sample autocovariance (1.47), which is defined
for negative values by taking

Γ̂(−h) = Γ̂(h)′. (1.49)

In many applied problems, an observed series may be indexed by more than time
alone. For example, the position in space of an experimental unit might be described
by two coordinates, say, s1 and s2. We may proceed in these cases by defining a
multidimensional process xs as a function of the r × 1 vector s = (s1, s2, . . . , sr )′,
where si denotes the coordinate of the ith index.

Example 1.30 Soil Surface Temperatures
As an example, the two-dimensional (r = 2) temperature series xs1,s2 in Fig. 1.18
is indexed by a row number s1 and a column number s2 that represent positions on
a 64 × 36 spatial grid set out on an agricultural field. The value of the temperature
measured at row s1 and column s2, is denoted by xs = xs1,s2. We can note from
the two-dimensional plot that a distinct change occurs in the character of the two-
dimensional surface starting at about row 40, where the oscillations along the row
axis become fairly stable and periodic. For example, averaging over the 36 columns,
we may compute an average value for each s1 as in Fig. 1.19. It is clear that the
noise present in the first part of the two-dimensional series is nicely averaged out,
and we see a clear and consistent temperature signal.

To generate Figs. 1.18 and 1.19 in R, use the following commands:
persp(1:64, 1:36, soiltemp, phi=25, theta=25, scale=FALSE, expand=4,

ticktype="detailed", xlab="rows", ylab="cols", zlab="temperature")
plot.ts(rowMeans(soiltemp), xlab="row", ylab="Average Temperature")
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Fig. 1.18. Two-dimensional time series of temperature measurements taken on a rectangular
field (64 × 36 with 17-foot spacing). Data are from Bazza et al. [15]

The autocovariance function of a stationary multidimensional process, xs , can be
defined as a function of the multidimensional lag vector, say, h = (h1, h2, . . . , hr )′, as

γ(h) = E[(xs+h − μ)(xs − μ)], (1.50)

where
μ = E(xs) (1.51)

does not depend on the spatial coordinate s. For the two dimensional temperature
process, (1.50) becomes

γ(h1, h2) = E[(xs1+h1,s2+h2 − μ)(xs1,s2 − μ)], (1.52)

which is a function of lag, both in the row (h1) and column (h2) directions.
The multidimensional sample autocovariance function is defined as

γ̂(h) = (S1S2 · · · Sr )−1
∑

s1

∑

s2

· · ·
∑

sr

(xs+h − x̄)(xs − x̄), (1.53)

where s = (s1, s2, . . . , sr )′ and the range of summation for each argument is 1 ≤ si ≤
Si − hi , for i = 1, . . . , r. The mean is computed over the r-dimensional array, that is,

x̄ = (S1S2 · · · Sr )−1
∑

s1

∑

s2

· · ·
∑

sr

xs1,s2, · · · ,sr , (1.54)

where the arguments si are summed over 1 ≤ si ≤ Si. The multidimensional sample
autocorrelation function follows, as usual, by taking the scaled ratio

ρ̂(h) = γ̂(h)
γ̂(0) . (1.55)
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Fig. 1.19. Row averages of the two-dimensional soil temperature profile. x̄s1, ··· =
∑

s2 xs1,s2/36

Example 1.31 Sample ACF of the Soil Temperature Series
The autocorrelation function of the two-dimensional (2d) temperature process can
be written in the form

ρ̂(h1, h2) = γ̂(h1, h2)
γ̂(0, 0) ,

where

γ̂(h1, h2) = (S1S2)−1
∑

s1

∑

s2

(xs1+h1,s2+h2 − x̄)(xs1,s2 − x̄)

Figure 1.20 shows the autocorrelation function for the temperature data, and we note
the systematic periodic variation that appears along the rows. The autocovariance
over columns seems to be strongest for h1 = 0, implying columns may form
replicates of some underlying process that has a periodicity over the rows. This
idea can be investigated by examining the mean series over columns as shown
in Fig. 1.19.

The easiest way (that we know of) to calculate a 2d ACF in R is by using the
fast Fourier transform (FFT) as shown below. Unfortunately, the material needed
to understand this approach is given in Chap. 4, Sect. 4.3. The 2d autocovariance
function is obtained in two steps and is contained in cs below; γ̂(0, 0) is the (1,1)
element so that ρ̂(h1, h2) is obtained by dividing each element by that value. The
2d ACF is contained in rs below, and the rest of the code is simply to arrange the
results to yield a nice display.
fs = Mod(fft(soiltemp-mean(soiltemp)))^2/(64*36)
cs = Re(fft(fs, inverse=TRUE)/sqrt(64*36)) # ACovF
rs = cs/cs[1,1] # ACF
rs2 = cbind(rs[1:41,21:2], rs[1:41,1:21])
rs3 = rbind(rs2[41:2,], rs2)
par(mar = c(1,2.5,0,0)+.1)
persp(-40:40, -20:20, rs3, phi=30, theta=30, expand=30, scale="FALSE",

ticktype="detailed", xlab="row lags", ylab="column lags",
zlab="ACF")
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Fig. 1.20. Two-dimensional autocorrelation function for the soil temperature data

The sampling requirements for multidimensional processes are rather severe be-
cause values must be available over some uniform grid in order to compute the ACF.
In some areas of application, such as in soil science, we may prefer to sample a
limited number of rows or transects and hope these are essentially replicates of the
basic underlying phenomenon of interest. One-dimensional methods can then be ap-
plied. When observations are irregular in time space, modifications to the estimators
need to be made. Systematic approaches to the problems introduced by irregularly
spaced observations have been developed by Journel and Huijbregts [109] or Cressie
[45]. We shall not pursue such methods in detail here, but it is worth noting that the
introduction of the variogram

2Vx(h) = var{xs+h − xs} (1.56)

and its sample estimator

2V̂x(h) = 1
N(h)

∑

s

(xs+h − xs)2 (1.57)

play key roles, where N(h) denotes both the number of points located within h,
and the sum runs over the points in the neighborhood. Clearly, substantial indexing
difficulties will develop from estimators of the kind, and often it will be difficult
to find non-negative definite estimators for the covariance function. Problem 1.27
investigates the relation between the variogram and the autocovariance function in
the stationary case.
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Problems

Section 1.1

1.1 To compare the earthquake and explosion signals, plot the data displayed in
Fig. 1.7 on the same graph using different colors or different line types and comment
on the results. (The R code in Example 1.11 may be of help on how to add lines to
existing plots.)

1.2 Consider a signal-plus-noise model of the general form xt = st + wt , where wt

is Gaussian white noise with σ2
w = 1. Simulate and plot n = 200 observations from

each of the following two models.

(a) xt = st + wt , for t = 1, . . . , 200, where

st =

{
0, t = 1, . . . , 100
10 exp{− (t−100)

20 } cos(2πt/4), t = 101, . . . , 200.

Hint:
s = c(rep(0,100), 10*exp(-(1:100)/20)*cos(2*pi*1:100/4))
x = s + rnorm(200)
plot.ts(x)

(b) xt = st + wt , for t = 1, . . . , 200, where

st =

{
0, t = 1, . . . , 100
10 exp{− (t−100)

200 } cos(2πt/4), t = 101, . . . , 200.

(c) Compare the general appearance of the series (a) and (b) with the earthquake
series and the explosion series shown in Fig. 1.7. In addition, plot (or sketch)
and compare the signal modulators (a) exp{−t/20} and (b) exp{−t/200}, for
t = 1, 2, . . . , 100.

Section 1.2

1.3 (a) Generate n = 100 observations from the autoregression

xt = −.9xt−2 + wt

with σw = 1, using the method described in Example 1.10. Next, apply the
moving average filter

vt = (xt + xt−1 + xt−2 + xt−3)/4
to xt , the data you generated. Now plot xt as a line and superimpose vt as a dashed
line. Comment on the behavior of xt and how applying the moving average filter
changes that behavior. [Hints: Use v = filter(x, rep(1/4, 4), sides = 1)

for the filter and note that the R code in Example 1.11 may be of help on how to
add lines to existing plots.]
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(b) Repeat (a) but with
xt = cos(2πt/4).

(c) Repeat (b) but with added N(0, 1) noise,

xt = cos(2πt/4) + wt .

(d) Compare and contrast (a)–(c); i.e., how does the moving average change each
series.

Sect. 1.3

1.4 Show that the autocovariance function can be written as

γ(s, t) = E[(xs − μs)(xt − μt )] = E(xsxt ) − μsμt,

where E[xt ] = μt .

1.5 For the two series, xt , in Problem 1.2 (a) and (b):

(a) Compute and plot the mean functions μx(t), for t = 1, . . . , 200.
(b) Calculate the autocovariance functions, γx(s, t), for s, t = 1, . . . , 200.

Sect. 1.4

1.6 Consider the time series

xt = β1 + β2t + wt,

where β1 and β2 are known constants andwt is a white noise process with varianceσ2
w.

(a) Determine whether xt is stationary.
(b) Show that the process yt = xt − xt−1 is stationary.
(c) Show that the mean of the moving average

vt =
1

2q + 1

q∑

j=−q
xt−j

is β1 + β2t, and give a simplified expression for the autocovariance function.

1.7 For a moving average process of the form

xt = wt−1 + 2wt + wt+1,

where wt are independent with zero means and variance σ2
w , determine the autoco-

variance and autocorrelation functions as a function of lag h = s− t and plot the ACF
as a function of h.

1.8 Consider the random walk with drift model

xt = δ + xt−1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance σ2
w .
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(a) Show that the model can be written as xt = δt +
∑t

k=1 wk .
(b) Find the mean function and the autocovariance function of xt .
(c) Argue that xt is not stationary.
(d) Show ρx(t − 1, t) =

√
t−1
t → 1 as t →∞. What is the implication of this result?

(e) Suggest a transformation to make the series stationary, and prove that the trans-
formed series is stationary. (Hint: See Problem 1.6b.)

1.9 A time series with a periodic component can be constructed from

xt = U1 sin(2πω0t) + U2 cos(2πω0t),
where U1 and U2 are independent random variables with zero means and E(U2

1 ) =
E(U2

2 ) = σ2. The constant ω0 determines the period or time it takes the process to
make one complete cycle. Show that this series is weakly stationary with autocovari-
ance function

γ(h) = σ2 cos(2πω0h).
1.10 Suppose we would like to predict a single stationary series xt with zero mean
and autocorrelation function γ(h) at some time in the future, say, t + �, for � > 0.

(a) If we predict using only xt and some scale multiplier A, show that the mean-square
prediction error

MSE(A) = E[(xt+� − Axt )2]
is minimized by the value

A = ρ(�).
(b) Show that the minimum mean-square prediction error is

MSE(A) = γ(0)[1 − ρ2(�)].
(c) Show that if xt+� = Axt , then ρ(�) = 1 if A > 0, and ρ(�) = −1 if A < 0.

1.11 Consider the linear process defined in (1.31).

(a) Verify that the autocovariance function of the process is given by (1.32). Use
the result to verify your answer to Problem 1.7. Hint: For h ≥ 0, cov(xt+h, xt ) =
cov(∑k ψkwt+h−k,

∑
j ψjwt−j ). For each j ∈ Z, the only “survivor” will be when

k = h + j.
(b) Show that xt exists as a limit in mean square (see Appendix A).

1.12 For two weakly stationary series xt and yt , verify (1.30).

1.13 Consider the two series
xt = wt

yt = wt − θwt−1 + ut,

where wt and ut are independent white noise series with variances σ2
w and σ2

u ,
respectively, and θ is an unspecified constant.
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(a) Express the ACF, ρy(h), for h = 0,±1,±2, . . . of the series yt as a function of
σ2
w, σ

2
u , and θ.

(b) Determine the CCF, ρxy(h) relating xt and yt .
(c) Show that xt and yt are jointly stationary.

1.14 Let xt be a stationary normal process with mean μx and autocovariance function
γ(h). Define the nonlinear time series

yt = exp{xt }.
(a) Express the mean function E(yt ) in terms of μx and γ(0). The moment generating

function of a normal random variable x with mean μ and variance σ2 is

Mx(λ) = E[exp{λx}] = exp
{

μλ +
1
2
σ2λ2

}

.

(b) Determine the autocovariance function of yt . The sum of the two normal random
variables xt+h + xt is still a normal random variable.

1.15 Let wt , for t = 0,±1,±2, . . . be a normal white noise process, and consider the
series

xt = wtwt−1.

Determine the mean and autocovariance function of xt , and state whether it is
stationary.

1.16 Consider the series
xt = sin(2πUt),

t = 1, 2, . . ., where U has a uniform distribution on the interval (0, 1).
(a) Prove xt is weakly stationary.
(b) Prove xt is not strictly stationary.

1.17 Suppose we have the linear process xt generated by

xt = wt − θwt−1,

t = 0, 1, 2, . . ., where {wt } is independent and identically distributed with character-
istic function φw(·), and θ is a fixed constant. [Replace “characteristic function” with
“moment generating function” if instructed to do so.]

(a) Express the joint characteristic function of x1, x2, . . . , xn, say,

φx1,x2,...,xn (λ1, λ2, . . . , λn),
in terms of φw(·).

(b) Deduce from (a) that xt is strictly stationary.

1.18 Suppose that xt is a linear process of the form (1.31). Prove
∞∑

h=−∞
|γ(h)| < ∞.
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Sect. 1.5

1.19 Suppose xt = μ + wt + θwt−1, where wt ∼ wn(0, σ2
w).

(a) Show that mean function is E(xt ) = μ.
(b) Show that the autocovariance function of xt is given by γx(0) = σ2

w(1 + θ2),
γx(±1) = σ2

wθ, and γx(h) = 0 otherwise.
(c) Show that xt is stationary for all values of θ ∈ R.
(d) Use (1.35) to calculate var(x̄) for estimating μ when (i) θ = 1, (ii) θ = 0, and (iii)

θ = −1
(e) In time series, the sample size n is typically large, so that (n−1)

n ≈ 1. With this as
a consideration, comment on the results of part (d); in particular, how does the
accuracy in the estimate of the mean μ change for the three different cases?

1.20 (a) Simulate a series of n = 500 Gaussian white noise observations as in Exam-
ple 1.8 and compute the sample ACF, ρ̂(h), to lag 20. Compare the sample ACF
you obtain to the actual ACF, ρ(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.21 (a) Simulate a series of n = 500 moving average observations as in Example 1.9
and compute the sample ACF, ρ̂(h), to lag 20. Compare the sample ACF you
obtain to the actual ACF, ρ(h). [Recall Example 1.20.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.22 Although the model in Problem 1.2(a) is not stationary (Why?), the sample ACF
can be informative. For the data you generated in that problem, calculate and plot the
sample ACF, and then comment.

1.23 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.12 with σ2

w = 1. Compute the sample ACF to lag 100 of the
data you generated and comment.

1.24 For the time series yt described in Example 1.26, verify the stated result that
ρy(1) = −.47 and ρy(h) = 0 for h > 1.

1.25 A real-valued function g(t), defined on the integers, is non-negative definite if
and only if

n∑

i=1

n∑

j=1
aig(ti − tj )aj ≥ 0

for all positive integers n and for all vectors a = (a1, a2, . . . , an)′ and t =

(t1, t2, . . . , tn)′. For the matrix G = {g(ti − tj ); i, j = 1, 2, . . . , n}, this implies that
a′Ga ≥ 0 for all vectors a. It is called positive definite if we can replace ‘≥’ with ‘>’
for all a � 0, the zero vector.

(a) Prove that γ(h), the autocovariance function of a stationary process, is a non-
negative definite function.

(b) Verify that the sample autocovariance γ̂(h) is a non-negative definite function.
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Sect. 1.6

1.26 Consider a collection of time series x1t, x2t, . . . , xNt that are observing some
common signal μt observed in noise processes e1t, e2t, . . . , eNt , with a model for the
j-th observed series given by

xjt = μt + ejt .

Suppose the noise series have zero means and are uncorrelated for different j. The
common autocovariance functions of all series are given by γe(s, t). Define the sample
mean

x̄t =
1
N

N∑

j=1
xjt .

(a) Show that E[x̄t ] = μt .
(b) Show that E[(x̄t − μ)2)] = N−1γe(t, t).
(c) How can we use the results in estimating the common signal?

1.27 A concept used in geostatistics, see Journel and Huijbregts [109] or Cressie
[45], is that of the variogram, defined for a spatial process xs, s = (s1, s2), for
s1, s2 = 0,±1,±2, . . ., as

Vx(h) = 1
2

E[(xs+h − xs)2],

where h = (h1, h2), for h1, h2 = 0,±1,±2, . . . Show that, for a stationary process, the
variogram and autocovariance functions can be related through

Vx(h) = γ(0) − γ(h),

where γ(h) is the usual lag h covariance function and 0 = (0, 0). Note the easy
extension to any spatial dimension.

The following problems require the material given in Appendix A

1.28 Suppose xt = β0 + β1t, where β0 and β1 are constants. Prove as n → ∞,
ρ̂x(h) → 1 for fixed h, where ρ̂x(h) is the ACF (1.37).

1.29 (a) Suppose xt is a weakly stationary time series with mean zero and with
absolutely summable autocovariance function, γ(h), such that

∞∑

h=−∞
γ(h) = 0.

Prove that
√

n x̄
p→ 0, where x̄ is the sample mean (1.34).

(b) Give an example of a process that satisfies the conditions of part (a). What is
special about this process?
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1.30 Let xt be a linear process of the form (A.43)–(A.44). If we define

γ̃(h) = n−1
n∑

t=1
(xt+h − μx)(xt − μx),

show that
n1/2 (γ̃(h) − γ̂(h)) = op(1).

Hint: The Markov Inequality

Pr{|x | ≥ ε} < E|x |
ε

can be helpful for the cross-product terms.

1.31 For a linear process of the form

xt =
∞∑

j=0
φ jwt−j,

where {wt } satisfies the conditions of Theorem A.7 and |φ| < 1, show that

√
n
(ρ̂x(1) − ρx(1))

√
1 − ρ2

x(1)
d→ N(0, 1),

and construct a 95% confidence interval for φ when ρ̂x(1) = .64 and n = 100.

1.32 Let {xt ; t = 0,±1,±2, . . .} be iid(0, σ2).
(a) For h ≥ 1 and k ≥ 1, show that xt xt+h and xs xs+k are uncorrelated for all s � t.
(b) For fixed h ≥ 1, show that the h × 1 vector

σ−2n−1/2
n∑

t=1
(xt xt+1, . . . , xt xt+h)′ d→ (z1, . . . , zh)′

where z1, . . . , zh are iid N(0, 1) random variables. [Hint: Use the Cramér-Wold
device.]

(c) Show, for each h ≥ 1,

n−1/2
[

n∑

t=1
xt xt+h −

n−h∑

t=1
(xt − x̄)(xt+h − x̄)

]
p→ 0 as n →∞

where x̄ = n−1 ∑n
t=1 xt .

(d) Noting that n−1 ∑n
t=1 x2

t

p→ σ2 by the WLLN, conclude that

n1/2 [ρ̂(1), . . . , ρ̂(h)]′ d→ (z1, . . . , zh)′

where ρ̂(h) is the sample ACF of the data x1, . . . , xn.



Chapter 2

Time Series Regression and Exploratory
Data Analysis

In this chapter we introduce classical multiple linear regression in a time series
context, model selection, exploratory data analysis for preprocessing nonstationary
time series (for example trend removal), the concept of differencing and the backshift
operator, variance stabilization, and nonparametric smoothing of time series.

2.1 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by assuming
some output or dependent time series, say, xt , for t = 1, . . . , n, is being influenced by
a collection of possible inputs or independent series, say, zt1, zt2, . . . , ztq, where we
first regard the inputs as fixed and known. This assumption, necessary for applying
conventional linear regression, will be relaxed later on. We express this relation
through the linear regression model

xt = β0 + β1zt1 + β2zt2 + · · · + βq ztq + wt, (2.1)

where β0, β1, . . . , βq are unknown fixed regression coefficients, and {wt } is a random
error or noise process consisting of independent and identically distributed (iid)
normal variables with mean zero and variance σ2

w . For time series regression, it
is rarely the case that the noise is white, and we will need to eventually relax that
assumption. A more general setting within which to embed mean square estimation
and linear regression is given in Appendix B, where we introduce Hilbert spaces and
the Projection Theorem.

Example 2.1 Estimating a Linear Trend
Consider the monthly price (per pound) of a chicken in the US from mid-2001 to
mid-2016 (180 months), say xt , shown in Fig. 2.1. There is an obvious upward
trend in the series, and we might use simple linear regression to estimate that trend
by fitting the model

© Springer International Publishing AG 2017
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Fig. 2.1. The price of chicken: monthly whole bird spot price, Georgia docks, US cents per
pound, August 2001 to July 2016, with fitted linear trend line

xt = β0 + β1zt + wt, zt = 2001 7
12, 2001 8

12, . . . , 2016 6
12 .

This is in the form of the regression model (2.1) with q = 1. Note that we are
making the assumption that the errors, wt , are an iid normal sequence, which may
not be true; the problem of autocorrelated errors is discussed in detail in Chap. 3.

In ordinary least squares (OLS), we minimize the error sum of squares

Q =

n∑

t=1
w2
t =

n∑

t=1
(xt − [β0 + β1zt ])2

with respect to βi for i = 0, 1. In this case we can use simple calculus to evaluate
∂Q/∂βi = 0 for i = 0, 1, to obtain two equations to solve for the βs. The OLS
estimates of the coefficients are explicit and given by

β̂1 =

∑n
t=1(xt − x̄)(zt − z̄)
∑n

t=1(zt − z̄)2 and β̂0 = x̄ − β̂1 z̄ ,

where x̄ =
∑

t xt/n and z̄ =
∑

t zt/n are the respective sample means.
Using R, we obtained the estimated slope coefficient of β̂1 = 3.59 (with a

standard error of .08) yielding a significant estimated increase of about 3.6 cents
per year. Finally, Fig. 2.1 shows the data with the estimated trend line superimposed.
R code with partial output:
summary(fit <- lm(chicken~time(chicken), na.action=NULL))

Estimate Std.Error t.value
(Intercept) -7131.02 162.41 -43.9
time(chicken) 3.59 0.08 44.4
--
Residual standard error: 4.7 on 178 degrees of freedom

plot(chicken, ylab="cents per pound")
abline(fit) # add the fitted line

The multiple linear regression model described by (2.1) can be conveniently writ-
ten in a more general notation by defining the column vectors zt = (1, zt1, zt2, . . . , ztq)′
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and β = (β0, β1, . . . , βq)′, where ′ denotes transpose, so (2.1) can be written in the
alternate form

xt = β0 + β1zt1 + · · · + βq ztq + wt = β′zt + wt . (2.2)

where wt ∼ iid N(0, σ2
w). As in the previous example, OLS estimation finds the

coefficient vector β that minimizes the error sum of squares

Q =

n∑

t=1
w2
t =

n∑

t=1
(xt − β′zt )2, (2.3)

with respect to β0, β1, . . . , βq . This minimization can be accomplished by differen-
tiating (2.3) with respect to the vector β or by using the properties of projections.
Either way, the solution must satisfy

∑n
t=1(xt − β̂′zt )z′t = 0. This procedure gives the

normal equations ( n∑

t=1
zt z

′
t

)

β̂ =

n∑

t=1
zt xt . (2.4)

If
∑n

t=1 zt z′t is non-singular, the least squares estimate of β is

β̂ =

( n∑

t=1
zt z

′
t

)−1 n∑

t=1
zt xt .

The minimized error sum of squares (2.3), denoted SSE , can be written as

SSE =

n∑

t=1
(xt − β̂′zt )2. (2.5)

The ordinary least squares estimators are unbiased, i.e., E(β̂) = β, and have the
smallest variance within the class of linear unbiased estimators.

If the errors wt are normally distributed, β̂ is also the maximum likelihood
estimator for β and is normally distributed with

cov(β̂) = σ2
wC , (2.6)

where

C =

(
n∑

t=1
zt z

′
t

)−1

(2.7)

is a convenient notation. An unbiased estimator for the variance σ2
w is

s2
w = MSE =

SSE
n − (q + 1), (2.8)

where MSE denotes the mean squared error. Under the normal assumption,

t =
(β̂i − βi)
sw
√

cii
(2.9)
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Table 2.1. Analysis of variance for regression

Source df Sum of squares Mean square F

zt,r+1:q q − r SSR = SSEr − SSE MSR = SSR/(q − r) F = MSR
MSE

Error n − (q + 1) SSE MSE = SSE/(n − q − 1)

has the t-distribution with n−(q+1) degrees of freedom; cii denotes the i-th diagonal
element of C, as defined in (2.7). This result is often used for individual tests of the
null hypothesis H0 : βi = 0 for i = 1, . . . , q.

Various competing models are often of interest to isolate or select the best subset of
independent variables. Suppose a proposed model specifies that only a subset r < q
independent variables, say, zt,1:r = {zt1, zt2, . . . , ztr } is influencing the dependent
variable xt . The reduced model is

xt = β0 + β1zt1 + · · · + βr ztr + wt (2.10)
where β1, β2, . . . , βr are a subset of coefficients of the original q variables.

The null hypothesis in this case is H0 : βr+1 = · · · = βq = 0. We can test the
reduced model (2.10) against the full model (2.2) by comparing the error sums of
squares under the two models using the F-statistic

F =
(SSEr − SSE)/(q − r)

SSE/(n − q − 1) =
MSR
MSE

, (2.11)

where SSEr is the error sum of squares under the reduced model (2.10). Note that
SSEr ≥ SSE because the full model has more parameters. If H0: βr+1 = · · · = βq = 0
is true, then SSEr ≈ SSE because the estimates of those βs will be close to 0. Hence,
we do not believe H0 if SSR = SSEr − SSE is big. Under the null hypothesis, (2.11)
has a central F-distribution with q − r and n − q − 1 degrees of freedom when (2.10)
is the correct model.

These results are often summarized in an Analysis of Variance (ANOVA) table as
given in Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares (SSR). The null hypothesis is rejected at level α
if F > Fq−r

n−q−1(α), the 1− α percentile of the F distribution with q − r numerator and
n − q − 1 denominator degrees of freedom.

A special case of interest is the null hypothesis H0: β1 = · · · = βq = 0. In this
case r = 0, and the model in (2.10) becomes

xt = β0 + wt .

We may measure the proportion of variation accounted for by all the variables using

R2 =
SSE0 − SSE

SSE0
, (2.12)

where the residual sum of squares under the reduced model is

SSE0 =

n∑

t=1
(xt − x̄)2 . (2.13)
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In this case SSE0 is the sum of squared deviations from the mean x̄ and is otherwise
known as the adjusted total sum of squares. The measure R2 is called the coefficient
of determination.

The techniques discussed in the previous paragraph can be used to test various
models against one another using the F test given in (2.11). These tests have been
used in the past in a stepwise manner, where variables are added or deleted when the
values from the F-test either exceed or fail to exceed some predetermined levels. The
procedure, called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that does not
proceed sequentially, but simply evaluates each model on its own merits. Suppose
we consider a normal regression model with k coefficients and denote the maximum
likelihood estimator for the variance as

σ̂2
k =

SSE(k)
n

, (2.14)

where SSE(k) denotes the residual sum of squares under the model with k regression
coefficients. Then, Akaike [1–3] suggested measuring the goodness of fit for this
particular model by balancing the error of the fit against the number of parameters in
the model; we define the following.1

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log σ̂2
k +

n + 2k
n

, (2.15)

where σ̂2
k

is given by (2.14) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model. The idea is
roughly that minimizing σ̂2

k
would be a reasonable objective, except that it decreases

monotonically as k increases. Therefore, we ought to penalize the error variance by a
term proportional to the number of parameters. The choice for the penalty term given
by (2.15) is not the only one, and a considerable literature is available advocating
different penalty terms. A corrected form, suggested by Sugiura [196], and expanded
by Hurvich and Tsai [100], can be based on small-sample distributional results for
the linear regression model (details are provided in Problem 2.4 and Problem 2.5).
The corrected form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = log σ̂2
k +

n + k
n − k − 2

, (2.16)

1 Formally, AIC is defined as −2 log Lk + 2k where Lk is the maximized likelihood and k is the number
of parameters in the model. For the normal regression problem, AIC can be reduced to the form given
by (2.15). AIC is an estimate of the Kullback-Leibler discrepancy between a true model and a candidate
model; see Problem 2.4 and Problem 2.5 for further details.
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where σ̂2
k

is given by (2.14), k is the number of parameters in the model, and n is
the sample size.

We may also derive a correction term based on Bayesian arguments, as in Schwarz
[175], which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

BIC = log σ̂2
k +

k log n
n

, (2.17)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Rissanen
[166] for an approach yielding the same statistic based on a minimum description
length argument. Notice that the penalty term in BIC is much larger than in AIC,
consequently, BIC tends to choose smaller models. Various simulation studies have
tended to verify that BIC does well at getting the correct order in large samples,
whereas AICc tends to be superior in smaller samples where the relative number
of parameters is large; see McQuarrie and Tsai [138] for detailed comparisons. In
fitting regression models, two measures that have been used in the past are adjusted
R-squared, which is essentially s2

w , and Mallows Cp , Mallows [133], which we do
not consider in this context.

Example 2.2 Pollution, Temperature and Mortality
The data shown in Fig. 2.2 are extracted series from a study by Shumway et al. [183]
of the possible effects of temperature and pollution on weekly mortality in Los
Angeles County. Note the strong seasonal components in all of the series, corre-
sponding to winter-summer variations and the downward trend in the cardiovascular
mortality over the 10-year period.

A scatterplot matrix, shown in Fig. 2.3, indicates a possible linear relation
between mortality and the pollutant particulates and a possible relation to tempera-
ture. Note the curvilinear shape of the temperature mortality curve, indicating that
higher temperatures as well as lower temperatures are associated with increases in
cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models where
Mt denotes cardiovascular mortality, Tt denotes temperature and Pt denotes the
particulate levels. They are

Mt = β0 + β1t + wt (2.18)
Mt = β0 + β1t + β2(Tt − T·) + wt (2.19)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + wt (2.20)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + β4Pt + wt (2.21)

where we adjust temperature for its mean, T· = 74.26, to avoid collinearity prob-
lems. It is clear that (2.18) is a trend only model, (2.19) is linear temperature, (2.20)



2.1 Classical Regression in the Time Series Context 51
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle) and particulate
pollution (bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained
by filtering daily values over the 10 year period 1970–1979

Table 2.2. Summary statistics for mortality models

Model k SSE df MSE R2 AIC BIC
(2.18) 2 40,020 506 79.0 .21 5.38 5.40
(2.19) 3 31,413 505 62.2 .38 5.14 5.17
(2.20) 4 27,985 504 55.5 .45 5.03 5.07
(2.21) 5 20,508 503 40.8 .60 4.72 4.77

is curvilinear temperature and (2.21) is curvilinear temperature and pollution. We
summarize some of the statistics given for this particular case in Table 2.2.

We note that each model does substantially better than the one before it and that
the model including temperature, temperature squared, and particulates does the
best, accounting for some 60% of the variability and with the best value for AIC
and BIC (because of the large sample size, AIC and AICc are nearly the same).
Note that one can compare any two models using the residual sums of squares
and (2.11). Hence, a model with only trend could be compared to the full model,
H0 : β2 = β3 = β4 = 0, using q = 4, r = 1, n = 508, and
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Fig. 2.3. Scatterplot matrix showing relations between mortality, temperature, and pollution

F3,503 =
(40, 020 − 20, 508)/3

20, 508/503
= 160,

which exceeds F3,503(.001) = 5.51. We obtain the best prediction model,
M̂t = 2831.5 − 1.396(.10)t − .472(.032)(Tt − 74.26)

+ .023(.003)(Tt − 74.26)2 + .255(.019)Pt,

for mortality, where the standard errors, computed from (2.6)–(2.8), are given in
parentheses. As expected, a negative trend is present in time as well as a negative
coefficient for adjusted temperature. The quadratic effect of temperature can clearly
be seen in the scatterplots of Fig. 2.3. Pollution weights positively and can be
interpreted as the incremental contribution to daily deaths per unit of particulate
pollution. It would still be essential to check the residuals ŵt = Mt − M̂t for
autocorrelation (of which there is a substantial amount), but we defer this question
to Sect. 3.8 when we discuss regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit the final
regression model (2.21), and compute the corresponding values of AIC, AICc and
BIC.2 Finally, the use of na.action in lm() is to retain the time series attributes for
the residuals and fitted values.

2 The easiest way to extract AIC and BIC from an lm() run in R is to use the command AIC() or
BIC(). Our definitions differ from R by terms that do not change from model to model. In the example,
we show how to obtain (2.15) and (2.17) from the R output. It is more difficult to obtain AICc.
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par(mfrow=c(3,1)) # plot the data
plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")
plot(part, main="Particulates", xlab="", ylab="")
dev.new() # open a new graphic device
ts.plot(cmort,tempr,part, col=1:3) # all on same plot (not shown)
dev.new()
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature
temp2 = temp^2
trend = time(cmort) # time
fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results
summary(aov(fit)) # ANOVA table (compare to next line)
summary(aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
AIC(fit)/num - log(2*pi) # AIC
BIC(fit)/num - log(2*pi) # BIC
(AICc = log(sum(resid(fit)^2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in time series
regression models and we will continue to discuss this type of problem throughout
the text. This concept is explored further in Problem 2.2 and Problem 2.10. The
following is a simple example of lagged regression.

Example 2.3 Regression With Lagged Variables
In Example 1.28, we discovered that the Southern Oscillation Index (SOI) measured
at time t − 6 months is associated with the Recruitment series at time t, indicating
that the SOI leads the Recruitment series by six months. Although there is evidence
that the relationship is not linear (this is discussed further in Example 2.8 and
Example 2.9), consider the following regression,

Rt = β0 + β1St−6 + wt, (2.22)

where Rt denotes Recruitment for month t and St−6 denotes SOI six months
prior. Assuming the wt sequence is white, the fitted model is

R̂t = 65.79 − 44.28(2.78)St−6 (2.23)

with σ̂w = 22.5 on 445 degrees of freedom. This result indicates the strong pre-
dictive ability of SOI for Recruitment six months in advance. Of course, it is still
essential to check the model assumptions, but again we defer this until later.

Performing lagged regression in R is a little difficult because the series must be
aligned prior to running the regression. The easiest way to do this is to create a data
frame (that we call fish) using ts.intersect, which aligns the lagged series.
fish = ts.intersect(rec, soiL6=lag(soi,-6), dframe=TRUE)
summary(fit1 <- lm(rec~soiL6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the R package
dynlm, which must be downloaded and installed.
library(dynlm)
summary(fit2 <- dynlm(rec~ L(soi,6)))
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We note that fit2 is similar to the fit1 object, but the time series attributes are
retained without any additional commands.

2.2 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary so that averaging
lagged products over time, as in the previous section, will be a sensible thing to
do. With time series data, it is the dependence between the values of the series that
is important to measure; we must, at least, be able to estimate autocorrelations with
precision. It would be difficult to measure that dependence if the dependence structure
is not regular or is changing at every time point. Hence, to achieve any meaningful
statistical analysis of time series data, it will be crucial that, if nothing else, the mean
and the autocovariance functions satisfy the conditions of stationarity (for at least
some reasonable stretch of time) stated in Definition 1.7. Often, this is not the case,
and we will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The Johnson &
Johnson series in Fig. 1.1 has a mean that increases exponentially over time, and the
increase in the magnitude of the fluctuations around this trend causes changes in
the covariance function; the variance of the process, for example, clearly increases
as one progresses over the length of the series. Also, the global temperature series
shown in Fig. 1.2 contains some evidence of a trend over time; human-induced global
warming advocates seize on this as empirical evidence to advance the hypothesis that
temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend stationary
model wherein the process has stationary behavior around a trend. We may write this
type of model as

xt = μt + yt (2.24)

where xt are the observations, μt denotes the trend, and yt is a stationary process.
Quite often, strong trend will obscure the behavior of the stationary process, yt , as
we shall see in numerous examples. Hence, there is some advantage to removing the
trend as a first step in an exploratory analysis of such time series. The steps involved
are to obtain a reasonable estimate of the trend component, say μ̂t , and then work
with the residuals

ŷt = xt − μ̂t . (2.25)

Example 2.4 Detrending Chicken Prices
Here we suppose the model is of the form of (2.24),

xt = μt + yt,

where, as we suggested in the analysis of the chicken price data presented in
Example 2.1, a straight line might be useful for detrending the data; i.e.,
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Fig. 2.4. Detrended (top) and differenced (bottom) chicken price series. The original data are
shown in Fig. 2.1

μt = β0 + β1 t.

In that example, we estimated the trend using ordinary least squares and found

μ̂t = −7131 + 3.59 t

where we are using t instead of zt for time. Figure 2.1 shows the data with the
estimated trend line superimposed. To obtain the detrended series we simply subtract
μ̂t from the observations, xt , to obtain the detrended series3

ŷt = xt + 7131 − 3.59 t.

The top graph of Fig. 2.4 shows the detrended series. Figure 2.5 shows the ACF
of the original data (top panel) as well as the ACF of the detrended data (middle
panel).

In Example 1.11 and the corresponding Fig. 1.10 we saw that a random walk
might also be a good model for trend. That is, rather than modeling trend as fixed (as
in Example 2.4), we might model trend as a stochastic component using the random
walk with drift model,

μt = δ + μt−1 + wt, (2.26)
where wt is white noise and is independent of yt . If the appropriate model is (2.24),
then differencing the data, xt , yields a stationary process; that is,

3 Because the error term, yt , is not assumed to be iid, the reader may feel that weighted least squares is
called for in this case. The problem is, we do not know the behavior of yt and that is precisely what
we are trying to assess at this stage. A notable result by Grenander and Rosenblatt [82, Ch 7], however,
is that under mild conditions on yt , for polynomial regression or periodic regression, asymptotically,
ordinary least squares is equivalent to weighted least squares with regard to efficiency.



56 2 Time Series Regression and Exploratory Data Analysis

xt − xt−1 = (μt + yt ) − (μt−1 + yt−1) (2.27)
= δ + wt + yt − yt−1.

It is easy to show zt = yt − yt−1 is stationary using Chap. 1.1. That is, because yt is
stationary,

γz(h) = cov(zt+h, zt ) = cov(yt+h − yt+h−1, yt − yt−1)
= 2γy(h) − γy(h + 1) − γy(h − 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that xt − xt−1
in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is that no param-
eters are estimated in the differencing operation. One disadvantage, however, is that
differencing does not yield an estimate of the stationary process yt as can be seen
in (2.27). If an estimate of yt is essential, then detrending may be more appropriate. If
the goal is to coerce the data to stationarity, then differencing may be more appropri-
ate. Differencing is also a viable tool if the trend is fixed, as in Example 2.4. That is,
e.g., if μt = β0 + β1 t in the model (2.24), differencing the data produces stationarity
(see Problem 2.6):

xt − xt−1 = (μt + yt ) − (μt−1 + yt−1) = β1 + yt − yt−1.

Because differencing plays a central role in time series analysis, it receives its
own notation. The first difference is denoted as

∇xt = xt − xt−1. (2.28)

As we have seen, the first difference eliminates a linear trend. A second difference,
that is, the difference of (2.28), can eliminate a quadratic trend, and so on. In order
to define higher differences, we need a variation in notation that we will use often in
our discussion of ARIMA models in Chap. 3.

Definition 2.4 We define the backshift operator by

Bxt = xt−1

and extend it to powers B2xt = B(Bxt ) = Bxt−1 = xt−2, and so on. Thus,

Bk xt = xt−k . (2.29)

The idea of an inverse operator can also be given if we require B−1B = 1, so that

xt = B−1Bxt = B−1xt−1.

That is, B−1 is the forward-shift operator. In addition, it is clear that we may
rewrite (2.28) as
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Fig. 2.5. Sample ACFs of chicken prices (top), and of the detrended (middle) and the differenced
(bottom) series. Compare the top plot with the sample ACF of a straight line: acf(1:100)

∇xt = (1 − B)xt, (2.30)

and we may extend the notion further. For example, the second difference becomes

∇2xt = (1 − B)2xt = (1 − 2B + B2)xt = xt − 2xt−1 + xt−2 (2.31)

by the linearity of the operator. To check, just take the difference of the first difference
∇(∇xt ) = ∇(xt − xt−1) = (xt − xt−1) − (xt−1 − xt−2).
Definition 2.5 Differences of order ddd are defined as

∇d = (1 − B)d, (2.32)

where we may expand the operator (1 − B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.28) is an example of a linear filter applied to eliminate a
trend. Other filters, formed by averaging values near xt , can produce adjusted series
that eliminate other kinds of unwanted fluctuations, as in Chap. 4. The differencing
technique is an important component of the ARIMA model of Box and Jenkins [30]
(see also Box et al. [31]), to be discussed in Chap. 3.
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Example 2.5 Differencing Chicken Prices
The first difference of the chicken prices series, also shown in Fig. 2.4, produces
different results than removing trend by detrending via regression. For example,
the differenced series does not contain the long (five-year) cycle we observe in the
detrended series. The ACF of this series is also shown in Fig. 2.5. In this case,
the differenced series exhibits an annual cycle that was obscured in the original or
detrended data.

The R code to reproduce Figs. 2.4 and 2.5 is as follows.
fit = lm(chicken~time(chicken), na.action=NULL) # regress chicken on time
par(mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(chicken), type="o", main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf(chicken, 48, main="chicken")
acf(resid(fit), 48, main="detrended")
acf(diff(chicken), 48, main="first difference")

Example 2.6 Differencing Global Temperature
The global temperature series shown in Fig. 1.2 appears to behave more as a
random walk than a trend stationary series. Hence, rather than detrend the data, it
would be more appropriate to use differencing to coerce it into stationarity. The
detrended data are shown in Fig. 2.6 along with the corresponding sample ACF.
In this case it appears that the differenced process shows minimal autocorrelation,
which may imply the global temperature series is nearly a random walk with drift.
It is interesting to note that if the series is a random walk with drift, the mean of the
differenced series, which is an estimate of the drift, is about .008, or an increase of
about one degree centigrade per 100 years.

The R code to reproduce Figs. 2.4 and 2.5 is as follows.
par(mfrow=c(2,1))
plot(diff(globtemp), type="o")
mean(diff(globtemp)) # drift estimate = .008

acf(diff(gtemp), 48)

An alternative to differencing is a less-severe operation that still assumes station-
arity of the underlying time series. This alternative, called fractional differencing,
extends the notion of the difference operator (2.32) to fractional powers−.5 < d < .5,
which still define stationary processes. Granger and Joyeux [79] and Hosking [97]
introduced long memory time series, which corresponds to the case when 0 < d < .5.
This model is often used for environmental time series arising in hydrology. We will
discuss long memory processes in more detail in Sect. 5.1. Often, obvious aberra-
tions are present that can contribute nonstationary as well as nonlinear behavior in
observed time series. In such cases, transformations may be useful to equalize the
variability over the length of a single series. A particularly useful transformation is

yt = log xt, (2.33)

which tends to suppress larger fluctuations that occur over portions of the series where
the underlying values are larger. Other possibilities are power transformations in the
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Fig. 2.6. Differenced global temperature series and its sample ACF

Box–Cox family of the form

yt =

{
(xλt − 1)/λ λ � 0,
log xt λ = 0.

(2.34)

Methods for choosing the power λare available (see Johnson and Wichern [106, §4.7])
but we do not pursue them here. Often, transformations are also used to improve the
approximation to normality or to improve linearity in predicting the value of one
series from another.

Example 2.7 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melting
seasons, which can be reconstructed yearly over a period ranging from the time
deglaciation began in New England (about 12,600 years ago) to the time it ended
(about 6,000 years ago). Such sedimentary deposits, called varves, can be used as
proxies for paleoclimatic parameters, such as temperature, because, in a warm year,
more sand and silt are deposited from the receding glacier. Figure 2.7 shows the
thicknesses of the yearly varves collected from one location in Massachusetts for
634 years, beginning 11,834 years ago. For further information, see Shumway and
Verosub [185]. Because the variation in thicknesses increases in proportion to the
amount deposited, a logarithmic transformation could remove the nonstationarity
observable in the variance as a function of time. Figure 2.7 shows the original and
transformed varves, and it is clear that this improvement has occurred. We may also
plot the histogram of the original and transformed data, as in Problem 2.8, to argue
that the approximation to normality is improved. The ordinary first differences (2.30)
are also computed in Problem 2.8, and we note that the first differences have a
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Fig. 2.7. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with
log transformed thicknesses (bottom)

significant negative correlation at lag h = 1. Later, in Chap. 5, we will show
that perhaps the varve series has long memory and will propose using fractional
differencing. Figure 2.7 was generated in R as follows:
par(mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is used for
the purpose of visualizing the relations between series at different lags, namely, scat-
terplot matrices. In the definition of the ACF, we are essentially interested in relations
between xt and xt−h; the autocorrelation function tells us whether a substantial linear
relation exists between the series and its own lagged values. The ACF gives a profile
of the linear correlation at all possible lags and shows which values of h lead to the
best predictability. The restriction of this idea to linear predictability, however, may
mask a possible nonlinear relation between current values, xt , and past values, xt−h.
This idea extends to two series where one may be interested in examining scatterplots
of yt versus xt−h

Example 2.8 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a lagged
scatterplot matrix, as in Fig. 2.8, that displays values of the SOI, St , on the vertical
axis plotted against St−h on the horizontal axis. The sample autocorrelations are
displayed in the upper right-hand corner and superimposed on the scatterplots
are locally weighted scatterplot smoothing (lowess) lines that can be used to help
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Fig. 2.8. Scatterplot matrix relating current SOI values, St , to past SOI values, St−h , at lags
h = 1, 2, . . . , 12. The values in the upper right corner are the sample autocorrelations and the
lines are a lowess fit

discover any nonlinearities. We discuss smoothing in the next section, but for now,
think of lowess as a robust method for fitting local regression.

In Fig. 2.8, we notice that the lowess fits are approximately linear, so that the
sample autocorrelations are meaningful. Also, we see strong positive linear relations
at lags h = 1, 2, 11, 12, that is, between St and St−1, St−2, St−11, St−12, and a negative
linear relation at lags h = 6, 7. These results match up well with peaks noticed in
the ACF in Fig. 1.16.

Similarly, we might want to look at values of one series, say Recruitment,
denoted Rt plotted against another series at various lags, say the SOI, St−h, to
look for possible nonlinear relations between the two series. Because, for example,
we might wish to predict the Recruitment series, Rt , from current or past values
of the SOI series, St−h, for h = 0, 1, 2, . . . it would be worthwhile to examine the
scatterplot matrix. Figure 2.9 shows the lagged scatterplot of the Recruitment series
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Fig. 2.9. Scatterplot matrix of the Recruitment series, Rt , on the vertical axis plotted against
the SOI series, St−h, on the horizontal axis at lags h = 0, 1, . . . , 8. The values in the upper right
corner are the sample cross-correlations and the lines are a lowess fit

Rt on the vertical axis plotted against the SOI index St−h on the horizontal axis. In
addition, the figure exhibits the sample cross-correlations as well as lowess fits.

Figure 2.9 shows a fairly strong nonlinear relationship between Recruitment,
Rt , and the SOI series at St−5, St−6, St−7, St−8, indicating the SOI series tends to lead
the Recruitment series and the coefficients are negative, implying that increases
in the SOI lead to decreases in the Recruitment. The nonlinearity observed in
the scatterplots (with the help of the superimposed lowess fits) indicates that the
behavior between Recruitment and the SOI is different for positive values of SOI
than for negative values of SOI.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figures 2.8 and 2.9 may be reproduced using the following
scripts provided with astsa:
lag1.plot(soi, 12) # Fig. 2.8
lag2.plot(soi, rec, 8) # Fig. 2.9



2.2 Exploratory Data Analysis 63

l

l l
l

l l
l

l
l

l
l

l

l

l

l

l
l ll

l
l

l

l

l

l
ll

ll l
l

l
l

l l lll

l

l

l

l
l

ll

l l
l

l

l

ll
l

l l

l

l

l

l

l
l

l

l

l
l

l

ll

l
l

l

l

lll l

ll

l

l

l
l

l
l

l ll
l

l
l

l
l

l ll l ll
ll

l

l
l

ll
l

ll l l

l

lll l l
l

l

l

l

l

l

l

l
l

ll l
l

l l

l
ll

l

ll

l

l
l

l

l

l l
l

l
l

l

ll l

l

l
ll

l

l
l

l

l

l

l

l
l

l
l l

l

l
l

l

l
l

l

l

l

l l

l

l l
l

l

l

l l

l

l

ll l
l

l

l
l

l
l l

l

l ll

l

l

l l

l

l

ll
l

l
l l

l l

l
l

l

l
l

l
l

l

l

l

l

l

l l

l
l l

l ll
l

ll
l ll

l

l
l

l

l

ll l
l l

l

l

l

l
l
ll l

l

l

l

l

ll

l

l ll
l

l
l

l
lll lll

l

l
l

l
ll l

l
l l

l

l

ll

ll

l

l

l
l

l

ll
ll l

l

l

l

l

l
llll

l
l

l

l
l l l l

l

l
l

l

ll l

l

l

l

l

l

l

l
l

l

l

l l
l

l
l

l
l

l
l l

l

ll

l lll
l

l

l
l

l

l
l l

l

l
l

ll

l

l

l
l

l

ll
l

l

l

l
l

l
l

lll
l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l
l

l

l

l
l l

l
l

l

l
lll

l

l

l l

l

l
l

l
l

l

l

ll
l

l
l

l

l

l

l

l
l

−1.0 −0.5 0.0 0.5 1.0

0
20

40
60

80

soiL6

re
c

+
+ +

+
+

+
+ +

+

+

+++

+

+

+ +

+
++

++

+
+

+
+

++

+

+

+
++

+
+ +

++
+

++
++ ++

+

+
+

+
++

+ ++

+
++

+
+

+
+

+

+

++ +++ +

+

++

++

+ ++
+

+
+

+
++

+

+

+

++

+++
+

+ +

+
+ ++

+
+ +

+ +
++

+
++ + ++

+
++ + ++

+

+

++

+

+

++

+

+

+
+

+
+

+

+

+
+

+

+
+

+

+

+

+

+ +

+
+

++++
+ +

+++

+
+

+

+

+

+++ +
++

+ + +
+++ +

++

+
+

+

+

+

+

+
+

++ +

+

+++

+

+
+ ++

+

+
++

+
+

++

++ +

+
++++ + +

+

+
++

+

+
+

+

+

+
+

+
+ +

+ +
+

+

+ +

+

+

+
+

++
+

+

+
+

++
+

+++

+
+

+

+

+
+

++++
++

+

+

+++

+
+

+

+++
+

+

++
+ ++

+

+

+

+

+ +
+

+ +

+
+

+

+
++

++ + +
+

+

+++

++ ++
+

++

++++
+

+
+

++
+

+

+

+

+
+

+

+

+
+

++

++ ++
++ +

+

+
+ ++

++ +

+

+
+

+

+++
+

+
+

+ +

+
+

+

++
+ + ++

++
+ +

++

+

+

++
+

++
+

+
+

+

+
+

+++++ ++

+

++

+
+

++++ +++
+

++
++

+

+ + +
++ + ++ ++ + +++ ++

+
++

+
++

+

+

+ ++ +++
+

+
+

+
++

Fig. 2.10. Display for Example 2.9: Plot of Recruitment (Rt ) vs SOI lagged 6 months (St−6)
with the fitted values of the regression as points (+) and a lowess fit (—)

Example 2.9 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Rt = β0 + β1St−6 + wt .

However, in Example 2.8, we saw that the relationship is nonlinear and different
when SOI is positive or negative. In this case, we may consider adding a dummy
variable to account for this change. In particular, we fit the model

Rt = β0 + β1St−6 + β2Dt−6 + β3Dt−6 St−6 + wt,

where Dt is a dummy variable that is 0 if St < 0 and 1 otherwise. This means that

Rt =

{
β0 + β1St−6 + wt if St−6 < 0 ,
(β0 + β2) + (β1 + β3)St−6 + wt if St−6 ≥ 0 .

The result of the fit is given in the R code below. Figure 2.10 shows Rt vs St−6 with
the fitted values of the regression and a lowess fit superimposed. The piecewise
regression fit is similar to the lowess fit, but we note that the residuals are not white
noise (see the code below). This is followed up in Example 3.45.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec~ soiL6*dL6, data=fish, na.action=NULL))

Coefficients:
Estimate Std.Error t.value

(Intercept) 74.479 2.865 25.998
soiL6 -15.358 7.401 -2.075
dL6 -1.139 3.711 -0.307
soiL6:dL6 -51.244 9.523 -5.381
---
Residual standard error: 21.84 on 443 degrees of freedom
Multiple R-squared: 0.4024
F-statistic: 99.43 on 3 and 443 DF

attach(fish)
plot(soiL6, rec)
lines(lowess(soiL6, rec), col=4, lwd=2)
points(soiL6, fitted(fit), pch='+', col=2)
plot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise
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As a final exploratory tool, we discuss assessing periodic behavior in time series
data using regression analysis. In Example 1.12, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time series we
have seen so far exhibit periodic behavior. For example, the data from the pollution
study example shown in Fig. 2.2 exhibit strong yearly cycles. The Johnson & Johnson
data shown in Fig. 1.1 make one cycle every year (four quarters) on top of an
increasing trend and the speech data in Fig. 1.2 is highly repetitive. The monthly
SOI and Recruitment series in Fig. 1.6 show strong yearly cycles, which obscures the
slower El Niño cycle.

Example 2.10 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

xt = A cos(2πωt + φ) + wt, (2.35)

where ω = 1/50, A = 2, φ = .6π, and σw = 5; the data are shown on the bottom
panel of Fig. 1.11. At this point we assume the frequency of oscillation ω = 1/50
is known, but A and φ are unknown parameters. In this case the parameters appear
in (2.35) in a nonlinear way, so we use a trigonometric identity4 and write

A cos(2πωt + φ) = β1 cos(2πωt) + β2 sin(2πωt),
where β1 = A cos(φ) and β2 = −A sin(φ). Now the model (2.35) can be written in
the usual linear regression form given by (no intercept term is needed here)

xt = β1 cos(2πt/50)+ β2 sin(2πt/50) + wt . (2.36)

Using linear regression, we find β̂1 = −.74(.33), β̂2 = −1.99(.33) with σ̂w = 5.18;
the values in parentheses are the standard errors. We note the actual values of the
coefficients for this example are β1 = 2 cos(.6π) = −.62, and β2 = −2 sin(.6π) =
−1.90. It is clear that we are able to detect the signal in the noise using regression,
even though the signal-to-noise ratio is small. Figure 2.11 shows data generated
by (2.35) with the fitted line superimposed.

To reproduce the analysis and Fig. 2.11 in R, use the following:
set.seed(90210) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~0+z1+z2)) # zero to exclude the intercept

Coefficients:
Estimate Std. Error t value

z1 -0.7442 0.3274 -2.273
z2 -1.9949 0.3274 -6.093
Residual standard error: 5.177 on 498 degrees of freedom

par(mfrow=c(2,1))
plot.ts(x)
plot.ts(x, col=8, ylab=expression(hat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in Chap. 4.

4 cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β).
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Fig. 2.11. Data generated by (2.35) [top] and the fitted line superimposed on the data [bottom]

2.3 Smoothing in the Time Series Context

In Sect. 1.2, we introduced the concept of filtering or smoothing a time series, and
in Example 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term trend
and seasonal components. In particular, if xt represents the observations, then

mt =

k∑

j=−k
aj xt−j, (2.37)

where aj = a−j ≥ 0 and
∑k

j=−k aj = 1 is a symmetric moving average of the data.

Example 2.11 Moving Average Smoother
For example, Fig. 2.12 shows the monthly SOI series discussed in Example 1.5
smoothed using (2.37) with weights a0 = a±1 = · · · = a±5 = 1/12, and a±6 = 1/24;
k = 6. This particular method removes (filters out) the obvious annual temperature
cycle and helps emphasize the El Niño cycle. To reproduce Fig. 2.12 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
plot(soi)
lines(soif, lwd=2, col=4)
par(fig = c(.65, 1, .65, 1), new = TRUE) # the insert
nwgts = c(rep(0,20), wgts, rep(0,20))
plot(nwgts, type="l", ylim = c(-.02,.1), xaxt='n', yaxt='n', ann=FALSE)

Although the moving average smoother does a good job in highlighting the El
Niño effect, it might be considered too choppy. We can obtain a smoother fit using
the normal distribution for the weights, instead of boxcar-type weights of (2.37).
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Fig. 2.12. Moving average smoother of SOI. The insert shows the shape of the moving average
(“boxcar”) kernel [not drawn to scale] described in (2.39)
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Fig. 2.13. Kernel smoother of SOI. The insert shows the shape of the normal kernel [not drawn
to scale]

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function, or
kernel, to average the observations. Figure 2.13 shows kernel smoothing of the SOI
series, where mt is now

mt =

n∑

i=1
wi(t)xi, (2.38)

where
wi(t) = K

(
t−i
b

) / ∑n
j=1 K

(
t−j
b

)
(2.39)

are the weights and K(·) is a kernel function. This estimator, which was originally
explored by Parzen [148] and Rosenblatt [170], is often called the Nadaraya–
Watson estimator (Watson [207]). In this example, and typically, the normal kernel,
K(z) = 1√

2π
exp(−z2/2), is used.
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Fig. 2.14. Locally weighted scatterplot smoothers (lowess) of the SOI series

To implement this in R, use the ksmooth function where a bandwidth can be
chosen. The wider the bandwidth, b, the smoother the result. From the R ksmooth

help file: The kernels are scaled so that their quartiles (viewed as probability densities) are
at ± 0.25∗bandwidth. For the standard normal distribution, the quartiles are ±.674.
In our case, we are smoothing over time, which is of the form t/12 for the SOI time
series. In Fig. 2.13, we used the value of b = 1 to correspond to approximately
smoothing a little over one year. Figure 2.13 can be reproduced in R as follows.
plot(soi)
lines(ksmooth(time(soi), soi, "normal", bandwidth=1), lwd=2, col=4)
par(fig = c(.65, 1, .65, 1), new = TRUE) # the insert
gauss = function(x) { 1/sqrt(2*pi) * exp(-(x^2)/2) }
x = seq(from = -3, to = 3, by = 0.001)
plot(x, gauss(x), type ="l", ylim=c(-.02,.45), xaxt='n', yaxt='n', ann=FALSE)

Example 2.13 Lowess
Another approach to smoothing a time plot is nearest neighbor regression. The
technique is based on k-nearest neighbors regression, wherein one uses only the
data {xt−k/2, . . . , xt, . . . , xt+k/2} to predict xt via regression, and then sets mt = x̂t .

Lowess is a method of smoothing that is rather complex, but the basic idea is
close to nearest neighbor regression. Figure 2.14 shows smoothing of SOI using
the R function lowess (see Cleveland [42]). First, a certain proportion of nearest
neighbors to xt are included in a weighting scheme; values closer to xt in time get
more weight. Then, a robust weighted regression is used to predict xt and obtain
the smoothed values mt . The larger the fraction of nearest neighbors included, the
smoother the fit will be. In Fig. 2.14, one smoother uses 5% of the data to obtain
an estimate of the El Niño cycle of the data.

In addition, a (negative) trend in SOI would indicate the long-term warming of
the Pacific Ocean. To investigate this, we used lowess with the default smoother
span of f=2/3 of the data. Figure 2.14 can be reproduced in R as follows.
plot(soi)
lines(lowess(soi, f=.05), lwd=2, col=4) # El Nino cycle
lines(lowess(soi), lty=2, lwd=2, col=2) # trend (with default span)
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Fig. 2.15. Smoothing splines fit to the SOI series

Example 2.14 Smoothing Splines
An obvious way to smooth data would be to fit a polynomial regression in terms of
time. For example, a cubic polynomial would have xt = mt + wt where

mt = β0 + β1t + β2t2 + β3t3.

We could then fit mt via ordinary least squares.
An extension of polynomial regression is to first divide time t = 1, . . . , n, into

k intervals, [t0 = 1, t1], [t1 + 1, t2] , . . . , [tk−1 + 1, tk = n]; the values t0, t1, . . . , tk are
called knots. Then, in each interval, one fits a polynomial regression, typically the
order is 3, and this is called cubic splines.

A related method is smoothing splines, which minimizes a compromise between
the fit and the degree of smoothness given by

n∑

t=1
[xt − mt ]2 + λ

∫
(
m′′
t

)2 dt, (2.40)

where mt is a cubic spline with a knot at each t and primes denote differentiation.
The degree of smoothness is controlled by λ > 0.

Think of taking a long drive where mt is the position of your car at time t. In
this case, m′′

t is instantaneous acceleration/deceleration, and
∫
(m′′

t )2dt is a measure
of the total amount of acceleration and deceleration on your trip. A smooth drive
would be one where a constant velocity, is maintained (i.e., m′′

t = 0). A choppy
ride would be when the driver is constantly accelerating and decelerating, such as
beginning drivers tend to do.

If λ = 0, we don’t care how choppy the ride is, and this leads to mt = xt , the
data, which are not smooth. If λ = ∞, we insist on no acceleration or deceleration
(m′′

t = 0); in this case, our drive must be at constant velocity, mt = c + vt, and
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Fig. 2.16. Smooth of mortality as a function of temperature using lowess

consequently very smooth. Thus, λ is seen as a trade-off between linear regression
(completely smooth) and the data itself (no smoothness). The larger the value of λ,
the smoother the fit.

In R, the smoothing parameter is called spar and it is monotonically related to λ;
type ?smooth.spline to view the help file for details. Figure 2.15 shows smoothing
spline fits on the SOI series using spar=.5 to emphasize the El Niño cycle, and
spar=1 to emphasize the trend. The figure can be reproduced in R as follows.
plot(soi)
lines(smooth.spline(time(soi), soi, spar=.5), lwd=2, col=4)
lines(smooth.spline(time(soi), soi, spar= 1), lty=2, lwd=2, col=2)

Example 2.15 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be applied to smooth-
ing a time series as a function of another time series. We have already seen this
idea used in Example 2.8 when we used lowess to visualize the nonlinear relation-
ship between Recruitment and SOI at various lags. In this example, we smooth
the scatterplot of two contemporaneously measured time series, mortality as a
function of temperature. In Example 2.2, we discovered a nonlinear relationship
between mortality and temperature. Continuing along these lines, Fig. 2.16 show
a scatterplot of mortality, Mt , and temperature, Tt , along with Mt smoothed as a
function of Tt using lowess. Note that mortality increases at extreme temperatures,
but in an asymmetric way; mortality is higher at colder temperatures than at hotter
temperatures. The minimum mortality rate seems to occur at approximately 83◦ F.

Figure 2.16 can be reproduced in R as follows using the defaults.
plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))
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Problems

Sect. 2.1

2.1 A Structural Model For the Johnson & Johnson data, say yt , shown in Fig. 1.1,
let xt = log(yt ). In this problem, we are going to fit a special type of structural model,
xt = Tt + St + Nt where Tt is a trend component, St is a seasonal component, and Nt

is noise. In our case, time t is in quarters (1960.00,1960.25, . . . ) so one unit of time
is a year.

(a) Fit the regression model

xt = βt
︸︷︷︸
trend

+ α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t)
︸����������������������������������������������︷︷����������������������������������������������︸

seasonal

+ wt
︸︷︷︸
noise

where Qi(t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and zero otherwise.
The Qi(t)’s are called indicator variables. We will assume for now that wt is a
Gaussian white noise sequence. Hint: Detailed code is given in Code R.4, the last
example of Sect. R.4.

(b) If the model is correct, what is the estimated average annual increase in the logged
earnings per share?

(c) If the model is correct, does the average logged earnings rate increase or decrease
from the third quarter to the fourth quarter? And, by what percentage does it
increase or decrease?

(d) What happens if you include an intercept term in the model in (a)? Explain why
there was a problem.

(e) Graph the data, xt , and superimpose the fitted values, say x̂t , on the graph.
Examine the residuals, xt − x̂t , and state your conclusions. Does it appear that the
model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for the particulate
count four weeks prior; that is, add Pt−4 to the regression in (2.21). State your
conclusion.

(b) Draw a scatterplot matrix of Mt,Tt, Pt and Pt−4 and then calculate the pairwise
correlations between the series. Compare the relationship between Mt and Pt

versus Mt and Pt−4.

2.3 In this problem, we explore the difference between a random walk and a trend
stationary process.

(a) Generate four series that are random walk with drift, (1.4), of length n = 100
with δ = .01 and σw = 1. Call the data xt for t = 1, . . . , 100. Fit the regression
xt = βt + wt using least squares. Plot the data, the true mean function (i.e.,
μt = .01 t) and the fitted line, x̂t = β̂ t, on the same graph. Hint: The following R
code may be useful.
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par(mfrow=c(2,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){
x = ts(cumsum(rnorm(100,.01,1))) # data
regx = lm(x~0+time(x), na.action=NULL) # regression
plot(x, ylab='Random Walk w Drift') # plots
abline(a=0, b=.01, col=2, lty=2) # true mean (red - dashed)
abline(regx, col=4) # fitted line (blue - solid)

}

(b) Generate four series of length n = 100 that are linear trend plus noise, say
yt = .01 t + wt , where t and wt are as in part (a). Fit the regression yt = βt + wt

using least squares. Plot the data, the true mean function (i.e., μt = .01 t) and the
fitted line, ŷt = β̂ t, on the same graph.

(c) Comment (what did you learn from this assignment).

2.4 Kullback-Leibler Information Given the random n × 1 vector y, we define the
information for discriminating between two densities in the same family, indexed by
a parameter θ, say f (y; θ1) and f (y; θ2), as

I(θ1; θ2) = n−1 E1 log
f (y; θ1)
f (y; θ2), (2.41)

where E1 denotes expectation with respect to the density determined by θ1. For the
Gaussian regression model, the parameters are θ = (β′, σ2)′. Show that

I(θ1; θ2) = 1
2

(
σ2

1

σ2
2
− log

σ2
1

σ2
2
− 1

)

+
1
2
(β1 − β2)′Z ′Z(β1 − β2)

nσ2
2

. (2.42)

2.5 Model Selection Both selection criteria (2.15) and (2.16) are derived from
information theoretic arguments, based on the well-known Kullback-Leibler discrim-
ination information numbers (see Kullback and Leibler [122], Kullback [123]). We
give an argument due to Hurvich and Tsai [100]. We think of the measure (2.42) as
measuring the discrepancy between the two densities, characterized by the parameter
values θ′1 = (β′1, σ2

1 )′ and θ′2 = (β′2, σ2
2 )′. Now, if the true value of the parameter

vector is θ1, we argue that the best model would be one that minimizes the dis-
crepancy between the theoretical value and the sample, say I(θ1; θ̂). Because θ1 will
not be known, Hurvich and Tsai [100] considered finding an unbiased estimator for
E1[I(β1, σ

2
1 ; β̂, σ̂2)], where

I(β1, σ
2
1 ; β̂, σ̂2) = 1

2

(
σ2

1
σ̂2 − log

σ2
1

σ̂2 − 1
)

+
1
2
(β1 − β̂)′Z ′Z(β1 − β̂)

nσ̂2

and β is a k × 1 regression vector. Show that

E1[I(β1, σ
2
1 ; β̂, σ̂2)] = 1

2

(

− logσ2
1 + E1 log σ̂2 +

n + k
n − k − 2

− 1
)

, (2.43)

using the distributional properties of the regression coefficients and error variance. An
unbiased estimator for E1 log σ̂2 is log σ̂2. Hence, we have shown that the expectation
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of the above discrimination information is as claimed. As models with differing
dimensions k are considered, only the second and third terms in (2.43) will vary and
we only need unbiased estimators for those two terms. This gives the form of AICc
quoted in (2.16) in the chapter. You will need the two distributional results

nσ̂2

σ2
1
∼ χ2

n−k and
(β̂ − β1)′Z ′Z(β̂ − β1)

σ2
1

∼ χ2
k

The two quantities are distributed independently as chi-squared distributions with the
indicated degrees of freedom. If x ∼ χ2

n, E(1/x) = 1/(n − 2).

Sect. 2.2

2.6 Consider a process consisting of a linear trend with an additive noise term con-
sisting of independent random variables wt with zero means and variances σ2

w , that
is,

xt = β0 + β1t + wt,

where β0, β1 are fixed constants.

(a) Prove xt is nonstationary.
(b) Prove that the first difference series ∇xt = xt − xt−1 is stationary by finding its

mean and autocovariance function.
(c) Repeat part (b) if wt is replaced by a general stationary process, say yt , with mean

function μy and autocovariance function γy(h).
2.7 Show (2.27) is stationary.

2.8 The glacial varve record plotted in Fig. 2.7 exhibits some nonstationarity that can
be improved by transforming to logarithms and some additional nonstationarity that
can be corrected by differencing the logarithms.

(a) Argue that the glacial varves series, say xt , exhibits heteroscedasticity by com-
puting the sample variance over the first half and the second half of the data.
Argue that the transformation yt = log xt stabilizes the variance over the series.
Plot the histograms of xt and yt to see whether the approximation to normality is
improved by transforming the data.

(b) Plot the series yt . Do any time intervals, of the order 100 years, exist where
one can observe behavior comparable to that observed in the global temperature
records in Fig. 1.2?

(c) Examine the sample ACF of yt and comment.
(d) Compute the difference ut = yt − yt−1, examine its time plot and sample ACF,

and argue that differencing the logged varve data produces a reasonably stationary
series. Can you think of a practical interpretation for ut? Hint: Recall Footnote 2.
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(e) Based on the sample ACF of the differenced transformed series computed in
(c), argue that a generalization of the model given by Example 1.26 might be
reasonable. Assume

ut = μ + wt + θwt−1

is stationary when the inputs wt are assumed independent with mean 0 and
variance σ2

w . Show that

γu(h) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

σ2
w(1 + θ2) if h = 0,

θ σ2
w if h = ±1,

0 if |h| > 1.

(f) Based on part (e), use ρ̂u(1) and the estimate of the variance of ut , γ̂u(0), to derive
estimates of θ and σ2

w . This is an application of the method of moments from
classical statistics, where estimators of the parameters are derived by equating
sample moments to theoretical moments.

2.9 In this problem, we will explore the periodic nature of St , the SOI series displayed
in Fig. 1.5.

(a) Detrend the series by fitting a regression of St on time t. Is there a significant
trend in the sea surface temperature? Comment.

(b) Calculate the periodogram for the detrended series obtained in part (a). Identify
the frequencies of the two main peaks (with an obvious one at the frequency of
one cycle every 12 months). What is the probable El Niño cycle indicated by the
minor peak?

Sect. 2.3

2.10 Consider the two weekly time series oil and gas. The oil series is in dollars per
barrel, while the gas series is in cents per gallon.

(a) Plot the data on the same graph. Which of the simulated series displayed in
Sect. 1.2 do these series most resemble? Do you believe the series are stationary
(explain your answer)?

(b) In economics, it is often the percentage change in price (termed growth rate or
return), rather than the absolute price change, that is important. Argue that a
transformation of the form yt = ∇ log xt might be applied to the data, where xt is
the oil or gas price series. Hint: Recall Footnote 2.

(c) Transform the data as described in part (b), plot the data on the same graph, look
at the sample ACFs of the transformed data, and comment.

(d) Plot the CCF of the transformed data and comment The small, but significant
values when gas leads oil might be considered as feedback.

(e) Exhibit scatterplots of the oil and gas growth rate series for up to three weeks
of lead time of oil prices; include a nonparametric smoother in each plot and
comment on the results (e.g., Are there outliers? Are the relationships linear?).
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(f) There have been a number of studies questioning whether gasoline prices respond
more quickly when oil prices are rising than when oil prices are falling (“asymme-
try”). We will attempt to explore this question here with simple lagged regression;
we will ignore some obvious problems such as outliers and autocorrelated errors,
so this will not be a definitive analysis. Let Gt and Ot denote the gas and oil
growth rates.

(i) Fit the regression (and comment on the results)

Gt = α1 + α2It + β1Ot + β2Ot−1 + wt,

where It = 1 if Ot ≥ 0 and 0 otherwise (It is the indicator of no growth or
positive growth in oil price). Hint:
poil = diff(log(oil))
pgas = diff(log(gas))
indi = ifelse(poil < 0, 0, 1)
mess = ts.intersect(pgas, poil, poilL = lag(poil,-1), indi)
summary(fit <- lm(pgas~ poil + poilL + indi, data=mess))

(ii) What is the fitted model when there is negative growth in oil price at time
t? What is the fitted model when there is no or positive growth in oil price?
Do these results support the asymmetry hypothesis?

(iii) Analyze the residuals from the fit and comment.

2.11 Use two different smoothing techniques described in Sect. 2.3 to estimate the
trend in the global temperature series globtemp. Comment.



Chapter 3

ARIMA Models

Classical regression is often insufficient for explaining all of the interesting dynamics
of a time series. For example, the ACF of the residuals of the simple linear regression
fit to the price of chicken data (see Example 2.4) reveals additional structure in the
data that regression did not capture. Instead, the introduction of correlation that may
be generated through lagged linear relations leads to proposing the autoregressive
(AR) and autoregressive moving average (ARMA) models that were presented in
Whittle [209]. Adding nonstationary models to the mix leads to the autoregressive
integrated moving average (ARIMA) model popularized in the landmark work by Box
and Jenkins [30]. The Box–Jenkins method for identifying ARIMA models is given in
this chapter along with techniques for parameter estimation and forecasting for these
models. A partial theoretical justification of the use of ARMA models is discussed
in Sect. B.4.

3.1 Autoregressive Moving Average Models

The classical regression model of Chap. 2 was developed for the static case, namely,
we only allow the dependent variable to be influenced by current values of the
independent variables. In the time series case, it is desirable to allow the dependent
variable to be influenced by the past values of the independent variables and possibly
by its own past values. If the present can be plausibly modeled in terms of only the
past values of the independent inputs, we have the enticing prospect that forecasting
will be possible.

Introduction to Autoregressive Models

Autoregressivemodels are based on the idea that the current value of the series, xt , can
be explained as a function of p past values, xt−1, xt−2, . . . , xt−p, where p determines
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76 3 ARIMA Models

the number of steps into the past needed to forecast the current value. As a typical
case, recall Example 1.10 in which data were generated using the model

xt = xt−1 − .90xt−2 + wt,

where wt is white Gaussian noise with σ2
w = 1. We have now assumed the current

value is a particular linear function of past values. The regularity that persists in
Fig. 1.9 gives an indication that forecasting for such a model might be a distinct
possibility, say, through some version such as

xnn+1 = xn − .90xn−1,

where the quantity on the left-hand side denotes the forecast at the next period n + 1
based on the observed data, x1, x2, . . . , xn. We will make this notion more precise in
our discussion of forecasting (Sect. 3.4).

The extent to which it might be possible to forecast a real data series from its own
past values can be assessed by looking at the autocorrelation function and the lagged
scatterplot matrices discussed in Chap. 2. For example, the lagged scatterplot matrix
for the Southern Oscillation Index (SOI), shown in Fig. 2.8, gives a distinct indication
that lags 1 and 2, for example, are linearly associated with the current value. The ACF
shown in Fig. 1.16 shows relatively large positive values at lags 1, 2, 12, 24, and 36
and large negative values at 18, 30, and 42. We note also the possible relation between
the SOI and Recruitment series indicated in the scatterplot matrix shown in Fig. 2.9.
We will indicate in later sections on transfer function and vector AR modeling how
to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.
Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of the
form

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.1)
where xt is stationary, wt ∼ wn(0, σ2

w), and φ1, φ2, . . . , φp are constants (φp � 0).
The mean of xt in (3.1) is zero. If the mean, μ, of xt is not zero, replace xt by xt − μ
in (3.1),

xt − μ = φ1(xt−1 − μ) + φ2(xt−2 − μ) + · · · + φp(xt−p − μ) + wt,

or write
xt = α + φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.2)

where α = μ(1 − φ1 − · · · − φp).
We note that (3.2) is similar to the regression model of Sect. 2.1, and hence the

term auto (or self) regression. Some technical difficulties, however, develop from
applying that model because the regressors, xt−1, . . . , xt−p, are random components,
whereas zt was assumed to be fixed. A useful form follows by using the backshift
operator (2.29) to write the AR(p) model, (3.1), as

(1 − φ1B − φ2B2 − · · · − φpBp)xt = wt, (3.3)

or even more concisely as
φ(B)xt = wt . (3.4)

The properties of φ(B) are important in solving (3.4) for xt . This leads to the following
definition.
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Definition 3.2 The autoregressive operator is defined to be

φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp . (3.5)

Example 3.1 The AR(1) Model
We initiate the investigation of AR models by considering the first-order model,
AR(1), given by xt = φxt−1 + wt . Iterating backwards k times, we get

xt = φxt−1 + wt = φ(φxt−2 + wt−1) + wt

= φ2xt−2 + φwt−1 + wt
...

= φk xt−k +
k−1∑

j=0
φ jwt−j .

This method suggests that, by continuing to iterate backward, and provided that
|φ| < 1 and supt var(xt ) < ∞, we can represent an AR(1) model as a linear process
given by1

xt =
∞∑

j=0
φ jwt−j . (3.6)

Representation (3.6) is called the stationary solution of the model. In fact, by simple
substitution,

∞∑

j=0
φ jwt−j

︸�������︷︷�������︸
xt

= φ
( ∞∑

k=0
φkwt−1−k

︸����������︷︷����������︸
xt−1

)
+ wt .

The AR(1) process defined by (3.6) is stationary with mean

E(xt ) =
∞∑

j=0
φ jE(wt−j) = 0,

and autocovariance function,

γ(h) = cov(xt+h, xt ) = E
⎡
⎢
⎢
⎢
⎢
⎣

( ∞∑

j=0
φ jwt+h−j

) ( ∞∑

k=0
φkwt−k

)⎤
⎥
⎥
⎥
⎥
⎦

= E
[(
wt+h + · · · + φhwt + φh+1wt−1 + · · ·

)
(wt + φwt−1 + · · · )

]

= σ2
w

∞∑

j=0
φh+jφ j = σ2

wφ
h

∞∑

j=0
φ2j =

σ2
wφ

h

1 − φ2 , h ≥ 0.

(3.7)

1 Note that limk→∞ E
(
xt −∑k−1

j=0 φ jwt− j
)2

= limk→∞ φ2kE
(
x2
t−k

)
= 0, so (3.6) exists in the mean

square sense (see Appendix A for a definition).
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Recall that γ(h) = γ(−h), so we will only exhibit the autocovariance function for
h ≥ 0. From (3.7), the ACF of an AR(1) is

ρ(h) = γ(h)
γ(0) = φh, h ≥ 0, (3.8)

and ρ(h) satisfies the recursion

ρ(h) = φ ρ(h − 1), h = 1, 2, . . . . (3.9)

We will discuss the ACF of a general AR(p) model in Sect. 3.3.

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with φ = .9 and one
with φ = −.9; in both cases, σ2

w = 1. In the first case, ρ(h) = .9h, for h ≥ 0, so
observations close together in time are positively correlated with each other. This
result means that observations at contiguous time points will tend to be close in
value to each other; this fact shows up in the top of Fig. 3.1 as a very smooth
sample path for xt . Now, contrast this with the case in which φ = −.9, so that
ρ(h) = (−.9)h, for h ≥ 0. This result means that observations at contiguous time
points are negatively correlated but observations two time points apart are positively
correlated. This fact shows up in the bottom of Fig. 3.1, where, for example, if an
observation, xt , is positive, the next observation, xt+1, is typically negative, and the
next observation, xt+2, is typically positive. Thus, in this case, the sample path is
very choppy.

The following R code can be used to obtain a figure similar to Fig. 3.1:
par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))

Example 3.3 Explosive AR Models and Causality
In Example 1.18, it was discovered that the random walk xt = xt−1 + wt is not
stationary. We might wonder whether there is a stationary AR(1) process with
|φ| > 1. Such processes are called explosive because the values of the time series
quickly become large in magnitude. Clearly, because |φ| j increases without bound
as j → ∞,

∑k−1
j=0 φ jwt−j will not converge (in mean square) as k → ∞, so the

intuition used to get (3.6) will not work directly. We can, however, modify that
argument to obtain a stationary model as follows. Write xt+1 = φxt +wt+1, in which
case,

xt = φ−1xt+1 − φ−1wt+1 = φ−1
(
φ−1xt+2 − φ−1wt+2

)
− φ−1wt+1

...

= φ−kxt+k −
k−1∑

j=1
φ−jwt+j, (3.10)
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Fig. 3.1. Simulated AR(1) models: φ = .9 (top); φ = −.9 (bottom)

by iterating forward k steps. Because |φ|−1 < 1, this result suggests the stationary
future dependent AR(1) model

xt = −
∞∑

j=1
φ−jwt+j . (3.11)

The reader can verify that this is stationary and of the AR(1) form xt = φxt−1 +wt .
Unfortunately, this model is useless because it requires us to know the future to be
able to predict the future. When a process does not depend on the future, such as
the AR(1) when |φ| < 1, we will say the process is causal. In the explosive case
of this example, the process is stationary, but it is also future dependent, and not
causal.

Example 3.4 Every Explosion Has a Cause
Excluding explosive models from consideration is not a problem because the models
have causal counterparts. For example, if

xt = φxt−1 + wt with |φ| > 1

and wt ∼ iid N(0, σ2
w), then using (3.11), {xt } is a non-causal stationary Gaussian

process with E(xt ) = 0 and

γx(h) = cov(xt+h, xt ) = cov �
�

�

−
∞∑

j=1
φ−jwt+h+j, −

∞∑

k=1
φ−kwt+k

�
�

�
= σ2

wφ
−2 φ−h/(1 − φ−2).
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Thus, using (3.7), the causal process defined by

yt = φ−1yt−1 + vt

where vt ∼ iid N(0, σ2
wφ

−2) is stochastically equal to the xt process (i.e., all finite
distributions of the processes are the same). For example, if xt = 2xt−1 + wt with
σ2
w = 1, then yt =

1
2 yt−1 + vt with σ2

v = 1/4 is an equivalent causal process (see
Problem 3.3). This concept generalizes to higher orders, but it is easier to show
using Chap. 4 techniques; see Example 4.8.

The technique of iterating backward to get an idea of the stationary solution of
AR models works well when p = 1, but not for larger orders. A general technique is
that of matching coefficients. Consider the AR(1) model in operator form

φ(B)xt = wt, (3.12)

where φ(B) = 1 − φB, and |φ| < 1. Also, write the model in equation (3.6) using
operator form as

xt =
∞∑

j=0
ψjwt−j = ψ(B)wt, (3.13)

where ψ(B) = ∑∞
j=0 ψjB j and ψj = φ j . Suppose we did not know that ψj = φ j . We

could substitute ψ(B)wt from (3.13) for xt in (3.12) to obtain

φ(B)ψ(B)wt = wt . (3.14)

The coefficients of B on the left-hand side of (3.14) must be equal to those on
right-hand side of (3.14), which means

(1 − φB)(1 + ψ1B + ψ2B2 + · · · + ψjB
j + · · · ) = 1. (3.15)

Reorganizing the coefficients in (3.15),

1 + (ψ1 − φ)B + (ψ2 − ψ1φ)B2 + · · · + (ψj − ψj−1φ)B j + · · · = 1,

we see that for each j = 1, 2, . . ., the coefficient of B j on the left must be zero because
it is zero on the right. The coefficient of B on the left is (ψ1 − φ), and equating this to
zero, ψ1 − φ = 0, leads to ψ1 = φ. Continuing, the coefficient of B2 is (ψ2 − ψ1φ), so
ψ2 = φ2. In general,

ψj = ψj−1φ,

with ψ0 = 1, which leads to the solution ψj = φ j .
Another way to think about the operations we just performed is to consider the

AR(1) model in operator form, φ(B)xt = wt . Now multiply both sides by φ−1(B)
(assuming the inverse operator exists) to get

φ−1(B)φ(B)xt = φ−1(B)wt,
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or
xt = φ−1(B)wt .

We know already that

φ−1(B) = 1 + φB + φ2B2 + · · · + φ jB j + · · · ,
that is, φ−1(B) is ψ(B) in (3.13). Thus, we notice that working with operators is like
working with polynomials. That is, consider the polynomial φ(z) = 1 − φz, where z
is a complex number and |φ| < 1. Then,

φ−1(z) = 1
(1 − φz) = 1 + φz + φ2z2 + · · · + φ j z j + · · · , |z| ≤ 1,

and the coefficients of B j in φ−1(B) are the same as the coefficients of z j in φ−1(z). In
other words, we may treat the backshift operator, B, as a complex number, z. These
results will be generalized in our discussion of ARMA models. We will find the
polynomials corresponding to the operators useful in exploring the general properties
of ARMA models.

Introduction to Moving Average Models

As an alternative to the autoregressive representation in which the xt on the left-hand
side of the equation are assumed to be combined linearly, the moving average model
of order q, abbreviated as MA(q), assumes the white noise wt on the right-hand side
of the defining equation are combined linearly to form the observed data.

Definition 3.3 The moving average model of order q, or MA(q) model, is defined
to be

xt = wt + θ1wt−1 + θ2wt−2 + · · · + θqwt−q, (3.16)

where wt ∼ wn(0, σ2
w), and θ1, θ2, . . . , θq (θq � 0) are parameters.2

The system is the same as the infinite moving average defined as the linear
process (3.13), where ψ0 = 1, ψj = θ j, for j = 1, . . . , q, and ψj = 0 for other values.
We may also write the MA(q) process in the equivalent form

xt = θ(B)wt, (3.17)

using the following definition.

Definition 3.4 The moving average operator is

θ(B) = 1 + θ1B + θ2B2 + · · · + θqBq. (3.18)

Unlike the autoregressive process, the moving average process is stationary for
any values of the parameters θ1, . . . , θq ; details of this result are provided in Sect. 3.3.

2 Some texts and software packages write the MA model with negative coefficients; that is, xt =

wt − θ1wt−1 − θ2wt−2 − · · · − θqwt−q .
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Fig. 3.2. Simulated MA(1) models: θ = .9 (top); θ = −.9 (bottom)

Example 3.5 The MA(1) Process
Consider the MA(1) model xt = wt + θwt−1. Then, E(xt ) = 0,

γ(h) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

(1 + θ2)σ2
w h = 0,

θσ2
w h = 1,

0 h > 1,

and the ACF is

ρ(h) =
⎧⎪⎪⎨

⎪⎪
⎩

θ

(1+θ2)
h = 1,

0 h > 1.

Note |ρ(1)| ≤ 1/2 for all values of θ (Problem 3.1). Also, xt is correlated with
xt−1, but not with xt−2, xt−3, . . . . Contrast this with the case of the AR(1) model in
which the correlation between xt and xt−k is never zero. When θ = .9, for example,
xt and xt−1 are positively correlated, and ρ(1) = .497. When θ = −.9, xt and xt−1
are negatively correlated, ρ(1) = −.497. Figure 3.2 shows a time plot of these two
processes with σ2

w = 1. The series for which θ = .9 is smoother than the series for
which θ = −.9.

A figure similar to Fig. 3.2 can be created in R as follows:
par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))
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Example 3.6 Non-uniqueness of MA Models and Invertibility
Using Example 3.5, we note that for an MA(1) model, ρ(h) is the same for θ and
1
θ ; try 5 and 1

5 , for example. In addition, the pair σ2
w = 1 and θ = 5 yield the same

autocovariance function as the pair σ2
w = 25 and θ = 1/5, namely,

γ(h) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

26 h = 0,
5 h = 1,
0 h > 1.

Thus, the MA(1) processes

xt = wt +
1
5wt−1, wt ∼ iid N(0, 25)

and
yt = vt + 5vt−1, vt ∼ iid N(0, 1)

are the same because of normality (i.e., all finite distributions are the same). We
can only observe the time series, xt or yt , and not the noise, wt or vt , so we cannot
distinguish between the models. Hence, we will have to choose only one of them.
For convenience, by mimicking the criterion of causality for AR models, we will
choose the model with an infinite AR representation. Such a process is called an
invertible process.

To discover which model is the invertible model, we can reverse the roles of
xt and wt (because we are mimicking the AR case) and write the MA(1) model
as wt = −θwt−1 + xt . Following the steps that led to (3.6), if |θ | < 1, then wt =∑∞

j=0(−θ)j xt−j , which is the desired infinite AR representation of the model. Hence,
given a choice, we will choose the model with σ2

w = 25 and θ = 1/5 because it is
invertible.

As in the AR case, the polynomial, θ(z), corresponding to the moving average
operators, θ(B), will be useful in exploring general properties of MA processes. For
example, following the steps of equations (3.12)–(3.15), we can write the MA(1)
model as xt = θ(B)wt , where θ(B) = 1 + θB. If |θ | < 1, then we can write the model
as π(B)xt = wt , where π(B) = θ−1(B). Let θ(z) = 1 + θz, for |z| ≤ 1, then π(z) =
θ−1(z) = 1/(1 + θz) = ∑∞

j=0(−θ)j z j , and we determine that π(B) = ∑∞
j=0(−θ)jB j .

Autoregressive Moving Average Models

We now proceedwith the general developmentof autoregressive,moving average, and
mixed autoregressive moving average (ARMA), models for stationary time series.

Definition 3.5 A time series {xt ; t = 0,±1,±2, . . .} is ARMA(p, q) if it is stationary
and

xt = φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q, (3.19)

with φp � 0, θq � 0, and σ2
w > 0. The parameters p and q are called the autoregres-

sive and the moving average orders, respectively. If xt has a nonzero mean μ, we set
α = μ(1 − φ1 − · · · − φp) and write the model as
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xt = α + φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q , (3.20)

where wt ∼ wn(0, σ2
w).

As previously noted, when q = 0, the model is called an autoregressive model
of order p, AR(p), and when p = 0, the model is called a moving average model of
order q, MA(q). To aid in the investigation of ARMA models, it will be useful to
write them using the AR operator, (3.5), and the MA operator, (3.18). In particular,
the ARMA(p, q) model in (3.19) can then be written in concise form as

φ(B)xt = θ(B)wt . (3.21)

The concise form of the model points to a potential problem in that we can unneces-
sarily complicate the model by multiplying both sides by another operator, say

η(B)φ(B)xt = η(B)θ(B)wt ,

without changing the dynamics. Consider the following example.

Example 3.7 Parameter Redundancy
Consider a white noise process xt = wt . If we multiply both sides of the equation
by η(B) = 1 − .5B, then the model becomes (1 − .5B)xt = (1 − .5B)wt , or

xt = .5xt−1 − .5wt−1 + wt, (3.22)

which looks like an ARMA(1, 1) model. Of course, xt is still white noise; nothing
has changed in this regard [i.e., xt = wt is the solution to (3.22)], but we have
hidden the fact that xt is white noise because of the parameter redundancy or
over-parameterization.

The consideration of parameter redundancy will be crucial when we discuss
estimation for general ARMA models. As this example points out, we might fit
an ARMA(1, 1) model to white noise data and find that the parameter estimates
are significant. If we were unaware of parameter redundancy, we might claim the
data are correlated when in fact they are not (Problem 3.20). Although we have not
yet discussed estimation, we present the following demonstration of the problem.
We generated 150 iid normals and then fit an ARMA(1, 1) to the data. Note that
φ̂ = −.96 and θ̂ = .95, and both are significant. Below is the R code (note that the
estimate called ‘intercept’ is really the estimate of the mean).
set.seed(8675309) # Jenny, I got your number
x = rnorm(150, mean=5) # generate iid N(5,1)s
arima(x, order=c(1,0,1)) # estimation

Coefficients:
ar1 ma1 intercept<= misnomer

-0.9595 0.9527 5.0462
s.e. 0.1688 0.1750 0.0727
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Thus, forgetting the mean estimate, the fitted model looks like

(1 + .96B)xt = (1 + .95B)wt ,

which we should recognize as an over-parametrized model.

Example 3.3, Example 3.6, and Example 3.7 point to a number of problems with
the general definition of ARMA(p, q) models, as given by (3.19), or, equivalently,
by (3.21). To summarize, we have seen the following problems:

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions on the
model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as

φ(z) = 1 − φ1z − · · · − φpzp, φp � 0, (3.23)

and
θ(z) = 1 + θ1z + · · · + θq zq, θq � 0, (3.24)

respectively, where z is a complex number.

To address the first problem, we will henceforth refer to an ARMA(p, q) model to
mean that it is in its simplest form. That is, in addition to the original definition given
in equation (3.19), we will also require that φ(z) and θ(z) have no common factors.
So, the process, xt = .5xt−1 − .5wt−1 + wt , discussed in Example 3.7 is not referred
to as an ARMA(1, 1) process because, in its reduced form, xt is white noise.

To address the problem of future-dependent models, we formally introduce the
concept of causality.

Definition 3.7 An ARMA(p, q) model is said to be causal, if the time series {xt ; t =
0,±1,±2, . . .} can be written as a one-sided linear process:

xt =
∞∑

j=0
ψjwt−j = ψ(B)wt, (3.25)

where ψ(B) = ∑∞
j=0 ψjB j , and

∑∞
j=0 |ψj | < ∞; we set ψ0 = 1.

In Example 3.3, the AR(1) process, xt = φxt−1 +wt, is causal only when |φ| < 1.
Equivalently, the process is causal only when the root of φ(z) = 1 − φz is bigger
than one in absolute value. That is, the root, say, z0, of φ(z) is z0 = 1/φ (because
φ(z0) = 0) and |z0 | > 1 because |φ| < 1. In general, we have the following property.
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Property 3.1 Causality of an ARMA(p, q) Process
An ARMA(p, q) model is causal if and only if φ(z) � 0 for |z| ≤ 1. The coefficients

of the linear process given in (3.25) can be determined by solving

ψ(z) =
∞∑

j=0
ψj z

j =
θ(z)
φ(z), |z| ≤ 1.

Another way to phrase Property 3.1 is that an ARMA process is causal only when
the roots of φ(z) lie outside the unit circle; that is, φ(z) = 0 only when |z| > 1. Finally,
to address the problem of uniqueness discussed in Example 3.6, we choose the model
that allows an infinite autoregressive representation.

Definition 3.8 An ARMA(p, q) model is said to be invertible, if the time series {xt ; t =
0,±1,±2, . . .} can be written as

π(B)xt =
∞∑

j=0
πj xt−j = wt, (3.26)

where π(B) = ∑∞
j=0 πjB j , and

∑∞
j=0 |πj | < ∞; we set π0 = 1.

Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA(p, q) Process
An ARMA(p, q) model is invertible if and only if θ(z) � 0 for |z| ≤ 1. The

coefficients πj of π(B) given in (3.26) can be determined by solving

π(z) =
∞∑

j=0
πj z

j =
φ(z)
θ(z) , |z| ≤ 1.

Another way to phrase Property 3.2 is that an ARMA process is invertible only
when the roots of θ(z) lie outside the unit circle; that is, θ(z) = 0 only when |z| > 1.
The proof of Property 3.1 is given in Section B.2 (the proof of Property 3.2 is similar).
The following examples illustrate these concepts.

Example 3.8 Parameter Redundancy, Causality, Invertibility
Consider the process

xt = .4xt−1 + .45xt−2 + wt + wt−1 + .25wt−2,

or, in operator form,

(1 − .4B − .45B2)xt = (1 + B + .25B2)wt .

At first, xt appears to be an ARMA(2, 2) process. But notice that

φ(B) = 1 − .4B − .45B2 = (1 + .5B)(1 − .9B)
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and
θ(B) = (1 + B + .25B2) = (1 + .5B)2

have a common factor that can be canceled. After cancellation, the operators are
φ(B) = (1 − .9B) and θ(B) = (1 + .5B), so the model is an ARMA(1, 1) model,
(1 − .9B)xt = (1 + .5B)wt , or

xt = .9xt−1 + .5wt−1 + wt . (3.27)

The model is causal because φ(z) = (1 − .9z) = 0 when z = 10/9, which is
outside the unit circle. The model is also invertible because the root of θ(z) =

(1 + .5z) is z = −2, which is outside the unit circle.
To write the model as a linear process, we can obtain the ψ-weights using

Property 3.1, φ(z)ψ(z) = θ(z), or

(1 − .9z)(1 + ψ1z + ψ2z2 + · · · + ψj z
j + · · · ) = 1 + .5z.

Rearranging, we get

1 + (ψ1 − .9)z + (ψ2 − .9ψ1)z2 + · · · + (ψj − .9ψj−1)z j + · · · = 1 + .5z.

Matching the coefficients of z on the left and right sides we get ψ1 − .9 = .5 and
ψj − .9ψj−1 = 0 for j > 1. Thus, ψj = 1.4(.9)j−1 for j ≥ 1 and (3.27) can be
written as

xt = wt + 1.4
∞∑

j=1
.9j−1wt−j .

The values of ψj may be calculated in R as follows:
ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching coef-
ficients in θ(z)π(z) = φ(z),

(1 + .5z)(1 + π1z + π2z2 + π3z3 + · · · ) = 1 − .9z.

In this case, the π-weights are given by πj = (−1)j 1.4 (.5)j−1, for j ≥ 1, and hence,
because wt =

∑∞
j=0 πj xt−j , we can also write (3.27) as

xt = 1.4
∞∑

j=1
(−.5)j−1xt−j + wt .

The values of πj may be calculated in R as follows by reversing the roles of wt and
xt ; i.e., write the model as wt = −.5wt−1 + xt − .9xt−1:
ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters

Example 3.9 Causal Conditions for an AR(2) Process
For an AR(1) model, (1 − φB)xt = wt , to be causal, the root of φ(z) = 1 − φz must
lie outside of the unit circle. In this case, φ(z) = 0 when z = 1/φ, so it is easy
to go from the causal requirement on the root, |1/φ| > 1, to a requirement on the
parameter, |φ| < 1. It is not so easy to establish this relationship for higher order
models.

For example, the AR(2) model, (1 − φ1B − φ2B2)xt = wt , is causal when the
two roots of φ(z) = 1− φ1z− φ2z2 lie outside of the unit circle. Using the quadratic
formula, this requirement can be written as

/
/
/
/
/
/
/

φ1 ±
√
φ2

1 + 4φ2

−2φ2

/
/
/
/
/
/
/
> 1.

The roots of φ(z) may be real and distinct, real and equal, or a complex conjugate
pair. If we denote those roots by z1 and z2, we can write φ(z) = (1− z−1

1 z)(1− z−1
2 z);

note that φ(z1) = φ(z2) = 0. The model can be written in operator form as (1 −
z−1
1 B)(1 − z−1

2 B)xt = wt . From this representation, it follows that φ1 = (z−1
1 + z−1

2 )
and φ2 = −(z1z2)−1. This relationship and the fact that |z1 | > 1 and |z2 | > 1 can be
used to establish the following equivalent condition for causality:

φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2 | < 1. (3.28)

This causality condition specifies a triangular region in the parameter space; see
Fig. 3.3 We leave the details of the equivalence to the reader (Problem 3.5).

3.2 Difference Equations

The study of the behavior of ARMA processes and their ACFs is greatly enhanced by a
basic knowledge of difference equations, simply because they are difference equations.
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We will give a brief and heuristic account of the topic along with some examples of
the usefulness of the theory. For details, the reader is referred to Mickens [142].

Suppose we have a sequence of numbers u0, u1, u2, . . . such that

un − αun−1 = 0, α � 0, n = 1, 2, . . . . (3.29)

For example, recall (3.9) in which we showed that the ACF of an AR(1) process is a
sequence, ρ(h), satisfying

ρ(h) − φρ(h − 1) = 0, h = 1, 2, . . . .

Equation (3.29) represents a homogeneous difference equation of order 1. To solve
the equation, we write:

u1 = αu0

u2 = αu1 = α2u0

...

un = αun−1 = αnu0.

Given an initial condition u0 = c, we may solve (3.29), namely, un = αnc.
In operator notation, (3.29) can be written as (1 − αB)un = 0. The polynomial

associated with (3.29) is α(z) = 1 − αz, and the root, say, z0, of this polynomial is
z0 = 1/α; that is α(z0) = 0. We know a solution (in fact, the solution) to (3.29), with
initial condition u0 = c, is

un = αnc =
(
z−1
0

)n
c. (3.30)

That is, the solution to the difference equation (3.29) depends only on the initial
condition and the inverse of the root to the associated polynomial α(z).

Now suppose that the sequence satisfies

un − α1un−1 − α2un−2 = 0, α2 � 0, n = 2, 3, . . . (3.31)

This equation is a homogeneous difference equation of order 2. The corresponding
polynomial is

α(z) = 1 − α1z − α2z2,

which has two roots, say, z1 and z2; that is, α(z1) = α(z2) = 0. We will consider two
cases. First suppose z1 � z2. Then the general solution to (3.31) is

un = c1z−n1 + c2z−n2 , (3.32)

where c1 and c2 depend on the initial conditions. The claim it is a solution can be
verified by direct substitution of (3.32) into (3.31):

(
c1z−n1 + c2z−n2

)

︸��������������︷︷��������������︸
un

− α1
(
c1z−(n−1)

1 + c2z−(n−1)
2

)

︸�����������������������︷︷�����������������������︸
un−1

−α2
(
c1z−(n−2)

1 + c2z−(n−2)
2

)

︸�����������������������︷︷�����������������������︸
un−2

= c1z−n1

(
1 − α1z1 − α2z2

1

)
+ c2z−n2

(
1 − α1z2 − α2z2

2

)

= c1z−n1 α(z1) + c2z−n2 α(z2) = 0.
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Given two initial conditions u0 and u1, we may solve for c1 and c2:

u0 = c1 + c2 and u1 = c1z−1
1 + c2z−1

2 ,

where z1 and z2 can be solved for in terms of α1 and α2 using the quadratic formula,
for example.

When the roots are equal, z1 = z2 (= z0), a general solution to (3.31) is

un = z−n0 (c1 + c2n). (3.33)

This claim can also be verified by direct substitution of (3.33) into (3.31):

z−n0 (c1 + c2n)
︸����������︷︷����������︸

un

− α1
(
z−(n−1)
0 [c1 + c2(n − 1)])

︸�������������������������︷︷�������������������������︸
un−1

−α2
(
z−(n−2)
0 [c1 + c2(n − 2)])

︸�������������������������︷︷�������������������������︸
un−2

= z−n0 (c1 + c2n)
(
1 − α1z0 − α2z2

0

)
+ c2z−n+1

0 (α1 + 2α2z0)
= c2z−n+1

0 (α1 + 2α2z0) .

To show that (α1+2α2z0) = 0, write 1−α1z−α2z2 = (1− z−1
0 z)2, and take derivatives

with respect to z on both sides of the equation to obtain (α1 +2α2z) = 2z−1
0 (1− z−1

0 z).
Thus, (α1 + 2α2z0) = 2z−1

0 (1 − z−1
0 z0) = 0, as was to be shown. Finally, given two

initial conditions, u0 and u1, we can solve for c1 and c2:

u0 = c1 and u1 = (c1 + c2)z−1
0 .

It can also be shown that these solutions are unique.
To summarize these results, in the case of distinct roots, the solution to the

homogeneous difference equation of degree two was

un = z−n1 × (a polynomial in n of degree m1 − 1)
+ z−n2 × (a polynomial in n of degree m2 − 1), (3.34)

where m1 is the multiplicity of the root z1 and m2 is the multiplicity of the root z2. In
this example, of course, m1 = m2 = 1, and we called the polynomials of degree zero
c1 and c2, respectively. In the case of the repeated root, the solution was

un = z−n0 × (a polynomial in n of degree m0 − 1), (3.35)

where m0 is the multiplicity of the root z0; that is, m0 = 2. In this case, we wrote the
polynomial of degree one as c1 + c2n. In both cases, we solved for c1 and c2 given
two initial conditions, u0 and u1.

These results generalize to the homogeneous difference equation of order p:

un − α1un−1 − · · · − αpun−p = 0, αp � 0, n = p, p + 1, . . . . (3.36)

The associated polynomial is α(z) = 1 − α1z − · · · − αpzp . Suppose α(z) has r
distinct roots, z1 with multiplicity m1, z2 with multiplicity m2, . . . , and zr with
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multiplicity mr , such that m1 + m2 + · · · + mr = p. The general solution to the
difference equation (3.36) is

un = z−n1 P1(n) + z−n2 P2(n) + · · · + z−nr Pr (n), (3.37)

where Pj (n), for j = 1, 2, . . . , r, is a polynomial in n, of degree mj −1. Given p initial
conditions u0, . . . , up−1, we can solve for the Pj (n) explicitly.

Example 3.10 The ACF of an AR(2) Process
Suppose xt = φ1xt−1 + φ2xt−2 + wt is a causal AR(2) process. Multiply each side
of the model by xt−h for h > 0, and take expectation:

E(xt xt−h) = φ1E(xt−1xt−h) + φ2E(xt−2xt−h) + E(wt xt−h).
The result is

γ(h) = φ1γ(h − 1) + φ2γ(h − 2), h = 1, 2, . . . . (3.38)

In (3.38), we used the fact that E(xt ) = 0 and for h > 0,

E(wt xt−h) = E
(
wt

∞∑

j=0
ψjwt−h−j

)
= 0.

Divide (3.38) through by γ(0) to obtain the difference equation for the ACF of the
process:

ρ(h) − φ1ρ(h − 1) − φ2ρ(h − 2) = 0, h = 1, 2, . . . . (3.39)

The initial conditions are ρ(0) = 1 and ρ(−1) = φ1/(1 − φ2), which is obtained by
evaluating (3.39) for h = 1 and noting that ρ(1) = ρ(−1).

Using the results for the homogeneous difference equation of order two, let z1
and z2 be the roots of the associated polynomial, φ(z) = 1 − φ1z − φ2z2. Because
the model is causal, we know the roots are outside the unit circle: |z1 | > 1 and
|z2 | > 1. Now, consider the solution for three cases:
(i) When z1 and z2 are real and distinct, then

ρ(h) = c1z−h1 + c2z−h2 ,

so ρ(h) → 0 exponentially fast as h →∞.
(ii) When z1 = z2 (= z0) are real and equal, then

ρ(h) = z−h0 (c1 + c2h),
so ρ(h) → 0 exponentially fast as h →∞.

(iii) When z1 = z̄2 are a complex conjugate pair, then c2 = c̄1 (because ρ(h) is real),
and

ρ(h) = c1z−h1 + c̄1 z̄−h1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1 |eiθ , where θ is the
angle whose tangent is the ratio of the imaginary part and the real part of z1
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Fig. 3.4. Simulated AR(2) model, n = 144 with φ1 = 1.5 and φ2 = −.75

(sometimes called arg(z1); the range of θ is [−π, π]). Then, using the fact that
eiα + e−iα = 2 cos(α), the solution has the form

ρ(h) = a|z1 |−h cos(hθ + b),
where a and b are determined by the initial conditions. Again, ρ(h) dampens
to zero exponentially fast as h →∞, but it does so in a sinusoidal fashion. The
implication of this result is shown in the next example.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

xt = 1.5xt−1 − .75xt−2 + wt,

with σ2
w = 1, and with complex roots chosen so the process exhibits pseudo-

cyclic behavior at the rate of one cycle every 12 time points. The autoregressive
polynomial for this model is φ(z) = 1−1.5z+ .75z2. The roots of φ(z) are 1± i/√3,
and θ = tan−1(1/√3) = 2π/12 radians per unit time. To convert the angle to cycles
per unit time, divide by 2π to get 1/12 cycles per unit time. The ACF for this model
is shown in left-hand-side of Fig. 3.5.

To calculate the roots of the polynomial and solve for arg in R:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root = 1 + i/sqrt(3)

[1] 1+0.57735i
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # the pseudo period

[1] 12

To reproduce Fig. 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
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plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(1, at=seq(0,144,by=12)); box()
abline(v=seq(0,144,by=12), lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

Example 3.12 The ψ-weights for an ARMA Model
For a causal ARMA(p, q) model, φ(B)xt = θ(B)wt , where the zeros of φ(z) are
outside the unit circle, recall that we may write

xt =
∞∑

j=0
ψjwt−j,

where the ψ-weights are determined using Property 3.1.
For the pure MA(q) model, ψ0 = 1, ψj = θ j , for j = 1, . . . , q, and ψj = 0,

otherwise. For the general case of ARMA(p, q) models, the task of solving for the
ψ-weights is much more complicated, as was demonstrated in Example 3.8. The
use of the theory of homogeneous difference equations can help here. To solve for
the ψ-weights in general, we must match the coefficients in φ(z)ψ(z) = θ(z):

(1 − φ1z − φ2z2 − · · · )(ψ0 + ψ1z + ψ2z2 + · · · ) = (1 + θ1z + θ2z2 + · · · ).
The first few values are

ψ0 = 1
ψ1 − φ1ψ0 = θ1

ψ2 − φ1ψ1 − φ2ψ0 = θ2
ψ3 − φ1ψ2 − φ2ψ1 − φ3ψ0 = θ3

...

where we would take φ j = 0 for j > p, and θ j = 0 for j > q. The ψ-weights satisfy
the homogeneous difference equation given by

ψj −
p∑

k=1
φkψj−k = 0, j ≥ max(p, q + 1), (3.40)

with initial conditions

ψj −
j∑

k=1
φkψj−k = θ j, 0 ≤ j < max(p, q + 1). (3.41)

The general solution depends on the roots of the AR polynomial φ(z) = 1 − φ1z −
· · · − φpzp , as seen from (3.40). The specific solution will, of course, depend on
the initial conditions.
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Consider the ARMA process given in (3.27), xt = .9xt−1+ .5wt−1+wt . Because
max(p, q + 1) = 2, using (3.41), we have ψ0 = 1 and ψ1 = .9 + .5 = 1.4. By (3.40),
for j = 2, 3, . . . , the ψ-weights satisfy ψj − .9ψj−1 = 0. The general solution
is ψj = c .9j . To find the specific solution, use the initial condition ψ1 = 1.4,
so 1.4 = .9c or c = 1.4/.9. Finally, ψj = 1.4(.9)j−1, for j ≥ 1, as we saw in
Example 3.8.

To view, for example, the first 50 ψ-weights in R, use:
ARMAtoMA(ar=.9, ma=.5, 50) # for a list
plot(ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph

3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, xt = θ(B)wt , where θ(B) =
1 + θ1B + · · · + θqBq. Because xt is a finite linear combination of white noise terms,
the process is stationary with mean

E(xt ) =
q∑

j=0
θ jE(wt−j) = 0,

where we have written θ0 = 1, and with autocovariance function

γ(h) = cov (xt+h, xt ) = cov
( q∑

j=0
θ jwt+h−j,

q∑

k=0
θkwt−k

)

=

{
σ2
w

∑q−h
j=0 θ jθ j+h, 0 ≤ h ≤ q

0 h > q.
(3.42)

Recall that γ(h) = γ(−h), so we will only display the values for h ≥ 0. Note that γ(q)
cannot be zero because θq � 0. The cutting off of γ(h) after q lags is the signature of
the MA(q) model. Dividing (3.42) by γ(0) yields the ACF of an MA(q):

ρ(h) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

∑q−h
j=0 θ jθ j+h

1 + θ2
1 + · · · + θ2

q

1 ≤ h ≤ q

0 h > q.

(3.43)

For a causal ARMA(p, q) model, φ(B)xt = θ(B)wt , where the zeros of φ(z) are
outside the unit circle, write

xt =
∞∑

j=0
ψjwt−j . (3.44)

It follows immediately that E(xt ) = 0 and the autocovariance function of xt is

γ(h) = cov(xt+h, xt ) = σ2
w

∞∑

j=0
ψjψj+h, h ≥ 0. (3.45)
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We could then use (3.40) and (3.41) to solve for the ψ-weights. In turn, we could
solve for γ(h), and the ACF ρ(h) = γ(h)/γ(0). As in Example 3.10, it is also possible
to obtain a homogeneous difference equation directly in terms of γ(h). First, we write

γ(h) = cov(xt+h, xt ) = cov
( p∑

j=1
φ j xt+h−j +

q∑

j=0
θ jwt+h−j, xt

)

=

p∑

j=1
φ jγ(h − j) + σ2

w

q∑

j=h

θ jψj−h, h ≥ 0,
(3.46)

where we have used the fact that, for h ≥ 0,

cov(wt+h−j, xt ) = cov
(
wt+h−j,

∞∑

k=0
ψkwt−k

)
= ψj−hσ2

w .

From (3.46), we can write a general homogeneous equation for the ACF of a causal
ARMA process:

γ(h) − φ1γ(h − 1) − · · · − φpγ(h − p) = 0, h ≥ max(p, q + 1), (3.47)

with initial conditions

γ(h) −
p∑

j=1
φ jγ(h − j) = σ2

w

q∑

j=h

θ jψj−h, 0 ≤ h < max(p, q + 1). (3.48)

Dividing (3.47) and (3.48) through by γ(0) will allow us to solve for the ACF,
ρ(h) = γ(h)/γ(0).
Example 3.13 The ACF of an AR(p)

In Example 3.10 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

ρ(h) − φ1ρ(h − 1) − · · · − φpρ(h − p) = 0, h ≥ p. (3.49)

Let z1, . . . , zr denote the roots of φ(z), each with multiplicity m1, . . . , mr , respec-
tively, where m1 + · · · + mr = p. Then, from (3.37), the general solution is

ρ(h) = z−h1 P1(h) + z−h2 P2(h) + · · · + z−hr Pr (h), h ≥ p, (3.50)

where Pj (h) is a polynomial in h of degree mj − 1.
Recall that for a causal model, all of the roots are outside the unit circle, |zi | > 1,

for i = 1, . . . , r. If all the roots are real, then ρ(h) dampens exponentially fast to
zero as h → ∞. If some of the roots are complex, then they will be in conjugate
pairs and ρ(h) will dampen, in a sinusoidal fashion, exponentially fast to zero as
h → ∞. In the case of complex roots, the time series will appear to be cyclic in
nature. This, of course, is also true for ARMA models in which the AR part has
complex roots.
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Example 3.14 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process xt = φxt−1 + θwt−1 + wt, where |φ| < 1. Based
on (3.47), the autocovariance function satisfies

γ(h) − φγ(h − 1) = 0, h = 2, 3, . . . ,

and it follows from (3.29)–(3.30) that the general solution is

γ(h) = c φh, h = 1, 2, . . . . (3.51)

To obtain the initial conditions, we use (3.48):

γ(0) = φγ(1) + σ2
w[1 + θφ + θ2] and γ(1) = φγ(0) + σ2

wθ.

Solving for γ(0) and γ(1), we obtain:

γ(0) = σ2
w

1 + 2θφ + θ2

1 − φ2 and γ(1) = σ2
w

(1 + θφ)(φ + θ)
1 − φ2 .

To solve for c, note that from (3.51), γ(1) = c φ or c = γ(1)/φ. Hence, the specific
solution for h ≥ 1 is

γ(h) = γ(1)
φ

φh = σ2
w

(1 + θφ)(φ + θ)
1 − φ2 φh−1.

Finally, dividing through by γ(0) yields the ACF

ρ(h) = (1 + θφ)(φ + θ)
1 + 2θφ + θ2 φh−1, h ≥ 1. (3.52)

Notice that the general pattern of ρ(h) versus h in (3.52) is not different from
that of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to tell the
difference between an ARMA(1,1) and an AR(1) based solely on an ACF estimated
from a sample. This consideration will lead us to the partial autocorrelation function.

The Partial Autocorrelation Function (PACF)

We have seen in (3.43), for MA(q) models, the ACF will be zero for lags greater
than q. Moreover, because θq � 0, the ACF will not be zero at lag q. Thus, the ACF
provides a considerable amount of information about the order of the dependence
when the process is a moving average process. If the process, however, is ARMA
or AR, the ACF alone tells us little about the orders of dependence. Hence, it is
worthwhile pursuing a function that will behave like the ACF of MA models, but for
AR models, namely, the partial autocorrelation function (PACF).

Recall that if X , Y , and Z are random variables, then the partial correlation
between X and Y given Z is obtained by regressing X on Z to obtain X̂ , regressing Y
on Z to obtain Ŷ , and then calculating

ρXY |Z = corr{X − X̂, Y − Ŷ }.
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The idea is that ρXY |Z measures the correlation between X and Y with the linear
effect of Z removed (or partialled out). If the variables are multivariate normal, then
this definition coincides with ρXY |Z = corr(X,Y | Z).

To motivate the idea for time series, consider a causal AR(1) model, xt =

φxt−1 + wt . Then,
γx(2) = cov(xt, xt−2) = cov(φxt−1 + wt, xt−2)

= cov(φ2xt−2 + φwt−1 + wt, xt−2) = φ2γx(0).
This result follows from causality because xt−2 involves {wt−2,wt−3, . . .}, which are
all uncorrelated with wt and wt−1. The correlation between xt and xt−2 is not zero,
as it would be for an MA(1), because xt is dependent on xt−2 through xt−1. Suppose
we break this chain of dependence by removing (or partial out) the effect xt−1. That
is, we consider the correlation between xt − φxt−1 and xt−2 − φxt−1, because it is the
correlation between xt and xt−2 with the linear dependence of each on xt−1 removed.
In this way, we have broken the dependence chain between xt and xt−2. In fact,

cov(xt − φxt−1, xt−2 − φxt−1) = cov(wt, xt−2 − φxt−1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between
xs and xt with the linear effect of everything “in the middle” removed.

To formally define the PACF for mean-zero stationary time series, let x̂t+h, for
h ≥ 2, denote the regression3 of xt+h on {xt+h−1, xt+h−2, . . . , xt+1}, which we write as

x̂t+h = β1xt+h−1 + β2xt+h−2 + · · · + βh−1xt+1. (3.53)

No intercept term is needed in (3.53) because the mean of xt is zero (otherwise,
replace xt by xt − μx in this discussion). In addition, let x̂t denote the regression of
xt on {xt+1, xt+2, . . . , xt+h−1}, then

x̂t = β1xt+1 + β2xt+2 + · · · + βh−1xt+h−1. (3.54)

Because of stationarity, the coefficients, β1, . . . , βh−1 are the same in (3.53)and (3.54);
we will explain this result in the next section, but it will be evident from the examples.

Definition 3.9 The partial autocorrelation function (PACF) of a stationary process,
xt , denoted φhh, for h = 1, 2, . . . , is

φ11 = corr(xt+1, xt ) = ρ(1) (3.55)

and
φhh = corr(xt+h − x̂t+h, xt − x̂t ), h ≥ 2. (3.56)

The reason for using a double subscript will become evident in the next section.
The PACF, φhh, is the correlation between xt+h and xt with the linear dependence
of {xt+1, . . . , xt+h−1} on each, removed. If the process xt is Gaussian, then φhh =

corr(xt+h, xt | xt+1, . . . , xt+h−1); that is, φhh is the correlation coefficient between xt+h
and xt in the bivariate distribution of (xt+h, xt ) conditional on {xt+1, . . . , xt+h−1}.

3 The term regression here refers to regression in the population sense. That is, x̂t+h is the linear combina-
tion of {xt+h−1, xt+h−2, . . . , xt+1 } that minimizes the mean squared error E(xt+h −

∑h−1
j=1 αj xt+ j)2.
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Fig. 3.5. The ACF and PACF of an AR(2) model with φ1 = 1.5 and φ2 = −.75

Example 3.15 The PACF of an AR(1)
Consider the PACF of the AR(1) process given by xt = φxt−1 + wt , with |φ| < 1.
By definition, φ11 = ρ(1) = φ. To calculate φ22, consider the regression of xt+2 on
xt+1, say, x̂t+2 = βxt+1. We choose β to minimize

E(xt+2 − x̂t+2)2 = E(xt+2 − βxt+1)2 = γ(0) − 2βγ(1) + β2γ(0).
Taking derivatives with respect to β and setting the result equal to zero, we have
β = γ(1)/γ(0) = ρ(1) = φ. Next, consider the regression of xt on xt+1, say
x̂t = βxt+1. We choose β to minimize

E(xt − x̂t )2 = E(xt − βxt+1)2 = γ(0) − 2βγ(1) + β2γ(0).
This is the same equation as before, so β = φ. Hence,

φ22 = corr(xt+2 − x̂t+2, xt − x̂t ) = corr(xt+2 − φxt+1, xt − φxt+1)
= corr(wt+2, xt − φxt+1) = 0

by causality. Thus, φ22 = 0. In the next example, we will see that in this case,
φhh = 0 for all h > 1.

Example 3.16 The PACF of an AR(p)
The model implies xt+h =

∑p
j=1 φ j xt+h−j+wt+h, where the roots of φ(z) are outside

the unit circle. When h > p, the regression of xt+h on {xt+1, . . . , xt+h−1}, is

x̂t+h =

p∑

j=1
φ j xt+h−j .

We have not proved this obvious result yet, but we will prove it in the next section.
Thus, when h > p,

φhh = corr(xt+h − x̂t+h, xt − x̂t ) = corr(wt+h, xt − x̂t ) = 0,
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Table 3.1. Behavior of the ACF and PACF for ARMA models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off Tails off

after lag q

PACF Cuts off Tails off Tails off
after lag p

because, by causality, xt − x̂t depends only on {wt+h−1,wt+h−2, . . .}; recall equa-
tion (3.54). When h ≤ p, φpp is not zero, and φ11, . . . , φp−1,p−1 are not necessarily
zero. We will see later that, in fact, φpp = φp. Figure 3.5 shows the ACF and the
PACF of the AR(2) model presented in Example 3.11. To reproduce Fig. 3.5 in R,
use the following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.17 The PACF of an Invertible MA(q)
For an invertible MA(q), we can write xt = −∑∞

j=1 πj xt−j +wt . Moreover, no finite
representation exists. From this result, it should be apparent that the PACF will
never cut off, as in the case of an AR(p).

For an MA(1), xt = wt + θwt−1, with |θ | < 1, calculations similar to Exam-
ple 3.15 will yield φ22 = −θ2/(1+ θ2 + θ4). For the MA(1) in general, we can show
that

φhh = −(−θ)
h(1 − θ2)

1 − θ2(h+1) , h ≥ 1.

In the next section, we will discuss methods of calculating the PACF. The PACF
for MA models behaves much like the ACF for AR models. Also, the PACF for AR
models behaves much like the ACF for MA models. Because an invertible ARMA
model has an infinite AR representation, the PACF will not cut off. We may summarize
these results in Table 3.1.

Example 3.18 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Fig. 1.5.
There are 453 months of observed recruitment ranging over the years 1950–1987.
The ACF and the PACF given in Fig. 3.6 are consistent with the behavior of an
AR(2). The ACF has cycles corresponding roughly to a 12-month period, and
the PACF has large values for h = 1, 2 and then is essentially zero for higher
order lags. Based on Table 3.1, these results suggest that a second-order (p = 2)
autoregressive model might provide a good fit. Although we will discuss estimation
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season
(12 months in this case)

in detail in Sect. 3.5, we ran a regression (see Sect. 2.1) using the data triplets
{(x; z1, z2) : (x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)} to fit a model of the form

xt = φ0 + φ1xt−1 + φ2xt−2 + wt

for t = 3, 4, . . . , 453. The estimates and standard errors (in parentheses) are φ̂0 =

6.74(1.11), φ̂1 = 1.35(.04), φ̂2 = −.46(.04), and σ̂2
w = 89.72.

The following R code can be used for this analysis. We use acf2 from astsa to
print and plot the ACF and PACF.
acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.4 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m, m = 1, 2, . . .,
based on the data collected to the present, x1:n = {x1, x2, . . . , xn}. Throughout this
section, we will assume xt is stationary and the model parameters are known. The
problem of forecasting when the model parameters are unknown will be discussed in
the next section; also, see Problem 3.26. The minimum mean square error predictor
of xn+m is

xnn+m = E(xn+m | x1:n) (3.57)

because the conditional expectation minimizes the mean square error

E [xn+m − g(x1:n)]2 , (3.58)

where g(x1:n) is a function of the observations x1:n; see Problem 3.14.
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First, we will restrict attention to predictors that are linear functions of the data,
that is, predictors of the form

xnn+m = α0 +

n∑

k=1
αkxk, (3.59)

where α0, α1, . . . , αn are real numbers. We note that the αs depend on n and m, but for
now we drop the dependence from the notation. For example, if n = m = 1, then x1

2 is
the one-step-ahead linear forecast of x2 given x1. In terms of (3.59), x1

2 = α0 + α1x1.
But if n = 2, x2

3 is the one-step-ahead linear forecast of x3 given x1 and x2. In terms
of (3.59), x2

3 = α0 +α1x1 +α2x2, and in general, the αs in x1
2 and x2

3 will be different.
Linear predictors of the form (3.59) that minimize the mean square prediction

error (3.58) are called best linear predictors (BLPs). As we shall see, linear prediction
depends only on the second-order moments of the process, which are easy to estimate
from the data. Much of the material in this section is enhanced by the theoretical
material presented in Appendix B. For example, Theorem B.3 states that if the
process is Gaussian, minimum mean square error predictors and best linear predictors
are the same. The following property, which is based on the Projection Theorem,
Theorem B.1, is a key result.

Property 3.3 Best Linear Prediction for Stationary Processes
Given data x1, . . . , xn, the best linear predictor, xnn+m = α0 +

∑n
k=1 αk xk, of xn+m,

for m ≥ 1, is found by solving

E
[ (

xn+m − xnn+m
)

xk
]
= 0, k = 0, 1, . . . , n, (3.60)

where x0 = 1, for α0, α1, . . . αn.

The equations specified in (3.60) are called the prediction equations, and they
are used to solve for the coefficients {α0, α1, . . . , αn}. The results of Property 3.3 can
also be obtained via least squares; i.e., to minimize Q = E(xn+m −∑n

k=0 αk xk)2 with
respect to the αs, solve ∂Q/∂αj = 0 for the αj , j = 0, 1, . . . , n. This leads to (3.60).

If E(xt ) = μ, the first equation (k = 0) of (3.60) implies

E(xnn+m) = E(xn+m) = μ.

Thus, taking expectation in (3.59), we have

μ = α0 +

n∑

k=1
αk μ or α0 = μ

(
1 −

n∑

k=1
αk

)
.

Hence, the form of the BLP is

xnn+m = μ +

n∑

k=1
αk(xk − μ).

Thus, until we discuss estimation, there is no loss of generality in considering the
case that μ = 0, in which case, α0 = 0.
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First, consider one-step-ahead prediction. That is, given {x1, . . . , xn}, we wish to
forecast the value of the time series at the next time point, xn+1. The BLP of xn+1 is
of the form

xnn+1 = φn1xn + φn2 xn−1 + · · · + φnnx1, (3.61)

where we now display the dependence of the coefficients on n; in this case, αk

in (3.59) is φn,n+1−k in (3.61), for k = 1, . . . , n. Using Property 3.3, the coefficients
{φn1, φn2, . . . , φnn} satisfy

E
[ (

xn+1 −
n∑

j=1
φnj xn+1−j

)
xn+1−k

]
= 0, k = 1, . . . , n,

or
n∑

j=1
φnjγ(k − j) = γ(k), k = 1, . . . , n. (3.62)

The prediction equations (3.62) can be written in matrix notation as

Γnφn = γn, (3.63)

where Γn = {γ(k − j)}n
j,k=1 is an n×n matrix, φn = (φn1, . . . , φnn)′ is an n×1 vector,

and γn = (γ(1), . . . , γ(n))′ is an n × 1 vector.
The matrix Γn is nonnegative definite. If Γn is singular, there are many solutions

to (3.63), but, by the Projection Theorem (Theorem B.1), xn
n+1 is unique. If Γn is

nonsingular, the elements of φn are unique, and are given by

φn = Γ−1
n γn . (3.64)

For ARMA models, the fact that σ2
w > 0 and γ(h) → 0 as h → ∞ is enough to

ensure that Γn is positive definite (Problem 3.12). It is sometimes convenient to write
the one-step-ahead forecast in vector notation

xnn+1 = φ′nx, (3.65)

where x = (xn, xn−1, . . . , x1)′.
The mean square one-step-ahead prediction error is

Pn
n+1 = E(xn+1 − xnn+1)2 = γ(0) − γ′nΓ

−1
n γn . (3.66)

To verify (3.66) using (3.64) and (3.65),

E(xn+1 − xnn+1)2 = E(xn+1 − φ′nx)2 = E(xn+1 − γ′nΓ
−1
n x)2

= E(x2
n+1 − 2γ′nΓ

−1
n xxn+1 + γ′nΓ

−1
n xx′Γ−1

n γn)
= γ(0) − 2γ′nΓ

−1
n γn + γ′nΓ

−1
n ΓnΓ

−1
n γn

= γ(0) − γ′nΓ
−1
n γn .
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Example 3.19 Prediction for an AR(2)
Suppose we have a causal AR(2) process xt = φ1xt−1 + φ2xt−2 + wt , and one
observation x1. Then, using equation (3.64), the one-step-ahead prediction of x2
based on x1 is

x1
2 = φ11x1 =

γ(1)
γ(0) x1 = ρ(1)x1.

Now, suppose we want the one-step-ahead prediction of x3 based on two observa-
tions x1 and x2; i.e., x2

3 = φ21x2 + φ22x1. We could use (3.62)

φ21γ(0) + φ22γ(1) = γ(1)
φ21γ(1) + φ22γ(0) = γ(2)

to solve for φ21 and φ22, or use the matrix form in (3.64) and solve
(
φ21
φ22

)

=

(
γ(0) γ(1)
γ(1) γ(0)

)−1 (
γ(1)
γ(2)

)

,

but, it should be apparent from the model that x2
3 = φ1x2+φ2x1. Because φ1x2+φ2x1

satisfies the prediction equations (3.60),

E{[x3 − (φ1x2 + φ2x1)]x1} = E(w3x1) = 0,

E{[x3 − (φ1x2 + φ2x1)]x2} = E(w3x2) = 0,

it follows that, indeed, x2
3 = φ1x2 + φ2x1, and by the uniqueness of the coefficients

in this case, that φ21 = φ1 and φ22 = φ2. Continuing in this way, it is easy to verify
that, for n ≥ 2,

xnn+1 = φ1xn + φ2xn−1.

That is, φn1 = φ1, φn2 = φ2, and φnj = 0, for j = 3, 4, . . . , n.

From Example 3.19, it should be clear (Problem 3.45) that, if the time series is a
causal AR(p) process, then, for n ≥ p,

xnn+1 = φ1xn + φ2xn−1 + · · · + φpxn−p+1 . (3.67)

For ARMA models in general, the prediction equations will not be as simple as the
pure AR case. In addition, for n large, the use of (3.64) is prohibitive because it
requires the inversion of a large matrix. There are, however, iterative solutions that
do not require any matrix inversion. In particular, we mention the recursive solution
due to Levinson [127] and Durbin [54].

Property 3.4 The Durbin–Levinson Algorithm
Equations (3.64) and (3.66) can be solved iteratively as follows:

φ00 = 0, P0
1 = γ(0). (3.68)
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For n ≥ 1,

φnn =
ρ(n) −∑n−1

k=1 φn−1,k ρ(n − k)
1 −∑n−1

k=1 φn−1,k ρ(k) , Pn
n+1 = Pn−1

n (1 − φ2
nn), (3.69)

where, for n ≥ 2,

φnk = φn−1,k − φnnφn−1,n−k, k = 1, 2, . . . , n − 1. (3.70)

The proof of Property 3.4 is left as an exercise; see Problem 3.13.

Example 3.20 Using the Durbin–Levinson Algorithm
To use the algorithm, start with φ00 = 0, P0

1 = γ(0). Then, for n = 1,

φ11 = ρ(1), P1
2 = γ(0)[1 − φ2

11].
For n = 2,

φ22 =
ρ(2) − φ11 ρ(1)
1 − φ11 ρ(1) , φ21 = φ11 − φ22φ11,

P2
3 = P1

2[1 − φ2
22] = γ(0)[1 − φ2

11][1 − φ2
22].

For n = 3,

φ33 =
ρ(3) − φ21 ρ(2) − φ22 ρ(1)
1 − φ21 ρ(1) − φ22 ρ(2) ,

φ32 = φ22 − φ33φ21, φ31 = φ21 − φ33φ22,

P3
4 = P2

3 [1 − φ2
33] = γ(0)[1 − φ2

11][1 − φ2
22][1 − φ2

33],
and so on. Note that, in general, the standard error of the one-step-ahead forecast is
the square root of

Pn
n+1 = γ(0)

n∏

j=1
[1 − φ2

j j]. (3.71)

An important consequence of the Durbin–Levinson algorithm is (see Prob-
lem 3.13) as follows.

Property 3.5 Iterative Solution for the PACF
The PACF of a stationary process xt , can be obtained iteratively via (3.69) as

φnn, for n = 1, 2, . . . .

Using Property 3.5 and putting n = p in (3.61) and (3.67), it follows that for an
AR(p) model,

xp
p+1 = φp1 xp + φp2 xp−1 + · · · + φpp x1

= φ1 xp + φ2 xp−1 + · · · + φp x1.
(3.72)

Result (3.72) shows that for an AR(p) model, the partial autocorrelation coefficient at
lag p, φpp , is also the last coefficient in the model, φp, as was claimed in Example 3.16.
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Example 3.21 The PACF of an AR(2)
We will use the results of Example 3.20 and Property 3.5 to calculate the first three
values, φ11, φ22, φ33, of the PACF. Recall from Example 3.10 that ρ(h) − φ1ρ(h −
1)−φ2ρ(h−2) = 0 for h ≥ 1. When h = 1, 2, 3, we have ρ(1) = φ1/(1−φ2), ρ(2) =
φ1ρ(1) + φ2, ρ(3) − φ1ρ(2) − φ2ρ(1) = 0. Thus,

φ11 = ρ(1) = φ1

1 − φ2

φ22 =
ρ(2) − ρ(1)2

1 − ρ(1)2 =

[
φ1

(
φ1

1−φ2

)
+ φ2

]
−

(
φ1

1−φ2

)2

1 −
(

φ1
1−φ2

)2 = φ2

φ21 = ρ(1)[1 − φ2] = φ1

φ33 =
ρ(3) − φ1ρ(2) − φ2ρ(1)

1 − φ1ρ(1) − φ2ρ(2) = 0.

Notice that, as shown in (3.72), φ22 = φ2 for an AR(2) model.

So far, we have concentrated on one-step-ahead prediction, but Property 3.3
allows us to calculate the BLP of xn+m for any m ≥ 1. Given data, {x1, . . . , xn}, the
m-step-ahead predictor is

xnn+m = φ
(m)
n1 xn + φ

(m)
n2 xn−1 + · · · + φ

(m)
nn x1, (3.73)

where {φ(m)
n1 , φ

(m)
n2 , . . . , φ

(m)
nn } satisfy the prediction equations,

n∑

j=1
φ
(m)
nj E(xn+1−j xn+1−k ) = E(xn+mxn+1−k ), k = 1, . . . , n,

or
n∑

j=1
φ
(m)
nj γ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.74)

The prediction equations can again be written in matrix notation as

Γnφ
(m)
n = γ

(m)
n , (3.75)

where γ(m)n = (γ(m), . . . , γ(m + n − 1))′, and φ
(m)
n = (φ(m)

n1 , . . . , φ
(m)
nn )′ are n×1 vectors.

The mean square m-step-ahead prediction error is

Pn
n+m = E

(
xn+m − xnn+m

)2
= γ(0) − γ

(m)′
n Γ−1

n γ
(m)
n . (3.76)

Another useful algorithm for calculating forecasts was given by Brockwell and
Davis [36, Chapter 5]. This algorithm follows directly from applying the projection
theorem (Theorem B.1) to the innovations, xt − xt−1

t , for t = 1, . . . , n, using the
fact that the innovations xt − xt−1

t and xs − xs−1
s are uncorrelated for s � t (see

Problem 3.46). We present the case in which xt is a mean-zero stationary time series.



106 3 ARIMA Models

Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, xt

t+1, and their mean-squared errors, Pt
t+1, can

be calculated iteratively as
x0

1 = 0, P0
1 = γ(0)

xtt+1 =

t∑

j=1
θt j (xt+1−j − xt−j

t+1−j ), t = 1, 2, . . . (3.77)

Pt
t+1 = γ(0) −

t−1∑

j=0
θ2
t,t−jP

j
j+1 t = 1, 2, . . . , (3.78)

where, for j = 0, 1, . . . , t − 1,

θt,t−j =
(
γ(t − j) −

j−1∑

k=0
θ j, j−kθt,t−kPk

k+1

) /
P j
j+1. (3.79)

Given data x1, . . . , xn, the innovations algorithm can be calculated successively
for t = 1, then t = 2 and so on, in which case the calculation of xn

n+1 and Pn
n+1 is

made at the final step t = n. The m-step-ahead predictor and its mean-square error
based on the innovations algorithm (Problem 3.46) are given by

xnn+m =

n+m−1∑

j=m

θn+m−1, j (xn+m−j − xn+m−j−1
n+m−j ), (3.80)

Pn
n+m = γ(0) −

n+m−1∑

j=m

θ2
n+m−1, jP

n+m−j−1
n+m−j , (3.81)

where the θn+m−1, j are obtained by continued iteration of (3.79).

Example 3.22 Prediction for an MA(1)
The innovations algorithm lends itself well to prediction for moving average pro-
cesses. Consider an MA(1) model, xt = wt + θwt−1. Recall that γ(0) = (1+ θ2)σ2

w ,
γ(1) = θσ2

w , and γ(h) = 0 for h > 1. Then, using Property 3.6, we have

θn1 = θσ2
w/Pn−1

n

θnj = 0, j = 2, . . . , n

P0
1 = (1 + θ2)σ2

w

Pn
n+1 = (1 + θ2 − θθn1)σ2

w .

Finally, from (3.77), the one-step-ahead predictor is

xnn+1 = θ
(
xn − xn−1

n

)
σ2
w/Pn−1

n .



3.4 Forecasting 107

Forecasting ARMA Processes

The general prediction equations (3.60) provide little insight into forecasting for
ARMA models in general. There are a number of different ways to express these
forecasts, and each aids in understanding the special structure of ARMA prediction.
Throughout, we assume xt is a causal and invertible ARMA(p, q) process, φ(B)xt =
θ(B)wt , where wt ∼ iid N(0, σ2

w). In the non-zero mean case, E(xt ) = μx , simply
replace xt with xt − μx in the model. First, we consider two types of forecasts. We
write xnn+m to mean the minimum mean square error predictor of xn+m based on the
data {xn, . . . , x1}, that is,

xnn+m = E(xn+m
/
/ xn, . . . , x1).

For ARMA models, it is easier to calculate the predictor of xn+m, assuming we have
the complete history of the process {xn, xn−1, . . . , x1, x0, x−1, . . .}. We will denote the
predictor of xn+m based on the infinite past as

x̃n+m = E(xn+m
/
/ xn, xn−1, . . . , x1, x0, x−1, . . .).

In general, xnn+m and x̃n+m are not the same, but the idea here is that, for large samples,
x̃n+m will provide a good approximation to xnn+m.

Now, write xn+m in its causal and invertible forms:

xn+m =

∞∑

j=0
ψjwn+m−j, ψ0 = 1 (3.82)

wn+m =

∞∑

j=0
πj xn+m−j, π0 = 1. (3.83)

Then, taking conditional expectations in (3.82), we have

x̃n+m =

∞∑

j=0
ψj w̃n+m−j =

∞∑

j=m

ψjwn+m−j, (3.84)

because, by causality and invertibility,

w̃t = E(wt

/
/ xn, xn−1, . . . , x0, x−1, . . .) =

{
0 t > n

wt t ≤ n.

Similarly, taking conditional expectations in (3.83), we have

0 = x̃n+m +

∞∑

j=1
πj x̃n+m−j,

or

x̃n+m = −
m−1∑

j=1
πj x̃n+m−j −

∞∑

j=m

πj xn+m−j, (3.85)
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using the fact E(xt
/
/ xn, xn−1, . . . , x0, x−1, . . .) = xt , for t ≤ n. Prediction is accom-

plished recursively using (3.85), starting with the one-step-ahead predictor, m = 1,
and then continuing for m = 2, 3, . . .. Using (3.84), we can write

xn+m − x̃n+m =

m−1∑

j=0
ψjwn+m−j,

so the mean-square prediction error can be written as

Pn
n+m = E(xn+m − x̃n+m)2 = σ2

w

m−1∑

j=0
ψ2
j . (3.86)

Also, we note, for a fixed sample size, n, the prediction errors are correlated. That is,
for k ≥ 1,

E{(xn+m − x̃n+m)(xn+m+k − x̃n+m+k )} = σ2
w

m−1∑

j=0
ψjψj+k . (3.87)

Example 3.23 Long-Range Forecasts
Consider forecasting an ARMA process with mean μx . Replacing xn+m with xn+m−
μx in (3.82), and taking conditional expectation as in (3.84), we deduce that the
m-step-ahead forecast can be written as

x̃n+m = μx +

∞∑

j=m

ψjwn+m−j . (3.88)

Noting that the ψ-weights dampen to zero exponentially fast, it is clear that

x̃n+m → μx (3.89)

exponentially fast (in the mean square sense) as m → ∞. Moreover, by (3.86), the
mean square prediction error

Pn
n+m → σ2

w

∞∑

j=0
ψ2
j = γx(0) = σ2

x, (3.90)

exponentially fast as m →∞.
It should be clear from (3.89) and (3.90) that ARMA forecasts quickly settle to

the mean with a constant prediction error as the forecast horizon, m, grows. This
effect can be seen in Fig. 3.7 where the Recruitment series is forecast for 24 months;
see Example 3.25.

When n is small, the general prediction equations (3.60) can be used easily.
When n is large, we would use (3.85) by truncating, because we do not observe
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x0, x−1, x−2, . . ., and only the data x1, x2, . . . , xn are available. In this case, we can
truncate (3.85) by setting

∑∞
j=n+m πj xn+m−j = 0. The truncated predictor is then

written as

x̃nn+m = −
m−1∑

j=1
πj x̃

n
n+m−j −

n+m−1∑

j=m

πj xn+m−j, (3.91)

which is also calculated recursively, m = 1, 2, . . .. The mean square prediction error,
in this case, is approximated using (3.86).

For AR(p) models, and when n > p, equation (3.67) yields the exact predictor,
xnn+m, of xn+m, and there is no need for approximations. That is, for n > p, x̃nn+m =

x̃n+m = xnn+m . Also, in this case, the one-step-ahead prediction error is E(xn+1 −
xn
n+1)2 = σ2

w . For pure MA(q) or ARMA(p, q) models, truncated prediction has a
fairly nice form.

Property 3.7 Truncated Prediction for ARMA
For ARMA(p, q) models, the truncated predictors for m = 1, 2, . . . , are

x̃nn+m = φ1 x̃nn+m−1 + · · · + φp x̃nn+m−p + θ1w̃
n
n+m−1 + · · · + θqw̃

n
n+m−q, (3.92)

where x̃nt = xt for 1 ≤ t ≤ n and x̃nt = 0 for t ≤ 0. The truncated prediction errors
are given by: w̃n

t = 0 for t ≤ 0 or t > n, and

w̃n
t = φ(B)x̃nt − θ1w̃

n
t−1 − · · · − θqw̃

n
t−q

for 1 ≤ t ≤ n.

Example 3.24 Forecasting an ARMA(1, 1) Series
Given data x1, . . . , xn, for forecasting purposes, write the model as

xn+1 = φxn + wn+1 + θwn .

Then, based on (3.92), the one-step-ahead truncated forecast is

x̃nn+1 = φxn + 0 + θw̃n
n .

For m ≥ 2, we have
x̃nn+m = φx̃nn+m−1,

which can be calculated recursively, m = 2, 3, . . . .
To calculate w̃n

n , which is needed to initialize the successive forecasts, the model
can be written as wt = xt −φxt−1− θwt−1 for t = 1, . . . , n. For truncated forecasting
using (3.92), put w̃n

0 = 0, x0 = 0, and then iterate the errors forward in time

w̃n
t = xt − φxt−1 − θw̃n

t−1, t = 1, . . . , n.

The approximate forecast variance is computed from (3.86) using theψ-weights
determined as in Example 3.12. In particular, theψ-weights satisfyψj = (φ+θ)φ j−1,
for j ≥ 1. This result gives

Pn
n+m = σ2

w

[

1 + (φ + θ)2
m−1∑

j=1
φ2(j−1)

]

= σ2
w

[

1 +
(φ + θ)2(1 − φ2(m−1))

(1 − φ2)
]

.
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Fig. 3.7. Twenty-four month forecasts for the Recruitment series. The actual data shown are
from about January 1980 to September 1987, and then the forecasts plus and minus one
standard error are displayed

To assess the precision of the forecasts, prediction intervals are typically cal-
culated along with the forecasts. In general, (1 − α) prediction intervals are of the
form

xnn+m ± c α
2

√
Pn
n+m, (3.93)

where cα/2 is chosen to get the desired degree of confidence. For example, if the
process is Gaussian, then choosing cα/2 = 2 will yield an approximate 95% prediction
interval for xn+m. If we are interested in establishing prediction intervals over more
than one time period, then cα/2 should be adjusted appropriately, for example, by
using Bonferroni’s inequality [see (4.63) in Chapter 4 or Johnson and Wichern, 1992,
Chapter 5][106].

Example 3.25 Forecasting the Recruitment Series
Using the parameter estimates as the actual parameter values, Fig. 3.7 shows the
result of forecasting the Recruitment series given in Example 3.18 over a 24-month
horizon, m = 1, 2, . . . , 24. The actual forecasts are calculated as

xnn+m = 6.74 + 1.35xnn+m−1 − .46xnn+m−2

for n = 453 and m = 1, 2, . . . , 12. Recall that xst = xt when t ≤ s. The forecasts
errors Pn

n+m are calculated using (3.86). Recall that σ̂2
w = 89.72, and using (3.40)

from Example 3.12, we have ψj = 1.35ψj−1 − .46ψj−2 for j ≥ 2, where ψ0 = 1 and
ψ1 = 1.35. Thus, for n = 453,

Pn
n+1 = 89.72,

Pn
n+2 = 89.72(1 + 1.352),

Pn
n+3 = 89.72(1 + 1.352 + [1.352 − .46]2),

and so on.
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Note how the forecast levels off quickly and the prediction intervals are wide,
even though in this case the forecast limits are only based on one standard error;
that is, xnn+m ±

√
Pn
n+m.

To reproduce the analysis and Fig. 3.7, use the following commands:
regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE)
fore = predict(regr, n.ahead=24)
ts.plot(rec, fore$pred, col=1:2, xlim=c(1980,1990), ylab="Recruitment")
U = fore$pred+fore$se; L = fore$pred-fore$se
xx = c(time(U), rev(time(U))); yy = c(L, rev(U))

polygon(xx, yy, border = 8, col = gray(.6, alpha = .2))
lines(fore$pred, type="p", col=2)

We complete this section with a brief discussion of backcasting. In backcasting,
we want to predict x1−m, for m = 1, 2, . . ., based on the data {x1, . . . , xn}. Write the
backcast as

xn1−m =

n∑

j=1
αj xj . (3.94)

Analogous to (3.74), the prediction equations (assuming μx = 0) are

n∑

j=1
αjE(xj xk) = E(x1−mxk), k = 1, . . . , n, (3.95)

or
n∑

j=1
αjγ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.96)

These equations are precisely the prediction equations for forward prediction. That is,
αj ≡ φ

(m)
nj , for j = 1, . . . , n, where the φ

(m)
nj are given by (3.75). Finally, the backcasts

are given by
xn1−m = φ

(m)
n1 x1 + · · · + φ

(m)
nn xn, m = 1, 2, . . . . (3.97)

Example 3.26 Backcasting an ARMA(1, 1)
Consider an ARMA(1, 1) process, xt = φxt−1 + θwt−1 + wt ; we will call this the
forward model. We have just seen that best linear prediction backward in time is
the same as best linear prediction forward in time for stationary models. Assuming
the models are Gaussian, we also have that minimum mean square error prediction
backward in time is the same as forward in time for ARMA models.4 Thus, the
process can equivalently be generated by the backward model,

xt = φxt+1 + θvt+1 + vt,

4 In the stationary Gaussian case, (a) the distribution of {xn+1, xn, . . . , x1 } is the same as (b) the
distribution of {x0, x1 . . . , xn }. In forecasting we use (a) to obtain E(xn+1 | xn, . . . , x1); in backcasting
we use (b) to obtain E(x0 | x1, . . . , xn). Because (a) and (b) are the same, the two problems are
equivalent.
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Fig. 3.8. Display for Example 3.26; backcasts from a simulated ARMA(1, 1)

where {vt } is a Gaussian white noise process with variance σ2
w . We may write xt =∑∞

j=0 ψjvt+j , where ψ0 = 1; this means that xt is uncorrelated with {vt−1, vt−2, . . .},
in analogy to the forward model.

Given data {x1, . . . ., xn}, truncate vnn = E(vn | x1, . . . ., xn) to zero and then
iterate backward. That is, put ṽnn = 0, as an initial approximation, and then generate
the errors backward

ṽnt = xt − φxt+1 − θṽnt+1, t = (n − 1), (n − 2), . . . , 1.
Then,

x̃n0 = φx1 + θṽn1 + ṽn0 = φx1 + θṽn1 ,

because ṽnt = 0 for t ≤ 0. Continuing, the general truncated backcasts are given by

x̃n1−m = φx̃n2−m, m = 2, 3, . . . .

To backcast data in R, simply reverse the data, fit the model and predict. In the
following, we backcasted a simulated ARMA(1,1) process; see Fig. 3.8.
set.seed(90210)
x = arima.sim(list(order = c(1,0,1), ar =.9, ma=.5), n = 100)
xr = rev(x) # xr is the reversed data
pxr = predict(arima(xr, order=c(1,0,1)), 10) # predict the reversed data
pxrp = rev(pxr$pred) # reorder the predictors (for plotting)
pxrse = rev(pxr$se) # reorder the SEs
nx = ts(c(pxrp, x), start=-9) # attach the backcasts to the data
plot(nx, ylab=expression(X[~t]), main='Backcasting')
U = nx[1:10] + pxrse; L = nx[1:10] - pxrse
xx = c(-9:0, 0:-9); yy = c(L, rev(U))

polygon(xx, yy, border = 8, col = gray(0.6, alpha = 0.2))
lines(-9:0, nx[1:10], col=2, type='o')
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3.5 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn, from a causal
and invertible Gaussian ARMA(p, q) process in which, initially, the order parameters,
p and q, are known. Our goal is to estimate the parameters, φ1, . . . , φp, θ1, . . . , θq,
and σ2

w . We will discuss the problem of determining p and q later in this section.
We begin with method of moments estimators. The idea behind these estimators

is that of equating population moments to sample moments and then solving for the
parameters in terms of the sample moments. We immediately see that, if E(xt ) =
μ, then the method of moments estimator of μ is the sample average, x̄. Thus,
while discussing method of moments, we will assume μ = 0. Although the method
of moments can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to optimal (efficient)
estimators, that is, AR(p) models,

xt = φ1xt−1 + · · · + φpxt−p + wt,

where the first p + 1 equations of (3.47) and (3.48) lead to the following:

Definition 3.10 The Yule–Walker equations are given by

γ(h) = φ1γ(h − 1) + · · · + φpγ(h − p), h = 1, 2, . . . , p, (3.98)
σ2
w = γ(0) − φ1γ(1) − · · · − φpγ(p). (3.99)

In matrix notation, the Yule–Walker equations are

Γpφ = γp, σ2
w = γ(0) − φ′γp, (3.100)

where Γp = {γ(k − j)}p
j,k=1 is a p × p matrix, φ = (φ1, . . . , φp)′ is a p × 1 vector, and

γp = (γ(1), . . . , γ(p))′ is a p × 1 vector. Using the method of moments, we replace
γ(h) in (3.100) by γ̂(h) [see equation (1.36)] and solve

φ̂ = Γ̂−1
p γ̂p, σ̂2

w = γ̂(0) − γ̂′p Γ̂
−1
p γ̂p . (3.101)

These estimators are typically called the Yule–Walker estimators. For calculation
purposes, it is sometimes more convenient to work with the sample ACF. By factoring
γ̂(0) in (3.101), we can write the Yule–Walker estimates as

φ̂ = R̂−1
p ρ̂p, σ̂2

w = γ̂(0) [1 − ρ̂′p R̂−1
p ρ̂p

]
, (3.102)

where R̂p = { ρ̂(k − j)}p
j,k=1 is a p × p matrix and ρ̂p = (ρ̂(1), . . . , ρ̂(p))′ is a p × 1

vector.
For AR(p) models, if the sample size is large, the Yule–Walker estimators are

approximately normally distributed, and σ̂2
w is close to the true value of σ2

w . We state
these results in Property 3.8; for details, see Sect. B.3.
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Property 3.8 Large Sample Results for Yule–Walker Estimators
The asymptotic (n → ∞) behavior of the Yule–Walker estimators in the case of

causal AR(p) processes is as follows:

√
n

(
φ̂ − φ

) d→ N
(
0, σ2

wΓ
−1
p

)
, σ̂2

w

p→ σ2
w . (3.103)

The Durbin–Levinson algorithm, (3.68)–(3.70), can be used to calculate φ̂without
inverting Γ̂p or R̂p, by replacing γ(h) by γ̂(h) in the algorithm. In running the
algorithm, we will iteratively calculate the h × 1 vector, φ̂h = (φ̂h1, . . . , φ̂hh)′, for
h = 1, 2, . . .. Thus, in addition to obtaining the desired forecasts, the Durbin–Levinson
algorithm yields φ̂hh , the sample PACF. Using (3.103), we can show the following
property.

Property 3.9 Large Sample Distribution of the PACF
For a causal AR(p) process, asymptotically (n →∞),

√
n φ̂hh

d→ N (0, 1) , for h > p. (3.104)

Example 3.27 Yule–Walker Estimation for an AR(2) Process
The data shown in Fig. 3.4 were n = 144 simulated observations from the AR(2)
model

xt = 1.5xt−1 − .75xt−2 + wt,

where wt ∼ iid N(0, 1). For these data, γ̂(0) = 8.903, ρ̂(1) = .849, and ρ̂(2) = .519.
Thus,

φ̂ =

(
φ̂1
φ̂2

)

=

[
1 .849

.849 1

]−1 (
.849
.519

)

=

(
1.463
−.723

)

and

σ̂2
w = 8.903

[

1 − (.849, .519)
(
1.463
−.723

)]

= 1.187.

By Property 3.8, the asymptotic variance–covariance matrix of φ̂ is

1
144

1.187
8.903

[
1 .849

.849 1

]−1
=

[
.0582 −.003
−.003 .0582

]

,

and it can be used to get confidence regions for, or make inferences about φ̂ and
its components. For example, an approximate 95% confidence interval for φ2 is
−.723 ± 2(.058), or (−.838,−.608), which contains the true value of φ2 = −.75.

For these data, the first three sample partial autocorrelations are φ̂11 = ρ̂(1) =
.849, φ̂22 = φ̂2 = −.721, and φ̂33 = −.085. According to Property 3.9, the asymp-
totic standard error of φ̂33 is 1/√144 = .083, and the observed value, −.085, is
about only one standard deviation from φ33 = 0.
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Example 3.28 Yule–Walker Estimation of the Recruitment Series
In Example 3.18 we fit an AR(2) model to the recruitment series using ordinary
least squares (OLS). For AR models, the estimators obtained via OLS and Yule-
Walker are nearly identical; we will see this when we discuss conditional sum of
squares estimation in (3.111)–(3.116).

Below are the results of fitting the same model using Yule-Walker estimation in
R, which are nearly identical to the values in Example 3.18.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # = 1.33, -.44 (coefficient estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)

To obtain the 24 month ahead predictions and their standard errors, and then
plot the results (not shown) as in Example 3.25, use the R commands:
rec.pr = predict(rec.yw, n.ahead=24)
ts.plot(rec, rec.pr$pred, col=1:2)
lines(rec.pr$pred + rec.pr$se, col=4, lty=2)
lines(rec.pr$pred - rec.pr$se, col=4, lty=2)

In the case of AR(p) models, the Yule–Walker estimators given in (3.102) are
optimal in the sense that the asymptotic distribution, (3.103), is the best asymptotic
normal distribution. This is because, given initial conditions, AR(p) models are linear
models, and the Yule–Walker estimators are essentially least squares estimators. If we
use method of moments for MA or ARMA models, we will not get optimal estimators
because such processes are nonlinear in the parameters.

Example 3.29 Method of Moments Estimation for an MA(1)
Consider the time series

xt = wt + θwt−1,

where |θ | < 1. The model can then be written as

xt =
∞∑

j=1
(−θ)j xt−j + wt,

which is nonlinear in θ. The first two population autocovariances are γ(0) = σ2
w(1+

θ2) and γ(1) = σ2
wθ, so the estimate of θ is found by solving:

ρ̂(1) = γ̂(1)
γ̂(0) =

θ̂

1 + θ̂2
.

Two solutions exist, so we would pick the invertible one. If | ρ̂(1)| ≤ 1
2 , the solutions

are real, otherwise, a real solution does not exist. Even though |ρ(1)| < 1
2 for an

invertible MA(1), it may happen that | ρ̂(1)| ≥ 1
2 because it is an estimator. For

example, the following simulation in R produces a value of ρ̂(1) = .507 when the
true value is ρ(1) = .9/(1 + .92) = .497.
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set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=FALSE)[1] # = .507 (lag 1 sample ACF)

When | ρ̂(1)| < 1
2 , the invertible estimate is

θ̂ =
1 −

√
1 − 4ρ̂(1)2
2ρ̂(1) . (3.105)

It can be shown that5

θ̂ ∼ AN
(

θ,
1 + θ2 + 4θ4 + θ6 + θ8

n(1 − θ2)2
)

;

AN is read asymptotically normal and is defined in Definition A.5. The maximum
likelihood estimator (which we discuss next) of θ, in this case, has an asymptotic
variance of (1 − θ2)/n. When θ = .5, for example, the ratio of the asymptotic
variance of the method of moments estimator to the maximum likelihood estimator
of θ is about 3.5. That is, for large samples, the variance of the method of moments
estimator is about 3.5 times larger than the variance of the MLE of θ when θ = .5.

Maximum Likelihood and Least Squares Estimation

To fix ideas, we first focus on the causal AR(1) case. Let

xt = μ + φ(xt−1 − μ) + wt (3.106)

where |φ| < 1 and wt ∼ iid N(0, σ2
w). Given data x1, x2, . . . , xn, we seek the likelihood

L(μ, φ, σ2
w) = f

(
x1, x2, . . . , xn

/
/ μ, φ, σ2

w

)
.

In the case of an AR(1), we may write the likelihood as

L(μ, φ, σ2
w) = f (x1) f (x2

/
/ x1) · · · f (xn

/
/ xn−1),

where we have dropped the parameters in the densities, f (·), to ease the notation.
Because xt

/
/ xt−1 ∼ N

(
μ + φ(xt−1 − μ), σ2

w

)
, we have

f (xt
/
/ xt−1) = fw[(xt − μ) − φ(xt−1 − μ)],

where fw(·) is the density of wt , that is, the normal density with mean zero and
variance σ2

w . We may then write the likelihood as

L(μ, φ, σw) = f (x1)
n∏

t=2
fw [(xt − μ) − φ(xt−1 − μ)] .

5 The result follows from Theorem A.7 and the delta method. See the proof of Theorem A.7 for details
on the delta method.
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To find f (x1), we can use the causal representation

x1 = μ +

∞∑

j=0
φ jw1−j

to see that x1 is normal, with mean μ and variance σ2
w/(1−φ2). Finally, for an AR(1),

the likelihood is

L(μ, φ, σ2
w) = (2πσ2

w)−n/2(1 − φ2)1/2 exp
[

−S(μ, φ)
2σ2

w

]

, (3.107)

where

S(μ, φ) = (1 − φ2)(x1 − μ)2 +
n∑

t=2
[(xt − μ) − φ(xt−1 − μ)]2 . (3.108)

Typically, S(μ, φ) is called the unconditional sum of squares. We could have also
considered the estimation of μ and φ using unconditional least squares, that is,
estimation by minimizing S(μ, φ).

Taking the partial derivative of the log of (3.107) with respect to σ2
w and setting

the result equal to zero, we get the typical normal result that for any given values of μ
and φ in the parameter space, σ2

w = n−1S(μ, φ) maximizes the likelihood. Thus, the
maximum likelihood estimate of σ2

w is

σ̂2
w = n−1S(μ̂, φ̂), (3.109)

where μ̂ and φ̂ are the MLEs of μ and φ, respectively. If we replace n in (3.109) by
n − 2, we would obtain the unconditional least squares estimate of σ2

w .
If, in (3.107), we take logs, replace σ2

w by σ̂2
w , and ignore constants, μ̂ and φ̂ are

the values that minimize the criterion function

l(μ, φ) = log
[
n−1S(μ, φ)] − n−1 log(1 − φ2); (3.110)

that is, l(μ, φ) ∝ −2 log L(μ, φ, σ̂2
w).6 Because (3.108) and (3.110) are complicated

functions of the parameters, the minimization of l(μ, φ) or S(μ, φ) is accomplished
numerically. In the case of AR models, we have the advantage that, conditional on
initial values, they are linear models. That is, we can drop the term in the likelihood
that causes the nonlinearity. Conditioning on x1, the conditional likelihood becomes

L(μ, φ, σ2
w

/
/ x1) =

n∏

t=2
fw [(xt − μ) − φ(xt−1 − μ)]

= (2πσ2
w)−(n−1)/2 exp

[

−Sc(μ, φ)
2σ2

w

]

, (3.111)

6 The criterion function is sometimes called the profile or concentrated likelihood.
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where the conditional sum of squares is

Sc(μ, φ) =
n∑

t=2
[(xt − μ) − φ(xt−1 − μ)]2 . (3.112)

The conditional MLE of σ2
w is

σ̂2
w = Sc(μ̂, φ̂)/(n − 1), (3.113)

and μ̂ and φ̂ are the values that minimize the conditional sum of squares, Sc(μ, φ).
Letting α = μ(1 − φ), the conditional sum of squares can be written as

Sc(μ, φ) =
n∑

t=2
[xt − (α + φxt−1)]2 . (3.114)

The problem is now the linear regression problem stated in Sect. 2.1. Following
the results from least squares estimation, we have α̂ = x̄(2) − φ̂x̄(1), where x̄(1) =

(n− 1)−1 ∑n−1
t=1 xt , and x̄(2) = (n− 1)−1 ∑n

t=2 xt , and the conditional estimates are then

μ̂ =
x̄(2) − φ̂x̄(1)

1 − φ̂
(3.115)

φ̂ =

∑n
t=2(xt − x̄(2))(xt−1 − x̄(1))

∑n
t=2(xt−1 − x̄(1))2

. (3.116)

From (3.115) and (3.116), we see that μ̂ ≈ x̄ and φ̂ ≈ ρ̂(1). That is, the Yule–Walker
estimators and the conditional least squares estimators are approximately the same.
The only difference is the inclusion or exclusion of terms involving the endpoints, x1
and xn. We can also adjust the estimate of σ2

w in (3.113) to be equivalent to the least
squares estimator, that is, divide Sc(μ̂, φ̂) by (n − 3) instead of (n − 1) in (3.113).

For general AR(p) models, maximum likelihood estimation, unconditional least
squares, and conditional least squares follow analogously to the AR(1) example. For
general ARMA models, it is difficult to write the likelihood as an explicit function
of the parameters. Instead, it is advantageous to write the likelihood in terms of the
innovations, or one-step-ahead prediction errors, xt − xt−1

t . This will also be useful
in Chap. 6 when we study state-space models.

For a normal ARMA(p, q) model, let β = (μ, φ1, . . . , φp, θ1, . . . , θq)′ be the
(p + q + 1)-dimensional vector of the model parameters. The likelihood can be
written as

L(β, σ2
w) =

n∏

t=1
f (xt

/
/ xt−1, . . . , x1).

The conditional distribution of xt given xt−1, . . . , x1 is Gaussian with mean xt−1
t and

variance Pt−1
t . Recall from (3.71) that Pt−1

t = γ(0)∏t−1
j=1(1−φ2

j j). For ARMA models,
γ(0) = σ2

w

∑∞
j=0 ψ

2
j , in which case we may write

Pt−1
t = σ2

w

⎧⎪⎪⎨

⎪⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

∞∑

j=0
ψ2
j

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

t−1∏

j=1
(1 − φ2

j j )
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎬

⎪⎪
⎭

def
= σ2

w rt,
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where rt is the term in the braces. Note that the rt terms are functions only of the
regression parameters and that they may be computed recursively as rt+1 = (1−φ2

tt)rt
with initial condition r1 =

∑∞
j=0 ψ

2
j . The likelihood of the data can now be written as

L(β, σ2
w) = (2πσ2

w)−n/2 [r1(β)r2(β) · · · rn(β)]−1/2 exp
[

−S(β)
2σ2

w

]

, (3.117)

where

S(β) =
n∑

t=1

[ (xt − xt−1
t (β))2

rt (β)
]

. (3.118)

Both xt−1
t and rt are functions of β alone, and we make that fact explicit in (3.117)-

(3.118). Given values for β and σ2
w , the likelihood may be evaluated using the

techniques of Sect. 3.4. Maximum likelihood estimation would now proceed by
maximizing (3.117) with respect to β and σ2

w . As in the AR(1) example, we have

σ̂2
w = n−1S(β̂), (3.119)

where β̂ is the value of β that minimizes the concentrated likelihood

l(β) = log
[
n−1S(β)] + n−1

n∑

t=1
log rt (β). (3.120)

For the AR(1) model (3.106) discussed previously, recall that x0
1 = μ and xt−1

t =

μ + φ(xt−1 − μ), for t = 2, . . . , n. Also, using the fact that φ11 = φ and φhh = 0 for
h > 1, we have r1 =

∑∞
j=0 φ

2j = (1 − φ2)−1, r2 = (1 − φ2)−1(1 − φ2) = 1, and in
general, rt = 1 for t = 2, . . . , n. Hence, the likelihood presented in (3.107) is identical
to the innovations form of the likelihood given by (3.117). Moreover, the generic
S(β) in (3.118) is S(μ, φ) given in (3.108) and the generic l(β) in (3.120) is l(μ, φ)
in (3.110).

Unconditional least squares would be performed by minimizing (3.118) with
respect to β. Conditional least squares estimation would involve minimizing (3.118)
with respect to β but where, to ease the computational burden, the predictions and
their errors are obtained by conditioning on initial values of the data. In general,
numerical optimization routines are used to obtain the actual estimates and their
standard errors.

Example 3.30 The Newton–Raphson and Scoring Algorithms
Two common numerical optimization routines for accomplishing maximum like-
lihood estimation are Newton–Raphson and scoring. We will give a brief account
of the mathematical ideas here. The actual implementation of these algorithms is
much more complicated than our discussion might imply. For details, the reader is
referred to any of the Numerical Recipes books, for example, Press et al. [156].

Let l(β) be a criterion function of k parameters β = (β1, . . . , βk) that we wish
to minimize with respect to β. For example, consider the likelihood function given
by (3.110) or by (3.120). Suppose l(β̂) is the extremum that we are interested in
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finding, and β̂ is found by solving ∂l(β)/∂βj = 0, for j = 1, . . . , k. Let l(1)(β)
denote the k × 1 vector of partials

l(1)(β) =
(
∂l(β)
∂β1

, . . . ,
∂l(β)
∂βk

) ′
.

Note, l(1)(β̂) = 0, the k × 1 zero vector. Let l(2)(β) denote the k × k matrix of
second-order partials

l(2)(β) =
{

− ∂l2(β)
∂βi∂βj

}k

i, j=1
,

and assume l(2)(β) is nonsingular. Let β(0) be a “sufficiently good” initial estimator
of β. Then, using a Taylor expansion, we have the following approximation:

0 = l(1)(β̂) ≈ l(1)(β(0)) − l(2)(β(0))
[
β̂ − β(0)

]
.

Setting the right-hand side equal to zero and solving for β̂ [call the solution β(1)],
we get

β(1) = β(0) +
[
l(2)(β(0))

]−1
l(1)(β(0)).

The Newton–Raphson algorithm proceeds by iterating this result, replacing β(0) by
β(1) to get β(2), and so on, until convergence. Under a set of appropriate conditions,
the sequence of estimators, β(1), β(2), . . ., will converge to β̂, the MLE of β.

For maximum likelihood estimation, the criterion function used is l(β) given
by (3.120); l(1)(β) is called the score vector, and l(2)(β) is called the Hessian. In the
method of scoring, we replace l(2)(β) by E[l(2)(β)], the information matrix. Under
appropriate conditions, the inverse of the information matrix is the asymptotic
variance–covariance matrix of the estimator β̂. This is sometimes approximated by
the inverse of the Hessian at β̂. If the derivatives are difficult to obtain, it is possible
to use quasi-maximum likelihood estimation where numerical techniques are used
to approximate the derivatives.

Example 3.31 MLE for the Recruitment Series
So far, we have fit an AR(2) model to the Recruitment series using ordinary least
squares (Example 3.18) and using Yule–Walker (Example 3.28). The following is
an R session used to fit an AR(2) model via maximum likelihood estimation to the
Recruitment series; these results can be compared to the results in Example 3.18
and Example 3.28.
rec.mle = ar.mle(rec, order=2)
rec.mle$x.mean # 62.26
rec.mle$ar # 1.35, -.46
sqrt(diag(rec.mle$asy.var.coef)) # .04, .04
rec.mle$var.pred # 89.34

We now discuss least squares for ARMA(p, q) models via Gauss–Newton. For
general and complete details of the Gauss–Newton procedure, the reader is referred
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to Fuller [66]. As before, write β = (φ1, . . . , φp, θ1, . . . , θq)′, and for the ease of
discussion, we will put μ = 0. We write the model in terms of the errors

wt (β) = xt −
p∑

j=1
φ j xt−j −

q∑

k=1
θkwt−k(β), (3.121)

emphasizing the dependence of the errors on the parameters.
For conditional least squares, we approximate the residual sum of squares by

conditioning on x1, . . . , xp (if p > 0) and wp = wp−1 = wp−2 = · · · = w1−q = 0
(if q > 0), in which case, given β, we may evaluate (3.121) for t = p+ 1, p+ 2, . . . , n.
Using this conditioning argument, the conditional error sum of squares is

Sc(β) =
n∑

t=p+1
w2
t (β). (3.122)

Minimizing Sc(β) with respect to β yields the conditional least squares estimates.
If q = 0, the problem is linear regression and no iterative technique is needed to
minimize Sc(φ1, . . . , φp). If q > 0, the problem becomes nonlinear regression and
we will have to rely on numerical optimization.

When n is large, conditioning on a few initial values will have little influence
on the final parameter estimates. In the case of small to moderate sample sizes, one
may wish to rely on unconditional least squares. The unconditional least squares
problem is to choose β to minimize the unconditional sum of squares, which we have
generically denoted by S(β) in this section. The unconditional sum of squares can
be written in various ways, and one useful form in the case of ARMA(p, q) models
is derived in Box et al. [31, Appendix A7.3]. They showed (see Problem 3.19) the
unconditional sum of squares can be written as

S(β) =
n∑

t=−∞
w̃2
t (β), (3.123)

where w̃t (β) = E(wt | x1, . . . , xn). When t ≤ 0, the ŵt (β) are obtained by backcasting.
As a practical matter, we approximate S(β) by starting the sum at t = −M+1, where M
is chosen large enough to guarantee

∑−M
t=−∞ w̃2

t (β) ≈ 0. In the case of unconditional
least squares estimation, a numerical optimization technique is needed even when
q = 0.

To employ Gauss–Newton, let β(0) = (φ(0)1 , . . . , φ
(0)
p , θ

(0)
1 , . . . , θ

(0)
q )′ be an initial

estimate of β. For example, we could obtain β(0) by method of moments. The first-
order Taylor expansion of wt (β) is

wt (β) ≈ wt (β(0)) −
(
β − β(0)

) ′ zt (β(0)), (3.124)

where

z′t (β(0)) =
(

−∂wt (β)
∂β1

, . . . ,−∂wt (β)
∂βp+q

) /
/
/
/
/
β=β(0)

, t = 1, . . . , n.



122 3 ARIMA Models

The linear approximation of Sc(β) is

Q(β) =
n∑

t=p+1

[
wt (β(0)) −

(
β − β(0)

) ′ zt (β(0))
]2 (3.125)

and this is the quantity that we will minimize. For approximate unconditional least
squares, we would start the sum in (3.125) at t = −M + 1, for a large value of M, and
work with the backcasted values.

Using the results of ordinary least squares (Sect. 2.1), we know

̂(β − β(0)) =
(
n−1

n∑

t=p+1
zt (β(0))z′t (β(0))

)−1 (
n−1

n∑

t=p+1
zt (β(0))wt (β(0))

)
(3.126)

minimizes Q(β). From (3.126), we write the one-step Gauss–Newton estimate as

β(1) = β(0) + Δ(β(0)), (3.127)

where Δ(β(0)) denotes the right-hand side of (3.126). Gauss–Newton estimation is
accomplished by replacing β(0) by β(1) in (3.127). This process is repeated by calcu-
lating, at iteration j = 2, 3, . . .,

β(j) = β(j−1) + Δ(β(j−1))
until convergence.

Example 3.32 Gauss–Newton for an MA(1)
Consider an invertible MA(1) process, xt = wt+θwt−1. Write the truncated errors as

wt (θ) = xt − θwt−1(θ), t = 1, . . . , n, (3.128)

where we condition on w0(θ) = 0. Taking derivatives and negating,

− ∂wt (θ)
∂θ

= wt−1(θ) + θ
∂wt−1(θ)

∂θ
, t = 1, . . . , n, (3.129)

where ∂w0(θ)/∂θ = 0. We can also write (3.129) as

zt (θ) = wt−1(θ) − θzt−1(θ), t = 1, . . . , n, (3.130)

where zt (θ) = −∂wt (θ)/∂θ and z0(θ) = 0.
Let θ(0) be an initial estimate of θ, for example, the estimate given in Ex-

ample 3.29. Then, the Gauss–Newton procedure for conditional least squares is
given by

θ(j+1) = θ(j) +
∑n

t=1 zt (θ(j))wt (θ(j))
∑n

t=1 z2
t (θ(j))

, j = 0, 1, 2, . . . , (3.131)

where the values in (3.131) are calculated recursively using (3.128) and (3.130).
The calculations are stopped when |θ(j+1) −θ(j) |, or |Q(θ(j+1))−Q(θ(j))|, are smaller
than some preset amount.
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Fig. 3.9. ACF and PACF of transformed glacial varves

Example 3.33 Fitting the Glacial Varve Series
Consider the series of glacial varve thicknesses from Massachusetts for n = 634
years, as analyzed in Example 2.7 and in Problem 2.8, where it was argued that
a first-order moving average model might fit the logarithmically transformed and
differenced varve series, say,

∇ log(xt ) = log(xt ) − log(xt−1) = log
(

xt
xt−1

)

,

which can be interpreted as being approximately the percentage change in the
thickness.

The sample ACF and PACF, shown in Fig. 3.9, confirm the tendency of∇ log(xt )
to behave as a first-order moving average process as the ACF has only a significant
peak at lag one and the PACF decreases exponentially. Using Table 3.1, this sample
behavior fits that of the MA(1) very well.

Since ρ̂(1) = −.397, our initial estimate is θ(0) = −.495 using (3.105). The
results of eleven iterations of the Gauss–Newton procedure, (3.131), starting with
θ(0) are given in Table 3.2. The final estimate is θ̂ = θ(11) = −.773; interim
values and the corresponding value of the conditional sum of squares, Sc(θ) given
in (3.122), are also displayed in the table. The final estimate of the error variance is
σ̂2
w = 148.98/632 = .236 with 632 degrees of freedom (one is lost in differencing).

The value of the sum of the squared derivatives at convergence is
∑n

t=1 z2
t (θ(11)) =

368.741, and consequently, the estimated standard error of θ̂ is
√
.236/368.741 =

.0257; this leads to a t-value of −.773/.025 = −30.92 with 632 degrees of freedom.
Figure 3.10 displays the conditional sum of squares, Sc(θ) as a function of θ,

as well as indicating the values of each step of the Gauss–Newton algorithm. Note
that the Gauss–Newton procedure takes large steps toward the minimum initially,

7 To estimate the standard error, we are using the standard regression results from (2.6) as an approxi-
mation
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Fig. 3.10. Conditional sum of squares versus values of the moving average parameter for
the glacial varve example, Example 3.33. Vertical lines indicate the values of the parameter
obtained via Gauss–Newton; see Table 3.2 for the actual values

and then takes very small steps as it gets close to the minimizing value. When there
is only one parameter, as in this case, it would be easy to evaluate Sc(θ) on a grid
of points, and then choose the appropriate value of θ from the grid search. It would
be difficult, however, to perform grid searches when there are many parameters.

The following code was used in this example.
x = diff(log(varve))
# Evaluate Sc on a Grid
c(0) -> w -> z
c() -> Sc -> Sz -> Szw
num = length(x)
th = seq(-.3,-.94,-.01)
for (p in 1:length(th)){

for (i in 2:num){ w[i] = x[i]-th[p]*w[i-1] }
Sc[p] = sum(w^2) }

plot(th, Sc, type="l", ylab=expression(S[c](theta)), xlab=expression(theta),
lwd=2)

# Gauss-Newton Estimation
r = acf(x, lag=1, plot=FALSE)$acf[-1]
rstart = (1-sqrt(1-4*(r^2)))/(2*r) # from (3.105)
c(0) -> w -> z
c() -> Sc -> Sz -> Szw -> para
niter = 12
para[1] = rstart
for (p in 1:niter){

for (i in 2:num){ w[i] = x[i]-para[p]*w[i-1]
z[i] = w[i-1]-para[p]*z[i-1] }

Sc[p] = sum(w^2)
Sz[p] = sum(z^2)
Szw[p] = sum(z*w)
para[p+1] = para[p] + Szw[p]/Sz[p] }

round(cbind(iteration=0:(niter-1), thetahat=para[1:niter] , Sc , Sz ), 3)
abline(v = para[1:12], lty=2)
points(para[1:12], Sc[1:12], pch=16)
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Table 3.2. Gauss–Newton results for Example 3.33

j θ(j) Sc(θ(j))
∑n

t=1 z2
t (θ(j))

0 −0.495 158.739 171.240
1 −0.668 150.747 235.266
2 −0.733 149.264 300.562
3 −0.756 149.031 336.823
4 −0.766 148.990 354.173
5 −0.769 148.982 362.167
6 −0.771 148.980 365.801
7 −0.772 148.980 367.446
8 −0.772 148.980 368.188
9 −0.772 148.980 368.522
10 −0.773 148.980 368.673
11 −0.773 148.980 368.741

In the general case of causal and invertible ARMA(p, q) models, maximum like-
lihood estimation and conditional and unconditional least squares estimation (and
Yule–Walker estimation in the case of AR models) all lead to optimal estimators. The
proof of this general result can be found in a number of texts on theoretical time series
analysis (for example, Brockwell and Davis [36], or Hannan [86], to mention a few).
We will denote the ARMA coefficient parameters by β = (φ1, . . . , φp, θ1, . . . , θq)′.
Property 3.10 Large Sample Distribution of the Estimators

Under appropriate conditions, for causal and invertible ARMA processes, the
maximum likelihood, the unconditional least squares, and the conditional least
squares estimators, each initialized by the method of moments estimator, all pro-
vide optimal estimators of σ2

w and β, in the sense that σ̂2
w is consistent, and the

asymptotic distribution of β̂ is the best asymptotic normal distribution. In particular,
as n →∞, √

n
(
β̂ − β

)
d→ N

(
0, σ2

w Γ−1
p,q

)
. (3.132)

The asymptotic variance–covariance matrix of the estimator β̂ is the inverse of the
information matrix. In particular, the (p + q) × (p + q) matrix Γp,q, has the form

Γp,q =

(
Γφφ Γφθ
Γθφ Γθθ

)

. (3.133)

The p × p matrix Γφφ is given by (3.100), that is, the i j-th element of Γφφ, for
i, j = 1, . . . , p, is γx(i − j) from an AR(p) process, φ(B)xt = wt . Similarly, Γθθ is
a q × q matrix with the i j-th element, for i, j = 1, . . . , q, equal to γy(i − j) from an
AR(q) process, θ(B)yt = wt . The p × q matrix Γφθ = {γxy(i − j)}, for i = 1, . . . , p;
j = 1, . . . , q; that is, the i j-th element is the cross-covariance between the two AR
processes given by φ(B)xt = wt and θ(B)yt = wt . Finally, Γθφ = Γ ′φθ is q × p.

Further discussion of Property 3.10, including a proof for the case of least squares
estimators for AR(p) processes, can be found in Sect. B.3.
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Example 3.34 Some Specific Asymptotic Distributions
The following are some specific cases of Property 3.10.
AR(1): γx(0) = σ2

w/(1 − φ2), so σ2
wΓ

−1
1,0 = (1 − φ2). Thus,

φ̂ ∼ AN
[
φ, n−1(1 − φ2)] . (3.134)

AR(2): The reader can verify that

γx(0) =
(
1 − φ2

1 + φ2

)
σ2
w

(1 − φ2)2 − φ2
1

and γx(1) = φ1γx(0)+φ2γx(1). From these facts, we can computeΓ−1
2,0. In particular,

we have (
φ̂1
φ̂2

)

∼ AN
[(
φ1
φ2

)

, n−1
(
1 − φ2

2 −φ1(1 + φ2)
sym 1 − φ2

2

)]

. (3.135)

MA(1): In this case, write θ(B)yt = wt , or yt + θyt−1 = wt . Then, analogous to
the AR(1) case, γy(0) = σ2

w/(1 − θ2), so σ2
wΓ

−1
0,1 = (1 − θ2). Thus,

θ̂ ∼ AN
[
θ, n−1(1 − θ2)] . (3.136)

MA(2): Write yt + θ1yt−1+ θ2yt−2 = wt , so , analogous to the AR(2) case, we have
(
θ̂1
θ̂2

)

∼ AN
[ (
θ1
θ2

)

, n−1
(
1 − θ2

2 θ1(1 + θ2)
sym 1 − θ2

2

)]

. (3.137)

ARMA(1,1): To calculate Γφθ , we must find γxy(0), where xt − φxt−1 = wt and
yt + θyt−1 = wt . We have

γxy(0) = cov(xt, yt ) = cov(φxt−1 + wt,−θyt−1 + wt )
= −φθγxy(0) + σ2

w .

Solving, we find, γxy(0) = σ2
w/(1 + φθ). Thus,

(
φ̂

θ̂

)

∼ AN

[ (
φ
θ

)

, n−1
[(1 − φ2)−1 (1 + φθ)−1

sym (1 − θ2)−1

]−1
]

. (3.138)

Example 3.35 Overfitting Caveat
The asymptotic behavior of the parameter estimators gives us an additional insight
into the problem of fitting ARMA models to data. For example, suppose a time
series follows an AR(1) process and we decide to fit an AR(2) to the data. Do
any problems occur in doing this? More generally, why not simply fit large-order
AR models to make sure that we capture the dynamics of the process? After all,
if the process is truly an AR(1), the other autoregressive parameters will not be
significant. The answer is that if we overfit, we obtain less efficient, or less precise
parameter estimates. For example, if we fit an AR(1) to an AR(1) process, for large
n, var(φ̂1) ≈ n−1(1 − φ2

1). But, if we fit an AR(2) to the AR(1) process, for large n,
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var(φ̂1) ≈ n−1(1 − φ2
2) = n−1 because φ2 = 0. Thus, the variance of φ1 has been

inflated, making the estimator less precise.
We do want to mention, however, that overfitting can be used as a diagnostic tool.

For example, if we fit an AR(2) model to the data and are satisfied with that model,
then adding one more parameter and fitting an AR(3) should lead to approximately
the same model as in the AR(2) fit. We will discuss model diagnostics in more
detail in Sect. 3.7.

The reader might wonder, for example, why the asymptotic distributions of φ̂ from
an AR(1) and θ̂ from an MA(1) are of the same form; compare (3.134) to (3.136). It
is possible to explain this unexpected result heuristically using the intuition of linear
regression. That is, for the normal regression model presented in Sect. 2.1 with no
intercept term, xt = βzt + wt , we know β̂ is normally distributed with mean β, and
from (2.6),

var
{√

n
(
β̂ − β

)}
= nσ2

w

(
n∑

t=1
z2
t

)−1

= σ2
w

(

n−1
n∑

t=1
z2
t

)−1

.

For the causal AR(1) model given by xt = φxt−1 + wt , the intuition of regression
tells us to expect that, for n large,

√
n

(
φ̂ − φ

)

is approximately normal with mean zero and with variance given by

σ2
w

(

n−1
n∑

t=2
x2
t−1

)−1

.

Now, n−1 ∑n
t=2 x2

t−1 is the sample variance (recall that the mean of xt is zero) of the xt ,
so as n becomes large we would expect it to approach var(xt ) = γ(0) = σ2

w/(1 − φ2).
Thus, the large sample variance of

√
n

(
φ̂ − φ

)
is

σ2
wγx(0)−1 = σ2

w

(
σ2
w

1 − φ2

)−1

= (1 − φ2);

that is, (3.134) holds.
In the case of an MA(1), we may use the discussion of Example 3.32 to write

an approximate regression model for the MA(1). That is, consider the approxima-
tion (3.130) as the regression model

zt (θ̂) = −θzt−1(θ̂) + wt−1,

where now, zt−1(θ̂) as defined in Example 3.32, plays the role of the regressor. Con-
tinuing with the analogy, we would expect the asymptotic distribution of

√
n

(
θ̂ − θ

)
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to be normal, with mean zero, and approximate variance

σ2
w

(

n−1
n∑

t=2
z2
t−1(θ̂)

)−1

.

As in the AR(1) case, n−1 ∑n
t=2 z2

t−1(θ̂) is the sample variance of the zt (θ̂) so, for large
n, this should be var{zt (θ)} = γz(0), say. But note, as seen from (3.130), zt (θ) is
approximately an AR(1) process with parameter −θ. Thus,

σ2
wγz(0)−1 = σ2

w

(
σ2
w

1 − (−θ)2
)−1

= (1 − θ2),

which agrees with (3.136). Finally, the asymptotic distributions of the AR parameter
estimates and the MA parameter estimates are of the same form because in the MA
case, the “regressors” are the differential processes zt (θ) that have AR structure, and
it is this structure that determines the asymptotic variance of the estimators. For a
rigorous account of this approach for the general case, see Fuller [66, Theorem 5.5.4].

In Example 3.33, the estimated standard error of θ̂ was .025. In that example, we
used regression results to estimate the standard error as the square root of

n−1σ̂2
w

(

n−1
n∑

t=1
z2
t (θ̂)

)−1

=
σ̂2
w

∑n
t=1 z2

t (θ̂)
,

where n = 632, σ̂2
w = .236,

∑n
t=1 z2

t (θ̂) = 368.74 and θ̂ = −.773. Using (3.136), we
could have also calculated this value using the asymptotic approximation, the square
root of (1 − (−.773)2)/632, which is also .025.

If n is small, or if the parameters are close to the boundaries, the asymptotic
approximations can be quite poor. The bootstrap can be helpful in this case; for a
broad treatment of the bootstrap, see Efron and Tibshirani [56]. We discuss the case
of an AR(1) here and leave the general discussion for Chap. 6. For now, we give a
simple example of the bootstrap for an AR(1) process.

Example 3.36 Bootstrapping an AR(1)
We consider an AR(1) model with a regression coefficient near the boundary
of causality and an error process that is symmetric but not normal. Specifically,
consider the causal model

xt = μ + φ(xt−1 − μ) + wt, (3.139)

where μ = 50, φ = .95, and wt are iid double exponential (Laplace) with location
zero, and scale parameter β = 2. The density of wt is given by

f (w) = 1
2β

exp {−|w |/β} − ∞ < w < ∞.

In this example, E(wt ) = 0 and var(wt ) = 2β2 = 8. Figure 3.11 shows n = 100
simulated observations from this process. This particular realization is interesting;



3.5 Estimation 129

Time

X
t

0 20 40 60 80 100

25
30

35
40

45
50

55
60

ll

l

l

l

lll

l
l
l

l

ll
l
ll

l
l

l
l

l

l

l
ll

llllll

l
l
l
ll

l

l
l

l

ll
l

l

l

l

l
l

l

ll
l

l
l

l

l
l
l

ll

l

l
ll

l

l
l
l
l

l
l

l

l

ll
l

l

l
ll

l

l

l
l
lll

l

l

l
l
ll

l

l
l
l

l

l

Fig. 3.11. One hundred observations generated from the model in Example 3.36

the data look like they were generated from a nonstationary process with three
different mean levels. In fact, the data were generated from a well-behaved, albeit
non-normal, stationary and causal model. To show the advantages of the bootstrap,
we will act as if we do not know the actual error distribution. The data in Fig. 3.11
were generated as follows.
set.seed(101010)
e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
dex = 50 + arima.sim(n=100, list(ar=.95), innov=de, n.start=50)
plot.ts(dex, type='o', ylab=expression(X[~t]))

Using these data, we obtained the Yule–Walker estimates μ̂ = 45.25, φ̂ = .96, and
σ̂2
w = 7.88, as follows.

fit = ar.yw(dex, order=1)
round(cbind(fit$x.mean, fit$ar, fit$var.pred), 2)

[1,] 45.25 0.96 7.88

To assess the finite sample distribution of φ̂ when n = 100, we simulated 1000
realizations of this AR(1) process and estimated the parameters via Yule–Walker.
The finite sampling density of the Yule–Walker estimate of φ, based on the 1000
repeated simulations, is shown in Fig. 3.12. Based on Property 3.10, we would say
that φ̂ is approximately normal with mean φ (which we supposedly do not know)
and variance (1− φ2)/100, which we would approximate by (1− .962)/100 = .032;
this distribution is superimposed on Fig. 3.12. Clearly the sampling distribution is
not close to normality for this sample size. The R code to perform the simulation is
as follows. We use the results at the end of the example
set.seed(111)
phi.yw = rep(NA, 1000)
for (i in 1:1000){

e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
x = 50 + arima.sim(n=100,list(ar=.95), innov=de, n.start=50)
phi.yw[i] = ar.yw(x, order=1)$ar }

The preceding simulation required full knowledge of the model, the parameter
values and the noise distribution. Of course, in a sampling situation, we would not
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have the information necessary to do the preceding simulation and consequently
would not be able to generate a figure like Fig. 3.12. The bootstrap, however, gives
us a way to attack the problem.

To simplify the discussion and the notation, we condition on x1 throughout the
example. In this case, the one-step-ahead predictors have a simple form,

xt−1
t = μ + φ(xt−1 − μ), t = 2, . . . , 100.

Consequently, the innovations, εt = xt − xt−1
t , are given by

εt = (xt − μ) − φ(xt−1 − μ), t = 2, . . . , 100, (3.140)

each with MSPE Pt−1
t = E(ε2

t ) = E(w2
t ) = σ2

w for t = 2, . . . , 100. We can use (3.140)
to write the model in terms of the innovations,

xt = xt−1
t + εt = μ + φ(xt−1 − μ) + εt t = 2, . . . , 100. (3.141)

To perform the bootstrap simulation, we replace the parameters with their
estimates in (3.141), that is, μ̂ = 45.25 and φ̂ = .96, and denote the resulting
sample innovations as {ε̂2, . . . , ε̂100}. To obtain one bootstrap sample, first randomly
sample, with replacement, n = 99 values from the set of sample innovations; call the
sampled values {ε∗2, . . . , ε∗100}. Now, generate a bootstrapped data set sequentially
by setting

x∗t = 45.25 + .96(x∗t−1 − 45.25) + ε∗t , t = 2, . . . , 100. (3.142)

with x∗1 held fixed at x1. Next, estimate the parameters as if the data were x∗t .
Call these estimates μ̂(1), φ̂(1), and σ2

w(1). Repeat this process a large num-
ber, B, of times, generating a collection of bootstrapped parameter estimates,
{ μ̂(b), φ̂(b), σ2

w(b); b = 1, . . . , B}. We can then approximate the finite sample dis-
tribution of an estimator from the bootstrapped parameter values. For example, we
can approximate the distribution of φ̂ − φ by the empirical distribution of φ̂(b) − φ̂,
for b = 1, . . . , B.

Figure 3.12 shows the bootstrap histogram of 500 bootstrapped estimates of φ
using the data shown in Fig. 3.11. Note that the bootstrap distribution of φ̂ is close
to the distribution of φ̂ shown in Fig. 3.12. The following code was used to perform
the bootstrap.
set.seed(666) # not that 666
fit = ar.yw(dex, order=1) # assumes the data were retained
m = fit$x.mean # estimate of mean
phi = fit$ar # estimate of phi
nboot = 500 # number of bootstrap replicates
resids = fit$resid[-1] # the 99 innovations
x.star = dex # initialize x*
phi.star.yw = rep(NA, nboot)
# Bootstrap
for (i in 1:nboot) {
resid.star = sample(resids, replace=TRUE)

for (t in 1:99){ x.star[t+1] = m + phi*(x.star[t]-m) + resid.star[t] }
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Fig. 3.12. Finite sample density of the Yule–Walker estimate of φ (solid line) in Example 3.36
and the corresponding asymptotic normal density (dashed line). Bootstrap histogram of φ̂
based on 500 bootstrapped samples

phi.star.yw[i] = ar.yw(x.star, order=1)$ar
}
# Picture
culer = rgb(.5,.7,1,.5)
hist(phi.star.yw, 15, main="", prob=TRUE, xlim=c(.65,1.05), ylim=c(0,14),

col=culer, xlab=expression(hat(phi)))
lines(density(phi.yw, bw=.02), lwd=2) # from previous simulation
u = seq(.75, 1.1, by=.001) # normal approximation
lines(u, dnorm(u, mean=.96, sd=.03), lty=2, lwd=2)
legend(.65, 14, legend=c('true distribution', 'bootstrap distribution',

'normal approximation'), bty='n', lty=c(1,0,2), lwd=c(2,0,2),
col=1, pch=c(NA,22,NA), pt.bg=c(NA,culer,NA), pt.cex=2.5)

3.6 Integrated Models for Nonstationary Data

In Chaps. 1 and 2, we saw that if xt is a random walk, xt = xt−1 + wt , then by
differencing xt , we find that ∇xt = wt is stationary. In many situations, time series
can be thought of as being composed of two components, a nonstationary trend
component and a zero-mean stationary component. For example, in Sect. 2.1 we
considered the model

xt = μt + yt, (3.143)

where μt = β0 + β1t and yt is stationary. Differencing such a process will lead to a
stationary process:

∇xt = xt − xt−1 = β1 + yt − yt−1 = β1 + ∇yt .
Another model that leads to first differencing is the case in which μt in (3.143) is
stochastic and slowly varying according to a random walk. That is,

μt = μt−1 + vt
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where vt is stationary. In this case,

∇xt = vt + ∇yt,
is stationary. If μt in (3.143) is a k-th order polynomial, μt =

∑k
j=0 βj t

j , then
(Problem 3.27) the differenced series ∇kxt is stationary. Stochastic trend models can
also lead to higher order differencing. For example, suppose

μt = μt−1 + vt and vt = vt−1 + et,

where et is stationary. Then, ∇xt = vt + ∇yt is not stationary, but

∇2xt = et + ∇2yt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA

models to include differencing.

Definition 3.11 A process xt is said to be ARIMA(p, d, q) if

∇dxt = (1 − B)dxt

is ARMA(p, q). In general, we will write the model as

φ(B)(1 − B)dxt = θ(B)wt . (3.144)

If E(∇dxt ) = μ, we write the model as

φ(B)(1 − B)dxt = δ + θ(B)wt,

where δ = μ(1 − φ1 − · · · − φp).
Because of the nonstationarity, care must be taken when deriving forecasts. For

the sake of completeness, we discuss this issue briefly here, but we stress the fact that
both the theoretical and computational aspects of the problem are best handled via
state-space models. We discuss the theoretical details in Chap. 6. For information on
the state-space based computational aspects in R, see the ARIMA help files (?arima
and ?predict.Arima); our scripts sarima and sarima.for are basically wrappers for
these R scripts.

It should be clear that, since yt = ∇dxt is ARMA, we can use Sect. 3.4 methods
to obtain forecasts of yt , which in turn lead to forecasts for xt . For example, if d = 1,
given forecasts ynn+m for m = 1, 2, . . ., we have ynn+m = xnn+m − xn

n+m−1, so that

xnn+m = ynn+m + xnn+m−1

with initial condition xn
n+1 = yn

n+1 + xn (noting xnn = xn).
It is a little more difficult to obtain the prediction errors Pn

n+m, but for large n,
the approximation used in Sect. 3.4, (3.86), works well. That is, the mean-squared
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prediction error can be approximated by

Pn
n+m = σ2

w

m−1∑

j=0
ψ∗2j , (3.145)

where ψ∗j is the coefficient of z j in ψ∗(z) = θ(z)/φ(z)(1 − z)d.
To better understand integrated models, we examine the properties of some simple

cases; Problem 3.29 covers the ARIMA(1, 1, 0) case.

Example 3.37 Random Walk with Drift
To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.11, that is,

xt = δ + xt−1 + wt,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but we could
include it trivially as an ARIMA(0, 1, 0)model. Given data x1, . . . , xn, the one-step-
ahead forecast is given by

xnn+1 = E(xn+1
/
/ xn, . . . , x1) = E(δ + xn + wn+1

/
/ xn, . . . , x1) = δ + xn .

The two-step-ahead forecast is given by xn
n+2 = δ+xn

n+1 = 2δ+xn, and consequently,
the m-step-ahead forecast, for m = 1, 2, . . ., is

xnn+m = m δ + xn, (3.146)

To obtain the forecast errors, it is convenient to recall equation (1.4); i.e.,
xn = n δ +

∑n
j=1 wj , in which case we may write

xn+m = (n + m) δ +
n+m∑

j=1
wj = m δ + xn +

n+m∑

j=n+1
wj .

From this it follows that the m-step-ahead prediction error is given by

Pn
n+m = E(xn+m − xnn+m)2 = E

( n+m∑

j=n+1
wj

)2
= m σ2

w . (3.147)

Hence, unlike the stationary case (see Example 3.23), as the forecast horizon grows,
the prediction errors, (3.147), increase without bound and the forecasts follow a
straight line with slope δ emanating from xn. We note that (3.145) is exact in this
case because ψ∗(z) = 1/(1 − z) = ∑∞

j=0 z j for |z| < 1, so that ψ∗j = 1 for all j.
The wt are Gaussian, so estimation is straightforward because the differenced

data, say yt = ∇xt , are independent and identically distributed normal variates with
mean δ and variance σ2

w . Consequently, optimal estimates of δ and σ2
w are the

sample mean and variance of the yt , respectively.
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Example 3.38 IMA(1, 1) and EWMA
The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic
time series can be successfully modeled this way. In addition, the model leads to
a frequently used, and abused, forecasting method called exponentially weighted
moving averages (EWMA). We will write the model as

xt = xt−1 + wt − λwt−1, (3.148)

with |λ | < 1, for t = 1, 2, . . . , and x0 = 0, because this model formulation is easier
to work with here, and it leads to the standard representation for EWMA. We could
have included a drift term in (3.148), as was done in the previous example, but for
the sake of simplicity, we leave it out of the discussion. If we write

yt = wt − λwt−1,

we may write (3.148) as xt = xt−1 + yt . Because |λ | < 1, yt has an invertible
representation, yt =

∑∞
j=1 λ

j yt−j + wt , and substituting yt = xt − xt−1, we may
write

xt =
∞∑

j=1
(1 − λ)λ j−1xt−j + wt . (3.149)

as an approximation for large t (put xt = 0 for t ≤ 0). Verification of (3.149) is left
to the reader (Problem 3.28). Using the approximation (3.149), we have that the
approximate one-step-ahead predictor, using the notation of Sect. 3.4, is

x̃n+1 =

∞∑

j=1
(1 − λ)λ j−1xn+1−j

= (1 − λ)xn + λ

∞∑

j=1
(1 − λ)λ j−1xn−j

= (1 − λ)xn + λ x̃n. (3.150)

From (3.150), we see that the new forecast is a linear combination of the old
forecast and the new observation. Based on (3.150) and the fact that we only
observe x1, . . . , xn, and consequently y1, . . . , yn (because yt = xt − xt−1; x0 = 0),
the truncated forecasts are

x̃nn+1 = (1 − λ)xn + λ x̃n−1
n , n ≥ 1, (3.151)

with x̃0
1 = x1 as an initial value. The mean-square prediction error can be approxi-

mated using (3.145) by noting that ψ∗(z) = (1 − λz)/(1 − z) = 1 + (1 − λ)∑∞
j=1 z j

for |z| < 1; consequently, for large n, (3.145) leads to

Pn
n+m ≈ σ2

w[1 + (m − 1)(1 − λ)2].
In EWMA, the parameter 1 − λ is often called the smoothing parameter and is

restricted to be between zero and one. Larger values of λ lead to smoother forecasts.
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This method of forecasting is popular because it is easy to use; we need only retain
the previous forecast value and the current observation to forecast the next time
period. Unfortunately, as previously suggested, the method is often abused because
some forecasters do not verify that the observations follow an IMA(1, 1) process,
and often arbitrarily pick values of λ. In the following, we show how to generate
100 observations from an IMA(1,1) model with λ = −θ = .8 and then calculate and
display the fitted EWMA superimposed on the data. This is accomplished using the
Holt-Winters command in R (see the help file ?HoltWinters for details; no output
is shown):
set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # α below is 1 − λ

Smoothing parameter: alpha: 0.1663072
plot(x.ima)

3.7 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data. These steps
involve

• plotting the data,
• possibly transforming the data,
• identifying the dependence orders of the model,
• parameter estimation,
• diagnostics, and
• model choice.

First, as with any data analysis, we should construct a time plot of the data, and inspect
the graph for any anomalies. If, for example, the variability in the data grows with time,
it will be necessary to transform the data to stabilize the variance. In such cases, the
Box–Cox class of power transformations, equation (2.34), could be employed. Also,
the particular application might suggest an appropriate transformation. For example,
we have seen numerous examples where the data behave as xt = (1 + pt )xt−1, where
pt is a small percentage change from period t − 1 to t, which may be negative.
If pt is a relatively stable process, then ∇ log(xt ) ≈ pt will be relatively stable.
Frequently, ∇ log(xt ) is called the return or growth rate. This general idea was used
in Example 3.33, and we will use it again in Example 3.39.

After suitably transforming the data, the next step is to identify preliminary values
of the autoregressive order, p, the order of differencing, d, and the moving average
order, q. A time plot of the data will typically suggest whether any differencing is
needed. If differencing is called for, then difference the data once, d = 1, and inspect
the time plot of ∇xt . If additional differencing is necessary, then try differencing
again and inspect a time plot of ∇2xt . Be careful not to overdifference because
this may introduce dependence where none exists. For example, xt = wt is serially
uncorrelated, but ∇xt = wt − wt−1 is MA(1). In addition to time plots, the sample
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Fig. 3.13. Top: Quarterly U.S. GNP from 1947(1) to 2002(3). Bottom: Sample ACF of the
GNP data. Lag is in terms of years

ACF can help in indicating whether differencing is needed. Because the polynomial
φ(z)(1 − z)d has a unit root, the sample ACF, ρ̂(h), will not decay to zero fast as h
increases. Thus, a slow decay in ρ̂(h) is an indication that differencing may be needed.

When preliminary values of d have been settled, the next step is to look at the
sample ACF and PACF of ∇dxt for whatever values of d have been chosen. Using
Table 3.1 as a guide, preliminary values of p and q are chosen. Note that it cannot be
the case that both the ACF and PACF cut off. Because we are dealing with estimates,
it will not always be clear whether the sample ACF or PACF is tailing off or cutting
off. Also, two models that are seemingly different can actually be very similar. With
this in mind, we should not worry about being so precise at this stage of the model
fitting. At this point, a few preliminary values of p, d, and q should be at hand, and
we can start estimating the parameters.

Example 3.39 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from 1947(1)
to 2002(3), n = 223 observations. The data are real U.S. gross national product
in billions of chained 1996 dollars and have been seasonally adjusted. The data
were obtained from the Federal Reserve Bank of St. Louis (http://research.
stlouisfed.org/). Figure 3.13 shows a plot of the data, say, yt . Because strong
trend tends to obscure other effects, it is difficult to see any other variability in data
except for periodic large dips in the economy. When reports of GNP and similar
economic indicators are given, it is often in growth rate (percent change) rather than
in actual (or adjusted) values that is of interest. The growth rate, say, xt = ∇ log(yt ),
is plotted in Fig. 3.14, and it appears to be a stable process.

http://research.stlouisfed.org/
http://research.stlouisfed.org/
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Fig. 3.14. U.S. GNP quarterly growth rate. The horizontal line displays the average growth of
the process, which is close to 1%

The sample ACF and PACF of the quarterly growth rate are plotted in Fig. 3.15.
Inspecting the sample ACF and PACF, we might feel that the ACF is cutting off at
lag 2 and the PACF is tailing off. This would suggest the GNP growth rate follows
an MA(2) process, or log GNP follows an ARIMA(0, 1, 2)model. Rather than focus
on one model, we will also suggest that it appears that the ACF is tailing off and
the PACF is cutting off at lag 1. This suggests an AR(1) model for the growth rate,
or ARIMA(1, 1, 0) for log GNP. As a preliminary analysis, we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt , the estimated model is

x̂t = .008(.001) + .303(.065)ŵt−1 + .204(.064)ŵt−2 + ŵt, (3.152)

where σ̂w = .0094 is based on 219 degrees of freedom. The values in parentheses
are the corresponding estimated standard errors. All of the regression coefficients
are significant, including the constant. We make a special note of this because, as
a default, some computer packages do not fit a constant in a differenced model.
That is, these packages assume, by default, that there is no drift. In this example,
not including a constant leads to the wrong conclusions about the nature of the
U.S. economy. Not including a constant assumes the average quarterly growth rate
is zero, whereas the U.S. GNP average quarterly growth rate is about 1% (which
can be seen easily in Fig. 3.14). We leave it to the reader to investigate what happens
when the constant is not included.

The estimated AR(1) model is

x̂t = .008(.001) (1 − .347) + .347(.063) x̂t−1 + ŵt, (3.153)

where σ̂w = .0095 on 220 degrees of freedom; note that the constant in (3.153) is
.008 (1 − .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit well,
how are we to reconcile the apparent differences of the estimated models (3.152)
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Fig. 3.15. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in terms of years

and (3.153)? In fact, the fitted models are nearly the same. To show this, consider
an AR(1) model of the form in (3.153) without a constant term; that is,

xt = .35xt−1 + wt,

and write it in its causal form, xt =
∑∞

j=0 ψjwt−j , where we recall ψj = .35j . Thus,
ψ0 = 1, ψ1 = .350, ψ2 = .123, ψ3 = .043, ψ4 = .015, ψ5 = .005, ψ6 = .002, ψ7 =

.001, ψ8 = 0, ψ9 = 0, ψ10 = 0, and so forth. Thus,

xt ≈ .35wt−1 + .12wt−2 + wt,

which is similar to the fitted MA(2) model in (3.153).
The analysis can be performed in R as follows.

plot(gnp)
acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
sarima(gnpgr, 0, 0, 2) # MA(2)
ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

The next step in model fitting is diagnostics. This investigation includes the
analysis of the residuals as well as model comparisons. Again, the first step involves a
time plot of the innovations (or residuals), xt − x̂t−1

t , or of the standardized innovations

et =
(
xt − x̂t−1

t

) / √
P̂t−1
t , (3.154)

where x̂t−1
t is the one-step-ahead prediction of xt based on the fitted model and P̂t−1

t

is the estimated one-step-ahead error variance. If the model fits well, the standardized
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residuals should behave as an iid sequence with mean zero and variance one. The
time plot should be inspected for any obvious departures from this assumption. Unless
the time series is Gaussian, it is not enough that the residuals are uncorrelated. For
example, it is possible in the non-Gaussian case to have an uncorrelated process for
which values contiguous in time are highly dependent. As an example, we mention
the family of GARCH models that are discussed in Chap. 5.

Investigation of marginal normality can be accomplished visually by looking at a
histogram of the residuals. In addition to this, a normal probability plot or a Q-Q plot
can help in identifying departures from normality. See Johnson and Wichern [106,
Chapter 4] for details of this test as well as additional tests for multivariate normality.

There are several tests of randomness, for example the runs test, that could
be applied to the residuals. We could also inspect the sample autocorrelations of
the residuals, say, ρ̂e(h), for any patterns or large values. Recall that, for a white
noise sequence, the sample autocorrelations are approximately independently and
normally distributed with zero means and variances 1/n. Hence, a good check on the
correlation structure of the residuals is to plot ρ̂e(h) versus h along with the error
bounds of ±2/√n. The residuals from a model fit, however, will not quite have the
properties of a white noise sequence and the variance of ρ̂e(h) can be much less than
1/n. Details can be found in Box and Pierce [29] and McLeod [137]. This part of
the diagnostics can be viewed as a visual inspection of ρ̂e(h) with the main concern
being the detection of obvious departures from the independence assumption.

In addition to plotting ρ̂e(h), we can perform a general test that takes into con-
sideration the magnitudes of ρ̂e(h) as a group. For example, it may be the case that,
individually, each ρ̂e(h) is small in magnitude, say, each one is just slightly less that
2/√n in magnitude, but, collectively, the values are large. The Ljung–Box–Pierce
Q-statistic given by

Q = n(n + 2)
H∑

h=1

ρ̂2
e(h)

n − h
(3.155)

can be used to perform such a test. The value H in (3.155) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy, asymp-
totically (n →∞), Q ∼ χ2

H−p−q. Thus, we would reject the null hypothesis at level α
if the value of Q exceeds the (1− α)-quantile of the χ2

H−p−q distribution. Details can
be found in Box and Pierce [30], Ljung and Box [129], and Davies et al. [49]. The
basic idea is that if wt is white noise, then by Property 1.2, n ρ̂2

w(h), for h = 1, . . . , H,
are asymptotically independent χ2

1 random variables. This means that n
∑H

h=1 ρ̂2
w(h)

is approximately a χ2
H random variable. Because the test involves the ACF of resid-

uals from a model fit, there is a loss of p + q degrees of freedom; the other values
in (3.155) are used to adjust the statistic to better match the asymptotic chi-squared
distribution.

Example 3.40 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.39; the analysis of the AR(1)
residuals is similar. Figure 3.16 displays a plot of the standardized residuals, the
ACF of the residuals, a boxplot of the standardized residuals, and the p-values
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Fig. 3.16. Diagnostics of the residuals from MA(2) fit on GNP growth rate

associated with the Q-statistic, (3.155), at lags H = 3 through H = 20 (with
corresponding degrees of freedom H − 2).

Inspection of the time plot of the standardized residuals in Fig. 3.16 shows no
obvious patterns. Notice that there may be outliers, with a few values exceeding
3 standard deviations in magnitude. The ACF of the standardized residuals shows
no apparent departure from the model assumptions, and the Q-statistic is never
significant at the lags shown. The normal Q-Q plot of the residuals shows that the
assumption of normality is reasonable, with the exception of the possible outliers.

The model appears to fit well. The diagnostics shown in Fig. 3.16 are a by-
product of the sarima command from the previous example.8

Example 3.41 Diagnostics for the Glacial Varve Series
In Example 3.33, we fit an ARIMA(0, 1, 1) model to the logarithms of the glacial
varve data and there appears to be a small amount of autocorrelation left in the
residuals and the Q-tests are all significant; see Fig. 3.17.

8 The script tsdiag is available in R to run diagnostics for an ARIMA object, however, the script has
errors and we do not recommend using it.
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Fig. 3.17. Q-statistic p-values for the ARIMA(0, 1, 1) fit (top) and the ARIMA(1, 1, 1) fit
(bottom) to the logged varve data

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve data
and obtained the estimates

φ̂ = .23(.05), θ̂ = −.89(.03), σ̂2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are also
displayed in Fig. 3.17, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual sarima
runs. We note that we did not fit a constant in either model because there is no
apparent drift in the differenced, logged varve series. This fact can be verified
by noting the constant is not significant when the command no.constant=TRUE is
removed in the code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

In Example 3.39, we have two competing models, an AR(1) and an MA(2) on
the GNP growth rate, that each appear to fit the data well. In addition, we might
also consider that an AR(2) or an MA(3) might do better for forecasting. Perhaps
combining both models, that is, fitting an ARMA(1, 2) to the GNP growth rate, would
be the best. As previously mentioned, we have to be concerned with overfitting the
model; it is not always the case that more is better. Overfitting leads to less-precise
estimators, and adding more parameters may fit the data better but may also lead to
bad forecasts. This result is illustrated in the following example.
Example 3.42 A Problem with Overfitting

Figure 3.18 shows the U.S. population by official census, every ten years from 1910
to 1990, as points. If we use these nine observations to predict the future population,
we can use an eight-degree polynomial so the fit to the nine observations is perfect.
The model in this case is

xt = β0 + β1t + β2t2 + · · · + β8t8 + wt .
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Fig. 3.18. A perfect fit and a terrible forecast

The fitted line, which is plotted in the figure, passes through the nine observations.
The model predicts that the population of the United States will be close to zero in
the year 2000, and will cross zero sometime in the year 2002!

The final step of model fitting is model choice or model selection. That is, we
must decide which model we will retain for forecasting. The most popular techniques,
AIC, AICc, and BIC, were described in Sect. 2.1 in the context of regression models.

Example 3.43 Model Choice for the U.S. GNP Series
Returning to the analysis of the U.S. GNP data presented in Example 3.39 and
Example 3.40, recall that two models, an AR(1) and an MA(2), fit the GNP growth
rate well. To choose the final model, we compare the AIC, the AICc, and the BIC
for both models. These values are a byproduct of the sarima runs displayed at the
end of Example 3.39, but for convenience, we display them again here (recall the
growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)

$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748
sarima(gnpgr, 0, 0, 2) # MA(2)

$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1)model. It is often the case that the BIC will select a model of smaller
order than the AIC or AICc. In either case, it is not unreasonable to retain the AR(1)
because pure autoregressive models are easier to work with.

3.8 Regression with Autocorrelated Errors

In Sect. 2.1, we covered the classical regression model with uncorrelated errors wt .
In this section, we discuss the modifications that might be considered when the errors
are correlated. That is, consider the regression model

yt =

r∑

j=1
βj zt j + xt (3.156)
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where xt is a process with some covariance function γx(s, t). In ordinary least squares,
the assumption is that xt is white Gaussian noise, in which case γx(s, t) = 0 for s � t
and γx(t, t) = σ2, independent of t. If this is not the case, then weighted least squares
should be used.

Write the model in vector notation, y = Zβ + x, where y = (y1, . . . , yn)′ and
x = (x1, . . . , xn)′ are n×1 vectors, β = (β1, . . . , βr )′ is r×1, and Z = [z1 | z2 | · · · | zn]′
is the n× r matrix composed of the input variables. Let Γ = {γx(s, t)}, then Γ−1/2y =

Γ−1/2Zβ + Γ−1/2x, so that we can write the model as

y∗ = Z∗β + δ ,

where y∗ = Γ−1/2y, Z∗ = Γ−1/2Z , and δ = Γ−1/2x. Consequently, the covariance
matrix of δ is the identity and the model is in the classical linear model form. It follows
that the weighted estimate of β is β̂w = (Z∗′Z∗)−1Z∗′ y∗ = (Z ′Γ−1Z)−1Z ′Γ−1y, and
the variance-covariance matrix of the estimator is var(β̂w) = (Z ′Γ−1Z)−1. If xt is
white noise, then Γ = σ2I and these results reduce to the usual least squares results.

In the time series case, it is often possible to assume a stationary covariance
structure for the error process xt that corresponds to a linear process and try to find
an ARMA representation for xt . For example, if we have a pure AR(p) error, then

φ(B)xt = wt,

and φ(B) = 1 − φ1B − · · · − φpBp is the linear transformation that, when applied to
the error process, produces the white noise wt . Multiplying the regression equation
through by the transformation φ(B) yields,

φ(B)yt
︸�︷︷�︸

y∗t

=

r∑

j=1
βj φ(B)zt j

︸��︷︷��︸
z∗t j

+ φ(B)xt
︸�︷︷�︸

wt

,

and we are back to the linear regression model where the observations have been
transformed so that y∗t = φ(B)yt is the dependent variable, z∗t j = φ(B)zt j for j =

1, . . . , r, are the independent variables, but the βs are the same as in the original
model. For example, if p = 1, then y∗t = yt − φyt−1 and z∗t j = zt j − φzt−1, j .

In the AR case, we may set up the least squares problem as minimizing the error
sum of squares

S(φ, β) =
n∑

t=1
w2
t =

n∑

t=1

[
φ(B)yt −

r∑

j=1
βjφ(B)zt j

]2

with respect to all the parameters, φ = {φ1, . . . , φp} and β = {β1, . . . , βr }. Of course,
the optimization is performed using numerical methods.

If the error process is ARMA(p, q), i.e., φ(B)xt = θ(B)wt , then in the above
discussion, we transform by π(B)xt = wt , where π(B) = θ(B)−1φ(B). In this case the
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error sum of squares also depends on θ = {θ1, . . . , θq}:

S(φ, θ, β) =
n∑

t=1
w2
t =

n∑

t=1

[
π(B)yt −

r∑

j=1
βjπ(B)zt j

]2

At this point, the main problem is that we do not typically know the behavior
of the noise xt prior to the analysis. An easy way to tackle this problem was first
presented in Cochrane and Orcutt [43], and with the advent of cheap computing is
modernized below:

(i) First, run an ordinary regression of yt on zt1, . . . , ztr (acting as if the errors are
uncorrelated). Retain the residuals, x̂t = yt −∑r

j=1 β̂j zt j .
(ii) Identify ARMA model(s) for the residuals x̂t .
(iii) Run weighted least squares (or MLE) on the regression model with autocorre-

lated errors using the model specified in step (ii).
(iv) Inspect the residuals ŵt for whiteness, and adjust the model if necessary.

Example 3.44 Mortality, Temperature and Pollution
We consider the analyses presented in Example 2.2, relating mean adjusted tem-
perature Tt , and particulate levels Pt to cardiovascular mortality Mt . We consider
the regression model

Mt = β1 + β2t + β3Tt + β4T2
t + β5Pt + xt, (3.157)

where, for now, we assume that xt is white noise. The sample ACF and PACF of
the residuals from the ordinary least squares fit of (3.157) are shown in Fig. 3.19,
and the results suggest an AR(2) model for the residuals.

Our next step is to fit the correlated error model (3.157), but where xt is AR(2),

xt = φ1xt−1 + φ2xt−2 + wt

and wt is white noise. The model can be fit using the sarima function as follows
(partial output shown).
trend = time(cmort); temp = tempr - mean(tempr); temp2 = temp^2
summary(fit <- lm(cmort~trend + temp + temp2 + part, na.action=NULL))
acf2(resid(fit), 52) # implies AR2
sarima(cmort, 2,0,0, xreg=cbind(trend,temp,temp2,part))
Coefficients:

ar1 ar2 intercept trend temp temp2 part
0.3848 0.4326 80.2116 -1.5165 -0.0190 0.0154 0.1545

s.e. 0.0436 0.0400 1.8072 0.4226 0.0495 0.0020 0.0272
sigma^2 estimated as 26.01: loglikelihood = -1549.04, aic = 3114.07

The residual analysis output from sarima (not shown) shows no obvious departure
of the residuals from whiteness.
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Fig. 3.19. Sample ACF and PACF of the mortality residuals indicating an AR(2) process

Example 3.45 Regression with Lagged Variables (cont)
In Example 2.9 we fit the model

Rt = β0 + β1St−6 + β2Dt−6 + β3Dt−6 St−6 + wt,

where Rt is Recruitment, St is SOI, and Dt is a dummy variable that is 0 if St < 0
and 1 otherwise. However, residual analysis indicates that the residuals are not
white noise. The sample (P)ACF of the residuals indicates that an AR(2) model
might be appropriate, which is similar to the results of Example 3.44. We display
partial results of the final model below.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec ~soiL6*dL6, data=fish, na.action=NULL))
attach(fish)
plot(resid(fit))
acf2(resid(fit)) # indicates AR(2)
intract = soiL6*dL6 # interaction term
sarima(rec,2,0,0, xreg = cbind(soiL6, dL6, intract))
$ttable

Estimate SE t.value p.value
ar1 1.3624 0.0440 30.9303 0.0000
ar2 -0.4703 0.0444 -10.5902 0.0000
intercept 64.8028 4.1121 15.7590 0.0000
soiL6 8.6671 2.2205 3.9033 0.0001
dL6 -2.5945 0.9535 -2.7209 0.0068
intract -10.3092 2.8311 -3.6415 0.0003

3.9 Multiplicative Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA model to
account for seasonal and nonstationary behavior. Often, the dependence on the
past tends to occur most strongly at multiples of some underlying seasonal lag s.
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For example, with monthly economic data, there is a strong yearly component oc-
curring at lags that are multiples of s = 12, because of the strong connections of
all activity to the calendar year. Data taken quarterly will exhibit the yearly repet-
itive period at s = 4 quarters. Natural phenomena such as temperature also have
strong components corresponding to seasons. Hence, the natural variability of many
physical, biological, and economic processes tends to match with seasonal fluctu-
ations. Because of this, it is appropriate to introduce autoregressive and moving
average polynomials that identify with the seasonal lags. The resulting pure seasonal
autoregressive moving average model, say, ARMA(P,Q)s, then takes the form

ΦP(Bs)xt = ΘQ(Bs)wt, (3.158)

where the operators

ΦP(Bs) = 1 −Φ1Bs −Φ2B2s − · · · −ΦPBPs (3.159)

and
ΘQ(Bs) = 1 +Θ1Bs +Θ2B2s + · · · +ΘQBQs (3.160)

are the seasonal autoregressive operator and the seasonal moving average opera-
tor of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure seasonal
ARMA(P,Q)s is causal only when the roots ofΦP(zs) lie outside the unit circle, and
it is invertible only when the roots of ΘQ(zs) lie outside the unit circle.

Example 3.46 A Seasonal AR Series
A first-order seasonal autoregressive series that might run over months could be
written as

(1 −ΦB12)xt = wt

or
xt =Φxt−12 + wt .

This model exhibits the series xt in terms of past lags at the multiple of the yearly
seasonal period s = 12 months. It is clear from the above form that estimation and
forecasting for such a process involves only straightforward modifications of the
unit lag case already treated. In particular, the causal condition requires |Φ| < 1.

We simulated 3 years of data from the model with Φ = .9, and exhibit the
theoretical ACF and PACF of the model. See Fig. 3.20.
set.seed(666)
phi = c(rep(0,11),.9)
sAR = arima.sim(list(order=c(12,0,0), ar=phi), n=37)
sAR = ts(sAR, freq=12)
layout(matrix(c(1,1,2, 1,1,3), nc=2))
par(mar=c(3,3,2,1), mgp=c(1.6,.6,0))
plot(sAR, axes=FALSE, main='seasonal AR(1)', xlab="year", type='c')
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(sAR, pch=Months, cex=1.25, font=4, col=1:4)
axis(1, 1:4); abline(v=1:4, lty=2, col=gray(.7))
axis(2); box()
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Fig. 3.20. Data generated from a seasonal (s = 12) AR(1), and the true ACF and PACF of the
model xt = .9xt−12 + wt

ACF = ARMAacf(ar=phi, ma=0, 100)
PACF = ARMAacf(ar=phi, ma=0, 100, pacf=TRUE)
plot(ACF,type="h", xlab="LAG", ylim=c(-.1,1)); abline(h=0)
plot(PACF, type="h", xlab="LAG", ylim=c(-.1,1)); abline(h=0)

For the first-order seasonal (s = 12) MA model, xt = wt + Θwt−12, it is easy to
verify that

γ(0) = (1 +Θ2)σ2

γ(±12) = Θσ2

γ(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is

ρ(±12) = Θ/(1 +Θ2).
For the first-order seasonal (s = 12) AR model, using the techniques of the

nonseasonal AR(1), we have

γ(0) = σ2/(1 −Φ2)
γ(±12k) = σ2Φk/(1 −Φ2) k = 1, 2, . . .

γ(h) = 0, otherwise.

In this case, the only non-zero correlations are

ρ(±12k) = Φk, k = 0, 1, 2, . . . .

These results can be verified using the general result that γ(h) =Φγ(h−12), for h ≥ 1.
For example, when h = 1, γ(1) = Φγ(11), but when h = 11, we have γ(11) = Φγ(1),
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Table 3.3. Behavior of the ACF and PACF for pure SARMA models

AR(P)s MA(Q)s ARMA(P,Q)s
ACF* Tails off at lags ks, Cuts off after Tails off at

k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts off after Tails off at lags ks Tails off at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h � ks, for k = 1, 2, . . ., are zero

which implies that γ(1) = γ(11) = 0. In addition to these results, the PACF have
the analogous extensions from nonseasonal to seasonal models. These results are
demonstrated in Fig. 3.20.

As an initial diagnostic criterion, we can use the properties for the pure seasonal
autoregressive and moving average series listed in Table 3.3. These properties may
be considered as generalizations of the properties for nonseasonal models that were
presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into a multi-
plicative seasonal autoregressive moving average model, denoted by ARMA(p, q) ×
(P,Q)s, and write

ΦP(Bs)φ(B)xt = ΘQ(Bs)θ(B)wt (3.161)
as the overall model. Although the diagnostic properties in Table 3.3 are not strictly
true for the overall mixed model, the behavior of the ACF and PACF tends to show
rough patterns of the indicated form. In fact, for mixed models, we tend to see a
mixture of the facts listed in Tables 3.1 and 3.3. In fitting such models, focusing on
the seasonal autoregressive and moving average components first generally leads to
more satisfactory results.
Example 3.47 A Mixed Seasonal Model

Consider an ARMA(0, 1) × (1, 0)12 model

xt = Φxt−12 + wt + θwt−1,

where |Φ| < 1 and |θ | < 1. Then, because xt−12, wt , and wt−1 are uncorrelated, and
xt is stationary, γ(0) = Φ2γ(0) + σ2

w + θ2σ2
w, or

γ(0) = 1 + θ2

1 −Φ2 σ2
w .

In addition, multiplying the model by xt−h, h > 0, and taking expectations, we have
γ(1) = Φγ(11) + θσ2

w , and γ(h) = Φγ(h − 12), for h ≥ 2. Thus, the ACF for this
model is

ρ(12h) = Φh h = 1, 2, . . .
ρ(12h − 1) = ρ(12h + 1) = θ

1 + θ2Φ
h h = 0, 1, 2, . . . ,

ρ(h) = 0, otherwise.
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Fig. 3.21. ACF and PACF of the mixed seasonal ARMA model xt = .8xt−12 + wt − .5wt−1

The ACF and PACF for this model, withΦ = .8 and θ = −.5, are shown in Fig. 3.21.
These type of correlation relationships, although idealized here, are typically seen
with seasonal data.

To reproduce Fig. 3.21 in R, use the following commands:
phi = c(rep(0,11),.8)
ACF = ARMAacf(ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf(ar=phi, ma=-.5, 50, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="LAG", ylim=c(-.4,.8)); abline(h=0)
plot(PACF, type="h", xlab="LAG", ylim=c(-.4,.8)); abline(h=0)

Seasonal persistence occurs when the process is nearly periodic in the season. For
example, with average monthly temperatures over the years, each January would be
approximately the same, each February would be approximately the same, and so on.
In this case, we might think of average monthly temperature xt as being modeled as

xt = St + wt,

where St is a seasonal component that varies a little from one year to the next,
according to a random walk,

St = St−12 + vt .

In this model, wt and vt are uncorrelated white noise processes. The tendency of data
to follow this type of model will be exhibited in a sample ACF that is large and decays
very slowly at lags h = 12k, for k = 1, 2, . . . . If we subtract the effect of successive
years from each other, we find that

(1 − B12)xt = xt − xt−12 = vt + wt − wt−12.

This model is a stationary MA(1)12, and its ACF will have a peak only at lag 12.
In general, seasonal differencing can be indicated when the ACF decays slowly at
multiples of some season s, but is negligible between the periods. Then, a seasonal
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difference of order D is defined as

∇D
s xt = (1 − Bs)D xt, (3.162)

where D = 1, 2, . . ., takes positive integer values. Typically, D = 1 is sufficient to
obtain seasonal stationarity. Incorporating these ideas into a general model leads to
the following definition.

Definition 3.12 The multiplicative seasonal autoregressive integrated moving av-
erage model, or SARIMA model is given by

ΦP(Bs)φ(B)∇D
s ∇dxt = δ +ΘQ(Bs)θ(B)wt, (3.163)

where wt is the usual Gaussian white noise process. The general model is denoted
as ARIMA(p, d, q) × (P, D,Q)s. The ordinary autoregressive and moving average
components are represented by polynomials φ(B) and θ(B) of orders p and q, respec-
tively, and the seasonal autoregressive and moving average components by ΦP(Bs)
and ΘQ(Bs) of orders P and Q and ordinary and seasonal difference components by
∇d = (1 − B)d and ∇D

s = (1 − Bs)D.

Example 3.48 An SARIMA Model
Consider the following model, which often provides a reasonable representation
for seasonal, nonstationary, economic time series. We exhibit the equations for the
model, denoted by ARIMA(0, 1, 1) × (0, 1, 1)12 in the notation given above, where
the seasonal fluctuations occur every 12 months. Then, with δ = 0, the model
(3.163) becomes

∇12∇xt = Θ(B12)θ(B)wt

or
(1 − B12)(1 − B)xt = (1 + ΘB12)(1 + θB)wt . (3.164)

Expanding both sides of (3.164) leads to the representation

(1 − B − B12 + B13)xt = (1 + θB +ΘB12 +ΘθB13)wt,

or in difference equation form

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 +Θwt−12 +Θθwt−13 .

Note that the multiplicative nature of the model implies that the coefficient of wt−13
is the product of the coefficients of wt−1 and wt−12 rather than a free parameter.
The multiplicative model assumption seems to work well with many seasonal time
series data sets while reducing the number of parameters that must be estimated.

Selecting the appropriate model for a given set of data from all of those represented
by the general form (3.163) is a daunting task, and we usually think first in terms of
finding difference operators that produce a roughly stationary series and then in terms
of finding a set of simple autoregressive moving average or multiplicative seasonal
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Fig. 3.22. R data set AirPassengers, which are the monthly totals of international airline
passengers x, and the transformed data: lx = log xt , dlx = ∇ log xt , and ddlx = ∇12∇ log xt

ARMA to fit the resulting residual series. Differencing operations are applied first,
and then the residuals are constructed from a series of reduced length. Next, the ACF
and the PACF of these residuals are evaluated. Peaks that appear in these functions
can often be eliminated by fitting an autoregressive or moving average component in
accordance with the general properties of Tables 3.1 and 3.3. In considering whether
the model is satisfactory, the diagnostic techniques discussed in Sect. 3.7 still apply.

Example 3.49 Air Passengers
We consider the R data set AirPassengers, which are the monthly totals of interna-
tional airline passengers, 1949 to 1960, taken from Box and Jenkins [30]. Various
plots of the data and transformed data are shown in Fig. 3.22 and were obtained as
follows:
x = AirPassengers
lx = log(x); dlx = diff(lx); ddlx = diff(dlx, 12)
plot.ts(cbind(x,lx,dlx,ddlx), main="")
# below of interest for showing seasonal RW (not shown here):
par(mfrow=c(2,1))
monthplot(dlx); monthplot(ddlx)



152 3 ARIMA Models

0 1 2 3 4
−0

.4
0.

0
0.

4
LAG

AC
F

0 1 2 3 4

−0
.4

0.
0

0.
4

LAG

PA
C

F

Fig. 3.23. Sample ACF and PACF of ddlx (∇12∇ log xt )

Note that x is the original series, which shows trend plus increasing variance. The
logged data are in lx, and the transformation stabilizes the variance. The logged data
are then differenced to remove trend, and are stored in dlx. It is clear the there is still
persistence in the seasons (i.e., dlxt ≈ dlxt−12), so that a twelfth-order difference
is applied and stored in ddlx. The transformed data appears to be stationary and we
are now ready to fit a model.

The sample ACF and PACF of ddlx (∇12∇ log xt ) are shown in Fig. 3.23. The
R code is:
acf2(ddlx,50)

Seasonsal Component: It appears that at the seasons, the ACF is cutting off a lag
1s (s = 12), whereas the PACF is tailing off at lags 1s, 2s, 3s, 4s, . . . . These results
implies an SMA(1), P = 0, Q = 1, in the season (s = 12).
Non-Seasonsal Component: Inspecting the sample ACF and PACF at the lower lags,
it appears as though both are tailing off. This suggests an ARMA(1, 1) within the
seasons, p = q = 1.

Thus, we first try an ARIMA(1, 1, 1) × (0, 1, 1)12 on the logged data:
sarima(lx, 1,1,1, 0,1,1,12)
Coefficients:

ar1 ma1 sma1
0.1960 -0.5784 -0.5643

s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.001341
$AIC -5.5726 $AICc -5.556713 $BIC -6.510729

However, the AR parameter is not significant, so we should try dropping one
parameter from the within seasons part. In this case, we try both an ARIMA(0,1, 1)×
(0, 1, 1)12 and an ARIMA(1, 1, 0) × (0, 1, 1)12 model:
sarima(lx, 0,1,1, 0,1,1,12)
Coefficients:

ma1 sma1
-0.4018 -0.5569

s.e. 0.0896 0.0731
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Fig. 3.24. Residual analysis for the ARIMA(0, 1, 1) × (0, 1, 1)12 fit to the logged air passengers
data set

sigma^2 estimated as 0.001348
$AIC -5.58133 $AICc -5.56625 $BIC -6.540082

sarima(lx, 1,1,0, 0,1,1,12)
Coefficients:

ar1 sma1
-0.3395 -0.5619

s.e. 0.0822 0.0748
sigma^2 estimated as 0.001367
$AIC -5.567081 $AICc -5.552002 $BIC -6.525834

All information criteria prefer the ARIMA(0, 1, 1) × (0, 1, 1)12 model, which is the
model displayed in (3.164). The residual diagnostics are shown in Fig. 3.24, and
except for one or two outliers, the model seems to fit well.

Finally, we forecast the logged data out twelve months, and the results are shown
in Fig. 3.25.
sarima.for(lx, 12, 0,1,1, 0,1,1,12)
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Fig. 3.25. Twelve month forecast using the ARIMA(0, 1, 1) × (0, 1, 1)12 model on the logged
air passenger data set

Problems

Section 3.1

3.1 For an MA(1), xt = wt + θwt−1, show that |ρx(1)| ≤ 1/2 for any number θ. For
which values of θ does ρx(1) attain its maximum and minimum?

3.2 Let {wt ; t = 0, 1, . . . } be a white noise process with variance σ2
w and let |φ| < 1

be a constant. Consider the process x0 = w0, and

xt = φxt−1 + wt, t = 1, 2, . . . .

We might use this method to simulate an AR(1) process from simulated white noise.

(a) Show that xt =
∑t

j=0 φ
jwt−j for any t = 0, 1, . . . .

(b) Find the E(xt ).
(c) Show that, for t = 0, 1, . . .,

var(xt ) = σ2
w

1 − φ2 (1 − φ2(t+1))

(d) Show that, for h ≥ 0,
cov(xt+h, xt ) = φhvar(xt )

(e) Is xt stationary?
(f) Argue that, as t → ∞, the process becomes stationary, so in a sense, xt is

“asymptotically stationary.”
(g) Comment on how you could use these results to simulate n observations of a

stationary Gaussian AR(1) model from simulated iid N(0,1) values.
(h) Now suppose x0 = w0/

√
1 − φ2. Is this process stationary? Hint: Show var(xt ) is

constant.
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3.3 Verify the calculations made in Example 3.4 as follows.

(a) Let xt = φxt−1 + wt where |φ| > 1 and wt ∼ iid N(0, σ2
w). Show E(xt ) = 0 and

γx(h) = σ2
wφ

−2 φ−h/(1 − φ−2) for h ≥ 0.
(b) Let yt = φ−1yt−1 + vt where vt ∼ iid N(0, σ2

wφ
−2) and φ and σw are as in part (a).

Argue that yt is causal with the same mean function and autocovariance function
as xt .

3.4 Identify the following models as ARMA(p, q) models (watch out for parameter
redundancy), and determine whether they are causal and/or invertible:

(a) xt = .80xt−1 − .15xt−2 + wt − .30wt−1.
(b) xt = xt−1 − .50xt−2 + wt − wt−1.

3.5 Verify the causal conditions for an AR(2) model given in (3.28). That is, show
that an AR(2) is causal if and only if (3.28) holds.

Section 3.2

3.6 For the AR(2) model given by xt = −.9xt−2 +wt , find the roots of the autoregres-
sive polynomial, and then plot the ACF, ρ(h).
3.7 For the AR(2) series shown below, use the results of Example 3.10 to determine a
set of difference equations that can be used to find the ACF ρ(h), h = 0, 1, . . .; solve
for the constants in the ACF using the initial conditions. Then plot the ACF values to
lag 10 (use ARMAacf as a check on your answers).

(a) xt + 1.6xt−1 + .64xt−2 = wt .
(b) xt − .40xt−1 − .45xt−2 = wt .
(c) xt − 1.2xt−1 + .85xt−2 = wt .

Section 3.3

3.8 Verify the calculations for the autocorrelation function of an ARMA(1, 1) process
given in Example 3.14. Compare the form with that of the ACF for the ARMA(1, 0)
and the ARMA(0, 1) series. Plot the ACFs of the three series on the same graph for
φ = .6, θ = .9, and comment on the diagnostic capabilities of the ACF in this case.

3.9 Generate n = 100 observations from each of the three models discussed in Prob-
lem 3.8. Compute the sample ACF for each model and compare it to the theoretical
values. Compute the sample PACF for each of the generated series and compare the
sample ACFs and PACFs with the general results given in Table 3.1.
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Section 3.4

3.10 Let xt represent the cardiovascular mortality series (cmort) discussed in
Example 2.2.

(a) Fit an AR(2) to xt using linear regression as in Example 3.18.
(b) Assuming the fitted model in (a) is the true model, find the forecasts over a four-

week horizon, xnn+m, for m = 1, 2, 3, 4, and the corresponding 95% prediction
intervals.

3.11 Consider the MA(1) series

xt = wt + θwt−1,

where wt is white noise with variance σ2
w .

(a) Derive the minimum mean-square error one-step forecast based on the infinite
past, and determine the mean-square error of this forecast.

(b) Let x̃n
n+1 be the truncated one-step-ahead forecast as given in (3.92). Show that

E
[(xn+1 − x̃nn+1)2

]
= σ2(1 + θ2+2n).

Compare the result with (a), and indicate how well the finite approximation works
in this case.

3.12 In the context of equation (3.63), show that, if γ(0) > 0 and γ(h) → 0 as h →∞,
then Γn is positive definite.

3.13 Suppose xt is stationary with zero mean and recall the definition of the PACF
given by (3.55) and (3.56). That is, let

εt = xt −
h−1∑

i=1
aixt−i and δt−h = xt−h −

h−1∑

j=1
bj xt−j

be the two residuals where {a1, . . . , ah−1} and {b1, . . . , bh−1} are chosen so that they
minimize the mean-squared errors

E[ε2
t ] and E[δ2

t−h].
The PACF at lag h was defined as the cross-correlation between εt and δt−h; that is,

φhh =
E(εtδt−h)

√
E(ε2

t )E(δ2
t−h)

.

Let Rh be the h × h matrix with elements ρ(i − j) for i, j = 1, . . . , h, and let ρh =

(ρ(1), ρ(2), . . . , ρ(h))′ be the vector of lagged autocorrelations, ρ(h) = corr(xt+h, xt ).
Let ρ̃h = (ρ(h), ρ(h − 1), . . . , ρ(1))′ be the reversed vector. In addition, let xht denote
the BLP of xt given {xt−1, . . . , xt−h}:

xht = αh1xt−1 + · · · + αhhxt−h,
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as described in Property 3.3. Prove

φhh =
ρ(h) − ρ̃′

h−1R−1
h−1ρh

1 − ρ̃′
h−1R−1

h−1 ρ̃h−1
= αhh .

In particular, this result proves Property 3.4.
Hint: Divide the prediction equations [see (3.63)] by γ(0) and write the matrix

equation in the partitioned form as
(
Rh−1 ρ̃h−1
ρ̃′
h−1 ρ(0)

) (
α1
αhh

)

=

(
ρh−1
ρ(h)

)

,

where the h × 1 vector of coefficients α = (αh1, . . . , αhh)′ is partitioned as α =

(α′1, αhh)′.
3.14 Suppose we wish to find a prediction function g(x) that minimizes

MSE = E[(y − g(x))2],
where x and y are jointly distributed random variables with density function f (x, y).
(a) Show that MSE is minimized by the choice

g(x) = E(y /
/ x).

Hint:
MSE = EE[(y − g(x))2 | x].

(b) Apply the above result to the model

y = x2 + z,

where x and z are independent zero-mean normal variables with variance one.
Show that MSE = 1.

(c) Suppose we restrict our choices for the function g(x) to linear functions of the
form

g(x) = a + bx

and determine a and b to minimize MSE . Show that a = 1 and

b =
E(xy)
E(x2) = 0

and MSE = 3. What do you interpret this to mean?

3.15 For an AR(1) model, determine the general form of the m-step-ahead forecast
xtt+m and show

E[(xt+m − xtt+m)2] = σ2
w

1 − φ2m

1 − φ2 .
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3.16 Consider the ARMA(1,1) model discussed in Example 3.8, equation (3.27); that
is, xt = .9xt−1 + .5wt−1 + wt . Show that truncated prediction as defined in (3.91) is
equivalent to truncated prediction using the recursive formula (3.92).

3.17 Verify statement (3.87), that for a fixed sample size, the ARMA prediction errors
are correlated.

Section 3.5

3.18 Fit an AR(2) model to the cardiovascular mortality series (cmort) discussed in
Example 2.2. using linear regression and using Yule–Walker.

(a) Compare the parameter estimates obtained by the two methods.
(b) Compare the estimated standard errors of the coefficients obtained by linear

regression with their corresponding asymptotic approximations, as given in
Property 3.10.

3.19 Suppose x1, . . . , xn are observations from an AR(1) process with μ = 0.

(a) Show the backcasts can be written as xnt = φ1−t x1, for t ≤ 1.
(b) In turn, show, for t ≤ 1, the backcasted errors are

w̃t (φ) = xnt − φxnt−1 = φ1−t (1 − φ2)x1.

(c) Use the result of (b) to show
∑1

t=−∞ w̃2
t (φ) = (1 − φ2)x2

1 .
(d) Use the result of (c) to verify the unconditional sum of squares, S(φ), can be

written as
∑n

t=−∞ w̃2
t (φ).

(e) Find xt−1
t and rt for 1 ≤ t ≤ n, and show that

S(φ) =
n∑

t=1
(xt − xt−1

t )2 /
rt .

3.20 Repeat the following numerical exercise three times. Generate n = 500 obser-
vations from the ARMA model given by

xt = .9xt−1 + wt − .9wt−1,

with wt ∼ iid N(0, 1). Plot the simulated data, compute the sample ACF and PACF
of the simulated data, and fit an ARMA(1, 1) model to the data. What happened and
how do you explain the results?

3.21 Generate 10 realizations of length n = 200 each of an ARMA(1,1) process with
φ = .9, θ = .5 and σ2 = 1. Find the MLEs of the three parameters in each case and
compare the estimators to the true values.

3.22 Generate n = 50 observations from a Gaussian AR(1) model with φ = .99 and
σw = 1. Using an estimation technique of your choice, compare the approximate
asymptotic distribution of your estimate (the one you would use for inference) with
the results of a bootstrap experiment (use B = 200).
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3.23 Using Example 3.32 as your guide, find the Gauss–Newton procedure for es-
timating the autoregressive parameter, φ, from the AR(1) model, xt = φxt−1 + wt ,
given data x1, . . . , xn. Does this procedure produce the unconditional or the condi-
tional estimator? Hint: Write the model as wt (φ) = xt − φxt−1; your solution should
work out to be a non-recursive procedure.

3.24 Consider the stationary series generated by

xt = α + φxt−1 + wt + θwt−1,

where E(xt ) = μ, |θ | < 1, |φ| < 1 and the wt are iid random variables with zero mean
and variance σ2

w .

(a) Determine the mean as a function of α for the above model. Find the autocovari-
ance and ACF of the process xt , and show that the process is weakly stationary.
Is the process strictly stationary?

(b) Prove the limiting distribution as n →∞ of the sample mean,

x̄ = n−1
n∑

t=1
xt,

is normal, and find its limiting mean and variance in terms of α, φ, θ, and σ2
w .

(Note: This part uses results from Appendix A.)

3.25 A problem of interest in the analysis of geophysical time series involves a simple
model for observed data containing a signal and a reflected version of the signal with
unknown amplification factor a and unknown time delay δ. For example, the depth
of an earthquake is proportional to the time delay δ for the P wave and its reflected
form pP on a seismic record. Assume the signal, say st , is white and Gaussian with
variance σ2

s , and consider the generating model

xt = st + ast−δ .

(a) Prove the process xt is stationary. If |a| < 1, show that

st =
∞∑

j=0
(−a)j xt−δ j

is a mean square convergent representation for the signal st , for t = 1,±1,±2, . . ..
(b) If the time delay δ is assumed to be known, suggest an approximate computational

method for estimating the parameters a and σ2
s using maximum likelihood and

the Gauss–Newton method.
(c) If the time delay δ is an unknown integer, specify how we could estimate the

parameters including δ. Generate a n = 500 point series with a = .9, σ2
w = 1 and

δ = 5. Estimate the integer time delay δ by searching over δ = 3, 4, . . . , 7.
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3.26 Forecasting with estimated parameters: Let x1, x2, . . . , xn be a sample of size n
from a causal AR(1) process, xt = φxt−1 + wt . Let φ̂ be the Yule–Walker estimator
of φ.

(a) Show φ̂ − φ = Op(n−1/2). See Appendix A for the definition of Op(·).
(b) Let xn

n+1 be the one-step-ahead forecast of xn+1 given the data x1, . . . , xn, based
on the known parameter, φ, and let x̂n

n+1 be the one-step-ahead forecast when the
parameter is replaced by φ̂. Show xn

n+1 − x̂n
n+1 = Op(n−1/2).

Section 3.6

3.27 Suppose
yt = β0 + β1t + · · · + βq tq + xt, βq � 0,

where xt is stationary. First, show that ∇k xt is stationary for any k = 1, 2, . . . , and
then show that ∇kyt is not stationary for k < q, but is stationary for k ≥ q.

3.28 Verify that the IMA(1,1) model given in (3.148) can be inverted and written
as (3.149).

3.29 For the ARIMA(1, 1, 0) model with drift, (1 − φB)(1 − B)xt = δ + wt, let
yt = (1 − B)xt = ∇xt .

(a) Noting that yt is AR(1), show that, for j ≥ 1,

ynn+j = δ [1 + φ + · · · + φ j−1] + φ j yn.

(b) Use part (a) to show that, for m = 1, 2, . . . ,

xnn+m = xn +
δ

1 − φ

[
m − φ(1 − φm)

(1 − φ)
]
+ (xn − xn−1)φ(1 − φm)

(1 − φ) .

Hint: From (a), xnn+j − xn
n+j−1 = δ

1−φ j

1−φ + φ j (xn − xn−1). Now sum both sides over
j from 1 to m.

(c) Use (3.145) to find Pn
n+m by first showing that ψ∗0 = 1, ψ∗1 = (1 + φ), and

ψ∗j − (1 + φ)ψ∗
j−1 + φψ∗

j−2 = 0 for j ≥ 2, in which case ψ∗j =
1−φ j+1

1−φ , for j ≥ 1.
Note that, as in Example 3.37, equation (3.145) is exact here.

3.30 For the logarithm of the glacial varve data, say, xt , presented in Example 3.33,
use the first 100 observations and calculate the EWMA, x̃t

t+1, given in (3.151) for
t = 1, . . . , 100, using λ = .25, .50, and .75, and plot the EWMAs and the data
superimposed on each other. Comment on the results.



Problems 161

Section 3.7

3.31 In Example 3.40, we presented the diagnostics for the MA(2) fit to the GNP
growth rate series. Using that example as a guide, complete the diagnostics for the
AR(1) fit.

3.32 Crude oil prices in dollars per barrel are in oil. Fit an ARIMA(p, d, q)model to
the growth rate performing all necessary diagnostics. Comment.

3.33 Fit an ARIMA(p, d, q)model to the global temperature data globtemp perform-
ing all of the necessary diagnostics. After deciding on an appropriate model, forecast
(with limits) the next 10 years. Comment.

3.34 Fit an ARIMA(p, d, q) model to the sulfur dioxide series, so2, performing all
of the necessary diagnostics. After deciding on an appropriate model, forecast the
data into the future four time periods ahead (about one month) and calculate 95%
prediction intervals for each of the four forecasts. Comment. (Sulfur dioxide is one
of the pollutants monitored in the mortality study described in Example 2.2.)

Sect. 3.8

3.35 Let St represent the monthly sales data in sales (n = 150), and let Lt be the
leading indicator in lead.

(a) Fit an ARIMA model to St , the monthly sales data. Discuss your model fitting
in a step-by-step fashion, presenting your (A) initial examination of the data, (B)
transformations, if necessary, (C) initial identification of the dependence orders
and degree of differencing, (D) parameter estimation, (E) residual diagnostics and
model choice.

(b) Use the CCF and lag plots between ∇St and ∇Lt to argue that a regression of ∇St
on ∇Lt−3 is reasonable. [Note that in lag2.plot(), the first named series is the
one that gets lagged.]

(c) Fit the regression model ∇St = β0 + β1∇Lt−3 + xt , where xt is an ARMA
process (explain how you decided on your model for xt ). Discuss your results.
[See Example 3.45 for help on coding this problem.]

3.36 One of the remarkable technological developments in the computer industry has
been the ability to store information densely on a hard drive. In addition, the cost of
storage has steadily declined causing problems of too much data as opposed to big
data. The data set for this assignment is cpg, which consists of the median annual
retail price per GB of hard drives, say ct , taken from a sample of manufacturers from
1980 to 2008.

(a) Plot ct and describe what you see.
(b) Argue that the curve ct versus t behaves like ct ≈ αeβt by fitting a linear regression

of log ct on t and then plotting the fitted line to compare it to the logged data.
Comment.
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(c) Inspect the residuals of the linear regression fit and comment.
(d) Fit the regression again, but now using the fact that the errors are autocorrelated.

Comment.

3.37 Redo Problem 2.2 without assuming the error term is white noise.

Sect. 3.9

3.38 Consider the ARIMA model

xt = wt + Θwt−2.

(a) Identify the model using the notation ARIMA(p, d, q) × (P, D,Q)s.
(b) Show that the series is invertible for |Θ | < 1, and find the coefficients in the

representation

wt =

∞∑

k=0
πk xt−k .

(c) Develop equations for the m-step ahead forecast, x̃n+m, and its variance based on
the infinite past, xn, xn−1, . . . .

3.39 Plot the ACF of the seasonal ARIMA(0, 1) × (1, 0)12 model with Φ = .8 and
θ = .5.

3.40 Fit a seasonal ARIMA model of your choice to the chicken price data in chicken.
Use the estimated model to forecast the next 12 months.

3.41 Fit a seasonal ARIMA model of your choice to the unemployment data in unemp.
Use the estimated model to forecast the next 12 months.

3.42 Fit a seasonal ARIMA model of your choice to the unemployment data in
UnempRate. Use the estimated model to forecast the next 12 months.

3.43 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth Series (birth).
Use the estimated model to forecast the next 12 months.

3.44 Fit an appropriate seasonal ARIMA model to the log-transformed Johnson and
Johnson earnings series (jj) of Example 1.1. Use the estimated model to forecast the
next 4 quarters.

The following problems require supplemental material given in Appendix B.

3.45 Suppose xt =
∑p

j=1 φ j xt−j + wt , where φp � 0 and wt is white noise such that
wt is uncorrelated with {xk ; k < t}. Use the Projection Theorem, Theorem B.1, to
show that, for n > p, the BLP of xn+1 on sp{xk, k ≤ n} is

x̂n+1 =

p∑

j=1
φ j xn+1−j .
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3.46 Use the Projection Theorem to derive the Innovations Algorithm, Property 3.6,
equations (3.77)-(3.79). Then, use Theorem B.2 to derive the m-step-ahead forecast
results given in (3.80) and (3.81).

3.47 Consider the series xt = wt −wt−1, where wt is a white noise process with mean
zero and variance σ2

w . Suppose we consider the problem of predicting xn+1, based on
only x1, . . . , xn. Use the Projection Theorem to answer the questions below.

(a) Show the best linear predictor is

xnn+1 = − 1
n + 1

n∑

k=1
k xk .

(b) Prove the mean square error is

E(xn+1 − xnn+1)2 =
n + 2
n + 1

σ2
w .

3.48 Use Theorem B.2 and Theorem B.3 to verify (3.117).

3.49 Prove Theorem B.2.

3.50 Prove Property 3.2.



Chapter 4

Spectral Analysis and Filtering

In this chapter, we focus on the frequency domain approach to time series analysis.
We argue that the concept of regularity of a series can best be expressed in terms of
periodic variations of the underlying phenomenon that produced the series. Many of
the examples in Sect. 1.1 are time series that are driven by periodic components. For
example, the speech recording in Fig. 1.3 contains a complicated mixture of frequen-
cies related to the opening and closing of the glottis. The monthly SOI displayed in
Fig. 1.5 contains two periodicities, a seasonal periodic component of 12 months and
an El Niño component of about three to seven years. Of fundamental interest is the
return period of the El Niño phenomenon, which can have profound effects on local
climate.

An important part of analyzing data in the frequency domain, as well as the time
domain, is the investigation and exploitation of the properties of the time-invariant
linear filter. This special linear transformation is used similarly to linear regression in
conventional statistics, and we use many of the same terms in the time series context.

We also introduce coherency as a tool for relating the common periodic behavior
of two series. Coherency is a frequency based measure of the correlation between
two series at a given frequency, and we show later that it measures the performance
of the best linear filter relating the two series.

Many frequency scales will often coexist, depending on the nature of the problem.
For example, in the Johnson & Johnson data set in Fig. 1.1, the predominant frequency
of oscillation is one cycle per year (4 quarters), or ω = .25 cycles per observation.
The predominant frequency in the SOI and fish populations series in Fig. 1.5 is also
one cycle per year, but this corresponds to 1 cycle every 12 months, or ω = .083
cycles per observation. Throughout the text, we measure frequency, ω, at cycles per
time point rather than the alternative λ = 2πω that would give radians per point. Of
descriptive interest is the period of a time series, defined as the number of points in
a cycle, i.e., 1/ω. Hence, the predominant period of the Johnson & Johnson series is
1/.25 or 4 quarters per cycle, whereas the predominant period of the SOI series is 12
months per cycle.

© Springer International Publishing AG 2017
R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52452-8_4
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4.1 Cyclical Behavior and Periodicity

We have already encountered the notion of periodicity in numerous examples in
Chapters 1, 2 and 3. The general notion of periodicity can be made more precise by
introducing some terminology. In order to define the rate at which a series oscillates,
we first define a cycle as one complete period of a sine or cosine function defined
over a unit time interval. As in (1.5), we consider the periodic process

xt = A cos(2πωt + φ) (4.1)

for t = 0,±1,±2, . . ., where ω is a frequency index, defined in cycles per unit time
with A determining the height or amplitude of the function and φ, called the phase,
determining the start point of the cosine function. We can introduce random variation
in this time series by allowing the amplitude and phase to vary randomly.

As discussed in Example 2.10, for purposes of data analysis, it is easier to use a
trigonometric identity1 and write (4.1) as

xt = U1 cos(2πωt) + U2 sin(2πωt), (4.2)

where U1 = A cos φ and U2 = −A sin φ are often taken to be normally distributed
random variables. In this case, the amplitude is A =

√(U2
1 + U2

2 ) and the phase is
φ = tan−1(−U2/U1). From these facts we can show that if, and only if, in (4.1), A
and φ are independent random variables, where A2 is chi-squared with 2 degrees of
freedom, and φ is uniformly distributed on (−π, π), then U1 and U2 are independent,
standard normal random variables (see Problem 4.3).

If we assume that U1 and U2 are uncorrelated random variables with mean 0
and variance σ2, then xt in (4.2) is stationary with mean E(xt ) = 0 and, writing
ct = cos(2πωt) and st = sin(2πωt), autocovariance function

γx(h) = cov(xt+h, xt ) = cov(U1ct+h + U2st+h,U1ct + U2st )
= cov(U1ct+h,U1ct ) + cov(U1ct+h,U2st )
+ cov(U2st+h,U1ct ) + cov(U2st+h,U2st )

= σ2ct+hct + 0 + 0 + σ2st+hst = σ2 cos(2πωh),

(4.3)

using Footnote 1 and noting that cov(U1,U2) = 0. From (4.3), we see that

var(xt ) = γx(0) = σ2 .

Thus, if we observe U1 = a and U2 = b, an estimate of σ2 is the sample variance of
these two observations, which in this case is simply S2 = a2+b2

2−1 = a2 + b2.
The random process in (4.2) is function of its frequency, ω. For ω = 1, the series

makes one cycle per time unit; for ω = .50, the series makes a cycle every two
time units; for ω = .25, every four units, and so on. In general, for data that occur
at discrete time points, we will need at least two points to determine a cycle, so the

1 cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β).
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highest frequency of interest is .5 cycles per point. This frequency is called the folding
frequency and defines the highest frequency that can be seen in discrete sampling.
Higher frequencies sampled this way will appear at lower frequencies, called aliases;
an example is the way a camera samples a rotating wheel on a moving automobile in
a movie, in which the wheel appears to be rotating at a different rate, and sometimes
backwards (the wagon wheel effect). For example, most movies are recorded at 24
frames per second (or 24 Hertz). If the camera is filming a wheel that is rotating at
24 Hertz, the wheel will appear to stand still.

Consider a generalization of (4.2) that allows mixtures of periodic series with
multiple frequencies and amplitudes,

xt =
q∑

k=1
[Uk1 cos(2πωkt) + Uk2 sin(2πωkt)] , (4.4)

where Uk1,Uk2, for k = 1, 2, . . . , q, are uncorrelated zero-mean random variables
with variances σ2

k
, and the ωk are distinct frequencies. Notice that (4.4) exhibits the

process as a sum of uncorrelated components, with variance σ2
k

for frequency ωk .
As in (4.3), it is easy to show (Problem 4.4) that the autocovariance function of the
process is

γx(h) =
q∑

k=1
σ2
k cos(2πωkh), (4.5)

and we note the autocovariance function is the sum of periodic components with
weights proportional to the variances σ2

k
. Hence, xt is a mean-zero stationary pro-

cesses with variance

γx(0) = var(xt ) =
q∑

k=1
σ2
k, (4.6)

exhibiting the overall variance as a sum of variances of each of the component parts.
As in the simple case, if we observe Uk1 = ak and Uk2 = bk for k = 1, . . . , q,

then an estimate of the kth variance component, σ2
k
, of var(xt ), would be the sample

variance S2
k
= a2

k
+ b2

k
. In addition, an estimate of the total variance of xt , namely,

γx(0) would be the sum of the sample variances,

γ̂x(0) = ˆvar(xt ) =
q∑

k=1
(a2

k + b2
k) . (4.7)

Hold on to this idea because we will use it in Example 4.2.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with q = 3 constructed in the
following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2πt 6/100) + 3 sin(2πt 6/100)
xt2 = 4 cos(2πt 10/100)+ 5 sin(2πt 10/100)
xt3 = 6 cos(2πt 40/100)+ 7 sin(2πt 40/100)
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15
Fig. 4.1. Periodic components and their sum as described in Example 4.1

These three series are displayed in Fig. 4.1 along with the corresponding frequencies
and squared amplitudes. For example, the squared amplitude of xt1 is A2 = 22+32 =

13. Hence, the maximum and minimum values that xt1 will attain are ±√13 =

±3.61.
Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Fig. 4.1. We note that xt appears to behave as
some of the periodic series we saw in Chapters 1 and 2. The systematic sorting
out of the essential frequency components in a time series, including their relative
contributions, constitutes one of the main objectives of spectral analysis. The R
code to reproduce Fig. 4.1 is
x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
plot.ts(x, ylim=c(-16,16), main="sum")

The model given in (4.4) along with the corresponding autocovariance function
given in (4.5) are population constructs. Although, in (4.7), we hinted as to how we
would estimate the variance components, we now discuss the practical aspects of
how, given data x1, . . . , xn, to actually estimate the variance components σ2

k
in (4.6).
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Example 4.2 Estimation and the Periodogram
For any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +

(n−1)/2∑

j=1

[
aj cos(2πt j/n) + bj sin(2πt j/n)] , (4.8)

for t = 1, . . . , n and suitably chosen coefficients. If n is even, the representation (4.8)
can be modified by summing to (n/2−1) and adding an additional component given
by an/2 cos(2πt 1

2 ) = an/2(−1)t . The crucial point here is that (4.8) is exact for any
sample. Hence (4.4) may be thought of as an approximation to (4.8), the idea being
that many of the coefficients in (4.8) may be close to zero.

Using the regression results from Chap. 2, the coefficients aj and bj are of
the form

∑n
t=1 xt zt j/∑n

t=1 z2
t j , where zt j is either cos(2πt j/n) or sin(2πt j/n). Us-

ing Problem 4.1,
∑n

t=1 z2
t j = n/2 when j/n � 0, 1/2, so the regression coefficients

in (4.8) can be written as (a0 = x̄),

aj =
2
n

n∑

t=1
xt cos(2πt j/n) and bj =

2
n

n∑

t=1
xt sin(2πt j/n).

We then define the scaled periodogram to be

P( j/n) = a2
j + b2

j, (4.9)

and it is of interest because it indicates which frequency components in (4.8) are
large in magnitude and which components are small. The scaled periodogram is
simply the sample variance at each frequency component and consequently is an
estimate of σ2

j corresponding to the sinusoid oscillating at a frequency of ωj = j/n.
These particular frequencies are called the Fourier or fundamental frequencies.
Large values of P( j/n) indicate which frequencies ωj = j/n are predominant
in the series, whereas small values of P( j/n) may be associated with noise. The
periodogram was introduced in Schuster [173] and used in Schuster [174] for
studying the periodicities in the sunspot series (shown in Fig. 4.22).

Fortunately, it is not necessary to run a large regression to obtain the values
of aj and bj because they can be computed quickly if n is a highly composite
integer. Although we will discuss it in more detail in Sect. 4.3, the discrete Fourier
transform (DFT) is a complex-valued weighted average of the data given by2

d( j/n) = n−1/2
n∑

t=1
xt exp(−2πit j/n)

= n−1/2
(

n∑

t=1
xt cos(2πt j/n) − i

n∑

t=1
xt sin(2πt j/n)

)

,

(4.10)

2 Euler’s formula: eiα = cos(α) + i sin(α). Consequently, cos(α) = eiα+e−iα
2 , and sin(α) = eiα−e−iα

2i .
Also, 1

i = −i because−i×i = 1. If z = a+ib is complex, then |z |2 = z z∗ = (a+ib)(a−ib) = a2+b2;
the * denotes conjugation.
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Fig. 4.2. The scaled periodogram (4.12) of the data generated in Example 4.1

for j = 0, 1, . . . , n − 1, where the frequencies j/n are the Fourier or fundamental
frequencies. Because of a large number of redundancies in the calculation, (4.10)
may be computed quickly using the fast Fourier transform (FFT). Note that

|d( j/n)|2 =
1
n

(
n∑

t=1
xt cos(2πt j/n)

)2

+
1
n

(
n∑

t=1
xt sin(2πt j/n)

)2

(4.11)

and it is this quantity that is called the periodogram. We may calculate the scaled
periodogram, (4.9), using the periodogram as

P( j/n) = 4
n |d( j/n)|2. (4.12)

The scaled periodogram of the data, xt , simulated in Example 4.1 is shown in
Fig. 4.2, and it clearly identifies the three components xt1, xt2, and xt3 of xt . Note
that

P( j/n) = P(1 − j/n), j = 0, 1, . . . , n − 1,

so there is a mirroring effect at the folding frequency of 1/2; consequently, the peri-
odogram is typically not plotted for frequencies higher than the folding frequency.
In addition, note that the heights of the scaled periodogram shown in the figure are

P( 6
100 ) = P( 94

100 ) = 13, P( 10
100 ) = P( 90

100 ) = 41, P( 40
100 ) = P( 60

100 ) = 85,

and P( j/n) = 0 otherwise. These are exactly the values of the squared amplitudes
of the components generated in Example 4.1.

Assuming the simulated data, x, were retained from the previous example, the
R code to reproduce Fig. 4.2 is
P = Mod(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="scaled periodogram")

Different packages scale the FFT differently, so it is a good idea to consult the
documentation. R computes it without the factor n−1/2 and with an additional factor
of e2πiωj that can be ignored because we will be interested in the squared modulus.



4.1 Cyclical Behavior and Periodicity 171

day

st
ar

 m
ag

ni
tu

de

0 100 200 300 400 500 600

0
10

20
30

0.00 0.02 0.04 0.06 0.08

0
40

00
10

00
0

Frequency

Pe
rio

do
gr

am

24 day cycle
29 day cycle

Fig. 4.3. Star magnitudes and part of the corresponding periodogram

If we consider the data xt in Example 4.1 as a color (waveform) made up of
primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we might consider
the periodogram as a prism that decomposes the color xt into its primary colors
(spectrum). Hence the term spectral analysis. The following is an example using
actual data.

Example 4.3 Star Magnitude
The data in Fig. 4.3 are the magnitude of a star taken at midnight for 600 consecutive
days. The data are taken from the classic text, The Calculus of Observations, a
Treatise on Numerical Mathematics, by E.T. Whittaker and G. Robinson, (1923,
Blackie & Son, Ltd.).

The periodogram for frequencies less than .08 is also displayed in the figure;
the periodogram ordinates for frequencies higher than .08 are essentially zero. Note
that the 29 (≈ 1/.035) day cycle and the 24 (≈ 1/.041) day cycle are the most
prominent periodic components of the data.

We can interpret this result as we are observing an amplitude modulated sig-
nal. For example, suppose we are observing signal-plus-noise, xt = st + vt , where
st = cos(2πωt) cos(2πδt), and δ is very small. In this case, the process will os-
cillate at frequency ω, but the amplitude will be modulated by cos(2πδt). Since
2 cos(α) cos(δ) = cos(α + δ) + cos(α − δ), the periodogram of data generated as xt
will have two peaks close to each other at α ± δ. Try this on your own:
t = 1:200
plot.ts(x <- 2*cos(2*pi*.2*t)*cos(2*pi*.01*t)) # not shown
lines(cos(2*pi*.19*t)+cos(2*pi*.21*t), col=2) # the same
Px = Mod(fft(x))^2; plot(0:199/200, Px, type='o') # the periodogram

The R code to reproduce Fig. 4.3 is
n = length(star)
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
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plot(star, ylab="star magnitude", xlab="day")
Per = Mod(fft(star-mean(star)))^2/n
Freq = (1:n -1)/n
plot(Freq[1:50], Per[1:50], type='h', lwd=3, ylab="Periodogram",

xlab="Frequency")
u = which.max(Per[1:50]) # 22 freq=21/600=.035 cycles/day
uu = which.max(Per[1:50][-u]) # 25 freq=25/600=.041 cycles/day
1/Freq[22]; 1/Freq[26] # period = days/cycle
text(.05, 7000, "24 day cycle"); text(.027, 9000, "29 day cycle")
### another way to find the two peaks is to order on Per
y = cbind(1:50, Freq[1:50], Per[1:50]); y[order(y[,3]),]

4.2 The Spectral Density

In this section, we define the fundamental frequency domain tool, the spectral density.
In addition, we discuss the spectral representations for stationary processes. Just as
the Wold decomposition (Theorem B.5) theoretically justified the use of regression
for analyzing time series, the spectral representation theorems supply the theoretical
justifications for decomposing stationary time series into periodic components ap-
pearing in proportion to their underlying variances. This material is enhanced by the
results presented in Appendix C.

Example 4.4 A Periodic Stationary Process
Consider a periodic stationary random process given by (4.2), with a fixed frequency
ω0, say,

xt = U1 cos(2πω0t) + U2 sin(2πω0t), (4.13)
where U1 and U2 are uncorrelated zero-mean random variables with equal variance
σ2. The number of time periods needed for the above series to complete one cycle is
exactly 1/ω0, and the process makes exactlyω0 cycles per point for t = 0,±1,±2, . . ..
Recalling (4.3) and using Footnote 2, we haveit has the representation

γ(h) = σ2 cos(2πω0h) = σ2

2
e−2πiω0h +

σ2

2
e2πiω0h

=

∫ 1
2

− 1
2

e2πiωhdF(ω)

using Riemann–Stieltjes integration (see Sect. C.4.1), where F(ω) is the function
defined by

F(ω) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

0 ω < −ω0,

σ2/2 −ω0 ≤ ω < ω0,

σ2 ω ≥ ω0.

The function F(ω) behaves like a cumulative distribution function for a discrete
random variable, except that F(∞) = σ2 = var(xt ) instead of one. In fact, F(ω) is a
cumulative distribution function, not of probabilities, but rather of variances, with
F(∞) being the total variance of the process xt . Hence, we term F(ω) the spectral
distribution function. This example is continued in Example 4.9.



4.2 The Spectral Density 173

A representation such as the one given in Example 4.4 always exists for a stationary
process. For details, see Theorem C.1 and its proof; Riemann–Stieltjes integration is
described in Sect. C.4.1.

Property 4.1 Spectral Representation of an Autocovariance Function
If {xt } is stationary with autocovariance γ(h) = cov(xt+h, xt ), then there exists

a unique monotonically increasing function F(ω), called the spectral distribution
function, with F(−∞) = F(−1/2) = 0, and F(∞) = F(1/2) = γ(0) such that

γ(h) =
∫ 1

2

− 1
2

e2πiωh dF(ω). (4.14)

An important situation we use repeatedly is the case when the autocovariance
function is absolutely summable, in which case the spectral distribution function is
absolutely continuous with dF(ω) = f (ω) dω, and the representation (4.14) becomes
the motivation for the property given below.

Property 4.2 The Spectral Density
If the autocovariance function, γ(h), of a stationary process satisfies

∞∑

h=−∞
|γ(h)| < ∞, (4.15)

then it has the representation

γ(h) =
∫ 1

2

− 1
2

e2πiωh f (ω) dω h = 0,±1,±2, . . . (4.16)

as the inverse transform of the spectral density,

f (ω) =
∞∑

h=−∞
γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.17)

This spectral density is the analogue of the probability density function; the fact
that γ(h) is non-negative definite ensures

f (ω) ≥ 0

for all ω. It follows immediately from (4.17) that

f (ω) = f (−ω)
verifying the spectral density is an even function. Because of the evenness, we will
typically only plot f (ω) for 0 ≤ ω ≤ 1/2. In addition, putting h = 0 in (4.16) yields

γ(0) = var(xt ) =
∫ 1

2

− 1
2

f (ω) dω,
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which expresses the total variance as the integrated spectral density over all of the
frequencies. We show later on, that a linear filter can isolate the variance in certain
frequency intervals or bands.

It should now be clear that the autocovariance and the spectral distribution func-
tions contain the same information. That information, however, is expressed in dif-
ferent ways. The autocovariance function expresses information in terms of lags,
whereas the spectral distribution expresses the same information in terms of cycles.
Some problems are easier to work with when considering lagged information and we
would tend to handle those problems in the time domain. Nevertheless, other prob-
lems are easier to work with when considering periodic information and we would
tend to handle those problems in the spectral domain.

We note that the autocovariance function, γ(h), in (4.16) and the spectral density,
f (ω), in (4.17) are Fourier transform pairs. In particular, this means that if f (ω) and
g(ω) are two spectral densities for which

γ f (h) =
∫ 1

2

− 1
2

f (ω)e2πiωh dω =

∫ 1
2

− 1
2

g(ω)e2πiωh dω = γg(h) (4.18)

for all h = 0,±1,±2, . . . , then
f (ω) = g(ω). (4.19)

Finally, the absolute summability condition, (4.15), is not satisfied by (4.5), the
example that we have used to introduce the idea of a spectral representation. The
condition, however, is satisfied for ARMA models.

It is illuminating to examine the spectral density for the series that we have looked
at in earlier discussions.

Example 4.5 White Noise Series
As a simple example, consider the theoretical power spectrum of a sequence of
uncorrelated random variables, wt , with variance σ2

w . A simulated set of data is
displayed in the top of Fig. 1.8. Because the autocovariance function was com-
puted in Example 1.16 as γw(h) = σ2

w for h = 0, and zero, otherwise, it follows
from (4.17), that

fw(ω) = σ2
w

for−1/2 ≤ ω ≤ 1/2. Hence the process contains equal power at all frequencies. This
property is seen in the realization, which seems to contain all different frequencies
in a roughly equal mix. In fact, the name white noise comes from the analogy to
white light, which contains all frequencies in the color spectrum at the same level of
intensity. The top of Fig. 4.4 shows a plot of the white noise spectrum for σ2

w = 1.
The R code to reproduce the figure is given at the end of Example 4.7.

Since the linear process is an essential tool, it is worthwhile investigating the
spectrum of such a process. In general, a linear filter uses a set of specified coefficients,
say aj , for j = 0,±1,±2, . . ., to transform an input series, xt , producing an output
series, yt , of the form
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yt =

∞∑

j=−∞
aj xt−j,

∞∑

j=−∞
|aj | < ∞. (4.20)

The form (4.20) is also called a convolution in some statistical contexts. The coeffi-
cients are collectively called the impulse response function, and the Fourier transform

A(ω) =
∞∑

j=−∞
aj e−2πiω j , (4.21)

is called the frequency response function. If, in (4.20), xt has spectral density fx(ω),
we have the following result.

Property 4.3 Output Spectrum of a Filtered Stationary Series
For the process in (4.20), if xt has spectrum fx(ω), then the spectrum of the

filtered output, yt , say fy(ω), is related to the spectrum of the input xt by

fy(ω) = |A(ω)|2 fx(ω), (4.22)

where the frequency response function A(ω) is defined in (4.21).

Proof: The autocovariance function of the filtered output yt in (4.20) is

γy(h) = cov(xt+h, xt )

= cov

(
∑

r

ar xt+h−r,
∑

s

asxt−s

)

=
∑

r

∑

s

arγx(h − r + s)as

(1)
=

∑

r

∑

s

ar

[∫ 1
2

− 1
2

e2πiω(h−r+s) fx (ω)dω
]

as

=

∫ 1
2

− 1
2

(∑

r

are−2πiωr

) (∑

s

ase2πiωs

)

e2πiωh fx(ω) dω

(2)
=

∫ 1
2

− 1
2

e2πiωh |A(ω)|2 fx(ω)
︸����������︷︷����������︸

fy (ω)

dω,

where we have, (1) replaced γx(·) by its representation (4.16), and (2) substituted A(ω)
from (4.21). The result holds by exploiting the uniqueness of the Fourier transform.
�

The use of Property 4.3 is explored further in Sect. 4.7. If xt is ARMA, its
spectral density can be obtained explicitly using the fact that it is a linear process,
i.e., xt =

∑∞
j=0 ψjwt−j , where

∑∞
j=0 |ψj | < ∞. The following property is a direct

consequence of Property 4.3, by using the additional facts that the spectral density of
white noise is fw(ω) = σ2

w , and by Property 3.1, ψ(z) = θ(z)/φ(z).



176 4 Spectral Analysis and Filtering

Property 4.4 The Spectral Density of ARMA
If xt is ARMA(p, q), φ(B)xt = θ(B)wt , its spectral density is given by

fx(ω) = σ2
w

|θ(e−2πiω)|2
|φ(e−2πiω)|2 (4.23)

where φ(z) = 1 −∑p
k=1 φk zk and θ(z) = 1 +

∑q
k=1 θk zk .

Example 4.6 Moving Average
As an example of a series that does not have an equal mix of frequencies, we
consider a moving average model. Specifically, consider the MA(1) model given by

xt = wt + .5wt−1.

A sample realization is shown in the top of Fig. 3.2 and we note that the series
has less of the higher or faster frequencies. The spectral density will verify this
observation.

The autocovariance function is displayed in Example 3.5, and for this particular
example, we have

γ(0) = (1 + .52)σ2
w = 1.25σ2

w; γ(±1) = .5σ2
w; γ(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.17), we have

f (ω) =
∞∑

h=−∞
γ(h) e−2πiωh = σ2

w

[
1.25 + .5

(
e−2πiω + e2πω

)]

= σ2
w [1.25 + cos(2πω)] .

(4.24)

We can also compute the spectral density using Property 4.4, which states that
for an MA, f (ω) = σ2

w |θ(e−2πiω)|2. Because θ(z) = 1 + .5z, we have

|θ(e−2πiω)|2 = |1 + .5e−2πiω |2 = (1 + .5e−2πiω)(1 + .5e2πiω)
= 1.25 + .5

(
e−2πiω + e2πω

)

which leads to agreement with (4.24).
Plotting the spectrum for σ2

w = 1, as in the middle of Fig. 4.4, shows the lower
or slower frequencies have greater power than the higher or faster frequencies.

Example 4.7 A Second-Order Autoregressive Series
We now consider the spectrum of an AR(2) series of the form

xt − φ1xt−1 − φ2xt−2 = wt,

for the special case φ1 = 1 and φ2 = −.9. Figure 1.9 shows a sample realization of
such a process for σw = 1. We note the data exhibit a strong periodic component
that makes a cycle about every six points.
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Fig. 4.4. Theoretical spectra of white noise (top), a first-order moving average (middle), and a
second-order autoregressive process (bottom)

To use Property 4.4, note that θ(z) = 1, φ(z) = 1 − z + .9z2 and

|φ(e−2πiω)|2 = (1 − e−2πiω + .9e−4πiω)(1 − e2πiω + .9e4πiω)
= 2.81 − 1.9(e2πiω + e−2πiω) + .9(e4πiω + e−4πiω)
= 2.81 − 3.8 cos(2πω) + 1.8 cos(4πω).

Using this result in (4.23), we have that the spectral density of xt is

fx(ω) = σ2
w

2.81 − 3.8 cos(2πω) + 1.8 cos(4πω) .

Setting σw = 1, the bottom of Fig. 4.4 displays fx(ω) and shows a strong power
component at about ω = .16 cycles per point or a period between six and seven
cycles per point and very little power at other frequencies. In this case, modifying
the white noise series by applying the second-order AR operator has concentrated
the power or variance of the resulting series in a very narrow frequency band.

The spectral density can also be obtained from first principles, without having
to use Property 4.4. Because wt = xt − xt−1 + .9xt−2 in this example, we have

γw(h) = cov(wt+h,wt )
= cov(xt+h − xt+h−1 + .9xt+h−2, xt − xt−1 + .9xt−2)
= 2.81γx(h) − 1.9[γx(h + 1) + γx(h − 1)] + .9[γx(h + 2) + γx(h − 2)]
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Now, substituting the spectral representation (4.16) for γx(h) in the above equation
yields

γw(h)=
∫ 1

2

− 1
2

[
2.81 − 1.9(e2πiω+ e−2πiω) + .9(e4πiω+ e−4πiω)]e2πiωh fx(ω)dω

=

∫ 1
2

− 1
2

[
2.81 − 3.8 cos(2πω) + 1.8 cos(4πω)]e2πiωh fx(ω)dω.

If the spectrum of the white noise process, wt , is gw(ω), the uniqueness of the
Fourier transform allows us to identify

gw(ω) = [2.81 − 3.8 cos(2πω) + 1.8 cos(4πω)] fx(ω).
But, as we have already seen, gw(ω) = σ2

w , from which we deduce that

fx(ω) = σ2
w

2.81 − 3.8 cos(2πω) + 1.8 cos(4πω)
is the spectrum of the autoregressive series.

To reproduce Fig. 4.4, use arma.spec from astsa:
par(mfrow=c(3,1))
arma.spec(log="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(1,-.9), log="no", main="Autoregression")

Example 4.8 Every Explosion has a Cause (cont)
In Example 3.4, we discussed the fact that explosive models have causal counter-
parts. In that example, we also indicated that it was easier to show this result in
general in the spectral domain. In this example, we give the details for an AR(1)
model, but the techniques used here will indicate how to generalize the result.

As in Example 3.4, we suppose that xt = 2xt−1 + wt , where wt ∼ iid N(0, σ2
w).

Then, the spectral density of xt is

fx(ω) = σ2
w |1 − 2e−2πiω |−2. (4.25)

But, |1 − 2e−2πiω | = |1 − 2e2πiω | = |(2e2πiω) ( 1
2 e−2πiω − 1)| = 2 |1 − 1

2 e−2πiω |.
Thus, (4.25) can be written as

fx (ω) = 1
4σ

2
w |1 − 1

2 e−2πiω |−2,

which implies that xt = 1
2 xt−1 + vt , with vt ∼ iid N(0, 1

4σ
2
w) is an equivalent form

of the model.

We end this section by mentioning another spectral representation that deals with
the process directly. In nontechnical terms, the result suggests that (4.4) is approx-
imately true for any stationary time series, and this gives an additional theoretical
justification for decomposing time series into harmonic components.
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Example 4.9 A Periodic Stationary Process (cont)
In Example 4.4, we considered the periodic stationary process given in (4.13),
namely, xt = U1 cos(2πω0t) + U2 sin(2πω0t). Using Footnote 2, we may write
this as

xt = 1
2 (U1 + iU2)e−2πiω0t + 1

2 (U1 − iU2)e2πiω0t,

where we recall that U1 and U2 are uncorrelated, mean-zero, random variables each
with varianceσ2. If we call Z = 1

2 (U1+iU2), then Z∗ = 1
2 (U1−iU2), where * denotes

conjugation. In this case, E(Z) = 1
2 [E(U1) + iE(U2)] = 0 and similarly E(Z∗) = 0.

For mean-zero complex random variables, say X and Y , cov(X,Y ) = E(XY ∗). Thus

var(Z) = E(|Z |2) = E(Z Z∗) = 1
4 E[(U1 + iU2)(U1 − iU2)]

= 1
4 [E(U2

1 ) + E(U2
2 )] =

σ2

2
.

Similarly, var(Z∗) = σ2/2. Moreover, since Z∗∗ = Z ,

cov(Z, Z∗) = E(Z Z∗∗) = 1
4E[(U1 + iU2)(U1 + iU2)] = 1

4 [E(U2
1 ) − E(U2

2 )] = 0.

Hence, (4.13) may be written as

xt = Z e−2πiω0t + Z∗e2πiω0t =

∫ 1
2

− 1
2

e2πiωtdZ(ω) ,

where Z(ω) is a complex-valued random process that makes uncorrelated jumps at
−ω0 and ω0 with mean-zero and variance σ2/2. Stochastic integration is discussed
further in Sect. C.4.2. This notion generalizes to all stationary series in the following
property (also, see Theorem C.2).

Property 4.5 Spectral Representation of a Stationary Process
If xt is a mean-zero stationary process, with spectral distribution F(ω) as given

in Property 4.1, then there exists a complex-valued stochastic process Z(ω), on the in-
terval ω ∈ [−1/2, 1/2], having stationary uncorrelated non-overlapping increments,
such that xt can be written as the stochastic integral (see Sect. C.4.2)

xt =
∫ 1

2

− 1
2

e2πiωt dZ(ω),

where, for −1/2 ≤ ω1 ≤ ω2 ≤ 1/2,

var {Z(ω2) − Z(ω1)} = F(ω2) − F(ω1).

4.3 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based concept
presented in Sect. 4.1, with the spectral density, which is the population-basedconcept
of Sect. 4.2.



180 4 Spectral Analysis and Filtering

Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier transform
(DFT) to be

d(ωj ) = n−1/2
n∑

t=1
xte−2πiωj t (4.26)

for j = 0, 1, . . . , n − 1, where the frequencies ωj = j/n are called the Fourier or
fundamental frequencies.

If n is a highly composite integer (i.e., it has many factors), the DFT can be
computed by the fast Fourier transform (FFT) introduced in Cooley and Tukey [44].
Also, different packages scale the FFT differently, so it is a good idea to consult the
documentation. R computes the DFT defined in (4.26) without the factor n−1/2, but
with an additional factor of e2πiωj that can be ignored because we will be interested
in the squared modulus of the DFT. Sometimes it is helpful to exploit the inversion
result for DFTs, which shows the linear transformation is one-to-one. For the inverse
DFT we have,

xt = n−1/2
n−1∑

j=0
d(ωj )e2πiωj t (4.27)

for t = 1, . . . , n. The following example shows how to calculate the DFT and its inverse
in R for the data set {1, 2, 3, 4}; note that R writes a complex number z = a + ib as
a+bi.
(dft = fft(1:4)/sqrt(4))

[1] 5+0i -1+1i -1+0i -1-1i
(idft = fft(dft, inverse=TRUE)/sqrt(4))

[1] 1+0i 2+0i 3+0i 4+0i
(Re(idft)) # keep it real

[1] 1 2 3 4

We now define the periodogram as the squared modulus of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I(ωj ) =
/
/d(ωj )

/
/2 (4.28)

for j = 0, 1, 2, . . . , n − 1.

Note that I(0) = nx̄2, where x̄ is the sample mean. Also,
∑n

t=1 exp(−2πit j
n ) = 0 for

j � 0,3 so we can write the DFT as

d(ωj ) = n−1/2
n∑

t=1
(xt − x̄)e−2πiωj t (4.29)

for j � 0. Thus,

3 ∑n
t=1 z

t = z 1−zn
1−z for z � 1. In this case, zn = e−2πi j = 1.
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I(ωj ) =
/
/d(ωj )

/
/2 = n−1

n∑

t=1

n∑

s=1
(xt − x̄)(xs − x̄)e−2πiωj (t−s)

= n−1
n−1∑

h=−(n−1)

n−|h |∑

t=1
(xt+ |h | − x̄)(xt − x̄)e−2πiωjh

=

n−1∑

h=−(n−1)
γ̂(h)e−2πiωjh (4.30)

for j � 0, where we have put h = t−s, with γ̂(h) as given in (1.36).4 In view of (4.30),
the periodogram, I(ωj ), is the sample version of f (ωj ) given in (4.17). That is, we
may think of the periodogram as the sample spectral density of xt .

At first, (4.30) seems to be an obvious way to estimate a spectral density (4.17);
i.e, simply put a hat on γ(h) and sum as far as the sample size will allow. However,
after further consideration, it turns out that this is not a very good estimator because it
uses some bad estimates of γ(h). For example, there is only one pair of observations,
(x1, xn) for estimating γ(n − 1), and only two pairs (x1, xn−1), and (x2, xn) that can
be used to estimate γ(n − 2), and so on. We will discuss this problem further as
we progress, but an obvious improvement over (4.30) would be something like
f̂ (ω) = ∑

|h |≤m γ̂(h)e−2πiωh , where m is much smaller than n.
It is sometimes useful to work with the real and imaginary parts of the DFT

individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc(ωj ) = n−1/2
n∑

t=1
xt cos(2πωj t) (4.31)

and the sine transform

ds(ωj ) = n−1/2
n∑

t=1
xt sin(2πωj t) (4.32)

where ωj = j/n for j = 0, 1, . . . , n − 1.

We note that d(ωj ) = dc(ωj ) − i ds(ωj ) and hence

I(ωj ) = d2
c(ωj ) + d2

s (ωj ). (4.33)

We have also discussed the fact that spectral analysis can be thought of as an
analysis of variance. The next example examines this notion.

4 Note that (4.30) can be used to obtain γ̂(h) by taking the inverse DFT of I (ω j ). This approach was
used in Example 1.31 to obtain a two-dimensional ACF.
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Example 4.10 Spectral ANOVA
Let x1, . . . , xn be a sample of size n, where for ease, n is odd. Then, recall-
ing Example 4.2,

xt = a0 +

m∑

j=1

[
aj cos(2πωj t) + bj sin(2πωj t)

]
, (4.34)

where m = (n−1)/2, is exact for t = 1, . . . , n. In particular, using multiple regression
formulas, we have a0 = x̄,

aj =
2
n

n∑

t=1
xt cos(2πωj t) = 2√

n
dc(ωj )

bj =
2
n

n∑

t=1
xt sin(2πωj t) = 2√

n
ds(ωj ).

Hence, we may write

(xt − x̄) = 2√
n

m∑

j=1

[
dc(ωj ) cos(2πωj t) + ds(ωj ) sin(2πωj t)

]

for t = 1, . . . , n. Squaring both sides and summing we obtain

n∑

t=1
(xt − x̄)2 = 2

m∑

j=1

[
d2
c(ωj ) + d2

s (ωj )
]
= 2

m∑

j=1
I(ωj )

using the results of Problem 4.1. Thus, we have partitioned the sum of squares into
harmonic components represented by frequency ωj with the periodogram, I(ωj ),
being the mean square regression. This leads to the ANOVA table for n odd:

Source df SS MS
ω1 2 2I(ω1) I(ω1)
ω2 2 2I(ω2) I(ω2)
...

...
...

...
ωm 2 2I(ωm) I(ωm)

Total n − 1
∑n

t=1(xt − x̄)2

The following is an R example to help explain this concept. We consider n = 5
observations given by x1 = 1, x2 = 2, x3 = 3, x4 = 2, x5 = 1. Note that the data
complete one cycle, but not in a sinusoidal way. Thus, we should expect theω1 = 1/5
component to be relatively large but not exhaustive, and the ω2 = 2/5 component
to be small.
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x = c(1, 2, 3, 2, 1)
c1 = cos(2*pi*1:5*1/5); s1 = sin(2*pi*1:5*1/5)
c2 = cos(2*pi*1:5*2/5); s2 = sin(2*pi*1:5*2/5)
omega1 = cbind(c1, s1); omega2 = cbind(c2, s2)
anova(lm(x~omega1+omega2)) # ANOVA Table

Df Sum Sq Mean Sq
omega1 2 2.74164 1.37082
omega2 2 .05836 .02918
Residuals 0 .00000

Mod(fft(x))^2/5 # the periodogram (as a check)
[1] 16.2 1.37082 .029179 .029179 1.37082
# I(0) I(1/5) I(2/5) I(3/5) I(4/5)

Note that I(0) = nx̄2 = 5 × 1.82 = 16.2. Also, the sum of squares associated with
the residuals (SSE) is zero, indicating an exact fit.

Example 4.11 Spectral Analysis as Principal Component Analysis
It is also possible to think of spectral analysis as a principal component analysis. In
Sect. C.5, we show that the spectral density may be though of as the approximate
eigenvalues of the covariance matrix of a stationary process. If X = (x1, . . . , xn)
are n values of a mean-zero time series, xt with spectral density fx (ω), then

cov(X) = Γn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(0) γ(1) · · · γ(n − 1)
γ(1) γ(0) · · · γ(n − 2)
...

...
. . .

...
γ(n − 1) γ(n − 2) · · · γ(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For n sufficiently large, the eigenvalues of Γn are

λj ≈ f (ωj ) =
∞∑

h=−∞
γ(h) e−2πihj/n ,

with approximate eigenvectors

g∗j =
1√
n
(e−2πi0j/n, e−2πi1j/n, . . . , e−2πi(n−1)j/n) ,

for j = 0, 1, . . . , n − 1. If we let G be the complex matrix with columns gj , then the
complex vector Y = G∗X has elements that are the DFTs,

yj =
1√
n

n∑

t=1
xte−2πit j/n

for j = 0, 1, . . . , n − 1. In this case, the elements ofY are asymptotically uncorrelated
complex random variables, with mean-zero and variance f (ωj ). Also, X may be
recovered as X = GY , so that xt = 1√

n

∑n−1
j=0 yje2πit j/n.

We are now ready to present some large sample properties of the periodogram.
First, let μ be the mean of a stationary process xt with absolutely summable autoco-
variance function γ(h) and spectral density f (ω). We can use the same argument as
in (4.30), replacing x̄ by μ in (4.29), to write
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I(ωj ) = n−1
n−1∑

h=−(n−1)

n−|h |∑

t=1
(xt+ |h | − μ)(xt − μ)e−2πiωjh (4.35)

whereωj is a non-zero fundamental frequency.Taking expectation in (4.35) we obtain

E
[
I(ωj )

]
=

n−1∑

h=−(n−1)

(
n − |h|

n

)

γ(h)e−2πiωjh . (4.36)

For any given ω � 0, choose a sequence of fundamental frequenciesωj:n → ω5 from
which it follows by (4.36) that, as n →∞6

E
[
I(ωj:n)

] → f (ω) =
∞∑

h=−∞
γ(h)e−2πihω . (4.37)

In other words, under absolute summability of γ(h), the spectral density is the long-
term average of the periodogram.

Additional asymptotic properties may be established under the condition that the
autocovariance function satisfies

θ =

∞∑

h=−∞
|h| |γ(h)| < ∞ . (4.38)

First, we note that straight-forward calculations lead to

cov[dc(ωj ), dc(ωk)] = n−1
n∑

s=1

n∑

t=1
γ(s − t) cos(2πωjs) cos(2πωkt) , (4.39)

cov[dc(ωj ), ds(ωk)] = n−1
n∑

s=1

n∑

t=1
γ(s − t) cos(2πωj s) sin(2πωkt) , (4.40)

cov[ds(ωj ), ds(ωk)] = n−1
n∑

s=1

n∑

t=1
γ(s − t) sin(2πωj s) sin(2πωkt) , (4.41)

where the variance terms are obtained by setting ωj = ωk in (4.39) and (4.41). In Ap-
pendix C, Sect. C.2, we show the terms in (4.39)–(4.41) have interesting properties
under assumption that (4.38) holds. In particular, for ωj, ωk � 0 or 1/2,

cov[dc(ωj ), dc(ωk)] =
{

f (ωj )/2 + εn ωj = ωk,

εn ωj � ωk,
(4.42)

5 By this we mean ω j :n = jn/n, where { jn } is a sequence of integers chosen so that jn/n is the closest
Fourier frequency to ω; consequently, | jn/n −ω | ≤ 1

2n .
6 From Definition 4.2 we have I (0) = nx̄2, so the analogous result of (4.37) for the case ω = 0 is

E[I (0)] − nμ2 = n var(x̄) → f (0) as n →∞.
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cov[ds(ωj ), ds(ωk)] =
{

f (ωj )/2 + εn ωj = ωk,

εn ωj � ωk,
(4.43)

and
cov[dc(ωj ), ds(ωk)] = εn , (4.44)

where the error term εn in the approximations can be bounded,

|εn | ≤ θ/n , (4.45)

and θ is given by (4.38). Ifωj = ωk = 0 or 1/2 in (4.42), the multiplier 1/2 disappears;
note that ds(0) = ds(1/2) = 0, so (4.43) does not apply in these cases.

Example 4.12 Covariance of Sine and Cosine Transforms
For the three-point moving average series of Example 1.9 and n = 256 obser-
vations, the theoretical covariance matrix of the vector D = (dc(ω26), ds(ω26),
dc(ω27), ds(ω27))′ using (4.39)–(4.41) is

cov(D) =
�
�
�
�
�
�

�

.3752 −.0009 −.0022 −.0010
−.0009 .3777 −.0009 .0003
−.0022 −.0009 .3667 −.0010
−.0010 .0003 −.0010 .3692

�
�
�
�
�
�

�

.

The diagonal elements can be compared with half the theoretical spectral val-
ues of 1

2 f (ω26) = .3774 for the spectrum at frequency ω26 = 26/256, and of
1
2 f (ω27) = .3689 for the spectrum at ω27 = 27/256. Hence, the cosine and sine
transforms produce nearly uncorrelated variables with variances approximately
equal to one half of the theoretical spectrum. For this particular case, the uniform
bound is determined from θ = 8/9, yielding |ε256 | ≤ .0035 for the bound on the
approximation error.

If xt ∼ iid(0, σ2), then it follows from (4.38)–(4.44), and a central limit theorem7

that
dc(ωj:n) ∼ AN(0, σ2/2) and ds(ωj:n) ∼ AN(0, σ2/2) (4.46)

jointly and independently, and independentof dc(ωk:n) and ds(ωk:n) providedωj:n →
ω1 and ωk:n → ω2 where 0 < ω1 � ω2 < 1/2. We note that in this case, fx(ω) = σ2.
In view of (4.46), it follows immediately that as n →∞,

2I(ωj:n)
σ2

d→ χ2
2 and

2I(ωk:n)
σ2

d→ χ2
2 (4.47)

with I(ωj:n) and I(ωk:n) being asymptotically independent, where χ2
ν denotes a chi-

squared random variable with ν degrees of freedom. If the process is also Gaussian,
then the above statements are true for any sample size.

Using the central limit theory of Sect. C.2, it is fairly easy to extend the results of
the iid case to the case of a linear process.

7 If {Yj } ∼ iid(0, σ2) and {a j } are constants for which
∑n

j=1 a
2
j/max1≤ j≤n a2

j → ∞ as n → ∞, then
∑n

j=1 a jYj ∼ AN
(
0, σ2 ∑n

j=1 a
2
j

)
. AN is read asymptotically normal; see Definition A.5.
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Property 4.6 Distribution of the Periodogram Ordinates
If

xt =
∞∑

j=−∞
ψjwt−j,

∞∑

j=−∞
|ψj | < ∞ (4.48)

where wt ∼ iid(0, σ2
w), and (4.38) holds, then for any collection of m distinct fre-

quencies ωj ∈ (0, 1/2) with ωj:n → ωj

2I(ωj:n)
f (ωj )

d→ iid χ2
2 (4.49)

provided f (ωj ) > 0, for j = 1, . . . , m.

This result is stated more precisely in Theorem C.7. Other approaches to large
sample normality of the periodogram ordinates are in terms of cumulants, as in
Brillinger [35], or in terms of mixing conditions, such as in Rosenblatt [169]. Here, we
adopt the approach used by Hannan [86], Fuller [66], and Brockwell and Davis [36].

The distributional result (4.49) can be used to derive an approximate confidence
interval for the spectrum in the usual way. Let χ2

ν (α) denote the lower α probability
tail for the chi-squared distribution with ν degrees of freedom; that is,

Pr{χ2
ν ≤ χ2

ν (α)} = α. (4.50)

Then, an approximate 100(1−α)% confidence interval for the spectral density function
would be of the form

2 I(ωj:n)
χ2

2 (1 − α/2) ≤ f (ω) ≤ 2 I(ωj:n)
χ2

2 (α/2)
. (4.51)

Often, trends are present that should be eliminated before computing the peri-
odogram. Trends introduce extremely low frequency components in the periodogram
that tend to obscure the appearance at higher frequencies. For this reason, it is usually
conventional to center the data prior to a spectral analysis using either mean-adjusted
data of the form xt − x̄ to eliminate the zero or d-c component or to use detrended
data of the form xt − β̂1 − β̂2t to eliminate the term that will be considered a half
cycle by the spectral analysis. Note that higher order polynomial regressions in t or
nonparametric smoothing (linear filtering) could be used in cases where the trend is
nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and hence the
periodogram, using the fast Fourier transform algorithm. The FFT utilizes a number
of redundancies in the calculation of the DFT when n is highly composite; that is, an
integer with many factors of 2, 3, or 5, the best case being when n = 2p is a factor
of 2. Details may be found in Cooley and Tukey [44]. To accommodate this property,
we can pad the centered (or detrended) data of length n to the next highly composite
integer n′ by adding zeros, i.e., setting xc

n+1 = xc
n+2 = · · · = xcn′ = 0, where xct

denotes the centered data. This means that the fundamental frequency ordinates will
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Fig. 4.5. Periodogram of SOI and Recruitment, n = 453 (n′ = 480), where the frequency axis
is labeled in multiples of Δ = 1/12. Note the common peaks at ω = 1Δ = 1/12, or one cycle
per year (12 months), and some larger values near ω = 1

4 Δ = 1/48, or one cycle every four
years (48 months)

be ωj = j/n′ instead of j/n. We illustrate by considering the periodogram of the SOI
and Recruitment series shown in Fig. 1.5. Recall that they are monthly series and
n = 453 months. To find n′ in R, use the command nextn(453) to see that n′ = 480
will be used in the spectral analyses by default.

Example 4.13 Periodogram of SOI and Recruitment Series
Figure 4.5 shows the periodograms of each series, where the frequency axis is
labeled in multiples of Δ = 1/12. As previously indicated, the centered data have
been padded to a series of length 480. We notice a narrow-band peak at the obvious
yearly (12 month) cycle, ω = 1Δ = 1/12. In addition, there is considerable power
in a wide band at the lower frequencies that is centered around the four-year (48
month) cycle ω = 1

4 Δ = 1/48 representing a possible El Niño effect. This wide
band activity suggests that the possible El Niño cycle is irregular, but tends to
be around four years on average. We will continue to address this problem as we
move to more sophisticated analyses.
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Noting χ2
2 (.025) = .05 and χ2

2 (.975) = 7.38, we can obtain approximate 95%
confidence intervals for the frequencies of interest. For example, the periodogram
of the SOI series is IS(1/12) = .97 at the yearly cycle. An approximate 95%
confidence interval for the spectrum fS(1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],
which is too wide to be of much use. We do notice, however, that the lower value of
.26 is higher than any other periodogram ordinate, so it is safe to say that this value
is significant. On the other hand, an approximate 95% confidence interval for the
spectrum at the four-year cycle, fS(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],
which again is extremely wide, and with which we are unable to establish signifi-
cance of the peak.

We now give the R commands that can be used to reproduce Fig. 4.5. To
calculate and graph the periodogram, we used the mvspec command in available
from astsa. We note that the value of Δ is the reciprocal of the value of frequency
for the data of a time series object. If the data are not a time series object, frequency
is set to 1. Also, we set log="no" because the periodogram is plotted on a log10
scale by default. Figure 4.5 displays a bandwidth. We will discuss bandwidth in the
next section, so ignore this for the time being.
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no")
abline(v=1/4, lty=2)
rec.per = mvspec(rec, log="no")
abline(v=1/4, lty=2)

The confidence intervals for the SOI series at the yearly cycle, ω = 1/12 =

40/480, and the possible El Niño cycle of four years ω = 1/48 = 10/480 can be
computed in R as follows:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The preceding example made it clear that the periodogram as an estimator is
susceptible to large uncertainties, and we need to find a way to reduce the variance.
Not surprisingly, this result follows if consider (4.49) and the fact that, for any
n, the periodogram is based on only two observations. Recall that the mean and
variance of the χ2

ν distribution are ν and 2ν, respectively. Thus, using (4.49), we have
I(ω) ·∼ 1

2 f (ω)χ2
2 , implying

E[I(ω)] ≈ f (ω) and var[I(ω)] ≈ f 2(ω).
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Fig. 4.6. A small section (near the peak) of the AR(2) spectrum shown in Fig. 4.4

Consequently, var[I(ω)] �→ 0 as n →∞ and thus the periodogram is not a consistent
estimator of the spectral density. The solution to this dilemma can be resolved by
smoothing the periodogram.

4.4 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a frequency
band, B, of L � n contiguous fundamental frequencies, centered around frequency
ωj = j/n, which is chosen close to a frequency of interest, ω. For frequencies of the
form ω∗ = ωj + k/n, let

B =

{

ω∗ : ωj − m
n
≤ ω∗ ≤ ωj +

m
n

}

, (4.52)

where
L = 2m + 1 (4.53)

is an odd number, chosen such that the spectral values in the interval B,

f (ωj + k/n), k = −m, . . . , 0, . . . , m

are approximately equal to f (ω). This structure can be realized for large sample
sizes, as shown formally in Sect. C.2. Values of the spectrum in this band should
be relatively constant for the smoothed spectra defined below to be good estimators.
For example, to see a small section of the AR(2) spectrum (near the peak) shown in
Fig. 4.4, use
arma.spec(ar=c(1,-.9), xlim=c(.15,.151), n.freq=100000)

which is displayed in Fig. 4.6.
We now define an averaged (or smoothed) periodogram as the average of the

periodogram values, say,
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f̄ (ω) = 1
L

m∑

k=−m
I(ωj + k/n), (4.54)

over the bandB. Under the assumption that the spectral density is fairly constant in the
bandB, and in view of (4.49)we can show that under appropriate conditions,8 for large
n, the periodograms in (4.54) are approximately distributed as independent f (ω)χ2

2/2
random variables, for 0 < ω < 1/2, as long as we keep L fairly small relative to n.
This result is discussed formally in Sect. C.2. Thus, under these conditions, L f̄ (ω)
is the sum of L approximately independent f (ω)χ2

2/2 random variables. It follows
that, for large n,

2L f̄ (ω)
f (ω)

·∼ χ2
2L (4.55)

where ·∼ means is approximately distributed as.
In this scenario, where we smooth the periodogram by simple averaging, it seems

reasonable to call the width of the frequency interval defined by (4.52),

B =
L
n
, (4.56)

the bandwidth.9 The concept of bandwidth, however, becomes more complicated
with the introduction of spectral estimators that smooth with unequal weights. Note
that (4.56) implies the degrees of freedom can be expressed as

2L = 2B n , (4.57)

or twice the time-bandwidth product. The result (4.55) can be rearranged to obtain
an approximate 100(1 − α)% confidence interval of the form

2L f̄ (ω)
χ2

2L(1 − α/2) ≤ f (ω) ≤ 2L f̄ (ω)
χ2

2L(α/2)
(4.58)

for the true spectrum, f (ω).
Many times, the visual impact of a spectral density plot will be improved by

plotting the logarithm of the spectrum instead of the spectrum (the log transformation
is the variance stabilizing transformation in this situation). This phenomenon can
occur when regions of the spectrum exist with peaks of interest much smaller than

8 The conditions, which are sufficient, are that xt is a linear process, as described in Property 4.6, with
∑

j

√ | j | |ψj | < ∞, and wt has a finite fourth moment.
9 There are many definitions of bandwidth and an excellent discussion may be found in Percival and

Walden [152, §6.7]. The bandwidth value used in R for spec.pgram is based on Grenander [80]. The
basic idea is that bandwidth can be related to the standard deviation of the weighting distribution. For
the uniform distribution on the frequency range −m/n to m/n, the standard deviation is L/n√12 (using
a continuity correction). Consequently, in the case of (4.54), R will report a bandwidth of L/n√12,
which amounts to dividing our definition by

√
12. Note that in the extreme case L = n, we would have

B = 1 indicating that everything was used in the estimation. In this case, R would report a bandwidth
of 1/√12 ≈ .29, which seems to miss the point.
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some of the main power components. Taking logs in (4.58), we obtain an interval for
the logged spectrum given by

[
log f̄ (ω) − aL, log f̄ (ω) + bL

]
(4.59)

where

aL = − log 2L + log χ2
2L(1 − α/2) and bL = log 2L − log χ2

2L(α/2)
do not depend on ω.

If zeros are appended before computing the spectral estimators, we need to adjust
the degrees of freedom (because you do not get more information by padding) and
an approximation is to replace 2L by 2Ln/n′. Hence, we define the adjusted degrees
of freedom as

df =
2Ln
n′

(4.60)

and use it instead of 2L in the confidence intervals (4.58) and (4.59). For exam-
ple, (4.58) becomes

df f̄ (ω)
χ2
df
(1 − α/2) ≤ f (ω) ≤ df f̄ (ω)

χ2
df
(α/2) . (4.61)

A number of assumptions are made in computing the approximate confidence
intervals given above, which may not hold in practice. In such cases, it may be
reasonable to employ resampling techniques such as one of the parametric bootstraps
proposed by Hurvich and Zeger [99] or a nonparametric local bootstrap proposed by
Paparoditis and Politis [147]. To develop the bootstrap distributions, we assume that
the contiguous DFTs in a frequency band of the form (4.52)all came from a time series
with identical spectrum f (ω). This, in fact, is exactly the same assumption made in
deriving the large-sample theory. We may then simply resample the L DFTs in the
band, with replacement, calculating a spectral estimate from each bootstrap sample.
The sampling distribution of the bootstrap estimators approximates the distribution
of the nonparametric spectral estimator. For further details, including the theoretical
properties of such estimators, see Paparoditis and Politis [147].

Before proceeding further, we consider computing the average periodograms for
the SOI and Recruitment series.

Example 4.14 Averaged Periodogram for SOI and Recruitment
Generally, it is a good idea to try several bandwidths that seem to be compatible with
the general overall shape of the spectrum, as suggested by the periodogram. We will
discuss this problem in more detail after the example. The SOI and Recruitment
series periodograms, previously computed in Fig. 4.5, suggest the power in the
lower El Niño frequency needs smoothing to identify the predominant overall
period. Trying values of L leads to the choice L = 9 as a reasonable value, and the
result is displayed in Fig. 4.7.
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Fig. 4.7. The averaged periodogram of the SOI and Recruitment series n = 453, n′ = 480,
L = 9, df = 17, showing common peaks at the four year period, ω = 1

4 Δ = 1/48 cycles/month,
the yearly period, ω = 1Δ = 1/12 cycles/month and some of its harmonics ω = kΔ for k = 2, 3

The smoothed spectra shown provide a sensible compromise between the noisy
version, shown in Fig. 4.5, and a more heavily smoothed spectrum, which might lose
some of the peaks. An undesirable effect of averaging can be noticed at the yearly
cycle, ω = 1Δ, where the narrow band peaks that appeared in the periodograms
in Fig. 4.5 have been flattened and spread out to nearby frequencies. We also
notice, and have marked, the appearance of harmonics of the yearly cycle, that is,
frequencies of the form ω = kΔ for k = 1, 2, . . . . Harmonics typically occur when
a periodic non-sinusoidal component is present; see Example 4.15.

Figure 4.7 can be reproduced in R using the following commands. To compute
averaged periodograms, use the Daniell kernel, and specify m, where L = 2m + 1
(L = 9 and m = 4 in this example). We will explain the kernel concept later in this
section, specifically just prior to Example 4.16.
soi.ave = mvspec(soi, kernel('daniell',4)), log='no')
abline(v=c(.25,1,2,3), lty=2)
soi.ave$bandwidth # = 0.225
# Repeat above lines using rec in place of soi on line 3
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Fig. 4.8. Figure 4.7 with the average periodogram ordinates plotted on a log10 scale. The
display in the upper right-hand corner represents a generic 95% confidence interval where the
middle tick mark is the width of the bandwidth

Table 4.1. Confidence intervals for the spectra of the SOI and recruitment series

Series ω Period Power Lower Upper
SOI 1/48 4 years .05 .03 .11

1/12 1 year .12 .07 .27
Recruits 1/48 4 years 6.59 3.71 14.82
×102 1/12 1 year 2.19 1.24 4.93

The displayed bandwidth (.225) is adjusted for the fact that the frequency scale
of the plot is in terms of cycles per year instead of cycles per month. Using (4.56),
the bandwidth in terms of months is 9/480 = .01875; the displayed value is simply
converted to years, .01875 × 12 = .225.

The adjusted degrees of freedom are df = 2(9)(453)/480 ≈ 17. We can use this
value for the 95% confidence intervals, with χ2

df
(.025) = 7.56 and χ2

df
(.975) =

30.17. Substituting into (4.61) gives the intervals in Table 4.1 for the two frequency
bands identified as having the maximum power. To examine the two peak power
possibilities, we may look at the 95% confidence intervals and see whether the lower
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limits are substantially larger than adjacent baseline spectral levels. For example,
the El Niño frequency of 48 months has lower limits that exceed the values the
spectrum would have if there were simply a smooth underlying spectral function
without the peaks. The relative distribution of power over frequencies is different,
with the SOI having less power at the lower frequency, relative to the seasonal
periods, and the Recruitment series having more power at the lower or El Niño
frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:
df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Fig. 4.8 shows the averaged periodograms in Fig. 4.7 plotted on a log10
scale. This is the default can be obtained by removing the statement log="no". No-
tice that the default plot also shows a generic confidence interval of the form (4.59)
(with log replaced by log10) in the upper right-hand corner. To use it, imagine
placing the middle tick mark (the width of which is the bandwidth) on the averaged
periodogram ordinate of interest; the resulting bar then constitutes an approximate
95% confidence interval for the spectrum at that frequency. We note that displaying
the estimates on a log scale tends to emphasize the harmonic components.

Example 4.15 Harmonics
In the previous example, we saw that the spectra of the annual signals displayed
minor peaks at the harmonics; that is, the signal spectra had a large peak at ω =

1Δ = 1/12 cycles/month (the one-year cycle) and minor peaks at its harmonics
ω = kΔ for k = 2, 3, . . . (two-, three-, and so on, cycles per year). This will often
be the case because most signals are not perfect sinusoids (or perfectly cyclic). In
this case, the harmonics are needed to capture the non-sinusoidal behavior of the
signal. As an example, consider the signal formed in Fig. 4.9 from a (fundamental)
sinusoid oscillating at two cycles per unit time along with the second through sixth
harmonics at decreasing amplitudes. In particular, the signal was formed as

xt = sin(2π2t) + .5 sin(2π4t) + .4 sin(2π6t)
+ .3 sin(2π8t) + .2 sin(2π10t)+ .1 sin(2π12t) (4.62)
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Fig. 4.9. A signal (thick solid line) formed by a fundamental sinusoid (thin solid line) oscillating
at two cycles per unit time and its harmonics as specified in (4.62)

for 0 ≤ t ≤ 1. Notice that the signal is non-sinusoidal in appearance and rises
quickly then falls slowly.

A figure similar to Fig. 4.9 can be generated in R as follows.
t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6){ x[,j] = amps[j]*sin(2*pi*t*2*j) }
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic", "5th

Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2))

Example 4.14 points out the necessity for having some relatively systematic pro-
cedure for deciding whether peaks are significant. The question of deciding whether
a single peak is significant usually rests on establishing what we might think of as
a baseline level for the spectrum, defined rather loosely as the shape that one would
expect to see if no spectral peaks were present. This profile can usually be guessed
by looking at the overall shape of the spectrum that includes the peaks; usually, a
kind of baseline level will be apparent, with the peaks seeming to emerge from this
baseline level. If the lower confidence limit for the spectral value is still greater than
the baseline level at some predetermined level of significance, we may claim that
frequency value as a statistically significant peak. To be consistent with our stated
indifference to the upper limits, we might use a one-sided confidence interval.
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An important aspect of interpreting the significance of confidence intervals and
tests involving spectra is that typically, more than one frequency will be of interest,
so that we will potentially be interested in simultaneous statements about a whole
collection of frequencies. For example, it would be unfair to claim in Table 4.1 the
two frequencies of interest as being statistically significant and all other potential
candidates as nonsignificant at the overall level of α = .05. In this case, we follow
the usual statistical approach, noting that if K statements S1, S2, . . . , Sk are made at
significance level α, i.e., P{Sk} = 1 − α, then the overall probability all statements
are true satisfies the Bonferroni inequality

P{all Sk true} ≥ 1 − Kα. (4.63)

For this reason, it is desirable to set the significance level for testing each frequency
at α/K if there are K potential frequencies of interest. If, a priori, potentially K = 10
frequencies are of interest, setting α = .01 would give an overall significance level of
bound of .10.

The use of the confidence intervals and the necessity for smoothing requires that
we make a decision about the bandwidth B over which the spectrum will be essentially
constant. Taking too broad a band will tend to smooth out valid peaks in the data
when the constant variance assumption is not met over the band. Taking too narrow
a band will lead to confidence intervals so wide that peaks are no longer statistically
significant. Thus, we note that there is a conflict here between variance properties or
bandwidth stability, which can be improved by increasing B and resolution, which
can be improved by decreasing B. A common approach is to try a number of different
bandwidths and to look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the flattening of
the peaks in Figs. 4.7 and 4.8 was due to the fact that simple averaging was used
in computing f̄ (ω) defined in (4.54). There is no particular reason to use simple
averaging, and we might improve the estimator by employing a weighted average, say

f̂ (ω) =
m∑

k=−m
hk I(ωj + k/n), (4.64)

using the same definitions as in (4.54) but where the weights hk > 0 satisfy
m∑

k=−m
hk = 1.

In particular, it seems reasonable that the resolution of the estimator will improve if
we use weights that decrease as distance from the center weight h0 increases; we will
return to this idea shortly. To obtain the averaged periodogram, f̄ (ω), in (4.64), set
hk = L−1, for all k, where L = 2m + 1. The asymptotic theory established for f̄ (ω)
still holds for f̂ (ω) provided that the weights satisfy the additional condition that if
m →∞ as n →∞ but m/n → 0, then

m∑

k=−m
h2
k → 0.
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Under these conditions, as n →∞,

(i) E
(

f̂ (ω)
)
→ f (ω)

(ii)
(∑m

k=−m h2
k

)−1
cov

(
f̂ (ω), f̂ (λ)

)
→ f 2(ω) for ω = λ � 0, 1/2.

In (ii), replace f 2(ω) by 0 if ω � λ and by 2 f 2(ω) if ω = λ = 0 or 1/2.
We have already seen these results in the case of f̄ (ω), where the weights are

constant, hk = L−1, in which case
∑m

k=−m h2
k
= L−1. The distributional properties

of (4.64) are more difficult now because f̂ (ω) is a weighted linear combination of
asymptotically independent χ2 random variables. An approximation that seems to

work well is to replace L by
(∑m

k=−m h2
k

)−1
. That is, define

Lh =

(
m∑

k=−m
h2
k

)−1

(4.65)

and use the approximation10

2Lh f̂ (ω)
f (ω)

·∼ χ2
2Lh

. (4.66)

In analogy to (4.56), we will define the bandwidth in this case to be

B =
Lh

n
. (4.67)

Using the approximation (4.66) we obtain an approximate 100(1 − α)% confidence
interval of the form

2Lh f̂ (ω)
χ2

2Lh
(1 − α/2) ≤ f (ω) ≤ 2Lh f̂ (ω)

χ2
2Lh

(α/2) (4.68)

for the true spectrum, f (ω). If the data are padded to n′, then replace 2Lh in (4.68)
with df = 2Lhn/n′ as in (4.60).

An easy way to generate the weights in R is by repeated use of the Daniell kernel.
For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel has weights
{hk} = { 1

3,
1
3,

1
3 }; applying this kernel to a sequence of numbers, {ut }, produces

ût = 1
3 ut−1 +

1
3 ut + 1

3 ut+1.

We can apply the same kernel again to the ût ,

ˆ̂ut = 1
3 ût−1 +

1
3 ût + 1

3 ût+1,

10 The approximation proceeds as follows: If f̂
·∼ cχ2

ν , where c is a constant, then E f̂ ≈ cν and

var f̂ ≈ f 2 ∑
k h2

k
≈ c22ν. Solving, c ≈ f

∑
k h2

k
/2 = f /2Lh and ν ≈ 2

(∑
k h2

k

)−1
= 2Lh .
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which simplifies to

ˆ̂ut = 1
9 ut−2 +

2
9 ut−1 +

3
9 ut + 2

9 ut+1 +
1
9 ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1 the
weights are {hk} = { 1

4,
2
4,

1
4 } and

ût = 1
4 ut−1 +

1
2 ut + 1

4 ut+1.

Applying the same kernel again to ût yields

ˆ̂ut = 1
16 ut−2 +

4
16 ut−1 +

6
16 ut + 4

16 ut+1 +
1
16 ut+2.

These coefficients can be obtained in R by issuing the kernel command. For example,
kernel("modified.daniell", c(1,1)) would produce the coefficients of the last
example. The other kernels that are currently available in R are the Dirichlet kernel
and the Fejér kernel, which we will discuss shortly.

It is interesting to note that these kernel weights form a probability distribution.
If X and Y are independent discrete uniforms on the integers {−1, 0, 1} each with
probability 1

3 , then the convolution X + Y is discrete on the integers {−2,−1, 0, 1, 2}
with corresponding probabilities { 1

9,
2
9,

3
9,

2
9,

1
9 }.

Example 4.16 Smoothed Periodogram for SOI and Recruitment
In this example, we estimate the spectra of the SOI and Recruitment series using
the smoothed periodogram estimate in (4.64). We used a modified Daniell kernel
twice, with m = 3 both times. This yields Lh = 1/∑m

k=−m h2
k
= 9.232, which is

close to the value of L = 9 used in Example 4.14. In this case, the bandwidth is
B = 9.232/480 = .019 and the modified degrees of freedom is df = 2Lh453/480 =

17.43. The weights, hk , can be obtained and graphed in R as follows:
kernel("modified.daniell", c(3,3))

coef[-6] = 0.006944 = coef[ 6]
coef[-5] = 0.027778 = coef[ 5]
coef[-4] = 0.055556 = coef[ 4]
coef[-3] = 0.083333 = coef[ 3]
coef[-2] = 0.111111 = coef[ 2]
coef[-1] = 0.138889 = coef[ 1]
coef[ 0] = 0.152778

plot(kernel("modified.daniell", c(3,3))) # not shown

The resulting spectral estimates can be viewed in Fig. 4.10 and we notice that the
estimates more appealing than those in Fig. 4.7. Figure 4.10 was generated in R
as follows; we also show how to obtain the associated bandwidth and degrees of
freedom.
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, kernel=k, taper=.1, log="no")
abline(v=c(.25,1), lty=2)
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # B = 0.2308103
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Fig. 4.10. Smoothed (tapered) spectral estimates of the SOI and Recruitment series; see Ex-
ample 4.16 for details

Note that a taper was applied in the estimation process; we discuss tapering in the
next part. Reissuing the mvspec commands with log="no" removed will result in a
figure similar to Fig. 4.8. Finally, we mention that the modified Daniell kernel is
used by default and an easier way to obtain soi.smo is to issue the command:
soi.smo = mvspec(soi, taper=.1, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m + 1 instead
of m.

There have been many attempts at dealing with the problem of smoothing the
periodogram in a automatic way; an early reference is Wahba [205]. It is apparent
from Example 4.16 that the smoothing bandwidth for the broadband El Niño behavior
(near the 4 year cycle), should be much larger than the bandwidth for the annual
cycle (the 1 year cycle). Consequently, it is perhaps better to perform automatic
adaptive smoothing for estimating the spectrum. We refer interested readers to Fan
and Kreutzberger [61] and the numerous references within.

Tapering

We are now ready to introduce the concept of tapering; a more detailed discussion
may be found in Bloomfield [25, §9.5]. Suppose xt is a mean-zero, stationary process
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with spectral density fx (ω). If we replace the original series by the tapered series

yt = ht xt, (4.69)

for t = 1, 2, . . . , n, use the modified DFT

dy(ωj ) = n−1/2
n∑

t=1
ht xte−2πiωj t, (4.70)

and let Iy(ωj ) = |dy(ωj )|2, we obtain (see Problem 4.17)

E[Iy(ωj )] =
∫ 1

2

− 1
2

Wn(ωj − ω) fx(ω) dω (4.71)

where
Wn(ω) = |Hn(ω)|2 (4.72)

and

Hn(ω) = n−1/2
n∑

t=1
hte−2πiωt . (4.73)

The value Wn(ω) is called a spectral window because, in view of (4.71), it is de-
termining which part of the spectral density fx(ω) is being “seen” by the estimator
Iy(ωj ) on average. In the case that ht = 1 for all t, Iy(ωj ) = Ix(ωj ) is simply the
periodogram of the data and the window is

Wn(ω) = sin2(nπω)
n sin2(πω) (4.74)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If we
consider the averaged periodogram in (4.54), namely

f̄x(ω) = 1
L

m∑

k=−m
Ix(ωj + k/n),

the window, Wn(ω), in (4.71) will take the form

Wn(ω) = 1
nL

m∑

k=−m

sin2[nπ(ω + k/n)]
sin2[π(ω + k/n)] . (4.75)

Tapers generally have a shape that enhances the center of the data relative to the
extremities, such as a cosine bell of the form

ht = .5
[

1 + cos
(
2π(t − t)

n

)]

, (4.76)

where t = (n + 1)/2, favored by Blackman and Tukey [23]. The shape of this taper is
shown in the insert to Fig. 4.12. In Fig. 4.11, we have plotted the shapes of two win-
dows, Wn(ω), for n = 480 and L = 9, when (i) ht ≡ 1, in which case, (4.75) applies,
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Fig. 4.11. Averaged Fejér window (top row) and the corresponding cosine taper window
(bottom row) for L = 9, n = 480. The extra tic marks on the horizontal axis of the left-hand
plots exhibit the predicted bandwidth, B = 9/480 = .01875

and (ii) ht is the cosine taper in (4.76). In both cases the predicted bandwidth should
be B = 9/480 = .01875 cycles per point, which corresponds to the “width” of the
windows shown in Fig. 4.11. Both windows produce an integrated average spectrum
over this band but the untapered window in the top panels shows considerable ripples
over the band and outside the band. The ripples outside the band are called sidelobes
and tend to introduce frequencies from outside the interval that may contaminate the
desired spectral estimate within the band. For example, a large dynamic range for the
values in the spectrum introduces spectra in contiguous frequency intervals several
orders of magnitude greater than the value in the interval of interest. This effect is
sometimes called leakage. Figure 4.11 emphasizes the suppression of the sidelobes
in the Fejér kernel when a cosine taper is used.

Example 4.17 The Effect of Tapering the SOI Series
The estimates in Example 4.16 were obtained by tapering the upper and lower 10%
of the data. In this example, we examine the effect of tapering on the estimate of
the spectrum of the SOI series (the results for the Recruitment series are similar).
Figure 4.12 shows two spectral estimates plotted on a log scale. The dashed line in
Fig. 4.12 shows the estimate without any tapering. The solid line shows the result
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Fig. 4.12. Smoothed spectral estimates of the SOI without tapering (dashed line) and with full
tapering (solid line); see Example 4.17. The insert shows a full cosine bell taper, (4.76), with
horizontal axis (t − t̄)/n, for t = 1, . . . , n

with full tapering. Notice that the tapered spectrum does a better job in separating
the yearly cycle (ω = 1) and the El Niño cycle (ω = 1/4).

The following R session was used to generate Fig. 4.12. We note that, by
default, mvspec does not taper. For full tapering, we use the argument taper=.5 to
instruct mvspec to taper 50% of each end of the data; any value between 0 and .5 is
acceptable. In Example 4.16, we used taper=.1.
s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
plot(s50$freq, s50$spec, log="y", type="l", ylab="spectrum",

xlab="frequency") # solid line
lines(s0$freq, s0$spec, lty=2) # dashed line

We close this section with a brief discussion of lag window estimators. First,
consider the periodogram, I(ωj ), which was shown in (4.30) to be

I(ωj ) =
∑

|h |<n
γ̂(h)e−2πiωjh .

Thus, (4.64) can be written as

f̂ (ω) =
∑

|k |≤m
hk I(ωj + k/n) =

∑

|k |≤m
hk

∑

|h |<n
γ̂(h)e−2πi(ωj+k/n)h

=
∑

|h |<n
g( hn ) γ̂(h)e−2πiωjh . (4.77)

where g( hn ) =
∑
|k |≤m hk exp(−2πikh/n). Equation (4.77) suggests estimators of the

form
f̃ (ω) =

∑

|h |≤r
w( hr ) γ̂(h)e−2πiωh (4.78)
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where w(·) is a weight function, called the lag window, that satisfies

(i) w(0) = 1
(ii) |w(x)| ≤ 1 and w(x) = 0 for |x | > 1,
(iii) w(x) = w(−x).

Note that if w(x) = 1 for |x | < 1 and r = n, then f̃ (ωj ) = I(ωj ), the periodogram.
This result indicates the problem with the periodogram as an estimator of the spectral
density is that it gives too much weight to the values of γ̂(h) when h is large, and
hence is unreliable [e.g, there is only one pair of observations used in the estimate
γ̂(n − 1), and so on]. The smoothing window is defined to be

W(ω) =
r∑

h=−r
w( hr )e−2πiωh, (4.79)

and it determines which part of the periodogram will be used to form the estimate of
f (ω). The asymptotic theory for f̂ (ω) holds for f̃ (ω) under the same conditions and
provided r →∞ as n →∞ but with r/n → 0. That is,

E{ f̃ (ω)} → f (ω), (4.80)

n
r

cov
(
f̃ (ω), f̃ (λ)) → f 2(ω)

∫ 1

−1
w2(x)dx ω = λ � 0, 1/2. (4.81)

In (4.81), replace f 2(ω) by 0 if ω � λ and by 2 f 2(ω) if ω = λ = 0 or 1/2.
Many authors have developed various windows and Brillinger [35, Ch 3] and

Brockwell and Davis [36, Ch 10] are good sources of detailed information on this
topic.

4.5 Parametric Spectral Estimation

The methods of the previous section lead to what is generally referred to as non-
parametric spectral estimators because no assumption is made about the parametric
form of the spectral density. In Property 4.4, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function, substitut-
ing the parameter estimates from an ARMA(p, q) fit on the data into the formula for
the spectral density fx(ω) given in (4.23). Such an estimator is called a parametric
spectral estimator. For convenience, a parametric spectral estimator is obtained by
fitting an AR(p) to the data, where the order p is determined by one of the model
selection criteria, such as AIC, AICc, and BIC, defined in (2.15)–(2.17). Parametric
autoregressive spectral estimators will often have superior resolution in problems
when several closely spaced narrow spectral peaks are present and are preferred
by engineers for a broad variety of problems (see Kay [115]). The development of
autoregressive spectral estimators has been summarized by Parzen [149].

If φ̂1, φ̂2, . . . , φ̂p and σ̂2
w are the estimates from an AR(p) fit to xt , then based

on Property 4.4, a parametric spectral estimate of fx(ω) is attained by substituting
these estimates into (4.23), that is,
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f̂x(ω) = σ̂2
w

|φ̂(e−2πiω)|2
, (4.82)

where
φ̂(z) = 1 − φ̂1z − φ̂2z2 − · · · − φ̂pzp . (4.83)

The asymptotic distribution of the autoregressive spectral estimator has been obtained
by Berk [19] under the conditions p → ∞, p3/n → 0 as p, n → ∞, which may be
too severe for most applications. The limiting results imply a confidence interval of
the form

f̂x(ω)
(1 + Czα/2) ≤ fx(ω) ≤ f̂x(ω)

(1 − Czα/2), (4.84)

where C =
√

2p/n and zα/2 is the ordinate corresponding to the upper α/2 probability
of the standard normal distribution. If the sampling distribution is to be checked, we
suggest applying the bootstrap estimator to get the sampling distribution of f̂x (ω)
using a procedure similar to the one used for p = 1 in Example 3.36. An alternative
for higher order autoregressive series is to put the AR(p) in state-space form and use
the bootstrap procedure discussed in Sect. 6.7.

An interesting fact about rational spectra of the form (4.23) is that any spectral
density can be approximated, arbitrarily close, by the spectrum of an AR process.

Property 4.7 AR Spectral Approximation
Let g(ω) be the spectral density of a stationary process. Then, given ε > 0, there

is a time series with the representation

xt =
p∑

k=1
φkxt−k + wt

where wt is white noise with variance σ2
w , such that

| fx (ω) − g(ω)| < ε for all ω ∈ [−1/2, 1/2].
Moreover, p is finite and the roots of φ(z) = 1−∑p

k=1 φk zk are outside the unit circle.

One drawback of the property is that it does not tell us how large p must be
before the approximation is reasonable; in some situations p may be extremely large.
Property 4.7 also holds for MA and for ARMA processes in general, and a proof of
the result may be found in Sect. C.6. We demonstrate the technique in the following
example.

Example 4.18 Autoregressive Spectral Estimator for SOI
Consider obtaining results comparable to the nonparametric estimators shown in
Fig. 4.7 for the SOI series. Fitting successively higher order AR(p) models for
p = 1, 2, . . . , 30 yields a minimum BIC and a minimum AIC at p = 15, as shown in
Fig. 4.13. We can see from Fig. 4.13 that BIC is very definite about which model it
chooses; that is, the minimum BIC is very distinct. On the other hand, it is not clear
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Fig. 4.13. Model selection criteria AIC and BIC as a function of order p for autoregressive
models fitted to the SOI series

what is going to happen with AIC; that is, the minimum is not so clear, and there is
some concern that AIC will start decreasing after p = 30. Minimum AICc selects
the p = 15 model, but suffers from the same uncertainty as AIC. The spectrum
is shown in Fig. 4.14, and we note the strong peaks near the four year and one
year cycles as in the nonparametric estimates obtained in Sect. 4.4. In addition, the
harmonics of the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used to fit the
best model via AIC and plot the resulting spectrum. A quick way to obtain the AIC
values is to run the ar command as follows.
spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty=3) # El Nino peak
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

No likelihood is calculated here, so the use of the term AIC is loose. To generate
Fig. 4.13 we used the following code to (loosely) obtain AIC, AICc, and BIC.
Because AIC and AICc are nearly identical in this example, we only graphed AIC
and BIC+1; we added 1 to the BIC to reduce white space in the graphic.
n = length(soi)
AIC = rep(0, 30) -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n) }

IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

Finally, it should be mentioned that any parametric spectrum, say f (ω; θ), depend-
ing on the vector parameter θ can be estimated via the Whittle likelihood (Whittle
[210]), using the approximate properties of the discrete Fourier transform derived
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Fig. 4.14. Autoregressive spectral estimator for the SOI series using the AR(15) model selected
by AIC, AICc, and BIC

in Appendix C. We have that the DFTs, d(ωj ), are approximately complex normally
distributed with mean zero and variance f (ωj ; θ) and are approximately independent
for ωj � ωk . This implies that an approximate log likelihood can be written in the
form

ln L(x; θ) ≈ −
∑

0<ωj<1/2

(

ln fx(ωj ; θ) +
|d(ωj )|2
fx(ωj ; θ)

)

, (4.85)

where the sum is sometimes expanded to include the frequencies ωj = 0, 1/2. If the
form with the two additional frequencies is used, the multiplier of the sum will be
unity, except for the purely real points at ωj = 0, 1/2 for which the multiplier is 1/2.
For a discussion of applying the Whittle approximation to the problem of estimating
parameters in an ARMA spectrum, see Anderson [6]. The Whittle likelihood is
especially useful for fitting long memory models that will be discussed in Chap. 5.

4.6 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas extends
to the case in which there are several jointly stationary series, for example, xt and yt .
In this case, we can introduce the idea of a correlation indexed by frequency, called
the coherence. The results in Sect. C.2 imply the covariance function

γxy(h) = E[(xt+h − μx)(yt − μy)]
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has the representation

γxy(h) =
∫ 1

2

− 1
2

fxy(ω) e2πiωh dω h = 0,±1,±2, . . . , (4.86)

where the cross-spectrum is defined as the Fourier transform

fxy(ω) =
∞∑

h=−∞
γxy(h) e−2πiωh − 1/2 ≤ ω ≤ 1/2, (4.87)

assuming that the cross-covariance function is absolutely summable, as was the case
for the autocovariance. The cross-spectrum is generally a complex-valued function,
and it is often written as

fxy(ω) = cxy(ω) − iqxy(ω), (4.88)

where

cxy(ω) =
∞∑

h=−∞
γxy(h) cos(2πωh) (4.89)

and

qxy(ω) =
∞∑

h=−∞
γxy(h) sin(2πωh) (4.90)

are defined as the cospectrum and quadspectrum, respectively. Because of the rela-
tionship γyx(h) = γxy(−h), it follows, by substituting into (4.87) and rearranging,
that

fyx(ω) = f ∗xy(ω), (4.91)

with ∗ denoting conjugation. This result, in turn, implies that the cospectrum and
quadspectrum satisfy

cyx(ω) = cxy(ω) (4.92)

and
qyx(ω) = −qxy(ω). (4.93)

An important example of the application of the cross-spectrum is to the problem
of predicting an output series yt from some input series xt through a linear filter
relation such as the three-point moving average considered below. A measure of the
strength of such a relation is the squared coherence function, defined as

ρ2
y ·x(ω) =

| fyx(ω)|2
fxx(ω) fyy(ω), (4.94)

where fxx(ω) and fyy(ω) are the individual spectra of the xt and yt series, respectively.
Although we consider a more general form of this that applies to multiple inputs later,
it is instructive to display the single input case as (4.94) to emphasize the analogy
with conventional squared correlation, which takes the form
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ρ2
yx =

σ2
yx

σ2
xσ

2
y

,

for random variables with variances σ2
x and σ2

y and covariance σyx = σxy . This
motivates the interpretationof squared coherence and the squared correlation between
two time series at frequency ω.

Example 4.19 Three-Point Moving Average
As a simple example, we compute the cross-spectrum between xt and the three-
point moving average yt = (xt−1 + xt + xt+1)/3, where xt is a stationary input
process with spectral density fxx (ω). First,

γxy(h) = cov(xt+h, yt ) = 1
3 cov(xt+h, xt−1 + xt + xt+1)

= 1
3

[
γxx(h + 1) + γxx(h) + γxx(h − 1)

]

= 1
3

∫ 1
2

− 1
2

(
e2πiω + 1 + e−2πiω

)
e2πiωh fxx(ω) dω

= 1
3

∫ 1
2

− 1
2

[
1 + 2 cos(2πω)

]
fxx (ω) e2πiωh dω,

where we have use (4.16). Using the uniqueness of the Fourier transform, we argue
from the spectral representation (4.86) that

fxy(ω) = 1
3

[
1 + 2 cos(2πω)

]
fxx(ω)

so that the cross-spectrum is real in this case. Using Property 4.3, the spectral
density of yt is

fyy(ω) = 1
9

/
/e2πiω + 1 + e−2πiω /

/2 fxx(ω) = 1
9

[
1 + 2 cos(2πω)

]2
fxx(ω) .

Substituting into (4.94) yields,

ρ2
y ·x(ω) =

/
/
/ 1
3 [1 + 2 cos(2πω)] fxx(ω)

/
/
/
2

fxx(ω) · 1
9 [1 + 2 cos(2πω)]2 fxx(ω)

= 1 ;

that is, the squared coherence between xt and yt is unity over all frequencies. This is
a characteristic inherited by more general linear filters; see Problem 4.30. However,
if some noise is added to the three-point moving average, the coherence is not unity;
these kinds of models will be considered in detail later.

Property 4.8 Spectral Representation of a Vector Stationary Process
If xt = (xt1, xt2, . . . , xt p)′ is a p×1 stationary process with autocovariance matrix

Γ(h) = E[(xt+h − μ)(xt − μ)′] = {γjk (h)} satisfying
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∞∑

h=−∞
|γjk(h)| < ∞ (4.95)

for all j, k = 1, . . . , p, then Γ(h) has the representation

Γ(h) =
∫ 1

2

− 1
2

e2πiωh f (ω) dω h = 0,±1,±2, . . . , (4.96)

as the inverse transform of the spectral density matrix, f (ω) = { fjk (ω)}, for j, k =

1, . . . , p. The matrix f (ω) has the representation

f (ω) =
∞∑

h=−∞
Γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.97)

The spectral matrix f (ω) is Hermitian, f (ω) = f ∗(ω), where ∗ means to conjugate
and transpose.

Example 4.20 Spectral Matrix of a Bivariate Process
Consider a jointly stationary bivariate process (xt, yt ). We arrange the autocovari-
ances in the matrix

Γ(h) =
(
γxx(h) γxy(h)
γyx(h) γyy(h)

)

.

The spectral matrix would be given by

f (ω) =
(

fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)

,

where the Fourier transform (4.96) and (4.97) relate the autocovariance and spectral
matrices.

The extension of spectral estimation to vector series is fairly obvious. For the
vector series xt = (xt1, xt2, . . . , xt p)′, we may use the vector of DFTs, say d(ωj ) =
(d1(ωj ), d2(ωj ), . . . , dp(ωj ))′, and estimate the spectral matrix by

f̄ (ω) = L−1
m∑

k=−m
I(ωj + k/n) (4.98)

where now
I(ωj ) = d(ωj ) d∗(ωj ) (4.99)

is a p×p complex matrix. The series may be tapered before the DFT is taken in (4.98)
and we can use weighted estimation,

f̂ (ω) =
m∑

k=−m
hk I(ωj + k/n) (4.100)
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where {hk} are weights as defined in (4.64). The estimate of squared coherence
between two series, yt and xt is

ρ̂2
y ·x(ω) =

| f̂yx(ω)|2
f̂xx (ω) f̂yy(ω)

. (4.101)

If the spectral estimates in (4.101) are obtained using equal weights, we will write
ρ̄2
y ·x(ω) for the estimate.

Under general conditions, if ρ2
y ·x(ω) > 0 then

| ρ̂y ·x(ω)| ∼ AN
(
|ρy ·x(ω)|,

(
1 − ρ2

y ·x(ω)
)2/2Lh

)
(4.102)

where Lh is defined in (4.65); the details of this result may be found in Brockwell and
Davis [36, Ch 11]. We may use (4.102) to obtain approximate confidence intervals
for the squared coherence, ρ2

y ·x(ω).
We may also test the null hypothesis that ρ2

y ·x(ω) = 0 if we use ρ̄2
y ·x(ω) for the

estimate with L > 1,11 that is,

ρ̄2
y ·x(ω) =

| f̄yx(ω)|2
f̄xx(ω) f̄yy(ω)

. (4.103)

In this case, under the null hypothesis, the statistic

F =
ρ̄2
y ·x(ω)

(1 − ρ̄2
y ·x(ω))

(L − 1) (4.104)

has an approximate F-distribution with 2 and 2L − 2 degrees of freedom. When the
series have been extended to length n′, we replace 2L − 2 by df − 2, where df is
defined in (4.60). Solving (4.104) for a particular significance level α leads to

Cα =
F2,2L−2(α)

L − 1 + F2,2L−2(α) (4.105)

as the approximate value that must be exceeded for the original squared coherence to
be able to reject ρ2

y ·x(ω) = 0 at an a priori specified frequency.

Example 4.21 Coherence Between SOI and Recruitment
Figure 4.15 shows the squared coherence between the SOI and Recruitment series
over a wider band than was used for the spectrum. In this case, we used L = 19, df =

2(19)(453/480) ≈ 36 and F2,df −2(.001) ≈ 8.53 at the significance level α = .001.
Hence, we may reject the hypothesis of no coherence for values of ρ̄2

y ·x(ω) that
exceed C.001 = .32. We emphasize that this method is crude because, in addition to
the fact that the F-statistic is approximate, we are examining the squared coherence
across all frequencies with the Bonferroni inequality, (4.63), in mind. Figure 4.15

11 If L = 1 then ρ̄2
y ·x(ω) ≡ 1.
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Fig. 4.15. Squared coherency between the SOI and Recruitment series; L = 19, n = 453, n′ =
480, and α = .001. The horizontal line is C.001

also exhibits confidence bands as part of the R plotting routine. We emphasize that
these bands are only valid for ω where ρ2

y ·x(ω) > 0.
In this case, the two series are obviously strongly coherent at the annual seasonal

frequency. The series are also strongly coherent at lower frequencies that may be
attributed to the El Niño cycle, which we claimed had a 3 to 7 year period. The
peak in the coherency, however, occurs closer to the 9 year cycle. Other frequencies
are also coherent, although the strong coherence is less impressive because the
underlying power spectrum at these higher frequencies is fairly small. Finally, we
note that the coherence is persistent at the seasonal harmonic frequencies.

This example may be reproduced using the following R commands.
sr = mvspec(cbind(soi,rec), kernel("daniell",9), plot=FALSE)
sr$df # df = 35.8625
f = qf(.999, 2, sr$df-2) # = 8.529792
C = f/(18+f) # = 0.321517
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

4.7 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making a
linear transformation. In this section, we explore that notion further by showing how
linear filters can be used to extract signals from a time series. These filters modify
the spectral characteristics of a time series in a predictable way, and the systematic
development of methods for taking advantage of the special properties of linear filters
is an important topic in time series analysis.



212 4 Spectral Analysis and Filtering

Recall Property 4.3 that stated if

yt =

∞∑

j=−∞
aj xt−j,

∞∑

j=−∞
|aj | < ∞,

and xt has spectrum fxx(ω), then yt has spectrum

fyy(ω) = |Ayx(ω)|2 fxx (ω),
where

Ayx(ω) =
∞∑

j=−∞
aj e−2πiω j

is the frequency response function. This result shows that the filtering effect can be
characterized as a frequency-by-frequency multiplication by the squared magnitude
of the frequency response function.

Example 4.22 First Difference and Moving Average Filters
We illustrate the effect of filtering with two common examples, the first difference
filter

yt = ∇xt = xt − xt−1

and the annual symmetric moving average filter,

yt =
1
24

(
xt−6 + xt+6

)
+ 1

12

5∑

r=−5
xt−r,

which is a modified Daniell kernel with m = 6. The results of filtering the SOI
series using the two filters are shown in the middle and bottom panels of Fig. 4.16.
Notice that the effect of differencing is to roughen the series because it tends to
retain the higher or faster frequencies. The centered moving average smoothes the
series because it retains the lower frequencies and tends to attenuate the higher
frequencies. In general, differencing is an example of a high-pass filter because it
retains or passes the higher frequencies, whereas the moving average is a low-pass
filter because it passes the lower or slower frequencies.

Notice that the slower periods are enhanced in the symmetric moving average
and the seasonal or yearly frequencies are attenuated. The filtered series makes
about 9 cycles in the length of the data (about one cycle every 52 months) and the
moving average filter tends to enhance or extract the El Niño signal. Moreover,
by low-pass filtering the data, we get a better sense of the El Niño effect and its
irregularity.

Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.21) and (4.22) for
this purpose. The first difference filter can be written in the form (4.20) by letting
a0 = 1, a1 = −1, and ar = 0 otherwise. This implies that

Ayx(ω) = 1 − e−2πiω,
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Fig. 4.16. SOI series (top) compared with the differenced SOI (middle) and a centered 12-month
moving average (bottom)

and the squared frequency response becomes

|Ayx(ω)|2 = (1 − e−2πiω)(1 − e2πiω) = 2[1 − cos(2πω)]. (4.106)

The top panel of Fig. 4.17 shows that the first difference filter will attenuate the
lower frequencies and enhance the higher frequencies because the multiplier of the
spectrum, |Ayx(ω)|2, is large for the higher frequencies and small for the lower
frequencies. Generally, the slow rise of this kind of filter does not particularly
recommend it as a procedure for retaining only the high frequencies.

For the centered 12-month moving average, we can take a−6 = a6 = 1/24,
ak = 1/12 for −5 ≤ k ≤ 5 and ak = 0 elsewhere. Substituting and recognizing the
cosine terms gives

Ayx(ω) = 1
12

[
1 + cos(12πω) + 2

5∑

k=1
cos(2πωk)

]
. (4.107)

Plotting the squared frequency response of this function as in the bottom of Fig. 4.17
shows that we can expect this filter to cut most of the frequency content above .05
cycles per point, and nearly all of the frequency content above 1/12 ≈ .083. In
particular, this drives down the yearly components with periods of 12 months
and enhances the El Niño frequency, which is somewhat lower. The filter is not
completely efficient at attenuating high frequencies; some power contributions are
left at higher frequencies, as shown in the function |Ayx(ω)|2.
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Fig. 4.17. Squared frequency response functions of the first difference (top) and twelve-month
moving average (bottom) filters

The following R session shows how to filter the data, perform the spectral
analysis of a filtered series, and plot the squared frequency response curves of the
difference and moving average filters.
par(mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis (not shown)
abline(v=12/52, lty="dashed")
dev.new()
##-- frequency responses --##
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
w = seq(0, .5, by=.01)
FRdiff = abs(1-exp(2i*pi*w))^2
plot(w, FRdiff, type='l', xlab='frequency')
u = cos(2*pi*w)+cos(4*pi*w)+cos(6*pi*w)+cos(8*pi*w)+cos(10*pi*w)
FRma = ((1 + cos(12*pi*w) + 2*u)/12)^2
plot(w, FRma, type='l', xlab='frequency')

The two filters discussed in the previous example were different in that the fre-
quency response function of the first difference was complex-valued, whereas the
frequency response of the moving average was purely real. A short derivation similar
to that used to verify (4.22) shows, when xt and yt are related by the linear filter
relation (4.20), the cross-spectrum satisfies

fyx(ω) = Ayx(ω) fxx(ω),
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so the frequency response is of the form

Ayx(ω) =
fyx(ω)
fxx(ω) (4.108)

=
cyx(ω)
fxx(ω) − i

qyx(ω)
fxx (ω) , (4.109)

where we have used (4.88) to get the last form. Then, we may write (4.109) in polar
coordinates as

Ayx(ω) = |Ayx(ω)| exp{−i φyx(ω)}, (4.110)

where the amplitude and phase of the filter are defined by

|Ayx(ω)| =

√
c2
yx(ω) + q2

yx(ω)
fxx(ω) (4.111)

and
φyx(ω) = tan−1

(

−qyx(ω)
cyx(ω)

)

. (4.112)

A simple interpretation of the phase of a linear filter is that it exhibits time delays as
a function of frequency in the same way as the spectrum represents the variance as
a function of frequency. Additional insight can be gained by considering the simple
delaying filter

yt = Axt−D,

where the series gets replaced by a version, amplified by multiplying by A and delayed
by D points. For this case,

fyx(ω) = Ae−2πiωD fxx (ω),

and the amplitude is |A|, and the phase is

φyx(ω) = −2πωD,

or just a linear function of frequency ω. For this case, applying a simple time delay
causes phase delays that depend on the frequency of the periodic component being
delayed. Interpretation is further enhanced by setting

xt = cos(2πωt),
in which case

yt = A cos(2πωt − 2πωD).
Thus, the output series, yt, has the same period as the input series, xt, but the amplitude
of the output has increased by a factor of |A| and the phase has been changed by a
factor of −2πωD.
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Example 4.23 Difference and Moving Average Filters
We consider calculating the amplitude and phase of the two filters discussed in Ex-
ample 4.22. The case for the moving average is easy because Ayx(ω) given in (4.107)
is purely real. So, the amplitude is just |Ayx(ω)| and the phase is φyx(ω) = 0. In
general, symmetric (aj = a−j ) filters have zero phase. The first difference, however,
changes this, as we might expect from the example above involving the time delay
filter. In this case, the squared amplitude is given in (4.106). To compute the phase,
we write

Ayx(ω) = 1 − e−2πiω = e−iπω(eiπω − e−iπω)
= 2ie−iπω sin(πω) = 2 sin2(πω) + 2i cos(πω) sin(πω)
=

cyx(ω)
fxx(ω) − i

qyx(ω)
fxx (ω) ,

so

φyx(ω) = tan−1
(

−qyx(ω)
cyx(ω)

)

= tan−1
(
cos(πω)
sin(πω)

)

.

Noting that
cos(πω) = sin(−πω + π/2)

and that
sin(πω) = cos(−πω + π/2),

we get
φyx(ω) = −πω + π/2,

and the phase is again a linear function of frequency.

The above tendency of the frequencies to arrive at different times in the filtered
version of the series remains as one of two annoying features of the difference type
filters. The other weakness is the gentle increase in the frequency response function.
If low frequencies are really unimportant and high frequencies are to be preserved,
we would like to have a somewhat sharper response than is obvious in Fig. 4.17.
Similarly, if low frequencies are important and high frequencies are not, the moving
average filters are also not very efficient at passing the low frequencies and attenuating
the high frequencies. Improvement is possible by designing better and longer filters,
but we do not discuss this here.

We will occasionally use results for multivariate series xt = (xt1, . . . , xt p)′ that
are comparable to the simple property shown in (4.22). Consider the matrix filter

yt =

∞∑

j=−∞
Aj xt−j, (4.113)

where {Aj } denotes a sequence of q × p matrices such that
∑∞

j=−∞ ‖Aj ‖ < ∞ and
‖ · ‖ denotes any matrix norm, xt = (xt1, . . . , xt p)′ is a p× 1 stationary vector process
with mean vector μx and p×p, matrix covariance function Γxx(h) and spectral matrix
fxx (ω), and yt is the q × 1 vector output process. Then, we can obtain the following
property.
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Property 4.9 Output Spectral Matrix of Filtered Vector Series
The spectral matrix of the filtered output yt in (4.113) is related to the spectrum

of the input xt by
fyy(ω) = A(ω) fxx(ω)A∗(ω), (4.114)

where the matrix frequency response function A(ω) is defined by

A(ω) =
∞∑

j=−∞
Aj exp(−2πiω j). (4.115)

4.8 Lagged Regression Models

One of the intriguing possibilities offered by the coherence analysis of the relation be-
tween the SOI and Recruitment series discussed in Example 4.21 would be extending
classical regression to the analysis of lagged regression models of the form

yt =

∞∑

r=−∞
βr xt−r + vt, (4.116)

where vt is a stationary noise process, xt is the observed input series, and yt is
the observed output series. We are interested in estimating the filter coefficients βr
relating the adjacent lagged values of xt to the output series yt .

In the case of SOI and Recruitment series, we might identify the El Niño driving
series, SOI, as the input, xt , and yt , the Recruitment series, as the output. In general,
there will be more than a single possible input series and we may envision a q × 1
vector of driving series. This multivariate input situation is covered in Chap. 7. The
model given by (4.116) is useful under several different scenarios, corresponding to
different assumptions that can be made about the components.

We assume that the inputs and outputs have zero means and are jointly stationary
with the 2 × 1 vector process (xt, yt )′ having a spectral matrix of the form

f (ω) =
(

fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)

. (4.117)

Here, fxy(ω) is the cross-spectrum relating the input xt to the output yt , and fxx (ω)
and fyy(ω) are the spectra of the input and output series, respectively. Generally, we
observe two series, regarded as input and output and search for regression functions
{βt } relating the inputs to the outputs. We assume all autocovariance functions satisfy
the absolute summability conditions of the form (4.38).

Then, minimizing the mean squared error

MSE = E

(

yt −
∞∑

r=−∞
βr xt−r

)2

(4.118)
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leads to the usual orthogonality conditions

E

[(

yt −
∞∑

r=−∞
βr xt−r

)

xt−s

]

= 0 (4.119)

for all s = 0,±1,±2, . . .. Taking the expectations inside leads to the normal equations
∞∑

r=−∞
βr γxx(s − r) = γyx(s) (4.120)

for s = 0,±1,±2, . . .. These equations might be solved, with some effort, if the
covariance functions were known exactly. If data (xt, yt ) for t = 1, . . . , n are available,
we might use a finite approximation to the above equations with γ̂xx(h) and γ̂yx(h)
substituted into (4.120). If the regression vectors are essentially zero for |s| ≥ M/2,
and M < n, the system (4.120) would be of full rank and the solution would involve
inverting an (M − 1) × (M − 1) matrix.

A frequency domain approximate solution is easier in this case for two reasons.
First, the computations depend on spectra and cross-spectra that can be estimated
from sample data using the techniques of Sect. 4.5. In addition, no matrices will
have to be inverted, although the frequency domain ratio will have to be computed
for each frequency. In order to develop the frequency domain solution, substitute
the representation (4.96) into the normal equations, using the convention defined
in (4.117). The left side of (4.120) can then be written in the form

∫ 1
2

− 1
2

∞∑

r=−∞
βr e2πiω(s−r) fxx(ω) dω =

∫ 1
2

− 1
2

e2πiωsB(ω) fxx(ω) dω,

where

B(ω) =
∞∑

r=−∞
βr e−2πiωr (4.121)

is the Fourier transform of the regression coefficients βt . Now, because γyx(s) is
the inverse transform of the cross-spectrum fyx(ω), we might write the system of
equations in the frequency domain, using the uniqueness of the Fourier transform, as

B(ω) fxx(ω) = fyx(ω), (4.122)

which then become the analogs of the usual normal equations. Then, we may take

B̂(ωk) =
f̂yx(ωk)
f̂xx (ωk)

(4.123)

as the estimator for the Fourier transform of the regression coefficients, evaluated at
some subset of fundamental frequencies ωk = k/M with M << n. Generally, we as-
sume smoothness of B(·) over intervals of the form {ωk+�/n; � = −m, . . . , 0, . . . , m},
with L = 2m + 1. The inverse transform of the function B̂(ω) would give β̂t , and we
note that the discrete time approximation can be taken as
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Fig. 4.18. Estimated impulse response functions relating SOI to Recruitment (top) and Re-
cruitment to SOI (bottom) L = 15, M = 32

β̂t = M−1
M−1∑

k=0
B̂(ωk)e2πiωk t (4.124)

for t = 0,±1,±2, . . . ,±(M/2−1). If we were to use (4.124) to define β̂t for |t | ≥ M/2,
we would end up with a sequence of coefficients that is periodic with a period of M.
In practice we define β̂t = 0 for |t | ≥ M/2 instead. Problem 4.32 explores the error
resulting from this approximation.

Example 4.24 Lagged Regression for SOI and Recruitment
The high coherence between the SOI and Recruitment series noted in Example 4.21
suggests a lagged regression relation between the two series. A natural direction
for the implication in this situation is implied because we feel that the sea surface
temperature or SOI should be the input and the Recruitment series should be the
output. With this in mind, let xt be the SOI series and yt the Recruitment series.

Although we think naturally of the SOI as the input and the Recruitment as the
output, two input-output configurations are of interest. With SOI as the input, the
model is

yt =

∞∑

r=−∞
ar xt−r + wt

whereas a model that reverses the two roles would be

xt =
∞∑

r=−∞
br yt−r + vt,

where wt and vt are white noise processes. Even though there is no plausible
environmental explanation for the second of these two models, displaying both
possibilities helps to settle on a parsimonious transfer function model.
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Based on the script LagReg in astsa, the estimated regression or impulse re-
sponse function for SOI, with M = 32 and L = 15 is
LagReg(soi, rec, L=15, M=32, threshold=6)

lag s beta(s)
[1,] 5 -18.479306
[2,] 6 -12.263296
[3,] 7 -8.539368
[4,] 8 -6.984553

The prediction equation is
rec(t) = alpha + sum_s[ beta(s)*soi(t-s) ], where alpha = 65.97
MSE = 414.08

Note the negative peak at a lag of five points in the top of Fig. 4.18; in this case, SOI
is the input series. The fall-off after lag five seems to be approximately exponential
and a possible model is

yt = 66 − 18.5xt−5 − 12.3xt−6 − 8.5xt−7 − 7xt−8 + wt .

If we examine the inverse relation, namely, a regression model with the Recruitment
series yt as the input, the bottom of Fig. 4.18 implies a much simpler model,
LagReg(rec, soi, L=15, M=32, inverse=TRUE, threshold=.01)

lag s beta(s)
[1,] 4 0.01593167
[2,] 5 -0.02120013

The prediction equation is
soi(t) = alpha + sum_s[ beta(s)*rec(t+s) ], where alpha = 0.41
MSE = 0.07

depending on only two coefficients, namely,

xt = .41 + .016yt+4 − .02yt+5 + vt .

Multiplying both sides by 50B5 and rearranging, we have

(1 − .8B)yt = 20.5 − 50B5xt + εt .

Finally, we check whether the noise, εt , is white. In addition, at this point, it sim-
plifies matters if we rerun the regression with autocorrelated errors and reestimate
the coefficients. The model is referred to as an ARMAX model (the X stands for
exogenous; see Sects. 5.6 and Section 6.6.1):
fish = ts.intersect(R=rec, RL1=lag(rec,-1), SL5=lag(soi,-5))
(u = lm(fish[,1]~fish[,2:3], na.action=NULL))
acf2(resid(u)) # suggests ar1
sarima(fish[,1], 1, 0, 0, xreg=fish[,2:3]) # armax model

Coefficients:
ar1 intercept RL1 SL5

0.4487 12.3323 0.8005 -21.0307
s.e. 0.0503 1.5746 0.0234 1.0915
sigma^2 estimated as 49.93

Our final parsimonious fitted model is (with rounding)

yt = 12 + .8yt−1 − 21xt−5 + εt , and εt = .45εt−1 + wt ,

where wt is white noise with σ2
w = 50. This example is also examined in Chap. 5

and the fitted values for the final model can be viewed Fig. 5.12.
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The example shows we can get a clean estimator for the transfer functions relating
the two series if the coherence ρ̂2

xy(ω) is large. The reason is that we can write the
minimized mean squared error (4.118) as

MSE = E
[
(
yt −

∞∑

r=−∞
βr xt−r

)
yt

]

= γyy(0) −
∞∑

r=−∞
βrγxy(−r),

using the result about the orthogonality of the data and error term in the Projection
theorem. Then, substituting the spectral representations of the autocovariance and
cross-covariance functions and identifying the Fourier transform (4.121) in the result
leads to

MSE =

∫ 1
2

− 1
2

[ fyy(ω) − B(ω) fxy(ω)] dω

=

∫ 1
2

− 1
2

fyy(ω)[1 − ρ2
yx(ω)]dω, (4.125)

where ρ2
yx(ω) is just the squared coherence given by (4.94). The similarity of (4.125)

to the usual mean square error that results from predicting y from x is obvious. In
that case, we would have

E(y − βx)2 = σ2
y (1 − ρ2

xy)

for jointly distributed random variables x and y with zero means, variances σ2
x and

σ2
y , and covariance σxy = ρxyσxσy . Because the mean squared error in (4.125)

satisfies MSE ≥ 0 with fyy(ω) a non-negative function, it follows that the coherence
satisfies

0 ≤ ρ2
xy(ω) ≤ 1

for all ω. Furthermore, Problem 4.33 shows the squared coherence is one when
the output are linearly related by the filter relation (4.116), and there is no noise,
i.e., vt = 0. Hence, the multiple coherence gives a measure of the association or
correlation between the input and output series as a function of frequency.

The matter of verifying that the F-distribution claimed for (4.104) will hold when
the sample coherence values are substituted for theoretical values still remains. Again,
the form of the F-statistic is exactly analogous to the usual t-test for no correlation
in a regression context. We give an argument leading to this conclusion later using
the results in Sect. C.3. Another question that has not been resolved in this section is
the extension to the case of multiple inputs xt1, xt2, . . . , xtq. Often, more than just a
single input series is present that can possibly form a lagged predictor of the output
series yt . An example is the cardiovascular mortality series that depended on possibly
a number of pollution series and temperature. We discuss this particular extension as
a part of the multivariate time series techniques considered in Chap. 7.
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4.9 Signal Extraction and Optimum Filtering

A model closely related to regression can be developed by assuming again that

yt =

∞∑

r=−∞
βr xt−r + vt, (4.126)

but where the βs are known and xt is some unknown random signal that is uncorrelated
with the noise process vt . In this case, we observe only yt and are interested in an
estimator for the signal xt of the form

x̂t =
∞∑

r=−∞
ar yt−r . (4.127)

In the frequency domain, it is convenient to make the additional assumptions that the
series xt and vt are both mean-zero stationary series with spectra fxx(ω) and fvv(ω),
often referred to as the signal spectrum and noise spectrum, respectively. Often, the
special case βt = δt , in which δt is the Kronecker delta, is of interest because (4.126)
reduces to the simple signal plus noise model

yt = xt + vt (4.128)

in that case. In general, we seek the set of filter coefficients at that minimize the mean
squared error of estimation, say,

MSE = E
⎡
⎢
⎢
⎢
⎢
⎣

(

xt −
∞∑

r=−∞
ar yt−r

)2⎤
⎥
⎥
⎥
⎥
⎦

. (4.129)

This problem was originally solved by Kolmogorov [120] and by Wiener [211], who
derived the result in 1941 and published it in classified reports during World War II.

We can apply the orthogonality principle to write

E

[(

xt −
∞∑

r=−∞
ar yt−r

)

yt−s

]

= 0

for s = 0,±1,±2, . . ., which leads to

∞∑

r=−∞
arγyy(s − r) = γxy(s),

to be solved for the filter coefficients. Substituting the spectral representations for the
autocovariance functions into the above and identifying the spectral densities through
the uniqueness of the Fourier transform produces

A(ω) fyy(ω) = fxy(ω), (4.130)
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where A(ω) and the optimal filter at are Fourier transform pairs for B(ω) and βt .
Now, a special consequence of the model is that (see Problem 4.30)

fxy(ω) = B∗(ω) fxx (ω) (4.131)

and
fyy(ω) = |B(ω)|2 fxx (ω) + fvv(ω), (4.132)

implying the optimal filter would be Fourier transform of

A(ω) = B∗(ω)
(

|B(ω)|2 + fvv (ω)
fxx (ω)

) , (4.133)

where the second term in the denominator is just the inverse of the signal to noise
ratio, say,

SNR(ω) = fxx(ω)
fvv(ω) . (4.134)

The result shows the optimum filters can be computed for this model if the signal
and noise spectra are both known or if we can assume knowledge of the signal-to-
noise ratio SNR(ω) as function of frequency. In Chap. 7, we show some methods
for estimating these two parameters in conjunction with random effects analysis of
variance models, but we assume here that it is possible to specify the signal-to-noise
ratio a priori. If the signal-to-noise ratio is known, the optimal filter can be computed
by the inverse transform of the function A(ω). It is more likely that the inverse
transform will be intractable and a finite filter approximation like that used in the
previous section can be applied to the data. In this case, we will have

aM
t = M−1

M−1∑

k=0
A(ωk)e2πiωk t (4.135)

as the estimated filter function. It will often be the case that the form of the specified
frequency response will have some rather sharp transitions between regions where
the signal-to-noise ratio is high and regions where there is little signal. In these cases,
the shape of the frequency response function will have ripples that can introduce
frequencies at different amplitudes. An aesthetic solution to this problem is to intro-
duce tapering as was done with spectral estimation in (4.69)–(4.76). We use below
the tapered filter ãt = htat where ht is the cosine taper given in (4.76). The squared
frequency response of the resulting filter will be | Ã(ω)|2, where

Ã(ω) =
∞∑

t=−∞
athte−2πiωt . (4.136)

The results are illustrated in the following example that extracts the El Niño compo-
nent of the sea surface temperature series.



224 4 Spectral Analysis and Filtering

lllllllllllllllllllll
l
l
l

l

l

l

l

l
l
lll

l
l

l

l

l

l

l
l
l
lllllllllllllllllllll

−30 −20 −10 0 10 20 30

−0
.0

2
0.

04
0.

08

Filter coefficients

s

a(
s)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

Desired and attained frequency response functions

freq

fre
q.

 re
sp

on
se

Fig. 4.19. Filter coefficients (top) and frequency response functions (bottom) for designed SOI
filters

Example 4.25 Estimating the El Niño Signal via Optimal Filters
Figure 4.7 shows the spectrum of the SOI series, and we note that essentially two
components have power, the El Niño frequency of about .02 cycles per month (the
four-year cycle) and a yearly frequency of about .08 cycles per month (the annual
cycle). We assume, for this example, that we wish to preserve the lower frequency
as signal and to eliminate the higher order frequencies, and in particular, the annual
cycle. In this case, we assume the simple signal plus noise model

yt = xt + vt,

so that there is no convolving function βt . Furthermore, the signal-to-noise ratio
is assumed to be high to about .06 cycles per month and zero thereafter. The
optimal frequency response was assumed to be unity to .05 cycles per point and
then to decay linearly to zero in several steps. Figure 4.19 shows the coefficients
as specified by (4.135) with M = 64, as well as the frequency response function
given by (4.136), of the cosine tapered coefficients; recall Fig. 4.11, where we
demonstrated the need for tapering to avoid severe ripples in the window. The
constructed response function is compared to the ideal window in Fig. 4.19.

Figure 4.20 shows the original and filtered SOI index, and we see a smooth
extracted signal that conveys the essence of the underlying El Niño signal. The
frequency response of the designed filter can be compared with that of the symmetric
12-month moving average applied to the same series in Example 4.22. The filtered
series, shown in Fig. 4.16, shows a good deal of higher frequency chatter riding
on the smoothed version, which has been introduced by the higher frequencies that
leak through in the squared frequency response, as in Fig. 4.17.

The analysis can be replicated using the script SigExtract.
SigExtract(soi, L=9, M=64, max.freq=.05)
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Fig. 4.20. Original SOI series (top) compared to filtered version showing the estimated El Niño
temperature signal (bottom)

The design of finite filters with a specified frequency response requires some
experimentation with various target frequency response functions and we have only
touched on the methodology here. The filter designed here, sometimes called a
low-pass filter reduces the high frequencies and keeps or passes the low frequencies.
Alternately, we could design a high-pass filter to keep high frequencies if that is where
the signal is located. An example of a simple high-pass filter is the first difference
with a frequency response that is shown in Fig. 4.17. We can also design band-pass
filters that keep frequencies in specified bands. For example, seasonal adjustment
filters are often used in economics to reject seasonal frequencies while keeping both
high frequencies, lower frequencies, and trend (see, for example, Grether and Nerlove
[83]).

The filters we have discussed here are all symmetric two-sided filters, because
the designed frequency response functions were purely real. Alternatively, we may
design recursive filters to produce a desired response. An example of a recursive filter
is one that replaces the input xt by the filtered output

yt =

p∑

k=1
φkyt−k + xt −

q∑

k=1
θk xt−k . (4.137)

Note the similarity between (4.137) and the ARMA(p, q) model, in which the white
noise component is replaced by the input. Transposing the terms involving yt and
using the basic linear filter result in Property 4.3 leads to

fy(ω) = |θ(e−2πiω)|2
|φ(e−2πiω)|2 fx(ω), (4.138)
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where

φ(e−2πiω) = 1 −
p∑

k=1
φke−2πikω

and

θ(e−2πiω) = 1 −
q∑

k=1
θke−2πikω .

Recursive filters such as those given by (4.138) distort the phases of arriving frequen-
cies, and we do not consider the problem of designing such filters in any detail.

4.10 Spectral Analysis of Multidimensional Series

Multidimensional series of the form xs , where s = (s1, s2, . . . , sr )′ is an r-dimensional
vector of spatial coordinates or a combination of space and time coordinates, were
introduced in Sect. 1.6. The example given there, shown in Fig. 1.18, was a collection
of temperature measurements taking on a rectangular field. These data would form
a two-dimensional process, indexed by row and column in space. In that section,
the multidimensional autocovariance function of an r-dimensional stationary series
was given as γx(h) = E[xs+hxs], where the multidimensional lag vector is h =

(h1, h2, . . . , hr )′.
The multidimensional wavenumber spectrum is given as the Fourier transform of

the autocovariance, namely,

fx(ω) =
∑

· · ·
∑

h

γx(h)e−2πiω′h . (4.139)

Again, the inverse result

γx(h) =
∫ 1

2

− 1
2

· · ·
∫ 1

2

− 1
2

fx (ω)e2πiω′hdω (4.140)

holds, where the integral is over the multidimensional range of the vector ω. The
wavenumber argument is exactly analogous to the frequency argument, and we have
the corresponding intuitive interpretation as the cycling rate ωi per distance traveled
si in the i-th direction.

Two-dimensional processes occur often in practical applications, and the repre-
sentations above reduce to

fx(ω1, ω2) =
∞∑

h1=−∞

∞∑

h2=−∞
γx(h1, h2)e−2πi(ω1h1+ω2h2) (4.141)

and

γx(h1, h2) =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

fx(ω1, ω2)e2πi(ω1h1+ω2h2)dω1 dω2 (4.142)
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in the case r = 2. The notion of linear filtering generalizes easily to the two-
dimensional case by defining the impulse response function as1,s2 and the spatial
filter output as

ys1,s2 =
∑

u1

∑

u2

au1,u2 xs1−u1,s2−u2 . (4.143)

The spectrum of the output of this filter can be derived as

fy(ω1, ω2) = |A(ω1, ω2)|2 fx (ω1, ω2), (4.144)

where
A(ω1, ω2) =

∑

u1

∑

u2

au1,u2 e
−2πi(ω1u1+ω2u2). (4.145)

These results are analogous to those in the one-dimensional case, described by
Property 4.3.

The multidimensional DFT is also a straightforward generalization of the uni-
variate expression. In the two-dimensional case with data on a rectangular grid,
{xs1,s2 ; s1 = 1, . . . , n1, s2 = 1, . . . , n2}, we will write, for −1/2 ≤ ω1, ω2 ≤ 1/2,

d(ω1, ω2) = (n1n2)−1/2
n1∑

s1=1

n2∑

s2=1
xs1,s2e

−2πi(ω1s1+ω2s2) (4.146)

as the two-dimensional DFT, where the frequencies ω1, ω2 are evaluated at multiples
of (1/n1, 1/n2) on the spatial frequency scale. The two-dimensional wavenumber
spectrum can be estimated by the smoothed sample wavenumber spectrum

f̄x(ω1, ω2) = (L1L2)−1
∑

�1,�2

|d(ω1 + �1/n1, ω2 + �2/n2)|2 , (4.147)

where the sum is taken over the grid {−mj ≤ �j ≤ mj ; j = 1, 2}, where L1 = 2m1 +1
and L2 = 2m2 + 1. The statistic

2L1L2 f̄x(ω1, ω2)
fx(ω1, ω2)

·∼ χ2
2L1L2

(4.148)

can be used to set confidence intervals or make approximate tests against a fixed
assumed spectrum f0(ω1, ω2).
Example 4.26 Soil Surface Temperatures

As an example, consider the periodogram of the two-dimensional temperature
series shown in Fig. 1.18 and analyzed by Bazza et al. [15]. We recall the spatial
coordinates in this case will be (s1, s2), which define the spatial coordinates rows
and columns so that the frequencies in the two directions will be expressed as
cycles per row and cycles per column. Figure 4.21 shows the periodogram of the
two-dimensional temperature series, and we note the ridge of strong spectral peaks
running over rows at a column frequency of zero. An obvious periodic component
appears at frequencies of .0625 and −.0625 cycles per row, which corresponds to
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Fig. 4.21. Two-dimensional periodogram of soil temperature profile showing peak at .0625
cycles/row. The period is 16 rows, and this corresponds to 16 × 17 ft = 272 ft

16 rows or about 272 ft. On further investigation of previous irrigation patterns over
this field, treatment levels of salt varied periodically over columns. This analysis
is extended in Problem 4.24, where we recover the salt treatment profile over rows
and compare it to a signal, computed by averaging over columns.

Figure 4.21 may be reproduced in R as follows. In the code for this example,
the periodogram is computed in one step as per; the rest of the code is simply
manipulation to obtain a nice graphic.
per = Mod(fft(soiltemp-mean(soiltemp))/sqrt(64*36))^2
per2 = cbind(per[1:32,18:2], per[1:32,1:18])
per3 = rbind(per2[32:2,],per2)
par(mar=c(1,2.5,0,0)+.1)
persp(-31:31/64, -17:17/36, per3, phi=30, theta=30, expand=.6,

ticktype="detailed", xlab="cycles/row", ylab="cycles/column",
zlab="Periodogram Ordinate")

Another application of two-dimensional spectral analysis of agricultural field
trials is given in McBratney and Webster [134], who used it to detect ridge and furrow
patterns in yields. The requirement for regular, equally spaced samples on fairly large
grids has tended to limit enthusiasm for strict two-dimensional spectral analysis. An
exception is when a propagating signal from a given velocity and azimuth is present so
predicting the wavenumber spectrum as a function of velocity and azimuth becomes
feasible (see Shumway et al. [186]).
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Problems

Section 4.1

4.1 Verify that for any positive integer n and j, k = 0, 1, . . . , [[n/2]], where [[·]] denotes
the greatest integer function:

(a) Except for j = 0 or j = n/2,12
n∑

t=1
cos2(2πt j/n) =

n∑

t=1
sin2(2πt j/n) = n/2.

(b) When j = 0 or j = n/2,
n∑

t=1
cos2(2πt j/n) = n but

n∑

t=1
sin2(2πt j/n) = 0.

(c) For j � k,
n∑

t=1
cos(2πt j/n) cos(2πtk/n) =

n∑

t=1
sin(2πt j/n) sin(2πtk/n) = 0.

Also, for any j and k,
n∑

t=1
cos(2πt j/n) sin(2πtk/n) = 0.

4.2 Repeat the simulations and analyses in Example 4.1 and Example 4.2 with the
following changes:

(a) Change the sample size to n = 128 and generate and plot the same series as
in Example 4.1:

xt1 = 2 cos(2π .06 t) + 3 sin(2π .06 t),
xt2 = 4 cos(2π .10 t) + 5 sin(2π .10 t),
xt3 = 6 cos(2π .40 t) + 7 sin(2π .40 t),
xt = xt1 + xt2 + xt3.

What is the major difference between these series and the series generated in Ex-
ample 4.1? (Hint: The answer is fundamental. But if your answer is the series are
longer, you may be punished severely.)

12 Hint: We’ll do part of the problem.
n∑

t=1
cos2(2πt j/n) = 1

4

n∑

t=1

(
e2πi t j/n + e−2πi t j/n) (

e2πi t j/n + e−2πi t j/n)

= 1
4

n∑

t=1

(
e4πi t j/n + 1 + 1 + e−4πi t j/n)

=
n

2
.
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(b) As in Example 4.2, compute and plot the periodogram of the series, xt , generated
in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Example 4.1), and
adding noise to xt ; that is

xt = xt1 + xt2 + xt3 + wt

where wt ∼ iid N(0, 25). That is, you should simulate and plot the data, and then
plot the periodogram of xt and comment.

4.3 With reference to equations (4.1) and (4.2), let Z1 = U1 and Z2 = −U2 be
independent, standard normal variables. Consider the polar coordinates of the point
(Z1, Z2), that is,

A2 = Z2
1 + Z2

2 and φ = tan−1(Z2/Z1).
(a) Find the joint density of A2 and φ, and from the result, conclude that A2 and φ are

independent random variables, where A2 is a chi-squared random variable with 2
df, and φ is uniformly distributed on (−π, π).

(b) Going in reverse from polar coordinates to rectangular coordinates, suppose we
assume that A2 and φ are independent random variables, where A2 is chi-squared
with 2 df, and φ is uniformly distributed on (−π, π). With Z1 = A cos(φ) and
Z2 = A sin(φ), where A is the positive square root of A2, show that Z1 and Z2 are
independent, standard normal random variables.

4.4 Verify (4.5).

Section 4.2

4.5 A time series was generated by first drawing the white noise series wt from a
normal distribution with mean zero and variance one. The observed series xt was
generated from

xt = wt − θwt−1, t = 0,±1,±2, . . . ,

where θ is a parameter.

(a) Derive the theoretical mean value and autocovariance functions for the series xt
and wt . Are the series xt and wt stationary? Give your reasons.

(b) Give a formula for the power spectrum of xt , expressed in terms of θ and ω.

4.6 A first-order autoregressive model is generated from the white noise series wt

using the generating equations

xt = φxt−1 + wt,

where φ, for |φ| < 1, is a parameter and the wt are independent random variables
with mean zero and variance σ2

w .
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(a) Show that the power spectrum of xt is given by

fx(ω) = σ2
w

1 + φ2 − 2φ cos(2πω) .

(b) Verify the autocovariance function of this process is

γx(h) = σ2
w φ |h |

1 − φ2 ,

h = 0,±1,±2, . . ., by showing that the inverse transform of γx(h) is the spectrum
derived in part (a).

4.7 In applications, we will often observe series containing a signal that has been
delayed by some unknown time D, i.e.,

xt = st + Ast−D + nt,

where st and nt are stationary and independent with zero means and spectral densities
fs(ω) and fn(ω), respectively. The delayed signal is multiplied by some unknown
constant A. Show that

fx(ω) = [1 + A2 + 2A cos(2πωD)] fs(ω) + fn(ω).
4.8 Suppose xt and yt are stationary zero-mean time series with xt independent of ys
for all s and t. Consider the product series

zt = xt yt .

Prove the spectral density for zt can be written as

fz(ω) =
∫ 1

2

− 1
2

fx(ω − ν) fy(ν) dν.

Section 4.3

4.9 Figure 4.22 shows the biyearly smoothed (12-month moving average) number of
sunspots from June 1749 to December 1978 with n = 459 points that were taken
twice per year; the data are contained in sunspotz. With Example 4.13 as a guide,
perform a periodogram analysis identifying the predominant periods and obtaining
confidence intervals for the identified periods. Interpret your findings.

4.10 The levels of salt concentration known to have occurred over rows, correspond-
ing to the average temperature levels for the soil science data considered in Figs. 1.18
and 1.19, are in salt and saltemp. Plot the series and then identify the dominant
frequencies by performing separate spectral analyses on the two series. Include con-
fidence intervals for the dominant frequencies and interpret your findings.
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Fig. 4.22. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per year

4.11 Let the observed series xt be composed of a periodic signal and noise so it can
be written as

xt = β1 cos(2πωkt) + β2 sin(2πωkt) + wt,

where wt is a white noise process with variance σ2
w . The frequency ωk is assumed

to be known and of the form k/n in this problem. Suppose we consider estimating
β1, β2 and σ2

w by least squares, or equivalently, by maximum likelihood if the wt are
assumed to be Gaussian.

(a) Prove, for a fixed ωk , the minimum squared error is attained by
(
β̂1
β̂2

)

= 2n−1/2
(
dc(ωk)
ds(ωk)

)

,

where the cosine and sine transforms (4.31) and (4.32) appear on the right-hand
side.

(b) Prove that the error sum of squares can be written as

SSE =

n∑

t=1
x2
t − 2Ix(ωk)

so that the value of ωk that minimizes squared error is the same as the value that
maximizes the periodogram Ix(ωk) estimator (4.28).

(c) Under the Gaussian assumption and fixedωk , show that the F-test of no regression
leads to an F-statistic that is a monotone function of Ix(ωk).

4.12 Prove the convolution property of the DFT, namely,
n∑

s=1
asxt−s =

n−1∑

k=0
dA(ωk)dx(ωk) exp{2πωkt},

for t = 1, 2, . . . , n, where dA(ωk) and dx(ωk) are the discrete Fourier transforms of at
and xt , respectively, and we assume that xt = xt+n is periodic.
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Section 4.4

4.13 Analyze the chicken price data (chicken) using a nonparametric spectral esti-
mation procedure. Aside from the obvious annual cycle discovered in Example 2.5,
what other interesting cycles are revealed?

4.14 Repeat Problem 4.9 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.

4.15 Repeat Problem 4.10 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.

4.16 Cepstral Analysis. The periodic behavior of a time series induced by
echoes can also be observed in the spectrum of the series; this fact can be
seen from the results stated in Problem 4.7. Using the notation of that prob-
lem, suppose we observe xt = st + Ast−D + nt , which implies the spectra sat-
isfy fx(ω) = [1 + A2 + 2A cos(2πωD)] fs(ω) + fn(ω). If the noise is negligible
( fn(ω) ≈ 0) then log fx(ω) is approximately the sum of a periodic component,
log[1 + A2 + 2A cos(2πωD)], and log fs(ω). Bogart et al. [27] proposed treating the
detrended log spectrum as a pseudo time series and calculating its spectrum, or cep-
strum, which should show a peak at a quefrency corresponding to 1/D. The cepstrum
can be plotted as a function of quefrency, from which the delay D can be estimated.

For the speech series presented in Example 1.3, estimate the pitch period using
cepstral analysis as follows. The data are in speech.

(a) Calculate and display the log-periodogram of the data. Is the periodogram peri-
odic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged periodogram, and
use the results to estimate the delay D. How does your answer compare with the
analysis of Example 1.27, which was based on the ACF?

4.17 Use Property 4.2 to verify (4.71). Then verify (4.74) and (4.75).

4.18 Consider two time series

xt = wt − wt−1,

yt =
1
2 (wt + wt−1),

formed from the white noise series wt with variance σ2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance function must also
be a function only of the lag h and cannot depend on time.

(b) Compute the spectra fy(ω) and fx(ω), and comment on the difference between
the two results.
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(c) Suppose sample spectral estimators f̄y(.10) are computed for the series using
L = 3. Find a and b such that

P

{

a ≤ f̄y(.10) ≤ b

}

= .90.

This expression gives two points that will contain 90% of the sample spectral
values. Put 5% of the area in each tail.

Section 4.5

4.19 Often, the periodicities in the sunspot series are investigated by fitting an au-
toregressive spectrum of sufficiently high order. The main periodicity is often stated
to be in the neighborhood of 11 years. Fit an autoregressive spectral estimator to the
sunspot data using a model selection method of your choice. Compare the result with
a conventional nonparametric spectral estimator found in Problem 4.9.

4.20 Analyze the chicken price data (chicken) using a parametric spectral estimation
procedure. Compare the results to Problem 4.13.

4.21 Fit an autoregressive spectral estimator to the Recruitment series and compare
it to the results of Example 4.16.

4.22 Suppose a sample time series with n = 256 points is available from the first-
order autoregressive model. Furthermore, suppose a sample spectrum computed with
L = 3 yields the estimated value f̄x (1/8) = 2.25. Is this sample value consistent with
σ2
w = 1, φ = .5? Repeat using L = 11 if we just happen to obtain the same sample

value.

4.23 Suppose we wish to test the noise alone hypothesis H0 : xt = nt against the
signal-plus-noise hypothesis H1 : xt = st +nt , where st and nt are uncorrelated zero-
mean stationary processes with spectra fs(ω) and fn(ω). Suppose that we want the test
over a band of L = 2m+1 frequencies of the formωj:n+k/n, for k = 0,±1,±2, . . . ,±m
near some fixed frequency ω. Assume that both the signal and noise spectra are
approximately constant over the interval.

(a) Prove the approximate likelihood-based test statistic for testing H0 against H1 is
proportional to

T =
∑

k

|dx(ωj:n + k/n)|2
(

1
fn(ω) −

1
fs(ω) + fn(ω)

)

.

(b) Find the approximate distributions of T under H0 and H1.
(c) Define the false alarm and signal detection probabilities as PF = P{T > K |H0}

and Pd = P{T > k |H1}, respectively. Express these probabilities in terms of the
signal-to-noise ratio fs(ω)/ fn(ω) and appropriate chi-squared integrals.
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Section 4.6

4.24 Analyze the coherency between the temperature and salt data discussed in Prob-
lem 4.10. Discuss your findings.

4.25 Consider two processes

xt = wt and yt = φxt−D + vt

where wt and vt are independent white noise processes with common variance σ2, φ
is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt .
(b) Simulate n = 1024 normal observations from xt and yt for φ = .9, σ2 = 1, and

D = 0. Then estimate and plot the coherency between the simulated series for the
following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

Section 4.7

4.26 For the processes in Problem 4.25:

(a) Compute the phase between xt and yt .
(b) Simulate n = 1024 observations from xt and yt for φ = .9, σ2 = 1, and D = 1.

Then estimate and plot the phase between the simulated series for the following
values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.27 Consider the bivariate time series records containing monthly U.S. production
(prod) as measured by the Federal Reserve Board Production Index and the monthly
unemployment series (unemp).

(a) Compute the spectrum and the log spectrum for each series, and identify statis-
tically significant peaks. Explain what might be generating the peaks. Compute
the coherence, and explain what is meant when a high coherence is observed at a
particular frequency.

(b) What would be the effect of applying the filter

ut = xt − xt−1 followed by vt = ut − ut−12

to the series given above? Plot the predicted frequency responses of the simple
difference filter and of the seasonal difference of the first difference.

(c) Apply the filters successively to one of the two series and plot the output. Examine
the output after taking a first difference and comment on whether stationarity is a
reasonable assumption. Why or why not? Plot after taking the seasonal difference
of the first difference. What can be noticed about the output that is consistent with
what you have predicted from the frequency response? Verify by computing the
spectrum of the output after filtering.
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4.28 Determine the theoretical power spectrum of the series formed by combining
the white noise series wt to form

yt = wt−2 + 4wt−1 + 6wt + 4wt+1 + wt+2.

Determine which frequencies are present by plotting the power spectrum.

4.29 Let xt = cos(2πωt), and consider the output

yt =

∞∑

k=−∞
akxt−k,

where
∑

k |ak | < ∞. Show

yt = |A(ω)| cos(2πωt + φ(ω)),
where |A(ω)| and φ(ω) are the amplitude and phase of the filter, respectively. Interpret
the result in terms of the relationship between the input series, xt , and the output
series, yt .

4.30 Suppose xt is a stationary series, and we apply two filtering operations in suc-
cession, say,

yt =
∑

r

ar xt−r then zt =
∑

s

bsyt−s .

(a) Show the spectrum of the output is

fz(ω) = |A(ω)|2 |B(ω)|2 fx (ω),
where A(ω) and B(ω) are the Fourier transforms of the filter sequences at and bt ,
respectively.

(b) What would be the effect of applying the filter

ut = xt − xt−1 followed by vt = ut − ut−12

to a time series?
(c) Plot the predicted frequency responses of the simple difference filter and of the

seasonal difference of the first difference. Filters like these are called seasonal
adjustment filters in economics because they tend to attenuate frequencies at
multiples of the monthly periods. The difference filter tends to attenuate low-
frequency trends.

4.31 Suppose we are given a stationary zero-mean series xt with spectrum fx(ω) and
then construct the derived series

yt = ayt−1 + xt, t = ±1,±2, . . . .

(a) Show how the theoretical fy(ω) is related to fx(ω).
(b) Plot the function that multiplies fx(ω) in part (a) for a = .1 and for a = .8. This

filter is called a recursive filter.
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Section 4.8

4.32 Consider the problem of approximating the filter output

yt =

∞∑

k=−∞
ak xt−k,

∞∑

−∞
|ak | < ∞,

by
yMt =

∑

|k |<M/2
aM
k xt−k

for t = M/2 − 1, M/2, . . . , n − M/2, where xt is available for t = 1, . . . , n and

aM
t = M−1

M−1∑

k=0
A(ωk) exp{2πiωk t}

with ωk = k/M. Prove

E{(yt − yMt )2} ≤ 4γx(0)
( ∑

|k |≥M/2
|ak |

)2
.

4.33 Prove the squared coherence ρ2
y ·x(ω) = 1 for all ω when

yt =

∞∑

r=−∞
ar xt−r,

that is, when xt and yt can be related exactly by a linear filter.

4.34 The data set climhyd, contains 454 months of measured values for six climatic
variables: (i) air temperature [Temp], (ii) dew point [DewPt], (iii) cloud cover [CldCvr],
(iv) wind speed [WndSpd], (v) precipitation [Precip], and (vi) inflow [Inflow], at
Lake Shasta in California; the data are displayed in Fig. 7.3. We would like to look
at possible relations among the weather factors and between the weather factors and
the inflow to Lake Shasta.

(a) First transform the inflow and precipitation series as follows: It = log it , where it
is inflow, and Pt =

√
p
t
, where pt is precipitation. Then, compute the square co-

herencies between all the weather variables and transformed inflow and argue that
the strongest determinant of the inflow series is (transformed) precipitation. [Tip:
If x contains multiple time series, then the easiest way to display all the squared
coherencies is to plot the coherencies suppressing the confidence intervals, e.g.,
mvspec(x, spans=c(7,7), taper=.5, plot.type="coh", ci=-1).

(b) Fit a lagged regression model of the form

It = β0 +

∞∑

j=0
βjPt−j + wt,

using thresholding, and then comment of the predictive ability of precipitation
for inflow.
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Section 4.9

4.35 Consider the signal plus noise model

yt =

∞∑

r=−∞
βr xt−r + vt,

where the signal and noise series, xt and vt are both stationary with spectra fx (ω)
and fv(ω), respectively. Assuming that xt and vt are independent of each other for all
t, verify (4.131) and (4.132).

4.36 Consider the model
yt = xt + vt,

where
xt = φxt−1 + wt,

such that vt is Gaussian white noise and independent of xt with var(vt ) = σ2
v , and wt

is Gaussian white noise and independent of vt , with var(wt ) = σ2
w , and |φ| < 1 and

Ex0 = 0. Prove that the spectrum of the observed series yt is

fy(ω) = σ2 |1 − θe−2πiω |2
|1 − φe−2πiω |2 ,

where

θ =
c ±

√
c2 − 4
2

, σ2 =
σ2
vφ

θ
,

and

c =
σ2
w + σ2

v (1 + φ2)
σ2
vφ

.

4.37 Consider the same model as in the preceding problem.
(a) Prove the optimal smoothed estimator of the form

x̂t =
∞∑

s=−∞
asyt−s

has

as =
σ2
w

σ2
θ |s |

1 − θ2 .

(b) Show the mean square error is given by

E{(xt − x̂t )2} = σ2
vσ

2
w

σ2(1 − θ2) .

(c) Compare mean square error of the estimator in part (b) with that of the optimal
finite estimator of the form

x̂t = a1yt−1 + a2yt−2

when σ2
v = .053, σ2

w = .172, and φ1 = .9.
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Section 4.10

4.38 Consider the two-dimensional linear filter given as the output (4.143).

(a) Express the two-dimensional autocovariance functionof the output, say,γy(h1, h2),
in terms of an infinite sum involving the autocovariance function of xs and the
filter coefficients as1,s2 .

(b) Use the expression derived in (a), combined with (4.142) and (4.145) to derive
the spectrum of the filtered output (4.144).

The following problems require supplemental material from Appendix C.

4.39 Let wt be a Gaussian white noise series with variance σ2
w . Prove that the results

of Theorem C.4 hold without error for the DFT of wt .

4.40 Show that condition (4.48) implies (C.19) by showing

n−1/2 ∑

h≥0
h |γ(h)| ≤ σ2

w

∑

k≥0
|ψk |

∑

j≥0

√
j |ψj |.

4.41 Prove Lemma C.4.

4.42 Finish the proof of Theorem C.5.

4.43 For the zero-mean complex random vector zzz = xc − ixs , with cov(z) = Σ =

C − iQ, with Σ = Σ∗, define
w = 2Re(a∗zzz),

where a = ac − ias is an arbitrary non-zero complex vector. Prove

cov(w) = 2a∗Σa.

Recall ∗ denotes the complex conjugate transpose.
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Additional Time Domain Topics

In this chapter, we present material that may be considered special or advanced topics
in the time domain. Chapter 6 is devoted to one of the most useful and interesting
time domain topics, state-space models. Consequently, we do not cover state-space
models or related topics—of which there are many—in this chapter. This chapter
contains sections of independent topics that may be read in any order. Most of the
sections depend on a basic knowledge of ARMA models, forecasting and estimation,
which is the material that is covered in Chap. 3. A few sections, for example the
section on long memory models, require some knowledge of spectral analysis and
related topics covered in Chap. 4. In addition to long memory, we discuss unit root
testing, GARCH models, threshold models, lagged regression or transfer functions,
and selected topics in multivariate ARMAX models.

5.1 Long Memory ARMA and Fractional Differencing

The conventional ARMA(p, q) process is often referred to as a short-memory process
because the coefficients in the representation

xt =
∞∑

j=0
ψjwt−j,

obtained by solving
φ(z)ψ(z) = θ(z),

are dominated by exponential decay. As pointed out in Sects. 3.2 and 3.3, this result
implies the ACF of the short memory process satisfies ρ(h) → 0 exponentially fast
as h → ∞. When the sample ACF of a time series decays slowly, the advice given
in Chap. 3 has been to difference the series until it seems stationary. Following
this advice with the glacial varve series first presented in Example 3.33 leads to

© Springer International Publishing AG 2017
R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52452-8_5

241



242 5 Additional Time Domain Topics

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG

A
C

F

Fig. 5.1. Sample ACF of the log transformed varve series

the first difference of the logarithms of the data being represented as a first-order
moving average. In Example 3.41, further analysis of the residuals leads to fitting an
ARIMA(1, 1, 1) model,

∇xt = φ∇xt−1 + wt + θwt−1,

where we understand xt is the log-transformed varve series. In particular, the estimates
of the parameters (and the standard errors) were φ̂ = .23(.05), θ̂ = −.89(.03), and
σ̂2
w = .23.

The use of the first difference ∇xt = (1 − B)xt , however, can sometimes be too
severe a modification in the sense that the nonstationary model might represent an
overdifferencingof the original process. Long memory (or persistent) time series were
considered in Hosking [97] and Granger and Joyeux [79] as intermediate compromises
between the short memory ARMA type models and the fully integrated nonstationary
processes in the Box–Jenkins class. The easiest way to generate a long memory series
is to think of using the difference operator (1 − B)d for fractional values of d, say,
0 < d < .5, so a basic long memory series gets generated as

(1 − B)dxt = wt, (5.1)

where wt still denotes white noise with variance σ2
w . The fractionally differenced

series (5.1), for |d | < .5, is often called fractional noise (except when d is zero). Now,
d becomes a parameter to be estimated along with σ2

w . Differencing the original
process, as in the Box–Jenkins approach, may be thought of as simply assigning a
value of d = 1. This idea has been extended to the class of fractionally integrated
ARMA, or ARFIMA models, where −.5 < d < .5; when d is negative, the term
antipersistent is used. Long memory processes occur in hydrology (see Hurst [98]
and McLeod and Hipel [137]) and in environmental series, such as the varve data we
have previously analyzed, to mention a few examples. Long memory time series data
tend to exhibit sample autocorrelations that are not necessarily large (as in the case
of d = 1), but persist for a long time. Figure 5.1 shows the sample ACF, to lag 100,
of the log-transformed varve series, which exhibits classic long memory behavior:
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acf(log(varve), 100)
acf(cumsum(rnorm(1000)), 100) # compare to ACF of random walk (not shown)

Figure 5.1 can be contrasted with the ACF of the original GNP series shown in
Fig. 3.13, which is also persistent and decays linearly, but the values of the ACF are
large.

To investigate its properties, we can use the binomial expansion (d > −1) to write

wt = (1 − B)dxt =
∞∑

j=0
πjB

j xt =
∞∑

j=0
πj xt−j (5.2)

where
πj =

Γ( j − d)
Γ( j + 1)Γ(−d) (5.3)

with Γ(x + 1) = xΓ(x) being the gamma function. Similarly (d < 1), we can write

xt = (1 − B)−dwt =

∞∑

j=0
ψjB

jwt =

∞∑

j=0
ψjwt−j (5.4)

where
ψj =

Γ( j + d)
Γ( j + 1)Γ(d) . (5.5)

When |d | < .5, the processes (5.2) and (5.4) are well-defined stationary processes
(see Brockwell and Davis [36], for details). In the case of fractional differencing,
however, the coefficients satisfy

∑
π2
j < ∞ and

∑
ψ2
j < ∞ as opposed to the absolute

summability of the coefficients in ARMA processes.
Using the representation (5.4)–(5.5), and after some nontrivial manipulations, it

can be shown that the ACF of xt is

ρ(h) = Γ(h + d)Γ(1 − d)
Γ(h − d + 1)Γ(d) ∼ h2d−1 (5.6)

for large h. From this we see that for 0 < d < .5

∞∑

h=−∞
|ρ(h)| = ∞

and hence the term long memory.
In order to examine a series such as the varve series for a possible long memory

pattern, it is convenient to look at ways of estimating d. Using (5.3) it is easy to derive
the recursions

πj+1(d) =
( j − d)πj(d)
( j + 1) , (5.7)

for j = 0, 1, . . ., with π0(d) = 1. Maximizing the joint likelihood of the errors under
normality, say, wt (d), will involve minimizing the sum of squared errors
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Q(d) =
∑

w2
t (d).

The usual Gauss–Newton method, described in Sect. 3.5, leads to the expansion

wt (d) = wt (d0) + w′
t (d0)(d − d0),

where
w′
t (d0) = ∂wt

∂d

/
/
/
/
d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the usual regression
leads to

d = d0 −
∑

t w
′
t (d0)wt (d0)

∑
t w

′
t (d0)2

. (5.8)

The derivatives are computed recursively by differentiating (5.7) successively with
respect to d:

π′j+1(d) =
( j − d)π′j(d) − πj(d)

j + 1
,

where π′0(d) = 0. The errors are computed from an approximation to (5.2), namely,

wt (d) =
t∑

j=0
πj (d)xt−j . (5.9)

It is advisable to omit a number of initial terms from the computation and start the
sum, (5.8), at some fairly large value of t to have a reasonable approximation.

Example 5.1 Long Memory Fitting of the Glacial Varve Series
We consider analyzing the glacial varve series discussed in various examples and
first presented in Example 2.7. Figure 2.7 shows the original and log-transformed
series (which we denote by xt ). In Example 3.41, we noted that xt could be modeled
as an ARIMA(1, 1, 1) process. We fit the fractionally differenced model, (5.1), to
the mean-adjusted series, xt − x̄. Applying the Gauss–Newton iterative procedure
previously described, starting with d = .1 and omitting the first 30 points from
the computation, leads to a final value of d = .384, which implies the set of
coefficients πj (.384), as given in Fig. 5.2 with π0(.384) = 1. We can compare
roughly the performance of the fractional difference operator with the ARIMA
model by examining the autocorrelation functions of the two residual series as
shown in Fig. 5.3. The ACFs of the two residual series are roughly comparable with
the white noise model.

To perform this analysis in R, first download and install the fracdiff package.
Then use
library(fracdiff)
lvarve = log(varve)-mean(log(varve))
varve.fd = fracdiff(lvarve, nar=0, nma=0, M=30)
varve.fd$d # = 0.3841688
varve.fd$stderror.dpq # = 4.589514e-06 (questionable result!!)
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Fig. 5.2. Coefficients πj (.384), j = 1, 2, . . . , 30 in the representation (5.7)

p = rep(1,31)
for (k in 1:30){ p[k+1] = (k-varve.fd$d)*p[k]/(k+1) }
plot(1:30, p[-1], ylab=expression(pi(d)), xlab="Index", type="h")
res.fd = diffseries(log(varve), varve.fd$d) # frac diff resids
res.arima = resid(arima(log(varve), order=c(1,1,1))) # arima resids
par(mfrow=c(2,1))
acf(res.arima, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")
acf(res.fd, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")

The R package uses a truncated maximum likelihood procedure that was discussed
in Haslett and Raftery [95], which is a little more elaborate than simply zeroing
out initial values. The default truncation value in R is M = 100. In the default
case, the estimate is d̂ = .37 with approximately the same questionable standard
error. The standard error is (supposedly) obtained from the Hessian as described
in Example 3.30. A more believable standard error is given in Example 5.2.

Forecasting long memory processes is similar to forecasting ARIMA models.
That is, (5.2) and (5.7) can be used to obtain the truncated forecasts

x̃nn+m = −
n∑

j=1
πj (d̂) x̃nn+m−j , (5.10)

for m = 1, 2, . . . . Error bounds can be approximated by using

Pn
n+m = σ̂2

w
�
�

�

m−1∑

j=0
ψ2
j (d̂)��

�

(5.11)

where, as in (5.7),
ψj (d̂) =

( j + d̂)ψj (d̂)
( j + 1) , (5.12)

with ψ0(d̂) = 1.
No obvious short memory ARMA-type component can be seen in the ACF of the

residuals from the fractionally differenced varve series shown in Fig. 5.3. It is natural,
however, that cases will exist in which substantial short memory-type components
will also be present in data that exhibits long memory. Hence, it is natural to define
the general ARFIMA(p, d, q), −.5 < d < .5 process as
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Fig. 5.3. ACF of residuals from the ARIMA(1, 1, 1) fit to the logged varve series (top) and of
the residuals from the long memory model fit, (1 − B)dxt = wt , with d = .384 (bottom)

φ(B)∇d(xt − μ) = θ(B)wt, (5.13)

where φ(B) and θ(B) are as given in Chap. 3. Writing the model in the form

φ(B)πd(B)(xt − μ) = θ(B)wt (5.14)

makes it clear how we go about estimating the parameters for the more general model.
Forecasting for the ARFIMA(p, d, q) series can be easily done, noting that we may
equate coefficients in

φ(z)ψ(z) = (1 − z)−dθ(z) (5.15)

and
θ(z)π(z) = (1 − z)dφ(z) (5.16)

to obtain the representations

xt = μ +

∞∑

j=0
ψjwt−j and wt =

∞∑

j=0
πj (xt−j − μ).

We then can proceed as discussed in (5.10) and (5.11).
Comprehensive treatments of long memory time series models are given in the

texts by Beran [18], Palma [145], and Robinson [168], and it should be noted that
several other techniques for estimating the parameters, especially, the long memory
parameter, can be developed in the frequency domain. In this case, we may think of
the equations as generated by an infinite order autoregressive series with coefficients
πj given by (5.7) . Using the same approach as before, we obtain
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fx (ω) = σ2
w

|∑∞
k=0 πke−2πikω |2

= σ2
w |1 − e−2πiω |−2d = [4 sin2(πω)]−dσ2

w

(5.17)

as equivalent representations of the spectrum of a long memory process. The long
memory spectrum approaches infinity as the frequency ω → 0.

The main reason for defining the Whittle approximation to the log likelihood
is to propose its use for estimating the parameter d in the long memory case as
an alternative to the time domain method previously mentioned. The time domain
approach is useful because of its simplicity and easily computed standard errors. One
may also use an exact likelihood approach by developing an innovations form of the
likelihood as in Brockwell and Davis [36].

For the approximate approach using the Whittle likelihood (4.85), we consider
using the approach of Fox and Taqqu [62] who showed that maximizing the Whittle
log likelihood leads to a consistent estimator with the usual asymptotic normal distri-
bution that would be obtained by treating (4.85) as a conventional log likelihood (see
also Dahlhaus [46]; Robinson [167]; Hurvich et al. [102]). Unfortunately, the peri-
odogram ordinates are not asymptotically independent (Hurvich and Beltrao [101]),
although a quasi-likelihood in the form of the Whittle approximation works well and
has good asymptotic properties.

To see how this would work for the purely long memory case, write the long
memory spectrum as

fx(ωk ; d, σ2
w) = σ2

wg
−d
k , (5.18)

where

gk = 4 sin2(πωk). (5.19)

Then, differentiating the log likelihood, say,

ln L(x; d, σ2
w) ≈ −m lnσ2

w + d
m∑

k=1
ln gk − 1

σ2
w

m∑

k=1
gdk I(ωk) (5.20)

at m = n/2 − 1 frequencies and solving for σ2
w yields

σ2
w(d) =

1
m

m∑

k=1
gdk I(ωk) (5.21)

as the approximate maximum likelihood estimator for the variance parameter. To
estimate d, we can use a grid search of the concentrated log likelihood

ln L(x; d) ≈ −m lnσ2
w(d) + d

m∑

k=1
ln gk − m (5.22)

over the interval (0, .5), followed by a Newton–Raphson procedure to convergence.
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Fig. 5.4. Long Memory (d = .380) [solid line] and autoregressive AR(8) [dashed line] spectral
estimators for the paleoclimatic glacial varve series

Example 5.2 Long Memory Spectra for the Varve Series
In Example 5.1, we fit a long memory model to the glacial varve data via time
domain methods. Fitting the same model using frequency domain methods and the
Whittle approximation above gives d̂ = .380, with an estimated standard error of
.028. The earlier time domain method gave d̂ = .384 with M = 30 and d̂ = .370
with M = 100. Both estimates obtained via time domain methods had a standard
error of about 4.6× 10−6, which seems implausible. The error variance estimate in
this case is σ̂2

w = .2293; in Example 5.1, we could have used var(res.fd) as an
estimate, in which case we obtain .2298. The R code to perform this analysis is
series = log(varve) # specify series to be analyzed
d0 = .1 # initial value of d
n.per = nextn(length(series))
m = (n.per)/2 - 1
per = Mod(fft(series-mean(series))[-1])^2 # remove 0 freq and
per = per/n.per # scale the peridogram
g = 4*(sin(pi*((1:m)/n.per))^2)
# Function to calculate -log.likelihood
whit.like = function(d){
g.d=g^d
sig2 = (sum(g.d*per[1:m])/m)
log.like = m*log(sig2) - d*sum(log(g)) + m
return(log.like) }

# Estimation (output not shown)
(est = optim(d0, whit.like, gr=NULL, method="L-BFGS-B", hessian=TRUE,

lower=-.5, upper=.5, control=list(trace=1,REPORT=1)))
##-- Results: d.hat = .380, se(dhat) = .028, and sig2hat = .229 --##
cat("d.hat =", est$par, "se(dhat) = ",1/sqrt(est$hessian),"\n")
g.dhat = g^est$par; sig2 = sum(g.dhat*per[1:m])/m
cat("sig2hat =",sig2,"\n")

One might also consider fitting an autoregressive model to these data using a
procedure similar to that used in Example 4.18. Following this approach gave an
autoregressive model with p = 8 and φ̂1:8 = {.34, .11, .04, .09, .08, .08, .02, .09},
with σ̂2

w = .23 as the error variance. The two log spectra are plotted in Fig. 5.4 for
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ω > 0, and we note that long memory spectrum will eventually become infinite,
whereas the AR(8) spectrum is finite at ω = 0. The R code used for this part of the
example (assuming the previous values have been retained) is
u = spec.ar(log(varve), plot=FALSE) # produces AR(8)
g = 4*(sin(pi*((1:500)/2000))^2)
fhat = sig2*g^{-est$par} # long memory spectral estimate
plot(1:500/2000, log(fhat), type="l", ylab="log(spectrum)", xlab="frequency")
lines(u$freq[1:250], log(u$spec[1:250]), lty="dashed")
ar.mle(log(varve)) # to get AR(8) estimates

Often, time series are not purely long memory. A common situation has the long
memory component multiplied by a short memory component, leading to an alternate
version of (5.18) of the form

fx(ωk ; d, θ) = g−dk f0(ωk ; θ), (5.23)

where f0(ωk; θ) might be the spectrum of an autoregressive moving average process
with vector parameter θ, or it might be unspecified. If the spectrum has a parametric
form, the Whittle likelihood can be used. However, there is a substantial amount of
semiparametric literature that develops the estimators when the underlying spectrum
f0(ω; θ) is unknown. A class of Gaussian semi-parametric estimators simply uses
the same Whittle likelihood (5.22), evaluated over a sub-band of low frequencies, say
m′ =

√
n. There is some latitude in selecting a band that is relatively free from low

frequency interference due to the short memory component in (5.23). If the spectrum
is highly parameterized, one might estimate using the Whittle log likelihood (5.19)
under (5.23) and jointly estimate the parameters d and θ using the Newton–Raphson
method. If we are interested in a nonparametric estimator, using the conventional
smoothed spectral estimator for the periodogram, adjusted for the long memory
component, say gd

k
I(ωk) might be a possible approach.

Geweke and Porter–Hudak [72] developed an approximate method for estimating
d based on a regression model, derived from (5.22). Note that we may write a simple
equation for the logarithm of the spectrum as

ln fx(ωk ; d) = ln f0(ωk ; θ) − d ln[4 sin2(πωk)], (5.24)

with the frequencies ωk = k/n restricted to a range k = 1, 2, . . . , m near the zero
frequency with m =

√
n as the recommended value. Relationship (5.24) suggests

using a simple linear regression model of the form,

ln I(ωk) = β0 − d ln[4 sin2(πωk)] + ek (5.25)

for the periodogram to estimate the parameters σ2
w and d. In this case, one performs

least squares using ln I(ωk) as the dependent variable, and ln[4 sin2(πωk)] as the
independent variable for k = 1, 2, . . . , m. The resulting slope estimate is then used as
an estimate of −d. For a good discussion of various alternative methods for selecting
m, see Hurvich and Deo [103]. The R package fracdiff also provides this method
via the command fdGPH(); see the help file for further information. Here is a quick
example using the logged varve data.



250 5 Additional Time Domain Topics

library(fracdiff)
fdGPH(log(varve), bandw=.9) # m = n^bandw

dhat = 0.383 se(dhat) = 0.041

5.2 Unit Root Testing

As discussed in the previous section, the use of the first difference ∇xt = (1 − B)xt
can be too severe a modification in the sense that the nonstationary model might
represent an overdifferencing of the original process. For example, consider a causal
AR(1) process (we assume throughout this section that the noise is Gaussian),

xt = φxt−1 + wt . (5.26)

Applying (1 − B) to both sides shows that differencing, ∇xt = φ∇xt−1 + ∇wt, or

yt = φyt−1 + wt − wt−1,

where yt = ∇xt , introduces extraneous correlation and invertibility problems. That
is, while xt is a causal AR(1) process, working with the differenced process yt will
be problematic because it is a non-invertible ARMA(1, 1).

A unit root test provides a way to test whether (5.26) is a random walk (the null
case) as opposed to a causal process (the alternative). That is, it provides a procedure
for testing

H0 : φ = 1 versus H1 : |φ| < 1.

An obvious test statistic would be to consider (φ̂ − 1), appropriately normalized,
in the hope to develop an asymptotically normal test statistic, where φ̂ is one of
the optimal estimators discussed in Chap. 3. Unfortunately, the theory of Sect. 3.5
will not work in the null case because the process is nonstationary. Moreover, as seen
in Example 3.36, estimation near the boundary of stationarity produces highly skewed
sample distributions (see Fig. 3.12) and this is a good indication that the problem will
be atypical.

To examine the behavior of (φ̂ − 1) under the null hypothesis that φ = 1, or more
precisely that the model is a random walk, xt =

∑t
j=1 wj , or xt = xt−1 + wt with

x0 = 0, consider the least squares estimator of φ. Noting that μx = 0, the least squares
estimator can be written as

φ̂ =

∑n
t=1 xt xt−1

∑n
t=1 x2

t−1
= 1 +

1
n

∑n
t=1 wt xt−1

1
n

∑n
t=1 x2

t−1
, (5.27)

where we have written xt = xt−1 + wt in the numerator; recall that x0 = 0 and in the
least squares setting, we are regressing xt on xt−1 for t = 1, . . . , n. Hence, under H0,
we have that

φ̂ − 1 =

1
nσ2

w

∑n
t=1 wt xt−1

1
nσ2

w

∑n
t=1 x2

t−1
. (5.28)
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Consider the numerator of (5.28). Note first that by squaring both sides of xt =
xt−1 + wt , we obtain x2

t = x2
t−1 + 2xt−1wt + w2

t so that

xt−1wt =
1
2
(x2

t − x2
t−1 − w2

t ),

and summing,
1

nσ2
w

n∑

t=1
xt−1wt =

1
2

(
x2
n

nσ2
w

−
∑n

t=1 w
2
t

nσ2
w

)

.

Because xn =
∑n

1 wt , we have that xn ∼ N(0, nσ2
w), so that χ21 = 1

nσ2
w

x2
n has a

chi-squared distribution with one degree of freedom. Moreover, because wt is white
Gaussian noise, 1

n

∑n
1 w

2
t →p σ2

w , or 1
nσ2

w

∑n
1 w

2
t →p 1. Consequently (n →∞),

1
nσ2

w

n∑

t=1
xt−1wt

d→ 1
2
(
χ21 − 1

)
. (5.29)

Next we focus on the denominator of (5.28). First, we introduce standard Brownian
motion.

Definition 5.1 A continuous time process {W(t); t ≥ 0} is called standard Brownian
motion if it satisfies the following conditions:

(i) W(0) = 0;
(ii) {W(t2) − W(t1),W(t3) − W(t2), . . . ,W(tn) − W(tn−1)} are independent for any

collection of points, 0 ≤ t1 < t2 · · · < tn, and integer n > 2;
(iii) W(t + Δt) −W(t) ∼ N(0, Δt) for Δt > 0.

In addition to (i)–(iii), it is assumed that almost all sample paths of W(t) are continuous
in t. The result for the denominator uses the functional central limit theorem, which
can be found in Billlingsley [22, §2.8]. In particular, if ξ1, . . . , ξn is a sequence of iid
random variables with mean 0 and variance 1, then, for 0 ≤ t ≤ 1, the continuous
time process1

Sn(t) = 1√
n

[[nt]]∑

j=1
ξj

d→ W(t), (5.30)

as n → ∞, where [[ ]] is the greatest integer function and W(t) is standard Brownian
motion on [0, 1]. Note the under the null hypothesis, xs = w1 + · · ·+ws ∼ N(0, sσ2

w),
and based on (5.30), we have xs

σw
√
n
→d W(s). From this fact, we can show that

(n →∞)
n∑

t=1

(
xt−1

σw
√

n

)2 1
n

d→
∫ 1

0
W2(t) dt . (5.31)

1 The intuition here is, for k = [[nt]] and fixed t, the central limit theorem has
√
t 1√

k

∑k
j=1 ξ j ∼ AN(0, t)

with n → ∞.
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The denominator in (5.28) is off from the left side of (5.31) by a factor of n−1, and
we adjust accordingly to finally obtain (n → ∞),

n(φ̂ − 1) =
1

nσ2
w

∑n
t=1 wt xt−1

1
n2σ2

w

∑n
t=1 x2

t−1

d→
1
2
(
χ21 − 1

)

∫ 1
0 W2(t) dt

. (5.32)

The test statistic n(φ̂− 1) is known as the unit root or Dickey-Fuller (DF) statistic
(see Fuller [65] or 1996), although the actual DF test statistic is normalized a little
differently. Related derivations were discussed in Rao [162, Correction 1980] and in
Evans and Savin [59]. Because the distribution of the test statistic does not have a
closed form, quantiles of the distribution must be computed by numerical approxi-
mation or by simulation. The R package tseries provides this test along with more
general tests that we mention briefly.

Toward a more general model, we note that the DF test was established by noting
that if xt = φxt−1 + wt , then ∇xt = (φ − 1)xt−1 + wt = γxt−1 + wt , and one
could test H0 : γ = 0 by regressing ∇xt on xt−1. They formed a Wald statistic and
derived its limiting distribution [the previous derivation based on Brownian motion
is due to Phillips [154]]. The test was extended to accommodate AR(p) models,
xt =

∑p
j=1 φ j xt−j + wt, as follows. Subtract xt−1 from both sides to obtain

∇xt = γxt−1 +

p−1∑

j=1
ψj∇xt−j + wt, (5.33)

where γ =
∑p

j=1 φ j − 1 and ψj = −∑p
i=j φi for j = 2, . . . , p. For a quick check

of (5.33) when p = 2, note that xt = (φ1 + φ2)xt−1 − φ2(xt−1 − xt−2) + wt ; now
subtract xt−1 from both sides. To test the hypothesis that the process has a unit root at
1 (i.e., the AR polynomial φ(z) = 0 when z = 1), we can test H0 : γ = 0 by estimating
γ in the regression of ∇xt on xt−1,∇xt−1, . . . ,∇xt−p+1, and forming a Wald test based
on tγ = γ̂/se(γ̂). This test leads to the so-called augmented Dickey-Fuller test (ADF).
While the calculations for obtaining the asymptotic null distribution change, the basic
ideas and machinery remain the same as in the simple case. The choice of p is crucial,
and we will discuss some suggestions in the example. For ARMA(p, q) models, the
ADF test can be used by assuming p is large enough to capture the essential correlation
structure; another alternative is the Phillips-Perron (PP) test, which differs from the
ADF tests mainly in how they deal with serial correlation and heteroskedasticity in
the errors.

One can extend the model to include a constant, or even non-stochastic trend. For
example, consider the model

xt = β0 + β1t + φxt−1 + wt .

If we assume β1 = 0, then under the null hypothesis, φ = 1, the process is a random
walk with drift β0. Under the alternate hypothesis, the process is a causal AR(1) with
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mean μx = β0(1 − φ). If we cannot assume β1 = 0, then the interest here is testing
the null that (β1, φ) = (0, 1), simultaneously, versus the alternative that β1 � 0 and
|φ| < 1. In this case, the null hypothesis is that the process is a random walk with
drift, versus the alternative hypothesis that the process is trend stationary such as
might be considered for the chicken price series in Example 2.1.

Example 5.3 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null hypothesis that the
log of the glacial varve series has a unit root, versus the alternate hypothesis that
the process is stationary. We test the null hypothesis using the available DF, ADF
and PP tests; note that in each case, the general regression equation incorporates a
constant and a linear trend. In the ADF test, the default number of AR components
included in the model, say k, is [[(n − 1) 1

3 ]], which corresponds to the suggested
upper bound on the rate at which the number of lags, k, should be made to grow
with the sample size for the general ARMA(p, q) setup. For the PP test, the default
value of k is [[.04n

1
4 ]].

library(tseries)
adf.test(log(varve), k=0) # DF test

Dickey-Fuller = -12.8572, Lag order = 0, p-value < 0.01
alternative hypothesis: stationary

adf.test(log(varve)) # ADF test
Dickey-Fuller = -3.5166, Lag order = 8, p-value = 0.04071
alternative hypothesis: stationary

pp.test(log(varve)) # PP test
Dickey-Fuller Z(alpha) = -304.5376,
Truncation lag parameter = 6, p-value < 0.01
alternative hypothesis: stationary

In each test, we reject the null hypothesis that the logged varve series has a unit
root. The conclusion of these tests supports the conclusion of the previous section
that the logged varve series is long memory rather than integrated.

5.3 GARCH Models

Various problems such as option pricing in finance have motivated the study of the
volatility, or variability, of a time series. ARMA models were used to model the
conditional mean of a process when the conditional variance was constant. Using an
AR(1) as an example, we assumed

E(xt | xt−1, xt−2, . . . ) = φxt−1, and var(xt | xt−1, xt−2, . . . ) = var(wt ) = σ2
w .

In many problems, however, the assumption of a constant conditional variance will be
violated. Models such as the autoregressive conditionally heteroscedastic or ARCH
model, first introduced by Engle [57] were developed to model changes in volatility.
These models were later extended to generalized ARCH, or GARCH models by
Bollerslev [28].
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In these problems, we are concerned with modeling the return or growth rate of a
series. For example, if xt is the value of an asset at time t, then the return or relative
gain, rt , of the asset at time t is

rt =
xt − xt−1

xt−1
. (5.34)

Definition (5.34) implies that xt = (1 + rt )xt−1. Thus, based on the discussion in
Sect. 3.7, if the return represents a small (in magnitude) percentage change then

∇ log(xt ) ≈ rt . (5.35)

Either value, ∇ log(xt ) or (xt − xt−1)/xt−1, will be called the return,2 and will be
denoted by rt . An alternative to the GARCH model is the stochastic volatility model;
we will discuss these models in Chap. 6 because they are state-space models.

Typically, for financial series, the return rt , does not have a constant conditional
variance, and highly volatile periods tend to be clustered together. In other words,
there is a strong dependence of sudden bursts of variability in a return on the series
own past. For example, Fig. 1.4 shows the daily returns of the Dow Jones Industrial
Average (DJIA) from April 20, 2006 to April 20, 2016. In this case, as is typical, the
return rt is fairly stable, except for short-term bursts of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

rt = σtεt (5.36)

σ2
t = α0 + α1r2

t−1, (5.37)

where εt is standard Gaussian white noise, εt ∼ iid N(0, 1). The normal assumption
may be relaxed; we will discuss this later. As with ARMA models, we must impose
some constraints on the model parameters to obtain desirable properties. An obvious
constraint is that α0, α1 ≥ 0 because σ2

t is a variance.
As we shall see, the ARCH(1) models return as a white noise process with non-

constant conditional variance, and that conditional variance depends on the previous
return. First, notice that the conditional distribution of rt given rt−1 is Gaussian:

rt
/
/ rt−1 ∼ N(0, α0 + α1r2

t−1). (5.38)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian AR(1)
model in the square of the returns r2

t . First, rewrite (5.36)–(5.37) as

r2
t = σ2

t ε
2
t

α0 + α1r2
t−1 = σ2

t ,

2 Recall from Footnote 2 that if rt = (xt − xt−1)/xt−1 is a small percentage, then log(1 + rt ) ≈ rt . It
is easier to program ∇ log xt , so this is often used instead of calculating rt directly. Although it is a
misnomer, ∇ log xt is often called the log-return; but the returns are not being logged.
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and subtract the two equations to obtain

r2
t − (α0 + α1r2

t−1) = σ2
t ε

2
t − σ2

t .

Now, write this equation as

r2
t = α0 + α1r2

t−1 + vt, (5.39)

where vt = σ2
t (ε2

t − 1). Because ε2
t is the square of a N(0, 1) random variable, ε2

t − 1
is a shifted (to have mean-zero), χ2

1 random variable.
To explore the properties of ARCH, we define Rs = {rs, rs−1, . . . }. Then, us-

ing (5.38), we immediately see that rt has a zero mean:

E(rt ) = EE(rt
/
/ Rt−1) = EE(rt

/
/ rt−1) = 0. (5.40)

Because E(rt | Rt−1) = 0, the process rt is said to be a martingale difference.
Because rt is a martingale difference, it is also an uncorrelated sequence. For

example, with h > 0,

cov(rt+h, rt ) = E(rtrt+h) = EE(rtrt+h | Rt+h−1)
= E {rtE(rt+h | Rt+h−1)} = 0. (5.41)

The last line of (5.41) follows because rt belongs to the information set Rt+h−1 for
h > 0, and, E(rt+h | Rt+h−1) = 0, as determined in (5.40).

An argument similar to (5.40) and (5.41) will establish the fact that the error
process vt in (5.39) is also a martingale difference and, consequently, an uncorrelated
sequence. If the variance of vt is finite and constant with respect to time, and 0 ≤
α1 < 1, then based on Property 3.1, (5.39) specifies a causal AR(1) process for r2

t .
Therefore, E(r2

t ) and var(r2
t ) must be constant with respect to time t. This, implies

that
E(r2

t ) = var(rt ) = α0

1 − α1
(5.42)

and, after some manipulations,

E(r4
t ) =

3α2
0

(1 − α1)2
1 − α2

1

1 − 3α2
1
, (5.43)

provided 3α2
1 < 1. Note that

var(r2
t ) = E(r4

t ) − [E(r2
t )]2 ,

which exists only if 0 < α1 < 1/√3 ≈ .58. In addition, these results imply that the
kurtosis, κ, of rt is

κ =
E(r4

t )
[E(r2

t )]2
= 3

1 − α2
1

1 − 3α2
1
, (5.44)

which is never smaller than 3, the kurtosis of the normal distribution. Thus, the
marginal distribution of the returns, rt , is leptokurtic, or has “fat tails.” Summarizing,
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if 0 ≤ α1 < 1, the process rt itself is white noise and its unconditional distribution is
symmetrically distributed around zero; this distribution is leptokurtic. If, in addition,
3α2

1 < 1, the square of the process, r2
t , follows a causal AR(1) model with ACF given

by ρy2(h) = αh
1 ≥ 0, for all h > 0. If 3α1 ≥ 1, but α1 < 1, it can be shown that r2

t is
strictly stationary with infinite variance (see Douc, et al. [53]).

Estimation of the parameters α0 and α1 of the ARCH(1) model is typically
accomplished by conditional MLE. The conditional likelihood of the data r2, . . . ., rn
given r1, is given by

L(α0, α1
/
/ r1) =

n∏

t=2
fα0,α1 (rt

/
/ rt−1), (5.45)

where the density fα0,α1(rt
/
/ rt−1) is the normal density specified in (5.38). Hence,

the criterion function to be minimized, l(α0, α1) ∝ − ln L(α0, α1
/
/ r1) is given by

l(α0, α1) = 1
2

n∑

t=2
ln(α0 + α1r2

t−1) +
1
2

n∑

t=2

(
r2
t

α0 + α1r2
t−1

)

. (5.46)

Estimation is accomplished by numerical methods, as described in Sect. 3.5. In this
case, analytic expressions for the gradient vector, l(1)(α0, α1), and Hessian matrix,
l(2)(α0, α1), as described in Example 3.30, can be obtained by straight-forward calcu-
lations. For example, the 2 × 1 gradient vector, l(1)(α0, α1), is given by

(
∂l/∂α0
∂l/∂α1

)

=

n∑

t=2

(
1

r2
t−1

)

× α0 + α1r2
t−1 − r2

t

2
(
α0 + α1r2

t−1

)2 .

The calculation of the Hessian matrix is left as an exercise (Problem 5.8). The
likelihood of the ARCH model tends to be flat unless n is very large. A discussion of
this problem can be found in Shephard [177].

It is also possible to combine a regression or an ARMA model for the mean with
an ARCH model for the errors. For example, a regression with ARCH(1) errors model
would have the observations xt as linear function of p regressors, zt = (zt1, . . . , zt p)′,
and ARCH(1) noise yt , say,

xt = β′zt + yt,

where yt satisfies (5.36)–(5.37), but, in this case, is unobserved. Similarly, for exam-
ple, an AR(1) model for data xt exhibiting ARCH(1) errors would be

xt = φ0 + φ1xt−1 + yt .

These types of models were explored by Weiss [208].
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Fig. 5.5. ACF and PACF of the squares of the residuals from the AR(1) fit on U.S. GNP

Example 5.4 Analysis of U.S. GNP
In Example 3.39, we fit an MA(2) model and an AR(1) model to the U.S. GNP
series and we concluded that the residuals from both fits appeared to behave like a
white noise process. In Example 3.43 we concluded that the AR(1) is probably the
better model in this case. It has been suggested that the U.S. GNP series has ARCH
errors, and in this example, we will investigate this claim. If the GNP noise term is
ARCH, the squares of the residuals from the fit should behave like a non-Gaussian
AR(1) process, as pointed out in (5.39). Figure 5.5 shows the ACF and PACF of the
squared residuals it appears that there may be some dependence, albeit small, left
in the residuals. The figure was generated in R as follows.
u = sarima(diff(log(gnp)), 1, 0, 0)
acf2(resid(u$fit)^2, 20)

We used the R package fGarch to fit an AR(1)-ARCH(1) model to the
U.S. GNP returns with the following results. A partial output is shown; we note that
garch(1,0) specifies an ARCH(1) in the code below (details later).
library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), diff(log(gnp))))

Estimate Std.Error t.value p.value
mu 0.005 0.001 5.867 0.000
ar1 0.367 0.075 4.878 0.000
omega 0.000 0.000 8.135 0.000
alpha1 0.194 0.096 2.035 0.042
--
Standardised Residuals Tests: Statistic p-Value
Jarque-Bera Test R Chi^2 9.118 0.010
Shapiro-Wilk Test R W 0.984 0.014
Ljung-Box Test R Q(20) 23.414 0.269
Ljung-Box Test R^2 Q(20) 37.743 0.010

Note that the p-values given in the estimation paragraph are two-sided, so they
should be halved when considering the ARCH parameters. In this example, we
obtain φ̂0 = .005 (called mu in the output) and φ̂1 = .367 (called ar1) for the AR(1)
parameter estimates; in Example 3.39 the values were .005 and .347, respectively.
The ARCH(1) parameter estimates are α̂0 = 0 (called omega) for the constant and
α̂1 = .194, which is significant with a p-value of about .02. There are a number



258 5 Additional Time Domain Topics

of tests that are performed on the residuals [R] or the squared residuals [R^2]. For
example, the Jarque–Bera statistic tests the residuals of the fit for normality based
on the observed skewness and kurtosis, and it appears that the residuals have some
non-normal skewness and kurtosis. The Shapiro–Wilk statistic tests the residuals of
the fit for normality based on the empirical order statistics. The other tests, primarily
based on the Q-statistic, are used on the residuals and their squares.

The ARCH(1) model can be extended to the general ARCH(p) model in an
obvious way. That is, (5.36), rt = σtεt , is retained, but (5.37) is extended to

σ2
t = α0 + α1r2

t−1 + · · · + αpr2
t−p . (5.47)

Estimation for ARCH(p) also follows in an obvious way from the discussion of estima-
tion for ARCH(1) models. That is, the conditional likelihood of the data rp+1, . . . , rn
given r1, . . . , rp , is given by

L(α /
/ r1, . . . , rp) =

n∏

t=p+1
fα(rt

/
/ rt−1, . . . , rt−p), (5.48)

where α = (α0, α1, . . . , αp) and, under the assumption of normality, the conditional
densities fα(·|·) in (5.48) are, for t > p, given by

rt
/
/ rt−1, . . . , rt−p ∼ N(0, α0 + α1r2

t−1 + · · · + αpr2
t−p).

Another extension of ARCH is the generalized ARCH or GARCH model devel-
oped by Bollerslev [28]. For example, a GARCH(1, 1)model retains (5.36), rt = σtεt ,
but extends (5.37) as follows:

σ2
t = α0 + α1r2

t−1 + β1σ
2
t−1. (5.49)

Under the condition that α1 + β1 < 1, using similar manipulations as in (5.39), the
GARCH(1, 1) model, (5.36) and (5.49), admits a non-Gaussian ARMA(1, 1) model
for the squared process

r2
t = α0 + (α1 + β1)r2

t−1 + vt − β1vt−1, (5.50)

where vt is as defined in (5.39). Representation (5.50) follows by writing (5.36) as

r2
t − σ2

t = σ2
t (ε2

t − 1)
β1(r2

t−1 − σ2
t−1) = β1σ

2
t−1(ε2

t−1 − 1),
subtracting the second equation from the first, and using the fact that, from (5.49),
σ2
t − β1σ

2
t−1 = α0 + α1r2

t−1, on the left-hand side of the result. The GARCH(p, q)
model retains (5.36) and extends (5.49) to

σ2
t = α0 +

p∑

j=1
αjr

2
t−j +

q∑

j=1
βjσ

2
t−j . (5.51)
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Conditional maximum likelihood estimation of the GARCH(p, q) model param-
eters is similar to the ARCH(p) case, wherein the conditional likelihood, (5.48), is
the product of N(0, σ2

t ) densities with σ2
t given by (5.51) and where the conditioning

is on the first max(p, q) observations, with σ2
1 = · · · = σ2

q = 0. Once the parameter
estimates are obtained, the model can be used to obtain one-step-ahead forecasts of
the volatility, say σ̂2

t+1, given by

σ̂2
t+1 = α̂0 +

p∑

j=1
α̂jr

2
t+1−j +

q∑

j=1
β̂j σ̂

2
t+1−j . (5.52)

We explore these concepts in the following example.

Example 5.5 ARCH Analysis of the DJIA Returns
As previously mentioned, the daily returns of the DJIA shown in Fig. 1.4 exhibit
classic GARCH features. In addition, there is some low level autocorrelation in the
series itself, and to include this behavior, we used the R fGarch package to fit an
AR(1)-GARCH(1,1) model to the series using t errors:
library(xts)
djiar = diff(log(djia$Close))[-1]
acf2(djiar) # exhibits some autocorrelation (not shown)
acf2(djiar^2) # oozes autocorrelation (not shown)
library(fGarch)
summary(djia.g <- garchFit(~arma(1,0)+garch(1,1), data=djiar,

cond.dist='std'))
plot(djia.g) # to see all plot options

Estimate Std.Error t.value p.value
mu 8.585e-04 1.470e-04 5.842 5.16e-09
ar1 -5.531e-02 2.023e-02 -2.735 0.006239
omega 1.610e-06 4.459e-07 3.611 0.000305
alpha1 1.244e-01 1.660e-02 7.497 6.55e-14
beta1 8.700e-01 1.526e-02 57.022 < 2e-16
shape 5.979e+00 7.917e-01 7.552 4.31e-14
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 16.81507 0.0785575
Ljung-Box Test R^2 Q(10) 15.39137 0.1184312

To explore the GARCH predictions of volatility, we calculated and plotted part of
the data surrounding the financial crises of 2008 along with the one-step-ahead
predictions of the corresponding volatility, σ2

t as a solid line in Fig. 5.6.

Another model that we mention briefly is the asymmetric power ARCH model.
The model retains (5.36), rt = σtεt , but the conditional variance is modeled as

σδ
t = α0 +

p∑

j=1
αj (|rt−j | − γjrt−j)δ +

q∑

j=1
βjσ

δ
t−j . (5.53)
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Fig. 5.6. GARCH one-step-ahead predictions of the DJIA volatility, σ̂t , superimposed on part
of the data including the financial crisis of 2008

Note that the model is GARCH when δ = 2 and γj = 0, for j ∈ {1, . . . , p}. The
parameters γj (|γj | ≤ 1) are the leverage parameters, which are a measure of asym-
metry, and δ > 0 is the parameter for the power term. A positive [negative] value
of γj ’s means that past negative [positive] shocks have a deeper impact on current
conditional volatility than past positive [negative] shocks. This model couples the
flexibility of a varying exponent with the asymmetry coefficient to take the leverage
effect into account. Further, to guarantee that σt > 0, we assume that α0 > 0, αj ≥ 0
with at least one αj > 0, and βj ≥ 0.

We continue the analysis of the DJIA returns in the following example.

Example 5.6 APARCH Analysis of the DJIA Returns
The R package fGarch was used to fit an AR-APARCH model to the DJIA returns
discussed in Example 5.5. As in the previous example, we include an AR(1) in the
model to account for the conditional mean. In this case, we may think of the model
as rt = μt + yt where μt is an AR(1), and yt is APARCH noise with conditional
variance modeled as (5.53) with t-errors. A partial output of the analysis is given
below. We do not include displays, but we show how to obtain them. The predicted
volatility is, of course, different than the values shown in Fig. 5.6, but appear similar
when graphed.
library(xts)
library(fGarch)
summary(djia.ap <- garchFit(~arma(1,0)+aparch(1,1), data=djiar,

cond.dist='std'))
plot(djia.ap) # to see all plot options (none shown)

Estimate Std. Error t value p.value
mu 5.234e-04 1.525e-04 3.432 0.000598
ar1 -4.818e-02 1.934e-02 -2.491 0.012727
omega 1.798e-04 3.443e-05 5.222 1.77e-07
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alpha1 9.809e-02 1.030e-02 9.525 < 2e-16
gamma1 1.000e+00 1.045e-02 95.731 < 2e-16
beta1 8.945e-01 1.049e-02 85.280 < 2e-16
delta 1.070e+00 1.350e-01 7.928 2.22e-15
shape 7.286e+00 1.123e+00 6.489 8.61e-11
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 15.71403 0.108116
Ljung-Box Test R^2 Q(10) 16.87473 0.077182

In most applications, the distribution of the noise, εt in (5.36), is rarely normal.
The R package fGarch allows for various distributions to be fit to the data; see the help
file for information. Some drawbacks of GARCH and related models are as follows.
(i) The GARCH model assumes positive and negative returns have the same effect
because volatility depends on squared returns; the asymmetric models help alleviate
this problem. (ii) These models are often restrictive because of the tight constraints
on the model parameters (e.g., for an ARCH(1), 0 ≤ α2

1 < 1
3 ). (iii) The likelihood is

flat unless n is very large. (iv) The models tend to overpredict volatility because they
respond slowly to large isolated returns.

Various extensions to the original model have been proposed to overcome some
of the shortcomings we have just mentioned. For example, we have already discussed
the fact that fGarch allows for asymmetric return dynamics. In the case of persistence
in volatility, the integrated GARCH (IGARCH) model may be used. Recall (5.50)
where we showed the GARCH(1, 1) model can be written as

r2
t = α0 + (α1 + β1)r2

t−1 + vt − β1vt−1

and r2
t is stationary if α1 + β1 < 1. The IGARCH model sets α1 + β1 = 1, in which

case the IGARCH(1, 1) model is

rt = σtεt and σ2
t = α0 + (1 − β1)r2

t−1 + β1σ
2
t−1.

There are many different extensions to the basic ARCH model that were developed
to handle the various situations noticed in practice. Interested readers might find
the general discussions in Engle et al. [58] and Shephard [177] worthwhile reading.
Also, Gouriéroux [78] gives a detailed presentation of ARCH and related models with
financial applications and contains an extensive bibliography. Two excellent texts on
financial time series analysis are Chan [40] and Tsay [204].

Finally, we briefly discuss stochastic volatility models; a detailed treatment of
these models is given in Chap. 6. The volatility component, σ2

t , in GARCH and
related models are conditionally nonstochastic. For example, in the ARCH(1) model,
any time the previous return is valued at, say c, i.e., rt−1 = c, it must be the case that
σ2
t = α0 + α1c2. This assumption seems a bit unrealistic. The stochastic volatility

model adds a stochastic component to the volatility in the following way. In the
GARCH model, a return, say rt , is

rt = σtεt ⇒ log r2
t = logσ2

t + log ε2
t . (5.54)
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Fig. 5.7. U.S. monthly pneumonia and influenza deaths per 10,000

Thus, the observations log r2
t are generated by two components, the unobserved

volatility, logσ2
t , and the unobserved noise, log ε2

t . While, for example, GARCH(1, 1)
models volatility without error,σ2

t+1 = α0+α1r2
t +β1σ

2
t , the basic stochastic volatility

model assumes the logged latent variable is an autoregressive process,

logσ2
t+1 = φ0 + φ1 logσ2

t + wt (5.55)

where wt ∼ iid N(0, σ2
w). The introduction of the noise term wt makes the la-

tent volatility process stochastic. Together (5.54) and (5.55) comprise the stochastic
volatility model. Given n observations, the goals are to estimate the parameters φ0,
φ1 and σ2

w , and then predict future volatility. Details are provided in Sect. 6.11.

5.4 Threshold Models

In Sect. 3.4 we discussed the fact that, for a stationary time series, best linear prediction
forward in time is the same as best linear prediction backward in time. This result
followed from the fact that the variance–covariance matrix of x1:n = {x1, x2, . . . , xn},
say, Γ = {γ(i − j)}n

i, j=1, is the same as the variance–covariance matrix of xn:1 =

{xn, xn−1, . . . , x1}. In addition, if the process is Gaussian, the distributions of x1:n and
xn:1 are identical. In this case, a time plot of x1:n (that is, the data plotted forward in
time) should look similar to a time plot of xn:1 (that is, the data plotted backward in
time).

There are, however, many series that do not fit into this category. For example,
Fig. 5.7 shows a plot of monthly pneumonia and influenza deaths per 10,000 in the
U.S. for 11 years, 1968 to 1978. Typically, the number of deaths tends to increase faster
than it decreases (↑↘), especially during epidemics. Thus, if the data were plotted
backward in time, that series would tend to increase slower than it decreases. Also,
if monthly pneumonia and influenza deaths followed a linear Gaussian process, we
would not expect to see such large bursts of positive and negative changes that occur
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periodically in this series. Moreover, although the number of deaths is typically largest
during the winter months, the data are not perfectly seasonal. That is, although the
peak of the series often occurs in January, in other years, the peak occurs in February
or in March. Hence, seasonal ARMA models would not capture this behavior.

Many approaches to modeling nonlinear series exist that could be used (see
Priestley [159]); here, we focus on the class of threshold models (TARMA) presented
in Tong [202, 203]. The basic idea of these models is that of fitting local linear
ARMA models, and their appeal is that we can use the intuition from fitting global
linear ARMA models. For example, a k-regimes self-exciting threshold (SETARMA)
model has the form

xt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

φ
(1)
0 +

∑p1
i=1 φ

(1)
i xt−i + w

(1)
t +

∑q1
j=1 θ

(1)
j w

(1)
t−j if xt−d ≤ r1 ,

φ
(2)
0 +

∑p2
i=1 φ

(2)
i xt−i + w

(2)
t +

∑q2
j=1 θ

(2)
j w

(2)
t−j if r1 < xt−d ≤ r2 ,

...
...

φ
(k)
0 +

∑pk
i=1 φ

(k)
i xt−i + w

(k)
t +

∑qk
j=1 θ

(k)
j w

(k)
t−j if rk−1 < xt−d ,

(5.56)

where w
(j)
t ∼ iid N(0, σ2

j ), for j = 1, . . . , k, the positive integer d is a specified em
delay, and −∞ < r1 < · · · < rk−1 < ∞ is a partition of R.

These models allow for changes in the ARMA coefficients over time, and those
changes are determined by comparing previous values (back-shifted by a time lag
equal to d) to fixed threshold values. Each different ARMA model is referred to as a
regime. In the definition above, the values (pj, qj ) of the order of ARMA models can
differ in each regime, although in many applications, they are equal. Stationarity and
invertibility are obvious concerns when fitting time series models. For the threshold
time series models, such as TAR, TMA and TARMA models, however, the stationary
and invertible conditions in the literature are less well-known in general and often
restricted models of order one.

The model can be generalized to include the possibility that the regimes depend
on a collection of the past values of the process, or that the regimes depend on an
exogenous variable (in which case the model is not self-exciting) such in predator-prey
cases. For example, Canadian lynx have been thoroughly studied (see the R data set
lynx) and the series is typically used to demonstrate the fitting of threshold models.
The lynx prey varies from small rodents to deer, with the Snowshoe Hare being its
overwhelmingly favored prey. In fact, in certain areas the lynx is so closely tied to
the Snowshoe that its population rises and falls with that of the hare, even though
other food sources may be abundant. In this case, it seems reasonable to replace xt−d
in (5.56) with say yt−d, where yt is the size of the Snowshoe Hare population.

The popularity of TAR models is due to their being relatively simple to specify,
estimate, and interpret as compared to many other nonlinear time series models.
In addition, despite its apparent simplicity, the class of TAR models can reproduce
many nonlinear phenomena. In the following example, we use these methods to
fit a threshold model to monthly pneumonia and influenza deaths series previously
mentioned.



264 5 Additional Time Domain Topics

l lll

l
l

l

l

l

l
l

l l
l

l
l

l l
l

l

l

l

l

l l
l ll

l ll
l

l
lll

l lll
l l

l

l

l

l

l l
l

l

l
l

l l

l

l

l

l

l l
l ll

l lll
lll

l
l

l
l

l
l l

l

l

l

l

l

l
l

l lll
l

l
l l

l

l

l

l

l lll
l llll

l
ll

l
l

l
l l

l

l

l

ll

l
l l
l ll

l
l

l

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

dflu t−1

df
lu

t

Fig. 5.8. Scatterplot of dflut = flut − flut−1 versus dflut−1 with a lowess fit superimposed
(line). A vertical dashed line indicates dflut−1 = .05

Example 5.7 Threshold Modeling of the Influenza Series
As previously discussed, examination of Fig. 5.7 leads us to believe that the monthly
pneumonia and influenza deaths time series, say flut , is not linear. It is also evident
from Fig. 5.7 that there is a slight negative trend in the data. We have found that
the most convenient way to fit a threshold model to these data, while removing the
trend, is to work with the first differences. The differenced data, say

xt = flut − flut−1

is exhibited in Fig. 5.9 as points (+) representing the observations.
The nonlinearity of the data is more pronounced in the plot of the first dif-

ferences, xt . Clearly xt slowly rises for some months and, then, sometime in the
winter, has a possibility of jumping to a large number once xt exceeds about .05. If
the process does make a large jump, then a subsequent significant decrease occurs
in xt . Another telling graphic is the lag plot of xt versus xt−1 shown in Fig. 5.8,
which suggests the possibility of two linear regimes based on whether or not xt−1
exceeds .05.

As an initial analysis, we fit the following threshold model

xt = α(1) +
p∑

j=1
φ
(1)
j xt−j + w

(1)
t , xt−1 < .05 ;

xt = α(2) +
p∑

j=1
φ
(2)
j xt−j + w

(2)
t , xt−1 ≥ .05 ,

(5.57)

with p = 6, assuming this would be larger than necessary. Model (5.57) is easy
to fit using two linear regression runs, one when xt−1 < .05 and the other when
xt−1 ≥ .05. Details are provided in the R code at the end of this example.
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Fig. 5.9. First differenced U.S. monthly pneumonia and influenza deaths (+); one-month-ahead
predictions (solid line) with ±2 prediction error bounds. The horizontal line is the threshold

An order p = 4 was finally selected and the fit was

x̂t = 0 + .51(.08)xt−1 − .20(.06)xt−2 + .12(.05)xt−3

− .11(.05)xt−4 + ŵ
(1)
t , for xt−1 < .05 ;

x̂t = .40 − .75(.17)xt−1 − 1.03(.21)xt−2 − 2.05(1.05)xt−3

− 6.71(1.25)xt−4 + ŵ
(2)
t , for xt−1 ≥ .05 ,

where σ̂1 = .05 and σ̂2 = .07. The threshold of .05 was exceeded 17 times.
Using the final model, one-month-ahead predictions can be made, and these

are shown in Fig. 5.9 as a line. The model does extremely well at predicting a flu
epidemic; the peak at 1976, however,was missed by this model. When we fit a model
with a smaller threshold of .04, flu epidemics were somewhat underestimated, but
the flu epidemic in the eighth year was predicted one month early. We chose the
model with a threshold of .05 because the residual diagnostics showed no obvious
departure from the model assumption (except for one outlier at 1976); the model
with a threshold of .04 still had some correlation left in the residuals and there
was more than one outlier. Finally, prediction beyond one-month-ahead for this
model is complicated, but some approximate techniques exist (see Tong [202]).
The following commands can be used to perform this analysis in R.
# Plot data with month initials as points
plot(flu, type="c")
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(flu, pch=Months, cex=.8, font=2)
# Start analysis
dflu = diff(flu)
lag1.plot(dflu, corr=FALSE) # scatterplot with lowess fit
thrsh = .05 # threshold
Z = ts.intersect(dflu, lag(dflu,-1), lag(dflu,-2), lag(dflu,-3),

lag(dflu,-4) )
ind1 = ifelse(Z[,2] < thrsh, 1, NA) # indicator < thrsh
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ind2 = ifelse(Z[,2] < thrsh, NA, 1) # indicator >= thrsh
X1 = Z[,1]*ind1
X2 = Z[,1]*ind2
summary(fit1 <- lm(X1~ Z[,2:5]) ) # case 1
summary(fit2 <- lm(X2~ Z[,2:5]) ) # case 2
D = cbind(rep(1, nrow(Z)), Z[,2:5]) # design matrix
p1 = D %*% coef(fit1) # get predictions
p2 = D %*% coef(fit2)
prd = ifelse(Z[,2] < thrsh, p1, p2)
plot(dflu, ylim=c(-.5,.5), type='p', pch=3)
lines(prd)
prde1 = sqrt(sum(resid(fit1)^2)/df.residual(fit1) )
prde2 = sqrt(sum(resid(fit2)^2)/df.residual(fit2) )
prde = ifelse(Z[,2] < thrsh, prde1, prde2)

tx = time(dflu)[-(1:4)]
xx = c(tx, rev(tx))
yy = c(prd-2*prde, rev(prd+2*prde))

polygon(xx, yy, border=8, col=gray(.6, alpha=.25) )
abline(h=.05, col=4, lty=6)

Finally, we note that there is an R package called tsDyn that can be used to fit these
models; we assume dflu already exits.
library(tsDyn) # load package - install it if you don't have it
# vignette("tsDyn") # for package details
(u = setar(dflu, m=4, thDelay=0, th=.05)) # fit model and view results
(u = setar(dflu, m=4, thDelay=0)) # let program fit threshold (=.036)
BIC(u); AIC(u) # if you want to try other models; m=3 works well too
plot(u) # graphics - ?plot.setar for information

The threshold found here is .036, which includes a few more observations than
using .04, but suffers from the same drawbacks previously noted.

5.5 Lagged Regression and Transfer Function Modeling

In Sect. 4.8, we considered lagged regression in a frequency domain approach based
on coherency. For example, consider the SOI and Recruitment series that were an-
alyzed in Example 4.24; the series are displayed in Fig. 1.5. In that example, the
interest was in predicting the output Recruitment series, say, yt , from the input SOI,
say xt .

We considered the lagged regression model

yt =

∞∑

j=0
αj xt−j + ηt = α(B)xt + ηt, (5.58)

where
∑

j |αj | < ∞. We assume the input process xt and noise process ηt in (5.58)
are both stationary and mutually independent. The coefficients α0, α1, . . . describe
the weights assigned to past values of xt used in predicting yt and we have used the
notation

α(B) =
∞∑

j=0
αjB

j . (5.59)
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In the Box and Jenkins [30] formulation, we assign ARIMA models, say,
ARIMA(p, d, q) and ARIMA(pη, dη, qη), to the series xt and ηt , respectively. In
Sect. 4.8, we assumed the noise, ηt , was white. The components of (5.58) in back-
shift notation, for the case of simple ARMA(p, q) modeling of the input and noise,
would have the representation

φ(B)xt = θ(B)wt (5.60)

and
φη(B)ηt = θη(B)zt, (5.61)

where wt and zt are independent white noise processes with variances σ2
w and σ2

z ,
respectively. Box and Jenkins [30] proposed that systematic patterns often observed in
the coefficients αj, for j = 1, 2, . . . , could often be expressed as a ratio of polynomials
involving a small number of coefficients, along with a specified delay, d, so

α(B) = δ(B)Bd

ω(B) , (5.62)

where
ω(B) = 1 − ω1B − ω2B2 − · · · − ωr Br (5.63)

and
δ(B) = δ0 + δ1B + · · · + δsBs (5.64)

are the indicated operators; in this section, we find it convenient to represent the
inverse of an operator, say, ω(B)−1, as 1/ω(B).

Determining a parsimonious model involving a simple form for α(B) and estimat-
ing all of the parameters in the above model are the main tasks in the transfer function
methodology. Because of the large number of parameters, it is necessary to develop
a sequential methodology. Suppose we focus first on finding the ARIMA model for
the input xt and apply this operator to both sides of (5.58), obtaining the new model

ỹt =
φ(B)
θ(B) yt = α(B)φ(B)

θ(B) xt +
φ(B)
θ(B) ηt = α(B)wt + η̃t,

where wt and the transformed noise η̃t are independent.
The series wt is a prewhitened version of the input series, and its cross-correlation

with the transformed output series ỹt will be just

γỹw(h) = E[ỹt+hwt ] = E
⎡
⎢
⎢
⎢
⎢
⎣

∞∑

j=0
αjwt+h−jwt

⎤
⎥
⎥
⎥
⎥
⎦

= σ2
wαh, (5.65)

because the autocovariance function of white noise will be zero except when j = h
in (5.65). Hence, by computing the cross-correlation between the prewhitened input
series and the transformed output series should yield a rough estimate of the behavior
of α(B).
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Fig. 5.10. Sample ACF and PACF of detrended SOI

Example 5.8 Relating the Prewhitened SOI to the Transformed
Recruitment Series

We give a simple example of the suggested procedure for the SOI and the Recruit-
ment series. Figure 5.10 shows the sample ACF and PACF of the detrended SOI,
and it is clear, from the PACF, that an autoregressive series with p = 1 will do a
reasonable job. Fitting the series gave φ̂ = .588 with σ̂2

w = .092, and we applied the
operator (1− .588B) to both xt and yt and computed the cross-correlation function,
which is shown in Fig. 5.11. Noting the apparent shift of d = 5 months and the
decrease thereafter, it seems plausible to hypothesize a model of the form

α(B) = δ0B5(1 + ω1B + ω2
1 B2 + · · · ) = δ0B5

1 − ω1B

for the transfer function. In this case, we would expect ω1 to be negative. The
following R code was used for this example.
soi.d = resid(lm(soi~time(soi), na.action=NULL)) # detrended SOI
acf2(soi.d)
fit = arima(soi.d, order=c(1,0,0))
ar1 = as.numeric(coef(fit)[1]) # = 0.5875
soi.pw = resid(fit)
rec.fil = filter(rec, filter=c(1, -ar1), sides=1)
ccf(soi.pw, rec.fil, ylab="CCF", na.action=na.omit, panel.first=grid())

In the code above, soi.pw is the prewhitened detrended SOI series, and rec.fil is
the filtered Recruitment series.

In some cases, we may postulate the form of the separate components δ(B) and
ω(B), so we might write the equation

yt =
δ(B)Bd

ω(B) xt + ηt
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Fig. 5.11. Sample CCF of the prewhitened, detrended SOI and the similarly transformed
Recruitment series; negative lags indicate that SOI leads Recruitment

as

ω(B)yt = δ(B)Bdxt + ω(B)ηt,

or in regression form

yt =

r∑

k=1
ωk yt−k +

s∑

k=0
δk xt−d−k + ut, (5.66)

where
ut = ω(B)ηt . (5.67)

Once we have (5.66), it will be easy to fit the model if we forget about ηt and allow ut
to have any ARMA behavior. We illustrate this technique in the following example.

Example 5.9 Transfer Function Model for SOI and Recruitment
We illustrate the procedure for fitting a lagged regression model of the form sug-
gested in Example 5.8 to the detrended SOI series (xt ) and the Recruitment series
(yt ). The results reported here are practically the same as the the results obtained
from the frequency domain approach used in Example 4.24.

Based on Example 5.8, we have determined that

yt = α + ω1yt−1 + δ0xt−5 + ut

is a reasonable model. At this point, we simply run the regression allowing for
autocorrelated errors based on the techniques discussed in Sect. 3.8. Based on
these techniques, the fitted model is the same as the one obtained in Example 4.24,
namely,

yt = 12 + .8yt−1 − 21xt−5 + ut , and ut = .45ut−1 + wt ,

where wt is white noise with σ2
w = 50.
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Fig. 5.12. Top: ACF and PACF of the estimated noise ut . Bottom: The recruitment series (line)
and the one-step-ahead predictions (gray swatch) based on the final transfer function model

Figure 5.12 displays the ACF and PACF of the estimated noise ut , showing that
an AR(1) is appropriate. In addition, the figure displays the Recruitment series and
the one-step-ahead predictions based on the final model. The following R code was
used for this example.
soi.d = resid(lm(soi~time(soi), na.action=NULL))
fish = ts.intersect(rec, RL1=lag(rec,-1), SL5=lag(soi.d,-5))
(u = lm(fish[,1]~fish[,2:3], na.action=NULL))
acf2(resid(u)) # suggests ar1
(arx = sarima(fish[,1], 1, 0, 0, xreg=fish[,2:3])) # final model

Coefficients:
ar1 intercept RL1 SL5

0.4487 12.3323 0.8005 -21.0307
s.e. 0.0503 1.5746 0.0234 1.0915
sigma^2 estimated as 49.93

pred = rec + resid(arx$fit) # 1-step-ahead predictions
ts.plot(pred, rec, col=c('gray90',1), lwd=c(7,1))

For completeness, we finish the discussion of the more complicated Box-Jenkins
method for fitting transfer function models. We note, however, that the method has no
recognizable overall optimality, and is not generally better or worse than the method
previously discussed.

The form of (5.66) suggests doing a regression on the lagged versions of both the
input and output series to obtain β̂, the estimate of the (r + s+1)×1 regression vector

β = (ω1, . . . , ωr, δ0, δ1, . . . , δs)′.
The residuals from the regression, say,

ût = yt − β̂′zt,
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where
zt = (yt−1, . . . , yt−r, xt−d, . . . , xt−d−s)′

denotes the usual vector of independent variables, could be used to approximate the
best ARMA model for the noise process ηt , because we can compute an estimator for
that process from (5.67), using ût and ω̂(B) and applying the moving average operator
to get η̂t . Fitting an ARMA(pη, qη) model to the this estimated noise then completes
the specification. The preceding suggests the following sequential procedure for fitting
the transfer function model to data.

(i) Fit an ARMA model to the input series xt to estimate the parameters φ1, . . . , φp,
θ1, . . . , θq, σ

2
w in the specification (5.60). Retain ARMA coefficients for use in

step (ii) and the fitted residuals ŵt for use in Step (iii).
(ii) Apply the operator determined in step (i), that is,

φ̂(B)yt = θ̂(B)ỹt,

to determine the transformed output series ỹt .
(iii) Use the cross-correlation function between ỹt and ŵt in steps (i) and (ii) to

suggest a form for the components of the polynomial

α(B) = δ(B)Bd

ω(B)
and the estimated time delay d.

(iv) Obtain β̂ = (ω̂1, . . . , ω̂r, δ̂0, δ̂1, . . . , δ̂s) by fitting a linear regression of the
form (5.66). Retain the residuals ût for use in step (v).

(v) Apply the moving average transformation (5.67) to the residuals ût to find the
noise series η̂t , and fit an ARMA model to the noise, obtaining the estimated
coefficients in φ̂η(B) and θ̂η(B).

The above procedure is fairly reasonable, but as previously mentioned, is not
optimal in any sense. Simultaneous least squares estimation, based on the observed
xt and yt , can be accomplished by noting that the transfer function model can be
written as

yt =
δ(B)Bd

ω(B) xt +
θη(B)
φη(B) zt,

which can be put in the form

ω(B)φη(B)yt = φη(B)δ(B)Bdxt + ω(B)θη(B)zt, (5.68)

and it is clear that we may use least squares to minimize
∑

t z2
t , as in earlier sections.

In Example 5.9, we simply allowed ut =
θη (B)
φη (B) zt in (5.68) to have any ARMA

structure. Finally, we mention that we may also express the transfer function in
state-space form as an ARMAX model; see Sects. 5.6 and 6.6.1.
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5.6 Multivariate ARMAX Models

To understand multivariate time series models and their capabilities, we first present
an introduction to multivariate time series regression techniques. Since all processes
are vector processes, we suspend the use of boldface for vectors. A useful extension
of the basic univariate regression model presented in Sect. 2.1 is the case in which we
have more than one output series, that is, multivariate regression analysis. Suppose,
instead of a single output variable yt , a collection of k output variables yt1, yt2, . . . , ytk
exist that are related to the inputs as

yti = βi1zt1 + βi2zt2 + · · · + βir ztr + wti (5.69)

for each of the i = 1, 2, . . . , k output variables. We assume the wti variables are
correlated over the variable identifier i, but are still independent over time. Formally,
we assume cov{wsi,wt j } = σij for s = t and is zero otherwise. Then, writing (5.69)
in matrix notation, with yt = (yt1, yt2, . . . , ytk)′ being the vector of outputs, and
B = {βij }, i = 1, . . . , k, j = 1, . . . , r being a k × r matrix containing the regression
coefficients, leads to the simple looking form

yt = Bzt + wt . (5.70)

Here, the k × 1 vector process wt is assumed to be a collection of independent
vectors with common covariance matrix E{wtw

′
t } = Σw , the k × k matrix containing

the covariances σij . Under the assumption of normality, the maximum likelihood
estimator for the regression matrix is

B̂ =

( n∑

t=1
yt z

′
t

) ( n∑

t=1
zt z

′
t

)−1
. (5.71)

The error covariance matrix Σw is estimated by

Σ̂w =
1

n − r

n∑

t=1
(yt − B̂zt )(yt − B̂zt )′. (5.72)

The uncertainty in the estimators can be evaluated from

se(β̂ij ) =
√

cii σ̂j j, (5.73)

for i = 1, . . . , r, j = 1, . . . , k, where se denotes estimated standard error, σ̂j j is the
j-th diagonal element of Σ̂w , and cii is the i-th diagonal element of

(∑n
t=1 zt z′t

)−1.
Also, the information theoretic criterion changes to

AIC = ln |Σ̂w | + 2
n

(

kr +
k(k + 1)

2

)

. (5.74)

and BIC replaces the second term in (5.74) by K ln n/n where K = kr + k(k + 1)/2.
Bedrick and Tsai [16] have given a corrected form for AIC in the multivariate case as
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AICc = ln |Σ̂w | + k(r + n)
n − k − r − 1

. (5.75)

Many data sets involve more than one time series, and we are often interested in the
possible dynamics relating all series. In this situation, we are interested in modeling
and forecasting k × 1 vector-valued time series xt = (xt1, . . . , xtk)′, t = 0,±1,±2, . . ..
Unfortunately, extending univariate ARMA models to the multivariate case is not
so simple. The multivariate autoregressive model, however, is a straight-forward
extension of the univariate AR model.

For the first-order vector autoregressive model, VAR(1), we take

xt = α +Φxt−1 + wt, (5.76)

whereΦ is a k × k transition matrix that expresses the dependence of xt on xt−1. The
vector white noise process wt is assumed to be multivariate normal with mean-zero
and covariance matrix

E
(
wtw

′
t

)
= Σw . (5.77)

The vector α = (α1, α2, . . . , αk)′ appears as the constant in the regression setting. If
E(xt ) = μ, then α = (I −Φ)μ.

Note the similarity between the VAR model and the multivariate linear regres-
sion model (5.70). The regression formulas carry over, and we can, on observing
x1, . . . , xn, set up the model (5.76) with yt = xt , B = (α,Φ) and zt = (1, x′t−1)′. Then,
write the solution as (5.71) with the conditional maximum likelihood estimator for
the covariance matrix given by

Σ̂w = (n − 1)−1
n∑

t=2
(xt − α̂ − Φ̂xt−1)(xt − α̂ − Φ̂xt−1)′. (5.78)

The special form assumed for the constant component, α, of the vector AR model
in (5.76) can be generalized to include a fixed r × 1 vector of inputs, ut . That is, we
could have proposed the vector ARX model,

xt = Γut +
p∑

j=1
Φj xt−j + wt, (5.79)

where Γ is a p × r parameter matrix. The X in ARX refers to the exogenous vector
process we have denoted here by ut . The introduction of exogenous variables through
replacing α by Γut does not present any special problems in making inferences and
we will often drop the X for being superfluous.

Example 5.10 Pollution, Weather, and Mortality
For example, for the three-dimensional series composed of cardiovascular mortality
xt1, temperature xt2, and particulate levels xt3, introduced in Example 2.2, take
xt = (xt1, xt2, xt3)′ as a vector of dimension k = 3. We might envision dynamic
relations among the three series defined as the first order relation,
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xt1 = α1 + β1t + φ11xt−1,1 + φ12xt−1,2 + φ13xt−1,3 + wt1,

which expresses the current value of mortality as a linear combination of trend and
its immediate past value and the past values of temperature and particulate levels.
Similarly,

xt2 = α2 + β2t + φ21xt−1,1 + φ22xt−1,2 + φ23xt−1,3 + wt2

and
xt3 = α3 + β3t + φ31xt−1,1 + φ32xt−1,2 + φ33xt−1,3 + wt3

express the dependence of temperature and particulate levels on the other series.
Of course, methods for the preliminary identification of these models exist, and we
will discuss these methods shortly. The model in the form of (5.79) is

xt = Γut +Φxt−1 + wt,

where, in obvious notation, Γ = [α | β] is 3 × 2 and ut = (1, t)′ is 2 × 1.
Throughout much of this section we will use the R package vars to fit vector

AR models via least squares. For this particular example, we have (partial output
shown):
library(vars)
x = cbind(cmort, tempr, part)
summary(VAR(x, p=1, type='both')) # 'both' fits constant + trend
Estimation results for equation cmort: # other equations not shown

cmort = cmort.l1 + tempr.l1 + part.l1 + const + trend
Estimate Std. Error t value p.value

cmort.l1 0.464824 0.036729 12.656 < 2e-16
tempr.l1 -0.360888 0.032188 -11.212 < 2e-16
part.l1 0.099415 0.019178 5.184 3.16e-07
const 73.227292 4.834004 15.148 < 2e-16
trend -0.014459 0.001978 -7.308 1.07e-12
--
Residual standard error: 5.583 on 502 degrees of freedom
Multiple R-Squared: 0.6908, Adjusted R-squared: 0.6883
F-statistic: 280.3 on 4 and 502 DF, p-value: < 2.2e-16

Covariance matrix of residuals: Correlation matrix of residuals:
cmort tempr part cmort tempr part

cmort 31.172 5.975 16.65 cmort 1.0000 0.1672 0.2484
tempr 5.975 40.965 42.32 tempr 0.1672 1.0000 0.5506
part 16.654 42.323 144.26 part 0.2484 0.5506 1.0000

For this particular case, we obtain

α̂ = (73.23, 67.59, 67.46)′, β̂ = (−0.014,−0.007,−0.005)′,

Φ̂ =
�
�

�

.46(.04) −.36(.03) .10(.02)
−.24(.04) .49(.04) −.13(.02)
−.12(.08) −.48(.07) .58(.04)

�
�

�

, Σ̂w =
�
�

�

31.17 5.98 16.65
5.98 40.965 42.32

16.65 42.32 144.26

�
�

�

where the standard errors, computed as in (5.73), are given in parentheses.
For the vector (xt1, xt2, xt3) = (Mt,Tt, Pt ), with Mt,Tt and Pt denotingmortality,

temperature, and particulate level, respectively, we obtain the prediction equation
for mortality,
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M̂t = 73.23 − .014t + .46Mt−1 − .36Tt−1 + .10Pt−1.

Comparing observed and predicted mortality with this model leads to an R2 of
about .69.

It is easy to extend the VAR(1) process to higher orders, VAR(p). To do this, we
use the notation of (5.70) and write the vector of regressors as

zt = (1, x′t−1, x′t−2, . . . x′t−p)′

and the regression matrix as B = (α,Φ1,Φ2, . . . ,Φp). Then, this regression model
can be written as

xt = α +

p∑

j=1
Φj xt−j + wt (5.80)

for t = p + 1, . . . , n. The k × k error sum of products matrix becomes

SSE =

n∑

t=p+1
(xt − Bzt)(xt − Bzt )′, (5.81)

so that the conditional maximum likelihood estimator for the error covariance matrix
Σw is

Σ̂w = SSE/(n − p), (5.82)
as in the multivariate regression case, except now only n− p residuals exist in (5.81).
For the multivariate case, we have found that the Schwarz criterion

BIC = log |Σ̂w | + k2p ln n/n, (5.83)

gives more reasonable classifications than either AIC or corrected version AICc. The
result is consistent with those reported in simulations by Lütkepohl [130]. Of course,
estimation via Yule-Walker, unconditional least squares and MLE follow directly
from the univariate counterparts.

Example 5.11 Pollution, Weather, and Mortality (cont)
We used the R package first to select a VAR(p) model and then fit the model.
The selection criteria used in the package are AIC, Hannan-Quinn (HQ; Hannan
and Quinn [87]), BIC (SC), and Final Prediction Error (FPE). The Hannan-Quinn
procedure is similar to BIC, but with ln n replaced by 2 ln(ln(n)) in the penalty term.
FPE finds the model that minimizes the approximate mean squared one-step-ahead
prediction error (see Akaike [1] for details); it is rarely used.
VARselect(x, lag.max=10, type="both")
$selection

AIC(n) HQ(n) SC(n) FPE(n)
9 5 2 9

$criteria
1 2 3 4 5 6 7 8 9 10

AIC(n) 11.738 11.302 11.268 11.230 11.176 11.153 11.152 11.129 11.119 11.120
HQ(n) 11.788 11.381 11.377 11.370 11.346 11.352 11.381 11.388 11.408 11.439
SC(n) 11.865 11.505 11.547 11.585 11.608 11.660 11.736 11.788 11.855 11.932

Note that BIC picks the order p = 2 model while AIC and FPE pick an order p = 9
model and Hannan-Quinn selects an order p = 5 model.
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Fitting the model selected by BIC we obtain

α̂ = (56.1, 49.9, 59.6)′, β̂ = (−0.011,−0.005,−0.008)′,

Φ̂1 =
�
�

�

.30(.04) −.20(.04) .04(.02)
−.11(.05) .26(.05) −.05(.03)
.08(.09) −.39(.09) .39(.05)

�
�

�

,

Φ̂2 =
�
�

�

.28(.04) −.08(.03) .07(.03)
−.04(.05) .36(.05) −.10(.03)
−.33(.09) .05(.09) .38(.05)

�
�

�

,

where the standard errors are given in parentheses. The estimate of Σw is

Σ̂w =
�
�

�

28.03 7.08 16.33
7.08 37.63 40.88

16.33 40.88 123.45

�
�

�

.

To fit the model using the vars package use the following:
summary(fit <- VAR(x, p=2, type="both")) # partial results displayed
cmort = cmort.l1 + tempr.l1 + part.l1 + cmort.l2 + tempr.l2 + part.l2 +

const + trend

Estimate Std. Error t value p.value
cmort.l1 0.297059 0.043734 6.792 3.15e-11
tempr.l1 -0.199510 0.044274 -4.506 8.23e-06
part.l1 0.042523 0.024034 1.769 0.07745
cmort.l2 0.276194 0.041938 6.586 1.15e-10
tempr.l2 -0.079337 0.044679 -1.776 0.07639
part.l2 0.068082 0.025286 2.692 0.00733
const 56.098652 5.916618 9.482 < 2e-16
trend -0.011042 0.001992 -5.543 4.84e-08

Covariance matrix of residuals:
cmort tempr part

cmort 28.034 7.076 16.33
tempr 7.076 37.627 40.88
part 16.325 40.880 123.45

Using the notation of the previous example, the prediction model for cardiovascular
mortality is estimated to be

M̂t = 56 − .01t + .3Mt−1 − .2Tt−1 + .04Pt−1 + .28Mt−2 − .08Tt−2 + .07Pt−2.

To examine the residuals, we can plot the cross-correlations of the residuals and
examine the multivariate version of the Q-test as follows:
acf(resid(fit), 52)
serial.test(fit, lags.pt=12, type="PT.adjusted")

Portmanteau Test (adjusted)
data: Residuals of VAR object fit
Chi-squared = 162.3502, df = 90, p-value = 4.602e-06

The cross-correlation matrix is shown in Figure 5.13. The figure shows the ACFs
of the individual residual series along the diagonal. For example, the first diagonal
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graph is the ACF of Mt −M̂t , and so on. The off diagonals display the CCFs between
pairs of residual series. If the title of the off-diagonal plot is x & y, then y leads in
the graphic; that is, on the upper-diagonal, the plot shows corr[x(t+Lag), y(t)]

whereas in the lower-diagonal, if the title is x & y, you get a plot of corr[x(t+Lag),
y(t)] (yes, it is the same thing, but the lags are negative in the lower diagonal).
The graphic is labeled in a strange way, just remember the second named series
is the one that leads. In Figure 5.13 we notice that most of the correlations in the
residual series are negligible, however, the zero-order correlation of mortality with
temperature residuals is about .22 and mortality with particulate residuals is about
.28 (type acf(resid(fit),52)$acf) to see the actual values. This means that the
AR model is not capturing the concurrent effect of temperature and pollution on
mortality (recall the data evolves over a week). It is possible to fit simultaneous
models; see Reinsel [163] for further details. Thus, not unexpectedly, the Q-test
rejects the null hypothesis that the noise is white. The Q-test statistic is given by

Q = n2
H∑

h=1

1
n − h

tr
[

Γ̂w(h)Γ̂w(0)−1Γ̂w(h)Γ̂w(0)−1
]

, (5.84)

where

Γ̂w(h) = n−1
n−h∑

t=1
ŵt+hŵ

′
t,

and ŵt is the residual process. Under the null that wt is white noise, (5.84) has an
asymptotic χ2 distribution with k2(H − p) degrees of freedom.

Finally, prediction follows in a straight forward manner from the univariate case.
Using the R package vars, use the predict command and the fanchart command,
which produces a nice graphic:
(fit.pr = predict(fit, n.ahead = 24, ci = 0.95)) # 4 weeks ahead
fanchart(fit.pr) # plot prediction + error

The results are displayed in Figure 5.14; we note that the package stripped time
when plotting the fanchart and the horizontal axis is labeled 1, 2, 3, . . ..

For pure VAR(p) models, the autocovariance structure leads to the multivariate
version of the Yule–Walker equations:

Γ(h) =
p∑

j=1
ΦjΓ(h − j), h = 1, 2, . . . , (5.85)

Γ(0) =
p∑

j=1
ΦjΓ(− j) + Σw . (5.86)

where Γ(h) = cov(xt+h, xt ) is a k × k matrix and Γ(−h) = Γ(h)′.
Estimation of the autocovariance matrix is similar to the univariate case, that is,

with x̄ = n−1 ∑n
t=1 xt , as an estimate of μ = Ext ,

Γ̂(h) = n−1
n−h∑

t=1
(xt+h − x̄)(xt − x̄)′, h = 0, 1, 2, .., n − 1, (5.87)
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Fig. 5.13. ACFs (diagonals) and CCFs (off-diagonals) for the residuals of the three-dimensional
VAR(2) fit to the LA mortality – pollution data set. On the off-diagonals, the second-named
series is the one that leads

and Γ̂(−h) = Γ̂(h)′. If γ̂i, j (h) denotes the element in the i-th row and j-th column of
Γ̂(h), the cross-correlation functions (CCF), as discussed in (1.35), are estimated by

ρ̂i, j (h) =
γ̂i, j (h)

√
γ̂i,i(0)

√
γ̂j, j (0)

h = 0, 1, 2, .., n − 1. (5.88)

When i = j in (5.88), we get the estimated autocorrelation function (ACF) of the
individual series.

Although least squares estimation was used in Example 5.10 and Example 5.11, we
could have also used Yule-Walker estimation, conditional or unconditional maximum
likelihood estimation. As in the univariate case, the Yule–Walker estimators, the
maximum likelihood estimators, and the least squares estimators are asymptotically
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Fig. 5.14. Predictions from a VAR(2) fit to the LA mortality – pollution data

equivalent. To exhibit the asymptotic distribution of the autoregression parameter
estimators, we write

φ = vec
(
Φ1, . . . ,Φp

)
,

where the vec operator stacks the columns of a matrix into a vector. For example, for
a bivariate AR(2) model,

φ = vec (Φ1,Φ2) =
(
Φ111,Φ121,Φ112,Φ122Φ211,Φ221,Φ212,Φ222

) ′
,

where Φ�i j is the i j-th element of Φ�, � = 1, 2. Because
(
Φ1, . . . ,Φp

)
is a k × kp

matrix, φ is a k2p × 1 vector. We now state the following property.

Property 5.1 Large-Sample Distribution of VAR Estimators
Let φ̂ denote the vector of parameter estimators (obtained via Yule–Walker, least

squares, or maximum likelihood) for a k-dimensional AR(p) model. Then,
√

n
(
φ̂ − φ

) ∼ AN(0, Σw ⊗ Γ−1
pp), (5.89)

where Γpp = {Γ(i − j)}p
i, j=1 is a kp × kp matrix and Σw ⊗ Γ−1

pp = {σijΓ
−1
pp}ki, j=1 is a

k2p × k2p matrix with σij denoting the i j-th element of Σw .

The variance–covariance matrix of the estimator φ̂ is approximated by replacing
Σw by Σ̂w , and replacing Γ(h) by Γ̂(h) in Γpp. The square root of the diagonal
elements of Σ̂w ⊗ Γ̂−1

pp divided by
√

n gives the individual standard errors. For the
mortality data example, the estimated standard errors for the VAR(2) fit are listed
in Example 5.11; although those standard errors were taken from a regression run,
they could have also been calculated using Property 5.1.
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A k × 1 vector-valued time series xt , for t = 0,±1,±2, . . ., is said to be
VARMA(p, q) if xt is stationary and

xt = α +Φ1xt−1 + · · · +Φpxt−p + wt +Θ1wt−1 + · · · + Θqwt−q, (5.90)

with Φp � 0, Θq � 0, and Σw > 0 (that is, Σw is positive definite). The coefficient
matrices Φj ; j = 1, . . . , p and Θj ; j = 1, . . . , q are, of course, k × k matrices. If xt
has mean μ then α = (I −Φ1 − · · · −Φp)μ. As in the univariate case, we will have to
place a number of conditions on the multivariate ARMA model to ensure the model
is unique and has desirable properties such as causality. These conditions will be
discussed shortly.

As in the VAR model, the special form assumed for the constant component can
be generalized to include a fixed r × 1 vector of inputs, ut . That is, we could have
proposed the vector ARMAX model,

xt = Γut +
p∑

j=1
Φj xt−j +

q∑

k=1
Θkwt−k + wt, (5.91)

where Γ is a p × r parameter matrix.
While extending univariate AR (or pure MA) models to the vector case is fairly

easy, extending univariate ARMA models to the multivariate case is not a simple
matter. Our discussion will be brief, but interested readers can get more details in
Lütkepohl [131], Reinsel [163], and Tiao and Tsay [200].

In the multivariate case, the autoregressive operator is

Φ(B) = I −Φ1B − · · · −ΦpBp, (5.92)

and the moving average operator is

Θ(B) = I + Θ1B + · · · +ΘqBq, (5.93)

The zero-mean VARMA(p, q) model is then written in the concise form as

Φ(B)xt = Θ(B)wt . (5.94)

The model is said to be causal if the roots of |Φ(z)| (where | · | denotes determinant)
are outside the unit circle, |z| > 1; that is, |Φ(z)| � 0 for any value z such that |z| ≤ 1.
In this case, we can write

xt =Ψ (B)wt,

where Ψ (B) = ∑∞
j=0ΨjB j , Ψ0 = I , and

∑∞
j=0 | |Ψj | | < ∞. The model is said to be

invertible if the roots of |Θ(z)| lie outside the unit circle. Then, we can write

wt = Π (B)xt,
where Π (B) = ∑∞

j=0 ΠjB j , Π0 = I , and
∑∞

j=0 | |Πj | | < ∞. Analogous to the univariate
case, we can determine the matricesΨj by solvingΨ (z) = Φ(z)−1Θ(z), |z| ≤ 1, and
the matrices Πj by solving Π (z) = Θ(z)−1Φ(z), |z| ≤ 1.
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For a causal model, we can write xt = Ψ (B)wt so the general autocovariance
structure of an ARMA(p, q) model is (h ≥ 0)

Γ(h) = cov(xt+h, xt ) =
∞∑

j=0
Ψj+hΣwΨ

′
j . (5.95)

and Γ(−h) = Γ(h)′. For pure MA(q) processes, (5.95) becomes

Γ(h) =
q−h∑

j=0
Θj+hΣwΘ

′
j, (5.96)

where Θ0 = I . Of course, (5.96) implies Γ(h) = 0 for h > q.
As in the univariate case, we will need conditions for model uniqueness. These

conditions are similar to the condition in the univariate case that the autoregressive
and moving average polynomials have no common factors. To explore the uniqueness
problems that we encounter with multivariate ARMA models, consider a bivariate
AR(1) process, xt = (xt,1, xt,2)′, given by

xt,1 = φxt−1,2 + wt,1 ,

xt,2 = wt,2 ,

where wt,1 and wt,2 are independent white noise processes and |φ| < 1. Both pro-
cesses, xt,1 and xt,2 are causal and invertible. Moreover, the processes are jointly
stationary because cov(xt+h,1, xt,2) = φ cov(xt+h−1,2, xt,2) ≡ φ γ2,2(h − 1) = φσ2

w2δ
h
1

does not depend on t; note, δh1 = 1 when h = 1, otherwise, δh1 = 0. In matrix notation,
we can write this model as

xt = Φxt−1 + wt , where Φ =

[
0 φ
0 0

]

. (5.97)

We can write (5.97) in operator notation as

Φ(B)xt = wt where Φ(z) =
[
1 − φz
0 1

]

.

In addition, model (5.97) can be written as a bivariate ARMA(1,1) model

xt = Φ1xt−1 +Θ1wt−1 + wt, (5.98)

where
Φ1 =

[
0 φ + θ
0 0

]

and Θ1 =

[
0 − θ
0 0

]

,

and θ is arbitrary. To verify this, we write (5.98), as Φ1(B)xt = Θ1(B)wt , or

Θ1(B)−1Φ1(B)xt = wt,
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where
Φ1(z) =

[
1 − (φ + θ)z
0 1

]

and Θ1(z) =
[
1 − θz
0 1

]

.

Then,

Θ1(z)−1Φ1(z) =
[
1 θz
0 1

] [
1 − (φ + θ)z
0 1

]

=

[
1 − φz
0 1

]

= Φ(z),

where Φ(z) is the polynomial associated with the bivariate AR(1) model in (5.97).
Because θ is arbitrary, the parameters of the ARMA(1,1) model given in (5.98) are not
identifiable. No problem exists, however, in fitting the AR(1) model given in (5.97).

The problem in the previous discussion was caused by the fact that bothΘ(B) and
Θ(B)−1 are finite; such a matrix operator is called unimodular. If U(B) is unimod-
ular, |U(z)| is constant. It is also possible for two seemingly different multivariate
ARMA(p, q) models, say, Φ(B)xt = Θ(B)wt and Φ∗(B)xt = Θ∗(B)wt , to be related
through a unimodular operator, U(B) asΦ∗(B) = U(B)Φ(B) and Θ∗(B) = U(B)Θ(B),
in such a way that the orders ofΦ(B) andΘ(B) are the same as the orders ofΦ∗(B) and
Θ∗(B), respectively. For example, consider the bivariate ARMA(1,1) models given by

Φxt ≡
[
1 −φB
0 1

]

xt =

[
1 θB
0 1

]

wt ≡ Θwt

and
Φ∗(B)xt ≡

[
1 (α − φ)B
0 1

]

xt =

[
1 (α + θ)B
0 1

]

wt ≡ Θ∗(B)wt,

where α, φ, and θ are arbitrary constants. Note,

Φ∗(B) ≡
[
1 (α − φ)B
0 1

]

=

[
1 αB
0 1

] [
1 −φB
0 1

]

≡ U(B)Φ(B)

and
Θ∗(B) ≡

[
1 (α + θ)B
0 1

]

=

[
1 αB
0 1

] [
1 θB
0 1

]

≡ U(B)Θ(B).

In this case, both models have the same infinite MA representation xt = Ψ (B)wt ,
where

Ψ (B) = Φ(B)−1Θ(B) = Φ(B)−1U(B)−1U(B)Θ(B) = Φ∗(B)−1Θ∗(B).
This result implies the two models have the same autocovariance function Γ(h). Two
such ARMA(p, q) models are said to be observationally equivalent.

As previously mentioned, in addition to requiring causality and invertibility, we
will need some additional assumptions in the multivariate case to make sure that the
model is unique. To ensure the identifiability of the parameters of the multivariate
ARMA(p, q) model, we need the following additional two conditions: (i) the matrix
operators Φ(B) and Θ(B) have no common left factors other than unimodular ones
[that is, if Φ(B) = U(B)Φ∗(B) and Θ(B) = U(B)Θ∗(B), the common factor must
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be unimodular] and (ii) with q as small as possible and p as small as possible for
that q, the matrix [Φp, Θq] must be full rank, k. One suggestion for avoiding most
of the aforementioned problems is to fit only vector AR(p) models in multivariate
situations. Although this suggestion might be reasonable for many situations, this
philosophy is not in accordance with the law of parsimony because we might have to
fit a large number of parameters to describe the dynamics of a process.

Asymptotic inference for the general case of vector ARMA models is more
complicated than pure AR models; details can be found in Reinsel [163] or Lütkepohl
[131], for example. We also note that estimation for VARMA models can be recast
into the problemof estimation for state-space models that will be discussed in Chap. 6.

Example 5.12 The Spliid Algorithm for Fitting Vector ARMA
A simple algorithm for fitting vector ARMA models from Spliid [189] is worth men-
tioning because it repeatedly uses the multivariate regression equations. Consider
a general ARMA(p, q) model for a time series with a nonzero mean

xt = α +Φ1xt−1 + · · · +Φpxt−p + wt + Θ1wt−1 + · · · +Θqwt−q . (5.99)

If μ = Ext , then α = (I −Φ1 − · · · −Φp)μ. If wt−1, . . . ,wt−q were observed, we
could rearrange (5.99) as a multivariate regression model

xt = Bzt + wt, (5.100)

with
zt = (1, x′t−1, . . . , x′t−p,w

′
t−1, . . . ,w

′
t−q)′ (5.101)

and
B = [α,Φ1, . . . ,Φp, Θ1, . . . , Θq], (5.102)

for t = p + 1, . . . , n. Given an initial estimator B0, of B, we can reconstruct
{wt−1, . . . ,wt−q} by setting

wt−j = xt−j − B0zt−j, t = p + 1, . . . , n, j = 1, . . . , q, (5.103)

where, if q > p, we put wt−j = 0 for t − j ≤ 0. The new values of {wt−1, . . . ,wt−q}
are then put into the regressors zt and a new estimate, say, B1, is obtained. The
initial value, B0, can be computed by fitting a pure autoregression of order p or
higher, and taking Θ1 = · · · = Θq = 0. The procedure is then iterated until the pa-
rameter estimates stabilize. The algorithm often converges, but not to the maximum
likelihood estimators. Experience suggests the estimators can be reasonably close
to the maximum likelihood estimators. The algorithm can be considered as a quick
and easy way to fit an initial VARMA model as a starting point to using maximum
likelihood estimation, which is best done via state-space models covered in the next
chapter.

We used the R package marima to fit a vector ARMA(2, 1) to the mortality–
pollution data set and part of the output is displayed. We note that mortality is
detrended prior to the analysis. The one-step-ahead predictions for mortality are
displayed in Fig. 5.15.
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Fig. 5.15. Predictions (line) from a VARMA(2,1) fit to the LA mortality (points) data using
Spliid’s algorithm

library(marima)
model = define.model(kvar=3, ar=c(1,2), ma=c(1))
arp = model$ar.pattern; map = model$ma.pattern
cmort.d = resid(detr <- lm(cmort~ time(cmort), na.action=NULL))
xdata = matrix(cbind(cmort.d, tempr, part), ncol=3) # strip ts attributes
fit = marima(xdata, ar.pattern=arp, ma.pattern=map, means=c(0,1,1),

penalty=1)
# resid analysis (not displayed)
innov = t(resid(fit)); plot.ts(innov); acf(innov, na.action=na.pass)
# fitted values for cmort
pred = ts(t(fitted(fit))[,1], start=start(cmort), freq=frequency(cmort)) +

detr$coef[1] + detr$coef[2]*time(cmort)
plot(pred, ylab="Cardiovascular Mortality", lwd=2, col=4); points(cmort)
# print estimates and corresponding t^2-statistic
short.form(fit$ar.estimates, leading=FALSE)
short.form(fit$ar.fvalues, leading=FALSE)
short.form(fit$ma.estimates, leading=FALSE)
short.form(fit$ma.fvalues, leading=FALSE)

parameter estimate t^2 statistic
AR1
-0.311 0.000 -0.114 51.21 0.0 7.9
0.000 -0.656 0.048 0.00 41.7 3.1

-0.109 0.000 -0.861 1.57 0.0 113.3
AR2:
-0.333 0.133 -0.047 67.24 11.89 2.52
0.000 -0.200 0.055 0.00 8.10 2.90
0.179 -0.102 -0.151 4.86 1.77 6.48

MA1:
0.000 -0.187 -0.106 0.00 14.51 4.75

-0.114 -0.446 0.000 4.68 16.38 0.00
0.000 -0.278 -0.673 0.00 8.08 47.56

fit$resid.cov # estimate of noise cov matrix
27.3 6.5 13.8
6.5 36.2 38.1

13.8 38.1 109.2
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Problems

Section 5.1

5.1 The data set arf is 1000 simulated observations from an ARFIMA(1, 1, 0)model
with φ = .75 and d = .4.

(a) Plot the data and comment.
(b) Plot the ACF and PACF of the data and comment.
(c) Estimate the parameters and test for the significance of the estimates φ̂ and d̂.
(d) Explain why, using the results of parts (a) and (b), it would seem reasonable to

difference the data prior to the analysis. That is, if xt represents the data, explain
why we might choose to fit an ARMA model to ∇xt .

(e) Plot the ACF and PACF of ∇xt and comment.
(f) Fit an ARMA model to ∇xt and comment.

5.2 Compute the sample ACF of the absolute values of the NYSE returns displayed
in Fig. 1.4 up to lag 200, and comment on whether the ACF indicates long memory.
Fit an ARFIMA model to the absolute values and comment.

Section 5.2

5.3 Plot the global temperature series, globtemp, and then test whether there is a unit
root versus the alternative that the process is stationary using the three tests, DF,
ADF, and PP, discussed in Example 5.3. Comment.

5.4 Plot the GNP series, gnp, and then test for a unit root against the alternative that
the process is explosive. State your conclusion.

5.5 Verify (5.33).

Section 5.3

5.6 Weekly crude oil spot prices in dollars per barrel are in oil; see Problem Prob-
lem 2.10 and Appendix R for more details. Investigate whether the growth rate of
the weekly oil price exhibits GARCH behavior. If so, fit an appropriate model to the
growth rate.

5.7 The stats package of R contains the daily closing prices of four major European
stock indices; type help(EuStockMarkets) for details. Fit a GARCH model to the
returns of one of these series and discuss your findings. (Note: The data set contains
actual values, and not returns. Hence, the data must be transformed prior to the model
fitting.)

5.8 The 2×1 gradient vector, l(1)(α0, α1), given for an ARCH(1) model was displayed
in (5.47). Verify (5.47) and then use the result to calculate the 2 × 2 Hessian matrix

l(2)(α0, α1) =
(

∂2l/∂α2
0 ∂2l/∂α0∂α1

∂2l/∂α0∂α1 ∂2l/∂α2
1

)

.
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Section 5.4

5.9 The sunspot data (sunspotz) are plotted in Chap. 4, Figure 4.22. From a time plot
of the data, discuss why it is reasonable to fit a threshold model to the data, and then
fit a threshold model.

Section 5.5

5.10 The data in climhyd have 454 months of measured values for the climatic
variables air temperature, dew point, cloud cover, wind speed, precipitation (pt ), and
inflow (it ), at Lake Shasta; the data are displayed in Fig. 7.3. We would like to look
at possible relations between the weather factors and the inflow to Lake Shasta.

(a) Fit ARIMA(0, 0, 0) × (0, 1, 1)12 models to (i) transformed precipitation Pt =
√

pt
and (ii) transformed inflow It = log it .

(b) Apply the ARIMA model fitted in part (a) for transformed precipitation to the
flow series to generate the prewhitened flow residuals assuming the precipitation
model. Compute the cross-correlation between the flow residuals using the pre-
cipitation ARIMA model and the precipitation residuals using the precipitation
model and interpret. Use the coefficients from the ARIMA model to construct
the transformed flow residuals.

5.11 For the climhyd data set, consider predicting the transformed flows It = log it
from transformed precipitation values Pt =

√
pt using a transfer function model of

the form
(1 − B12)It = α(B)(1 − B12)Pt + nt,

where we assume that seasonal differencing is a reasonable thing to do. You may
think of it as fitting

yt = α(B)xt + nt,

where yt and xt are the seasonally differenced transformed flows and precipitations.

(a) Argue that xt can be fitted by a first-order seasonal moving average, and use the
transformation obtained to prewhiten the series xt .

(b) Apply the transformation applied in (a) to the series yt , and compute the cross-
correlation function relating the prewhitened series to the transformed series.
Argue for a transfer function of the form

α(B) = δ0

1 − ω1B
.

(c) Write the overall model obtained in regression form to estimate δ0 and ω1. Note
that you will be minimizing the sums of squared residuals for the transformed
noise series (1 − ω̂1B)nt . Retain the residuals for further modeling involving the
noise nt . The observed residual is ut = (1 − ω̂1B)nt .

(d) Fit the noise residuals obtained in (c) with an ARMA model, and give the final
form suggested by your analysis in the previous parts.
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(e) Discuss the problem of forecasting yt+m using the infinite past of yt and the
present and infinite past of xt . Determine the predicted value and the forecast
variance.

Section 5.6

5.12 Consider the data set econ5 containing quarterly U.S. unemployment, GNP,
consumption, and government and private investment from 1948-III to 1988-II. The
seasonal component has been removed from the data. Concentrating on unemploy-
ment (Ut ), GNP (Gt ), and consumption (Ct ), fit a vector ARMA model to the data
after first logging each series, and then removing the linear trend. That is, fit a vector
ARMA model to xt = (x1t, x2t, x3t )′, where, for example, x1t = log(Ut ) − β̂0 − β̂1t,
where β̂0 and β̂1 are the least squares estimates for the regression of log(Ut ) on time,
t. Run a complete set of diagnostics on the residuals.



Chapter 6

State Space Models

A very general model that subsumes a whole class of special cases of interest in much
the same way that linear regression does is the state-space model or the dynamic
linear model, which was introduced in Kalman [112] and Kalman and Bucy [113].
The model arose in the space tracking setting, where the state equation defines the
motion equations for the position or state of a spacecraft with location xt and the data
yt reflect information that can be observed from a tracking device such as velocity
and azimuth. Although introduced as a method primarily for use in aerospace-related
research, the model has been applied to modeling data from economics (Harrison and
Stevens [90]; Harvey and Pierse [92]; Harvey and Todd [91]; Kitagawa and Gersch
[119], Shumway and Stoffer [181]), medicine (Jones [108]) and the soil sciences
(Shumway [183], §3.4.5). An excellent treatment of time series analysis based on the
state space model is the text by Durbin and Koopman [55]. A modern treatment of
nonlinear state space models can be found in Douc, Moulines and Stoffer [53].

In this chapter, we focus primarily on linear Gaussian state space models. We
present various forms of the model, introduce the concepts of prediction, filtering
and smoothing state space models and include their derivations. We explain how
to perform maximum likelihood estimation using various techniques, and include
methods for handling missing data. In addition, we present several special topics such
as hidden Markov models (HMM), switching autoregressions, smoothing splines,
ARMAX models, bootstrapping, stochastic volatility, and state space models with
switching. Finally, we discuss a Bayesian approach to fitting state space models using
Markov chain Monte Carlo (MCMC) techniques. The essential material is supplied
in Sections 6.1, 6.2, and 6.3. After that, the other sections may be read in any order
with some occasional backtracking.

In general, the state space model is characterized by two principles. First, there
is a hidden or latent process xt called the state process. The state process is assumed
to be a Markov process; this means that the future {xs ; s > t}, and past {xs ; s < t},

© Springer International Publishing AG 2017
R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52452-8_6
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Fig. 6.1. Diagram of a state space model

are independent conditional on the present, xt . The second condition is that the
observations, yt are independent given the states xt . This means that the dependence
among the observations is generated by states. The principles are displayed in Fig. 6.1.

6.1 Linear Gaussian Model

The linear Gaussian state space model or dynamic linear model (DLM), in its ba-
sic form, employs an order one, p-dimensional vector autoregression as the state
equation,

xt =Φxt−1 + wt . (6.1)

The wt are p × 1 independent and identically distributed, zero-mean normal vectors
with covariance matrix Q; we write this as wt∼ iid Np(0,Q). In the DLM, we assume
the process starts with a normal vector x0, such that x0 ∼ Np(μ0, Σ0).

We do not observe the state vector xt directly, but only a linear transformed
version of it with noise added, say

yt = At xt + vt, (6.2)

where At is a q×p measurement or observation matrix; (6.2) is called the observation
equation. The observed data vector, yt , is q-dimensional, which can be larger than or
smaller than p, the state dimension.The additive observationnoise is vt∼ iid Nq(0, R).
In addition, we initially assume, for simplicity, x0, {wt } and {vt } are uncorrelated;
this assumption is not necessary, but it helps in the explanation of first concepts. The
case of correlated errors is discussed in Sect. 6.6.

As in the ARMAX model of Sect. 5.6, exogenous variables, or fixed inputs, may
enter into the states or into the observations. In this case, we suppose we have an r ×1
vector of inputs ut , and write the model as

xt = Φxt−1 +Υut + wt (6.3)

yt = At xt + Γut + vt (6.4)

where Υ is p × r and Γ is q × r; either of these matrices may be the zero matrix.
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Fig. 6.2. Longitudinal series of monitored blood parameters, log (white blood count) [WBC],
log (platelet) [PLT], and hematocrit [HCT], after a bone marrow transplant (n = 91 days)

Example 6.1 A Biomedical Example
Suppose we consider the problem of monitoring the level of several biomedi-
cal markers after a cancer patient undergoes a bone marrow transplant. The data
in Figure 6.2, used by Jones [108], are measurements made for 91 days on three vari-
ables, log(white blood count) [WBC], log(platelet) [PLT], and hematocrit [HCT],
denoted yt = (yt1, yt2, yt3)′. Approximately 40% of the values are missing, with
missing values occurring primarily after the 35th day. The main objectives are to
model the three variables using the state-space approach, and to estimate the miss-
ing values. According to Jones, “Platelet count at about 100 days post transplant has
previously been shown to be a good indicator of subsequent long term survival.”
For this particular situation, we model the three variables in terms of the state
equation (6.1); that is,

�
�

�

xt1
xt2
xt3

�
�

�

=
�
�

�

φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

�
�

�

�
�

�

xt−1,1
xt−1,2
xt−1,3

�
�

�

+
�
�

�

wt1
wt2
wt3

�
�

�

. (6.5)

The observation equations would be yt = At xt + vt , where the 3×3 observation
matrix, At , is either the identity matrix or the zero matrix depending on whether
a blood sample was taken on that day. The covariance matrices R and Q are each
3 × 3 matrices. A plot similar to Figure 6.2 can be produced as follows.
plot(blood, type='o', pch=19, xlab='day', main='')

As we progress through the chapter, it will become apparent that, while the model
seems simplistic, it is quite general. For example, if the state process is VAR(2), we
may write the state equation as a 2p-dimensional process,
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Fig. 6.3. Annual global temperature deviation series, measured in degrees centigrade, 1880–
2015. The series differ by whether or not ocean data is included

(
xt

xt−1

)

2p×1

=

(
Φ1 Φ2
I 0

)

2p×2p

(
xt−1
xt−2

)

2p×1

+

(
wt

0

)

2p×1

, (6.6)

and the observation equation as the q-dimensional process,

yt
q×1

=
[
At

/
/ 0

]

q×2p

(
xt

xt−1

)

2p×1

+ vt
q×1

. (6.7)

The real advantages of the state space formulation, however, do not really come
through in the simple example given above. The special forms that can be developed
for various versions of the matrix At and for the transition scheme defined by the
matrix Φ allow fitting more parsimonious structures with fewer parameters needed
to describe a multivariate time series. We will see numerous examples throughout
the chapter; Sect. 6.5 on structural models is a good example of the model flexibility.
The simple example shown below is instructive.

Example 6.2 Global Warming
Figure 6.3 shows two different estimators for the global temperature series from

1880 to 2015. One is globtemp, which was considered in the first chapter, and are
the global mean land-ocean temperature index data. The second series, globtempl,
are the surface air temperature index data using only meteorological station data.
Conceptually, both series should be measuring the same underlying climatic signal,
and we may consider the problem of extracting this underlying signal. The R code
to generate the figure is
ts.plot(globtemp, globtempl, col=c(6,4), ylab='Temperature Deviations')

We suppose both series are observing the same signal with different noises; that is,

yt1 = xt + vt1 and yt2 = xt + vt2,

or more compactly as (
yt1
yt2

)

=

(
1
1

)

xt +

(
vt1
vt2

)

, (6.8)
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where
R = var

(
vt1
vt2

)

=

(
r11 r12
r21 r22

)

.

It is reasonable to suppose that the unknown common signal, xt , can be modeled
as a random walk with drift of the form

xt = δ + xt−1 + wt, (6.9)

with Q = var(wt ). In terms of the model (6.3)–(6.4), this example has, p = 1, q = 2,
Φ = 1, and Υ = δ with ut ≡ 1.

The introduction of the state-space approach as a tool for modeling data in the
social and biological sciences requires model identification and parameter estimation
because there is rarely a well-defined differential equation describing the state tran-
sition. The questions of general interest for the dynamic linear model (6.3) and (6.4)
relate to estimating the unknown parameters contained in Φ,Υ,Q, Γ, At , and R, that
define the particular model, and estimating or forecasting values of the underlying
unobserved process xt . The advantages of the state-space formulation are in the ease
with which we can treat various missing data configurations and in the incredible
array of models that can be generated from (6.3) and (6.4). The analogy between the
observation matrix At and the design matrix in the usual regression and analysis of
variance setting is a useful one. We can generate fixed and random effect structures
that are either constant or vary over time simply by making appropriate choices for
the matrix At and the transition structureΦ.

Before continuing our investigation of the general model, it is instructive to
consider a simple univariate state-space model wherein an AR(1) process is observed
using a noisy instrument.

Example 6.3 An AR(1) Process with Observational Noise
Consider a univariate state-space model where the observations are noisy,

yt = xt + vt, (6.10)

and the signal (state) is an AR(1) process,

xt = φxt−1 + wt, (6.11)

where vt∼ iid N(0, σ2
v ), wt∼ iid N(0, σ2

w), and x0 ∼ N
(
0, σ2

w

1−φ2

)
; {vt }, {wt }, and x0

are independent, and t = 1, 2, . . . .
In Chap. 3, we investigated the properties of the state, xt, because it is a stationary

AR(1) process (recall Problem 3.2). For example, we know the autocovariance
function of xt is

γx(h) = σ2
w

1 − φ2 φh, h = 0, 1, 2, . . . . (6.12)

But here, we must investigate how the addition of observation noise affects the
dynamics. Although it is not a necessary assumption, we have assumed in this
example that xt is stationary. In this case, the observations are also stationary
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because yt is the sum of two independent stationary components xt and vt . We have

γy(0) = var(yt ) = var(xt + vt ) = σ2
w

1 − φ2 + σ2
v, (6.13)

and, when h ≥ 1,

γy(h) = cov(yt, yt−h) = cov(xt + vt, xt−h + vt−h) = γx(h). (6.14)

Consequently, for h ≥ 1, the ACF of the observations is

ρy(h) =
γy(h)
γy(0) =

(

1 +
σ2
v

σ2
w

(1 − φ2)
)−1

φh . (6.15)

It should be clear from the correlation structure given by (6.15) that the observa-
tions, yt , are not AR(1) unlessσ2

v = 0. In addition, the autocorrelation structure of yt
is identical to the autocorrelation structure of an ARMA(1,1) process, as presented
in Example 3.14. Thus, the observations can also be written in an ARMA(1,1) form,

yt = φyt−1 + θut−1 + ut,

where ut is Gaussian white noise with variance σ2
u , and with θ and σ2

u suitably
chosen. We leave the specifics of this problem alone for now and defer the discussion
to Sect. 6.6; in particular, see Example 6.11.

Although an equivalence exists between stationary ARMA models and stationary
state-space models (see Sect. 6.6), it is sometimes easier to work with one form than
another. As previously mentioned, in the case of missing data, complex multivariate
systems, mixed effects, and certain types of nonstationarity, it is easier to work in the
framework of state-space models.

6.2 Filtering, Smoothing, and Forecasting

From a practical view, a primary aim of any analysis involving the state space
model, (6.3)–(6.4), would be to produce estimators for the underlying unobserved
signal xt , given the data y1:s = {y1, . . . , ys}, to time s. As will be seen, state estima-
tion is an essential component of parameter estimation. When s < t, the problem is
called forecasting or prediction. When s = t, the problem is called filtering, and when
s > t, the problem is called smoothing. In addition to these estimates, we would also
want to measure their precision. The solution to these problems is accomplished via
the Kalman filter and smoother and is the focus of this section.

Throughout this chapter, we will use the following definitions:

xst = E(xt | y1:s) (6.16)
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and

Ps
t1,t2 = E

{(xt1 − xst1)(xt2 − xst2)′
}
. (6.17)

When t1 = t2 (= t say) in (6.17), we will write Ps
t for convenience.

In obtaining the filtering and smoothing equations, we will rely heavily on the
Gaussian assumption. Some knowledge of the material covered in Appendix B will
be helpful in understanding the details of this section (although these details may
be skipped on a casual reading of the material). Even in the non-Gaussian case, the
estimators we obtain are the minimum mean-squared error estimators within the class
of linear estimators. That is, we can think of E in (6.16) as the projection operator in the
sense of Sect. B.1 rather than expectation and y1:s as the space of linear combinations
of {y1, . . . , ys}; in this case, Ps

t is the corresponding mean-squared error. Since the
processes are Gaussian, (6.17) is also the conditional error covariance; that is,

Ps
t1,t2 = E

{(xt1 − xst1)(xt2 − xst2)′
/
/ y1:s

}
.

This fact can be seen, for example, by noting the covariance matrix between (xt − xst )
and y1:s , for any t and s, is zero; we could say they are orthogonal in the sense
of Sect. B.1. This result implies that (xt − xst ) and y1:s are independent (because
of the normality), and hence, the conditional distribution of (xt − xst ) given y1:s is
the unconditional distribution of (xt − xst ). Derivations of the filtering and smoothing
equations from a Bayesian perspective are given in Meinhold and Singpurwalla [139];
more traditional approaches based on the concept of projection and on multivariate
normal distribution theory are given in Jazwinski [105] and Anderson and Moore [5].

First, we present the Kalman filter, which gives the filtering and forecasting equa-
tions. The name filter comes from the fact that xtt is a linear filter of the observations
y1:t ; that is, xtt =

∑t
s=1 Bsys for suitably chosen p × q matrices Bs. The advantage of

the Kalman filter is that it specifies how to update the filter from xt−1
t−1 to xtt once a

new observation yt is obtained, without having to reprocess the entire data set y1:t .

Property 6.1 The Kalman Filter
For the state-space model specified in (6.3) and (6.4), with initial conditions

x0
0 = μ0 and P0

0 = Σ0, for t = 1, . . . , n,

xt−1
t = Φxt−1

t−1 +Υut, (6.18)

Pt−1
t = ΦPt−1

t−1Φ
′ + Q, (6.19)

with

xtt = xt−1
t + Kt (yt − At x

t−1
t − Γut), (6.20)

Pt
t = [I − Kt At ]Pt−1

t , (6.21)

where
Kt = Pt−1

t A′t [AtP
t−1
t A′t + R]−1 (6.22)

is called the Kalman gain. Prediction for t > n is accomplished via (6.18) and (6.19)
with initial conditions xnn and Pn

n . Important byproducts of the filter are the innovations
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(prediction errors)

εt = yt − E(yt
/
/ y1:t−1) = yt − At x

t−1
t − Γut, (6.23)

and the corresponding variance-covariance matrices

Σt
def
= var(εt ) = var[At (xt − xt−1

t ) + vt ] = AtP
t−1
t A′t + R (6.24)

for t = 1, . . . , n. We assume that Σt > 0 (is positive definite), which is guaranteed, for
example, if R > 0. This assumption is not necessary and may be relaxed.

Proof: The derivations of (6.18) and (6.19) follow from straight forward calculations,
because from (6.3) we have

xt−1
t = E(xt | y1:t−1) = E(Φxt−1 +Υut + wt | y1:t−1) = Φxt−1

t−1 +Υut,

and thus

Pt−1
t = E

{(xt − xt−1
t )(xt − xt−1

t )′}

= E
{[
Φ(xt−1 − xt−1

t−1) + wt

] [
Φ(xt−1 − xt−1

t−1) + wt

] ′}

= ΦPt−1
t−1Φ

′ + Q.

To derive (6.20), we note that cov(εt, ys) = 0 for s < t, which in view of the
fact the innovation sequence is a Gaussian process, implies that the innovations
are independent of the past observations. Furthermore, the conditional covariance
between xt and εt given y1:t−1 is

cov(xt, εt | y1:t−1) = cov(xt, yt − At x
t−1
t − Γut | y1:t−1)

= cov(xt − xt−1
t , yt − At x

t−1
t − Γut | y1:t−1)

= cov[xt − xt−1
t , At (xt − xt−1

t ) + vt ]
= Pt−1

t A′t . (6.25)

Using these results we have that the joint conditional distribution of xt and εt given
y1:t−1 is normal

(
xt
εt

) /
/
/
/ y1:t−1 ∼ N

([
xt−1
t

0

]

,

[
Pt−1
t Pt−1

t A′t
AtPt−1

t Σt

])

. (6.26)

Thus, using (B.9) of Appendix B, we can write

xtt = E(xt | y1:t ) = E(xt | y1:t−1, εt ) = xt−1
t + Ktεt, (6.27)

where
Kt = Pt−1

t A′tΣ
−1
t = Pt−1

t A′t (AtP
t−1
t A′t + R)−1.
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The evaluation of Pt
t is easily computed from (6.26) [see (B.10)] as

Pt
t = cov (xt | y1:t−1, εt ) = Pt−1

t − Pt−1
t A′tΣ

−1
t AtP

t−1
t ,

which simplifies to (6.21). �
Nothing in the proof of Property 6.1 precludes the cases where some or all of the

parameters vary with time, or where the observation dimension changes with time,
which leads to the following corollary.

Corollary 6.1 Kalman Filter: The Time-Varying Case
If, in (6.3) and (6.4), any or all of the parameters are time dependent,Φ = Φt, Υ =

Υt, Q = Qt in the state equation or Γ = Γt, R = Rt in the observation equation, or
the dimension of the observational equation is time dependent, q = qt , Property 6.1
holds with the appropriate substitutions.

Next, we explore the model, prediction, and filtering from a density point of view.
To ease the notation, we will drop the inputs from the model. There are two key
ingredients to the state space model. Letting pΘ(·) denote a generic density function
with parameters represented by Θ, we have the state process is Markovian:

pΘ(xt
/
/ xt−1, xt−2, . . . , x0) = pΘ(xt

/
/ xt−1), (6.28)

and the observations are conditionally independent given the states:

pΘ(y1:n
/
/ x1:n) =

n∏

t=1
pΘ(yt

/
/ xt ), (6.29)

Since we are focusing on the linear Gaussian model, if we let g(x; μ, Σ) denote a
multivariate normal density with mean μ and covariance matrix Σ as given in (1.33),
then

pΘ(xt
/
/ xt−1) = g(xt ; Φxt−1,Q) and pΘ(yt

/
/ xt ) = g(yt ; At xt, R) .

with initial condition pΘ(x0) = g(x0; μ0, Σ0).
In terms of densities, the Kalman filter can be seen as a simple updating scheme,

where, to determine the forecast densities, we have,

pΘ(xt
/
/ y1:t−1) =

∫

Rp

pΘ(xt, xt−1
/
/ y1:t−1) dxt−1

=

∫

Rp

pΘ(xt
/
/ xt−1)pΘ(xt−1

/
/ y1:t−1) dxt−1

=

∫

Rp

g(xt ; Φxt−1,Q)g(xt−1; xt−1
t−1, Pt−1

t−1) dxt−1

= g(xt ; xt−1
t , Pt−1

t ) , (6.30)

where the values of xt−1
t and Pt−1

t are given in (6.18) and (6.19). These values
are obtained upon evaluating the integral using the usual trick of completing the
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square; see Example 6.4. Since we were seeking an iterative procedure, we introduced
xt−1 in (6.30) because we have (presumably) previously evaluated the filter density
pΘ(xt−1

/
/ y1:t−1). Once we have the predictor, the filter density is obtained as

pΘ(xt | y1:t ) = pΘ(xt
/
/ yt, y1:t−1) ∝ pΘ(yt | xt ) pΘ(xt

/
/ y1:t−1),

= g(yt ; At xt, R)g(xt ; xt−1
t , Pt−1

t ) , (6.31)

from which we deduce is g(xt ; xtt , Pt
t )where xtt and Pt

t are given in (6.20) and (6.21).
The following example illustrates these ideas for a simple univariate case.

Example 6.4 Local Level Model
In this example, we suppose that we observe a univariate series yt that consists of
a trend component, μt , and a noise component, vt , where

yt = μt + vt (6.32)

and vt ∼ iid N(0, σ2
v ). In particular, we assume the trend is a random walk given by

μt = μt−1 + wt (6.33)

where wt ∼ iid N(0, σ2
w) is independent of {vt }. Recall Example 6.2, where we

suggested this type of trend model for the global temperature series.
The model is, of course, a state-space model with (6.32) being the observation

equation, and (6.33) being the state equation. We will use the following notation
introduced in Blight [24]. Let

{x; μ, σ2} = exp
{

− 1
2σ2 (x − μ)2

}

, (6.34)

then simple manipulation shows

{x; μ, σ2} = {μ; x, σ2} (6.35)

and by completing the square,

{x; μ1, σ
2
1 }{x; μ2, σ

2
2 } =

{

x;
μ1/σ2

1 + μ2/σ2
2

1/σ2
1 + 1/σ2

2
, (1/σ2

1 + 1/σ2
2 )−1

}

× {
μ1; μ2, σ

2
1 + σ2

2
}
.

(6.36)

Thus, using (6.30), (6.35) and (6.36) we have

p(μt | y1:t−1) ∝
∫ {

μt ; μt−1, σ
2
w

} {
μt−1; μt−1

t−1, Pt−1
t−1

}
dμt−1

=

∫ {
μt−1; μt, σ

2
w

} {
μt−1; μt−1

t−1, Pt−1
t−1

}
dμt−1

=
{
μt ; μt−1

t−1, Pt−1
t−1 + σ2

w

}
. (6.37)
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From (6.37) we conclude that

μt | y1:t−1 ∼ N(μt−1
t , Pt−1

t ) (6.38)

where
μt−1
t = μt−1

t−1 and Pt−1
t = Pt−1

t−1 + σ2
w (6.39)

which agrees with the first part of Property 6.1. To derive the filter density us-
ing (6.31) and (6.35) we have

p(μt
/
/ y1:t ) ∝

{
yt ; μt, σ

2
v

} {
μt ; μt−1

t , Pt−1
t

}

=
{
μt ; yt, σ2

v

} {
μt ; μt−1

t , Pt−1
t

}
. (6.40)

An application of (6.36) gives

μt | y1:t ∼ N(μtt, Pt
t ) (6.41)

with

μtt =
σ2
v μ

t−1
t

Pt−1
t + σ2

v

+
Pt−1
t yt

Pt−1
t + σ2

v

= μt−1
t + Kt (yt − μt−1

t ), (6.42)

where we have defined

Kt =
Pt−1
t

Pt−1
t + σ2

v

, (6.43)

and

Pt
t =

(
1
σ2
v

+
1

Pt−1
t

)−1
=

σ2
v Pt−1

t

Pt−1
t + σ2

v

= (1 − Kt )Pt−1
t . (6.44)

The filter for this specific case, of course, agrees with Property 6.1.

Next, we consider the problem of obtaining estimators for xt based on the en-
tire data sample y1, . . . , yn, where t ≤ n, namely, xnt . These estimators are called
smoothers because a time plot of the sequence {xnt ; t = 1, . . . , n} is typically smoother
than the forecasts {xt−1

t ; t = 1, . . . , n} or the filters {xtt ; t = 1, . . . , n}. As is obvious
from the above remarks, smoothing implies that each estimated value is a function
of the present, future, and past, whereas the filtered estimator depends on the present
and past. The forecast depends only on the past, as usual.

Property 6.2 The Kalman Smoother
For the state-space model specified in (6.3) and (6.4), with initial conditions xnn

and Pn
n obtained via Property 6.1, for t = n, n − 1, . . . , 1,

xnt−1 = xt−1
t−1 + Jt−1

(
xnt − xt−1

t

)
, (6.45)

Pn
t−1 = Pt−1

t−1 + Jt−1

(
Pn
t − Pt−1

t

)
J ′t−1, (6.46)

where
Jt−1 = Pt−1

t−1Φ
′ [Pt−1

t

]−1
. (6.47)
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Proof: The smoother can be derived in many ways. Here we provide a proof that was
given in Ansley and Kohn [9]. First, for 1 ≤ t ≤ n, define

y1:t−1 = {y1, . . . , yt−1} and ηt = {vt, . . . , vn,wt+1, . . . ,wn},
with y1:0 being empty, and let

mt−1 = E{xt−1
/
/ y1:t−1, xt − xt−1

t , ηt }.

Then, because y1:t−1, {xt − xt−1
t }, and ηt are mutually independent, and xt−1 and ηt

are independent, using (B.9) we have

mt−1 = xt−1
t−1 + Jt−1(xt − xt−1

t ), (6.48)

where
Jt−1 = cov(xt−1, xt − xt−1

t )[Pt−1
t ]−1 = Pt−1

t−1Φ
′[Pt−1

t ]−1.

Finally, because y1:t−1, xt − xt−1
t , and ηt generate y1:n = {y1, . . . , yn},

xnt−1 = E{xt−1
/
/ y1:n} = E{mt−1

/
/ y1:n} = xt−1

t−1 + Jt−1(xnt − xt−1
t ),

which establishes (6.45).
The recursion for the error covariance, Pn

t−1, is obtained by straight-forward
calculation. Using (6.45) we obtain

xt−1 − xnt−1 = xt−1 − xt−1
t−1 − Jt−1

(
xnt −Φxt−1

t−1

)
,

or (
xt−1 − xnt−1

)
+ Jt−1xnt =

(
xt−1 − xt−1

t−1

)
+ Jt−1Φxt−1

t−1 . (6.49)

Multiplying each side of (6.49) by the transpose of itself and taking expectation, we
have

Pn
t−1 + Jt−1E(xnt xn

′
t )J ′t−1 = Pt−1

t−1 + Jt−1ΦE(xt−1
t−1 xt−1′

t−1 )Φ′J ′t−1, (6.50)

using the fact the cross-product terms are zero. But,

E(xnt xn
′

t ) = E(xt x′t ) − Pn
t = ΦE(xt−1x′t−1)Φ′ + Q − Pn

t ,

and
E(xt−1

t−1 xt−1′
t−1 ) = E(xt−1x′t−1) − Pt−1

t−1,

so (6.50) simplifies to (6.46). �
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Fig. 6.4. Displays for Example 6.5. The simulated values of μt , for t = 1, . . . , 50, given
by (6.51) are shown as points. The top shows the predictions μt−1

t as a line with ±2
√

Pt−1
t

error bounds as dashed lines. The middle is similar, showing μtt ± 2
√

Pt
t . The bottom shows

μnt ± 2
√

Pn
t

Example 6.5 Prediction, Filtering and Smoothing for the Local Level Model
For this example, we simulated n = 50 observations from the local level trend
model discussed in Example 6.4. We generated a random walk

μt = μt−1 + wt (6.51)

with wt ∼ iid N(0, 1) and μ0 ∼ N(0, 1). We then supposed that we observe a
univariate series yt consisting of the trend component, μt , and a noise component,
vt ∼ iid N(0, 1), where

yt = μt + vt . (6.52)

The sequences {wt }, {vt } and μ0 were generated independently. We then ran the
Kalman filter and smoother, Property 6.1 and Property 6.2, using the actual pa-
rameters. The top panel of Fig. 6.4 shows the actual values ofμt as points, and
the predictions μt−1

t , for t = 1, 2, . . . , 50, superimposed on the graph as a line. In
addition, we display μt−1

t ± 2
√

Pt−1
t as dashed lines on the plot. The middle panel

displays the filter, μtt , for t = 1, . . . , 50, as a line with μtt ± 2
√

Pt
t as dashed lines.

The bottom panel of Fig. 6.4 shows a similar plot for the smoother μnt .
Table 6.1 shows the first 10 observations as well as the corresponding state

values, the predictions, filters and smoothers. Note that one-step-ahead prediction
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Table 6.1. First 10 observations of Example 6.5

t yt μt μt−1
t Pt−1

t μtt Pt
t μnt Pn

t

0 — −.63 — — .00 1.00 −.32 .62
1 −1.05 −.44 .00 2.00 −.70 .67 −.65 .47
2 −.94 −1.28 −.70 1.67 −.85 .63 −.57 .45
3 −.81 .32 −.85 1.63 −.83 .62 −.11 .45
4 2.08 .65 −.83 1.62 .97 .62 1.04 .45
5 1.81 −.17 .97 1.62 1.49 .62 1.16 .45
6 −.05 .31 1.49 1.62 .53 .62 .63 .45
7 .01 1.05 .53 1.62 .21 .62 .78 .45
8 2.20 1.63 .21 1.62 1.44 .62 1.70 .45
9 1.19 1.32 1.44 1.62 1.28 .62 2.12 .45

10 5.24 2.83 1.28 1.62 3.73 .62 3.48 .45

is more uncertain than the corresponding filtered value, which, in turn, is more
uncertain than the corresponding smoother value (that is Pt−1

t ≥ Pt
t ≥ Pn

t ). Also,
in each case, the error variances stabilize quickly.

The R code for this example is as follows. In the example we use Ksmooth0,
which calls Kfilter0 for the filtering part. In the returned values from Ksmooth0, the
letters p, f, s denote prediction, filter, and smooth, respectively (e.g., xp is xt−1

t ,
xf is xtt , xs is xnt , and so on). These scripts use a Cholesky-type decomposition1
of Q and R; they are denoted by cQ and cR. Practically, the scripts only require
that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively,
which allows more flexibility. For example, the model (6.6) - (6.7) does not pose a
problem even though the state noise covariance matrix is not positive definite.
# generate data
set.seed(1); num = 50
w = rnorm(num+1,0,1); v = rnorm(num,0,1)
mu = cumsum(w) # state: mu[0], mu[1],..., mu[50]
y = mu[-1] + v # obs: y[1],..., y[50]
# filter and smooth (Ksmooth0 does both)
ks = Ksmooth0(num, y, A=1, mu0=0, Sigma0=1, Phi=1, cQ=1, cR=1)
# start figure
par(mfrow=c(3,1)); Time = 1:num
plot(Time, mu[-1], main='Predict', ylim=c(-5,10))

lines(ks$xp)
lines(ks$xp+2*sqrt(ks$Pp), lty=2, col=4)
lines(ks$xp-2*sqrt(ks$Pp), lty=2, col=4)

plot(Time, mu[-1], main='Filter', ylim=c(-5,10))
lines(ks$xf)
lines(ks$xf+2*sqrt(ks$Pf), lty=2, col=4)
lines(ks$xf-2*sqrt(ks$Pf), lty=2, col=4)

plot(Time, mu[-1], main='Smooth', ylim=c(-5,10))
lines(ks$xs)
lines(ks$xs+2*sqrt(ks$Ps), lty=2, col=4)

1 Given a positive definite matrix A, its Cholesky decomposition is an upper triangular matrix U with
strictly positive diagonal entries such that A = U′U . In R, use chol(A). For the univariate case, it is
simply the positive square root of A.
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lines(ks$xs-2*sqrt(ks$Ps), lty=2, col=4)
mu[1]; ks$x0n; sqrt(ks$P0n) # initial value info

When we discuss maximum likelihood estimation via the EM algorithm in the
next section, we will need a set of recursions for obtaining Pn

t,t−1, as defined in (6.17).
We give the necessary recursions in the following property.

Property 6.3 The Lag-One Covariance Smoother
For the state-space model specified in (6.3) and (6.4), with Kt , Jt (t = 1, . . . , n),

and Pn
n obtained from Property 6.1 and Property 6.2, and with initial condition

Pn
n,n−1 = (I − KnAn)ΦPn−1

n−1, (6.53)

for t = n, n − 1, . . . , 2,

Pn
t−1,t−2 = Pt−1

t−1 J ′t−2 + Jt−1

(
Pn
t,t−1 −ΦPt−1

t−1

)
J ′t−2. (6.54)

Proof: Because we are computing covariances, we may assume ut ≡ 0 without loss
of generality. To derive the initial term (6.53), we first define

x̃st = xt − xst .

Then, using (6.20) and (6.45), we write

Pt
t,t−1 = E

(
x̃tt x̃t

′
t−1

)

= E
{[x̃t−1

t − Kt (yt − At x
t−1
t )][x̃t−1

t−1 − Jt−1Kt (yt − At x
t−1
t )]′}

= E
{[x̃t−1

t − Kt (At x̃
t−1
t + vt )][x̃t−1

t−1 − Jt−1Kt (At x̃
t−1
t + vt )]′

}
.

Expanding terms and taking expectation, we arrive at

Pt
t,t−1 = Pt−1

t,t−1 − Pt−1
t A′tK

′
t J ′t−1 − Kt AtP

t−1
t,t−1 + Kt (AtP

t−1
t A′t + R)K ′

t J ′t−1,

noting E(x̃t−1
t v′t ) = 0. The final simplification occurs by realizing that

Kt (AtPt−1
t A′t + R) = Pt−1

t A′t , and Pt−1
t,t−1 = ΦPt−1

t−1 . These relationships hold for
any t = 1, . . . , n, and (6.53) is the case t = n.

We give the basic steps in the derivation of (6.54). The first step is to use (6.45)
to write

x̃nt−1 + Jt−1xnt = x̃t−1
t−1 + Jt−1Φxt−1

t−1 (6.55)

and
x̃nt−2 + Jt−2xnt−1 = x̃t−2

t−2 + Jt−2Φxt−2
t−2 . (6.56)

Next, multiply the left-hand side of (6.55) by the transpose of the left-hand side
of (6.56), and equate that to the corresponding result of the right-hand sides of (6.55)
and (6.56). Then, taking expectation of both sides, the left-hand side result reduces to

Pn
t−1,t−2 + Jt−1E(xnt xn

′
t−1)J ′t−2 (6.57)
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and the right-hand side result reduces to

Pt−2
t−1,t−2 − Kt−1 At−1Pt−2

t−1,t−2 + Jt−1ΦKt−1At−1Pt−2
t−1,t−2

+ Jt−1ΦE(xt−1
t−1 xt−2′

t−2 )Φ′J ′t−2.
(6.58)

In (6.57), write

E(xnt xn
′

t−1) = E(xt x′t−1) − Pn
t,t−1 = ΦE(xt−1x′t−2)Φ′ +ΦQ − Pn

t,t−1,

and in (6.58), write

E(xt−1
t−1 xt−2′

t−2 ) = E(xt−2
t−1 xt−2′

t−2 ) = E(xt−1x′t−2) − Pt−2
t−1,t−2.

Equating (6.57) to (6.58) using these relationships and simplifying the result leads
to (6.54). �

6.3 Maximum Likelihood Estimation

Estimation of the parameters that specify the state space model, (6.3) and (6.4),
is quite involved. We use Θ to represent the vector of unknown parameters in the
initial mean and covariance μ0 and Σ0, the transition matrix Φ, and the state and
observation covariance matrices Q and R and the input coefficient matrices,Υ and Γ .
We use maximum likelihood under the assumption that the initial state is normal,
x0 ∼ Np(μ0, Σ0), and the errors are normal, wt ∼ iid Np(0,Q) and vt ∼ iid Nq(0, R).
We continue to assume, for simplicity, {wt } and {vt } are uncorrelated.

The likelihood is computed using the innovations ε1, ε2, . . . , εn, defined by (6.23),

εt = yt − At x
t−1
t − Γut .

The innovations form of the likelihood of the data y1:n, which was first given by
Schweppe [176], is obtained using an argument similar to the one leading to (3.117)
and proceeds by noting the innovations are independent Gaussian random vectors
with zero means and, as shown in (6.24), covariance matrices

Σt = AtP
t−1
t A′t + R. (6.59)

Hence, ignoring a constant, we may write the likelihood, LY (Θ), as

− ln LY (Θ) = 1
2

n∑

t=1
ln |Σt (Θ)| + 1

2

n∑

t=1
εt (Θ)′Σt (Θ)−1εt (Θ), (6.60)

where we have emphasized the dependence of the innovations on the parameters Θ.
Of course, (6.60) is a highly nonlinear and complicated function of the unknown
parameters. The usual procedure is to fix x0 and then develop a set of recursions
for the log likelihood function and its first two derivatives (for example, Gupta and
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Mehra [84]). Then, a Newton–Raphson algorithm (see 3.30) can be used successively
to update the parameter values until the negative of the log likelihood is minimized.
This approach is advocated, for example, by Jones [107], who developed ARMA esti-
mation by putting the ARMA model in state-space form. For the univariate case, (6.60)
is identical, in form, to the likelihood for the ARMA model given in (3.117).

The steps involved in performing a Newton–Raphson estimation procedure are as
follows.

(i) Select initial values for the parameters, say, Θ(0).
(ii) Run the Kalman filter, Property 6.1, using the initial parameter values, Θ(0), to

obtain a set of innovations and error covariances, say, {ε (0)t ; t = 1, . . . , n} and
{Σ (0)t ; t = 1, . . . , n}.

(iii) Run one iteration of a Newton–Raphson procedure with − ln LY (Θ) as the
criterion function (refer to Example 3.30 for details), to obtain a new set of
estimates, say Θ(1).

(iv) At iteration j, ( j = 1, 2, . . .), repeat step 2 using Θ(j) in place of Θ(j−1) to obtain
a new set of innovation values {ε (j)t ; t = 1, . . . , n} and {Σ (j)t ; t = 1, . . . , n}.
Then repeat step 3 to obtain a new estimate Θ(j+1). Stop when the estimates
or the likelihood stabilize; for example, stop when the values of Θ(j+1) differ
from Θ(j), or when LY (Θ(j+1)) differs from LY (Θ(j)), by some predetermined,
but small amount.

Example 6.6 Newton–Raphson for Example 6.3
In this example, we generated n = 100 observations, y1:100, from the AR with
noise model given in Example 6.3, to perform a Newton–Raphson estimation of
the parameters φ, σ2

w , and σ2
v . In the notation of Sect. 6.2, we would have Φ = φ,

Q = σ2
w and R = σ2

v . The actual values of the parameters are φ = .8, σ2
w = σ2

v = 1.
In the simple case of an AR(1) with observational noise, initial estimation can

be accomplished using the results of Example 6.3. For example, using (6.15), we
set

φ(0) = ρ̂y(2)/ρ̂y(1).
Similarly, from (6.14), γx(1) = γy(1) = φσ2

w/(1 − φ2), so that, initially, we set

σ2(0)
w = (1 − φ(0)

2 )γ̂y(1)/φ(0).
Finally, using (6.13) we obtain an initial estimate of σ2

v , namely,

σ2(0)
v = γ̂y(0) − [σ2(0)

w /(1 − φ(0)
2)].

Newton–Raphson estimation was accomplished using the R program optim.
The code used for this example is given below. In that program, we must provide
an evaluation of the function to be minimized, namely, − ln LY (Θ). In this case, the
function call combines steps 2 and 3, using the current values of the parameters,
Θ(j−1), to obtain first the filtered values, then the innovation values, and then
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calculating the criterion function, − ln LY (Θ(j−1)), to be minimized. We can also
provide analytic forms of the gradient or score vector, −∂ ln LY (Θ)/∂Θ, and the
Hessian matrix, −∂2 ln LY (Θ)/∂Θ ∂Θ′, in the optimization routine, or allow the
program to calculate these values numerically. In this example, we let the program
proceed numerically and we note the need to be cautious when calculating gradients
numerically. It it suggested in Press et al. [156, Ch. 10] that it is better to use
numerical methods for the derivatives, at least for the Hessian, along with the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Details on the gradient and
Hessian are provided in Problem 6.9 and Problem 6.10; see Gupta and Mehra [84].
# Generate Data
set.seed(999); num = 100
x = arima.sim(n=num+1, list(ar=.8), sd=1)
y = ts(x[-1] + rnorm(num,0,1))
# Initial Estimates
u = ts.intersect(y, lag(y,-1), lag(y,-2))
varu = var(u); coru = cor(u)
phi = coru[1,3]/coru[1,2]
q = (1-phi^2)*varu[1,2]/phi
r = varu[1,1] - q/(1-phi^2)
(init.par = c(phi, sqrt(q), sqrt(r))) # = .91, .51, 1.03
# Function to evaluate the likelihood
Linn = function(para){

phi = para[1]; sigw = para[2]; sigv = para[3]
Sigma0 = (sigw^2)/(1-phi^2); Sigma0[Sigma0<0]=0
kf = Kfilter0(num, y, 1, mu0=0, Sigma0, phi, sigw, sigv)
return(kf$like) }

# Estimation (partial output shown)
(est = optim(init.par, Linn, gr=NULL, method='BFGS', hessian=TRUE,

control=list(trace=1, REPORT=1)))
SE = sqrt(diag(solve(est$hessian)))
cbind(estimate=c(phi=est$par[1],sigw=est$par[2],sigv=est$par[3]),SE)

estimate SE
phi 0.814 0.081
sigw 0.851 0.175
sigv 0.874 0.143

As seen from the output, the final estimates, along with their standard errors (in
parentheses), are φ̂ = .81 (.08), σ̂w = .85 (.18), σ̂v = .87 (.14). The report from
optim yielded the following results of the estimation procedure:

initial value 81.313627
iter 2 value 80.169051
iter 3 value 79.866131
iter 4 value 79.222846
iter 5 value 79.021504
iter 6 value 79.014723
iter 7 value 79.014453
iter 7 value 79.014452
iter 7 value 79.014452
final value 79.014452
converged

Note that the algorithm converged in seven steps with the final value of the negative
of the log likelihood being 79.014452. The standard errors are a byproduct of the



6.3 Maximum Likelihood Estimation 307

estimation procedure, and we will discuss their evaluation later in this section,
after Property 6.4.

Example 6.7 Newton–Raphson for the Global Temperature Deviations
In Example 6.2, we considered two different global temperature series of n = 136
observations each, and they are plotted in Figure 6.3. In that example, we argued
that both series should be measuring the same underlying climatic signal, xt , which
we model as a random walk with drift,

xt = δ + xt−1 + wt .

Recall that the observation equation was written as
(
yt1
yt2

)

=

(
1
1

)

xt +

(
vt1
vt2

)

,

and the model covariance matrices are given by Q = q11 and

R =

(
r11 r12
r21 r22

)

.

Hence, there are five parameters to estimate, δ, the drift, and the variance compo-
nents, q11, r11, r12, r22, noting that r21 = r12 We hold the the initial state parameters
fixed in this example at μ0 = −.35 and Σ0 = 1, which is large relative to the data.
The final estimates were (the R matrix is reassembled in the code).

estimate SE
sigw 0.055 0.011
cR11 0.074 0.010
cR22 0.127 0.015
cR12 0.129 0.038
drift 0.006 0.005

The observations and the smoothed estimate of the signal, x̂nt ±2
√

P̂n
t , are displayed

in Figure 6.5. The code, which uses Kfilter1 and Ksmooth1, is as follows.
# Setup
y = cbind(globtemp, globtempl); num = nrow(y); input = rep(1,num)
A = array(rep(1,2), dim=c(2,1,num))
mu0 = -.35; Sigma0 = 1; Phi = 1
# Function to Calculate Likelihood
Linn = function(para){
cQ = para[1] # sigma_w
cR1 = para[2] # 11 element of chol(R)
cR2 = para[3] # 22 element of chol(R)
cR12 = para[4] # 12 element of chol(R)

cR = matrix(c(cR1,0,cR12,cR2),2) # put the matrix together
drift = para[5]
kf = Kfilter1(num,y,A,mu0,Sigma0,Phi,drift,0,cQ,cR,input)
return(kf$like) }

# Estimation
init.par = c(.1,.1,.1,0,.05) # initial values of parameters
(est = optim(init.par, Linn, NULL, method='BFGS', hessian=TRUE,

control=list(trace=1,REPORT=1))) # output not shown
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Fig. 6.5. Plot for Example 6.7. The dashed lines with points (+ and �) are the two average
global temperature deviations shown in Figure 6.3. The solid line is the estimated smoother x̂nt ,
and the corresponding two root mean square error bound is the gray swatch. Only the values
later than 1900 are shown

SE = sqrt(diag(solve(est$hessian)))
# Display estimates
u = cbind(estimate=est$par, SE)
rownames(u)=c('sigw','cR11', 'cR22', 'cR12', 'drift'); u
# Smooth (first set parameters to their final estimates)
cQ = est$par[1]
cR1 = est$par[2]
cR2 = est$par[3]
cR12 = est$par[4]

cR = matrix(c(cR1,0,cR12,cR2), 2)
(R = t(cR)%*%cR) # to view the estimated R matrix
drift = est$par[5]
ks = Ksmooth1(num,y,A,mu0,Sigma0,Phi,drift,0,cQ,cR,input)
# Plot
xsm = ts(as.vector(ks$xs), start=1880)
rmse = ts(sqrt(as.vector(ks$Ps)), start=1880)
plot(xsm, ylim=c(-.6, 1), ylab='Temperature Deviations')

xx = c(time(xsm), rev(time(xsm)))
yy = c(xsm-2*rmse, rev(xsm+2*rmse))
polygon(xx, yy, border=NA, col=gray(.6, alpha=.25))

lines(globtemp, type='o', pch=2, col=4, lty=6)
lines(globtempl, type='o', pch=3, col=3, lty=6)

In addition to Newton–Raphson, Shumway and Stoffer [181] presented a con-
ceptually simpler estimation procedure based on the Baum-Welch algorithm (Baum
et al. [14]), also known as the EM (expectation-maximization) algorithm (Dempster
et al. [51]). For the sake of brevity, we ignore the inputs and consider the model in
the form of (6.1) and (6.2). The basic idea is that if we could observe the states,
x0:n = {x0, x1, . . . , xn}, in addition to the observations y1:n = {y1, . . . , yn}, then we
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would consider {x0:n, y1:n} as the complete data, with joint density

pΘ(x0:n, y1:n) = pμ0,Σ0(x0)
n∏

t=1
pΦ,Q(xt | xt−1)

n∏

t=1
pR(yt | xt ). (6.61)

Under the Gaussian assumption and ignoring constants, the complete data likeli-
hood, (6.61), can be written as

−2 ln LX,Y (Θ) = ln |Σ0 | + (x0 − μ0)′Σ−1
0 (x0 − μ0)

+ n ln |Q | +
n∑

t=1
(xt −Φxt−1)′Q−1(xt −Φxt−1)

+ n ln |R| +
n∑

t=1
(yt − At xt )′R−1(yt − At xt ).

(6.62)

Thus, in view of (6.62), if we did have the complete data, we could then use the results
from multivariate normal theory to easily obtain the MLEs of Θ. Although we do not
have the complete data, the EM algorithm gives us an iterative method for finding
the MLEs of Θ based on the incomplete data, y1:n, by successively maximizing
the conditional expectation of the complete data likelihood. To implement the EM
algorithm, we write, at iteration j, ( j = 1, 2, . . .),

Q
(
Θ

/
/ Θ(j−1)

)
= E

{
−2 ln LX,Y (Θ)

/
/ y1:n, Θ

(j−1)
}
. (6.63)

Calculation of (6.63) is the expectation step. Of course, given the current value of
the parameters, Θ(j−1), we can use Property 6.2 to obtain the desired conditional
expectations as smoothers. This property yields

Q
(
Θ

/
/ Θ(j−1)

)
= ln |Σ0 | + tr

{
Σ−1

0 [Pn
0 + (xn0 − μ0)(xn0 − μ0)′]

}

+ n ln |Q | + tr
{
Q−1[S11 − S10Φ

′ −ΦS′10 +ΦS00Φ
′]} (6.64)

+ n ln |R| + tr
{
R−1

n∑

t=1
[(yt − At x

n
t )(yt − At x

n
t )′ + AtP

n
t A′t ]

}
,

where

S11 =

n∑

t=1
(xnt xnt

′
+ Pn

t ), (6.65)

S10 =

n∑

t=1
(xnt xnt−1

′ + Pn
t,t−1), (6.66)

and

S00 =

n∑

t=1
(xnt−1xnt−1

′ + Pn
t−1). (6.67)
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In (6.64)–(6.67), the smoothers are calculated under the current value of the param-
eters Θ(j−1); for simplicity, we have not explicitly displayed this fact. In obtaining
Q(· | ·), we made repeated use of fact E(xsxt ′ | y1:n) = xns xnt

′ + Pn
s,t ; it is important

to note that one does not simply replace xt with xnt in the likelihood.
Minimizing (6.64) with respect to the parameters, at iteration j, constitutes the

maximization step, and is analogous to the usual multivariate regression approach,
which yields the updated estimates

Φ(j) = S10S−1
00 , (6.68)

Q(j) = n−1
(
S11 − S10S−1

00 S′10

)
, (6.69)

and

R(j) = n−1
n∑

t=1
[(yt − At x

n
t )(yt − At x

n
t )′ + AtP

n
t A′t ]. (6.70)

The updates for the initial mean and variance–covariance matrix are

μ
(j)
0 = xn0 and Σ

(j)
0 = Pn

0 (6.71)

obtained from minimizing (6.64).
The overall procedure can be regarded as simply alternating between the Kalman

filtering and smoothing recursions and the multivariate normal maximum likelihood
estimators, as given by (6.68)–(6.71). Convergence results for the EM algorithm
under general conditions can be found in Wu [212]. A thorough discussion of the
convergence of the EM algorithm and related methods may be found in Douc et
al. [53, Appendix D]. We summarize the iterative procedure as follows.

(i) Initialize by choosing starting values for the parameters in {μ0, Σ0,Φ,Q, R}, say
Θ(0), and compute the incomplete-data likelihood, − ln LY (Θ(0)); see (6.60).

On iteration j, ( j = 1, 2, . . .):
(ii) Perform the E-Step: Using the parametersΘ(j−1), use Properties 6.1, 6.2, and 6.3

to obtain the smoothed values xnt , Pn
t and Pn

t,t−1, t = 1, . . . , n, and calculate
S11, S10, S00 given in (6.65)–(6.67).

(iii) Perform the M-Step: Update the estimates in {μ0, Σ0,Φ,Q, R} using (6.68)–
(6.71), obtaining Θ(j).

(iv) Compute the incomplete-data likelihood, − ln LY (Θ(j)).
(v) Repeat Steps (ii)–(iv) to convergence.

Example 6.8 EM Algorithm for Example 6.3
Using the same data generated in Example 6.6, we performed an EM algorithm
estimation of the parameters φ, σ2

w and σ2
v as well as the initial parameters μ0

and Σ0 using the script EM0. The convergence rate of the EM algorithm compared
with the Newton–Raphson procedure is slow. In this example, with convergence
being claimed when the relative change in the log likelihood is less than .00001;
convergence was attained after 59 iterations. The final estimates, along with their
standard errors are listed below and the results are close those in Example 6.6.
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estimate SE
phi 0.810 0.078
sigw 0.853 0.164
sigv 0.864 0.136
mu0 -1.981 NA
Sigma0 0.022 NA

Evaluation of the standard errors used a call to fdHess in the nlme R package to
evaluate the Hessian at the final estimates. The nlme package must be loaded prior
to the call to fdHess.
library(nlme) # loads package nlme
# Generate data (same as Example 6.6)
set.seed(999); num = 100
x = arima.sim(n=num+1, list(ar = .8), sd=1)
y = ts(x[-1] + rnorm(num,0,1))
# Initial Estimates (same as Example 6.6)
u = ts.intersect(y, lag(y,-1), lag(y,-2))
varu = var(u); coru = cor(u)
phi = coru[1,3]/coru[1,2]
q = (1-phi^2)*varu[1,2]/phi
r = varu[1,1] - q/(1-phi^2)
# EM procedure - output not shown
(em = EM0(num, y, A=1, mu0=0, Sigma0=2.8, Phi=phi, cQ=sqrt(q), cR=sqrt(r),

max.iter=75, tol=.00001))
# Standard Errors (this uses nlme)
phi = em$Phi; cq = sqrt(em$Q); cr = sqrt(em$R)
mu0 = em$mu0; Sigma0 = em$Sigma0
para = c(phi, cq, cr)
Linn = function(para){ # to evaluate likelihood at estimates

kf = Kfilter0(num, y, 1, mu0, Sigma0, para[1], para[2], para[3])
return(kf$like) }
emhess = fdHess(para, function(para) Linn(para))
SE = sqrt(diag(solve(emhess$Hessian)))
# Display Summary of Estimation
estimate = c(para, em$mu0, em$Sigma0); SE = c(SE, NA, NA)
u = cbind(estimate, SE)
rownames(u) = c('phi','sigw','sigv','mu0','Sigma0'); u

Steady State and Asymptotic Distribution of the MLEs

The asymptotic distribution of estimators of the model parameters, say, Θ̂n, is stud-
ied in very general terms in Douc, Moulines, and Stoffer [53, Chapter 13]. Earlier
treatments can be found in Caines [38, Chapters 7 and 8], and in Hannan and Deistler
[88, Chapter 4]. In these references, the consistency and asymptotic normality of
the estimators are established under general conditions. An essential condition is the
stability of the filter. Stability of the filter assures that, for large t, the innovations εt
are basically copies of each other with a stable covariance matrix Σ that does not
depend on t and that, asymptotically, the innovations contain all of the information
about the unknown parameters. Although it is not necessary, for simplicity, we shall
assume here that At ≡ A for all t. Details on departures from this assumption can be
found in Jazwinski [105, Sections 7.6 and 7.8]. We also drop the inputs and use the
model in the form of (6.1) and (6.2).
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For stability of the filter, we assume the eigenvalues of Φ are less than one in
absolute value; this assumption can be weakened (for example, see Harvey [93],
Section 4.3), but we retain it for simplicity. This assumption is enough to ensure
the stability of the filter in that, as t → ∞, the filter error covariance matrix Pt

t

converges to P, the steady-state error covariance matrix, and the gain matrix Kt

converges to K , the steady-state gain matrix. From these facts, it follows that the
innovation covariance matrix Σt converges to Σ , the steady-state covariance matrix
of the stable innovations; details can be found in Jazwinski [105, Sections 7.6 and 7.8]
and Anderson and Moore [5, Section 4.4]. In particular, the steady-state filter error
covariance matrix, P, satisfies the Riccati equation:

P =Φ[P − PA′(APA′ + R)−1AP]Φ′ + Q;

the steady-state gain matrix satisfies K = PA′[APA′ + R]−1. In Example 6.5 (see
Table 6.1), for all practical purposes, stability was reached by the third observation.

When the process is in steady-state, we may consider xt
t+1 as the steady-state

predictor and interpret it as xt
t+1 = E(xt+1

/
/ yt, yt−1, . . .). As can be seen from (6.18)

and (6.20), the steady-state predictor can be written as

xtt+1 = Φ[I − K A]xt−1
t +ΦKyt = Φxt−1

t +ΦKεt, (6.72)

where εt is the steady-state innovation process given by

εt = yt − E(yt
/
/ yt−1, yt−2, . . .).

In the Gaussian case, εt ∼ iid N(0, Σ), where Σ = APA′ + R. In steady-state, the
observations can be written as

yt = Axt−1
t + εt . (6.73)

Together, (6.72) and (6.73) make up the steady-state innovations form of the dynamic
linear model.

In the following property, we assume the Gaussian state space model (6.1) and
(6.2), is time invariant, i.e., At ≡ A, the eigenvalues of Φ are within the unit circle
and the model has the smallest possible dimension (see Hannan and Deistler [88,
Section 2.3 for details]). We denote the true parameters by Θ0, and we assume the
dimension ofΘ0 is the dimension of the parameter space. Although it is not necessary
to assume wt and vt are Gaussian, certain additional conditions would have to apply
and adjustments to the asymptotic covariance matrix would have to be made; see
Douc et al. [53, Chapter 13].

Property 6.4 Asymptotic Distribution of the Estimators
Under general conditions, let Θ̂n be the estimator of Θ0 obtained by maximizing

the innovations likelihood, LY (Θ), as given in (6.60). Then, as n →∞,
√

n
(
Θ̂n −Θ0

)
d→ N

[
0, I(Θ0)−1] ,

where I(Θ) is the asymptotic information matrix given by

I(Θ) = lim
n→∞ n−1E

[−∂2 ln LY (Θ)/∂Θ ∂Θ′] .
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For a Newton procedure, the Hessian matrix (as described in Example 6.6) at the
time of convergence can be used as an estimate of nI(Θ0) to obtain estimates of the
standard errors. In the case of the EM algorithm, no derivatives are calculated, but we
may include a numerical evaluation of the Hessian matrix at the time of convergence
to obtain estimated standard errors. Also, extensions of the EM algorithm exist, such
as the SEM algorithm (Meng and Rubin [140]), that include a procedure for the
estimation of standard errors. In the examples of this section, the estimated standard
errors were obtained from the numerical Hessian matrix of − ln LY (Θ̂), where Θ̂ is
the vector of parameters estimates at the time of convergence.

6.4 Missing Data Modifications

An attractive feature available within the state space framework is its ability to treat
time series that have been observed irregularly over time. For example, Jones [107]
used the state-space representation to fit ARMA models to series with missing ob-
servations, and Palma and Chan [146] used the model for estimation and forecasting
of ARFIMA series with missing observations. Shumway and Stoffer [181] described
the modifications necessary to fit multivariate state-space models via the EM algo-
rithm when data are missing. We will discuss the procedure in detail in this section.
Throughout this section, for notational simplicity, we assume the model is of the
form (6.1) and (6.2).

Suppose, at a given time t, we define the partition of the q × 1 observation vector
into two parts, y(1)t , the q1t × 1 component of observed values, and y

(2)
t , the q2t × 1

component of unobserved values, where q1t + q2t = q. Then, write the partitioned
observation equation (

y
(1)
t

y
(2)
t

)

=

[
A(1)t

A(2)t

]

xt +

(
v
(1)
t

v
(2)
t

)

, (6.74)

where A(1)t and A(2)t are, respectively, the q1t × p and q2t × p partitioned observation
matrices, and

cov

(
v
(1)
t

v
(2)
t

)

=

[
R11t R12t

R21t R22t

]

(6.75)

denotes the covariance matrix of the measurement errors between the observed and
unobserved parts.

In the missing data case where y(2)t is not observed, we may modify the observation
equation in the DLM, (6.1)–(6.2), so that the model is

xt = Φxt−1 + wt and y
(1)
t = A(1)t xt + v

(1)
t , (6.76)

where now, the observation equation is q1t -dimensional at time t. In this case, it
follows directly from Corollary 6.1 that the filter equations hold with the appropriate
notational substitutions. If there are no observations at time t, then set the gain matrix,
Kt , to the p × q zero matrix in Property 6.1, in which case xtt = xt−1

t and Pt
t = Pt−1

t .
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Rather than deal with varying observational dimensions, it is computationally
easier to modify the model by zeroing out certain components and retaining a q-
dimensional observation equation throughout. In particular, Corollary 6.1 holds for
the missing data case if, at update t, we substitute

y(t) =
(
y
(1)
t

0

)

, A(t) =
[
A(1)t

0

]

, R(t) =
[
R11t 0
0 I22t

]

, (6.77)

for yt , At , and R, respectively, in (6.20)–(6.22), where I22t is the q2t × q2t identity
matrix. With the substitutions (6.77), the innovation values (6.23) and (6.24) will now
be of the form

ε(t) =
(
ε
(1)
t

0

)

, Σ(t) =
[

A(1)t Pt−1
t A(1)

′
t + R11t 0

0 I22t

]

, (6.78)

so that the innovations form of the likelihood given in (6.60) is correct for this
case. Hence, with the substitutions in (6.77), maximum likelihood estimation via the
innovations likelihood can proceed as in the complete data case.

Once the missing data filtered values have been obtained, Stoffer [190] also
established the smoother values can be processed using Property 6.2 and Property 6.3
with the values obtained from the missing data-filtered values. In the missing data
case, the state estimators are denoted

x(s)t = E
(
xt

/
/ y(1)1 , . . . , y

(1)
s

)
, (6.79)

with error variance–covariance matrix

P(s)t = E
{(

xt − x(s)t

) (
xt − x(s)t

) ′}
. (6.80)

The missing data lag-one smoother covariances will be denoted by P(n)
t,t−1.

The maximum likelihood estimators in the EM procedure require further modifi-
cations for the case of missing data. Now, we consider

y
(1)
1:n = {y(1)1 , . . . , y

(1)
n } (6.81)

as the incomplete data, and {x0:n, y1:n}, as defined in (6.61), as the complete data. In
this case, the complete data likelihood, (6.61), or equivalently (6.62), is the same, but
to implement the E-step, at iteration j, we must calculate

Q
(
Θ

/
/ Θ(j−1)) = E

{−2 ln LX,Y (Θ)
/
/ y(1)1:n, Θ

(j−1)}

= E∗
{
ln |Σ0 | + tr Σ−1

0 (x0 − μ0)(x0 − μ0)′
/
/ y(1)1:n

}

+ E∗
{
n ln |Q | +

n∑

t=1
tr

[
Q−1(xt −Φxt−1)(xt −Φxt−1)′

] /
/ y(1)1:n

}

+ E∗
{
n ln |R| +

n∑

t=1
tr

[
R−1(yt − At xt )(yt − At xt )′

] /
/ y(1)1:n

}
,

(6.82)
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where E∗ denotes the conditional expectation under Θ(j−1) and tr denotes trace.
The first two terms in (6.82) will be like the first two terms of (6.64) with the
smoothers xnt , Pn

t , and Pn
t,t−1 replaced by their missing data counterparts, x(n)t , P(n)t ,

and P(n)
t,t−1. In the third term of (6.82), we must additionally evaluate E∗(y(2)t

/
/ y(1)1:n)

and E∗(y(2)t y
(2)′
t

/
/ y(1)1:n). In Stoffer [190], it is shown that

E∗
{
(yt − At xt )(yt − At xt )′

/
/ y(1)1:n

}

=

(
y
(1)
t − A(1)t x(n)t

R∗21tR−1
∗11t (y(1)t − A(1)t x(n)t )

) (
y
(1)
t − A(1)t x(n)t

R∗21tR−1
∗11t(y(1)t − A(1)t x(n)t )

) ′

+

(
A(1)t

R∗21tR−1
∗11t A(1)t

)

P(n)t

(
A(1)t

R∗21tR−1
∗11t A(1)t

) ′

+

(
0 0
0 R∗22t − R∗21tR−1

∗11tR∗12t

)

.

(6.83)

In (6.83), the values of R∗ikt , for i, k = 1, 2, are the current values specified by Θ(j−1).
In addition, x(n)t and P(n)t are the values obtained by running the smoother under the
current parameter estimates specified by Θ(j−1).

In the case in which observed and unobserved components have uncorrelated
errors, that is, R∗12t is the zero matrix, (6.83) can be simplified to

E∗
{(yt − At xt )(yt − At xt )′

/
/ y(1)1:n

}

=
(
y(t) − A(t)x

(n)
t

) (
y(t) − A(t)x

(n)
t

) ′
+ A(t)P

(n)
t A′(t) +

(
0 0
0 R∗22t

)

, (6.84)

where y(t) and A(t) are defined in (6.77).
In this simplified case, the missing data M-step looks like the M-step given in

(6.65)–(6.71). That is, with

S(11) =
n∑

t=1
(x(n)t x(n)t

′
+ P(n)t ), (6.85)

S(10) =
n∑

t=1
(x(n)t x(n)

t−1
′
+ P(n)

t,t−1), (6.86)

and

S(00) =
n∑

t=1
(x(n)

t−1x(n)
t−1

′
+ P(n)

t−1), (6.87)
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where the smoothers are calculated under the present value of the parameters Θ(j−1)
using the missing data modifications, at iteration j, the maximization step is

Φ(j) = S(10)S−1
(00), (6.88)

Q(j) = n−1
(
S(11) − S(10)S−1

(00)S
′
(10)

)
, (6.89)

and

R(j) = n−1
n∑

t=1
Dt

{(
y(t) − A(t)x

(n)
t

) (
y(t) − A(t)x

(n)
t

) ′

+ A(t)P
(n)
t A′(t) +

(
0 0
0 R(j−1)

22t

)}

D′
t, (6.90)

where Dt is a permutation matrix that reorders the variables at time t in their original
order and y(t) and A(t) are defined in (6.77). For example, suppose q = 3 and at time
t, yt2 is missing. Then,

y(t) =
�
�

�

yt1
yt3
0

�
�

�

, A(t) =
⎡
⎢
⎢
⎢
⎢
⎣

At1
At3
0′

⎤
⎥
⎥
⎥
⎥
⎦

, and Dt =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 1
0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

,

where Ati is the ith row of At and 0′ is a 1× p vector of zeros. In (6.90), only R11t gets
updated, and R22t at iteration j is simply set to its value from the previous iteration,
j − 1. Of course, if we cannot assume R12t = 0, (6.90) must be changed accordingly
using (6.83), but (6.88) and (6.89) remain the same. As before, the parameter estimates
for the initial state are updated as

μ
(j)
0 = x(n)0 and Σ

(j)
0 = P(n)0 . (6.91)

Example 6.9 Longitudinal Biomedical Data
We consider the biomedical data in Example 6.1, which have portions of the three-
dimensional vector missing after the 40th day. The maximum likelihood procedure
yielded the estimators (code at the end of the example):
$Phi

[,1] [,2] [,3]
[1,] 0.984 -0.041 0.009
[2,] 0.061 0.921 0.007
[3,] -1.495 2.289 0.794

$Q
[,1] [,2] [,3]

[1,] 0.014 -0.002 0.012
[2,] -0.002 0.003 0.018
[3,] 0.012 0.018 3.494

$R
[,1] [,2] [,3]

[1,] 0.007 0.000 0.000
[2,] 0.000 0.017 0.000
[3,] 0.000 0.000 1.147
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Fig. 6.6. Smoothed values for various components in the blood parameter tracking problem.
The actual data are shown as points, the smoothed values are shown as solid lines, and ±2
standard error bounds are shown as a gray swatch; tick marks indicate days with no observation

for the transition, state error covariance and observation error covariance matrices,
respectively. The coupling between the first and second series is relatively weak,
whereas the third series HCT is strongly related to the first two; that is,

x̂t3 = −1.495xt−1,1 + 2.289xt−1,2 + .794xt−1,3.

Hence, the HCT is negatively correlated with white blood count (WBC) and pos-
itively correlated with platelet count (PLT). Byproducts of the procedure are es-
timated trajectories for all three longitudinal series and their respective prediction
intervals. In particular, Figure 6.6 shows the data as points, the estimated smoothed
values x̂(n)t as solid lines, and error bounds, ±2

√
P̂(n)t as a gray swatch.

In the following R code we use the script EM1. In this case the observation
matrices At are either the identity or zero matrix because all the series are either
observed or not observed.
y = cbind(WBC, PLT, HCT); num = nrow(y)
# make array of obs matrices
A = array(0, dim=c(3,3,num))
for(k in 1:num) { if (y[k,1] > 0) A[,,k]= diag(1,3) }
# Initial values
mu0 = matrix(0, 3, 1); Sigma0 = diag(c(.1, .1, 1), 3)
Phi = diag(1, 3); cQ = diag(c(.1, .1, 1), 3); cR = diag(c(.1, .1, 1), 3)
# EM procedure - some output previously shown
(em = EM1(num, y, A, mu0, Sigma0, Phi, cQ, cR, 100, .001))
# Graph smoother
ks = Ksmooth1(num, y, A, em$mu0, em$Sigma0, em$Phi, 0, 0, chol(em$Q),

chol(em$R), 0)
y1s = ks$xs[1,,]; y2s = ks$xs[2,,]; y3s = ks$xs[3,,]
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p1 = 2*sqrt(ks$Ps[1,1,]); p2 = 2*sqrt(ks$Ps[2,2,]); p3 = 2*sqrt(ks$Ps[3,3,])
par(mfrow=c(3,1))
plot(WBC, type='p', pch=19, ylim=c(1,5), xlab='day')
lines(y1s); lines(y1s+p1, lty=2, col=4); lines(y1s-p1, lty=2, col=4)
plot(PLT, type='p', ylim=c(3,6), pch=19, xlab='day')
lines(y2s); lines(y2s+p2, lty=2, col=4); lines(y2s-p2, lty=2, col=4)
plot(HCT, type='p', pch=19, ylim=c(20,40), xlab='day')
lines(y3s); lines(y3s+p3, lty=2, col=4); lines(y3s-p3, lty=2, col=4)

6.5 Structural Models: Signal Extraction and Forecasting

Structural models are component models in which each component may be thought
of as explaining a specific type of behavior. The models are often some version of
the classical time series decomposition of data into trend, seasonal, and irregular
components. Consequently, each component has a direct interpretation as to the
nature of the variation in the data. Furthermore, the model fits into the state space
framework quite easily. To illustrate these ideas, we consider an example that shows
how to fit a sum of trend, seasonal, and irregular components to the quarterly earnings
data that we have considered before.

Example 6.10 Johnson & Johnson Quarterly Earnings
Here, we focus on the quarterly earnings series from the U.S. company Johnson &
Johnson as displayed in Fig. 1.1. The series is highly nonstationary, and there is both
a trend signal that is gradually increasing over time and a seasonal component that
cycles every four quarters or once per year. The seasonal component is getting larger
over time as well. Transforming into logarithms or even taking the nth root does not
seem to make the series trend stationary, however, such a transformation does help
with stabilizing the variance over time; this is explored in Problem 6.13. Suppose,
for now, we consider the series to be the sum of a trend component, a seasonal
component, and a white noise. That is, let the observed series be expressed as

yt = Tt + St + vt, (6.92)

where Tt is trend and St is the seasonal component. Suppose we allow the trend to
increase exponentially; that is,

Tt = φTt−1 + wt1, (6.93)

where the coefficient φ > 1 characterizes the increase. Let the seasonal component
be modeled as

St + St−1 + St−2 + St−3 = wt2, (6.94)

which corresponds to assuming the component is expected to sum to zero over a
complete period or four quarters. To express this model in state-space form, let
xt = (Tt, St, St−1, St−2)′ be the state vector so the observation equation (6.2) can be
written as
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Fig. 6.7. Estimated trend component, Tn
t , and seasonal component, Snt , of the Johnson and

Johnson quarterly earnings series. Gray areas are three root MSE bounds

yt =
(
1 1 0 0

) ��
�
�

�

Tt
St

St−1
St−2

�
�
�
�

�

+ vt,

with the state equation written as

�
�
�
�

�

Tt
St

St−1
St−2

�
�
�
�

�

=

�
�
�
�

�

φ 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0
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�
�
�

�

�
�
�
�

�

Tt−1
St−1
St−2
St−3

�
�
�
�

�

+

�
�
�
�

�

wt1
wt2
0
0

�
�
�
�

�

,

where R = r11 and

Q =

�
�
�
�

�

q11 0 0 0
0 q22 0 0
0 0 0 0
0 0 0 0

�
�
�
�

�

.

The model reduces to state-space form, (6.1) and (6.2), with p = 4 and q = 1.
The parameters to be estimated are r11, the noise variance in the measurement
equations, q11 and q22, themodel variances corresponding to the trend and seasonal
components and φ, the transition parameter that models the growth rate. Growth
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Fig. 6.8. A 12-quarter forecast for the Johnson & Johnson quarterly earnings series. The
forecasts are shown as a continuation of the data (points connected by a solid line). The gray
area represents two root MSPE bounds

is about 3% per year, and we began with φ = 1.03. The initial mean was fixed
at μ0 = (.7, 0, 0, 0)′, with uncertainty modeled by the diagonal covariance matrix
with Σ0ii = .04, for i = 1, . . . , 4. Initial state covariance values were taken as
q11 = .01, q22 = .01. The measurement error covariance was started at r11 = .25.

After about 20 iterations of a Newton–Raphson, the transition parameter esti-
mate was φ̂ = 1.035, corresponding to exponential growth with inflation at about
3.5% per year. The measurement uncertainty was small at

√
r̂11 = .0005, compared

with the model uncertainties
√

q̂11 = .1397 and
√

q̂22 = .2209. Figure 6.7 shows
the smoothed trend estimate and the exponentially increasing seasonal components.
We may also consider forecasting the Johnson & Johnson series, and the result of
a 12-quarter forecast is shown in Figure 6.8 as basically an extension of the latter
part of the observed data.

This example uses the Kfilter0 and Ksmooth0 scripts as follows.
num = length(jj)
A = cbind(1,1,0,0)
# Function to Calculate Likelihood
Linn =function(para){
Phi = diag(0,4); Phi[1,1] = para[1]
Phi[2,]=c(0,-1,-1,-1); Phi[3,]=c(0,1,0,0); Phi[4,]=c(0,0,1,0)
cQ1 = para[2]; cQ2 = para[3] # sqrt q11 and q22
cQ = diag(0,4); cQ[1,1]=cQ1; cQ[2,2]=cQ2
cR = para[4] # sqrt r11
kf = Kfilter0(num, jj, A, mu0, Sigma0, Phi, cQ, cR)
return(kf$like) }

# Initial Parameters
mu0 = c(.7,0,0,0); Sigma0 = diag(.04,4)
init.par = c(1.03,.1,.1,.5) # Phi[1,1], the 2 cQs and cR
# Estimation and Results
est = optim(init.par, Linn,NULL, method='BFGS', hessian=TRUE,

control=list(trace=1,REPORT=1))
SE = sqrt(diag(solve(est$hessian)))
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u = cbind(estimate=est$par, SE)
rownames(u)=c('Phi11','sigw1','sigw2','sigv'); u
# Smooth
Phi = diag(0,4); Phi[1,1] = est$par[1]
Phi[2,]=c(0,-1,-1,-1); Phi[3,]=c(0,1,0,0); Phi[4,]=c(0,0,1,0)
cQ1 = est$par[2]; cQ2 = est$par[3]
cQ = diag(1,4); cQ[1,1]=cQ1; cQ[2,2]=cQ2
cR = est$par[4]
ks = Ksmooth0(num,jj,A,mu0,Sigma0,Phi,cQ,cR)
# Plots
Tsm = ts(ks$xs[1,,], start=1960, freq=4)
Ssm = ts(ks$xs[2,,], start=1960, freq=4)
p1 = 3*sqrt(ks$Ps[1,1,]); p2 = 3*sqrt(ks$Ps[2,2,])
par(mfrow=c(2,1))
plot(Tsm, main='Trend Component', ylab='Trend')
xx = c(time(jj), rev(time(jj)))
yy = c(Tsm-p1, rev(Tsm+p1))

polygon(xx, yy, border=NA, col=gray(.5, alpha = .3))
plot(jj, main='Data & Trend+Season', ylab='J&J QE/Share', ylim=c(-.5,17))
xx = c(time(jj), rev(time(jj)) )
yy = c((Tsm+Ssm)-(p1+p2), rev((Tsm+Ssm)+(p1+p2)) )

polygon(xx, yy, border=NA, col=gray(.5, alpha = .3))
# Forecast
n.ahead = 12;
y = ts(append(jj, rep(0,n.ahead)), start=1960, freq=4)
rmspe = rep(0,n.ahead); x00 = ks$xf[,,num]; P00 = ks$Pf[,,num]
Q = t(cQ)%*%cQ; R = t(cR)%*%(cR)
for (m in 1:n.ahead){
xp = Phi%*%x00; Pp = Phi%*%P00%*%t(Phi)+Q
sig = A%*%Pp%*%t(A)+R; K = Pp%*%t(A)%*%(1/sig)
x00 = xp; P00 = Pp-K%*%A%*%Pp
y[num+m] = A%*%xp; rmspe[m] = sqrt(sig) }

plot(y, type='o', main='', ylab='J&J QE/Share', ylim=c(5,30),
xlim=c(1975,1984))

upp = ts(y[(num+1):(num+n.ahead)]+2*rmspe, start=1981, freq=4)
low = ts(y[(num+1):(num+n.ahead)]-2*rmspe, start=1981, freq=4)
xx = c(time(low), rev(time(upp)))
yy = c(low, rev(upp))

polygon(xx, yy, border=8, col=gray(.5, alpha = .3))
abline(v=1981, lty=3)

Note that the Cholesky decomposition of Q does not exist here, however, the
diagonal form allows us to use standard deviations for the first two diagonal elements
of cQ. This technicality can be avoided using a form of the model that we present in
the next section.

6.6 State-Space Models with Correlated Errors

Sometimes it is advantageous to write the state-space model in a slightly different
way, as is done by numerous authors; for example, Anderson and Moore [5] and
Hannan and Deistler [88]. Here, we write the state-space model as
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xt+1 =Φxt +Υut+1 +Θwt t = 0, 1, . . . , n (6.95)

yt = At xt + Γut + vt t = 1, . . . , n (6.96)

where, in the state equation, x0 ∼Np(μ0, Σ0),Φ is p× p, andΥ is p×r, Θ is p×m and
wt ∼ iid Nm(0,Q). In the observation equation, At is q× p and Γ is q× r, and vt ∼ iid
Nq(0, R).In this model, while wt and vt are still white noise series (both independent
of x0), we also allow the state noise and observation noise to be correlated at time t;
that is,

cov(ws, vt ) = S δts , (6.97)

where δts is Kronecker’s delta; note that S is an m × q matrix. The major difference
between this form of the model and the one specified by (6.3)–(6.4) is that this model
starts the state noise process at t = 0 in order to ease the notation related to the
concurrent covariance between wt and vt . Also, the inclusion of the matrix Θ allows
us to avoid using a singular state noise process as was done in Example 6.10.

To obtain the innovations, εt = yt − At xt−1
t − Γut , and the innovation variance

Σt = AtPt−1
t A′t + R, in this case, we need the one-step-ahead state predictions. Of

course, the filtered estimates will also be of interest, and they will be needed for
smoothing. Property 6.2 (the smoother) as displayed in Sect. 6.2 still holds. The
following property generates the predictor xt

t+1 from the past predictor xt−1
t when the

noise terms are correlated and exhibits the filter update.

Property 6.5 The Kalman Filter with Correlated Noise
For the state-space model specified in (6.95) and (6.96), with initial conditions x0

1
and P0

1 , for t = 1, . . . , n,

xtt+1 = Φxt−1
t +Υut+1 + Ktεt (6.98)

Pt
t+1 = ΦPt−1

t Φ′ + ΘQΘ′ − KtΣtK
′
t (6.99)

where εt = yt − At xt−1
t − Γut and the gain matrix is given by

Kt = [ΦPt−1
t A′t +ΘS][AtP

t−1
t A′t + R]−1. (6.100)

The filter values are given by

xtt = xt−1
t + Pt−1

t A′t
[
AtP

t−1
t A′t + R

]−1
εt, (6.101)

Pt
t = Pt−1

t − Pt−1
t A′t+1

[
AtP

t−1
t A′t + R

]−1
AtP

t−1
t . (6.102)

The derivation of Property 6.5 is similar to the derivation of the Kalman filter
in Property 6.1 (Problem 6.17); we note that the gain matrix Kt differs in the two
properties. The filter values, (6.101)–(6.102), are symbolically identical to (6.18)
and (6.19). To initialize the filter, we note that

x0
1 = E(x1) = Φμ0 +Υu1, and P0

1 = var(x1) = ΦΣ0Φ
′ +ΘQΘ′.
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In the next two subsections, we show how to use the model (6.95)–(6.96) for fitting
ARMAX models and for fitting (multivariate) regression models with autocorrelated
errors. To put it succinctly, for ARMAX models, the inputs enter in the state equation
and for regression with autocorrelated errors, the inputs enter in the observation
equation. It is, of course, possible to combine the two models and we give an example
of this at the end of the section.

6.6.1 ARMAX Models

Consider a k-dimensional ARMAX model given by

yt = Υut +
p∑

j=1
Φj yt−j +

q∑

k=1
Θkvt−k + vt . (6.103)

The observations yt are a k-dimensional vector process, the Φs and Θs are k × k
matrices,Υ is k × r, ut is the r × 1 input, and vt is a k × 1 white noise process; in fact,
(6.103) and (5.91) are identical models, but here, we have written the observations as
yt . We now have the following property.

Property 6.6 A State-Space Form of ARMAX
For p ≥ q, let

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1 I 0 · · · 0
Φ2 0 I · · · 0
...

...
...
. . .

...

Φp−1 0 0 · · · I

Φp 0 0 · · · 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ1 +Φ1
...

Θq +Φq

Φq+1
...

Φp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Υ
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.104)

where F is kp× kp, G is kp× k, and H is kp×r. Then, the state-space model given by

xt+1 = Fxt + Hut+1 + Gvt, (6.105)
yt = Axt + vt, (6.106)

where A =
[
I, 0, · · · , 0] is k × pk and I is the k × k identity matrix, implies the

ARMAX model (6.103). If p < q, set Φp+1 = · · · = Φq = 0, in which case p = q and
(6.105)–(6.106) still apply. Note that the state process is kp-dimensional, whereas
the observations are k-dimensional.

We do not prove Property 6.6 directly, but the following example should suggest
how to establish the general result.
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Example 6.11 Univariate ARMAX(1, 1) in State-Space Form
Consider the univariate ARMAX(1, 1) model

yt = αt + φyt−1 + θvt−1 + vt,

where αt = Υut to ease the notation. For a simple example, if Υ = (β0, β1)
and ut = (1, t)′, the model for yt would be ARMA(1,1) with linear trend, yt =

β0 + β1t + φyt−1 + θvt−1 + vt . Using Property 6.6, we can write the model as

xt+1 = φxt + αt+1 + (θ + φ)vt, (6.107)

and
yt = xt + vt . (6.108)

In this case, (6.107) is the state equation with wt ≡ vt and (6.108) is the observation
equation. Consequently, cov(wt, vt ) = var(vt ) = R, and cov(wt, vs) = 0 when s � t,
so Property 6.5 would apply. To verify (6.107) and (6.108) specify an ARMAX(1, 1)
model, we have

yt = xt + vt from (6.108)
= φxt−1 + αt + (θ + φ)vt−1 + vt from (6.107)
= αt + φ(xt−1 + vt−1) + θvt−1 + vt rearrange terms
= αt + φyt−1 + θvt−1 + vt, from (6.108).

Together, Property 6.5 and Property 6.6 can be used to accomplish maximum
likelihood estimation as described in Sect. 6.3 for ARMAX models. The ARMAX
model is only a special case of the model (6.95)–(6.96), which is quite rich, as will
be discovered in the next subsection.

6.6.2 Multivariate Regression with Autocorrelated Errors

In regression with autocorrelated errors, we are interested in fitting the regression
model

yt = Γut + εt (6.109)

to a k × 1 vector process, yt , with r regressors ut = (ut1, . . . , utr )′ where εt is vector
ARMA(p, q) and Γ is a k × r matrix of regression parameters. We note that the
regressors do not have to vary with time (e.g., ut1 ≡ 1 includes a constant in the
regression) and that the case k = 1 was treated in Sect. 3.8.

To put the model in state-space form, we simply notice that εt = yt − Γut is a
k-dimensional ARMA(p, q) process. Thus, if we set H = 0 in (6.105), and include
Γut in (6.106), we obtain

xt+1 = Fxt + Gvt, (6.110)
yt = Γut + Axt + vt, (6.111)
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where the model matrices A, F , and G are defined in Property 6.6. The fact
that (6.110)–(6.111) is multivariate regression with autocorrelated errors follows di-
rectly from Property 6.6 by noticing that together, xt+1 = Fxt +Gvt and εt = Axt + vt
imply εt = yt − Γut is vector ARMA(p, q).

As in the case of ARMAX models, regression with autocorrelated errors is a
special case of the state-space model, and the results of Property 6.5 can be used to
obtain the innovations form of the likelihood for parameter estimation.

Example 6.12 Mortality, Temperature and Pollution
This example combines both techniques of Section 6.6.1 and Section 6.6.2. We will
fit an ARMAX model to the detrended mortality series cmort. The detrending part
of the example constitutes the regression with autocorrelated errors.

Here, we let Mt denote the weekly cardiovascular mortality series, Tt as the
corresponding temperature series tempr, and Pt as the corresponding particulate
series. A preliminary analysis suggests the following considerations (no output is
shown):
• An AR(2) model fits well to detrended Mt :

fit1 = sarima(cmort, 2,0,0, xreg=time(cmort))

• The CCF between the mortality residuals, the temperature series and the par-
ticulates series, shows a strong correlation with temperature lagged one week
(Tt−1), concurrent particulate level (Pt ) and the particulate level about one
month prior (Pt−4).
acf(cbind(dmort <- resid(fit1$fit), tempr, part))

lag2.plot(tempr, dmort, 8)

lag2.plot(part, dmort, 8)

From these results, we decided to fit the ARMAX model

M̃t = φ1M̃t−1 + φ2M̃t−2 + β1Tt−1 + β2Pt + β3Pt−4 + vt (6.112)

to the detrended mortality series, M̃t = Mt − (α + β4t), where vt ∼ iid N(0, σ2
v ). To

write the model in state-space form using Property 6.6, let

xt+1 = Φxt +Υut+1 +Θvt t = 0, 1, . . . , n

yt = α + Axt + Γut + vt t = 1, . . . , n

with

Φ =

[
φ1 1
φ2 0

]

Υ =

[
β1 β2 β3 0 0
0 0 0 0 0

]

Θ =

[
φ1
φ2

]

A = [ 1 0 ], Γ = [ 0 0 0 β4 α], ut = (Tt−1, Pt, Pt−4, t, 1)′, yt = Mt . Note that the
state process is bivariate and the observation process is univariate.

Some additional data analysis notes are: (1) Time is centered as t− t̄. In this case,
α should be close to the average value of Mt . (2) Pt and Pt−4 are highly correlated,
so orthogonalizing these two inputs would be advantageous (although we did not
do it here), perhaps by partialling out Pt−4 from Pt using simple linear regression.
(3) Tt and T2

t , as in Chap. 2, are not needed in the model when Tt−1 is included. (4)
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Initial values of the parameters are taken from a preliminary investigation that we
discuss now.

A quick and dirty method for fitting the model is to first detrend cmort and then
fit (6.112) using lm on the detrended series. Rather than use lm in the second phase,
we use sarima because it also provides a thorough analysis of the residuals. The
code for this run is quite simple; the residual analysis (not displayed) supports the
model.
trend = time(cmort) - mean(time(cmort)) # center time
dcmort = resid(fit2 <- lm(cmort~trend, na.action=NULL)); fit2

(Intercept) trend
88.699 -1.625

u = ts.intersect(dM=dcmort, dM1=lag(dcmort,-1), dM2=lag(dcmort,-2),
T1=lag(tempr,-1), P=part, P4=lag(part,-4))

# lm(dM~., data=u, na.action=NULL) # and then anaylze residuals ... or
sarima(u[,1], 0,0,0, xreg=u[,2:6]) # get residual analysis as a byproduct

Coefficients:
intercept dM1 dM2 T1 P P4

5.9884 0.3164 0.2989 -0.1826 0.1107 0.0495
s.e. 2.6401 0.0370 0.0395 0.0309 0.0177 0.0195
sigma^2 estimated as 25.42

We can now use Newton–Raphson and the Kalman filter to fit all the parameters
simultaneously because the quick method has given us reasonable starting values.
The results are close to the quick and dirty method:

estimate SE

phi1 0.315 0.037 # φ̂1
phi2 0.318 0.041 # φ̂2
sigv 5.061 0.161 # σ̂v

T1 -0.119 0.031 # β̂1
P 0.119 0.018 # β̂2
P4 0.067 0.019 # β̂3
trend -1.340 0.220 # β̂4
constant 88.752 7.015 # α̂

The R code for the complete analysis is as follows:
trend = time(cmort) - mean(time(cmort)) # center time
const = time(cmort)/time(cmort) # appropriate time series of 1s
ded = ts.intersect(M=cmort, T1=lag(tempr,-1), P=part, P4=lag(part,-4),

trend, const)
y = ded[,1]
input = ded[,2:6]
num = length(y)
A = array(c(1,0), dim = c(1,2,num))
# Function to Calculate Likelihood
Linn=function(para){

phi1=para[1]; phi2=para[2]; cR=para[3]; b1=para[4]
b2=para[5]; b3=para[6]; b4=para[7]; alf=para[8]

mu0 = matrix(c(0,0), 2, 1)
Sigma0 = diag(100, 2)
Phi = matrix(c(phi1, phi2, 1, 0), 2)
Theta = matrix(c(phi1, phi2), 2)
Ups = matrix(c(b1, 0, b2, 0, b3, 0, 0, 0, 0, 0), 2, 5)
Gam = matrix(c(0, 0, 0, b4, alf), 1, 5); cQ = cR; S = cR^2
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kf = Kfilter2(num, y, A, mu0, Sigma0, Phi, Ups, Gam, Theta, cQ, cR, S,
input)

return(kf$like) }
# Estimation
init.par = c(phi1=.3, phi2=.3, cR=5, b1=-.2, b2=.1, b3=.05, b4=-1.6,

alf=mean(cmort)) # initial parameters
L = c( 0, 0, 1, -1, 0, 0, -2, 70) # lower bound on parameters
U = c(.5, .5, 10, 0, .5, .5, 0, 90) # upper bound - used in optim
est = optim(init.par, Linn, NULL, method='L-BFGS-B', lower=L, upper=U,

hessian=TRUE, control=list(trace=1, REPORT=1, factr=10^8))
SE = sqrt(diag(solve(est$hessian)))
round(cbind(estimate=est$par, SE), 3) # results

The residual analysis involves running the Kalman filter with the final estimated
values and then investigating the resulting innovations. We do not display the results,
but the analysis supports the model.
# Residual Analysis (not shown)
phi1 = est$par[1]; phi2 = est$par[2]

cR = est$par[3]; b1 = est$par[4]
b2 = est$par[5]; b3 = est$par[6]
b4 = est$par[7]; alf = est$par[8]

mu0 = matrix(c(0,0), 2, 1); Sigma0 = diag(100, 2)
Phi = matrix(c(phi1, phi2, 1, 0), 2)
Theta = matrix(c(phi1, phi2), 2)
Ups = matrix(c(b1, 0, b2, 0, b3, 0, 0, 0, 0, 0), 2, 5)
Gam = matrix(c(0, 0, 0, b4, alf), 1, 5)
cQ = cR
S = cR^2
kf = Kfilter2(num, y, A, mu0, Sigma0, Phi, Ups, Gam, Theta, cQ, cR, S,

input)
res = ts(as.vector(kf$innov), start=start(cmort), freq=frequency(cmort))
sarima(res, 0,0,0, no.constant=TRUE) # gives a full residual analysis

Finally, a similar and simpler analysis can be fit using a complete ARMAX
model. In this case the model would be

Mt = α + φ1Mt−1 + φ2Mt−2 + β1Tt−1 + β2Pt + β3Pt−4 + β4t + vt (6.113)

where vt ∼ iid N(0, σ2
v ). This model is different from (6.112) in that the mortality

process is not detrended, but trend appears as an exogenous variable. In this case,
we may use sarima to easily perform the regression and get the residual analysis as
a byproduct.
trend = time(cmort) - mean(time(cmort))
u = ts.intersect(M=cmort, M1=lag(cmort,-1), M2=lag(cmort,-2),

T1=lag(tempr,-1), P=part, P4=lag(part,-4), trend)
sarima(u[,1], 0,0,0, xreg=u[,2:7]) # could use lm, but it's more work

Coefficients:
intercept M1 M2 T1 P P4 trend

40.3838 0.315 0.2971 -0.1845 0.1113 0.0513 -0.5214
s.e. 4.5982 0.037 0.0394 0.0309 0.0177 0.0195 0.0956
sigma^2 estimated as 25.32

We note that the residuals look fine, and the model fit is similar to the fit of (6.112).
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6.7 Bootstrapping State Space Models

Although in Sect. 6.3 we discussed the fact that under general conditions (which we
assume to hold in this section) the MLEs of the parameters of a DLM are consistent
and asymptotically normal, time series data are often of short or moderate length.
Several researchers have found evidence that samples must be fairly large before
asymptotic results are applicable (Dent and Min [50]; Ansley and Newbold [8]).
Moreover, as we discussed in Example 3.36, problems occur if the parameters are
near the boundary of the parameter space. In this section, we discuss an algorithm for
bootstrapping state space models; this algorithm and its justification, including the
non-Gaussian case, along with numerous examples, can be found in Stoffer and Wall
[192] and in Stoffer and Wall [195]. In view of Sect. 6.6, anything we do or say here
about DLMs applies equally to ARMAX models.

Using the DLM given by (6.95)–(6.97) and Property 6.5, we write the innovations
form of the filter as

εt = yt − At x
t−1
t − Γut, (6.114)

Σt = AtP
t−1
t A′t + R, (6.115)

Kt = [ΦPt−1
t A′t +ΘS]Σ−1

t , (6.116)
xtt+1 = Φxt−1

t +Υut+1 + Ktεt, (6.117)
Pt
t+1 = ΦPt−1

t Φ′ + ΘQΘ′ − KtΣtK
′
t . (6.118)

This form of the filter is just a rearrangement of the filter given in Property 6.5.
In addition, we can rewrite the model to obtain its innovations form,

xtt+1 = Φxt−1
t +Υut+1 + Ktεt, (6.119)

yt = At x
t−1
t + Γut + εt . (6.120)

This form of the model is a rewriting of (6.114) and (6.117), and it accommodates
the bootstrapping algorithm.

As discussed in Example 6.5, although the innovations εt are uncorrelated, ini-
tially, Σt can be vastly different for different time points t. Thus, in a resampling
procedure, we can either ignore the first few values of εt until Σt stabilizes or we can
work with the standardized innovations

et = Σ
−1/2
t εt, (6.121)

so we are guaranteed these innovations have, at least, the same first two moments.
In (6.121), Σ1/2

t denotes the unique square root matrix of Σt defined by Σ
1/2
t Σ

1/2
t = Σt .

In what follows, we base the bootstrap procedure on the standardized innovations, but
we stress the fact that, even in this case, ignoring startup values might be necessary,
as noted by Stoffer and Wall [192].

The model coefficients and the correlation structure of the model are uniquely
parameterized by a k × 1 parameter vector Θ0; that is, Φ = Φ(Θ0), Υ = Υ(Θ0),
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Q = Q(Θ0), At = At (Θ0), Γ = Γ(Θ0), and R = R(Θ0). Recall the innovations form
of the Gaussian likelihood (ignoring a constant) is

− 2 ln LY (Θ) =
n∑

t=1

[
ln |Σt (Θ)| + εt (Θ)′Σt (Θ)−1εt (Θ)

]

=

n∑

t=1
[ln |Σt (Θ)| + et (Θ)′et (Θ)] . (6.122)

We stress the fact that it is not necessary for the model to be Gaussian to con-
sider (6.122) as the criterion function to be used for parameter estimation.

Let Θ̂ denote the MLE of Θ0, that is, Θ̂ = argmaxΘLY (Θ), obtained by the
methods discussed in Sect. 6.3. Let εt (Θ̂) and Σt (Θ̂) be the innovation values ob-
tained by running the filter, (6.114)–(6.118), under Θ̂. Once this has been done, the
nonparametric2 bootstrap procedure is accomplished by the following steps.

(i) Construct the standardized innovations

et (Θ̂) = Σ
−1/2
t (Θ̂)εt (Θ̂).

(ii) Sample, with replacement, n times from the set {e1(Θ̂), . . . , en(Θ̂)} to obtain
{e∗1(Θ̂), . . . , e∗n(Θ̂)}, a bootstrap sample of standardized innovations.

(iii) Construct a bootstrap data set {y∗1, . . . , y∗n} as follows. Define the (p + q) × 1
vector ξt = (xt′t+1, y

′
t )′. Stacking (6.119) and (6.120) results in a vector first-order

equation for ξt given by

ξt = Ftξt−1 + Gut + Htet, (6.123)

where

Ft =

[
Φ 0
At 0

]

, G =

[
Υ
Γ

]

, Ht =

[
KtΣ

1/2
t

Σ
1/2
t

]

.

Thus, to construct the bootstrap data set, solve (6.123) using e∗t (Θ̂) in place of
et . The exogenous variables ut and the initial conditions of the Kalman filter
remain fixed at their given values, and the parameter vector is held fixed at Θ̂.

(iv) Using the bootstrap data set y∗1:n, construct a likelihood, LY∗ (Θ), and obtain the
MLE of Θ, say, Θ̂∗.

(v) Repeat steps 2 through 4, a large number, B, of times, obtaining a bootstrapped
set of parameter estimates {Θ̂∗

b
; b = 1, . . . , B}. The finite sample distribution

of Θ̂ −Θ0 may be approximated by the distribution of Θ̂∗
b
− Θ̂, b = 1, . . . , B.

In the next example, we discuss the case of a linear regression model, but where
the regression coefficients are stochastic and allowed to vary with time. The state
space model provides a convenient setting for the analysis of such models.

2 Nonparametric refers to the fact that we use the empirical distribution of the innovations rather than
assuming they have a parametric form.
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Fig. 6.9. Quarterly interest rate for Treasury bills (dashed line) and quarterly inflation rate
(solid line) in the Consumer Price Index

Example 6.13 Stochastic Regression
Figure 6.9 shows the quarterly inflation rate (solid line), yt , in the Consumer Price
Index and the quarterly interest rate recorded for Treasury bills (dashed line),
zt , from the first quarter of 1953 through the second quarter of 1980, n = 110
observations. These data are taken from Newbold and Bos [143].

In this example, we consider one analysis that was discussed in Newbold and
Bos [143, pp. 61–73], that focused on the first 50 observations and where quarterly
inflation was modeled as being stochastically related to quarterly interest rate,

yt = α + βt zt + vt,

where α is a fixed constant, βt is a stochastic regression coefficient, and vt is white
noise with variance σ2

v . The stochastic regression term, which comprises the state
variable, is specified by a first-order autoregression,

(βt − b) = φ(βt−1 − b) + wt,

where b is a constant, and wt is white noise with variance σ2
w . The noise processes,

vt and wt , are assumed to be uncorrelated.
Using the notation of the state-space model (6.95) and (6.96), we have in the

state equation, xt = βt , Φ = φ, ut ≡ 1, Υ = (1 − φ)b, Q = σ2
w , and in the

observation equation, At = zt , Γ = α, R = σ2
v , and S = 0. The parameter vector

is Θ = (φ, α, b, σw, σv)′. The results of the Newton–Raphson estimation procedure
are listed in Table 6.2. Also shown in the Table 6.2 are the corresponding standard
errors obtained from B = 500 runs of the bootstrap. These standard errors are
simply the standard deviations of the bootstrapped estimates, that is, the square root
of

∑B
b=1(Θ∗

ib
− Θ̂i)2/(B − 1), where Θ̂i , represents the MLE of the ith parameter,

Θi , for i = 1, . . . , 5,
The asymptotic standard errors listed in Table 6.2 are typically much smaller

than those obtained from the bootstrap. For most of the cases, the bootstrapped
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Table 6.2. Comparison of standard errors

Asymptotic Bootstrap
Parameter MLE standard error standard error

φ .865 .223 .463
α −.686 .487 .557
b .788 .226 .821
σw .115 .107 .216
σv 1.135 .147 .340

standard errors are at least 50% larger than the corresponding asymptotic value.
Also, asymptotic theory prescribes the use of normal theory when dealing with
the parameter estimates. The bootstrap, however, allows us to investigate the small
sample distribution of the estimators and, hence, provides more insight into the data
analysis.

For example, Fig. 6.10 shows the bootstrap distribution of the estimator of
φ in the upper left-hand corner. This distribution is highly skewed with values
concentrated around .8, but with a long tail to the left. Some quantiles are −.09
(5%), .11 (10%), .34 (25%), .73 (50%), .86 (75%), .96 (90%), .98 (95%), and they
can be used to obtain confidence intervals. For example, a 90% confidence interval
for φ would be approximated by (−.09, .98). This interval is ridiculously wide and
includes 0 as a plausible value of φ; we will interpret this after we discuss the results
of the estimation of σw .

Figure 6.10 shows the bootstrap distribution of σ̂w in the lower right-hand
corner. The distribution is concentrated at two locations, one at approximately
σ̂w = .25 (which is the median of the distribution of values away from 0) and
the other at σ̂w = 0. The cases in which σ̂w ≈ 0 correspond to deterministic
state dynamics. When σw = 0 and |φ| < 1, then βt ≈ b for large t, so the
approximately 25% of the cases in which σ̂w ≈ 0 suggest a fixed state, or constant
coefficient model. The cases in which σ̂w is away from zero would suggest a truly
stochastic regression parameter. To investigate this matter further, the off-diagonals
of Fig. 6.10 show the joint bootstrapped estimates, (φ̂, σ̂w), for positive values of
φ̂∗. The joint distribution suggests σ̂w > 0 corresponds to φ̂ ≈ 0. When φ = 0, the
state dynamics are given by βt = b + wt . If, in addition, σw is small relative to b,
the system is nearly deterministic; that is, βt ≈ b. Considering these results, the
bootstrap analysis leads us to conclude the dynamics of the data are best described
in terms of a fixed regression effect.

The following R code was used for this example. We note that the first few
lines of the code set the relative tolerance for determining convergence of the nu-
merical optimization and the number of bootstrap replications. Using the current
settings may result in a long run time of the algorithm and we suggest the toler-
ance and the number of bootstrap replicates be decreased on slower machines or
for demonstration purposes. For example, setting tol=.001 and nboot=200 yields
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Fig. 6.10. Joint and marginal bootstrap distributions, B = 500, of φ̂ and σ̂w. Only the values
corresponding to φ̂∗ ≥ 0 are shown

reasonable results. In this example, we fixed the first three values of the data for the
resampling scheme.
library(plyr) # used for displaying progress
tol = sqrt(.Machine$double.eps) # determines convergence of optimizer
nboot = 500 # number of bootstrap replicates
y = window(qinfl, c(1953,1), c(1965,2)) # inflation
z = window(qintr, c(1953,1), c(1965,2)) # interest
num = length(y)
A = array(z, dim=c(1,1,num))
input = matrix(1,num,1)
# Function to Calculate Likelihood
Linn = function(para, y.data){ # pass data also

phi = para[1]; alpha = para[2]
b = para[3]; Ups = (1-phi)*b
cQ = para[4]; cR = para[5]
kf = Kfilter2(num,y.data,A,mu0,Sigma0,phi,Ups,alpha,1,cQ,cR,0,input)
return(kf$like) }

# Parameter Estimation
mu0 = 1; Sigma0 = .01
init.par = c(phi=.84, alpha=-.77, b=.85, cQ=.12, cR=1.1) # initial values
est = optim(init.par, Linn, NULL, y.data=y, method="BFGS", hessian=TRUE,

control=list(trace=1, REPORT=1, reltol=tol))
SE = sqrt(diag(solve(est$hessian)))
phi = est$par[1]; alpha = est$par[2]
b = est$par[3]; Ups = (1-phi)*b
cQ = est$par[4]; cR = est$par[5]
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round(cbind(estimate=est$par, SE), 3)
estimate SE

phi 0.865 0.223
alpha -0.686 0.487
b 0.788 0.226
cQ 0.115 0.107
cR 1.135 0.147

# BEGIN BOOTSTRAP
# Run the filter at the estimates
kf = Kfilter2(num,y,A,mu0,Sigma0,phi,Ups,alpha,1,cQ,cR,0,input)
# Pull out necessary values from the filter and initialize
xp = kf$xp
innov = kf$innov
sig = kf$sig
K = kf$K
e = innov/sqrt(sig)
e.star = e # initialize values
y.star = y
xp.star = xp
k = 4:50 # hold first 3 observations fixed
para.star = matrix(0, nboot, 5) # to store estimates
init.par = c(.84, -.77, .85, .12, 1.1)
pr <- progress_text() # displays progress
pr$init(nboot)
for (i in 1:nboot){
pr$step()
e.star[k] = sample(e[k], replace=TRUE)
for (j in k){ xp.star[j] = phi*xp.star[j-1] +

Ups+K[j]*sqrt(sig[j])*e.star[j] }
y.star[k] = z[k]*xp.star[k] + alpha + sqrt(sig[k])*e.star[k]
est.star = optim(init.par, Linn, NULL, y.data=y.star, method="BFGS",

control=list(reltol=tol))
para.star[i,] = cbind(est.star$par[1], est.star$par[2], est.star$par[3],

abs(est.star$par[4]), abs(est.star$par[5])) }
# Some summary statistics
rmse = rep(NA,5) # SEs from the bootstrap
for(i in 1:5){rmse[i]=sqrt(sum((para.star[,i]-est$par[i])^2)/nboot)

cat(i, rmse[i],"\n") }
# Plot phi and sigw
phi = para.star[,1]
sigw = abs(para.star[,4])
phi = ifelse(phi<0, NA, phi) # any phi < 0 not plotted
library(psych) # load psych package for scatter.hist
scatter.hist(sigw, phi, ylab=expression(phi), xlab=expression(sigma[~w]),

smooth=FALSE, correl=FALSE, density=FALSE, ellipse=FALSE,
title='', pch=19, col=gray(.1,alpha=.33),
panel.first=grid(lty=2), cex.lab=1.2)

6.8 Smoothing Splines and the Kalman Smoother

There is a connection between smoothing splines, e.g., Eubank [60], Green and
Silverman [81], or Wahba [206] and state space models. The basic idea of smoothing
splines (recall Example 2.14) in discrete time is we suppose that data yt are generated
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by yt = μt + εt for t = 1, . . . , n, where μt is a smooth function of t, and εt is
white noise. In cubic smoothing with knots at the time points t, μt is estimated by
minimizing

n∑

t=1
[yt − μt ]2 + λ

n∑

t=1

(
∇2μt

)2
(6.124)

with respect to μt , where λ > 0 is a smoothing parameter. The parameter λcontrols the
degree of smoothness, with larger values yielding smoother estimates. For example,
if λ = 0, then the minimizer is the data itself μ̂t = yt ; consequently, the estimate
will not be smooth. If λ = ∞, then the only way to minimize (6.124) is to choose the
second term to be zero, i.e., ∇2μt = 0, in which case it is of the form μt = α + βt,
and we are in the setting of linear regression.3 Hence, the choice of λ > 0 is seen
as a trade-off between fitting a line that goes through all the data points and linear
regression.

Now, consider the model given by

∇2μt = wt and yt = μt + vt , (6.125)

where wt and vt are independent normal noise processes with var(wt ) = σ2
w and

var(vt) = σ2
v . Rewrite (6.125) as

(
μt
μt−1

)

=

[
2 −1
1 0

] (
μt−1
μt−2

)

+

[
1
0

]

wt and yt =
[
1 0

]
(
μt
μt−1

)

+ vt , (6.126)

so that the state vector is xt = (μt, μt−1)′. It is clear then that (6.125) specifies a state
space model.

Note that the model is similar to the local level model discussed in Example 6.5. In
particular, the state process could be written as μt = μt−1 + ηt , where ηt = ηt−1 +wt .
An example of such a trajectory can be seen in Fig. 6.11; note that the generated data
in Fig. 6.11 look like the global temperature data in Fig. 1.2.

Next, we examine the problem of estimating the states, xt , when the model
parameters, θ = {σ2

w, σ
2
v }, are specified. For ease, we assume x0 is fixed. Then using

the notation surrounding equations (6.61)–(6.62), the goal is to find the MLE of
x1:n = {x1, . . . , xn} given y1:n = {y1, . . . , yn}; i.e., to maximize log pθ (x1:n | y1:n)
with respect to the states. Because of the Gaussianity, the maximum (or mode) of
the distribution is when the states are estimated by xnt , the conditional means. These
values are, of course, the smoothers obtained via Property 6.2.

But log pθ (x1:n | y1:n) = log pθ(x1:n, y1:n) − log pθ(y1:n), so maximizing the
complete data likelihood, log pθ(x1:n, y1:n) with respect to x1:n, is an equivalent
problem. Writing (6.62) in the notation of (6.125), we have,

− 2 log pθ(x1:n, y1:n) ∝ σ−2
w

n∑

t=1

(
∇2μt

)2
+ σ−2

v

n∑

t=1
(yt − μt )2, (6.127)

3 That the unique general solution to ∇2μt = 0 is of the form μt = α + βt follows from difference
equation theory; e.g., see Mickens [142].
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Fig. 6.11. Display for Example 6.14: Simulated state process, μt and observations yt from the
model (6.125) with n = 50, σw = .1 and σv = 1. Estimated smoother (dashed lines): μ̂t |n and
corresponding 95% confidence band. gcv smoothing spline (thin solid line)

where we have kept only the terms involving the states, μt . If we set λ = σ2
v/σ2

w , we
can write

− 2 log pθ(x1:n, y1:n) ∝ λ
n∑

t=1

(
∇2μt

)2
+

n∑

t=1
(yt − μt )2, (6.128)

so that maximizing log pθ (x1:n, y1:n) with respect to the states is equivalent to mini-
mizing (6.128), which is the original problem stated in (6.124).

In the general state space setting, we would estimate σ2
w and σ2

v via maximum
likelihood as described in Sect. 6.3, and then obtain the smoothed state values by
running Property 6.2 with the estimated variances, say σ̂2

w and σ̂2
v . In this case, the

estimated value of the smoothing parameter would be given by λ̂ = σ̂2
v/σ̂2

w .

Example 6.14 Smoothing Splines
In this example, we generated the signal, or state process, μt and observations yt
from the model (6.125) with n = 50, σw = .1 and σv = 1. The state is displayed in
Fig. 6.11 as a thick solid line, and the observations are displayed as points. We then
estimated σw and σv using Newton-Raphson techniques and obtained σ̂w = .08
and σ̂v = .94. We then used Property 6.2 to generate the estimated smoothers, say,
μ̂nt , and those values are displayed in Fig. 6.11 as a thick dashed line along with a
corresponding 95% (pointwise) confidence band as thin dashed lines. Finally, we
used the R function smooth.spline to fit a smoothing spline to the data based on
the method of generalized cross-validation (gcv). The fitted spline is displayed in
Fig. 6.11 as a thin solid line, which is close to μ̂nt .

The R code to reproduce Fig. 6.11 is given above.
set.seed(123)
num = 50
w = rnorm(num,0,.1)
x = cumsum(cumsum(w))
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y = x + rnorm(num,0,1)
plot.ts(x, ylab="", lwd=2, ylim=c(-1,8))
lines(y, type='o', col=8)
## State Space ##
Phi = matrix(c(2,1,-1,0),2); A = matrix(c(1,0),1)
mu0 = matrix(0,2); Sigma0 = diag(1,2)
Linn = function(para){

sigw = para[1]; sigv = para[2]
cQ = diag(c(sigw,0))
kf = Kfilter0(num, y, A, mu0, Sigma0, Phi, cQ, sigv)
return(kf$like) }

## Estimation ##
init.par = c(.1, 1)
(est = optim(init.par, Linn, NULL, method="BFGS", hessian=TRUE,

control=list(trace=1,REPORT=1)))
SE = sqrt(diag(solve(est$hessian)))
# Summary of estimation
estimate = est$par; u = cbind(estimate, SE)
rownames(u) = c("sigw","sigv"); u
# Smooth
sigw = est$par[1]
cQ = diag(c(sigw,0))
sigv = est$par[2]
ks = Ksmooth0(num, y, A, mu0, Sigma0, Phi, cQ, sigv)
xsmoo = ts(ks$xs[1,1,]); psmoo = ts(ks$Ps[1,1,])
upp = xsmoo+2*sqrt(psmoo); low = xsmoo-2*sqrt(psmoo)
lines(xsmoo, col=4, lty=2, lwd=3)
lines(upp, col=4, lty=2); lines(low, col=4, lty=2)
lines(smooth.spline(y), lty=1, col=2)
legend("topleft", c("Observations","State"), pch=c(1,-1), lty=1, lwd=c(1,2),

col=c(8,1))
legend("bottomright", c("Smoother", "GCV Spline"), lty=c(2,1), lwd=c(3,1),

col=c(4,2))

6.9 Hidden Markov Models and Switching Autoregression

In the introduction to this chapter, we mentioned that the state space model is char-
acterized by two principles. First, there is a hidden state process, {xt ; t = 0, 1, . . . },
that is assumed to be Markovian. Second, the observations, {yt ; t = 1, 2, . . . }, are
independent given the states. The principles were displayed in Fig. 6.1 and written in
terms of densities in (6.28) and (6.29).

We have been focusing primarily on linear Gaussian state space models, but there
is an entire area that has developed around the case where the states xt are a discrete-
valued Markov chain, and that will be the focus in this section. The basic idea is that
the value of the state at time t specifies the distribution of the observation at time t.
These models were developed in Goldfeld and Quandt [74] and Lindgren [128].
Changes can also be modeled in the classical regression setting by allowing the value
of the state to determine the design matrix, as in Quandt [160]. An early application
to speech recognition was considered by Juang and Rabiner [110]. An application of
the idea of switching to the tracking of multiple targets was considered in Bar-Shalom
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[12], who obtained approximations to Kalman filtering in terms of weighted averages
of the innovations. As another example, some authors (for example, Hamilton [85],
or McCulloch and Tsay [135]) have explored the possibility that the dynamics of a
country’s economy might be different during expansion than during contraction.

In the Markov chain approach, we declare the dynamics of the system at time t
are generated by one of m possible regimes evolving according to a Markov chain
over time. The case in which the particular regime is unknown to the observer comes
under the heading of hidden Markov models (HMM), and the techniques related to
analyzing these models are summarized in Rabiner and Juang [161]. Although the
model satisfies the conditions for being a state space model, HMMs were developed
in parallel. If the state process is discrete-valued, one typically uses the term “hidden
Markov model” and if the state process is continuous-valued, one uses the term “state
space model” or one of its variants. Texts that cover the theory and methods in whole
or in part are Cappé, Moulines, and Rydén [37] and Douc, Moulines, and Stoffer [53].
A recent introductory text that uses R is Zucchini and MacDonald [214].

Here, we assume the states, xt , are a Markov chain taking values in a finite state
space {1, . . . , m}, with stationary distribution

πj = Pr(xt = j) , (6.129)

and stationary transition probabilities

πij = Pr(xt+1 = j | xt = i) , (6.130)

for t = 0, 1, 2, . . . , and i, j = 1, . . . , m. Since the second componentof the model is that
the observations are conditionally independent, we need to specify the distributions,
and we denote them by

pj (yt ) = p(yt | xt = j) . (6.131)

Example 6.15 Poisson HMM – Number of Major Earthquakes
Consider the time series of annual counts of major earthquakes displayed in Fig. 6.12
that were discussed in Zucchini and MacDonald [214]. A natural model for un-
bounded count data is a Poisson distribution, in which case the mean and variance
are equal. However, the sample mean and variance of the data are x̄ = 19.4 and
s2 = 51.6, so this model is clearly inappropriate. It would be possible to take into
account the overdispersion by using other distributions for counts such as the neg-
ative binomial distribution or a mixture of Poisson distributions. This approach,
however, ignores the sample ACF and PACF displayed Fig. 6.12, which indicate the
observations are serially correlated, and further suggest an AR(1)-type correlation
structure.

A simple and convenient way to capture both the marginal distribution and the
serial dependence is to consider a Poisson-HMM model. Let yt denote the number
of major earthquakes in year t, and consider the state, or latent variable, xt to be
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a stationary two-state Markov chain taking values in {1, 2}. Using the notation
in (6.129) and (6.130), we have π12 = 1 − π11 and π21 = 1 − π22. The stationary
distribution of this Markov chain is given by4

π1 =
π21

π12 + π21
, and π2 =

π12

π12 + π21
.

For j ∈ {1, 2}, denote λj > 0 as the parameter of a Poisson distribution,

pj (y) =
λ
y
j e−λ j

y!
, y = 0, 1, . . . .

Since the states are stationary, the marginal distribution of yt is stationary and a
mixture of Poissons,

pΘ(yt ) = π1p1(yt ) + π2p2(yt )
with Θ = {λ1, λ2}. The mean of the stationary distribution is

E(yt ) = π1λ1 + π2λ2 (6.132)

and the variance5 is

var(yt ) = E(yt ) + π1π2(λ2 − λ1)2 ≥ E(yt ) , (6.133)

implying that the two-state Poisson HMM is overdispersed. Similar calculations
(see Problem 6.21) show that the autocovariance function of yt is given by

γy(h) =
2∑

i=1

2∑

j=1
πi(πhij − πj )λiλj = π1π2(λ2 − λ1)2(1 − π12 − π21)h . (6.134)

Thus, a two-state Poisson-HMM has an exponentially decaying autocorrelation
function, and this is consistent with the sample ACF seen in Fig. 6.12. It is worth-
while to note that if we increase the number of states, more complex dependence
structures may be obtained.

As in the linear Gaussian case, we need filters and smoothers of the state in their
own right, and additionally for estimation and prediction. We then write

πj(t | s) = Pr(xt = j | y1:s) . (6.135)

Straight forward calculations (see Problem 6.22) give the filter equations as:

4 The stationary distribution must satisfy π j =
∑

i πiπi j .
5 Recall var(U) = E[var(U | V )] + var[E(U | V )].
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Fig. 6.12. Top: Series of annual counts of major earthquakes (magnitude 7 and above) in the
world between 1900–2006. Bottom: Sample ACF and PACF of the counts

Property 6.7 HMM Filter
For t = 1, . . . , n,

πj (t | t − 1) =
m∑

i=1
πi(t − 1 | t − 1) πij , (6.136)

πj(t | t) = πj(t)pj(yt )
∑m

i=1 πi(t)pi(yt )
, (6.137)

with initial condition πj (1 | 0) = πj .

LetΘ denote the parameters of interest. Given data y1:n, the likelihood is given by

LY (Θ) =
n∏

t=1
pΘ(yt | y1:t−1) .

But, by the conditional independence,

pΘ(yt | y1:t−1) =
m∑

j=1
Pr(xt = j | y1:t−1) pΘ(yj | xt = j, y1:t−1)

=

m∑

j=1
πj (t | t − 1) pj(yt ) .

Consequently,

ln LY (Θ) =
n∑

t=1
ln �

�

�

m∑

j=1
πj (t | t − 1) pj(yt )��

�

. (6.138)
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Maximum likelihood can then proceed as in the linear Gaussian case discussed in
Sect. 6.3.

In addition, the Baum-Welch (or EM) algorithm discussed in Sect. 6.3 applies
here as well. First, the general complete data likelihood still has the form of (6.61),
that is,

ln pΘ(x0:n, y1:n) = ln pΘ(x0) +
n∑

t=1
ln pΘ(xt | xt−1) +

n∑

t=1
ln pΘ(yt | xt ) .

It is more useful to define Ij (t) = 1 if xt = j and 0 otherwise, and Iij (t) = 1 if
(xt−1, xt ) = (i, j) and 0 otherwise, for i, j = 1, . . . , m. Recall Pr[Ij (t) = 1] = πj and
Pr[Iij (t) = 1] = πij πi . Then the complete data likelihood can be written as (we drop
Θ from some of the notation for convenience)

ln pΘ(x0:n, y1:n) =
m∑

j=1
Ij(0) ln πj +

n∑

t=1

m∑

i=1

m∑

j=1
Iij (t) ln πij (t)

+

n∑

t=1

m∑

j=1
Ij (t) ln pj (yt ) , (6.139)

and, as before, we need to maximize Q(Θ | Θ′) = E[ln pΘ(x0:n, y1:n) | y1:n, Θ
′]. In

this case, it should be clear that in addition to the filter, (6.137), we will need

πj (t | n) = E(Ij(t) | y1:n) = Pr(xt = j | y1:n) (6.140)

for the first and third terms, and

πij (t | n) = E(Iij (t) | y1:n) = Pr(xt = i, xt+1 = j | y1:n) . (6.141)

for the second term. In the evaluation of the second term, as will be seen, we must
also evaluate

ϕj (t) = p(yt+1:n | xt = j) . (6.142)

Property 6.8 HMM Smoother
For t = n − 1, . . . , 0,

πj(t | n) = πj(t | t)ϕj (t)
∑m

j=1 πj(t | t)ϕj (t) , (6.143)

πij (t | n) = πi(t | n)πijpj (yt+1)ϕj (t + 1)/ϕi(t) , (6.144)

ϕi(t) =
m∑

j=1
πijpj(yt+1)ϕj (t + 1) , (6.145)

where ϕj (n) = 1 for j = 1, . . . , m.
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Proof: We leave the proof of (6.143) to the reader; see Problem 6.22. To verify (6.145),
note that

ϕi(t) =
m∑

j=1
p(yt+1:n, xt+1 = j | xt = i)

=

m∑

j=1
Pr(xt+1 = j | xt = i) p(yt+1 | xt+1 = j) p(yt+2:n | xt+1 = j)

=

m∑

j=1
πij pj (yt+1)ϕj (t + 1) .

To verify (6.144), we have

πij (t | n) ∝ Pr(xt = i, xt+1 = j, yt+1, yt+2:n | y1:t )
= Pr(xt = i | y1:t ) Pr(xt+1 = j | xt = i)

× p(yt+1 | xt+1 = j) p(yt+2:n | xt+1 = j)
= πi(t | t) πij pj (yt+1) ϕj (t + 1) .

Finally, to find the constant of proportionality, say Ct , if we sum over j on both sides
we get,

∑m
j=1 πij (t | n) = πi(t | n) and

∑m
j=1 πij pj (yt+1) ϕj (t + 1) = ϕi(t). This means

that πi(t | n) = Ct πi(t | t) ϕi(t), and (6.144) follows. �
For the Baum-Welch (or EM) algorithm, given the current value of the parameters,

say Θ′, run the filter Property 6.7 and smoother Property 6.8, and then, as is evident
from (6.139), update the first two estimates as

π̂j = π′j(0 | n) and π̂ij =

∑n
t=1 π

′
ij (t | n)

∑n
t=1

∑m
k=1 π

′
ik
(t | n) . (6.146)

Of course, the prime indicates that values have been obtain under Θ′ and the hat
denotes the update. Although not the MLE, it has been suggested by Lindgren [128]
that a natural estimate of the stationary distribution of the chain would be

ˆ̂πj = n−1
n∑

t=1
π′j(t | n) ,

rather than the value given in (6.146). Finally, the third term in (6.139) will require
knowing the distribution of pj (yt ), and this will depend on the particular model. We
will discuss the Poisson distribution in Example 6.15 and the normal distribution
in Example 6.17

Example 6.16 Poisson HMM – Number of Major Earthquakes (cont)
To run the EM algorithm in this case, we still need to maximize the conditional
expectation of the third term of (6.139). The conditional expectation of the third



342 6 State Space Models

Time

E
Q

co
un

t

1900 1920 1940 1960 1980 2000

10
20

30
40

11

1
1

1

2

2

2

2

2
2

2
222

2

2
22

1

1
1
1

1

11
11

1
1

1

1

11

2
2
22

2

2
22

2

2

2
2

2

2
2

2
2

2
1

1

1
1
1

2

1

1

1
1
1

1

1

1
1
1

2
2
2

2
2
2

22
2

1
1
1
1
1
1

1

1

1

1

1
11

1
1
111

1

11
1

1
11

1
11

11

Time

π
2 

(t 
| n

)

1900 1920 1940 1960 1980 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EQcount
D

en
si

ty

5 10 15 20 25 30 35 40

0.
00

0.
04

0.
08

Fig. 6.13. Top: Earthquake count data and estimated states. Bottom left: Smoothing probabili-
ties. Bottom right: Histogram of the data with the two estimated Poisson densities superimposed
(solid lines)

term at the current parameter value Θ′ is

n∑

t=1

m∑

j=1
π′j (t | t − 1) ln pj (yt ) ,

where
log pj (yt ) ∝ yt log λj − λj .

Consequently, maximization with respect to λj yields

λ̂j =

∑n
t=1 π

′
j (t |n) yt

∑n
t=1 π

′
j (t |n)

, j = 1, . . . , m.

We fit the model to the time series of earthquake counts using the R pack-
age depmixS4. The package, which uses the EM algorithm, does not provide
standard errors, so we obtained them by a parametric bootstrap procedure; see
Remillard [164] for justification. The MLEs of the intensities, along with their stan-
dard errors, were (λ̂1, λ̂2) = (15.4(.7), 26.0(1.1)). The MLE of the transition matrix
was [π̂11, π̂12, π̂21, π̂22] = [.93(.04), .07(.04), .12(.09), .88(.09)]. Figure 6.13 displays the
counts, the estimated state (displayed as points) and the smoothing distribution for
the earthquakes data, modeled as a two-state Poisson HMM model with parameters
fitted using the MLEs. Finally, a histogram of the data is displayed along with the
two estimated Poisson densities superimposed as solid lines.
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The R code for this example is as follows.
library(depmixS4)
model <- depmix(EQcount ~1, nstates=2, data=data.frame(EQcount),

family=poisson())
set.seed(90210)
summary(fm <- fit(model)) # estimation results
##-- Get Parameters --##
u = as.vector(getpars(fm)) # ensure state 1 has smaller lambda
if (u[7] <= u[8]) { para.mle = c(u[3:6], exp(u[7]), exp(u[8]))
} else { para.mle = c(u[6:3], exp(u[8]), exp(u[7])) }

mtrans = matrix(para.mle[1:4], byrow=TRUE, nrow=2)
lams = para.mle[5:6]
pi1 = mtrans[2,1]/(2 - mtrans[1,1] - mtrans[2,2]); pi2 = 1-pi1
##-- Graphics --##
layout(matrix(c(1,2,1,3), 2))
par(mar = c(3,3,1,1), mgp = c(1.6,.6,0))
# data and states
plot(EQcount, main="", ylab='EQcount', type='h', col=gray(.7))
text(EQcount, col=6*posterior(fm)[,1]-2, labels=posterior(fm)[,1], cex=.9)
# prob of state 2
plot(ts(posterior(fm)[,3], start=1900), ylab =

expression(hat(pi)[~2]*'(t|n)')); abline(h=.5, lty=2)
# histogram
hist(EQcount, breaks=30, prob=TRUE, main="")
xvals = seq(1,45)
u1 = pi1*dpois(xvals, lams[1])
u2 = pi2*dpois(xvals, lams[2])
lines(xvals, u1, col=4); lines(xvals, u2, col=2)
##-- Bootstap --##
# function to generate data
pois.HMM.generate_sample = function(n,m,lambda,Mtrans,StatDist=NULL){
# n = data length, m = number of states, Mtrans = transition matrix,

StatDist = stationary distn
if(is.null(StatDist)) StatDist = solve(t(diag(m)-Mtrans +1),rep(1,m))
mvect = 1:m
state = numeric(n)
state[1] = sample(mvect ,1, prob=StatDist)
for (i in 2:n)

state[i] = sample(mvect ,1,prob=Mtrans[state[i-1] ,])
y = rpois(n,lambda=lambda[state ])
list(y= y, state= state) }

# start it up
set.seed(10101101)
nboot = 100
nobs = length(EQcount)
para.star = matrix(NA, nrow=nboot, ncol = 6)
for (j in 1:nboot){
x.star = pois.HMM.generate_sample(n=nobs, m=2, lambda=lams, Mtrans=mtrans)$y
model <- depmix(x.star ~1, nstates=2, data=data.frame(x.star),

family=poisson())
u = as.vector(getpars(fit(model, verbose=0)))
# make sure state 1 is the one with the smaller intensity parameter
if (u[7] <= u[8]) { para.star[j,] = c(u[3:6], exp(u[7]), exp(u[8])) }

else { para.star[j,] = c(u[6:3], exp(u[8]), exp(u[7])) } }
# bootstrapped std errors
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SE = sqrt(apply(para.star,2,var) +
(apply(para.star,2,mean)-para.mle)^2)[c(1,4:6)]

names(SE)=c('seM11/M12', 'seM21/M22', 'seLam1', 'seLam2'); SE

Next, we present an example using a mixture of normal distributions.

Example 6.17 Normal HMM – S&P500 Weekly Returns
Estimation in the Gaussian case is similar to the Poisson case given in Example 6.16,
except that now, pj (yt ) is the normal density; i.e., (yt | xt = j) ∼ N(μj, σ

2
j ) for

j = 1, . . . , m. Then, dealing with the third term in (6.139) in this case yields

μ̂j =

∑n
t=1 π

′
j (t |n) yt

∑n
t=1 π

′
j (t |n)

, σ̂2
j =

∑n
t=1 π

′
j (t |n) y2

t
∑n

t=1 π
′
j(t |n)

− μ̂2
j .

In this example, we fit a normal HMM using the R package depmixS4 to the
weekly S&P 500 returns displayed in Fig. 6.14. We chose a three-state model and we
leave it to the reader to investigate a two-state model (see Problem 6.24). Standard
errors (shown in parentheses below) were obtained via a parametric bootstrap based
on a simulation script provided with the package.

If we let P = {πij } denote the 3 × 3 matrix of transition probabilities, the fitted
transition matrix was

P̂ =

⎡
⎢
⎢
⎢
⎢
⎣

.945(.074) .055(.074) .000(.000)

.739(.275) .000(.000) .261(.275)

.032(.122) .027(.057) .942(.147)

⎤
⎥
⎥
⎥
⎥
⎦

,

and the three fitted normals were N(μ̂1 = .004(.173), σ̂1 = .014(.968)), N(μ̂2 =

−.034(.909), σ̂2 = .009(.777)), and N(μ̂3 = −.003(.317), σ̂3 = .044(.910)). The data,
along with the predicted state (based on the smoothing distribution), are plotted in
Fig. 6.14.

Note that regime 2 appears to represent a somewhat large-in-magnitudenegative
return, and may be a lone dip, or the start or end of a highly volatile period. States
1 and 3 represent clusters of regular or high volatility, respectively. Note that there
is a large amount of uncertainty in the fitted normals, and in the transition matrix
involving transitions from state 2 to states 1 or 3. The R code for this example is:
library(depmixS4)
y = ts(sp500w, start=2003, freq=52) # make data depmix friendly
mod3 <- depmix(y~1, nstates=3, data=data.frame(y))
set.seed(2)
summary(fm3 <- fit(mod3))
##-- Graphics --##
layout(matrix(c(1,2, 1,3), 2), heights=c(1,.75))
par(mar=c(2.5,2.5,.5,.5), mgp=c(1.6,.6,0))
plot(y, main="", ylab='S&P500 Weekly Returns', col=gray(.7),

ylim=c(-.11,.11))
culer = 4-posterior(fm3)[,1]; culer[culer==3]=4 # switch labels 1 and 3
text(y, col=culer, labels=4-posterior(fm3)[,1])

##-- MLEs --##
para.mle = as.vector(getpars(fm3)[-(1:3)])
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Fig. 6.14. Top: S&P 500 weekly returns with estimated regimes labeled as a number, 1, 2, or
3 The minimum value of −20% during the financial crisis has been truncated to improve the
graphics. Bottom left: Sample ACF of the squared returns. Bottom right: Histogram of the data
with the three estimated normal densities superimposed

permu = matrix(c(0,0,1,0,1,0,1,0,0), 3,3) # for the label switch
(mtrans.mle = permu%*%round(t(matrix(para.mle[1:9],3,3)),3)%*%permu)
(norms.mle = round(matrix(para.mle[10:15],2,3),3)%*%permu)

acf(y^2, xlim=c(.02,.5), ylim=c(-.09,.5), panel.first=grid(lty=2) )
hist(y, 25, prob=TRUE, main='')
culer=c(1,2,4); pi.hat = colSums(posterior(fm3)[-1,2:4])/length(y)
for (i in 1:3) { mu=norms.mle[1,i]; sig = norms.mle[2,i]
x = seq(-.15,.12, by=.001)

lines(x, pi.hat[4-i]*dnorm(x, mean=mu, sd=sig), col=culer[i]) }
##-- Bootstrap --##
set.seed(666); n.obs = length(y); n.boot = 100
para.star = matrix(NA, nrow=n.boot, ncol = 15)
respst <- para.mle[10:15]; trst <- para.mle[1:9]
for ( nb in 1:n.boot ){

mod <- simulate(mod3)
y.star = as.vector(mod@response[[1]][[1]]@y)
dfy = data.frame(y.star)
mod.star <- depmix(y.star~1, data=dfy, respst=respst, trst=trst, nst=3)
fm.star = fit(mod.star, emcontrol=em.control(tol = 1e-5), verbose=FALSE)
para.star[nb,] = as.vector(getpars(fm.star)[-(1:3)]) }

# bootstrap stnd errors
SE = sqrt(apply(para.star,2,var) + (apply(para.star,2,mean)-para.mle)^2)
(SE.mtrans.mle = permu%*%round(t(matrix(SE[1:9],3,3)),3)%*%permu)
(SE.norms.mle = round(matrix(SE[10:15], 2,3),3)%*%permu)
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It is worth mentioning that switching regressions also fits into this framework. In
this case, we would change μj in the model in Example 6.17 to depend on independent
inputs, say zt1, . . . , ztr , so that

μj = β
(j)
0 +

r∑

i=1
β
(j)
i zti .

This type of model is easily handled using the depmixS4 R package.
By conditioning on the first few observations, it is also possible to include simple

switching linear autoregression into this framework. In this case, we model the
observations as being an AR(p), with parameters depending on the state; that is,

yt = φ
(xt )
0 +

p∑

i=1
φ
(xt )
i yt−i + σ(xt )vt , (6.147)

and vt∼ iid N(0, 1). The model is similar to the threshold model discussed in Sect. 5.4,
however, the process is not self-exciting or influenced by an observed exogenous
process. In (6.147), we are saying that the parameters are random, and the regimes
are changing due to a latent Markov process. In a similar fashion to (6.131), we write
the conditional distribution of the observations as

pj (yt ) = p(yt | xt = j, yt−1:t−p) , (6.148)

and we note that for t > p, pj (yt ) is the normal density (g),

pj (yt ) = g
(
yt ; φ(j)0 +

p∑

i=1
φ
(j)
i yt−i , σ2( j)

)
. (6.149)

As in (6.138), the conditional likelihood is given by

ln LY (Θ | y1:p) =
n∑

t=p+1
ln �

�

�

m∑

j=1
πj (t | t − 1) pj(yt )��

�

.

where Property 6.7 still applies, but with the updated evaluation of p j (yt ) given
in (6.149). In addition, the EM algorithm may be used analogously by assessing
the smoothers. The smoothers in this case are symbolically the same as given
in Property 6.8 with the appropriate definition changes, p j (yt ) as given in (6.148)
and with ϕj (t) = p(yt+1:n | xt = j, yt+1−p:t) for t > p.

Example 6.18 Switching AR – Influenza Mortality
In Example 5.7, we discussed the monthly pneumonia and influenza mortality series
shown in Fig. 5.7. We pointed out the non-reversibility of the series, which rules out
the possibility that the data are generated by a linear Gaussian process. In addition,
note that the series is irregular, and while mortality is highest during the winter,
the peak does not occur in the same month each year. Moreover, some seasons
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Fig. 6.15. The differenced flu mortality data along with the estimated states (displayed as
points). The smoothed state 2 probabilities are displayed in the bottom of the figure as a
straight line. The filtered state 2 probabilities are displayed as vertical lines

have very large peaks, indicating flu epidemics, whereas other seasons are mild. In
addition, it can be seen from Fig. 5.7 that there is a slight negative trend in the data
set, indicating that flu prevention is getting better over the eleven year period.

As in Example 5.7, we focus on the differenced data, which removes the trend. In
this case, we denote yt = ∇flut , where flut represents the data displayed in Fig. 5.7.
Since we already fit a threshold model to yt , we might also consider a switching
autoregressive model where there are two hidden regimes, one for epidemic periods
and one for more mild periods. In this case, the model is given by

yt =

{
φ
(1)
0 +

∑p
j=1 φ

(1)
j yt−j + σ(1)vt , for xt = 1 ,

φ
(2)
0 +

∑p
j=1 φ

(2)
j yt−j + σ(2)vt , for xt = 2 ,

(6.150)

where vt∼ iid N(0, 1), and xt is a latent, two-state Markov chain.
We used the R package MSwM to fit the model specified in (6.150), with p = 2.

The results were

ŷt =

{
.006(.003) + .293(.039)yt−1 + .097(.031)yt−2 + .024 vt , for xt = 1 ,
.199(.063) − .313(.281)yt−1 − 1.604(.276)yt−2 + .112 vt , for xt = 2 ,

with estimated transition matrix

P̂ =

[
.93 .07
.30 .70

]

.

Figure 6.15 displays the data yt = ∇flut along with the estimated states (displayed
as points labeled 1 or 2). The smoothed state 2 probabilities are displayed in the
bottom of the figure as a straight line. The filtered state 2 probabilities are displayed
in the same graph as vertical lines. The code for this example is as follows.
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library(MSwM)
set.seed(90210)
dflu = diff(flu)
model = lm(dflu~ 1)
mod = msmFit(model, k=2, p=2, sw=rep(TRUE,4)) # 2 regimes, AR(2)s
summary(mod)
plotProb(mod, which=3)

6.10 Dynamic Linear Models with Switching

In this section, we extend the hidden Markov model discussed in Sect. 6.9 to more
general problems. As previously indicated, the problem of modeling changes in
regimes for time series has been of interest in many different fields, and we have
explored these ideas in Sect. 5.4 as well as in Sect. 6.9.

Generalizations of the state space model to include the possibility of changes oc-
curring over time have been approached by allowing changes in the error covariances
(Harrison and Stevens [90], Gordon and Smith [76, 77]) or by assigning mixture
distributions to the observation errors vt (Peña and Guttman [151]). Approxima-
tions to filtering were derived in all of the aforementioned articles. An application to
monitoring renal transplants was described in Smith and West [188] and in Gordon
and Smith [77]. Gerlach et al. [69] considered an extension of the switching AR
model to allow for level shifts and outliers in both the observations and innovations.
An application of the idea of switching to the tracking of multiple targets has been
considered in Bar-Shalom [12], who obtained approximations to Kalman filtering in
terms of weighted averages of the innovations. For a thorough coverage of these and
related techniques, see Cappé, Moulines, and Rydén [37] and Douc, Moulines, and
Stoffer [53].

In this section, we will concentrate on the method presented in Shumway and
Stoffer [184]. One way of modeling change in an evolving time series is by assuming
the dynamics of some underlying model changes discontinuously at certain unde-
termined points in time. Our starting point is the DLM given by (6.1) and (6.2),
namely,

xt = Φxt−1 + wt, (6.151)

to describe the p × 1 state dynamics, and

yt = At xt + vt (6.152)

to describe the q×1 observation dynamics. Recall wt and vt are Gaussian white noise
sequences with var(wt ) = Q, var(vt) = R, and cov(wt, vs) = 0 for all s and t.

Example 6.19 Tracking Multiple Targets
The approach of Shumway and Stoffer [184] was motivated primarily by the problem
of tracking a large number of moving targets using a vector yt of sensors. In this
problem, we do not know at any given point in time which target any given sensor
has detected. Hence, it is the structure of the measurement matrix At in (6.152)
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that is changing, and not the dynamics of the signal xt or the noises, wt or vt . As
an example, consider a 3 × 1 vector of satellite measurements yt = (yt1, yt2, yt3)′
that are observations on some combination of a 3 × 1 vector of targets or signals,
xt = (xt1, xt2, xt3)′. For the measurement matrix

At =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
1 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

for example, the first sensor, yt1, observes the second target, xt2; the second sensor,
yt2, observes the first target, xt1; and the third sensor, yt3, observes the third target,
xt3. All possible detection configurations will define a set of possible values for At ,
say, {M1, M2, . . . , Mm}, as a collection of plausible measurement matrices.

Example 6.20 Modeling Economic Change
As another example of the switching model presented in this section, consider the
case in which the dynamics of the linear model changes suddenly over the history of
a given realization. For example, Lam [125] has given the following generalization
of Hamilton [85] model for detecting positive and negative growth periods in the
economy. Suppose the data are generated by

yt = zt + nt, (6.153)

where zt is an autoregressive series and nt is a random walk with a drift that switches
between two values α0 and α0 + α1. That is,

nt = nt−1 + α0 + α1St, (6.154)

with St = 0 or 1, depending on whether the system is in state 1 or state 2. For the
purpose of illustration, suppose

zt = φ1zt−1 + φ2zt−2 + wt (6.155)

is an AR(2) series with var(wt ) = σ2
w . Lam [125] wrote (6.153) in a differenced

form
∇yt = zt − zt−1 + α0 + α1St, (6.156)

which we may take as the observation equation (6.152) with state vector

xt = (zt, zt−1, α0, α1)′ (6.157)

and
M1 = [1,−1, 1, 0] and M2 = [1,−1, 1, 1] (6.158)

determining the two possible economic conditions. The state equation, (6.151), is
of the form

�
�
�
�

�

zt
zt−1
α0
α1

�
�
�
�

�

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ1 φ2 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�
�
�
�

�

zt−1
zt−2
α0
α1

�
�
�
�

�

+

�
�
�
�

�

wt

0
0
0

�
�
�
�

�

. (6.159)
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The observation equation, (6.156), can be written as

∇yt = At xt + vt, (6.160)

where we have included the possibility of observational noise, and where Pr(At =

M1) = 1 − Pr(At = M2), with M1 and M2 given in (6.158).

To incorporate a reasonable switching structure for the measurement matrix into
the DLM that is compatible with both practical situations previously described, we
assume that the m possible configurations are states in a nonstationary, independent
process defined by the time-varying probabilities

πj (t) = Pr(At = Mj ), (6.161)

for j = 1, . . . , m and t = 1, 2, . . . , n. Important information about the current state
of the measurement process is given by the filtered probabilities of being in state j,
defined as the conditional probabilities

πj(t | t) = Pr(At = Mj | y1:t ), (6.162)

which also vary as a function of time. Recall that ys′:s = {ys′, . . . , ys}. The filtered
probabilities (6.162) give the time-varying estimates of the probability of being in
state j given the data to time t.

It will be important for us to obtain estimators of the configuration probabilities,
πj (t | t), the predicted and filtered state estimators, xt−1

t and xtt , and the corresponding
error covariance matrices Pt−1

t and Pt
t . Of course, the predictor and filter estimators

will depend on the parameters, Θ, of the DLM. In many situations, the parameters
will be unknown and we will have to estimate them. Our focus will be on maxi-
mum likelihood estimation, but other authors have taken a Bayesian approach that
assigns priors to the parameters, and then seeks posterior distributions of the model
parameters; see, for example, Gordon and Smith [77], Peña and Guttman [151], or
McCulloch and Tsay [135].

We now establish the recursions for the filters associated with the state xt and the
switching process, At . As discussed in Sect. 6.3, the filters are also an essential part of
the maximum likelihood procedure. The predictors, xt−1

t = E(xt | y1:t−1), and filters,
xtt = E(xt | y1:t ), and their associated error variance–covariance matrices, Pt−1

t and
Pt
t , are given by

xt−1
t = Φxt−1

t−1, (6.163)

Pt−1
t = ΦPt−1

t−1Φ
′ + Q, (6.164)

xtt = xt−1
t +

m∑

j=1
πj(t |t)Kt jεt j, (6.165)

Pt
t =

m∑

j=1
πj(t |t)(I − Kt jMj )Pt−1

t , (6.166)

Kt j = Pt−1
t M ′

j Σ
−1
t j , (6.167)
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where the innovation values in (6.165) and (6.167) are

εt j = yt − Mj x
t−1
t , (6.168)

Σt j = MjP
t−1
t M ′

j + R, (6.169)

for j = 1, . . . , m.
Equations (6.163)–(6.167) exhibit the filter values as weighted linear combi-

nations of the m innovation values, (6.168)–(6.169), corresponding to each of the
possible measurement matrices. The equations are similar to the approximations in-
troduced by Bar-Shalom and Tse [13], by Gordon and Smith [77], and Peña and
Guttman [151].

To verify (6.165), let the indicator I(At = Mj ) = 1 when At = Mj , and zero
otherwise. Then, using (6.20),

xtt = E(xt | y1:t ) = E[E(xt | y1:t, At )
/
/ y1:t ]

= E
{ m∑

j=1
E(xt | y1:t, At = Mj )I(At = Mj )

/
/ y1:t

}

= E
{ m∑

j=1
[xt−1

t + Kt j (yt − Mj x
t−1
t )]I(At = Mj )

/
/ y1:t

}

=

m∑

j=1
πj(t | t)[xt−1

t + Kt j (yt − Mj x
t−1
t )] ,

where Kt j is given by (6.167). Equation (6.166) is derived in a similar fashion;
the other relationships, (6.163), (6.164), and (6.167), follow from straightforward
applications of the Kalman filter results given in Property 6.1.

Next, we derive the filters πj (t |t). Let pj (t | t − 1) denote the conditional density
of yt given the past y1:t−1, and At = Mj , for j = 1, . . . , m. Then,

πj (t | t) = πj (t)pj(t | t − 1)
∑m

k=1 πk(t)pk(t | t − 1), (6.170)

where we assume the distribution πj (t), for j = 1, . . . , m has been specified before
observing y1:t (details follow as in Example 6.21 below). If the investigator has
no reason to prefer one state over another at time t, the choice of uniform priors,
πj (t) = m−1, for j = 1, . . . , m, will suffice. Smoothness can be introduced by letting

πj (t) =
m∑

i=1
πi(t − 1 | t − 1) πij, (6.171)

where the non-negative weights πij are chosen so
∑m

i=1 πij = 1. If the At process was
Markov with transition probabilities πij , then (6.171) would be the update for the
filter probability, as shown in the next example.
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Example 6.21 Hidden Markov Chain Model
If {At } is a hidden Markov chain with stationary transition probabilities πij =

Pr(At = Mj | At−1 = Mi), for i, j = 1, . . . , m, we have

πj(t | t) = p(At = Mj, yt | y1:t−1)
p(yt | y1:t−1)

=
Pr(At = Mj | y1:t−1) p(yt | At = Mj, y1:t−1)

p(yt | y1:t−1)
=

πj (t | t − 1) pj(t | t − 1)
∑m

k=1 πk(t | t − 1) pk(t | t − 1) . (6.172)

In the Markov case, the conditional probabilities

πj (t | t − 1) = Pr(At = Mj | y1:t−1)
in (6.172) replace the unconditional probabilities, πj(t) = Pr(At = Mj ), in (6.170).

To evaluate (6.172), we must be able to calculate πj (t | t−1) and pj(t | t−1). We
will discuss the calculation of pj (t | t −1) after this example. To derive πj (t | t −1),
note,

πj (t | t − 1) = Pr(At = Mj

/
/ y1:t−1)

=

m∑

i=1
Pr(At = Mj, At−1 = Mi

/
/ y1:t−1)

=

m∑

i=1
Pr(At = Mj

/
/ At−1 = Mi) Pr(At−1 = Mi

/
/ y1:t−1)

=

m∑

i=1
πijπi(t − 1 | t − 1). (6.173)

Expression (6.171) comes from equation (6.173), where, as previously noted, we
replace πj (t | t − 1) by πj (t).

The difficulty in extending the approach here to the Markov case is the depen-
dence among the yt , which makes it necessary to enumerate over all possible histories
to derive the filtering equations. This problem will be evident when we derive the
conditional density p j (t | t − 1). Equation (6.171) has πj (t) as a function of the
past observations, y1:t−1, which is inconsistent with our model assumption. Never-
theless, this seems to be a reasonable compromise that allows the data to modify the
probabilities πj(t), without having to develop a highly computer-intensive technique.

As previously suggested, the computation of pj (t | t − 1), without some ap-
proximations, is highly computer-intensive. To evaluate pj (t | t − 1), consider the
event

{A1 = Mj1, . . . , At−1 = Mjt−1 } , (6.174)

for ji = 1, . . . , m, and i = 1, . . . , t − 1, which specifies a specific set of measurement
matrices through the past; we will write this event as A(t−1) = M(�). Because mt−1
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possible outcomes exist for A1, . . . , At−1, the index � runs through � = 1, . . . , mt−1.
Using this notation, we may write

pj (t | t − 1)

=

mt−1∑

�=1
Pr{A(t−1) = M(�)

/
/ y1:t−1}p(yt

/
/ y1:t−1, At = Mj, A(t−1) = M(�))

def
=

mt−1∑

�=1
α(�)g (

yt ; μt j (�), Σt j (�)
)
, j = 1, . . . , m, (6.175)

where g(·; μ, Σ) represents the normal density with mean vector μ and variance–
covariance matrix Σ . Thus, pj (t | t − 1) is a mixture of normals with non-negative
weights α(�) = Pr{A(t−1) = M(�) | y1:t−1} such that

∑
� α(�) = 1, and with each

normal distribution having mean vector

μt j(�) = Mj x
t−1
t (�) = Mj E[xt | y1:t−1, A(t−1) = M(�)] (6.176)

and covariance matrix
Σt j (�) = MjP

t−1
t (�)M ′

j + R. (6.177)

This result follows because the conditional distribution of yt in (6.175) is identical
to the fixed measurement matrix case presented in Sect. 6.2. The values in (6.176)
and (6.177), and hence the densities, pj(t | t − 1), for j = 1, . . . , m, can be obtained
directly from the Kalman filter, Property 6.1, with the measurement matrices A(t−1)
fixed at M(�).

Although pj (t | t − 1) is given explicitly in (6.175), its evaluation is highly
computer intensive. For example, with m = 2 states and n = 20 observations, we have
to filter over 2+22+· · ·+220 possible sample paths (220 = 1, 048, 576). There are a few
remedies to this problem. An algorithm that makes it possible to efficiently compute
the most likely sequence of states given the data is known as the Viterbi algorithm,
which is based on the well-known dynamic programming principle. Details may
be found in Douc et al. [53, §9.2]. Another remedy is to trim (remove), at each t,
highly improbable sample paths; that is, remove events in (6.174)with extremely small
probability of occurring, and then evaluate pj(t | t−1) as if the trimmed sample paths
could not have occurred. Another rather simple alternative, as suggested by Gordon
and Smith [77] and Shumway and Stoffer [184], is to approximate p j (t | t − 1) using
the closest (in the sense of Kulback–Leibler distance) normal distribution. In this
case, the approximation leads to choosing normal distribution with the same mean
and variance associated with pj(t | t − 1); that is, we approximate p j (t | t − 1) by a
normal with mean Mj xt−1

t and variance Σt j given in (6.169).
To develop a procedure for maximum likelihood estimation, the joint density of

the data is
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f (y1, . . . , yn) =
n∏

t=1
f (yt | y1:t−1)

=

n∏

t=1

m∑

j=1
Pr(At = Mj | y1:t−1)p(yt | At = Mj, y1:t−1),

and hence, the likelihood can be written as

ln LY (Θ) =
n∑

t=1
ln �

�

�

m∑

j=1
πj (t)pj(t | t − 1)��

�

. (6.178)

For the hidden Markov model, πj (t) would be replaced by πj (t | t − 1). In (6.178),
we will use the normal approximation to pj (t | t − 1). That is, henceforth, we will
consider pj (t | t − 1) as the normal, N(Mj xt−1

t , Σt j ), density, where xt−1
t is given

in (6.163) and Σt j is given in (6.169). We may consider maximizing (6.178) directly
as a function of the parametersΘ in {μ0,Φ,Q, R} using a Newton method, or we may
consider applying the EM algorithm to the complete data likelihood.

To apply the EM algorithmas in Sect. 6.3, we call x0:n, A1:n, and y1:n, the complete
data, with likelihood given by

−2 ln LX,A,Y (Θ) = ln |Σ0 | + (x0 − μ0)′Σ−1
0 (x0 − μ0)

+ n ln |Q | +
n∑

t=1
(xt −Φxt−1)′Q−1(xt −Φxt−1)

− 2
n∑

t=1

m∑

j=1
I(At =Mj ) ln πj (t) + n ln |R|

+

n∑

t=1

m∑

j=1
I(At =Mj )(yt − At xt )′R−1(yt − At xt ).

(6.179)

As discussed in Sect. 6.3, we require the minimization of the conditional expectation

Q
(
Θ

/
/ Θ(k−1)

)
= E

{
−2 ln LX,A,Y (Θ)

/
/
/ y:n, Θ

(k−1)
}
, (6.180)

with respect to Θ at each iteration, k = 1, 2, . . . . The calculation and maximization
of (6.180) is similar to the case of (6.63). In particular, with

πj (t | n) = E[I(At = Mj )
/
/ y1:n], (6.181)

we obtain on iteration k,
π
(k)
j (t) = πj(t | n), (6.182)

μ
(k)
0 = xn0 , (6.183)

Φ(k) = S10S−1
00 , (6.184)

Q(k) = n−1
(
S11 − S10S−1

00 S′10

)
, (6.185)
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and

R(k) = n−1
n∑

t=1

m∑

j=1
πj(t |n)

[
(yt − Mj x

n
t )(yt − Mj x

n
t )′ + MjP

n
t M ′

j

]
. (6.186)

where S11, S10, S00 are given in (6.65)–(6.67). As before, at iteration k, the filters
and the smoothers are calculated using the current values of the parameters, Θ(k−1),
and Σ0 is held fixed. Filtering is accomplished by using (6.163)–(6.167). Smoothing
is derived in a similar manner to the derivation of the filter, and one is led to the
smoother given in Property 6.2 and Property 6.3, with one exception, the initial
smoother covariance, (6.53), is now

Pn
n,n−1 =

m∑

j=1
πj (n|n)(I − Kt jMj )ΦPn−1

n−1 . (6.187)

Unfortunately, the computation of πj (t | n) is excessively complicated, and requires
integrating over mixtures of normal distributions. Shumway and Stoffer [184] suggest
approximating the smoother πj (t | n) by the filter πj(t | t), and find the approximation
works well.

Example 6.22 Analysis of the Influenza Data
We use the results of this section to analyze the U.S. monthly pneumonia and
influenza mortality data plotted in Fig. 5.7. Letting yt denote the observations at
month t, we model yt in terms of a structural component model coupled with a
hidden Markov process that determines whether a flu epidemic exists.

The model consists of three structural components. The first component, xt1,
is an AR(2) process chosen to represent the periodic (seasonal) component of the
data,

xt1 = α1xt−1,1 + α2xt−2,1 + wt1, (6.188)

where wt1 is white noise, with var(wt1) = σ2
1 . The second component, xt2, is an

AR(1) process with a nonzero constant term, which is chosen to represent the sharp
rise in the data during an epidemic,

xt2 = β0 + β1 xt−1,2 + wt2, (6.189)

where wt2 is white noise, with var(wt2) = σ2
2 . The third component, xt3, is a fixed

trend component given by,
xt3 = xt−1,3 + wt3, (6.190)

where var(wt3) = 0. The case in which var(wt3) > 0, which corresponds to a
stochastic trend (random walk), was tried here, but the estimation became unstable,
and lead to us fitting a fixed, rather than stochastic, trend. Thus, in the final model,
the trend component satisfies ∇xt3 = 0; recall in Example 6.18 the data were also
differenced once before fitting the model.
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Throughout the years, periods of normal influenza mortality (state 1) are mod-
eled as

yt = xt1 + xt3 + vt, (6.191)

where the measurement error, vt , is white noise with var(vt) = σ2
v . When an

epidemic occurs (state 2), mortality is modeled as

yt = xt1 + xt2 + xt3 + vt . (6.192)

The model specified in (6.188)–(6.192) can be written in the general state-space
form. The state equation is

�
�
�
�

�

xt1
xt−1,1

xt2
xt3

�
�
�
�

�

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 α2 0 0
1 0 0 0
0 0 β1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�
�
�
�

�

xt−1,1
xt−2,1
xt−1,2
xt−1,3

�
�
�
�

�

+

�
�
�
�

�

0
0
β0
0

�
�
�
�

�

+

�
�
�
�

�

wt1
0
wt2
0

�
�
�
�

�

. (6.193)

Of course, (6.193) can be written in the standard state-equation form as

xt = Φxt−1 +Υut + wt, (6.194)

where xt = (xt1, xt−1,1, xt2, xt3)′, Υ = (0, 0, β0, 0)′, ut ≡ 1, and Q is a 4 × 4 matrix
with σ2

1 as the (1,1)-element, σ2
2 as the (3,3)-element, and the remaining elements

set equal to zero. The observation equation is

yt = At xt + vt, (6.195)

where At is 1 × 4, and vt is white noise with var(vt ) = R = σ2
v . We assume all

components of variance wt1, wt2, and vt are uncorrelated.
As discussed in (6.191) and (6.192), At can take one of two possible forms

At = M1 = [1, 0, 0, 1] no epidemic,
At = M2 = [1, 0, 1, 1] epidemic,

corresponding to the two possible states of (1) no flu epidemic and (2) flu epidemic,
such that Pr(At = M1) = 1 − Pr(At = M2). In this example, we will assume
At is a hidden Markov chain, and hence we use the updating equations given
in Example 6.21, (6.172) and (6.173), with transition probabilities π11 = π22 = .75
(and, thus, π12 = π21 = .25).

Parameter estimation was accomplished using a quasi-Newton–Raphson pro-
cedure to maximize the approximate log likelihood given in (6.178), with initial
values of π1(1 | 0) = π2(1 | 0) = .5. Table 6.3 shows the results of the estimation
procedure. On the initial fit, two estimates are not significant, namely, β̂1 and σ̂v.
When σ2

v = 0, there is no measurement error, and the variability in data is explained
solely by the variance components of the state system, namely, σ2

1 and σ2
2 . The case

in which β1 = 0 corresponds to a simple level shift during a flu epidemic. In the
final model, with β1 and σ2

v removed, the estimated level shift (β̂0) corresponds to
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Table 6.3. Estimation results for influenza data

Initial model Final model
Parameter estimates estimates

α1 1.422 (.100) 1.406 (.079)
α2 −.634 (.089) −.622 (.069)
β0 .276 (.056) .210 (.025)
β1 −.312 (.218) —
σ1 .023 (.003) .023 (.005)
σ2 .108 (.017) .112 (.017)
σv .002 (.009) —

Estimated standard errors in parentheses

an increase in mortality by about .2 per 1000 during a flu epidemic. The estimates
for the final model are also listed in Table 6.3.

Figure 6.16a shows a plot of the data, yt , for the ten-year period of 1969–1978
as well as an indicator that takes the value of 1 if π̂1(t | t − 1) ≥ .5, or 2 if
π̂2(t | t − 1) > .5. The estimated prediction probabilities do a reasonable job of
predicting a flu epidemic, although the peak in 1972 is missed.

Figure 6.16b shows the estimated filtered values (that is, filtering is done using
the parameter estimates) of the three components of the model, xt

t1, xt
t2, and xt

t3.
Except for initial instability (which is not shown), x̂t

t1 represents the seasonal (cyclic)
aspect of the data, x̂t

t2 represents the spikes during a flu epidemic, and x̂t
t3 represents

the slow decline in flu mortality over the ten-year period of 1969–1978.
One-month-ahead prediction, say, ŷt−1

t , is obtained as

ŷt−1
t = M1 x̂t−1

t if π̂1(t | t − 1) > π̂2(t | t − 1),

ŷt−1
t = M2 x̂t−1

t if π̂1(t | t − 1) ≤ π̂2(t | t − 1).
Of course, x̂t−1

t is the estimated state prediction, obtained via the filter presented
in (6.163)–(6.167) (with the addition of the constant term in the model) using the
estimated parameters. The results are shown in Fig. 6.16(c). The precision of the
forecasts can be measured by the innovation variances, Σt1 when no epidemic is
predicted, and Σt2 when an epidemic is predicted. These values become stable
quickly, and when no epidemic is predicted, the estimated standard prediction error
is approximately .02 (this is the square root of Σt1 for t large); when a flu epidemic
is predicted, the estimated standard prediction error is approximately .11.

The results of this analysis are impressive given the small number of parameters
and the degree of approximation that was made to obtain a computationally simple
method for fitting a complex model.

Further evidence of the strength of this technique can be found in the example
given in Shumway and Stoffer [184].
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Fig. 6.16. (a) Influenza data, yt , (line–points) and a prediction indicator (1 or 2) that an
epidemic occurs in month t given the data up to month t − 1 (dashed line). (b) The three
filtered structural components of influenza mortality: x̂t

t1 (cyclic trace), x̂t
t2 (spiked trace),

and x̂t
t3 (negative linear trace). (c) One-month-ahead predictions shown as upper and lower

limits ŷt−1
t ± 2

√
P̂t−1
t (gray swatch), of the number of pneumonia and influenza deaths, and yt

(points)

The R code for the final model estimation is as follows.
y = as.matrix(flu); num = length(y); nstate = 4;
M1 = as.matrix(cbind(1,0,0,1)) # obs matrix normal
M2 = as.matrix(cbind(1,0,1,1)) # obs matrix flu epi
prob = matrix(0,num,1); yp = y # to store pi2(t|t-1) & y(t|t-1)
xfilter = array(0, dim=c(nstate,1,num)) # to store x(t|t)
# Function to Calculate Likelihood
Linn = function(para){

alpha1 = para[1]; alpha2 = para[2]; beta0 = para[3]
sQ1 = para[4]; sQ2 = para[5]; like=0
xf = matrix(0, nstate, 1) # x filter
xp = matrix(0, nstate, 1) # x pred
Pf = diag(.1, nstate) # filter cov
Pp = diag(.1, nstate) # pred cov
pi11 <- .75 -> pi22; pi12 <- .25 -> pi21; pif1 <- .5 -> pif2
phi = matrix(0,nstate,nstate)
phi[1,1] = alpha1; phi[1,2] = alpha2; phi[2,1]=1; phi[4,4]=1
Ups = as.matrix(rbind(0,0,beta0,0))
Q = matrix(0,nstate,nstate)
Q[1,1] = sQ1^2; Q[3,3] = sQ2^2; R=0 # R=0 in final model
# begin filtering #
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for(i in 1:num){
xp = phi%*%xf + Ups; Pp = phi%*%Pf%*%t(phi) + Q
sig1 = as.numeric(M1%*%Pp%*%t(M1) + R)
sig2 = as.numeric(M2%*%Pp%*%t(M2) + R)
k1 = Pp%*%t(M1)/sig1; k2 = Pp%*%t(M2)/sig2
e1 = y[i]-M1%*%xp; e2 = y[i]-M2%*%xp
pip1 = pif1*pi11 + pif2*pi21; pip2 = pif1*pi12 + pif2*pi22
den1 = (1/sqrt(sig1))*exp(-.5*e1^2/sig1)
den2 = (1/sqrt(sig2))*exp(-.5*e2^2/sig2)
denm = pip1*den1 + pip2*den2
pif1 = pip1*den1/denm; pif2 = pip2*den2/denm
pif1 = as.numeric(pif1); pif2 = as.numeric(pif2)
e1 = as.numeric(e1); e2=as.numeric(e2)
xf = xp + pif1*k1*e1 + pif2*k2*e2
eye = diag(1, nstate)
Pf = pif1*(eye-k1%*%M1)%*%Pp + pif2*(eye-k2%*%M2)%*%Pp
like = like - log(pip1*den1 + pip2*den2)
prob[i]<<-pip2; xfilter[,,i]<<-xf; innov.sig<<-c(sig1,sig2)
yp[i]<<-ifelse(pip1 > pip2, M1%*%xp, M2%*%xp) }

return(like) }
# Estimation
alpha1 = 1.4; alpha2 = -.5; beta0 = .3; sQ1 = .1; sQ2 = .1
init.par = c(alpha1, alpha2, beta0, sQ1, sQ2)
(est = optim(init.par, Linn, NULL, method='BFGS', hessian=TRUE,

control=list(trace=1,REPORT=1)))
SE = sqrt(diag(solve(est$hessian)))
u = cbind(estimate=est$par, SE)
rownames(u)=c('alpha1','alpha2','beta0','sQ1','sQ2'); u

estimate SE
alpha1 1.40570967 0.078587727
alpha2 -0.62198715 0.068733109
beta0 0.21049042 0.024625302
sQ1 0.02310306 0.001635291
sQ2 0.11217287 0.016684663

# Graphics
predepi = ifelse(prob<.5,0,1); k = 6:length(y)
Time = time(flu)[k]
regime = predepi[k]+1
par(mfrow=c(3,1), mar=c(2,3,1,1)+.1)
plot(Time, y[k], type="n", ylab="")
grid(lty=2); lines(Time, y[k], col=gray(.7))
text(Time, y[k], col=regime, labels=regime, cex=1.1)
text(1979,.95,"(a)")

plot(Time, xfilter[1,,k], type="n", ylim=c(-.1,.4), ylab="")
grid(lty=2); lines(Time, xfilter[1,,k])
lines(Time, xfilter[3,,k]); lines(Time, xfilter[4,,k])
text(1979,.35,"(b)")

plot(Time, y[k], type="n", ylim=c(.1,.9),ylab="")
grid(lty=2); points(Time, y[k], pch=19)
prde1 = 2*sqrt(innov.sig[1]); prde2 = 2*sqrt(innov.sig[2])
prde = ifelse(predepi[k]<.5, prde1,prde2)

xx = c(Time, rev(Time))
yy = c(yp[k]-prde, rev(yp[k]+prde))

polygon(xx, yy, border=8, col=gray(.6, alpha=.3))
text(1979,.85,"(c)")
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6.11 Stochastic Volatility

Stochastic volatility (SV) models are an alternative to GARCH-type models that were
presented in Chap. 5. Throughout this section, we let rt denote the returns of some
financial asset. Most models for return data used in practice are of a multiplicative
form that we have seen in Sect. 5.3,

rt = σtεt , (6.196)

where εt is an iid sequence and the volatility process, σt , is a non-negative stochastic
process such that εt is independent of σs for all s ≤ t. It is often assumed that εt has
zero mean and unit variance.

In SV models, the volatility is a nonlinear transform of a hidden linear autore-
gressive process where the hidden volatility process, xt = logσ2

t , follows a first order
autoregression,

xt = φxt−1 + wt , (6.197a)
rt = β exp(xt/2)εt , (6.197b)

wherewt∼ iid N(0, σ2
w) and εt is iid noise having finite moments. The error processes

wt and εt are assumed to be mutually independent and |φ| < 1. As wt is normally
distributed, xt is also normally distributed. All moments of εt exist, so that all
moments of rt in (6.197) exist as well. Assuming that x0 ∼ N(0, σ2

w/(1 − φ2)) [the
stationary distribution] the kurtosis6 of rt is given by

κ4(rt ) = κ4(εt ) exp(σ2
x ), (6.198)

where σ2
x = σ2

w/(1 − φ2) is the (stationary) variance of xt . Thus κ4(rt ) > κ4(εt ),
so that if εt∼ iid N(0, 1), the distribution of rt is leptokurtic. The autocorrelation
function of {r2m

t ; t = 1, 2, . . . } for any integer m is given by (see Problem 6.29)

corr(r2m
t+h, r

2m
t ) = exp(m2σ2

xφ
h) − 1

κ4m(εt ) exp(m2σ2
x ) − 1

. (6.199)

The decay rate of the autocorrelation function is faster than exponential at small time
lags and then stabilizes to φ for large lags.

Sometimes it is easier to work with the linear form of the model where we define

yt = log r2
t and vt = log ε2

t ,

in which case we may write
yt = α + xt + vt . (6.200)

A constant is usually needed in either the state equation or the observation equation
(but not typically both), so we write the state equation as

xt = φ0 + φ1xt−1 + wt, (6.201)

6 For an integer m and a random variable U , κm(U) := E[ |U |m]/(E[ |U |2])m/2. Typically, κ3 is called
skewness and κ4 is called kurtosis.
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where wt is white Gaussian noise with variance σ2
w . The constant φ0 is sometimes

referred to as the leverage effect. Together, (6.200) and (6.201) make up the stochastic
volatility model due to Taylor [199].

If ε2
t had a log-normal distribution, (6.200)–(6.201) would form a Gaussian state-

space model, and we could then use standard DLM results to fit the model to data.
Unfortunately, that assumption does not seem to work well. Instead, one often keeps
the ARCH normality assumption on εt∼ iid N(0, 1), in which case, vt = log ε2

t is
distributed as the log of a chi-squared random variable with one degree of freedom.
This density is given by

f (v) = 1√
2π

exp
{− 1

2 (ev − v)} −∞ < v < ∞ . (6.202)

The mean of the distribution is−(γ+log 2), where γ ≈ 0.5772 is Euler’s constant, and
the variance of the distribution is π2/2. It is a highly skewed density (see Figure 6.18)
but it is not flexible because there are no free parameters to be estimated.

Various approaches to the fitting of stochastic volatility models have been exam-
ined; these methods include a wide range of assumptions on the observational noise
process. A good summary of the proposed techniques, both Bayesian (via MCMC)
and non-Bayesian approaches (such as quasi-maximum likelihood estimation and the
EM algorithm), can be found in Jacquier et al. [104], and Shephard [177]. Simulation
methods for classical inference applied to stochastic volatility models are discussed
in Danielson [48] and Sandmann and Koopman [171].

Kim, Shephard and Chib [118] proposed modeling the log of a chi-squared
random variable by a mixture of seven normals to approximate the first four moments
of the observational error distribution; the mixture is fixed and no additional model
parameters are added by using this technique. The basic model assumption that εt
is Gaussian is unrealistic for most applications. In an effort to keep matters simple
but more general (in that we allow the observational error dynamics to depend on
parameters that will be fitted), our method of fitting stochastic volatility models is to
retain the Gaussian state equation (6.201), but to write the observation equation, as

yt = α + xt + ηt, (6.203)

where ηt is white noise, whose distribution is a mixture of two normals, one centered
at zero. In particular, we write

ηt = It zt0 + (1 − It )zt1, (6.204)

where It is an iid Bernoulli process, Pr{It = 0} = π0, Pr{It = 1} = π1 (π0 + π1 = 1),
zt0 ∼ iid N(0, σ2

0 ), and zt1 ∼ iid N(μ1, σ
2
1 ).

The advantage to this model is that it is easy to fit because it uses normality. In
fact, the model equations (6.201) and (6.203)–(6.204) are similar to those presented
in Peña and Guttman [151], who used the idea to obtain a robust Kalman filter, and,
as previously mentioned, in Kim et al. [118]. The material presented in Sect. 6.10
applies here, and in particular, the filtering equations for this model are
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xtt+1 = φ0 + φ1xt−1
t +

1∑

j=0
πt jKt jεt j, (6.205)

Pt
t+1 = φ2

1Pt−1
t + σ2

w −
1∑

j=0
πt jK

2
t jΣt j, (6.206)

εt0 = yt − α − xt−1
t , εt1 = yt − α − xt−1

t − μ1, (6.207)

Σt0 = Pt−1
t + σ2

0 , Σt1 = Pt−1
t + σ2

1 , (6.208)

Kt0 = φ1Pt−1
t

/
Σt0, Kt1 = φ1Pt−1

t

/
Σt1. (6.209)

To complete the filtering, we must be able to assess the probabilities πt1 = Pr(It = 1 |
y1:t ), for t = 1, . . . , n; of course, πt0 = 1− πt1. Let pj(t | t − 1) denote the conditional
density of yt given the past y1:t−1, and It = j for j = 0, 1. Then,

πt1 =
π1p1(t | t − 1)

π0p0(t | t − 1) + π1p1(t | t − 1), (6.210)

where we assume the distribution πj , for j = 0, 1 has been specified a priori. If the
investigator has no reason to prefer one state over another the choice of uniform priors,
π1 = 1/2, will suffice. Unfortunately, it is computationally difficult to obtain the exact
values of pj (t | t − 1); although we can give an explicit expression of pj(t | t − 1), the
actual computation of the conditional density is prohibitive. A viable approximation,
however, is to choose pj (t | t − 1) to be the normal density, N(xt−1

t + μj, Σt j ), for
j = 0, 1 and μ0 = 0; see Sect. 6.10 for details.

The innovations filter given in (6.205)–(6.210) can be derived from the Kalman
filter by a simple conditioning argument; e.g., to derive (6.205), write

E (xt+1 | y1:t ) =
1∑

j=0
E (xt+1 | y1:t, It = j) Pr(It = j | y1:t )

=

1∑

j=0

(
φ0 + φ1xt−1

t + Kt jεt j

)
πt j

= φ0 + φ1xt−1
t +

1∑

j=0
πt jKt jεt j .

Estimation of the parameters,Θ = (φ0, φ1, σ
2
0 , μ1, σ

2
1 , σ

2
w)′, is accomplished via MLE

based on the likelihood given by

ln LY (Θ) =
n∑

t=1
ln �

�

�

1∑

j=0
πj fj (t

/
/ t − 1)��

�

, (6.211)

where the density pj (t | t−1) is approximatedby the normal density, N(xt−1
t +μj , σ2

j ),
previously mentioned. We may consider maximizing (6.211) directly as a function
of the parameters Θ using a Newton method, or we may consider applying the EM
algorithm to the complete data likelihood.



6.11 Stochastic Volatility 363

1987.0 1987.5 1988.0 1988.5

−0
.1

5
−0

.0
5

0.
05

Fig. 6.17. Approximately four hundred observations of rt , the daily returns of the NYSE
surrounding the crash of October 19, 1987. Also displayed is the corresponding one-step-
ahead predicted log volatility, x̂t−1

t where xt = logσ2
t , scaled by .1 to fit on the plot

Example 6.23 Analysis of the New York Stock Exchange Returns
Figure 6.17 shows the returns, rt , for about 400 of the 2000 trading days of the
NYSE. Model (6.201) and (6.203)–(6.204), with π1 fixed at .5, was fit to the data
using a quasi-Newton–Raphson method to maximize (6.211). The results are given
in Table 6.4. Figure 6.18 compares the density of the log of a χ2

1 with the fitted
normal mixture; we note the data indicate a substantial amount of probability in the
upper tail that the log-χ2

1 distribution misses.
Finally, Figure 6.17 also displays the one-step-ahead predicted log volatility,

x̂t−1
t where xt = logσ2

t , surrounding the crash of October 19, 1987. The analysis
indicates that φ0 is not needed. The R code when φ0 is included in the model is as
follows.
y = log(nyse^2)
num = length(y)
# Initial Parameters
phi0 = 0; phi1 =.95; sQ =.2; alpha = mean(y)
sR0 = 1; mu1 = -3; sR1 =2
init.par = c(phi0, phi1, sQ, alpha, sR0, mu1, sR1)
# Innovations Likelihood
Linn = function(para){
phi0 = para[1]; phi1 = para[2]; sQ = para[3]; alpha = para[4]
sR0 = para[5]; mu1 = para[6]; sR1 = para[7]
sv = SVfilter(num, y, phi0, phi1, sQ, alpha, sR0, mu1, sR1)
return(sv$like) }

# Estimation
(est = optim(init.par, Linn, NULL, method='BFGS', hessian=TRUE,

control=list(trace=1,REPORT=1)))
SE = sqrt(diag(solve(est$hessian)))
u = cbind(estimates=est$par, SE)
rownames(u)=c('phi0','phi1','sQ','alpha','sigv0','mu1','sigv1'); u
# Graphics (need filters at the estimated parameters)
phi0 = est$par[1]; phi1 = est$par[2]; sQ = est$par[3]; alpha = est$par[4]
sR0 = est$par[5]; mu1 = est$par[6]; sR1 = est$par[7]
sv = SVfilter(num,y,phi0,phi1,sQ,alpha,sR0,mu1,sR1)
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Table 6.4. Estimation results for the NYSE fit

Estimated
Parameter Estimate standard error

φ0 −.006 .016†
φ1 .988 .007
σw .091 .027
α −9.613 1.269
σ0 1.220 .065
μ1 −2.292 .205
σ1 2.683 .105

† not significant

# densities plot (f is chi-sq, fm is fitted mixture)
x = seq(-15,6,by=.01)
f = exp(-.5*(exp(x)-x))/(sqrt(2*pi))
f0 = exp(-.5*(x^2)/sR0^2)/(sR0*sqrt(2*pi))
f1 = exp(-.5*(x-mu1)^2/sR1^2)/(sR1*sqrt(2*pi))
fm = (f0+f1)/2
plot(x, f, type='l'); lines(x, fm, lty=2, lwd=2)
dev.new(); Time=701:1100
plot (Time, nyse[Time], type='l', col=4, lwd=2, ylab='', xlab='',

ylim=c(-.18,.12))
lines(Time, sv$xp[Time]/10, lwd=2, col=6)

It is possible to use the bootstrap proceduredescribed in Sect. 6.7 for the stochastic
volatility model, with some minor changes. The following procedure was described
in Stoffer and Wall [195]. We develop a vector first-order equation, as was done
in (6.123). First, using (6.207), and noting that yt = πt0yt + πt1yt , we may write

yt = α + xt−1
t + πt0εt0 + πt1(εt1 + μ1). (6.212)

Consider the standardized innovations

et j = Σ
−1/2
t j εt j, j = 0, 1, (6.213)

and define the 2 × 1 vector
et =

[
et0
et1

]

.

Also, define the 2 × 1 vector

ξt =

[
xt
t+1
yt

]

.

Combining (6.205) and (6.212) results in a vector first-order equation for ξt given by

ξt = Fξt−1 + Gt + Htet, (6.214)
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Fig. 6.18. Density of the log of a χ2
1 as given by (6.202) (solid line) and the fitted normal

mixture (dashed line) from Example 6.23

where

F =

[
φ1 0
1 0

]

, Gt =

[
φ0

α + πt1μ1

]

, Ht =

[
πt0Kt0Σ

1/2
t0 πt1Kt1Σ

1/2
t1

πt0Σ
1/2
t0 πt1Σ

1/2
t1

]

.

Hence, the steps in bootstrapping for this case are the same as steps (i) through (v)
described in Sect. 6.7, but with (6.123) replaced by the following first-order equation:

ξ∗t = F(Θ̂)ξ∗t−1 + Gt (Θ̂; π̂t1) + Ht (Θ̂; π̂t1)e∗t , (6.215)

where Θ̂ = {φ̂0, φ̂1, σ̂
2
0 , α̂, μ̂1, σ̂

2
1 , σ̂

2
w} is the MLE of Θ, and π̂t1 is estimated

via (6.210), replacing p1(t | t − 1) and p0(t | t − 1) by their respective estimated
normal densities (π̂t0 = 1 − π̂t1).

Example 6.24 Analysis of the U.S. GNP Growth Rate
In Example 5.4, we fit an ARCH model to the U.S. GNP growth rate. In this example,
we will fit a stochastic volatility model to the residuals from the AR(1) fit on the
growth rate (see Example 3.39). Figure 6.19 shows the log of the squared residuals,
say yt , from the fit on the U.S. GNP series. The stochastic volatility model (6.200)–
(6.204) was then fit to yt . Table 6.5 shows the MLEs of the model parameters
along with their asymptotic SEs assuming the model is correct. Also displayed in
Table 6.5 are the SEs of B = 500 bootstrapped samples. There is little agreement
between most of the asymptotic values and the bootstrapped values. The interest
here, however, is not so much in the SEs, but in the actual sampling distribution of the
estimates. For example, Fig. 6.19 compares the bootstrap histogram and asymptotic
normal distribution of φ̂1. In this case, the bootstrap distribution exhibits positive
kurtosis and skewness which is missed by the assumption of asymptotic normality.

The R code for this example is as follows. We held φ0 at 0 for this analysis
because it was not significantly different from 0 in an initial analysis.
n.boot = 500 # number of bootstrap replicates
tol = sqrt(.Machine$double.eps) # convergence tolerance
gnpgr = diff(log(gnp))
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Fig. 6.19. Results for Example 6.24: Log of the squared residuals from an AR(1) fit on GNP
growth rate. Bootstrap histogram and asymptotic distribution of φ̂1

fit = arima(gnpgr, order=c(1,0,0))
y = as.matrix(log(resid(fit)^2))
num = length(y)
plot.ts(y, ylab='')
# Initial Parameters
phi1 = .9; sQ = .5; alpha = mean(y); sR0 = 1; mu1 = -3; sR1 = 2.5
init.par = c(phi1, sQ, alpha, sR0, mu1, sR1)
# Innovations Likelihood
Linn = function(para, y.data){

phi1 = para[1]; sQ = para[2]; alpha = para[3]
sR0 = para[4]; mu1 = para[5]; sR1 = para[6]
sv = SVfilter(num, y.data, 0, phi1, sQ, alpha, sR0, mu1, sR1)
return(sv$like) }

# Estimation
(est = optim(init.par, Linn, NULL, y.data=y, method='BFGS', hessian=TRUE,

control=list(trace=1,REPORT=1)))
SE = sqrt(diag(solve(est$hessian)))
u = rbind(estimates=est$par, SE)
colnames(u)=c('phi1','sQ','alpha','sig0','mu1','sig1'); round(u, 3)

phi1 sQ alpha sig0 mu1 sig1
estimates 0.884 0.381 -9.654 0.835 -2.350 2.453
SE 0.109 0.221 0.343 0.204 0.495 0.293

# Bootstrap
para.star = matrix(0, n.boot, 6) # to store parameter estimates
for (jb in 1:n.boot){
cat('iteration:', jb, '\n')
phi1 = est$par[1]; sQ = est$par[2]; alpha = est$par[3]
sR0 = est$par[4]; mu1 = est$par[5]; sR1 = est$par[6]
Q = sQ^2; R0 = sR0^2; R1 = sR1^2
sv = SVfilter(num, y, 0, phi1, sQ, alpha, sR0, mu1, sR1)
sig0 = sv$Pp+R0; sig1 = sv$Pp+R1;
K0 = sv$Pp/sig0; K1 = sv$Pp/sig1
inn0 = y-sv$xp-alpha; inn1 = y-sv$xp-mu1-alpha
den1 = (1/sqrt(sig1))*exp(-.5*inn1^2/sig1)
den0 = (1/sqrt(sig0))*exp(-.5*inn0^2/sig0)
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Table 6.5. Estimates and standard errors for GNP example

Asymptotic Bootstrap†
Parameter MLE SE SE

φ1 0.884 0.109 0.057
σw 0.381 0.221 0.324
α −9.654 0.343 1.529
σ0 0.835 0.204 0.527
μ1 −2.350 0.495 0.410
σ1 2.453 0.293 0.375

† Based on 500 bootstrapped samples

fpi1 = den1/(den0+den1)
# start resampling at t=4
e0 = inn0/sqrt(sig0); e1 = inn1/sqrt(sig1)
indx = sample(4:num, replace=TRUE)
sinn = cbind(c(e0[1:3], e0[indx]), c(e1[1:3], e1[indx]))
eF = matrix(c(phi1, 1, 0, 0), 2, 2)
xi = cbind(sv$xp,y) # initialize

for (i in 4:num){ # generate boot sample
G = matrix(c(0, alpha+fpi1[i]*mu1), 2, 1)
h21 = (1-fpi1[i])*sqrt(sig0[i]); h11 = h21*K0[i]
h22 = fpi1[i]*sqrt(sig1[i]); h12 = h22*K1[i]
H = matrix(c(h11,h21,h12,h22),2,2)
xi[i,] = t(eF%*%as.matrix(xi[i-1,],2) + G + H%*%as.matrix(sinn[i,],2))}

# Estimates from boot data
y.star = xi[,2]
phi1=.9; sQ=.5; alpha=mean(y.star); sR0=1; mu1=-3; sR1=2.5
init.par = c(phi1, sQ, alpha, sR0, mu1, sR1) # same as for data
est.star = optim(init.par, Linn, NULL, y.data=y.star, method='BFGS',

control=list(reltol=tol))
para.star[jb,] = cbind(est.star$par[1], abs(est.star$par[2]),

est.star$par[3], abs(est.star$par[4]), est.star$par[5],
abs(est.star$par[6])) }

# Some summary statistics and graphics
rmse = rep(NA,6) # SEs from the bootstrap
for(i in 1:6){

rmse[i] = sqrt(sum((para.star[,i]-est$par[i])^2)/n.boot)
cat(i, rmse[i],'\n') }

dev.new(); phi = para.star[,1]
hist(phi, 15, prob=TRUE, main='', xlim=c(.4,1.2), xlab='')
xx = seq(.4, 1.2, by=.01)
lines(xx, dnorm(xx, mean=u[1,1], sd=u[2,1]), lty='dashed', lwd=2)

6.12 Bayesian Analysis of State Space Models

We now consider some Bayesian approaches to fitting linear Gaussian state space
models via Markov chain Monte Carlo (MCMC) methods. We assume that the model
is given by (6.1)–(6.2); inputs are allowed in the model, but we do not display them for
the sake of brevity. In this case, Frühwirth-Schnatter [64] and Carter and Kohn [39]
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established the MCMC procedure that we will discuss here. A comprehensive text
that we highly recommend for this case is Petris et al. [153] and the corresponding R
package dlm. For nonlinear and non-Gaussian models, the reader is referred to Douc,
Moulines, and Stoffer [53]. As in previous sections, we have n observations denoted
by y1:n = {y1, . . . , yn}, whereas the states are denoted as x0:n = {x0, x1, . . . , xn}, with
x0 being the initial state.

MCMC methods refer to Monte Carlo integration methods that use a Markovian
updating scheme to sample from intractable posterior distributions. The most com-
mon MCMC method is the Gibbs sampler, which is essentially a modification of
the Metropolis algorithm (Metropolis et al. [141]) developed by Hastings [96] in the
statistical setting and by Geman and Geman [68] in the context of image restora-
tion. Later, Tanner and Wong [198] used the ideas in their substitution sampling
approach, and Gelfand and Smith [67] developed the Gibbs sampler for a wide class
of parametric models. The basic strategy is to use conditional distributions to set up a
Markov chain to obtain samples from a joint distribution. The following simple case
demonstrates this idea.

Example 6.25 Gibbs Sampling for the Bivariate Normal
Suppose we wish to obtain samples from a bivariate normal distribution,

(
X
Y

)

∼ N
[(

0
0

)

,

(
1 ρ
ρ 1

)]

,

where |ρ| < 1, but we can only generate samples from a univariate normal.
• The univariate conditionals are [see (B.9)–(B.10)]

(X | Y = y) ∼ N(ρy, 1 − ρ2) and (Y | X = x) ∼ N(ρx, 1 − ρ2),

and we can simulate from these distributions.
• Construct a Markov chain: Pick X (0) = x0, and then iterate the process X (0) =

x0 �→ Y (0) �→ X (1) �→ Y (1) �→ · · · �→ X (k) �→ Y (k) �→ · · · , where

(Y (k) | X (k) = xk) ∼ N(ρxk, 1 − ρ2)
(X (k) | Y (k−1) = yk−1) ∼ N(ρyk−1, 1 − ρ2).

• The joint distribution of (X (k),Y (k)) is (see Problem 3.2)
(
X (k)

Y (k)

)

∼ N
[(

ρ2k x0
ρ2k+1x0

)

,

(
1 − ρ4k ρ(1 − ρ4k)

ρ(1 − ρ4k) 1 − ρ4k+2

)]

.

• Thus, for any starting value, x0, (X (k),Y (k)) →d (X,Y ) as k → ∞; the speed
depends on ρ. Then one would run the chain and throw away the initial n0
sampled values (burnin) and retain the rest.

For state space models, the main objective is to obtain the posterior density of
the parameters p(Θ | y1:n) or p(x0:n | y1:n) if the states are meaningful. For example,
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the states do not have any meaning for an ARMA model, but they are important
for a stochastic volatility model. It is generally easier to get samples from the full
posterior p(Θ, x0:n | y1:n) and then marginalize (“average”) to obtain p(Θ | y1:n) or
p(x0:n | y1:n). As previously mentioned, the most popular method is to run a full Gibbs
sampler, alternating between sampling model parameters and latent state sequences
from their respective full conditional distributions.
Procedure 6.1 Gibbs Sampler for State Space Models

(i) Draw Θ′ ∼ p(Θ | x0:n, y1:n)
(ii) Draw x′0:n ∼ p(x0:n | Θ′, y1:n)

Procedure 6.1–(i) is generally much easier because it conditions on the complete data
{x0:n, y1:n}, which we saw in Sect. 6.3 can simplify the problem. Procedure 6.1–
(ii) amounts to sampling from the joint smoothing distribution of the latent state
sequence and is generally difficult. For linear Gaussian models, however, both parts
of Procedure 6.1 are relatively easy to perform.

To accomplish Procedure 6.1–(i), note that

p(Θ | x0:n, y1:n) ∝ π(Θ) p(x0 | Θ)
n∏

t=1
p(xt | xt−1, Θ) p(yt | xt, Θ) (6.216)

where π(Θ) is the prior on the parameters. The prior often depends on “hyperparame-
ters” that add another level to the hierarchy. For simplicity, these hyperparameters are
assumed to be known. The parameters are typically conditionally independent with
distributions from standard parametric families (at least as long as the prior distri-
bution is conjugate relative to the Bayesian model specification). For non-conjugate
models, one option is to replace Procedure 6.1–(i) with a Metropolis-Hastings step,
which is feasible since the complete data density p(Θ, x0:n, y1:n) can be evaluated
pointwise.

For example, in the univariate model

xt = φxt−1 + wt and yt = xt + vt

where wt∼ iid N(0, σ2
w) independent of vt∼ iid N(0, σ2

v ), we can use the normal and
inverse gamma (IG) distributions for priors. In this case, the priors on the variance
components are chosen from a conjugate family, that is, σ2

w ∼ IG(a0/2, b0/2) inde-
pendent of σ2

v ∼ IG(c0/2, d0/2), where IG denotes the inverse (reciprocal) gamma
distribution. Then, for example, if the prior on φ is Gaussian, φ ∼ N(μφ, σ2

φ), then
φ | σw, x0:n, y1:n ∼ N(Bb, B), where

B−1 =
1
σ2
φ

+
1
σ2
w

n∑

t=1
x2
t−1, b =

μφ

σ2
φ

+
1
σ2
w

n∑

t=1
xt xt−1.

and
σ2
w | φ, x0:n, y1:n ∼ IG

(
1
2 (a0 + n), 1

2
{
b0 +

n∑

t=1
[xt − φxt−1]2

})
;

σ2
v | x0:n, y1:n ∼ IG

(
1
2 (c0 + n), 1

2
{
c0 +

n∑

t=1
[yt − xt ]2

})
.
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For Procedure 6.1–(ii), the goal is to sample the entire set of state vectors, x0:n,
from the posterior density p(x0:n | Θ, y1:n), where Θ is a fixed set of parameters
obtained from the previous step. We will write the posterior as pΘ(x0:n | y1:n) to save
space. Because of the Markov structure, we can write,

pΘ(x0:n | y1:n) = pΘ(xn | y1:n)pΘ(xn−1 | xn, y1:n−1) · · · pΘ(x0 | x1). (6.217)

In view of (6.217), it is possible to sample the entire set of state vectors, x0:n, by
sequentially simulating the individual states backward. This process yields a simu-
lation method that Frühwirth-Schnatter [64] called the forward-filtering, backward-
sampling (FFBS) algorithm. From (6.217), we see that we must obtain the densities

pΘ(xt | xt+1, y1:t ) ∝ pΘ(xt | y1:t ) pΘ(xt+1 | xt ).

In particular, we know that xt | y1:t ∼ NΘ
p (xtt , Pt

t ) and xt+1 | xt ∼ NΘ
p (Φxt,Q). And

because the processes are Gaussian, we need only obtain the conditional means and
variances, say, mt = EΘ(xt | y1:t, xt+1) and Vt = varΘ(xt | y1:t, xt+1). In particular,

mt = xtt + Jt (xt+1 − xtt+1) and Vt = Pt
t − JtP

t
t+1J ′t , (6.218)

for t = n − 1, n − 2, . . . , 0, where Jt is defined in (6.47). We note that mt has already
been derived in (6.48). To derive mt and Vt using standard normal theory, use a
strategy similar to the derivation of the filter in Property 6.1. That is,

(
xt

xt+1

) /
/
/ y1:t ∼ N

([
xtt

xt
t+1

]

,

[
Pt
t Pt

tΦ
′

ΦPt
t Pt

t+1

] )

;

now use (B.9), (B.10), and the definition of Jt in (6.47). Also, recall the proof
of Property 6.3 wherein we noted the off-diagonal Pt

t+1,t =ΦPt
t .

Hence, given Θ, the algorithm is to first sample xn from a NΘ
p (xnn, Pn

n ), where xnn
and Pn

n are obtained from the Kalman filter, Property 6.1, and then sample xt from
a NΘ

p , (mt,Vt ), for t = n − 1, n − 2, . . . , 0, where the conditioning value of xt+1 is the
value previously sampled.

Example 6.26 Local Level Model
In this example, we consider the local level model previously discussed in Exam-
ple 6.4. Here, we consider the model

yt = xt + vt and xt = xt−1 + wt

where vt∼ iid N(0, σ2
v = 1) independent of wt∼ iid N(0, σ2

w = .5). This is the uni-
variate model we just discussed, but where φ = 1. In this case, we used IG priors
for each of the variance components.

For the prior distributions, all parameters (a0, b0, c0, d0) were set to .02. We gen-
erated 1010 samples, using the first 10 as burn-in. Figure 6.20 displays the simulated
data and states, the contours of the likelihood of the data, the sampled posterior
values as points, and the marginal sampled posteriors of each variance component
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Fig. 6.20. Display for Example 6.26: Left: Generated states, xt and data yt . Contours of the
likelihood (solid line) of the data and sampled posterior values as points. Right: Marginal
sampled posteriors and posterior means (vertical lines) of each variance component. The true
values are σ2

w = .5 and σ2
v = 1

along with the posterior means. Figure 6.21 compares the actual smoother xnt with
the posterior mean of the sampled smoothed values. In addition, a pointwise 95%
credible interval is displayed as a filled area.

The following code was used in this example.
##-- Notation --##
# y(t) = x(t) + v(t); v(t) ~ iid N(0,V)
# x(t) = x(t-1) + w(t); w(t) ~ iid N(0,W)
# priors: x(0) ~ N(m0,C0); V ~ IG(a,b); W ~ IG(c,d)
# FFBS: x(t|t) ~ N(m,C); x(t|n) ~ N(mm,CC); x(t|t+1) ~ N(a,R)
##--
ffbs = function(y,V,W,m0,C0){

n = length(y); a = rep(0,n); R = rep(0,n)
m = rep(0,n); C = rep(0,n); B = rep(0,n-1)
H = rep(0,n-1); mm = rep(0,n); CC = rep(0,n)
x = rep(0,n); llike = 0.0
for (t in 1:n){

if(t==1){a[1] = m0; R[1] = C0 + W
}else{ a[t] = m[t-1]; R[t] = C[t-1] + W }

f = a[t]
Q = R[t] + V
A = R[t]/Q
m[t] = a[t]+A*(y[t]-f)
C[t] = R[t]-Q*A**2
B[t-1] = C[t-1]/R[t]
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Fig. 6.21. Display for Example 6.26: True smoother, xnt , the data yt , and the posterior mean
of the sampled smoother values; the filled in area shows 2.5% to 97.5%-tiles of the draws

H[t-1] = C[t-1]-R[t]*B[t-1]**2
llike = llike + dnorm(y[t],f,sqrt(Q),log=TRUE) }

mm[n] = m[n]; CC[n] = C[n]
x[n] = rnorm(1,m[n],sqrt(C[n]))
for (t in (n-1):1){

mm[t] = m[t] + C[t]/R[t+1]*(mm[t+1]-a[t+1])
CC[t] = C[t] - (C[t]^2)/(R[t+1]^2)*(R[t+1]-CC[t+1])
x[t] = rnorm(1,m[t]+B[t]*(x[t+1]-a[t+1]),sqrt(H[t])) }

return(list(x=x,m=m,C=C,mm=mm,CC=CC,llike=llike)) }
# Simulate states and data
set.seed(1); W = 0.5; V = 1.0
n = 100; m0 = 0.0; C0 = 10.0; x0 = 0
w = rnorm(n,0,sqrt(W))
v = rnorm(n,0,sqrt(V))
x = y = rep(0,n)
x[1] = x0 + w[1]
y[1] = x[1] + v[1]
for (t in 2:n){

x[t] = x[t-1] + w[t]
y[t] = x[t] + v[t] }

# actual smoother (for plotting)
ks = Ksmooth0(num=n, y, A=1, m0, C0, Phi=1, cQ=sqrt(W), cR=sqrt(V))
xsmooth = as.vector(ks$xs)
#
run = ffbs(y,V,W,m0,C0)
m = run$m; C = run$C; mm = run$mm
CC = run$CC; L1 = m-2*C; U1 = m+2*C
L2 = mm-2*CC; U2 = mm+2*CC
N = 50
Vs = seq(0.1,2,length=N)
Ws = seq(0.1,2,length=N)
likes = matrix(0,N,N)
for (i in 1:N){
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for (j in 1:N){
V = Vs[i]
W = Ws[j]
run = ffbs(y,V,W,m0,C0)

likes[i,j] = run$llike } }
# Hyperparameters
a = 0.01; b = 0.01; c = 0.01; d = 0.01
# MCMC step
set.seed(90210)
burn = 10; M = 1000
niter = burn + M
V1 = V; W1 = W
draws = NULL
all_draws = NULL
for (iter in 1:niter){

run = ffbs(y,V1,W1,m0,C0)
x = run$x
V1 = 1/rgamma(1,a+n/2,b+sum((y-x)^2)/2)
W1 = 1/rgamma(1,c+(n-1)/2,d+sum(diff(x)^2)/2)
draws = rbind(draws,c(V1,W1,x)) }

all_draws = draws[,1:2]
q025 = function(x){quantile(x,0.025)}
q975 = function(x){quantile(x,0.975)}
draws = draws[(burn+1):(niter),]
xs = draws[,3:(n+2)]
lx = apply(xs,2,q025)
mx = apply(xs,2,mean)
ux = apply(xs,2,q975)
## plot of the data
par(mfrow=c(2,2), mgp=c(1.6,.6,0), mar=c(3,3.2,1,1))
ts.plot(ts(x), ts(y), ylab='', col=c(1,8), lwd=2)
points(y)
legend(0, 11, legend=c("x(t)","y(t)"), lty=1, col=c(1,8), lwd=2, bty="n",

pch=c(-1,1))
contour(Vs, Ws, exp(likes), xlab=expression(sigma[v]^2),

ylab=expression(sigma[w]^2), drawlabels=FALSE, ylim=c(0,1.2))
points(draws[,1:2], pch=16, col=rgb(.9,0,0,0.3), cex=.7)
hist(draws[,1], ylab="Density",main="", xlab=expression(sigma[v]^2))
abline(v=mean(draws[,1]), col=3, lwd=3)
hist(draws[,2],main="", ylab="Density", xlab=expression(sigma[w]^2))
abline(v=mean(draws[,2]), col=3, lwd=3)
## plot states
par(mgp=c(1.6,.6,0), mar=c(2,1,.5,0)+.5)
plot(ts(mx), ylab='', type='n', ylim=c(min(y),max(y)))
grid(lty=2); points(y)
lines(xsmooth, lwd=4, col=rgb(1,0,1,alpha=.4))
lines(mx, col= 4)
xx=c(1:100, 100:1)
yy=c(lx, rev(ux))

polygon(xx, yy, border=NA, col= gray(.6,alpha=.2))
lines(y, col=gray(.4))
legend('topleft', c('true smoother', 'data', 'posterior mean', '95% of

draws'), lty=1, lwd=c(3,1,1,10), pch=c(-1,1,-1,-1), col=c(6,
gray(.4) ,4, gray(.6, alpha=.5)), bg='white' )

Next, we consider a more complicated model.
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Example 6.27 Structural Model
Consider the Johnson & Johnson quarterly earnings per share series that was dis-
cussed in Example 6.10. Recall that the model is

yt =
(
1 1 0 0

)
xt + vt,

xt =
�
�
�
�

�

Tt
St

St−1
St−2

�
�
�
�

�

=

�
�
�
�

�

φ 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

�
�
�
�

�

�
�
�
�

�

Tt−1
St−1
St−2
St−3

�
�
�
�

�

+

�
�
�
�

�

wt1
wt2
0
0

�
�
�
�

�

where R = σ2
v and

Q =

�
�
�
�

�

σ2
w,11 0 0 0
0 σ2

w,22 0 0
0 0 0 0
0 0 0 0

�
�
�
�

�

.

The parameters to be estimated are the transition parameter associated with the
growth rate, φ > 1, the observation noise variance, σ2

v , and the state noise vari-
ances associated with the trend and the seasonal components, σ2

w,11 and σ2
w,22,

respectively.
In this case, sampling from p(x0:n | Θ, y1:n) follows directly from (6.217)–

(6.218). Next, we discuss how to sample from p(Θ | x0:n, y1:n). For the transition
parameter, write φ = 1 + β, where 0 < β � 1; recall that in Example 6.10, φ was
estimated to be 1.035, which indicated a growth rate, β, of 3.5%. Note that the
trend component may be rewritten as

∇Tt = Tt − Tt−1 = βTt−1 + wt1 .

Consequently, conditional on the states, the parameter β is the slope in the linear
regression (through the origin) of ∇Tt on Tt−1, for t = 1, . . . , n, and wt1 is the
error. As is typical, we put a Normal–Inverse Gamma (IG) prior on (β, σ2

w,11), i.e.,
β | σ2

w,11 ∼ N(b0, σ
2
w,11B0) and σ2

w,11 ∼ IG(n0/2, n0s2
0/2), with known hyperpa-

rameters b0, B0, n0, s2
0 .

We also used IG priors for the other two variance components, σ2
v and σ2

w,22.
In this case, if the prior σ2

v ∼ IG(n0/2, n0s2
0/2), then the posterior is

σ2
v | x0:n, y1:n ∼ IG(nv/2, nvs2

v/2) ,
where nv = n0 + n, and nvs2

v = n0s2
0 +

∑n
t=1(Yt − Tt − St )2. Similarly, if the prior

σ2
w,22 ∼ IG(n0/2, n0s2

0/2), then the posterior is

σ2
w,22 | x0:n, y1:n ∼ IG(nw/2, nws2

w/2) ,

where nw = n0 + (n − 3), and nws2
w = n0s2

0 +
∑n−3

t=1 (St − St−1 − St−2 − St−3)2.
Figure 6.22 displays the results of the posterior estimates of the parameters. The

top row of the figure displays the traces of 1000 draws, after a burn-in of 100, with
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Fig. 6.22. Parameter estimation results for Example 6.27. The top row displays the traces
of 1000 draws after burn-in. The middle row displays the ACF of the traces. The sampled
posteriors are displayed in the last row (the mean is marked by a solid vertical line)

a step size of 10 (i.e., every 10th sampled value is retained). The middle row of the
figure displays the ACF of the traces, and the sampled posteriors are displayed in
the last row of the figure. The results of this analysis are comparable to the results
obtained in Example 6.10; the posterior mean and median for φ indicates a 3.7%
growth rate in the Johnson & Johnson quarterly earnings over this time period.

Figure 6.23 displays the smoothers of trend (Tt ) and season (Tt + St ) along with
99% credible intervals. Again, these results are comparable to the results obtained
in Example 6.10. The R code for this example is as follows:
library(plyr) # used to view progress (install it if you don't have it)
y = jj
### setup - model and initial parameters
set.seed(90210)
n = length(y)
F = c(1,1,0,0) # this is A
G = diag(0,4) # G is Phi

G[1,1] = 1.03
G[2,] = c(0,-1,-1,-1); G[3,]=c(0,1,0,0); G[4,]=c(0,0,1,0)

a1 = rbind(.7,0,0,0) # this is mu0
R1 = diag(.04,4) # this is Sigma0
V = .1
W11 = .1
W22 = .1
##-- FFBS --##
ffbs = function(y,F,G,V,W11,W22,a1,R1){
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Fig. 6.23. Example 6.27 smoother estimates of trend (Tt ) and trend plus season (Tt + St ) along
with corresponding 99% credible intervals

n = length(y)
Ws = diag(c(W11,W22,1,1)) # this is Q with 1s as a device only
iW = diag(1/diag(Ws),4)
a = matrix(0,n,4) # this is m_t
R = array(0,c(n,4,4)) # this is V_t
m = matrix(0,n,4)
C = array(0,c(n,4,4))
a[1,] = a1[,1]
R[1,,] = R1
f = t(F)%*%a[1,]
Q = t(F)%*%R[1,,]%*%F + V
A = R[1,,]%*%F/Q[1,1]
m[1,] = a[1,]+A%*%(y[1]-f)
C[1,,] = R[1,,]-A%*%t(A)*Q[1,1]
for (t in 2:n){

a[t,] = G%*%m[t-1,]
R[t,,] = G%*%C[t-1,,]%*%t(G) + Ws
f = t(F)%*%a[t,]
Q = t(F)%*%R[t,,]%*%F + V
A = R[t,,]%*%F/Q[1,1]
m[t,] = a[t,] + A%*%(y[t]-f)
C[t,,] = R[t,,] - A%*%t(A)*Q[1,1] }

xb = matrix(0,n,4)
xb[n,] = m[n,] + t(chol(C[n,,]))%*%rnorm(4)
for (t in (n-1):1){

iC = solve(C[t,,])
CCC = solve(t(G)%*%iW%*%G + iC)
mmm = CCC%*%(t(G)%*%iW%*%xb[t+1,] + iC%*%m[t,])
xb[t,] = mmm + t(chol(CCC))%*%rnorm(4) }
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return(xb) }
##-- Prior hyperparameters --##
# b0 = 0 # mean for beta = phi -1
# B0 = Inf # var for beta (non-informative => use OLS for sampling beta)
n0 = 10 # use same for all- the prior is 1/Gamma(n0/2, n0*s20_/2)
s20v = .001 # for V
s20w =.05 # for Ws
##-- MCMC scheme --##
set.seed(90210)
burnin = 100
step = 10
M = 1000
niter = burnin+step*M
pars = matrix(0,niter,4)
xbs = array(0,c(niter,n,4))
pr <- progress_text() # displays progress
pr$init(niter)
for (iter in 1:niter){

xb = ffbs(y,F,G,V,W11,W22,a1,R1)
u = xb[,1]

yu = diff(u); xu = u[-n] # for phihat and se(phihat)
regu = lm(yu~0+xu) # est of beta = phi-1

phies = as.vector(coef(summary(regu)))[1:2] + c(1,0) # phi estimate and SE
dft = df.residual(regu)

G[1,1] = phies[1] + rt(1,dft)*phies[2] # use a t
V = 1/rgamma(1, (n0+n)/2, (n0*s20v/2) + sum((y-xb[,1]-xb[,2])^2)/2)

W11 = 1/rgamma(1, (n0+n-1)/2, (n0*s20w/2) +
sum((xb[-1,1]-phies[1]*xb[-n,1])^2)/2)

W22 = 1/rgamma(1, (n0+ n-3)/2, (n0*s20w/2) + sum((xb[4:n,2] +
xb[3:(n-1),2]+ xb[2:(n-2),2] +xb[1:(n-3),2])^2)/2)

xbs[iter,,] = xb
pars[iter,] = c(G[1,1], sqrt(V), sqrt(W11), sqrt(W22))
pr$step() }

# Plot results
ind = seq(burnin+1,niter,by=step)
names= c(expression(phi), expression(sigma[v]), expression(sigma[w~11]),

expression(sigma[w~22]))
dev.new(height=5)
par(mfcol=c(3,4), mar=c(2,2,.25,0)+.75, mgp=c(1.6,.6,0), oma=c(0,0,1,0))
for (i in 1:4){
plot.ts(pars[ind,i],xlab="iterations", ylab="trace", main="")
mtext(names[i], side=3, line=.5, cex=1)
acf(pars[ind,i],main="", lag.max=25, xlim=c(1,25), ylim=c(-.4,.4))
hist(pars[ind,i],main="",xlab="")
abline(v=mean(pars[ind,i]), lwd=2, col=3) }
par(mfrow=c(2,1), mar=c(2,2,0,0)+.7, mgp=c(1.6,.6,0))
mxb = cbind(apply(xbs[ind,,1],2,mean), apply(xbs[,,2],2,mean))
lxb = cbind(apply(xbs[ind,,1],2,quantile,0.005),

apply(xbs[ind,,2],2,quantile,0.005))
uxb = cbind(apply(xbs[ind,,1],2,quantile,0.995),

apply(xbs[ind,,2],2,quantile,0.995))
mxb = ts(cbind(mxb,rowSums(mxb)), start = tsp(jj)[1], freq=4)
lxb = ts(cbind(lxb,rowSums(lxb)), start = tsp(jj)[1], freq=4)
uxb = ts(cbind(uxb,rowSums(uxb)), start = tsp(jj)[1], freq=4)
names=c('Trend', 'Season', 'Trend + Season')
L = min(lxb[,1])-.01; U = max(uxb[,1]) +.01
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plot(mxb[,1], ylab=names[1], ylim=c(L,U), type='n')
grid(lty=2); lines(mxb[,1])
xx=c(time(jj), rev(time(jj)))
yy=c(lxb[,1], rev(uxb[,1]))
polygon(xx, yy, border=NA, col=gray(.4, alpha = .2))
L = min(lxb[,3])-.01; U = max(uxb[,3]) +.01

plot(mxb[,3], ylab=names[3], ylim=c(L,U), type='n')
grid(lty=2); lines(mxb[,3])
xx=c(time(jj), rev(time(jj)))
yy=c(lxb[,3], rev(uxb[,3]))
polygon(xx, yy, border=NA, col=gray(.4, alpha = .2))

Problems

Section 6.1

6.1 Consider a system process given by

xt = −.9xt−2 + wt t = 1, . . . , n

where x0 ∼ N(0, σ2
0 ), x−1 ∼ N(0, σ2

1 ), and wt is Gaussian white noise with variance
σ2
w . The system process is observed with noise, say,

yt = xt + vt,

where vt is Gaussian white noise with variance σ2
v . Further, suppose x0, x−1, {wt }

and {vt } are independent.

(a) Write the system and observation equations in the form of a state space model.
(b) Find the values of σ2

0 and σ2
1 that make the observations, yt , stationary.

(c) Generate n = 100 observations with σw = 1, σv = 1 and using the values of σ2
0

and σ2
1 found in (b). Do a time plot of xt and of yt and compare the two processes.

Also, compare the sample ACF and PACF of xt and of yt .
(d) Repeat (c), but with σv = 10.

6.2 Consider the state-space model presented in Example 6.3. Let xt−1
t = E(xt |

yt−1, . . . , y1) and let Pt−1
t = E(xt − xt−1

t )2. The innovation sequence or residuals are
εt = yt − yt−1

t , where yt−1
t = E(yt | yt−1, . . . , y1). Find cov(εs, εt ) in terms of xt−1

t

and Pt−1
t for (i) s � t and (ii) s = t.

Section 6.2

6.3 Simulate n = 100 observations from the following state-space model:

xt = .8xt−1 + wt and yt = xt + vt

where x0 ∼ N(0, 2.78), wt ∼ iid N(0, 1), and vt ∼ iid N(0, 1) are all mutually indepen-
dent. Compute and plot the data, yt , the one-step-ahead predictors, yt−1

t along with
the root mean square prediction errors, E1/2(yt − yt−1

t )2 using Example 6.5 as a guide.
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6.4 Suppose the vector z = (x′, y′)′, where x (p×1) and y (q×1) are jointly distributed
with mean vectors μx and μy and with covariance matrix

cov(z) =
(
Σxx Σxy

Σyx Σyy

)

.

Consider projecting x on M = sp{1, y}, say, x̂ = bbb + By.

(a) Show the orthogonality conditions can be written as

E(x − bbb − By) = 0,

E[(x − bbb − By)y′] = 0,

leading to the solutions

bbb = μx − Bμy and B = ΣxyΣ
−1
yy .

(b) Prove the mean square error matrix is

MSE = E[(x − bbb − By)x′] = Σxx − ΣxyΣ
−1
yy Σyx .

(c) How can these results be used to justify the claim that, in the absence of normal-
ity, Property 6.1 yields the best linear estimate of the state xt given the data Yt ,
namely, xtt , and its corresponding MSE, namely, Pt

t ?

6.5 Projection Theorem Derivation of Property 6.2. Throughout this problem, we use
the notation of Property 6.2 and of the Projection Theorem given in Appendix B,
where H is L2. If Lk+1 = sp{y1, . . . , yk+1}, and Vk+1 = sp{yk+1 − yk

k+1}, for k =

0, 1, . . . , n − 1, where yk
k+1 is the projection of yk+1 on Lk , then, Lk+1 = Lk ⊕ Vk+1.

We assume P0
0 > 0 and R > 0.

(a) Show the projection of xk on Lk+1, that is, xk+1
k

, is given by

xk+1
k = xkk + Hk+1(yk+1 − ykk+1),

where Hk+1 can be determined by the orthogonality property

E
{(

xk − Hk+1(yk+1 − ykk+1)
) (

yk+1 − ykk+1

) ′}
= 0.

Show
Hk+1 = Pk

kΦ
′A′k+1

[
Ak+1Pk

k+1A′k+1 + R
]−1

.

(b) Define Jk = Pk
k
Φ′[Pk

k+1]−1, and show

xk+1
k = xkk + Jk (xk+1

k+1 − xkk+1).
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(c) Repeating the process, show

xk+2
k = xkk + Jk(xk+1

k+1 − xkk+1) + Hk+2(yk+2 − yk+1
k+2),

solving for Hk+2. Simplify and show

xk+2
k = xkk + Jk (xk+2

k+1 − xkk+1).
(d) Using induction, conclude

xnk = xkk + Jk(xnk+1 − xkk+1),
which yields the smoother with k = t − 1.

Section 6.3

6.6 Consider the univariate state-space model given by state conditions x0 = w0,
xt = xt−1 + wt and observations yt = xt + vt , t = 1, 2, . . ., where wt and vt are
independent, Gaussian, white noise processes with var(wt ) = σ2

w and var(vt ) = σ2
v .

(a) Show that yt follows an IMA(1,1) model, that is, ∇yt follows an MA(1) model.
(b) Fit the model specified in part (a) to the logarithm of the glacial varve series and

compare the results to those presented in Example 3.33.

6.7 Consider the model
yt = xt + vt,

where vt is Gaussian white noise with variance σ2
v , xt are independent Gaussian

random variables with mean zero and var(xt ) = rtσ2
x with xt independent of vt , and

r1, . . . , rn are known constants. Show that applying the EM algorithm to the problem
of estimating σ2

x and σ2
v leads to updates (represented by hats)

σ̂2
x =

1
n

n∑

t=1

σ2
t + μ2

t

rt
and σ̂2

v =
1
n

n∑

t=1
[(yt − μt )2 + σ2

t ],

where, based on the current estimates (represented by tildes),

μt =
rt σ̃2

x

rt σ̃2
x + σ̃2

v

yt and σ2
t =

rt σ̃2
x σ̃

2
v

rt σ̃2
x + σ̃2

v

.

6.8 To explore the stability of the filter, consider a univariate state-space model.
That is, for t = 1, 2, . . ., the observations are yt = xt + vt and the state equation is
xt = φxt−1 +wt , where σw = σv = 1 and |φ| < 1. The initial state, x0, has zero mean
and variance one.

(a) Exhibit the recursion for Pt−1
t in Property 6.1 in terms of Pt−2

t−1.
(b) Use the result of (a) to verify Pt−1

t approaches a limit (t → ∞) P that is the
positive solution of P2 − φ2P − 1 = 0.
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(c) With K = limt→∞ Kt as given in Property 6.1, show |1 − K | < 1.
(d) Show, in steady-state, the one-step-aheadpredictor, yn

n+1 = E(yn+1
/
/ yn, yn−1, . . .),

of a future observation satisfies

ynn+1 =

∞∑

j=0
φ jK(1 − K)j−1yn+1−j .

6.9 In Sect. 6.3, we discussed that it is possible to obtain a recursion for the gradient
vector, −∂ ln LY (Θ)/∂Θ. Assume the model is given by (6.1) and (6.2) and At is a
known design matrix that does not depend on Θ, in which case Property 6.1 applies.
For the gradient vector, show

∂ ln LY (Θ)/∂Θi =

n∑

t=1

{

ε ′t Σ
−1
t

∂εt

∂Θi
− 1

2
ε ′t Σ

−1
t

∂Σt

∂Θi
Σ−1
t εt

+
1
2

tr
(

Σ−1
t

∂Σt
∂Θi

)}

,

where the dependence of the innovation values on Θ is understood. In addition,
with the general definition ∂ig = ∂g(Θ)/∂Θi, show the following recursions, for
t = 2, . . . , n apply:

(i) ∂iεt = −At ∂ixt−1
t ,

(ii) ∂ixt−1
t = ∂iΦ xt−2

t−1 +Φ ∂ixt−2
t−1 + ∂iKt−1 εt−1 + Kt−1 ∂iεt−1,

(iii) ∂iΣt = At ∂iPt−1
t A′t + ∂iR,

(iv) ∂iKt =
[
∂iΦ Pt−1

t A′t +Φ ∂iPt−1
t A′t − Kt ∂iΣt

]
Σ−1
t ,

(v) ∂iPt−1
t = ∂iΦ Pt−2

t−1Φ
′ +Φ ∂iPt−2

t−1 Φ′ +Φ Pt−2
t−1 ∂iΦ

′ + ∂iQ,
− ∂iKt−1 ΣtK ′

t−1 − Kt−1 ∂iΣt K ′
t−1 − Kt−1Σt ∂iK ′

t−1,

using the fact that Pt−1
t = ΦPt−2

t−1Φ
′ + Q − Kt−1ΣtK ′

t−1.

6.10 Continuing with the previous problem, consider the evaluation of the Hessian
matrix and the numerical evaluation of the asymptotic variance–covariance matrix
of the parameter estimates. The information matrix satisfies

E
{

−∂2 ln LY (Θ)
∂Θ ∂Θ′

}

= E
{(

∂ ln LY (Θ)
∂Θ

) (
∂ ln LY (Θ)

∂Θ

) ′}
;

see Anderson [7, Section 4.4], for example. Show the (i, j)-th element of the infor-
mation matrix, say, Iij (Θ) = E

{−∂2 ln LY (Θ)/∂Θi ∂Θj

}
, is

Iij (Θ) =
n∑

t=1
E
{
∂iε

′
t Σ−1

t ∂jεt +
1
2

tr
(
Σ−1
t ∂iΣt Σ

−1
t ∂jΣt

)

+
1
4

tr
(
Σ−1
t ∂iΣt

)
tr
(
Σ−1
t ∂jΣt

)}
.

Consequently, an approximate Hessian matrix can be obtained from the sample by
dropping the expectation, E, in the above result and using only the recursions needed
to calculate the gradient vector.
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Section 6.4

6.11 As an example of the way the state-space model handles the missing data prob-
lem, suppose the first-order autoregressive process

xt = φxt−1 + wt

has an observation missing at t = m, leading to the observations yt = At xt , where
At = 1 for all t, except t = m wherein At = 0. Assume x0 = 0 with variance
σ2
w/(1 − φ2), where the variance of wt is σ2

w . Show the Kalman smoother estimators
in this case are

xnt =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

φy1 t = 0,
φ

1+φ2
(ym−1 + ym+1) t = m,

y, t � 0, m,

with mean square covariances determined by

Pn
t =

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

σ2
w t = 0,

σ2
w/(1 + φ2) t = m,

0 t � 0, m.

6.12 The data set ar1miss is n = 100 observations generated from an AR(1) process,
xt = φxt−1 +wt , with φ = .9 and σw = 1, where 10% of the data have been deleted at
random (replaced with NA). Use the results of Problem 6.11 to estimate the parameters
of the model, φ andσw , using the EM algorithm, and then estimate the missing values.

Section 6.5

6.13 Redo Example 6.10 on the logged Johnson & Johnson quarterly earnings per
share.

6.14 Fit a structural model to quarterly unemployment as follows. Use the data in
unemp, which are monthly. The series can be made quarterly by aggregating and aver-
aging: y = aggregate(unemp, nfrequency=4, FUN=mean), so that y is the quarterly
average unemployment. Use Example 6.10 as a guide.

Section 6.6

6.15 (a) Fit an AR(2) to the recruitment series, Rt in rec, and consider a lag-plot of
the residuals from the fit versus the SOI series, St in soi, at various lags, St−h,
for h = 0, 1, . . .. Use the lag-plot to argue that St−5 is reasonable to include as an
exogenous variable.

(b) Fit an ARX(2) to Rt using St−5 as an exogenous variable and comment on the
results; include an examination of the innovations.

6.16 Use Property 6.6 to complete the following exercises.
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(a) Write a univariate AR(1) model, yt = φyt−1 + vt , in state-space form. Verify your
answer is indeed an AR(1).

(b) Repeat (a) for an MA(1) model, yt = vt + θvt−1.
(c) Write an IMA(1,1) model, yt = yt−1 + vt + θvt−1, in state-space form.

6.17 Verify Property 6.5.

6.18 Verify Property 6.6.

Section 6.7

6.19 Repeat the bootstrap analysis of Example 6.13 on the entire three-month Trea-
sury bills and rate of inflation data set of 110 observations. Do the conclusions of
Example 6.13—that the dynamics of the data are best described in terms of a fixed,
rather than stochastic, regression—still hold?

Section 6.8

6.20 Let yt represent the global temperature series (globtemp) shown in Fig. 1.2.

(a) Fit a smoothing spline using gcv (the default) to yt and plot the result superim-
posed on the data. Repeat the fit using spar=.7; the gcv method yields spar=.5

approximately. (Example 2.14 on page 68 may help. Also in R, see the help file
?smooth.spline.)

(b) Write the model yt = xt + vt with ∇2xt = wt , in state-space form. Fit this state-
space model to yt , and exhibit a time plot the estimated smoother, x̂nt and the
corresponding error limits, x̂nt ± 2

√
P̂n
t superimposed on the data.

(c) Superimpose all the fits from parts (a) and (b) [include the error bounds] on the
data and briefly compare and contrast the results.

Section 6.9

6.21 Verify (6.132), (6.133), and (6.134).

6.22 Prove Property 6.7 and verify (6.143).

6.23 Fit a Poisson-HMM to the dataset polio from the gamlss.data package. The
data are reported polio cases in the U.S. for the years 1970 to 1983. To get started,
install the package and then type
library(gamlss.data) # load package
plot(polio, type='s') # view the data

6.24 Fit a two-state HMM model to the weekly S&P 500 returns that were analyzed
in Example 6.17 and compare the results.
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Section 6.10

6.25 Fit the switching model described in Example 6.20 to the growth rate of GNP.
The data are in gnp and, in the notation of the example, yt is log-GNP and ∇yt is the
growth rate. Use the code in Example 6.22 as a guide.

6.26 Argue that a switching model is reasonable in explaining the behavior of the
number of sunspots (see Fig. 4.22) and then fit a switching model to the sunspot data.

Section 6.11

6.27 Fit a stochastic volatility model to the returns of one (or more) of the four
financial time series available in the R datasets package as EuStockMarkets.

6.28 Fit a stochastic volatility model to the residuals of the GNP (gnp) returns analyzed
in Example 3.39.

6.29 We consider the stochastic volatility model (6.197).

(a) Show that for any integer m,

E[r2m
t ] = β2mE[r2m

t ] exp(m2σ2
x/2),

where σ2
x = σ2/(1 − φ2).

(b) Show (6.198).
(c) Show that for any positive integer h, var(Xt + Xt+h) = 2σ2

X (1 + φh).
(d) Show that

cov(r2m
t , r2m

t+h) = β4m
(
E[v2m

t ]
)2 (

exp(m2σ2
x (1 + φh)) − exp(m2σ2

x )
)
.

(e) Establish (6.199).

Section 6.12

6.30 Verify the distributional statements made in Example 6.25.

6.31 Repeat Example 6.27 on the log of the Johnson & Johnson data.

6.32 Fit an AR(1) to the returns of the US GNP (gnp) using a Bayesian approach via
MCMC.



Chapter 7

Statistical Methods in the Frequency Domain

In previous chapters, we saw many applied time series problems that involved relating
series to each other or to evaluating the effects of treatments or design parameters that
arise when time-varying phenomena are subjected to periodic stimuli. In many cases,
the nature of the physical or biological phenomena under study are best described by
their Fourier components rather than by the difference equations involved in ARIMA
or state-space models. The fundamental tools we use in studying periodic phenom-
ena are the discrete Fourier transforms (DFTs) of the processes and their statistical
properties. Hence, in Sect. 7.2, we review the properties of the DFT of a multivariate
time series and discuss various approximations to the likelihood function based on
the large-sample properties and the properties of the complex multivariate normal
distribution. This enables extension of the classical techniques such as ANOVA and
principal component analysis to the multivariate time series case, which is the focus
of this chapter.

7.1 Introduction

An extremely important class of problems in classical statistics develops when we
are interested in relating a collection of input series to some output series. For
example, in Chap. 2, we have previously considered relating temperature and various
pollutant levels to daily mortality, but have not investigated the frequencies that
appear to be driving the relation and have not looked at the possibility of leading or
lagging effects. In Chap. 4, we isolated a definite lag structure that could be used to
relate sea surface temperature to the number of new recruits. In Problem 5.10, the
possible driving processes that could be used to explain inflow to Lake Shasta were
hypothesized in terms of the possible inputs precipitation, cloud cover, temperature,
and other variables. Identifying the combination of input factors that produce the best
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prediction for inflow is an example of multiple regression in the frequency domain,
with the models treated theoretically by considering the regression, conditional on
the random input processes.

A situation somewhat different from that above would be one in which the input
series are regarded as fixed and known. In this case, we have a model analogous to
that occurring in analysis of variance, in which the analysis now can be performed on
a frequency by frequency basis. This analysis works especially well when the inputs
are dummy variables, depending on some configuration of treatment and other design
effects and when effects are largely dependent on periodic stimuli. As an example, we
will look at a designed experiment measuring the fMRI brain responses of a number
of awake and mildly anesthetized subjects to several levels of periodic brushing,
heat, and shock effects. Some limited data from this experiment have been discussed
previously in Example 1.6. Figure 7.1 shows mean responses to various levels of
periodic heat, brushing, and shock stimuli for subjects awake and subjects under mild
anesthesia. The stimuli were periodic in nature, applied alternately for 32 s (16 points)
and then stopped for 32 s. The periodic input signal comes through under all three
design conditions when the subjects are awake, but is somewhat attenuated under
anesthesia. The mean shock level response hardly shows on the input signal; shock
levels were designed to simulate surgical incision without inflicting tissue damage.
The means in Fig. 7.1 are from a single location. Actually, for each individual,
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Fig. 7.1. Mean response of subjects to various combinations of periodic stimulae measured at
the cortex (primary somatosensory, contralateral). In the first column, the subjects are awake,
in the second column the subjects are under mild anesthesia. In the first row, the stimulus is a
brush on the hand, the second row involves the application of heat, and the third row involves
a low level shock
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some nine series were recorded at various locations in the brain. It is natural to
consider testing the effects of brushing, heat, and shock under the two levels of
consciousness, using a time series generalization of analysis of variance. The R code
used to generate Fig. 7.1 is:
x = matrix(0, 128, 6)
for (i in 1:6) { x[,i] = rowMeans(fmri[[i]]) }
colnames(x) = c("Brush", "Heat", "Shock", "Brush", "Heat", "Shock")
plot.ts(x, main="")
mtext("Awake", side=3, line=1.2, adj=.05, cex=1.2)
mtext("Sedated", side=3, line=1.2, adj=.85, cex=1.2)

A generalization to random coefficient regression is also considered, paralleling
the univariate approach to signal extraction and detection presented in Sect. 4.9.
This method enables a treatment of multivariate ridge-type regressions and inversion
problems. Also, the usual random effects analysis of variance in the frequency domain
becomes a special case of the random coefficient model.

The extension of frequency domain methodology to more classical approaches to
multivariate discrimination and clustering is of interest in the frequency dependent
case. Many time series differ in their means and in their autocovariance functions,
making the use of both the mean function and the spectral density matrices relevant.
As an example of such data, consider the bivariate series consisting of the P and S
components derived from several earthquakes and explosions, such as those shown
in Fig. 7.2, where the P and S components, representing different arrivals have been
separated from the first and second halves, respectively, of waveforms like those
shown originally in Fig. 1.7.

Two earthquakes and two explosions from a set of eight earthquakes and explo-
sions are shown in Fig. 7.2 and some essential differences exist that might be used to
characterize the two classes of events. Also, the frequency content of the two compo-
nents of the earthquakes appears to be lower than those of the explosions, and relative
amplitudes of the two classes appear to differ. For example, the ratio of the S to P
amplitudes in the earthquake group is much higher for this restricted subset. Spectral
differences were also noticed in Chap. 4, where the explosion processes had a stronger
high-frequencycomponent relative to the low-frequencycontributions.Examples like
these are typical of applications in which the essential differences between multivari-
ate time series can be expressed by the behavior of either the frequency-dependent
mean value functions or the spectral matrix. In discriminant analysis, these types of
differences are exploited to develop combinations of linear and quadratic classifica-
tion criteria. Such functions can then be used to classify events of unknown origin,
such as the Novaya Zemlya event shown in Fig. 7.2, which tends to bear a visual
resemblance to the explosion group. The R code used to produce Fig. 7.2 is:
attach(eqexp) # so you can use the names of the series
P = 1:1024; S = P+1024
x = cbind(EQ5[P], EQ6[P], EX5[P], EX6[P], NZ[P], EQ5[S], EQ6[S], EX5[S],

EX6[S], NZ[S])
x.name = c("EQ5","EQ6","EX5","EX6","NZ")
colnames(x) = c(x.name, x.name)
plot.ts(x, main="")
mtext("P waves", side=3, line=1.2, adj=.05, cex=1.2)
mtext("S waves", side=3, line=1.2, adj=.85, cex=1.2)
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Fig. 7.2. Various bivariate earthquakes (EQ) and explosions (EX) recorded at 40 pts/s compared
with an event NZ (Novaya Zemlya) of unknown origin. Compressional waves, also known as
primary or P waves, travel fastest in the Earth’s crust and are first to arrive. Shear waves
propagate more slowly through the Earth and arrive second, hence they are called secondary
or S waves

Finally, for multivariate processes, the structure of the spectral matrix is also of
great interest. We might reduce the dimension of the underlying process to a smaller
set of input processes that explain most of the variability in the cross-spectral matrix
as a function of frequency. Principal component analysis can be used to decompose
the spectral matrix into a smaller subset of component factors that explain decreasing
amounts of power. For example, the hydrological data might be explained in terms
of a component process that weights heavily on precipitation and inflow and one
that weights heavily on temperature and cloud cover. Perhaps these two components
could explain most of the power in the spectral matrix at a given frequency. The ideas
behind principal component analysis can also be generalized to include an optimal
scaling methodology for categorical data called the spectral envelope (see Stoffer
et al. [193]).

7.2 Spectral Matrices and Likelihood Functions

We have previously argued for an approximation to the log likelihood based on the
joint distribution of the DFTs in (4.85), where we used approximation as an aid in
estimating parameters for certain parameterized spectra. In this chapter, we make
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heavy use of the fact that the sine and cosine transforms of the p × 1 vector process
xt = (xt1, xt2, . . . , xt p)′ with mean Ext = μt , say, with DFT1

X(ωk ) = n−1/2
n∑

t=1
xt e−2πiωk t = Xc(ωk) − iXs(ωk) (7.1)

and mean

M(ωk ) = n−1/2
n∑

t=1
μt e−2πiωk t = Mc(ωk) − iMs(ωk) (7.2)

will be approximately uncorrelated, where we evaluate at the usual Fourier frequencies
{ωk = k/n, 0 < |ωk | < 1/2}. By Theorem C.6, the approximate 2p × 2p covariance
matrix of the cosine and sine transforms, say, X(ωk ) = (Xc(ωk)′, Xs(ωk)′)′, is

Σ(ωk ) = 1
2

(
C(ωk) −Q(ωk)
Q(ωk ) C(ωk)

)

, (7.3)

and the real and imaginary parts are jointly normal. This result implies, by the results
stated in Appendix C, the density function of the vector DFT, say, X(ωk ), can be
approximated as

p(ωk) ≈ | f (ωk)|−1 exp
{−(

X(ωk) − M(ωk)
)∗ f −1(ωk)

(
X(ωk ) − M(ωk)

)}
,

where the spectral matrix is the usual

f (ωk) = C(ωk) − iQ(ωk ). (7.4)

Certain computations that we do in the section on discriminant analysis will involve
approximating the joint likelihood by the product of densities like the one given above
over subsets of the frequency band 0 < ωk < 1/2.

To use the likelihood function for estimating the spectral matrix, for example, we
appeal to the limiting result implied by Theorem C.7 and again choose L frequencies
in the neighborhood of some target frequency ω, say, X(ωk ± k/n), for k = 1, . . . , m
and L = 2m + 1. Then, let X� denote the indexed values, and note the DFTs of the
mean adjusted vector process are approximately jointly normal with mean zero and
complex covariance matrix f = f (ω). Then, write the log likelihood over the L
sub-frequencies as

ln LX ( f (ωk)) ≈ −L ln | f (ωk)| −
m∑

�=−m
(X� − M�)∗ f (ωk)−1(X� − M�) . (7.5)

The use of spectral approximations to the likelihood has been fairly standard, begin-
ning with the work of Whittle [210] and continuing in Brillinger [35] and Hannan [86].

1 In previous chapters, the DFT of a process xt was denoted by dx (ωk ). In this chapter, we will consider
the Fourier transforms of many different processes and so, to avoid the overuse of subscripts and to ease
the notation, we use a capital letter, e.g., X(ωk ), to denote the DFT of xt . This notation is standard in
the digital signal processing (DSP) literature.
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Assuming the mean adjusted series are available, i.e., M� is known, we obtain the
maximum likelihood estimator for f , namely,

f̂ (ωk) = L−1
m∑

�=−m
(X� − M�)(X� − M�)∗; (7.6)

see Problem 7.2.

7.3 Regression for Jointly Stationary Series

In Sect. 4.7, we considered a model of the form

yt =

∞∑

r=−∞
β1r xt−r,1 + vt, (7.7)

where xt1 is a single observed input series and yt is the observed output series, and
we are interested in estimating the filter coefficients β1r relating the adjacent lagged
values of xt1 to the output series yt . In the case of the SOI and Recruitment series,
we identified the El Niño driving series as xt1, the input and yt , the Recruitment
series, as the output. In general, more than a single plausible input series may exist.
For example, the Lake Shasta inflow hydrological data (climhyd) shown in Fig. 7.3
suggests there may be at least five possible series driving the inflow; see Example 7.1
for more details. Hence, we may envision a q × 1 input vector of driving series,
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Fig. 7.3. Monthly values of weather and inflow at Lake Shasta (climhyd)
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say, xt = (xt1, xt2, . . . , xtq)′, and a set of q × 1 vector of regression functions βr =

(β1r, β2r,, . . . , βqr )′, which are related as

yt =

∞∑

r=−∞
β′r xt−r + vt =

q∑

j=1

∞∑

r=−∞
βjr xt−r, j + vt, (7.8)

which shows that the output is a sum of linearly filtered versions of the input processes
and a stationary noise process vt , assumed to be uncorrelated with xt . Each filtered
component in the sum over j gives the contribution of lagged values of the jth input
series to the output series. We assume the regression functions βjr are fixed and
unknown.

The model given by (7.8) is useful under several different scenarios, correspond-
ing to a number of different assumptions that can be made about the components.
Assuming the input and output processes are jointly stationary with zero means leads
to the conventional regression analysis given in this section. The analysis depends
on theory that assumes we observe the output process yt conditional on fixed values
of the input vector xt ; this is the same as the assumptions made in conventional re-
gression analysis. Assumptions considered later involve letting the coefficient vector
βt be a random unknown signal vector that can be estimated by Bayesian arguments,
using the conditional expectation given the data. The answers to this approach, given
in Sect. 7.5, allow signal extraction and deconvolution problems to be handled.
Assuming the inputs are fixed allows various experimental designs and analysis of
variance to be done for both fixed and random effects models. Estimation of the
frequency-dependent random effects variance components in the analysis of variance
model is also considered in Sect. 7.5.

For the approach in this section, assume the inputs and outputs have zero means
and are jointly stationary with the (q + 1) × 1 vector process (x′t, yt )′ of inputs xt and
outputs yt assumed to have a spectral matrix of the form

f (ω) =
(

fxx (ω) fxy(ω)
fyx(ω) fyy(ω)

)

, (7.9)

where fyx(ω) = ( fyx1(ω), fyx2(ω), . . . , fyxq (ω)) is the 1 × q vector of cross-spectra
relating the q inputs to the output and fxx(ω) is the q×q spectral matrix of the inputs.
Generally, we observe the inputs and search for the vector of regression functions βt
relating the inputs to the outputs. We assume all autocovariance functions satisfy the
absolute summability conditions of the form

∞∑

h=−∞
|h| |γjk (h)| < ∞. (7.10)

( j, k = 1, . . . , q + 1), where γjk(h) is the autocovariance corresponding to the cross-
spectrum fjk (ω) in (7.9). We also need to assume a linear process of the form (C.35)
as a condition for using Theorem C.7 on the joint distribution of the discrete Fourier
transforms in the neighborhood of some fixed frequency.
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Estimation of the Regression Function

In order to estimate the regression function βr , the Projection Theorem
(Appendix B) applied to minimizing

MSE = E
[
(yt −

∞∑

r=−∞
β′r xt−r )2

]
(7.11)

leads to the orthogonality conditions

E
[
(yt −

∞∑

r=−∞
β′r xt−r ) x′t−s

]
= 0′ (7.12)

for all s = 0,±1,±2, . . ., where 0′ denotes the 1×q zero vector. Taking the expectations
inside and substituting for the definitions of the autocovariance functions appearing
and leads to the normal equations

∞∑

r=−∞
β′r Γxx(s − r) = γ′yx(s), (7.13)

for s = 0,±1,±2, . . ., where Γxx(s) denotes the q × q autocovariance matrix of the
vector series xt at lag s and γyx(s) = (γyx1(s), . . . , γyxq (s)) is a 1×q vector containing
the lagged covariances between yt and xt . Again, a frequency domain approximate
solution is easier in this case because the computations can be done frequency by
frequency using cross-spectra that can be estimated from sample data using the DFT.
In order to develop the frequency domain solution, substitute the representation into
the normal equations, using the same approach as used in the simple case derived
in Sect. 4.7. This approach yields

∫ 1/2

−1/2

∞∑

r=−∞
β′r e2πiω(s−r) fxx(ω) dω = γ′yx(s).

Now, because γ′yx(s) is the Fourier transform of the cross-spectral vector fyx(ω) =
f ∗xy(ω), we might write the system of equations in the frequency domain, using the
uniqueness of the Fourier transform, as

B′(ω) fxx(ω) = f ∗xy(ω), (7.14)

where fxx (ω) is the q × q spectral matrix of the inputs and B(ω) is the q × 1 vector
Fourier transform of βt . Multiplying (7.14) on the right by f −1

xx (ω), assuming fxx (ω)
is nonsingular at ω, leads to the frequency domain estimator

B′(ω) = f ∗xy(ω) f −1
xx (ω). (7.15)

Note, (7.15) implies the regression function would take the form

βt =

∫ 1/2

−1/2
B(ω) e2πiωt dω. (7.16)
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As before, it is conventional to introduce the DFT as the approximate estimator for
the integral (7.16) and write

βMt = M−1
M−1∑

k=0
B(ωk) e2πiωk t, (7.17)

where ωk = k/M, M << n. The approximation was shown in Problem 4.35 to hold
exactly as long as βt = 0 for |t | ≥ M/2 and to have a mean-squared-error bounded
by a function of the zero-lag autocovariance and the absolute sum of the neglected
coefficients.

The mean-squared-error (7.11) can be written using the orthogonality principle,
giving

MSE =

∫ 1/2

−1/2
fy ·x(ω) dω, (7.18)

where
fy ·x(ω) = fyy(ω) − f ∗xy(ω) f −1

xx (ω) fxy(ω) (7.19)

denotes the residual or error spectrum. The resemblance of (7.19) to the usual equa-
tions in regression analysis is striking. It is useful to pursue the multiple regression
analogy further by noting a squared multiple coherence can be defined as

ρ2
y·x(ω) =

f ∗xy(ω) f −1
xx (ω) fxy(ω)
fyy(ω) . (7.20)

This expression leads to the mean squared error in the form

MSE =

∫ 1/2

−1/2
fyy(ω)[1 − ρ2

y·x(ω)] dω, (7.21)

and we have an interpretation of ρ2
y·x(ω) as the proportion of power accounted for by

the lagged regression on xt at frequency ω. If ρ2
y·x(ω) = 0 for all ω, we have

MSE =

∫ 1/2

−1/2
fyy(ω) dω = E[y2

t ],

which is the mean squared error when no predictive power exists. As long as fxx (ω)
is positive definite at all frequencies, MSE ≥ 0, and we will have

0 ≤ ρ2
y ·x(ω) ≤ 1 (7.22)

for all ω. If the multiple coherence is unity for all frequencies, the mean squared
error in (7.21) is zero and the output series is perfectly predicted by a linearly filtered
combination of the inputs. Problem 7.3 shows the ordinary squared coherence between
the series yt and the linearly filtered combinations of the inputs appearing in (7.11)
is exactly (7.20).
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Estimation Using Sampled Data

Clearly, the matrices of spectra and cross-spectra will not ordinarily be known,
so the regression computations need to be based on sampled data. We assume,
therefore, the inputs xt1, xt2, . . . , xtq and output yt series are available at the time
points t = 1, 2, . . . , n, as in Chap. 4. In order to develop reasonable estimates for the
spectral quantities, some replication must be assumed. Often, only one replication
of each of the inputs and the output will exist, so it is necessary to assume a band
exists over which the spectra and cross-spectra are approximately equal to fxx (ω) and
fxy(ω), respectively. Then, let Y (ωk + �/n) and X(ωk + �/n) be the DFTs of yt and
xt over the band, say, at frequencies of the form

ωk ± �/n, � = 1, . . . , m,

where L = 2m + 1 as before. Then, simply substitute the sample spectral matrix

f̂xx(ω) = L−1
m∑

�=−m
X(ωk + �/n)X∗(ωk + �/n) (7.23)

and the vector of sample cross-spectra

f̂xy(ω) = L−1
m∑

�=−m
X(ωk + �/n)Y(ωk + �/n) (7.24)

for the respective terms in (7.15) to get the regression estimator B̂(ω). For the regres-
sion estimator (7.17), we may use

β̂Mt =
1
M

M−1∑

k=0
f̂ ∗xy(ωk) f̂ −1

xx (ωk) e2πiωk t (7.25)

for t = 0,±1,±2, . . . ,±(M/2 − 1), as the estimated regression function.

Tests of Hypotheses

The estimated squared multiple coherence, corresponding to the theoretical co-
herence (7.20), becomes

ρ̂2
y ·x(ω) =

f̂ ∗xy(ω) f̂ −1
xx (ω) f̂xy(ω)
f̂yy(ω)

. (7.26)

We may obtain a distributional result for the multiple coherence function analogous
to that obtained in the univariate case by writing the multiple regression model in the
frequency domain, as was done in Sect. 4.5. We obtain the statistic

F2q,2(L−q) =
(L − q)

q

ρ̂2
y ·x(ω)

[1 − ρ̂2
y ·x(ω)]

, (7.27)
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which has an F-distribution with 2q and 2(L − q) degrees of freedom under the null
hypothesis that ρ2

y ·x(ω) = 0, or equivalently, that B(ω) = 0, in the model

Y (ωk + �/n) = B′(ω)X(ωk + �/n) + V(ωk + �/n), (7.28)

where the spectral density of the error V(ωk + �/n) is fy ·x(ω). Problem 7.4 sketches
a derivation of this result.

A second kind of hypothesis of interest is one that might be used to test whether
a full model with q inputs is significantly better than some submodel with q1 < q
components. In the time domain, this hypothesis implies, for a partition of the vector
of inputs into q1 and q2 components (q1 + q2 = q), say, xt = (x′t1, x′t2)′, and the
similarly partitioned vector of regression functions βt = (β′1t, β′2t )′, we would be
interested in testing whether β2t = 0 in the partitioned regression model

yt =

∞∑

r=−∞
β′1r xt−r,1 +

∞∑

r=−∞
β′2r xt−r,2 + vt . (7.29)

Rewriting the regression model (7.29) in the frequency domain in a form that is
similar to (7.28) establishes that, under the partitions of the spectral matrix into its
qi × qj (i, j = 1, 2) submatrices, say,

f̂xx (ω) =
(

f̂11(ω) f̂12(ω)
f̂21(ω) f̂22(ω)

)

, (7.30)

and the cross-spectral vector into its qi × 1 (i = 1, 2) subvectors,

f̂xy(ω) =
(

f̂1y(ω)
f̂2y(ω)

)

, (7.31)

we may test the hypothesis β2t = 0 at frequency ω by comparing the estimated
residual power

f̂y ·x(ω) = f̂yy(ω) − f̂ ∗xy(ω) f̂ −1
xx (ω) f̂xy(ω) (7.32)

under the full model with that under the reduced model, given by

f̂y ·1(ω) = f̂yy(ω) − f̂ ∗1y(ω) f̂ −1
11 (ω) f̂1y(ω). (7.33)

The power due to regression can be written as

SSR(ω) = L[ f̂y ·1(ω) − f̂y ·x(ω)], (7.34)

with the usual error power given by

SSE(ω) = L f̂y ·x(ω). (7.35)

The test of no regression proceeds using the F-statistic

F2q2,2(L−q) =
(L − q)

q2

SSR(ω)
SSE(ω) . (7.36)
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The distributionof this F-statistic with 2q2 numerator degrees of freedom and 2(L−q)
denominator degrees of freedom follows from an argument paralleling that given in
Chap. 4 for the case of a single input. The test results can be summarized in an
Analysis of Power (ANOPOW) table that parallels the usual analysis of variance
(ANOVA) table. Table 7.1 shows the components of power for testing β2t = 0 at a
particular frequency ω. The ratio of the two components divided by their respective
degrees of freedom just yields the F-statistic (7.36) used for testing whether the q2
add significantly to the predictive power of the regression on the q1 series.

Example 7.1 Predicting Lake Shasta Inflow
We illustrate some of the preceding ideas by considering the problem of predicting
the transformed (logged) inflow series shown in Fig. 7.3 from some combination
of the inputs. First, look for the best single input predictor using the squared
coherence function (7.26). The results, exhibited in Fig. 7.4a–e, show transformed

Table 7.1. ANOPOW for the partitioned regression model

Source Power Degrees of freedom
xt,q1+1, . . . , xt,q1+q2 SSR(ω) (7.34) 2q2

Error SSE(ω) (7.35) 2(L − q1 − q2)
Total L f̂y ·1(ω) 2(L − q1)
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Fig. 7.4. Squared coherency between Lake Shasta inflow and (a) temperature; (b) dew point;
(c) cloud cover; (d) wind speed; (e) precipitation. The multiple coherency between inflow
and temperature – precipitation jointly is displayed in (f). In each case, the .001 threshold is
exhibited as a horizontal line
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(square root) precipitation produces the most consistently high squared coherence
values at all frequencies (L = 25), with the seasonal period contributing most
significantly. Other inputs, with the exception of wind speed, also appear to be
plausible contributors. Figure 7.4a–e shows a .001 threshold corresponding to the
F-statistic, separately, for each possible predictor of inflow.

Next, we focus on the analysis with two predictor series, temperature and
transformed precipitation. The additional contribution of temperature to the model
seems somewhat marginal because the multiple coherence (7.26), shown in the top
panel of Fig. 7.4f seems only slightly better than the univariate coherence with
precipitation shown in Fig. 7.4e. It is, however, instructive to produce the multiple
regression functions, using (7.25) to see if a simple model for inflow exists that
would involve some regression combination of inputs temperature and precipitation
that would be useful for predicting inflow to Shasta Lake. The top of Fig. 7.5 shows
the partial F-statistic, (7.36), for testing if temperature is predictive of inflow when
precipitation is in the model. In addition, threshold values corresponding to a
false discovery rate (FDR) of .001 (see Benjamini and Hochberg [17]) and the
corresponding null F quantile are displayed in that figure.

Although the contributionof temperature is marginal, it is instructive to produce
the multiple regression functions, using (7.25), to see if a simple model for inflow
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Fig. 7.5. Partial F-statistics [top] for testing whether temperature adds to the ability to predict
Lake Shasta inflow when precipitation is included in the model. The dashed line indicates
the .001 FDR level and the solid line represents the corresponding quantile of the null F
distribution. Multiple impulse response functions for the regression relations of temperature
[middle] and precipitation [bottom]
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exists that would involve some regression combination of inputs temperature and
precipitation that would be useful for predicting inflow to Lake Shasta. With this
in mind, denoting the possible inputs Pt for transformed precipitation and Tt for
transformed temperature, the regression function has been plotted in the lower two
panels of Fig. 7.5 using a value of M = 100 for each of the two inputs. In that figure,
the time index runs over both positive and negative values and are centered at time
t = 0. Hence, the relation with temperature seems to be instantaneous and positive
and an exponentially decaying relation to precipitation exists that has been noticed
previously in the analysis in Problem 4.37. The plots suggest a transfer function
model of the general form fitted to the Recruitment and SOI series in Example 5.8.
We might propose fitting the inflow output, say, It , using the model

It = α0 +
δ0

(1 − ω1B)Pt + α2Tt + ηt,

which is the transfer function model, without the temperature component, consid-
ered in that section. The R code for this example is as follows.
plot.ts(climhyd) # Figure 7.3
Y = climhyd # Y holds the transformed series
Y[,6] = log(Y[,6]) # log inflow
Y[,5] = sqrt(Y[,5]) # sqrt precipitation
L = 25; M = 100; alpha = .001; fdr = .001
nq = 2 # number of inputs (Temp and Precip)
# Spectral Matrix
Yspec = mvspec(Y, spans=L, kernel="daniell", detrend=TRUE, demean=FALSE,

taper=.1)
n = Yspec$n.used # effective sample size
Fr = Yspec$freq # fundamental freqs
n.freq = length(Fr) # number of frequencies
Yspec$bandwidth*sqrt(12) # = 0.050 - the bandwidth
# Coherencies
Fq = qf(1-alpha, 2, L-2)
cn = Fq/(L-1+Fq)
plt.name = c("(a)","(b)","(c)","(d)","(e)","(f)")
dev.new(); par(mfrow=c(2,3), cex.lab=1.2)
# The coherencies are listed as 1,2,...,15=choose(6,2)
for (i in 11:15){
plot(Fr, Yspec$coh[,i], type="l", ylab="Sq Coherence", xlab="Frequency",

ylim=c(0,1), main=c("Inflow with", names(climhyd[i-10])))
abline(h = cn); text(.45,.98, plt.name[i-10], cex=1.2) }

# Multiple Coherency
coh.15 = stoch.reg(Y, cols.full = c(1,5), cols.red = NULL, alpha, L, M,

plot.which = "coh")
text(.45 ,.98, plt.name[6], cex=1.2)
title(main = c("Inflow with", "Temp and Precip"))

# Partial F (called eF; avoid use of F alone)
numer.df = 2*nq; denom.df = Yspec$df-2*nq
dev.new()
par(mfrow=c(3,1), mar=c(3,3,2,1)+.5, mgp = c(1.5,0.4,0), cex.lab=1.2)
out.15 = stoch.reg(Y, cols.full = c(1,5), cols.red = 5, alpha, L, M,

plot.which = "F.stat")
eF = out.15$eF
pvals = pf(eF, numer.df, denom.df, lower.tail = FALSE)



7.4 Regression with Deterministic Inputs 399

pID = FDR(pvals, fdr); abline(h=c(eF[pID]), lty=2)
title(main = "Partial F Statistic")
# Regression Coefficients
S = seq(from = -M/2+1, to = M/2 - 1, length = M-1)
plot(S, coh.15$Betahat[,1], type = "h", xlab = "", ylab = names(climhyd[1]),

ylim = c(-.025, .055), lwd=2)
abline(h=0); title(main = "Impulse Response Functions")
plot(S, coh.15$Betahat[,2], type = "h", xlab = "Index", ylab =

names(climhyd[5]), ylim = c(-.015, .055), lwd=2)
abline(h=0)

7.4 Regression with Deterministic Inputs

The previous section considered the case in which the input and output series were
jointly stationary, but there are many circumstances in which we might want to assume
that the input functions are fixed and have a known functional form. This happens
in the analysis of data from designed experiments. For example, we may want to
take a collection of earthquakes and explosions such as are shown in Fig. 7.2 and test
whether the mean functions are the same for either the P or S components or, perhaps,
for them jointly. In certain other signal detection problems using arrays, the inputs
are used as dummy variables to express lags corresponding to the arrival times of the
signal at various elements, under a model corresponding to that of a plane wave from
a fixed source propagating across the array. In Fig. 7.1, we plotted the mean responses
of the cortex as a function of various underlying design configurations corresponding
to various stimuli applied to awake and mildly anesthetized subjects.

It is necessary to introduce a replicated version of the underlying model to handle
even the univariate situation, and we replace (7.8) by

yjt =

∞∑

r=−∞
β′r zj,t−r + vjt (7.37)

for j = 1, 2, . . . , N series, where we assume the vector of known deterministic inputs,
zjt = (zjt1, . . . , zjtq)′, satisfies

∞∑

t=−∞
|t | |zjtk | < ∞

for j = 1, . . . , N replicates of an underlying process involving k = 1, . . . , q regression
functions. The model can also be treated under the assumption that the deterministic
function satisfy Grenander’s conditions, as in Hannan [86], but we do not need those
conditions here and simply follow the approach in Shumway [182, 183].

It will sometimes be convenient in what follows to represent the model in matrix
notation, writing (7.37) as

yt =

∞∑

r=−∞
zt−r βr + vt, (7.38)
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Fig. 7.6. Three series for a nuclear explosion detonated 25 km south of Christmas Island and
the delayed average or beam. The time scale is 10 points per second

where zt = (z1t, . . . , zNt )′ are the N × q matrices of independent inputs and yt and
vt are the N × 1 output and error vectors. The error vector vt = (v1t, . . . , vNt )′ is
assumed to be a multivariate, zero-mean, stationary, normal process with spectral
matrix fv(ω)IN that is proportional to the N × N identity matrix. That is, we assume
the error series vjt are independently and identically distributed with spectral densities
fv(ω).
Example 7.2 An Infrasonic Signal from a Nuclear Explosion

Often, we will observe a common signal, say, βt on an array of sensors, with the
response at the jth sensor denoted by yjt, j = 1, . . . , N . For example, Fig. 7.6
shows an infrasonic or low-frequency acoustic signal from a nuclear explosion, as
observed on a small triangular array of N = 3 acoustic sensors. These signals appear
at slightly different times. Because of the way signals propagate, a plane wave signal
of this kind, from a given source, traveling at a given velocity, will arrive at elements
in the array at predictable time delays. In the case of the infrasonic signal in Fig. 7.6,
the delays were approximated by computing the cross-correlation between elements
and simply reading off the time delay corresponding to the maximum. For a detailed
discussion of the statistical analysis of array signals, see Shumway et al. [186].

A simple additive signal-plus-noise model of the form

yjt = βt−τj + vjt (7.39)

can be assumed, where τj, j = 1, 2, . . . , N are the time delays that determine the start
point of the signal at each element of the array. The model (7.39) is written in the
form (7.37) by letting zjt = δt−τj , where δt = 1 when t = 0 and is zero otherwise.
In this case, we are interested in both the problem of detecting the presence of the
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signal and in estimating its waveform βt . In this case, a plausible estimator of the
waveform would be the unbiased beam, say,

β̂t =

∑N
j=1 yj,t+τj

N
, (7.40)

where time delays in this case were measured as τ1 = 17, τ2 = 0, and τ3 = −22 from
the cross-correlation function. The bottom panel of Fig. 7.6 shows the computed
beam in this case, and the noise in the individual channels has been reduced and
the essential characteristics of the common signal are retained in the average. The
R code for this example is
attach(beamd)
tau = rep(0,3)
u = ccf(sensor1, sensor2, plot=FALSE)
tau[1] = u$lag[which.max(u$acf)] # 17
u = ccf(sensor3, sensor2, plot=FALSE)
tau[3] = u$lag[which.max(u$acf)] # -22
Y = ts.union(lag(sensor1,tau[1]), lag(sensor2, tau[2]), lag(sensor3, tau[3]))
Y = ts.union(Y, rowMeans(Y))
colnames(Y) = c('sensor1', 'sensor2', 'sensor3', 'beam')
plot.ts(Y)

The above discussion and example serve to motivate a more detailed look at
the estimation and detection problems in the case in which the input series zjt are
fixed and known. We consider the modifications needed for this case in the following
sections.

Estimation of the Regression Relation

Because the regression model (7.37) involves fixed functions, we may parallel
the usual approach using the Gauss–Markov theorem to search for linear-filtered
estimators of the form

β̂t =

N∑

j=1

∞∑

r=−∞
hjr yj,t−r, (7.41)

where hjt = (hjt1 . . . , hjtq)′ is a vector of filter coefficients, determined so the
estimators are unbiased and have minimum variance. The equivalent matrix form is

β̂t =
∞∑

r=−∞
hr yt−r, (7.42)

where ht = (h1t, . . . , hNt ) is a q × N matrix of filter functions. The matrix form
resembles the usual classical regression case and is more convenient for extending the
Gauss–Markov Theorem to lagged regression. The unbiased condition is considered
in Problem 7.6. It can be shown (see Shumway and Dean [178]) that hjs can be taken
as the Fourier transform of

Hj (ω) = S−1
z (ω)Z j (ω), (7.43)
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where

Z j (ω) =
∞∑

t=−∞
zjte−2πiωt (7.44)

is the infinite Fourier transform of zjt . The matrix

Sz(ω) =
N∑

j=1
Z j (ω)Z ′

j (ω) (7.45)

can be written in the form
Sz(ω) = Z∗(ω)Z(ω), (7.46)

where the N × q matrix Z(ω) is defined by Z(ω) = (Z1(ω), . . . , ZN (ω))′. In matrix
notation, the Fourier transform of the optimal filter becomes

H(ω) = S−1
z (ω)Z∗(ω), (7.47)

where H(ω) = (H1(ω), . . . , HN (ω)) is the q × N matrix of frequency response func-
tions. The optimal filter then becomes the Fourier transform

ht =
∫ 1/2

−1/2
H(ω)e2πiωt dω. (7.48)

If the transform is not tractable to compute, an approximation analogous to (7.25)
may be used.

Example 7.3 Estimation of the Infrasonic Signal in Example 7.2
We consider the problem of producing a best linearly filtered unbiased estimator
for the infrasonic signal in Example 7.2. In this case, q = 1 and (7.44) becomes

Z j (ω) =
∞∑

t=−∞
δt−τj e

−2πiωt = e−2πiωτj

and Sz(ω) = N . Hence, we have

Hj (ω) = 1
N

e2πiωτj .

Using (7.48), we obtain hjt =
1
N δ(t + τj ). Substituting in (7.41), we obtain the best

linear unbiased estimator as the beam, computed as in (7.40).

Tests of Hypotheses

We consider first testing the hypothesis that the complete vector βt is zero, i.e.,
that the vector signal is absent. We develop a test at each frequency ω by taking
single adjacent frequencies of the form ωk = k/n, as in the initial section. We may
approximate the DFT of the observed vector in the model (7.37) using a representation
of the form
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Yj (ωk) = B′(ωk)Z j (ωk) + Vj (ωk) (7.49)

for j = 1, . . . , N , where the error terms will be uncorrelated with common variance
f (ωk), the spectral density of the error term. The independent variables Z j (ωk) can
either be the infinite Fourier transform, or they can be approximated by the DFT.
Hence, we can obtain the matrix version of a complex regression model, written in
the form

Y (ωk) = Z(ωk)B(ωk) + V(ωk), (7.50)

where the N × q matrix Z(ωk) has been defined previously below (7.46) and Y (ωk)
and V(ωk) are N × 1 vectors with the error vector V(ωk) having mean zero, with
covariance matrix f (ωk)IN . The usual regression arguments show that the maximum
likelihood estimator for the regression coefficient will be

B̂(ωk) = S−1
z (ωk)szy(ωk), (7.51)

where Sz(ωk) is given by (7.46) and

szy(ωk) = Z∗(ωk)Y(ωk) =
N∑

j=1
Z j (ωk)Yj (ωk). (7.52)

Also, the maximum likelihood estimator for the error spectral matrix is proportional
to

s2
y ·z(ωk) =

N∑

j=1
|Yj (ωk) − B̂(ωk)′Z j (ωk)|2

= Y ∗(ωk)Y(ωk) − Y ∗(ωk)Z(ωk)[Z∗(ωk)Z(ωk)]−1Z∗(ωk)Y (ωk)
= s2

y(ωk) − s∗zy(ωk)S−1
z (ωk)szy(ωk), (7.53)

where

s2
y(ωk) =

N∑

j=1
|Yj (ωk)|2. (7.54)

Under the null hypothesis that the regression coefficient B(ωk) = 0, the estimator for
the error power is just s2

y(ωk). If smoothing is needed, we may replace the (7.53) and
(7.54) by smoothed components over the frequencies ωk + �/n, for � = −m, . . . , m
and L = 2m + 1, close to ω. In that case, we obtain the regression and error spectral
components as

SSR(ω) =
m∑

�=−m
s∗zy(ωk + �/n)S−1

z (ωk + �/n)szy(ωk + �/n) (7.55)

and

SSE(ω) =
m∑

�=−m
s2
y ·z(ωk + �/n). (7.56)
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Table 7.2. Analysis of power (ANOPOW) for testing no contribution from the independent
series at frequency ω in the fixed input case

Source Power Degrees of freedom
Regression SSR(ω)(7.55) 2Lq

Error SSE(ω) (7.56) 2L(N − q)
Total SST(ω) 2LN

The F-statistic for testing no regression relation is

F2Lq,2L(N−q) =
N − q

q
SSR(ω)
SSE(ω) . (7.57)

The analysis of power pertaining to this situation appears in Table 7.2.
In the fixed regression case, the partitioned hypothesis that is the analog of

β2t = 0 in (7.27) with xt1, xt2 replaced by zt1, zt2. Here, we partition Sz(ω) into
qi × qj (i, j = 1, 2) submatrices, say,

Sz(ωk) =
(

S11(ωk) S12(ωk)
S21(ωk) S22(ωk)

)

, (7.58)

and the cross-spectral vector into its qi × 1, for i = 1, 2, subvectors

szy(ωk) =
(

s1y(ωk)
s2y(ωk)

)

. (7.59)

Here, we test the hypothesis β2t = 0 at frequency ω by comparing the residual power
(7.53) under the full model with the residual power under the reduced model, given
by

s2
y ·1(ωk) = s2

y(ωk) − s∗1y(ωk)S−1
11 (ωk)s1y(ωk). (7.60)

Again, it is desirable to add over adjacent frequencies with roughly comparable
spectra so the regression and error power components can be taken as

SSR(ω) =
m∑

�=−m

[
s2
y ·1(ωk + �/n) − s2

y ·z(ωk + �/n)
]

(7.61)

and

SSE(ω) =
m∑

�=−m
s2
y ·z(ωk + �/n). (7.62)

The information can again be summarized as in Table 7.3, where the ratio of mean
power regression and error components leads to the F-statistic

F2Lq2,2L(N−q) =
(N − q)

q2

SSR(ω)
SSE(ω) . (7.63)

We illustrate the analysis of power procedure using the infrasonic signal detection
procedure of Example 7.2.
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Table 7.3. Analysis of Power (ANOPOW) for testing no contribution from the last q2 inputs
in the fixed input case

Source Power Degrees of freedom
Regression SSR(ω)(7.61) 2Lq2

Error SSE(ω) (7.62) 2L(N − q)
Total SST(ω) 2L(N − q1)

Example 7.4 Detecting the Infrasonic Signal Using ANOPOW
We consider the problem of detecting the common signal for the three infrasonic
series observing the common signal, as shown in Fig. 7.4. The presence of the
signal is obvious in the waveforms shown, so the test here mainly confirms the
statistical significance and isolates the frequencies containing the strongest signal
components. Each series contained n = 2048 points, sampled at 10 points per
second. We use the model in (7.39) so Z j (ω) = e−2πiωτj and Sz(ω) = N as in
Example 7.3, with szy(ωk) given as

szy(ωk) =
N∑

j=1
e2πiωτjYj (ωk),

using (7.45) and (7.52). The above expression can be interpreted as being propor-
tional to the weighted mean or beam, computed in frequency, and we introduce the
notation

Bw(ωk) = 1
N

N∑

j=1
e2πiωτjYj (ωk) (7.64)

for that term. Substituting for the power components in Table 7.3 yields

s∗zy(ωk)S−1
z (ωk)szy(ωk) = N |Bw(ωk)|2

and

s2
y ·z(ωk) =

N∑

j=1
|Yj (ωk) − Bw(ωk)|2 =

N∑

j=1
|Yj (ωk)|2 − N |Bw(ωk)|2

for the regression signal and error components, respectively. Because only three
elements in the array and a reasonable number of points in time exist, it seems
advisable to employ some smoothing over frequency to obtain additional degrees
of freedom. In this case, L = 9, yielding 2(9) = 18 and 2(9)(3 − 1) = 36 degrees
of freedom for the numerator and denominator of the F-statistic (7.57). The top
of Fig. 7.7 shows the analysis of power components due to error and the total power.
The power is maximum at about .002 cycles per point or about .02 cycles per
second. The F-statistic is compared with the .001 FDR and the corresponding null
significance in the bottom panel and has the strongest detection at about .02 cycles
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Fig. 7.7. Analysis of power for infrasound array on a log scale (top panel) with SST(ω) shown
as a solid line and SSE(ω) as a dashed line. The F-statistics (bottom panel) showing detections
with the dashed line based on an FDR level of .001 and the solid line corresponding null F
quantile

per second. Little power of consequence appears to exist elsewhere, however, there
is some marginally significant signal power near the .5 cycles per second frequency
band.

The R code for this example is as follows.
attach(beamd)
L = 9; fdr = .001; N = 3
Y = cbind(beamd, beam=rowMeans(beamd) )
n = nextn(nrow(Y))
Y.fft = mvfft(as.ts(Y))/sqrt(n)
Df = Y.fft[,1:3] # fft of the data
Bf = Y.fft[,4] # beam fft
ssr = N*Re(Bf*Conj(Bf)) # raw signal spectrum
sse = Re(rowSums(Df*Conj(Df))) - ssr # raw error spectrum
# Smooth
SSE = filter(sse, sides=2, filter=rep(1/L,L), circular=TRUE)
SSR = filter(ssr, sides=2, filter=rep(1/L,L), circular=TRUE)
SST = SSE + SSR
par(mfrow=c(2,1), mar=c(4,4,2,1)+.1)
Fr = 0:(n-1)/n # the fundamental frequencies
nFr = 1:200 # number of freqs to plot
plot(Fr[nFr], SST[nFr], type="l", ylab="log Power", xlab="", main="Sum of

Squares", log="y")
lines(Fr[nFr], SSE[nFr], type="l", lty=2)
eF = (N-1)*SSR/SSE; df1 = 2*L; df2 = 2*L*(N-1)
pvals = pf(eF, df1, df2, lower=FALSE) # p values for FDR
pID = FDR(pvals, fdr); Fq = qf(1-fdr, df1, df2)
plot(Fr[nFr], eF[nFr], type="l", ylab="F-statistic", xlab="Frequency",

main="F Statistic")
abline(h=c(Fq, eF[pID]), lty=1:2)
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Although there are examples of detecting multiple regression functions of the
general type considered above (see, for example, Shumway [182]), we do not consider
additional examples of partitioning in the fixed input case here. The reason is that
several examples exist in the section on designed experiments that illustrate the
partitioned approach.

7.5 Random Coefficient Regression

The lagged regression models considered so far have assumed the input process is
either stochastic or fixed and the components of the vector of regression function βt
are fixed and unknownparameters to be estimated. There are many cases in time series
analysis in which it is more natural to regard the regression vector as an unknown
stochastic signal. For example, we have studied the state-space model in Chap. 6,
where the state equation can be considered as involving a random parameter vector
that is essentially a multivariate autoregressive process. In Sect. 4.8, we considered
estimating the univariate regression function βt as a signal extraction problem.

In this section, we consider a random coefficient regression model of (7.38) in
the equivalent form

yt =

∞∑

r=−∞
zt−r βr + vt, (7.65)

where yt = (y1t, . . . , yNt )′ is the N × 1 response vector and zt = (z1t, . . . , zNt )′ are
the N × q matrices containing the fixed input processes. Here, the components of
the q × 1 regression vector βt are zero-mean, uncorrelated, stationary series with
common spectral matrix fβ(ω)Iq and the error series vt have zero-means and spectral
matrix fv(ω)IN , where IN is the N × N identity matrix. Then, defining the N × q
matrix Z(ω) = (Z1(ω), Z2(ω), . . . , ZN (ω))′ of Fourier transforms of zt , as in (7.44),
it is easy to show the spectral matrix of the response vector yt is given by

fy(ω) = fβ(ω)Z(ω)Z∗(ω) + fv(ω)IN . (7.66)

The regression model with a stochastic stationary signal component is a general
version of the simple additive noise model

yt = βt + vt,

considered by Wiener [211] and Kolmogorov [120], who derived the minimum mean
squared error estimators for βt , as in Sect. 4.8. The more general multivariate version
(7.65) represents the series as a convolution of the signal vector βt and a known set
of vector input series contained in the matrix zt . Restricting the covariance matrices
of signal and noise to diagonal form is consistent with what is done in statistics using
random effects models, which we consider here in a later section. The problem of
estimating the regression function βt is often called deconvolution in the engineering
and geophysical literature.
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Estimation of the Regression Relation

The regression function βt can be estimated by a general filter of the form (7.42),
where we write that estimator in matrix form

β̂t =

∞∑

r=−∞
hr yt−r, (7.67)

where ht = (h1t, . . . , hNt ), and apply the orthogonality principle, as in Sect. 4.8. A
generalization of the argument in that section (see Problem 7.7) leads to the estimator

H(ω) = [Sz(ω) + θ(ω)Iq]−1Z∗(ω) (7.68)

for the Fourier transform of the minimum mean-squared error filter, where the pa-
rameter

θ(ω) = fv(ω)
fβ(ω) (7.69)

is the inverse of the signal-to-noise ratio. It is clear from the frequency domain
version of the linear model (7.50), the comparable version of the estimator (7.51) can
be written as

B̂(ω) = [Sz(ω) + θ(ω)Iq]−1szy(ω). (7.70)

This version exhibits the estimator in the stochastic regressor case as the usual
estimator, with a ridge correction, θ(ω), that is proportional to the inverse of the
signal-to-noise ratio.

The mean-squared covariance of the estimator is shown to be

E[(B̂ − B)(B̂ − B)∗] = fv(ω)[Sz(ω) + θ(ω)Iq]−1, (7.71)

which again exhibits the close connection between this case and the variance of the
estimator (7.51), which can be shown to be fv(ω)S−1

z (ω).

Example 7.5 Estimating the Random Infrasonic Signal
In Example 7.4, we have already determined the components needed in (7.68) and
(7.69) to obtain the estimators for the random signal. The Fourier transform of the
optimum filter at series j has the form

Hj (ω) = e2πiωτj

N + θ(ω) (7.72)

with the mean-squared error given by fv(ω)/[N + θ(ω)] from (7.71). The net effect
of applying the filters will be the same as filtering the beam with the frequency
response function

H0(ω) = N
N + θ(ω) =

N fβ(ω)
fv(ω) + N fβ(ω), (7.73)

where the last form is more convenient in cases in which portions of the signal
spectrum are essentially zero.
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The optimal filters ht have frequency response functions that depend on the
signal spectrum fβ(ω) and noise spectrum fv(ω), so we will need estimators for these
parameters to apply the optimal filters. Sometimes, there will be values, suggested
from experience, for the signal-to-noise ratio 1/θ(ω) as a function of frequency.
The analogy between the model here and the usual variance components model in
statistics, however, suggests we try an approach along those lines as in the next section.

Detection and Parameter Estimation

The analogy to the usual variance components situation suggests looking at the
regression and error components of Table 7.2 under the stochastic signal assumptions.
We consider the components of (7.55) and (7.56) at a single frequency ωk . In order
to estimate the spectral components fβ(ω) and fv(ω), we reconsider the linear model
(7.50) under the assumption that B(ωk) is a random process with spectral matrix
fβ(ωk)Iq. Then, the spectral matrix of the observed process is (7.66), evaluated at
frequency ωk .

Consider first the component of the regression power, defined as

SSR(ωk) = s∗zy(ωk)S−1
z (ωk)szy(ωk)

= Y∗(ωk)Z(ωk)S−1
z (ωk)Z∗(ωk)Y (ωk).

A computation shows

E[SSR(ωk)] = fβ(ωk) tr{Sz(ωk)} + q fv(ωk),

where tr denotes the trace of a matrix. If we can find a set of frequencies of the form
ωk + �/n, where the spectra and the Fourier transforms Sz(ωk + �/n) ≈ Sz(ω) are
relatively constant, the expectation of the averaged values in (7.55) yields

E[SSR(ω)] = L fβ(ω)tr [Sz(ω)] + Lq fv(ω). (7.74)

A similar computation establishes

E[SSE(ω)] = L(N − q) fv(ω). (7.75)

We may obtain an approximately unbiased estimator for the spectra fv(ω) and fβ(ω)
by replacing the expected power components by their values and solving (7.74) and
(7.75).

7.6 Analysis of Designed Experiments

An important special case (see Brillinger [32, 34]) of the regression model (7.49)
occurs when the regression (7.38) is of the form

yt = zβt + vt, (7.76)
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where z = (z1, z2, . . . , zN )′ is a matrix that determines what is observed by the jth
series; i.e.,

yjt = z′j βt + vjt . (7.77)

In this case, the matrix z of independent variables is constant and we will have the
frequency domain model.

Y (ωk) = ZB(ωk) + V(ωk) (7.78)

corresponding to (7.50), where the matrix Z(ωk) was a function of frequency ωk .
The matrix is purely real, in this case, but the equations (7.51)–(7.57) can be applied
with Z(ωk) replaced by the constant matrix Z .

Equality of Means

A typical general problem that we encounter in analyzing real data is a simple
equality of means test in which there might be a collection of time series yijt, i =

1, . . . , I, j = 1, . . . , Ni , belonging to I possible groups, with Ni series in group i. To
test equality of means, we may write the regression model in the form

yijt = μt + αit + vijt, (7.79)

where μt denotes the overall mean and αit denotes the effect of the ith group at time
t and we require that

∑
i αit = 0 for all t. In this case, the full model can be written in

the general regression notation as

yijt = z′ij βt + vijt

where
βt = (μt, α1t, α2t, . . . , αI−1,t )′

denotes the regression vector, subject to the constraint. The reduced model becomes

yijt = μt + vijt (7.80)

under the assumption that the group means are equal. In the full model, there are I
possible values for the I × 1 design vectors zij ; the first component is always one for
the mean, and the rest have a one in the ith position for i = 1, . . . , I − 1 and zeros
elsewhere. The vectors for the last group take the value −1 for i = 2, 3, . . . , I − 1.
Under the reduced model, each zij is a single column of ones. The rest of the analysis
follows the approach summarized in (7.51)–(7.57). In this particular case, the power
components in Table 7.3 (before smoothing) simplify to

SSR(ωk) =
I∑

i=1

Ni∑

j=1
|Yi·(ωk) − Y··(ωk)|2 (7.81)
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and

SSE(ωk) =
I∑

i=1

Ni∑

j=1
|Yij (ωk) − Yi·(ωk)|2, (7.82)

which are analogous to the usual sums of squares in analysis of variance. Note that a
dot (·) stands for a mean, taken over the appropriate subscript, so the regression power
component SSR(ωk) is basically the power in the residuals of the group means from
the overall mean and the error power component SSE(ωk) reflects the departures of
the group means from the original data values. Smoothing each component over L
frequencies leads to the usual F-statistic (7.63) with 2L(I − 1) and 2L(∑i Ni − I)
degrees of freedom at each frequency ω of interest.

Example 7.6 Means Test for the fMRI Data
Figure 7.1 showed the mean responses of subjects to various levels of periodic stim-
ulation while awake and while under anesthesia, as collected in a pain perception
experiment of Antognini et al. [10]. Three types of periodic stimuli were presented
to awake and anesthetized subjects, namely, brushing, heat, and shock. The period-
icity was introduced by applying the stimuli, brushing, heat, and shocks in on-off
sequences lasting 32 s each and the sampling rate was one point every 2 s. The blood
oxygenation level (BOLD) signal intensity (Ogawa et al. [144]) was measured at
nine locations in the brain. Areas of activation were determined using a technique
first described by Bandettini et al. [11]. The specific locations of the brain where the
signal was measured were Cortex 1: Primary Somatosensory, Contralateral, Cortex
2: Primary Somatosensory, Ipsilateral, Cortex 3: Secondary Somatosensory, Con-
tralateral, Cortex 4: Secondary Somatosensory, Ipsilateral, Caudate, Thalamus 1:
Contralateral, Thalamus 2: Ipsilateral, Cerebellum 1: Contralateral and Cerebellum
2: Ipsilateral. Figure 7.1 shows the mean response of subjects at Cortex 1 for each
of the six treatment combinations, 1: Awake-Brush (5 subjects), 2: Awake-Heat
(4 subjects), 3: Awake-Shock (5 subjects), 4: Low-Brush (3 subjects), 5: Low-Heat
(5 subjects), and 6: Low-Shock( 4 subjects). The objective of this first analysis is to
test equality of these six group means, paying special attention to the 64-s period
band (1/64 cycles per second) expected from the periodic driving stimuli. Because
a test of equality is needed at each of the nine brain locations, we took α = .001
to control for the overall error rate. Figure 7.8 shows F-statistics, computed from
(7.63), with L = 3, and we see substantial signals for the four cortex locations and
for the second cerebellum trace, but the effects are nonsignificant in the caudate and
thalamus regions. Hence, we will retain the four cortex locations and the second
cerebellum location for further analysis.

The R code for this example is as follows.
n = 128 # length of series
n.freq = 1 + n/2 # number of frequencies
Fr = (0:(n.freq-1))/n # the frequencies
N = c(5,4,5,3,5,4) # number of series for each cell
n.subject = sum(N) # number of subjects (26)
n.trt = 6 # number of treatments
L = 3 # for smoothing
num.df = 2*L*(n.trt-1) # df for F test
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Fig. 7.8. Frequency-dependent equality of means tests for fMRI data at nine brain locations.
L = 3 and critical value F.001(30, 120) = 2.26

den.df = 2*L*(n.subject-n.trt)
# Design Matrix (Z):
Z1 = outer(rep(1,N[1]), c(1,1,0,0,0,0))
Z2 = outer(rep(1,N[2]), c(1,0,1,0,0,0))
Z3 = outer(rep(1,N[3]), c(1,0,0,1,0,0))
Z4 = outer(rep(1,N[4]), c(1,0,0,0,1,0))
Z5 = outer(rep(1,N[5]), c(1,0,0,0,0,1))
Z6 = outer(rep(1,N[6]), c(1,-1,-1,-1,-1,-1))
Z = rbind(Z1, Z2, Z3, Z4, Z5, Z6)
ZZ = t(Z)%*%Z
SSEF <- rep(NA, n) -> SSER
HatF = Z%*%solve(ZZ, t(Z))
HatR = Z[,1]%*%t(Z[,1])/ZZ[1,1]
par(mfrow=c(3,3), mar=c(3.5,4,0,0), oma=c(0,0,2,2), mgp = c(1.6,.6,0))
loc.name = c("Cortex 1","Cortex 2","Cortex 3","Cortex 4","Caudate","Thalamus

1","Thalamus 2","Cerebellum 1","Cerebellum 2")
for(Loc in 1:9) {
i = n.trt*(Loc-1)
Y = cbind(fmri[[i+1]], fmri[[i+2]], fmri[[i+3]], fmri[[i+4]], fmri[[i+5]],

fmri[[i+6]])
Y = mvfft(spec.taper(Y, p=.5))/sqrt(n)
Y = t(Y) # Y is now 26 x 128 FFTs

# Calculation of Error Spectra
for (k in 1:n) {

SSY = Re(Conj(t(Y[,k]))%*%Y[,k])
SSReg = Re(Conj(t(Y[,k]))%*%HatF%*%Y[,k])

SSEF[k] = SSY - SSReg
SSReg = Re(Conj(t(Y[,k]))%*%HatR%*%Y[,k])

SSER[k] = SSY - SSReg }
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# Smooth
sSSEF = filter(SSEF, rep(1/L, L), circular = TRUE)
sSSER = filter(SSER, rep(1/L, L), circular = TRUE)
eF = (den.df/num.df)*(sSSER-sSSEF)/sSSEF
plot(Fr, eF[1:n.freq], type="l", xlab="Frequency", ylab="F Statistic",

ylim=c(0,7))
abline(h=qf(.999, num.df, den.df),lty=2)
text(.25, 6.5, loc.name[Loc], cex=1.2) }

An Analysis of Variance Model

The arrangement of treatments for the fMRI data in Fig. 7.1 suggests more information
might be available than was obtained from the simple equality of means test. Separate
effects caused by state of consciousness as well as the separate treatments brush,
heat, and shock might exist. The reduced signal present in the low shock mean
suggests a possible interaction between the treatments and level of consciousness.
The arrangement in the classical two-way table suggests looking at the analog of the
two factor analysis of variance as a function of frequency. In this case, we would
obtain a different version of the regression model (7.79) of the form

yijkt = μt + αit + βjt + γijt + vijkt (7.83)

for the kth individual undergoing the ith level of some factor A and the jth level of
some other factor B, i = 1, . . . I, j = 1 . . . , J, k = 1, . . . nij . The number of individuals
in each cell can be different, as for the fMRI data in the next example. In the above
model, we assume the response can be modeled as the sum of a mean, μt , a row
effect (type of stimulus), αit , a column effect (level of consciousness), βjt and an
interaction, γijt , with the usual restrictions

∑

i

αit =
∑

j

βjt =
∑

i

γijt =
∑

j

γijt = 0

required for a full rank design matrix Z in the overall regression model (7.78). If
the number of observations in each cell were the same, the usual simple analogous
version of the power components (7.81) and (7.82) would exist for testing various
hypotheses. In the case of (7.83), we are interested in testing hypotheses obtained by
dropping one set of terms at a time out of (7.83), so an A factor (testing αit = 0), a B
factor (βjt = 0), and an interaction term (γijt = 0) will appear as components in the
analysis of power. Because of the unequal numbers of observations in each cell, we
often put the model in the form of the regression model (7.76)–(7.78).

Example 7.7 Analysis of Power Tests for the fMRI Series
For the fMRI data given as the means in Fig. 7.1, a model of the form (7.83) is
plausible and will yield more detailed information than the simple equality of means
test described earlier. The results of that test, shown in Fig. 7.8, were that the means
were different for the four cortex locations and for the second cerebellum location.
We may examine these differences further by testing whether the mean differences



414 7 Statistical Methods in the Frequency Domain

0.00 0.05 0.10 0.15 0.20 0.25
0

4
8

12
Frequency

F 
S

ta
tis

tic

Stimulus

C
or

te
x 

1

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

Consciousness

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

Interaction

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic
C

or
te

x 
2

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic
C

or
te

x 
3

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency
F 

S
ta

tis
tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic
C

or
te

x 
4

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic
C

er
eb

el
lu

m
 2

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency

F 
S

ta
tis

tic

0.00 0.05 0.10 0.15 0.20 0.25

0
4

8
12

Frequency
F 

S
ta

tis
tic

Fig. 7.9. Analysis of power for fMRI data at five locations, L = 3 and critical values
F.001(6, 120) = 4.04 for stimulus and F.001(12, 120) = 3.02 for consciousness and interaction

are because of the nature of the stimulus or the consciousness level, or perhaps due
to an interaction between the two factors. Unequal numbers of observations exist in
the cells that contributed the means in Fig. 7.1. For the regression vector,

(μt, α1t, α2t, β1t, γ11t, γ21t )′,

the rows of the design matrix are as specified in Table 7.4. Note the restrictions
given above for the parameters.

The results of testing the three hypotheses are shown in Fig. 7.9 for the four
cortex locations and the cerebellum, the components that showed some significant
differences in the means in Fig. 7.8. Again, the regression power components were
smoothed over L = 3 frequencies. Appealing to the ANOPOW results summarized
in Table 7.3 for each of the subhypotheses, q2 = 1 when the stimulus effect is
dropped, and q2 = 2 when either the consciousness effect or the interaction terms
are dropped. Hence, 2Lq2 = 6, 12 for the two cases, with N =

∑
ij nij = 26 total

observations. Here, the state of consciousness (Awake, Sedated) has the major
effect at the signal frequency. The level of stimulus was less significant at the signal
frequency. A significant interaction occurred, however, at the ipsilateral component
of the primary somatosensory cortex location.

The R code for this example is similar to Example 7.6.
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n = 128
n.freq = 1 + n/2
Fr = (0:(n.freq-1))/n
nFr = 1:(n.freq/2)
N = c(5,4,5,3,5,4)
n.subject = sum(N)
n.para = 6 # number of parameters
L = 3 # for smoothing
df.stm = 2*L*(3-1) # stimulus (3 levels: Brush,Heat,Shock)
df.con = 2*L*(2-1) # conscious (2 levels: Awake,Sedated)
df.int = 2*L*(3-1)*(2-1) # interaction
den.df = 2*L*(n.subject-n.para) # df for full model
# Design Matrix: mu a1 a2 b g1 g2
Z1 = outer(rep(1,N[1]), c(1, 1, 0, 1, 1, 0))
Z2 = outer(rep(1,N[2]), c(1, 0, 1, 1, 0, 1))
Z3 = outer(rep(1,N[3]), c(1, -1, -1, 1, -1, -1))
Z4 = outer(rep(1,N[4]), c(1, 1, 0, -1, -1, 0))
Z5 = outer(rep(1,N[5]), c(1, 0, 1, -1, 0, -1))
Z6 = outer(rep(1,N[6]), c(1, -1, -1, -1, 1, 1))

Z = rbind(Z1, Z2, Z3, Z4, Z5, Z6)
ZZ = t(Z)%*%Z
rep(NA, n)-> SSEF-> SSE.stm-> SSE.con-> SSE.int
HatF = Z%*%solve(ZZ,t(Z))
Hat.stm = Z[,-(2:3)]%*%solve(ZZ[-(2:3),-(2:3)], t(Z[,-(2:3)]))
Hat.con = Z[,-4]%*%solve(ZZ[-4,-4], t(Z[,-4]))
Hat.int = Z[,-(5:6)]%*%solve(ZZ[-(5:6),-(5:6)], t(Z[,-(5:6)]))
par(mfrow=c(5,3), mar=c(3.5,4,0,0), oma=c(0,0,2,2), mgp = c(1.6,.6,0))
loc.name = c("Cortex 1","Cortex 2","Cortex 3","Cortex 4","Caudate", "

Thalamus 1","Thalamus 2","Cerebellum 1","Cerebellum 2")
for(Loc in c(1:4,9)) { # only Loc 1 to 4 and 9 used
i = 6*(Loc-1)
Y = cbind(fmri[[i+1]], fmri[[i+2]], fmri[[i+3]], fmri[[i+4]], fmri[[i+5]],

fmri[[i+6]])
Y = mvfft(spec.taper(Y, p=.5))/sqrt(n); Y = t(Y)

for (k in 1:n) {
SSY = Re(Conj(t(Y[,k]))%*%Y[,k])
SSReg = Re(Conj(t(Y[,k]))%*%HatF%*%Y[,k])

SSEF[k] = SSY - SSReg
SSReg = Re(Conj(t(Y[,k]))%*%Hat.stm%*%Y[,k])

SSE.stm[k] = SSY-SSReg
SSReg = Re(Conj(t(Y[,k]))%*%Hat.con%*%Y[,k])

SSE.con[k] = SSY-SSReg
SSReg = Re(Conj(t(Y[,k]))%*%Hat.int%*%Y[,k])

SSE.int[k] = SSY-SSReg }
# Smooth
sSSEF = filter(SSEF, rep(1/L, L), circular = TRUE)
sSSE.stm = filter(SSE.stm, rep(1/L, L), circular = TRUE)
sSSE.con = filter(SSE.con, rep(1/L, L), circular = TRUE)
sSSE.int = filter(SSE.int, rep(1/L, L), circular = TRUE)
eF.stm = (den.df/df.stm)*(sSSE.stm-sSSEF)/sSSEF
eF.con = (den.df/df.con)*(sSSE.con-sSSEF)/sSSEF
eF.int = (den.df/df.int)*(sSSE.int-sSSEF)/sSSEF
plot(Fr[nFr],eF.stm[nFr], type="l", xlab="Frequency", ylab="F Statistic",

ylim=c(0,12))
abline(h=qf(.999, df.stm, den.df),lty=2)
if(Loc==1) mtext("Stimulus", side=3, line=.3, cex=1)
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Table 7.4. Rows of the design matrix for Example 7.7

Awake Low anesthesia
Brush 1 1 0 1 1 0 (5) 1 1 0 −1 −1 0 (3)
Heat 1 0 1 1 0 1 (4) 1 0 1 −1 0 −1 (5)
Shock 1 −1 −1 1 −1 −1 (5) 1 −1 −1 −1 1 1 (4)

Number of observations per cell in parentheses

mtext(loc.name[Loc], side=2, line=3, cex=.9)
plot(Fr[nFr], eF.con[nFr], type="l", xlab="Frequency", ylab="F Statistic",

ylim=c(0,12))
abline(h=qf(.999, df.con, den.df),lty=2)
if(Loc==1) mtext("Consciousness", side=3, line=.3, cex=1)

plot(Fr[nFr], eF.int[nFr], type="l", xlab="Frequency", ylab="F Statistic",
ylim=c(0,12))

abline(h=qf(.999, df.int, den.df),lty=2)
if(Loc==1) mtext("Interaction", side=3, line= .3, cex=1) }

Simultaneous Inference

In the previous examples involving the fMRI data, it would be helpful to focus on
the components that contributed most to the rejection of the equal means hypothesis.
One way to accomplish this is to develop a test for the significance of an arbitrary
linear compound of the form

Ψ (ωk) = A∗(ωk)B(ωk), (7.84)

where the components of the vector A(ωk) = (A1(ωk), A2(ωk), . . . , Aq(ωk))′ are
chosen in such a way as to isolate particular linear functions of parameters in the
regression vector B(ωk) in the regression model (7.78). This argument suggests
developing a test of the hypothesis Ψ (ωk) = 0 for all possible values of the linear
coefficients in the compound (7.84) as is done in the conventional analysis of variance
approach (see, for example, Scheffé [172]).

Recalling the material involving the regression models of the form (7.50), the
linear compound (7.84) can be estimated by

Ψ̂ (ωk) = A∗(ωk)B̂(ωk), (7.85)

where B̂(ωk) is the estimated vector of regression coefficients given by (7.51) and
independent of the error spectrum s2

y ·z(ωk) in (7.53). It is possible to show the
maximum of the ratio

F(A) = N − q
q

|Ψ̂ (ωk) −Ψ (ωk)|2
s2
y ·z(ωk)Q(A)

, (7.86)

where
Q(A) = A∗(ωk)S−1

z (ωk)A(ωk) (7.87)
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is bounded by a statistic that has an F-distribution with 2q and 2(N − q) degrees of
freedom. Testing the hypothesis that the compound has a particular value, usually
Ψ (ωk) = 0, then proceeds naturally, by comparing the statistic (7.86) evaluated at
the hypothesized value with the α level point on an F2q,2(N−q) distribution. We can
choose an infinite number of compounds of the form (7.84) and the test will still be
valid at level α. As before, arguing the error spectrum is relatively constant over a
band enables us to smooth the numerator and denominator of (7.86) separately over
L frequencies so distribution involving the smooth components is F2Lq,2L(N−q).

Example 7.8 Simultaneous Inference for the fMRI Series
As an example, consider the previous tests for significance of the fMRI factors, in
which we have indicated the primary effects are among the stimuli but have not
investigated which of the stimuli, heat, brushing, or shock, had the most effect. To
analyze this further, consider the means model (7.79) and a 6× 1 contrast vector of
the form

Ψ̂ = A∗(ωk)B̂(ωk) =
6∑

i=1
A∗i (ωk)Yi·(ωk), (7.88)

where the means are easily shown to be the regression coefficients in this particular
case. In this case, the means are ordered by columns; the first three means are the
three levels of stimuli for the awake state, and the last three means are the levels for
the anesthetized state. In this special case, the denominator terms are

Q =

6∑

i=1

|Ai(ωk)|2
Ni

, (7.89)

with SSE(ωk) available in (7.82). In order to evaluate the effect of a particular
stimulus, like brushing over the two levels of consciousness, we may take A1(ωk) =
A4(ωk) = 1 for the two brush levels and A(ωk) = 0 zero otherwise. From Fig. 7.10,
we see that, at the first and third cortex locations, brush and heat are both significant,
whereas the fourth cortex shows only brush and the second cerebellum shows only
heat. Shock appears to be transmitted relatively weakly, when averaged over the
awake and mildly anesthetized states.

The R code for this example is as follows.
n = 128; n.freq = 1 + n/2
Fr = (0:(n.freq-1))/n; nFr = 1:(n.freq/2)
N = c(5,4,5,3,5,4); n.subject = sum(N); L = 3
# Design Matrix
Z1 = outer(rep(1,N[1]), c(1,0,0,0,0,0))
Z2 = outer(rep(1,N[2]), c(0,1,0,0,0,0))
Z3 = outer(rep(1,N[3]), c(0,0,1,0,0,0))
Z4 = outer(rep(1,N[4]), c(0,0,0,1,0,0))
Z5 = outer(rep(1,N[5]), c(0,0,0,0,1,0))
Z6 = outer(rep(1,N[6]), c(0,0,0,0,0,1))
Z = rbind(Z1, Z2, Z3, Z4, Z5, Z6); ZZ = t(Z)%*%Z
# Contrasts: 6 by 3
A = rbind(diag(1,3), diag(1,3))
nq = nrow(A); num.df = 2*L*nq; den.df = 2*L*(n.subject-nq)
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HatF = Z%*%solve(ZZ, t(Z)) # full model
rep(NA, n)-> SSEF -> SSER; eF = matrix(0,n,3)
par(mfrow=c(5,3), mar=c(3.5,4,0,0), oma=c(0,0,2,2), mgp = c(1.6,.6,0))
loc.name = c("Cortex 1", "Cortex 2", "Cortex 3", "Cortex 4", "Caudate", "

Thalamus 1", "Thalamus 2", "Cerebellum 1", "Cerebellum 2")
cond.name = c("Brush", "Heat", "Shock")
for(Loc in c(1:4,9)) {
i = 6*(Loc-1)
Y = cbind(fmri[[i+1]], fmri[[i+2]], fmri[[i+3]], fmri[[i+4]], fmri[[i+5]],

fmri[[i+6]])
Y = mvfft(spec.taper(Y, p=.5))/sqrt(n); Y = t(Y)
for (cond in 1:3){
Q = t(A[,cond])%*%solve(ZZ, A[,cond])
HR = A[,cond]%*%solve(ZZ, t(Z))
for (k in 1:n){

SSY = Re(Conj(t(Y[,k]))%*%Y[,k])
SSReg = Re(Conj(t(Y[,k]))%*%HatF%*%Y[,k])

SSEF[k] = (SSY-SSReg)*Q
SSReg = HR%*%Y[,k]

SSER[k] = Re(SSReg*Conj(SSReg)) }
# Smooth
sSSEF = filter(SSEF, rep(1/L, L), circular = TRUE)
sSSER = filter(SSER, rep(1/L, L), circular = TRUE)
eF[,cond] = (den.df/num.df)*(sSSER/sSSEF) }
plot(Fr[nFr], eF[nFr,1], type="l", xlab="Frequency", ylab="F Statistic",

ylim=c(0,5))
abline(h=qf(.999, num.df, den.df),lty=2)
if(Loc==1) mtext("Brush", side=3, line=.3, cex=1)
mtext(loc.name[Loc], side=2, line=3, cex=.9)

plot(Fr[nFr], eF[nFr,2], type="l", xlab="Frequency", ylab="F Statistic",
ylim=c(0,5))

abline(h=qf(.999, num.df, den.df),lty=2)
if(Loc==1) mtext("Heat", side=3, line=.3, cex=1)

plot(Fr[nFr], eF[nFr,3], type="l", xlab="Frequency", ylab="F Statistic",
ylim=c(0,5))

abline(h = qf(.999, num.df, den.df) ,lty=2)
if(Loc==1) mtext("Shock", side=3, line=.3, cex=1) }

Multivariate Tests

Although it is possible to develop multivariate regression along lines analogous to
the usual real valued case, we will only look at tests involving equality of group means
and spectral matrices, because these tests appear to be used most often in applications.
For these results, consider the p-variate time series yijt = (yijt1, . . . , yijt p)′ to have
arisen from observations on j = 1, . . . , Ni individuals in group i, all having mean
μit and stationary autocovariance matrix Γi(h). Denote the DFTs of the group mean
vectors asYi ·(ωk) and the p×p spectral matrices as f̂i(ωk) for the i = 1, 2, . . . , I groups.
Assume the same general properties as for the vector series considered in Sect. 7.3.

In the multivariate case, we obtain the analogous versions of (7.81) and (7.82) as
the between cross-power and within cross-power matrices

SPR(ωk) =
I∑

i=1

Ni∑

j=1

(
Yi·(ωk) − Y··(ωk)

) (
Yi·(ωk) − Y··(ωk)

)∗ (7.90)
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Fig. 7.10. Power in simultaneous linear compounds at five locations, enhancing brush, heat,
and shock effects, L = 3, F.001(36, 120) = 2.16

and

SPE(ωk) =
I∑

i=1

Ni∑

j=1

(
Yij (ωk) − Yi·(ωk)

) (
Yij (ωk) − Yi·(ωk)

)∗
. (7.91)

The equality of means test is rejected using the fact that the likelihood ratio test yields
a monotone function of

Λ(ωk) = |SPE(ωk)|
|SPE(ωk) + SPR(ωk)| . (7.92)

Khatri [117] and Hannan [86] give the approximate distribution of the statistic

χ2
2(I−1)p = −2

(∑
Ni − I − p − 1

)

log Λ(ωk) (7.93)

as chi-squared with 2(I − 1)p degrees of freedom when the group means are equal.
The case of I = 2 groups reduces to Hotelling’s T2, as has been shown by Giri

[73], where

T2 =
N1N2

(N1 + N2)
[
Y1·(ωk) − Y2·(ωk)

]∗
f̂ −1
v (ωk)

[
Y1·(ωk) − Y2·(ωk)

]
, (7.94)
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where
f̂v(ωk) = SPE(ωk)∑

i Ni − I
(7.95)

is the pooled error spectrum given in (7.91),with I = 2. The test statistic, in this case,
is

F2p,2(N1+N2−p−1) =
(N1 + N2 − 2)p
(N1 + N2 − p − 1)T

2, (7.96)

which was shown by Giri [73] to have the indicated limiting F-distribution with 2p
and 2(N1+N2−p−1) degrees of freedom when the means are the same. The classical
t-test for inequality of two univariate means will be just (7.95) and (7.96) with p = 1.

Testing equality of the spectral matrices is also of interest, not only for discrim-
ination and pattern recognition, as considered in the next section, but also as a test
indicating whether the equality of means test, which assumes equal spectral matrices,
is valid. The test evolves from the likelihood ration criterion, which compares the
single group spectral matrices

f̂i(ωk) = 1
Ni − 1

Ni∑

j=1

(
Yij (ωk) − Yi·(ωk)

) (
Yij (ωk) − Yi·(ωk)

)∗ (7.97)

with the pooled spectral matrix (7.95). A modification of the likelihood ratio test,
which incorporates the degrees of freedom Mi = Ni − 1 and M =

∑
Mi rather than

the sample sizes into the likelihood ratio statistic, uses

L′(ωk) = MMp

∏I
i=1 MMi p

i

∏ |Mi f̂i(ωk)|Mi

|M f̂v(ωk)|M
. (7.98)

Krishnaiah et al. [121] have given the moments of L′(ωk) and calculated 95% critical
points for p = 3, 4 using a Pearson Type I approximation. For reasonably large samples
involving smoothed spectral estimators, the approximation involving the first term of
the usual chi-squared series will suffice and Shumway [180] has given

χ2
(I−1)p2 = −2r log L′(ωk), (7.99)

where
1 − r =

(p + 1)(p − 1)
6p(I − 1)

(∑

i

M−1
i − M−1

)

, (7.100)

with an approximate chi-squared distribution with (I −1)p2 degrees of freedom when
the spectral matrices are equal. Introduction of smoothing over L frequencies leads
to replacing Mj and M by LMj and LM in the equations above.

Of course, it is often of great interest to use the above result for testing equality
of two univariate spectra, and it is obvious from the material in Chap. 4,

F2LM1,2LM2 =
f̂1(ω)
f̂2(ω)

(7.101)

will have the requisite F-distribution with 2LM1 and 2LM2 degrees of freedom when
spectra are smoothed over L frequencies.
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Example 7.9 Equality of Means and Spectral Matrices
An interesting problem arises when attempting to develop a methodology for dis-
criminating between waveforms originating from explosions and those that came
from the more commonly occurring earthquakes. Figure 7.2 shows a small sub-
set of a larger population of bivariate series consisting of two phases from each
of eight earthquakes and eight explosions. If the large–sample approximations to
normality hold for the DFTs of these series, it is of interest to known whether the
differences between the two classes are better represented by the mean functions or
by the spectral matrices. The tests described above can be applied to look at these
two questions. The upper left panel of Fig. 7.11 shows the test statistic (7.96) with
the straight line denoting the critical level for α = .001, i.e., F.001(4, 26) = 7.36,
for equal means using L = 1, and the test statistic remains well below its critical
value at all frequencies, implying that the means of the two classes of series are
not significantly different. Checking Fig. 7.2 shows little reason exists to suspect
that either the earthquakes or explosions have a nonzero mean signal. Checking
the equality of the spectra and the spectral matrices, however, leads to a different
conclusion. Some smoothing (L = 21) is useful here, and univariate tests on both
the P and S components using (7.101) and N1 = N2 = 8 lead to strong rejections of
the equal spectra hypotheses. The rejection seems stronger for the S component and
we might tentatively identify that component as being dominant. Testing equality
of the spectral matrices using (7.99) and χ2

.001(4) = 18.47 shows a similar strong
rejection of the equality of spectral matrices. We use these results to suggest optimal
discriminant functions based on spectral differences in the next section.
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Fig. 7.11. Tests for equality of means, spectra, and spectral matrices for the earthquake and
explosion data p = 2, L = 21, n = 1024 points at 40 points per second
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The R code for this example is as follows. We make use of the recycling feature
of R and the fact that the data are bivariate to produce simple code specific to this
problem in order to avoid having to use multiple arrays.
P = 1:1024; S = P+1024; N = 8; n = 1024; p.dim = 2; m = 10; L = 2*m+1
eq.P = as.ts(eqexp[P,1:8]); eq.S = as.ts(eqexp[S,1:8])
eq.m = cbind(rowMeans(eq.P), rowMeans(eq.S))
ex.P = as.ts(eqexp[P,9:16]); ex.S = as.ts(eqexp[S,9:16])
ex.m = cbind(rowMeans(ex.P), rowMeans(ex.S))
m.diff = mvfft(eq.m - ex.m)/sqrt(n)
eq.Pf = mvfft(eq.P-eq.m[,1])/sqrt(n)
eq.Sf = mvfft(eq.S-eq.m[,2])/sqrt(n)
ex.Pf = mvfft(ex.P-ex.m[,1])/sqrt(n)
ex.Sf = mvfft(ex.S-ex.m[,2])/sqrt(n)
fv11 = rowSums(eq.Pf*Conj(eq.Pf))+rowSums(ex.Pf*Conj(ex.Pf))/(2*(N-1))
fv12 = rowSums(eq.Pf*Conj(eq.Sf))+rowSums(ex.Pf*Conj(ex.Sf))/(2*(N-1))
fv22 = rowSums(eq.Sf*Conj(eq.Sf))+rowSums(ex.Sf*Conj(ex.Sf))/(2*(N-1))
fv21 = Conj(fv12)
# Equal Means
T2 = rep(NA, 512)
for (k in 1:512){
fvk = matrix(c(fv11[k], fv21[k], fv12[k], fv22[k]), 2, 2)
dk = as.matrix(m.diff[k,])
T2[k] = Re((N/2)*Conj(t(dk))%*%solve(fvk,dk)) }

eF = T2*(2*p.dim*(N-1))/(2*N-p.dim-1)
par(mfrow=c(2,2), mar=c(3,3,2,1), mgp = c(1.6,.6,0), cex.main=1.1)
freq = 40*(0:511)/n # Hz
plot(freq, eF, type="l", xlab="Frequency (Hz)", ylab="F Statistic",

main="Equal Means")
abline(h = qf(.999, 2*p.dim, 2*(2*N-p.dim-1)))
# Equal P
kd = kernel("daniell",m);
u = Re(rowSums(eq.Pf*Conj(eq.Pf))/(N-1))
feq.P = kernapply(u, kd, circular=TRUE)
u = Re(rowSums(ex.Pf*Conj(ex.Pf))/(N-1))
fex.P = kernapply(u, kd, circular=TRUE)
plot(freq, feq.P[1:512]/fex.P[1:512], type="l", xlab="Frequency (Hz)",

ylab="F Statistic", main="Equal P-Spectra")
abline(h=qf(.999, 2*L*(N-1), 2*L*(N-1)))
# Equal S
u = Re(rowSums(eq.Sf*Conj(eq.Sf))/(N-1))
feq.S = kernapply(u, kd, circular=TRUE)
u = Re(rowSums(ex.Sf*Conj(ex.Sf))/(N-1))
fex.S = kernapply(u, kd, circular=TRUE)
plot(freq, feq.S[1:512]/fex.S[1:512], type="l", xlab="Frequency (Hz)",

ylab="F Statistic", main="Equal S-Spectra")
abline(h=qf(.999, 2*L*(N-1), 2*L*(N-1)))
# Equal Spectra
u = rowSums(eq.Pf*Conj(eq.Sf))/(N-1)
feq.PS = kernapply(u, kd, circular=TRUE)
u = rowSums(ex.Pf*Conj(ex.Sf)/(N-1))
fex.PS = kernapply(u, kd, circular=TRUE)
fv11 = kernapply(fv11, kd, circular=TRUE)
fv22 = kernapply(fv22, kd, circular=TRUE)
fv12 = kernapply(fv12, kd, circular=TRUE)
Mi = L*(N-1); M = 2*Mi
TS = rep(NA,512)
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for (k in 1:512){
det.feq.k = Re(feq.P[k]*feq.S[k] - feq.PS[k]*Conj(feq.PS[k]))
det.fex.k = Re(fex.P[k]*fex.S[k] - fex.PS[k]*Conj(fex.PS[k]))
det.fv.k = Re(fv11[k]*fv22[k] - fv12[k]*Conj(fv12[k]))
log.n1 = log(M)*(M*p.dim); log.d1 = log(Mi)*(2*Mi*p.dim)
log.n2 = log(Mi)*2 +log(det.feq.k)*Mi + log(det.fex.k)*Mi
log.d2 = (log(M)+log(det.fv.k))*M
r = 1 - ((p.dim+1)*(p.dim-1)/6*p.dim*(2-1))*(2/Mi - 1/M)
TS[k] = -2*r*(log.n1+log.n2-log.d1-log.d2) }
plot(freq, TS, type="l", xlab="Frequency (Hz)", ylab="Chi-Sq Statistic",

main="Equal Spectral Matrices")
abline(h = qchisq(.9999, p.dim^2))

7.7 Discriminant and Cluster Analysis

The extension of classical pattern-recognition techniques to experimental time series
is a problem of great practical interest. A series of observations indexed in time often
produces a pattern that may form a basis for discriminating between different classes
of events. As an example, consider Fig. 7.2, which shows regional (100–2000km)
recordings of several typical Scandinavian earthquakes and mining explosions mea-
sured by stations in Scandinavia. A listing of the events is given in Kakizawa et
al. [111]. The problem of discriminating between mining explosions and earthquakes
is a reasonable proxy for the problem of discriminating between nuclear explosions
and earthquakes. This latter problem is one of critical importance for monitoring a
comprehensive test-ban treaty. Time series classification problems are not restricted
to geophysical applications, but occur under many and varied circumstances in other
fields. Traditionally, the detection of a signal embedded in a noise series has been
analyzed in the engineering literature by statistical pattern recognition techniques
(see Problems 7.10 and 7.11).

The historical approaches to the problem of discriminating among different
classes of time series can be divided into two distinct categories. The optimality
approach, as found in the engineering and statistics literature, makes specific Gaus-
sian assumptions about the probability density functions of the separate groups and
then develops solutions that satisfy well-defined minimum error criteria. Typically,
in the time series case, we might assume the difference between classes is expressed
through differences in the theoretical mean and covariance functions and use likeli-
hood methods to develop an optimal classification function. A second class of tech-
niques, which might be described as a feature extraction approach, proceeds more
heuristically by looking at quantities that tend to be good visual discriminators for
well-separated populations and have some basis in physical theory or intuition. Less
attention is paid to finding functions that are approximations to some well-defined
optimality criterion.

As in the case of regression, both time domain and frequency domain approaches
to discrimination will exist. For relatively short univariate series, a time domain
approach that follows conventional multivariate discriminant analysis as described in
conventional multivariate texts, such as Anderson [7] or Johnson and Wichern [106]
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may be preferable. We might even characterize differences by the autocovariance
functions generated by different ARMA or state-space models. For longer multivariate
time series that can be regarded as stationary after the common mean has been
subtracted, the frequencydomain approachwill be easier computationally because the
np dimensional vector in the time domain, represented here as x = (x′1, x′t, . . . , x′n)′,
with xt = (xt1, . . . , xt p)′, will reduced to separate computations made on the p-
dimensional DFTs. This happens because of the approximate independence of the
DFTs, X(ωk ), 0 ≤ ωk ≤ 1, a property that we have often used in preceding chapters.

Finally, the grouping properties of measures like the discrimination information
and likelihood-based statistics can be used to develop measures of disparity for
clustering multivariate time series. In this section, we define a measure of disparity
between two multivariate times series by the spectral matrices of the two processes
and then apply hierarchical clustering and partitioning techniques to identify natural
groupings within the bivariate earthquake and explosion populations.

The General Discrimination Problem

The general problem of classifying a vector time series x occurs in the following
way. We observe a time series x known to belong to one of g populations, denoted by
Π1, Π2, . . . , Πg. The general problem is to assign or classify this observation into one
of the g groups in some optimal fashion. An example might be the g = 2 populations
of earthquakes and explosions shown in Fig. 7.2. We would like to classify the
unknown event, shown as NZ in the bottom two panels, as belonging to either the
earthquake (Π1) or explosion (Π2) populations. To solve this problem, we need an
optimality criterion that leads to a statistic T (x) that can be used to assign the NZ
event to either the earthquake or explosion populations. To measure the success of the
classification, we need to evaluate errors that can be expected in the future relating
to the number of earthquakes classified as explosions (false alarms) and the number
of explosions classified as earthquakes (missed signals).

The problem can be formulated by assuming the observed series x has a proba-
bility density pi(x) when the observed series is from population Πi for i = 1, . . . , g.
Then, partition the space spanned by the np-dimensional process x into g mutually
exclusive regions R1, R2, . . . , Rg such that, if x falls in Ri, we assign x to population
Πi . The misclassification probability is defined as the probability of classifying the
observation into population Πj when it belongs to Πi , for j � i and would be given
by the expression

P( j | i) =
∫

R j

pi(x) dx. (7.102)

The overall total error probability depends also on the prior probabilities, say,
π1, π2, . . . , πg, of belonging to one of the g groups. For example, the probability
that an observation x originates from Πi and is then classified into Πj is obviously
πiP( j | i), and the total error probability becomes
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Pe =

g∑

i=1
πi

∑

j�i

P( j | i). (7.103)

Although costs have not been incorporated into (7.103), it is easy to do so by mul-
tiplying P( j | i) by C( j | i), the cost of assigning a series from population Πi to
Πj .

The overall error Pe is minimized by classifying x into Πi if

pi(x)
pj (x) >

πj

πi
(7.104)

for all j � i (see, for example, Anderson [7]). A quantity of interest, from the Bayesian
perspective, is the posterior probability an observation belongs to population Πi ,
conditional on observing x, say,

P(Πi | x) = πipi(x)∑
j πj (x)pj (x) . (7.105)

The procedure that classifies x into the population Πi for which the posterior prob-
ability is largest is equivalent to that implied by using the criterion (7.104). The
posterior probabilities give an intuitive idea of the relative odds of belonging to each
of the plausible populations.

Many situations occur, such as in the classification of earthquakes and explosions,
in which there are only g = 2 populations of interest. For two populations, the
Neyman–Pearson lemma implies, in the absence of prior probabilities, classifying an
observation into Π1 when

p1(x)
p2(x) > K (7.106)

minimizes each of the error probabilities for a fixed value of the other. The rule is
identical to the Bayes rule (7.104) when K = π2/π1.

The theory given above takes a simple form when the vector x has a p-variate
normal distribution with mean vectors μj and covariance matrices Σj under Πj for
j = 1, 2, . . . , g. In this case, simply use

pj (x) = (2π)−p/2|Σj |−1/2 exp
{

−1
2
(x − μj )′Σ−1

j (x − μj )
}

. (7.107)

The classification functions are conveniently expressed by quantities that are propor-
tional to the logarithms of the densities, say,

gj (x) = −1
2

ln |Σj | − 1
2

x′Σ−1
j x + μ′jΣ

−1
j x − 1

2
μ′jΣ

−1
j μj + ln πj . (7.108)

In expressions involving the log likelihood, we will generally ignore terms involving
the constant − ln 2π. For this case, we may assign an observation x to population Πi

whenever



426 7 Statistical Methods in the Frequency Domain

gi(x) > gj (x) (7.109)

for j � i, j = 1, . . . , g and the posterior probability (7.105) has the form

P(Πi |x) = exp{gi(x)}∑
j exp{gj (x)} .

A common situation occurring in applications involves classification for g = 2
groups under the assumption of multivariate normality and equal covariance matrices;
i.e., Σ1 = Σ2 = Σ . Then, the criterion (7.109) can be expressed in terms of the linear
discriminant function

dl(x) = g1(x) − g2(x)
= (μ1 − μ2)′Σ−1x − 1

2
(μ1 − μ2)′Σ−1(μ1 + μ2) + ln

π1

π2
, (7.110)

where we classify into Π1 or Π2 according to whether dl(x) ≥ 0 or dl(x) < 0. The
linear discriminant function is clearly a combination of normal variables and, for the
case π1 = π2 = .5, will have mean D2/2 under Π1 and mean −D2/2 under Π2, with
variances given by D2 under both hypotheses, where

D2 = (μ1 − μ2)′Σ−1(μ1 − μ2) (7.111)

is the Mahalanobis distance between the mean vectors μ1 and μ2. In this case, the
two misclassification probabilities (7.1) are

P(1|2) = P(2|1) = Φ

(

−D
2

)

, (7.112)

and the performance is directly related to the Mahalanobis distance (7.111).
For the case in which the covariance matrices cannot be assumed to be the same,

the discriminant function takes a different form, with the difference g1(x) − g2(x)
taking the form

dq(x) = −1
2

ln
|Σ1 |
|Σ2 | −

1
2

x′(Σ−1
1 − Σ−1

2 )x

+(μ′1Σ−1
1 − μ′2Σ

−1
2 )x + ln

π1

π2
(7.113)

for g = 2 groups. This discriminant function differs from the equal covariance
case in the linear term and in a nonlinear quadratic term involving the differing
covariance matrices. The distribution theory is not tractable for the quadratic case so
no convenient expression like (7.112) is available for the error probabilities for the
quadratic discriminant function.

A difficulty in applying the above theory to real data is that the group mean vectors
μj and covariance matrices Σj are seldom known. Some engineering problems, such
as the detection of a signal in white noise, assume the means and covariance param-
eters are known exactly, and this can lead to an optimal solution (see Problems 7.14
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and 7.15). In the classical multivariate situation, it is possible to collect a sample of Ni

training vectors from group Πi , say, xij , for j = 1, . . . , Ni , and use them to estimate
the mean vectors and covariance matrices for each of the groups i = 1, 2, . . . , g; i.e.,
simply choose xi · and

Si = (Ni − 1)−1
Ni∑

j=1
(xij − xi·)(xij − xi·)′ (7.114)

as the estimators for μi and Σi , respectively. In the case in which the covariance
matrices are assumed to be equal, simply use the pooled estimator

S =

(∑

i

Ni − g

)−1 ∑

i

(Ni − 1)Si . (7.115)

For the case of a linear discriminant function, we may use

ĝi(x) = x′i·S−1x − 1
2

x′i·S−1xi· + log πi (7.116)

as a simple estimator for gi(x). For large samples, xi· and S converge to μi and Σ

in probability so ˆgi(x) converges in distribution to gi(x) in that case. The procedure
works reasonably well for the case in which Ni, i = 1, . . . g are large, relative to the
length of the series n, a case that is relatively rare in time series analysis. For this
reason, we will resort to using spectral approximations for the case in which data are
given as long time series.

The performance of sample discriminant functions can be evaluated in several
different ways. If the population parameters are known, (7.111) and (7.112) can be
evaluated directly. If the parameters are estimated, the estimated Mahalanobis distance
D̂2 can be substituted for the theoretical value in very large samples. Another approach
is to calculate the apparent error rates using the result of applying the classification
procedure to the training samples. If nij denotes the number of observations from
population Πj classified into Πi , the sample error rates can be estimated by the ratio

P̂(i | j) = nij
∑

i nij
(7.117)

for i � j. If the training samples are not large, this procedure may be biased and a
resampling option like cross-validation or the bootstrap can be employed. A simple
version of cross-validation is the jackknife procedure proposed by Lachenbruch and
Mickey [124], which holds out the observation to be classified, deriving the classifi-
cation function from the remaining observations. Repeating this procedure for each
of the members of the training sample and computing (7.117) for the holdout samples
leads to better estimators of the error rates.
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Fig. 7.12. Classification of earthquakes and explosions based on linear discriminant analysis
using the magnitude features

Example 7.10 Discriminant Analysis Using Amplitudes
We can give a simple example of applying the above procedures to the logarithms
of the amplitudes of the separate P and S components of the original earthquake and
explosion traces. The logarithms (base 10) of the maximum peak-to-peak ampli-
tudes of the P and S components, denoted by log10 P and log10 S, can be considered
as two-dimensional feature vectors, say, x = (x1, x2)′ = (log10 P, log10 S)′, from
a bivariate normal population with differing means and covariances. The original
data, from Kakizawa et al. [111], are shown in Fig. 7.12. The figure includes the
Novaya Zemlya (NZ) event of unknown origin. The tendency of the earthquakes to
have higher values for log10 S, relative to log10 P has been noted by many and the
use of the logarithm of the ratio, i.e., log10 P − log10 S in some references (see Lay
[126], pp. 40–41) is a tacit indicator that a linear function of the two parameters
will be a useful discriminant.

The sample means x1· = (.346, 1.024)′ and x2· = (.922, .993)′, and covariance
matrices

S1 =

(
.026 −.007
−.007 .010

)

and S2 =

(
.025 −.001
−.001 .010

)

are immediate from (7.114), with the pooled covariance matrix given by

S =

(
.026 −.004
−.004 .010

)

from (7.115). Although the covariance matrices are not equal, we try the linear
discriminant function anyway, which yields (with equal prior probabilities π1 =

π2 = .5) the sample discriminant functions

ĝ1(x) = 30.668x1 + 111.411x2 − 62.401
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and
ĝ2(x) = 54.048x1 + 117.255x2 − 83.142

from (7.116), with the estimated linear discriminant function (7.110) as

d̂l(x) = −23.380x1 − 5.843x2 + 20.740.

The jackknifed posterior probabilities of being an earthquake for the earthquake
group ranged from .621 to 1.000, whereas the explosion probabilities for the explo-
sion group ranged from .717 to 1.000. The unknown event, NZ, was classified as
an explosion, with posterior probability .960.

The R code for this example is as follows.
P = 1:1024; S = P+1024
mag.P = log10(apply(eqexp[P,], 2, max) - apply(eqexp[P,], 2, min))
mag.S = log10(apply(eqexp[S,], 2, max) - apply(eqexp[S,], 2, min))
eq.P = mag.P[1:8]; eq.S = mag.S[1:8]
ex.P = mag.P[9:16]; ex.S = mag.S[9:16]
NZ.P = mag.P[17]; NZ.S = mag.S[17]
# Compute linear discriminant function
cov.eq = var(cbind(eq.P, eq.S))
cov.ex = var(cbind(ex.P, ex.S))
cov.pooled = (cov.ex + cov.eq)/2
means.eq = colMeans(cbind(eq.P, eq.S))
means.ex = colMeans(cbind(ex.P, ex.S))
slopes.eq = solve(cov.pooled, means.eq)
inter.eq = -sum(slopes.eq*means.eq)/2
slopes.ex = solve(cov.pooled, means.ex)
inter.ex = -sum(slopes.ex*means.ex)/2
d.slopes = slopes.eq - slopes.ex
d.inter = inter.eq - inter.ex
# Classify new observation
new.data = cbind(NZ.P, NZ.S)
d = sum(d.slopes*new.data) + d.inter
post.eq = exp(d)/(1+exp(d))
# Print (disc function, posteriors) and plot results
cat(d.slopes[1], "mag.P +" , d.slopes[2], "mag.S +" , d.inter,"\n")
cat("P(EQ|data) =", post.eq, " P(EX|data) =", 1-post.eq, "\n" )
plot(eq.P, eq.S, xlim=c(0,1.5), ylim=c(.75,1.25), xlab="log mag(P)", ylab

="log mag(S)", pch = 8, cex=1.1, lwd=2, main="Classification
Based on Magnitude Features")

points(ex.P, ex.S, pch = 6, cex=1.1, lwd=2)
points(new.data, pch = 3, cex=1.1, lwd=2)
abline(a = -d.inter/d.slopes[2], b = -d.slopes[1]/d.slopes[2])
text(eq.P-.07,eq.S+.005, label=names(eqexp[1:8]), cex=.8)
text(ex.P+.07,ex.S+.003, label=names(eqexp[9:16]), cex=.8)
text(NZ.P+.05,NZ.S+.003, label=names(eqexp[17]), cex=.8)
legend("topright",c("EQ","EX","NZ"),pch=c(8,6,3),pt.lwd=2,cex=1.1)

# Cross-validation
all.data = rbind(cbind(eq.P, eq.S), cbind(ex.P, ex.S))
post.eq <- rep(NA, 8) -> post.ex
for(j in 1:16) {
if (j <= 8){samp.eq = all.data[-c(j, 9:16),]
samp.ex = all.data[9:16,]}

if (j > 8){samp.eq = all.data[1:8,]
samp.ex = all.data[-c(j, 1:8),] }
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df.eq = nrow(samp.eq)-1; df.ex = nrow(samp.ex)-1
mean.eq = colMeans(samp.eq); mean.ex = colMeans(samp.ex)
cov.eq = var(samp.eq); cov.ex = var(samp.ex)
cov.pooled = (df.eq*cov.eq + df.ex*cov.ex)/(df.eq + df.ex)
slopes.eq = solve(cov.pooled, mean.eq)
inter.eq = -sum(slopes.eq*mean.eq)/2
slopes.ex = solve(cov.pooled, mean.ex)
inter.ex = -sum(slopes.ex*mean.ex)/2
d.slopes = slopes.eq - slopes.ex
d.inter = inter.eq - inter.ex
d = sum(d.slopes*all.data[j,]) + d.inter
if (j <= 8) post.eq[j] = exp(d)/(1+exp(d))
if (j > 8) post.ex[j-8] = 1/(1+exp(d)) }

Posterior = cbind(1:8, post.eq, 1:8, post.ex)
colnames(Posterior) = c("EQ","P(EQ|data)","EX","P(EX|data)")
round(Posterior,3) # Results from Cross-validation (not shown)

Frequency Domain Discrimination

The feature extraction approach often works well for discriminating between
classes of univariate or multivariate series when there is a simple low-dimensional
vector that seems to capture the essence of the differences between the classes. It still
seems sensible, however, to develop optimal methods for classification that exploit
the differences between the multivariate means and covariance matrices in the time
series case. Such methods can be based on the Whittle approximation to the log
likelihood given in Sect. 7.2. In this case, the vector DFTs, say, X(ωk ), are assumed
to be approximately normal, with means Mj (ωk) and spectral matrices fj (ωk) for
population Πj at frequencies ωk = k/n, for k = 0, 1, . . . [n/2], and are approximately
uncorrelated at different frequencies, say, ωk and ω� for k � �. Then, writing the
complex normal densities as in Sect. 7.2 leads to a criterion similar to (7.108); namely,

gj (X) = ln πj −
∑

0<ωk<1/2

[

ln | fj (ωk)| + X∗(ωk) f −1
j (ωk)X(ωk)

− 2M∗
j (ωk) f −1

j (ωk)X(ωk ) + M∗
j (k) f −1

j (ωk)Mj (ωk)
]

,

(7.118)

where the sum goes over frequencies for which | fj (ωk)| � 0. The periodicity of the
spectral density matrix and DFT allows adding over 0 < k < 1/2. The classification
rule is as in (7.109).

In the time series case, it is more likely the discriminant analysis involves assuming
the covariance matrices are different and the means are equal. For example, the tests,
shown in Fig. 7.11, imply, for the earthquakes and explosions, the primary differences
are in the bivariate spectral matrices and the means are essentially the same. For this
case, it will be convenient to write the Whittle approximation to the log likelihood in
the form

ln pj (X) =
∑

0<ωk<1/2

[

− ln | fj (ωk)| − X∗(ωk) f −1
j (ωk)X(ωk)

]

, (7.119)
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where we have omitted the prior probabilities from the equation. The quadratic
detector in this case can be written in the form

ln pj (X) =
∑

0<ωk<1/2

[

− ln | fj (ωk)| − tr
{
I(ωk) f −1

j (ωk)
}
]

, (7.120)

where
I(ωk) = X(ωk )X∗(ωk) (7.121)

denotes the periodogram matrix. For equal prior probabilities, we may assign an
observation x into population Πi whenever

ln pi(X) > ln pj (X) (7.122)

for j � i, j = 1, 2, . . . , g.
Numerous authors have considered various versions of discriminant analysis in

the frequency domain. Shumway and Unger [179] considered (7.118) for p = 1 and
equal covariance matrices, so the criterion reduces to a simple linear one. They apply
the criterion to discriminating between earthquakes and explosions using teleseismic
P wave data in which the means over the two groups might be considered as fixed.
Alagón [4] and Dargahi-Noubary and Laycock [47] considered discriminant functions
of the form (7.118) in the univariate case when the means are zero and the spectra for
the two groups are different. Taniguchi et al. [197] adopted (7.119) as a criterion and
discussed its non-Gaussian robustness. Shumway [180] reviews general discriminant
functions in both the univariate and multivariate time series cases.

Measures of Disparity

Before proceeding to examples of discriminant and cluster analysis, it is useful
to consider the relation to the Kullback–Leibler (K-L) discrimination information, as
defined in Problem 2.4. Using the spectral approximation and noting the periodogram
matrix has the approximate expectation

Ej I(ωk) = fj (ωk)
under the assumption that the data come from population Πj , and approximating the
ratio of the densities by

ln
p1(X)
p2(X) =

∑

0<ωk<1/2

[

− ln
| f1(ωk)|
| f2(ωk)| − tr

{
(
f −1
2 (ωk) − f −1

1 (ωk)
)
I(ωk)

}]

,

we may write the approximate discrimination information as

I( f1; f2) = 1
n

E1 ln
p1(X)
p2(X)

=
1
n

∑

0<ωk<1/2

[

tr
{

f1(ωk) f −1
2 (ωk)

} − ln
| f1(ωk)|
| f2(ωk)| − p

]

. (7.123)
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The approximation may be carefully justified by noting the multivariate normal
time series x = (x′1, x′2 . . . , x′n) with zero means and np × np stationary covariance
matrices Γ1 and Γ2 will have p, n×n blocks, with elements of the form γ

(l)
ij (s− t), s, t =

1, . . . , n, i, j = 1, . . . , p for population Π�, � = 1, 2. The discrimination information,
under these conditions, becomes

I(1; 2 : x) = 1
n

E1 ln
p1(x)
p2(x) =

1
n

[

tr
{
Γ1Γ

−1
2

} − ln
|Γ1 |
|Γ2 | − np

]

. (7.124)

The limiting result

lim
n→∞ I(1; 2 : x) = 1

2

∫ 1/2

−1/2

[

tr{ f1(ω) f −1
2 (ω)} − ln

| f1(ω)|
| f2(ω)| − p

]

dω

has been shown, in various forms, by Pinsker [155], Hannan [86], and Kazakos and
Papantoni-Kazakos [116]. The discrete version of (7.123) is just the approximation to
the integral of the limiting form. The K-L measure of disparity is not a true distance,
but it can be shown that I(1; 2) ≥ 0, with equality if and only if f1(ω) = f2(ω)
almost everywhere. This result makes it potentially suitable as a measure of disparity
between the two densities.

A connection exists, of course, between the discrimination information number,
which is just the expectation of the likelihood criterion and the likelihood itself. For
example, we may measure the disparity between the sample and the process defined
by the theoretical spectrum fj (ωk) corresponding to population Πj in the sense of
Kullback [123], as I( f̂ ; fj ), where

f̂ (ωk) =
m∑

�=−m
h� I(ωk + �/n) (7.125)

denotes the smoothed spectral matrix with weights {h�}. The likelihood ratio cri-
terion can be thought of as measuring the disparity between the periodogram and
the theoretical spectrum for each of the populations. To make the discrimination
information finite, we replace the periodogram implied by the log likelihood by the
sample spectrum. In this case, the classification procedure can be regarded as find-
ing the population closest, in the sense of minimizing disparity between the sample
and theoretical spectral matrices. The classification in this case proceeds by simply
choosing the population Πj that minimizes I( f̂ ; fj ), i.e., assigning x to population Πi

whenever
I( f̂ ; fi) < I( f̂ ; fj ) (7.126)

for j � i, j = 1, 2, . . . , g.
Kakizawa et al. [111] proposed using the Chernoff (CH) information measure

(Chernoff [41], Renyi [165]), defined as

Bα(1; 2) = − ln E2

{(
p2(x)
p1(x)

)α}

, (7.127)
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where the measure is indexed by a regularizing parameter α, for 0 < α < 1. When
α = .5, the Chernoff measure is the symmetric divergence proposed by Bhattacharya
[21]. For the multivariate normal case,

Bα(1; 2 : x) = 1
n

[

ln
|αΓ1 + (1 − α)Γ2 |

|Γ2 | − α ln
|Γ1 |
|Γ2 |

]

. (7.128)

The large sample spectral approximation to the Chernoff information measure is
analogous to that for the discrimination information, namely,

Bα( f1; f2) = 1
2n

∑

0<ωk<1/2

[

ln
|α f1(ωk) + (1 − α) f2(ωk)|

| f2(ωk)|

− α ln
| f1(ωk)|
| f2(ωk)|

]

.

(7.129)

The Chernoff measure, when divided by α(1 − α), behaves like the discrimination
information in the limit in the sense that it converges to I(1; 2 : x) for α → 0
and to I(2; 1 : x) for α → 1. Hence, near the boundaries of the parameter α, it
tends to behave like discrimination information and for other values represents a
compromise between the two information measures. The classification rule for the
Chernoff measure reduces to assigning x to population Πi whenever

Bα( f̂ ; fi) < Bα( f̂ ; fj ) (7.130)

for j � i, j = 1, 2, . . . , g.
Although the classification rules above are well defined if the group spectral

matrices are known, this will not be the case in general. If there are g training
samples, xij, j = 1, . . . , Ni, i = 1 . . . , g, with Ni vector observations available in each
group, the natural estimator for the spectral matrix of the group i is just the average
spectral matrix (7.97), namely, with f̂ij (ωk) denoting the estimated spectral matrix
of series j from the ith population,

f̂i(ωk) = 1
Ni

Ni∑

j=1
f̂ij (ωk). (7.131)

A second consideration is the choice of the regularization parameterα for the Chernoff
criterion, (7.129). For the case of g = 2 groups, it should be chosen to maximize the
disparity between the two group spectra, as defined in (7.129). Kakizawa et al. [111]
simply plot (7.129) as a function of α, using the estimated group spectra in (7.131),
choosing the value that gives the maximum disparity between the two groups.

Example 7.11 Discriminant Analysis on Seismic Data
The simplest approaches to discriminating between the earthquake and explosion
groups have been based on either the relative amplitudes of the P and S phases, as
in Fig. 7.5 or on relative power components in various frequency bands. Consider-
able effort has been expended on using various spectral ratios involving the bivariate



434 7 Statistical Methods in the Frequency Domain

0 5 10 15 20

0.
00

0.
10

Frequency (Hz)
0 5 10 15 20

0
2

4
6

Frequency (Hz)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

Frequency (Hz)
0 5 10 15 20

0
1

2
3

4

Frequency (Hz)

Average P−spectra

E
ar

th
qu

ak
es

Average S−spectra

E
xp

lo
si

on
s

−0.5 0.0 0.5

Fig. 7.13. Average P-spectra and S-spectra of the earthquake and explosion series. The insert
on the upper right shows the smoothing kernel used; the resulting bandwidth is about .75 Hz

P and S phases as discrimination features. Kakizawa et al. [111] mention a number
of measures that have be used in the seismological literature as features. These
features include ratios of power for the two phases and ratios of power components
in high- and low-frequency bands. The use of such features of the spectrum sug-
gests an optimal procedure based on discriminating between the spectral matrices
of two stationary processes would be reasonable. The fact that the hypothesis that
the spectral matrices were equal, tested in Example 7.9, was also soundly rejected
suggests the use of a discriminant function based on spectral differences. Recall the
sampling rate is 40 points per second, leading to a folding frequency of 20 Hz.

Figure 7.13 displays the diagonal elements of the average spectral matrices for
each group. The maximum value of the estimated Chernoff disparity Bα( f̂1; f̂2)
occurs for α = .4, and we use that value in the discriminant criterion (7.129).
Figure 7.14 shows the results of using the Chernoff differences along with the
Kullback-Leibler differences for classification. The differences are the measures
for earthquakes minus explosions, so negative values of the differences indicate
earthquake and positive values indicate explosion. Hence, points in the first quadrant
of Fig. 7.14 are classified an explosion and points in the third quadrant are classified
as earthquakes. We note that Explosion 6 is misclassified as an earthquake. Also,
Earthquake 1, which falls in the fourth quadrant has an uncertain classification,
the Chernoff distance classifies it as an earthquake, however, the Kullback-Leibler
difference classifies it as an explosion.

The NZ event of unknown origin was also classified using these distance mea-
sures, and, as in Example 7.10, it is classified as an explosion. The Russians have
asserted no mine blasting or nuclear testing occurred in the area in question, so the
event remains as somewhat of a mystery. The fact that it was relatively removed
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Fig. 7.14. Classification (by quadrant) of earthquakes and explosions using the Chernoff and
Kullback-Leibler differences

geographically from the test set may also have introduced some uncertainties into
the procedure. The R code for this example is as follows.
P = 1:1024; S = P+1024; p.dim = 2; n =1024
eq = as.ts(eqexp[, 1:8])
ex = as.ts(eqexp[, 9:16])
nz = as.ts(eqexp[, 17])
f.eq <- array(dim=c(8, 2, 2, 512)) -> f.ex
f.NZ = array(dim=c(2, 2, 512))
# below calculates determinant for 2x2 Hermitian matrix
det.c <- function(mat){return(Re(mat[1,1]*mat[2,2]-mat[1,2]*mat[2,1]))}
L = c(15,13,5) # for smoothing
for (i in 1:8){ # compute spectral matrices
f.eq[i,,,] = mvspec(cbind(eq[P,i], eq[S,i]), spans=L, taper=.5)$fxx
f.ex[i,,,] = mvspec(cbind(ex[P,i], ex[S,i]), spans=L, taper=.5)$fxx}
u = mvspec(cbind(nz[P], nz[S]), spans=L, taper=.5)
f.NZ = u$fxx

bndwidth = u$bandwidth*sqrt(12)*40 # about .75 Hz
fhat.eq = apply(f.eq, 2:4, mean) # average spectra
fhat.ex = apply(f.ex, 2:4, mean)
# plot the average spectra
par(mfrow=c(2,2), mar=c(3,3,2,1), mgp = c(1.6,.6,0))
Fr = 40*(1:512)/n
plot(Fr,Re(fhat.eq[1,1,]),type="l",xlab="Frequency (Hz)",ylab="")
plot(Fr,Re(fhat.eq[2,2,]),type="l",xlab="Frequency (Hz)",ylab="")
plot(Fr,Re(fhat.ex[1,1,]),type="l",xlab="Frequency (Hz)",ylab="")
plot(Fr,Re(fhat.ex[2,2,]),type="l",xlab="Frequency (Hz)",ylab="")
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mtext("Average P-spectra", side=3, line=-1.5, adj=.2, outer=TRUE)
mtext("Earthquakes", side=2, line=-1, adj=.8, outer=TRUE)
mtext("Average S-spectra", side=3, line=-1.5, adj=.82, outer=TRUE)
mtext("Explosions", side=2, line=-1, adj=.2, outer=TRUE)
par(fig = c(.75, 1, .75, 1), new = TRUE)
ker = kernel("modified.daniell", L)$coef; ker = c(rev(ker),ker[-1])
plot((-33:33)/40, ker, type="l", ylab="", xlab="", cex.axis=.7,

yaxp=c(0,.04,2))
# Choose alpha
Balpha = rep(0,19)
for (i in 1:19){ alf=i/20
for (k in 1:256) {
Balpha[i]= Balpha[i] + Re(log(det.c(alf*fhat.ex[,,k] +

(1-alf)*fhat.eq[,,k])/det.c(fhat.eq[,,k])) -
alf*log(det.c(fhat.ex[,,k])/det.c(fhat.eq[,,k])))} }

alf = which.max(Balpha)/20 # alpha = .4
# Calculate Information Criteria
rep(0,17) -> KLDiff -> BDiff -> KLeq -> KLex -> Beq -> Bex
for (i in 1:17){
if (i <= 8) f0 = f.eq[i,,,]
if (i > 8 & i <= 16) f0 = f.ex[i-8,,,]
if (i == 17) f0 = f.NZ

for (k in 1:256) { # only use freqs out to .25
tr = Re(sum(diag(solve(fhat.eq[,,k],f0[,,k]))))
KLeq[i] = KLeq[i] + tr + log(det.c(fhat.eq[,,k])) - log(det.c(f0[,,k]))
Beq[i] = Beq[i] +

Re(log(det.c(alf*f0[,,k]+(1-alf)*fhat.eq[,,k])/det.c(fhat.eq[,,k]))
- alf*log(det.c(f0[,,k])/det.c(fhat.eq[,,k])))

tr = Re(sum(diag(solve(fhat.ex[,,k],f0[,,k]))))
KLex[i] = KLex[i] + tr + log(det.c(fhat.ex[,,k])) - log(det.c(f0[,,k]))
Bex[i] = Bex[i] +

Re(log(det.c(alf*f0[,,k]+(1-alf)*fhat.ex[,,k])/det.c(fhat.ex[,,k]))
- alf*log(det.c(f0[,,k])/det.c(fhat.ex[,,k]))) }

KLDiff[i] = (KLeq[i] - KLex[i])/n
BDiff[i] = (Beq[i] - Bex[i])/(2*n) }
x.b = max(KLDiff)+.1; x.a = min(KLDiff)-.1
y.b = max(BDiff)+.01; y.a = min(BDiff)-.01
dev.new()
plot(KLDiff[9:16], BDiff[9:16], type="p", xlim=c(x.a,x.b), ylim=c(y.a,y.b),

cex=1.1,lwd=2, xlab="Kullback-Leibler Difference",ylab="Chernoff
Difference", main="Classification Based on Chernoff and K-L
Distances", pch=6)

points(KLDiff[1:8], BDiff[1:8], pch=8, cex=1.1, lwd=2)
points(KLDiff[17], BDiff[17], pch=3, cex=1.1, lwd=2)
legend("topleft", legend=c("EQ", "EX", "NZ"), pch=c(8,6,3), pt.lwd=2)
abline(h=0, v=0, lty=2, col="gray")
text(KLDiff[-c(1,2,3,7,14)]-.075, BDiff[-c(1,2,3,7,14)],

label=names(eqexp[-c(1,2,3,7,14)]), cex=.7)
text(KLDiff[c(1,2,3,7,14)]+.075, BDiff[c(1,2,3,7,14)],

label=names(eqexp[c(1,2,3,7,14)]), cex=.7)

Cluster Analysis
For the purpose of clustering, it may be more useful to consider a symmetric

disparity measures and we introduce the J-Divergence measure

J( f1; f2) = I( f1; f2) + I( f2; f1) (7.132)
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and the symmetric Chernoff number

JBα( f1; f2) = Bα( f1; f2) + Bα( f2; f1) (7.133)

for that purpose. In this case, we define the disparity between the sample spectral
matrix of a single vector, x, and the population Πj as

J( f̂ ; fj ) = I( f̂ ; fj ) + I( fj ; f̂ ) (7.134)

and
JBα( f̂ ; fj ) = Bα( f̂ ; fj ) + Bα( fj ; f̂ ), (7.135)

respectively and use these as quasi-distances between the vector and population Πj .
The measures of disparity can be used to cluster multivariate time series. The

symmetric measures of disparity, as defined above ensure that the disparity between
fi and fj is the same as the disparity between fj and fi . Hence, we will consider the
symmetric forms (7.134) and (7.135) as quasi-distances for the purpose of defining a
distance matrix for input into one of the standard clustering procedures (see Johnson
and Wichern [106]). In general, we may consider either hierarchical or partitioned
clustering methods using the quasi-distance matrix as an input.

For purposes of illustration, we may use the symmetric divergence (7.134), which
implies the quasi-distance between sample series with estimated spectral matrices f̂i
and f̂j would be (7.134); i.e.,

J( f̂i ; f̂j ) = 1
n

∑

0<ωk<1/2

[

tr
{

f̂i(ωk) f̂ −1
j (ωk)

}
+ tr

{
f̂j (ωk) f̂ −1

i (ωk)
} − 2p

]

, (7.136)

for i � j. We can also use the comparable form for the Chernoff divergence, but we
may not want to make an assumption for the regularization parameter α.

For hierarchical clustering, we begin by clustering the two members of the pop-
ulation that minimize the disparity measure (7.136). Then, these two items form a
cluster, and we can compute distances between unclustered items as before. The dis-
tance between unclustered items and a current cluster is defined here as the average
of the distances to elements in the cluster. Again, we combine objects that are clos-
est together. We may also compute the distance between the unclustered items and
clustered items as the closest distance, rather than the average. Once a series is in a
cluster, it stays there. At each stage, we have a fixed number of clusters, depending
on the merging stage.

Alternatively, we may think of clustering as a partitioning of the sample into a
prespecified number of groups. MacQueen [132] has proposed this using k-means
clustering, using the Mahalonobis distance between an observation and the group
mean vectors. At each stage, a reassignment of an observation into its closest affinity
group is possible. To see how this procedure applies in the current context, consider a
preliminary partition into a fixed number of groups and define the disparity between
the spectral matrix of the observation, say, f̂ , and the average spectral matrix of
the group, say, f̂i , as J( f̂ ; f̂i), where the group spectral matrix can be estimated by
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Fig. 7.15. Clustering results for the earthquake and explosion series based on symmetric
divergence using a robust version of k-means clustering with two groups. Circles indicate
Group I classification, triangles indicate Group II classification

(7.131). At any pass, a single series is reassigned to the group for which its disparity
is minimized. The reassignment procedure is repeated until all observations stay in
their current groups. Of course, the number of groups must be specified for each
repetition of the partitioning algorithm and a starting partition must be chosen. This
assignment can either be random or chosen from a preliminaryhierarchical clustering,
as described above.

Example 7.12 Cluster Analysis for Earthquakes and Explosions
It is instructive to try a clustering procedure on the populationof known earthquakes
and explosions. Figure 7.15 shows the results of applying the Partitioning Around
Medoids (PAM) clustering algorithm, which is essentially a robustification of the k-
means procedure (see Kaufman and Rousseeuw [114], Ch. 2), under the assumption
that two groups are appropriate. The two-group partition tends to produce a final
partition that agrees closely with the known configuration with earthquake 1 (EQ1)
and explosion 8 (EX8) being misclassified; as in previous examples, the NZ event
is classified as an explosion.

The R code for this example uses the cluster package and our mvspec script
for estimating spectral matrices.
library(cluster)
P = 1:1024; S = P+1024; p.dim = 2; n =1024
eq = as.ts(eqexp[, 1:8])
ex = as.ts(eqexp[, 9:16])
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nz = as.ts(eqexp[, 17])
f = array(dim=c(17, 2, 2, 512))
L = c(15, 15) # for smoothing
for (i in 1:8){ # compute spectral matrices
f[i,,,] = mvspec(cbind(eq[P,i], eq[S,i]), spans=L, taper=.5)$fxx
f[i+8,,,] = mvspec(cbind(ex[P,i], ex[S,i]), spans=L, taper=.5)$fxx }

f[17,,,] = mvspec(cbind(nz[P], nz[S]), spans=L, taper=.5)$fxx
JD = matrix(0, 17, 17)
# Calculate Symmetric Information Criteria
for (i in 1:16){
for (j in (i+1):17){
for (k in 1:256) { # only use freqs out to .25

tr1 = Re(sum(diag(solve(f[i,,,k], f[j,,,k]))))
tr2 = Re(sum(diag(solve(f[j,,,k], f[i,,,k]))))
JD[i,j] = JD[i,j] + (tr1 + tr2 - 2*p.dim)}}}

JD = (JD + t(JD))/n
colnames(JD) = c(colnames(eq), colnames(ex), "NZ")
rownames(JD) = colnames(JD)
cluster.2 = pam(JD, k = 2, diss = TRUE)
summary(cluster.2) # print results
par(mgp = c(1.6,.6,0), cex=3/4, cex.lab=4/3, cex.main=4/3)
clusplot(JD, cluster.2$cluster, col.clus=1, labels=3, lines=0, col.p=1,

main="Clustering Results for Explosions and Earthquakes")
text(-7,-.5, "Group I", cex=1.1, font=2)
text(1, 5, "Group II", cex=1.1, font=2)

7.8 Principal Components and Factor Analysis

In this section, we introduce the related topics of spectral domain principal compo-
nents analysis and factor analysis for time series. The topics of principal components
and canonical analysis in the frequency domain are rigorously presented in Brillinger
(1981, Chaps. 9 and 10) and many of the details concerning these concepts can be
found there.

The techniques presented here are related to each other in that they focus on
extracting pertinent information from spectral matrices. This information is impor-
tant because dealing directly with a high-dimensional spectral matrix f (ω) itself is
somewhat cumbersome because it is a function into the set of complex, nonnegative-
definite, Hermitian matrices. We can view these techniques as easily understood,
parsimonious tools for exploring the behavior of vector-valued time series in the
frequency domain with minimal loss of information. Because our focus is on spectral
matrices, we assume for convenience that the time series of interest have zero means;
the techniques are easily adjusted in the case of nonzero means.

In this and subsequent sections, it will be convenient to work occasionally with
complex-valued time series. A p × 1 complex-valued time series can be represented
as xt = x1t − ix2t, where x1t is the real part and x2t is the imaginary part of xt . The
process is said to be stationary if E(xt ) and E(xt+hx∗t ) exist and are independent of
time t. The p × p autocovariance function,

Γxx(h) = E(xt+hx∗t ) − E(xt+h)E(x∗t ),
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of xt satisfies conditions similar to those of the real-valued case. Writing Γxx(h) =
{γij (h)}, for i, j = 1, . . . , p, we have (1) γii(0) ≥ 0 is real, (2) |γij (h)|2 ≤ γii(0)γj j(0)
for all integers h, and (3) Γxx(h) is a non-negative definite function. The spectral
theory of complex-valued vector time series is analogous to the real-valued case. For
example, if

∑
h | |Γxx(h)| | < ∞, the spectral density matrix of the complex series xt

is given by

fxx (ω) =
∞∑

h=−∞
Γxx(h) exp(−2πihω).

Principal Components

Classical principal component analysis (PCA) is concerned with explaining the
variance–covariance structure among p variables, x = (x1, . . . , xp)′, through a few
linear combinations of the components of x. Suppose we wish to find a linear com-
bination

y = c′x = c1x1 + · · · + cpxp (7.137)

of the components of x such that var(y) is as large as possible. Because var(y) can
be increased by simply multiplying c by a constant, it is common to restrict c to be
of unit length; that is, c′c = 1. Noting that var(y) = c′Σxxc, where Σxx is the p × p
variance–covariance matrix of x, another way of stating the problem is to find c such
that

max
c�0

c′Σxxc
c′c

. (7.138)

Denote the eigenvalue–eigenvector pairs of Σxx by {(λ1, e1), . . . , (λp, ep)}, where
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and the eigenvectors are of unit length. The solution
to (7.138) is to choose c = e1, in which case the linear combination y1 = e′1x has
maximum variance, var(y1) = λ1. In other words,

max
c�0

c′Σxxc
c′c

=
e′1Σxxe1

e′1e1
= λ1. (7.139)

The linear combination, y1 = e′1x, is called the first principal component. Because
the eigenvalues of Σxx are not necessarily unique, the first principal component is not
necessarily unique.

The second principal component is defined to be the linear combination y2 = c′x
that maximizes var(y2) subject to c′c = 1 and such that cov(y1, y2) = 0. The solution
is to choose c = e2, in which case, var(y2) = λ2. In general, the kth principal
component, for k = 1, 2, . . . , p, is the linear combination yk = c′x that maximizes
var(yk) subject to c′c = 1 and such that cov(yk, yj ) = 0, for j = 1, 2, . . . , k − 1. The
solution is to choose c = ek , in which case var(yk) = λk .

One measure of the importance of a principal component is to assess the propor-
tion of the total variance attributed to that principal component. The total variance
of x is defined to be the sum of the variances of the individual components; that
is, var(x1) + · · · + var(xp) = σ11 + · · · + σpp , where σj j is the jth diagonal el-
ement of Σxx . This sum is also denoted as tr(Σxx), or the trace of Σxx . Because
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tr(Σxx) = λ1 + · · · + λp, the proportion of the total variance attributed to the kth
principal component is given simply by var(yk)

/
tr(Σxx) = λk

/ ∑p
j=1 λj .

Given a random sample x1, . . . , xn, the sample principal components are defined
as above, but with Σxx replaced by the sample variance–covariance matrix, Sxx =

(n − 1)−1 ∑n
i=1(xi − x̄)(xi − x̄)′. Further details can be found in the introduction to

classical principal component analysis in Johnson and Wichern [106], Chap. 9.
For the case of time series, suppose we have a zero mean, p× 1, stationary vector

process xt that has a p × p spectral density matrix given by fxx(ω). Recall fxx (ω)
is a complex-valued, nonnegative-definite, Hermitian matrix. Using the analogy of
classical principal components, and in particular (7.137) and (7.138), suppose, for
a fixed value of ω, we want to find a complex-valued univariate process yt (ω) =
c(ω)∗xt , where c(ω) is complex, such that the spectral density of yt (ω) is maximized
at frequency ω, and c(ω) is of unit length, c(ω)∗c(ω) = 1. Because, at frequency ω,
the spectral density of yt (ω) is fy(ω) = c(ω)∗ fxx (ω)c(ω), the problem can be restated
as: Find complex vector c(ω) such that

max
c(ω)�0

c(ω)∗ fxx (ω)c(ω)
c(ω)∗c(ω) . (7.140)

Let {(λ1(ω), e1(ω)) ,. . . , (λp(ω), ep(ω))} denote the eigenvalue–eigenvector pairs of
fxx (ω), where λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λp(ω) ≥ 0, and the eigenvectors are of unit
length. We note that the eigenvalues of a Hermitian matrix are real. The solution to
(7.140) is to choose c(ω) = e1(ω); in which case the desired linear combination is
yt (ω) = e1(ω)∗xt . For this choice,

max
c(ω)�0

c(ω)∗ fxx(ω)c(ω)
c(ω)∗c(ω) =

e1(ω)∗ fx(ω)e1(ω)
e1(ω)∗e1(ω) = λ1(ω). (7.141)

This process may be repeated for any frequency ω, and the complex-valued process,
yt1(ω) = e1(ω)∗xt , is called the first principal component at frequency ω. The kth
principal component at frequency ω, for k = 1, 2, . . . , p, is the complex-valued time
series ytk(ω) = ek(ω)∗xt , in analogy to the classical case. In this case, the spectral
density of ytk(ω) at frequency ω is fyk (ω) = ek(ω)∗ fxx(ω)ek(ω) = λk(ω).

The previous development of spectral domain principal components is related
to the spectral envelope methodology first discussed in Stoffer et al. [193]. We
will present the spectral envelope in the next section, where we motivate the use
of principal components as it is presented above. Another way to motivate the use
of principal components in the frequency domain was given in Brillinger (1981,
Chap. 9). Although this technique leads to the same analysis, the motivation may
be more satisfactory to the reader at this point. In this case, we suppose we have a
stationary, p-dimensional, vector-valued process xt and we are only able to keep a
univariate process yt such that, when needed, we may reconstruct the vector-valued
process, xt , according to an optimality criterion.

Specifically, we suppose we want to approximate a mean-zero, stationary, vector-
valued time series, xt , with spectral matrix fxx(ω), by a univariate process yt de-
fined by
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yt =

∞∑

j=−∞
c∗t−j xj, (7.142)

where {cj } is a p × 1 vector-valued filter, such that {cj} is absolutely summable; that
is,

∑∞
j=−∞ |cj | < ∞. The approximation is accomplished so the reconstruction of xt

from yt , say,

x̂t =
∞∑

j=−∞
bt−jyj, (7.143)

where {bj } is an absolutely summable p × 1 filter, is such that the mean square
approximation error

E{(xt − x̂t )∗(xt − x̂t )} (7.144)

is minimized.
Let b(ω) and c(ω) be the transforms of {bj } and {cj }, respectively. For example,

c(ω) =
∞∑

j=−∞
cj exp(−2πi jω), (7.145)

and, consequently,

cj =
∫ 1/2

−1/2
c(ω) exp(2πi jω)dω. (7.146)

Brillinger (35, Theorem 9.3.1) shows the solution to the problem is to choose c(ω) to
satisfy (7.140) and to set b(ω) = c(ω). This is precisely the previous problem, with
the solution given by (7.141). That is, we choose c(ω) = e1(ω) and b(ω) = e1(ω); the
filter values can be obtained via the inversion formula given by (7.146). Using these
results, in view of (7.142), we may form the first principal component series, say yt1.

This technique may be extended by requesting another series, say, yt2, for ap-
proximating xt with respect to minimum mean square error, but where the coherency
between yt2 and yt1 is zero. In this case, we choose c(ω) = e2(ω). Continuing this way,
we can obtain the first q ≤ p principal components series, say, yt = (yt1, . . . , ytq)′,
having spectral density fq(ω) = diag{λ1(ω), . . . , λq(ω)}. The series ytk is the kth
principal component series.

As in the classical case, given observations, x1, x2, . . . , xn, from the process xt ,
we can form an estimate f̂xx(ω) of fxx(ω) and define the sample principal component
series by replacing fxx (ω) with f̂xx(ω) in the previous discussion. Precise details
pertaining to the asymptotic (n → ∞) behavior of the principal component series
and their spectra can be found in Brillinger (1981, Chapter 9). To give a basic idea
of what we can expect, we focus on the first principal component series and on the
spectral estimator obtained by smoothing the periodogram matrix, In(ωj ); that is

f̂xx (ωj ) =
m∑

�=−m
h� In(ωj + �/n), (7.147)
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Fig. 7.16. The individual periodograms of xtk , for k = 1, . . . , 8, in Example 7.13

where L = 2m + 1 is odd and the weights are chosen so h� = h−� are positive and∑
� h� = 1. Under the conditions for which f̂xx (ωj ) is a well-behaved estimator of

fxx (ωj ), and for which the largest eigenvalue of fxx(ωj ) is unique,
{

ηn
λ̂1(ωj ) − λ1(ωj )

λ1(ωj ) ; ηn
[
ê1(ωj ) − e1(ωj )

]
; j = 1, . . . , J

}

(7.148)

converges (n → ∞) jointly in distribution to independent, zero-mean normal distri-
butions, the first of which is standard normal. In (7.148), η−2

n =
∑m

�=−m h2
� , noting

we must have L → ∞ and ηn → ∞, but L/n → 0 as n → ∞. The asymptotic
variance–covariance matrix of ê1(ω), say, Σe1 (ω), is given by

Σe1 (ω) = η−2
n λ1(ω)

p∑

�=2
λ�(ω) {λ1(ω) − λ�(ω)}−2 e�(ω)e∗�(ω). (7.149)

The distribution of ê1(ω) depends on the other latent roots and vectors of fx(ω). Writ-
ing ê1(ω) = (ê11(ω), ê12(ω), . . . , ê1p(ω))′, we may use this result to form confidence
regions for the components of ê1 by approximating the distribution of

2
/
/ê1, j (ω) − e1, j (ω)

/
/2

s2
j (ω)

, (7.150)

for j = 1, . . . , p, by a χ2 distribution with two degrees of freedom. In (7.150), s2
j (ω) is

the jth diagonal element of Σ̂e1(ω), the estimate of Σe1(ω). We can use (7.150) to check
whether the value of zero is in the confidence region by comparing 2|ê1, j (ω)|2/s2

j (ω)
with χ2

2 (1 − α), the 1 − α upper tail cutoff of the χ2
2 distribution.
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Fig. 7.17. The estimated spectral density, λ̂1( j/128), of the first principal component series
in Example 7.13

Example 7.13 Principal Component Analysis of the fMRI Data
Recall Example 1.6 where the vector time series xt = (xt1, . . . , xt8)′, t = 1, . . . , 128,
represents consecutive measures of average blood oxygenation level dependent
(bold) signal intensity, which measures areas of activation in the brain. Recall
subjects were given a non-painful brush on the hand and the stimulus was applied
for 32 s and then stopped for 32 s; thus, the signal period is 64 s (the sampling rate
was one observation every 2 s for 256 s). The series xtk for k = 1, 2, 3, 4 represent
locations in cortex, series xt5 and xt6 represent locations in the thalamus, and xt7
and xt8 represent locations in the cerebellum.

As is evident from Fig. 1.6, different areas of the brain are responding differently,
and a principal component analysis may help in indicating which locations are
responding with the most spectral power, and which locations do not contribute
to the spectral power at the stimulus signal period. In this analysis, we will focus
primarily on the signal period of 64 s, which translates to four cycles in 256 s or
ω = 4/128 cycles per time point.

Figure 7.16 shows individual periodograms of the series xtk for k = 1, . . . , 8. As
was evident from Fig. 1.6, a strong response to the brush stimulus occurred in areas
of the cortex. To estimate the spectral density of xt , we used (7.147) with L = 5 and
{h0 = 3/9, h±1 = 2/9, h±2 = 1/9}; this is a Daniell kernel with m = 1 passed twice.
Calling the estimated spectrum f̂xx ( j/128), for j = 0, 1, . . . , 64, we can obtain
the estimated spectrum of the first principal component series yt1 by calculating
the largest eigenvalue, λ̂1( j/128), of f̂xx( j/128) for each j = 0, 1, . . . , 64. The
result, λ̂1( j/128), is shown in Fig. 7.17. As expected, there is a large peak at the
stimulus frequency 4/128, wherein λ̂1(4/128) = 2. The total power at the stimulus
frequency is tr( f̂xx(4/128)) = 2.05, so the proportion of the power at frequency
4/128 attributed to the first principal component series is about 2/2.05 or roughly
98%. Because the first principal component explains nearly all of the total power at
the stimulus frequency, there is no need to explore the other principal component
series at this frequency.
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Table 7.5. Magnitudes of the PC vector at the stimulus frequency

Location 1 2 3 4 5 6 7 8
/
/
/ ê1( 4

128 )
/
/
/ .64 .36 .36 .22 .32 .05* .13 .39

*Zero is in an approximate 99% confidence region for this component

The estimated first principal component series at frequency 4/128 is given by
ŷt1(4/128) = ê∗1(4/128)xt , and the components of ê1(4/128) can give insight as to
which locations of the brain are responding to the brush stimulus. Table 7.5 shows
the magnitudes of ê1(4/128). In addition, an approximate 99% confidence interval
was obtained for each component using (7.150). As expected, the analysis indicates
that location 6 is not contributing to the power at this frequency, but surprisingly,
the analysis suggests location 5 (cerebellum 1) is responding to the stimulus.

The R code for this example is as follows.
n = 128; Per = abs(mvfft(fmri1[,-1]))^2/n
par(mfrow=c(2,4), mar=c(3,2,2,1), mgp = c(1.6,.6,0), oma=c(0,1,0,0))
for (i in 1:8){ plot(0:20, Per[1:21,i], type="l", ylim=c(0,8),

main=colnames(fmri1)[i+1], xlab="Cycles",ylab="", xaxp=c(0,20,5))}
mtext("Periodogram", side=2, line=-.3, outer=TRUE, adj=c(.2,.8))
dev.new()
fxx = mvspec(fmri1[,-1], kernel("daniell", c(1,1)), taper=.5, plot=FALSE)$fxx
l.val = rep(NA,64)
for (k in 1:64) {
u = eigen(fxx[,,k], symmetric=TRUE, only.values = TRUE)
l.val[k] = u$values[1]} # largest e-value
plot(l.val, type="n", xaxt="n", xlab="Cycles (Frequency x 128)", ylab="First

Principal Component")
axis(1, seq(4,60,by=8)); grid(lty=2, nx=NA, ny=NULL)
abline(v=seq(4,60,by=8), col='lightgray', lty=2); lines(l.val)
# At freq 4/128
u = eigen(fxx[,,4], symmetric=TRUE)
lam=u$values; evec=u$vectors
lam[1]/sum(lam) # % of variance explained
sig.e1 = matrix(0,8,8)
for (l in 2:5){ # last 3 evs are 0
sig.e1 = sig.e1 + lam[l]*evec[,l]%*%Conj(t(evec[,l]))/(lam[1]-lam[l])^2}
sig.e1 = Re(sig.e1)*lam[1]*sum(kernel("daniell", c(1,1))$coef^2)

p.val = round(pchisq(2*abs(evec[,1])^2/diag(sig.e1), 2, lower.tail=FALSE), 3)
cbind(colnames(fmri1)[-1], abs(evec[,1]), p.val) # table values

Factor Analysis

Classical factor analysis is similar to classical principal component analysis. Suppose
x is a mean-zero, p × 1, random vector with variance–covariance matrix Σxx . The
factor model proposes that x is dependent on a few unobserved common factors,
z1, . . . , zq, plus error. In this model, one hopes that q will be much smaller than p.
The factor model is given by

x = Bz + ε, (7.151)
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where B is a p × q matrix of factor loadings, z = (z1, . . . , zq)′ is a random q × 1
vector of factors such that E(z) = 0 and E(zz′) = Iq, the q × q identity matrix. The
p×1 unobserved error vector ε is assumed to be independent of the factors, with zero
mean and diagonal variance-covariance matrix D = diag{δ2

1, . . . , δ
2
p}. Note, (7.151)

differs from the multivariate regression model in Sect. 5.6 because the factors, z, are
unobserved. Equivalently, the factor model, (7.151), can be written in terms of the
covariance structure of x,

Σxx = BB′ + D; (7.152)

i.e., the variance-covariance matrix of x is the sum of a symmetric, nonnegative-
definite rank q ≤ p matrix and a nonnegative-definite diagonal matrix. If q = p, then
Σxx can be reproducedexactly asBB′, using the fact that Σxx = λ1e1e′1+· · ·+λpepe′p,
where (λi, ei) are the eigenvalue–eigenvector pairs of Σxx . As previously indicated,
however, we hope q will be much smaller than p. Unfortunately, most covariance
matrices cannot be factored as (7.152) when q is much smaller than p.

To motivate factor analysis, suppose the components of x can be grouped into
meaningful groups. Within each group, the components are highly correlated, but
the correlation between variables that are not in the same group is small. A group
is supposedly formed by a single construct, represented as an unobservable factor,
responsible for the high correlations within a group. For example, a person competing
in a decathlon performs p = 10 athletic events, and we may represent the outcome of
the decathlon as a 10× 1 vector of scores. The events in a decathlon involve running,
jumping, or throwing, and it is conceivable the 10 × 1 vector of scores might be
able to be factored into q = 4 factors, (1) arm strength, (2) leg strength, (3) running
speed, and (4) running endurance. The model (7.151) specifies that cov(x, z) = B,
or cov(xi, zj ) = bij where bij is the i jth component of the factor loading matrix B,
for i = 1, . . . , p and j = 1, . . . , q. Thus, the elements of B are used to identify which
hypothetical factors the components of x belong to, or load on.

At this point, some ambiguity is still associated with the factor model. Let Q be
a q × q orthogonal matrix; that is Q′Q = QQ′ = Iq. Let B∗ = BQ and z∗ = Q′z so
(7.151) can be written as

x = Bz + ε = BQQ′z + ε = B∗z∗ + ε. (7.153)

The model in terms of B∗ and z∗ fulfills all of the factor model requirements, for
example, cov(z∗) = Q′cov(z)Q = QQ′ = Iq, so

Σxx = B∗cov(z∗)B′
∗ + D = BQQ′B′ + D = BB′ + D. (7.154)

Hence, on the basis of observations on x, we cannot distinguish between the loadings
B and the rotated loadings B∗ = BQ. Typically, Q is chosen so the matrix B is easy
to interpret, and this is the basis of what is called factor rotation.

Given a sample x1, . . . , xn, a number of methods are used to estimate the pa-
rameters of the factor model, and we discuss two of them here. The first method
is the principal component method. Let Sxx denote the sample variance–covariance
matrix, and let (λ̂i, êi) be the eigenvalue–eigenvector pairs of Sxx . The p × q matrix
of estimated factor loadings is found by setting
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B̂ =
[
λ̂

1/2
1 ê1

/
/
/ λ̂1/2

2 ê2

/
/
/ · · ·

/
/
/ λ̂1/2

q êq
]
. (7.155)

The argument here is that if q factors exist, then

Sxx ≈ λ̂1ê1 ê′1 + · · · + λ̂q êq ê′q = B̂B̂′, (7.156)

because the remaining eigenvalues, λ̂q+1, . . . , λ̂p, will be negligible. The estimated
diagonal matrix of error variances is then obtained by setting D̂ = diag{δ̂2

1, . . . , δ̂
2
p},

where δ̂2
j is the jth diagonal element of Sxx − B̂B̂′.

The second method, which can give answers that are considerably different from
the principal component method is maximum likelihood. Upon further assumption
that in (7.151), z and ε are multivariate normal, the log likelihood ofB and D ignoring
a constant is

− 2 ln L(B, D) = n ln |Σxx | +
n∑

j=1
x′jΣ

−1
xx xj . (7.157)

The likelihood depends on B and D through (7.152), Σxx = BB′ + D. As discussed
in (7.153)–(7.154), the likelihood is not well defined because B can be rotated.
Typically, restrictingBD−1B′ to be a diagonal matrix is a computationally convenient
uniqueness condition. The actual maximization of the likelihood is accomplished
using numerical methods.

One obvious method of performing maximum likelihood for the Gaussian factor
model is the EM algorithm. For example, suppose the factor vector z is known. Then,
the factor model is simply the multivariate regression model given in Sect. 5.6, that
is, write X ′ = [x1, x2, . . . , xn] and Z ′ = [z1, z2, . . . , zn], and note that X is n × p and
Z is n × q. Then, the MLE of B is

B̂ = X ′Z(Z ′Z)−1 =
(
n−1

n∑

j=1
xj z

′
j

) (
n−1

n∑

j=1
zj z

′
j

)−1def
= CxzC−1

zz (7.158)

and the MLE of D is

D̂ = diag
{
n−1

n∑

j=1

(
xj − B̂zj

) (
xj − B̂zj

) ′}
; (7.159)

that is, only the diagonal elements of the right-hand side of (7.159) are used. The
bracketed quantity in (7.159) reduces to

Cxx − CxzC−1
zz C′

xz, (7.160)

where Cxx = n−1 ∑n
j=1 xj x′j .

Based on the derivation of the EM algorithm for the state-space model, (4.66)–
(4.75), we conclude that, to employ the EM algorithm here, given the current param-
eter estimates, in Cxz , we replace xj z′j by xj z̃′j , where z̃j = E(zj

/
/ xj ), and in Czz , we

replace zj z′j by Pz+ z̃j z̃′j , where Pz = var(zj
/
/ xj ). Using the fact that the (p+q)×1 vec-

tor (x′j, z′j )′ is multivariate normal with mean-zero, and variance–covariance matrix
given by
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(BB′ + D B
B′ Iq

)

, (7.161)

we have
z̃j ≡ E(zj

/
/ xj ) = B′(B′B + D)−1xj (7.162)

and
Pz ≡ var(zj

/
/ xj ) = Iq − B′(B′B + D)−1B. (7.163)

For time series, suppose xt is a stationary p×1 process with p× p spectral matrix
fxx (ω). Analogous to the classical model displayed in (7.152), we may postulate that
at a given frequency of interest, ω, the spectral matrix of xt satisfies

fxx(ω) = B(ω)B(ω)∗ + D(ω), (7.164)

where B(ω) is a complex-valued p × q matrix with rank
(B(ω)) = q ≤ p and D(ω)

is a real, nonnegative-definite, diagonal matrix. Typically, we expect q will be much
smaller than p.

As an example of a model that gives rise to (7.164), let xt = (xt1, . . . , xt p)′, and
suppose

xt j = cj st−τj + εt j, j = 1, . . . , p, (7.165)

where cj ≥ 0 are individual amplitudes and st is a common unobserved signal (factor)
with spectral density fss(ω). The values τj are the individual phase shifts. Assume
st is independent of εt = (εt1, . . . , εt p)′ and the spectral matrix of εt , Dεε (ω), is
diagonal. The DFT of xt j is given by

Xj (ω) = n−1/2
n∑

t=1
xt j exp(−2πitω)

and, in terms of the model (7.165),

Xj (ω) = aj (ω)Xs(ω) + Xε j (ω), (7.166)

where aj (ω) = cj exp(−2πiτjω), and Xs(ω) and Xε j (ω) are the respective DFTs of
the signal st and the noise εt j . Stacking the individual elements of (7.166), we obtain
a complex version of the classical factor model with one factor,

�
�
�

�

X1(ω)
...

Xp(ω)

�
�
�

�

=
�
�
�

�

a1(ω)
...

ap(ω)

�
�
�

�

Xs(ω) +
�
�
�

�

Xε1 (ω)
...

Xεp (ω)

�
�
�

�

,

or more succinctly,
X(ω) = a(ω)Xs(ω) + Xε (ω). (7.167)

From (7.167), we can identify the spectral components of the model; that is,

fxx (ω) = b(ω)b(ω)∗ + Dεε (ω), (7.168)
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where b(ω) is a p × 1 complex-valued vector, b(ω)b(ω)∗ = a(ω) fss(ω)a(ω)∗. Model
(7.168) could be considered the one-factor model for time series. This model can
be extended to more than one factor by adding other independent signals into the
original model (7.165). More details regarding this and related models can be found
in Stoffer [194].

Example 7.14 Single Factor Analysis of the fMRI Data
The fMRI data analyzed in Example 7.13 is well suited for a single factor analysis
using the model (7.165), or, equivalently, the complex-valued, single factor model
(7.167). In terms of (7.165), we can think of the signal st as representing the
brush stimulus signal. As before, the frequency of interest is ω = 4/128, which
corresponds to a period of 32 time points, or 64 s.

A simple way to estimate the components b(ω) and Dεε (ω), as specified in
(7.168), is to use the principal components method. Let f̂xx(ω) denote the estimate
of the spectral density of xt = (xt1, . . . , xt8)′ obtained in Example 7.13. Then,
analogous to (7.155) and (7.156), we set

b̂(ω) =
√
λ̂1(ω) ê1(ω),

where
(
λ̂1(ω), ê1(ω)

)
is the first eigenvalue–eigenvector pair of f̂xx(ω). The di-

agonal elements of D̂εε (ω) are obtained from the diagonal elements of f̂xx(ω) −
b̂(ω)b̂(ω)∗. The appropriateness of the model can be assessed by checking the el-
ements of the residual matrix, f̂xx (ω) − [b̂(ω)b̂(ω)∗ + D̂εε (ω)], are negligible in
magnitude.

Concentrating on the stimulus frequency, recall λ̂1(4/128) = 2. The magnitudes
of ê1(4/128) are displayed in Table 7.5, indicating all locations load on the stimulus
factor except for location 6, and location 7 could be considered borderline. The
diagonal elements of f̂xx (ω) − b̂(ω)b̂(ω)∗ yield

D̂εε (4/128) = 0.001 × diag{1.36, 2.04, 6.22, 11.30, 0.73, 13.26, 6.93, 5.88}.
The magnitudes of the elements of the residual matrix at ω = 4/128 are

0.001 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 1.73 3.88 3.61 0.88 2.04 1.60 2.81
2.41 0.00 1.17 3.77 1.49 5.58 3.68 4.21
8.49 5.34 0.00 2.94 7.58 10.91 8.36 10.64

12.65 11.84 6.12 0.00 12.56 14.64 13.34 16.10
0.32 0.29 2.10 2.01 0.00 1.18 2.01 1.18

10.34 16.69 17.09 15.94 13.49 0.00 5.78 14.74
5.71 8.51 8.94 10.18 7.56 0.97 0.00 8.66
6.25 8.00 10.31 10.69 5.95 8.69 7.64 0.00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

indicating the model fit is good. Assuming the results of the previous example are
available, use the following R code.
bhat = sqrt(lam[1])*evec[,1]
Dhat = Re(diag(fxx[,,4] - bhat%*%Conj(t(bhat))))
res = Mod(fxx[,,4] - Dhat - bhat%*%Conj(t(bhat)))
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A number of authors have considered factor analysis in the spectral domain, for
example Priestley et al. [157]; Priestley and Subba Rao [158]; Geweke [70], and
Geweke and Singleton [71], to mention a few. An obvious extension of simple model
(7.165) is the factor model

xt =
∞∑

j=−∞
Λjst−j + εt, (7.169)

where {Λj } is a real-valued p × q filter, st is a q × 1 stationary, unobserved signal,
with independent components, and εt is white noise. We assume the signal and
noise process are independent, st has q × q real, diagonal spectral matrix fss(ω) =
diag{ fs1(ω), . . . , fsq(ω)}, and εt has a real, diagonal, p × p spectral matrix given by
Dεε (ω) = diag{ fε1(ω), . . . , fεp(ω)}. If, in addition,

∑ | |Λj | | < ∞, the spectral matrix
of xt can be written as

fxx (ω) = Λ(ω) fss(ω)Λ(ω)∗ + Dεε (ω) = B(ω)B(ω)∗ + Dεε (ω), (7.170)

where

Λ(ω) =
∞∑

t=−∞
Λt exp(−2πitω) (7.171)

and B(ω) = Λ(ω) f 1/2
ss (ω). Thus, by (7.170), the model (7.169) is seen to satisfy

the basic requirement of the spectral domain factor analysis model; that is, the p ×
p spectral density matrix of the process of interest, fxx (ω), is the sum of a rank
q ≤ p matrix, B(ω)B(ω)∗, and a real, diagonal matrix, Dεε (ω). For the purpose of
identifiability we set fss(ω) = Iq for all ω; in which case, B(ω) = Λ(ω). As in the
classical case [see (7.154)], the model is specified only up to rotations; for details,
see Bloomfield and Davis [26].

Parameter estimation for the model (7.169), or equivalently (7.170), can be
accomplished using the principal component method. Let f̂xx(ω) be an estimate of
fxx (ω), and let

(
λ̂j (ω), êj (ω)

)
, for j = 1, . . . , p, be the eigenvalue–eigenvector pairs,

in the usual order, of f̂xx (ω). Then, as in the classical case, the p × q matrix B is
estimated by

B̂(ω) =
[
λ̂1(ω)1/2 ê1(ω)

/
/
/ λ̂2(ω)1/2 ê2(ω)

/
/
/ · · ·

/
/
/ λ̂q(ω)1/2 êq(ω)

]
. (7.172)

The estimated diagonal spectral density matrix of errors is then obtained by setting
D̂εε (ω) = diag{ f̂ε1(ω), . . . , f̂εp(ω)}, where f̂ε j (ω) is the jth diagonal element of
f̂xx (ω) − B̂(ω)B̂(ω)∗.

Alternatively, we can estimate the parameters by approximate likelihood methods.
As in (7.167), let X(ωj ) denote the DFT of the data x1, . . . , xn at frequency ωj = j/n.
Similarly, let Xs(ωj ) and Xε (ωj ) be the DFTs of the signal and of the noise processes,
respectively. Then, under certain conditions (see Pawitan and Shumway [150]), for
� = 0,±1, . . . ,±m,

X(ωj + �/n) = Λ(ωj )Xs(ωj + �/n) + Xε (ωj + �/n) + oas(n−α), (7.173)
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Fig. 7.18. The seasonally adjusted, quarterly growth rate (as percentages) of five macroeco-
nomic series, unemployment, GNP, consumption, government investment, and private invest-
ment in the United States between 1948 and 1988, n = 160 values

where Λ(ωj) is given by (7.171) and oas(n−α) → 0 almost surely for some 0 ≤
α < 1/2 as n → ∞. In (7.173), the X(ωj + �/n) are the DFTs of the data at the L
odd frequencies {ωj + �/n; � = 0,±1, . . . ,±m} surrounding the central frequency of
interest ωj = j/n.

Under appropriate conditions {X(ωj +�/n); � = 0,±1, . . . ,±m} in (7.173) are ap-
proximately (n →∞) independent, complex Gaussian random vectors with variance–
covariance matrix fxx(ωj ). The approximate likelihood is given by

−2 ln L
(B(ωj ), Dεε (ωj )

)

= n ln
/
/ fxx(ωj )

/
/ +

m∑

�=−m
X∗(ωj + �/n) f −1

xx (ωj )X(ωj + �/n), (7.174)

with the constraint fxx(ωj ) = B(ωj)B(ωj)∗+Dεε (ωj ). As in the classical case, we can
use various numerical methods to maximize L

(B(ωj ), Dεε (ωj )
)

at every frequency,
ωj , of interest. For example, the EM algorithm discussed for the classical case,
(7.158)–(7.163), can easily be extended to this case.

Assuming fss(ω) = Iq, the estimate ofB(ωj ) is also the estimate of Λ(ωj ). Calling
this estimate Λ̂(ωj ), the time domain filter can be estimated by

Λ̂M
t = M−1

M−1∑

j=0
Λ̂(ωj ) exp(2πi jt/n), (7.175)
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Fig. 7.19. The individual estimated spectra (scaled by 1000) of each series show in Fig. 7.18
in terms of the number of cycles in 160 quarters

for some 0 < M ≤ n, which is the discrete and finite version of the inversion formula
given by

Λt =

∫ 1/2

−1/2
Λ(ω) exp(2πiωt)dω. (7.176)

Note that we have used this approximation earlier in Chap. 4, (4.124), for estimating
the time response of a frequency response function defined over a finite number of
frequencies.

Example 7.15 Government Spending, Private Investment, and Unemployment
Figure 7.18 shows the seasonally adjusted, quarterly growth rate (as percentages) of
five macroeconomic series, unemployment,GNP, consumption, government invest-
ment, and private investment in the United States between 1948 and 1988, n = 160
values. These data are analyzed in the time domain by Young and Pedregal [213],
who were investigating how government spending and private capital investment
influenced the rate of unemployment.

Spectral estimation was performed on the detrended, standardized, and tapered
growth rate values; see the R code at the end of this example for details. Figure 7.19
shows the individual estimated spectra of each series. We focus on three interesting
frequencies. First, we note the lack of spectral power near the annual cycle (ω = 1,
or one cycle every four quarters), indicating the data have been seasonally adjusted.
In addition, because of the seasonal adjustment, some spectral power appears near
the seasonal frequency; this is a distortion apparently caused by the method of
seasonally adjusting the data. Next, we note the spectral power near ω = .25,
or one cycle every 4 years, in unemployment, GNP, consumption, and, to lesser
degree, in private investment. Finally, spectral power appears near ω = .125, or
one cycle every 8 years in government investment, and perhaps to lesser degrees in
unemployment, GNP, and consumption.

Figure 7.20 shows the coherences among various series. At the frequencies
of interest, ω = .125 and .25, pairwise, GNP, Unemployment, Consumption, and
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Fig. 7.20. The squared coherencies between the various series displayed in Fig. 7.18

Private Investment (except for Unemploymentand Private Investment) are coherent.
Government Investment is either not coherent or minimally coherent with the other
series.

Figure 7.21 shows λ̂1(ω) and λ̂2(ω), the first and second eigenvalues of the esti-
mated spectral matrix f̂xx(ω). These eigenvalues suggest the first factor is identified
by the frequency of one cycle every 4 years, whereas the second factor is identified
by the frequency of one cycle every 8 years. The modulus of the corresponding
eigenvectors at the frequencies of interest, ê1(10/160) and ê2(5/160), are shown
in Table 7.6. These values confirm Unemployment,GNP, Consumption, and Private
Investment load on the first factor, and Government Investment loads on the second
factor. The remainder of the details involving the factor analysis of these data is left
as an exercise.
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Fig. 7.21. The first, λ̂1(ω), and second, λ̂2(ω), eigenvalues of the estimated spectral matrix
f̂xx(ω). The vertical dashed lines at the peaks are ω = .25 and .125, respectively

Table 7.6. Magnitudes of the eigenvectors in Example 7.15

Unemp GNP Cons G. Inv. P. Inv.
/
/
/ ê1( 10

160 )
/
/
/ 0.53 0.50 0.51 0.06 0.44

/
/
/ ê2( 5

160 )
/
/
/ 0.19 0.14 0.23 0.93 0.16

The following code was used to perform the analysis is R.
gr = diff(log(ts(econ5, start=1948, frequency=4))) # growth rate
plot(100*gr, main="Growth Rates (%)")
# scale each series to have variance 1
gr = ts(apply(gr,2,scale), freq=4) # scaling strips ts attributes
L = c(7,7) # degree of smoothing
gr.spec = mvspec(gr, spans=L, demean=FALSE, detrend=FALSE, taper=.25)
dev.new()
plot(kernel("modified.daniell", L)) # view the kernel - not shown
dev.new()
plot(gr.spec, log="no", main="Individual Spectra", lty=1:5, lwd=2)
legend("topright", colnames(econ5), lty=1:5, lwd=2)
dev.new()
plot.spec.coherency(gr.spec, ci=NA, main="Squared Coherencies")
# PCs
n.freq = length(gr.spec$freq)
lam = matrix(0,n.freq,5)
for (k in 1:n.freq) lam[k,] = eigen(gr.spec$fxx[,,k], symmetric=TRUE,

only.values=TRUE)$values
dev.new()
par(mfrow=c(2,1), mar=c(4,2,2,1), mgp=c(1.6,.6,0))
plot(gr.spec$freq, lam[,1], type="l", ylab="", xlab="Frequency", main="First

Eigenvalue")
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abline(v=.25, lty=2)
plot(gr.spec$freq, lam[,2], type="l", ylab="", xlab="Frequency",

main="Second Eigenvalue")
abline(v=.125, lty=2)
e.vec1 = eigen(gr.spec$fxx[,,10], symmetric=TRUE)$vectors[,1]
e.vec2 = eigen(gr.spec$fxx[,,5], symmetric=TRUE)$vectors[,2]
round(Mod(e.vec1), 2); round(Mod(e.vec2), 3)

7.9 The Spectral Envelope

The concept of spectral envelope for the spectral analysis and scaling of categorical
time series was first introduced in Stoffer et al. [193]. Since then, the idea has been
extended in various directions (not only restricted to categorical time series), and we
will explore these problems as well. First, we give a brief introduction to the concept
of scaling time series.

The spectral envelope was motivated by collaborations with researchers who
collected categorical-valued time series with an interest in the cyclic behavior of
the data. For example Table 7.7 shows the per minute sleep-state of an infant taken
from a study on the effects of prenatal exposure to alcohol. Details can be found
in Stoffer et al. [191], but briefly, an electroencephalographic (eeg) sleep recording
of approximately 2 h is obtained on a full term infant 24–36h after birth, and the
recording is scored by a pediatric neurologist for sleep state. There are two main
types of sleep, Non-Rapid Eye Movement (non-rem), also known as quiet sleep and
Rapid Eye Movement (rem), also known as active sleep. In addition, there are four
stages of non-rem (NR1-NR4), with NR1 being the “most active” of the four states, and
finally awake (AW), which naturally occurs briefly through the night. This particular
infant was never awake during the study.

It is not too difficult to notice a pattern in the data if one concentrates on rem
versus non-rem sleep states. But, it would be difficult to try to assess patterns in a
longer sequence, or if there were more categories, without some graphical aid. One
simple method would be to scale the data, that is, assign numerical values to the

Table 7.7. Per minute infant eeg sleep states
(read down and across)

REM NR2 NR4 NR2 NR1 NR2 NR3 NR4 NR1 NR1 REM
REM REM NR4 NR1 NR1 NR2 NR4 NR4 NR1 NR1 REM
REM REM NR4 NR1 NR1 REM NR4 NR4 NR1 NR1 REM
REM NR3 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM
REM NR4 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM
REM NR4 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM
REM NR4 NR4 NR2 REM NR2 NR4 NR4 NR1 NR1 NR2
REM NR4 NR4 REM REM NR2 NR4 NR4 NR1 REM
NR2 NR4 NR4 NR1 REM NR2 NR4 NR4 NR1 REM
REM NR2 NR4 NR1 REM NR3 NR4 NR2 NR1 REM
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Fig. 7.22. [Top] Time plot of the EEG sleep state data in Table 7.7 using the scaling in (7.177).
[Bottom] Periodogram of the EEG sleep state data in Fig. 7.22 based on the scaling in (7.177).
The peak corresponds to a frequency of approximately one cycle every 60 min

categories and then draw a time plot of the scales. Because the states have an order,
one obvious scaling is

NR4 = 1, NR3 = 2, NR2 = 3, NR1 = 4, REM = 5, AW = 6, (7.177)

and Fig. 7.22 shows the time plot using this scaling. Another interesting scaling might
be to combine the quiet states and the active states:

NR4 = NR3 = NR2 = NR1 = 0, REM = 1, AW = 2. (7.178)

The time plot using (7.178) would be similar to Fig. 7.22 as far as the cyclic (in
and out of quiet sleep) behavior of this infant’s sleep pattern. Figure 7.22 shows the
periodogram of the sleep data using the scaling in (7.177). A large peak exists at the
frequency corresponding to one cycle every 60 min. As we might imagine, the general
appearance of the periodogram using the scaling (7.178) (not shown) is similar to
Fig. 7.22. Most of us would feel comfortable with this analysis even though we made
an arbitrary and ad hoc choice about the particular scaling. It is evident from the data
(without any scaling) that if the interest is in infant sleep cycling, this particular sleep
study indicates an infant cycles between active and quiet sleep at a rate of about one
cycle per hour.

The intuition used in the previous example is lost when we consider a long
DNA sequence. Briefly, a DNA strand can be viewed as a long string of linked
nucleotides. Each nucleotide is composed of a nitrogenous base, a five carbon sugar,
and a phosphate group. There are four different bases, and they can be grouped by
size; the pyrimidines, thymine (T) and cytosine (C), and the purines, adenine (A) and
guanine (G). The nucleotides are linked together by a backbone of alternating sugar
and phosphate groups with the 5′ carbon of one sugar linked to the 3′ carbon of the
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Table 7.8. Part of the Epstein–Barr virus DNA sequence
(read across and down)

AGAATTCGTC TTGCTCTATT CACCCTTACT TTTCTTCTTG CCCGTTCTCT TTCTTAGTAT
GAATCCAGTA TGCCTGCCTG TAATTGTTGC GCCCTACCTC TTTTGGCTGG CGGCTATTGC
CGCCTCGTGT TTCACGGCCT CAGTTAGTAC CGTTGTGACC GCCACCGGCT TGGCCCTCTC
ACTTCTACTC TTGGCAGCAG TGGCCAGCTC ATATGCCGCT GCACAAAGGA AACTGCTGAC
ACCGGTGACA GTGCTTACTG CGGTTGTCAC TTGTGAGTAC ACACGCACCA TTTACAATGC
ATGATGTTCG TGAGATTGAT CTGTCTCTAA CAGTTCACTT CCTCTGCTTT TCTCCTCAGT
CTTTGCAATT TGCCTAACAT GGAGGATTGA GGACCCACCT TTTAATTCTC TTCTGTTTGC
ATTGCTGGCC GCAGCTGGCG GACTACAAGG CATTTACGGT TAGTGTGCCT CTGTTATGAA
ATGCAGGTTT GACTTCATAT GTATGCCTTG GCATGACGTC AACTTTACTT TTATTTCAGT
TCTGGTGATG CTTGTGCTCC TGATACTAGC GTACAGAAGG AGATGGCGCC GTTTGACTGT
TTGTGGCGGC ATCATGTTTT TGGCATGTGT ACTTGTCCTC ATCGTCGACG CTGTTTTGCA
GCTGAGTCCC CTCCTTGGAG CTGTAACTGT GGTTTCCATG ACGCTGCTGC TACTGGCTTT
CGTCCTCTGG CTCTCTTCGC CAGGGGGCCT AGGTACTCTT GGTGCAGCCC TTTTAACATT
GGCAGCAGGT AAGCCACACG TGTGACATTG CTTGCCTTTT TGCCACATGT TTTCTGGACA
CAGGACTAAC CATGCCATCT CTGATTATAG CTCTGGCACT GCTAGCGTCA CTGATTTTGG
GCACACTTAA CTTGACTACA ATGTTCCTTC TCATGCTCCT ATGGACACTT GGTAAGTTTT
CCCTTCCTTT AACTCATTAC TTGTTCTTTT GTAATCGCAG CTCTAACTTG GCATCTCTTT
TACAGTGGTT CTCCTGATTT GCTCTTCGTG CTCTTCATGT CCACTGAGCA AGATCCTTCT

next, giving the string direction. DNA molecules occur naturally as a double helix
composed of polynucleotide strands with the bases facing inwards. The two strands
are complementary, so it is sufficient to represent a DNA molecule by a sequence of
bases on a single strand. Thus, a strand of DNA can be represented as a sequence of
letters, termed base pairs (bp), from the finite alphabet {A, C, G, T}. The order of the
nucleotides contains the genetic information specific to the organism. Expression of
information stored in these molecules is a complex multistage process. One important
task is to translate the information stored in the protein-coding sequences (CDS) of
the DNA. A common problem in analyzing long DNA sequence data is in identifying
CDS dispersed throughout the sequence and separated by regions of noncoding
(which makes up most of the DNA). Table 7.8 shows part of the Epstein–Barr virus
(EBV) DNA sequence. The entire EBV DNA sequence consists of approximately
172,000 bp.

We could try scaling according to the purine–pyrimidine alphabet, that is A =

G = 0 and C = T = 1, but this is not necessarily of interest for every CDS of EBV.
Numerous possible alphabets of interest exist. For example, we might focus on the
strong–weak hydrogen-bonding alphabet C = G = 0 and A = T = 1. Although model
calculations as well as experimental data strongly agree that some kind of periodic
signal exists in certain DNA sequences, a large disagreement about the exact type of
periodicity exists. In addition, a disagreement exists about which nucleotide alphabets
are involved in the signals.

If we consider the naive approach of arbitrarily assigning numerical values (scales)
to the categories and then proceeding with a spectral analysis, the result will depend
on the particular assignment of numerical values. For example, consider the artificial
sequence ACGTACGTACGT. . . . Then, setting A = G = 0 and C = T = 1 yields the
numerical sequence 010101010101. . . , or one cycle every two base pairs. Another
interesting scaling is A = 1, C = 2, G = 3, and T = 4, which results in the sequence



458 7 Statistical Methods in the Frequency Domain

123412341234. . . , or one cycle every four bp. In this example, both scalings (that
is, {A, C, G, T} = {0, 1, 0, 1} and {A, C, G, T} = {1, 2, 3, 4}) of the nucleotides
are interesting and bring out different properties of the sequence. Hence, we do not
want to focus on only one scaling. Instead, the focus should be on finding all possible
scalings that bring out all of the interesting features in the data. Rather than choose
values arbitrarily, the spectral envelope approach selects scales that help emphasize
any periodic feature that exists in a categorical time series of virtually any length in
a quick and automated fashion. In addition, the technique can help in determining
whether a sequence is merely a random assignment of categories.

The Spectral Envelope for Categorical Time Series
As a general description, the spectral envelope is a frequency-based principal com-
ponents technique applied to a multivariate time series. First, we will focus on the
basic concept and its use in the analysis of categorical time series. Technical details
can be found in Stoffer et al. [193].

Briefly, in establishing the spectral envelope for categorical time series, the basic
question of how to efficiently discover periodic components in categorical time series
was addressed. This, was accomplished via nonparametric spectral analysis as follows.
Let xt , t = 0, ±1, ±2, . . . , be a categorical-valued time series with finite state-space
C = {c1, c2, . . ., ck}. Assume xt is stationary and pj = Pr{xt = cj } > 0 for j = 1, 2,
. . . , k. For β = (β1, β2, . . . , βk )′ ∈ R

k , denote by xt (β) the real-valued stationary
time series corresponding to the scaling that assigns the category cj the numerical
value βj , j = 1, 2, . . . , k. The spectral density of xt (β) will be denoted by fxx (ω; β).
The goal is to find scalings β, so the spectral density is in some sense interesting, and
to summarize the spectral information by what is called the spectral envelope.

In particular, β is chosen to maximize the power at each frequency, ω, of interest,
relative to the total power σ2(β) = var{xt (β)}. That is, we chose β(ω), at each ω of
interest, so

λ(ω) = max
β

{
fxx(ω; β)
σ2(β)

}

, (7.179)

over all β not proportional to 1k , the k × 1 vector of ones. Note, λ(ω) is not defined
if β = a1k for a ∈ R because such a scaling corresponds to assigning each category
the same value a; in this case, fxx(ω ; β) ≡ 0 and σ2 (β) = 0. The optimality criterion
λ(ω) possesses the desirable property of being invariant under location and scale
changes of β.

As in most scaling problems for categorical data, it is useful to represent the
categories in terms of the unit vectors u1, u2, . . ., uk , where uj represents the k × 1
vector with a one in the jth row, and zeros elsewhere. We then define a k-dimensional
stationary time series yt by yt = uj when xt = cj . The time series xt (β) can
be obtained from the yt time series by the relationship xt (β) = β′yt . Assume the
vector process yt has a continuous spectral density denoted by fyy(ω). For each ω,
fyy(ω) is, of course, a k × k complex-valued Hermitian matrix. The relationship
xt (β) = β′yt implies fxx (ω; β) = β′ fyy(ω)β = β′ f reyy (ω)β, where f reyy (ω) denotes
the real part2 of fyy(ω). The imaginary part disappears from the expression because

2 In this section, it is more convenient to write complex values in the form z = zr e + iz im, which
represents a change from the notation used previously.
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it is skew-symmetric, that is, f imyy (ω)′ = − f imyy (ω). The optimality criterion can thus
be expressed as

λ(ω) = max
β

{
β′ f reyy (ω)β

β′Vβ

}

, (7.180)

where V is the variance–covariance matrix of yt . The resulting scaling β(ω) is called
the optimal scaling.

The yt process is a multivariate point process, and any particular component of
yt is the individual point process for the corresponding state (for example, the first
component of yt indicates whether the process is in state c1 at time t). For any fixed
t, yt represents a single observation from a simple multinomial sampling scheme. It
readily follows that V = D−p p′, where p = (p1, . . ., pk)′, and D is the k× k diagonal
matrix D = diag{p1, . . ., pk}. Because, by assumption, pj > 0 for j = 1, 2, . . . , k, it
follows that rank(V) = k − 1 with the null space of V being spanned by 1k . For any
k × (k − 1) full rank matrix Q whose columns are linearly independent of 1k , Q′VQ
is a (k − 1) × (k − 1) positive-definite symmetric matrix.

With the matrix Q as previously defined, define λ(ω) to be the largest eigenvalue
of the determinantal equation

|Q′ f reyy (ω)Q − λ(ω)Q′VQ | = 0,

and let b(ω) ∈ R
k−1 be any corresponding eigenvector, that is,

Q′ f reyy (ω)Qb(ω) = λ(ω)Q′VQb(ω).

The eigenvalue λ(ω) ≥ 0 does not depend on the choice of Q. Although the eigen-
vector b(ω) depends on the particular choice of Q, the equivalence class of scalings
associated with β(ω) = Qb(ω) does not depend on Q. A convenient choice of Q is
Q = [Ik−1 | 0 ]′, where Ik−1 is the (k − 1) × (k − 1) identity matrix and 0 is the
(k − 1) × 1 vector of zeros . For this choice, Q′ f reyy (ω)Q and Q′VQ are the upper
(k − 1) × (k − 1) blocks of f reyy (ω) and V , respectively. This choice corresponds to
setting the last component of β(ω) to zero.

The value λ(ω) itself has a useful interpretation; specifically, λ(ω)dω represents
the largest proportion of the total power that can be attributed to the frequencies
(ω, ω+dω) for any particular scaled process xt (β), with the maximum being achieved
by the scaling β(ω). Because of its central role, λ(ω) is defined to be the spectral
envelope of a stationary categorical time series.

The name spectral envelope is appropriate since λ(ω) envelopes the standardized
spectrum of any scaled process. That is, given any β normalized so that xt (β) has
total power one, fxx (ω ; β) ≤ λ(ω) with equality if and only if β is proportional to
β(ω).

Given observations xt , for t = 1, . . . , n, on a categorical time series, we form the
multinomial point process yt , for t = 1, . . . , n. Then, the theory for estimating the
spectral density of a multivariate, real-valued time series can be applied to estimating
fyy(ω), the k × k spectral density of yt . Given an estimate f̂yy(ω) of fyy(ω), estimates
λ̂(ω) and β̂(ω) of the spectral envelope, λ(ω), and the corresponding scalings, β(ω),
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can then be obtained. Details on estimation and inference for the sample spectral
envelope and the optimal scalings can be found in Stoffer et al. [193], but the main
result of that paper is as follows: If f̂yy(ω) is a consistent spectral estimator and if for
each j = 1, . . ., J, the largest root of f reyy (ωj ) is distinct, then

{
ηn[λ̂(ωj ) − λ(ωj )]/λ(ωj), ηn[β̂(ωj ) − β(ωj )]; j = 1, . . . , J

}
(7.181)

converges (n → ∞) jointly in distribution to independent zero-mean, normal, dis-
tributions, the first of which is standard normal; the asymptotic covariance structure
of β̂(ωj ) is discussed in Stoffer et al. [193]. Result (7.181) is similar to (7.148), but
in this case, β(ω) and β̂(ω) are real. The term ηn is the same as in (7.181), and its
value depends on the type of estimator being used. Based on these results, asymptotic
normal confidence intervals and tests for λ(ω) can be readily constructed. Similarly,
for β(ω), asymptotic confidence ellipsoids and chi-square tests can be constructed;
details can be found in Stoffer et al. [193], Theorems 3.1–3.3).

Peak searching for the smoothed spectral envelope estimate can be aided using
the following approximations. Using a first-order Taylor expansion, we have

log λ̂(ω) ≈ log λ(ω) + λ̂(ω) − λ(ω)
λ(ω) , (7.182)

so ηn[log λ̂(ω)−log λ(ω)] is approximately standard normal. It follows that E[log λ̂(ω)] ≈
log λ(ω) and var[log λ̂(ω)] ≈ η−2

n . If no signal is present in a sequence of length n,
we expect λ( j/n) ≈ 2/n for 1 < j < n/2, and hence approximately (1−α) × 100% of
the time, log λ̂(ω) will be less than log(2/n)+ (zα/ηn), where zα is the (1− α) upper
tail cutoff of the standard normal distribution. Exponentiating, the α critical value for
λ̂(ω) becomes (2/n) exp(zα/ηn). Useful values of zα are z.001 = 3.09, z.0001 = 3.71,
and z.00001 = 4.26, and from our experience, thresholding at these levels works well.

Example 7.16 Spectral Analysis of DNA Sequences
To help understand the methodology, we give explicit instructions for the cal-

culations involved in estimating the spectral envelope of a DNA sequence, xt , for
t = 1, . . . , n, using the nucleotide alphabet.

(i) In this example, we hold the scale for T fixed at zero. In this case, we form the
3 × 1 data vectors yt :

yt = (1, 0, 0)′ if xt = A; yt = (0, 1, 0)′ if xt = C;
yt = (0, 0, 1)′ if xt = G; yt = (0, 0, 0)′ if xt = T.

The scaling vector is β = (β1, β2, β3)′, and the scaled process is xt (β) = β′yt .
(ii) Calculate the DFT of the data

Y( j/n) = n−1/2
n∑

t=1
yt exp(−2πit j/n).

Note Y ( j/n) is a 3 × 1 complex-valued vector. Calculate the periodogram,
I( j/n) = Y( j/n)Y∗( j/n), for j = 1, . . . , [n/2], and retain only the real part,
say, Ire( j/n).
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Fig. 7.23. Smoothed sample spectral envelope of the BNRF1 gene from the Epstein–Barr virus

(iii) Smooth the Ire( j/n) to obtain an estimate of f reyy ( j/n). Let {hk; k =

0,±1, . . . ,±m} be weights as described in (4.64). Calculate

f̂ reyy ( j/n) =
m∑

k=−m
hk Ire( j/n + k/n).

(iv) Calculate the 3 × 3 sample variance–covariance matrix,

Syy = n−1
n∑

t=1
(yt − ȳ)(yt − ȳ)′,

where ȳ = n−1 ∑n
t=1 yt is the sample mean of the data.

(v) For each ωj = j/n, j = 0, 1, . . . , [n/2], determine the largest eigenvalue and the
corresponding eigenvector of the matrix 2n−1S−1/2

yy f̂ reyy (ωj )S−1/2
yy . Note, S1/2

yy is
the unique square root matrix of Syy.

(vi) The sample spectral envelope λ̂(ωj ) is the eigenvalue obtained in the previous
step. If b(ωj ) denotes the eigenvector obtained in the previous step, the optimal
sample scaling is β̂(ωj ) = S−1/2

yy b(ωj ); this will result in three values, the value
corresponding to the fourth category, T, being held fixed at zero.

Example 7.17 Analysis of an Epstein–Barr Virus Gene
In this example, we focus on a dynamic (or sliding-window) analysis of the gene
labeled BNRF1 (bp 1736–5689) of Epstein–Barr. Figure 7.23 shows the spectral
envelope estimate of the entire coding sequence (3954 bp long). The figure also
shows a strong signal at frequency 1/3; the corresponding optimal scaling was
A = .10, C = .61, G = .78, T = 0, which indicates the signal is in the strong–weak
bonding alphabet, S = {C, G} and W = {A, T}.

Figure 7.24 shows the result of computing the spectral envelope over three
nonoverlapping 1000-bp windows and one window of 954 bp, across the CDS,
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Fig. 7.24. Smoothed sample spectral envelope of the BNRF1 gene from the Epstein–Barr virus:
(a) first 1000 bp, (b) second 1000 bp, (c) third 1000 bp, and (d) last 954 bp

namely, the first, second, third, and fourth quarters of BNRF1. An approximate
0.0001 significance threshold is .69%. The first three quarters contain the signal
at the frequency 1/3 (Fig. 7.24a–c); the corresponding sample optimal scalings for
the first three windows were (a) A = .01, C = .71, G = .71, T = 0; (b) A = .08, C =

0.71, G = .70, T = 0; (c) A = .20, C = .58, G = .79, T = 0. The first two windows are
consistent with the overall analysis. The third section, however, shows some minor
departure from the strong-weak bonding alphabet. The most interesting outcome is
that the fourth window shows that no signal is present. This leads to the conjecture
that the fourth quarter of BNRF1 of Epstein–Barr is actually noncoding.

The R code for the first part of the example is as follows.
u = factor(bnrf1ebv) # first, input the data as factors and then
x = model.matrix(~u-1)[,1:3] # make an indicator matrix
# x = x[1:1000,] # select subsequence if desired
Var = var(x) # var-cov matrix
xspec = mvspec(x, spans=c(7,7), plot=FALSE)
fxxr = Re(xspec$fxx) # fxxr is real(fxx)
# compute Q = Var^-1/2
ev = eigen(Var)
Q = ev$vectors%*%diag(1/sqrt(ev$values))%*%t(ev$vectors)
# compute spec envelope and scale vectors
num = xspec$n.used # sample size used for FFT
nfreq = length(xspec$freq) # number of freqs used
specenv = matrix(0,nfreq,1) # initialize the spec envelope
beta = matrix(0,nfreq,3) # initialize the scale vectors
for (k in 1:nfreq){
ev = eigen(2*Q%*%fxxr[,,k]%*%Q/num, symmetric=TRUE)
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specenv[k] = ev$values[1] # spec env at freq k/n is max evalue
b = Q%*%ev$vectors[,1] # beta at freq k/n
beta[k,] = b/sqrt(sum(b^2)) } # helps to normalize beta

# output and graphics
frequency = xspec$freq
plot(frequency, 100*specenv, type="l", ylab="Spectral Envelope (%)")
# add significance threshold to plot
m = xspec$kernel$m
etainv = sqrt(sum(xspec$kernel[-m:m]^2))
thresh=100*(2/num)*exp(qnorm(.9999)*etainv)
abline(h=thresh, lty=6, col=4)
# details
output = cbind(frequency, specenv, beta)
colnames(output) = c("freq","specenv", "A", "C", "G")
round(output,3)

The Spectral Envelope for Real-Valued Time Series

The concept of the spectral envelope for categorical time series was extended to
real-valued time series, {xt ; t = 0,±1,±2, . . . , }, in McDougall et al. [136]. The
process xt can be vector-valued, but here we will concentrate on the univariate case.
Further details can be found in McDougall et al. [136]. The concept is similar to
projection pursuit (Friedman and Stuetzle [63]). Let G denote a k-dimensional vector
space of continuous real-valued transformations with {g1, . . . , gk} being a set of basis
functions satisfying E[gi(xt )2] < ∞, i = 1, . . . , k. Analogous to the categorical time
series case, define the scaled time series with respect to the set G to be the real-valued
process

xt (β) = β′yt = β1g1(xt ) + · · · + βkgk(xt )
obtained from the vector process

yt =
(
g1(Xt ), . . . , gk(Xt )

) ′
,

where β = (β1, . . . , βk )′ ∈ R
k . If the vector process, yt , is assumed to have a

continuous spectral density, say, fyy(ω), then xt (β) will have a continuous spectral
density fxx (ω; β) for all β � 0. Noting, fxx(ω; β) = β′ fyy(ω)β = β′ f reyy (ω)β, and
σ2(β) = var[xt (β)] = β′Vβ, where V = var(yt ) is assumed to be positive definite,
the optimality criterion

λ(ω) = sup
β�0

{
β′ f reyy (ω)β

β′Vβ

}

, (7.183)

is well defined and represents the largest proportion of the total power that can be
attributed to the frequency ω for any particular scaled process xt (β). This interpreta-
tion of λ(ω) is consistent with the notion of the spectral envelope introduced in the
previous section and provides the following working definition: The spectral envelope
of a time series with respect to the space G is defined to be λ(ω).

The solution to this problem, as in the categorical case, is attained by finding the
largest scalar λ(ω) such that
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Fig. 7.25. Spectral envelope with respect to G = {x, |x |, x2} for the NYSE returns

f reyy (ω)β(ω) = λ(ω)Vβ(ω) (7.184)

for β(ω) � 0. That is, λ(ω) is the largest eigenvalue of f reyy (ω) in the metric of V , and
the optimal scaling, β(ω), is the corresponding eigenvector.

If xt is a categorical time series taking values in the finite state-space S =

{c1, c2, . . . , ck}, where cj represents a particular category, an appropriate choice for
G is the set of indicator functions gj (xt ) = I(xt = cj ). Hence, this is a natural
generalization of the categorical case. In the categorical case, G does not consist
of linearly independent g’s, but it was easy to overcome this problem by reducing
the dimension by one. In the vector-valued case, xt = (x1t, . . . , xpt )′, we consider
G to be the class of transformations from R

p into R such that the spectral density
of g(xt ) exists. One class of transformations of interest are linear combinations of
xt . In Tiao et al. [201], for example, linear transformations of this type are used
in a time domain approach to investigate contemporaneous relationships among
the components of multivariate time series. Estimation and inference for the real-
valued case are analogous to the methods described in the previous section for the
categorical case. We consider an example here; numerous other examples can be
found in McDougall et al. [136].

Example 7.18 Optimal Transformations for Financial Data: NYSE Returns
In many financial applications, one typically addresses the analysis of the squared
returns, such as was done in Sects. 5.3 and 6.11. However, there may be other
transformations that supply more information than simply squaring the data. For
example, Ding et al. [52] who applied transformations of the form |xt |d , for d ∈
(0, 3], to the S&P 500 stock market series. They found that power transformation of
the absolute return has quite high autocorrelation for long lags, and this property
is strongest when d is around 1. They concluded that the “result appears to argue
against ARCH type specifications based upon squared returns.”

In this example, we examine the NYSE returns (nyse). We used with the gen-
erating set G = {x, |x |, x2}—which seems natural for this analysis—to estimate
the spectral envelope for the data, and the result is plotted in Fig. 7.25. Although
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Fig. 7.26. Estimated optimal transformation, (7.185), for the NYSE returns at ω = .001. The
dashed line indicates the pure absolute value transformation

the data are white noise, they are clearly not iid, and considerable power is present
at the low frequencies. The presence of spectral power at very low frequencies in
detrended economic series has been frequently reported and is typically associ-
ated with long-range dependence. The estimated optimal transformation near the
zero frequency, ω = .001, was β̂(.001) = (−1, 921,−2596)′, which leads to the
transformation

g(x) = −x + 921|x | − 2596x2. (7.185)

This transformation is plotted in Fig. 7.26. The transformation given in (7.185) is
basically the absolute value (with some slight curvature and asymmetry) for most
of the values, but the effect of extremes is dampened.

The following R code was used in this example.
u = astsa::nyse # accept no substitutes
x = cbind(u, abs(u), u^2)
Var = var(x) # var-cov matrix
xspec = mvspec(x, spans=c(5,3), taper=.5, plot=FALSE)
fxxr = Re(xspec$fxx) # fxxr is real(fxx)
# compute Q = Var^-1/2
ev = eigen(Var)
Q = ev$vectors%*%diag(1/sqrt(ev$values))%*%t(ev$vectors)
# compute spec env and scale vectors
num = xspec$n.used # sample size used for FFT
nfreq = length(xspec$freq) # number of freqs used
specenv = matrix(0,nfreq,1) # initialize the spec envelope
beta = matrix(0,nfreq,3) # initialize the scale vectors
for (k in 1:nfreq){
ev = eigen(2*Q%*%fxxr[,,k]%*%Q/num) # get evalues of normalized spectral

matrix at freq k/n
specenv[k] = ev$values[1] # spec env at freq k/n is max evalue
b = Q%*%ev$vectors[,1] # beta at freq k/n
beta[k,] = b/b[1] # first coef is always 1

# output and graphics
par(mar=c(2.5,2.75,.5,.5), mgp=c(1.5,.6,0))
frequency = xspec$freq
plot(frequency, 100*specenv, type="l", ylab="Spectral Envelope (%)")
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m = xspec$kernel$m
etainv = sqrt(sum(xspec$kernel[-m:m]^2))

thresh = 100*(2/num)*exp(qnorm(.9999)*etainv)*matrix(1,nfreq,1)
lines(frequency, thresh, lty=2, col=4)
# details
b = sign(b[2])*output[2,3:5] # sign of |x| positive for beauty
output = cbind(frequency, specenv, beta)
colnames(output)=c("freq","specenv","x", "|x|", "x^2"); round(output, 4)
dev.new(); par(mar=c(2.5,2.5,.5,.5), mgp=c(1.5,.6,0))
# plot transform
g = function(x) { b[1]*x+b[2]*abs(x)+b[3]*x^2 }
curve(g, -.2, .2, panel.first=grid(lty=2))
g2 = function(x) { b[2]*abs(x) } # corresponding |x|
curve(g2, -.2,.2, add=TRUE, lty=6, col=4)

Problems

Section 7.2

7.1 Consider the complex Gaussian distribution for the randomvariable X = Xc−iXs ,
as defined in (7.1)–(7.3), where the argumentωk has been suppressed. Now, the 2p×1
real random variable Z = (X ′

c, X ′
s)′ has a multivariate normal distribution with density

p(Z) = (2π)−p |Σ |−1/2 exp
{

−1
2
(Z − μ)′Σ−1(Z − μ)

}

,

where μ = (M ′
c, M ′

s)′ is the mean vector. Prove

|Σ | =
(
1
2

)2p
|C − iQ |2,

using the result that the eigenvectors and eigenvalues of Σ occur in pairs, i.e., (v′c, v′s)′
and (v′s,−v′c)′, where vc − ivs denotes the eigenvector of fxx . Show that

1
2
(Z − μ)′Σ−1(Z − μ)) = (X − M)∗ f −1(X − M)

so p(X) = p(Z) and we can identify the density of the complex multivariate normal
variable X with that of the real multivariate normal Z .

7.2 Prove f̂ in (7.6) maximizes the log likelihood (7.5) by minimizing the negative of
the log likelihood

L ln | f | + L tr{f̂f−1}
in the form

L
∑

i

(
λi − ln λi − 1

)
+ Lp + L ln | f̂ |,

where the λi values correspond to the eigenvalues in a simultaneous diagonalization
of the matrices f and f̂ ; i.e., there exists a matrix P such that P∗ f P = I and
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P∗ f̂ P = diag (λ1, . . . , λp) = Λ. Note, λi − ln λi − 1 ≥ 0 with equality if and only if
λi = 1, implying Λ = I maximizes the log likelihood and f = f̂ is the maximizing
value.

Section 7.3

7.3 Verify (7.18) and (7.19) for the mean-squared prediction error MSE in (7.11). Use
the orthogonality principle, which implies

MSE = E

[

(yt −
∞∑

r=−∞
β′r xt−r )yt

]

and gives a set of equations involving the autocovariance functions. Then, use the
spectral representations and Fourier transform results to get the final result. Next,
consider the predicted series

ŷt =

∞∑

r=−∞
β′r xt−r,

where βr satisfies (7.13). Show the ordinary coherence between yt and ŷt is exactly
the multiple coherence (7.20).

7.4 Consider the complex regression model (7.28) in the form

Y = XB + V,

where Y = (Y1,Y2, . . .YL)′ denotes the observed DFTs after they have been re-indexed
and X = (X1, X2, . . . , XL)′ is a matrix containing the reindexed input vectors. The
model is a complex regression model with Y = Yc − iYs, X = Xc − iXs, B = Bc − iBs,
and V = Vc − iVs denoting the representation in terms of the usual cosine and sine
transforms. Show the partitioned real regression model involving the 2L × 1 vector
of cosine and sine transforms, say,

(
Yc
Ys

)

=

(
Xc −Xs

Xs Xc

) (
Bc

Bs

)

+

(
Vc

Vs

)

,

is isomorphic to the complex regression model in the sense that the real and imaginary
parts of the complex model appear as components of the vectors in the real regression
model. Use the usual regression theory to verify (7.27) holds. For example, writing
the real regression model as

y = xb + v,

the isomorphism would imply

L( f̂yy − f̂ ∗xy f̂ −1
xx f̂xy) = Y ∗Y − Y ∗X(X∗X)−1X∗Y

= y′y − y′x(x′x)−1x′y.
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Section 7.4

7.5 Consider estimating the function

ψt =

∞∑

r=−∞
a′r βt−r

by a linear filter estimator of the form

ψ̂t =

∞∑

r=−∞
a′r β̂t−r,

where β̂t is defined by (7.42). Show a sufficient condition for ψ̂t to be an unbiased
estimator; i.e., E ψ̂t = ψt, is

H(ω)Z(ω) = I

for all ω. Similarly, show any other unbiased estimator satisfying the above condition
has minimum variance (see Shumway and Dean [178]), so the estimator given is a
best linear unbiased (BLUE) estimator.

7.6 Consider a linear model with mean value function μt and a signal αt delayed by
an amount τj on each sensor, i.e.,

yjt = μt + αt−τj + vjt .

Show the estimators (7.42) for the mean and the signal are the Fourier transforms of

M̂(ω) = Y·(ω) − φ(ω)Bw(ω)
1 − |φ(ω)|2

and
Â(ω) = Bw(ω) − φ(ω)Y·(ω)

1 − |φ(ω)|2 ,

where

φ(ω) = 1
N

N∑

j=1
e2πiωτj

and Bw(ω) is defined in (7.64).

Section 7.5

7.7 Consider the estimator (7.67) as applied in the context of the random coefficient
model (7.65). Prove the filter coefficients for the minimum mean square estimator can
be determined from (7.68) and the mean square covariance is given by (7.71).
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7.8 For the random coefficient model, verify the expected mean square of the regres-
sion power component is

E[SSR(ωk)] = E[Y∗(ωk)Z(ωk)S−1
z (ωk)Z∗(ωk)Y (ωk)]

= L fβ(ωk)tr{Sz(ωk)} + Lq fv(ωk).

Recall, the underlying frequency domain model is

Y (ωk) = Z(ωk)B(ωk) + V(ωk),
where B(ωk) has spectrum fβ(ωk)Iq and V(ωk) has spectrum fv(ωk)IN and the two
processes are uncorrelated.

Section 7.6

7.9 Suppose we have I = 2 groups and the models

y1jt = μt + α1t + v1jt

for the j = 1, . . . , N observations in group 1 and

y2jt = μt + α2t + v2jt

for the j = 1, . . . , N observations in group 2, with α1t + α2t = 0. Suppose we want to
test equality of the two group means; i.e.,

yijt = μt + vijt, i = 1, 2.

(a) Derive the residual and error power components corresponding to (7.81) and
(7.82) for this particular case.

(b) Verify the forms of the linear compounds involving the mean given in (7.88) and
(7.89), using (7.86) and (7.87).

(c) Show the ratio of the two smoothed spectra in (7.101) has the indicated F-
distribution when f1(ω) = f2(ω). When the spectra are not equal, show the
variable is proportional to an F-distribution, where the proportionality constant
depends on the ratio of the spectra.

Section 7.7

7.10 The problem of detecting a signal in noise can be considered using the model

xt = st + wt, t = 1, . . . , n,

for p1(x) when a signal is present and the model

xt = wt, t = 1, . . . , n,
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for p2(x)when no signal is present. Under multivariate normality, we might specialize
even further by assuming the vector w = (w1, . . . ,wn)′ has a multivariate normal
distribution with mean 0 and covariance matrix Σ = σ2

w In, corresponding to white
noise. Assuming the signal vector s = (s1, . . . , sn)′ is fixed and known, show the
discriminant function (7.110) becomes the matched filter

1
σ2
w

n∑

t=1
st xt − 1

2

(
S
N

)

+ ln
π1

π2
,

where (
S
N

)

=

∑n
t=1 s2

t

σ2
w

denotes the signal-to-noise ratio. Give the decision criterion if the prior probabilities
are assumed to be the same. Express the false alarm and missed signal probabilities
in terms of the normal cdf and the signal-to-noise ratio.

7.11 Assume the same additive signal plus noise representations as in the previous
problem, except, the signal is now a random process with a zero mean and covariance
matrix σ2

s I . Derive the comparable version of (7.113) as a quadratic detector, and
characterize its performance under both hypotheses in terms of constant multiples of
the chi-squared distribution.

Section 7.8

7.12 Perform principal component analyses on the stimulus conditions (1) awake-
heat and (2) awake-shock, and compare your results to the results of Example 7.13.
Use the data in fmri and average across subjects.

7.13 For this problem, consider the first three earthquake series (EQ1, EQ2, EQ3)
listed in eqexp.

(a) Estimate and compare the spectral density of the P component and then of the S
component for each individual earthquake.

(b) Estimate and compare the squared coherency between the P and S components
of each individual earthquake. Comment on the strength of the coherence.

(c) Let xti be the P component of earthquake i = 1, 2, 3, and let xt = (xt1, xt2, xt3)′
be the 3 × 1 vector of P components. Estimate the spectral density, λ1(ω), of the
first principal component series of xt . Compare this to the corresponding spectra
calculated in (a).

(d) Analogous to part (c), let yt denote the 3× 1 vector series of S components of the
first three earthquakes. Repeat the analysis of part (c) on yt .

7.14 In the factor analysis model (7.152), let p = 3, q = 1, and

Σxx =

⎡
⎢
⎢
⎢
⎢
⎣

1 .4 .9
.4 1 .7
.9 .7 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Show there is a unique choice for B and D, but δ2
3 < 0, so the choice is not valid.
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7.15 Extend the EM algorithm for classical factor analysis, (7.158)–(7.163), to the
time series case of maximizing ln L

(B(ωj), Dεε (ωj )
)

in (7.174). Then, for the data
used in Example 7.15, find the approximate maximum likelihood estimates of B(ωj)
and Dεε (ωj ), and, consequently, Λt .

Section 7.9

7.16 Verify, as stated in (7.179), the imaginary part of a k× k spectral matrix, f im(ω),
is skew symmetric, and then show β′ f imyy (ω)β = 0 for a real k × 1 vector, β.

7.17 Repeat the analysis of Example 7.17 on BNRF1 of herpesvirus saimiri (the data
file is bnrf1hvs), and compare the results with the results obtained for Epstein–Barr.

7.18 For the S&P500 weekly returns, say, rt , analyzed in Example 6.17

(a) Estimate the spectrum of the rt . Does the spectral estimate appear to support the
hypothesis that the returns are white?

(b) Examine the possibility of spectral power near the zero frequency for a transfor-
mation of the returns, say, g(rt ), using the spectral envelope with Example 7.18
as your guide. Compare the optimal transformation near or at the zero frequency
with the usual transformation yt = r2

t .



Appendix A

Large Sample Theory

A.1 Convergence Modes

The study of the optimality properties of various estimators (such as the sample
autocorrelation function) depends, in part, on being able to assess the large-sample
behavior of these estimators. We summarize briefly here the kinds of convergence
useful in this setting, namely, mean square convergence, convergence in probability,
and convergence in distribution.

We consider first a particular class of random variables that plays an important
role in the study of second-order time series, namely, the class of random variables
belonging to the space L2, satisfying E|x |2 < ∞. In proving certain properties of
the class L2 we will often use, for random variables x, y ∈ L2, the Cauchy–Schwarz
inequality,

|E(xy)|2 ≤ E(|x |2)E(|y |2), (A.1)

and the Tchebycheff inequality,

Pr{|x | ≥ a} ≤ E(|x |2)
a2 , (A.2)

for a > 0.
Next, we investigate the properties of mean square convergence of random vari-

ables in L2.

Definition A.1 A sequence of L2 random variables {xn} is said to converge in mean
square to a random variable x ∈ L2, denoted by

xn
ms→ x, (A.3)

if and only if
E|xn − x |2 → 0 (A.4)

as n →∞.
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Example A.1 Mean Square Convergence of the Sample Mean
Consider the white noise sequence wt and the signal plus noise series

xt = μ + wt .

Then, because

E| x̄n − μ|2 =
σ2
w

n
→ 0

as n →∞, where x̄n = n−1 ∑n
t=1 xt is the sample mean, we have x̄n

ms→ μ.

We summarize some of the properties of mean square convergence as follows. If
xn

ms→ x, and yn
ms→ y, then, as n →∞,

E(xn) → E(x); (A.5)

E(|xn |2) → E(|x |2); (A.6)
E(xnyn) → E(xy). (A.7)

We also note the L2 completeness theorem known as the Riesz–Fischer Theorem.

Theorem A.1 Let {xn} be a sequence in L2. Then, there exists a x in L2 such that
xn

ms→ x if and only if
lim
m→∞ sup

n≥m
E|xn − xm |2 = 0 . (A.8)

Often the condition of Theorem A.1 is easier to verify to establish that a mean square
limit x exists without knowing what it is. Sequences that satisfy (A.8) are said to be
Cauchy sequences in L2 and (A.8) is also known as the Cauchy criterion for L2.

Example A.2 Time Invariant Linear Filter
As an important example of the use of the Riesz–Fisher Theorem and the properties
of mean square convergent series given in (A.5)–(A.7), a time-invariant linear filter
is defined as a convolution of the form

yt =

∞∑

j=−∞
aj xt−j (A.9)

for each t = 0,±1,±2, . . ., where xt is a weakly stationary input series with mean
μx and autocovariance function γx(h), and aj , for j = 0,±1,±2, . . . are constants
satisfying

∞∑

j=−∞
|aj | < ∞. (A.10)

The output series yt defines a filtering or smoothing of the input series that changes
the character of the time series in a predictable way. We need to know the conditions
under which the outputs yt in (A.9) and the linear process (1.31) exist.
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Considering the sequence

ynt =

n∑

j=−n
aj xt−j, (A.11)

n = 1, 2, . . ., we need to show first that ynt has a mean square limit. By Theorem A.1,
it is enough to show that

E
/
/ynt − ymt

/
/2 → 0

as m, n →∞. For n > m > 0,

E
/
/ynt − ymt

/
/2 = E

/
/
/

∑

m< | j |≤n
aj xt−j

/
/
/
2

=
∑

m< | j |≤n

∑

m≤ |k |≤n
ajakE(xt−j xt−k)

≤
∑

m< | j |≤n

∑

m≤ |k |≤n
|aj | |ak | |E(xt−j xt−k)|

≤
∑

m< | j |≤n

∑

m≤ |k |≤n
|aj | |ak |(E|xt−j |2)1/2(E|xt−k |2)1/2

=
[
γx(0) + μ2

x

] �
�

�

∑

m≤ | j |≤n
|aj |��

�

2

→ 0

as m, n → ∞, because γx(0) is a constant and {aj } is absolutely summable (the
second inequality follows from the Cauchy–Schwarz inequality).

Although we know that the sequence {ynt } given by (A.11) converges in mean
square, we have not established its mean square limit. If S denotes the mean square
limit of ynt , then using Fatou’s Lemma, E|S − yt |2 = E lim infn→∞ |S − ynt |2 ≤
lim infn→∞ E|S− ynt |2 = 0, which establishes that yt is the mean square limit of ynt .

Finally, we may use (A.5) and (A.7) to establish the mean, μy and autocovariance
function, γy(h) of yt . In particular we have,

μy = μx

∞∑

j=−∞
aj, (A.12)

and

γy(h) = E
∞∑

j=−∞

∞∑

k=−∞
aj (xt+h−j − μx)aj (xt−k − μx)

=

∞∑

j=−∞

∞∑

k=−∞
ajγx(h − j + k)ak . (A.13)

A second important kind of convergence is convergence in probability.
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Definition A.2 The sequence {xn}, for n = 1, 2, . . ., converges in probability to a
random variable x, denoted by

xn
p→ x, (A.14)

if and only if
Pr{|xn − x | > ε} → 0 (A.15)

for all ε > 0, as n →∞.

An immediate consequence of the Tchebycheff inequality, (A.2), is that

Pr{|xn − x | ≥ ε} ≤ E(|xn − x |2)
ε2 ,

so convergence in mean square implies convergence in probability, i.e.,

xn
ms→ x ⇒ xn

p→ x. (A.16)

This result implies, for example, that the filter (A.9) exists as a limit in probability
because it converges in mean square [it is also easily established that (A.9) exists with
probability one]. We mention, at this point, the useful Weak Law of Large Numbers
which states that, for an independent identically distributed sequence xn of random
variables with mean μ, we have

x̄n
p→ μ (A.17)

as n →∞, where x̄n = n−1 ∑n
t=1 xt is the usual sample mean.

We also will make use of the following concepts.

Definition A.3 For order in probability we write

xn = op(an) (A.18)

if and only if
xn
an

p→ 0. (A.19)

The term boundedness in probability, written xn = Op(an), means that for every
ε > 0, there exists a δ(ε) > 0 such that

Pr
{//
/
/
xn
an

/
/
/
/ > δ(ε)

}

≤ ε (A.20)

for all n.

Under this convention, e.g., the notation for xn
p→ x becomes xn − x = op(1).

The definitions can be compared with their nonrandom counterparts, namely, for a
fixed sequence xn = o(1) if xn → 0 and xn = O(1) if xn, for n = 1, 2, . . . is bounded.
Some handy properties of op(·) and Op(·) are as follows.
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(i) If xn = op(an) and yn = op(bn), then xnyn = op(anbn) and xn + yn =

op(max(an, bn)).
(ii) If xn = op(an) and yn = Op(bn), then xnyn = op(anbn).
(iii) Statement (i) is true if Op(·) replaces op(·).
Example A.3 Convergence and Order in Probability for the Sample Mean

For the sample mean, x̄n, of iid random variables with mean μ and variance σ2, by
the Tchebycheff inequality,

Pr{| x̄n − μ| > ε} ≤ E[(x̄n − μ)2]
ε2

=
σ2

nε2 → 0,

as n → ∞. It follows that x̄n
p→ μ, or x̄n − μ = op(1). To find the rate, it follows

that, for δ(ε) > 0,

Pr
{√

n | x̄n − μ| > δ(ε)} ≤ σ2/n
δ2(ε)/n =

σ2

δ2(ε)
by Tchebycheff’s inequality, so taking ε = σ2/δ2(ε) shows that δ(ε) = σ/√ε does
the job and

x̄n − μ = Op(n−1/2).

For k × 1 random vectors xn, convergence in probability, written xn
p→ x or

xn − x = op(1) is defined as element-by-element convergence in probability, or
equivalently, as convergence in terms of the Euclidean distance

‖xn − x‖ p→ 0, (A.21)

where ‖a‖ = ∑
j a2

j for any vector a. In this context, we note the result that if xn
p→ x

and g(xn) is a continuous mapping,

g(xn) p→ g(x). (A.22)

Furthermore, if xn − a = Op(δn) with δn → 0 and g(·) is a function with
continuous first derivatives continuous in a neighborhood of a = (a1, a2, . . . , ak)′, we
have the Taylor series expansion in probability

g(xn) = g(a) + ∂g(x)
∂x

/
/
/
/

′

x=a

(xn − a) + Op(δn), (A.23)

where
∂g(x)
∂x

/
/
/
/
x=a

=

(
∂g(x)
∂x1

/
/
/
/
x=a

, . . . ,
∂g(x)
∂xk

/
/
/
/
x=a

) ′

denotes the vector of partial derivatives with respect to x1, x2, . . . , xk , evaluated at a.
This result remains true if Op(δn) is replaced everywhere by op(δn).
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Example A.4 Expansion for the Logarithm of the Sample Mean
With the same conditions as Example A.3, consider g(x̄n) = log x̄n, which has a
derivative at μ, for μ > 0. Then, because x̄n − μ = Op(n−1/2) from Example A.3,
the conditions for the Taylor expansion in probability, (A.23), are satisfied and we
have

log x̄n = log μ + μ−1(x̄n − μ) + Op(n−1/2).
The large sample distributions of sample mean and sample autocorrelation func-

tions defined earlier can be developed using the notion of convergence in distribution.

Definition A.4 A sequence of k × 1 random vectors {xn} is said to converge in
distribution, written

xn
d→ x (A.24)

if and only if
Fn(x) → F(x) (A.25)

at the continuity points of distribution function F(·).
Example A.5 Convergence in Distribution

Consider a sequence {xn} of iid normal random variables with mean zero and
variance 1/n. Using the standard normal cdf, Φ(z) = 1√

2π

∫ z

−∞ exp
{− 1

2 u2} du, we
have Fn(z) = Φ(√nz), so

Fn(z) →
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

0 z < 0,
1/2 z = 0
1 z > 0

and we may take

F(z) =
{

0 z < 0,
1 z ≥ 0,

because the point where the two functions differ is not a continuity point of F(z).
The distribution function relates uniquely to the characteristic function through

the Fourier transform, defined as a function with vector argumentλ = (λ1, λ2, . . . , λk)′,
say

φ(λ) = E(exp{iλ′x}) =
∫

exp{iλ′x} dF(x). (A.26)

Hence, for a sequence {xn} we may characterize convergence in distribution of Fn(·)
in terms of convergence of the sequence of characteristic functions φn(·), i.e.,

φn(λ) → φ(λ) ⇔ Fn(x) d→ F(x), (A.27)

where⇔means that the implication goes both directions. In this connection, we have
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Proposition A.1 The Cramér–Wold device. Let {xn} be a sequence of k×1 random
vectors. Then, for every c = (c1, c2, . . . , ck)′ ∈ R

k

c′xn
d→ c′x ⇔ xn

d→ x. (A.28)

Proposition A.1 can be useful because sometimes it easier to show the convergence
in distribution of c′xn than xn directly.

Convergence in probability implies convergence in distribution, namely,

xn
p→ x ⇒ xn

d→ x, (A.29)

but the converse is only true when xn
d→ c, where c is a constant vector. If xn

d→ x

and yn
d→ c are two sequences of random vectors and c is a constant vector,

xn + yn
d→ x + c and y′nxn

d→ c′x. (A.30)

For a continuous mapping h(x),

xn
d→ x ⇒ h(xn) d→ h(x). (A.31)

A number of results in time series depend on making a series of approximations
to prove convergence in distribution. For example, we have that if xn

d→ x can be
approximated by the sequence yn in the sense that

yn − xn = op(1), (A.32)

then we have that yn
d→ x, so the approximating sequence yn has the same limiting

distribution as x. We present the following Basic Approximation Theorem (BAT) that
will be used later to derive asymptotic distributions for the sample mean and ACF.

Theorem A.2 [Basic Approximation Theorem (BAT)] Let xn for n = 1, 2, . . . , and
ymn for m = 1, 2, . . . , be random k × 1 vectors such that

(i) ymn
d→ ym as n → ∞ for each m;

(ii) ym
d→ y as m → ∞;

(iii) limm→∞ lim supn→∞ Pr{|xn − ymn | > ε} = 0 for every ε > 0.

Then, xn
d→ y.

As a practical matter, the BAT condition (iii) is implied by the Tchebycheff inequal-
ity if

(iii′) E{|xn − ymn |2} → 0 (A.33)

as m, n →∞, and (iii′) is often much easier to establish than (iii).
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The theorem allows approximation of the underlying sequence in two steps,
through the intermediary sequence ymn, depending on two arguments. In the time
series case, n is generally the sample length and m is generally the number of terms
in an approximation to the linear process of the form (A.11).
Proof: The proof of the theorem is a simple exercise in using the characteristic
functions and appealing to (A.27). We need to show

|φxn − φy | → 0,

where we use the shorthand notation φ ≡ φ(λ) for ease. First,

|φxn − φy | ≤ |φxn − φymn | + |φymn − φym | + |φym − φy |. (A.34)

By the condition (ii) and (A.27), the last term converges to zero, and by condition
(i) and (A.27), the second term converges to zero and we only need consider the first
term in (A.34). Now, write

/
/φxn − φymn

/
/ =

/
/
/E(eiλ′xn − eiλ

′ymn )
/
/
/

≤ E
/
/
/eiλ

′xn (
1 − eiλ

′(ymn−xn ))
/
/
/

= E
/
/
/1 − eiλ

′(ymn−xn )
/
/
/

= E
{/
/
/1 − eiλ

′(ymn−xn )
/
/
/ I{|ymn − xn | < δ}

}

+ E
{/
/
/1 − eiλ

′(ymn−xn )
/
/
/ I{|ymn − xn | ≥ δ}

}

,

where δ > 0 and I{A} denotes the indicator function of the set A. Then, given λ and
ε > 0, choose δ(ε) > 0 such that

/
/
/1 − eiλ

′(ymn−xn )
/
/
/ < ε

if |ymn − xn | < δ, and the first term is less than ε , an arbitrarily small constant. For
the second term, note that /

/
/1 − eiλ

′(ymn−xn )
/
/
/ ≤ 2

and we have

E
{//
/1 − eiλ

′(ymn−xn )
/
/
/ I{|ymn − xn | ≥ δ}

}
≤ 2 Pr

{ |ymn − xn | ≥ δ
}
,

which converges to zero as n →∞ by property (iii). �

A.2 Central Limit Theorems

We will generally be concerned with the large-sample properties of estimators that
turn out to be normally distributed as n →∞.
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Definition A.5 A sequence of random variables {xn} is said to be asymptotically
normal with mean μn and variance σ2

n if, as n →∞,

σ−1
n (xn − μn) d→ z,

where z has the standard normal distribution. We shall abbreviate this as

xn ∼ AN(μn, σ2
n), (A.35)

where ∼ will denote is distributed as.

We state the important Central Limit Theorem, as follows.

Theorem A.3 Let x1, . . . , xn be independent and identically distributed with mean μ
and variance σ2. If x̄n = (x1 + · · · + xn)/n denotes the sample mean, then

x̄n ∼ AN(μ, σ2/n). (A.36)

Often, we will be concerned with a sequence of k ×1 vectors {xn}. The following
property is motivated by the Cramér–Wold device, Proposition A.1.

Proposition A.2 A sequence of random vectors is asymptotically normal, i.e.,

xn ∼ AN(μn, Σn), (A.37)

if and only if
c′xn ∼ AN(c′μn, c′Σnc) (A.38)

for all c ∈ R
k and Σn is positive definite.

In order to begin to consider what happens for dependent data in the limiting
case, it is necessary to define, first of all, a particular kind of dependence known
as M-dependence. We say that a time series xt is M-dependent if the set of values
xs, s ≤ t is independent of the set of values xs, s ≥ t+M +1, so time points separated
by more than M units are independent. A central limit theorem for such dependent
processes, used in conjunction with the Basic Approximation Theorem, will allow us
to develop large-sample distributional results for the sample mean x̄ and the sample
ACF ρ̂x(h) in the stationary case.

In the arguments that follow, we often make use of the formula for the variance
of x̄n in the stationary case, namely,

var x̄n = n−1
(n−1)∑

u=−(n−1)

(

1 − |u|
n

)

γ(u), (A.39)

which was established in (1.35) on page 27. We shall also use the fact that, for

∞∑

u=−∞
|γ(u)| < ∞,
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we would have, by dominated convergence,1

n var x̄n →
∞∑

u=−∞
γ(u), (A.40)

because |(1− |u|/n)γ(u)| ≤ |γ(u)| and (1− |u|/n)γ(u) → γ(u). We may now state the
M-Dependent Central Limit Theorem as follows.

Theorem A.4 If xt is a strictly stationary M-dependent sequence of random variables
with mean zero and autocovariance function γ(·) and if

VM =

M∑

u=−M
γ(u), (A.41)

where VM � 0,
x̄n ∼ AN(0,VM/n). (A.42)

Proof: To prove the theorem, using Theorem A.2, the Basic Approximation Theorem,
we may construct a sequence of variables ymn approximating

n1/2 x̄n = n−1/2
n∑

t=1
xt

in the dependent case and then simply verify conditions (i), (ii), and (iii) of Theo-
rem A.2. For m > 2M, we may first consider the approximation

ymn = n−1/2[(x1 + · · · + xm−M ) + (xm+1 + · · · + x2m−M )
+ (x2m+1 + · · · + x3m−M ) + · · · + (x(r−1)m+1 + · · · + xrm−M )]

= n−1/2(z1 + z2 + · · · + zr ),
where r = [n/m], with [n/m] denoting the greatest integer less than or equal to
n/m. This approximation contains only part of n1/2 x̄n, but the random variables
z1, z2, . . . , zr are independent because they are separated by more than M time points,
e.g., m+1−(m−M) = M +1 points separate z1 and z2. Because of strict stationarity,
z1, z2, . . . , zr are identically distributed with zero means and variances

Sm−M =
∑

|u |≤M
(m − M − |u|)γ(u)

by a computation similar to that producing (A.39). We now verify the conditions of
the Basic Approximation Theorem hold.

1 Dominated convergence technically relates to convergent sequences (with respect to a sigma-additive
measure μ) of measurable functions fn → f bounded by an integrable function g,

∫
g dμ < ∞. For

such a sequence, ∫
fn dμ →

∫
f dμ.

For the case in point, take fn(u) = (1 − |u |/n)γ(u) for |u | < n and as zero for |u | ≥ n. Take
μ(u) = 1, u = ±1, ±2, . . . to be counting measure.
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(i) Applying the Central Limit Theorem to the sum ymn gives

ymn = n−1/2
r∑

i=1
zi = (n/r)−1/2r−1/2

r∑

i=1
zi .

Because (n/r)−1/2 → m1/2 and

r−1/2
r∑

i=1
zi

d→ N(0, Sm−M ),

it follows from (A.30) that

ymn
d→ ym ∼ N(0, Sm−M/m).

as n →∞, for a fixed m.
(ii) Note that as m → ∞, Sm−M/m → VM using dominated convergence, where

VM is defined in (A.41). Hence, the characteristic function of ym, say,

φm(λ) = exp
{

−1
2
λ2 Sm−M

m

}

→ exp
{

−1
2
λ2 VM

}

,

as m → ∞, which is the characteristic function of a random variable y ∼
N(0,VM ) and the result follows because of (A.27).

(iii) To verify the last condition of the BAT theorem,

n1/2 x̄n − ymn = n−1/2[(xm−M+1 + · · · + xm)
+ (x2m−M+1 + · · · + x2m)
+ (x(r−1)m−M+1 + · · · + x(r−1)m)
...

+ (xrm−M+1 + · · · + xn)]
= n−1/2(w1 + w2 + · · · + wr ),

so the error is expressed as a scaled sum of iid variables with variance SM for
the first r − 1 variables and

var(wr ) = ∑
|u |≤m−M

(

n − [n/m]m + M − |u|
)

γ(u)
≤ ∑

|u |≤m−M (m + M − |u|)γ(u).
Hence,

var [n1/2 x̄ − ymn] = n−1[(r − 1)SM + var wr ],
which converges to m−1SM as n → ∞. Because m−1SM → 0 as m → ∞, the
condition of (iii) holds by the Tchebycheff inequality.

�
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A.3 The Mean and Autocorrelation Functions

The background material in the previous two sections can be used to develop the
asymptotic properties of the sample mean and ACF used to evaluate statistical sig-
nificance. In particular, we are interested in verifying Property 1.2.

We begin with the distribution of the sample mean x̄n, noting that (A.40) suggests
a form for the limiting variance. In all of the asymptotics, we will use the assumption
that xt is a linear process, as defined in Definition 1.12, but with the added condition
that {wt } is iid. That is, throughout this section we assume

xt = μx +

∞∑

j=−∞
ψjwt−j (A.43)

where wt ∼ iid(0, σ2
w), and the coefficients satisfy

∞∑

j=−∞
|ψj | < ∞. (A.44)

Before proceeding further, we should note that the exact sampling distribution
of x̄n is available if the distribution of the underlying vector x = (x1, x2, . . . , xn)′ is
multivariate normal. Then, x̄n is just a linear combination of jointly normal variables
that will have the normal distribution

x̄n ∼ N
�
�

�

μx, n−1
∑

|u |<n

(

1 − |u|
n

)

γx(u)��
�

, (A.45)

by (A.39). In the case where xt are not jointly normally distributed, we have the
following theorem.

Theorem A.5 If xt is a linear process of the form (A.43) and
∑

j ψj � 0, then

x̄n ∼ AN(μx, n−1V), (A.46)

where

V =

∞∑

h=−∞
γx(h) = σ2

w

( ∞∑

j=−∞
ψj

)2
(A.47)

and γx(·) is the autocovariance function of xt .

Proof: To prove the above, we can again use the Basic Approximation Theorem,
Theorem A.2, by first defining the strictly stationary 2m-dependent linear process
with finite limits

xmt =

m∑

j=−m
ψjwt−j
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as an approximation to xt to use in the approximating mean

x̄n,m = n−1
n∑

t=1
xmt .

Then, take
ymn = n1/2(x̄n,m − μx)

as an approximation to n1/2(x̄n − μx).
(i) Applying Theorem A.4, we have

ymn
d→ ym ∼ N(0,Vm),

as n →∞, where

Vm =

2m∑

h=−2m
γx(h) = σ2

w

( m∑

j=−m
ψj

)2
.

To verify the above, we note that for the general linear process with infinite
limits, (1.32) implies that

∞∑

h=−∞
γx(h) = σ2

w

∞∑

h=−∞

∞∑

j=−∞
ψj+hψj = σ2

w

( ∞∑

j=−∞
ψj

)2
,

so taking the special case ψj = 0, for | j | > m, we obtain Vm.
(ii) Because Vm → V in (A.47) as m → ∞, we may use the same characteristic

function argument as under (ii) in the proof of Theorem A.4 to note that

ym
d→ y ∼ N(0,V),

where V is given by (A.47).
(iii) Finally,

var
[
n1/2(x̄n − μx) − ymn

]
= n var

⎡
⎢
⎢
⎢
⎢
⎣

n−1
n∑

t=1

∑

| j |>m
ψjwt−j

⎤
⎥
⎥
⎥
⎥
⎦

= σ2
w

�
�

�

∑

| j |>m
ψj

�
�

�

2

→ 0

as m → ∞.

�
In order to develop the sampling distribution of the sample autocovariance func-

tion, γ̂x(h), and the sample autocorrelation function, ρ̂x(h), we need to develop some
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idea as to the mean and variance of γ̂x(h) under some reasonable assumptions. These
computations for γ̂x(h) are messy, and we consider a comparable quantity

γ̃x(h) = n−1
n∑

t=1
(xt+h − μx)(xt − μx) (A.48)

as an approximation. By Problem 1.30,

n1/2[γ̃x(h) − γ̂x(h)] = op(1),
so that limiting distributional results proved for n1/2γ̃x(h) will hold for n1/2γ̂x(h)
by (A.32).

We begin by proving formulas for the variance and for the limiting variance of
γ̃x(h) under the assumptions that xt is a linear process of the form (A.43), satisfy-
ing (A.44) with the white noise variates wt having variance σ2

w as before, but also
required to have fourth moments satisfying

E(w4
t ) = ησ4

w < ∞, (A.49)

where η is some constant. We seek results comparable with (A.39) and (A.40) for
γ̃x(h). To ease the notation, we will henceforth drop the subscript x from the notation.

Using (A.48), E[γ̃(h)] = γ(h). Under the above assumptions, we show now that,
for p, q = 0, 1, 2, . . .,

cov [γ̃(p), γ̃(q)] = n−1
(n−1)∑

u=−(n−1)

(

1 − |u|
n

)

Vu, (A.50)

where

Vu = γ(u)γ(u + p − q) + γ(u + p)γ(u − q)
+ (η − 3)σ4

w

∑

i

ψi+u+qψi+uψi+pψi . (A.51)

The absolute summability of the ψj can then be shown to imply the absolute summa-
bility of the Vu .2 Thus, the dominated convergence theorem implies

n cov [γ̃(p), γ̃(q)] →
∞∑

u=−∞
Vu

= (η − 3)γ(p)γ(q) (A.52)

+

∞∑

u=−∞

[

γ(u)γ(u + p − q) + γ(u + p)γ(u − q)
]

.

To verify (A.50) is somewhat tedious, so we only go partially through the calcu-
lations, leaving the repetitive details to the reader. First, rewrite (A.43) as

xt = μ +

∞∑

i=−∞
ψt−iwi,

2 Note:
∑∞

j=−∞ |a j | < ∞ and
∑∞

j=−∞ |bj | < ∞ implies
∑∞

j=−∞ |a jb j | < ∞.
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so that

E[γ̃(p)γ̃(q)] = n−2
∑

s,t

∑

i, j,k,�

ψs+p−iψs−jψt+q−k ψt−�E(wiwjwkw�).

Then, evaluate, using the easily verified properties of the wt series

E(wiwjwkw�) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

ησ4
w if i = j = k = �

σ4
w if i = j � k = �

0 if i � j, i � k and i � �.

To apply the rules, we break the sum over the subscripts i, j, k, � into four terms,
namely,

∑

i, j,k,�

=
∑

i=j=k=�

+
∑

i=j�k=�

+
∑

i=k�j=�

+
∑

i=��j=k

= S1 + S2 + S3 + S4.

Now,

S1 = ησ4
w

∑

i

ψs+p−iψs−iψt+q−iψt−i = ησ4
w

∑

i

ψi+s−t+pψi+s−tψi+qψi,

where we have let i′ = t − i to get the final form. For the second term,

S2 =
∑

i=j�k=�

ψs+p−iψs−jψt+q−kψt−�E(wiwjwkw�)

=
∑

i�k

ψs+p−iψs−iψt+q−kψt−kE(w2
i )E(w2

k).

Then, using the fact that ∑

i�k

=
∑

i,k

−
∑

i=k

,

we have

S2 = σ4
w

∑

i,k

ψs+p−iψs−iψt+q−kψt−k − σ4
w

∑

i

ψs+p−iψs−iψt+q−iψt−i

= γ(p)γ(q) − σ4
w

∑

i

ψi+s−t+pψi+s−tψi+qψi,

letting i′ = s− i, k ′ = t− k in the first term and i′ = s− i in the second term. Repeating
the argument for S3 and S4 and substituting into the covariance expression yields

E[γ̃(p)γ̃(q)] = n−2
∑

s,t

[

γ(p)γ(q) + γ(s − t)γ(s − t + p − q)
+ γ(s − t + p)γ(s − t − q)
+ (η − 3)σ4

w

∑

i

ψi+s−t+pψi+s−tψi+qψi

]

.
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Then, letting u = s − t and subtracting E[γ̃(p)]E[γ̃(q)] = γ(p)γ(q) from the sum-
mation leads to the result (A.51). Summing (A.51) over u and applying dominated
convergence leads to (A.52).

The above results for the variances and covariances of the approximating statis-
tics γ̃(·) enable proving the following central limit theorem for the autocovariance
functions γ̂(·).
Theorem A.6 If xt is a stationary linear process of the form (A.43) satisfying the
fourth moment condition (A.49), then, for fixed K ,

�
�
�
�
�

�

γ̂(0)
γ̂(1)
...

γ̂(K)

�
�
�
�
�

�

∼ AN

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
�
�
�
�

�

γ(0)
γ(1)
...

γ(K)

�
�
�
�
�

�

, n−1V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where V is the matrix with elements given by

vpq = (η − 3)γ(p)γ(q)

+

∞∑

u=−∞

[

γ(u)γ(u − p + q) + γ(u + q)γ(u − p)
]

. (A.53)

Proof: It suffices to show the result for the approximate autocovariance (A.48) for
γ̃(·) by the remark given below it (see also Problem 1.30). First, define the strictly
stationary (2m + K)-dependent (K + 1) × 1 vector

ymt =

�
�
�
�
�

�

(xmt − μ)2
(xm

t+1 − μ)(xmt − μ)
...

(xmt+K − μ)(xmt − μ)

�
�
�
�
�

�

,

where

xmt = μ +

m∑

j=−m
ψjwt−j

is the usual approximation. The sample mean of the above vector is

ȳmn = n−1
n∑

t=1
ymt =

�
�
�
�
�

�

γ̃mn(0)
γ̃mn(1)

...
γ̃mn(K)

�
�
�
�
�

�

,

where

γ̃mn(h) = n−1
n∑

t=1
(xmt+h − μ)(xmt − μ)
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denotes the sample autocovariance of the approximating series. Also,

Eymt =

�
�
�
�
�

�

γm(0)
γm(1)

...
γm(K)

�
�
�
�
�

�

,

where γm(h) is the theoretical covariance function of the series xmt . Then, consider
the vector

ymn = n1/2[ȳmn − E(ȳmn)]
as an approximation to

yn = n1/2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
�
�
�
�

�

γ̃(0)
γ̃(1)
...

γ̃(K)

�
�
�
�
�

�

−
�
�
�
�
�

�

γ(0)
γ(1)
...

γ(K)

�
�
�
�
�

�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where E(ȳmn) is the same as E(ymt ) given above. The elements of the vector approxi-
mation ymn are clearly n1/2(γ̃mn(h) − γ̃m(h)). Note that the elements of yn are based
on the linear process xt , whereas the elements of ymn are based on the m-dependent
linear process xmt . To obtain a limiting distribution for yn, we apply the Basic Ap-
proximation Theorem, Theorem A.2, using ymn as our approximation. We now verify
(i), (ii), and (iii) of Theorem A.2.

(i) First, let c be a (K+1)×1 vector of constants, and apply the central limit theorem
to the (2m+ K)-dependent series c′ymn using the Cramér–Wold device (A.28).
We obtain

c′ymn = n1/2c′[ȳmn − E(ȳmn)] d→ c′ym ∼ N(0, c′Vmc),
as n → ∞, where Vm is a matrix containing the finite analogs of the elements
vpq defined in (A.53).

(ii) Note that, since Vm → V as m →∞, it follows that

c′ym
d→ c′y ∼ N(0, c′Vc),

so, by the Cramér–Wold device, the limiting (K + 1) × 1 multivariate normal
variable is N(0,V).

(iii) For this condition, we can focus on the element-by-element components of

Pr
{|yn − ymn | > ε

}
.

For example, using the Tchebycheff inequality, the h-th element of the proba-
bility statement can be bounded by

nε−2var (γ̃(h) − γ̃m(h))
= ε−2 {n var γ̃(h) + n var γ̃m(h) − 2n cov[γ̃(h), γ̃m(h)]} .
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Using the results that led to (A.52), we see that the preceding expression ap-
proaches

(vhh + vhh − 2vhh)/ε2 = 0,

as m, n →∞.

�
To obtain a result comparable to Theorem A.6 for the autocorrelation function

ACF, we note the following theorem.

Theorem A.7 If xt is a stationary linear process of the form (1.31) satisfying the
fourth moment condition (A.49), then for fixed K ,

�
�
�

�

ρ̂(1)
...

ρ̂(K)

�
�
�

�

∼ AN

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�
�
�

�

ρ(1)
...

ρ(K)

�
�
�

�

, n−1W

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where W is the matrix with elements given by

wpq =

∞∑

u=−∞

[

ρ(u + p)ρ(u + q) + ρ(u − p)ρ(u + q) + 2ρ(p)ρ(q)ρ2(u)

− 2ρ(p)ρ(u)ρ(u + q) − 2ρ(q)ρ(u)ρ(u + p)
]

=

∞∑

u=1
[ρ(u + p) + ρ(u − p) − 2ρ(p)ρ(u)]
× [ρ(u + q) + ρ(u − q) − 2ρ(q)ρ(u)], (A.54)

where the last form is more convenient.

Proof: To prove the theorem, we use the delta method3 for the limiting distribution
of a function of the form

g(x0, x1, . . . , xK ) = (x1/x0, . . . , xK/x0)′,

where xh = γ̂(h), for h = 0, 1, . . . , K . Hence, using the delta method and Theorem A.6,

g (γ̂(0), γ̂(1), . . . , γ̂(K)) = (ρ̂(1), . . . , ρ̂(K))′

is asymptotically normal with mean vector (ρ(1), . . . , ρ(K))′ and covariance matrix

n−1W = n−1DVD′,

3 The delta method states that if a k-dimensional vector sequence xn ∼ AN(μ, a2
nΣ), with an → 0, and

g(x) is an r × 1 continuously differentiable vector function of x, then g(xn) ∼ AN(g(μ), a2
nDΣD′)

where D is the r × k matrix with elements di j =
∂gi (x)
∂x j

/
/
μ
.
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where V is defined by (A.53) and D is the (K +1)×K matrix of partial derivatives

D =
1
x2

0

�
�
�
�
�

�

−x1 x0 0 . . . 0
−x2 0 x0 . . . 0
...

...
...

. . .
...

−xK 0 0 . . . x0,

�
�
�
�
�

�

Substituting γ(h) for xh , we note that D can be written as the patterned matrix

D =
1

γ(0)
(−ρ IK

)
,

where ρ = (ρ(1), ρ(2), . . . , ρ(K))′ is the K×1 matrix of autocorrelations and IK is the
K × K identity matrix. Then, it follows from writing the matrix V in the partitioned
form

V =

(
v00 v′1
v1 V22

)

that
W = γ−2(0)[v00ρρ

′ − ρv′1 − v1ρ
′ + V22

]
,

where v1 = (v10, v20, . . . , vK0)′ and V22 = {vpq; p, q = 1, . . . , K}. Hence,

wpq = γ−2(0)[vpq − ρ(p)v0q − ρ(q)vp0 + ρ(p)ρ(q)v00
]

=

∞∑

u=−∞

[

ρ(u)ρ(u − p + q) + ρ(u − p)ρ(u + q) + 2ρ(p)ρ(q)ρ2(u)

− 2ρ(p)ρ(u)ρ(u + q) − 2ρ(q)ρ(u)ρ(u − p)
]

.

Interchanging the summations, we get the wpq specified in the statement of the
theorem, finishing the proof. �

Specializing the theorem to the case of interest in this chapter, we note that if {xt }
is iid with finite fourth moment, then wpq = 1 for p = q and is zero otherwise. In this
case, for h = 1, . . . , K , the ρ̂(h) are asymptotically independent and jointly normal
with

ρ̂(h) ∼ AN(0, n−1). (A.55)

This justifies the use of (1.38) and the discussion below it as a method for testing
whether a series is white noise.

For the cross-correlation, it has been noted that the same kind of approximation
holds and we quote the following theorem for the bivariate case, which can be proved
using similar arguments (see Brockwell and Davis, 1991[36], p. 410).

Theorem A.8 If

xt =
∞∑

j=−∞
αjwt−j,1
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and

yt =

∞∑

j=−∞
βjwt−j,2

are two linear processes with absolutely summable coefficients and the two white
noise sequences are iid and independent of each other with variances σ2

1 and σ2
2 ,

then for h ≥ 0,

ρ̂xy(h) ∼ AN
(

ρxy(h), n−1
∑

j

ρx( j)ρy( j)
)

(A.56)

and the joint distribution of (ρ̂xy(h), ρ̂xy(k))′ is asymptotically normal with mean
vector zero and

cov
(
ρ̂xy(h), ρ̂xy(k)

)
= n−1

∑

j

ρx( j)ρy( j + k − h). (A.57)

Again, specializing to the case of interest in this chapter, as long as at least one
of the two series is white (iid) noise, we obtain

ρ̂xy(h) ∼ AN
(
0, n−1), (A.58)

which justifies Property 1.3.



Appendix B

Time Domain Theory

B.1 Hilbert Spaces and the Projection Theorem

Most of the material on mean square estimation and regression can be embedded in
a more general setting involving an inner product space that is also complete (that is,
satisfies the Cauchy condition). Two examples of inner products are E(xy∗), where
the elements are random variables, and

∑
xiy∗i , where the elements are sequences.

These examples include the possibility of complex elements, in which case, ∗ denotes
the conjugation. We denote an inner product, in general, by the notation 〈x, y〉. Now,
define an inner product space by its properties, namely,

(i) 〈x, y〉 = 〈y, x〉∗
(ii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
(iii) 〈αx, y〉 = α 〈x, y〉
(iv) 〈x, x〉 = ‖x‖2 ≥ 0
(v) 〈x, x〉 = 0 iff x = 0.

We introduced the notation ‖ · ‖ for the norm or distance in property (iv). The norm
satisfies the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖ (B.1)

and the Cauchy–Schwarz inequality

| 〈x, y〉 |2 ≤ ‖x‖2‖y‖2, (B.2)

which we have seen before for random variables in (A.35). Now, a Hilbert space, H,
is defined as an inner product space with the Cauchy property. In other words, H is a
complete inner product space. This means that every Cauchy sequence converges in
norm; that is, xn → x ∈ H if an only if ‖xn − xm‖ → 0 as m, n →∞. This is just the
L2 completeness Theorem A.1 for random variables.

© Springer International Publishing AG 2017
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For a broad overview of Hilbert space techniques that are useful in statistical
inference and in probability, see Small and McLeish [187]. Also, Brockwell and
Davis (1991, Chapter 2)[36] is a nice summary of Hilbert space techniques that
are useful in time series analysis. In our discussions, we mainly use the projection
theorem (Theorem B.1) and the associated orthogonality principle as a means for
solving various kinds of linear estimation problems.

Theorem B.1 (Projection Theorem) Let M be a closed subspace of the Hilbert
space H and let y be an element in H. Then, y can be uniquely represented as

y = ŷ + z, (B.3)

where ŷ belongs to M and z is orthogonal to M; that is, 〈z,w〉 = 0 for all w
in M. Furthermore, the point ŷ is closest to y in the sense that, for any w in M,
‖y − w‖ ≥ ‖y − ŷ‖, where equality holds if and only if w = ŷ.

We note that (B.3) and the statement following it yield the orthogonality property

〈y − ŷ,w〉 = 0 (B.4)

for any w belonging to M, which can sometimes be used easily to find an expression
for the projection. The norm of the error can be written as

‖y − ŷ‖2 = 〈y − ŷ, y − ŷ〉
= 〈y − ŷ, y〉 − 〈y − ŷ, ŷ〉
= 〈y − ŷ, y〉 (B.5)

because of orthogonality.
Using the notation of Theorem B.1, we call the mapping PMy = ŷ, for y ∈ H,

the projection mapping of H onto M. In addition, the closed span of a finite set
{x1, . . . , xn} of elements in a Hilbert space, H, is defined to be the set of all linear
combinations w = a1x1 + · · · + anxn, where a1, . . . , an are scalars. This subspace of
H is denoted by M = sp{x1, . . . , xn}. By the projection theorem, the projection of
y ∈ H onto M is unique and given by

PMy = a1x1 + · · · + anxn,

where {a1, . . . , an} are found using the orthogonality principle
〈
y − PMy, xj

〉
= 0 j = 1, . . . , n.

Evidently, {a1, . . . , an} can be obtained by solving

n∑

i=1
ai

〈
xi, xj

〉
=

〈
y, xj

〉
j = 1, . . . , n. (B.6)

When the elements of H are vectors, this problem is the linear regression problem.
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Example B.1 Linear Regression Analysis
For the regression model introduced in Sect. 2.1, we want to find the regression
coefficients βi that minimize the residual sum of squares. Consider the vectors
y = (y1, . . . , yn)′ and zi = (z1i, . . . , zni)′, for i = 1, . . . , q and the inner product

〈zi, y〉 =
n∑

t=1
ztiyt = z′i y.

We solve the problem of finding a projection of the observed y on the linear space
spanned by β1z1+· · ·+βq zq, that is, linear combinations of the zi . The orthogonality
principle gives

〈
y −

q∑

i=1
βi zi, zj

〉
= 0

for j = 1, . . . , q. Writing the orthogonality condition, as in (B.6), in vector form
gives

y′zj =
q∑

i=1
βiz

′
i zj j = 1, . . . , q, (B.7)

which can be written in the usual matrix form by letting Z = (z1, . . . , zq), which is
assumed to be full rank. That is, (B.7) can be written as

y′Z = β′(Z ′Z), (B.8)

where β = (β1, . . . , βq)′. Transposing both sides of (B.8) provides the solution for
the coefficients,

β̂ = (Z ′Z)−1Z ′y.

The mean-square error in this case would be

C
C
Cy −

q∑

i=1
β̂i zi

C
C
C

2
=

〈
y −

q∑

i=1
β̂i zi , y

〉
= 〈y, y〉 −

q∑

i=1
β̂i 〈zi , y〉 = y′y − β̂′Z ′y,

which is in agreement with Sect. 2.1.

The extra generality in the above approach hardly seems necessary in the finite
dimensional case, where differentiation works perfectly well. It is convenient, how-
ever, in many cases to regard the elements of H as infinite dimensional, so that the
orthogonality principle becomes of use. For example, the projection of the process
{xt ; t = 0 ± 1,±2, . . .} on the linear manifold spanned by all filtered convolutions of
the form

x̂t =
∞∑

k=−∞
akxt−k

would be in this form.
There are some useful results, which we state without proof, pertaining to pro-

jection mappings.
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Theorem B.2 Under established notation and conditions:

(i) PM(ax + by) = aPMx + bPMy, for x, y ∈ H, where a and b are scalars.
(ii) If | |yn − y | | → 0, then PMyn → PMy, as n →∞.
(iii) w ∈ M if and only if PMw = w. Consequently, a projection mapping can be

characterized by the property that P2
M = PM, in the sense that, for any y ∈ H,

PM(PMy) = PMy.
(iv) Let M1 and M2 be closed subspaces of H. Then, M1 ⊆ M2 if and only if

PM1(PM2 y) = PM1 y for all y ∈ H.
(v) LetM be a closed subspace ofH and letM⊥ denote the orthogonal complement

of M. Then, M⊥ is also a closed subspace of H, and for any y ∈ H, y =

PMy + PM⊥ y.

Part (iii) of Theorem B.2 leads to the well-known result, often used in linear
models, that a square matrix M is a projection matrix if and only if it is symmetric
and idempotent (that is, M2 = M). For example, using the notation of Example B.1
for linear regression, the projection of y onto sp{z1, . . . , zq}, the space generated by
the columns of Z , is PZ (y) = Z β̂ = Z(Z ′Z)−1Z ′y. The matrix M = Z(Z ′Z)−1Z ′
is an n × n, symmetric and idempotent matrix of rank q (which is the dimension of
the space that M projects y onto). Parts (iv) and (v) of Theorem B.2 are useful for
establishing recursive solutions for estimation and prediction.

By imposing extra structure, conditional expectation can be defined as a projection
mapping for random variables in L2 with the equivalence relation that, for x, y ∈ L2,
x = y if Pr(x = y) = 1. In particular, for y ∈ L2, if M is a closed subspace of L2

containing 1, the conditional expectation of y given M is defined to be the projection
of y onto M, namely, EMy = PMy. This means that conditional expectation, EM,
must satisfy the orthogonality principle of the Projection Theorem and that the results
of Theorem B.2 remain valid (the most ly used tool in this case is item (iv) of the
theorem). If we let M(x) denote the closed subspace of all random variables in L2

that can be written as a (measurable) function of x, then we may define, for x, y ∈ L2,
the conditional expectation of y given x as E(y | x) = EM(x)y. This idea may
be generalized in an obvious way to define the conditional expectation of y given
x1:n = (x1, . . . , xn); that is E(y | x) = EM(x)y. Of particular interest to us is the
following result which states that, in the Gaussian case, conditional expectation and
linear prediction are equivalent.

Theorem B.3 Under established notation and conditions, if (y, x1, . . . , xn) is multi-
variate normal, then

E(y | x1:n) = Psp{1,x1,...,xn }y.

Proof: First, by the projection theorem, the conditional expectation of y given x1:n is
the unique element EM(x)y that satisfies the orthogonality principle,

E
{(
y − EM(x)y

)
w
}
= 0 for all w ∈ M(x).
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We will show that ŷ = Psp{1,x1,...,xn }y is that element. In fact, by the projection
theorem, ŷ satisfies

〈y − ŷ, xi〉 = 0 for i = 0, 1, . . . , n,

where we have set x0 = 1. But 〈y − ŷ, xi〉 = cov(y − ŷ, xi) = 0, implying that
y − ŷ and (x1, . . . , xn) are independent because the vector (y − ŷ, x1, . . . , xn)′ is
multivariate normal. Thus, if w ∈ M(x), then w and y− ŷ are independent and, hence,
〈y − ŷ,w〉 = E{(y− ŷ)w} = E(y− ŷ)E(w) = 0, recalling that 0 = 〈y − ŷ, 1〉 = E(y− ŷ).
�

In the Gaussian case, conditional expectation has an explicit form. Let y =

(y1, . . . , ym)′, x = (x1, . . . , xn)′, and suppose the x and y are jointly normal:
(
y

x

)

∼ Nm+n

[(
μy
μx

)

,

(
Σyy Σyx

Σxy Σxx

)]

,

then y | x is normal with

μy |x = μy + ΣyxΣ
−1
xx (x − μx) (B.9)

Σy |x = Σyy − ΣyxΣ
−1
xx Σxy, (B.10)

where Σxx is assumed to be nonsingular.

B.2 Causal Conditions for ARMA Models

In this section, we prove Property 3.1 of Sect. 3.1 pertaining to the causality of ARMA
models. The proof of Property 3.2, which pertains to invertibility of ARMA models,
is similar.

Proof of Property 3.1. Suppose first that the roots of φ(z), say, z1, . . . , zp, lie outside
the unit circle. We write the roots in the following order, 1 < |z1 | ≤ |z2 | ≤ · · · ≤ |zp |,
noting that z1, . . . , zp are not necessarily unique, and put |z1 | = 1+ ε , for some ε > 0.
Thus, φ(z) � 0 as long as |z| < |z1 | = 1+ ε and, hence, φ−1(z) exists and has a power
series expansion,

1
φ(z) =

∞∑

j=0
aj z

j, |z| < 1 + ε.

Now, choose a value δ such that 0 < δ < ε , and set z = 1 + δ, which is inside the
radius of convergence. It then follows that

φ−1(1 + δ) =
∞∑

j=0
aj (1 + δ)j < ∞. (B.11)

Thus, we can bound each of the terms in the sum in (B.11) by a constant, say,
|aj (1 + δ)j | < c, for c > 0. In turn, |aj | < c(1 + δ)−j , from which it follows that

∞∑

j=0
|aj | < ∞. (B.12)
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Hence, φ−1(B) exists and we may apply it to both sides of the ARMA model, φ(B)xt =
θ(B)wt , to obtain

xt = φ−1(B)φ(B)xt = φ−1(B)θ(B)wt .

Thus, putting ψ(B) = φ−1(B)θ(B), we have

xt = ψ(B)wt =

∞∑

j=0
ψjwt−j,

where the ψ-weights, which are absolutely summable, can be evaluated by ψ(z) =
φ−1(z)θ(z), for |z| ≤ 1.

Now, suppose xt is a causal process; that is, it has the representation

xt =
∞∑

j=0
ψjwt−j,

∞∑

j=0
|ψj | < ∞.

In this case, we write
xt = ψ(B)wt,

and premultiplying by φ(B) yields

φ(B)xt = φ(B)ψ(B)wt . (B.13)

In addition to (B.13), the model is ARMA, and can be written as

φ(B)xt = θ(B)wt . (B.14)

From (B.13) and (B.14), we see that

φ(B)ψ(B)wt = θ(B)wt . (B.15)

Now, let

a(z) = φ(z)ψ(z) =
∞∑

j=0
aj z

j |z| ≤ 1

and, hence, we can write (B.15) as

∞∑

j=0
ajwt−j =

q∑

j=0
θ jwt−j . (B.16)

Next, multiply both sides of (B.16) by wt−h, for h = 0, 1, 2, . . . , and take expectation.
In doing this, we obtain

ah = θh, h = 0, 1, . . . , q

ah = 0, h > q. (B.17)

From (B.17), we conclude that

φ(z)ψ(z) = a(z) = θ(z), |z| ≤ 1. (B.18)
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If there is a complex number in the unit circle, say z0, for which φ(z0) = 0, then
by (B.18), θ(z0) = 0. But, if there is such a z0, then φ(z) and θ(z) have a common
factor which is not allowed. Thus, we may write ψ(z) = θ(z)/φ(z). In addition, by
hypothesis, we have that |ψ(z)| < ∞ for |z| ≤ 1, and hence

|ψ(z)| =
/
/
/
/
θ(z)
φ(z)

/
/
/
/ < ∞, for |z| ≤ 1. (B.19)

Finally, (B.19) implies φ(z) � 0 for |z| ≤ 1; that is, the roots of φ(z) lie outside the
unit circle.  !

B.3 Large Sample Distribution of the AR Conditional Least
Squares Estimators

In Sect. 3.5 we discussed the conditional least squares procedure for estimating the
parameters φ1, φ2, . . . , φp and σ2

w in the AR(p) model

xt =
p∑

k=1
φkxt−k + wt,

where we assume μ = 0, for convenience. Write the model as

xt = φ′xt−1 + wt, (B.20)

where xt−1 = (xt−1, xt−2, . . . , xt−p)′ is a p × 1 vector of lagged values, and φ =

(φ1, φ2, . . . , φp)′ is the p×1 vector of regression coefficients. Assuming observations
are available at x1, . . . , xn, the conditional least squares procedure is to minimize

Sc(φ) =
n∑

t=p+1
(xt − φ′xt−1)2

with respect to φ. The solution is

φ̂ =
�
�

�

n∑

t=p+1
xt−1x′t−1

�
�

�

−1
n∑

t=p+1
xt−1xt (B.21)

for the regression vector φ; the conditional least squares estimate of σ2
w is

σ̂2
w =

1
n − p

n∑

t=p+1

(
xt − φ̂′xt−1

)2
. (B.22)

As pointed out following (3.116), Yule–Walker estimators and least squares esti-
mators are approximately the same in that the estimators differ only by inclusion or
exclusion of terms involving the endpoints of the data. Hence, it is easy to show the
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asymptotic equivalence of the two estimators; this is why, for AR(p) models, (3.103)
and (3.132), are equivalent. Details on the asymptotic equivalence can be found in
Brockwell and Davis (1991, Chapter 8)[36].

Here, we use the same approach as in Appendix A, replacing the lower limits of
the sums in (B.21) and (B.22) by one and noting the asymptotic equivalence of the
estimators

φ̃ =

(
n∑

t=1
xt−1x′t−1

)−1 n∑

t=1
xt−1xt (B.23)

and

σ̃2
w =

1
n

n∑

t=1

(
xt − φ̃′xt−1

)2 (B.24)

to those two estimators. In (B.23) and (B.24), we are acting as if we are able to observe
x1−p, . . . , x0 in addition to x1, . . . , xn. The asymptotic equivalence is then seen by
arguing that for n sufficiently large, it makes no difference whether or not we observe
x1−p, . . . , x0. In the case of (B.23) and (B.24), we obtain the following theorem.

Theorem B.4 Let xt be a causal AR(p) series with white (iid) noise wt satisfying
E(w4

t ) = ησ4
w . Then,

φ̃ ∼ AN
(

φ, n−1σ2
wΓ

−1
p

)

, (B.25)

where Γp = {γ(i − j)}p
i, j=1 is the p × p autocovariance matrix of the vector xt−1. We

also have, as n →∞,

n−1
n∑

t=1
xt−1x′t−1

p→ Γp and σ̃2
w

p→ σ2
w . (B.26)

Proof: First, (B.26) follows from the fact that E(xt−1x′
t−1) = Γp, recalling that

from Theorem A.6, second-order sample moments converge in probability to their
population moments for linear processes in which wt has a finite fourth moment. To
show (B.25), we can write

φ̃ =

(
n∑

t=1
xt−1x′t−1

)−1 n∑

t=1
xt−1(x′t−1φ + wt )

= φ +

(
n∑

t=1
xt−1x′t−1

)−1 n∑

t=1
xt−1wt,

so that

n1/2(φ̃ − φ) =
(

n−1
n∑

t=1
xt−1x′t−1

)−1

n−1/2
n∑

t=1
xt−1wt

=

(

n−1
n∑

t=1
xt−1x′t−1

)−1

n−1/2
n∑

t=1
ut,
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where ut = xt−1wt . We use the fact that wt and xt−1 are independent to write
Eut = E(xt−1)E(wt ) = 0, because the errors have zero means. Also,

Eutu
′
t = Ext−1wtwt x

′
t−1 = Ext−1x′t−1Ew

2
t = σ2

wΓp .

In addition, we have, for h > 0,

Eut+hu′t = Ext+h−1wt+hwt x
′
t−1 = Ext+h−1wt x

′
t−1Ewt+h = 0.

A similar computation works for h < 0.
Next, consider the mean square convergent approximation

xmt =

m∑

j=0
ψjwt−j

for xt, and define the (m+ p)-dependent process um
t = wt (xmt−1, xm

t−2, . . . , xmt−p)′. Note
that we need only look at a central limit theorem for the sum

ynm = n−1/2
n∑

t=1
λ′um

t ,

for arbitrary vectors λ = (λ1, . . . , λp)′, where ynm is used as an approximation to

Sn = n−1/2
n∑

t=1
λ′ut .

First, apply the m-dependent central limit theorem to ynm as n → ∞ for fixed m to
establish (i) of Theorem A.2. This result shows ynm

d→ ym, where ym is asymptotically
normal with covariance λ′Γ (m)p λ, where Γ

(m)
p is the covariance matrix of um

t . Then,
we have Γ (m)p → Γp, so that ym converges in distribution to a normal random variable
with mean zero and variance λ′Γpλ and we have verified part (ii) of Theorem A.2.
We verify part (iii) of Theorem A.2 by noting that

E[(Sn − ynm)2] = n−1
n∑

t=1
λ′E[(ut − um

t )(ut − um
t )′]λ

clearly converges to zero as n, m →∞ because

xt − xmt =

∞∑

j=m+1
ψjwt−j

form the components of ut − um
t .

Now, the form for
√

n(φ̃ − φ) contains the premultiplying matrix
(

n−1
n∑

t=1
xt−1x′t−1

)−1
p→ Γ−1

p ,



502 Appendix B: Time Domain Theory

because (A.22) can be applied to the function that defines the inverse of the matrix.
Then, applying (A.30), shows that

n1/2 (
φ̃ − φ

) d→ N
(
0, σ2

wΓ
−1
p ΓpΓ

−1
p

)
,

so we may regard it as being multivariate normal with mean zero and covariance
matrix σ2

wΓ
−1
p .

To investigate σ̃2
w , note

σ̃2
w = n−1

n∑

t=1

(
xt − φ̃′xt−1

)2

= n−1
n∑

t=1
x2
t − n−1

n∑

t=1
x′t−1xt

(

n−1
n∑

t=1
xt−1x′t−1

)−1

n−1
n∑

t=1
xt−1xt

p→ γ(0) − γ′pΓ
−1
p γp

= σ2
w,

and we have that the sample estimator converges in probability toσ2
w , which is written

in the form of (3.66). �
The arguments above imply that, for sufficiently large n, we may consider the

estimator φ̂ in (B.21) as being approximately multivariate normal with mean φ and
variance–covariance matrix σ2

wΓ
−1
p /n. Inferences about the parameter φ are obtained

by replacing the σ2
w and Γp by their estimates given by (B.22) and

Γ̂p = n−1
n∑

t=p+1
xt−1x′t−1,

respectively. In the case of a nonzero mean, the data xt are replaced by xt − x̄ in the
estimates and the results of Theorem A.2 remain valid.

B.4 The Wold Decomposition

The ARMA approach to modeling time series is generally implied by the assumption
that the dependence between adjacent values in time is best explained in terms of
a regression of the current values on the past values. This assumption is partially
justified, in theory, by the Wold decomposition.

In this section we assume that {xt ; t = 0,±1,±2, . . .} is a stationary, mean-zero
process. Using the notation of Sect. B.1, we define

Mx
n = sp{xt, −∞ < t ≤ n}, with Mx

−∞ =

∞⋂

n=−∞
Mx

n,
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and
σ2
x = E

(
xn+1 − PMx

n
xn+1

)2
.

We say that xt is a deterministic process if and only if σ2
x = 0. That is, a deterministic

process is one in which its future is perfectly predictable from its past; a simple
example is the process given in (4.1). We are now ready to present the decomposition.

Theorem B.5 (The Wold Decomposition) Under the conditions and notation of this
section, if σ2

x > 0, then xt can be expressed as

xt =
∞∑

j=0
ψjwt−j + vt

where

(i)
∑∞

j=0 ψ
2
j < ∞ (ψ0 = 1)

(ii) {wt } is white noise with variance σ2
w

(iii) wt ∈ Mx
t

(iv) cov(ws, vt ) = 0 for all s, t = 0,±1,±2, . . . .
(v) vt ∈ Mx−∞
(vi) {vt } is deterministic.

The proof of the decomposition follows from the theory of Sect. B.1 by defining
the unique sequences:

wt = xt − PMx
t−1

xt,

ψj = σ−2
w

〈
xt,wt−j

〉
= σ−2

w E(xtwt−j),

vt = xt −
∞∑

j=0
ψjwt−j .

Although every stationary process can be represented by the Wold decomposition,
it does not mean that the decomposition is the best way to describe the process. In
addition, there may be some dependence structure among the {wt }; we are only guar-
anteed that the sequence is an uncorrelated sequence. The theorem, in its generality,
falls short of our needs because we would prefer the noise process, {wt }, to be white
independent noise. But, the decomposition does give us the confidence that we will
not be completely off the mark by fitting ARMA models to time series data.



Appendix C

Spectral Domain Theory

C.1 Spectral Representation Theorems

In this section, we present a spectral representation for the process xt itself, which
allows us to think of a stationary process as a random sum of sines and cosines as
described in (4.4). In addition, we present results that justify representing the auto-
covariance function of a weakly stationary process in terms of a spectral distribution
function.

First, we consider developing a representation for the autocovariance function of
a stationary, possibly complex, series xt with zero mean and autocovariance function
γx(h) = E(xt+hx∗t ). An autocovariance function, γ(h), is non-negative definite in that,
for any set of complex constants, {at ∈ C; t = 1, . . . , n}, and any integer n > 0,

n∑

s=1

n∑

t=1
a∗sγ(s − t)at ≥ 0.

Likewise, any non-negative definite function, say γ(h), on the integers is an au-
tocovariance of some stationary process. To see this, let Γn = {γ(ti − tj )}ni, j=1
be the n × n matrix with i, jth equal to γ(ti − tj ). Then choose {xt } such that
(xt1, . . . , xtn ) ∼ Nn(0, Γn).

We now establish the relationship of such functions to a spectral distribution
function; Riemann-Stieljes integration is explained in Sect. C.4.1.

Theorem C.1 A function γ(h), for h = 0,±1,±2, . . ., is non-negative definite if and
only if it can be expressed as

γ(h) =
∫ 1

2

− 1
2

exp{2πiωh}dF(ω), (C.1)

where F(·) is nondecreasing. The function F(·) is right continuous, bounded and
uniquely determined by the conditions F(ω) = F(−1/2) = 0 for ω ≤ −1/2 and
F(ω) = F(1/2) = γ(0) for ω ≥ 1/2.
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Proof: If γ(h) has the representation (C.1), then

n∑

s=1

n∑

t=1
a∗sγ(s − t)at =

∫ 1
2

− 1
2

n∑

s=1

n∑

t=1
a∗s at e2πiω(s−t)dF(ω)

=

∫ 1
2

− 1
2

/
/
/
/
/

n∑

t=1
at e−2πiωt

/
/
/
/
/

2

dF(ω) ≥ 0

and γ(h) is non-negative definite.
Conversely, suppose γ(h) is a non-negative definite function. Define the non-

negative function

fn(ω) = n−1
n∑

s=1

n∑

t=1
e−2πiωsγ(s − t)e2πiωt

= n−1
(n−1)∑

h=−(n−1)
(n − |h|)e−2πiωhγ(h) ≥ 0

(C.2)

Now, let Fn(ω) be the distribution function corresponding to fn(ω)I(−1/2,1/2], where
I(·) denotes the indicator function of the interval in the subscript. Note that Fn(ω) =
0, ω ≤ −1/2 and Fn(ω) = Fn(1/2) for ω ≥ 1/2. Then,

∫ 1
2

− 1
2

e2πiωhdFn(ω) =
∫ 1

2

− 1
2

e2πiωh fn(ω) dω

=

{ (1 − |h|/n)γ(h), |h| < n
0, elsewhere.

We also have

Fn(1/2) =
∫ 1

2

− 1
2

fn(ω) dω

=

∫ 1
2

− 1
2

∑

|h |<n
(1 − |h|/n)γ(h)e−2πiωhdω = γ(0).

Now, by Helly’s first convergence theorem (Bhat [20, p. 157]), there exists a subse-
quence Fnk converging to F , and by the Helly-Bray Lemma (see Bhat, p. 157), this
implies

∫ 1
2

− 1
2

e2πiωhdFnk (ω) →
∫ 1

2

− 1
2

e2πiωhdF(ω)

and, from the right-hand side of the earlier equation,

(1 − |h|/nk)γ(h) → γ(h)
as nk →∞, and the required result follows. �
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Next, we present the version of the spectral representation theorem of a mean-
zero, stationary process, xt in terms of an orthogonal increment process. This version
allows us to think of a stationary process as being generated (approximately) by a
random sum of sines and cosines such as described in (4.4). We refer the reader to
Hannan (1970, §2.3)[86] for details.

Theorem C.2 If xt is a mean-zero stationary process, with spectral distribution F(ω)
as given in Theorem C.1, then there exists a complex-valued stochastic process Z(ω),
on the intervalω ∈ [−1/2, 1/2], having stationary uncorrelated increments, such that
xt can be written as the stochastic integral

xt =
∫ 1

2

− 1
2

e2πiωt dZ(ω),

where, for −1/2 ≤ ω1 ≤ ω2 ≤ 1/2,

var {Z(ω2) − Z(ω1)} = F(ω2) − F(ω1).
The theorem uses stochastic integration and orthogonal increment processes, which
are described in further detail in Sect. C.4.2.

In general, the spectral distribution function can be a mixture of discrete and
continuous distributions. The special case of greatest interest is the absolutely contin-
uous case, namely, when dF(ω) = f (ω)dω, and the resulting function is the spectral
density considered in Sect. 4.2. What made the proof of Theorem C.1 difficult was
that, after we defined

fn(ω) =
(n−1)∑

h=−(n−1)

(

1 − |h|
n

)

γ(h)e−2πiωh

in (C.2), we could not simply allow n → ∞ because γ(h) may not be abso-
lutely summable. If, however, γ(h) is absolutely summable we may define f (ω) =
limn→∞ fn(ω), and we have the following result.

Theorem C.3 If γ(h) is the autocovariance function of a stationary process, xt , with
∞∑

h=−∞
|γ(h)| < ∞, (C.3)

then the spectral density of xt is given by

f (ω) =
∞∑

h=−∞
γ(h)e−2πiωh . (C.4)

We may extend the representation to the vector case xt = (xt1, . . . , xt p)′ by
considering linear combinations of the form

yt =

p∑

j=1
a∗j xt j,
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which will be stationary with autocovariance functions of the form

γy(h) =
p∑

j=1

p∑

k=1
a∗jγjk(h)ak,

where γjk(h) is the usual cross-covariance function between xt j and xtk . To develop
the spectral representation of γjk(h) from the representations of the univariate series,
consider the linear combinations

yt1 = xt j + xtk and yt2 = xt j + ixtk,

which are both stationary series with respective covariance functions

γ1(h) = γj j (h) + γjk(h) + γk j (h) + γkk(h)

=

∫ 1
2

− 1
2

e2πiωhdG1(ω),

γ2(h) = γj j (h) + iγk j (h) − iγjk(h) + γkk(h)

=

∫ 1
2

− 1
2

e2πiωhdG2(ω).

Introducing the spectral representations for γj j (h) and γkk(h) yields

γjk(h) =
∫ 1

2

− 1
2

e2πiωhdFjk(ω),

with
Fjk(ω) = 1

2

[
G1(ω) + iG2(ω) − (1 + i)

(
Fj j (ω) + Fkk(ω)

)]
.

Now, under the summability condition

∞∑

h=−∞
|γjk (h)| < ∞,

we have the representation

γjk (h) =
∫ 1

2

− 1
2

e2πiωh fjk (ω)dω,

where the cross-spectral density function has the inverse Fourier representation

fjk (ω) =
∞∑

h=−∞
γjk(h)e−2πiωh .



C.2 Large Sample Distribution of the Smoothed Periodogram 509

The cross-covariance function satisfies γjk(h) = γk j (−h), which implies fjk(ω) =
fk j (−ω) using the above representation.

Then, defining the autocovariance function of the general vector process xt as the
p × p matrix

Γ(h) = E[(xt+h − μx)(xt − μx)′],
and the p × p spectral matrix as f (ω) = { fjk (ω); j, k = 1, . . . , p}, we have the
representation in matrix form, written as

Γ(h) =
∫ 1

2

− 1
2

e2πiωh f (ω) dω, (C.5)

and the inverse result

f (ω) =
∞∑

h=−∞
Γ(h)e−2πiωh . (C.6)

which appears as Property 4.8 in Sect. 4.5. Theorem C.2 can also be extended to the
multivariate case.

C.2 Large Sample Distribution of the Smoothed Periodogram

We have previously introduced the DFT, for the stationary zero-mean process xt ,
observed at t = 1, . . . , n as

d(ω) = n−1/2
n∑

t=1
xt e−2πiωt, (C.7)

as the result of matching sines and cosines of frequency ω against the series xt . We
will suppose now that xt has an absolutely continuous spectrum f (ω) corresponding
to the absolutely summable autocovariance function γ(h). Our purpose in this section
is to examine the statistical properties of the complex random variables d(ωk), for
ωk = k/n, k = 0, 1, . . . , n − 1 in providing a basis for the estimation of f (ω). To
develop the statistical properties, we examine the behavior of

Sn(ω,ω) = E |d(ω)|2 = n−1E
[ n∑

s=1
xs e−2πiωs

n∑

t=1
xt e2πiωt

]

= n−1
n∑

s=1

n∑

t=1
e−2πiωse2πiωtγ(s − t)

=

n−1∑

h=−(n−1)
(1 − |h|/n)γ(h)e−2πiωh, (C.8)

where we have let h = s − t. Using dominated convergence,

Sn(ω, ω) →
∞∑

h=−∞
γ(h)e−2πiωh = f (ω),
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as n → ∞, making the large sample variance of the Fourier transform equal to
the spectrum evaluated at ω. We have already seen this result in Theorem C.3. For
exact bounds it is also convenient to add an absolute summability assumption for the
autocovariance function, namely,

θ =

∞∑

h=−∞
|h| |γ(h)| < ∞. (C.9)

Example C.1 Condition (C.9) Verified for ARMA Models
For pure MA(q) models [ARMA(0, q)], γ(h) = 0 for |h| > q, so the condition holds
trivially. In Sect. 3.3, we showed that when p > 0, the autocovariance function
γ(h) behaves like the inverse of the roots of the AR polynomial to the power h.
Recalling (3.50), we can write

γ(h) ∼ |h|kξh ,

for large h, where ξ = |z|−1 ∈ (0, 1), z is a root of the AR polynomial, and
0 ≤ k ≤ p − 1 is some integer depending on the multiplicity of the root.

We show that
∑

h≥0 hξh is finite, the other cases follow in a similar manner.
Note the

∑
h≥0 ξ

h = 1/(1− ξ) because it is a geometric sum. Taking derivatives, we
have

∑
h≥0 hξh−1 = 1/(1 − ξ)2 and multiplying through by ξ, we have

∑
h≥0 hξh =

ξ/(1 − ξ)2. For other values of k, follow the recipe but take kth derivatives.

To elaborate further, we derive two approximation lemmas.

Lemma C.1 For Sn(ω,ω) as defined in (C.8) and θ in (C.9) finite, we have

|Sn(ω,ω) − f (ω)| ≤ θ

n
(C.10)

or
Sn(ω,ω) = f (ω) + O(n−1). (C.11)

Proof: To prove the lemma, write

n|Sn(ω, ω) − fx(ω)| =
/
/
/
/
/
/

∑

|u |<n
(n − |u|)γ(u)e−2πiωu − n

∞∑

u=−∞
γ(u)e−2πiωu

/
/
/
/
/
/

=

/
/
/
/
/
/
−n

∑

|u |≥n
γ(u)e−2πiωu −

∑

|u |<n
|u|γ(u)e−2πiωu

/
/
/
/
/
/

≤
∑

|u |≥n
|u| |γ(u)| +

∑

|u |<n
|u| |γ(u)|

= θ,

which establishes the lemma. �
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Lemma C.2 For ωk = k/n, ω� = �/n, ωk − ω� � 0,±1,±2,±3, . . ., and θ in (C.9),
we have

|Sn(ωk, ω�)| ≤ θ

n
= O(n−1), (C.12)

where
Sn(ωk, ω�) = E{d(ωk)d∗(ω�)}. (C.13)

Proof: Write

n|Sn(ωk, ω�)| =
−1∑

u=−(n−1)
γ(u)

n∑

v=−(u−1)
e−2πi(ωk−ω� )ve−2πiωku

+

n−1∑

u=0
γ(u)

n−u∑

v=1
e−2πi(ωk−ω� )ve−2πiωku .

Now, for the first term, with u < 0,

n∑

v=−(u−1)
e−2πi(ωk−ω� )v =

( n∑

v=1
−

−u∑

v=1

)

e−2πi(ωk−ω� )v

= 0 −
−u∑

v=1
e−2πi(ωk−ω� )v .

For the second term with u ≥ 0,

n−u∑

v=1
e−2πi(ωk−ω� )v =

( n∑

v=1
−

n∑

v=n−u+1

)

e−2πi(ωk−ω� )v

= 0 −
n∑

v=n−u+1
e−2πi(ωk−ω� )v .

Consequently,

n|Sn(ωk, ω�)| =
/
/
/
/
/
/
−

−1∑

u=−(n−1)
γ(u)

−u∑

v=1
e−2πi(ωk−ω� )ve−2πiωku

−
n−1∑

u=1
γ(u)

n∑

v=n−u+1
e−2πi(ωk−ω� )ve−2πiωku

/
/
/
/
/

≤
0∑

u=−(n−1)
(−u)|γ(u)| +

n−1∑

u=1
u|γ(u)|

=

(n−1)∑

u=−(n−1)
|u| |γ(u)|.
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Hence, we have
Sn(ωk, ω�) ≤ θ

n
,

and the asserted relations of the follow. �
Because the DFTs are approximately uncorrelated, say, of order 1/n, when the

frequencies are of the form ωk = k/n, we shall compute at those frequencies. The
behavior of f (ω) at neighboring frequencies will often be of interest and we shall
use Lemma C.3 below to handle such cases.

Lemma C.3 For |ωk − ω| ≤ L/2n and θ in (C.9), we have

| f (ωk) − f (ω)| ≤ πθL
n

(C.14)

or
f (ωk) − f (ω) = O(L/n). (C.15)

Proof: Write the difference

| f (ωk) − f (ω)| =
/
/
/
∞∑

h=−∞
γ(h)

(
e−2πiωkh − e−2πiωh

)//
/

≤
∞∑

h=−∞
|γ(h)| //e−πi(ωk−ω)h − eπi(ωk−ω)h //

= 2
∞∑

h=−∞
|γ(h)| //sin[π(ωk − ω)h]//

≤ 2π |ωk − ω|
∞∑

h=−∞
|h| |γ(h)|

≤ πθL
n

because | sin x | ≤ |x |. �
The main use of the properties described by Lemma C.1 and Lemma C.2 is in

identifying the covariance structure of the DFT, say,

d(ωk) = n−1/2
n∑

t=1
xt e−2πiωk t = dc(ωk) − ids(ωk),

where

dc(ωk) = n−1/2
n∑

t=1
xt cos(2πωkt)

and

ds(ωk) = n−1/2
n∑

t=1
xt sin(2πωkt)
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are the cosine and sine transforms, respectively, of the observed series, defined
previously in (4.31) and (4.32). For example, assuming zero means for convenience,
we will have

E[dc(ωk)dc(ω�)]

=
1
4

n−1
n∑

s=1

n∑

t=1
γ(s − t) (e2πiωk s + e−2πiωk s

) (
e2πiω� t + e−2πiω� t

)

=
1
4
[
Sn(−ωk, ω�) + Sn(ωk, ω�) + Sn(ω�, ωk) + Sn(ωk,−ω�)

]
.

Lemma C.1 and Lemma C.2 imply, for k = �,

E[dc(ωk)dc(ω�)] = 1
4
[
O(n−1) + f (ωk) + O(n−1)

+ f (ωk) + O(n−1) + O(n−1)]

=
1
2

f (ωk) + O(n−1). (C.16)

For k � �, all terms are O(n−1). Hence, we have

E[dc(ωk)dc(ω�)] =
{ 1

2 f (ωk) + O(n−1), k = �
O(n−1), k � �.

(C.17)

A similar argument gives

E[ds(ωk)ds(ω�)] =
{ 1

2 f (ωk) + O(n−1), k = �,
O(n−1), k � �

(C.18)

and we also have E[ds(ωk)dc(ω�)] = O(n−1) for all k, �. We may summarize the
results of Lemma C.1–Lemma C.3 as follows.

Theorem C.4 For a stationary mean zero process with autocovariance function sat-
isfying (C.9) and frequenciesωk:n, such that |ωk:n−ω| < 1/n, are close to some target
frequency ω, the cosine and sine transforms (4.31) and (4.32) are approximately un-
correlated with variances equal to (1/2) f (ω), and the error in the approximation can
be uniformly bounded by πθL/n.

Now, consider estimating the spectrum in a neighborhood of some target fre-
quency ω, using the periodogram estimator

I(ωk:n) = |d(ωk:n)|2 = d2
c(ωk:n) + d2

s (ωk:n),
where we take |ωk:n −ω| ≤ n−1 for each n. In case the series xt is Gaussian with zero
mean, (

dc(ωk:n)
ds(ωk:n)

)
d→ N

{(
0
0

)

,
1
2

(
f (ω) 0

0 f (ω)
)}

,
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and we have that
2 I(ωk:n)

f (ω)
d→ χ2

2,

where χ2
ν denotes a chi-squared random variable with ν degrees of freedom, as

usual. Unfortunately, the distribution does not become more concentrated as n →∞,
because the variance of the periodogram estimator does not go to zero.

We develop a fix for the deficiencies mentioned above by considering the average
of the periodogram over a set of frequencies in the neighborhood of ω. For example,
we can always find a set of L = 2m + 1 frequencies of the form {ωj:n + k/n; k =

0,±1,±2, . . . , m}, for which

f (ωj:n + k/n) = f (ω) + O(Ln−1)
by Lemma C.3. As n increases, the values of the separate frequencies change.

Now, we can consider the smoothed periodogramestimator, f̂ (ω), given in (4.64);
this case includes the averaged periodogram, f̄ (ω). First, we note that (C.9),
θ =

∑∞
h=−∞ |h| |γ(h)| < ∞, is a crucial condition in the estimation of spectra. In

investigating local averages of the periodogram, we will require a condition on the
rate of (C.9), namely

n∑

h=−n
|h| |γ(h)| = O(n−1/2). (C.19)

One can show that a sufficient condition for (C.19) is that the time series is the linear
process given by,

xt =
∞∑

j=−∞
ψjwt−j,

∞∑

j=0

√
j |ψj | < ∞ (C.20)

where wt ∼ iid(0, σ2
w) and wt has finite fourth moment,

E(w4
t ) = ησ4

w < ∞.

We leave it to the reader (see Problem 4.40 for more details) to show (C.20) im-
plies (C.19). If wt ∼ wn(0, σ2

w), then (C.20) implies (C.19), but we will require the
noise to be iid in the following lemma.

Lemma C.4 Suppose xt is the linear process given by (C.20), and let I(ωj ) be the
periodogram of the data {x1, . . . , xn}. Then

cov
(
I(ωj ), I(ωk)

)
=

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

2 f 2(ωj ) + o(1) ωj = ωk = 0, 1/2
f 2(ωj ) + o(1) ωj = ωk � 0, 1/2
O(n−1) ωj � ωk .

The proof of Lemma C.4 is straightforward but tedious, and details may be found in
Fuller (1976, Theorem 7.2.1) [65] or in Brockwell and Davis (1991, Theorem 10.3.2)
[36]. For demonstration purposes, we present the proof of the lemma for the pure white
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noise case; i.e., xt = wt , in which case f (ω) ≡ σ2
w . By definition, the periodogram

in this case is

I(ωj ) = n−1
n∑

s=1

n∑

t=1
wswte

2πiωj (t−s),

where ωj = j/n, and hence

E{I(ωj )I(ωk)} = n−2
n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1
E(wswtwuwv)e2πiωj (t−s)e2πiωk (u−v).

Now when all the subscripts match, E(wswtwuwv) = ησ4
w , when the subscripts match

in pairs (e.g., s = t � u = v), E(wswtwuwv) = σ4
w , otherwise, E(wswtwuwv) = 0.

Thus,

E{I(ωj )I(ωk)} = n−1(η − 3)σ4
w + σ4

w

(
1 + n−2[A(ωj + ωk) + A(ωk − ωj )]

)
,

where

A(λ) =
/
/
/
/
/

n∑

t=1
e2πiλt

/
/
/
/
/

2

.

Noting that EI(ωj ) = n−1 ∑n
t=1 E(w2

t ) = σ2
w , we have

cov{I(ωj ), I(ωk)} = E{I(ωj )I(ωk)} − σ4
w

= n−1(η − 3)σ4
w + n−2σ4

w[A(ωj + ωk) + A(ωk − ωj )].

Thus we conclude that

var{I(ωj )} = n−1(η − 3)σ4
w + σ4

w for ωj � 0, 1/2
var{I(ωj )} = n−1(η − 3)σ4

w + 2σ4
w for ωj = 0, 1/2

cov{I(ωj ), I(ωk)} = n−1(η − 3)σ4
w for ωj � ωk,

which establishes the result in this case. We also note that if wt is Gaussian, then
η = 3 and the periodogram ordinates are independent. Using Lemma C.4, we may
establish the following fundamental result.

Theorem C.5 Suppose xt is the linear process given by (C.20). Then, with f̂ (ω)
defined in (4.64) and corresponding conditions on the weights hk , we have, as n →∞,

(i) E
(

f̂ (ω)
)
→ f (ω)

(ii)
(∑m

k=−m h2
k

)−1
cov

(
f̂ (ω), f̂ (λ)

)
→ f 2(ω) for ω = λ � 0, 1/2.

In (ii), replace f 2(ω) by 0 if ω � λ and by 2 f 2(ω) if ω = λ = 0 or 1/2.
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Proof: (i): First, recall (4.36)

E
[
I(ωj:n)

]
=

n−1∑

h=−(n−1)

(
n − |h|

n

)

γ(h)e−2πiωj :nh def
= fn(ωj:n).

But since fn(ωj:n) → f (ω) uniformly, and | f (ωj:n) − f (ωj:n + k/n)| → 0 by the
continuity of f , we have

E f̂ (ω) =
m∑

k=−m
hkEI(ωj:n + k/n) =

m∑

k=−m
hk fn(ωj:n + k/n)

=

m∑

k=−m
hk [ f (ω) + o(1)] → f (ω),

because
∑m

k=−m hk = 1.

(ii): First, suppose we have ωj:n → ω1 and ω�:n → ω2, and ω1 � ω2. Then, for n
large enough to separate the bands, using Lemma C.4, we have

/
/
/cov

(
f̂ (ω1), f̂ (ω2)

)//
/ =

/
/
/
/
/
/

∑

|k |≤m

∑

|r |≤m
hk hrcov

[
I(ωj:n+k/n), I(ω�:n+r/n)]

/
/
/
/
/
/

=

/
/
/
/
/
/

∑

|k |≤m

∑

|r |≤m
hk hr O(n−1)

/
/
/
/
/
/

≤ c
n

�
�

�

∑

|k |≤m
hk

�
�

�

2

(where c is a constant)

≤ cL
n

�
�

�

∑

|k |≤m
h2
k

�
�

�

,

which establishes (ii) for the case of different frequencies. The case of the same
frequencies, i.e., ω = λ, is established in a similar manner to the above arguments. �

Theorem C.5 justifies the distributional properties used throughout Sect. 4.4 and
Chap. 7. We may extend the results of this section to vector series of the form
xt = (xt1, . . . , xt p)′, when the cross-spectrum is given by

fij (ω) =
∞∑

h=−∞
γij (h)e−2πiωh = cij (ω) − iqij (ω), (C.21)

where

cij (ω) =
∞∑

h=−∞
γij (h) cos(2πωh) (C.22)
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and

qij (ω) =
∞∑

h=−∞
γij (h) sin(2πωh) (C.23)

denote the cospectrum and quadspectrum, respectively. We denote the DFT of the
series xt j by

dj (ωk) = n−1/2
n∑

t=1
xt j e−2πiωk t

= dcj (ωk) − ids j (ωk),
where dcj and ds j are the cosine and sine transforms of xt j , for j = 1, 2, . . . , p. We
bound the covariance structure as before and summarize the results as follows.

Theorem C.6 The covariance structure of the multivariate cosine and sine trans-
forms, subject to

θij =

∞∑

h=−∞
|h| |γij (h)| < ∞, (C.24)

is given by

E[dci(ωk)dcj (ω�)] =
{ 1

2 cij (ωk) + O(n−1), k = �
O(n−1), k � �.

(C.25)

E[dci(ωk)ds j (ω�)] =
{− 1

2 qij (ωk) + O(n−1), k = �
O(n−1), k � �

(C.26)

E[dsi(ωk)dcj (ω�)] =
{ 1

2 qij (ωk) + O(n−1), k = �
O(n−1), k � �

(C.27)

E[dsi(ωk)ds j (ω�)] =
{ 1

2 cij (ωk) + O(n−1), k = �
O(n−1), k � �.

(C.28)

Proof: We define

Sij
n (ωk, ω�) =

n∑

s=1

n∑

t=1
γij (s − t)e−2πiωk se2πiω� t . (C.29)

Then, we may verify the theorem with manipulations like
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E[dci(ωk)ds j (ωk)]

=
1
4i

n∑

s=1

n∑

t=1
γij (s − t)(e2πiωk s + e−2πiωk s)(e2πiωk t − e−2πiωk t )

=
1
4i

[

Sij
n (−ωk, ωk) + Sij

n (ωk, ωk) − Sij
n (ωk, ωk) − Sij

n (ωk,−ωk)
]

=
1
4i

[

cij (ωk) − iqij (ωk) − (cij (ωk) + iqij (ωk)) + O(n−1)
]

= −1
2

qij (ωk) + O(n−1),

where we have used the fact that the properties given in Lemma C.1–Lemma C.3 can
be verified for the cross-spectral density functions fij (ω), i, j = 1, . . . , p. �

Now, if the underlying multivariate time series xt is a normal process, it is clear
that the DFTs will be jointly normal and we may define the vector DFT, d(ωk) =
(d1(ωk), . . . , dp(ωk))′ as

d(ωk) = n−1/2
n∑

t=1
xt e−2πiωk t = dc(ωk) − ids(ωk), (C.30)

where

dc(ωk) = n−1/2
n∑

t=1
xt cos(2πωkt) (C.31)

and

ds(ωk) = n−1/2
n∑

t=1
xt sin(2πωkt) (C.32)

are the cosine and sine transforms, respectively, of the observed vector series xt .
Then, constructing the vector of real and imaginary parts (d ′c(ωk), d ′s(ωk))′, we may
note it has mean zero and 2p × 2p covariance matrix

Σ(ωk) = 1
2

(
C(ωk) −Q(ωk)
Q(ωk) C(ωk)

)

(C.33)

to order n−1 as long as ωk − ω = O(n−1). We have introduced the p × p matrices
C(ωk) = {cij (ωk)} and Q = {qij (ωk)}. The complex random variable d(ωk) has
covariance

S(ωk) = E[d(ωk)d∗(ωk)]
= E

[
(
dc(ωk) − ids(ωk)

) (
dc(ωk) − ids(ωk)

)∗
]

= E[dc(ωk)dc(ωk)′] + E[ds(ωk)ds(ωk)′]
−i

(
E[ds(ωk)dc(ωk)′] − E[dc(ωk)ds(ωk)′]

)

= C(ωk) − iQ(ωk ). (C.34)
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If the process xt has a multivariate normal distribution, the complex vector d(ωk)
has approximately the complex multivariate normal distribution with mean zero and
covariance matrix S(ωk) = C(ωk) − iQ(ωk ) if the real and imaginary parts have the
covariance structure as specified above. In the next section, we work further with
this distribution and show how it adapts to the real case. If we wish to estimate the
spectral matrix S(ω), it is natural to take a band of frequencies of the formωk:n+ �/n,
for � = −m, . . . , m as before, so that the estimator becomes (4.98) of Sect. 4.5. A
discussion of further properties of the multivariate complex normal distribution is
deferred.

It is also of interest to develop a large sample theory for cases in which the under-
lying distribution is not necessarily normal. If xt is not necessarily a normal process,
some additional conditions are needed to get asymptotic normality. In particular,
introduce the notion of a generalized linear process

yt =

∞∑

r=−∞
Arwt−r, (C.35)

where wt is a p × 1 vector white noise process with p × p covariance E[wtw
′
t ] = G

and the p × p matrices of filter coefficients At satisfy

∞∑

t=−∞
tr{At A′t } =

∞∑

t=−∞
‖At ‖2 < ∞. (C.36)

In particular, stable vector ARMA processes satisfy these conditions. For generalized
linear processes, we state the following general result from Hannan [86, p.224].

Theorem C.7 If xt is generated by a generalized linear process with a continuous
spectrum that is not zero at ω and ωk:n+ �/n are a set of frequencies within L/n of ω,
the joint density of the cosine and sine transforms (C.31) and (C.32) converges to that
of L independent 2p × 1 normal vectors with covariance matrix Σ(ω) with structure
given by (C.33). At ω = 0 or ω = 1/2, the distribution is real with covariance matrix
2Σ(ω).

The above result provides the basis for inference involving the Fourier transforms
of stationary series because it justifies approximations to the likelihood function
based on multivariate normal theory. We make extensive use of this result in Chap. 7,
but will still need a simple form to justify the distributional result for the sample
coherence given in (4.104). The next section gives an elementary introduction to the
complex normal distribution.

C.3 The Complex Multivariate Normal Distribution

The multivariate normal distribution will be the fundamental tool for expressing the
likelihood function and determining approximatemaximumlikelihood estimators and
their large sample probability distributions. A detailed treatment of the multivariate
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normal distribution can be found in standard texts such as Anderson [7]. We will
use the multivariate normal distribution of the p × 1 vector x = (x1, x2, . . . , xp)′, as
defined by its density function

p(x) = (2π)−p/2|Σ |−1/2 exp
{
− 1

2 (x − μ)′Σ−1(x − μ)
}
, (C.37)

which has mean vector E[x] = μ = (μ1, . . . , μp)′ and covariance matrix

Σ = E[(x − μ)(x − μ)′]. (C.38)

We use the notation x ∼ Np(μ, Σ) for densities of the form (C.37) and note that
linearly transformed multivariate normal variables of the form y = Ax, with A a q× p
matrix q ≤ p, will also be multivariate normal with distribution

y ∼ Nq(Aμ, AΣA′). (C.39)

Often, the partitioned multivariate normal, based on the vector x = (x′1, x′2)′, split
into two p1 × 1 and p2 × 1 components x1 and x2, respectively, will be used where
p = p1 + p2. If the mean vector μ = (μ′1, μ′2)′ and covariance matrices

Σ =

(
Σ11 Σ12
Σ21 Σ22

)

(C.40)

are also compatibly partitioned, the marginal distributionof any subset of components
is multivariate normal, say,

x1 ∼ Np1 {μ1, Σ11},
and that the conditional distribution x2 given x1 is normal with mean

E[x2 | x1] = μ2 + Σ21Σ
−1
11 (x1 − μ1) (C.41)

and conditional covariance

cov[x2 | x1] = Σ22 − Σ21Σ
−1
11 Σ12 . (C.42)

In the previous section, the real and imaginary parts of the DFT had a partitioned
covariance matrix as given in (C.33), and we use this result to say the complex p × 1
vector

z = x1 − ix2 (C.43)

has a complex multivariate normal distribution, with mean vector μz = μ1 − iμ2 and
p × p covariance matrix

Σz = C − iQ (C.44)

if the real multivariate 2p × 1 normal vector x = (x′1, x′2)′ has a real multivariate
normal distribution with mean vector μ = (μ′1, μ′2)′ and covariance matrix

Σ =
1
2

(
C −Q
Q C

)

. (C.45)
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The restrictions C′ = C and Q′ = −Q are necessary for the matrix Σ to be a covariance
matrix, and these conditions then imply Σz = Σ∗z is Hermitian. The probability density
function of the complex multivariate normal vector z can be expressed in the concise
form

pz(z) = π−p |Σz |−1 exp{−(z − μz)∗Σ−1
z (z − μz)}, (C.46)

and this is the form that we will often use in the likelihood. The result follows from
showing that px(x1, x2) = pz(z) exactly, using the fact that the quadratic and Hermitian
forms in the exponent are equal and that |Σx | = |Σz |2. The second assertion follows
directly from the fact that the matrix Σx has repeated eigenvalues, λ1, λ2, . . . , λp
corresponding to eigenvectors (α′1, α′2)′ and the same set, λ1, λ2, . . . , λp corresponding
to (α′2,−α′1)′. Hence

|Σx | =
p∏

i=1
λ2
i = |Σz |2.

For further material relating to the complex multivariate normal distribution, see
Goodman [75], Giri [73], or Khatri [117].

Example C.2 A Complex Normal Random Variable
To fix ideas, consider a very simple complex random variable

z = "(z) − i#(z) = z1 − iz2,

where z1 ∼ N(0, 1
2σ

2) independent of z2 ∼ N(0, 1
2σ

2). Then the joint density of
(z1, z2) is

p(z1, z2) ∝ σ−1 exp

(

− z2
1

σ2

)

× σ−1 exp

(

− z2
2

σ2

)

= σ−2 exp

{

−
(

z2
1 + z2

2
σ2

)}

.

More succinctly, we write z ∼ Nc(0, σ2), and

p(z) ∝ σ−2 exp
(

− z∗ z

σ2

)

.

In Fourier analysis, z1 would be the cosine transform of the data at a fundamental
frequency (excluding the end points) and z2 the corresponding sine transform.
If the process is Gaussian, z1 and z2 are independent normals with zero means
and variances that are half of the spectral density at the particular frequency.
Consequently, the definition of the complex normal distribution is natural in the
context of spectral analysis.

Example C.3 A Bivariate Complex Normal Distribution
Consider the joint distribution of the complex random variables u1 = x1 − ix2 and
u2 = y1 − iy2, where the partitioned vector (x1, x2, y1, y2)′ has a real multivariate
normal distribution with mean (0, 0, 0, 0)′ and covariance matrix
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Σ =
1
2

�
�
�
�

�

cxx 0 cxy −qxy
0 cxx qxy cxy

cxy qxy cyy 0
−qxy cyx 0 cyy

�
�
�
�

�

. (C.47)

Now, consider the conditional distribution of y = (y1, y2)′, given x = (x1, x2)′.
Using (C.41), we obtain

E(y /
/ x) =

(
x1 −x2
x2 x1

) (
b1
b2

)

, (C.48)

where
(b1, b2) =

(
cyx
cxx

,
qyx
cxx

)

. (C.49)

It is natural to identify the cross-spectrum

fxy = cxy − iqxy, (C.50)

so that the complex variable identified with the pair is just

b = b1 − ib2 =
cyx − iqyx

cxx
=

fyx
fxx

,

and we identify it as the complex regression coefficient. The conditional covariance
follows from (C.42) and simplifies to

cov(y /
/ x) = 1

2 fy ·x I2, (C.51)

where I2 denotes the 2 × 2 identity matrix and

fy ·x = cyy −
c2
xy + q2

xy

cxx
= fyy −

| fxy |2
fxx

(C.52)

Example C.3 leads to an approach for justifying the distributional results for
the function coherence given in (4.104). That equation suggests that the result can
be derived using the regression results that lead to the F-statistics in Sect. 2.1.
Suppose that we consider L values of the sine and cosine transforms of the input
xt and output yt , which we will denote by dx,c(ωk + �/n), dx,s(ωk + �/n), dy,c(ωk +

�/n), dy,s(ωk + �/n), sampled at L = 2m + 1 frequencies, � = −m, . . . , m, in the
neighborhood of some target frequency ω. Suppose these cosine and sine transforms
are re-indexed and denoted by dx,cj, dx,s j, dy,cj, dy,s j , for j = 1, 2, . . . , L, producing
2L real random variables with a large sample normal distribution that have limiting
covariance matrices of the form (C.47) for each j. Then, the conditional normal
distribution of the 2 × 1 vector dy,cj, dy,s j given dx,cj, dx,s j , given in Example C.3,
shows that we may write, approximately, the regression model

(
dy,cj
dy,s j

)

=

(
dx,cj −dx,s j
dx,s j dx,cj

) (
b1
b2

)

+

(
Vcj

Vs j

)

,
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where Vcj,Vs j are approximately uncorrelated with approximate variances

E[V2
cj ] = E[V2

s j ] = (1/2) fy ·x .

Now, construct, by stacking, the 2L × 1 vectors yc = (dy,c1, . . . , dy,cL)′, ys =

(dy,s1, . . . , dy,sL)′, xc = (dx,c1, . . . , dx,cL)′ and xs = (dx,s1, . . . , dx,sL)′, and rewrite
the regression model as

(
yc
ys

)

=

(
xc −xs
xs xc

) (
b1
b2

)

+

(
vc
vs

)

where vc and vs are the error stacks. Finally, write the overall model as the regression
model in Chap. 2, namely,

y = Zb + v,

making the obvious identifications in the previous equation. Conditional on Z , the
model becomes exactly the regression model considered in Chap. 2 where there are
q = 2 regression coefficients and 2L observations in the observation vector y. To test
the hypothesis of no regression for that model, we use an F-Statistic that depends on
the difference between the residual sum of squares for the full model, say,

SSE = y′y − y′Z(Z ′Z)−1Z ′y (C.53)

and the residual sum of squares for the reduced model, SSE0 = y′y. Then,

F2,2L−2 = (L − 1)SSE0 − SSE
SSE

(C.54)

has the F-distribution with 2 and 2L − 2 degrees of freedom. Also, it follows by
substitution for y that

SSE0 = y′y = y′cyc + y′s ys =
L∑

j=1
(d2

y,cj + d2
y,s j ) = L f̂y(ω),

which is just the sample spectrum of the output series. Similarly,

Z ′Z =

(
L f̂x 0
0 L f̂x

)

and

Z ′y =

( (x′cyc + x′s ys)
(x′cys − x′syc)

)

=
�
�
�

�

∑L
j=1(dx,cjdy,cj + dx,s jdy,s j )

∑L
j=1(dx,cjdy,s j − dx,s jdy,cj )

�
�
�

�

=

(
Lĉyx
Lq̂yx

)

.
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together imply that
y′Z(Z ′Z)−1Z ′y = L | f̂xy |2/ f̂x .

Substituting into (C.54) gives

F2,2L−2 = (L − 1) | f̂xy |2/ f̂x
(

f̂y − | f̂xy |2/ f̂x

) ,

which converts directly into the F-statistic (4.104), using the sample coherence defined
in (4.103).

C.4 Integration

In Chap. 4 and in this appendix, we use Riemann–Stieltjes integration and stochas-
tic integration. We now give a cursory introduction to these concepts for readers
unfamiliar with the techniques.

C.4.1 Riemann–Stieltjes Integration

Rather than work in complete generality, we focus on the meaning of (4.14),

γ(h) =
∫ 1

2

− 1
2

e2πiωh dF(ω).

Here, we are concerned with the integration of a bounded, continuous (complex-
valued) function g(ω) = e2πiωh with respect to a monotonically increasing, right
continuous (real-valued) function F(ω).

Let Ω = {− 1
2 = ω0, ω1, . . . , ωn = 1

2 } be a partition of the interval, and define the
sum

SΩ(g, F) =
n∑

j=1
g(uj )[F(ωj) − F(ωj−1)] (C.55)

where uj ∈ [ωj−1, ωj ]. In our case, there is a unique number, say I(g, F) such that
for any ε > 0, there is a δ > 0 for which

|SΩ(g, F) − I(g, F)| < ε

for any partition Ω with maxj |ωj−ωj−1 | < δ and any uj ∈ [ωj−1, ωj ] for j = 1, . . . , n.
In this case, we define

I(g, F) =
∫ 1

2

− 1
2

g(ω)dF(ω) . (C.56)

In the absolutely continuous case, such as in Property 4.2, dF(ω) = f (ω)dω and,
as stated in the property,
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γ(h) =
∫ 1

2

− 1
2

e2πiωh dF(ω) =
∫ 1

2

− 1
2

e2πiωh f (ω)dω .

Another case that we discussed was the discrete case such as in Example 4.4 where
the spectral distribution F(ω)makes jumps at specific values of ω. First, consider the
case where F(ω) has only one jump of size c > 0 at ω∗ ∈ (− 1

2,
1
2 ), so that F(ω) = 0

if ω < ω∗ and F(ω) = c if ω ≥ ω∗. Then considering SΩ(g, F) in (C.55), note that
F(ωj ) − F(ωj−1) = 0 for all intervals that do not include ω∗. Now suppose in some
kth interval of the partition, ω∗ ∈ (ωk−1, ωk] for a k ∈ {1, . . . , n}. Then

SΩ(g, F) =
n∑

j=1
g(uj )[F(ωj) − F(ωj−1)] = g(uk) c ,

where uk ∈ [ωk−1, ωk]. Thus,

|SΩ(g, F) − g(ω∗) c | = c |g(uk) − g(ω∗)|.
Since g is continuous, given ε > 0, there is a δ > 0 such that |g(uk) − g(ω∗)| < ε/c
when |uk − ω∗| < δ. Hence, for any partition Ω with maxj |ωj − ωj−1 | < δ, we have
|SΩ(g, F) − g(ω∗) c | < ε , and consequently,

∫ 1
2

− 1
2

g(ω) dF(ω) = g(ω∗) c .

This result may be extended in an obvious way to the case where F makes jumps at
more than one value as was the case in Example 4.4.

Example C.4 Complex Harmonic Process
Recall (4.4) where we considered a mix of periodic components. In that example,
the process was real, but it is possible to consider a complex-valued process in a
similar way. In this case, we define

xt =
q∑

j=1
Z j e2πitωj , − 1

2 < ω1 < · · · < ωq < 1
2 , (C.57)

where the Z j are uncorrelated complex-valued random variables such that E[Z j] = 0
and E[|Z j |2] = σj > 0. As discussed in Example 4.9, the case where xt is real-
valued is a special case of (C.57). Extending Example 4.4 to the case of (C.57), we
have

F(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 − 1
2 ≤ ω < ω1 ,

σ2
1 ω1 ≤ ω < ω2 ,

σ2
1 + σ2

2 ω2 ≤ ω < ω3 ,

σ2
1 + σ2

2 + σ2
3 ω3 ≤ ω < ω4 ,

...
...

σ2
1 + σ2

2 + · · · + σ2
q ωq ≤ ω ≤ 1

2 .

(C.58)
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Thus, for the process in this example,

γx(h) =
∫ 1

2

− 1
2

e2πiωh dF(ω) =
q∑

j=1
σ2
j e2πihωj .

Note that γx(h) is complex, but satisfies the properties of an autocovariance func-
tion: (i) γx(h) is a Hermitian function, γx(h) = γ∗x(−h); (ii) 0 ≤ |γx(h)| ≤ γx(0),
and (iii) γx(h) is non-negative definite. As in the real case, the total vari-
ance of the process is the sum of the variances of the individual components,
var(xt ) = γx(0) = ∑q

j=1 σ
2
j .

C.4.2 Stochastic Integration

We first used stochastic integration in Example 4.9, although it was not necessary for
that particular example. There is an analogy of stochastic integration to Riemann-
Stieltjes integration defined in the previous subsection, however, we will have to deal
with convergence of random processes rather than convergence of numbers. We focus
on the case of interest to us; namely the stochastic integral in Theorem C.2,

xt =
∫ 1

2

− 1
2

g(ω)dZ(ω) ,

where Z(ω) is a complex-valued orthogonal increment process and g(ω) = e2πiωt .
For {Z(ω); ω ∈ [− 1

2,
1
2 ]} and − 1

2 ≤ ω1 < ω2 < ω3 < ω4 ≤ 1
2 , we have

• Z(− 1
2 ) = 0,

• E[Z(ω)] = 0,
• var[Z(ω)] = E[|Z(ω)|2] = E[Z(ω) Z∗(ω)] < ∞,
• E{[Z(ω4) − Z(ω3)] [Z(ω2) − Z(ω1)]∗} = 0.

As an example, recall Brownian motion in Definition 5.1.
We say {Z(ω)} is mean square (m.s.) right continuous if E|Z(ω+δ)−Z(ω)|2 → 0

as δ ↓ 0. An important result is that such a process admits a spectral distribution.

Theorem C.8 If {Z(ω); ω ∈ [− 1
2,

1
2 ]} is an orthogonal increment process that is m.s.

right continuous, then there is a unique spectral distribution function F such that

(1) F(ω) = 0 if ω ≤ − 1
2 .

(2) F(ω) = F( 1
2 ) if ω ≥ 1

2 .
(3) F(ω2) − F(ω1) = E|Z(ω2) − Z(ω1)|2 if − 1

2 ≤ ω1 ≤ ω2 ≤ 1
2 .

Proof: Define F(ω) = E|Z(ω)|2 for ω ∈ [− 1
2,

1
2 ], with F(ω) = 0 for ω ≤ − 1

2 and
F(ω) = F( 1

2 ) for ω ≥ 1
2 . It is immediate from the assumptions that F is right

continuous and satisfies (1)–(3). To show that F is monotonically increasing, note
that for ω2 ≥ ω1,
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F(ω2) = E|Z(ω2) − Z(ω1) + Z(ω1) − Z(− 1
2 )|2

= E|Z(ω2) − Z(ω1)|2 + E|Z(ω1)|2
≥ F(ω1) ,

since [− 1
2, ω1] and [ω1, ω2] are non-overlapping intervals. �

Similar to the previous subsection, let Ω = {− 1
2 = ω0, ω1, . . . , ωn = 1

2 } be a
partition of the interval, and define the random sum

SΩ(g, Z) =
n∑

j=1
g(uj )[Z(ωj) − Z(ωj−1)] (C.59)

where uj ∈ [ωj−1, ωj ]. We emphasize the fact that SΩ(g, Z) is a complex-valued
random variable with mean and variance given by

E[SΩ(g, Z)] = 0 and E[|SΩ(g, Z)|2] =
n∑

j=1
g(uj )[F(ωj) − F(ωj−1)]

where F is defined in Theorem C.8. In our case, there is a unique (except on a set
of probability zero) complex-valued random variable, say I(g, Z) such that for any
ε > 0, there is a δ > 0 for which

E |SΩ(g, Z) − I(g, Z)|2 < ε

for any partition Ω with ΔΩ = maxj |ωj − ωj−1 | < δ and any uj ∈ [ωj−1, ωj ] for
j = 1, . . . , n. In this case, define

I(g, Z) =
∫ 1

2

− 1
2

g(ω)dZ(ω) . (C.60)

We see that the stochastic integral is the mean-square limit of the random sum as
n →∞ (ΔΩ → 0).

Recalling Example 4.9, as in the deterministic case, it is easy to show that, if
Z(ω) is an orthogonal increment process that makes uncorrelated jumps at −ω0 and
ω0 with mean-zero and variance σ2/2, then

xt =
∫ 1

2

− 1
2

e2πiωt dZ(ω) = Z(−ω0) e−2πiω0t + Z(ω0) e2πiω0t .

In this case, the spectral distribution is (recall Example 4.4)

F(ω) =
⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

0 ω < −ω0,

σ2/2 −ω0 ≤ ω < ω0,

σ2 ω ≥ ω0 ,

and the autocovariance function is

γx(h) =
∫ 1

2

− 1
2

e2πiωh dF(ω) = σ2

2
e−2πiω0h +

σ2

2
e2πiω0h = σ2 cos(2πω0h) .
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C.5 Spectral Analysis as Principal Component Analysis

In Chap. 4, we presented many different ways to view the spectral density. In this
section, we show that the spectral density may be though of as the approximate
eigenvalues of the covariance matrix of a stationary process. Suppose X = (x1, . . . , xn)
are n values of a real, mean-zero, time series, xt with spectral density fx(ω). Then

cov(X) = Γn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(0) γ(1) · · · γ(n − 1)
γ(1) γ(0) · · · γ(n − 2)
...

...
. . .

...
γ(n − 1) γ(n − 2) · · · γ(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a non-negative definite, symmetric Toeplitz matrix. Hence, there is an n × n
orthogonal matrix M, such that M ′ΓnM = diag(λ0, . . . , λn−1), where λj ≥ 0 for
j = 0, . . . , n − 1 are the latent roots of Γn. In this section, we will show that, for n
sufficiently large,

λj ≈ fx(ωj ) , j = 0, 1, . . . , n − 1 ,

where ωj = j/n are the Fourier frequencies.
To start the approximation, we introduce a circulant matrix defined as

Γc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(0) c(1) · · · c(n − 2) c(n − 1)
c(n − 1) c(0) · · · c(n − 3) c(n − 2)

...
...

. . .
...

...
c(2) c(3) · · · c(0) c(1)
c(1) c(2) · · · c(n − 1) c(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

the matrix has c(0) on the diagonal, then continue to the right c(1), c(2), . . . , and wrap
the sequence around to the first column after the last column is reached. Using direct
substitution, it can be shown that the latent roots and vectors of Γc are

λj =

n−1∑

h=0
c(h) e−2πihj/n ,

and
g∗j =

1√
n

(
e−2πi0 j

n , e−2πi1 j
n , . . . , e−2πi(n−1) j

n

)
,

for j = 0, 1, . . . , n − 1.
If Γc is symmetric [c( j) = c(n − j)], call it Γs and let c(h) = c(−h). Noting that

e−2πihj/n = e−2πi(n−h)j/n, we have for n odd,

λj =
∑

|h |≤ n−1
2

c(h) e−2πihj/n =
∑

|h |≤ n−1
2

c(h) cos(2πh j/n)

for j = 0, 1, . . . , n−1. If n is even, the sum would include one extra term for j/n = 1/2.
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We see that λ0 is a distinct root, and λj = λn−j are repeated roots for j =

1, . . . , n−1
2 . For each repeated root, we can find a pair of eigenvectors corresponding

to λj , namely

v′j =
1√
2
(g∗j + g∗n−j ) =

√
2√
n

(
1, cos(2π j/n), . . . , cos(2π(n − 1) j/n)

)
;

u′j =
1√
2
i(g∗j − g∗n−j ) =

√
2√
n

(
0, sin(2π j/n), . . . , sin(2π(n − 1) j/n)

)
.

For λ0, the corresponding eigenvector is v′0 = g∗0 = 1√
n
(1, 1, . . . , 1) =

√
2√
n
( 1√

2
, . . . , 1√

2
).

Now define the matrix Q as

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v′0
v′1
u′1
...

v′n−1
2

u′n−1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

√
2√
n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1√
2

1√
2

· · · 1√
2

1 cos(2π 1
n ) · · · cos(2π n−1

n )
0 sin(2π 1

n ) · · · sin(2π n−1
n )

...
... · · · ...

1 cos(2π n−1
2

1
n ) · · · cos(2π n−1

2
n−1
n )

0 sin(2π n−1
2

1
n ) · · · sin(2π n−1

2
n−1
n )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C.61)

Thus, with m = n−1
2 ,

QΓsQ
′ = diag(λ0, λ1, λ1, λ2, λ2, . . . , λm, λm)

where λj =
∑
|h |≤m c(h) cos(2πh j/n) for j = 0, 1, . . . , m.

Theorem C.9 Let Γn be the covariance matrix of n (odd) realizations from a sta-
tionary process {xt } with spectral density fx(ω). Let Q be as defined in (C.61) and
let Dn = diag{d0, d1, . . . , dn−1} be the diagonal matrix with entries d0 = fx (0) =∑∞
−∞ γ(h) and

d2j−1 = d2j = fx(ωj ) =
∞∑

−∞
γ(h)e−2πihj/n ,

for j = 1, . . . , n−1
2 and ωj = j/n. Then

QΓnQ − Dn → 0 uniformly as n →∞ .

Proof: Although Γn is symmetric, it is not circulant (or the proof would be done). Let
Γn,s be the symmetric circulant matrix with elements c(h) = γ(h), and latent roots,
λj =

∑
|h |≤ n−1

2
γ(h)e−2πihj/n. Note that

|λj − fx (ωj )| ≤
∑

|h |> n−1
2

|γ(h)| → 0

as n →∞. Hence, we must show that QΓn,sQ′ − QΓnQ′ → 0 as n → ∞.
The i jth element of the difference of the two matrices is



530 Appendix C: Spectral Domain Theory

{Γn,s − Γn}ij =
{

0 if |i − j | ≤ n−1
2

γ(n − |i − j |) − γ(|i − j |) if |i − j | > n−1
2

.

Put n − m = |i − j |, so that the second case is

γ(m) − γ(n − m) for 1 ≤ m ≤ n−1
2 .

Let qj be the jth column of Q, then

|q′i (Γn,s − Γn)qj |

=

/
/
/

n−1
2∑

m=1

m∑

k=1
qik[γ(m) + γ(n − m)]qj,n−m+k + qi,n−m+k [γ(m) + γ(n − m)]qjk

/
/
/

=

/
/
/

n−1
2∑

m=1
[γ(m) + γ(n − m)] +

m∑

k=1
qikqj,n−m+k + qi,n−m+kqjk

/
/
/

(1)≤ 4
n

n−1
2∑

m=1
m|γ(m)| + 4

n

n−1
2∑

m=1
m|γ(n − m)|

(2)≤ 4
n

n−1
2∑

m=1
m|γ(m)| + 4

n

n∑

k= n−1
2 +1

n−1
2 |γ(k)|

n→∞−→ 0
︸︷︷︸
(3)

+ 0
︸︷︷︸
(4)

.

Inequality (1) follows because |qij |2 ≤ 2/n. In the second summation of inequality
(2), put k = n − m and use the fact that m ≤ n−1

2 in the sum. Result (3) follows from
Kronecker’s Lemma4 and (4) follows from the fact that we are summing the tail end
of an absolutely summable sequence [and (n − 1)/n ∼ 1]. �

The results of this section may be summarized as follows. If we transform the data
vector, say X = (x1, . . . , xn) by Y = QX , the components of Y are nearly uncorrelated
with cov(Y) ≈ Dn. The components of Y are

2√
n

n∑

t=1
xt cos(2πt j/n) and

2√
n

n∑

t=1
xt sin(2πt j/n)

for j = 0, 1, . . . , n−1
2 . If we let G be the complex matrix with columns gj , then the

complex transform Y = G∗X has elements that are the DFTs,

yj =
1√
n

n∑

t=1
xte−2πit j/n

4 Kronecker’s Lemma: If
∑∞

j=0 |a j | < ∞, then
∑n

j=0
j
n |a j | → 0 as n →∞.
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for j = 0, 1, . . . , n− 1. In this case, the elements of Y are asymptotically uncorrelated
complex random variables, with mean-zero and variance f (ωj ). Also, X may be
recovered as X = GY , so that xt = 1√

n

∑n−1
j=0 yje2πit j/n.

In this section, we focused on the case where n is odd. For the n even case,
everything follows through as in the odd case, but with the addition of one more term
when n−1

2 becomes n
2 − 1, and with the addition of one more row in Q or G, and all in

a manner that is so obvious, it would be too simple to be a good homework question.

C.6 Parametric Spectral Estimation

In this section we prove Property 4.7. The basic idea of the result is that a spectral
density can be approximated arbitrarily close by the spectrum of an AR(p) process.

Proof of Property 4.7. If g(ω) ≡ 0, then put p = 0 and σw = 0. When g(ω) > 0 over
some ω ∈ [− 1

2,
1
2 ] , let ε > 0 and define

d(ω) =
{
g−1(ω) if g(ω) > ε/2 ,
2/ε if g(ω) ≤ ε/2 ,

so that d−1(ω) = max{g(ω), ε/2}. Define G = maxω{g(ω)} and let 0 < δ <
ε[G(2G + ε]−1. Define the sum

Sn[d(ω)] =
∑

| j |≤n
〈d, ej〉ej (ω)

where ej (ω) = e2πijω and 〈d, ej〉 =
∫ 1

2
− 1

2
d(ω)e−2πijωdω. Now define the Cesaro sum

Cm(ω) = 1
m

m−1∑

n=0
Sn[d(ω)] ,

which is a cumulative average of Sn[·]. In this case, Cm(ω) = ∑
| j |≤m cje−2πijω where

cj = (1 − | j |
m )〈d, ej〉. The Cesaro sum converges uniformly on [− 1

2,
1
2 ] for d ∈ L2,

consequently there is a finite p such that
/
/
/
∑

| j |≤p
cje−2πijω − d(ω)

/
/
/ < δ for all ω ∈ [− 1

2,
1
2 ] .

Note that Cp(ω) is a spectral density. In fact, it is the spectral density of an MA(p)
process with γ(h) = ch for |h| ≤ p and γ(h) = 0 for |h| > p; it is easy to check
that γ(h) defined this way is non-negative definite. Hence, the is an invertible MA(p)
process, say

yt = ut + α1ut−1 + · · · + αput−p
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where ut ∼ wn(0, σ2
u) and α(z) has roots outside the unit circle. Thus,

Cp(ω) =
∑

| j |≤p
cje−2πijω = σ2

u |α(e−2πiω)|2 ,

and /
/
/σ2

u |α(e−2πiω)|2 − d(ω)
/
/
/ < δ < ε[G(2G + ε)]−1 def

= ε∗ .

Now define fx(ω) =
[
σ2
u |α(e−2πiω)|2]−1. We will show that | fx(ω) − g(ω)| < ε , in

which case the result follows with α1, . . . , αp being the required AR(p) coefficients,
and σ2

w = σ−2
u being the noise variance. Consider that

| fx(ω) − g(ω)| ≤ | fx(ω) − d−1(ω)| + |d−1(ω) − g(ω)| < | fx(ω) − d−1(ω)| + ε/2 .

Also,

| fx(ω) − d−1(ω)| =
/
/
/σ2

w |α(e−2πiω)|−2 − d−1(ω)
/
/
/

=

/
/
/σ−2

w |α(e−2πiω)|2 − d(ω)
/
/
/ ·

[
σ2
w |α(e−2πiω)|−2d−1(ω)

]

< δσ2
w |α(e−2πiω)|−2G .

But ε∗ − d(ω) < σ−2
w |α(e−2πiω)|2 < ε∗ + d(ω), so that

σ2
w |α(e−2πiω)|−2 <

1
ε∗ − d(ω) <

1
ε∗ − G−1 =

1
ε[G(2G + ε)]−1 − G−1 = G + ε/2 .

We now have that

| fx(ω) − d−1(ω)| < ε[G(2G + ε)]−1 · G + ε/2 · G = ε/2 .

Finally,
| fx(ω) − g(ω)| < ε/2 + ε/2 = ε ,

as was to be shown.  !
It should be obvious from the proof of the result, that the property holds if AR(p)

is replaced by MA(q) or even ARMA(p, q). As a practical point, it is easier to fit
autoregressions of successively increasing order to data, and this is why the property
is stated for an AR, even though the MA case is easier to establish.



Appendix R

R Supplement

R.1 First Things First

If you do not already have R, point your browser to the Comprehensive R Archive
Network (CRAN), http://cran.r-project.org/ and download and install it.
The installation includes help files and some user manuals. You can find helpful
tutorials by following CRAN’s link to Contributed Documentation. If you are a
novice, then RStudio (https://www.rstudio.com/) will make using R easier.

R.2 astsa

There is an R package for the text called astsa (Applied Statistical Time Series
Analysis), which was the name of the software distributed with the first and second
editions of Shumway and Stoffer (2000), and the original version, Shumway [183].
The package can be obtained from CRAN and its mirrors in the usual way. To
download and install astsa, start R and type
install.packages("astsa")

You will be asked to choose the closest CRAN mirror to you. As with all packages,
you have to load astsa before you use it by issuing the command
library(astsa)

All the data are loaded when the package is loaded. If you create a .First function
as follows,
.First <- function(){library(astsa)}

and save the workspace when you quit, astsa will be loaded at every start until you
change .First.

R is not consistent with help files across different operating systems. The best help
system is the html help, which can be started issuing the command help.start()

© Springer International Publishing AG 2017
R.H. Shumway, D.S. Stoffer, Time Series Analysis and Its Applications,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52452-8
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and then following the Packages link to astsa. A useful command to see all the data
files available to you, including those loaded with astsa, is
data()

R.3 Getting Started

The convention throughout the text is that R code is in blue, output is purple and
comments are # green. Get comfortable, then start her up and try some simple tasks.
2+2 # addition
[1] 5

5*5 + 2 # multiplication and addition
[1] 27

5/5 - 3 # division and subtraction
[1] -2

log(exp(pi)) # log, exponential, pi
[1] 3.141593

sin(pi/2) # sinusoids
[1] 1

exp(1)^(-2) # power
[1] 0.1353353

sqrt(8) # square root
[1] 2.828427

1:5 # sequences
[1] 1 2 3 4 5

seq(1, 10, by=2) # sequences
[1] 1 3 5 7 9

rep(2, 3) # repeat 2 three times
[1] 2 2 2

Next, we’ll use assignment to make some objects:
x <- 1 + 2 # put 1 + 2 in object x
x = 1 + 2 # same as above with fewer keystrokes
1 + 2 -> x # same
x # view object x
[1] 3

(y = 9 * 3) # put 9 times 3 in y and view the result
[1] 27

(z = rnorm(5)) # put 5 standard normals into z and print z
[1] 0.96607946 1.98135811 -0.06064527 0.31028473 0.02046853

In general, <- and = are not the same; <- can be used anywhere, whereas the use of
= is restricted. But when they are the same, we prefer to code using the least number
of keystrokes.

It is worth pointing out R’s recycling rule for doing arithmetic. In the code below,
c() [concatenation] is used to create a vector. Note the use of the semicolon for
multiple commands on one line.
x = c(1, 2, 3, 4); y = 2*x; z = c(10, 20); w = c(8, 3, 2)
x * y # 1*2, 2*4, 3*6, 4*8
[1] 2 8 18 32

x + z # 1+10, 2+20, 3+10, 4+20
[1] 11 22 13 24

x + w # what happened here?
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[1] 9 5 5 12
Warning message:
In y + w : longer object length is not a multiple of
shorter object length

To work your objects, use the following commands:
ls() # list all objects
"dummy" "mydata" "x" "y" "z"

ls(pattern = "my") # list every object that contains "my"
"dummy" "mydata"

rm(dummy) # remove object "dummy"
rm(list=ls()) # remove almost everything (use with caution)
help.start() # html help and documentation
data() # list of available data sets
help(exp) # specific help (?exp is the same)
getwd() # get working directory
setwd() # change working directory
q() # end the session (keep reading)

When you quit, R will prompt you to save an image of your current workspace.
Answering yes will save the work you have done so far, and load it when you next
start R. We have never regretted selecting yes, but we have regretted answering no.
To create your own data set inside R, you can make a data vector as follows:
mydata = c(1,2,3,2,1)

Now you have an object called mydata that contains five elements. R calls these
objects vectors even though they have no dimensions (no rows, no columns); they do
have order and length:
mydata # display the data
[1] 1 2 3 2 1

mydata[3] # the third element
[1] 3

mydata[3:5] # elements three through five
[1] 3 2 1

mydata[-(1:2)] # everything except the first two elements
[1] 3 2 1

length(mydata) # number of elements
[1] 5

dim(mydata) # no dimensions
NULL

mydata = as.matrix(mydata) # make it a matrix
dim(mydata) # now it has dimensions
[1] 5 1

If you have an external data set, you can use scan or read.table (or some
variant) to input the data. For example, suppose you have an ascii (text) data file
called dummy.txt in your working directory, and the file looks like this:
1 2 3 2 1
9 0 2 1 0

(dummy = scan("dummy.txt") ) # scan and view it
Read 10 items
[1] 1 2 3 2 1 9 0 2 1 0

(dummy = read.table("dummy.txt") ) # read and view it
V1 V2 V3 V4 V5
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1 2 3 2 1
9 0 2 1 0

There is a difference between scan and read.table. The former produced a data
vector of 10 items while the latter produced a data frame with names V1 to V5 and two
observations per variate. In this case, if you want to list (or use) the second variate,
V2, you would use
dummy$V2
[1] 2 0

and so on. You might want to look at the help files ?scan and ?read.table now.
Data frames (?data.frame) are “used as the fundamental data structure by most of
R’s modeling software.” Notice that R gave the columns of dummy generic names, V1,
..., V5. You can provide your own names and then use the names to access the data
without the use of $ as above.
colnames(dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
attach(dummy)
Cat
[1] 2 0

Rat*(Pig - Man) # animal arithmetic
[1] 3 2

head(dummy) # view the first few lines of a data file
detach(dummy) # clean up (if desired)

R is case sensitive, thus cat and Cat are different. Also, cat is a reserved name
(?cat) in R, so using "cat" instead of "Cat" may cause problems later. You may also
include a header in the data file to avoid colnames(). For example, if you have a
comma separated values file dummy.csv that looks like this,
Dog,Cat,Rat,Pig,Man
1,2,3,2,1
9,0,2,1,0

then use the following command to read the data.
(dummy = read.csv("dummy.csv"))

Dog Cat Rat Pig Man
1 1 2 3 2 1
2 9 0 2 1 0

The default for .csv files is header=TRUE; type ?read.table for further information
on similar types of files.

Some commands that are used frequently to manipulate data are c() for concate-
nation, cbind() for column binding, and rbind() for row binding.
x = 1:3; y = 4:6
(u = c(x, y)) # an R vector

[1] 1 2 3 4 5 6
(u1 = cbind(x, y)) # a 3 by 2 matrix

x y
[1,] 1 4
[2,] 2 5
[3,] 3 6

(u2 = rbind(x ,y)) # a 2 by 3 matrix
[,1] [,2] [,3]

x 1 2 3
y 4 5 6
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Fig. R.1. Crazy example

For example, u1[,2] is the second column of the matrix u1, whereas u2[1,] is the
first row of u2.

Summary statistics are fairly easy to obtain. We will simulate 25 normals with
μ = 10 and σ = 4 and then perform some basic analyses. The first line of the code is
set.seed, which fixes the seed for the generation of pseudorandom numbers. Using
the same seed yields the same results; to expect anything else would be insanity.
set.seed(90210) # so you can reproduce these results
x = rnorm(25, 10, 4) # generate the data
c( mean(x), median(x), var(x), sd(x) ) # guess
[1] 9.473883 9.448511 13.926701 3.731850

c( min(x), max(x) ) # smallest and largest values
[1] 2.678173 17.326089

which.max(x) # index of the max (x[25] in this case)
[1] 25

summary(x) # a five number summary with six numbers
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.678 7.824 9.449 9.474 11.180 17.330
boxplot(x); hist(x); stem(x) # visual summaries (not shown)

It can’t hurt to learn a little about programming in R because you will see some
of it along the way. Consider a simple program that we will call crazy to produce
a graph of a sequence of sample means of increasing sample sizes from a Cauchy
distribution with location parameter zero.
1 crazy <- function(num) {
2 x <- c()
3 for (n in 1:num) { x[n] <- mean(rcauchy(n)) }
4 plot(x, type="l", xlab="sample size", ylab="sample mean")
5 }

The first line creates the function crazy and gives it one argument, num, that is
the sample size that will end the sequence. Line 2 makes an empty vector, x, that
will be used to store the sample means. Line 3 generates n random Cauchy variates
[rcauchy(n)], finds the mean of those values, and puts the result into x[n], the n-th
value of x. The process is repeated in a “do loop” num times so that x[1] is the sample
mean from a sample of size one, x[2] is the sample mean from a sample of size two,
and so on, until finally, x[num] is the sample mean from a sample of size num. After
the do loop is complete, the fourth line generates a graphic (see Fig. R.1). The fifth
line closes the function. To use crazy ending with sample of size of 200, type
crazy(200)

and you will get a graphic that looks like Fig. R.1.
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Finally, a word of caution: TRUE and FALSE are reserved words, whereas T and F

are initially set to these. Get in the habit of using the words rather than the letters T

or F because you may get into trouble if you do something like
F = qf(p=.01, df1=3, df2=9)

so that F is no longer FALSE, but a quantile of the specified F-distribution.

R.4 Time Series Primer

In this section, we give a brief introduction on using R for time series. We assume that
astsa has been loaded. To create a time series object, use the command ts. Related
commands are as.ts to coerce an object to a time series and is.ts to test whether
an object is a time series. First, make a small data set:
(mydata = c(1,2,3,2,1) ) # make it and view it

[1] 1 2 3 2 1

Now make it a time series:
(mydata = as.ts(mydata) )

Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 2 3 2 1

Make it an annual time series that starts in 1950:
(mydata = ts(mydata, start=1950) )

Time Series:
Start = 1950
End = 1954
Frequency = 1
[1] 1 2 3 2 1

Now make it a quarterly time series that starts in 1950-III:
(mydata = ts(mydata, start=c(1950,3), frequency=4) )

Qtr1 Qtr2 Qtr3 Qtr4
1950 1 2
1951 3 2 1

time(mydata) # view the sampled times
Qtr1 Qtr2 Qtr3 Qtr4

1950 1950.50 1950.75
1951 1951.00 1951.25 1951.50

To use part of a time series object, use window():
(x = window(mydata, start=c(1951,1), end=c(1951,3) ))

Qtr1 Qtr2 Qtr3
1951 3 2 1

Next, we’ll look at lagging and differencing. First make a simple series, xt :
x = ts(1:5)

Now, column bind (cbind) lagged values of xt and you will notice that lag(x) is
forward lag, whereas lag(x, -1) is backward lag.
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cbind(x, lag(x), lag(x,-1))
x lag(x) lag(x, -1)

0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and
5 5 NA 4 lag(x,-1) is behind at 2
6 NA NA 5

Compare cbind and ts.intersect:
ts.intersect(x, lag(x,1), lag(x,-1))

Time Series: Start = 2 End = 4 Frequency = 1
x lag(x, 1) lag(x, -1)

2 2 3 1
3 3 4 2
4 4 5 3

To difference a series, ∇xt = xt − xt−1, use
diff(x)

but note that
diff(x, 2)

is not second order differencing, it is xt − xt−2. For second order differencing, that is,
∇2xt , do one of these:
diff(diff(x))
diff(x, diff=2) # same thing

and so on for higher order differencing.
We will also make use of regression via lm(). First, suppose we want to fit a

simple linear regression, y = α + βx + ε . In R, the formula is written as y~x:
set.seed(1999)
x = rnorm(10)
y = x + rnorm(10)
summary(fit <- lm(y~x) )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2576 0.1892 1.362 0.2104
x 0.4577 0.2016 2.270 0.0529
--
Residual standard error: 0.58 on 8 degrees of freedom
Multiple R-squared: 0.3918, Adjusted R-squared: 0.3157
F-statistic: 5.153 on 1 and 8 DF, p-value: 0.05289

plot(x, y) # draw a scatterplot of the data (not shown)
abline(fit) # add the fitted line to the plot (not shown)

All sorts of information can be extracted from the lm object, which we called fit.
For example,
resid(fit) # will display the residuals (not shown)
fitted(fit) # will display the fitted values (not shown)
lm(y ~ 0 + x) # will exclude the intercept (not shown)

You have to be careful if you use lm() for lagged values of a time series. If
you use lm(), then what you have to do is align the series using ts.intersect.
Please read the warning Using time series in the lm() help file [help(lm)]. Here
is an example regressing astsa data, weekly cardiovascular mortality (cmort) on
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particulate pollution (part) at the present value and lagged four weeks (part4). First,
we create ded, which consists of the intersection of the three series:
ded = ts.intersect(cmort, part, part4=lag(part,-4))

Now the series are all aligned and the regression will work.
summary(fit <- lm(cmort~part+part4, data=ded, na.action=NULL) )
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.01020 1.37498 50.190 < 2e-16
part 0.15140 0.02898 5.225 2.56e-07
part4 0.26297 0.02899 9.071 < 2e-16
---
Residual standard error: 8.323 on 501 degrees of freedom
Multiple R-squared: 0.3091, Adjusted R-squared: 0.3063
F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16

There was no need to rename lag(part,-4) to part4, it’s just an example of what
you can do.

An alternative to the above is the package dynlm, which has to be installed. After
the package is installed, the previous example may be run as follows:
library(dynlm) # load the package
fit = dynlm(cmort~part + L(part,4)) # no new data file needed
summary(fit)

The output is identical to the lm output. To fit another model, for example, add the
temperature series tempr, the advantage of dynlm is that a new data file does not have
to be created. We could just run
summary(dynlm(cmort~ tempr + part + L(part,4)) )

In Problem 2.1, you are asked to fit a regression model

xt = βt + α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t) + wt

where xt is logged Johnson & Johnson quarterly earnings (n = 84), and Qi(t) is the
indicator of quarter i = 1, 2, 3, 4. The indicators can be made using factor.
trend = time(jj) - 1970 # helps to 'center' time
Q = factor(cycle(jj) ) # make (Q)uarter factors
reg = lm(log(jj)~0 + trend + Q, na.action=NULL) # no intercept
model.matrix(reg) # view the model design matrix

trend Q1 Q2 Q3 Q4
1 -10.00 1 0 0 0
2 -9.75 0 1 0 0
3 -9.50 0 0 1 0
4 -9.25 0 0 0 1
. . . . . .
. . . . . .

summary(reg) # view the results (not shown)

The workhorse for ARIMA simulations is arima.sim. Here are some examples;
no output is shown here so you’re on your own.
x = arima.sim(list(order=c(1,0,0), ar=.9), n=100) + 50 # AR(1) w/mean 50
x = arima.sim(list(order=c(2,0,0), ar=c(1,-.9)), n=100) # AR(2)
x = arima.sim(list(order=c(1,1,1), ar=.9 ,ma=-.5), n=200) # ARIMA(1,1,1)
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An easy way to fit ARIMA models is to use sarima from astsa. The script is used in
Chap. 3 and is introduced in Sect. 3.7.

R.4.1 Graphics

We introduced some graphics without saying much about it. Many people use the
graphics package ggplot2, but for quick and easy graphing of time series, the R base
graphics does fine and is what we discuss here. As seen in Chap. 1, a time series may
be plotted in a few lines, such as
plot(speech)

in Example 1.3, or the multifigure plot
plot.ts(cbind(soi, rec) )

which we made little fancier in Example 1.5:
par(mfrow = c(2,1))
plot(soi, ylab='', xlab='', main='Southern Oscillation Index')
plot(rec, ylab='', xlab='', main='Recruitment')

But, if you compare the results of the above to what is displayed in the text, there
is a slight difference because we improved the aesthetics by adding a grid and cutting
down on the margins. This is how we actually produced Fig. 1.3:
1 dev.new(width=7, height=4) # default is 7 x 7 inches
2 par(mar=c(3,3,1,1), mgp=c(1.6,.6,0) ) # change the margins (?par)
3 plot(speech, type='n')
4 grid(lty=1, col=gray(.9)); lines(speech)

In line 1, the dimensions are in inches. Line 2 adjusts the margins; see help(par) for
a complete list of settings. In line 3, the type=’n’ means to set up the graph, but don’t
actually plot anything yet. Line 4 adds a grid and then plots the lines. The reason for
using type=’n’ is to avoid having the grid lines on top of the data plot. You can print
the graphic directly to a pdf, for example, by replacing line 1 with something like
pdf(file="speech.pdf", width=7, height=4)

but you have to turn the device off to complete the file save:
dev.off()

Here is the code we used to plot two series individually in Fig. 1.5:
dev.new(width=7, height=6)
par(mfrow = c(2,1), mar=c(2,2,1,0)+.5, mgp=c(1.6,.6,0) )
plot(soi, ylab='', xlab='', main='Southern Oscillation Index', type='n')
grid(lty=1, col=gray(.9)); lines(soi)
plot(rec, ylab='', main='Recruitment', type='n')
grid(lty=1, col=gray(.9)); lines(rec)

For plotting many time series, plot.ts and ts.plot are available. If the series
are all on the same scale, it might be useful to do the following:
ts.plot(cmort, tempr, part, col=1:3)
legend('topright', legend=c('M','T','P'), lty=1, col=1:3)

This produces a plot of all three series on the same axes with different colors, and
then adds a legend. We are not restricted to using basic colors; an internet search on
‘R colors’ is helpful. The following code gives separate plots of each different series
(with a limit of 10):



542 Appendix R: R Supplement

0

50

100

150

200

1750 1800 1850 1900 1950

0

50

100

150

200

Time

S
un

sp
ot

 N
um

be
rs

Fig. R.2. The sunspot numbers plotted in different-sized boxes, demonstrating that the dimen-
sions of the graphic matters when displaying time series data

plot.ts(cbind(cmort, tempr, part) )
plot.ts(eqexp) # you will get a warning
plot.ts(eqexp[,9:16], main='Explosions') # but this works

Finally, we mention that size matters when plotting time series. Figure R.2 shows
the sunspot numbers discussed in Problem 4.9 plotted with varying dimension size
as follows.
layout(matrix(c(1:2, 1:2), ncol=2), height=c(.2,.8))
par(mar=c(.2,3.5,0,.5), oma=c(3.5,0,.5,0), mgp=c(2,.6,0), tcl=-.3, las=1)
plot(sunspotz, type='n', xaxt='no', ylab='')

grid(lty=1, col=gray(.9))
lines(sunspotz)

plot(sunspotz, type='n', ylab='')
grid(lty=1, col=gray(.9))
lines(sunspotz)

title(xlab="Time", outer=TRUE, cex.lab=1.2)
mtext(side=2, "Sunspot Numbers", line=2, las=0, adj=.75)
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The result is shown in Fig. R.2. The top plot is wide and narrow, revealing the fact that
the series rises quickly ↑ and falls slowly ↘. The bottom plot, which is more square,
obscures this fact. You will notice that in the main part of the text, we never plotted a
series in a square box. The ideal shape for plotting time series, in most instances, is
when the time axis is much wider than the value axis.
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large sample distribution, 114, 500
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unconditional sum of squares, 117
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in state-space form, 324
invertibilty of, 86
large sample distribution of estimators,
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likelihood, 118
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multiplicative seasonal model, 148
pure seasonal model, 146
unconditional least squares, 121
vector, see VARMA model

ARMAX model, 220, 280, 323
bootstrap, 329
in state-space form, 323

ARX model, 273
Autocorrelation function, see ACF
Autocovariance

calculation, 17
Autocovariance function, 16, 21, 77

multidimensional, 35
random sum of sines and cosines, 167
sample, 27

Autocovariance matrix, 34
sample, 34

Autoregressive Integrated Moving Average
Model, see ARIMA model

Autoregressive models, see AR model
Autoregressive Moving Average Models, see

ARMA model

Backcasting, 111
Backshift operator, 56
Bandwidth, 190
Bartlett kernel, 200
Beam, 401
Best linear predictor, see BLP
BIC, 50, 142, 204

multivariate case, 272, 275
BLP, 101

m-step-ahead prediction, 105
mean square prediction error, 105

one-step-ahead prediction, 102
definition, 101
one-step-ahead prediction

mean square prediction error, 102
stationary processes, 101

Bone marrow transplant series, 291,
316

Bonferroni inequality, 196

Bootstrap, 128, 191, 204, 329
stochastic volatility, 364

Bounded in probability Op , 476
Brownian motion, 251

Cauchy sequence, 493
Cauchy–Schwarz inequality, 473, 493
Causal, 79, 85, 497

conditions for an AR(2), 88
vector model, 280

CCF, 19, 23
large sample distribution, 31
sample, 30

Central Limit Theorem, 481
M-dependent, 482

Cepstral analysis, 233
Characteristic function, 478
Chernoff information, 432
Chicken prices, 54
Cluster analysis, 436
Coherence, 207

estimation, 210
hypothesis test, 210, 524
multiple, 393

Completeness of L2, 474
Complex normal distribution, 519
Complex roots, 92
Conditional least squares, 119
Convergence in distribution, 478

Basic Approximation Theorem, 479
Convergence in probability, 475
Convolution, 175
Cosine transform

large sample distribution, 509
of a vector process, 389
properties, 184

Cospectrum, 207
of a vector process, 389

Cramér–Wold device, 479
Cross-correlation function, see CCF
Cross-covariance function, 19

sample, 30
Cross-spectrum, 207
Cycle, 166

Daniell kernel, 197, 198
modified, 198

Deconvolution, 407
Density function, 15
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Designed experiments, see ANOPOW
Deterministic process, 503
Detrending, 45
DFT, 169

inverse, 180
large sample distribution, 509
multidimensional, 227
of a vector process, 389

likelihood, 389
Differencing, 55–57
Discriminant analysis, 424
DJIA, see Dow Jones Industrial Average, see

Dow Jones Industrial Average
DLM, 290, 321

Bayesian approach, 367
bootstap, 329
innovations form, 328
maximum likelihood estimation

large sample distribution, 312
via EM algorithm, 310, 316
via Newton-Raphson, 305

MCMC methods, 374
observation equation, 290
state equation, 290
steady-state, 312
with switching, 348

EM algorithm, 354
maximum likelihood estimation, 353

DNA series, 457, 461
Dow Jones Industrial Average, 4
Durbin–Levinson algorithm, 103

Earthquake series, 6, 387, 421, 428, 433, 438
EM algorithm, 308

complete data likelihood, 309
DLM with missing observations, 316
expectation step, 309
maximization step, 310

Explosion series, 6, 387, 421, 428, 433, 438
Exponentially Weighted Moving Averages,

134

Factor analysis, 445
EM algorithm, 447

Fejér kernel, 200
FFT, 170
Filter, 57

amplitude, 215, 216
band-pass, 225
design, 225

high-pass, 212, 225
linear, 211
low-pass, 212, 225
matrix, 216, 217
optimum, 223
phase, 215, 216
recursive, 225
seasonal adjustment, 225
spatial, 227
time-invariant, 474

fMRI, see Functional magnetic resonance
imaging series

Folding frequency, 167, 170
Fourier frequency, 170, 180
Fractional difference, 58, 242

fractional noise, 242
Frequency bands, 174, 189
Frequency response function, 175

of a first difference filter, 212
of a moving average filter, 212

Functional magnetic resonance imaging
series, 5, 386, 411, 413, 417, 444, 449

Fundamental frequency, 169, 170, 180

Glacial varve series, 59, 123, 140, 244, 253
Global temperature series, 3, 58, 292
Gradient vector, 306, 381
Growth rate, 135, 254

Harmonics, 194
Hessian matrix, 306, 381
Hidden Markov Model, see HMM
Hidden Markov model, 337, 352

estimation, 354
Hilbert space, 493

closed span, 494
conditional expectation, 496
projection mapping, 494
regression, 495

HMM, 348
Poisson, 337, 341

Homogeneous difference equation
first order, 89
general solution, 91
second order, 89

solution, 90

Impulse response function, 175
Influenza series, 264, 355
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Infrasound series, 400, 402, 405, 408
Inner product space, 493
Innovations, 138, 304

standardized, 138
steady-state, 312

Innovations algorithm, 106
Integrated models, 131, 134, 150

forecasting, 133
Interest rate and inflation rate series, 330
Invertible, 83

vector model, 280

J-divergence measure, 436
Johnson & Johnson quarterly earnings series,

2, 318
Joint distribution function, 15

Kalman filter, 295
correlated noise, 322
innovations form, 328
Riccati equation, 312
stability, 311, 312
with missing observations, 314
with switching, 350
with time-varying parameters, 297

Kalman smoother, 299, 379
as a smoothing spline, 333
for the lag-one covariance, 303
spline smoothing, 335
with missing observations, 314

Kronecker’s Lemma, 530
Kullback-Leibler information, 71, 431
Kurtosis, 360

LA Pollution – Mortality Study, 50, 69, 144,
273, 275, 325

Lag, 18, 24
Lag window estimator, 202
Lagged regression model, 266
Lake Shasta series, 385, 390, 396
Lead, 24
Leakage, 201

sidelobe, 201
Least squares estimation, see LSE
Likelihood

AR(1) model, 117
conditional, 117
innovations form, 118, 304

Linear filter, see Filter

Linear process, 25, 85
Ljung–Box–Pierce statistic, 139

multivariate, 277
Local level model, 298, 301, 370
Long memory, 58, 242

estimation, 243
estimation of d, 248
spectral density, 247

LSE
conditional sum of squares, 118
Gauss–Newton, 120
unconditional, 117

MA model, 10, 81
autocovariance function, 17, 94
Gauss–Newton, 122
mean function, 15
operator, 81
polynomial, 85
spectral density, 176

Maximum likelihood estimation, see MLE
Mean function, 15
Mean square convergence, 473
Method of moments estimators, see

Yule–Walker
Minimum mean square error predictor, 100
Missing data, 316
MLE

ARMA model, 119
conditional likelihood, 117
DLM, 305
state-space model, 305
via EM algorithm, 308
via Newton–Raphson, 119, 305
via scoring, 119

Moving average model, see MA model

New York Stock Exchange, 363
Newton–Raphson, 119
Non-negative definite, 22
Normal distribution

marginal density, 15
multivariate, 26, 519

NYSE, 464

Order in probability op , 476
Ordinary Least Squares, 46
Orthogonality property, 494
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PACF, 97
of an MA(1), 99
iterative solution, 104
large sample results, 114
of an AR(p), 98
of an AR(1), 98
of an MA(q), 99

Parameter redundancy, 84
Partial autocorrelation function, see PACF
Period, 165
Periodogram, 170, 180

disribution, 186
matrix, 431

Phase, 166
of a filter, 215

Pitch period, 3
Prediction equations, 101
Prewhiten, 32, 267
Principal components, 440
Projection Theorem, 494

Q-test, see Ljung–Box–Pierce statistic
Quadspectrum, 207

of a vector process, 389

Random sum of sines and cosines, 167, 505,
507

Random walk, 11, 16, 20, 133
autocovariance function, 18

Recruitment series, 5, 31, 60, 99, 110, 187,
191, 198, 210, 219, 268

Regression
ANOVA table, 48
autocorrelated errors, 142, 324

Cochrane-Orcutt procedure, 144
coefficient of determination, 49
for jointly stationary series, 390

ANOPOW table, 396
Hilbert space, 495
lagged, 217
model, 45
multivariate, 272, 324
normal equations, 47
random coefficients, 407
spectral domain, 390
stochastic, 330, 407

ridge correction, 408
with deterministic inputs, 399

Return, 4, 135, 254
log-, 254

Riesz–Fischer Theorem, 474

Scatterplot matrix, 52, 60
Scatterplot smoothers

kernel, 66
lowess, 67, 69
nearest neighbors, 67
splines, 68

Score vector, 306
SIC, 50
Signal plus noise, 12, 13, 222, 400

mean function, 16
Signal-to-noise ratio, 13, 223
Sine transform

large sample distribution, 509
of a vector process, 389
properties, 184

Smoothing splines, 68, 333
Soil surface temperature series, 34, 36, 227
Southern Oscillation Index, 5, 31, 60, 187,

191, 198, 201, 204, 210, 212, 219, 224,
268

Spectral density, 173
autoregression, 204, 531
estimation, 189

adjusted degrees of freedom, 191
bandwidth stability, 196
confidence interval, 191
degrees of freedom, 190
large sample distribution, 190
nonparametric, 203
parametric, 203
resolution, 196

matrix, 209
linear filter, 217

of a filtered series, 175
of a moving average, 176
of an AR(2), 176
of white noise, 174
wavenumber, 226

Spectral distribution function, 173
Spectral envelope, 455

categorical time series, 458
real-valued time series, 463

Spectral Representation Theorem, 173, 179,
505, 507

vector process, 208, 507
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Speech series, 3, 29
Spline smoothing, 335
State-space model

Bayesian approach, 367
linear, see DLM

Stationary
Gaussian series, 26
jointly, 23, 24
strictly, 19
weakly, 20

Stochastic process, 8
realization, 8

Stochastic regression, 330
Stochastic trend, 132
Stochastic volatility model, 361

bootstrap, 364
estimation, 362

Structural component model, 70, 318, 355

Taper, 200, 201
cosine bell, 200

Taylor series expansion in probability, 477
Tchebycheff inequality, 473
Time series, 8

categorical, 458
complex-valued, 439
multidimensional, 34, 226
multivariate, 19, 33
two-dimensional, 226

Toepliz Matrix, 528
Transfer function model, 266
Transformation

Box-Cox, 58
Trend stationarity, 22
Triangle inequality, 493

U.S. GNP series, 136, 139, 142, 257
U.S. macroeconomic series, 452
U.S. population series, 141

Unconditional least squares, 119
Unit root tests, 250

Augmented Dickey-Fuller test, 252
Dickey-Fuller test, 252
Phillips-Perron test, 252

VAR model, 273, 275
estimation

large sample distribution, 279
operator, 280

Variogram, 37, 43
VARMA model, 280

autocovariance function, 281
estimation

Spliid algorithm, 283
identifiability of, 282

Varve series, 248
Viterbi algorithm, 353
VMA model, 280

operator, 280
Volatility, 4, 253

Wavenumber spectrum, 226
estimation, 227

Weak law of large numbers, 476
White noise, 9

autocovariance function, 17
Gaussian, 9
vector, 273

Whittle likelihood, 205, 430
Wold Decomposition, 503

Yule–Walker
equations, 113

vector model, 277
estimators, 113

AR(2), 114
MA(1), 115

large sample results, 114
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